xref: /illumos-gate/usr/src/uts/common/os/cyclic.c (revision e121b61f5e8ffbeb2f6b373c967c80351333ee21)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, Joyent Inc. All rights reserved.
28  */
29 
30 /*
31  *  The Cyclic Subsystem
32  *  --------------------
33  *
34  *  Prehistory
35  *
36  *  Historically, most computer architectures have specified interval-based
37  *  timer parts (e.g. SPARCstation's counter/timer; Intel's i8254).  While
38  *  these parts deal in relative (i.e. not absolute) time values, they are
39  *  typically used by the operating system to implement the abstraction of
40  *  absolute time.  As a result, these parts cannot typically be reprogrammed
41  *  without introducing error in the system's notion of time.
42  *
43  *  Starting in about 1994, chip architectures began specifying high resolution
44  *  timestamp registers.  As of this writing (1999), all major chip families
45  *  (UltraSPARC, PentiumPro, MIPS, PowerPC, Alpha) have high resolution
46  *  timestamp registers, and two (UltraSPARC and MIPS) have added the capacity
47  *  to interrupt based on timestamp values.  These timestamp-compare registers
48  *  present a time-based interrupt source which can be reprogrammed arbitrarily
49  *  often without introducing error.  Given the low cost of implementing such a
50  *  timestamp-compare register (and the tangible benefit of eliminating
51  *  discrete timer parts), it is reasonable to expect that future chip
52  *  architectures will adopt this feature.
53  *
54  *  The cyclic subsystem has been designed to take advantage of chip
55  *  architectures with the capacity to interrupt based on absolute, high
56  *  resolution values of time.
57  *
58  *  Subsystem Overview
59  *
60  *  The cyclic subsystem is a low-level kernel subsystem designed to provide
61  *  arbitrarily high resolution, per-CPU interval timers (to avoid colliding
62  *  with existing terms, we dub such an interval timer a "cyclic").  Cyclics
63  *  can be specified to fire at high, lock or low interrupt level, and may be
64  *  optionally bound to a CPU or a CPU partition.  A cyclic's CPU or CPU
65  *  partition binding may be changed dynamically; the cyclic will be "juggled"
66  *  to a CPU which satisfies the new binding.  Alternatively, a cyclic may
67  *  be specified to be "omnipresent", denoting firing on all online CPUs.
68  *
69  *  Cyclic Subsystem Interface Overview
70  *  -----------------------------------
71  *
72  *  The cyclic subsystem has interfaces with the kernel at-large, with other
73  *  kernel subsystems (e.g. the processor management subsystem, the checkpoint
74  *  resume subsystem) and with the platform (the cyclic backend).  Each
75  *  of these interfaces is given a brief synopsis here, and is described
76  *  in full above the interface's implementation.
77  *
78  *  The following diagram displays the cyclic subsystem's interfaces to
79  *  other kernel components.  The arrows denote a "calls" relationship, with
80  *  the large arrow indicating the cyclic subsystem's consumer interface.
81  *  Each arrow is labeled with the section in which the corresponding
82  *  interface is described.
83  *
84  *           Kernel at-large consumers
85  *           -----------++------------
86  *                      ||
87  *                      ||
88  *                     _||_
89  *                     \  /
90  *                      \/
91  *            +---------------------+
92  *            |                     |
93  *            |  Cyclic subsystem   |<-----------  Other kernel subsystems
94  *            |                     |
95  *            +---------------------+
96  *                   ^       |
97  *                   |       |
98  *                   |       |
99  *                   |       v
100  *            +---------------------+
101  *            |                     |
102  *            |   Cyclic backend    |
103  *            | (platform specific) |
104  *            |                     |
105  *            +---------------------+
106  *
107  *
108  *  Kernel At-Large Interfaces
109  *
110  *      cyclic_add()         <-- Creates a cyclic
111  *      cyclic_add_omni()    <-- Creates an omnipresent cyclic
112  *      cyclic_remove()      <-- Removes a cyclic
113  *      cyclic_bind()        <-- Change a cyclic's CPU or partition binding
114  *      cyclic_reprogram()   <-- Reprogram a cyclic's expiration
115  *
116  *  Inter-subsystem Interfaces
117  *
118  *      cyclic_juggle()      <-- Juggles cyclics away from a CPU
119  *      cyclic_offline()     <-- Offlines cyclic operation on a CPU
120  *      cyclic_online()      <-- Reenables operation on an offlined CPU
121  *      cyclic_move_in()     <-- Notifies subsystem of change in CPU partition
122  *      cyclic_move_out()    <-- Notifies subsystem of change in CPU partition
123  *      cyclic_suspend()     <-- Suspends the cyclic subsystem on all CPUs
124  *      cyclic_resume()      <-- Resumes the cyclic subsystem on all CPUs
125  *
126  *  Backend Interfaces
127  *
128  *      cyclic_init()        <-- Initializes the cyclic subsystem
129  *      cyclic_fire()        <-- CY_HIGH_LEVEL interrupt entry point
130  *      cyclic_softint()     <-- CY_LOCK/LOW_LEVEL soft interrupt entry point
131  *
132  *  The backend-supplied interfaces (through the cyc_backend structure) are
133  *  documented in detail in <sys/cyclic_impl.h>
134  *
135  *
136  *  Cyclic Subsystem Implementation Overview
137  *  ----------------------------------------
138  *
139  *  The cyclic subsystem is designed to minimize interference between cyclics
140  *  on different CPUs.  Thus, all of the cyclic subsystem's data structures
141  *  hang off of a per-CPU structure, cyc_cpu.
142  *
143  *  Each cyc_cpu has a power-of-two sized array of cyclic structures (the
144  *  cyp_cyclics member of the cyc_cpu structure).  If cyclic_add() is called
145  *  and there does not exist a free slot in the cyp_cyclics array, the size of
146  *  the array will be doubled.  The array will never shrink.  Cyclics are
147  *  referred to by their index in the cyp_cyclics array, which is of type
148  *  cyc_index_t.
149  *
150  *  The cyclics are kept sorted by expiration time in the cyc_cpu's heap.  The
151  *  heap is keyed by cyclic expiration time, with parents expiring earlier
152  *  than their children.
153  *
154  *  Heap Management
155  *
156  *  The heap is managed primarily by cyclic_fire().  Upon entry, cyclic_fire()
157  *  compares the root cyclic's expiration time to the current time.  If the
158  *  expiration time is in the past, cyclic_expire() is called on the root
159  *  cyclic.  Upon return from cyclic_expire(), the cyclic's new expiration time
160  *  is derived by adding its interval to its old expiration time, and a
161  *  downheap operation is performed.  After the downheap, cyclic_fire()
162  *  examines the (potentially changed) root cyclic, repeating the
163  *  cyclic_expire()/add interval/cyclic_downheap() sequence until the root
164  *  cyclic has an expiration time in the future.  This expiration time
165  *  (guaranteed to be the earliest in the heap) is then communicated to the
166  *  backend via cyb_reprogram.  Optimal backends will next call cyclic_fire()
167  *  shortly after the root cyclic's expiration time.
168  *
169  *  To allow efficient, deterministic downheap operations, we implement the
170  *  heap as an array (the cyp_heap member of the cyc_cpu structure), with each
171  *  element containing an index into the CPU's cyp_cyclics array.
172  *
173  *  The heap is laid out in the array according to the following:
174  *
175  *   1.  The root of the heap is always in the 0th element of the heap array
176  *   2.  The left and right children of the nth element are element
177  *       (((n + 1) << 1) - 1) and element ((n + 1) << 1), respectively.
178  *
179  *  This layout is standard (see, e.g., Cormen's "Algorithms"); the proof
180  *  that these constraints correctly lay out a heap (or indeed, any binary
181  *  tree) is trivial and left to the reader.
182  *
183  *  To see the heap by example, assume our cyclics array has the following
184  *  members (at time t):
185  *
186  *            cy_handler            cy_level      cy_expire
187  *            ---------------------------------------------
188  *     [ 0]   clock()                   LOCK     t+10000000
189  *     [ 1]   deadman()                 HIGH   t+1000000000
190  *     [ 2]   clock_highres_fire()       LOW          t+100
191  *     [ 3]   clock_highres_fire()       LOW         t+1000
192  *     [ 4]   clock_highres_fire()       LOW          t+500
193  *     [ 5]   (free)                      --             --
194  *     [ 6]   (free)                      --             --
195  *     [ 7]   (free)                      --             --
196  *
197  *  The heap array could be:
198  *
199  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
200  *              +-----+-----+-----+-----+-----+-----+-----+-----+
201  *              |     |     |     |     |     |     |     |     |
202  *              |  2  |  3  |  4  |  0  |  1  |  x  |  x  |  x  |
203  *              |     |     |     |     |     |     |     |     |
204  *              +-----+-----+-----+-----+-----+-----+-----+-----+
205  *
206  *  Graphically, this array corresponds to the following (excuse the ASCII art):
207  *
208  *                                       2
209  *                                       |
210  *                    +------------------+------------------+
211  *                    3                                     4
212  *                    |
213  *          +---------+--------+
214  *          0                  1
215  *
216  *  Note that the heap is laid out by layer:  all nodes at a given depth are
217  *  stored in consecutive elements of the array.  Moreover, layers of
218  *  consecutive depths are in adjacent element ranges.  This property
219  *  guarantees high locality of reference during downheap operations.
220  *  Specifically, we are guaranteed that we can downheap to a depth of
221  *
222  *      lg (cache_line_size / sizeof (cyc_index_t))
223  *
224  *  nodes with at most one cache miss.  On UltraSPARC (64 byte e-cache line
225  *  size), this corresponds to a depth of four nodes.  Thus, if there are
226  *  fewer than sixteen cyclics in the heap, downheaps on UltraSPARC miss at
227  *  most once in the e-cache.
228  *
229  *  Downheaps are required to compare siblings as they proceed down the
230  *  heap.  For downheaps proceeding beyond the one-cache-miss depth, every
231  *  access to a left child could potentially miss in the cache.  However,
232  *  if we assume
233  *
234  *      (cache_line_size / sizeof (cyc_index_t)) > 2,
235  *
236  *  then all siblings are guaranteed to be on the same cache line.  Thus, the
237  *  miss on the left child will guarantee a hit on the right child; downheaps
238  *  will incur at most one cache miss per layer beyond the one-cache-miss
239  *  depth.  The total number of cache misses for heap management during a
240  *  downheap operation is thus bounded by
241  *
242  *      lg (n) - lg (cache_line_size / sizeof (cyc_index_t))
243  *
244  *  Traditional pointer-based heaps are implemented without regard to
245  *  locality.  Downheaps can thus incur two cache misses per layer (one for
246  *  each child), but at most one cache miss at the root.  This yields a bound
247  *  of
248  *
249  *      2 * lg (n) - 1
250  *
251  *  on the total cache misses.
252  *
253  *  This difference may seem theoretically trivial (the difference is, after
254  *  all, constant), but can become substantial in practice -- especially for
255  *  caches with very large cache lines and high miss penalties (e.g. TLBs).
256  *
257  *  Heaps must always be full, balanced trees.  Heap management must therefore
258  *  track the next point-of-insertion into the heap.  In pointer-based heaps,
259  *  recomputing this point takes O(lg (n)).  Given the layout of the
260  *  array-based implementation, however, the next point-of-insertion is
261  *  always:
262  *
263  *      heap[number_of_elements]
264  *
265  *  We exploit this property by implementing the free-list in the usused
266  *  heap elements.  Heap insertion, therefore, consists only of filling in
267  *  the cyclic at cyp_cyclics[cyp_heap[number_of_elements]], incrementing
268  *  the number of elements, and performing an upheap.  Heap deletion consists
269  *  of decrementing the number of elements, swapping the to-be-deleted element
270  *  with the element at cyp_heap[number_of_elements], and downheaping.
271  *
272  *  Filling in more details in our earlier example:
273  *
274  *                                               +--- free list head
275  *                                               |
276  *                                               V
277  *
278  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
279  *              +-----+-----+-----+-----+-----+-----+-----+-----+
280  *              |     |     |     |     |     |     |     |     |
281  *              |  2  |  3  |  4  |  0  |  1  |  5  |  6  |  7  |
282  *              |     |     |     |     |     |     |     |     |
283  *              +-----+-----+-----+-----+-----+-----+-----+-----+
284  *
285  *  To insert into this heap, we would just need to fill in the cyclic at
286  *  cyp_cyclics[5], bump the number of elements (from 5 to 6) and perform
287  *  an upheap.
288  *
289  *  If we wanted to remove, say, cyp_cyclics[3], we would first scan for it
290  *  in the cyp_heap, and discover it at cyp_heap[1].  We would then decrement
291  *  the number of elements (from 5 to 4), swap cyp_heap[1] with cyp_heap[4],
292  *  and perform a downheap from cyp_heap[1].  The linear scan is required
293  *  because the cyclic does not keep a backpointer into the heap.  This makes
294  *  heap manipulation (e.g. downheaps) faster at the expense of removal
295  *  operations.
296  *
297  *  Expiry processing
298  *
299  *  As alluded to above, cyclic_expire() is called by cyclic_fire() at
300  *  CY_HIGH_LEVEL to expire a cyclic.  Cyclic subsystem consumers are
301  *  guaranteed that for an arbitrary time t in the future, their cyclic
302  *  handler will have been called (t - cyt_when) / cyt_interval times.  Thus,
303  *  there must be a one-to-one mapping between a cyclic's expiration at
304  *  CY_HIGH_LEVEL and its execution at the desired level (either CY_HIGH_LEVEL,
305  *  CY_LOCK_LEVEL or CY_LOW_LEVEL).
306  *
307  *  For CY_HIGH_LEVEL cyclics, this is trivial; cyclic_expire() simply needs
308  *  to call the handler.
309  *
310  *  For CY_LOCK_LEVEL and CY_LOW_LEVEL cyclics, however, there exists a
311  *  potential disconnect:  if the CPU is at an interrupt level less than
312  *  CY_HIGH_LEVEL but greater than the level of a cyclic for a period of
313  *  time longer than twice the cyclic's interval, the cyclic will be expired
314  *  twice before it can be handled.
315  *
316  *  To maintain the one-to-one mapping, we track the difference between the
317  *  number of times a cyclic has been expired and the number of times it's
318  *  been handled in a "pending count" (the cy_pend field of the cyclic
319  *  structure).  cyclic_expire() thus increments the cy_pend count for the
320  *  expired cyclic and posts a soft interrupt at the desired level.  In the
321  *  cyclic subsystem's soft interrupt handler, cyclic_softint(), we repeatedly
322  *  call the cyclic handler and decrement cy_pend until we have decremented
323  *  cy_pend to zero.
324  *
325  *  The Producer/Consumer Buffer
326  *
327  *  If we wish to avoid a linear scan of the cyclics array at soft interrupt
328  *  level, cyclic_softint() must be able to quickly determine which cyclics
329  *  have a non-zero cy_pend count.  We thus introduce a per-soft interrupt
330  *  level producer/consumer buffer shared with CY_HIGH_LEVEL.  These buffers
331  *  are encapsulated in the cyc_pcbuffer structure, and, like cyp_heap, are
332  *  implemented as cyc_index_t arrays (the cypc_buf member of the cyc_pcbuffer
333  *  structure).
334  *
335  *  The producer (cyclic_expire() running at CY_HIGH_LEVEL) enqueues a cyclic
336  *  by storing the cyclic's index to cypc_buf[cypc_prodndx] and incrementing
337  *  cypc_prodndx.  The consumer (cyclic_softint() running at either
338  *  CY_LOCK_LEVEL or CY_LOW_LEVEL) dequeues a cyclic by loading from
339  *  cypc_buf[cypc_consndx] and bumping cypc_consndx.  The buffer is empty when
340  *  cypc_prodndx == cypc_consndx.
341  *
342  *  To bound the size of the producer/consumer buffer, cyclic_expire() only
343  *  enqueues a cyclic if its cy_pend was zero (if the cyclic's cy_pend is
344  *  non-zero, cyclic_expire() only bumps cy_pend).  Symmetrically,
345  *  cyclic_softint() only consumes a cyclic after it has decremented the
346  *  cy_pend count to zero.
347  *
348  *  Returning to our example, here is what the CY_LOW_LEVEL producer/consumer
349  *  buffer might look like:
350  *
351  *     cypc_consndx ---+                 +--- cypc_prodndx
352  *                     |                 |
353  *                     V                 V
354  *
355  *        [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
356  *      +-----+-----+-----+-----+-----+-----+-----+-----+
357  *      |     |     |     |     |     |     |     |     |
358  *      |  x  |  x  |  3  |  2  |  4  |  x  |  x  |  x  |   <== cypc_buf
359  *      |     |     |  .  |  .  |  .  |     |     |     |
360  *      +-----+-----+- | -+- | -+- | -+-----+-----+-----+
361  *                     |     |     |
362  *                     |     |     |              cy_pend  cy_handler
363  *                     |     |     |          -------------------------
364  *                     |     |     |          [ 0]      1  clock()
365  *                     |     |     |          [ 1]      0  deadman()
366  *                     |     +---- | -------> [ 2]      3  clock_highres_fire()
367  *                     +---------- | -------> [ 3]      1  clock_highres_fire()
368  *                                 +--------> [ 4]      1  clock_highres_fire()
369  *                                            [ 5]      -  (free)
370  *                                            [ 6]      -  (free)
371  *                                            [ 7]      -  (free)
372  *
373  *  In particular, note that clock()'s cy_pend is 1 but that it is _not_ in
374  *  this producer/consumer buffer; it would be enqueued in the CY_LOCK_LEVEL
375  *  producer/consumer buffer.
376  *
377  *  Locking
378  *
379  *  Traditionally, access to per-CPU data structures shared between
380  *  interrupt levels is serialized by manipulating programmable interrupt
381  *  level:  readers and writers are required to raise their interrupt level
382  *  to that of the highest level writer.
383  *
384  *  For the producer/consumer buffers (shared between cyclic_fire()/
385  *  cyclic_expire() executing at CY_HIGH_LEVEL and cyclic_softint() executing
386  *  at one of CY_LOCK_LEVEL or CY_LOW_LEVEL), forcing cyclic_softint() to raise
387  *  programmable interrupt level is undesirable:  aside from the additional
388  *  latency incurred by manipulating interrupt level in the hot cy_pend
389  *  processing path, this would create the potential for soft level cy_pend
390  *  processing to delay CY_HIGH_LEVEL firing and expiry processing.
391  *  CY_LOCK/LOW_LEVEL cyclics could thereby induce jitter in CY_HIGH_LEVEL
392  *  cyclics.
393  *
394  *  To minimize jitter, then, we would like the cyclic_fire()/cyclic_expire()
395  *  and cyclic_softint() code paths to be lock-free.
396  *
397  *  For cyclic_fire()/cyclic_expire(), lock-free execution is straightforward:
398  *  because these routines execute at a higher interrupt level than
399  *  cyclic_softint(), their actions on the producer/consumer buffer appear
400  *  atomic.  In particular, the increment of cy_pend appears to occur
401  *  atomically with the increment of cypc_prodndx.
402  *
403  *  For cyclic_softint(), however, lock-free execution requires more delicacy.
404  *  When cyclic_softint() discovers a cyclic in the producer/consumer buffer,
405  *  it calls the cyclic's handler and attempts to atomically decrement the
406  *  cy_pend count with a compare&swap operation.
407  *
408  *  If the compare&swap operation succeeds, cyclic_softint() behaves
409  *  conditionally based on the value it atomically wrote to cy_pend:
410  *
411  *     - If the cy_pend was decremented to 0, the cyclic has been consumed;
412  *       cyclic_softint() increments the cypc_consndx and checks for more
413  *       enqueued work.
414  *
415  *     - If the count was decremented to a non-zero value, there is more work
416  *       to be done on the cyclic; cyclic_softint() calls the cyclic handler
417  *       and repeats the atomic decrement process.
418  *
419  *  If the compare&swap operation fails, cyclic_softint() knows that
420  *  cyclic_expire() has intervened and bumped the cy_pend count (resizes
421  *  and removals complicate this, however -- see the sections on their
422  *  operation, below).  cyclic_softint() thus reloads cy_pend, and re-attempts
423  *  the atomic decrement.
424  *
425  *  Recall that we bound the size of the producer/consumer buffer by
426  *  having cyclic_expire() only enqueue the specified cyclic if its
427  *  cy_pend count is zero; this assures that each cyclic is enqueued at
428  *  most once.  This leads to a critical constraint on cyclic_softint(),
429  *  however:  after the compare&swap operation which successfully decrements
430  *  cy_pend to zero, cyclic_softint() must _not_ re-examine the consumed
431  *  cyclic.  In part to obey this constraint, cyclic_softint() calls the
432  *  cyclic handler before decrementing cy_pend.
433  *
434  *  Resizing
435  *
436  *  All of the discussion thus far has assumed a static number of cyclics.
437  *  Obviously, static limitations are not practical; we need the capacity
438  *  to resize our data structures dynamically.
439  *
440  *  We resize our data structures lazily, and only on a per-CPU basis.
441  *  The size of the data structures always doubles and never shrinks.  We
442  *  serialize adds (and thus resizes) on cpu_lock; we never need to deal
443  *  with concurrent resizes.  Resizes should be rare; they may induce jitter
444  *  on the CPU being resized, but should not affect cyclic operation on other
445  *  CPUs.  Pending cyclics may not be dropped during a resize operation.
446  *
447  *  Three key cyc_cpu data structures need to be resized:  the cyclics array,
448  *  the heap array and the producer/consumer buffers.  Resizing the first two
449  *  is relatively straightforward:
450  *
451  *    1.  The new, larger arrays are allocated in cyclic_expand() (called
452  *        from cyclic_add()).
453  *    2.  cyclic_expand() cross calls cyclic_expand_xcall() on the CPU
454  *        undergoing the resize.
455  *    3.  cyclic_expand_xcall() raises interrupt level to CY_HIGH_LEVEL
456  *    4.  The contents of the old arrays are copied into the new arrays.
457  *    5.  The old cyclics array is bzero()'d
458  *    6.  The pointers are updated.
459  *
460  *  The producer/consumer buffer is dicier:  cyclic_expand_xcall() may have
461  *  interrupted cyclic_softint() in the middle of consumption. To resize the
462  *  producer/consumer buffer, we implement up to two buffers per soft interrupt
463  *  level:  a hard buffer (the buffer being produced into by cyclic_expire())
464  *  and a soft buffer (the buffer from which cyclic_softint() is consuming).
465  *  During normal operation, the hard buffer and soft buffer point to the
466  *  same underlying producer/consumer buffer.
467  *
468  *  During a resize, however, cyclic_expand_xcall() changes the hard buffer
469  *  to point to the new, larger producer/consumer buffer; all future
470  *  cyclic_expire()'s will produce into the new buffer.  cyclic_expand_xcall()
471  *  then posts a CY_LOCK_LEVEL soft interrupt, landing in cyclic_softint().
472  *
473  *  As under normal operation, cyclic_softint() will consume cyclics from
474  *  its soft buffer.  After the soft buffer is drained, however,
475  *  cyclic_softint() will see that the hard buffer has changed.  At that time,
476  *  cyclic_softint() will change its soft buffer to point to the hard buffer,
477  *  and repeat the producer/consumer buffer draining procedure.
478  *
479  *  After the new buffer is drained, cyclic_softint() will determine if both
480  *  soft levels have seen their new producer/consumer buffer.  If both have,
481  *  cyclic_softint() will post on the semaphore cyp_modify_wait.  If not, a
482  *  soft interrupt will be generated for the remaining level.
483  *
484  *  cyclic_expand() blocks on the cyp_modify_wait semaphore (a semaphore is
485  *  used instead of a condition variable because of the race between the
486  *  sema_p() in cyclic_expand() and the sema_v() in cyclic_softint()).  This
487  *  allows cyclic_expand() to know when the resize operation is complete;
488  *  all of the old buffers (the heap, the cyclics array and the producer/
489  *  consumer buffers) can be freed.
490  *
491  *  A final caveat on resizing:  we described step (5) in the
492  *  cyclic_expand_xcall() procedure without providing any motivation.  This
493  *  step addresses the problem of a cyclic_softint() attempting to decrement
494  *  a cy_pend count while interrupted by a cyclic_expand_xcall().  Because
495  *  cyclic_softint() has already called the handler by the time cy_pend is
496  *  decremented, we want to assure that it doesn't decrement a cy_pend
497  *  count in the old cyclics array.  By zeroing the old cyclics array in
498  *  cyclic_expand_xcall(), we are zeroing out every cy_pend count; when
499  *  cyclic_softint() attempts to compare&swap on the cy_pend count, it will
500  *  fail and recognize that the count has been zeroed.  cyclic_softint() will
501  *  update its stale copy of the cyp_cyclics pointer, re-read the cy_pend
502  *  count from the new cyclics array, and re-attempt the compare&swap.
503  *
504  *  Removals
505  *
506  *  Cyclic removals should be rare.  To simplify the implementation (and to
507  *  allow optimization for the cyclic_fire()/cyclic_expire()/cyclic_softint()
508  *  path), we force removals and adds to serialize on cpu_lock.
509  *
510  *  Cyclic removal is complicated by a guarantee made to the consumer of
511  *  the cyclic subsystem:  after cyclic_remove() returns, the cyclic handler
512  *  has returned and will never again be called.
513  *
514  *  Here is the procedure for cyclic removal:
515  *
516  *    1.  cyclic_remove() calls cyclic_remove_xcall() on the CPU undergoing
517  *        the removal.
518  *    2.  cyclic_remove_xcall() raises interrupt level to CY_HIGH_LEVEL
519  *    3.  The current expiration time for the removed cyclic is recorded.
520  *    4.  If the cy_pend count on the removed cyclic is non-zero, it
521  *        is copied into cyp_rpend and subsequently zeroed.
522  *    5.  The cyclic is removed from the heap
523  *    6.  If the root of the heap has changed, the backend is reprogrammed.
524  *    7.  If the cy_pend count was non-zero cyclic_remove() blocks on the
525  *        cyp_modify_wait semaphore.
526  *
527  *  The motivation for step (3) is explained in "Juggling", below.
528  *
529  *  The cy_pend count is decremented in cyclic_softint() after the cyclic
530  *  handler returns.  Thus, if we find a cy_pend count of zero in step
531  *  (4), we know that cyclic_remove() doesn't need to block.
532  *
533  *  If the cy_pend count is non-zero, however, we must block in cyclic_remove()
534  *  until cyclic_softint() has finished calling the cyclic handler.  To let
535  *  cyclic_softint() know that this cyclic has been removed, we zero the
536  *  cy_pend count.  This will cause cyclic_softint()'s compare&swap to fail.
537  *  When cyclic_softint() sees the zero cy_pend count, it knows that it's been
538  *  caught during a resize (see "Resizing", above) or that the cyclic has been
539  *  removed.  In the latter case, it calls cyclic_remove_pend() to call the
540  *  cyclic handler cyp_rpend - 1 times, and posts on cyp_modify_wait.
541  *
542  *  Juggling
543  *
544  *  At first glance, cyclic juggling seems to be a difficult problem.  The
545  *  subsystem must guarantee that a cyclic doesn't execute simultaneously on
546  *  different CPUs, while also assuring that a cyclic fires exactly once
547  *  per interval.  We solve this problem by leveraging a property of the
548  *  platform:  gethrtime() is required to increase in lock-step across
549  *  multiple CPUs.  Therefore, to juggle a cyclic, we remove it from its
550  *  CPU, recording its expiration time in the remove cross call (step (3)
551  *  in "Removing", above).  We then add the cyclic to the new CPU, explicitly
552  *  setting its expiration time to the time recorded in the removal.  This
553  *  leverages the existing cyclic expiry processing, which will compensate
554  *  for any time lost while juggling.
555  *
556  *  Reprogramming
557  *
558  *  Normally, after a cyclic fires, its next expiration is computed from
559  *  the current time and the cyclic interval. But there are situations when
560  *  the next expiration needs to be reprogrammed by the kernel subsystem that
561  *  is using the cyclic. cyclic_reprogram() allows this to be done. This,
562  *  unlike the other kernel at-large cyclic API functions, is permitted to
563  *  be called from the cyclic handler. This is because it does not use the
564  *  cpu_lock to serialize access.
565  *
566  *  When cyclic_reprogram() is called for an omni-cyclic, the operation is
567  *  applied to the omni-cyclic's component on the current CPU.
568  *
569  *  If a high-level cyclic handler reprograms its own cyclic, then
570  *  cyclic_fire() detects that and does not recompute the cyclic's next
571  *  expiration. However, for a lock-level or a low-level cyclic, the
572  *  actual cyclic handler will execute at the lower PIL only after
573  *  cyclic_fire() is done with all expired cyclics. To deal with this, such
574  *  cyclics can be specified with a special interval of CY_INFINITY (INT64_MAX).
575  *  cyclic_fire() recognizes this special value and recomputes the next
576  *  expiration to CY_INFINITY. This effectively moves the cyclic to the
577  *  bottom of the heap and prevents it from going off until its handler has
578  *  had a chance to reprogram it. Infact, this is the way to create and reuse
579  *  "one-shot" timers in the context of the cyclic subsystem without using
580  *  cyclic_remove().
581  *
582  *  Here is the procedure for cyclic reprogramming:
583  *
584  *    1.  cyclic_reprogram() calls cyclic_reprogram_xcall() on the CPU
585  *        that houses the cyclic.
586  *    2.  cyclic_reprogram_xcall() raises interrupt level to CY_HIGH_LEVEL
587  *    3.  The cyclic is located in the cyclic heap. The search for this is
588  *        done from the bottom of the heap to the top as reprogrammable cyclics
589  *        would be located closer to the bottom than the top.
590  *    4.  The cyclic expiration is set and the cyclic is moved to its
591  *        correct position in the heap (up or down depending on whether the
592  *        new expiration is less than or greater than the old one).
593  *    5.  If the cyclic move modified the root of the heap, the backend is
594  *	  reprogrammed.
595  *
596  *  Reprogramming can be a frequent event (see the callout subsystem). So,
597  *  the serialization used has to be efficient. As with all other cyclic
598  *  operations, the interrupt level is raised during reprogramming. Plus,
599  *  during reprogramming, the cyclic must not be juggled (regular cyclic)
600  *  or stopped (omni-cyclic). The implementation defines a per-cyclic
601  *  reader-writer lock to accomplish this. This lock is acquired in the
602  *  reader mode by cyclic_reprogram() and writer mode by cyclic_juggle() and
603  *  cyclic_omni_stop(). The reader-writer lock makes it efficient if
604  *  an omni-cyclic is reprogrammed on different CPUs frequently.
605  *
606  *  Note that since the cpu_lock is not used during reprogramming, it is
607  *  the responsibility of the user of the reprogrammable cyclic to make sure
608  *  that the cyclic is not removed via cyclic_remove() during reprogramming.
609  *  This is not an unreasonable requirement as the user will typically have
610  *  some sort of synchronization for its cyclic-related activities. This
611  *  little caveat exists because the cyclic ID is not really an ID. It is
612  *  implemented as a pointer to a structure.
613  */
614 #include <sys/cyclic_impl.h>
615 #include <sys/sysmacros.h>
616 #include <sys/systm.h>
617 #include <sys/atomic.h>
618 #include <sys/kmem.h>
619 #include <sys/cmn_err.h>
620 #include <sys/ddi.h>
621 #include <sys/sdt.h>
622 
623 #ifdef CYCLIC_TRACE
624 
625 /*
626  * cyc_trace_enabled is for the benefit of kernel debuggers.
627  */
628 int cyc_trace_enabled = 1;
629 static cyc_tracebuf_t cyc_ptrace;
630 static cyc_coverage_t cyc_coverage[CY_NCOVERAGE];
631 
632 /*
633  * Seen this anywhere?
634  */
635 static uint_t
636 cyclic_coverage_hash(char *p)
637 {
638 	unsigned int g;
639 	uint_t hval;
640 
641 	hval = 0;
642 	while (*p) {
643 		hval = (hval << 4) + *p++;
644 		if ((g = (hval & 0xf0000000)) != 0)
645 			hval ^= g >> 24;
646 		hval &= ~g;
647 	}
648 	return (hval);
649 }
650 
651 static void
652 cyclic_coverage(char *why, int level, uint64_t arg0, uint64_t arg1)
653 {
654 	uint_t ndx, orig;
655 
656 	for (ndx = orig = cyclic_coverage_hash(why) % CY_NCOVERAGE; ; ) {
657 		if (cyc_coverage[ndx].cyv_why == why)
658 			break;
659 
660 		if (cyc_coverage[ndx].cyv_why != NULL ||
661 		    atomic_cas_ptr(&cyc_coverage[ndx].cyv_why, NULL, why) !=
662 		    NULL) {
663 
664 			if (++ndx == CY_NCOVERAGE)
665 				ndx = 0;
666 
667 			if (ndx == orig)
668 				panic("too many cyclic coverage points");
669 			continue;
670 		}
671 
672 		/*
673 		 * If we're here, we have successfully swung our guy into
674 		 * the position at "ndx".
675 		 */
676 		break;
677 	}
678 
679 	if (level == CY_PASSIVE_LEVEL)
680 		cyc_coverage[ndx].cyv_passive_count++;
681 	else
682 		cyc_coverage[ndx].cyv_count[level]++;
683 
684 	cyc_coverage[ndx].cyv_arg0 = arg0;
685 	cyc_coverage[ndx].cyv_arg1 = arg1;
686 }
687 
688 #define	CYC_TRACE(cpu, level, why, arg0, arg1) \
689 	CYC_TRACE_IMPL(&cpu->cyp_trace[level], level, why, arg0, arg1)
690 
691 #define	CYC_PTRACE(why, arg0, arg1) \
692 	CYC_TRACE_IMPL(&cyc_ptrace, CY_PASSIVE_LEVEL, why, arg0, arg1)
693 
694 #define	CYC_TRACE_IMPL(buf, level, why, a0, a1) { \
695 	if (panicstr == NULL) { \
696 		int _ndx = (buf)->cyt_ndx; \
697 		cyc_tracerec_t *_rec = &(buf)->cyt_buf[_ndx]; \
698 		(buf)->cyt_ndx = (++_ndx == CY_NTRACEREC) ? 0 : _ndx; \
699 		_rec->cyt_tstamp = gethrtime_unscaled(); \
700 		_rec->cyt_why = (why); \
701 		_rec->cyt_arg0 = (uint64_t)(uintptr_t)(a0); \
702 		_rec->cyt_arg1 = (uint64_t)(uintptr_t)(a1); \
703 		cyclic_coverage(why, level,	\
704 		    (uint64_t)(uintptr_t)(a0), (uint64_t)(uintptr_t)(a1)); \
705 	} \
706 }
707 
708 #else
709 
710 static int cyc_trace_enabled = 0;
711 
712 #define	CYC_TRACE(cpu, level, why, arg0, arg1)
713 #define	CYC_PTRACE(why, arg0, arg1)
714 
715 #endif
716 
717 #define	CYC_TRACE0(cpu, level, why) CYC_TRACE(cpu, level, why, 0, 0)
718 #define	CYC_TRACE1(cpu, level, why, arg0) CYC_TRACE(cpu, level, why, arg0, 0)
719 
720 #define	CYC_PTRACE0(why) CYC_PTRACE(why, 0, 0)
721 #define	CYC_PTRACE1(why, arg0) CYC_PTRACE(why, arg0, 0)
722 
723 static kmem_cache_t *cyclic_id_cache;
724 static cyc_id_t *cyclic_id_head;
725 static hrtime_t cyclic_resolution;
726 static cyc_backend_t cyclic_backend;
727 
728 /*
729  * Returns 1 if the upheap propagated to the root, 0 if it did not.  This
730  * allows the caller to reprogram the backend only when the root has been
731  * modified.
732  */
733 static int
734 cyclic_upheap(cyc_cpu_t *cpu, cyc_index_t ndx)
735 {
736 	cyclic_t *cyclics;
737 	cyc_index_t *heap;
738 	cyc_index_t heap_parent, heap_current = ndx;
739 	cyc_index_t parent, current;
740 
741 	if (heap_current == 0)
742 		return (1);
743 
744 	heap = cpu->cyp_heap;
745 	cyclics = cpu->cyp_cyclics;
746 	heap_parent = CYC_HEAP_PARENT(heap_current);
747 
748 	for (;;) {
749 		current = heap[heap_current];
750 		parent = heap[heap_parent];
751 
752 		/*
753 		 * We have an expiration time later than our parent; we're
754 		 * done.
755 		 */
756 		if (cyclics[current].cy_expire >= cyclics[parent].cy_expire)
757 			return (0);
758 
759 		/*
760 		 * We need to swap with our parent, and continue up the heap.
761 		 */
762 		heap[heap_parent] = current;
763 		heap[heap_current] = parent;
764 
765 		/*
766 		 * If we just reached the root, we're done.
767 		 */
768 		if (heap_parent == 0)
769 			return (1);
770 
771 		heap_current = heap_parent;
772 		heap_parent = CYC_HEAP_PARENT(heap_current);
773 	}
774 }
775 
776 static void
777 cyclic_downheap(cyc_cpu_t *cpu, cyc_index_t ndx)
778 {
779 	cyclic_t *cyclics = cpu->cyp_cyclics;
780 	cyc_index_t *heap = cpu->cyp_heap;
781 
782 	cyc_index_t heap_left, heap_right, heap_me = ndx;
783 	cyc_index_t left, right, me;
784 	cyc_index_t nelems = cpu->cyp_nelems;
785 
786 	for (;;) {
787 		/*
788 		 * If we don't have a left child (i.e., we're a leaf), we're
789 		 * done.
790 		 */
791 		if ((heap_left = CYC_HEAP_LEFT(heap_me)) >= nelems)
792 			return;
793 
794 		left = heap[heap_left];
795 		me = heap[heap_me];
796 
797 		heap_right = CYC_HEAP_RIGHT(heap_me);
798 
799 		/*
800 		 * Even if we don't have a right child, we still need to compare
801 		 * our expiration time against that of our left child.
802 		 */
803 		if (heap_right >= nelems)
804 			goto comp_left;
805 
806 		right = heap[heap_right];
807 
808 		/*
809 		 * We have both a left and a right child.  We need to compare
810 		 * the expiration times of the children to determine which
811 		 * expires earlier.
812 		 */
813 		if (cyclics[right].cy_expire < cyclics[left].cy_expire) {
814 			/*
815 			 * Our right child is the earlier of our children.
816 			 * We'll now compare our expiration time to its; if
817 			 * ours is the earlier, we're done.
818 			 */
819 			if (cyclics[me].cy_expire <= cyclics[right].cy_expire)
820 				return;
821 
822 			/*
823 			 * Our right child expires earlier than we do; swap
824 			 * with our right child, and descend right.
825 			 */
826 			heap[heap_right] = me;
827 			heap[heap_me] = right;
828 			heap_me = heap_right;
829 			continue;
830 		}
831 
832 comp_left:
833 		/*
834 		 * Our left child is the earlier of our children (or we have
835 		 * no right child).  We'll now compare our expiration time
836 		 * to its; if ours is the earlier, we're done.
837 		 */
838 		if (cyclics[me].cy_expire <= cyclics[left].cy_expire)
839 			return;
840 
841 		/*
842 		 * Our left child expires earlier than we do; swap with our
843 		 * left child, and descend left.
844 		 */
845 		heap[heap_left] = me;
846 		heap[heap_me] = left;
847 		heap_me = heap_left;
848 	}
849 }
850 
851 static void
852 cyclic_expire(cyc_cpu_t *cpu, cyc_index_t ndx, cyclic_t *cyclic)
853 {
854 	cyc_backend_t *be = cpu->cyp_backend;
855 	cyc_level_t level = cyclic->cy_level;
856 
857 	/*
858 	 * If this is a CY_HIGH_LEVEL cyclic, just call the handler; we don't
859 	 * need to worry about the pend count for CY_HIGH_LEVEL cyclics.
860 	 */
861 	if (level == CY_HIGH_LEVEL) {
862 		cyc_func_t handler = cyclic->cy_handler;
863 		void *arg = cyclic->cy_arg;
864 
865 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-in", handler, arg);
866 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
867 
868 		(*handler)(arg);
869 
870 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
871 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-out", handler, arg);
872 
873 		return;
874 	}
875 
876 	/*
877 	 * We're at CY_HIGH_LEVEL; this modification to cy_pend need not
878 	 * be atomic (the high interrupt level assures that it will appear
879 	 * atomic to any softint currently running).
880 	 */
881 	if (cyclic->cy_pend++ == 0) {
882 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[level];
883 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[softbuf->cys_hard];
884 
885 		/*
886 		 * We need to enqueue this cyclic in the soft buffer.
887 		 */
888 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-enq", cyclic,
889 		    pc->cypc_prodndx);
890 		pc->cypc_buf[pc->cypc_prodndx++ & pc->cypc_sizemask] = ndx;
891 
892 		ASSERT(pc->cypc_prodndx != pc->cypc_consndx);
893 	} else {
894 		/*
895 		 * If the pend count is zero after we incremented it, then
896 		 * we've wrapped (i.e. we had a cy_pend count of over four
897 		 * billion.  In this case, we clamp the pend count at
898 		 * UINT32_MAX.  Yes, cyclics can be lost in this case.
899 		 */
900 		if (cyclic->cy_pend == 0) {
901 			CYC_TRACE1(cpu, CY_HIGH_LEVEL, "expire-wrap", cyclic);
902 			cyclic->cy_pend = UINT32_MAX;
903 		}
904 
905 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-bump", cyclic, 0);
906 	}
907 
908 	be->cyb_softint(be->cyb_arg, cyclic->cy_level);
909 }
910 
911 /*
912  *  cyclic_fire(cpu_t *)
913  *
914  *  Overview
915  *
916  *    cyclic_fire() is the cyclic subsystem's CY_HIGH_LEVEL interrupt handler.
917  *    Called by the cyclic backend.
918  *
919  *  Arguments and notes
920  *
921  *    The only argument is the CPU on which the interrupt is executing;
922  *    backends must call into cyclic_fire() on the specified CPU.
923  *
924  *    cyclic_fire() may be called spuriously without ill effect.  Optimal
925  *    backends will call into cyclic_fire() at or shortly after the time
926  *    requested via cyb_reprogram().  However, calling cyclic_fire()
927  *    arbitrarily late will only manifest latency bubbles; the correctness
928  *    of the cyclic subsystem does not rely on the timeliness of the backend.
929  *
930  *    cyclic_fire() is wait-free; it will not block or spin.
931  *
932  *  Return values
933  *
934  *    None.
935  *
936  *  Caller's context
937  *
938  *    cyclic_fire() must be called from CY_HIGH_LEVEL interrupt context.
939  */
940 void
941 cyclic_fire(cpu_t *c)
942 {
943 	cyc_cpu_t *cpu = c->cpu_cyclic;
944 	cyc_backend_t *be = cpu->cyp_backend;
945 	cyc_index_t *heap = cpu->cyp_heap;
946 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
947 	void *arg = be->cyb_arg;
948 	hrtime_t now = gethrtime();
949 	hrtime_t exp;
950 
951 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire", now, 0);
952 
953 	if (cpu->cyp_nelems == 0) {
954 		/*
955 		 * This is a spurious fire.  Count it as such, and blow
956 		 * out of here.
957 		 */
958 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "fire-spurious");
959 		return;
960 	}
961 
962 	for (;;) {
963 		cyc_index_t ndx = heap[0];
964 
965 		cyclic = &cyclics[ndx];
966 
967 		ASSERT(!(cyclic->cy_flags & CYF_FREE));
968 
969 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire-check", cyclic,
970 		    cyclic->cy_expire);
971 
972 		if ((exp = cyclic->cy_expire) > now)
973 			break;
974 
975 		cyclic_expire(cpu, ndx, cyclic);
976 
977 		/*
978 		 * If the handler reprogrammed the cyclic, then don't
979 		 * recompute the expiration. Then, if the interval is
980 		 * infinity, set the expiration to infinity. This can
981 		 * be used to create one-shot timers.
982 		 */
983 		if (exp != cyclic->cy_expire) {
984 			/*
985 			 * If a hi level cyclic reprograms itself,
986 			 * the heap adjustment and reprogramming of the
987 			 * clock source have already been done at this
988 			 * point. So, we can continue.
989 			 */
990 			continue;
991 		}
992 
993 		if (cyclic->cy_interval == CY_INFINITY)
994 			exp = CY_INFINITY;
995 		else
996 			exp += cyclic->cy_interval;
997 
998 		/*
999 		 * If this cyclic will be set to next expire in the distant
1000 		 * past, we have one of two situations:
1001 		 *
1002 		 *   a)	This is the first firing of a cyclic which had
1003 		 *	cy_expire set to 0.
1004 		 *
1005 		 *   b)	We are tragically late for a cyclic -- most likely
1006 		 *	due to being in the debugger.
1007 		 *
1008 		 * In either case, we set the new expiration time to be the
1009 		 * the next interval boundary.  This assures that the
1010 		 * expiration time modulo the interval is invariant.
1011 		 *
1012 		 * We arbitrarily define "distant" to be one second (one second
1013 		 * is chosen because it's shorter than any foray to the
1014 		 * debugger while still being longer than any legitimate
1015 		 * stretch at CY_HIGH_LEVEL).
1016 		 */
1017 
1018 		if (now - exp > NANOSEC) {
1019 			hrtime_t interval = cyclic->cy_interval;
1020 
1021 			CYC_TRACE(cpu, CY_HIGH_LEVEL, exp == interval ?
1022 			    "fire-first" : "fire-swing", now, exp);
1023 
1024 			exp += ((now - exp) / interval + 1) * interval;
1025 		}
1026 
1027 		cyclic->cy_expire = exp;
1028 		cyclic_downheap(cpu, 0);
1029 	}
1030 
1031 	/*
1032 	 * Now we have a cyclic in the root slot which isn't in the past;
1033 	 * reprogram the interrupt source.
1034 	 */
1035 	be->cyb_reprogram(arg, exp);
1036 }
1037 
1038 static void
1039 cyclic_remove_pend(cyc_cpu_t *cpu, cyc_level_t level, cyclic_t *cyclic)
1040 {
1041 	cyc_func_t handler = cyclic->cy_handler;
1042 	void *arg = cyclic->cy_arg;
1043 	uint32_t i, rpend = cpu->cyp_rpend - 1;
1044 
1045 	ASSERT(cyclic->cy_flags & CYF_FREE);
1046 	ASSERT(cyclic->cy_pend == 0);
1047 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1048 	ASSERT(cpu->cyp_rpend > 0);
1049 
1050 	CYC_TRACE(cpu, level, "remove-rpend", cyclic, cpu->cyp_rpend);
1051 
1052 	/*
1053 	 * Note that we only call the handler cyp_rpend - 1 times; this is
1054 	 * to account for the handler call in cyclic_softint().
1055 	 */
1056 	for (i = 0; i < rpend; i++) {
1057 		CYC_TRACE(cpu, level, "rpend-in", handler, arg);
1058 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
1059 
1060 		(*handler)(arg);
1061 
1062 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
1063 		CYC_TRACE(cpu, level, "rpend-out", handler, arg);
1064 	}
1065 
1066 	/*
1067 	 * We can now let the remove operation complete.
1068 	 */
1069 	sema_v(&cpu->cyp_modify_wait);
1070 }
1071 
1072 /*
1073  *  cyclic_softint(cpu_t *cpu, cyc_level_t level)
1074  *
1075  *  Overview
1076  *
1077  *    cyclic_softint() is the cyclic subsystem's CY_LOCK_LEVEL and CY_LOW_LEVEL
1078  *    soft interrupt handler.  Called by the cyclic backend.
1079  *
1080  *  Arguments and notes
1081  *
1082  *    The first argument to cyclic_softint() is the CPU on which the interrupt
1083  *    is executing; backends must call into cyclic_softint() on the specified
1084  *    CPU.  The second argument is the level of the soft interrupt; it must
1085  *    be one of CY_LOCK_LEVEL or CY_LOW_LEVEL.
1086  *
1087  *    cyclic_softint() will call the handlers for cyclics pending at the
1088  *    specified level.  cyclic_softint() will not return until all pending
1089  *    cyclics at the specified level have been dealt with; intervening
1090  *    CY_HIGH_LEVEL interrupts which enqueue cyclics at the specified level
1091  *    may therefore prolong cyclic_softint().
1092  *
1093  *    cyclic_softint() never disables interrupts, and, if neither a
1094  *    cyclic_add() nor a cyclic_remove() is pending on the specified CPU, is
1095  *    lock-free.  This assures that in the common case, cyclic_softint()
1096  *    completes without blocking, and never starves cyclic_fire().  If either
1097  *    cyclic_add() or cyclic_remove() is pending, cyclic_softint() may grab
1098  *    a dispatcher lock.
1099  *
1100  *    While cyclic_softint() is designed for bounded latency, it is obviously
1101  *    at the mercy of its cyclic handlers.  Because cyclic handlers may block
1102  *    arbitrarily, callers of cyclic_softint() should not rely upon
1103  *    deterministic completion.
1104  *
1105  *    cyclic_softint() may be called spuriously without ill effect.
1106  *
1107  *  Return value
1108  *
1109  *    None.
1110  *
1111  *  Caller's context
1112  *
1113  *    The caller must be executing in soft interrupt context at either
1114  *    CY_LOCK_LEVEL or CY_LOW_LEVEL.  The level passed to cyclic_softint()
1115  *    must match the level at which it is executing.  On optimal backends,
1116  *    the caller will hold no locks.  In any case, the caller may not hold
1117  *    cpu_lock or any lock acquired by any cyclic handler or held across
1118  *    any of cyclic_add(), cyclic_remove(), cyclic_bind() or cyclic_juggle().
1119  */
1120 void
1121 cyclic_softint(cpu_t *c, cyc_level_t level)
1122 {
1123 	cyc_cpu_t *cpu = c->cpu_cyclic;
1124 	cyc_softbuf_t *softbuf;
1125 	int soft, *buf, consndx, resized = 0, intr_resized = 0;
1126 	cyc_pcbuffer_t *pc;
1127 	cyclic_t *cyclics = cpu->cyp_cyclics;
1128 	int sizemask;
1129 
1130 	CYC_TRACE(cpu, level, "softint", cyclics, 0);
1131 
1132 	ASSERT(level < CY_LOW_LEVEL + CY_SOFT_LEVELS);
1133 
1134 	softbuf = &cpu->cyp_softbuf[level];
1135 top:
1136 	soft = softbuf->cys_soft;
1137 	ASSERT(soft == 0 || soft == 1);
1138 
1139 	pc = &softbuf->cys_buf[soft];
1140 	buf = pc->cypc_buf;
1141 	consndx = pc->cypc_consndx;
1142 	sizemask = pc->cypc_sizemask;
1143 
1144 	CYC_TRACE(cpu, level, "softint-top", cyclics, pc);
1145 
1146 	while (consndx != pc->cypc_prodndx) {
1147 		uint32_t pend, npend, opend;
1148 		int consmasked = consndx & sizemask;
1149 		cyclic_t *cyclic = &cyclics[buf[consmasked]];
1150 		cyc_func_t handler = cyclic->cy_handler;
1151 		void *arg = cyclic->cy_arg;
1152 
1153 		ASSERT(buf[consmasked] < cpu->cyp_size);
1154 		CYC_TRACE(cpu, level, "consuming", consndx, cyclic);
1155 
1156 		/*
1157 		 * We have found this cyclic in the pcbuffer.  We know that
1158 		 * one of the following is true:
1159 		 *
1160 		 *  (a)	The pend is non-zero.  We need to execute the handler
1161 		 *	at least once.
1162 		 *
1163 		 *  (b)	The pend _was_ non-zero, but it's now zero due to a
1164 		 *	resize.  We will call the handler once, see that we
1165 		 *	are in this case, and read the new cyclics buffer
1166 		 *	(and hence the old non-zero pend).
1167 		 *
1168 		 *  (c)	The pend _was_ non-zero, but it's now zero due to a
1169 		 *	removal.  We will call the handler once, see that we
1170 		 *	are in this case, and call into cyclic_remove_pend()
1171 		 *	to call the cyclic rpend times.  We will take into
1172 		 *	account that we have already called the handler once.
1173 		 *
1174 		 * Point is:  it's safe to call the handler without first
1175 		 * checking the pend.
1176 		 */
1177 		do {
1178 			CYC_TRACE(cpu, level, "handler-in", handler, arg);
1179 			DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
1180 
1181 			(*handler)(arg);
1182 
1183 			DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
1184 			CYC_TRACE(cpu, level, "handler-out", handler, arg);
1185 reread:
1186 			pend = cyclic->cy_pend;
1187 			npend = pend - 1;
1188 
1189 			if (pend == 0) {
1190 				if (cpu->cyp_state == CYS_REMOVING) {
1191 					/*
1192 					 * This cyclic has been removed while
1193 					 * it had a non-zero pend count (we
1194 					 * know it was non-zero because we
1195 					 * found this cyclic in the pcbuffer).
1196 					 * There must be a non-zero rpend for
1197 					 * this CPU, and there must be a remove
1198 					 * operation blocking; we'll call into
1199 					 * cyclic_remove_pend() to clean this
1200 					 * up, and break out of the pend loop.
1201 					 */
1202 					cyclic_remove_pend(cpu, level, cyclic);
1203 					break;
1204 				}
1205 
1206 				/*
1207 				 * We must have had a resize interrupt us.
1208 				 */
1209 				CYC_TRACE(cpu, level, "resize-int", cyclics, 0);
1210 				ASSERT(cpu->cyp_state == CYS_EXPANDING);
1211 				ASSERT(cyclics != cpu->cyp_cyclics);
1212 				ASSERT(resized == 0);
1213 				ASSERT(intr_resized == 0);
1214 				intr_resized = 1;
1215 				cyclics = cpu->cyp_cyclics;
1216 				cyclic = &cyclics[buf[consmasked]];
1217 				ASSERT(cyclic->cy_handler == handler);
1218 				ASSERT(cyclic->cy_arg == arg);
1219 				goto reread;
1220 			}
1221 
1222 			if ((opend =
1223 			    atomic_cas_32(&cyclic->cy_pend, pend, npend)) !=
1224 			    pend) {
1225 				/*
1226 				 * Our atomic_cas_32 can fail for one of several
1227 				 * reasons:
1228 				 *
1229 				 *  (a)	An intervening high level bumped up the
1230 				 *	pend count on this cyclic.  In this
1231 				 *	case, we will see a higher pend.
1232 				 *
1233 				 *  (b)	The cyclics array has been yanked out
1234 				 *	from underneath us by a resize
1235 				 *	operation.  In this case, pend is 0 and
1236 				 *	cyp_state is CYS_EXPANDING.
1237 				 *
1238 				 *  (c)	The cyclic has been removed by an
1239 				 *	intervening remove-xcall.  In this case,
1240 				 *	pend will be 0, the cyp_state will be
1241 				 *	CYS_REMOVING, and the cyclic will be
1242 				 *	marked CYF_FREE.
1243 				 *
1244 				 * The assertion below checks that we are
1245 				 * in one of the above situations.  The
1246 				 * action under all three is to return to
1247 				 * the top of the loop.
1248 				 */
1249 				CYC_TRACE(cpu, level, "cas-fail", opend, pend);
1250 				ASSERT(opend > pend || (opend == 0 &&
1251 				    ((cyclics != cpu->cyp_cyclics &&
1252 				    cpu->cyp_state == CYS_EXPANDING) ||
1253 				    (cpu->cyp_state == CYS_REMOVING &&
1254 				    (cyclic->cy_flags & CYF_FREE)))));
1255 				goto reread;
1256 			}
1257 
1258 			/*
1259 			 * Okay, so we've managed to successfully decrement
1260 			 * pend.  If we just decremented the pend to 0, we're
1261 			 * done.
1262 			 */
1263 		} while (npend > 0);
1264 
1265 		pc->cypc_consndx = ++consndx;
1266 	}
1267 
1268 	/*
1269 	 * If the high level handler is no longer writing to the same
1270 	 * buffer, then we've had a resize.  We need to switch our soft
1271 	 * index, and goto top.
1272 	 */
1273 	if (soft != softbuf->cys_hard) {
1274 		/*
1275 		 * We can assert that the other buffer has grown by exactly
1276 		 * one factor of two.
1277 		 */
1278 		CYC_TRACE(cpu, level, "buffer-grow", 0, 0);
1279 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
1280 		ASSERT(softbuf->cys_buf[softbuf->cys_hard].cypc_sizemask ==
1281 		    (softbuf->cys_buf[soft].cypc_sizemask << 1) + 1 ||
1282 		    softbuf->cys_buf[soft].cypc_sizemask == 0);
1283 		ASSERT(softbuf->cys_hard == (softbuf->cys_soft ^ 1));
1284 
1285 		/*
1286 		 * If our cached cyclics pointer doesn't match cyp_cyclics,
1287 		 * then we took a resize between our last iteration of the
1288 		 * pend loop and the check against softbuf->cys_hard.
1289 		 */
1290 		if (cpu->cyp_cyclics != cyclics) {
1291 			CYC_TRACE1(cpu, level, "resize-int-int", consndx);
1292 			cyclics = cpu->cyp_cyclics;
1293 		}
1294 
1295 		softbuf->cys_soft = softbuf->cys_hard;
1296 
1297 		ASSERT(resized == 0);
1298 		resized = 1;
1299 		goto top;
1300 	}
1301 
1302 	/*
1303 	 * If we were interrupted by a resize operation, then we must have
1304 	 * seen the hard index change.
1305 	 */
1306 	ASSERT(!(intr_resized == 1 && resized == 0));
1307 
1308 	if (resized) {
1309 		uint32_t lev, nlev;
1310 
1311 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
1312 
1313 		do {
1314 			lev = cpu->cyp_modify_levels;
1315 			nlev = lev + 1;
1316 		} while (atomic_cas_32(&cpu->cyp_modify_levels, lev, nlev) !=
1317 		    lev);
1318 
1319 		/*
1320 		 * If we are the last soft level to see the modification,
1321 		 * post on cyp_modify_wait.  Otherwise, (if we're not
1322 		 * already at low level), post down to the next soft level.
1323 		 */
1324 		if (nlev == CY_SOFT_LEVELS) {
1325 			CYC_TRACE0(cpu, level, "resize-kick");
1326 			sema_v(&cpu->cyp_modify_wait);
1327 		} else {
1328 			ASSERT(nlev < CY_SOFT_LEVELS);
1329 			if (level != CY_LOW_LEVEL) {
1330 				cyc_backend_t *be = cpu->cyp_backend;
1331 
1332 				CYC_TRACE0(cpu, level, "resize-post");
1333 				be->cyb_softint(be->cyb_arg, level - 1);
1334 			}
1335 		}
1336 	}
1337 }
1338 
1339 static void
1340 cyclic_expand_xcall(cyc_xcallarg_t *arg)
1341 {
1342 	cyc_cpu_t *cpu = arg->cyx_cpu;
1343 	cyc_backend_t *be = cpu->cyp_backend;
1344 	cyb_arg_t bar = be->cyb_arg;
1345 	cyc_cookie_t cookie;
1346 	cyc_index_t new_size = arg->cyx_size, size = cpu->cyp_size, i;
1347 	cyc_index_t *new_heap = arg->cyx_heap;
1348 	cyclic_t *cyclics = cpu->cyp_cyclics, *new_cyclics = arg->cyx_cyclics;
1349 
1350 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
1351 
1352 	/*
1353 	 * This is a little dicey.  First, we'll raise our interrupt level
1354 	 * to CY_HIGH_LEVEL.  This CPU already has a new heap, cyclic array,
1355 	 * etc.; we just need to bcopy them across.  As for the softint
1356 	 * buffers, we'll switch the active buffers.  The actual softints will
1357 	 * take care of consuming any pending cyclics in the old buffer.
1358 	 */
1359 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1360 
1361 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "expand", new_size, 0);
1362 
1363 	/*
1364 	 * Assert that the new size is a power of 2.
1365 	 */
1366 	ASSERT((new_size & new_size - 1) == 0);
1367 	ASSERT(new_size == (size << 1));
1368 	ASSERT(cpu->cyp_heap != NULL && cpu->cyp_cyclics != NULL);
1369 
1370 	bcopy(cpu->cyp_heap, new_heap, sizeof (cyc_index_t) * size);
1371 	bcopy(cyclics, new_cyclics, sizeof (cyclic_t) * size);
1372 
1373 	/*
1374 	 * Now run through the old cyclics array, setting pend to 0.  To
1375 	 * softints (which are executing at a lower priority level), the
1376 	 * pends dropping to 0 will appear atomic with the cyp_cyclics
1377 	 * pointer changing.
1378 	 */
1379 	for (i = 0; i < size; i++)
1380 		cyclics[i].cy_pend = 0;
1381 
1382 	/*
1383 	 * Set up the free list, and set all of the new cyclics to be CYF_FREE.
1384 	 */
1385 	for (i = size; i < new_size; i++) {
1386 		new_heap[i] = i;
1387 		new_cyclics[i].cy_flags = CYF_FREE;
1388 	}
1389 
1390 	/*
1391 	 * We can go ahead and plow the value of cyp_heap and cyp_cyclics;
1392 	 * cyclic_expand() has kept a copy.
1393 	 */
1394 	cpu->cyp_heap = new_heap;
1395 	cpu->cyp_cyclics = new_cyclics;
1396 	cpu->cyp_size = new_size;
1397 
1398 	/*
1399 	 * We've switched over the heap and the cyclics array.  Now we need
1400 	 * to switch over our active softint buffer pointers.
1401 	 */
1402 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1403 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1404 		uchar_t hard = softbuf->cys_hard;
1405 
1406 		/*
1407 		 * Assert that we're not in the middle of a resize operation.
1408 		 */
1409 		ASSERT(hard == softbuf->cys_soft);
1410 		ASSERT(hard == 0 || hard == 1);
1411 		ASSERT(softbuf->cys_buf[hard].cypc_buf != NULL);
1412 
1413 		softbuf->cys_hard = hard ^ 1;
1414 
1415 		/*
1416 		 * The caller (cyclic_expand()) is responsible for setting
1417 		 * up the new producer-consumer buffer; assert that it's
1418 		 * been done correctly.
1419 		 */
1420 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf != NULL);
1421 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_prodndx == 0);
1422 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_consndx == 0);
1423 	}
1424 
1425 	/*
1426 	 * That's all there is to it; now we just need to postdown to
1427 	 * get the softint chain going.
1428 	 */
1429 	be->cyb_softint(bar, CY_HIGH_LEVEL - 1);
1430 	be->cyb_restore_level(bar, cookie);
1431 }
1432 
1433 /*
1434  * cyclic_expand() will cross call onto the CPU to perform the actual
1435  * expand operation.
1436  */
1437 static void
1438 cyclic_expand(cyc_cpu_t *cpu)
1439 {
1440 	cyc_index_t new_size, old_size;
1441 	cyc_index_t *new_heap, *old_heap;
1442 	cyclic_t *new_cyclics, *old_cyclics;
1443 	cyc_xcallarg_t arg;
1444 	cyc_backend_t *be = cpu->cyp_backend;
1445 	char old_hard;
1446 	int i;
1447 
1448 	ASSERT(MUTEX_HELD(&cpu_lock));
1449 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1450 
1451 	cpu->cyp_state = CYS_EXPANDING;
1452 
1453 	old_heap = cpu->cyp_heap;
1454 	old_cyclics = cpu->cyp_cyclics;
1455 
1456 	if ((new_size = ((old_size = cpu->cyp_size) << 1)) == 0) {
1457 		new_size = CY_DEFAULT_PERCPU;
1458 		ASSERT(old_heap == NULL && old_cyclics == NULL);
1459 	}
1460 
1461 	/*
1462 	 * Check that the new_size is a power of 2.
1463 	 */
1464 	ASSERT((new_size - 1 & new_size) == 0);
1465 
1466 	new_heap = kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
1467 	new_cyclics = kmem_zalloc(sizeof (cyclic_t) * new_size, KM_SLEEP);
1468 
1469 	/*
1470 	 * We know that no other expansions are in progress (they serialize
1471 	 * on cpu_lock), so we can safely read the softbuf metadata.
1472 	 */
1473 	old_hard = cpu->cyp_softbuf[0].cys_hard;
1474 
1475 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1476 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1477 		char hard = softbuf->cys_hard;
1478 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
1479 
1480 		ASSERT(hard == old_hard);
1481 		ASSERT(hard == softbuf->cys_soft);
1482 		ASSERT(pc->cypc_buf == NULL);
1483 
1484 		pc->cypc_buf =
1485 		    kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
1486 		pc->cypc_prodndx = pc->cypc_consndx = 0;
1487 		pc->cypc_sizemask = new_size - 1;
1488 	}
1489 
1490 	arg.cyx_cpu = cpu;
1491 	arg.cyx_heap = new_heap;
1492 	arg.cyx_cyclics = new_cyclics;
1493 	arg.cyx_size = new_size;
1494 
1495 	cpu->cyp_modify_levels = 0;
1496 
1497 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
1498 	    (cyc_func_t)cyclic_expand_xcall, &arg);
1499 
1500 	/*
1501 	 * Now block, waiting for the resize operation to complete.
1502 	 */
1503 	sema_p(&cpu->cyp_modify_wait);
1504 	ASSERT(cpu->cyp_modify_levels == CY_SOFT_LEVELS);
1505 
1506 	/*
1507 	 * The operation is complete; we can now free the old buffers.
1508 	 */
1509 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1510 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1511 		char hard = softbuf->cys_hard;
1512 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
1513 
1514 		ASSERT(hard == (old_hard ^ 1));
1515 		ASSERT(hard == softbuf->cys_soft);
1516 
1517 		if (pc->cypc_buf == NULL)
1518 			continue;
1519 
1520 		ASSERT(pc->cypc_sizemask == ((new_size - 1) >> 1));
1521 
1522 		kmem_free(pc->cypc_buf,
1523 		    sizeof (cyc_index_t) * (pc->cypc_sizemask + 1));
1524 		pc->cypc_buf = NULL;
1525 	}
1526 
1527 	if (old_cyclics != NULL) {
1528 		ASSERT(old_heap != NULL);
1529 		ASSERT(old_size != 0);
1530 		kmem_free(old_cyclics, sizeof (cyclic_t) * old_size);
1531 		kmem_free(old_heap, sizeof (cyc_index_t) * old_size);
1532 	}
1533 
1534 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
1535 	cpu->cyp_state = CYS_ONLINE;
1536 }
1537 
1538 /*
1539  * cyclic_pick_cpu will attempt to pick a CPU according to the constraints
1540  * specified by the partition, bound CPU, and flags.  Additionally,
1541  * cyclic_pick_cpu() will not pick the avoid CPU; it will return NULL if
1542  * the avoid CPU is the only CPU which satisfies the constraints.
1543  *
1544  * If CYF_CPU_BOUND is set in flags, the specified CPU must be non-NULL.
1545  * If CYF_PART_BOUND is set in flags, the specified partition must be non-NULL.
1546  * If both CYF_CPU_BOUND and CYF_PART_BOUND are set, the specified CPU must
1547  * be in the specified partition.
1548  */
1549 static cyc_cpu_t *
1550 cyclic_pick_cpu(cpupart_t *part, cpu_t *bound, cpu_t *avoid, uint16_t flags)
1551 {
1552 	cpu_t *c, *start = (part != NULL) ? part->cp_cpulist : CPU;
1553 	cpu_t *online = NULL;
1554 	uintptr_t offset;
1555 
1556 	CYC_PTRACE("pick-cpu", part, bound);
1557 
1558 	ASSERT(!(flags & CYF_CPU_BOUND) || bound != NULL);
1559 	ASSERT(!(flags & CYF_PART_BOUND) || part != NULL);
1560 
1561 	/*
1562 	 * If we're bound to our CPU, there isn't much choice involved.  We
1563 	 * need to check that the CPU passed as bound is in the cpupart, and
1564 	 * that the CPU that we're binding to has been configured.
1565 	 */
1566 	if (flags & CYF_CPU_BOUND) {
1567 		CYC_PTRACE("pick-cpu-bound", bound, avoid);
1568 
1569 		if ((flags & CYF_PART_BOUND) && bound->cpu_part != part)
1570 			panic("cyclic_pick_cpu:  "
1571 			    "CPU binding contradicts partition binding");
1572 
1573 		if (bound == avoid)
1574 			return (NULL);
1575 
1576 		if (bound->cpu_cyclic == NULL)
1577 			panic("cyclic_pick_cpu:  "
1578 			    "attempt to bind to non-configured CPU");
1579 
1580 		return (bound->cpu_cyclic);
1581 	}
1582 
1583 	if (flags & CYF_PART_BOUND) {
1584 		CYC_PTRACE("pick-part-bound", bound, avoid);
1585 		offset = offsetof(cpu_t, cpu_next_part);
1586 	} else {
1587 		offset = offsetof(cpu_t, cpu_next_onln);
1588 	}
1589 
1590 	c = start;
1591 	do {
1592 		if (c->cpu_cyclic == NULL)
1593 			continue;
1594 
1595 		if (c->cpu_cyclic->cyp_state == CYS_OFFLINE)
1596 			continue;
1597 
1598 		if (c == avoid)
1599 			continue;
1600 
1601 		if (c->cpu_flags & CPU_ENABLE)
1602 			goto found;
1603 
1604 		if (online == NULL)
1605 			online = c;
1606 	} while ((c = *(cpu_t **)((uintptr_t)c + offset)) != start);
1607 
1608 	/*
1609 	 * If we're here, we're in one of two situations:
1610 	 *
1611 	 *  (a)	We have a partition-bound cyclic, and there is no CPU in
1612 	 *	our partition which is CPU_ENABLE'd.  If we saw another
1613 	 *	non-CYS_OFFLINE CPU in our partition, we'll go with it.
1614 	 *	If not, the avoid CPU must be the only non-CYS_OFFLINE
1615 	 *	CPU in the partition; we're forced to return NULL.
1616 	 *
1617 	 *  (b)	We have a partition-unbound cyclic, in which case there
1618 	 *	must only be one CPU CPU_ENABLE'd, and it must be the one
1619 	 *	we're trying to avoid.  If cyclic_juggle()/cyclic_offline()
1620 	 *	are called appropriately, this generally shouldn't happen
1621 	 *	(the offline should fail before getting to this code).
1622 	 *	At any rate: we can't avoid the avoid CPU, so we return
1623 	 *	NULL.
1624 	 */
1625 	if (!(flags & CYF_PART_BOUND)) {
1626 		ASSERT(avoid->cpu_flags & CPU_ENABLE);
1627 		return (NULL);
1628 	}
1629 
1630 	CYC_PTRACE("pick-no-intr", part, avoid);
1631 
1632 	if ((c = online) != NULL)
1633 		goto found;
1634 
1635 	CYC_PTRACE("pick-fail", part, avoid);
1636 	ASSERT(avoid->cpu_part == start->cpu_part);
1637 	return (NULL);
1638 
1639 found:
1640 	CYC_PTRACE("pick-cpu-found", c, avoid);
1641 	ASSERT(c != avoid);
1642 	ASSERT(c->cpu_cyclic != NULL);
1643 
1644 	return (c->cpu_cyclic);
1645 }
1646 
1647 static void
1648 cyclic_add_xcall(cyc_xcallarg_t *arg)
1649 {
1650 	cyc_cpu_t *cpu = arg->cyx_cpu;
1651 	cyc_handler_t *hdlr = arg->cyx_hdlr;
1652 	cyc_time_t *when = arg->cyx_when;
1653 	cyc_backend_t *be = cpu->cyp_backend;
1654 	cyc_index_t ndx, nelems;
1655 	cyc_cookie_t cookie;
1656 	cyb_arg_t bar = be->cyb_arg;
1657 	cyclic_t *cyclic;
1658 
1659 	ASSERT(cpu->cyp_nelems < cpu->cyp_size);
1660 
1661 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1662 
1663 	CYC_TRACE(cpu, CY_HIGH_LEVEL,
1664 	    "add-xcall", when->cyt_when, when->cyt_interval);
1665 
1666 	nelems = cpu->cyp_nelems++;
1667 
1668 	if (nelems == 0) {
1669 		/*
1670 		 * If this is the first element, we need to enable the
1671 		 * backend on this CPU.
1672 		 */
1673 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "enabled");
1674 		be->cyb_enable(bar);
1675 	}
1676 
1677 	ndx = cpu->cyp_heap[nelems];
1678 	cyclic = &cpu->cyp_cyclics[ndx];
1679 
1680 	ASSERT(cyclic->cy_flags == CYF_FREE);
1681 	cyclic->cy_interval = when->cyt_interval;
1682 
1683 	if (when->cyt_when == 0) {
1684 		/*
1685 		 * If a start time hasn't been explicitly specified, we'll
1686 		 * start on the next interval boundary.
1687 		 */
1688 		cyclic->cy_expire = (gethrtime() / cyclic->cy_interval + 1) *
1689 		    cyclic->cy_interval;
1690 	} else {
1691 		cyclic->cy_expire = when->cyt_when;
1692 	}
1693 
1694 	cyclic->cy_handler = hdlr->cyh_func;
1695 	cyclic->cy_arg = hdlr->cyh_arg;
1696 	cyclic->cy_level = hdlr->cyh_level;
1697 	cyclic->cy_flags = arg->cyx_flags;
1698 
1699 	if (cyclic_upheap(cpu, nelems)) {
1700 		hrtime_t exp = cyclic->cy_expire;
1701 
1702 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "add-reprog", cyclic, exp);
1703 
1704 		/*
1705 		 * If our upheap propagated to the root, we need to
1706 		 * reprogram the interrupt source.
1707 		 */
1708 		be->cyb_reprogram(bar, exp);
1709 	}
1710 	be->cyb_restore_level(bar, cookie);
1711 
1712 	arg->cyx_ndx = ndx;
1713 }
1714 
1715 static cyc_index_t
1716 cyclic_add_here(cyc_cpu_t *cpu, cyc_handler_t *hdlr,
1717     cyc_time_t *when, uint16_t flags)
1718 {
1719 	cyc_backend_t *be = cpu->cyp_backend;
1720 	cyb_arg_t bar = be->cyb_arg;
1721 	cyc_xcallarg_t arg;
1722 
1723 	CYC_PTRACE("add-cpu", cpu, hdlr->cyh_func);
1724 	ASSERT(MUTEX_HELD(&cpu_lock));
1725 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1726 	ASSERT(!(cpu->cyp_cpu->cpu_flags & CPU_OFFLINE));
1727 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
1728 
1729 	if (cpu->cyp_nelems == cpu->cyp_size) {
1730 		/*
1731 		 * This is expensive; it will cross call onto the other
1732 		 * CPU to perform the expansion.
1733 		 */
1734 		cyclic_expand(cpu);
1735 		ASSERT(cpu->cyp_nelems < cpu->cyp_size);
1736 	}
1737 
1738 	/*
1739 	 * By now, we know that we're going to be able to successfully
1740 	 * perform the add.  Now cross call over to the CPU of interest to
1741 	 * actually add our cyclic.
1742 	 */
1743 	arg.cyx_cpu = cpu;
1744 	arg.cyx_hdlr = hdlr;
1745 	arg.cyx_when = when;
1746 	arg.cyx_flags = flags;
1747 
1748 	be->cyb_xcall(bar, cpu->cyp_cpu, (cyc_func_t)cyclic_add_xcall, &arg);
1749 
1750 	CYC_PTRACE("add-cpu-done", cpu, arg.cyx_ndx);
1751 
1752 	return (arg.cyx_ndx);
1753 }
1754 
1755 static void
1756 cyclic_remove_xcall(cyc_xcallarg_t *arg)
1757 {
1758 	cyc_cpu_t *cpu = arg->cyx_cpu;
1759 	cyc_backend_t *be = cpu->cyp_backend;
1760 	cyb_arg_t bar = be->cyb_arg;
1761 	cyc_cookie_t cookie;
1762 	cyc_index_t ndx = arg->cyx_ndx, nelems, i;
1763 	cyc_index_t *heap, last;
1764 	cyclic_t *cyclic;
1765 #ifdef DEBUG
1766 	cyc_index_t root;
1767 #endif
1768 
1769 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1770 
1771 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1772 
1773 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-xcall", ndx);
1774 
1775 	heap = cpu->cyp_heap;
1776 	nelems = cpu->cyp_nelems;
1777 	ASSERT(nelems > 0);
1778 	cyclic = &cpu->cyp_cyclics[ndx];
1779 
1780 	/*
1781 	 * Grab the current expiration time.  If this cyclic is being
1782 	 * removed as part of a juggling operation, the expiration time
1783 	 * will be used when the cyclic is added to the new CPU.
1784 	 */
1785 	if (arg->cyx_when != NULL) {
1786 		arg->cyx_when->cyt_when = cyclic->cy_expire;
1787 		arg->cyx_when->cyt_interval = cyclic->cy_interval;
1788 	}
1789 
1790 	if (cyclic->cy_pend != 0) {
1791 		/*
1792 		 * The pend is non-zero; this cyclic is currently being
1793 		 * executed (or will be executed shortly).  If the caller
1794 		 * refuses to wait, we must return (doing nothing).  Otherwise,
1795 		 * we will stash the pend value * in this CPU's rpend, and
1796 		 * then zero it out.  The softint in the pend loop will see
1797 		 * that we have zeroed out pend, and will call the cyclic
1798 		 * handler rpend times.  The caller will wait until the
1799 		 * softint has completed calling the cyclic handler.
1800 		 */
1801 		if (arg->cyx_wait == CY_NOWAIT) {
1802 			arg->cyx_wait = CY_WAIT;
1803 			goto out;
1804 		}
1805 
1806 		ASSERT(cyclic->cy_level != CY_HIGH_LEVEL);
1807 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-pend", cyclic->cy_pend);
1808 		cpu->cyp_rpend = cyclic->cy_pend;
1809 		cyclic->cy_pend = 0;
1810 	}
1811 
1812 	/*
1813 	 * Now set the flags to CYF_FREE.  We don't need a membar_enter()
1814 	 * between zeroing pend and setting the flags because we're at
1815 	 * CY_HIGH_LEVEL (that is, the zeroing of pend and the setting
1816 	 * of cy_flags appear atomic to softints).
1817 	 */
1818 	cyclic->cy_flags = CYF_FREE;
1819 
1820 	for (i = 0; i < nelems; i++) {
1821 		if (heap[i] == ndx)
1822 			break;
1823 	}
1824 
1825 	if (i == nelems)
1826 		panic("attempt to remove non-existent cyclic");
1827 
1828 	cpu->cyp_nelems = --nelems;
1829 
1830 	if (nelems == 0) {
1831 		/*
1832 		 * If we just removed the last element, then we need to
1833 		 * disable the backend on this CPU.
1834 		 */
1835 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "disabled");
1836 		be->cyb_disable(bar);
1837 	}
1838 
1839 	if (i == nelems) {
1840 		/*
1841 		 * If we just removed the last element of the heap, then
1842 		 * we don't have to downheap.
1843 		 */
1844 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-bottom");
1845 		goto out;
1846 	}
1847 
1848 #ifdef DEBUG
1849 	root = heap[0];
1850 #endif
1851 
1852 	/*
1853 	 * Swap the last element of the heap with the one we want to
1854 	 * remove, and downheap (this has the implicit effect of putting
1855 	 * the newly freed element on the free list).
1856 	 */
1857 	heap[i] = (last = heap[nelems]);
1858 	heap[nelems] = ndx;
1859 
1860 	if (i == 0) {
1861 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-root");
1862 		cyclic_downheap(cpu, 0);
1863 	} else {
1864 		if (cyclic_upheap(cpu, i) == 0) {
1865 			/*
1866 			 * The upheap didn't propagate to the root; if it
1867 			 * didn't propagate at all, we need to downheap.
1868 			 */
1869 			CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-root");
1870 			if (heap[i] == last) {
1871 				CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-up");
1872 				cyclic_downheap(cpu, i);
1873 			}
1874 			ASSERT(heap[0] == root);
1875 			goto out;
1876 		}
1877 	}
1878 
1879 	/*
1880 	 * We're here because we changed the root; we need to reprogram
1881 	 * the clock source.
1882 	 */
1883 	cyclic = &cpu->cyp_cyclics[heap[0]];
1884 
1885 	CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-reprog");
1886 
1887 	ASSERT(nelems != 0);
1888 	be->cyb_reprogram(bar, cyclic->cy_expire);
1889 out:
1890 	be->cyb_restore_level(bar, cookie);
1891 }
1892 
1893 static int
1894 cyclic_remove_here(cyc_cpu_t *cpu, cyc_index_t ndx, cyc_time_t *when, int wait)
1895 {
1896 	cyc_backend_t *be = cpu->cyp_backend;
1897 	cyc_xcallarg_t arg;
1898 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
1899 	cyc_level_t level = cyclic->cy_level;
1900 
1901 	ASSERT(MUTEX_HELD(&cpu_lock));
1902 	ASSERT(cpu->cyp_rpend == 0);
1903 	ASSERT(wait == CY_WAIT || wait == CY_NOWAIT);
1904 
1905 	arg.cyx_ndx = ndx;
1906 	arg.cyx_cpu = cpu;
1907 	arg.cyx_when = when;
1908 	arg.cyx_wait = wait;
1909 
1910 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1911 	cpu->cyp_state = CYS_REMOVING;
1912 
1913 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
1914 	    (cyc_func_t)cyclic_remove_xcall, &arg);
1915 
1916 	/*
1917 	 * If the cyclic we removed wasn't at CY_HIGH_LEVEL, then we need to
1918 	 * check the cyp_rpend.  If it's non-zero, then we need to wait here
1919 	 * for all pending cyclic handlers to run.
1920 	 */
1921 	ASSERT(!(level == CY_HIGH_LEVEL && cpu->cyp_rpend != 0));
1922 	ASSERT(!(wait == CY_NOWAIT && cpu->cyp_rpend != 0));
1923 	ASSERT(!(arg.cyx_wait == CY_NOWAIT && cpu->cyp_rpend != 0));
1924 
1925 	if (wait != arg.cyx_wait) {
1926 		/*
1927 		 * We are being told that we must wait if we want to
1928 		 * remove this cyclic; put the CPU back in the CYS_ONLINE
1929 		 * state and return failure.
1930 		 */
1931 		ASSERT(wait == CY_NOWAIT && arg.cyx_wait == CY_WAIT);
1932 		ASSERT(cpu->cyp_state == CYS_REMOVING);
1933 		cpu->cyp_state = CYS_ONLINE;
1934 
1935 		return (0);
1936 	}
1937 
1938 	if (cpu->cyp_rpend != 0)
1939 		sema_p(&cpu->cyp_modify_wait);
1940 
1941 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1942 
1943 	cpu->cyp_rpend = 0;
1944 	cpu->cyp_state = CYS_ONLINE;
1945 
1946 	return (1);
1947 }
1948 
1949 /*
1950  * If cyclic_reprogram() is called on the same CPU as the cyclic's CPU, then
1951  * it calls this function directly. Else, it invokes this function through
1952  * an X-call to the cyclic's CPU.
1953  */
1954 static void
1955 cyclic_reprogram_cyclic(cyc_cpu_t *cpu, cyc_index_t ndx, hrtime_t expire)
1956 {
1957 	cyc_backend_t *be = cpu->cyp_backend;
1958 	cyb_arg_t bar = be->cyb_arg;
1959 	cyc_cookie_t cookie;
1960 	cyc_index_t nelems, i;
1961 	cyc_index_t *heap;
1962 	cyclic_t *cyclic;
1963 	hrtime_t oexpire;
1964 	int reprog;
1965 
1966 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1967 
1968 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-xcall", ndx);
1969 
1970 	nelems = cpu->cyp_nelems;
1971 	ASSERT(nelems > 0);
1972 	heap = cpu->cyp_heap;
1973 
1974 	/*
1975 	 * Reprogrammed cyclics are typically one-shot ones that get
1976 	 * set to infinity on every expiration. We shorten the search by
1977 	 * searching from the bottom of the heap to the top instead of the
1978 	 * other way around.
1979 	 */
1980 	for (i = nelems - 1; i >= 0; i--) {
1981 		if (heap[i] == ndx)
1982 			break;
1983 	}
1984 	if (i < 0)
1985 		panic("attempt to reprogram non-existent cyclic");
1986 
1987 	cyclic = &cpu->cyp_cyclics[ndx];
1988 	oexpire = cyclic->cy_expire;
1989 	cyclic->cy_expire = expire;
1990 
1991 	reprog = (i == 0);
1992 	if (expire > oexpire) {
1993 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-down", i);
1994 		cyclic_downheap(cpu, i);
1995 	} else if (i > 0) {
1996 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-up", i);
1997 		reprog = cyclic_upheap(cpu, i);
1998 	}
1999 
2000 	if (reprog && (cpu->cyp_state != CYS_SUSPENDED)) {
2001 		/*
2002 		 * The root changed. Reprogram the clock source.
2003 		 */
2004 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "reprog-root");
2005 		cyclic = &cpu->cyp_cyclics[heap[0]];
2006 		be->cyb_reprogram(bar, cyclic->cy_expire);
2007 	}
2008 
2009 	be->cyb_restore_level(bar, cookie);
2010 }
2011 
2012 static void
2013 cyclic_reprogram_xcall(cyc_xcallarg_t *arg)
2014 {
2015 	cyclic_reprogram_cyclic(arg->cyx_cpu, arg->cyx_ndx,
2016 	    arg->cyx_when->cyt_when);
2017 }
2018 
2019 static void
2020 cyclic_reprogram_here(cyc_cpu_t *cpu, cyc_index_t ndx, hrtime_t expiration)
2021 {
2022 	cyc_backend_t *be = cpu->cyp_backend;
2023 	cyc_xcallarg_t arg;
2024 	cyc_time_t when;
2025 
2026 	ASSERT(expiration > 0);
2027 
2028 	arg.cyx_ndx = ndx;
2029 	arg.cyx_cpu = cpu;
2030 	arg.cyx_when = &when;
2031 	when.cyt_when = expiration;
2032 
2033 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
2034 	    (cyc_func_t)cyclic_reprogram_xcall, &arg);
2035 }
2036 
2037 /*
2038  * cyclic_juggle_one_to() should only be called when the source cyclic
2039  * can be juggled and the destination CPU is known to be able to accept
2040  * it.
2041  */
2042 static void
2043 cyclic_juggle_one_to(cyc_id_t *idp, cyc_cpu_t *dest)
2044 {
2045 	cyc_cpu_t *src = idp->cyi_cpu;
2046 	cyc_index_t ndx = idp->cyi_ndx;
2047 	cyc_time_t when;
2048 	cyc_handler_t hdlr;
2049 	cyclic_t *cyclic;
2050 	uint16_t flags;
2051 	hrtime_t delay;
2052 
2053 	ASSERT(MUTEX_HELD(&cpu_lock));
2054 	ASSERT(src != NULL && idp->cyi_omni_list == NULL);
2055 	ASSERT(!(dest->cyp_cpu->cpu_flags & (CPU_QUIESCED | CPU_OFFLINE)));
2056 	CYC_PTRACE("juggle-one-to", idp, dest);
2057 
2058 	cyclic = &src->cyp_cyclics[ndx];
2059 
2060 	flags = cyclic->cy_flags;
2061 	ASSERT(!(flags & CYF_CPU_BOUND) && !(flags & CYF_FREE));
2062 
2063 	hdlr.cyh_func = cyclic->cy_handler;
2064 	hdlr.cyh_level = cyclic->cy_level;
2065 	hdlr.cyh_arg = cyclic->cy_arg;
2066 
2067 	/*
2068 	 * Before we begin the juggling process, see if the destination
2069 	 * CPU requires an expansion.  If it does, we'll perform the
2070 	 * expansion before removing the cyclic.  This is to prevent us
2071 	 * from blocking while a system-critical cyclic (notably, the clock
2072 	 * cyclic) isn't on a CPU.
2073 	 */
2074 	if (dest->cyp_nelems == dest->cyp_size) {
2075 		CYC_PTRACE("remove-expand", idp, dest);
2076 		cyclic_expand(dest);
2077 		ASSERT(dest->cyp_nelems < dest->cyp_size);
2078 	}
2079 
2080 	/*
2081 	 * Prevent a reprogram of this cyclic while we are relocating it.
2082 	 * Otherwise, cyclic_reprogram_here() will end up sending an X-call
2083 	 * to the wrong CPU.
2084 	 */
2085 	rw_enter(&idp->cyi_lock, RW_WRITER);
2086 
2087 	/*
2088 	 * Remove the cyclic from the source.  As mentioned above, we cannot
2089 	 * block during this operation; if we cannot remove the cyclic
2090 	 * without waiting, we spin for a time shorter than the interval, and
2091 	 * reattempt the (non-blocking) removal.  If we continue to fail,
2092 	 * we will exponentially back off (up to half of the interval).
2093 	 * Note that the removal will ultimately succeed -- even if the
2094 	 * cyclic handler is blocked on a resource held by a thread which we
2095 	 * have preempted, priority inheritance assures that the preempted
2096 	 * thread will preempt us and continue to progress.
2097 	 */
2098 	for (delay = NANOSEC / MICROSEC; ; delay <<= 1) {
2099 		/*
2100 		 * Before we begin this operation, disable kernel preemption.
2101 		 */
2102 		kpreempt_disable();
2103 		if (cyclic_remove_here(src, ndx, &when, CY_NOWAIT))
2104 			break;
2105 
2106 		/*
2107 		 * The operation failed; enable kernel preemption while
2108 		 * spinning.
2109 		 */
2110 		kpreempt_enable();
2111 
2112 		CYC_PTRACE("remove-retry", idp, src);
2113 
2114 		if (delay > (cyclic->cy_interval >> 1))
2115 			delay = cyclic->cy_interval >> 1;
2116 
2117 		/*
2118 		 * Drop the RW lock to avoid a deadlock with the cyclic
2119 		 * handler (because it can potentially call cyclic_reprogram().
2120 		 */
2121 		rw_exit(&idp->cyi_lock);
2122 		drv_usecwait((clock_t)(delay / (NANOSEC / MICROSEC)));
2123 		rw_enter(&idp->cyi_lock, RW_WRITER);
2124 	}
2125 
2126 	/*
2127 	 * Now add the cyclic to the destination.  This won't block; we
2128 	 * performed any necessary (blocking) expansion of the destination
2129 	 * CPU before removing the cyclic from the source CPU.
2130 	 */
2131 	idp->cyi_ndx = cyclic_add_here(dest, &hdlr, &when, flags);
2132 	idp->cyi_cpu = dest;
2133 	kpreempt_enable();
2134 
2135 	/*
2136 	 * Now that we have successfully relocated the cyclic, allow
2137 	 * it to be reprogrammed.
2138 	 */
2139 	rw_exit(&idp->cyi_lock);
2140 }
2141 
2142 static int
2143 cyclic_juggle_one(cyc_id_t *idp)
2144 {
2145 	cyc_index_t ndx = idp->cyi_ndx;
2146 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
2147 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
2148 	cpu_t *c = cpu->cyp_cpu;
2149 	cpupart_t *part = c->cpu_part;
2150 
2151 	CYC_PTRACE("juggle-one", idp, cpu);
2152 	ASSERT(MUTEX_HELD(&cpu_lock));
2153 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2154 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2155 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2156 
2157 	if ((dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags)) == NULL) {
2158 		/*
2159 		 * Bad news:  this cyclic can't be juggled.
2160 		 */
2161 		CYC_PTRACE("juggle-fail", idp, cpu)
2162 		return (0);
2163 	}
2164 
2165 	cyclic_juggle_one_to(idp, dest);
2166 
2167 	return (1);
2168 }
2169 
2170 static void
2171 cyclic_unbind_cpu(cyclic_id_t id)
2172 {
2173 	cyc_id_t *idp = (cyc_id_t *)id;
2174 	cyc_cpu_t *cpu = idp->cyi_cpu;
2175 	cpu_t *c = cpu->cyp_cpu;
2176 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
2177 
2178 	CYC_PTRACE("unbind-cpu", id, cpu);
2179 	ASSERT(MUTEX_HELD(&cpu_lock));
2180 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2181 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2182 	ASSERT(cyclic->cy_flags & CYF_CPU_BOUND);
2183 
2184 	cyclic->cy_flags &= ~CYF_CPU_BOUND;
2185 
2186 	/*
2187 	 * If we were bound to CPU which has interrupts disabled, we need
2188 	 * to juggle away.  This can only fail if we are bound to a
2189 	 * processor set, and if every CPU in the processor set has
2190 	 * interrupts disabled.
2191 	 */
2192 	if (!(c->cpu_flags & CPU_ENABLE)) {
2193 		int res = cyclic_juggle_one(idp);
2194 
2195 		ASSERT((res && idp->cyi_cpu != cpu) ||
2196 		    (!res && (cyclic->cy_flags & CYF_PART_BOUND)));
2197 	}
2198 }
2199 
2200 static void
2201 cyclic_bind_cpu(cyclic_id_t id, cpu_t *d)
2202 {
2203 	cyc_id_t *idp = (cyc_id_t *)id;
2204 	cyc_cpu_t *dest = d->cpu_cyclic, *cpu = idp->cyi_cpu;
2205 	cpu_t *c = cpu->cyp_cpu;
2206 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
2207 	cpupart_t *part = c->cpu_part;
2208 
2209 	CYC_PTRACE("bind-cpu", id, dest);
2210 	ASSERT(MUTEX_HELD(&cpu_lock));
2211 	ASSERT(!(d->cpu_flags & CPU_OFFLINE));
2212 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2213 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2214 	ASSERT(dest != NULL);
2215 	ASSERT(dest->cyp_state == CYS_ONLINE);
2216 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2217 	ASSERT(!(cyclic->cy_flags & CYF_CPU_BOUND));
2218 
2219 	dest = cyclic_pick_cpu(part, d, NULL, cyclic->cy_flags | CYF_CPU_BOUND);
2220 
2221 	if (dest != cpu) {
2222 		cyclic_juggle_one_to(idp, dest);
2223 		cyclic = &dest->cyp_cyclics[idp->cyi_ndx];
2224 	}
2225 
2226 	cyclic->cy_flags |= CYF_CPU_BOUND;
2227 }
2228 
2229 static void
2230 cyclic_unbind_cpupart(cyclic_id_t id)
2231 {
2232 	cyc_id_t *idp = (cyc_id_t *)id;
2233 	cyc_cpu_t *cpu = idp->cyi_cpu;
2234 	cpu_t *c = cpu->cyp_cpu;
2235 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
2236 
2237 	CYC_PTRACE("unbind-part", idp, c->cpu_part);
2238 	ASSERT(MUTEX_HELD(&cpu_lock));
2239 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2240 	ASSERT(!(cyc->cy_flags & CYF_FREE));
2241 	ASSERT(cyc->cy_flags & CYF_PART_BOUND);
2242 
2243 	cyc->cy_flags &= ~CYF_PART_BOUND;
2244 
2245 	/*
2246 	 * If we're on a CPU which has interrupts disabled (and if this cyclic
2247 	 * isn't bound to the CPU), we need to juggle away.
2248 	 */
2249 	if (!(c->cpu_flags & CPU_ENABLE) && !(cyc->cy_flags & CYF_CPU_BOUND)) {
2250 		int res = cyclic_juggle_one(idp);
2251 
2252 		ASSERT(res && idp->cyi_cpu != cpu);
2253 	}
2254 }
2255 
2256 static void
2257 cyclic_bind_cpupart(cyclic_id_t id, cpupart_t *part)
2258 {
2259 	cyc_id_t *idp = (cyc_id_t *)id;
2260 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
2261 	cpu_t *c = cpu->cyp_cpu;
2262 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
2263 
2264 	CYC_PTRACE("bind-part", idp, part);
2265 	ASSERT(MUTEX_HELD(&cpu_lock));
2266 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2267 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2268 	ASSERT(!(cyc->cy_flags & CYF_FREE));
2269 	ASSERT(!(cyc->cy_flags & CYF_PART_BOUND));
2270 	ASSERT(part->cp_ncpus > 0);
2271 
2272 	dest = cyclic_pick_cpu(part, c, NULL, cyc->cy_flags | CYF_PART_BOUND);
2273 
2274 	if (dest != cpu) {
2275 		cyclic_juggle_one_to(idp, dest);
2276 		cyc = &dest->cyp_cyclics[idp->cyi_ndx];
2277 	}
2278 
2279 	cyc->cy_flags |= CYF_PART_BOUND;
2280 }
2281 
2282 static void
2283 cyclic_configure(cpu_t *c)
2284 {
2285 	cyc_cpu_t *cpu = kmem_zalloc(sizeof (cyc_cpu_t), KM_SLEEP);
2286 	cyc_backend_t *nbe = kmem_zalloc(sizeof (cyc_backend_t), KM_SLEEP);
2287 	int i;
2288 
2289 	CYC_PTRACE1("configure", cpu);
2290 	ASSERT(MUTEX_HELD(&cpu_lock));
2291 
2292 	if (cyclic_id_cache == NULL)
2293 		cyclic_id_cache = kmem_cache_create("cyclic_id_cache",
2294 		    sizeof (cyc_id_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2295 
2296 	cpu->cyp_cpu = c;
2297 
2298 	sema_init(&cpu->cyp_modify_wait, 0, NULL, SEMA_DEFAULT, NULL);
2299 
2300 	cpu->cyp_size = 1;
2301 	cpu->cyp_heap = kmem_zalloc(sizeof (cyc_index_t), KM_SLEEP);
2302 	cpu->cyp_cyclics = kmem_zalloc(sizeof (cyclic_t), KM_SLEEP);
2303 	cpu->cyp_cyclics->cy_flags = CYF_FREE;
2304 
2305 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
2306 		/*
2307 		 * We don't need to set the sizemask; it's already zero
2308 		 * (which is the appropriate sizemask for a size of 1).
2309 		 */
2310 		cpu->cyp_softbuf[i].cys_buf[0].cypc_buf =
2311 		    kmem_alloc(sizeof (cyc_index_t), KM_SLEEP);
2312 	}
2313 
2314 	cpu->cyp_state = CYS_OFFLINE;
2315 
2316 	/*
2317 	 * Setup the backend for this CPU.
2318 	 */
2319 	bcopy(&cyclic_backend, nbe, sizeof (cyc_backend_t));
2320 	nbe->cyb_arg = nbe->cyb_configure(c);
2321 	cpu->cyp_backend = nbe;
2322 
2323 	/*
2324 	 * On platforms where stray interrupts may be taken during startup,
2325 	 * the CPU's cpu_cyclic pointer serves as an indicator that the
2326 	 * cyclic subsystem for this CPU is prepared to field interrupts.
2327 	 */
2328 	membar_producer();
2329 
2330 	c->cpu_cyclic = cpu;
2331 }
2332 
2333 static void
2334 cyclic_unconfigure(cpu_t *c)
2335 {
2336 	cyc_cpu_t *cpu = c->cpu_cyclic;
2337 	cyc_backend_t *be = cpu->cyp_backend;
2338 	cyb_arg_t bar = be->cyb_arg;
2339 	int i;
2340 
2341 	CYC_PTRACE1("unconfigure", cpu);
2342 	ASSERT(MUTEX_HELD(&cpu_lock));
2343 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
2344 	ASSERT(cpu->cyp_nelems == 0);
2345 
2346 	/*
2347 	 * Let the backend know that the CPU is being yanked, and free up
2348 	 * the backend structure.
2349 	 */
2350 	be->cyb_unconfigure(bar);
2351 	kmem_free(be, sizeof (cyc_backend_t));
2352 	cpu->cyp_backend = NULL;
2353 
2354 	/*
2355 	 * Free up the producer/consumer buffers at each of the soft levels.
2356 	 */
2357 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
2358 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
2359 		uchar_t hard = softbuf->cys_hard;
2360 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard];
2361 		size_t bufsize = sizeof (cyc_index_t) * (pc->cypc_sizemask + 1);
2362 
2363 		/*
2364 		 * Assert that we're not in the middle of a resize operation.
2365 		 */
2366 		ASSERT(hard == softbuf->cys_soft);
2367 		ASSERT(hard == 0 || hard == 1);
2368 		ASSERT(pc->cypc_buf != NULL);
2369 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf == NULL);
2370 
2371 		kmem_free(pc->cypc_buf, bufsize);
2372 		pc->cypc_buf = NULL;
2373 	}
2374 
2375 	/*
2376 	 * Finally, clean up our remaining dynamic structures and NULL out
2377 	 * the cpu_cyclic pointer.
2378 	 */
2379 	kmem_free(cpu->cyp_cyclics, cpu->cyp_size * sizeof (cyclic_t));
2380 	kmem_free(cpu->cyp_heap, cpu->cyp_size * sizeof (cyc_index_t));
2381 	kmem_free(cpu, sizeof (cyc_cpu_t));
2382 
2383 	c->cpu_cyclic = NULL;
2384 }
2385 
2386 static int
2387 cyclic_cpu_setup(cpu_setup_t what, int id, void *arg __unused)
2388 {
2389 	/*
2390 	 * We are guaranteed that there is still/already an entry in the
2391 	 * cpu array for this CPU.
2392 	 */
2393 	cpu_t *c = cpu[id];
2394 	cyc_cpu_t *cyp = c->cpu_cyclic;
2395 
2396 	ASSERT(MUTEX_HELD(&cpu_lock));
2397 
2398 	switch (what) {
2399 	case CPU_CONFIG:
2400 		ASSERT(cyp == NULL);
2401 		cyclic_configure(c);
2402 		break;
2403 
2404 	case CPU_UNCONFIG:
2405 		ASSERT(cyp != NULL && cyp->cyp_state == CYS_OFFLINE);
2406 		cyclic_unconfigure(c);
2407 		break;
2408 
2409 	default:
2410 		break;
2411 	}
2412 
2413 	return (0);
2414 }
2415 
2416 static void
2417 cyclic_suspend_xcall(cyc_xcallarg_t *arg)
2418 {
2419 	cyc_cpu_t *cpu = arg->cyx_cpu;
2420 	cyc_backend_t *be = cpu->cyp_backend;
2421 	cyc_cookie_t cookie;
2422 	cyb_arg_t bar = be->cyb_arg;
2423 
2424 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
2425 
2426 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "suspend-xcall", cpu->cyp_nelems);
2427 	ASSERT(cpu->cyp_state == CYS_ONLINE || cpu->cyp_state == CYS_OFFLINE);
2428 
2429 	/*
2430 	 * We won't disable this CPU unless it has a non-zero number of
2431 	 * elements (cpu_lock assures that no one else may be attempting
2432 	 * to disable this CPU).
2433 	 */
2434 	if (cpu->cyp_nelems > 0) {
2435 		ASSERT(cpu->cyp_state == CYS_ONLINE);
2436 		be->cyb_disable(bar);
2437 	}
2438 
2439 	if (cpu->cyp_state == CYS_ONLINE)
2440 		cpu->cyp_state = CYS_SUSPENDED;
2441 
2442 	be->cyb_suspend(bar);
2443 	be->cyb_restore_level(bar, cookie);
2444 }
2445 
2446 static void
2447 cyclic_resume_xcall(cyc_xcallarg_t *arg)
2448 {
2449 	cyc_cpu_t *cpu = arg->cyx_cpu;
2450 	cyc_backend_t *be = cpu->cyp_backend;
2451 	cyc_cookie_t cookie;
2452 	cyb_arg_t bar = be->cyb_arg;
2453 	cyc_state_t state = cpu->cyp_state;
2454 
2455 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
2456 
2457 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-xcall", cpu->cyp_nelems);
2458 	ASSERT(state == CYS_SUSPENDED || state == CYS_OFFLINE);
2459 
2460 	be->cyb_resume(bar);
2461 
2462 	/*
2463 	 * We won't enable this CPU unless it has a non-zero number of
2464 	 * elements.
2465 	 */
2466 	if (cpu->cyp_nelems > 0) {
2467 		cyclic_t *cyclic = &cpu->cyp_cyclics[cpu->cyp_heap[0]];
2468 		hrtime_t exp = cyclic->cy_expire;
2469 
2470 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "resume-reprog", cyclic, exp);
2471 		ASSERT(state == CYS_SUSPENDED);
2472 		be->cyb_enable(bar);
2473 		be->cyb_reprogram(bar, exp);
2474 	}
2475 
2476 	if (state == CYS_SUSPENDED)
2477 		cpu->cyp_state = CYS_ONLINE;
2478 
2479 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-done", cpu->cyp_nelems);
2480 	be->cyb_restore_level(bar, cookie);
2481 }
2482 
2483 static void
2484 cyclic_omni_start(cyc_id_t *idp, cyc_cpu_t *cpu)
2485 {
2486 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
2487 	cyc_omni_cpu_t *ocpu = kmem_alloc(sizeof (cyc_omni_cpu_t), KM_SLEEP);
2488 	cyc_handler_t hdlr;
2489 	cyc_time_t when;
2490 
2491 	CYC_PTRACE("omni-start", cpu, idp);
2492 	ASSERT(MUTEX_HELD(&cpu_lock));
2493 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2494 	ASSERT(idp->cyi_cpu == NULL);
2495 
2496 	hdlr.cyh_func = NULL;
2497 	hdlr.cyh_arg = NULL;
2498 	hdlr.cyh_level = CY_LEVELS;
2499 
2500 	when.cyt_when = 0;
2501 	when.cyt_interval = 0;
2502 
2503 	omni->cyo_online(omni->cyo_arg, cpu->cyp_cpu, &hdlr, &when);
2504 
2505 	ASSERT(hdlr.cyh_func != NULL);
2506 	ASSERT(hdlr.cyh_level < CY_LEVELS);
2507 	ASSERT(when.cyt_when >= 0 && when.cyt_interval > 0);
2508 
2509 	ocpu->cyo_cpu = cpu;
2510 	ocpu->cyo_arg = hdlr.cyh_arg;
2511 	ocpu->cyo_ndx = cyclic_add_here(cpu, &hdlr, &when, 0);
2512 	ocpu->cyo_next = idp->cyi_omni_list;
2513 	idp->cyi_omni_list = ocpu;
2514 }
2515 
2516 static void
2517 cyclic_omni_stop(cyc_id_t *idp, cyc_cpu_t *cpu)
2518 {
2519 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
2520 	cyc_omni_cpu_t *ocpu = idp->cyi_omni_list, *prev = NULL;
2521 	clock_t delay;
2522 	int ret;
2523 
2524 	CYC_PTRACE("omni-stop", cpu, idp);
2525 	ASSERT(MUTEX_HELD(&cpu_lock));
2526 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2527 	ASSERT(idp->cyi_cpu == NULL);
2528 	ASSERT(ocpu != NULL);
2529 
2530 	/*
2531 	 * Prevent a reprogram of this cyclic while we are removing it.
2532 	 * Otherwise, cyclic_reprogram_here() will end up sending an X-call
2533 	 * to the offlined CPU.
2534 	 */
2535 	rw_enter(&idp->cyi_lock, RW_WRITER);
2536 
2537 	while (ocpu != NULL && ocpu->cyo_cpu != cpu) {
2538 		prev = ocpu;
2539 		ocpu = ocpu->cyo_next;
2540 	}
2541 
2542 	/*
2543 	 * We _must_ have found an cyc_omni_cpu which corresponds to this
2544 	 * CPU -- the definition of an omnipresent cyclic is that it runs
2545 	 * on all online CPUs.
2546 	 */
2547 	ASSERT(ocpu != NULL);
2548 
2549 	if (prev == NULL) {
2550 		idp->cyi_omni_list = ocpu->cyo_next;
2551 	} else {
2552 		prev->cyo_next = ocpu->cyo_next;
2553 	}
2554 
2555 	/*
2556 	 * Remove the cyclic from the source.  We cannot block during this
2557 	 * operation because we are holding the cyi_lock which can be held
2558 	 * by the cyclic handler via cyclic_reprogram().
2559 	 *
2560 	 * If we cannot remove the cyclic without waiting, we spin for a time,
2561 	 * and reattempt the (non-blocking) removal. If the handler is blocked
2562 	 * on the cyi_lock, then we let go of it in the spin loop to give
2563 	 * the handler a chance to run. Note that the removal will ultimately
2564 	 * succeed -- even if the cyclic handler is blocked on a resource
2565 	 * held by a thread which we have preempted, priority inheritance
2566 	 * assures that the preempted thread will preempt us and continue
2567 	 * to progress.
2568 	 */
2569 	for (delay = 1; ; delay <<= 1) {
2570 		/*
2571 		 * Before we begin this operation, disable kernel preemption.
2572 		 */
2573 		kpreempt_disable();
2574 		ret = cyclic_remove_here(ocpu->cyo_cpu, ocpu->cyo_ndx, NULL,
2575 		    CY_NOWAIT);
2576 		/*
2577 		 * Enable kernel preemption while spinning.
2578 		 */
2579 		kpreempt_enable();
2580 
2581 		if (ret)
2582 			break;
2583 
2584 		CYC_PTRACE("remove-omni-retry", idp, ocpu->cyo_cpu);
2585 
2586 		/*
2587 		 * Drop the RW lock to avoid a deadlock with the cyclic
2588 		 * handler (because it can potentially call cyclic_reprogram().
2589 		 */
2590 		rw_exit(&idp->cyi_lock);
2591 		drv_usecwait(delay);
2592 		rw_enter(&idp->cyi_lock, RW_WRITER);
2593 	}
2594 
2595 	/*
2596 	 * Now that we have successfully removed the cyclic, allow the omni
2597 	 * cyclic to be reprogrammed on other CPUs.
2598 	 */
2599 	rw_exit(&idp->cyi_lock);
2600 
2601 	/*
2602 	 * The cyclic has been removed from this CPU; time to call the
2603 	 * omnipresent offline handler.
2604 	 */
2605 	if (omni->cyo_offline != NULL)
2606 		omni->cyo_offline(omni->cyo_arg, cpu->cyp_cpu, ocpu->cyo_arg);
2607 
2608 	kmem_free(ocpu, sizeof (cyc_omni_cpu_t));
2609 }
2610 
2611 static cyc_id_t *
2612 cyclic_new_id()
2613 {
2614 	cyc_id_t *idp;
2615 
2616 	ASSERT(MUTEX_HELD(&cpu_lock));
2617 
2618 	idp = kmem_cache_alloc(cyclic_id_cache, KM_SLEEP);
2619 
2620 	/*
2621 	 * The cyi_cpu field of the cyc_id_t structure tracks the CPU
2622 	 * associated with the cyclic.  If and only if this field is NULL, the
2623 	 * cyc_id_t is an omnipresent cyclic.  Note that cyi_omni_list may be
2624 	 * NULL for an omnipresent cyclic while the cyclic is being created
2625 	 * or destroyed.
2626 	 */
2627 	idp->cyi_cpu = NULL;
2628 	idp->cyi_ndx = 0;
2629 	rw_init(&idp->cyi_lock, NULL, RW_DEFAULT, NULL);
2630 
2631 	idp->cyi_next = cyclic_id_head;
2632 	idp->cyi_prev = NULL;
2633 	idp->cyi_omni_list = NULL;
2634 
2635 	if (cyclic_id_head != NULL) {
2636 		ASSERT(cyclic_id_head->cyi_prev == NULL);
2637 		cyclic_id_head->cyi_prev = idp;
2638 	}
2639 
2640 	cyclic_id_head = idp;
2641 
2642 	return (idp);
2643 }
2644 
2645 /*
2646  *  cyclic_id_t cyclic_add(cyc_handler_t *, cyc_time_t *)
2647  *
2648  *  Overview
2649  *
2650  *    cyclic_add() will create an unbound cyclic with the specified handler and
2651  *    interval.  The cyclic will run on a CPU which both has interrupts enabled
2652  *    and is in the system CPU partition.
2653  *
2654  *  Arguments and notes
2655  *
2656  *    As its first argument, cyclic_add() takes a cyc_handler, which has the
2657  *    following members:
2658  *
2659  *      cyc_func_t cyh_func    <-- Cyclic handler
2660  *      void *cyh_arg          <-- Argument to cyclic handler
2661  *      cyc_level_t cyh_level  <-- Level at which to fire; must be one of
2662  *                                 CY_LOW_LEVEL, CY_LOCK_LEVEL or CY_HIGH_LEVEL
2663  *
2664  *    Note that cyh_level is _not_ an ipl or spl; it must be one the
2665  *    CY_*_LEVELs.  This layer of abstraction allows the platform to define
2666  *    the precise interrupt priority levels, within the following constraints:
2667  *
2668  *       CY_LOCK_LEVEL must map to LOCK_LEVEL
2669  *       CY_HIGH_LEVEL must map to an ipl greater than LOCK_LEVEL
2670  *       CY_LOW_LEVEL must map to an ipl below LOCK_LEVEL
2671  *
2672  *    In addition to a cyc_handler, cyclic_add() takes a cyc_time, which
2673  *    has the following members:
2674  *
2675  *       hrtime_t cyt_when     <-- Absolute time, in nanoseconds since boot, at
2676  *                                 which to start firing
2677  *       hrtime_t cyt_interval <-- Length of interval, in nanoseconds
2678  *
2679  *    gethrtime() is the time source for nanoseconds since boot.  If cyt_when
2680  *    is set to 0, the cyclic will start to fire when cyt_interval next
2681  *    divides the number of nanoseconds since boot.
2682  *
2683  *    The cyt_interval field _must_ be filled in by the caller; one-shots are
2684  *    _not_ explicitly supported by the cyclic subsystem (cyclic_add() will
2685  *    assert that cyt_interval is non-zero).  The maximum value for either
2686  *    field is INT64_MAX; the caller is responsible for assuring that
2687  *    cyt_when + cyt_interval <= INT64_MAX.  Neither field may be negative.
2688  *
2689  *    For an arbitrary time t in the future, the cyclic handler is guaranteed
2690  *    to have been called (t - cyt_when) / cyt_interval times.  This will
2691  *    be true even if interrupts have been disabled for periods greater than
2692  *    cyt_interval nanoseconds.  In order to compensate for such periods,
2693  *    the cyclic handler may be called a finite number of times with an
2694  *    arbitrarily small interval.
2695  *
2696  *    The cyclic subsystem will not enforce any lower bound on the interval;
2697  *    if the interval is less than the time required to process an interrupt,
2698  *    the CPU will wedge.  It's the responsibility of the caller to assure that
2699  *    either the value of the interval is sane, or that its caller has
2700  *    sufficient privilege to deny service (i.e. its caller is root).
2701  *
2702  *    The cyclic handler is guaranteed to be single threaded, even while the
2703  *    cyclic is being juggled between CPUs (see cyclic_juggle(), below).
2704  *    That is, a given cyclic handler will never be executed simultaneously
2705  *    on different CPUs.
2706  *
2707  *  Return value
2708  *
2709  *    cyclic_add() returns a cyclic_id_t, which is guaranteed to be a value
2710  *    other than CYCLIC_NONE.  cyclic_add() cannot fail.
2711  *
2712  *  Caller's context
2713  *
2714  *    cpu_lock must be held by the caller, and the caller must not be in
2715  *    interrupt context.  cyclic_add() will perform a KM_SLEEP kernel
2716  *    memory allocation, so the usual rules (e.g. p_lock cannot be held)
2717  *    apply.  A cyclic may be added even in the presence of CPUs that have
2718  *    not been configured with respect to the cyclic subsystem, but only
2719  *    configured CPUs will be eligible to run the new cyclic.
2720  *
2721  *  Cyclic handler's context
2722  *
2723  *    Cyclic handlers will be executed in the interrupt context corresponding
2724  *    to the specified level (i.e. either high, lock or low level).  The
2725  *    usual context rules apply.
2726  *
2727  *    A cyclic handler may not grab ANY locks held by the caller of any of
2728  *    cyclic_add(), cyclic_remove() or cyclic_bind(); the implementation of
2729  *    these functions may require blocking on cyclic handler completion.
2730  *    Moreover, cyclic handlers may not make any call back into the cyclic
2731  *    subsystem.
2732  */
2733 cyclic_id_t
2734 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
2735 {
2736 	cyc_id_t *idp = cyclic_new_id();
2737 
2738 	ASSERT(MUTEX_HELD(&cpu_lock));
2739 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
2740 
2741 	idp->cyi_cpu = cyclic_pick_cpu(NULL, NULL, NULL, 0);
2742 	idp->cyi_ndx = cyclic_add_here(idp->cyi_cpu, hdlr, when, 0);
2743 
2744 	return ((uintptr_t)idp);
2745 }
2746 
2747 /*
2748  *  cyclic_id_t cyclic_add_omni(cyc_omni_handler_t *)
2749  *
2750  *  Overview
2751  *
2752  *    cyclic_add_omni() will create an omnipresent cyclic with the specified
2753  *    online and offline handlers.  Omnipresent cyclics run on all online
2754  *    CPUs, including CPUs which have unbound interrupts disabled.
2755  *
2756  *  Arguments
2757  *
2758  *    As its only argument, cyclic_add_omni() takes a cyc_omni_handler, which
2759  *    has the following members:
2760  *
2761  *      void (*cyo_online)()   <-- Online handler
2762  *      void (*cyo_offline)()  <-- Offline handler
2763  *      void *cyo_arg          <-- Argument to be passed to on/offline handlers
2764  *
2765  *  Online handler
2766  *
2767  *    The cyo_online member is a pointer to a function which has the following
2768  *    four arguments:
2769  *
2770  *      void *                 <-- Argument (cyo_arg)
2771  *      cpu_t *                <-- Pointer to CPU about to be onlined
2772  *      cyc_handler_t *        <-- Pointer to cyc_handler_t; must be filled in
2773  *                                 by omni online handler
2774  *      cyc_time_t *           <-- Pointer to cyc_time_t; must be filled in by
2775  *                                 omni online handler
2776  *
2777  *    The omni cyclic online handler is always called _before_ the omni
2778  *    cyclic begins to fire on the specified CPU.  As the above argument
2779  *    description implies, the online handler must fill in the two structures
2780  *    passed to it:  the cyc_handler_t and the cyc_time_t.  These are the
2781  *    same two structures passed to cyclic_add(), outlined above.  This
2782  *    allows the omni cyclic to have maximum flexibility; different CPUs may
2783  *    optionally
2784  *
2785  *      (a)  have different intervals
2786  *      (b)  be explicitly in or out of phase with one another
2787  *      (c)  have different handlers
2788  *      (d)  have different handler arguments
2789  *      (e)  fire at different levels
2790  *
2791  *    Of these, (e) seems somewhat dubious, but is nonetheless allowed.
2792  *
2793  *    The omni online handler is called in the same context as cyclic_add(),
2794  *    and has the same liberties:  omni online handlers may perform KM_SLEEP
2795  *    kernel memory allocations, and may grab locks which are also acquired
2796  *    by cyclic handlers.  However, omni cyclic online handlers may _not_
2797  *    call back into the cyclic subsystem, and should be generally careful
2798  *    about calling into arbitrary kernel subsystems.
2799  *
2800  *  Offline handler
2801  *
2802  *    The cyo_offline member is a pointer to a function which has the following
2803  *    three arguments:
2804  *
2805  *      void *                 <-- Argument (cyo_arg)
2806  *      cpu_t *                <-- Pointer to CPU about to be offlined
2807  *      void *                 <-- CPU's cyclic argument (that is, value
2808  *                                 to which cyh_arg member of the cyc_handler_t
2809  *                                 was set in the omni online handler)
2810  *
2811  *    The omni cyclic offline handler is always called _after_ the omni
2812  *    cyclic has ceased firing on the specified CPU.  Its purpose is to
2813  *    allow cleanup of any resources dynamically allocated in the omni cyclic
2814  *    online handler.  The context of the offline handler is identical to
2815  *    that of the online handler; the same constraints and liberties apply.
2816  *
2817  *    The offline handler is optional; it may be NULL.
2818  *
2819  *  Return value
2820  *
2821  *    cyclic_add_omni() returns a cyclic_id_t, which is guaranteed to be a
2822  *    value other than CYCLIC_NONE.  cyclic_add_omni() cannot fail.
2823  *
2824  *  Caller's context
2825  *
2826  *    The caller's context is identical to that of cyclic_add(), specified
2827  *    above.
2828  */
2829 cyclic_id_t
2830 cyclic_add_omni(cyc_omni_handler_t *omni)
2831 {
2832 	cyc_id_t *idp = cyclic_new_id();
2833 	cyc_cpu_t *cpu;
2834 	cpu_t *c;
2835 
2836 	ASSERT(MUTEX_HELD(&cpu_lock));
2837 	ASSERT(omni != NULL && omni->cyo_online != NULL);
2838 
2839 	idp->cyi_omni_hdlr = *omni;
2840 
2841 	c = cpu_list;
2842 	do {
2843 		if ((cpu = c->cpu_cyclic) == NULL)
2844 			continue;
2845 
2846 		if (cpu->cyp_state != CYS_ONLINE) {
2847 			ASSERT(cpu->cyp_state == CYS_OFFLINE);
2848 			continue;
2849 		}
2850 
2851 		cyclic_omni_start(idp, cpu);
2852 	} while ((c = c->cpu_next) != cpu_list);
2853 
2854 	/*
2855 	 * We must have found at least one online CPU on which to run
2856 	 * this cyclic.
2857 	 */
2858 	ASSERT(idp->cyi_omni_list != NULL);
2859 	ASSERT(idp->cyi_cpu == NULL);
2860 
2861 	return ((uintptr_t)idp);
2862 }
2863 
2864 /*
2865  *  void cyclic_remove(cyclic_id_t)
2866  *
2867  *  Overview
2868  *
2869  *    cyclic_remove() will remove the specified cyclic from the system.
2870  *
2871  *  Arguments and notes
2872  *
2873  *    The only argument is a cyclic_id returned from either cyclic_add() or
2874  *    cyclic_add_omni().
2875  *
2876  *    By the time cyclic_remove() returns, the caller is guaranteed that the
2877  *    removed cyclic handler has completed execution (this is the same
2878  *    semantic that untimeout() provides).  As a result, cyclic_remove() may
2879  *    need to block, waiting for the removed cyclic to complete execution.
2880  *    This leads to an important constraint on the caller:  no lock may be
2881  *    held across cyclic_remove() that also may be acquired by a cyclic
2882  *    handler.
2883  *
2884  *  Return value
2885  *
2886  *    None; cyclic_remove() always succeeds.
2887  *
2888  *  Caller's context
2889  *
2890  *    cpu_lock must be held by the caller, and the caller must not be in
2891  *    interrupt context.  The caller may not hold any locks which are also
2892  *    grabbed by any cyclic handler.  See "Arguments and notes", above.
2893  */
2894 void
2895 cyclic_remove(cyclic_id_t id)
2896 {
2897 	cyc_id_t *idp = (cyc_id_t *)id;
2898 	cyc_id_t *prev = idp->cyi_prev, *next = idp->cyi_next;
2899 	cyc_cpu_t *cpu = idp->cyi_cpu;
2900 
2901 	CYC_PTRACE("remove", idp, idp->cyi_cpu);
2902 	ASSERT(MUTEX_HELD(&cpu_lock));
2903 
2904 	if (cpu != NULL) {
2905 		(void) cyclic_remove_here(cpu, idp->cyi_ndx, NULL, CY_WAIT);
2906 	} else {
2907 		ASSERT(idp->cyi_omni_list != NULL);
2908 		while (idp->cyi_omni_list != NULL)
2909 			cyclic_omni_stop(idp, idp->cyi_omni_list->cyo_cpu);
2910 	}
2911 
2912 	if (prev != NULL) {
2913 		ASSERT(cyclic_id_head != idp);
2914 		prev->cyi_next = next;
2915 	} else {
2916 		ASSERT(cyclic_id_head == idp);
2917 		cyclic_id_head = next;
2918 	}
2919 
2920 	if (next != NULL)
2921 		next->cyi_prev = prev;
2922 
2923 	kmem_cache_free(cyclic_id_cache, idp);
2924 }
2925 
2926 /*
2927  *  void cyclic_bind(cyclic_id_t, cpu_t *, cpupart_t *)
2928  *
2929  *  Overview
2930  *
2931  *    cyclic_bind() atomically changes the CPU and CPU partition bindings
2932  *    of a cyclic.
2933  *
2934  *  Arguments and notes
2935  *
2936  *    The first argument is a cyclic_id retuned from cyclic_add().
2937  *    cyclic_bind() may _not_ be called on a cyclic_id returned from
2938  *    cyclic_add_omni().
2939  *
2940  *    The second argument specifies the CPU to which to bind the specified
2941  *    cyclic.  If the specified cyclic is bound to a CPU other than the one
2942  *    specified, it will be unbound from its bound CPU.  Unbinding the cyclic
2943  *    from its CPU may cause it to be juggled to another CPU.  If the specified
2944  *    CPU is non-NULL, the cyclic will be subsequently rebound to the specified
2945  *    CPU.
2946  *
2947  *    If a CPU with bound cyclics is transitioned into the P_NOINTR state,
2948  *    only cyclics not bound to the CPU can be juggled away; CPU-bound cyclics
2949  *    will continue to fire on the P_NOINTR CPU.  A CPU with bound cyclics
2950  *    cannot be offlined (attempts to offline the CPU will return EBUSY).
2951  *    Likewise, cyclics may not be bound to an offline CPU; if the caller
2952  *    attempts to bind a cyclic to an offline CPU, the cyclic subsystem will
2953  *    panic.
2954  *
2955  *    The third argument specifies the CPU partition to which to bind the
2956  *    specified cyclic.  If the specified cyclic is bound to a CPU partition
2957  *    other than the one specified, it will be unbound from its bound
2958  *    partition.  Unbinding the cyclic from its CPU partition may cause it
2959  *    to be juggled to another CPU.  If the specified CPU partition is
2960  *    non-NULL, the cyclic will be subsequently rebound to the specified CPU
2961  *    partition.
2962  *
2963  *    It is the caller's responsibility to assure that the specified CPU
2964  *    partition contains a CPU.  If it does not, the cyclic subsystem will
2965  *    panic.  A CPU partition with bound cyclics cannot be destroyed (attempts
2966  *    to destroy the partition will return EBUSY).  If a CPU with
2967  *    partition-bound cyclics is transitioned into the P_NOINTR state, cyclics
2968  *    bound to the CPU's partition (but not bound to the CPU) will be juggled
2969  *    away only if there exists another CPU in the partition in the P_ONLINE
2970  *    state.
2971  *
2972  *    It is the caller's responsibility to assure that the specified CPU and
2973  *    CPU partition are self-consistent.  If both parameters are non-NULL,
2974  *    and the specified CPU partition does not contain the specified CPU, the
2975  *    cyclic subsystem will panic.
2976  *
2977  *    It is the caller's responsibility to assure that the specified CPU has
2978  *    been configured with respect to the cyclic subsystem.  Generally, this
2979  *    is always true for valid, on-line CPUs.  The only periods of time during
2980  *    which this may not be true are during MP boot (i.e. after cyclic_init()
2981  *    is called but before cyclic_mp_init() is called) or during dynamic
2982  *    reconfiguration; cyclic_bind() should only be called with great care
2983  *    from these contexts.
2984  *
2985  *  Return value
2986  *
2987  *    None; cyclic_bind() always succeeds.
2988  *
2989  *  Caller's context
2990  *
2991  *    cpu_lock must be held by the caller, and the caller must not be in
2992  *    interrupt context.  The caller may not hold any locks which are also
2993  *    grabbed by any cyclic handler.
2994  */
2995 void
2996 cyclic_bind(cyclic_id_t id, cpu_t *d, cpupart_t *part)
2997 {
2998 	cyc_id_t *idp = (cyc_id_t *)id;
2999 	cyc_cpu_t *cpu = idp->cyi_cpu;
3000 	cpu_t *c;
3001 	uint16_t flags;
3002 
3003 	CYC_PTRACE("bind", d, part);
3004 	ASSERT(MUTEX_HELD(&cpu_lock));
3005 	ASSERT(part == NULL || d == NULL || d->cpu_part == part);
3006 
3007 	if (cpu == NULL) {
3008 		ASSERT(idp->cyi_omni_list != NULL);
3009 		panic("attempt to change binding of omnipresent cyclic");
3010 	}
3011 
3012 	c = cpu->cyp_cpu;
3013 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
3014 
3015 	if (c != d && (flags & CYF_CPU_BOUND))
3016 		cyclic_unbind_cpu(id);
3017 
3018 	/*
3019 	 * Reload our cpu (we may have migrated).  We don't have to reload
3020 	 * the flags field here; if we were CYF_PART_BOUND on entry, we are
3021 	 * CYF_PART_BOUND now.
3022 	 */
3023 	cpu = idp->cyi_cpu;
3024 	c = cpu->cyp_cpu;
3025 
3026 	if (part != c->cpu_part && (flags & CYF_PART_BOUND))
3027 		cyclic_unbind_cpupart(id);
3028 
3029 	/*
3030 	 * Now reload the flags field, asserting that if we are CPU bound,
3031 	 * the CPU was specified (and likewise, if we are partition bound,
3032 	 * the partition was specified).
3033 	 */
3034 	cpu = idp->cyi_cpu;
3035 	c = cpu->cyp_cpu;
3036 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
3037 	ASSERT(!(flags & CYF_CPU_BOUND) || c == d);
3038 	ASSERT(!(flags & CYF_PART_BOUND) || c->cpu_part == part);
3039 
3040 	if (!(flags & CYF_CPU_BOUND) && d != NULL)
3041 		cyclic_bind_cpu(id, d);
3042 
3043 	if (!(flags & CYF_PART_BOUND) && part != NULL)
3044 		cyclic_bind_cpupart(id, part);
3045 }
3046 
3047 int
3048 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration)
3049 {
3050 	cyc_id_t *idp = (cyc_id_t *)id;
3051 	cyc_cpu_t *cpu;
3052 	cyc_omni_cpu_t *ocpu;
3053 	cyc_index_t ndx;
3054 
3055 	ASSERT(expiration > 0);
3056 
3057 	CYC_PTRACE("reprog", idp, idp->cyi_cpu);
3058 
3059 	kpreempt_disable();
3060 
3061 	/*
3062 	 * Prevent the cyclic from moving or disappearing while we reprogram.
3063 	 */
3064 	rw_enter(&idp->cyi_lock, RW_READER);
3065 
3066 	if (idp->cyi_cpu == NULL) {
3067 		ASSERT(curthread->t_preempt > 0);
3068 		cpu = CPU->cpu_cyclic;
3069 
3070 		/*
3071 		 * For an omni cyclic, we reprogram the cyclic corresponding
3072 		 * to the current CPU. Look for it in the list.
3073 		 */
3074 		ocpu = idp->cyi_omni_list;
3075 		while (ocpu != NULL) {
3076 			if (ocpu->cyo_cpu == cpu)
3077 				break;
3078 			ocpu = ocpu->cyo_next;
3079 		}
3080 
3081 		if (ocpu == NULL) {
3082 			/*
3083 			 * Didn't find it. This means that CPU offline
3084 			 * must have removed it racing with us. So,
3085 			 * nothing to do.
3086 			 */
3087 			rw_exit(&idp->cyi_lock);
3088 
3089 			kpreempt_enable();
3090 
3091 			return (0);
3092 		}
3093 		ndx = ocpu->cyo_ndx;
3094 	} else {
3095 		cpu = idp->cyi_cpu;
3096 		ndx = idp->cyi_ndx;
3097 	}
3098 
3099 	if (cpu->cyp_cpu == CPU)
3100 		cyclic_reprogram_cyclic(cpu, ndx, expiration);
3101 	else
3102 		cyclic_reprogram_here(cpu, ndx, expiration);
3103 
3104 	/*
3105 	 * Allow the cyclic to be moved or removed.
3106 	 */
3107 	rw_exit(&idp->cyi_lock);
3108 
3109 	kpreempt_enable();
3110 
3111 	return (1);
3112 }
3113 
3114 hrtime_t
3115 cyclic_getres()
3116 {
3117 	return (cyclic_resolution);
3118 }
3119 
3120 void
3121 cyclic_init(cyc_backend_t *be, hrtime_t resolution)
3122 {
3123 	ASSERT(MUTEX_HELD(&cpu_lock));
3124 
3125 	CYC_PTRACE("init", be, resolution);
3126 	cyclic_resolution = resolution;
3127 
3128 	/*
3129 	 * Copy the passed cyc_backend into the backend template.  This must
3130 	 * be done before the CPU can be configured.
3131 	 */
3132 	bcopy(be, &cyclic_backend, sizeof (cyc_backend_t));
3133 
3134 	/*
3135 	 * It's safe to look at the "CPU" pointer without disabling kernel
3136 	 * preemption; cyclic_init() is called only during startup by the
3137 	 * cyclic backend.
3138 	 */
3139 	cyclic_configure(CPU);
3140 	cyclic_online(CPU);
3141 }
3142 
3143 /*
3144  * It is assumed that cyclic_mp_init() is called some time after cyclic
3145  * init (and therefore, after cpu0 has been initialized).  We grab cpu_lock,
3146  * find the already initialized CPU, and initialize every other CPU with the
3147  * same backend.  Finally, we register a cpu_setup function.
3148  */
3149 void
3150 cyclic_mp_init()
3151 {
3152 	cpu_t *c;
3153 
3154 	mutex_enter(&cpu_lock);
3155 
3156 	c = cpu_list;
3157 	do {
3158 		if (c->cpu_cyclic == NULL) {
3159 			cyclic_configure(c);
3160 			cyclic_online(c);
3161 		}
3162 	} while ((c = c->cpu_next) != cpu_list);
3163 
3164 	register_cpu_setup_func(cyclic_cpu_setup, NULL);
3165 	mutex_exit(&cpu_lock);
3166 }
3167 
3168 /*
3169  *  int cyclic_juggle(cpu_t *)
3170  *
3171  *  Overview
3172  *
3173  *    cyclic_juggle() juggles as many cyclics as possible away from the
3174  *    specified CPU; all remaining cyclics on the CPU will either be CPU-
3175  *    or partition-bound.
3176  *
3177  *  Arguments and notes
3178  *
3179  *    The only argument to cyclic_juggle() is the CPU from which cyclics
3180  *    should be juggled.  CPU-bound cyclics are never juggled; partition-bound
3181  *    cyclics are only juggled if the specified CPU is in the P_NOINTR state
3182  *    and there exists a P_ONLINE CPU in the partition.  The cyclic subsystem
3183  *    assures that a cyclic will never fire late or spuriously, even while
3184  *    being juggled.
3185  *
3186  *  Return value
3187  *
3188  *    cyclic_juggle() returns a non-zero value if all cyclics were able to
3189  *    be juggled away from the CPU, and zero if one or more cyclics could
3190  *    not be juggled away.
3191  *
3192  *  Caller's context
3193  *
3194  *    cpu_lock must be held by the caller, and the caller must not be in
3195  *    interrupt context.  The caller may not hold any locks which are also
3196  *    grabbed by any cyclic handler.  While cyclic_juggle() _may_ be called
3197  *    in any context satisfying these constraints, it _must_ be called
3198  *    immediately after clearing CPU_ENABLE (i.e. before dropping cpu_lock).
3199  *    Failure to do so could result in an assertion failure in the cyclic
3200  *    subsystem.
3201  */
3202 int
3203 cyclic_juggle(cpu_t *c)
3204 {
3205 	cyc_cpu_t *cpu = c->cpu_cyclic;
3206 	cyc_id_t *idp;
3207 	int all_juggled = 1;
3208 
3209 	CYC_PTRACE1("juggle", c);
3210 	ASSERT(MUTEX_HELD(&cpu_lock));
3211 
3212 	/*
3213 	 * We'll go through each cyclic on the CPU, attempting to juggle
3214 	 * each one elsewhere.
3215 	 */
3216 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3217 		if (idp->cyi_cpu != cpu)
3218 			continue;
3219 
3220 		if (cyclic_juggle_one(idp) == 0) {
3221 			all_juggled = 0;
3222 			continue;
3223 		}
3224 
3225 		ASSERT(idp->cyi_cpu != cpu);
3226 	}
3227 
3228 	return (all_juggled);
3229 }
3230 
3231 /*
3232  *  int cyclic_offline(cpu_t *)
3233  *
3234  *  Overview
3235  *
3236  *    cyclic_offline() offlines the cyclic subsystem on the specified CPU.
3237  *
3238  *  Arguments and notes
3239  *
3240  *    The only argument to cyclic_offline() is a CPU to offline.
3241  *    cyclic_offline() will attempt to juggle cyclics away from the specified
3242  *    CPU.
3243  *
3244  *  Return value
3245  *
3246  *    cyclic_offline() returns 1 if all cyclics on the CPU were juggled away
3247  *    and the cyclic subsystem on the CPU was successfully offlines.
3248  *    cyclic_offline returns 0 if some cyclics remain, blocking the cyclic
3249  *    offline operation.  All remaining cyclics on the CPU will either be
3250  *    CPU- or partition-bound.
3251  *
3252  *    See the "Arguments and notes" of cyclic_juggle(), below, for more detail
3253  *    on cyclic juggling.
3254  *
3255  *  Caller's context
3256  *
3257  *    The only caller of cyclic_offline() should be the processor management
3258  *    subsystem.  It is expected that the caller of cyclic_offline() will
3259  *    offline the CPU immediately after cyclic_offline() returns success (i.e.
3260  *    before dropping cpu_lock).  Moreover, it is expected that the caller will
3261  *    fail the CPU offline operation if cyclic_offline() returns failure.
3262  */
3263 int
3264 cyclic_offline(cpu_t *c)
3265 {
3266 	cyc_cpu_t *cpu = c->cpu_cyclic;
3267 	cyc_id_t *idp;
3268 
3269 	CYC_PTRACE1("offline", cpu);
3270 	ASSERT(MUTEX_HELD(&cpu_lock));
3271 
3272 	if (!cyclic_juggle(c))
3273 		return (0);
3274 
3275 	/*
3276 	 * This CPU is headed offline; we need to now stop omnipresent
3277 	 * cyclic firing on this CPU.
3278 	 */
3279 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3280 		if (idp->cyi_cpu != NULL)
3281 			continue;
3282 
3283 		/*
3284 		 * We cannot possibly be offlining the last CPU; cyi_omni_list
3285 		 * must be non-NULL.
3286 		 */
3287 		ASSERT(idp->cyi_omni_list != NULL);
3288 		cyclic_omni_stop(idp, cpu);
3289 	}
3290 
3291 	ASSERT(cpu->cyp_state == CYS_ONLINE);
3292 	cpu->cyp_state = CYS_OFFLINE;
3293 
3294 	return (1);
3295 }
3296 
3297 /*
3298  *  void cyclic_online(cpu_t *)
3299  *
3300  *  Overview
3301  *
3302  *    cyclic_online() onlines a CPU previously offlined with cyclic_offline().
3303  *
3304  *  Arguments and notes
3305  *
3306  *    cyclic_online()'s only argument is a CPU to online.  The specified
3307  *    CPU must have been previously offlined with cyclic_offline().  After
3308  *    cyclic_online() returns, the specified CPU will be eligible to execute
3309  *    cyclics.
3310  *
3311  *  Return value
3312  *
3313  *    None; cyclic_online() always succeeds.
3314  *
3315  *  Caller's context
3316  *
3317  *    cyclic_online() should only be called by the processor management
3318  *    subsystem; cpu_lock must be held.
3319  */
3320 void
3321 cyclic_online(cpu_t *c)
3322 {
3323 	cyc_cpu_t *cpu = c->cpu_cyclic;
3324 	cyc_id_t *idp;
3325 
3326 	CYC_PTRACE1("online", cpu);
3327 	ASSERT(c->cpu_flags & CPU_ENABLE);
3328 	ASSERT(MUTEX_HELD(&cpu_lock));
3329 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
3330 
3331 	cpu->cyp_state = CYS_ONLINE;
3332 
3333 	/*
3334 	 * Now that this CPU is open for business, we need to start firing
3335 	 * all omnipresent cyclics on it.
3336 	 */
3337 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3338 		if (idp->cyi_cpu != NULL)
3339 			continue;
3340 
3341 		cyclic_omni_start(idp, cpu);
3342 	}
3343 }
3344 
3345 /*
3346  *  void cyclic_move_in(cpu_t *)
3347  *
3348  *  Overview
3349  *
3350  *    cyclic_move_in() is called by the CPU partition code immediately after
3351  *    the specified CPU has moved into a new partition.
3352  *
3353  *  Arguments and notes
3354  *
3355  *    The only argument to cyclic_move_in() is a CPU which has moved into a
3356  *    new partition.  If the specified CPU is P_ONLINE, and every other
3357  *    CPU in the specified CPU's new partition is P_NOINTR, cyclic_move_in()
3358  *    will juggle all partition-bound, CPU-unbound cyclics to the specified
3359  *    CPU.
3360  *
3361  *  Return value
3362  *
3363  *    None; cyclic_move_in() always succeeds.
3364  *
3365  *  Caller's context
3366  *
3367  *    cyclic_move_in() should _only_ be called immediately after a CPU has
3368  *    moved into a new partition, with cpu_lock held.  As with other calls
3369  *    into the cyclic subsystem, no lock may be held which is also grabbed
3370  *    by any cyclic handler.
3371  */
3372 void
3373 cyclic_move_in(cpu_t *d)
3374 {
3375 	cyc_id_t *idp;
3376 	cyc_cpu_t *dest = d->cpu_cyclic;
3377 	cyclic_t *cyclic;
3378 	cpupart_t *part = d->cpu_part;
3379 
3380 	CYC_PTRACE("move-in", dest, part);
3381 	ASSERT(MUTEX_HELD(&cpu_lock));
3382 
3383 	/*
3384 	 * Look for CYF_PART_BOUND cyclics in the new partition.  If
3385 	 * we find one, check to see if it is currently on a CPU which has
3386 	 * interrupts disabled.  If it is (and if this CPU currently has
3387 	 * interrupts enabled), we'll juggle those cyclics over here.
3388 	 */
3389 	if (!(d->cpu_flags & CPU_ENABLE)) {
3390 		CYC_PTRACE1("move-in-none", dest);
3391 		return;
3392 	}
3393 
3394 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3395 		cyc_cpu_t *cpu = idp->cyi_cpu;
3396 		cpu_t *c;
3397 
3398 		/*
3399 		 * Omnipresent cyclics are exempt from juggling.
3400 		 */
3401 		if (cpu == NULL)
3402 			continue;
3403 
3404 		c = cpu->cyp_cpu;
3405 
3406 		if (c->cpu_part != part || (c->cpu_flags & CPU_ENABLE))
3407 			continue;
3408 
3409 		cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
3410 
3411 		if (cyclic->cy_flags & CYF_CPU_BOUND)
3412 			continue;
3413 
3414 		/*
3415 		 * We know that this cyclic is bound to its processor set
3416 		 * (otherwise, it would not be on a CPU with interrupts
3417 		 * disabled); juggle it to our CPU.
3418 		 */
3419 		ASSERT(cyclic->cy_flags & CYF_PART_BOUND);
3420 		cyclic_juggle_one_to(idp, dest);
3421 	}
3422 
3423 	CYC_PTRACE1("move-in-done", dest);
3424 }
3425 
3426 /*
3427  *  int cyclic_move_out(cpu_t *)
3428  *
3429  *  Overview
3430  *
3431  *    cyclic_move_out() is called by the CPU partition code immediately before
3432  *    the specified CPU is to move out of its partition.
3433  *
3434  *  Arguments and notes
3435  *
3436  *    The only argument to cyclic_move_out() is a CPU which is to move out of
3437  *    its partition.
3438  *
3439  *    cyclic_move_out() will attempt to juggle away all partition-bound
3440  *    cyclics.  If the specified CPU is the last CPU in a partition with
3441  *    partition-bound cyclics, cyclic_move_out() will fail.  If there exists
3442  *    a partition-bound cyclic which is CPU-bound to the specified CPU,
3443  *    cyclic_move_out() will fail.
3444  *
3445  *    Note that cyclic_move_out() will _only_ attempt to juggle away
3446  *    partition-bound cyclics; CPU-bound cyclics which are not partition-bound
3447  *    and unbound cyclics are not affected by changing the partition
3448  *    affiliation of the CPU.
3449  *
3450  *  Return value
3451  *
3452  *    cyclic_move_out() returns 1 if all partition-bound cyclics on the CPU
3453  *    were juggled away; 0 if some cyclics remain.
3454  *
3455  *  Caller's context
3456  *
3457  *    cyclic_move_out() should _only_ be called immediately before a CPU has
3458  *    moved out of its partition, with cpu_lock held.  It is expected that
3459  *    the caller of cyclic_move_out() will change the processor set affiliation
3460  *    of the specified CPU immediately after cyclic_move_out() returns
3461  *    success (i.e. before dropping cpu_lock).  Moreover, it is expected that
3462  *    the caller will fail the CPU repartitioning operation if cyclic_move_out()
3463  *    returns failure.  As with other calls into the cyclic subsystem, no lock
3464  *    may be held which is also grabbed by any cyclic handler.
3465  */
3466 int
3467 cyclic_move_out(cpu_t *c)
3468 {
3469 	cyc_id_t *idp;
3470 	cyc_cpu_t *cpu = c->cpu_cyclic, *dest;
3471 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
3472 	cpupart_t *part = c->cpu_part;
3473 
3474 	CYC_PTRACE1("move-out", cpu);
3475 	ASSERT(MUTEX_HELD(&cpu_lock));
3476 
3477 	/*
3478 	 * If there are any CYF_PART_BOUND cyclics on this CPU, we need
3479 	 * to try to juggle them away.
3480 	 */
3481 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3482 
3483 		if (idp->cyi_cpu != cpu)
3484 			continue;
3485 
3486 		cyclic = &cyclics[idp->cyi_ndx];
3487 
3488 		if (!(cyclic->cy_flags & CYF_PART_BOUND))
3489 			continue;
3490 
3491 		dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags);
3492 
3493 		if (dest == NULL) {
3494 			/*
3495 			 * We can't juggle this cyclic; we need to return
3496 			 * failure (we won't bother trying to juggle away
3497 			 * other cyclics).
3498 			 */
3499 			CYC_PTRACE("move-out-fail", cpu, idp);
3500 			return (0);
3501 		}
3502 		cyclic_juggle_one_to(idp, dest);
3503 	}
3504 
3505 	CYC_PTRACE1("move-out-done", cpu);
3506 	return (1);
3507 }
3508 
3509 /*
3510  *  void cyclic_suspend()
3511  *
3512  *  Overview
3513  *
3514  *    cyclic_suspend() suspends all cyclic activity throughout the cyclic
3515  *    subsystem.  It should be called only by subsystems which are attempting
3516  *    to suspend the entire system (e.g. checkpoint/resume, dynamic
3517  *    reconfiguration).
3518  *
3519  *  Arguments and notes
3520  *
3521  *    cyclic_suspend() takes no arguments.  Each CPU with an active cyclic
3522  *    disables its backend (offline CPUs disable their backends as part of
3523  *    the cyclic_offline() operation), thereby disabling future CY_HIGH_LEVEL
3524  *    interrupts.
3525  *
3526  *    Note that disabling CY_HIGH_LEVEL interrupts does not completely preclude
3527  *    cyclic handlers from being called after cyclic_suspend() returns:  if a
3528  *    CY_LOCK_LEVEL or CY_LOW_LEVEL interrupt thread was blocked at the time
3529  *    of cyclic_suspend(), cyclic handlers at its level may continue to be
3530  *    called after the interrupt thread becomes unblocked.  The
3531  *    post-cyclic_suspend() activity is bounded by the pend count on all
3532  *    cyclics at the time of cyclic_suspend().  Callers concerned with more
3533  *    than simply disabling future CY_HIGH_LEVEL interrupts must check for
3534  *    this condition.
3535  *
3536  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
3537  *    guaranteed to monotonically increase between cyclic_suspend() and
3538  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
3539  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
3540  *    That is, every timestamp obtained before cyclic_suspend() will be less
3541  *    than every timestamp obtained after cyclic_resume().
3542  *
3543  *  Return value
3544  *
3545  *    None; cyclic_suspend() always succeeds.
3546  *
3547  *  Caller's context
3548  *
3549  *    The cyclic subsystem must be configured on every valid CPU;
3550  *    cyclic_suspend() may not be called during boot or during dynamic
3551  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
3552  *    cannot be in high-level interrupt context.  However, unlike most other
3553  *    cyclic entry points, cyclic_suspend() may be called with locks held
3554  *    which are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic
3555  *    handlers.
3556  */
3557 void
3558 cyclic_suspend()
3559 {
3560 	cpu_t *c;
3561 	cyc_cpu_t *cpu;
3562 	cyc_xcallarg_t arg;
3563 	cyc_backend_t *be;
3564 
3565 	CYC_PTRACE0("suspend");
3566 	ASSERT(MUTEX_HELD(&cpu_lock));
3567 	c = cpu_list;
3568 
3569 	do {
3570 		cpu = c->cpu_cyclic;
3571 		be = cpu->cyp_backend;
3572 		arg.cyx_cpu = cpu;
3573 
3574 		be->cyb_xcall(be->cyb_arg, c,
3575 		    (cyc_func_t)cyclic_suspend_xcall, &arg);
3576 	} while ((c = c->cpu_next) != cpu_list);
3577 }
3578 
3579 /*
3580  *  void cyclic_resume()
3581  *
3582  *    cyclic_resume() resumes all cyclic activity throughout the cyclic
3583  *    subsystem.  It should be called only by system-suspending subsystems.
3584  *
3585  *  Arguments and notes
3586  *
3587  *    cyclic_resume() takes no arguments.  Each CPU with an active cyclic
3588  *    reenables and reprograms its backend (offline CPUs are not reenabled).
3589  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
3590  *    guaranteed to monotonically increase between cyclic_suspend() and
3591  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
3592  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
3593  *    That is, every timestamp obtained before cyclic_suspend() will be less
3594  *    than every timestamp obtained after cyclic_resume().
3595  *
3596  *  Return value
3597  *
3598  *    None; cyclic_resume() always succeeds.
3599  *
3600  *  Caller's context
3601  *
3602  *    The cyclic subsystem must be configured on every valid CPU;
3603  *    cyclic_resume() may not be called during boot or during dynamic
3604  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
3605  *    cannot be in high-level interrupt context.  However, unlike most other
3606  *    cyclic entry points, cyclic_resume() may be called with locks held which
3607  *    are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic handlers.
3608  */
3609 void
3610 cyclic_resume()
3611 {
3612 	cpu_t *c;
3613 	cyc_cpu_t *cpu;
3614 	cyc_xcallarg_t arg;
3615 	cyc_backend_t *be;
3616 
3617 	CYC_PTRACE0("resume");
3618 	ASSERT(MUTEX_HELD(&cpu_lock));
3619 
3620 	c = cpu_list;
3621 
3622 	do {
3623 		cpu = c->cpu_cyclic;
3624 		be = cpu->cyp_backend;
3625 		arg.cyx_cpu = cpu;
3626 
3627 		be->cyb_xcall(be->cyb_arg, c,
3628 		    (cyc_func_t)cyclic_resume_xcall, &arg);
3629 	} while ((c = c->cpu_next) != cpu_list);
3630 }
3631