xref: /illumos-gate/usr/src/uts/common/os/condvar.c (revision c432de9c6e1189ea0aa9b0fe1c35c18427653f27)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  * Copyright 2019 Joyent, Inc.
30  */
31 
32 #include <sys/thread.h>
33 #include <sys/proc.h>
34 #include <sys/debug.h>
35 #include <sys/cmn_err.h>
36 #include <sys/systm.h>
37 #include <sys/sobject.h>
38 #include <sys/sleepq.h>
39 #include <sys/cpuvar.h>
40 #include <sys/condvar.h>
41 #include <sys/condvar_impl.h>
42 #include <sys/schedctl.h>
43 #include <sys/procfs.h>
44 #include <sys/sdt.h>
45 #include <sys/callo.h>
46 
47 /*
48  * CV_MAX_WAITERS is the maximum number of waiters we track; once
49  * the number becomes higher than that, we look at the sleepq to
50  * see whether there are *really* any waiters.
51  */
52 #define	CV_MAX_WAITERS		1024		/* must be power of 2 */
53 #define	CV_WAITERS_MASK		(CV_MAX_WAITERS - 1)
54 
55 /*
56  * Threads don't "own" condition variables.
57  */
58 /* ARGSUSED */
59 static kthread_t *
60 cv_owner(void *cvp)
61 {
62 	return (NULL);
63 }
64 
65 /*
66  * Unsleep a thread that's blocked on a condition variable.
67  */
68 static void
69 cv_unsleep(kthread_t *t)
70 {
71 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
72 	sleepq_head_t *sqh = SQHASH(cvp);
73 
74 	ASSERT(THREAD_LOCK_HELD(t));
75 
76 	if (cvp == NULL)
77 		panic("cv_unsleep: thread %p not on sleepq %p",
78 		    (void *)t, (void *)sqh);
79 	DTRACE_SCHED1(wakeup, kthread_t *, t);
80 	sleepq_unsleep(t);
81 	if (cvp->cv_waiters != CV_MAX_WAITERS)
82 		cvp->cv_waiters--;
83 	disp_lock_exit_high(&sqh->sq_lock);
84 	CL_SETRUN(t);
85 }
86 
87 /*
88  * Change the priority of a thread that's blocked on a condition variable.
89  */
90 static void
91 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip)
92 {
93 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
94 	sleepq_t *sqp = t->t_sleepq;
95 
96 	ASSERT(THREAD_LOCK_HELD(t));
97 	ASSERT(&SQHASH(cvp)->sq_queue == sqp);
98 
99 	if (cvp == NULL)
100 		panic("cv_change_pri: %p not on sleep queue", (void *)t);
101 	sleepq_dequeue(t);
102 	*t_prip = pri;
103 	sleepq_insert(sqp, t);
104 }
105 
106 /*
107  * The sobj_ops vector exports a set of functions needed when a thread
108  * is asleep on a synchronization object of this type.
109  */
110 static sobj_ops_t cv_sobj_ops = {
111 	SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri
112 };
113 
114 /* ARGSUSED */
115 void
116 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg)
117 {
118 	((condvar_impl_t *)cvp)->cv_waiters = 0;
119 }
120 
121 /*
122  * cv_destroy is not currently needed, but is part of the DDI.
123  * This is in case cv_init ever needs to allocate something for a cv.
124  */
125 /* ARGSUSED */
126 void
127 cv_destroy(kcondvar_t *cvp)
128 {
129 	ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0);
130 }
131 
132 /*
133  * The cv_block() function blocks a thread on a condition variable
134  * by putting it in a hashed sleep queue associated with the
135  * synchronization object.
136  *
137  * Threads are taken off the hashed sleep queues via calls to
138  * cv_signal(), cv_broadcast(), or cv_unsleep().
139  */
140 static void
141 cv_block(condvar_impl_t *cvp)
142 {
143 	kthread_t *t = curthread;
144 	klwp_t *lwp = ttolwp(t);
145 	sleepq_head_t *sqh;
146 
147 	ASSERT(THREAD_LOCK_HELD(t));
148 	ASSERT(t != CPU->cpu_idle_thread);
149 	ASSERT(CPU_ON_INTR(CPU) == 0);
150 	ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
151 	ASSERT(t->t_state == TS_ONPROC);
152 
153 	t->t_schedflag &= ~TS_SIGNALLED;
154 	CL_SLEEP(t);			/* assign kernel priority */
155 	t->t_wchan = (caddr_t)cvp;
156 	t->t_sobj_ops = &cv_sobj_ops;
157 	DTRACE_SCHED(sleep);
158 
159 	/*
160 	 * The check for t_intr is to avoid doing the
161 	 * account for an interrupt thread on the still-pinned
162 	 * lwp's statistics.
163 	 */
164 	if (lwp != NULL && t->t_intr == NULL) {
165 		lwp->lwp_ru.nvcsw++;
166 		(void) new_mstate(t, LMS_SLEEP);
167 	}
168 
169 	sqh = SQHASH(cvp);
170 	disp_lock_enter_high(&sqh->sq_lock);
171 	if (cvp->cv_waiters < CV_MAX_WAITERS)
172 		cvp->cv_waiters++;
173 	ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS);
174 	THREAD_SLEEP(t, &sqh->sq_lock);
175 	sleepq_insert(&sqh->sq_queue, t);
176 	/*
177 	 * THREAD_SLEEP() moves curthread->t_lockp to point to the
178 	 * lock sqh->sq_lock. This lock is later released by the caller
179 	 * when it calls thread_unlock() on curthread.
180 	 */
181 }
182 
183 #define	cv_block_sig(t, cvp)	\
184 	{ (t)->t_flag |= T_WAKEABLE; cv_block(cvp); }
185 
186 /*
187  * Block on the indicated condition variable and release the
188  * associated kmutex while blocked.
189  */
190 void
191 cv_wait(kcondvar_t *cvp, kmutex_t *mp)
192 {
193 	if (panicstr)
194 		return;
195 	ASSERT(!quiesce_active);
196 
197 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
198 	thread_lock(curthread);			/* lock the thread */
199 	cv_block((condvar_impl_t *)cvp);
200 	thread_unlock_nopreempt(curthread);	/* unlock the waiters field */
201 	mutex_exit(mp);
202 	swtch();
203 	mutex_enter(mp);
204 }
205 
206 static void
207 cv_wakeup(void *arg)
208 {
209 	kthread_t *t = arg;
210 
211 	/*
212 	 * This mutex is acquired and released in order to make sure that
213 	 * the wakeup does not happen before the block itself happens.
214 	 */
215 	mutex_enter(&t->t_wait_mutex);
216 	mutex_exit(&t->t_wait_mutex);
217 	setrun(t);
218 }
219 
220 /*
221  * Same as cv_wait except the thread will unblock at 'tim'
222  * (an absolute time) if it hasn't already unblocked.
223  *
224  * Returns the amount of time left from the original 'tim' value
225  * when it was unblocked.
226  */
227 clock_t
228 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
229 {
230 	hrtime_t hrtim;
231 	clock_t now = ddi_get_lbolt();
232 
233 	if (tim <= now)
234 		return (-1);
235 
236 	hrtim = TICK_TO_NSEC(tim - now);
237 	return (cv_timedwait_hires(cvp, mp, hrtim, nsec_per_tick, 0));
238 }
239 
240 /*
241  * Same as cv_timedwait() except that the third argument is a relative
242  * timeout value, as opposed to an absolute one. There is also a fourth
243  * argument that specifies how accurately the timeout must be implemented.
244  */
245 clock_t
246 cv_reltimedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, time_res_t res)
247 {
248 	hrtime_t exp;
249 
250 	ASSERT(TIME_RES_VALID(res));
251 
252 	if (delta <= 0)
253 		return (-1);
254 
255 	if ((exp = TICK_TO_NSEC(delta)) < 0)
256 		exp = CY_INFINITY;
257 
258 	return (cv_timedwait_hires(cvp, mp, exp, time_res[res], 0));
259 }
260 
261 clock_t
262 cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim,
263     hrtime_t res, int flag)
264 {
265 	kthread_t *t = curthread;
266 	callout_id_t id;
267 	clock_t timeleft;
268 	hrtime_t limit;
269 	int signalled;
270 
271 	if (panicstr)
272 		return (-1);
273 	ASSERT(!quiesce_active);
274 
275 	limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0;
276 	if (tim <= limit)
277 		return (-1);
278 	mutex_enter(&t->t_wait_mutex);
279 	id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t,
280 	    tim, res, flag);
281 	thread_lock(t);		/* lock the thread */
282 	cv_block((condvar_impl_t *)cvp);
283 	thread_unlock_nopreempt(t);
284 	mutex_exit(&t->t_wait_mutex);
285 	mutex_exit(mp);
286 	swtch();
287 	signalled = (t->t_schedflag & TS_SIGNALLED);
288 	/*
289 	 * Get the time left. untimeout() returns -1 if the timeout has
290 	 * occured or the time remaining.  If the time remaining is zero,
291 	 * the timeout has occured between when we were awoken and
292 	 * we called untimeout.  We will treat this as if the timeout
293 	 * has occured and set timeleft to -1.
294 	 */
295 	timeleft = untimeout_default(id, 0);
296 	mutex_enter(mp);
297 	if (timeleft <= 0) {
298 		timeleft = -1;
299 		if (signalled)	/* avoid consuming the cv_signal() */
300 			cv_signal(cvp);
301 	}
302 	return (timeleft);
303 }
304 
305 int
306 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp)
307 {
308 	kthread_t *t = curthread;
309 	proc_t *p = ttoproc(t);
310 	klwp_t *lwp = ttolwp(t);
311 	int cancel_pending;
312 	int rval = 1;
313 	int signalled = 0;
314 
315 	if (panicstr)
316 		return (rval);
317 	ASSERT(!quiesce_active);
318 
319 	/*
320 	 * Threads in system processes don't process signals.  This is
321 	 * true both for standard threads of system processes and for
322 	 * interrupt threads which have borrowed their pinned thread's LWP.
323 	 */
324 	if (lwp == NULL || (p->p_flag & SSYS)) {
325 		cv_wait(cvp, mp);
326 		return (rval);
327 	}
328 	ASSERT(t->t_intr == NULL);
329 
330 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
331 	cancel_pending = schedctl_cancel_pending();
332 	lwp->lwp_asleep = 1;
333 	lwp->lwp_sysabort = 0;
334 	thread_lock(t);
335 	cv_block_sig(t, (condvar_impl_t *)cvp);
336 	thread_unlock_nopreempt(t);
337 	mutex_exit(mp);
338 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
339 		setrun(t);
340 	/* ASSERT(no locks are held) */
341 	swtch();
342 	signalled = (t->t_schedflag & TS_SIGNALLED);
343 	t->t_flag &= ~T_WAKEABLE;
344 	mutex_enter(mp);
345 	if (ISSIG_PENDING(t, lwp, p)) {
346 		mutex_exit(mp);
347 		if (issig(FORREAL))
348 			rval = 0;
349 		mutex_enter(mp);
350 	}
351 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
352 		rval = 0;
353 	if (rval != 0 && cancel_pending) {
354 		schedctl_cancel_eintr();
355 		rval = 0;
356 	}
357 	lwp->lwp_asleep = 0;
358 	lwp->lwp_sysabort = 0;
359 	if (rval == 0 && signalled)	/* avoid consuming the cv_signal() */
360 		cv_signal(cvp);
361 	return (rval);
362 }
363 
364 static clock_t
365 cv_timedwait_sig_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim,
366     hrtime_t res, int flag)
367 {
368 	kthread_t *t = curthread;
369 	proc_t *p = ttoproc(t);
370 	klwp_t *lwp = ttolwp(t);
371 	int cancel_pending = 0;
372 	callout_id_t id;
373 	clock_t rval = 1;
374 	hrtime_t limit;
375 	int signalled = 0;
376 
377 	if (panicstr)
378 		return (rval);
379 	ASSERT(!quiesce_active);
380 
381 	/*
382 	 * Threads in system processes don't process signals.  This is
383 	 * true both for standard threads of system processes and for
384 	 * interrupt threads which have borrowed their pinned thread's LWP.
385 	 */
386 	if (lwp == NULL || (p->p_flag & SSYS))
387 		return (cv_timedwait_hires(cvp, mp, tim, res, flag));
388 	ASSERT(t->t_intr == NULL);
389 
390 	/*
391 	 * If tim is less than or equal to current hrtime, then the timeout
392 	 * has already occured.  So just check to see if there is a signal
393 	 * pending.  If so return 0 indicating that there is a signal pending.
394 	 * Else return -1 indicating that the timeout occured. No need to
395 	 * wait on anything.
396 	 */
397 	limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0;
398 	if (tim <= limit) {
399 		lwp->lwp_asleep = 1;
400 		lwp->lwp_sysabort = 0;
401 		rval = -1;
402 		goto out;
403 	}
404 
405 	/*
406 	 * Set the timeout and wait.
407 	 */
408 	cancel_pending = schedctl_cancel_pending();
409 	mutex_enter(&t->t_wait_mutex);
410 	id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t,
411 	    tim, res, flag);
412 	lwp->lwp_asleep = 1;
413 	lwp->lwp_sysabort = 0;
414 	thread_lock(t);
415 	cv_block_sig(t, (condvar_impl_t *)cvp);
416 	thread_unlock_nopreempt(t);
417 	mutex_exit(&t->t_wait_mutex);
418 	mutex_exit(mp);
419 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
420 		setrun(t);
421 	/* ASSERT(no locks are held) */
422 	swtch();
423 	signalled = (t->t_schedflag & TS_SIGNALLED);
424 	t->t_flag &= ~T_WAKEABLE;
425 
426 	/*
427 	 * Untimeout the thread.  untimeout() returns -1 if the timeout has
428 	 * occured or the time remaining.  If the time remaining is zero,
429 	 * the timeout has occured between when we were awoken and
430 	 * we called untimeout.  We will treat this as if the timeout
431 	 * has occured and set rval to -1.
432 	 */
433 	rval = untimeout_default(id, 0);
434 	mutex_enter(mp);
435 	if (rval <= 0)
436 		rval = -1;
437 
438 	/*
439 	 * Check to see if a signal is pending.  If so, regardless of whether
440 	 * or not we were awoken due to the signal, the signal is now pending
441 	 * and a return of 0 has the highest priority.
442 	 */
443 out:
444 	if (ISSIG_PENDING(t, lwp, p)) {
445 		mutex_exit(mp);
446 		if (issig(FORREAL))
447 			rval = 0;
448 		mutex_enter(mp);
449 	}
450 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
451 		rval = 0;
452 	if (rval != 0 && cancel_pending) {
453 		schedctl_cancel_eintr();
454 		rval = 0;
455 	}
456 	lwp->lwp_asleep = 0;
457 	lwp->lwp_sysabort = 0;
458 	if (rval <= 0 && signalled)	/* avoid consuming the cv_signal() */
459 		cv_signal(cvp);
460 	return (rval);
461 }
462 
463 /*
464  * Returns:
465  *	Function result in order of precedence:
466  *		 0 if a signal was received
467  *		-1 if timeout occured
468  *		>0 if awakened via cv_signal() or cv_broadcast().
469  *		   (returns time remaining)
470  *
471  * cv_timedwait_sig() is now part of the DDI.
472  *
473  * This function is now just a wrapper for cv_timedwait_sig_hires().
474  */
475 clock_t
476 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
477 {
478 	hrtime_t hrtim;
479 
480 	hrtim = TICK_TO_NSEC(tim - ddi_get_lbolt());
481 	return (cv_timedwait_sig_hires(cvp, mp, hrtim, nsec_per_tick, 0));
482 }
483 
484 /*
485  * Wait until the specified time.
486  * If tim == -1, waits without timeout using cv_wait_sig_swap().
487  */
488 int
489 cv_timedwait_sig_hrtime(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim)
490 {
491 	if (tim == -1) {
492 		return (cv_wait_sig_swap(cvp, mp));
493 	} else {
494 		return (cv_timedwait_sig_hires(cvp, mp, tim, 1,
495 		    CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP));
496 	}
497 }
498 
499 /*
500  * Same as cv_timedwait_sig() except that the third argument is a relative
501  * timeout value, as opposed to an absolute one. There is also a fourth
502  * argument that specifies how accurately the timeout must be implemented.
503  */
504 clock_t
505 cv_reltimedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t delta,
506     time_res_t res)
507 {
508 	hrtime_t exp = 0;
509 
510 	ASSERT(TIME_RES_VALID(res));
511 
512 	if (delta > 0) {
513 		if ((exp = TICK_TO_NSEC(delta)) < 0)
514 			exp = CY_INFINITY;
515 	}
516 
517 	return (cv_timedwait_sig_hires(cvp, mp, exp, time_res[res], 0));
518 }
519 
520 /*
521  * Like cv_wait_sig_swap but allows the caller to indicate (with a
522  * non-NULL sigret) that they will take care of signalling the cv
523  * after wakeup, if necessary.  This is a vile hack that should only
524  * be used when no other option is available; almost all callers
525  * should just use cv_wait_sig_swap (which takes care of the cv_signal
526  * stuff automatically) instead.
527  */
528 int
529 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret)
530 {
531 	kthread_t *t = curthread;
532 	proc_t *p = ttoproc(t);
533 	klwp_t *lwp = ttolwp(t);
534 	int cancel_pending;
535 	int rval = 1;
536 	int signalled = 0;
537 
538 	if (panicstr)
539 		return (rval);
540 
541 	/*
542 	 * Threads in system processes don't process signals.  This is
543 	 * true both for standard threads of system processes and for
544 	 * interrupt threads which have borrowed their pinned thread's LWP.
545 	 */
546 	if (lwp == NULL || (p->p_flag & SSYS)) {
547 		cv_wait(cvp, mp);
548 		return (rval);
549 	}
550 	ASSERT(t->t_intr == NULL);
551 
552 	cancel_pending = schedctl_cancel_pending();
553 	lwp->lwp_asleep = 1;
554 	lwp->lwp_sysabort = 0;
555 	thread_lock(t);
556 	cv_block_sig(t, (condvar_impl_t *)cvp);
557 	/* I can be swapped now */
558 	curthread->t_schedflag &= ~TS_DONT_SWAP;
559 	thread_unlock_nopreempt(t);
560 	mutex_exit(mp);
561 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
562 		setrun(t);
563 	/* ASSERT(no locks are held) */
564 	swtch();
565 	signalled = (t->t_schedflag & TS_SIGNALLED);
566 	t->t_flag &= ~T_WAKEABLE;
567 	/* TS_DONT_SWAP set by disp() */
568 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
569 	mutex_enter(mp);
570 	if (ISSIG_PENDING(t, lwp, p)) {
571 		mutex_exit(mp);
572 		if (issig(FORREAL))
573 			rval = 0;
574 		mutex_enter(mp);
575 	}
576 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
577 		rval = 0;
578 	if (rval != 0 && cancel_pending) {
579 		schedctl_cancel_eintr();
580 		rval = 0;
581 	}
582 	lwp->lwp_asleep = 0;
583 	lwp->lwp_sysabort = 0;
584 	if (rval == 0) {
585 		if (sigret != NULL)
586 			*sigret = signalled;	/* just tell the caller */
587 		else if (signalled)
588 			cv_signal(cvp);	/* avoid consuming the cv_signal() */
589 	}
590 	return (rval);
591 }
592 
593 /*
594  * Same as cv_wait_sig but the thread can be swapped out while waiting.
595  * This should only be used when we know we aren't holding any locks.
596  */
597 int
598 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp)
599 {
600 	return (cv_wait_sig_swap_core(cvp, mp, NULL));
601 }
602 
603 void
604 cv_signal(kcondvar_t *cvp)
605 {
606 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
607 
608 	/* make sure the cv_waiters field looks sane */
609 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
610 	if (cp->cv_waiters > 0) {
611 		sleepq_head_t *sqh = SQHASH(cp);
612 		disp_lock_enter(&sqh->sq_lock);
613 		ASSERT(CPU_ON_INTR(CPU) == 0);
614 		if (cp->cv_waiters & CV_WAITERS_MASK) {
615 			kthread_t *t;
616 			cp->cv_waiters--;
617 			t = sleepq_wakeone_chan(&sqh->sq_queue, cp);
618 			/*
619 			 * If cv_waiters is non-zero (and less than
620 			 * CV_MAX_WAITERS) there should be a thread
621 			 * in the queue.
622 			 */
623 			ASSERT(t != NULL);
624 		} else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) {
625 			cp->cv_waiters = 0;
626 		}
627 		disp_lock_exit(&sqh->sq_lock);
628 	}
629 }
630 
631 void
632 cv_broadcast(kcondvar_t *cvp)
633 {
634 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
635 
636 	/* make sure the cv_waiters field looks sane */
637 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
638 	if (cp->cv_waiters > 0) {
639 		sleepq_head_t *sqh = SQHASH(cp);
640 		disp_lock_enter(&sqh->sq_lock);
641 		ASSERT(CPU_ON_INTR(CPU) == 0);
642 		sleepq_wakeall_chan(&sqh->sq_queue, cp);
643 		cp->cv_waiters = 0;
644 		disp_lock_exit(&sqh->sq_lock);
645 	}
646 }
647 
648 /*
649  * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check
650  * for requests to stop, like cv_wait_sig() but without dealing with signals.
651  * This is a horrible kludge.  It is evil.  It is vile.  It is swill.
652  * If your code has to call this function then your code is the same.
653  */
654 void
655 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time)
656 {
657 	kthread_t *t = curthread;
658 	klwp_t *lwp = ttolwp(t);
659 	proc_t *p = ttoproc(t);
660 	callout_id_t id;
661 	clock_t tim;
662 
663 	if (panicstr)
664 		return;
665 
666 	/*
667 	 * Threads in system processes don't process signals.  This is
668 	 * true both for standard threads of system processes and for
669 	 * interrupt threads which have borrowed their pinned thread's LWP.
670 	 */
671 	if (lwp == NULL || (p->p_flag & SSYS)) {
672 		cv_wait(cvp, mp);
673 		return;
674 	}
675 	ASSERT(t->t_intr == NULL);
676 
677 	/*
678 	 * Wakeup in wakeup_time milliseconds, i.e., human time.
679 	 */
680 	tim = ddi_get_lbolt() + MSEC_TO_TICK(wakeup_time);
681 	mutex_enter(&t->t_wait_mutex);
682 	id = realtime_timeout_default((void (*)(void *))cv_wakeup, t,
683 	    tim - ddi_get_lbolt());
684 	thread_lock(t);			/* lock the thread */
685 	cv_block((condvar_impl_t *)cvp);
686 	thread_unlock_nopreempt(t);
687 	mutex_exit(&t->t_wait_mutex);
688 	mutex_exit(mp);
689 	/* ASSERT(no locks are held); */
690 	swtch();
691 	(void) untimeout_default(id, 0);
692 
693 	/*
694 	 * Check for reasons to stop, if lwp_nostop is not true.
695 	 * See issig_forreal() for explanations of the various stops.
696 	 */
697 	mutex_enter(&p->p_lock);
698 	while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) {
699 		/*
700 		 * Hold the lwp here for watchpoint manipulation.
701 		 */
702 		if (t->t_proc_flag & TP_PAUSE) {
703 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
704 			continue;
705 		}
706 		/*
707 		 * System checkpoint.
708 		 */
709 		if (t->t_proc_flag & TP_CHKPT) {
710 			stop(PR_CHECKPOINT, 0);
711 			continue;
712 		}
713 		/*
714 		 * Honor fork1(), watchpoint activity (remapping a page),
715 		 * and lwp_suspend() requests.
716 		 */
717 		if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
718 		    (t->t_proc_flag & TP_HOLDLWP)) {
719 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
720 			continue;
721 		}
722 		/*
723 		 * Honor /proc requested stop.
724 		 */
725 		if (t->t_proc_flag & TP_PRSTOP) {
726 			stop(PR_REQUESTED, 0);
727 		}
728 		/*
729 		 * If some lwp in the process has already stopped
730 		 * showing PR_JOBCONTROL, stop in sympathy with it.
731 		 */
732 		if (p->p_stopsig && t != p->p_agenttp) {
733 			stop(PR_JOBCONTROL, p->p_stopsig);
734 			continue;
735 		}
736 		break;
737 	}
738 	mutex_exit(&p->p_lock);
739 	mutex_enter(mp);
740 }
741 
742 /*
743  * Like cv_timedwait_sig(), but takes an absolute hires future time
744  * rather than a future time in clock ticks.  Will not return showing
745  * that a timeout occurred until the future time is passed.
746  * If 'when' is a NULL pointer, no timeout will occur.
747  * Returns:
748  *	Function result in order of precedence:
749  *		 0 if a signal was received
750  *		-1 if timeout occured
751  *	        >0 if awakened via cv_signal() or cv_broadcast()
752  *		   or by a spurious wakeup.
753  *		   (might return time remaining)
754  * As a special test, if someone abruptly resets the system time
755  * (but not through adjtime(2); drifting of the clock is allowed and
756  * expected [see timespectohz_adj()]), then we force a return of -1
757  * so the caller can return a premature timeout to the calling process
758  * so it can reevaluate the situation in light of the new system time.
759  * (The system clock has been reset if timecheck != timechanged.)
760  *
761  * Generally, cv_timedwait_sig_hrtime() should be used instead of this
762  * routine.  It waits based on hrtime rather than wall-clock time and therefore
763  * does not need to deal with the time changing.
764  */
765 int
766 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp, timestruc_t *when,
767     int timecheck)
768 {
769 	timestruc_t now;
770 	timestruc_t delta;
771 	hrtime_t interval;
772 	int rval;
773 
774 	if (when == NULL)
775 		return (cv_wait_sig_swap(cvp, mp));
776 
777 	gethrestime(&now);
778 	delta = *when;
779 	timespecsub(&delta, &now);
780 	if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) {
781 		/*
782 		 * We have already reached the absolute future time.
783 		 * Call cv_timedwait_sig() just to check for signals.
784 		 * We will return immediately with either 0 or -1.
785 		 */
786 		rval = cv_timedwait_sig_hires(cvp, mp, 0, 1, 0);
787 	} else {
788 		if (timecheck == timechanged) {
789 			/*
790 			 * Make sure that the interval is atleast one tick.
791 			 * This is to prevent a user from flooding the system
792 			 * with very small, high resolution timers.
793 			 */
794 			interval = ts2hrt(&delta);
795 			if (interval < nsec_per_tick)
796 				interval = nsec_per_tick;
797 			rval = cv_timedwait_sig_hires(cvp, mp, interval, 1,
798 			    CALLOUT_FLAG_HRESTIME);
799 		} else {
800 			/*
801 			 * Someone reset the system time;
802 			 * just force an immediate timeout.
803 			 */
804 			rval = -1;
805 		}
806 		if (rval == -1 && timecheck == timechanged) {
807 			/*
808 			 * Even though cv_timedwait_sig() returned showing a
809 			 * timeout, the future time may not have passed yet.
810 			 * If not, change rval to indicate a normal wakeup.
811 			 */
812 			gethrestime(&now);
813 			delta = *when;
814 			timespecsub(&delta, &now);
815 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
816 			    delta.tv_nsec > 0))
817 				rval = 1;
818 		}
819 	}
820 	return (rval);
821 }
822