1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Architecture-independent CPU control functions. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/var.h> 33 #include <sys/thread.h> 34 #include <sys/cpuvar.h> 35 #include <sys/kstat.h> 36 #include <sys/uadmin.h> 37 #include <sys/systm.h> 38 #include <sys/errno.h> 39 #include <sys/cmn_err.h> 40 #include <sys/procset.h> 41 #include <sys/processor.h> 42 #include <sys/debug.h> 43 #include <sys/cpupart.h> 44 #include <sys/lgrp.h> 45 #include <sys/pset.h> 46 #include <sys/pghw.h> 47 #include <sys/kmem.h> 48 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 49 #include <sys/atomic.h> 50 #include <sys/callb.h> 51 #include <sys/vtrace.h> 52 #include <sys/cyclic.h> 53 #include <sys/bitmap.h> 54 #include <sys/nvpair.h> 55 #include <sys/pool_pset.h> 56 #include <sys/msacct.h> 57 #include <sys/time.h> 58 #include <sys/archsystm.h> 59 #if defined(__x86) || defined(__amd64) 60 #include <sys/x86_archext.h> 61 #endif 62 #include <sys/callo.h> 63 64 extern int mp_cpu_start(cpu_t *); 65 extern int mp_cpu_stop(cpu_t *); 66 extern int mp_cpu_poweron(cpu_t *); 67 extern int mp_cpu_poweroff(cpu_t *); 68 extern int mp_cpu_configure(int); 69 extern int mp_cpu_unconfigure(int); 70 extern void mp_cpu_faulted_enter(cpu_t *); 71 extern void mp_cpu_faulted_exit(cpu_t *); 72 73 extern int cmp_cpu_to_chip(processorid_t cpuid); 74 #ifdef __sparcv9 75 extern char *cpu_fru_fmri(cpu_t *cp); 76 #endif 77 78 static void cpu_add_active_internal(cpu_t *cp); 79 static void cpu_remove_active(cpu_t *cp); 80 static void cpu_info_kstat_create(cpu_t *cp); 81 static void cpu_info_kstat_destroy(cpu_t *cp); 82 static void cpu_stats_kstat_create(cpu_t *cp); 83 static void cpu_stats_kstat_destroy(cpu_t *cp); 84 85 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 86 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 87 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 88 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 89 90 /* 91 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 92 * and dispatch queue reallocations. The lock ordering with respect to 93 * related locks is: 94 * 95 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 96 * 97 * Warning: Certain sections of code do not use the cpu_lock when 98 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 99 * all cpus are paused during modifications to this list, a solution 100 * to protect the list is too either disable kernel preemption while 101 * walking the list, *or* recheck the cpu_next pointer at each 102 * iteration in the loop. Note that in no cases can any cached 103 * copies of the cpu pointers be kept as they may become invalid. 104 */ 105 kmutex_t cpu_lock; 106 cpu_t *cpu_list; /* list of all CPUs */ 107 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 108 cpu_t *cpu_active; /* list of active CPUs */ 109 static cpuset_t cpu_available; /* set of available CPUs */ 110 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 111 112 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */ 113 114 /* 115 * max_ncpus keeps the max cpus the system can have. Initially 116 * it's NCPU, but since most archs scan the devtree for cpus 117 * fairly early on during boot, the real max can be known before 118 * ncpus is set (useful for early NCPU based allocations). 119 */ 120 int max_ncpus = NCPU; 121 /* 122 * platforms that set max_ncpus to maxiumum number of cpus that can be 123 * dynamically added will set boot_max_ncpus to the number of cpus found 124 * at device tree scan time during boot. 125 */ 126 int boot_max_ncpus = -1; 127 int boot_ncpus = -1; 128 /* 129 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 130 * used to size arrays that are indexed by CPU id. 131 */ 132 processorid_t max_cpuid = NCPU - 1; 133 134 int ncpus = 1; 135 int ncpus_online = 1; 136 137 /* 138 * CPU that we're trying to offline. Protected by cpu_lock. 139 */ 140 cpu_t *cpu_inmotion; 141 142 /* 143 * Can be raised to suppress further weakbinding, which are instead 144 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 145 * while individual thread weakbinding synchronisation is done under thread 146 * lock. 147 */ 148 int weakbindingbarrier; 149 150 /* 151 * Variables used in pause_cpus(). 152 */ 153 static volatile char safe_list[NCPU]; 154 155 static struct _cpu_pause_info { 156 int cp_spl; /* spl saved in pause_cpus() */ 157 volatile int cp_go; /* Go signal sent after all ready */ 158 int cp_count; /* # of CPUs to pause */ 159 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 160 kthread_id_t cp_paused; 161 } cpu_pause_info; 162 163 static kmutex_t pause_free_mutex; 164 static kcondvar_t pause_free_cv; 165 166 void *(*cpu_pause_func)(void *) = NULL; 167 168 169 static struct cpu_sys_stats_ks_data { 170 kstat_named_t cpu_ticks_idle; 171 kstat_named_t cpu_ticks_user; 172 kstat_named_t cpu_ticks_kernel; 173 kstat_named_t cpu_ticks_wait; 174 kstat_named_t cpu_nsec_idle; 175 kstat_named_t cpu_nsec_user; 176 kstat_named_t cpu_nsec_kernel; 177 kstat_named_t cpu_nsec_intr; 178 kstat_named_t cpu_load_intr; 179 kstat_named_t wait_ticks_io; 180 kstat_named_t bread; 181 kstat_named_t bwrite; 182 kstat_named_t lread; 183 kstat_named_t lwrite; 184 kstat_named_t phread; 185 kstat_named_t phwrite; 186 kstat_named_t pswitch; 187 kstat_named_t trap; 188 kstat_named_t intr; 189 kstat_named_t syscall; 190 kstat_named_t sysread; 191 kstat_named_t syswrite; 192 kstat_named_t sysfork; 193 kstat_named_t sysvfork; 194 kstat_named_t sysexec; 195 kstat_named_t readch; 196 kstat_named_t writech; 197 kstat_named_t rcvint; 198 kstat_named_t xmtint; 199 kstat_named_t mdmint; 200 kstat_named_t rawch; 201 kstat_named_t canch; 202 kstat_named_t outch; 203 kstat_named_t msg; 204 kstat_named_t sema; 205 kstat_named_t namei; 206 kstat_named_t ufsiget; 207 kstat_named_t ufsdirblk; 208 kstat_named_t ufsipage; 209 kstat_named_t ufsinopage; 210 kstat_named_t procovf; 211 kstat_named_t intrthread; 212 kstat_named_t intrblk; 213 kstat_named_t intrunpin; 214 kstat_named_t idlethread; 215 kstat_named_t inv_swtch; 216 kstat_named_t nthreads; 217 kstat_named_t cpumigrate; 218 kstat_named_t xcalls; 219 kstat_named_t mutex_adenters; 220 kstat_named_t rw_rdfails; 221 kstat_named_t rw_wrfails; 222 kstat_named_t modload; 223 kstat_named_t modunload; 224 kstat_named_t bawrite; 225 kstat_named_t iowait; 226 } cpu_sys_stats_ks_data_template = { 227 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 228 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 229 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 230 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 231 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 232 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 233 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 234 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 235 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 236 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 237 { "bread", KSTAT_DATA_UINT64 }, 238 { "bwrite", KSTAT_DATA_UINT64 }, 239 { "lread", KSTAT_DATA_UINT64 }, 240 { "lwrite", KSTAT_DATA_UINT64 }, 241 { "phread", KSTAT_DATA_UINT64 }, 242 { "phwrite", KSTAT_DATA_UINT64 }, 243 { "pswitch", KSTAT_DATA_UINT64 }, 244 { "trap", KSTAT_DATA_UINT64 }, 245 { "intr", KSTAT_DATA_UINT64 }, 246 { "syscall", KSTAT_DATA_UINT64 }, 247 { "sysread", KSTAT_DATA_UINT64 }, 248 { "syswrite", KSTAT_DATA_UINT64 }, 249 { "sysfork", KSTAT_DATA_UINT64 }, 250 { "sysvfork", KSTAT_DATA_UINT64 }, 251 { "sysexec", KSTAT_DATA_UINT64 }, 252 { "readch", KSTAT_DATA_UINT64 }, 253 { "writech", KSTAT_DATA_UINT64 }, 254 { "rcvint", KSTAT_DATA_UINT64 }, 255 { "xmtint", KSTAT_DATA_UINT64 }, 256 { "mdmint", KSTAT_DATA_UINT64 }, 257 { "rawch", KSTAT_DATA_UINT64 }, 258 { "canch", KSTAT_DATA_UINT64 }, 259 { "outch", KSTAT_DATA_UINT64 }, 260 { "msg", KSTAT_DATA_UINT64 }, 261 { "sema", KSTAT_DATA_UINT64 }, 262 { "namei", KSTAT_DATA_UINT64 }, 263 { "ufsiget", KSTAT_DATA_UINT64 }, 264 { "ufsdirblk", KSTAT_DATA_UINT64 }, 265 { "ufsipage", KSTAT_DATA_UINT64 }, 266 { "ufsinopage", KSTAT_DATA_UINT64 }, 267 { "procovf", KSTAT_DATA_UINT64 }, 268 { "intrthread", KSTAT_DATA_UINT64 }, 269 { "intrblk", KSTAT_DATA_UINT64 }, 270 { "intrunpin", KSTAT_DATA_UINT64 }, 271 { "idlethread", KSTAT_DATA_UINT64 }, 272 { "inv_swtch", KSTAT_DATA_UINT64 }, 273 { "nthreads", KSTAT_DATA_UINT64 }, 274 { "cpumigrate", KSTAT_DATA_UINT64 }, 275 { "xcalls", KSTAT_DATA_UINT64 }, 276 { "mutex_adenters", KSTAT_DATA_UINT64 }, 277 { "rw_rdfails", KSTAT_DATA_UINT64 }, 278 { "rw_wrfails", KSTAT_DATA_UINT64 }, 279 { "modload", KSTAT_DATA_UINT64 }, 280 { "modunload", KSTAT_DATA_UINT64 }, 281 { "bawrite", KSTAT_DATA_UINT64 }, 282 { "iowait", KSTAT_DATA_UINT64 }, 283 }; 284 285 static struct cpu_vm_stats_ks_data { 286 kstat_named_t pgrec; 287 kstat_named_t pgfrec; 288 kstat_named_t pgin; 289 kstat_named_t pgpgin; 290 kstat_named_t pgout; 291 kstat_named_t pgpgout; 292 kstat_named_t swapin; 293 kstat_named_t pgswapin; 294 kstat_named_t swapout; 295 kstat_named_t pgswapout; 296 kstat_named_t zfod; 297 kstat_named_t dfree; 298 kstat_named_t scan; 299 kstat_named_t rev; 300 kstat_named_t hat_fault; 301 kstat_named_t as_fault; 302 kstat_named_t maj_fault; 303 kstat_named_t cow_fault; 304 kstat_named_t prot_fault; 305 kstat_named_t softlock; 306 kstat_named_t kernel_asflt; 307 kstat_named_t pgrrun; 308 kstat_named_t execpgin; 309 kstat_named_t execpgout; 310 kstat_named_t execfree; 311 kstat_named_t anonpgin; 312 kstat_named_t anonpgout; 313 kstat_named_t anonfree; 314 kstat_named_t fspgin; 315 kstat_named_t fspgout; 316 kstat_named_t fsfree; 317 } cpu_vm_stats_ks_data_template = { 318 { "pgrec", KSTAT_DATA_UINT64 }, 319 { "pgfrec", KSTAT_DATA_UINT64 }, 320 { "pgin", KSTAT_DATA_UINT64 }, 321 { "pgpgin", KSTAT_DATA_UINT64 }, 322 { "pgout", KSTAT_DATA_UINT64 }, 323 { "pgpgout", KSTAT_DATA_UINT64 }, 324 { "swapin", KSTAT_DATA_UINT64 }, 325 { "pgswapin", KSTAT_DATA_UINT64 }, 326 { "swapout", KSTAT_DATA_UINT64 }, 327 { "pgswapout", KSTAT_DATA_UINT64 }, 328 { "zfod", KSTAT_DATA_UINT64 }, 329 { "dfree", KSTAT_DATA_UINT64 }, 330 { "scan", KSTAT_DATA_UINT64 }, 331 { "rev", KSTAT_DATA_UINT64 }, 332 { "hat_fault", KSTAT_DATA_UINT64 }, 333 { "as_fault", KSTAT_DATA_UINT64 }, 334 { "maj_fault", KSTAT_DATA_UINT64 }, 335 { "cow_fault", KSTAT_DATA_UINT64 }, 336 { "prot_fault", KSTAT_DATA_UINT64 }, 337 { "softlock", KSTAT_DATA_UINT64 }, 338 { "kernel_asflt", KSTAT_DATA_UINT64 }, 339 { "pgrrun", KSTAT_DATA_UINT64 }, 340 { "execpgin", KSTAT_DATA_UINT64 }, 341 { "execpgout", KSTAT_DATA_UINT64 }, 342 { "execfree", KSTAT_DATA_UINT64 }, 343 { "anonpgin", KSTAT_DATA_UINT64 }, 344 { "anonpgout", KSTAT_DATA_UINT64 }, 345 { "anonfree", KSTAT_DATA_UINT64 }, 346 { "fspgin", KSTAT_DATA_UINT64 }, 347 { "fspgout", KSTAT_DATA_UINT64 }, 348 { "fsfree", KSTAT_DATA_UINT64 }, 349 }; 350 351 /* 352 * Force the specified thread to migrate to the appropriate processor. 353 * Called with thread lock held, returns with it dropped. 354 */ 355 static void 356 force_thread_migrate(kthread_id_t tp) 357 { 358 ASSERT(THREAD_LOCK_HELD(tp)); 359 if (tp == curthread) { 360 THREAD_TRANSITION(tp); 361 CL_SETRUN(tp); 362 thread_unlock_nopreempt(tp); 363 swtch(); 364 } else { 365 if (tp->t_state == TS_ONPROC) { 366 cpu_surrender(tp); 367 } else if (tp->t_state == TS_RUN) { 368 (void) dispdeq(tp); 369 setbackdq(tp); 370 } 371 thread_unlock(tp); 372 } 373 } 374 375 /* 376 * Set affinity for a specified CPU. 377 * A reference count is incremented and the affinity is held until the 378 * reference count is decremented to zero by thread_affinity_clear(). 379 * This is so regions of code requiring affinity can be nested. 380 * Caller needs to ensure that cpu_id remains valid, which can be 381 * done by holding cpu_lock across this call, unless the caller 382 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 383 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 384 */ 385 void 386 thread_affinity_set(kthread_id_t t, int cpu_id) 387 { 388 cpu_t *cp; 389 int c; 390 391 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 392 393 if ((c = cpu_id) == CPU_CURRENT) { 394 mutex_enter(&cpu_lock); 395 cpu_id = CPU->cpu_id; 396 } 397 /* 398 * We should be asserting that cpu_lock is held here, but 399 * the NCA code doesn't acquire it. The following assert 400 * should be uncommented when the NCA code is fixed. 401 * 402 * ASSERT(MUTEX_HELD(&cpu_lock)); 403 */ 404 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 405 cp = cpu[cpu_id]; 406 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 407 /* 408 * If there is already a hard affinity requested, and this affinity 409 * conflicts with that, panic. 410 */ 411 thread_lock(t); 412 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 413 panic("affinity_set: setting %p but already bound to %p", 414 (void *)cp, (void *)t->t_bound_cpu); 415 } 416 t->t_affinitycnt++; 417 t->t_bound_cpu = cp; 418 419 /* 420 * Make sure we're running on the right CPU. 421 */ 422 if (cp != t->t_cpu || t != curthread) { 423 force_thread_migrate(t); /* drops thread lock */ 424 } else { 425 thread_unlock(t); 426 } 427 428 if (c == CPU_CURRENT) 429 mutex_exit(&cpu_lock); 430 } 431 432 /* 433 * Wrapper for backward compatibility. 434 */ 435 void 436 affinity_set(int cpu_id) 437 { 438 thread_affinity_set(curthread, cpu_id); 439 } 440 441 /* 442 * Decrement the affinity reservation count and if it becomes zero, 443 * clear the CPU affinity for the current thread, or set it to the user's 444 * software binding request. 445 */ 446 void 447 thread_affinity_clear(kthread_id_t t) 448 { 449 register processorid_t binding; 450 451 thread_lock(t); 452 if (--t->t_affinitycnt == 0) { 453 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 454 /* 455 * Adjust disp_max_unbound_pri if necessary. 456 */ 457 disp_adjust_unbound_pri(t); 458 t->t_bound_cpu = NULL; 459 if (t->t_cpu->cpu_part != t->t_cpupart) { 460 force_thread_migrate(t); 461 return; 462 } 463 } else { 464 t->t_bound_cpu = cpu[binding]; 465 /* 466 * Make sure the thread is running on the bound CPU. 467 */ 468 if (t->t_cpu != t->t_bound_cpu) { 469 force_thread_migrate(t); 470 return; /* already dropped lock */ 471 } 472 } 473 } 474 thread_unlock(t); 475 } 476 477 /* 478 * Wrapper for backward compatibility. 479 */ 480 void 481 affinity_clear(void) 482 { 483 thread_affinity_clear(curthread); 484 } 485 486 /* 487 * Weak cpu affinity. Bind to the "current" cpu for short periods 488 * of time during which the thread must not block (but may be preempted). 489 * Use this instead of kpreempt_disable() when it is only "no migration" 490 * rather than "no preemption" semantics that are required - disabling 491 * preemption holds higher priority threads off of cpu and if the 492 * operation that is protected is more than momentary this is not good 493 * for realtime etc. 494 * 495 * Weakly bound threads will not prevent a cpu from being offlined - 496 * we'll only run them on the cpu to which they are weakly bound but 497 * (because they do not block) we'll always be able to move them on to 498 * another cpu at offline time if we give them just a short moment to 499 * run during which they will unbind. To give a cpu a chance of offlining, 500 * however, we require a barrier to weak bindings that may be raised for a 501 * given cpu (offline/move code may set this and then wait a short time for 502 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 503 * 504 * There are few restrictions on the calling context of thread_nomigrate. 505 * The caller must not hold the thread lock. Calls may be nested. 506 * 507 * After weakbinding a thread must not perform actions that may block. 508 * In particular it must not call thread_affinity_set; calling that when 509 * already weakbound is nonsensical anyway. 510 * 511 * If curthread is prevented from migrating for other reasons 512 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 513 * then the weak binding will succeed even if this cpu is the target of an 514 * offline/move request. 515 */ 516 void 517 thread_nomigrate(void) 518 { 519 cpu_t *cp; 520 kthread_id_t t = curthread; 521 522 again: 523 kpreempt_disable(); 524 cp = CPU; 525 526 /* 527 * A highlevel interrupt must not modify t_nomigrate or 528 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 529 * interrupt thread cannot migrate and we can avoid the 530 * thread_lock call below by short-circuiting here. In either 531 * case we can just return since no migration is possible and 532 * the condition will persist (ie, when we test for these again 533 * in thread_allowmigrate they can't have changed). Migration 534 * is also impossible if we're at or above DISP_LEVEL pil. 535 */ 536 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 537 getpil() >= DISP_LEVEL) { 538 kpreempt_enable(); 539 return; 540 } 541 542 /* 543 * We must be consistent with existing weak bindings. Since we 544 * may be interrupted between the increment of t_nomigrate and 545 * the store to t_weakbound_cpu below we cannot assume that 546 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 547 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 548 * always the case. 549 */ 550 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 551 if (!panicstr) 552 panic("thread_nomigrate: binding to %p but already " 553 "bound to %p", (void *)cp, 554 (void *)t->t_weakbound_cpu); 555 } 556 557 /* 558 * At this point we have preemption disabled and we don't yet hold 559 * the thread lock. So it's possible that somebody else could 560 * set t_bind_cpu here and not be able to force us across to the 561 * new cpu (since we have preemption disabled). 562 */ 563 thread_lock(curthread); 564 565 /* 566 * If further weak bindings are being (temporarily) suppressed then 567 * we'll settle for disabling kernel preemption (which assures 568 * no migration provided the thread does not block which it is 569 * not allowed to if using thread_nomigrate). We must remember 570 * this disposition so we can take appropriate action in 571 * thread_allowmigrate. If this is a nested call and the 572 * thread is already weakbound then fall through as normal. 573 * We remember the decision to settle for kpreempt_disable through 574 * negative nesting counting in t_nomigrate. Once a thread has had one 575 * weakbinding request satisfied in this way any further (nested) 576 * requests will continue to be satisfied in the same way, 577 * even if weak bindings have recommenced. 578 */ 579 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 580 --t->t_nomigrate; 581 thread_unlock(curthread); 582 return; /* with kpreempt_disable still active */ 583 } 584 585 /* 586 * We hold thread_lock so t_bind_cpu cannot change. We could, 587 * however, be running on a different cpu to which we are t_bound_cpu 588 * to (as explained above). If we grant the weak binding request 589 * in that case then the dispatcher must favour our weak binding 590 * over our strong (in which case, just as when preemption is 591 * disabled, we can continue to run on a cpu other than the one to 592 * which we are strongbound; the difference in this case is that 593 * this thread can be preempted and so can appear on the dispatch 594 * queues of a cpu other than the one it is strongbound to). 595 * 596 * If the cpu we are running on does not appear to be a current 597 * offline target (we check cpu_inmotion to determine this - since 598 * we don't hold cpu_lock we may not see a recent store to that, 599 * so it's possible that we at times can grant a weak binding to a 600 * cpu that is an offline target, but that one request will not 601 * prevent the offline from succeeding) then we will always grant 602 * the weak binding request. This includes the case above where 603 * we grant a weakbinding not commensurate with our strong binding. 604 * 605 * If our cpu does appear to be an offline target then we're inclined 606 * not to grant the weakbinding request just yet - we'd prefer to 607 * migrate to another cpu and grant the request there. The 608 * exceptions are those cases where going through preemption code 609 * will not result in us changing cpu: 610 * 611 * . interrupts have already bypassed this case (see above) 612 * . we are already weakbound to this cpu (dispatcher code will 613 * always return us to the weakbound cpu) 614 * . preemption was disabled even before we disabled it above 615 * . we are strongbound to this cpu (if we're strongbound to 616 * another and not yet running there the trip through the 617 * dispatcher will move us to the strongbound cpu and we 618 * will grant the weak binding there) 619 */ 620 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 621 t->t_bound_cpu == cp) { 622 /* 623 * Don't be tempted to store to t_weakbound_cpu only on 624 * the first nested bind request - if we're interrupted 625 * after the increment of t_nomigrate and before the 626 * store to t_weakbound_cpu and the interrupt calls 627 * thread_nomigrate then the assertion in thread_allowmigrate 628 * would fail. 629 */ 630 t->t_nomigrate++; 631 t->t_weakbound_cpu = cp; 632 membar_producer(); 633 thread_unlock(curthread); 634 /* 635 * Now that we have dropped the thread_lock another thread 636 * can set our t_weakbound_cpu, and will try to migrate us 637 * to the strongbound cpu (which will not be prevented by 638 * preemption being disabled since we're about to enable 639 * preemption). We have granted the weakbinding to the current 640 * cpu, so again we are in the position that is is is possible 641 * that our weak and strong bindings differ. Again this 642 * is catered for by dispatcher code which will favour our 643 * weak binding. 644 */ 645 kpreempt_enable(); 646 } else { 647 /* 648 * Move to another cpu before granting the request by 649 * forcing this thread through preemption code. When we 650 * get to set{front,back}dq called from CL_PREEMPT() 651 * cpu_choose() will be used to select a cpu to queue 652 * us on - that will see cpu_inmotion and take 653 * steps to avoid returning us to this cpu. 654 */ 655 cp->cpu_kprunrun = 1; 656 thread_unlock(curthread); 657 kpreempt_enable(); /* will call preempt() */ 658 goto again; 659 } 660 } 661 662 void 663 thread_allowmigrate(void) 664 { 665 kthread_id_t t = curthread; 666 667 ASSERT(t->t_weakbound_cpu == CPU || 668 (t->t_nomigrate < 0 && t->t_preempt > 0) || 669 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 670 getpil() >= DISP_LEVEL); 671 672 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 673 getpil() >= DISP_LEVEL) 674 return; 675 676 if (t->t_nomigrate < 0) { 677 /* 678 * This thread was granted "weak binding" in the 679 * stronger form of kernel preemption disabling. 680 * Undo a level of nesting for both t_nomigrate 681 * and t_preempt. 682 */ 683 ++t->t_nomigrate; 684 kpreempt_enable(); 685 } else if (--t->t_nomigrate == 0) { 686 /* 687 * Time to drop the weak binding. We need to cater 688 * for the case where we're weakbound to a different 689 * cpu than that to which we're strongbound (a very 690 * temporary arrangement that must only persist until 691 * weak binding drops). We don't acquire thread_lock 692 * here so even as this code executes t_bound_cpu 693 * may be changing. So we disable preemption and 694 * a) in the case that t_bound_cpu changes while we 695 * have preemption disabled kprunrun will be set 696 * asynchronously, and b) if before disabling 697 * preemption we were already on a different cpu to 698 * our t_bound_cpu then we set kprunrun ourselves 699 * to force a trip through the dispatcher when 700 * preemption is enabled. 701 */ 702 kpreempt_disable(); 703 if (t->t_bound_cpu && 704 t->t_weakbound_cpu != t->t_bound_cpu) 705 CPU->cpu_kprunrun = 1; 706 t->t_weakbound_cpu = NULL; 707 membar_producer(); 708 kpreempt_enable(); 709 } 710 } 711 712 /* 713 * weakbinding_stop can be used to temporarily cause weakbindings made 714 * with thread_nomigrate to be satisfied through the stronger action of 715 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 716 */ 717 718 void 719 weakbinding_stop(void) 720 { 721 ASSERT(MUTEX_HELD(&cpu_lock)); 722 weakbindingbarrier = 1; 723 membar_producer(); /* make visible before subsequent thread_lock */ 724 } 725 726 void 727 weakbinding_start(void) 728 { 729 ASSERT(MUTEX_HELD(&cpu_lock)); 730 weakbindingbarrier = 0; 731 } 732 733 void 734 null_xcall(void) 735 { 736 } 737 738 /* 739 * This routine is called to place the CPUs in a safe place so that 740 * one of them can be taken off line or placed on line. What we are 741 * trying to do here is prevent a thread from traversing the list 742 * of active CPUs while we are changing it or from getting placed on 743 * the run queue of a CPU that has just gone off line. We do this by 744 * creating a thread with the highest possible prio for each CPU and 745 * having it call this routine. The advantage of this method is that 746 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 747 * This makes disp faster at the expense of making p_online() slower 748 * which is a good trade off. 749 */ 750 static void 751 cpu_pause(int index) 752 { 753 int s; 754 struct _cpu_pause_info *cpi = &cpu_pause_info; 755 volatile char *safe = &safe_list[index]; 756 long lindex = index; 757 758 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 759 760 while (*safe != PAUSE_DIE) { 761 *safe = PAUSE_READY; 762 membar_enter(); /* make sure stores are flushed */ 763 sema_v(&cpi->cp_sem); /* signal requesting thread */ 764 765 /* 766 * Wait here until all pause threads are running. That 767 * indicates that it's safe to do the spl. Until 768 * cpu_pause_info.cp_go is set, we don't want to spl 769 * because that might block clock interrupts needed 770 * to preempt threads on other CPUs. 771 */ 772 while (cpi->cp_go == 0) 773 ; 774 /* 775 * Even though we are at the highest disp prio, we need 776 * to block out all interrupts below LOCK_LEVEL so that 777 * an intr doesn't come in, wake up a thread, and call 778 * setbackdq/setfrontdq. 779 */ 780 s = splhigh(); 781 /* 782 * if cpu_pause_func() has been set then call it using 783 * index as the argument, currently only used by 784 * cpr_suspend_cpus(). This function is used as the 785 * code to execute on the "paused" cpu's when a machine 786 * comes out of a sleep state and CPU's were powered off. 787 * (could also be used for hotplugging CPU's). 788 */ 789 if (cpu_pause_func != NULL) 790 (*cpu_pause_func)((void *)lindex); 791 792 mach_cpu_pause(safe); 793 794 splx(s); 795 /* 796 * Waiting is at an end. Switch out of cpu_pause 797 * loop and resume useful work. 798 */ 799 swtch(); 800 } 801 802 mutex_enter(&pause_free_mutex); 803 *safe = PAUSE_DEAD; 804 cv_broadcast(&pause_free_cv); 805 mutex_exit(&pause_free_mutex); 806 } 807 808 /* 809 * Allow the cpus to start running again. 810 */ 811 void 812 start_cpus() 813 { 814 int i; 815 816 ASSERT(MUTEX_HELD(&cpu_lock)); 817 ASSERT(cpu_pause_info.cp_paused); 818 cpu_pause_info.cp_paused = NULL; 819 for (i = 0; i < NCPU; i++) 820 safe_list[i] = PAUSE_IDLE; 821 membar_enter(); /* make sure stores are flushed */ 822 affinity_clear(); 823 splx(cpu_pause_info.cp_spl); 824 kpreempt_enable(); 825 } 826 827 /* 828 * Allocate a pause thread for a CPU. 829 */ 830 static void 831 cpu_pause_alloc(cpu_t *cp) 832 { 833 kthread_id_t t; 834 long cpun = cp->cpu_id; 835 836 /* 837 * Note, v.v_nglobpris will not change value as long as I hold 838 * cpu_lock. 839 */ 840 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 841 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 842 thread_lock(t); 843 t->t_bound_cpu = cp; 844 t->t_disp_queue = cp->cpu_disp; 845 t->t_affinitycnt = 1; 846 t->t_preempt = 1; 847 thread_unlock(t); 848 cp->cpu_pause_thread = t; 849 /* 850 * Registering a thread in the callback table is usually done 851 * in the initialization code of the thread. In this 852 * case, we do it right after thread creation because the 853 * thread itself may never run, and we need to register the 854 * fact that it is safe for cpr suspend. 855 */ 856 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 857 } 858 859 /* 860 * Free a pause thread for a CPU. 861 */ 862 static void 863 cpu_pause_free(cpu_t *cp) 864 { 865 kthread_id_t t; 866 int cpun = cp->cpu_id; 867 868 ASSERT(MUTEX_HELD(&cpu_lock)); 869 /* 870 * We have to get the thread and tell him to die. 871 */ 872 if ((t = cp->cpu_pause_thread) == NULL) { 873 ASSERT(safe_list[cpun] == PAUSE_IDLE); 874 return; 875 } 876 thread_lock(t); 877 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 878 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 879 t->t_pri = v.v_nglobpris - 1; 880 ASSERT(safe_list[cpun] == PAUSE_IDLE); 881 safe_list[cpun] = PAUSE_DIE; 882 THREAD_TRANSITION(t); 883 setbackdq(t); 884 thread_unlock_nopreempt(t); 885 886 /* 887 * If we don't wait for the thread to actually die, it may try to 888 * run on the wrong cpu as part of an actual call to pause_cpus(). 889 */ 890 mutex_enter(&pause_free_mutex); 891 while (safe_list[cpun] != PAUSE_DEAD) { 892 cv_wait(&pause_free_cv, &pause_free_mutex); 893 } 894 mutex_exit(&pause_free_mutex); 895 safe_list[cpun] = PAUSE_IDLE; 896 897 cp->cpu_pause_thread = NULL; 898 } 899 900 /* 901 * Initialize basic structures for pausing CPUs. 902 */ 903 void 904 cpu_pause_init() 905 { 906 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 907 /* 908 * Create initial CPU pause thread. 909 */ 910 cpu_pause_alloc(CPU); 911 } 912 913 /* 914 * Start the threads used to pause another CPU. 915 */ 916 static int 917 cpu_pause_start(processorid_t cpu_id) 918 { 919 int i; 920 int cpu_count = 0; 921 922 for (i = 0; i < NCPU; i++) { 923 cpu_t *cp; 924 kthread_id_t t; 925 926 cp = cpu[i]; 927 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 928 safe_list[i] = PAUSE_WAIT; 929 continue; 930 } 931 932 /* 933 * Skip CPU if it is quiesced or not yet started. 934 */ 935 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 936 safe_list[i] = PAUSE_WAIT; 937 continue; 938 } 939 940 /* 941 * Start this CPU's pause thread. 942 */ 943 t = cp->cpu_pause_thread; 944 thread_lock(t); 945 /* 946 * Reset the priority, since nglobpris may have 947 * changed since the thread was created, if someone 948 * has loaded the RT (or some other) scheduling 949 * class. 950 */ 951 t->t_pri = v.v_nglobpris - 1; 952 THREAD_TRANSITION(t); 953 setbackdq(t); 954 thread_unlock_nopreempt(t); 955 ++cpu_count; 956 } 957 return (cpu_count); 958 } 959 960 961 /* 962 * Pause all of the CPUs except the one we are on by creating a high 963 * priority thread bound to those CPUs. 964 * 965 * Note that one must be extremely careful regarding code 966 * executed while CPUs are paused. Since a CPU may be paused 967 * while a thread scheduling on that CPU is holding an adaptive 968 * lock, code executed with CPUs paused must not acquire adaptive 969 * (or low-level spin) locks. Also, such code must not block, 970 * since the thread that is supposed to initiate the wakeup may 971 * never run. 972 * 973 * With a few exceptions, the restrictions on code executed with CPUs 974 * paused match those for code executed at high-level interrupt 975 * context. 976 */ 977 void 978 pause_cpus(cpu_t *off_cp) 979 { 980 processorid_t cpu_id; 981 int i; 982 struct _cpu_pause_info *cpi = &cpu_pause_info; 983 984 ASSERT(MUTEX_HELD(&cpu_lock)); 985 ASSERT(cpi->cp_paused == NULL); 986 cpi->cp_count = 0; 987 cpi->cp_go = 0; 988 for (i = 0; i < NCPU; i++) 989 safe_list[i] = PAUSE_IDLE; 990 kpreempt_disable(); 991 992 /* 993 * If running on the cpu that is going offline, get off it. 994 * This is so that it won't be necessary to rechoose a CPU 995 * when done. 996 */ 997 if (CPU == off_cp) 998 cpu_id = off_cp->cpu_next_part->cpu_id; 999 else 1000 cpu_id = CPU->cpu_id; 1001 affinity_set(cpu_id); 1002 1003 /* 1004 * Start the pause threads and record how many were started 1005 */ 1006 cpi->cp_count = cpu_pause_start(cpu_id); 1007 1008 /* 1009 * Now wait for all CPUs to be running the pause thread. 1010 */ 1011 while (cpi->cp_count > 0) { 1012 /* 1013 * Spin reading the count without grabbing the disp 1014 * lock to make sure we don't prevent the pause 1015 * threads from getting the lock. 1016 */ 1017 while (sema_held(&cpi->cp_sem)) 1018 ; 1019 if (sema_tryp(&cpi->cp_sem)) 1020 --cpi->cp_count; 1021 } 1022 cpi->cp_go = 1; /* all have reached cpu_pause */ 1023 1024 /* 1025 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1026 * to PAUSE_WAIT.) 1027 */ 1028 for (i = 0; i < NCPU; i++) { 1029 while (safe_list[i] != PAUSE_WAIT) 1030 ; 1031 } 1032 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1033 cpi->cp_paused = curthread; 1034 } 1035 1036 /* 1037 * Check whether the current thread has CPUs paused 1038 */ 1039 int 1040 cpus_paused(void) 1041 { 1042 if (cpu_pause_info.cp_paused != NULL) { 1043 ASSERT(cpu_pause_info.cp_paused == curthread); 1044 return (1); 1045 } 1046 return (0); 1047 } 1048 1049 static cpu_t * 1050 cpu_get_all(processorid_t cpun) 1051 { 1052 ASSERT(MUTEX_HELD(&cpu_lock)); 1053 1054 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1055 return (NULL); 1056 return (cpu[cpun]); 1057 } 1058 1059 /* 1060 * Check whether cpun is a valid processor id and whether it should be 1061 * visible from the current zone. If it is, return a pointer to the 1062 * associated CPU structure. 1063 */ 1064 cpu_t * 1065 cpu_get(processorid_t cpun) 1066 { 1067 cpu_t *c; 1068 1069 ASSERT(MUTEX_HELD(&cpu_lock)); 1070 c = cpu_get_all(cpun); 1071 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1072 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1073 return (NULL); 1074 return (c); 1075 } 1076 1077 /* 1078 * The following functions should be used to check CPU states in the kernel. 1079 * They should be invoked with cpu_lock held. Kernel subsystems interested 1080 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1081 * states. Those are for user-land (and system call) use only. 1082 */ 1083 1084 /* 1085 * Determine whether the CPU is online and handling interrupts. 1086 */ 1087 int 1088 cpu_is_online(cpu_t *cpu) 1089 { 1090 ASSERT(MUTEX_HELD(&cpu_lock)); 1091 return (cpu_flagged_online(cpu->cpu_flags)); 1092 } 1093 1094 /* 1095 * Determine whether the CPU is offline (this includes spare and faulted). 1096 */ 1097 int 1098 cpu_is_offline(cpu_t *cpu) 1099 { 1100 ASSERT(MUTEX_HELD(&cpu_lock)); 1101 return (cpu_flagged_offline(cpu->cpu_flags)); 1102 } 1103 1104 /* 1105 * Determine whether the CPU is powered off. 1106 */ 1107 int 1108 cpu_is_poweredoff(cpu_t *cpu) 1109 { 1110 ASSERT(MUTEX_HELD(&cpu_lock)); 1111 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1112 } 1113 1114 /* 1115 * Determine whether the CPU is handling interrupts. 1116 */ 1117 int 1118 cpu_is_nointr(cpu_t *cpu) 1119 { 1120 ASSERT(MUTEX_HELD(&cpu_lock)); 1121 return (cpu_flagged_nointr(cpu->cpu_flags)); 1122 } 1123 1124 /* 1125 * Determine whether the CPU is active (scheduling threads). 1126 */ 1127 int 1128 cpu_is_active(cpu_t *cpu) 1129 { 1130 ASSERT(MUTEX_HELD(&cpu_lock)); 1131 return (cpu_flagged_active(cpu->cpu_flags)); 1132 } 1133 1134 /* 1135 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1136 */ 1137 int 1138 cpu_flagged_online(cpu_flag_t cpu_flags) 1139 { 1140 return (cpu_flagged_active(cpu_flags) && 1141 (cpu_flags & CPU_ENABLE)); 1142 } 1143 1144 int 1145 cpu_flagged_offline(cpu_flag_t cpu_flags) 1146 { 1147 return (((cpu_flags & CPU_POWEROFF) == 0) && 1148 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1149 } 1150 1151 int 1152 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1153 { 1154 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1155 } 1156 1157 int 1158 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1159 { 1160 return (cpu_flagged_active(cpu_flags) && 1161 (cpu_flags & CPU_ENABLE) == 0); 1162 } 1163 1164 int 1165 cpu_flagged_active(cpu_flag_t cpu_flags) 1166 { 1167 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1168 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1169 } 1170 1171 /* 1172 * Bring the indicated CPU online. 1173 */ 1174 int 1175 cpu_online(cpu_t *cp) 1176 { 1177 int error = 0; 1178 1179 /* 1180 * Handle on-line request. 1181 * This code must put the new CPU on the active list before 1182 * starting it because it will not be paused, and will start 1183 * using the active list immediately. The real start occurs 1184 * when the CPU_QUIESCED flag is turned off. 1185 */ 1186 1187 ASSERT(MUTEX_HELD(&cpu_lock)); 1188 1189 /* 1190 * Put all the cpus into a known safe place. 1191 * No mutexes can be entered while CPUs are paused. 1192 */ 1193 error = mp_cpu_start(cp); /* arch-dep hook */ 1194 if (error == 0) { 1195 pg_cpupart_in(cp, cp->cpu_part); 1196 pause_cpus(NULL); 1197 cpu_add_active_internal(cp); 1198 if (cp->cpu_flags & CPU_FAULTED) { 1199 cp->cpu_flags &= ~CPU_FAULTED; 1200 mp_cpu_faulted_exit(cp); 1201 } 1202 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1203 CPU_SPARE); 1204 start_cpus(); 1205 cpu_stats_kstat_create(cp); 1206 cpu_create_intrstat(cp); 1207 lgrp_kstat_create(cp); 1208 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1209 cpu_intr_enable(cp); /* arch-dep hook */ 1210 cpu_set_state(cp); 1211 cyclic_online(cp); 1212 /* 1213 * This has to be called only after cyclic_online(). This 1214 * function uses cyclics. 1215 */ 1216 callout_cpu_online(cp); 1217 poke_cpu(cp->cpu_id); 1218 } 1219 1220 return (error); 1221 } 1222 1223 /* 1224 * Take the indicated CPU offline. 1225 */ 1226 int 1227 cpu_offline(cpu_t *cp, int flags) 1228 { 1229 cpupart_t *pp; 1230 int error = 0; 1231 cpu_t *ncp; 1232 int intr_enable; 1233 int cyclic_off = 0; 1234 int callout_off = 0; 1235 int loop_count; 1236 int no_quiesce = 0; 1237 int (*bound_func)(struct cpu *, int); 1238 kthread_t *t; 1239 lpl_t *cpu_lpl; 1240 proc_t *p; 1241 int lgrp_diff_lpl; 1242 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0; 1243 1244 ASSERT(MUTEX_HELD(&cpu_lock)); 1245 1246 /* 1247 * If we're going from faulted or spare to offline, just 1248 * clear these flags and update CPU state. 1249 */ 1250 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1251 if (cp->cpu_flags & CPU_FAULTED) { 1252 cp->cpu_flags &= ~CPU_FAULTED; 1253 mp_cpu_faulted_exit(cp); 1254 } 1255 cp->cpu_flags &= ~CPU_SPARE; 1256 cpu_set_state(cp); 1257 return (0); 1258 } 1259 1260 /* 1261 * Handle off-line request. 1262 */ 1263 pp = cp->cpu_part; 1264 /* 1265 * Don't offline last online CPU in partition 1266 */ 1267 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1268 return (EBUSY); 1269 /* 1270 * Unbind all soft-bound threads bound to our CPU and hard bound threads 1271 * if we were asked to. 1272 */ 1273 error = cpu_unbind(cp->cpu_id, unbind_all_threads); 1274 if (error != 0) 1275 return (error); 1276 /* 1277 * We shouldn't be bound to this CPU ourselves. 1278 */ 1279 if (curthread->t_bound_cpu == cp) 1280 return (EBUSY); 1281 1282 /* 1283 * Tell interested parties that this CPU is going offline. 1284 */ 1285 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1286 1287 /* 1288 * Tell the PG subsystem that the CPU is leaving the partition 1289 */ 1290 pg_cpupart_out(cp, pp); 1291 1292 /* 1293 * Take the CPU out of interrupt participation so we won't find 1294 * bound kernel threads. If the architecture cannot completely 1295 * shut off interrupts on the CPU, don't quiesce it, but don't 1296 * run anything but interrupt thread... this is indicated by 1297 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1298 * off. 1299 */ 1300 intr_enable = cp->cpu_flags & CPU_ENABLE; 1301 if (intr_enable) 1302 no_quiesce = cpu_intr_disable(cp); 1303 1304 /* 1305 * Record that we are aiming to offline this cpu. This acts as 1306 * a barrier to further weak binding requests in thread_nomigrate 1307 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1308 * lean away from this cpu. Further strong bindings are already 1309 * avoided since we hold cpu_lock. Since threads that are set 1310 * runnable around now and others coming off the target cpu are 1311 * directed away from the target, existing strong and weak bindings 1312 * (especially the latter) to the target cpu stand maximum chance of 1313 * being able to unbind during the short delay loop below (if other 1314 * unbound threads compete they may not see cpu in time to unbind 1315 * even if they would do so immediately. 1316 */ 1317 cpu_inmotion = cp; 1318 membar_enter(); 1319 1320 /* 1321 * Check for kernel threads (strong or weak) bound to that CPU. 1322 * Strongly bound threads may not unbind, and we'll have to return 1323 * EBUSY. Weakly bound threads should always disappear - we've 1324 * stopped more weak binding with cpu_inmotion and existing 1325 * bindings will drain imminently (they may not block). Nonetheless 1326 * we will wait for a fixed period for all bound threads to disappear. 1327 * Inactive interrupt threads are OK (they'll be in TS_FREE 1328 * state). If test finds some bound threads, wait a few ticks 1329 * to give short-lived threads (such as interrupts) chance to 1330 * complete. Note that if no_quiesce is set, i.e. this cpu 1331 * is required to service interrupts, then we take the route 1332 * that permits interrupt threads to be active (or bypassed). 1333 */ 1334 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1335 1336 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1337 if (loop_count >= 5) { 1338 error = EBUSY; /* some threads still bound */ 1339 break; 1340 } 1341 1342 /* 1343 * If some threads were assigned, give them 1344 * a chance to complete or move. 1345 * 1346 * This assumes that the clock_thread is not bound 1347 * to any CPU, because the clock_thread is needed to 1348 * do the delay(hz/100). 1349 * 1350 * Note: we still hold the cpu_lock while waiting for 1351 * the next clock tick. This is OK since it isn't 1352 * needed for anything else except processor_bind(2), 1353 * and system initialization. If we drop the lock, 1354 * we would risk another p_online disabling the last 1355 * processor. 1356 */ 1357 delay(hz/100); 1358 } 1359 1360 if (error == 0 && callout_off == 0) { 1361 callout_cpu_offline(cp); 1362 callout_off = 1; 1363 } 1364 1365 if (error == 0 && cyclic_off == 0) { 1366 if (!cyclic_offline(cp)) { 1367 /* 1368 * We must have bound cyclics... 1369 */ 1370 error = EBUSY; 1371 goto out; 1372 } 1373 cyclic_off = 1; 1374 } 1375 1376 /* 1377 * Call mp_cpu_stop() to perform any special operations 1378 * needed for this machine architecture to offline a CPU. 1379 */ 1380 if (error == 0) 1381 error = mp_cpu_stop(cp); /* arch-dep hook */ 1382 1383 /* 1384 * If that all worked, take the CPU offline and decrement 1385 * ncpus_online. 1386 */ 1387 if (error == 0) { 1388 /* 1389 * Put all the cpus into a known safe place. 1390 * No mutexes can be entered while CPUs are paused. 1391 */ 1392 pause_cpus(cp); 1393 /* 1394 * Repeat the operation, if necessary, to make sure that 1395 * all outstanding low-level interrupts run to completion 1396 * before we set the CPU_QUIESCED flag. It's also possible 1397 * that a thread has weak bound to the cpu despite our raising 1398 * cpu_inmotion above since it may have loaded that 1399 * value before the barrier became visible (this would have 1400 * to be the thread that was on the target cpu at the time 1401 * we raised the barrier). 1402 */ 1403 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1404 (*bound_func)(cp, 1)) { 1405 start_cpus(); 1406 (void) mp_cpu_start(cp); 1407 goto again; 1408 } 1409 ncp = cp->cpu_next_part; 1410 cpu_lpl = cp->cpu_lpl; 1411 ASSERT(cpu_lpl != NULL); 1412 1413 /* 1414 * Remove the CPU from the list of active CPUs. 1415 */ 1416 cpu_remove_active(cp); 1417 1418 /* 1419 * Walk the active process list and look for threads 1420 * whose home lgroup needs to be updated, or 1421 * the last CPU they run on is the one being offlined now. 1422 */ 1423 1424 ASSERT(curthread->t_cpu != cp); 1425 for (p = practive; p != NULL; p = p->p_next) { 1426 1427 t = p->p_tlist; 1428 1429 if (t == NULL) 1430 continue; 1431 1432 lgrp_diff_lpl = 0; 1433 1434 do { 1435 ASSERT(t->t_lpl != NULL); 1436 /* 1437 * Taking last CPU in lpl offline 1438 * Rehome thread if it is in this lpl 1439 * Otherwise, update the count of how many 1440 * threads are in this CPU's lgroup but have 1441 * a different lpl. 1442 */ 1443 1444 if (cpu_lpl->lpl_ncpu == 0) { 1445 if (t->t_lpl == cpu_lpl) 1446 lgrp_move_thread(t, 1447 lgrp_choose(t, 1448 t->t_cpupart), 0); 1449 else if (t->t_lpl->lpl_lgrpid == 1450 cpu_lpl->lpl_lgrpid) 1451 lgrp_diff_lpl++; 1452 } 1453 ASSERT(t->t_lpl->lpl_ncpu > 0); 1454 1455 /* 1456 * Update CPU last ran on if it was this CPU 1457 */ 1458 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1459 t->t_cpu = disp_lowpri_cpu(ncp, 1460 t->t_lpl, t->t_pri, NULL); 1461 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1462 t->t_weakbound_cpu == cp); 1463 1464 t = t->t_forw; 1465 } while (t != p->p_tlist); 1466 1467 /* 1468 * Didn't find any threads in the same lgroup as this 1469 * CPU with a different lpl, so remove the lgroup from 1470 * the process lgroup bitmask. 1471 */ 1472 1473 if (lgrp_diff_lpl == 0) 1474 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1475 } 1476 1477 /* 1478 * Walk thread list looking for threads that need to be 1479 * rehomed, since there are some threads that are not in 1480 * their process's p_tlist. 1481 */ 1482 1483 t = curthread; 1484 do { 1485 ASSERT(t != NULL && t->t_lpl != NULL); 1486 1487 /* 1488 * Rehome threads with same lpl as this CPU when this 1489 * is the last CPU in the lpl. 1490 */ 1491 1492 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1493 lgrp_move_thread(t, 1494 lgrp_choose(t, t->t_cpupart), 1); 1495 1496 ASSERT(t->t_lpl->lpl_ncpu > 0); 1497 1498 /* 1499 * Update CPU last ran on if it was this CPU 1500 */ 1501 1502 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1503 t->t_cpu = disp_lowpri_cpu(ncp, 1504 t->t_lpl, t->t_pri, NULL); 1505 } 1506 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1507 t->t_weakbound_cpu == cp); 1508 t = t->t_next; 1509 1510 } while (t != curthread); 1511 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1512 cp->cpu_flags |= CPU_OFFLINE; 1513 disp_cpu_inactive(cp); 1514 if (!no_quiesce) 1515 cp->cpu_flags |= CPU_QUIESCED; 1516 ncpus_online--; 1517 cpu_set_state(cp); 1518 cpu_inmotion = NULL; 1519 start_cpus(); 1520 cpu_stats_kstat_destroy(cp); 1521 cpu_delete_intrstat(cp); 1522 lgrp_kstat_destroy(cp); 1523 } 1524 1525 out: 1526 cpu_inmotion = NULL; 1527 1528 /* 1529 * If we failed, re-enable interrupts. 1530 * Do this even if cpu_intr_disable returned an error, because 1531 * it may have partially disabled interrupts. 1532 */ 1533 if (error && intr_enable) 1534 cpu_intr_enable(cp); 1535 1536 /* 1537 * If we failed, but managed to offline the cyclic subsystem on this 1538 * CPU, bring it back online. 1539 */ 1540 if (error && cyclic_off) 1541 cyclic_online(cp); 1542 1543 /* 1544 * If we failed, but managed to offline callouts on this CPU, 1545 * bring it back online. 1546 */ 1547 if (error && callout_off) 1548 callout_cpu_online(cp); 1549 1550 /* 1551 * If we failed, tell the PG subsystem that the CPU is back 1552 */ 1553 pg_cpupart_in(cp, pp); 1554 1555 /* 1556 * If we failed, we need to notify everyone that this CPU is back on. 1557 */ 1558 if (error != 0) 1559 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1560 1561 return (error); 1562 } 1563 1564 /* 1565 * Mark the indicated CPU as faulted, taking it offline. 1566 */ 1567 int 1568 cpu_faulted(cpu_t *cp, int flags) 1569 { 1570 int error = 0; 1571 1572 ASSERT(MUTEX_HELD(&cpu_lock)); 1573 ASSERT(!cpu_is_poweredoff(cp)); 1574 1575 if (cpu_is_offline(cp)) { 1576 cp->cpu_flags &= ~CPU_SPARE; 1577 cp->cpu_flags |= CPU_FAULTED; 1578 mp_cpu_faulted_enter(cp); 1579 cpu_set_state(cp); 1580 return (0); 1581 } 1582 1583 if ((error = cpu_offline(cp, flags)) == 0) { 1584 cp->cpu_flags |= CPU_FAULTED; 1585 mp_cpu_faulted_enter(cp); 1586 cpu_set_state(cp); 1587 } 1588 1589 return (error); 1590 } 1591 1592 /* 1593 * Mark the indicated CPU as a spare, taking it offline. 1594 */ 1595 int 1596 cpu_spare(cpu_t *cp, int flags) 1597 { 1598 int error = 0; 1599 1600 ASSERT(MUTEX_HELD(&cpu_lock)); 1601 ASSERT(!cpu_is_poweredoff(cp)); 1602 1603 if (cpu_is_offline(cp)) { 1604 if (cp->cpu_flags & CPU_FAULTED) { 1605 cp->cpu_flags &= ~CPU_FAULTED; 1606 mp_cpu_faulted_exit(cp); 1607 } 1608 cp->cpu_flags |= CPU_SPARE; 1609 cpu_set_state(cp); 1610 return (0); 1611 } 1612 1613 if ((error = cpu_offline(cp, flags)) == 0) { 1614 cp->cpu_flags |= CPU_SPARE; 1615 cpu_set_state(cp); 1616 } 1617 1618 return (error); 1619 } 1620 1621 /* 1622 * Take the indicated CPU from poweroff to offline. 1623 */ 1624 int 1625 cpu_poweron(cpu_t *cp) 1626 { 1627 int error = ENOTSUP; 1628 1629 ASSERT(MUTEX_HELD(&cpu_lock)); 1630 ASSERT(cpu_is_poweredoff(cp)); 1631 1632 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1633 if (error == 0) 1634 cpu_set_state(cp); 1635 1636 return (error); 1637 } 1638 1639 /* 1640 * Take the indicated CPU from any inactive state to powered off. 1641 */ 1642 int 1643 cpu_poweroff(cpu_t *cp) 1644 { 1645 int error = ENOTSUP; 1646 1647 ASSERT(MUTEX_HELD(&cpu_lock)); 1648 ASSERT(cpu_is_offline(cp)); 1649 1650 if (!(cp->cpu_flags & CPU_QUIESCED)) 1651 return (EBUSY); /* not completely idle */ 1652 1653 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1654 if (error == 0) 1655 cpu_set_state(cp); 1656 1657 return (error); 1658 } 1659 1660 /* 1661 * Initialize the Sequential CPU id lookup table 1662 */ 1663 void 1664 cpu_seq_tbl_init() 1665 { 1666 cpu_t **tbl; 1667 1668 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP); 1669 tbl[0] = CPU; 1670 1671 cpu_seq = tbl; 1672 } 1673 1674 /* 1675 * Initialize the CPU lists for the first CPU. 1676 */ 1677 void 1678 cpu_list_init(cpu_t *cp) 1679 { 1680 cp->cpu_next = cp; 1681 cp->cpu_prev = cp; 1682 cpu_list = cp; 1683 clock_cpu_list = cp; 1684 1685 cp->cpu_next_onln = cp; 1686 cp->cpu_prev_onln = cp; 1687 cpu_active = cp; 1688 1689 cp->cpu_seqid = 0; 1690 CPUSET_ADD(cpu_seqid_inuse, 0); 1691 1692 /* 1693 * Bootstrap cpu_seq using cpu_list 1694 * The cpu_seq[] table will be dynamically allocated 1695 * when kmem later becomes available (but before going MP) 1696 */ 1697 cpu_seq = &cpu_list; 1698 1699 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1700 cp_default.cp_cpulist = cp; 1701 cp_default.cp_ncpus = 1; 1702 cp->cpu_next_part = cp; 1703 cp->cpu_prev_part = cp; 1704 cp->cpu_part = &cp_default; 1705 1706 CPUSET_ADD(cpu_available, cp->cpu_id); 1707 } 1708 1709 /* 1710 * Insert a CPU into the list of available CPUs. 1711 */ 1712 void 1713 cpu_add_unit(cpu_t *cp) 1714 { 1715 int seqid; 1716 1717 ASSERT(MUTEX_HELD(&cpu_lock)); 1718 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1719 1720 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1721 1722 /* 1723 * Note: most users of the cpu_list will grab the 1724 * cpu_lock to insure that it isn't modified. However, 1725 * certain users can't or won't do that. To allow this 1726 * we pause the other cpus. Users who walk the list 1727 * without cpu_lock, must disable kernel preemption 1728 * to insure that the list isn't modified underneath 1729 * them. Also, any cached pointers to cpu structures 1730 * must be revalidated by checking to see if the 1731 * cpu_next pointer points to itself. This check must 1732 * be done with the cpu_lock held or kernel preemption 1733 * disabled. This check relies upon the fact that 1734 * old cpu structures are not free'ed or cleared after 1735 * then are removed from the cpu_list. 1736 * 1737 * Note that the clock code walks the cpu list dereferencing 1738 * the cpu_part pointer, so we need to initialize it before 1739 * adding the cpu to the list. 1740 */ 1741 cp->cpu_part = &cp_default; 1742 (void) pause_cpus(NULL); 1743 cp->cpu_next = cpu_list; 1744 cp->cpu_prev = cpu_list->cpu_prev; 1745 cpu_list->cpu_prev->cpu_next = cp; 1746 cpu_list->cpu_prev = cp; 1747 start_cpus(); 1748 1749 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1750 continue; 1751 CPUSET_ADD(cpu_seqid_inuse, seqid); 1752 cp->cpu_seqid = seqid; 1753 ASSERT(ncpus < max_ncpus); 1754 ncpus++; 1755 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1756 cpu[cp->cpu_id] = cp; 1757 CPUSET_ADD(cpu_available, cp->cpu_id); 1758 cpu_seq[cp->cpu_seqid] = cp; 1759 1760 /* 1761 * allocate a pause thread for this CPU. 1762 */ 1763 cpu_pause_alloc(cp); 1764 1765 /* 1766 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1767 * link them into a list of just that CPU. 1768 * This is so that disp_lowpri_cpu will work for thread_create in 1769 * pause_cpus() when called from the startup thread in a new CPU. 1770 */ 1771 cp->cpu_next_onln = cp; 1772 cp->cpu_prev_onln = cp; 1773 cpu_info_kstat_create(cp); 1774 cp->cpu_next_part = cp; 1775 cp->cpu_prev_part = cp; 1776 1777 init_cpu_mstate(cp, CMS_SYSTEM); 1778 1779 pool_pset_mod = gethrtime(); 1780 } 1781 1782 /* 1783 * Do the opposite of cpu_add_unit(). 1784 */ 1785 void 1786 cpu_del_unit(int cpuid) 1787 { 1788 struct cpu *cp, *cpnext; 1789 1790 ASSERT(MUTEX_HELD(&cpu_lock)); 1791 cp = cpu[cpuid]; 1792 ASSERT(cp != NULL); 1793 1794 ASSERT(cp->cpu_next_onln == cp); 1795 ASSERT(cp->cpu_prev_onln == cp); 1796 ASSERT(cp->cpu_next_part == cp); 1797 ASSERT(cp->cpu_prev_part == cp); 1798 1799 /* 1800 * Tear down the CPU's physical ID cache, and update any 1801 * processor groups 1802 */ 1803 pg_cpu_fini(cp); 1804 pghw_physid_destroy(cp); 1805 1806 /* 1807 * Destroy kstat stuff. 1808 */ 1809 cpu_info_kstat_destroy(cp); 1810 term_cpu_mstate(cp); 1811 /* 1812 * Free up pause thread. 1813 */ 1814 cpu_pause_free(cp); 1815 CPUSET_DEL(cpu_available, cp->cpu_id); 1816 cpu[cp->cpu_id] = NULL; 1817 cpu_seq[cp->cpu_seqid] = NULL; 1818 1819 /* 1820 * The clock thread and mutex_vector_enter cannot hold the 1821 * cpu_lock while traversing the cpu list, therefore we pause 1822 * all other threads by pausing the other cpus. These, and any 1823 * other routines holding cpu pointers while possibly sleeping 1824 * must be sure to call kpreempt_disable before processing the 1825 * list and be sure to check that the cpu has not been deleted 1826 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1827 * to keep the deleted cpu structure around. 1828 * 1829 * Note that this MUST be done AFTER cpu_available 1830 * has been updated so that we don't waste time 1831 * trying to pause the cpu we're trying to delete. 1832 */ 1833 (void) pause_cpus(NULL); 1834 1835 cpnext = cp->cpu_next; 1836 cp->cpu_prev->cpu_next = cp->cpu_next; 1837 cp->cpu_next->cpu_prev = cp->cpu_prev; 1838 if (cp == cpu_list) 1839 cpu_list = cpnext; 1840 1841 /* 1842 * Signals that the cpu has been deleted (see above). 1843 */ 1844 cp->cpu_next = NULL; 1845 cp->cpu_prev = NULL; 1846 1847 start_cpus(); 1848 1849 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1850 ncpus--; 1851 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1852 1853 pool_pset_mod = gethrtime(); 1854 } 1855 1856 /* 1857 * Add a CPU to the list of active CPUs. 1858 * This routine must not get any locks, because other CPUs are paused. 1859 */ 1860 static void 1861 cpu_add_active_internal(cpu_t *cp) 1862 { 1863 cpupart_t *pp = cp->cpu_part; 1864 1865 ASSERT(MUTEX_HELD(&cpu_lock)); 1866 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1867 1868 ncpus_online++; 1869 cpu_set_state(cp); 1870 cp->cpu_next_onln = cpu_active; 1871 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1872 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1873 cpu_active->cpu_prev_onln = cp; 1874 1875 if (pp->cp_cpulist) { 1876 cp->cpu_next_part = pp->cp_cpulist; 1877 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1878 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1879 pp->cp_cpulist->cpu_prev_part = cp; 1880 } else { 1881 ASSERT(pp->cp_ncpus == 0); 1882 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1883 } 1884 pp->cp_ncpus++; 1885 if (pp->cp_ncpus == 1) { 1886 cp_numparts_nonempty++; 1887 ASSERT(cp_numparts_nonempty != 0); 1888 } 1889 1890 pg_cpu_active(cp); 1891 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1892 1893 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1894 } 1895 1896 /* 1897 * Add a CPU to the list of active CPUs. 1898 * This is called from machine-dependent layers when a new CPU is started. 1899 */ 1900 void 1901 cpu_add_active(cpu_t *cp) 1902 { 1903 pg_cpupart_in(cp, cp->cpu_part); 1904 1905 pause_cpus(NULL); 1906 cpu_add_active_internal(cp); 1907 start_cpus(); 1908 1909 cpu_stats_kstat_create(cp); 1910 cpu_create_intrstat(cp); 1911 lgrp_kstat_create(cp); 1912 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1913 } 1914 1915 1916 /* 1917 * Remove a CPU from the list of active CPUs. 1918 * This routine must not get any locks, because other CPUs are paused. 1919 */ 1920 /* ARGSUSED */ 1921 static void 1922 cpu_remove_active(cpu_t *cp) 1923 { 1924 cpupart_t *pp = cp->cpu_part; 1925 1926 ASSERT(MUTEX_HELD(&cpu_lock)); 1927 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1928 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1929 1930 pg_cpu_inactive(cp); 1931 1932 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1933 1934 if (cp == clock_cpu_list) 1935 clock_cpu_list = cp->cpu_next_onln; 1936 1937 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1938 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1939 if (cpu_active == cp) { 1940 cpu_active = cp->cpu_next_onln; 1941 } 1942 cp->cpu_next_onln = cp; 1943 cp->cpu_prev_onln = cp; 1944 1945 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1946 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1947 if (pp->cp_cpulist == cp) { 1948 pp->cp_cpulist = cp->cpu_next_part; 1949 ASSERT(pp->cp_cpulist != cp); 1950 } 1951 cp->cpu_next_part = cp; 1952 cp->cpu_prev_part = cp; 1953 pp->cp_ncpus--; 1954 if (pp->cp_ncpus == 0) { 1955 cp_numparts_nonempty--; 1956 ASSERT(cp_numparts_nonempty != 0); 1957 } 1958 } 1959 1960 /* 1961 * Routine used to setup a newly inserted CPU in preparation for starting 1962 * it running code. 1963 */ 1964 int 1965 cpu_configure(int cpuid) 1966 { 1967 int retval = 0; 1968 1969 ASSERT(MUTEX_HELD(&cpu_lock)); 1970 1971 /* 1972 * Some structures are statically allocated based upon 1973 * the maximum number of cpus the system supports. Do not 1974 * try to add anything beyond this limit. 1975 */ 1976 if (cpuid < 0 || cpuid >= NCPU) { 1977 return (EINVAL); 1978 } 1979 1980 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1981 return (EALREADY); 1982 } 1983 1984 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1985 return (retval); 1986 } 1987 1988 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1989 cpu_set_state(cpu[cpuid]); 1990 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1991 if (retval != 0) 1992 (void) mp_cpu_unconfigure(cpuid); 1993 1994 return (retval); 1995 } 1996 1997 /* 1998 * Routine used to cleanup a CPU that has been powered off. This will 1999 * destroy all per-cpu information related to this cpu. 2000 */ 2001 int 2002 cpu_unconfigure(int cpuid) 2003 { 2004 int error; 2005 2006 ASSERT(MUTEX_HELD(&cpu_lock)); 2007 2008 if (cpu[cpuid] == NULL) { 2009 return (ENODEV); 2010 } 2011 2012 if (cpu[cpuid]->cpu_flags == 0) { 2013 return (EALREADY); 2014 } 2015 2016 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 2017 return (EBUSY); 2018 } 2019 2020 if (cpu[cpuid]->cpu_props != NULL) { 2021 (void) nvlist_free(cpu[cpuid]->cpu_props); 2022 cpu[cpuid]->cpu_props = NULL; 2023 } 2024 2025 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 2026 2027 if (error != 0) 2028 return (error); 2029 2030 return (mp_cpu_unconfigure(cpuid)); 2031 } 2032 2033 /* 2034 * Routines for registering and de-registering cpu_setup callback functions. 2035 * 2036 * Caller's context 2037 * These routines must not be called from a driver's attach(9E) or 2038 * detach(9E) entry point. 2039 * 2040 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 2041 */ 2042 2043 /* 2044 * Ideally, these would be dynamically allocated and put into a linked 2045 * list; however that is not feasible because the registration routine 2046 * has to be available before the kmem allocator is working (in fact, 2047 * it is called by the kmem allocator init code). In any case, there 2048 * are quite a few extra entries for future users. 2049 */ 2050 #define NCPU_SETUPS 20 2051 2052 struct cpu_setup { 2053 cpu_setup_func_t *func; 2054 void *arg; 2055 } cpu_setups[NCPU_SETUPS]; 2056 2057 void 2058 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2059 { 2060 int i; 2061 2062 ASSERT(MUTEX_HELD(&cpu_lock)); 2063 2064 for (i = 0; i < NCPU_SETUPS; i++) 2065 if (cpu_setups[i].func == NULL) 2066 break; 2067 if (i >= NCPU_SETUPS) 2068 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2069 2070 cpu_setups[i].func = func; 2071 cpu_setups[i].arg = arg; 2072 } 2073 2074 void 2075 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2076 { 2077 int i; 2078 2079 ASSERT(MUTEX_HELD(&cpu_lock)); 2080 2081 for (i = 0; i < NCPU_SETUPS; i++) 2082 if ((cpu_setups[i].func == func) && 2083 (cpu_setups[i].arg == arg)) 2084 break; 2085 if (i >= NCPU_SETUPS) 2086 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2087 "deregister"); 2088 2089 cpu_setups[i].func = NULL; 2090 cpu_setups[i].arg = 0; 2091 } 2092 2093 /* 2094 * Call any state change hooks for this CPU, ignore any errors. 2095 */ 2096 void 2097 cpu_state_change_notify(int id, cpu_setup_t what) 2098 { 2099 int i; 2100 2101 ASSERT(MUTEX_HELD(&cpu_lock)); 2102 2103 for (i = 0; i < NCPU_SETUPS; i++) { 2104 if (cpu_setups[i].func != NULL) { 2105 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2106 } 2107 } 2108 } 2109 2110 /* 2111 * Call any state change hooks for this CPU, undo it if error found. 2112 */ 2113 static int 2114 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2115 { 2116 int i; 2117 int retval = 0; 2118 2119 ASSERT(MUTEX_HELD(&cpu_lock)); 2120 2121 for (i = 0; i < NCPU_SETUPS; i++) { 2122 if (cpu_setups[i].func != NULL) { 2123 retval = cpu_setups[i].func(what, id, 2124 cpu_setups[i].arg); 2125 if (retval) { 2126 for (i--; i >= 0; i--) { 2127 if (cpu_setups[i].func != NULL) 2128 cpu_setups[i].func(undo, 2129 id, cpu_setups[i].arg); 2130 } 2131 break; 2132 } 2133 } 2134 } 2135 return (retval); 2136 } 2137 2138 /* 2139 * Export information about this CPU via the kstat mechanism. 2140 */ 2141 static struct { 2142 kstat_named_t ci_state; 2143 kstat_named_t ci_state_begin; 2144 kstat_named_t ci_cpu_type; 2145 kstat_named_t ci_fpu_type; 2146 kstat_named_t ci_clock_MHz; 2147 kstat_named_t ci_chip_id; 2148 kstat_named_t ci_implementation; 2149 kstat_named_t ci_brandstr; 2150 kstat_named_t ci_core_id; 2151 kstat_named_t ci_curr_clock_Hz; 2152 kstat_named_t ci_supp_freq_Hz; 2153 #if defined(__sparcv9) 2154 kstat_named_t ci_device_ID; 2155 kstat_named_t ci_cpu_fru; 2156 #endif 2157 #if defined(__x86) 2158 kstat_named_t ci_vendorstr; 2159 kstat_named_t ci_family; 2160 kstat_named_t ci_model; 2161 kstat_named_t ci_step; 2162 kstat_named_t ci_clogid; 2163 kstat_named_t ci_pkg_core_id; 2164 kstat_named_t ci_ncpuperchip; 2165 kstat_named_t ci_ncoreperchip; 2166 #endif 2167 } cpu_info_template = { 2168 { "state", KSTAT_DATA_CHAR }, 2169 { "state_begin", KSTAT_DATA_LONG }, 2170 { "cpu_type", KSTAT_DATA_CHAR }, 2171 { "fpu_type", KSTAT_DATA_CHAR }, 2172 { "clock_MHz", KSTAT_DATA_LONG }, 2173 { "chip_id", KSTAT_DATA_LONG }, 2174 { "implementation", KSTAT_DATA_STRING }, 2175 { "brand", KSTAT_DATA_STRING }, 2176 { "core_id", KSTAT_DATA_LONG }, 2177 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2178 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2179 #if defined(__sparcv9) 2180 { "device_ID", KSTAT_DATA_UINT64 }, 2181 { "cpu_fru", KSTAT_DATA_STRING }, 2182 #endif 2183 #if defined(__x86) 2184 { "vendor_id", KSTAT_DATA_STRING }, 2185 { "family", KSTAT_DATA_INT32 }, 2186 { "model", KSTAT_DATA_INT32 }, 2187 { "stepping", KSTAT_DATA_INT32 }, 2188 { "clog_id", KSTAT_DATA_INT32 }, 2189 { "pkg_core_id", KSTAT_DATA_LONG }, 2190 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2191 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2192 #endif 2193 }; 2194 2195 static kmutex_t cpu_info_template_lock; 2196 2197 static int 2198 cpu_info_kstat_update(kstat_t *ksp, int rw) 2199 { 2200 cpu_t *cp = ksp->ks_private; 2201 const char *pi_state; 2202 2203 if (rw == KSTAT_WRITE) 2204 return (EACCES); 2205 2206 switch (cp->cpu_type_info.pi_state) { 2207 case P_ONLINE: 2208 pi_state = PS_ONLINE; 2209 break; 2210 case P_POWEROFF: 2211 pi_state = PS_POWEROFF; 2212 break; 2213 case P_NOINTR: 2214 pi_state = PS_NOINTR; 2215 break; 2216 case P_FAULTED: 2217 pi_state = PS_FAULTED; 2218 break; 2219 case P_SPARE: 2220 pi_state = PS_SPARE; 2221 break; 2222 case P_OFFLINE: 2223 pi_state = PS_OFFLINE; 2224 break; 2225 default: 2226 pi_state = "unknown"; 2227 } 2228 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2229 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2230 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2231 cp->cpu_type_info.pi_processor_type, 15); 2232 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2233 cp->cpu_type_info.pi_fputypes, 15); 2234 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2235 cpu_info_template.ci_chip_id.value.l = 2236 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2237 kstat_named_setstr(&cpu_info_template.ci_implementation, 2238 cp->cpu_idstr); 2239 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2240 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2241 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2242 cp->cpu_curr_clock; 2243 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2244 cp->cpu_supp_freqs); 2245 #if defined(__sparcv9) 2246 cpu_info_template.ci_device_ID.value.ui64 = 2247 cpunodes[cp->cpu_id].device_id; 2248 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2249 #endif 2250 #if defined(__x86) 2251 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2252 cpuid_getvendorstr(cp)); 2253 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2254 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2255 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2256 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2257 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2258 cpu_info_template.ci_ncoreperchip.value.l = 2259 cpuid_get_ncore_per_chip(cp); 2260 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp); 2261 #endif 2262 2263 return (0); 2264 } 2265 2266 static void 2267 cpu_info_kstat_create(cpu_t *cp) 2268 { 2269 zoneid_t zoneid; 2270 2271 ASSERT(MUTEX_HELD(&cpu_lock)); 2272 2273 if (pool_pset_enabled()) 2274 zoneid = GLOBAL_ZONEID; 2275 else 2276 zoneid = ALL_ZONES; 2277 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2278 NULL, "misc", KSTAT_TYPE_NAMED, 2279 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2280 KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) { 2281 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2282 #if defined(__sparcv9) 2283 cp->cpu_info_kstat->ks_data_size += 2284 strlen(cpu_fru_fmri(cp)) + 1; 2285 #endif 2286 #if defined(__x86) 2287 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2288 #endif 2289 if (cp->cpu_supp_freqs != NULL) 2290 cp->cpu_info_kstat->ks_data_size += 2291 strlen(cp->cpu_supp_freqs) + 1; 2292 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2293 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2294 cp->cpu_info_kstat->ks_private = cp; 2295 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2296 kstat_install(cp->cpu_info_kstat); 2297 } 2298 } 2299 2300 static void 2301 cpu_info_kstat_destroy(cpu_t *cp) 2302 { 2303 ASSERT(MUTEX_HELD(&cpu_lock)); 2304 2305 kstat_delete(cp->cpu_info_kstat); 2306 cp->cpu_info_kstat = NULL; 2307 } 2308 2309 /* 2310 * Create and install kstats for the boot CPU. 2311 */ 2312 void 2313 cpu_kstat_init(cpu_t *cp) 2314 { 2315 mutex_enter(&cpu_lock); 2316 cpu_info_kstat_create(cp); 2317 cpu_stats_kstat_create(cp); 2318 cpu_create_intrstat(cp); 2319 cpu_set_state(cp); 2320 mutex_exit(&cpu_lock); 2321 } 2322 2323 /* 2324 * Make visible to the zone that subset of the cpu information that would be 2325 * initialized when a cpu is configured (but still offline). 2326 */ 2327 void 2328 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2329 { 2330 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2331 2332 ASSERT(MUTEX_HELD(&cpu_lock)); 2333 ASSERT(pool_pset_enabled()); 2334 ASSERT(cp != NULL); 2335 2336 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2337 zone->zone_ncpus++; 2338 ASSERT(zone->zone_ncpus <= ncpus); 2339 } 2340 if (cp->cpu_info_kstat != NULL) 2341 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2342 } 2343 2344 /* 2345 * Make visible to the zone that subset of the cpu information that would be 2346 * initialized when a previously configured cpu is onlined. 2347 */ 2348 void 2349 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2350 { 2351 kstat_t *ksp; 2352 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2353 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2354 processorid_t cpun; 2355 2356 ASSERT(MUTEX_HELD(&cpu_lock)); 2357 ASSERT(pool_pset_enabled()); 2358 ASSERT(cp != NULL); 2359 ASSERT(cpu_is_active(cp)); 2360 2361 cpun = cp->cpu_id; 2362 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2363 zone->zone_ncpus_online++; 2364 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2365 } 2366 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2367 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2368 != NULL) { 2369 kstat_zone_add(ksp, zoneid); 2370 kstat_rele(ksp); 2371 } 2372 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2373 kstat_zone_add(ksp, zoneid); 2374 kstat_rele(ksp); 2375 } 2376 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2377 kstat_zone_add(ksp, zoneid); 2378 kstat_rele(ksp); 2379 } 2380 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2381 NULL) { 2382 kstat_zone_add(ksp, zoneid); 2383 kstat_rele(ksp); 2384 } 2385 } 2386 2387 /* 2388 * Update relevant kstats such that cpu is now visible to processes 2389 * executing in specified zone. 2390 */ 2391 void 2392 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2393 { 2394 cpu_visibility_configure(cp, zone); 2395 if (cpu_is_active(cp)) 2396 cpu_visibility_online(cp, zone); 2397 } 2398 2399 /* 2400 * Make invisible to the zone that subset of the cpu information that would be 2401 * torn down when a previously offlined cpu is unconfigured. 2402 */ 2403 void 2404 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2405 { 2406 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2407 2408 ASSERT(MUTEX_HELD(&cpu_lock)); 2409 ASSERT(pool_pset_enabled()); 2410 ASSERT(cp != NULL); 2411 2412 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2413 ASSERT(zone->zone_ncpus != 0); 2414 zone->zone_ncpus--; 2415 } 2416 if (cp->cpu_info_kstat) 2417 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2418 } 2419 2420 /* 2421 * Make invisible to the zone that subset of the cpu information that would be 2422 * torn down when a cpu is offlined (but still configured). 2423 */ 2424 void 2425 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2426 { 2427 kstat_t *ksp; 2428 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2429 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2430 processorid_t cpun; 2431 2432 ASSERT(MUTEX_HELD(&cpu_lock)); 2433 ASSERT(pool_pset_enabled()); 2434 ASSERT(cp != NULL); 2435 ASSERT(cpu_is_active(cp)); 2436 2437 cpun = cp->cpu_id; 2438 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2439 ASSERT(zone->zone_ncpus_online != 0); 2440 zone->zone_ncpus_online--; 2441 } 2442 2443 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2444 NULL) { 2445 kstat_zone_remove(ksp, zoneid); 2446 kstat_rele(ksp); 2447 } 2448 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2449 kstat_zone_remove(ksp, zoneid); 2450 kstat_rele(ksp); 2451 } 2452 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2453 kstat_zone_remove(ksp, zoneid); 2454 kstat_rele(ksp); 2455 } 2456 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2457 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2458 != NULL) { 2459 kstat_zone_remove(ksp, zoneid); 2460 kstat_rele(ksp); 2461 } 2462 } 2463 2464 /* 2465 * Update relevant kstats such that cpu is no longer visible to processes 2466 * executing in specified zone. 2467 */ 2468 void 2469 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2470 { 2471 if (cpu_is_active(cp)) 2472 cpu_visibility_offline(cp, zone); 2473 cpu_visibility_unconfigure(cp, zone); 2474 } 2475 2476 /* 2477 * Bind a thread to a CPU as requested. 2478 */ 2479 int 2480 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2481 int *error) 2482 { 2483 processorid_t binding; 2484 cpu_t *cp = NULL; 2485 2486 ASSERT(MUTEX_HELD(&cpu_lock)); 2487 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2488 2489 thread_lock(tp); 2490 2491 /* 2492 * Record old binding, but change the obind, which was initialized 2493 * to PBIND_NONE, only if this thread has a binding. This avoids 2494 * reporting PBIND_NONE for a process when some LWPs are bound. 2495 */ 2496 binding = tp->t_bind_cpu; 2497 if (binding != PBIND_NONE) 2498 *obind = binding; /* record old binding */ 2499 2500 switch (bind) { 2501 case PBIND_QUERY: 2502 /* Just return the old binding */ 2503 thread_unlock(tp); 2504 return (0); 2505 2506 case PBIND_QUERY_TYPE: 2507 /* Return the binding type */ 2508 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD; 2509 thread_unlock(tp); 2510 return (0); 2511 2512 case PBIND_SOFT: 2513 /* 2514 * Set soft binding for this thread and return the actual 2515 * binding 2516 */ 2517 TB_CPU_SOFT_SET(tp); 2518 thread_unlock(tp); 2519 return (0); 2520 2521 case PBIND_HARD: 2522 /* 2523 * Set hard binding for this thread and return the actual 2524 * binding 2525 */ 2526 TB_CPU_HARD_SET(tp); 2527 thread_unlock(tp); 2528 return (0); 2529 2530 default: 2531 break; 2532 } 2533 2534 /* 2535 * If this thread/LWP cannot be bound because of permission 2536 * problems, just note that and return success so that the 2537 * other threads/LWPs will be bound. This is the way 2538 * processor_bind() is defined to work. 2539 * 2540 * Binding will get EPERM if the thread is of system class 2541 * or hasprocperm() fails. 2542 */ 2543 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2544 *error = EPERM; 2545 thread_unlock(tp); 2546 return (0); 2547 } 2548 2549 binding = bind; 2550 if (binding != PBIND_NONE) { 2551 cp = cpu_get((processorid_t)binding); 2552 /* 2553 * Make sure binding is valid and is in right partition. 2554 */ 2555 if (cp == NULL || tp->t_cpupart != cp->cpu_part) { 2556 *error = EINVAL; 2557 thread_unlock(tp); 2558 return (0); 2559 } 2560 } 2561 tp->t_bind_cpu = binding; /* set new binding */ 2562 2563 /* 2564 * If there is no system-set reason for affinity, set 2565 * the t_bound_cpu field to reflect the binding. 2566 */ 2567 if (tp->t_affinitycnt == 0) { 2568 if (binding == PBIND_NONE) { 2569 /* 2570 * We may need to adjust disp_max_unbound_pri 2571 * since we're becoming unbound. 2572 */ 2573 disp_adjust_unbound_pri(tp); 2574 2575 tp->t_bound_cpu = NULL; /* set new binding */ 2576 2577 /* 2578 * Move thread to lgroup with strongest affinity 2579 * after unbinding 2580 */ 2581 if (tp->t_lgrp_affinity) 2582 lgrp_move_thread(tp, 2583 lgrp_choose(tp, tp->t_cpupart), 1); 2584 2585 if (tp->t_state == TS_ONPROC && 2586 tp->t_cpu->cpu_part != tp->t_cpupart) 2587 cpu_surrender(tp); 2588 } else { 2589 lpl_t *lpl; 2590 2591 tp->t_bound_cpu = cp; 2592 ASSERT(cp->cpu_lpl != NULL); 2593 2594 /* 2595 * Set home to lgroup with most affinity containing CPU 2596 * that thread is being bound or minimum bounding 2597 * lgroup if no affinities set 2598 */ 2599 if (tp->t_lgrp_affinity) 2600 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2601 LGRP_NONE, B_FALSE); 2602 else 2603 lpl = cp->cpu_lpl; 2604 2605 if (tp->t_lpl != lpl) { 2606 /* can't grab cpu_lock */ 2607 lgrp_move_thread(tp, lpl, 1); 2608 } 2609 2610 /* 2611 * Make the thread switch to the bound CPU. 2612 * If the thread is runnable, we need to 2613 * requeue it even if t_cpu is already set 2614 * to the right CPU, since it may be on a 2615 * kpreempt queue and need to move to a local 2616 * queue. We could check t_disp_queue to 2617 * avoid unnecessary overhead if it's already 2618 * on the right queue, but since this isn't 2619 * a performance-critical operation it doesn't 2620 * seem worth the extra code and complexity. 2621 * 2622 * If the thread is weakbound to the cpu then it will 2623 * resist the new binding request until the weak 2624 * binding drops. The cpu_surrender or requeueing 2625 * below could be skipped in such cases (since it 2626 * will have no effect), but that would require 2627 * thread_allowmigrate to acquire thread_lock so 2628 * we'll take the very occasional hit here instead. 2629 */ 2630 if (tp->t_state == TS_ONPROC) { 2631 cpu_surrender(tp); 2632 } else if (tp->t_state == TS_RUN) { 2633 cpu_t *ocp = tp->t_cpu; 2634 2635 (void) dispdeq(tp); 2636 setbackdq(tp); 2637 /* 2638 * Either on the bound CPU's disp queue now, 2639 * or swapped out or on the swap queue. 2640 */ 2641 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2642 tp->t_weakbound_cpu == ocp || 2643 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2644 != TS_LOAD); 2645 } 2646 } 2647 } 2648 2649 /* 2650 * Our binding has changed; set TP_CHANGEBIND. 2651 */ 2652 tp->t_proc_flag |= TP_CHANGEBIND; 2653 aston(tp); 2654 2655 thread_unlock(tp); 2656 2657 return (0); 2658 } 2659 2660 #if CPUSET_WORDS > 1 2661 2662 /* 2663 * Functions for implementing cpuset operations when a cpuset is more 2664 * than one word. On platforms where a cpuset is a single word these 2665 * are implemented as macros in cpuvar.h. 2666 */ 2667 2668 void 2669 cpuset_all(cpuset_t *s) 2670 { 2671 int i; 2672 2673 for (i = 0; i < CPUSET_WORDS; i++) 2674 s->cpub[i] = ~0UL; 2675 } 2676 2677 void 2678 cpuset_all_but(cpuset_t *s, uint_t cpu) 2679 { 2680 cpuset_all(s); 2681 CPUSET_DEL(*s, cpu); 2682 } 2683 2684 void 2685 cpuset_only(cpuset_t *s, uint_t cpu) 2686 { 2687 CPUSET_ZERO(*s); 2688 CPUSET_ADD(*s, cpu); 2689 } 2690 2691 int 2692 cpuset_isnull(cpuset_t *s) 2693 { 2694 int i; 2695 2696 for (i = 0; i < CPUSET_WORDS; i++) 2697 if (s->cpub[i] != 0) 2698 return (0); 2699 return (1); 2700 } 2701 2702 int 2703 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2704 { 2705 int i; 2706 2707 for (i = 0; i < CPUSET_WORDS; i++) 2708 if (s1->cpub[i] != s2->cpub[i]) 2709 return (0); 2710 return (1); 2711 } 2712 2713 uint_t 2714 cpuset_find(cpuset_t *s) 2715 { 2716 2717 uint_t i; 2718 uint_t cpu = (uint_t)-1; 2719 2720 /* 2721 * Find a cpu in the cpuset 2722 */ 2723 for (i = 0; i < CPUSET_WORDS; i++) { 2724 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2725 if (cpu != (uint_t)-1) { 2726 cpu += i * BT_NBIPUL; 2727 break; 2728 } 2729 } 2730 return (cpu); 2731 } 2732 2733 void 2734 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2735 { 2736 int i, j; 2737 uint_t bit; 2738 2739 /* 2740 * First, find the smallest cpu id in the set. 2741 */ 2742 for (i = 0; i < CPUSET_WORDS; i++) { 2743 if (s->cpub[i] != 0) { 2744 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2745 ASSERT(bit != (uint_t)-1); 2746 *smallestid = bit + (i * BT_NBIPUL); 2747 2748 /* 2749 * Now find the largest cpu id in 2750 * the set and return immediately. 2751 * Done in an inner loop to avoid 2752 * having to break out of the first 2753 * loop. 2754 */ 2755 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2756 if (s->cpub[j] != 0) { 2757 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2758 ASSERT(bit != (uint_t)-1); 2759 *largestid = bit + (j * BT_NBIPUL); 2760 ASSERT(*largestid >= *smallestid); 2761 return; 2762 } 2763 } 2764 2765 /* 2766 * If this code is reached, a 2767 * smallestid was found, but not a 2768 * largestid. The cpuset must have 2769 * been changed during the course 2770 * of this function call. 2771 */ 2772 ASSERT(0); 2773 } 2774 } 2775 *smallestid = *largestid = CPUSET_NOTINSET; 2776 } 2777 2778 #endif /* CPUSET_WORDS */ 2779 2780 /* 2781 * Unbind threads bound to specified CPU. 2782 * 2783 * If `unbind_all_threads' is true, unbind all user threads bound to a given 2784 * CPU. Otherwise unbind all soft-bound user threads. 2785 */ 2786 int 2787 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads) 2788 { 2789 processorid_t obind; 2790 kthread_t *tp; 2791 int ret = 0; 2792 proc_t *pp; 2793 int err, berr = 0; 2794 2795 ASSERT(MUTEX_HELD(&cpu_lock)); 2796 2797 mutex_enter(&pidlock); 2798 for (pp = practive; pp != NULL; pp = pp->p_next) { 2799 mutex_enter(&pp->p_lock); 2800 tp = pp->p_tlist; 2801 /* 2802 * Skip zombies, kernel processes, and processes in 2803 * other zones, if called from a non-global zone. 2804 */ 2805 if (tp == NULL || (pp->p_flag & SSYS) || 2806 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2807 mutex_exit(&pp->p_lock); 2808 continue; 2809 } 2810 do { 2811 if (tp->t_bind_cpu != cpu) 2812 continue; 2813 /* 2814 * Skip threads with hard binding when 2815 * `unbind_all_threads' is not specified. 2816 */ 2817 if (!unbind_all_threads && TB_CPU_IS_HARD(tp)) 2818 continue; 2819 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2820 if (ret == 0) 2821 ret = err; 2822 } while ((tp = tp->t_forw) != pp->p_tlist); 2823 mutex_exit(&pp->p_lock); 2824 } 2825 mutex_exit(&pidlock); 2826 if (ret == 0) 2827 ret = berr; 2828 return (ret); 2829 } 2830 2831 2832 /* 2833 * Destroy all remaining bound threads on a cpu. 2834 */ 2835 void 2836 cpu_destroy_bound_threads(cpu_t *cp) 2837 { 2838 extern id_t syscid; 2839 register kthread_id_t t, tlist, tnext; 2840 2841 /* 2842 * Destroy all remaining bound threads on the cpu. This 2843 * should include both the interrupt threads and the idle thread. 2844 * This requires some care, since we need to traverse the 2845 * thread list with the pidlock mutex locked, but thread_free 2846 * also locks the pidlock mutex. So, we collect the threads 2847 * we're going to reap in a list headed by "tlist", then we 2848 * unlock the pidlock mutex and traverse the tlist list, 2849 * doing thread_free's on the thread's. Simple, n'est pas? 2850 * Also, this depends on thread_free not mucking with the 2851 * t_next and t_prev links of the thread. 2852 */ 2853 2854 if ((t = curthread) != NULL) { 2855 2856 tlist = NULL; 2857 mutex_enter(&pidlock); 2858 do { 2859 tnext = t->t_next; 2860 if (t->t_bound_cpu == cp) { 2861 2862 /* 2863 * We've found a bound thread, carefully unlink 2864 * it out of the thread list, and add it to 2865 * our "tlist". We "know" we don't have to 2866 * worry about unlinking curthread (the thread 2867 * that is executing this code). 2868 */ 2869 t->t_next->t_prev = t->t_prev; 2870 t->t_prev->t_next = t->t_next; 2871 t->t_next = tlist; 2872 tlist = t; 2873 ASSERT(t->t_cid == syscid); 2874 /* wake up anyone blocked in thread_join */ 2875 cv_broadcast(&t->t_joincv); 2876 /* 2877 * t_lwp set by interrupt threads and not 2878 * cleared. 2879 */ 2880 t->t_lwp = NULL; 2881 /* 2882 * Pause and idle threads always have 2883 * t_state set to TS_ONPROC. 2884 */ 2885 t->t_state = TS_FREE; 2886 t->t_prev = NULL; /* Just in case */ 2887 } 2888 2889 } while ((t = tnext) != curthread); 2890 2891 mutex_exit(&pidlock); 2892 2893 mutex_sync(); 2894 for (t = tlist; t != NULL; t = tnext) { 2895 tnext = t->t_next; 2896 thread_free(t); 2897 } 2898 } 2899 } 2900 2901 /* 2902 * Update the cpu_supp_freqs of this cpu. This information is returned 2903 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 2904 * maintain the kstat data size. 2905 */ 2906 void 2907 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2908 { 2909 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2910 const char *lfreqs = clkstr; 2911 boolean_t kstat_exists = B_FALSE; 2912 kstat_t *ksp; 2913 size_t len; 2914 2915 /* 2916 * A NULL pointer means we only support one speed. 2917 */ 2918 if (freqs == NULL) 2919 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2920 cp->cpu_curr_clock); 2921 else 2922 lfreqs = freqs; 2923 2924 /* 2925 * Make sure the frequency doesn't change while a snapshot is 2926 * going on. Of course, we only need to worry about this if 2927 * the kstat exists. 2928 */ 2929 if ((ksp = cp->cpu_info_kstat) != NULL) { 2930 mutex_enter(ksp->ks_lock); 2931 kstat_exists = B_TRUE; 2932 } 2933 2934 /* 2935 * Free any previously allocated string and if the kstat 2936 * already exists, then update its data size. 2937 */ 2938 if (cp->cpu_supp_freqs != NULL) { 2939 len = strlen(cp->cpu_supp_freqs) + 1; 2940 kmem_free(cp->cpu_supp_freqs, len); 2941 if (kstat_exists) 2942 ksp->ks_data_size -= len; 2943 } 2944 2945 /* 2946 * Allocate the new string and set the pointer. 2947 */ 2948 len = strlen(lfreqs) + 1; 2949 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 2950 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 2951 2952 /* 2953 * If the kstat already exists then update the data size and 2954 * free the lock. 2955 */ 2956 if (kstat_exists) { 2957 ksp->ks_data_size += len; 2958 mutex_exit(ksp->ks_lock); 2959 } 2960 } 2961 2962 /* 2963 * processor_info(2) and p_online(2) status support functions 2964 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 2965 * for use in communicating processor state information to userland. Kernel 2966 * subsystems should only be using the cpu_flags value directly. Subsystems 2967 * modifying cpu_flags should record the state change via a call to the 2968 * cpu_set_state(). 2969 */ 2970 2971 /* 2972 * Update the pi_state of this CPU. This function provides the CPU status for 2973 * the information returned by processor_info(2). 2974 */ 2975 void 2976 cpu_set_state(cpu_t *cpu) 2977 { 2978 ASSERT(MUTEX_HELD(&cpu_lock)); 2979 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 2980 cpu->cpu_state_begin = gethrestime_sec(); 2981 pool_cpu_mod = gethrtime(); 2982 } 2983 2984 /* 2985 * Return offline/online/other status for the indicated CPU. Use only for 2986 * communication with user applications; cpu_flags provides the in-kernel 2987 * interface. 2988 */ 2989 int 2990 cpu_get_state(cpu_t *cpu) 2991 { 2992 ASSERT(MUTEX_HELD(&cpu_lock)); 2993 if (cpu->cpu_flags & CPU_POWEROFF) 2994 return (P_POWEROFF); 2995 else if (cpu->cpu_flags & CPU_FAULTED) 2996 return (P_FAULTED); 2997 else if (cpu->cpu_flags & CPU_SPARE) 2998 return (P_SPARE); 2999 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 3000 return (P_OFFLINE); 3001 else if (cpu->cpu_flags & CPU_ENABLE) 3002 return (P_ONLINE); 3003 else 3004 return (P_NOINTR); 3005 } 3006 3007 /* 3008 * Return processor_info(2) state as a string. 3009 */ 3010 const char * 3011 cpu_get_state_str(cpu_t *cpu) 3012 { 3013 const char *string; 3014 3015 switch (cpu_get_state(cpu)) { 3016 case P_ONLINE: 3017 string = PS_ONLINE; 3018 break; 3019 case P_POWEROFF: 3020 string = PS_POWEROFF; 3021 break; 3022 case P_NOINTR: 3023 string = PS_NOINTR; 3024 break; 3025 case P_SPARE: 3026 string = PS_SPARE; 3027 break; 3028 case P_FAULTED: 3029 string = PS_FAULTED; 3030 break; 3031 case P_OFFLINE: 3032 string = PS_OFFLINE; 3033 break; 3034 default: 3035 string = "unknown"; 3036 break; 3037 } 3038 return (string); 3039 } 3040 3041 /* 3042 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 3043 * kstats, respectively. This is done when a CPU is initialized or placed 3044 * online via p_online(2). 3045 */ 3046 static void 3047 cpu_stats_kstat_create(cpu_t *cp) 3048 { 3049 int instance = cp->cpu_id; 3050 char *module = "cpu"; 3051 char *class = "misc"; 3052 kstat_t *ksp; 3053 zoneid_t zoneid; 3054 3055 ASSERT(MUTEX_HELD(&cpu_lock)); 3056 3057 if (pool_pset_enabled()) 3058 zoneid = GLOBAL_ZONEID; 3059 else 3060 zoneid = ALL_ZONES; 3061 /* 3062 * Create named kstats 3063 */ 3064 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 3065 ksp = kstat_create_zone(module, instance, (name), class, \ 3066 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 3067 zoneid); \ 3068 if (ksp != NULL) { \ 3069 ksp->ks_private = cp; \ 3070 ksp->ks_update = (update_func); \ 3071 kstat_install(ksp); \ 3072 } else \ 3073 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 3074 module, instance, (name)); 3075 3076 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 3077 cpu_sys_stats_ks_update); 3078 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 3079 cpu_vm_stats_ks_update); 3080 3081 /* 3082 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 3083 */ 3084 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 3085 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 3086 if (ksp != NULL) { 3087 ksp->ks_update = cpu_stat_ks_update; 3088 ksp->ks_private = cp; 3089 kstat_install(ksp); 3090 } 3091 } 3092 3093 static void 3094 cpu_stats_kstat_destroy(cpu_t *cp) 3095 { 3096 char ks_name[KSTAT_STRLEN]; 3097 3098 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3099 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3100 3101 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3102 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3103 } 3104 3105 static int 3106 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3107 { 3108 cpu_t *cp = (cpu_t *)ksp->ks_private; 3109 struct cpu_sys_stats_ks_data *csskd; 3110 cpu_sys_stats_t *css; 3111 hrtime_t msnsecs[NCMSTATES]; 3112 int i; 3113 3114 if (rw == KSTAT_WRITE) 3115 return (EACCES); 3116 3117 csskd = ksp->ks_data; 3118 css = &cp->cpu_stats.sys; 3119 3120 /* 3121 * Read CPU mstate, but compare with the last values we 3122 * received to make sure that the returned kstats never 3123 * decrease. 3124 */ 3125 3126 get_cpu_mstate(cp, msnsecs); 3127 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3128 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3129 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3130 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3131 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3132 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3133 3134 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3135 sizeof (cpu_sys_stats_ks_data_template)); 3136 3137 csskd->cpu_ticks_wait.value.ui64 = 0; 3138 csskd->wait_ticks_io.value.ui64 = 0; 3139 3140 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3141 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3142 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3143 csskd->cpu_ticks_idle.value.ui64 = 3144 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3145 csskd->cpu_ticks_user.value.ui64 = 3146 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3147 csskd->cpu_ticks_kernel.value.ui64 = 3148 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3149 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3150 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3151 csskd->bread.value.ui64 = css->bread; 3152 csskd->bwrite.value.ui64 = css->bwrite; 3153 csskd->lread.value.ui64 = css->lread; 3154 csskd->lwrite.value.ui64 = css->lwrite; 3155 csskd->phread.value.ui64 = css->phread; 3156 csskd->phwrite.value.ui64 = css->phwrite; 3157 csskd->pswitch.value.ui64 = css->pswitch; 3158 csskd->trap.value.ui64 = css->trap; 3159 csskd->intr.value.ui64 = 0; 3160 for (i = 0; i < PIL_MAX; i++) 3161 csskd->intr.value.ui64 += css->intr[i]; 3162 csskd->syscall.value.ui64 = css->syscall; 3163 csskd->sysread.value.ui64 = css->sysread; 3164 csskd->syswrite.value.ui64 = css->syswrite; 3165 csskd->sysfork.value.ui64 = css->sysfork; 3166 csskd->sysvfork.value.ui64 = css->sysvfork; 3167 csskd->sysexec.value.ui64 = css->sysexec; 3168 csskd->readch.value.ui64 = css->readch; 3169 csskd->writech.value.ui64 = css->writech; 3170 csskd->rcvint.value.ui64 = css->rcvint; 3171 csskd->xmtint.value.ui64 = css->xmtint; 3172 csskd->mdmint.value.ui64 = css->mdmint; 3173 csskd->rawch.value.ui64 = css->rawch; 3174 csskd->canch.value.ui64 = css->canch; 3175 csskd->outch.value.ui64 = css->outch; 3176 csskd->msg.value.ui64 = css->msg; 3177 csskd->sema.value.ui64 = css->sema; 3178 csskd->namei.value.ui64 = css->namei; 3179 csskd->ufsiget.value.ui64 = css->ufsiget; 3180 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3181 csskd->ufsipage.value.ui64 = css->ufsipage; 3182 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3183 csskd->procovf.value.ui64 = css->procovf; 3184 csskd->intrthread.value.ui64 = 0; 3185 for (i = 0; i < LOCK_LEVEL - 1; i++) 3186 csskd->intrthread.value.ui64 += css->intr[i]; 3187 csskd->intrblk.value.ui64 = css->intrblk; 3188 csskd->intrunpin.value.ui64 = css->intrunpin; 3189 csskd->idlethread.value.ui64 = css->idlethread; 3190 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3191 csskd->nthreads.value.ui64 = css->nthreads; 3192 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3193 csskd->xcalls.value.ui64 = css->xcalls; 3194 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3195 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3196 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3197 csskd->modload.value.ui64 = css->modload; 3198 csskd->modunload.value.ui64 = css->modunload; 3199 csskd->bawrite.value.ui64 = css->bawrite; 3200 csskd->iowait.value.ui64 = css->iowait; 3201 3202 return (0); 3203 } 3204 3205 static int 3206 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3207 { 3208 cpu_t *cp = (cpu_t *)ksp->ks_private; 3209 struct cpu_vm_stats_ks_data *cvskd; 3210 cpu_vm_stats_t *cvs; 3211 3212 if (rw == KSTAT_WRITE) 3213 return (EACCES); 3214 3215 cvs = &cp->cpu_stats.vm; 3216 cvskd = ksp->ks_data; 3217 3218 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3219 sizeof (cpu_vm_stats_ks_data_template)); 3220 cvskd->pgrec.value.ui64 = cvs->pgrec; 3221 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3222 cvskd->pgin.value.ui64 = cvs->pgin; 3223 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3224 cvskd->pgout.value.ui64 = cvs->pgout; 3225 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3226 cvskd->swapin.value.ui64 = cvs->swapin; 3227 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3228 cvskd->swapout.value.ui64 = cvs->swapout; 3229 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3230 cvskd->zfod.value.ui64 = cvs->zfod; 3231 cvskd->dfree.value.ui64 = cvs->dfree; 3232 cvskd->scan.value.ui64 = cvs->scan; 3233 cvskd->rev.value.ui64 = cvs->rev; 3234 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3235 cvskd->as_fault.value.ui64 = cvs->as_fault; 3236 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3237 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3238 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3239 cvskd->softlock.value.ui64 = cvs->softlock; 3240 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3241 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3242 cvskd->execpgin.value.ui64 = cvs->execpgin; 3243 cvskd->execpgout.value.ui64 = cvs->execpgout; 3244 cvskd->execfree.value.ui64 = cvs->execfree; 3245 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3246 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3247 cvskd->anonfree.value.ui64 = cvs->anonfree; 3248 cvskd->fspgin.value.ui64 = cvs->fspgin; 3249 cvskd->fspgout.value.ui64 = cvs->fspgout; 3250 cvskd->fsfree.value.ui64 = cvs->fsfree; 3251 3252 return (0); 3253 } 3254 3255 static int 3256 cpu_stat_ks_update(kstat_t *ksp, int rw) 3257 { 3258 cpu_stat_t *cso; 3259 cpu_t *cp; 3260 int i; 3261 hrtime_t msnsecs[NCMSTATES]; 3262 3263 cso = (cpu_stat_t *)ksp->ks_data; 3264 cp = (cpu_t *)ksp->ks_private; 3265 3266 if (rw == KSTAT_WRITE) 3267 return (EACCES); 3268 3269 /* 3270 * Read CPU mstate, but compare with the last values we 3271 * received to make sure that the returned kstats never 3272 * decrease. 3273 */ 3274 3275 get_cpu_mstate(cp, msnsecs); 3276 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3277 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3278 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3279 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3280 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3281 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3282 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3283 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3284 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3285 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3286 cso->cpu_sysinfo.wait[W_IO] = 0; 3287 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3288 cso->cpu_sysinfo.wait[W_PIO] = 0; 3289 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3290 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3291 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3292 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3293 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3294 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3295 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3296 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3297 cso->cpu_sysinfo.intr = 0; 3298 for (i = 0; i < PIL_MAX; i++) 3299 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3300 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3301 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3302 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3303 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3304 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3305 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3306 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3307 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3308 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3309 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3310 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3311 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3312 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3313 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3314 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3315 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3316 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3317 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3318 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3319 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3320 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3321 cso->cpu_sysinfo.inodeovf = 0; 3322 cso->cpu_sysinfo.fileovf = 0; 3323 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3324 cso->cpu_sysinfo.intrthread = 0; 3325 for (i = 0; i < LOCK_LEVEL - 1; i++) 3326 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3327 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3328 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3329 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3330 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3331 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3332 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3333 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3334 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3335 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3336 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3337 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3338 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3339 cso->cpu_sysinfo.rw_enters = 0; 3340 cso->cpu_sysinfo.win_uo_cnt = 0; 3341 cso->cpu_sysinfo.win_uu_cnt = 0; 3342 cso->cpu_sysinfo.win_so_cnt = 0; 3343 cso->cpu_sysinfo.win_su_cnt = 0; 3344 cso->cpu_sysinfo.win_suo_cnt = 0; 3345 3346 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3347 cso->cpu_syswait.swap = 0; 3348 cso->cpu_syswait.physio = 0; 3349 3350 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3351 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3352 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3353 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3354 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3355 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3356 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3357 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3358 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3359 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3360 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3361 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3362 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3363 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3364 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3365 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3366 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3367 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3368 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3369 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3370 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3371 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3372 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3373 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3374 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3375 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3376 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3377 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3378 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3379 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3380 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3381 3382 return (0); 3383 } 3384