xref: /illumos-gate/usr/src/uts/common/os/clock.c (revision fc910014e8a32a65612105835a10995f2c13d942)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved	*/
23 
24 /*
25  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
27  * Copyright (c) 2016 by Delphix. All rights reserved.
28  * Copyright 2023 Oxide Computer Company
29  */
30 
31 #include <sys/param.h>
32 #include <sys/t_lock.h>
33 #include <sys/types.h>
34 #include <sys/tuneable.h>
35 #include <sys/sysmacros.h>
36 #include <sys/systm.h>
37 #include <sys/cpuvar.h>
38 #include <sys/lgrp.h>
39 #include <sys/user.h>
40 #include <sys/proc.h>
41 #include <sys/callo.h>
42 #include <sys/kmem.h>
43 #include <sys/var.h>
44 #include <sys/cmn_err.h>
45 #include <sys/swap.h>
46 #include <sys/vmsystm.h>
47 #include <sys/class.h>
48 #include <sys/time.h>
49 #include <sys/debug.h>
50 #include <sys/vtrace.h>
51 #include <sys/spl.h>
52 #include <sys/atomic.h>
53 #include <sys/dumphdr.h>
54 #include <sys/archsystm.h>
55 #include <sys/fs/swapnode.h>
56 #include <sys/panic.h>
57 #include <sys/disp.h>
58 #include <sys/msacct.h>
59 #include <sys/mem_cage.h>
60 
61 #include <vm/page.h>
62 #include <vm/anon.h>
63 #include <vm/rm.h>
64 #include <sys/cyclic.h>
65 #include <sys/cpupart.h>
66 #include <sys/rctl.h>
67 #include <sys/task.h>
68 #include <sys/sdt.h>
69 #include <sys/ddi_periodic.h>
70 #include <sys/random.h>
71 #include <sys/modctl.h>
72 #include <sys/zone.h>
73 
74 /*
75  * for NTP support
76  */
77 #include <sys/timex.h>
78 #include <sys/inttypes.h>
79 
80 #include <sys/sunddi.h>
81 #include <sys/clock_impl.h>
82 
83 /*
84  * clock() is called straight from the clock cyclic; see clock_init().
85  *
86  * Functions:
87  *	reprime clock
88  *	maintain date
89  *	jab the scheduler
90  */
91 
92 extern kcondvar_t	fsflush_cv;
93 extern sysinfo_t	sysinfo;
94 extern vminfo_t	vminfo;
95 extern int	idleswtch;	/* flag set while idle in pswtch() */
96 extern hrtime_t volatile devinfo_freeze;
97 
98 /*
99  * high-precision avenrun values.  These are needed to make the
100  * regular avenrun values accurate.
101  */
102 static uint64_t hp_avenrun[3];
103 int	avenrun[3];		/* FSCALED average run queue lengths */
104 time_t	time;	/* time in seconds since 1970 - for compatibility only */
105 
106 static struct loadavg_s loadavg;
107 /*
108  * Phase/frequency-lock loop (PLL/FLL) definitions
109  *
110  * The following variables are read and set by the ntp_adjtime() system
111  * call.
112  *
113  * time_state shows the state of the system clock, with values defined
114  * in the timex.h header file.
115  *
116  * time_status shows the status of the system clock, with bits defined
117  * in the timex.h header file.
118  *
119  * time_offset is used by the PLL/FLL to adjust the system time in small
120  * increments.
121  *
122  * time_constant determines the bandwidth or "stiffness" of the PLL.
123  *
124  * time_tolerance determines maximum frequency error or tolerance of the
125  * CPU clock oscillator and is a property of the architecture; however,
126  * in principle it could change as result of the presence of external
127  * discipline signals, for instance.
128  *
129  * time_precision is usually equal to the kernel tick variable; however,
130  * in cases where a precision clock counter or external clock is
131  * available, the resolution can be much less than this and depend on
132  * whether the external clock is working or not.
133  *
134  * time_maxerror is initialized by a ntp_adjtime() call and increased by
135  * the kernel once each second to reflect the maximum error bound
136  * growth.
137  *
138  * time_esterror is set and read by the ntp_adjtime() call, but
139  * otherwise not used by the kernel.
140  */
141 int32_t time_state = TIME_OK;	/* clock state */
142 int32_t time_status = STA_UNSYNC;	/* clock status bits */
143 int32_t time_offset = 0;		/* time offset (us) */
144 int32_t time_constant = 0;		/* pll time constant */
145 int32_t time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
146 int32_t time_precision = 1;	/* clock precision (us) */
147 int32_t time_maxerror = MAXPHASE;	/* maximum error (us) */
148 int32_t time_esterror = MAXPHASE;	/* estimated error (us) */
149 
150 /*
151  * The following variables establish the state of the PLL/FLL and the
152  * residual time and frequency offset of the local clock. The scale
153  * factors are defined in the timex.h header file.
154  *
155  * time_phase and time_freq are the phase increment and the frequency
156  * increment, respectively, of the kernel time variable.
157  *
158  * time_freq is set via ntp_adjtime() from a value stored in a file when
159  * the synchronization daemon is first started. Its value is retrieved
160  * via ntp_adjtime() and written to the file about once per hour by the
161  * daemon.
162  *
163  * time_adj is the adjustment added to the value of tick at each timer
164  * interrupt and is recomputed from time_phase and time_freq at each
165  * seconds rollover.
166  *
167  * time_reftime is the second's portion of the system time at the last
168  * call to ntp_adjtime(). It is used to adjust the time_freq variable
169  * and to increase the time_maxerror as the time since last update
170  * increases.
171  */
172 int32_t time_phase = 0;		/* phase offset (scaled us) */
173 int32_t time_freq = 0;		/* frequency offset (scaled ppm) */
174 int32_t time_adj = 0;		/* tick adjust (scaled 1 / hz) */
175 int32_t time_reftime = 0;		/* time at last adjustment (s) */
176 
177 /*
178  * The scale factors of the following variables are defined in the
179  * timex.h header file.
180  *
181  * pps_time contains the time at each calibration interval, as read by
182  * microtime(). pps_count counts the seconds of the calibration
183  * interval, the duration of which is nominally pps_shift in powers of
184  * two.
185  *
186  * pps_offset is the time offset produced by the time median filter
187  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
188  * this filter.
189  *
190  * pps_freq is the frequency offset produced by the frequency median
191  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
192  * by this filter.
193  *
194  * pps_usec is latched from a high resolution counter or external clock
195  * at pps_time. Here we want the hardware counter contents only, not the
196  * contents plus the time_tv.usec as usual.
197  *
198  * pps_valid counts the number of seconds since the last PPS update. It
199  * is used as a watchdog timer to disable the PPS discipline should the
200  * PPS signal be lost.
201  *
202  * pps_glitch counts the number of seconds since the beginning of an
203  * offset burst more than tick/2 from current nominal offset. It is used
204  * mainly to suppress error bursts due to priority conflicts between the
205  * PPS interrupt and timer interrupt.
206  *
207  * pps_intcnt counts the calibration intervals for use in the interval-
208  * adaptation algorithm. It's just too complicated for words.
209  */
210 struct timeval pps_time;	/* kernel time at last interval */
211 int32_t pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
212 int32_t pps_offset = 0;		/* pps time offset (us) */
213 int32_t pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
214 int32_t pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
215 int32_t pps_freq = 0;		/* frequency offset (scaled ppm) */
216 int32_t pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
217 int32_t pps_usec = 0;		/* microsec counter at last interval */
218 int32_t pps_valid = PPS_VALID;	/* pps signal watchdog counter */
219 int32_t pps_glitch = 0;		/* pps signal glitch counter */
220 int32_t pps_count = 0;		/* calibration interval counter (s) */
221 int32_t pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
222 int32_t pps_intcnt = 0;		/* intervals at current duration */
223 
224 /*
225  * PPS signal quality monitors
226  *
227  * pps_jitcnt counts the seconds that have been discarded because the
228  * jitter measured by the time median filter exceeds the limit MAXTIME
229  * (100 us).
230  *
231  * pps_calcnt counts the frequency calibration intervals, which are
232  * variable from 4 s to 256 s.
233  *
234  * pps_errcnt counts the calibration intervals which have been discarded
235  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
236  * calibration interval jitter exceeds two ticks.
237  *
238  * pps_stbcnt counts the calibration intervals that have been discarded
239  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
240  */
241 int32_t pps_jitcnt = 0;		/* jitter limit exceeded */
242 int32_t pps_calcnt = 0;		/* calibration intervals */
243 int32_t pps_errcnt = 0;		/* calibration errors */
244 int32_t pps_stbcnt = 0;		/* stability limit exceeded */
245 
246 kcondvar_t lbolt_cv;
247 
248 /*
249  * Hybrid lbolt implementation:
250  *
251  * The service historically provided by the lbolt and lbolt64 variables has
252  * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the
253  * original symbols removed from the system. The once clock driven variables are
254  * now implemented in an event driven fashion, backed by gethrtime() coarsed to
255  * the appropriate clock resolution. The default event driven implementation is
256  * complemented by a cyclic driven one, active only during periods of intense
257  * activity around the DDI lbolt routines, when a lbolt specific cyclic is
258  * reprogramed to fire at a clock tick interval to serve consumers of lbolt who
259  * rely on the original low cost of consulting a memory position.
260  *
261  * The implementation uses the number of calls to these routines and the
262  * frequency of these to determine when to transition from event to cyclic
263  * driven and vice-versa. These values are kept on a per CPU basis for
264  * scalability reasons and to prevent CPUs from constantly invalidating a single
265  * cache line when modifying a global variable. The transition from event to
266  * cyclic mode happens once the thresholds are crossed, and activity on any CPU
267  * can cause such transition.
268  *
269  * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and
270  * ddi_get_lbolt64(), and will point to lbolt_event_driven() or
271  * lbolt_cyclic_driven() according to the current mode. When the thresholds
272  * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to
273  * fire at a nsec_per_tick interval and increment an internal variable at
274  * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which
275  * will simply return the value of such variable. lbolt_cyclic() will attempt
276  * to shut itself off at each threshold interval (sampling period for calls
277  * to the DDI lbolt routines), and return to the event driven mode, but will
278  * be prevented from doing so if lbolt_cyclic_driven() is being heavily used.
279  *
280  * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait
281  * for the cyclic subsystem to be intialized.
282  *
283  */
284 int64_t lbolt_bootstrap(void);
285 int64_t lbolt_event_driven(void);
286 int64_t lbolt_cyclic_driven(void);
287 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap;
288 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t);
289 
290 /*
291  * lbolt's cyclic, installed by clock_init().
292  */
293 static void lbolt_cyclic(void);
294 
295 /*
296  * Tunable to keep lbolt in cyclic driven mode. This will prevent the system
297  * from switching back to event driven, once it reaches cyclic mode.
298  */
299 static boolean_t lbolt_cyc_only = B_FALSE;
300 
301 /*
302  * Cache aligned, per CPU structure with lbolt usage statistics.
303  */
304 static lbolt_cpu_t *lb_cpu;
305 
306 /*
307  * Single, cache aligned, structure with all the information required by
308  * the lbolt implementation.
309  */
310 lbolt_info_t *lb_info;
311 
312 
313 int one_sec = 1; /* turned on once every second */
314 static int fsflushcnt;	/* counter for t_fsflushr */
315 int	dosynctodr = 1;	/* patchable; enable/disable sync to TOD chip */
316 int	tod_needsync = 0;	/* need to sync tod chip with software time */
317 static int tod_broken = 0;	/* clock chip doesn't work */
318 time_t	boot_time = 0;		/* Boot time in seconds since 1970 */
319 cyclic_id_t clock_cyclic;	/* clock()'s cyclic_id */
320 cyclic_id_t deadman_cyclic;	/* deadman()'s cyclic_id */
321 
322 extern void clock_tick_schedule(int);
323 extern void set_freemem(void);
324 extern void pageout_deadman(void);
325 
326 static int lgrp_ticks;		/* counter to schedule lgrp load calcs */
327 
328 /*
329  * for tod fault detection
330  */
331 #define	TOD_REF_FREQ		((longlong_t)(NANOSEC))
332 #define	TOD_STALL_THRESHOLD	(TOD_REF_FREQ * 3 / 2)
333 #define	TOD_JUMP_THRESHOLD	(TOD_REF_FREQ / 2)
334 #define	TOD_FILTER_N		4
335 #define	TOD_FILTER_SETTLE	(4 * TOD_FILTER_N)
336 static enum tod_fault_type tod_faulted = TOD_NOFAULT;
337 
338 static int tod_status_flag = 0;		/* used by tod_validate() */
339 
340 static hrtime_t prev_set_tick = 0;	/* gethrtime() prior to tod_set() */
341 static time_t prev_set_tod = 0;		/* tv_sec value passed to tod_set() */
342 
343 /* patchable via /etc/system */
344 int tod_validate_enable = 1;
345 
346 /* Diagnose/Limit messages about delay(9F) called from interrupt context */
347 int			delay_from_interrupt_diagnose = 0;
348 volatile uint32_t	delay_from_interrupt_msg = 20;
349 
350 /*
351  * On non-SPARC systems, TOD validation must be deferred until gethrtime
352  * returns non-zero values (after mach_clkinit's execution).
353  * On SPARC systems, it must be deferred until after hrtime_base
354  * and hres_last_tick are set (in the first invocation of hres_tick).
355  * Since in both cases the prerequisites occur before the invocation of
356  * tod_get() in clock(), the deferment is lifted there.
357  */
358 static boolean_t tod_validate_deferred = B_TRUE;
359 
360 /*
361  * tod_fault_table[] must be aligned with
362  * enum tod_fault_type in systm.h
363  */
364 static char *tod_fault_table[] = {
365 	"Reversed",			/* TOD_REVERSED */
366 	"Stalled",			/* TOD_STALLED */
367 	"Jumped",			/* TOD_JUMPED */
368 	"Changed in Clock Rate",	/* TOD_RATECHANGED */
369 	"Is Read-Only"			/* TOD_RDONLY */
370 	/*
371 	 * no strings needed for TOD_NOFAULT
372 	 */
373 };
374 
375 /*
376  * test hook for tod broken detection in tod_validate
377  */
378 int tod_unit_test = 0;
379 time_t tod_test_injector;
380 
381 #define	CLOCK_ADJ_HIST_SIZE	4
382 
383 static int	adj_hist_entry;
384 
385 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
386 
387 static void calcloadavg(int, uint64_t *);
388 static int genloadavg(struct loadavg_s *);
389 static void loadavg_update();
390 
391 void (*cmm_clock_callout)() = NULL;
392 void (*cpucaps_clock_callout)() = NULL;
393 
394 extern clock_t clock_tick_proc_max;
395 
396 static int64_t deadman_counter = 0;
397 
398 static void
399 clock(void)
400 {
401 	kthread_t	*t;
402 	uint_t	nrunnable;
403 	uint_t	w_io;
404 	cpu_t	*cp;
405 	cpupart_t *cpupart;
406 	void	(*funcp)();
407 	int32_t ltemp;
408 	int64_t lltemp;
409 	int s;
410 	int do_lgrp_load;
411 	int i;
412 	clock_t now = LBOLT_NO_ACCOUNT;	/* current tick */
413 
414 	if (panicstr)
415 		return;
416 
417 	/*
418 	 * Make sure that 'freemem' do not drift too far from the truth
419 	 */
420 	set_freemem();
421 
422 
423 	/*
424 	 * Before the section which is repeated is executed, we do
425 	 * the time delta processing which occurs every clock tick
426 	 *
427 	 * There is additional processing which happens every time
428 	 * the nanosecond counter rolls over which is described
429 	 * below - see the section which begins with : if (one_sec)
430 	 *
431 	 * This section marks the beginning of the precision-kernel
432 	 * code fragment.
433 	 *
434 	 * First, compute the phase adjustment. If the low-order bits
435 	 * (time_phase) of the update overflow, bump the higher order
436 	 * bits (time_update).
437 	 */
438 	time_phase += time_adj;
439 	if (time_phase <= -FINEUSEC) {
440 		ltemp = -time_phase / SCALE_PHASE;
441 		time_phase += ltemp * SCALE_PHASE;
442 		s = hr_clock_lock();
443 		timedelta -= ltemp * (NANOSEC/MICROSEC);
444 		hr_clock_unlock(s);
445 	} else if (time_phase >= FINEUSEC) {
446 		ltemp = time_phase / SCALE_PHASE;
447 		time_phase -= ltemp * SCALE_PHASE;
448 		s = hr_clock_lock();
449 		timedelta += ltemp * (NANOSEC/MICROSEC);
450 		hr_clock_unlock(s);
451 	}
452 
453 	/*
454 	 * End of precision-kernel code fragment which is processed
455 	 * every timer interrupt.
456 	 *
457 	 * Continue with the interrupt processing as scheduled.
458 	 */
459 	/*
460 	 * Count the number of runnable threads and the number waiting
461 	 * for some form of I/O to complete -- gets added to
462 	 * sysinfo.waiting.  To know the state of the system, must add
463 	 * wait counts from all CPUs.  Also add up the per-partition
464 	 * statistics.
465 	 */
466 	w_io = 0;
467 	nrunnable = 0;
468 
469 	/*
470 	 * keep track of when to update lgrp/part loads
471 	 */
472 
473 	do_lgrp_load = 0;
474 	if (lgrp_ticks++ >= hz / 10) {
475 		lgrp_ticks = 0;
476 		do_lgrp_load = 1;
477 	}
478 
479 	if (one_sec) {
480 		loadavg_update();
481 		deadman_counter++;
482 		pageout_deadman();
483 	}
484 
485 	/*
486 	 * First count the threads waiting on kpreempt queues in each
487 	 * CPU partition.
488 	 */
489 
490 	cpupart = cp_list_head;
491 	do {
492 		uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
493 
494 		cpupart->cp_updates++;
495 		nrunnable += cpupart_nrunnable;
496 		cpupart->cp_nrunnable_cum += cpupart_nrunnable;
497 		if (one_sec) {
498 			cpupart->cp_nrunning = 0;
499 			cpupart->cp_nrunnable = cpupart_nrunnable;
500 		}
501 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
502 
503 
504 	/* Now count the per-CPU statistics. */
505 	cp = cpu_list;
506 	do {
507 		uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
508 
509 		nrunnable += cpu_nrunnable;
510 		cpupart = cp->cpu_part;
511 		cpupart->cp_nrunnable_cum += cpu_nrunnable;
512 		if (one_sec) {
513 			cpupart->cp_nrunnable += cpu_nrunnable;
514 			/*
515 			 * Update user, system, and idle cpu times.
516 			 */
517 			cpupart->cp_nrunning++;
518 			/*
519 			 * w_io is used to update sysinfo.waiting during
520 			 * one_second processing below.  Only gather w_io
521 			 * information when we walk the list of cpus if we're
522 			 * going to perform one_second processing.
523 			 */
524 			w_io += CPU_STATS(cp, sys.iowait);
525 		}
526 
527 		if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
528 			int i, load, change;
529 			hrtime_t intracct, intrused;
530 			const hrtime_t maxnsec = 1000000000;
531 			const int precision = 100;
532 
533 			/*
534 			 * Estimate interrupt load on this cpu each second.
535 			 * Computes cpu_intrload as %utilization (0-99).
536 			 */
537 
538 			/* add up interrupt time from all micro states */
539 			for (intracct = 0, i = 0; i < NCMSTATES; i++)
540 				intracct += cp->cpu_intracct[i];
541 			scalehrtime(&intracct);
542 
543 			/* compute nsec used in the past second */
544 			intrused = intracct - cp->cpu_intrlast;
545 			cp->cpu_intrlast = intracct;
546 
547 			/* limit the value for safety (and the first pass) */
548 			if (intrused >= maxnsec)
549 				intrused = maxnsec - 1;
550 
551 			/* calculate %time in interrupt */
552 			load = (precision * intrused) / maxnsec;
553 			ASSERT(load >= 0 && load < precision);
554 			change = cp->cpu_intrload - load;
555 
556 			/* jump to new max, or decay the old max */
557 			if (change < 0)
558 				cp->cpu_intrload = load;
559 			else if (change > 0)
560 				cp->cpu_intrload -= (change + 3) / 4;
561 
562 			DTRACE_PROBE3(cpu_intrload,
563 			    cpu_t *, cp,
564 			    hrtime_t, intracct,
565 			    hrtime_t, intrused);
566 		}
567 
568 		if (do_lgrp_load &&
569 		    (cp->cpu_flags & CPU_EXISTS)) {
570 			/*
571 			 * When updating the lgroup's load average,
572 			 * account for the thread running on the CPU.
573 			 * If the CPU is the current one, then we need
574 			 * to account for the underlying thread which
575 			 * got the clock interrupt not the thread that is
576 			 * handling the interrupt and caculating the load
577 			 * average
578 			 */
579 			t = cp->cpu_thread;
580 			if (CPU == cp)
581 				t = t->t_intr;
582 
583 			/*
584 			 * Account for the load average for this thread if
585 			 * it isn't the idle thread or it is on the interrupt
586 			 * stack and not the current CPU handling the clock
587 			 * interrupt
588 			 */
589 			if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
590 			    CPU_ON_INTR(cp))) {
591 				if (t->t_lpl == cp->cpu_lpl) {
592 					/* local thread */
593 					cpu_nrunnable++;
594 				} else {
595 					/*
596 					 * This is a remote thread, charge it
597 					 * against its home lgroup.  Note that
598 					 * we notice that a thread is remote
599 					 * only if it's currently executing.
600 					 * This is a reasonable approximation,
601 					 * since queued remote threads are rare.
602 					 * Note also that if we didn't charge
603 					 * it to its home lgroup, remote
604 					 * execution would often make a system
605 					 * appear balanced even though it was
606 					 * not, and thread placement/migration
607 					 * would often not be done correctly.
608 					 */
609 					lgrp_loadavg(t->t_lpl,
610 					    LGRP_LOADAVG_IN_THREAD_MAX, 0);
611 				}
612 			}
613 			lgrp_loadavg(cp->cpu_lpl,
614 			    cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
615 		}
616 	} while ((cp = cp->cpu_next) != cpu_list);
617 
618 	clock_tick_schedule(one_sec);
619 
620 	/*
621 	 * Check for a callout that needs be called from the clock
622 	 * thread to support the membership protocol in a clustered
623 	 * system.  Copy the function pointer so that we can reset
624 	 * this to NULL if needed.
625 	 */
626 	if ((funcp = cmm_clock_callout) != NULL)
627 		(*funcp)();
628 
629 	if ((funcp = cpucaps_clock_callout) != NULL)
630 		(*funcp)();
631 
632 	/*
633 	 * Wakeup the cageout thread waiters once per second.
634 	 */
635 	if (one_sec)
636 		kcage_tick();
637 
638 	if (one_sec) {
639 
640 		int drift, absdrift;
641 		timestruc_t tod;
642 		int s;
643 
644 		/*
645 		 * Beginning of precision-kernel code fragment executed
646 		 * every second.
647 		 *
648 		 * On rollover of the second the phase adjustment to be
649 		 * used for the next second is calculated.  Also, the
650 		 * maximum error is increased by the tolerance.  If the
651 		 * PPS frequency discipline code is present, the phase is
652 		 * increased to compensate for the CPU clock oscillator
653 		 * frequency error.
654 		 *
655 		 * On a 32-bit machine and given parameters in the timex.h
656 		 * header file, the maximum phase adjustment is +-512 ms
657 		 * and maximum frequency offset is (a tad less than)
658 		 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
659 		 */
660 		time_maxerror += time_tolerance / SCALE_USEC;
661 
662 		/*
663 		 * Leap second processing. If in leap-insert state at
664 		 * the end of the day, the system clock is set back one
665 		 * second; if in leap-delete state, the system clock is
666 		 * set ahead one second. The microtime() routine or
667 		 * external clock driver will insure that reported time
668 		 * is always monotonic. The ugly divides should be
669 		 * replaced.
670 		 */
671 		switch (time_state) {
672 
673 		case TIME_OK:
674 			if (time_status & STA_INS)
675 				time_state = TIME_INS;
676 			else if (time_status & STA_DEL)
677 				time_state = TIME_DEL;
678 			break;
679 
680 		case TIME_INS:
681 			if (hrestime.tv_sec % 86400 == 0) {
682 				s = hr_clock_lock();
683 				hrestime.tv_sec--;
684 				hr_clock_unlock(s);
685 				time_state = TIME_OOP;
686 			}
687 			break;
688 
689 		case TIME_DEL:
690 			if ((hrestime.tv_sec + 1) % 86400 == 0) {
691 				s = hr_clock_lock();
692 				hrestime.tv_sec++;
693 				hr_clock_unlock(s);
694 				time_state = TIME_WAIT;
695 			}
696 			break;
697 
698 		case TIME_OOP:
699 			time_state = TIME_WAIT;
700 			break;
701 
702 		case TIME_WAIT:
703 			if (!(time_status & (STA_INS | STA_DEL)))
704 				time_state = TIME_OK;
705 		default:
706 			break;
707 		}
708 
709 		/*
710 		 * Compute the phase adjustment for the next second. In
711 		 * PLL mode, the offset is reduced by a fixed factor
712 		 * times the time constant. In FLL mode the offset is
713 		 * used directly. In either mode, the maximum phase
714 		 * adjustment for each second is clamped so as to spread
715 		 * the adjustment over not more than the number of
716 		 * seconds between updates.
717 		 */
718 		if (time_offset == 0)
719 			time_adj = 0;
720 		else if (time_offset < 0) {
721 			lltemp = -time_offset;
722 			if (!(time_status & STA_FLL)) {
723 				if ((1 << time_constant) >= SCALE_KG)
724 					lltemp *= (1 << time_constant) /
725 					    SCALE_KG;
726 				else
727 					lltemp = (lltemp / SCALE_KG) >>
728 					    time_constant;
729 			}
730 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
731 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
732 			time_offset += lltemp;
733 			time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
734 		} else {
735 			lltemp = time_offset;
736 			if (!(time_status & STA_FLL)) {
737 				if ((1 << time_constant) >= SCALE_KG)
738 					lltemp *= (1 << time_constant) /
739 					    SCALE_KG;
740 				else
741 					lltemp = (lltemp / SCALE_KG) >>
742 					    time_constant;
743 			}
744 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
745 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
746 			time_offset -= lltemp;
747 			time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
748 		}
749 
750 		/*
751 		 * Compute the frequency estimate and additional phase
752 		 * adjustment due to frequency error for the next
753 		 * second. When the PPS signal is engaged, gnaw on the
754 		 * watchdog counter and update the frequency computed by
755 		 * the pll and the PPS signal.
756 		 */
757 		pps_valid++;
758 		if (pps_valid == PPS_VALID) {
759 			pps_jitter = MAXTIME;
760 			pps_stabil = MAXFREQ;
761 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
762 			    STA_PPSWANDER | STA_PPSERROR);
763 		}
764 		lltemp = time_freq + pps_freq;
765 
766 		if (lltemp)
767 			time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
768 
769 		/*
770 		 * End of precision kernel-code fragment
771 		 *
772 		 * The section below should be modified if we are planning
773 		 * to use NTP for synchronization.
774 		 *
775 		 * Note: the clock synchronization code now assumes
776 		 * the following:
777 		 *   - if dosynctodr is 1, then compute the drift between
778 		 *	the tod chip and software time and adjust one or
779 		 *	the other depending on the circumstances
780 		 *
781 		 *   - if dosynctodr is 0, then the tod chip is independent
782 		 *	of the software clock and should not be adjusted,
783 		 *	but allowed to free run.  this allows NTP to sync.
784 		 *	hrestime without any interference from the tod chip.
785 		 */
786 
787 		tod_validate_deferred = B_FALSE;
788 		mutex_enter(&tod_lock);
789 		tod = tod_get();
790 		drift = tod.tv_sec - hrestime.tv_sec;
791 		absdrift = (drift >= 0) ? drift : -drift;
792 		if (tod_needsync || absdrift > 1) {
793 			int s;
794 			if (absdrift > 2) {
795 				if (!tod_broken && tod_faulted == TOD_NOFAULT) {
796 					s = hr_clock_lock();
797 					hrestime = tod;
798 					membar_enter();	/* hrestime visible */
799 					timedelta = 0;
800 					timechanged++;
801 					tod_needsync = 0;
802 					hr_clock_unlock(s);
803 					callout_hrestime();
804 
805 				}
806 			} else {
807 				if (tod_needsync || !dosynctodr) {
808 					gethrestime(&tod);
809 					tod_set(tod);
810 					s = hr_clock_lock();
811 					if (timedelta == 0)
812 						tod_needsync = 0;
813 					hr_clock_unlock(s);
814 				} else {
815 					/*
816 					 * If the drift is 2 seconds on the
817 					 * money, then the TOD is adjusting
818 					 * the clock;  record that.
819 					 */
820 					clock_adj_hist[adj_hist_entry++ %
821 					    CLOCK_ADJ_HIST_SIZE] = now;
822 					s = hr_clock_lock();
823 					timedelta = (int64_t)drift*NANOSEC;
824 					hr_clock_unlock(s);
825 				}
826 			}
827 		}
828 		one_sec = 0;
829 		time = gethrestime_sec();  /* for crusty old kmem readers */
830 		mutex_exit(&tod_lock);
831 
832 		/*
833 		 * Some drivers still depend on this... XXX
834 		 */
835 		cv_broadcast(&lbolt_cv);
836 
837 		vminfo.freemem += freemem;
838 		{
839 			pgcnt_t maxswap, resv, free;
840 			pgcnt_t avail =
841 			    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
842 
843 			maxswap = k_anoninfo.ani_mem_resv +
844 			    k_anoninfo.ani_max +avail;
845 			/* Update ani_free */
846 			set_anoninfo();
847 			free = k_anoninfo.ani_free + avail;
848 			resv = k_anoninfo.ani_phys_resv +
849 			    k_anoninfo.ani_mem_resv;
850 
851 			vminfo.swap_resv += resv;
852 			/* number of reserved and allocated pages */
853 #ifdef	DEBUG
854 			if (maxswap < free)
855 				cmn_err(CE_WARN, "clock: maxswap < free");
856 			if (maxswap < resv)
857 				cmn_err(CE_WARN, "clock: maxswap < resv");
858 #endif
859 			vminfo.swap_alloc += maxswap - free;
860 			vminfo.swap_avail += maxswap - resv;
861 			vminfo.swap_free += free;
862 		}
863 		vminfo.updates++;
864 		if (nrunnable) {
865 			sysinfo.runque += nrunnable;
866 			sysinfo.runocc++;
867 		}
868 		if (nswapped) {
869 			sysinfo.swpque += nswapped;
870 			sysinfo.swpocc++;
871 		}
872 		sysinfo.waiting += w_io;
873 		sysinfo.updates++;
874 
875 		/*
876 		 * Wake up fsflush to write out DELWRI
877 		 * buffers, dirty pages and other cached
878 		 * administrative data, e.g. inodes.
879 		 */
880 		if (--fsflushcnt <= 0) {
881 			fsflushcnt = tune.t_fsflushr;
882 			cv_signal(&fsflush_cv);
883 		}
884 
885 		vmmeter();
886 		calcloadavg(genloadavg(&loadavg), hp_avenrun);
887 		for (i = 0; i < 3; i++)
888 			/*
889 			 * At the moment avenrun[] can only hold 31
890 			 * bits of load average as it is a signed
891 			 * int in the API. We need to ensure that
892 			 * hp_avenrun[i] >> (16 - FSHIFT) will not be
893 			 * too large. If it is, we put the largest value
894 			 * that we can use into avenrun[i]. This is
895 			 * kludgey, but about all we can do until we
896 			 * avenrun[] is declared as an array of uint64[]
897 			 */
898 			if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
899 				avenrun[i] = (int32_t)(hp_avenrun[i] >>
900 				    (16 - FSHIFT));
901 			else
902 				avenrun[i] = 0x7fffffff;
903 
904 		cpupart = cp_list_head;
905 		do {
906 			calcloadavg(genloadavg(&cpupart->cp_loadavg),
907 			    cpupart->cp_hp_avenrun);
908 		} while ((cpupart = cpupart->cp_next) != cp_list_head);
909 
910 		/*
911 		 * Wake up the swapper thread if necessary.
912 		 */
913 		if (runin ||
914 		    (runout && (avefree < desfree || wake_sched_sec))) {
915 			t = &t0;
916 			thread_lock(t);
917 			if (t->t_state == TS_STOPPED) {
918 				runin = runout = 0;
919 				wake_sched_sec = 0;
920 				t->t_whystop = 0;
921 				t->t_whatstop = 0;
922 				t->t_schedflag &= ~TS_ALLSTART;
923 				THREAD_TRANSITION(t);
924 				setfrontdq(t);
925 			}
926 			thread_unlock(t);
927 		}
928 	}
929 
930 	/*
931 	 * Wake up the swapper if any high priority swapped-out threads
932 	 * became runable during the last tick.
933 	 */
934 	if (wake_sched) {
935 		t = &t0;
936 		thread_lock(t);
937 		if (t->t_state == TS_STOPPED) {
938 			runin = runout = 0;
939 			wake_sched = 0;
940 			t->t_whystop = 0;
941 			t->t_whatstop = 0;
942 			t->t_schedflag &= ~TS_ALLSTART;
943 			THREAD_TRANSITION(t);
944 			setfrontdq(t);
945 		}
946 		thread_unlock(t);
947 	}
948 }
949 
950 void
951 clock_init(void)
952 {
953 	cyc_handler_t clk_hdlr, lbolt_hdlr;
954 	cyc_time_t clk_when, lbolt_when;
955 	int i, sz;
956 	intptr_t buf;
957 
958 	/*
959 	 * Setup handler and timer for the clock cyclic.
960 	 */
961 	clk_hdlr.cyh_func = (cyc_func_t)clock;
962 	clk_hdlr.cyh_level = CY_LOCK_LEVEL;
963 	clk_hdlr.cyh_arg = NULL;
964 
965 	clk_when.cyt_when = 0;
966 	clk_when.cyt_interval = nsec_per_tick;
967 
968 	/*
969 	 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick
970 	 * interval to satisfy performance needs of the DDI lbolt consumers.
971 	 * It is off by default.
972 	 */
973 	lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic;
974 	lbolt_hdlr.cyh_level = CY_LOCK_LEVEL;
975 	lbolt_hdlr.cyh_arg = NULL;
976 
977 	lbolt_when.cyt_interval = nsec_per_tick;
978 
979 	/*
980 	 * Allocate cache line aligned space for the per CPU lbolt data and
981 	 * lbolt info structures, and initialize them with their default
982 	 * values. Note that these structures are also cache line sized.
983 	 */
984 	sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE;
985 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
986 	lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
987 
988 	if (hz != HZ_DEFAULT)
989 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL *
990 		    hz/HZ_DEFAULT;
991 	else
992 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL;
993 
994 	lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS;
995 
996 	sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE;
997 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
998 	lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
999 
1000 	for (i = 0; i < max_ncpus; i++)
1001 		lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls;
1002 
1003 	/*
1004 	 * Install the softint used to switch between event and cyclic driven
1005 	 * lbolt. We use a soft interrupt to make sure the context of the
1006 	 * cyclic reprogram call is safe.
1007 	 */
1008 	lbolt_softint_add();
1009 
1010 	/*
1011 	 * Since the hybrid lbolt implementation is based on a hardware counter
1012 	 * that is reset at every hardware reboot and that we'd like to have
1013 	 * the lbolt value starting at zero after both a hardware and a fast
1014 	 * reboot, we calculate the number of clock ticks the system's been up
1015 	 * and store it in the lbi_debug_time field of the lbolt info structure.
1016 	 * The value of this field will be subtracted from lbolt before
1017 	 * returning it.
1018 	 */
1019 	lb_info->lbi_internal = lb_info->lbi_debug_time =
1020 	    (gethrtime()/nsec_per_tick);
1021 
1022 	/*
1023 	 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros
1024 	 * and lbolt_debug_{enter,return} use this value as an indication that
1025 	 * the initializaion above hasn't been completed. Setting lbolt_hybrid
1026 	 * to either lbolt_{cyclic,event}_driven here signals those code paths
1027 	 * that the lbolt related structures can be used.
1028 	 */
1029 	if (lbolt_cyc_only) {
1030 		lbolt_when.cyt_when = 0;
1031 		lbolt_hybrid = lbolt_cyclic_driven;
1032 	} else {
1033 		lbolt_when.cyt_when = CY_INFINITY;
1034 		lbolt_hybrid = lbolt_event_driven;
1035 	}
1036 
1037 	/*
1038 	 * Grab cpu_lock and install all three cyclics.
1039 	 */
1040 	mutex_enter(&cpu_lock);
1041 
1042 	clock_cyclic = cyclic_add(&clk_hdlr, &clk_when);
1043 	lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when);
1044 
1045 	mutex_exit(&cpu_lock);
1046 }
1047 
1048 /*
1049  * Called before calcloadavg to get 10-sec moving loadavg together
1050  */
1051 
1052 static int
1053 genloadavg(struct loadavg_s *avgs)
1054 {
1055 	int avg;
1056 	int spos; /* starting position */
1057 	int cpos; /* moving current position */
1058 	int i;
1059 	int slen;
1060 	hrtime_t hr_avg;
1061 
1062 	/* 10-second snapshot, calculate first positon */
1063 	if (avgs->lg_len == 0) {
1064 		return (0);
1065 	}
1066 	slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1067 
1068 	spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1069 	    S_LOADAVG_SZ + (avgs->lg_cur - 1);
1070 	for (i = hr_avg = 0; i < slen; i++) {
1071 		cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1072 		hr_avg += avgs->lg_loads[cpos];
1073 	}
1074 
1075 	hr_avg = hr_avg / slen;
1076 	avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1077 
1078 	return (avg);
1079 }
1080 
1081 /*
1082  * Run every second from clock () to update the loadavg count available to the
1083  * system and cpu-partitions.
1084  *
1085  * This works by sampling the previous usr, sys, wait time elapsed,
1086  * computing a delta, and adding that delta to the elapsed usr, sys,
1087  * wait increase.
1088  */
1089 
1090 static void
1091 loadavg_update()
1092 {
1093 	cpu_t *cp;
1094 	cpupart_t *cpupart;
1095 	hrtime_t cpu_total;
1096 	int prev;
1097 
1098 	cp = cpu_list;
1099 	loadavg.lg_total = 0;
1100 
1101 	/*
1102 	 * first pass totals up per-cpu statistics for system and cpu
1103 	 * partitions
1104 	 */
1105 
1106 	do {
1107 		struct loadavg_s *lavg;
1108 
1109 		lavg = &cp->cpu_loadavg;
1110 
1111 		cpu_total = cp->cpu_acct[CMS_USER] +
1112 		    cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1113 		/* compute delta against last total */
1114 		scalehrtime(&cpu_total);
1115 		prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1116 		    S_LOADAVG_SZ + (lavg->lg_cur - 1);
1117 		if (lavg->lg_loads[prev] <= 0) {
1118 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1119 			cpu_total = 0;
1120 		} else {
1121 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1122 			cpu_total = cpu_total - lavg->lg_loads[prev];
1123 			if (cpu_total < 0)
1124 				cpu_total = 0;
1125 		}
1126 
1127 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1128 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1129 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1130 
1131 		loadavg.lg_total += cpu_total;
1132 		cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1133 
1134 	} while ((cp = cp->cpu_next) != cpu_list);
1135 
1136 	loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1137 	loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1138 	loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1139 	    loadavg.lg_len + 1 : S_LOADAVG_SZ;
1140 	/*
1141 	 * Second pass updates counts
1142 	 */
1143 	cpupart = cp_list_head;
1144 
1145 	do {
1146 		struct loadavg_s *lavg;
1147 
1148 		lavg = &cpupart->cp_loadavg;
1149 		lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1150 		lavg->lg_total = 0;
1151 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1152 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1153 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1154 
1155 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
1156 
1157 	/*
1158 	 * Third pass totals up per-zone statistics.
1159 	 */
1160 	zone_loadavg_update();
1161 }
1162 
1163 /*
1164  * clock_update() - local clock update
1165  *
1166  * This routine is called by ntp_adjtime() to update the local clock
1167  * phase and frequency. The implementation is of an
1168  * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1169  * routine computes new time and frequency offset estimates for each
1170  * call.  The PPS signal itself determines the new time offset,
1171  * instead of the calling argument.  Presumably, calls to
1172  * ntp_adjtime() occur only when the caller believes the local clock
1173  * is valid within some bound (+-128 ms with NTP). If the caller's
1174  * time is far different than the PPS time, an argument will ensue,
1175  * and it's not clear who will lose.
1176  *
1177  * For uncompensated quartz crystal oscillatores and nominal update
1178  * intervals less than 1024 s, operation should be in phase-lock mode
1179  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1180  * intervals greater than this, operation should be in frequency-lock
1181  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1182  *
1183  * Note: mutex(&tod_lock) is in effect.
1184  */
1185 void
1186 clock_update(int offset)
1187 {
1188 	int ltemp, mtemp, s;
1189 
1190 	ASSERT(MUTEX_HELD(&tod_lock));
1191 
1192 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1193 		return;
1194 	ltemp = offset;
1195 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1196 		ltemp = pps_offset;
1197 
1198 	/*
1199 	 * Scale the phase adjustment and clamp to the operating range.
1200 	 */
1201 	if (ltemp > MAXPHASE)
1202 		time_offset = MAXPHASE * SCALE_UPDATE;
1203 	else if (ltemp < -MAXPHASE)
1204 		time_offset = -(MAXPHASE * SCALE_UPDATE);
1205 	else
1206 		time_offset = ltemp * SCALE_UPDATE;
1207 
1208 	/*
1209 	 * Select whether the frequency is to be controlled and in which
1210 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1211 	 * multiply/divide should be replaced someday.
1212 	 */
1213 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1214 		time_reftime = hrestime.tv_sec;
1215 
1216 	mtemp = hrestime.tv_sec - time_reftime;
1217 	time_reftime = hrestime.tv_sec;
1218 
1219 	if (time_status & STA_FLL) {
1220 		if (mtemp >= MINSEC) {
1221 			ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1222 			    SCALE_UPDATE));
1223 			if (ltemp)
1224 				time_freq += ltemp / SCALE_KH;
1225 		}
1226 	} else {
1227 		if (mtemp < MAXSEC) {
1228 			ltemp *= mtemp;
1229 			if (ltemp)
1230 				time_freq += (int)(((int64_t)ltemp *
1231 				    SCALE_USEC) / SCALE_KF)
1232 				    / (1 << (time_constant * 2));
1233 		}
1234 	}
1235 	if (time_freq > time_tolerance)
1236 		time_freq = time_tolerance;
1237 	else if (time_freq < -time_tolerance)
1238 		time_freq = -time_tolerance;
1239 
1240 	s = hr_clock_lock();
1241 	tod_needsync = 1;
1242 	hr_clock_unlock(s);
1243 }
1244 
1245 /*
1246  * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1247  *
1248  * This routine is called at each PPS interrupt in order to discipline
1249  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1250  * and leaves it in a handy spot for the clock() routine. It
1251  * integrates successive PPS phase differences and calculates the
1252  * frequency offset. This is used in clock() to discipline the CPU
1253  * clock oscillator so that intrinsic frequency error is cancelled out.
1254  * The code requires the caller to capture the time and hardware counter
1255  * value at the on-time PPS signal transition.
1256  *
1257  * Note that, on some Unix systems, this routine runs at an interrupt
1258  * priority level higher than the timer interrupt routine clock().
1259  * Therefore, the variables used are distinct from the clock()
1260  * variables, except for certain exceptions: The PPS frequency pps_freq
1261  * and phase pps_offset variables are determined by this routine and
1262  * updated atomically. The time_tolerance variable can be considered a
1263  * constant, since it is infrequently changed, and then only when the
1264  * PPS signal is disabled. The watchdog counter pps_valid is updated
1265  * once per second by clock() and is atomically cleared in this
1266  * routine.
1267  *
1268  * tvp is the time of the last tick; usec is a microsecond count since the
1269  * last tick.
1270  *
1271  * Note: In Solaris systems, the tick value is actually given by
1272  *       usec_per_tick.  This is called from the serial driver cdintr(),
1273  *	 or equivalent, at a high PIL.  Because the kernel keeps a
1274  *	 highresolution time, the following code can accept either
1275  *	 the traditional argument pair, or the current highres timestamp
1276  *       in tvp and zero in usec.
1277  */
1278 void
1279 ddi_hardpps(struct timeval *tvp, int usec)
1280 {
1281 	int u_usec, v_usec, bigtick;
1282 	time_t cal_sec;
1283 	int cal_usec;
1284 
1285 	/*
1286 	 * An occasional glitch can be produced when the PPS interrupt
1287 	 * occurs in the clock() routine before the time variable is
1288 	 * updated. Here the offset is discarded when the difference
1289 	 * between it and the last one is greater than tick/2, but not
1290 	 * if the interval since the first discard exceeds 30 s.
1291 	 */
1292 	time_status |= STA_PPSSIGNAL;
1293 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1294 	pps_valid = 0;
1295 	u_usec = -tvp->tv_usec;
1296 	if (u_usec < -(MICROSEC/2))
1297 		u_usec += MICROSEC;
1298 	v_usec = pps_offset - u_usec;
1299 	if (v_usec < 0)
1300 		v_usec = -v_usec;
1301 	if (v_usec > (usec_per_tick >> 1)) {
1302 		if (pps_glitch > MAXGLITCH) {
1303 			pps_glitch = 0;
1304 			pps_tf[2] = u_usec;
1305 			pps_tf[1] = u_usec;
1306 		} else {
1307 			pps_glitch++;
1308 			u_usec = pps_offset;
1309 		}
1310 	} else
1311 		pps_glitch = 0;
1312 
1313 	/*
1314 	 * A three-stage median filter is used to help deglitch the pps
1315 	 * time. The median sample becomes the time offset estimate; the
1316 	 * difference between the other two samples becomes the time
1317 	 * dispersion (jitter) estimate.
1318 	 */
1319 	pps_tf[2] = pps_tf[1];
1320 	pps_tf[1] = pps_tf[0];
1321 	pps_tf[0] = u_usec;
1322 	if (pps_tf[0] > pps_tf[1]) {
1323 		if (pps_tf[1] > pps_tf[2]) {
1324 			pps_offset = pps_tf[1];		/* 0 1 2 */
1325 			v_usec = pps_tf[0] - pps_tf[2];
1326 		} else if (pps_tf[2] > pps_tf[0]) {
1327 			pps_offset = pps_tf[0];		/* 2 0 1 */
1328 			v_usec = pps_tf[2] - pps_tf[1];
1329 		} else {
1330 			pps_offset = pps_tf[2];		/* 0 2 1 */
1331 			v_usec = pps_tf[0] - pps_tf[1];
1332 		}
1333 	} else {
1334 		if (pps_tf[1] < pps_tf[2]) {
1335 			pps_offset = pps_tf[1];		/* 2 1 0 */
1336 			v_usec = pps_tf[2] - pps_tf[0];
1337 		} else  if (pps_tf[2] < pps_tf[0]) {
1338 			pps_offset = pps_tf[0];		/* 1 0 2 */
1339 			v_usec = pps_tf[1] - pps_tf[2];
1340 		} else {
1341 			pps_offset = pps_tf[2];		/* 1 2 0 */
1342 			v_usec = pps_tf[1] - pps_tf[0];
1343 		}
1344 	}
1345 	if (v_usec > MAXTIME)
1346 		pps_jitcnt++;
1347 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1348 	pps_jitter += v_usec / (1 << PPS_AVG);
1349 	if (pps_jitter > (MAXTIME >> 1))
1350 		time_status |= STA_PPSJITTER;
1351 
1352 	/*
1353 	 * During the calibration interval adjust the starting time when
1354 	 * the tick overflows. At the end of the interval compute the
1355 	 * duration of the interval and the difference of the hardware
1356 	 * counters at the beginning and end of the interval. This code
1357 	 * is deliciously complicated by the fact valid differences may
1358 	 * exceed the value of tick when using long calibration
1359 	 * intervals and small ticks. Note that the counter can be
1360 	 * greater than tick if caught at just the wrong instant, but
1361 	 * the values returned and used here are correct.
1362 	 */
1363 	bigtick = (int)usec_per_tick * SCALE_USEC;
1364 	pps_usec -= pps_freq;
1365 	if (pps_usec >= bigtick)
1366 		pps_usec -= bigtick;
1367 	if (pps_usec < 0)
1368 		pps_usec += bigtick;
1369 	pps_time.tv_sec++;
1370 	pps_count++;
1371 	if (pps_count < (1 << pps_shift))
1372 		return;
1373 	pps_count = 0;
1374 	pps_calcnt++;
1375 	u_usec = usec * SCALE_USEC;
1376 	v_usec = pps_usec - u_usec;
1377 	if (v_usec >= bigtick >> 1)
1378 		v_usec -= bigtick;
1379 	if (v_usec < -(bigtick >> 1))
1380 		v_usec += bigtick;
1381 	if (v_usec < 0)
1382 		v_usec = -(-v_usec >> pps_shift);
1383 	else
1384 		v_usec = v_usec >> pps_shift;
1385 	pps_usec = u_usec;
1386 	cal_sec = tvp->tv_sec;
1387 	cal_usec = tvp->tv_usec;
1388 	cal_sec -= pps_time.tv_sec;
1389 	cal_usec -= pps_time.tv_usec;
1390 	if (cal_usec < 0) {
1391 		cal_usec += MICROSEC;
1392 		cal_sec--;
1393 	}
1394 	pps_time = *tvp;
1395 
1396 	/*
1397 	 * Check for lost interrupts, noise, excessive jitter and
1398 	 * excessive frequency error. The number of timer ticks during
1399 	 * the interval may vary +-1 tick. Add to this a margin of one
1400 	 * tick for the PPS signal jitter and maximum frequency
1401 	 * deviation. If the limits are exceeded, the calibration
1402 	 * interval is reset to the minimum and we start over.
1403 	 */
1404 	u_usec = (int)usec_per_tick << 1;
1405 	if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1406 	    (cal_sec == 0 && cal_usec < u_usec)) ||
1407 	    v_usec > time_tolerance || v_usec < -time_tolerance) {
1408 		pps_errcnt++;
1409 		pps_shift = PPS_SHIFT;
1410 		pps_intcnt = 0;
1411 		time_status |= STA_PPSERROR;
1412 		return;
1413 	}
1414 
1415 	/*
1416 	 * A three-stage median filter is used to help deglitch the pps
1417 	 * frequency. The median sample becomes the frequency offset
1418 	 * estimate; the difference between the other two samples
1419 	 * becomes the frequency dispersion (stability) estimate.
1420 	 */
1421 	pps_ff[2] = pps_ff[1];
1422 	pps_ff[1] = pps_ff[0];
1423 	pps_ff[0] = v_usec;
1424 	if (pps_ff[0] > pps_ff[1]) {
1425 		if (pps_ff[1] > pps_ff[2]) {
1426 			u_usec = pps_ff[1];		/* 0 1 2 */
1427 			v_usec = pps_ff[0] - pps_ff[2];
1428 		} else if (pps_ff[2] > pps_ff[0]) {
1429 			u_usec = pps_ff[0];		/* 2 0 1 */
1430 			v_usec = pps_ff[2] - pps_ff[1];
1431 		} else {
1432 			u_usec = pps_ff[2];		/* 0 2 1 */
1433 			v_usec = pps_ff[0] - pps_ff[1];
1434 		}
1435 	} else {
1436 		if (pps_ff[1] < pps_ff[2]) {
1437 			u_usec = pps_ff[1];		/* 2 1 0 */
1438 			v_usec = pps_ff[2] - pps_ff[0];
1439 		} else  if (pps_ff[2] < pps_ff[0]) {
1440 			u_usec = pps_ff[0];		/* 1 0 2 */
1441 			v_usec = pps_ff[1] - pps_ff[2];
1442 		} else {
1443 			u_usec = pps_ff[2];		/* 1 2 0 */
1444 			v_usec = pps_ff[1] - pps_ff[0];
1445 		}
1446 	}
1447 
1448 	/*
1449 	 * Here the frequency dispersion (stability) is updated. If it
1450 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1451 	 * offset is updated as well, but clamped to the tolerance. It
1452 	 * will be processed later by the clock() routine.
1453 	 */
1454 	v_usec = (v_usec >> 1) - pps_stabil;
1455 	if (v_usec < 0)
1456 		pps_stabil -= -v_usec >> PPS_AVG;
1457 	else
1458 		pps_stabil += v_usec >> PPS_AVG;
1459 	if (pps_stabil > MAXFREQ >> 2) {
1460 		pps_stbcnt++;
1461 		time_status |= STA_PPSWANDER;
1462 		return;
1463 	}
1464 	if (time_status & STA_PPSFREQ) {
1465 		if (u_usec < 0) {
1466 			pps_freq -= -u_usec >> PPS_AVG;
1467 			if (pps_freq < -time_tolerance)
1468 				pps_freq = -time_tolerance;
1469 			u_usec = -u_usec;
1470 		} else {
1471 			pps_freq += u_usec >> PPS_AVG;
1472 			if (pps_freq > time_tolerance)
1473 				pps_freq = time_tolerance;
1474 		}
1475 	}
1476 
1477 	/*
1478 	 * Here the calibration interval is adjusted. If the maximum
1479 	 * time difference is greater than tick / 4, reduce the interval
1480 	 * by half. If this is not the case for four consecutive
1481 	 * intervals, double the interval.
1482 	 */
1483 	if (u_usec << pps_shift > bigtick >> 2) {
1484 		pps_intcnt = 0;
1485 		if (pps_shift > PPS_SHIFT)
1486 			pps_shift--;
1487 	} else if (pps_intcnt >= 4) {
1488 		pps_intcnt = 0;
1489 		if (pps_shift < PPS_SHIFTMAX)
1490 			pps_shift++;
1491 	} else
1492 		pps_intcnt++;
1493 
1494 	/*
1495 	 * If recovering from kmdb, then make sure the tod chip gets resynced.
1496 	 * If we took an early exit above, then we don't yet have a stable
1497 	 * calibration signal to lock onto, so don't mark the tod for sync
1498 	 * until we get all the way here.
1499 	 */
1500 	{
1501 		int s = hr_clock_lock();
1502 
1503 		tod_needsync = 1;
1504 		hr_clock_unlock(s);
1505 	}
1506 }
1507 
1508 /*
1509  * Handle clock tick processing for a thread.
1510  * Check for timer action, enforce CPU rlimit, do profiling etc.
1511  */
1512 void
1513 clock_tick(kthread_t *t, int pending)
1514 {
1515 	struct proc *pp;
1516 	klwp_id_t    lwp;
1517 	struct as *as;
1518 	clock_t	ticks;
1519 	int	poke = 0;		/* notify another CPU */
1520 	int	user_mode;
1521 	size_t	 rss;
1522 	int i, total_usec, usec;
1523 	rctl_qty_t secs;
1524 
1525 	ASSERT(pending > 0);
1526 
1527 	/* Must be operating on a lwp/thread */
1528 	if ((lwp = ttolwp(t)) == NULL) {
1529 		panic("clock_tick: no lwp");
1530 		/*NOTREACHED*/
1531 	}
1532 
1533 	for (i = 0; i < pending; i++) {
1534 		CL_TICK(t);	/* Class specific tick processing */
1535 		DTRACE_SCHED1(tick, kthread_t *, t);
1536 	}
1537 
1538 	pp = ttoproc(t);
1539 
1540 	/* pp->p_lock makes sure that the thread does not exit */
1541 	ASSERT(MUTEX_HELD(&pp->p_lock));
1542 
1543 	user_mode = (lwp->lwp_state == LWP_USER);
1544 
1545 	ticks = (pp->p_utime + pp->p_stime) % hz;
1546 	/*
1547 	 * Update process times. Should use high res clock and state
1548 	 * changes instead of statistical sampling method. XXX
1549 	 */
1550 	if (user_mode) {
1551 		pp->p_utime += pending;
1552 	} else {
1553 		pp->p_stime += pending;
1554 	}
1555 
1556 	pp->p_ttime += pending;
1557 	as = pp->p_as;
1558 
1559 	/*
1560 	 * Update user profiling statistics. Get the pc from the
1561 	 * lwp when the AST happens.
1562 	 */
1563 	if (pp->p_prof.pr_scale) {
1564 		atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
1565 		if (user_mode) {
1566 			poke = 1;
1567 			aston(t);
1568 		}
1569 	}
1570 
1571 	/*
1572 	 * If CPU was in user state, process lwp-virtual time
1573 	 * interval timer. The value passed to itimerdecr() has to be
1574 	 * in microseconds and has to be less than one second. Hence
1575 	 * this loop.
1576 	 */
1577 	total_usec = usec_per_tick * pending;
1578 	while (total_usec > 0) {
1579 		usec = MIN(total_usec, (MICROSEC - 1));
1580 		if (user_mode &&
1581 		    timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1582 		    itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
1583 			poke = 1;
1584 			sigtoproc(pp, t, SIGVTALRM);
1585 		}
1586 		total_usec -= usec;
1587 	}
1588 
1589 	/*
1590 	 * If CPU was in user state, process lwp-profile
1591 	 * interval timer.
1592 	 */
1593 	total_usec = usec_per_tick * pending;
1594 	while (total_usec > 0) {
1595 		usec = MIN(total_usec, (MICROSEC - 1));
1596 		if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1597 		    itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
1598 			poke = 1;
1599 			sigtoproc(pp, t, SIGPROF);
1600 		}
1601 		total_usec -= usec;
1602 	}
1603 
1604 	/*
1605 	 * Enforce CPU resource controls:
1606 	 *   (a) process.max-cpu-time resource control
1607 	 *
1608 	 * Perform the check only if we have accumulated more a second.
1609 	 */
1610 	if ((ticks + pending) >= hz) {
1611 		(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1612 		    (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
1613 	}
1614 
1615 	/*
1616 	 *   (b) task.max-cpu-time resource control
1617 	 *
1618 	 * If we have accumulated enough ticks, increment the task CPU
1619 	 * time usage and test for the resource limit. This minimizes the
1620 	 * number of calls to the rct_test(). The task CPU time mutex
1621 	 * is highly contentious as many processes can be sharing a task.
1622 	 */
1623 	if (pp->p_ttime >= clock_tick_proc_max) {
1624 		secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
1625 		pp->p_ttime = 0;
1626 		if (secs) {
1627 			(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
1628 			    pp, secs, RCA_UNSAFE_SIGINFO);
1629 		}
1630 	}
1631 
1632 	/*
1633 	 * Update memory usage for the currently running process.
1634 	 */
1635 	rss = rm_asrss(as);
1636 	PTOU(pp)->u_mem += rss;
1637 	if (rss > PTOU(pp)->u_mem_max)
1638 		PTOU(pp)->u_mem_max = rss;
1639 
1640 	/*
1641 	 * Notify the CPU the thread is running on.
1642 	 */
1643 	if (poke && t->t_cpu != CPU)
1644 		poke_cpu(t->t_cpu->cpu_id);
1645 }
1646 
1647 void
1648 profil_tick(uintptr_t upc)
1649 {
1650 	int ticks;
1651 	proc_t *p = ttoproc(curthread);
1652 	klwp_t *lwp = ttolwp(curthread);
1653 	struct prof *pr = &p->p_prof;
1654 
1655 	do {
1656 		ticks = lwp->lwp_oweupc;
1657 	} while (atomic_cas_32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1658 
1659 	mutex_enter(&p->p_pflock);
1660 	if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1661 		/*
1662 		 * Old-style profiling
1663 		 */
1664 		uint16_t *slot = pr->pr_base;
1665 		uint16_t old, new;
1666 		if (pr->pr_scale != 2) {
1667 			uintptr_t delta = upc - pr->pr_off;
1668 			uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1669 			    (((delta & 0xffff) * pr->pr_scale) >> 16);
1670 			if (byteoff >= (uintptr_t)pr->pr_size) {
1671 				mutex_exit(&p->p_pflock);
1672 				return;
1673 			}
1674 			slot += byteoff / sizeof (uint16_t);
1675 		}
1676 		if (fuword16(slot, &old) < 0 ||
1677 		    (new = old + ticks) > SHRT_MAX ||
1678 		    suword16(slot, new) < 0) {
1679 			pr->pr_scale = 0;
1680 		}
1681 	} else if (pr->pr_scale == 1) {
1682 		/*
1683 		 * PC Sampling
1684 		 */
1685 		model_t model = lwp_getdatamodel(lwp);
1686 		int result;
1687 #ifdef __lint
1688 		model = model;
1689 #endif
1690 		while (ticks-- > 0) {
1691 			if (pr->pr_samples == pr->pr_size) {
1692 				/* buffer full, turn off sampling */
1693 				pr->pr_scale = 0;
1694 				break;
1695 			}
1696 			switch (SIZEOF_PTR(model)) {
1697 			case sizeof (uint32_t):
1698 				result = suword32(pr->pr_base, (uint32_t)upc);
1699 				break;
1700 #ifdef _LP64
1701 			case sizeof (uint64_t):
1702 				result = suword64(pr->pr_base, (uint64_t)upc);
1703 				break;
1704 #endif
1705 			default:
1706 				cmn_err(CE_WARN, "profil_tick: unexpected "
1707 				    "data model");
1708 				result = -1;
1709 				break;
1710 			}
1711 			if (result != 0) {
1712 				pr->pr_scale = 0;
1713 				break;
1714 			}
1715 			pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1716 			pr->pr_samples++;
1717 		}
1718 	}
1719 	mutex_exit(&p->p_pflock);
1720 }
1721 
1722 static void
1723 delay_wakeup(void *arg)
1724 {
1725 	kthread_t	*t = arg;
1726 
1727 	mutex_enter(&t->t_delay_lock);
1728 	cv_signal(&t->t_delay_cv);
1729 	mutex_exit(&t->t_delay_lock);
1730 }
1731 
1732 /*
1733  * The delay(9F) man page indicates that it can only be called from user or
1734  * kernel context - detect and diagnose bad calls. The following macro will
1735  * produce a limited number of messages identifying bad callers.  This is done
1736  * in a macro so that caller() is meaningful. When a bad caller is identified,
1737  * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
1738  */
1739 #define	DELAY_CONTEXT_CHECK()	{					\
1740 	uint32_t	m;						\
1741 	char		*f;						\
1742 	ulong_t		off;						\
1743 									\
1744 	m = delay_from_interrupt_msg;					\
1745 	if (delay_from_interrupt_diagnose && servicing_interrupt() &&	\
1746 	    !panicstr && !devinfo_freeze &&				\
1747 	    atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) {	\
1748 		f = modgetsymname((uintptr_t)caller(), &off);		\
1749 		cmn_err(CE_WARN, "delay(9F) called from "		\
1750 		    "interrupt context: %s`%s",				\
1751 		    mod_containing_pc(caller()), f ? f : "...");	\
1752 	}								\
1753 }
1754 
1755 /*
1756  * delay_common: common delay code.
1757  */
1758 static void
1759 delay_common(clock_t ticks)
1760 {
1761 	kthread_t	*t = curthread;
1762 	clock_t		deadline;
1763 	clock_t		timeleft;
1764 	callout_id_t	id;
1765 
1766 	/* If timeouts aren't running all we can do is spin. */
1767 	if (panicstr || devinfo_freeze) {
1768 		/* Convert delay(9F) call into drv_usecwait(9F) call. */
1769 		if (ticks > 0)
1770 			drv_usecwait(TICK_TO_USEC(ticks));
1771 		return;
1772 	}
1773 
1774 	deadline = ddi_get_lbolt() + ticks;
1775 	while ((timeleft = deadline - ddi_get_lbolt()) > 0) {
1776 		mutex_enter(&t->t_delay_lock);
1777 		id = timeout_default(delay_wakeup, t, timeleft);
1778 		cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1779 		mutex_exit(&t->t_delay_lock);
1780 		(void) untimeout_default(id, 0);
1781 	}
1782 }
1783 
1784 /*
1785  * Delay specified number of clock ticks.
1786  */
1787 void
1788 delay(clock_t ticks)
1789 {
1790 	DELAY_CONTEXT_CHECK();
1791 
1792 	delay_common(ticks);
1793 }
1794 
1795 /*
1796  * Delay a random number of clock ticks between 1 and ticks.
1797  */
1798 void
1799 delay_random(clock_t ticks)
1800 {
1801 	int	r;
1802 
1803 	DELAY_CONTEXT_CHECK();
1804 
1805 	(void) random_get_pseudo_bytes((void *)&r, sizeof (r));
1806 	if (ticks == 0)
1807 		ticks = 1;
1808 	ticks = (r % ticks) + 1;
1809 	delay_common(ticks);
1810 }
1811 
1812 /*
1813  * Like delay, but interruptible by a signal.
1814  */
1815 int
1816 delay_sig(clock_t ticks)
1817 {
1818 	kthread_t	*t = curthread;
1819 	clock_t		deadline;
1820 	clock_t		rc;
1821 
1822 	/* If timeouts aren't running all we can do is spin. */
1823 	if (panicstr || devinfo_freeze) {
1824 		if (ticks > 0)
1825 			drv_usecwait(TICK_TO_USEC(ticks));
1826 		return (0);
1827 	}
1828 
1829 	deadline = ddi_get_lbolt() + ticks;
1830 	mutex_enter(&t->t_delay_lock);
1831 	do {
1832 		rc = cv_timedwait_sig(&t->t_delay_cv,
1833 		    &t->t_delay_lock, deadline);
1834 		/* loop until past deadline or signaled */
1835 	} while (rc > 0);
1836 	mutex_exit(&t->t_delay_lock);
1837 	if (rc == 0)
1838 		return (EINTR);
1839 	return (0);
1840 }
1841 
1842 
1843 #define	SECONDS_PER_DAY 86400
1844 
1845 /*
1846  * Initialize the system time based on the TOD chip.  approx is used as
1847  * an approximation of time (e.g. from the filesystem) in the event that
1848  * the TOD chip has been cleared or is unresponsive.  An approx of -1
1849  * means the filesystem doesn't keep time.
1850  */
1851 void
1852 clkset(time_t approx)
1853 {
1854 	timestruc_t ts;
1855 	int spl;
1856 	int set_clock = 0;
1857 
1858 	mutex_enter(&tod_lock);
1859 	ts = tod_get();
1860 
1861 	if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1862 		/*
1863 		 * If the TOD chip is reporting some time after 1971,
1864 		 * then it probably didn't lose power or become otherwise
1865 		 * cleared in the recent past;  check to assure that
1866 		 * the time coming from the filesystem isn't in the future
1867 		 * according to the TOD chip.
1868 		 */
1869 		if (approx != -1 && approx > ts.tv_sec) {
1870 			cmn_err(CE_WARN, "Last shutdown is later "
1871 			    "than time on time-of-day chip; check date.");
1872 		}
1873 	} else {
1874 		/*
1875 		 * If the TOD chip isn't giving correct time, set it to the
1876 		 * greater of i) approx and ii) 1987. That way if approx
1877 		 * is negative or is earlier than 1987, we set the clock
1878 		 * back to a time when Oliver North, ALF and Dire Straits
1879 		 * were all on the collective brain:  1987.
1880 		 */
1881 		timestruc_t tmp;
1882 		time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1883 		ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
1884 		ts.tv_nsec = 0;
1885 
1886 		/*
1887 		 * Attempt to write the new time to the TOD chip.  Set spl high
1888 		 * to avoid getting preempted between the tod_set and tod_get.
1889 		 */
1890 		spl = splhi();
1891 		tod_set(ts);
1892 		tmp = tod_get();
1893 		splx(spl);
1894 
1895 		if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1896 			tod_broken = 1;
1897 			dosynctodr = 0;
1898 			cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
1899 		} else {
1900 			cmn_err(CE_WARN, "Time-of-day chip had "
1901 			    "incorrect date; check and reset.");
1902 		}
1903 		set_clock = 1;
1904 	}
1905 
1906 	if (!boot_time) {
1907 		boot_time = ts.tv_sec;
1908 		global_zone->zone_boot_time = ts.tv_sec;
1909 		set_clock = 1;
1910 	}
1911 
1912 	if (set_clock)
1913 		set_hrestime(&ts);
1914 
1915 	mutex_exit(&tod_lock);
1916 }
1917 
1918 int	timechanged;	/* for testing if the system time has been reset */
1919 
1920 void
1921 set_hrestime(timestruc_t *ts)
1922 {
1923 	int spl = hr_clock_lock();
1924 	hrestime = *ts;
1925 	membar_enter();	/* hrestime must be visible before timechanged++ */
1926 	timedelta = 0;
1927 	timechanged++;
1928 	hr_clock_unlock(spl);
1929 	callout_hrestime();
1930 }
1931 
1932 static uint_t deadman_seconds;
1933 static uint32_t deadman_panics;
1934 static int deadman_enabled = 0;
1935 static int deadman_panic_timers = 1;
1936 
1937 static void
1938 deadman(void)
1939 {
1940 	if (panicstr) {
1941 		/*
1942 		 * During panic, other CPUs besides the panic
1943 		 * master continue to handle cyclics and some other
1944 		 * interrupts.  The code below is intended to be
1945 		 * single threaded, so any CPU other than the master
1946 		 * must keep out.
1947 		 */
1948 		if (CPU->cpu_id != panic_cpu.cpu_id)
1949 			return;
1950 
1951 		if (!deadman_panic_timers)
1952 			return; /* allow all timers to be manually disabled */
1953 
1954 		/*
1955 		 * If we are generating a crash dump or syncing filesystems and
1956 		 * the corresponding timer is set, decrement it and re-enter
1957 		 * the panic code to abort it and advance to the next state.
1958 		 * The panic states and triggers are explained in panic.c.
1959 		 */
1960 		if (panic_dump) {
1961 			if (dump_timeleft && (--dump_timeleft == 0)) {
1962 				panic("panic dump timeout");
1963 				/*NOTREACHED*/
1964 			}
1965 		}
1966 		return;
1967 	}
1968 
1969 	if (deadman_counter != CPU->cpu_deadman_counter) {
1970 		CPU->cpu_deadman_counter = deadman_counter;
1971 		CPU->cpu_deadman_countdown = deadman_seconds;
1972 		return;
1973 	}
1974 
1975 	if (--CPU->cpu_deadman_countdown > 0)
1976 		return;
1977 
1978 	/*
1979 	 * Regardless of whether or not we actually bring the system down,
1980 	 * bump the deadman_panics variable.
1981 	 *
1982 	 * N.B. deadman_panics is incremented once for each CPU that
1983 	 * passes through here.  It's expected that all the CPUs will
1984 	 * detect this condition within one second of each other, so
1985 	 * when deadman_enabled is off, deadman_panics will
1986 	 * typically be a multiple of the total number of CPUs in
1987 	 * the system.
1988 	 */
1989 	atomic_inc_32(&deadman_panics);
1990 
1991 	if (!deadman_enabled) {
1992 		CPU->cpu_deadman_countdown = deadman_seconds;
1993 		return;
1994 	}
1995 
1996 	/*
1997 	 * If we're here, we want to bring the system down.
1998 	 */
1999 	panic("deadman: timed out after %d seconds of clock "
2000 	    "inactivity", deadman_seconds);
2001 	/*NOTREACHED*/
2002 }
2003 
2004 /*ARGSUSED*/
2005 static void
2006 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
2007 {
2008 	cpu->cpu_deadman_counter = 0;
2009 	cpu->cpu_deadman_countdown = deadman_seconds;
2010 
2011 	hdlr->cyh_func = (cyc_func_t)deadman;
2012 	hdlr->cyh_level = CY_HIGH_LEVEL;
2013 	hdlr->cyh_arg = NULL;
2014 
2015 	/*
2016 	 * Stagger the CPUs so that they don't all run deadman() at
2017 	 * the same time.  Simplest reason to do this is to make it
2018 	 * more likely that only one CPU will panic in case of a
2019 	 * timeout.  This is (strictly speaking) an aesthetic, not a
2020 	 * technical consideration.
2021 	 */
2022 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
2023 	when->cyt_interval = NANOSEC;
2024 }
2025 
2026 
2027 void
2028 deadman_init(void)
2029 {
2030 	cyc_omni_handler_t hdlr;
2031 
2032 	if (deadman_seconds == 0)
2033 		deadman_seconds = snoop_interval / MICROSEC;
2034 
2035 	if (snooping)
2036 		deadman_enabled = 1;
2037 
2038 	hdlr.cyo_online = deadman_online;
2039 	hdlr.cyo_offline = NULL;
2040 	hdlr.cyo_arg = NULL;
2041 
2042 	mutex_enter(&cpu_lock);
2043 	deadman_cyclic = cyclic_add_omni(&hdlr);
2044 	mutex_exit(&cpu_lock);
2045 }
2046 
2047 /*
2048  * tod_fault() is for updating tod validate mechanism state:
2049  * (1) TOD_NOFAULT: for resetting the state to 'normal'.
2050  *     currently used for debugging only
2051  * (2) The following four cases detected by tod validate mechanism:
2052  *       TOD_REVERSED: current tod value is less than previous value.
2053  *       TOD_STALLED: current tod value hasn't advanced.
2054  *       TOD_JUMPED: current tod value advanced too far from previous value.
2055  *       TOD_RATECHANGED: the ratio between average tod delta and
2056  *       average tick delta has changed.
2057  * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
2058  *     a virtual TOD provided by a hypervisor.
2059  */
2060 enum tod_fault_type
2061 tod_fault(enum tod_fault_type ftype, int off)
2062 {
2063 	ASSERT(MUTEX_HELD(&tod_lock));
2064 
2065 	if (tod_faulted != ftype) {
2066 		switch (ftype) {
2067 		case TOD_NOFAULT:
2068 			plat_tod_fault(TOD_NOFAULT);
2069 			cmn_err(CE_NOTE, "Restarted tracking "
2070 			    "Time of Day clock.");
2071 			tod_faulted = ftype;
2072 			break;
2073 		case TOD_REVERSED:
2074 		case TOD_JUMPED:
2075 			if (tod_faulted == TOD_NOFAULT) {
2076 				plat_tod_fault(ftype);
2077 				cmn_err(CE_WARN, "Time of Day clock error: "
2078 				    "reason [%s by 0x%x]. -- "
2079 				    " Stopped tracking Time Of Day clock.",
2080 				    tod_fault_table[ftype], off);
2081 				tod_faulted = ftype;
2082 			}
2083 			break;
2084 		case TOD_STALLED:
2085 		case TOD_RATECHANGED:
2086 			if (tod_faulted == TOD_NOFAULT) {
2087 				plat_tod_fault(ftype);
2088 				cmn_err(CE_WARN, "Time of Day clock error: "
2089 				    "reason [%s]. -- "
2090 				    " Stopped tracking Time Of Day clock.",
2091 				    tod_fault_table[ftype]);
2092 				tod_faulted = ftype;
2093 			}
2094 			break;
2095 		case TOD_RDONLY:
2096 			if (tod_faulted == TOD_NOFAULT) {
2097 				plat_tod_fault(ftype);
2098 				cmn_err(CE_NOTE, "!Time of Day clock is "
2099 				    "Read-Only; set of Date/Time will not "
2100 				    "persist across reboot.");
2101 				tod_faulted = ftype;
2102 			}
2103 			break;
2104 		default:
2105 			break;
2106 		}
2107 	}
2108 	return (tod_faulted);
2109 }
2110 
2111 /*
2112  * Two functions that allow tod_status_flag to be manipulated by functions
2113  * external to this file.
2114  */
2115 
2116 void
2117 tod_status_set(int tod_flag)
2118 {
2119 	tod_status_flag |= tod_flag;
2120 }
2121 
2122 void
2123 tod_status_clear(int tod_flag)
2124 {
2125 	tod_status_flag &= ~tod_flag;
2126 }
2127 
2128 /*
2129  * Record a timestamp and the value passed to tod_set().  The next call to
2130  * tod_validate() can use these values, prev_set_tick and prev_set_tod,
2131  * when checking the timestruc_t returned by tod_get().  Ordinarily,
2132  * tod_validate() will use prev_tick and prev_tod for this task but these
2133  * become obsolete, and will be re-assigned with the prev_set_* values,
2134  * in the case when the TOD is re-written.
2135  */
2136 void
2137 tod_set_prev(timestruc_t ts)
2138 {
2139 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2140 	    tod_validate_deferred) {
2141 		return;
2142 	}
2143 	prev_set_tick = gethrtime();
2144 	/*
2145 	 * A negative value will be set to zero in utc_to_tod() so we fake
2146 	 * a zero here in such a case.  This would need to change if the
2147 	 * behavior of utc_to_tod() changes.
2148 	 */
2149 	prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec;
2150 }
2151 
2152 /*
2153  * tod_validate() is used for checking values returned by tod_get().
2154  * Four error cases can be detected by this routine:
2155  *   TOD_REVERSED: current tod value is less than previous.
2156  *   TOD_STALLED: current tod value hasn't advanced.
2157  *   TOD_JUMPED: current tod value advanced too far from previous value.
2158  *   TOD_RATECHANGED: the ratio between average tod delta and
2159  *   average tick delta has changed.
2160  */
2161 time_t
2162 tod_validate(time_t tod)
2163 {
2164 	time_t diff_tod;
2165 	hrtime_t diff_tick;
2166 
2167 	long dtick;
2168 	int dtick_delta;
2169 
2170 	int off = 0;
2171 	enum tod_fault_type tod_bad = TOD_NOFAULT;
2172 
2173 	static int firsttime = 1;
2174 
2175 	static time_t prev_tod = 0;
2176 	static hrtime_t prev_tick = 0;
2177 	static long dtick_avg = TOD_REF_FREQ;
2178 
2179 	int cpr_resume_done = 0;
2180 	int dr_resume_done = 0;
2181 
2182 	hrtime_t tick = gethrtime();
2183 
2184 	ASSERT(MUTEX_HELD(&tod_lock));
2185 
2186 	/*
2187 	 * tod_validate_enable is patchable via /etc/system.
2188 	 * If TOD is already faulted, or if TOD validation is deferred,
2189 	 * there is nothing to do.
2190 	 */
2191 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2192 	    tod_validate_deferred) {
2193 		return (tod);
2194 	}
2195 
2196 	/*
2197 	 * If this is the first time through, we just need to save the tod
2198 	 * we were called with and hrtime so we can use them next time to
2199 	 * validate tod_get().
2200 	 */
2201 	if (firsttime) {
2202 		firsttime = 0;
2203 		prev_tod = tod;
2204 		prev_tick = tick;
2205 		return (tod);
2206 	}
2207 
2208 	/*
2209 	 * Handle any flags that have been turned on by tod_status_set().
2210 	 * In the case where a tod_set() is done and then a subsequent
2211 	 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are
2212 	 * true), we treat the TOD_GET_FAILED with precedence by switching
2213 	 * off the flag, returning tod and leaving TOD_SET_DONE asserted
2214 	 * until such time as tod_get() completes successfully.
2215 	 */
2216 	if (tod_status_flag & TOD_GET_FAILED) {
2217 		/*
2218 		 * tod_get() has encountered an issue, possibly transitory,
2219 		 * when reading TOD.  We'll just return the incoming tod
2220 		 * value (which is actually hrestime.tv_sec in this case)
2221 		 * and when we get a genuine tod, following a successful
2222 		 * tod_get(), we can validate using prev_tod and prev_tick.
2223 		 */
2224 		tod_status_flag &= ~TOD_GET_FAILED;
2225 		return (tod);
2226 	} else if (tod_status_flag & TOD_SET_DONE) {
2227 		/*
2228 		 * TOD has been modified.  Just before the TOD was written,
2229 		 * tod_set_prev() saved tod and hrtime; we can now use
2230 		 * those values, prev_set_tod and prev_set_tick, to validate
2231 		 * the incoming tod that's just been read.
2232 		 */
2233 		prev_tod = prev_set_tod;
2234 		prev_tick = prev_set_tick;
2235 		dtick_avg = TOD_REF_FREQ;
2236 		tod_status_flag &= ~TOD_SET_DONE;
2237 		/*
2238 		 * If a tod_set() preceded a cpr_suspend() without an
2239 		 * intervening tod_validate(), we need to ensure that a
2240 		 * TOD_JUMPED condition is ignored.
2241 		 * Note this isn't a concern in the case of DR as we've
2242 		 * just reassigned dtick_avg, above.
2243 		 */
2244 		if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2245 			cpr_resume_done = 1;
2246 			tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2247 		}
2248 	} else if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2249 		/*
2250 		 * The system's coming back from a checkpoint resume.
2251 		 */
2252 		cpr_resume_done = 1;
2253 		tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2254 		/*
2255 		 * We need to handle the possibility of a CPR suspend
2256 		 * operation having been initiated whilst a DR event was
2257 		 * in-flight.
2258 		 */
2259 		if (tod_status_flag & TOD_DR_RESUME_DONE) {
2260 			dr_resume_done = 1;
2261 			tod_status_flag &= ~TOD_DR_RESUME_DONE;
2262 		}
2263 	} else if (tod_status_flag & TOD_DR_RESUME_DONE) {
2264 		/*
2265 		 * A Dynamic Reconfiguration event has taken place.
2266 		 */
2267 		dr_resume_done = 1;
2268 		tod_status_flag &= ~TOD_DR_RESUME_DONE;
2269 	}
2270 
2271 	/* test hook */
2272 	switch (tod_unit_test) {
2273 	case 1: /* for testing jumping tod */
2274 		tod += tod_test_injector;
2275 		tod_unit_test = 0;
2276 		break;
2277 	case 2:	/* for testing stuck tod bit */
2278 		tod |= 1 << tod_test_injector;
2279 		tod_unit_test = 0;
2280 		break;
2281 	case 3:	/* for testing stalled tod */
2282 		tod = prev_tod;
2283 		tod_unit_test = 0;
2284 		break;
2285 	case 4:	/* reset tod fault status */
2286 		(void) tod_fault(TOD_NOFAULT, 0);
2287 		tod_unit_test = 0;
2288 		break;
2289 	default:
2290 		break;
2291 	}
2292 
2293 	diff_tod = tod - prev_tod;
2294 	diff_tick = tick - prev_tick;
2295 
2296 	ASSERT(diff_tick >= 0);
2297 
2298 	if (diff_tod < 0) {
2299 		/* ERROR - tod reversed */
2300 		tod_bad = TOD_REVERSED;
2301 		off = (int)(prev_tod - tod);
2302 	} else if (diff_tod == 0) {
2303 		/* tod did not advance */
2304 		if (diff_tick > TOD_STALL_THRESHOLD) {
2305 			/* ERROR - tod stalled */
2306 			tod_bad = TOD_STALLED;
2307 		} else {
2308 			/*
2309 			 * Make sure we don't update prev_tick
2310 			 * so that diff_tick is calculated since
2311 			 * the first diff_tod == 0
2312 			 */
2313 			return (tod);
2314 		}
2315 	} else {
2316 		/* calculate dtick */
2317 		dtick = diff_tick / diff_tod;
2318 
2319 		/* update dtick averages */
2320 		dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2321 
2322 		/*
2323 		 * Calculate dtick_delta as
2324 		 * variation from reference freq in quartiles
2325 		 */
2326 		dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2327 		    (TOD_REF_FREQ >> 2);
2328 
2329 		/*
2330 		 * Even with a perfectly functioning TOD device,
2331 		 * when the number of elapsed seconds is low the
2332 		 * algorithm can calculate a rate that is beyond
2333 		 * tolerance, causing an error.  The algorithm is
2334 		 * inaccurate when elapsed time is low (less than
2335 		 * 5 seconds).
2336 		 */
2337 		if (diff_tod > 4) {
2338 			if (dtick < TOD_JUMP_THRESHOLD) {
2339 				/*
2340 				 * If we've just done a CPR resume, we detect
2341 				 * a jump in the TOD but, actually, what's
2342 				 * happened is that the TOD has been increasing
2343 				 * whilst the system was suspended and the tick
2344 				 * count hasn't kept up.  We consider the first
2345 				 * occurrence of this after a resume as normal
2346 				 * and ignore it; otherwise, in a non-resume
2347 				 * case, we regard it as a TOD problem.
2348 				 */
2349 				if (!cpr_resume_done) {
2350 					/* ERROR - tod jumped */
2351 					tod_bad = TOD_JUMPED;
2352 					off = (int)diff_tod;
2353 				}
2354 			}
2355 			if (dtick_delta) {
2356 				/*
2357 				 * If we've just done a DR resume, dtick_avg
2358 				 * can go a bit askew so we reset it and carry
2359 				 * on; otherwise, the TOD is in error.
2360 				 */
2361 				if (dr_resume_done) {
2362 					dtick_avg = TOD_REF_FREQ;
2363 				} else {
2364 					/* ERROR - change in clock rate */
2365 					tod_bad = TOD_RATECHANGED;
2366 				}
2367 			}
2368 		}
2369 	}
2370 
2371 	if (tod_bad != TOD_NOFAULT) {
2372 		(void) tod_fault(tod_bad, off);
2373 
2374 		/*
2375 		 * Disable dosynctodr since we are going to fault
2376 		 * the TOD chip anyway here
2377 		 */
2378 		dosynctodr = 0;
2379 
2380 		/*
2381 		 * Set tod to the correct value from hrestime
2382 		 */
2383 		tod = hrestime.tv_sec;
2384 	}
2385 
2386 	prev_tod = tod;
2387 	prev_tick = tick;
2388 	return (tod);
2389 }
2390 
2391 static void
2392 calcloadavg(int nrun, uint64_t *hp_ave)
2393 {
2394 	static int64_t f[3] = { 135, 27, 9 };
2395 	uint_t i;
2396 	int64_t q, r;
2397 
2398 	/*
2399 	 * Compute load average over the last 1, 5, and 15 minutes
2400 	 * (60, 300, and 900 seconds).  The constants in f[3] are for
2401 	 * exponential decay:
2402 	 * (1 - exp(-1/60)) << 13 = 135,
2403 	 * (1 - exp(-1/300)) << 13 = 27,
2404 	 * (1 - exp(-1/900)) << 13 = 9.
2405 	 */
2406 
2407 	/*
2408 	 * a little hoop-jumping to avoid integer overflow
2409 	 */
2410 	for (i = 0; i < 3; i++) {
2411 		q = (hp_ave[i]  >> 16) << 7;
2412 		r = (hp_ave[i]  & 0xffff) << 7;
2413 		hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2414 	}
2415 }
2416 
2417 /*
2418  * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to
2419  * calculate the value of lbolt according to the current mode. In the event
2420  * driven mode (the default), lbolt is calculated by dividing the current hires
2421  * time by the number of nanoseconds per clock tick. In the cyclic driven mode
2422  * an internal variable is incremented at each firing of the lbolt cyclic
2423  * and returned by lbolt_cyclic_driven().
2424  *
2425  * The system will transition from event to cyclic driven mode when the number
2426  * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a
2427  * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to
2428  * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is
2429  * causing enough activity to cross the thresholds.
2430  */
2431 int64_t
2432 lbolt_bootstrap(void)
2433 {
2434 	return (0);
2435 }
2436 
2437 /* ARGSUSED */
2438 uint_t
2439 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2)
2440 {
2441 	hrtime_t ts, exp;
2442 	int ret;
2443 
2444 	ASSERT(lbolt_hybrid != lbolt_cyclic_driven);
2445 
2446 	kpreempt_disable();
2447 
2448 	ts = gethrtime();
2449 	lb_info->lbi_internal = (ts/nsec_per_tick);
2450 
2451 	/*
2452 	 * Align the next expiration to a clock tick boundary.
2453 	 */
2454 	exp = ts + nsec_per_tick - 1;
2455 	exp = (exp/nsec_per_tick) * nsec_per_tick;
2456 
2457 	ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp);
2458 	ASSERT(ret);
2459 
2460 	lbolt_hybrid = lbolt_cyclic_driven;
2461 	lb_info->lbi_cyc_deactivate = B_FALSE;
2462 	lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2463 
2464 	kpreempt_enable();
2465 
2466 	ret = atomic_dec_32_nv(&lb_info->lbi_token);
2467 	ASSERT(ret == 0);
2468 
2469 	return (1);
2470 }
2471 
2472 int64_t
2473 lbolt_event_driven(void)
2474 {
2475 	hrtime_t ts;
2476 	int64_t lb;
2477 	int ret, cpu = CPU->cpu_seqid;
2478 
2479 	ts = gethrtime();
2480 	ASSERT(ts > 0);
2481 
2482 	ASSERT(nsec_per_tick > 0);
2483 	lb = (ts/nsec_per_tick);
2484 
2485 	/*
2486 	 * Switch to cyclic mode if the number of calls to this routine
2487 	 * has reached the threshold within the interval.
2488 	 */
2489 	if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2490 
2491 		if (--lb_cpu[cpu].lbc_counter == 0) {
2492 			/*
2493 			 * Reached the threshold within the interval, reset
2494 			 * the usage statistics.
2495 			 */
2496 			lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2497 			lb_cpu[cpu].lbc_cnt_start = lb;
2498 
2499 			/*
2500 			 * Make sure only one thread reprograms the
2501 			 * lbolt cyclic and changes the mode.
2502 			 */
2503 			if (panicstr == NULL &&
2504 			    atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2505 
2506 				if (lbolt_hybrid == lbolt_cyclic_driven) {
2507 					ret = atomic_dec_32_nv(
2508 					    &lb_info->lbi_token);
2509 					ASSERT(ret == 0);
2510 				} else {
2511 					lbolt_softint_post();
2512 				}
2513 			}
2514 		}
2515 	} else {
2516 		/*
2517 		 * Exceeded the interval, reset the usage statistics.
2518 		 */
2519 		lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2520 		lb_cpu[cpu].lbc_cnt_start = lb;
2521 	}
2522 
2523 	ASSERT(lb >= lb_info->lbi_debug_time);
2524 
2525 	return (lb - lb_info->lbi_debug_time);
2526 }
2527 
2528 int64_t
2529 lbolt_cyclic_driven(void)
2530 {
2531 	int64_t lb = lb_info->lbi_internal;
2532 	int cpu;
2533 
2534 	/*
2535 	 * If a CPU has already prevented the lbolt cyclic from deactivating
2536 	 * itself, don't bother tracking the usage. Otherwise check if we're
2537 	 * within the interval and how the per CPU counter is doing.
2538 	 */
2539 	if (lb_info->lbi_cyc_deactivate) {
2540 		cpu = CPU->cpu_seqid;
2541 		if ((lb - lb_cpu[cpu].lbc_cnt_start) <
2542 		    lb_info->lbi_thresh_interval) {
2543 
2544 			if (lb_cpu[cpu].lbc_counter == 0)
2545 				/*
2546 				 * Reached the threshold within the interval,
2547 				 * prevent the lbolt cyclic from turning itself
2548 				 * off.
2549 				 */
2550 				lb_info->lbi_cyc_deactivate = B_FALSE;
2551 			else
2552 				lb_cpu[cpu].lbc_counter--;
2553 		} else {
2554 			/*
2555 			 * Only reset the usage statistics when we have
2556 			 * exceeded the interval.
2557 			 */
2558 			lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2559 			lb_cpu[cpu].lbc_cnt_start = lb;
2560 		}
2561 	}
2562 
2563 	ASSERT(lb >= lb_info->lbi_debug_time);
2564 
2565 	return (lb - lb_info->lbi_debug_time);
2566 }
2567 
2568 /*
2569  * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy
2570  * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers.
2571  * It is inactive by default, and will be activated when switching from event
2572  * to cyclic driven lbolt. The cyclic will turn itself off unless signaled
2573  * by lbolt_cyclic_driven().
2574  */
2575 static void
2576 lbolt_cyclic(void)
2577 {
2578 	int ret;
2579 
2580 	lb_info->lbi_internal++;
2581 
2582 	if (!lbolt_cyc_only) {
2583 
2584 		if (lb_info->lbi_cyc_deactivate) {
2585 			/*
2586 			 * Switching from cyclic to event driven mode.
2587 			 */
2588 			if (panicstr == NULL &&
2589 			    atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2590 
2591 				if (lbolt_hybrid == lbolt_event_driven) {
2592 					ret = atomic_dec_32_nv(
2593 					    &lb_info->lbi_token);
2594 					ASSERT(ret == 0);
2595 					return;
2596 				}
2597 
2598 				kpreempt_disable();
2599 
2600 				lbolt_hybrid = lbolt_event_driven;
2601 				ret = cyclic_reprogram(
2602 				    lb_info->id.lbi_cyclic_id,
2603 				    CY_INFINITY);
2604 				ASSERT(ret);
2605 
2606 				kpreempt_enable();
2607 
2608 				ret = atomic_dec_32_nv(&lb_info->lbi_token);
2609 				ASSERT(ret == 0);
2610 			}
2611 		}
2612 
2613 		/*
2614 		 * The lbolt cyclic should not try to deactivate itself before
2615 		 * the sampling period has elapsed.
2616 		 */
2617 		if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >=
2618 		    lb_info->lbi_thresh_interval) {
2619 			lb_info->lbi_cyc_deactivate = B_TRUE;
2620 			lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2621 		}
2622 	}
2623 }
2624 
2625 /*
2626  * Since the lbolt service was historically cyclic driven, it must be 'stopped'
2627  * when the system drops into the kernel debugger. lbolt_debug_entry() is
2628  * called by the KDI system claim callbacks to record a hires timestamp at
2629  * debug enter time. lbolt_debug_return() is called by the sistem release
2630  * callbacks to account for the time spent in the debugger. The value is then
2631  * accumulated in the lb_info structure and used by lbolt_event_driven() and
2632  * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine.
2633  */
2634 void
2635 lbolt_debug_entry(void)
2636 {
2637 	if (lbolt_hybrid != lbolt_bootstrap) {
2638 		ASSERT(lb_info != NULL);
2639 		lb_info->lbi_debug_ts = gethrtime();
2640 	}
2641 }
2642 
2643 /*
2644  * Calculate the time spent in the debugger and add it to the lbolt info
2645  * structure. We also update the internal lbolt value in case we were in
2646  * cyclic driven mode going in.
2647  */
2648 void
2649 lbolt_debug_return(void)
2650 {
2651 	hrtime_t ts;
2652 
2653 	if (lbolt_hybrid != lbolt_bootstrap) {
2654 		ASSERT(lb_info != NULL);
2655 		ASSERT(nsec_per_tick > 0);
2656 
2657 		ts = gethrtime();
2658 		lb_info->lbi_internal = (ts/nsec_per_tick);
2659 		lb_info->lbi_debug_time +=
2660 		    ((ts - lb_info->lbi_debug_ts)/nsec_per_tick);
2661 
2662 		lb_info->lbi_debug_ts = 0;
2663 	}
2664 }
2665