1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 */ 26 27 /* 28 * Architecture-independent CPU control functions. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/var.h> 34 #include <sys/thread.h> 35 #include <sys/cpuvar.h> 36 #include <sys/cpu_event.h> 37 #include <sys/kstat.h> 38 #include <sys/uadmin.h> 39 #include <sys/systm.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/procset.h> 43 #include <sys/processor.h> 44 #include <sys/debug.h> 45 #include <sys/cpupart.h> 46 #include <sys/lgrp.h> 47 #include <sys/pset.h> 48 #include <sys/pghw.h> 49 #include <sys/kmem.h> 50 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 51 #include <sys/atomic.h> 52 #include <sys/callb.h> 53 #include <sys/vtrace.h> 54 #include <sys/cyclic.h> 55 #include <sys/bitmap.h> 56 #include <sys/nvpair.h> 57 #include <sys/pool_pset.h> 58 #include <sys/msacct.h> 59 #include <sys/time.h> 60 #include <sys/archsystm.h> 61 #include <sys/sdt.h> 62 #include <sys/smt.h> 63 #if defined(__x86) || defined(__amd64) 64 #include <sys/x86_archext.h> 65 #endif 66 #include <sys/callo.h> 67 68 extern int mp_cpu_start(cpu_t *); 69 extern int mp_cpu_stop(cpu_t *); 70 extern int mp_cpu_poweron(cpu_t *); 71 extern int mp_cpu_poweroff(cpu_t *); 72 extern int mp_cpu_configure(int); 73 extern int mp_cpu_unconfigure(int); 74 extern void mp_cpu_faulted_enter(cpu_t *); 75 extern void mp_cpu_faulted_exit(cpu_t *); 76 77 extern int cmp_cpu_to_chip(processorid_t cpuid); 78 #ifdef __sparcv9 79 extern char *cpu_fru_fmri(cpu_t *cp); 80 #endif 81 82 static void cpu_add_active_internal(cpu_t *cp); 83 static void cpu_remove_active(cpu_t *cp); 84 static void cpu_info_kstat_create(cpu_t *cp); 85 static void cpu_info_kstat_destroy(cpu_t *cp); 86 static void cpu_stats_kstat_create(cpu_t *cp); 87 static void cpu_stats_kstat_destroy(cpu_t *cp); 88 89 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 90 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 91 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 92 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 93 94 /* 95 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 96 * max_cpu_seqid_ever, and dispatch queue reallocations. The lock ordering with 97 * respect to related locks is: 98 * 99 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 100 * 101 * Warning: Certain sections of code do not use the cpu_lock when 102 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 103 * all cpus are paused during modifications to this list, a solution 104 * to protect the list is too either disable kernel preemption while 105 * walking the list, *or* recheck the cpu_next pointer at each 106 * iteration in the loop. Note that in no cases can any cached 107 * copies of the cpu pointers be kept as they may become invalid. 108 */ 109 kmutex_t cpu_lock; 110 cpu_t *cpu_list; /* list of all CPUs */ 111 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 112 cpu_t *cpu_active; /* list of active CPUs */ 113 cpuset_t cpu_active_set; /* cached set of active CPUs */ 114 static cpuset_t cpu_available; /* set of available CPUs */ 115 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 116 117 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */ 118 119 /* 120 * max_ncpus keeps the max cpus the system can have. Initially 121 * it's NCPU, but since most archs scan the devtree for cpus 122 * fairly early on during boot, the real max can be known before 123 * ncpus is set (useful for early NCPU based allocations). 124 */ 125 int max_ncpus = NCPU; 126 /* 127 * platforms that set max_ncpus to maxiumum number of cpus that can be 128 * dynamically added will set boot_max_ncpus to the number of cpus found 129 * at device tree scan time during boot. 130 */ 131 int boot_max_ncpus = -1; 132 int boot_ncpus = -1; 133 /* 134 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 135 * used to size arrays that are indexed by CPU id. 136 */ 137 processorid_t max_cpuid = NCPU - 1; 138 139 /* 140 * Maximum cpu_seqid was given. This number can only grow and never shrink. It 141 * can be used to optimize NCPU loops to avoid going through CPUs which were 142 * never on-line. 143 */ 144 processorid_t max_cpu_seqid_ever = 0; 145 146 int ncpus = 1; 147 int ncpus_online = 1; 148 int ncpus_intr_enabled = 1; 149 150 /* 151 * CPU that we're trying to offline. Protected by cpu_lock. 152 */ 153 cpu_t *cpu_inmotion; 154 155 /* 156 * Can be raised to suppress further weakbinding, which are instead 157 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 158 * while individual thread weakbinding synchronization is done under thread 159 * lock. 160 */ 161 int weakbindingbarrier; 162 163 /* 164 * Variables used in pause_cpus(). 165 */ 166 static volatile char safe_list[NCPU]; 167 168 static struct _cpu_pause_info { 169 int cp_spl; /* spl saved in pause_cpus() */ 170 volatile int cp_go; /* Go signal sent after all ready */ 171 int cp_count; /* # of CPUs to pause */ 172 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 173 kthread_id_t cp_paused; 174 void *(*cp_func)(void *); 175 } cpu_pause_info; 176 177 static kmutex_t pause_free_mutex; 178 static kcondvar_t pause_free_cv; 179 180 181 static struct cpu_sys_stats_ks_data { 182 kstat_named_t cpu_ticks_idle; 183 kstat_named_t cpu_ticks_user; 184 kstat_named_t cpu_ticks_kernel; 185 kstat_named_t cpu_ticks_wait; 186 kstat_named_t cpu_nsec_idle; 187 kstat_named_t cpu_nsec_user; 188 kstat_named_t cpu_nsec_kernel; 189 kstat_named_t cpu_nsec_dtrace; 190 kstat_named_t cpu_nsec_intr; 191 kstat_named_t cpu_load_intr; 192 kstat_named_t wait_ticks_io; 193 kstat_named_t dtrace_probes; 194 kstat_named_t bread; 195 kstat_named_t bwrite; 196 kstat_named_t lread; 197 kstat_named_t lwrite; 198 kstat_named_t phread; 199 kstat_named_t phwrite; 200 kstat_named_t pswitch; 201 kstat_named_t trap; 202 kstat_named_t intr; 203 kstat_named_t syscall; 204 kstat_named_t sysread; 205 kstat_named_t syswrite; 206 kstat_named_t sysfork; 207 kstat_named_t sysvfork; 208 kstat_named_t sysexec; 209 kstat_named_t readch; 210 kstat_named_t writech; 211 kstat_named_t rcvint; 212 kstat_named_t xmtint; 213 kstat_named_t mdmint; 214 kstat_named_t rawch; 215 kstat_named_t canch; 216 kstat_named_t outch; 217 kstat_named_t msg; 218 kstat_named_t sema; 219 kstat_named_t namei; 220 kstat_named_t ufsiget; 221 kstat_named_t ufsdirblk; 222 kstat_named_t ufsipage; 223 kstat_named_t ufsinopage; 224 kstat_named_t procovf; 225 kstat_named_t intrthread; 226 kstat_named_t intrblk; 227 kstat_named_t intrunpin; 228 kstat_named_t idlethread; 229 kstat_named_t inv_swtch; 230 kstat_named_t nthreads; 231 kstat_named_t cpumigrate; 232 kstat_named_t xcalls; 233 kstat_named_t mutex_adenters; 234 kstat_named_t rw_rdfails; 235 kstat_named_t rw_wrfails; 236 kstat_named_t modload; 237 kstat_named_t modunload; 238 kstat_named_t bawrite; 239 kstat_named_t iowait; 240 } cpu_sys_stats_ks_data_template = { 241 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 242 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 243 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 244 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 245 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 246 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 247 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 248 { "cpu_nsec_dtrace", KSTAT_DATA_UINT64 }, 249 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 250 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 251 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 252 { "dtrace_probes", KSTAT_DATA_UINT64 }, 253 { "bread", KSTAT_DATA_UINT64 }, 254 { "bwrite", KSTAT_DATA_UINT64 }, 255 { "lread", KSTAT_DATA_UINT64 }, 256 { "lwrite", KSTAT_DATA_UINT64 }, 257 { "phread", KSTAT_DATA_UINT64 }, 258 { "phwrite", KSTAT_DATA_UINT64 }, 259 { "pswitch", KSTAT_DATA_UINT64 }, 260 { "trap", KSTAT_DATA_UINT64 }, 261 { "intr", KSTAT_DATA_UINT64 }, 262 { "syscall", KSTAT_DATA_UINT64 }, 263 { "sysread", KSTAT_DATA_UINT64 }, 264 { "syswrite", KSTAT_DATA_UINT64 }, 265 { "sysfork", KSTAT_DATA_UINT64 }, 266 { "sysvfork", KSTAT_DATA_UINT64 }, 267 { "sysexec", KSTAT_DATA_UINT64 }, 268 { "readch", KSTAT_DATA_UINT64 }, 269 { "writech", KSTAT_DATA_UINT64 }, 270 { "rcvint", KSTAT_DATA_UINT64 }, 271 { "xmtint", KSTAT_DATA_UINT64 }, 272 { "mdmint", KSTAT_DATA_UINT64 }, 273 { "rawch", KSTAT_DATA_UINT64 }, 274 { "canch", KSTAT_DATA_UINT64 }, 275 { "outch", KSTAT_DATA_UINT64 }, 276 { "msg", KSTAT_DATA_UINT64 }, 277 { "sema", KSTAT_DATA_UINT64 }, 278 { "namei", KSTAT_DATA_UINT64 }, 279 { "ufsiget", KSTAT_DATA_UINT64 }, 280 { "ufsdirblk", KSTAT_DATA_UINT64 }, 281 { "ufsipage", KSTAT_DATA_UINT64 }, 282 { "ufsinopage", KSTAT_DATA_UINT64 }, 283 { "procovf", KSTAT_DATA_UINT64 }, 284 { "intrthread", KSTAT_DATA_UINT64 }, 285 { "intrblk", KSTAT_DATA_UINT64 }, 286 { "intrunpin", KSTAT_DATA_UINT64 }, 287 { "idlethread", KSTAT_DATA_UINT64 }, 288 { "inv_swtch", KSTAT_DATA_UINT64 }, 289 { "nthreads", KSTAT_DATA_UINT64 }, 290 { "cpumigrate", KSTAT_DATA_UINT64 }, 291 { "xcalls", KSTAT_DATA_UINT64 }, 292 { "mutex_adenters", KSTAT_DATA_UINT64 }, 293 { "rw_rdfails", KSTAT_DATA_UINT64 }, 294 { "rw_wrfails", KSTAT_DATA_UINT64 }, 295 { "modload", KSTAT_DATA_UINT64 }, 296 { "modunload", KSTAT_DATA_UINT64 }, 297 { "bawrite", KSTAT_DATA_UINT64 }, 298 { "iowait", KSTAT_DATA_UINT64 }, 299 }; 300 301 static struct cpu_vm_stats_ks_data { 302 kstat_named_t pgrec; 303 kstat_named_t pgfrec; 304 kstat_named_t pgin; 305 kstat_named_t pgpgin; 306 kstat_named_t pgout; 307 kstat_named_t pgpgout; 308 kstat_named_t swapin; 309 kstat_named_t pgswapin; 310 kstat_named_t swapout; 311 kstat_named_t pgswapout; 312 kstat_named_t zfod; 313 kstat_named_t dfree; 314 kstat_named_t scan; 315 kstat_named_t rev; 316 kstat_named_t hat_fault; 317 kstat_named_t as_fault; 318 kstat_named_t maj_fault; 319 kstat_named_t cow_fault; 320 kstat_named_t prot_fault; 321 kstat_named_t softlock; 322 kstat_named_t kernel_asflt; 323 kstat_named_t pgrrun; 324 kstat_named_t execpgin; 325 kstat_named_t execpgout; 326 kstat_named_t execfree; 327 kstat_named_t anonpgin; 328 kstat_named_t anonpgout; 329 kstat_named_t anonfree; 330 kstat_named_t fspgin; 331 kstat_named_t fspgout; 332 kstat_named_t fsfree; 333 } cpu_vm_stats_ks_data_template = { 334 { "pgrec", KSTAT_DATA_UINT64 }, 335 { "pgfrec", KSTAT_DATA_UINT64 }, 336 { "pgin", KSTAT_DATA_UINT64 }, 337 { "pgpgin", KSTAT_DATA_UINT64 }, 338 { "pgout", KSTAT_DATA_UINT64 }, 339 { "pgpgout", KSTAT_DATA_UINT64 }, 340 { "swapin", KSTAT_DATA_UINT64 }, 341 { "pgswapin", KSTAT_DATA_UINT64 }, 342 { "swapout", KSTAT_DATA_UINT64 }, 343 { "pgswapout", KSTAT_DATA_UINT64 }, 344 { "zfod", KSTAT_DATA_UINT64 }, 345 { "dfree", KSTAT_DATA_UINT64 }, 346 { "scan", KSTAT_DATA_UINT64 }, 347 { "rev", KSTAT_DATA_UINT64 }, 348 { "hat_fault", KSTAT_DATA_UINT64 }, 349 { "as_fault", KSTAT_DATA_UINT64 }, 350 { "maj_fault", KSTAT_DATA_UINT64 }, 351 { "cow_fault", KSTAT_DATA_UINT64 }, 352 { "prot_fault", KSTAT_DATA_UINT64 }, 353 { "softlock", KSTAT_DATA_UINT64 }, 354 { "kernel_asflt", KSTAT_DATA_UINT64 }, 355 { "pgrrun", KSTAT_DATA_UINT64 }, 356 { "execpgin", KSTAT_DATA_UINT64 }, 357 { "execpgout", KSTAT_DATA_UINT64 }, 358 { "execfree", KSTAT_DATA_UINT64 }, 359 { "anonpgin", KSTAT_DATA_UINT64 }, 360 { "anonpgout", KSTAT_DATA_UINT64 }, 361 { "anonfree", KSTAT_DATA_UINT64 }, 362 { "fspgin", KSTAT_DATA_UINT64 }, 363 { "fspgout", KSTAT_DATA_UINT64 }, 364 { "fsfree", KSTAT_DATA_UINT64 }, 365 }; 366 367 /* 368 * Force the specified thread to migrate to the appropriate processor. 369 * Called with thread lock held, returns with it dropped. 370 */ 371 static void 372 force_thread_migrate(kthread_id_t tp) 373 { 374 ASSERT(THREAD_LOCK_HELD(tp)); 375 if (tp == curthread) { 376 THREAD_TRANSITION(tp); 377 CL_SETRUN(tp); 378 thread_unlock_nopreempt(tp); 379 swtch(); 380 } else { 381 if (tp->t_state == TS_ONPROC) { 382 cpu_surrender(tp); 383 } else if (tp->t_state == TS_RUN) { 384 (void) dispdeq(tp); 385 setbackdq(tp); 386 } 387 thread_unlock(tp); 388 } 389 } 390 391 /* 392 * Set affinity for a specified CPU. 393 * 394 * Specifying a cpu_id of CPU_CURRENT, allowed _only_ when setting affinity for 395 * curthread, will set affinity to the CPU on which the thread is currently 396 * running. For other cpu_id values, the caller must ensure that the 397 * referenced CPU remains valid, which can be done by holding cpu_lock across 398 * this call. 399 * 400 * CPU affinity is guaranteed after return of thread_affinity_set(). If a 401 * caller setting affinity to CPU_CURRENT requires that its thread not migrate 402 * CPUs prior to a successful return, it should take extra precautions (such as 403 * their own call to kpreempt_disable) to ensure that safety. 404 * 405 * CPU_BEST can be used to pick a "best" CPU to migrate to, including 406 * potentially the current CPU. 407 * 408 * A CPU affinity reference count is maintained by thread_affinity_set and 409 * thread_affinity_clear (incrementing and decrementing it, respectively), 410 * maintaining CPU affinity while the count is non-zero, and allowing regions 411 * of code which require affinity to be nested. 412 */ 413 void 414 thread_affinity_set(kthread_id_t t, int cpu_id) 415 { 416 cpu_t *cp; 417 418 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 419 420 if (cpu_id == CPU_CURRENT) { 421 VERIFY3P(t, ==, curthread); 422 kpreempt_disable(); 423 cp = CPU; 424 } else if (cpu_id == CPU_BEST) { 425 VERIFY3P(t, ==, curthread); 426 kpreempt_disable(); 427 cp = disp_choose_best_cpu(); 428 } else { 429 /* 430 * We should be asserting that cpu_lock is held here, but 431 * the NCA code doesn't acquire it. The following assert 432 * should be uncommented when the NCA code is fixed. 433 * 434 * ASSERT(MUTEX_HELD(&cpu_lock)); 435 */ 436 VERIFY((cpu_id >= 0) && (cpu_id < NCPU)); 437 cp = cpu[cpu_id]; 438 439 /* user must provide a good cpu_id */ 440 VERIFY(cp != NULL); 441 } 442 443 /* 444 * If there is already a hard affinity requested, and this affinity 445 * conflicts with that, panic. 446 */ 447 thread_lock(t); 448 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 449 panic("affinity_set: setting %p but already bound to %p", 450 (void *)cp, (void *)t->t_bound_cpu); 451 } 452 t->t_affinitycnt++; 453 t->t_bound_cpu = cp; 454 455 /* 456 * Make sure we're running on the right CPU. 457 */ 458 if (cp != t->t_cpu || t != curthread) { 459 ASSERT(cpu_id != CPU_CURRENT); 460 force_thread_migrate(t); /* drops thread lock */ 461 } else { 462 thread_unlock(t); 463 } 464 465 if (cpu_id == CPU_CURRENT || cpu_id == CPU_BEST) 466 kpreempt_enable(); 467 } 468 469 /* 470 * Wrapper for backward compatibility. 471 */ 472 void 473 affinity_set(int cpu_id) 474 { 475 thread_affinity_set(curthread, cpu_id); 476 } 477 478 /* 479 * Decrement the affinity reservation count and if it becomes zero, 480 * clear the CPU affinity for the current thread, or set it to the user's 481 * software binding request. 482 */ 483 void 484 thread_affinity_clear(kthread_id_t t) 485 { 486 register processorid_t binding; 487 488 thread_lock(t); 489 if (--t->t_affinitycnt == 0) { 490 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 491 /* 492 * Adjust disp_max_unbound_pri if necessary. 493 */ 494 disp_adjust_unbound_pri(t); 495 t->t_bound_cpu = NULL; 496 if (t->t_cpu->cpu_part != t->t_cpupart) { 497 force_thread_migrate(t); 498 return; 499 } 500 } else { 501 t->t_bound_cpu = cpu[binding]; 502 /* 503 * Make sure the thread is running on the bound CPU. 504 */ 505 if (t->t_cpu != t->t_bound_cpu) { 506 force_thread_migrate(t); 507 return; /* already dropped lock */ 508 } 509 } 510 } 511 thread_unlock(t); 512 } 513 514 /* 515 * Wrapper for backward compatibility. 516 */ 517 void 518 affinity_clear(void) 519 { 520 thread_affinity_clear(curthread); 521 } 522 523 /* 524 * Weak cpu affinity. Bind to the "current" cpu for short periods 525 * of time during which the thread must not block (but may be preempted). 526 * Use this instead of kpreempt_disable() when it is only "no migration" 527 * rather than "no preemption" semantics that are required - disabling 528 * preemption holds higher priority threads off of cpu and if the 529 * operation that is protected is more than momentary this is not good 530 * for realtime etc. 531 * 532 * Weakly bound threads will not prevent a cpu from being offlined - 533 * we'll only run them on the cpu to which they are weakly bound but 534 * (because they do not block) we'll always be able to move them on to 535 * another cpu at offline time if we give them just a short moment to 536 * run during which they will unbind. To give a cpu a chance of offlining, 537 * however, we require a barrier to weak bindings that may be raised for a 538 * given cpu (offline/move code may set this and then wait a short time for 539 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 540 * 541 * There are few restrictions on the calling context of thread_nomigrate. 542 * The caller must not hold the thread lock. Calls may be nested. 543 * 544 * After weakbinding a thread must not perform actions that may block. 545 * In particular it must not call thread_affinity_set; calling that when 546 * already weakbound is nonsensical anyway. 547 * 548 * If curthread is prevented from migrating for other reasons 549 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 550 * then the weak binding will succeed even if this cpu is the target of an 551 * offline/move request. 552 */ 553 void 554 thread_nomigrate(void) 555 { 556 cpu_t *cp; 557 kthread_id_t t = curthread; 558 559 again: 560 kpreempt_disable(); 561 cp = CPU; 562 563 /* 564 * A highlevel interrupt must not modify t_nomigrate or 565 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 566 * interrupt thread cannot migrate and we can avoid the 567 * thread_lock call below by short-circuiting here. In either 568 * case we can just return since no migration is possible and 569 * the condition will persist (ie, when we test for these again 570 * in thread_allowmigrate they can't have changed). Migration 571 * is also impossible if we're at or above DISP_LEVEL pil. 572 */ 573 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 574 getpil() >= DISP_LEVEL) { 575 kpreempt_enable(); 576 return; 577 } 578 579 /* 580 * We must be consistent with existing weak bindings. Since we 581 * may be interrupted between the increment of t_nomigrate and 582 * the store to t_weakbound_cpu below we cannot assume that 583 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 584 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 585 * always the case. 586 */ 587 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 588 if (!panicstr) 589 panic("thread_nomigrate: binding to %p but already " 590 "bound to %p", (void *)cp, 591 (void *)t->t_weakbound_cpu); 592 } 593 594 /* 595 * At this point we have preemption disabled and we don't yet hold 596 * the thread lock. So it's possible that somebody else could 597 * set t_bind_cpu here and not be able to force us across to the 598 * new cpu (since we have preemption disabled). 599 */ 600 thread_lock(curthread); 601 602 /* 603 * If further weak bindings are being (temporarily) suppressed then 604 * we'll settle for disabling kernel preemption (which assures 605 * no migration provided the thread does not block which it is 606 * not allowed to if using thread_nomigrate). We must remember 607 * this disposition so we can take appropriate action in 608 * thread_allowmigrate. If this is a nested call and the 609 * thread is already weakbound then fall through as normal. 610 * We remember the decision to settle for kpreempt_disable through 611 * negative nesting counting in t_nomigrate. Once a thread has had one 612 * weakbinding request satisfied in this way any further (nested) 613 * requests will continue to be satisfied in the same way, 614 * even if weak bindings have recommenced. 615 */ 616 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 617 --t->t_nomigrate; 618 thread_unlock(curthread); 619 return; /* with kpreempt_disable still active */ 620 } 621 622 /* 623 * We hold thread_lock so t_bind_cpu cannot change. We could, 624 * however, be running on a different cpu to which we are t_bound_cpu 625 * to (as explained above). If we grant the weak binding request 626 * in that case then the dispatcher must favour our weak binding 627 * over our strong (in which case, just as when preemption is 628 * disabled, we can continue to run on a cpu other than the one to 629 * which we are strongbound; the difference in this case is that 630 * this thread can be preempted and so can appear on the dispatch 631 * queues of a cpu other than the one it is strongbound to). 632 * 633 * If the cpu we are running on does not appear to be a current 634 * offline target (we check cpu_inmotion to determine this - since 635 * we don't hold cpu_lock we may not see a recent store to that, 636 * so it's possible that we at times can grant a weak binding to a 637 * cpu that is an offline target, but that one request will not 638 * prevent the offline from succeeding) then we will always grant 639 * the weak binding request. This includes the case above where 640 * we grant a weakbinding not commensurate with our strong binding. 641 * 642 * If our cpu does appear to be an offline target then we're inclined 643 * not to grant the weakbinding request just yet - we'd prefer to 644 * migrate to another cpu and grant the request there. The 645 * exceptions are those cases where going through preemption code 646 * will not result in us changing cpu: 647 * 648 * . interrupts have already bypassed this case (see above) 649 * . we are already weakbound to this cpu (dispatcher code will 650 * always return us to the weakbound cpu) 651 * . preemption was disabled even before we disabled it above 652 * . we are strongbound to this cpu (if we're strongbound to 653 * another and not yet running there the trip through the 654 * dispatcher will move us to the strongbound cpu and we 655 * will grant the weak binding there) 656 */ 657 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 658 t->t_bound_cpu == cp) { 659 /* 660 * Don't be tempted to store to t_weakbound_cpu only on 661 * the first nested bind request - if we're interrupted 662 * after the increment of t_nomigrate and before the 663 * store to t_weakbound_cpu and the interrupt calls 664 * thread_nomigrate then the assertion in thread_allowmigrate 665 * would fail. 666 */ 667 t->t_nomigrate++; 668 t->t_weakbound_cpu = cp; 669 membar_producer(); 670 thread_unlock(curthread); 671 /* 672 * Now that we have dropped the thread_lock another thread 673 * can set our t_weakbound_cpu, and will try to migrate us 674 * to the strongbound cpu (which will not be prevented by 675 * preemption being disabled since we're about to enable 676 * preemption). We have granted the weakbinding to the current 677 * cpu, so again we are in the position that is is is possible 678 * that our weak and strong bindings differ. Again this 679 * is catered for by dispatcher code which will favour our 680 * weak binding. 681 */ 682 kpreempt_enable(); 683 } else { 684 /* 685 * Move to another cpu before granting the request by 686 * forcing this thread through preemption code. When we 687 * get to set{front,back}dq called from CL_PREEMPT() 688 * cpu_choose() will be used to select a cpu to queue 689 * us on - that will see cpu_inmotion and take 690 * steps to avoid returning us to this cpu. 691 */ 692 cp->cpu_kprunrun = 1; 693 thread_unlock(curthread); 694 kpreempt_enable(); /* will call preempt() */ 695 goto again; 696 } 697 } 698 699 void 700 thread_allowmigrate(void) 701 { 702 kthread_id_t t = curthread; 703 704 ASSERT(t->t_weakbound_cpu == CPU || 705 (t->t_nomigrate < 0 && t->t_preempt > 0) || 706 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 707 getpil() >= DISP_LEVEL); 708 709 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 710 getpil() >= DISP_LEVEL) 711 return; 712 713 if (t->t_nomigrate < 0) { 714 /* 715 * This thread was granted "weak binding" in the 716 * stronger form of kernel preemption disabling. 717 * Undo a level of nesting for both t_nomigrate 718 * and t_preempt. 719 */ 720 ++t->t_nomigrate; 721 kpreempt_enable(); 722 } else if (--t->t_nomigrate == 0) { 723 /* 724 * Time to drop the weak binding. We need to cater 725 * for the case where we're weakbound to a different 726 * cpu than that to which we're strongbound (a very 727 * temporary arrangement that must only persist until 728 * weak binding drops). We don't acquire thread_lock 729 * here so even as this code executes t_bound_cpu 730 * may be changing. So we disable preemption and 731 * a) in the case that t_bound_cpu changes while we 732 * have preemption disabled kprunrun will be set 733 * asynchronously, and b) if before disabling 734 * preemption we were already on a different cpu to 735 * our t_bound_cpu then we set kprunrun ourselves 736 * to force a trip through the dispatcher when 737 * preemption is enabled. 738 */ 739 kpreempt_disable(); 740 if (t->t_bound_cpu && 741 t->t_weakbound_cpu != t->t_bound_cpu) 742 CPU->cpu_kprunrun = 1; 743 t->t_weakbound_cpu = NULL; 744 membar_producer(); 745 kpreempt_enable(); 746 } 747 } 748 749 /* 750 * weakbinding_stop can be used to temporarily cause weakbindings made 751 * with thread_nomigrate to be satisfied through the stronger action of 752 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 753 */ 754 755 void 756 weakbinding_stop(void) 757 { 758 ASSERT(MUTEX_HELD(&cpu_lock)); 759 weakbindingbarrier = 1; 760 membar_producer(); /* make visible before subsequent thread_lock */ 761 } 762 763 void 764 weakbinding_start(void) 765 { 766 ASSERT(MUTEX_HELD(&cpu_lock)); 767 weakbindingbarrier = 0; 768 } 769 770 void 771 null_xcall(void) 772 { 773 } 774 775 /* 776 * This routine is called to place the CPUs in a safe place so that 777 * one of them can be taken off line or placed on line. What we are 778 * trying to do here is prevent a thread from traversing the list 779 * of active CPUs while we are changing it or from getting placed on 780 * the run queue of a CPU that has just gone off line. We do this by 781 * creating a thread with the highest possible prio for each CPU and 782 * having it call this routine. The advantage of this method is that 783 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 784 * This makes disp faster at the expense of making p_online() slower 785 * which is a good trade off. 786 */ 787 static void 788 cpu_pause(int index) 789 { 790 int s; 791 struct _cpu_pause_info *cpi = &cpu_pause_info; 792 volatile char *safe = &safe_list[index]; 793 long lindex = index; 794 795 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 796 797 while (*safe != PAUSE_DIE) { 798 *safe = PAUSE_READY; 799 membar_enter(); /* make sure stores are flushed */ 800 sema_v(&cpi->cp_sem); /* signal requesting thread */ 801 802 /* 803 * Wait here until all pause threads are running. That 804 * indicates that it's safe to do the spl. Until 805 * cpu_pause_info.cp_go is set, we don't want to spl 806 * because that might block clock interrupts needed 807 * to preempt threads on other CPUs. 808 */ 809 while (cpi->cp_go == 0) 810 ; 811 /* 812 * Even though we are at the highest disp prio, we need 813 * to block out all interrupts below LOCK_LEVEL so that 814 * an intr doesn't come in, wake up a thread, and call 815 * setbackdq/setfrontdq. 816 */ 817 s = splhigh(); 818 /* 819 * if cp_func has been set then call it using index as the 820 * argument, currently only used by cpr_suspend_cpus(). 821 * This function is used as the code to execute on the 822 * "paused" cpu's when a machine comes out of a sleep state 823 * and CPU's were powered off. (could also be used for 824 * hotplugging CPU's). 825 */ 826 if (cpi->cp_func != NULL) 827 (*cpi->cp_func)((void *)lindex); 828 829 mach_cpu_pause(safe); 830 831 splx(s); 832 /* 833 * Waiting is at an end. Switch out of cpu_pause 834 * loop and resume useful work. 835 */ 836 swtch(); 837 } 838 839 mutex_enter(&pause_free_mutex); 840 *safe = PAUSE_DEAD; 841 cv_broadcast(&pause_free_cv); 842 mutex_exit(&pause_free_mutex); 843 } 844 845 /* 846 * Allow the cpus to start running again. 847 */ 848 void 849 start_cpus() 850 { 851 int i; 852 853 ASSERT(MUTEX_HELD(&cpu_lock)); 854 ASSERT(cpu_pause_info.cp_paused); 855 cpu_pause_info.cp_paused = NULL; 856 for (i = 0; i < NCPU; i++) 857 safe_list[i] = PAUSE_IDLE; 858 membar_enter(); /* make sure stores are flushed */ 859 affinity_clear(); 860 splx(cpu_pause_info.cp_spl); 861 kpreempt_enable(); 862 } 863 864 /* 865 * Allocate a pause thread for a CPU. 866 */ 867 static void 868 cpu_pause_alloc(cpu_t *cp) 869 { 870 kthread_id_t t; 871 long cpun = cp->cpu_id; 872 873 /* 874 * Note, v.v_nglobpris will not change value as long as I hold 875 * cpu_lock. 876 */ 877 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 878 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 879 thread_lock(t); 880 t->t_bound_cpu = cp; 881 t->t_disp_queue = cp->cpu_disp; 882 t->t_affinitycnt = 1; 883 t->t_preempt = 1; 884 thread_unlock(t); 885 cp->cpu_pause_thread = t; 886 /* 887 * Registering a thread in the callback table is usually done 888 * in the initialization code of the thread. In this 889 * case, we do it right after thread creation because the 890 * thread itself may never run, and we need to register the 891 * fact that it is safe for cpr suspend. 892 */ 893 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 894 } 895 896 /* 897 * Free a pause thread for a CPU. 898 */ 899 static void 900 cpu_pause_free(cpu_t *cp) 901 { 902 kthread_id_t t; 903 int cpun = cp->cpu_id; 904 905 ASSERT(MUTEX_HELD(&cpu_lock)); 906 /* 907 * We have to get the thread and tell it to die. 908 */ 909 if ((t = cp->cpu_pause_thread) == NULL) { 910 ASSERT(safe_list[cpun] == PAUSE_IDLE); 911 return; 912 } 913 thread_lock(t); 914 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 915 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 916 t->t_pri = v.v_nglobpris - 1; 917 ASSERT(safe_list[cpun] == PAUSE_IDLE); 918 safe_list[cpun] = PAUSE_DIE; 919 THREAD_TRANSITION(t); 920 setbackdq(t); 921 thread_unlock_nopreempt(t); 922 923 /* 924 * If we don't wait for the thread to actually die, it may try to 925 * run on the wrong cpu as part of an actual call to pause_cpus(). 926 */ 927 mutex_enter(&pause_free_mutex); 928 while (safe_list[cpun] != PAUSE_DEAD) { 929 cv_wait(&pause_free_cv, &pause_free_mutex); 930 } 931 mutex_exit(&pause_free_mutex); 932 safe_list[cpun] = PAUSE_IDLE; 933 934 cp->cpu_pause_thread = NULL; 935 } 936 937 /* 938 * Initialize basic structures for pausing CPUs. 939 */ 940 void 941 cpu_pause_init() 942 { 943 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 944 /* 945 * Create initial CPU pause thread. 946 */ 947 cpu_pause_alloc(CPU); 948 } 949 950 /* 951 * Start the threads used to pause another CPU. 952 */ 953 static int 954 cpu_pause_start(processorid_t cpu_id) 955 { 956 int i; 957 int cpu_count = 0; 958 959 for (i = 0; i < NCPU; i++) { 960 cpu_t *cp; 961 kthread_id_t t; 962 963 cp = cpu[i]; 964 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 965 safe_list[i] = PAUSE_WAIT; 966 continue; 967 } 968 969 /* 970 * Skip CPU if it is quiesced or not yet started. 971 */ 972 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 973 safe_list[i] = PAUSE_WAIT; 974 continue; 975 } 976 977 /* 978 * Start this CPU's pause thread. 979 */ 980 t = cp->cpu_pause_thread; 981 thread_lock(t); 982 /* 983 * Reset the priority, since nglobpris may have 984 * changed since the thread was created, if someone 985 * has loaded the RT (or some other) scheduling 986 * class. 987 */ 988 t->t_pri = v.v_nglobpris - 1; 989 THREAD_TRANSITION(t); 990 setbackdq(t); 991 thread_unlock_nopreempt(t); 992 ++cpu_count; 993 } 994 return (cpu_count); 995 } 996 997 998 /* 999 * Pause all of the CPUs except the one we are on by creating a high 1000 * priority thread bound to those CPUs. 1001 * 1002 * Note that one must be extremely careful regarding code 1003 * executed while CPUs are paused. Since a CPU may be paused 1004 * while a thread scheduling on that CPU is holding an adaptive 1005 * lock, code executed with CPUs paused must not acquire adaptive 1006 * (or low-level spin) locks. Also, such code must not block, 1007 * since the thread that is supposed to initiate the wakeup may 1008 * never run. 1009 * 1010 * With a few exceptions, the restrictions on code executed with CPUs 1011 * paused match those for code executed at high-level interrupt 1012 * context. 1013 */ 1014 void 1015 pause_cpus(cpu_t *off_cp, void *(*func)(void *)) 1016 { 1017 processorid_t cpu_id; 1018 int i; 1019 struct _cpu_pause_info *cpi = &cpu_pause_info; 1020 1021 ASSERT(MUTEX_HELD(&cpu_lock)); 1022 ASSERT(cpi->cp_paused == NULL); 1023 cpi->cp_count = 0; 1024 cpi->cp_go = 0; 1025 for (i = 0; i < NCPU; i++) 1026 safe_list[i] = PAUSE_IDLE; 1027 kpreempt_disable(); 1028 1029 cpi->cp_func = func; 1030 1031 /* 1032 * If running on the cpu that is going offline, get off it. 1033 * This is so that it won't be necessary to rechoose a CPU 1034 * when done. 1035 */ 1036 if (CPU == off_cp) 1037 cpu_id = off_cp->cpu_next_part->cpu_id; 1038 else 1039 cpu_id = CPU->cpu_id; 1040 affinity_set(cpu_id); 1041 1042 /* 1043 * Start the pause threads and record how many were started 1044 */ 1045 cpi->cp_count = cpu_pause_start(cpu_id); 1046 1047 /* 1048 * Now wait for all CPUs to be running the pause thread. 1049 */ 1050 while (cpi->cp_count > 0) { 1051 /* 1052 * Spin reading the count without grabbing the disp 1053 * lock to make sure we don't prevent the pause 1054 * threads from getting the lock. 1055 */ 1056 while (sema_held(&cpi->cp_sem)) 1057 ; 1058 if (sema_tryp(&cpi->cp_sem)) 1059 --cpi->cp_count; 1060 } 1061 cpi->cp_go = 1; /* all have reached cpu_pause */ 1062 1063 /* 1064 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1065 * to PAUSE_WAIT.) 1066 */ 1067 for (i = 0; i < NCPU; i++) { 1068 while (safe_list[i] != PAUSE_WAIT) 1069 ; 1070 } 1071 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1072 cpi->cp_paused = curthread; 1073 } 1074 1075 /* 1076 * Check whether the current thread has CPUs paused 1077 */ 1078 int 1079 cpus_paused(void) 1080 { 1081 if (cpu_pause_info.cp_paused != NULL) { 1082 ASSERT(cpu_pause_info.cp_paused == curthread); 1083 return (1); 1084 } 1085 return (0); 1086 } 1087 1088 static cpu_t * 1089 cpu_get_all(processorid_t cpun) 1090 { 1091 ASSERT(MUTEX_HELD(&cpu_lock)); 1092 1093 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1094 return (NULL); 1095 return (cpu[cpun]); 1096 } 1097 1098 /* 1099 * Check whether cpun is a valid processor id and whether it should be 1100 * visible from the current zone. If it is, return a pointer to the 1101 * associated CPU structure. 1102 */ 1103 cpu_t * 1104 cpu_get(processorid_t cpun) 1105 { 1106 cpu_t *c; 1107 1108 ASSERT(MUTEX_HELD(&cpu_lock)); 1109 c = cpu_get_all(cpun); 1110 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1111 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1112 return (NULL); 1113 return (c); 1114 } 1115 1116 /* 1117 * The following functions should be used to check CPU states in the kernel. 1118 * They should be invoked with cpu_lock held. Kernel subsystems interested 1119 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1120 * states. Those are for user-land (and system call) use only. 1121 */ 1122 1123 /* 1124 * Determine whether the CPU is online and handling interrupts. 1125 */ 1126 int 1127 cpu_is_online(cpu_t *cpu) 1128 { 1129 ASSERT(MUTEX_HELD(&cpu_lock)); 1130 return (cpu_flagged_online(cpu->cpu_flags)); 1131 } 1132 1133 /* 1134 * Determine whether the CPU is offline (this includes spare and faulted). 1135 */ 1136 int 1137 cpu_is_offline(cpu_t *cpu) 1138 { 1139 ASSERT(MUTEX_HELD(&cpu_lock)); 1140 return (cpu_flagged_offline(cpu->cpu_flags)); 1141 } 1142 1143 /* 1144 * Determine whether the CPU is powered off. 1145 */ 1146 int 1147 cpu_is_poweredoff(cpu_t *cpu) 1148 { 1149 ASSERT(MUTEX_HELD(&cpu_lock)); 1150 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1151 } 1152 1153 /* 1154 * Determine whether the CPU is handling interrupts. 1155 */ 1156 int 1157 cpu_is_nointr(cpu_t *cpu) 1158 { 1159 ASSERT(MUTEX_HELD(&cpu_lock)); 1160 return (cpu_flagged_nointr(cpu->cpu_flags)); 1161 } 1162 1163 /* 1164 * Determine whether the CPU is active (scheduling threads). 1165 */ 1166 int 1167 cpu_is_active(cpu_t *cpu) 1168 { 1169 ASSERT(MUTEX_HELD(&cpu_lock)); 1170 return (cpu_flagged_active(cpu->cpu_flags)); 1171 } 1172 1173 /* 1174 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1175 */ 1176 int 1177 cpu_flagged_online(cpu_flag_t cpu_flags) 1178 { 1179 return (cpu_flagged_active(cpu_flags) && 1180 (cpu_flags & CPU_ENABLE)); 1181 } 1182 1183 int 1184 cpu_flagged_offline(cpu_flag_t cpu_flags) 1185 { 1186 return (((cpu_flags & CPU_POWEROFF) == 0) && 1187 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1188 } 1189 1190 int 1191 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1192 { 1193 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1194 } 1195 1196 int 1197 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1198 { 1199 return (cpu_flagged_active(cpu_flags) && 1200 (cpu_flags & CPU_ENABLE) == 0); 1201 } 1202 1203 int 1204 cpu_flagged_active(cpu_flag_t cpu_flags) 1205 { 1206 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1207 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1208 } 1209 1210 /* 1211 * Bring the indicated CPU online. 1212 */ 1213 int 1214 cpu_online(cpu_t *cp, int flags) 1215 { 1216 int error = 0; 1217 1218 /* 1219 * Handle on-line request. 1220 * This code must put the new CPU on the active list before 1221 * starting it because it will not be paused, and will start 1222 * using the active list immediately. The real start occurs 1223 * when the CPU_QUIESCED flag is turned off. 1224 */ 1225 1226 ASSERT(MUTEX_HELD(&cpu_lock)); 1227 1228 if ((cp->cpu_flags & CPU_DISABLED) && !smt_can_enable(cp, flags)) 1229 return (EINVAL); 1230 1231 /* 1232 * Put all the cpus into a known safe place. 1233 * No mutexes can be entered while CPUs are paused. 1234 */ 1235 error = mp_cpu_start(cp); /* arch-dep hook */ 1236 if (error == 0) { 1237 pg_cpupart_in(cp, cp->cpu_part); 1238 pause_cpus(NULL, NULL); 1239 cpu_add_active_internal(cp); 1240 if (cp->cpu_flags & CPU_FAULTED) { 1241 cp->cpu_flags &= ~CPU_FAULTED; 1242 mp_cpu_faulted_exit(cp); 1243 } 1244 1245 if (cp->cpu_flags & CPU_DISABLED) 1246 smt_force_enabled(); 1247 1248 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1249 CPU_SPARE | CPU_DISABLED); 1250 CPU_NEW_GENERATION(cp); 1251 start_cpus(); 1252 cpu_stats_kstat_create(cp); 1253 cpu_create_intrstat(cp); 1254 lgrp_kstat_create(cp); 1255 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1256 cpu_intr_enable(cp); /* arch-dep hook */ 1257 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1258 cpu_set_state(cp); 1259 cyclic_online(cp); 1260 /* 1261 * This has to be called only after cyclic_online(). This 1262 * function uses cyclics. 1263 */ 1264 callout_cpu_online(cp); 1265 poke_cpu(cp->cpu_id); 1266 } 1267 1268 return (error); 1269 } 1270 1271 /* 1272 * Take the indicated CPU offline. 1273 */ 1274 int 1275 cpu_offline(cpu_t *cp, int flags) 1276 { 1277 cpupart_t *pp; 1278 int error = 0; 1279 cpu_t *ncp; 1280 int intr_enable; 1281 int cyclic_off = 0; 1282 int callout_off = 0; 1283 int loop_count; 1284 int no_quiesce = 0; 1285 int (*bound_func)(struct cpu *, int); 1286 kthread_t *t; 1287 lpl_t *cpu_lpl; 1288 proc_t *p; 1289 int lgrp_diff_lpl; 1290 boolean_t forced = (flags & CPU_FORCED) != 0; 1291 1292 ASSERT(MUTEX_HELD(&cpu_lock)); 1293 1294 if (cp->cpu_flags & CPU_DISABLED) 1295 return (EINVAL); 1296 1297 /* 1298 * If we're going from faulted or spare to offline, just 1299 * clear these flags and update CPU state. 1300 */ 1301 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1302 if (cp->cpu_flags & CPU_FAULTED) { 1303 cp->cpu_flags &= ~CPU_FAULTED; 1304 mp_cpu_faulted_exit(cp); 1305 } 1306 cp->cpu_flags &= ~CPU_SPARE; 1307 cpu_set_state(cp); 1308 return (0); 1309 } 1310 1311 /* 1312 * Handle off-line request. 1313 */ 1314 pp = cp->cpu_part; 1315 /* 1316 * Don't offline last online CPU in partition 1317 */ 1318 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1319 return (EBUSY); 1320 /* 1321 * Unbind all soft-bound threads bound to our CPU and hard bound threads 1322 * if we were asked to. 1323 */ 1324 error = cpu_unbind(cp->cpu_id, forced); 1325 if (error != 0) 1326 return (error); 1327 /* 1328 * We shouldn't be bound to this CPU ourselves. 1329 */ 1330 if (curthread->t_bound_cpu == cp) 1331 return (EBUSY); 1332 1333 /* 1334 * Tell interested parties that this CPU is going offline. 1335 */ 1336 CPU_NEW_GENERATION(cp); 1337 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1338 1339 /* 1340 * Tell the PG subsystem that the CPU is leaving the partition 1341 */ 1342 pg_cpupart_out(cp, pp); 1343 1344 /* 1345 * Take the CPU out of interrupt participation so we won't find 1346 * bound kernel threads. If the architecture cannot completely 1347 * shut off interrupts on the CPU, don't quiesce it, but don't 1348 * run anything but interrupt thread... this is indicated by 1349 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1350 * off. 1351 */ 1352 intr_enable = cp->cpu_flags & CPU_ENABLE; 1353 if (intr_enable) 1354 no_quiesce = cpu_intr_disable(cp); 1355 1356 /* 1357 * Record that we are aiming to offline this cpu. This acts as 1358 * a barrier to further weak binding requests in thread_nomigrate 1359 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1360 * lean away from this cpu. Further strong bindings are already 1361 * avoided since we hold cpu_lock. Since threads that are set 1362 * runnable around now and others coming off the target cpu are 1363 * directed away from the target, existing strong and weak bindings 1364 * (especially the latter) to the target cpu stand maximum chance of 1365 * being able to unbind during the short delay loop below (if other 1366 * unbound threads compete they may not see cpu in time to unbind 1367 * even if they would do so immediately. 1368 */ 1369 cpu_inmotion = cp; 1370 membar_enter(); 1371 1372 /* 1373 * Check for kernel threads (strong or weak) bound to that CPU. 1374 * Strongly bound threads may not unbind, and we'll have to return 1375 * EBUSY. Weakly bound threads should always disappear - we've 1376 * stopped more weak binding with cpu_inmotion and existing 1377 * bindings will drain imminently (they may not block). Nonetheless 1378 * we will wait for a fixed period for all bound threads to disappear. 1379 * Inactive interrupt threads are OK (they'll be in TS_FREE 1380 * state). If test finds some bound threads, wait a few ticks 1381 * to give short-lived threads (such as interrupts) chance to 1382 * complete. Note that if no_quiesce is set, i.e. this cpu 1383 * is required to service interrupts, then we take the route 1384 * that permits interrupt threads to be active (or bypassed). 1385 */ 1386 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1387 1388 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1389 if (loop_count >= 5) { 1390 error = EBUSY; /* some threads still bound */ 1391 break; 1392 } 1393 1394 /* 1395 * If some threads were assigned, give them 1396 * a chance to complete or move. 1397 * 1398 * This assumes that the clock_thread is not bound 1399 * to any CPU, because the clock_thread is needed to 1400 * do the delay(hz/100). 1401 * 1402 * Note: we still hold the cpu_lock while waiting for 1403 * the next clock tick. This is OK since it isn't 1404 * needed for anything else except processor_bind(2), 1405 * and system initialization. If we drop the lock, 1406 * we would risk another p_online disabling the last 1407 * processor. 1408 */ 1409 delay(hz/100); 1410 } 1411 1412 if (error == 0 && callout_off == 0) { 1413 callout_cpu_offline(cp); 1414 callout_off = 1; 1415 } 1416 1417 if (error == 0 && cyclic_off == 0) { 1418 if (!cyclic_offline(cp)) { 1419 /* 1420 * We must have bound cyclics... 1421 */ 1422 error = EBUSY; 1423 goto out; 1424 } 1425 cyclic_off = 1; 1426 } 1427 1428 /* 1429 * Call mp_cpu_stop() to perform any special operations 1430 * needed for this machine architecture to offline a CPU. 1431 */ 1432 if (error == 0) 1433 error = mp_cpu_stop(cp); /* arch-dep hook */ 1434 1435 /* 1436 * If that all worked, take the CPU offline and decrement 1437 * ncpus_online. 1438 */ 1439 if (error == 0) { 1440 /* 1441 * Put all the cpus into a known safe place. 1442 * No mutexes can be entered while CPUs are paused. 1443 */ 1444 pause_cpus(cp, NULL); 1445 /* 1446 * Repeat the operation, if necessary, to make sure that 1447 * all outstanding low-level interrupts run to completion 1448 * before we set the CPU_QUIESCED flag. It's also possible 1449 * that a thread has weak bound to the cpu despite our raising 1450 * cpu_inmotion above since it may have loaded that 1451 * value before the barrier became visible (this would have 1452 * to be the thread that was on the target cpu at the time 1453 * we raised the barrier). 1454 */ 1455 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1456 (*bound_func)(cp, 1)) { 1457 start_cpus(); 1458 (void) mp_cpu_start(cp); 1459 goto again; 1460 } 1461 ncp = cp->cpu_next_part; 1462 cpu_lpl = cp->cpu_lpl; 1463 ASSERT(cpu_lpl != NULL); 1464 1465 /* 1466 * Remove the CPU from the list of active CPUs. 1467 */ 1468 cpu_remove_active(cp); 1469 1470 /* 1471 * Walk the active process list and look for threads 1472 * whose home lgroup needs to be updated, or 1473 * the last CPU they run on is the one being offlined now. 1474 */ 1475 1476 ASSERT(curthread->t_cpu != cp); 1477 for (p = practive; p != NULL; p = p->p_next) { 1478 1479 t = p->p_tlist; 1480 1481 if (t == NULL) 1482 continue; 1483 1484 lgrp_diff_lpl = 0; 1485 1486 do { 1487 ASSERT(t->t_lpl != NULL); 1488 /* 1489 * Taking last CPU in lpl offline 1490 * Rehome thread if it is in this lpl 1491 * Otherwise, update the count of how many 1492 * threads are in this CPU's lgroup but have 1493 * a different lpl. 1494 */ 1495 1496 if (cpu_lpl->lpl_ncpu == 0) { 1497 if (t->t_lpl == cpu_lpl) 1498 lgrp_move_thread(t, 1499 lgrp_choose(t, 1500 t->t_cpupart), 0); 1501 else if (t->t_lpl->lpl_lgrpid == 1502 cpu_lpl->lpl_lgrpid) 1503 lgrp_diff_lpl++; 1504 } 1505 ASSERT(t->t_lpl->lpl_ncpu > 0); 1506 1507 /* 1508 * Update CPU last ran on if it was this CPU 1509 */ 1510 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1511 t->t_cpu = disp_lowpri_cpu(ncp, t, 1512 t->t_pri); 1513 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1514 t->t_weakbound_cpu == cp); 1515 1516 t = t->t_forw; 1517 } while (t != p->p_tlist); 1518 1519 /* 1520 * Didn't find any threads in the same lgroup as this 1521 * CPU with a different lpl, so remove the lgroup from 1522 * the process lgroup bitmask. 1523 */ 1524 1525 if (lgrp_diff_lpl == 0) 1526 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1527 } 1528 1529 /* 1530 * Walk thread list looking for threads that need to be 1531 * rehomed, since there are some threads that are not in 1532 * their process's p_tlist. 1533 */ 1534 1535 t = curthread; 1536 do { 1537 ASSERT(t != NULL && t->t_lpl != NULL); 1538 1539 /* 1540 * Rehome threads with same lpl as this CPU when this 1541 * is the last CPU in the lpl. 1542 */ 1543 1544 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1545 lgrp_move_thread(t, 1546 lgrp_choose(t, t->t_cpupart), 1); 1547 1548 ASSERT(t->t_lpl->lpl_ncpu > 0); 1549 1550 /* 1551 * Update CPU last ran on if it was this CPU 1552 */ 1553 1554 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1555 t->t_cpu = disp_lowpri_cpu(ncp, t, t->t_pri); 1556 1557 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1558 t->t_weakbound_cpu == cp); 1559 t = t->t_next; 1560 1561 } while (t != curthread); 1562 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1563 cp->cpu_flags |= CPU_OFFLINE; 1564 disp_cpu_inactive(cp); 1565 if (!no_quiesce) 1566 cp->cpu_flags |= CPU_QUIESCED; 1567 ncpus_online--; 1568 cpu_set_state(cp); 1569 cpu_inmotion = NULL; 1570 start_cpus(); 1571 cpu_stats_kstat_destroy(cp); 1572 cpu_delete_intrstat(cp); 1573 lgrp_kstat_destroy(cp); 1574 } 1575 1576 out: 1577 cpu_inmotion = NULL; 1578 1579 /* 1580 * If we failed, re-enable interrupts. 1581 * Do this even if cpu_intr_disable returned an error, because 1582 * it may have partially disabled interrupts. 1583 */ 1584 if (error && intr_enable) 1585 cpu_intr_enable(cp); 1586 1587 /* 1588 * If we failed, but managed to offline the cyclic subsystem on this 1589 * CPU, bring it back online. 1590 */ 1591 if (error && cyclic_off) 1592 cyclic_online(cp); 1593 1594 /* 1595 * If we failed, but managed to offline callouts on this CPU, 1596 * bring it back online. 1597 */ 1598 if (error && callout_off) 1599 callout_cpu_online(cp); 1600 1601 /* 1602 * If we failed, tell the PG subsystem that the CPU is back 1603 */ 1604 pg_cpupart_in(cp, pp); 1605 1606 /* 1607 * If we failed, we need to notify everyone that this CPU is back on. 1608 */ 1609 if (error != 0) { 1610 CPU_NEW_GENERATION(cp); 1611 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1612 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1613 } 1614 1615 return (error); 1616 } 1617 1618 /* 1619 * Mark the indicated CPU as faulted, taking it offline. 1620 */ 1621 int 1622 cpu_faulted(cpu_t *cp, int flags) 1623 { 1624 int error = 0; 1625 1626 ASSERT(MUTEX_HELD(&cpu_lock)); 1627 ASSERT(!cpu_is_poweredoff(cp)); 1628 1629 if (cp->cpu_flags & CPU_DISABLED) 1630 return (EINVAL); 1631 1632 if (cpu_is_offline(cp)) { 1633 cp->cpu_flags &= ~CPU_SPARE; 1634 cp->cpu_flags |= CPU_FAULTED; 1635 mp_cpu_faulted_enter(cp); 1636 cpu_set_state(cp); 1637 return (0); 1638 } 1639 1640 if ((error = cpu_offline(cp, flags)) == 0) { 1641 cp->cpu_flags |= CPU_FAULTED; 1642 mp_cpu_faulted_enter(cp); 1643 cpu_set_state(cp); 1644 } 1645 1646 return (error); 1647 } 1648 1649 /* 1650 * Mark the indicated CPU as a spare, taking it offline. 1651 */ 1652 int 1653 cpu_spare(cpu_t *cp, int flags) 1654 { 1655 int error = 0; 1656 1657 ASSERT(MUTEX_HELD(&cpu_lock)); 1658 ASSERT(!cpu_is_poweredoff(cp)); 1659 1660 if (cp->cpu_flags & CPU_DISABLED) 1661 return (EINVAL); 1662 1663 if (cpu_is_offline(cp)) { 1664 if (cp->cpu_flags & CPU_FAULTED) { 1665 cp->cpu_flags &= ~CPU_FAULTED; 1666 mp_cpu_faulted_exit(cp); 1667 } 1668 cp->cpu_flags |= CPU_SPARE; 1669 cpu_set_state(cp); 1670 return (0); 1671 } 1672 1673 if ((error = cpu_offline(cp, flags)) == 0) { 1674 cp->cpu_flags |= CPU_SPARE; 1675 cpu_set_state(cp); 1676 } 1677 1678 return (error); 1679 } 1680 1681 /* 1682 * Take the indicated CPU from poweroff to offline. 1683 */ 1684 int 1685 cpu_poweron(cpu_t *cp) 1686 { 1687 int error = ENOTSUP; 1688 1689 ASSERT(MUTEX_HELD(&cpu_lock)); 1690 ASSERT(cpu_is_poweredoff(cp)); 1691 1692 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1693 if (error == 0) 1694 cpu_set_state(cp); 1695 1696 return (error); 1697 } 1698 1699 /* 1700 * Take the indicated CPU from any inactive state to powered off. 1701 */ 1702 int 1703 cpu_poweroff(cpu_t *cp) 1704 { 1705 int error = ENOTSUP; 1706 1707 ASSERT(MUTEX_HELD(&cpu_lock)); 1708 ASSERT(cpu_is_offline(cp)); 1709 1710 if (!(cp->cpu_flags & CPU_QUIESCED)) 1711 return (EBUSY); /* not completely idle */ 1712 1713 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1714 if (error == 0) 1715 cpu_set_state(cp); 1716 1717 return (error); 1718 } 1719 1720 /* 1721 * Initialize the Sequential CPU id lookup table 1722 */ 1723 void 1724 cpu_seq_tbl_init() 1725 { 1726 cpu_t **tbl; 1727 1728 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP); 1729 tbl[0] = CPU; 1730 1731 cpu_seq = tbl; 1732 } 1733 1734 /* 1735 * Initialize the CPU lists for the first CPU. 1736 */ 1737 void 1738 cpu_list_init(cpu_t *cp) 1739 { 1740 cp->cpu_next = cp; 1741 cp->cpu_prev = cp; 1742 cpu_list = cp; 1743 clock_cpu_list = cp; 1744 1745 cp->cpu_next_onln = cp; 1746 cp->cpu_prev_onln = cp; 1747 cpu_active = cp; 1748 1749 cp->cpu_seqid = 0; 1750 CPUSET_ADD(cpu_seqid_inuse, 0); 1751 1752 /* 1753 * Bootstrap cpu_seq using cpu_list 1754 * The cpu_seq[] table will be dynamically allocated 1755 * when kmem later becomes available (but before going MP) 1756 */ 1757 cpu_seq = &cpu_list; 1758 1759 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1760 cp_default.cp_cpulist = cp; 1761 cp_default.cp_ncpus = 1; 1762 cp->cpu_next_part = cp; 1763 cp->cpu_prev_part = cp; 1764 cp->cpu_part = &cp_default; 1765 1766 CPUSET_ADD(cpu_available, cp->cpu_id); 1767 CPUSET_ADD(cpu_active_set, cp->cpu_id); 1768 } 1769 1770 /* 1771 * Insert a CPU into the list of available CPUs. 1772 */ 1773 void 1774 cpu_add_unit(cpu_t *cp) 1775 { 1776 int seqid; 1777 1778 ASSERT(MUTEX_HELD(&cpu_lock)); 1779 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1780 1781 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1782 1783 /* 1784 * Note: most users of the cpu_list will grab the 1785 * cpu_lock to insure that it isn't modified. However, 1786 * certain users can't or won't do that. To allow this 1787 * we pause the other cpus. Users who walk the list 1788 * without cpu_lock, must disable kernel preemption 1789 * to insure that the list isn't modified underneath 1790 * them. Also, any cached pointers to cpu structures 1791 * must be revalidated by checking to see if the 1792 * cpu_next pointer points to itself. This check must 1793 * be done with the cpu_lock held or kernel preemption 1794 * disabled. This check relies upon the fact that 1795 * old cpu structures are not free'ed or cleared after 1796 * then are removed from the cpu_list. 1797 * 1798 * Note that the clock code walks the cpu list dereferencing 1799 * the cpu_part pointer, so we need to initialize it before 1800 * adding the cpu to the list. 1801 */ 1802 cp->cpu_part = &cp_default; 1803 pause_cpus(NULL, NULL); 1804 cp->cpu_next = cpu_list; 1805 cp->cpu_prev = cpu_list->cpu_prev; 1806 cpu_list->cpu_prev->cpu_next = cp; 1807 cpu_list->cpu_prev = cp; 1808 start_cpus(); 1809 1810 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1811 continue; 1812 CPUSET_ADD(cpu_seqid_inuse, seqid); 1813 cp->cpu_seqid = seqid; 1814 1815 if (seqid > max_cpu_seqid_ever) 1816 max_cpu_seqid_ever = seqid; 1817 1818 ASSERT(ncpus < max_ncpus); 1819 ncpus++; 1820 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1821 cpu[cp->cpu_id] = cp; 1822 CPUSET_ADD(cpu_available, cp->cpu_id); 1823 cpu_seq[cp->cpu_seqid] = cp; 1824 1825 /* 1826 * allocate a pause thread for this CPU. 1827 */ 1828 cpu_pause_alloc(cp); 1829 1830 /* 1831 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1832 * link them into a list of just that CPU. 1833 * This is so that disp_lowpri_cpu will work for thread_create in 1834 * pause_cpus() when called from the startup thread in a new CPU. 1835 */ 1836 cp->cpu_next_onln = cp; 1837 cp->cpu_prev_onln = cp; 1838 cpu_info_kstat_create(cp); 1839 cp->cpu_next_part = cp; 1840 cp->cpu_prev_part = cp; 1841 1842 init_cpu_mstate(cp, CMS_SYSTEM); 1843 1844 pool_pset_mod = gethrtime(); 1845 } 1846 1847 /* 1848 * Do the opposite of cpu_add_unit(). 1849 */ 1850 void 1851 cpu_del_unit(int cpuid) 1852 { 1853 struct cpu *cp, *cpnext; 1854 1855 ASSERT(MUTEX_HELD(&cpu_lock)); 1856 cp = cpu[cpuid]; 1857 ASSERT(cp != NULL); 1858 1859 ASSERT(cp->cpu_next_onln == cp); 1860 ASSERT(cp->cpu_prev_onln == cp); 1861 ASSERT(cp->cpu_next_part == cp); 1862 ASSERT(cp->cpu_prev_part == cp); 1863 1864 /* 1865 * Tear down the CPU's physical ID cache, and update any 1866 * processor groups 1867 */ 1868 pg_cpu_fini(cp, NULL); 1869 pghw_physid_destroy(cp); 1870 1871 /* 1872 * Destroy kstat stuff. 1873 */ 1874 cpu_info_kstat_destroy(cp); 1875 term_cpu_mstate(cp); 1876 /* 1877 * Free up pause thread. 1878 */ 1879 cpu_pause_free(cp); 1880 CPUSET_DEL(cpu_available, cp->cpu_id); 1881 cpu[cp->cpu_id] = NULL; 1882 cpu_seq[cp->cpu_seqid] = NULL; 1883 1884 /* 1885 * The clock thread and mutex_vector_enter cannot hold the 1886 * cpu_lock while traversing the cpu list, therefore we pause 1887 * all other threads by pausing the other cpus. These, and any 1888 * other routines holding cpu pointers while possibly sleeping 1889 * must be sure to call kpreempt_disable before processing the 1890 * list and be sure to check that the cpu has not been deleted 1891 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1892 * to keep the deleted cpu structure around. 1893 * 1894 * Note that this MUST be done AFTER cpu_available 1895 * has been updated so that we don't waste time 1896 * trying to pause the cpu we're trying to delete. 1897 */ 1898 pause_cpus(NULL, NULL); 1899 1900 cpnext = cp->cpu_next; 1901 cp->cpu_prev->cpu_next = cp->cpu_next; 1902 cp->cpu_next->cpu_prev = cp->cpu_prev; 1903 if (cp == cpu_list) 1904 cpu_list = cpnext; 1905 1906 /* 1907 * Signals that the cpu has been deleted (see above). 1908 */ 1909 cp->cpu_next = NULL; 1910 cp->cpu_prev = NULL; 1911 1912 start_cpus(); 1913 1914 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1915 ncpus--; 1916 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1917 1918 pool_pset_mod = gethrtime(); 1919 } 1920 1921 /* 1922 * Add a CPU to the list of active CPUs. 1923 * This routine must not get any locks, because other CPUs are paused. 1924 */ 1925 static void 1926 cpu_add_active_internal(cpu_t *cp) 1927 { 1928 cpupart_t *pp = cp->cpu_part; 1929 1930 ASSERT(MUTEX_HELD(&cpu_lock)); 1931 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1932 1933 ncpus_online++; 1934 cpu_set_state(cp); 1935 cp->cpu_next_onln = cpu_active; 1936 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1937 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1938 cpu_active->cpu_prev_onln = cp; 1939 CPUSET_ADD(cpu_active_set, cp->cpu_id); 1940 1941 if (pp->cp_cpulist) { 1942 cp->cpu_next_part = pp->cp_cpulist; 1943 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1944 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1945 pp->cp_cpulist->cpu_prev_part = cp; 1946 } else { 1947 ASSERT(pp->cp_ncpus == 0); 1948 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1949 } 1950 pp->cp_ncpus++; 1951 if (pp->cp_ncpus == 1) { 1952 cp_numparts_nonempty++; 1953 ASSERT(cp_numparts_nonempty != 0); 1954 } 1955 1956 pg_cpu_active(cp); 1957 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1958 1959 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1960 } 1961 1962 /* 1963 * Add a CPU to the list of active CPUs. 1964 * This is called from machine-dependent layers when a new CPU is started. 1965 */ 1966 void 1967 cpu_add_active(cpu_t *cp) 1968 { 1969 pg_cpupart_in(cp, cp->cpu_part); 1970 1971 pause_cpus(NULL, NULL); 1972 cpu_add_active_internal(cp); 1973 start_cpus(); 1974 1975 cpu_stats_kstat_create(cp); 1976 cpu_create_intrstat(cp); 1977 lgrp_kstat_create(cp); 1978 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1979 } 1980 1981 1982 /* 1983 * Remove a CPU from the list of active CPUs. 1984 * This routine must not get any locks, because other CPUs are paused. 1985 */ 1986 /* ARGSUSED */ 1987 static void 1988 cpu_remove_active(cpu_t *cp) 1989 { 1990 cpupart_t *pp = cp->cpu_part; 1991 1992 ASSERT(MUTEX_HELD(&cpu_lock)); 1993 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1994 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1995 1996 pg_cpu_inactive(cp); 1997 1998 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1999 2000 if (cp == clock_cpu_list) 2001 clock_cpu_list = cp->cpu_next_onln; 2002 2003 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 2004 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 2005 if (cpu_active == cp) { 2006 cpu_active = cp->cpu_next_onln; 2007 } 2008 cp->cpu_next_onln = cp; 2009 cp->cpu_prev_onln = cp; 2010 CPUSET_DEL(cpu_active_set, cp->cpu_id); 2011 2012 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 2013 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 2014 if (pp->cp_cpulist == cp) { 2015 pp->cp_cpulist = cp->cpu_next_part; 2016 ASSERT(pp->cp_cpulist != cp); 2017 } 2018 cp->cpu_next_part = cp; 2019 cp->cpu_prev_part = cp; 2020 pp->cp_ncpus--; 2021 if (pp->cp_ncpus == 0) { 2022 cp_numparts_nonempty--; 2023 ASSERT(cp_numparts_nonempty != 0); 2024 } 2025 } 2026 2027 /* 2028 * Routine used to setup a newly inserted CPU in preparation for starting 2029 * it running code. 2030 */ 2031 int 2032 cpu_configure(int cpuid) 2033 { 2034 int retval = 0; 2035 2036 ASSERT(MUTEX_HELD(&cpu_lock)); 2037 2038 /* 2039 * Some structures are statically allocated based upon 2040 * the maximum number of cpus the system supports. Do not 2041 * try to add anything beyond this limit. 2042 */ 2043 if (cpuid < 0 || cpuid >= NCPU) { 2044 return (EINVAL); 2045 } 2046 2047 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 2048 return (EALREADY); 2049 } 2050 2051 if ((retval = mp_cpu_configure(cpuid)) != 0) { 2052 return (retval); 2053 } 2054 2055 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 2056 cpu_set_state(cpu[cpuid]); 2057 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 2058 if (retval != 0) 2059 (void) mp_cpu_unconfigure(cpuid); 2060 2061 return (retval); 2062 } 2063 2064 /* 2065 * Routine used to cleanup a CPU that has been powered off. This will 2066 * destroy all per-cpu information related to this cpu. 2067 */ 2068 int 2069 cpu_unconfigure(int cpuid) 2070 { 2071 int error; 2072 2073 ASSERT(MUTEX_HELD(&cpu_lock)); 2074 2075 if (cpu[cpuid] == NULL) { 2076 return (ENODEV); 2077 } 2078 2079 if (cpu[cpuid]->cpu_flags == 0) { 2080 return (EALREADY); 2081 } 2082 2083 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 2084 return (EBUSY); 2085 } 2086 2087 if (cpu[cpuid]->cpu_props != NULL) { 2088 (void) nvlist_free(cpu[cpuid]->cpu_props); 2089 cpu[cpuid]->cpu_props = NULL; 2090 } 2091 2092 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 2093 2094 if (error != 0) 2095 return (error); 2096 2097 return (mp_cpu_unconfigure(cpuid)); 2098 } 2099 2100 /* 2101 * Routines for registering and de-registering cpu_setup callback functions. 2102 * 2103 * Caller's context 2104 * These routines must not be called from a driver's attach(9E) or 2105 * detach(9E) entry point. 2106 * 2107 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 2108 */ 2109 2110 /* 2111 * Ideally, these would be dynamically allocated and put into a linked 2112 * list; however that is not feasible because the registration routine 2113 * has to be available before the kmem allocator is working (in fact, 2114 * it is called by the kmem allocator init code). In any case, there 2115 * are quite a few extra entries for future users. 2116 */ 2117 #define NCPU_SETUPS 20 2118 2119 struct cpu_setup { 2120 cpu_setup_func_t *func; 2121 void *arg; 2122 } cpu_setups[NCPU_SETUPS]; 2123 2124 void 2125 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2126 { 2127 int i; 2128 2129 ASSERT(MUTEX_HELD(&cpu_lock)); 2130 2131 for (i = 0; i < NCPU_SETUPS; i++) 2132 if (cpu_setups[i].func == NULL) 2133 break; 2134 if (i >= NCPU_SETUPS) 2135 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2136 2137 cpu_setups[i].func = func; 2138 cpu_setups[i].arg = arg; 2139 } 2140 2141 void 2142 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2143 { 2144 int i; 2145 2146 ASSERT(MUTEX_HELD(&cpu_lock)); 2147 2148 for (i = 0; i < NCPU_SETUPS; i++) 2149 if ((cpu_setups[i].func == func) && 2150 (cpu_setups[i].arg == arg)) 2151 break; 2152 if (i >= NCPU_SETUPS) 2153 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2154 "deregister"); 2155 2156 cpu_setups[i].func = NULL; 2157 cpu_setups[i].arg = 0; 2158 } 2159 2160 /* 2161 * Call any state change hooks for this CPU, ignore any errors. 2162 */ 2163 void 2164 cpu_state_change_notify(int id, cpu_setup_t what) 2165 { 2166 int i; 2167 2168 ASSERT(MUTEX_HELD(&cpu_lock)); 2169 2170 for (i = 0; i < NCPU_SETUPS; i++) { 2171 if (cpu_setups[i].func != NULL) { 2172 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2173 } 2174 } 2175 } 2176 2177 /* 2178 * Call any state change hooks for this CPU, undo it if error found. 2179 */ 2180 static int 2181 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2182 { 2183 int i; 2184 int retval = 0; 2185 2186 ASSERT(MUTEX_HELD(&cpu_lock)); 2187 2188 for (i = 0; i < NCPU_SETUPS; i++) { 2189 if (cpu_setups[i].func != NULL) { 2190 retval = cpu_setups[i].func(what, id, 2191 cpu_setups[i].arg); 2192 if (retval) { 2193 for (i--; i >= 0; i--) { 2194 if (cpu_setups[i].func != NULL) 2195 cpu_setups[i].func(undo, 2196 id, cpu_setups[i].arg); 2197 } 2198 break; 2199 } 2200 } 2201 } 2202 return (retval); 2203 } 2204 2205 /* 2206 * Export information about this CPU via the kstat mechanism. 2207 */ 2208 static struct { 2209 kstat_named_t ci_state; 2210 kstat_named_t ci_state_begin; 2211 kstat_named_t ci_cpu_type; 2212 kstat_named_t ci_fpu_type; 2213 kstat_named_t ci_clock_MHz; 2214 kstat_named_t ci_chip_id; 2215 kstat_named_t ci_implementation; 2216 kstat_named_t ci_brandstr; 2217 kstat_named_t ci_core_id; 2218 kstat_named_t ci_curr_clock_Hz; 2219 kstat_named_t ci_supp_freq_Hz; 2220 kstat_named_t ci_pg_id; 2221 #if defined(__sparcv9) 2222 kstat_named_t ci_device_ID; 2223 kstat_named_t ci_cpu_fru; 2224 #endif 2225 #if defined(__x86) 2226 kstat_named_t ci_vendorstr; 2227 kstat_named_t ci_family; 2228 kstat_named_t ci_model; 2229 kstat_named_t ci_step; 2230 kstat_named_t ci_clogid; 2231 kstat_named_t ci_pkg_core_id; 2232 kstat_named_t ci_ncpuperchip; 2233 kstat_named_t ci_ncoreperchip; 2234 kstat_named_t ci_max_cstates; 2235 kstat_named_t ci_curr_cstate; 2236 kstat_named_t ci_cacheid; 2237 kstat_named_t ci_sktstr; 2238 #endif 2239 } cpu_info_template = { 2240 { "state", KSTAT_DATA_CHAR }, 2241 { "state_begin", KSTAT_DATA_LONG }, 2242 { "cpu_type", KSTAT_DATA_CHAR }, 2243 { "fpu_type", KSTAT_DATA_CHAR }, 2244 { "clock_MHz", KSTAT_DATA_LONG }, 2245 { "chip_id", KSTAT_DATA_LONG }, 2246 { "implementation", KSTAT_DATA_STRING }, 2247 { "brand", KSTAT_DATA_STRING }, 2248 { "core_id", KSTAT_DATA_LONG }, 2249 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2250 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2251 { "pg_id", KSTAT_DATA_LONG }, 2252 #if defined(__sparcv9) 2253 { "device_ID", KSTAT_DATA_UINT64 }, 2254 { "cpu_fru", KSTAT_DATA_STRING }, 2255 #endif 2256 #if defined(__x86) 2257 { "vendor_id", KSTAT_DATA_STRING }, 2258 { "family", KSTAT_DATA_INT32 }, 2259 { "model", KSTAT_DATA_INT32 }, 2260 { "stepping", KSTAT_DATA_INT32 }, 2261 { "clog_id", KSTAT_DATA_INT32 }, 2262 { "pkg_core_id", KSTAT_DATA_LONG }, 2263 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2264 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2265 { "supported_max_cstates", KSTAT_DATA_INT32 }, 2266 { "current_cstate", KSTAT_DATA_INT32 }, 2267 { "cache_id", KSTAT_DATA_INT32 }, 2268 { "socket_type", KSTAT_DATA_STRING }, 2269 #endif 2270 }; 2271 2272 static kmutex_t cpu_info_template_lock; 2273 2274 static int 2275 cpu_info_kstat_update(kstat_t *ksp, int rw) 2276 { 2277 cpu_t *cp = ksp->ks_private; 2278 const char *pi_state; 2279 2280 if (rw == KSTAT_WRITE) 2281 return (EACCES); 2282 2283 #if defined(__x86) 2284 /* Is the cpu still initialising itself? */ 2285 if (cpuid_checkpass(cp, 1) == 0) 2286 return (ENXIO); 2287 #endif 2288 2289 pi_state = cpu_get_state_str(cp->cpu_flags); 2290 2291 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2292 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2293 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2294 cp->cpu_type_info.pi_processor_type, 15); 2295 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2296 cp->cpu_type_info.pi_fputypes, 15); 2297 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2298 cpu_info_template.ci_chip_id.value.l = 2299 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2300 kstat_named_setstr(&cpu_info_template.ci_implementation, 2301 cp->cpu_idstr); 2302 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2303 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2304 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2305 cp->cpu_curr_clock; 2306 cpu_info_template.ci_pg_id.value.l = 2307 cp->cpu_pg && cp->cpu_pg->cmt_lineage ? 2308 cp->cpu_pg->cmt_lineage->pg_id : -1; 2309 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2310 cp->cpu_supp_freqs); 2311 #if defined(__sparcv9) 2312 cpu_info_template.ci_device_ID.value.ui64 = 2313 cpunodes[cp->cpu_id].device_id; 2314 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2315 #endif 2316 #if defined(__x86) 2317 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2318 cpuid_getvendorstr(cp)); 2319 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2320 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2321 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2322 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2323 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2324 cpu_info_template.ci_ncoreperchip.value.l = 2325 cpuid_get_ncore_per_chip(cp); 2326 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp); 2327 cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates; 2328 cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp); 2329 cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp); 2330 kstat_named_setstr(&cpu_info_template.ci_sktstr, 2331 cpuid_getsocketstr(cp)); 2332 #endif 2333 2334 return (0); 2335 } 2336 2337 static void 2338 cpu_info_kstat_create(cpu_t *cp) 2339 { 2340 zoneid_t zoneid; 2341 2342 ASSERT(MUTEX_HELD(&cpu_lock)); 2343 2344 if (pool_pset_enabled()) 2345 zoneid = GLOBAL_ZONEID; 2346 else 2347 zoneid = ALL_ZONES; 2348 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2349 NULL, "misc", KSTAT_TYPE_NAMED, 2350 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2351 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) { 2352 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2353 #if defined(__sparcv9) 2354 cp->cpu_info_kstat->ks_data_size += 2355 strlen(cpu_fru_fmri(cp)) + 1; 2356 #endif 2357 #if defined(__x86) 2358 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2359 #endif 2360 if (cp->cpu_supp_freqs != NULL) 2361 cp->cpu_info_kstat->ks_data_size += 2362 strlen(cp->cpu_supp_freqs) + 1; 2363 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2364 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2365 cp->cpu_info_kstat->ks_private = cp; 2366 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2367 kstat_install(cp->cpu_info_kstat); 2368 } 2369 } 2370 2371 static void 2372 cpu_info_kstat_destroy(cpu_t *cp) 2373 { 2374 ASSERT(MUTEX_HELD(&cpu_lock)); 2375 2376 kstat_delete(cp->cpu_info_kstat); 2377 cp->cpu_info_kstat = NULL; 2378 } 2379 2380 /* 2381 * Create and install kstats for the boot CPU. 2382 */ 2383 void 2384 cpu_kstat_init(cpu_t *cp) 2385 { 2386 mutex_enter(&cpu_lock); 2387 cpu_info_kstat_create(cp); 2388 cpu_stats_kstat_create(cp); 2389 cpu_create_intrstat(cp); 2390 cpu_set_state(cp); 2391 mutex_exit(&cpu_lock); 2392 } 2393 2394 /* 2395 * Make visible to the zone that subset of the cpu information that would be 2396 * initialized when a cpu is configured (but still offline). 2397 */ 2398 void 2399 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2400 { 2401 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2402 2403 ASSERT(MUTEX_HELD(&cpu_lock)); 2404 ASSERT(pool_pset_enabled()); 2405 ASSERT(cp != NULL); 2406 2407 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2408 zone->zone_ncpus++; 2409 ASSERT(zone->zone_ncpus <= ncpus); 2410 } 2411 if (cp->cpu_info_kstat != NULL) 2412 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2413 } 2414 2415 /* 2416 * Make visible to the zone that subset of the cpu information that would be 2417 * initialized when a previously configured cpu is onlined. 2418 */ 2419 void 2420 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2421 { 2422 kstat_t *ksp; 2423 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2424 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2425 processorid_t cpun; 2426 2427 ASSERT(MUTEX_HELD(&cpu_lock)); 2428 ASSERT(pool_pset_enabled()); 2429 ASSERT(cp != NULL); 2430 ASSERT(cpu_is_active(cp)); 2431 2432 cpun = cp->cpu_id; 2433 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2434 zone->zone_ncpus_online++; 2435 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2436 } 2437 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2438 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2439 != NULL) { 2440 kstat_zone_add(ksp, zoneid); 2441 kstat_rele(ksp); 2442 } 2443 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2444 kstat_zone_add(ksp, zoneid); 2445 kstat_rele(ksp); 2446 } 2447 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2448 kstat_zone_add(ksp, zoneid); 2449 kstat_rele(ksp); 2450 } 2451 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2452 NULL) { 2453 kstat_zone_add(ksp, zoneid); 2454 kstat_rele(ksp); 2455 } 2456 } 2457 2458 /* 2459 * Update relevant kstats such that cpu is now visible to processes 2460 * executing in specified zone. 2461 */ 2462 void 2463 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2464 { 2465 cpu_visibility_configure(cp, zone); 2466 if (cpu_is_active(cp)) 2467 cpu_visibility_online(cp, zone); 2468 } 2469 2470 /* 2471 * Make invisible to the zone that subset of the cpu information that would be 2472 * torn down when a previously offlined cpu is unconfigured. 2473 */ 2474 void 2475 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2476 { 2477 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2478 2479 ASSERT(MUTEX_HELD(&cpu_lock)); 2480 ASSERT(pool_pset_enabled()); 2481 ASSERT(cp != NULL); 2482 2483 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2484 ASSERT(zone->zone_ncpus != 0); 2485 zone->zone_ncpus--; 2486 } 2487 if (cp->cpu_info_kstat) 2488 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2489 } 2490 2491 /* 2492 * Make invisible to the zone that subset of the cpu information that would be 2493 * torn down when a cpu is offlined (but still configured). 2494 */ 2495 void 2496 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2497 { 2498 kstat_t *ksp; 2499 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2500 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2501 processorid_t cpun; 2502 2503 ASSERT(MUTEX_HELD(&cpu_lock)); 2504 ASSERT(pool_pset_enabled()); 2505 ASSERT(cp != NULL); 2506 ASSERT(cpu_is_active(cp)); 2507 2508 cpun = cp->cpu_id; 2509 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2510 ASSERT(zone->zone_ncpus_online != 0); 2511 zone->zone_ncpus_online--; 2512 } 2513 2514 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2515 NULL) { 2516 kstat_zone_remove(ksp, zoneid); 2517 kstat_rele(ksp); 2518 } 2519 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2520 kstat_zone_remove(ksp, zoneid); 2521 kstat_rele(ksp); 2522 } 2523 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2524 kstat_zone_remove(ksp, zoneid); 2525 kstat_rele(ksp); 2526 } 2527 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2528 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2529 != NULL) { 2530 kstat_zone_remove(ksp, zoneid); 2531 kstat_rele(ksp); 2532 } 2533 } 2534 2535 /* 2536 * Update relevant kstats such that cpu is no longer visible to processes 2537 * executing in specified zone. 2538 */ 2539 void 2540 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2541 { 2542 if (cpu_is_active(cp)) 2543 cpu_visibility_offline(cp, zone); 2544 cpu_visibility_unconfigure(cp, zone); 2545 } 2546 2547 /* 2548 * Bind a thread to a CPU as requested. 2549 */ 2550 int 2551 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2552 int *error) 2553 { 2554 processorid_t binding; 2555 cpu_t *cp = NULL; 2556 2557 ASSERT(MUTEX_HELD(&cpu_lock)); 2558 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2559 2560 thread_lock(tp); 2561 2562 /* 2563 * Record old binding, but change the obind, which was initialized 2564 * to PBIND_NONE, only if this thread has a binding. This avoids 2565 * reporting PBIND_NONE for a process when some LWPs are bound. 2566 */ 2567 binding = tp->t_bind_cpu; 2568 if (binding != PBIND_NONE) 2569 *obind = binding; /* record old binding */ 2570 2571 switch (bind) { 2572 case PBIND_QUERY: 2573 /* Just return the old binding */ 2574 thread_unlock(tp); 2575 return (0); 2576 2577 case PBIND_QUERY_TYPE: 2578 /* Return the binding type */ 2579 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD; 2580 thread_unlock(tp); 2581 return (0); 2582 2583 case PBIND_SOFT: 2584 /* 2585 * Set soft binding for this thread and return the actual 2586 * binding 2587 */ 2588 TB_CPU_SOFT_SET(tp); 2589 thread_unlock(tp); 2590 return (0); 2591 2592 case PBIND_HARD: 2593 /* 2594 * Set hard binding for this thread and return the actual 2595 * binding 2596 */ 2597 TB_CPU_HARD_SET(tp); 2598 thread_unlock(tp); 2599 return (0); 2600 2601 default: 2602 break; 2603 } 2604 2605 /* 2606 * If this thread/LWP cannot be bound because of permission 2607 * problems, just note that and return success so that the 2608 * other threads/LWPs will be bound. This is the way 2609 * processor_bind() is defined to work. 2610 * 2611 * Binding will get EPERM if the thread is of system class 2612 * or hasprocperm() fails. 2613 */ 2614 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2615 *error = EPERM; 2616 thread_unlock(tp); 2617 return (0); 2618 } 2619 2620 binding = bind; 2621 if (binding != PBIND_NONE) { 2622 cp = cpu_get((processorid_t)binding); 2623 /* 2624 * Make sure binding is valid and is in right partition. 2625 */ 2626 if (cp == NULL || tp->t_cpupart != cp->cpu_part) { 2627 *error = EINVAL; 2628 thread_unlock(tp); 2629 return (0); 2630 } 2631 } 2632 tp->t_bind_cpu = binding; /* set new binding */ 2633 2634 /* 2635 * If there is no system-set reason for affinity, set 2636 * the t_bound_cpu field to reflect the binding. 2637 */ 2638 if (tp->t_affinitycnt == 0) { 2639 if (binding == PBIND_NONE) { 2640 /* 2641 * We may need to adjust disp_max_unbound_pri 2642 * since we're becoming unbound. 2643 */ 2644 disp_adjust_unbound_pri(tp); 2645 2646 tp->t_bound_cpu = NULL; /* set new binding */ 2647 2648 /* 2649 * Move thread to lgroup with strongest affinity 2650 * after unbinding 2651 */ 2652 if (tp->t_lgrp_affinity) 2653 lgrp_move_thread(tp, 2654 lgrp_choose(tp, tp->t_cpupart), 1); 2655 2656 if (tp->t_state == TS_ONPROC && 2657 tp->t_cpu->cpu_part != tp->t_cpupart) 2658 cpu_surrender(tp); 2659 } else { 2660 lpl_t *lpl; 2661 2662 tp->t_bound_cpu = cp; 2663 ASSERT(cp->cpu_lpl != NULL); 2664 2665 /* 2666 * Set home to lgroup with most affinity containing CPU 2667 * that thread is being bound or minimum bounding 2668 * lgroup if no affinities set 2669 */ 2670 if (tp->t_lgrp_affinity) 2671 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2672 LGRP_NONE, B_FALSE); 2673 else 2674 lpl = cp->cpu_lpl; 2675 2676 if (tp->t_lpl != lpl) { 2677 /* can't grab cpu_lock */ 2678 lgrp_move_thread(tp, lpl, 1); 2679 } 2680 2681 /* 2682 * Make the thread switch to the bound CPU. 2683 * If the thread is runnable, we need to 2684 * requeue it even if t_cpu is already set 2685 * to the right CPU, since it may be on a 2686 * kpreempt queue and need to move to a local 2687 * queue. We could check t_disp_queue to 2688 * avoid unnecessary overhead if it's already 2689 * on the right queue, but since this isn't 2690 * a performance-critical operation it doesn't 2691 * seem worth the extra code and complexity. 2692 * 2693 * If the thread is weakbound to the cpu then it will 2694 * resist the new binding request until the weak 2695 * binding drops. The cpu_surrender or requeueing 2696 * below could be skipped in such cases (since it 2697 * will have no effect), but that would require 2698 * thread_allowmigrate to acquire thread_lock so 2699 * we'll take the very occasional hit here instead. 2700 */ 2701 if (tp->t_state == TS_ONPROC) { 2702 cpu_surrender(tp); 2703 } else if (tp->t_state == TS_RUN) { 2704 cpu_t *ocp = tp->t_cpu; 2705 2706 (void) dispdeq(tp); 2707 setbackdq(tp); 2708 /* 2709 * Either on the bound CPU's disp queue now, 2710 * or swapped out or on the swap queue. 2711 */ 2712 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2713 tp->t_weakbound_cpu == ocp || 2714 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2715 != TS_LOAD); 2716 } 2717 } 2718 } 2719 2720 /* 2721 * Our binding has changed; set TP_CHANGEBIND. 2722 */ 2723 tp->t_proc_flag |= TP_CHANGEBIND; 2724 aston(tp); 2725 2726 thread_unlock(tp); 2727 2728 return (0); 2729 } 2730 2731 2732 cpuset_t * 2733 cpuset_alloc(int kmflags) 2734 { 2735 return (kmem_alloc(sizeof (cpuset_t), kmflags)); 2736 } 2737 2738 void 2739 cpuset_free(cpuset_t *s) 2740 { 2741 kmem_free(s, sizeof (cpuset_t)); 2742 } 2743 2744 void 2745 cpuset_all(cpuset_t *s) 2746 { 2747 int i; 2748 2749 for (i = 0; i < CPUSET_WORDS; i++) 2750 s->cpub[i] = ~0UL; 2751 } 2752 2753 void 2754 cpuset_all_but(cpuset_t *s, const uint_t cpu) 2755 { 2756 cpuset_all(s); 2757 CPUSET_DEL(*s, cpu); 2758 } 2759 2760 void 2761 cpuset_only(cpuset_t *s, const uint_t cpu) 2762 { 2763 CPUSET_ZERO(*s); 2764 CPUSET_ADD(*s, cpu); 2765 } 2766 2767 long 2768 cpu_in_set(const cpuset_t *s, const uint_t cpu) 2769 { 2770 VERIFY(cpu < NCPU); 2771 return (BT_TEST(s->cpub, cpu)); 2772 } 2773 2774 void 2775 cpuset_add(cpuset_t *s, const uint_t cpu) 2776 { 2777 VERIFY(cpu < NCPU); 2778 BT_SET(s->cpub, cpu); 2779 } 2780 2781 void 2782 cpuset_del(cpuset_t *s, const uint_t cpu) 2783 { 2784 VERIFY(cpu < NCPU); 2785 BT_CLEAR(s->cpub, cpu); 2786 } 2787 2788 int 2789 cpuset_isnull(const cpuset_t *s) 2790 { 2791 int i; 2792 2793 for (i = 0; i < CPUSET_WORDS; i++) { 2794 if (s->cpub[i] != 0) 2795 return (0); 2796 } 2797 return (1); 2798 } 2799 2800 int 2801 cpuset_isequal(const cpuset_t *s1, const cpuset_t *s2) 2802 { 2803 int i; 2804 2805 for (i = 0; i < CPUSET_WORDS; i++) { 2806 if (s1->cpub[i] != s2->cpub[i]) 2807 return (0); 2808 } 2809 return (1); 2810 } 2811 2812 uint_t 2813 cpuset_find(const cpuset_t *s) 2814 { 2815 2816 uint_t i; 2817 uint_t cpu = (uint_t)-1; 2818 2819 /* 2820 * Find a cpu in the cpuset 2821 */ 2822 for (i = 0; i < CPUSET_WORDS; i++) { 2823 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2824 if (cpu != (uint_t)-1) { 2825 cpu += i * BT_NBIPUL; 2826 break; 2827 } 2828 } 2829 return (cpu); 2830 } 2831 2832 void 2833 cpuset_bounds(const cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2834 { 2835 int i, j; 2836 uint_t bit; 2837 2838 /* 2839 * First, find the smallest cpu id in the set. 2840 */ 2841 for (i = 0; i < CPUSET_WORDS; i++) { 2842 if (s->cpub[i] != 0) { 2843 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2844 ASSERT(bit != (uint_t)-1); 2845 *smallestid = bit + (i * BT_NBIPUL); 2846 2847 /* 2848 * Now find the largest cpu id in 2849 * the set and return immediately. 2850 * Done in an inner loop to avoid 2851 * having to break out of the first 2852 * loop. 2853 */ 2854 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2855 if (s->cpub[j] != 0) { 2856 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2857 ASSERT(bit != (uint_t)-1); 2858 *largestid = bit + (j * BT_NBIPUL); 2859 ASSERT(*largestid >= *smallestid); 2860 return; 2861 } 2862 } 2863 2864 /* 2865 * If this code is reached, a 2866 * smallestid was found, but not a 2867 * largestid. The cpuset must have 2868 * been changed during the course 2869 * of this function call. 2870 */ 2871 ASSERT(0); 2872 } 2873 } 2874 *smallestid = *largestid = CPUSET_NOTINSET; 2875 } 2876 2877 void 2878 cpuset_atomic_del(cpuset_t *s, const uint_t cpu) 2879 { 2880 VERIFY(cpu < NCPU); 2881 BT_ATOMIC_CLEAR(s->cpub, (cpu)) 2882 } 2883 2884 void 2885 cpuset_atomic_add(cpuset_t *s, const uint_t cpu) 2886 { 2887 VERIFY(cpu < NCPU); 2888 BT_ATOMIC_SET(s->cpub, (cpu)) 2889 } 2890 2891 long 2892 cpuset_atomic_xadd(cpuset_t *s, const uint_t cpu) 2893 { 2894 long res; 2895 2896 VERIFY(cpu < NCPU); 2897 BT_ATOMIC_SET_EXCL(s->cpub, cpu, res); 2898 return (res); 2899 } 2900 2901 long 2902 cpuset_atomic_xdel(cpuset_t *s, const uint_t cpu) 2903 { 2904 long res; 2905 2906 VERIFY(cpu < NCPU); 2907 BT_ATOMIC_CLEAR_EXCL(s->cpub, cpu, res); 2908 return (res); 2909 } 2910 2911 void 2912 cpuset_or(cpuset_t *dst, cpuset_t *src) 2913 { 2914 for (int i = 0; i < CPUSET_WORDS; i++) { 2915 dst->cpub[i] |= src->cpub[i]; 2916 } 2917 } 2918 2919 void 2920 cpuset_xor(cpuset_t *dst, cpuset_t *src) 2921 { 2922 for (int i = 0; i < CPUSET_WORDS; i++) { 2923 dst->cpub[i] ^= src->cpub[i]; 2924 } 2925 } 2926 2927 void 2928 cpuset_and(cpuset_t *dst, cpuset_t *src) 2929 { 2930 for (int i = 0; i < CPUSET_WORDS; i++) { 2931 dst->cpub[i] &= src->cpub[i]; 2932 } 2933 } 2934 2935 void 2936 cpuset_zero(cpuset_t *dst) 2937 { 2938 for (int i = 0; i < CPUSET_WORDS; i++) { 2939 dst->cpub[i] = 0; 2940 } 2941 } 2942 2943 2944 /* 2945 * Unbind threads bound to specified CPU. 2946 * 2947 * If `unbind_all_threads' is true, unbind all user threads bound to a given 2948 * CPU. Otherwise unbind all soft-bound user threads. 2949 */ 2950 int 2951 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads) 2952 { 2953 processorid_t obind; 2954 kthread_t *tp; 2955 int ret = 0; 2956 proc_t *pp; 2957 int err, berr = 0; 2958 2959 ASSERT(MUTEX_HELD(&cpu_lock)); 2960 2961 mutex_enter(&pidlock); 2962 for (pp = practive; pp != NULL; pp = pp->p_next) { 2963 mutex_enter(&pp->p_lock); 2964 tp = pp->p_tlist; 2965 /* 2966 * Skip zombies, kernel processes, and processes in 2967 * other zones, if called from a non-global zone. 2968 */ 2969 if (tp == NULL || (pp->p_flag & SSYS) || 2970 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2971 mutex_exit(&pp->p_lock); 2972 continue; 2973 } 2974 do { 2975 if (tp->t_bind_cpu != cpu) 2976 continue; 2977 /* 2978 * Skip threads with hard binding when 2979 * `unbind_all_threads' is not specified. 2980 */ 2981 if (!unbind_all_threads && TB_CPU_IS_HARD(tp)) 2982 continue; 2983 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2984 if (ret == 0) 2985 ret = err; 2986 } while ((tp = tp->t_forw) != pp->p_tlist); 2987 mutex_exit(&pp->p_lock); 2988 } 2989 mutex_exit(&pidlock); 2990 if (ret == 0) 2991 ret = berr; 2992 return (ret); 2993 } 2994 2995 2996 /* 2997 * Destroy all remaining bound threads on a cpu. 2998 */ 2999 void 3000 cpu_destroy_bound_threads(cpu_t *cp) 3001 { 3002 extern id_t syscid; 3003 register kthread_id_t t, tlist, tnext; 3004 3005 /* 3006 * Destroy all remaining bound threads on the cpu. This 3007 * should include both the interrupt threads and the idle thread. 3008 * This requires some care, since we need to traverse the 3009 * thread list with the pidlock mutex locked, but thread_free 3010 * also locks the pidlock mutex. So, we collect the threads 3011 * we're going to reap in a list headed by "tlist", then we 3012 * unlock the pidlock mutex and traverse the tlist list, 3013 * doing thread_free's on the thread's. Simple, n'est pas? 3014 * Also, this depends on thread_free not mucking with the 3015 * t_next and t_prev links of the thread. 3016 */ 3017 3018 if ((t = curthread) != NULL) { 3019 3020 tlist = NULL; 3021 mutex_enter(&pidlock); 3022 do { 3023 tnext = t->t_next; 3024 if (t->t_bound_cpu == cp) { 3025 3026 /* 3027 * We've found a bound thread, carefully unlink 3028 * it out of the thread list, and add it to 3029 * our "tlist". We "know" we don't have to 3030 * worry about unlinking curthread (the thread 3031 * that is executing this code). 3032 */ 3033 t->t_next->t_prev = t->t_prev; 3034 t->t_prev->t_next = t->t_next; 3035 t->t_next = tlist; 3036 tlist = t; 3037 ASSERT(t->t_cid == syscid); 3038 /* wake up anyone blocked in thread_join */ 3039 cv_broadcast(&t->t_joincv); 3040 /* 3041 * t_lwp set by interrupt threads and not 3042 * cleared. 3043 */ 3044 t->t_lwp = NULL; 3045 /* 3046 * Pause and idle threads always have 3047 * t_state set to TS_ONPROC. 3048 */ 3049 t->t_state = TS_FREE; 3050 t->t_prev = NULL; /* Just in case */ 3051 } 3052 3053 } while ((t = tnext) != curthread); 3054 3055 mutex_exit(&pidlock); 3056 3057 mutex_sync(); 3058 for (t = tlist; t != NULL; t = tnext) { 3059 tnext = t->t_next; 3060 thread_free(t); 3061 } 3062 } 3063 } 3064 3065 /* 3066 * Update the cpu_supp_freqs of this cpu. This information is returned 3067 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 3068 * maintain the kstat data size. 3069 */ 3070 void 3071 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 3072 { 3073 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 3074 const char *lfreqs = clkstr; 3075 boolean_t kstat_exists = B_FALSE; 3076 kstat_t *ksp; 3077 size_t len; 3078 3079 /* 3080 * A NULL pointer means we only support one speed. 3081 */ 3082 if (freqs == NULL) 3083 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 3084 cp->cpu_curr_clock); 3085 else 3086 lfreqs = freqs; 3087 3088 /* 3089 * Make sure the frequency doesn't change while a snapshot is 3090 * going on. Of course, we only need to worry about this if 3091 * the kstat exists. 3092 */ 3093 if ((ksp = cp->cpu_info_kstat) != NULL) { 3094 mutex_enter(ksp->ks_lock); 3095 kstat_exists = B_TRUE; 3096 } 3097 3098 /* 3099 * Free any previously allocated string and if the kstat 3100 * already exists, then update its data size. 3101 */ 3102 if (cp->cpu_supp_freqs != NULL) { 3103 len = strlen(cp->cpu_supp_freqs) + 1; 3104 kmem_free(cp->cpu_supp_freqs, len); 3105 if (kstat_exists) 3106 ksp->ks_data_size -= len; 3107 } 3108 3109 /* 3110 * Allocate the new string and set the pointer. 3111 */ 3112 len = strlen(lfreqs) + 1; 3113 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 3114 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 3115 3116 /* 3117 * If the kstat already exists then update the data size and 3118 * free the lock. 3119 */ 3120 if (kstat_exists) { 3121 ksp->ks_data_size += len; 3122 mutex_exit(ksp->ks_lock); 3123 } 3124 } 3125 3126 /* 3127 * Indicate the current CPU's clock freqency (in Hz). 3128 * The calling context must be such that CPU references are safe. 3129 */ 3130 void 3131 cpu_set_curr_clock(uint64_t new_clk) 3132 { 3133 uint64_t old_clk; 3134 3135 old_clk = CPU->cpu_curr_clock; 3136 CPU->cpu_curr_clock = new_clk; 3137 3138 /* 3139 * The cpu-change-speed DTrace probe exports the frequency in Hz 3140 */ 3141 DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id, 3142 uint64_t, old_clk, uint64_t, new_clk); 3143 } 3144 3145 /* 3146 * processor_info(2) and p_online(2) status support functions 3147 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 3148 * for use in communicating processor state information to userland. Kernel 3149 * subsystems should only be using the cpu_flags value directly. Subsystems 3150 * modifying cpu_flags should record the state change via a call to the 3151 * cpu_set_state(). 3152 */ 3153 3154 /* 3155 * Update the pi_state of this CPU. This function provides the CPU status for 3156 * the information returned by processor_info(2). 3157 */ 3158 void 3159 cpu_set_state(cpu_t *cpu) 3160 { 3161 ASSERT(MUTEX_HELD(&cpu_lock)); 3162 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 3163 cpu->cpu_state_begin = gethrestime_sec(); 3164 pool_cpu_mod = gethrtime(); 3165 } 3166 3167 /* 3168 * Return offline/online/other status for the indicated CPU. Use only for 3169 * communication with user applications; cpu_flags provides the in-kernel 3170 * interface. 3171 */ 3172 static int 3173 cpu_flags_to_state(cpu_flag_t flags) 3174 { 3175 if (flags & CPU_DISABLED) 3176 return (P_DISABLED); 3177 else if (flags & CPU_POWEROFF) 3178 return (P_POWEROFF); 3179 else if (flags & CPU_FAULTED) 3180 return (P_FAULTED); 3181 else if (flags & CPU_SPARE) 3182 return (P_SPARE); 3183 else if ((flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 3184 return (P_OFFLINE); 3185 else if (flags & CPU_ENABLE) 3186 return (P_ONLINE); 3187 else 3188 return (P_NOINTR); 3189 } 3190 3191 int 3192 cpu_get_state(cpu_t *cpu) 3193 { 3194 ASSERT(MUTEX_HELD(&cpu_lock)); 3195 return (cpu_flags_to_state(cpu->cpu_flags)); 3196 } 3197 3198 /* 3199 * Return processor_info(2) state as a string. 3200 */ 3201 const char * 3202 cpu_get_state_str(cpu_flag_t flags) 3203 { 3204 const char *string; 3205 3206 switch (cpu_flags_to_state(flags)) { 3207 case P_ONLINE: 3208 string = PS_ONLINE; 3209 break; 3210 case P_POWEROFF: 3211 string = PS_POWEROFF; 3212 break; 3213 case P_NOINTR: 3214 string = PS_NOINTR; 3215 break; 3216 case P_SPARE: 3217 string = PS_SPARE; 3218 break; 3219 case P_FAULTED: 3220 string = PS_FAULTED; 3221 break; 3222 case P_OFFLINE: 3223 string = PS_OFFLINE; 3224 break; 3225 case P_DISABLED: 3226 string = PS_DISABLED; 3227 break; 3228 default: 3229 string = "unknown"; 3230 break; 3231 } 3232 return (string); 3233 } 3234 3235 /* 3236 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 3237 * kstats, respectively. This is done when a CPU is initialized or placed 3238 * online via p_online(2). 3239 */ 3240 static void 3241 cpu_stats_kstat_create(cpu_t *cp) 3242 { 3243 int instance = cp->cpu_id; 3244 char *module = "cpu"; 3245 char *class = "misc"; 3246 kstat_t *ksp; 3247 zoneid_t zoneid; 3248 3249 ASSERT(MUTEX_HELD(&cpu_lock)); 3250 3251 if (pool_pset_enabled()) 3252 zoneid = GLOBAL_ZONEID; 3253 else 3254 zoneid = ALL_ZONES; 3255 /* 3256 * Create named kstats 3257 */ 3258 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 3259 ksp = kstat_create_zone(module, instance, (name), class, \ 3260 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 3261 zoneid); \ 3262 if (ksp != NULL) { \ 3263 ksp->ks_private = cp; \ 3264 ksp->ks_update = (update_func); \ 3265 kstat_install(ksp); \ 3266 } else \ 3267 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 3268 module, instance, (name)); 3269 3270 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 3271 cpu_sys_stats_ks_update); 3272 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 3273 cpu_vm_stats_ks_update); 3274 3275 /* 3276 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 3277 */ 3278 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 3279 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 3280 if (ksp != NULL) { 3281 ksp->ks_update = cpu_stat_ks_update; 3282 ksp->ks_private = cp; 3283 kstat_install(ksp); 3284 } 3285 } 3286 3287 static void 3288 cpu_stats_kstat_destroy(cpu_t *cp) 3289 { 3290 char ks_name[KSTAT_STRLEN]; 3291 3292 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3293 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3294 3295 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3296 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3297 } 3298 3299 static int 3300 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3301 { 3302 cpu_t *cp = (cpu_t *)ksp->ks_private; 3303 struct cpu_sys_stats_ks_data *csskd; 3304 cpu_sys_stats_t *css; 3305 hrtime_t msnsecs[NCMSTATES]; 3306 int i; 3307 3308 if (rw == KSTAT_WRITE) 3309 return (EACCES); 3310 3311 csskd = ksp->ks_data; 3312 css = &cp->cpu_stats.sys; 3313 3314 /* 3315 * Read CPU mstate, but compare with the last values we 3316 * received to make sure that the returned kstats never 3317 * decrease. 3318 */ 3319 3320 get_cpu_mstate(cp, msnsecs); 3321 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3322 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3323 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3324 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3325 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3326 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3327 3328 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3329 sizeof (cpu_sys_stats_ks_data_template)); 3330 3331 csskd->cpu_ticks_wait.value.ui64 = 0; 3332 csskd->wait_ticks_io.value.ui64 = 0; 3333 3334 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3335 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3336 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3337 csskd->cpu_ticks_idle.value.ui64 = 3338 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3339 csskd->cpu_ticks_user.value.ui64 = 3340 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3341 csskd->cpu_ticks_kernel.value.ui64 = 3342 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3343 csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec; 3344 csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes; 3345 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3346 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3347 csskd->bread.value.ui64 = css->bread; 3348 csskd->bwrite.value.ui64 = css->bwrite; 3349 csskd->lread.value.ui64 = css->lread; 3350 csskd->lwrite.value.ui64 = css->lwrite; 3351 csskd->phread.value.ui64 = css->phread; 3352 csskd->phwrite.value.ui64 = css->phwrite; 3353 csskd->pswitch.value.ui64 = css->pswitch; 3354 csskd->trap.value.ui64 = css->trap; 3355 csskd->intr.value.ui64 = 0; 3356 for (i = 0; i < PIL_MAX; i++) 3357 csskd->intr.value.ui64 += css->intr[i]; 3358 csskd->syscall.value.ui64 = css->syscall; 3359 csskd->sysread.value.ui64 = css->sysread; 3360 csskd->syswrite.value.ui64 = css->syswrite; 3361 csskd->sysfork.value.ui64 = css->sysfork; 3362 csskd->sysvfork.value.ui64 = css->sysvfork; 3363 csskd->sysexec.value.ui64 = css->sysexec; 3364 csskd->readch.value.ui64 = css->readch; 3365 csskd->writech.value.ui64 = css->writech; 3366 csskd->rcvint.value.ui64 = css->rcvint; 3367 csskd->xmtint.value.ui64 = css->xmtint; 3368 csskd->mdmint.value.ui64 = css->mdmint; 3369 csskd->rawch.value.ui64 = css->rawch; 3370 csskd->canch.value.ui64 = css->canch; 3371 csskd->outch.value.ui64 = css->outch; 3372 csskd->msg.value.ui64 = css->msg; 3373 csskd->sema.value.ui64 = css->sema; 3374 csskd->namei.value.ui64 = css->namei; 3375 csskd->ufsiget.value.ui64 = css->ufsiget; 3376 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3377 csskd->ufsipage.value.ui64 = css->ufsipage; 3378 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3379 csskd->procovf.value.ui64 = css->procovf; 3380 csskd->intrthread.value.ui64 = 0; 3381 for (i = 0; i < LOCK_LEVEL - 1; i++) 3382 csskd->intrthread.value.ui64 += css->intr[i]; 3383 csskd->intrblk.value.ui64 = css->intrblk; 3384 csskd->intrunpin.value.ui64 = css->intrunpin; 3385 csskd->idlethread.value.ui64 = css->idlethread; 3386 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3387 csskd->nthreads.value.ui64 = css->nthreads; 3388 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3389 csskd->xcalls.value.ui64 = css->xcalls; 3390 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3391 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3392 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3393 csskd->modload.value.ui64 = css->modload; 3394 csskd->modunload.value.ui64 = css->modunload; 3395 csskd->bawrite.value.ui64 = css->bawrite; 3396 csskd->iowait.value.ui64 = css->iowait; 3397 3398 return (0); 3399 } 3400 3401 static int 3402 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3403 { 3404 cpu_t *cp = (cpu_t *)ksp->ks_private; 3405 struct cpu_vm_stats_ks_data *cvskd; 3406 cpu_vm_stats_t *cvs; 3407 3408 if (rw == KSTAT_WRITE) 3409 return (EACCES); 3410 3411 cvs = &cp->cpu_stats.vm; 3412 cvskd = ksp->ks_data; 3413 3414 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3415 sizeof (cpu_vm_stats_ks_data_template)); 3416 cvskd->pgrec.value.ui64 = cvs->pgrec; 3417 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3418 cvskd->pgin.value.ui64 = cvs->pgin; 3419 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3420 cvskd->pgout.value.ui64 = cvs->pgout; 3421 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3422 cvskd->swapin.value.ui64 = cvs->swapin; 3423 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3424 cvskd->swapout.value.ui64 = cvs->swapout; 3425 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3426 cvskd->zfod.value.ui64 = cvs->zfod; 3427 cvskd->dfree.value.ui64 = cvs->dfree; 3428 cvskd->scan.value.ui64 = cvs->scan; 3429 cvskd->rev.value.ui64 = cvs->rev; 3430 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3431 cvskd->as_fault.value.ui64 = cvs->as_fault; 3432 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3433 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3434 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3435 cvskd->softlock.value.ui64 = cvs->softlock; 3436 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3437 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3438 cvskd->execpgin.value.ui64 = cvs->execpgin; 3439 cvskd->execpgout.value.ui64 = cvs->execpgout; 3440 cvskd->execfree.value.ui64 = cvs->execfree; 3441 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3442 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3443 cvskd->anonfree.value.ui64 = cvs->anonfree; 3444 cvskd->fspgin.value.ui64 = cvs->fspgin; 3445 cvskd->fspgout.value.ui64 = cvs->fspgout; 3446 cvskd->fsfree.value.ui64 = cvs->fsfree; 3447 3448 return (0); 3449 } 3450 3451 static int 3452 cpu_stat_ks_update(kstat_t *ksp, int rw) 3453 { 3454 cpu_stat_t *cso; 3455 cpu_t *cp; 3456 int i; 3457 hrtime_t msnsecs[NCMSTATES]; 3458 3459 cso = (cpu_stat_t *)ksp->ks_data; 3460 cp = (cpu_t *)ksp->ks_private; 3461 3462 if (rw == KSTAT_WRITE) 3463 return (EACCES); 3464 3465 /* 3466 * Read CPU mstate, but compare with the last values we 3467 * received to make sure that the returned kstats never 3468 * decrease. 3469 */ 3470 3471 get_cpu_mstate(cp, msnsecs); 3472 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3473 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3474 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3475 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3476 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3477 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3478 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3479 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3480 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3481 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3482 cso->cpu_sysinfo.wait[W_IO] = 0; 3483 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3484 cso->cpu_sysinfo.wait[W_PIO] = 0; 3485 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3486 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3487 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3488 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3489 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3490 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3491 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3492 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3493 cso->cpu_sysinfo.intr = 0; 3494 for (i = 0; i < PIL_MAX; i++) 3495 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3496 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3497 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3498 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3499 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3500 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3501 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3502 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3503 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3504 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3505 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3506 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3507 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3508 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3509 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3510 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3511 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3512 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3513 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3514 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3515 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3516 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3517 cso->cpu_sysinfo.inodeovf = 0; 3518 cso->cpu_sysinfo.fileovf = 0; 3519 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3520 cso->cpu_sysinfo.intrthread = 0; 3521 for (i = 0; i < LOCK_LEVEL - 1; i++) 3522 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3523 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3524 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3525 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3526 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3527 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3528 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3529 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3530 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3531 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3532 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3533 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3534 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3535 cso->cpu_sysinfo.rw_enters = 0; 3536 cso->cpu_sysinfo.win_uo_cnt = 0; 3537 cso->cpu_sysinfo.win_uu_cnt = 0; 3538 cso->cpu_sysinfo.win_so_cnt = 0; 3539 cso->cpu_sysinfo.win_su_cnt = 0; 3540 cso->cpu_sysinfo.win_suo_cnt = 0; 3541 3542 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3543 cso->cpu_syswait.swap = 0; 3544 cso->cpu_syswait.physio = 0; 3545 3546 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3547 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3548 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3549 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3550 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3551 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3552 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3553 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3554 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3555 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3556 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3557 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3558 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3559 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3560 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3561 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3562 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3563 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3564 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3565 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3566 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3567 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3568 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3569 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3570 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3571 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3572 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3573 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3574 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3575 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3576 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3577 3578 return (0); 3579 } 3580