1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/param.h> 33 #include <sys/t_lock.h> 34 #include <sys/types.h> 35 #include <sys/tuneable.h> 36 #include <sys/sysmacros.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/lgrp.h> 40 #include <sys/user.h> 41 #include <sys/proc.h> 42 #include <sys/callo.h> 43 #include <sys/kmem.h> 44 #include <sys/var.h> 45 #include <sys/cmn_err.h> 46 #include <sys/swap.h> 47 #include <sys/vmsystm.h> 48 #include <sys/class.h> 49 #include <sys/time.h> 50 #include <sys/debug.h> 51 #include <sys/vtrace.h> 52 #include <sys/spl.h> 53 #include <sys/atomic.h> 54 #include <sys/dumphdr.h> 55 #include <sys/archsystm.h> 56 #include <sys/fs/swapnode.h> 57 #include <sys/panic.h> 58 #include <sys/disp.h> 59 #include <sys/msacct.h> 60 #include <sys/mem_cage.h> 61 62 #include <vm/page.h> 63 #include <vm/anon.h> 64 #include <vm/rm.h> 65 #include <sys/cyclic.h> 66 #include <sys/cpupart.h> 67 #include <sys/rctl.h> 68 #include <sys/task.h> 69 #include <sys/sdt.h> 70 71 #ifdef __sparc 72 #include <sys/wdt.h> 73 #endif 74 75 /* 76 * for NTP support 77 */ 78 #include <sys/timex.h> 79 #include <sys/inttypes.h> 80 81 /* 82 * clock is called straight from 83 * the real time clock interrupt. 84 * 85 * Functions: 86 * reprime clock 87 * schedule callouts 88 * maintain date 89 * jab the scheduler 90 */ 91 92 extern kcondvar_t fsflush_cv; 93 extern sysinfo_t sysinfo; 94 extern vminfo_t vminfo; 95 extern int idleswtch; /* flag set while idle in pswtch() */ 96 97 /* 98 * high-precision avenrun values. These are needed to make the 99 * regular avenrun values accurate. 100 */ 101 static uint64_t hp_avenrun[3]; 102 int avenrun[3]; /* FSCALED average run queue lengths */ 103 time_t time; /* time in seconds since 1970 - for compatibility only */ 104 105 static struct loadavg_s loadavg; 106 /* 107 * Phase/frequency-lock loop (PLL/FLL) definitions 108 * 109 * The following variables are read and set by the ntp_adjtime() system 110 * call. 111 * 112 * time_state shows the state of the system clock, with values defined 113 * in the timex.h header file. 114 * 115 * time_status shows the status of the system clock, with bits defined 116 * in the timex.h header file. 117 * 118 * time_offset is used by the PLL/FLL to adjust the system time in small 119 * increments. 120 * 121 * time_constant determines the bandwidth or "stiffness" of the PLL. 122 * 123 * time_tolerance determines maximum frequency error or tolerance of the 124 * CPU clock oscillator and is a property of the architecture; however, 125 * in principle it could change as result of the presence of external 126 * discipline signals, for instance. 127 * 128 * time_precision is usually equal to the kernel tick variable; however, 129 * in cases where a precision clock counter or external clock is 130 * available, the resolution can be much less than this and depend on 131 * whether the external clock is working or not. 132 * 133 * time_maxerror is initialized by a ntp_adjtime() call and increased by 134 * the kernel once each second to reflect the maximum error bound 135 * growth. 136 * 137 * time_esterror is set and read by the ntp_adjtime() call, but 138 * otherwise not used by the kernel. 139 */ 140 int32_t time_state = TIME_OK; /* clock state */ 141 int32_t time_status = STA_UNSYNC; /* clock status bits */ 142 int32_t time_offset = 0; /* time offset (us) */ 143 int32_t time_constant = 0; /* pll time constant */ 144 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 145 int32_t time_precision = 1; /* clock precision (us) */ 146 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 147 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 148 149 /* 150 * The following variables establish the state of the PLL/FLL and the 151 * residual time and frequency offset of the local clock. The scale 152 * factors are defined in the timex.h header file. 153 * 154 * time_phase and time_freq are the phase increment and the frequency 155 * increment, respectively, of the kernel time variable. 156 * 157 * time_freq is set via ntp_adjtime() from a value stored in a file when 158 * the synchronization daemon is first started. Its value is retrieved 159 * via ntp_adjtime() and written to the file about once per hour by the 160 * daemon. 161 * 162 * time_adj is the adjustment added to the value of tick at each timer 163 * interrupt and is recomputed from time_phase and time_freq at each 164 * seconds rollover. 165 * 166 * time_reftime is the second's portion of the system time at the last 167 * call to ntp_adjtime(). It is used to adjust the time_freq variable 168 * and to increase the time_maxerror as the time since last update 169 * increases. 170 */ 171 int32_t time_phase = 0; /* phase offset (scaled us) */ 172 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 173 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 174 int32_t time_reftime = 0; /* time at last adjustment (s) */ 175 176 /* 177 * The scale factors of the following variables are defined in the 178 * timex.h header file. 179 * 180 * pps_time contains the time at each calibration interval, as read by 181 * microtime(). pps_count counts the seconds of the calibration 182 * interval, the duration of which is nominally pps_shift in powers of 183 * two. 184 * 185 * pps_offset is the time offset produced by the time median filter 186 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 187 * this filter. 188 * 189 * pps_freq is the frequency offset produced by the frequency median 190 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 191 * by this filter. 192 * 193 * pps_usec is latched from a high resolution counter or external clock 194 * at pps_time. Here we want the hardware counter contents only, not the 195 * contents plus the time_tv.usec as usual. 196 * 197 * pps_valid counts the number of seconds since the last PPS update. It 198 * is used as a watchdog timer to disable the PPS discipline should the 199 * PPS signal be lost. 200 * 201 * pps_glitch counts the number of seconds since the beginning of an 202 * offset burst more than tick/2 from current nominal offset. It is used 203 * mainly to suppress error bursts due to priority conflicts between the 204 * PPS interrupt and timer interrupt. 205 * 206 * pps_intcnt counts the calibration intervals for use in the interval- 207 * adaptation algorithm. It's just too complicated for words. 208 */ 209 struct timeval pps_time; /* kernel time at last interval */ 210 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 211 int32_t pps_offset = 0; /* pps time offset (us) */ 212 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 213 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 214 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 215 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 216 int32_t pps_usec = 0; /* microsec counter at last interval */ 217 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 218 int32_t pps_glitch = 0; /* pps signal glitch counter */ 219 int32_t pps_count = 0; /* calibration interval counter (s) */ 220 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 221 int32_t pps_intcnt = 0; /* intervals at current duration */ 222 223 /* 224 * PPS signal quality monitors 225 * 226 * pps_jitcnt counts the seconds that have been discarded because the 227 * jitter measured by the time median filter exceeds the limit MAXTIME 228 * (100 us). 229 * 230 * pps_calcnt counts the frequency calibration intervals, which are 231 * variable from 4 s to 256 s. 232 * 233 * pps_errcnt counts the calibration intervals which have been discarded 234 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 235 * calibration interval jitter exceeds two ticks. 236 * 237 * pps_stbcnt counts the calibration intervals that have been discarded 238 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 239 */ 240 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 241 int32_t pps_calcnt = 0; /* calibration intervals */ 242 int32_t pps_errcnt = 0; /* calibration errors */ 243 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 244 245 /* The following variables require no explicit locking */ 246 volatile clock_t lbolt; /* time in Hz since last boot */ 247 volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */ 248 249 kcondvar_t lbolt_cv; 250 int one_sec = 1; /* turned on once every second */ 251 static int fsflushcnt; /* counter for t_fsflushr */ 252 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 253 int tod_needsync = 0; /* need to sync tod chip with software time */ 254 static int tod_broken = 0; /* clock chip doesn't work */ 255 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 256 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 257 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 258 259 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 260 261 /* 262 * for tod fault detection 263 */ 264 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 265 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 266 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 267 #define TOD_FILTER_N 4 268 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 269 static int tod_faulted = TOD_NOFAULT; 270 static int tod_fault_reset_flag = 0; 271 272 /* patchable via /etc/system */ 273 int tod_validate_enable = 1; 274 275 /* 276 * On non-SPARC systems, TOD validation must be deferred until gethrtime 277 * returns non-zero values (after mach_clkinit's execution). 278 * On SPARC systems, it must be deferred until after hrtime_base 279 * and hres_last_tick are set (in the first invocation of hres_tick). 280 * Since in both cases the prerequisites occur before the invocation of 281 * tod_get() in clock(), the deferment is lifted there. 282 */ 283 static boolean_t tod_validate_deferred = B_TRUE; 284 285 /* 286 * tod_fault_table[] must be aligned with 287 * enum tod_fault_type in systm.h 288 */ 289 static char *tod_fault_table[] = { 290 "Reversed", /* TOD_REVERSED */ 291 "Stalled", /* TOD_STALLED */ 292 "Jumped", /* TOD_JUMPED */ 293 "Changed in Clock Rate" /* TOD_RATECHANGED */ 294 /* 295 * no strings needed for TOD_NOFAULT 296 */ 297 }; 298 299 /* 300 * test hook for tod broken detection in tod_validate 301 */ 302 int tod_unit_test = 0; 303 time_t tod_test_injector; 304 305 #define CLOCK_ADJ_HIST_SIZE 4 306 307 static int adj_hist_entry; 308 309 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 310 311 static void clock_tick(kthread_t *); 312 static void calcloadavg(int, uint64_t *); 313 static int genloadavg(struct loadavg_s *); 314 static void loadavg_update(); 315 316 void (*cmm_clock_callout)() = NULL; 317 318 #ifdef KSLICE 319 int kslice = KSLICE; 320 #endif 321 322 static void 323 clock(void) 324 { 325 kthread_t *t; 326 kmutex_t *plockp; /* pointer to thread's process lock */ 327 int pinned_intr = 0; 328 uint_t nrunnable, nrunning; 329 uint_t w_io; 330 cpu_t *cp; 331 cpupart_t *cpupart; 332 int exiting; 333 extern void set_anoninfo(); 334 extern void set_freemem(); 335 void (*funcp)(); 336 int32_t ltemp; 337 int64_t lltemp; 338 int s; 339 int do_lgrp_load; 340 int i; 341 342 if (panicstr) 343 return; 344 345 set_anoninfo(); 346 /* 347 * Make sure that 'freemem' do not drift too far from the truth 348 */ 349 set_freemem(); 350 351 352 /* 353 * Before the section which is repeated is executed, we do 354 * the time delta processing which occurs every clock tick 355 * 356 * There is additional processing which happens every time 357 * the nanosecond counter rolls over which is described 358 * below - see the section which begins with : if (one_sec) 359 * 360 * This section marks the beginning of the precision-kernel 361 * code fragment. 362 * 363 * First, compute the phase adjustment. If the low-order bits 364 * (time_phase) of the update overflow, bump the higher order 365 * bits (time_update). 366 */ 367 time_phase += time_adj; 368 if (time_phase <= -FINEUSEC) { 369 ltemp = -time_phase / SCALE_PHASE; 370 time_phase += ltemp * SCALE_PHASE; 371 s = hr_clock_lock(); 372 timedelta -= ltemp * (NANOSEC/MICROSEC); 373 hr_clock_unlock(s); 374 } else if (time_phase >= FINEUSEC) { 375 ltemp = time_phase / SCALE_PHASE; 376 time_phase -= ltemp * SCALE_PHASE; 377 s = hr_clock_lock(); 378 timedelta += ltemp * (NANOSEC/MICROSEC); 379 hr_clock_unlock(s); 380 } 381 382 /* 383 * End of precision-kernel code fragment which is processed 384 * every timer interrupt. 385 * 386 * Continue with the interrupt processing as scheduled. 387 * 388 * Did we pin another interrupt thread? Need to check this before 389 * grabbing any adaptive locks, since if we block on a lock the 390 * pinned thread could escape. Note that this is just a heuristic; 391 * if we take multiple laps though clock() without returning from 392 * the interrupt because we have another clock tick pending, then 393 * the pinned interrupt could be released by one of the previous 394 * laps. The only consequence is that the CPU will be counted as 395 * in idle (or wait) state once the pinned interrupt is released. 396 * Since this accounting is inaccurate by nature, this isn't a big 397 * deal --- but we should try to get it right in the common case 398 * where we only call clock() once per interrupt. 399 */ 400 if (curthread->t_intr != NULL) 401 pinned_intr = (curthread->t_intr->t_flag & T_INTR_THREAD); 402 403 /* 404 * Count the number of runnable threads and the number waiting 405 * for some form of I/O to complete -- gets added to 406 * sysinfo.waiting. To know the state of the system, must add 407 * wait counts from all CPUs. Also add up the per-partition 408 * statistics. 409 */ 410 w_io = 0; 411 nrunnable = 0; 412 413 /* 414 * keep track of when to update lgrp/part loads 415 */ 416 417 do_lgrp_load = 0; 418 if (lgrp_ticks++ >= hz / 10) { 419 lgrp_ticks = 0; 420 do_lgrp_load = 1; 421 } 422 423 if (one_sec) 424 loadavg_update(); 425 426 /* 427 * First count the threads waiting on kpreempt queues in each 428 * CPU partition. 429 */ 430 431 cpupart = cp_list_head; 432 do { 433 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 434 435 cpupart->cp_updates++; 436 nrunnable += cpupart_nrunnable; 437 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 438 if (one_sec) { 439 cpupart->cp_nrunning = 0; 440 cpupart->cp_nrunnable = cpupart_nrunnable; 441 } 442 } while ((cpupart = cpupart->cp_next) != cp_list_head); 443 444 445 /* Now count the per-CPU statistics. */ 446 cp = cpu_list; 447 do { 448 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 449 450 nrunnable += cpu_nrunnable; 451 cpupart = cp->cpu_part; 452 cpupart->cp_nrunnable_cum += cpu_nrunnable; 453 if (one_sec) 454 cpupart->cp_nrunnable += cpu_nrunnable; 455 if (do_lgrp_load && 456 (cp->cpu_flags & CPU_EXISTS)) { 457 /* 458 * When updating the lgroup's load average, 459 * account for the thread running on the CPU. 460 * If the CPU is the current one, then we need 461 * to account for the underlying thread which 462 * got the clock interrupt not the thread that is 463 * handling the interrupt and caculating the load 464 * average 465 */ 466 t = cp->cpu_thread; 467 if (CPU == cp) 468 t = t->t_intr; 469 470 /* 471 * Account for the load average for this thread if 472 * it isn't the idle thread or it is on the interrupt 473 * stack and not the current CPU handling the clock 474 * interrupt 475 */ 476 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 477 CPU_ON_INTR(cp))) { 478 if (t->t_lpl == cp->cpu_lpl) { 479 /* local thread */ 480 cpu_nrunnable++; 481 } else { 482 /* 483 * This is a remote thread, charge it 484 * against its home lgroup. Note that 485 * we notice that a thread is remote 486 * only if it's currently executing. 487 * This is a reasonable approximation, 488 * since queued remote threads are rare. 489 * Note also that if we didn't charge 490 * it to its home lgroup, remote 491 * execution would often make a system 492 * appear balanced even though it was 493 * not, and thread placement/migration 494 * would often not be done correctly. 495 */ 496 lgrp_loadavg(t->t_lpl, 497 LGRP_LOADAVG_IN_THREAD_MAX, 0); 498 } 499 } 500 lgrp_loadavg(cp->cpu_lpl, 501 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 502 } 503 } while ((cp = cp->cpu_next) != cpu_list); 504 505 /* 506 * Do tick processing for all the active threads running in 507 * the system. 508 */ 509 cp = cpu_list; 510 nrunning = 0; 511 do { 512 klwp_id_t lwp; 513 int intr; 514 int thread_away; 515 516 /* 517 * Don't do any tick processing on CPUs that 518 * aren't even in the system or aren't up yet. 519 */ 520 if ((cp->cpu_flags & CPU_EXISTS) == 0) { 521 continue; 522 } 523 524 /* 525 * The locking here is rather tricky. We use 526 * thread_free_lock to keep the currently running 527 * thread from being freed or recycled while we're 528 * looking at it. We can then check if the thread 529 * is exiting and get the appropriate p_lock if it 530 * is not. We have to be careful, though, because 531 * the _process_ can still be freed while we're 532 * holding thread_free_lock. To avoid touching the 533 * proc structure we put a pointer to the p_lock in the 534 * thread structure. The p_lock is persistent so we 535 * can acquire it even if the process is gone. At that 536 * point we can check (again) if the thread is exiting 537 * and either drop the lock or do the tick processing. 538 */ 539 mutex_enter(&thread_free_lock); 540 /* 541 * We cannot hold the cpu_lock to prevent the 542 * cpu_list from changing in the clock interrupt. 543 * As long as we don't block (or don't get pre-empted) 544 * the cpu_list will not change (all threads are paused 545 * before list modification). If the list does change 546 * any deleted cpu structures will remain with cpu_next 547 * set to NULL, hence the following test. 548 */ 549 if (cp->cpu_next == NULL) { 550 mutex_exit(&thread_free_lock); 551 break; 552 } 553 t = cp->cpu_thread; /* Current running thread */ 554 if (CPU == cp) { 555 /* 556 * 't' will be the clock interrupt thread on this 557 * CPU. Use the pinned thread (if any) on this CPU 558 * as the target of the clock tick. If we pinned 559 * an interrupt, though, just keep using the clock 560 * interrupt thread since the formerly pinned one 561 * may have gone away. One interrupt thread is as 562 * good as another, and this means we don't have 563 * to continue to check pinned_intr in subsequent 564 * code. 565 */ 566 ASSERT(t == curthread); 567 if (t->t_intr != NULL && !pinned_intr) 568 t = t->t_intr; 569 } 570 571 intr = t->t_flag & T_INTR_THREAD; 572 lwp = ttolwp(t); 573 if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) { 574 /* 575 * Thread is exiting (or uninteresting) so don't 576 * do tick processing or grab p_lock. Once we 577 * drop thread_free_lock we can't look inside the 578 * thread or lwp structure, since the thread may 579 * have gone away. 580 */ 581 exiting = 1; 582 } else { 583 /* 584 * OK, try to grab the process lock. See 585 * comments above for why we're not using 586 * ttoproc(t)->p_lockp here. 587 */ 588 plockp = t->t_plockp; 589 mutex_enter(plockp); 590 /* See above comment. */ 591 if (cp->cpu_next == NULL) { 592 mutex_exit(plockp); 593 mutex_exit(&thread_free_lock); 594 break; 595 } 596 /* 597 * The thread may have exited between when we 598 * checked above, and when we got the p_lock. 599 */ 600 if (t->t_proc_flag & TP_LWPEXIT) { 601 mutex_exit(plockp); 602 exiting = 1; 603 } else { 604 exiting = 0; 605 } 606 } 607 /* 608 * Either we have the p_lock for the thread's process, 609 * or we don't care about the thread structure any more. 610 * Either way we can drop thread_free_lock. 611 */ 612 mutex_exit(&thread_free_lock); 613 614 /* 615 * Update user, system, and idle cpu times. 616 */ 617 if (one_sec) { 618 nrunning++; 619 cp->cpu_part->cp_nrunning++; 620 } 621 /* 622 * If we haven't done tick processing for this 623 * lwp, then do it now. Since we don't hold the 624 * lwp down on a CPU it can migrate and show up 625 * more than once, hence the lbolt check. 626 * 627 * Also, make sure that it's okay to perform the 628 * tick processing before calling clock_tick. 629 * Setting thread_away to a TRUE value (ie. not 0) 630 * results in tick processing not being performed for 631 * that thread. Or, in other words, keeps the thread 632 * away from clock_tick processing. 633 */ 634 thread_away = ((cp->cpu_flags & CPU_QUIESCED) || 635 CPU_ON_INTR(cp) || intr || 636 (cp->cpu_dispthread == cp->cpu_idle_thread) || exiting); 637 638 if ((!thread_away) && (lbolt - t->t_lbolt != 0)) { 639 t->t_lbolt = lbolt; 640 clock_tick(t); 641 } 642 643 #ifdef KSLICE 644 /* 645 * Ah what the heck, give this kid a taste of the real 646 * world and yank the rug out from under it. 647 * But, only if we are running UniProcessor. 648 */ 649 if ((kslice) && (ncpus == 1)) { 650 aston(t); 651 cp->cpu_runrun = 1; 652 cp->cpu_kprunrun = 1; 653 } 654 #endif 655 if (!exiting) 656 mutex_exit(plockp); 657 } while ((cp = cp->cpu_next) != cpu_list); 658 659 /* 660 * bump time in ticks 661 * 662 * We rely on there being only one clock thread and hence 663 * don't need a lock to protect lbolt. 664 */ 665 lbolt++; 666 atomic_add_64((uint64_t *)&lbolt64, (int64_t)1); 667 668 /* 669 * Check for a callout that needs be called from the clock 670 * thread to support the membership protocol in a clustered 671 * system. Copy the function pointer so that we can reset 672 * this to NULL if needed. 673 */ 674 if ((funcp = cmm_clock_callout) != NULL) 675 (*funcp)(); 676 677 /* 678 * Wakeup the cageout thread waiters once per second. 679 */ 680 if (one_sec) 681 kcage_tick(); 682 683 /* 684 * Schedule timeout() requests if any are due at this time. 685 */ 686 callout_schedule(); 687 688 if (one_sec) { 689 690 int drift, absdrift; 691 timestruc_t tod; 692 int s; 693 694 /* 695 * Beginning of precision-kernel code fragment executed 696 * every second. 697 * 698 * On rollover of the second the phase adjustment to be 699 * used for the next second is calculated. Also, the 700 * maximum error is increased by the tolerance. If the 701 * PPS frequency discipline code is present, the phase is 702 * increased to compensate for the CPU clock oscillator 703 * frequency error. 704 * 705 * On a 32-bit machine and given parameters in the timex.h 706 * header file, the maximum phase adjustment is +-512 ms 707 * and maximum frequency offset is (a tad less than) 708 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 709 */ 710 time_maxerror += time_tolerance / SCALE_USEC; 711 712 /* 713 * Leap second processing. If in leap-insert state at 714 * the end of the day, the system clock is set back one 715 * second; if in leap-delete state, the system clock is 716 * set ahead one second. The microtime() routine or 717 * external clock driver will insure that reported time 718 * is always monotonic. The ugly divides should be 719 * replaced. 720 */ 721 switch (time_state) { 722 723 case TIME_OK: 724 if (time_status & STA_INS) 725 time_state = TIME_INS; 726 else if (time_status & STA_DEL) 727 time_state = TIME_DEL; 728 break; 729 730 case TIME_INS: 731 if (hrestime.tv_sec % 86400 == 0) { 732 s = hr_clock_lock(); 733 hrestime.tv_sec--; 734 hr_clock_unlock(s); 735 time_state = TIME_OOP; 736 } 737 break; 738 739 case TIME_DEL: 740 if ((hrestime.tv_sec + 1) % 86400 == 0) { 741 s = hr_clock_lock(); 742 hrestime.tv_sec++; 743 hr_clock_unlock(s); 744 time_state = TIME_WAIT; 745 } 746 break; 747 748 case TIME_OOP: 749 time_state = TIME_WAIT; 750 break; 751 752 case TIME_WAIT: 753 if (!(time_status & (STA_INS | STA_DEL))) 754 time_state = TIME_OK; 755 default: 756 break; 757 } 758 759 /* 760 * Compute the phase adjustment for the next second. In 761 * PLL mode, the offset is reduced by a fixed factor 762 * times the time constant. In FLL mode the offset is 763 * used directly. In either mode, the maximum phase 764 * adjustment for each second is clamped so as to spread 765 * the adjustment over not more than the number of 766 * seconds between updates. 767 */ 768 if (time_offset == 0) 769 time_adj = 0; 770 else if (time_offset < 0) { 771 lltemp = -time_offset; 772 if (!(time_status & STA_FLL)) { 773 if ((1 << time_constant) >= SCALE_KG) 774 lltemp *= (1 << time_constant) / 775 SCALE_KG; 776 else 777 lltemp = (lltemp / SCALE_KG) >> 778 time_constant; 779 } 780 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 781 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 782 time_offset += lltemp; 783 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 784 } else { 785 lltemp = time_offset; 786 if (!(time_status & STA_FLL)) { 787 if ((1 << time_constant) >= SCALE_KG) 788 lltemp *= (1 << time_constant) / 789 SCALE_KG; 790 else 791 lltemp = (lltemp / SCALE_KG) >> 792 time_constant; 793 } 794 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 795 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 796 time_offset -= lltemp; 797 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 798 } 799 800 /* 801 * Compute the frequency estimate and additional phase 802 * adjustment due to frequency error for the next 803 * second. When the PPS signal is engaged, gnaw on the 804 * watchdog counter and update the frequency computed by 805 * the pll and the PPS signal. 806 */ 807 pps_valid++; 808 if (pps_valid == PPS_VALID) { 809 pps_jitter = MAXTIME; 810 pps_stabil = MAXFREQ; 811 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 812 STA_PPSWANDER | STA_PPSERROR); 813 } 814 lltemp = time_freq + pps_freq; 815 816 if (lltemp) 817 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 818 819 /* 820 * End of precision kernel-code fragment 821 * 822 * The section below should be modified if we are planning 823 * to use NTP for synchronization. 824 * 825 * Note: the clock synchronization code now assumes 826 * the following: 827 * - if dosynctodr is 1, then compute the drift between 828 * the tod chip and software time and adjust one or 829 * the other depending on the circumstances 830 * 831 * - if dosynctodr is 0, then the tod chip is independent 832 * of the software clock and should not be adjusted, 833 * but allowed to free run. this allows NTP to sync. 834 * hrestime without any interference from the tod chip. 835 */ 836 837 tod_validate_deferred = B_FALSE; 838 mutex_enter(&tod_lock); 839 tod = tod_get(); 840 drift = tod.tv_sec - hrestime.tv_sec; 841 absdrift = (drift >= 0) ? drift : -drift; 842 if (tod_needsync || absdrift > 1) { 843 int s; 844 if (absdrift > 2) { 845 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 846 s = hr_clock_lock(); 847 hrestime = tod; 848 membar_enter(); /* hrestime visible */ 849 timedelta = 0; 850 timechanged++; 851 tod_needsync = 0; 852 hr_clock_unlock(s); 853 } 854 } else { 855 if (tod_needsync || !dosynctodr) { 856 gethrestime(&tod); 857 tod_set(tod); 858 s = hr_clock_lock(); 859 if (timedelta == 0) 860 tod_needsync = 0; 861 hr_clock_unlock(s); 862 } else { 863 /* 864 * If the drift is 2 seconds on the 865 * money, then the TOD is adjusting 866 * the clock; record that. 867 */ 868 clock_adj_hist[adj_hist_entry++ % 869 CLOCK_ADJ_HIST_SIZE] = lbolt64; 870 s = hr_clock_lock(); 871 timedelta = (int64_t)drift*NANOSEC; 872 hr_clock_unlock(s); 873 } 874 } 875 } 876 one_sec = 0; 877 time = gethrestime_sec(); /* for crusty old kmem readers */ 878 mutex_exit(&tod_lock); 879 880 /* 881 * Some drivers still depend on this... XXX 882 */ 883 cv_broadcast(&lbolt_cv); 884 885 sysinfo.updates++; 886 vminfo.freemem += freemem; 887 { 888 pgcnt_t maxswap, resv, free; 889 pgcnt_t avail = 890 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 891 892 maxswap = k_anoninfo.ani_mem_resv 893 + k_anoninfo.ani_max +avail; 894 free = k_anoninfo.ani_free + avail; 895 resv = k_anoninfo.ani_phys_resv + 896 k_anoninfo.ani_mem_resv; 897 898 vminfo.swap_resv += resv; 899 /* number of reserved and allocated pages */ 900 #ifdef DEBUG 901 if (maxswap < free) 902 cmn_err(CE_WARN, "clock: maxswap < free"); 903 if (maxswap < resv) 904 cmn_err(CE_WARN, "clock: maxswap < resv"); 905 #endif 906 vminfo.swap_alloc += maxswap - free; 907 vminfo.swap_avail += maxswap - resv; 908 vminfo.swap_free += free; 909 } 910 if (nrunnable) { 911 sysinfo.runque += nrunnable; 912 sysinfo.runocc++; 913 } 914 if (nswapped) { 915 sysinfo.swpque += nswapped; 916 sysinfo.swpocc++; 917 } 918 sysinfo.waiting += w_io; 919 920 /* 921 * Wake up fsflush to write out DELWRI 922 * buffers, dirty pages and other cached 923 * administrative data, e.g. inodes. 924 */ 925 if (--fsflushcnt <= 0) { 926 fsflushcnt = tune.t_fsflushr; 927 cv_signal(&fsflush_cv); 928 } 929 930 vmmeter(); 931 calcloadavg(genloadavg(&loadavg), hp_avenrun); 932 for (i = 0; i < 3; i++) 933 /* 934 * At the moment avenrun[] can only hold 31 935 * bits of load average as it is a signed 936 * int in the API. We need to ensure that 937 * hp_avenrun[i] >> (16 - FSHIFT) will not be 938 * too large. If it is, we put the largest value 939 * that we can use into avenrun[i]. This is 940 * kludgey, but about all we can do until we 941 * avenrun[] is declared as an array of uint64[] 942 */ 943 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 944 avenrun[i] = (int32_t)(hp_avenrun[i] >> 945 (16 - FSHIFT)); 946 else 947 avenrun[i] = 0x7fffffff; 948 949 cpupart = cp_list_head; 950 do { 951 calcloadavg(genloadavg(&cpupart->cp_loadavg), 952 cpupart->cp_hp_avenrun); 953 } while ((cpupart = cpupart->cp_next) != cp_list_head); 954 955 /* 956 * Wake up the swapper thread if necessary. 957 */ 958 if (runin || 959 (runout && (avefree < desfree || wake_sched_sec))) { 960 t = &t0; 961 thread_lock(t); 962 if (t->t_state == TS_STOPPED) { 963 runin = runout = 0; 964 wake_sched_sec = 0; 965 t->t_whystop = 0; 966 t->t_whatstop = 0; 967 t->t_schedflag &= ~TS_ALLSTART; 968 THREAD_TRANSITION(t); 969 setfrontdq(t); 970 } 971 thread_unlock(t); 972 } 973 } 974 975 /* 976 * Wake up the swapper if any high priority swapped-out threads 977 * became runable during the last tick. 978 */ 979 if (wake_sched) { 980 t = &t0; 981 thread_lock(t); 982 if (t->t_state == TS_STOPPED) { 983 runin = runout = 0; 984 wake_sched = 0; 985 t->t_whystop = 0; 986 t->t_whatstop = 0; 987 t->t_schedflag &= ~TS_ALLSTART; 988 THREAD_TRANSITION(t); 989 setfrontdq(t); 990 } 991 thread_unlock(t); 992 } 993 } 994 995 void 996 clock_init(void) 997 { 998 cyc_handler_t hdlr; 999 cyc_time_t when; 1000 1001 hdlr.cyh_func = (cyc_func_t)clock; 1002 hdlr.cyh_level = CY_LOCK_LEVEL; 1003 hdlr.cyh_arg = NULL; 1004 1005 when.cyt_when = 0; 1006 when.cyt_interval = nsec_per_tick; 1007 1008 mutex_enter(&cpu_lock); 1009 clock_cyclic = cyclic_add(&hdlr, &when); 1010 mutex_exit(&cpu_lock); 1011 } 1012 1013 /* 1014 * Called before calcloadavg to get 10-sec moving loadavg together 1015 */ 1016 1017 static int 1018 genloadavg(struct loadavg_s *avgs) 1019 { 1020 int avg; 1021 int spos; /* starting position */ 1022 int cpos; /* moving current position */ 1023 int i; 1024 int slen; 1025 hrtime_t hr_avg; 1026 1027 /* 10-second snapshot, calculate first positon */ 1028 if (avgs->lg_len == 0) { 1029 return (0); 1030 } 1031 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 1032 1033 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 1034 S_LOADAVG_SZ + (avgs->lg_cur - 1); 1035 for (i = hr_avg = 0; i < slen; i++) { 1036 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 1037 hr_avg += avgs->lg_loads[cpos]; 1038 } 1039 1040 hr_avg = hr_avg / slen; 1041 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 1042 1043 return (avg); 1044 } 1045 1046 /* 1047 * Run every second from clock () to update the loadavg count available to the 1048 * system and cpu-partitions. 1049 * 1050 * This works by sampling the previous usr, sys, wait time elapsed, 1051 * computing a delta, and adding that delta to the elapsed usr, sys, 1052 * wait increase. 1053 */ 1054 1055 static void 1056 loadavg_update() 1057 { 1058 cpu_t *cp; 1059 cpupart_t *cpupart; 1060 hrtime_t cpu_total; 1061 int prev; 1062 1063 cp = cpu_list; 1064 loadavg.lg_total = 0; 1065 1066 /* 1067 * first pass totals up per-cpu statistics for system and cpu 1068 * partitions 1069 */ 1070 1071 do { 1072 struct loadavg_s *lavg; 1073 1074 lavg = &cp->cpu_loadavg; 1075 1076 cpu_total = cp->cpu_acct[CMS_USER] + 1077 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 1078 /* compute delta against last total */ 1079 scalehrtime(&cpu_total); 1080 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 1081 S_LOADAVG_SZ + (lavg->lg_cur - 1); 1082 if (lavg->lg_loads[prev] <= 0) { 1083 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1084 cpu_total = 0; 1085 } else { 1086 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1087 cpu_total = cpu_total - lavg->lg_loads[prev]; 1088 if (cpu_total < 0) 1089 cpu_total = 0; 1090 } 1091 1092 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1093 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1094 lavg->lg_len + 1 : S_LOADAVG_SZ; 1095 1096 loadavg.lg_total += cpu_total; 1097 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 1098 1099 } while ((cp = cp->cpu_next) != cpu_list); 1100 1101 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1102 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1103 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1104 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1105 /* 1106 * Second pass updates counts 1107 */ 1108 cpupart = cp_list_head; 1109 1110 do { 1111 struct loadavg_s *lavg; 1112 1113 lavg = &cpupart->cp_loadavg; 1114 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1115 lavg->lg_total = 0; 1116 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1117 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1118 lavg->lg_len + 1 : S_LOADAVG_SZ; 1119 1120 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1121 1122 } 1123 1124 /* 1125 * clock_update() - local clock update 1126 * 1127 * This routine is called by ntp_adjtime() to update the local clock 1128 * phase and frequency. The implementation is of an 1129 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1130 * routine computes new time and frequency offset estimates for each 1131 * call. The PPS signal itself determines the new time offset, 1132 * instead of the calling argument. Presumably, calls to 1133 * ntp_adjtime() occur only when the caller believes the local clock 1134 * is valid within some bound (+-128 ms with NTP). If the caller's 1135 * time is far different than the PPS time, an argument will ensue, 1136 * and it's not clear who will lose. 1137 * 1138 * For uncompensated quartz crystal oscillatores and nominal update 1139 * intervals less than 1024 s, operation should be in phase-lock mode 1140 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1141 * intervals greater than this, operation should be in frequency-lock 1142 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1143 * 1144 * Note: mutex(&tod_lock) is in effect. 1145 */ 1146 void 1147 clock_update(int offset) 1148 { 1149 int ltemp, mtemp, s; 1150 1151 ASSERT(MUTEX_HELD(&tod_lock)); 1152 1153 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1154 return; 1155 ltemp = offset; 1156 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1157 ltemp = pps_offset; 1158 1159 /* 1160 * Scale the phase adjustment and clamp to the operating range. 1161 */ 1162 if (ltemp > MAXPHASE) 1163 time_offset = MAXPHASE * SCALE_UPDATE; 1164 else if (ltemp < -MAXPHASE) 1165 time_offset = -(MAXPHASE * SCALE_UPDATE); 1166 else 1167 time_offset = ltemp * SCALE_UPDATE; 1168 1169 /* 1170 * Select whether the frequency is to be controlled and in which 1171 * mode (PLL or FLL). Clamp to the operating range. Ugly 1172 * multiply/divide should be replaced someday. 1173 */ 1174 if (time_status & STA_FREQHOLD || time_reftime == 0) 1175 time_reftime = hrestime.tv_sec; 1176 1177 mtemp = hrestime.tv_sec - time_reftime; 1178 time_reftime = hrestime.tv_sec; 1179 1180 if (time_status & STA_FLL) { 1181 if (mtemp >= MINSEC) { 1182 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1183 SCALE_UPDATE)); 1184 if (ltemp) 1185 time_freq += ltemp / SCALE_KH; 1186 } 1187 } else { 1188 if (mtemp < MAXSEC) { 1189 ltemp *= mtemp; 1190 if (ltemp) 1191 time_freq += (int)(((int64_t)ltemp * 1192 SCALE_USEC) / SCALE_KF) 1193 / (1 << (time_constant * 2)); 1194 } 1195 } 1196 if (time_freq > time_tolerance) 1197 time_freq = time_tolerance; 1198 else if (time_freq < -time_tolerance) 1199 time_freq = -time_tolerance; 1200 1201 s = hr_clock_lock(); 1202 tod_needsync = 1; 1203 hr_clock_unlock(s); 1204 } 1205 1206 /* 1207 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1208 * 1209 * This routine is called at each PPS interrupt in order to discipline 1210 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1211 * and leaves it in a handy spot for the clock() routine. It 1212 * integrates successive PPS phase differences and calculates the 1213 * frequency offset. This is used in clock() to discipline the CPU 1214 * clock oscillator so that intrinsic frequency error is cancelled out. 1215 * The code requires the caller to capture the time and hardware counter 1216 * value at the on-time PPS signal transition. 1217 * 1218 * Note that, on some Unix systems, this routine runs at an interrupt 1219 * priority level higher than the timer interrupt routine clock(). 1220 * Therefore, the variables used are distinct from the clock() 1221 * variables, except for certain exceptions: The PPS frequency pps_freq 1222 * and phase pps_offset variables are determined by this routine and 1223 * updated atomically. The time_tolerance variable can be considered a 1224 * constant, since it is infrequently changed, and then only when the 1225 * PPS signal is disabled. The watchdog counter pps_valid is updated 1226 * once per second by clock() and is atomically cleared in this 1227 * routine. 1228 * 1229 * tvp is the time of the last tick; usec is a microsecond count since the 1230 * last tick. 1231 * 1232 * Note: In Solaris systems, the tick value is actually given by 1233 * usec_per_tick. This is called from the serial driver cdintr(), 1234 * or equivalent, at a high PIL. Because the kernel keeps a 1235 * highresolution time, the following code can accept either 1236 * the traditional argument pair, or the current highres timestamp 1237 * in tvp and zero in usec. 1238 */ 1239 void 1240 ddi_hardpps(struct timeval *tvp, int usec) 1241 { 1242 int u_usec, v_usec, bigtick; 1243 time_t cal_sec; 1244 int cal_usec; 1245 1246 /* 1247 * An occasional glitch can be produced when the PPS interrupt 1248 * occurs in the clock() routine before the time variable is 1249 * updated. Here the offset is discarded when the difference 1250 * between it and the last one is greater than tick/2, but not 1251 * if the interval since the first discard exceeds 30 s. 1252 */ 1253 time_status |= STA_PPSSIGNAL; 1254 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1255 pps_valid = 0; 1256 u_usec = -tvp->tv_usec; 1257 if (u_usec < -(MICROSEC/2)) 1258 u_usec += MICROSEC; 1259 v_usec = pps_offset - u_usec; 1260 if (v_usec < 0) 1261 v_usec = -v_usec; 1262 if (v_usec > (usec_per_tick >> 1)) { 1263 if (pps_glitch > MAXGLITCH) { 1264 pps_glitch = 0; 1265 pps_tf[2] = u_usec; 1266 pps_tf[1] = u_usec; 1267 } else { 1268 pps_glitch++; 1269 u_usec = pps_offset; 1270 } 1271 } else 1272 pps_glitch = 0; 1273 1274 /* 1275 * A three-stage median filter is used to help deglitch the pps 1276 * time. The median sample becomes the time offset estimate; the 1277 * difference between the other two samples becomes the time 1278 * dispersion (jitter) estimate. 1279 */ 1280 pps_tf[2] = pps_tf[1]; 1281 pps_tf[1] = pps_tf[0]; 1282 pps_tf[0] = u_usec; 1283 if (pps_tf[0] > pps_tf[1]) { 1284 if (pps_tf[1] > pps_tf[2]) { 1285 pps_offset = pps_tf[1]; /* 0 1 2 */ 1286 v_usec = pps_tf[0] - pps_tf[2]; 1287 } else if (pps_tf[2] > pps_tf[0]) { 1288 pps_offset = pps_tf[0]; /* 2 0 1 */ 1289 v_usec = pps_tf[2] - pps_tf[1]; 1290 } else { 1291 pps_offset = pps_tf[2]; /* 0 2 1 */ 1292 v_usec = pps_tf[0] - pps_tf[1]; 1293 } 1294 } else { 1295 if (pps_tf[1] < pps_tf[2]) { 1296 pps_offset = pps_tf[1]; /* 2 1 0 */ 1297 v_usec = pps_tf[2] - pps_tf[0]; 1298 } else if (pps_tf[2] < pps_tf[0]) { 1299 pps_offset = pps_tf[0]; /* 1 0 2 */ 1300 v_usec = pps_tf[1] - pps_tf[2]; 1301 } else { 1302 pps_offset = pps_tf[2]; /* 1 2 0 */ 1303 v_usec = pps_tf[1] - pps_tf[0]; 1304 } 1305 } 1306 if (v_usec > MAXTIME) 1307 pps_jitcnt++; 1308 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1309 pps_jitter += v_usec / (1 << PPS_AVG); 1310 if (pps_jitter > (MAXTIME >> 1)) 1311 time_status |= STA_PPSJITTER; 1312 1313 /* 1314 * During the calibration interval adjust the starting time when 1315 * the tick overflows. At the end of the interval compute the 1316 * duration of the interval and the difference of the hardware 1317 * counters at the beginning and end of the interval. This code 1318 * is deliciously complicated by the fact valid differences may 1319 * exceed the value of tick when using long calibration 1320 * intervals and small ticks. Note that the counter can be 1321 * greater than tick if caught at just the wrong instant, but 1322 * the values returned and used here are correct. 1323 */ 1324 bigtick = (int)usec_per_tick * SCALE_USEC; 1325 pps_usec -= pps_freq; 1326 if (pps_usec >= bigtick) 1327 pps_usec -= bigtick; 1328 if (pps_usec < 0) 1329 pps_usec += bigtick; 1330 pps_time.tv_sec++; 1331 pps_count++; 1332 if (pps_count < (1 << pps_shift)) 1333 return; 1334 pps_count = 0; 1335 pps_calcnt++; 1336 u_usec = usec * SCALE_USEC; 1337 v_usec = pps_usec - u_usec; 1338 if (v_usec >= bigtick >> 1) 1339 v_usec -= bigtick; 1340 if (v_usec < -(bigtick >> 1)) 1341 v_usec += bigtick; 1342 if (v_usec < 0) 1343 v_usec = -(-v_usec >> pps_shift); 1344 else 1345 v_usec = v_usec >> pps_shift; 1346 pps_usec = u_usec; 1347 cal_sec = tvp->tv_sec; 1348 cal_usec = tvp->tv_usec; 1349 cal_sec -= pps_time.tv_sec; 1350 cal_usec -= pps_time.tv_usec; 1351 if (cal_usec < 0) { 1352 cal_usec += MICROSEC; 1353 cal_sec--; 1354 } 1355 pps_time = *tvp; 1356 1357 /* 1358 * Check for lost interrupts, noise, excessive jitter and 1359 * excessive frequency error. The number of timer ticks during 1360 * the interval may vary +-1 tick. Add to this a margin of one 1361 * tick for the PPS signal jitter and maximum frequency 1362 * deviation. If the limits are exceeded, the calibration 1363 * interval is reset to the minimum and we start over. 1364 */ 1365 u_usec = (int)usec_per_tick << 1; 1366 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1367 (cal_sec == 0 && cal_usec < u_usec)) || 1368 v_usec > time_tolerance || v_usec < -time_tolerance) { 1369 pps_errcnt++; 1370 pps_shift = PPS_SHIFT; 1371 pps_intcnt = 0; 1372 time_status |= STA_PPSERROR; 1373 return; 1374 } 1375 1376 /* 1377 * A three-stage median filter is used to help deglitch the pps 1378 * frequency. The median sample becomes the frequency offset 1379 * estimate; the difference between the other two samples 1380 * becomes the frequency dispersion (stability) estimate. 1381 */ 1382 pps_ff[2] = pps_ff[1]; 1383 pps_ff[1] = pps_ff[0]; 1384 pps_ff[0] = v_usec; 1385 if (pps_ff[0] > pps_ff[1]) { 1386 if (pps_ff[1] > pps_ff[2]) { 1387 u_usec = pps_ff[1]; /* 0 1 2 */ 1388 v_usec = pps_ff[0] - pps_ff[2]; 1389 } else if (pps_ff[2] > pps_ff[0]) { 1390 u_usec = pps_ff[0]; /* 2 0 1 */ 1391 v_usec = pps_ff[2] - pps_ff[1]; 1392 } else { 1393 u_usec = pps_ff[2]; /* 0 2 1 */ 1394 v_usec = pps_ff[0] - pps_ff[1]; 1395 } 1396 } else { 1397 if (pps_ff[1] < pps_ff[2]) { 1398 u_usec = pps_ff[1]; /* 2 1 0 */ 1399 v_usec = pps_ff[2] - pps_ff[0]; 1400 } else if (pps_ff[2] < pps_ff[0]) { 1401 u_usec = pps_ff[0]; /* 1 0 2 */ 1402 v_usec = pps_ff[1] - pps_ff[2]; 1403 } else { 1404 u_usec = pps_ff[2]; /* 1 2 0 */ 1405 v_usec = pps_ff[1] - pps_ff[0]; 1406 } 1407 } 1408 1409 /* 1410 * Here the frequency dispersion (stability) is updated. If it 1411 * is less than one-fourth the maximum (MAXFREQ), the frequency 1412 * offset is updated as well, but clamped to the tolerance. It 1413 * will be processed later by the clock() routine. 1414 */ 1415 v_usec = (v_usec >> 1) - pps_stabil; 1416 if (v_usec < 0) 1417 pps_stabil -= -v_usec >> PPS_AVG; 1418 else 1419 pps_stabil += v_usec >> PPS_AVG; 1420 if (pps_stabil > MAXFREQ >> 2) { 1421 pps_stbcnt++; 1422 time_status |= STA_PPSWANDER; 1423 return; 1424 } 1425 if (time_status & STA_PPSFREQ) { 1426 if (u_usec < 0) { 1427 pps_freq -= -u_usec >> PPS_AVG; 1428 if (pps_freq < -time_tolerance) 1429 pps_freq = -time_tolerance; 1430 u_usec = -u_usec; 1431 } else { 1432 pps_freq += u_usec >> PPS_AVG; 1433 if (pps_freq > time_tolerance) 1434 pps_freq = time_tolerance; 1435 } 1436 } 1437 1438 /* 1439 * Here the calibration interval is adjusted. If the maximum 1440 * time difference is greater than tick / 4, reduce the interval 1441 * by half. If this is not the case for four consecutive 1442 * intervals, double the interval. 1443 */ 1444 if (u_usec << pps_shift > bigtick >> 2) { 1445 pps_intcnt = 0; 1446 if (pps_shift > PPS_SHIFT) 1447 pps_shift--; 1448 } else if (pps_intcnt >= 4) { 1449 pps_intcnt = 0; 1450 if (pps_shift < PPS_SHIFTMAX) 1451 pps_shift++; 1452 } else 1453 pps_intcnt++; 1454 1455 /* 1456 * If recovering from kmdb, then make sure the tod chip gets resynced. 1457 * If we took an early exit above, then we don't yet have a stable 1458 * calibration signal to lock onto, so don't mark the tod for sync 1459 * until we get all the way here. 1460 */ 1461 { 1462 int s = hr_clock_lock(); 1463 1464 tod_needsync = 1; 1465 hr_clock_unlock(s); 1466 } 1467 } 1468 1469 /* 1470 * Handle clock tick processing for a thread. 1471 * Check for timer action, enforce CPU rlimit, do profiling etc. 1472 */ 1473 void 1474 clock_tick(kthread_t *t) 1475 { 1476 struct proc *pp; 1477 klwp_id_t lwp; 1478 struct as *as; 1479 clock_t utime; 1480 clock_t stime; 1481 int poke = 0; /* notify another CPU */ 1482 int user_mode; 1483 size_t rss; 1484 1485 /* Must be operating on a lwp/thread */ 1486 if ((lwp = ttolwp(t)) == NULL) { 1487 panic("clock_tick: no lwp"); 1488 /*NOTREACHED*/ 1489 } 1490 1491 CL_TICK(t); /* Class specific tick processing */ 1492 DTRACE_SCHED1(tick, kthread_t *, t); 1493 1494 pp = ttoproc(t); 1495 1496 /* pp->p_lock makes sure that the thread does not exit */ 1497 ASSERT(MUTEX_HELD(&pp->p_lock)); 1498 1499 user_mode = (lwp->lwp_state == LWP_USER); 1500 1501 /* 1502 * Update process times. Should use high res clock and state 1503 * changes instead of statistical sampling method. XXX 1504 */ 1505 if (user_mode) { 1506 pp->p_utime++; 1507 pp->p_task->tk_cpu_time++; 1508 } else { 1509 pp->p_stime++; 1510 pp->p_task->tk_cpu_time++; 1511 } 1512 as = pp->p_as; 1513 1514 /* 1515 * Update user profiling statistics. Get the pc from the 1516 * lwp when the AST happens. 1517 */ 1518 if (pp->p_prof.pr_scale) { 1519 atomic_add_32(&lwp->lwp_oweupc, 1); 1520 if (user_mode) { 1521 poke = 1; 1522 aston(t); 1523 } 1524 } 1525 1526 utime = pp->p_utime; 1527 stime = pp->p_stime; 1528 1529 /* 1530 * If CPU was in user state, process lwp-virtual time 1531 * interval timer. 1532 */ 1533 if (user_mode && 1534 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1535 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec_per_tick) == 0) { 1536 poke = 1; 1537 sigtoproc(pp, t, SIGVTALRM); 1538 } 1539 1540 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1541 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec_per_tick) == 0) { 1542 poke = 1; 1543 sigtoproc(pp, t, SIGPROF); 1544 } 1545 1546 /* 1547 * Enforce CPU resource controls: 1548 * (a) process.max-cpu-time resource control 1549 */ 1550 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1551 (utime + stime)/hz, RCA_UNSAFE_SIGINFO); 1552 1553 /* 1554 * (b) task.max-cpu-time resource control 1555 */ 1556 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, pp, 1, 1557 RCA_UNSAFE_SIGINFO); 1558 1559 /* 1560 * Update memory usage for the currently running process. 1561 */ 1562 rss = rm_asrss(as); 1563 PTOU(pp)->u_mem += rss; 1564 if (rss > PTOU(pp)->u_mem_max) 1565 PTOU(pp)->u_mem_max = rss; 1566 1567 /* 1568 * Notify the CPU the thread is running on. 1569 */ 1570 if (poke && t->t_cpu != CPU) 1571 poke_cpu(t->t_cpu->cpu_id); 1572 } 1573 1574 void 1575 profil_tick(uintptr_t upc) 1576 { 1577 int ticks; 1578 proc_t *p = ttoproc(curthread); 1579 klwp_t *lwp = ttolwp(curthread); 1580 struct prof *pr = &p->p_prof; 1581 1582 do { 1583 ticks = lwp->lwp_oweupc; 1584 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1585 1586 mutex_enter(&p->p_pflock); 1587 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1588 /* 1589 * Old-style profiling 1590 */ 1591 uint16_t *slot = pr->pr_base; 1592 uint16_t old, new; 1593 if (pr->pr_scale != 2) { 1594 uintptr_t delta = upc - pr->pr_off; 1595 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1596 (((delta & 0xffff) * pr->pr_scale) >> 16); 1597 if (byteoff >= (uintptr_t)pr->pr_size) { 1598 mutex_exit(&p->p_pflock); 1599 return; 1600 } 1601 slot += byteoff / sizeof (uint16_t); 1602 } 1603 if (fuword16(slot, &old) < 0 || 1604 (new = old + ticks) > SHRT_MAX || 1605 suword16(slot, new) < 0) { 1606 pr->pr_scale = 0; 1607 } 1608 } else if (pr->pr_scale == 1) { 1609 /* 1610 * PC Sampling 1611 */ 1612 model_t model = lwp_getdatamodel(lwp); 1613 int result; 1614 #ifdef __lint 1615 model = model; 1616 #endif 1617 while (ticks-- > 0) { 1618 if (pr->pr_samples == pr->pr_size) { 1619 /* buffer full, turn off sampling */ 1620 pr->pr_scale = 0; 1621 break; 1622 } 1623 switch (SIZEOF_PTR(model)) { 1624 case sizeof (uint32_t): 1625 result = suword32(pr->pr_base, (uint32_t)upc); 1626 break; 1627 #ifdef _LP64 1628 case sizeof (uint64_t): 1629 result = suword64(pr->pr_base, (uint64_t)upc); 1630 break; 1631 #endif 1632 default: 1633 cmn_err(CE_WARN, "profil_tick: unexpected " 1634 "data model"); 1635 result = -1; 1636 break; 1637 } 1638 if (result != 0) { 1639 pr->pr_scale = 0; 1640 break; 1641 } 1642 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1643 pr->pr_samples++; 1644 } 1645 } 1646 mutex_exit(&p->p_pflock); 1647 } 1648 1649 static void 1650 delay_wakeup(void *arg) 1651 { 1652 kthread_t *t = arg; 1653 1654 mutex_enter(&t->t_delay_lock); 1655 cv_signal(&t->t_delay_cv); 1656 mutex_exit(&t->t_delay_lock); 1657 } 1658 1659 void 1660 delay(clock_t ticks) 1661 { 1662 kthread_t *t = curthread; 1663 clock_t deadline = lbolt + ticks; 1664 clock_t timeleft; 1665 timeout_id_t id; 1666 1667 if (panicstr && ticks > 0) { 1668 /* 1669 * Timeouts aren't running, so all we can do is spin. 1670 */ 1671 drv_usecwait(TICK_TO_USEC(ticks)); 1672 return; 1673 } 1674 1675 while ((timeleft = deadline - lbolt) > 0) { 1676 mutex_enter(&t->t_delay_lock); 1677 id = timeout(delay_wakeup, t, timeleft); 1678 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1679 mutex_exit(&t->t_delay_lock); 1680 (void) untimeout(id); 1681 } 1682 } 1683 1684 /* 1685 * Like delay, but interruptible by a signal. 1686 */ 1687 int 1688 delay_sig(clock_t ticks) 1689 { 1690 clock_t deadline = lbolt + ticks; 1691 clock_t rc; 1692 1693 mutex_enter(&curthread->t_delay_lock); 1694 do { 1695 rc = cv_timedwait_sig(&curthread->t_delay_cv, 1696 &curthread->t_delay_lock, deadline); 1697 } while (rc > 0); 1698 mutex_exit(&curthread->t_delay_lock); 1699 if (rc == 0) 1700 return (EINTR); 1701 return (0); 1702 } 1703 1704 #define SECONDS_PER_DAY 86400 1705 1706 /* 1707 * Initialize the system time based on the TOD chip. approx is used as 1708 * an approximation of time (e.g. from the filesystem) in the event that 1709 * the TOD chip has been cleared or is unresponsive. An approx of -1 1710 * means the filesystem doesn't keep time. 1711 */ 1712 void 1713 clkset(time_t approx) 1714 { 1715 timestruc_t ts; 1716 int spl; 1717 int set_clock = 0; 1718 1719 mutex_enter(&tod_lock); 1720 ts = tod_get(); 1721 1722 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1723 /* 1724 * If the TOD chip is reporting some time after 1971, 1725 * then it probably didn't lose power or become otherwise 1726 * cleared in the recent past; check to assure that 1727 * the time coming from the filesystem isn't in the future 1728 * according to the TOD chip. 1729 */ 1730 if (approx != -1 && approx > ts.tv_sec) { 1731 cmn_err(CE_WARN, "Last shutdown is later " 1732 "than time on time-of-day chip; check date."); 1733 } 1734 } else { 1735 /* 1736 * If the TOD chip isn't giving correct time, then set it to 1737 * the time that was passed in as a rough estimate. If we 1738 * don't have an estimate, then set the clock back to a time 1739 * when Oliver North, ALF and Dire Straits were all on the 1740 * collective brain: 1987. 1741 */ 1742 timestruc_t tmp; 1743 if (approx == -1) 1744 ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1745 else 1746 ts.tv_sec = approx; 1747 ts.tv_nsec = 0; 1748 1749 /* 1750 * Attempt to write the new time to the TOD chip. Set spl high 1751 * to avoid getting preempted between the tod_set and tod_get. 1752 */ 1753 spl = splhi(); 1754 tod_set(ts); 1755 tmp = tod_get(); 1756 splx(spl); 1757 1758 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1759 tod_broken = 1; 1760 dosynctodr = 0; 1761 cmn_err(CE_WARN, "Time-of-day chip unresponsive;" 1762 " dead batteries?"); 1763 } else { 1764 cmn_err(CE_WARN, "Time-of-day chip had " 1765 "incorrect date; check and reset."); 1766 } 1767 set_clock = 1; 1768 } 1769 1770 if (!boot_time) { 1771 boot_time = ts.tv_sec; 1772 set_clock = 1; 1773 } 1774 1775 if (set_clock) 1776 set_hrestime(&ts); 1777 1778 mutex_exit(&tod_lock); 1779 } 1780 1781 int timechanged; /* for testing if the system time has been reset */ 1782 1783 void 1784 set_hrestime(timestruc_t *ts) 1785 { 1786 int spl = hr_clock_lock(); 1787 hrestime = *ts; 1788 membar_enter(); /* hrestime must be visible before timechanged++ */ 1789 timedelta = 0; 1790 timechanged++; 1791 hr_clock_unlock(spl); 1792 } 1793 1794 static uint_t deadman_seconds; 1795 static uint32_t deadman_panics; 1796 static int deadman_enabled = 0; 1797 static int deadman_panic_timers = 1; 1798 1799 static void 1800 deadman(void) 1801 { 1802 if (panicstr) { 1803 /* 1804 * During panic, other CPUs besides the panic 1805 * master continue to handle cyclics and some other 1806 * interrupts. The code below is intended to be 1807 * single threaded, so any CPU other than the master 1808 * must keep out. 1809 */ 1810 if (CPU->cpu_id != panic_cpu.cpu_id) 1811 return; 1812 1813 /* 1814 * If we're panicking, the deadman cyclic continues to increase 1815 * lbolt in case the dump device driver relies on this for 1816 * timeouts. Note that we rely on deadman() being invoked once 1817 * per second, and credit lbolt and lbolt64 with hz ticks each. 1818 */ 1819 lbolt += hz; 1820 lbolt64 += hz; 1821 1822 #ifdef __sparc 1823 watchdog_pat(); 1824 #endif 1825 1826 if (!deadman_panic_timers) 1827 return; /* allow all timers to be manually disabled */ 1828 1829 /* 1830 * If we are generating a crash dump or syncing filesystems and 1831 * the corresponding timer is set, decrement it and re-enter 1832 * the panic code to abort it and advance to the next state. 1833 * The panic states and triggers are explained in panic.c. 1834 */ 1835 if (panic_dump) { 1836 if (dump_timeleft && (--dump_timeleft == 0)) { 1837 panic("panic dump timeout"); 1838 /*NOTREACHED*/ 1839 } 1840 } else if (panic_sync) { 1841 if (sync_timeleft && (--sync_timeleft == 0)) { 1842 panic("panic sync timeout"); 1843 /*NOTREACHED*/ 1844 } 1845 } 1846 1847 return; 1848 } 1849 1850 if (lbolt != CPU->cpu_deadman_lbolt) { 1851 CPU->cpu_deadman_lbolt = lbolt; 1852 CPU->cpu_deadman_countdown = deadman_seconds; 1853 return; 1854 } 1855 1856 if (CPU->cpu_deadman_countdown-- > 0) 1857 return; 1858 1859 /* 1860 * Regardless of whether or not we actually bring the system down, 1861 * bump the deadman_panics variable. 1862 * 1863 * N.B. deadman_panics is incremented once for each CPU that 1864 * passes through here. It's expected that all the CPUs will 1865 * detect this condition within one second of each other, so 1866 * when deadman_enabled is off, deadman_panics will 1867 * typically be a multiple of the total number of CPUs in 1868 * the system. 1869 */ 1870 atomic_add_32(&deadman_panics, 1); 1871 1872 if (!deadman_enabled) { 1873 CPU->cpu_deadman_countdown = deadman_seconds; 1874 return; 1875 } 1876 1877 /* 1878 * If we're here, we want to bring the system down. 1879 */ 1880 panic("deadman: timed out after %d seconds of clock " 1881 "inactivity", deadman_seconds); 1882 /*NOTREACHED*/ 1883 } 1884 1885 /*ARGSUSED*/ 1886 static void 1887 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 1888 { 1889 cpu->cpu_deadman_lbolt = 0; 1890 cpu->cpu_deadman_countdown = deadman_seconds; 1891 1892 hdlr->cyh_func = (cyc_func_t)deadman; 1893 hdlr->cyh_level = CY_HIGH_LEVEL; 1894 hdlr->cyh_arg = NULL; 1895 1896 /* 1897 * Stagger the CPUs so that they don't all run deadman() at 1898 * the same time. Simplest reason to do this is to make it 1899 * more likely that only one CPU will panic in case of a 1900 * timeout. This is (strictly speaking) an aesthetic, not a 1901 * technical consideration. 1902 * 1903 * The interval must be one second in accordance with the 1904 * code in deadman() above to increase lbolt during panic. 1905 */ 1906 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 1907 when->cyt_interval = NANOSEC; 1908 } 1909 1910 1911 void 1912 deadman_init(void) 1913 { 1914 cyc_omni_handler_t hdlr; 1915 1916 if (deadman_seconds == 0) 1917 deadman_seconds = snoop_interval / MICROSEC; 1918 1919 if (snooping) 1920 deadman_enabled = 1; 1921 1922 hdlr.cyo_online = deadman_online; 1923 hdlr.cyo_offline = NULL; 1924 hdlr.cyo_arg = NULL; 1925 1926 mutex_enter(&cpu_lock); 1927 deadman_cyclic = cyclic_add_omni(&hdlr); 1928 mutex_exit(&cpu_lock); 1929 } 1930 1931 /* 1932 * tod_fault() is for updating tod validate mechanism state: 1933 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 1934 * currently used for debugging only 1935 * (2) The following four cases detected by tod validate mechanism: 1936 * TOD_REVERSED: current tod value is less than previous value. 1937 * TOD_STALLED: current tod value hasn't advanced. 1938 * TOD_JUMPED: current tod value advanced too far from previous value. 1939 * TOD_RATECHANGED: the ratio between average tod delta and 1940 * average tick delta has changed. 1941 */ 1942 enum tod_fault_type 1943 tod_fault(enum tod_fault_type ftype, int off) 1944 { 1945 ASSERT(MUTEX_HELD(&tod_lock)); 1946 1947 if (tod_faulted != ftype) { 1948 switch (ftype) { 1949 case TOD_NOFAULT: 1950 plat_tod_fault(TOD_NOFAULT); 1951 cmn_err(CE_NOTE, "Restarted tracking " 1952 "Time of Day clock."); 1953 tod_faulted = ftype; 1954 break; 1955 case TOD_REVERSED: 1956 case TOD_JUMPED: 1957 if (tod_faulted == TOD_NOFAULT) { 1958 plat_tod_fault(ftype); 1959 cmn_err(CE_WARN, "Time of Day clock error: " 1960 "reason [%s by 0x%x]. -- " 1961 " Stopped tracking Time Of Day clock.", 1962 tod_fault_table[ftype], off); 1963 tod_faulted = ftype; 1964 } 1965 break; 1966 case TOD_STALLED: 1967 case TOD_RATECHANGED: 1968 if (tod_faulted == TOD_NOFAULT) { 1969 plat_tod_fault(ftype); 1970 cmn_err(CE_WARN, "Time of Day clock error: " 1971 "reason [%s]. -- " 1972 " Stopped tracking Time Of Day clock.", 1973 tod_fault_table[ftype]); 1974 tod_faulted = ftype; 1975 } 1976 break; 1977 default: 1978 break; 1979 } 1980 } 1981 return (tod_faulted); 1982 } 1983 1984 void 1985 tod_fault_reset() 1986 { 1987 tod_fault_reset_flag = 1; 1988 } 1989 1990 1991 /* 1992 * tod_validate() is used for checking values returned by tod_get(). 1993 * Four error cases can be detected by this routine: 1994 * TOD_REVERSED: current tod value is less than previous. 1995 * TOD_STALLED: current tod value hasn't advanced. 1996 * TOD_JUMPED: current tod value advanced too far from previous value. 1997 * TOD_RATECHANGED: the ratio between average tod delta and 1998 * average tick delta has changed. 1999 */ 2000 time_t 2001 tod_validate(time_t tod) 2002 { 2003 time_t diff_tod; 2004 hrtime_t diff_tick; 2005 2006 long dtick; 2007 int dtick_delta; 2008 2009 int off = 0; 2010 enum tod_fault_type tod_bad = TOD_NOFAULT; 2011 2012 static int firsttime = 1; 2013 2014 static time_t prev_tod = 0; 2015 static hrtime_t prev_tick = 0; 2016 static long dtick_avg = TOD_REF_FREQ; 2017 2018 hrtime_t tick = gethrtime(); 2019 2020 ASSERT(MUTEX_HELD(&tod_lock)); 2021 2022 /* 2023 * tod_validate_enable is patchable via /etc/system. 2024 * If TOD is already faulted, or if TOD validation is deferred, 2025 * there is nothing to do. 2026 */ 2027 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2028 tod_validate_deferred) { 2029 return (tod); 2030 } 2031 2032 /* 2033 * Update prev_tod and prev_tick values for first run 2034 */ 2035 if (firsttime) { 2036 firsttime = 0; 2037 prev_tod = tod; 2038 prev_tick = tick; 2039 return (tod); 2040 } 2041 2042 /* 2043 * For either of these conditions, we need to reset ourself 2044 * and start validation from zero since each condition 2045 * indicates that the TOD will be updated with new value 2046 * Also, note that tod_needsync will be reset in clock() 2047 */ 2048 if (tod_needsync || tod_fault_reset_flag) { 2049 firsttime = 1; 2050 prev_tod = 0; 2051 prev_tick = 0; 2052 dtick_avg = TOD_REF_FREQ; 2053 2054 if (tod_fault_reset_flag) 2055 tod_fault_reset_flag = 0; 2056 2057 return (tod); 2058 } 2059 2060 /* test hook */ 2061 switch (tod_unit_test) { 2062 case 1: /* for testing jumping tod */ 2063 tod += tod_test_injector; 2064 tod_unit_test = 0; 2065 break; 2066 case 2: /* for testing stuck tod bit */ 2067 tod |= 1 << tod_test_injector; 2068 tod_unit_test = 0; 2069 break; 2070 case 3: /* for testing stalled tod */ 2071 tod = prev_tod; 2072 tod_unit_test = 0; 2073 break; 2074 case 4: /* reset tod fault status */ 2075 (void) tod_fault(TOD_NOFAULT, 0); 2076 tod_unit_test = 0; 2077 break; 2078 default: 2079 break; 2080 } 2081 2082 diff_tod = tod - prev_tod; 2083 diff_tick = tick - prev_tick; 2084 2085 ASSERT(diff_tick >= 0); 2086 2087 if (diff_tod < 0) { 2088 /* ERROR - tod reversed */ 2089 tod_bad = TOD_REVERSED; 2090 off = (int)(prev_tod - tod); 2091 } else if (diff_tod == 0) { 2092 /* tod did not advance */ 2093 if (diff_tick > TOD_STALL_THRESHOLD) { 2094 /* ERROR - tod stalled */ 2095 tod_bad = TOD_STALLED; 2096 } else { 2097 /* 2098 * Make sure we don't update prev_tick 2099 * so that diff_tick is calculated since 2100 * the first diff_tod == 0 2101 */ 2102 return (tod); 2103 } 2104 } else { 2105 /* calculate dtick */ 2106 dtick = diff_tick / diff_tod; 2107 2108 /* update dtick averages */ 2109 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2110 2111 /* 2112 * Calculate dtick_delta as 2113 * variation from reference freq in quartiles 2114 */ 2115 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2116 (TOD_REF_FREQ >> 2); 2117 2118 /* 2119 * Even with a perfectly functioning TOD device, 2120 * when the number of elapsed seconds is low the 2121 * algorithm can calculate a rate that is beyond 2122 * tolerance, causing an error. The algorithm is 2123 * inaccurate when elapsed time is low (less than 2124 * 5 seconds). 2125 */ 2126 if (diff_tod > 4) { 2127 if (dtick < TOD_JUMP_THRESHOLD) { 2128 /* ERROR - tod jumped */ 2129 tod_bad = TOD_JUMPED; 2130 off = (int)diff_tod; 2131 } else if (dtick_delta) { 2132 /* ERROR - change in clock rate */ 2133 tod_bad = TOD_RATECHANGED; 2134 } 2135 } 2136 } 2137 2138 if (tod_bad != TOD_NOFAULT) { 2139 (void) tod_fault(tod_bad, off); 2140 2141 /* 2142 * Disable dosynctodr since we are going to fault 2143 * the TOD chip anyway here 2144 */ 2145 dosynctodr = 0; 2146 2147 /* 2148 * Set tod to the correct value from hrestime 2149 */ 2150 tod = hrestime.tv_sec; 2151 } 2152 2153 prev_tod = tod; 2154 prev_tick = tick; 2155 return (tod); 2156 } 2157 2158 static void 2159 calcloadavg(int nrun, uint64_t *hp_ave) 2160 { 2161 static int64_t f[3] = { 135, 27, 9 }; 2162 uint_t i; 2163 int64_t q, r; 2164 2165 /* 2166 * Compute load average over the last 1, 5, and 15 minutes 2167 * (60, 300, and 900 seconds). The constants in f[3] are for 2168 * exponential decay: 2169 * (1 - exp(-1/60)) << 13 = 135, 2170 * (1 - exp(-1/300)) << 13 = 27, 2171 * (1 - exp(-1/900)) << 13 = 9. 2172 */ 2173 2174 /* 2175 * a little hoop-jumping to avoid integer overflow 2176 */ 2177 for (i = 0; i < 3; i++) { 2178 q = (hp_ave[i] >> 16) << 7; 2179 r = (hp_ave[i] & 0xffff) << 7; 2180 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2181 } 2182 } 2183