1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright 2021 Oxide Computer Company 26 */ 27 28 /* 29 * Architecture-independent CPU control functions. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/var.h> 35 #include <sys/thread.h> 36 #include <sys/cpuvar.h> 37 #include <sys/cpu_event.h> 38 #include <sys/kstat.h> 39 #include <sys/uadmin.h> 40 #include <sys/systm.h> 41 #include <sys/errno.h> 42 #include <sys/cmn_err.h> 43 #include <sys/procset.h> 44 #include <sys/processor.h> 45 #include <sys/debug.h> 46 #include <sys/cpupart.h> 47 #include <sys/lgrp.h> 48 #include <sys/pset.h> 49 #include <sys/pghw.h> 50 #include <sys/kmem.h> 51 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 52 #include <sys/atomic.h> 53 #include <sys/callb.h> 54 #include <sys/vtrace.h> 55 #include <sys/cyclic.h> 56 #include <sys/bitmap.h> 57 #include <sys/nvpair.h> 58 #include <sys/pool_pset.h> 59 #include <sys/msacct.h> 60 #include <sys/time.h> 61 #include <sys/archsystm.h> 62 #include <sys/sdt.h> 63 #include <sys/smt.h> 64 #if defined(__x86) 65 #include <sys/x86_archext.h> 66 #endif 67 #include <sys/callo.h> 68 69 extern int mp_cpu_start(cpu_t *); 70 extern int mp_cpu_stop(cpu_t *); 71 extern int mp_cpu_poweron(cpu_t *); 72 extern int mp_cpu_poweroff(cpu_t *); 73 extern int mp_cpu_configure(int); 74 extern int mp_cpu_unconfigure(int); 75 extern void mp_cpu_faulted_enter(cpu_t *); 76 extern void mp_cpu_faulted_exit(cpu_t *); 77 78 extern int cmp_cpu_to_chip(processorid_t cpuid); 79 #ifdef __sparcv9 80 extern char *cpu_fru_fmri(cpu_t *cp); 81 #endif 82 83 static void cpu_add_active_internal(cpu_t *cp); 84 static void cpu_remove_active(cpu_t *cp); 85 static void cpu_info_kstat_create(cpu_t *cp); 86 static void cpu_info_kstat_destroy(cpu_t *cp); 87 static void cpu_stats_kstat_create(cpu_t *cp); 88 static void cpu_stats_kstat_destroy(cpu_t *cp); 89 90 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 91 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 92 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 93 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 94 95 /* 96 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 97 * max_cpu_seqid_ever, and dispatch queue reallocations. The lock ordering with 98 * respect to related locks is: 99 * 100 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 101 * 102 * Warning: Certain sections of code do not use the cpu_lock when 103 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 104 * all cpus are paused during modifications to this list, a solution 105 * to protect the list is too either disable kernel preemption while 106 * walking the list, *or* recheck the cpu_next pointer at each 107 * iteration in the loop. Note that in no cases can any cached 108 * copies of the cpu pointers be kept as they may become invalid. 109 */ 110 kmutex_t cpu_lock; 111 cpu_t *cpu_list; /* list of all CPUs */ 112 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 113 cpu_t *cpu_active; /* list of active CPUs */ 114 cpuset_t cpu_active_set; /* cached set of active CPUs */ 115 static cpuset_t cpu_available; /* set of available CPUs */ 116 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 117 118 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */ 119 120 /* 121 * max_ncpus keeps the max cpus the system can have. Initially 122 * it's NCPU, but since most archs scan the devtree for cpus 123 * fairly early on during boot, the real max can be known before 124 * ncpus is set (useful for early NCPU based allocations). 125 */ 126 int max_ncpus = NCPU; 127 /* 128 * platforms that set max_ncpus to maxiumum number of cpus that can be 129 * dynamically added will set boot_max_ncpus to the number of cpus found 130 * at device tree scan time during boot. 131 */ 132 int boot_max_ncpus = -1; 133 int boot_ncpus = -1; 134 /* 135 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 136 * used to size arrays that are indexed by CPU id. 137 */ 138 processorid_t max_cpuid = NCPU - 1; 139 140 /* 141 * Maximum cpu_seqid was given. This number can only grow and never shrink. It 142 * can be used to optimize NCPU loops to avoid going through CPUs which were 143 * never on-line. 144 */ 145 processorid_t max_cpu_seqid_ever = 0; 146 147 int ncpus = 1; 148 int ncpus_online = 1; 149 int ncpus_intr_enabled = 1; 150 151 /* 152 * CPU that we're trying to offline. Protected by cpu_lock. 153 */ 154 cpu_t *cpu_inmotion; 155 156 /* 157 * Can be raised to suppress further weakbinding, which are instead 158 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 159 * while individual thread weakbinding synchronization is done under thread 160 * lock. 161 */ 162 int weakbindingbarrier; 163 164 /* 165 * Variables used in pause_cpus(). 166 */ 167 static volatile char safe_list[NCPU]; 168 169 static struct _cpu_pause_info { 170 int cp_spl; /* spl saved in pause_cpus() */ 171 volatile int cp_go; /* Go signal sent after all ready */ 172 int cp_count; /* # of CPUs to pause */ 173 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 174 kthread_id_t cp_paused; 175 void *(*cp_func)(void *); 176 } cpu_pause_info; 177 178 static kmutex_t pause_free_mutex; 179 static kcondvar_t pause_free_cv; 180 181 182 static struct cpu_sys_stats_ks_data { 183 kstat_named_t cpu_ticks_idle; 184 kstat_named_t cpu_ticks_user; 185 kstat_named_t cpu_ticks_kernel; 186 kstat_named_t cpu_ticks_wait; 187 kstat_named_t cpu_nsec_idle; 188 kstat_named_t cpu_nsec_user; 189 kstat_named_t cpu_nsec_kernel; 190 kstat_named_t cpu_nsec_dtrace; 191 kstat_named_t cpu_nsec_intr; 192 kstat_named_t cpu_load_intr; 193 kstat_named_t wait_ticks_io; 194 kstat_named_t dtrace_probes; 195 kstat_named_t bread; 196 kstat_named_t bwrite; 197 kstat_named_t lread; 198 kstat_named_t lwrite; 199 kstat_named_t phread; 200 kstat_named_t phwrite; 201 kstat_named_t pswitch; 202 kstat_named_t trap; 203 kstat_named_t intr; 204 kstat_named_t syscall; 205 kstat_named_t sysread; 206 kstat_named_t syswrite; 207 kstat_named_t sysfork; 208 kstat_named_t sysvfork; 209 kstat_named_t sysexec; 210 kstat_named_t readch; 211 kstat_named_t writech; 212 kstat_named_t rcvint; 213 kstat_named_t xmtint; 214 kstat_named_t mdmint; 215 kstat_named_t rawch; 216 kstat_named_t canch; 217 kstat_named_t outch; 218 kstat_named_t msg; 219 kstat_named_t sema; 220 kstat_named_t namei; 221 kstat_named_t ufsiget; 222 kstat_named_t ufsdirblk; 223 kstat_named_t ufsipage; 224 kstat_named_t ufsinopage; 225 kstat_named_t procovf; 226 kstat_named_t intrthread; 227 kstat_named_t intrblk; 228 kstat_named_t intrunpin; 229 kstat_named_t idlethread; 230 kstat_named_t inv_swtch; 231 kstat_named_t nthreads; 232 kstat_named_t cpumigrate; 233 kstat_named_t xcalls; 234 kstat_named_t mutex_adenters; 235 kstat_named_t rw_rdfails; 236 kstat_named_t rw_wrfails; 237 kstat_named_t modload; 238 kstat_named_t modunload; 239 kstat_named_t bawrite; 240 kstat_named_t iowait; 241 } cpu_sys_stats_ks_data_template = { 242 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 243 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 244 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 245 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 246 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 247 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 248 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 249 { "cpu_nsec_dtrace", KSTAT_DATA_UINT64 }, 250 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 251 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 252 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 253 { "dtrace_probes", KSTAT_DATA_UINT64 }, 254 { "bread", KSTAT_DATA_UINT64 }, 255 { "bwrite", KSTAT_DATA_UINT64 }, 256 { "lread", KSTAT_DATA_UINT64 }, 257 { "lwrite", KSTAT_DATA_UINT64 }, 258 { "phread", KSTAT_DATA_UINT64 }, 259 { "phwrite", KSTAT_DATA_UINT64 }, 260 { "pswitch", KSTAT_DATA_UINT64 }, 261 { "trap", KSTAT_DATA_UINT64 }, 262 { "intr", KSTAT_DATA_UINT64 }, 263 { "syscall", KSTAT_DATA_UINT64 }, 264 { "sysread", KSTAT_DATA_UINT64 }, 265 { "syswrite", KSTAT_DATA_UINT64 }, 266 { "sysfork", KSTAT_DATA_UINT64 }, 267 { "sysvfork", KSTAT_DATA_UINT64 }, 268 { "sysexec", KSTAT_DATA_UINT64 }, 269 { "readch", KSTAT_DATA_UINT64 }, 270 { "writech", KSTAT_DATA_UINT64 }, 271 { "rcvint", KSTAT_DATA_UINT64 }, 272 { "xmtint", KSTAT_DATA_UINT64 }, 273 { "mdmint", KSTAT_DATA_UINT64 }, 274 { "rawch", KSTAT_DATA_UINT64 }, 275 { "canch", KSTAT_DATA_UINT64 }, 276 { "outch", KSTAT_DATA_UINT64 }, 277 { "msg", KSTAT_DATA_UINT64 }, 278 { "sema", KSTAT_DATA_UINT64 }, 279 { "namei", KSTAT_DATA_UINT64 }, 280 { "ufsiget", KSTAT_DATA_UINT64 }, 281 { "ufsdirblk", KSTAT_DATA_UINT64 }, 282 { "ufsipage", KSTAT_DATA_UINT64 }, 283 { "ufsinopage", KSTAT_DATA_UINT64 }, 284 { "procovf", KSTAT_DATA_UINT64 }, 285 { "intrthread", KSTAT_DATA_UINT64 }, 286 { "intrblk", KSTAT_DATA_UINT64 }, 287 { "intrunpin", KSTAT_DATA_UINT64 }, 288 { "idlethread", KSTAT_DATA_UINT64 }, 289 { "inv_swtch", KSTAT_DATA_UINT64 }, 290 { "nthreads", KSTAT_DATA_UINT64 }, 291 { "cpumigrate", KSTAT_DATA_UINT64 }, 292 { "xcalls", KSTAT_DATA_UINT64 }, 293 { "mutex_adenters", KSTAT_DATA_UINT64 }, 294 { "rw_rdfails", KSTAT_DATA_UINT64 }, 295 { "rw_wrfails", KSTAT_DATA_UINT64 }, 296 { "modload", KSTAT_DATA_UINT64 }, 297 { "modunload", KSTAT_DATA_UINT64 }, 298 { "bawrite", KSTAT_DATA_UINT64 }, 299 { "iowait", KSTAT_DATA_UINT64 }, 300 }; 301 302 static struct cpu_vm_stats_ks_data { 303 kstat_named_t pgrec; 304 kstat_named_t pgfrec; 305 kstat_named_t pgin; 306 kstat_named_t pgpgin; 307 kstat_named_t pgout; 308 kstat_named_t pgpgout; 309 kstat_named_t swapin; 310 kstat_named_t pgswapin; 311 kstat_named_t swapout; 312 kstat_named_t pgswapout; 313 kstat_named_t zfod; 314 kstat_named_t dfree; 315 kstat_named_t scan; 316 kstat_named_t rev; 317 kstat_named_t hat_fault; 318 kstat_named_t as_fault; 319 kstat_named_t maj_fault; 320 kstat_named_t cow_fault; 321 kstat_named_t prot_fault; 322 kstat_named_t softlock; 323 kstat_named_t kernel_asflt; 324 kstat_named_t pgrrun; 325 kstat_named_t execpgin; 326 kstat_named_t execpgout; 327 kstat_named_t execfree; 328 kstat_named_t anonpgin; 329 kstat_named_t anonpgout; 330 kstat_named_t anonfree; 331 kstat_named_t fspgin; 332 kstat_named_t fspgout; 333 kstat_named_t fsfree; 334 } cpu_vm_stats_ks_data_template = { 335 { "pgrec", KSTAT_DATA_UINT64 }, 336 { "pgfrec", KSTAT_DATA_UINT64 }, 337 { "pgin", KSTAT_DATA_UINT64 }, 338 { "pgpgin", KSTAT_DATA_UINT64 }, 339 { "pgout", KSTAT_DATA_UINT64 }, 340 { "pgpgout", KSTAT_DATA_UINT64 }, 341 { "swapin", KSTAT_DATA_UINT64 }, 342 { "pgswapin", KSTAT_DATA_UINT64 }, 343 { "swapout", KSTAT_DATA_UINT64 }, 344 { "pgswapout", KSTAT_DATA_UINT64 }, 345 { "zfod", KSTAT_DATA_UINT64 }, 346 { "dfree", KSTAT_DATA_UINT64 }, 347 { "scan", KSTAT_DATA_UINT64 }, 348 { "rev", KSTAT_DATA_UINT64 }, 349 { "hat_fault", KSTAT_DATA_UINT64 }, 350 { "as_fault", KSTAT_DATA_UINT64 }, 351 { "maj_fault", KSTAT_DATA_UINT64 }, 352 { "cow_fault", KSTAT_DATA_UINT64 }, 353 { "prot_fault", KSTAT_DATA_UINT64 }, 354 { "softlock", KSTAT_DATA_UINT64 }, 355 { "kernel_asflt", KSTAT_DATA_UINT64 }, 356 { "pgrrun", KSTAT_DATA_UINT64 }, 357 { "execpgin", KSTAT_DATA_UINT64 }, 358 { "execpgout", KSTAT_DATA_UINT64 }, 359 { "execfree", KSTAT_DATA_UINT64 }, 360 { "anonpgin", KSTAT_DATA_UINT64 }, 361 { "anonpgout", KSTAT_DATA_UINT64 }, 362 { "anonfree", KSTAT_DATA_UINT64 }, 363 { "fspgin", KSTAT_DATA_UINT64 }, 364 { "fspgout", KSTAT_DATA_UINT64 }, 365 { "fsfree", KSTAT_DATA_UINT64 }, 366 }; 367 368 /* 369 * Force the specified thread to migrate to the appropriate processor. 370 * Called with thread lock held, returns with it dropped. 371 */ 372 static void 373 force_thread_migrate(kthread_id_t tp) 374 { 375 ASSERT(THREAD_LOCK_HELD(tp)); 376 if (tp == curthread) { 377 THREAD_TRANSITION(tp); 378 CL_SETRUN(tp); 379 thread_unlock_nopreempt(tp); 380 swtch(); 381 } else { 382 if (tp->t_state == TS_ONPROC) { 383 cpu_surrender(tp); 384 } else if (tp->t_state == TS_RUN) { 385 (void) dispdeq(tp); 386 setbackdq(tp); 387 } 388 thread_unlock(tp); 389 } 390 } 391 392 /* 393 * Set affinity for a specified CPU. 394 * 395 * Specifying a cpu_id of CPU_CURRENT, allowed _only_ when setting affinity for 396 * curthread, will set affinity to the CPU on which the thread is currently 397 * running. For other cpu_id values, the caller must ensure that the 398 * referenced CPU remains valid, which can be done by holding cpu_lock across 399 * this call. 400 * 401 * CPU affinity is guaranteed after return of thread_affinity_set(). If a 402 * caller setting affinity to CPU_CURRENT requires that its thread not migrate 403 * CPUs prior to a successful return, it should take extra precautions (such as 404 * their own call to kpreempt_disable) to ensure that safety. 405 * 406 * CPU_BEST can be used to pick a "best" CPU to migrate to, including 407 * potentially the current CPU. 408 * 409 * A CPU affinity reference count is maintained by thread_affinity_set and 410 * thread_affinity_clear (incrementing and decrementing it, respectively), 411 * maintaining CPU affinity while the count is non-zero, and allowing regions 412 * of code which require affinity to be nested. 413 */ 414 void 415 thread_affinity_set(kthread_id_t t, int cpu_id) 416 { 417 cpu_t *cp; 418 419 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 420 421 if (cpu_id == CPU_CURRENT) { 422 VERIFY3P(t, ==, curthread); 423 kpreempt_disable(); 424 cp = CPU; 425 } else if (cpu_id == CPU_BEST) { 426 VERIFY3P(t, ==, curthread); 427 kpreempt_disable(); 428 cp = disp_choose_best_cpu(); 429 } else { 430 /* 431 * We should be asserting that cpu_lock is held here, but 432 * the NCA code doesn't acquire it. The following assert 433 * should be uncommented when the NCA code is fixed. 434 * 435 * ASSERT(MUTEX_HELD(&cpu_lock)); 436 */ 437 VERIFY((cpu_id >= 0) && (cpu_id < NCPU)); 438 cp = cpu[cpu_id]; 439 440 /* user must provide a good cpu_id */ 441 VERIFY(cp != NULL); 442 } 443 444 /* 445 * If there is already a hard affinity requested, and this affinity 446 * conflicts with that, panic. 447 */ 448 thread_lock(t); 449 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 450 panic("affinity_set: setting %p but already bound to %p", 451 (void *)cp, (void *)t->t_bound_cpu); 452 } 453 t->t_affinitycnt++; 454 t->t_bound_cpu = cp; 455 456 /* 457 * Make sure we're running on the right CPU. 458 */ 459 if (cp != t->t_cpu || t != curthread) { 460 ASSERT(cpu_id != CPU_CURRENT); 461 force_thread_migrate(t); /* drops thread lock */ 462 } else { 463 thread_unlock(t); 464 } 465 466 if (cpu_id == CPU_CURRENT || cpu_id == CPU_BEST) 467 kpreempt_enable(); 468 } 469 470 /* 471 * Wrapper for backward compatibility. 472 */ 473 void 474 affinity_set(int cpu_id) 475 { 476 thread_affinity_set(curthread, cpu_id); 477 } 478 479 /* 480 * Decrement the affinity reservation count and if it becomes zero, 481 * clear the CPU affinity for the current thread, or set it to the user's 482 * software binding request. 483 */ 484 void 485 thread_affinity_clear(kthread_id_t t) 486 { 487 register processorid_t binding; 488 489 thread_lock(t); 490 if (--t->t_affinitycnt == 0) { 491 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 492 /* 493 * Adjust disp_max_unbound_pri if necessary. 494 */ 495 disp_adjust_unbound_pri(t); 496 t->t_bound_cpu = NULL; 497 if (t->t_cpu->cpu_part != t->t_cpupart) { 498 force_thread_migrate(t); 499 return; 500 } 501 } else { 502 t->t_bound_cpu = cpu[binding]; 503 /* 504 * Make sure the thread is running on the bound CPU. 505 */ 506 if (t->t_cpu != t->t_bound_cpu) { 507 force_thread_migrate(t); 508 return; /* already dropped lock */ 509 } 510 } 511 } 512 thread_unlock(t); 513 } 514 515 /* 516 * Wrapper for backward compatibility. 517 */ 518 void 519 affinity_clear(void) 520 { 521 thread_affinity_clear(curthread); 522 } 523 524 /* 525 * Weak cpu affinity. Bind to the "current" cpu for short periods 526 * of time during which the thread must not block (but may be preempted). 527 * Use this instead of kpreempt_disable() when it is only "no migration" 528 * rather than "no preemption" semantics that are required - disabling 529 * preemption holds higher priority threads off of cpu and if the 530 * operation that is protected is more than momentary this is not good 531 * for realtime etc. 532 * 533 * Weakly bound threads will not prevent a cpu from being offlined - 534 * we'll only run them on the cpu to which they are weakly bound but 535 * (because they do not block) we'll always be able to move them on to 536 * another cpu at offline time if we give them just a short moment to 537 * run during which they will unbind. To give a cpu a chance of offlining, 538 * however, we require a barrier to weak bindings that may be raised for a 539 * given cpu (offline/move code may set this and then wait a short time for 540 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 541 * 542 * There are few restrictions on the calling context of thread_nomigrate. 543 * The caller must not hold the thread lock. Calls may be nested. 544 * 545 * After weakbinding a thread must not perform actions that may block. 546 * In particular it must not call thread_affinity_set; calling that when 547 * already weakbound is nonsensical anyway. 548 * 549 * If curthread is prevented from migrating for other reasons 550 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 551 * then the weak binding will succeed even if this cpu is the target of an 552 * offline/move request. 553 */ 554 void 555 thread_nomigrate(void) 556 { 557 cpu_t *cp; 558 kthread_id_t t = curthread; 559 560 again: 561 kpreempt_disable(); 562 cp = CPU; 563 564 /* 565 * A highlevel interrupt must not modify t_nomigrate or 566 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 567 * interrupt thread cannot migrate and we can avoid the 568 * thread_lock call below by short-circuiting here. In either 569 * case we can just return since no migration is possible and 570 * the condition will persist (ie, when we test for these again 571 * in thread_allowmigrate they can't have changed). Migration 572 * is also impossible if we're at or above DISP_LEVEL pil. 573 */ 574 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 575 getpil() >= DISP_LEVEL) { 576 kpreempt_enable(); 577 return; 578 } 579 580 /* 581 * We must be consistent with existing weak bindings. Since we 582 * may be interrupted between the increment of t_nomigrate and 583 * the store to t_weakbound_cpu below we cannot assume that 584 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 585 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 586 * always the case. 587 */ 588 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 589 if (!panicstr) 590 panic("thread_nomigrate: binding to %p but already " 591 "bound to %p", (void *)cp, 592 (void *)t->t_weakbound_cpu); 593 } 594 595 /* 596 * At this point we have preemption disabled and we don't yet hold 597 * the thread lock. So it's possible that somebody else could 598 * set t_bind_cpu here and not be able to force us across to the 599 * new cpu (since we have preemption disabled). 600 */ 601 thread_lock(curthread); 602 603 /* 604 * If further weak bindings are being (temporarily) suppressed then 605 * we'll settle for disabling kernel preemption (which assures 606 * no migration provided the thread does not block which it is 607 * not allowed to if using thread_nomigrate). We must remember 608 * this disposition so we can take appropriate action in 609 * thread_allowmigrate. If this is a nested call and the 610 * thread is already weakbound then fall through as normal. 611 * We remember the decision to settle for kpreempt_disable through 612 * negative nesting counting in t_nomigrate. Once a thread has had one 613 * weakbinding request satisfied in this way any further (nested) 614 * requests will continue to be satisfied in the same way, 615 * even if weak bindings have recommenced. 616 */ 617 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 618 --t->t_nomigrate; 619 thread_unlock(curthread); 620 return; /* with kpreempt_disable still active */ 621 } 622 623 /* 624 * We hold thread_lock so t_bind_cpu cannot change. We could, 625 * however, be running on a different cpu to which we are t_bound_cpu 626 * to (as explained above). If we grant the weak binding request 627 * in that case then the dispatcher must favour our weak binding 628 * over our strong (in which case, just as when preemption is 629 * disabled, we can continue to run on a cpu other than the one to 630 * which we are strongbound; the difference in this case is that 631 * this thread can be preempted and so can appear on the dispatch 632 * queues of a cpu other than the one it is strongbound to). 633 * 634 * If the cpu we are running on does not appear to be a current 635 * offline target (we check cpu_inmotion to determine this - since 636 * we don't hold cpu_lock we may not see a recent store to that, 637 * so it's possible that we at times can grant a weak binding to a 638 * cpu that is an offline target, but that one request will not 639 * prevent the offline from succeeding) then we will always grant 640 * the weak binding request. This includes the case above where 641 * we grant a weakbinding not commensurate with our strong binding. 642 * 643 * If our cpu does appear to be an offline target then we're inclined 644 * not to grant the weakbinding request just yet - we'd prefer to 645 * migrate to another cpu and grant the request there. The 646 * exceptions are those cases where going through preemption code 647 * will not result in us changing cpu: 648 * 649 * . interrupts have already bypassed this case (see above) 650 * . we are already weakbound to this cpu (dispatcher code will 651 * always return us to the weakbound cpu) 652 * . preemption was disabled even before we disabled it above 653 * . we are strongbound to this cpu (if we're strongbound to 654 * another and not yet running there the trip through the 655 * dispatcher will move us to the strongbound cpu and we 656 * will grant the weak binding there) 657 */ 658 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 659 t->t_bound_cpu == cp) { 660 /* 661 * Don't be tempted to store to t_weakbound_cpu only on 662 * the first nested bind request - if we're interrupted 663 * after the increment of t_nomigrate and before the 664 * store to t_weakbound_cpu and the interrupt calls 665 * thread_nomigrate then the assertion in thread_allowmigrate 666 * would fail. 667 */ 668 t->t_nomigrate++; 669 t->t_weakbound_cpu = cp; 670 membar_producer(); 671 thread_unlock(curthread); 672 /* 673 * Now that we have dropped the thread_lock another thread 674 * can set our t_weakbound_cpu, and will try to migrate us 675 * to the strongbound cpu (which will not be prevented by 676 * preemption being disabled since we're about to enable 677 * preemption). We have granted the weakbinding to the current 678 * cpu, so again we are in the position that is is is possible 679 * that our weak and strong bindings differ. Again this 680 * is catered for by dispatcher code which will favour our 681 * weak binding. 682 */ 683 kpreempt_enable(); 684 } else { 685 /* 686 * Move to another cpu before granting the request by 687 * forcing this thread through preemption code. When we 688 * get to set{front,back}dq called from CL_PREEMPT() 689 * cpu_choose() will be used to select a cpu to queue 690 * us on - that will see cpu_inmotion and take 691 * steps to avoid returning us to this cpu. 692 */ 693 cp->cpu_kprunrun = 1; 694 thread_unlock(curthread); 695 kpreempt_enable(); /* will call preempt() */ 696 goto again; 697 } 698 } 699 700 void 701 thread_allowmigrate(void) 702 { 703 kthread_id_t t = curthread; 704 705 ASSERT(t->t_weakbound_cpu == CPU || 706 (t->t_nomigrate < 0 && t->t_preempt > 0) || 707 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 708 getpil() >= DISP_LEVEL); 709 710 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 711 getpil() >= DISP_LEVEL) 712 return; 713 714 if (t->t_nomigrate < 0) { 715 /* 716 * This thread was granted "weak binding" in the 717 * stronger form of kernel preemption disabling. 718 * Undo a level of nesting for both t_nomigrate 719 * and t_preempt. 720 */ 721 ++t->t_nomigrate; 722 kpreempt_enable(); 723 } else if (--t->t_nomigrate == 0) { 724 /* 725 * Time to drop the weak binding. We need to cater 726 * for the case where we're weakbound to a different 727 * cpu than that to which we're strongbound (a very 728 * temporary arrangement that must only persist until 729 * weak binding drops). We don't acquire thread_lock 730 * here so even as this code executes t_bound_cpu 731 * may be changing. So we disable preemption and 732 * a) in the case that t_bound_cpu changes while we 733 * have preemption disabled kprunrun will be set 734 * asynchronously, and b) if before disabling 735 * preemption we were already on a different cpu to 736 * our t_bound_cpu then we set kprunrun ourselves 737 * to force a trip through the dispatcher when 738 * preemption is enabled. 739 */ 740 kpreempt_disable(); 741 if (t->t_bound_cpu && 742 t->t_weakbound_cpu != t->t_bound_cpu) 743 CPU->cpu_kprunrun = 1; 744 t->t_weakbound_cpu = NULL; 745 membar_producer(); 746 kpreempt_enable(); 747 } 748 } 749 750 /* 751 * weakbinding_stop can be used to temporarily cause weakbindings made 752 * with thread_nomigrate to be satisfied through the stronger action of 753 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 754 */ 755 756 void 757 weakbinding_stop(void) 758 { 759 ASSERT(MUTEX_HELD(&cpu_lock)); 760 weakbindingbarrier = 1; 761 membar_producer(); /* make visible before subsequent thread_lock */ 762 } 763 764 void 765 weakbinding_start(void) 766 { 767 ASSERT(MUTEX_HELD(&cpu_lock)); 768 weakbindingbarrier = 0; 769 } 770 771 void 772 null_xcall(void) 773 { 774 } 775 776 /* 777 * This routine is called to place the CPUs in a safe place so that 778 * one of them can be taken off line or placed on line. What we are 779 * trying to do here is prevent a thread from traversing the list 780 * of active CPUs while we are changing it or from getting placed on 781 * the run queue of a CPU that has just gone off line. We do this by 782 * creating a thread with the highest possible prio for each CPU and 783 * having it call this routine. The advantage of this method is that 784 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 785 * This makes disp faster at the expense of making p_online() slower 786 * which is a good trade off. 787 */ 788 static void 789 cpu_pause(int index) 790 { 791 int s; 792 struct _cpu_pause_info *cpi = &cpu_pause_info; 793 volatile char *safe = &safe_list[index]; 794 long lindex = index; 795 796 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 797 798 while (*safe != PAUSE_DIE) { 799 *safe = PAUSE_READY; 800 membar_enter(); /* make sure stores are flushed */ 801 sema_v(&cpi->cp_sem); /* signal requesting thread */ 802 803 /* 804 * Wait here until all pause threads are running. That 805 * indicates that it's safe to do the spl. Until 806 * cpu_pause_info.cp_go is set, we don't want to spl 807 * because that might block clock interrupts needed 808 * to preempt threads on other CPUs. 809 */ 810 while (cpi->cp_go == 0) 811 ; 812 /* 813 * Even though we are at the highest disp prio, we need 814 * to block out all interrupts below LOCK_LEVEL so that 815 * an intr doesn't come in, wake up a thread, and call 816 * setbackdq/setfrontdq. 817 */ 818 s = splhigh(); 819 /* 820 * if cp_func has been set then call it using index as the 821 * argument, currently only used by cpr_suspend_cpus(). 822 * This function is used as the code to execute on the 823 * "paused" cpu's when a machine comes out of a sleep state 824 * and CPU's were powered off. (could also be used for 825 * hotplugging CPU's). 826 */ 827 if (cpi->cp_func != NULL) 828 (*cpi->cp_func)((void *)lindex); 829 830 mach_cpu_pause(safe); 831 832 splx(s); 833 /* 834 * Waiting is at an end. Switch out of cpu_pause 835 * loop and resume useful work. 836 */ 837 swtch(); 838 } 839 840 mutex_enter(&pause_free_mutex); 841 *safe = PAUSE_DEAD; 842 cv_broadcast(&pause_free_cv); 843 mutex_exit(&pause_free_mutex); 844 } 845 846 /* 847 * Allow the cpus to start running again. 848 */ 849 void 850 start_cpus() 851 { 852 int i; 853 854 ASSERT(MUTEX_HELD(&cpu_lock)); 855 ASSERT(cpu_pause_info.cp_paused); 856 cpu_pause_info.cp_paused = NULL; 857 for (i = 0; i < NCPU; i++) 858 safe_list[i] = PAUSE_IDLE; 859 membar_enter(); /* make sure stores are flushed */ 860 affinity_clear(); 861 splx(cpu_pause_info.cp_spl); 862 kpreempt_enable(); 863 } 864 865 /* 866 * Allocate a pause thread for a CPU. 867 */ 868 static void 869 cpu_pause_alloc(cpu_t *cp) 870 { 871 kthread_id_t t; 872 long cpun = cp->cpu_id; 873 874 /* 875 * Note, v.v_nglobpris will not change value as long as I hold 876 * cpu_lock. 877 */ 878 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 879 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 880 thread_lock(t); 881 t->t_bound_cpu = cp; 882 t->t_disp_queue = cp->cpu_disp; 883 t->t_affinitycnt = 1; 884 t->t_preempt = 1; 885 thread_unlock(t); 886 cp->cpu_pause_thread = t; 887 /* 888 * Registering a thread in the callback table is usually done 889 * in the initialization code of the thread. In this 890 * case, we do it right after thread creation because the 891 * thread itself may never run, and we need to register the 892 * fact that it is safe for cpr suspend. 893 */ 894 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 895 } 896 897 /* 898 * Free a pause thread for a CPU. 899 */ 900 static void 901 cpu_pause_free(cpu_t *cp) 902 { 903 kthread_id_t t; 904 int cpun = cp->cpu_id; 905 906 ASSERT(MUTEX_HELD(&cpu_lock)); 907 /* 908 * We have to get the thread and tell it to die. 909 */ 910 if ((t = cp->cpu_pause_thread) == NULL) { 911 ASSERT(safe_list[cpun] == PAUSE_IDLE); 912 return; 913 } 914 thread_lock(t); 915 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 916 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 917 t->t_pri = v.v_nglobpris - 1; 918 ASSERT(safe_list[cpun] == PAUSE_IDLE); 919 safe_list[cpun] = PAUSE_DIE; 920 THREAD_TRANSITION(t); 921 setbackdq(t); 922 thread_unlock_nopreempt(t); 923 924 /* 925 * If we don't wait for the thread to actually die, it may try to 926 * run on the wrong cpu as part of an actual call to pause_cpus(). 927 */ 928 mutex_enter(&pause_free_mutex); 929 while (safe_list[cpun] != PAUSE_DEAD) { 930 cv_wait(&pause_free_cv, &pause_free_mutex); 931 } 932 mutex_exit(&pause_free_mutex); 933 safe_list[cpun] = PAUSE_IDLE; 934 935 cp->cpu_pause_thread = NULL; 936 } 937 938 /* 939 * Initialize basic structures for pausing CPUs. 940 */ 941 void 942 cpu_pause_init() 943 { 944 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 945 /* 946 * Create initial CPU pause thread. 947 */ 948 cpu_pause_alloc(CPU); 949 } 950 951 /* 952 * Start the threads used to pause another CPU. 953 */ 954 static int 955 cpu_pause_start(processorid_t cpu_id) 956 { 957 int i; 958 int cpu_count = 0; 959 960 for (i = 0; i < NCPU; i++) { 961 cpu_t *cp; 962 kthread_id_t t; 963 964 cp = cpu[i]; 965 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 966 safe_list[i] = PAUSE_WAIT; 967 continue; 968 } 969 970 /* 971 * Skip CPU if it is quiesced or not yet started. 972 */ 973 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 974 safe_list[i] = PAUSE_WAIT; 975 continue; 976 } 977 978 /* 979 * Start this CPU's pause thread. 980 */ 981 t = cp->cpu_pause_thread; 982 thread_lock(t); 983 /* 984 * Reset the priority, since nglobpris may have 985 * changed since the thread was created, if someone 986 * has loaded the RT (or some other) scheduling 987 * class. 988 */ 989 t->t_pri = v.v_nglobpris - 1; 990 THREAD_TRANSITION(t); 991 setbackdq(t); 992 thread_unlock_nopreempt(t); 993 ++cpu_count; 994 } 995 return (cpu_count); 996 } 997 998 999 /* 1000 * Pause all of the CPUs except the one we are on by creating a high 1001 * priority thread bound to those CPUs. 1002 * 1003 * Note that one must be extremely careful regarding code 1004 * executed while CPUs are paused. Since a CPU may be paused 1005 * while a thread scheduling on that CPU is holding an adaptive 1006 * lock, code executed with CPUs paused must not acquire adaptive 1007 * (or low-level spin) locks. Also, such code must not block, 1008 * since the thread that is supposed to initiate the wakeup may 1009 * never run. 1010 * 1011 * With a few exceptions, the restrictions on code executed with CPUs 1012 * paused match those for code executed at high-level interrupt 1013 * context. 1014 */ 1015 void 1016 pause_cpus(cpu_t *off_cp, void *(*func)(void *)) 1017 { 1018 processorid_t cpu_id; 1019 int i; 1020 struct _cpu_pause_info *cpi = &cpu_pause_info; 1021 1022 ASSERT(MUTEX_HELD(&cpu_lock)); 1023 ASSERT(cpi->cp_paused == NULL); 1024 cpi->cp_count = 0; 1025 cpi->cp_go = 0; 1026 for (i = 0; i < NCPU; i++) 1027 safe_list[i] = PAUSE_IDLE; 1028 kpreempt_disable(); 1029 1030 cpi->cp_func = func; 1031 1032 /* 1033 * If running on the cpu that is going offline, get off it. 1034 * This is so that it won't be necessary to rechoose a CPU 1035 * when done. 1036 */ 1037 if (CPU == off_cp) 1038 cpu_id = off_cp->cpu_next_part->cpu_id; 1039 else 1040 cpu_id = CPU->cpu_id; 1041 affinity_set(cpu_id); 1042 1043 /* 1044 * Start the pause threads and record how many were started 1045 */ 1046 cpi->cp_count = cpu_pause_start(cpu_id); 1047 1048 /* 1049 * Now wait for all CPUs to be running the pause thread. 1050 */ 1051 while (cpi->cp_count > 0) { 1052 /* 1053 * Spin reading the count without grabbing the disp 1054 * lock to make sure we don't prevent the pause 1055 * threads from getting the lock. 1056 */ 1057 while (sema_held(&cpi->cp_sem)) 1058 ; 1059 if (sema_tryp(&cpi->cp_sem)) 1060 --cpi->cp_count; 1061 } 1062 cpi->cp_go = 1; /* all have reached cpu_pause */ 1063 1064 /* 1065 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1066 * to PAUSE_WAIT.) 1067 */ 1068 for (i = 0; i < NCPU; i++) { 1069 while (safe_list[i] != PAUSE_WAIT) 1070 ; 1071 } 1072 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1073 cpi->cp_paused = curthread; 1074 } 1075 1076 /* 1077 * Check whether the current thread has CPUs paused 1078 */ 1079 int 1080 cpus_paused(void) 1081 { 1082 if (cpu_pause_info.cp_paused != NULL) { 1083 ASSERT(cpu_pause_info.cp_paused == curthread); 1084 return (1); 1085 } 1086 return (0); 1087 } 1088 1089 static cpu_t * 1090 cpu_get_all(processorid_t cpun) 1091 { 1092 ASSERT(MUTEX_HELD(&cpu_lock)); 1093 1094 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1095 return (NULL); 1096 return (cpu[cpun]); 1097 } 1098 1099 /* 1100 * Check whether cpun is a valid processor id and whether it should be 1101 * visible from the current zone. If it is, return a pointer to the 1102 * associated CPU structure. 1103 */ 1104 cpu_t * 1105 cpu_get(processorid_t cpun) 1106 { 1107 cpu_t *c; 1108 1109 ASSERT(MUTEX_HELD(&cpu_lock)); 1110 c = cpu_get_all(cpun); 1111 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1112 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1113 return (NULL); 1114 return (c); 1115 } 1116 1117 /* 1118 * The following functions should be used to check CPU states in the kernel. 1119 * They should be invoked with cpu_lock held. Kernel subsystems interested 1120 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1121 * states. Those are for user-land (and system call) use only. 1122 */ 1123 1124 /* 1125 * Determine whether the CPU is online and handling interrupts. 1126 */ 1127 int 1128 cpu_is_online(cpu_t *cpu) 1129 { 1130 ASSERT(MUTEX_HELD(&cpu_lock)); 1131 return (cpu_flagged_online(cpu->cpu_flags)); 1132 } 1133 1134 /* 1135 * Determine whether the CPU is offline (this includes spare and faulted). 1136 */ 1137 int 1138 cpu_is_offline(cpu_t *cpu) 1139 { 1140 ASSERT(MUTEX_HELD(&cpu_lock)); 1141 return (cpu_flagged_offline(cpu->cpu_flags)); 1142 } 1143 1144 /* 1145 * Determine whether the CPU is powered off. 1146 */ 1147 int 1148 cpu_is_poweredoff(cpu_t *cpu) 1149 { 1150 ASSERT(MUTEX_HELD(&cpu_lock)); 1151 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1152 } 1153 1154 /* 1155 * Determine whether the CPU is handling interrupts. 1156 */ 1157 int 1158 cpu_is_nointr(cpu_t *cpu) 1159 { 1160 ASSERT(MUTEX_HELD(&cpu_lock)); 1161 return (cpu_flagged_nointr(cpu->cpu_flags)); 1162 } 1163 1164 /* 1165 * Determine whether the CPU is active (scheduling threads). 1166 */ 1167 int 1168 cpu_is_active(cpu_t *cpu) 1169 { 1170 ASSERT(MUTEX_HELD(&cpu_lock)); 1171 return (cpu_flagged_active(cpu->cpu_flags)); 1172 } 1173 1174 /* 1175 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1176 */ 1177 int 1178 cpu_flagged_online(cpu_flag_t cpu_flags) 1179 { 1180 return (cpu_flagged_active(cpu_flags) && 1181 (cpu_flags & CPU_ENABLE)); 1182 } 1183 1184 int 1185 cpu_flagged_offline(cpu_flag_t cpu_flags) 1186 { 1187 return (((cpu_flags & CPU_POWEROFF) == 0) && 1188 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1189 } 1190 1191 int 1192 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1193 { 1194 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1195 } 1196 1197 int 1198 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1199 { 1200 return (cpu_flagged_active(cpu_flags) && 1201 (cpu_flags & CPU_ENABLE) == 0); 1202 } 1203 1204 int 1205 cpu_flagged_active(cpu_flag_t cpu_flags) 1206 { 1207 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1208 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1209 } 1210 1211 /* 1212 * Bring the indicated CPU online. 1213 */ 1214 int 1215 cpu_online(cpu_t *cp, int flags) 1216 { 1217 int error = 0; 1218 1219 /* 1220 * Handle on-line request. 1221 * This code must put the new CPU on the active list before 1222 * starting it because it will not be paused, and will start 1223 * using the active list immediately. The real start occurs 1224 * when the CPU_QUIESCED flag is turned off. 1225 */ 1226 1227 ASSERT(MUTEX_HELD(&cpu_lock)); 1228 1229 if ((cp->cpu_flags & CPU_DISABLED) && !smt_can_enable(cp, flags)) 1230 return (EINVAL); 1231 1232 /* 1233 * Put all the cpus into a known safe place. 1234 * No mutexes can be entered while CPUs are paused. 1235 */ 1236 error = mp_cpu_start(cp); /* arch-dep hook */ 1237 if (error == 0) { 1238 pg_cpupart_in(cp, cp->cpu_part); 1239 pause_cpus(NULL, NULL); 1240 cpu_add_active_internal(cp); 1241 if (cp->cpu_flags & CPU_FAULTED) { 1242 cp->cpu_flags &= ~CPU_FAULTED; 1243 mp_cpu_faulted_exit(cp); 1244 } 1245 1246 if (cp->cpu_flags & CPU_DISABLED) 1247 smt_force_enabled(); 1248 1249 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1250 CPU_SPARE | CPU_DISABLED); 1251 CPU_NEW_GENERATION(cp); 1252 start_cpus(); 1253 cpu_stats_kstat_create(cp); 1254 cpu_create_intrstat(cp); 1255 lgrp_kstat_create(cp); 1256 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1257 cpu_intr_enable(cp); /* arch-dep hook */ 1258 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1259 cpu_set_state(cp); 1260 cyclic_online(cp); 1261 /* 1262 * This has to be called only after cyclic_online(). This 1263 * function uses cyclics. 1264 */ 1265 callout_cpu_online(cp); 1266 poke_cpu(cp->cpu_id); 1267 } 1268 1269 return (error); 1270 } 1271 1272 /* 1273 * Take the indicated CPU offline. 1274 */ 1275 int 1276 cpu_offline(cpu_t *cp, int flags) 1277 { 1278 cpupart_t *pp; 1279 int error = 0; 1280 cpu_t *ncp; 1281 int intr_enable; 1282 int cyclic_off = 0; 1283 int callout_off = 0; 1284 int loop_count; 1285 int no_quiesce = 0; 1286 int (*bound_func)(struct cpu *, int); 1287 kthread_t *t; 1288 lpl_t *cpu_lpl; 1289 proc_t *p; 1290 int lgrp_diff_lpl; 1291 boolean_t forced = (flags & CPU_FORCED) != 0; 1292 1293 ASSERT(MUTEX_HELD(&cpu_lock)); 1294 1295 if (cp->cpu_flags & CPU_DISABLED) 1296 return (EINVAL); 1297 1298 /* 1299 * If we're going from faulted or spare to offline, just 1300 * clear these flags and update CPU state. 1301 */ 1302 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1303 if (cp->cpu_flags & CPU_FAULTED) { 1304 cp->cpu_flags &= ~CPU_FAULTED; 1305 mp_cpu_faulted_exit(cp); 1306 } 1307 cp->cpu_flags &= ~CPU_SPARE; 1308 cpu_set_state(cp); 1309 return (0); 1310 } 1311 1312 /* 1313 * Handle off-line request. 1314 */ 1315 pp = cp->cpu_part; 1316 /* 1317 * Don't offline last online CPU in partition 1318 */ 1319 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1320 return (EBUSY); 1321 /* 1322 * Unbind all soft-bound threads bound to our CPU and hard bound threads 1323 * if we were asked to. 1324 */ 1325 error = cpu_unbind(cp->cpu_id, forced); 1326 if (error != 0) 1327 return (error); 1328 /* 1329 * We shouldn't be bound to this CPU ourselves. 1330 */ 1331 if (curthread->t_bound_cpu == cp) 1332 return (EBUSY); 1333 1334 /* 1335 * Tell interested parties that this CPU is going offline. 1336 */ 1337 CPU_NEW_GENERATION(cp); 1338 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1339 1340 /* 1341 * Tell the PG subsystem that the CPU is leaving the partition 1342 */ 1343 pg_cpupart_out(cp, pp); 1344 1345 /* 1346 * Take the CPU out of interrupt participation so we won't find 1347 * bound kernel threads. If the architecture cannot completely 1348 * shut off interrupts on the CPU, don't quiesce it, but don't 1349 * run anything but interrupt thread... this is indicated by 1350 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1351 * off. 1352 */ 1353 intr_enable = cp->cpu_flags & CPU_ENABLE; 1354 if (intr_enable) 1355 no_quiesce = cpu_intr_disable(cp); 1356 1357 /* 1358 * Record that we are aiming to offline this cpu. This acts as 1359 * a barrier to further weak binding requests in thread_nomigrate 1360 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1361 * lean away from this cpu. Further strong bindings are already 1362 * avoided since we hold cpu_lock. Since threads that are set 1363 * runnable around now and others coming off the target cpu are 1364 * directed away from the target, existing strong and weak bindings 1365 * (especially the latter) to the target cpu stand maximum chance of 1366 * being able to unbind during the short delay loop below (if other 1367 * unbound threads compete they may not see cpu in time to unbind 1368 * even if they would do so immediately. 1369 */ 1370 cpu_inmotion = cp; 1371 membar_enter(); 1372 1373 /* 1374 * Check for kernel threads (strong or weak) bound to that CPU. 1375 * Strongly bound threads may not unbind, and we'll have to return 1376 * EBUSY. Weakly bound threads should always disappear - we've 1377 * stopped more weak binding with cpu_inmotion and existing 1378 * bindings will drain imminently (they may not block). Nonetheless 1379 * we will wait for a fixed period for all bound threads to disappear. 1380 * Inactive interrupt threads are OK (they'll be in TS_FREE 1381 * state). If test finds some bound threads, wait a few ticks 1382 * to give short-lived threads (such as interrupts) chance to 1383 * complete. Note that if no_quiesce is set, i.e. this cpu 1384 * is required to service interrupts, then we take the route 1385 * that permits interrupt threads to be active (or bypassed). 1386 */ 1387 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1388 1389 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1390 if (loop_count >= 5) { 1391 error = EBUSY; /* some threads still bound */ 1392 break; 1393 } 1394 1395 /* 1396 * If some threads were assigned, give them 1397 * a chance to complete or move. 1398 * 1399 * This assumes that the clock_thread is not bound 1400 * to any CPU, because the clock_thread is needed to 1401 * do the delay(hz/100). 1402 * 1403 * Note: we still hold the cpu_lock while waiting for 1404 * the next clock tick. This is OK since it isn't 1405 * needed for anything else except processor_bind(2), 1406 * and system initialization. If we drop the lock, 1407 * we would risk another p_online disabling the last 1408 * processor. 1409 */ 1410 delay(hz/100); 1411 } 1412 1413 if (error == 0 && callout_off == 0) { 1414 callout_cpu_offline(cp); 1415 callout_off = 1; 1416 } 1417 1418 if (error == 0 && cyclic_off == 0) { 1419 if (!cyclic_offline(cp)) { 1420 /* 1421 * We must have bound cyclics... 1422 */ 1423 error = EBUSY; 1424 goto out; 1425 } 1426 cyclic_off = 1; 1427 } 1428 1429 /* 1430 * Call mp_cpu_stop() to perform any special operations 1431 * needed for this machine architecture to offline a CPU. 1432 */ 1433 if (error == 0) 1434 error = mp_cpu_stop(cp); /* arch-dep hook */ 1435 1436 /* 1437 * If that all worked, take the CPU offline and decrement 1438 * ncpus_online. 1439 */ 1440 if (error == 0) { 1441 /* 1442 * Put all the cpus into a known safe place. 1443 * No mutexes can be entered while CPUs are paused. 1444 */ 1445 pause_cpus(cp, NULL); 1446 /* 1447 * Repeat the operation, if necessary, to make sure that 1448 * all outstanding low-level interrupts run to completion 1449 * before we set the CPU_QUIESCED flag. It's also possible 1450 * that a thread has weak bound to the cpu despite our raising 1451 * cpu_inmotion above since it may have loaded that 1452 * value before the barrier became visible (this would have 1453 * to be the thread that was on the target cpu at the time 1454 * we raised the barrier). 1455 */ 1456 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1457 (*bound_func)(cp, 1)) { 1458 start_cpus(); 1459 (void) mp_cpu_start(cp); 1460 goto again; 1461 } 1462 ncp = cp->cpu_next_part; 1463 cpu_lpl = cp->cpu_lpl; 1464 ASSERT(cpu_lpl != NULL); 1465 1466 /* 1467 * Remove the CPU from the list of active CPUs. 1468 */ 1469 cpu_remove_active(cp); 1470 1471 /* 1472 * Walk the active process list and look for threads 1473 * whose home lgroup needs to be updated, or 1474 * the last CPU they run on is the one being offlined now. 1475 */ 1476 1477 ASSERT(curthread->t_cpu != cp); 1478 for (p = practive; p != NULL; p = p->p_next) { 1479 1480 t = p->p_tlist; 1481 1482 if (t == NULL) 1483 continue; 1484 1485 lgrp_diff_lpl = 0; 1486 1487 do { 1488 ASSERT(t->t_lpl != NULL); 1489 /* 1490 * Taking last CPU in lpl offline 1491 * Rehome thread if it is in this lpl 1492 * Otherwise, update the count of how many 1493 * threads are in this CPU's lgroup but have 1494 * a different lpl. 1495 */ 1496 1497 if (cpu_lpl->lpl_ncpu == 0) { 1498 if (t->t_lpl == cpu_lpl) 1499 lgrp_move_thread(t, 1500 lgrp_choose(t, 1501 t->t_cpupart), 0); 1502 else if (t->t_lpl->lpl_lgrpid == 1503 cpu_lpl->lpl_lgrpid) 1504 lgrp_diff_lpl++; 1505 } 1506 ASSERT(t->t_lpl->lpl_ncpu > 0); 1507 1508 /* 1509 * Update CPU last ran on if it was this CPU 1510 */ 1511 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1512 t->t_cpu = disp_lowpri_cpu(ncp, t, 1513 t->t_pri); 1514 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1515 t->t_weakbound_cpu == cp); 1516 1517 t = t->t_forw; 1518 } while (t != p->p_tlist); 1519 1520 /* 1521 * Didn't find any threads in the same lgroup as this 1522 * CPU with a different lpl, so remove the lgroup from 1523 * the process lgroup bitmask. 1524 */ 1525 1526 if (lgrp_diff_lpl == 0) 1527 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1528 } 1529 1530 /* 1531 * Walk thread list looking for threads that need to be 1532 * rehomed, since there are some threads that are not in 1533 * their process's p_tlist. 1534 */ 1535 1536 t = curthread; 1537 do { 1538 ASSERT(t != NULL && t->t_lpl != NULL); 1539 1540 /* 1541 * Rehome threads with same lpl as this CPU when this 1542 * is the last CPU in the lpl. 1543 */ 1544 1545 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1546 lgrp_move_thread(t, 1547 lgrp_choose(t, t->t_cpupart), 1); 1548 1549 ASSERT(t->t_lpl->lpl_ncpu > 0); 1550 1551 /* 1552 * Update CPU last ran on if it was this CPU 1553 */ 1554 1555 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1556 t->t_cpu = disp_lowpri_cpu(ncp, t, t->t_pri); 1557 1558 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1559 t->t_weakbound_cpu == cp); 1560 t = t->t_next; 1561 1562 } while (t != curthread); 1563 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1564 cp->cpu_flags |= CPU_OFFLINE; 1565 disp_cpu_inactive(cp); 1566 if (!no_quiesce) 1567 cp->cpu_flags |= CPU_QUIESCED; 1568 ncpus_online--; 1569 cpu_set_state(cp); 1570 cpu_inmotion = NULL; 1571 start_cpus(); 1572 cpu_stats_kstat_destroy(cp); 1573 cpu_delete_intrstat(cp); 1574 lgrp_kstat_destroy(cp); 1575 } 1576 1577 out: 1578 cpu_inmotion = NULL; 1579 1580 /* 1581 * If we failed, re-enable interrupts. 1582 * Do this even if cpu_intr_disable returned an error, because 1583 * it may have partially disabled interrupts. 1584 */ 1585 if (error && intr_enable) 1586 cpu_intr_enable(cp); 1587 1588 /* 1589 * If we failed, but managed to offline the cyclic subsystem on this 1590 * CPU, bring it back online. 1591 */ 1592 if (error && cyclic_off) 1593 cyclic_online(cp); 1594 1595 /* 1596 * If we failed, but managed to offline callouts on this CPU, 1597 * bring it back online. 1598 */ 1599 if (error && callout_off) 1600 callout_cpu_online(cp); 1601 1602 /* 1603 * If we failed, tell the PG subsystem that the CPU is back 1604 */ 1605 pg_cpupart_in(cp, pp); 1606 1607 /* 1608 * If we failed, we need to notify everyone that this CPU is back on. 1609 */ 1610 if (error != 0) { 1611 CPU_NEW_GENERATION(cp); 1612 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1613 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1614 } 1615 1616 return (error); 1617 } 1618 1619 /* 1620 * Mark the indicated CPU as faulted, taking it offline. 1621 */ 1622 int 1623 cpu_faulted(cpu_t *cp, int flags) 1624 { 1625 int error = 0; 1626 1627 ASSERT(MUTEX_HELD(&cpu_lock)); 1628 ASSERT(!cpu_is_poweredoff(cp)); 1629 1630 if (cp->cpu_flags & CPU_DISABLED) 1631 return (EINVAL); 1632 1633 if (cpu_is_offline(cp)) { 1634 cp->cpu_flags &= ~CPU_SPARE; 1635 cp->cpu_flags |= CPU_FAULTED; 1636 mp_cpu_faulted_enter(cp); 1637 cpu_set_state(cp); 1638 return (0); 1639 } 1640 1641 if ((error = cpu_offline(cp, flags)) == 0) { 1642 cp->cpu_flags |= CPU_FAULTED; 1643 mp_cpu_faulted_enter(cp); 1644 cpu_set_state(cp); 1645 } 1646 1647 return (error); 1648 } 1649 1650 /* 1651 * Mark the indicated CPU as a spare, taking it offline. 1652 */ 1653 int 1654 cpu_spare(cpu_t *cp, int flags) 1655 { 1656 int error = 0; 1657 1658 ASSERT(MUTEX_HELD(&cpu_lock)); 1659 ASSERT(!cpu_is_poweredoff(cp)); 1660 1661 if (cp->cpu_flags & CPU_DISABLED) 1662 return (EINVAL); 1663 1664 if (cpu_is_offline(cp)) { 1665 if (cp->cpu_flags & CPU_FAULTED) { 1666 cp->cpu_flags &= ~CPU_FAULTED; 1667 mp_cpu_faulted_exit(cp); 1668 } 1669 cp->cpu_flags |= CPU_SPARE; 1670 cpu_set_state(cp); 1671 return (0); 1672 } 1673 1674 if ((error = cpu_offline(cp, flags)) == 0) { 1675 cp->cpu_flags |= CPU_SPARE; 1676 cpu_set_state(cp); 1677 } 1678 1679 return (error); 1680 } 1681 1682 /* 1683 * Take the indicated CPU from poweroff to offline. 1684 */ 1685 int 1686 cpu_poweron(cpu_t *cp) 1687 { 1688 int error = ENOTSUP; 1689 1690 ASSERT(MUTEX_HELD(&cpu_lock)); 1691 ASSERT(cpu_is_poweredoff(cp)); 1692 1693 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1694 if (error == 0) 1695 cpu_set_state(cp); 1696 1697 return (error); 1698 } 1699 1700 /* 1701 * Take the indicated CPU from any inactive state to powered off. 1702 */ 1703 int 1704 cpu_poweroff(cpu_t *cp) 1705 { 1706 int error = ENOTSUP; 1707 1708 ASSERT(MUTEX_HELD(&cpu_lock)); 1709 ASSERT(cpu_is_offline(cp)); 1710 1711 if (!(cp->cpu_flags & CPU_QUIESCED)) 1712 return (EBUSY); /* not completely idle */ 1713 1714 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1715 if (error == 0) 1716 cpu_set_state(cp); 1717 1718 return (error); 1719 } 1720 1721 /* 1722 * Initialize the Sequential CPU id lookup table 1723 */ 1724 void 1725 cpu_seq_tbl_init() 1726 { 1727 cpu_t **tbl; 1728 1729 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP); 1730 tbl[0] = CPU; 1731 1732 cpu_seq = tbl; 1733 } 1734 1735 /* 1736 * Initialize the CPU lists for the first CPU. 1737 */ 1738 void 1739 cpu_list_init(cpu_t *cp) 1740 { 1741 cp->cpu_next = cp; 1742 cp->cpu_prev = cp; 1743 cpu_list = cp; 1744 clock_cpu_list = cp; 1745 1746 cp->cpu_next_onln = cp; 1747 cp->cpu_prev_onln = cp; 1748 cpu_active = cp; 1749 1750 cp->cpu_seqid = 0; 1751 CPUSET_ADD(cpu_seqid_inuse, 0); 1752 1753 /* 1754 * Bootstrap cpu_seq using cpu_list 1755 * The cpu_seq[] table will be dynamically allocated 1756 * when kmem later becomes available (but before going MP) 1757 */ 1758 cpu_seq = &cpu_list; 1759 1760 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1761 cp_default.cp_cpulist = cp; 1762 cp_default.cp_ncpus = 1; 1763 cp->cpu_next_part = cp; 1764 cp->cpu_prev_part = cp; 1765 cp->cpu_part = &cp_default; 1766 1767 CPUSET_ADD(cpu_available, cp->cpu_id); 1768 CPUSET_ADD(cpu_active_set, cp->cpu_id); 1769 } 1770 1771 /* 1772 * Insert a CPU into the list of available CPUs. 1773 */ 1774 void 1775 cpu_add_unit(cpu_t *cp) 1776 { 1777 int seqid; 1778 1779 ASSERT(MUTEX_HELD(&cpu_lock)); 1780 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1781 1782 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1783 1784 /* 1785 * Note: most users of the cpu_list will grab the 1786 * cpu_lock to insure that it isn't modified. However, 1787 * certain users can't or won't do that. To allow this 1788 * we pause the other cpus. Users who walk the list 1789 * without cpu_lock, must disable kernel preemption 1790 * to insure that the list isn't modified underneath 1791 * them. Also, any cached pointers to cpu structures 1792 * must be revalidated by checking to see if the 1793 * cpu_next pointer points to itself. This check must 1794 * be done with the cpu_lock held or kernel preemption 1795 * disabled. This check relies upon the fact that 1796 * old cpu structures are not free'ed or cleared after 1797 * then are removed from the cpu_list. 1798 * 1799 * Note that the clock code walks the cpu list dereferencing 1800 * the cpu_part pointer, so we need to initialize it before 1801 * adding the cpu to the list. 1802 */ 1803 cp->cpu_part = &cp_default; 1804 pause_cpus(NULL, NULL); 1805 cp->cpu_next = cpu_list; 1806 cp->cpu_prev = cpu_list->cpu_prev; 1807 cpu_list->cpu_prev->cpu_next = cp; 1808 cpu_list->cpu_prev = cp; 1809 start_cpus(); 1810 1811 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1812 continue; 1813 CPUSET_ADD(cpu_seqid_inuse, seqid); 1814 cp->cpu_seqid = seqid; 1815 1816 if (seqid > max_cpu_seqid_ever) 1817 max_cpu_seqid_ever = seqid; 1818 1819 ASSERT(ncpus < max_ncpus); 1820 ncpus++; 1821 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1822 cpu[cp->cpu_id] = cp; 1823 CPUSET_ADD(cpu_available, cp->cpu_id); 1824 cpu_seq[cp->cpu_seqid] = cp; 1825 1826 /* 1827 * allocate a pause thread for this CPU. 1828 */ 1829 cpu_pause_alloc(cp); 1830 1831 /* 1832 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1833 * link them into a list of just that CPU. 1834 * This is so that disp_lowpri_cpu will work for thread_create in 1835 * pause_cpus() when called from the startup thread in a new CPU. 1836 */ 1837 cp->cpu_next_onln = cp; 1838 cp->cpu_prev_onln = cp; 1839 cpu_info_kstat_create(cp); 1840 cp->cpu_next_part = cp; 1841 cp->cpu_prev_part = cp; 1842 1843 init_cpu_mstate(cp, CMS_SYSTEM); 1844 1845 pool_pset_mod = gethrtime(); 1846 } 1847 1848 /* 1849 * Do the opposite of cpu_add_unit(). 1850 */ 1851 void 1852 cpu_del_unit(int cpuid) 1853 { 1854 struct cpu *cp, *cpnext; 1855 1856 ASSERT(MUTEX_HELD(&cpu_lock)); 1857 cp = cpu[cpuid]; 1858 ASSERT(cp != NULL); 1859 1860 ASSERT(cp->cpu_next_onln == cp); 1861 ASSERT(cp->cpu_prev_onln == cp); 1862 ASSERT(cp->cpu_next_part == cp); 1863 ASSERT(cp->cpu_prev_part == cp); 1864 1865 /* 1866 * Tear down the CPU's physical ID cache, and update any 1867 * processor groups 1868 */ 1869 pg_cpu_fini(cp, NULL); 1870 pghw_physid_destroy(cp); 1871 1872 /* 1873 * Destroy kstat stuff. 1874 */ 1875 cpu_info_kstat_destroy(cp); 1876 term_cpu_mstate(cp); 1877 /* 1878 * Free up pause thread. 1879 */ 1880 cpu_pause_free(cp); 1881 CPUSET_DEL(cpu_available, cp->cpu_id); 1882 cpu[cp->cpu_id] = NULL; 1883 cpu_seq[cp->cpu_seqid] = NULL; 1884 1885 /* 1886 * The clock thread and mutex_vector_enter cannot hold the 1887 * cpu_lock while traversing the cpu list, therefore we pause 1888 * all other threads by pausing the other cpus. These, and any 1889 * other routines holding cpu pointers while possibly sleeping 1890 * must be sure to call kpreempt_disable before processing the 1891 * list and be sure to check that the cpu has not been deleted 1892 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1893 * to keep the deleted cpu structure around. 1894 * 1895 * Note that this MUST be done AFTER cpu_available 1896 * has been updated so that we don't waste time 1897 * trying to pause the cpu we're trying to delete. 1898 */ 1899 pause_cpus(NULL, NULL); 1900 1901 cpnext = cp->cpu_next; 1902 cp->cpu_prev->cpu_next = cp->cpu_next; 1903 cp->cpu_next->cpu_prev = cp->cpu_prev; 1904 if (cp == cpu_list) 1905 cpu_list = cpnext; 1906 1907 /* 1908 * Signals that the cpu has been deleted (see above). 1909 */ 1910 cp->cpu_next = NULL; 1911 cp->cpu_prev = NULL; 1912 1913 start_cpus(); 1914 1915 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1916 ncpus--; 1917 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1918 1919 pool_pset_mod = gethrtime(); 1920 } 1921 1922 /* 1923 * Add a CPU to the list of active CPUs. 1924 * This routine must not get any locks, because other CPUs are paused. 1925 */ 1926 static void 1927 cpu_add_active_internal(cpu_t *cp) 1928 { 1929 cpupart_t *pp = cp->cpu_part; 1930 1931 ASSERT(MUTEX_HELD(&cpu_lock)); 1932 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1933 1934 ncpus_online++; 1935 cpu_set_state(cp); 1936 cp->cpu_next_onln = cpu_active; 1937 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1938 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1939 cpu_active->cpu_prev_onln = cp; 1940 CPUSET_ADD(cpu_active_set, cp->cpu_id); 1941 1942 if (pp->cp_cpulist) { 1943 cp->cpu_next_part = pp->cp_cpulist; 1944 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1945 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1946 pp->cp_cpulist->cpu_prev_part = cp; 1947 } else { 1948 ASSERT(pp->cp_ncpus == 0); 1949 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1950 } 1951 pp->cp_ncpus++; 1952 if (pp->cp_ncpus == 1) { 1953 cp_numparts_nonempty++; 1954 ASSERT(cp_numparts_nonempty != 0); 1955 } 1956 1957 pg_cpu_active(cp); 1958 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1959 1960 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1961 } 1962 1963 /* 1964 * Add a CPU to the list of active CPUs. 1965 * This is called from machine-dependent layers when a new CPU is started. 1966 */ 1967 void 1968 cpu_add_active(cpu_t *cp) 1969 { 1970 pg_cpupart_in(cp, cp->cpu_part); 1971 1972 pause_cpus(NULL, NULL); 1973 cpu_add_active_internal(cp); 1974 start_cpus(); 1975 1976 cpu_stats_kstat_create(cp); 1977 cpu_create_intrstat(cp); 1978 lgrp_kstat_create(cp); 1979 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1980 } 1981 1982 1983 /* 1984 * Remove a CPU from the list of active CPUs. 1985 * This routine must not get any locks, because other CPUs are paused. 1986 */ 1987 /* ARGSUSED */ 1988 static void 1989 cpu_remove_active(cpu_t *cp) 1990 { 1991 cpupart_t *pp = cp->cpu_part; 1992 1993 ASSERT(MUTEX_HELD(&cpu_lock)); 1994 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1995 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1996 1997 pg_cpu_inactive(cp); 1998 1999 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 2000 2001 if (cp == clock_cpu_list) 2002 clock_cpu_list = cp->cpu_next_onln; 2003 2004 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 2005 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 2006 if (cpu_active == cp) { 2007 cpu_active = cp->cpu_next_onln; 2008 } 2009 cp->cpu_next_onln = cp; 2010 cp->cpu_prev_onln = cp; 2011 CPUSET_DEL(cpu_active_set, cp->cpu_id); 2012 2013 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 2014 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 2015 if (pp->cp_cpulist == cp) { 2016 pp->cp_cpulist = cp->cpu_next_part; 2017 ASSERT(pp->cp_cpulist != cp); 2018 } 2019 cp->cpu_next_part = cp; 2020 cp->cpu_prev_part = cp; 2021 pp->cp_ncpus--; 2022 if (pp->cp_ncpus == 0) { 2023 cp_numparts_nonempty--; 2024 ASSERT(cp_numparts_nonempty != 0); 2025 } 2026 } 2027 2028 /* 2029 * Routine used to setup a newly inserted CPU in preparation for starting 2030 * it running code. 2031 */ 2032 int 2033 cpu_configure(int cpuid) 2034 { 2035 int retval = 0; 2036 2037 ASSERT(MUTEX_HELD(&cpu_lock)); 2038 2039 /* 2040 * Some structures are statically allocated based upon 2041 * the maximum number of cpus the system supports. Do not 2042 * try to add anything beyond this limit. 2043 */ 2044 if (cpuid < 0 || cpuid >= NCPU) { 2045 return (EINVAL); 2046 } 2047 2048 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 2049 return (EALREADY); 2050 } 2051 2052 if ((retval = mp_cpu_configure(cpuid)) != 0) { 2053 return (retval); 2054 } 2055 2056 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 2057 cpu_set_state(cpu[cpuid]); 2058 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 2059 if (retval != 0) 2060 (void) mp_cpu_unconfigure(cpuid); 2061 2062 return (retval); 2063 } 2064 2065 /* 2066 * Routine used to cleanup a CPU that has been powered off. This will 2067 * destroy all per-cpu information related to this cpu. 2068 */ 2069 int 2070 cpu_unconfigure(int cpuid) 2071 { 2072 int error; 2073 2074 ASSERT(MUTEX_HELD(&cpu_lock)); 2075 2076 if (cpu[cpuid] == NULL) { 2077 return (ENODEV); 2078 } 2079 2080 if (cpu[cpuid]->cpu_flags == 0) { 2081 return (EALREADY); 2082 } 2083 2084 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 2085 return (EBUSY); 2086 } 2087 2088 if (cpu[cpuid]->cpu_props != NULL) { 2089 (void) nvlist_free(cpu[cpuid]->cpu_props); 2090 cpu[cpuid]->cpu_props = NULL; 2091 } 2092 2093 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 2094 2095 if (error != 0) 2096 return (error); 2097 2098 return (mp_cpu_unconfigure(cpuid)); 2099 } 2100 2101 /* 2102 * Routines for registering and de-registering cpu_setup callback functions. 2103 * 2104 * Caller's context 2105 * These routines must not be called from a driver's attach(9E) or 2106 * detach(9E) entry point. 2107 * 2108 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 2109 */ 2110 2111 /* 2112 * Ideally, these would be dynamically allocated and put into a linked 2113 * list; however that is not feasible because the registration routine 2114 * has to be available before the kmem allocator is working (in fact, 2115 * it is called by the kmem allocator init code). In any case, there 2116 * are quite a few extra entries for future users. 2117 */ 2118 #define NCPU_SETUPS 20 2119 2120 struct cpu_setup { 2121 cpu_setup_func_t *func; 2122 void *arg; 2123 } cpu_setups[NCPU_SETUPS]; 2124 2125 void 2126 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2127 { 2128 int i; 2129 2130 ASSERT(MUTEX_HELD(&cpu_lock)); 2131 2132 for (i = 0; i < NCPU_SETUPS; i++) 2133 if (cpu_setups[i].func == NULL) 2134 break; 2135 if (i >= NCPU_SETUPS) 2136 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2137 2138 cpu_setups[i].func = func; 2139 cpu_setups[i].arg = arg; 2140 } 2141 2142 void 2143 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2144 { 2145 int i; 2146 2147 ASSERT(MUTEX_HELD(&cpu_lock)); 2148 2149 for (i = 0; i < NCPU_SETUPS; i++) 2150 if ((cpu_setups[i].func == func) && 2151 (cpu_setups[i].arg == arg)) 2152 break; 2153 if (i >= NCPU_SETUPS) 2154 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2155 "deregister"); 2156 2157 cpu_setups[i].func = NULL; 2158 cpu_setups[i].arg = 0; 2159 } 2160 2161 /* 2162 * Call any state change hooks for this CPU, ignore any errors. 2163 */ 2164 void 2165 cpu_state_change_notify(int id, cpu_setup_t what) 2166 { 2167 int i; 2168 2169 ASSERT(MUTEX_HELD(&cpu_lock)); 2170 2171 for (i = 0; i < NCPU_SETUPS; i++) { 2172 if (cpu_setups[i].func != NULL) { 2173 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2174 } 2175 } 2176 } 2177 2178 /* 2179 * Call any state change hooks for this CPU, undo it if error found. 2180 */ 2181 static int 2182 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2183 { 2184 int i; 2185 int retval = 0; 2186 2187 ASSERT(MUTEX_HELD(&cpu_lock)); 2188 2189 for (i = 0; i < NCPU_SETUPS; i++) { 2190 if (cpu_setups[i].func != NULL) { 2191 retval = cpu_setups[i].func(what, id, 2192 cpu_setups[i].arg); 2193 if (retval) { 2194 for (i--; i >= 0; i--) { 2195 if (cpu_setups[i].func != NULL) 2196 cpu_setups[i].func(undo, 2197 id, cpu_setups[i].arg); 2198 } 2199 break; 2200 } 2201 } 2202 } 2203 return (retval); 2204 } 2205 2206 /* 2207 * Export information about this CPU via the kstat mechanism. 2208 */ 2209 static struct { 2210 kstat_named_t ci_state; 2211 kstat_named_t ci_state_begin; 2212 kstat_named_t ci_cpu_type; 2213 kstat_named_t ci_fpu_type; 2214 kstat_named_t ci_clock_MHz; 2215 kstat_named_t ci_chip_id; 2216 kstat_named_t ci_implementation; 2217 kstat_named_t ci_brandstr; 2218 kstat_named_t ci_core_id; 2219 kstat_named_t ci_curr_clock_Hz; 2220 kstat_named_t ci_supp_freq_Hz; 2221 kstat_named_t ci_pg_id; 2222 #if defined(__sparcv9) 2223 kstat_named_t ci_device_ID; 2224 kstat_named_t ci_cpu_fru; 2225 #endif 2226 #if defined(__x86) 2227 kstat_named_t ci_vendorstr; 2228 kstat_named_t ci_family; 2229 kstat_named_t ci_model; 2230 kstat_named_t ci_step; 2231 kstat_named_t ci_clogid; 2232 kstat_named_t ci_pkg_core_id; 2233 kstat_named_t ci_ncpuperchip; 2234 kstat_named_t ci_ncoreperchip; 2235 kstat_named_t ci_max_cstates; 2236 kstat_named_t ci_curr_cstate; 2237 kstat_named_t ci_cacheid; 2238 kstat_named_t ci_sktstr; 2239 #endif 2240 } cpu_info_template = { 2241 { "state", KSTAT_DATA_CHAR }, 2242 { "state_begin", KSTAT_DATA_LONG }, 2243 { "cpu_type", KSTAT_DATA_CHAR }, 2244 { "fpu_type", KSTAT_DATA_CHAR }, 2245 { "clock_MHz", KSTAT_DATA_LONG }, 2246 { "chip_id", KSTAT_DATA_LONG }, 2247 { "implementation", KSTAT_DATA_STRING }, 2248 { "brand", KSTAT_DATA_STRING }, 2249 { "core_id", KSTAT_DATA_LONG }, 2250 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2251 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2252 { "pg_id", KSTAT_DATA_LONG }, 2253 #if defined(__sparcv9) 2254 { "device_ID", KSTAT_DATA_UINT64 }, 2255 { "cpu_fru", KSTAT_DATA_STRING }, 2256 #endif 2257 #if defined(__x86) 2258 { "vendor_id", KSTAT_DATA_STRING }, 2259 { "family", KSTAT_DATA_INT32 }, 2260 { "model", KSTAT_DATA_INT32 }, 2261 { "stepping", KSTAT_DATA_INT32 }, 2262 { "clog_id", KSTAT_DATA_INT32 }, 2263 { "pkg_core_id", KSTAT_DATA_LONG }, 2264 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2265 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2266 { "supported_max_cstates", KSTAT_DATA_INT32 }, 2267 { "current_cstate", KSTAT_DATA_INT32 }, 2268 { "cache_id", KSTAT_DATA_INT32 }, 2269 { "socket_type", KSTAT_DATA_STRING }, 2270 #endif 2271 }; 2272 2273 static kmutex_t cpu_info_template_lock; 2274 2275 static int 2276 cpu_info_kstat_update(kstat_t *ksp, int rw) 2277 { 2278 cpu_t *cp = ksp->ks_private; 2279 const char *pi_state; 2280 2281 if (rw == KSTAT_WRITE) 2282 return (EACCES); 2283 2284 #if defined(__x86) 2285 /* Is the cpu still initialising itself? */ 2286 if (cpuid_checkpass(cp, 1) == 0) 2287 return (ENXIO); 2288 #endif 2289 2290 pi_state = cpu_get_state_str(cp->cpu_flags); 2291 2292 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2293 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2294 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2295 cp->cpu_type_info.pi_processor_type, 15); 2296 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2297 cp->cpu_type_info.pi_fputypes, 15); 2298 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2299 cpu_info_template.ci_chip_id.value.l = 2300 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2301 kstat_named_setstr(&cpu_info_template.ci_implementation, 2302 cp->cpu_idstr); 2303 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2304 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2305 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2306 cp->cpu_curr_clock; 2307 cpu_info_template.ci_pg_id.value.l = 2308 cp->cpu_pg && cp->cpu_pg->cmt_lineage ? 2309 cp->cpu_pg->cmt_lineage->pg_id : -1; 2310 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2311 cp->cpu_supp_freqs); 2312 #if defined(__sparcv9) 2313 cpu_info_template.ci_device_ID.value.ui64 = 2314 cpunodes[cp->cpu_id].device_id; 2315 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2316 #endif 2317 #if defined(__x86) 2318 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2319 cpuid_getvendorstr(cp)); 2320 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2321 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2322 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2323 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2324 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2325 cpu_info_template.ci_ncoreperchip.value.l = 2326 cpuid_get_ncore_per_chip(cp); 2327 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp); 2328 cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates; 2329 cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp); 2330 cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp); 2331 kstat_named_setstr(&cpu_info_template.ci_sktstr, 2332 cpuid_getsocketstr(cp)); 2333 #endif 2334 2335 return (0); 2336 } 2337 2338 static void 2339 cpu_info_kstat_create(cpu_t *cp) 2340 { 2341 zoneid_t zoneid; 2342 2343 ASSERT(MUTEX_HELD(&cpu_lock)); 2344 2345 if (pool_pset_enabled()) 2346 zoneid = GLOBAL_ZONEID; 2347 else 2348 zoneid = ALL_ZONES; 2349 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2350 NULL, "misc", KSTAT_TYPE_NAMED, 2351 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2352 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) { 2353 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2354 #if defined(__sparcv9) 2355 cp->cpu_info_kstat->ks_data_size += 2356 strlen(cpu_fru_fmri(cp)) + 1; 2357 #endif 2358 #if defined(__x86) 2359 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2360 #endif 2361 if (cp->cpu_supp_freqs != NULL) 2362 cp->cpu_info_kstat->ks_data_size += 2363 strlen(cp->cpu_supp_freqs) + 1; 2364 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2365 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2366 cp->cpu_info_kstat->ks_private = cp; 2367 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2368 kstat_install(cp->cpu_info_kstat); 2369 } 2370 } 2371 2372 static void 2373 cpu_info_kstat_destroy(cpu_t *cp) 2374 { 2375 ASSERT(MUTEX_HELD(&cpu_lock)); 2376 2377 kstat_delete(cp->cpu_info_kstat); 2378 cp->cpu_info_kstat = NULL; 2379 } 2380 2381 /* 2382 * Create and install kstats for the boot CPU. 2383 */ 2384 void 2385 cpu_kstat_init(cpu_t *cp) 2386 { 2387 mutex_enter(&cpu_lock); 2388 cpu_info_kstat_create(cp); 2389 cpu_stats_kstat_create(cp); 2390 cpu_create_intrstat(cp); 2391 cpu_set_state(cp); 2392 mutex_exit(&cpu_lock); 2393 } 2394 2395 /* 2396 * Make visible to the zone that subset of the cpu information that would be 2397 * initialized when a cpu is configured (but still offline). 2398 */ 2399 void 2400 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2401 { 2402 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2403 2404 ASSERT(MUTEX_HELD(&cpu_lock)); 2405 ASSERT(pool_pset_enabled()); 2406 ASSERT(cp != NULL); 2407 2408 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2409 zone->zone_ncpus++; 2410 ASSERT(zone->zone_ncpus <= ncpus); 2411 } 2412 if (cp->cpu_info_kstat != NULL) 2413 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2414 } 2415 2416 /* 2417 * Make visible to the zone that subset of the cpu information that would be 2418 * initialized when a previously configured cpu is onlined. 2419 */ 2420 void 2421 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2422 { 2423 kstat_t *ksp; 2424 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2425 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2426 processorid_t cpun; 2427 2428 ASSERT(MUTEX_HELD(&cpu_lock)); 2429 ASSERT(pool_pset_enabled()); 2430 ASSERT(cp != NULL); 2431 ASSERT(cpu_is_active(cp)); 2432 2433 cpun = cp->cpu_id; 2434 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2435 zone->zone_ncpus_online++; 2436 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2437 } 2438 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2439 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2440 != NULL) { 2441 kstat_zone_add(ksp, zoneid); 2442 kstat_rele(ksp); 2443 } 2444 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2445 kstat_zone_add(ksp, zoneid); 2446 kstat_rele(ksp); 2447 } 2448 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2449 kstat_zone_add(ksp, zoneid); 2450 kstat_rele(ksp); 2451 } 2452 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2453 NULL) { 2454 kstat_zone_add(ksp, zoneid); 2455 kstat_rele(ksp); 2456 } 2457 } 2458 2459 /* 2460 * Update relevant kstats such that cpu is now visible to processes 2461 * executing in specified zone. 2462 */ 2463 void 2464 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2465 { 2466 cpu_visibility_configure(cp, zone); 2467 if (cpu_is_active(cp)) 2468 cpu_visibility_online(cp, zone); 2469 } 2470 2471 /* 2472 * Make invisible to the zone that subset of the cpu information that would be 2473 * torn down when a previously offlined cpu is unconfigured. 2474 */ 2475 void 2476 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2477 { 2478 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2479 2480 ASSERT(MUTEX_HELD(&cpu_lock)); 2481 ASSERT(pool_pset_enabled()); 2482 ASSERT(cp != NULL); 2483 2484 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2485 ASSERT(zone->zone_ncpus != 0); 2486 zone->zone_ncpus--; 2487 } 2488 if (cp->cpu_info_kstat) 2489 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2490 } 2491 2492 /* 2493 * Make invisible to the zone that subset of the cpu information that would be 2494 * torn down when a cpu is offlined (but still configured). 2495 */ 2496 void 2497 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2498 { 2499 kstat_t *ksp; 2500 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2501 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2502 processorid_t cpun; 2503 2504 ASSERT(MUTEX_HELD(&cpu_lock)); 2505 ASSERT(pool_pset_enabled()); 2506 ASSERT(cp != NULL); 2507 ASSERT(cpu_is_active(cp)); 2508 2509 cpun = cp->cpu_id; 2510 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2511 ASSERT(zone->zone_ncpus_online != 0); 2512 zone->zone_ncpus_online--; 2513 } 2514 2515 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2516 NULL) { 2517 kstat_zone_remove(ksp, zoneid); 2518 kstat_rele(ksp); 2519 } 2520 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2521 kstat_zone_remove(ksp, zoneid); 2522 kstat_rele(ksp); 2523 } 2524 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2525 kstat_zone_remove(ksp, zoneid); 2526 kstat_rele(ksp); 2527 } 2528 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2529 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2530 != NULL) { 2531 kstat_zone_remove(ksp, zoneid); 2532 kstat_rele(ksp); 2533 } 2534 } 2535 2536 /* 2537 * Update relevant kstats such that cpu is no longer visible to processes 2538 * executing in specified zone. 2539 */ 2540 void 2541 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2542 { 2543 if (cpu_is_active(cp)) 2544 cpu_visibility_offline(cp, zone); 2545 cpu_visibility_unconfigure(cp, zone); 2546 } 2547 2548 /* 2549 * Bind a thread to a CPU as requested. 2550 */ 2551 int 2552 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2553 int *error) 2554 { 2555 processorid_t binding; 2556 cpu_t *cp = NULL; 2557 2558 ASSERT(MUTEX_HELD(&cpu_lock)); 2559 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2560 2561 thread_lock(tp); 2562 2563 /* 2564 * Record old binding, but change the obind, which was initialized 2565 * to PBIND_NONE, only if this thread has a binding. This avoids 2566 * reporting PBIND_NONE for a process when some LWPs are bound. 2567 */ 2568 binding = tp->t_bind_cpu; 2569 if (binding != PBIND_NONE) 2570 *obind = binding; /* record old binding */ 2571 2572 switch (bind) { 2573 case PBIND_QUERY: 2574 /* Just return the old binding */ 2575 thread_unlock(tp); 2576 return (0); 2577 2578 case PBIND_QUERY_TYPE: 2579 /* Return the binding type */ 2580 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD; 2581 thread_unlock(tp); 2582 return (0); 2583 2584 case PBIND_SOFT: 2585 /* 2586 * Set soft binding for this thread and return the actual 2587 * binding 2588 */ 2589 TB_CPU_SOFT_SET(tp); 2590 thread_unlock(tp); 2591 return (0); 2592 2593 case PBIND_HARD: 2594 /* 2595 * Set hard binding for this thread and return the actual 2596 * binding 2597 */ 2598 TB_CPU_HARD_SET(tp); 2599 thread_unlock(tp); 2600 return (0); 2601 2602 default: 2603 break; 2604 } 2605 2606 /* 2607 * If this thread/LWP cannot be bound because of permission 2608 * problems, just note that and return success so that the 2609 * other threads/LWPs will be bound. This is the way 2610 * processor_bind() is defined to work. 2611 * 2612 * Binding will get EPERM if the thread is of system class 2613 * or hasprocperm() fails. 2614 */ 2615 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2616 *error = EPERM; 2617 thread_unlock(tp); 2618 return (0); 2619 } 2620 2621 binding = bind; 2622 if (binding != PBIND_NONE) { 2623 cp = cpu_get((processorid_t)binding); 2624 /* 2625 * Make sure binding is valid and is in right partition. 2626 */ 2627 if (cp == NULL || tp->t_cpupart != cp->cpu_part) { 2628 *error = EINVAL; 2629 thread_unlock(tp); 2630 return (0); 2631 } 2632 } 2633 tp->t_bind_cpu = binding; /* set new binding */ 2634 2635 /* 2636 * If there is no system-set reason for affinity, set 2637 * the t_bound_cpu field to reflect the binding. 2638 */ 2639 if (tp->t_affinitycnt == 0) { 2640 if (binding == PBIND_NONE) { 2641 /* 2642 * We may need to adjust disp_max_unbound_pri 2643 * since we're becoming unbound. 2644 */ 2645 disp_adjust_unbound_pri(tp); 2646 2647 tp->t_bound_cpu = NULL; /* set new binding */ 2648 2649 /* 2650 * Move thread to lgroup with strongest affinity 2651 * after unbinding 2652 */ 2653 if (tp->t_lgrp_affinity) 2654 lgrp_move_thread(tp, 2655 lgrp_choose(tp, tp->t_cpupart), 1); 2656 2657 if (tp->t_state == TS_ONPROC && 2658 tp->t_cpu->cpu_part != tp->t_cpupart) 2659 cpu_surrender(tp); 2660 } else { 2661 lpl_t *lpl; 2662 2663 tp->t_bound_cpu = cp; 2664 ASSERT(cp->cpu_lpl != NULL); 2665 2666 /* 2667 * Set home to lgroup with most affinity containing CPU 2668 * that thread is being bound or minimum bounding 2669 * lgroup if no affinities set 2670 */ 2671 if (tp->t_lgrp_affinity) 2672 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2673 LGRP_NONE, B_FALSE); 2674 else 2675 lpl = cp->cpu_lpl; 2676 2677 if (tp->t_lpl != lpl) { 2678 /* can't grab cpu_lock */ 2679 lgrp_move_thread(tp, lpl, 1); 2680 } 2681 2682 /* 2683 * Make the thread switch to the bound CPU. 2684 * If the thread is runnable, we need to 2685 * requeue it even if t_cpu is already set 2686 * to the right CPU, since it may be on a 2687 * kpreempt queue and need to move to a local 2688 * queue. We could check t_disp_queue to 2689 * avoid unnecessary overhead if it's already 2690 * on the right queue, but since this isn't 2691 * a performance-critical operation it doesn't 2692 * seem worth the extra code and complexity. 2693 * 2694 * If the thread is weakbound to the cpu then it will 2695 * resist the new binding request until the weak 2696 * binding drops. The cpu_surrender or requeueing 2697 * below could be skipped in such cases (since it 2698 * will have no effect), but that would require 2699 * thread_allowmigrate to acquire thread_lock so 2700 * we'll take the very occasional hit here instead. 2701 */ 2702 if (tp->t_state == TS_ONPROC) { 2703 cpu_surrender(tp); 2704 } else if (tp->t_state == TS_RUN) { 2705 cpu_t *ocp = tp->t_cpu; 2706 2707 (void) dispdeq(tp); 2708 setbackdq(tp); 2709 /* 2710 * Either on the bound CPU's disp queue now, 2711 * or swapped out or on the swap queue. 2712 */ 2713 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2714 tp->t_weakbound_cpu == ocp || 2715 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2716 != TS_LOAD); 2717 } 2718 } 2719 } 2720 2721 /* 2722 * Our binding has changed; set TP_CHANGEBIND. 2723 */ 2724 tp->t_proc_flag |= TP_CHANGEBIND; 2725 aston(tp); 2726 2727 thread_unlock(tp); 2728 2729 return (0); 2730 } 2731 2732 2733 cpuset_t * 2734 cpuset_alloc(int kmflags) 2735 { 2736 return (kmem_alloc(sizeof (cpuset_t), kmflags)); 2737 } 2738 2739 void 2740 cpuset_free(cpuset_t *s) 2741 { 2742 kmem_free(s, sizeof (cpuset_t)); 2743 } 2744 2745 void 2746 cpuset_all(cpuset_t *s) 2747 { 2748 int i; 2749 2750 for (i = 0; i < CPUSET_WORDS; i++) 2751 s->cpub[i] = ~0UL; 2752 } 2753 2754 void 2755 cpuset_all_but(cpuset_t *s, const uint_t cpu) 2756 { 2757 cpuset_all(s); 2758 CPUSET_DEL(*s, cpu); 2759 } 2760 2761 void 2762 cpuset_only(cpuset_t *s, const uint_t cpu) 2763 { 2764 CPUSET_ZERO(*s); 2765 CPUSET_ADD(*s, cpu); 2766 } 2767 2768 long 2769 cpu_in_set(const cpuset_t *s, const uint_t cpu) 2770 { 2771 VERIFY(cpu < NCPU); 2772 return (BT_TEST(s->cpub, cpu)); 2773 } 2774 2775 void 2776 cpuset_add(cpuset_t *s, const uint_t cpu) 2777 { 2778 VERIFY(cpu < NCPU); 2779 BT_SET(s->cpub, cpu); 2780 } 2781 2782 void 2783 cpuset_del(cpuset_t *s, const uint_t cpu) 2784 { 2785 VERIFY(cpu < NCPU); 2786 BT_CLEAR(s->cpub, cpu); 2787 } 2788 2789 int 2790 cpuset_isnull(const cpuset_t *s) 2791 { 2792 int i; 2793 2794 for (i = 0; i < CPUSET_WORDS; i++) { 2795 if (s->cpub[i] != 0) 2796 return (0); 2797 } 2798 return (1); 2799 } 2800 2801 int 2802 cpuset_isequal(const cpuset_t *s1, const cpuset_t *s2) 2803 { 2804 int i; 2805 2806 for (i = 0; i < CPUSET_WORDS; i++) { 2807 if (s1->cpub[i] != s2->cpub[i]) 2808 return (0); 2809 } 2810 return (1); 2811 } 2812 2813 uint_t 2814 cpuset_find(const cpuset_t *s) 2815 { 2816 2817 uint_t i; 2818 uint_t cpu = (uint_t)-1; 2819 2820 /* 2821 * Find a cpu in the cpuset 2822 */ 2823 for (i = 0; i < CPUSET_WORDS; i++) { 2824 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2825 if (cpu != (uint_t)-1) { 2826 cpu += i * BT_NBIPUL; 2827 break; 2828 } 2829 } 2830 return (cpu); 2831 } 2832 2833 void 2834 cpuset_bounds(const cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2835 { 2836 int i, j; 2837 uint_t bit; 2838 2839 /* 2840 * First, find the smallest cpu id in the set. 2841 */ 2842 for (i = 0; i < CPUSET_WORDS; i++) { 2843 if (s->cpub[i] != 0) { 2844 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2845 ASSERT(bit != (uint_t)-1); 2846 *smallestid = bit + (i * BT_NBIPUL); 2847 2848 /* 2849 * Now find the largest cpu id in 2850 * the set and return immediately. 2851 * Done in an inner loop to avoid 2852 * having to break out of the first 2853 * loop. 2854 */ 2855 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2856 if (s->cpub[j] != 0) { 2857 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2858 ASSERT(bit != (uint_t)-1); 2859 *largestid = bit + (j * BT_NBIPUL); 2860 ASSERT(*largestid >= *smallestid); 2861 return; 2862 } 2863 } 2864 2865 /* 2866 * If this code is reached, a 2867 * smallestid was found, but not a 2868 * largestid. The cpuset must have 2869 * been changed during the course 2870 * of this function call. 2871 */ 2872 ASSERT(0); 2873 } 2874 } 2875 *smallestid = *largestid = CPUSET_NOTINSET; 2876 } 2877 2878 void 2879 cpuset_atomic_del(cpuset_t *s, const uint_t cpu) 2880 { 2881 VERIFY(cpu < NCPU); 2882 BT_ATOMIC_CLEAR(s->cpub, (cpu)) 2883 } 2884 2885 void 2886 cpuset_atomic_add(cpuset_t *s, const uint_t cpu) 2887 { 2888 VERIFY(cpu < NCPU); 2889 BT_ATOMIC_SET(s->cpub, (cpu)) 2890 } 2891 2892 long 2893 cpuset_atomic_xadd(cpuset_t *s, const uint_t cpu) 2894 { 2895 long res; 2896 2897 VERIFY(cpu < NCPU); 2898 BT_ATOMIC_SET_EXCL(s->cpub, cpu, res); 2899 return (res); 2900 } 2901 2902 long 2903 cpuset_atomic_xdel(cpuset_t *s, const uint_t cpu) 2904 { 2905 long res; 2906 2907 VERIFY(cpu < NCPU); 2908 BT_ATOMIC_CLEAR_EXCL(s->cpub, cpu, res); 2909 return (res); 2910 } 2911 2912 void 2913 cpuset_or(cpuset_t *dst, const cpuset_t *src) 2914 { 2915 for (int i = 0; i < CPUSET_WORDS; i++) { 2916 dst->cpub[i] |= src->cpub[i]; 2917 } 2918 } 2919 2920 void 2921 cpuset_xor(cpuset_t *dst, const cpuset_t *src) 2922 { 2923 for (int i = 0; i < CPUSET_WORDS; i++) { 2924 dst->cpub[i] ^= src->cpub[i]; 2925 } 2926 } 2927 2928 void 2929 cpuset_and(cpuset_t *dst, const cpuset_t *src) 2930 { 2931 for (int i = 0; i < CPUSET_WORDS; i++) { 2932 dst->cpub[i] &= src->cpub[i]; 2933 } 2934 } 2935 2936 void 2937 cpuset_zero(cpuset_t *dst) 2938 { 2939 for (int i = 0; i < CPUSET_WORDS; i++) { 2940 dst->cpub[i] = 0; 2941 } 2942 } 2943 2944 2945 /* 2946 * Unbind threads bound to specified CPU. 2947 * 2948 * If `unbind_all_threads' is true, unbind all user threads bound to a given 2949 * CPU. Otherwise unbind all soft-bound user threads. 2950 */ 2951 int 2952 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads) 2953 { 2954 processorid_t obind; 2955 kthread_t *tp; 2956 int ret = 0; 2957 proc_t *pp; 2958 int err, berr = 0; 2959 2960 ASSERT(MUTEX_HELD(&cpu_lock)); 2961 2962 mutex_enter(&pidlock); 2963 for (pp = practive; pp != NULL; pp = pp->p_next) { 2964 mutex_enter(&pp->p_lock); 2965 tp = pp->p_tlist; 2966 /* 2967 * Skip zombies, kernel processes, and processes in 2968 * other zones, if called from a non-global zone. 2969 */ 2970 if (tp == NULL || (pp->p_flag & SSYS) || 2971 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2972 mutex_exit(&pp->p_lock); 2973 continue; 2974 } 2975 do { 2976 if (tp->t_bind_cpu != cpu) 2977 continue; 2978 /* 2979 * Skip threads with hard binding when 2980 * `unbind_all_threads' is not specified. 2981 */ 2982 if (!unbind_all_threads && TB_CPU_IS_HARD(tp)) 2983 continue; 2984 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2985 if (ret == 0) 2986 ret = err; 2987 } while ((tp = tp->t_forw) != pp->p_tlist); 2988 mutex_exit(&pp->p_lock); 2989 } 2990 mutex_exit(&pidlock); 2991 if (ret == 0) 2992 ret = berr; 2993 return (ret); 2994 } 2995 2996 2997 /* 2998 * Destroy all remaining bound threads on a cpu. 2999 */ 3000 void 3001 cpu_destroy_bound_threads(cpu_t *cp) 3002 { 3003 extern id_t syscid; 3004 register kthread_id_t t, tlist, tnext; 3005 3006 /* 3007 * Destroy all remaining bound threads on the cpu. This 3008 * should include both the interrupt threads and the idle thread. 3009 * This requires some care, since we need to traverse the 3010 * thread list with the pidlock mutex locked, but thread_free 3011 * also locks the pidlock mutex. So, we collect the threads 3012 * we're going to reap in a list headed by "tlist", then we 3013 * unlock the pidlock mutex and traverse the tlist list, 3014 * doing thread_free's on the thread's. Simple, n'est pas? 3015 * Also, this depends on thread_free not mucking with the 3016 * t_next and t_prev links of the thread. 3017 */ 3018 3019 if ((t = curthread) != NULL) { 3020 3021 tlist = NULL; 3022 mutex_enter(&pidlock); 3023 do { 3024 tnext = t->t_next; 3025 if (t->t_bound_cpu == cp) { 3026 3027 /* 3028 * We've found a bound thread, carefully unlink 3029 * it out of the thread list, and add it to 3030 * our "tlist". We "know" we don't have to 3031 * worry about unlinking curthread (the thread 3032 * that is executing this code). 3033 */ 3034 t->t_next->t_prev = t->t_prev; 3035 t->t_prev->t_next = t->t_next; 3036 t->t_next = tlist; 3037 tlist = t; 3038 ASSERT(t->t_cid == syscid); 3039 /* wake up anyone blocked in thread_join */ 3040 cv_broadcast(&t->t_joincv); 3041 /* 3042 * t_lwp set by interrupt threads and not 3043 * cleared. 3044 */ 3045 t->t_lwp = NULL; 3046 /* 3047 * Pause and idle threads always have 3048 * t_state set to TS_ONPROC. 3049 */ 3050 t->t_state = TS_FREE; 3051 t->t_prev = NULL; /* Just in case */ 3052 } 3053 3054 } while ((t = tnext) != curthread); 3055 3056 mutex_exit(&pidlock); 3057 3058 mutex_sync(); 3059 for (t = tlist; t != NULL; t = tnext) { 3060 tnext = t->t_next; 3061 thread_free(t); 3062 } 3063 } 3064 } 3065 3066 /* 3067 * Update the cpu_supp_freqs of this cpu. This information is returned 3068 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 3069 * maintain the kstat data size. 3070 */ 3071 void 3072 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 3073 { 3074 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 3075 const char *lfreqs = clkstr; 3076 boolean_t kstat_exists = B_FALSE; 3077 kstat_t *ksp; 3078 size_t len; 3079 3080 /* 3081 * A NULL pointer means we only support one speed. 3082 */ 3083 if (freqs == NULL) 3084 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 3085 cp->cpu_curr_clock); 3086 else 3087 lfreqs = freqs; 3088 3089 /* 3090 * Make sure the frequency doesn't change while a snapshot is 3091 * going on. Of course, we only need to worry about this if 3092 * the kstat exists. 3093 */ 3094 if ((ksp = cp->cpu_info_kstat) != NULL) { 3095 mutex_enter(ksp->ks_lock); 3096 kstat_exists = B_TRUE; 3097 } 3098 3099 /* 3100 * Free any previously allocated string and if the kstat 3101 * already exists, then update its data size. 3102 */ 3103 if (cp->cpu_supp_freqs != NULL) { 3104 len = strlen(cp->cpu_supp_freqs) + 1; 3105 kmem_free(cp->cpu_supp_freqs, len); 3106 if (kstat_exists) 3107 ksp->ks_data_size -= len; 3108 } 3109 3110 /* 3111 * Allocate the new string and set the pointer. 3112 */ 3113 len = strlen(lfreqs) + 1; 3114 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 3115 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 3116 3117 /* 3118 * If the kstat already exists then update the data size and 3119 * free the lock. 3120 */ 3121 if (kstat_exists) { 3122 ksp->ks_data_size += len; 3123 mutex_exit(ksp->ks_lock); 3124 } 3125 } 3126 3127 /* 3128 * Indicate the current CPU's clock freqency (in Hz). 3129 * The calling context must be such that CPU references are safe. 3130 */ 3131 void 3132 cpu_set_curr_clock(uint64_t new_clk) 3133 { 3134 uint64_t old_clk; 3135 3136 old_clk = CPU->cpu_curr_clock; 3137 CPU->cpu_curr_clock = new_clk; 3138 3139 /* 3140 * The cpu-change-speed DTrace probe exports the frequency in Hz 3141 */ 3142 DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id, 3143 uint64_t, old_clk, uint64_t, new_clk); 3144 } 3145 3146 /* 3147 * processor_info(2) and p_online(2) status support functions 3148 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 3149 * for use in communicating processor state information to userland. Kernel 3150 * subsystems should only be using the cpu_flags value directly. Subsystems 3151 * modifying cpu_flags should record the state change via a call to the 3152 * cpu_set_state(). 3153 */ 3154 3155 /* 3156 * Update the pi_state of this CPU. This function provides the CPU status for 3157 * the information returned by processor_info(2). 3158 */ 3159 void 3160 cpu_set_state(cpu_t *cpu) 3161 { 3162 ASSERT(MUTEX_HELD(&cpu_lock)); 3163 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 3164 cpu->cpu_state_begin = gethrestime_sec(); 3165 pool_cpu_mod = gethrtime(); 3166 } 3167 3168 /* 3169 * Return offline/online/other status for the indicated CPU. Use only for 3170 * communication with user applications; cpu_flags provides the in-kernel 3171 * interface. 3172 */ 3173 static int 3174 cpu_flags_to_state(cpu_flag_t flags) 3175 { 3176 if (flags & CPU_DISABLED) 3177 return (P_DISABLED); 3178 else if (flags & CPU_POWEROFF) 3179 return (P_POWEROFF); 3180 else if (flags & CPU_FAULTED) 3181 return (P_FAULTED); 3182 else if (flags & CPU_SPARE) 3183 return (P_SPARE); 3184 else if ((flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 3185 return (P_OFFLINE); 3186 else if (flags & CPU_ENABLE) 3187 return (P_ONLINE); 3188 else 3189 return (P_NOINTR); 3190 } 3191 3192 int 3193 cpu_get_state(cpu_t *cpu) 3194 { 3195 ASSERT(MUTEX_HELD(&cpu_lock)); 3196 return (cpu_flags_to_state(cpu->cpu_flags)); 3197 } 3198 3199 /* 3200 * Return processor_info(2) state as a string. 3201 */ 3202 const char * 3203 cpu_get_state_str(cpu_flag_t flags) 3204 { 3205 const char *string; 3206 3207 switch (cpu_flags_to_state(flags)) { 3208 case P_ONLINE: 3209 string = PS_ONLINE; 3210 break; 3211 case P_POWEROFF: 3212 string = PS_POWEROFF; 3213 break; 3214 case P_NOINTR: 3215 string = PS_NOINTR; 3216 break; 3217 case P_SPARE: 3218 string = PS_SPARE; 3219 break; 3220 case P_FAULTED: 3221 string = PS_FAULTED; 3222 break; 3223 case P_OFFLINE: 3224 string = PS_OFFLINE; 3225 break; 3226 case P_DISABLED: 3227 string = PS_DISABLED; 3228 break; 3229 default: 3230 string = "unknown"; 3231 break; 3232 } 3233 return (string); 3234 } 3235 3236 /* 3237 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 3238 * kstats, respectively. This is done when a CPU is initialized or placed 3239 * online via p_online(2). 3240 */ 3241 static void 3242 cpu_stats_kstat_create(cpu_t *cp) 3243 { 3244 int instance = cp->cpu_id; 3245 char *module = "cpu"; 3246 char *class = "misc"; 3247 kstat_t *ksp; 3248 zoneid_t zoneid; 3249 3250 ASSERT(MUTEX_HELD(&cpu_lock)); 3251 3252 if (pool_pset_enabled()) 3253 zoneid = GLOBAL_ZONEID; 3254 else 3255 zoneid = ALL_ZONES; 3256 /* 3257 * Create named kstats 3258 */ 3259 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 3260 ksp = kstat_create_zone(module, instance, (name), class, \ 3261 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 3262 zoneid); \ 3263 if (ksp != NULL) { \ 3264 ksp->ks_private = cp; \ 3265 ksp->ks_update = (update_func); \ 3266 kstat_install(ksp); \ 3267 } else \ 3268 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 3269 module, instance, (name)); 3270 3271 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 3272 cpu_sys_stats_ks_update); 3273 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 3274 cpu_vm_stats_ks_update); 3275 3276 /* 3277 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 3278 */ 3279 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 3280 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 3281 if (ksp != NULL) { 3282 ksp->ks_update = cpu_stat_ks_update; 3283 ksp->ks_private = cp; 3284 kstat_install(ksp); 3285 } 3286 } 3287 3288 static void 3289 cpu_stats_kstat_destroy(cpu_t *cp) 3290 { 3291 char ks_name[KSTAT_STRLEN]; 3292 3293 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3294 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3295 3296 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3297 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3298 } 3299 3300 static int 3301 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3302 { 3303 cpu_t *cp = (cpu_t *)ksp->ks_private; 3304 struct cpu_sys_stats_ks_data *csskd; 3305 cpu_sys_stats_t *css; 3306 hrtime_t msnsecs[NCMSTATES]; 3307 int i; 3308 3309 if (rw == KSTAT_WRITE) 3310 return (EACCES); 3311 3312 csskd = ksp->ks_data; 3313 css = &cp->cpu_stats.sys; 3314 3315 /* 3316 * Read CPU mstate, but compare with the last values we 3317 * received to make sure that the returned kstats never 3318 * decrease. 3319 */ 3320 3321 get_cpu_mstate(cp, msnsecs); 3322 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3323 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3324 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3325 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3326 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3327 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3328 3329 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3330 sizeof (cpu_sys_stats_ks_data_template)); 3331 3332 csskd->cpu_ticks_wait.value.ui64 = 0; 3333 csskd->wait_ticks_io.value.ui64 = 0; 3334 3335 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3336 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3337 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3338 csskd->cpu_ticks_idle.value.ui64 = 3339 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3340 csskd->cpu_ticks_user.value.ui64 = 3341 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3342 csskd->cpu_ticks_kernel.value.ui64 = 3343 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3344 csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec; 3345 csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes; 3346 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3347 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3348 csskd->bread.value.ui64 = css->bread; 3349 csskd->bwrite.value.ui64 = css->bwrite; 3350 csskd->lread.value.ui64 = css->lread; 3351 csskd->lwrite.value.ui64 = css->lwrite; 3352 csskd->phread.value.ui64 = css->phread; 3353 csskd->phwrite.value.ui64 = css->phwrite; 3354 csskd->pswitch.value.ui64 = css->pswitch; 3355 csskd->trap.value.ui64 = css->trap; 3356 csskd->intr.value.ui64 = 0; 3357 for (i = 0; i < PIL_MAX; i++) 3358 csskd->intr.value.ui64 += css->intr[i]; 3359 csskd->syscall.value.ui64 = css->syscall; 3360 csskd->sysread.value.ui64 = css->sysread; 3361 csskd->syswrite.value.ui64 = css->syswrite; 3362 csskd->sysfork.value.ui64 = css->sysfork; 3363 csskd->sysvfork.value.ui64 = css->sysvfork; 3364 csskd->sysexec.value.ui64 = css->sysexec; 3365 csskd->readch.value.ui64 = css->readch; 3366 csskd->writech.value.ui64 = css->writech; 3367 csskd->rcvint.value.ui64 = css->rcvint; 3368 csskd->xmtint.value.ui64 = css->xmtint; 3369 csskd->mdmint.value.ui64 = css->mdmint; 3370 csskd->rawch.value.ui64 = css->rawch; 3371 csskd->canch.value.ui64 = css->canch; 3372 csskd->outch.value.ui64 = css->outch; 3373 csskd->msg.value.ui64 = css->msg; 3374 csskd->sema.value.ui64 = css->sema; 3375 csskd->namei.value.ui64 = css->namei; 3376 csskd->ufsiget.value.ui64 = css->ufsiget; 3377 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3378 csskd->ufsipage.value.ui64 = css->ufsipage; 3379 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3380 csskd->procovf.value.ui64 = css->procovf; 3381 csskd->intrthread.value.ui64 = 0; 3382 for (i = 0; i < LOCK_LEVEL - 1; i++) 3383 csskd->intrthread.value.ui64 += css->intr[i]; 3384 csskd->intrblk.value.ui64 = css->intrblk; 3385 csskd->intrunpin.value.ui64 = css->intrunpin; 3386 csskd->idlethread.value.ui64 = css->idlethread; 3387 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3388 csskd->nthreads.value.ui64 = css->nthreads; 3389 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3390 csskd->xcalls.value.ui64 = css->xcalls; 3391 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3392 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3393 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3394 csskd->modload.value.ui64 = css->modload; 3395 csskd->modunload.value.ui64 = css->modunload; 3396 csskd->bawrite.value.ui64 = css->bawrite; 3397 csskd->iowait.value.ui64 = css->iowait; 3398 3399 return (0); 3400 } 3401 3402 static int 3403 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3404 { 3405 cpu_t *cp = (cpu_t *)ksp->ks_private; 3406 struct cpu_vm_stats_ks_data *cvskd; 3407 cpu_vm_stats_t *cvs; 3408 3409 if (rw == KSTAT_WRITE) 3410 return (EACCES); 3411 3412 cvs = &cp->cpu_stats.vm; 3413 cvskd = ksp->ks_data; 3414 3415 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3416 sizeof (cpu_vm_stats_ks_data_template)); 3417 cvskd->pgrec.value.ui64 = cvs->pgrec; 3418 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3419 cvskd->pgin.value.ui64 = cvs->pgin; 3420 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3421 cvskd->pgout.value.ui64 = cvs->pgout; 3422 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3423 cvskd->swapin.value.ui64 = cvs->swapin; 3424 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3425 cvskd->swapout.value.ui64 = cvs->swapout; 3426 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3427 cvskd->zfod.value.ui64 = cvs->zfod; 3428 cvskd->dfree.value.ui64 = cvs->dfree; 3429 cvskd->scan.value.ui64 = cvs->scan; 3430 cvskd->rev.value.ui64 = cvs->rev; 3431 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3432 cvskd->as_fault.value.ui64 = cvs->as_fault; 3433 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3434 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3435 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3436 cvskd->softlock.value.ui64 = cvs->softlock; 3437 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3438 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3439 cvskd->execpgin.value.ui64 = cvs->execpgin; 3440 cvskd->execpgout.value.ui64 = cvs->execpgout; 3441 cvskd->execfree.value.ui64 = cvs->execfree; 3442 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3443 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3444 cvskd->anonfree.value.ui64 = cvs->anonfree; 3445 cvskd->fspgin.value.ui64 = cvs->fspgin; 3446 cvskd->fspgout.value.ui64 = cvs->fspgout; 3447 cvskd->fsfree.value.ui64 = cvs->fsfree; 3448 3449 return (0); 3450 } 3451 3452 static int 3453 cpu_stat_ks_update(kstat_t *ksp, int rw) 3454 { 3455 cpu_stat_t *cso; 3456 cpu_t *cp; 3457 int i; 3458 hrtime_t msnsecs[NCMSTATES]; 3459 3460 cso = (cpu_stat_t *)ksp->ks_data; 3461 cp = (cpu_t *)ksp->ks_private; 3462 3463 if (rw == KSTAT_WRITE) 3464 return (EACCES); 3465 3466 /* 3467 * Read CPU mstate, but compare with the last values we 3468 * received to make sure that the returned kstats never 3469 * decrease. 3470 */ 3471 3472 get_cpu_mstate(cp, msnsecs); 3473 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3474 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3475 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3476 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3477 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3478 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3479 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3480 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3481 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3482 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3483 cso->cpu_sysinfo.wait[W_IO] = 0; 3484 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3485 cso->cpu_sysinfo.wait[W_PIO] = 0; 3486 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3487 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3488 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3489 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3490 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3491 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3492 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3493 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3494 cso->cpu_sysinfo.intr = 0; 3495 for (i = 0; i < PIL_MAX; i++) 3496 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3497 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3498 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3499 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3500 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3501 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3502 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3503 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3504 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3505 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3506 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3507 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3508 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3509 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3510 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3511 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3512 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3513 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3514 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3515 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3516 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3517 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3518 cso->cpu_sysinfo.inodeovf = 0; 3519 cso->cpu_sysinfo.fileovf = 0; 3520 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3521 cso->cpu_sysinfo.intrthread = 0; 3522 for (i = 0; i < LOCK_LEVEL - 1; i++) 3523 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3524 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3525 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3526 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3527 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3528 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3529 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3530 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3531 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3532 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3533 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3534 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3535 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3536 cso->cpu_sysinfo.rw_enters = 0; 3537 cso->cpu_sysinfo.win_uo_cnt = 0; 3538 cso->cpu_sysinfo.win_uu_cnt = 0; 3539 cso->cpu_sysinfo.win_so_cnt = 0; 3540 cso->cpu_sysinfo.win_su_cnt = 0; 3541 cso->cpu_sysinfo.win_suo_cnt = 0; 3542 3543 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3544 cso->cpu_syswait.swap = 0; 3545 cso->cpu_syswait.physio = 0; 3546 3547 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3548 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3549 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3550 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3551 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3552 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3553 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3554 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3555 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3556 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3557 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3558 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3559 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3560 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3561 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3562 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3563 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3564 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3565 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3566 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3567 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3568 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3569 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3570 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3571 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3572 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3573 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3574 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3575 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3576 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3577 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3578 3579 return (0); 3580 } 3581