xref: /illumos-gate/usr/src/uts/common/os/cpu.c (revision 8b713775314bbbf24edd503b4869342d8711ce95)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  */
25 
26 /*
27  * Architecture-independent CPU control functions.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/var.h>
33 #include <sys/thread.h>
34 #include <sys/cpuvar.h>
35 #include <sys/cpu_event.h>
36 #include <sys/kstat.h>
37 #include <sys/uadmin.h>
38 #include <sys/systm.h>
39 #include <sys/errno.h>
40 #include <sys/cmn_err.h>
41 #include <sys/procset.h>
42 #include <sys/processor.h>
43 #include <sys/debug.h>
44 #include <sys/cpupart.h>
45 #include <sys/lgrp.h>
46 #include <sys/pset.h>
47 #include <sys/pghw.h>
48 #include <sys/kmem.h>
49 #include <sys/kmem_impl.h>	/* to set per-cpu kmem_cache offset */
50 #include <sys/atomic.h>
51 #include <sys/callb.h>
52 #include <sys/vtrace.h>
53 #include <sys/cyclic.h>
54 #include <sys/bitmap.h>
55 #include <sys/nvpair.h>
56 #include <sys/pool_pset.h>
57 #include <sys/msacct.h>
58 #include <sys/time.h>
59 #include <sys/archsystm.h>
60 #include <sys/sdt.h>
61 #if defined(__x86) || defined(__amd64)
62 #include <sys/x86_archext.h>
63 #endif
64 #include <sys/callo.h>
65 
66 extern int	mp_cpu_start(cpu_t *);
67 extern int	mp_cpu_stop(cpu_t *);
68 extern int	mp_cpu_poweron(cpu_t *);
69 extern int	mp_cpu_poweroff(cpu_t *);
70 extern int	mp_cpu_configure(int);
71 extern int	mp_cpu_unconfigure(int);
72 extern void	mp_cpu_faulted_enter(cpu_t *);
73 extern void	mp_cpu_faulted_exit(cpu_t *);
74 
75 extern int cmp_cpu_to_chip(processorid_t cpuid);
76 #ifdef __sparcv9
77 extern char *cpu_fru_fmri(cpu_t *cp);
78 #endif
79 
80 static void cpu_add_active_internal(cpu_t *cp);
81 static void cpu_remove_active(cpu_t *cp);
82 static void cpu_info_kstat_create(cpu_t *cp);
83 static void cpu_info_kstat_destroy(cpu_t *cp);
84 static void cpu_stats_kstat_create(cpu_t *cp);
85 static void cpu_stats_kstat_destroy(cpu_t *cp);
86 
87 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
88 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
89 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
90 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
91 
92 /*
93  * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
94  * max_cpu_seqid_ever, and dispatch queue reallocations.  The lock ordering with
95  * respect to related locks is:
96  *
97  *	cpu_lock --> thread_free_lock  --->  p_lock  --->  thread_lock()
98  *
99  * Warning:  Certain sections of code do not use the cpu_lock when
100  * traversing the cpu_list (e.g. mutex_vector_enter(), clock()).  Since
101  * all cpus are paused during modifications to this list, a solution
102  * to protect the list is too either disable kernel preemption while
103  * walking the list, *or* recheck the cpu_next pointer at each
104  * iteration in the loop.  Note that in no cases can any cached
105  * copies of the cpu pointers be kept as they may become invalid.
106  */
107 kmutex_t	cpu_lock;
108 cpu_t		*cpu_list;		/* list of all CPUs */
109 cpu_t		*clock_cpu_list;	/* used by clock to walk CPUs */
110 cpu_t		*cpu_active;		/* list of active CPUs */
111 static cpuset_t	cpu_available;		/* set of available CPUs */
112 cpuset_t	cpu_seqid_inuse;	/* which cpu_seqids are in use */
113 
114 cpu_t		**cpu_seq;		/* ptrs to CPUs, indexed by seq_id */
115 
116 /*
117  * max_ncpus keeps the max cpus the system can have. Initially
118  * it's NCPU, but since most archs scan the devtree for cpus
119  * fairly early on during boot, the real max can be known before
120  * ncpus is set (useful for early NCPU based allocations).
121  */
122 int max_ncpus = NCPU;
123 /*
124  * platforms that set max_ncpus to maxiumum number of cpus that can be
125  * dynamically added will set boot_max_ncpus to the number of cpus found
126  * at device tree scan time during boot.
127  */
128 int boot_max_ncpus = -1;
129 int boot_ncpus = -1;
130 /*
131  * Maximum possible CPU id.  This can never be >= NCPU since NCPU is
132  * used to size arrays that are indexed by CPU id.
133  */
134 processorid_t max_cpuid = NCPU - 1;
135 
136 /*
137  * Maximum cpu_seqid was given. This number can only grow and never shrink. It
138  * can be used to optimize NCPU loops to avoid going through CPUs which were
139  * never on-line.
140  */
141 processorid_t max_cpu_seqid_ever = 0;
142 
143 int ncpus = 1;
144 int ncpus_online = 1;
145 
146 /*
147  * CPU that we're trying to offline.  Protected by cpu_lock.
148  */
149 cpu_t *cpu_inmotion;
150 
151 /*
152  * Can be raised to suppress further weakbinding, which are instead
153  * satisfied by disabling preemption.  Must be raised/lowered under cpu_lock,
154  * while individual thread weakbinding synchronization is done under thread
155  * lock.
156  */
157 int weakbindingbarrier;
158 
159 /*
160  * Variables used in pause_cpus().
161  */
162 static volatile char safe_list[NCPU];
163 
164 static struct _cpu_pause_info {
165 	int		cp_spl;		/* spl saved in pause_cpus() */
166 	volatile int	cp_go;		/* Go signal sent after all ready */
167 	int		cp_count;	/* # of CPUs to pause */
168 	ksema_t		cp_sem;		/* synch pause_cpus & cpu_pause */
169 	kthread_id_t	cp_paused;
170 } cpu_pause_info;
171 
172 static kmutex_t pause_free_mutex;
173 static kcondvar_t pause_free_cv;
174 
175 void *(*cpu_pause_func)(void *) = NULL;
176 
177 
178 static struct cpu_sys_stats_ks_data {
179 	kstat_named_t cpu_ticks_idle;
180 	kstat_named_t cpu_ticks_user;
181 	kstat_named_t cpu_ticks_kernel;
182 	kstat_named_t cpu_ticks_wait;
183 	kstat_named_t cpu_nsec_idle;
184 	kstat_named_t cpu_nsec_user;
185 	kstat_named_t cpu_nsec_kernel;
186 	kstat_named_t cpu_nsec_dtrace;
187 	kstat_named_t cpu_nsec_intr;
188 	kstat_named_t cpu_load_intr;
189 	kstat_named_t wait_ticks_io;
190 	kstat_named_t dtrace_probes;
191 	kstat_named_t bread;
192 	kstat_named_t bwrite;
193 	kstat_named_t lread;
194 	kstat_named_t lwrite;
195 	kstat_named_t phread;
196 	kstat_named_t phwrite;
197 	kstat_named_t pswitch;
198 	kstat_named_t trap;
199 	kstat_named_t intr;
200 	kstat_named_t syscall;
201 	kstat_named_t sysread;
202 	kstat_named_t syswrite;
203 	kstat_named_t sysfork;
204 	kstat_named_t sysvfork;
205 	kstat_named_t sysexec;
206 	kstat_named_t readch;
207 	kstat_named_t writech;
208 	kstat_named_t rcvint;
209 	kstat_named_t xmtint;
210 	kstat_named_t mdmint;
211 	kstat_named_t rawch;
212 	kstat_named_t canch;
213 	kstat_named_t outch;
214 	kstat_named_t msg;
215 	kstat_named_t sema;
216 	kstat_named_t namei;
217 	kstat_named_t ufsiget;
218 	kstat_named_t ufsdirblk;
219 	kstat_named_t ufsipage;
220 	kstat_named_t ufsinopage;
221 	kstat_named_t procovf;
222 	kstat_named_t intrthread;
223 	kstat_named_t intrblk;
224 	kstat_named_t intrunpin;
225 	kstat_named_t idlethread;
226 	kstat_named_t inv_swtch;
227 	kstat_named_t nthreads;
228 	kstat_named_t cpumigrate;
229 	kstat_named_t xcalls;
230 	kstat_named_t mutex_adenters;
231 	kstat_named_t rw_rdfails;
232 	kstat_named_t rw_wrfails;
233 	kstat_named_t modload;
234 	kstat_named_t modunload;
235 	kstat_named_t bawrite;
236 	kstat_named_t iowait;
237 } cpu_sys_stats_ks_data_template = {
238 	{ "cpu_ticks_idle",	KSTAT_DATA_UINT64 },
239 	{ "cpu_ticks_user",	KSTAT_DATA_UINT64 },
240 	{ "cpu_ticks_kernel",	KSTAT_DATA_UINT64 },
241 	{ "cpu_ticks_wait",	KSTAT_DATA_UINT64 },
242 	{ "cpu_nsec_idle",	KSTAT_DATA_UINT64 },
243 	{ "cpu_nsec_user",	KSTAT_DATA_UINT64 },
244 	{ "cpu_nsec_kernel",	KSTAT_DATA_UINT64 },
245 	{ "cpu_nsec_dtrace",	KSTAT_DATA_UINT64 },
246 	{ "cpu_nsec_intr",	KSTAT_DATA_UINT64 },
247 	{ "cpu_load_intr",	KSTAT_DATA_UINT64 },
248 	{ "wait_ticks_io",	KSTAT_DATA_UINT64 },
249 	{ "dtrace_probes",	KSTAT_DATA_UINT64 },
250 	{ "bread",		KSTAT_DATA_UINT64 },
251 	{ "bwrite",		KSTAT_DATA_UINT64 },
252 	{ "lread",		KSTAT_DATA_UINT64 },
253 	{ "lwrite",		KSTAT_DATA_UINT64 },
254 	{ "phread",		KSTAT_DATA_UINT64 },
255 	{ "phwrite",		KSTAT_DATA_UINT64 },
256 	{ "pswitch",		KSTAT_DATA_UINT64 },
257 	{ "trap",		KSTAT_DATA_UINT64 },
258 	{ "intr",		KSTAT_DATA_UINT64 },
259 	{ "syscall",		KSTAT_DATA_UINT64 },
260 	{ "sysread",		KSTAT_DATA_UINT64 },
261 	{ "syswrite",		KSTAT_DATA_UINT64 },
262 	{ "sysfork",		KSTAT_DATA_UINT64 },
263 	{ "sysvfork",		KSTAT_DATA_UINT64 },
264 	{ "sysexec",		KSTAT_DATA_UINT64 },
265 	{ "readch",		KSTAT_DATA_UINT64 },
266 	{ "writech",		KSTAT_DATA_UINT64 },
267 	{ "rcvint",		KSTAT_DATA_UINT64 },
268 	{ "xmtint",		KSTAT_DATA_UINT64 },
269 	{ "mdmint",		KSTAT_DATA_UINT64 },
270 	{ "rawch",		KSTAT_DATA_UINT64 },
271 	{ "canch",		KSTAT_DATA_UINT64 },
272 	{ "outch",		KSTAT_DATA_UINT64 },
273 	{ "msg",		KSTAT_DATA_UINT64 },
274 	{ "sema",		KSTAT_DATA_UINT64 },
275 	{ "namei",		KSTAT_DATA_UINT64 },
276 	{ "ufsiget",		KSTAT_DATA_UINT64 },
277 	{ "ufsdirblk",		KSTAT_DATA_UINT64 },
278 	{ "ufsipage",		KSTAT_DATA_UINT64 },
279 	{ "ufsinopage",		KSTAT_DATA_UINT64 },
280 	{ "procovf",		KSTAT_DATA_UINT64 },
281 	{ "intrthread",		KSTAT_DATA_UINT64 },
282 	{ "intrblk",		KSTAT_DATA_UINT64 },
283 	{ "intrunpin",		KSTAT_DATA_UINT64 },
284 	{ "idlethread",		KSTAT_DATA_UINT64 },
285 	{ "inv_swtch",		KSTAT_DATA_UINT64 },
286 	{ "nthreads",		KSTAT_DATA_UINT64 },
287 	{ "cpumigrate",		KSTAT_DATA_UINT64 },
288 	{ "xcalls",		KSTAT_DATA_UINT64 },
289 	{ "mutex_adenters",	KSTAT_DATA_UINT64 },
290 	{ "rw_rdfails",		KSTAT_DATA_UINT64 },
291 	{ "rw_wrfails",		KSTAT_DATA_UINT64 },
292 	{ "modload",		KSTAT_DATA_UINT64 },
293 	{ "modunload",		KSTAT_DATA_UINT64 },
294 	{ "bawrite",		KSTAT_DATA_UINT64 },
295 	{ "iowait",		KSTAT_DATA_UINT64 },
296 };
297 
298 static struct cpu_vm_stats_ks_data {
299 	kstat_named_t pgrec;
300 	kstat_named_t pgfrec;
301 	kstat_named_t pgin;
302 	kstat_named_t pgpgin;
303 	kstat_named_t pgout;
304 	kstat_named_t pgpgout;
305 	kstat_named_t swapin;
306 	kstat_named_t pgswapin;
307 	kstat_named_t swapout;
308 	kstat_named_t pgswapout;
309 	kstat_named_t zfod;
310 	kstat_named_t dfree;
311 	kstat_named_t scan;
312 	kstat_named_t rev;
313 	kstat_named_t hat_fault;
314 	kstat_named_t as_fault;
315 	kstat_named_t maj_fault;
316 	kstat_named_t cow_fault;
317 	kstat_named_t prot_fault;
318 	kstat_named_t softlock;
319 	kstat_named_t kernel_asflt;
320 	kstat_named_t pgrrun;
321 	kstat_named_t execpgin;
322 	kstat_named_t execpgout;
323 	kstat_named_t execfree;
324 	kstat_named_t anonpgin;
325 	kstat_named_t anonpgout;
326 	kstat_named_t anonfree;
327 	kstat_named_t fspgin;
328 	kstat_named_t fspgout;
329 	kstat_named_t fsfree;
330 } cpu_vm_stats_ks_data_template = {
331 	{ "pgrec",		KSTAT_DATA_UINT64 },
332 	{ "pgfrec",		KSTAT_DATA_UINT64 },
333 	{ "pgin",		KSTAT_DATA_UINT64 },
334 	{ "pgpgin",		KSTAT_DATA_UINT64 },
335 	{ "pgout",		KSTAT_DATA_UINT64 },
336 	{ "pgpgout",		KSTAT_DATA_UINT64 },
337 	{ "swapin",		KSTAT_DATA_UINT64 },
338 	{ "pgswapin",		KSTAT_DATA_UINT64 },
339 	{ "swapout",		KSTAT_DATA_UINT64 },
340 	{ "pgswapout",		KSTAT_DATA_UINT64 },
341 	{ "zfod",		KSTAT_DATA_UINT64 },
342 	{ "dfree",		KSTAT_DATA_UINT64 },
343 	{ "scan",		KSTAT_DATA_UINT64 },
344 	{ "rev",		KSTAT_DATA_UINT64 },
345 	{ "hat_fault",		KSTAT_DATA_UINT64 },
346 	{ "as_fault",		KSTAT_DATA_UINT64 },
347 	{ "maj_fault",		KSTAT_DATA_UINT64 },
348 	{ "cow_fault",		KSTAT_DATA_UINT64 },
349 	{ "prot_fault",		KSTAT_DATA_UINT64 },
350 	{ "softlock",		KSTAT_DATA_UINT64 },
351 	{ "kernel_asflt",	KSTAT_DATA_UINT64 },
352 	{ "pgrrun",		KSTAT_DATA_UINT64 },
353 	{ "execpgin",		KSTAT_DATA_UINT64 },
354 	{ "execpgout",		KSTAT_DATA_UINT64 },
355 	{ "execfree",		KSTAT_DATA_UINT64 },
356 	{ "anonpgin",		KSTAT_DATA_UINT64 },
357 	{ "anonpgout",		KSTAT_DATA_UINT64 },
358 	{ "anonfree",		KSTAT_DATA_UINT64 },
359 	{ "fspgin",		KSTAT_DATA_UINT64 },
360 	{ "fspgout",		KSTAT_DATA_UINT64 },
361 	{ "fsfree",		KSTAT_DATA_UINT64 },
362 };
363 
364 /*
365  * Force the specified thread to migrate to the appropriate processor.
366  * Called with thread lock held, returns with it dropped.
367  */
368 static void
369 force_thread_migrate(kthread_id_t tp)
370 {
371 	ASSERT(THREAD_LOCK_HELD(tp));
372 	if (tp == curthread) {
373 		THREAD_TRANSITION(tp);
374 		CL_SETRUN(tp);
375 		thread_unlock_nopreempt(tp);
376 		swtch();
377 	} else {
378 		if (tp->t_state == TS_ONPROC) {
379 			cpu_surrender(tp);
380 		} else if (tp->t_state == TS_RUN) {
381 			(void) dispdeq(tp);
382 			setbackdq(tp);
383 		}
384 		thread_unlock(tp);
385 	}
386 }
387 
388 /*
389  * Set affinity for a specified CPU.
390  * A reference count is incremented and the affinity is held until the
391  * reference count is decremented to zero by thread_affinity_clear().
392  * This is so regions of code requiring affinity can be nested.
393  * Caller needs to ensure that cpu_id remains valid, which can be
394  * done by holding cpu_lock across this call, unless the caller
395  * specifies CPU_CURRENT in which case the cpu_lock will be acquired
396  * by thread_affinity_set and CPU->cpu_id will be the target CPU.
397  */
398 void
399 thread_affinity_set(kthread_id_t t, int cpu_id)
400 {
401 	cpu_t		*cp;
402 	int		c;
403 
404 	ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
405 
406 	if ((c = cpu_id) == CPU_CURRENT) {
407 		mutex_enter(&cpu_lock);
408 		cpu_id = CPU->cpu_id;
409 	}
410 	/*
411 	 * We should be asserting that cpu_lock is held here, but
412 	 * the NCA code doesn't acquire it.  The following assert
413 	 * should be uncommented when the NCA code is fixed.
414 	 *
415 	 * ASSERT(MUTEX_HELD(&cpu_lock));
416 	 */
417 	ASSERT((cpu_id >= 0) && (cpu_id < NCPU));
418 	cp = cpu[cpu_id];
419 	ASSERT(cp != NULL);		/* user must provide a good cpu_id */
420 	/*
421 	 * If there is already a hard affinity requested, and this affinity
422 	 * conflicts with that, panic.
423 	 */
424 	thread_lock(t);
425 	if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
426 		panic("affinity_set: setting %p but already bound to %p",
427 		    (void *)cp, (void *)t->t_bound_cpu);
428 	}
429 	t->t_affinitycnt++;
430 	t->t_bound_cpu = cp;
431 
432 	/*
433 	 * Make sure we're running on the right CPU.
434 	 */
435 	if (cp != t->t_cpu || t != curthread) {
436 		force_thread_migrate(t);	/* drops thread lock */
437 	} else {
438 		thread_unlock(t);
439 	}
440 
441 	if (c == CPU_CURRENT)
442 		mutex_exit(&cpu_lock);
443 }
444 
445 /*
446  *	Wrapper for backward compatibility.
447  */
448 void
449 affinity_set(int cpu_id)
450 {
451 	thread_affinity_set(curthread, cpu_id);
452 }
453 
454 /*
455  * Decrement the affinity reservation count and if it becomes zero,
456  * clear the CPU affinity for the current thread, or set it to the user's
457  * software binding request.
458  */
459 void
460 thread_affinity_clear(kthread_id_t t)
461 {
462 	register processorid_t binding;
463 
464 	thread_lock(t);
465 	if (--t->t_affinitycnt == 0) {
466 		if ((binding = t->t_bind_cpu) == PBIND_NONE) {
467 			/*
468 			 * Adjust disp_max_unbound_pri if necessary.
469 			 */
470 			disp_adjust_unbound_pri(t);
471 			t->t_bound_cpu = NULL;
472 			if (t->t_cpu->cpu_part != t->t_cpupart) {
473 				force_thread_migrate(t);
474 				return;
475 			}
476 		} else {
477 			t->t_bound_cpu = cpu[binding];
478 			/*
479 			 * Make sure the thread is running on the bound CPU.
480 			 */
481 			if (t->t_cpu != t->t_bound_cpu) {
482 				force_thread_migrate(t);
483 				return;		/* already dropped lock */
484 			}
485 		}
486 	}
487 	thread_unlock(t);
488 }
489 
490 /*
491  * Wrapper for backward compatibility.
492  */
493 void
494 affinity_clear(void)
495 {
496 	thread_affinity_clear(curthread);
497 }
498 
499 /*
500  * Weak cpu affinity.  Bind to the "current" cpu for short periods
501  * of time during which the thread must not block (but may be preempted).
502  * Use this instead of kpreempt_disable() when it is only "no migration"
503  * rather than "no preemption" semantics that are required - disabling
504  * preemption holds higher priority threads off of cpu and if the
505  * operation that is protected is more than momentary this is not good
506  * for realtime etc.
507  *
508  * Weakly bound threads will not prevent a cpu from being offlined -
509  * we'll only run them on the cpu to which they are weakly bound but
510  * (because they do not block) we'll always be able to move them on to
511  * another cpu at offline time if we give them just a short moment to
512  * run during which they will unbind.  To give a cpu a chance of offlining,
513  * however, we require a barrier to weak bindings that may be raised for a
514  * given cpu (offline/move code may set this and then wait a short time for
515  * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
516  *
517  * There are few restrictions on the calling context of thread_nomigrate.
518  * The caller must not hold the thread lock.  Calls may be nested.
519  *
520  * After weakbinding a thread must not perform actions that may block.
521  * In particular it must not call thread_affinity_set; calling that when
522  * already weakbound is nonsensical anyway.
523  *
524  * If curthread is prevented from migrating for other reasons
525  * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
526  * then the weak binding will succeed even if this cpu is the target of an
527  * offline/move request.
528  */
529 void
530 thread_nomigrate(void)
531 {
532 	cpu_t *cp;
533 	kthread_id_t t = curthread;
534 
535 again:
536 	kpreempt_disable();
537 	cp = CPU;
538 
539 	/*
540 	 * A highlevel interrupt must not modify t_nomigrate or
541 	 * t_weakbound_cpu of the thread it has interrupted.  A lowlevel
542 	 * interrupt thread cannot migrate and we can avoid the
543 	 * thread_lock call below by short-circuiting here.  In either
544 	 * case we can just return since no migration is possible and
545 	 * the condition will persist (ie, when we test for these again
546 	 * in thread_allowmigrate they can't have changed).   Migration
547 	 * is also impossible if we're at or above DISP_LEVEL pil.
548 	 */
549 	if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
550 	    getpil() >= DISP_LEVEL) {
551 		kpreempt_enable();
552 		return;
553 	}
554 
555 	/*
556 	 * We must be consistent with existing weak bindings.  Since we
557 	 * may be interrupted between the increment of t_nomigrate and
558 	 * the store to t_weakbound_cpu below we cannot assume that
559 	 * t_weakbound_cpu will be set if t_nomigrate is.  Note that we
560 	 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
561 	 * always the case.
562 	 */
563 	if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
564 		if (!panicstr)
565 			panic("thread_nomigrate: binding to %p but already "
566 			    "bound to %p", (void *)cp,
567 			    (void *)t->t_weakbound_cpu);
568 	}
569 
570 	/*
571 	 * At this point we have preemption disabled and we don't yet hold
572 	 * the thread lock.  So it's possible that somebody else could
573 	 * set t_bind_cpu here and not be able to force us across to the
574 	 * new cpu (since we have preemption disabled).
575 	 */
576 	thread_lock(curthread);
577 
578 	/*
579 	 * If further weak bindings are being (temporarily) suppressed then
580 	 * we'll settle for disabling kernel preemption (which assures
581 	 * no migration provided the thread does not block which it is
582 	 * not allowed to if using thread_nomigrate).  We must remember
583 	 * this disposition so we can take appropriate action in
584 	 * thread_allowmigrate.  If this is a nested call and the
585 	 * thread is already weakbound then fall through as normal.
586 	 * We remember the decision to settle for kpreempt_disable through
587 	 * negative nesting counting in t_nomigrate.  Once a thread has had one
588 	 * weakbinding request satisfied in this way any further (nested)
589 	 * requests will continue to be satisfied in the same way,
590 	 * even if weak bindings have recommenced.
591 	 */
592 	if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
593 		--t->t_nomigrate;
594 		thread_unlock(curthread);
595 		return;		/* with kpreempt_disable still active */
596 	}
597 
598 	/*
599 	 * We hold thread_lock so t_bind_cpu cannot change.  We could,
600 	 * however, be running on a different cpu to which we are t_bound_cpu
601 	 * to (as explained above).  If we grant the weak binding request
602 	 * in that case then the dispatcher must favour our weak binding
603 	 * over our strong (in which case, just as when preemption is
604 	 * disabled, we can continue to run on a cpu other than the one to
605 	 * which we are strongbound; the difference in this case is that
606 	 * this thread can be preempted and so can appear on the dispatch
607 	 * queues of a cpu other than the one it is strongbound to).
608 	 *
609 	 * If the cpu we are running on does not appear to be a current
610 	 * offline target (we check cpu_inmotion to determine this - since
611 	 * we don't hold cpu_lock we may not see a recent store to that,
612 	 * so it's possible that we at times can grant a weak binding to a
613 	 * cpu that is an offline target, but that one request will not
614 	 * prevent the offline from succeeding) then we will always grant
615 	 * the weak binding request.  This includes the case above where
616 	 * we grant a weakbinding not commensurate with our strong binding.
617 	 *
618 	 * If our cpu does appear to be an offline target then we're inclined
619 	 * not to grant the weakbinding request just yet - we'd prefer to
620 	 * migrate to another cpu and grant the request there.  The
621 	 * exceptions are those cases where going through preemption code
622 	 * will not result in us changing cpu:
623 	 *
624 	 *	. interrupts have already bypassed this case (see above)
625 	 *	. we are already weakbound to this cpu (dispatcher code will
626 	 *	  always return us to the weakbound cpu)
627 	 *	. preemption was disabled even before we disabled it above
628 	 *	. we are strongbound to this cpu (if we're strongbound to
629 	 *	another and not yet running there the trip through the
630 	 *	dispatcher will move us to the strongbound cpu and we
631 	 *	will grant the weak binding there)
632 	 */
633 	if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
634 	    t->t_bound_cpu == cp) {
635 		/*
636 		 * Don't be tempted to store to t_weakbound_cpu only on
637 		 * the first nested bind request - if we're interrupted
638 		 * after the increment of t_nomigrate and before the
639 		 * store to t_weakbound_cpu and the interrupt calls
640 		 * thread_nomigrate then the assertion in thread_allowmigrate
641 		 * would fail.
642 		 */
643 		t->t_nomigrate++;
644 		t->t_weakbound_cpu = cp;
645 		membar_producer();
646 		thread_unlock(curthread);
647 		/*
648 		 * Now that we have dropped the thread_lock another thread
649 		 * can set our t_weakbound_cpu, and will try to migrate us
650 		 * to the strongbound cpu (which will not be prevented by
651 		 * preemption being disabled since we're about to enable
652 		 * preemption).  We have granted the weakbinding to the current
653 		 * cpu, so again we are in the position that is is is possible
654 		 * that our weak and strong bindings differ.  Again this
655 		 * is catered for by dispatcher code which will favour our
656 		 * weak binding.
657 		 */
658 		kpreempt_enable();
659 	} else {
660 		/*
661 		 * Move to another cpu before granting the request by
662 		 * forcing this thread through preemption code.  When we
663 		 * get to set{front,back}dq called from CL_PREEMPT()
664 		 * cpu_choose() will be used to select a cpu to queue
665 		 * us on - that will see cpu_inmotion and take
666 		 * steps to avoid returning us to this cpu.
667 		 */
668 		cp->cpu_kprunrun = 1;
669 		thread_unlock(curthread);
670 		kpreempt_enable();	/* will call preempt() */
671 		goto again;
672 	}
673 }
674 
675 void
676 thread_allowmigrate(void)
677 {
678 	kthread_id_t t = curthread;
679 
680 	ASSERT(t->t_weakbound_cpu == CPU ||
681 	    (t->t_nomigrate < 0 && t->t_preempt > 0) ||
682 	    CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
683 	    getpil() >= DISP_LEVEL);
684 
685 	if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
686 	    getpil() >= DISP_LEVEL)
687 		return;
688 
689 	if (t->t_nomigrate < 0) {
690 		/*
691 		 * This thread was granted "weak binding" in the
692 		 * stronger form of kernel preemption disabling.
693 		 * Undo a level of nesting for both t_nomigrate
694 		 * and t_preempt.
695 		 */
696 		++t->t_nomigrate;
697 		kpreempt_enable();
698 	} else if (--t->t_nomigrate == 0) {
699 		/*
700 		 * Time to drop the weak binding.  We need to cater
701 		 * for the case where we're weakbound to a different
702 		 * cpu than that to which we're strongbound (a very
703 		 * temporary arrangement that must only persist until
704 		 * weak binding drops).  We don't acquire thread_lock
705 		 * here so even as this code executes t_bound_cpu
706 		 * may be changing.  So we disable preemption and
707 		 * a) in the case that t_bound_cpu changes while we
708 		 * have preemption disabled kprunrun will be set
709 		 * asynchronously, and b) if before disabling
710 		 * preemption we were already on a different cpu to
711 		 * our t_bound_cpu then we set kprunrun ourselves
712 		 * to force a trip through the dispatcher when
713 		 * preemption is enabled.
714 		 */
715 		kpreempt_disable();
716 		if (t->t_bound_cpu &&
717 		    t->t_weakbound_cpu != t->t_bound_cpu)
718 			CPU->cpu_kprunrun = 1;
719 		t->t_weakbound_cpu = NULL;
720 		membar_producer();
721 		kpreempt_enable();
722 	}
723 }
724 
725 /*
726  * weakbinding_stop can be used to temporarily cause weakbindings made
727  * with thread_nomigrate to be satisfied through the stronger action of
728  * kpreempt_disable.  weakbinding_start recommences normal weakbinding.
729  */
730 
731 void
732 weakbinding_stop(void)
733 {
734 	ASSERT(MUTEX_HELD(&cpu_lock));
735 	weakbindingbarrier = 1;
736 	membar_producer();	/* make visible before subsequent thread_lock */
737 }
738 
739 void
740 weakbinding_start(void)
741 {
742 	ASSERT(MUTEX_HELD(&cpu_lock));
743 	weakbindingbarrier = 0;
744 }
745 
746 void
747 null_xcall(void)
748 {
749 }
750 
751 /*
752  * This routine is called to place the CPUs in a safe place so that
753  * one of them can be taken off line or placed on line.  What we are
754  * trying to do here is prevent a thread from traversing the list
755  * of active CPUs while we are changing it or from getting placed on
756  * the run queue of a CPU that has just gone off line.  We do this by
757  * creating a thread with the highest possible prio for each CPU and
758  * having it call this routine.  The advantage of this method is that
759  * we can eliminate all checks for CPU_ACTIVE in the disp routines.
760  * This makes disp faster at the expense of making p_online() slower
761  * which is a good trade off.
762  */
763 static void
764 cpu_pause(int index)
765 {
766 	int s;
767 	struct _cpu_pause_info *cpi = &cpu_pause_info;
768 	volatile char *safe = &safe_list[index];
769 	long    lindex = index;
770 
771 	ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
772 
773 	while (*safe != PAUSE_DIE) {
774 		*safe = PAUSE_READY;
775 		membar_enter();		/* make sure stores are flushed */
776 		sema_v(&cpi->cp_sem);	/* signal requesting thread */
777 
778 		/*
779 		 * Wait here until all pause threads are running.  That
780 		 * indicates that it's safe to do the spl.  Until
781 		 * cpu_pause_info.cp_go is set, we don't want to spl
782 		 * because that might block clock interrupts needed
783 		 * to preempt threads on other CPUs.
784 		 */
785 		while (cpi->cp_go == 0)
786 			;
787 		/*
788 		 * Even though we are at the highest disp prio, we need
789 		 * to block out all interrupts below LOCK_LEVEL so that
790 		 * an intr doesn't come in, wake up a thread, and call
791 		 * setbackdq/setfrontdq.
792 		 */
793 		s = splhigh();
794 		/*
795 		 * if cpu_pause_func() has been set then call it using
796 		 * index as the argument, currently only used by
797 		 * cpr_suspend_cpus().  This function is used as the
798 		 * code to execute on the "paused" cpu's when a machine
799 		 * comes out of a sleep state and CPU's were powered off.
800 		 * (could also be used for hotplugging CPU's).
801 		 */
802 		if (cpu_pause_func != NULL)
803 			(*cpu_pause_func)((void *)lindex);
804 
805 		mach_cpu_pause(safe);
806 
807 		splx(s);
808 		/*
809 		 * Waiting is at an end. Switch out of cpu_pause
810 		 * loop and resume useful work.
811 		 */
812 		swtch();
813 	}
814 
815 	mutex_enter(&pause_free_mutex);
816 	*safe = PAUSE_DEAD;
817 	cv_broadcast(&pause_free_cv);
818 	mutex_exit(&pause_free_mutex);
819 }
820 
821 /*
822  * Allow the cpus to start running again.
823  */
824 void
825 start_cpus()
826 {
827 	int i;
828 
829 	ASSERT(MUTEX_HELD(&cpu_lock));
830 	ASSERT(cpu_pause_info.cp_paused);
831 	cpu_pause_info.cp_paused = NULL;
832 	for (i = 0; i < NCPU; i++)
833 		safe_list[i] = PAUSE_IDLE;
834 	membar_enter();			/* make sure stores are flushed */
835 	affinity_clear();
836 	splx(cpu_pause_info.cp_spl);
837 	kpreempt_enable();
838 }
839 
840 /*
841  * Allocate a pause thread for a CPU.
842  */
843 static void
844 cpu_pause_alloc(cpu_t *cp)
845 {
846 	kthread_id_t	t;
847 	long		cpun = cp->cpu_id;
848 
849 	/*
850 	 * Note, v.v_nglobpris will not change value as long as I hold
851 	 * cpu_lock.
852 	 */
853 	t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
854 	    0, &p0, TS_STOPPED, v.v_nglobpris - 1);
855 	thread_lock(t);
856 	t->t_bound_cpu = cp;
857 	t->t_disp_queue = cp->cpu_disp;
858 	t->t_affinitycnt = 1;
859 	t->t_preempt = 1;
860 	thread_unlock(t);
861 	cp->cpu_pause_thread = t;
862 	/*
863 	 * Registering a thread in the callback table is usually done
864 	 * in the initialization code of the thread.  In this
865 	 * case, we do it right after thread creation because the
866 	 * thread itself may never run, and we need to register the
867 	 * fact that it is safe for cpr suspend.
868 	 */
869 	CALLB_CPR_INIT_SAFE(t, "cpu_pause");
870 }
871 
872 /*
873  * Free a pause thread for a CPU.
874  */
875 static void
876 cpu_pause_free(cpu_t *cp)
877 {
878 	kthread_id_t	t;
879 	int		cpun = cp->cpu_id;
880 
881 	ASSERT(MUTEX_HELD(&cpu_lock));
882 	/*
883 	 * We have to get the thread and tell him to die.
884 	 */
885 	if ((t = cp->cpu_pause_thread) == NULL) {
886 		ASSERT(safe_list[cpun] == PAUSE_IDLE);
887 		return;
888 	}
889 	thread_lock(t);
890 	t->t_cpu = CPU;		/* disp gets upset if last cpu is quiesced. */
891 	t->t_bound_cpu = NULL;	/* Must un-bind; cpu may not be running. */
892 	t->t_pri = v.v_nglobpris - 1;
893 	ASSERT(safe_list[cpun] == PAUSE_IDLE);
894 	safe_list[cpun] = PAUSE_DIE;
895 	THREAD_TRANSITION(t);
896 	setbackdq(t);
897 	thread_unlock_nopreempt(t);
898 
899 	/*
900 	 * If we don't wait for the thread to actually die, it may try to
901 	 * run on the wrong cpu as part of an actual call to pause_cpus().
902 	 */
903 	mutex_enter(&pause_free_mutex);
904 	while (safe_list[cpun] != PAUSE_DEAD) {
905 		cv_wait(&pause_free_cv, &pause_free_mutex);
906 	}
907 	mutex_exit(&pause_free_mutex);
908 	safe_list[cpun] = PAUSE_IDLE;
909 
910 	cp->cpu_pause_thread = NULL;
911 }
912 
913 /*
914  * Initialize basic structures for pausing CPUs.
915  */
916 void
917 cpu_pause_init()
918 {
919 	sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
920 	/*
921 	 * Create initial CPU pause thread.
922 	 */
923 	cpu_pause_alloc(CPU);
924 }
925 
926 /*
927  * Start the threads used to pause another CPU.
928  */
929 static int
930 cpu_pause_start(processorid_t cpu_id)
931 {
932 	int	i;
933 	int	cpu_count = 0;
934 
935 	for (i = 0; i < NCPU; i++) {
936 		cpu_t		*cp;
937 		kthread_id_t	t;
938 
939 		cp = cpu[i];
940 		if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
941 			safe_list[i] = PAUSE_WAIT;
942 			continue;
943 		}
944 
945 		/*
946 		 * Skip CPU if it is quiesced or not yet started.
947 		 */
948 		if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
949 			safe_list[i] = PAUSE_WAIT;
950 			continue;
951 		}
952 
953 		/*
954 		 * Start this CPU's pause thread.
955 		 */
956 		t = cp->cpu_pause_thread;
957 		thread_lock(t);
958 		/*
959 		 * Reset the priority, since nglobpris may have
960 		 * changed since the thread was created, if someone
961 		 * has loaded the RT (or some other) scheduling
962 		 * class.
963 		 */
964 		t->t_pri = v.v_nglobpris - 1;
965 		THREAD_TRANSITION(t);
966 		setbackdq(t);
967 		thread_unlock_nopreempt(t);
968 		++cpu_count;
969 	}
970 	return (cpu_count);
971 }
972 
973 
974 /*
975  * Pause all of the CPUs except the one we are on by creating a high
976  * priority thread bound to those CPUs.
977  *
978  * Note that one must be extremely careful regarding code
979  * executed while CPUs are paused.  Since a CPU may be paused
980  * while a thread scheduling on that CPU is holding an adaptive
981  * lock, code executed with CPUs paused must not acquire adaptive
982  * (or low-level spin) locks.  Also, such code must not block,
983  * since the thread that is supposed to initiate the wakeup may
984  * never run.
985  *
986  * With a few exceptions, the restrictions on code executed with CPUs
987  * paused match those for code executed at high-level interrupt
988  * context.
989  */
990 void
991 pause_cpus(cpu_t *off_cp)
992 {
993 	processorid_t	cpu_id;
994 	int		i;
995 	struct _cpu_pause_info	*cpi = &cpu_pause_info;
996 
997 	ASSERT(MUTEX_HELD(&cpu_lock));
998 	ASSERT(cpi->cp_paused == NULL);
999 	cpi->cp_count = 0;
1000 	cpi->cp_go = 0;
1001 	for (i = 0; i < NCPU; i++)
1002 		safe_list[i] = PAUSE_IDLE;
1003 	kpreempt_disable();
1004 
1005 	/*
1006 	 * If running on the cpu that is going offline, get off it.
1007 	 * This is so that it won't be necessary to rechoose a CPU
1008 	 * when done.
1009 	 */
1010 	if (CPU == off_cp)
1011 		cpu_id = off_cp->cpu_next_part->cpu_id;
1012 	else
1013 		cpu_id = CPU->cpu_id;
1014 	affinity_set(cpu_id);
1015 
1016 	/*
1017 	 * Start the pause threads and record how many were started
1018 	 */
1019 	cpi->cp_count = cpu_pause_start(cpu_id);
1020 
1021 	/*
1022 	 * Now wait for all CPUs to be running the pause thread.
1023 	 */
1024 	while (cpi->cp_count > 0) {
1025 		/*
1026 		 * Spin reading the count without grabbing the disp
1027 		 * lock to make sure we don't prevent the pause
1028 		 * threads from getting the lock.
1029 		 */
1030 		while (sema_held(&cpi->cp_sem))
1031 			;
1032 		if (sema_tryp(&cpi->cp_sem))
1033 			--cpi->cp_count;
1034 	}
1035 	cpi->cp_go = 1;			/* all have reached cpu_pause */
1036 
1037 	/*
1038 	 * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1039 	 * to PAUSE_WAIT.)
1040 	 */
1041 	for (i = 0; i < NCPU; i++) {
1042 		while (safe_list[i] != PAUSE_WAIT)
1043 			;
1044 	}
1045 	cpi->cp_spl = splhigh();	/* block dispatcher on this CPU */
1046 	cpi->cp_paused = curthread;
1047 }
1048 
1049 /*
1050  * Check whether the current thread has CPUs paused
1051  */
1052 int
1053 cpus_paused(void)
1054 {
1055 	if (cpu_pause_info.cp_paused != NULL) {
1056 		ASSERT(cpu_pause_info.cp_paused == curthread);
1057 		return (1);
1058 	}
1059 	return (0);
1060 }
1061 
1062 static cpu_t *
1063 cpu_get_all(processorid_t cpun)
1064 {
1065 	ASSERT(MUTEX_HELD(&cpu_lock));
1066 
1067 	if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1068 		return (NULL);
1069 	return (cpu[cpun]);
1070 }
1071 
1072 /*
1073  * Check whether cpun is a valid processor id and whether it should be
1074  * visible from the current zone. If it is, return a pointer to the
1075  * associated CPU structure.
1076  */
1077 cpu_t *
1078 cpu_get(processorid_t cpun)
1079 {
1080 	cpu_t *c;
1081 
1082 	ASSERT(MUTEX_HELD(&cpu_lock));
1083 	c = cpu_get_all(cpun);
1084 	if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1085 	    zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1086 		return (NULL);
1087 	return (c);
1088 }
1089 
1090 /*
1091  * The following functions should be used to check CPU states in the kernel.
1092  * They should be invoked with cpu_lock held.  Kernel subsystems interested
1093  * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1094  * states.  Those are for user-land (and system call) use only.
1095  */
1096 
1097 /*
1098  * Determine whether the CPU is online and handling interrupts.
1099  */
1100 int
1101 cpu_is_online(cpu_t *cpu)
1102 {
1103 	ASSERT(MUTEX_HELD(&cpu_lock));
1104 	return (cpu_flagged_online(cpu->cpu_flags));
1105 }
1106 
1107 /*
1108  * Determine whether the CPU is offline (this includes spare and faulted).
1109  */
1110 int
1111 cpu_is_offline(cpu_t *cpu)
1112 {
1113 	ASSERT(MUTEX_HELD(&cpu_lock));
1114 	return (cpu_flagged_offline(cpu->cpu_flags));
1115 }
1116 
1117 /*
1118  * Determine whether the CPU is powered off.
1119  */
1120 int
1121 cpu_is_poweredoff(cpu_t *cpu)
1122 {
1123 	ASSERT(MUTEX_HELD(&cpu_lock));
1124 	return (cpu_flagged_poweredoff(cpu->cpu_flags));
1125 }
1126 
1127 /*
1128  * Determine whether the CPU is handling interrupts.
1129  */
1130 int
1131 cpu_is_nointr(cpu_t *cpu)
1132 {
1133 	ASSERT(MUTEX_HELD(&cpu_lock));
1134 	return (cpu_flagged_nointr(cpu->cpu_flags));
1135 }
1136 
1137 /*
1138  * Determine whether the CPU is active (scheduling threads).
1139  */
1140 int
1141 cpu_is_active(cpu_t *cpu)
1142 {
1143 	ASSERT(MUTEX_HELD(&cpu_lock));
1144 	return (cpu_flagged_active(cpu->cpu_flags));
1145 }
1146 
1147 /*
1148  * Same as above, but these require cpu_flags instead of cpu_t pointers.
1149  */
1150 int
1151 cpu_flagged_online(cpu_flag_t cpu_flags)
1152 {
1153 	return (cpu_flagged_active(cpu_flags) &&
1154 	    (cpu_flags & CPU_ENABLE));
1155 }
1156 
1157 int
1158 cpu_flagged_offline(cpu_flag_t cpu_flags)
1159 {
1160 	return (((cpu_flags & CPU_POWEROFF) == 0) &&
1161 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1162 }
1163 
1164 int
1165 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1166 {
1167 	return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1168 }
1169 
1170 int
1171 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1172 {
1173 	return (cpu_flagged_active(cpu_flags) &&
1174 	    (cpu_flags & CPU_ENABLE) == 0);
1175 }
1176 
1177 int
1178 cpu_flagged_active(cpu_flag_t cpu_flags)
1179 {
1180 	return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1181 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1182 }
1183 
1184 /*
1185  * Bring the indicated CPU online.
1186  */
1187 int
1188 cpu_online(cpu_t *cp)
1189 {
1190 	int	error = 0;
1191 
1192 	/*
1193 	 * Handle on-line request.
1194 	 *	This code must put the new CPU on the active list before
1195 	 *	starting it because it will not be paused, and will start
1196 	 * 	using the active list immediately.  The real start occurs
1197 	 *	when the CPU_QUIESCED flag is turned off.
1198 	 */
1199 
1200 	ASSERT(MUTEX_HELD(&cpu_lock));
1201 
1202 	/*
1203 	 * Put all the cpus into a known safe place.
1204 	 * No mutexes can be entered while CPUs are paused.
1205 	 */
1206 	error = mp_cpu_start(cp);	/* arch-dep hook */
1207 	if (error == 0) {
1208 		pg_cpupart_in(cp, cp->cpu_part);
1209 		pause_cpus(NULL);
1210 		cpu_add_active_internal(cp);
1211 		if (cp->cpu_flags & CPU_FAULTED) {
1212 			cp->cpu_flags &= ~CPU_FAULTED;
1213 			mp_cpu_faulted_exit(cp);
1214 		}
1215 		cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1216 		    CPU_SPARE);
1217 		CPU_NEW_GENERATION(cp);
1218 		start_cpus();
1219 		cpu_stats_kstat_create(cp);
1220 		cpu_create_intrstat(cp);
1221 		lgrp_kstat_create(cp);
1222 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1223 		cpu_intr_enable(cp);	/* arch-dep hook */
1224 		cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1225 		cpu_set_state(cp);
1226 		cyclic_online(cp);
1227 		/*
1228 		 * This has to be called only after cyclic_online(). This
1229 		 * function uses cyclics.
1230 		 */
1231 		callout_cpu_online(cp);
1232 		poke_cpu(cp->cpu_id);
1233 	}
1234 
1235 	return (error);
1236 }
1237 
1238 /*
1239  * Take the indicated CPU offline.
1240  */
1241 int
1242 cpu_offline(cpu_t *cp, int flags)
1243 {
1244 	cpupart_t *pp;
1245 	int	error = 0;
1246 	cpu_t	*ncp;
1247 	int	intr_enable;
1248 	int	cyclic_off = 0;
1249 	int	callout_off = 0;
1250 	int	loop_count;
1251 	int	no_quiesce = 0;
1252 	int	(*bound_func)(struct cpu *, int);
1253 	kthread_t *t;
1254 	lpl_t	*cpu_lpl;
1255 	proc_t	*p;
1256 	int	lgrp_diff_lpl;
1257 	boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;
1258 
1259 	ASSERT(MUTEX_HELD(&cpu_lock));
1260 
1261 	/*
1262 	 * If we're going from faulted or spare to offline, just
1263 	 * clear these flags and update CPU state.
1264 	 */
1265 	if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1266 		if (cp->cpu_flags & CPU_FAULTED) {
1267 			cp->cpu_flags &= ~CPU_FAULTED;
1268 			mp_cpu_faulted_exit(cp);
1269 		}
1270 		cp->cpu_flags &= ~CPU_SPARE;
1271 		cpu_set_state(cp);
1272 		return (0);
1273 	}
1274 
1275 	/*
1276 	 * Handle off-line request.
1277 	 */
1278 	pp = cp->cpu_part;
1279 	/*
1280 	 * Don't offline last online CPU in partition
1281 	 */
1282 	if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1283 		return (EBUSY);
1284 	/*
1285 	 * Unbind all soft-bound threads bound to our CPU and hard bound threads
1286 	 * if we were asked to.
1287 	 */
1288 	error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1289 	if (error != 0)
1290 		return (error);
1291 	/*
1292 	 * We shouldn't be bound to this CPU ourselves.
1293 	 */
1294 	if (curthread->t_bound_cpu == cp)
1295 		return (EBUSY);
1296 
1297 	/*
1298 	 * Tell interested parties that this CPU is going offline.
1299 	 */
1300 	CPU_NEW_GENERATION(cp);
1301 	cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1302 
1303 	/*
1304 	 * Tell the PG subsystem that the CPU is leaving the partition
1305 	 */
1306 	pg_cpupart_out(cp, pp);
1307 
1308 	/*
1309 	 * Take the CPU out of interrupt participation so we won't find
1310 	 * bound kernel threads.  If the architecture cannot completely
1311 	 * shut off interrupts on the CPU, don't quiesce it, but don't
1312 	 * run anything but interrupt thread... this is indicated by
1313 	 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1314 	 * off.
1315 	 */
1316 	intr_enable = cp->cpu_flags & CPU_ENABLE;
1317 	if (intr_enable)
1318 		no_quiesce = cpu_intr_disable(cp);
1319 
1320 	/*
1321 	 * Record that we are aiming to offline this cpu.  This acts as
1322 	 * a barrier to further weak binding requests in thread_nomigrate
1323 	 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1324 	 * lean away from this cpu.  Further strong bindings are already
1325 	 * avoided since we hold cpu_lock.  Since threads that are set
1326 	 * runnable around now and others coming off the target cpu are
1327 	 * directed away from the target, existing strong and weak bindings
1328 	 * (especially the latter) to the target cpu stand maximum chance of
1329 	 * being able to unbind during the short delay loop below (if other
1330 	 * unbound threads compete they may not see cpu in time to unbind
1331 	 * even if they would do so immediately.
1332 	 */
1333 	cpu_inmotion = cp;
1334 	membar_enter();
1335 
1336 	/*
1337 	 * Check for kernel threads (strong or weak) bound to that CPU.
1338 	 * Strongly bound threads may not unbind, and we'll have to return
1339 	 * EBUSY.  Weakly bound threads should always disappear - we've
1340 	 * stopped more weak binding with cpu_inmotion and existing
1341 	 * bindings will drain imminently (they may not block).  Nonetheless
1342 	 * we will wait for a fixed period for all bound threads to disappear.
1343 	 * Inactive interrupt threads are OK (they'll be in TS_FREE
1344 	 * state).  If test finds some bound threads, wait a few ticks
1345 	 * to give short-lived threads (such as interrupts) chance to
1346 	 * complete.  Note that if no_quiesce is set, i.e. this cpu
1347 	 * is required to service interrupts, then we take the route
1348 	 * that permits interrupt threads to be active (or bypassed).
1349 	 */
1350 	bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1351 
1352 again:	for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1353 		if (loop_count >= 5) {
1354 			error = EBUSY;	/* some threads still bound */
1355 			break;
1356 		}
1357 
1358 		/*
1359 		 * If some threads were assigned, give them
1360 		 * a chance to complete or move.
1361 		 *
1362 		 * This assumes that the clock_thread is not bound
1363 		 * to any CPU, because the clock_thread is needed to
1364 		 * do the delay(hz/100).
1365 		 *
1366 		 * Note: we still hold the cpu_lock while waiting for
1367 		 * the next clock tick.  This is OK since it isn't
1368 		 * needed for anything else except processor_bind(2),
1369 		 * and system initialization.  If we drop the lock,
1370 		 * we would risk another p_online disabling the last
1371 		 * processor.
1372 		 */
1373 		delay(hz/100);
1374 	}
1375 
1376 	if (error == 0 && callout_off == 0) {
1377 		callout_cpu_offline(cp);
1378 		callout_off = 1;
1379 	}
1380 
1381 	if (error == 0 && cyclic_off == 0) {
1382 		if (!cyclic_offline(cp)) {
1383 			/*
1384 			 * We must have bound cyclics...
1385 			 */
1386 			error = EBUSY;
1387 			goto out;
1388 		}
1389 		cyclic_off = 1;
1390 	}
1391 
1392 	/*
1393 	 * Call mp_cpu_stop() to perform any special operations
1394 	 * needed for this machine architecture to offline a CPU.
1395 	 */
1396 	if (error == 0)
1397 		error = mp_cpu_stop(cp);	/* arch-dep hook */
1398 
1399 	/*
1400 	 * If that all worked, take the CPU offline and decrement
1401 	 * ncpus_online.
1402 	 */
1403 	if (error == 0) {
1404 		/*
1405 		 * Put all the cpus into a known safe place.
1406 		 * No mutexes can be entered while CPUs are paused.
1407 		 */
1408 		pause_cpus(cp);
1409 		/*
1410 		 * Repeat the operation, if necessary, to make sure that
1411 		 * all outstanding low-level interrupts run to completion
1412 		 * before we set the CPU_QUIESCED flag.  It's also possible
1413 		 * that a thread has weak bound to the cpu despite our raising
1414 		 * cpu_inmotion above since it may have loaded that
1415 		 * value before the barrier became visible (this would have
1416 		 * to be the thread that was on the target cpu at the time
1417 		 * we raised the barrier).
1418 		 */
1419 		if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1420 		    (*bound_func)(cp, 1)) {
1421 			start_cpus();
1422 			(void) mp_cpu_start(cp);
1423 			goto again;
1424 		}
1425 		ncp = cp->cpu_next_part;
1426 		cpu_lpl = cp->cpu_lpl;
1427 		ASSERT(cpu_lpl != NULL);
1428 
1429 		/*
1430 		 * Remove the CPU from the list of active CPUs.
1431 		 */
1432 		cpu_remove_active(cp);
1433 
1434 		/*
1435 		 * Walk the active process list and look for threads
1436 		 * whose home lgroup needs to be updated, or
1437 		 * the last CPU they run on is the one being offlined now.
1438 		 */
1439 
1440 		ASSERT(curthread->t_cpu != cp);
1441 		for (p = practive; p != NULL; p = p->p_next) {
1442 
1443 			t = p->p_tlist;
1444 
1445 			if (t == NULL)
1446 				continue;
1447 
1448 			lgrp_diff_lpl = 0;
1449 
1450 			do {
1451 				ASSERT(t->t_lpl != NULL);
1452 				/*
1453 				 * Taking last CPU in lpl offline
1454 				 * Rehome thread if it is in this lpl
1455 				 * Otherwise, update the count of how many
1456 				 * threads are in this CPU's lgroup but have
1457 				 * a different lpl.
1458 				 */
1459 
1460 				if (cpu_lpl->lpl_ncpu == 0) {
1461 					if (t->t_lpl == cpu_lpl)
1462 						lgrp_move_thread(t,
1463 						    lgrp_choose(t,
1464 						    t->t_cpupart), 0);
1465 					else if (t->t_lpl->lpl_lgrpid ==
1466 					    cpu_lpl->lpl_lgrpid)
1467 						lgrp_diff_lpl++;
1468 				}
1469 				ASSERT(t->t_lpl->lpl_ncpu > 0);
1470 
1471 				/*
1472 				 * Update CPU last ran on if it was this CPU
1473 				 */
1474 				if (t->t_cpu == cp && t->t_bound_cpu != cp)
1475 					t->t_cpu = disp_lowpri_cpu(ncp,
1476 					    t->t_lpl, t->t_pri, NULL);
1477 				ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1478 				    t->t_weakbound_cpu == cp);
1479 
1480 				t = t->t_forw;
1481 			} while (t != p->p_tlist);
1482 
1483 			/*
1484 			 * Didn't find any threads in the same lgroup as this
1485 			 * CPU with a different lpl, so remove the lgroup from
1486 			 * the process lgroup bitmask.
1487 			 */
1488 
1489 			if (lgrp_diff_lpl == 0)
1490 				klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1491 		}
1492 
1493 		/*
1494 		 * Walk thread list looking for threads that need to be
1495 		 * rehomed, since there are some threads that are not in
1496 		 * their process's p_tlist.
1497 		 */
1498 
1499 		t = curthread;
1500 		do {
1501 			ASSERT(t != NULL && t->t_lpl != NULL);
1502 
1503 			/*
1504 			 * Rehome threads with same lpl as this CPU when this
1505 			 * is the last CPU in the lpl.
1506 			 */
1507 
1508 			if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1509 				lgrp_move_thread(t,
1510 				    lgrp_choose(t, t->t_cpupart), 1);
1511 
1512 			ASSERT(t->t_lpl->lpl_ncpu > 0);
1513 
1514 			/*
1515 			 * Update CPU last ran on if it was this CPU
1516 			 */
1517 
1518 			if (t->t_cpu == cp && t->t_bound_cpu != cp) {
1519 				t->t_cpu = disp_lowpri_cpu(ncp,
1520 				    t->t_lpl, t->t_pri, NULL);
1521 			}
1522 			ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1523 			    t->t_weakbound_cpu == cp);
1524 			t = t->t_next;
1525 
1526 		} while (t != curthread);
1527 		ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1528 		cp->cpu_flags |= CPU_OFFLINE;
1529 		disp_cpu_inactive(cp);
1530 		if (!no_quiesce)
1531 			cp->cpu_flags |= CPU_QUIESCED;
1532 		ncpus_online--;
1533 		cpu_set_state(cp);
1534 		cpu_inmotion = NULL;
1535 		start_cpus();
1536 		cpu_stats_kstat_destroy(cp);
1537 		cpu_delete_intrstat(cp);
1538 		lgrp_kstat_destroy(cp);
1539 	}
1540 
1541 out:
1542 	cpu_inmotion = NULL;
1543 
1544 	/*
1545 	 * If we failed, re-enable interrupts.
1546 	 * Do this even if cpu_intr_disable returned an error, because
1547 	 * it may have partially disabled interrupts.
1548 	 */
1549 	if (error && intr_enable)
1550 		cpu_intr_enable(cp);
1551 
1552 	/*
1553 	 * If we failed, but managed to offline the cyclic subsystem on this
1554 	 * CPU, bring it back online.
1555 	 */
1556 	if (error && cyclic_off)
1557 		cyclic_online(cp);
1558 
1559 	/*
1560 	 * If we failed, but managed to offline callouts on this CPU,
1561 	 * bring it back online.
1562 	 */
1563 	if (error && callout_off)
1564 		callout_cpu_online(cp);
1565 
1566 	/*
1567 	 * If we failed, tell the PG subsystem that the CPU is back
1568 	 */
1569 	pg_cpupart_in(cp, pp);
1570 
1571 	/*
1572 	 * If we failed, we need to notify everyone that this CPU is back on.
1573 	 */
1574 	if (error != 0) {
1575 		CPU_NEW_GENERATION(cp);
1576 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1577 		cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1578 	}
1579 
1580 	return (error);
1581 }
1582 
1583 /*
1584  * Mark the indicated CPU as faulted, taking it offline.
1585  */
1586 int
1587 cpu_faulted(cpu_t *cp, int flags)
1588 {
1589 	int	error = 0;
1590 
1591 	ASSERT(MUTEX_HELD(&cpu_lock));
1592 	ASSERT(!cpu_is_poweredoff(cp));
1593 
1594 	if (cpu_is_offline(cp)) {
1595 		cp->cpu_flags &= ~CPU_SPARE;
1596 		cp->cpu_flags |= CPU_FAULTED;
1597 		mp_cpu_faulted_enter(cp);
1598 		cpu_set_state(cp);
1599 		return (0);
1600 	}
1601 
1602 	if ((error = cpu_offline(cp, flags)) == 0) {
1603 		cp->cpu_flags |= CPU_FAULTED;
1604 		mp_cpu_faulted_enter(cp);
1605 		cpu_set_state(cp);
1606 	}
1607 
1608 	return (error);
1609 }
1610 
1611 /*
1612  * Mark the indicated CPU as a spare, taking it offline.
1613  */
1614 int
1615 cpu_spare(cpu_t *cp, int flags)
1616 {
1617 	int	error = 0;
1618 
1619 	ASSERT(MUTEX_HELD(&cpu_lock));
1620 	ASSERT(!cpu_is_poweredoff(cp));
1621 
1622 	if (cpu_is_offline(cp)) {
1623 		if (cp->cpu_flags & CPU_FAULTED) {
1624 			cp->cpu_flags &= ~CPU_FAULTED;
1625 			mp_cpu_faulted_exit(cp);
1626 		}
1627 		cp->cpu_flags |= CPU_SPARE;
1628 		cpu_set_state(cp);
1629 		return (0);
1630 	}
1631 
1632 	if ((error = cpu_offline(cp, flags)) == 0) {
1633 		cp->cpu_flags |= CPU_SPARE;
1634 		cpu_set_state(cp);
1635 	}
1636 
1637 	return (error);
1638 }
1639 
1640 /*
1641  * Take the indicated CPU from poweroff to offline.
1642  */
1643 int
1644 cpu_poweron(cpu_t *cp)
1645 {
1646 	int	error = ENOTSUP;
1647 
1648 	ASSERT(MUTEX_HELD(&cpu_lock));
1649 	ASSERT(cpu_is_poweredoff(cp));
1650 
1651 	error = mp_cpu_poweron(cp);	/* arch-dep hook */
1652 	if (error == 0)
1653 		cpu_set_state(cp);
1654 
1655 	return (error);
1656 }
1657 
1658 /*
1659  * Take the indicated CPU from any inactive state to powered off.
1660  */
1661 int
1662 cpu_poweroff(cpu_t *cp)
1663 {
1664 	int	error = ENOTSUP;
1665 
1666 	ASSERT(MUTEX_HELD(&cpu_lock));
1667 	ASSERT(cpu_is_offline(cp));
1668 
1669 	if (!(cp->cpu_flags & CPU_QUIESCED))
1670 		return (EBUSY);		/* not completely idle */
1671 
1672 	error = mp_cpu_poweroff(cp);	/* arch-dep hook */
1673 	if (error == 0)
1674 		cpu_set_state(cp);
1675 
1676 	return (error);
1677 }
1678 
1679 /*
1680  * Initialize the Sequential CPU id lookup table
1681  */
1682 void
1683 cpu_seq_tbl_init()
1684 {
1685 	cpu_t	**tbl;
1686 
1687 	tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1688 	tbl[0] = CPU;
1689 
1690 	cpu_seq = tbl;
1691 }
1692 
1693 /*
1694  * Initialize the CPU lists for the first CPU.
1695  */
1696 void
1697 cpu_list_init(cpu_t *cp)
1698 {
1699 	cp->cpu_next = cp;
1700 	cp->cpu_prev = cp;
1701 	cpu_list = cp;
1702 	clock_cpu_list = cp;
1703 
1704 	cp->cpu_next_onln = cp;
1705 	cp->cpu_prev_onln = cp;
1706 	cpu_active = cp;
1707 
1708 	cp->cpu_seqid = 0;
1709 	CPUSET_ADD(cpu_seqid_inuse, 0);
1710 
1711 	/*
1712 	 * Bootstrap cpu_seq using cpu_list
1713 	 * The cpu_seq[] table will be dynamically allocated
1714 	 * when kmem later becomes available (but before going MP)
1715 	 */
1716 	cpu_seq = &cpu_list;
1717 
1718 	cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1719 	cp_default.cp_cpulist = cp;
1720 	cp_default.cp_ncpus = 1;
1721 	cp->cpu_next_part = cp;
1722 	cp->cpu_prev_part = cp;
1723 	cp->cpu_part = &cp_default;
1724 
1725 	CPUSET_ADD(cpu_available, cp->cpu_id);
1726 }
1727 
1728 /*
1729  * Insert a CPU into the list of available CPUs.
1730  */
1731 void
1732 cpu_add_unit(cpu_t *cp)
1733 {
1734 	int seqid;
1735 
1736 	ASSERT(MUTEX_HELD(&cpu_lock));
1737 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1738 
1739 	lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1740 
1741 	/*
1742 	 * Note: most users of the cpu_list will grab the
1743 	 * cpu_lock to insure that it isn't modified.  However,
1744 	 * certain users can't or won't do that.  To allow this
1745 	 * we pause the other cpus.  Users who walk the list
1746 	 * without cpu_lock, must disable kernel preemption
1747 	 * to insure that the list isn't modified underneath
1748 	 * them.  Also, any cached pointers to cpu structures
1749 	 * must be revalidated by checking to see if the
1750 	 * cpu_next pointer points to itself.  This check must
1751 	 * be done with the cpu_lock held or kernel preemption
1752 	 * disabled.  This check relies upon the fact that
1753 	 * old cpu structures are not free'ed or cleared after
1754 	 * then are removed from the cpu_list.
1755 	 *
1756 	 * Note that the clock code walks the cpu list dereferencing
1757 	 * the cpu_part pointer, so we need to initialize it before
1758 	 * adding the cpu to the list.
1759 	 */
1760 	cp->cpu_part = &cp_default;
1761 	(void) pause_cpus(NULL);
1762 	cp->cpu_next = cpu_list;
1763 	cp->cpu_prev = cpu_list->cpu_prev;
1764 	cpu_list->cpu_prev->cpu_next = cp;
1765 	cpu_list->cpu_prev = cp;
1766 	start_cpus();
1767 
1768 	for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1769 		continue;
1770 	CPUSET_ADD(cpu_seqid_inuse, seqid);
1771 	cp->cpu_seqid = seqid;
1772 
1773 	if (seqid > max_cpu_seqid_ever)
1774 		max_cpu_seqid_ever = seqid;
1775 
1776 	ASSERT(ncpus < max_ncpus);
1777 	ncpus++;
1778 	cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1779 	cpu[cp->cpu_id] = cp;
1780 	CPUSET_ADD(cpu_available, cp->cpu_id);
1781 	cpu_seq[cp->cpu_seqid] = cp;
1782 
1783 	/*
1784 	 * allocate a pause thread for this CPU.
1785 	 */
1786 	cpu_pause_alloc(cp);
1787 
1788 	/*
1789 	 * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1790 	 * link them into a list of just that CPU.
1791 	 * This is so that disp_lowpri_cpu will work for thread_create in
1792 	 * pause_cpus() when called from the startup thread in a new CPU.
1793 	 */
1794 	cp->cpu_next_onln = cp;
1795 	cp->cpu_prev_onln = cp;
1796 	cpu_info_kstat_create(cp);
1797 	cp->cpu_next_part = cp;
1798 	cp->cpu_prev_part = cp;
1799 
1800 	init_cpu_mstate(cp, CMS_SYSTEM);
1801 
1802 	pool_pset_mod = gethrtime();
1803 }
1804 
1805 /*
1806  * Do the opposite of cpu_add_unit().
1807  */
1808 void
1809 cpu_del_unit(int cpuid)
1810 {
1811 	struct cpu	*cp, *cpnext;
1812 
1813 	ASSERT(MUTEX_HELD(&cpu_lock));
1814 	cp = cpu[cpuid];
1815 	ASSERT(cp != NULL);
1816 
1817 	ASSERT(cp->cpu_next_onln == cp);
1818 	ASSERT(cp->cpu_prev_onln == cp);
1819 	ASSERT(cp->cpu_next_part == cp);
1820 	ASSERT(cp->cpu_prev_part == cp);
1821 
1822 	/*
1823 	 * Tear down the CPU's physical ID cache, and update any
1824 	 * processor groups
1825 	 */
1826 	pg_cpu_fini(cp, NULL);
1827 	pghw_physid_destroy(cp);
1828 
1829 	/*
1830 	 * Destroy kstat stuff.
1831 	 */
1832 	cpu_info_kstat_destroy(cp);
1833 	term_cpu_mstate(cp);
1834 	/*
1835 	 * Free up pause thread.
1836 	 */
1837 	cpu_pause_free(cp);
1838 	CPUSET_DEL(cpu_available, cp->cpu_id);
1839 	cpu[cp->cpu_id] = NULL;
1840 	cpu_seq[cp->cpu_seqid] = NULL;
1841 
1842 	/*
1843 	 * The clock thread and mutex_vector_enter cannot hold the
1844 	 * cpu_lock while traversing the cpu list, therefore we pause
1845 	 * all other threads by pausing the other cpus. These, and any
1846 	 * other routines holding cpu pointers while possibly sleeping
1847 	 * must be sure to call kpreempt_disable before processing the
1848 	 * list and be sure to check that the cpu has not been deleted
1849 	 * after any sleeps (check cp->cpu_next != NULL). We guarantee
1850 	 * to keep the deleted cpu structure around.
1851 	 *
1852 	 * Note that this MUST be done AFTER cpu_available
1853 	 * has been updated so that we don't waste time
1854 	 * trying to pause the cpu we're trying to delete.
1855 	 */
1856 	(void) pause_cpus(NULL);
1857 
1858 	cpnext = cp->cpu_next;
1859 	cp->cpu_prev->cpu_next = cp->cpu_next;
1860 	cp->cpu_next->cpu_prev = cp->cpu_prev;
1861 	if (cp == cpu_list)
1862 		cpu_list = cpnext;
1863 
1864 	/*
1865 	 * Signals that the cpu has been deleted (see above).
1866 	 */
1867 	cp->cpu_next = NULL;
1868 	cp->cpu_prev = NULL;
1869 
1870 	start_cpus();
1871 
1872 	CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1873 	ncpus--;
1874 	lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1875 
1876 	pool_pset_mod = gethrtime();
1877 }
1878 
1879 /*
1880  * Add a CPU to the list of active CPUs.
1881  *	This routine must not get any locks, because other CPUs are paused.
1882  */
1883 static void
1884 cpu_add_active_internal(cpu_t *cp)
1885 {
1886 	cpupart_t	*pp = cp->cpu_part;
1887 
1888 	ASSERT(MUTEX_HELD(&cpu_lock));
1889 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1890 
1891 	ncpus_online++;
1892 	cpu_set_state(cp);
1893 	cp->cpu_next_onln = cpu_active;
1894 	cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1895 	cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1896 	cpu_active->cpu_prev_onln = cp;
1897 
1898 	if (pp->cp_cpulist) {
1899 		cp->cpu_next_part = pp->cp_cpulist;
1900 		cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1901 		pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1902 		pp->cp_cpulist->cpu_prev_part = cp;
1903 	} else {
1904 		ASSERT(pp->cp_ncpus == 0);
1905 		pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1906 	}
1907 	pp->cp_ncpus++;
1908 	if (pp->cp_ncpus == 1) {
1909 		cp_numparts_nonempty++;
1910 		ASSERT(cp_numparts_nonempty != 0);
1911 	}
1912 
1913 	pg_cpu_active(cp);
1914 	lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1915 
1916 	bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1917 }
1918 
1919 /*
1920  * Add a CPU to the list of active CPUs.
1921  *	This is called from machine-dependent layers when a new CPU is started.
1922  */
1923 void
1924 cpu_add_active(cpu_t *cp)
1925 {
1926 	pg_cpupart_in(cp, cp->cpu_part);
1927 
1928 	pause_cpus(NULL);
1929 	cpu_add_active_internal(cp);
1930 	start_cpus();
1931 
1932 	cpu_stats_kstat_create(cp);
1933 	cpu_create_intrstat(cp);
1934 	lgrp_kstat_create(cp);
1935 	cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1936 }
1937 
1938 
1939 /*
1940  * Remove a CPU from the list of active CPUs.
1941  *	This routine must not get any locks, because other CPUs are paused.
1942  */
1943 /* ARGSUSED */
1944 static void
1945 cpu_remove_active(cpu_t *cp)
1946 {
1947 	cpupart_t	*pp = cp->cpu_part;
1948 
1949 	ASSERT(MUTEX_HELD(&cpu_lock));
1950 	ASSERT(cp->cpu_next_onln != cp);	/* not the last one */
1951 	ASSERT(cp->cpu_prev_onln != cp);	/* not the last one */
1952 
1953 	pg_cpu_inactive(cp);
1954 
1955 	lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1956 
1957 	if (cp == clock_cpu_list)
1958 		clock_cpu_list = cp->cpu_next_onln;
1959 
1960 	cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1961 	cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1962 	if (cpu_active == cp) {
1963 		cpu_active = cp->cpu_next_onln;
1964 	}
1965 	cp->cpu_next_onln = cp;
1966 	cp->cpu_prev_onln = cp;
1967 
1968 	cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1969 	cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1970 	if (pp->cp_cpulist == cp) {
1971 		pp->cp_cpulist = cp->cpu_next_part;
1972 		ASSERT(pp->cp_cpulist != cp);
1973 	}
1974 	cp->cpu_next_part = cp;
1975 	cp->cpu_prev_part = cp;
1976 	pp->cp_ncpus--;
1977 	if (pp->cp_ncpus == 0) {
1978 		cp_numparts_nonempty--;
1979 		ASSERT(cp_numparts_nonempty != 0);
1980 	}
1981 }
1982 
1983 /*
1984  * Routine used to setup a newly inserted CPU in preparation for starting
1985  * it running code.
1986  */
1987 int
1988 cpu_configure(int cpuid)
1989 {
1990 	int retval = 0;
1991 
1992 	ASSERT(MUTEX_HELD(&cpu_lock));
1993 
1994 	/*
1995 	 * Some structures are statically allocated based upon
1996 	 * the maximum number of cpus the system supports.  Do not
1997 	 * try to add anything beyond this limit.
1998 	 */
1999 	if (cpuid < 0 || cpuid >= NCPU) {
2000 		return (EINVAL);
2001 	}
2002 
2003 	if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
2004 		return (EALREADY);
2005 	}
2006 
2007 	if ((retval = mp_cpu_configure(cpuid)) != 0) {
2008 		return (retval);
2009 	}
2010 
2011 	cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
2012 	cpu_set_state(cpu[cpuid]);
2013 	retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
2014 	if (retval != 0)
2015 		(void) mp_cpu_unconfigure(cpuid);
2016 
2017 	return (retval);
2018 }
2019 
2020 /*
2021  * Routine used to cleanup a CPU that has been powered off.  This will
2022  * destroy all per-cpu information related to this cpu.
2023  */
2024 int
2025 cpu_unconfigure(int cpuid)
2026 {
2027 	int error;
2028 
2029 	ASSERT(MUTEX_HELD(&cpu_lock));
2030 
2031 	if (cpu[cpuid] == NULL) {
2032 		return (ENODEV);
2033 	}
2034 
2035 	if (cpu[cpuid]->cpu_flags == 0) {
2036 		return (EALREADY);
2037 	}
2038 
2039 	if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2040 		return (EBUSY);
2041 	}
2042 
2043 	if (cpu[cpuid]->cpu_props != NULL) {
2044 		(void) nvlist_free(cpu[cpuid]->cpu_props);
2045 		cpu[cpuid]->cpu_props = NULL;
2046 	}
2047 
2048 	error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2049 
2050 	if (error != 0)
2051 		return (error);
2052 
2053 	return (mp_cpu_unconfigure(cpuid));
2054 }
2055 
2056 /*
2057  * Routines for registering and de-registering cpu_setup callback functions.
2058  *
2059  * Caller's context
2060  *	These routines must not be called from a driver's attach(9E) or
2061  *	detach(9E) entry point.
2062  *
2063  * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2064  */
2065 
2066 /*
2067  * Ideally, these would be dynamically allocated and put into a linked
2068  * list; however that is not feasible because the registration routine
2069  * has to be available before the kmem allocator is working (in fact,
2070  * it is called by the kmem allocator init code).  In any case, there
2071  * are quite a few extra entries for future users.
2072  */
2073 #define	NCPU_SETUPS	20
2074 
2075 struct cpu_setup {
2076 	cpu_setup_func_t *func;
2077 	void *arg;
2078 } cpu_setups[NCPU_SETUPS];
2079 
2080 void
2081 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2082 {
2083 	int i;
2084 
2085 	ASSERT(MUTEX_HELD(&cpu_lock));
2086 
2087 	for (i = 0; i < NCPU_SETUPS; i++)
2088 		if (cpu_setups[i].func == NULL)
2089 			break;
2090 	if (i >= NCPU_SETUPS)
2091 		cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2092 
2093 	cpu_setups[i].func = func;
2094 	cpu_setups[i].arg = arg;
2095 }
2096 
2097 void
2098 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2099 {
2100 	int i;
2101 
2102 	ASSERT(MUTEX_HELD(&cpu_lock));
2103 
2104 	for (i = 0; i < NCPU_SETUPS; i++)
2105 		if ((cpu_setups[i].func == func) &&
2106 		    (cpu_setups[i].arg == arg))
2107 			break;
2108 	if (i >= NCPU_SETUPS)
2109 		cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2110 		    "deregister");
2111 
2112 	cpu_setups[i].func = NULL;
2113 	cpu_setups[i].arg = 0;
2114 }
2115 
2116 /*
2117  * Call any state change hooks for this CPU, ignore any errors.
2118  */
2119 void
2120 cpu_state_change_notify(int id, cpu_setup_t what)
2121 {
2122 	int i;
2123 
2124 	ASSERT(MUTEX_HELD(&cpu_lock));
2125 
2126 	for (i = 0; i < NCPU_SETUPS; i++) {
2127 		if (cpu_setups[i].func != NULL) {
2128 			cpu_setups[i].func(what, id, cpu_setups[i].arg);
2129 		}
2130 	}
2131 }
2132 
2133 /*
2134  * Call any state change hooks for this CPU, undo it if error found.
2135  */
2136 static int
2137 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2138 {
2139 	int i;
2140 	int retval = 0;
2141 
2142 	ASSERT(MUTEX_HELD(&cpu_lock));
2143 
2144 	for (i = 0; i < NCPU_SETUPS; i++) {
2145 		if (cpu_setups[i].func != NULL) {
2146 			retval = cpu_setups[i].func(what, id,
2147 			    cpu_setups[i].arg);
2148 			if (retval) {
2149 				for (i--; i >= 0; i--) {
2150 					if (cpu_setups[i].func != NULL)
2151 						cpu_setups[i].func(undo,
2152 						    id, cpu_setups[i].arg);
2153 				}
2154 				break;
2155 			}
2156 		}
2157 	}
2158 	return (retval);
2159 }
2160 
2161 /*
2162  * Export information about this CPU via the kstat mechanism.
2163  */
2164 static struct {
2165 	kstat_named_t ci_state;
2166 	kstat_named_t ci_state_begin;
2167 	kstat_named_t ci_cpu_type;
2168 	kstat_named_t ci_fpu_type;
2169 	kstat_named_t ci_clock_MHz;
2170 	kstat_named_t ci_chip_id;
2171 	kstat_named_t ci_implementation;
2172 	kstat_named_t ci_brandstr;
2173 	kstat_named_t ci_core_id;
2174 	kstat_named_t ci_curr_clock_Hz;
2175 	kstat_named_t ci_supp_freq_Hz;
2176 	kstat_named_t ci_pg_id;
2177 #if defined(__sparcv9)
2178 	kstat_named_t ci_device_ID;
2179 	kstat_named_t ci_cpu_fru;
2180 #endif
2181 #if defined(__x86)
2182 	kstat_named_t ci_vendorstr;
2183 	kstat_named_t ci_family;
2184 	kstat_named_t ci_model;
2185 	kstat_named_t ci_step;
2186 	kstat_named_t ci_clogid;
2187 	kstat_named_t ci_pkg_core_id;
2188 	kstat_named_t ci_ncpuperchip;
2189 	kstat_named_t ci_ncoreperchip;
2190 	kstat_named_t ci_max_cstates;
2191 	kstat_named_t ci_curr_cstate;
2192 	kstat_named_t ci_cacheid;
2193 	kstat_named_t ci_sktstr;
2194 #endif
2195 } cpu_info_template = {
2196 	{ "state",			KSTAT_DATA_CHAR },
2197 	{ "state_begin",		KSTAT_DATA_LONG },
2198 	{ "cpu_type",			KSTAT_DATA_CHAR },
2199 	{ "fpu_type",			KSTAT_DATA_CHAR },
2200 	{ "clock_MHz",			KSTAT_DATA_LONG },
2201 	{ "chip_id",			KSTAT_DATA_LONG },
2202 	{ "implementation",		KSTAT_DATA_STRING },
2203 	{ "brand",			KSTAT_DATA_STRING },
2204 	{ "core_id",			KSTAT_DATA_LONG },
2205 	{ "current_clock_Hz",		KSTAT_DATA_UINT64 },
2206 	{ "supported_frequencies_Hz",	KSTAT_DATA_STRING },
2207 	{ "pg_id",			KSTAT_DATA_LONG },
2208 #if defined(__sparcv9)
2209 	{ "device_ID",			KSTAT_DATA_UINT64 },
2210 	{ "cpu_fru",			KSTAT_DATA_STRING },
2211 #endif
2212 #if defined(__x86)
2213 	{ "vendor_id",			KSTAT_DATA_STRING },
2214 	{ "family",			KSTAT_DATA_INT32 },
2215 	{ "model",			KSTAT_DATA_INT32 },
2216 	{ "stepping",			KSTAT_DATA_INT32 },
2217 	{ "clog_id",			KSTAT_DATA_INT32 },
2218 	{ "pkg_core_id",		KSTAT_DATA_LONG },
2219 	{ "ncpu_per_chip",		KSTAT_DATA_INT32 },
2220 	{ "ncore_per_chip",		KSTAT_DATA_INT32 },
2221 	{ "supported_max_cstates",	KSTAT_DATA_INT32 },
2222 	{ "current_cstate",		KSTAT_DATA_INT32 },
2223 	{ "cache_id",			KSTAT_DATA_INT32 },
2224 	{ "socket_type",		KSTAT_DATA_STRING },
2225 #endif
2226 };
2227 
2228 static kmutex_t cpu_info_template_lock;
2229 
2230 static int
2231 cpu_info_kstat_update(kstat_t *ksp, int rw)
2232 {
2233 	cpu_t	*cp = ksp->ks_private;
2234 	const char *pi_state;
2235 
2236 	if (rw == KSTAT_WRITE)
2237 		return (EACCES);
2238 
2239 #if defined(__x86)
2240 	/* Is the cpu still initialising itself? */
2241 	if (cpuid_checkpass(cp, 1) == 0)
2242 		return (ENXIO);
2243 #endif
2244 	switch (cp->cpu_type_info.pi_state) {
2245 	case P_ONLINE:
2246 		pi_state = PS_ONLINE;
2247 		break;
2248 	case P_POWEROFF:
2249 		pi_state = PS_POWEROFF;
2250 		break;
2251 	case P_NOINTR:
2252 		pi_state = PS_NOINTR;
2253 		break;
2254 	case P_FAULTED:
2255 		pi_state = PS_FAULTED;
2256 		break;
2257 	case P_SPARE:
2258 		pi_state = PS_SPARE;
2259 		break;
2260 	case P_OFFLINE:
2261 		pi_state = PS_OFFLINE;
2262 		break;
2263 	default:
2264 		pi_state = "unknown";
2265 	}
2266 	(void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2267 	cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2268 	(void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2269 	    cp->cpu_type_info.pi_processor_type, 15);
2270 	(void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2271 	    cp->cpu_type_info.pi_fputypes, 15);
2272 	cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2273 	cpu_info_template.ci_chip_id.value.l =
2274 	    pg_plat_hw_instance_id(cp, PGHW_CHIP);
2275 	kstat_named_setstr(&cpu_info_template.ci_implementation,
2276 	    cp->cpu_idstr);
2277 	kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2278 	cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2279 	cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2280 	    cp->cpu_curr_clock;
2281 	cpu_info_template.ci_pg_id.value.l =
2282 	    cp->cpu_pg && cp->cpu_pg->cmt_lineage ?
2283 	    cp->cpu_pg->cmt_lineage->pg_id : -1;
2284 	kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2285 	    cp->cpu_supp_freqs);
2286 #if defined(__sparcv9)
2287 	cpu_info_template.ci_device_ID.value.ui64 =
2288 	    cpunodes[cp->cpu_id].device_id;
2289 	kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2290 #endif
2291 #if defined(__x86)
2292 	kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2293 	    cpuid_getvendorstr(cp));
2294 	cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2295 	cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2296 	cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2297 	cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2298 	cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2299 	cpu_info_template.ci_ncoreperchip.value.l =
2300 	    cpuid_get_ncore_per_chip(cp);
2301 	cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2302 	cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2303 	cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp);
2304 	cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp);
2305 	kstat_named_setstr(&cpu_info_template.ci_sktstr,
2306 	    cpuid_getsocketstr(cp));
2307 #endif
2308 
2309 	return (0);
2310 }
2311 
2312 static void
2313 cpu_info_kstat_create(cpu_t *cp)
2314 {
2315 	zoneid_t zoneid;
2316 
2317 	ASSERT(MUTEX_HELD(&cpu_lock));
2318 
2319 	if (pool_pset_enabled())
2320 		zoneid = GLOBAL_ZONEID;
2321 	else
2322 		zoneid = ALL_ZONES;
2323 	if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2324 	    NULL, "misc", KSTAT_TYPE_NAMED,
2325 	    sizeof (cpu_info_template) / sizeof (kstat_named_t),
2326 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) {
2327 		cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2328 #if defined(__sparcv9)
2329 		cp->cpu_info_kstat->ks_data_size +=
2330 		    strlen(cpu_fru_fmri(cp)) + 1;
2331 #endif
2332 #if defined(__x86)
2333 		cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2334 #endif
2335 		if (cp->cpu_supp_freqs != NULL)
2336 			cp->cpu_info_kstat->ks_data_size +=
2337 			    strlen(cp->cpu_supp_freqs) + 1;
2338 		cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2339 		cp->cpu_info_kstat->ks_data = &cpu_info_template;
2340 		cp->cpu_info_kstat->ks_private = cp;
2341 		cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2342 		kstat_install(cp->cpu_info_kstat);
2343 	}
2344 }
2345 
2346 static void
2347 cpu_info_kstat_destroy(cpu_t *cp)
2348 {
2349 	ASSERT(MUTEX_HELD(&cpu_lock));
2350 
2351 	kstat_delete(cp->cpu_info_kstat);
2352 	cp->cpu_info_kstat = NULL;
2353 }
2354 
2355 /*
2356  * Create and install kstats for the boot CPU.
2357  */
2358 void
2359 cpu_kstat_init(cpu_t *cp)
2360 {
2361 	mutex_enter(&cpu_lock);
2362 	cpu_info_kstat_create(cp);
2363 	cpu_stats_kstat_create(cp);
2364 	cpu_create_intrstat(cp);
2365 	cpu_set_state(cp);
2366 	mutex_exit(&cpu_lock);
2367 }
2368 
2369 /*
2370  * Make visible to the zone that subset of the cpu information that would be
2371  * initialized when a cpu is configured (but still offline).
2372  */
2373 void
2374 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2375 {
2376 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2377 
2378 	ASSERT(MUTEX_HELD(&cpu_lock));
2379 	ASSERT(pool_pset_enabled());
2380 	ASSERT(cp != NULL);
2381 
2382 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2383 		zone->zone_ncpus++;
2384 		ASSERT(zone->zone_ncpus <= ncpus);
2385 	}
2386 	if (cp->cpu_info_kstat != NULL)
2387 		kstat_zone_add(cp->cpu_info_kstat, zoneid);
2388 }
2389 
2390 /*
2391  * Make visible to the zone that subset of the cpu information that would be
2392  * initialized when a previously configured cpu is onlined.
2393  */
2394 void
2395 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2396 {
2397 	kstat_t *ksp;
2398 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2399 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2400 	processorid_t cpun;
2401 
2402 	ASSERT(MUTEX_HELD(&cpu_lock));
2403 	ASSERT(pool_pset_enabled());
2404 	ASSERT(cp != NULL);
2405 	ASSERT(cpu_is_active(cp));
2406 
2407 	cpun = cp->cpu_id;
2408 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2409 		zone->zone_ncpus_online++;
2410 		ASSERT(zone->zone_ncpus_online <= ncpus_online);
2411 	}
2412 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2413 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2414 	    != NULL) {
2415 		kstat_zone_add(ksp, zoneid);
2416 		kstat_rele(ksp);
2417 	}
2418 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2419 		kstat_zone_add(ksp, zoneid);
2420 		kstat_rele(ksp);
2421 	}
2422 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2423 		kstat_zone_add(ksp, zoneid);
2424 		kstat_rele(ksp);
2425 	}
2426 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2427 	    NULL) {
2428 		kstat_zone_add(ksp, zoneid);
2429 		kstat_rele(ksp);
2430 	}
2431 }
2432 
2433 /*
2434  * Update relevant kstats such that cpu is now visible to processes
2435  * executing in specified zone.
2436  */
2437 void
2438 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2439 {
2440 	cpu_visibility_configure(cp, zone);
2441 	if (cpu_is_active(cp))
2442 		cpu_visibility_online(cp, zone);
2443 }
2444 
2445 /*
2446  * Make invisible to the zone that subset of the cpu information that would be
2447  * torn down when a previously offlined cpu is unconfigured.
2448  */
2449 void
2450 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2451 {
2452 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2453 
2454 	ASSERT(MUTEX_HELD(&cpu_lock));
2455 	ASSERT(pool_pset_enabled());
2456 	ASSERT(cp != NULL);
2457 
2458 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2459 		ASSERT(zone->zone_ncpus != 0);
2460 		zone->zone_ncpus--;
2461 	}
2462 	if (cp->cpu_info_kstat)
2463 		kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2464 }
2465 
2466 /*
2467  * Make invisible to the zone that subset of the cpu information that would be
2468  * torn down when a cpu is offlined (but still configured).
2469  */
2470 void
2471 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2472 {
2473 	kstat_t *ksp;
2474 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2475 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2476 	processorid_t cpun;
2477 
2478 	ASSERT(MUTEX_HELD(&cpu_lock));
2479 	ASSERT(pool_pset_enabled());
2480 	ASSERT(cp != NULL);
2481 	ASSERT(cpu_is_active(cp));
2482 
2483 	cpun = cp->cpu_id;
2484 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2485 		ASSERT(zone->zone_ncpus_online != 0);
2486 		zone->zone_ncpus_online--;
2487 	}
2488 
2489 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2490 	    NULL) {
2491 		kstat_zone_remove(ksp, zoneid);
2492 		kstat_rele(ksp);
2493 	}
2494 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2495 		kstat_zone_remove(ksp, zoneid);
2496 		kstat_rele(ksp);
2497 	}
2498 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2499 		kstat_zone_remove(ksp, zoneid);
2500 		kstat_rele(ksp);
2501 	}
2502 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2503 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2504 	    != NULL) {
2505 		kstat_zone_remove(ksp, zoneid);
2506 		kstat_rele(ksp);
2507 	}
2508 }
2509 
2510 /*
2511  * Update relevant kstats such that cpu is no longer visible to processes
2512  * executing in specified zone.
2513  */
2514 void
2515 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2516 {
2517 	if (cpu_is_active(cp))
2518 		cpu_visibility_offline(cp, zone);
2519 	cpu_visibility_unconfigure(cp, zone);
2520 }
2521 
2522 /*
2523  * Bind a thread to a CPU as requested.
2524  */
2525 int
2526 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2527     int *error)
2528 {
2529 	processorid_t	binding;
2530 	cpu_t		*cp = NULL;
2531 
2532 	ASSERT(MUTEX_HELD(&cpu_lock));
2533 	ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2534 
2535 	thread_lock(tp);
2536 
2537 	/*
2538 	 * Record old binding, but change the obind, which was initialized
2539 	 * to PBIND_NONE, only if this thread has a binding.  This avoids
2540 	 * reporting PBIND_NONE for a process when some LWPs are bound.
2541 	 */
2542 	binding = tp->t_bind_cpu;
2543 	if (binding != PBIND_NONE)
2544 		*obind = binding;	/* record old binding */
2545 
2546 	switch (bind) {
2547 	case PBIND_QUERY:
2548 		/* Just return the old binding */
2549 		thread_unlock(tp);
2550 		return (0);
2551 
2552 	case PBIND_QUERY_TYPE:
2553 		/* Return the binding type */
2554 		*obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2555 		thread_unlock(tp);
2556 		return (0);
2557 
2558 	case PBIND_SOFT:
2559 		/*
2560 		 *  Set soft binding for this thread and return the actual
2561 		 *  binding
2562 		 */
2563 		TB_CPU_SOFT_SET(tp);
2564 		thread_unlock(tp);
2565 		return (0);
2566 
2567 	case PBIND_HARD:
2568 		/*
2569 		 *  Set hard binding for this thread and return the actual
2570 		 *  binding
2571 		 */
2572 		TB_CPU_HARD_SET(tp);
2573 		thread_unlock(tp);
2574 		return (0);
2575 
2576 	default:
2577 		break;
2578 	}
2579 
2580 	/*
2581 	 * If this thread/LWP cannot be bound because of permission
2582 	 * problems, just note that and return success so that the
2583 	 * other threads/LWPs will be bound.  This is the way
2584 	 * processor_bind() is defined to work.
2585 	 *
2586 	 * Binding will get EPERM if the thread is of system class
2587 	 * or hasprocperm() fails.
2588 	 */
2589 	if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2590 		*error = EPERM;
2591 		thread_unlock(tp);
2592 		return (0);
2593 	}
2594 
2595 	binding = bind;
2596 	if (binding != PBIND_NONE) {
2597 		cp = cpu_get((processorid_t)binding);
2598 		/*
2599 		 * Make sure binding is valid and is in right partition.
2600 		 */
2601 		if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2602 			*error = EINVAL;
2603 			thread_unlock(tp);
2604 			return (0);
2605 		}
2606 	}
2607 	tp->t_bind_cpu = binding;	/* set new binding */
2608 
2609 	/*
2610 	 * If there is no system-set reason for affinity, set
2611 	 * the t_bound_cpu field to reflect the binding.
2612 	 */
2613 	if (tp->t_affinitycnt == 0) {
2614 		if (binding == PBIND_NONE) {
2615 			/*
2616 			 * We may need to adjust disp_max_unbound_pri
2617 			 * since we're becoming unbound.
2618 			 */
2619 			disp_adjust_unbound_pri(tp);
2620 
2621 			tp->t_bound_cpu = NULL;	/* set new binding */
2622 
2623 			/*
2624 			 * Move thread to lgroup with strongest affinity
2625 			 * after unbinding
2626 			 */
2627 			if (tp->t_lgrp_affinity)
2628 				lgrp_move_thread(tp,
2629 				    lgrp_choose(tp, tp->t_cpupart), 1);
2630 
2631 			if (tp->t_state == TS_ONPROC &&
2632 			    tp->t_cpu->cpu_part != tp->t_cpupart)
2633 				cpu_surrender(tp);
2634 		} else {
2635 			lpl_t	*lpl;
2636 
2637 			tp->t_bound_cpu = cp;
2638 			ASSERT(cp->cpu_lpl != NULL);
2639 
2640 			/*
2641 			 * Set home to lgroup with most affinity containing CPU
2642 			 * that thread is being bound or minimum bounding
2643 			 * lgroup if no affinities set
2644 			 */
2645 			if (tp->t_lgrp_affinity)
2646 				lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2647 				    LGRP_NONE, B_FALSE);
2648 			else
2649 				lpl = cp->cpu_lpl;
2650 
2651 			if (tp->t_lpl != lpl) {
2652 				/* can't grab cpu_lock */
2653 				lgrp_move_thread(tp, lpl, 1);
2654 			}
2655 
2656 			/*
2657 			 * Make the thread switch to the bound CPU.
2658 			 * If the thread is runnable, we need to
2659 			 * requeue it even if t_cpu is already set
2660 			 * to the right CPU, since it may be on a
2661 			 * kpreempt queue and need to move to a local
2662 			 * queue.  We could check t_disp_queue to
2663 			 * avoid unnecessary overhead if it's already
2664 			 * on the right queue, but since this isn't
2665 			 * a performance-critical operation it doesn't
2666 			 * seem worth the extra code and complexity.
2667 			 *
2668 			 * If the thread is weakbound to the cpu then it will
2669 			 * resist the new binding request until the weak
2670 			 * binding drops.  The cpu_surrender or requeueing
2671 			 * below could be skipped in such cases (since it
2672 			 * will have no effect), but that would require
2673 			 * thread_allowmigrate to acquire thread_lock so
2674 			 * we'll take the very occasional hit here instead.
2675 			 */
2676 			if (tp->t_state == TS_ONPROC) {
2677 				cpu_surrender(tp);
2678 			} else if (tp->t_state == TS_RUN) {
2679 				cpu_t *ocp = tp->t_cpu;
2680 
2681 				(void) dispdeq(tp);
2682 				setbackdq(tp);
2683 				/*
2684 				 * Either on the bound CPU's disp queue now,
2685 				 * or swapped out or on the swap queue.
2686 				 */
2687 				ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2688 				    tp->t_weakbound_cpu == ocp ||
2689 				    (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2690 				    != TS_LOAD);
2691 			}
2692 		}
2693 	}
2694 
2695 	/*
2696 	 * Our binding has changed; set TP_CHANGEBIND.
2697 	 */
2698 	tp->t_proc_flag |= TP_CHANGEBIND;
2699 	aston(tp);
2700 
2701 	thread_unlock(tp);
2702 
2703 	return (0);
2704 }
2705 
2706 #if CPUSET_WORDS > 1
2707 
2708 /*
2709  * Functions for implementing cpuset operations when a cpuset is more
2710  * than one word.  On platforms where a cpuset is a single word these
2711  * are implemented as macros in cpuvar.h.
2712  */
2713 
2714 void
2715 cpuset_all(cpuset_t *s)
2716 {
2717 	int i;
2718 
2719 	for (i = 0; i < CPUSET_WORDS; i++)
2720 		s->cpub[i] = ~0UL;
2721 }
2722 
2723 void
2724 cpuset_all_but(cpuset_t *s, uint_t cpu)
2725 {
2726 	cpuset_all(s);
2727 	CPUSET_DEL(*s, cpu);
2728 }
2729 
2730 void
2731 cpuset_only(cpuset_t *s, uint_t cpu)
2732 {
2733 	CPUSET_ZERO(*s);
2734 	CPUSET_ADD(*s, cpu);
2735 }
2736 
2737 int
2738 cpuset_isnull(cpuset_t *s)
2739 {
2740 	int i;
2741 
2742 	for (i = 0; i < CPUSET_WORDS; i++)
2743 		if (s->cpub[i] != 0)
2744 			return (0);
2745 	return (1);
2746 }
2747 
2748 int
2749 cpuset_cmp(cpuset_t *s1, cpuset_t *s2)
2750 {
2751 	int i;
2752 
2753 	for (i = 0; i < CPUSET_WORDS; i++)
2754 		if (s1->cpub[i] != s2->cpub[i])
2755 			return (0);
2756 	return (1);
2757 }
2758 
2759 uint_t
2760 cpuset_find(cpuset_t *s)
2761 {
2762 
2763 	uint_t	i;
2764 	uint_t	cpu = (uint_t)-1;
2765 
2766 	/*
2767 	 * Find a cpu in the cpuset
2768 	 */
2769 	for (i = 0; i < CPUSET_WORDS; i++) {
2770 		cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2771 		if (cpu != (uint_t)-1) {
2772 			cpu += i * BT_NBIPUL;
2773 			break;
2774 		}
2775 	}
2776 	return (cpu);
2777 }
2778 
2779 void
2780 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2781 {
2782 	int	i, j;
2783 	uint_t	bit;
2784 
2785 	/*
2786 	 * First, find the smallest cpu id in the set.
2787 	 */
2788 	for (i = 0; i < CPUSET_WORDS; i++) {
2789 		if (s->cpub[i] != 0) {
2790 			bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2791 			ASSERT(bit != (uint_t)-1);
2792 			*smallestid = bit + (i * BT_NBIPUL);
2793 
2794 			/*
2795 			 * Now find the largest cpu id in
2796 			 * the set and return immediately.
2797 			 * Done in an inner loop to avoid
2798 			 * having to break out of the first
2799 			 * loop.
2800 			 */
2801 			for (j = CPUSET_WORDS - 1; j >= i; j--) {
2802 				if (s->cpub[j] != 0) {
2803 					bit = (uint_t)(highbit(s->cpub[j]) - 1);
2804 					ASSERT(bit != (uint_t)-1);
2805 					*largestid = bit + (j * BT_NBIPUL);
2806 					ASSERT(*largestid >= *smallestid);
2807 					return;
2808 				}
2809 			}
2810 
2811 			/*
2812 			 * If this code is reached, a
2813 			 * smallestid was found, but not a
2814 			 * largestid. The cpuset must have
2815 			 * been changed during the course
2816 			 * of this function call.
2817 			 */
2818 			ASSERT(0);
2819 		}
2820 	}
2821 	*smallestid = *largestid = CPUSET_NOTINSET;
2822 }
2823 
2824 #endif	/* CPUSET_WORDS */
2825 
2826 /*
2827  * Unbind threads bound to specified CPU.
2828  *
2829  * If `unbind_all_threads' is true, unbind all user threads bound to a given
2830  * CPU. Otherwise unbind all soft-bound user threads.
2831  */
2832 int
2833 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2834 {
2835 	processorid_t obind;
2836 	kthread_t *tp;
2837 	int ret = 0;
2838 	proc_t *pp;
2839 	int err, berr = 0;
2840 
2841 	ASSERT(MUTEX_HELD(&cpu_lock));
2842 
2843 	mutex_enter(&pidlock);
2844 	for (pp = practive; pp != NULL; pp = pp->p_next) {
2845 		mutex_enter(&pp->p_lock);
2846 		tp = pp->p_tlist;
2847 		/*
2848 		 * Skip zombies, kernel processes, and processes in
2849 		 * other zones, if called from a non-global zone.
2850 		 */
2851 		if (tp == NULL || (pp->p_flag & SSYS) ||
2852 		    !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2853 			mutex_exit(&pp->p_lock);
2854 			continue;
2855 		}
2856 		do {
2857 			if (tp->t_bind_cpu != cpu)
2858 				continue;
2859 			/*
2860 			 * Skip threads with hard binding when
2861 			 * `unbind_all_threads' is not specified.
2862 			 */
2863 			if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2864 				continue;
2865 			err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2866 			if (ret == 0)
2867 				ret = err;
2868 		} while ((tp = tp->t_forw) != pp->p_tlist);
2869 		mutex_exit(&pp->p_lock);
2870 	}
2871 	mutex_exit(&pidlock);
2872 	if (ret == 0)
2873 		ret = berr;
2874 	return (ret);
2875 }
2876 
2877 
2878 /*
2879  * Destroy all remaining bound threads on a cpu.
2880  */
2881 void
2882 cpu_destroy_bound_threads(cpu_t *cp)
2883 {
2884 	extern id_t syscid;
2885 	register kthread_id_t	t, tlist, tnext;
2886 
2887 	/*
2888 	 * Destroy all remaining bound threads on the cpu.  This
2889 	 * should include both the interrupt threads and the idle thread.
2890 	 * This requires some care, since we need to traverse the
2891 	 * thread list with the pidlock mutex locked, but thread_free
2892 	 * also locks the pidlock mutex.  So, we collect the threads
2893 	 * we're going to reap in a list headed by "tlist", then we
2894 	 * unlock the pidlock mutex and traverse the tlist list,
2895 	 * doing thread_free's on the thread's.	 Simple, n'est pas?
2896 	 * Also, this depends on thread_free not mucking with the
2897 	 * t_next and t_prev links of the thread.
2898 	 */
2899 
2900 	if ((t = curthread) != NULL) {
2901 
2902 		tlist = NULL;
2903 		mutex_enter(&pidlock);
2904 		do {
2905 			tnext = t->t_next;
2906 			if (t->t_bound_cpu == cp) {
2907 
2908 				/*
2909 				 * We've found a bound thread, carefully unlink
2910 				 * it out of the thread list, and add it to
2911 				 * our "tlist".	 We "know" we don't have to
2912 				 * worry about unlinking curthread (the thread
2913 				 * that is executing this code).
2914 				 */
2915 				t->t_next->t_prev = t->t_prev;
2916 				t->t_prev->t_next = t->t_next;
2917 				t->t_next = tlist;
2918 				tlist = t;
2919 				ASSERT(t->t_cid == syscid);
2920 				/* wake up anyone blocked in thread_join */
2921 				cv_broadcast(&t->t_joincv);
2922 				/*
2923 				 * t_lwp set by interrupt threads and not
2924 				 * cleared.
2925 				 */
2926 				t->t_lwp = NULL;
2927 				/*
2928 				 * Pause and idle threads always have
2929 				 * t_state set to TS_ONPROC.
2930 				 */
2931 				t->t_state = TS_FREE;
2932 				t->t_prev = NULL;	/* Just in case */
2933 			}
2934 
2935 		} while ((t = tnext) != curthread);
2936 
2937 		mutex_exit(&pidlock);
2938 
2939 		mutex_sync();
2940 		for (t = tlist; t != NULL; t = tnext) {
2941 			tnext = t->t_next;
2942 			thread_free(t);
2943 		}
2944 	}
2945 }
2946 
2947 /*
2948  * Update the cpu_supp_freqs of this cpu. This information is returned
2949  * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
2950  * maintain the kstat data size.
2951  */
2952 void
2953 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
2954 {
2955 	char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
2956 	const char *lfreqs = clkstr;
2957 	boolean_t kstat_exists = B_FALSE;
2958 	kstat_t *ksp;
2959 	size_t len;
2960 
2961 	/*
2962 	 * A NULL pointer means we only support one speed.
2963 	 */
2964 	if (freqs == NULL)
2965 		(void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
2966 		    cp->cpu_curr_clock);
2967 	else
2968 		lfreqs = freqs;
2969 
2970 	/*
2971 	 * Make sure the frequency doesn't change while a snapshot is
2972 	 * going on. Of course, we only need to worry about this if
2973 	 * the kstat exists.
2974 	 */
2975 	if ((ksp = cp->cpu_info_kstat) != NULL) {
2976 		mutex_enter(ksp->ks_lock);
2977 		kstat_exists = B_TRUE;
2978 	}
2979 
2980 	/*
2981 	 * Free any previously allocated string and if the kstat
2982 	 * already exists, then update its data size.
2983 	 */
2984 	if (cp->cpu_supp_freqs != NULL) {
2985 		len = strlen(cp->cpu_supp_freqs) + 1;
2986 		kmem_free(cp->cpu_supp_freqs, len);
2987 		if (kstat_exists)
2988 			ksp->ks_data_size -= len;
2989 	}
2990 
2991 	/*
2992 	 * Allocate the new string and set the pointer.
2993 	 */
2994 	len = strlen(lfreqs) + 1;
2995 	cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
2996 	(void) strcpy(cp->cpu_supp_freqs, lfreqs);
2997 
2998 	/*
2999 	 * If the kstat already exists then update the data size and
3000 	 * free the lock.
3001 	 */
3002 	if (kstat_exists) {
3003 		ksp->ks_data_size += len;
3004 		mutex_exit(ksp->ks_lock);
3005 	}
3006 }
3007 
3008 /*
3009  * Indicate the current CPU's clock freqency (in Hz).
3010  * The calling context must be such that CPU references are safe.
3011  */
3012 void
3013 cpu_set_curr_clock(uint64_t new_clk)
3014 {
3015 	uint64_t old_clk;
3016 
3017 	old_clk = CPU->cpu_curr_clock;
3018 	CPU->cpu_curr_clock = new_clk;
3019 
3020 	/*
3021 	 * The cpu-change-speed DTrace probe exports the frequency in Hz
3022 	 */
3023 	DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
3024 	    uint64_t, old_clk, uint64_t, new_clk);
3025 }
3026 
3027 /*
3028  * processor_info(2) and p_online(2) status support functions
3029  *   The constants returned by the cpu_get_state() and cpu_get_state_str() are
3030  *   for use in communicating processor state information to userland.  Kernel
3031  *   subsystems should only be using the cpu_flags value directly.  Subsystems
3032  *   modifying cpu_flags should record the state change via a call to the
3033  *   cpu_set_state().
3034  */
3035 
3036 /*
3037  * Update the pi_state of this CPU.  This function provides the CPU status for
3038  * the information returned by processor_info(2).
3039  */
3040 void
3041 cpu_set_state(cpu_t *cpu)
3042 {
3043 	ASSERT(MUTEX_HELD(&cpu_lock));
3044 	cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3045 	cpu->cpu_state_begin = gethrestime_sec();
3046 	pool_cpu_mod = gethrtime();
3047 }
3048 
3049 /*
3050  * Return offline/online/other status for the indicated CPU.  Use only for
3051  * communication with user applications; cpu_flags provides the in-kernel
3052  * interface.
3053  */
3054 int
3055 cpu_get_state(cpu_t *cpu)
3056 {
3057 	ASSERT(MUTEX_HELD(&cpu_lock));
3058 	if (cpu->cpu_flags & CPU_POWEROFF)
3059 		return (P_POWEROFF);
3060 	else if (cpu->cpu_flags & CPU_FAULTED)
3061 		return (P_FAULTED);
3062 	else if (cpu->cpu_flags & CPU_SPARE)
3063 		return (P_SPARE);
3064 	else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3065 		return (P_OFFLINE);
3066 	else if (cpu->cpu_flags & CPU_ENABLE)
3067 		return (P_ONLINE);
3068 	else
3069 		return (P_NOINTR);
3070 }
3071 
3072 /*
3073  * Return processor_info(2) state as a string.
3074  */
3075 const char *
3076 cpu_get_state_str(cpu_t *cpu)
3077 {
3078 	const char *string;
3079 
3080 	switch (cpu_get_state(cpu)) {
3081 	case P_ONLINE:
3082 		string = PS_ONLINE;
3083 		break;
3084 	case P_POWEROFF:
3085 		string = PS_POWEROFF;
3086 		break;
3087 	case P_NOINTR:
3088 		string = PS_NOINTR;
3089 		break;
3090 	case P_SPARE:
3091 		string = PS_SPARE;
3092 		break;
3093 	case P_FAULTED:
3094 		string = PS_FAULTED;
3095 		break;
3096 	case P_OFFLINE:
3097 		string = PS_OFFLINE;
3098 		break;
3099 	default:
3100 		string = "unknown";
3101 		break;
3102 	}
3103 	return (string);
3104 }
3105 
3106 /*
3107  * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3108  * kstats, respectively.  This is done when a CPU is initialized or placed
3109  * online via p_online(2).
3110  */
3111 static void
3112 cpu_stats_kstat_create(cpu_t *cp)
3113 {
3114 	int 	instance = cp->cpu_id;
3115 	char 	*module = "cpu";
3116 	char 	*class = "misc";
3117 	kstat_t	*ksp;
3118 	zoneid_t zoneid;
3119 
3120 	ASSERT(MUTEX_HELD(&cpu_lock));
3121 
3122 	if (pool_pset_enabled())
3123 		zoneid = GLOBAL_ZONEID;
3124 	else
3125 		zoneid = ALL_ZONES;
3126 	/*
3127 	 * Create named kstats
3128 	 */
3129 #define	CPU_STATS_KS_CREATE(name, tsize, update_func)                    \
3130 	ksp = kstat_create_zone(module, instance, (name), class,         \
3131 	    KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0,       \
3132 	    zoneid);                                                     \
3133 	if (ksp != NULL) {                                               \
3134 		ksp->ks_private = cp;                                    \
3135 		ksp->ks_update = (update_func);                          \
3136 		kstat_install(ksp);                                      \
3137 	} else                                                           \
3138 		cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3139 		    module, instance, (name));
3140 
3141 	CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
3142 	    cpu_sys_stats_ks_update);
3143 	CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
3144 	    cpu_vm_stats_ks_update);
3145 
3146 	/*
3147 	 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3148 	 */
3149 	ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3150 	    "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3151 	if (ksp != NULL) {
3152 		ksp->ks_update = cpu_stat_ks_update;
3153 		ksp->ks_private = cp;
3154 		kstat_install(ksp);
3155 	}
3156 }
3157 
3158 static void
3159 cpu_stats_kstat_destroy(cpu_t *cp)
3160 {
3161 	char ks_name[KSTAT_STRLEN];
3162 
3163 	(void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3164 	kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3165 
3166 	kstat_delete_byname("cpu", cp->cpu_id, "sys");
3167 	kstat_delete_byname("cpu", cp->cpu_id, "vm");
3168 }
3169 
3170 static int
3171 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3172 {
3173 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3174 	struct cpu_sys_stats_ks_data *csskd;
3175 	cpu_sys_stats_t *css;
3176 	hrtime_t msnsecs[NCMSTATES];
3177 	int	i;
3178 
3179 	if (rw == KSTAT_WRITE)
3180 		return (EACCES);
3181 
3182 	csskd = ksp->ks_data;
3183 	css = &cp->cpu_stats.sys;
3184 
3185 	/*
3186 	 * Read CPU mstate, but compare with the last values we
3187 	 * received to make sure that the returned kstats never
3188 	 * decrease.
3189 	 */
3190 
3191 	get_cpu_mstate(cp, msnsecs);
3192 	if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3193 		msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3194 	if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3195 		msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3196 	if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3197 		msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3198 
3199 	bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3200 	    sizeof (cpu_sys_stats_ks_data_template));
3201 
3202 	csskd->cpu_ticks_wait.value.ui64 = 0;
3203 	csskd->wait_ticks_io.value.ui64 = 0;
3204 
3205 	csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3206 	csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3207 	csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3208 	csskd->cpu_ticks_idle.value.ui64 =
3209 	    NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3210 	csskd->cpu_ticks_user.value.ui64 =
3211 	    NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3212 	csskd->cpu_ticks_kernel.value.ui64 =
3213 	    NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3214 	csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec;
3215 	csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes;
3216 	csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3217 	csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3218 	csskd->bread.value.ui64 = css->bread;
3219 	csskd->bwrite.value.ui64 = css->bwrite;
3220 	csskd->lread.value.ui64 = css->lread;
3221 	csskd->lwrite.value.ui64 = css->lwrite;
3222 	csskd->phread.value.ui64 = css->phread;
3223 	csskd->phwrite.value.ui64 = css->phwrite;
3224 	csskd->pswitch.value.ui64 = css->pswitch;
3225 	csskd->trap.value.ui64 = css->trap;
3226 	csskd->intr.value.ui64 = 0;
3227 	for (i = 0; i < PIL_MAX; i++)
3228 		csskd->intr.value.ui64 += css->intr[i];
3229 	csskd->syscall.value.ui64 = css->syscall;
3230 	csskd->sysread.value.ui64 = css->sysread;
3231 	csskd->syswrite.value.ui64 = css->syswrite;
3232 	csskd->sysfork.value.ui64 = css->sysfork;
3233 	csskd->sysvfork.value.ui64 = css->sysvfork;
3234 	csskd->sysexec.value.ui64 = css->sysexec;
3235 	csskd->readch.value.ui64 = css->readch;
3236 	csskd->writech.value.ui64 = css->writech;
3237 	csskd->rcvint.value.ui64 = css->rcvint;
3238 	csskd->xmtint.value.ui64 = css->xmtint;
3239 	csskd->mdmint.value.ui64 = css->mdmint;
3240 	csskd->rawch.value.ui64 = css->rawch;
3241 	csskd->canch.value.ui64 = css->canch;
3242 	csskd->outch.value.ui64 = css->outch;
3243 	csskd->msg.value.ui64 = css->msg;
3244 	csskd->sema.value.ui64 = css->sema;
3245 	csskd->namei.value.ui64 = css->namei;
3246 	csskd->ufsiget.value.ui64 = css->ufsiget;
3247 	csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3248 	csskd->ufsipage.value.ui64 = css->ufsipage;
3249 	csskd->ufsinopage.value.ui64 = css->ufsinopage;
3250 	csskd->procovf.value.ui64 = css->procovf;
3251 	csskd->intrthread.value.ui64 = 0;
3252 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3253 		csskd->intrthread.value.ui64 += css->intr[i];
3254 	csskd->intrblk.value.ui64 = css->intrblk;
3255 	csskd->intrunpin.value.ui64 = css->intrunpin;
3256 	csskd->idlethread.value.ui64 = css->idlethread;
3257 	csskd->inv_swtch.value.ui64 = css->inv_swtch;
3258 	csskd->nthreads.value.ui64 = css->nthreads;
3259 	csskd->cpumigrate.value.ui64 = css->cpumigrate;
3260 	csskd->xcalls.value.ui64 = css->xcalls;
3261 	csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3262 	csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3263 	csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3264 	csskd->modload.value.ui64 = css->modload;
3265 	csskd->modunload.value.ui64 = css->modunload;
3266 	csskd->bawrite.value.ui64 = css->bawrite;
3267 	csskd->iowait.value.ui64 = css->iowait;
3268 
3269 	return (0);
3270 }
3271 
3272 static int
3273 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3274 {
3275 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3276 	struct cpu_vm_stats_ks_data *cvskd;
3277 	cpu_vm_stats_t *cvs;
3278 
3279 	if (rw == KSTAT_WRITE)
3280 		return (EACCES);
3281 
3282 	cvs = &cp->cpu_stats.vm;
3283 	cvskd = ksp->ks_data;
3284 
3285 	bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3286 	    sizeof (cpu_vm_stats_ks_data_template));
3287 	cvskd->pgrec.value.ui64 = cvs->pgrec;
3288 	cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3289 	cvskd->pgin.value.ui64 = cvs->pgin;
3290 	cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3291 	cvskd->pgout.value.ui64 = cvs->pgout;
3292 	cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3293 	cvskd->swapin.value.ui64 = cvs->swapin;
3294 	cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3295 	cvskd->swapout.value.ui64 = cvs->swapout;
3296 	cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3297 	cvskd->zfod.value.ui64 = cvs->zfod;
3298 	cvskd->dfree.value.ui64 = cvs->dfree;
3299 	cvskd->scan.value.ui64 = cvs->scan;
3300 	cvskd->rev.value.ui64 = cvs->rev;
3301 	cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3302 	cvskd->as_fault.value.ui64 = cvs->as_fault;
3303 	cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3304 	cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3305 	cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3306 	cvskd->softlock.value.ui64 = cvs->softlock;
3307 	cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3308 	cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3309 	cvskd->execpgin.value.ui64 = cvs->execpgin;
3310 	cvskd->execpgout.value.ui64 = cvs->execpgout;
3311 	cvskd->execfree.value.ui64 = cvs->execfree;
3312 	cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3313 	cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3314 	cvskd->anonfree.value.ui64 = cvs->anonfree;
3315 	cvskd->fspgin.value.ui64 = cvs->fspgin;
3316 	cvskd->fspgout.value.ui64 = cvs->fspgout;
3317 	cvskd->fsfree.value.ui64 = cvs->fsfree;
3318 
3319 	return (0);
3320 }
3321 
3322 static int
3323 cpu_stat_ks_update(kstat_t *ksp, int rw)
3324 {
3325 	cpu_stat_t *cso;
3326 	cpu_t *cp;
3327 	int i;
3328 	hrtime_t msnsecs[NCMSTATES];
3329 
3330 	cso = (cpu_stat_t *)ksp->ks_data;
3331 	cp = (cpu_t *)ksp->ks_private;
3332 
3333 	if (rw == KSTAT_WRITE)
3334 		return (EACCES);
3335 
3336 	/*
3337 	 * Read CPU mstate, but compare with the last values we
3338 	 * received to make sure that the returned kstats never
3339 	 * decrease.
3340 	 */
3341 
3342 	get_cpu_mstate(cp, msnsecs);
3343 	msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3344 	msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3345 	msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3346 	if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3347 		cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3348 	if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3349 		cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3350 	if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3351 		cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3352 	cso->cpu_sysinfo.cpu[CPU_WAIT] 	= 0;
3353 	cso->cpu_sysinfo.wait[W_IO] 	= 0;
3354 	cso->cpu_sysinfo.wait[W_SWAP]	= 0;
3355 	cso->cpu_sysinfo.wait[W_PIO]	= 0;
3356 	cso->cpu_sysinfo.bread 		= CPU_STATS(cp, sys.bread);
3357 	cso->cpu_sysinfo.bwrite 	= CPU_STATS(cp, sys.bwrite);
3358 	cso->cpu_sysinfo.lread 		= CPU_STATS(cp, sys.lread);
3359 	cso->cpu_sysinfo.lwrite 	= CPU_STATS(cp, sys.lwrite);
3360 	cso->cpu_sysinfo.phread 	= CPU_STATS(cp, sys.phread);
3361 	cso->cpu_sysinfo.phwrite 	= CPU_STATS(cp, sys.phwrite);
3362 	cso->cpu_sysinfo.pswitch 	= CPU_STATS(cp, sys.pswitch);
3363 	cso->cpu_sysinfo.trap 		= CPU_STATS(cp, sys.trap);
3364 	cso->cpu_sysinfo.intr		= 0;
3365 	for (i = 0; i < PIL_MAX; i++)
3366 		cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3367 	cso->cpu_sysinfo.syscall	= CPU_STATS(cp, sys.syscall);
3368 	cso->cpu_sysinfo.sysread	= CPU_STATS(cp, sys.sysread);
3369 	cso->cpu_sysinfo.syswrite	= CPU_STATS(cp, sys.syswrite);
3370 	cso->cpu_sysinfo.sysfork	= CPU_STATS(cp, sys.sysfork);
3371 	cso->cpu_sysinfo.sysvfork	= CPU_STATS(cp, sys.sysvfork);
3372 	cso->cpu_sysinfo.sysexec	= CPU_STATS(cp, sys.sysexec);
3373 	cso->cpu_sysinfo.readch		= CPU_STATS(cp, sys.readch);
3374 	cso->cpu_sysinfo.writech	= CPU_STATS(cp, sys.writech);
3375 	cso->cpu_sysinfo.rcvint		= CPU_STATS(cp, sys.rcvint);
3376 	cso->cpu_sysinfo.xmtint		= CPU_STATS(cp, sys.xmtint);
3377 	cso->cpu_sysinfo.mdmint		= CPU_STATS(cp, sys.mdmint);
3378 	cso->cpu_sysinfo.rawch		= CPU_STATS(cp, sys.rawch);
3379 	cso->cpu_sysinfo.canch		= CPU_STATS(cp, sys.canch);
3380 	cso->cpu_sysinfo.outch		= CPU_STATS(cp, sys.outch);
3381 	cso->cpu_sysinfo.msg		= CPU_STATS(cp, sys.msg);
3382 	cso->cpu_sysinfo.sema		= CPU_STATS(cp, sys.sema);
3383 	cso->cpu_sysinfo.namei		= CPU_STATS(cp, sys.namei);
3384 	cso->cpu_sysinfo.ufsiget	= CPU_STATS(cp, sys.ufsiget);
3385 	cso->cpu_sysinfo.ufsdirblk	= CPU_STATS(cp, sys.ufsdirblk);
3386 	cso->cpu_sysinfo.ufsipage	= CPU_STATS(cp, sys.ufsipage);
3387 	cso->cpu_sysinfo.ufsinopage	= CPU_STATS(cp, sys.ufsinopage);
3388 	cso->cpu_sysinfo.inodeovf	= 0;
3389 	cso->cpu_sysinfo.fileovf	= 0;
3390 	cso->cpu_sysinfo.procovf	= CPU_STATS(cp, sys.procovf);
3391 	cso->cpu_sysinfo.intrthread	= 0;
3392 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3393 		cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3394 	cso->cpu_sysinfo.intrblk	= CPU_STATS(cp, sys.intrblk);
3395 	cso->cpu_sysinfo.idlethread	= CPU_STATS(cp, sys.idlethread);
3396 	cso->cpu_sysinfo.inv_swtch	= CPU_STATS(cp, sys.inv_swtch);
3397 	cso->cpu_sysinfo.nthreads	= CPU_STATS(cp, sys.nthreads);
3398 	cso->cpu_sysinfo.cpumigrate	= CPU_STATS(cp, sys.cpumigrate);
3399 	cso->cpu_sysinfo.xcalls		= CPU_STATS(cp, sys.xcalls);
3400 	cso->cpu_sysinfo.mutex_adenters	= CPU_STATS(cp, sys.mutex_adenters);
3401 	cso->cpu_sysinfo.rw_rdfails	= CPU_STATS(cp, sys.rw_rdfails);
3402 	cso->cpu_sysinfo.rw_wrfails	= CPU_STATS(cp, sys.rw_wrfails);
3403 	cso->cpu_sysinfo.modload	= CPU_STATS(cp, sys.modload);
3404 	cso->cpu_sysinfo.modunload	= CPU_STATS(cp, sys.modunload);
3405 	cso->cpu_sysinfo.bawrite	= CPU_STATS(cp, sys.bawrite);
3406 	cso->cpu_sysinfo.rw_enters	= 0;
3407 	cso->cpu_sysinfo.win_uo_cnt	= 0;
3408 	cso->cpu_sysinfo.win_uu_cnt	= 0;
3409 	cso->cpu_sysinfo.win_so_cnt	= 0;
3410 	cso->cpu_sysinfo.win_su_cnt	= 0;
3411 	cso->cpu_sysinfo.win_suo_cnt	= 0;
3412 
3413 	cso->cpu_syswait.iowait		= CPU_STATS(cp, sys.iowait);
3414 	cso->cpu_syswait.swap		= 0;
3415 	cso->cpu_syswait.physio		= 0;
3416 
3417 	cso->cpu_vminfo.pgrec		= CPU_STATS(cp, vm.pgrec);
3418 	cso->cpu_vminfo.pgfrec		= CPU_STATS(cp, vm.pgfrec);
3419 	cso->cpu_vminfo.pgin		= CPU_STATS(cp, vm.pgin);
3420 	cso->cpu_vminfo.pgpgin		= CPU_STATS(cp, vm.pgpgin);
3421 	cso->cpu_vminfo.pgout		= CPU_STATS(cp, vm.pgout);
3422 	cso->cpu_vminfo.pgpgout		= CPU_STATS(cp, vm.pgpgout);
3423 	cso->cpu_vminfo.swapin		= CPU_STATS(cp, vm.swapin);
3424 	cso->cpu_vminfo.pgswapin	= CPU_STATS(cp, vm.pgswapin);
3425 	cso->cpu_vminfo.swapout		= CPU_STATS(cp, vm.swapout);
3426 	cso->cpu_vminfo.pgswapout	= CPU_STATS(cp, vm.pgswapout);
3427 	cso->cpu_vminfo.zfod		= CPU_STATS(cp, vm.zfod);
3428 	cso->cpu_vminfo.dfree		= CPU_STATS(cp, vm.dfree);
3429 	cso->cpu_vminfo.scan		= CPU_STATS(cp, vm.scan);
3430 	cso->cpu_vminfo.rev		= CPU_STATS(cp, vm.rev);
3431 	cso->cpu_vminfo.hat_fault	= CPU_STATS(cp, vm.hat_fault);
3432 	cso->cpu_vminfo.as_fault	= CPU_STATS(cp, vm.as_fault);
3433 	cso->cpu_vminfo.maj_fault	= CPU_STATS(cp, vm.maj_fault);
3434 	cso->cpu_vminfo.cow_fault	= CPU_STATS(cp, vm.cow_fault);
3435 	cso->cpu_vminfo.prot_fault	= CPU_STATS(cp, vm.prot_fault);
3436 	cso->cpu_vminfo.softlock	= CPU_STATS(cp, vm.softlock);
3437 	cso->cpu_vminfo.kernel_asflt	= CPU_STATS(cp, vm.kernel_asflt);
3438 	cso->cpu_vminfo.pgrrun		= CPU_STATS(cp, vm.pgrrun);
3439 	cso->cpu_vminfo.execpgin	= CPU_STATS(cp, vm.execpgin);
3440 	cso->cpu_vminfo.execpgout	= CPU_STATS(cp, vm.execpgout);
3441 	cso->cpu_vminfo.execfree	= CPU_STATS(cp, vm.execfree);
3442 	cso->cpu_vminfo.anonpgin	= CPU_STATS(cp, vm.anonpgin);
3443 	cso->cpu_vminfo.anonpgout	= CPU_STATS(cp, vm.anonpgout);
3444 	cso->cpu_vminfo.anonfree	= CPU_STATS(cp, vm.anonfree);
3445 	cso->cpu_vminfo.fspgin		= CPU_STATS(cp, vm.fspgin);
3446 	cso->cpu_vminfo.fspgout		= CPU_STATS(cp, vm.fspgout);
3447 	cso->cpu_vminfo.fsfree		= CPU_STATS(cp, vm.fsfree);
3448 
3449 	return (0);
3450 }
3451