xref: /illumos-gate/usr/src/uts/common/os/cyclic.c (revision 9514bcf4c37a9b87200462594803414d12cdd29d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright 2019 Joyent, Inc.
28  */
29 
30 /*
31  *  The Cyclic Subsystem
32  *  --------------------
33  *
34  *  Prehistory
35  *
36  *  Historically, most computer architectures have specified interval-based
37  *  timer parts (e.g. SPARCstation's counter/timer; Intel's i8254).  While
38  *  these parts deal in relative (i.e. not absolute) time values, they are
39  *  typically used by the operating system to implement the abstraction of
40  *  absolute time.  As a result, these parts cannot typically be reprogrammed
41  *  without introducing error in the system's notion of time.
42  *
43  *  Starting in about 1994, chip architectures began specifying high resolution
44  *  timestamp registers.  As of this writing (1999), all major chip families
45  *  (UltraSPARC, PentiumPro, MIPS, PowerPC, Alpha) have high resolution
46  *  timestamp registers, and two (UltraSPARC and MIPS) have added the capacity
47  *  to interrupt based on timestamp values.  These timestamp-compare registers
48  *  present a time-based interrupt source which can be reprogrammed arbitrarily
49  *  often without introducing error.  Given the low cost of implementing such a
50  *  timestamp-compare register (and the tangible benefit of eliminating
51  *  discrete timer parts), it is reasonable to expect that future chip
52  *  architectures will adopt this feature.
53  *
54  *  The cyclic subsystem has been designed to take advantage of chip
55  *  architectures with the capacity to interrupt based on absolute, high
56  *  resolution values of time.
57  *
58  *  Subsystem Overview
59  *
60  *  The cyclic subsystem is a low-level kernel subsystem designed to provide
61  *  arbitrarily high resolution, per-CPU interval timers (to avoid colliding
62  *  with existing terms, we dub such an interval timer a "cyclic").  Cyclics
63  *  can be specified to fire at high, lock or low interrupt level, and may be
64  *  optionally bound to a CPU or a CPU partition.  A cyclic's CPU or CPU
65  *  partition binding may be changed dynamically; the cyclic will be "juggled"
66  *  to a CPU which satisfies the new binding.  Alternatively, a cyclic may
67  *  be specified to be "omnipresent", denoting firing on all online CPUs.
68  *
69  *  Cyclic Subsystem Interface Overview
70  *  -----------------------------------
71  *
72  *  The cyclic subsystem has interfaces with the kernel at-large, with other
73  *  kernel subsystems (e.g. the processor management subsystem, the checkpoint
74  *  resume subsystem) and with the platform (the cyclic backend).  Each
75  *  of these interfaces is given a brief synopsis here, and is described
76  *  in full above the interface's implementation.
77  *
78  *  The following diagram displays the cyclic subsystem's interfaces to
79  *  other kernel components.  The arrows denote a "calls" relationship, with
80  *  the large arrow indicating the cyclic subsystem's consumer interface.
81  *  Each arrow is labeled with the section in which the corresponding
82  *  interface is described.
83  *
84  *           Kernel at-large consumers
85  *           -----------++------------
86  *                      ||
87  *                      ||
88  *                     _||_
89  *                     \  /
90  *                      \/
91  *            +---------------------+
92  *            |                     |
93  *            |  Cyclic subsystem   |<-----------  Other kernel subsystems
94  *            |                     |
95  *            +---------------------+
96  *                   ^       |
97  *                   |       |
98  *                   |       |
99  *                   |       v
100  *            +---------------------+
101  *            |                     |
102  *            |   Cyclic backend    |
103  *            | (platform specific) |
104  *            |                     |
105  *            +---------------------+
106  *
107  *
108  *  Kernel At-Large Interfaces
109  *
110  *      cyclic_add()         <-- Creates a cyclic
111  *      cyclic_add_omni()    <-- Creates an omnipresent cyclic
112  *      cyclic_remove()      <-- Removes a cyclic
113  *      cyclic_bind()        <-- Change a cyclic's CPU or partition binding
114  *      cyclic_reprogram()   <-- Reprogram a cyclic's expiration
115  *      cyclic_move_here()   <-- Shuffle cyclic to current CPU
116  *
117  *  Inter-subsystem Interfaces
118  *
119  *      cyclic_juggle()      <-- Juggles cyclics away from a CPU
120  *      cyclic_offline()     <-- Offlines cyclic operation on a CPU
121  *      cyclic_online()      <-- Reenables operation on an offlined CPU
122  *      cyclic_move_in()     <-- Notifies subsystem of change in CPU partition
123  *      cyclic_move_out()    <-- Notifies subsystem of change in CPU partition
124  *      cyclic_suspend()     <-- Suspends the cyclic subsystem on all CPUs
125  *      cyclic_resume()      <-- Resumes the cyclic subsystem on all CPUs
126  *
127  *  Backend Interfaces
128  *
129  *      cyclic_init()        <-- Initializes the cyclic subsystem
130  *      cyclic_fire()        <-- CY_HIGH_LEVEL interrupt entry point
131  *      cyclic_softint()     <-- CY_LOCK/LOW_LEVEL soft interrupt entry point
132  *
133  *  The backend-supplied interfaces (through the cyc_backend structure) are
134  *  documented in detail in <sys/cyclic_impl.h>
135  *
136  *
137  *  Cyclic Subsystem Implementation Overview
138  *  ----------------------------------------
139  *
140  *  The cyclic subsystem is designed to minimize interference between cyclics
141  *  on different CPUs.  Thus, all of the cyclic subsystem's data structures
142  *  hang off of a per-CPU structure, cyc_cpu.
143  *
144  *  Each cyc_cpu has a power-of-two sized array of cyclic structures (the
145  *  cyp_cyclics member of the cyc_cpu structure).  If cyclic_add() is called
146  *  and there does not exist a free slot in the cyp_cyclics array, the size of
147  *  the array will be doubled.  The array will never shrink.  Cyclics are
148  *  referred to by their index in the cyp_cyclics array, which is of type
149  *  cyc_index_t.
150  *
151  *  The cyclics are kept sorted by expiration time in the cyc_cpu's heap.  The
152  *  heap is keyed by cyclic expiration time, with parents expiring earlier
153  *  than their children.
154  *
155  *  Heap Management
156  *
157  *  The heap is managed primarily by cyclic_fire().  Upon entry, cyclic_fire()
158  *  compares the root cyclic's expiration time to the current time.  If the
159  *  expiration time is in the past, cyclic_expire() is called on the root
160  *  cyclic.  Upon return from cyclic_expire(), the cyclic's new expiration time
161  *  is derived by adding its interval to its old expiration time, and a
162  *  downheap operation is performed.  After the downheap, cyclic_fire()
163  *  examines the (potentially changed) root cyclic, repeating the
164  *  cyclic_expire()/add interval/cyclic_downheap() sequence until the root
165  *  cyclic has an expiration time in the future.  This expiration time
166  *  (guaranteed to be the earliest in the heap) is then communicated to the
167  *  backend via cyb_reprogram.  Optimal backends will next call cyclic_fire()
168  *  shortly after the root cyclic's expiration time.
169  *
170  *  To allow efficient, deterministic downheap operations, we implement the
171  *  heap as an array (the cyp_heap member of the cyc_cpu structure), with each
172  *  element containing an index into the CPU's cyp_cyclics array.
173  *
174  *  The heap is laid out in the array according to the following:
175  *
176  *   1.  The root of the heap is always in the 0th element of the heap array
177  *   2.  The left and right children of the nth element are element
178  *       (((n + 1) << 1) - 1) and element ((n + 1) << 1), respectively.
179  *
180  *  This layout is standard (see, e.g., Cormen's "Algorithms"); the proof
181  *  that these constraints correctly lay out a heap (or indeed, any binary
182  *  tree) is trivial and left to the reader.
183  *
184  *  To see the heap by example, assume our cyclics array has the following
185  *  members (at time t):
186  *
187  *            cy_handler            cy_level      cy_expire
188  *            ---------------------------------------------
189  *     [ 0]   clock()                   LOCK     t+10000000
190  *     [ 1]   deadman()                 HIGH   t+1000000000
191  *     [ 2]   clock_highres_fire()       LOW          t+100
192  *     [ 3]   clock_highres_fire()       LOW         t+1000
193  *     [ 4]   clock_highres_fire()       LOW          t+500
194  *     [ 5]   (free)                      --             --
195  *     [ 6]   (free)                      --             --
196  *     [ 7]   (free)                      --             --
197  *
198  *  The heap array could be:
199  *
200  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
201  *              +-----+-----+-----+-----+-----+-----+-----+-----+
202  *              |     |     |     |     |     |     |     |     |
203  *              |  2  |  3  |  4  |  0  |  1  |  x  |  x  |  x  |
204  *              |     |     |     |     |     |     |     |     |
205  *              +-----+-----+-----+-----+-----+-----+-----+-----+
206  *
207  *  Graphically, this array corresponds to the following (excuse the ASCII art):
208  *
209  *                                       2
210  *                                       |
211  *                    +------------------+------------------+
212  *                    3                                     4
213  *                    |
214  *          +---------+--------+
215  *          0                  1
216  *
217  *  Note that the heap is laid out by layer:  all nodes at a given depth are
218  *  stored in consecutive elements of the array.  Moreover, layers of
219  *  consecutive depths are in adjacent element ranges.  This property
220  *  guarantees high locality of reference during downheap operations.
221  *  Specifically, we are guaranteed that we can downheap to a depth of
222  *
223  *      lg (cache_line_size / sizeof (cyc_index_t))
224  *
225  *  nodes with at most one cache miss.  On UltraSPARC (64 byte e-cache line
226  *  size), this corresponds to a depth of four nodes.  Thus, if there are
227  *  fewer than sixteen cyclics in the heap, downheaps on UltraSPARC miss at
228  *  most once in the e-cache.
229  *
230  *  Downheaps are required to compare siblings as they proceed down the
231  *  heap.  For downheaps proceeding beyond the one-cache-miss depth, every
232  *  access to a left child could potentially miss in the cache.  However,
233  *  if we assume
234  *
235  *      (cache_line_size / sizeof (cyc_index_t)) > 2,
236  *
237  *  then all siblings are guaranteed to be on the same cache line.  Thus, the
238  *  miss on the left child will guarantee a hit on the right child; downheaps
239  *  will incur at most one cache miss per layer beyond the one-cache-miss
240  *  depth.  The total number of cache misses for heap management during a
241  *  downheap operation is thus bounded by
242  *
243  *      lg (n) - lg (cache_line_size / sizeof (cyc_index_t))
244  *
245  *  Traditional pointer-based heaps are implemented without regard to
246  *  locality.  Downheaps can thus incur two cache misses per layer (one for
247  *  each child), but at most one cache miss at the root.  This yields a bound
248  *  of
249  *
250  *      2 * lg (n) - 1
251  *
252  *  on the total cache misses.
253  *
254  *  This difference may seem theoretically trivial (the difference is, after
255  *  all, constant), but can become substantial in practice -- especially for
256  *  caches with very large cache lines and high miss penalties (e.g. TLBs).
257  *
258  *  Heaps must always be full, balanced trees.  Heap management must therefore
259  *  track the next point-of-insertion into the heap.  In pointer-based heaps,
260  *  recomputing this point takes O(lg (n)).  Given the layout of the
261  *  array-based implementation, however, the next point-of-insertion is
262  *  always:
263  *
264  *      heap[number_of_elements]
265  *
266  *  We exploit this property by implementing the free-list in the usused
267  *  heap elements.  Heap insertion, therefore, consists only of filling in
268  *  the cyclic at cyp_cyclics[cyp_heap[number_of_elements]], incrementing
269  *  the number of elements, and performing an upheap.  Heap deletion consists
270  *  of decrementing the number of elements, swapping the to-be-deleted element
271  *  with the element at cyp_heap[number_of_elements], and downheaping.
272  *
273  *  Filling in more details in our earlier example:
274  *
275  *                                               +--- free list head
276  *                                               |
277  *                                               V
278  *
279  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
280  *              +-----+-----+-----+-----+-----+-----+-----+-----+
281  *              |     |     |     |     |     |     |     |     |
282  *              |  2  |  3  |  4  |  0  |  1  |  5  |  6  |  7  |
283  *              |     |     |     |     |     |     |     |     |
284  *              +-----+-----+-----+-----+-----+-----+-----+-----+
285  *
286  *  To insert into this heap, we would just need to fill in the cyclic at
287  *  cyp_cyclics[5], bump the number of elements (from 5 to 6) and perform
288  *  an upheap.
289  *
290  *  If we wanted to remove, say, cyp_cyclics[3], we would first scan for it
291  *  in the cyp_heap, and discover it at cyp_heap[1].  We would then decrement
292  *  the number of elements (from 5 to 4), swap cyp_heap[1] with cyp_heap[4],
293  *  and perform a downheap from cyp_heap[1].  The linear scan is required
294  *  because the cyclic does not keep a backpointer into the heap.  This makes
295  *  heap manipulation (e.g. downheaps) faster at the expense of removal
296  *  operations.
297  *
298  *  Expiry processing
299  *
300  *  As alluded to above, cyclic_expire() is called by cyclic_fire() at
301  *  CY_HIGH_LEVEL to expire a cyclic.  Cyclic subsystem consumers are
302  *  guaranteed that for an arbitrary time t in the future, their cyclic
303  *  handler will have been called (t - cyt_when) / cyt_interval times.  Thus,
304  *  there must be a one-to-one mapping between a cyclic's expiration at
305  *  CY_HIGH_LEVEL and its execution at the desired level (either CY_HIGH_LEVEL,
306  *  CY_LOCK_LEVEL or CY_LOW_LEVEL).
307  *
308  *  For CY_HIGH_LEVEL cyclics, this is trivial; cyclic_expire() simply needs
309  *  to call the handler.
310  *
311  *  For CY_LOCK_LEVEL and CY_LOW_LEVEL cyclics, however, there exists a
312  *  potential disconnect:  if the CPU is at an interrupt level less than
313  *  CY_HIGH_LEVEL but greater than the level of a cyclic for a period of
314  *  time longer than twice the cyclic's interval, the cyclic will be expired
315  *  twice before it can be handled.
316  *
317  *  To maintain the one-to-one mapping, we track the difference between the
318  *  number of times a cyclic has been expired and the number of times it's
319  *  been handled in a "pending count" (the cy_pend field of the cyclic
320  *  structure).  cyclic_expire() thus increments the cy_pend count for the
321  *  expired cyclic and posts a soft interrupt at the desired level.  In the
322  *  cyclic subsystem's soft interrupt handler, cyclic_softint(), we repeatedly
323  *  call the cyclic handler and decrement cy_pend until we have decremented
324  *  cy_pend to zero.
325  *
326  *  The Producer/Consumer Buffer
327  *
328  *  If we wish to avoid a linear scan of the cyclics array at soft interrupt
329  *  level, cyclic_softint() must be able to quickly determine which cyclics
330  *  have a non-zero cy_pend count.  We thus introduce a per-soft interrupt
331  *  level producer/consumer buffer shared with CY_HIGH_LEVEL.  These buffers
332  *  are encapsulated in the cyc_pcbuffer structure, and, like cyp_heap, are
333  *  implemented as cyc_index_t arrays (the cypc_buf member of the cyc_pcbuffer
334  *  structure).
335  *
336  *  The producer (cyclic_expire() running at CY_HIGH_LEVEL) enqueues a cyclic
337  *  by storing the cyclic's index to cypc_buf[cypc_prodndx] and incrementing
338  *  cypc_prodndx.  The consumer (cyclic_softint() running at either
339  *  CY_LOCK_LEVEL or CY_LOW_LEVEL) dequeues a cyclic by loading from
340  *  cypc_buf[cypc_consndx] and bumping cypc_consndx.  The buffer is empty when
341  *  cypc_prodndx == cypc_consndx.
342  *
343  *  To bound the size of the producer/consumer buffer, cyclic_expire() only
344  *  enqueues a cyclic if its cy_pend was zero (if the cyclic's cy_pend is
345  *  non-zero, cyclic_expire() only bumps cy_pend).  Symmetrically,
346  *  cyclic_softint() only consumes a cyclic after it has decremented the
347  *  cy_pend count to zero.
348  *
349  *  Returning to our example, here is what the CY_LOW_LEVEL producer/consumer
350  *  buffer might look like:
351  *
352  *     cypc_consndx ---+                 +--- cypc_prodndx
353  *                     |                 |
354  *                     V                 V
355  *
356  *        [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
357  *      +-----+-----+-----+-----+-----+-----+-----+-----+
358  *      |     |     |     |     |     |     |     |     |
359  *      |  x  |  x  |  3  |  2  |  4  |  x  |  x  |  x  |   <== cypc_buf
360  *      |     |     |  .  |  .  |  .  |     |     |     |
361  *      +-----+-----+- | -+- | -+- | -+-----+-----+-----+
362  *                     |     |     |
363  *                     |     |     |              cy_pend  cy_handler
364  *                     |     |     |          -------------------------
365  *                     |     |     |          [ 0]      1  clock()
366  *                     |     |     |          [ 1]      0  deadman()
367  *                     |     +---- | -------> [ 2]      3  clock_highres_fire()
368  *                     +---------- | -------> [ 3]      1  clock_highres_fire()
369  *                                 +--------> [ 4]      1  clock_highres_fire()
370  *                                            [ 5]      -  (free)
371  *                                            [ 6]      -  (free)
372  *                                            [ 7]      -  (free)
373  *
374  *  In particular, note that clock()'s cy_pend is 1 but that it is _not_ in
375  *  this producer/consumer buffer; it would be enqueued in the CY_LOCK_LEVEL
376  *  producer/consumer buffer.
377  *
378  *  Locking
379  *
380  *  Traditionally, access to per-CPU data structures shared between
381  *  interrupt levels is serialized by manipulating programmable interrupt
382  *  level:  readers and writers are required to raise their interrupt level
383  *  to that of the highest level writer.
384  *
385  *  For the producer/consumer buffers (shared between cyclic_fire()/
386  *  cyclic_expire() executing at CY_HIGH_LEVEL and cyclic_softint() executing
387  *  at one of CY_LOCK_LEVEL or CY_LOW_LEVEL), forcing cyclic_softint() to raise
388  *  programmable interrupt level is undesirable:  aside from the additional
389  *  latency incurred by manipulating interrupt level in the hot cy_pend
390  *  processing path, this would create the potential for soft level cy_pend
391  *  processing to delay CY_HIGH_LEVEL firing and expiry processing.
392  *  CY_LOCK/LOW_LEVEL cyclics could thereby induce jitter in CY_HIGH_LEVEL
393  *  cyclics.
394  *
395  *  To minimize jitter, then, we would like the cyclic_fire()/cyclic_expire()
396  *  and cyclic_softint() code paths to be lock-free.
397  *
398  *  For cyclic_fire()/cyclic_expire(), lock-free execution is straightforward:
399  *  because these routines execute at a higher interrupt level than
400  *  cyclic_softint(), their actions on the producer/consumer buffer appear
401  *  atomic.  In particular, the increment of cy_pend appears to occur
402  *  atomically with the increment of cypc_prodndx.
403  *
404  *  For cyclic_softint(), however, lock-free execution requires more delicacy.
405  *  When cyclic_softint() discovers a cyclic in the producer/consumer buffer,
406  *  it calls the cyclic's handler and attempts to atomically decrement the
407  *  cy_pend count with a compare&swap operation.
408  *
409  *  If the compare&swap operation succeeds, cyclic_softint() behaves
410  *  conditionally based on the value it atomically wrote to cy_pend:
411  *
412  *     - If the cy_pend was decremented to 0, the cyclic has been consumed;
413  *       cyclic_softint() increments the cypc_consndx and checks for more
414  *       enqueued work.
415  *
416  *     - If the count was decremented to a non-zero value, there is more work
417  *       to be done on the cyclic; cyclic_softint() calls the cyclic handler
418  *       and repeats the atomic decrement process.
419  *
420  *  If the compare&swap operation fails, cyclic_softint() knows that
421  *  cyclic_expire() has intervened and bumped the cy_pend count (resizes
422  *  and removals complicate this, however -- see the sections on their
423  *  operation, below).  cyclic_softint() thus reloads cy_pend, and re-attempts
424  *  the atomic decrement.
425  *
426  *  Recall that we bound the size of the producer/consumer buffer by
427  *  having cyclic_expire() only enqueue the specified cyclic if its
428  *  cy_pend count is zero; this assures that each cyclic is enqueued at
429  *  most once.  This leads to a critical constraint on cyclic_softint(),
430  *  however:  after the compare&swap operation which successfully decrements
431  *  cy_pend to zero, cyclic_softint() must _not_ re-examine the consumed
432  *  cyclic.  In part to obey this constraint, cyclic_softint() calls the
433  *  cyclic handler before decrementing cy_pend.
434  *
435  *  Resizing
436  *
437  *  All of the discussion thus far has assumed a static number of cyclics.
438  *  Obviously, static limitations are not practical; we need the capacity
439  *  to resize our data structures dynamically.
440  *
441  *  We resize our data structures lazily, and only on a per-CPU basis.
442  *  The size of the data structures always doubles and never shrinks.  We
443  *  serialize adds (and thus resizes) on cpu_lock; we never need to deal
444  *  with concurrent resizes.  Resizes should be rare; they may induce jitter
445  *  on the CPU being resized, but should not affect cyclic operation on other
446  *  CPUs.  Pending cyclics may not be dropped during a resize operation.
447  *
448  *  Three key cyc_cpu data structures need to be resized:  the cyclics array,
449  *  the heap array and the producer/consumer buffers.  Resizing the first two
450  *  is relatively straightforward:
451  *
452  *    1.  The new, larger arrays are allocated in cyclic_expand() (called
453  *        from cyclic_add()).
454  *    2.  cyclic_expand() cross calls cyclic_expand_xcall() on the CPU
455  *        undergoing the resize.
456  *    3.  cyclic_expand_xcall() raises interrupt level to CY_HIGH_LEVEL
457  *    4.  The contents of the old arrays are copied into the new arrays.
458  *    5.  The old cyclics array is bzero()'d
459  *    6.  The pointers are updated.
460  *
461  *  The producer/consumer buffer is dicier:  cyclic_expand_xcall() may have
462  *  interrupted cyclic_softint() in the middle of consumption. To resize the
463  *  producer/consumer buffer, we implement up to two buffers per soft interrupt
464  *  level:  a hard buffer (the buffer being produced into by cyclic_expire())
465  *  and a soft buffer (the buffer from which cyclic_softint() is consuming).
466  *  During normal operation, the hard buffer and soft buffer point to the
467  *  same underlying producer/consumer buffer.
468  *
469  *  During a resize, however, cyclic_expand_xcall() changes the hard buffer
470  *  to point to the new, larger producer/consumer buffer; all future
471  *  cyclic_expire()'s will produce into the new buffer.  cyclic_expand_xcall()
472  *  then posts a CY_LOCK_LEVEL soft interrupt, landing in cyclic_softint().
473  *
474  *  As under normal operation, cyclic_softint() will consume cyclics from
475  *  its soft buffer.  After the soft buffer is drained, however,
476  *  cyclic_softint() will see that the hard buffer has changed.  At that time,
477  *  cyclic_softint() will change its soft buffer to point to the hard buffer,
478  *  and repeat the producer/consumer buffer draining procedure.
479  *
480  *  After the new buffer is drained, cyclic_softint() will determine if both
481  *  soft levels have seen their new producer/consumer buffer.  If both have,
482  *  cyclic_softint() will post on the semaphore cyp_modify_wait.  If not, a
483  *  soft interrupt will be generated for the remaining level.
484  *
485  *  cyclic_expand() blocks on the cyp_modify_wait semaphore (a semaphore is
486  *  used instead of a condition variable because of the race between the
487  *  sema_p() in cyclic_expand() and the sema_v() in cyclic_softint()).  This
488  *  allows cyclic_expand() to know when the resize operation is complete;
489  *  all of the old buffers (the heap, the cyclics array and the producer/
490  *  consumer buffers) can be freed.
491  *
492  *  A final caveat on resizing:  we described step (5) in the
493  *  cyclic_expand_xcall() procedure without providing any motivation.  This
494  *  step addresses the problem of a cyclic_softint() attempting to decrement
495  *  a cy_pend count while interrupted by a cyclic_expand_xcall().  Because
496  *  cyclic_softint() has already called the handler by the time cy_pend is
497  *  decremented, we want to assure that it doesn't decrement a cy_pend
498  *  count in the old cyclics array.  By zeroing the old cyclics array in
499  *  cyclic_expand_xcall(), we are zeroing out every cy_pend count; when
500  *  cyclic_softint() attempts to compare&swap on the cy_pend count, it will
501  *  fail and recognize that the count has been zeroed.  cyclic_softint() will
502  *  update its stale copy of the cyp_cyclics pointer, re-read the cy_pend
503  *  count from the new cyclics array, and re-attempt the compare&swap.
504  *
505  *  Removals
506  *
507  *  Cyclic removals should be rare.  To simplify the implementation (and to
508  *  allow optimization for the cyclic_fire()/cyclic_expire()/cyclic_softint()
509  *  path), we force removals and adds to serialize on cpu_lock.
510  *
511  *  Cyclic removal is complicated by a guarantee made to the consumer of
512  *  the cyclic subsystem:  after cyclic_remove() returns, the cyclic handler
513  *  has returned and will never again be called.
514  *
515  *  Here is the procedure for cyclic removal:
516  *
517  *    1.  cyclic_remove() calls cyclic_remove_xcall() on the CPU undergoing
518  *        the removal.
519  *    2.  cyclic_remove_xcall() raises interrupt level to CY_HIGH_LEVEL
520  *    3.  The current expiration time for the removed cyclic is recorded.
521  *    4.  If the cy_pend count on the removed cyclic is non-zero, it
522  *        is copied into cyp_rpend and subsequently zeroed.
523  *    5.  The cyclic is removed from the heap
524  *    6.  If the root of the heap has changed, the backend is reprogrammed.
525  *    7.  If the cy_pend count was non-zero cyclic_remove() blocks on the
526  *        cyp_modify_wait semaphore.
527  *
528  *  The motivation for step (3) is explained in "Juggling", below.
529  *
530  *  The cy_pend count is decremented in cyclic_softint() after the cyclic
531  *  handler returns.  Thus, if we find a cy_pend count of zero in step
532  *  (4), we know that cyclic_remove() doesn't need to block.
533  *
534  *  If the cy_pend count is non-zero, however, we must block in cyclic_remove()
535  *  until cyclic_softint() has finished calling the cyclic handler.  To let
536  *  cyclic_softint() know that this cyclic has been removed, we zero the
537  *  cy_pend count.  This will cause cyclic_softint()'s compare&swap to fail.
538  *  When cyclic_softint() sees the zero cy_pend count, it knows that it's been
539  *  caught during a resize (see "Resizing", above) or that the cyclic has been
540  *  removed.  In the latter case, it calls cyclic_remove_pend() to call the
541  *  cyclic handler cyp_rpend - 1 times, and posts on cyp_modify_wait.
542  *
543  *  Juggling
544  *
545  *  At first glance, cyclic juggling seems to be a difficult problem.  The
546  *  subsystem must guarantee that a cyclic doesn't execute simultaneously on
547  *  different CPUs, while also assuring that a cyclic fires exactly once
548  *  per interval.  We solve this problem by leveraging a property of the
549  *  platform:  gethrtime() is required to increase in lock-step across
550  *  multiple CPUs.  Therefore, to juggle a cyclic, we remove it from its
551  *  CPU, recording its expiration time in the remove cross call (step (3)
552  *  in "Removing", above).  We then add the cyclic to the new CPU, explicitly
553  *  setting its expiration time to the time recorded in the removal.  This
554  *  leverages the existing cyclic expiry processing, which will compensate
555  *  for any time lost while juggling.
556  *
557  *  Reprogramming
558  *
559  *  Normally, after a cyclic fires, its next expiration is computed from
560  *  the current time and the cyclic interval. But there are situations when
561  *  the next expiration needs to be reprogrammed by the kernel subsystem that
562  *  is using the cyclic. cyclic_reprogram() allows this to be done. This,
563  *  unlike the other kernel at-large cyclic API functions, is permitted to
564  *  be called from the cyclic handler. This is because it does not use the
565  *  cpu_lock to serialize access.
566  *
567  *  When cyclic_reprogram() is called for an omni-cyclic, the operation is
568  *  applied to the omni-cyclic's component on the current CPU.
569  *
570  *  If a high-level cyclic handler reprograms its own cyclic, then
571  *  cyclic_fire() detects that and does not recompute the cyclic's next
572  *  expiration. However, for a lock-level or a low-level cyclic, the
573  *  actual cyclic handler will execute at the lower PIL only after
574  *  cyclic_fire() is done with all expired cyclics. To deal with this, such
575  *  cyclics can be specified with a special interval of CY_INFINITY (INT64_MAX).
576  *  cyclic_fire() recognizes this special value and recomputes the next
577  *  expiration to CY_INFINITY. This effectively moves the cyclic to the
578  *  bottom of the heap and prevents it from going off until its handler has
579  *  had a chance to reprogram it. Infact, this is the way to create and reuse
580  *  "one-shot" timers in the context of the cyclic subsystem without using
581  *  cyclic_remove().
582  *
583  *  Here is the procedure for cyclic reprogramming:
584  *
585  *    1.  cyclic_reprogram() calls cyclic_reprogram_xcall() on the CPU
586  *        that houses the cyclic.
587  *    2.  cyclic_reprogram_xcall() raises interrupt level to CY_HIGH_LEVEL
588  *    3.  The cyclic is located in the cyclic heap. The search for this is
589  *        done from the bottom of the heap to the top as reprogrammable cyclics
590  *        would be located closer to the bottom than the top.
591  *    4.  The cyclic expiration is set and the cyclic is moved to its
592  *        correct position in the heap (up or down depending on whether the
593  *        new expiration is less than or greater than the old one).
594  *    5.  If the cyclic move modified the root of the heap, the backend is
595  *        reprogrammed.
596  *
597  *  Reprogramming can be a frequent event (see the callout subsystem). So,
598  *  the serialization used has to be efficient. As with all other cyclic
599  *  operations, the interrupt level is raised during reprogramming. Plus,
600  *  during reprogramming, the cyclic must not be juggled (regular cyclic)
601  *  or stopped (omni-cyclic). The implementation defines a per-cyclic
602  *  reader-writer lock to accomplish this. This lock is acquired in the
603  *  reader mode by cyclic_reprogram() and writer mode by cyclic_juggle() and
604  *  cyclic_omni_stop(). The reader-writer lock makes it efficient if
605  *  an omni-cyclic is reprogrammed on different CPUs frequently.
606  *
607  *  Note that since the cpu_lock is not used during reprogramming, it is
608  *  the responsibility of the user of the reprogrammable cyclic to make sure
609  *  that the cyclic is not removed via cyclic_remove() during reprogramming.
610  *  This is not an unreasonable requirement as the user will typically have
611  *  some sort of synchronization for its cyclic-related activities. This
612  *  little caveat exists because the cyclic ID is not really an ID. It is
613  *  implemented as a pointer to a structure.
614  *
615  *  For cyclics which reprogram themselves during their own handler function,
616  *  avoiding the potential race with cyclic_remove() can be a challenge.  If a
617  *  handler is running and a remote thread issues a cyclic_remove() on its
618  *  cyclic (interrupting the handler with the removal xcall), subsequent
619  *  attempts to reprogram the cyclics from within the handler will result in a
620  *  failure return code from cyclic_reprogram().
621  */
622 #include <sys/cyclic_impl.h>
623 #include <sys/sysmacros.h>
624 #include <sys/systm.h>
625 #include <sys/atomic.h>
626 #include <sys/kmem.h>
627 #include <sys/cmn_err.h>
628 #include <sys/ddi.h>
629 #include <sys/sdt.h>
630 
631 #ifdef CYCLIC_TRACE
632 
633 /*
634  * cyc_trace_enabled is for the benefit of kernel debuggers.
635  */
636 int cyc_trace_enabled = 1;
637 static cyc_tracebuf_t cyc_ptrace;
638 static cyc_coverage_t cyc_coverage[CY_NCOVERAGE];
639 
640 /*
641  * Seen this anywhere?
642  */
643 static uint_t
644 cyclic_coverage_hash(char *p)
645 {
646 	unsigned int g;
647 	uint_t hval;
648 
649 	hval = 0;
650 	while (*p) {
651 		hval = (hval << 4) + *p++;
652 		if ((g = (hval & 0xf0000000)) != 0)
653 			hval ^= g >> 24;
654 		hval &= ~g;
655 	}
656 	return (hval);
657 }
658 
659 static void
660 cyclic_coverage(char *why, int level, uint64_t arg0, uint64_t arg1)
661 {
662 	uint_t ndx, orig;
663 
664 	for (ndx = orig = cyclic_coverage_hash(why) % CY_NCOVERAGE; ; ) {
665 		if (cyc_coverage[ndx].cyv_why == why)
666 			break;
667 
668 		if (cyc_coverage[ndx].cyv_why != NULL ||
669 		    atomic_cas_ptr(&cyc_coverage[ndx].cyv_why, NULL, why) !=
670 		    NULL) {
671 
672 			if (++ndx == CY_NCOVERAGE)
673 				ndx = 0;
674 
675 			if (ndx == orig)
676 				panic("too many cyclic coverage points");
677 			continue;
678 		}
679 
680 		/*
681 		 * If we're here, we have successfully swung our guy into
682 		 * the position at "ndx".
683 		 */
684 		break;
685 	}
686 
687 	if (level == CY_PASSIVE_LEVEL)
688 		cyc_coverage[ndx].cyv_passive_count++;
689 	else
690 		cyc_coverage[ndx].cyv_count[level]++;
691 
692 	cyc_coverage[ndx].cyv_arg0 = arg0;
693 	cyc_coverage[ndx].cyv_arg1 = arg1;
694 }
695 
696 #define	CYC_TRACE(cpu, level, why, arg0, arg1) \
697 	CYC_TRACE_IMPL(&cpu->cyp_trace[level], level, why, arg0, arg1)
698 
699 #define	CYC_PTRACE(why, arg0, arg1) \
700 	CYC_TRACE_IMPL(&cyc_ptrace, CY_PASSIVE_LEVEL, why, arg0, arg1)
701 
702 #define	CYC_TRACE_IMPL(buf, level, why, a0, a1) { \
703 	if (panicstr == NULL) { \
704 		int _ndx = (buf)->cyt_ndx; \
705 		cyc_tracerec_t *_rec = &(buf)->cyt_buf[_ndx]; \
706 		(buf)->cyt_ndx = (++_ndx == CY_NTRACEREC) ? 0 : _ndx; \
707 		_rec->cyt_tstamp = gethrtime_unscaled(); \
708 		_rec->cyt_why = (why); \
709 		_rec->cyt_arg0 = (uint64_t)(uintptr_t)(a0); \
710 		_rec->cyt_arg1 = (uint64_t)(uintptr_t)(a1); \
711 		cyclic_coverage(why, level,	\
712 		    (uint64_t)(uintptr_t)(a0), (uint64_t)(uintptr_t)(a1)); \
713 	} \
714 }
715 
716 #else
717 
718 static int cyc_trace_enabled = 0;
719 
720 #define	CYC_TRACE(cpu, level, why, arg0, arg1)
721 #define	CYC_PTRACE(why, arg0, arg1)
722 
723 #endif
724 
725 #define	CYC_TRACE0(cpu, level, why) CYC_TRACE(cpu, level, why, 0, 0)
726 #define	CYC_TRACE1(cpu, level, why, arg0) CYC_TRACE(cpu, level, why, arg0, 0)
727 
728 #define	CYC_PTRACE0(why) CYC_PTRACE(why, 0, 0)
729 #define	CYC_PTRACE1(why, arg0) CYC_PTRACE(why, arg0, 0)
730 
731 static kmem_cache_t *cyclic_id_cache;
732 static cyc_id_t *cyclic_id_head;
733 static hrtime_t cyclic_resolution;
734 static cyc_backend_t cyclic_backend;
735 
736 /*
737  * Returns 1 if the upheap propagated to the root, 0 if it did not.  This
738  * allows the caller to reprogram the backend only when the root has been
739  * modified.
740  */
741 static int
742 cyclic_upheap(cyc_cpu_t *cpu, cyc_index_t ndx)
743 {
744 	cyclic_t *cyclics;
745 	cyc_index_t *heap;
746 	cyc_index_t heap_parent, heap_current = ndx;
747 	cyc_index_t parent, current;
748 
749 	if (heap_current == 0)
750 		return (1);
751 
752 	heap = cpu->cyp_heap;
753 	cyclics = cpu->cyp_cyclics;
754 	heap_parent = CYC_HEAP_PARENT(heap_current);
755 
756 	for (;;) {
757 		current = heap[heap_current];
758 		parent = heap[heap_parent];
759 
760 		/*
761 		 * We have an expiration time later than our parent; we're
762 		 * done.
763 		 */
764 		if (cyclics[current].cy_expire >= cyclics[parent].cy_expire)
765 			return (0);
766 
767 		/*
768 		 * We need to swap with our parent, and continue up the heap.
769 		 */
770 		heap[heap_parent] = current;
771 		heap[heap_current] = parent;
772 
773 		/*
774 		 * If we just reached the root, we're done.
775 		 */
776 		if (heap_parent == 0)
777 			return (1);
778 
779 		heap_current = heap_parent;
780 		heap_parent = CYC_HEAP_PARENT(heap_current);
781 	}
782 }
783 
784 static void
785 cyclic_downheap(cyc_cpu_t *cpu, cyc_index_t ndx)
786 {
787 	cyclic_t *cyclics = cpu->cyp_cyclics;
788 	cyc_index_t *heap = cpu->cyp_heap;
789 
790 	cyc_index_t heap_left, heap_right, heap_me = ndx;
791 	cyc_index_t left, right, me;
792 	cyc_index_t nelems = cpu->cyp_nelems;
793 
794 	for (;;) {
795 		/*
796 		 * If we don't have a left child (i.e., we're a leaf), we're
797 		 * done.
798 		 */
799 		if ((heap_left = CYC_HEAP_LEFT(heap_me)) >= nelems)
800 			return;
801 
802 		left = heap[heap_left];
803 		me = heap[heap_me];
804 
805 		heap_right = CYC_HEAP_RIGHT(heap_me);
806 
807 		/*
808 		 * Even if we don't have a right child, we still need to compare
809 		 * our expiration time against that of our left child.
810 		 */
811 		if (heap_right >= nelems)
812 			goto comp_left;
813 
814 		right = heap[heap_right];
815 
816 		/*
817 		 * We have both a left and a right child.  We need to compare
818 		 * the expiration times of the children to determine which
819 		 * expires earlier.
820 		 */
821 		if (cyclics[right].cy_expire < cyclics[left].cy_expire) {
822 			/*
823 			 * Our right child is the earlier of our children.
824 			 * We'll now compare our expiration time to its; if
825 			 * ours is the earlier, we're done.
826 			 */
827 			if (cyclics[me].cy_expire <= cyclics[right].cy_expire)
828 				return;
829 
830 			/*
831 			 * Our right child expires earlier than we do; swap
832 			 * with our right child, and descend right.
833 			 */
834 			heap[heap_right] = me;
835 			heap[heap_me] = right;
836 			heap_me = heap_right;
837 			continue;
838 		}
839 
840 comp_left:
841 		/*
842 		 * Our left child is the earlier of our children (or we have
843 		 * no right child).  We'll now compare our expiration time
844 		 * to its; if ours is the earlier, we're done.
845 		 */
846 		if (cyclics[me].cy_expire <= cyclics[left].cy_expire)
847 			return;
848 
849 		/*
850 		 * Our left child expires earlier than we do; swap with our
851 		 * left child, and descend left.
852 		 */
853 		heap[heap_left] = me;
854 		heap[heap_me] = left;
855 		heap_me = heap_left;
856 	}
857 }
858 
859 static void
860 cyclic_expire(cyc_cpu_t *cpu, cyc_index_t ndx, cyclic_t *cyclic)
861 {
862 	cyc_backend_t *be = cpu->cyp_backend;
863 	cyc_level_t level = cyclic->cy_level;
864 
865 	/*
866 	 * If this is a CY_HIGH_LEVEL cyclic, just call the handler; we don't
867 	 * need to worry about the pend count for CY_HIGH_LEVEL cyclics.
868 	 */
869 	if (level == CY_HIGH_LEVEL) {
870 		cyc_func_t handler = cyclic->cy_handler;
871 		void *arg = cyclic->cy_arg;
872 
873 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-in", handler, arg);
874 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
875 
876 		(*handler)(arg);
877 
878 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
879 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-out", handler, arg);
880 
881 		return;
882 	}
883 
884 	/*
885 	 * We're at CY_HIGH_LEVEL; this modification to cy_pend need not
886 	 * be atomic (the high interrupt level assures that it will appear
887 	 * atomic to any softint currently running).
888 	 */
889 	if (cyclic->cy_pend++ == 0) {
890 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[level];
891 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[softbuf->cys_hard];
892 
893 		/*
894 		 * We need to enqueue this cyclic in the soft buffer.
895 		 */
896 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-enq", cyclic,
897 		    pc->cypc_prodndx);
898 		pc->cypc_buf[pc->cypc_prodndx++ & pc->cypc_sizemask] = ndx;
899 
900 		ASSERT(pc->cypc_prodndx != pc->cypc_consndx);
901 	} else {
902 		/*
903 		 * If the pend count is zero after we incremented it, then
904 		 * we've wrapped (i.e. we had a cy_pend count of over four
905 		 * billion.  In this case, we clamp the pend count at
906 		 * UINT32_MAX.  Yes, cyclics can be lost in this case.
907 		 */
908 		if (cyclic->cy_pend == 0) {
909 			CYC_TRACE1(cpu, CY_HIGH_LEVEL, "expire-wrap", cyclic);
910 			cyclic->cy_pend = UINT32_MAX;
911 		}
912 
913 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-bump", cyclic, 0);
914 	}
915 
916 	be->cyb_softint(be->cyb_arg, cyclic->cy_level);
917 }
918 
919 /*
920  *  cyclic_fire(cpu_t *)
921  *
922  *  Overview
923  *
924  *    cyclic_fire() is the cyclic subsystem's CY_HIGH_LEVEL interrupt handler.
925  *    Called by the cyclic backend.
926  *
927  *  Arguments and notes
928  *
929  *    The only argument is the CPU on which the interrupt is executing;
930  *    backends must call into cyclic_fire() on the specified CPU.
931  *
932  *    cyclic_fire() may be called spuriously without ill effect.  Optimal
933  *    backends will call into cyclic_fire() at or shortly after the time
934  *    requested via cyb_reprogram().  However, calling cyclic_fire()
935  *    arbitrarily late will only manifest latency bubbles; the correctness
936  *    of the cyclic subsystem does not rely on the timeliness of the backend.
937  *
938  *    cyclic_fire() is wait-free; it will not block or spin.
939  *
940  *  Return values
941  *
942  *    None.
943  *
944  *  Caller's context
945  *
946  *    cyclic_fire() must be called from CY_HIGH_LEVEL interrupt context.
947  */
948 void
949 cyclic_fire(cpu_t *c)
950 {
951 	cyc_cpu_t *cpu = c->cpu_cyclic;
952 	cyc_backend_t *be = cpu->cyp_backend;
953 	cyc_index_t *heap = cpu->cyp_heap;
954 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
955 	void *arg = be->cyb_arg;
956 	hrtime_t now = gethrtime();
957 	hrtime_t exp;
958 
959 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire", now, 0);
960 
961 	if (cpu->cyp_nelems == 0) {
962 		/*
963 		 * This is a spurious fire.  Count it as such, and blow
964 		 * out of here.
965 		 */
966 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "fire-spurious");
967 		return;
968 	}
969 
970 	for (;;) {
971 		cyc_index_t ndx = heap[0];
972 
973 		cyclic = &cyclics[ndx];
974 
975 		ASSERT(!(cyclic->cy_flags & CYF_FREE));
976 
977 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire-check", cyclic,
978 		    cyclic->cy_expire);
979 
980 		if ((exp = cyclic->cy_expire) > now)
981 			break;
982 
983 		cyclic_expire(cpu, ndx, cyclic);
984 
985 		/*
986 		 * If the handler reprogrammed the cyclic, then don't
987 		 * recompute the expiration. Then, if the interval is
988 		 * infinity, set the expiration to infinity. This can
989 		 * be used to create one-shot timers.
990 		 */
991 		if (exp != cyclic->cy_expire) {
992 			/*
993 			 * If a hi level cyclic reprograms itself,
994 			 * the heap adjustment and reprogramming of the
995 			 * clock source have already been done at this
996 			 * point. So, we can continue.
997 			 */
998 			continue;
999 		}
1000 
1001 		if (cyclic->cy_interval == CY_INFINITY)
1002 			exp = CY_INFINITY;
1003 		else
1004 			exp += cyclic->cy_interval;
1005 
1006 		/*
1007 		 * If this cyclic will be set to next expire in the distant
1008 		 * past, we have one of two situations:
1009 		 *
1010 		 *   a)	This is the first firing of a cyclic which had
1011 		 *	cy_expire set to 0.
1012 		 *
1013 		 *   b)	We are tragically late for a cyclic -- most likely
1014 		 *	due to being in the debugger.
1015 		 *
1016 		 * In either case, we set the new expiration time to be the
1017 		 * the next interval boundary.  This assures that the
1018 		 * expiration time modulo the interval is invariant.
1019 		 *
1020 		 * We arbitrarily define "distant" to be one second (one second
1021 		 * is chosen because it's shorter than any foray to the
1022 		 * debugger while still being longer than any legitimate
1023 		 * stretch at CY_HIGH_LEVEL).
1024 		 */
1025 
1026 		if (now - exp > NANOSEC) {
1027 			hrtime_t interval = cyclic->cy_interval;
1028 
1029 			CYC_TRACE(cpu, CY_HIGH_LEVEL, exp == interval ?
1030 			    "fire-first" : "fire-swing", now, exp);
1031 
1032 			exp += ((now - exp) / interval + 1) * interval;
1033 		}
1034 
1035 		cyclic->cy_expire = exp;
1036 		cyclic_downheap(cpu, 0);
1037 	}
1038 
1039 	/*
1040 	 * Now we have a cyclic in the root slot which isn't in the past;
1041 	 * reprogram the interrupt source.
1042 	 */
1043 	be->cyb_reprogram(arg, exp);
1044 }
1045 
1046 static void
1047 cyclic_remove_pend(cyc_cpu_t *cpu, cyc_level_t level, cyclic_t *cyclic)
1048 {
1049 	cyc_func_t handler = cyclic->cy_handler;
1050 	void *arg = cyclic->cy_arg;
1051 	uint32_t i, rpend = cpu->cyp_rpend - 1;
1052 
1053 	ASSERT(cyclic->cy_flags & CYF_FREE);
1054 	ASSERT(cyclic->cy_pend == 0);
1055 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1056 	ASSERT(cpu->cyp_rpend > 0);
1057 
1058 	CYC_TRACE(cpu, level, "remove-rpend", cyclic, cpu->cyp_rpend);
1059 
1060 	/*
1061 	 * Note that we only call the handler cyp_rpend - 1 times; this is
1062 	 * to account for the handler call in cyclic_softint().
1063 	 */
1064 	for (i = 0; i < rpend; i++) {
1065 		CYC_TRACE(cpu, level, "rpend-in", handler, arg);
1066 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
1067 
1068 		(*handler)(arg);
1069 
1070 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
1071 		CYC_TRACE(cpu, level, "rpend-out", handler, arg);
1072 	}
1073 
1074 	/*
1075 	 * We can now let the remove operation complete.
1076 	 */
1077 	sema_v(&cpu->cyp_modify_wait);
1078 }
1079 
1080 /*
1081  *  cyclic_softint(cpu_t *cpu, cyc_level_t level)
1082  *
1083  *  Overview
1084  *
1085  *    cyclic_softint() is the cyclic subsystem's CY_LOCK_LEVEL and CY_LOW_LEVEL
1086  *    soft interrupt handler.  Called by the cyclic backend.
1087  *
1088  *  Arguments and notes
1089  *
1090  *    The first argument to cyclic_softint() is the CPU on which the interrupt
1091  *    is executing; backends must call into cyclic_softint() on the specified
1092  *    CPU.  The second argument is the level of the soft interrupt; it must
1093  *    be one of CY_LOCK_LEVEL or CY_LOW_LEVEL.
1094  *
1095  *    cyclic_softint() will call the handlers for cyclics pending at the
1096  *    specified level.  cyclic_softint() will not return until all pending
1097  *    cyclics at the specified level have been dealt with; intervening
1098  *    CY_HIGH_LEVEL interrupts which enqueue cyclics at the specified level
1099  *    may therefore prolong cyclic_softint().
1100  *
1101  *    cyclic_softint() never disables interrupts, and, if neither a
1102  *    cyclic_add() nor a cyclic_remove() is pending on the specified CPU, is
1103  *    lock-free.  This assures that in the common case, cyclic_softint()
1104  *    completes without blocking, and never starves cyclic_fire().  If either
1105  *    cyclic_add() or cyclic_remove() is pending, cyclic_softint() may grab
1106  *    a dispatcher lock.
1107  *
1108  *    While cyclic_softint() is designed for bounded latency, it is obviously
1109  *    at the mercy of its cyclic handlers.  Because cyclic handlers may block
1110  *    arbitrarily, callers of cyclic_softint() should not rely upon
1111  *    deterministic completion.
1112  *
1113  *    cyclic_softint() may be called spuriously without ill effect.
1114  *
1115  *  Return value
1116  *
1117  *    None.
1118  *
1119  *  Caller's context
1120  *
1121  *    The caller must be executing in soft interrupt context at either
1122  *    CY_LOCK_LEVEL or CY_LOW_LEVEL.  The level passed to cyclic_softint()
1123  *    must match the level at which it is executing.  On optimal backends,
1124  *    the caller will hold no locks.  In any case, the caller may not hold
1125  *    cpu_lock or any lock acquired by any cyclic handler or held across
1126  *    any of cyclic_add(), cyclic_remove(), cyclic_bind() or cyclic_juggle().
1127  */
1128 void
1129 cyclic_softint(cpu_t *c, cyc_level_t level)
1130 {
1131 	cyc_cpu_t *cpu = c->cpu_cyclic;
1132 	cyc_softbuf_t *softbuf;
1133 	int soft, *buf, consndx, resized = 0, intr_resized = 0;
1134 	cyc_pcbuffer_t *pc;
1135 	cyclic_t *cyclics = cpu->cyp_cyclics;
1136 	int sizemask;
1137 
1138 	CYC_TRACE(cpu, level, "softint", cyclics, 0);
1139 
1140 	ASSERT(level < CY_LOW_LEVEL + CY_SOFT_LEVELS);
1141 
1142 	softbuf = &cpu->cyp_softbuf[level];
1143 top:
1144 	soft = softbuf->cys_soft;
1145 	ASSERT(soft == 0 || soft == 1);
1146 
1147 	pc = &softbuf->cys_buf[soft];
1148 	buf = pc->cypc_buf;
1149 	consndx = pc->cypc_consndx;
1150 	sizemask = pc->cypc_sizemask;
1151 
1152 	CYC_TRACE(cpu, level, "softint-top", cyclics, pc);
1153 
1154 	while (consndx != pc->cypc_prodndx) {
1155 		uint32_t pend, npend, opend;
1156 		int consmasked = consndx & sizemask;
1157 		cyclic_t *cyclic = &cyclics[buf[consmasked]];
1158 		cyc_func_t handler = cyclic->cy_handler;
1159 		void *arg = cyclic->cy_arg;
1160 
1161 		ASSERT(buf[consmasked] < cpu->cyp_size);
1162 		CYC_TRACE(cpu, level, "consuming", consndx, cyclic);
1163 
1164 		/*
1165 		 * We have found this cyclic in the pcbuffer.  We know that
1166 		 * one of the following is true:
1167 		 *
1168 		 *  (a)	The pend is non-zero.  We need to execute the handler
1169 		 *	at least once.
1170 		 *
1171 		 *  (b)	The pend _was_ non-zero, but it's now zero due to a
1172 		 *	resize.  We will call the handler once, see that we
1173 		 *	are in this case, and read the new cyclics buffer
1174 		 *	(and hence the old non-zero pend).
1175 		 *
1176 		 *  (c)	The pend _was_ non-zero, but it's now zero due to a
1177 		 *	removal.  We will call the handler once, see that we
1178 		 *	are in this case, and call into cyclic_remove_pend()
1179 		 *	to call the cyclic rpend times.  We will take into
1180 		 *	account that we have already called the handler once.
1181 		 *
1182 		 * Point is:  it's safe to call the handler without first
1183 		 * checking the pend.
1184 		 */
1185 		do {
1186 			CYC_TRACE(cpu, level, "handler-in", handler, arg);
1187 			DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
1188 
1189 			(*handler)(arg);
1190 
1191 			DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
1192 			CYC_TRACE(cpu, level, "handler-out", handler, arg);
1193 reread:
1194 			pend = cyclic->cy_pend;
1195 			npend = pend - 1;
1196 
1197 			if (pend == 0) {
1198 				if (cpu->cyp_state == CYS_REMOVING) {
1199 					/*
1200 					 * This cyclic has been removed while
1201 					 * it had a non-zero pend count (we
1202 					 * know it was non-zero because we
1203 					 * found this cyclic in the pcbuffer).
1204 					 * There must be a non-zero rpend for
1205 					 * this CPU, and there must be a remove
1206 					 * operation blocking; we'll call into
1207 					 * cyclic_remove_pend() to clean this
1208 					 * up, and break out of the pend loop.
1209 					 */
1210 					cyclic_remove_pend(cpu, level, cyclic);
1211 					break;
1212 				}
1213 
1214 				/*
1215 				 * We must have had a resize interrupt us.
1216 				 */
1217 				CYC_TRACE(cpu, level, "resize-int", cyclics, 0);
1218 				ASSERT(cpu->cyp_state == CYS_EXPANDING);
1219 				ASSERT(cyclics != cpu->cyp_cyclics);
1220 				ASSERT(resized == 0);
1221 				ASSERT(intr_resized == 0);
1222 				intr_resized = 1;
1223 				cyclics = cpu->cyp_cyclics;
1224 				cyclic = &cyclics[buf[consmasked]];
1225 				ASSERT(cyclic->cy_handler == handler);
1226 				ASSERT(cyclic->cy_arg == arg);
1227 				goto reread;
1228 			}
1229 
1230 			if ((opend =
1231 			    atomic_cas_32(&cyclic->cy_pend, pend, npend)) !=
1232 			    pend) {
1233 				/*
1234 				 * Our atomic_cas_32 can fail for one of several
1235 				 * reasons:
1236 				 *
1237 				 *  (a)	An intervening high level bumped up the
1238 				 *	pend count on this cyclic.  In this
1239 				 *	case, we will see a higher pend.
1240 				 *
1241 				 *  (b)	The cyclics array has been yanked out
1242 				 *	from underneath us by a resize
1243 				 *	operation.  In this case, pend is 0 and
1244 				 *	cyp_state is CYS_EXPANDING.
1245 				 *
1246 				 *  (c)	The cyclic has been removed by an
1247 				 *	intervening remove-xcall.  In this case,
1248 				 *	pend will be 0, the cyp_state will be
1249 				 *	CYS_REMOVING, and the cyclic will be
1250 				 *	marked CYF_FREE.
1251 				 *
1252 				 * The assertion below checks that we are
1253 				 * in one of the above situations.  The
1254 				 * action under all three is to return to
1255 				 * the top of the loop.
1256 				 */
1257 				CYC_TRACE(cpu, level, "cas-fail", opend, pend);
1258 				ASSERT(opend > pend || (opend == 0 &&
1259 				    ((cyclics != cpu->cyp_cyclics &&
1260 				    cpu->cyp_state == CYS_EXPANDING) ||
1261 				    (cpu->cyp_state == CYS_REMOVING &&
1262 				    (cyclic->cy_flags & CYF_FREE)))));
1263 				goto reread;
1264 			}
1265 
1266 			/*
1267 			 * Okay, so we've managed to successfully decrement
1268 			 * pend.  If we just decremented the pend to 0, we're
1269 			 * done.
1270 			 */
1271 		} while (npend > 0);
1272 
1273 		pc->cypc_consndx = ++consndx;
1274 	}
1275 
1276 	/*
1277 	 * If the high level handler is no longer writing to the same
1278 	 * buffer, then we've had a resize.  We need to switch our soft
1279 	 * index, and goto top.
1280 	 */
1281 	if (soft != softbuf->cys_hard) {
1282 		/*
1283 		 * We can assert that the other buffer has grown by exactly
1284 		 * one factor of two.
1285 		 */
1286 		CYC_TRACE(cpu, level, "buffer-grow", 0, 0);
1287 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
1288 		ASSERT(softbuf->cys_buf[softbuf->cys_hard].cypc_sizemask ==
1289 		    (softbuf->cys_buf[soft].cypc_sizemask << 1) + 1 ||
1290 		    softbuf->cys_buf[soft].cypc_sizemask == 0);
1291 		ASSERT(softbuf->cys_hard == (softbuf->cys_soft ^ 1));
1292 
1293 		/*
1294 		 * If our cached cyclics pointer doesn't match cyp_cyclics,
1295 		 * then we took a resize between our last iteration of the
1296 		 * pend loop and the check against softbuf->cys_hard.
1297 		 */
1298 		if (cpu->cyp_cyclics != cyclics) {
1299 			CYC_TRACE1(cpu, level, "resize-int-int", consndx);
1300 			cyclics = cpu->cyp_cyclics;
1301 		}
1302 
1303 		softbuf->cys_soft = softbuf->cys_hard;
1304 
1305 		ASSERT(resized == 0);
1306 		resized = 1;
1307 		goto top;
1308 	}
1309 
1310 	/*
1311 	 * If we were interrupted by a resize operation, then we must have
1312 	 * seen the hard index change.
1313 	 */
1314 	ASSERT(!(intr_resized == 1 && resized == 0));
1315 
1316 	if (resized) {
1317 		uint32_t lev, nlev;
1318 
1319 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
1320 
1321 		do {
1322 			lev = cpu->cyp_modify_levels;
1323 			nlev = lev + 1;
1324 		} while (atomic_cas_32(&cpu->cyp_modify_levels, lev, nlev) !=
1325 		    lev);
1326 
1327 		/*
1328 		 * If we are the last soft level to see the modification,
1329 		 * post on cyp_modify_wait.  Otherwise, (if we're not
1330 		 * already at low level), post down to the next soft level.
1331 		 */
1332 		if (nlev == CY_SOFT_LEVELS) {
1333 			CYC_TRACE0(cpu, level, "resize-kick");
1334 			sema_v(&cpu->cyp_modify_wait);
1335 		} else {
1336 			ASSERT(nlev < CY_SOFT_LEVELS);
1337 			if (level != CY_LOW_LEVEL) {
1338 				cyc_backend_t *be = cpu->cyp_backend;
1339 
1340 				CYC_TRACE0(cpu, level, "resize-post");
1341 				be->cyb_softint(be->cyb_arg, level - 1);
1342 			}
1343 		}
1344 	}
1345 }
1346 
1347 static void
1348 cyclic_expand_xcall(cyc_xcallarg_t *arg)
1349 {
1350 	cyc_cpu_t *cpu = arg->cyx_cpu;
1351 	cyc_backend_t *be = cpu->cyp_backend;
1352 	cyb_arg_t bar = be->cyb_arg;
1353 	cyc_cookie_t cookie;
1354 	cyc_index_t new_size = arg->cyx_size, size = cpu->cyp_size, i;
1355 	cyc_index_t *new_heap = arg->cyx_heap;
1356 	cyclic_t *cyclics = cpu->cyp_cyclics, *new_cyclics = arg->cyx_cyclics;
1357 
1358 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
1359 
1360 	/*
1361 	 * This is a little dicey.  First, we'll raise our interrupt level
1362 	 * to CY_HIGH_LEVEL.  This CPU already has a new heap, cyclic array,
1363 	 * etc.; we just need to bcopy them across.  As for the softint
1364 	 * buffers, we'll switch the active buffers.  The actual softints will
1365 	 * take care of consuming any pending cyclics in the old buffer.
1366 	 */
1367 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1368 
1369 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "expand", new_size, 0);
1370 
1371 	/*
1372 	 * Assert that the new size is a power of 2.
1373 	 */
1374 	ASSERT((new_size & new_size - 1) == 0);
1375 	ASSERT(new_size == (size << 1));
1376 	ASSERT(cpu->cyp_heap != NULL && cpu->cyp_cyclics != NULL);
1377 
1378 	bcopy(cpu->cyp_heap, new_heap, sizeof (cyc_index_t) * size);
1379 	bcopy(cyclics, new_cyclics, sizeof (cyclic_t) * size);
1380 
1381 	/*
1382 	 * Now run through the old cyclics array, setting pend to 0.  To
1383 	 * softints (which are executing at a lower priority level), the
1384 	 * pends dropping to 0 will appear atomic with the cyp_cyclics
1385 	 * pointer changing.
1386 	 */
1387 	for (i = 0; i < size; i++)
1388 		cyclics[i].cy_pend = 0;
1389 
1390 	/*
1391 	 * Set up the free list, and set all of the new cyclics to be CYF_FREE.
1392 	 */
1393 	for (i = size; i < new_size; i++) {
1394 		new_heap[i] = i;
1395 		new_cyclics[i].cy_flags = CYF_FREE;
1396 	}
1397 
1398 	/*
1399 	 * We can go ahead and plow the value of cyp_heap and cyp_cyclics;
1400 	 * cyclic_expand() has kept a copy.
1401 	 */
1402 	cpu->cyp_heap = new_heap;
1403 	cpu->cyp_cyclics = new_cyclics;
1404 	cpu->cyp_size = new_size;
1405 
1406 	/*
1407 	 * We've switched over the heap and the cyclics array.  Now we need
1408 	 * to switch over our active softint buffer pointers.
1409 	 */
1410 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1411 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1412 		uchar_t hard = softbuf->cys_hard;
1413 
1414 		/*
1415 		 * Assert that we're not in the middle of a resize operation.
1416 		 */
1417 		ASSERT(hard == softbuf->cys_soft);
1418 		ASSERT(hard == 0 || hard == 1);
1419 		ASSERT(softbuf->cys_buf[hard].cypc_buf != NULL);
1420 
1421 		softbuf->cys_hard = hard ^ 1;
1422 
1423 		/*
1424 		 * The caller (cyclic_expand()) is responsible for setting
1425 		 * up the new producer-consumer buffer; assert that it's
1426 		 * been done correctly.
1427 		 */
1428 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf != NULL);
1429 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_prodndx == 0);
1430 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_consndx == 0);
1431 	}
1432 
1433 	/*
1434 	 * That's all there is to it; now we just need to postdown to
1435 	 * get the softint chain going.
1436 	 */
1437 	be->cyb_softint(bar, CY_HIGH_LEVEL - 1);
1438 	be->cyb_restore_level(bar, cookie);
1439 }
1440 
1441 /*
1442  * cyclic_expand() will cross call onto the CPU to perform the actual
1443  * expand operation.
1444  */
1445 static void
1446 cyclic_expand(cyc_cpu_t *cpu)
1447 {
1448 	cyc_index_t new_size, old_size;
1449 	cyc_index_t *new_heap, *old_heap;
1450 	cyclic_t *new_cyclics, *old_cyclics;
1451 	cyc_xcallarg_t arg;
1452 	cyc_backend_t *be = cpu->cyp_backend;
1453 	char old_hard;
1454 	int i;
1455 
1456 	ASSERT(MUTEX_HELD(&cpu_lock));
1457 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1458 
1459 	cpu->cyp_state = CYS_EXPANDING;
1460 
1461 	old_heap = cpu->cyp_heap;
1462 	old_cyclics = cpu->cyp_cyclics;
1463 
1464 	if ((new_size = ((old_size = cpu->cyp_size) << 1)) == 0) {
1465 		new_size = CY_DEFAULT_PERCPU;
1466 		ASSERT(old_heap == NULL && old_cyclics == NULL);
1467 	}
1468 
1469 	/*
1470 	 * Check that the new_size is a power of 2.
1471 	 */
1472 	ASSERT((new_size - 1 & new_size) == 0);
1473 
1474 	new_heap = kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
1475 	new_cyclics = kmem_zalloc(sizeof (cyclic_t) * new_size, KM_SLEEP);
1476 
1477 	/*
1478 	 * We know that no other expansions are in progress (they serialize
1479 	 * on cpu_lock), so we can safely read the softbuf metadata.
1480 	 */
1481 	old_hard = cpu->cyp_softbuf[0].cys_hard;
1482 
1483 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1484 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1485 		char hard = softbuf->cys_hard;
1486 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
1487 
1488 		ASSERT(hard == old_hard);
1489 		ASSERT(hard == softbuf->cys_soft);
1490 		ASSERT(pc->cypc_buf == NULL);
1491 
1492 		pc->cypc_buf =
1493 		    kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
1494 		pc->cypc_prodndx = pc->cypc_consndx = 0;
1495 		pc->cypc_sizemask = new_size - 1;
1496 	}
1497 
1498 	arg.cyx_cpu = cpu;
1499 	arg.cyx_heap = new_heap;
1500 	arg.cyx_cyclics = new_cyclics;
1501 	arg.cyx_size = new_size;
1502 
1503 	cpu->cyp_modify_levels = 0;
1504 
1505 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
1506 	    (cyc_func_t)cyclic_expand_xcall, &arg);
1507 
1508 	/*
1509 	 * Now block, waiting for the resize operation to complete.
1510 	 */
1511 	sema_p(&cpu->cyp_modify_wait);
1512 	ASSERT(cpu->cyp_modify_levels == CY_SOFT_LEVELS);
1513 
1514 	/*
1515 	 * The operation is complete; we can now free the old buffers.
1516 	 */
1517 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1518 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1519 		char hard = softbuf->cys_hard;
1520 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
1521 
1522 		ASSERT(hard == (old_hard ^ 1));
1523 		ASSERT(hard == softbuf->cys_soft);
1524 
1525 		if (pc->cypc_buf == NULL)
1526 			continue;
1527 
1528 		ASSERT(pc->cypc_sizemask == ((new_size - 1) >> 1));
1529 
1530 		kmem_free(pc->cypc_buf,
1531 		    sizeof (cyc_index_t) * (pc->cypc_sizemask + 1));
1532 		pc->cypc_buf = NULL;
1533 	}
1534 
1535 	if (old_cyclics != NULL) {
1536 		ASSERT(old_heap != NULL);
1537 		ASSERT(old_size != 0);
1538 		kmem_free(old_cyclics, sizeof (cyclic_t) * old_size);
1539 		kmem_free(old_heap, sizeof (cyc_index_t) * old_size);
1540 	}
1541 
1542 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
1543 	cpu->cyp_state = CYS_ONLINE;
1544 }
1545 
1546 /*
1547  * cyclic_pick_cpu will attempt to pick a CPU according to the constraints
1548  * specified by the partition, bound CPU, and flags.  Additionally,
1549  * cyclic_pick_cpu() will not pick the avoid CPU; it will return NULL if
1550  * the avoid CPU is the only CPU which satisfies the constraints.
1551  *
1552  * If CYF_CPU_BOUND is set in flags, the specified CPU must be non-NULL.
1553  * If CYF_PART_BOUND is set in flags, the specified partition must be non-NULL.
1554  * If both CYF_CPU_BOUND and CYF_PART_BOUND are set, the specified CPU must
1555  * be in the specified partition.
1556  */
1557 static cyc_cpu_t *
1558 cyclic_pick_cpu(cpupart_t *part, cpu_t *bound, cpu_t *avoid, uint16_t flags)
1559 {
1560 	cpu_t *c, *start = (part != NULL) ? part->cp_cpulist : CPU;
1561 	cpu_t *online = NULL;
1562 	uintptr_t offset;
1563 
1564 	CYC_PTRACE("pick-cpu", part, bound);
1565 
1566 	ASSERT(!(flags & CYF_CPU_BOUND) || bound != NULL);
1567 	ASSERT(!(flags & CYF_PART_BOUND) || part != NULL);
1568 
1569 	/*
1570 	 * If we're bound to our CPU, there isn't much choice involved.  We
1571 	 * need to check that the CPU passed as bound is in the cpupart, and
1572 	 * that the CPU that we're binding to has been configured.
1573 	 */
1574 	if (flags & CYF_CPU_BOUND) {
1575 		CYC_PTRACE("pick-cpu-bound", bound, avoid);
1576 
1577 		if ((flags & CYF_PART_BOUND) && bound->cpu_part != part)
1578 			panic("cyclic_pick_cpu:  "
1579 			    "CPU binding contradicts partition binding");
1580 
1581 		if (bound == avoid)
1582 			return (NULL);
1583 
1584 		if (bound->cpu_cyclic == NULL)
1585 			panic("cyclic_pick_cpu:  "
1586 			    "attempt to bind to non-configured CPU");
1587 
1588 		return (bound->cpu_cyclic);
1589 	}
1590 
1591 	if (flags & CYF_PART_BOUND) {
1592 		CYC_PTRACE("pick-part-bound", bound, avoid);
1593 		offset = offsetof(cpu_t, cpu_next_part);
1594 	} else {
1595 		offset = offsetof(cpu_t, cpu_next_onln);
1596 	}
1597 
1598 	c = start;
1599 	do {
1600 		if (c->cpu_cyclic == NULL)
1601 			continue;
1602 
1603 		if (c->cpu_cyclic->cyp_state == CYS_OFFLINE)
1604 			continue;
1605 
1606 		if (c == avoid)
1607 			continue;
1608 
1609 		if (c->cpu_flags & CPU_ENABLE)
1610 			goto found;
1611 
1612 		if (online == NULL)
1613 			online = c;
1614 	} while ((c = *(cpu_t **)((uintptr_t)c + offset)) != start);
1615 
1616 	/*
1617 	 * If we're here, we're in one of two situations:
1618 	 *
1619 	 *  (a)	We have a partition-bound cyclic, and there is no CPU in
1620 	 *	our partition which is CPU_ENABLE'd.  If we saw another
1621 	 *	non-CYS_OFFLINE CPU in our partition, we'll go with it.
1622 	 *	If not, the avoid CPU must be the only non-CYS_OFFLINE
1623 	 *	CPU in the partition; we're forced to return NULL.
1624 	 *
1625 	 *  (b)	We have a partition-unbound cyclic, in which case there
1626 	 *	must only be one CPU CPU_ENABLE'd, and it must be the one
1627 	 *	we're trying to avoid.  If cyclic_juggle()/cyclic_offline()
1628 	 *	are called appropriately, this generally shouldn't happen
1629 	 *	(the offline should fail before getting to this code).
1630 	 *	At any rate: we can't avoid the avoid CPU, so we return
1631 	 *	NULL.
1632 	 */
1633 	if (!(flags & CYF_PART_BOUND)) {
1634 		ASSERT(avoid->cpu_flags & CPU_ENABLE);
1635 		return (NULL);
1636 	}
1637 
1638 	CYC_PTRACE("pick-no-intr", part, avoid);
1639 
1640 	if ((c = online) != NULL)
1641 		goto found;
1642 
1643 	CYC_PTRACE("pick-fail", part, avoid);
1644 	ASSERT(avoid->cpu_part == start->cpu_part);
1645 	return (NULL);
1646 
1647 found:
1648 	CYC_PTRACE("pick-cpu-found", c, avoid);
1649 	ASSERT(c != avoid);
1650 	ASSERT(c->cpu_cyclic != NULL);
1651 
1652 	return (c->cpu_cyclic);
1653 }
1654 
1655 static void
1656 cyclic_add_xcall(cyc_xcallarg_t *arg)
1657 {
1658 	cyc_cpu_t *cpu = arg->cyx_cpu;
1659 	cyc_handler_t *hdlr = arg->cyx_hdlr;
1660 	cyc_time_t *when = arg->cyx_when;
1661 	cyc_backend_t *be = cpu->cyp_backend;
1662 	cyc_index_t ndx, nelems;
1663 	cyc_cookie_t cookie;
1664 	cyb_arg_t bar = be->cyb_arg;
1665 	cyclic_t *cyclic;
1666 
1667 	ASSERT(cpu->cyp_nelems < cpu->cyp_size);
1668 
1669 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1670 
1671 	CYC_TRACE(cpu, CY_HIGH_LEVEL,
1672 	    "add-xcall", when->cyt_when, when->cyt_interval);
1673 
1674 	nelems = cpu->cyp_nelems++;
1675 
1676 	if (nelems == 0) {
1677 		/*
1678 		 * If this is the first element, we need to enable the
1679 		 * backend on this CPU.
1680 		 */
1681 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "enabled");
1682 		be->cyb_enable(bar);
1683 	}
1684 
1685 	ndx = cpu->cyp_heap[nelems];
1686 	cyclic = &cpu->cyp_cyclics[ndx];
1687 
1688 	ASSERT(cyclic->cy_flags == CYF_FREE);
1689 	cyclic->cy_interval = when->cyt_interval;
1690 
1691 	if (when->cyt_when == 0) {
1692 		/*
1693 		 * If a start time hasn't been explicitly specified, we'll
1694 		 * start on the next interval boundary.
1695 		 */
1696 		cyclic->cy_expire = (gethrtime() / cyclic->cy_interval + 1) *
1697 		    cyclic->cy_interval;
1698 	} else {
1699 		cyclic->cy_expire = when->cyt_when;
1700 	}
1701 
1702 	cyclic->cy_handler = hdlr->cyh_func;
1703 	cyclic->cy_arg = hdlr->cyh_arg;
1704 	cyclic->cy_level = hdlr->cyh_level;
1705 	cyclic->cy_flags = arg->cyx_flags;
1706 
1707 	if (cyclic_upheap(cpu, nelems)) {
1708 		hrtime_t exp = cyclic->cy_expire;
1709 
1710 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "add-reprog", cyclic, exp);
1711 
1712 		/*
1713 		 * If our upheap propagated to the root, we need to
1714 		 * reprogram the interrupt source.
1715 		 */
1716 		be->cyb_reprogram(bar, exp);
1717 	}
1718 	be->cyb_restore_level(bar, cookie);
1719 
1720 	arg->cyx_ndx = ndx;
1721 }
1722 
1723 static cyc_index_t
1724 cyclic_add_here(cyc_cpu_t *cpu, cyc_handler_t *hdlr,
1725     cyc_time_t *when, uint16_t flags)
1726 {
1727 	cyc_backend_t *be = cpu->cyp_backend;
1728 	cyb_arg_t bar = be->cyb_arg;
1729 	cyc_xcallarg_t arg;
1730 
1731 	CYC_PTRACE("add-cpu", cpu, hdlr->cyh_func);
1732 	ASSERT(MUTEX_HELD(&cpu_lock));
1733 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1734 	ASSERT(!(cpu->cyp_cpu->cpu_flags & CPU_OFFLINE));
1735 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
1736 
1737 	if (cpu->cyp_nelems == cpu->cyp_size) {
1738 		/*
1739 		 * This is expensive; it will cross call onto the other
1740 		 * CPU to perform the expansion.
1741 		 */
1742 		cyclic_expand(cpu);
1743 		ASSERT(cpu->cyp_nelems < cpu->cyp_size);
1744 	}
1745 
1746 	/*
1747 	 * By now, we know that we're going to be able to successfully
1748 	 * perform the add.  Now cross call over to the CPU of interest to
1749 	 * actually add our cyclic.
1750 	 */
1751 	arg.cyx_cpu = cpu;
1752 	arg.cyx_hdlr = hdlr;
1753 	arg.cyx_when = when;
1754 	arg.cyx_flags = flags;
1755 
1756 	be->cyb_xcall(bar, cpu->cyp_cpu, (cyc_func_t)cyclic_add_xcall, &arg);
1757 
1758 	CYC_PTRACE("add-cpu-done", cpu, arg.cyx_ndx);
1759 
1760 	return (arg.cyx_ndx);
1761 }
1762 
1763 static void
1764 cyclic_remove_xcall(cyc_xcallarg_t *arg)
1765 {
1766 	cyc_cpu_t *cpu = arg->cyx_cpu;
1767 	cyc_backend_t *be = cpu->cyp_backend;
1768 	cyb_arg_t bar = be->cyb_arg;
1769 	cyc_cookie_t cookie;
1770 	cyc_index_t ndx = arg->cyx_ndx, nelems, i;
1771 	cyc_index_t *heap, last;
1772 	cyclic_t *cyclic;
1773 #ifdef DEBUG
1774 	cyc_index_t root;
1775 #endif
1776 
1777 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1778 
1779 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1780 
1781 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-xcall", ndx);
1782 
1783 	heap = cpu->cyp_heap;
1784 	nelems = cpu->cyp_nelems;
1785 	ASSERT(nelems > 0);
1786 	cyclic = &cpu->cyp_cyclics[ndx];
1787 
1788 	/*
1789 	 * Grab the current expiration time.  If this cyclic is being
1790 	 * removed as part of a juggling operation, the expiration time
1791 	 * will be used when the cyclic is added to the new CPU.
1792 	 */
1793 	if (arg->cyx_when != NULL) {
1794 		arg->cyx_when->cyt_when = cyclic->cy_expire;
1795 		arg->cyx_when->cyt_interval = cyclic->cy_interval;
1796 	}
1797 
1798 	if (cyclic->cy_pend != 0) {
1799 		/*
1800 		 * The pend is non-zero; this cyclic is currently being
1801 		 * executed (or will be executed shortly).  If the caller
1802 		 * refuses to wait, we must return (doing nothing).  Otherwise,
1803 		 * we will stash the pend value * in this CPU's rpend, and
1804 		 * then zero it out.  The softint in the pend loop will see
1805 		 * that we have zeroed out pend, and will call the cyclic
1806 		 * handler rpend times.  The caller will wait until the
1807 		 * softint has completed calling the cyclic handler.
1808 		 */
1809 		if (arg->cyx_wait == CY_NOWAIT) {
1810 			arg->cyx_wait = CY_WAIT;
1811 			goto out;
1812 		}
1813 
1814 		ASSERT(cyclic->cy_level != CY_HIGH_LEVEL);
1815 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-pend", cyclic->cy_pend);
1816 		cpu->cyp_rpend = cyclic->cy_pend;
1817 		cyclic->cy_pend = 0;
1818 	}
1819 
1820 	/*
1821 	 * Now set the flags to CYF_FREE.  We don't need a membar_enter()
1822 	 * between zeroing pend and setting the flags because we're at
1823 	 * CY_HIGH_LEVEL (that is, the zeroing of pend and the setting
1824 	 * of cy_flags appear atomic to softints).
1825 	 */
1826 	cyclic->cy_flags = CYF_FREE;
1827 
1828 	for (i = 0; i < nelems; i++) {
1829 		if (heap[i] == ndx)
1830 			break;
1831 	}
1832 
1833 	if (i == nelems)
1834 		panic("attempt to remove non-existent cyclic");
1835 
1836 	cpu->cyp_nelems = --nelems;
1837 
1838 	if (nelems == 0) {
1839 		/*
1840 		 * If we just removed the last element, then we need to
1841 		 * disable the backend on this CPU.
1842 		 */
1843 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "disabled");
1844 		be->cyb_disable(bar);
1845 	}
1846 
1847 	if (i == nelems) {
1848 		/*
1849 		 * If we just removed the last element of the heap, then
1850 		 * we don't have to downheap.
1851 		 */
1852 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-bottom");
1853 		goto out;
1854 	}
1855 
1856 #ifdef DEBUG
1857 	root = heap[0];
1858 #endif
1859 
1860 	/*
1861 	 * Swap the last element of the heap with the one we want to
1862 	 * remove, and downheap (this has the implicit effect of putting
1863 	 * the newly freed element on the free list).
1864 	 */
1865 	heap[i] = (last = heap[nelems]);
1866 	heap[nelems] = ndx;
1867 
1868 	if (i == 0) {
1869 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-root");
1870 		cyclic_downheap(cpu, 0);
1871 	} else {
1872 		if (cyclic_upheap(cpu, i) == 0) {
1873 			/*
1874 			 * The upheap didn't propagate to the root; if it
1875 			 * didn't propagate at all, we need to downheap.
1876 			 */
1877 			CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-root");
1878 			if (heap[i] == last) {
1879 				CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-up");
1880 				cyclic_downheap(cpu, i);
1881 			}
1882 			ASSERT(heap[0] == root);
1883 			goto out;
1884 		}
1885 	}
1886 
1887 	/*
1888 	 * We're here because we changed the root; we need to reprogram
1889 	 * the clock source.
1890 	 */
1891 	cyclic = &cpu->cyp_cyclics[heap[0]];
1892 
1893 	CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-reprog");
1894 
1895 	ASSERT(nelems != 0);
1896 	be->cyb_reprogram(bar, cyclic->cy_expire);
1897 out:
1898 	be->cyb_restore_level(bar, cookie);
1899 }
1900 
1901 static int
1902 cyclic_remove_here(cyc_cpu_t *cpu, cyc_index_t ndx, cyc_time_t *when, int wait)
1903 {
1904 	cyc_backend_t *be = cpu->cyp_backend;
1905 	cyc_xcallarg_t arg;
1906 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
1907 	cyc_level_t level = cyclic->cy_level;
1908 
1909 	ASSERT(MUTEX_HELD(&cpu_lock));
1910 	ASSERT(cpu->cyp_rpend == 0);
1911 	ASSERT(wait == CY_WAIT || wait == CY_NOWAIT);
1912 
1913 	arg.cyx_ndx = ndx;
1914 	arg.cyx_cpu = cpu;
1915 	arg.cyx_when = when;
1916 	arg.cyx_wait = wait;
1917 
1918 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1919 	cpu->cyp_state = CYS_REMOVING;
1920 
1921 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
1922 	    (cyc_func_t)cyclic_remove_xcall, &arg);
1923 
1924 	/*
1925 	 * If the cyclic we removed wasn't at CY_HIGH_LEVEL, then we need to
1926 	 * check the cyp_rpend.  If it's non-zero, then we need to wait here
1927 	 * for all pending cyclic handlers to run.
1928 	 */
1929 	ASSERT(!(level == CY_HIGH_LEVEL && cpu->cyp_rpend != 0));
1930 	ASSERT(!(wait == CY_NOWAIT && cpu->cyp_rpend != 0));
1931 	ASSERT(!(arg.cyx_wait == CY_NOWAIT && cpu->cyp_rpend != 0));
1932 
1933 	if (wait != arg.cyx_wait) {
1934 		/*
1935 		 * We are being told that we must wait if we want to
1936 		 * remove this cyclic; put the CPU back in the CYS_ONLINE
1937 		 * state and return failure.
1938 		 */
1939 		ASSERT(wait == CY_NOWAIT && arg.cyx_wait == CY_WAIT);
1940 		ASSERT(cpu->cyp_state == CYS_REMOVING);
1941 		cpu->cyp_state = CYS_ONLINE;
1942 
1943 		return (0);
1944 	}
1945 
1946 	if (cpu->cyp_rpend != 0)
1947 		sema_p(&cpu->cyp_modify_wait);
1948 
1949 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1950 
1951 	cpu->cyp_rpend = 0;
1952 	cpu->cyp_state = CYS_ONLINE;
1953 
1954 	return (1);
1955 }
1956 
1957 /*
1958  * If cyclic_reprogram() is called on the same CPU as the cyclic's CPU, then
1959  * it calls this function directly. Else, it invokes this function through
1960  * an X-call to the cyclic's CPU.
1961  */
1962 static boolean_t
1963 cyclic_reprogram_cyclic(cyc_cpu_t *cpu, cyc_index_t ndx, hrtime_t expire,
1964     boolean_t is_local)
1965 {
1966 	cyc_backend_t *be = cpu->cyp_backend;
1967 	cyb_arg_t bar = be->cyb_arg;
1968 	cyc_cookie_t cookie;
1969 	cyc_index_t nelems, i;
1970 	cyc_index_t *heap;
1971 	cyclic_t *cyclic;
1972 	hrtime_t oexpire;
1973 	int reprog;
1974 
1975 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1976 
1977 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-xcall", ndx);
1978 
1979 	nelems = cpu->cyp_nelems;
1980 	ASSERT(nelems > 0);
1981 	heap = cpu->cyp_heap;
1982 
1983 	/*
1984 	 * Reprogrammed cyclics are typically one-shot ones that get
1985 	 * set to infinity on every expiration. We shorten the search by
1986 	 * searching from the bottom of the heap to the top instead of the
1987 	 * other way around.
1988 	 */
1989 	for (i = nelems - 1; i >= 0; i--) {
1990 		if (heap[i] == ndx)
1991 			break;
1992 	}
1993 	if (i < 0) {
1994 		/*
1995 		 * Report failure (rather than panicking) if and only if the
1996 		 * cyclic_reprogram() is occurring on the CPU which the cyclic
1997 		 * resides upon, and there is evidence that a pending cyclic
1998 		 * was removed from that CPU.
1999 		 *
2000 		 * This covers the race where a cyclic is removed out from
2001 		 * under its running handler, which then attempts a reprogram.
2002 		 */
2003 		if (is_local &&
2004 		    cpu->cyp_state == CYS_REMOVING && cpu->cyp_rpend > 0) {
2005 			return (B_FALSE);
2006 		}
2007 		panic("attempt to reprogram non-existent cyclic");
2008 	}
2009 
2010 	cyclic = &cpu->cyp_cyclics[ndx];
2011 	oexpire = cyclic->cy_expire;
2012 	cyclic->cy_expire = expire;
2013 
2014 	reprog = (i == 0);
2015 	if (expire > oexpire) {
2016 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-down", i);
2017 		cyclic_downheap(cpu, i);
2018 	} else if (i > 0) {
2019 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-up", i);
2020 		reprog = cyclic_upheap(cpu, i);
2021 	}
2022 
2023 	if (reprog && (cpu->cyp_state != CYS_SUSPENDED)) {
2024 		/*
2025 		 * The root changed. Reprogram the clock source.
2026 		 */
2027 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "reprog-root");
2028 		cyclic = &cpu->cyp_cyclics[heap[0]];
2029 		be->cyb_reprogram(bar, cyclic->cy_expire);
2030 	}
2031 
2032 	be->cyb_restore_level(bar, cookie);
2033 	return (B_TRUE);
2034 }
2035 
2036 static void
2037 cyclic_reprogram_xcall(cyc_xcallarg_t *arg)
2038 {
2039 	/*
2040 	 * Cross-call reprogram operations should never fail due to racing
2041 	 * cyclic removal, as they cannot occur from the handler itself.
2042 	 */
2043 	VERIFY(cyclic_reprogram_cyclic(arg->cyx_cpu, arg->cyx_ndx,
2044 	    arg->cyx_when->cyt_when, B_FALSE));
2045 }
2046 
2047 static void
2048 cyclic_reprogram_here(cyc_cpu_t *cpu, cyc_index_t ndx, hrtime_t expiration)
2049 {
2050 	cyc_backend_t *be = cpu->cyp_backend;
2051 	cyc_xcallarg_t arg;
2052 	cyc_time_t when;
2053 
2054 	ASSERT(expiration > 0);
2055 
2056 	arg.cyx_ndx = ndx;
2057 	arg.cyx_cpu = cpu;
2058 	arg.cyx_when = &when;
2059 	when.cyt_when = expiration;
2060 
2061 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
2062 	    (cyc_func_t)cyclic_reprogram_xcall, &arg);
2063 }
2064 
2065 /*
2066  * cyclic_juggle_one_to() should only be called when the source cyclic
2067  * can be juggled and the destination CPU is known to be able to accept
2068  * it.
2069  */
2070 static void
2071 cyclic_juggle_one_to(cyc_id_t *idp, cyc_cpu_t *dest)
2072 {
2073 	cyc_cpu_t *src = idp->cyi_cpu;
2074 	cyc_index_t ndx = idp->cyi_ndx;
2075 	cyc_time_t when;
2076 	cyc_handler_t hdlr;
2077 	cyclic_t *cyclic;
2078 	uint16_t flags;
2079 	hrtime_t delay;
2080 
2081 	ASSERT(MUTEX_HELD(&cpu_lock));
2082 	ASSERT(src != NULL && idp->cyi_omni_list == NULL);
2083 	ASSERT(!(dest->cyp_cpu->cpu_flags & (CPU_QUIESCED | CPU_OFFLINE)));
2084 	CYC_PTRACE("juggle-one-to", idp, dest);
2085 
2086 	cyclic = &src->cyp_cyclics[ndx];
2087 
2088 	flags = cyclic->cy_flags;
2089 	ASSERT(!(flags & CYF_CPU_BOUND) && !(flags & CYF_FREE));
2090 
2091 	hdlr.cyh_func = cyclic->cy_handler;
2092 	hdlr.cyh_level = cyclic->cy_level;
2093 	hdlr.cyh_arg = cyclic->cy_arg;
2094 
2095 	/*
2096 	 * Before we begin the juggling process, see if the destination
2097 	 * CPU requires an expansion.  If it does, we'll perform the
2098 	 * expansion before removing the cyclic.  This is to prevent us
2099 	 * from blocking while a system-critical cyclic (notably, the clock
2100 	 * cyclic) isn't on a CPU.
2101 	 */
2102 	if (dest->cyp_nelems == dest->cyp_size) {
2103 		CYC_PTRACE("remove-expand", idp, dest);
2104 		cyclic_expand(dest);
2105 		ASSERT(dest->cyp_nelems < dest->cyp_size);
2106 	}
2107 
2108 	/*
2109 	 * Prevent a reprogram of this cyclic while we are relocating it.
2110 	 * Otherwise, cyclic_reprogram_here() will end up sending an X-call
2111 	 * to the wrong CPU.
2112 	 */
2113 	rw_enter(&idp->cyi_lock, RW_WRITER);
2114 
2115 	/*
2116 	 * Remove the cyclic from the source.  As mentioned above, we cannot
2117 	 * block during this operation; if we cannot remove the cyclic
2118 	 * without waiting, we spin for a time shorter than the interval, and
2119 	 * reattempt the (non-blocking) removal.  If we continue to fail,
2120 	 * we will exponentially back off (up to half of the interval).
2121 	 * Note that the removal will ultimately succeed -- even if the
2122 	 * cyclic handler is blocked on a resource held by a thread which we
2123 	 * have preempted, priority inheritance assures that the preempted
2124 	 * thread will preempt us and continue to progress.
2125 	 */
2126 	for (delay = NANOSEC / MICROSEC; ; delay <<= 1) {
2127 		/*
2128 		 * Before we begin this operation, disable kernel preemption.
2129 		 */
2130 		kpreempt_disable();
2131 		if (cyclic_remove_here(src, ndx, &when, CY_NOWAIT))
2132 			break;
2133 
2134 		/*
2135 		 * The operation failed; enable kernel preemption while
2136 		 * spinning.
2137 		 */
2138 		kpreempt_enable();
2139 
2140 		CYC_PTRACE("remove-retry", idp, src);
2141 
2142 		if (delay > (cyclic->cy_interval >> 1))
2143 			delay = cyclic->cy_interval >> 1;
2144 
2145 		/*
2146 		 * Drop the RW lock to avoid a deadlock with the cyclic
2147 		 * handler (because it can potentially call cyclic_reprogram().
2148 		 */
2149 		rw_exit(&idp->cyi_lock);
2150 		drv_usecwait((clock_t)(delay / (NANOSEC / MICROSEC)));
2151 		rw_enter(&idp->cyi_lock, RW_WRITER);
2152 	}
2153 
2154 	/*
2155 	 * Now add the cyclic to the destination.  This won't block; we
2156 	 * performed any necessary (blocking) expansion of the destination
2157 	 * CPU before removing the cyclic from the source CPU.
2158 	 */
2159 	idp->cyi_ndx = cyclic_add_here(dest, &hdlr, &when, flags);
2160 	idp->cyi_cpu = dest;
2161 	kpreempt_enable();
2162 
2163 	/*
2164 	 * Now that we have successfully relocated the cyclic, allow
2165 	 * it to be reprogrammed.
2166 	 */
2167 	rw_exit(&idp->cyi_lock);
2168 }
2169 
2170 static int
2171 cyclic_juggle_one(cyc_id_t *idp)
2172 {
2173 	cyc_index_t ndx = idp->cyi_ndx;
2174 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
2175 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
2176 	cpu_t *c = cpu->cyp_cpu;
2177 	cpupart_t *part = c->cpu_part;
2178 
2179 	CYC_PTRACE("juggle-one", idp, cpu);
2180 	ASSERT(MUTEX_HELD(&cpu_lock));
2181 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2182 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2183 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2184 
2185 	if ((dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags)) == NULL) {
2186 		/*
2187 		 * Bad news:  this cyclic can't be juggled.
2188 		 */
2189 		CYC_PTRACE("juggle-fail", idp, cpu)
2190 		return (0);
2191 	}
2192 
2193 	cyclic_juggle_one_to(idp, dest);
2194 
2195 	return (1);
2196 }
2197 
2198 static void
2199 cyclic_unbind_cpu(cyclic_id_t id)
2200 {
2201 	cyc_id_t *idp = (cyc_id_t *)id;
2202 	cyc_cpu_t *cpu = idp->cyi_cpu;
2203 	cpu_t *c = cpu->cyp_cpu;
2204 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
2205 
2206 	CYC_PTRACE("unbind-cpu", id, cpu);
2207 	ASSERT(MUTEX_HELD(&cpu_lock));
2208 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2209 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2210 	ASSERT(cyclic->cy_flags & CYF_CPU_BOUND);
2211 
2212 	cyclic->cy_flags &= ~CYF_CPU_BOUND;
2213 
2214 	/*
2215 	 * If we were bound to CPU which has interrupts disabled, we need
2216 	 * to juggle away.  This can only fail if we are bound to a
2217 	 * processor set, and if every CPU in the processor set has
2218 	 * interrupts disabled.
2219 	 */
2220 	if (!(c->cpu_flags & CPU_ENABLE)) {
2221 		int res = cyclic_juggle_one(idp);
2222 
2223 		ASSERT((res && idp->cyi_cpu != cpu) ||
2224 		    (!res && (cyclic->cy_flags & CYF_PART_BOUND)));
2225 	}
2226 }
2227 
2228 static void
2229 cyclic_bind_cpu(cyclic_id_t id, cpu_t *d)
2230 {
2231 	cyc_id_t *idp = (cyc_id_t *)id;
2232 	cyc_cpu_t *dest = d->cpu_cyclic, *cpu = idp->cyi_cpu;
2233 	cpu_t *c = cpu->cyp_cpu;
2234 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
2235 	cpupart_t *part = c->cpu_part;
2236 
2237 	CYC_PTRACE("bind-cpu", id, dest);
2238 	ASSERT(MUTEX_HELD(&cpu_lock));
2239 	ASSERT(!(d->cpu_flags & CPU_OFFLINE));
2240 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2241 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2242 	ASSERT(dest != NULL);
2243 	ASSERT(dest->cyp_state == CYS_ONLINE);
2244 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2245 	ASSERT(!(cyclic->cy_flags & CYF_CPU_BOUND));
2246 
2247 	dest = cyclic_pick_cpu(part, d, NULL, cyclic->cy_flags | CYF_CPU_BOUND);
2248 
2249 	if (dest != cpu) {
2250 		cyclic_juggle_one_to(idp, dest);
2251 		cyclic = &dest->cyp_cyclics[idp->cyi_ndx];
2252 	}
2253 
2254 	cyclic->cy_flags |= CYF_CPU_BOUND;
2255 }
2256 
2257 static void
2258 cyclic_unbind_cpupart(cyclic_id_t id)
2259 {
2260 	cyc_id_t *idp = (cyc_id_t *)id;
2261 	cyc_cpu_t *cpu = idp->cyi_cpu;
2262 	cpu_t *c = cpu->cyp_cpu;
2263 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
2264 
2265 	CYC_PTRACE("unbind-part", idp, c->cpu_part);
2266 	ASSERT(MUTEX_HELD(&cpu_lock));
2267 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2268 	ASSERT(!(cyc->cy_flags & CYF_FREE));
2269 	ASSERT(cyc->cy_flags & CYF_PART_BOUND);
2270 
2271 	cyc->cy_flags &= ~CYF_PART_BOUND;
2272 
2273 	/*
2274 	 * If we're on a CPU which has interrupts disabled (and if this cyclic
2275 	 * isn't bound to the CPU), we need to juggle away.
2276 	 */
2277 	if (!(c->cpu_flags & CPU_ENABLE) && !(cyc->cy_flags & CYF_CPU_BOUND)) {
2278 		int res = cyclic_juggle_one(idp);
2279 
2280 		ASSERT(res && idp->cyi_cpu != cpu);
2281 	}
2282 }
2283 
2284 static void
2285 cyclic_bind_cpupart(cyclic_id_t id, cpupart_t *part)
2286 {
2287 	cyc_id_t *idp = (cyc_id_t *)id;
2288 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
2289 	cpu_t *c = cpu->cyp_cpu;
2290 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
2291 
2292 	CYC_PTRACE("bind-part", idp, part);
2293 	ASSERT(MUTEX_HELD(&cpu_lock));
2294 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2295 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2296 	ASSERT(!(cyc->cy_flags & CYF_FREE));
2297 	ASSERT(!(cyc->cy_flags & CYF_PART_BOUND));
2298 	ASSERT(part->cp_ncpus > 0);
2299 
2300 	dest = cyclic_pick_cpu(part, c, NULL, cyc->cy_flags | CYF_PART_BOUND);
2301 
2302 	if (dest != cpu) {
2303 		cyclic_juggle_one_to(idp, dest);
2304 		cyc = &dest->cyp_cyclics[idp->cyi_ndx];
2305 	}
2306 
2307 	cyc->cy_flags |= CYF_PART_BOUND;
2308 }
2309 
2310 static void
2311 cyclic_configure(cpu_t *c)
2312 {
2313 	cyc_cpu_t *cpu = kmem_zalloc(sizeof (cyc_cpu_t), KM_SLEEP);
2314 	cyc_backend_t *nbe = kmem_zalloc(sizeof (cyc_backend_t), KM_SLEEP);
2315 	int i;
2316 
2317 	CYC_PTRACE1("configure", cpu);
2318 	ASSERT(MUTEX_HELD(&cpu_lock));
2319 
2320 	if (cyclic_id_cache == NULL)
2321 		cyclic_id_cache = kmem_cache_create("cyclic_id_cache",
2322 		    sizeof (cyc_id_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2323 
2324 	cpu->cyp_cpu = c;
2325 
2326 	sema_init(&cpu->cyp_modify_wait, 0, NULL, SEMA_DEFAULT, NULL);
2327 
2328 	cpu->cyp_size = 1;
2329 	cpu->cyp_heap = kmem_zalloc(sizeof (cyc_index_t), KM_SLEEP);
2330 	cpu->cyp_cyclics = kmem_zalloc(sizeof (cyclic_t), KM_SLEEP);
2331 	cpu->cyp_cyclics->cy_flags = CYF_FREE;
2332 
2333 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
2334 		/*
2335 		 * We don't need to set the sizemask; it's already zero
2336 		 * (which is the appropriate sizemask for a size of 1).
2337 		 */
2338 		cpu->cyp_softbuf[i].cys_buf[0].cypc_buf =
2339 		    kmem_alloc(sizeof (cyc_index_t), KM_SLEEP);
2340 	}
2341 
2342 	cpu->cyp_state = CYS_OFFLINE;
2343 
2344 	/*
2345 	 * Setup the backend for this CPU.
2346 	 */
2347 	bcopy(&cyclic_backend, nbe, sizeof (cyc_backend_t));
2348 	nbe->cyb_arg = nbe->cyb_configure(c);
2349 	cpu->cyp_backend = nbe;
2350 
2351 	/*
2352 	 * On platforms where stray interrupts may be taken during startup,
2353 	 * the CPU's cpu_cyclic pointer serves as an indicator that the
2354 	 * cyclic subsystem for this CPU is prepared to field interrupts.
2355 	 */
2356 	membar_producer();
2357 
2358 	c->cpu_cyclic = cpu;
2359 }
2360 
2361 static void
2362 cyclic_unconfigure(cpu_t *c)
2363 {
2364 	cyc_cpu_t *cpu = c->cpu_cyclic;
2365 	cyc_backend_t *be = cpu->cyp_backend;
2366 	cyb_arg_t bar = be->cyb_arg;
2367 	int i;
2368 
2369 	CYC_PTRACE1("unconfigure", cpu);
2370 	ASSERT(MUTEX_HELD(&cpu_lock));
2371 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
2372 	ASSERT(cpu->cyp_nelems == 0);
2373 
2374 	/*
2375 	 * Let the backend know that the CPU is being yanked, and free up
2376 	 * the backend structure.
2377 	 */
2378 	be->cyb_unconfigure(bar);
2379 	kmem_free(be, sizeof (cyc_backend_t));
2380 	cpu->cyp_backend = NULL;
2381 
2382 	/*
2383 	 * Free up the producer/consumer buffers at each of the soft levels.
2384 	 */
2385 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
2386 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
2387 		uchar_t hard = softbuf->cys_hard;
2388 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard];
2389 		size_t bufsize = sizeof (cyc_index_t) * (pc->cypc_sizemask + 1);
2390 
2391 		/*
2392 		 * Assert that we're not in the middle of a resize operation.
2393 		 */
2394 		ASSERT(hard == softbuf->cys_soft);
2395 		ASSERT(hard == 0 || hard == 1);
2396 		ASSERT(pc->cypc_buf != NULL);
2397 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf == NULL);
2398 
2399 		kmem_free(pc->cypc_buf, bufsize);
2400 		pc->cypc_buf = NULL;
2401 	}
2402 
2403 	/*
2404 	 * Finally, clean up our remaining dynamic structures and NULL out
2405 	 * the cpu_cyclic pointer.
2406 	 */
2407 	kmem_free(cpu->cyp_cyclics, cpu->cyp_size * sizeof (cyclic_t));
2408 	kmem_free(cpu->cyp_heap, cpu->cyp_size * sizeof (cyc_index_t));
2409 	kmem_free(cpu, sizeof (cyc_cpu_t));
2410 
2411 	c->cpu_cyclic = NULL;
2412 }
2413 
2414 static int
2415 cyclic_cpu_setup(cpu_setup_t what, int id, void *arg __unused)
2416 {
2417 	/*
2418 	 * We are guaranteed that there is still/already an entry in the
2419 	 * cpu array for this CPU.
2420 	 */
2421 	cpu_t *c = cpu[id];
2422 	cyc_cpu_t *cyp = c->cpu_cyclic;
2423 
2424 	ASSERT(MUTEX_HELD(&cpu_lock));
2425 
2426 	switch (what) {
2427 	case CPU_CONFIG:
2428 		ASSERT(cyp == NULL);
2429 		cyclic_configure(c);
2430 		break;
2431 
2432 	case CPU_UNCONFIG:
2433 		ASSERT(cyp != NULL && cyp->cyp_state == CYS_OFFLINE);
2434 		cyclic_unconfigure(c);
2435 		break;
2436 
2437 	default:
2438 		break;
2439 	}
2440 
2441 	return (0);
2442 }
2443 
2444 static void
2445 cyclic_suspend_xcall(cyc_xcallarg_t *arg)
2446 {
2447 	cyc_cpu_t *cpu = arg->cyx_cpu;
2448 	cyc_backend_t *be = cpu->cyp_backend;
2449 	cyc_cookie_t cookie;
2450 	cyb_arg_t bar = be->cyb_arg;
2451 
2452 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
2453 
2454 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "suspend-xcall", cpu->cyp_nelems);
2455 	ASSERT(cpu->cyp_state == CYS_ONLINE || cpu->cyp_state == CYS_OFFLINE);
2456 
2457 	/*
2458 	 * We won't disable this CPU unless it has a non-zero number of
2459 	 * elements (cpu_lock assures that no one else may be attempting
2460 	 * to disable this CPU).
2461 	 */
2462 	if (cpu->cyp_nelems > 0) {
2463 		ASSERT(cpu->cyp_state == CYS_ONLINE);
2464 		be->cyb_disable(bar);
2465 	}
2466 
2467 	if (cpu->cyp_state == CYS_ONLINE)
2468 		cpu->cyp_state = CYS_SUSPENDED;
2469 
2470 	be->cyb_suspend(bar);
2471 	be->cyb_restore_level(bar, cookie);
2472 }
2473 
2474 static void
2475 cyclic_resume_xcall(cyc_xcallarg_t *arg)
2476 {
2477 	cyc_cpu_t *cpu = arg->cyx_cpu;
2478 	cyc_backend_t *be = cpu->cyp_backend;
2479 	cyc_cookie_t cookie;
2480 	cyb_arg_t bar = be->cyb_arg;
2481 	cyc_state_t state = cpu->cyp_state;
2482 
2483 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
2484 
2485 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-xcall", cpu->cyp_nelems);
2486 	ASSERT(state == CYS_SUSPENDED || state == CYS_OFFLINE);
2487 
2488 	be->cyb_resume(bar);
2489 
2490 	/*
2491 	 * We won't enable this CPU unless it has a non-zero number of
2492 	 * elements.
2493 	 */
2494 	if (cpu->cyp_nelems > 0) {
2495 		cyclic_t *cyclic = &cpu->cyp_cyclics[cpu->cyp_heap[0]];
2496 		hrtime_t exp = cyclic->cy_expire;
2497 
2498 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "resume-reprog", cyclic, exp);
2499 		ASSERT(state == CYS_SUSPENDED);
2500 		be->cyb_enable(bar);
2501 		be->cyb_reprogram(bar, exp);
2502 	}
2503 
2504 	if (state == CYS_SUSPENDED)
2505 		cpu->cyp_state = CYS_ONLINE;
2506 
2507 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-done", cpu->cyp_nelems);
2508 	be->cyb_restore_level(bar, cookie);
2509 }
2510 
2511 static void
2512 cyclic_omni_start(cyc_id_t *idp, cyc_cpu_t *cpu)
2513 {
2514 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
2515 	cyc_omni_cpu_t *ocpu = kmem_alloc(sizeof (cyc_omni_cpu_t), KM_SLEEP);
2516 	cyc_handler_t hdlr;
2517 	cyc_time_t when;
2518 
2519 	CYC_PTRACE("omni-start", cpu, idp);
2520 	ASSERT(MUTEX_HELD(&cpu_lock));
2521 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2522 	ASSERT(idp->cyi_cpu == NULL);
2523 
2524 	hdlr.cyh_func = NULL;
2525 	hdlr.cyh_arg = NULL;
2526 	hdlr.cyh_level = CY_LEVELS;
2527 
2528 	when.cyt_when = 0;
2529 	when.cyt_interval = 0;
2530 
2531 	omni->cyo_online(omni->cyo_arg, cpu->cyp_cpu, &hdlr, &when);
2532 
2533 	ASSERT(hdlr.cyh_func != NULL);
2534 	ASSERT(hdlr.cyh_level < CY_LEVELS);
2535 	ASSERT(when.cyt_when >= 0 && when.cyt_interval > 0);
2536 
2537 	ocpu->cyo_cpu = cpu;
2538 	ocpu->cyo_arg = hdlr.cyh_arg;
2539 	ocpu->cyo_ndx = cyclic_add_here(cpu, &hdlr, &when, 0);
2540 	ocpu->cyo_next = idp->cyi_omni_list;
2541 	idp->cyi_omni_list = ocpu;
2542 }
2543 
2544 static void
2545 cyclic_omni_stop(cyc_id_t *idp, cyc_cpu_t *cpu)
2546 {
2547 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
2548 	cyc_omni_cpu_t *ocpu = idp->cyi_omni_list, *prev = NULL;
2549 	clock_t delay;
2550 	int ret;
2551 
2552 	CYC_PTRACE("omni-stop", cpu, idp);
2553 	ASSERT(MUTEX_HELD(&cpu_lock));
2554 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2555 	ASSERT(idp->cyi_cpu == NULL);
2556 	ASSERT(ocpu != NULL);
2557 
2558 	/*
2559 	 * Prevent a reprogram of this cyclic while we are removing it.
2560 	 * Otherwise, cyclic_reprogram_here() will end up sending an X-call
2561 	 * to the offlined CPU.
2562 	 */
2563 	rw_enter(&idp->cyi_lock, RW_WRITER);
2564 
2565 	while (ocpu != NULL && ocpu->cyo_cpu != cpu) {
2566 		prev = ocpu;
2567 		ocpu = ocpu->cyo_next;
2568 	}
2569 
2570 	/*
2571 	 * We _must_ have found an cyc_omni_cpu which corresponds to this
2572 	 * CPU -- the definition of an omnipresent cyclic is that it runs
2573 	 * on all online CPUs.
2574 	 */
2575 	ASSERT(ocpu != NULL);
2576 
2577 	if (prev == NULL) {
2578 		idp->cyi_omni_list = ocpu->cyo_next;
2579 	} else {
2580 		prev->cyo_next = ocpu->cyo_next;
2581 	}
2582 
2583 	/*
2584 	 * Remove the cyclic from the source.  We cannot block during this
2585 	 * operation because we are holding the cyi_lock which can be held
2586 	 * by the cyclic handler via cyclic_reprogram().
2587 	 *
2588 	 * If we cannot remove the cyclic without waiting, we spin for a time,
2589 	 * and reattempt the (non-blocking) removal. If the handler is blocked
2590 	 * on the cyi_lock, then we let go of it in the spin loop to give
2591 	 * the handler a chance to run. Note that the removal will ultimately
2592 	 * succeed -- even if the cyclic handler is blocked on a resource
2593 	 * held by a thread which we have preempted, priority inheritance
2594 	 * assures that the preempted thread will preempt us and continue
2595 	 * to progress.
2596 	 */
2597 	for (delay = 1; ; delay <<= 1) {
2598 		/*
2599 		 * Before we begin this operation, disable kernel preemption.
2600 		 */
2601 		kpreempt_disable();
2602 		ret = cyclic_remove_here(ocpu->cyo_cpu, ocpu->cyo_ndx, NULL,
2603 		    CY_NOWAIT);
2604 		/*
2605 		 * Enable kernel preemption while spinning.
2606 		 */
2607 		kpreempt_enable();
2608 
2609 		if (ret)
2610 			break;
2611 
2612 		CYC_PTRACE("remove-omni-retry", idp, ocpu->cyo_cpu);
2613 
2614 		/*
2615 		 * Drop the RW lock to avoid a deadlock with the cyclic
2616 		 * handler (because it can potentially call cyclic_reprogram().
2617 		 */
2618 		rw_exit(&idp->cyi_lock);
2619 		drv_usecwait(delay);
2620 		rw_enter(&idp->cyi_lock, RW_WRITER);
2621 	}
2622 
2623 	/*
2624 	 * Now that we have successfully removed the cyclic, allow the omni
2625 	 * cyclic to be reprogrammed on other CPUs.
2626 	 */
2627 	rw_exit(&idp->cyi_lock);
2628 
2629 	/*
2630 	 * The cyclic has been removed from this CPU; time to call the
2631 	 * omnipresent offline handler.
2632 	 */
2633 	if (omni->cyo_offline != NULL)
2634 		omni->cyo_offline(omni->cyo_arg, cpu->cyp_cpu, ocpu->cyo_arg);
2635 
2636 	kmem_free(ocpu, sizeof (cyc_omni_cpu_t));
2637 }
2638 
2639 static cyc_id_t *
2640 cyclic_new_id()
2641 {
2642 	cyc_id_t *idp;
2643 
2644 	ASSERT(MUTEX_HELD(&cpu_lock));
2645 
2646 	idp = kmem_cache_alloc(cyclic_id_cache, KM_SLEEP);
2647 
2648 	/*
2649 	 * The cyi_cpu field of the cyc_id_t structure tracks the CPU
2650 	 * associated with the cyclic.  If and only if this field is NULL, the
2651 	 * cyc_id_t is an omnipresent cyclic.  Note that cyi_omni_list may be
2652 	 * NULL for an omnipresent cyclic while the cyclic is being created
2653 	 * or destroyed.
2654 	 */
2655 	idp->cyi_cpu = NULL;
2656 	idp->cyi_ndx = 0;
2657 	rw_init(&idp->cyi_lock, NULL, RW_DEFAULT, NULL);
2658 
2659 	idp->cyi_next = cyclic_id_head;
2660 	idp->cyi_prev = NULL;
2661 	idp->cyi_omni_list = NULL;
2662 
2663 	if (cyclic_id_head != NULL) {
2664 		ASSERT(cyclic_id_head->cyi_prev == NULL);
2665 		cyclic_id_head->cyi_prev = idp;
2666 	}
2667 
2668 	cyclic_id_head = idp;
2669 
2670 	return (idp);
2671 }
2672 
2673 /*
2674  *  cyclic_id_t cyclic_add(cyc_handler_t *, cyc_time_t *)
2675  *
2676  *  Overview
2677  *
2678  *    cyclic_add() will create an unbound cyclic with the specified handler and
2679  *    interval.  The cyclic will run on a CPU which both has interrupts enabled
2680  *    and is in the system CPU partition.
2681  *
2682  *  Arguments and notes
2683  *
2684  *    As its first argument, cyclic_add() takes a cyc_handler, which has the
2685  *    following members:
2686  *
2687  *      cyc_func_t cyh_func    <-- Cyclic handler
2688  *      void *cyh_arg          <-- Argument to cyclic handler
2689  *      cyc_level_t cyh_level  <-- Level at which to fire; must be one of
2690  *                                 CY_LOW_LEVEL, CY_LOCK_LEVEL or CY_HIGH_LEVEL
2691  *
2692  *    Note that cyh_level is _not_ an ipl or spl; it must be one the
2693  *    CY_*_LEVELs.  This layer of abstraction allows the platform to define
2694  *    the precise interrupt priority levels, within the following constraints:
2695  *
2696  *       CY_LOCK_LEVEL must map to LOCK_LEVEL
2697  *       CY_HIGH_LEVEL must map to an ipl greater than LOCK_LEVEL
2698  *       CY_LOW_LEVEL must map to an ipl below LOCK_LEVEL
2699  *
2700  *    In addition to a cyc_handler, cyclic_add() takes a cyc_time, which
2701  *    has the following members:
2702  *
2703  *       hrtime_t cyt_when     <-- Absolute time, in nanoseconds since boot, at
2704  *                                 which to start firing
2705  *       hrtime_t cyt_interval <-- Length of interval, in nanoseconds
2706  *
2707  *    gethrtime() is the time source for nanoseconds since boot.  If cyt_when
2708  *    is set to 0, the cyclic will start to fire when cyt_interval next
2709  *    divides the number of nanoseconds since boot.
2710  *
2711  *    The cyt_interval field _must_ be filled in by the caller; one-shots are
2712  *    _not_ explicitly supported by the cyclic subsystem (cyclic_add() will
2713  *    assert that cyt_interval is non-zero).  The maximum value for either
2714  *    field is INT64_MAX; the caller is responsible for assuring that
2715  *    cyt_when + cyt_interval <= INT64_MAX.  Neither field may be negative.
2716  *
2717  *    For an arbitrary time t in the future, the cyclic handler is guaranteed
2718  *    to have been called (t - cyt_when) / cyt_interval times.  This will
2719  *    be true even if interrupts have been disabled for periods greater than
2720  *    cyt_interval nanoseconds.  In order to compensate for such periods,
2721  *    the cyclic handler may be called a finite number of times with an
2722  *    arbitrarily small interval.
2723  *
2724  *    The cyclic subsystem will not enforce any lower bound on the interval;
2725  *    if the interval is less than the time required to process an interrupt,
2726  *    the CPU will wedge.  It's the responsibility of the caller to assure that
2727  *    either the value of the interval is sane, or that its caller has
2728  *    sufficient privilege to deny service (i.e. its caller is root).
2729  *
2730  *    The cyclic handler is guaranteed to be single threaded, even while the
2731  *    cyclic is being juggled between CPUs (see cyclic_juggle(), below).
2732  *    That is, a given cyclic handler will never be executed simultaneously
2733  *    on different CPUs.
2734  *
2735  *  Return value
2736  *
2737  *    cyclic_add() returns a cyclic_id_t, which is guaranteed to be a value
2738  *    other than CYCLIC_NONE.  cyclic_add() cannot fail.
2739  *
2740  *  Caller's context
2741  *
2742  *    cpu_lock must be held by the caller, and the caller must not be in
2743  *    interrupt context.  cyclic_add() will perform a KM_SLEEP kernel
2744  *    memory allocation, so the usual rules (e.g. p_lock cannot be held)
2745  *    apply.  A cyclic may be added even in the presence of CPUs that have
2746  *    not been configured with respect to the cyclic subsystem, but only
2747  *    configured CPUs will be eligible to run the new cyclic.
2748  *
2749  *  Cyclic handler's context
2750  *
2751  *    Cyclic handlers will be executed in the interrupt context corresponding
2752  *    to the specified level (i.e. either high, lock or low level).  The
2753  *    usual context rules apply.
2754  *
2755  *    A cyclic handler may not grab ANY locks held by the caller of any of
2756  *    cyclic_add(), cyclic_remove() or cyclic_bind(); the implementation of
2757  *    these functions may require blocking on cyclic handler completion.
2758  *    Moreover, cyclic handlers may not make any call back into the cyclic
2759  *    subsystem.
2760  */
2761 cyclic_id_t
2762 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
2763 {
2764 	cyc_id_t *idp = cyclic_new_id();
2765 
2766 	ASSERT(MUTEX_HELD(&cpu_lock));
2767 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
2768 
2769 	idp->cyi_cpu = cyclic_pick_cpu(NULL, NULL, NULL, 0);
2770 	idp->cyi_ndx = cyclic_add_here(idp->cyi_cpu, hdlr, when, 0);
2771 
2772 	return ((uintptr_t)idp);
2773 }
2774 
2775 /*
2776  *  cyclic_id_t cyclic_add_omni(cyc_omni_handler_t *)
2777  *
2778  *  Overview
2779  *
2780  *    cyclic_add_omni() will create an omnipresent cyclic with the specified
2781  *    online and offline handlers.  Omnipresent cyclics run on all online
2782  *    CPUs, including CPUs which have unbound interrupts disabled.
2783  *
2784  *  Arguments
2785  *
2786  *    As its only argument, cyclic_add_omni() takes a cyc_omni_handler, which
2787  *    has the following members:
2788  *
2789  *      void (*cyo_online)()   <-- Online handler
2790  *      void (*cyo_offline)()  <-- Offline handler
2791  *      void *cyo_arg          <-- Argument to be passed to on/offline handlers
2792  *
2793  *  Online handler
2794  *
2795  *    The cyo_online member is a pointer to a function which has the following
2796  *    four arguments:
2797  *
2798  *      void *                 <-- Argument (cyo_arg)
2799  *      cpu_t *                <-- Pointer to CPU about to be onlined
2800  *      cyc_handler_t *        <-- Pointer to cyc_handler_t; must be filled in
2801  *                                 by omni online handler
2802  *      cyc_time_t *           <-- Pointer to cyc_time_t; must be filled in by
2803  *                                 omni online handler
2804  *
2805  *    The omni cyclic online handler is always called _before_ the omni
2806  *    cyclic begins to fire on the specified CPU.  As the above argument
2807  *    description implies, the online handler must fill in the two structures
2808  *    passed to it:  the cyc_handler_t and the cyc_time_t.  These are the
2809  *    same two structures passed to cyclic_add(), outlined above.  This
2810  *    allows the omni cyclic to have maximum flexibility; different CPUs may
2811  *    optionally
2812  *
2813  *      (a)  have different intervals
2814  *      (b)  be explicitly in or out of phase with one another
2815  *      (c)  have different handlers
2816  *      (d)  have different handler arguments
2817  *      (e)  fire at different levels
2818  *
2819  *    Of these, (e) seems somewhat dubious, but is nonetheless allowed.
2820  *
2821  *    The omni online handler is called in the same context as cyclic_add(),
2822  *    and has the same liberties:  omni online handlers may perform KM_SLEEP
2823  *    kernel memory allocations, and may grab locks which are also acquired
2824  *    by cyclic handlers.  However, omni cyclic online handlers may _not_
2825  *    call back into the cyclic subsystem, and should be generally careful
2826  *    about calling into arbitrary kernel subsystems.
2827  *
2828  *  Offline handler
2829  *
2830  *    The cyo_offline member is a pointer to a function which has the following
2831  *    three arguments:
2832  *
2833  *      void *                 <-- Argument (cyo_arg)
2834  *      cpu_t *                <-- Pointer to CPU about to be offlined
2835  *      void *                 <-- CPU's cyclic argument (that is, value
2836  *                                 to which cyh_arg member of the cyc_handler_t
2837  *                                 was set in the omni online handler)
2838  *
2839  *    The omni cyclic offline handler is always called _after_ the omni
2840  *    cyclic has ceased firing on the specified CPU.  Its purpose is to
2841  *    allow cleanup of any resources dynamically allocated in the omni cyclic
2842  *    online handler.  The context of the offline handler is identical to
2843  *    that of the online handler; the same constraints and liberties apply.
2844  *
2845  *    The offline handler is optional; it may be NULL.
2846  *
2847  *  Return value
2848  *
2849  *    cyclic_add_omni() returns a cyclic_id_t, which is guaranteed to be a
2850  *    value other than CYCLIC_NONE.  cyclic_add_omni() cannot fail.
2851  *
2852  *  Caller's context
2853  *
2854  *    The caller's context is identical to that of cyclic_add(), specified
2855  *    above.
2856  */
2857 cyclic_id_t
2858 cyclic_add_omni(cyc_omni_handler_t *omni)
2859 {
2860 	cyc_id_t *idp = cyclic_new_id();
2861 	cyc_cpu_t *cpu;
2862 	cpu_t *c;
2863 
2864 	ASSERT(MUTEX_HELD(&cpu_lock));
2865 	ASSERT(omni != NULL && omni->cyo_online != NULL);
2866 
2867 	idp->cyi_omni_hdlr = *omni;
2868 
2869 	c = cpu_list;
2870 	do {
2871 		if ((cpu = c->cpu_cyclic) == NULL)
2872 			continue;
2873 
2874 		if (cpu->cyp_state != CYS_ONLINE) {
2875 			ASSERT(cpu->cyp_state == CYS_OFFLINE);
2876 			continue;
2877 		}
2878 
2879 		cyclic_omni_start(idp, cpu);
2880 	} while ((c = c->cpu_next) != cpu_list);
2881 
2882 	/*
2883 	 * We must have found at least one online CPU on which to run
2884 	 * this cyclic.
2885 	 */
2886 	ASSERT(idp->cyi_omni_list != NULL);
2887 	ASSERT(idp->cyi_cpu == NULL);
2888 
2889 	return ((uintptr_t)idp);
2890 }
2891 
2892 /*
2893  *  void cyclic_remove(cyclic_id_t)
2894  *
2895  *  Overview
2896  *
2897  *    cyclic_remove() will remove the specified cyclic from the system.
2898  *
2899  *  Arguments and notes
2900  *
2901  *    The only argument is a cyclic_id returned from either cyclic_add() or
2902  *    cyclic_add_omni().
2903  *
2904  *    By the time cyclic_remove() returns, the caller is guaranteed that the
2905  *    removed cyclic handler has completed execution (this is the same
2906  *    semantic that untimeout() provides).  As a result, cyclic_remove() may
2907  *    need to block, waiting for the removed cyclic to complete execution.
2908  *    This leads to an important constraint on the caller:  no lock may be
2909  *    held across cyclic_remove() that also may be acquired by a cyclic
2910  *    handler.
2911  *
2912  *  Return value
2913  *
2914  *    None; cyclic_remove() always succeeds.
2915  *
2916  *  Caller's context
2917  *
2918  *    cpu_lock must be held by the caller, and the caller must not be in
2919  *    interrupt context.  The caller may not hold any locks which are also
2920  *    grabbed by any cyclic handler.  See "Arguments and notes", above.
2921  */
2922 void
2923 cyclic_remove(cyclic_id_t id)
2924 {
2925 	cyc_id_t *idp = (cyc_id_t *)id;
2926 	cyc_id_t *prev = idp->cyi_prev, *next = idp->cyi_next;
2927 	cyc_cpu_t *cpu = idp->cyi_cpu;
2928 
2929 	CYC_PTRACE("remove", idp, idp->cyi_cpu);
2930 	ASSERT(MUTEX_HELD(&cpu_lock));
2931 
2932 	if (cpu != NULL) {
2933 		(void) cyclic_remove_here(cpu, idp->cyi_ndx, NULL, CY_WAIT);
2934 	} else {
2935 		ASSERT(idp->cyi_omni_list != NULL);
2936 		while (idp->cyi_omni_list != NULL)
2937 			cyclic_omni_stop(idp, idp->cyi_omni_list->cyo_cpu);
2938 	}
2939 
2940 	if (prev != NULL) {
2941 		ASSERT(cyclic_id_head != idp);
2942 		prev->cyi_next = next;
2943 	} else {
2944 		ASSERT(cyclic_id_head == idp);
2945 		cyclic_id_head = next;
2946 	}
2947 
2948 	if (next != NULL)
2949 		next->cyi_prev = prev;
2950 
2951 	kmem_cache_free(cyclic_id_cache, idp);
2952 }
2953 
2954 /*
2955  *  void cyclic_bind(cyclic_id_t, cpu_t *, cpupart_t *)
2956  *
2957  *  Overview
2958  *
2959  *    cyclic_bind() atomically changes the CPU and CPU partition bindings
2960  *    of a cyclic.
2961  *
2962  *  Arguments and notes
2963  *
2964  *    The first argument is a cyclic_id retuned from cyclic_add().
2965  *    cyclic_bind() may _not_ be called on a cyclic_id returned from
2966  *    cyclic_add_omni().
2967  *
2968  *    The second argument specifies the CPU to which to bind the specified
2969  *    cyclic.  If the specified cyclic is bound to a CPU other than the one
2970  *    specified, it will be unbound from its bound CPU.  Unbinding the cyclic
2971  *    from its CPU may cause it to be juggled to another CPU.  If the specified
2972  *    CPU is non-NULL, the cyclic will be subsequently rebound to the specified
2973  *    CPU.
2974  *
2975  *    If a CPU with bound cyclics is transitioned into the P_NOINTR state,
2976  *    only cyclics not bound to the CPU can be juggled away; CPU-bound cyclics
2977  *    will continue to fire on the P_NOINTR CPU.  A CPU with bound cyclics
2978  *    cannot be offlined (attempts to offline the CPU will return EBUSY).
2979  *    Likewise, cyclics may not be bound to an offline CPU; if the caller
2980  *    attempts to bind a cyclic to an offline CPU, the cyclic subsystem will
2981  *    panic.
2982  *
2983  *    The third argument specifies the CPU partition to which to bind the
2984  *    specified cyclic.  If the specified cyclic is bound to a CPU partition
2985  *    other than the one specified, it will be unbound from its bound
2986  *    partition.  Unbinding the cyclic from its CPU partition may cause it
2987  *    to be juggled to another CPU.  If the specified CPU partition is
2988  *    non-NULL, the cyclic will be subsequently rebound to the specified CPU
2989  *    partition.
2990  *
2991  *    It is the caller's responsibility to assure that the specified CPU
2992  *    partition contains a CPU.  If it does not, the cyclic subsystem will
2993  *    panic.  A CPU partition with bound cyclics cannot be destroyed (attempts
2994  *    to destroy the partition will return EBUSY).  If a CPU with
2995  *    partition-bound cyclics is transitioned into the P_NOINTR state, cyclics
2996  *    bound to the CPU's partition (but not bound to the CPU) will be juggled
2997  *    away only if there exists another CPU in the partition in the P_ONLINE
2998  *    state.
2999  *
3000  *    It is the caller's responsibility to assure that the specified CPU and
3001  *    CPU partition are self-consistent.  If both parameters are non-NULL,
3002  *    and the specified CPU partition does not contain the specified CPU, the
3003  *    cyclic subsystem will panic.
3004  *
3005  *    It is the caller's responsibility to assure that the specified CPU has
3006  *    been configured with respect to the cyclic subsystem.  Generally, this
3007  *    is always true for valid, on-line CPUs.  The only periods of time during
3008  *    which this may not be true are during MP boot (i.e. after cyclic_init()
3009  *    is called but before cyclic_mp_init() is called) or during dynamic
3010  *    reconfiguration; cyclic_bind() should only be called with great care
3011  *    from these contexts.
3012  *
3013  *  Return value
3014  *
3015  *    None; cyclic_bind() always succeeds.
3016  *
3017  *  Caller's context
3018  *
3019  *    cpu_lock must be held by the caller, and the caller must not be in
3020  *    interrupt context.  The caller may not hold any locks which are also
3021  *    grabbed by any cyclic handler.
3022  */
3023 void
3024 cyclic_bind(cyclic_id_t id, cpu_t *d, cpupart_t *part)
3025 {
3026 	cyc_id_t *idp = (cyc_id_t *)id;
3027 	cyc_cpu_t *cpu = idp->cyi_cpu;
3028 	cpu_t *c;
3029 	uint16_t flags;
3030 
3031 	CYC_PTRACE("bind", d, part);
3032 	ASSERT(MUTEX_HELD(&cpu_lock));
3033 	ASSERT(part == NULL || d == NULL || d->cpu_part == part);
3034 
3035 	if (cpu == NULL) {
3036 		ASSERT(idp->cyi_omni_list != NULL);
3037 		panic("attempt to change binding of omnipresent cyclic");
3038 	}
3039 
3040 	c = cpu->cyp_cpu;
3041 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
3042 
3043 	if (c != d && (flags & CYF_CPU_BOUND))
3044 		cyclic_unbind_cpu(id);
3045 
3046 	/*
3047 	 * Reload our cpu (we may have migrated).  We don't have to reload
3048 	 * the flags field here; if we were CYF_PART_BOUND on entry, we are
3049 	 * CYF_PART_BOUND now.
3050 	 */
3051 	cpu = idp->cyi_cpu;
3052 	c = cpu->cyp_cpu;
3053 
3054 	if (part != c->cpu_part && (flags & CYF_PART_BOUND))
3055 		cyclic_unbind_cpupart(id);
3056 
3057 	/*
3058 	 * Now reload the flags field, asserting that if we are CPU bound,
3059 	 * the CPU was specified (and likewise, if we are partition bound,
3060 	 * the partition was specified).
3061 	 */
3062 	cpu = idp->cyi_cpu;
3063 	c = cpu->cyp_cpu;
3064 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
3065 	ASSERT(!(flags & CYF_CPU_BOUND) || c == d);
3066 	ASSERT(!(flags & CYF_PART_BOUND) || c->cpu_part == part);
3067 
3068 	if (!(flags & CYF_CPU_BOUND) && d != NULL)
3069 		cyclic_bind_cpu(id, d);
3070 
3071 	if (!(flags & CYF_PART_BOUND) && part != NULL)
3072 		cyclic_bind_cpupart(id, part);
3073 }
3074 
3075 int
3076 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration)
3077 {
3078 	cyc_id_t *idp = (cyc_id_t *)id;
3079 	cyc_cpu_t *cpu;
3080 	cyc_omni_cpu_t *ocpu;
3081 	cyc_index_t ndx;
3082 	int res = 1;
3083 
3084 	ASSERT(expiration > 0);
3085 
3086 	CYC_PTRACE("reprog", idp, idp->cyi_cpu);
3087 
3088 	kpreempt_disable();
3089 
3090 	/*
3091 	 * Prevent the cyclic from moving or disappearing while we reprogram.
3092 	 */
3093 	rw_enter(&idp->cyi_lock, RW_READER);
3094 
3095 	if (idp->cyi_cpu == NULL) {
3096 		ASSERT(curthread->t_preempt > 0);
3097 		cpu = CPU->cpu_cyclic;
3098 
3099 		/*
3100 		 * For an omni cyclic, we reprogram the cyclic corresponding
3101 		 * to the current CPU. Look for it in the list.
3102 		 */
3103 		ocpu = idp->cyi_omni_list;
3104 		while (ocpu != NULL) {
3105 			if (ocpu->cyo_cpu == cpu)
3106 				break;
3107 			ocpu = ocpu->cyo_next;
3108 		}
3109 
3110 		if (ocpu == NULL) {
3111 			/*
3112 			 * Didn't find it. This means that CPU offline
3113 			 * must have removed it racing with us. So,
3114 			 * nothing to do.
3115 			 */
3116 			rw_exit(&idp->cyi_lock);
3117 
3118 			kpreempt_enable();
3119 
3120 			return (0);
3121 		}
3122 		ndx = ocpu->cyo_ndx;
3123 	} else {
3124 		cpu = idp->cyi_cpu;
3125 		ndx = idp->cyi_ndx;
3126 	}
3127 
3128 	if (cpu->cyp_cpu == CPU) {
3129 		/*
3130 		 * If this reprogram is being done as part of a running cyclic
3131 		 * handler, it is possible that a racing cyclic_remove() on a
3132 		 * remote CPU will cause it to fail.
3133 		 */
3134 		if (!cyclic_reprogram_cyclic(cpu, ndx, expiration, B_TRUE)) {
3135 			res = 0;
3136 		}
3137 	} else {
3138 		cyclic_reprogram_here(cpu, ndx, expiration);
3139 	}
3140 
3141 	/*
3142 	 * Allow the cyclic to be moved or removed.
3143 	 */
3144 	rw_exit(&idp->cyi_lock);
3145 
3146 	kpreempt_enable();
3147 
3148 	return (res);
3149 }
3150 
3151 /*
3152  *  void cyclic_move_here(cyclic_id_t)
3153  *
3154  *  Overview
3155  *
3156  *    cyclic_move_here() attempts to shuffle a cyclic onto the current CPU.
3157  *
3158  *  Arguments and notes
3159  *
3160  *    The first argument is a cyclic_id returned from cyclic_add().
3161  *    cyclic_move_here() may _not_ be called on a cyclic_id returned from
3162  *    cyclic_add_omni() or one bound to a CPU or partition via cyclic_bind().
3163  *
3164  *    This cyclic shuffling is performed on a best-effort basis.  If for some
3165  *    reason the current CPU is unsuitable or the thread migrates between CPUs
3166  *    during the call, the function may return with the cyclic residing on some
3167  *    other CPU.
3168  *
3169  *  Return value
3170  *
3171  *    None; cyclic_move_here() always reports success.
3172  *
3173  *  Caller's context
3174  *
3175  *    cpu_lock must be held by the caller, and the caller must not be in
3176  *    interrupt context.  The caller may not hold any locks which are also
3177  *    grabbed by any cyclic handler.
3178  */
3179 void
3180 cyclic_move_here(cyclic_id_t id)
3181 {
3182 	cyc_id_t *idp = (cyc_id_t *)id;
3183 	cyc_cpu_t *cc = idp->cyi_cpu;
3184 	cpu_t *dest = CPU;
3185 
3186 	ASSERT(MUTEX_HELD(&cpu_lock));
3187 	CYC_PTRACE("move_here", idp, dest);
3188 	VERIFY3P(cc, !=, NULL);
3189 	VERIFY3U(cc->cyp_cyclics[idp->cyi_ndx].cy_flags &
3190 	    (CYF_CPU_BOUND|CYF_PART_BOUND), ==, 0);
3191 
3192 	if (cc->cyp_cpu == dest) {
3193 		return;
3194 	}
3195 
3196 	/* Is the destination CPU suitable for a migration target? */
3197 	if (dest->cpu_cyclic == NULL ||
3198 	    dest->cpu_cyclic->cyp_state == CYS_OFFLINE ||
3199 	    (dest->cpu_flags & CPU_ENABLE) == 0) {
3200 		return;
3201 	}
3202 
3203 	cyclic_juggle_one_to(idp, dest->cpu_cyclic);
3204 }
3205 
3206 hrtime_t
3207 cyclic_getres()
3208 {
3209 	return (cyclic_resolution);
3210 }
3211 
3212 void
3213 cyclic_init(cyc_backend_t *be, hrtime_t resolution)
3214 {
3215 	ASSERT(MUTEX_HELD(&cpu_lock));
3216 
3217 	CYC_PTRACE("init", be, resolution);
3218 	cyclic_resolution = resolution;
3219 
3220 	/*
3221 	 * Copy the passed cyc_backend into the backend template.  This must
3222 	 * be done before the CPU can be configured.
3223 	 */
3224 	bcopy(be, &cyclic_backend, sizeof (cyc_backend_t));
3225 
3226 	/*
3227 	 * It's safe to look at the "CPU" pointer without disabling kernel
3228 	 * preemption; cyclic_init() is called only during startup by the
3229 	 * cyclic backend.
3230 	 */
3231 	cyclic_configure(CPU);
3232 	cyclic_online(CPU);
3233 }
3234 
3235 /*
3236  * It is assumed that cyclic_mp_init() is called some time after cyclic
3237  * init (and therefore, after cpu0 has been initialized).  We grab cpu_lock,
3238  * find the already initialized CPU, and initialize every other CPU with the
3239  * same backend.  Finally, we register a cpu_setup function.
3240  */
3241 void
3242 cyclic_mp_init()
3243 {
3244 	cpu_t *c;
3245 
3246 	mutex_enter(&cpu_lock);
3247 
3248 	c = cpu_list;
3249 	do {
3250 		if (c->cpu_cyclic == NULL) {
3251 			cyclic_configure(c);
3252 			cyclic_online(c);
3253 		}
3254 	} while ((c = c->cpu_next) != cpu_list);
3255 
3256 	register_cpu_setup_func(cyclic_cpu_setup, NULL);
3257 	mutex_exit(&cpu_lock);
3258 }
3259 
3260 /*
3261  *  int cyclic_juggle(cpu_t *)
3262  *
3263  *  Overview
3264  *
3265  *    cyclic_juggle() juggles as many cyclics as possible away from the
3266  *    specified CPU; all remaining cyclics on the CPU will either be CPU-
3267  *    or partition-bound.
3268  *
3269  *  Arguments and notes
3270  *
3271  *    The only argument to cyclic_juggle() is the CPU from which cyclics
3272  *    should be juggled.  CPU-bound cyclics are never juggled; partition-bound
3273  *    cyclics are only juggled if the specified CPU is in the P_NOINTR state
3274  *    and there exists a P_ONLINE CPU in the partition.  The cyclic subsystem
3275  *    assures that a cyclic will never fire late or spuriously, even while
3276  *    being juggled.
3277  *
3278  *  Return value
3279  *
3280  *    cyclic_juggle() returns a non-zero value if all cyclics were able to
3281  *    be juggled away from the CPU, and zero if one or more cyclics could
3282  *    not be juggled away.
3283  *
3284  *  Caller's context
3285  *
3286  *    cpu_lock must be held by the caller, and the caller must not be in
3287  *    interrupt context.  The caller may not hold any locks which are also
3288  *    grabbed by any cyclic handler.  While cyclic_juggle() _may_ be called
3289  *    in any context satisfying these constraints, it _must_ be called
3290  *    immediately after clearing CPU_ENABLE (i.e. before dropping cpu_lock).
3291  *    Failure to do so could result in an assertion failure in the cyclic
3292  *    subsystem.
3293  */
3294 int
3295 cyclic_juggle(cpu_t *c)
3296 {
3297 	cyc_cpu_t *cpu = c->cpu_cyclic;
3298 	cyc_id_t *idp;
3299 	int all_juggled = 1;
3300 
3301 	CYC_PTRACE1("juggle", c);
3302 	ASSERT(MUTEX_HELD(&cpu_lock));
3303 
3304 	/*
3305 	 * We'll go through each cyclic on the CPU, attempting to juggle
3306 	 * each one elsewhere.
3307 	 */
3308 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3309 		if (idp->cyi_cpu != cpu)
3310 			continue;
3311 
3312 		if (cyclic_juggle_one(idp) == 0) {
3313 			all_juggled = 0;
3314 			continue;
3315 		}
3316 
3317 		ASSERT(idp->cyi_cpu != cpu);
3318 	}
3319 
3320 	return (all_juggled);
3321 }
3322 
3323 /*
3324  *  int cyclic_offline(cpu_t *)
3325  *
3326  *  Overview
3327  *
3328  *    cyclic_offline() offlines the cyclic subsystem on the specified CPU.
3329  *
3330  *  Arguments and notes
3331  *
3332  *    The only argument to cyclic_offline() is a CPU to offline.
3333  *    cyclic_offline() will attempt to juggle cyclics away from the specified
3334  *    CPU.
3335  *
3336  *  Return value
3337  *
3338  *    cyclic_offline() returns 1 if all cyclics on the CPU were juggled away
3339  *    and the cyclic subsystem on the CPU was successfully offlines.
3340  *    cyclic_offline returns 0 if some cyclics remain, blocking the cyclic
3341  *    offline operation.  All remaining cyclics on the CPU will either be
3342  *    CPU- or partition-bound.
3343  *
3344  *    See the "Arguments and notes" of cyclic_juggle(), below, for more detail
3345  *    on cyclic juggling.
3346  *
3347  *  Caller's context
3348  *
3349  *    The only caller of cyclic_offline() should be the processor management
3350  *    subsystem.  It is expected that the caller of cyclic_offline() will
3351  *    offline the CPU immediately after cyclic_offline() returns success (i.e.
3352  *    before dropping cpu_lock).  Moreover, it is expected that the caller will
3353  *    fail the CPU offline operation if cyclic_offline() returns failure.
3354  */
3355 int
3356 cyclic_offline(cpu_t *c)
3357 {
3358 	cyc_cpu_t *cpu = c->cpu_cyclic;
3359 	cyc_id_t *idp;
3360 
3361 	CYC_PTRACE1("offline", cpu);
3362 	ASSERT(MUTEX_HELD(&cpu_lock));
3363 
3364 	if (!cyclic_juggle(c))
3365 		return (0);
3366 
3367 	/*
3368 	 * This CPU is headed offline; we need to now stop omnipresent
3369 	 * cyclic firing on this CPU.
3370 	 */
3371 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3372 		if (idp->cyi_cpu != NULL)
3373 			continue;
3374 
3375 		/*
3376 		 * We cannot possibly be offlining the last CPU; cyi_omni_list
3377 		 * must be non-NULL.
3378 		 */
3379 		ASSERT(idp->cyi_omni_list != NULL);
3380 		cyclic_omni_stop(idp, cpu);
3381 	}
3382 
3383 	ASSERT(cpu->cyp_state == CYS_ONLINE);
3384 	cpu->cyp_state = CYS_OFFLINE;
3385 
3386 	return (1);
3387 }
3388 
3389 /*
3390  *  void cyclic_online(cpu_t *)
3391  *
3392  *  Overview
3393  *
3394  *    cyclic_online() onlines a CPU previously offlined with cyclic_offline().
3395  *
3396  *  Arguments and notes
3397  *
3398  *    cyclic_online()'s only argument is a CPU to online.  The specified
3399  *    CPU must have been previously offlined with cyclic_offline().  After
3400  *    cyclic_online() returns, the specified CPU will be eligible to execute
3401  *    cyclics.
3402  *
3403  *  Return value
3404  *
3405  *    None; cyclic_online() always succeeds.
3406  *
3407  *  Caller's context
3408  *
3409  *    cyclic_online() should only be called by the processor management
3410  *    subsystem; cpu_lock must be held.
3411  */
3412 void
3413 cyclic_online(cpu_t *c)
3414 {
3415 	cyc_cpu_t *cpu = c->cpu_cyclic;
3416 	cyc_id_t *idp;
3417 
3418 	CYC_PTRACE1("online", cpu);
3419 	ASSERT(c->cpu_flags & CPU_ENABLE);
3420 	ASSERT(MUTEX_HELD(&cpu_lock));
3421 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
3422 
3423 	cpu->cyp_state = CYS_ONLINE;
3424 
3425 	/*
3426 	 * Now that this CPU is open for business, we need to start firing
3427 	 * all omnipresent cyclics on it.
3428 	 */
3429 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3430 		if (idp->cyi_cpu != NULL)
3431 			continue;
3432 
3433 		cyclic_omni_start(idp, cpu);
3434 	}
3435 }
3436 
3437 /*
3438  *  void cyclic_move_in(cpu_t *)
3439  *
3440  *  Overview
3441  *
3442  *    cyclic_move_in() is called by the CPU partition code immediately after
3443  *    the specified CPU has moved into a new partition.
3444  *
3445  *  Arguments and notes
3446  *
3447  *    The only argument to cyclic_move_in() is a CPU which has moved into a
3448  *    new partition.  If the specified CPU is P_ONLINE, and every other
3449  *    CPU in the specified CPU's new partition is P_NOINTR, cyclic_move_in()
3450  *    will juggle all partition-bound, CPU-unbound cyclics to the specified
3451  *    CPU.
3452  *
3453  *  Return value
3454  *
3455  *    None; cyclic_move_in() always succeeds.
3456  *
3457  *  Caller's context
3458  *
3459  *    cyclic_move_in() should _only_ be called immediately after a CPU has
3460  *    moved into a new partition, with cpu_lock held.  As with other calls
3461  *    into the cyclic subsystem, no lock may be held which is also grabbed
3462  *    by any cyclic handler.
3463  */
3464 void
3465 cyclic_move_in(cpu_t *d)
3466 {
3467 	cyc_id_t *idp;
3468 	cyc_cpu_t *dest = d->cpu_cyclic;
3469 	cyclic_t *cyclic;
3470 	cpupart_t *part = d->cpu_part;
3471 
3472 	CYC_PTRACE("move-in", dest, part);
3473 	ASSERT(MUTEX_HELD(&cpu_lock));
3474 
3475 	/*
3476 	 * Look for CYF_PART_BOUND cyclics in the new partition.  If
3477 	 * we find one, check to see if it is currently on a CPU which has
3478 	 * interrupts disabled.  If it is (and if this CPU currently has
3479 	 * interrupts enabled), we'll juggle those cyclics over here.
3480 	 */
3481 	if (!(d->cpu_flags & CPU_ENABLE)) {
3482 		CYC_PTRACE1("move-in-none", dest);
3483 		return;
3484 	}
3485 
3486 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3487 		cyc_cpu_t *cpu = idp->cyi_cpu;
3488 		cpu_t *c;
3489 
3490 		/*
3491 		 * Omnipresent cyclics are exempt from juggling.
3492 		 */
3493 		if (cpu == NULL)
3494 			continue;
3495 
3496 		c = cpu->cyp_cpu;
3497 
3498 		if (c->cpu_part != part || (c->cpu_flags & CPU_ENABLE))
3499 			continue;
3500 
3501 		cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
3502 
3503 		if (cyclic->cy_flags & CYF_CPU_BOUND)
3504 			continue;
3505 
3506 		/*
3507 		 * We know that this cyclic is bound to its processor set
3508 		 * (otherwise, it would not be on a CPU with interrupts
3509 		 * disabled); juggle it to our CPU.
3510 		 */
3511 		ASSERT(cyclic->cy_flags & CYF_PART_BOUND);
3512 		cyclic_juggle_one_to(idp, dest);
3513 	}
3514 
3515 	CYC_PTRACE1("move-in-done", dest);
3516 }
3517 
3518 /*
3519  *  int cyclic_move_out(cpu_t *)
3520  *
3521  *  Overview
3522  *
3523  *    cyclic_move_out() is called by the CPU partition code immediately before
3524  *    the specified CPU is to move out of its partition.
3525  *
3526  *  Arguments and notes
3527  *
3528  *    The only argument to cyclic_move_out() is a CPU which is to move out of
3529  *    its partition.
3530  *
3531  *    cyclic_move_out() will attempt to juggle away all partition-bound
3532  *    cyclics.  If the specified CPU is the last CPU in a partition with
3533  *    partition-bound cyclics, cyclic_move_out() will fail.  If there exists
3534  *    a partition-bound cyclic which is CPU-bound to the specified CPU,
3535  *    cyclic_move_out() will fail.
3536  *
3537  *    Note that cyclic_move_out() will _only_ attempt to juggle away
3538  *    partition-bound cyclics; CPU-bound cyclics which are not partition-bound
3539  *    and unbound cyclics are not affected by changing the partition
3540  *    affiliation of the CPU.
3541  *
3542  *  Return value
3543  *
3544  *    cyclic_move_out() returns 1 if all partition-bound cyclics on the CPU
3545  *    were juggled away; 0 if some cyclics remain.
3546  *
3547  *  Caller's context
3548  *
3549  *    cyclic_move_out() should _only_ be called immediately before a CPU has
3550  *    moved out of its partition, with cpu_lock held.  It is expected that
3551  *    the caller of cyclic_move_out() will change the processor set affiliation
3552  *    of the specified CPU immediately after cyclic_move_out() returns
3553  *    success (i.e. before dropping cpu_lock).  Moreover, it is expected that
3554  *    the caller will fail the CPU repartitioning operation if cyclic_move_out()
3555  *    returns failure.  As with other calls into the cyclic subsystem, no lock
3556  *    may be held which is also grabbed by any cyclic handler.
3557  */
3558 int
3559 cyclic_move_out(cpu_t *c)
3560 {
3561 	cyc_id_t *idp;
3562 	cyc_cpu_t *cpu = c->cpu_cyclic, *dest;
3563 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
3564 	cpupart_t *part = c->cpu_part;
3565 
3566 	CYC_PTRACE1("move-out", cpu);
3567 	ASSERT(MUTEX_HELD(&cpu_lock));
3568 
3569 	/*
3570 	 * If there are any CYF_PART_BOUND cyclics on this CPU, we need
3571 	 * to try to juggle them away.
3572 	 */
3573 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3574 
3575 		if (idp->cyi_cpu != cpu)
3576 			continue;
3577 
3578 		cyclic = &cyclics[idp->cyi_ndx];
3579 
3580 		if (!(cyclic->cy_flags & CYF_PART_BOUND))
3581 			continue;
3582 
3583 		dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags);
3584 
3585 		if (dest == NULL) {
3586 			/*
3587 			 * We can't juggle this cyclic; we need to return
3588 			 * failure (we won't bother trying to juggle away
3589 			 * other cyclics).
3590 			 */
3591 			CYC_PTRACE("move-out-fail", cpu, idp);
3592 			return (0);
3593 		}
3594 		cyclic_juggle_one_to(idp, dest);
3595 	}
3596 
3597 	CYC_PTRACE1("move-out-done", cpu);
3598 	return (1);
3599 }
3600 
3601 /*
3602  *  void cyclic_suspend()
3603  *
3604  *  Overview
3605  *
3606  *    cyclic_suspend() suspends all cyclic activity throughout the cyclic
3607  *    subsystem.  It should be called only by subsystems which are attempting
3608  *    to suspend the entire system (e.g. checkpoint/resume, dynamic
3609  *    reconfiguration).
3610  *
3611  *  Arguments and notes
3612  *
3613  *    cyclic_suspend() takes no arguments.  Each CPU with an active cyclic
3614  *    disables its backend (offline CPUs disable their backends as part of
3615  *    the cyclic_offline() operation), thereby disabling future CY_HIGH_LEVEL
3616  *    interrupts.
3617  *
3618  *    Note that disabling CY_HIGH_LEVEL interrupts does not completely preclude
3619  *    cyclic handlers from being called after cyclic_suspend() returns:  if a
3620  *    CY_LOCK_LEVEL or CY_LOW_LEVEL interrupt thread was blocked at the time
3621  *    of cyclic_suspend(), cyclic handlers at its level may continue to be
3622  *    called after the interrupt thread becomes unblocked.  The
3623  *    post-cyclic_suspend() activity is bounded by the pend count on all
3624  *    cyclics at the time of cyclic_suspend().  Callers concerned with more
3625  *    than simply disabling future CY_HIGH_LEVEL interrupts must check for
3626  *    this condition.
3627  *
3628  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
3629  *    guaranteed to monotonically increase between cyclic_suspend() and
3630  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
3631  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
3632  *    That is, every timestamp obtained before cyclic_suspend() will be less
3633  *    than every timestamp obtained after cyclic_resume().
3634  *
3635  *  Return value
3636  *
3637  *    None; cyclic_suspend() always succeeds.
3638  *
3639  *  Caller's context
3640  *
3641  *    The cyclic subsystem must be configured on every valid CPU;
3642  *    cyclic_suspend() may not be called during boot or during dynamic
3643  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
3644  *    cannot be in high-level interrupt context.  However, unlike most other
3645  *    cyclic entry points, cyclic_suspend() may be called with locks held
3646  *    which are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic
3647  *    handlers.
3648  */
3649 void
3650 cyclic_suspend()
3651 {
3652 	cpu_t *c;
3653 	cyc_cpu_t *cpu;
3654 	cyc_xcallarg_t arg;
3655 	cyc_backend_t *be;
3656 
3657 	CYC_PTRACE0("suspend");
3658 	ASSERT(MUTEX_HELD(&cpu_lock));
3659 	c = cpu_list;
3660 
3661 	do {
3662 		cpu = c->cpu_cyclic;
3663 		be = cpu->cyp_backend;
3664 		arg.cyx_cpu = cpu;
3665 
3666 		be->cyb_xcall(be->cyb_arg, c,
3667 		    (cyc_func_t)cyclic_suspend_xcall, &arg);
3668 	} while ((c = c->cpu_next) != cpu_list);
3669 }
3670 
3671 /*
3672  *  void cyclic_resume()
3673  *
3674  *    cyclic_resume() resumes all cyclic activity throughout the cyclic
3675  *    subsystem.  It should be called only by system-suspending subsystems.
3676  *
3677  *  Arguments and notes
3678  *
3679  *    cyclic_resume() takes no arguments.  Each CPU with an active cyclic
3680  *    reenables and reprograms its backend (offline CPUs are not reenabled).
3681  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
3682  *    guaranteed to monotonically increase between cyclic_suspend() and
3683  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
3684  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
3685  *    That is, every timestamp obtained before cyclic_suspend() will be less
3686  *    than every timestamp obtained after cyclic_resume().
3687  *
3688  *  Return value
3689  *
3690  *    None; cyclic_resume() always succeeds.
3691  *
3692  *  Caller's context
3693  *
3694  *    The cyclic subsystem must be configured on every valid CPU;
3695  *    cyclic_resume() may not be called during boot or during dynamic
3696  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
3697  *    cannot be in high-level interrupt context.  However, unlike most other
3698  *    cyclic entry points, cyclic_resume() may be called with locks held which
3699  *    are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic handlers.
3700  */
3701 void
3702 cyclic_resume()
3703 {
3704 	cpu_t *c;
3705 	cyc_cpu_t *cpu;
3706 	cyc_xcallarg_t arg;
3707 	cyc_backend_t *be;
3708 
3709 	CYC_PTRACE0("resume");
3710 	ASSERT(MUTEX_HELD(&cpu_lock));
3711 
3712 	c = cpu_list;
3713 
3714 	do {
3715 		cpu = c->cpu_cyclic;
3716 		be = cpu->cyp_backend;
3717 		arg.cyx_cpu = cpu;
3718 
3719 		be->cyb_xcall(be->cyb_arg, c,
3720 		    (cyc_func_t)cyclic_resume_xcall, &arg);
3721 	} while ((c = c->cpu_next) != cpu_list);
3722 }
3723