xref: /illumos-gate/usr/src/uts/common/os/condvar.c (revision 1ed6b69a5ca1ca3ee5e9a4931f74e2237c7e1c9f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 
31 #include <sys/thread.h>
32 #include <sys/proc.h>
33 #include <sys/debug.h>
34 #include <sys/cmn_err.h>
35 #include <sys/systm.h>
36 #include <sys/sobject.h>
37 #include <sys/sleepq.h>
38 #include <sys/cpuvar.h>
39 #include <sys/condvar.h>
40 #include <sys/condvar_impl.h>
41 #include <sys/schedctl.h>
42 #include <sys/procfs.h>
43 #include <sys/sdt.h>
44 #include <sys/callo.h>
45 
46 /*
47  * CV_MAX_WAITERS is the maximum number of waiters we track; once
48  * the number becomes higher than that, we look at the sleepq to
49  * see whether there are *really* any waiters.
50  */
51 #define	CV_MAX_WAITERS		1024		/* must be power of 2 */
52 #define	CV_WAITERS_MASK		(CV_MAX_WAITERS - 1)
53 
54 /*
55  * Threads don't "own" condition variables.
56  */
57 /* ARGSUSED */
58 static kthread_t *
59 cv_owner(void *cvp)
60 {
61 	return (NULL);
62 }
63 
64 /*
65  * Unsleep a thread that's blocked on a condition variable.
66  */
67 static void
68 cv_unsleep(kthread_t *t)
69 {
70 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
71 	sleepq_head_t *sqh = SQHASH(cvp);
72 
73 	ASSERT(THREAD_LOCK_HELD(t));
74 
75 	if (cvp == NULL)
76 		panic("cv_unsleep: thread %p not on sleepq %p",
77 		    (void *)t, (void *)sqh);
78 	DTRACE_SCHED1(wakeup, kthread_t *, t);
79 	sleepq_unsleep(t);
80 	if (cvp->cv_waiters != CV_MAX_WAITERS)
81 		cvp->cv_waiters--;
82 	disp_lock_exit_high(&sqh->sq_lock);
83 	CL_SETRUN(t);
84 }
85 
86 /*
87  * Change the priority of a thread that's blocked on a condition variable.
88  */
89 static void
90 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip)
91 {
92 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
93 	sleepq_t *sqp = t->t_sleepq;
94 
95 	ASSERT(THREAD_LOCK_HELD(t));
96 	ASSERT(&SQHASH(cvp)->sq_queue == sqp);
97 
98 	if (cvp == NULL)
99 		panic("cv_change_pri: %p not on sleep queue", (void *)t);
100 	sleepq_dequeue(t);
101 	*t_prip = pri;
102 	sleepq_insert(sqp, t);
103 }
104 
105 /*
106  * The sobj_ops vector exports a set of functions needed when a thread
107  * is asleep on a synchronization object of this type.
108  */
109 static sobj_ops_t cv_sobj_ops = {
110 	SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri
111 };
112 
113 /* ARGSUSED */
114 void
115 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg)
116 {
117 	((condvar_impl_t *)cvp)->cv_waiters = 0;
118 }
119 
120 /*
121  * cv_destroy is not currently needed, but is part of the DDI.
122  * This is in case cv_init ever needs to allocate something for a cv.
123  */
124 /* ARGSUSED */
125 void
126 cv_destroy(kcondvar_t *cvp)
127 {
128 	ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0);
129 }
130 
131 /*
132  * The cv_block() function blocks a thread on a condition variable
133  * by putting it in a hashed sleep queue associated with the
134  * synchronization object.
135  *
136  * Threads are taken off the hashed sleep queues via calls to
137  * cv_signal(), cv_broadcast(), or cv_unsleep().
138  */
139 static void
140 cv_block(condvar_impl_t *cvp)
141 {
142 	kthread_t *t = curthread;
143 	klwp_t *lwp = ttolwp(t);
144 	sleepq_head_t *sqh;
145 
146 	ASSERT(THREAD_LOCK_HELD(t));
147 	ASSERT(t != CPU->cpu_idle_thread);
148 	ASSERT(CPU_ON_INTR(CPU) == 0);
149 	ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
150 	ASSERT(t->t_state == TS_ONPROC);
151 
152 	t->t_schedflag &= ~TS_SIGNALLED;
153 	CL_SLEEP(t);			/* assign kernel priority */
154 	t->t_wchan = (caddr_t)cvp;
155 	t->t_sobj_ops = &cv_sobj_ops;
156 	DTRACE_SCHED(sleep);
157 
158 	/*
159 	 * The check for t_intr is to avoid doing the
160 	 * account for an interrupt thread on the still-pinned
161 	 * lwp's statistics.
162 	 */
163 	if (lwp != NULL && t->t_intr == NULL) {
164 		lwp->lwp_ru.nvcsw++;
165 		(void) new_mstate(t, LMS_SLEEP);
166 	}
167 
168 	sqh = SQHASH(cvp);
169 	disp_lock_enter_high(&sqh->sq_lock);
170 	if (cvp->cv_waiters < CV_MAX_WAITERS)
171 		cvp->cv_waiters++;
172 	ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS);
173 	THREAD_SLEEP(t, &sqh->sq_lock);
174 	sleepq_insert(&sqh->sq_queue, t);
175 	/*
176 	 * THREAD_SLEEP() moves curthread->t_lockp to point to the
177 	 * lock sqh->sq_lock. This lock is later released by the caller
178 	 * when it calls thread_unlock() on curthread.
179 	 */
180 }
181 
182 #define	cv_block_sig(t, cvp)	\
183 	{ (t)->t_flag |= T_WAKEABLE; cv_block(cvp); }
184 
185 /*
186  * Block on the indicated condition variable and release the
187  * associated kmutex while blocked.
188  */
189 void
190 cv_wait(kcondvar_t *cvp, kmutex_t *mp)
191 {
192 	if (panicstr)
193 		return;
194 	ASSERT(!quiesce_active);
195 
196 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
197 	thread_lock(curthread);			/* lock the thread */
198 	cv_block((condvar_impl_t *)cvp);
199 	thread_unlock_nopreempt(curthread);	/* unlock the waiters field */
200 	mutex_exit(mp);
201 	swtch();
202 	mutex_enter(mp);
203 }
204 
205 static void
206 cv_wakeup(void *arg)
207 {
208 	kthread_t *t = arg;
209 
210 	/*
211 	 * This mutex is acquired and released in order to make sure that
212 	 * the wakeup does not happen before the block itself happens.
213 	 */
214 	mutex_enter(&t->t_wait_mutex);
215 	mutex_exit(&t->t_wait_mutex);
216 	setrun(t);
217 }
218 
219 /*
220  * Same as cv_wait except the thread will unblock at 'tim'
221  * (an absolute time) if it hasn't already unblocked.
222  *
223  * Returns the amount of time left from the original 'tim' value
224  * when it was unblocked.
225  */
226 clock_t
227 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
228 {
229 	hrtime_t hrtim;
230 	clock_t now = ddi_get_lbolt();
231 
232 	if (tim <= now)
233 		return (-1);
234 
235 	hrtim = TICK_TO_NSEC(tim - now);
236 	return (cv_timedwait_hires(cvp, mp, hrtim, nsec_per_tick, 0));
237 }
238 
239 /*
240  * Same as cv_timedwait() except that the third argument is a relative
241  * timeout value, as opposed to an absolute one. There is also a fourth
242  * argument that specifies how accurately the timeout must be implemented.
243  */
244 clock_t
245 cv_reltimedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, time_res_t res)
246 {
247 	hrtime_t exp;
248 
249 	ASSERT(TIME_RES_VALID(res));
250 
251 	if (delta <= 0)
252 		return (-1);
253 
254 	if ((exp = TICK_TO_NSEC(delta)) < 0)
255 		exp = CY_INFINITY;
256 
257 	return (cv_timedwait_hires(cvp, mp, exp, time_res[res], 0));
258 }
259 
260 clock_t
261 cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim,
262     hrtime_t res, int flag)
263 {
264 	kthread_t *t = curthread;
265 	callout_id_t id;
266 	clock_t timeleft;
267 	hrtime_t limit;
268 	int signalled;
269 
270 	if (panicstr)
271 		return (-1);
272 	ASSERT(!quiesce_active);
273 
274 	limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0;
275 	if (tim <= limit)
276 		return (-1);
277 	mutex_enter(&t->t_wait_mutex);
278 	id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t,
279 	    tim, res, flag);
280 	thread_lock(t);		/* lock the thread */
281 	cv_block((condvar_impl_t *)cvp);
282 	thread_unlock_nopreempt(t);
283 	mutex_exit(&t->t_wait_mutex);
284 	mutex_exit(mp);
285 	swtch();
286 	signalled = (t->t_schedflag & TS_SIGNALLED);
287 	/*
288 	 * Get the time left. untimeout() returns -1 if the timeout has
289 	 * occured or the time remaining.  If the time remaining is zero,
290 	 * the timeout has occured between when we were awoken and
291 	 * we called untimeout.  We will treat this as if the timeout
292 	 * has occured and set timeleft to -1.
293 	 */
294 	timeleft = untimeout_default(id, 0);
295 	mutex_enter(mp);
296 	if (timeleft <= 0) {
297 		timeleft = -1;
298 		if (signalled)	/* avoid consuming the cv_signal() */
299 			cv_signal(cvp);
300 	}
301 	return (timeleft);
302 }
303 
304 int
305 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp)
306 {
307 	kthread_t *t = curthread;
308 	proc_t *p = ttoproc(t);
309 	klwp_t *lwp = ttolwp(t);
310 	int cancel_pending;
311 	int rval = 1;
312 	int signalled = 0;
313 
314 	if (panicstr)
315 		return (rval);
316 	ASSERT(!quiesce_active);
317 
318 	/*
319 	 * Threads in system processes don't process signals.  This is
320 	 * true both for standard threads of system processes and for
321 	 * interrupt threads which have borrowed their pinned thread's LWP.
322 	 */
323 	if (lwp == NULL || (p->p_flag & SSYS)) {
324 		cv_wait(cvp, mp);
325 		return (rval);
326 	}
327 	ASSERT(t->t_intr == NULL);
328 
329 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
330 	cancel_pending = schedctl_cancel_pending();
331 	lwp->lwp_asleep = 1;
332 	lwp->lwp_sysabort = 0;
333 	thread_lock(t);
334 	cv_block_sig(t, (condvar_impl_t *)cvp);
335 	thread_unlock_nopreempt(t);
336 	mutex_exit(mp);
337 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
338 		setrun(t);
339 	/* ASSERT(no locks are held) */
340 	swtch();
341 	signalled = (t->t_schedflag & TS_SIGNALLED);
342 	t->t_flag &= ~T_WAKEABLE;
343 	mutex_enter(mp);
344 	if (ISSIG_PENDING(t, lwp, p)) {
345 		mutex_exit(mp);
346 		if (issig(FORREAL))
347 			rval = 0;
348 		mutex_enter(mp);
349 	}
350 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
351 		rval = 0;
352 	if (rval != 0 && cancel_pending) {
353 		schedctl_cancel_eintr();
354 		rval = 0;
355 	}
356 	lwp->lwp_asleep = 0;
357 	lwp->lwp_sysabort = 0;
358 	if (rval == 0 && signalled)	/* avoid consuming the cv_signal() */
359 		cv_signal(cvp);
360 	return (rval);
361 }
362 
363 static clock_t
364 cv_timedwait_sig_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim,
365     hrtime_t res, int flag)
366 {
367 	kthread_t *t = curthread;
368 	proc_t *p = ttoproc(t);
369 	klwp_t *lwp = ttolwp(t);
370 	int cancel_pending = 0;
371 	callout_id_t id;
372 	clock_t rval = 1;
373 	hrtime_t limit;
374 	int signalled = 0;
375 
376 	if (panicstr)
377 		return (rval);
378 	ASSERT(!quiesce_active);
379 
380 	/*
381 	 * Threads in system processes don't process signals.  This is
382 	 * true both for standard threads of system processes and for
383 	 * interrupt threads which have borrowed their pinned thread's LWP.
384 	 */
385 	if (lwp == NULL || (p->p_flag & SSYS))
386 		return (cv_timedwait_hires(cvp, mp, tim, res, flag));
387 	ASSERT(t->t_intr == NULL);
388 
389 	/*
390 	 * If tim is less than or equal to current hrtime, then the timeout
391 	 * has already occured.  So just check to see if there is a signal
392 	 * pending.  If so return 0 indicating that there is a signal pending.
393 	 * Else return -1 indicating that the timeout occured. No need to
394 	 * wait on anything.
395 	 */
396 	limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0;
397 	if (tim <= limit) {
398 		lwp->lwp_asleep = 1;
399 		lwp->lwp_sysabort = 0;
400 		rval = -1;
401 		goto out;
402 	}
403 
404 	/*
405 	 * Set the timeout and wait.
406 	 */
407 	cancel_pending = schedctl_cancel_pending();
408 	mutex_enter(&t->t_wait_mutex);
409 	id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t,
410 	    tim, res, flag);
411 	lwp->lwp_asleep = 1;
412 	lwp->lwp_sysabort = 0;
413 	thread_lock(t);
414 	cv_block_sig(t, (condvar_impl_t *)cvp);
415 	thread_unlock_nopreempt(t);
416 	mutex_exit(&t->t_wait_mutex);
417 	mutex_exit(mp);
418 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
419 		setrun(t);
420 	/* ASSERT(no locks are held) */
421 	swtch();
422 	signalled = (t->t_schedflag & TS_SIGNALLED);
423 	t->t_flag &= ~T_WAKEABLE;
424 
425 	/*
426 	 * Untimeout the thread.  untimeout() returns -1 if the timeout has
427 	 * occured or the time remaining.  If the time remaining is zero,
428 	 * the timeout has occured between when we were awoken and
429 	 * we called untimeout.  We will treat this as if the timeout
430 	 * has occured and set rval to -1.
431 	 */
432 	rval = untimeout_default(id, 0);
433 	mutex_enter(mp);
434 	if (rval <= 0)
435 		rval = -1;
436 
437 	/*
438 	 * Check to see if a signal is pending.  If so, regardless of whether
439 	 * or not we were awoken due to the signal, the signal is now pending
440 	 * and a return of 0 has the highest priority.
441 	 */
442 out:
443 	if (ISSIG_PENDING(t, lwp, p)) {
444 		mutex_exit(mp);
445 		if (issig(FORREAL))
446 			rval = 0;
447 		mutex_enter(mp);
448 	}
449 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
450 		rval = 0;
451 	if (rval != 0 && cancel_pending) {
452 		schedctl_cancel_eintr();
453 		rval = 0;
454 	}
455 	lwp->lwp_asleep = 0;
456 	lwp->lwp_sysabort = 0;
457 	if (rval <= 0 && signalled)	/* avoid consuming the cv_signal() */
458 		cv_signal(cvp);
459 	return (rval);
460 }
461 
462 /*
463  * Returns:
464  * 	Function result in order of precedence:
465  *		 0 if a signal was received
466  *		-1 if timeout occured
467  *		>0 if awakened via cv_signal() or cv_broadcast().
468  *		   (returns time remaining)
469  *
470  * cv_timedwait_sig() is now part of the DDI.
471  *
472  * This function is now just a wrapper for cv_timedwait_sig_hires().
473  */
474 clock_t
475 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
476 {
477 	hrtime_t hrtim;
478 
479 	hrtim = TICK_TO_NSEC(tim - ddi_get_lbolt());
480 	return (cv_timedwait_sig_hires(cvp, mp, hrtim, nsec_per_tick, 0));
481 }
482 
483 /*
484  * Wait until the specified time.
485  * If tim == -1, waits without timeout using cv_wait_sig_swap().
486  */
487 int
488 cv_timedwait_sig_hrtime(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim)
489 {
490 	if (tim == -1) {
491 		return (cv_wait_sig_swap(cvp, mp));
492 	} else {
493 		return (cv_timedwait_sig_hires(cvp, mp, tim, 1,
494 		    CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP));
495 	}
496 }
497 
498 /*
499  * Same as cv_timedwait_sig() except that the third argument is a relative
500  * timeout value, as opposed to an absolute one. There is also a fourth
501  * argument that specifies how accurately the timeout must be implemented.
502  */
503 clock_t
504 cv_reltimedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t delta,
505     time_res_t res)
506 {
507 	hrtime_t exp = 0;
508 
509 	ASSERT(TIME_RES_VALID(res));
510 
511 	if (delta > 0) {
512 		if ((exp = TICK_TO_NSEC(delta)) < 0)
513 			exp = CY_INFINITY;
514 	}
515 
516 	return (cv_timedwait_sig_hires(cvp, mp, exp, time_res[res], 0));
517 }
518 
519 /*
520  * Like cv_wait_sig_swap but allows the caller to indicate (with a
521  * non-NULL sigret) that they will take care of signalling the cv
522  * after wakeup, if necessary.  This is a vile hack that should only
523  * be used when no other option is available; almost all callers
524  * should just use cv_wait_sig_swap (which takes care of the cv_signal
525  * stuff automatically) instead.
526  */
527 int
528 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret)
529 {
530 	kthread_t *t = curthread;
531 	proc_t *p = ttoproc(t);
532 	klwp_t *lwp = ttolwp(t);
533 	int cancel_pending;
534 	int rval = 1;
535 	int signalled = 0;
536 
537 	if (panicstr)
538 		return (rval);
539 
540 	/*
541 	 * Threads in system processes don't process signals.  This is
542 	 * true both for standard threads of system processes and for
543 	 * interrupt threads which have borrowed their pinned thread's LWP.
544 	 */
545 	if (lwp == NULL || (p->p_flag & SSYS)) {
546 		cv_wait(cvp, mp);
547 		return (rval);
548 	}
549 	ASSERT(t->t_intr == NULL);
550 
551 	cancel_pending = schedctl_cancel_pending();
552 	lwp->lwp_asleep = 1;
553 	lwp->lwp_sysabort = 0;
554 	thread_lock(t);
555 	t->t_kpri_req = 0;	/* don't need kernel priority */
556 	cv_block_sig(t, (condvar_impl_t *)cvp);
557 	/* I can be swapped now */
558 	curthread->t_schedflag &= ~TS_DONT_SWAP;
559 	thread_unlock_nopreempt(t);
560 	mutex_exit(mp);
561 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
562 		setrun(t);
563 	/* ASSERT(no locks are held) */
564 	swtch();
565 	signalled = (t->t_schedflag & TS_SIGNALLED);
566 	t->t_flag &= ~T_WAKEABLE;
567 	/* TS_DONT_SWAP set by disp() */
568 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
569 	mutex_enter(mp);
570 	if (ISSIG_PENDING(t, lwp, p)) {
571 		mutex_exit(mp);
572 		if (issig(FORREAL))
573 			rval = 0;
574 		mutex_enter(mp);
575 	}
576 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
577 		rval = 0;
578 	if (rval != 0 && cancel_pending) {
579 		schedctl_cancel_eintr();
580 		rval = 0;
581 	}
582 	lwp->lwp_asleep = 0;
583 	lwp->lwp_sysabort = 0;
584 	if (rval == 0) {
585 		if (sigret != NULL)
586 			*sigret = signalled;	/* just tell the caller */
587 		else if (signalled)
588 			cv_signal(cvp);	/* avoid consuming the cv_signal() */
589 	}
590 	return (rval);
591 }
592 
593 /*
594  * Same as cv_wait_sig but the thread can be swapped out while waiting.
595  * This should only be used when we know we aren't holding any locks.
596  */
597 int
598 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp)
599 {
600 	return (cv_wait_sig_swap_core(cvp, mp, NULL));
601 }
602 
603 void
604 cv_signal(kcondvar_t *cvp)
605 {
606 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
607 
608 	/* make sure the cv_waiters field looks sane */
609 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
610 	if (cp->cv_waiters > 0) {
611 		sleepq_head_t *sqh = SQHASH(cp);
612 		disp_lock_enter(&sqh->sq_lock);
613 		ASSERT(CPU_ON_INTR(CPU) == 0);
614 		if (cp->cv_waiters & CV_WAITERS_MASK) {
615 			kthread_t *t;
616 			cp->cv_waiters--;
617 			t = sleepq_wakeone_chan(&sqh->sq_queue, cp);
618 			/*
619 			 * If cv_waiters is non-zero (and less than
620 			 * CV_MAX_WAITERS) there should be a thread
621 			 * in the queue.
622 			 */
623 			ASSERT(t != NULL);
624 		} else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) {
625 			cp->cv_waiters = 0;
626 		}
627 		disp_lock_exit(&sqh->sq_lock);
628 	}
629 }
630 
631 void
632 cv_broadcast(kcondvar_t *cvp)
633 {
634 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
635 
636 	/* make sure the cv_waiters field looks sane */
637 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
638 	if (cp->cv_waiters > 0) {
639 		sleepq_head_t *sqh = SQHASH(cp);
640 		disp_lock_enter(&sqh->sq_lock);
641 		ASSERT(CPU_ON_INTR(CPU) == 0);
642 		sleepq_wakeall_chan(&sqh->sq_queue, cp);
643 		cp->cv_waiters = 0;
644 		disp_lock_exit(&sqh->sq_lock);
645 	}
646 }
647 
648 /*
649  * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check
650  * for requests to stop, like cv_wait_sig() but without dealing with signals.
651  * This is a horrible kludge.  It is evil.  It is vile.  It is swill.
652  * If your code has to call this function then your code is the same.
653  */
654 void
655 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time)
656 {
657 	kthread_t *t = curthread;
658 	klwp_t *lwp = ttolwp(t);
659 	proc_t *p = ttoproc(t);
660 	callout_id_t id;
661 	clock_t tim;
662 
663 	if (panicstr)
664 		return;
665 
666 	/*
667 	 * Threads in system processes don't process signals.  This is
668 	 * true both for standard threads of system processes and for
669 	 * interrupt threads which have borrowed their pinned thread's LWP.
670 	 */
671 	if (lwp == NULL || (p->p_flag & SSYS)) {
672 		cv_wait(cvp, mp);
673 		return;
674 	}
675 	ASSERT(t->t_intr == NULL);
676 
677 	/*
678 	 * Wakeup in wakeup_time milliseconds, i.e., human time.
679 	 */
680 	tim = ddi_get_lbolt() + MSEC_TO_TICK(wakeup_time);
681 	mutex_enter(&t->t_wait_mutex);
682 	id = realtime_timeout_default((void (*)(void *))cv_wakeup, t,
683 	    tim - ddi_get_lbolt());
684 	thread_lock(t);			/* lock the thread */
685 	cv_block((condvar_impl_t *)cvp);
686 	thread_unlock_nopreempt(t);
687 	mutex_exit(&t->t_wait_mutex);
688 	mutex_exit(mp);
689 	/* ASSERT(no locks are held); */
690 	swtch();
691 	(void) untimeout_default(id, 0);
692 
693 	/*
694 	 * Check for reasons to stop, if lwp_nostop is not true.
695 	 * See issig_forreal() for explanations of the various stops.
696 	 */
697 	mutex_enter(&p->p_lock);
698 	while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) {
699 		/*
700 		 * Hold the lwp here for watchpoint manipulation.
701 		 */
702 		if (t->t_proc_flag & TP_PAUSE) {
703 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
704 			continue;
705 		}
706 		/*
707 		 * System checkpoint.
708 		 */
709 		if (t->t_proc_flag & TP_CHKPT) {
710 			stop(PR_CHECKPOINT, 0);
711 			continue;
712 		}
713 		/*
714 		 * Honor fork1(), watchpoint activity (remapping a page),
715 		 * and lwp_suspend() requests.
716 		 */
717 		if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
718 		    (t->t_proc_flag & TP_HOLDLWP)) {
719 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
720 			continue;
721 		}
722 		/*
723 		 * Honor /proc requested stop.
724 		 */
725 		if (t->t_proc_flag & TP_PRSTOP) {
726 			stop(PR_REQUESTED, 0);
727 		}
728 		/*
729 		 * If some lwp in the process has already stopped
730 		 * showing PR_JOBCONTROL, stop in sympathy with it.
731 		 */
732 		if (p->p_stopsig && t != p->p_agenttp) {
733 			stop(PR_JOBCONTROL, p->p_stopsig);
734 			continue;
735 		}
736 		break;
737 	}
738 	mutex_exit(&p->p_lock);
739 	mutex_enter(mp);
740 }
741 
742 /*
743  * Like cv_timedwait_sig(), but takes an absolute hires future time
744  * rather than a future time in clock ticks.  Will not return showing
745  * that a timeout occurred until the future time is passed.
746  * If 'when' is a NULL pointer, no timeout will occur.
747  * Returns:
748  * 	Function result in order of precedence:
749  *		 0 if a signal was received
750  *		-1 if timeout occured
751  *	        >0 if awakened via cv_signal() or cv_broadcast()
752  *		   or by a spurious wakeup.
753  *		   (might return time remaining)
754  * As a special test, if someone abruptly resets the system time
755  * (but not through adjtime(2); drifting of the clock is allowed and
756  * expected [see timespectohz_adj()]), then we force a return of -1
757  * so the caller can return a premature timeout to the calling process
758  * so it can reevaluate the situation in light of the new system time.
759  * (The system clock has been reset if timecheck != timechanged.)
760  *
761  * Generally, cv_timedwait_sig_hrtime() should be used instead of this
762  * routine.  It waits based on hrtime rather than wall-clock time and therefore
763  * does not need to deal with the time changing.
764  */
765 int
766 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp,
767 	timestruc_t *when, int timecheck)
768 {
769 	timestruc_t now;
770 	timestruc_t delta;
771 	hrtime_t interval;
772 	int rval;
773 
774 	if (when == NULL)
775 		return (cv_wait_sig_swap(cvp, mp));
776 
777 	gethrestime(&now);
778 	delta = *when;
779 	timespecsub(&delta, &now);
780 	if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) {
781 		/*
782 		 * We have already reached the absolute future time.
783 		 * Call cv_timedwait_sig() just to check for signals.
784 		 * We will return immediately with either 0 or -1.
785 		 */
786 		rval = cv_timedwait_sig_hires(cvp, mp, 0, 1, 0);
787 	} else {
788 		if (timecheck == timechanged) {
789 			/*
790 			 * Make sure that the interval is atleast one tick.
791 			 * This is to prevent a user from flooding the system
792 			 * with very small, high resolution timers.
793 			 */
794 			interval = ts2hrt(&delta);
795 			if (interval < nsec_per_tick)
796 				interval = nsec_per_tick;
797 			rval = cv_timedwait_sig_hires(cvp, mp, interval, 1,
798 			    CALLOUT_FLAG_HRESTIME);
799 		} else {
800 			/*
801 			 * Someone reset the system time;
802 			 * just force an immediate timeout.
803 			 */
804 			rval = -1;
805 		}
806 		if (rval == -1 && timecheck == timechanged) {
807 			/*
808 			 * Even though cv_timedwait_sig() returned showing a
809 			 * timeout, the future time may not have passed yet.
810 			 * If not, change rval to indicate a normal wakeup.
811 			 */
812 			gethrestime(&now);
813 			delta = *when;
814 			timespecsub(&delta, &now);
815 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
816 			    delta.tv_nsec > 0))
817 				rval = 1;
818 		}
819 	}
820 	return (rval);
821 }
822