1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2013, Ira Cooper. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 26 */ 27 28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 /* 32 * University Copyright- Copyright (c) 1982, 1986, 1988 33 * The Regents of the University of California 34 * All Rights Reserved 35 * 36 * University Acknowledgment- Portions of this document are derived from 37 * software developed by the University of California, Berkeley, and its 38 * contributors. 39 */ 40 41 #include <sys/types.h> 42 #include <sys/sysmacros.h> 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/cred_impl.h> 46 #include <sys/policy.h> 47 #include <sys/vnode.h> 48 #include <sys/errno.h> 49 #include <sys/kmem.h> 50 #include <sys/user.h> 51 #include <sys/proc.h> 52 #include <sys/syscall.h> 53 #include <sys/debug.h> 54 #include <sys/atomic.h> 55 #include <sys/ucred.h> 56 #include <sys/prsystm.h> 57 #include <sys/modctl.h> 58 #include <sys/avl.h> 59 #include <sys/door.h> 60 #include <c2/audit.h> 61 #include <sys/zone.h> 62 #include <sys/tsol/label.h> 63 #include <sys/sid.h> 64 #include <sys/idmap.h> 65 #include <sys/klpd.h> 66 #include <sys/varargs.h> 67 #include <sys/sysconf.h> 68 #include <util/qsort.h> 69 70 71 /* Ephemeral IDs Zones specific data */ 72 typedef struct ephemeral_zsd { 73 uid_t min_uid; 74 uid_t last_uid; 75 gid_t min_gid; 76 gid_t last_gid; 77 kmutex_t eph_lock; 78 cred_t *eph_nobody; 79 } ephemeral_zsd_t; 80 81 static void crgrphold(credgrp_t *); 82 83 #define CREDGRPSZ(ngrp) (sizeof (credgrp_t) + ((ngrp - 1) * sizeof (gid_t))) 84 85 static kmutex_t ephemeral_zone_mutex; 86 static zone_key_t ephemeral_zone_key; 87 88 static struct kmem_cache *cred_cache; 89 static size_t crsize = 0; 90 static int audoff = 0; 91 uint32_t ucredsize; 92 cred_t *kcred; 93 static cred_t *dummycr; 94 95 int rstlink; /* link(2) restricted to files owned by user? */ 96 97 static int get_c2audit_load(void); 98 99 #define CR_AUINFO(c) (auditinfo_addr_t *)((audoff == 0) ? NULL : \ 100 ((char *)(c)) + audoff) 101 102 #define REMOTE_PEER_CRED(c) ((c)->cr_gid == -1) 103 104 #define BIN_GROUP_SEARCH_CUTOFF 16 105 106 static boolean_t hasephids = B_FALSE; 107 108 static ephemeral_zsd_t * 109 get_ephemeral_zsd(zone_t *zone) 110 { 111 ephemeral_zsd_t *eph_zsd; 112 113 eph_zsd = zone_getspecific(ephemeral_zone_key, zone); 114 if (eph_zsd != NULL) { 115 return (eph_zsd); 116 } 117 118 mutex_enter(&ephemeral_zone_mutex); 119 eph_zsd = zone_getspecific(ephemeral_zone_key, zone); 120 if (eph_zsd == NULL) { 121 eph_zsd = kmem_zalloc(sizeof (ephemeral_zsd_t), KM_SLEEP); 122 eph_zsd->min_uid = MAXUID; 123 eph_zsd->last_uid = IDMAP_WK__MAX_UID; 124 eph_zsd->min_gid = MAXUID; 125 eph_zsd->last_gid = IDMAP_WK__MAX_GID; 126 mutex_init(&eph_zsd->eph_lock, NULL, MUTEX_DEFAULT, NULL); 127 128 /* 129 * nobody is used to map SID containing CRs. 130 */ 131 eph_zsd->eph_nobody = crdup(zone->zone_kcred); 132 (void) crsetugid(eph_zsd->eph_nobody, UID_NOBODY, GID_NOBODY); 133 CR_FLAGS(eph_zsd->eph_nobody) = 0; 134 eph_zsd->eph_nobody->cr_zone = zone; 135 136 (void) zone_setspecific(ephemeral_zone_key, zone, eph_zsd); 137 } 138 mutex_exit(&ephemeral_zone_mutex); 139 return (eph_zsd); 140 } 141 142 static cred_t *crdup_flags(const cred_t *, int); 143 static cred_t *cralloc_flags(int); 144 145 /* 146 * This function is called when a zone is destroyed 147 */ 148 static void 149 /* ARGSUSED */ 150 destroy_ephemeral_zsd(zoneid_t zone_id, void *arg) 151 { 152 ephemeral_zsd_t *eph_zsd = arg; 153 if (eph_zsd != NULL) { 154 mutex_destroy(&eph_zsd->eph_lock); 155 crfree(eph_zsd->eph_nobody); 156 kmem_free(eph_zsd, sizeof (ephemeral_zsd_t)); 157 } 158 } 159 160 161 162 /* 163 * Initialize credentials data structures. 164 */ 165 166 void 167 cred_init(void) 168 { 169 priv_init(); 170 171 crsize = sizeof (cred_t); 172 173 if (get_c2audit_load() > 0) { 174 #ifdef _LP64 175 /* assure audit context is 64-bit aligned */ 176 audoff = (crsize + 177 sizeof (int64_t) - 1) & ~(sizeof (int64_t) - 1); 178 #else /* _LP64 */ 179 audoff = crsize; 180 #endif /* _LP64 */ 181 crsize = audoff + sizeof (auditinfo_addr_t); 182 crsize = (crsize + sizeof (int) - 1) & ~(sizeof (int) - 1); 183 } 184 185 cred_cache = kmem_cache_create("cred_cache", crsize, 0, 186 NULL, NULL, NULL, NULL, NULL, 0); 187 188 /* 189 * dummycr is used to copy initial state for creds. 190 */ 191 dummycr = cralloc(); 192 bzero(dummycr, crsize); 193 dummycr->cr_ref = 1; 194 dummycr->cr_uid = (uid_t)-1; 195 dummycr->cr_gid = (gid_t)-1; 196 dummycr->cr_ruid = (uid_t)-1; 197 dummycr->cr_rgid = (gid_t)-1; 198 dummycr->cr_suid = (uid_t)-1; 199 dummycr->cr_sgid = (gid_t)-1; 200 201 202 /* 203 * kcred is used by anything that needs all privileges; it's 204 * also the template used for crget as it has all the compatible 205 * sets filled in. 206 */ 207 kcred = cralloc(); 208 209 bzero(kcred, crsize); 210 kcred->cr_ref = 1; 211 212 /* kcred is never freed, so we don't need zone_cred_hold here */ 213 kcred->cr_zone = &zone0; 214 215 priv_fillset(&CR_LPRIV(kcred)); 216 CR_IPRIV(kcred) = *priv_basic; 217 218 /* Not a basic privilege, if chown is not restricted add it to I0 */ 219 if (!rstchown) 220 priv_addset(&CR_IPRIV(kcred), PRIV_FILE_CHOWN_SELF); 221 222 /* Basic privilege, if link is restricted remove it from I0 */ 223 if (rstlink) 224 priv_delset(&CR_IPRIV(kcred), PRIV_FILE_LINK_ANY); 225 226 CR_EPRIV(kcred) = CR_PPRIV(kcred) = CR_IPRIV(kcred); 227 228 CR_FLAGS(kcred) = NET_MAC_AWARE; 229 230 /* 231 * Set up credentials of p0. 232 */ 233 ttoproc(curthread)->p_cred = kcred; 234 curthread->t_cred = kcred; 235 236 ucredsize = UCRED_SIZE; 237 238 mutex_init(&ephemeral_zone_mutex, NULL, MUTEX_DEFAULT, NULL); 239 zone_key_create(&ephemeral_zone_key, NULL, NULL, destroy_ephemeral_zsd); 240 } 241 242 /* 243 * Allocate (nearly) uninitialized cred_t. 244 */ 245 static cred_t * 246 cralloc_flags(int flgs) 247 { 248 cred_t *cr = kmem_cache_alloc(cred_cache, flgs); 249 250 if (cr == NULL) 251 return (NULL); 252 253 cr->cr_ref = 1; /* So we can crfree() */ 254 cr->cr_zone = NULL; 255 cr->cr_label = NULL; 256 cr->cr_ksid = NULL; 257 cr->cr_klpd = NULL; 258 cr->cr_grps = NULL; 259 return (cr); 260 } 261 262 cred_t * 263 cralloc(void) 264 { 265 return (cralloc_flags(KM_SLEEP)); 266 } 267 268 /* 269 * As cralloc but prepared for ksid change (if appropriate). 270 */ 271 cred_t * 272 cralloc_ksid(void) 273 { 274 cred_t *cr = cralloc(); 275 if (hasephids) 276 cr->cr_ksid = kcrsid_alloc(); 277 return (cr); 278 } 279 280 /* 281 * Allocate a initialized cred structure and crhold() it. 282 * Initialized means: all ids 0, group count 0, L=Full, E=P=I=I0 283 */ 284 cred_t * 285 crget(void) 286 { 287 cred_t *cr = kmem_cache_alloc(cred_cache, KM_SLEEP); 288 289 bcopy(kcred, cr, crsize); 290 cr->cr_ref = 1; 291 zone_cred_hold(cr->cr_zone); 292 if (cr->cr_label) 293 label_hold(cr->cr_label); 294 ASSERT(cr->cr_klpd == NULL); 295 ASSERT(cr->cr_grps == NULL); 296 return (cr); 297 } 298 299 /* 300 * Broadcast the cred to all the threads in the process. 301 * The current thread's credentials can be set right away, but other 302 * threads must wait until the start of the next system call or trap. 303 * This avoids changing the cred in the middle of a system call. 304 * 305 * The cred has already been held for the process and the thread (2 holds), 306 * and p->p_cred set. 307 * 308 * p->p_crlock shouldn't be held here, since p_lock must be acquired. 309 */ 310 void 311 crset(proc_t *p, cred_t *cr) 312 { 313 kthread_id_t t; 314 kthread_id_t first; 315 cred_t *oldcr; 316 317 ASSERT(p == curproc); /* assumes p_lwpcnt can't change */ 318 319 /* 320 * DTrace accesses t_cred in probe context. t_cred must always be 321 * either NULL, or point to a valid, allocated cred structure. 322 */ 323 t = curthread; 324 oldcr = t->t_cred; 325 t->t_cred = cr; /* the cred is held by caller for this thread */ 326 crfree(oldcr); /* free the old cred for the thread */ 327 328 /* 329 * Broadcast to other threads, if any. 330 */ 331 if (p->p_lwpcnt > 1) { 332 mutex_enter(&p->p_lock); /* to keep thread list safe */ 333 first = curthread; 334 for (t = first->t_forw; t != first; t = t->t_forw) 335 t->t_pre_sys = 1; /* so syscall will get new cred */ 336 mutex_exit(&p->p_lock); 337 } 338 } 339 340 /* 341 * Put a hold on a cred structure. 342 */ 343 void 344 crhold(cred_t *cr) 345 { 346 ASSERT(cr->cr_ref != 0xdeadbeef && cr->cr_ref != 0); 347 atomic_add_32(&cr->cr_ref, 1); 348 } 349 350 /* 351 * Release previous hold on a cred structure. Free it if refcnt == 0. 352 * If cred uses label different from zone label, free it. 353 */ 354 void 355 crfree(cred_t *cr) 356 { 357 ASSERT(cr->cr_ref != 0xdeadbeef && cr->cr_ref != 0); 358 if (atomic_add_32_nv(&cr->cr_ref, -1) == 0) { 359 ASSERT(cr != kcred); 360 if (cr->cr_label) 361 label_rele(cr->cr_label); 362 if (cr->cr_klpd) 363 crklpd_rele(cr->cr_klpd); 364 if (cr->cr_zone) 365 zone_cred_rele(cr->cr_zone); 366 if (cr->cr_ksid) 367 kcrsid_rele(cr->cr_ksid); 368 if (cr->cr_grps) 369 crgrprele(cr->cr_grps); 370 371 kmem_cache_free(cred_cache, cr); 372 } 373 } 374 375 /* 376 * Copy a cred structure to a new one and free the old one. 377 * The new cred will have two references. One for the calling process, 378 * and one for the thread. 379 */ 380 cred_t * 381 crcopy(cred_t *cr) 382 { 383 cred_t *newcr; 384 385 newcr = cralloc(); 386 bcopy(cr, newcr, crsize); 387 if (newcr->cr_zone) 388 zone_cred_hold(newcr->cr_zone); 389 if (newcr->cr_label) 390 label_hold(newcr->cr_label); 391 if (newcr->cr_ksid) 392 kcrsid_hold(newcr->cr_ksid); 393 if (newcr->cr_klpd) 394 crklpd_hold(newcr->cr_klpd); 395 if (newcr->cr_grps) 396 crgrphold(newcr->cr_grps); 397 crfree(cr); 398 newcr->cr_ref = 2; /* caller gets two references */ 399 return (newcr); 400 } 401 402 /* 403 * Copy a cred structure to a new one and free the old one. 404 * The new cred will have two references. One for the calling process, 405 * and one for the thread. 406 * This variation on crcopy uses a pre-allocated structure for the 407 * "new" cred. 408 */ 409 void 410 crcopy_to(cred_t *oldcr, cred_t *newcr) 411 { 412 credsid_t *nkcr = newcr->cr_ksid; 413 414 bcopy(oldcr, newcr, crsize); 415 if (newcr->cr_zone) 416 zone_cred_hold(newcr->cr_zone); 417 if (newcr->cr_label) 418 label_hold(newcr->cr_label); 419 if (newcr->cr_klpd) 420 crklpd_hold(newcr->cr_klpd); 421 if (newcr->cr_grps) 422 crgrphold(newcr->cr_grps); 423 if (nkcr) { 424 newcr->cr_ksid = nkcr; 425 kcrsidcopy_to(oldcr->cr_ksid, newcr->cr_ksid); 426 } else if (newcr->cr_ksid) 427 kcrsid_hold(newcr->cr_ksid); 428 crfree(oldcr); 429 newcr->cr_ref = 2; /* caller gets two references */ 430 } 431 432 /* 433 * Dup a cred struct to a new held one. 434 * The old cred is not freed. 435 */ 436 static cred_t * 437 crdup_flags(const cred_t *cr, int flgs) 438 { 439 cred_t *newcr; 440 441 newcr = cralloc_flags(flgs); 442 443 if (newcr == NULL) 444 return (NULL); 445 446 bcopy(cr, newcr, crsize); 447 if (newcr->cr_zone) 448 zone_cred_hold(newcr->cr_zone); 449 if (newcr->cr_label) 450 label_hold(newcr->cr_label); 451 if (newcr->cr_klpd) 452 crklpd_hold(newcr->cr_klpd); 453 if (newcr->cr_ksid) 454 kcrsid_hold(newcr->cr_ksid); 455 if (newcr->cr_grps) 456 crgrphold(newcr->cr_grps); 457 newcr->cr_ref = 1; 458 return (newcr); 459 } 460 461 cred_t * 462 crdup(cred_t *cr) 463 { 464 return (crdup_flags(cr, KM_SLEEP)); 465 } 466 467 /* 468 * Dup a cred struct to a new held one. 469 * The old cred is not freed. 470 * This variation on crdup uses a pre-allocated structure for the 471 * "new" cred. 472 */ 473 void 474 crdup_to(cred_t *oldcr, cred_t *newcr) 475 { 476 credsid_t *nkcr = newcr->cr_ksid; 477 478 bcopy(oldcr, newcr, crsize); 479 if (newcr->cr_zone) 480 zone_cred_hold(newcr->cr_zone); 481 if (newcr->cr_label) 482 label_hold(newcr->cr_label); 483 if (newcr->cr_klpd) 484 crklpd_hold(newcr->cr_klpd); 485 if (newcr->cr_grps) 486 crgrphold(newcr->cr_grps); 487 if (nkcr) { 488 newcr->cr_ksid = nkcr; 489 kcrsidcopy_to(oldcr->cr_ksid, newcr->cr_ksid); 490 } else if (newcr->cr_ksid) 491 kcrsid_hold(newcr->cr_ksid); 492 newcr->cr_ref = 1; 493 } 494 495 /* 496 * Return the (held) credentials for the current running process. 497 */ 498 cred_t * 499 crgetcred(void) 500 { 501 cred_t *cr; 502 proc_t *p; 503 504 p = ttoproc(curthread); 505 mutex_enter(&p->p_crlock); 506 crhold(cr = p->p_cred); 507 mutex_exit(&p->p_crlock); 508 return (cr); 509 } 510 511 /* 512 * Backward compatibility check for suser(). 513 * Accounting flag is now set in the policy functions; auditing is 514 * done through use of privilege in the audit trail. 515 */ 516 int 517 suser(cred_t *cr) 518 { 519 return (PRIV_POLICY(cr, PRIV_SYS_SUSER_COMPAT, B_FALSE, EPERM, NULL) 520 == 0); 521 } 522 523 /* 524 * Determine whether the supplied group id is a member of the group 525 * described by the supplied credentials. 526 */ 527 int 528 groupmember(gid_t gid, const cred_t *cr) 529 { 530 if (gid == cr->cr_gid) 531 return (1); 532 return (supgroupmember(gid, cr)); 533 } 534 535 /* 536 * As groupmember but only check against the supplemental groups. 537 */ 538 int 539 supgroupmember(gid_t gid, const cred_t *cr) 540 { 541 int hi, lo; 542 credgrp_t *grps = cr->cr_grps; 543 const gid_t *gp, *endgp; 544 545 if (grps == NULL) 546 return (0); 547 548 /* For a small number of groups, use sequentials search. */ 549 if (grps->crg_ngroups <= BIN_GROUP_SEARCH_CUTOFF) { 550 endgp = &grps->crg_groups[grps->crg_ngroups]; 551 for (gp = grps->crg_groups; gp < endgp; gp++) 552 if (*gp == gid) 553 return (1); 554 return (0); 555 } 556 557 /* We use binary search when we have many groups. */ 558 lo = 0; 559 hi = grps->crg_ngroups - 1; 560 gp = grps->crg_groups; 561 562 do { 563 int m = (lo + hi) / 2; 564 565 if (gid > gp[m]) 566 lo = m + 1; 567 else if (gid < gp[m]) 568 hi = m - 1; 569 else 570 return (1); 571 } while (lo <= hi); 572 573 return (0); 574 } 575 576 /* 577 * This function is called to check whether the credentials set 578 * "scrp" has permission to act on credentials set "tcrp". It enforces the 579 * permission requirements needed to send a signal to a process. 580 * The same requirements are imposed by other system calls, however. 581 * 582 * The rules are: 583 * (1) if the credentials are the same, the check succeeds 584 * (2) if the zone ids don't match, and scrp is not in the global zone or 585 * does not have the PRIV_PROC_ZONE privilege, the check fails 586 * (3) if the real or effective user id of scrp matches the real or saved 587 * user id of tcrp or scrp has the PRIV_PROC_OWNER privilege, the check 588 * succeeds 589 * (4) otherwise, the check fails 590 */ 591 int 592 hasprocperm(const cred_t *tcrp, const cred_t *scrp) 593 { 594 if (scrp == tcrp) 595 return (1); 596 if (scrp->cr_zone != tcrp->cr_zone && 597 (scrp->cr_zone != global_zone || 598 secpolicy_proc_zone(scrp) != 0)) 599 return (0); 600 if (scrp->cr_uid == tcrp->cr_ruid || 601 scrp->cr_ruid == tcrp->cr_ruid || 602 scrp->cr_uid == tcrp->cr_suid || 603 scrp->cr_ruid == tcrp->cr_suid || 604 !PRIV_POLICY(scrp, PRIV_PROC_OWNER, B_FALSE, EPERM, "hasprocperm")) 605 return (1); 606 return (0); 607 } 608 609 /* 610 * This interface replaces hasprocperm; it works like hasprocperm but 611 * additionally returns success if the proc_t's match 612 * It is the preferred interface for most uses. 613 * And it will acquire p_crlock itself, so it assert's that it shouldn't 614 * be held. 615 */ 616 int 617 prochasprocperm(proc_t *tp, proc_t *sp, const cred_t *scrp) 618 { 619 int rets; 620 cred_t *tcrp; 621 622 ASSERT(MUTEX_NOT_HELD(&tp->p_crlock)); 623 624 if (tp == sp) 625 return (1); 626 627 if (tp->p_sessp != sp->p_sessp && secpolicy_basic_proc(scrp) != 0) 628 return (0); 629 630 mutex_enter(&tp->p_crlock); 631 crhold(tcrp = tp->p_cred); 632 mutex_exit(&tp->p_crlock); 633 rets = hasprocperm(tcrp, scrp); 634 crfree(tcrp); 635 636 return (rets); 637 } 638 639 /* 640 * This routine is used to compare two credentials to determine if 641 * they refer to the same "user". If the pointers are equal, then 642 * they must refer to the same user. Otherwise, the contents of 643 * the credentials are compared to see whether they are equivalent. 644 * 645 * This routine returns 0 if the credentials refer to the same user, 646 * 1 if they do not. 647 */ 648 int 649 crcmp(const cred_t *cr1, const cred_t *cr2) 650 { 651 credgrp_t *grp1, *grp2; 652 653 if (cr1 == cr2) 654 return (0); 655 656 if (cr1->cr_uid == cr2->cr_uid && 657 cr1->cr_gid == cr2->cr_gid && 658 cr1->cr_ruid == cr2->cr_ruid && 659 cr1->cr_rgid == cr2->cr_rgid && 660 cr1->cr_zone == cr2->cr_zone && 661 ((grp1 = cr1->cr_grps) == (grp2 = cr2->cr_grps) || 662 (grp1 != NULL && grp2 != NULL && 663 grp1->crg_ngroups == grp2->crg_ngroups && 664 bcmp(grp1->crg_groups, grp2->crg_groups, 665 grp1->crg_ngroups * sizeof (gid_t)) == 0))) { 666 return (!priv_isequalset(&CR_OEPRIV(cr1), &CR_OEPRIV(cr2))); 667 } 668 return (1); 669 } 670 671 /* 672 * Read access functions to cred_t. 673 */ 674 uid_t 675 crgetuid(const cred_t *cr) 676 { 677 return (cr->cr_uid); 678 } 679 680 uid_t 681 crgetruid(const cred_t *cr) 682 { 683 return (cr->cr_ruid); 684 } 685 686 uid_t 687 crgetsuid(const cred_t *cr) 688 { 689 return (cr->cr_suid); 690 } 691 692 gid_t 693 crgetgid(const cred_t *cr) 694 { 695 return (cr->cr_gid); 696 } 697 698 gid_t 699 crgetrgid(const cred_t *cr) 700 { 701 return (cr->cr_rgid); 702 } 703 704 gid_t 705 crgetsgid(const cred_t *cr) 706 { 707 return (cr->cr_sgid); 708 } 709 710 const auditinfo_addr_t * 711 crgetauinfo(const cred_t *cr) 712 { 713 return ((const auditinfo_addr_t *)CR_AUINFO(cr)); 714 } 715 716 auditinfo_addr_t * 717 crgetauinfo_modifiable(cred_t *cr) 718 { 719 return (CR_AUINFO(cr)); 720 } 721 722 zoneid_t 723 crgetzoneid(const cred_t *cr) 724 { 725 return (cr->cr_zone == NULL ? 726 (cr->cr_uid == -1 ? (zoneid_t)-1 : GLOBAL_ZONEID) : 727 cr->cr_zone->zone_id); 728 } 729 730 projid_t 731 crgetprojid(const cred_t *cr) 732 { 733 return (cr->cr_projid); 734 } 735 736 zone_t * 737 crgetzone(const cred_t *cr) 738 { 739 return (cr->cr_zone); 740 } 741 742 struct ts_label_s * 743 crgetlabel(const cred_t *cr) 744 { 745 return (cr->cr_label ? 746 cr->cr_label : 747 (cr->cr_zone ? cr->cr_zone->zone_slabel : NULL)); 748 } 749 750 boolean_t 751 crisremote(const cred_t *cr) 752 { 753 return (REMOTE_PEER_CRED(cr)); 754 } 755 756 #define BADUID(x, zn) ((x) != -1 && !VALID_UID((x), (zn))) 757 #define BADGID(x, zn) ((x) != -1 && !VALID_GID((x), (zn))) 758 759 int 760 crsetresuid(cred_t *cr, uid_t r, uid_t e, uid_t s) 761 { 762 zone_t *zone = crgetzone(cr); 763 764 ASSERT(cr->cr_ref <= 2); 765 766 if (BADUID(r, zone) || BADUID(e, zone) || BADUID(s, zone)) 767 return (-1); 768 769 if (r != -1) 770 cr->cr_ruid = r; 771 if (e != -1) 772 cr->cr_uid = e; 773 if (s != -1) 774 cr->cr_suid = s; 775 776 return (0); 777 } 778 779 int 780 crsetresgid(cred_t *cr, gid_t r, gid_t e, gid_t s) 781 { 782 zone_t *zone = crgetzone(cr); 783 784 ASSERT(cr->cr_ref <= 2); 785 786 if (BADGID(r, zone) || BADGID(e, zone) || BADGID(s, zone)) 787 return (-1); 788 789 if (r != -1) 790 cr->cr_rgid = r; 791 if (e != -1) 792 cr->cr_gid = e; 793 if (s != -1) 794 cr->cr_sgid = s; 795 796 return (0); 797 } 798 799 int 800 crsetugid(cred_t *cr, uid_t uid, gid_t gid) 801 { 802 zone_t *zone = crgetzone(cr); 803 804 ASSERT(cr->cr_ref <= 2); 805 806 if (!VALID_UID(uid, zone) || !VALID_GID(gid, zone)) 807 return (-1); 808 809 cr->cr_uid = cr->cr_ruid = cr->cr_suid = uid; 810 cr->cr_gid = cr->cr_rgid = cr->cr_sgid = gid; 811 812 return (0); 813 } 814 815 static int 816 gidcmp(const void *v1, const void *v2) 817 { 818 gid_t g1 = *(gid_t *)v1; 819 gid_t g2 = *(gid_t *)v2; 820 821 if (g1 < g2) 822 return (-1); 823 else if (g1 > g2) 824 return (1); 825 else 826 return (0); 827 } 828 829 int 830 crsetgroups(cred_t *cr, int n, gid_t *grp) 831 { 832 ASSERT(cr->cr_ref <= 2); 833 834 if (n > ngroups_max || n < 0) 835 return (-1); 836 837 if (cr->cr_grps != NULL) 838 crgrprele(cr->cr_grps); 839 840 if (n > 0) { 841 cr->cr_grps = kmem_alloc(CREDGRPSZ(n), KM_SLEEP); 842 bcopy(grp, cr->cr_grps->crg_groups, n * sizeof (gid_t)); 843 cr->cr_grps->crg_ref = 1; 844 cr->cr_grps->crg_ngroups = n; 845 qsort(cr->cr_grps->crg_groups, n, sizeof (gid_t), gidcmp); 846 } else { 847 cr->cr_grps = NULL; 848 } 849 850 return (0); 851 } 852 853 void 854 crsetprojid(cred_t *cr, projid_t projid) 855 { 856 ASSERT(projid >= 0 && projid <= MAXPROJID); 857 cr->cr_projid = projid; 858 } 859 860 /* 861 * This routine returns the pointer to the first element of the crg_groups 862 * array. It can move around in an implementation defined way. 863 * Note that when we have no grouplist, we return one element but the 864 * caller should never reference it. 865 */ 866 const gid_t * 867 crgetgroups(const cred_t *cr) 868 { 869 return (cr->cr_grps == NULL ? &cr->cr_gid : cr->cr_grps->crg_groups); 870 } 871 872 int 873 crgetngroups(const cred_t *cr) 874 { 875 return (cr->cr_grps == NULL ? 0 : cr->cr_grps->crg_ngroups); 876 } 877 878 void 879 cred2prcred(const cred_t *cr, prcred_t *pcrp) 880 { 881 pcrp->pr_euid = cr->cr_uid; 882 pcrp->pr_ruid = cr->cr_ruid; 883 pcrp->pr_suid = cr->cr_suid; 884 pcrp->pr_egid = cr->cr_gid; 885 pcrp->pr_rgid = cr->cr_rgid; 886 pcrp->pr_sgid = cr->cr_sgid; 887 pcrp->pr_groups[0] = 0; /* in case ngroups == 0 */ 888 pcrp->pr_ngroups = cr->cr_grps == NULL ? 0 : cr->cr_grps->crg_ngroups; 889 890 if (pcrp->pr_ngroups != 0) 891 bcopy(cr->cr_grps->crg_groups, pcrp->pr_groups, 892 sizeof (gid_t) * pcrp->pr_ngroups); 893 } 894 895 static int 896 cred2ucaud(const cred_t *cr, auditinfo64_addr_t *ainfo, const cred_t *rcr) 897 { 898 auditinfo_addr_t *ai; 899 au_tid_addr_t tid; 900 901 if (secpolicy_audit_getattr(rcr, B_TRUE) != 0) 902 return (-1); 903 904 ai = CR_AUINFO(cr); /* caller makes sure this is non-NULL */ 905 tid = ai->ai_termid; 906 907 ainfo->ai_auid = ai->ai_auid; 908 ainfo->ai_mask = ai->ai_mask; 909 ainfo->ai_asid = ai->ai_asid; 910 911 ainfo->ai_termid.at_type = tid.at_type; 912 bcopy(&tid.at_addr, &ainfo->ai_termid.at_addr, 4 * sizeof (uint_t)); 913 914 ainfo->ai_termid.at_port.at_major = (uint32_t)getmajor(tid.at_port); 915 ainfo->ai_termid.at_port.at_minor = (uint32_t)getminor(tid.at_port); 916 917 return (0); 918 } 919 920 void 921 cred2uclabel(const cred_t *cr, bslabel_t *labelp) 922 { 923 ts_label_t *tslp; 924 925 if ((tslp = crgetlabel(cr)) != NULL) 926 bcopy(&tslp->tsl_label, labelp, sizeof (bslabel_t)); 927 } 928 929 /* 930 * Convert a credential into a "ucred". Allow the caller to specify 931 * and aligned buffer, e.g., in an mblk, so we don't have to allocate 932 * memory and copy it twice. 933 * 934 * This function may call cred2ucaud(), which calls CRED(). Since this 935 * can be called from an interrupt thread, receiver's cred (rcr) is needed 936 * to determine whether audit info should be included. 937 */ 938 struct ucred_s * 939 cred2ucred(const cred_t *cr, pid_t pid, void *buf, const cred_t *rcr) 940 { 941 struct ucred_s *uc; 942 uint32_t realsz = ucredminsize(cr); 943 ts_label_t *tslp = is_system_labeled() ? crgetlabel(cr) : NULL; 944 945 /* The structure isn't always completely filled in, so zero it */ 946 if (buf == NULL) { 947 uc = kmem_zalloc(realsz, KM_SLEEP); 948 } else { 949 bzero(buf, realsz); 950 uc = buf; 951 } 952 uc->uc_size = realsz; 953 uc->uc_pid = pid; 954 uc->uc_projid = cr->cr_projid; 955 uc->uc_zoneid = crgetzoneid(cr); 956 957 if (REMOTE_PEER_CRED(cr)) { 958 /* 959 * Other than label, the rest of cred info about a 960 * remote peer isn't available. Copy the label directly 961 * after the header where we generally copy the prcred. 962 * That's why we use sizeof (struct ucred_s). The other 963 * offset fields are initialized to 0. 964 */ 965 uc->uc_labeloff = tslp == NULL ? 0 : sizeof (struct ucred_s); 966 } else { 967 uc->uc_credoff = UCRED_CRED_OFF; 968 uc->uc_privoff = UCRED_PRIV_OFF; 969 uc->uc_audoff = UCRED_AUD_OFF; 970 uc->uc_labeloff = tslp == NULL ? 0 : UCRED_LABEL_OFF; 971 972 cred2prcred(cr, UCCRED(uc)); 973 cred2prpriv(cr, UCPRIV(uc)); 974 975 if (audoff == 0 || cred2ucaud(cr, UCAUD(uc), rcr) != 0) 976 uc->uc_audoff = 0; 977 } 978 if (tslp != NULL) 979 bcopy(&tslp->tsl_label, UCLABEL(uc), sizeof (bslabel_t)); 980 981 return (uc); 982 } 983 984 /* 985 * Don't allocate the non-needed group entries. Note: this function 986 * must match the code in cred2ucred; they must agree about the 987 * minimal size of the ucred. 988 */ 989 uint32_t 990 ucredminsize(const cred_t *cr) 991 { 992 int ndiff; 993 994 if (cr == NULL) 995 return (ucredsize); 996 997 if (REMOTE_PEER_CRED(cr)) { 998 if (is_system_labeled()) 999 return (sizeof (struct ucred_s) + sizeof (bslabel_t)); 1000 else 1001 return (sizeof (struct ucred_s)); 1002 } 1003 1004 if (cr->cr_grps == NULL) 1005 ndiff = ngroups_max - 1; /* Needs one for prcred_t */ 1006 else 1007 ndiff = ngroups_max - cr->cr_grps->crg_ngroups; 1008 1009 return (ucredsize - ndiff * sizeof (gid_t)); 1010 } 1011 1012 /* 1013 * Get the "ucred" of a process. 1014 */ 1015 struct ucred_s * 1016 pgetucred(proc_t *p) 1017 { 1018 cred_t *cr; 1019 struct ucred_s *uc; 1020 1021 mutex_enter(&p->p_crlock); 1022 cr = p->p_cred; 1023 crhold(cr); 1024 mutex_exit(&p->p_crlock); 1025 1026 uc = cred2ucred(cr, p->p_pid, NULL, CRED()); 1027 crfree(cr); 1028 1029 return (uc); 1030 } 1031 1032 /* 1033 * If the reply status is NFSERR_EACCES, it may be because we are 1034 * root (no root net access). Check the real uid, if it isn't root 1035 * make that the uid instead and retry the call. 1036 * Private interface for NFS. 1037 */ 1038 cred_t * 1039 crnetadjust(cred_t *cr) 1040 { 1041 if (cr->cr_uid == 0 && cr->cr_ruid != 0) { 1042 cr = crdup(cr); 1043 cr->cr_uid = cr->cr_ruid; 1044 return (cr); 1045 } 1046 return (NULL); 1047 } 1048 1049 /* 1050 * The reference count is of interest when you want to check 1051 * whether it is ok to modify the credential in place. 1052 */ 1053 uint_t 1054 crgetref(const cred_t *cr) 1055 { 1056 return (cr->cr_ref); 1057 } 1058 1059 static int 1060 get_c2audit_load(void) 1061 { 1062 static int gotit = 0; 1063 static int c2audit_load; 1064 1065 if (gotit) 1066 return (c2audit_load); 1067 c2audit_load = 1; /* set default value once */ 1068 if (mod_sysctl(SYS_CHECK_EXCLUDE, "c2audit") != 0) 1069 c2audit_load = 0; 1070 gotit++; 1071 1072 return (c2audit_load); 1073 } 1074 1075 int 1076 get_audit_ucrsize(void) 1077 { 1078 return (get_c2audit_load() ? sizeof (auditinfo64_addr_t) : 0); 1079 } 1080 1081 /* 1082 * Set zone pointer in credential to indicated value. First adds a 1083 * hold for the new zone, then drops the hold on previous zone (if any). 1084 * This is done in this order in case the old and new zones are the 1085 * same. 1086 */ 1087 void 1088 crsetzone(cred_t *cr, zone_t *zptr) 1089 { 1090 zone_t *oldzptr = cr->cr_zone; 1091 1092 ASSERT(cr != kcred); 1093 ASSERT(cr->cr_ref <= 2); 1094 cr->cr_zone = zptr; 1095 zone_cred_hold(zptr); 1096 if (oldzptr) 1097 zone_cred_rele(oldzptr); 1098 } 1099 1100 /* 1101 * Create a new cred based on the supplied label 1102 */ 1103 cred_t * 1104 newcred_from_bslabel(bslabel_t *blabel, uint32_t doi, int flags) 1105 { 1106 ts_label_t *lbl = labelalloc(blabel, doi, flags); 1107 cred_t *cr = NULL; 1108 1109 if (lbl != NULL) { 1110 if ((cr = crdup_flags(dummycr, flags)) != NULL) { 1111 cr->cr_label = lbl; 1112 } else { 1113 label_rele(lbl); 1114 } 1115 } 1116 1117 return (cr); 1118 } 1119 1120 /* 1121 * Derive a new cred from the existing cred, but with a different label. 1122 * To be used when a cred is being shared, but the label needs to be changed 1123 * by a caller without affecting other users 1124 */ 1125 cred_t * 1126 copycred_from_tslabel(const cred_t *cr, ts_label_t *label, int flags) 1127 { 1128 cred_t *newcr = NULL; 1129 1130 if ((newcr = crdup_flags(cr, flags)) != NULL) { 1131 if (newcr->cr_label != NULL) 1132 label_rele(newcr->cr_label); 1133 label_hold(label); 1134 newcr->cr_label = label; 1135 } 1136 1137 return (newcr); 1138 } 1139 1140 /* 1141 * Derive a new cred from the existing cred, but with a different label. 1142 */ 1143 cred_t * 1144 copycred_from_bslabel(const cred_t *cr, bslabel_t *blabel, 1145 uint32_t doi, int flags) 1146 { 1147 ts_label_t *lbl = labelalloc(blabel, doi, flags); 1148 cred_t *newcr = NULL; 1149 1150 if (lbl != NULL) { 1151 newcr = copycred_from_tslabel(cr, lbl, flags); 1152 label_rele(lbl); 1153 } 1154 1155 return (newcr); 1156 } 1157 1158 /* 1159 * This function returns a pointer to the kcred-equivalent in the current zone. 1160 */ 1161 cred_t * 1162 zone_kcred(void) 1163 { 1164 zone_t *zone; 1165 1166 if ((zone = CRED()->cr_zone) != NULL) 1167 return (zone->zone_kcred); 1168 else 1169 return (kcred); 1170 } 1171 1172 boolean_t 1173 valid_ephemeral_uid(zone_t *zone, uid_t id) 1174 { 1175 ephemeral_zsd_t *eph_zsd; 1176 if (id <= IDMAP_WK__MAX_UID) 1177 return (B_TRUE); 1178 1179 eph_zsd = get_ephemeral_zsd(zone); 1180 ASSERT(eph_zsd != NULL); 1181 membar_consumer(); 1182 return (id > eph_zsd->min_uid && id <= eph_zsd->last_uid); 1183 } 1184 1185 boolean_t 1186 valid_ephemeral_gid(zone_t *zone, gid_t id) 1187 { 1188 ephemeral_zsd_t *eph_zsd; 1189 if (id <= IDMAP_WK__MAX_GID) 1190 return (B_TRUE); 1191 1192 eph_zsd = get_ephemeral_zsd(zone); 1193 ASSERT(eph_zsd != NULL); 1194 membar_consumer(); 1195 return (id > eph_zsd->min_gid && id <= eph_zsd->last_gid); 1196 } 1197 1198 int 1199 eph_uid_alloc(zone_t *zone, int flags, uid_t *start, int count) 1200 { 1201 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); 1202 1203 ASSERT(eph_zsd != NULL); 1204 1205 mutex_enter(&eph_zsd->eph_lock); 1206 1207 /* Test for unsigned integer wrap around */ 1208 if (eph_zsd->last_uid + count < eph_zsd->last_uid) { 1209 mutex_exit(&eph_zsd->eph_lock); 1210 return (-1); 1211 } 1212 1213 /* first call or idmap crashed and state corrupted */ 1214 if (flags != 0) 1215 eph_zsd->min_uid = eph_zsd->last_uid; 1216 1217 hasephids = B_TRUE; 1218 *start = eph_zsd->last_uid + 1; 1219 atomic_add_32(&eph_zsd->last_uid, count); 1220 mutex_exit(&eph_zsd->eph_lock); 1221 return (0); 1222 } 1223 1224 int 1225 eph_gid_alloc(zone_t *zone, int flags, gid_t *start, int count) 1226 { 1227 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); 1228 1229 ASSERT(eph_zsd != NULL); 1230 1231 mutex_enter(&eph_zsd->eph_lock); 1232 1233 /* Test for unsigned integer wrap around */ 1234 if (eph_zsd->last_gid + count < eph_zsd->last_gid) { 1235 mutex_exit(&eph_zsd->eph_lock); 1236 return (-1); 1237 } 1238 1239 /* first call or idmap crashed and state corrupted */ 1240 if (flags != 0) 1241 eph_zsd->min_gid = eph_zsd->last_gid; 1242 1243 hasephids = B_TRUE; 1244 *start = eph_zsd->last_gid + 1; 1245 atomic_add_32(&eph_zsd->last_gid, count); 1246 mutex_exit(&eph_zsd->eph_lock); 1247 return (0); 1248 } 1249 1250 /* 1251 * IMPORTANT.The two functions get_ephemeral_data() and set_ephemeral_data() 1252 * are project private functions that are for use of the test system only and 1253 * are not to be used for other purposes. 1254 */ 1255 1256 void 1257 get_ephemeral_data(zone_t *zone, uid_t *min_uid, uid_t *last_uid, 1258 gid_t *min_gid, gid_t *last_gid) 1259 { 1260 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); 1261 1262 ASSERT(eph_zsd != NULL); 1263 1264 mutex_enter(&eph_zsd->eph_lock); 1265 1266 *min_uid = eph_zsd->min_uid; 1267 *last_uid = eph_zsd->last_uid; 1268 *min_gid = eph_zsd->min_gid; 1269 *last_gid = eph_zsd->last_gid; 1270 1271 mutex_exit(&eph_zsd->eph_lock); 1272 } 1273 1274 1275 void 1276 set_ephemeral_data(zone_t *zone, uid_t min_uid, uid_t last_uid, 1277 gid_t min_gid, gid_t last_gid) 1278 { 1279 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); 1280 1281 ASSERT(eph_zsd != NULL); 1282 1283 mutex_enter(&eph_zsd->eph_lock); 1284 1285 if (min_uid != 0) 1286 eph_zsd->min_uid = min_uid; 1287 if (last_uid != 0) 1288 eph_zsd->last_uid = last_uid; 1289 if (min_gid != 0) 1290 eph_zsd->min_gid = min_gid; 1291 if (last_gid != 0) 1292 eph_zsd->last_gid = last_gid; 1293 1294 mutex_exit(&eph_zsd->eph_lock); 1295 } 1296 1297 /* 1298 * If the credential user SID or group SID is mapped to an ephemeral 1299 * ID, map the credential to nobody. 1300 */ 1301 cred_t * 1302 crgetmapped(const cred_t *cr) 1303 { 1304 ephemeral_zsd_t *eph_zsd; 1305 /* 1306 * Someone incorrectly passed a NULL cred to a vnode operation 1307 * either on purpose or by calling CRED() in interrupt context. 1308 */ 1309 if (cr == NULL) 1310 return (NULL); 1311 1312 if (cr->cr_ksid != NULL) { 1313 if (cr->cr_ksid->kr_sidx[KSID_USER].ks_id > MAXUID) { 1314 eph_zsd = get_ephemeral_zsd(crgetzone(cr)); 1315 return (eph_zsd->eph_nobody); 1316 } 1317 1318 if (cr->cr_ksid->kr_sidx[KSID_GROUP].ks_id > MAXUID) { 1319 eph_zsd = get_ephemeral_zsd(crgetzone(cr)); 1320 return (eph_zsd->eph_nobody); 1321 } 1322 } 1323 1324 return ((cred_t *)cr); 1325 } 1326 1327 /* index should be in range for a ksidindex_t */ 1328 void 1329 crsetsid(cred_t *cr, ksid_t *ksp, int index) 1330 { 1331 ASSERT(cr->cr_ref <= 2); 1332 ASSERT(index >= 0 && index < KSID_COUNT); 1333 if (cr->cr_ksid == NULL && ksp == NULL) 1334 return; 1335 cr->cr_ksid = kcrsid_setsid(cr->cr_ksid, ksp, index); 1336 } 1337 1338 void 1339 crsetsidlist(cred_t *cr, ksidlist_t *ksl) 1340 { 1341 ASSERT(cr->cr_ref <= 2); 1342 if (cr->cr_ksid == NULL && ksl == NULL) 1343 return; 1344 cr->cr_ksid = kcrsid_setsidlist(cr->cr_ksid, ksl); 1345 } 1346 1347 ksid_t * 1348 crgetsid(const cred_t *cr, int i) 1349 { 1350 ASSERT(i >= 0 && i < KSID_COUNT); 1351 if (cr->cr_ksid != NULL && cr->cr_ksid->kr_sidx[i].ks_domain) 1352 return ((ksid_t *)&cr->cr_ksid->kr_sidx[i]); 1353 return (NULL); 1354 } 1355 1356 ksidlist_t * 1357 crgetsidlist(const cred_t *cr) 1358 { 1359 if (cr->cr_ksid != NULL) 1360 return (cr->cr_ksid->kr_sidlist); 1361 return (NULL); 1362 } 1363 1364 /* 1365 * Interface to set the effective and permitted privileges for 1366 * a credential; this interface does no security checks and is 1367 * intended for kernel (file)servers creating credentials with 1368 * specific privileges. 1369 */ 1370 int 1371 crsetpriv(cred_t *cr, ...) 1372 { 1373 va_list ap; 1374 const char *privnm; 1375 1376 ASSERT(cr->cr_ref <= 2); 1377 1378 priv_set_PA(cr); 1379 1380 va_start(ap, cr); 1381 1382 while ((privnm = va_arg(ap, const char *)) != NULL) { 1383 int priv = priv_getbyname(privnm, 0); 1384 if (priv < 0) 1385 return (-1); 1386 1387 priv_addset(&CR_PPRIV(cr), priv); 1388 priv_addset(&CR_EPRIV(cr), priv); 1389 } 1390 priv_adjust_PA(cr); 1391 va_end(ap); 1392 return (0); 1393 } 1394 1395 /* 1396 * Interface to effectively set the PRIV_ALL for 1397 * a credential; this interface does no security checks and is 1398 * intended for kernel (file)servers to extend the user credentials 1399 * to be ALL, like either kcred or zcred. 1400 */ 1401 void 1402 crset_zone_privall(cred_t *cr) 1403 { 1404 zone_t *zone = crgetzone(cr); 1405 1406 priv_fillset(&CR_LPRIV(cr)); 1407 CR_EPRIV(cr) = CR_PPRIV(cr) = CR_IPRIV(cr) = CR_LPRIV(cr); 1408 priv_intersect(zone->zone_privset, &CR_LPRIV(cr)); 1409 priv_intersect(zone->zone_privset, &CR_EPRIV(cr)); 1410 priv_intersect(zone->zone_privset, &CR_IPRIV(cr)); 1411 priv_intersect(zone->zone_privset, &CR_PPRIV(cr)); 1412 } 1413 1414 struct credklpd * 1415 crgetcrklpd(const cred_t *cr) 1416 { 1417 return (cr->cr_klpd); 1418 } 1419 1420 void 1421 crsetcrklpd(cred_t *cr, struct credklpd *crklpd) 1422 { 1423 ASSERT(cr->cr_ref <= 2); 1424 1425 if (cr->cr_klpd != NULL) 1426 crklpd_rele(cr->cr_klpd); 1427 cr->cr_klpd = crklpd; 1428 } 1429 1430 credgrp_t * 1431 crgrpcopyin(int n, gid_t *gidset) 1432 { 1433 credgrp_t *mem; 1434 size_t sz = CREDGRPSZ(n); 1435 1436 ASSERT(n > 0); 1437 1438 mem = kmem_alloc(sz, KM_SLEEP); 1439 1440 if (copyin(gidset, mem->crg_groups, sizeof (gid_t) * n)) { 1441 kmem_free(mem, sz); 1442 return (NULL); 1443 } 1444 mem->crg_ref = 1; 1445 mem->crg_ngroups = n; 1446 qsort(mem->crg_groups, n, sizeof (gid_t), gidcmp); 1447 return (mem); 1448 } 1449 1450 const gid_t * 1451 crgetggroups(const credgrp_t *grps) 1452 { 1453 return (grps->crg_groups); 1454 } 1455 1456 void 1457 crsetcredgrp(cred_t *cr, credgrp_t *grps) 1458 { 1459 ASSERT(cr->cr_ref <= 2); 1460 1461 if (cr->cr_grps != NULL) 1462 crgrprele(cr->cr_grps); 1463 1464 cr->cr_grps = grps; 1465 } 1466 1467 void 1468 crgrprele(credgrp_t *grps) 1469 { 1470 if (atomic_add_32_nv(&grps->crg_ref, -1) == 0) 1471 kmem_free(grps, CREDGRPSZ(grps->crg_ngroups)); 1472 } 1473 1474 static void 1475 crgrphold(credgrp_t *grps) 1476 { 1477 atomic_add_32(&grps->crg_ref, 1); 1478 } 1479