xref: /illumos-gate/usr/src/uts/common/os/clock.c (revision 69d4acec15909325d6df21fec172510a50f77a8a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved	*/
23 
24 /*
25  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
27  * Copyright (c) 2016 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/t_lock.h>
32 #include <sys/types.h>
33 #include <sys/tuneable.h>
34 #include <sys/sysmacros.h>
35 #include <sys/systm.h>
36 #include <sys/cpuvar.h>
37 #include <sys/lgrp.h>
38 #include <sys/user.h>
39 #include <sys/proc.h>
40 #include <sys/callo.h>
41 #include <sys/kmem.h>
42 #include <sys/var.h>
43 #include <sys/cmn_err.h>
44 #include <sys/swap.h>
45 #include <sys/vmsystm.h>
46 #include <sys/class.h>
47 #include <sys/time.h>
48 #include <sys/debug.h>
49 #include <sys/vtrace.h>
50 #include <sys/spl.h>
51 #include <sys/atomic.h>
52 #include <sys/dumphdr.h>
53 #include <sys/archsystm.h>
54 #include <sys/fs/swapnode.h>
55 #include <sys/panic.h>
56 #include <sys/disp.h>
57 #include <sys/msacct.h>
58 #include <sys/mem_cage.h>
59 
60 #include <vm/page.h>
61 #include <vm/anon.h>
62 #include <vm/rm.h>
63 #include <sys/cyclic.h>
64 #include <sys/cpupart.h>
65 #include <sys/rctl.h>
66 #include <sys/task.h>
67 #include <sys/sdt.h>
68 #include <sys/ddi_periodic.h>
69 #include <sys/random.h>
70 #include <sys/modctl.h>
71 #include <sys/zone.h>
72 
73 /*
74  * for NTP support
75  */
76 #include <sys/timex.h>
77 #include <sys/inttypes.h>
78 
79 #include <sys/sunddi.h>
80 #include <sys/clock_impl.h>
81 
82 /*
83  * clock() is called straight from the clock cyclic; see clock_init().
84  *
85  * Functions:
86  *	reprime clock
87  *	maintain date
88  *	jab the scheduler
89  */
90 
91 extern kcondvar_t	fsflush_cv;
92 extern sysinfo_t	sysinfo;
93 extern vminfo_t	vminfo;
94 extern int	idleswtch;	/* flag set while idle in pswtch() */
95 extern hrtime_t volatile devinfo_freeze;
96 
97 /*
98  * high-precision avenrun values.  These are needed to make the
99  * regular avenrun values accurate.
100  */
101 static uint64_t hp_avenrun[3];
102 int	avenrun[3];		/* FSCALED average run queue lengths */
103 time_t	time;	/* time in seconds since 1970 - for compatibility only */
104 
105 static struct loadavg_s loadavg;
106 /*
107  * Phase/frequency-lock loop (PLL/FLL) definitions
108  *
109  * The following variables are read and set by the ntp_adjtime() system
110  * call.
111  *
112  * time_state shows the state of the system clock, with values defined
113  * in the timex.h header file.
114  *
115  * time_status shows the status of the system clock, with bits defined
116  * in the timex.h header file.
117  *
118  * time_offset is used by the PLL/FLL to adjust the system time in small
119  * increments.
120  *
121  * time_constant determines the bandwidth or "stiffness" of the PLL.
122  *
123  * time_tolerance determines maximum frequency error or tolerance of the
124  * CPU clock oscillator and is a property of the architecture; however,
125  * in principle it could change as result of the presence of external
126  * discipline signals, for instance.
127  *
128  * time_precision is usually equal to the kernel tick variable; however,
129  * in cases where a precision clock counter or external clock is
130  * available, the resolution can be much less than this and depend on
131  * whether the external clock is working or not.
132  *
133  * time_maxerror is initialized by a ntp_adjtime() call and increased by
134  * the kernel once each second to reflect the maximum error bound
135  * growth.
136  *
137  * time_esterror is set and read by the ntp_adjtime() call, but
138  * otherwise not used by the kernel.
139  */
140 int32_t time_state = TIME_OK;	/* clock state */
141 int32_t time_status = STA_UNSYNC;	/* clock status bits */
142 int32_t time_offset = 0;		/* time offset (us) */
143 int32_t time_constant = 0;		/* pll time constant */
144 int32_t time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
145 int32_t time_precision = 1;	/* clock precision (us) */
146 int32_t time_maxerror = MAXPHASE;	/* maximum error (us) */
147 int32_t time_esterror = MAXPHASE;	/* estimated error (us) */
148 
149 /*
150  * The following variables establish the state of the PLL/FLL and the
151  * residual time and frequency offset of the local clock. The scale
152  * factors are defined in the timex.h header file.
153  *
154  * time_phase and time_freq are the phase increment and the frequency
155  * increment, respectively, of the kernel time variable.
156  *
157  * time_freq is set via ntp_adjtime() from a value stored in a file when
158  * the synchronization daemon is first started. Its value is retrieved
159  * via ntp_adjtime() and written to the file about once per hour by the
160  * daemon.
161  *
162  * time_adj is the adjustment added to the value of tick at each timer
163  * interrupt and is recomputed from time_phase and time_freq at each
164  * seconds rollover.
165  *
166  * time_reftime is the second's portion of the system time at the last
167  * call to ntp_adjtime(). It is used to adjust the time_freq variable
168  * and to increase the time_maxerror as the time since last update
169  * increases.
170  */
171 int32_t time_phase = 0;		/* phase offset (scaled us) */
172 int32_t time_freq = 0;		/* frequency offset (scaled ppm) */
173 int32_t time_adj = 0;		/* tick adjust (scaled 1 / hz) */
174 int32_t time_reftime = 0;		/* time at last adjustment (s) */
175 
176 /*
177  * The scale factors of the following variables are defined in the
178  * timex.h header file.
179  *
180  * pps_time contains the time at each calibration interval, as read by
181  * microtime(). pps_count counts the seconds of the calibration
182  * interval, the duration of which is nominally pps_shift in powers of
183  * two.
184  *
185  * pps_offset is the time offset produced by the time median filter
186  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
187  * this filter.
188  *
189  * pps_freq is the frequency offset produced by the frequency median
190  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
191  * by this filter.
192  *
193  * pps_usec is latched from a high resolution counter or external clock
194  * at pps_time. Here we want the hardware counter contents only, not the
195  * contents plus the time_tv.usec as usual.
196  *
197  * pps_valid counts the number of seconds since the last PPS update. It
198  * is used as a watchdog timer to disable the PPS discipline should the
199  * PPS signal be lost.
200  *
201  * pps_glitch counts the number of seconds since the beginning of an
202  * offset burst more than tick/2 from current nominal offset. It is used
203  * mainly to suppress error bursts due to priority conflicts between the
204  * PPS interrupt and timer interrupt.
205  *
206  * pps_intcnt counts the calibration intervals for use in the interval-
207  * adaptation algorithm. It's just too complicated for words.
208  */
209 struct timeval pps_time;	/* kernel time at last interval */
210 int32_t pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
211 int32_t pps_offset = 0;		/* pps time offset (us) */
212 int32_t pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
213 int32_t pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
214 int32_t pps_freq = 0;		/* frequency offset (scaled ppm) */
215 int32_t pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
216 int32_t pps_usec = 0;		/* microsec counter at last interval */
217 int32_t pps_valid = PPS_VALID;	/* pps signal watchdog counter */
218 int32_t pps_glitch = 0;		/* pps signal glitch counter */
219 int32_t pps_count = 0;		/* calibration interval counter (s) */
220 int32_t pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
221 int32_t pps_intcnt = 0;		/* intervals at current duration */
222 
223 /*
224  * PPS signal quality monitors
225  *
226  * pps_jitcnt counts the seconds that have been discarded because the
227  * jitter measured by the time median filter exceeds the limit MAXTIME
228  * (100 us).
229  *
230  * pps_calcnt counts the frequency calibration intervals, which are
231  * variable from 4 s to 256 s.
232  *
233  * pps_errcnt counts the calibration intervals which have been discarded
234  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
235  * calibration interval jitter exceeds two ticks.
236  *
237  * pps_stbcnt counts the calibration intervals that have been discarded
238  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
239  */
240 int32_t pps_jitcnt = 0;		/* jitter limit exceeded */
241 int32_t pps_calcnt = 0;		/* calibration intervals */
242 int32_t pps_errcnt = 0;		/* calibration errors */
243 int32_t pps_stbcnt = 0;		/* stability limit exceeded */
244 
245 kcondvar_t lbolt_cv;
246 
247 /*
248  * Hybrid lbolt implementation:
249  *
250  * The service historically provided by the lbolt and lbolt64 variables has
251  * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the
252  * original symbols removed from the system. The once clock driven variables are
253  * now implemented in an event driven fashion, backed by gethrtime() coarsed to
254  * the appropriate clock resolution. The default event driven implementation is
255  * complemented by a cyclic driven one, active only during periods of intense
256  * activity around the DDI lbolt routines, when a lbolt specific cyclic is
257  * reprogramed to fire at a clock tick interval to serve consumers of lbolt who
258  * rely on the original low cost of consulting a memory position.
259  *
260  * The implementation uses the number of calls to these routines and the
261  * frequency of these to determine when to transition from event to cyclic
262  * driven and vice-versa. These values are kept on a per CPU basis for
263  * scalability reasons and to prevent CPUs from constantly invalidating a single
264  * cache line when modifying a global variable. The transition from event to
265  * cyclic mode happens once the thresholds are crossed, and activity on any CPU
266  * can cause such transition.
267  *
268  * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and
269  * ddi_get_lbolt64(), and will point to lbolt_event_driven() or
270  * lbolt_cyclic_driven() according to the current mode. When the thresholds
271  * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to
272  * fire at a nsec_per_tick interval and increment an internal variable at
273  * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which
274  * will simply return the value of such variable. lbolt_cyclic() will attempt
275  * to shut itself off at each threshold interval (sampling period for calls
276  * to the DDI lbolt routines), and return to the event driven mode, but will
277  * be prevented from doing so if lbolt_cyclic_driven() is being heavily used.
278  *
279  * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait
280  * for the cyclic subsystem to be intialized.
281  *
282  */
283 int64_t lbolt_bootstrap(void);
284 int64_t lbolt_event_driven(void);
285 int64_t lbolt_cyclic_driven(void);
286 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap;
287 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t);
288 
289 /*
290  * lbolt's cyclic, installed by clock_init().
291  */
292 static void lbolt_cyclic(void);
293 
294 /*
295  * Tunable to keep lbolt in cyclic driven mode. This will prevent the system
296  * from switching back to event driven, once it reaches cyclic mode.
297  */
298 static boolean_t lbolt_cyc_only = B_FALSE;
299 
300 /*
301  * Cache aligned, per CPU structure with lbolt usage statistics.
302  */
303 static lbolt_cpu_t *lb_cpu;
304 
305 /*
306  * Single, cache aligned, structure with all the information required by
307  * the lbolt implementation.
308  */
309 lbolt_info_t *lb_info;
310 
311 
312 int one_sec = 1; /* turned on once every second */
313 static int fsflushcnt;	/* counter for t_fsflushr */
314 int	dosynctodr = 1;	/* patchable; enable/disable sync to TOD chip */
315 int	tod_needsync = 0;	/* need to sync tod chip with software time */
316 static int tod_broken = 0;	/* clock chip doesn't work */
317 time_t	boot_time = 0;		/* Boot time in seconds since 1970 */
318 cyclic_id_t clock_cyclic;	/* clock()'s cyclic_id */
319 cyclic_id_t deadman_cyclic;	/* deadman()'s cyclic_id */
320 
321 extern void	clock_tick_schedule(int);
322 
323 static int lgrp_ticks;		/* counter to schedule lgrp load calcs */
324 
325 /*
326  * for tod fault detection
327  */
328 #define	TOD_REF_FREQ		((longlong_t)(NANOSEC))
329 #define	TOD_STALL_THRESHOLD	(TOD_REF_FREQ * 3 / 2)
330 #define	TOD_JUMP_THRESHOLD	(TOD_REF_FREQ / 2)
331 #define	TOD_FILTER_N		4
332 #define	TOD_FILTER_SETTLE	(4 * TOD_FILTER_N)
333 static enum tod_fault_type tod_faulted = TOD_NOFAULT;
334 
335 static int tod_status_flag = 0;		/* used by tod_validate() */
336 
337 static hrtime_t prev_set_tick = 0;	/* gethrtime() prior to tod_set() */
338 static time_t prev_set_tod = 0;		/* tv_sec value passed to tod_set() */
339 
340 /* patchable via /etc/system */
341 int tod_validate_enable = 1;
342 
343 /* Diagnose/Limit messages about delay(9F) called from interrupt context */
344 int			delay_from_interrupt_diagnose = 0;
345 volatile uint32_t	delay_from_interrupt_msg = 20;
346 
347 /*
348  * On non-SPARC systems, TOD validation must be deferred until gethrtime
349  * returns non-zero values (after mach_clkinit's execution).
350  * On SPARC systems, it must be deferred until after hrtime_base
351  * and hres_last_tick are set (in the first invocation of hres_tick).
352  * Since in both cases the prerequisites occur before the invocation of
353  * tod_get() in clock(), the deferment is lifted there.
354  */
355 static boolean_t tod_validate_deferred = B_TRUE;
356 
357 /*
358  * tod_fault_table[] must be aligned with
359  * enum tod_fault_type in systm.h
360  */
361 static char *tod_fault_table[] = {
362 	"Reversed",			/* TOD_REVERSED */
363 	"Stalled",			/* TOD_STALLED */
364 	"Jumped",			/* TOD_JUMPED */
365 	"Changed in Clock Rate",	/* TOD_RATECHANGED */
366 	"Is Read-Only"			/* TOD_RDONLY */
367 	/*
368 	 * no strings needed for TOD_NOFAULT
369 	 */
370 };
371 
372 /*
373  * test hook for tod broken detection in tod_validate
374  */
375 int tod_unit_test = 0;
376 time_t tod_test_injector;
377 
378 #define	CLOCK_ADJ_HIST_SIZE	4
379 
380 static int	adj_hist_entry;
381 
382 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
383 
384 static void calcloadavg(int, uint64_t *);
385 static int genloadavg(struct loadavg_s *);
386 static void loadavg_update();
387 
388 void (*cmm_clock_callout)() = NULL;
389 void (*cpucaps_clock_callout)() = NULL;
390 
391 extern clock_t clock_tick_proc_max;
392 
393 static int64_t deadman_counter = 0;
394 
395 static void
396 clock(void)
397 {
398 	kthread_t	*t;
399 	uint_t	nrunnable;
400 	uint_t	w_io;
401 	cpu_t	*cp;
402 	cpupart_t *cpupart;
403 	extern	void	set_freemem();
404 	void	(*funcp)();
405 	int32_t ltemp;
406 	int64_t lltemp;
407 	int s;
408 	int do_lgrp_load;
409 	int i;
410 	clock_t now = LBOLT_NO_ACCOUNT;	/* current tick */
411 
412 	if (panicstr)
413 		return;
414 
415 	/*
416 	 * Make sure that 'freemem' do not drift too far from the truth
417 	 */
418 	set_freemem();
419 
420 
421 	/*
422 	 * Before the section which is repeated is executed, we do
423 	 * the time delta processing which occurs every clock tick
424 	 *
425 	 * There is additional processing which happens every time
426 	 * the nanosecond counter rolls over which is described
427 	 * below - see the section which begins with : if (one_sec)
428 	 *
429 	 * This section marks the beginning of the precision-kernel
430 	 * code fragment.
431 	 *
432 	 * First, compute the phase adjustment. If the low-order bits
433 	 * (time_phase) of the update overflow, bump the higher order
434 	 * bits (time_update).
435 	 */
436 	time_phase += time_adj;
437 	if (time_phase <= -FINEUSEC) {
438 		ltemp = -time_phase / SCALE_PHASE;
439 		time_phase += ltemp * SCALE_PHASE;
440 		s = hr_clock_lock();
441 		timedelta -= ltemp * (NANOSEC/MICROSEC);
442 		hr_clock_unlock(s);
443 	} else if (time_phase >= FINEUSEC) {
444 		ltemp = time_phase / SCALE_PHASE;
445 		time_phase -= ltemp * SCALE_PHASE;
446 		s = hr_clock_lock();
447 		timedelta += ltemp * (NANOSEC/MICROSEC);
448 		hr_clock_unlock(s);
449 	}
450 
451 	/*
452 	 * End of precision-kernel code fragment which is processed
453 	 * every timer interrupt.
454 	 *
455 	 * Continue with the interrupt processing as scheduled.
456 	 */
457 	/*
458 	 * Count the number of runnable threads and the number waiting
459 	 * for some form of I/O to complete -- gets added to
460 	 * sysinfo.waiting.  To know the state of the system, must add
461 	 * wait counts from all CPUs.  Also add up the per-partition
462 	 * statistics.
463 	 */
464 	w_io = 0;
465 	nrunnable = 0;
466 
467 	/*
468 	 * keep track of when to update lgrp/part loads
469 	 */
470 
471 	do_lgrp_load = 0;
472 	if (lgrp_ticks++ >= hz / 10) {
473 		lgrp_ticks = 0;
474 		do_lgrp_load = 1;
475 	}
476 
477 	if (one_sec) {
478 		loadavg_update();
479 		deadman_counter++;
480 	}
481 
482 	/*
483 	 * First count the threads waiting on kpreempt queues in each
484 	 * CPU partition.
485 	 */
486 
487 	cpupart = cp_list_head;
488 	do {
489 		uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
490 
491 		cpupart->cp_updates++;
492 		nrunnable += cpupart_nrunnable;
493 		cpupart->cp_nrunnable_cum += cpupart_nrunnable;
494 		if (one_sec) {
495 			cpupart->cp_nrunning = 0;
496 			cpupart->cp_nrunnable = cpupart_nrunnable;
497 		}
498 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
499 
500 
501 	/* Now count the per-CPU statistics. */
502 	cp = cpu_list;
503 	do {
504 		uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
505 
506 		nrunnable += cpu_nrunnable;
507 		cpupart = cp->cpu_part;
508 		cpupart->cp_nrunnable_cum += cpu_nrunnable;
509 		if (one_sec) {
510 			cpupart->cp_nrunnable += cpu_nrunnable;
511 			/*
512 			 * Update user, system, and idle cpu times.
513 			 */
514 			cpupart->cp_nrunning++;
515 			/*
516 			 * w_io is used to update sysinfo.waiting during
517 			 * one_second processing below.  Only gather w_io
518 			 * information when we walk the list of cpus if we're
519 			 * going to perform one_second processing.
520 			 */
521 			w_io += CPU_STATS(cp, sys.iowait);
522 		}
523 
524 		if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
525 			int i, load, change;
526 			hrtime_t intracct, intrused;
527 			const hrtime_t maxnsec = 1000000000;
528 			const int precision = 100;
529 
530 			/*
531 			 * Estimate interrupt load on this cpu each second.
532 			 * Computes cpu_intrload as %utilization (0-99).
533 			 */
534 
535 			/* add up interrupt time from all micro states */
536 			for (intracct = 0, i = 0; i < NCMSTATES; i++)
537 				intracct += cp->cpu_intracct[i];
538 			scalehrtime(&intracct);
539 
540 			/* compute nsec used in the past second */
541 			intrused = intracct - cp->cpu_intrlast;
542 			cp->cpu_intrlast = intracct;
543 
544 			/* limit the value for safety (and the first pass) */
545 			if (intrused >= maxnsec)
546 				intrused = maxnsec - 1;
547 
548 			/* calculate %time in interrupt */
549 			load = (precision * intrused) / maxnsec;
550 			ASSERT(load >= 0 && load < precision);
551 			change = cp->cpu_intrload - load;
552 
553 			/* jump to new max, or decay the old max */
554 			if (change < 0)
555 				cp->cpu_intrload = load;
556 			else if (change > 0)
557 				cp->cpu_intrload -= (change + 3) / 4;
558 
559 			DTRACE_PROBE3(cpu_intrload,
560 			    cpu_t *, cp,
561 			    hrtime_t, intracct,
562 			    hrtime_t, intrused);
563 		}
564 
565 		if (do_lgrp_load &&
566 		    (cp->cpu_flags & CPU_EXISTS)) {
567 			/*
568 			 * When updating the lgroup's load average,
569 			 * account for the thread running on the CPU.
570 			 * If the CPU is the current one, then we need
571 			 * to account for the underlying thread which
572 			 * got the clock interrupt not the thread that is
573 			 * handling the interrupt and caculating the load
574 			 * average
575 			 */
576 			t = cp->cpu_thread;
577 			if (CPU == cp)
578 				t = t->t_intr;
579 
580 			/*
581 			 * Account for the load average for this thread if
582 			 * it isn't the idle thread or it is on the interrupt
583 			 * stack and not the current CPU handling the clock
584 			 * interrupt
585 			 */
586 			if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
587 			    CPU_ON_INTR(cp))) {
588 				if (t->t_lpl == cp->cpu_lpl) {
589 					/* local thread */
590 					cpu_nrunnable++;
591 				} else {
592 					/*
593 					 * This is a remote thread, charge it
594 					 * against its home lgroup.  Note that
595 					 * we notice that a thread is remote
596 					 * only if it's currently executing.
597 					 * This is a reasonable approximation,
598 					 * since queued remote threads are rare.
599 					 * Note also that if we didn't charge
600 					 * it to its home lgroup, remote
601 					 * execution would often make a system
602 					 * appear balanced even though it was
603 					 * not, and thread placement/migration
604 					 * would often not be done correctly.
605 					 */
606 					lgrp_loadavg(t->t_lpl,
607 					    LGRP_LOADAVG_IN_THREAD_MAX, 0);
608 				}
609 			}
610 			lgrp_loadavg(cp->cpu_lpl,
611 			    cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
612 		}
613 	} while ((cp = cp->cpu_next) != cpu_list);
614 
615 	clock_tick_schedule(one_sec);
616 
617 	/*
618 	 * Check for a callout that needs be called from the clock
619 	 * thread to support the membership protocol in a clustered
620 	 * system.  Copy the function pointer so that we can reset
621 	 * this to NULL if needed.
622 	 */
623 	if ((funcp = cmm_clock_callout) != NULL)
624 		(*funcp)();
625 
626 	if ((funcp = cpucaps_clock_callout) != NULL)
627 		(*funcp)();
628 
629 	/*
630 	 * Wakeup the cageout thread waiters once per second.
631 	 */
632 	if (one_sec)
633 		kcage_tick();
634 
635 	if (one_sec) {
636 
637 		int drift, absdrift;
638 		timestruc_t tod;
639 		int s;
640 
641 		/*
642 		 * Beginning of precision-kernel code fragment executed
643 		 * every second.
644 		 *
645 		 * On rollover of the second the phase adjustment to be
646 		 * used for the next second is calculated.  Also, the
647 		 * maximum error is increased by the tolerance.  If the
648 		 * PPS frequency discipline code is present, the phase is
649 		 * increased to compensate for the CPU clock oscillator
650 		 * frequency error.
651 		 *
652 		 * On a 32-bit machine and given parameters in the timex.h
653 		 * header file, the maximum phase adjustment is +-512 ms
654 		 * and maximum frequency offset is (a tad less than)
655 		 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
656 		 */
657 		time_maxerror += time_tolerance / SCALE_USEC;
658 
659 		/*
660 		 * Leap second processing. If in leap-insert state at
661 		 * the end of the day, the system clock is set back one
662 		 * second; if in leap-delete state, the system clock is
663 		 * set ahead one second. The microtime() routine or
664 		 * external clock driver will insure that reported time
665 		 * is always monotonic. The ugly divides should be
666 		 * replaced.
667 		 */
668 		switch (time_state) {
669 
670 		case TIME_OK:
671 			if (time_status & STA_INS)
672 				time_state = TIME_INS;
673 			else if (time_status & STA_DEL)
674 				time_state = TIME_DEL;
675 			break;
676 
677 		case TIME_INS:
678 			if (hrestime.tv_sec % 86400 == 0) {
679 				s = hr_clock_lock();
680 				hrestime.tv_sec--;
681 				hr_clock_unlock(s);
682 				time_state = TIME_OOP;
683 			}
684 			break;
685 
686 		case TIME_DEL:
687 			if ((hrestime.tv_sec + 1) % 86400 == 0) {
688 				s = hr_clock_lock();
689 				hrestime.tv_sec++;
690 				hr_clock_unlock(s);
691 				time_state = TIME_WAIT;
692 			}
693 			break;
694 
695 		case TIME_OOP:
696 			time_state = TIME_WAIT;
697 			break;
698 
699 		case TIME_WAIT:
700 			if (!(time_status & (STA_INS | STA_DEL)))
701 				time_state = TIME_OK;
702 		default:
703 			break;
704 		}
705 
706 		/*
707 		 * Compute the phase adjustment for the next second. In
708 		 * PLL mode, the offset is reduced by a fixed factor
709 		 * times the time constant. In FLL mode the offset is
710 		 * used directly. In either mode, the maximum phase
711 		 * adjustment for each second is clamped so as to spread
712 		 * the adjustment over not more than the number of
713 		 * seconds between updates.
714 		 */
715 		if (time_offset == 0)
716 			time_adj = 0;
717 		else if (time_offset < 0) {
718 			lltemp = -time_offset;
719 			if (!(time_status & STA_FLL)) {
720 				if ((1 << time_constant) >= SCALE_KG)
721 					lltemp *= (1 << time_constant) /
722 					    SCALE_KG;
723 				else
724 					lltemp = (lltemp / SCALE_KG) >>
725 					    time_constant;
726 			}
727 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
728 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
729 			time_offset += lltemp;
730 			time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
731 		} else {
732 			lltemp = time_offset;
733 			if (!(time_status & STA_FLL)) {
734 				if ((1 << time_constant) >= SCALE_KG)
735 					lltemp *= (1 << time_constant) /
736 					    SCALE_KG;
737 				else
738 					lltemp = (lltemp / SCALE_KG) >>
739 					    time_constant;
740 			}
741 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
742 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
743 			time_offset -= lltemp;
744 			time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
745 		}
746 
747 		/*
748 		 * Compute the frequency estimate and additional phase
749 		 * adjustment due to frequency error for the next
750 		 * second. When the PPS signal is engaged, gnaw on the
751 		 * watchdog counter and update the frequency computed by
752 		 * the pll and the PPS signal.
753 		 */
754 		pps_valid++;
755 		if (pps_valid == PPS_VALID) {
756 			pps_jitter = MAXTIME;
757 			pps_stabil = MAXFREQ;
758 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
759 			    STA_PPSWANDER | STA_PPSERROR);
760 		}
761 		lltemp = time_freq + pps_freq;
762 
763 		if (lltemp)
764 			time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
765 
766 		/*
767 		 * End of precision kernel-code fragment
768 		 *
769 		 * The section below should be modified if we are planning
770 		 * to use NTP for synchronization.
771 		 *
772 		 * Note: the clock synchronization code now assumes
773 		 * the following:
774 		 *   - if dosynctodr is 1, then compute the drift between
775 		 *	the tod chip and software time and adjust one or
776 		 *	the other depending on the circumstances
777 		 *
778 		 *   - if dosynctodr is 0, then the tod chip is independent
779 		 *	of the software clock and should not be adjusted,
780 		 *	but allowed to free run.  this allows NTP to sync.
781 		 *	hrestime without any interference from the tod chip.
782 		 */
783 
784 		tod_validate_deferred = B_FALSE;
785 		mutex_enter(&tod_lock);
786 		tod = tod_get();
787 		drift = tod.tv_sec - hrestime.tv_sec;
788 		absdrift = (drift >= 0) ? drift : -drift;
789 		if (tod_needsync || absdrift > 1) {
790 			int s;
791 			if (absdrift > 2) {
792 				if (!tod_broken && tod_faulted == TOD_NOFAULT) {
793 					s = hr_clock_lock();
794 					hrestime = tod;
795 					membar_enter();	/* hrestime visible */
796 					timedelta = 0;
797 					timechanged++;
798 					tod_needsync = 0;
799 					hr_clock_unlock(s);
800 					callout_hrestime();
801 
802 				}
803 			} else {
804 				if (tod_needsync || !dosynctodr) {
805 					gethrestime(&tod);
806 					tod_set(tod);
807 					s = hr_clock_lock();
808 					if (timedelta == 0)
809 						tod_needsync = 0;
810 					hr_clock_unlock(s);
811 				} else {
812 					/*
813 					 * If the drift is 2 seconds on the
814 					 * money, then the TOD is adjusting
815 					 * the clock;  record that.
816 					 */
817 					clock_adj_hist[adj_hist_entry++ %
818 					    CLOCK_ADJ_HIST_SIZE] = now;
819 					s = hr_clock_lock();
820 					timedelta = (int64_t)drift*NANOSEC;
821 					hr_clock_unlock(s);
822 				}
823 			}
824 		}
825 		one_sec = 0;
826 		time = gethrestime_sec();  /* for crusty old kmem readers */
827 		mutex_exit(&tod_lock);
828 
829 		/*
830 		 * Some drivers still depend on this... XXX
831 		 */
832 		cv_broadcast(&lbolt_cv);
833 
834 		vminfo.freemem += freemem;
835 		{
836 			pgcnt_t maxswap, resv, free;
837 			pgcnt_t avail =
838 			    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
839 
840 			maxswap = k_anoninfo.ani_mem_resv +
841 			    k_anoninfo.ani_max +avail;
842 			/* Update ani_free */
843 			set_anoninfo();
844 			free = k_anoninfo.ani_free + avail;
845 			resv = k_anoninfo.ani_phys_resv +
846 			    k_anoninfo.ani_mem_resv;
847 
848 			vminfo.swap_resv += resv;
849 			/* number of reserved and allocated pages */
850 #ifdef	DEBUG
851 			if (maxswap < free)
852 				cmn_err(CE_WARN, "clock: maxswap < free");
853 			if (maxswap < resv)
854 				cmn_err(CE_WARN, "clock: maxswap < resv");
855 #endif
856 			vminfo.swap_alloc += maxswap - free;
857 			vminfo.swap_avail += maxswap - resv;
858 			vminfo.swap_free += free;
859 		}
860 		vminfo.updates++;
861 		if (nrunnable) {
862 			sysinfo.runque += nrunnable;
863 			sysinfo.runocc++;
864 		}
865 		if (nswapped) {
866 			sysinfo.swpque += nswapped;
867 			sysinfo.swpocc++;
868 		}
869 		sysinfo.waiting += w_io;
870 		sysinfo.updates++;
871 
872 		/*
873 		 * Wake up fsflush to write out DELWRI
874 		 * buffers, dirty pages and other cached
875 		 * administrative data, e.g. inodes.
876 		 */
877 		if (--fsflushcnt <= 0) {
878 			fsflushcnt = tune.t_fsflushr;
879 			cv_signal(&fsflush_cv);
880 		}
881 
882 		vmmeter();
883 		calcloadavg(genloadavg(&loadavg), hp_avenrun);
884 		for (i = 0; i < 3; i++)
885 			/*
886 			 * At the moment avenrun[] can only hold 31
887 			 * bits of load average as it is a signed
888 			 * int in the API. We need to ensure that
889 			 * hp_avenrun[i] >> (16 - FSHIFT) will not be
890 			 * too large. If it is, we put the largest value
891 			 * that we can use into avenrun[i]. This is
892 			 * kludgey, but about all we can do until we
893 			 * avenrun[] is declared as an array of uint64[]
894 			 */
895 			if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
896 				avenrun[i] = (int32_t)(hp_avenrun[i] >>
897 				    (16 - FSHIFT));
898 			else
899 				avenrun[i] = 0x7fffffff;
900 
901 		cpupart = cp_list_head;
902 		do {
903 			calcloadavg(genloadavg(&cpupart->cp_loadavg),
904 			    cpupart->cp_hp_avenrun);
905 		} while ((cpupart = cpupart->cp_next) != cp_list_head);
906 
907 		/*
908 		 * Wake up the swapper thread if necessary.
909 		 */
910 		if (runin ||
911 		    (runout && (avefree < desfree || wake_sched_sec))) {
912 			t = &t0;
913 			thread_lock(t);
914 			if (t->t_state == TS_STOPPED) {
915 				runin = runout = 0;
916 				wake_sched_sec = 0;
917 				t->t_whystop = 0;
918 				t->t_whatstop = 0;
919 				t->t_schedflag &= ~TS_ALLSTART;
920 				THREAD_TRANSITION(t);
921 				setfrontdq(t);
922 			}
923 			thread_unlock(t);
924 		}
925 	}
926 
927 	/*
928 	 * Wake up the swapper if any high priority swapped-out threads
929 	 * became runable during the last tick.
930 	 */
931 	if (wake_sched) {
932 		t = &t0;
933 		thread_lock(t);
934 		if (t->t_state == TS_STOPPED) {
935 			runin = runout = 0;
936 			wake_sched = 0;
937 			t->t_whystop = 0;
938 			t->t_whatstop = 0;
939 			t->t_schedflag &= ~TS_ALLSTART;
940 			THREAD_TRANSITION(t);
941 			setfrontdq(t);
942 		}
943 		thread_unlock(t);
944 	}
945 }
946 
947 void
948 clock_init(void)
949 {
950 	cyc_handler_t clk_hdlr, lbolt_hdlr;
951 	cyc_time_t clk_when, lbolt_when;
952 	int i, sz;
953 	intptr_t buf;
954 
955 	/*
956 	 * Setup handler and timer for the clock cyclic.
957 	 */
958 	clk_hdlr.cyh_func = (cyc_func_t)clock;
959 	clk_hdlr.cyh_level = CY_LOCK_LEVEL;
960 	clk_hdlr.cyh_arg = NULL;
961 
962 	clk_when.cyt_when = 0;
963 	clk_when.cyt_interval = nsec_per_tick;
964 
965 	/*
966 	 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick
967 	 * interval to satisfy performance needs of the DDI lbolt consumers.
968 	 * It is off by default.
969 	 */
970 	lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic;
971 	lbolt_hdlr.cyh_level = CY_LOCK_LEVEL;
972 	lbolt_hdlr.cyh_arg = NULL;
973 
974 	lbolt_when.cyt_interval = nsec_per_tick;
975 
976 	/*
977 	 * Allocate cache line aligned space for the per CPU lbolt data and
978 	 * lbolt info structures, and initialize them with their default
979 	 * values. Note that these structures are also cache line sized.
980 	 */
981 	sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE;
982 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
983 	lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
984 
985 	if (hz != HZ_DEFAULT)
986 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL *
987 		    hz/HZ_DEFAULT;
988 	else
989 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL;
990 
991 	lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS;
992 
993 	sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE;
994 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
995 	lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
996 
997 	for (i = 0; i < max_ncpus; i++)
998 		lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls;
999 
1000 	/*
1001 	 * Install the softint used to switch between event and cyclic driven
1002 	 * lbolt. We use a soft interrupt to make sure the context of the
1003 	 * cyclic reprogram call is safe.
1004 	 */
1005 	lbolt_softint_add();
1006 
1007 	/*
1008 	 * Since the hybrid lbolt implementation is based on a hardware counter
1009 	 * that is reset at every hardware reboot and that we'd like to have
1010 	 * the lbolt value starting at zero after both a hardware and a fast
1011 	 * reboot, we calculate the number of clock ticks the system's been up
1012 	 * and store it in the lbi_debug_time field of the lbolt info structure.
1013 	 * The value of this field will be subtracted from lbolt before
1014 	 * returning it.
1015 	 */
1016 	lb_info->lbi_internal = lb_info->lbi_debug_time =
1017 	    (gethrtime()/nsec_per_tick);
1018 
1019 	/*
1020 	 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros
1021 	 * and lbolt_debug_{enter,return} use this value as an indication that
1022 	 * the initializaion above hasn't been completed. Setting lbolt_hybrid
1023 	 * to either lbolt_{cyclic,event}_driven here signals those code paths
1024 	 * that the lbolt related structures can be used.
1025 	 */
1026 	if (lbolt_cyc_only) {
1027 		lbolt_when.cyt_when = 0;
1028 		lbolt_hybrid = lbolt_cyclic_driven;
1029 	} else {
1030 		lbolt_when.cyt_when = CY_INFINITY;
1031 		lbolt_hybrid = lbolt_event_driven;
1032 	}
1033 
1034 	/*
1035 	 * Grab cpu_lock and install all three cyclics.
1036 	 */
1037 	mutex_enter(&cpu_lock);
1038 
1039 	clock_cyclic = cyclic_add(&clk_hdlr, &clk_when);
1040 	lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when);
1041 
1042 	mutex_exit(&cpu_lock);
1043 }
1044 
1045 /*
1046  * Called before calcloadavg to get 10-sec moving loadavg together
1047  */
1048 
1049 static int
1050 genloadavg(struct loadavg_s *avgs)
1051 {
1052 	int avg;
1053 	int spos; /* starting position */
1054 	int cpos; /* moving current position */
1055 	int i;
1056 	int slen;
1057 	hrtime_t hr_avg;
1058 
1059 	/* 10-second snapshot, calculate first positon */
1060 	if (avgs->lg_len == 0) {
1061 		return (0);
1062 	}
1063 	slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1064 
1065 	spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1066 	    S_LOADAVG_SZ + (avgs->lg_cur - 1);
1067 	for (i = hr_avg = 0; i < slen; i++) {
1068 		cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1069 		hr_avg += avgs->lg_loads[cpos];
1070 	}
1071 
1072 	hr_avg = hr_avg / slen;
1073 	avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1074 
1075 	return (avg);
1076 }
1077 
1078 /*
1079  * Run every second from clock () to update the loadavg count available to the
1080  * system and cpu-partitions.
1081  *
1082  * This works by sampling the previous usr, sys, wait time elapsed,
1083  * computing a delta, and adding that delta to the elapsed usr, sys,
1084  * wait increase.
1085  */
1086 
1087 static void
1088 loadavg_update()
1089 {
1090 	cpu_t *cp;
1091 	cpupart_t *cpupart;
1092 	hrtime_t cpu_total;
1093 	int prev;
1094 
1095 	cp = cpu_list;
1096 	loadavg.lg_total = 0;
1097 
1098 	/*
1099 	 * first pass totals up per-cpu statistics for system and cpu
1100 	 * partitions
1101 	 */
1102 
1103 	do {
1104 		struct loadavg_s *lavg;
1105 
1106 		lavg = &cp->cpu_loadavg;
1107 
1108 		cpu_total = cp->cpu_acct[CMS_USER] +
1109 		    cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1110 		/* compute delta against last total */
1111 		scalehrtime(&cpu_total);
1112 		prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1113 		    S_LOADAVG_SZ + (lavg->lg_cur - 1);
1114 		if (lavg->lg_loads[prev] <= 0) {
1115 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1116 			cpu_total = 0;
1117 		} else {
1118 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1119 			cpu_total = cpu_total - lavg->lg_loads[prev];
1120 			if (cpu_total < 0)
1121 				cpu_total = 0;
1122 		}
1123 
1124 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1125 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1126 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1127 
1128 		loadavg.lg_total += cpu_total;
1129 		cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1130 
1131 	} while ((cp = cp->cpu_next) != cpu_list);
1132 
1133 	loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1134 	loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1135 	loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1136 	    loadavg.lg_len + 1 : S_LOADAVG_SZ;
1137 	/*
1138 	 * Second pass updates counts
1139 	 */
1140 	cpupart = cp_list_head;
1141 
1142 	do {
1143 		struct loadavg_s *lavg;
1144 
1145 		lavg = &cpupart->cp_loadavg;
1146 		lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1147 		lavg->lg_total = 0;
1148 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1149 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1150 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1151 
1152 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
1153 
1154 	/*
1155 	 * Third pass totals up per-zone statistics.
1156 	 */
1157 	zone_loadavg_update();
1158 }
1159 
1160 /*
1161  * clock_update() - local clock update
1162  *
1163  * This routine is called by ntp_adjtime() to update the local clock
1164  * phase and frequency. The implementation is of an
1165  * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1166  * routine computes new time and frequency offset estimates for each
1167  * call.  The PPS signal itself determines the new time offset,
1168  * instead of the calling argument.  Presumably, calls to
1169  * ntp_adjtime() occur only when the caller believes the local clock
1170  * is valid within some bound (+-128 ms with NTP). If the caller's
1171  * time is far different than the PPS time, an argument will ensue,
1172  * and it's not clear who will lose.
1173  *
1174  * For uncompensated quartz crystal oscillatores and nominal update
1175  * intervals less than 1024 s, operation should be in phase-lock mode
1176  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1177  * intervals greater than this, operation should be in frequency-lock
1178  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1179  *
1180  * Note: mutex(&tod_lock) is in effect.
1181  */
1182 void
1183 clock_update(int offset)
1184 {
1185 	int ltemp, mtemp, s;
1186 
1187 	ASSERT(MUTEX_HELD(&tod_lock));
1188 
1189 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1190 		return;
1191 	ltemp = offset;
1192 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1193 		ltemp = pps_offset;
1194 
1195 	/*
1196 	 * Scale the phase adjustment and clamp to the operating range.
1197 	 */
1198 	if (ltemp > MAXPHASE)
1199 		time_offset = MAXPHASE * SCALE_UPDATE;
1200 	else if (ltemp < -MAXPHASE)
1201 		time_offset = -(MAXPHASE * SCALE_UPDATE);
1202 	else
1203 		time_offset = ltemp * SCALE_UPDATE;
1204 
1205 	/*
1206 	 * Select whether the frequency is to be controlled and in which
1207 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1208 	 * multiply/divide should be replaced someday.
1209 	 */
1210 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1211 		time_reftime = hrestime.tv_sec;
1212 
1213 	mtemp = hrestime.tv_sec - time_reftime;
1214 	time_reftime = hrestime.tv_sec;
1215 
1216 	if (time_status & STA_FLL) {
1217 		if (mtemp >= MINSEC) {
1218 			ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1219 			    SCALE_UPDATE));
1220 			if (ltemp)
1221 				time_freq += ltemp / SCALE_KH;
1222 		}
1223 	} else {
1224 		if (mtemp < MAXSEC) {
1225 			ltemp *= mtemp;
1226 			if (ltemp)
1227 				time_freq += (int)(((int64_t)ltemp *
1228 				    SCALE_USEC) / SCALE_KF)
1229 				    / (1 << (time_constant * 2));
1230 		}
1231 	}
1232 	if (time_freq > time_tolerance)
1233 		time_freq = time_tolerance;
1234 	else if (time_freq < -time_tolerance)
1235 		time_freq = -time_tolerance;
1236 
1237 	s = hr_clock_lock();
1238 	tod_needsync = 1;
1239 	hr_clock_unlock(s);
1240 }
1241 
1242 /*
1243  * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1244  *
1245  * This routine is called at each PPS interrupt in order to discipline
1246  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1247  * and leaves it in a handy spot for the clock() routine. It
1248  * integrates successive PPS phase differences and calculates the
1249  * frequency offset. This is used in clock() to discipline the CPU
1250  * clock oscillator so that intrinsic frequency error is cancelled out.
1251  * The code requires the caller to capture the time and hardware counter
1252  * value at the on-time PPS signal transition.
1253  *
1254  * Note that, on some Unix systems, this routine runs at an interrupt
1255  * priority level higher than the timer interrupt routine clock().
1256  * Therefore, the variables used are distinct from the clock()
1257  * variables, except for certain exceptions: The PPS frequency pps_freq
1258  * and phase pps_offset variables are determined by this routine and
1259  * updated atomically. The time_tolerance variable can be considered a
1260  * constant, since it is infrequently changed, and then only when the
1261  * PPS signal is disabled. The watchdog counter pps_valid is updated
1262  * once per second by clock() and is atomically cleared in this
1263  * routine.
1264  *
1265  * tvp is the time of the last tick; usec is a microsecond count since the
1266  * last tick.
1267  *
1268  * Note: In Solaris systems, the tick value is actually given by
1269  *       usec_per_tick.  This is called from the serial driver cdintr(),
1270  *	 or equivalent, at a high PIL.  Because the kernel keeps a
1271  *	 highresolution time, the following code can accept either
1272  *	 the traditional argument pair, or the current highres timestamp
1273  *       in tvp and zero in usec.
1274  */
1275 void
1276 ddi_hardpps(struct timeval *tvp, int usec)
1277 {
1278 	int u_usec, v_usec, bigtick;
1279 	time_t cal_sec;
1280 	int cal_usec;
1281 
1282 	/*
1283 	 * An occasional glitch can be produced when the PPS interrupt
1284 	 * occurs in the clock() routine before the time variable is
1285 	 * updated. Here the offset is discarded when the difference
1286 	 * between it and the last one is greater than tick/2, but not
1287 	 * if the interval since the first discard exceeds 30 s.
1288 	 */
1289 	time_status |= STA_PPSSIGNAL;
1290 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1291 	pps_valid = 0;
1292 	u_usec = -tvp->tv_usec;
1293 	if (u_usec < -(MICROSEC/2))
1294 		u_usec += MICROSEC;
1295 	v_usec = pps_offset - u_usec;
1296 	if (v_usec < 0)
1297 		v_usec = -v_usec;
1298 	if (v_usec > (usec_per_tick >> 1)) {
1299 		if (pps_glitch > MAXGLITCH) {
1300 			pps_glitch = 0;
1301 			pps_tf[2] = u_usec;
1302 			pps_tf[1] = u_usec;
1303 		} else {
1304 			pps_glitch++;
1305 			u_usec = pps_offset;
1306 		}
1307 	} else
1308 		pps_glitch = 0;
1309 
1310 	/*
1311 	 * A three-stage median filter is used to help deglitch the pps
1312 	 * time. The median sample becomes the time offset estimate; the
1313 	 * difference between the other two samples becomes the time
1314 	 * dispersion (jitter) estimate.
1315 	 */
1316 	pps_tf[2] = pps_tf[1];
1317 	pps_tf[1] = pps_tf[0];
1318 	pps_tf[0] = u_usec;
1319 	if (pps_tf[0] > pps_tf[1]) {
1320 		if (pps_tf[1] > pps_tf[2]) {
1321 			pps_offset = pps_tf[1];		/* 0 1 2 */
1322 			v_usec = pps_tf[0] - pps_tf[2];
1323 		} else if (pps_tf[2] > pps_tf[0]) {
1324 			pps_offset = pps_tf[0];		/* 2 0 1 */
1325 			v_usec = pps_tf[2] - pps_tf[1];
1326 		} else {
1327 			pps_offset = pps_tf[2];		/* 0 2 1 */
1328 			v_usec = pps_tf[0] - pps_tf[1];
1329 		}
1330 	} else {
1331 		if (pps_tf[1] < pps_tf[2]) {
1332 			pps_offset = pps_tf[1];		/* 2 1 0 */
1333 			v_usec = pps_tf[2] - pps_tf[0];
1334 		} else  if (pps_tf[2] < pps_tf[0]) {
1335 			pps_offset = pps_tf[0];		/* 1 0 2 */
1336 			v_usec = pps_tf[1] - pps_tf[2];
1337 		} else {
1338 			pps_offset = pps_tf[2];		/* 1 2 0 */
1339 			v_usec = pps_tf[1] - pps_tf[0];
1340 		}
1341 	}
1342 	if (v_usec > MAXTIME)
1343 		pps_jitcnt++;
1344 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1345 	pps_jitter += v_usec / (1 << PPS_AVG);
1346 	if (pps_jitter > (MAXTIME >> 1))
1347 		time_status |= STA_PPSJITTER;
1348 
1349 	/*
1350 	 * During the calibration interval adjust the starting time when
1351 	 * the tick overflows. At the end of the interval compute the
1352 	 * duration of the interval and the difference of the hardware
1353 	 * counters at the beginning and end of the interval. This code
1354 	 * is deliciously complicated by the fact valid differences may
1355 	 * exceed the value of tick when using long calibration
1356 	 * intervals and small ticks. Note that the counter can be
1357 	 * greater than tick if caught at just the wrong instant, but
1358 	 * the values returned and used here are correct.
1359 	 */
1360 	bigtick = (int)usec_per_tick * SCALE_USEC;
1361 	pps_usec -= pps_freq;
1362 	if (pps_usec >= bigtick)
1363 		pps_usec -= bigtick;
1364 	if (pps_usec < 0)
1365 		pps_usec += bigtick;
1366 	pps_time.tv_sec++;
1367 	pps_count++;
1368 	if (pps_count < (1 << pps_shift))
1369 		return;
1370 	pps_count = 0;
1371 	pps_calcnt++;
1372 	u_usec = usec * SCALE_USEC;
1373 	v_usec = pps_usec - u_usec;
1374 	if (v_usec >= bigtick >> 1)
1375 		v_usec -= bigtick;
1376 	if (v_usec < -(bigtick >> 1))
1377 		v_usec += bigtick;
1378 	if (v_usec < 0)
1379 		v_usec = -(-v_usec >> pps_shift);
1380 	else
1381 		v_usec = v_usec >> pps_shift;
1382 	pps_usec = u_usec;
1383 	cal_sec = tvp->tv_sec;
1384 	cal_usec = tvp->tv_usec;
1385 	cal_sec -= pps_time.tv_sec;
1386 	cal_usec -= pps_time.tv_usec;
1387 	if (cal_usec < 0) {
1388 		cal_usec += MICROSEC;
1389 		cal_sec--;
1390 	}
1391 	pps_time = *tvp;
1392 
1393 	/*
1394 	 * Check for lost interrupts, noise, excessive jitter and
1395 	 * excessive frequency error. The number of timer ticks during
1396 	 * the interval may vary +-1 tick. Add to this a margin of one
1397 	 * tick for the PPS signal jitter and maximum frequency
1398 	 * deviation. If the limits are exceeded, the calibration
1399 	 * interval is reset to the minimum and we start over.
1400 	 */
1401 	u_usec = (int)usec_per_tick << 1;
1402 	if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1403 	    (cal_sec == 0 && cal_usec < u_usec)) ||
1404 	    v_usec > time_tolerance || v_usec < -time_tolerance) {
1405 		pps_errcnt++;
1406 		pps_shift = PPS_SHIFT;
1407 		pps_intcnt = 0;
1408 		time_status |= STA_PPSERROR;
1409 		return;
1410 	}
1411 
1412 	/*
1413 	 * A three-stage median filter is used to help deglitch the pps
1414 	 * frequency. The median sample becomes the frequency offset
1415 	 * estimate; the difference between the other two samples
1416 	 * becomes the frequency dispersion (stability) estimate.
1417 	 */
1418 	pps_ff[2] = pps_ff[1];
1419 	pps_ff[1] = pps_ff[0];
1420 	pps_ff[0] = v_usec;
1421 	if (pps_ff[0] > pps_ff[1]) {
1422 		if (pps_ff[1] > pps_ff[2]) {
1423 			u_usec = pps_ff[1];		/* 0 1 2 */
1424 			v_usec = pps_ff[0] - pps_ff[2];
1425 		} else if (pps_ff[2] > pps_ff[0]) {
1426 			u_usec = pps_ff[0];		/* 2 0 1 */
1427 			v_usec = pps_ff[2] - pps_ff[1];
1428 		} else {
1429 			u_usec = pps_ff[2];		/* 0 2 1 */
1430 			v_usec = pps_ff[0] - pps_ff[1];
1431 		}
1432 	} else {
1433 		if (pps_ff[1] < pps_ff[2]) {
1434 			u_usec = pps_ff[1];		/* 2 1 0 */
1435 			v_usec = pps_ff[2] - pps_ff[0];
1436 		} else  if (pps_ff[2] < pps_ff[0]) {
1437 			u_usec = pps_ff[0];		/* 1 0 2 */
1438 			v_usec = pps_ff[1] - pps_ff[2];
1439 		} else {
1440 			u_usec = pps_ff[2];		/* 1 2 0 */
1441 			v_usec = pps_ff[1] - pps_ff[0];
1442 		}
1443 	}
1444 
1445 	/*
1446 	 * Here the frequency dispersion (stability) is updated. If it
1447 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1448 	 * offset is updated as well, but clamped to the tolerance. It
1449 	 * will be processed later by the clock() routine.
1450 	 */
1451 	v_usec = (v_usec >> 1) - pps_stabil;
1452 	if (v_usec < 0)
1453 		pps_stabil -= -v_usec >> PPS_AVG;
1454 	else
1455 		pps_stabil += v_usec >> PPS_AVG;
1456 	if (pps_stabil > MAXFREQ >> 2) {
1457 		pps_stbcnt++;
1458 		time_status |= STA_PPSWANDER;
1459 		return;
1460 	}
1461 	if (time_status & STA_PPSFREQ) {
1462 		if (u_usec < 0) {
1463 			pps_freq -= -u_usec >> PPS_AVG;
1464 			if (pps_freq < -time_tolerance)
1465 				pps_freq = -time_tolerance;
1466 			u_usec = -u_usec;
1467 		} else {
1468 			pps_freq += u_usec >> PPS_AVG;
1469 			if (pps_freq > time_tolerance)
1470 				pps_freq = time_tolerance;
1471 		}
1472 	}
1473 
1474 	/*
1475 	 * Here the calibration interval is adjusted. If the maximum
1476 	 * time difference is greater than tick / 4, reduce the interval
1477 	 * by half. If this is not the case for four consecutive
1478 	 * intervals, double the interval.
1479 	 */
1480 	if (u_usec << pps_shift > bigtick >> 2) {
1481 		pps_intcnt = 0;
1482 		if (pps_shift > PPS_SHIFT)
1483 			pps_shift--;
1484 	} else if (pps_intcnt >= 4) {
1485 		pps_intcnt = 0;
1486 		if (pps_shift < PPS_SHIFTMAX)
1487 			pps_shift++;
1488 	} else
1489 		pps_intcnt++;
1490 
1491 	/*
1492 	 * If recovering from kmdb, then make sure the tod chip gets resynced.
1493 	 * If we took an early exit above, then we don't yet have a stable
1494 	 * calibration signal to lock onto, so don't mark the tod for sync
1495 	 * until we get all the way here.
1496 	 */
1497 	{
1498 		int s = hr_clock_lock();
1499 
1500 		tod_needsync = 1;
1501 		hr_clock_unlock(s);
1502 	}
1503 }
1504 
1505 /*
1506  * Handle clock tick processing for a thread.
1507  * Check for timer action, enforce CPU rlimit, do profiling etc.
1508  */
1509 void
1510 clock_tick(kthread_t *t, int pending)
1511 {
1512 	struct proc *pp;
1513 	klwp_id_t    lwp;
1514 	struct as *as;
1515 	clock_t	ticks;
1516 	int	poke = 0;		/* notify another CPU */
1517 	int	user_mode;
1518 	size_t	 rss;
1519 	int i, total_usec, usec;
1520 	rctl_qty_t secs;
1521 
1522 	ASSERT(pending > 0);
1523 
1524 	/* Must be operating on a lwp/thread */
1525 	if ((lwp = ttolwp(t)) == NULL) {
1526 		panic("clock_tick: no lwp");
1527 		/*NOTREACHED*/
1528 	}
1529 
1530 	for (i = 0; i < pending; i++) {
1531 		CL_TICK(t);	/* Class specific tick processing */
1532 		DTRACE_SCHED1(tick, kthread_t *, t);
1533 	}
1534 
1535 	pp = ttoproc(t);
1536 
1537 	/* pp->p_lock makes sure that the thread does not exit */
1538 	ASSERT(MUTEX_HELD(&pp->p_lock));
1539 
1540 	user_mode = (lwp->lwp_state == LWP_USER);
1541 
1542 	ticks = (pp->p_utime + pp->p_stime) % hz;
1543 	/*
1544 	 * Update process times. Should use high res clock and state
1545 	 * changes instead of statistical sampling method. XXX
1546 	 */
1547 	if (user_mode) {
1548 		pp->p_utime += pending;
1549 	} else {
1550 		pp->p_stime += pending;
1551 	}
1552 
1553 	pp->p_ttime += pending;
1554 	as = pp->p_as;
1555 
1556 	/*
1557 	 * Update user profiling statistics. Get the pc from the
1558 	 * lwp when the AST happens.
1559 	 */
1560 	if (pp->p_prof.pr_scale) {
1561 		atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
1562 		if (user_mode) {
1563 			poke = 1;
1564 			aston(t);
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * If CPU was in user state, process lwp-virtual time
1570 	 * interval timer. The value passed to itimerdecr() has to be
1571 	 * in microseconds and has to be less than one second. Hence
1572 	 * this loop.
1573 	 */
1574 	total_usec = usec_per_tick * pending;
1575 	while (total_usec > 0) {
1576 		usec = MIN(total_usec, (MICROSEC - 1));
1577 		if (user_mode &&
1578 		    timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1579 		    itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
1580 			poke = 1;
1581 			sigtoproc(pp, t, SIGVTALRM);
1582 		}
1583 		total_usec -= usec;
1584 	}
1585 
1586 	/*
1587 	 * If CPU was in user state, process lwp-profile
1588 	 * interval timer.
1589 	 */
1590 	total_usec = usec_per_tick * pending;
1591 	while (total_usec > 0) {
1592 		usec = MIN(total_usec, (MICROSEC - 1));
1593 		if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1594 		    itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
1595 			poke = 1;
1596 			sigtoproc(pp, t, SIGPROF);
1597 		}
1598 		total_usec -= usec;
1599 	}
1600 
1601 	/*
1602 	 * Enforce CPU resource controls:
1603 	 *   (a) process.max-cpu-time resource control
1604 	 *
1605 	 * Perform the check only if we have accumulated more a second.
1606 	 */
1607 	if ((ticks + pending) >= hz) {
1608 		(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1609 		    (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
1610 	}
1611 
1612 	/*
1613 	 *   (b) task.max-cpu-time resource control
1614 	 *
1615 	 * If we have accumulated enough ticks, increment the task CPU
1616 	 * time usage and test for the resource limit. This minimizes the
1617 	 * number of calls to the rct_test(). The task CPU time mutex
1618 	 * is highly contentious as many processes can be sharing a task.
1619 	 */
1620 	if (pp->p_ttime >= clock_tick_proc_max) {
1621 		secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
1622 		pp->p_ttime = 0;
1623 		if (secs) {
1624 			(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
1625 			    pp, secs, RCA_UNSAFE_SIGINFO);
1626 		}
1627 	}
1628 
1629 	/*
1630 	 * Update memory usage for the currently running process.
1631 	 */
1632 	rss = rm_asrss(as);
1633 	PTOU(pp)->u_mem += rss;
1634 	if (rss > PTOU(pp)->u_mem_max)
1635 		PTOU(pp)->u_mem_max = rss;
1636 
1637 	/*
1638 	 * Notify the CPU the thread is running on.
1639 	 */
1640 	if (poke && t->t_cpu != CPU)
1641 		poke_cpu(t->t_cpu->cpu_id);
1642 }
1643 
1644 void
1645 profil_tick(uintptr_t upc)
1646 {
1647 	int ticks;
1648 	proc_t *p = ttoproc(curthread);
1649 	klwp_t *lwp = ttolwp(curthread);
1650 	struct prof *pr = &p->p_prof;
1651 
1652 	do {
1653 		ticks = lwp->lwp_oweupc;
1654 	} while (atomic_cas_32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1655 
1656 	mutex_enter(&p->p_pflock);
1657 	if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1658 		/*
1659 		 * Old-style profiling
1660 		 */
1661 		uint16_t *slot = pr->pr_base;
1662 		uint16_t old, new;
1663 		if (pr->pr_scale != 2) {
1664 			uintptr_t delta = upc - pr->pr_off;
1665 			uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1666 			    (((delta & 0xffff) * pr->pr_scale) >> 16);
1667 			if (byteoff >= (uintptr_t)pr->pr_size) {
1668 				mutex_exit(&p->p_pflock);
1669 				return;
1670 			}
1671 			slot += byteoff / sizeof (uint16_t);
1672 		}
1673 		if (fuword16(slot, &old) < 0 ||
1674 		    (new = old + ticks) > SHRT_MAX ||
1675 		    suword16(slot, new) < 0) {
1676 			pr->pr_scale = 0;
1677 		}
1678 	} else if (pr->pr_scale == 1) {
1679 		/*
1680 		 * PC Sampling
1681 		 */
1682 		model_t model = lwp_getdatamodel(lwp);
1683 		int result;
1684 #ifdef __lint
1685 		model = model;
1686 #endif
1687 		while (ticks-- > 0) {
1688 			if (pr->pr_samples == pr->pr_size) {
1689 				/* buffer full, turn off sampling */
1690 				pr->pr_scale = 0;
1691 				break;
1692 			}
1693 			switch (SIZEOF_PTR(model)) {
1694 			case sizeof (uint32_t):
1695 				result = suword32(pr->pr_base, (uint32_t)upc);
1696 				break;
1697 #ifdef _LP64
1698 			case sizeof (uint64_t):
1699 				result = suword64(pr->pr_base, (uint64_t)upc);
1700 				break;
1701 #endif
1702 			default:
1703 				cmn_err(CE_WARN, "profil_tick: unexpected "
1704 				    "data model");
1705 				result = -1;
1706 				break;
1707 			}
1708 			if (result != 0) {
1709 				pr->pr_scale = 0;
1710 				break;
1711 			}
1712 			pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1713 			pr->pr_samples++;
1714 		}
1715 	}
1716 	mutex_exit(&p->p_pflock);
1717 }
1718 
1719 static void
1720 delay_wakeup(void *arg)
1721 {
1722 	kthread_t	*t = arg;
1723 
1724 	mutex_enter(&t->t_delay_lock);
1725 	cv_signal(&t->t_delay_cv);
1726 	mutex_exit(&t->t_delay_lock);
1727 }
1728 
1729 /*
1730  * The delay(9F) man page indicates that it can only be called from user or
1731  * kernel context - detect and diagnose bad calls. The following macro will
1732  * produce a limited number of messages identifying bad callers.  This is done
1733  * in a macro so that caller() is meaningful. When a bad caller is identified,
1734  * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
1735  */
1736 #define	DELAY_CONTEXT_CHECK()	{					\
1737 	uint32_t	m;						\
1738 	char		*f;						\
1739 	ulong_t		off;						\
1740 									\
1741 	m = delay_from_interrupt_msg;					\
1742 	if (delay_from_interrupt_diagnose && servicing_interrupt() &&	\
1743 	    !panicstr && !devinfo_freeze &&				\
1744 	    atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) {	\
1745 		f = modgetsymname((uintptr_t)caller(), &off);		\
1746 		cmn_err(CE_WARN, "delay(9F) called from "		\
1747 		    "interrupt context: %s`%s",				\
1748 		    mod_containing_pc(caller()), f ? f : "...");	\
1749 	}								\
1750 }
1751 
1752 /*
1753  * delay_common: common delay code.
1754  */
1755 static void
1756 delay_common(clock_t ticks)
1757 {
1758 	kthread_t	*t = curthread;
1759 	clock_t		deadline;
1760 	clock_t		timeleft;
1761 	callout_id_t	id;
1762 
1763 	/* If timeouts aren't running all we can do is spin. */
1764 	if (panicstr || devinfo_freeze) {
1765 		/* Convert delay(9F) call into drv_usecwait(9F) call. */
1766 		if (ticks > 0)
1767 			drv_usecwait(TICK_TO_USEC(ticks));
1768 		return;
1769 	}
1770 
1771 	deadline = ddi_get_lbolt() + ticks;
1772 	while ((timeleft = deadline - ddi_get_lbolt()) > 0) {
1773 		mutex_enter(&t->t_delay_lock);
1774 		id = timeout_default(delay_wakeup, t, timeleft);
1775 		cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1776 		mutex_exit(&t->t_delay_lock);
1777 		(void) untimeout_default(id, 0);
1778 	}
1779 }
1780 
1781 /*
1782  * Delay specified number of clock ticks.
1783  */
1784 void
1785 delay(clock_t ticks)
1786 {
1787 	DELAY_CONTEXT_CHECK();
1788 
1789 	delay_common(ticks);
1790 }
1791 
1792 /*
1793  * Delay a random number of clock ticks between 1 and ticks.
1794  */
1795 void
1796 delay_random(clock_t ticks)
1797 {
1798 	int	r;
1799 
1800 	DELAY_CONTEXT_CHECK();
1801 
1802 	(void) random_get_pseudo_bytes((void *)&r, sizeof (r));
1803 	if (ticks == 0)
1804 		ticks = 1;
1805 	ticks = (r % ticks) + 1;
1806 	delay_common(ticks);
1807 }
1808 
1809 /*
1810  * Like delay, but interruptible by a signal.
1811  */
1812 int
1813 delay_sig(clock_t ticks)
1814 {
1815 	kthread_t	*t = curthread;
1816 	clock_t		deadline;
1817 	clock_t		rc;
1818 
1819 	/* If timeouts aren't running all we can do is spin. */
1820 	if (panicstr || devinfo_freeze) {
1821 		if (ticks > 0)
1822 			drv_usecwait(TICK_TO_USEC(ticks));
1823 		return (0);
1824 	}
1825 
1826 	deadline = ddi_get_lbolt() + ticks;
1827 	mutex_enter(&t->t_delay_lock);
1828 	do {
1829 		rc = cv_timedwait_sig(&t->t_delay_cv,
1830 		    &t->t_delay_lock, deadline);
1831 		/* loop until past deadline or signaled */
1832 	} while (rc > 0);
1833 	mutex_exit(&t->t_delay_lock);
1834 	if (rc == 0)
1835 		return (EINTR);
1836 	return (0);
1837 }
1838 
1839 
1840 #define	SECONDS_PER_DAY 86400
1841 
1842 /*
1843  * Initialize the system time based on the TOD chip.  approx is used as
1844  * an approximation of time (e.g. from the filesystem) in the event that
1845  * the TOD chip has been cleared or is unresponsive.  An approx of -1
1846  * means the filesystem doesn't keep time.
1847  */
1848 void
1849 clkset(time_t approx)
1850 {
1851 	timestruc_t ts;
1852 	int spl;
1853 	int set_clock = 0;
1854 
1855 	mutex_enter(&tod_lock);
1856 	ts = tod_get();
1857 
1858 	if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1859 		/*
1860 		 * If the TOD chip is reporting some time after 1971,
1861 		 * then it probably didn't lose power or become otherwise
1862 		 * cleared in the recent past;  check to assure that
1863 		 * the time coming from the filesystem isn't in the future
1864 		 * according to the TOD chip.
1865 		 */
1866 		if (approx != -1 && approx > ts.tv_sec) {
1867 			cmn_err(CE_WARN, "Last shutdown is later "
1868 			    "than time on time-of-day chip; check date.");
1869 		}
1870 	} else {
1871 		/*
1872 		 * If the TOD chip isn't giving correct time, set it to the
1873 		 * greater of i) approx and ii) 1987. That way if approx
1874 		 * is negative or is earlier than 1987, we set the clock
1875 		 * back to a time when Oliver North, ALF and Dire Straits
1876 		 * were all on the collective brain:  1987.
1877 		 */
1878 		timestruc_t tmp;
1879 		time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1880 		ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
1881 		ts.tv_nsec = 0;
1882 
1883 		/*
1884 		 * Attempt to write the new time to the TOD chip.  Set spl high
1885 		 * to avoid getting preempted between the tod_set and tod_get.
1886 		 */
1887 		spl = splhi();
1888 		tod_set(ts);
1889 		tmp = tod_get();
1890 		splx(spl);
1891 
1892 		if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1893 			tod_broken = 1;
1894 			dosynctodr = 0;
1895 			cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
1896 		} else {
1897 			cmn_err(CE_WARN, "Time-of-day chip had "
1898 			    "incorrect date; check and reset.");
1899 		}
1900 		set_clock = 1;
1901 	}
1902 
1903 	if (!boot_time) {
1904 		boot_time = ts.tv_sec;
1905 		set_clock = 1;
1906 	}
1907 
1908 	if (set_clock)
1909 		set_hrestime(&ts);
1910 
1911 	mutex_exit(&tod_lock);
1912 }
1913 
1914 int	timechanged;	/* for testing if the system time has been reset */
1915 
1916 void
1917 set_hrestime(timestruc_t *ts)
1918 {
1919 	int spl = hr_clock_lock();
1920 	hrestime = *ts;
1921 	membar_enter();	/* hrestime must be visible before timechanged++ */
1922 	timedelta = 0;
1923 	timechanged++;
1924 	hr_clock_unlock(spl);
1925 	callout_hrestime();
1926 }
1927 
1928 static uint_t deadman_seconds;
1929 static uint32_t deadman_panics;
1930 static int deadman_enabled = 0;
1931 static int deadman_panic_timers = 1;
1932 
1933 static void
1934 deadman(void)
1935 {
1936 	if (panicstr) {
1937 		/*
1938 		 * During panic, other CPUs besides the panic
1939 		 * master continue to handle cyclics and some other
1940 		 * interrupts.  The code below is intended to be
1941 		 * single threaded, so any CPU other than the master
1942 		 * must keep out.
1943 		 */
1944 		if (CPU->cpu_id != panic_cpu.cpu_id)
1945 			return;
1946 
1947 		if (!deadman_panic_timers)
1948 			return; /* allow all timers to be manually disabled */
1949 
1950 		/*
1951 		 * If we are generating a crash dump or syncing filesystems and
1952 		 * the corresponding timer is set, decrement it and re-enter
1953 		 * the panic code to abort it and advance to the next state.
1954 		 * The panic states and triggers are explained in panic.c.
1955 		 */
1956 		if (panic_dump) {
1957 			if (dump_timeleft && (--dump_timeleft == 0)) {
1958 				panic("panic dump timeout");
1959 				/*NOTREACHED*/
1960 			}
1961 		}
1962 		return;
1963 	}
1964 
1965 	if (deadman_counter != CPU->cpu_deadman_counter) {
1966 		CPU->cpu_deadman_counter = deadman_counter;
1967 		CPU->cpu_deadman_countdown = deadman_seconds;
1968 		return;
1969 	}
1970 
1971 	if (--CPU->cpu_deadman_countdown > 0)
1972 		return;
1973 
1974 	/*
1975 	 * Regardless of whether or not we actually bring the system down,
1976 	 * bump the deadman_panics variable.
1977 	 *
1978 	 * N.B. deadman_panics is incremented once for each CPU that
1979 	 * passes through here.  It's expected that all the CPUs will
1980 	 * detect this condition within one second of each other, so
1981 	 * when deadman_enabled is off, deadman_panics will
1982 	 * typically be a multiple of the total number of CPUs in
1983 	 * the system.
1984 	 */
1985 	atomic_inc_32(&deadman_panics);
1986 
1987 	if (!deadman_enabled) {
1988 		CPU->cpu_deadman_countdown = deadman_seconds;
1989 		return;
1990 	}
1991 
1992 	/*
1993 	 * If we're here, we want to bring the system down.
1994 	 */
1995 	panic("deadman: timed out after %d seconds of clock "
1996 	    "inactivity", deadman_seconds);
1997 	/*NOTREACHED*/
1998 }
1999 
2000 /*ARGSUSED*/
2001 static void
2002 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
2003 {
2004 	cpu->cpu_deadman_counter = 0;
2005 	cpu->cpu_deadman_countdown = deadman_seconds;
2006 
2007 	hdlr->cyh_func = (cyc_func_t)deadman;
2008 	hdlr->cyh_level = CY_HIGH_LEVEL;
2009 	hdlr->cyh_arg = NULL;
2010 
2011 	/*
2012 	 * Stagger the CPUs so that they don't all run deadman() at
2013 	 * the same time.  Simplest reason to do this is to make it
2014 	 * more likely that only one CPU will panic in case of a
2015 	 * timeout.  This is (strictly speaking) an aesthetic, not a
2016 	 * technical consideration.
2017 	 */
2018 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
2019 	when->cyt_interval = NANOSEC;
2020 }
2021 
2022 
2023 void
2024 deadman_init(void)
2025 {
2026 	cyc_omni_handler_t hdlr;
2027 
2028 	if (deadman_seconds == 0)
2029 		deadman_seconds = snoop_interval / MICROSEC;
2030 
2031 	if (snooping)
2032 		deadman_enabled = 1;
2033 
2034 	hdlr.cyo_online = deadman_online;
2035 	hdlr.cyo_offline = NULL;
2036 	hdlr.cyo_arg = NULL;
2037 
2038 	mutex_enter(&cpu_lock);
2039 	deadman_cyclic = cyclic_add_omni(&hdlr);
2040 	mutex_exit(&cpu_lock);
2041 }
2042 
2043 /*
2044  * tod_fault() is for updating tod validate mechanism state:
2045  * (1) TOD_NOFAULT: for resetting the state to 'normal'.
2046  *     currently used for debugging only
2047  * (2) The following four cases detected by tod validate mechanism:
2048  *       TOD_REVERSED: current tod value is less than previous value.
2049  *       TOD_STALLED: current tod value hasn't advanced.
2050  *       TOD_JUMPED: current tod value advanced too far from previous value.
2051  *       TOD_RATECHANGED: the ratio between average tod delta and
2052  *       average tick delta has changed.
2053  * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
2054  *     a virtual TOD provided by a hypervisor.
2055  */
2056 enum tod_fault_type
2057 tod_fault(enum tod_fault_type ftype, int off)
2058 {
2059 	ASSERT(MUTEX_HELD(&tod_lock));
2060 
2061 	if (tod_faulted != ftype) {
2062 		switch (ftype) {
2063 		case TOD_NOFAULT:
2064 			plat_tod_fault(TOD_NOFAULT);
2065 			cmn_err(CE_NOTE, "Restarted tracking "
2066 			    "Time of Day clock.");
2067 			tod_faulted = ftype;
2068 			break;
2069 		case TOD_REVERSED:
2070 		case TOD_JUMPED:
2071 			if (tod_faulted == TOD_NOFAULT) {
2072 				plat_tod_fault(ftype);
2073 				cmn_err(CE_WARN, "Time of Day clock error: "
2074 				    "reason [%s by 0x%x]. -- "
2075 				    " Stopped tracking Time Of Day clock.",
2076 				    tod_fault_table[ftype], off);
2077 				tod_faulted = ftype;
2078 			}
2079 			break;
2080 		case TOD_STALLED:
2081 		case TOD_RATECHANGED:
2082 			if (tod_faulted == TOD_NOFAULT) {
2083 				plat_tod_fault(ftype);
2084 				cmn_err(CE_WARN, "Time of Day clock error: "
2085 				    "reason [%s]. -- "
2086 				    " Stopped tracking Time Of Day clock.",
2087 				    tod_fault_table[ftype]);
2088 				tod_faulted = ftype;
2089 			}
2090 			break;
2091 		case TOD_RDONLY:
2092 			if (tod_faulted == TOD_NOFAULT) {
2093 				plat_tod_fault(ftype);
2094 				cmn_err(CE_NOTE, "!Time of Day clock is "
2095 				    "Read-Only; set of Date/Time will not "
2096 				    "persist across reboot.");
2097 				tod_faulted = ftype;
2098 			}
2099 			break;
2100 		default:
2101 			break;
2102 		}
2103 	}
2104 	return (tod_faulted);
2105 }
2106 
2107 /*
2108  * Two functions that allow tod_status_flag to be manipulated by functions
2109  * external to this file.
2110  */
2111 
2112 void
2113 tod_status_set(int tod_flag)
2114 {
2115 	tod_status_flag |= tod_flag;
2116 }
2117 
2118 void
2119 tod_status_clear(int tod_flag)
2120 {
2121 	tod_status_flag &= ~tod_flag;
2122 }
2123 
2124 /*
2125  * Record a timestamp and the value passed to tod_set().  The next call to
2126  * tod_validate() can use these values, prev_set_tick and prev_set_tod,
2127  * when checking the timestruc_t returned by tod_get().  Ordinarily,
2128  * tod_validate() will use prev_tick and prev_tod for this task but these
2129  * become obsolete, and will be re-assigned with the prev_set_* values,
2130  * in the case when the TOD is re-written.
2131  */
2132 void
2133 tod_set_prev(timestruc_t ts)
2134 {
2135 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2136 	    tod_validate_deferred) {
2137 		return;
2138 	}
2139 	prev_set_tick = gethrtime();
2140 	/*
2141 	 * A negative value will be set to zero in utc_to_tod() so we fake
2142 	 * a zero here in such a case.  This would need to change if the
2143 	 * behavior of utc_to_tod() changes.
2144 	 */
2145 	prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec;
2146 }
2147 
2148 /*
2149  * tod_validate() is used for checking values returned by tod_get().
2150  * Four error cases can be detected by this routine:
2151  *   TOD_REVERSED: current tod value is less than previous.
2152  *   TOD_STALLED: current tod value hasn't advanced.
2153  *   TOD_JUMPED: current tod value advanced too far from previous value.
2154  *   TOD_RATECHANGED: the ratio between average tod delta and
2155  *   average tick delta has changed.
2156  */
2157 time_t
2158 tod_validate(time_t tod)
2159 {
2160 	time_t diff_tod;
2161 	hrtime_t diff_tick;
2162 
2163 	long dtick;
2164 	int dtick_delta;
2165 
2166 	int off = 0;
2167 	enum tod_fault_type tod_bad = TOD_NOFAULT;
2168 
2169 	static int firsttime = 1;
2170 
2171 	static time_t prev_tod = 0;
2172 	static hrtime_t prev_tick = 0;
2173 	static long dtick_avg = TOD_REF_FREQ;
2174 
2175 	int cpr_resume_done = 0;
2176 	int dr_resume_done = 0;
2177 
2178 	hrtime_t tick = gethrtime();
2179 
2180 	ASSERT(MUTEX_HELD(&tod_lock));
2181 
2182 	/*
2183 	 * tod_validate_enable is patchable via /etc/system.
2184 	 * If TOD is already faulted, or if TOD validation is deferred,
2185 	 * there is nothing to do.
2186 	 */
2187 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2188 	    tod_validate_deferred) {
2189 		return (tod);
2190 	}
2191 
2192 	/*
2193 	 * If this is the first time through, we just need to save the tod
2194 	 * we were called with and hrtime so we can use them next time to
2195 	 * validate tod_get().
2196 	 */
2197 	if (firsttime) {
2198 		firsttime = 0;
2199 		prev_tod = tod;
2200 		prev_tick = tick;
2201 		return (tod);
2202 	}
2203 
2204 	/*
2205 	 * Handle any flags that have been turned on by tod_status_set().
2206 	 * In the case where a tod_set() is done and then a subsequent
2207 	 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are
2208 	 * true), we treat the TOD_GET_FAILED with precedence by switching
2209 	 * off the flag, returning tod and leaving TOD_SET_DONE asserted
2210 	 * until such time as tod_get() completes successfully.
2211 	 */
2212 	if (tod_status_flag & TOD_GET_FAILED) {
2213 		/*
2214 		 * tod_get() has encountered an issue, possibly transitory,
2215 		 * when reading TOD.  We'll just return the incoming tod
2216 		 * value (which is actually hrestime.tv_sec in this case)
2217 		 * and when we get a genuine tod, following a successful
2218 		 * tod_get(), we can validate using prev_tod and prev_tick.
2219 		 */
2220 		tod_status_flag &= ~TOD_GET_FAILED;
2221 		return (tod);
2222 	} else if (tod_status_flag & TOD_SET_DONE) {
2223 		/*
2224 		 * TOD has been modified.  Just before the TOD was written,
2225 		 * tod_set_prev() saved tod and hrtime; we can now use
2226 		 * those values, prev_set_tod and prev_set_tick, to validate
2227 		 * the incoming tod that's just been read.
2228 		 */
2229 		prev_tod = prev_set_tod;
2230 		prev_tick = prev_set_tick;
2231 		dtick_avg = TOD_REF_FREQ;
2232 		tod_status_flag &= ~TOD_SET_DONE;
2233 		/*
2234 		 * If a tod_set() preceded a cpr_suspend() without an
2235 		 * intervening tod_validate(), we need to ensure that a
2236 		 * TOD_JUMPED condition is ignored.
2237 		 * Note this isn't a concern in the case of DR as we've
2238 		 * just reassigned dtick_avg, above.
2239 		 */
2240 		if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2241 			cpr_resume_done = 1;
2242 			tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2243 		}
2244 	} else if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2245 		/*
2246 		 * The system's coming back from a checkpoint resume.
2247 		 */
2248 		cpr_resume_done = 1;
2249 		tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2250 		/*
2251 		 * We need to handle the possibility of a CPR suspend
2252 		 * operation having been initiated whilst a DR event was
2253 		 * in-flight.
2254 		 */
2255 		if (tod_status_flag & TOD_DR_RESUME_DONE) {
2256 			dr_resume_done = 1;
2257 			tod_status_flag &= ~TOD_DR_RESUME_DONE;
2258 		}
2259 	} else if (tod_status_flag & TOD_DR_RESUME_DONE) {
2260 		/*
2261 		 * A Dynamic Reconfiguration event has taken place.
2262 		 */
2263 		dr_resume_done = 1;
2264 		tod_status_flag &= ~TOD_DR_RESUME_DONE;
2265 	}
2266 
2267 	/* test hook */
2268 	switch (tod_unit_test) {
2269 	case 1: /* for testing jumping tod */
2270 		tod += tod_test_injector;
2271 		tod_unit_test = 0;
2272 		break;
2273 	case 2:	/* for testing stuck tod bit */
2274 		tod |= 1 << tod_test_injector;
2275 		tod_unit_test = 0;
2276 		break;
2277 	case 3:	/* for testing stalled tod */
2278 		tod = prev_tod;
2279 		tod_unit_test = 0;
2280 		break;
2281 	case 4:	/* reset tod fault status */
2282 		(void) tod_fault(TOD_NOFAULT, 0);
2283 		tod_unit_test = 0;
2284 		break;
2285 	default:
2286 		break;
2287 	}
2288 
2289 	diff_tod = tod - prev_tod;
2290 	diff_tick = tick - prev_tick;
2291 
2292 	ASSERT(diff_tick >= 0);
2293 
2294 	if (diff_tod < 0) {
2295 		/* ERROR - tod reversed */
2296 		tod_bad = TOD_REVERSED;
2297 		off = (int)(prev_tod - tod);
2298 	} else if (diff_tod == 0) {
2299 		/* tod did not advance */
2300 		if (diff_tick > TOD_STALL_THRESHOLD) {
2301 			/* ERROR - tod stalled */
2302 			tod_bad = TOD_STALLED;
2303 		} else {
2304 			/*
2305 			 * Make sure we don't update prev_tick
2306 			 * so that diff_tick is calculated since
2307 			 * the first diff_tod == 0
2308 			 */
2309 			return (tod);
2310 		}
2311 	} else {
2312 		/* calculate dtick */
2313 		dtick = diff_tick / diff_tod;
2314 
2315 		/* update dtick averages */
2316 		dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2317 
2318 		/*
2319 		 * Calculate dtick_delta as
2320 		 * variation from reference freq in quartiles
2321 		 */
2322 		dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2323 		    (TOD_REF_FREQ >> 2);
2324 
2325 		/*
2326 		 * Even with a perfectly functioning TOD device,
2327 		 * when the number of elapsed seconds is low the
2328 		 * algorithm can calculate a rate that is beyond
2329 		 * tolerance, causing an error.  The algorithm is
2330 		 * inaccurate when elapsed time is low (less than
2331 		 * 5 seconds).
2332 		 */
2333 		if (diff_tod > 4) {
2334 			if (dtick < TOD_JUMP_THRESHOLD) {
2335 				/*
2336 				 * If we've just done a CPR resume, we detect
2337 				 * a jump in the TOD but, actually, what's
2338 				 * happened is that the TOD has been increasing
2339 				 * whilst the system was suspended and the tick
2340 				 * count hasn't kept up.  We consider the first
2341 				 * occurrence of this after a resume as normal
2342 				 * and ignore it; otherwise, in a non-resume
2343 				 * case, we regard it as a TOD problem.
2344 				 */
2345 				if (!cpr_resume_done) {
2346 					/* ERROR - tod jumped */
2347 					tod_bad = TOD_JUMPED;
2348 					off = (int)diff_tod;
2349 				}
2350 			}
2351 			if (dtick_delta) {
2352 				/*
2353 				 * If we've just done a DR resume, dtick_avg
2354 				 * can go a bit askew so we reset it and carry
2355 				 * on; otherwise, the TOD is in error.
2356 				 */
2357 				if (dr_resume_done) {
2358 					dtick_avg = TOD_REF_FREQ;
2359 				} else {
2360 					/* ERROR - change in clock rate */
2361 					tod_bad = TOD_RATECHANGED;
2362 				}
2363 			}
2364 		}
2365 	}
2366 
2367 	if (tod_bad != TOD_NOFAULT) {
2368 		(void) tod_fault(tod_bad, off);
2369 
2370 		/*
2371 		 * Disable dosynctodr since we are going to fault
2372 		 * the TOD chip anyway here
2373 		 */
2374 		dosynctodr = 0;
2375 
2376 		/*
2377 		 * Set tod to the correct value from hrestime
2378 		 */
2379 		tod = hrestime.tv_sec;
2380 	}
2381 
2382 	prev_tod = tod;
2383 	prev_tick = tick;
2384 	return (tod);
2385 }
2386 
2387 static void
2388 calcloadavg(int nrun, uint64_t *hp_ave)
2389 {
2390 	static int64_t f[3] = { 135, 27, 9 };
2391 	uint_t i;
2392 	int64_t q, r;
2393 
2394 	/*
2395 	 * Compute load average over the last 1, 5, and 15 minutes
2396 	 * (60, 300, and 900 seconds).  The constants in f[3] are for
2397 	 * exponential decay:
2398 	 * (1 - exp(-1/60)) << 13 = 135,
2399 	 * (1 - exp(-1/300)) << 13 = 27,
2400 	 * (1 - exp(-1/900)) << 13 = 9.
2401 	 */
2402 
2403 	/*
2404 	 * a little hoop-jumping to avoid integer overflow
2405 	 */
2406 	for (i = 0; i < 3; i++) {
2407 		q = (hp_ave[i]  >> 16) << 7;
2408 		r = (hp_ave[i]  & 0xffff) << 7;
2409 		hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2410 	}
2411 }
2412 
2413 /*
2414  * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to
2415  * calculate the value of lbolt according to the current mode. In the event
2416  * driven mode (the default), lbolt is calculated by dividing the current hires
2417  * time by the number of nanoseconds per clock tick. In the cyclic driven mode
2418  * an internal variable is incremented at each firing of the lbolt cyclic
2419  * and returned by lbolt_cyclic_driven().
2420  *
2421  * The system will transition from event to cyclic driven mode when the number
2422  * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a
2423  * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to
2424  * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is
2425  * causing enough activity to cross the thresholds.
2426  */
2427 int64_t
2428 lbolt_bootstrap(void)
2429 {
2430 	return (0);
2431 }
2432 
2433 /* ARGSUSED */
2434 uint_t
2435 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2)
2436 {
2437 	hrtime_t ts, exp;
2438 	int ret;
2439 
2440 	ASSERT(lbolt_hybrid != lbolt_cyclic_driven);
2441 
2442 	kpreempt_disable();
2443 
2444 	ts = gethrtime();
2445 	lb_info->lbi_internal = (ts/nsec_per_tick);
2446 
2447 	/*
2448 	 * Align the next expiration to a clock tick boundary.
2449 	 */
2450 	exp = ts + nsec_per_tick - 1;
2451 	exp = (exp/nsec_per_tick) * nsec_per_tick;
2452 
2453 	ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp);
2454 	ASSERT(ret);
2455 
2456 	lbolt_hybrid = lbolt_cyclic_driven;
2457 	lb_info->lbi_cyc_deactivate = B_FALSE;
2458 	lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2459 
2460 	kpreempt_enable();
2461 
2462 	ret = atomic_dec_32_nv(&lb_info->lbi_token);
2463 	ASSERT(ret == 0);
2464 
2465 	return (1);
2466 }
2467 
2468 int64_t
2469 lbolt_event_driven(void)
2470 {
2471 	hrtime_t ts;
2472 	int64_t lb;
2473 	int ret, cpu = CPU->cpu_seqid;
2474 
2475 	ts = gethrtime();
2476 	ASSERT(ts > 0);
2477 
2478 	ASSERT(nsec_per_tick > 0);
2479 	lb = (ts/nsec_per_tick);
2480 
2481 	/*
2482 	 * Switch to cyclic mode if the number of calls to this routine
2483 	 * has reached the threshold within the interval.
2484 	 */
2485 	if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2486 
2487 		if (--lb_cpu[cpu].lbc_counter == 0) {
2488 			/*
2489 			 * Reached the threshold within the interval, reset
2490 			 * the usage statistics.
2491 			 */
2492 			lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2493 			lb_cpu[cpu].lbc_cnt_start = lb;
2494 
2495 			/*
2496 			 * Make sure only one thread reprograms the
2497 			 * lbolt cyclic and changes the mode.
2498 			 */
2499 			if (panicstr == NULL &&
2500 			    atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2501 
2502 				if (lbolt_hybrid == lbolt_cyclic_driven) {
2503 					ret = atomic_dec_32_nv(
2504 					    &lb_info->lbi_token);
2505 					ASSERT(ret == 0);
2506 				} else {
2507 					lbolt_softint_post();
2508 				}
2509 			}
2510 		}
2511 	} else {
2512 		/*
2513 		 * Exceeded the interval, reset the usage statistics.
2514 		 */
2515 		lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2516 		lb_cpu[cpu].lbc_cnt_start = lb;
2517 	}
2518 
2519 	ASSERT(lb >= lb_info->lbi_debug_time);
2520 
2521 	return (lb - lb_info->lbi_debug_time);
2522 }
2523 
2524 int64_t
2525 lbolt_cyclic_driven(void)
2526 {
2527 	int64_t lb = lb_info->lbi_internal;
2528 	int cpu;
2529 
2530 	/*
2531 	 * If a CPU has already prevented the lbolt cyclic from deactivating
2532 	 * itself, don't bother tracking the usage. Otherwise check if we're
2533 	 * within the interval and how the per CPU counter is doing.
2534 	 */
2535 	if (lb_info->lbi_cyc_deactivate) {
2536 		cpu = CPU->cpu_seqid;
2537 		if ((lb - lb_cpu[cpu].lbc_cnt_start) <
2538 		    lb_info->lbi_thresh_interval) {
2539 
2540 			if (lb_cpu[cpu].lbc_counter == 0)
2541 				/*
2542 				 * Reached the threshold within the interval,
2543 				 * prevent the lbolt cyclic from turning itself
2544 				 * off.
2545 				 */
2546 				lb_info->lbi_cyc_deactivate = B_FALSE;
2547 			else
2548 				lb_cpu[cpu].lbc_counter--;
2549 		} else {
2550 			/*
2551 			 * Only reset the usage statistics when we have
2552 			 * exceeded the interval.
2553 			 */
2554 			lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2555 			lb_cpu[cpu].lbc_cnt_start = lb;
2556 		}
2557 	}
2558 
2559 	ASSERT(lb >= lb_info->lbi_debug_time);
2560 
2561 	return (lb - lb_info->lbi_debug_time);
2562 }
2563 
2564 /*
2565  * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy
2566  * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers.
2567  * It is inactive by default, and will be activated when switching from event
2568  * to cyclic driven lbolt. The cyclic will turn itself off unless signaled
2569  * by lbolt_cyclic_driven().
2570  */
2571 static void
2572 lbolt_cyclic(void)
2573 {
2574 	int ret;
2575 
2576 	lb_info->lbi_internal++;
2577 
2578 	if (!lbolt_cyc_only) {
2579 
2580 		if (lb_info->lbi_cyc_deactivate) {
2581 			/*
2582 			 * Switching from cyclic to event driven mode.
2583 			 */
2584 			if (panicstr == NULL &&
2585 			    atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2586 
2587 				if (lbolt_hybrid == lbolt_event_driven) {
2588 					ret = atomic_dec_32_nv(
2589 					    &lb_info->lbi_token);
2590 					ASSERT(ret == 0);
2591 					return;
2592 				}
2593 
2594 				kpreempt_disable();
2595 
2596 				lbolt_hybrid = lbolt_event_driven;
2597 				ret = cyclic_reprogram(
2598 				    lb_info->id.lbi_cyclic_id,
2599 				    CY_INFINITY);
2600 				ASSERT(ret);
2601 
2602 				kpreempt_enable();
2603 
2604 				ret = atomic_dec_32_nv(&lb_info->lbi_token);
2605 				ASSERT(ret == 0);
2606 			}
2607 		}
2608 
2609 		/*
2610 		 * The lbolt cyclic should not try to deactivate itself before
2611 		 * the sampling period has elapsed.
2612 		 */
2613 		if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >=
2614 		    lb_info->lbi_thresh_interval) {
2615 			lb_info->lbi_cyc_deactivate = B_TRUE;
2616 			lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2617 		}
2618 	}
2619 }
2620 
2621 /*
2622  * Since the lbolt service was historically cyclic driven, it must be 'stopped'
2623  * when the system drops into the kernel debugger. lbolt_debug_entry() is
2624  * called by the KDI system claim callbacks to record a hires timestamp at
2625  * debug enter time. lbolt_debug_return() is called by the sistem release
2626  * callbacks to account for the time spent in the debugger. The value is then
2627  * accumulated in the lb_info structure and used by lbolt_event_driven() and
2628  * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine.
2629  */
2630 void
2631 lbolt_debug_entry(void)
2632 {
2633 	if (lbolt_hybrid != lbolt_bootstrap) {
2634 		ASSERT(lb_info != NULL);
2635 		lb_info->lbi_debug_ts = gethrtime();
2636 	}
2637 }
2638 
2639 /*
2640  * Calculate the time spent in the debugger and add it to the lbolt info
2641  * structure. We also update the internal lbolt value in case we were in
2642  * cyclic driven mode going in.
2643  */
2644 void
2645 lbolt_debug_return(void)
2646 {
2647 	hrtime_t ts;
2648 
2649 	if (lbolt_hybrid != lbolt_bootstrap) {
2650 		ASSERT(lb_info != NULL);
2651 		ASSERT(nsec_per_tick > 0);
2652 
2653 		ts = gethrtime();
2654 		lb_info->lbi_internal = (ts/nsec_per_tick);
2655 		lb_info->lbi_debug_time +=
2656 		    ((ts - lb_info->lbi_debug_ts)/nsec_per_tick);
2657 
2658 		lb_info->lbi_debug_ts = 0;
2659 	}
2660 }
2661