xref: /illumos-gate/usr/src/uts/common/os/cyclic.c (revision f998c95e3b7029fe5f7542e115f7474ddb8024d7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  *  The Cyclic Subsystem
30  *  --------------------
31  *
32  *  Prehistory
33  *
34  *  Historically, most computer architectures have specified interval-based
35  *  timer parts (e.g. SPARCstation's counter/timer; Intel's i8254).  While
36  *  these parts deal in relative (i.e. not absolute) time values, they are
37  *  typically used by the operating system to implement the abstraction of
38  *  absolute time.  As a result, these parts cannot typically be reprogrammed
39  *  without introducing error in the system's notion of time.
40  *
41  *  Starting in about 1994, chip architectures began specifying high resolution
42  *  timestamp registers.  As of this writing (1999), all major chip families
43  *  (UltraSPARC, PentiumPro, MIPS, PowerPC, Alpha) have high resolution
44  *  timestamp registers, and two (UltraSPARC and MIPS) have added the capacity
45  *  to interrupt based on timestamp values.  These timestamp-compare registers
46  *  present a time-based interrupt source which can be reprogrammed arbitrarily
47  *  often without introducing error.  Given the low cost of implementing such a
48  *  timestamp-compare register (and the tangible benefit of eliminating
49  *  discrete timer parts), it is reasonable to expect that future chip
50  *  architectures will adopt this feature.
51  *
52  *  The cyclic subsystem has been designed to take advantage of chip
53  *  architectures with the capacity to interrupt based on absolute, high
54  *  resolution values of time.
55  *
56  *  Subsystem Overview
57  *
58  *  The cyclic subsystem is a low-level kernel subsystem designed to provide
59  *  arbitrarily high resolution, per-CPU interval timers (to avoid colliding
60  *  with existing terms, we dub such an interval timer a "cyclic").  Cyclics
61  *  can be specified to fire at high, lock or low interrupt level, and may be
62  *  optionally bound to a CPU or a CPU partition.  A cyclic's CPU or CPU
63  *  partition binding may be changed dynamically; the cyclic will be "juggled"
64  *  to a CPU which satisfies the new binding.  Alternatively, a cyclic may
65  *  be specified to be "omnipresent", denoting firing on all online CPUs.
66  *
67  *  Cyclic Subsystem Interface Overview
68  *  -----------------------------------
69  *
70  *  The cyclic subsystem has interfaces with the kernel at-large, with other
71  *  kernel subsystems (e.g. the processor management subsystem, the checkpoint
72  *  resume subsystem) and with the platform (the cyclic backend).  Each
73  *  of these interfaces is given a brief synopsis here, and is described
74  *  in full above the interface's implementation.
75  *
76  *  The following diagram displays the cyclic subsystem's interfaces to
77  *  other kernel components.  The arrows denote a "calls" relationship, with
78  *  the large arrow indicating the cyclic subsystem's consumer interface.
79  *  Each arrow is labeled with the section in which the corresponding
80  *  interface is described.
81  *
82  *           Kernel at-large consumers
83  *           -----------++------------
84  *                      ||
85  *                      ||
86  *                     _||_
87  *                     \  /
88  *                      \/
89  *            +---------------------+
90  *            |                     |
91  *            |  Cyclic subsystem   |<-----------  Other kernel subsystems
92  *            |                     |
93  *            +---------------------+
94  *                   ^       |
95  *                   |       |
96  *                   |       |
97  *                   |       v
98  *            +---------------------+
99  *            |                     |
100  *            |   Cyclic backend    |
101  *            | (platform specific) |
102  *            |                     |
103  *            +---------------------+
104  *
105  *
106  *  Kernel At-Large Interfaces
107  *
108  *      cyclic_add()         <-- Creates a cyclic
109  *      cyclic_add_omni()    <-- Creates an omnipresent cyclic
110  *      cyclic_remove()      <-- Removes a cyclic
111  *      cyclic_bind()        <-- Change a cyclic's CPU or partition binding
112  *
113  *  Inter-subsystem Interfaces
114  *
115  *      cyclic_juggle()      <-- Juggles cyclics away from a CPU
116  *      cyclic_offline()     <-- Offlines cyclic operation on a CPU
117  *      cyclic_online()      <-- Reenables operation on an offlined CPU
118  *      cyclic_move_in()     <-- Notifies subsystem of change in CPU partition
119  *      cyclic_move_out()    <-- Notifies subsystem of change in CPU partition
120  *      cyclic_suspend()     <-- Suspends the cyclic subsystem on all CPUs
121  *      cyclic_resume()      <-- Resumes the cyclic subsystem on all CPUs
122  *
123  *  Backend Interfaces
124  *
125  *      cyclic_init()        <-- Initializes the cyclic subsystem
126  *      cyclic_fire()        <-- CY_HIGH_LEVEL interrupt entry point
127  *      cyclic_softint()     <-- CY_LOCK/LOW_LEVEL soft interrupt entry point
128  *
129  *  The backend-supplied interfaces (through the cyc_backend structure) are
130  *  documented in detail in <sys/cyclic_impl.h>
131  *
132  *
133  *  Cyclic Subsystem Implementation Overview
134  *  ----------------------------------------
135  *
136  *  The cyclic subsystem is designed to minimize interference between cyclics
137  *  on different CPUs.  Thus, all of the cyclic subsystem's data structures
138  *  hang off of a per-CPU structure, cyc_cpu.
139  *
140  *  Each cyc_cpu has a power-of-two sized array of cyclic structures (the
141  *  cyp_cyclics member of the cyc_cpu structure).  If cyclic_add() is called
142  *  and there does not exist a free slot in the cyp_cyclics array, the size of
143  *  the array will be doubled.  The array will never shrink.  Cyclics are
144  *  referred to by their index in the cyp_cyclics array, which is of type
145  *  cyc_index_t.
146  *
147  *  The cyclics are kept sorted by expiration time in the cyc_cpu's heap.  The
148  *  heap is keyed by cyclic expiration time, with parents expiring earlier
149  *  than their children.
150  *
151  *  Heap Management
152  *
153  *  The heap is managed primarily by cyclic_fire().  Upon entry, cyclic_fire()
154  *  compares the root cyclic's expiration time to the current time.  If the
155  *  expiration time is in the past, cyclic_expire() is called on the root
156  *  cyclic.  Upon return from cyclic_expire(), the cyclic's new expiration time
157  *  is derived by adding its interval to its old expiration time, and a
158  *  downheap operation is performed.  After the downheap, cyclic_fire()
159  *  examines the (potentially changed) root cyclic, repeating the
160  *  cyclic_expire()/add interval/cyclic_downheap() sequence until the root
161  *  cyclic has an expiration time in the future.  This expiration time
162  *  (guaranteed to be the earliest in the heap) is then communicated to the
163  *  backend via cyb_reprogram.  Optimal backends will next call cyclic_fire()
164  *  shortly after the root cyclic's expiration time.
165  *
166  *  To allow efficient, deterministic downheap operations, we implement the
167  *  heap as an array (the cyp_heap member of the cyc_cpu structure), with each
168  *  element containing an index into the CPU's cyp_cyclics array.
169  *
170  *  The heap is laid out in the array according to the following:
171  *
172  *   1.  The root of the heap is always in the 0th element of the heap array
173  *   2.  The left and right children of the nth element are element
174  *       (((n + 1) << 1) - 1) and element ((n + 1) << 1), respectively.
175  *
176  *  This layout is standard (see, e.g., Cormen's "Algorithms"); the proof
177  *  that these constraints correctly lay out a heap (or indeed, any binary
178  *  tree) is trivial and left to the reader.
179  *
180  *  To see the heap by example, assume our cyclics array has the following
181  *  members (at time t):
182  *
183  *            cy_handler            cy_level      cy_expire
184  *            ---------------------------------------------
185  *     [ 0]   clock()                   LOCK     t+10000000
186  *     [ 1]   deadman()                 HIGH   t+1000000000
187  *     [ 2]   clock_highres_fire()       LOW          t+100
188  *     [ 3]   clock_highres_fire()       LOW         t+1000
189  *     [ 4]   clock_highres_fire()       LOW          t+500
190  *     [ 5]   (free)                      --             --
191  *     [ 6]   (free)                      --             --
192  *     [ 7]   (free)                      --             --
193  *
194  *  The heap array could be:
195  *
196  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
197  *              +-----+-----+-----+-----+-----+-----+-----+-----+
198  *              |     |     |     |     |     |     |     |     |
199  *              |  2  |  3  |  4  |  0  |  1  |  x  |  x  |  x  |
200  *              |     |     |     |     |     |     |     |     |
201  *              +-----+-----+-----+-----+-----+-----+-----+-----+
202  *
203  *  Graphically, this array corresponds to the following (excuse the ASCII art):
204  *
205  *                                       2
206  *                                       |
207  *                    +------------------+------------------+
208  *                    3                                     4
209  *                    |
210  *          +---------+--------+
211  *          0                  1
212  *
213  *  Note that the heap is laid out by layer:  all nodes at a given depth are
214  *  stored in consecutive elements of the array.  Moreover, layers of
215  *  consecutive depths are in adjacent element ranges.  This property
216  *  guarantees high locality of reference during downheap operations.
217  *  Specifically, we are guaranteed that we can downheap to a depth of
218  *
219  *      lg (cache_line_size / sizeof (cyc_index_t))
220  *
221  *  nodes with at most one cache miss.  On UltraSPARC (64 byte e-cache line
222  *  size), this corresponds to a depth of four nodes.  Thus, if there are
223  *  fewer than sixteen cyclics in the heap, downheaps on UltraSPARC miss at
224  *  most once in the e-cache.
225  *
226  *  Downheaps are required to compare siblings as they proceed down the
227  *  heap.  For downheaps proceeding beyond the one-cache-miss depth, every
228  *  access to a left child could potentially miss in the cache.  However,
229  *  if we assume
230  *
231  *      (cache_line_size / sizeof (cyc_index_t)) > 2,
232  *
233  *  then all siblings are guaranteed to be on the same cache line.  Thus, the
234  *  miss on the left child will guarantee a hit on the right child; downheaps
235  *  will incur at most one cache miss per layer beyond the one-cache-miss
236  *  depth.  The total number of cache misses for heap management during a
237  *  downheap operation is thus bounded by
238  *
239  *      lg (n) - lg (cache_line_size / sizeof (cyc_index_t))
240  *
241  *  Traditional pointer-based heaps are implemented without regard to
242  *  locality.  Downheaps can thus incur two cache misses per layer (one for
243  *  each child), but at most one cache miss at the root.  This yields a bound
244  *  of
245  *
246  *      2 * lg (n) - 1
247  *
248  *  on the total cache misses.
249  *
250  *  This difference may seem theoretically trivial (the difference is, after
251  *  all, constant), but can become substantial in practice -- especially for
252  *  caches with very large cache lines and high miss penalties (e.g. TLBs).
253  *
254  *  Heaps must always be full, balanced trees.  Heap management must therefore
255  *  track the next point-of-insertion into the heap.  In pointer-based heaps,
256  *  recomputing this point takes O(lg (n)).  Given the layout of the
257  *  array-based implementation, however, the next point-of-insertion is
258  *  always:
259  *
260  *      heap[number_of_elements]
261  *
262  *  We exploit this property by implementing the free-list in the usused
263  *  heap elements.  Heap insertion, therefore, consists only of filling in
264  *  the cyclic at cyp_cyclics[cyp_heap[number_of_elements]], incrementing
265  *  the number of elements, and performing an upheap.  Heap deletion consists
266  *  of decrementing the number of elements, swapping the to-be-deleted element
267  *  with the element at cyp_heap[number_of_elements], and downheaping.
268  *
269  *  Filling in more details in our earlier example:
270  *
271  *                                               +--- free list head
272  *                                               |
273  *                                               V
274  *
275  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
276  *              +-----+-----+-----+-----+-----+-----+-----+-----+
277  *              |     |     |     |     |     |     |     |     |
278  *              |  2  |  3  |  4  |  0  |  1  |  5  |  6  |  7  |
279  *              |     |     |     |     |     |     |     |     |
280  *              +-----+-----+-----+-----+-----+-----+-----+-----+
281  *
282  *  To insert into this heap, we would just need to fill in the cyclic at
283  *  cyp_cyclics[5], bump the number of elements (from 5 to 6) and perform
284  *  an upheap.
285  *
286  *  If we wanted to remove, say, cyp_cyclics[3], we would first scan for it
287  *  in the cyp_heap, and discover it at cyp_heap[1].  We would then decrement
288  *  the number of elements (from 5 to 4), swap cyp_heap[1] with cyp_heap[4],
289  *  and perform a downheap from cyp_heap[1].  The linear scan is required
290  *  because the cyclic does not keep a backpointer into the heap.  This makes
291  *  heap manipulation (e.g. downheaps) faster at the expense of removal
292  *  operations.
293  *
294  *  Expiry processing
295  *
296  *  As alluded to above, cyclic_expire() is called by cyclic_fire() at
297  *  CY_HIGH_LEVEL to expire a cyclic.  Cyclic subsystem consumers are
298  *  guaranteed that for an arbitrary time t in the future, their cyclic
299  *  handler will have been called (t - cyt_when) / cyt_interval times.  Thus,
300  *  there must be a one-to-one mapping between a cyclic's expiration at
301  *  CY_HIGH_LEVEL and its execution at the desired level (either CY_HIGH_LEVEL,
302  *  CY_LOCK_LEVEL or CY_LOW_LEVEL).
303  *
304  *  For CY_HIGH_LEVEL cyclics, this is trivial; cyclic_expire() simply needs
305  *  to call the handler.
306  *
307  *  For CY_LOCK_LEVEL and CY_LOW_LEVEL cyclics, however, there exists a
308  *  potential disconnect:  if the CPU is at an interrupt level less than
309  *  CY_HIGH_LEVEL but greater than the level of a cyclic for a period of
310  *  time longer than twice the cyclic's interval, the cyclic will be expired
311  *  twice before it can be handled.
312  *
313  *  To maintain the one-to-one mapping, we track the difference between the
314  *  number of times a cyclic has been expired and the number of times it's
315  *  been handled in a "pending count" (the cy_pend field of the cyclic
316  *  structure).  cyclic_expire() thus increments the cy_pend count for the
317  *  expired cyclic and posts a soft interrupt at the desired level.  In the
318  *  cyclic subsystem's soft interrupt handler, cyclic_softint(), we repeatedly
319  *  call the cyclic handler and decrement cy_pend until we have decremented
320  *  cy_pend to zero.
321  *
322  *  The Producer/Consumer Buffer
323  *
324  *  If we wish to avoid a linear scan of the cyclics array at soft interrupt
325  *  level, cyclic_softint() must be able to quickly determine which cyclics
326  *  have a non-zero cy_pend count.  We thus introduce a per-soft interrupt
327  *  level producer/consumer buffer shared with CY_HIGH_LEVEL.  These buffers
328  *  are encapsulated in the cyc_pcbuffer structure, and, like cyp_heap, are
329  *  implemented as cyc_index_t arrays (the cypc_buf member of the cyc_pcbuffer
330  *  structure).
331  *
332  *  The producer (cyclic_expire() running at CY_HIGH_LEVEL) enqueues a cyclic
333  *  by storing the cyclic's index to cypc_buf[cypc_prodndx] and incrementing
334  *  cypc_prodndx.  The consumer (cyclic_softint() running at either
335  *  CY_LOCK_LEVEL or CY_LOW_LEVEL) dequeues a cyclic by loading from
336  *  cypc_buf[cypc_consndx] and bumping cypc_consndx.  The buffer is empty when
337  *  cypc_prodndx == cypc_consndx.
338  *
339  *  To bound the size of the producer/consumer buffer, cyclic_expire() only
340  *  enqueues a cyclic if its cy_pend was zero (if the cyclic's cy_pend is
341  *  non-zero, cyclic_expire() only bumps cy_pend).  Symmetrically,
342  *  cyclic_softint() only consumes a cyclic after it has decremented the
343  *  cy_pend count to zero.
344  *
345  *  Returning to our example, here is what the CY_LOW_LEVEL producer/consumer
346  *  buffer might look like:
347  *
348  *     cypc_consndx ---+                 +--- cypc_prodndx
349  *                     |                 |
350  *                     V                 V
351  *
352  *        [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
353  *      +-----+-----+-----+-----+-----+-----+-----+-----+
354  *      |     |     |     |     |     |     |     |     |
355  *      |  x  |  x  |  3  |  2  |  4  |  x  |  x  |  x  |   <== cypc_buf
356  *      |     |     |  .  |  .  |  .  |     |     |     |
357  *      +-----+-----+- | -+- | -+- | -+-----+-----+-----+
358  *                     |     |     |
359  *                     |     |     |              cy_pend  cy_handler
360  *                     |     |     |          -------------------------
361  *                     |     |     |          [ 0]      1  clock()
362  *                     |     |     |          [ 1]      0  deadman()
363  *                     |     +---- | -------> [ 2]      3  clock_highres_fire()
364  *                     +---------- | -------> [ 3]      1  clock_highres_fire()
365  *                                 +--------> [ 4]      1  clock_highres_fire()
366  *                                            [ 5]      -  (free)
367  *                                            [ 6]      -  (free)
368  *                                            [ 7]      -  (free)
369  *
370  *  In particular, note that clock()'s cy_pend is 1 but that it is _not_ in
371  *  this producer/consumer buffer; it would be enqueued in the CY_LOCK_LEVEL
372  *  producer/consumer buffer.
373  *
374  *  Locking
375  *
376  *  Traditionally, access to per-CPU data structures shared between
377  *  interrupt levels is serialized by manipulating programmable interrupt
378  *  level:  readers and writers are required to raise their interrupt level
379  *  to that of the highest level writer.
380  *
381  *  For the producer/consumer buffers (shared between cyclic_fire()/
382  *  cyclic_expire() executing at CY_HIGH_LEVEL and cyclic_softint() executing
383  *  at one of CY_LOCK_LEVEL or CY_LOW_LEVEL), forcing cyclic_softint() to raise
384  *  programmable interrupt level is undesirable:  aside from the additional
385  *  latency incurred by manipulating interrupt level in the hot cy_pend
386  *  processing path, this would create the potential for soft level cy_pend
387  *  processing to delay CY_HIGH_LEVEL firing and expiry processing.
388  *  CY_LOCK/LOW_LEVEL cyclics could thereby induce jitter in CY_HIGH_LEVEL
389  *  cyclics.
390  *
391  *  To minimize jitter, then, we would like the cyclic_fire()/cyclic_expire()
392  *  and cyclic_softint() code paths to be lock-free.
393  *
394  *  For cyclic_fire()/cyclic_expire(), lock-free execution is straightforward:
395  *  because these routines execute at a higher interrupt level than
396  *  cyclic_softint(), their actions on the producer/consumer buffer appear
397  *  atomic.  In particular, the increment of cy_pend appears to occur
398  *  atomically with the increment of cypc_prodndx.
399  *
400  *  For cyclic_softint(), however, lock-free execution requires more delicacy.
401  *  When cyclic_softint() discovers a cyclic in the producer/consumer buffer,
402  *  it calls the cyclic's handler and attempts to atomically decrement the
403  *  cy_pend count with a compare&swap operation.
404  *
405  *  If the compare&swap operation succeeds, cyclic_softint() behaves
406  *  conditionally based on the value it atomically wrote to cy_pend:
407  *
408  *     - If the cy_pend was decremented to 0, the cyclic has been consumed;
409  *       cyclic_softint() increments the cypc_consndx and checks for more
410  *       enqueued work.
411  *
412  *     - If the count was decremented to a non-zero value, there is more work
413  *       to be done on the cyclic; cyclic_softint() calls the cyclic handler
414  *       and repeats the atomic decrement process.
415  *
416  *  If the compare&swap operation fails, cyclic_softint() knows that
417  *  cyclic_expire() has intervened and bumped the cy_pend count (resizes
418  *  and removals complicate this, however -- see the sections on their
419  *  operation, below).  cyclic_softint() thus reloads cy_pend, and re-attempts
420  *  the atomic decrement.
421  *
422  *  Recall that we bound the size of the producer/consumer buffer by
423  *  having cyclic_expire() only enqueue the specified cyclic if its
424  *  cy_pend count is zero; this assures that each cyclic is enqueued at
425  *  most once.  This leads to a critical constraint on cyclic_softint(),
426  *  however:  after the compare&swap operation which successfully decrements
427  *  cy_pend to zero, cyclic_softint() must _not_ re-examine the consumed
428  *  cyclic.  In part to obey this constraint, cyclic_softint() calls the
429  *  cyclic handler before decrementing cy_pend.
430  *
431  *  Resizing
432  *
433  *  All of the discussion thus far has assumed a static number of cyclics.
434  *  Obviously, static limitations are not practical; we need the capacity
435  *  to resize our data structures dynamically.
436  *
437  *  We resize our data structures lazily, and only on a per-CPU basis.
438  *  The size of the data structures always doubles and never shrinks.  We
439  *  serialize adds (and thus resizes) on cpu_lock; we never need to deal
440  *  with concurrent resizes.  Resizes should be rare; they may induce jitter
441  *  on the CPU being resized, but should not affect cyclic operation on other
442  *  CPUs.  Pending cyclics may not be dropped during a resize operation.
443  *
444  *  Three key cyc_cpu data structures need to be resized:  the cyclics array,
445  *  the heap array and the producer/consumer buffers.  Resizing the first two
446  *  is relatively straightforward:
447  *
448  *    1.  The new, larger arrays are allocated in cyclic_expand() (called
449  *        from cyclic_add()).
450  *    2.  cyclic_expand() cross calls cyclic_expand_xcall() on the CPU
451  *        undergoing the resize.
452  *    3.  cyclic_expand_xcall() raises interrupt level to CY_HIGH_LEVEL
453  *    4.  The contents of the old arrays are copied into the new arrays.
454  *    5.  The old cyclics array is bzero()'d
455  *    6.  The pointers are updated.
456  *
457  *  The producer/consumer buffer is dicier:  cyclic_expand_xcall() may have
458  *  interrupted cyclic_softint() in the middle of consumption. To resize the
459  *  producer/consumer buffer, we implement up to two buffers per soft interrupt
460  *  level:  a hard buffer (the buffer being produced into by cyclic_expire())
461  *  and a soft buffer (the buffer from which cyclic_softint() is consuming).
462  *  During normal operation, the hard buffer and soft buffer point to the
463  *  same underlying producer/consumer buffer.
464  *
465  *  During a resize, however, cyclic_expand_xcall() changes the hard buffer
466  *  to point to the new, larger producer/consumer buffer; all future
467  *  cyclic_expire()'s will produce into the new buffer.  cyclic_expand_xcall()
468  *  then posts a CY_LOCK_LEVEL soft interrupt, landing in cyclic_softint().
469  *
470  *  As under normal operation, cyclic_softint() will consume cyclics from
471  *  its soft buffer.  After the soft buffer is drained, however,
472  *  cyclic_softint() will see that the hard buffer has changed.  At that time,
473  *  cyclic_softint() will change its soft buffer to point to the hard buffer,
474  *  and repeat the producer/consumer buffer draining procedure.
475  *
476  *  After the new buffer is drained, cyclic_softint() will determine if both
477  *  soft levels have seen their new producer/consumer buffer.  If both have,
478  *  cyclic_softint() will post on the semaphore cyp_modify_wait.  If not, a
479  *  soft interrupt will be generated for the remaining level.
480  *
481  *  cyclic_expand() blocks on the cyp_modify_wait semaphore (a semaphore is
482  *  used instead of a condition variable because of the race between the
483  *  sema_p() in cyclic_expand() and the sema_v() in cyclic_softint()).  This
484  *  allows cyclic_expand() to know when the resize operation is complete;
485  *  all of the old buffers (the heap, the cyclics array and the producer/
486  *  consumer buffers) can be freed.
487  *
488  *  A final caveat on resizing:  we described step (5) in the
489  *  cyclic_expand_xcall() procedure without providing any motivation.  This
490  *  step addresses the problem of a cyclic_softint() attempting to decrement
491  *  a cy_pend count while interrupted by a cyclic_expand_xcall().  Because
492  *  cyclic_softint() has already called the handler by the time cy_pend is
493  *  decremented, we want to assure that it doesn't decrement a cy_pend
494  *  count in the old cyclics array.  By zeroing the old cyclics array in
495  *  cyclic_expand_xcall(), we are zeroing out every cy_pend count; when
496  *  cyclic_softint() attempts to compare&swap on the cy_pend count, it will
497  *  fail and recognize that the count has been zeroed.  cyclic_softint() will
498  *  update its stale copy of the cyp_cyclics pointer, re-read the cy_pend
499  *  count from the new cyclics array, and re-attempt the compare&swap.
500  *
501  *  Removals
502  *
503  *  Cyclic removals should be rare.  To simplify the implementation (and to
504  *  allow optimization for the cyclic_fire()/cyclic_expire()/cyclic_softint()
505  *  path), we force removals and adds to serialize on cpu_lock.
506  *
507  *  Cyclic removal is complicated by a guarantee made to the consumer of
508  *  the cyclic subsystem:  after cyclic_remove() returns, the cyclic handler
509  *  has returned and will never again be called.
510  *
511  *  Here is the procedure for cyclic removal:
512  *
513  *    1.  cyclic_remove() calls cyclic_remove_xcall() on the CPU undergoing
514  *        the removal.
515  *    2.  cyclic_remove_xcall() raises interrupt level to CY_HIGH_LEVEL
516  *    3.  The current expiration time for the removed cyclic is recorded.
517  *    4.  If the cy_pend count on the removed cyclic is non-zero, it
518  *        is copied into cyp_rpend and subsequently zeroed.
519  *    5.  The cyclic is removed from the heap
520  *    6.  If the root of the heap has changed, the backend is reprogrammed.
521  *    7.  If the cy_pend count was non-zero cyclic_remove() blocks on the
522  *        cyp_modify_wait semaphore.
523  *
524  *  The motivation for step (3) is explained in "Juggling", below.
525  *
526  *  The cy_pend count is decremented in cyclic_softint() after the cyclic
527  *  handler returns.  Thus, if we find a cy_pend count of zero in step
528  *  (4), we know that cyclic_remove() doesn't need to block.
529  *
530  *  If the cy_pend count is non-zero, however, we must block in cyclic_remove()
531  *  until cyclic_softint() has finished calling the cyclic handler.  To let
532  *  cyclic_softint() know that this cyclic has been removed, we zero the
533  *  cy_pend count.  This will cause cyclic_softint()'s compare&swap to fail.
534  *  When cyclic_softint() sees the zero cy_pend count, it knows that it's been
535  *  caught during a resize (see "Resizing", above) or that the cyclic has been
536  *  removed.  In the latter case, it calls cyclic_remove_pend() to call the
537  *  cyclic handler cyp_rpend - 1 times, and posts on cyp_modify_wait.
538  *
539  *  Juggling
540  *
541  *  At first glance, cyclic juggling seems to be a difficult problem.  The
542  *  subsystem must guarantee that a cyclic doesn't execute simultaneously on
543  *  different CPUs, while also assuring that a cyclic fires exactly once
544  *  per interval.  We solve this problem by leveraging a property of the
545  *  platform:  gethrtime() is required to increase in lock-step across
546  *  multiple CPUs.  Therefore, to juggle a cyclic, we remove it from its
547  *  CPU, recording its expiration time in the remove cross call (step (3)
548  *  in "Removing", above).  We then add the cyclic to the new CPU, explicitly
549  *  setting its expiration time to the time recorded in the removal.  This
550  *  leverages the existing cyclic expiry processing, which will compensate
551  *  for any time lost while juggling.
552  *
553  */
554 #include <sys/cyclic_impl.h>
555 #include <sys/sysmacros.h>
556 #include <sys/systm.h>
557 #include <sys/atomic.h>
558 #include <sys/kmem.h>
559 #include <sys/cmn_err.h>
560 #include <sys/ddi.h>
561 #include <sys/sdt.h>
562 
563 #ifdef CYCLIC_TRACE
564 
565 /*
566  * cyc_trace_enabled is for the benefit of kernel debuggers.
567  */
568 int cyc_trace_enabled = 1;
569 static cyc_tracebuf_t cyc_ptrace;
570 static cyc_coverage_t cyc_coverage[CY_NCOVERAGE];
571 
572 /*
573  * Seen this anywhere?
574  */
575 static uint_t
576 cyclic_coverage_hash(char *p)
577 {
578 	unsigned int g;
579 	uint_t hval;
580 
581 	hval = 0;
582 	while (*p) {
583 		hval = (hval << 4) + *p++;
584 		if ((g = (hval & 0xf0000000)) != 0)
585 			hval ^= g >> 24;
586 		hval &= ~g;
587 	}
588 	return (hval);
589 }
590 
591 static void
592 cyclic_coverage(char *why, int level, uint64_t arg0, uint64_t arg1)
593 {
594 	uint_t ndx, orig;
595 
596 	for (ndx = orig = cyclic_coverage_hash(why) % CY_NCOVERAGE; ; ) {
597 		if (cyc_coverage[ndx].cyv_why == why)
598 			break;
599 
600 		if (cyc_coverage[ndx].cyv_why != NULL ||
601 		    casptr(&cyc_coverage[ndx].cyv_why, NULL, why) != NULL) {
602 
603 			if (++ndx == CY_NCOVERAGE)
604 				ndx = 0;
605 
606 			if (ndx == orig)
607 				panic("too many cyclic coverage points");
608 			continue;
609 		}
610 
611 		/*
612 		 * If we're here, we have successfully swung our guy into
613 		 * the position at "ndx".
614 		 */
615 		break;
616 	}
617 
618 	if (level == CY_PASSIVE_LEVEL)
619 		cyc_coverage[ndx].cyv_passive_count++;
620 	else
621 		cyc_coverage[ndx].cyv_count[level]++;
622 
623 	cyc_coverage[ndx].cyv_arg0 = arg0;
624 	cyc_coverage[ndx].cyv_arg1 = arg1;
625 }
626 
627 #define	CYC_TRACE(cpu, level, why, arg0, arg1) \
628 	CYC_TRACE_IMPL(&cpu->cyp_trace[level], level, why, arg0, arg1)
629 
630 #define	CYC_PTRACE(why, arg0, arg1) \
631 	CYC_TRACE_IMPL(&cyc_ptrace, CY_PASSIVE_LEVEL, why, arg0, arg1)
632 
633 #define	CYC_TRACE_IMPL(buf, level, why, a0, a1) { \
634 	if (panicstr == NULL) { \
635 		int _ndx = (buf)->cyt_ndx; \
636 		cyc_tracerec_t *_rec = &(buf)->cyt_buf[_ndx]; \
637 		(buf)->cyt_ndx = (++_ndx == CY_NTRACEREC) ? 0 : _ndx; \
638 		_rec->cyt_tstamp = gethrtime_unscaled(); \
639 		_rec->cyt_why = (why); \
640 		_rec->cyt_arg0 = (uint64_t)(uintptr_t)(a0); \
641 		_rec->cyt_arg1 = (uint64_t)(uintptr_t)(a1); \
642 		cyclic_coverage(why, level,	\
643 		    (uint64_t)(uintptr_t)(a0), (uint64_t)(uintptr_t)(a1)); \
644 	} \
645 }
646 
647 #else
648 
649 static int cyc_trace_enabled = 0;
650 
651 #define	CYC_TRACE(cpu, level, why, arg0, arg1)
652 #define	CYC_PTRACE(why, arg0, arg1)
653 
654 #endif
655 
656 #define	CYC_TRACE0(cpu, level, why) CYC_TRACE(cpu, level, why, 0, 0)
657 #define	CYC_TRACE1(cpu, level, why, arg0) CYC_TRACE(cpu, level, why, arg0, 0)
658 
659 #define	CYC_PTRACE0(why) CYC_PTRACE(why, 0, 0)
660 #define	CYC_PTRACE1(why, arg0) CYC_PTRACE(why, arg0, 0)
661 
662 static kmem_cache_t *cyclic_id_cache;
663 static cyc_id_t *cyclic_id_head;
664 static hrtime_t cyclic_resolution;
665 static cyc_backend_t cyclic_backend;
666 
667 /*
668  * Returns 1 if the upheap propagated to the root, 0 if it did not.  This
669  * allows the caller to reprogram the backend only when the root has been
670  * modified.
671  */
672 static int
673 cyclic_upheap(cyc_cpu_t *cpu, cyc_index_t ndx)
674 {
675 	cyclic_t *cyclics;
676 	cyc_index_t *heap;
677 	cyc_index_t heap_parent, heap_current = ndx;
678 	cyc_index_t parent, current;
679 
680 	if (heap_current == 0)
681 		return (1);
682 
683 	heap = cpu->cyp_heap;
684 	cyclics = cpu->cyp_cyclics;
685 	heap_parent = CYC_HEAP_PARENT(heap_current);
686 
687 	for (;;) {
688 		current = heap[heap_current];
689 		parent = heap[heap_parent];
690 
691 		/*
692 		 * We have an expiration time later than our parent; we're
693 		 * done.
694 		 */
695 		if (cyclics[current].cy_expire >= cyclics[parent].cy_expire)
696 			return (0);
697 
698 		/*
699 		 * We need to swap with our parent, and continue up the heap.
700 		 */
701 		heap[heap_parent] = current;
702 		heap[heap_current] = parent;
703 
704 		/*
705 		 * If we just reached the root, we're done.
706 		 */
707 		if (heap_parent == 0)
708 			return (1);
709 
710 		heap_current = heap_parent;
711 		heap_parent = CYC_HEAP_PARENT(heap_current);
712 	}
713 }
714 
715 static void
716 cyclic_downheap(cyc_cpu_t *cpu, cyc_index_t ndx)
717 {
718 	cyclic_t *cyclics = cpu->cyp_cyclics;
719 	cyc_index_t *heap = cpu->cyp_heap;
720 
721 	cyc_index_t heap_left, heap_right, heap_me = ndx;
722 	cyc_index_t left, right, me;
723 	cyc_index_t nelems = cpu->cyp_nelems;
724 
725 	for (;;) {
726 		/*
727 		 * If we don't have a left child (i.e., we're a leaf), we're
728 		 * done.
729 		 */
730 		if ((heap_left = CYC_HEAP_LEFT(heap_me)) >= nelems)
731 			return;
732 
733 		left = heap[heap_left];
734 		me = heap[heap_me];
735 
736 		heap_right = CYC_HEAP_RIGHT(heap_me);
737 
738 		/*
739 		 * Even if we don't have a right child, we still need to compare
740 		 * our expiration time against that of our left child.
741 		 */
742 		if (heap_right >= nelems)
743 			goto comp_left;
744 
745 		right = heap[heap_right];
746 
747 		/*
748 		 * We have both a left and a right child.  We need to compare
749 		 * the expiration times of the children to determine which
750 		 * expires earlier.
751 		 */
752 		if (cyclics[right].cy_expire < cyclics[left].cy_expire) {
753 			/*
754 			 * Our right child is the earlier of our children.
755 			 * We'll now compare our expiration time to its; if
756 			 * ours is the earlier, we're done.
757 			 */
758 			if (cyclics[me].cy_expire <= cyclics[right].cy_expire)
759 				return;
760 
761 			/*
762 			 * Our right child expires earlier than we do; swap
763 			 * with our right child, and descend right.
764 			 */
765 			heap[heap_right] = me;
766 			heap[heap_me] = right;
767 			heap_me = heap_right;
768 			continue;
769 		}
770 
771 comp_left:
772 		/*
773 		 * Our left child is the earlier of our children (or we have
774 		 * no right child).  We'll now compare our expiration time
775 		 * to its; if ours is the earlier, we're done.
776 		 */
777 		if (cyclics[me].cy_expire <= cyclics[left].cy_expire)
778 			return;
779 
780 		/*
781 		 * Our left child expires earlier than we do; swap with our
782 		 * left child, and descend left.
783 		 */
784 		heap[heap_left] = me;
785 		heap[heap_me] = left;
786 		heap_me = heap_left;
787 	}
788 }
789 
790 static void
791 cyclic_expire(cyc_cpu_t *cpu, cyc_index_t ndx, cyclic_t *cyclic)
792 {
793 	cyc_backend_t *be = cpu->cyp_backend;
794 	cyc_level_t level = cyclic->cy_level;
795 
796 	/*
797 	 * If this is a CY_HIGH_LEVEL cyclic, just call the handler; we don't
798 	 * need to worry about the pend count for CY_HIGH_LEVEL cyclics.
799 	 */
800 	if (level == CY_HIGH_LEVEL) {
801 		cyc_func_t handler = cyclic->cy_handler;
802 		void *arg = cyclic->cy_arg;
803 
804 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-in", handler, arg);
805 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
806 
807 		(*handler)(arg);
808 
809 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
810 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-out", handler, arg);
811 
812 		return;
813 	}
814 
815 	/*
816 	 * We're at CY_HIGH_LEVEL; this modification to cy_pend need not
817 	 * be atomic (the high interrupt level assures that it will appear
818 	 * atomic to any softint currently running).
819 	 */
820 	if (cyclic->cy_pend++ == 0) {
821 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[level];
822 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[softbuf->cys_hard];
823 
824 		/*
825 		 * We need to enqueue this cyclic in the soft buffer.
826 		 */
827 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-enq", cyclic,
828 		    pc->cypc_prodndx);
829 		pc->cypc_buf[pc->cypc_prodndx++ & pc->cypc_sizemask] = ndx;
830 
831 		ASSERT(pc->cypc_prodndx != pc->cypc_consndx);
832 	} else {
833 		/*
834 		 * If the pend count is zero after we incremented it, then
835 		 * we've wrapped (i.e. we had a cy_pend count of over four
836 		 * billion.  In this case, we clamp the pend count at
837 		 * UINT32_MAX.  Yes, cyclics can be lost in this case.
838 		 */
839 		if (cyclic->cy_pend == 0) {
840 			CYC_TRACE1(cpu, CY_HIGH_LEVEL, "expire-wrap", cyclic);
841 			cyclic->cy_pend = UINT32_MAX;
842 		}
843 
844 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-bump", cyclic, 0);
845 	}
846 
847 	be->cyb_softint(be->cyb_arg, cyclic->cy_level);
848 }
849 
850 /*
851  *  cyclic_fire(cpu_t *)
852  *
853  *  Overview
854  *
855  *    cyclic_fire() is the cyclic subsystem's CY_HIGH_LEVEL interrupt handler.
856  *    Called by the cyclic backend.
857  *
858  *  Arguments and notes
859  *
860  *    The only argument is the CPU on which the interrupt is executing;
861  *    backends must call into cyclic_fire() on the specified CPU.
862  *
863  *    cyclic_fire() may be called spuriously without ill effect.  Optimal
864  *    backends will call into cyclic_fire() at or shortly after the time
865  *    requested via cyb_reprogram().  However, calling cyclic_fire()
866  *    arbitrarily late will only manifest latency bubbles; the correctness
867  *    of the cyclic subsystem does not rely on the timeliness of the backend.
868  *
869  *    cyclic_fire() is wait-free; it will not block or spin.
870  *
871  *  Return values
872  *
873  *    None.
874  *
875  *  Caller's context
876  *
877  *    cyclic_fire() must be called from CY_HIGH_LEVEL interrupt context.
878  */
879 void
880 cyclic_fire(cpu_t *c)
881 {
882 	cyc_cpu_t *cpu = c->cpu_cyclic;
883 	cyc_backend_t *be = cpu->cyp_backend;
884 	cyc_index_t *heap = cpu->cyp_heap;
885 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
886 	void *arg = be->cyb_arg;
887 	hrtime_t now = gethrtime();
888 	hrtime_t exp;
889 
890 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire", now, 0);
891 
892 	if (cpu->cyp_nelems == 0) {
893 		/*
894 		 * This is a spurious fire.  Count it as such, and blow
895 		 * out of here.
896 		 */
897 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "fire-spurious");
898 		return;
899 	}
900 
901 	for (;;) {
902 		cyc_index_t ndx = heap[0];
903 
904 		cyclic = &cyclics[ndx];
905 
906 		ASSERT(!(cyclic->cy_flags & CYF_FREE));
907 
908 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire-check", cyclic,
909 		    cyclic->cy_expire);
910 
911 		if ((exp = cyclic->cy_expire) > now)
912 			break;
913 
914 		cyclic_expire(cpu, ndx, cyclic);
915 
916 		/*
917 		 * If this cyclic will be set to next expire in the distant
918 		 * past, we have one of two situations:
919 		 *
920 		 *   a)	This is the first firing of a cyclic which had
921 		 *	cy_expire set to 0.
922 		 *
923 		 *   b)	We are tragically late for a cyclic -- most likely
924 		 *	due to being in the debugger.
925 		 *
926 		 * In either case, we set the new expiration time to be the
927 		 * the next interval boundary.  This assures that the
928 		 * expiration time modulo the interval is invariant.
929 		 *
930 		 * We arbitrarily define "distant" to be one second (one second
931 		 * is chosen because it's shorter than any foray to the
932 		 * debugger while still being longer than any legitimate
933 		 * stretch at CY_HIGH_LEVEL).
934 		 */
935 		exp += cyclic->cy_interval;
936 
937 		if (now - exp > NANOSEC) {
938 			hrtime_t interval = cyclic->cy_interval;
939 
940 			CYC_TRACE(cpu, CY_HIGH_LEVEL, exp == interval ?
941 			    "fire-first" : "fire-swing", now, exp);
942 
943 			exp += ((now - exp) / interval + 1) * interval;
944 		}
945 
946 		cyclic->cy_expire = exp;
947 		cyclic_downheap(cpu, 0);
948 	}
949 
950 	/*
951 	 * Now we have a cyclic in the root slot which isn't in the past;
952 	 * reprogram the interrupt source.
953 	 */
954 	be->cyb_reprogram(arg, exp);
955 }
956 
957 static void
958 cyclic_remove_pend(cyc_cpu_t *cpu, cyc_level_t level, cyclic_t *cyclic)
959 {
960 	cyc_func_t handler = cyclic->cy_handler;
961 	void *arg = cyclic->cy_arg;
962 	uint32_t i, rpend = cpu->cyp_rpend - 1;
963 
964 	ASSERT(cyclic->cy_flags & CYF_FREE);
965 	ASSERT(cyclic->cy_pend == 0);
966 	ASSERT(cpu->cyp_state == CYS_REMOVING);
967 	ASSERT(cpu->cyp_rpend > 0);
968 
969 	CYC_TRACE(cpu, level, "remove-rpend", cyclic, cpu->cyp_rpend);
970 
971 	/*
972 	 * Note that we only call the handler cyp_rpend - 1 times; this is
973 	 * to account for the handler call in cyclic_softint().
974 	 */
975 	for (i = 0; i < rpend; i++) {
976 		CYC_TRACE(cpu, level, "rpend-in", handler, arg);
977 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
978 
979 		(*handler)(arg);
980 
981 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
982 		CYC_TRACE(cpu, level, "rpend-out", handler, arg);
983 	}
984 
985 	/*
986 	 * We can now let the remove operation complete.
987 	 */
988 	sema_v(&cpu->cyp_modify_wait);
989 }
990 
991 /*
992  *  cyclic_softint(cpu_t *cpu, cyc_level_t level)
993  *
994  *  Overview
995  *
996  *    cyclic_softint() is the cyclic subsystem's CY_LOCK_LEVEL and CY_LOW_LEVEL
997  *    soft interrupt handler.  Called by the cyclic backend.
998  *
999  *  Arguments and notes
1000  *
1001  *    The first argument to cyclic_softint() is the CPU on which the interrupt
1002  *    is executing; backends must call into cyclic_softint() on the specified
1003  *    CPU.  The second argument is the level of the soft interrupt; it must
1004  *    be one of CY_LOCK_LEVEL or CY_LOW_LEVEL.
1005  *
1006  *    cyclic_softint() will call the handlers for cyclics pending at the
1007  *    specified level.  cyclic_softint() will not return until all pending
1008  *    cyclics at the specified level have been dealt with; intervening
1009  *    CY_HIGH_LEVEL interrupts which enqueue cyclics at the specified level
1010  *    may therefore prolong cyclic_softint().
1011  *
1012  *    cyclic_softint() never disables interrupts, and, if neither a
1013  *    cyclic_add() nor a cyclic_remove() is pending on the specified CPU, is
1014  *    lock-free.  This assures that in the common case, cyclic_softint()
1015  *    completes without blocking, and never starves cyclic_fire().  If either
1016  *    cyclic_add() or cyclic_remove() is pending, cyclic_softint() may grab
1017  *    a dispatcher lock.
1018  *
1019  *    While cyclic_softint() is designed for bounded latency, it is obviously
1020  *    at the mercy of its cyclic handlers.  Because cyclic handlers may block
1021  *    arbitrarily, callers of cyclic_softint() should not rely upon
1022  *    deterministic completion.
1023  *
1024  *    cyclic_softint() may be called spuriously without ill effect.
1025  *
1026  *  Return value
1027  *
1028  *    None.
1029  *
1030  *  Caller's context
1031  *
1032  *    The caller must be executing in soft interrupt context at either
1033  *    CY_LOCK_LEVEL or CY_LOW_LEVEL.  The level passed to cyclic_softint()
1034  *    must match the level at which it is executing.  On optimal backends,
1035  *    the caller will hold no locks.  In any case, the caller may not hold
1036  *    cpu_lock or any lock acquired by any cyclic handler or held across
1037  *    any of cyclic_add(), cyclic_remove(), cyclic_bind() or cyclic_juggle().
1038  */
1039 void
1040 cyclic_softint(cpu_t *c, cyc_level_t level)
1041 {
1042 	cyc_cpu_t *cpu = c->cpu_cyclic;
1043 	cyc_softbuf_t *softbuf;
1044 	int soft, *buf, consndx, resized = 0, intr_resized = 0;
1045 	cyc_pcbuffer_t *pc;
1046 	cyclic_t *cyclics = cpu->cyp_cyclics;
1047 	int sizemask;
1048 
1049 	CYC_TRACE(cpu, level, "softint", cyclics, 0);
1050 
1051 	ASSERT(level < CY_LOW_LEVEL + CY_SOFT_LEVELS);
1052 
1053 	softbuf = &cpu->cyp_softbuf[level];
1054 top:
1055 	soft = softbuf->cys_soft;
1056 	ASSERT(soft == 0 || soft == 1);
1057 
1058 	pc = &softbuf->cys_buf[soft];
1059 	buf = pc->cypc_buf;
1060 	consndx = pc->cypc_consndx;
1061 	sizemask = pc->cypc_sizemask;
1062 
1063 	CYC_TRACE(cpu, level, "softint-top", cyclics, pc);
1064 
1065 	while (consndx != pc->cypc_prodndx) {
1066 		int pend, npend, opend;
1067 		int consmasked = consndx & sizemask;
1068 		cyclic_t *cyclic = &cyclics[buf[consmasked]];
1069 		cyc_func_t handler = cyclic->cy_handler;
1070 		void *arg = cyclic->cy_arg;
1071 
1072 		ASSERT(buf[consmasked] < cpu->cyp_size);
1073 		CYC_TRACE(cpu, level, "consuming", consndx, cyclic);
1074 
1075 		/*
1076 		 * We have found this cyclic in the pcbuffer.  We know that
1077 		 * one of the following is true:
1078 		 *
1079 		 *  (a)	The pend is non-zero.  We need to execute the handler
1080 		 *	at least once.
1081 		 *
1082 		 *  (b)	The pend _was_ non-zero, but it's now zero due to a
1083 		 *	resize.  We will call the handler once, see that we
1084 		 *	are in this case, and read the new cyclics buffer
1085 		 *	(and hence the old non-zero pend).
1086 		 *
1087 		 *  (c)	The pend _was_ non-zero, but it's now zero due to a
1088 		 *	removal.  We will call the handler once, see that we
1089 		 *	are in this case, and call into cyclic_remove_pend()
1090 		 *	to call the cyclic rpend times.  We will take into
1091 		 *	account that we have already called the handler once.
1092 		 *
1093 		 * Point is:  it's safe to call the handler without first
1094 		 * checking the pend.
1095 		 */
1096 		do {
1097 			CYC_TRACE(cpu, level, "handler-in", handler, arg);
1098 			DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
1099 
1100 			(*handler)(arg);
1101 
1102 			DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
1103 			CYC_TRACE(cpu, level, "handler-out", handler, arg);
1104 reread:
1105 			pend = cyclic->cy_pend;
1106 			npend = pend - 1;
1107 
1108 			if (pend == 0) {
1109 				if (cpu->cyp_state == CYS_REMOVING) {
1110 					/*
1111 					 * This cyclic has been removed while
1112 					 * it had a non-zero pend count (we
1113 					 * know it was non-zero because we
1114 					 * found this cyclic in the pcbuffer).
1115 					 * There must be a non-zero rpend for
1116 					 * this CPU, and there must be a remove
1117 					 * operation blocking; we'll call into
1118 					 * cyclic_remove_pend() to clean this
1119 					 * up, and break out of the pend loop.
1120 					 */
1121 					cyclic_remove_pend(cpu, level, cyclic);
1122 					break;
1123 				}
1124 
1125 				/*
1126 				 * We must have had a resize interrupt us.
1127 				 */
1128 				CYC_TRACE(cpu, level, "resize-int", cyclics, 0);
1129 				ASSERT(cpu->cyp_state == CYS_EXPANDING);
1130 				ASSERT(cyclics != cpu->cyp_cyclics);
1131 				ASSERT(resized == 0);
1132 				ASSERT(intr_resized == 0);
1133 				intr_resized = 1;
1134 				cyclics = cpu->cyp_cyclics;
1135 				cyclic = &cyclics[buf[consmasked]];
1136 				ASSERT(cyclic->cy_handler == handler);
1137 				ASSERT(cyclic->cy_arg == arg);
1138 				goto reread;
1139 			}
1140 
1141 			if ((opend =
1142 			    cas32(&cyclic->cy_pend, pend, npend)) != pend) {
1143 				/*
1144 				 * Our cas32 can fail for one of several
1145 				 * reasons:
1146 				 *
1147 				 *  (a)	An intervening high level bumped up the
1148 				 *	pend count on this cyclic.  In this
1149 				 *	case, we will see a higher pend.
1150 				 *
1151 				 *  (b)	The cyclics array has been yanked out
1152 				 *	from underneath us by a resize
1153 				 *	operation.  In this case, pend is 0 and
1154 				 *	cyp_state is CYS_EXPANDING.
1155 				 *
1156 				 *  (c)	The cyclic has been removed by an
1157 				 *	intervening remove-xcall.  In this case,
1158 				 *	pend will be 0, the cyp_state will be
1159 				 *	CYS_REMOVING, and the cyclic will be
1160 				 *	marked CYF_FREE.
1161 				 *
1162 				 * The assertion below checks that we are
1163 				 * in one of the above situations.  The
1164 				 * action under all three is to return to
1165 				 * the top of the loop.
1166 				 */
1167 				CYC_TRACE(cpu, level, "cas-fail", opend, pend);
1168 				ASSERT(opend > pend || (opend == 0 &&
1169 				    ((cyclics != cpu->cyp_cyclics &&
1170 				    cpu->cyp_state == CYS_EXPANDING) ||
1171 				    (cpu->cyp_state == CYS_REMOVING &&
1172 				    (cyclic->cy_flags & CYF_FREE)))));
1173 				goto reread;
1174 			}
1175 
1176 			/*
1177 			 * Okay, so we've managed to successfully decrement
1178 			 * pend.  If we just decremented the pend to 0, we're
1179 			 * done.
1180 			 */
1181 		} while (npend > 0);
1182 
1183 		pc->cypc_consndx = ++consndx;
1184 	}
1185 
1186 	/*
1187 	 * If the high level handler is no longer writing to the same
1188 	 * buffer, then we've had a resize.  We need to switch our soft
1189 	 * index, and goto top.
1190 	 */
1191 	if (soft != softbuf->cys_hard) {
1192 		/*
1193 		 * We can assert that the other buffer has grown by exactly
1194 		 * one factor of two.
1195 		 */
1196 		CYC_TRACE(cpu, level, "buffer-grow", 0, 0);
1197 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
1198 		ASSERT(softbuf->cys_buf[softbuf->cys_hard].cypc_sizemask ==
1199 		    (softbuf->cys_buf[soft].cypc_sizemask << 1) + 1 ||
1200 		    softbuf->cys_buf[soft].cypc_sizemask == 0);
1201 		ASSERT(softbuf->cys_hard == (softbuf->cys_soft ^ 1));
1202 
1203 		/*
1204 		 * If our cached cyclics pointer doesn't match cyp_cyclics,
1205 		 * then we took a resize between our last iteration of the
1206 		 * pend loop and the check against softbuf->cys_hard.
1207 		 */
1208 		if (cpu->cyp_cyclics != cyclics) {
1209 			CYC_TRACE1(cpu, level, "resize-int-int", consndx);
1210 			cyclics = cpu->cyp_cyclics;
1211 		}
1212 
1213 		softbuf->cys_soft = softbuf->cys_hard;
1214 
1215 		ASSERT(resized == 0);
1216 		resized = 1;
1217 		goto top;
1218 	}
1219 
1220 	/*
1221 	 * If we were interrupted by a resize operation, then we must have
1222 	 * seen the hard index change.
1223 	 */
1224 	ASSERT(!(intr_resized == 1 && resized == 0));
1225 
1226 	if (resized) {
1227 		uint32_t lev, nlev;
1228 
1229 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
1230 
1231 		do {
1232 			lev = cpu->cyp_modify_levels;
1233 			nlev = lev + 1;
1234 		} while (cas32(&cpu->cyp_modify_levels, lev, nlev) != lev);
1235 
1236 		/*
1237 		 * If we are the last soft level to see the modification,
1238 		 * post on cyp_modify_wait.  Otherwise, (if we're not
1239 		 * already at low level), post down to the next soft level.
1240 		 */
1241 		if (nlev == CY_SOFT_LEVELS) {
1242 			CYC_TRACE0(cpu, level, "resize-kick");
1243 			sema_v(&cpu->cyp_modify_wait);
1244 		} else {
1245 			ASSERT(nlev < CY_SOFT_LEVELS);
1246 			if (level != CY_LOW_LEVEL) {
1247 				cyc_backend_t *be = cpu->cyp_backend;
1248 
1249 				CYC_TRACE0(cpu, level, "resize-post");
1250 				be->cyb_softint(be->cyb_arg, level - 1);
1251 			}
1252 		}
1253 	}
1254 }
1255 
1256 static void
1257 cyclic_expand_xcall(cyc_xcallarg_t *arg)
1258 {
1259 	cyc_cpu_t *cpu = arg->cyx_cpu;
1260 	cyc_backend_t *be = cpu->cyp_backend;
1261 	cyb_arg_t bar = be->cyb_arg;
1262 	cyc_cookie_t cookie;
1263 	cyc_index_t new_size = arg->cyx_size, size = cpu->cyp_size, i;
1264 	cyc_index_t *new_heap = arg->cyx_heap;
1265 	cyclic_t *cyclics = cpu->cyp_cyclics, *new_cyclics = arg->cyx_cyclics;
1266 
1267 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
1268 
1269 	/*
1270 	 * This is a little dicey.  First, we'll raise our interrupt level
1271 	 * to CY_HIGH_LEVEL.  This CPU already has a new heap, cyclic array,
1272 	 * etc.; we just need to bcopy them across.  As for the softint
1273 	 * buffers, we'll switch the active buffers.  The actual softints will
1274 	 * take care of consuming any pending cyclics in the old buffer.
1275 	 */
1276 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1277 
1278 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "expand", new_size, 0);
1279 
1280 	/*
1281 	 * Assert that the new size is a power of 2.
1282 	 */
1283 	ASSERT((new_size & new_size - 1) == 0);
1284 	ASSERT(new_size == (size << 1));
1285 	ASSERT(cpu->cyp_heap != NULL && cpu->cyp_cyclics != NULL);
1286 
1287 	bcopy(cpu->cyp_heap, new_heap, sizeof (cyc_index_t) * size);
1288 	bcopy(cyclics, new_cyclics, sizeof (cyclic_t) * size);
1289 
1290 	/*
1291 	 * Now run through the old cyclics array, setting pend to 0.  To
1292 	 * softints (which are executing at a lower priority level), the
1293 	 * pends dropping to 0 will appear atomic with the cyp_cyclics
1294 	 * pointer changing.
1295 	 */
1296 	for (i = 0; i < size; i++)
1297 		cyclics[i].cy_pend = 0;
1298 
1299 	/*
1300 	 * Set up the free list, and set all of the new cyclics to be CYF_FREE.
1301 	 */
1302 	for (i = size; i < new_size; i++) {
1303 		new_heap[i] = i;
1304 		new_cyclics[i].cy_flags = CYF_FREE;
1305 	}
1306 
1307 	/*
1308 	 * We can go ahead and plow the value of cyp_heap and cyp_cyclics;
1309 	 * cyclic_expand() has kept a copy.
1310 	 */
1311 	cpu->cyp_heap = new_heap;
1312 	cpu->cyp_cyclics = new_cyclics;
1313 	cpu->cyp_size = new_size;
1314 
1315 	/*
1316 	 * We've switched over the heap and the cyclics array.  Now we need
1317 	 * to switch over our active softint buffer pointers.
1318 	 */
1319 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1320 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1321 		uchar_t hard = softbuf->cys_hard;
1322 
1323 		/*
1324 		 * Assert that we're not in the middle of a resize operation.
1325 		 */
1326 		ASSERT(hard == softbuf->cys_soft);
1327 		ASSERT(hard == 0 || hard == 1);
1328 		ASSERT(softbuf->cys_buf[hard].cypc_buf != NULL);
1329 
1330 		softbuf->cys_hard = hard ^ 1;
1331 
1332 		/*
1333 		 * The caller (cyclic_expand()) is responsible for setting
1334 		 * up the new producer-consumer buffer; assert that it's
1335 		 * been done correctly.
1336 		 */
1337 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf != NULL);
1338 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_prodndx == 0);
1339 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_consndx == 0);
1340 	}
1341 
1342 	/*
1343 	 * That's all there is to it; now we just need to postdown to
1344 	 * get the softint chain going.
1345 	 */
1346 	be->cyb_softint(bar, CY_HIGH_LEVEL - 1);
1347 	be->cyb_restore_level(bar, cookie);
1348 }
1349 
1350 /*
1351  * cyclic_expand() will cross call onto the CPU to perform the actual
1352  * expand operation.
1353  */
1354 static void
1355 cyclic_expand(cyc_cpu_t *cpu)
1356 {
1357 	cyc_index_t new_size, old_size;
1358 	cyc_index_t *new_heap, *old_heap;
1359 	cyclic_t *new_cyclics, *old_cyclics;
1360 	cyc_xcallarg_t arg;
1361 	cyc_backend_t *be = cpu->cyp_backend;
1362 	char old_hard;
1363 	int i;
1364 
1365 	ASSERT(MUTEX_HELD(&cpu_lock));
1366 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1367 
1368 	cpu->cyp_state = CYS_EXPANDING;
1369 
1370 	old_heap = cpu->cyp_heap;
1371 	old_cyclics = cpu->cyp_cyclics;
1372 
1373 	if ((new_size = ((old_size = cpu->cyp_size) << 1)) == 0) {
1374 		new_size = CY_DEFAULT_PERCPU;
1375 		ASSERT(old_heap == NULL && old_cyclics == NULL);
1376 	}
1377 
1378 	/*
1379 	 * Check that the new_size is a power of 2.
1380 	 */
1381 	ASSERT((new_size - 1 & new_size) == 0);
1382 
1383 	new_heap = kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
1384 	new_cyclics = kmem_zalloc(sizeof (cyclic_t) * new_size, KM_SLEEP);
1385 
1386 	/*
1387 	 * We know that no other expansions are in progress (they serialize
1388 	 * on cpu_lock), so we can safely read the softbuf metadata.
1389 	 */
1390 	old_hard = cpu->cyp_softbuf[0].cys_hard;
1391 
1392 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1393 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1394 		char hard = softbuf->cys_hard;
1395 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
1396 
1397 		ASSERT(hard == old_hard);
1398 		ASSERT(hard == softbuf->cys_soft);
1399 		ASSERT(pc->cypc_buf == NULL);
1400 
1401 		pc->cypc_buf =
1402 		    kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
1403 		pc->cypc_prodndx = pc->cypc_consndx = 0;
1404 		pc->cypc_sizemask = new_size - 1;
1405 	}
1406 
1407 	arg.cyx_cpu = cpu;
1408 	arg.cyx_heap = new_heap;
1409 	arg.cyx_cyclics = new_cyclics;
1410 	arg.cyx_size = new_size;
1411 
1412 	cpu->cyp_modify_levels = 0;
1413 
1414 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
1415 	    (cyc_func_t)cyclic_expand_xcall, &arg);
1416 
1417 	/*
1418 	 * Now block, waiting for the resize operation to complete.
1419 	 */
1420 	sema_p(&cpu->cyp_modify_wait);
1421 	ASSERT(cpu->cyp_modify_levels == CY_SOFT_LEVELS);
1422 
1423 	/*
1424 	 * The operation is complete; we can now free the old buffers.
1425 	 */
1426 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1427 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1428 		char hard = softbuf->cys_hard;
1429 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
1430 
1431 		ASSERT(hard == (old_hard ^ 1));
1432 		ASSERT(hard == softbuf->cys_soft);
1433 
1434 		if (pc->cypc_buf == NULL)
1435 			continue;
1436 
1437 		ASSERT(pc->cypc_sizemask == ((new_size - 1) >> 1));
1438 
1439 		kmem_free(pc->cypc_buf,
1440 		    sizeof (cyc_index_t) * (pc->cypc_sizemask + 1));
1441 		pc->cypc_buf = NULL;
1442 	}
1443 
1444 	if (old_cyclics != NULL) {
1445 		ASSERT(old_heap != NULL);
1446 		ASSERT(old_size != 0);
1447 		kmem_free(old_cyclics, sizeof (cyclic_t) * old_size);
1448 		kmem_free(old_heap, sizeof (cyc_index_t) * old_size);
1449 	}
1450 
1451 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
1452 	cpu->cyp_state = CYS_ONLINE;
1453 }
1454 
1455 /*
1456  * cyclic_pick_cpu will attempt to pick a CPU according to the constraints
1457  * specified by the partition, bound CPU, and flags.  Additionally,
1458  * cyclic_pick_cpu() will not pick the avoid CPU; it will return NULL if
1459  * the avoid CPU is the only CPU which satisfies the constraints.
1460  *
1461  * If CYF_CPU_BOUND is set in flags, the specified CPU must be non-NULL.
1462  * If CYF_PART_BOUND is set in flags, the specified partition must be non-NULL.
1463  * If both CYF_CPU_BOUND and CYF_PART_BOUND are set, the specified CPU must
1464  * be in the specified partition.
1465  */
1466 static cyc_cpu_t *
1467 cyclic_pick_cpu(cpupart_t *part, cpu_t *bound, cpu_t *avoid, uint16_t flags)
1468 {
1469 	cpu_t *c, *start = (part != NULL) ? part->cp_cpulist : CPU;
1470 	cpu_t *online = NULL;
1471 	uintptr_t offset;
1472 
1473 	CYC_PTRACE("pick-cpu", part, bound);
1474 
1475 	ASSERT(!(flags & CYF_CPU_BOUND) || bound != NULL);
1476 	ASSERT(!(flags & CYF_PART_BOUND) || part != NULL);
1477 
1478 	/*
1479 	 * If we're bound to our CPU, there isn't much choice involved.  We
1480 	 * need to check that the CPU passed as bound is in the cpupart, and
1481 	 * that the CPU that we're binding to has been configured.
1482 	 */
1483 	if (flags & CYF_CPU_BOUND) {
1484 		CYC_PTRACE("pick-cpu-bound", bound, avoid);
1485 
1486 		if ((flags & CYF_PART_BOUND) && bound->cpu_part != part)
1487 			panic("cyclic_pick_cpu:  "
1488 			    "CPU binding contradicts partition binding");
1489 
1490 		if (bound == avoid)
1491 			return (NULL);
1492 
1493 		if (bound->cpu_cyclic == NULL)
1494 			panic("cyclic_pick_cpu:  "
1495 			    "attempt to bind to non-configured CPU");
1496 
1497 		return (bound->cpu_cyclic);
1498 	}
1499 
1500 	if (flags & CYF_PART_BOUND) {
1501 		CYC_PTRACE("pick-part-bound", bound, avoid);
1502 		offset = offsetof(cpu_t, cpu_next_part);
1503 	} else {
1504 		offset = offsetof(cpu_t, cpu_next_onln);
1505 	}
1506 
1507 	c = start;
1508 	do {
1509 		if (c->cpu_cyclic == NULL)
1510 			continue;
1511 
1512 		if (c->cpu_cyclic->cyp_state == CYS_OFFLINE)
1513 			continue;
1514 
1515 		if (c == avoid)
1516 			continue;
1517 
1518 		if (c->cpu_flags & CPU_ENABLE)
1519 			goto found;
1520 
1521 		if (online == NULL)
1522 			online = c;
1523 	} while ((c = *(cpu_t **)((uintptr_t)c + offset)) != start);
1524 
1525 	/*
1526 	 * If we're here, we're in one of two situations:
1527 	 *
1528 	 *  (a)	We have a partition-bound cyclic, and there is no CPU in
1529 	 *	our partition which is CPU_ENABLE'd.  If we saw another
1530 	 *	non-CYS_OFFLINE CPU in our partition, we'll go with it.
1531 	 *	If not, the avoid CPU must be the only non-CYS_OFFLINE
1532 	 *	CPU in the partition; we're forced to return NULL.
1533 	 *
1534 	 *  (b)	We have a partition-unbound cyclic, in which case there
1535 	 *	must only be one CPU CPU_ENABLE'd, and it must be the one
1536 	 *	we're trying to avoid.  If cyclic_juggle()/cyclic_offline()
1537 	 *	are called appropriately, this generally shouldn't happen
1538 	 *	(the offline should fail before getting to this code).
1539 	 *	At any rate: we can't avoid the avoid CPU, so we return
1540 	 *	NULL.
1541 	 */
1542 	if (!(flags & CYF_PART_BOUND)) {
1543 		ASSERT(avoid->cpu_flags & CPU_ENABLE);
1544 		return (NULL);
1545 	}
1546 
1547 	CYC_PTRACE("pick-no-intr", part, avoid);
1548 
1549 	if ((c = online) != NULL)
1550 		goto found;
1551 
1552 	CYC_PTRACE("pick-fail", part, avoid);
1553 	ASSERT(avoid->cpu_part == start->cpu_part);
1554 	return (NULL);
1555 
1556 found:
1557 	CYC_PTRACE("pick-cpu-found", c, avoid);
1558 	ASSERT(c != avoid);
1559 	ASSERT(c->cpu_cyclic != NULL);
1560 
1561 	return (c->cpu_cyclic);
1562 }
1563 
1564 static void
1565 cyclic_add_xcall(cyc_xcallarg_t *arg)
1566 {
1567 	cyc_cpu_t *cpu = arg->cyx_cpu;
1568 	cyc_handler_t *hdlr = arg->cyx_hdlr;
1569 	cyc_time_t *when = arg->cyx_when;
1570 	cyc_backend_t *be = cpu->cyp_backend;
1571 	cyc_index_t ndx, nelems;
1572 	cyc_cookie_t cookie;
1573 	cyb_arg_t bar = be->cyb_arg;
1574 	cyclic_t *cyclic;
1575 
1576 	ASSERT(cpu->cyp_nelems < cpu->cyp_size);
1577 
1578 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1579 
1580 	CYC_TRACE(cpu, CY_HIGH_LEVEL,
1581 	    "add-xcall", when->cyt_when, when->cyt_interval);
1582 
1583 	nelems = cpu->cyp_nelems++;
1584 
1585 	if (nelems == 0) {
1586 		/*
1587 		 * If this is the first element, we need to enable the
1588 		 * backend on this CPU.
1589 		 */
1590 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "enabled");
1591 		be->cyb_enable(bar);
1592 	}
1593 
1594 	ndx = cpu->cyp_heap[nelems];
1595 	cyclic = &cpu->cyp_cyclics[ndx];
1596 
1597 	ASSERT(cyclic->cy_flags == CYF_FREE);
1598 	cyclic->cy_interval = when->cyt_interval;
1599 
1600 	if (when->cyt_when == 0) {
1601 		/*
1602 		 * If a start time hasn't been explicitly specified, we'll
1603 		 * start on the next interval boundary.
1604 		 */
1605 		cyclic->cy_expire = (gethrtime() / cyclic->cy_interval + 1) *
1606 		    cyclic->cy_interval;
1607 	} else {
1608 		cyclic->cy_expire = when->cyt_when;
1609 	}
1610 
1611 	cyclic->cy_handler = hdlr->cyh_func;
1612 	cyclic->cy_arg = hdlr->cyh_arg;
1613 	cyclic->cy_level = hdlr->cyh_level;
1614 	cyclic->cy_flags = arg->cyx_flags;
1615 
1616 	if (cyclic_upheap(cpu, nelems)) {
1617 		hrtime_t exp = cyclic->cy_expire;
1618 
1619 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "add-reprog", cyclic, exp);
1620 
1621 		/*
1622 		 * If our upheap propagated to the root, we need to
1623 		 * reprogram the interrupt source.
1624 		 */
1625 		be->cyb_reprogram(bar, exp);
1626 	}
1627 	be->cyb_restore_level(bar, cookie);
1628 
1629 	arg->cyx_ndx = ndx;
1630 }
1631 
1632 static cyc_index_t
1633 cyclic_add_here(cyc_cpu_t *cpu, cyc_handler_t *hdlr,
1634     cyc_time_t *when, uint16_t flags)
1635 {
1636 	cyc_backend_t *be = cpu->cyp_backend;
1637 	cyb_arg_t bar = be->cyb_arg;
1638 	cyc_xcallarg_t arg;
1639 
1640 	CYC_PTRACE("add-cpu", cpu, hdlr->cyh_func);
1641 	ASSERT(MUTEX_HELD(&cpu_lock));
1642 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1643 	ASSERT(!(cpu->cyp_cpu->cpu_flags & CPU_OFFLINE));
1644 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
1645 
1646 	if (cpu->cyp_nelems == cpu->cyp_size) {
1647 		/*
1648 		 * This is expensive; it will cross call onto the other
1649 		 * CPU to perform the expansion.
1650 		 */
1651 		cyclic_expand(cpu);
1652 		ASSERT(cpu->cyp_nelems < cpu->cyp_size);
1653 	}
1654 
1655 	/*
1656 	 * By now, we know that we're going to be able to successfully
1657 	 * perform the add.  Now cross call over to the CPU of interest to
1658 	 * actually add our cyclic.
1659 	 */
1660 	arg.cyx_cpu = cpu;
1661 	arg.cyx_hdlr = hdlr;
1662 	arg.cyx_when = when;
1663 	arg.cyx_flags = flags;
1664 
1665 	be->cyb_xcall(bar, cpu->cyp_cpu, (cyc_func_t)cyclic_add_xcall, &arg);
1666 
1667 	CYC_PTRACE("add-cpu-done", cpu, arg.cyx_ndx);
1668 
1669 	return (arg.cyx_ndx);
1670 }
1671 
1672 static void
1673 cyclic_remove_xcall(cyc_xcallarg_t *arg)
1674 {
1675 	cyc_cpu_t *cpu = arg->cyx_cpu;
1676 	cyc_backend_t *be = cpu->cyp_backend;
1677 	cyb_arg_t bar = be->cyb_arg;
1678 	cyc_cookie_t cookie;
1679 	cyc_index_t ndx = arg->cyx_ndx, nelems = cpu->cyp_nelems, i;
1680 	cyc_index_t *heap = cpu->cyp_heap, last;
1681 	cyclic_t *cyclic;
1682 #ifdef DEBUG
1683 	cyc_index_t root;
1684 #endif
1685 
1686 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1687 	ASSERT(nelems > 0);
1688 
1689 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1690 
1691 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-xcall", ndx);
1692 
1693 	cyclic = &cpu->cyp_cyclics[ndx];
1694 
1695 	/*
1696 	 * Grab the current expiration time.  If this cyclic is being
1697 	 * removed as part of a juggling operation, the expiration time
1698 	 * will be used when the cyclic is added to the new CPU.
1699 	 */
1700 	if (arg->cyx_when != NULL) {
1701 		arg->cyx_when->cyt_when = cyclic->cy_expire;
1702 		arg->cyx_when->cyt_interval = cyclic->cy_interval;
1703 	}
1704 
1705 	if (cyclic->cy_pend != 0) {
1706 		/*
1707 		 * The pend is non-zero; this cyclic is currently being
1708 		 * executed (or will be executed shortly).  If the caller
1709 		 * refuses to wait, we must return (doing nothing).  Otherwise,
1710 		 * we will stash the pend value * in this CPU's rpend, and
1711 		 * then zero it out.  The softint in the pend loop will see
1712 		 * that we have zeroed out pend, and will call the cyclic
1713 		 * handler rpend times.  The caller will wait until the
1714 		 * softint has completed calling the cyclic handler.
1715 		 */
1716 		if (arg->cyx_wait == CY_NOWAIT) {
1717 			arg->cyx_wait = CY_WAIT;
1718 			goto out;
1719 		}
1720 
1721 		ASSERT(cyclic->cy_level != CY_HIGH_LEVEL);
1722 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-pend", cyclic->cy_pend);
1723 		cpu->cyp_rpend = cyclic->cy_pend;
1724 		cyclic->cy_pend = 0;
1725 	}
1726 
1727 	/*
1728 	 * Now set the flags to CYF_FREE.  We don't need a membar_enter()
1729 	 * between zeroing pend and setting the flags because we're at
1730 	 * CY_HIGH_LEVEL (that is, the zeroing of pend and the setting
1731 	 * of cy_flags appear atomic to softints).
1732 	 */
1733 	cyclic->cy_flags = CYF_FREE;
1734 
1735 	for (i = 0; i < nelems; i++) {
1736 		if (heap[i] == ndx)
1737 			break;
1738 	}
1739 
1740 	if (i == nelems)
1741 		panic("attempt to remove non-existent cyclic");
1742 
1743 	cpu->cyp_nelems = --nelems;
1744 
1745 	if (nelems == 0) {
1746 		/*
1747 		 * If we just removed the last element, then we need to
1748 		 * disable the backend on this CPU.
1749 		 */
1750 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "disabled");
1751 		be->cyb_disable(bar);
1752 	}
1753 
1754 	if (i == nelems) {
1755 		/*
1756 		 * If we just removed the last element of the heap, then
1757 		 * we don't have to downheap.
1758 		 */
1759 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-bottom");
1760 		goto out;
1761 	}
1762 
1763 #ifdef DEBUG
1764 	root = heap[0];
1765 #endif
1766 
1767 	/*
1768 	 * Swap the last element of the heap with the one we want to
1769 	 * remove, and downheap (this has the implicit effect of putting
1770 	 * the newly freed element on the free list).
1771 	 */
1772 	heap[i] = (last = heap[nelems]);
1773 	heap[nelems] = ndx;
1774 
1775 	if (i == 0) {
1776 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-root");
1777 		cyclic_downheap(cpu, 0);
1778 	} else {
1779 		if (cyclic_upheap(cpu, i) == 0) {
1780 			/*
1781 			 * The upheap didn't propagate to the root; if it
1782 			 * didn't propagate at all, we need to downheap.
1783 			 */
1784 			CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-root");
1785 			if (heap[i] == last) {
1786 				CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-up");
1787 				cyclic_downheap(cpu, i);
1788 			}
1789 			ASSERT(heap[0] == root);
1790 			goto out;
1791 		}
1792 	}
1793 
1794 	/*
1795 	 * We're here because we changed the root; we need to reprogram
1796 	 * the clock source.
1797 	 */
1798 	cyclic = &cpu->cyp_cyclics[heap[0]];
1799 
1800 	CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-reprog");
1801 
1802 	ASSERT(nelems != 0);
1803 	be->cyb_reprogram(bar, cyclic->cy_expire);
1804 out:
1805 	be->cyb_restore_level(bar, cookie);
1806 }
1807 
1808 static int
1809 cyclic_remove_here(cyc_cpu_t *cpu, cyc_index_t ndx, cyc_time_t *when, int wait)
1810 {
1811 	cyc_backend_t *be = cpu->cyp_backend;
1812 	cyc_xcallarg_t arg;
1813 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
1814 	cyc_level_t level = cyclic->cy_level;
1815 
1816 	ASSERT(MUTEX_HELD(&cpu_lock));
1817 	ASSERT(cpu->cyp_rpend == 0);
1818 	ASSERT(wait == CY_WAIT || wait == CY_NOWAIT);
1819 
1820 	arg.cyx_ndx = ndx;
1821 	arg.cyx_cpu = cpu;
1822 	arg.cyx_when = when;
1823 	arg.cyx_wait = wait;
1824 
1825 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1826 	cpu->cyp_state = CYS_REMOVING;
1827 
1828 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
1829 	    (cyc_func_t)cyclic_remove_xcall, &arg);
1830 
1831 	/*
1832 	 * If the cyclic we removed wasn't at CY_HIGH_LEVEL, then we need to
1833 	 * check the cyp_rpend.  If it's non-zero, then we need to wait here
1834 	 * for all pending cyclic handlers to run.
1835 	 */
1836 	ASSERT(!(level == CY_HIGH_LEVEL && cpu->cyp_rpend != 0));
1837 	ASSERT(!(wait == CY_NOWAIT && cpu->cyp_rpend != 0));
1838 	ASSERT(!(arg.cyx_wait == CY_NOWAIT && cpu->cyp_rpend != 0));
1839 
1840 	if (wait != arg.cyx_wait) {
1841 		/*
1842 		 * We are being told that we must wait if we want to
1843 		 * remove this cyclic; put the CPU back in the CYS_ONLINE
1844 		 * state and return failure.
1845 		 */
1846 		ASSERT(wait == CY_NOWAIT && arg.cyx_wait == CY_WAIT);
1847 		ASSERT(cpu->cyp_state == CYS_REMOVING);
1848 		cpu->cyp_state = CYS_ONLINE;
1849 
1850 		return (0);
1851 	}
1852 
1853 	if (cpu->cyp_rpend != 0)
1854 		sema_p(&cpu->cyp_modify_wait);
1855 
1856 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1857 
1858 	cpu->cyp_rpend = 0;
1859 	cpu->cyp_state = CYS_ONLINE;
1860 
1861 	return (1);
1862 }
1863 
1864 /*
1865  * cyclic_juggle_one_to() should only be called when the source cyclic
1866  * can be juggled and the destination CPU is known to be able to accept
1867  * it.
1868  */
1869 static void
1870 cyclic_juggle_one_to(cyc_id_t *idp, cyc_cpu_t *dest)
1871 {
1872 	cyc_cpu_t *src = idp->cyi_cpu;
1873 	cyc_index_t ndx = idp->cyi_ndx;
1874 	cyc_time_t when;
1875 	cyc_handler_t hdlr;
1876 	cyclic_t *cyclic;
1877 	uint16_t flags;
1878 	hrtime_t delay;
1879 
1880 	ASSERT(MUTEX_HELD(&cpu_lock));
1881 	ASSERT(src != NULL && idp->cyi_omni_list == NULL);
1882 	ASSERT(!(dest->cyp_cpu->cpu_flags & (CPU_QUIESCED | CPU_OFFLINE)));
1883 	CYC_PTRACE("juggle-one-to", idp, dest);
1884 
1885 	cyclic = &src->cyp_cyclics[ndx];
1886 
1887 	flags = cyclic->cy_flags;
1888 	ASSERT(!(flags & CYF_CPU_BOUND) && !(flags & CYF_FREE));
1889 
1890 	hdlr.cyh_func = cyclic->cy_handler;
1891 	hdlr.cyh_level = cyclic->cy_level;
1892 	hdlr.cyh_arg = cyclic->cy_arg;
1893 
1894 	/*
1895 	 * Before we begin the juggling process, see if the destination
1896 	 * CPU requires an expansion.  If it does, we'll perform the
1897 	 * expansion before removing the cyclic.  This is to prevent us
1898 	 * from blocking while a system-critical cyclic (notably, the clock
1899 	 * cyclic) isn't on a CPU.
1900 	 */
1901 	if (dest->cyp_nelems == dest->cyp_size) {
1902 		CYC_PTRACE("remove-expand", idp, dest);
1903 		cyclic_expand(dest);
1904 		ASSERT(dest->cyp_nelems < dest->cyp_size);
1905 	}
1906 
1907 	/*
1908 	 * Remove the cyclic from the source.  As mentioned above, we cannot
1909 	 * block during this operation; if we cannot remove the cyclic
1910 	 * without waiting, we spin for a time shorter than the interval, and
1911 	 * reattempt the (non-blocking) removal.  If we continue to fail,
1912 	 * we will exponentially back off (up to half of the interval).
1913 	 * Note that the removal will ultimately succeed -- even if the
1914 	 * cyclic handler is blocked on a resource held by a thread which we
1915 	 * have preempted, priority inheritance assures that the preempted
1916 	 * thread will preempt us and continue to progress.
1917 	 */
1918 	for (delay = NANOSEC / MICROSEC; ; delay <<= 1) {
1919 		/*
1920 		 * Before we begin this operation, disable kernel preemption.
1921 		 */
1922 		kpreempt_disable();
1923 		if (cyclic_remove_here(src, ndx, &when, CY_NOWAIT))
1924 			break;
1925 
1926 		/*
1927 		 * The operation failed; enable kernel preemption while
1928 		 * spinning.
1929 		 */
1930 		kpreempt_enable();
1931 
1932 		CYC_PTRACE("remove-retry", idp, src);
1933 
1934 		if (delay > (cyclic->cy_interval >> 1))
1935 			delay = cyclic->cy_interval >> 1;
1936 
1937 		drv_usecwait((clock_t)(delay / (NANOSEC / MICROSEC)));
1938 	}
1939 
1940 	/*
1941 	 * Now add the cyclic to the destination.  This won't block; we
1942 	 * performed any necessary (blocking) expansion of the destination
1943 	 * CPU before removing the cyclic from the source CPU.
1944 	 */
1945 	idp->cyi_ndx = cyclic_add_here(dest, &hdlr, &when, flags);
1946 	idp->cyi_cpu = dest;
1947 	kpreempt_enable();
1948 }
1949 
1950 static int
1951 cyclic_juggle_one(cyc_id_t *idp)
1952 {
1953 	cyc_index_t ndx = idp->cyi_ndx;
1954 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
1955 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
1956 	cpu_t *c = cpu->cyp_cpu;
1957 	cpupart_t *part = c->cpu_part;
1958 
1959 	CYC_PTRACE("juggle-one", idp, cpu);
1960 	ASSERT(MUTEX_HELD(&cpu_lock));
1961 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
1962 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1963 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
1964 
1965 	if ((dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags)) == NULL) {
1966 		/*
1967 		 * Bad news:  this cyclic can't be juggled.
1968 		 */
1969 		CYC_PTRACE("juggle-fail", idp, cpu)
1970 		return (0);
1971 	}
1972 
1973 	cyclic_juggle_one_to(idp, dest);
1974 
1975 	return (1);
1976 }
1977 
1978 static void
1979 cyclic_unbind_cpu(cyclic_id_t id)
1980 {
1981 	cyc_id_t *idp = (cyc_id_t *)id;
1982 	cyc_cpu_t *cpu = idp->cyi_cpu;
1983 	cpu_t *c = cpu->cyp_cpu;
1984 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
1985 
1986 	CYC_PTRACE("unbind-cpu", id, cpu);
1987 	ASSERT(MUTEX_HELD(&cpu_lock));
1988 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1989 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
1990 	ASSERT(cyclic->cy_flags & CYF_CPU_BOUND);
1991 
1992 	cyclic->cy_flags &= ~CYF_CPU_BOUND;
1993 
1994 	/*
1995 	 * If we were bound to CPU which has interrupts disabled, we need
1996 	 * to juggle away.  This can only fail if we are bound to a
1997 	 * processor set, and if every CPU in the processor set has
1998 	 * interrupts disabled.
1999 	 */
2000 	if (!(c->cpu_flags & CPU_ENABLE)) {
2001 		int res = cyclic_juggle_one(idp);
2002 
2003 		ASSERT((res && idp->cyi_cpu != cpu) ||
2004 		    (!res && (cyclic->cy_flags & CYF_PART_BOUND)));
2005 	}
2006 }
2007 
2008 static void
2009 cyclic_bind_cpu(cyclic_id_t id, cpu_t *d)
2010 {
2011 	cyc_id_t *idp = (cyc_id_t *)id;
2012 	cyc_cpu_t *dest = d->cpu_cyclic, *cpu = idp->cyi_cpu;
2013 	cpu_t *c = cpu->cyp_cpu;
2014 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
2015 	cpupart_t *part = c->cpu_part;
2016 
2017 	CYC_PTRACE("bind-cpu", id, dest);
2018 	ASSERT(MUTEX_HELD(&cpu_lock));
2019 	ASSERT(!(d->cpu_flags & CPU_OFFLINE));
2020 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2021 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2022 	ASSERT(dest != NULL);
2023 	ASSERT(dest->cyp_state == CYS_ONLINE);
2024 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2025 	ASSERT(!(cyclic->cy_flags & CYF_CPU_BOUND));
2026 
2027 	dest = cyclic_pick_cpu(part, d, NULL, cyclic->cy_flags | CYF_CPU_BOUND);
2028 
2029 	if (dest != cpu) {
2030 		cyclic_juggle_one_to(idp, dest);
2031 		cyclic = &dest->cyp_cyclics[idp->cyi_ndx];
2032 	}
2033 
2034 	cyclic->cy_flags |= CYF_CPU_BOUND;
2035 }
2036 
2037 static void
2038 cyclic_unbind_cpupart(cyclic_id_t id)
2039 {
2040 	cyc_id_t *idp = (cyc_id_t *)id;
2041 	cyc_cpu_t *cpu = idp->cyi_cpu;
2042 	cpu_t *c = cpu->cyp_cpu;
2043 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
2044 
2045 	CYC_PTRACE("unbind-part", idp, c->cpu_part);
2046 	ASSERT(MUTEX_HELD(&cpu_lock));
2047 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2048 	ASSERT(!(cyc->cy_flags & CYF_FREE));
2049 	ASSERT(cyc->cy_flags & CYF_PART_BOUND);
2050 
2051 	cyc->cy_flags &= ~CYF_PART_BOUND;
2052 
2053 	/*
2054 	 * If we're on a CPU which has interrupts disabled (and if this cyclic
2055 	 * isn't bound to the CPU), we need to juggle away.
2056 	 */
2057 	if (!(c->cpu_flags & CPU_ENABLE) && !(cyc->cy_flags & CYF_CPU_BOUND)) {
2058 		int res = cyclic_juggle_one(idp);
2059 
2060 		ASSERT(res && idp->cyi_cpu != cpu);
2061 	}
2062 }
2063 
2064 static void
2065 cyclic_bind_cpupart(cyclic_id_t id, cpupart_t *part)
2066 {
2067 	cyc_id_t *idp = (cyc_id_t *)id;
2068 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
2069 	cpu_t *c = cpu->cyp_cpu;
2070 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
2071 
2072 	CYC_PTRACE("bind-part", idp, part);
2073 	ASSERT(MUTEX_HELD(&cpu_lock));
2074 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2075 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2076 	ASSERT(!(cyc->cy_flags & CYF_FREE));
2077 	ASSERT(!(cyc->cy_flags & CYF_PART_BOUND));
2078 	ASSERT(part->cp_ncpus > 0);
2079 
2080 	dest = cyclic_pick_cpu(part, c, NULL, cyc->cy_flags | CYF_PART_BOUND);
2081 
2082 	if (dest != cpu) {
2083 		cyclic_juggle_one_to(idp, dest);
2084 		cyc = &dest->cyp_cyclics[idp->cyi_ndx];
2085 	}
2086 
2087 	cyc->cy_flags |= CYF_PART_BOUND;
2088 }
2089 
2090 static void
2091 cyclic_configure(cpu_t *c)
2092 {
2093 	cyc_cpu_t *cpu = kmem_zalloc(sizeof (cyc_cpu_t), KM_SLEEP);
2094 	cyc_backend_t *nbe = kmem_zalloc(sizeof (cyc_backend_t), KM_SLEEP);
2095 	int i;
2096 
2097 	CYC_PTRACE1("configure", cpu);
2098 	ASSERT(MUTEX_HELD(&cpu_lock));
2099 
2100 	if (cyclic_id_cache == NULL)
2101 		cyclic_id_cache = kmem_cache_create("cyclic_id_cache",
2102 		    sizeof (cyc_id_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2103 
2104 	cpu->cyp_cpu = c;
2105 
2106 	sema_init(&cpu->cyp_modify_wait, 0, NULL, SEMA_DEFAULT, NULL);
2107 
2108 	cpu->cyp_size = 1;
2109 	cpu->cyp_heap = kmem_zalloc(sizeof (cyc_index_t), KM_SLEEP);
2110 	cpu->cyp_cyclics = kmem_zalloc(sizeof (cyclic_t), KM_SLEEP);
2111 	cpu->cyp_cyclics->cy_flags = CYF_FREE;
2112 
2113 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
2114 		/*
2115 		 * We don't need to set the sizemask; it's already zero
2116 		 * (which is the appropriate sizemask for a size of 1).
2117 		 */
2118 		cpu->cyp_softbuf[i].cys_buf[0].cypc_buf =
2119 		    kmem_alloc(sizeof (cyc_index_t), KM_SLEEP);
2120 	}
2121 
2122 	cpu->cyp_state = CYS_OFFLINE;
2123 
2124 	/*
2125 	 * Setup the backend for this CPU.
2126 	 */
2127 	bcopy(&cyclic_backend, nbe, sizeof (cyc_backend_t));
2128 	nbe->cyb_arg = nbe->cyb_configure(c);
2129 	cpu->cyp_backend = nbe;
2130 
2131 	/*
2132 	 * On platforms where stray interrupts may be taken during startup,
2133 	 * the CPU's cpu_cyclic pointer serves as an indicator that the
2134 	 * cyclic subsystem for this CPU is prepared to field interrupts.
2135 	 */
2136 	membar_producer();
2137 
2138 	c->cpu_cyclic = cpu;
2139 }
2140 
2141 static void
2142 cyclic_unconfigure(cpu_t *c)
2143 {
2144 	cyc_cpu_t *cpu = c->cpu_cyclic;
2145 	cyc_backend_t *be = cpu->cyp_backend;
2146 	cyb_arg_t bar = be->cyb_arg;
2147 	int i;
2148 
2149 	CYC_PTRACE1("unconfigure", cpu);
2150 	ASSERT(MUTEX_HELD(&cpu_lock));
2151 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
2152 	ASSERT(cpu->cyp_nelems == 0);
2153 
2154 	/*
2155 	 * Let the backend know that the CPU is being yanked, and free up
2156 	 * the backend structure.
2157 	 */
2158 	be->cyb_unconfigure(bar);
2159 	kmem_free(be, sizeof (cyc_backend_t));
2160 	cpu->cyp_backend = NULL;
2161 
2162 	/*
2163 	 * Free up the producer/consumer buffers at each of the soft levels.
2164 	 */
2165 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
2166 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
2167 		uchar_t hard = softbuf->cys_hard;
2168 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard];
2169 		size_t bufsize = sizeof (cyc_index_t) * (pc->cypc_sizemask + 1);
2170 
2171 		/*
2172 		 * Assert that we're not in the middle of a resize operation.
2173 		 */
2174 		ASSERT(hard == softbuf->cys_soft);
2175 		ASSERT(hard == 0 || hard == 1);
2176 		ASSERT(pc->cypc_buf != NULL);
2177 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf == NULL);
2178 
2179 		kmem_free(pc->cypc_buf, bufsize);
2180 		pc->cypc_buf = NULL;
2181 	}
2182 
2183 	/*
2184 	 * Finally, clean up our remaining dynamic structures and NULL out
2185 	 * the cpu_cyclic pointer.
2186 	 */
2187 	kmem_free(cpu->cyp_cyclics, cpu->cyp_size * sizeof (cyclic_t));
2188 	kmem_free(cpu->cyp_heap, cpu->cyp_size * sizeof (cyc_index_t));
2189 	kmem_free(cpu, sizeof (cyc_cpu_t));
2190 
2191 	c->cpu_cyclic = NULL;
2192 }
2193 
2194 static int
2195 cyclic_cpu_setup(cpu_setup_t what, int id)
2196 {
2197 	/*
2198 	 * We are guaranteed that there is still/already an entry in the
2199 	 * cpu array for this CPU.
2200 	 */
2201 	cpu_t *c = cpu[id];
2202 	cyc_cpu_t *cyp = c->cpu_cyclic;
2203 
2204 	ASSERT(MUTEX_HELD(&cpu_lock));
2205 
2206 	switch (what) {
2207 	case CPU_CONFIG:
2208 		ASSERT(cyp == NULL);
2209 		cyclic_configure(c);
2210 		break;
2211 
2212 	case CPU_UNCONFIG:
2213 		ASSERT(cyp != NULL && cyp->cyp_state == CYS_OFFLINE);
2214 		cyclic_unconfigure(c);
2215 		break;
2216 
2217 	default:
2218 		break;
2219 	}
2220 
2221 	return (0);
2222 }
2223 
2224 static void
2225 cyclic_suspend_xcall(cyc_xcallarg_t *arg)
2226 {
2227 	cyc_cpu_t *cpu = arg->cyx_cpu;
2228 	cyc_backend_t *be = cpu->cyp_backend;
2229 	cyc_cookie_t cookie;
2230 	cyb_arg_t bar = be->cyb_arg;
2231 
2232 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
2233 
2234 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "suspend-xcall", cpu->cyp_nelems);
2235 	ASSERT(cpu->cyp_state == CYS_ONLINE || cpu->cyp_state == CYS_OFFLINE);
2236 
2237 	/*
2238 	 * We won't disable this CPU unless it has a non-zero number of
2239 	 * elements (cpu_lock assures that no one else may be attempting
2240 	 * to disable this CPU).
2241 	 */
2242 	if (cpu->cyp_nelems > 0) {
2243 		ASSERT(cpu->cyp_state == CYS_ONLINE);
2244 		be->cyb_disable(bar);
2245 	}
2246 
2247 	if (cpu->cyp_state == CYS_ONLINE)
2248 		cpu->cyp_state = CYS_SUSPENDED;
2249 
2250 	be->cyb_suspend(bar);
2251 	be->cyb_restore_level(bar, cookie);
2252 }
2253 
2254 static void
2255 cyclic_resume_xcall(cyc_xcallarg_t *arg)
2256 {
2257 	cyc_cpu_t *cpu = arg->cyx_cpu;
2258 	cyc_backend_t *be = cpu->cyp_backend;
2259 	cyc_cookie_t cookie;
2260 	cyb_arg_t bar = be->cyb_arg;
2261 	cyc_state_t state = cpu->cyp_state;
2262 
2263 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
2264 
2265 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-xcall", cpu->cyp_nelems);
2266 	ASSERT(state == CYS_SUSPENDED || state == CYS_OFFLINE);
2267 
2268 	be->cyb_resume(bar);
2269 
2270 	/*
2271 	 * We won't enable this CPU unless it has a non-zero number of
2272 	 * elements.
2273 	 */
2274 	if (cpu->cyp_nelems > 0) {
2275 		cyclic_t *cyclic = &cpu->cyp_cyclics[cpu->cyp_heap[0]];
2276 		hrtime_t exp = cyclic->cy_expire;
2277 
2278 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "resume-reprog", cyclic, exp);
2279 		ASSERT(state == CYS_SUSPENDED);
2280 		be->cyb_enable(bar);
2281 		be->cyb_reprogram(bar, exp);
2282 	}
2283 
2284 	if (state == CYS_SUSPENDED)
2285 		cpu->cyp_state = CYS_ONLINE;
2286 
2287 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-done", cpu->cyp_nelems);
2288 	be->cyb_restore_level(bar, cookie);
2289 }
2290 
2291 static void
2292 cyclic_omni_start(cyc_id_t *idp, cyc_cpu_t *cpu)
2293 {
2294 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
2295 	cyc_omni_cpu_t *ocpu = kmem_alloc(sizeof (cyc_omni_cpu_t), KM_SLEEP);
2296 	cyc_handler_t hdlr;
2297 	cyc_time_t when;
2298 
2299 	CYC_PTRACE("omni-start", cpu, idp);
2300 	ASSERT(MUTEX_HELD(&cpu_lock));
2301 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2302 	ASSERT(idp->cyi_cpu == NULL);
2303 
2304 	hdlr.cyh_func = NULL;
2305 	hdlr.cyh_arg = NULL;
2306 	hdlr.cyh_level = CY_LEVELS;
2307 
2308 	when.cyt_when = 0;
2309 	when.cyt_interval = 0;
2310 
2311 	omni->cyo_online(omni->cyo_arg, cpu->cyp_cpu, &hdlr, &when);
2312 
2313 	ASSERT(hdlr.cyh_func != NULL);
2314 	ASSERT(hdlr.cyh_level < CY_LEVELS);
2315 	ASSERT(when.cyt_when >= 0 && when.cyt_interval > 0);
2316 
2317 	ocpu->cyo_cpu = cpu;
2318 	ocpu->cyo_arg = hdlr.cyh_arg;
2319 	ocpu->cyo_ndx = cyclic_add_here(cpu, &hdlr, &when, 0);
2320 	ocpu->cyo_next = idp->cyi_omni_list;
2321 	idp->cyi_omni_list = ocpu;
2322 }
2323 
2324 static void
2325 cyclic_omni_stop(cyc_id_t *idp, cyc_cpu_t *cpu)
2326 {
2327 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
2328 	cyc_omni_cpu_t *ocpu = idp->cyi_omni_list, *prev = NULL;
2329 
2330 	CYC_PTRACE("omni-stop", cpu, idp);
2331 	ASSERT(MUTEX_HELD(&cpu_lock));
2332 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2333 	ASSERT(idp->cyi_cpu == NULL);
2334 	ASSERT(ocpu != NULL);
2335 
2336 	while (ocpu != NULL && ocpu->cyo_cpu != cpu) {
2337 		prev = ocpu;
2338 		ocpu = ocpu->cyo_next;
2339 	}
2340 
2341 	/*
2342 	 * We _must_ have found an cyc_omni_cpu which corresponds to this
2343 	 * CPU -- the definition of an omnipresent cyclic is that it runs
2344 	 * on all online CPUs.
2345 	 */
2346 	ASSERT(ocpu != NULL);
2347 
2348 	if (prev == NULL) {
2349 		idp->cyi_omni_list = ocpu->cyo_next;
2350 	} else {
2351 		prev->cyo_next = ocpu->cyo_next;
2352 	}
2353 
2354 	(void) cyclic_remove_here(ocpu->cyo_cpu, ocpu->cyo_ndx, NULL, CY_WAIT);
2355 
2356 	/*
2357 	 * The cyclic has been removed from this CPU; time to call the
2358 	 * omnipresent offline handler.
2359 	 */
2360 	if (omni->cyo_offline != NULL)
2361 		omni->cyo_offline(omni->cyo_arg, cpu->cyp_cpu, ocpu->cyo_arg);
2362 
2363 	kmem_free(ocpu, sizeof (cyc_omni_cpu_t));
2364 }
2365 
2366 static cyc_id_t *
2367 cyclic_new_id()
2368 {
2369 	cyc_id_t *idp;
2370 
2371 	ASSERT(MUTEX_HELD(&cpu_lock));
2372 
2373 	idp = kmem_cache_alloc(cyclic_id_cache, KM_SLEEP);
2374 
2375 	/*
2376 	 * The cyi_cpu field of the cyc_id_t structure tracks the CPU
2377 	 * associated with the cyclic.  If and only if this field is NULL, the
2378 	 * cyc_id_t is an omnipresent cyclic.  Note that cyi_omni_list may be
2379 	 * NULL for an omnipresent cyclic while the cyclic is being created
2380 	 * or destroyed.
2381 	 */
2382 	idp->cyi_cpu = NULL;
2383 	idp->cyi_ndx = 0;
2384 
2385 	idp->cyi_next = cyclic_id_head;
2386 	idp->cyi_prev = NULL;
2387 	idp->cyi_omni_list = NULL;
2388 
2389 	if (cyclic_id_head != NULL) {
2390 		ASSERT(cyclic_id_head->cyi_prev == NULL);
2391 		cyclic_id_head->cyi_prev = idp;
2392 	}
2393 
2394 	cyclic_id_head = idp;
2395 
2396 	return (idp);
2397 }
2398 
2399 /*
2400  *  cyclic_id_t cyclic_add(cyc_handler_t *, cyc_time_t *)
2401  *
2402  *  Overview
2403  *
2404  *    cyclic_add() will create an unbound cyclic with the specified handler and
2405  *    interval.  The cyclic will run on a CPU which both has interrupts enabled
2406  *    and is in the system CPU partition.
2407  *
2408  *  Arguments and notes
2409  *
2410  *    As its first argument, cyclic_add() takes a cyc_handler, which has the
2411  *    following members:
2412  *
2413  *      cyc_func_t cyh_func    <-- Cyclic handler
2414  *      void *cyh_arg          <-- Argument to cyclic handler
2415  *      cyc_level_t cyh_level  <-- Level at which to fire; must be one of
2416  *                                 CY_LOW_LEVEL, CY_LOCK_LEVEL or CY_HIGH_LEVEL
2417  *
2418  *    Note that cyh_level is _not_ an ipl or spl; it must be one the
2419  *    CY_*_LEVELs.  This layer of abstraction allows the platform to define
2420  *    the precise interrupt priority levels, within the following constraints:
2421  *
2422  *       CY_LOCK_LEVEL must map to LOCK_LEVEL
2423  *       CY_HIGH_LEVEL must map to an ipl greater than LOCK_LEVEL
2424  *       CY_LOW_LEVEL must map to an ipl below LOCK_LEVEL
2425  *
2426  *    In addition to a cyc_handler, cyclic_add() takes a cyc_time, which
2427  *    has the following members:
2428  *
2429  *       hrtime_t cyt_when     <-- Absolute time, in nanoseconds since boot, at
2430  *                                 which to start firing
2431  *       hrtime_t cyt_interval <-- Length of interval, in nanoseconds
2432  *
2433  *    gethrtime() is the time source for nanoseconds since boot.  If cyt_when
2434  *    is set to 0, the cyclic will start to fire when cyt_interval next
2435  *    divides the number of nanoseconds since boot.
2436  *
2437  *    The cyt_interval field _must_ be filled in by the caller; one-shots are
2438  *    _not_ explicitly supported by the cyclic subsystem (cyclic_add() will
2439  *    assert that cyt_interval is non-zero).  The maximum value for either
2440  *    field is INT64_MAX; the caller is responsible for assuring that
2441  *    cyt_when + cyt_interval <= INT64_MAX.  Neither field may be negative.
2442  *
2443  *    For an arbitrary time t in the future, the cyclic handler is guaranteed
2444  *    to have been called (t - cyt_when) / cyt_interval times.  This will
2445  *    be true even if interrupts have been disabled for periods greater than
2446  *    cyt_interval nanoseconds.  In order to compensate for such periods,
2447  *    the cyclic handler may be called a finite number of times with an
2448  *    arbitrarily small interval.
2449  *
2450  *    The cyclic subsystem will not enforce any lower bound on the interval;
2451  *    if the interval is less than the time required to process an interrupt,
2452  *    the CPU will wedge.  It's the responsibility of the caller to assure that
2453  *    either the value of the interval is sane, or that its caller has
2454  *    sufficient privilege to deny service (i.e. its caller is root).
2455  *
2456  *    The cyclic handler is guaranteed to be single threaded, even while the
2457  *    cyclic is being juggled between CPUs (see cyclic_juggle(), below).
2458  *    That is, a given cyclic handler will never be executed simultaneously
2459  *    on different CPUs.
2460  *
2461  *  Return value
2462  *
2463  *    cyclic_add() returns a cyclic_id_t, which is guaranteed to be a value
2464  *    other than CYCLIC_NONE.  cyclic_add() cannot fail.
2465  *
2466  *  Caller's context
2467  *
2468  *    cpu_lock must be held by the caller, and the caller must not be in
2469  *    interrupt context.  cyclic_add() will perform a KM_SLEEP kernel
2470  *    memory allocation, so the usual rules (e.g. p_lock cannot be held)
2471  *    apply.  A cyclic may be added even in the presence of CPUs that have
2472  *    not been configured with respect to the cyclic subsystem, but only
2473  *    configured CPUs will be eligible to run the new cyclic.
2474  *
2475  *  Cyclic handler's context
2476  *
2477  *    Cyclic handlers will be executed in the interrupt context corresponding
2478  *    to the specified level (i.e. either high, lock or low level).  The
2479  *    usual context rules apply.
2480  *
2481  *    A cyclic handler may not grab ANY locks held by the caller of any of
2482  *    cyclic_add(), cyclic_remove() or cyclic_bind(); the implementation of
2483  *    these functions may require blocking on cyclic handler completion.
2484  *    Moreover, cyclic handlers may not make any call back into the cyclic
2485  *    subsystem.
2486  */
2487 cyclic_id_t
2488 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
2489 {
2490 	cyc_id_t *idp = cyclic_new_id();
2491 
2492 	ASSERT(MUTEX_HELD(&cpu_lock));
2493 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
2494 
2495 	idp->cyi_cpu = cyclic_pick_cpu(NULL, NULL, NULL, 0);
2496 	idp->cyi_ndx = cyclic_add_here(idp->cyi_cpu, hdlr, when, 0);
2497 
2498 	return ((uintptr_t)idp);
2499 }
2500 
2501 /*
2502  *  cyclic_id_t cyclic_add_omni(cyc_omni_handler_t *)
2503  *
2504  *  Overview
2505  *
2506  *    cyclic_add_omni() will create an omnipresent cyclic with the specified
2507  *    online and offline handlers.  Omnipresent cyclics run on all online
2508  *    CPUs, including CPUs which have unbound interrupts disabled.
2509  *
2510  *  Arguments
2511  *
2512  *    As its only argument, cyclic_add_omni() takes a cyc_omni_handler, which
2513  *    has the following members:
2514  *
2515  *      void (*cyo_online)()   <-- Online handler
2516  *      void (*cyo_offline)()  <-- Offline handler
2517  *      void *cyo_arg          <-- Argument to be passed to on/offline handlers
2518  *
2519  *  Online handler
2520  *
2521  *    The cyo_online member is a pointer to a function which has the following
2522  *    four arguments:
2523  *
2524  *      void *                 <-- Argument (cyo_arg)
2525  *      cpu_t *                <-- Pointer to CPU about to be onlined
2526  *      cyc_handler_t *        <-- Pointer to cyc_handler_t; must be filled in
2527  *                                 by omni online handler
2528  *      cyc_time_t *           <-- Pointer to cyc_time_t; must be filled in by
2529  *                                 omni online handler
2530  *
2531  *    The omni cyclic online handler is always called _before_ the omni
2532  *    cyclic begins to fire on the specified CPU.  As the above argument
2533  *    description implies, the online handler must fill in the two structures
2534  *    passed to it:  the cyc_handler_t and the cyc_time_t.  These are the
2535  *    same two structures passed to cyclic_add(), outlined above.  This
2536  *    allows the omni cyclic to have maximum flexibility; different CPUs may
2537  *    optionally
2538  *
2539  *      (a)  have different intervals
2540  *      (b)  be explicitly in or out of phase with one another
2541  *      (c)  have different handlers
2542  *      (d)  have different handler arguments
2543  *      (e)  fire at different levels
2544  *
2545  *    Of these, (e) seems somewhat dubious, but is nonetheless allowed.
2546  *
2547  *    The omni online handler is called in the same context as cyclic_add(),
2548  *    and has the same liberties:  omni online handlers may perform KM_SLEEP
2549  *    kernel memory allocations, and may grab locks which are also acquired
2550  *    by cyclic handlers.  However, omni cyclic online handlers may _not_
2551  *    call back into the cyclic subsystem, and should be generally careful
2552  *    about calling into arbitrary kernel subsystems.
2553  *
2554  *  Offline handler
2555  *
2556  *    The cyo_offline member is a pointer to a function which has the following
2557  *    three arguments:
2558  *
2559  *      void *                 <-- Argument (cyo_arg)
2560  *      cpu_t *                <-- Pointer to CPU about to be offlined
2561  *      void *                 <-- CPU's cyclic argument (that is, value
2562  *                                 to which cyh_arg member of the cyc_handler_t
2563  *                                 was set in the omni online handler)
2564  *
2565  *    The omni cyclic offline handler is always called _after_ the omni
2566  *    cyclic has ceased firing on the specified CPU.  Its purpose is to
2567  *    allow cleanup of any resources dynamically allocated in the omni cyclic
2568  *    online handler.  The context of the offline handler is identical to
2569  *    that of the online handler; the same constraints and liberties apply.
2570  *
2571  *    The offline handler is optional; it may be NULL.
2572  *
2573  *  Return value
2574  *
2575  *    cyclic_add_omni() returns a cyclic_id_t, which is guaranteed to be a
2576  *    value other than CYCLIC_NONE.  cyclic_add_omni() cannot fail.
2577  *
2578  *  Caller's context
2579  *
2580  *    The caller's context is identical to that of cyclic_add(), specified
2581  *    above.
2582  */
2583 cyclic_id_t
2584 cyclic_add_omni(cyc_omni_handler_t *omni)
2585 {
2586 	cyc_id_t *idp = cyclic_new_id();
2587 	cyc_cpu_t *cpu;
2588 	cpu_t *c;
2589 
2590 	ASSERT(MUTEX_HELD(&cpu_lock));
2591 	ASSERT(omni != NULL && omni->cyo_online != NULL);
2592 
2593 	idp->cyi_omni_hdlr = *omni;
2594 
2595 	c = cpu_list;
2596 	do {
2597 		if ((cpu = c->cpu_cyclic) == NULL)
2598 			continue;
2599 
2600 		if (cpu->cyp_state != CYS_ONLINE) {
2601 			ASSERT(cpu->cyp_state == CYS_OFFLINE);
2602 			continue;
2603 		}
2604 
2605 		cyclic_omni_start(idp, cpu);
2606 	} while ((c = c->cpu_next) != cpu_list);
2607 
2608 	/*
2609 	 * We must have found at least one online CPU on which to run
2610 	 * this cyclic.
2611 	 */
2612 	ASSERT(idp->cyi_omni_list != NULL);
2613 	ASSERT(idp->cyi_cpu == NULL);
2614 
2615 	return ((uintptr_t)idp);
2616 }
2617 
2618 /*
2619  *  void cyclic_remove(cyclic_id_t)
2620  *
2621  *  Overview
2622  *
2623  *    cyclic_remove() will remove the specified cyclic from the system.
2624  *
2625  *  Arguments and notes
2626  *
2627  *    The only argument is a cyclic_id returned from either cyclic_add() or
2628  *    cyclic_add_omni().
2629  *
2630  *    By the time cyclic_remove() returns, the caller is guaranteed that the
2631  *    removed cyclic handler has completed execution (this is the same
2632  *    semantic that untimeout() provides).  As a result, cyclic_remove() may
2633  *    need to block, waiting for the removed cyclic to complete execution.
2634  *    This leads to an important constraint on the caller:  no lock may be
2635  *    held across cyclic_remove() that also may be acquired by a cyclic
2636  *    handler.
2637  *
2638  *  Return value
2639  *
2640  *    None; cyclic_remove() always succeeds.
2641  *
2642  *  Caller's context
2643  *
2644  *    cpu_lock must be held by the caller, and the caller must not be in
2645  *    interrupt context.  The caller may not hold any locks which are also
2646  *    grabbed by any cyclic handler.  See "Arguments and notes", above.
2647  */
2648 void
2649 cyclic_remove(cyclic_id_t id)
2650 {
2651 	cyc_id_t *idp = (cyc_id_t *)id;
2652 	cyc_id_t *prev = idp->cyi_prev, *next = idp->cyi_next;
2653 	cyc_cpu_t *cpu = idp->cyi_cpu;
2654 
2655 	CYC_PTRACE("remove", idp, idp->cyi_cpu);
2656 	ASSERT(MUTEX_HELD(&cpu_lock));
2657 
2658 	if (cpu != NULL) {
2659 		(void) cyclic_remove_here(cpu, idp->cyi_ndx, NULL, CY_WAIT);
2660 	} else {
2661 		ASSERT(idp->cyi_omni_list != NULL);
2662 		while (idp->cyi_omni_list != NULL)
2663 			cyclic_omni_stop(idp, idp->cyi_omni_list->cyo_cpu);
2664 	}
2665 
2666 	if (prev != NULL) {
2667 		ASSERT(cyclic_id_head != idp);
2668 		prev->cyi_next = next;
2669 	} else {
2670 		ASSERT(cyclic_id_head == idp);
2671 		cyclic_id_head = next;
2672 	}
2673 
2674 	if (next != NULL)
2675 		next->cyi_prev = prev;
2676 
2677 	kmem_cache_free(cyclic_id_cache, idp);
2678 }
2679 
2680 /*
2681  *  void cyclic_bind(cyclic_id_t, cpu_t *, cpupart_t *)
2682  *
2683  *  Overview
2684  *
2685  *    cyclic_bind() atomically changes the CPU and CPU partition bindings
2686  *    of a cyclic.
2687  *
2688  *  Arguments and notes
2689  *
2690  *    The first argument is a cyclic_id retuned from cyclic_add().
2691  *    cyclic_bind() may _not_ be called on a cyclic_id returned from
2692  *    cyclic_add_omni().
2693  *
2694  *    The second argument specifies the CPU to which to bind the specified
2695  *    cyclic.  If the specified cyclic is bound to a CPU other than the one
2696  *    specified, it will be unbound from its bound CPU.  Unbinding the cyclic
2697  *    from its CPU may cause it to be juggled to another CPU.  If the specified
2698  *    CPU is non-NULL, the cyclic will be subsequently rebound to the specified
2699  *    CPU.
2700  *
2701  *    If a CPU with bound cyclics is transitioned into the P_NOINTR state,
2702  *    only cyclics not bound to the CPU can be juggled away; CPU-bound cyclics
2703  *    will continue to fire on the P_NOINTR CPU.  A CPU with bound cyclics
2704  *    cannot be offlined (attempts to offline the CPU will return EBUSY).
2705  *    Likewise, cyclics may not be bound to an offline CPU; if the caller
2706  *    attempts to bind a cyclic to an offline CPU, the cyclic subsystem will
2707  *    panic.
2708  *
2709  *    The third argument specifies the CPU partition to which to bind the
2710  *    specified cyclic.  If the specified cyclic is bound to a CPU partition
2711  *    other than the one specified, it will be unbound from its bound
2712  *    partition.  Unbinding the cyclic from its CPU partition may cause it
2713  *    to be juggled to another CPU.  If the specified CPU partition is
2714  *    non-NULL, the cyclic will be subsequently rebound to the specified CPU
2715  *    partition.
2716  *
2717  *    It is the caller's responsibility to assure that the specified CPU
2718  *    partition contains a CPU.  If it does not, the cyclic subsystem will
2719  *    panic.  A CPU partition with bound cyclics cannot be destroyed (attempts
2720  *    to destroy the partition will return EBUSY).  If a CPU with
2721  *    partition-bound cyclics is transitioned into the P_NOINTR state, cyclics
2722  *    bound to the CPU's partition (but not bound to the CPU) will be juggled
2723  *    away only if there exists another CPU in the partition in the P_ONLINE
2724  *    state.
2725  *
2726  *    It is the caller's responsibility to assure that the specified CPU and
2727  *    CPU partition are self-consistent.  If both parameters are non-NULL,
2728  *    and the specified CPU partition does not contain the specified CPU, the
2729  *    cyclic subsystem will panic.
2730  *
2731  *    It is the caller's responsibility to assure that the specified CPU has
2732  *    been configured with respect to the cyclic subsystem.  Generally, this
2733  *    is always true for valid, on-line CPUs.  The only periods of time during
2734  *    which this may not be true are during MP boot (i.e. after cyclic_init()
2735  *    is called but before cyclic_mp_init() is called) or during dynamic
2736  *    reconfiguration; cyclic_bind() should only be called with great care
2737  *    from these contexts.
2738  *
2739  *  Return value
2740  *
2741  *    None; cyclic_bind() always succeeds.
2742  *
2743  *  Caller's context
2744  *
2745  *    cpu_lock must be held by the caller, and the caller must not be in
2746  *    interrupt context.  The caller may not hold any locks which are also
2747  *    grabbed by any cyclic handler.
2748  */
2749 void
2750 cyclic_bind(cyclic_id_t id, cpu_t *d, cpupart_t *part)
2751 {
2752 	cyc_id_t *idp = (cyc_id_t *)id;
2753 	cyc_cpu_t *cpu = idp->cyi_cpu;
2754 	cpu_t *c;
2755 	uint16_t flags;
2756 
2757 	CYC_PTRACE("bind", d, part);
2758 	ASSERT(MUTEX_HELD(&cpu_lock));
2759 	ASSERT(part == NULL || d == NULL || d->cpu_part == part);
2760 
2761 	if (cpu == NULL) {
2762 		ASSERT(idp->cyi_omni_list != NULL);
2763 		panic("attempt to change binding of omnipresent cyclic");
2764 	}
2765 
2766 	c = cpu->cyp_cpu;
2767 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
2768 
2769 	if (c != d && (flags & CYF_CPU_BOUND))
2770 		cyclic_unbind_cpu(id);
2771 
2772 	/*
2773 	 * Reload our cpu (we may have migrated).  We don't have to reload
2774 	 * the flags field here; if we were CYF_PART_BOUND on entry, we are
2775 	 * CYF_PART_BOUND now.
2776 	 */
2777 	cpu = idp->cyi_cpu;
2778 	c = cpu->cyp_cpu;
2779 
2780 	if (part != c->cpu_part && (flags & CYF_PART_BOUND))
2781 		cyclic_unbind_cpupart(id);
2782 
2783 	/*
2784 	 * Now reload the flags field, asserting that if we are CPU bound,
2785 	 * the CPU was specified (and likewise, if we are partition bound,
2786 	 * the partition was specified).
2787 	 */
2788 	cpu = idp->cyi_cpu;
2789 	c = cpu->cyp_cpu;
2790 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
2791 	ASSERT(!(flags & CYF_CPU_BOUND) || c == d);
2792 	ASSERT(!(flags & CYF_PART_BOUND) || c->cpu_part == part);
2793 
2794 	if (!(flags & CYF_CPU_BOUND) && d != NULL)
2795 		cyclic_bind_cpu(id, d);
2796 
2797 	if (!(flags & CYF_PART_BOUND) && part != NULL)
2798 		cyclic_bind_cpupart(id, part);
2799 }
2800 
2801 hrtime_t
2802 cyclic_getres()
2803 {
2804 	return (cyclic_resolution);
2805 }
2806 
2807 void
2808 cyclic_init(cyc_backend_t *be, hrtime_t resolution)
2809 {
2810 	ASSERT(MUTEX_HELD(&cpu_lock));
2811 
2812 	CYC_PTRACE("init", be, resolution);
2813 	cyclic_resolution = resolution;
2814 
2815 	/*
2816 	 * Copy the passed cyc_backend into the backend template.  This must
2817 	 * be done before the CPU can be configured.
2818 	 */
2819 	bcopy(be, &cyclic_backend, sizeof (cyc_backend_t));
2820 
2821 	/*
2822 	 * It's safe to look at the "CPU" pointer without disabling kernel
2823 	 * preemption; cyclic_init() is called only during startup by the
2824 	 * cyclic backend.
2825 	 */
2826 	cyclic_configure(CPU);
2827 	cyclic_online(CPU);
2828 }
2829 
2830 /*
2831  * It is assumed that cyclic_mp_init() is called some time after cyclic
2832  * init (and therefore, after cpu0 has been initialized).  We grab cpu_lock,
2833  * find the already initialized CPU, and initialize every other CPU with the
2834  * same backend.  Finally, we register a cpu_setup function.
2835  */
2836 void
2837 cyclic_mp_init()
2838 {
2839 	cpu_t *c;
2840 
2841 	mutex_enter(&cpu_lock);
2842 
2843 	c = cpu_list;
2844 	do {
2845 		if (c->cpu_cyclic == NULL) {
2846 			cyclic_configure(c);
2847 			cyclic_online(c);
2848 		}
2849 	} while ((c = c->cpu_next) != cpu_list);
2850 
2851 	register_cpu_setup_func((cpu_setup_func_t *)cyclic_cpu_setup, NULL);
2852 	mutex_exit(&cpu_lock);
2853 }
2854 
2855 /*
2856  *  int cyclic_juggle(cpu_t *)
2857  *
2858  *  Overview
2859  *
2860  *    cyclic_juggle() juggles as many cyclics as possible away from the
2861  *    specified CPU; all remaining cyclics on the CPU will either be CPU-
2862  *    or partition-bound.
2863  *
2864  *  Arguments and notes
2865  *
2866  *    The only argument to cyclic_juggle() is the CPU from which cyclics
2867  *    should be juggled.  CPU-bound cyclics are never juggled; partition-bound
2868  *    cyclics are only juggled if the specified CPU is in the P_NOINTR state
2869  *    and there exists a P_ONLINE CPU in the partition.  The cyclic subsystem
2870  *    assures that a cyclic will never fire late or spuriously, even while
2871  *    being juggled.
2872  *
2873  *  Return value
2874  *
2875  *    cyclic_juggle() returns a non-zero value if all cyclics were able to
2876  *    be juggled away from the CPU, and zero if one or more cyclics could
2877  *    not be juggled away.
2878  *
2879  *  Caller's context
2880  *
2881  *    cpu_lock must be held by the caller, and the caller must not be in
2882  *    interrupt context.  The caller may not hold any locks which are also
2883  *    grabbed by any cyclic handler.  While cyclic_juggle() _may_ be called
2884  *    in any context satisfying these constraints, it _must_ be called
2885  *    immediately after clearing CPU_ENABLE (i.e. before dropping cpu_lock).
2886  *    Failure to do so could result in an assertion failure in the cyclic
2887  *    subsystem.
2888  */
2889 int
2890 cyclic_juggle(cpu_t *c)
2891 {
2892 	cyc_cpu_t *cpu = c->cpu_cyclic;
2893 	cyc_id_t *idp;
2894 	int all_juggled = 1;
2895 
2896 	CYC_PTRACE1("juggle", c);
2897 	ASSERT(MUTEX_HELD(&cpu_lock));
2898 
2899 	/*
2900 	 * We'll go through each cyclic on the CPU, attempting to juggle
2901 	 * each one elsewhere.
2902 	 */
2903 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
2904 		if (idp->cyi_cpu != cpu)
2905 			continue;
2906 
2907 		if (cyclic_juggle_one(idp) == 0) {
2908 			all_juggled = 0;
2909 			continue;
2910 		}
2911 
2912 		ASSERT(idp->cyi_cpu != cpu);
2913 	}
2914 
2915 	return (all_juggled);
2916 }
2917 
2918 /*
2919  *  int cyclic_offline(cpu_t *)
2920  *
2921  *  Overview
2922  *
2923  *    cyclic_offline() offlines the cyclic subsystem on the specified CPU.
2924  *
2925  *  Arguments and notes
2926  *
2927  *    The only argument to cyclic_offline() is a CPU to offline.
2928  *    cyclic_offline() will attempt to juggle cyclics away from the specified
2929  *    CPU.
2930  *
2931  *  Return value
2932  *
2933  *    cyclic_offline() returns 1 if all cyclics on the CPU were juggled away
2934  *    and the cyclic subsystem on the CPU was successfully offlines.
2935  *    cyclic_offline returns 0 if some cyclics remain, blocking the cyclic
2936  *    offline operation.  All remaining cyclics on the CPU will either be
2937  *    CPU- or partition-bound.
2938  *
2939  *    See the "Arguments and notes" of cyclic_juggle(), below, for more detail
2940  *    on cyclic juggling.
2941  *
2942  *  Caller's context
2943  *
2944  *    The only caller of cyclic_offline() should be the processor management
2945  *    subsystem.  It is expected that the caller of cyclic_offline() will
2946  *    offline the CPU immediately after cyclic_offline() returns success (i.e.
2947  *    before dropping cpu_lock).  Moreover, it is expected that the caller will
2948  *    fail the CPU offline operation if cyclic_offline() returns failure.
2949  */
2950 int
2951 cyclic_offline(cpu_t *c)
2952 {
2953 	cyc_cpu_t *cpu = c->cpu_cyclic;
2954 	cyc_id_t *idp;
2955 
2956 	CYC_PTRACE1("offline", cpu);
2957 	ASSERT(MUTEX_HELD(&cpu_lock));
2958 
2959 	if (!cyclic_juggle(c))
2960 		return (0);
2961 
2962 	/*
2963 	 * This CPU is headed offline; we need to now stop omnipresent
2964 	 * cyclic firing on this CPU.
2965 	 */
2966 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
2967 		if (idp->cyi_cpu != NULL)
2968 			continue;
2969 
2970 		/*
2971 		 * We cannot possibly be offlining the last CPU; cyi_omni_list
2972 		 * must be non-NULL.
2973 		 */
2974 		ASSERT(idp->cyi_omni_list != NULL);
2975 		cyclic_omni_stop(idp, cpu);
2976 	}
2977 
2978 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2979 	cpu->cyp_state = CYS_OFFLINE;
2980 
2981 	return (1);
2982 }
2983 
2984 /*
2985  *  void cyclic_online(cpu_t *)
2986  *
2987  *  Overview
2988  *
2989  *    cyclic_online() onlines a CPU previously offlined with cyclic_offline().
2990  *
2991  *  Arguments and notes
2992  *
2993  *    cyclic_online()'s only argument is a CPU to online.  The specified
2994  *    CPU must have been previously offlined with cyclic_offline().  After
2995  *    cyclic_online() returns, the specified CPU will be eligible to execute
2996  *    cyclics.
2997  *
2998  *  Return value
2999  *
3000  *    None; cyclic_online() always succeeds.
3001  *
3002  *  Caller's context
3003  *
3004  *    cyclic_online() should only be called by the processor management
3005  *    subsystem; cpu_lock must be held.
3006  */
3007 void
3008 cyclic_online(cpu_t *c)
3009 {
3010 	cyc_cpu_t *cpu = c->cpu_cyclic;
3011 	cyc_id_t *idp;
3012 
3013 	CYC_PTRACE1("online", cpu);
3014 	ASSERT(c->cpu_flags & CPU_ENABLE);
3015 	ASSERT(MUTEX_HELD(&cpu_lock));
3016 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
3017 
3018 	cpu->cyp_state = CYS_ONLINE;
3019 
3020 	/*
3021 	 * Now that this CPU is open for business, we need to start firing
3022 	 * all omnipresent cyclics on it.
3023 	 */
3024 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3025 		if (idp->cyi_cpu != NULL)
3026 			continue;
3027 
3028 		cyclic_omni_start(idp, cpu);
3029 	}
3030 }
3031 
3032 /*
3033  *  void cyclic_move_in(cpu_t *)
3034  *
3035  *  Overview
3036  *
3037  *    cyclic_move_in() is called by the CPU partition code immediately after
3038  *    the specified CPU has moved into a new partition.
3039  *
3040  *  Arguments and notes
3041  *
3042  *    The only argument to cyclic_move_in() is a CPU which has moved into a
3043  *    new partition.  If the specified CPU is P_ONLINE, and every other
3044  *    CPU in the specified CPU's new partition is P_NOINTR, cyclic_move_in()
3045  *    will juggle all partition-bound, CPU-unbound cyclics to the specified
3046  *    CPU.
3047  *
3048  *  Return value
3049  *
3050  *    None; cyclic_move_in() always succeeds.
3051  *
3052  *  Caller's context
3053  *
3054  *    cyclic_move_in() should _only_ be called immediately after a CPU has
3055  *    moved into a new partition, with cpu_lock held.  As with other calls
3056  *    into the cyclic subsystem, no lock may be held which is also grabbed
3057  *    by any cyclic handler.
3058  */
3059 void
3060 cyclic_move_in(cpu_t *d)
3061 {
3062 	cyc_id_t *idp;
3063 	cyc_cpu_t *dest = d->cpu_cyclic;
3064 	cyclic_t *cyclic;
3065 	cpupart_t *part = d->cpu_part;
3066 
3067 	CYC_PTRACE("move-in", dest, part);
3068 	ASSERT(MUTEX_HELD(&cpu_lock));
3069 
3070 	/*
3071 	 * Look for CYF_PART_BOUND cyclics in the new partition.  If
3072 	 * we find one, check to see if it is currently on a CPU which has
3073 	 * interrupts disabled.  If it is (and if this CPU currently has
3074 	 * interrupts enabled), we'll juggle those cyclics over here.
3075 	 */
3076 	if (!(d->cpu_flags & CPU_ENABLE)) {
3077 		CYC_PTRACE1("move-in-none", dest);
3078 		return;
3079 	}
3080 
3081 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3082 		cyc_cpu_t *cpu = idp->cyi_cpu;
3083 		cpu_t *c;
3084 
3085 		/*
3086 		 * Omnipresent cyclics are exempt from juggling.
3087 		 */
3088 		if (cpu == NULL)
3089 			continue;
3090 
3091 		c = cpu->cyp_cpu;
3092 
3093 		if (c->cpu_part != part || (c->cpu_flags & CPU_ENABLE))
3094 			continue;
3095 
3096 		cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
3097 
3098 		if (cyclic->cy_flags & CYF_CPU_BOUND)
3099 			continue;
3100 
3101 		/*
3102 		 * We know that this cyclic is bound to its processor set
3103 		 * (otherwise, it would not be on a CPU with interrupts
3104 		 * disabled); juggle it to our CPU.
3105 		 */
3106 		ASSERT(cyclic->cy_flags & CYF_PART_BOUND);
3107 		cyclic_juggle_one_to(idp, dest);
3108 	}
3109 
3110 	CYC_PTRACE1("move-in-done", dest);
3111 }
3112 
3113 /*
3114  *  int cyclic_move_out(cpu_t *)
3115  *
3116  *  Overview
3117  *
3118  *    cyclic_move_out() is called by the CPU partition code immediately before
3119  *    the specified CPU is to move out of its partition.
3120  *
3121  *  Arguments and notes
3122  *
3123  *    The only argument to cyclic_move_out() is a CPU which is to move out of
3124  *    its partition.
3125  *
3126  *    cyclic_move_out() will attempt to juggle away all partition-bound
3127  *    cyclics.  If the specified CPU is the last CPU in a partition with
3128  *    partition-bound cyclics, cyclic_move_out() will fail.  If there exists
3129  *    a partition-bound cyclic which is CPU-bound to the specified CPU,
3130  *    cyclic_move_out() will fail.
3131  *
3132  *    Note that cyclic_move_out() will _only_ attempt to juggle away
3133  *    partition-bound cyclics; CPU-bound cyclics which are not partition-bound
3134  *    and unbound cyclics are not affected by changing the partition
3135  *    affiliation of the CPU.
3136  *
3137  *  Return value
3138  *
3139  *    cyclic_move_out() returns 1 if all partition-bound cyclics on the CPU
3140  *    were juggled away; 0 if some cyclics remain.
3141  *
3142  *  Caller's context
3143  *
3144  *    cyclic_move_out() should _only_ be called immediately before a CPU has
3145  *    moved out of its partition, with cpu_lock held.  It is expected that
3146  *    the caller of cyclic_move_out() will change the processor set affiliation
3147  *    of the specified CPU immediately after cyclic_move_out() returns
3148  *    success (i.e. before dropping cpu_lock).  Moreover, it is expected that
3149  *    the caller will fail the CPU repartitioning operation if cyclic_move_out()
3150  *    returns failure.  As with other calls into the cyclic subsystem, no lock
3151  *    may be held which is also grabbed by any cyclic handler.
3152  */
3153 int
3154 cyclic_move_out(cpu_t *c)
3155 {
3156 	cyc_id_t *idp;
3157 	cyc_cpu_t *cpu = c->cpu_cyclic, *dest;
3158 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
3159 	cpupart_t *part = c->cpu_part;
3160 
3161 	CYC_PTRACE1("move-out", cpu);
3162 	ASSERT(MUTEX_HELD(&cpu_lock));
3163 
3164 	/*
3165 	 * If there are any CYF_PART_BOUND cyclics on this CPU, we need
3166 	 * to try to juggle them away.
3167 	 */
3168 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3169 
3170 		if (idp->cyi_cpu != cpu)
3171 			continue;
3172 
3173 		cyclic = &cyclics[idp->cyi_ndx];
3174 
3175 		if (!(cyclic->cy_flags & CYF_PART_BOUND))
3176 			continue;
3177 
3178 		dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags);
3179 
3180 		if (dest == NULL) {
3181 			/*
3182 			 * We can't juggle this cyclic; we need to return
3183 			 * failure (we won't bother trying to juggle away
3184 			 * other cyclics).
3185 			 */
3186 			CYC_PTRACE("move-out-fail", cpu, idp);
3187 			return (0);
3188 		}
3189 		cyclic_juggle_one_to(idp, dest);
3190 	}
3191 
3192 	CYC_PTRACE1("move-out-done", cpu);
3193 	return (1);
3194 }
3195 
3196 /*
3197  *  void cyclic_suspend()
3198  *
3199  *  Overview
3200  *
3201  *    cyclic_suspend() suspends all cyclic activity throughout the cyclic
3202  *    subsystem.  It should be called only by subsystems which are attempting
3203  *    to suspend the entire system (e.g. checkpoint/resume, dynamic
3204  *    reconfiguration).
3205  *
3206  *  Arguments and notes
3207  *
3208  *    cyclic_suspend() takes no arguments.  Each CPU with an active cyclic
3209  *    disables its backend (offline CPUs disable their backends as part of
3210  *    the cyclic_offline() operation), thereby disabling future CY_HIGH_LEVEL
3211  *    interrupts.
3212  *
3213  *    Note that disabling CY_HIGH_LEVEL interrupts does not completely preclude
3214  *    cyclic handlers from being called after cyclic_suspend() returns:  if a
3215  *    CY_LOCK_LEVEL or CY_LOW_LEVEL interrupt thread was blocked at the time
3216  *    of cyclic_suspend(), cyclic handlers at its level may continue to be
3217  *    called after the interrupt thread becomes unblocked.  The
3218  *    post-cyclic_suspend() activity is bounded by the pend count on all
3219  *    cyclics at the time of cyclic_suspend().  Callers concerned with more
3220  *    than simply disabling future CY_HIGH_LEVEL interrupts must check for
3221  *    this condition.
3222  *
3223  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
3224  *    guaranteed to monotonically increase between cyclic_suspend() and
3225  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
3226  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
3227  *    That is, every timestamp obtained before cyclic_suspend() will be less
3228  *    than every timestamp obtained after cyclic_resume().
3229  *
3230  *  Return value
3231  *
3232  *    None; cyclic_suspend() always succeeds.
3233  *
3234  *  Caller's context
3235  *
3236  *    The cyclic subsystem must be configured on every valid CPU;
3237  *    cyclic_suspend() may not be called during boot or during dynamic
3238  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
3239  *    cannot be in high-level interrupt context.  However, unlike most other
3240  *    cyclic entry points, cyclic_suspend() may be called with locks held
3241  *    which are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic
3242  *    handlers.
3243  */
3244 void
3245 cyclic_suspend()
3246 {
3247 	cpu_t *c;
3248 	cyc_cpu_t *cpu;
3249 	cyc_xcallarg_t arg;
3250 	cyc_backend_t *be;
3251 
3252 	CYC_PTRACE0("suspend");
3253 	ASSERT(MUTEX_HELD(&cpu_lock));
3254 	c = cpu_list;
3255 
3256 	do {
3257 		cpu = c->cpu_cyclic;
3258 		be = cpu->cyp_backend;
3259 		arg.cyx_cpu = cpu;
3260 
3261 		be->cyb_xcall(be->cyb_arg, c,
3262 		    (cyc_func_t)cyclic_suspend_xcall, &arg);
3263 	} while ((c = c->cpu_next) != cpu_list);
3264 }
3265 
3266 /*
3267  *  void cyclic_resume()
3268  *
3269  *    cyclic_resume() resumes all cyclic activity throughout the cyclic
3270  *    subsystem.  It should be called only by system-suspending subsystems.
3271  *
3272  *  Arguments and notes
3273  *
3274  *    cyclic_resume() takes no arguments.  Each CPU with an active cyclic
3275  *    reenables and reprograms its backend (offline CPUs are not reenabled).
3276  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
3277  *    guaranteed to monotonically increase between cyclic_suspend() and
3278  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
3279  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
3280  *    That is, every timestamp obtained before cyclic_suspend() will be less
3281  *    than every timestamp obtained after cyclic_resume().
3282  *
3283  *  Return value
3284  *
3285  *    None; cyclic_resume() always succeeds.
3286  *
3287  *  Caller's context
3288  *
3289  *    The cyclic subsystem must be configured on every valid CPU;
3290  *    cyclic_resume() may not be called during boot or during dynamic
3291  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
3292  *    cannot be in high-level interrupt context.  However, unlike most other
3293  *    cyclic entry points, cyclic_resume() may be called with locks held which
3294  *    are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic handlers.
3295  */
3296 void
3297 cyclic_resume()
3298 {
3299 	cpu_t *c;
3300 	cyc_cpu_t *cpu;
3301 	cyc_xcallarg_t arg;
3302 	cyc_backend_t *be;
3303 
3304 	CYC_PTRACE0("resume");
3305 	ASSERT(MUTEX_HELD(&cpu_lock));
3306 
3307 	c = cpu_list;
3308 
3309 	do {
3310 		cpu = c->cpu_cyclic;
3311 		be = cpu->cyp_backend;
3312 		arg.cyx_cpu = cpu;
3313 
3314 		be->cyb_xcall(be->cyb_arg, c,
3315 		    (cyc_func_t)cyclic_resume_xcall, &arg);
3316 	} while ((c = c->cpu_next) != cpu_list);
3317 }
3318