1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/thread.h> 28 #include <sys/proc.h> 29 #include <sys/debug.h> 30 #include <sys/cmn_err.h> 31 #include <sys/systm.h> 32 #include <sys/sobject.h> 33 #include <sys/sleepq.h> 34 #include <sys/cpuvar.h> 35 #include <sys/condvar.h> 36 #include <sys/condvar_impl.h> 37 #include <sys/schedctl.h> 38 #include <sys/procfs.h> 39 #include <sys/sdt.h> 40 #include <sys/callo.h> 41 42 clock_t cv_timedwait_hires(kcondvar_t *, kmutex_t *, hrtime_t, hrtime_t, int); 43 44 /* 45 * CV_MAX_WAITERS is the maximum number of waiters we track; once 46 * the number becomes higher than that, we look at the sleepq to 47 * see whether there are *really* any waiters. 48 */ 49 #define CV_MAX_WAITERS 1024 /* must be power of 2 */ 50 #define CV_WAITERS_MASK (CV_MAX_WAITERS - 1) 51 52 /* 53 * Threads don't "own" condition variables. 54 */ 55 /* ARGSUSED */ 56 static kthread_t * 57 cv_owner(void *cvp) 58 { 59 return (NULL); 60 } 61 62 /* 63 * Unsleep a thread that's blocked on a condition variable. 64 */ 65 static void 66 cv_unsleep(kthread_t *t) 67 { 68 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 69 sleepq_head_t *sqh = SQHASH(cvp); 70 71 ASSERT(THREAD_LOCK_HELD(t)); 72 73 if (cvp == NULL) 74 panic("cv_unsleep: thread %p not on sleepq %p", 75 (void *)t, (void *)sqh); 76 DTRACE_SCHED1(wakeup, kthread_t *, t); 77 sleepq_unsleep(t); 78 if (cvp->cv_waiters != CV_MAX_WAITERS) 79 cvp->cv_waiters--; 80 disp_lock_exit_high(&sqh->sq_lock); 81 CL_SETRUN(t); 82 } 83 84 /* 85 * Change the priority of a thread that's blocked on a condition variable. 86 */ 87 static void 88 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip) 89 { 90 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 91 sleepq_t *sqp = t->t_sleepq; 92 93 ASSERT(THREAD_LOCK_HELD(t)); 94 ASSERT(&SQHASH(cvp)->sq_queue == sqp); 95 96 if (cvp == NULL) 97 panic("cv_change_pri: %p not on sleep queue", (void *)t); 98 sleepq_dequeue(t); 99 *t_prip = pri; 100 sleepq_insert(sqp, t); 101 } 102 103 /* 104 * The sobj_ops vector exports a set of functions needed when a thread 105 * is asleep on a synchronization object of this type. 106 */ 107 static sobj_ops_t cv_sobj_ops = { 108 SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri 109 }; 110 111 /* ARGSUSED */ 112 void 113 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg) 114 { 115 ((condvar_impl_t *)cvp)->cv_waiters = 0; 116 } 117 118 /* 119 * cv_destroy is not currently needed, but is part of the DDI. 120 * This is in case cv_init ever needs to allocate something for a cv. 121 */ 122 /* ARGSUSED */ 123 void 124 cv_destroy(kcondvar_t *cvp) 125 { 126 ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0); 127 } 128 129 /* 130 * The cv_block() function blocks a thread on a condition variable 131 * by putting it in a hashed sleep queue associated with the 132 * synchronization object. 133 * 134 * Threads are taken off the hashed sleep queues via calls to 135 * cv_signal(), cv_broadcast(), or cv_unsleep(). 136 */ 137 static void 138 cv_block(condvar_impl_t *cvp) 139 { 140 kthread_t *t = curthread; 141 klwp_t *lwp = ttolwp(t); 142 sleepq_head_t *sqh; 143 144 ASSERT(THREAD_LOCK_HELD(t)); 145 ASSERT(t != CPU->cpu_idle_thread); 146 ASSERT(CPU_ON_INTR(CPU) == 0); 147 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 148 ASSERT(t->t_state == TS_ONPROC); 149 150 t->t_schedflag &= ~TS_SIGNALLED; 151 CL_SLEEP(t); /* assign kernel priority */ 152 t->t_wchan = (caddr_t)cvp; 153 t->t_sobj_ops = &cv_sobj_ops; 154 DTRACE_SCHED(sleep); 155 156 /* 157 * The check for t_intr is to avoid doing the 158 * account for an interrupt thread on the still-pinned 159 * lwp's statistics. 160 */ 161 if (lwp != NULL && t->t_intr == NULL) { 162 lwp->lwp_ru.nvcsw++; 163 (void) new_mstate(t, LMS_SLEEP); 164 } 165 166 sqh = SQHASH(cvp); 167 disp_lock_enter_high(&sqh->sq_lock); 168 if (cvp->cv_waiters < CV_MAX_WAITERS) 169 cvp->cv_waiters++; 170 ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS); 171 THREAD_SLEEP(t, &sqh->sq_lock); 172 sleepq_insert(&sqh->sq_queue, t); 173 /* 174 * THREAD_SLEEP() moves curthread->t_lockp to point to the 175 * lock sqh->sq_lock. This lock is later released by the caller 176 * when it calls thread_unlock() on curthread. 177 */ 178 } 179 180 #define cv_block_sig(t, cvp) \ 181 { (t)->t_flag |= T_WAKEABLE; cv_block(cvp); } 182 183 /* 184 * Block on the indicated condition variable and release the 185 * associated kmutex while blocked. 186 */ 187 void 188 cv_wait(kcondvar_t *cvp, kmutex_t *mp) 189 { 190 if (panicstr) 191 return; 192 193 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 194 thread_lock(curthread); /* lock the thread */ 195 cv_block((condvar_impl_t *)cvp); 196 thread_unlock_nopreempt(curthread); /* unlock the waiters field */ 197 mutex_exit(mp); 198 swtch(); 199 mutex_enter(mp); 200 } 201 202 static void 203 cv_wakeup(void *arg) 204 { 205 kthread_t *t = arg; 206 207 /* 208 * This mutex is acquired and released in order to make sure that 209 * the wakeup does not happen before the block itself happens. 210 */ 211 mutex_enter(&t->t_wait_mutex); 212 mutex_exit(&t->t_wait_mutex); 213 setrun(t); 214 } 215 216 /* 217 * Same as cv_wait except the thread will unblock at 'tim' 218 * (an absolute time) if it hasn't already unblocked. 219 * 220 * Returns the amount of time left from the original 'tim' value 221 * when it was unblocked. 222 */ 223 clock_t 224 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 225 { 226 hrtime_t hrtim; 227 clock_t now = ddi_get_lbolt(); 228 229 if (tim <= now) 230 return (-1); 231 232 hrtim = TICK_TO_NSEC(tim - now); 233 return (cv_timedwait_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 234 } 235 236 /* 237 * Same as cv_timedwait() except that the third argument is a relative 238 * timeout value, as opposed to an absolute one. There is also a fourth 239 * argument that specifies how accurately the timeout must be implemented. 240 */ 241 clock_t 242 cv_reltimedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, time_res_t res) 243 { 244 hrtime_t exp; 245 246 ASSERT(TIME_RES_VALID(res)); 247 248 if (delta <= 0) 249 return (-1); 250 251 if ((exp = TICK_TO_NSEC(delta)) < 0) 252 exp = CY_INFINITY; 253 254 return (cv_timedwait_hires(cvp, mp, exp, time_res[res], 0)); 255 } 256 257 clock_t 258 cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 259 hrtime_t res, int flag) 260 { 261 kthread_t *t = curthread; 262 callout_id_t id; 263 clock_t timeleft; 264 hrtime_t limit; 265 int signalled; 266 267 if (panicstr) 268 return (-1); 269 270 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 271 if (tim <= limit) 272 return (-1); 273 mutex_enter(&t->t_wait_mutex); 274 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 275 tim, res, flag); 276 thread_lock(t); /* lock the thread */ 277 cv_block((condvar_impl_t *)cvp); 278 thread_unlock_nopreempt(t); 279 mutex_exit(&t->t_wait_mutex); 280 mutex_exit(mp); 281 swtch(); 282 signalled = (t->t_schedflag & TS_SIGNALLED); 283 /* 284 * Get the time left. untimeout() returns -1 if the timeout has 285 * occured or the time remaining. If the time remaining is zero, 286 * the timeout has occured between when we were awoken and 287 * we called untimeout. We will treat this as if the timeout 288 * has occured and set timeleft to -1. 289 */ 290 timeleft = untimeout_default(id, 0); 291 mutex_enter(mp); 292 if (timeleft <= 0) { 293 timeleft = -1; 294 if (signalled) /* avoid consuming the cv_signal() */ 295 cv_signal(cvp); 296 } 297 return (timeleft); 298 } 299 300 int 301 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp) 302 { 303 kthread_t *t = curthread; 304 proc_t *p = ttoproc(t); 305 klwp_t *lwp = ttolwp(t); 306 int cancel_pending; 307 int rval = 1; 308 int signalled = 0; 309 310 if (panicstr) 311 return (rval); 312 313 /* 314 * The check for t_intr is to catch an interrupt thread 315 * that has not yet unpinned the thread underneath. 316 */ 317 if (lwp == NULL || t->t_intr) { 318 cv_wait(cvp, mp); 319 return (rval); 320 } 321 322 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 323 cancel_pending = schedctl_cancel_pending(); 324 lwp->lwp_asleep = 1; 325 lwp->lwp_sysabort = 0; 326 thread_lock(t); 327 cv_block_sig(t, (condvar_impl_t *)cvp); 328 thread_unlock_nopreempt(t); 329 mutex_exit(mp); 330 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 331 setrun(t); 332 /* ASSERT(no locks are held) */ 333 swtch(); 334 signalled = (t->t_schedflag & TS_SIGNALLED); 335 t->t_flag &= ~T_WAKEABLE; 336 mutex_enter(mp); 337 if (ISSIG_PENDING(t, lwp, p)) { 338 mutex_exit(mp); 339 if (issig(FORREAL)) 340 rval = 0; 341 mutex_enter(mp); 342 } 343 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 344 rval = 0; 345 if (rval != 0 && cancel_pending) { 346 schedctl_cancel_eintr(); 347 rval = 0; 348 } 349 lwp->lwp_asleep = 0; 350 lwp->lwp_sysabort = 0; 351 if (rval == 0 && signalled) /* avoid consuming the cv_signal() */ 352 cv_signal(cvp); 353 return (rval); 354 } 355 356 static clock_t 357 cv_timedwait_sig_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 358 hrtime_t res, int flag) 359 { 360 kthread_t *t = curthread; 361 proc_t *p = ttoproc(t); 362 klwp_t *lwp = ttolwp(t); 363 int cancel_pending = 0; 364 callout_id_t id; 365 clock_t rval = 1; 366 hrtime_t limit; 367 int signalled = 0; 368 369 if (panicstr) 370 return (rval); 371 372 /* 373 * If there is no lwp, then we don't need to wait for a signal. 374 * The check for t_intr is to catch an interrupt thread 375 * that has not yet unpinned the thread underneath. 376 */ 377 if (lwp == NULL || t->t_intr) 378 return (cv_timedwait_hires(cvp, mp, tim, res, flag)); 379 380 /* 381 * If tim is less than or equal to current hrtime, then the timeout 382 * has already occured. So just check to see if there is a signal 383 * pending. If so return 0 indicating that there is a signal pending. 384 * Else return -1 indicating that the timeout occured. No need to 385 * wait on anything. 386 */ 387 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 388 if (tim <= limit) { 389 lwp->lwp_asleep = 1; 390 lwp->lwp_sysabort = 0; 391 rval = -1; 392 goto out; 393 } 394 395 /* 396 * Set the timeout and wait. 397 */ 398 cancel_pending = schedctl_cancel_pending(); 399 mutex_enter(&t->t_wait_mutex); 400 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 401 tim, res, flag); 402 lwp->lwp_asleep = 1; 403 lwp->lwp_sysabort = 0; 404 thread_lock(t); 405 cv_block_sig(t, (condvar_impl_t *)cvp); 406 thread_unlock_nopreempt(t); 407 mutex_exit(&t->t_wait_mutex); 408 mutex_exit(mp); 409 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 410 setrun(t); 411 /* ASSERT(no locks are held) */ 412 swtch(); 413 signalled = (t->t_schedflag & TS_SIGNALLED); 414 t->t_flag &= ~T_WAKEABLE; 415 416 /* 417 * Untimeout the thread. untimeout() returns -1 if the timeout has 418 * occured or the time remaining. If the time remaining is zero, 419 * the timeout has occured between when we were awoken and 420 * we called untimeout. We will treat this as if the timeout 421 * has occured and set rval to -1. 422 */ 423 rval = untimeout_default(id, 0); 424 mutex_enter(mp); 425 if (rval <= 0) 426 rval = -1; 427 428 /* 429 * Check to see if a signal is pending. If so, regardless of whether 430 * or not we were awoken due to the signal, the signal is now pending 431 * and a return of 0 has the highest priority. 432 */ 433 out: 434 if (ISSIG_PENDING(t, lwp, p)) { 435 mutex_exit(mp); 436 if (issig(FORREAL)) 437 rval = 0; 438 mutex_enter(mp); 439 } 440 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 441 rval = 0; 442 if (rval != 0 && cancel_pending) { 443 schedctl_cancel_eintr(); 444 rval = 0; 445 } 446 lwp->lwp_asleep = 0; 447 lwp->lwp_sysabort = 0; 448 if (rval <= 0 && signalled) /* avoid consuming the cv_signal() */ 449 cv_signal(cvp); 450 return (rval); 451 } 452 453 /* 454 * Returns: 455 * Function result in order of precedence: 456 * 0 if a signal was received 457 * -1 if timeout occured 458 * >0 if awakened via cv_signal() or cv_broadcast(). 459 * (returns time remaining) 460 * 461 * cv_timedwait_sig() is now part of the DDI. 462 * 463 * This function is now just a wrapper for cv_timedwait_sig_hires(). 464 */ 465 clock_t 466 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 467 { 468 hrtime_t hrtim; 469 470 hrtim = TICK_TO_NSEC(tim - ddi_get_lbolt()); 471 return (cv_timedwait_sig_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 472 } 473 474 /* 475 * Same as cv_timedwait_sig() except that the third argument is a relative 476 * timeout value, as opposed to an absolute one. There is also a fourth 477 * argument that specifies how accurately the timeout must be implemented. 478 */ 479 clock_t 480 cv_reltimedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, 481 time_res_t res) 482 { 483 hrtime_t exp; 484 485 ASSERT(TIME_RES_VALID(res)); 486 487 if ((exp = TICK_TO_NSEC(delta)) < 0) 488 exp = CY_INFINITY; 489 490 return (cv_timedwait_sig_hires(cvp, mp, exp, time_res[res], 0)); 491 } 492 493 /* 494 * Like cv_wait_sig_swap but allows the caller to indicate (with a 495 * non-NULL sigret) that they will take care of signalling the cv 496 * after wakeup, if necessary. This is a vile hack that should only 497 * be used when no other option is available; almost all callers 498 * should just use cv_wait_sig_swap (which takes care of the cv_signal 499 * stuff automatically) instead. 500 */ 501 int 502 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret) 503 { 504 kthread_t *t = curthread; 505 proc_t *p = ttoproc(t); 506 klwp_t *lwp = ttolwp(t); 507 int cancel_pending; 508 int rval = 1; 509 int signalled = 0; 510 511 if (panicstr) 512 return (rval); 513 514 /* 515 * The check for t_intr is to catch an interrupt thread 516 * that has not yet unpinned the thread underneath. 517 */ 518 if (lwp == NULL || t->t_intr) { 519 cv_wait(cvp, mp); 520 return (rval); 521 } 522 523 cancel_pending = schedctl_cancel_pending(); 524 lwp->lwp_asleep = 1; 525 lwp->lwp_sysabort = 0; 526 thread_lock(t); 527 t->t_kpri_req = 0; /* don't need kernel priority */ 528 cv_block_sig(t, (condvar_impl_t *)cvp); 529 /* I can be swapped now */ 530 curthread->t_schedflag &= ~TS_DONT_SWAP; 531 thread_unlock_nopreempt(t); 532 mutex_exit(mp); 533 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 534 setrun(t); 535 /* ASSERT(no locks are held) */ 536 swtch(); 537 signalled = (t->t_schedflag & TS_SIGNALLED); 538 t->t_flag &= ~T_WAKEABLE; 539 /* TS_DONT_SWAP set by disp() */ 540 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 541 mutex_enter(mp); 542 if (ISSIG_PENDING(t, lwp, p)) { 543 mutex_exit(mp); 544 if (issig(FORREAL)) 545 rval = 0; 546 mutex_enter(mp); 547 } 548 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 549 rval = 0; 550 if (rval != 0 && cancel_pending) { 551 schedctl_cancel_eintr(); 552 rval = 0; 553 } 554 lwp->lwp_asleep = 0; 555 lwp->lwp_sysabort = 0; 556 if (rval == 0) { 557 if (sigret != NULL) 558 *sigret = signalled; /* just tell the caller */ 559 else if (signalled) 560 cv_signal(cvp); /* avoid consuming the cv_signal() */ 561 } 562 return (rval); 563 } 564 565 /* 566 * Same as cv_wait_sig but the thread can be swapped out while waiting. 567 * This should only be used when we know we aren't holding any locks. 568 */ 569 int 570 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp) 571 { 572 return (cv_wait_sig_swap_core(cvp, mp, NULL)); 573 } 574 575 void 576 cv_signal(kcondvar_t *cvp) 577 { 578 condvar_impl_t *cp = (condvar_impl_t *)cvp; 579 580 /* make sure the cv_waiters field looks sane */ 581 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 582 if (cp->cv_waiters > 0) { 583 sleepq_head_t *sqh = SQHASH(cp); 584 disp_lock_enter(&sqh->sq_lock); 585 ASSERT(CPU_ON_INTR(CPU) == 0); 586 if (cp->cv_waiters & CV_WAITERS_MASK) { 587 kthread_t *t; 588 cp->cv_waiters--; 589 t = sleepq_wakeone_chan(&sqh->sq_queue, cp); 590 /* 591 * If cv_waiters is non-zero (and less than 592 * CV_MAX_WAITERS) there should be a thread 593 * in the queue. 594 */ 595 ASSERT(t != NULL); 596 } else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) { 597 cp->cv_waiters = 0; 598 } 599 disp_lock_exit(&sqh->sq_lock); 600 } 601 } 602 603 void 604 cv_broadcast(kcondvar_t *cvp) 605 { 606 condvar_impl_t *cp = (condvar_impl_t *)cvp; 607 608 /* make sure the cv_waiters field looks sane */ 609 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 610 if (cp->cv_waiters > 0) { 611 sleepq_head_t *sqh = SQHASH(cp); 612 disp_lock_enter(&sqh->sq_lock); 613 ASSERT(CPU_ON_INTR(CPU) == 0); 614 sleepq_wakeall_chan(&sqh->sq_queue, cp); 615 cp->cv_waiters = 0; 616 disp_lock_exit(&sqh->sq_lock); 617 } 618 } 619 620 /* 621 * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check 622 * for requests to stop, like cv_wait_sig() but without dealing with signals. 623 * This is a horrible kludge. It is evil. It is vile. It is swill. 624 * If your code has to call this function then your code is the same. 625 */ 626 void 627 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time) 628 { 629 kthread_t *t = curthread; 630 klwp_t *lwp = ttolwp(t); 631 proc_t *p = ttoproc(t); 632 callout_id_t id; 633 clock_t tim; 634 635 if (panicstr) 636 return; 637 638 /* 639 * If there is no lwp, then we don't need to eventually stop it 640 * The check for t_intr is to catch an interrupt thread 641 * that has not yet unpinned the thread underneath. 642 */ 643 if (lwp == NULL || t->t_intr) { 644 cv_wait(cvp, mp); 645 return; 646 } 647 648 /* 649 * Wakeup in wakeup_time milliseconds, i.e., human time. 650 */ 651 tim = ddi_get_lbolt() + MSEC_TO_TICK(wakeup_time); 652 mutex_enter(&t->t_wait_mutex); 653 id = realtime_timeout_default((void (*)(void *))cv_wakeup, t, 654 tim - ddi_get_lbolt()); 655 thread_lock(t); /* lock the thread */ 656 cv_block((condvar_impl_t *)cvp); 657 thread_unlock_nopreempt(t); 658 mutex_exit(&t->t_wait_mutex); 659 mutex_exit(mp); 660 /* ASSERT(no locks are held); */ 661 swtch(); 662 (void) untimeout_default(id, 0); 663 664 /* 665 * Check for reasons to stop, if lwp_nostop is not true. 666 * See issig_forreal() for explanations of the various stops. 667 */ 668 mutex_enter(&p->p_lock); 669 while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) { 670 /* 671 * Hold the lwp here for watchpoint manipulation. 672 */ 673 if (t->t_proc_flag & TP_PAUSE) { 674 stop(PR_SUSPENDED, SUSPEND_PAUSE); 675 continue; 676 } 677 /* 678 * System checkpoint. 679 */ 680 if (t->t_proc_flag & TP_CHKPT) { 681 stop(PR_CHECKPOINT, 0); 682 continue; 683 } 684 /* 685 * Honor fork1(), watchpoint activity (remapping a page), 686 * and lwp_suspend() requests. 687 */ 688 if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) || 689 (t->t_proc_flag & TP_HOLDLWP)) { 690 stop(PR_SUSPENDED, SUSPEND_NORMAL); 691 continue; 692 } 693 /* 694 * Honor /proc requested stop. 695 */ 696 if (t->t_proc_flag & TP_PRSTOP) { 697 stop(PR_REQUESTED, 0); 698 } 699 /* 700 * If some lwp in the process has already stopped 701 * showing PR_JOBCONTROL, stop in sympathy with it. 702 */ 703 if (p->p_stopsig && t != p->p_agenttp) { 704 stop(PR_JOBCONTROL, p->p_stopsig); 705 continue; 706 } 707 break; 708 } 709 mutex_exit(&p->p_lock); 710 mutex_enter(mp); 711 } 712 713 /* 714 * Like cv_timedwait_sig(), but takes an absolute hires future time 715 * rather than a future time in clock ticks. Will not return showing 716 * that a timeout occurred until the future time is passed. 717 * If 'when' is a NULL pointer, no timeout will occur. 718 * Returns: 719 * Function result in order of precedence: 720 * 0 if a signal was received 721 * -1 if timeout occured 722 * >0 if awakened via cv_signal() or cv_broadcast() 723 * or by a spurious wakeup. 724 * (might return time remaining) 725 * As a special test, if someone abruptly resets the system time 726 * (but not through adjtime(2); drifting of the clock is allowed and 727 * expected [see timespectohz_adj()]), then we force a return of -1 728 * so the caller can return a premature timeout to the calling process 729 * so it can reevaluate the situation in light of the new system time. 730 * (The system clock has been reset if timecheck != timechanged.) 731 */ 732 int 733 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp, 734 timestruc_t *when, int timecheck) 735 { 736 timestruc_t now; 737 timestruc_t delta; 738 hrtime_t interval; 739 int rval; 740 741 if (when == NULL) 742 return (cv_wait_sig_swap(cvp, mp)); 743 744 gethrestime(&now); 745 delta = *when; 746 timespecsub(&delta, &now); 747 if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) { 748 /* 749 * We have already reached the absolute future time. 750 * Call cv_timedwait_sig() just to check for signals. 751 * We will return immediately with either 0 or -1. 752 */ 753 rval = cv_timedwait_sig_hires(cvp, mp, 0, 1, 0); 754 } else { 755 if (timecheck == timechanged) { 756 /* 757 * Make sure that the interval is atleast one tick. 758 * This is to prevent a user from flooding the system 759 * with very small, high resolution timers. 760 */ 761 interval = ts2hrt(&delta); 762 if (interval < nsec_per_tick) 763 interval = nsec_per_tick; 764 rval = cv_timedwait_sig_hires(cvp, mp, interval, 1, 765 CALLOUT_FLAG_HRESTIME); 766 } else { 767 /* 768 * Someone reset the system time; 769 * just force an immediate timeout. 770 */ 771 rval = -1; 772 } 773 if (rval == -1 && timecheck == timechanged) { 774 /* 775 * Even though cv_timedwait_sig() returned showing a 776 * timeout, the future time may not have passed yet. 777 * If not, change rval to indicate a normal wakeup. 778 */ 779 gethrestime(&now); 780 delta = *when; 781 timespecsub(&delta, &now); 782 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 783 delta.tv_nsec > 0)) 784 rval = 1; 785 } 786 } 787 return (rval); 788 } 789