1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Architecture-independent CPU control functions. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/var.h> 33 #include <sys/thread.h> 34 #include <sys/cpuvar.h> 35 #include <sys/cpu_event.h> 36 #include <sys/kstat.h> 37 #include <sys/uadmin.h> 38 #include <sys/systm.h> 39 #include <sys/errno.h> 40 #include <sys/cmn_err.h> 41 #include <sys/procset.h> 42 #include <sys/processor.h> 43 #include <sys/debug.h> 44 #include <sys/cpupart.h> 45 #include <sys/lgrp.h> 46 #include <sys/pset.h> 47 #include <sys/pghw.h> 48 #include <sys/kmem.h> 49 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 50 #include <sys/atomic.h> 51 #include <sys/callb.h> 52 #include <sys/vtrace.h> 53 #include <sys/cyclic.h> 54 #include <sys/bitmap.h> 55 #include <sys/nvpair.h> 56 #include <sys/pool_pset.h> 57 #include <sys/msacct.h> 58 #include <sys/time.h> 59 #include <sys/archsystm.h> 60 #include <sys/sdt.h> 61 #if defined(__x86) || defined(__amd64) 62 #include <sys/x86_archext.h> 63 #endif 64 #include <sys/callo.h> 65 66 extern int mp_cpu_start(cpu_t *); 67 extern int mp_cpu_stop(cpu_t *); 68 extern int mp_cpu_poweron(cpu_t *); 69 extern int mp_cpu_poweroff(cpu_t *); 70 extern int mp_cpu_configure(int); 71 extern int mp_cpu_unconfigure(int); 72 extern void mp_cpu_faulted_enter(cpu_t *); 73 extern void mp_cpu_faulted_exit(cpu_t *); 74 75 extern int cmp_cpu_to_chip(processorid_t cpuid); 76 #ifdef __sparcv9 77 extern char *cpu_fru_fmri(cpu_t *cp); 78 #endif 79 80 static void cpu_add_active_internal(cpu_t *cp); 81 static void cpu_remove_active(cpu_t *cp); 82 static void cpu_info_kstat_create(cpu_t *cp); 83 static void cpu_info_kstat_destroy(cpu_t *cp); 84 static void cpu_stats_kstat_create(cpu_t *cp); 85 static void cpu_stats_kstat_destroy(cpu_t *cp); 86 87 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 89 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 90 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 91 92 /* 93 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 94 * and dispatch queue reallocations. The lock ordering with respect to 95 * related locks is: 96 * 97 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 98 * 99 * Warning: Certain sections of code do not use the cpu_lock when 100 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 101 * all cpus are paused during modifications to this list, a solution 102 * to protect the list is too either disable kernel preemption while 103 * walking the list, *or* recheck the cpu_next pointer at each 104 * iteration in the loop. Note that in no cases can any cached 105 * copies of the cpu pointers be kept as they may become invalid. 106 */ 107 kmutex_t cpu_lock; 108 cpu_t *cpu_list; /* list of all CPUs */ 109 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 110 cpu_t *cpu_active; /* list of active CPUs */ 111 static cpuset_t cpu_available; /* set of available CPUs */ 112 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 113 114 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */ 115 116 /* 117 * max_ncpus keeps the max cpus the system can have. Initially 118 * it's NCPU, but since most archs scan the devtree for cpus 119 * fairly early on during boot, the real max can be known before 120 * ncpus is set (useful for early NCPU based allocations). 121 */ 122 int max_ncpus = NCPU; 123 /* 124 * platforms that set max_ncpus to maxiumum number of cpus that can be 125 * dynamically added will set boot_max_ncpus to the number of cpus found 126 * at device tree scan time during boot. 127 */ 128 int boot_max_ncpus = -1; 129 int boot_ncpus = -1; 130 /* 131 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 132 * used to size arrays that are indexed by CPU id. 133 */ 134 processorid_t max_cpuid = NCPU - 1; 135 136 int ncpus = 1; 137 int ncpus_online = 1; 138 139 /* 140 * CPU that we're trying to offline. Protected by cpu_lock. 141 */ 142 cpu_t *cpu_inmotion; 143 144 /* 145 * Can be raised to suppress further weakbinding, which are instead 146 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 147 * while individual thread weakbinding synchronization is done under thread 148 * lock. 149 */ 150 int weakbindingbarrier; 151 152 /* 153 * Variables used in pause_cpus(). 154 */ 155 static volatile char safe_list[NCPU]; 156 157 static struct _cpu_pause_info { 158 int cp_spl; /* spl saved in pause_cpus() */ 159 volatile int cp_go; /* Go signal sent after all ready */ 160 int cp_count; /* # of CPUs to pause */ 161 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 162 kthread_id_t cp_paused; 163 } cpu_pause_info; 164 165 static kmutex_t pause_free_mutex; 166 static kcondvar_t pause_free_cv; 167 168 void *(*cpu_pause_func)(void *) = NULL; 169 170 171 static struct cpu_sys_stats_ks_data { 172 kstat_named_t cpu_ticks_idle; 173 kstat_named_t cpu_ticks_user; 174 kstat_named_t cpu_ticks_kernel; 175 kstat_named_t cpu_ticks_wait; 176 kstat_named_t cpu_nsec_idle; 177 kstat_named_t cpu_nsec_user; 178 kstat_named_t cpu_nsec_kernel; 179 kstat_named_t cpu_nsec_intr; 180 kstat_named_t cpu_load_intr; 181 kstat_named_t wait_ticks_io; 182 kstat_named_t bread; 183 kstat_named_t bwrite; 184 kstat_named_t lread; 185 kstat_named_t lwrite; 186 kstat_named_t phread; 187 kstat_named_t phwrite; 188 kstat_named_t pswitch; 189 kstat_named_t trap; 190 kstat_named_t intr; 191 kstat_named_t syscall; 192 kstat_named_t sysread; 193 kstat_named_t syswrite; 194 kstat_named_t sysfork; 195 kstat_named_t sysvfork; 196 kstat_named_t sysexec; 197 kstat_named_t readch; 198 kstat_named_t writech; 199 kstat_named_t rcvint; 200 kstat_named_t xmtint; 201 kstat_named_t mdmint; 202 kstat_named_t rawch; 203 kstat_named_t canch; 204 kstat_named_t outch; 205 kstat_named_t msg; 206 kstat_named_t sema; 207 kstat_named_t namei; 208 kstat_named_t ufsiget; 209 kstat_named_t ufsdirblk; 210 kstat_named_t ufsipage; 211 kstat_named_t ufsinopage; 212 kstat_named_t procovf; 213 kstat_named_t intrthread; 214 kstat_named_t intrblk; 215 kstat_named_t intrunpin; 216 kstat_named_t idlethread; 217 kstat_named_t inv_swtch; 218 kstat_named_t nthreads; 219 kstat_named_t cpumigrate; 220 kstat_named_t xcalls; 221 kstat_named_t mutex_adenters; 222 kstat_named_t rw_rdfails; 223 kstat_named_t rw_wrfails; 224 kstat_named_t modload; 225 kstat_named_t modunload; 226 kstat_named_t bawrite; 227 kstat_named_t iowait; 228 } cpu_sys_stats_ks_data_template = { 229 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 230 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 231 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 232 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 233 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 234 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 235 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 236 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 237 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 238 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 239 { "bread", KSTAT_DATA_UINT64 }, 240 { "bwrite", KSTAT_DATA_UINT64 }, 241 { "lread", KSTAT_DATA_UINT64 }, 242 { "lwrite", KSTAT_DATA_UINT64 }, 243 { "phread", KSTAT_DATA_UINT64 }, 244 { "phwrite", KSTAT_DATA_UINT64 }, 245 { "pswitch", KSTAT_DATA_UINT64 }, 246 { "trap", KSTAT_DATA_UINT64 }, 247 { "intr", KSTAT_DATA_UINT64 }, 248 { "syscall", KSTAT_DATA_UINT64 }, 249 { "sysread", KSTAT_DATA_UINT64 }, 250 { "syswrite", KSTAT_DATA_UINT64 }, 251 { "sysfork", KSTAT_DATA_UINT64 }, 252 { "sysvfork", KSTAT_DATA_UINT64 }, 253 { "sysexec", KSTAT_DATA_UINT64 }, 254 { "readch", KSTAT_DATA_UINT64 }, 255 { "writech", KSTAT_DATA_UINT64 }, 256 { "rcvint", KSTAT_DATA_UINT64 }, 257 { "xmtint", KSTAT_DATA_UINT64 }, 258 { "mdmint", KSTAT_DATA_UINT64 }, 259 { "rawch", KSTAT_DATA_UINT64 }, 260 { "canch", KSTAT_DATA_UINT64 }, 261 { "outch", KSTAT_DATA_UINT64 }, 262 { "msg", KSTAT_DATA_UINT64 }, 263 { "sema", KSTAT_DATA_UINT64 }, 264 { "namei", KSTAT_DATA_UINT64 }, 265 { "ufsiget", KSTAT_DATA_UINT64 }, 266 { "ufsdirblk", KSTAT_DATA_UINT64 }, 267 { "ufsipage", KSTAT_DATA_UINT64 }, 268 { "ufsinopage", KSTAT_DATA_UINT64 }, 269 { "procovf", KSTAT_DATA_UINT64 }, 270 { "intrthread", KSTAT_DATA_UINT64 }, 271 { "intrblk", KSTAT_DATA_UINT64 }, 272 { "intrunpin", KSTAT_DATA_UINT64 }, 273 { "idlethread", KSTAT_DATA_UINT64 }, 274 { "inv_swtch", KSTAT_DATA_UINT64 }, 275 { "nthreads", KSTAT_DATA_UINT64 }, 276 { "cpumigrate", KSTAT_DATA_UINT64 }, 277 { "xcalls", KSTAT_DATA_UINT64 }, 278 { "mutex_adenters", KSTAT_DATA_UINT64 }, 279 { "rw_rdfails", KSTAT_DATA_UINT64 }, 280 { "rw_wrfails", KSTAT_DATA_UINT64 }, 281 { "modload", KSTAT_DATA_UINT64 }, 282 { "modunload", KSTAT_DATA_UINT64 }, 283 { "bawrite", KSTAT_DATA_UINT64 }, 284 { "iowait", KSTAT_DATA_UINT64 }, 285 }; 286 287 static struct cpu_vm_stats_ks_data { 288 kstat_named_t pgrec; 289 kstat_named_t pgfrec; 290 kstat_named_t pgin; 291 kstat_named_t pgpgin; 292 kstat_named_t pgout; 293 kstat_named_t pgpgout; 294 kstat_named_t swapin; 295 kstat_named_t pgswapin; 296 kstat_named_t swapout; 297 kstat_named_t pgswapout; 298 kstat_named_t zfod; 299 kstat_named_t dfree; 300 kstat_named_t scan; 301 kstat_named_t rev; 302 kstat_named_t hat_fault; 303 kstat_named_t as_fault; 304 kstat_named_t maj_fault; 305 kstat_named_t cow_fault; 306 kstat_named_t prot_fault; 307 kstat_named_t softlock; 308 kstat_named_t kernel_asflt; 309 kstat_named_t pgrrun; 310 kstat_named_t execpgin; 311 kstat_named_t execpgout; 312 kstat_named_t execfree; 313 kstat_named_t anonpgin; 314 kstat_named_t anonpgout; 315 kstat_named_t anonfree; 316 kstat_named_t fspgin; 317 kstat_named_t fspgout; 318 kstat_named_t fsfree; 319 } cpu_vm_stats_ks_data_template = { 320 { "pgrec", KSTAT_DATA_UINT64 }, 321 { "pgfrec", KSTAT_DATA_UINT64 }, 322 { "pgin", KSTAT_DATA_UINT64 }, 323 { "pgpgin", KSTAT_DATA_UINT64 }, 324 { "pgout", KSTAT_DATA_UINT64 }, 325 { "pgpgout", KSTAT_DATA_UINT64 }, 326 { "swapin", KSTAT_DATA_UINT64 }, 327 { "pgswapin", KSTAT_DATA_UINT64 }, 328 { "swapout", KSTAT_DATA_UINT64 }, 329 { "pgswapout", KSTAT_DATA_UINT64 }, 330 { "zfod", KSTAT_DATA_UINT64 }, 331 { "dfree", KSTAT_DATA_UINT64 }, 332 { "scan", KSTAT_DATA_UINT64 }, 333 { "rev", KSTAT_DATA_UINT64 }, 334 { "hat_fault", KSTAT_DATA_UINT64 }, 335 { "as_fault", KSTAT_DATA_UINT64 }, 336 { "maj_fault", KSTAT_DATA_UINT64 }, 337 { "cow_fault", KSTAT_DATA_UINT64 }, 338 { "prot_fault", KSTAT_DATA_UINT64 }, 339 { "softlock", KSTAT_DATA_UINT64 }, 340 { "kernel_asflt", KSTAT_DATA_UINT64 }, 341 { "pgrrun", KSTAT_DATA_UINT64 }, 342 { "execpgin", KSTAT_DATA_UINT64 }, 343 { "execpgout", KSTAT_DATA_UINT64 }, 344 { "execfree", KSTAT_DATA_UINT64 }, 345 { "anonpgin", KSTAT_DATA_UINT64 }, 346 { "anonpgout", KSTAT_DATA_UINT64 }, 347 { "anonfree", KSTAT_DATA_UINT64 }, 348 { "fspgin", KSTAT_DATA_UINT64 }, 349 { "fspgout", KSTAT_DATA_UINT64 }, 350 { "fsfree", KSTAT_DATA_UINT64 }, 351 }; 352 353 /* 354 * Force the specified thread to migrate to the appropriate processor. 355 * Called with thread lock held, returns with it dropped. 356 */ 357 static void 358 force_thread_migrate(kthread_id_t tp) 359 { 360 ASSERT(THREAD_LOCK_HELD(tp)); 361 if (tp == curthread) { 362 THREAD_TRANSITION(tp); 363 CL_SETRUN(tp); 364 thread_unlock_nopreempt(tp); 365 swtch(); 366 } else { 367 if (tp->t_state == TS_ONPROC) { 368 cpu_surrender(tp); 369 } else if (tp->t_state == TS_RUN) { 370 (void) dispdeq(tp); 371 setbackdq(tp); 372 } 373 thread_unlock(tp); 374 } 375 } 376 377 /* 378 * Set affinity for a specified CPU. 379 * A reference count is incremented and the affinity is held until the 380 * reference count is decremented to zero by thread_affinity_clear(). 381 * This is so regions of code requiring affinity can be nested. 382 * Caller needs to ensure that cpu_id remains valid, which can be 383 * done by holding cpu_lock across this call, unless the caller 384 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 385 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 386 */ 387 void 388 thread_affinity_set(kthread_id_t t, int cpu_id) 389 { 390 cpu_t *cp; 391 int c; 392 393 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 394 395 if ((c = cpu_id) == CPU_CURRENT) { 396 mutex_enter(&cpu_lock); 397 cpu_id = CPU->cpu_id; 398 } 399 /* 400 * We should be asserting that cpu_lock is held here, but 401 * the NCA code doesn't acquire it. The following assert 402 * should be uncommented when the NCA code is fixed. 403 * 404 * ASSERT(MUTEX_HELD(&cpu_lock)); 405 */ 406 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 407 cp = cpu[cpu_id]; 408 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 409 /* 410 * If there is already a hard affinity requested, and this affinity 411 * conflicts with that, panic. 412 */ 413 thread_lock(t); 414 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 415 panic("affinity_set: setting %p but already bound to %p", 416 (void *)cp, (void *)t->t_bound_cpu); 417 } 418 t->t_affinitycnt++; 419 t->t_bound_cpu = cp; 420 421 /* 422 * Make sure we're running on the right CPU. 423 */ 424 if (cp != t->t_cpu || t != curthread) { 425 force_thread_migrate(t); /* drops thread lock */ 426 } else { 427 thread_unlock(t); 428 } 429 430 if (c == CPU_CURRENT) 431 mutex_exit(&cpu_lock); 432 } 433 434 /* 435 * Wrapper for backward compatibility. 436 */ 437 void 438 affinity_set(int cpu_id) 439 { 440 thread_affinity_set(curthread, cpu_id); 441 } 442 443 /* 444 * Decrement the affinity reservation count and if it becomes zero, 445 * clear the CPU affinity for the current thread, or set it to the user's 446 * software binding request. 447 */ 448 void 449 thread_affinity_clear(kthread_id_t t) 450 { 451 register processorid_t binding; 452 453 thread_lock(t); 454 if (--t->t_affinitycnt == 0) { 455 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 456 /* 457 * Adjust disp_max_unbound_pri if necessary. 458 */ 459 disp_adjust_unbound_pri(t); 460 t->t_bound_cpu = NULL; 461 if (t->t_cpu->cpu_part != t->t_cpupart) { 462 force_thread_migrate(t); 463 return; 464 } 465 } else { 466 t->t_bound_cpu = cpu[binding]; 467 /* 468 * Make sure the thread is running on the bound CPU. 469 */ 470 if (t->t_cpu != t->t_bound_cpu) { 471 force_thread_migrate(t); 472 return; /* already dropped lock */ 473 } 474 } 475 } 476 thread_unlock(t); 477 } 478 479 /* 480 * Wrapper for backward compatibility. 481 */ 482 void 483 affinity_clear(void) 484 { 485 thread_affinity_clear(curthread); 486 } 487 488 /* 489 * Weak cpu affinity. Bind to the "current" cpu for short periods 490 * of time during which the thread must not block (but may be preempted). 491 * Use this instead of kpreempt_disable() when it is only "no migration" 492 * rather than "no preemption" semantics that are required - disabling 493 * preemption holds higher priority threads off of cpu and if the 494 * operation that is protected is more than momentary this is not good 495 * for realtime etc. 496 * 497 * Weakly bound threads will not prevent a cpu from being offlined - 498 * we'll only run them on the cpu to which they are weakly bound but 499 * (because they do not block) we'll always be able to move them on to 500 * another cpu at offline time if we give them just a short moment to 501 * run during which they will unbind. To give a cpu a chance of offlining, 502 * however, we require a barrier to weak bindings that may be raised for a 503 * given cpu (offline/move code may set this and then wait a short time for 504 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 505 * 506 * There are few restrictions on the calling context of thread_nomigrate. 507 * The caller must not hold the thread lock. Calls may be nested. 508 * 509 * After weakbinding a thread must not perform actions that may block. 510 * In particular it must not call thread_affinity_set; calling that when 511 * already weakbound is nonsensical anyway. 512 * 513 * If curthread is prevented from migrating for other reasons 514 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 515 * then the weak binding will succeed even if this cpu is the target of an 516 * offline/move request. 517 */ 518 void 519 thread_nomigrate(void) 520 { 521 cpu_t *cp; 522 kthread_id_t t = curthread; 523 524 again: 525 kpreempt_disable(); 526 cp = CPU; 527 528 /* 529 * A highlevel interrupt must not modify t_nomigrate or 530 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 531 * interrupt thread cannot migrate and we can avoid the 532 * thread_lock call below by short-circuiting here. In either 533 * case we can just return since no migration is possible and 534 * the condition will persist (ie, when we test for these again 535 * in thread_allowmigrate they can't have changed). Migration 536 * is also impossible if we're at or above DISP_LEVEL pil. 537 */ 538 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 539 getpil() >= DISP_LEVEL) { 540 kpreempt_enable(); 541 return; 542 } 543 544 /* 545 * We must be consistent with existing weak bindings. Since we 546 * may be interrupted between the increment of t_nomigrate and 547 * the store to t_weakbound_cpu below we cannot assume that 548 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 549 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 550 * always the case. 551 */ 552 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 553 if (!panicstr) 554 panic("thread_nomigrate: binding to %p but already " 555 "bound to %p", (void *)cp, 556 (void *)t->t_weakbound_cpu); 557 } 558 559 /* 560 * At this point we have preemption disabled and we don't yet hold 561 * the thread lock. So it's possible that somebody else could 562 * set t_bind_cpu here and not be able to force us across to the 563 * new cpu (since we have preemption disabled). 564 */ 565 thread_lock(curthread); 566 567 /* 568 * If further weak bindings are being (temporarily) suppressed then 569 * we'll settle for disabling kernel preemption (which assures 570 * no migration provided the thread does not block which it is 571 * not allowed to if using thread_nomigrate). We must remember 572 * this disposition so we can take appropriate action in 573 * thread_allowmigrate. If this is a nested call and the 574 * thread is already weakbound then fall through as normal. 575 * We remember the decision to settle for kpreempt_disable through 576 * negative nesting counting in t_nomigrate. Once a thread has had one 577 * weakbinding request satisfied in this way any further (nested) 578 * requests will continue to be satisfied in the same way, 579 * even if weak bindings have recommenced. 580 */ 581 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 582 --t->t_nomigrate; 583 thread_unlock(curthread); 584 return; /* with kpreempt_disable still active */ 585 } 586 587 /* 588 * We hold thread_lock so t_bind_cpu cannot change. We could, 589 * however, be running on a different cpu to which we are t_bound_cpu 590 * to (as explained above). If we grant the weak binding request 591 * in that case then the dispatcher must favour our weak binding 592 * over our strong (in which case, just as when preemption is 593 * disabled, we can continue to run on a cpu other than the one to 594 * which we are strongbound; the difference in this case is that 595 * this thread can be preempted and so can appear on the dispatch 596 * queues of a cpu other than the one it is strongbound to). 597 * 598 * If the cpu we are running on does not appear to be a current 599 * offline target (we check cpu_inmotion to determine this - since 600 * we don't hold cpu_lock we may not see a recent store to that, 601 * so it's possible that we at times can grant a weak binding to a 602 * cpu that is an offline target, but that one request will not 603 * prevent the offline from succeeding) then we will always grant 604 * the weak binding request. This includes the case above where 605 * we grant a weakbinding not commensurate with our strong binding. 606 * 607 * If our cpu does appear to be an offline target then we're inclined 608 * not to grant the weakbinding request just yet - we'd prefer to 609 * migrate to another cpu and grant the request there. The 610 * exceptions are those cases where going through preemption code 611 * will not result in us changing cpu: 612 * 613 * . interrupts have already bypassed this case (see above) 614 * . we are already weakbound to this cpu (dispatcher code will 615 * always return us to the weakbound cpu) 616 * . preemption was disabled even before we disabled it above 617 * . we are strongbound to this cpu (if we're strongbound to 618 * another and not yet running there the trip through the 619 * dispatcher will move us to the strongbound cpu and we 620 * will grant the weak binding there) 621 */ 622 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 623 t->t_bound_cpu == cp) { 624 /* 625 * Don't be tempted to store to t_weakbound_cpu only on 626 * the first nested bind request - if we're interrupted 627 * after the increment of t_nomigrate and before the 628 * store to t_weakbound_cpu and the interrupt calls 629 * thread_nomigrate then the assertion in thread_allowmigrate 630 * would fail. 631 */ 632 t->t_nomigrate++; 633 t->t_weakbound_cpu = cp; 634 membar_producer(); 635 thread_unlock(curthread); 636 /* 637 * Now that we have dropped the thread_lock another thread 638 * can set our t_weakbound_cpu, and will try to migrate us 639 * to the strongbound cpu (which will not be prevented by 640 * preemption being disabled since we're about to enable 641 * preemption). We have granted the weakbinding to the current 642 * cpu, so again we are in the position that is is is possible 643 * that our weak and strong bindings differ. Again this 644 * is catered for by dispatcher code which will favour our 645 * weak binding. 646 */ 647 kpreempt_enable(); 648 } else { 649 /* 650 * Move to another cpu before granting the request by 651 * forcing this thread through preemption code. When we 652 * get to set{front,back}dq called from CL_PREEMPT() 653 * cpu_choose() will be used to select a cpu to queue 654 * us on - that will see cpu_inmotion and take 655 * steps to avoid returning us to this cpu. 656 */ 657 cp->cpu_kprunrun = 1; 658 thread_unlock(curthread); 659 kpreempt_enable(); /* will call preempt() */ 660 goto again; 661 } 662 } 663 664 void 665 thread_allowmigrate(void) 666 { 667 kthread_id_t t = curthread; 668 669 ASSERT(t->t_weakbound_cpu == CPU || 670 (t->t_nomigrate < 0 && t->t_preempt > 0) || 671 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 672 getpil() >= DISP_LEVEL); 673 674 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 675 getpil() >= DISP_LEVEL) 676 return; 677 678 if (t->t_nomigrate < 0) { 679 /* 680 * This thread was granted "weak binding" in the 681 * stronger form of kernel preemption disabling. 682 * Undo a level of nesting for both t_nomigrate 683 * and t_preempt. 684 */ 685 ++t->t_nomigrate; 686 kpreempt_enable(); 687 } else if (--t->t_nomigrate == 0) { 688 /* 689 * Time to drop the weak binding. We need to cater 690 * for the case where we're weakbound to a different 691 * cpu than that to which we're strongbound (a very 692 * temporary arrangement that must only persist until 693 * weak binding drops). We don't acquire thread_lock 694 * here so even as this code executes t_bound_cpu 695 * may be changing. So we disable preemption and 696 * a) in the case that t_bound_cpu changes while we 697 * have preemption disabled kprunrun will be set 698 * asynchronously, and b) if before disabling 699 * preemption we were already on a different cpu to 700 * our t_bound_cpu then we set kprunrun ourselves 701 * to force a trip through the dispatcher when 702 * preemption is enabled. 703 */ 704 kpreempt_disable(); 705 if (t->t_bound_cpu && 706 t->t_weakbound_cpu != t->t_bound_cpu) 707 CPU->cpu_kprunrun = 1; 708 t->t_weakbound_cpu = NULL; 709 membar_producer(); 710 kpreempt_enable(); 711 } 712 } 713 714 /* 715 * weakbinding_stop can be used to temporarily cause weakbindings made 716 * with thread_nomigrate to be satisfied through the stronger action of 717 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 718 */ 719 720 void 721 weakbinding_stop(void) 722 { 723 ASSERT(MUTEX_HELD(&cpu_lock)); 724 weakbindingbarrier = 1; 725 membar_producer(); /* make visible before subsequent thread_lock */ 726 } 727 728 void 729 weakbinding_start(void) 730 { 731 ASSERT(MUTEX_HELD(&cpu_lock)); 732 weakbindingbarrier = 0; 733 } 734 735 void 736 null_xcall(void) 737 { 738 } 739 740 /* 741 * This routine is called to place the CPUs in a safe place so that 742 * one of them can be taken off line or placed on line. What we are 743 * trying to do here is prevent a thread from traversing the list 744 * of active CPUs while we are changing it or from getting placed on 745 * the run queue of a CPU that has just gone off line. We do this by 746 * creating a thread with the highest possible prio for each CPU and 747 * having it call this routine. The advantage of this method is that 748 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 749 * This makes disp faster at the expense of making p_online() slower 750 * which is a good trade off. 751 */ 752 static void 753 cpu_pause(int index) 754 { 755 int s; 756 struct _cpu_pause_info *cpi = &cpu_pause_info; 757 volatile char *safe = &safe_list[index]; 758 long lindex = index; 759 760 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 761 762 while (*safe != PAUSE_DIE) { 763 *safe = PAUSE_READY; 764 membar_enter(); /* make sure stores are flushed */ 765 sema_v(&cpi->cp_sem); /* signal requesting thread */ 766 767 /* 768 * Wait here until all pause threads are running. That 769 * indicates that it's safe to do the spl. Until 770 * cpu_pause_info.cp_go is set, we don't want to spl 771 * because that might block clock interrupts needed 772 * to preempt threads on other CPUs. 773 */ 774 while (cpi->cp_go == 0) 775 ; 776 /* 777 * Even though we are at the highest disp prio, we need 778 * to block out all interrupts below LOCK_LEVEL so that 779 * an intr doesn't come in, wake up a thread, and call 780 * setbackdq/setfrontdq. 781 */ 782 s = splhigh(); 783 /* 784 * if cpu_pause_func() has been set then call it using 785 * index as the argument, currently only used by 786 * cpr_suspend_cpus(). This function is used as the 787 * code to execute on the "paused" cpu's when a machine 788 * comes out of a sleep state and CPU's were powered off. 789 * (could also be used for hotplugging CPU's). 790 */ 791 if (cpu_pause_func != NULL) 792 (*cpu_pause_func)((void *)lindex); 793 794 mach_cpu_pause(safe); 795 796 splx(s); 797 /* 798 * Waiting is at an end. Switch out of cpu_pause 799 * loop and resume useful work. 800 */ 801 swtch(); 802 } 803 804 mutex_enter(&pause_free_mutex); 805 *safe = PAUSE_DEAD; 806 cv_broadcast(&pause_free_cv); 807 mutex_exit(&pause_free_mutex); 808 } 809 810 /* 811 * Allow the cpus to start running again. 812 */ 813 void 814 start_cpus() 815 { 816 int i; 817 818 ASSERT(MUTEX_HELD(&cpu_lock)); 819 ASSERT(cpu_pause_info.cp_paused); 820 cpu_pause_info.cp_paused = NULL; 821 for (i = 0; i < NCPU; i++) 822 safe_list[i] = PAUSE_IDLE; 823 membar_enter(); /* make sure stores are flushed */ 824 affinity_clear(); 825 splx(cpu_pause_info.cp_spl); 826 kpreempt_enable(); 827 } 828 829 /* 830 * Allocate a pause thread for a CPU. 831 */ 832 static void 833 cpu_pause_alloc(cpu_t *cp) 834 { 835 kthread_id_t t; 836 long cpun = cp->cpu_id; 837 838 /* 839 * Note, v.v_nglobpris will not change value as long as I hold 840 * cpu_lock. 841 */ 842 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 843 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 844 thread_lock(t); 845 t->t_bound_cpu = cp; 846 t->t_disp_queue = cp->cpu_disp; 847 t->t_affinitycnt = 1; 848 t->t_preempt = 1; 849 thread_unlock(t); 850 cp->cpu_pause_thread = t; 851 /* 852 * Registering a thread in the callback table is usually done 853 * in the initialization code of the thread. In this 854 * case, we do it right after thread creation because the 855 * thread itself may never run, and we need to register the 856 * fact that it is safe for cpr suspend. 857 */ 858 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 859 } 860 861 /* 862 * Free a pause thread for a CPU. 863 */ 864 static void 865 cpu_pause_free(cpu_t *cp) 866 { 867 kthread_id_t t; 868 int cpun = cp->cpu_id; 869 870 ASSERT(MUTEX_HELD(&cpu_lock)); 871 /* 872 * We have to get the thread and tell him to die. 873 */ 874 if ((t = cp->cpu_pause_thread) == NULL) { 875 ASSERT(safe_list[cpun] == PAUSE_IDLE); 876 return; 877 } 878 thread_lock(t); 879 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 880 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 881 t->t_pri = v.v_nglobpris - 1; 882 ASSERT(safe_list[cpun] == PAUSE_IDLE); 883 safe_list[cpun] = PAUSE_DIE; 884 THREAD_TRANSITION(t); 885 setbackdq(t); 886 thread_unlock_nopreempt(t); 887 888 /* 889 * If we don't wait for the thread to actually die, it may try to 890 * run on the wrong cpu as part of an actual call to pause_cpus(). 891 */ 892 mutex_enter(&pause_free_mutex); 893 while (safe_list[cpun] != PAUSE_DEAD) { 894 cv_wait(&pause_free_cv, &pause_free_mutex); 895 } 896 mutex_exit(&pause_free_mutex); 897 safe_list[cpun] = PAUSE_IDLE; 898 899 cp->cpu_pause_thread = NULL; 900 } 901 902 /* 903 * Initialize basic structures for pausing CPUs. 904 */ 905 void 906 cpu_pause_init() 907 { 908 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 909 /* 910 * Create initial CPU pause thread. 911 */ 912 cpu_pause_alloc(CPU); 913 } 914 915 /* 916 * Start the threads used to pause another CPU. 917 */ 918 static int 919 cpu_pause_start(processorid_t cpu_id) 920 { 921 int i; 922 int cpu_count = 0; 923 924 for (i = 0; i < NCPU; i++) { 925 cpu_t *cp; 926 kthread_id_t t; 927 928 cp = cpu[i]; 929 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 930 safe_list[i] = PAUSE_WAIT; 931 continue; 932 } 933 934 /* 935 * Skip CPU if it is quiesced or not yet started. 936 */ 937 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 938 safe_list[i] = PAUSE_WAIT; 939 continue; 940 } 941 942 /* 943 * Start this CPU's pause thread. 944 */ 945 t = cp->cpu_pause_thread; 946 thread_lock(t); 947 /* 948 * Reset the priority, since nglobpris may have 949 * changed since the thread was created, if someone 950 * has loaded the RT (or some other) scheduling 951 * class. 952 */ 953 t->t_pri = v.v_nglobpris - 1; 954 THREAD_TRANSITION(t); 955 setbackdq(t); 956 thread_unlock_nopreempt(t); 957 ++cpu_count; 958 } 959 return (cpu_count); 960 } 961 962 963 /* 964 * Pause all of the CPUs except the one we are on by creating a high 965 * priority thread bound to those CPUs. 966 * 967 * Note that one must be extremely careful regarding code 968 * executed while CPUs are paused. Since a CPU may be paused 969 * while a thread scheduling on that CPU is holding an adaptive 970 * lock, code executed with CPUs paused must not acquire adaptive 971 * (or low-level spin) locks. Also, such code must not block, 972 * since the thread that is supposed to initiate the wakeup may 973 * never run. 974 * 975 * With a few exceptions, the restrictions on code executed with CPUs 976 * paused match those for code executed at high-level interrupt 977 * context. 978 */ 979 void 980 pause_cpus(cpu_t *off_cp) 981 { 982 processorid_t cpu_id; 983 int i; 984 struct _cpu_pause_info *cpi = &cpu_pause_info; 985 986 ASSERT(MUTEX_HELD(&cpu_lock)); 987 ASSERT(cpi->cp_paused == NULL); 988 cpi->cp_count = 0; 989 cpi->cp_go = 0; 990 for (i = 0; i < NCPU; i++) 991 safe_list[i] = PAUSE_IDLE; 992 kpreempt_disable(); 993 994 /* 995 * If running on the cpu that is going offline, get off it. 996 * This is so that it won't be necessary to rechoose a CPU 997 * when done. 998 */ 999 if (CPU == off_cp) 1000 cpu_id = off_cp->cpu_next_part->cpu_id; 1001 else 1002 cpu_id = CPU->cpu_id; 1003 affinity_set(cpu_id); 1004 1005 /* 1006 * Start the pause threads and record how many were started 1007 */ 1008 cpi->cp_count = cpu_pause_start(cpu_id); 1009 1010 /* 1011 * Now wait for all CPUs to be running the pause thread. 1012 */ 1013 while (cpi->cp_count > 0) { 1014 /* 1015 * Spin reading the count without grabbing the disp 1016 * lock to make sure we don't prevent the pause 1017 * threads from getting the lock. 1018 */ 1019 while (sema_held(&cpi->cp_sem)) 1020 ; 1021 if (sema_tryp(&cpi->cp_sem)) 1022 --cpi->cp_count; 1023 } 1024 cpi->cp_go = 1; /* all have reached cpu_pause */ 1025 1026 /* 1027 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1028 * to PAUSE_WAIT.) 1029 */ 1030 for (i = 0; i < NCPU; i++) { 1031 while (safe_list[i] != PAUSE_WAIT) 1032 ; 1033 } 1034 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1035 cpi->cp_paused = curthread; 1036 } 1037 1038 /* 1039 * Check whether the current thread has CPUs paused 1040 */ 1041 int 1042 cpus_paused(void) 1043 { 1044 if (cpu_pause_info.cp_paused != NULL) { 1045 ASSERT(cpu_pause_info.cp_paused == curthread); 1046 return (1); 1047 } 1048 return (0); 1049 } 1050 1051 static cpu_t * 1052 cpu_get_all(processorid_t cpun) 1053 { 1054 ASSERT(MUTEX_HELD(&cpu_lock)); 1055 1056 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1057 return (NULL); 1058 return (cpu[cpun]); 1059 } 1060 1061 /* 1062 * Check whether cpun is a valid processor id and whether it should be 1063 * visible from the current zone. If it is, return a pointer to the 1064 * associated CPU structure. 1065 */ 1066 cpu_t * 1067 cpu_get(processorid_t cpun) 1068 { 1069 cpu_t *c; 1070 1071 ASSERT(MUTEX_HELD(&cpu_lock)); 1072 c = cpu_get_all(cpun); 1073 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1074 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1075 return (NULL); 1076 return (c); 1077 } 1078 1079 /* 1080 * The following functions should be used to check CPU states in the kernel. 1081 * They should be invoked with cpu_lock held. Kernel subsystems interested 1082 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1083 * states. Those are for user-land (and system call) use only. 1084 */ 1085 1086 /* 1087 * Determine whether the CPU is online and handling interrupts. 1088 */ 1089 int 1090 cpu_is_online(cpu_t *cpu) 1091 { 1092 ASSERT(MUTEX_HELD(&cpu_lock)); 1093 return (cpu_flagged_online(cpu->cpu_flags)); 1094 } 1095 1096 /* 1097 * Determine whether the CPU is offline (this includes spare and faulted). 1098 */ 1099 int 1100 cpu_is_offline(cpu_t *cpu) 1101 { 1102 ASSERT(MUTEX_HELD(&cpu_lock)); 1103 return (cpu_flagged_offline(cpu->cpu_flags)); 1104 } 1105 1106 /* 1107 * Determine whether the CPU is powered off. 1108 */ 1109 int 1110 cpu_is_poweredoff(cpu_t *cpu) 1111 { 1112 ASSERT(MUTEX_HELD(&cpu_lock)); 1113 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1114 } 1115 1116 /* 1117 * Determine whether the CPU is handling interrupts. 1118 */ 1119 int 1120 cpu_is_nointr(cpu_t *cpu) 1121 { 1122 ASSERT(MUTEX_HELD(&cpu_lock)); 1123 return (cpu_flagged_nointr(cpu->cpu_flags)); 1124 } 1125 1126 /* 1127 * Determine whether the CPU is active (scheduling threads). 1128 */ 1129 int 1130 cpu_is_active(cpu_t *cpu) 1131 { 1132 ASSERT(MUTEX_HELD(&cpu_lock)); 1133 return (cpu_flagged_active(cpu->cpu_flags)); 1134 } 1135 1136 /* 1137 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1138 */ 1139 int 1140 cpu_flagged_online(cpu_flag_t cpu_flags) 1141 { 1142 return (cpu_flagged_active(cpu_flags) && 1143 (cpu_flags & CPU_ENABLE)); 1144 } 1145 1146 int 1147 cpu_flagged_offline(cpu_flag_t cpu_flags) 1148 { 1149 return (((cpu_flags & CPU_POWEROFF) == 0) && 1150 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1151 } 1152 1153 int 1154 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1155 { 1156 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1157 } 1158 1159 int 1160 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1161 { 1162 return (cpu_flagged_active(cpu_flags) && 1163 (cpu_flags & CPU_ENABLE) == 0); 1164 } 1165 1166 int 1167 cpu_flagged_active(cpu_flag_t cpu_flags) 1168 { 1169 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1170 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1171 } 1172 1173 /* 1174 * Bring the indicated CPU online. 1175 */ 1176 int 1177 cpu_online(cpu_t *cp) 1178 { 1179 int error = 0; 1180 1181 /* 1182 * Handle on-line request. 1183 * This code must put the new CPU on the active list before 1184 * starting it because it will not be paused, and will start 1185 * using the active list immediately. The real start occurs 1186 * when the CPU_QUIESCED flag is turned off. 1187 */ 1188 1189 ASSERT(MUTEX_HELD(&cpu_lock)); 1190 1191 /* 1192 * Put all the cpus into a known safe place. 1193 * No mutexes can be entered while CPUs are paused. 1194 */ 1195 error = mp_cpu_start(cp); /* arch-dep hook */ 1196 if (error == 0) { 1197 pg_cpupart_in(cp, cp->cpu_part); 1198 pause_cpus(NULL); 1199 cpu_add_active_internal(cp); 1200 if (cp->cpu_flags & CPU_FAULTED) { 1201 cp->cpu_flags &= ~CPU_FAULTED; 1202 mp_cpu_faulted_exit(cp); 1203 } 1204 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1205 CPU_SPARE); 1206 CPU_NEW_GENERATION(cp); 1207 start_cpus(); 1208 cpu_stats_kstat_create(cp); 1209 cpu_create_intrstat(cp); 1210 lgrp_kstat_create(cp); 1211 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1212 cpu_intr_enable(cp); /* arch-dep hook */ 1213 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1214 cpu_set_state(cp); 1215 cyclic_online(cp); 1216 /* 1217 * This has to be called only after cyclic_online(). This 1218 * function uses cyclics. 1219 */ 1220 callout_cpu_online(cp); 1221 poke_cpu(cp->cpu_id); 1222 } 1223 1224 return (error); 1225 } 1226 1227 /* 1228 * Take the indicated CPU offline. 1229 */ 1230 int 1231 cpu_offline(cpu_t *cp, int flags) 1232 { 1233 cpupart_t *pp; 1234 int error = 0; 1235 cpu_t *ncp; 1236 int intr_enable; 1237 int cyclic_off = 0; 1238 int callout_off = 0; 1239 int loop_count; 1240 int no_quiesce = 0; 1241 int (*bound_func)(struct cpu *, int); 1242 kthread_t *t; 1243 lpl_t *cpu_lpl; 1244 proc_t *p; 1245 int lgrp_diff_lpl; 1246 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0; 1247 1248 ASSERT(MUTEX_HELD(&cpu_lock)); 1249 1250 /* 1251 * If we're going from faulted or spare to offline, just 1252 * clear these flags and update CPU state. 1253 */ 1254 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1255 if (cp->cpu_flags & CPU_FAULTED) { 1256 cp->cpu_flags &= ~CPU_FAULTED; 1257 mp_cpu_faulted_exit(cp); 1258 } 1259 cp->cpu_flags &= ~CPU_SPARE; 1260 cpu_set_state(cp); 1261 return (0); 1262 } 1263 1264 /* 1265 * Handle off-line request. 1266 */ 1267 pp = cp->cpu_part; 1268 /* 1269 * Don't offline last online CPU in partition 1270 */ 1271 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1272 return (EBUSY); 1273 /* 1274 * Unbind all soft-bound threads bound to our CPU and hard bound threads 1275 * if we were asked to. 1276 */ 1277 error = cpu_unbind(cp->cpu_id, unbind_all_threads); 1278 if (error != 0) 1279 return (error); 1280 /* 1281 * We shouldn't be bound to this CPU ourselves. 1282 */ 1283 if (curthread->t_bound_cpu == cp) 1284 return (EBUSY); 1285 1286 /* 1287 * Tell interested parties that this CPU is going offline. 1288 */ 1289 CPU_NEW_GENERATION(cp); 1290 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1291 1292 /* 1293 * Tell the PG subsystem that the CPU is leaving the partition 1294 */ 1295 pg_cpupart_out(cp, pp); 1296 1297 /* 1298 * Take the CPU out of interrupt participation so we won't find 1299 * bound kernel threads. If the architecture cannot completely 1300 * shut off interrupts on the CPU, don't quiesce it, but don't 1301 * run anything but interrupt thread... this is indicated by 1302 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1303 * off. 1304 */ 1305 intr_enable = cp->cpu_flags & CPU_ENABLE; 1306 if (intr_enable) 1307 no_quiesce = cpu_intr_disable(cp); 1308 1309 /* 1310 * Record that we are aiming to offline this cpu. This acts as 1311 * a barrier to further weak binding requests in thread_nomigrate 1312 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1313 * lean away from this cpu. Further strong bindings are already 1314 * avoided since we hold cpu_lock. Since threads that are set 1315 * runnable around now and others coming off the target cpu are 1316 * directed away from the target, existing strong and weak bindings 1317 * (especially the latter) to the target cpu stand maximum chance of 1318 * being able to unbind during the short delay loop below (if other 1319 * unbound threads compete they may not see cpu in time to unbind 1320 * even if they would do so immediately. 1321 */ 1322 cpu_inmotion = cp; 1323 membar_enter(); 1324 1325 /* 1326 * Check for kernel threads (strong or weak) bound to that CPU. 1327 * Strongly bound threads may not unbind, and we'll have to return 1328 * EBUSY. Weakly bound threads should always disappear - we've 1329 * stopped more weak binding with cpu_inmotion and existing 1330 * bindings will drain imminently (they may not block). Nonetheless 1331 * we will wait for a fixed period for all bound threads to disappear. 1332 * Inactive interrupt threads are OK (they'll be in TS_FREE 1333 * state). If test finds some bound threads, wait a few ticks 1334 * to give short-lived threads (such as interrupts) chance to 1335 * complete. Note that if no_quiesce is set, i.e. this cpu 1336 * is required to service interrupts, then we take the route 1337 * that permits interrupt threads to be active (or bypassed). 1338 */ 1339 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1340 1341 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1342 if (loop_count >= 5) { 1343 error = EBUSY; /* some threads still bound */ 1344 break; 1345 } 1346 1347 /* 1348 * If some threads were assigned, give them 1349 * a chance to complete or move. 1350 * 1351 * This assumes that the clock_thread is not bound 1352 * to any CPU, because the clock_thread is needed to 1353 * do the delay(hz/100). 1354 * 1355 * Note: we still hold the cpu_lock while waiting for 1356 * the next clock tick. This is OK since it isn't 1357 * needed for anything else except processor_bind(2), 1358 * and system initialization. If we drop the lock, 1359 * we would risk another p_online disabling the last 1360 * processor. 1361 */ 1362 delay(hz/100); 1363 } 1364 1365 if (error == 0 && callout_off == 0) { 1366 callout_cpu_offline(cp); 1367 callout_off = 1; 1368 } 1369 1370 if (error == 0 && cyclic_off == 0) { 1371 if (!cyclic_offline(cp)) { 1372 /* 1373 * We must have bound cyclics... 1374 */ 1375 error = EBUSY; 1376 goto out; 1377 } 1378 cyclic_off = 1; 1379 } 1380 1381 /* 1382 * Call mp_cpu_stop() to perform any special operations 1383 * needed for this machine architecture to offline a CPU. 1384 */ 1385 if (error == 0) 1386 error = mp_cpu_stop(cp); /* arch-dep hook */ 1387 1388 /* 1389 * If that all worked, take the CPU offline and decrement 1390 * ncpus_online. 1391 */ 1392 if (error == 0) { 1393 /* 1394 * Put all the cpus into a known safe place. 1395 * No mutexes can be entered while CPUs are paused. 1396 */ 1397 pause_cpus(cp); 1398 /* 1399 * Repeat the operation, if necessary, to make sure that 1400 * all outstanding low-level interrupts run to completion 1401 * before we set the CPU_QUIESCED flag. It's also possible 1402 * that a thread has weak bound to the cpu despite our raising 1403 * cpu_inmotion above since it may have loaded that 1404 * value before the barrier became visible (this would have 1405 * to be the thread that was on the target cpu at the time 1406 * we raised the barrier). 1407 */ 1408 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1409 (*bound_func)(cp, 1)) { 1410 start_cpus(); 1411 (void) mp_cpu_start(cp); 1412 goto again; 1413 } 1414 ncp = cp->cpu_next_part; 1415 cpu_lpl = cp->cpu_lpl; 1416 ASSERT(cpu_lpl != NULL); 1417 1418 /* 1419 * Remove the CPU from the list of active CPUs. 1420 */ 1421 cpu_remove_active(cp); 1422 1423 /* 1424 * Walk the active process list and look for threads 1425 * whose home lgroup needs to be updated, or 1426 * the last CPU they run on is the one being offlined now. 1427 */ 1428 1429 ASSERT(curthread->t_cpu != cp); 1430 for (p = practive; p != NULL; p = p->p_next) { 1431 1432 t = p->p_tlist; 1433 1434 if (t == NULL) 1435 continue; 1436 1437 lgrp_diff_lpl = 0; 1438 1439 do { 1440 ASSERT(t->t_lpl != NULL); 1441 /* 1442 * Taking last CPU in lpl offline 1443 * Rehome thread if it is in this lpl 1444 * Otherwise, update the count of how many 1445 * threads are in this CPU's lgroup but have 1446 * a different lpl. 1447 */ 1448 1449 if (cpu_lpl->lpl_ncpu == 0) { 1450 if (t->t_lpl == cpu_lpl) 1451 lgrp_move_thread(t, 1452 lgrp_choose(t, 1453 t->t_cpupart), 0); 1454 else if (t->t_lpl->lpl_lgrpid == 1455 cpu_lpl->lpl_lgrpid) 1456 lgrp_diff_lpl++; 1457 } 1458 ASSERT(t->t_lpl->lpl_ncpu > 0); 1459 1460 /* 1461 * Update CPU last ran on if it was this CPU 1462 */ 1463 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1464 t->t_cpu = disp_lowpri_cpu(ncp, 1465 t->t_lpl, t->t_pri, NULL); 1466 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1467 t->t_weakbound_cpu == cp); 1468 1469 t = t->t_forw; 1470 } while (t != p->p_tlist); 1471 1472 /* 1473 * Didn't find any threads in the same lgroup as this 1474 * CPU with a different lpl, so remove the lgroup from 1475 * the process lgroup bitmask. 1476 */ 1477 1478 if (lgrp_diff_lpl == 0) 1479 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1480 } 1481 1482 /* 1483 * Walk thread list looking for threads that need to be 1484 * rehomed, since there are some threads that are not in 1485 * their process's p_tlist. 1486 */ 1487 1488 t = curthread; 1489 do { 1490 ASSERT(t != NULL && t->t_lpl != NULL); 1491 1492 /* 1493 * Rehome threads with same lpl as this CPU when this 1494 * is the last CPU in the lpl. 1495 */ 1496 1497 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1498 lgrp_move_thread(t, 1499 lgrp_choose(t, t->t_cpupart), 1); 1500 1501 ASSERT(t->t_lpl->lpl_ncpu > 0); 1502 1503 /* 1504 * Update CPU last ran on if it was this CPU 1505 */ 1506 1507 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1508 t->t_cpu = disp_lowpri_cpu(ncp, 1509 t->t_lpl, t->t_pri, NULL); 1510 } 1511 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1512 t->t_weakbound_cpu == cp); 1513 t = t->t_next; 1514 1515 } while (t != curthread); 1516 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1517 cp->cpu_flags |= CPU_OFFLINE; 1518 disp_cpu_inactive(cp); 1519 if (!no_quiesce) 1520 cp->cpu_flags |= CPU_QUIESCED; 1521 ncpus_online--; 1522 cpu_set_state(cp); 1523 cpu_inmotion = NULL; 1524 start_cpus(); 1525 cpu_stats_kstat_destroy(cp); 1526 cpu_delete_intrstat(cp); 1527 lgrp_kstat_destroy(cp); 1528 } 1529 1530 out: 1531 cpu_inmotion = NULL; 1532 1533 /* 1534 * If we failed, re-enable interrupts. 1535 * Do this even if cpu_intr_disable returned an error, because 1536 * it may have partially disabled interrupts. 1537 */ 1538 if (error && intr_enable) 1539 cpu_intr_enable(cp); 1540 1541 /* 1542 * If we failed, but managed to offline the cyclic subsystem on this 1543 * CPU, bring it back online. 1544 */ 1545 if (error && cyclic_off) 1546 cyclic_online(cp); 1547 1548 /* 1549 * If we failed, but managed to offline callouts on this CPU, 1550 * bring it back online. 1551 */ 1552 if (error && callout_off) 1553 callout_cpu_online(cp); 1554 1555 /* 1556 * If we failed, tell the PG subsystem that the CPU is back 1557 */ 1558 pg_cpupart_in(cp, pp); 1559 1560 /* 1561 * If we failed, we need to notify everyone that this CPU is back on. 1562 */ 1563 if (error != 0) { 1564 CPU_NEW_GENERATION(cp); 1565 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1566 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1567 } 1568 1569 return (error); 1570 } 1571 1572 /* 1573 * Mark the indicated CPU as faulted, taking it offline. 1574 */ 1575 int 1576 cpu_faulted(cpu_t *cp, int flags) 1577 { 1578 int error = 0; 1579 1580 ASSERT(MUTEX_HELD(&cpu_lock)); 1581 ASSERT(!cpu_is_poweredoff(cp)); 1582 1583 if (cpu_is_offline(cp)) { 1584 cp->cpu_flags &= ~CPU_SPARE; 1585 cp->cpu_flags |= CPU_FAULTED; 1586 mp_cpu_faulted_enter(cp); 1587 cpu_set_state(cp); 1588 return (0); 1589 } 1590 1591 if ((error = cpu_offline(cp, flags)) == 0) { 1592 cp->cpu_flags |= CPU_FAULTED; 1593 mp_cpu_faulted_enter(cp); 1594 cpu_set_state(cp); 1595 } 1596 1597 return (error); 1598 } 1599 1600 /* 1601 * Mark the indicated CPU as a spare, taking it offline. 1602 */ 1603 int 1604 cpu_spare(cpu_t *cp, int flags) 1605 { 1606 int error = 0; 1607 1608 ASSERT(MUTEX_HELD(&cpu_lock)); 1609 ASSERT(!cpu_is_poweredoff(cp)); 1610 1611 if (cpu_is_offline(cp)) { 1612 if (cp->cpu_flags & CPU_FAULTED) { 1613 cp->cpu_flags &= ~CPU_FAULTED; 1614 mp_cpu_faulted_exit(cp); 1615 } 1616 cp->cpu_flags |= CPU_SPARE; 1617 cpu_set_state(cp); 1618 return (0); 1619 } 1620 1621 if ((error = cpu_offline(cp, flags)) == 0) { 1622 cp->cpu_flags |= CPU_SPARE; 1623 cpu_set_state(cp); 1624 } 1625 1626 return (error); 1627 } 1628 1629 /* 1630 * Take the indicated CPU from poweroff to offline. 1631 */ 1632 int 1633 cpu_poweron(cpu_t *cp) 1634 { 1635 int error = ENOTSUP; 1636 1637 ASSERT(MUTEX_HELD(&cpu_lock)); 1638 ASSERT(cpu_is_poweredoff(cp)); 1639 1640 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1641 if (error == 0) 1642 cpu_set_state(cp); 1643 1644 return (error); 1645 } 1646 1647 /* 1648 * Take the indicated CPU from any inactive state to powered off. 1649 */ 1650 int 1651 cpu_poweroff(cpu_t *cp) 1652 { 1653 int error = ENOTSUP; 1654 1655 ASSERT(MUTEX_HELD(&cpu_lock)); 1656 ASSERT(cpu_is_offline(cp)); 1657 1658 if (!(cp->cpu_flags & CPU_QUIESCED)) 1659 return (EBUSY); /* not completely idle */ 1660 1661 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1662 if (error == 0) 1663 cpu_set_state(cp); 1664 1665 return (error); 1666 } 1667 1668 /* 1669 * Initialize the Sequential CPU id lookup table 1670 */ 1671 void 1672 cpu_seq_tbl_init() 1673 { 1674 cpu_t **tbl; 1675 1676 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP); 1677 tbl[0] = CPU; 1678 1679 cpu_seq = tbl; 1680 } 1681 1682 /* 1683 * Initialize the CPU lists for the first CPU. 1684 */ 1685 void 1686 cpu_list_init(cpu_t *cp) 1687 { 1688 cp->cpu_next = cp; 1689 cp->cpu_prev = cp; 1690 cpu_list = cp; 1691 clock_cpu_list = cp; 1692 1693 cp->cpu_next_onln = cp; 1694 cp->cpu_prev_onln = cp; 1695 cpu_active = cp; 1696 1697 cp->cpu_seqid = 0; 1698 CPUSET_ADD(cpu_seqid_inuse, 0); 1699 1700 /* 1701 * Bootstrap cpu_seq using cpu_list 1702 * The cpu_seq[] table will be dynamically allocated 1703 * when kmem later becomes available (but before going MP) 1704 */ 1705 cpu_seq = &cpu_list; 1706 1707 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1708 cp_default.cp_cpulist = cp; 1709 cp_default.cp_ncpus = 1; 1710 cp->cpu_next_part = cp; 1711 cp->cpu_prev_part = cp; 1712 cp->cpu_part = &cp_default; 1713 1714 CPUSET_ADD(cpu_available, cp->cpu_id); 1715 } 1716 1717 /* 1718 * Insert a CPU into the list of available CPUs. 1719 */ 1720 void 1721 cpu_add_unit(cpu_t *cp) 1722 { 1723 int seqid; 1724 1725 ASSERT(MUTEX_HELD(&cpu_lock)); 1726 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1727 1728 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1729 1730 /* 1731 * Note: most users of the cpu_list will grab the 1732 * cpu_lock to insure that it isn't modified. However, 1733 * certain users can't or won't do that. To allow this 1734 * we pause the other cpus. Users who walk the list 1735 * without cpu_lock, must disable kernel preemption 1736 * to insure that the list isn't modified underneath 1737 * them. Also, any cached pointers to cpu structures 1738 * must be revalidated by checking to see if the 1739 * cpu_next pointer points to itself. This check must 1740 * be done with the cpu_lock held or kernel preemption 1741 * disabled. This check relies upon the fact that 1742 * old cpu structures are not free'ed or cleared after 1743 * then are removed from the cpu_list. 1744 * 1745 * Note that the clock code walks the cpu list dereferencing 1746 * the cpu_part pointer, so we need to initialize it before 1747 * adding the cpu to the list. 1748 */ 1749 cp->cpu_part = &cp_default; 1750 (void) pause_cpus(NULL); 1751 cp->cpu_next = cpu_list; 1752 cp->cpu_prev = cpu_list->cpu_prev; 1753 cpu_list->cpu_prev->cpu_next = cp; 1754 cpu_list->cpu_prev = cp; 1755 start_cpus(); 1756 1757 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1758 continue; 1759 CPUSET_ADD(cpu_seqid_inuse, seqid); 1760 cp->cpu_seqid = seqid; 1761 ASSERT(ncpus < max_ncpus); 1762 ncpus++; 1763 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1764 cpu[cp->cpu_id] = cp; 1765 CPUSET_ADD(cpu_available, cp->cpu_id); 1766 cpu_seq[cp->cpu_seqid] = cp; 1767 1768 /* 1769 * allocate a pause thread for this CPU. 1770 */ 1771 cpu_pause_alloc(cp); 1772 1773 /* 1774 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1775 * link them into a list of just that CPU. 1776 * This is so that disp_lowpri_cpu will work for thread_create in 1777 * pause_cpus() when called from the startup thread in a new CPU. 1778 */ 1779 cp->cpu_next_onln = cp; 1780 cp->cpu_prev_onln = cp; 1781 cpu_info_kstat_create(cp); 1782 cp->cpu_next_part = cp; 1783 cp->cpu_prev_part = cp; 1784 1785 init_cpu_mstate(cp, CMS_SYSTEM); 1786 1787 pool_pset_mod = gethrtime(); 1788 } 1789 1790 /* 1791 * Do the opposite of cpu_add_unit(). 1792 */ 1793 void 1794 cpu_del_unit(int cpuid) 1795 { 1796 struct cpu *cp, *cpnext; 1797 1798 ASSERT(MUTEX_HELD(&cpu_lock)); 1799 cp = cpu[cpuid]; 1800 ASSERT(cp != NULL); 1801 1802 ASSERT(cp->cpu_next_onln == cp); 1803 ASSERT(cp->cpu_prev_onln == cp); 1804 ASSERT(cp->cpu_next_part == cp); 1805 ASSERT(cp->cpu_prev_part == cp); 1806 1807 /* 1808 * Tear down the CPU's physical ID cache, and update any 1809 * processor groups 1810 */ 1811 pg_cpu_fini(cp, NULL); 1812 pghw_physid_destroy(cp); 1813 1814 /* 1815 * Destroy kstat stuff. 1816 */ 1817 cpu_info_kstat_destroy(cp); 1818 term_cpu_mstate(cp); 1819 /* 1820 * Free up pause thread. 1821 */ 1822 cpu_pause_free(cp); 1823 CPUSET_DEL(cpu_available, cp->cpu_id); 1824 cpu[cp->cpu_id] = NULL; 1825 cpu_seq[cp->cpu_seqid] = NULL; 1826 1827 /* 1828 * The clock thread and mutex_vector_enter cannot hold the 1829 * cpu_lock while traversing the cpu list, therefore we pause 1830 * all other threads by pausing the other cpus. These, and any 1831 * other routines holding cpu pointers while possibly sleeping 1832 * must be sure to call kpreempt_disable before processing the 1833 * list and be sure to check that the cpu has not been deleted 1834 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1835 * to keep the deleted cpu structure around. 1836 * 1837 * Note that this MUST be done AFTER cpu_available 1838 * has been updated so that we don't waste time 1839 * trying to pause the cpu we're trying to delete. 1840 */ 1841 (void) pause_cpus(NULL); 1842 1843 cpnext = cp->cpu_next; 1844 cp->cpu_prev->cpu_next = cp->cpu_next; 1845 cp->cpu_next->cpu_prev = cp->cpu_prev; 1846 if (cp == cpu_list) 1847 cpu_list = cpnext; 1848 1849 /* 1850 * Signals that the cpu has been deleted (see above). 1851 */ 1852 cp->cpu_next = NULL; 1853 cp->cpu_prev = NULL; 1854 1855 start_cpus(); 1856 1857 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1858 ncpus--; 1859 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1860 1861 pool_pset_mod = gethrtime(); 1862 } 1863 1864 /* 1865 * Add a CPU to the list of active CPUs. 1866 * This routine must not get any locks, because other CPUs are paused. 1867 */ 1868 static void 1869 cpu_add_active_internal(cpu_t *cp) 1870 { 1871 cpupart_t *pp = cp->cpu_part; 1872 1873 ASSERT(MUTEX_HELD(&cpu_lock)); 1874 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1875 1876 ncpus_online++; 1877 cpu_set_state(cp); 1878 cp->cpu_next_onln = cpu_active; 1879 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1880 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1881 cpu_active->cpu_prev_onln = cp; 1882 1883 if (pp->cp_cpulist) { 1884 cp->cpu_next_part = pp->cp_cpulist; 1885 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1886 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1887 pp->cp_cpulist->cpu_prev_part = cp; 1888 } else { 1889 ASSERT(pp->cp_ncpus == 0); 1890 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1891 } 1892 pp->cp_ncpus++; 1893 if (pp->cp_ncpus == 1) { 1894 cp_numparts_nonempty++; 1895 ASSERT(cp_numparts_nonempty != 0); 1896 } 1897 1898 pg_cpu_active(cp); 1899 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1900 1901 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1902 } 1903 1904 /* 1905 * Add a CPU to the list of active CPUs. 1906 * This is called from machine-dependent layers when a new CPU is started. 1907 */ 1908 void 1909 cpu_add_active(cpu_t *cp) 1910 { 1911 pg_cpupart_in(cp, cp->cpu_part); 1912 1913 pause_cpus(NULL); 1914 cpu_add_active_internal(cp); 1915 start_cpus(); 1916 1917 cpu_stats_kstat_create(cp); 1918 cpu_create_intrstat(cp); 1919 lgrp_kstat_create(cp); 1920 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1921 } 1922 1923 1924 /* 1925 * Remove a CPU from the list of active CPUs. 1926 * This routine must not get any locks, because other CPUs are paused. 1927 */ 1928 /* ARGSUSED */ 1929 static void 1930 cpu_remove_active(cpu_t *cp) 1931 { 1932 cpupart_t *pp = cp->cpu_part; 1933 1934 ASSERT(MUTEX_HELD(&cpu_lock)); 1935 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1936 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1937 1938 pg_cpu_inactive(cp); 1939 1940 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1941 1942 if (cp == clock_cpu_list) 1943 clock_cpu_list = cp->cpu_next_onln; 1944 1945 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1946 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1947 if (cpu_active == cp) { 1948 cpu_active = cp->cpu_next_onln; 1949 } 1950 cp->cpu_next_onln = cp; 1951 cp->cpu_prev_onln = cp; 1952 1953 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1954 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1955 if (pp->cp_cpulist == cp) { 1956 pp->cp_cpulist = cp->cpu_next_part; 1957 ASSERT(pp->cp_cpulist != cp); 1958 } 1959 cp->cpu_next_part = cp; 1960 cp->cpu_prev_part = cp; 1961 pp->cp_ncpus--; 1962 if (pp->cp_ncpus == 0) { 1963 cp_numparts_nonempty--; 1964 ASSERT(cp_numparts_nonempty != 0); 1965 } 1966 } 1967 1968 /* 1969 * Routine used to setup a newly inserted CPU in preparation for starting 1970 * it running code. 1971 */ 1972 int 1973 cpu_configure(int cpuid) 1974 { 1975 int retval = 0; 1976 1977 ASSERT(MUTEX_HELD(&cpu_lock)); 1978 1979 /* 1980 * Some structures are statically allocated based upon 1981 * the maximum number of cpus the system supports. Do not 1982 * try to add anything beyond this limit. 1983 */ 1984 if (cpuid < 0 || cpuid >= NCPU) { 1985 return (EINVAL); 1986 } 1987 1988 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1989 return (EALREADY); 1990 } 1991 1992 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1993 return (retval); 1994 } 1995 1996 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1997 cpu_set_state(cpu[cpuid]); 1998 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1999 if (retval != 0) 2000 (void) mp_cpu_unconfigure(cpuid); 2001 2002 return (retval); 2003 } 2004 2005 /* 2006 * Routine used to cleanup a CPU that has been powered off. This will 2007 * destroy all per-cpu information related to this cpu. 2008 */ 2009 int 2010 cpu_unconfigure(int cpuid) 2011 { 2012 int error; 2013 2014 ASSERT(MUTEX_HELD(&cpu_lock)); 2015 2016 if (cpu[cpuid] == NULL) { 2017 return (ENODEV); 2018 } 2019 2020 if (cpu[cpuid]->cpu_flags == 0) { 2021 return (EALREADY); 2022 } 2023 2024 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 2025 return (EBUSY); 2026 } 2027 2028 if (cpu[cpuid]->cpu_props != NULL) { 2029 (void) nvlist_free(cpu[cpuid]->cpu_props); 2030 cpu[cpuid]->cpu_props = NULL; 2031 } 2032 2033 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 2034 2035 if (error != 0) 2036 return (error); 2037 2038 return (mp_cpu_unconfigure(cpuid)); 2039 } 2040 2041 /* 2042 * Routines for registering and de-registering cpu_setup callback functions. 2043 * 2044 * Caller's context 2045 * These routines must not be called from a driver's attach(9E) or 2046 * detach(9E) entry point. 2047 * 2048 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 2049 */ 2050 2051 /* 2052 * Ideally, these would be dynamically allocated and put into a linked 2053 * list; however that is not feasible because the registration routine 2054 * has to be available before the kmem allocator is working (in fact, 2055 * it is called by the kmem allocator init code). In any case, there 2056 * are quite a few extra entries for future users. 2057 */ 2058 #define NCPU_SETUPS 20 2059 2060 struct cpu_setup { 2061 cpu_setup_func_t *func; 2062 void *arg; 2063 } cpu_setups[NCPU_SETUPS]; 2064 2065 void 2066 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2067 { 2068 int i; 2069 2070 ASSERT(MUTEX_HELD(&cpu_lock)); 2071 2072 for (i = 0; i < NCPU_SETUPS; i++) 2073 if (cpu_setups[i].func == NULL) 2074 break; 2075 if (i >= NCPU_SETUPS) 2076 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2077 2078 cpu_setups[i].func = func; 2079 cpu_setups[i].arg = arg; 2080 } 2081 2082 void 2083 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2084 { 2085 int i; 2086 2087 ASSERT(MUTEX_HELD(&cpu_lock)); 2088 2089 for (i = 0; i < NCPU_SETUPS; i++) 2090 if ((cpu_setups[i].func == func) && 2091 (cpu_setups[i].arg == arg)) 2092 break; 2093 if (i >= NCPU_SETUPS) 2094 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2095 "deregister"); 2096 2097 cpu_setups[i].func = NULL; 2098 cpu_setups[i].arg = 0; 2099 } 2100 2101 /* 2102 * Call any state change hooks for this CPU, ignore any errors. 2103 */ 2104 void 2105 cpu_state_change_notify(int id, cpu_setup_t what) 2106 { 2107 int i; 2108 2109 ASSERT(MUTEX_HELD(&cpu_lock)); 2110 2111 for (i = 0; i < NCPU_SETUPS; i++) { 2112 if (cpu_setups[i].func != NULL) { 2113 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2114 } 2115 } 2116 } 2117 2118 /* 2119 * Call any state change hooks for this CPU, undo it if error found. 2120 */ 2121 static int 2122 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2123 { 2124 int i; 2125 int retval = 0; 2126 2127 ASSERT(MUTEX_HELD(&cpu_lock)); 2128 2129 for (i = 0; i < NCPU_SETUPS; i++) { 2130 if (cpu_setups[i].func != NULL) { 2131 retval = cpu_setups[i].func(what, id, 2132 cpu_setups[i].arg); 2133 if (retval) { 2134 for (i--; i >= 0; i--) { 2135 if (cpu_setups[i].func != NULL) 2136 cpu_setups[i].func(undo, 2137 id, cpu_setups[i].arg); 2138 } 2139 break; 2140 } 2141 } 2142 } 2143 return (retval); 2144 } 2145 2146 /* 2147 * Export information about this CPU via the kstat mechanism. 2148 */ 2149 static struct { 2150 kstat_named_t ci_state; 2151 kstat_named_t ci_state_begin; 2152 kstat_named_t ci_cpu_type; 2153 kstat_named_t ci_fpu_type; 2154 kstat_named_t ci_clock_MHz; 2155 kstat_named_t ci_chip_id; 2156 kstat_named_t ci_implementation; 2157 kstat_named_t ci_brandstr; 2158 kstat_named_t ci_core_id; 2159 kstat_named_t ci_curr_clock_Hz; 2160 kstat_named_t ci_supp_freq_Hz; 2161 kstat_named_t ci_pg_id; 2162 #if defined(__sparcv9) 2163 kstat_named_t ci_device_ID; 2164 kstat_named_t ci_cpu_fru; 2165 #endif 2166 #if defined(__x86) 2167 kstat_named_t ci_vendorstr; 2168 kstat_named_t ci_family; 2169 kstat_named_t ci_model; 2170 kstat_named_t ci_step; 2171 kstat_named_t ci_clogid; 2172 kstat_named_t ci_pkg_core_id; 2173 kstat_named_t ci_ncpuperchip; 2174 kstat_named_t ci_ncoreperchip; 2175 kstat_named_t ci_max_cstates; 2176 kstat_named_t ci_curr_cstate; 2177 kstat_named_t ci_cacheid; 2178 kstat_named_t ci_sktstr; 2179 #endif 2180 } cpu_info_template = { 2181 { "state", KSTAT_DATA_CHAR }, 2182 { "state_begin", KSTAT_DATA_LONG }, 2183 { "cpu_type", KSTAT_DATA_CHAR }, 2184 { "fpu_type", KSTAT_DATA_CHAR }, 2185 { "clock_MHz", KSTAT_DATA_LONG }, 2186 { "chip_id", KSTAT_DATA_LONG }, 2187 { "implementation", KSTAT_DATA_STRING }, 2188 { "brand", KSTAT_DATA_STRING }, 2189 { "core_id", KSTAT_DATA_LONG }, 2190 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2191 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2192 { "pg_id", KSTAT_DATA_LONG }, 2193 #if defined(__sparcv9) 2194 { "device_ID", KSTAT_DATA_UINT64 }, 2195 { "cpu_fru", KSTAT_DATA_STRING }, 2196 #endif 2197 #if defined(__x86) 2198 { "vendor_id", KSTAT_DATA_STRING }, 2199 { "family", KSTAT_DATA_INT32 }, 2200 { "model", KSTAT_DATA_INT32 }, 2201 { "stepping", KSTAT_DATA_INT32 }, 2202 { "clog_id", KSTAT_DATA_INT32 }, 2203 { "pkg_core_id", KSTAT_DATA_LONG }, 2204 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2205 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2206 { "supported_max_cstates", KSTAT_DATA_INT32 }, 2207 { "current_cstate", KSTAT_DATA_INT32 }, 2208 { "cache_id", KSTAT_DATA_INT32 }, 2209 { "socket_type", KSTAT_DATA_STRING }, 2210 #endif 2211 }; 2212 2213 static kmutex_t cpu_info_template_lock; 2214 2215 static int 2216 cpu_info_kstat_update(kstat_t *ksp, int rw) 2217 { 2218 cpu_t *cp = ksp->ks_private; 2219 const char *pi_state; 2220 2221 if (rw == KSTAT_WRITE) 2222 return (EACCES); 2223 2224 #if defined(__x86) 2225 /* Is the cpu still initialising itself? */ 2226 if (cpuid_checkpass(cp, 1) == 0) 2227 return (ENXIO); 2228 #endif 2229 switch (cp->cpu_type_info.pi_state) { 2230 case P_ONLINE: 2231 pi_state = PS_ONLINE; 2232 break; 2233 case P_POWEROFF: 2234 pi_state = PS_POWEROFF; 2235 break; 2236 case P_NOINTR: 2237 pi_state = PS_NOINTR; 2238 break; 2239 case P_FAULTED: 2240 pi_state = PS_FAULTED; 2241 break; 2242 case P_SPARE: 2243 pi_state = PS_SPARE; 2244 break; 2245 case P_OFFLINE: 2246 pi_state = PS_OFFLINE; 2247 break; 2248 default: 2249 pi_state = "unknown"; 2250 } 2251 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2252 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2253 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2254 cp->cpu_type_info.pi_processor_type, 15); 2255 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2256 cp->cpu_type_info.pi_fputypes, 15); 2257 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2258 cpu_info_template.ci_chip_id.value.l = 2259 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2260 kstat_named_setstr(&cpu_info_template.ci_implementation, 2261 cp->cpu_idstr); 2262 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2263 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2264 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2265 cp->cpu_curr_clock; 2266 cpu_info_template.ci_pg_id.value.l = 2267 cp->cpu_pg && cp->cpu_pg->cmt_lineage ? 2268 cp->cpu_pg->cmt_lineage->pg_id : -1; 2269 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2270 cp->cpu_supp_freqs); 2271 #if defined(__sparcv9) 2272 cpu_info_template.ci_device_ID.value.ui64 = 2273 cpunodes[cp->cpu_id].device_id; 2274 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2275 #endif 2276 #if defined(__x86) 2277 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2278 cpuid_getvendorstr(cp)); 2279 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2280 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2281 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2282 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2283 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2284 cpu_info_template.ci_ncoreperchip.value.l = 2285 cpuid_get_ncore_per_chip(cp); 2286 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp); 2287 cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates; 2288 cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp); 2289 cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp); 2290 kstat_named_setstr(&cpu_info_template.ci_sktstr, 2291 cpuid_getsocketstr(cp)); 2292 #endif 2293 2294 return (0); 2295 } 2296 2297 static void 2298 cpu_info_kstat_create(cpu_t *cp) 2299 { 2300 zoneid_t zoneid; 2301 2302 ASSERT(MUTEX_HELD(&cpu_lock)); 2303 2304 if (pool_pset_enabled()) 2305 zoneid = GLOBAL_ZONEID; 2306 else 2307 zoneid = ALL_ZONES; 2308 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2309 NULL, "misc", KSTAT_TYPE_NAMED, 2310 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2311 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) { 2312 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2313 #if defined(__sparcv9) 2314 cp->cpu_info_kstat->ks_data_size += 2315 strlen(cpu_fru_fmri(cp)) + 1; 2316 #endif 2317 #if defined(__x86) 2318 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2319 #endif 2320 if (cp->cpu_supp_freqs != NULL) 2321 cp->cpu_info_kstat->ks_data_size += 2322 strlen(cp->cpu_supp_freqs) + 1; 2323 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2324 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2325 cp->cpu_info_kstat->ks_private = cp; 2326 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2327 kstat_install(cp->cpu_info_kstat); 2328 } 2329 } 2330 2331 static void 2332 cpu_info_kstat_destroy(cpu_t *cp) 2333 { 2334 ASSERT(MUTEX_HELD(&cpu_lock)); 2335 2336 kstat_delete(cp->cpu_info_kstat); 2337 cp->cpu_info_kstat = NULL; 2338 } 2339 2340 /* 2341 * Create and install kstats for the boot CPU. 2342 */ 2343 void 2344 cpu_kstat_init(cpu_t *cp) 2345 { 2346 mutex_enter(&cpu_lock); 2347 cpu_info_kstat_create(cp); 2348 cpu_stats_kstat_create(cp); 2349 cpu_create_intrstat(cp); 2350 cpu_set_state(cp); 2351 mutex_exit(&cpu_lock); 2352 } 2353 2354 /* 2355 * Make visible to the zone that subset of the cpu information that would be 2356 * initialized when a cpu is configured (but still offline). 2357 */ 2358 void 2359 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2360 { 2361 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2362 2363 ASSERT(MUTEX_HELD(&cpu_lock)); 2364 ASSERT(pool_pset_enabled()); 2365 ASSERT(cp != NULL); 2366 2367 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2368 zone->zone_ncpus++; 2369 ASSERT(zone->zone_ncpus <= ncpus); 2370 } 2371 if (cp->cpu_info_kstat != NULL) 2372 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2373 } 2374 2375 /* 2376 * Make visible to the zone that subset of the cpu information that would be 2377 * initialized when a previously configured cpu is onlined. 2378 */ 2379 void 2380 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2381 { 2382 kstat_t *ksp; 2383 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2384 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2385 processorid_t cpun; 2386 2387 ASSERT(MUTEX_HELD(&cpu_lock)); 2388 ASSERT(pool_pset_enabled()); 2389 ASSERT(cp != NULL); 2390 ASSERT(cpu_is_active(cp)); 2391 2392 cpun = cp->cpu_id; 2393 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2394 zone->zone_ncpus_online++; 2395 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2396 } 2397 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2398 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2399 != NULL) { 2400 kstat_zone_add(ksp, zoneid); 2401 kstat_rele(ksp); 2402 } 2403 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2404 kstat_zone_add(ksp, zoneid); 2405 kstat_rele(ksp); 2406 } 2407 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2408 kstat_zone_add(ksp, zoneid); 2409 kstat_rele(ksp); 2410 } 2411 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2412 NULL) { 2413 kstat_zone_add(ksp, zoneid); 2414 kstat_rele(ksp); 2415 } 2416 } 2417 2418 /* 2419 * Update relevant kstats such that cpu is now visible to processes 2420 * executing in specified zone. 2421 */ 2422 void 2423 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2424 { 2425 cpu_visibility_configure(cp, zone); 2426 if (cpu_is_active(cp)) 2427 cpu_visibility_online(cp, zone); 2428 } 2429 2430 /* 2431 * Make invisible to the zone that subset of the cpu information that would be 2432 * torn down when a previously offlined cpu is unconfigured. 2433 */ 2434 void 2435 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2436 { 2437 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2438 2439 ASSERT(MUTEX_HELD(&cpu_lock)); 2440 ASSERT(pool_pset_enabled()); 2441 ASSERT(cp != NULL); 2442 2443 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2444 ASSERT(zone->zone_ncpus != 0); 2445 zone->zone_ncpus--; 2446 } 2447 if (cp->cpu_info_kstat) 2448 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2449 } 2450 2451 /* 2452 * Make invisible to the zone that subset of the cpu information that would be 2453 * torn down when a cpu is offlined (but still configured). 2454 */ 2455 void 2456 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2457 { 2458 kstat_t *ksp; 2459 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2460 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2461 processorid_t cpun; 2462 2463 ASSERT(MUTEX_HELD(&cpu_lock)); 2464 ASSERT(pool_pset_enabled()); 2465 ASSERT(cp != NULL); 2466 ASSERT(cpu_is_active(cp)); 2467 2468 cpun = cp->cpu_id; 2469 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2470 ASSERT(zone->zone_ncpus_online != 0); 2471 zone->zone_ncpus_online--; 2472 } 2473 2474 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2475 NULL) { 2476 kstat_zone_remove(ksp, zoneid); 2477 kstat_rele(ksp); 2478 } 2479 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2480 kstat_zone_remove(ksp, zoneid); 2481 kstat_rele(ksp); 2482 } 2483 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2484 kstat_zone_remove(ksp, zoneid); 2485 kstat_rele(ksp); 2486 } 2487 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2488 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2489 != NULL) { 2490 kstat_zone_remove(ksp, zoneid); 2491 kstat_rele(ksp); 2492 } 2493 } 2494 2495 /* 2496 * Update relevant kstats such that cpu is no longer visible to processes 2497 * executing in specified zone. 2498 */ 2499 void 2500 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2501 { 2502 if (cpu_is_active(cp)) 2503 cpu_visibility_offline(cp, zone); 2504 cpu_visibility_unconfigure(cp, zone); 2505 } 2506 2507 /* 2508 * Bind a thread to a CPU as requested. 2509 */ 2510 int 2511 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2512 int *error) 2513 { 2514 processorid_t binding; 2515 cpu_t *cp = NULL; 2516 2517 ASSERT(MUTEX_HELD(&cpu_lock)); 2518 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2519 2520 thread_lock(tp); 2521 2522 /* 2523 * Record old binding, but change the obind, which was initialized 2524 * to PBIND_NONE, only if this thread has a binding. This avoids 2525 * reporting PBIND_NONE for a process when some LWPs are bound. 2526 */ 2527 binding = tp->t_bind_cpu; 2528 if (binding != PBIND_NONE) 2529 *obind = binding; /* record old binding */ 2530 2531 switch (bind) { 2532 case PBIND_QUERY: 2533 /* Just return the old binding */ 2534 thread_unlock(tp); 2535 return (0); 2536 2537 case PBIND_QUERY_TYPE: 2538 /* Return the binding type */ 2539 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD; 2540 thread_unlock(tp); 2541 return (0); 2542 2543 case PBIND_SOFT: 2544 /* 2545 * Set soft binding for this thread and return the actual 2546 * binding 2547 */ 2548 TB_CPU_SOFT_SET(tp); 2549 thread_unlock(tp); 2550 return (0); 2551 2552 case PBIND_HARD: 2553 /* 2554 * Set hard binding for this thread and return the actual 2555 * binding 2556 */ 2557 TB_CPU_HARD_SET(tp); 2558 thread_unlock(tp); 2559 return (0); 2560 2561 default: 2562 break; 2563 } 2564 2565 /* 2566 * If this thread/LWP cannot be bound because of permission 2567 * problems, just note that and return success so that the 2568 * other threads/LWPs will be bound. This is the way 2569 * processor_bind() is defined to work. 2570 * 2571 * Binding will get EPERM if the thread is of system class 2572 * or hasprocperm() fails. 2573 */ 2574 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2575 *error = EPERM; 2576 thread_unlock(tp); 2577 return (0); 2578 } 2579 2580 binding = bind; 2581 if (binding != PBIND_NONE) { 2582 cp = cpu_get((processorid_t)binding); 2583 /* 2584 * Make sure binding is valid and is in right partition. 2585 */ 2586 if (cp == NULL || tp->t_cpupart != cp->cpu_part) { 2587 *error = EINVAL; 2588 thread_unlock(tp); 2589 return (0); 2590 } 2591 } 2592 tp->t_bind_cpu = binding; /* set new binding */ 2593 2594 /* 2595 * If there is no system-set reason for affinity, set 2596 * the t_bound_cpu field to reflect the binding. 2597 */ 2598 if (tp->t_affinitycnt == 0) { 2599 if (binding == PBIND_NONE) { 2600 /* 2601 * We may need to adjust disp_max_unbound_pri 2602 * since we're becoming unbound. 2603 */ 2604 disp_adjust_unbound_pri(tp); 2605 2606 tp->t_bound_cpu = NULL; /* set new binding */ 2607 2608 /* 2609 * Move thread to lgroup with strongest affinity 2610 * after unbinding 2611 */ 2612 if (tp->t_lgrp_affinity) 2613 lgrp_move_thread(tp, 2614 lgrp_choose(tp, tp->t_cpupart), 1); 2615 2616 if (tp->t_state == TS_ONPROC && 2617 tp->t_cpu->cpu_part != tp->t_cpupart) 2618 cpu_surrender(tp); 2619 } else { 2620 lpl_t *lpl; 2621 2622 tp->t_bound_cpu = cp; 2623 ASSERT(cp->cpu_lpl != NULL); 2624 2625 /* 2626 * Set home to lgroup with most affinity containing CPU 2627 * that thread is being bound or minimum bounding 2628 * lgroup if no affinities set 2629 */ 2630 if (tp->t_lgrp_affinity) 2631 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2632 LGRP_NONE, B_FALSE); 2633 else 2634 lpl = cp->cpu_lpl; 2635 2636 if (tp->t_lpl != lpl) { 2637 /* can't grab cpu_lock */ 2638 lgrp_move_thread(tp, lpl, 1); 2639 } 2640 2641 /* 2642 * Make the thread switch to the bound CPU. 2643 * If the thread is runnable, we need to 2644 * requeue it even if t_cpu is already set 2645 * to the right CPU, since it may be on a 2646 * kpreempt queue and need to move to a local 2647 * queue. We could check t_disp_queue to 2648 * avoid unnecessary overhead if it's already 2649 * on the right queue, but since this isn't 2650 * a performance-critical operation it doesn't 2651 * seem worth the extra code and complexity. 2652 * 2653 * If the thread is weakbound to the cpu then it will 2654 * resist the new binding request until the weak 2655 * binding drops. The cpu_surrender or requeueing 2656 * below could be skipped in such cases (since it 2657 * will have no effect), but that would require 2658 * thread_allowmigrate to acquire thread_lock so 2659 * we'll take the very occasional hit here instead. 2660 */ 2661 if (tp->t_state == TS_ONPROC) { 2662 cpu_surrender(tp); 2663 } else if (tp->t_state == TS_RUN) { 2664 cpu_t *ocp = tp->t_cpu; 2665 2666 (void) dispdeq(tp); 2667 setbackdq(tp); 2668 /* 2669 * Either on the bound CPU's disp queue now, 2670 * or swapped out or on the swap queue. 2671 */ 2672 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2673 tp->t_weakbound_cpu == ocp || 2674 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2675 != TS_LOAD); 2676 } 2677 } 2678 } 2679 2680 /* 2681 * Our binding has changed; set TP_CHANGEBIND. 2682 */ 2683 tp->t_proc_flag |= TP_CHANGEBIND; 2684 aston(tp); 2685 2686 thread_unlock(tp); 2687 2688 return (0); 2689 } 2690 2691 #if CPUSET_WORDS > 1 2692 2693 /* 2694 * Functions for implementing cpuset operations when a cpuset is more 2695 * than one word. On platforms where a cpuset is a single word these 2696 * are implemented as macros in cpuvar.h. 2697 */ 2698 2699 void 2700 cpuset_all(cpuset_t *s) 2701 { 2702 int i; 2703 2704 for (i = 0; i < CPUSET_WORDS; i++) 2705 s->cpub[i] = ~0UL; 2706 } 2707 2708 void 2709 cpuset_all_but(cpuset_t *s, uint_t cpu) 2710 { 2711 cpuset_all(s); 2712 CPUSET_DEL(*s, cpu); 2713 } 2714 2715 void 2716 cpuset_only(cpuset_t *s, uint_t cpu) 2717 { 2718 CPUSET_ZERO(*s); 2719 CPUSET_ADD(*s, cpu); 2720 } 2721 2722 int 2723 cpuset_isnull(cpuset_t *s) 2724 { 2725 int i; 2726 2727 for (i = 0; i < CPUSET_WORDS; i++) 2728 if (s->cpub[i] != 0) 2729 return (0); 2730 return (1); 2731 } 2732 2733 int 2734 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2735 { 2736 int i; 2737 2738 for (i = 0; i < CPUSET_WORDS; i++) 2739 if (s1->cpub[i] != s2->cpub[i]) 2740 return (0); 2741 return (1); 2742 } 2743 2744 uint_t 2745 cpuset_find(cpuset_t *s) 2746 { 2747 2748 uint_t i; 2749 uint_t cpu = (uint_t)-1; 2750 2751 /* 2752 * Find a cpu in the cpuset 2753 */ 2754 for (i = 0; i < CPUSET_WORDS; i++) { 2755 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2756 if (cpu != (uint_t)-1) { 2757 cpu += i * BT_NBIPUL; 2758 break; 2759 } 2760 } 2761 return (cpu); 2762 } 2763 2764 void 2765 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2766 { 2767 int i, j; 2768 uint_t bit; 2769 2770 /* 2771 * First, find the smallest cpu id in the set. 2772 */ 2773 for (i = 0; i < CPUSET_WORDS; i++) { 2774 if (s->cpub[i] != 0) { 2775 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2776 ASSERT(bit != (uint_t)-1); 2777 *smallestid = bit + (i * BT_NBIPUL); 2778 2779 /* 2780 * Now find the largest cpu id in 2781 * the set and return immediately. 2782 * Done in an inner loop to avoid 2783 * having to break out of the first 2784 * loop. 2785 */ 2786 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2787 if (s->cpub[j] != 0) { 2788 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2789 ASSERT(bit != (uint_t)-1); 2790 *largestid = bit + (j * BT_NBIPUL); 2791 ASSERT(*largestid >= *smallestid); 2792 return; 2793 } 2794 } 2795 2796 /* 2797 * If this code is reached, a 2798 * smallestid was found, but not a 2799 * largestid. The cpuset must have 2800 * been changed during the course 2801 * of this function call. 2802 */ 2803 ASSERT(0); 2804 } 2805 } 2806 *smallestid = *largestid = CPUSET_NOTINSET; 2807 } 2808 2809 #endif /* CPUSET_WORDS */ 2810 2811 /* 2812 * Unbind threads bound to specified CPU. 2813 * 2814 * If `unbind_all_threads' is true, unbind all user threads bound to a given 2815 * CPU. Otherwise unbind all soft-bound user threads. 2816 */ 2817 int 2818 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads) 2819 { 2820 processorid_t obind; 2821 kthread_t *tp; 2822 int ret = 0; 2823 proc_t *pp; 2824 int err, berr = 0; 2825 2826 ASSERT(MUTEX_HELD(&cpu_lock)); 2827 2828 mutex_enter(&pidlock); 2829 for (pp = practive; pp != NULL; pp = pp->p_next) { 2830 mutex_enter(&pp->p_lock); 2831 tp = pp->p_tlist; 2832 /* 2833 * Skip zombies, kernel processes, and processes in 2834 * other zones, if called from a non-global zone. 2835 */ 2836 if (tp == NULL || (pp->p_flag & SSYS) || 2837 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2838 mutex_exit(&pp->p_lock); 2839 continue; 2840 } 2841 do { 2842 if (tp->t_bind_cpu != cpu) 2843 continue; 2844 /* 2845 * Skip threads with hard binding when 2846 * `unbind_all_threads' is not specified. 2847 */ 2848 if (!unbind_all_threads && TB_CPU_IS_HARD(tp)) 2849 continue; 2850 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2851 if (ret == 0) 2852 ret = err; 2853 } while ((tp = tp->t_forw) != pp->p_tlist); 2854 mutex_exit(&pp->p_lock); 2855 } 2856 mutex_exit(&pidlock); 2857 if (ret == 0) 2858 ret = berr; 2859 return (ret); 2860 } 2861 2862 2863 /* 2864 * Destroy all remaining bound threads on a cpu. 2865 */ 2866 void 2867 cpu_destroy_bound_threads(cpu_t *cp) 2868 { 2869 extern id_t syscid; 2870 register kthread_id_t t, tlist, tnext; 2871 2872 /* 2873 * Destroy all remaining bound threads on the cpu. This 2874 * should include both the interrupt threads and the idle thread. 2875 * This requires some care, since we need to traverse the 2876 * thread list with the pidlock mutex locked, but thread_free 2877 * also locks the pidlock mutex. So, we collect the threads 2878 * we're going to reap in a list headed by "tlist", then we 2879 * unlock the pidlock mutex and traverse the tlist list, 2880 * doing thread_free's on the thread's. Simple, n'est pas? 2881 * Also, this depends on thread_free not mucking with the 2882 * t_next and t_prev links of the thread. 2883 */ 2884 2885 if ((t = curthread) != NULL) { 2886 2887 tlist = NULL; 2888 mutex_enter(&pidlock); 2889 do { 2890 tnext = t->t_next; 2891 if (t->t_bound_cpu == cp) { 2892 2893 /* 2894 * We've found a bound thread, carefully unlink 2895 * it out of the thread list, and add it to 2896 * our "tlist". We "know" we don't have to 2897 * worry about unlinking curthread (the thread 2898 * that is executing this code). 2899 */ 2900 t->t_next->t_prev = t->t_prev; 2901 t->t_prev->t_next = t->t_next; 2902 t->t_next = tlist; 2903 tlist = t; 2904 ASSERT(t->t_cid == syscid); 2905 /* wake up anyone blocked in thread_join */ 2906 cv_broadcast(&t->t_joincv); 2907 /* 2908 * t_lwp set by interrupt threads and not 2909 * cleared. 2910 */ 2911 t->t_lwp = NULL; 2912 /* 2913 * Pause and idle threads always have 2914 * t_state set to TS_ONPROC. 2915 */ 2916 t->t_state = TS_FREE; 2917 t->t_prev = NULL; /* Just in case */ 2918 } 2919 2920 } while ((t = tnext) != curthread); 2921 2922 mutex_exit(&pidlock); 2923 2924 mutex_sync(); 2925 for (t = tlist; t != NULL; t = tnext) { 2926 tnext = t->t_next; 2927 thread_free(t); 2928 } 2929 } 2930 } 2931 2932 /* 2933 * Update the cpu_supp_freqs of this cpu. This information is returned 2934 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 2935 * maintain the kstat data size. 2936 */ 2937 void 2938 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2939 { 2940 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2941 const char *lfreqs = clkstr; 2942 boolean_t kstat_exists = B_FALSE; 2943 kstat_t *ksp; 2944 size_t len; 2945 2946 /* 2947 * A NULL pointer means we only support one speed. 2948 */ 2949 if (freqs == NULL) 2950 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2951 cp->cpu_curr_clock); 2952 else 2953 lfreqs = freqs; 2954 2955 /* 2956 * Make sure the frequency doesn't change while a snapshot is 2957 * going on. Of course, we only need to worry about this if 2958 * the kstat exists. 2959 */ 2960 if ((ksp = cp->cpu_info_kstat) != NULL) { 2961 mutex_enter(ksp->ks_lock); 2962 kstat_exists = B_TRUE; 2963 } 2964 2965 /* 2966 * Free any previously allocated string and if the kstat 2967 * already exists, then update its data size. 2968 */ 2969 if (cp->cpu_supp_freqs != NULL) { 2970 len = strlen(cp->cpu_supp_freqs) + 1; 2971 kmem_free(cp->cpu_supp_freqs, len); 2972 if (kstat_exists) 2973 ksp->ks_data_size -= len; 2974 } 2975 2976 /* 2977 * Allocate the new string and set the pointer. 2978 */ 2979 len = strlen(lfreqs) + 1; 2980 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 2981 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 2982 2983 /* 2984 * If the kstat already exists then update the data size and 2985 * free the lock. 2986 */ 2987 if (kstat_exists) { 2988 ksp->ks_data_size += len; 2989 mutex_exit(ksp->ks_lock); 2990 } 2991 } 2992 2993 /* 2994 * Indicate the current CPU's clock freqency (in Hz). 2995 * The calling context must be such that CPU references are safe. 2996 */ 2997 void 2998 cpu_set_curr_clock(uint64_t new_clk) 2999 { 3000 uint64_t old_clk; 3001 3002 old_clk = CPU->cpu_curr_clock; 3003 CPU->cpu_curr_clock = new_clk; 3004 3005 /* 3006 * The cpu-change-speed DTrace probe exports the frequency in Hz 3007 */ 3008 DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id, 3009 uint64_t, old_clk, uint64_t, new_clk); 3010 } 3011 3012 /* 3013 * processor_info(2) and p_online(2) status support functions 3014 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 3015 * for use in communicating processor state information to userland. Kernel 3016 * subsystems should only be using the cpu_flags value directly. Subsystems 3017 * modifying cpu_flags should record the state change via a call to the 3018 * cpu_set_state(). 3019 */ 3020 3021 /* 3022 * Update the pi_state of this CPU. This function provides the CPU status for 3023 * the information returned by processor_info(2). 3024 */ 3025 void 3026 cpu_set_state(cpu_t *cpu) 3027 { 3028 ASSERT(MUTEX_HELD(&cpu_lock)); 3029 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 3030 cpu->cpu_state_begin = gethrestime_sec(); 3031 pool_cpu_mod = gethrtime(); 3032 } 3033 3034 /* 3035 * Return offline/online/other status for the indicated CPU. Use only for 3036 * communication with user applications; cpu_flags provides the in-kernel 3037 * interface. 3038 */ 3039 int 3040 cpu_get_state(cpu_t *cpu) 3041 { 3042 ASSERT(MUTEX_HELD(&cpu_lock)); 3043 if (cpu->cpu_flags & CPU_POWEROFF) 3044 return (P_POWEROFF); 3045 else if (cpu->cpu_flags & CPU_FAULTED) 3046 return (P_FAULTED); 3047 else if (cpu->cpu_flags & CPU_SPARE) 3048 return (P_SPARE); 3049 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 3050 return (P_OFFLINE); 3051 else if (cpu->cpu_flags & CPU_ENABLE) 3052 return (P_ONLINE); 3053 else 3054 return (P_NOINTR); 3055 } 3056 3057 /* 3058 * Return processor_info(2) state as a string. 3059 */ 3060 const char * 3061 cpu_get_state_str(cpu_t *cpu) 3062 { 3063 const char *string; 3064 3065 switch (cpu_get_state(cpu)) { 3066 case P_ONLINE: 3067 string = PS_ONLINE; 3068 break; 3069 case P_POWEROFF: 3070 string = PS_POWEROFF; 3071 break; 3072 case P_NOINTR: 3073 string = PS_NOINTR; 3074 break; 3075 case P_SPARE: 3076 string = PS_SPARE; 3077 break; 3078 case P_FAULTED: 3079 string = PS_FAULTED; 3080 break; 3081 case P_OFFLINE: 3082 string = PS_OFFLINE; 3083 break; 3084 default: 3085 string = "unknown"; 3086 break; 3087 } 3088 return (string); 3089 } 3090 3091 /* 3092 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 3093 * kstats, respectively. This is done when a CPU is initialized or placed 3094 * online via p_online(2). 3095 */ 3096 static void 3097 cpu_stats_kstat_create(cpu_t *cp) 3098 { 3099 int instance = cp->cpu_id; 3100 char *module = "cpu"; 3101 char *class = "misc"; 3102 kstat_t *ksp; 3103 zoneid_t zoneid; 3104 3105 ASSERT(MUTEX_HELD(&cpu_lock)); 3106 3107 if (pool_pset_enabled()) 3108 zoneid = GLOBAL_ZONEID; 3109 else 3110 zoneid = ALL_ZONES; 3111 /* 3112 * Create named kstats 3113 */ 3114 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 3115 ksp = kstat_create_zone(module, instance, (name), class, \ 3116 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 3117 zoneid); \ 3118 if (ksp != NULL) { \ 3119 ksp->ks_private = cp; \ 3120 ksp->ks_update = (update_func); \ 3121 kstat_install(ksp); \ 3122 } else \ 3123 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 3124 module, instance, (name)); 3125 3126 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 3127 cpu_sys_stats_ks_update); 3128 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 3129 cpu_vm_stats_ks_update); 3130 3131 /* 3132 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 3133 */ 3134 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 3135 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 3136 if (ksp != NULL) { 3137 ksp->ks_update = cpu_stat_ks_update; 3138 ksp->ks_private = cp; 3139 kstat_install(ksp); 3140 } 3141 } 3142 3143 static void 3144 cpu_stats_kstat_destroy(cpu_t *cp) 3145 { 3146 char ks_name[KSTAT_STRLEN]; 3147 3148 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3149 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3150 3151 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3152 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3153 } 3154 3155 static int 3156 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3157 { 3158 cpu_t *cp = (cpu_t *)ksp->ks_private; 3159 struct cpu_sys_stats_ks_data *csskd; 3160 cpu_sys_stats_t *css; 3161 hrtime_t msnsecs[NCMSTATES]; 3162 int i; 3163 3164 if (rw == KSTAT_WRITE) 3165 return (EACCES); 3166 3167 csskd = ksp->ks_data; 3168 css = &cp->cpu_stats.sys; 3169 3170 /* 3171 * Read CPU mstate, but compare with the last values we 3172 * received to make sure that the returned kstats never 3173 * decrease. 3174 */ 3175 3176 get_cpu_mstate(cp, msnsecs); 3177 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3178 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3179 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3180 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3181 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3182 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3183 3184 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3185 sizeof (cpu_sys_stats_ks_data_template)); 3186 3187 csskd->cpu_ticks_wait.value.ui64 = 0; 3188 csskd->wait_ticks_io.value.ui64 = 0; 3189 3190 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3191 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3192 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3193 csskd->cpu_ticks_idle.value.ui64 = 3194 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3195 csskd->cpu_ticks_user.value.ui64 = 3196 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3197 csskd->cpu_ticks_kernel.value.ui64 = 3198 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3199 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3200 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3201 csskd->bread.value.ui64 = css->bread; 3202 csskd->bwrite.value.ui64 = css->bwrite; 3203 csskd->lread.value.ui64 = css->lread; 3204 csskd->lwrite.value.ui64 = css->lwrite; 3205 csskd->phread.value.ui64 = css->phread; 3206 csskd->phwrite.value.ui64 = css->phwrite; 3207 csskd->pswitch.value.ui64 = css->pswitch; 3208 csskd->trap.value.ui64 = css->trap; 3209 csskd->intr.value.ui64 = 0; 3210 for (i = 0; i < PIL_MAX; i++) 3211 csskd->intr.value.ui64 += css->intr[i]; 3212 csskd->syscall.value.ui64 = css->syscall; 3213 csskd->sysread.value.ui64 = css->sysread; 3214 csskd->syswrite.value.ui64 = css->syswrite; 3215 csskd->sysfork.value.ui64 = css->sysfork; 3216 csskd->sysvfork.value.ui64 = css->sysvfork; 3217 csskd->sysexec.value.ui64 = css->sysexec; 3218 csskd->readch.value.ui64 = css->readch; 3219 csskd->writech.value.ui64 = css->writech; 3220 csskd->rcvint.value.ui64 = css->rcvint; 3221 csskd->xmtint.value.ui64 = css->xmtint; 3222 csskd->mdmint.value.ui64 = css->mdmint; 3223 csskd->rawch.value.ui64 = css->rawch; 3224 csskd->canch.value.ui64 = css->canch; 3225 csskd->outch.value.ui64 = css->outch; 3226 csskd->msg.value.ui64 = css->msg; 3227 csskd->sema.value.ui64 = css->sema; 3228 csskd->namei.value.ui64 = css->namei; 3229 csskd->ufsiget.value.ui64 = css->ufsiget; 3230 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3231 csskd->ufsipage.value.ui64 = css->ufsipage; 3232 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3233 csskd->procovf.value.ui64 = css->procovf; 3234 csskd->intrthread.value.ui64 = 0; 3235 for (i = 0; i < LOCK_LEVEL - 1; i++) 3236 csskd->intrthread.value.ui64 += css->intr[i]; 3237 csskd->intrblk.value.ui64 = css->intrblk; 3238 csskd->intrunpin.value.ui64 = css->intrunpin; 3239 csskd->idlethread.value.ui64 = css->idlethread; 3240 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3241 csskd->nthreads.value.ui64 = css->nthreads; 3242 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3243 csskd->xcalls.value.ui64 = css->xcalls; 3244 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3245 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3246 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3247 csskd->modload.value.ui64 = css->modload; 3248 csskd->modunload.value.ui64 = css->modunload; 3249 csskd->bawrite.value.ui64 = css->bawrite; 3250 csskd->iowait.value.ui64 = css->iowait; 3251 3252 return (0); 3253 } 3254 3255 static int 3256 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3257 { 3258 cpu_t *cp = (cpu_t *)ksp->ks_private; 3259 struct cpu_vm_stats_ks_data *cvskd; 3260 cpu_vm_stats_t *cvs; 3261 3262 if (rw == KSTAT_WRITE) 3263 return (EACCES); 3264 3265 cvs = &cp->cpu_stats.vm; 3266 cvskd = ksp->ks_data; 3267 3268 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3269 sizeof (cpu_vm_stats_ks_data_template)); 3270 cvskd->pgrec.value.ui64 = cvs->pgrec; 3271 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3272 cvskd->pgin.value.ui64 = cvs->pgin; 3273 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3274 cvskd->pgout.value.ui64 = cvs->pgout; 3275 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3276 cvskd->swapin.value.ui64 = cvs->swapin; 3277 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3278 cvskd->swapout.value.ui64 = cvs->swapout; 3279 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3280 cvskd->zfod.value.ui64 = cvs->zfod; 3281 cvskd->dfree.value.ui64 = cvs->dfree; 3282 cvskd->scan.value.ui64 = cvs->scan; 3283 cvskd->rev.value.ui64 = cvs->rev; 3284 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3285 cvskd->as_fault.value.ui64 = cvs->as_fault; 3286 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3287 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3288 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3289 cvskd->softlock.value.ui64 = cvs->softlock; 3290 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3291 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3292 cvskd->execpgin.value.ui64 = cvs->execpgin; 3293 cvskd->execpgout.value.ui64 = cvs->execpgout; 3294 cvskd->execfree.value.ui64 = cvs->execfree; 3295 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3296 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3297 cvskd->anonfree.value.ui64 = cvs->anonfree; 3298 cvskd->fspgin.value.ui64 = cvs->fspgin; 3299 cvskd->fspgout.value.ui64 = cvs->fspgout; 3300 cvskd->fsfree.value.ui64 = cvs->fsfree; 3301 3302 return (0); 3303 } 3304 3305 static int 3306 cpu_stat_ks_update(kstat_t *ksp, int rw) 3307 { 3308 cpu_stat_t *cso; 3309 cpu_t *cp; 3310 int i; 3311 hrtime_t msnsecs[NCMSTATES]; 3312 3313 cso = (cpu_stat_t *)ksp->ks_data; 3314 cp = (cpu_t *)ksp->ks_private; 3315 3316 if (rw == KSTAT_WRITE) 3317 return (EACCES); 3318 3319 /* 3320 * Read CPU mstate, but compare with the last values we 3321 * received to make sure that the returned kstats never 3322 * decrease. 3323 */ 3324 3325 get_cpu_mstate(cp, msnsecs); 3326 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3327 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3328 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3329 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3330 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3331 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3332 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3333 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3334 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3335 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3336 cso->cpu_sysinfo.wait[W_IO] = 0; 3337 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3338 cso->cpu_sysinfo.wait[W_PIO] = 0; 3339 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3340 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3341 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3342 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3343 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3344 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3345 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3346 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3347 cso->cpu_sysinfo.intr = 0; 3348 for (i = 0; i < PIL_MAX; i++) 3349 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3350 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3351 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3352 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3353 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3354 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3355 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3356 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3357 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3358 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3359 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3360 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3361 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3362 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3363 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3364 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3365 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3366 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3367 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3368 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3369 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3370 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3371 cso->cpu_sysinfo.inodeovf = 0; 3372 cso->cpu_sysinfo.fileovf = 0; 3373 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3374 cso->cpu_sysinfo.intrthread = 0; 3375 for (i = 0; i < LOCK_LEVEL - 1; i++) 3376 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3377 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3378 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3379 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3380 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3381 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3382 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3383 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3384 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3385 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3386 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3387 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3388 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3389 cso->cpu_sysinfo.rw_enters = 0; 3390 cso->cpu_sysinfo.win_uo_cnt = 0; 3391 cso->cpu_sysinfo.win_uu_cnt = 0; 3392 cso->cpu_sysinfo.win_so_cnt = 0; 3393 cso->cpu_sysinfo.win_su_cnt = 0; 3394 cso->cpu_sysinfo.win_suo_cnt = 0; 3395 3396 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3397 cso->cpu_syswait.swap = 0; 3398 cso->cpu_syswait.physio = 0; 3399 3400 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3401 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3402 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3403 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3404 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3405 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3406 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3407 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3408 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3409 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3410 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3411 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3412 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3413 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3414 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3415 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3416 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3417 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3418 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3419 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3420 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3421 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3422 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3423 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3424 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3425 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3426 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3427 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3428 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3429 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3430 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3431 3432 return (0); 3433 } 3434