1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Architecture-independent CPU control functions. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/var.h> 35 #include <sys/thread.h> 36 #include <sys/cpuvar.h> 37 #include <sys/kstat.h> 38 #include <sys/uadmin.h> 39 #include <sys/systm.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/procset.h> 43 #include <sys/processor.h> 44 #include <sys/debug.h> 45 #include <sys/cpupart.h> 46 #include <sys/lgrp.h> 47 #include <sys/pset.h> 48 #include <sys/pghw.h> 49 #include <sys/kmem.h> 50 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 51 #include <sys/atomic.h> 52 #include <sys/callb.h> 53 #include <sys/vtrace.h> 54 #include <sys/cyclic.h> 55 #include <sys/bitmap.h> 56 #include <sys/nvpair.h> 57 #include <sys/pool_pset.h> 58 #include <sys/msacct.h> 59 #include <sys/time.h> 60 #include <sys/archsystm.h> 61 #if defined(__x86) 62 #include <sys/x86_archext.h> 63 #endif 64 65 extern int mp_cpu_start(cpu_t *); 66 extern int mp_cpu_stop(cpu_t *); 67 extern int mp_cpu_poweron(cpu_t *); 68 extern int mp_cpu_poweroff(cpu_t *); 69 extern int mp_cpu_configure(int); 70 extern int mp_cpu_unconfigure(int); 71 extern void mp_cpu_faulted_enter(cpu_t *); 72 extern void mp_cpu_faulted_exit(cpu_t *); 73 74 extern int cmp_cpu_to_chip(processorid_t cpuid); 75 #ifdef __sparcv9 76 extern char *cpu_fru_fmri(cpu_t *cp); 77 #endif 78 79 static void cpu_add_active_internal(cpu_t *cp); 80 static void cpu_remove_active(cpu_t *cp); 81 static void cpu_info_kstat_create(cpu_t *cp); 82 static void cpu_info_kstat_destroy(cpu_t *cp); 83 static void cpu_stats_kstat_create(cpu_t *cp); 84 static void cpu_stats_kstat_destroy(cpu_t *cp); 85 86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 90 91 /* 92 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 93 * and dispatch queue reallocations. The lock ordering with respect to 94 * related locks is: 95 * 96 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 97 * 98 * Warning: Certain sections of code do not use the cpu_lock when 99 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 100 * all cpus are paused during modifications to this list, a solution 101 * to protect the list is too either disable kernel preemption while 102 * walking the list, *or* recheck the cpu_next pointer at each 103 * iteration in the loop. Note that in no cases can any cached 104 * copies of the cpu pointers be kept as they may become invalid. 105 */ 106 kmutex_t cpu_lock; 107 cpu_t *cpu_list; /* list of all CPUs */ 108 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 109 cpu_t *cpu_active; /* list of active CPUs */ 110 static cpuset_t cpu_available; /* set of available CPUs */ 111 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 112 113 /* 114 * max_ncpus keeps the max cpus the system can have. Initially 115 * it's NCPU, but since most archs scan the devtree for cpus 116 * fairly early on during boot, the real max can be known before 117 * ncpus is set (useful for early NCPU based allocations). 118 */ 119 int max_ncpus = NCPU; 120 /* 121 * platforms that set max_ncpus to maxiumum number of cpus that can be 122 * dynamically added will set boot_max_ncpus to the number of cpus found 123 * at device tree scan time during boot. 124 */ 125 int boot_max_ncpus = -1; 126 /* 127 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 128 * used to size arrays that are indexed by CPU id. 129 */ 130 processorid_t max_cpuid = NCPU - 1; 131 132 int ncpus = 1; 133 int ncpus_online = 1; 134 135 /* 136 * CPU that we're trying to offline. Protected by cpu_lock. 137 */ 138 cpu_t *cpu_inmotion; 139 140 /* 141 * Can be raised to suppress further weakbinding, which are instead 142 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 143 * while individual thread weakbinding synchronisation is done under thread 144 * lock. 145 */ 146 int weakbindingbarrier; 147 148 /* 149 * Variables used in pause_cpus(). 150 */ 151 static volatile char safe_list[NCPU]; 152 153 static struct _cpu_pause_info { 154 int cp_spl; /* spl saved in pause_cpus() */ 155 volatile int cp_go; /* Go signal sent after all ready */ 156 int cp_count; /* # of CPUs to pause */ 157 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 158 kthread_id_t cp_paused; 159 } cpu_pause_info; 160 161 static kmutex_t pause_free_mutex; 162 static kcondvar_t pause_free_cv; 163 164 void *(*cpu_pause_func)(void *) = NULL; 165 166 167 static struct cpu_sys_stats_ks_data { 168 kstat_named_t cpu_ticks_idle; 169 kstat_named_t cpu_ticks_user; 170 kstat_named_t cpu_ticks_kernel; 171 kstat_named_t cpu_ticks_wait; 172 kstat_named_t cpu_nsec_idle; 173 kstat_named_t cpu_nsec_user; 174 kstat_named_t cpu_nsec_kernel; 175 kstat_named_t cpu_nsec_intr; 176 kstat_named_t cpu_load_intr; 177 kstat_named_t wait_ticks_io; 178 kstat_named_t bread; 179 kstat_named_t bwrite; 180 kstat_named_t lread; 181 kstat_named_t lwrite; 182 kstat_named_t phread; 183 kstat_named_t phwrite; 184 kstat_named_t pswitch; 185 kstat_named_t trap; 186 kstat_named_t intr; 187 kstat_named_t syscall; 188 kstat_named_t sysread; 189 kstat_named_t syswrite; 190 kstat_named_t sysfork; 191 kstat_named_t sysvfork; 192 kstat_named_t sysexec; 193 kstat_named_t readch; 194 kstat_named_t writech; 195 kstat_named_t rcvint; 196 kstat_named_t xmtint; 197 kstat_named_t mdmint; 198 kstat_named_t rawch; 199 kstat_named_t canch; 200 kstat_named_t outch; 201 kstat_named_t msg; 202 kstat_named_t sema; 203 kstat_named_t namei; 204 kstat_named_t ufsiget; 205 kstat_named_t ufsdirblk; 206 kstat_named_t ufsipage; 207 kstat_named_t ufsinopage; 208 kstat_named_t procovf; 209 kstat_named_t intrthread; 210 kstat_named_t intrblk; 211 kstat_named_t intrunpin; 212 kstat_named_t idlethread; 213 kstat_named_t inv_swtch; 214 kstat_named_t nthreads; 215 kstat_named_t cpumigrate; 216 kstat_named_t xcalls; 217 kstat_named_t mutex_adenters; 218 kstat_named_t rw_rdfails; 219 kstat_named_t rw_wrfails; 220 kstat_named_t modload; 221 kstat_named_t modunload; 222 kstat_named_t bawrite; 223 kstat_named_t iowait; 224 } cpu_sys_stats_ks_data_template = { 225 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 226 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 227 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 228 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 229 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 230 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 231 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 232 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 233 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 234 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 235 { "bread", KSTAT_DATA_UINT64 }, 236 { "bwrite", KSTAT_DATA_UINT64 }, 237 { "lread", KSTAT_DATA_UINT64 }, 238 { "lwrite", KSTAT_DATA_UINT64 }, 239 { "phread", KSTAT_DATA_UINT64 }, 240 { "phwrite", KSTAT_DATA_UINT64 }, 241 { "pswitch", KSTAT_DATA_UINT64 }, 242 { "trap", KSTAT_DATA_UINT64 }, 243 { "intr", KSTAT_DATA_UINT64 }, 244 { "syscall", KSTAT_DATA_UINT64 }, 245 { "sysread", KSTAT_DATA_UINT64 }, 246 { "syswrite", KSTAT_DATA_UINT64 }, 247 { "sysfork", KSTAT_DATA_UINT64 }, 248 { "sysvfork", KSTAT_DATA_UINT64 }, 249 { "sysexec", KSTAT_DATA_UINT64 }, 250 { "readch", KSTAT_DATA_UINT64 }, 251 { "writech", KSTAT_DATA_UINT64 }, 252 { "rcvint", KSTAT_DATA_UINT64 }, 253 { "xmtint", KSTAT_DATA_UINT64 }, 254 { "mdmint", KSTAT_DATA_UINT64 }, 255 { "rawch", KSTAT_DATA_UINT64 }, 256 { "canch", KSTAT_DATA_UINT64 }, 257 { "outch", KSTAT_DATA_UINT64 }, 258 { "msg", KSTAT_DATA_UINT64 }, 259 { "sema", KSTAT_DATA_UINT64 }, 260 { "namei", KSTAT_DATA_UINT64 }, 261 { "ufsiget", KSTAT_DATA_UINT64 }, 262 { "ufsdirblk", KSTAT_DATA_UINT64 }, 263 { "ufsipage", KSTAT_DATA_UINT64 }, 264 { "ufsinopage", KSTAT_DATA_UINT64 }, 265 { "procovf", KSTAT_DATA_UINT64 }, 266 { "intrthread", KSTAT_DATA_UINT64 }, 267 { "intrblk", KSTAT_DATA_UINT64 }, 268 { "intrunpin", KSTAT_DATA_UINT64 }, 269 { "idlethread", KSTAT_DATA_UINT64 }, 270 { "inv_swtch", KSTAT_DATA_UINT64 }, 271 { "nthreads", KSTAT_DATA_UINT64 }, 272 { "cpumigrate", KSTAT_DATA_UINT64 }, 273 { "xcalls", KSTAT_DATA_UINT64 }, 274 { "mutex_adenters", KSTAT_DATA_UINT64 }, 275 { "rw_rdfails", KSTAT_DATA_UINT64 }, 276 { "rw_wrfails", KSTAT_DATA_UINT64 }, 277 { "modload", KSTAT_DATA_UINT64 }, 278 { "modunload", KSTAT_DATA_UINT64 }, 279 { "bawrite", KSTAT_DATA_UINT64 }, 280 { "iowait", KSTAT_DATA_UINT64 }, 281 }; 282 283 static struct cpu_vm_stats_ks_data { 284 kstat_named_t pgrec; 285 kstat_named_t pgfrec; 286 kstat_named_t pgin; 287 kstat_named_t pgpgin; 288 kstat_named_t pgout; 289 kstat_named_t pgpgout; 290 kstat_named_t swapin; 291 kstat_named_t pgswapin; 292 kstat_named_t swapout; 293 kstat_named_t pgswapout; 294 kstat_named_t zfod; 295 kstat_named_t dfree; 296 kstat_named_t scan; 297 kstat_named_t rev; 298 kstat_named_t hat_fault; 299 kstat_named_t as_fault; 300 kstat_named_t maj_fault; 301 kstat_named_t cow_fault; 302 kstat_named_t prot_fault; 303 kstat_named_t softlock; 304 kstat_named_t kernel_asflt; 305 kstat_named_t pgrrun; 306 kstat_named_t execpgin; 307 kstat_named_t execpgout; 308 kstat_named_t execfree; 309 kstat_named_t anonpgin; 310 kstat_named_t anonpgout; 311 kstat_named_t anonfree; 312 kstat_named_t fspgin; 313 kstat_named_t fspgout; 314 kstat_named_t fsfree; 315 } cpu_vm_stats_ks_data_template = { 316 { "pgrec", KSTAT_DATA_UINT64 }, 317 { "pgfrec", KSTAT_DATA_UINT64 }, 318 { "pgin", KSTAT_DATA_UINT64 }, 319 { "pgpgin", KSTAT_DATA_UINT64 }, 320 { "pgout", KSTAT_DATA_UINT64 }, 321 { "pgpgout", KSTAT_DATA_UINT64 }, 322 { "swapin", KSTAT_DATA_UINT64 }, 323 { "pgswapin", KSTAT_DATA_UINT64 }, 324 { "swapout", KSTAT_DATA_UINT64 }, 325 { "pgswapout", KSTAT_DATA_UINT64 }, 326 { "zfod", KSTAT_DATA_UINT64 }, 327 { "dfree", KSTAT_DATA_UINT64 }, 328 { "scan", KSTAT_DATA_UINT64 }, 329 { "rev", KSTAT_DATA_UINT64 }, 330 { "hat_fault", KSTAT_DATA_UINT64 }, 331 { "as_fault", KSTAT_DATA_UINT64 }, 332 { "maj_fault", KSTAT_DATA_UINT64 }, 333 { "cow_fault", KSTAT_DATA_UINT64 }, 334 { "prot_fault", KSTAT_DATA_UINT64 }, 335 { "softlock", KSTAT_DATA_UINT64 }, 336 { "kernel_asflt", KSTAT_DATA_UINT64 }, 337 { "pgrrun", KSTAT_DATA_UINT64 }, 338 { "execpgin", KSTAT_DATA_UINT64 }, 339 { "execpgout", KSTAT_DATA_UINT64 }, 340 { "execfree", KSTAT_DATA_UINT64 }, 341 { "anonpgin", KSTAT_DATA_UINT64 }, 342 { "anonpgout", KSTAT_DATA_UINT64 }, 343 { "anonfree", KSTAT_DATA_UINT64 }, 344 { "fspgin", KSTAT_DATA_UINT64 }, 345 { "fspgout", KSTAT_DATA_UINT64 }, 346 { "fsfree", KSTAT_DATA_UINT64 }, 347 }; 348 349 /* 350 * Force the specified thread to migrate to the appropriate processor. 351 * Called with thread lock held, returns with it dropped. 352 */ 353 static void 354 force_thread_migrate(kthread_id_t tp) 355 { 356 ASSERT(THREAD_LOCK_HELD(tp)); 357 if (tp == curthread) { 358 THREAD_TRANSITION(tp); 359 CL_SETRUN(tp); 360 thread_unlock_nopreempt(tp); 361 swtch(); 362 } else { 363 if (tp->t_state == TS_ONPROC) { 364 cpu_surrender(tp); 365 } else if (tp->t_state == TS_RUN) { 366 (void) dispdeq(tp); 367 setbackdq(tp); 368 } 369 thread_unlock(tp); 370 } 371 } 372 373 /* 374 * Set affinity for a specified CPU. 375 * A reference count is incremented and the affinity is held until the 376 * reference count is decremented to zero by thread_affinity_clear(). 377 * This is so regions of code requiring affinity can be nested. 378 * Caller needs to ensure that cpu_id remains valid, which can be 379 * done by holding cpu_lock across this call, unless the caller 380 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 381 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 382 */ 383 void 384 thread_affinity_set(kthread_id_t t, int cpu_id) 385 { 386 cpu_t *cp; 387 int c; 388 389 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 390 391 if ((c = cpu_id) == CPU_CURRENT) { 392 mutex_enter(&cpu_lock); 393 cpu_id = CPU->cpu_id; 394 } 395 /* 396 * We should be asserting that cpu_lock is held here, but 397 * the NCA code doesn't acquire it. The following assert 398 * should be uncommented when the NCA code is fixed. 399 * 400 * ASSERT(MUTEX_HELD(&cpu_lock)); 401 */ 402 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 403 cp = cpu[cpu_id]; 404 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 405 /* 406 * If there is already a hard affinity requested, and this affinity 407 * conflicts with that, panic. 408 */ 409 thread_lock(t); 410 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 411 panic("affinity_set: setting %p but already bound to %p", 412 (void *)cp, (void *)t->t_bound_cpu); 413 } 414 t->t_affinitycnt++; 415 t->t_bound_cpu = cp; 416 417 /* 418 * Make sure we're running on the right CPU. 419 */ 420 if (cp != t->t_cpu || t != curthread) { 421 force_thread_migrate(t); /* drops thread lock */ 422 } else { 423 thread_unlock(t); 424 } 425 426 if (c == CPU_CURRENT) 427 mutex_exit(&cpu_lock); 428 } 429 430 /* 431 * Wrapper for backward compatibility. 432 */ 433 void 434 affinity_set(int cpu_id) 435 { 436 thread_affinity_set(curthread, cpu_id); 437 } 438 439 /* 440 * Decrement the affinity reservation count and if it becomes zero, 441 * clear the CPU affinity for the current thread, or set it to the user's 442 * software binding request. 443 */ 444 void 445 thread_affinity_clear(kthread_id_t t) 446 { 447 register processorid_t binding; 448 449 thread_lock(t); 450 if (--t->t_affinitycnt == 0) { 451 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 452 /* 453 * Adjust disp_max_unbound_pri if necessary. 454 */ 455 disp_adjust_unbound_pri(t); 456 t->t_bound_cpu = NULL; 457 if (t->t_cpu->cpu_part != t->t_cpupart) { 458 force_thread_migrate(t); 459 return; 460 } 461 } else { 462 t->t_bound_cpu = cpu[binding]; 463 /* 464 * Make sure the thread is running on the bound CPU. 465 */ 466 if (t->t_cpu != t->t_bound_cpu) { 467 force_thread_migrate(t); 468 return; /* already dropped lock */ 469 } 470 } 471 } 472 thread_unlock(t); 473 } 474 475 /* 476 * Wrapper for backward compatibility. 477 */ 478 void 479 affinity_clear(void) 480 { 481 thread_affinity_clear(curthread); 482 } 483 484 /* 485 * Weak cpu affinity. Bind to the "current" cpu for short periods 486 * of time during which the thread must not block (but may be preempted). 487 * Use this instead of kpreempt_disable() when it is only "no migration" 488 * rather than "no preemption" semantics that are required - disabling 489 * preemption holds higher priority threads off of cpu and if the 490 * operation that is protected is more than momentary this is not good 491 * for realtime etc. 492 * 493 * Weakly bound threads will not prevent a cpu from being offlined - 494 * we'll only run them on the cpu to which they are weakly bound but 495 * (because they do not block) we'll always be able to move them on to 496 * another cpu at offline time if we give them just a short moment to 497 * run during which they will unbind. To give a cpu a chance of offlining, 498 * however, we require a barrier to weak bindings that may be raised for a 499 * given cpu (offline/move code may set this and then wait a short time for 500 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 501 * 502 * There are few restrictions on the calling context of thread_nomigrate. 503 * The caller must not hold the thread lock. Calls may be nested. 504 * 505 * After weakbinding a thread must not perform actions that may block. 506 * In particular it must not call thread_affinity_set; calling that when 507 * already weakbound is nonsensical anyway. 508 * 509 * If curthread is prevented from migrating for other reasons 510 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 511 * then the weak binding will succeed even if this cpu is the target of an 512 * offline/move request. 513 */ 514 void 515 thread_nomigrate(void) 516 { 517 cpu_t *cp; 518 kthread_id_t t = curthread; 519 520 again: 521 kpreempt_disable(); 522 cp = CPU; 523 524 /* 525 * A highlevel interrupt must not modify t_nomigrate or 526 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 527 * interrupt thread cannot migrate and we can avoid the 528 * thread_lock call below by short-circuiting here. In either 529 * case we can just return since no migration is possible and 530 * the condition will persist (ie, when we test for these again 531 * in thread_allowmigrate they can't have changed). Migration 532 * is also impossible if we're at or above DISP_LEVEL pil. 533 */ 534 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 535 getpil() >= DISP_LEVEL) { 536 kpreempt_enable(); 537 return; 538 } 539 540 /* 541 * We must be consistent with existing weak bindings. Since we 542 * may be interrupted between the increment of t_nomigrate and 543 * the store to t_weakbound_cpu below we cannot assume that 544 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 545 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 546 * always the case. 547 */ 548 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 549 if (!panicstr) 550 panic("thread_nomigrate: binding to %p but already " 551 "bound to %p", (void *)cp, 552 (void *)t->t_weakbound_cpu); 553 } 554 555 /* 556 * At this point we have preemption disabled and we don't yet hold 557 * the thread lock. So it's possible that somebody else could 558 * set t_bind_cpu here and not be able to force us across to the 559 * new cpu (since we have preemption disabled). 560 */ 561 thread_lock(curthread); 562 563 /* 564 * If further weak bindings are being (temporarily) suppressed then 565 * we'll settle for disabling kernel preemption (which assures 566 * no migration provided the thread does not block which it is 567 * not allowed to if using thread_nomigrate). We must remember 568 * this disposition so we can take appropriate action in 569 * thread_allowmigrate. If this is a nested call and the 570 * thread is already weakbound then fall through as normal. 571 * We remember the decision to settle for kpreempt_disable through 572 * negative nesting counting in t_nomigrate. Once a thread has had one 573 * weakbinding request satisfied in this way any further (nested) 574 * requests will continue to be satisfied in the same way, 575 * even if weak bindings have recommenced. 576 */ 577 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 578 --t->t_nomigrate; 579 thread_unlock(curthread); 580 return; /* with kpreempt_disable still active */ 581 } 582 583 /* 584 * We hold thread_lock so t_bind_cpu cannot change. We could, 585 * however, be running on a different cpu to which we are t_bound_cpu 586 * to (as explained above). If we grant the weak binding request 587 * in that case then the dispatcher must favour our weak binding 588 * over our strong (in which case, just as when preemption is 589 * disabled, we can continue to run on a cpu other than the one to 590 * which we are strongbound; the difference in this case is that 591 * this thread can be preempted and so can appear on the dispatch 592 * queues of a cpu other than the one it is strongbound to). 593 * 594 * If the cpu we are running on does not appear to be a current 595 * offline target (we check cpu_inmotion to determine this - since 596 * we don't hold cpu_lock we may not see a recent store to that, 597 * so it's possible that we at times can grant a weak binding to a 598 * cpu that is an offline target, but that one request will not 599 * prevent the offline from succeeding) then we will always grant 600 * the weak binding request. This includes the case above where 601 * we grant a weakbinding not commensurate with our strong binding. 602 * 603 * If our cpu does appear to be an offline target then we're inclined 604 * not to grant the weakbinding request just yet - we'd prefer to 605 * migrate to another cpu and grant the request there. The 606 * exceptions are those cases where going through preemption code 607 * will not result in us changing cpu: 608 * 609 * . interrupts have already bypassed this case (see above) 610 * . we are already weakbound to this cpu (dispatcher code will 611 * always return us to the weakbound cpu) 612 * . preemption was disabled even before we disabled it above 613 * . we are strongbound to this cpu (if we're strongbound to 614 * another and not yet running there the trip through the 615 * dispatcher will move us to the strongbound cpu and we 616 * will grant the weak binding there) 617 */ 618 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 619 t->t_bound_cpu == cp) { 620 /* 621 * Don't be tempted to store to t_weakbound_cpu only on 622 * the first nested bind request - if we're interrupted 623 * after the increment of t_nomigrate and before the 624 * store to t_weakbound_cpu and the interrupt calls 625 * thread_nomigrate then the assertion in thread_allowmigrate 626 * would fail. 627 */ 628 t->t_nomigrate++; 629 t->t_weakbound_cpu = cp; 630 membar_producer(); 631 thread_unlock(curthread); 632 /* 633 * Now that we have dropped the thread_lock another thread 634 * can set our t_weakbound_cpu, and will try to migrate us 635 * to the strongbound cpu (which will not be prevented by 636 * preemption being disabled since we're about to enable 637 * preemption). We have granted the weakbinding to the current 638 * cpu, so again we are in the position that is is is possible 639 * that our weak and strong bindings differ. Again this 640 * is catered for by dispatcher code which will favour our 641 * weak binding. 642 */ 643 kpreempt_enable(); 644 } else { 645 /* 646 * Move to another cpu before granting the request by 647 * forcing this thread through preemption code. When we 648 * get to set{front,back}dq called from CL_PREEMPT() 649 * cpu_choose() will be used to select a cpu to queue 650 * us on - that will see cpu_inmotion and take 651 * steps to avoid returning us to this cpu. 652 */ 653 cp->cpu_kprunrun = 1; 654 thread_unlock(curthread); 655 kpreempt_enable(); /* will call preempt() */ 656 goto again; 657 } 658 } 659 660 void 661 thread_allowmigrate(void) 662 { 663 kthread_id_t t = curthread; 664 665 ASSERT(t->t_weakbound_cpu == CPU || 666 (t->t_nomigrate < 0 && t->t_preempt > 0) || 667 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 668 getpil() >= DISP_LEVEL); 669 670 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 671 getpil() >= DISP_LEVEL) 672 return; 673 674 if (t->t_nomigrate < 0) { 675 /* 676 * This thread was granted "weak binding" in the 677 * stronger form of kernel preemption disabling. 678 * Undo a level of nesting for both t_nomigrate 679 * and t_preempt. 680 */ 681 ++t->t_nomigrate; 682 kpreempt_enable(); 683 } else if (--t->t_nomigrate == 0) { 684 /* 685 * Time to drop the weak binding. We need to cater 686 * for the case where we're weakbound to a different 687 * cpu than that to which we're strongbound (a very 688 * temporary arrangement that must only persist until 689 * weak binding drops). We don't acquire thread_lock 690 * here so even as this code executes t_bound_cpu 691 * may be changing. So we disable preemption and 692 * a) in the case that t_bound_cpu changes while we 693 * have preemption disabled kprunrun will be set 694 * asynchronously, and b) if before disabling 695 * preemption we were already on a different cpu to 696 * our t_bound_cpu then we set kprunrun ourselves 697 * to force a trip through the dispatcher when 698 * preemption is enabled. 699 */ 700 kpreempt_disable(); 701 if (t->t_bound_cpu && 702 t->t_weakbound_cpu != t->t_bound_cpu) 703 CPU->cpu_kprunrun = 1; 704 t->t_weakbound_cpu = NULL; 705 membar_producer(); 706 kpreempt_enable(); 707 } 708 } 709 710 /* 711 * weakbinding_stop can be used to temporarily cause weakbindings made 712 * with thread_nomigrate to be satisfied through the stronger action of 713 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 714 */ 715 716 void 717 weakbinding_stop(void) 718 { 719 ASSERT(MUTEX_HELD(&cpu_lock)); 720 weakbindingbarrier = 1; 721 membar_producer(); /* make visible before subsequent thread_lock */ 722 } 723 724 void 725 weakbinding_start(void) 726 { 727 ASSERT(MUTEX_HELD(&cpu_lock)); 728 weakbindingbarrier = 0; 729 } 730 731 /* 732 * This routine is called to place the CPUs in a safe place so that 733 * one of them can be taken off line or placed on line. What we are 734 * trying to do here is prevent a thread from traversing the list 735 * of active CPUs while we are changing it or from getting placed on 736 * the run queue of a CPU that has just gone off line. We do this by 737 * creating a thread with the highest possible prio for each CPU and 738 * having it call this routine. The advantage of this method is that 739 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 740 * This makes disp faster at the expense of making p_online() slower 741 * which is a good trade off. 742 */ 743 static void 744 cpu_pause(int index) 745 { 746 int s; 747 struct _cpu_pause_info *cpi = &cpu_pause_info; 748 volatile char *safe = &safe_list[index]; 749 long lindex = index; 750 751 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 752 753 while (*safe != PAUSE_DIE) { 754 *safe = PAUSE_READY; 755 membar_enter(); /* make sure stores are flushed */ 756 sema_v(&cpi->cp_sem); /* signal requesting thread */ 757 758 /* 759 * Wait here until all pause threads are running. That 760 * indicates that it's safe to do the spl. Until 761 * cpu_pause_info.cp_go is set, we don't want to spl 762 * because that might block clock interrupts needed 763 * to preempt threads on other CPUs. 764 */ 765 while (cpi->cp_go == 0) 766 ; 767 /* 768 * Even though we are at the highest disp prio, we need 769 * to block out all interrupts below LOCK_LEVEL so that 770 * an intr doesn't come in, wake up a thread, and call 771 * setbackdq/setfrontdq. 772 */ 773 s = splhigh(); 774 /* 775 * if cpu_pause_func() has been set then call it using 776 * index as the argument, currently only used by 777 * cpr_suspend_cpus(). This function is used as the 778 * code to execute on the "paused" cpu's when a machine 779 * comes out of a sleep state and CPU's were powered off. 780 * (could also be used for hotplugging CPU's). 781 */ 782 if (cpu_pause_func != NULL) 783 (*cpu_pause_func)((void *)lindex); 784 785 mach_cpu_pause(safe); 786 787 splx(s); 788 /* 789 * Waiting is at an end. Switch out of cpu_pause 790 * loop and resume useful work. 791 */ 792 swtch(); 793 } 794 795 mutex_enter(&pause_free_mutex); 796 *safe = PAUSE_DEAD; 797 cv_broadcast(&pause_free_cv); 798 mutex_exit(&pause_free_mutex); 799 } 800 801 /* 802 * Allow the cpus to start running again. 803 */ 804 void 805 start_cpus() 806 { 807 int i; 808 809 ASSERT(MUTEX_HELD(&cpu_lock)); 810 ASSERT(cpu_pause_info.cp_paused); 811 cpu_pause_info.cp_paused = NULL; 812 for (i = 0; i < NCPU; i++) 813 safe_list[i] = PAUSE_IDLE; 814 membar_enter(); /* make sure stores are flushed */ 815 affinity_clear(); 816 splx(cpu_pause_info.cp_spl); 817 kpreempt_enable(); 818 } 819 820 /* 821 * Allocate a pause thread for a CPU. 822 */ 823 static void 824 cpu_pause_alloc(cpu_t *cp) 825 { 826 kthread_id_t t; 827 long cpun = cp->cpu_id; 828 829 /* 830 * Note, v.v_nglobpris will not change value as long as I hold 831 * cpu_lock. 832 */ 833 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 834 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 835 thread_lock(t); 836 t->t_bound_cpu = cp; 837 t->t_disp_queue = cp->cpu_disp; 838 t->t_affinitycnt = 1; 839 t->t_preempt = 1; 840 thread_unlock(t); 841 cp->cpu_pause_thread = t; 842 /* 843 * Registering a thread in the callback table is usually done 844 * in the initialization code of the thread. In this 845 * case, we do it right after thread creation because the 846 * thread itself may never run, and we need to register the 847 * fact that it is safe for cpr suspend. 848 */ 849 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 850 } 851 852 /* 853 * Free a pause thread for a CPU. 854 */ 855 static void 856 cpu_pause_free(cpu_t *cp) 857 { 858 kthread_id_t t; 859 int cpun = cp->cpu_id; 860 861 ASSERT(MUTEX_HELD(&cpu_lock)); 862 /* 863 * We have to get the thread and tell him to die. 864 */ 865 if ((t = cp->cpu_pause_thread) == NULL) { 866 ASSERT(safe_list[cpun] == PAUSE_IDLE); 867 return; 868 } 869 thread_lock(t); 870 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 871 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 872 t->t_pri = v.v_nglobpris - 1; 873 ASSERT(safe_list[cpun] == PAUSE_IDLE); 874 safe_list[cpun] = PAUSE_DIE; 875 THREAD_TRANSITION(t); 876 setbackdq(t); 877 thread_unlock_nopreempt(t); 878 879 /* 880 * If we don't wait for the thread to actually die, it may try to 881 * run on the wrong cpu as part of an actual call to pause_cpus(). 882 */ 883 mutex_enter(&pause_free_mutex); 884 while (safe_list[cpun] != PAUSE_DEAD) { 885 cv_wait(&pause_free_cv, &pause_free_mutex); 886 } 887 mutex_exit(&pause_free_mutex); 888 safe_list[cpun] = PAUSE_IDLE; 889 890 cp->cpu_pause_thread = NULL; 891 } 892 893 /* 894 * Initialize basic structures for pausing CPUs. 895 */ 896 void 897 cpu_pause_init() 898 { 899 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 900 /* 901 * Create initial CPU pause thread. 902 */ 903 cpu_pause_alloc(CPU); 904 } 905 906 /* 907 * Start the threads used to pause another CPU. 908 */ 909 static int 910 cpu_pause_start(processorid_t cpu_id) 911 { 912 int i; 913 int cpu_count = 0; 914 915 for (i = 0; i < NCPU; i++) { 916 cpu_t *cp; 917 kthread_id_t t; 918 919 cp = cpu[i]; 920 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 921 safe_list[i] = PAUSE_WAIT; 922 continue; 923 } 924 925 /* 926 * Skip CPU if it is quiesced or not yet started. 927 */ 928 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 929 safe_list[i] = PAUSE_WAIT; 930 continue; 931 } 932 933 /* 934 * Start this CPU's pause thread. 935 */ 936 t = cp->cpu_pause_thread; 937 thread_lock(t); 938 /* 939 * Reset the priority, since nglobpris may have 940 * changed since the thread was created, if someone 941 * has loaded the RT (or some other) scheduling 942 * class. 943 */ 944 t->t_pri = v.v_nglobpris - 1; 945 THREAD_TRANSITION(t); 946 setbackdq(t); 947 thread_unlock_nopreempt(t); 948 ++cpu_count; 949 } 950 return (cpu_count); 951 } 952 953 954 /* 955 * Pause all of the CPUs except the one we are on by creating a high 956 * priority thread bound to those CPUs. 957 * 958 * Note that one must be extremely careful regarding code 959 * executed while CPUs are paused. Since a CPU may be paused 960 * while a thread scheduling on that CPU is holding an adaptive 961 * lock, code executed with CPUs paused must not acquire adaptive 962 * (or low-level spin) locks. Also, such code must not block, 963 * since the thread that is supposed to initiate the wakeup may 964 * never run. 965 * 966 * With a few exceptions, the restrictions on code executed with CPUs 967 * paused match those for code executed at high-level interrupt 968 * context. 969 */ 970 void 971 pause_cpus(cpu_t *off_cp) 972 { 973 processorid_t cpu_id; 974 int i; 975 struct _cpu_pause_info *cpi = &cpu_pause_info; 976 977 ASSERT(MUTEX_HELD(&cpu_lock)); 978 ASSERT(cpi->cp_paused == NULL); 979 cpi->cp_count = 0; 980 cpi->cp_go = 0; 981 for (i = 0; i < NCPU; i++) 982 safe_list[i] = PAUSE_IDLE; 983 kpreempt_disable(); 984 985 /* 986 * If running on the cpu that is going offline, get off it. 987 * This is so that it won't be necessary to rechoose a CPU 988 * when done. 989 */ 990 if (CPU == off_cp) 991 cpu_id = off_cp->cpu_next_part->cpu_id; 992 else 993 cpu_id = CPU->cpu_id; 994 affinity_set(cpu_id); 995 996 /* 997 * Start the pause threads and record how many were started 998 */ 999 cpi->cp_count = cpu_pause_start(cpu_id); 1000 1001 /* 1002 * Now wait for all CPUs to be running the pause thread. 1003 */ 1004 while (cpi->cp_count > 0) { 1005 /* 1006 * Spin reading the count without grabbing the disp 1007 * lock to make sure we don't prevent the pause 1008 * threads from getting the lock. 1009 */ 1010 while (sema_held(&cpi->cp_sem)) 1011 ; 1012 if (sema_tryp(&cpi->cp_sem)) 1013 --cpi->cp_count; 1014 } 1015 cpi->cp_go = 1; /* all have reached cpu_pause */ 1016 1017 /* 1018 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1019 * to PAUSE_WAIT.) 1020 */ 1021 for (i = 0; i < NCPU; i++) { 1022 while (safe_list[i] != PAUSE_WAIT) 1023 ; 1024 } 1025 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1026 cpi->cp_paused = curthread; 1027 } 1028 1029 /* 1030 * Check whether the current thread has CPUs paused 1031 */ 1032 int 1033 cpus_paused(void) 1034 { 1035 if (cpu_pause_info.cp_paused != NULL) { 1036 ASSERT(cpu_pause_info.cp_paused == curthread); 1037 return (1); 1038 } 1039 return (0); 1040 } 1041 1042 static cpu_t * 1043 cpu_get_all(processorid_t cpun) 1044 { 1045 ASSERT(MUTEX_HELD(&cpu_lock)); 1046 1047 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1048 return (NULL); 1049 return (cpu[cpun]); 1050 } 1051 1052 /* 1053 * Check whether cpun is a valid processor id and whether it should be 1054 * visible from the current zone. If it is, return a pointer to the 1055 * associated CPU structure. 1056 */ 1057 cpu_t * 1058 cpu_get(processorid_t cpun) 1059 { 1060 cpu_t *c; 1061 1062 ASSERT(MUTEX_HELD(&cpu_lock)); 1063 c = cpu_get_all(cpun); 1064 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1065 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1066 return (NULL); 1067 return (c); 1068 } 1069 1070 /* 1071 * The following functions should be used to check CPU states in the kernel. 1072 * They should be invoked with cpu_lock held. Kernel subsystems interested 1073 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1074 * states. Those are for user-land (and system call) use only. 1075 */ 1076 1077 /* 1078 * Determine whether the CPU is online and handling interrupts. 1079 */ 1080 int 1081 cpu_is_online(cpu_t *cpu) 1082 { 1083 ASSERT(MUTEX_HELD(&cpu_lock)); 1084 return (cpu_flagged_online(cpu->cpu_flags)); 1085 } 1086 1087 /* 1088 * Determine whether the CPU is offline (this includes spare and faulted). 1089 */ 1090 int 1091 cpu_is_offline(cpu_t *cpu) 1092 { 1093 ASSERT(MUTEX_HELD(&cpu_lock)); 1094 return (cpu_flagged_offline(cpu->cpu_flags)); 1095 } 1096 1097 /* 1098 * Determine whether the CPU is powered off. 1099 */ 1100 int 1101 cpu_is_poweredoff(cpu_t *cpu) 1102 { 1103 ASSERT(MUTEX_HELD(&cpu_lock)); 1104 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1105 } 1106 1107 /* 1108 * Determine whether the CPU is handling interrupts. 1109 */ 1110 int 1111 cpu_is_nointr(cpu_t *cpu) 1112 { 1113 ASSERT(MUTEX_HELD(&cpu_lock)); 1114 return (cpu_flagged_nointr(cpu->cpu_flags)); 1115 } 1116 1117 /* 1118 * Determine whether the CPU is active (scheduling threads). 1119 */ 1120 int 1121 cpu_is_active(cpu_t *cpu) 1122 { 1123 ASSERT(MUTEX_HELD(&cpu_lock)); 1124 return (cpu_flagged_active(cpu->cpu_flags)); 1125 } 1126 1127 /* 1128 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1129 */ 1130 int 1131 cpu_flagged_online(cpu_flag_t cpu_flags) 1132 { 1133 return (cpu_flagged_active(cpu_flags) && 1134 (cpu_flags & CPU_ENABLE)); 1135 } 1136 1137 int 1138 cpu_flagged_offline(cpu_flag_t cpu_flags) 1139 { 1140 return (((cpu_flags & CPU_POWEROFF) == 0) && 1141 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1142 } 1143 1144 int 1145 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1146 { 1147 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1148 } 1149 1150 int 1151 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1152 { 1153 return (cpu_flagged_active(cpu_flags) && 1154 (cpu_flags & CPU_ENABLE) == 0); 1155 } 1156 1157 int 1158 cpu_flagged_active(cpu_flag_t cpu_flags) 1159 { 1160 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1161 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1162 } 1163 1164 /* 1165 * Bring the indicated CPU online. 1166 */ 1167 int 1168 cpu_online(cpu_t *cp) 1169 { 1170 int error = 0; 1171 1172 /* 1173 * Handle on-line request. 1174 * This code must put the new CPU on the active list before 1175 * starting it because it will not be paused, and will start 1176 * using the active list immediately. The real start occurs 1177 * when the CPU_QUIESCED flag is turned off. 1178 */ 1179 1180 ASSERT(MUTEX_HELD(&cpu_lock)); 1181 1182 /* 1183 * Put all the cpus into a known safe place. 1184 * No mutexes can be entered while CPUs are paused. 1185 */ 1186 error = mp_cpu_start(cp); /* arch-dep hook */ 1187 if (error == 0) { 1188 pg_cpupart_in(cp, cp->cpu_part); 1189 pause_cpus(NULL); 1190 cpu_add_active_internal(cp); 1191 if (cp->cpu_flags & CPU_FAULTED) { 1192 cp->cpu_flags &= ~CPU_FAULTED; 1193 mp_cpu_faulted_exit(cp); 1194 } 1195 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1196 CPU_SPARE); 1197 start_cpus(); 1198 cpu_stats_kstat_create(cp); 1199 cpu_create_intrstat(cp); 1200 lgrp_kstat_create(cp); 1201 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1202 cpu_intr_enable(cp); /* arch-dep hook */ 1203 cpu_set_state(cp); 1204 cyclic_online(cp); 1205 poke_cpu(cp->cpu_id); 1206 } 1207 1208 return (error); 1209 } 1210 1211 /* 1212 * Take the indicated CPU offline. 1213 */ 1214 int 1215 cpu_offline(cpu_t *cp, int flags) 1216 { 1217 cpupart_t *pp; 1218 int error = 0; 1219 cpu_t *ncp; 1220 int intr_enable; 1221 int cyclic_off = 0; 1222 int loop_count; 1223 int no_quiesce = 0; 1224 int (*bound_func)(struct cpu *, int); 1225 kthread_t *t; 1226 lpl_t *cpu_lpl; 1227 proc_t *p; 1228 int lgrp_diff_lpl; 1229 1230 ASSERT(MUTEX_HELD(&cpu_lock)); 1231 1232 /* 1233 * If we're going from faulted or spare to offline, just 1234 * clear these flags and update CPU state. 1235 */ 1236 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1237 if (cp->cpu_flags & CPU_FAULTED) { 1238 cp->cpu_flags &= ~CPU_FAULTED; 1239 mp_cpu_faulted_exit(cp); 1240 } 1241 cp->cpu_flags &= ~CPU_SPARE; 1242 cpu_set_state(cp); 1243 return (0); 1244 } 1245 1246 /* 1247 * Handle off-line request. 1248 */ 1249 pp = cp->cpu_part; 1250 /* 1251 * Don't offline last online CPU in partition 1252 */ 1253 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1254 return (EBUSY); 1255 /* 1256 * Unbind all thread bound to our CPU if we were asked to. 1257 */ 1258 if (flags & CPU_FORCED && (error = cpu_unbind(cp->cpu_id)) != 0) 1259 return (error); 1260 /* 1261 * We shouldn't be bound to this CPU ourselves. 1262 */ 1263 if (curthread->t_bound_cpu == cp) 1264 return (EBUSY); 1265 1266 /* 1267 * Tell interested parties that this CPU is going offline. 1268 */ 1269 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1270 1271 /* 1272 * Tell the PG subsystem that the CPU is leaving the partition 1273 */ 1274 pg_cpupart_out(cp, pp); 1275 1276 /* 1277 * Take the CPU out of interrupt participation so we won't find 1278 * bound kernel threads. If the architecture cannot completely 1279 * shut off interrupts on the CPU, don't quiesce it, but don't 1280 * run anything but interrupt thread... this is indicated by 1281 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1282 * off. 1283 */ 1284 intr_enable = cp->cpu_flags & CPU_ENABLE; 1285 if (intr_enable) 1286 no_quiesce = cpu_intr_disable(cp); 1287 1288 /* 1289 * Record that we are aiming to offline this cpu. This acts as 1290 * a barrier to further weak binding requests in thread_nomigrate 1291 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1292 * lean away from this cpu. Further strong bindings are already 1293 * avoided since we hold cpu_lock. Since threads that are set 1294 * runnable around now and others coming off the target cpu are 1295 * directed away from the target, existing strong and weak bindings 1296 * (especially the latter) to the target cpu stand maximum chance of 1297 * being able to unbind during the short delay loop below (if other 1298 * unbound threads compete they may not see cpu in time to unbind 1299 * even if they would do so immediately. 1300 */ 1301 cpu_inmotion = cp; 1302 membar_enter(); 1303 1304 /* 1305 * Check for kernel threads (strong or weak) bound to that CPU. 1306 * Strongly bound threads may not unbind, and we'll have to return 1307 * EBUSY. Weakly bound threads should always disappear - we've 1308 * stopped more weak binding with cpu_inmotion and existing 1309 * bindings will drain imminently (they may not block). Nonetheless 1310 * we will wait for a fixed period for all bound threads to disappear. 1311 * Inactive interrupt threads are OK (they'll be in TS_FREE 1312 * state). If test finds some bound threads, wait a few ticks 1313 * to give short-lived threads (such as interrupts) chance to 1314 * complete. Note that if no_quiesce is set, i.e. this cpu 1315 * is required to service interrupts, then we take the route 1316 * that permits interrupt threads to be active (or bypassed). 1317 */ 1318 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1319 1320 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1321 if (loop_count >= 5) { 1322 error = EBUSY; /* some threads still bound */ 1323 break; 1324 } 1325 1326 /* 1327 * If some threads were assigned, give them 1328 * a chance to complete or move. 1329 * 1330 * This assumes that the clock_thread is not bound 1331 * to any CPU, because the clock_thread is needed to 1332 * do the delay(hz/100). 1333 * 1334 * Note: we still hold the cpu_lock while waiting for 1335 * the next clock tick. This is OK since it isn't 1336 * needed for anything else except processor_bind(2), 1337 * and system initialization. If we drop the lock, 1338 * we would risk another p_online disabling the last 1339 * processor. 1340 */ 1341 delay(hz/100); 1342 } 1343 1344 if (error == 0 && cyclic_off == 0) { 1345 if (!cyclic_offline(cp)) { 1346 /* 1347 * We must have bound cyclics... 1348 */ 1349 error = EBUSY; 1350 goto out; 1351 } 1352 cyclic_off = 1; 1353 } 1354 1355 /* 1356 * Call mp_cpu_stop() to perform any special operations 1357 * needed for this machine architecture to offline a CPU. 1358 */ 1359 if (error == 0) 1360 error = mp_cpu_stop(cp); /* arch-dep hook */ 1361 1362 /* 1363 * If that all worked, take the CPU offline and decrement 1364 * ncpus_online. 1365 */ 1366 if (error == 0) { 1367 /* 1368 * Put all the cpus into a known safe place. 1369 * No mutexes can be entered while CPUs are paused. 1370 */ 1371 pause_cpus(cp); 1372 /* 1373 * Repeat the operation, if necessary, to make sure that 1374 * all outstanding low-level interrupts run to completion 1375 * before we set the CPU_QUIESCED flag. It's also possible 1376 * that a thread has weak bound to the cpu despite our raising 1377 * cpu_inmotion above since it may have loaded that 1378 * value before the barrier became visible (this would have 1379 * to be the thread that was on the target cpu at the time 1380 * we raised the barrier). 1381 */ 1382 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1383 (*bound_func)(cp, 1)) { 1384 start_cpus(); 1385 (void) mp_cpu_start(cp); 1386 goto again; 1387 } 1388 ncp = cp->cpu_next_part; 1389 cpu_lpl = cp->cpu_lpl; 1390 ASSERT(cpu_lpl != NULL); 1391 1392 /* 1393 * Remove the CPU from the list of active CPUs. 1394 */ 1395 cpu_remove_active(cp); 1396 1397 /* 1398 * Walk the active process list and look for threads 1399 * whose home lgroup needs to be updated, or 1400 * the last CPU they run on is the one being offlined now. 1401 */ 1402 1403 ASSERT(curthread->t_cpu != cp); 1404 for (p = practive; p != NULL; p = p->p_next) { 1405 1406 t = p->p_tlist; 1407 1408 if (t == NULL) 1409 continue; 1410 1411 lgrp_diff_lpl = 0; 1412 1413 do { 1414 ASSERT(t->t_lpl != NULL); 1415 /* 1416 * Taking last CPU in lpl offline 1417 * Rehome thread if it is in this lpl 1418 * Otherwise, update the count of how many 1419 * threads are in this CPU's lgroup but have 1420 * a different lpl. 1421 */ 1422 1423 if (cpu_lpl->lpl_ncpu == 0) { 1424 if (t->t_lpl == cpu_lpl) 1425 lgrp_move_thread(t, 1426 lgrp_choose(t, 1427 t->t_cpupart), 0); 1428 else if (t->t_lpl->lpl_lgrpid == 1429 cpu_lpl->lpl_lgrpid) 1430 lgrp_diff_lpl++; 1431 } 1432 ASSERT(t->t_lpl->lpl_ncpu > 0); 1433 1434 /* 1435 * Update CPU last ran on if it was this CPU 1436 */ 1437 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1438 t->t_cpu = disp_lowpri_cpu(ncp, 1439 t->t_lpl, t->t_pri, NULL); 1440 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1441 t->t_weakbound_cpu == cp); 1442 1443 t = t->t_forw; 1444 } while (t != p->p_tlist); 1445 1446 /* 1447 * Didn't find any threads in the same lgroup as this 1448 * CPU with a different lpl, so remove the lgroup from 1449 * the process lgroup bitmask. 1450 */ 1451 1452 if (lgrp_diff_lpl == 0) 1453 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1454 } 1455 1456 /* 1457 * Walk thread list looking for threads that need to be 1458 * rehomed, since there are some threads that are not in 1459 * their process's p_tlist. 1460 */ 1461 1462 t = curthread; 1463 do { 1464 ASSERT(t != NULL && t->t_lpl != NULL); 1465 1466 /* 1467 * Rehome threads with same lpl as this CPU when this 1468 * is the last CPU in the lpl. 1469 */ 1470 1471 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1472 lgrp_move_thread(t, 1473 lgrp_choose(t, t->t_cpupart), 1); 1474 1475 ASSERT(t->t_lpl->lpl_ncpu > 0); 1476 1477 /* 1478 * Update CPU last ran on if it was this CPU 1479 */ 1480 1481 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1482 t->t_cpu = disp_lowpri_cpu(ncp, 1483 t->t_lpl, t->t_pri, NULL); 1484 } 1485 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1486 t->t_weakbound_cpu == cp); 1487 t = t->t_next; 1488 1489 } while (t != curthread); 1490 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1491 cp->cpu_flags |= CPU_OFFLINE; 1492 disp_cpu_inactive(cp); 1493 if (!no_quiesce) 1494 cp->cpu_flags |= CPU_QUIESCED; 1495 ncpus_online--; 1496 cpu_set_state(cp); 1497 cpu_inmotion = NULL; 1498 start_cpus(); 1499 cpu_stats_kstat_destroy(cp); 1500 cpu_delete_intrstat(cp); 1501 lgrp_kstat_destroy(cp); 1502 } 1503 1504 out: 1505 cpu_inmotion = NULL; 1506 1507 /* 1508 * If we failed, re-enable interrupts. 1509 * Do this even if cpu_intr_disable returned an error, because 1510 * it may have partially disabled interrupts. 1511 */ 1512 if (error && intr_enable) 1513 cpu_intr_enable(cp); 1514 1515 /* 1516 * If we failed, but managed to offline the cyclic subsystem on this 1517 * CPU, bring it back online. 1518 */ 1519 if (error && cyclic_off) 1520 cyclic_online(cp); 1521 1522 /* 1523 * If we failed, tell the PG subsystem that the CPU is back 1524 */ 1525 pg_cpupart_in(cp, pp); 1526 1527 /* 1528 * If we failed, we need to notify everyone that this CPU is back on. 1529 */ 1530 if (error != 0) 1531 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1532 1533 return (error); 1534 } 1535 1536 /* 1537 * Mark the indicated CPU as faulted, taking it offline. 1538 */ 1539 int 1540 cpu_faulted(cpu_t *cp, int flags) 1541 { 1542 int error = 0; 1543 1544 ASSERT(MUTEX_HELD(&cpu_lock)); 1545 ASSERT(!cpu_is_poweredoff(cp)); 1546 1547 if (cpu_is_offline(cp)) { 1548 cp->cpu_flags &= ~CPU_SPARE; 1549 cp->cpu_flags |= CPU_FAULTED; 1550 mp_cpu_faulted_enter(cp); 1551 cpu_set_state(cp); 1552 return (0); 1553 } 1554 1555 if ((error = cpu_offline(cp, flags)) == 0) { 1556 cp->cpu_flags |= CPU_FAULTED; 1557 mp_cpu_faulted_enter(cp); 1558 cpu_set_state(cp); 1559 } 1560 1561 return (error); 1562 } 1563 1564 /* 1565 * Mark the indicated CPU as a spare, taking it offline. 1566 */ 1567 int 1568 cpu_spare(cpu_t *cp, int flags) 1569 { 1570 int error = 0; 1571 1572 ASSERT(MUTEX_HELD(&cpu_lock)); 1573 ASSERT(!cpu_is_poweredoff(cp)); 1574 1575 if (cpu_is_offline(cp)) { 1576 if (cp->cpu_flags & CPU_FAULTED) { 1577 cp->cpu_flags &= ~CPU_FAULTED; 1578 mp_cpu_faulted_exit(cp); 1579 } 1580 cp->cpu_flags |= CPU_SPARE; 1581 cpu_set_state(cp); 1582 return (0); 1583 } 1584 1585 if ((error = cpu_offline(cp, flags)) == 0) { 1586 cp->cpu_flags |= CPU_SPARE; 1587 cpu_set_state(cp); 1588 } 1589 1590 return (error); 1591 } 1592 1593 /* 1594 * Take the indicated CPU from poweroff to offline. 1595 */ 1596 int 1597 cpu_poweron(cpu_t *cp) 1598 { 1599 int error = ENOTSUP; 1600 1601 ASSERT(MUTEX_HELD(&cpu_lock)); 1602 ASSERT(cpu_is_poweredoff(cp)); 1603 1604 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1605 if (error == 0) 1606 cpu_set_state(cp); 1607 1608 return (error); 1609 } 1610 1611 /* 1612 * Take the indicated CPU from any inactive state to powered off. 1613 */ 1614 int 1615 cpu_poweroff(cpu_t *cp) 1616 { 1617 int error = ENOTSUP; 1618 1619 ASSERT(MUTEX_HELD(&cpu_lock)); 1620 ASSERT(cpu_is_offline(cp)); 1621 1622 if (!(cp->cpu_flags & CPU_QUIESCED)) 1623 return (EBUSY); /* not completely idle */ 1624 1625 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1626 if (error == 0) 1627 cpu_set_state(cp); 1628 1629 return (error); 1630 } 1631 1632 /* 1633 * Initialize the CPU lists for the first CPU. 1634 */ 1635 void 1636 cpu_list_init(cpu_t *cp) 1637 { 1638 cp->cpu_next = cp; 1639 cp->cpu_prev = cp; 1640 cpu_list = cp; 1641 clock_cpu_list = cp; 1642 1643 cp->cpu_next_onln = cp; 1644 cp->cpu_prev_onln = cp; 1645 cpu_active = cp; 1646 1647 cp->cpu_seqid = 0; 1648 CPUSET_ADD(cpu_seqid_inuse, 0); 1649 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1650 cp_default.cp_mach = &cp_default_mach; 1651 cp_default.cp_cpulist = cp; 1652 cp_default.cp_ncpus = 1; 1653 cp->cpu_next_part = cp; 1654 cp->cpu_prev_part = cp; 1655 cp->cpu_part = &cp_default; 1656 1657 CPUSET_ADD(cpu_available, cp->cpu_id); 1658 } 1659 1660 /* 1661 * Insert a CPU into the list of available CPUs. 1662 */ 1663 void 1664 cpu_add_unit(cpu_t *cp) 1665 { 1666 int seqid; 1667 1668 ASSERT(MUTEX_HELD(&cpu_lock)); 1669 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1670 1671 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1672 1673 /* 1674 * Note: most users of the cpu_list will grab the 1675 * cpu_lock to insure that it isn't modified. However, 1676 * certain users can't or won't do that. To allow this 1677 * we pause the other cpus. Users who walk the list 1678 * without cpu_lock, must disable kernel preemption 1679 * to insure that the list isn't modified underneath 1680 * them. Also, any cached pointers to cpu structures 1681 * must be revalidated by checking to see if the 1682 * cpu_next pointer points to itself. This check must 1683 * be done with the cpu_lock held or kernel preemption 1684 * disabled. This check relies upon the fact that 1685 * old cpu structures are not free'ed or cleared after 1686 * then are removed from the cpu_list. 1687 * 1688 * Note that the clock code walks the cpu list dereferencing 1689 * the cpu_part pointer, so we need to initialize it before 1690 * adding the cpu to the list. 1691 */ 1692 cp->cpu_part = &cp_default; 1693 (void) pause_cpus(NULL); 1694 cp->cpu_next = cpu_list; 1695 cp->cpu_prev = cpu_list->cpu_prev; 1696 cpu_list->cpu_prev->cpu_next = cp; 1697 cpu_list->cpu_prev = cp; 1698 start_cpus(); 1699 1700 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1701 continue; 1702 CPUSET_ADD(cpu_seqid_inuse, seqid); 1703 cp->cpu_seqid = seqid; 1704 ASSERT(ncpus < max_ncpus); 1705 ncpus++; 1706 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1707 cpu[cp->cpu_id] = cp; 1708 CPUSET_ADD(cpu_available, cp->cpu_id); 1709 1710 /* 1711 * allocate a pause thread for this CPU. 1712 */ 1713 cpu_pause_alloc(cp); 1714 1715 /* 1716 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1717 * link them into a list of just that CPU. 1718 * This is so that disp_lowpri_cpu will work for thread_create in 1719 * pause_cpus() when called from the startup thread in a new CPU. 1720 */ 1721 cp->cpu_next_onln = cp; 1722 cp->cpu_prev_onln = cp; 1723 cpu_info_kstat_create(cp); 1724 cp->cpu_next_part = cp; 1725 cp->cpu_prev_part = cp; 1726 1727 init_cpu_mstate(cp, CMS_SYSTEM); 1728 1729 pool_pset_mod = gethrtime(); 1730 } 1731 1732 /* 1733 * Do the opposite of cpu_add_unit(). 1734 */ 1735 void 1736 cpu_del_unit(int cpuid) 1737 { 1738 struct cpu *cp, *cpnext; 1739 1740 ASSERT(MUTEX_HELD(&cpu_lock)); 1741 cp = cpu[cpuid]; 1742 ASSERT(cp != NULL); 1743 1744 ASSERT(cp->cpu_next_onln == cp); 1745 ASSERT(cp->cpu_prev_onln == cp); 1746 ASSERT(cp->cpu_next_part == cp); 1747 ASSERT(cp->cpu_prev_part == cp); 1748 1749 /* 1750 * Tear down the CPU's physical ID cache, and update any 1751 * processor groups 1752 */ 1753 pg_cpu_fini(cp); 1754 pghw_physid_destroy(cp); 1755 1756 /* 1757 * Destroy kstat stuff. 1758 */ 1759 cpu_info_kstat_destroy(cp); 1760 term_cpu_mstate(cp); 1761 /* 1762 * Free up pause thread. 1763 */ 1764 cpu_pause_free(cp); 1765 CPUSET_DEL(cpu_available, cp->cpu_id); 1766 cpu[cp->cpu_id] = NULL; 1767 /* 1768 * The clock thread and mutex_vector_enter cannot hold the 1769 * cpu_lock while traversing the cpu list, therefore we pause 1770 * all other threads by pausing the other cpus. These, and any 1771 * other routines holding cpu pointers while possibly sleeping 1772 * must be sure to call kpreempt_disable before processing the 1773 * list and be sure to check that the cpu has not been deleted 1774 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1775 * to keep the deleted cpu structure around. 1776 * 1777 * Note that this MUST be done AFTER cpu_available 1778 * has been updated so that we don't waste time 1779 * trying to pause the cpu we're trying to delete. 1780 */ 1781 (void) pause_cpus(NULL); 1782 1783 cpnext = cp->cpu_next; 1784 cp->cpu_prev->cpu_next = cp->cpu_next; 1785 cp->cpu_next->cpu_prev = cp->cpu_prev; 1786 if (cp == cpu_list) 1787 cpu_list = cpnext; 1788 if (cp == clock_cpu_list) 1789 clock_cpu_list = cpnext; 1790 1791 1792 /* 1793 * Signals that the cpu has been deleted (see above). 1794 */ 1795 cp->cpu_next = NULL; 1796 cp->cpu_prev = NULL; 1797 1798 start_cpus(); 1799 1800 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1801 ncpus--; 1802 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1803 1804 pool_pset_mod = gethrtime(); 1805 } 1806 1807 /* 1808 * Add a CPU to the list of active CPUs. 1809 * This routine must not get any locks, because other CPUs are paused. 1810 */ 1811 static void 1812 cpu_add_active_internal(cpu_t *cp) 1813 { 1814 cpupart_t *pp = cp->cpu_part; 1815 1816 ASSERT(MUTEX_HELD(&cpu_lock)); 1817 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1818 1819 ncpus_online++; 1820 cpu_set_state(cp); 1821 cp->cpu_next_onln = cpu_active; 1822 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1823 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1824 cpu_active->cpu_prev_onln = cp; 1825 1826 if (pp->cp_cpulist) { 1827 cp->cpu_next_part = pp->cp_cpulist; 1828 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1829 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1830 pp->cp_cpulist->cpu_prev_part = cp; 1831 } else { 1832 ASSERT(pp->cp_ncpus == 0); 1833 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1834 } 1835 pp->cp_ncpus++; 1836 if (pp->cp_ncpus == 1) { 1837 cp_numparts_nonempty++; 1838 ASSERT(cp_numparts_nonempty != 0); 1839 } 1840 1841 pg_cpu_active(cp); 1842 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1843 1844 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1845 } 1846 1847 /* 1848 * Add a CPU to the list of active CPUs. 1849 * This is called from machine-dependent layers when a new CPU is started. 1850 */ 1851 void 1852 cpu_add_active(cpu_t *cp) 1853 { 1854 pg_cpupart_in(cp, cp->cpu_part); 1855 1856 pause_cpus(NULL); 1857 cpu_add_active_internal(cp); 1858 start_cpus(); 1859 1860 cpu_stats_kstat_create(cp); 1861 cpu_create_intrstat(cp); 1862 lgrp_kstat_create(cp); 1863 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1864 } 1865 1866 1867 /* 1868 * Remove a CPU from the list of active CPUs. 1869 * This routine must not get any locks, because other CPUs are paused. 1870 */ 1871 /* ARGSUSED */ 1872 static void 1873 cpu_remove_active(cpu_t *cp) 1874 { 1875 cpupart_t *pp = cp->cpu_part; 1876 1877 ASSERT(MUTEX_HELD(&cpu_lock)); 1878 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1879 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1880 1881 pg_cpu_inactive(cp); 1882 1883 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1884 1885 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1886 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1887 if (cpu_active == cp) { 1888 cpu_active = cp->cpu_next_onln; 1889 } 1890 cp->cpu_next_onln = cp; 1891 cp->cpu_prev_onln = cp; 1892 1893 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1894 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1895 if (pp->cp_cpulist == cp) { 1896 pp->cp_cpulist = cp->cpu_next_part; 1897 ASSERT(pp->cp_cpulist != cp); 1898 } 1899 cp->cpu_next_part = cp; 1900 cp->cpu_prev_part = cp; 1901 pp->cp_ncpus--; 1902 if (pp->cp_ncpus == 0) { 1903 cp_numparts_nonempty--; 1904 ASSERT(cp_numparts_nonempty != 0); 1905 } 1906 } 1907 1908 /* 1909 * Routine used to setup a newly inserted CPU in preparation for starting 1910 * it running code. 1911 */ 1912 int 1913 cpu_configure(int cpuid) 1914 { 1915 int retval = 0; 1916 1917 ASSERT(MUTEX_HELD(&cpu_lock)); 1918 1919 /* 1920 * Some structures are statically allocated based upon 1921 * the maximum number of cpus the system supports. Do not 1922 * try to add anything beyond this limit. 1923 */ 1924 if (cpuid < 0 || cpuid >= NCPU) { 1925 return (EINVAL); 1926 } 1927 1928 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1929 return (EALREADY); 1930 } 1931 1932 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1933 return (retval); 1934 } 1935 1936 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1937 cpu_set_state(cpu[cpuid]); 1938 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1939 if (retval != 0) 1940 (void) mp_cpu_unconfigure(cpuid); 1941 1942 return (retval); 1943 } 1944 1945 /* 1946 * Routine used to cleanup a CPU that has been powered off. This will 1947 * destroy all per-cpu information related to this cpu. 1948 */ 1949 int 1950 cpu_unconfigure(int cpuid) 1951 { 1952 int error; 1953 1954 ASSERT(MUTEX_HELD(&cpu_lock)); 1955 1956 if (cpu[cpuid] == NULL) { 1957 return (ENODEV); 1958 } 1959 1960 if (cpu[cpuid]->cpu_flags == 0) { 1961 return (EALREADY); 1962 } 1963 1964 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 1965 return (EBUSY); 1966 } 1967 1968 if (cpu[cpuid]->cpu_props != NULL) { 1969 (void) nvlist_free(cpu[cpuid]->cpu_props); 1970 cpu[cpuid]->cpu_props = NULL; 1971 } 1972 1973 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 1974 1975 if (error != 0) 1976 return (error); 1977 1978 return (mp_cpu_unconfigure(cpuid)); 1979 } 1980 1981 /* 1982 * Routines for registering and de-registering cpu_setup callback functions. 1983 * 1984 * Caller's context 1985 * These routines must not be called from a driver's attach(9E) or 1986 * detach(9E) entry point. 1987 * 1988 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 1989 */ 1990 1991 /* 1992 * Ideally, these would be dynamically allocated and put into a linked 1993 * list; however that is not feasible because the registration routine 1994 * has to be available before the kmem allocator is working (in fact, 1995 * it is called by the kmem allocator init code). In any case, there 1996 * are quite a few extra entries for future users. 1997 */ 1998 #define NCPU_SETUPS 20 1999 2000 struct cpu_setup { 2001 cpu_setup_func_t *func; 2002 void *arg; 2003 } cpu_setups[NCPU_SETUPS]; 2004 2005 void 2006 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2007 { 2008 int i; 2009 2010 ASSERT(MUTEX_HELD(&cpu_lock)); 2011 2012 for (i = 0; i < NCPU_SETUPS; i++) 2013 if (cpu_setups[i].func == NULL) 2014 break; 2015 if (i >= NCPU_SETUPS) 2016 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2017 2018 cpu_setups[i].func = func; 2019 cpu_setups[i].arg = arg; 2020 } 2021 2022 void 2023 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2024 { 2025 int i; 2026 2027 ASSERT(MUTEX_HELD(&cpu_lock)); 2028 2029 for (i = 0; i < NCPU_SETUPS; i++) 2030 if ((cpu_setups[i].func == func) && 2031 (cpu_setups[i].arg == arg)) 2032 break; 2033 if (i >= NCPU_SETUPS) 2034 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2035 "deregister"); 2036 2037 cpu_setups[i].func = NULL; 2038 cpu_setups[i].arg = 0; 2039 } 2040 2041 /* 2042 * Call any state change hooks for this CPU, ignore any errors. 2043 */ 2044 void 2045 cpu_state_change_notify(int id, cpu_setup_t what) 2046 { 2047 int i; 2048 2049 ASSERT(MUTEX_HELD(&cpu_lock)); 2050 2051 for (i = 0; i < NCPU_SETUPS; i++) { 2052 if (cpu_setups[i].func != NULL) { 2053 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2054 } 2055 } 2056 } 2057 2058 /* 2059 * Call any state change hooks for this CPU, undo it if error found. 2060 */ 2061 static int 2062 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2063 { 2064 int i; 2065 int retval = 0; 2066 2067 ASSERT(MUTEX_HELD(&cpu_lock)); 2068 2069 for (i = 0; i < NCPU_SETUPS; i++) { 2070 if (cpu_setups[i].func != NULL) { 2071 retval = cpu_setups[i].func(what, id, 2072 cpu_setups[i].arg); 2073 if (retval) { 2074 for (i--; i >= 0; i--) { 2075 if (cpu_setups[i].func != NULL) 2076 cpu_setups[i].func(undo, 2077 id, cpu_setups[i].arg); 2078 } 2079 break; 2080 } 2081 } 2082 } 2083 return (retval); 2084 } 2085 2086 /* 2087 * Export information about this CPU via the kstat mechanism. 2088 */ 2089 static struct { 2090 kstat_named_t ci_state; 2091 kstat_named_t ci_state_begin; 2092 kstat_named_t ci_cpu_type; 2093 kstat_named_t ci_fpu_type; 2094 kstat_named_t ci_clock_MHz; 2095 kstat_named_t ci_chip_id; 2096 kstat_named_t ci_implementation; 2097 kstat_named_t ci_brandstr; 2098 kstat_named_t ci_core_id; 2099 kstat_named_t ci_curr_clock_Hz; 2100 kstat_named_t ci_supp_freq_Hz; 2101 #if defined(__sparcv9) 2102 kstat_named_t ci_device_ID; 2103 kstat_named_t ci_cpu_fru; 2104 #endif 2105 #if defined(__x86) 2106 kstat_named_t ci_vendorstr; 2107 kstat_named_t ci_family; 2108 kstat_named_t ci_model; 2109 kstat_named_t ci_step; 2110 kstat_named_t ci_clogid; 2111 kstat_named_t ci_ncpuperchip; 2112 kstat_named_t ci_ncoreperchip; 2113 #endif 2114 } cpu_info_template = { 2115 { "state", KSTAT_DATA_CHAR }, 2116 { "state_begin", KSTAT_DATA_LONG }, 2117 { "cpu_type", KSTAT_DATA_CHAR }, 2118 { "fpu_type", KSTAT_DATA_CHAR }, 2119 { "clock_MHz", KSTAT_DATA_LONG }, 2120 { "chip_id", KSTAT_DATA_LONG }, 2121 { "implementation", KSTAT_DATA_STRING }, 2122 { "brand", KSTAT_DATA_STRING }, 2123 { "core_id", KSTAT_DATA_LONG }, 2124 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2125 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2126 #if defined(__sparcv9) 2127 { "device_ID", KSTAT_DATA_UINT64 }, 2128 { "cpu_fru", KSTAT_DATA_STRING }, 2129 #endif 2130 #if defined(__x86) 2131 { "vendor_id", KSTAT_DATA_STRING }, 2132 { "family", KSTAT_DATA_INT32 }, 2133 { "model", KSTAT_DATA_INT32 }, 2134 { "stepping", KSTAT_DATA_INT32 }, 2135 { "clog_id", KSTAT_DATA_INT32 }, 2136 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2137 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2138 #endif 2139 }; 2140 2141 static kmutex_t cpu_info_template_lock; 2142 2143 static int 2144 cpu_info_kstat_update(kstat_t *ksp, int rw) 2145 { 2146 cpu_t *cp = ksp->ks_private; 2147 const char *pi_state; 2148 2149 if (rw == KSTAT_WRITE) 2150 return (EACCES); 2151 2152 switch (cp->cpu_type_info.pi_state) { 2153 case P_ONLINE: 2154 pi_state = PS_ONLINE; 2155 break; 2156 case P_POWEROFF: 2157 pi_state = PS_POWEROFF; 2158 break; 2159 case P_NOINTR: 2160 pi_state = PS_NOINTR; 2161 break; 2162 case P_FAULTED: 2163 pi_state = PS_FAULTED; 2164 break; 2165 case P_SPARE: 2166 pi_state = PS_SPARE; 2167 break; 2168 case P_OFFLINE: 2169 pi_state = PS_OFFLINE; 2170 break; 2171 default: 2172 pi_state = "unknown"; 2173 } 2174 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2175 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2176 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2177 cp->cpu_type_info.pi_processor_type, 15); 2178 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2179 cp->cpu_type_info.pi_fputypes, 15); 2180 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2181 cpu_info_template.ci_chip_id.value.l = 2182 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2183 kstat_named_setstr(&cpu_info_template.ci_implementation, 2184 cp->cpu_idstr); 2185 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2186 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2187 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2188 cp->cpu_curr_clock; 2189 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2190 cp->cpu_supp_freqs); 2191 #if defined(__sparcv9) 2192 cpu_info_template.ci_device_ID.value.ui64 = 2193 cpunodes[cp->cpu_id].device_id; 2194 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2195 #endif 2196 #if defined(__x86) 2197 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2198 cpuid_getvendorstr(cp)); 2199 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2200 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2201 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2202 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2203 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2204 cpu_info_template.ci_ncoreperchip.value.l = 2205 cpuid_get_ncore_per_chip(cp); 2206 #endif 2207 2208 return (0); 2209 } 2210 2211 static void 2212 cpu_info_kstat_create(cpu_t *cp) 2213 { 2214 zoneid_t zoneid; 2215 2216 ASSERT(MUTEX_HELD(&cpu_lock)); 2217 2218 if (pool_pset_enabled()) 2219 zoneid = GLOBAL_ZONEID; 2220 else 2221 zoneid = ALL_ZONES; 2222 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2223 NULL, "misc", KSTAT_TYPE_NAMED, 2224 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2225 KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) { 2226 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2227 #if defined(__sparcv9) 2228 cp->cpu_info_kstat->ks_data_size += 2229 strlen(cpu_fru_fmri(cp)) + 1; 2230 #endif 2231 #if defined(__x86) 2232 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2233 #endif 2234 if (cp->cpu_supp_freqs != NULL) 2235 cp->cpu_info_kstat->ks_data_size += 2236 strlen(cp->cpu_supp_freqs) + 1; 2237 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2238 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2239 cp->cpu_info_kstat->ks_private = cp; 2240 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2241 kstat_install(cp->cpu_info_kstat); 2242 } 2243 } 2244 2245 static void 2246 cpu_info_kstat_destroy(cpu_t *cp) 2247 { 2248 ASSERT(MUTEX_HELD(&cpu_lock)); 2249 2250 kstat_delete(cp->cpu_info_kstat); 2251 cp->cpu_info_kstat = NULL; 2252 } 2253 2254 /* 2255 * Create and install kstats for the boot CPU. 2256 */ 2257 void 2258 cpu_kstat_init(cpu_t *cp) 2259 { 2260 mutex_enter(&cpu_lock); 2261 cpu_info_kstat_create(cp); 2262 cpu_stats_kstat_create(cp); 2263 cpu_create_intrstat(cp); 2264 cpu_set_state(cp); 2265 mutex_exit(&cpu_lock); 2266 } 2267 2268 /* 2269 * Make visible to the zone that subset of the cpu information that would be 2270 * initialized when a cpu is configured (but still offline). 2271 */ 2272 void 2273 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2274 { 2275 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2276 2277 ASSERT(MUTEX_HELD(&cpu_lock)); 2278 ASSERT(pool_pset_enabled()); 2279 ASSERT(cp != NULL); 2280 2281 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2282 zone->zone_ncpus++; 2283 ASSERT(zone->zone_ncpus <= ncpus); 2284 } 2285 if (cp->cpu_info_kstat != NULL) 2286 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2287 } 2288 2289 /* 2290 * Make visible to the zone that subset of the cpu information that would be 2291 * initialized when a previously configured cpu is onlined. 2292 */ 2293 void 2294 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2295 { 2296 kstat_t *ksp; 2297 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2298 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2299 processorid_t cpun; 2300 2301 ASSERT(MUTEX_HELD(&cpu_lock)); 2302 ASSERT(pool_pset_enabled()); 2303 ASSERT(cp != NULL); 2304 ASSERT(cpu_is_active(cp)); 2305 2306 cpun = cp->cpu_id; 2307 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2308 zone->zone_ncpus_online++; 2309 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2310 } 2311 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2312 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2313 != NULL) { 2314 kstat_zone_add(ksp, zoneid); 2315 kstat_rele(ksp); 2316 } 2317 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2318 kstat_zone_add(ksp, zoneid); 2319 kstat_rele(ksp); 2320 } 2321 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2322 kstat_zone_add(ksp, zoneid); 2323 kstat_rele(ksp); 2324 } 2325 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2326 NULL) { 2327 kstat_zone_add(ksp, zoneid); 2328 kstat_rele(ksp); 2329 } 2330 } 2331 2332 /* 2333 * Update relevant kstats such that cpu is now visible to processes 2334 * executing in specified zone. 2335 */ 2336 void 2337 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2338 { 2339 cpu_visibility_configure(cp, zone); 2340 if (cpu_is_active(cp)) 2341 cpu_visibility_online(cp, zone); 2342 } 2343 2344 /* 2345 * Make invisible to the zone that subset of the cpu information that would be 2346 * torn down when a previously offlined cpu is unconfigured. 2347 */ 2348 void 2349 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2350 { 2351 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2352 2353 ASSERT(MUTEX_HELD(&cpu_lock)); 2354 ASSERT(pool_pset_enabled()); 2355 ASSERT(cp != NULL); 2356 2357 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2358 ASSERT(zone->zone_ncpus != 0); 2359 zone->zone_ncpus--; 2360 } 2361 if (cp->cpu_info_kstat) 2362 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2363 } 2364 2365 /* 2366 * Make invisible to the zone that subset of the cpu information that would be 2367 * torn down when a cpu is offlined (but still configured). 2368 */ 2369 void 2370 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2371 { 2372 kstat_t *ksp; 2373 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2374 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2375 processorid_t cpun; 2376 2377 ASSERT(MUTEX_HELD(&cpu_lock)); 2378 ASSERT(pool_pset_enabled()); 2379 ASSERT(cp != NULL); 2380 ASSERT(cpu_is_active(cp)); 2381 2382 cpun = cp->cpu_id; 2383 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2384 ASSERT(zone->zone_ncpus_online != 0); 2385 zone->zone_ncpus_online--; 2386 } 2387 2388 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2389 NULL) { 2390 kstat_zone_remove(ksp, zoneid); 2391 kstat_rele(ksp); 2392 } 2393 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2394 kstat_zone_remove(ksp, zoneid); 2395 kstat_rele(ksp); 2396 } 2397 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2398 kstat_zone_remove(ksp, zoneid); 2399 kstat_rele(ksp); 2400 } 2401 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2402 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2403 != NULL) { 2404 kstat_zone_remove(ksp, zoneid); 2405 kstat_rele(ksp); 2406 } 2407 } 2408 2409 /* 2410 * Update relevant kstats such that cpu is no longer visible to processes 2411 * executing in specified zone. 2412 */ 2413 void 2414 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2415 { 2416 if (cpu_is_active(cp)) 2417 cpu_visibility_offline(cp, zone); 2418 cpu_visibility_unconfigure(cp, zone); 2419 } 2420 2421 /* 2422 * Bind a thread to a CPU as requested. 2423 */ 2424 int 2425 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2426 int *error) 2427 { 2428 processorid_t binding; 2429 cpu_t *cp; 2430 2431 ASSERT(MUTEX_HELD(&cpu_lock)); 2432 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2433 2434 thread_lock(tp); 2435 2436 /* 2437 * Record old binding, but change the obind, which was initialized 2438 * to PBIND_NONE, only if this thread has a binding. This avoids 2439 * reporting PBIND_NONE for a process when some LWPs are bound. 2440 */ 2441 binding = tp->t_bind_cpu; 2442 if (binding != PBIND_NONE) 2443 *obind = binding; /* record old binding */ 2444 2445 if (bind == PBIND_QUERY) { 2446 thread_unlock(tp); 2447 return (0); 2448 } 2449 2450 /* 2451 * If this thread/LWP cannot be bound because of permission 2452 * problems, just note that and return success so that the 2453 * other threads/LWPs will be bound. This is the way 2454 * processor_bind() is defined to work. 2455 * 2456 * Binding will get EPERM if the thread is of system class 2457 * or hasprocperm() fails. 2458 */ 2459 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2460 *error = EPERM; 2461 thread_unlock(tp); 2462 return (0); 2463 } 2464 2465 binding = bind; 2466 if (binding != PBIND_NONE) { 2467 cp = cpu[binding]; 2468 /* 2469 * Make sure binding is in right partition. 2470 */ 2471 if (tp->t_cpupart != cp->cpu_part) { 2472 *error = EINVAL; 2473 thread_unlock(tp); 2474 return (0); 2475 } 2476 } 2477 tp->t_bind_cpu = binding; /* set new binding */ 2478 2479 /* 2480 * If there is no system-set reason for affinity, set 2481 * the t_bound_cpu field to reflect the binding. 2482 */ 2483 if (tp->t_affinitycnt == 0) { 2484 if (binding == PBIND_NONE) { 2485 /* 2486 * We may need to adjust disp_max_unbound_pri 2487 * since we're becoming unbound. 2488 */ 2489 disp_adjust_unbound_pri(tp); 2490 2491 tp->t_bound_cpu = NULL; /* set new binding */ 2492 2493 /* 2494 * Move thread to lgroup with strongest affinity 2495 * after unbinding 2496 */ 2497 if (tp->t_lgrp_affinity) 2498 lgrp_move_thread(tp, 2499 lgrp_choose(tp, tp->t_cpupart), 1); 2500 2501 if (tp->t_state == TS_ONPROC && 2502 tp->t_cpu->cpu_part != tp->t_cpupart) 2503 cpu_surrender(tp); 2504 } else { 2505 lpl_t *lpl; 2506 2507 tp->t_bound_cpu = cp; 2508 ASSERT(cp->cpu_lpl != NULL); 2509 2510 /* 2511 * Set home to lgroup with most affinity containing CPU 2512 * that thread is being bound or minimum bounding 2513 * lgroup if no affinities set 2514 */ 2515 if (tp->t_lgrp_affinity) 2516 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2517 LGRP_NONE, B_FALSE); 2518 else 2519 lpl = cp->cpu_lpl; 2520 2521 if (tp->t_lpl != lpl) { 2522 /* can't grab cpu_lock */ 2523 lgrp_move_thread(tp, lpl, 1); 2524 } 2525 2526 /* 2527 * Make the thread switch to the bound CPU. 2528 * If the thread is runnable, we need to 2529 * requeue it even if t_cpu is already set 2530 * to the right CPU, since it may be on a 2531 * kpreempt queue and need to move to a local 2532 * queue. We could check t_disp_queue to 2533 * avoid unnecessary overhead if it's already 2534 * on the right queue, but since this isn't 2535 * a performance-critical operation it doesn't 2536 * seem worth the extra code and complexity. 2537 * 2538 * If the thread is weakbound to the cpu then it will 2539 * resist the new binding request until the weak 2540 * binding drops. The cpu_surrender or requeueing 2541 * below could be skipped in such cases (since it 2542 * will have no effect), but that would require 2543 * thread_allowmigrate to acquire thread_lock so 2544 * we'll take the very occasional hit here instead. 2545 */ 2546 if (tp->t_state == TS_ONPROC) { 2547 cpu_surrender(tp); 2548 } else if (tp->t_state == TS_RUN) { 2549 cpu_t *ocp = tp->t_cpu; 2550 2551 (void) dispdeq(tp); 2552 setbackdq(tp); 2553 /* 2554 * Either on the bound CPU's disp queue now, 2555 * or swapped out or on the swap queue. 2556 */ 2557 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2558 tp->t_weakbound_cpu == ocp || 2559 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2560 != TS_LOAD); 2561 } 2562 } 2563 } 2564 2565 /* 2566 * Our binding has changed; set TP_CHANGEBIND. 2567 */ 2568 tp->t_proc_flag |= TP_CHANGEBIND; 2569 aston(tp); 2570 2571 thread_unlock(tp); 2572 2573 return (0); 2574 } 2575 2576 #if CPUSET_WORDS > 1 2577 2578 /* 2579 * Functions for implementing cpuset operations when a cpuset is more 2580 * than one word. On platforms where a cpuset is a single word these 2581 * are implemented as macros in cpuvar.h. 2582 */ 2583 2584 void 2585 cpuset_all(cpuset_t *s) 2586 { 2587 int i; 2588 2589 for (i = 0; i < CPUSET_WORDS; i++) 2590 s->cpub[i] = ~0UL; 2591 } 2592 2593 void 2594 cpuset_all_but(cpuset_t *s, uint_t cpu) 2595 { 2596 cpuset_all(s); 2597 CPUSET_DEL(*s, cpu); 2598 } 2599 2600 void 2601 cpuset_only(cpuset_t *s, uint_t cpu) 2602 { 2603 CPUSET_ZERO(*s); 2604 CPUSET_ADD(*s, cpu); 2605 } 2606 2607 int 2608 cpuset_isnull(cpuset_t *s) 2609 { 2610 int i; 2611 2612 for (i = 0; i < CPUSET_WORDS; i++) 2613 if (s->cpub[i] != 0) 2614 return (0); 2615 return (1); 2616 } 2617 2618 int 2619 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2620 { 2621 int i; 2622 2623 for (i = 0; i < CPUSET_WORDS; i++) 2624 if (s1->cpub[i] != s2->cpub[i]) 2625 return (0); 2626 return (1); 2627 } 2628 2629 uint_t 2630 cpuset_find(cpuset_t *s) 2631 { 2632 2633 uint_t i; 2634 uint_t cpu = (uint_t)-1; 2635 2636 /* 2637 * Find a cpu in the cpuset 2638 */ 2639 for (i = 0; i < CPUSET_WORDS; i++) { 2640 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2641 if (cpu != (uint_t)-1) { 2642 cpu += i * BT_NBIPUL; 2643 break; 2644 } 2645 } 2646 return (cpu); 2647 } 2648 2649 void 2650 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2651 { 2652 int i, j; 2653 uint_t bit; 2654 2655 /* 2656 * First, find the smallest cpu id in the set. 2657 */ 2658 for (i = 0; i < CPUSET_WORDS; i++) { 2659 if (s->cpub[i] != 0) { 2660 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2661 ASSERT(bit != (uint_t)-1); 2662 *smallestid = bit + (i * BT_NBIPUL); 2663 2664 /* 2665 * Now find the largest cpu id in 2666 * the set and return immediately. 2667 * Done in an inner loop to avoid 2668 * having to break out of the first 2669 * loop. 2670 */ 2671 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2672 if (s->cpub[j] != 0) { 2673 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2674 ASSERT(bit != (uint_t)-1); 2675 *largestid = bit + (j * BT_NBIPUL); 2676 ASSERT(*largestid >= *smallestid); 2677 return; 2678 } 2679 } 2680 2681 /* 2682 * If this code is reached, a 2683 * smallestid was found, but not a 2684 * largestid. The cpuset must have 2685 * been changed during the course 2686 * of this function call. 2687 */ 2688 ASSERT(0); 2689 } 2690 } 2691 *smallestid = *largestid = CPUSET_NOTINSET; 2692 } 2693 2694 #endif /* CPUSET_WORDS */ 2695 2696 /* 2697 * Unbind all user threads bound to a given CPU. 2698 */ 2699 int 2700 cpu_unbind(processorid_t cpu) 2701 { 2702 processorid_t obind; 2703 kthread_t *tp; 2704 int ret = 0; 2705 proc_t *pp; 2706 int err, berr = 0; 2707 2708 ASSERT(MUTEX_HELD(&cpu_lock)); 2709 2710 mutex_enter(&pidlock); 2711 for (pp = practive; pp != NULL; pp = pp->p_next) { 2712 mutex_enter(&pp->p_lock); 2713 tp = pp->p_tlist; 2714 /* 2715 * Skip zombies, kernel processes, and processes in 2716 * other zones, if called from a non-global zone. 2717 */ 2718 if (tp == NULL || (pp->p_flag & SSYS) || 2719 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2720 mutex_exit(&pp->p_lock); 2721 continue; 2722 } 2723 do { 2724 if (tp->t_bind_cpu != cpu) 2725 continue; 2726 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2727 if (ret == 0) 2728 ret = err; 2729 } while ((tp = tp->t_forw) != pp->p_tlist); 2730 mutex_exit(&pp->p_lock); 2731 } 2732 mutex_exit(&pidlock); 2733 if (ret == 0) 2734 ret = berr; 2735 return (ret); 2736 } 2737 2738 2739 /* 2740 * Destroy all remaining bound threads on a cpu. 2741 */ 2742 void 2743 cpu_destroy_bound_threads(cpu_t *cp) 2744 { 2745 extern id_t syscid; 2746 register kthread_id_t t, tlist, tnext; 2747 2748 /* 2749 * Destroy all remaining bound threads on the cpu. This 2750 * should include both the interrupt threads and the idle thread. 2751 * This requires some care, since we need to traverse the 2752 * thread list with the pidlock mutex locked, but thread_free 2753 * also locks the pidlock mutex. So, we collect the threads 2754 * we're going to reap in a list headed by "tlist", then we 2755 * unlock the pidlock mutex and traverse the tlist list, 2756 * doing thread_free's on the thread's. Simple, n'est pas? 2757 * Also, this depends on thread_free not mucking with the 2758 * t_next and t_prev links of the thread. 2759 */ 2760 2761 if ((t = curthread) != NULL) { 2762 2763 tlist = NULL; 2764 mutex_enter(&pidlock); 2765 do { 2766 tnext = t->t_next; 2767 if (t->t_bound_cpu == cp) { 2768 2769 /* 2770 * We've found a bound thread, carefully unlink 2771 * it out of the thread list, and add it to 2772 * our "tlist". We "know" we don't have to 2773 * worry about unlinking curthread (the thread 2774 * that is executing this code). 2775 */ 2776 t->t_next->t_prev = t->t_prev; 2777 t->t_prev->t_next = t->t_next; 2778 t->t_next = tlist; 2779 tlist = t; 2780 ASSERT(t->t_cid == syscid); 2781 /* wake up anyone blocked in thread_join */ 2782 cv_broadcast(&t->t_joincv); 2783 /* 2784 * t_lwp set by interrupt threads and not 2785 * cleared. 2786 */ 2787 t->t_lwp = NULL; 2788 /* 2789 * Pause and idle threads always have 2790 * t_state set to TS_ONPROC. 2791 */ 2792 t->t_state = TS_FREE; 2793 t->t_prev = NULL; /* Just in case */ 2794 } 2795 2796 } while ((t = tnext) != curthread); 2797 2798 mutex_exit(&pidlock); 2799 2800 2801 for (t = tlist; t != NULL; t = tnext) { 2802 tnext = t->t_next; 2803 thread_free(t); 2804 } 2805 } 2806 } 2807 2808 /* 2809 * Update the cpu_supp_freqs of this cpu. This information is returned 2810 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 2811 * maintain the kstat data size. 2812 */ 2813 void 2814 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2815 { 2816 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2817 const char *lfreqs = clkstr; 2818 boolean_t kstat_exists = B_FALSE; 2819 kstat_t *ksp; 2820 size_t len; 2821 2822 /* 2823 * A NULL pointer means we only support one speed. 2824 */ 2825 if (freqs == NULL) 2826 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2827 cp->cpu_curr_clock); 2828 else 2829 lfreqs = freqs; 2830 2831 /* 2832 * Make sure the frequency doesn't change while a snapshot is 2833 * going on. Of course, we only need to worry about this if 2834 * the kstat exists. 2835 */ 2836 if ((ksp = cp->cpu_info_kstat) != NULL) { 2837 mutex_enter(ksp->ks_lock); 2838 kstat_exists = B_TRUE; 2839 } 2840 2841 /* 2842 * Free any previously allocated string and if the kstat 2843 * already exists, then update its data size. 2844 */ 2845 if (cp->cpu_supp_freqs != NULL) { 2846 len = strlen(cp->cpu_supp_freqs) + 1; 2847 kmem_free(cp->cpu_supp_freqs, len); 2848 if (kstat_exists) 2849 ksp->ks_data_size -= len; 2850 } 2851 2852 /* 2853 * Allocate the new string and set the pointer. 2854 */ 2855 len = strlen(lfreqs) + 1; 2856 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 2857 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 2858 2859 /* 2860 * If the kstat already exists then update the data size and 2861 * free the lock. 2862 */ 2863 if (kstat_exists) { 2864 ksp->ks_data_size += len; 2865 mutex_exit(ksp->ks_lock); 2866 } 2867 } 2868 2869 /* 2870 * processor_info(2) and p_online(2) status support functions 2871 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 2872 * for use in communicating processor state information to userland. Kernel 2873 * subsystems should only be using the cpu_flags value directly. Subsystems 2874 * modifying cpu_flags should record the state change via a call to the 2875 * cpu_set_state(). 2876 */ 2877 2878 /* 2879 * Update the pi_state of this CPU. This function provides the CPU status for 2880 * the information returned by processor_info(2). 2881 */ 2882 void 2883 cpu_set_state(cpu_t *cpu) 2884 { 2885 ASSERT(MUTEX_HELD(&cpu_lock)); 2886 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 2887 cpu->cpu_state_begin = gethrestime_sec(); 2888 pool_cpu_mod = gethrtime(); 2889 } 2890 2891 /* 2892 * Return offline/online/other status for the indicated CPU. Use only for 2893 * communication with user applications; cpu_flags provides the in-kernel 2894 * interface. 2895 */ 2896 int 2897 cpu_get_state(cpu_t *cpu) 2898 { 2899 ASSERT(MUTEX_HELD(&cpu_lock)); 2900 if (cpu->cpu_flags & CPU_POWEROFF) 2901 return (P_POWEROFF); 2902 else if (cpu->cpu_flags & CPU_FAULTED) 2903 return (P_FAULTED); 2904 else if (cpu->cpu_flags & CPU_SPARE) 2905 return (P_SPARE); 2906 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 2907 return (P_OFFLINE); 2908 else if (cpu->cpu_flags & CPU_ENABLE) 2909 return (P_ONLINE); 2910 else 2911 return (P_NOINTR); 2912 } 2913 2914 /* 2915 * Return processor_info(2) state as a string. 2916 */ 2917 const char * 2918 cpu_get_state_str(cpu_t *cpu) 2919 { 2920 const char *string; 2921 2922 switch (cpu_get_state(cpu)) { 2923 case P_ONLINE: 2924 string = PS_ONLINE; 2925 break; 2926 case P_POWEROFF: 2927 string = PS_POWEROFF; 2928 break; 2929 case P_NOINTR: 2930 string = PS_NOINTR; 2931 break; 2932 case P_SPARE: 2933 string = PS_SPARE; 2934 break; 2935 case P_FAULTED: 2936 string = PS_FAULTED; 2937 break; 2938 case P_OFFLINE: 2939 string = PS_OFFLINE; 2940 break; 2941 default: 2942 string = "unknown"; 2943 break; 2944 } 2945 return (string); 2946 } 2947 2948 /* 2949 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 2950 * kstats, respectively. This is done when a CPU is initialized or placed 2951 * online via p_online(2). 2952 */ 2953 static void 2954 cpu_stats_kstat_create(cpu_t *cp) 2955 { 2956 int instance = cp->cpu_id; 2957 char *module = "cpu"; 2958 char *class = "misc"; 2959 kstat_t *ksp; 2960 zoneid_t zoneid; 2961 2962 ASSERT(MUTEX_HELD(&cpu_lock)); 2963 2964 if (pool_pset_enabled()) 2965 zoneid = GLOBAL_ZONEID; 2966 else 2967 zoneid = ALL_ZONES; 2968 /* 2969 * Create named kstats 2970 */ 2971 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 2972 ksp = kstat_create_zone(module, instance, (name), class, \ 2973 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 2974 zoneid); \ 2975 if (ksp != NULL) { \ 2976 ksp->ks_private = cp; \ 2977 ksp->ks_update = (update_func); \ 2978 kstat_install(ksp); \ 2979 } else \ 2980 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 2981 module, instance, (name)); 2982 2983 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 2984 cpu_sys_stats_ks_update); 2985 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 2986 cpu_vm_stats_ks_update); 2987 2988 /* 2989 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 2990 */ 2991 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 2992 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 2993 if (ksp != NULL) { 2994 ksp->ks_update = cpu_stat_ks_update; 2995 ksp->ks_private = cp; 2996 kstat_install(ksp); 2997 } 2998 } 2999 3000 static void 3001 cpu_stats_kstat_destroy(cpu_t *cp) 3002 { 3003 char ks_name[KSTAT_STRLEN]; 3004 3005 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3006 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3007 3008 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3009 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3010 } 3011 3012 static int 3013 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3014 { 3015 cpu_t *cp = (cpu_t *)ksp->ks_private; 3016 struct cpu_sys_stats_ks_data *csskd; 3017 cpu_sys_stats_t *css; 3018 hrtime_t msnsecs[NCMSTATES]; 3019 int i; 3020 3021 if (rw == KSTAT_WRITE) 3022 return (EACCES); 3023 3024 csskd = ksp->ks_data; 3025 css = &cp->cpu_stats.sys; 3026 3027 /* 3028 * Read CPU mstate, but compare with the last values we 3029 * received to make sure that the returned kstats never 3030 * decrease. 3031 */ 3032 3033 get_cpu_mstate(cp, msnsecs); 3034 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3035 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3036 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3037 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3038 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3039 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3040 3041 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3042 sizeof (cpu_sys_stats_ks_data_template)); 3043 3044 csskd->cpu_ticks_wait.value.ui64 = 0; 3045 csskd->wait_ticks_io.value.ui64 = 0; 3046 3047 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3048 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3049 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3050 csskd->cpu_ticks_idle.value.ui64 = 3051 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3052 csskd->cpu_ticks_user.value.ui64 = 3053 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3054 csskd->cpu_ticks_kernel.value.ui64 = 3055 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3056 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3057 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3058 csskd->bread.value.ui64 = css->bread; 3059 csskd->bwrite.value.ui64 = css->bwrite; 3060 csskd->lread.value.ui64 = css->lread; 3061 csskd->lwrite.value.ui64 = css->lwrite; 3062 csskd->phread.value.ui64 = css->phread; 3063 csskd->phwrite.value.ui64 = css->phwrite; 3064 csskd->pswitch.value.ui64 = css->pswitch; 3065 csskd->trap.value.ui64 = css->trap; 3066 csskd->intr.value.ui64 = 0; 3067 for (i = 0; i < PIL_MAX; i++) 3068 csskd->intr.value.ui64 += css->intr[i]; 3069 csskd->syscall.value.ui64 = css->syscall; 3070 csskd->sysread.value.ui64 = css->sysread; 3071 csskd->syswrite.value.ui64 = css->syswrite; 3072 csskd->sysfork.value.ui64 = css->sysfork; 3073 csskd->sysvfork.value.ui64 = css->sysvfork; 3074 csskd->sysexec.value.ui64 = css->sysexec; 3075 csskd->readch.value.ui64 = css->readch; 3076 csskd->writech.value.ui64 = css->writech; 3077 csskd->rcvint.value.ui64 = css->rcvint; 3078 csskd->xmtint.value.ui64 = css->xmtint; 3079 csskd->mdmint.value.ui64 = css->mdmint; 3080 csskd->rawch.value.ui64 = css->rawch; 3081 csskd->canch.value.ui64 = css->canch; 3082 csskd->outch.value.ui64 = css->outch; 3083 csskd->msg.value.ui64 = css->msg; 3084 csskd->sema.value.ui64 = css->sema; 3085 csskd->namei.value.ui64 = css->namei; 3086 csskd->ufsiget.value.ui64 = css->ufsiget; 3087 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3088 csskd->ufsipage.value.ui64 = css->ufsipage; 3089 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3090 csskd->procovf.value.ui64 = css->procovf; 3091 csskd->intrthread.value.ui64 = 0; 3092 for (i = 0; i < LOCK_LEVEL; i++) 3093 csskd->intrthread.value.ui64 += css->intr[i]; 3094 csskd->intrblk.value.ui64 = css->intrblk; 3095 csskd->intrunpin.value.ui64 = css->intrunpin; 3096 csskd->idlethread.value.ui64 = css->idlethread; 3097 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3098 csskd->nthreads.value.ui64 = css->nthreads; 3099 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3100 csskd->xcalls.value.ui64 = css->xcalls; 3101 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3102 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3103 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3104 csskd->modload.value.ui64 = css->modload; 3105 csskd->modunload.value.ui64 = css->modunload; 3106 csskd->bawrite.value.ui64 = css->bawrite; 3107 csskd->iowait.value.ui64 = css->iowait; 3108 3109 return (0); 3110 } 3111 3112 static int 3113 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3114 { 3115 cpu_t *cp = (cpu_t *)ksp->ks_private; 3116 struct cpu_vm_stats_ks_data *cvskd; 3117 cpu_vm_stats_t *cvs; 3118 3119 if (rw == KSTAT_WRITE) 3120 return (EACCES); 3121 3122 cvs = &cp->cpu_stats.vm; 3123 cvskd = ksp->ks_data; 3124 3125 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3126 sizeof (cpu_vm_stats_ks_data_template)); 3127 cvskd->pgrec.value.ui64 = cvs->pgrec; 3128 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3129 cvskd->pgin.value.ui64 = cvs->pgin; 3130 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3131 cvskd->pgout.value.ui64 = cvs->pgout; 3132 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3133 cvskd->swapin.value.ui64 = cvs->swapin; 3134 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3135 cvskd->swapout.value.ui64 = cvs->swapout; 3136 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3137 cvskd->zfod.value.ui64 = cvs->zfod; 3138 cvskd->dfree.value.ui64 = cvs->dfree; 3139 cvskd->scan.value.ui64 = cvs->scan; 3140 cvskd->rev.value.ui64 = cvs->rev; 3141 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3142 cvskd->as_fault.value.ui64 = cvs->as_fault; 3143 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3144 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3145 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3146 cvskd->softlock.value.ui64 = cvs->softlock; 3147 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3148 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3149 cvskd->execpgin.value.ui64 = cvs->execpgin; 3150 cvskd->execpgout.value.ui64 = cvs->execpgout; 3151 cvskd->execfree.value.ui64 = cvs->execfree; 3152 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3153 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3154 cvskd->anonfree.value.ui64 = cvs->anonfree; 3155 cvskd->fspgin.value.ui64 = cvs->fspgin; 3156 cvskd->fspgout.value.ui64 = cvs->fspgout; 3157 cvskd->fsfree.value.ui64 = cvs->fsfree; 3158 3159 return (0); 3160 } 3161 3162 static int 3163 cpu_stat_ks_update(kstat_t *ksp, int rw) 3164 { 3165 cpu_stat_t *cso; 3166 cpu_t *cp; 3167 int i; 3168 hrtime_t msnsecs[NCMSTATES]; 3169 3170 cso = (cpu_stat_t *)ksp->ks_data; 3171 cp = (cpu_t *)ksp->ks_private; 3172 3173 if (rw == KSTAT_WRITE) 3174 return (EACCES); 3175 3176 /* 3177 * Read CPU mstate, but compare with the last values we 3178 * received to make sure that the returned kstats never 3179 * decrease. 3180 */ 3181 3182 get_cpu_mstate(cp, msnsecs); 3183 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3184 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3185 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3186 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3187 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3188 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3189 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3190 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3191 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3192 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3193 cso->cpu_sysinfo.wait[W_IO] = 0; 3194 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3195 cso->cpu_sysinfo.wait[W_PIO] = 0; 3196 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3197 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3198 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3199 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3200 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3201 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3202 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3203 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3204 cso->cpu_sysinfo.intr = 0; 3205 for (i = 0; i < PIL_MAX; i++) 3206 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3207 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3208 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3209 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3210 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3211 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3212 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3213 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3214 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3215 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3216 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3217 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3218 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3219 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3220 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3221 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3222 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3223 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3224 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3225 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3226 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3227 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3228 cso->cpu_sysinfo.inodeovf = 0; 3229 cso->cpu_sysinfo.fileovf = 0; 3230 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3231 cso->cpu_sysinfo.intrthread = 0; 3232 for (i = 0; i < LOCK_LEVEL; i++) 3233 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3234 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3235 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3236 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3237 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3238 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3239 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3240 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3241 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3242 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3243 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3244 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3245 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3246 cso->cpu_sysinfo.rw_enters = 0; 3247 cso->cpu_sysinfo.win_uo_cnt = 0; 3248 cso->cpu_sysinfo.win_uu_cnt = 0; 3249 cso->cpu_sysinfo.win_so_cnt = 0; 3250 cso->cpu_sysinfo.win_su_cnt = 0; 3251 cso->cpu_sysinfo.win_suo_cnt = 0; 3252 3253 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3254 cso->cpu_syswait.swap = 0; 3255 cso->cpu_syswait.physio = 0; 3256 3257 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3258 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3259 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3260 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3261 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3262 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3263 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3264 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3265 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3266 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3267 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3268 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3269 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3270 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3271 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3272 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3273 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3274 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3275 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3276 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3277 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3278 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3279 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3280 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3281 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3282 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3283 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3284 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3285 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3286 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3287 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3288 3289 return (0); 3290 } 3291