xref: /illumos-gate/usr/src/uts/common/os/cyclic.c (revision a2876d03ca2556102e024ae4a50bb4db8fe562b0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright 2018 Joyent Inc.
28  */
29 
30 /*
31  *  The Cyclic Subsystem
32  *  --------------------
33  *
34  *  Prehistory
35  *
36  *  Historically, most computer architectures have specified interval-based
37  *  timer parts (e.g. SPARCstation's counter/timer; Intel's i8254).  While
38  *  these parts deal in relative (i.e. not absolute) time values, they are
39  *  typically used by the operating system to implement the abstraction of
40  *  absolute time.  As a result, these parts cannot typically be reprogrammed
41  *  without introducing error in the system's notion of time.
42  *
43  *  Starting in about 1994, chip architectures began specifying high resolution
44  *  timestamp registers.  As of this writing (1999), all major chip families
45  *  (UltraSPARC, PentiumPro, MIPS, PowerPC, Alpha) have high resolution
46  *  timestamp registers, and two (UltraSPARC and MIPS) have added the capacity
47  *  to interrupt based on timestamp values.  These timestamp-compare registers
48  *  present a time-based interrupt source which can be reprogrammed arbitrarily
49  *  often without introducing error.  Given the low cost of implementing such a
50  *  timestamp-compare register (and the tangible benefit of eliminating
51  *  discrete timer parts), it is reasonable to expect that future chip
52  *  architectures will adopt this feature.
53  *
54  *  The cyclic subsystem has been designed to take advantage of chip
55  *  architectures with the capacity to interrupt based on absolute, high
56  *  resolution values of time.
57  *
58  *  Subsystem Overview
59  *
60  *  The cyclic subsystem is a low-level kernel subsystem designed to provide
61  *  arbitrarily high resolution, per-CPU interval timers (to avoid colliding
62  *  with existing terms, we dub such an interval timer a "cyclic").  Cyclics
63  *  can be specified to fire at high, lock or low interrupt level, and may be
64  *  optionally bound to a CPU or a CPU partition.  A cyclic's CPU or CPU
65  *  partition binding may be changed dynamically; the cyclic will be "juggled"
66  *  to a CPU which satisfies the new binding.  Alternatively, a cyclic may
67  *  be specified to be "omnipresent", denoting firing on all online CPUs.
68  *
69  *  Cyclic Subsystem Interface Overview
70  *  -----------------------------------
71  *
72  *  The cyclic subsystem has interfaces with the kernel at-large, with other
73  *  kernel subsystems (e.g. the processor management subsystem, the checkpoint
74  *  resume subsystem) and with the platform (the cyclic backend).  Each
75  *  of these interfaces is given a brief synopsis here, and is described
76  *  in full above the interface's implementation.
77  *
78  *  The following diagram displays the cyclic subsystem's interfaces to
79  *  other kernel components.  The arrows denote a "calls" relationship, with
80  *  the large arrow indicating the cyclic subsystem's consumer interface.
81  *  Each arrow is labeled with the section in which the corresponding
82  *  interface is described.
83  *
84  *           Kernel at-large consumers
85  *           -----------++------------
86  *                      ||
87  *                      ||
88  *                     _||_
89  *                     \  /
90  *                      \/
91  *            +---------------------+
92  *            |                     |
93  *            |  Cyclic subsystem   |<-----------  Other kernel subsystems
94  *            |                     |
95  *            +---------------------+
96  *                   ^       |
97  *                   |       |
98  *                   |       |
99  *                   |       v
100  *            +---------------------+
101  *            |                     |
102  *            |   Cyclic backend    |
103  *            | (platform specific) |
104  *            |                     |
105  *            +---------------------+
106  *
107  *
108  *  Kernel At-Large Interfaces
109  *
110  *      cyclic_add()         <-- Creates a cyclic
111  *      cyclic_add_omni()    <-- Creates an omnipresent cyclic
112  *      cyclic_remove()      <-- Removes a cyclic
113  *      cyclic_bind()        <-- Change a cyclic's CPU or partition binding
114  *      cyclic_reprogram()   <-- Reprogram a cyclic's expiration
115  *      cyclic_move_here()   <-- Shuffle cyclic to current CPU
116  *
117  *  Inter-subsystem Interfaces
118  *
119  *      cyclic_juggle()      <-- Juggles cyclics away from a CPU
120  *      cyclic_offline()     <-- Offlines cyclic operation on a CPU
121  *      cyclic_online()      <-- Reenables operation on an offlined CPU
122  *      cyclic_move_in()     <-- Notifies subsystem of change in CPU partition
123  *      cyclic_move_out()    <-- Notifies subsystem of change in CPU partition
124  *      cyclic_suspend()     <-- Suspends the cyclic subsystem on all CPUs
125  *      cyclic_resume()      <-- Resumes the cyclic subsystem on all CPUs
126  *
127  *  Backend Interfaces
128  *
129  *      cyclic_init()        <-- Initializes the cyclic subsystem
130  *      cyclic_fire()        <-- CY_HIGH_LEVEL interrupt entry point
131  *      cyclic_softint()     <-- CY_LOCK/LOW_LEVEL soft interrupt entry point
132  *
133  *  The backend-supplied interfaces (through the cyc_backend structure) are
134  *  documented in detail in <sys/cyclic_impl.h>
135  *
136  *
137  *  Cyclic Subsystem Implementation Overview
138  *  ----------------------------------------
139  *
140  *  The cyclic subsystem is designed to minimize interference between cyclics
141  *  on different CPUs.  Thus, all of the cyclic subsystem's data structures
142  *  hang off of a per-CPU structure, cyc_cpu.
143  *
144  *  Each cyc_cpu has a power-of-two sized array of cyclic structures (the
145  *  cyp_cyclics member of the cyc_cpu structure).  If cyclic_add() is called
146  *  and there does not exist a free slot in the cyp_cyclics array, the size of
147  *  the array will be doubled.  The array will never shrink.  Cyclics are
148  *  referred to by their index in the cyp_cyclics array, which is of type
149  *  cyc_index_t.
150  *
151  *  The cyclics are kept sorted by expiration time in the cyc_cpu's heap.  The
152  *  heap is keyed by cyclic expiration time, with parents expiring earlier
153  *  than their children.
154  *
155  *  Heap Management
156  *
157  *  The heap is managed primarily by cyclic_fire().  Upon entry, cyclic_fire()
158  *  compares the root cyclic's expiration time to the current time.  If the
159  *  expiration time is in the past, cyclic_expire() is called on the root
160  *  cyclic.  Upon return from cyclic_expire(), the cyclic's new expiration time
161  *  is derived by adding its interval to its old expiration time, and a
162  *  downheap operation is performed.  After the downheap, cyclic_fire()
163  *  examines the (potentially changed) root cyclic, repeating the
164  *  cyclic_expire()/add interval/cyclic_downheap() sequence until the root
165  *  cyclic has an expiration time in the future.  This expiration time
166  *  (guaranteed to be the earliest in the heap) is then communicated to the
167  *  backend via cyb_reprogram.  Optimal backends will next call cyclic_fire()
168  *  shortly after the root cyclic's expiration time.
169  *
170  *  To allow efficient, deterministic downheap operations, we implement the
171  *  heap as an array (the cyp_heap member of the cyc_cpu structure), with each
172  *  element containing an index into the CPU's cyp_cyclics array.
173  *
174  *  The heap is laid out in the array according to the following:
175  *
176  *   1.  The root of the heap is always in the 0th element of the heap array
177  *   2.  The left and right children of the nth element are element
178  *       (((n + 1) << 1) - 1) and element ((n + 1) << 1), respectively.
179  *
180  *  This layout is standard (see, e.g., Cormen's "Algorithms"); the proof
181  *  that these constraints correctly lay out a heap (or indeed, any binary
182  *  tree) is trivial and left to the reader.
183  *
184  *  To see the heap by example, assume our cyclics array has the following
185  *  members (at time t):
186  *
187  *            cy_handler            cy_level      cy_expire
188  *            ---------------------------------------------
189  *     [ 0]   clock()                   LOCK     t+10000000
190  *     [ 1]   deadman()                 HIGH   t+1000000000
191  *     [ 2]   clock_highres_fire()       LOW          t+100
192  *     [ 3]   clock_highres_fire()       LOW         t+1000
193  *     [ 4]   clock_highres_fire()       LOW          t+500
194  *     [ 5]   (free)                      --             --
195  *     [ 6]   (free)                      --             --
196  *     [ 7]   (free)                      --             --
197  *
198  *  The heap array could be:
199  *
200  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
201  *              +-----+-----+-----+-----+-----+-----+-----+-----+
202  *              |     |     |     |     |     |     |     |     |
203  *              |  2  |  3  |  4  |  0  |  1  |  x  |  x  |  x  |
204  *              |     |     |     |     |     |     |     |     |
205  *              +-----+-----+-----+-----+-----+-----+-----+-----+
206  *
207  *  Graphically, this array corresponds to the following (excuse the ASCII art):
208  *
209  *                                       2
210  *                                       |
211  *                    +------------------+------------------+
212  *                    3                                     4
213  *                    |
214  *          +---------+--------+
215  *          0                  1
216  *
217  *  Note that the heap is laid out by layer:  all nodes at a given depth are
218  *  stored in consecutive elements of the array.  Moreover, layers of
219  *  consecutive depths are in adjacent element ranges.  This property
220  *  guarantees high locality of reference during downheap operations.
221  *  Specifically, we are guaranteed that we can downheap to a depth of
222  *
223  *      lg (cache_line_size / sizeof (cyc_index_t))
224  *
225  *  nodes with at most one cache miss.  On UltraSPARC (64 byte e-cache line
226  *  size), this corresponds to a depth of four nodes.  Thus, if there are
227  *  fewer than sixteen cyclics in the heap, downheaps on UltraSPARC miss at
228  *  most once in the e-cache.
229  *
230  *  Downheaps are required to compare siblings as they proceed down the
231  *  heap.  For downheaps proceeding beyond the one-cache-miss depth, every
232  *  access to a left child could potentially miss in the cache.  However,
233  *  if we assume
234  *
235  *      (cache_line_size / sizeof (cyc_index_t)) > 2,
236  *
237  *  then all siblings are guaranteed to be on the same cache line.  Thus, the
238  *  miss on the left child will guarantee a hit on the right child; downheaps
239  *  will incur at most one cache miss per layer beyond the one-cache-miss
240  *  depth.  The total number of cache misses for heap management during a
241  *  downheap operation is thus bounded by
242  *
243  *      lg (n) - lg (cache_line_size / sizeof (cyc_index_t))
244  *
245  *  Traditional pointer-based heaps are implemented without regard to
246  *  locality.  Downheaps can thus incur two cache misses per layer (one for
247  *  each child), but at most one cache miss at the root.  This yields a bound
248  *  of
249  *
250  *      2 * lg (n) - 1
251  *
252  *  on the total cache misses.
253  *
254  *  This difference may seem theoretically trivial (the difference is, after
255  *  all, constant), but can become substantial in practice -- especially for
256  *  caches with very large cache lines and high miss penalties (e.g. TLBs).
257  *
258  *  Heaps must always be full, balanced trees.  Heap management must therefore
259  *  track the next point-of-insertion into the heap.  In pointer-based heaps,
260  *  recomputing this point takes O(lg (n)).  Given the layout of the
261  *  array-based implementation, however, the next point-of-insertion is
262  *  always:
263  *
264  *      heap[number_of_elements]
265  *
266  *  We exploit this property by implementing the free-list in the usused
267  *  heap elements.  Heap insertion, therefore, consists only of filling in
268  *  the cyclic at cyp_cyclics[cyp_heap[number_of_elements]], incrementing
269  *  the number of elements, and performing an upheap.  Heap deletion consists
270  *  of decrementing the number of elements, swapping the to-be-deleted element
271  *  with the element at cyp_heap[number_of_elements], and downheaping.
272  *
273  *  Filling in more details in our earlier example:
274  *
275  *                                               +--- free list head
276  *                                               |
277  *                                               V
278  *
279  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
280  *              +-----+-----+-----+-----+-----+-----+-----+-----+
281  *              |     |     |     |     |     |     |     |     |
282  *              |  2  |  3  |  4  |  0  |  1  |  5  |  6  |  7  |
283  *              |     |     |     |     |     |     |     |     |
284  *              +-----+-----+-----+-----+-----+-----+-----+-----+
285  *
286  *  To insert into this heap, we would just need to fill in the cyclic at
287  *  cyp_cyclics[5], bump the number of elements (from 5 to 6) and perform
288  *  an upheap.
289  *
290  *  If we wanted to remove, say, cyp_cyclics[3], we would first scan for it
291  *  in the cyp_heap, and discover it at cyp_heap[1].  We would then decrement
292  *  the number of elements (from 5 to 4), swap cyp_heap[1] with cyp_heap[4],
293  *  and perform a downheap from cyp_heap[1].  The linear scan is required
294  *  because the cyclic does not keep a backpointer into the heap.  This makes
295  *  heap manipulation (e.g. downheaps) faster at the expense of removal
296  *  operations.
297  *
298  *  Expiry processing
299  *
300  *  As alluded to above, cyclic_expire() is called by cyclic_fire() at
301  *  CY_HIGH_LEVEL to expire a cyclic.  Cyclic subsystem consumers are
302  *  guaranteed that for an arbitrary time t in the future, their cyclic
303  *  handler will have been called (t - cyt_when) / cyt_interval times.  Thus,
304  *  there must be a one-to-one mapping between a cyclic's expiration at
305  *  CY_HIGH_LEVEL and its execution at the desired level (either CY_HIGH_LEVEL,
306  *  CY_LOCK_LEVEL or CY_LOW_LEVEL).
307  *
308  *  For CY_HIGH_LEVEL cyclics, this is trivial; cyclic_expire() simply needs
309  *  to call the handler.
310  *
311  *  For CY_LOCK_LEVEL and CY_LOW_LEVEL cyclics, however, there exists a
312  *  potential disconnect:  if the CPU is at an interrupt level less than
313  *  CY_HIGH_LEVEL but greater than the level of a cyclic for a period of
314  *  time longer than twice the cyclic's interval, the cyclic will be expired
315  *  twice before it can be handled.
316  *
317  *  To maintain the one-to-one mapping, we track the difference between the
318  *  number of times a cyclic has been expired and the number of times it's
319  *  been handled in a "pending count" (the cy_pend field of the cyclic
320  *  structure).  cyclic_expire() thus increments the cy_pend count for the
321  *  expired cyclic and posts a soft interrupt at the desired level.  In the
322  *  cyclic subsystem's soft interrupt handler, cyclic_softint(), we repeatedly
323  *  call the cyclic handler and decrement cy_pend until we have decremented
324  *  cy_pend to zero.
325  *
326  *  The Producer/Consumer Buffer
327  *
328  *  If we wish to avoid a linear scan of the cyclics array at soft interrupt
329  *  level, cyclic_softint() must be able to quickly determine which cyclics
330  *  have a non-zero cy_pend count.  We thus introduce a per-soft interrupt
331  *  level producer/consumer buffer shared with CY_HIGH_LEVEL.  These buffers
332  *  are encapsulated in the cyc_pcbuffer structure, and, like cyp_heap, are
333  *  implemented as cyc_index_t arrays (the cypc_buf member of the cyc_pcbuffer
334  *  structure).
335  *
336  *  The producer (cyclic_expire() running at CY_HIGH_LEVEL) enqueues a cyclic
337  *  by storing the cyclic's index to cypc_buf[cypc_prodndx] and incrementing
338  *  cypc_prodndx.  The consumer (cyclic_softint() running at either
339  *  CY_LOCK_LEVEL or CY_LOW_LEVEL) dequeues a cyclic by loading from
340  *  cypc_buf[cypc_consndx] and bumping cypc_consndx.  The buffer is empty when
341  *  cypc_prodndx == cypc_consndx.
342  *
343  *  To bound the size of the producer/consumer buffer, cyclic_expire() only
344  *  enqueues a cyclic if its cy_pend was zero (if the cyclic's cy_pend is
345  *  non-zero, cyclic_expire() only bumps cy_pend).  Symmetrically,
346  *  cyclic_softint() only consumes a cyclic after it has decremented the
347  *  cy_pend count to zero.
348  *
349  *  Returning to our example, here is what the CY_LOW_LEVEL producer/consumer
350  *  buffer might look like:
351  *
352  *     cypc_consndx ---+                 +--- cypc_prodndx
353  *                     |                 |
354  *                     V                 V
355  *
356  *        [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
357  *      +-----+-----+-----+-----+-----+-----+-----+-----+
358  *      |     |     |     |     |     |     |     |     |
359  *      |  x  |  x  |  3  |  2  |  4  |  x  |  x  |  x  |   <== cypc_buf
360  *      |     |     |  .  |  .  |  .  |     |     |     |
361  *      +-----+-----+- | -+- | -+- | -+-----+-----+-----+
362  *                     |     |     |
363  *                     |     |     |              cy_pend  cy_handler
364  *                     |     |     |          -------------------------
365  *                     |     |     |          [ 0]      1  clock()
366  *                     |     |     |          [ 1]      0  deadman()
367  *                     |     +---- | -------> [ 2]      3  clock_highres_fire()
368  *                     +---------- | -------> [ 3]      1  clock_highres_fire()
369  *                                 +--------> [ 4]      1  clock_highres_fire()
370  *                                            [ 5]      -  (free)
371  *                                            [ 6]      -  (free)
372  *                                            [ 7]      -  (free)
373  *
374  *  In particular, note that clock()'s cy_pend is 1 but that it is _not_ in
375  *  this producer/consumer buffer; it would be enqueued in the CY_LOCK_LEVEL
376  *  producer/consumer buffer.
377  *
378  *  Locking
379  *
380  *  Traditionally, access to per-CPU data structures shared between
381  *  interrupt levels is serialized by manipulating programmable interrupt
382  *  level:  readers and writers are required to raise their interrupt level
383  *  to that of the highest level writer.
384  *
385  *  For the producer/consumer buffers (shared between cyclic_fire()/
386  *  cyclic_expire() executing at CY_HIGH_LEVEL and cyclic_softint() executing
387  *  at one of CY_LOCK_LEVEL or CY_LOW_LEVEL), forcing cyclic_softint() to raise
388  *  programmable interrupt level is undesirable:  aside from the additional
389  *  latency incurred by manipulating interrupt level in the hot cy_pend
390  *  processing path, this would create the potential for soft level cy_pend
391  *  processing to delay CY_HIGH_LEVEL firing and expiry processing.
392  *  CY_LOCK/LOW_LEVEL cyclics could thereby induce jitter in CY_HIGH_LEVEL
393  *  cyclics.
394  *
395  *  To minimize jitter, then, we would like the cyclic_fire()/cyclic_expire()
396  *  and cyclic_softint() code paths to be lock-free.
397  *
398  *  For cyclic_fire()/cyclic_expire(), lock-free execution is straightforward:
399  *  because these routines execute at a higher interrupt level than
400  *  cyclic_softint(), their actions on the producer/consumer buffer appear
401  *  atomic.  In particular, the increment of cy_pend appears to occur
402  *  atomically with the increment of cypc_prodndx.
403  *
404  *  For cyclic_softint(), however, lock-free execution requires more delicacy.
405  *  When cyclic_softint() discovers a cyclic in the producer/consumer buffer,
406  *  it calls the cyclic's handler and attempts to atomically decrement the
407  *  cy_pend count with a compare&swap operation.
408  *
409  *  If the compare&swap operation succeeds, cyclic_softint() behaves
410  *  conditionally based on the value it atomically wrote to cy_pend:
411  *
412  *     - If the cy_pend was decremented to 0, the cyclic has been consumed;
413  *       cyclic_softint() increments the cypc_consndx and checks for more
414  *       enqueued work.
415  *
416  *     - If the count was decremented to a non-zero value, there is more work
417  *       to be done on the cyclic; cyclic_softint() calls the cyclic handler
418  *       and repeats the atomic decrement process.
419  *
420  *  If the compare&swap operation fails, cyclic_softint() knows that
421  *  cyclic_expire() has intervened and bumped the cy_pend count (resizes
422  *  and removals complicate this, however -- see the sections on their
423  *  operation, below).  cyclic_softint() thus reloads cy_pend, and re-attempts
424  *  the atomic decrement.
425  *
426  *  Recall that we bound the size of the producer/consumer buffer by
427  *  having cyclic_expire() only enqueue the specified cyclic if its
428  *  cy_pend count is zero; this assures that each cyclic is enqueued at
429  *  most once.  This leads to a critical constraint on cyclic_softint(),
430  *  however:  after the compare&swap operation which successfully decrements
431  *  cy_pend to zero, cyclic_softint() must _not_ re-examine the consumed
432  *  cyclic.  In part to obey this constraint, cyclic_softint() calls the
433  *  cyclic handler before decrementing cy_pend.
434  *
435  *  Resizing
436  *
437  *  All of the discussion thus far has assumed a static number of cyclics.
438  *  Obviously, static limitations are not practical; we need the capacity
439  *  to resize our data structures dynamically.
440  *
441  *  We resize our data structures lazily, and only on a per-CPU basis.
442  *  The size of the data structures always doubles and never shrinks.  We
443  *  serialize adds (and thus resizes) on cpu_lock; we never need to deal
444  *  with concurrent resizes.  Resizes should be rare; they may induce jitter
445  *  on the CPU being resized, but should not affect cyclic operation on other
446  *  CPUs.  Pending cyclics may not be dropped during a resize operation.
447  *
448  *  Three key cyc_cpu data structures need to be resized:  the cyclics array,
449  *  the heap array and the producer/consumer buffers.  Resizing the first two
450  *  is relatively straightforward:
451  *
452  *    1.  The new, larger arrays are allocated in cyclic_expand() (called
453  *        from cyclic_add()).
454  *    2.  cyclic_expand() cross calls cyclic_expand_xcall() on the CPU
455  *        undergoing the resize.
456  *    3.  cyclic_expand_xcall() raises interrupt level to CY_HIGH_LEVEL
457  *    4.  The contents of the old arrays are copied into the new arrays.
458  *    5.  The old cyclics array is bzero()'d
459  *    6.  The pointers are updated.
460  *
461  *  The producer/consumer buffer is dicier:  cyclic_expand_xcall() may have
462  *  interrupted cyclic_softint() in the middle of consumption. To resize the
463  *  producer/consumer buffer, we implement up to two buffers per soft interrupt
464  *  level:  a hard buffer (the buffer being produced into by cyclic_expire())
465  *  and a soft buffer (the buffer from which cyclic_softint() is consuming).
466  *  During normal operation, the hard buffer and soft buffer point to the
467  *  same underlying producer/consumer buffer.
468  *
469  *  During a resize, however, cyclic_expand_xcall() changes the hard buffer
470  *  to point to the new, larger producer/consumer buffer; all future
471  *  cyclic_expire()'s will produce into the new buffer.  cyclic_expand_xcall()
472  *  then posts a CY_LOCK_LEVEL soft interrupt, landing in cyclic_softint().
473  *
474  *  As under normal operation, cyclic_softint() will consume cyclics from
475  *  its soft buffer.  After the soft buffer is drained, however,
476  *  cyclic_softint() will see that the hard buffer has changed.  At that time,
477  *  cyclic_softint() will change its soft buffer to point to the hard buffer,
478  *  and repeat the producer/consumer buffer draining procedure.
479  *
480  *  After the new buffer is drained, cyclic_softint() will determine if both
481  *  soft levels have seen their new producer/consumer buffer.  If both have,
482  *  cyclic_softint() will post on the semaphore cyp_modify_wait.  If not, a
483  *  soft interrupt will be generated for the remaining level.
484  *
485  *  cyclic_expand() blocks on the cyp_modify_wait semaphore (a semaphore is
486  *  used instead of a condition variable because of the race between the
487  *  sema_p() in cyclic_expand() and the sema_v() in cyclic_softint()).  This
488  *  allows cyclic_expand() to know when the resize operation is complete;
489  *  all of the old buffers (the heap, the cyclics array and the producer/
490  *  consumer buffers) can be freed.
491  *
492  *  A final caveat on resizing:  we described step (5) in the
493  *  cyclic_expand_xcall() procedure without providing any motivation.  This
494  *  step addresses the problem of a cyclic_softint() attempting to decrement
495  *  a cy_pend count while interrupted by a cyclic_expand_xcall().  Because
496  *  cyclic_softint() has already called the handler by the time cy_pend is
497  *  decremented, we want to assure that it doesn't decrement a cy_pend
498  *  count in the old cyclics array.  By zeroing the old cyclics array in
499  *  cyclic_expand_xcall(), we are zeroing out every cy_pend count; when
500  *  cyclic_softint() attempts to compare&swap on the cy_pend count, it will
501  *  fail and recognize that the count has been zeroed.  cyclic_softint() will
502  *  update its stale copy of the cyp_cyclics pointer, re-read the cy_pend
503  *  count from the new cyclics array, and re-attempt the compare&swap.
504  *
505  *  Removals
506  *
507  *  Cyclic removals should be rare.  To simplify the implementation (and to
508  *  allow optimization for the cyclic_fire()/cyclic_expire()/cyclic_softint()
509  *  path), we force removals and adds to serialize on cpu_lock.
510  *
511  *  Cyclic removal is complicated by a guarantee made to the consumer of
512  *  the cyclic subsystem:  after cyclic_remove() returns, the cyclic handler
513  *  has returned and will never again be called.
514  *
515  *  Here is the procedure for cyclic removal:
516  *
517  *    1.  cyclic_remove() calls cyclic_remove_xcall() on the CPU undergoing
518  *        the removal.
519  *    2.  cyclic_remove_xcall() raises interrupt level to CY_HIGH_LEVEL
520  *    3.  The current expiration time for the removed cyclic is recorded.
521  *    4.  If the cy_pend count on the removed cyclic is non-zero, it
522  *        is copied into cyp_rpend and subsequently zeroed.
523  *    5.  The cyclic is removed from the heap
524  *    6.  If the root of the heap has changed, the backend is reprogrammed.
525  *    7.  If the cy_pend count was non-zero cyclic_remove() blocks on the
526  *        cyp_modify_wait semaphore.
527  *
528  *  The motivation for step (3) is explained in "Juggling", below.
529  *
530  *  The cy_pend count is decremented in cyclic_softint() after the cyclic
531  *  handler returns.  Thus, if we find a cy_pend count of zero in step
532  *  (4), we know that cyclic_remove() doesn't need to block.
533  *
534  *  If the cy_pend count is non-zero, however, we must block in cyclic_remove()
535  *  until cyclic_softint() has finished calling the cyclic handler.  To let
536  *  cyclic_softint() know that this cyclic has been removed, we zero the
537  *  cy_pend count.  This will cause cyclic_softint()'s compare&swap to fail.
538  *  When cyclic_softint() sees the zero cy_pend count, it knows that it's been
539  *  caught during a resize (see "Resizing", above) or that the cyclic has been
540  *  removed.  In the latter case, it calls cyclic_remove_pend() to call the
541  *  cyclic handler cyp_rpend - 1 times, and posts on cyp_modify_wait.
542  *
543  *  Juggling
544  *
545  *  At first glance, cyclic juggling seems to be a difficult problem.  The
546  *  subsystem must guarantee that a cyclic doesn't execute simultaneously on
547  *  different CPUs, while also assuring that a cyclic fires exactly once
548  *  per interval.  We solve this problem by leveraging a property of the
549  *  platform:  gethrtime() is required to increase in lock-step across
550  *  multiple CPUs.  Therefore, to juggle a cyclic, we remove it from its
551  *  CPU, recording its expiration time in the remove cross call (step (3)
552  *  in "Removing", above).  We then add the cyclic to the new CPU, explicitly
553  *  setting its expiration time to the time recorded in the removal.  This
554  *  leverages the existing cyclic expiry processing, which will compensate
555  *  for any time lost while juggling.
556  *
557  *  Reprogramming
558  *
559  *  Normally, after a cyclic fires, its next expiration is computed from
560  *  the current time and the cyclic interval. But there are situations when
561  *  the next expiration needs to be reprogrammed by the kernel subsystem that
562  *  is using the cyclic. cyclic_reprogram() allows this to be done. This,
563  *  unlike the other kernel at-large cyclic API functions, is permitted to
564  *  be called from the cyclic handler. This is because it does not use the
565  *  cpu_lock to serialize access.
566  *
567  *  When cyclic_reprogram() is called for an omni-cyclic, the operation is
568  *  applied to the omni-cyclic's component on the current CPU.
569  *
570  *  If a high-level cyclic handler reprograms its own cyclic, then
571  *  cyclic_fire() detects that and does not recompute the cyclic's next
572  *  expiration. However, for a lock-level or a low-level cyclic, the
573  *  actual cyclic handler will execute at the lower PIL only after
574  *  cyclic_fire() is done with all expired cyclics. To deal with this, such
575  *  cyclics can be specified with a special interval of CY_INFINITY (INT64_MAX).
576  *  cyclic_fire() recognizes this special value and recomputes the next
577  *  expiration to CY_INFINITY. This effectively moves the cyclic to the
578  *  bottom of the heap and prevents it from going off until its handler has
579  *  had a chance to reprogram it. Infact, this is the way to create and reuse
580  *  "one-shot" timers in the context of the cyclic subsystem without using
581  *  cyclic_remove().
582  *
583  *  Here is the procedure for cyclic reprogramming:
584  *
585  *    1.  cyclic_reprogram() calls cyclic_reprogram_xcall() on the CPU
586  *        that houses the cyclic.
587  *    2.  cyclic_reprogram_xcall() raises interrupt level to CY_HIGH_LEVEL
588  *    3.  The cyclic is located in the cyclic heap. The search for this is
589  *        done from the bottom of the heap to the top as reprogrammable cyclics
590  *        would be located closer to the bottom than the top.
591  *    4.  The cyclic expiration is set and the cyclic is moved to its
592  *        correct position in the heap (up or down depending on whether the
593  *        new expiration is less than or greater than the old one).
594  *    5.  If the cyclic move modified the root of the heap, the backend is
595  *	  reprogrammed.
596  *
597  *  Reprogramming can be a frequent event (see the callout subsystem). So,
598  *  the serialization used has to be efficient. As with all other cyclic
599  *  operations, the interrupt level is raised during reprogramming. Plus,
600  *  during reprogramming, the cyclic must not be juggled (regular cyclic)
601  *  or stopped (omni-cyclic). The implementation defines a per-cyclic
602  *  reader-writer lock to accomplish this. This lock is acquired in the
603  *  reader mode by cyclic_reprogram() and writer mode by cyclic_juggle() and
604  *  cyclic_omni_stop(). The reader-writer lock makes it efficient if
605  *  an omni-cyclic is reprogrammed on different CPUs frequently.
606  *
607  *  Note that since the cpu_lock is not used during reprogramming, it is
608  *  the responsibility of the user of the reprogrammable cyclic to make sure
609  *  that the cyclic is not removed via cyclic_remove() during reprogramming.
610  *  This is not an unreasonable requirement as the user will typically have
611  *  some sort of synchronization for its cyclic-related activities. This
612  *  little caveat exists because the cyclic ID is not really an ID. It is
613  *  implemented as a pointer to a structure.
614  */
615 #include <sys/cyclic_impl.h>
616 #include <sys/sysmacros.h>
617 #include <sys/systm.h>
618 #include <sys/atomic.h>
619 #include <sys/kmem.h>
620 #include <sys/cmn_err.h>
621 #include <sys/ddi.h>
622 #include <sys/sdt.h>
623 
624 #ifdef CYCLIC_TRACE
625 
626 /*
627  * cyc_trace_enabled is for the benefit of kernel debuggers.
628  */
629 int cyc_trace_enabled = 1;
630 static cyc_tracebuf_t cyc_ptrace;
631 static cyc_coverage_t cyc_coverage[CY_NCOVERAGE];
632 
633 /*
634  * Seen this anywhere?
635  */
636 static uint_t
637 cyclic_coverage_hash(char *p)
638 {
639 	unsigned int g;
640 	uint_t hval;
641 
642 	hval = 0;
643 	while (*p) {
644 		hval = (hval << 4) + *p++;
645 		if ((g = (hval & 0xf0000000)) != 0)
646 			hval ^= g >> 24;
647 		hval &= ~g;
648 	}
649 	return (hval);
650 }
651 
652 static void
653 cyclic_coverage(char *why, int level, uint64_t arg0, uint64_t arg1)
654 {
655 	uint_t ndx, orig;
656 
657 	for (ndx = orig = cyclic_coverage_hash(why) % CY_NCOVERAGE; ; ) {
658 		if (cyc_coverage[ndx].cyv_why == why)
659 			break;
660 
661 		if (cyc_coverage[ndx].cyv_why != NULL ||
662 		    atomic_cas_ptr(&cyc_coverage[ndx].cyv_why, NULL, why) !=
663 		    NULL) {
664 
665 			if (++ndx == CY_NCOVERAGE)
666 				ndx = 0;
667 
668 			if (ndx == orig)
669 				panic("too many cyclic coverage points");
670 			continue;
671 		}
672 
673 		/*
674 		 * If we're here, we have successfully swung our guy into
675 		 * the position at "ndx".
676 		 */
677 		break;
678 	}
679 
680 	if (level == CY_PASSIVE_LEVEL)
681 		cyc_coverage[ndx].cyv_passive_count++;
682 	else
683 		cyc_coverage[ndx].cyv_count[level]++;
684 
685 	cyc_coverage[ndx].cyv_arg0 = arg0;
686 	cyc_coverage[ndx].cyv_arg1 = arg1;
687 }
688 
689 #define	CYC_TRACE(cpu, level, why, arg0, arg1) \
690 	CYC_TRACE_IMPL(&cpu->cyp_trace[level], level, why, arg0, arg1)
691 
692 #define	CYC_PTRACE(why, arg0, arg1) \
693 	CYC_TRACE_IMPL(&cyc_ptrace, CY_PASSIVE_LEVEL, why, arg0, arg1)
694 
695 #define	CYC_TRACE_IMPL(buf, level, why, a0, a1) { \
696 	if (panicstr == NULL) { \
697 		int _ndx = (buf)->cyt_ndx; \
698 		cyc_tracerec_t *_rec = &(buf)->cyt_buf[_ndx]; \
699 		(buf)->cyt_ndx = (++_ndx == CY_NTRACEREC) ? 0 : _ndx; \
700 		_rec->cyt_tstamp = gethrtime_unscaled(); \
701 		_rec->cyt_why = (why); \
702 		_rec->cyt_arg0 = (uint64_t)(uintptr_t)(a0); \
703 		_rec->cyt_arg1 = (uint64_t)(uintptr_t)(a1); \
704 		cyclic_coverage(why, level,	\
705 		    (uint64_t)(uintptr_t)(a0), (uint64_t)(uintptr_t)(a1)); \
706 	} \
707 }
708 
709 #else
710 
711 static int cyc_trace_enabled = 0;
712 
713 #define	CYC_TRACE(cpu, level, why, arg0, arg1)
714 #define	CYC_PTRACE(why, arg0, arg1)
715 
716 #endif
717 
718 #define	CYC_TRACE0(cpu, level, why) CYC_TRACE(cpu, level, why, 0, 0)
719 #define	CYC_TRACE1(cpu, level, why, arg0) CYC_TRACE(cpu, level, why, arg0, 0)
720 
721 #define	CYC_PTRACE0(why) CYC_PTRACE(why, 0, 0)
722 #define	CYC_PTRACE1(why, arg0) CYC_PTRACE(why, arg0, 0)
723 
724 static kmem_cache_t *cyclic_id_cache;
725 static cyc_id_t *cyclic_id_head;
726 static hrtime_t cyclic_resolution;
727 static cyc_backend_t cyclic_backend;
728 
729 /*
730  * Returns 1 if the upheap propagated to the root, 0 if it did not.  This
731  * allows the caller to reprogram the backend only when the root has been
732  * modified.
733  */
734 static int
735 cyclic_upheap(cyc_cpu_t *cpu, cyc_index_t ndx)
736 {
737 	cyclic_t *cyclics;
738 	cyc_index_t *heap;
739 	cyc_index_t heap_parent, heap_current = ndx;
740 	cyc_index_t parent, current;
741 
742 	if (heap_current == 0)
743 		return (1);
744 
745 	heap = cpu->cyp_heap;
746 	cyclics = cpu->cyp_cyclics;
747 	heap_parent = CYC_HEAP_PARENT(heap_current);
748 
749 	for (;;) {
750 		current = heap[heap_current];
751 		parent = heap[heap_parent];
752 
753 		/*
754 		 * We have an expiration time later than our parent; we're
755 		 * done.
756 		 */
757 		if (cyclics[current].cy_expire >= cyclics[parent].cy_expire)
758 			return (0);
759 
760 		/*
761 		 * We need to swap with our parent, and continue up the heap.
762 		 */
763 		heap[heap_parent] = current;
764 		heap[heap_current] = parent;
765 
766 		/*
767 		 * If we just reached the root, we're done.
768 		 */
769 		if (heap_parent == 0)
770 			return (1);
771 
772 		heap_current = heap_parent;
773 		heap_parent = CYC_HEAP_PARENT(heap_current);
774 	}
775 }
776 
777 static void
778 cyclic_downheap(cyc_cpu_t *cpu, cyc_index_t ndx)
779 {
780 	cyclic_t *cyclics = cpu->cyp_cyclics;
781 	cyc_index_t *heap = cpu->cyp_heap;
782 
783 	cyc_index_t heap_left, heap_right, heap_me = ndx;
784 	cyc_index_t left, right, me;
785 	cyc_index_t nelems = cpu->cyp_nelems;
786 
787 	for (;;) {
788 		/*
789 		 * If we don't have a left child (i.e., we're a leaf), we're
790 		 * done.
791 		 */
792 		if ((heap_left = CYC_HEAP_LEFT(heap_me)) >= nelems)
793 			return;
794 
795 		left = heap[heap_left];
796 		me = heap[heap_me];
797 
798 		heap_right = CYC_HEAP_RIGHT(heap_me);
799 
800 		/*
801 		 * Even if we don't have a right child, we still need to compare
802 		 * our expiration time against that of our left child.
803 		 */
804 		if (heap_right >= nelems)
805 			goto comp_left;
806 
807 		right = heap[heap_right];
808 
809 		/*
810 		 * We have both a left and a right child.  We need to compare
811 		 * the expiration times of the children to determine which
812 		 * expires earlier.
813 		 */
814 		if (cyclics[right].cy_expire < cyclics[left].cy_expire) {
815 			/*
816 			 * Our right child is the earlier of our children.
817 			 * We'll now compare our expiration time to its; if
818 			 * ours is the earlier, we're done.
819 			 */
820 			if (cyclics[me].cy_expire <= cyclics[right].cy_expire)
821 				return;
822 
823 			/*
824 			 * Our right child expires earlier than we do; swap
825 			 * with our right child, and descend right.
826 			 */
827 			heap[heap_right] = me;
828 			heap[heap_me] = right;
829 			heap_me = heap_right;
830 			continue;
831 		}
832 
833 comp_left:
834 		/*
835 		 * Our left child is the earlier of our children (or we have
836 		 * no right child).  We'll now compare our expiration time
837 		 * to its; if ours is the earlier, we're done.
838 		 */
839 		if (cyclics[me].cy_expire <= cyclics[left].cy_expire)
840 			return;
841 
842 		/*
843 		 * Our left child expires earlier than we do; swap with our
844 		 * left child, and descend left.
845 		 */
846 		heap[heap_left] = me;
847 		heap[heap_me] = left;
848 		heap_me = heap_left;
849 	}
850 }
851 
852 static void
853 cyclic_expire(cyc_cpu_t *cpu, cyc_index_t ndx, cyclic_t *cyclic)
854 {
855 	cyc_backend_t *be = cpu->cyp_backend;
856 	cyc_level_t level = cyclic->cy_level;
857 
858 	/*
859 	 * If this is a CY_HIGH_LEVEL cyclic, just call the handler; we don't
860 	 * need to worry about the pend count for CY_HIGH_LEVEL cyclics.
861 	 */
862 	if (level == CY_HIGH_LEVEL) {
863 		cyc_func_t handler = cyclic->cy_handler;
864 		void *arg = cyclic->cy_arg;
865 
866 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-in", handler, arg);
867 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
868 
869 		(*handler)(arg);
870 
871 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
872 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-out", handler, arg);
873 
874 		return;
875 	}
876 
877 	/*
878 	 * We're at CY_HIGH_LEVEL; this modification to cy_pend need not
879 	 * be atomic (the high interrupt level assures that it will appear
880 	 * atomic to any softint currently running).
881 	 */
882 	if (cyclic->cy_pend++ == 0) {
883 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[level];
884 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[softbuf->cys_hard];
885 
886 		/*
887 		 * We need to enqueue this cyclic in the soft buffer.
888 		 */
889 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-enq", cyclic,
890 		    pc->cypc_prodndx);
891 		pc->cypc_buf[pc->cypc_prodndx++ & pc->cypc_sizemask] = ndx;
892 
893 		ASSERT(pc->cypc_prodndx != pc->cypc_consndx);
894 	} else {
895 		/*
896 		 * If the pend count is zero after we incremented it, then
897 		 * we've wrapped (i.e. we had a cy_pend count of over four
898 		 * billion.  In this case, we clamp the pend count at
899 		 * UINT32_MAX.  Yes, cyclics can be lost in this case.
900 		 */
901 		if (cyclic->cy_pend == 0) {
902 			CYC_TRACE1(cpu, CY_HIGH_LEVEL, "expire-wrap", cyclic);
903 			cyclic->cy_pend = UINT32_MAX;
904 		}
905 
906 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-bump", cyclic, 0);
907 	}
908 
909 	be->cyb_softint(be->cyb_arg, cyclic->cy_level);
910 }
911 
912 /*
913  *  cyclic_fire(cpu_t *)
914  *
915  *  Overview
916  *
917  *    cyclic_fire() is the cyclic subsystem's CY_HIGH_LEVEL interrupt handler.
918  *    Called by the cyclic backend.
919  *
920  *  Arguments and notes
921  *
922  *    The only argument is the CPU on which the interrupt is executing;
923  *    backends must call into cyclic_fire() on the specified CPU.
924  *
925  *    cyclic_fire() may be called spuriously without ill effect.  Optimal
926  *    backends will call into cyclic_fire() at or shortly after the time
927  *    requested via cyb_reprogram().  However, calling cyclic_fire()
928  *    arbitrarily late will only manifest latency bubbles; the correctness
929  *    of the cyclic subsystem does not rely on the timeliness of the backend.
930  *
931  *    cyclic_fire() is wait-free; it will not block or spin.
932  *
933  *  Return values
934  *
935  *    None.
936  *
937  *  Caller's context
938  *
939  *    cyclic_fire() must be called from CY_HIGH_LEVEL interrupt context.
940  */
941 void
942 cyclic_fire(cpu_t *c)
943 {
944 	cyc_cpu_t *cpu = c->cpu_cyclic;
945 	cyc_backend_t *be = cpu->cyp_backend;
946 	cyc_index_t *heap = cpu->cyp_heap;
947 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
948 	void *arg = be->cyb_arg;
949 	hrtime_t now = gethrtime();
950 	hrtime_t exp;
951 
952 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire", now, 0);
953 
954 	if (cpu->cyp_nelems == 0) {
955 		/*
956 		 * This is a spurious fire.  Count it as such, and blow
957 		 * out of here.
958 		 */
959 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "fire-spurious");
960 		return;
961 	}
962 
963 	for (;;) {
964 		cyc_index_t ndx = heap[0];
965 
966 		cyclic = &cyclics[ndx];
967 
968 		ASSERT(!(cyclic->cy_flags & CYF_FREE));
969 
970 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire-check", cyclic,
971 		    cyclic->cy_expire);
972 
973 		if ((exp = cyclic->cy_expire) > now)
974 			break;
975 
976 		cyclic_expire(cpu, ndx, cyclic);
977 
978 		/*
979 		 * If the handler reprogrammed the cyclic, then don't
980 		 * recompute the expiration. Then, if the interval is
981 		 * infinity, set the expiration to infinity. This can
982 		 * be used to create one-shot timers.
983 		 */
984 		if (exp != cyclic->cy_expire) {
985 			/*
986 			 * If a hi level cyclic reprograms itself,
987 			 * the heap adjustment and reprogramming of the
988 			 * clock source have already been done at this
989 			 * point. So, we can continue.
990 			 */
991 			continue;
992 		}
993 
994 		if (cyclic->cy_interval == CY_INFINITY)
995 			exp = CY_INFINITY;
996 		else
997 			exp += cyclic->cy_interval;
998 
999 		/*
1000 		 * If this cyclic will be set to next expire in the distant
1001 		 * past, we have one of two situations:
1002 		 *
1003 		 *   a)	This is the first firing of a cyclic which had
1004 		 *	cy_expire set to 0.
1005 		 *
1006 		 *   b)	We are tragically late for a cyclic -- most likely
1007 		 *	due to being in the debugger.
1008 		 *
1009 		 * In either case, we set the new expiration time to be the
1010 		 * the next interval boundary.  This assures that the
1011 		 * expiration time modulo the interval is invariant.
1012 		 *
1013 		 * We arbitrarily define "distant" to be one second (one second
1014 		 * is chosen because it's shorter than any foray to the
1015 		 * debugger while still being longer than any legitimate
1016 		 * stretch at CY_HIGH_LEVEL).
1017 		 */
1018 
1019 		if (now - exp > NANOSEC) {
1020 			hrtime_t interval = cyclic->cy_interval;
1021 
1022 			CYC_TRACE(cpu, CY_HIGH_LEVEL, exp == interval ?
1023 			    "fire-first" : "fire-swing", now, exp);
1024 
1025 			exp += ((now - exp) / interval + 1) * interval;
1026 		}
1027 
1028 		cyclic->cy_expire = exp;
1029 		cyclic_downheap(cpu, 0);
1030 	}
1031 
1032 	/*
1033 	 * Now we have a cyclic in the root slot which isn't in the past;
1034 	 * reprogram the interrupt source.
1035 	 */
1036 	be->cyb_reprogram(arg, exp);
1037 }
1038 
1039 static void
1040 cyclic_remove_pend(cyc_cpu_t *cpu, cyc_level_t level, cyclic_t *cyclic)
1041 {
1042 	cyc_func_t handler = cyclic->cy_handler;
1043 	void *arg = cyclic->cy_arg;
1044 	uint32_t i, rpend = cpu->cyp_rpend - 1;
1045 
1046 	ASSERT(cyclic->cy_flags & CYF_FREE);
1047 	ASSERT(cyclic->cy_pend == 0);
1048 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1049 	ASSERT(cpu->cyp_rpend > 0);
1050 
1051 	CYC_TRACE(cpu, level, "remove-rpend", cyclic, cpu->cyp_rpend);
1052 
1053 	/*
1054 	 * Note that we only call the handler cyp_rpend - 1 times; this is
1055 	 * to account for the handler call in cyclic_softint().
1056 	 */
1057 	for (i = 0; i < rpend; i++) {
1058 		CYC_TRACE(cpu, level, "rpend-in", handler, arg);
1059 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
1060 
1061 		(*handler)(arg);
1062 
1063 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
1064 		CYC_TRACE(cpu, level, "rpend-out", handler, arg);
1065 	}
1066 
1067 	/*
1068 	 * We can now let the remove operation complete.
1069 	 */
1070 	sema_v(&cpu->cyp_modify_wait);
1071 }
1072 
1073 /*
1074  *  cyclic_softint(cpu_t *cpu, cyc_level_t level)
1075  *
1076  *  Overview
1077  *
1078  *    cyclic_softint() is the cyclic subsystem's CY_LOCK_LEVEL and CY_LOW_LEVEL
1079  *    soft interrupt handler.  Called by the cyclic backend.
1080  *
1081  *  Arguments and notes
1082  *
1083  *    The first argument to cyclic_softint() is the CPU on which the interrupt
1084  *    is executing; backends must call into cyclic_softint() on the specified
1085  *    CPU.  The second argument is the level of the soft interrupt; it must
1086  *    be one of CY_LOCK_LEVEL or CY_LOW_LEVEL.
1087  *
1088  *    cyclic_softint() will call the handlers for cyclics pending at the
1089  *    specified level.  cyclic_softint() will not return until all pending
1090  *    cyclics at the specified level have been dealt with; intervening
1091  *    CY_HIGH_LEVEL interrupts which enqueue cyclics at the specified level
1092  *    may therefore prolong cyclic_softint().
1093  *
1094  *    cyclic_softint() never disables interrupts, and, if neither a
1095  *    cyclic_add() nor a cyclic_remove() is pending on the specified CPU, is
1096  *    lock-free.  This assures that in the common case, cyclic_softint()
1097  *    completes without blocking, and never starves cyclic_fire().  If either
1098  *    cyclic_add() or cyclic_remove() is pending, cyclic_softint() may grab
1099  *    a dispatcher lock.
1100  *
1101  *    While cyclic_softint() is designed for bounded latency, it is obviously
1102  *    at the mercy of its cyclic handlers.  Because cyclic handlers may block
1103  *    arbitrarily, callers of cyclic_softint() should not rely upon
1104  *    deterministic completion.
1105  *
1106  *    cyclic_softint() may be called spuriously without ill effect.
1107  *
1108  *  Return value
1109  *
1110  *    None.
1111  *
1112  *  Caller's context
1113  *
1114  *    The caller must be executing in soft interrupt context at either
1115  *    CY_LOCK_LEVEL or CY_LOW_LEVEL.  The level passed to cyclic_softint()
1116  *    must match the level at which it is executing.  On optimal backends,
1117  *    the caller will hold no locks.  In any case, the caller may not hold
1118  *    cpu_lock or any lock acquired by any cyclic handler or held across
1119  *    any of cyclic_add(), cyclic_remove(), cyclic_bind() or cyclic_juggle().
1120  */
1121 void
1122 cyclic_softint(cpu_t *c, cyc_level_t level)
1123 {
1124 	cyc_cpu_t *cpu = c->cpu_cyclic;
1125 	cyc_softbuf_t *softbuf;
1126 	int soft, *buf, consndx, resized = 0, intr_resized = 0;
1127 	cyc_pcbuffer_t *pc;
1128 	cyclic_t *cyclics = cpu->cyp_cyclics;
1129 	int sizemask;
1130 
1131 	CYC_TRACE(cpu, level, "softint", cyclics, 0);
1132 
1133 	ASSERT(level < CY_LOW_LEVEL + CY_SOFT_LEVELS);
1134 
1135 	softbuf = &cpu->cyp_softbuf[level];
1136 top:
1137 	soft = softbuf->cys_soft;
1138 	ASSERT(soft == 0 || soft == 1);
1139 
1140 	pc = &softbuf->cys_buf[soft];
1141 	buf = pc->cypc_buf;
1142 	consndx = pc->cypc_consndx;
1143 	sizemask = pc->cypc_sizemask;
1144 
1145 	CYC_TRACE(cpu, level, "softint-top", cyclics, pc);
1146 
1147 	while (consndx != pc->cypc_prodndx) {
1148 		uint32_t pend, npend, opend;
1149 		int consmasked = consndx & sizemask;
1150 		cyclic_t *cyclic = &cyclics[buf[consmasked]];
1151 		cyc_func_t handler = cyclic->cy_handler;
1152 		void *arg = cyclic->cy_arg;
1153 
1154 		ASSERT(buf[consmasked] < cpu->cyp_size);
1155 		CYC_TRACE(cpu, level, "consuming", consndx, cyclic);
1156 
1157 		/*
1158 		 * We have found this cyclic in the pcbuffer.  We know that
1159 		 * one of the following is true:
1160 		 *
1161 		 *  (a)	The pend is non-zero.  We need to execute the handler
1162 		 *	at least once.
1163 		 *
1164 		 *  (b)	The pend _was_ non-zero, but it's now zero due to a
1165 		 *	resize.  We will call the handler once, see that we
1166 		 *	are in this case, and read the new cyclics buffer
1167 		 *	(and hence the old non-zero pend).
1168 		 *
1169 		 *  (c)	The pend _was_ non-zero, but it's now zero due to a
1170 		 *	removal.  We will call the handler once, see that we
1171 		 *	are in this case, and call into cyclic_remove_pend()
1172 		 *	to call the cyclic rpend times.  We will take into
1173 		 *	account that we have already called the handler once.
1174 		 *
1175 		 * Point is:  it's safe to call the handler without first
1176 		 * checking the pend.
1177 		 */
1178 		do {
1179 			CYC_TRACE(cpu, level, "handler-in", handler, arg);
1180 			DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
1181 
1182 			(*handler)(arg);
1183 
1184 			DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
1185 			CYC_TRACE(cpu, level, "handler-out", handler, arg);
1186 reread:
1187 			pend = cyclic->cy_pend;
1188 			npend = pend - 1;
1189 
1190 			if (pend == 0) {
1191 				if (cpu->cyp_state == CYS_REMOVING) {
1192 					/*
1193 					 * This cyclic has been removed while
1194 					 * it had a non-zero pend count (we
1195 					 * know it was non-zero because we
1196 					 * found this cyclic in the pcbuffer).
1197 					 * There must be a non-zero rpend for
1198 					 * this CPU, and there must be a remove
1199 					 * operation blocking; we'll call into
1200 					 * cyclic_remove_pend() to clean this
1201 					 * up, and break out of the pend loop.
1202 					 */
1203 					cyclic_remove_pend(cpu, level, cyclic);
1204 					break;
1205 				}
1206 
1207 				/*
1208 				 * We must have had a resize interrupt us.
1209 				 */
1210 				CYC_TRACE(cpu, level, "resize-int", cyclics, 0);
1211 				ASSERT(cpu->cyp_state == CYS_EXPANDING);
1212 				ASSERT(cyclics != cpu->cyp_cyclics);
1213 				ASSERT(resized == 0);
1214 				ASSERT(intr_resized == 0);
1215 				intr_resized = 1;
1216 				cyclics = cpu->cyp_cyclics;
1217 				cyclic = &cyclics[buf[consmasked]];
1218 				ASSERT(cyclic->cy_handler == handler);
1219 				ASSERT(cyclic->cy_arg == arg);
1220 				goto reread;
1221 			}
1222 
1223 			if ((opend =
1224 			    atomic_cas_32(&cyclic->cy_pend, pend, npend)) !=
1225 			    pend) {
1226 				/*
1227 				 * Our atomic_cas_32 can fail for one of several
1228 				 * reasons:
1229 				 *
1230 				 *  (a)	An intervening high level bumped up the
1231 				 *	pend count on this cyclic.  In this
1232 				 *	case, we will see a higher pend.
1233 				 *
1234 				 *  (b)	The cyclics array has been yanked out
1235 				 *	from underneath us by a resize
1236 				 *	operation.  In this case, pend is 0 and
1237 				 *	cyp_state is CYS_EXPANDING.
1238 				 *
1239 				 *  (c)	The cyclic has been removed by an
1240 				 *	intervening remove-xcall.  In this case,
1241 				 *	pend will be 0, the cyp_state will be
1242 				 *	CYS_REMOVING, and the cyclic will be
1243 				 *	marked CYF_FREE.
1244 				 *
1245 				 * The assertion below checks that we are
1246 				 * in one of the above situations.  The
1247 				 * action under all three is to return to
1248 				 * the top of the loop.
1249 				 */
1250 				CYC_TRACE(cpu, level, "cas-fail", opend, pend);
1251 				ASSERT(opend > pend || (opend == 0 &&
1252 				    ((cyclics != cpu->cyp_cyclics &&
1253 				    cpu->cyp_state == CYS_EXPANDING) ||
1254 				    (cpu->cyp_state == CYS_REMOVING &&
1255 				    (cyclic->cy_flags & CYF_FREE)))));
1256 				goto reread;
1257 			}
1258 
1259 			/*
1260 			 * Okay, so we've managed to successfully decrement
1261 			 * pend.  If we just decremented the pend to 0, we're
1262 			 * done.
1263 			 */
1264 		} while (npend > 0);
1265 
1266 		pc->cypc_consndx = ++consndx;
1267 	}
1268 
1269 	/*
1270 	 * If the high level handler is no longer writing to the same
1271 	 * buffer, then we've had a resize.  We need to switch our soft
1272 	 * index, and goto top.
1273 	 */
1274 	if (soft != softbuf->cys_hard) {
1275 		/*
1276 		 * We can assert that the other buffer has grown by exactly
1277 		 * one factor of two.
1278 		 */
1279 		CYC_TRACE(cpu, level, "buffer-grow", 0, 0);
1280 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
1281 		ASSERT(softbuf->cys_buf[softbuf->cys_hard].cypc_sizemask ==
1282 		    (softbuf->cys_buf[soft].cypc_sizemask << 1) + 1 ||
1283 		    softbuf->cys_buf[soft].cypc_sizemask == 0);
1284 		ASSERT(softbuf->cys_hard == (softbuf->cys_soft ^ 1));
1285 
1286 		/*
1287 		 * If our cached cyclics pointer doesn't match cyp_cyclics,
1288 		 * then we took a resize between our last iteration of the
1289 		 * pend loop and the check against softbuf->cys_hard.
1290 		 */
1291 		if (cpu->cyp_cyclics != cyclics) {
1292 			CYC_TRACE1(cpu, level, "resize-int-int", consndx);
1293 			cyclics = cpu->cyp_cyclics;
1294 		}
1295 
1296 		softbuf->cys_soft = softbuf->cys_hard;
1297 
1298 		ASSERT(resized == 0);
1299 		resized = 1;
1300 		goto top;
1301 	}
1302 
1303 	/*
1304 	 * If we were interrupted by a resize operation, then we must have
1305 	 * seen the hard index change.
1306 	 */
1307 	ASSERT(!(intr_resized == 1 && resized == 0));
1308 
1309 	if (resized) {
1310 		uint32_t lev, nlev;
1311 
1312 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
1313 
1314 		do {
1315 			lev = cpu->cyp_modify_levels;
1316 			nlev = lev + 1;
1317 		} while (atomic_cas_32(&cpu->cyp_modify_levels, lev, nlev) !=
1318 		    lev);
1319 
1320 		/*
1321 		 * If we are the last soft level to see the modification,
1322 		 * post on cyp_modify_wait.  Otherwise, (if we're not
1323 		 * already at low level), post down to the next soft level.
1324 		 */
1325 		if (nlev == CY_SOFT_LEVELS) {
1326 			CYC_TRACE0(cpu, level, "resize-kick");
1327 			sema_v(&cpu->cyp_modify_wait);
1328 		} else {
1329 			ASSERT(nlev < CY_SOFT_LEVELS);
1330 			if (level != CY_LOW_LEVEL) {
1331 				cyc_backend_t *be = cpu->cyp_backend;
1332 
1333 				CYC_TRACE0(cpu, level, "resize-post");
1334 				be->cyb_softint(be->cyb_arg, level - 1);
1335 			}
1336 		}
1337 	}
1338 }
1339 
1340 static void
1341 cyclic_expand_xcall(cyc_xcallarg_t *arg)
1342 {
1343 	cyc_cpu_t *cpu = arg->cyx_cpu;
1344 	cyc_backend_t *be = cpu->cyp_backend;
1345 	cyb_arg_t bar = be->cyb_arg;
1346 	cyc_cookie_t cookie;
1347 	cyc_index_t new_size = arg->cyx_size, size = cpu->cyp_size, i;
1348 	cyc_index_t *new_heap = arg->cyx_heap;
1349 	cyclic_t *cyclics = cpu->cyp_cyclics, *new_cyclics = arg->cyx_cyclics;
1350 
1351 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
1352 
1353 	/*
1354 	 * This is a little dicey.  First, we'll raise our interrupt level
1355 	 * to CY_HIGH_LEVEL.  This CPU already has a new heap, cyclic array,
1356 	 * etc.; we just need to bcopy them across.  As for the softint
1357 	 * buffers, we'll switch the active buffers.  The actual softints will
1358 	 * take care of consuming any pending cyclics in the old buffer.
1359 	 */
1360 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1361 
1362 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "expand", new_size, 0);
1363 
1364 	/*
1365 	 * Assert that the new size is a power of 2.
1366 	 */
1367 	ASSERT((new_size & new_size - 1) == 0);
1368 	ASSERT(new_size == (size << 1));
1369 	ASSERT(cpu->cyp_heap != NULL && cpu->cyp_cyclics != NULL);
1370 
1371 	bcopy(cpu->cyp_heap, new_heap, sizeof (cyc_index_t) * size);
1372 	bcopy(cyclics, new_cyclics, sizeof (cyclic_t) * size);
1373 
1374 	/*
1375 	 * Now run through the old cyclics array, setting pend to 0.  To
1376 	 * softints (which are executing at a lower priority level), the
1377 	 * pends dropping to 0 will appear atomic with the cyp_cyclics
1378 	 * pointer changing.
1379 	 */
1380 	for (i = 0; i < size; i++)
1381 		cyclics[i].cy_pend = 0;
1382 
1383 	/*
1384 	 * Set up the free list, and set all of the new cyclics to be CYF_FREE.
1385 	 */
1386 	for (i = size; i < new_size; i++) {
1387 		new_heap[i] = i;
1388 		new_cyclics[i].cy_flags = CYF_FREE;
1389 	}
1390 
1391 	/*
1392 	 * We can go ahead and plow the value of cyp_heap and cyp_cyclics;
1393 	 * cyclic_expand() has kept a copy.
1394 	 */
1395 	cpu->cyp_heap = new_heap;
1396 	cpu->cyp_cyclics = new_cyclics;
1397 	cpu->cyp_size = new_size;
1398 
1399 	/*
1400 	 * We've switched over the heap and the cyclics array.  Now we need
1401 	 * to switch over our active softint buffer pointers.
1402 	 */
1403 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1404 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1405 		uchar_t hard = softbuf->cys_hard;
1406 
1407 		/*
1408 		 * Assert that we're not in the middle of a resize operation.
1409 		 */
1410 		ASSERT(hard == softbuf->cys_soft);
1411 		ASSERT(hard == 0 || hard == 1);
1412 		ASSERT(softbuf->cys_buf[hard].cypc_buf != NULL);
1413 
1414 		softbuf->cys_hard = hard ^ 1;
1415 
1416 		/*
1417 		 * The caller (cyclic_expand()) is responsible for setting
1418 		 * up the new producer-consumer buffer; assert that it's
1419 		 * been done correctly.
1420 		 */
1421 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf != NULL);
1422 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_prodndx == 0);
1423 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_consndx == 0);
1424 	}
1425 
1426 	/*
1427 	 * That's all there is to it; now we just need to postdown to
1428 	 * get the softint chain going.
1429 	 */
1430 	be->cyb_softint(bar, CY_HIGH_LEVEL - 1);
1431 	be->cyb_restore_level(bar, cookie);
1432 }
1433 
1434 /*
1435  * cyclic_expand() will cross call onto the CPU to perform the actual
1436  * expand operation.
1437  */
1438 static void
1439 cyclic_expand(cyc_cpu_t *cpu)
1440 {
1441 	cyc_index_t new_size, old_size;
1442 	cyc_index_t *new_heap, *old_heap;
1443 	cyclic_t *new_cyclics, *old_cyclics;
1444 	cyc_xcallarg_t arg;
1445 	cyc_backend_t *be = cpu->cyp_backend;
1446 	char old_hard;
1447 	int i;
1448 
1449 	ASSERT(MUTEX_HELD(&cpu_lock));
1450 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1451 
1452 	cpu->cyp_state = CYS_EXPANDING;
1453 
1454 	old_heap = cpu->cyp_heap;
1455 	old_cyclics = cpu->cyp_cyclics;
1456 
1457 	if ((new_size = ((old_size = cpu->cyp_size) << 1)) == 0) {
1458 		new_size = CY_DEFAULT_PERCPU;
1459 		ASSERT(old_heap == NULL && old_cyclics == NULL);
1460 	}
1461 
1462 	/*
1463 	 * Check that the new_size is a power of 2.
1464 	 */
1465 	ASSERT((new_size - 1 & new_size) == 0);
1466 
1467 	new_heap = kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
1468 	new_cyclics = kmem_zalloc(sizeof (cyclic_t) * new_size, KM_SLEEP);
1469 
1470 	/*
1471 	 * We know that no other expansions are in progress (they serialize
1472 	 * on cpu_lock), so we can safely read the softbuf metadata.
1473 	 */
1474 	old_hard = cpu->cyp_softbuf[0].cys_hard;
1475 
1476 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1477 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1478 		char hard = softbuf->cys_hard;
1479 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
1480 
1481 		ASSERT(hard == old_hard);
1482 		ASSERT(hard == softbuf->cys_soft);
1483 		ASSERT(pc->cypc_buf == NULL);
1484 
1485 		pc->cypc_buf =
1486 		    kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
1487 		pc->cypc_prodndx = pc->cypc_consndx = 0;
1488 		pc->cypc_sizemask = new_size - 1;
1489 	}
1490 
1491 	arg.cyx_cpu = cpu;
1492 	arg.cyx_heap = new_heap;
1493 	arg.cyx_cyclics = new_cyclics;
1494 	arg.cyx_size = new_size;
1495 
1496 	cpu->cyp_modify_levels = 0;
1497 
1498 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
1499 	    (cyc_func_t)cyclic_expand_xcall, &arg);
1500 
1501 	/*
1502 	 * Now block, waiting for the resize operation to complete.
1503 	 */
1504 	sema_p(&cpu->cyp_modify_wait);
1505 	ASSERT(cpu->cyp_modify_levels == CY_SOFT_LEVELS);
1506 
1507 	/*
1508 	 * The operation is complete; we can now free the old buffers.
1509 	 */
1510 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1511 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1512 		char hard = softbuf->cys_hard;
1513 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
1514 
1515 		ASSERT(hard == (old_hard ^ 1));
1516 		ASSERT(hard == softbuf->cys_soft);
1517 
1518 		if (pc->cypc_buf == NULL)
1519 			continue;
1520 
1521 		ASSERT(pc->cypc_sizemask == ((new_size - 1) >> 1));
1522 
1523 		kmem_free(pc->cypc_buf,
1524 		    sizeof (cyc_index_t) * (pc->cypc_sizemask + 1));
1525 		pc->cypc_buf = NULL;
1526 	}
1527 
1528 	if (old_cyclics != NULL) {
1529 		ASSERT(old_heap != NULL);
1530 		ASSERT(old_size != 0);
1531 		kmem_free(old_cyclics, sizeof (cyclic_t) * old_size);
1532 		kmem_free(old_heap, sizeof (cyc_index_t) * old_size);
1533 	}
1534 
1535 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
1536 	cpu->cyp_state = CYS_ONLINE;
1537 }
1538 
1539 /*
1540  * cyclic_pick_cpu will attempt to pick a CPU according to the constraints
1541  * specified by the partition, bound CPU, and flags.  Additionally,
1542  * cyclic_pick_cpu() will not pick the avoid CPU; it will return NULL if
1543  * the avoid CPU is the only CPU which satisfies the constraints.
1544  *
1545  * If CYF_CPU_BOUND is set in flags, the specified CPU must be non-NULL.
1546  * If CYF_PART_BOUND is set in flags, the specified partition must be non-NULL.
1547  * If both CYF_CPU_BOUND and CYF_PART_BOUND are set, the specified CPU must
1548  * be in the specified partition.
1549  */
1550 static cyc_cpu_t *
1551 cyclic_pick_cpu(cpupart_t *part, cpu_t *bound, cpu_t *avoid, uint16_t flags)
1552 {
1553 	cpu_t *c, *start = (part != NULL) ? part->cp_cpulist : CPU;
1554 	cpu_t *online = NULL;
1555 	uintptr_t offset;
1556 
1557 	CYC_PTRACE("pick-cpu", part, bound);
1558 
1559 	ASSERT(!(flags & CYF_CPU_BOUND) || bound != NULL);
1560 	ASSERT(!(flags & CYF_PART_BOUND) || part != NULL);
1561 
1562 	/*
1563 	 * If we're bound to our CPU, there isn't much choice involved.  We
1564 	 * need to check that the CPU passed as bound is in the cpupart, and
1565 	 * that the CPU that we're binding to has been configured.
1566 	 */
1567 	if (flags & CYF_CPU_BOUND) {
1568 		CYC_PTRACE("pick-cpu-bound", bound, avoid);
1569 
1570 		if ((flags & CYF_PART_BOUND) && bound->cpu_part != part)
1571 			panic("cyclic_pick_cpu:  "
1572 			    "CPU binding contradicts partition binding");
1573 
1574 		if (bound == avoid)
1575 			return (NULL);
1576 
1577 		if (bound->cpu_cyclic == NULL)
1578 			panic("cyclic_pick_cpu:  "
1579 			    "attempt to bind to non-configured CPU");
1580 
1581 		return (bound->cpu_cyclic);
1582 	}
1583 
1584 	if (flags & CYF_PART_BOUND) {
1585 		CYC_PTRACE("pick-part-bound", bound, avoid);
1586 		offset = offsetof(cpu_t, cpu_next_part);
1587 	} else {
1588 		offset = offsetof(cpu_t, cpu_next_onln);
1589 	}
1590 
1591 	c = start;
1592 	do {
1593 		if (c->cpu_cyclic == NULL)
1594 			continue;
1595 
1596 		if (c->cpu_cyclic->cyp_state == CYS_OFFLINE)
1597 			continue;
1598 
1599 		if (c == avoid)
1600 			continue;
1601 
1602 		if (c->cpu_flags & CPU_ENABLE)
1603 			goto found;
1604 
1605 		if (online == NULL)
1606 			online = c;
1607 	} while ((c = *(cpu_t **)((uintptr_t)c + offset)) != start);
1608 
1609 	/*
1610 	 * If we're here, we're in one of two situations:
1611 	 *
1612 	 *  (a)	We have a partition-bound cyclic, and there is no CPU in
1613 	 *	our partition which is CPU_ENABLE'd.  If we saw another
1614 	 *	non-CYS_OFFLINE CPU in our partition, we'll go with it.
1615 	 *	If not, the avoid CPU must be the only non-CYS_OFFLINE
1616 	 *	CPU in the partition; we're forced to return NULL.
1617 	 *
1618 	 *  (b)	We have a partition-unbound cyclic, in which case there
1619 	 *	must only be one CPU CPU_ENABLE'd, and it must be the one
1620 	 *	we're trying to avoid.  If cyclic_juggle()/cyclic_offline()
1621 	 *	are called appropriately, this generally shouldn't happen
1622 	 *	(the offline should fail before getting to this code).
1623 	 *	At any rate: we can't avoid the avoid CPU, so we return
1624 	 *	NULL.
1625 	 */
1626 	if (!(flags & CYF_PART_BOUND)) {
1627 		ASSERT(avoid->cpu_flags & CPU_ENABLE);
1628 		return (NULL);
1629 	}
1630 
1631 	CYC_PTRACE("pick-no-intr", part, avoid);
1632 
1633 	if ((c = online) != NULL)
1634 		goto found;
1635 
1636 	CYC_PTRACE("pick-fail", part, avoid);
1637 	ASSERT(avoid->cpu_part == start->cpu_part);
1638 	return (NULL);
1639 
1640 found:
1641 	CYC_PTRACE("pick-cpu-found", c, avoid);
1642 	ASSERT(c != avoid);
1643 	ASSERT(c->cpu_cyclic != NULL);
1644 
1645 	return (c->cpu_cyclic);
1646 }
1647 
1648 static void
1649 cyclic_add_xcall(cyc_xcallarg_t *arg)
1650 {
1651 	cyc_cpu_t *cpu = arg->cyx_cpu;
1652 	cyc_handler_t *hdlr = arg->cyx_hdlr;
1653 	cyc_time_t *when = arg->cyx_when;
1654 	cyc_backend_t *be = cpu->cyp_backend;
1655 	cyc_index_t ndx, nelems;
1656 	cyc_cookie_t cookie;
1657 	cyb_arg_t bar = be->cyb_arg;
1658 	cyclic_t *cyclic;
1659 
1660 	ASSERT(cpu->cyp_nelems < cpu->cyp_size);
1661 
1662 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1663 
1664 	CYC_TRACE(cpu, CY_HIGH_LEVEL,
1665 	    "add-xcall", when->cyt_when, when->cyt_interval);
1666 
1667 	nelems = cpu->cyp_nelems++;
1668 
1669 	if (nelems == 0) {
1670 		/*
1671 		 * If this is the first element, we need to enable the
1672 		 * backend on this CPU.
1673 		 */
1674 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "enabled");
1675 		be->cyb_enable(bar);
1676 	}
1677 
1678 	ndx = cpu->cyp_heap[nelems];
1679 	cyclic = &cpu->cyp_cyclics[ndx];
1680 
1681 	ASSERT(cyclic->cy_flags == CYF_FREE);
1682 	cyclic->cy_interval = when->cyt_interval;
1683 
1684 	if (when->cyt_when == 0) {
1685 		/*
1686 		 * If a start time hasn't been explicitly specified, we'll
1687 		 * start on the next interval boundary.
1688 		 */
1689 		cyclic->cy_expire = (gethrtime() / cyclic->cy_interval + 1) *
1690 		    cyclic->cy_interval;
1691 	} else {
1692 		cyclic->cy_expire = when->cyt_when;
1693 	}
1694 
1695 	cyclic->cy_handler = hdlr->cyh_func;
1696 	cyclic->cy_arg = hdlr->cyh_arg;
1697 	cyclic->cy_level = hdlr->cyh_level;
1698 	cyclic->cy_flags = arg->cyx_flags;
1699 
1700 	if (cyclic_upheap(cpu, nelems)) {
1701 		hrtime_t exp = cyclic->cy_expire;
1702 
1703 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "add-reprog", cyclic, exp);
1704 
1705 		/*
1706 		 * If our upheap propagated to the root, we need to
1707 		 * reprogram the interrupt source.
1708 		 */
1709 		be->cyb_reprogram(bar, exp);
1710 	}
1711 	be->cyb_restore_level(bar, cookie);
1712 
1713 	arg->cyx_ndx = ndx;
1714 }
1715 
1716 static cyc_index_t
1717 cyclic_add_here(cyc_cpu_t *cpu, cyc_handler_t *hdlr,
1718     cyc_time_t *when, uint16_t flags)
1719 {
1720 	cyc_backend_t *be = cpu->cyp_backend;
1721 	cyb_arg_t bar = be->cyb_arg;
1722 	cyc_xcallarg_t arg;
1723 
1724 	CYC_PTRACE("add-cpu", cpu, hdlr->cyh_func);
1725 	ASSERT(MUTEX_HELD(&cpu_lock));
1726 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1727 	ASSERT(!(cpu->cyp_cpu->cpu_flags & CPU_OFFLINE));
1728 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
1729 
1730 	if (cpu->cyp_nelems == cpu->cyp_size) {
1731 		/*
1732 		 * This is expensive; it will cross call onto the other
1733 		 * CPU to perform the expansion.
1734 		 */
1735 		cyclic_expand(cpu);
1736 		ASSERT(cpu->cyp_nelems < cpu->cyp_size);
1737 	}
1738 
1739 	/*
1740 	 * By now, we know that we're going to be able to successfully
1741 	 * perform the add.  Now cross call over to the CPU of interest to
1742 	 * actually add our cyclic.
1743 	 */
1744 	arg.cyx_cpu = cpu;
1745 	arg.cyx_hdlr = hdlr;
1746 	arg.cyx_when = when;
1747 	arg.cyx_flags = flags;
1748 
1749 	be->cyb_xcall(bar, cpu->cyp_cpu, (cyc_func_t)cyclic_add_xcall, &arg);
1750 
1751 	CYC_PTRACE("add-cpu-done", cpu, arg.cyx_ndx);
1752 
1753 	return (arg.cyx_ndx);
1754 }
1755 
1756 static void
1757 cyclic_remove_xcall(cyc_xcallarg_t *arg)
1758 {
1759 	cyc_cpu_t *cpu = arg->cyx_cpu;
1760 	cyc_backend_t *be = cpu->cyp_backend;
1761 	cyb_arg_t bar = be->cyb_arg;
1762 	cyc_cookie_t cookie;
1763 	cyc_index_t ndx = arg->cyx_ndx, nelems, i;
1764 	cyc_index_t *heap, last;
1765 	cyclic_t *cyclic;
1766 #ifdef DEBUG
1767 	cyc_index_t root;
1768 #endif
1769 
1770 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1771 
1772 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1773 
1774 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-xcall", ndx);
1775 
1776 	heap = cpu->cyp_heap;
1777 	nelems = cpu->cyp_nelems;
1778 	ASSERT(nelems > 0);
1779 	cyclic = &cpu->cyp_cyclics[ndx];
1780 
1781 	/*
1782 	 * Grab the current expiration time.  If this cyclic is being
1783 	 * removed as part of a juggling operation, the expiration time
1784 	 * will be used when the cyclic is added to the new CPU.
1785 	 */
1786 	if (arg->cyx_when != NULL) {
1787 		arg->cyx_when->cyt_when = cyclic->cy_expire;
1788 		arg->cyx_when->cyt_interval = cyclic->cy_interval;
1789 	}
1790 
1791 	if (cyclic->cy_pend != 0) {
1792 		/*
1793 		 * The pend is non-zero; this cyclic is currently being
1794 		 * executed (or will be executed shortly).  If the caller
1795 		 * refuses to wait, we must return (doing nothing).  Otherwise,
1796 		 * we will stash the pend value * in this CPU's rpend, and
1797 		 * then zero it out.  The softint in the pend loop will see
1798 		 * that we have zeroed out pend, and will call the cyclic
1799 		 * handler rpend times.  The caller will wait until the
1800 		 * softint has completed calling the cyclic handler.
1801 		 */
1802 		if (arg->cyx_wait == CY_NOWAIT) {
1803 			arg->cyx_wait = CY_WAIT;
1804 			goto out;
1805 		}
1806 
1807 		ASSERT(cyclic->cy_level != CY_HIGH_LEVEL);
1808 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-pend", cyclic->cy_pend);
1809 		cpu->cyp_rpend = cyclic->cy_pend;
1810 		cyclic->cy_pend = 0;
1811 	}
1812 
1813 	/*
1814 	 * Now set the flags to CYF_FREE.  We don't need a membar_enter()
1815 	 * between zeroing pend and setting the flags because we're at
1816 	 * CY_HIGH_LEVEL (that is, the zeroing of pend and the setting
1817 	 * of cy_flags appear atomic to softints).
1818 	 */
1819 	cyclic->cy_flags = CYF_FREE;
1820 
1821 	for (i = 0; i < nelems; i++) {
1822 		if (heap[i] == ndx)
1823 			break;
1824 	}
1825 
1826 	if (i == nelems)
1827 		panic("attempt to remove non-existent cyclic");
1828 
1829 	cpu->cyp_nelems = --nelems;
1830 
1831 	if (nelems == 0) {
1832 		/*
1833 		 * If we just removed the last element, then we need to
1834 		 * disable the backend on this CPU.
1835 		 */
1836 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "disabled");
1837 		be->cyb_disable(bar);
1838 	}
1839 
1840 	if (i == nelems) {
1841 		/*
1842 		 * If we just removed the last element of the heap, then
1843 		 * we don't have to downheap.
1844 		 */
1845 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-bottom");
1846 		goto out;
1847 	}
1848 
1849 #ifdef DEBUG
1850 	root = heap[0];
1851 #endif
1852 
1853 	/*
1854 	 * Swap the last element of the heap with the one we want to
1855 	 * remove, and downheap (this has the implicit effect of putting
1856 	 * the newly freed element on the free list).
1857 	 */
1858 	heap[i] = (last = heap[nelems]);
1859 	heap[nelems] = ndx;
1860 
1861 	if (i == 0) {
1862 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-root");
1863 		cyclic_downheap(cpu, 0);
1864 	} else {
1865 		if (cyclic_upheap(cpu, i) == 0) {
1866 			/*
1867 			 * The upheap didn't propagate to the root; if it
1868 			 * didn't propagate at all, we need to downheap.
1869 			 */
1870 			CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-root");
1871 			if (heap[i] == last) {
1872 				CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-up");
1873 				cyclic_downheap(cpu, i);
1874 			}
1875 			ASSERT(heap[0] == root);
1876 			goto out;
1877 		}
1878 	}
1879 
1880 	/*
1881 	 * We're here because we changed the root; we need to reprogram
1882 	 * the clock source.
1883 	 */
1884 	cyclic = &cpu->cyp_cyclics[heap[0]];
1885 
1886 	CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-reprog");
1887 
1888 	ASSERT(nelems != 0);
1889 	be->cyb_reprogram(bar, cyclic->cy_expire);
1890 out:
1891 	be->cyb_restore_level(bar, cookie);
1892 }
1893 
1894 static int
1895 cyclic_remove_here(cyc_cpu_t *cpu, cyc_index_t ndx, cyc_time_t *when, int wait)
1896 {
1897 	cyc_backend_t *be = cpu->cyp_backend;
1898 	cyc_xcallarg_t arg;
1899 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
1900 	cyc_level_t level = cyclic->cy_level;
1901 
1902 	ASSERT(MUTEX_HELD(&cpu_lock));
1903 	ASSERT(cpu->cyp_rpend == 0);
1904 	ASSERT(wait == CY_WAIT || wait == CY_NOWAIT);
1905 
1906 	arg.cyx_ndx = ndx;
1907 	arg.cyx_cpu = cpu;
1908 	arg.cyx_when = when;
1909 	arg.cyx_wait = wait;
1910 
1911 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1912 	cpu->cyp_state = CYS_REMOVING;
1913 
1914 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
1915 	    (cyc_func_t)cyclic_remove_xcall, &arg);
1916 
1917 	/*
1918 	 * If the cyclic we removed wasn't at CY_HIGH_LEVEL, then we need to
1919 	 * check the cyp_rpend.  If it's non-zero, then we need to wait here
1920 	 * for all pending cyclic handlers to run.
1921 	 */
1922 	ASSERT(!(level == CY_HIGH_LEVEL && cpu->cyp_rpend != 0));
1923 	ASSERT(!(wait == CY_NOWAIT && cpu->cyp_rpend != 0));
1924 	ASSERT(!(arg.cyx_wait == CY_NOWAIT && cpu->cyp_rpend != 0));
1925 
1926 	if (wait != arg.cyx_wait) {
1927 		/*
1928 		 * We are being told that we must wait if we want to
1929 		 * remove this cyclic; put the CPU back in the CYS_ONLINE
1930 		 * state and return failure.
1931 		 */
1932 		ASSERT(wait == CY_NOWAIT && arg.cyx_wait == CY_WAIT);
1933 		ASSERT(cpu->cyp_state == CYS_REMOVING);
1934 		cpu->cyp_state = CYS_ONLINE;
1935 
1936 		return (0);
1937 	}
1938 
1939 	if (cpu->cyp_rpend != 0)
1940 		sema_p(&cpu->cyp_modify_wait);
1941 
1942 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1943 
1944 	cpu->cyp_rpend = 0;
1945 	cpu->cyp_state = CYS_ONLINE;
1946 
1947 	return (1);
1948 }
1949 
1950 /*
1951  * If cyclic_reprogram() is called on the same CPU as the cyclic's CPU, then
1952  * it calls this function directly. Else, it invokes this function through
1953  * an X-call to the cyclic's CPU.
1954  */
1955 static void
1956 cyclic_reprogram_cyclic(cyc_cpu_t *cpu, cyc_index_t ndx, hrtime_t expire)
1957 {
1958 	cyc_backend_t *be = cpu->cyp_backend;
1959 	cyb_arg_t bar = be->cyb_arg;
1960 	cyc_cookie_t cookie;
1961 	cyc_index_t nelems, i;
1962 	cyc_index_t *heap;
1963 	cyclic_t *cyclic;
1964 	hrtime_t oexpire;
1965 	int reprog;
1966 
1967 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1968 
1969 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-xcall", ndx);
1970 
1971 	nelems = cpu->cyp_nelems;
1972 	ASSERT(nelems > 0);
1973 	heap = cpu->cyp_heap;
1974 
1975 	/*
1976 	 * Reprogrammed cyclics are typically one-shot ones that get
1977 	 * set to infinity on every expiration. We shorten the search by
1978 	 * searching from the bottom of the heap to the top instead of the
1979 	 * other way around.
1980 	 */
1981 	for (i = nelems - 1; i >= 0; i--) {
1982 		if (heap[i] == ndx)
1983 			break;
1984 	}
1985 	if (i < 0)
1986 		panic("attempt to reprogram non-existent cyclic");
1987 
1988 	cyclic = &cpu->cyp_cyclics[ndx];
1989 	oexpire = cyclic->cy_expire;
1990 	cyclic->cy_expire = expire;
1991 
1992 	reprog = (i == 0);
1993 	if (expire > oexpire) {
1994 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-down", i);
1995 		cyclic_downheap(cpu, i);
1996 	} else if (i > 0) {
1997 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-up", i);
1998 		reprog = cyclic_upheap(cpu, i);
1999 	}
2000 
2001 	if (reprog && (cpu->cyp_state != CYS_SUSPENDED)) {
2002 		/*
2003 		 * The root changed. Reprogram the clock source.
2004 		 */
2005 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "reprog-root");
2006 		cyclic = &cpu->cyp_cyclics[heap[0]];
2007 		be->cyb_reprogram(bar, cyclic->cy_expire);
2008 	}
2009 
2010 	be->cyb_restore_level(bar, cookie);
2011 }
2012 
2013 static void
2014 cyclic_reprogram_xcall(cyc_xcallarg_t *arg)
2015 {
2016 	cyclic_reprogram_cyclic(arg->cyx_cpu, arg->cyx_ndx,
2017 	    arg->cyx_when->cyt_when);
2018 }
2019 
2020 static void
2021 cyclic_reprogram_here(cyc_cpu_t *cpu, cyc_index_t ndx, hrtime_t expiration)
2022 {
2023 	cyc_backend_t *be = cpu->cyp_backend;
2024 	cyc_xcallarg_t arg;
2025 	cyc_time_t when;
2026 
2027 	ASSERT(expiration > 0);
2028 
2029 	arg.cyx_ndx = ndx;
2030 	arg.cyx_cpu = cpu;
2031 	arg.cyx_when = &when;
2032 	when.cyt_when = expiration;
2033 
2034 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
2035 	    (cyc_func_t)cyclic_reprogram_xcall, &arg);
2036 }
2037 
2038 /*
2039  * cyclic_juggle_one_to() should only be called when the source cyclic
2040  * can be juggled and the destination CPU is known to be able to accept
2041  * it.
2042  */
2043 static void
2044 cyclic_juggle_one_to(cyc_id_t *idp, cyc_cpu_t *dest)
2045 {
2046 	cyc_cpu_t *src = idp->cyi_cpu;
2047 	cyc_index_t ndx = idp->cyi_ndx;
2048 	cyc_time_t when;
2049 	cyc_handler_t hdlr;
2050 	cyclic_t *cyclic;
2051 	uint16_t flags;
2052 	hrtime_t delay;
2053 
2054 	ASSERT(MUTEX_HELD(&cpu_lock));
2055 	ASSERT(src != NULL && idp->cyi_omni_list == NULL);
2056 	ASSERT(!(dest->cyp_cpu->cpu_flags & (CPU_QUIESCED | CPU_OFFLINE)));
2057 	CYC_PTRACE("juggle-one-to", idp, dest);
2058 
2059 	cyclic = &src->cyp_cyclics[ndx];
2060 
2061 	flags = cyclic->cy_flags;
2062 	ASSERT(!(flags & CYF_CPU_BOUND) && !(flags & CYF_FREE));
2063 
2064 	hdlr.cyh_func = cyclic->cy_handler;
2065 	hdlr.cyh_level = cyclic->cy_level;
2066 	hdlr.cyh_arg = cyclic->cy_arg;
2067 
2068 	/*
2069 	 * Before we begin the juggling process, see if the destination
2070 	 * CPU requires an expansion.  If it does, we'll perform the
2071 	 * expansion before removing the cyclic.  This is to prevent us
2072 	 * from blocking while a system-critical cyclic (notably, the clock
2073 	 * cyclic) isn't on a CPU.
2074 	 */
2075 	if (dest->cyp_nelems == dest->cyp_size) {
2076 		CYC_PTRACE("remove-expand", idp, dest);
2077 		cyclic_expand(dest);
2078 		ASSERT(dest->cyp_nelems < dest->cyp_size);
2079 	}
2080 
2081 	/*
2082 	 * Prevent a reprogram of this cyclic while we are relocating it.
2083 	 * Otherwise, cyclic_reprogram_here() will end up sending an X-call
2084 	 * to the wrong CPU.
2085 	 */
2086 	rw_enter(&idp->cyi_lock, RW_WRITER);
2087 
2088 	/*
2089 	 * Remove the cyclic from the source.  As mentioned above, we cannot
2090 	 * block during this operation; if we cannot remove the cyclic
2091 	 * without waiting, we spin for a time shorter than the interval, and
2092 	 * reattempt the (non-blocking) removal.  If we continue to fail,
2093 	 * we will exponentially back off (up to half of the interval).
2094 	 * Note that the removal will ultimately succeed -- even if the
2095 	 * cyclic handler is blocked on a resource held by a thread which we
2096 	 * have preempted, priority inheritance assures that the preempted
2097 	 * thread will preempt us and continue to progress.
2098 	 */
2099 	for (delay = NANOSEC / MICROSEC; ; delay <<= 1) {
2100 		/*
2101 		 * Before we begin this operation, disable kernel preemption.
2102 		 */
2103 		kpreempt_disable();
2104 		if (cyclic_remove_here(src, ndx, &when, CY_NOWAIT))
2105 			break;
2106 
2107 		/*
2108 		 * The operation failed; enable kernel preemption while
2109 		 * spinning.
2110 		 */
2111 		kpreempt_enable();
2112 
2113 		CYC_PTRACE("remove-retry", idp, src);
2114 
2115 		if (delay > (cyclic->cy_interval >> 1))
2116 			delay = cyclic->cy_interval >> 1;
2117 
2118 		/*
2119 		 * Drop the RW lock to avoid a deadlock with the cyclic
2120 		 * handler (because it can potentially call cyclic_reprogram().
2121 		 */
2122 		rw_exit(&idp->cyi_lock);
2123 		drv_usecwait((clock_t)(delay / (NANOSEC / MICROSEC)));
2124 		rw_enter(&idp->cyi_lock, RW_WRITER);
2125 	}
2126 
2127 	/*
2128 	 * Now add the cyclic to the destination.  This won't block; we
2129 	 * performed any necessary (blocking) expansion of the destination
2130 	 * CPU before removing the cyclic from the source CPU.
2131 	 */
2132 	idp->cyi_ndx = cyclic_add_here(dest, &hdlr, &when, flags);
2133 	idp->cyi_cpu = dest;
2134 	kpreempt_enable();
2135 
2136 	/*
2137 	 * Now that we have successfully relocated the cyclic, allow
2138 	 * it to be reprogrammed.
2139 	 */
2140 	rw_exit(&idp->cyi_lock);
2141 }
2142 
2143 static int
2144 cyclic_juggle_one(cyc_id_t *idp)
2145 {
2146 	cyc_index_t ndx = idp->cyi_ndx;
2147 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
2148 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
2149 	cpu_t *c = cpu->cyp_cpu;
2150 	cpupart_t *part = c->cpu_part;
2151 
2152 	CYC_PTRACE("juggle-one", idp, cpu);
2153 	ASSERT(MUTEX_HELD(&cpu_lock));
2154 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2155 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2156 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2157 
2158 	if ((dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags)) == NULL) {
2159 		/*
2160 		 * Bad news:  this cyclic can't be juggled.
2161 		 */
2162 		CYC_PTRACE("juggle-fail", idp, cpu)
2163 		return (0);
2164 	}
2165 
2166 	cyclic_juggle_one_to(idp, dest);
2167 
2168 	return (1);
2169 }
2170 
2171 static void
2172 cyclic_unbind_cpu(cyclic_id_t id)
2173 {
2174 	cyc_id_t *idp = (cyc_id_t *)id;
2175 	cyc_cpu_t *cpu = idp->cyi_cpu;
2176 	cpu_t *c = cpu->cyp_cpu;
2177 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
2178 
2179 	CYC_PTRACE("unbind-cpu", id, cpu);
2180 	ASSERT(MUTEX_HELD(&cpu_lock));
2181 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2182 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2183 	ASSERT(cyclic->cy_flags & CYF_CPU_BOUND);
2184 
2185 	cyclic->cy_flags &= ~CYF_CPU_BOUND;
2186 
2187 	/*
2188 	 * If we were bound to CPU which has interrupts disabled, we need
2189 	 * to juggle away.  This can only fail if we are bound to a
2190 	 * processor set, and if every CPU in the processor set has
2191 	 * interrupts disabled.
2192 	 */
2193 	if (!(c->cpu_flags & CPU_ENABLE)) {
2194 		int res = cyclic_juggle_one(idp);
2195 
2196 		ASSERT((res && idp->cyi_cpu != cpu) ||
2197 		    (!res && (cyclic->cy_flags & CYF_PART_BOUND)));
2198 	}
2199 }
2200 
2201 static void
2202 cyclic_bind_cpu(cyclic_id_t id, cpu_t *d)
2203 {
2204 	cyc_id_t *idp = (cyc_id_t *)id;
2205 	cyc_cpu_t *dest = d->cpu_cyclic, *cpu = idp->cyi_cpu;
2206 	cpu_t *c = cpu->cyp_cpu;
2207 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
2208 	cpupart_t *part = c->cpu_part;
2209 
2210 	CYC_PTRACE("bind-cpu", id, dest);
2211 	ASSERT(MUTEX_HELD(&cpu_lock));
2212 	ASSERT(!(d->cpu_flags & CPU_OFFLINE));
2213 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2214 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2215 	ASSERT(dest != NULL);
2216 	ASSERT(dest->cyp_state == CYS_ONLINE);
2217 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2218 	ASSERT(!(cyclic->cy_flags & CYF_CPU_BOUND));
2219 
2220 	dest = cyclic_pick_cpu(part, d, NULL, cyclic->cy_flags | CYF_CPU_BOUND);
2221 
2222 	if (dest != cpu) {
2223 		cyclic_juggle_one_to(idp, dest);
2224 		cyclic = &dest->cyp_cyclics[idp->cyi_ndx];
2225 	}
2226 
2227 	cyclic->cy_flags |= CYF_CPU_BOUND;
2228 }
2229 
2230 static void
2231 cyclic_unbind_cpupart(cyclic_id_t id)
2232 {
2233 	cyc_id_t *idp = (cyc_id_t *)id;
2234 	cyc_cpu_t *cpu = idp->cyi_cpu;
2235 	cpu_t *c = cpu->cyp_cpu;
2236 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
2237 
2238 	CYC_PTRACE("unbind-part", idp, c->cpu_part);
2239 	ASSERT(MUTEX_HELD(&cpu_lock));
2240 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2241 	ASSERT(!(cyc->cy_flags & CYF_FREE));
2242 	ASSERT(cyc->cy_flags & CYF_PART_BOUND);
2243 
2244 	cyc->cy_flags &= ~CYF_PART_BOUND;
2245 
2246 	/*
2247 	 * If we're on a CPU which has interrupts disabled (and if this cyclic
2248 	 * isn't bound to the CPU), we need to juggle away.
2249 	 */
2250 	if (!(c->cpu_flags & CPU_ENABLE) && !(cyc->cy_flags & CYF_CPU_BOUND)) {
2251 		int res = cyclic_juggle_one(idp);
2252 
2253 		ASSERT(res && idp->cyi_cpu != cpu);
2254 	}
2255 }
2256 
2257 static void
2258 cyclic_bind_cpupart(cyclic_id_t id, cpupart_t *part)
2259 {
2260 	cyc_id_t *idp = (cyc_id_t *)id;
2261 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
2262 	cpu_t *c = cpu->cyp_cpu;
2263 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
2264 
2265 	CYC_PTRACE("bind-part", idp, part);
2266 	ASSERT(MUTEX_HELD(&cpu_lock));
2267 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2268 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2269 	ASSERT(!(cyc->cy_flags & CYF_FREE));
2270 	ASSERT(!(cyc->cy_flags & CYF_PART_BOUND));
2271 	ASSERT(part->cp_ncpus > 0);
2272 
2273 	dest = cyclic_pick_cpu(part, c, NULL, cyc->cy_flags | CYF_PART_BOUND);
2274 
2275 	if (dest != cpu) {
2276 		cyclic_juggle_one_to(idp, dest);
2277 		cyc = &dest->cyp_cyclics[idp->cyi_ndx];
2278 	}
2279 
2280 	cyc->cy_flags |= CYF_PART_BOUND;
2281 }
2282 
2283 static void
2284 cyclic_configure(cpu_t *c)
2285 {
2286 	cyc_cpu_t *cpu = kmem_zalloc(sizeof (cyc_cpu_t), KM_SLEEP);
2287 	cyc_backend_t *nbe = kmem_zalloc(sizeof (cyc_backend_t), KM_SLEEP);
2288 	int i;
2289 
2290 	CYC_PTRACE1("configure", cpu);
2291 	ASSERT(MUTEX_HELD(&cpu_lock));
2292 
2293 	if (cyclic_id_cache == NULL)
2294 		cyclic_id_cache = kmem_cache_create("cyclic_id_cache",
2295 		    sizeof (cyc_id_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2296 
2297 	cpu->cyp_cpu = c;
2298 
2299 	sema_init(&cpu->cyp_modify_wait, 0, NULL, SEMA_DEFAULT, NULL);
2300 
2301 	cpu->cyp_size = 1;
2302 	cpu->cyp_heap = kmem_zalloc(sizeof (cyc_index_t), KM_SLEEP);
2303 	cpu->cyp_cyclics = kmem_zalloc(sizeof (cyclic_t), KM_SLEEP);
2304 	cpu->cyp_cyclics->cy_flags = CYF_FREE;
2305 
2306 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
2307 		/*
2308 		 * We don't need to set the sizemask; it's already zero
2309 		 * (which is the appropriate sizemask for a size of 1).
2310 		 */
2311 		cpu->cyp_softbuf[i].cys_buf[0].cypc_buf =
2312 		    kmem_alloc(sizeof (cyc_index_t), KM_SLEEP);
2313 	}
2314 
2315 	cpu->cyp_state = CYS_OFFLINE;
2316 
2317 	/*
2318 	 * Setup the backend for this CPU.
2319 	 */
2320 	bcopy(&cyclic_backend, nbe, sizeof (cyc_backend_t));
2321 	nbe->cyb_arg = nbe->cyb_configure(c);
2322 	cpu->cyp_backend = nbe;
2323 
2324 	/*
2325 	 * On platforms where stray interrupts may be taken during startup,
2326 	 * the CPU's cpu_cyclic pointer serves as an indicator that the
2327 	 * cyclic subsystem for this CPU is prepared to field interrupts.
2328 	 */
2329 	membar_producer();
2330 
2331 	c->cpu_cyclic = cpu;
2332 }
2333 
2334 static void
2335 cyclic_unconfigure(cpu_t *c)
2336 {
2337 	cyc_cpu_t *cpu = c->cpu_cyclic;
2338 	cyc_backend_t *be = cpu->cyp_backend;
2339 	cyb_arg_t bar = be->cyb_arg;
2340 	int i;
2341 
2342 	CYC_PTRACE1("unconfigure", cpu);
2343 	ASSERT(MUTEX_HELD(&cpu_lock));
2344 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
2345 	ASSERT(cpu->cyp_nelems == 0);
2346 
2347 	/*
2348 	 * Let the backend know that the CPU is being yanked, and free up
2349 	 * the backend structure.
2350 	 */
2351 	be->cyb_unconfigure(bar);
2352 	kmem_free(be, sizeof (cyc_backend_t));
2353 	cpu->cyp_backend = NULL;
2354 
2355 	/*
2356 	 * Free up the producer/consumer buffers at each of the soft levels.
2357 	 */
2358 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
2359 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
2360 		uchar_t hard = softbuf->cys_hard;
2361 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard];
2362 		size_t bufsize = sizeof (cyc_index_t) * (pc->cypc_sizemask + 1);
2363 
2364 		/*
2365 		 * Assert that we're not in the middle of a resize operation.
2366 		 */
2367 		ASSERT(hard == softbuf->cys_soft);
2368 		ASSERT(hard == 0 || hard == 1);
2369 		ASSERT(pc->cypc_buf != NULL);
2370 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf == NULL);
2371 
2372 		kmem_free(pc->cypc_buf, bufsize);
2373 		pc->cypc_buf = NULL;
2374 	}
2375 
2376 	/*
2377 	 * Finally, clean up our remaining dynamic structures and NULL out
2378 	 * the cpu_cyclic pointer.
2379 	 */
2380 	kmem_free(cpu->cyp_cyclics, cpu->cyp_size * sizeof (cyclic_t));
2381 	kmem_free(cpu->cyp_heap, cpu->cyp_size * sizeof (cyc_index_t));
2382 	kmem_free(cpu, sizeof (cyc_cpu_t));
2383 
2384 	c->cpu_cyclic = NULL;
2385 }
2386 
2387 static int
2388 cyclic_cpu_setup(cpu_setup_t what, int id, void *arg __unused)
2389 {
2390 	/*
2391 	 * We are guaranteed that there is still/already an entry in the
2392 	 * cpu array for this CPU.
2393 	 */
2394 	cpu_t *c = cpu[id];
2395 	cyc_cpu_t *cyp = c->cpu_cyclic;
2396 
2397 	ASSERT(MUTEX_HELD(&cpu_lock));
2398 
2399 	switch (what) {
2400 	case CPU_CONFIG:
2401 		ASSERT(cyp == NULL);
2402 		cyclic_configure(c);
2403 		break;
2404 
2405 	case CPU_UNCONFIG:
2406 		ASSERT(cyp != NULL && cyp->cyp_state == CYS_OFFLINE);
2407 		cyclic_unconfigure(c);
2408 		break;
2409 
2410 	default:
2411 		break;
2412 	}
2413 
2414 	return (0);
2415 }
2416 
2417 static void
2418 cyclic_suspend_xcall(cyc_xcallarg_t *arg)
2419 {
2420 	cyc_cpu_t *cpu = arg->cyx_cpu;
2421 	cyc_backend_t *be = cpu->cyp_backend;
2422 	cyc_cookie_t cookie;
2423 	cyb_arg_t bar = be->cyb_arg;
2424 
2425 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
2426 
2427 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "suspend-xcall", cpu->cyp_nelems);
2428 	ASSERT(cpu->cyp_state == CYS_ONLINE || cpu->cyp_state == CYS_OFFLINE);
2429 
2430 	/*
2431 	 * We won't disable this CPU unless it has a non-zero number of
2432 	 * elements (cpu_lock assures that no one else may be attempting
2433 	 * to disable this CPU).
2434 	 */
2435 	if (cpu->cyp_nelems > 0) {
2436 		ASSERT(cpu->cyp_state == CYS_ONLINE);
2437 		be->cyb_disable(bar);
2438 	}
2439 
2440 	if (cpu->cyp_state == CYS_ONLINE)
2441 		cpu->cyp_state = CYS_SUSPENDED;
2442 
2443 	be->cyb_suspend(bar);
2444 	be->cyb_restore_level(bar, cookie);
2445 }
2446 
2447 static void
2448 cyclic_resume_xcall(cyc_xcallarg_t *arg)
2449 {
2450 	cyc_cpu_t *cpu = arg->cyx_cpu;
2451 	cyc_backend_t *be = cpu->cyp_backend;
2452 	cyc_cookie_t cookie;
2453 	cyb_arg_t bar = be->cyb_arg;
2454 	cyc_state_t state = cpu->cyp_state;
2455 
2456 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
2457 
2458 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-xcall", cpu->cyp_nelems);
2459 	ASSERT(state == CYS_SUSPENDED || state == CYS_OFFLINE);
2460 
2461 	be->cyb_resume(bar);
2462 
2463 	/*
2464 	 * We won't enable this CPU unless it has a non-zero number of
2465 	 * elements.
2466 	 */
2467 	if (cpu->cyp_nelems > 0) {
2468 		cyclic_t *cyclic = &cpu->cyp_cyclics[cpu->cyp_heap[0]];
2469 		hrtime_t exp = cyclic->cy_expire;
2470 
2471 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "resume-reprog", cyclic, exp);
2472 		ASSERT(state == CYS_SUSPENDED);
2473 		be->cyb_enable(bar);
2474 		be->cyb_reprogram(bar, exp);
2475 	}
2476 
2477 	if (state == CYS_SUSPENDED)
2478 		cpu->cyp_state = CYS_ONLINE;
2479 
2480 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-done", cpu->cyp_nelems);
2481 	be->cyb_restore_level(bar, cookie);
2482 }
2483 
2484 static void
2485 cyclic_omni_start(cyc_id_t *idp, cyc_cpu_t *cpu)
2486 {
2487 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
2488 	cyc_omni_cpu_t *ocpu = kmem_alloc(sizeof (cyc_omni_cpu_t), KM_SLEEP);
2489 	cyc_handler_t hdlr;
2490 	cyc_time_t when;
2491 
2492 	CYC_PTRACE("omni-start", cpu, idp);
2493 	ASSERT(MUTEX_HELD(&cpu_lock));
2494 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2495 	ASSERT(idp->cyi_cpu == NULL);
2496 
2497 	hdlr.cyh_func = NULL;
2498 	hdlr.cyh_arg = NULL;
2499 	hdlr.cyh_level = CY_LEVELS;
2500 
2501 	when.cyt_when = 0;
2502 	when.cyt_interval = 0;
2503 
2504 	omni->cyo_online(omni->cyo_arg, cpu->cyp_cpu, &hdlr, &when);
2505 
2506 	ASSERT(hdlr.cyh_func != NULL);
2507 	ASSERT(hdlr.cyh_level < CY_LEVELS);
2508 	ASSERT(when.cyt_when >= 0 && when.cyt_interval > 0);
2509 
2510 	ocpu->cyo_cpu = cpu;
2511 	ocpu->cyo_arg = hdlr.cyh_arg;
2512 	ocpu->cyo_ndx = cyclic_add_here(cpu, &hdlr, &when, 0);
2513 	ocpu->cyo_next = idp->cyi_omni_list;
2514 	idp->cyi_omni_list = ocpu;
2515 }
2516 
2517 static void
2518 cyclic_omni_stop(cyc_id_t *idp, cyc_cpu_t *cpu)
2519 {
2520 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
2521 	cyc_omni_cpu_t *ocpu = idp->cyi_omni_list, *prev = NULL;
2522 	clock_t delay;
2523 	int ret;
2524 
2525 	CYC_PTRACE("omni-stop", cpu, idp);
2526 	ASSERT(MUTEX_HELD(&cpu_lock));
2527 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2528 	ASSERT(idp->cyi_cpu == NULL);
2529 	ASSERT(ocpu != NULL);
2530 
2531 	/*
2532 	 * Prevent a reprogram of this cyclic while we are removing it.
2533 	 * Otherwise, cyclic_reprogram_here() will end up sending an X-call
2534 	 * to the offlined CPU.
2535 	 */
2536 	rw_enter(&idp->cyi_lock, RW_WRITER);
2537 
2538 	while (ocpu != NULL && ocpu->cyo_cpu != cpu) {
2539 		prev = ocpu;
2540 		ocpu = ocpu->cyo_next;
2541 	}
2542 
2543 	/*
2544 	 * We _must_ have found an cyc_omni_cpu which corresponds to this
2545 	 * CPU -- the definition of an omnipresent cyclic is that it runs
2546 	 * on all online CPUs.
2547 	 */
2548 	ASSERT(ocpu != NULL);
2549 
2550 	if (prev == NULL) {
2551 		idp->cyi_omni_list = ocpu->cyo_next;
2552 	} else {
2553 		prev->cyo_next = ocpu->cyo_next;
2554 	}
2555 
2556 	/*
2557 	 * Remove the cyclic from the source.  We cannot block during this
2558 	 * operation because we are holding the cyi_lock which can be held
2559 	 * by the cyclic handler via cyclic_reprogram().
2560 	 *
2561 	 * If we cannot remove the cyclic without waiting, we spin for a time,
2562 	 * and reattempt the (non-blocking) removal. If the handler is blocked
2563 	 * on the cyi_lock, then we let go of it in the spin loop to give
2564 	 * the handler a chance to run. Note that the removal will ultimately
2565 	 * succeed -- even if the cyclic handler is blocked on a resource
2566 	 * held by a thread which we have preempted, priority inheritance
2567 	 * assures that the preempted thread will preempt us and continue
2568 	 * to progress.
2569 	 */
2570 	for (delay = 1; ; delay <<= 1) {
2571 		/*
2572 		 * Before we begin this operation, disable kernel preemption.
2573 		 */
2574 		kpreempt_disable();
2575 		ret = cyclic_remove_here(ocpu->cyo_cpu, ocpu->cyo_ndx, NULL,
2576 		    CY_NOWAIT);
2577 		/*
2578 		 * Enable kernel preemption while spinning.
2579 		 */
2580 		kpreempt_enable();
2581 
2582 		if (ret)
2583 			break;
2584 
2585 		CYC_PTRACE("remove-omni-retry", idp, ocpu->cyo_cpu);
2586 
2587 		/*
2588 		 * Drop the RW lock to avoid a deadlock with the cyclic
2589 		 * handler (because it can potentially call cyclic_reprogram().
2590 		 */
2591 		rw_exit(&idp->cyi_lock);
2592 		drv_usecwait(delay);
2593 		rw_enter(&idp->cyi_lock, RW_WRITER);
2594 	}
2595 
2596 	/*
2597 	 * Now that we have successfully removed the cyclic, allow the omni
2598 	 * cyclic to be reprogrammed on other CPUs.
2599 	 */
2600 	rw_exit(&idp->cyi_lock);
2601 
2602 	/*
2603 	 * The cyclic has been removed from this CPU; time to call the
2604 	 * omnipresent offline handler.
2605 	 */
2606 	if (omni->cyo_offline != NULL)
2607 		omni->cyo_offline(omni->cyo_arg, cpu->cyp_cpu, ocpu->cyo_arg);
2608 
2609 	kmem_free(ocpu, sizeof (cyc_omni_cpu_t));
2610 }
2611 
2612 static cyc_id_t *
2613 cyclic_new_id()
2614 {
2615 	cyc_id_t *idp;
2616 
2617 	ASSERT(MUTEX_HELD(&cpu_lock));
2618 
2619 	idp = kmem_cache_alloc(cyclic_id_cache, KM_SLEEP);
2620 
2621 	/*
2622 	 * The cyi_cpu field of the cyc_id_t structure tracks the CPU
2623 	 * associated with the cyclic.  If and only if this field is NULL, the
2624 	 * cyc_id_t is an omnipresent cyclic.  Note that cyi_omni_list may be
2625 	 * NULL for an omnipresent cyclic while the cyclic is being created
2626 	 * or destroyed.
2627 	 */
2628 	idp->cyi_cpu = NULL;
2629 	idp->cyi_ndx = 0;
2630 	rw_init(&idp->cyi_lock, NULL, RW_DEFAULT, NULL);
2631 
2632 	idp->cyi_next = cyclic_id_head;
2633 	idp->cyi_prev = NULL;
2634 	idp->cyi_omni_list = NULL;
2635 
2636 	if (cyclic_id_head != NULL) {
2637 		ASSERT(cyclic_id_head->cyi_prev == NULL);
2638 		cyclic_id_head->cyi_prev = idp;
2639 	}
2640 
2641 	cyclic_id_head = idp;
2642 
2643 	return (idp);
2644 }
2645 
2646 /*
2647  *  cyclic_id_t cyclic_add(cyc_handler_t *, cyc_time_t *)
2648  *
2649  *  Overview
2650  *
2651  *    cyclic_add() will create an unbound cyclic with the specified handler and
2652  *    interval.  The cyclic will run on a CPU which both has interrupts enabled
2653  *    and is in the system CPU partition.
2654  *
2655  *  Arguments and notes
2656  *
2657  *    As its first argument, cyclic_add() takes a cyc_handler, which has the
2658  *    following members:
2659  *
2660  *      cyc_func_t cyh_func    <-- Cyclic handler
2661  *      void *cyh_arg          <-- Argument to cyclic handler
2662  *      cyc_level_t cyh_level  <-- Level at which to fire; must be one of
2663  *                                 CY_LOW_LEVEL, CY_LOCK_LEVEL or CY_HIGH_LEVEL
2664  *
2665  *    Note that cyh_level is _not_ an ipl or spl; it must be one the
2666  *    CY_*_LEVELs.  This layer of abstraction allows the platform to define
2667  *    the precise interrupt priority levels, within the following constraints:
2668  *
2669  *       CY_LOCK_LEVEL must map to LOCK_LEVEL
2670  *       CY_HIGH_LEVEL must map to an ipl greater than LOCK_LEVEL
2671  *       CY_LOW_LEVEL must map to an ipl below LOCK_LEVEL
2672  *
2673  *    In addition to a cyc_handler, cyclic_add() takes a cyc_time, which
2674  *    has the following members:
2675  *
2676  *       hrtime_t cyt_when     <-- Absolute time, in nanoseconds since boot, at
2677  *                                 which to start firing
2678  *       hrtime_t cyt_interval <-- Length of interval, in nanoseconds
2679  *
2680  *    gethrtime() is the time source for nanoseconds since boot.  If cyt_when
2681  *    is set to 0, the cyclic will start to fire when cyt_interval next
2682  *    divides the number of nanoseconds since boot.
2683  *
2684  *    The cyt_interval field _must_ be filled in by the caller; one-shots are
2685  *    _not_ explicitly supported by the cyclic subsystem (cyclic_add() will
2686  *    assert that cyt_interval is non-zero).  The maximum value for either
2687  *    field is INT64_MAX; the caller is responsible for assuring that
2688  *    cyt_when + cyt_interval <= INT64_MAX.  Neither field may be negative.
2689  *
2690  *    For an arbitrary time t in the future, the cyclic handler is guaranteed
2691  *    to have been called (t - cyt_when) / cyt_interval times.  This will
2692  *    be true even if interrupts have been disabled for periods greater than
2693  *    cyt_interval nanoseconds.  In order to compensate for such periods,
2694  *    the cyclic handler may be called a finite number of times with an
2695  *    arbitrarily small interval.
2696  *
2697  *    The cyclic subsystem will not enforce any lower bound on the interval;
2698  *    if the interval is less than the time required to process an interrupt,
2699  *    the CPU will wedge.  It's the responsibility of the caller to assure that
2700  *    either the value of the interval is sane, or that its caller has
2701  *    sufficient privilege to deny service (i.e. its caller is root).
2702  *
2703  *    The cyclic handler is guaranteed to be single threaded, even while the
2704  *    cyclic is being juggled between CPUs (see cyclic_juggle(), below).
2705  *    That is, a given cyclic handler will never be executed simultaneously
2706  *    on different CPUs.
2707  *
2708  *  Return value
2709  *
2710  *    cyclic_add() returns a cyclic_id_t, which is guaranteed to be a value
2711  *    other than CYCLIC_NONE.  cyclic_add() cannot fail.
2712  *
2713  *  Caller's context
2714  *
2715  *    cpu_lock must be held by the caller, and the caller must not be in
2716  *    interrupt context.  cyclic_add() will perform a KM_SLEEP kernel
2717  *    memory allocation, so the usual rules (e.g. p_lock cannot be held)
2718  *    apply.  A cyclic may be added even in the presence of CPUs that have
2719  *    not been configured with respect to the cyclic subsystem, but only
2720  *    configured CPUs will be eligible to run the new cyclic.
2721  *
2722  *  Cyclic handler's context
2723  *
2724  *    Cyclic handlers will be executed in the interrupt context corresponding
2725  *    to the specified level (i.e. either high, lock or low level).  The
2726  *    usual context rules apply.
2727  *
2728  *    A cyclic handler may not grab ANY locks held by the caller of any of
2729  *    cyclic_add(), cyclic_remove() or cyclic_bind(); the implementation of
2730  *    these functions may require blocking on cyclic handler completion.
2731  *    Moreover, cyclic handlers may not make any call back into the cyclic
2732  *    subsystem.
2733  */
2734 cyclic_id_t
2735 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
2736 {
2737 	cyc_id_t *idp = cyclic_new_id();
2738 
2739 	ASSERT(MUTEX_HELD(&cpu_lock));
2740 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
2741 
2742 	idp->cyi_cpu = cyclic_pick_cpu(NULL, NULL, NULL, 0);
2743 	idp->cyi_ndx = cyclic_add_here(idp->cyi_cpu, hdlr, when, 0);
2744 
2745 	return ((uintptr_t)idp);
2746 }
2747 
2748 /*
2749  *  cyclic_id_t cyclic_add_omni(cyc_omni_handler_t *)
2750  *
2751  *  Overview
2752  *
2753  *    cyclic_add_omni() will create an omnipresent cyclic with the specified
2754  *    online and offline handlers.  Omnipresent cyclics run on all online
2755  *    CPUs, including CPUs which have unbound interrupts disabled.
2756  *
2757  *  Arguments
2758  *
2759  *    As its only argument, cyclic_add_omni() takes a cyc_omni_handler, which
2760  *    has the following members:
2761  *
2762  *      void (*cyo_online)()   <-- Online handler
2763  *      void (*cyo_offline)()  <-- Offline handler
2764  *      void *cyo_arg          <-- Argument to be passed to on/offline handlers
2765  *
2766  *  Online handler
2767  *
2768  *    The cyo_online member is a pointer to a function which has the following
2769  *    four arguments:
2770  *
2771  *      void *                 <-- Argument (cyo_arg)
2772  *      cpu_t *                <-- Pointer to CPU about to be onlined
2773  *      cyc_handler_t *        <-- Pointer to cyc_handler_t; must be filled in
2774  *                                 by omni online handler
2775  *      cyc_time_t *           <-- Pointer to cyc_time_t; must be filled in by
2776  *                                 omni online handler
2777  *
2778  *    The omni cyclic online handler is always called _before_ the omni
2779  *    cyclic begins to fire on the specified CPU.  As the above argument
2780  *    description implies, the online handler must fill in the two structures
2781  *    passed to it:  the cyc_handler_t and the cyc_time_t.  These are the
2782  *    same two structures passed to cyclic_add(), outlined above.  This
2783  *    allows the omni cyclic to have maximum flexibility; different CPUs may
2784  *    optionally
2785  *
2786  *      (a)  have different intervals
2787  *      (b)  be explicitly in or out of phase with one another
2788  *      (c)  have different handlers
2789  *      (d)  have different handler arguments
2790  *      (e)  fire at different levels
2791  *
2792  *    Of these, (e) seems somewhat dubious, but is nonetheless allowed.
2793  *
2794  *    The omni online handler is called in the same context as cyclic_add(),
2795  *    and has the same liberties:  omni online handlers may perform KM_SLEEP
2796  *    kernel memory allocations, and may grab locks which are also acquired
2797  *    by cyclic handlers.  However, omni cyclic online handlers may _not_
2798  *    call back into the cyclic subsystem, and should be generally careful
2799  *    about calling into arbitrary kernel subsystems.
2800  *
2801  *  Offline handler
2802  *
2803  *    The cyo_offline member is a pointer to a function which has the following
2804  *    three arguments:
2805  *
2806  *      void *                 <-- Argument (cyo_arg)
2807  *      cpu_t *                <-- Pointer to CPU about to be offlined
2808  *      void *                 <-- CPU's cyclic argument (that is, value
2809  *                                 to which cyh_arg member of the cyc_handler_t
2810  *                                 was set in the omni online handler)
2811  *
2812  *    The omni cyclic offline handler is always called _after_ the omni
2813  *    cyclic has ceased firing on the specified CPU.  Its purpose is to
2814  *    allow cleanup of any resources dynamically allocated in the omni cyclic
2815  *    online handler.  The context of the offline handler is identical to
2816  *    that of the online handler; the same constraints and liberties apply.
2817  *
2818  *    The offline handler is optional; it may be NULL.
2819  *
2820  *  Return value
2821  *
2822  *    cyclic_add_omni() returns a cyclic_id_t, which is guaranteed to be a
2823  *    value other than CYCLIC_NONE.  cyclic_add_omni() cannot fail.
2824  *
2825  *  Caller's context
2826  *
2827  *    The caller's context is identical to that of cyclic_add(), specified
2828  *    above.
2829  */
2830 cyclic_id_t
2831 cyclic_add_omni(cyc_omni_handler_t *omni)
2832 {
2833 	cyc_id_t *idp = cyclic_new_id();
2834 	cyc_cpu_t *cpu;
2835 	cpu_t *c;
2836 
2837 	ASSERT(MUTEX_HELD(&cpu_lock));
2838 	ASSERT(omni != NULL && omni->cyo_online != NULL);
2839 
2840 	idp->cyi_omni_hdlr = *omni;
2841 
2842 	c = cpu_list;
2843 	do {
2844 		if ((cpu = c->cpu_cyclic) == NULL)
2845 			continue;
2846 
2847 		if (cpu->cyp_state != CYS_ONLINE) {
2848 			ASSERT(cpu->cyp_state == CYS_OFFLINE);
2849 			continue;
2850 		}
2851 
2852 		cyclic_omni_start(idp, cpu);
2853 	} while ((c = c->cpu_next) != cpu_list);
2854 
2855 	/*
2856 	 * We must have found at least one online CPU on which to run
2857 	 * this cyclic.
2858 	 */
2859 	ASSERT(idp->cyi_omni_list != NULL);
2860 	ASSERT(idp->cyi_cpu == NULL);
2861 
2862 	return ((uintptr_t)idp);
2863 }
2864 
2865 /*
2866  *  void cyclic_remove(cyclic_id_t)
2867  *
2868  *  Overview
2869  *
2870  *    cyclic_remove() will remove the specified cyclic from the system.
2871  *
2872  *  Arguments and notes
2873  *
2874  *    The only argument is a cyclic_id returned from either cyclic_add() or
2875  *    cyclic_add_omni().
2876  *
2877  *    By the time cyclic_remove() returns, the caller is guaranteed that the
2878  *    removed cyclic handler has completed execution (this is the same
2879  *    semantic that untimeout() provides).  As a result, cyclic_remove() may
2880  *    need to block, waiting for the removed cyclic to complete execution.
2881  *    This leads to an important constraint on the caller:  no lock may be
2882  *    held across cyclic_remove() that also may be acquired by a cyclic
2883  *    handler.
2884  *
2885  *  Return value
2886  *
2887  *    None; cyclic_remove() always succeeds.
2888  *
2889  *  Caller's context
2890  *
2891  *    cpu_lock must be held by the caller, and the caller must not be in
2892  *    interrupt context.  The caller may not hold any locks which are also
2893  *    grabbed by any cyclic handler.  See "Arguments and notes", above.
2894  */
2895 void
2896 cyclic_remove(cyclic_id_t id)
2897 {
2898 	cyc_id_t *idp = (cyc_id_t *)id;
2899 	cyc_id_t *prev = idp->cyi_prev, *next = idp->cyi_next;
2900 	cyc_cpu_t *cpu = idp->cyi_cpu;
2901 
2902 	CYC_PTRACE("remove", idp, idp->cyi_cpu);
2903 	ASSERT(MUTEX_HELD(&cpu_lock));
2904 
2905 	if (cpu != NULL) {
2906 		(void) cyclic_remove_here(cpu, idp->cyi_ndx, NULL, CY_WAIT);
2907 	} else {
2908 		ASSERT(idp->cyi_omni_list != NULL);
2909 		while (idp->cyi_omni_list != NULL)
2910 			cyclic_omni_stop(idp, idp->cyi_omni_list->cyo_cpu);
2911 	}
2912 
2913 	if (prev != NULL) {
2914 		ASSERT(cyclic_id_head != idp);
2915 		prev->cyi_next = next;
2916 	} else {
2917 		ASSERT(cyclic_id_head == idp);
2918 		cyclic_id_head = next;
2919 	}
2920 
2921 	if (next != NULL)
2922 		next->cyi_prev = prev;
2923 
2924 	kmem_cache_free(cyclic_id_cache, idp);
2925 }
2926 
2927 /*
2928  *  void cyclic_bind(cyclic_id_t, cpu_t *, cpupart_t *)
2929  *
2930  *  Overview
2931  *
2932  *    cyclic_bind() atomically changes the CPU and CPU partition bindings
2933  *    of a cyclic.
2934  *
2935  *  Arguments and notes
2936  *
2937  *    The first argument is a cyclic_id retuned from cyclic_add().
2938  *    cyclic_bind() may _not_ be called on a cyclic_id returned from
2939  *    cyclic_add_omni().
2940  *
2941  *    The second argument specifies the CPU to which to bind the specified
2942  *    cyclic.  If the specified cyclic is bound to a CPU other than the one
2943  *    specified, it will be unbound from its bound CPU.  Unbinding the cyclic
2944  *    from its CPU may cause it to be juggled to another CPU.  If the specified
2945  *    CPU is non-NULL, the cyclic will be subsequently rebound to the specified
2946  *    CPU.
2947  *
2948  *    If a CPU with bound cyclics is transitioned into the P_NOINTR state,
2949  *    only cyclics not bound to the CPU can be juggled away; CPU-bound cyclics
2950  *    will continue to fire on the P_NOINTR CPU.  A CPU with bound cyclics
2951  *    cannot be offlined (attempts to offline the CPU will return EBUSY).
2952  *    Likewise, cyclics may not be bound to an offline CPU; if the caller
2953  *    attempts to bind a cyclic to an offline CPU, the cyclic subsystem will
2954  *    panic.
2955  *
2956  *    The third argument specifies the CPU partition to which to bind the
2957  *    specified cyclic.  If the specified cyclic is bound to a CPU partition
2958  *    other than the one specified, it will be unbound from its bound
2959  *    partition.  Unbinding the cyclic from its CPU partition may cause it
2960  *    to be juggled to another CPU.  If the specified CPU partition is
2961  *    non-NULL, the cyclic will be subsequently rebound to the specified CPU
2962  *    partition.
2963  *
2964  *    It is the caller's responsibility to assure that the specified CPU
2965  *    partition contains a CPU.  If it does not, the cyclic subsystem will
2966  *    panic.  A CPU partition with bound cyclics cannot be destroyed (attempts
2967  *    to destroy the partition will return EBUSY).  If a CPU with
2968  *    partition-bound cyclics is transitioned into the P_NOINTR state, cyclics
2969  *    bound to the CPU's partition (but not bound to the CPU) will be juggled
2970  *    away only if there exists another CPU in the partition in the P_ONLINE
2971  *    state.
2972  *
2973  *    It is the caller's responsibility to assure that the specified CPU and
2974  *    CPU partition are self-consistent.  If both parameters are non-NULL,
2975  *    and the specified CPU partition does not contain the specified CPU, the
2976  *    cyclic subsystem will panic.
2977  *
2978  *    It is the caller's responsibility to assure that the specified CPU has
2979  *    been configured with respect to the cyclic subsystem.  Generally, this
2980  *    is always true for valid, on-line CPUs.  The only periods of time during
2981  *    which this may not be true are during MP boot (i.e. after cyclic_init()
2982  *    is called but before cyclic_mp_init() is called) or during dynamic
2983  *    reconfiguration; cyclic_bind() should only be called with great care
2984  *    from these contexts.
2985  *
2986  *  Return value
2987  *
2988  *    None; cyclic_bind() always succeeds.
2989  *
2990  *  Caller's context
2991  *
2992  *    cpu_lock must be held by the caller, and the caller must not be in
2993  *    interrupt context.  The caller may not hold any locks which are also
2994  *    grabbed by any cyclic handler.
2995  */
2996 void
2997 cyclic_bind(cyclic_id_t id, cpu_t *d, cpupart_t *part)
2998 {
2999 	cyc_id_t *idp = (cyc_id_t *)id;
3000 	cyc_cpu_t *cpu = idp->cyi_cpu;
3001 	cpu_t *c;
3002 	uint16_t flags;
3003 
3004 	CYC_PTRACE("bind", d, part);
3005 	ASSERT(MUTEX_HELD(&cpu_lock));
3006 	ASSERT(part == NULL || d == NULL || d->cpu_part == part);
3007 
3008 	if (cpu == NULL) {
3009 		ASSERT(idp->cyi_omni_list != NULL);
3010 		panic("attempt to change binding of omnipresent cyclic");
3011 	}
3012 
3013 	c = cpu->cyp_cpu;
3014 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
3015 
3016 	if (c != d && (flags & CYF_CPU_BOUND))
3017 		cyclic_unbind_cpu(id);
3018 
3019 	/*
3020 	 * Reload our cpu (we may have migrated).  We don't have to reload
3021 	 * the flags field here; if we were CYF_PART_BOUND on entry, we are
3022 	 * CYF_PART_BOUND now.
3023 	 */
3024 	cpu = idp->cyi_cpu;
3025 	c = cpu->cyp_cpu;
3026 
3027 	if (part != c->cpu_part && (flags & CYF_PART_BOUND))
3028 		cyclic_unbind_cpupart(id);
3029 
3030 	/*
3031 	 * Now reload the flags field, asserting that if we are CPU bound,
3032 	 * the CPU was specified (and likewise, if we are partition bound,
3033 	 * the partition was specified).
3034 	 */
3035 	cpu = idp->cyi_cpu;
3036 	c = cpu->cyp_cpu;
3037 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
3038 	ASSERT(!(flags & CYF_CPU_BOUND) || c == d);
3039 	ASSERT(!(flags & CYF_PART_BOUND) || c->cpu_part == part);
3040 
3041 	if (!(flags & CYF_CPU_BOUND) && d != NULL)
3042 		cyclic_bind_cpu(id, d);
3043 
3044 	if (!(flags & CYF_PART_BOUND) && part != NULL)
3045 		cyclic_bind_cpupart(id, part);
3046 }
3047 
3048 int
3049 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration)
3050 {
3051 	cyc_id_t *idp = (cyc_id_t *)id;
3052 	cyc_cpu_t *cpu;
3053 	cyc_omni_cpu_t *ocpu;
3054 	cyc_index_t ndx;
3055 
3056 	ASSERT(expiration > 0);
3057 
3058 	CYC_PTRACE("reprog", idp, idp->cyi_cpu);
3059 
3060 	kpreempt_disable();
3061 
3062 	/*
3063 	 * Prevent the cyclic from moving or disappearing while we reprogram.
3064 	 */
3065 	rw_enter(&idp->cyi_lock, RW_READER);
3066 
3067 	if (idp->cyi_cpu == NULL) {
3068 		ASSERT(curthread->t_preempt > 0);
3069 		cpu = CPU->cpu_cyclic;
3070 
3071 		/*
3072 		 * For an omni cyclic, we reprogram the cyclic corresponding
3073 		 * to the current CPU. Look for it in the list.
3074 		 */
3075 		ocpu = idp->cyi_omni_list;
3076 		while (ocpu != NULL) {
3077 			if (ocpu->cyo_cpu == cpu)
3078 				break;
3079 			ocpu = ocpu->cyo_next;
3080 		}
3081 
3082 		if (ocpu == NULL) {
3083 			/*
3084 			 * Didn't find it. This means that CPU offline
3085 			 * must have removed it racing with us. So,
3086 			 * nothing to do.
3087 			 */
3088 			rw_exit(&idp->cyi_lock);
3089 
3090 			kpreempt_enable();
3091 
3092 			return (0);
3093 		}
3094 		ndx = ocpu->cyo_ndx;
3095 	} else {
3096 		cpu = idp->cyi_cpu;
3097 		ndx = idp->cyi_ndx;
3098 	}
3099 
3100 	if (cpu->cyp_cpu == CPU)
3101 		cyclic_reprogram_cyclic(cpu, ndx, expiration);
3102 	else
3103 		cyclic_reprogram_here(cpu, ndx, expiration);
3104 
3105 	/*
3106 	 * Allow the cyclic to be moved or removed.
3107 	 */
3108 	rw_exit(&idp->cyi_lock);
3109 
3110 	kpreempt_enable();
3111 
3112 	return (1);
3113 }
3114 
3115 /*
3116  *  void cyclic_move_here(cyclic_id_t)
3117  *
3118  *  Overview
3119  *
3120  *    cyclic_move_here() attempts to shuffle a cyclic onto the current CPU.
3121  *
3122  *  Arguments and notes
3123  *
3124  *    The first argument is a cyclic_id returned from cyclic_add().
3125  *    cyclic_move_here() may _not_ be called on a cyclic_id returned from
3126  *    cyclic_add_omni() or one bound to a CPU or partition via cyclic_bind().
3127  *
3128  *    This cyclic shuffling is performed on a best-effort basis.  If for some
3129  *    reason the current CPU is unsuitable or the thread migrates between CPUs
3130  *    during the call, the function may return with the cyclic residing on some
3131  *    other CPU.
3132  *
3133  *  Return value
3134  *
3135  *    None; cyclic_move_here() always reports success.
3136  *
3137  *  Caller's context
3138  *
3139  *    cpu_lock must be held by the caller, and the caller must not be in
3140  *    interrupt context.  The caller may not hold any locks which are also
3141  *    grabbed by any cyclic handler.
3142  */
3143 void
3144 cyclic_move_here(cyclic_id_t id)
3145 {
3146 	cyc_id_t *idp = (cyc_id_t *)id;
3147 	cyc_cpu_t *cc = idp->cyi_cpu;
3148 	cpu_t *dest = CPU;
3149 
3150 	ASSERT(MUTEX_HELD(&cpu_lock));
3151 	CYC_PTRACE("move_here", idp, dest);
3152 	VERIFY3P(cc, !=, NULL);
3153 	VERIFY3U(cc->cyp_cyclics[idp->cyi_ndx].cy_flags &
3154 	    (CYF_CPU_BOUND|CYF_PART_BOUND), ==, 0);
3155 
3156 	if (cc->cyp_cpu == dest) {
3157 		return;
3158 	}
3159 
3160 	/* Is the destination CPU suitable for a migration target? */
3161 	if (dest->cpu_cyclic == NULL ||
3162 	    dest->cpu_cyclic->cyp_state == CYS_OFFLINE ||
3163 	    (dest->cpu_flags & CPU_ENABLE) == 0) {
3164 		return;
3165 	}
3166 
3167 	cyclic_juggle_one_to(idp, dest->cpu_cyclic);
3168 }
3169 
3170 hrtime_t
3171 cyclic_getres()
3172 {
3173 	return (cyclic_resolution);
3174 }
3175 
3176 void
3177 cyclic_init(cyc_backend_t *be, hrtime_t resolution)
3178 {
3179 	ASSERT(MUTEX_HELD(&cpu_lock));
3180 
3181 	CYC_PTRACE("init", be, resolution);
3182 	cyclic_resolution = resolution;
3183 
3184 	/*
3185 	 * Copy the passed cyc_backend into the backend template.  This must
3186 	 * be done before the CPU can be configured.
3187 	 */
3188 	bcopy(be, &cyclic_backend, sizeof (cyc_backend_t));
3189 
3190 	/*
3191 	 * It's safe to look at the "CPU" pointer without disabling kernel
3192 	 * preemption; cyclic_init() is called only during startup by the
3193 	 * cyclic backend.
3194 	 */
3195 	cyclic_configure(CPU);
3196 	cyclic_online(CPU);
3197 }
3198 
3199 /*
3200  * It is assumed that cyclic_mp_init() is called some time after cyclic
3201  * init (and therefore, after cpu0 has been initialized).  We grab cpu_lock,
3202  * find the already initialized CPU, and initialize every other CPU with the
3203  * same backend.  Finally, we register a cpu_setup function.
3204  */
3205 void
3206 cyclic_mp_init()
3207 {
3208 	cpu_t *c;
3209 
3210 	mutex_enter(&cpu_lock);
3211 
3212 	c = cpu_list;
3213 	do {
3214 		if (c->cpu_cyclic == NULL) {
3215 			cyclic_configure(c);
3216 			cyclic_online(c);
3217 		}
3218 	} while ((c = c->cpu_next) != cpu_list);
3219 
3220 	register_cpu_setup_func(cyclic_cpu_setup, NULL);
3221 	mutex_exit(&cpu_lock);
3222 }
3223 
3224 /*
3225  *  int cyclic_juggle(cpu_t *)
3226  *
3227  *  Overview
3228  *
3229  *    cyclic_juggle() juggles as many cyclics as possible away from the
3230  *    specified CPU; all remaining cyclics on the CPU will either be CPU-
3231  *    or partition-bound.
3232  *
3233  *  Arguments and notes
3234  *
3235  *    The only argument to cyclic_juggle() is the CPU from which cyclics
3236  *    should be juggled.  CPU-bound cyclics are never juggled; partition-bound
3237  *    cyclics are only juggled if the specified CPU is in the P_NOINTR state
3238  *    and there exists a P_ONLINE CPU in the partition.  The cyclic subsystem
3239  *    assures that a cyclic will never fire late or spuriously, even while
3240  *    being juggled.
3241  *
3242  *  Return value
3243  *
3244  *    cyclic_juggle() returns a non-zero value if all cyclics were able to
3245  *    be juggled away from the CPU, and zero if one or more cyclics could
3246  *    not be juggled away.
3247  *
3248  *  Caller's context
3249  *
3250  *    cpu_lock must be held by the caller, and the caller must not be in
3251  *    interrupt context.  The caller may not hold any locks which are also
3252  *    grabbed by any cyclic handler.  While cyclic_juggle() _may_ be called
3253  *    in any context satisfying these constraints, it _must_ be called
3254  *    immediately after clearing CPU_ENABLE (i.e. before dropping cpu_lock).
3255  *    Failure to do so could result in an assertion failure in the cyclic
3256  *    subsystem.
3257  */
3258 int
3259 cyclic_juggle(cpu_t *c)
3260 {
3261 	cyc_cpu_t *cpu = c->cpu_cyclic;
3262 	cyc_id_t *idp;
3263 	int all_juggled = 1;
3264 
3265 	CYC_PTRACE1("juggle", c);
3266 	ASSERT(MUTEX_HELD(&cpu_lock));
3267 
3268 	/*
3269 	 * We'll go through each cyclic on the CPU, attempting to juggle
3270 	 * each one elsewhere.
3271 	 */
3272 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3273 		if (idp->cyi_cpu != cpu)
3274 			continue;
3275 
3276 		if (cyclic_juggle_one(idp) == 0) {
3277 			all_juggled = 0;
3278 			continue;
3279 		}
3280 
3281 		ASSERT(idp->cyi_cpu != cpu);
3282 	}
3283 
3284 	return (all_juggled);
3285 }
3286 
3287 /*
3288  *  int cyclic_offline(cpu_t *)
3289  *
3290  *  Overview
3291  *
3292  *    cyclic_offline() offlines the cyclic subsystem on the specified CPU.
3293  *
3294  *  Arguments and notes
3295  *
3296  *    The only argument to cyclic_offline() is a CPU to offline.
3297  *    cyclic_offline() will attempt to juggle cyclics away from the specified
3298  *    CPU.
3299  *
3300  *  Return value
3301  *
3302  *    cyclic_offline() returns 1 if all cyclics on the CPU were juggled away
3303  *    and the cyclic subsystem on the CPU was successfully offlines.
3304  *    cyclic_offline returns 0 if some cyclics remain, blocking the cyclic
3305  *    offline operation.  All remaining cyclics on the CPU will either be
3306  *    CPU- or partition-bound.
3307  *
3308  *    See the "Arguments and notes" of cyclic_juggle(), below, for more detail
3309  *    on cyclic juggling.
3310  *
3311  *  Caller's context
3312  *
3313  *    The only caller of cyclic_offline() should be the processor management
3314  *    subsystem.  It is expected that the caller of cyclic_offline() will
3315  *    offline the CPU immediately after cyclic_offline() returns success (i.e.
3316  *    before dropping cpu_lock).  Moreover, it is expected that the caller will
3317  *    fail the CPU offline operation if cyclic_offline() returns failure.
3318  */
3319 int
3320 cyclic_offline(cpu_t *c)
3321 {
3322 	cyc_cpu_t *cpu = c->cpu_cyclic;
3323 	cyc_id_t *idp;
3324 
3325 	CYC_PTRACE1("offline", cpu);
3326 	ASSERT(MUTEX_HELD(&cpu_lock));
3327 
3328 	if (!cyclic_juggle(c))
3329 		return (0);
3330 
3331 	/*
3332 	 * This CPU is headed offline; we need to now stop omnipresent
3333 	 * cyclic firing on this CPU.
3334 	 */
3335 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3336 		if (idp->cyi_cpu != NULL)
3337 			continue;
3338 
3339 		/*
3340 		 * We cannot possibly be offlining the last CPU; cyi_omni_list
3341 		 * must be non-NULL.
3342 		 */
3343 		ASSERT(idp->cyi_omni_list != NULL);
3344 		cyclic_omni_stop(idp, cpu);
3345 	}
3346 
3347 	ASSERT(cpu->cyp_state == CYS_ONLINE);
3348 	cpu->cyp_state = CYS_OFFLINE;
3349 
3350 	return (1);
3351 }
3352 
3353 /*
3354  *  void cyclic_online(cpu_t *)
3355  *
3356  *  Overview
3357  *
3358  *    cyclic_online() onlines a CPU previously offlined with cyclic_offline().
3359  *
3360  *  Arguments and notes
3361  *
3362  *    cyclic_online()'s only argument is a CPU to online.  The specified
3363  *    CPU must have been previously offlined with cyclic_offline().  After
3364  *    cyclic_online() returns, the specified CPU will be eligible to execute
3365  *    cyclics.
3366  *
3367  *  Return value
3368  *
3369  *    None; cyclic_online() always succeeds.
3370  *
3371  *  Caller's context
3372  *
3373  *    cyclic_online() should only be called by the processor management
3374  *    subsystem; cpu_lock must be held.
3375  */
3376 void
3377 cyclic_online(cpu_t *c)
3378 {
3379 	cyc_cpu_t *cpu = c->cpu_cyclic;
3380 	cyc_id_t *idp;
3381 
3382 	CYC_PTRACE1("online", cpu);
3383 	ASSERT(c->cpu_flags & CPU_ENABLE);
3384 	ASSERT(MUTEX_HELD(&cpu_lock));
3385 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
3386 
3387 	cpu->cyp_state = CYS_ONLINE;
3388 
3389 	/*
3390 	 * Now that this CPU is open for business, we need to start firing
3391 	 * all omnipresent cyclics on it.
3392 	 */
3393 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3394 		if (idp->cyi_cpu != NULL)
3395 			continue;
3396 
3397 		cyclic_omni_start(idp, cpu);
3398 	}
3399 }
3400 
3401 /*
3402  *  void cyclic_move_in(cpu_t *)
3403  *
3404  *  Overview
3405  *
3406  *    cyclic_move_in() is called by the CPU partition code immediately after
3407  *    the specified CPU has moved into a new partition.
3408  *
3409  *  Arguments and notes
3410  *
3411  *    The only argument to cyclic_move_in() is a CPU which has moved into a
3412  *    new partition.  If the specified CPU is P_ONLINE, and every other
3413  *    CPU in the specified CPU's new partition is P_NOINTR, cyclic_move_in()
3414  *    will juggle all partition-bound, CPU-unbound cyclics to the specified
3415  *    CPU.
3416  *
3417  *  Return value
3418  *
3419  *    None; cyclic_move_in() always succeeds.
3420  *
3421  *  Caller's context
3422  *
3423  *    cyclic_move_in() should _only_ be called immediately after a CPU has
3424  *    moved into a new partition, with cpu_lock held.  As with other calls
3425  *    into the cyclic subsystem, no lock may be held which is also grabbed
3426  *    by any cyclic handler.
3427  */
3428 void
3429 cyclic_move_in(cpu_t *d)
3430 {
3431 	cyc_id_t *idp;
3432 	cyc_cpu_t *dest = d->cpu_cyclic;
3433 	cyclic_t *cyclic;
3434 	cpupart_t *part = d->cpu_part;
3435 
3436 	CYC_PTRACE("move-in", dest, part);
3437 	ASSERT(MUTEX_HELD(&cpu_lock));
3438 
3439 	/*
3440 	 * Look for CYF_PART_BOUND cyclics in the new partition.  If
3441 	 * we find one, check to see if it is currently on a CPU which has
3442 	 * interrupts disabled.  If it is (and if this CPU currently has
3443 	 * interrupts enabled), we'll juggle those cyclics over here.
3444 	 */
3445 	if (!(d->cpu_flags & CPU_ENABLE)) {
3446 		CYC_PTRACE1("move-in-none", dest);
3447 		return;
3448 	}
3449 
3450 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3451 		cyc_cpu_t *cpu = idp->cyi_cpu;
3452 		cpu_t *c;
3453 
3454 		/*
3455 		 * Omnipresent cyclics are exempt from juggling.
3456 		 */
3457 		if (cpu == NULL)
3458 			continue;
3459 
3460 		c = cpu->cyp_cpu;
3461 
3462 		if (c->cpu_part != part || (c->cpu_flags & CPU_ENABLE))
3463 			continue;
3464 
3465 		cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
3466 
3467 		if (cyclic->cy_flags & CYF_CPU_BOUND)
3468 			continue;
3469 
3470 		/*
3471 		 * We know that this cyclic is bound to its processor set
3472 		 * (otherwise, it would not be on a CPU with interrupts
3473 		 * disabled); juggle it to our CPU.
3474 		 */
3475 		ASSERT(cyclic->cy_flags & CYF_PART_BOUND);
3476 		cyclic_juggle_one_to(idp, dest);
3477 	}
3478 
3479 	CYC_PTRACE1("move-in-done", dest);
3480 }
3481 
3482 /*
3483  *  int cyclic_move_out(cpu_t *)
3484  *
3485  *  Overview
3486  *
3487  *    cyclic_move_out() is called by the CPU partition code immediately before
3488  *    the specified CPU is to move out of its partition.
3489  *
3490  *  Arguments and notes
3491  *
3492  *    The only argument to cyclic_move_out() is a CPU which is to move out of
3493  *    its partition.
3494  *
3495  *    cyclic_move_out() will attempt to juggle away all partition-bound
3496  *    cyclics.  If the specified CPU is the last CPU in a partition with
3497  *    partition-bound cyclics, cyclic_move_out() will fail.  If there exists
3498  *    a partition-bound cyclic which is CPU-bound to the specified CPU,
3499  *    cyclic_move_out() will fail.
3500  *
3501  *    Note that cyclic_move_out() will _only_ attempt to juggle away
3502  *    partition-bound cyclics; CPU-bound cyclics which are not partition-bound
3503  *    and unbound cyclics are not affected by changing the partition
3504  *    affiliation of the CPU.
3505  *
3506  *  Return value
3507  *
3508  *    cyclic_move_out() returns 1 if all partition-bound cyclics on the CPU
3509  *    were juggled away; 0 if some cyclics remain.
3510  *
3511  *  Caller's context
3512  *
3513  *    cyclic_move_out() should _only_ be called immediately before a CPU has
3514  *    moved out of its partition, with cpu_lock held.  It is expected that
3515  *    the caller of cyclic_move_out() will change the processor set affiliation
3516  *    of the specified CPU immediately after cyclic_move_out() returns
3517  *    success (i.e. before dropping cpu_lock).  Moreover, it is expected that
3518  *    the caller will fail the CPU repartitioning operation if cyclic_move_out()
3519  *    returns failure.  As with other calls into the cyclic subsystem, no lock
3520  *    may be held which is also grabbed by any cyclic handler.
3521  */
3522 int
3523 cyclic_move_out(cpu_t *c)
3524 {
3525 	cyc_id_t *idp;
3526 	cyc_cpu_t *cpu = c->cpu_cyclic, *dest;
3527 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
3528 	cpupart_t *part = c->cpu_part;
3529 
3530 	CYC_PTRACE1("move-out", cpu);
3531 	ASSERT(MUTEX_HELD(&cpu_lock));
3532 
3533 	/*
3534 	 * If there are any CYF_PART_BOUND cyclics on this CPU, we need
3535 	 * to try to juggle them away.
3536 	 */
3537 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3538 
3539 		if (idp->cyi_cpu != cpu)
3540 			continue;
3541 
3542 		cyclic = &cyclics[idp->cyi_ndx];
3543 
3544 		if (!(cyclic->cy_flags & CYF_PART_BOUND))
3545 			continue;
3546 
3547 		dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags);
3548 
3549 		if (dest == NULL) {
3550 			/*
3551 			 * We can't juggle this cyclic; we need to return
3552 			 * failure (we won't bother trying to juggle away
3553 			 * other cyclics).
3554 			 */
3555 			CYC_PTRACE("move-out-fail", cpu, idp);
3556 			return (0);
3557 		}
3558 		cyclic_juggle_one_to(idp, dest);
3559 	}
3560 
3561 	CYC_PTRACE1("move-out-done", cpu);
3562 	return (1);
3563 }
3564 
3565 /*
3566  *  void cyclic_suspend()
3567  *
3568  *  Overview
3569  *
3570  *    cyclic_suspend() suspends all cyclic activity throughout the cyclic
3571  *    subsystem.  It should be called only by subsystems which are attempting
3572  *    to suspend the entire system (e.g. checkpoint/resume, dynamic
3573  *    reconfiguration).
3574  *
3575  *  Arguments and notes
3576  *
3577  *    cyclic_suspend() takes no arguments.  Each CPU with an active cyclic
3578  *    disables its backend (offline CPUs disable their backends as part of
3579  *    the cyclic_offline() operation), thereby disabling future CY_HIGH_LEVEL
3580  *    interrupts.
3581  *
3582  *    Note that disabling CY_HIGH_LEVEL interrupts does not completely preclude
3583  *    cyclic handlers from being called after cyclic_suspend() returns:  if a
3584  *    CY_LOCK_LEVEL or CY_LOW_LEVEL interrupt thread was blocked at the time
3585  *    of cyclic_suspend(), cyclic handlers at its level may continue to be
3586  *    called after the interrupt thread becomes unblocked.  The
3587  *    post-cyclic_suspend() activity is bounded by the pend count on all
3588  *    cyclics at the time of cyclic_suspend().  Callers concerned with more
3589  *    than simply disabling future CY_HIGH_LEVEL interrupts must check for
3590  *    this condition.
3591  *
3592  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
3593  *    guaranteed to monotonically increase between cyclic_suspend() and
3594  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
3595  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
3596  *    That is, every timestamp obtained before cyclic_suspend() will be less
3597  *    than every timestamp obtained after cyclic_resume().
3598  *
3599  *  Return value
3600  *
3601  *    None; cyclic_suspend() always succeeds.
3602  *
3603  *  Caller's context
3604  *
3605  *    The cyclic subsystem must be configured on every valid CPU;
3606  *    cyclic_suspend() may not be called during boot or during dynamic
3607  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
3608  *    cannot be in high-level interrupt context.  However, unlike most other
3609  *    cyclic entry points, cyclic_suspend() may be called with locks held
3610  *    which are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic
3611  *    handlers.
3612  */
3613 void
3614 cyclic_suspend()
3615 {
3616 	cpu_t *c;
3617 	cyc_cpu_t *cpu;
3618 	cyc_xcallarg_t arg;
3619 	cyc_backend_t *be;
3620 
3621 	CYC_PTRACE0("suspend");
3622 	ASSERT(MUTEX_HELD(&cpu_lock));
3623 	c = cpu_list;
3624 
3625 	do {
3626 		cpu = c->cpu_cyclic;
3627 		be = cpu->cyp_backend;
3628 		arg.cyx_cpu = cpu;
3629 
3630 		be->cyb_xcall(be->cyb_arg, c,
3631 		    (cyc_func_t)cyclic_suspend_xcall, &arg);
3632 	} while ((c = c->cpu_next) != cpu_list);
3633 }
3634 
3635 /*
3636  *  void cyclic_resume()
3637  *
3638  *    cyclic_resume() resumes all cyclic activity throughout the cyclic
3639  *    subsystem.  It should be called only by system-suspending subsystems.
3640  *
3641  *  Arguments and notes
3642  *
3643  *    cyclic_resume() takes no arguments.  Each CPU with an active cyclic
3644  *    reenables and reprograms its backend (offline CPUs are not reenabled).
3645  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
3646  *    guaranteed to monotonically increase between cyclic_suspend() and
3647  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
3648  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
3649  *    That is, every timestamp obtained before cyclic_suspend() will be less
3650  *    than every timestamp obtained after cyclic_resume().
3651  *
3652  *  Return value
3653  *
3654  *    None; cyclic_resume() always succeeds.
3655  *
3656  *  Caller's context
3657  *
3658  *    The cyclic subsystem must be configured on every valid CPU;
3659  *    cyclic_resume() may not be called during boot or during dynamic
3660  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
3661  *    cannot be in high-level interrupt context.  However, unlike most other
3662  *    cyclic entry points, cyclic_resume() may be called with locks held which
3663  *    are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic handlers.
3664  */
3665 void
3666 cyclic_resume()
3667 {
3668 	cpu_t *c;
3669 	cyc_cpu_t *cpu;
3670 	cyc_xcallarg_t arg;
3671 	cyc_backend_t *be;
3672 
3673 	CYC_PTRACE0("resume");
3674 	ASSERT(MUTEX_HELD(&cpu_lock));
3675 
3676 	c = cpu_list;
3677 
3678 	do {
3679 		cpu = c->cpu_cyclic;
3680 		be = cpu->cyp_backend;
3681 		arg.cyx_cpu = cpu;
3682 
3683 		be->cyb_xcall(be->cyb_arg, c,
3684 		    (cyc_func_t)cyclic_resume_xcall, &arg);
3685 	} while ((c = c->cpu_next) != cpu_list);
3686 }
3687