1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 /* 25 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2016 by Delphix. All rights reserved. 28 * Copyright 2023 Oxide Computer Company 29 */ 30 31 #include <sys/param.h> 32 #include <sys/t_lock.h> 33 #include <sys/types.h> 34 #include <sys/tuneable.h> 35 #include <sys/sysmacros.h> 36 #include <sys/systm.h> 37 #include <sys/cpuvar.h> 38 #include <sys/lgrp.h> 39 #include <sys/user.h> 40 #include <sys/proc.h> 41 #include <sys/callo.h> 42 #include <sys/kmem.h> 43 #include <sys/var.h> 44 #include <sys/cmn_err.h> 45 #include <sys/swap.h> 46 #include <sys/vmsystm.h> 47 #include <sys/class.h> 48 #include <sys/time.h> 49 #include <sys/debug.h> 50 #include <sys/vtrace.h> 51 #include <sys/spl.h> 52 #include <sys/atomic.h> 53 #include <sys/dumphdr.h> 54 #include <sys/archsystm.h> 55 #include <sys/fs/swapnode.h> 56 #include <sys/panic.h> 57 #include <sys/disp.h> 58 #include <sys/msacct.h> 59 #include <sys/mem_cage.h> 60 61 #include <vm/page.h> 62 #include <vm/anon.h> 63 #include <vm/rm.h> 64 #include <sys/cyclic.h> 65 #include <sys/cpupart.h> 66 #include <sys/rctl.h> 67 #include <sys/task.h> 68 #include <sys/sdt.h> 69 #include <sys/ddi_periodic.h> 70 #include <sys/random.h> 71 #include <sys/modctl.h> 72 #include <sys/zone.h> 73 74 /* 75 * for NTP support 76 */ 77 #include <sys/timex.h> 78 #include <sys/inttypes.h> 79 80 #include <sys/sunddi.h> 81 #include <sys/clock_impl.h> 82 83 /* 84 * clock() is called straight from the clock cyclic; see clock_init(). 85 * 86 * Functions: 87 * reprime clock 88 * maintain date 89 * jab the scheduler 90 */ 91 92 extern kcondvar_t fsflush_cv; 93 extern sysinfo_t sysinfo; 94 extern vminfo_t vminfo; 95 extern int idleswtch; /* flag set while idle in pswtch() */ 96 extern hrtime_t volatile devinfo_freeze; 97 98 /* 99 * high-precision avenrun values. These are needed to make the 100 * regular avenrun values accurate. 101 */ 102 static uint64_t hp_avenrun[3]; 103 int avenrun[3]; /* FSCALED average run queue lengths */ 104 time_t time; /* time in seconds since 1970 - for compatibility only */ 105 106 static struct loadavg_s loadavg; 107 /* 108 * Phase/frequency-lock loop (PLL/FLL) definitions 109 * 110 * The following variables are read and set by the ntp_adjtime() system 111 * call. 112 * 113 * time_state shows the state of the system clock, with values defined 114 * in the timex.h header file. 115 * 116 * time_status shows the status of the system clock, with bits defined 117 * in the timex.h header file. 118 * 119 * time_offset is used by the PLL/FLL to adjust the system time in small 120 * increments. 121 * 122 * time_constant determines the bandwidth or "stiffness" of the PLL. 123 * 124 * time_tolerance determines maximum frequency error or tolerance of the 125 * CPU clock oscillator and is a property of the architecture; however, 126 * in principle it could change as result of the presence of external 127 * discipline signals, for instance. 128 * 129 * time_precision is usually equal to the kernel tick variable; however, 130 * in cases where a precision clock counter or external clock is 131 * available, the resolution can be much less than this and depend on 132 * whether the external clock is working or not. 133 * 134 * time_maxerror is initialized by a ntp_adjtime() call and increased by 135 * the kernel once each second to reflect the maximum error bound 136 * growth. 137 * 138 * time_esterror is set and read by the ntp_adjtime() call, but 139 * otherwise not used by the kernel. 140 */ 141 int32_t time_state = TIME_OK; /* clock state */ 142 int32_t time_status = STA_UNSYNC; /* clock status bits */ 143 int32_t time_offset = 0; /* time offset (us) */ 144 int32_t time_constant = 0; /* pll time constant */ 145 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 146 int32_t time_precision = 1; /* clock precision (us) */ 147 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 148 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 149 150 /* 151 * The following variables establish the state of the PLL/FLL and the 152 * residual time and frequency offset of the local clock. The scale 153 * factors are defined in the timex.h header file. 154 * 155 * time_phase and time_freq are the phase increment and the frequency 156 * increment, respectively, of the kernel time variable. 157 * 158 * time_freq is set via ntp_adjtime() from a value stored in a file when 159 * the synchronization daemon is first started. Its value is retrieved 160 * via ntp_adjtime() and written to the file about once per hour by the 161 * daemon. 162 * 163 * time_adj is the adjustment added to the value of tick at each timer 164 * interrupt and is recomputed from time_phase and time_freq at each 165 * seconds rollover. 166 * 167 * time_reftime is the second's portion of the system time at the last 168 * call to ntp_adjtime(). It is used to adjust the time_freq variable 169 * and to increase the time_maxerror as the time since last update 170 * increases. 171 */ 172 int32_t time_phase = 0; /* phase offset (scaled us) */ 173 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 174 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 175 int32_t time_reftime = 0; /* time at last adjustment (s) */ 176 177 /* 178 * The scale factors of the following variables are defined in the 179 * timex.h header file. 180 * 181 * pps_time contains the time at each calibration interval, as read by 182 * microtime(). pps_count counts the seconds of the calibration 183 * interval, the duration of which is nominally pps_shift in powers of 184 * two. 185 * 186 * pps_offset is the time offset produced by the time median filter 187 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 188 * this filter. 189 * 190 * pps_freq is the frequency offset produced by the frequency median 191 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 192 * by this filter. 193 * 194 * pps_usec is latched from a high resolution counter or external clock 195 * at pps_time. Here we want the hardware counter contents only, not the 196 * contents plus the time_tv.usec as usual. 197 * 198 * pps_valid counts the number of seconds since the last PPS update. It 199 * is used as a watchdog timer to disable the PPS discipline should the 200 * PPS signal be lost. 201 * 202 * pps_glitch counts the number of seconds since the beginning of an 203 * offset burst more than tick/2 from current nominal offset. It is used 204 * mainly to suppress error bursts due to priority conflicts between the 205 * PPS interrupt and timer interrupt. 206 * 207 * pps_intcnt counts the calibration intervals for use in the interval- 208 * adaptation algorithm. It's just too complicated for words. 209 */ 210 struct timeval pps_time; /* kernel time at last interval */ 211 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 212 int32_t pps_offset = 0; /* pps time offset (us) */ 213 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 214 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 215 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 216 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 217 int32_t pps_usec = 0; /* microsec counter at last interval */ 218 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 219 int32_t pps_glitch = 0; /* pps signal glitch counter */ 220 int32_t pps_count = 0; /* calibration interval counter (s) */ 221 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 222 int32_t pps_intcnt = 0; /* intervals at current duration */ 223 224 /* 225 * PPS signal quality monitors 226 * 227 * pps_jitcnt counts the seconds that have been discarded because the 228 * jitter measured by the time median filter exceeds the limit MAXTIME 229 * (100 us). 230 * 231 * pps_calcnt counts the frequency calibration intervals, which are 232 * variable from 4 s to 256 s. 233 * 234 * pps_errcnt counts the calibration intervals which have been discarded 235 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 236 * calibration interval jitter exceeds two ticks. 237 * 238 * pps_stbcnt counts the calibration intervals that have been discarded 239 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 240 */ 241 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 242 int32_t pps_calcnt = 0; /* calibration intervals */ 243 int32_t pps_errcnt = 0; /* calibration errors */ 244 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 245 246 kcondvar_t lbolt_cv; 247 248 /* 249 * Hybrid lbolt implementation: 250 * 251 * The service historically provided by the lbolt and lbolt64 variables has 252 * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the 253 * original symbols removed from the system. The once clock driven variables are 254 * now implemented in an event driven fashion, backed by gethrtime() coarsed to 255 * the appropriate clock resolution. The default event driven implementation is 256 * complemented by a cyclic driven one, active only during periods of intense 257 * activity around the DDI lbolt routines, when a lbolt specific cyclic is 258 * reprogramed to fire at a clock tick interval to serve consumers of lbolt who 259 * rely on the original low cost of consulting a memory position. 260 * 261 * The implementation uses the number of calls to these routines and the 262 * frequency of these to determine when to transition from event to cyclic 263 * driven and vice-versa. These values are kept on a per CPU basis for 264 * scalability reasons and to prevent CPUs from constantly invalidating a single 265 * cache line when modifying a global variable. The transition from event to 266 * cyclic mode happens once the thresholds are crossed, and activity on any CPU 267 * can cause such transition. 268 * 269 * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and 270 * ddi_get_lbolt64(), and will point to lbolt_event_driven() or 271 * lbolt_cyclic_driven() according to the current mode. When the thresholds 272 * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to 273 * fire at a nsec_per_tick interval and increment an internal variable at 274 * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which 275 * will simply return the value of such variable. lbolt_cyclic() will attempt 276 * to shut itself off at each threshold interval (sampling period for calls 277 * to the DDI lbolt routines), and return to the event driven mode, but will 278 * be prevented from doing so if lbolt_cyclic_driven() is being heavily used. 279 * 280 * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait 281 * for the cyclic subsystem to be intialized. 282 * 283 */ 284 int64_t lbolt_bootstrap(void); 285 int64_t lbolt_event_driven(void); 286 int64_t lbolt_cyclic_driven(void); 287 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap; 288 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t); 289 290 /* 291 * lbolt's cyclic, installed by clock_init(). 292 */ 293 static void lbolt_cyclic(void); 294 295 /* 296 * Tunable to keep lbolt in cyclic driven mode. This will prevent the system 297 * from switching back to event driven, once it reaches cyclic mode. 298 */ 299 static boolean_t lbolt_cyc_only = B_FALSE; 300 301 /* 302 * Cache aligned, per CPU structure with lbolt usage statistics. 303 */ 304 static lbolt_cpu_t *lb_cpu; 305 306 /* 307 * Single, cache aligned, structure with all the information required by 308 * the lbolt implementation. 309 */ 310 lbolt_info_t *lb_info; 311 312 313 int one_sec = 1; /* turned on once every second */ 314 static int fsflushcnt; /* counter for t_fsflushr */ 315 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 316 int tod_needsync = 0; /* need to sync tod chip with software time */ 317 static int tod_broken = 0; /* clock chip doesn't work */ 318 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 319 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 320 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 321 322 extern void clock_tick_schedule(int); 323 extern void set_freemem(void); 324 extern void pageout_deadman(void); 325 326 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 327 328 /* 329 * for tod fault detection 330 */ 331 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 332 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 333 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 334 #define TOD_FILTER_N 4 335 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 336 static enum tod_fault_type tod_faulted = TOD_NOFAULT; 337 338 static int tod_status_flag = 0; /* used by tod_validate() */ 339 340 static hrtime_t prev_set_tick = 0; /* gethrtime() prior to tod_set() */ 341 static time_t prev_set_tod = 0; /* tv_sec value passed to tod_set() */ 342 343 /* patchable via /etc/system */ 344 int tod_validate_enable = 1; 345 346 /* Diagnose/Limit messages about delay(9F) called from interrupt context */ 347 int delay_from_interrupt_diagnose = 0; 348 volatile uint32_t delay_from_interrupt_msg = 20; 349 350 /* 351 * On non-SPARC systems, TOD validation must be deferred until gethrtime 352 * returns non-zero values (after mach_clkinit's execution). 353 * On SPARC systems, it must be deferred until after hrtime_base 354 * and hres_last_tick are set (in the first invocation of hres_tick). 355 * Since in both cases the prerequisites occur before the invocation of 356 * tod_get() in clock(), the deferment is lifted there. 357 */ 358 static boolean_t tod_validate_deferred = B_TRUE; 359 360 /* 361 * tod_fault_table[] must be aligned with 362 * enum tod_fault_type in systm.h 363 */ 364 static char *tod_fault_table[] = { 365 "Reversed", /* TOD_REVERSED */ 366 "Stalled", /* TOD_STALLED */ 367 "Jumped", /* TOD_JUMPED */ 368 "Changed in Clock Rate", /* TOD_RATECHANGED */ 369 "Is Read-Only" /* TOD_RDONLY */ 370 /* 371 * no strings needed for TOD_NOFAULT 372 */ 373 }; 374 375 /* 376 * test hook for tod broken detection in tod_validate 377 */ 378 int tod_unit_test = 0; 379 time_t tod_test_injector; 380 381 #define CLOCK_ADJ_HIST_SIZE 4 382 383 static int adj_hist_entry; 384 385 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 386 387 static void calcloadavg(int, uint64_t *); 388 static int genloadavg(struct loadavg_s *); 389 static void loadavg_update(); 390 391 void (*cmm_clock_callout)() = NULL; 392 void (*cpucaps_clock_callout)() = NULL; 393 394 extern clock_t clock_tick_proc_max; 395 396 static int64_t deadman_counter = 0; 397 398 static void 399 clock(void) 400 { 401 kthread_t *t; 402 uint_t nrunnable; 403 uint_t w_io; 404 cpu_t *cp; 405 cpupart_t *cpupart; 406 void (*funcp)(); 407 int32_t ltemp; 408 int64_t lltemp; 409 int s; 410 int do_lgrp_load; 411 int i; 412 clock_t now = LBOLT_NO_ACCOUNT; /* current tick */ 413 414 if (panicstr) 415 return; 416 417 /* 418 * Make sure that 'freemem' do not drift too far from the truth 419 */ 420 set_freemem(); 421 422 423 /* 424 * Before the section which is repeated is executed, we do 425 * the time delta processing which occurs every clock tick 426 * 427 * There is additional processing which happens every time 428 * the nanosecond counter rolls over which is described 429 * below - see the section which begins with : if (one_sec) 430 * 431 * This section marks the beginning of the precision-kernel 432 * code fragment. 433 * 434 * First, compute the phase adjustment. If the low-order bits 435 * (time_phase) of the update overflow, bump the higher order 436 * bits (time_update). 437 */ 438 time_phase += time_adj; 439 if (time_phase <= -FINEUSEC) { 440 ltemp = -time_phase / SCALE_PHASE; 441 time_phase += ltemp * SCALE_PHASE; 442 s = hr_clock_lock(); 443 timedelta -= ltemp * (NANOSEC/MICROSEC); 444 hr_clock_unlock(s); 445 } else if (time_phase >= FINEUSEC) { 446 ltemp = time_phase / SCALE_PHASE; 447 time_phase -= ltemp * SCALE_PHASE; 448 s = hr_clock_lock(); 449 timedelta += ltemp * (NANOSEC/MICROSEC); 450 hr_clock_unlock(s); 451 } 452 453 /* 454 * End of precision-kernel code fragment which is processed 455 * every timer interrupt. 456 * 457 * Continue with the interrupt processing as scheduled. 458 */ 459 /* 460 * Count the number of runnable threads and the number waiting 461 * for some form of I/O to complete -- gets added to 462 * sysinfo.waiting. To know the state of the system, must add 463 * wait counts from all CPUs. Also add up the per-partition 464 * statistics. 465 */ 466 w_io = 0; 467 nrunnable = 0; 468 469 /* 470 * keep track of when to update lgrp/part loads 471 */ 472 473 do_lgrp_load = 0; 474 if (lgrp_ticks++ >= hz / 10) { 475 lgrp_ticks = 0; 476 do_lgrp_load = 1; 477 } 478 479 if (one_sec) { 480 loadavg_update(); 481 deadman_counter++; 482 pageout_deadman(); 483 } 484 485 /* 486 * First count the threads waiting on kpreempt queues in each 487 * CPU partition. 488 */ 489 490 cpupart = cp_list_head; 491 do { 492 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 493 494 cpupart->cp_updates++; 495 nrunnable += cpupart_nrunnable; 496 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 497 if (one_sec) { 498 cpupart->cp_nrunning = 0; 499 cpupart->cp_nrunnable = cpupart_nrunnable; 500 } 501 } while ((cpupart = cpupart->cp_next) != cp_list_head); 502 503 504 /* Now count the per-CPU statistics. */ 505 cp = cpu_list; 506 do { 507 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 508 509 nrunnable += cpu_nrunnable; 510 cpupart = cp->cpu_part; 511 cpupart->cp_nrunnable_cum += cpu_nrunnable; 512 if (one_sec) { 513 cpupart->cp_nrunnable += cpu_nrunnable; 514 /* 515 * Update user, system, and idle cpu times. 516 */ 517 cpupart->cp_nrunning++; 518 /* 519 * w_io is used to update sysinfo.waiting during 520 * one_second processing below. Only gather w_io 521 * information when we walk the list of cpus if we're 522 * going to perform one_second processing. 523 */ 524 w_io += CPU_STATS(cp, sys.iowait); 525 } 526 527 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) { 528 int i, load, change; 529 hrtime_t intracct, intrused; 530 const hrtime_t maxnsec = 1000000000; 531 const int precision = 100; 532 533 /* 534 * Estimate interrupt load on this cpu each second. 535 * Computes cpu_intrload as %utilization (0-99). 536 */ 537 538 /* add up interrupt time from all micro states */ 539 for (intracct = 0, i = 0; i < NCMSTATES; i++) 540 intracct += cp->cpu_intracct[i]; 541 scalehrtime(&intracct); 542 543 /* compute nsec used in the past second */ 544 intrused = intracct - cp->cpu_intrlast; 545 cp->cpu_intrlast = intracct; 546 547 /* limit the value for safety (and the first pass) */ 548 if (intrused >= maxnsec) 549 intrused = maxnsec - 1; 550 551 /* calculate %time in interrupt */ 552 load = (precision * intrused) / maxnsec; 553 ASSERT(load >= 0 && load < precision); 554 change = cp->cpu_intrload - load; 555 556 /* jump to new max, or decay the old max */ 557 if (change < 0) 558 cp->cpu_intrload = load; 559 else if (change > 0) 560 cp->cpu_intrload -= (change + 3) / 4; 561 562 DTRACE_PROBE3(cpu_intrload, 563 cpu_t *, cp, 564 hrtime_t, intracct, 565 hrtime_t, intrused); 566 } 567 568 if (do_lgrp_load && 569 (cp->cpu_flags & CPU_EXISTS)) { 570 /* 571 * When updating the lgroup's load average, 572 * account for the thread running on the CPU. 573 * If the CPU is the current one, then we need 574 * to account for the underlying thread which 575 * got the clock interrupt not the thread that is 576 * handling the interrupt and caculating the load 577 * average 578 */ 579 t = cp->cpu_thread; 580 if (CPU == cp) 581 t = t->t_intr; 582 583 /* 584 * Account for the load average for this thread if 585 * it isn't the idle thread or it is on the interrupt 586 * stack and not the current CPU handling the clock 587 * interrupt 588 */ 589 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 590 CPU_ON_INTR(cp))) { 591 if (t->t_lpl == cp->cpu_lpl) { 592 /* local thread */ 593 cpu_nrunnable++; 594 } else { 595 /* 596 * This is a remote thread, charge it 597 * against its home lgroup. Note that 598 * we notice that a thread is remote 599 * only if it's currently executing. 600 * This is a reasonable approximation, 601 * since queued remote threads are rare. 602 * Note also that if we didn't charge 603 * it to its home lgroup, remote 604 * execution would often make a system 605 * appear balanced even though it was 606 * not, and thread placement/migration 607 * would often not be done correctly. 608 */ 609 lgrp_loadavg(t->t_lpl, 610 LGRP_LOADAVG_IN_THREAD_MAX, 0); 611 } 612 } 613 lgrp_loadavg(cp->cpu_lpl, 614 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 615 } 616 } while ((cp = cp->cpu_next) != cpu_list); 617 618 clock_tick_schedule(one_sec); 619 620 /* 621 * Check for a callout that needs be called from the clock 622 * thread to support the membership protocol in a clustered 623 * system. Copy the function pointer so that we can reset 624 * this to NULL if needed. 625 */ 626 if ((funcp = cmm_clock_callout) != NULL) 627 (*funcp)(); 628 629 if ((funcp = cpucaps_clock_callout) != NULL) 630 (*funcp)(); 631 632 /* 633 * Wakeup the cageout thread waiters once per second. 634 */ 635 if (one_sec) 636 kcage_tick(); 637 638 if (one_sec) { 639 640 int drift, absdrift; 641 timestruc_t tod; 642 int s; 643 644 /* 645 * Beginning of precision-kernel code fragment executed 646 * every second. 647 * 648 * On rollover of the second the phase adjustment to be 649 * used for the next second is calculated. Also, the 650 * maximum error is increased by the tolerance. If the 651 * PPS frequency discipline code is present, the phase is 652 * increased to compensate for the CPU clock oscillator 653 * frequency error. 654 * 655 * On a 32-bit machine and given parameters in the timex.h 656 * header file, the maximum phase adjustment is +-512 ms 657 * and maximum frequency offset is (a tad less than) 658 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 659 */ 660 time_maxerror += time_tolerance / SCALE_USEC; 661 662 /* 663 * Leap second processing. If in leap-insert state at 664 * the end of the day, the system clock is set back one 665 * second; if in leap-delete state, the system clock is 666 * set ahead one second. The microtime() routine or 667 * external clock driver will insure that reported time 668 * is always monotonic. The ugly divides should be 669 * replaced. 670 */ 671 switch (time_state) { 672 673 case TIME_OK: 674 if (time_status & STA_INS) 675 time_state = TIME_INS; 676 else if (time_status & STA_DEL) 677 time_state = TIME_DEL; 678 break; 679 680 case TIME_INS: 681 if (hrestime.tv_sec % 86400 == 0) { 682 s = hr_clock_lock(); 683 hrestime.tv_sec--; 684 hr_clock_unlock(s); 685 time_state = TIME_OOP; 686 } 687 break; 688 689 case TIME_DEL: 690 if ((hrestime.tv_sec + 1) % 86400 == 0) { 691 s = hr_clock_lock(); 692 hrestime.tv_sec++; 693 hr_clock_unlock(s); 694 time_state = TIME_WAIT; 695 } 696 break; 697 698 case TIME_OOP: 699 time_state = TIME_WAIT; 700 break; 701 702 case TIME_WAIT: 703 if (!(time_status & (STA_INS | STA_DEL))) 704 time_state = TIME_OK; 705 default: 706 break; 707 } 708 709 /* 710 * Compute the phase adjustment for the next second. In 711 * PLL mode, the offset is reduced by a fixed factor 712 * times the time constant. In FLL mode the offset is 713 * used directly. In either mode, the maximum phase 714 * adjustment for each second is clamped so as to spread 715 * the adjustment over not more than the number of 716 * seconds between updates. 717 */ 718 if (time_offset == 0) 719 time_adj = 0; 720 else if (time_offset < 0) { 721 lltemp = -time_offset; 722 if (!(time_status & STA_FLL)) { 723 if ((1 << time_constant) >= SCALE_KG) 724 lltemp *= (1 << time_constant) / 725 SCALE_KG; 726 else 727 lltemp = (lltemp / SCALE_KG) >> 728 time_constant; 729 } 730 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 731 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 732 time_offset += lltemp; 733 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 734 } else { 735 lltemp = time_offset; 736 if (!(time_status & STA_FLL)) { 737 if ((1 << time_constant) >= SCALE_KG) 738 lltemp *= (1 << time_constant) / 739 SCALE_KG; 740 else 741 lltemp = (lltemp / SCALE_KG) >> 742 time_constant; 743 } 744 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 745 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 746 time_offset -= lltemp; 747 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 748 } 749 750 /* 751 * Compute the frequency estimate and additional phase 752 * adjustment due to frequency error for the next 753 * second. When the PPS signal is engaged, gnaw on the 754 * watchdog counter and update the frequency computed by 755 * the pll and the PPS signal. 756 */ 757 pps_valid++; 758 if (pps_valid == PPS_VALID) { 759 pps_jitter = MAXTIME; 760 pps_stabil = MAXFREQ; 761 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 762 STA_PPSWANDER | STA_PPSERROR); 763 } 764 lltemp = time_freq + pps_freq; 765 766 if (lltemp) 767 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 768 769 /* 770 * End of precision kernel-code fragment 771 * 772 * The section below should be modified if we are planning 773 * to use NTP for synchronization. 774 * 775 * Note: the clock synchronization code now assumes 776 * the following: 777 * - if dosynctodr is 1, then compute the drift between 778 * the tod chip and software time and adjust one or 779 * the other depending on the circumstances 780 * 781 * - if dosynctodr is 0, then the tod chip is independent 782 * of the software clock and should not be adjusted, 783 * but allowed to free run. this allows NTP to sync. 784 * hrestime without any interference from the tod chip. 785 */ 786 787 tod_validate_deferred = B_FALSE; 788 mutex_enter(&tod_lock); 789 tod = tod_get(); 790 drift = tod.tv_sec - hrestime.tv_sec; 791 absdrift = (drift >= 0) ? drift : -drift; 792 if (tod_needsync || absdrift > 1) { 793 int s; 794 if (absdrift > 2) { 795 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 796 s = hr_clock_lock(); 797 hrestime = tod; 798 membar_enter(); /* hrestime visible */ 799 timedelta = 0; 800 timechanged++; 801 tod_needsync = 0; 802 hr_clock_unlock(s); 803 callout_hrestime(); 804 805 } 806 } else { 807 if (tod_needsync || !dosynctodr) { 808 gethrestime(&tod); 809 tod_set(tod); 810 s = hr_clock_lock(); 811 if (timedelta == 0) 812 tod_needsync = 0; 813 hr_clock_unlock(s); 814 } else { 815 /* 816 * If the drift is 2 seconds on the 817 * money, then the TOD is adjusting 818 * the clock; record that. 819 */ 820 clock_adj_hist[adj_hist_entry++ % 821 CLOCK_ADJ_HIST_SIZE] = now; 822 s = hr_clock_lock(); 823 timedelta = (int64_t)drift*NANOSEC; 824 hr_clock_unlock(s); 825 } 826 } 827 } 828 one_sec = 0; 829 time = gethrestime_sec(); /* for crusty old kmem readers */ 830 mutex_exit(&tod_lock); 831 832 /* 833 * Some drivers still depend on this... XXX 834 */ 835 cv_broadcast(&lbolt_cv); 836 837 vminfo.freemem += freemem; 838 { 839 pgcnt_t maxswap, resv, free; 840 pgcnt_t avail = 841 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 842 843 maxswap = k_anoninfo.ani_mem_resv + 844 k_anoninfo.ani_max +avail; 845 /* Update ani_free */ 846 set_anoninfo(); 847 free = k_anoninfo.ani_free + avail; 848 resv = k_anoninfo.ani_phys_resv + 849 k_anoninfo.ani_mem_resv; 850 851 vminfo.swap_resv += resv; 852 /* number of reserved and allocated pages */ 853 #ifdef DEBUG 854 if (maxswap < free) 855 cmn_err(CE_WARN, "clock: maxswap < free"); 856 if (maxswap < resv) 857 cmn_err(CE_WARN, "clock: maxswap < resv"); 858 #endif 859 vminfo.swap_alloc += maxswap - free; 860 vminfo.swap_avail += maxswap - resv; 861 vminfo.swap_free += free; 862 } 863 vminfo.updates++; 864 if (nrunnable) { 865 sysinfo.runque += nrunnable; 866 sysinfo.runocc++; 867 } 868 if (nswapped) { 869 sysinfo.swpque += nswapped; 870 sysinfo.swpocc++; 871 } 872 sysinfo.waiting += w_io; 873 sysinfo.updates++; 874 875 /* 876 * Wake up fsflush to write out DELWRI 877 * buffers, dirty pages and other cached 878 * administrative data, e.g. inodes. 879 */ 880 if (--fsflushcnt <= 0) { 881 fsflushcnt = tune.t_fsflushr; 882 cv_signal(&fsflush_cv); 883 } 884 885 vmmeter(); 886 calcloadavg(genloadavg(&loadavg), hp_avenrun); 887 for (i = 0; i < 3; i++) 888 /* 889 * At the moment avenrun[] can only hold 31 890 * bits of load average as it is a signed 891 * int in the API. We need to ensure that 892 * hp_avenrun[i] >> (16 - FSHIFT) will not be 893 * too large. If it is, we put the largest value 894 * that we can use into avenrun[i]. This is 895 * kludgey, but about all we can do until we 896 * avenrun[] is declared as an array of uint64[] 897 */ 898 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 899 avenrun[i] = (int32_t)(hp_avenrun[i] >> 900 (16 - FSHIFT)); 901 else 902 avenrun[i] = 0x7fffffff; 903 904 cpupart = cp_list_head; 905 do { 906 calcloadavg(genloadavg(&cpupart->cp_loadavg), 907 cpupart->cp_hp_avenrun); 908 } while ((cpupart = cpupart->cp_next) != cp_list_head); 909 910 /* 911 * Wake up the swapper thread if necessary. 912 */ 913 if (runin || 914 (runout && (avefree < desfree || wake_sched_sec))) { 915 t = &t0; 916 thread_lock(t); 917 if (t->t_state == TS_STOPPED) { 918 runin = runout = 0; 919 wake_sched_sec = 0; 920 t->t_whystop = 0; 921 t->t_whatstop = 0; 922 t->t_schedflag &= ~TS_ALLSTART; 923 THREAD_TRANSITION(t); 924 setfrontdq(t); 925 } 926 thread_unlock(t); 927 } 928 } 929 930 /* 931 * Wake up the swapper if any high priority swapped-out threads 932 * became runable during the last tick. 933 */ 934 if (wake_sched) { 935 t = &t0; 936 thread_lock(t); 937 if (t->t_state == TS_STOPPED) { 938 runin = runout = 0; 939 wake_sched = 0; 940 t->t_whystop = 0; 941 t->t_whatstop = 0; 942 t->t_schedflag &= ~TS_ALLSTART; 943 THREAD_TRANSITION(t); 944 setfrontdq(t); 945 } 946 thread_unlock(t); 947 } 948 } 949 950 void 951 clock_init(void) 952 { 953 cyc_handler_t clk_hdlr, lbolt_hdlr; 954 cyc_time_t clk_when, lbolt_when; 955 int i, sz; 956 intptr_t buf; 957 958 /* 959 * Setup handler and timer for the clock cyclic. 960 */ 961 clk_hdlr.cyh_func = (cyc_func_t)clock; 962 clk_hdlr.cyh_level = CY_LOCK_LEVEL; 963 clk_hdlr.cyh_arg = NULL; 964 965 clk_when.cyt_when = 0; 966 clk_when.cyt_interval = nsec_per_tick; 967 968 /* 969 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick 970 * interval to satisfy performance needs of the DDI lbolt consumers. 971 * It is off by default. 972 */ 973 lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic; 974 lbolt_hdlr.cyh_level = CY_LOCK_LEVEL; 975 lbolt_hdlr.cyh_arg = NULL; 976 977 lbolt_when.cyt_interval = nsec_per_tick; 978 979 /* 980 * Allocate cache line aligned space for the per CPU lbolt data and 981 * lbolt info structures, and initialize them with their default 982 * values. Note that these structures are also cache line sized. 983 */ 984 sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE; 985 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 986 lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 987 988 if (hz != HZ_DEFAULT) 989 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL * 990 hz/HZ_DEFAULT; 991 else 992 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL; 993 994 lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS; 995 996 sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE; 997 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 998 lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 999 1000 for (i = 0; i < max_ncpus; i++) 1001 lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls; 1002 1003 /* 1004 * Install the softint used to switch between event and cyclic driven 1005 * lbolt. We use a soft interrupt to make sure the context of the 1006 * cyclic reprogram call is safe. 1007 */ 1008 lbolt_softint_add(); 1009 1010 /* 1011 * Since the hybrid lbolt implementation is based on a hardware counter 1012 * that is reset at every hardware reboot and that we'd like to have 1013 * the lbolt value starting at zero after both a hardware and a fast 1014 * reboot, we calculate the number of clock ticks the system's been up 1015 * and store it in the lbi_debug_time field of the lbolt info structure. 1016 * The value of this field will be subtracted from lbolt before 1017 * returning it. 1018 */ 1019 lb_info->lbi_internal = lb_info->lbi_debug_time = 1020 (gethrtime()/nsec_per_tick); 1021 1022 /* 1023 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros 1024 * and lbolt_debug_{enter,return} use this value as an indication that 1025 * the initializaion above hasn't been completed. Setting lbolt_hybrid 1026 * to either lbolt_{cyclic,event}_driven here signals those code paths 1027 * that the lbolt related structures can be used. 1028 */ 1029 if (lbolt_cyc_only) { 1030 lbolt_when.cyt_when = 0; 1031 lbolt_hybrid = lbolt_cyclic_driven; 1032 } else { 1033 lbolt_when.cyt_when = CY_INFINITY; 1034 lbolt_hybrid = lbolt_event_driven; 1035 } 1036 1037 /* 1038 * Grab cpu_lock and install all three cyclics. 1039 */ 1040 mutex_enter(&cpu_lock); 1041 1042 clock_cyclic = cyclic_add(&clk_hdlr, &clk_when); 1043 lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when); 1044 1045 mutex_exit(&cpu_lock); 1046 } 1047 1048 /* 1049 * Called before calcloadavg to get 10-sec moving loadavg together 1050 */ 1051 1052 static int 1053 genloadavg(struct loadavg_s *avgs) 1054 { 1055 int avg; 1056 int spos; /* starting position */ 1057 int cpos; /* moving current position */ 1058 int i; 1059 int slen; 1060 hrtime_t hr_avg; 1061 1062 /* 10-second snapshot, calculate first positon */ 1063 if (avgs->lg_len == 0) { 1064 return (0); 1065 } 1066 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 1067 1068 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 1069 S_LOADAVG_SZ + (avgs->lg_cur - 1); 1070 for (i = hr_avg = 0; i < slen; i++) { 1071 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 1072 hr_avg += avgs->lg_loads[cpos]; 1073 } 1074 1075 hr_avg = hr_avg / slen; 1076 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 1077 1078 return (avg); 1079 } 1080 1081 /* 1082 * Run every second from clock () to update the loadavg count available to the 1083 * system and cpu-partitions. 1084 * 1085 * This works by sampling the previous usr, sys, wait time elapsed, 1086 * computing a delta, and adding that delta to the elapsed usr, sys, 1087 * wait increase. 1088 */ 1089 1090 static void 1091 loadavg_update() 1092 { 1093 cpu_t *cp; 1094 cpupart_t *cpupart; 1095 hrtime_t cpu_total; 1096 int prev; 1097 1098 cp = cpu_list; 1099 loadavg.lg_total = 0; 1100 1101 /* 1102 * first pass totals up per-cpu statistics for system and cpu 1103 * partitions 1104 */ 1105 1106 do { 1107 struct loadavg_s *lavg; 1108 1109 lavg = &cp->cpu_loadavg; 1110 1111 cpu_total = cp->cpu_acct[CMS_USER] + 1112 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 1113 /* compute delta against last total */ 1114 scalehrtime(&cpu_total); 1115 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 1116 S_LOADAVG_SZ + (lavg->lg_cur - 1); 1117 if (lavg->lg_loads[prev] <= 0) { 1118 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1119 cpu_total = 0; 1120 } else { 1121 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1122 cpu_total = cpu_total - lavg->lg_loads[prev]; 1123 if (cpu_total < 0) 1124 cpu_total = 0; 1125 } 1126 1127 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1128 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1129 lavg->lg_len + 1 : S_LOADAVG_SZ; 1130 1131 loadavg.lg_total += cpu_total; 1132 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 1133 1134 } while ((cp = cp->cpu_next) != cpu_list); 1135 1136 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1137 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1138 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1139 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1140 /* 1141 * Second pass updates counts 1142 */ 1143 cpupart = cp_list_head; 1144 1145 do { 1146 struct loadavg_s *lavg; 1147 1148 lavg = &cpupart->cp_loadavg; 1149 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1150 lavg->lg_total = 0; 1151 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1152 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1153 lavg->lg_len + 1 : S_LOADAVG_SZ; 1154 1155 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1156 1157 /* 1158 * Third pass totals up per-zone statistics. 1159 */ 1160 zone_loadavg_update(); 1161 } 1162 1163 /* 1164 * clock_update() - local clock update 1165 * 1166 * This routine is called by ntp_adjtime() to update the local clock 1167 * phase and frequency. The implementation is of an 1168 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1169 * routine computes new time and frequency offset estimates for each 1170 * call. The PPS signal itself determines the new time offset, 1171 * instead of the calling argument. Presumably, calls to 1172 * ntp_adjtime() occur only when the caller believes the local clock 1173 * is valid within some bound (+-128 ms with NTP). If the caller's 1174 * time is far different than the PPS time, an argument will ensue, 1175 * and it's not clear who will lose. 1176 * 1177 * For uncompensated quartz crystal oscillatores and nominal update 1178 * intervals less than 1024 s, operation should be in phase-lock mode 1179 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1180 * intervals greater than this, operation should be in frequency-lock 1181 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1182 * 1183 * Note: mutex(&tod_lock) is in effect. 1184 */ 1185 void 1186 clock_update(int offset) 1187 { 1188 int ltemp, mtemp, s; 1189 1190 ASSERT(MUTEX_HELD(&tod_lock)); 1191 1192 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1193 return; 1194 ltemp = offset; 1195 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1196 ltemp = pps_offset; 1197 1198 /* 1199 * Scale the phase adjustment and clamp to the operating range. 1200 */ 1201 if (ltemp > MAXPHASE) 1202 time_offset = MAXPHASE * SCALE_UPDATE; 1203 else if (ltemp < -MAXPHASE) 1204 time_offset = -(MAXPHASE * SCALE_UPDATE); 1205 else 1206 time_offset = ltemp * SCALE_UPDATE; 1207 1208 /* 1209 * Select whether the frequency is to be controlled and in which 1210 * mode (PLL or FLL). Clamp to the operating range. Ugly 1211 * multiply/divide should be replaced someday. 1212 */ 1213 if (time_status & STA_FREQHOLD || time_reftime == 0) 1214 time_reftime = hrestime.tv_sec; 1215 1216 mtemp = hrestime.tv_sec - time_reftime; 1217 time_reftime = hrestime.tv_sec; 1218 1219 if (time_status & STA_FLL) { 1220 if (mtemp >= MINSEC) { 1221 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1222 SCALE_UPDATE)); 1223 if (ltemp) 1224 time_freq += ltemp / SCALE_KH; 1225 } 1226 } else { 1227 if (mtemp < MAXSEC) { 1228 ltemp *= mtemp; 1229 if (ltemp) 1230 time_freq += (int)(((int64_t)ltemp * 1231 SCALE_USEC) / SCALE_KF) 1232 / (1 << (time_constant * 2)); 1233 } 1234 } 1235 if (time_freq > time_tolerance) 1236 time_freq = time_tolerance; 1237 else if (time_freq < -time_tolerance) 1238 time_freq = -time_tolerance; 1239 1240 s = hr_clock_lock(); 1241 tod_needsync = 1; 1242 hr_clock_unlock(s); 1243 } 1244 1245 /* 1246 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1247 * 1248 * This routine is called at each PPS interrupt in order to discipline 1249 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1250 * and leaves it in a handy spot for the clock() routine. It 1251 * integrates successive PPS phase differences and calculates the 1252 * frequency offset. This is used in clock() to discipline the CPU 1253 * clock oscillator so that intrinsic frequency error is cancelled out. 1254 * The code requires the caller to capture the time and hardware counter 1255 * value at the on-time PPS signal transition. 1256 * 1257 * Note that, on some Unix systems, this routine runs at an interrupt 1258 * priority level higher than the timer interrupt routine clock(). 1259 * Therefore, the variables used are distinct from the clock() 1260 * variables, except for certain exceptions: The PPS frequency pps_freq 1261 * and phase pps_offset variables are determined by this routine and 1262 * updated atomically. The time_tolerance variable can be considered a 1263 * constant, since it is infrequently changed, and then only when the 1264 * PPS signal is disabled. The watchdog counter pps_valid is updated 1265 * once per second by clock() and is atomically cleared in this 1266 * routine. 1267 * 1268 * tvp is the time of the last tick; usec is a microsecond count since the 1269 * last tick. 1270 * 1271 * Note: In Solaris systems, the tick value is actually given by 1272 * usec_per_tick. This is called from the serial driver cdintr(), 1273 * or equivalent, at a high PIL. Because the kernel keeps a 1274 * highresolution time, the following code can accept either 1275 * the traditional argument pair, or the current highres timestamp 1276 * in tvp and zero in usec. 1277 */ 1278 void 1279 ddi_hardpps(struct timeval *tvp, int usec) 1280 { 1281 int u_usec, v_usec, bigtick; 1282 time_t cal_sec; 1283 int cal_usec; 1284 1285 /* 1286 * An occasional glitch can be produced when the PPS interrupt 1287 * occurs in the clock() routine before the time variable is 1288 * updated. Here the offset is discarded when the difference 1289 * between it and the last one is greater than tick/2, but not 1290 * if the interval since the first discard exceeds 30 s. 1291 */ 1292 time_status |= STA_PPSSIGNAL; 1293 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1294 pps_valid = 0; 1295 u_usec = -tvp->tv_usec; 1296 if (u_usec < -(MICROSEC/2)) 1297 u_usec += MICROSEC; 1298 v_usec = pps_offset - u_usec; 1299 if (v_usec < 0) 1300 v_usec = -v_usec; 1301 if (v_usec > (usec_per_tick >> 1)) { 1302 if (pps_glitch > MAXGLITCH) { 1303 pps_glitch = 0; 1304 pps_tf[2] = u_usec; 1305 pps_tf[1] = u_usec; 1306 } else { 1307 pps_glitch++; 1308 u_usec = pps_offset; 1309 } 1310 } else 1311 pps_glitch = 0; 1312 1313 /* 1314 * A three-stage median filter is used to help deglitch the pps 1315 * time. The median sample becomes the time offset estimate; the 1316 * difference between the other two samples becomes the time 1317 * dispersion (jitter) estimate. 1318 */ 1319 pps_tf[2] = pps_tf[1]; 1320 pps_tf[1] = pps_tf[0]; 1321 pps_tf[0] = u_usec; 1322 if (pps_tf[0] > pps_tf[1]) { 1323 if (pps_tf[1] > pps_tf[2]) { 1324 pps_offset = pps_tf[1]; /* 0 1 2 */ 1325 v_usec = pps_tf[0] - pps_tf[2]; 1326 } else if (pps_tf[2] > pps_tf[0]) { 1327 pps_offset = pps_tf[0]; /* 2 0 1 */ 1328 v_usec = pps_tf[2] - pps_tf[1]; 1329 } else { 1330 pps_offset = pps_tf[2]; /* 0 2 1 */ 1331 v_usec = pps_tf[0] - pps_tf[1]; 1332 } 1333 } else { 1334 if (pps_tf[1] < pps_tf[2]) { 1335 pps_offset = pps_tf[1]; /* 2 1 0 */ 1336 v_usec = pps_tf[2] - pps_tf[0]; 1337 } else if (pps_tf[2] < pps_tf[0]) { 1338 pps_offset = pps_tf[0]; /* 1 0 2 */ 1339 v_usec = pps_tf[1] - pps_tf[2]; 1340 } else { 1341 pps_offset = pps_tf[2]; /* 1 2 0 */ 1342 v_usec = pps_tf[1] - pps_tf[0]; 1343 } 1344 } 1345 if (v_usec > MAXTIME) 1346 pps_jitcnt++; 1347 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1348 pps_jitter += v_usec / (1 << PPS_AVG); 1349 if (pps_jitter > (MAXTIME >> 1)) 1350 time_status |= STA_PPSJITTER; 1351 1352 /* 1353 * During the calibration interval adjust the starting time when 1354 * the tick overflows. At the end of the interval compute the 1355 * duration of the interval and the difference of the hardware 1356 * counters at the beginning and end of the interval. This code 1357 * is deliciously complicated by the fact valid differences may 1358 * exceed the value of tick when using long calibration 1359 * intervals and small ticks. Note that the counter can be 1360 * greater than tick if caught at just the wrong instant, but 1361 * the values returned and used here are correct. 1362 */ 1363 bigtick = (int)usec_per_tick * SCALE_USEC; 1364 pps_usec -= pps_freq; 1365 if (pps_usec >= bigtick) 1366 pps_usec -= bigtick; 1367 if (pps_usec < 0) 1368 pps_usec += bigtick; 1369 pps_time.tv_sec++; 1370 pps_count++; 1371 if (pps_count < (1 << pps_shift)) 1372 return; 1373 pps_count = 0; 1374 pps_calcnt++; 1375 u_usec = usec * SCALE_USEC; 1376 v_usec = pps_usec - u_usec; 1377 if (v_usec >= bigtick >> 1) 1378 v_usec -= bigtick; 1379 if (v_usec < -(bigtick >> 1)) 1380 v_usec += bigtick; 1381 if (v_usec < 0) 1382 v_usec = -(-v_usec >> pps_shift); 1383 else 1384 v_usec = v_usec >> pps_shift; 1385 pps_usec = u_usec; 1386 cal_sec = tvp->tv_sec; 1387 cal_usec = tvp->tv_usec; 1388 cal_sec -= pps_time.tv_sec; 1389 cal_usec -= pps_time.tv_usec; 1390 if (cal_usec < 0) { 1391 cal_usec += MICROSEC; 1392 cal_sec--; 1393 } 1394 pps_time = *tvp; 1395 1396 /* 1397 * Check for lost interrupts, noise, excessive jitter and 1398 * excessive frequency error. The number of timer ticks during 1399 * the interval may vary +-1 tick. Add to this a margin of one 1400 * tick for the PPS signal jitter and maximum frequency 1401 * deviation. If the limits are exceeded, the calibration 1402 * interval is reset to the minimum and we start over. 1403 */ 1404 u_usec = (int)usec_per_tick << 1; 1405 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1406 (cal_sec == 0 && cal_usec < u_usec)) || 1407 v_usec > time_tolerance || v_usec < -time_tolerance) { 1408 pps_errcnt++; 1409 pps_shift = PPS_SHIFT; 1410 pps_intcnt = 0; 1411 time_status |= STA_PPSERROR; 1412 return; 1413 } 1414 1415 /* 1416 * A three-stage median filter is used to help deglitch the pps 1417 * frequency. The median sample becomes the frequency offset 1418 * estimate; the difference between the other two samples 1419 * becomes the frequency dispersion (stability) estimate. 1420 */ 1421 pps_ff[2] = pps_ff[1]; 1422 pps_ff[1] = pps_ff[0]; 1423 pps_ff[0] = v_usec; 1424 if (pps_ff[0] > pps_ff[1]) { 1425 if (pps_ff[1] > pps_ff[2]) { 1426 u_usec = pps_ff[1]; /* 0 1 2 */ 1427 v_usec = pps_ff[0] - pps_ff[2]; 1428 } else if (pps_ff[2] > pps_ff[0]) { 1429 u_usec = pps_ff[0]; /* 2 0 1 */ 1430 v_usec = pps_ff[2] - pps_ff[1]; 1431 } else { 1432 u_usec = pps_ff[2]; /* 0 2 1 */ 1433 v_usec = pps_ff[0] - pps_ff[1]; 1434 } 1435 } else { 1436 if (pps_ff[1] < pps_ff[2]) { 1437 u_usec = pps_ff[1]; /* 2 1 0 */ 1438 v_usec = pps_ff[2] - pps_ff[0]; 1439 } else if (pps_ff[2] < pps_ff[0]) { 1440 u_usec = pps_ff[0]; /* 1 0 2 */ 1441 v_usec = pps_ff[1] - pps_ff[2]; 1442 } else { 1443 u_usec = pps_ff[2]; /* 1 2 0 */ 1444 v_usec = pps_ff[1] - pps_ff[0]; 1445 } 1446 } 1447 1448 /* 1449 * Here the frequency dispersion (stability) is updated. If it 1450 * is less than one-fourth the maximum (MAXFREQ), the frequency 1451 * offset is updated as well, but clamped to the tolerance. It 1452 * will be processed later by the clock() routine. 1453 */ 1454 v_usec = (v_usec >> 1) - pps_stabil; 1455 if (v_usec < 0) 1456 pps_stabil -= -v_usec >> PPS_AVG; 1457 else 1458 pps_stabil += v_usec >> PPS_AVG; 1459 if (pps_stabil > MAXFREQ >> 2) { 1460 pps_stbcnt++; 1461 time_status |= STA_PPSWANDER; 1462 return; 1463 } 1464 if (time_status & STA_PPSFREQ) { 1465 if (u_usec < 0) { 1466 pps_freq -= -u_usec >> PPS_AVG; 1467 if (pps_freq < -time_tolerance) 1468 pps_freq = -time_tolerance; 1469 u_usec = -u_usec; 1470 } else { 1471 pps_freq += u_usec >> PPS_AVG; 1472 if (pps_freq > time_tolerance) 1473 pps_freq = time_tolerance; 1474 } 1475 } 1476 1477 /* 1478 * Here the calibration interval is adjusted. If the maximum 1479 * time difference is greater than tick / 4, reduce the interval 1480 * by half. If this is not the case for four consecutive 1481 * intervals, double the interval. 1482 */ 1483 if (u_usec << pps_shift > bigtick >> 2) { 1484 pps_intcnt = 0; 1485 if (pps_shift > PPS_SHIFT) 1486 pps_shift--; 1487 } else if (pps_intcnt >= 4) { 1488 pps_intcnt = 0; 1489 if (pps_shift < PPS_SHIFTMAX) 1490 pps_shift++; 1491 } else 1492 pps_intcnt++; 1493 1494 /* 1495 * If recovering from kmdb, then make sure the tod chip gets resynced. 1496 * If we took an early exit above, then we don't yet have a stable 1497 * calibration signal to lock onto, so don't mark the tod for sync 1498 * until we get all the way here. 1499 */ 1500 { 1501 int s = hr_clock_lock(); 1502 1503 tod_needsync = 1; 1504 hr_clock_unlock(s); 1505 } 1506 } 1507 1508 /* 1509 * Handle clock tick processing for a thread. 1510 * Check for timer action, enforce CPU rlimit, do profiling etc. 1511 */ 1512 void 1513 clock_tick(kthread_t *t, int pending) 1514 { 1515 struct proc *pp; 1516 klwp_id_t lwp; 1517 struct as *as; 1518 clock_t ticks; 1519 int poke = 0; /* notify another CPU */ 1520 int user_mode; 1521 size_t rss; 1522 int i, total_usec, usec; 1523 rctl_qty_t secs; 1524 1525 ASSERT(pending > 0); 1526 1527 /* Must be operating on a lwp/thread */ 1528 if ((lwp = ttolwp(t)) == NULL) { 1529 panic("clock_tick: no lwp"); 1530 /*NOTREACHED*/ 1531 } 1532 1533 for (i = 0; i < pending; i++) { 1534 CL_TICK(t); /* Class specific tick processing */ 1535 DTRACE_SCHED1(tick, kthread_t *, t); 1536 } 1537 1538 pp = ttoproc(t); 1539 1540 /* pp->p_lock makes sure that the thread does not exit */ 1541 ASSERT(MUTEX_HELD(&pp->p_lock)); 1542 1543 user_mode = (lwp->lwp_state == LWP_USER); 1544 1545 ticks = (pp->p_utime + pp->p_stime) % hz; 1546 /* 1547 * Update process times. Should use high res clock and state 1548 * changes instead of statistical sampling method. XXX 1549 */ 1550 if (user_mode) { 1551 pp->p_utime += pending; 1552 } else { 1553 pp->p_stime += pending; 1554 } 1555 1556 pp->p_ttime += pending; 1557 as = pp->p_as; 1558 1559 /* 1560 * Update user profiling statistics. Get the pc from the 1561 * lwp when the AST happens. 1562 */ 1563 if (pp->p_prof.pr_scale) { 1564 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending); 1565 if (user_mode) { 1566 poke = 1; 1567 aston(t); 1568 } 1569 } 1570 1571 /* 1572 * If CPU was in user state, process lwp-virtual time 1573 * interval timer. The value passed to itimerdecr() has to be 1574 * in microseconds and has to be less than one second. Hence 1575 * this loop. 1576 */ 1577 total_usec = usec_per_tick * pending; 1578 while (total_usec > 0) { 1579 usec = MIN(total_usec, (MICROSEC - 1)); 1580 if (user_mode && 1581 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1582 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) { 1583 poke = 1; 1584 sigtoproc(pp, t, SIGVTALRM); 1585 } 1586 total_usec -= usec; 1587 } 1588 1589 /* 1590 * If CPU was in user state, process lwp-profile 1591 * interval timer. 1592 */ 1593 total_usec = usec_per_tick * pending; 1594 while (total_usec > 0) { 1595 usec = MIN(total_usec, (MICROSEC - 1)); 1596 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1597 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) { 1598 poke = 1; 1599 sigtoproc(pp, t, SIGPROF); 1600 } 1601 total_usec -= usec; 1602 } 1603 1604 /* 1605 * Enforce CPU resource controls: 1606 * (a) process.max-cpu-time resource control 1607 * 1608 * Perform the check only if we have accumulated more a second. 1609 */ 1610 if ((ticks + pending) >= hz) { 1611 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1612 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO); 1613 } 1614 1615 /* 1616 * (b) task.max-cpu-time resource control 1617 * 1618 * If we have accumulated enough ticks, increment the task CPU 1619 * time usage and test for the resource limit. This minimizes the 1620 * number of calls to the rct_test(). The task CPU time mutex 1621 * is highly contentious as many processes can be sharing a task. 1622 */ 1623 if (pp->p_ttime >= clock_tick_proc_max) { 1624 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime); 1625 pp->p_ttime = 0; 1626 if (secs) { 1627 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, 1628 pp, secs, RCA_UNSAFE_SIGINFO); 1629 } 1630 } 1631 1632 /* 1633 * Update memory usage for the currently running process. 1634 */ 1635 rss = rm_asrss(as); 1636 PTOU(pp)->u_mem += rss; 1637 if (rss > PTOU(pp)->u_mem_max) 1638 PTOU(pp)->u_mem_max = rss; 1639 1640 /* 1641 * Notify the CPU the thread is running on. 1642 */ 1643 if (poke && t->t_cpu != CPU) 1644 poke_cpu(t->t_cpu->cpu_id); 1645 } 1646 1647 void 1648 profil_tick(uintptr_t upc) 1649 { 1650 int ticks; 1651 proc_t *p = ttoproc(curthread); 1652 klwp_t *lwp = ttolwp(curthread); 1653 struct prof *pr = &p->p_prof; 1654 1655 do { 1656 ticks = lwp->lwp_oweupc; 1657 } while (atomic_cas_32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1658 1659 mutex_enter(&p->p_pflock); 1660 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1661 /* 1662 * Old-style profiling 1663 */ 1664 uint16_t *slot = pr->pr_base; 1665 uint16_t old, new; 1666 if (pr->pr_scale != 2) { 1667 uintptr_t delta = upc - pr->pr_off; 1668 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1669 (((delta & 0xffff) * pr->pr_scale) >> 16); 1670 if (byteoff >= (uintptr_t)pr->pr_size) { 1671 mutex_exit(&p->p_pflock); 1672 return; 1673 } 1674 slot += byteoff / sizeof (uint16_t); 1675 } 1676 if (fuword16(slot, &old) < 0 || 1677 (new = old + ticks) > SHRT_MAX || 1678 suword16(slot, new) < 0) { 1679 pr->pr_scale = 0; 1680 } 1681 } else if (pr->pr_scale == 1) { 1682 /* 1683 * PC Sampling 1684 */ 1685 model_t model = lwp_getdatamodel(lwp); 1686 int result; 1687 #ifdef __lint 1688 model = model; 1689 #endif 1690 while (ticks-- > 0) { 1691 if (pr->pr_samples == pr->pr_size) { 1692 /* buffer full, turn off sampling */ 1693 pr->pr_scale = 0; 1694 break; 1695 } 1696 switch (SIZEOF_PTR(model)) { 1697 case sizeof (uint32_t): 1698 result = suword32(pr->pr_base, (uint32_t)upc); 1699 break; 1700 #ifdef _LP64 1701 case sizeof (uint64_t): 1702 result = suword64(pr->pr_base, (uint64_t)upc); 1703 break; 1704 #endif 1705 default: 1706 cmn_err(CE_WARN, "profil_tick: unexpected " 1707 "data model"); 1708 result = -1; 1709 break; 1710 } 1711 if (result != 0) { 1712 pr->pr_scale = 0; 1713 break; 1714 } 1715 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1716 pr->pr_samples++; 1717 } 1718 } 1719 mutex_exit(&p->p_pflock); 1720 } 1721 1722 static void 1723 delay_wakeup(void *arg) 1724 { 1725 kthread_t *t = arg; 1726 1727 mutex_enter(&t->t_delay_lock); 1728 cv_signal(&t->t_delay_cv); 1729 mutex_exit(&t->t_delay_lock); 1730 } 1731 1732 /* 1733 * The delay(9F) man page indicates that it can only be called from user or 1734 * kernel context - detect and diagnose bad calls. The following macro will 1735 * produce a limited number of messages identifying bad callers. This is done 1736 * in a macro so that caller() is meaningful. When a bad caller is identified, 1737 * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate. 1738 */ 1739 #define DELAY_CONTEXT_CHECK() { \ 1740 uint32_t m; \ 1741 char *f; \ 1742 ulong_t off; \ 1743 \ 1744 m = delay_from_interrupt_msg; \ 1745 if (delay_from_interrupt_diagnose && servicing_interrupt() && \ 1746 !panicstr && !devinfo_freeze && \ 1747 atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) { \ 1748 f = modgetsymname((uintptr_t)caller(), &off); \ 1749 cmn_err(CE_WARN, "delay(9F) called from " \ 1750 "interrupt context: %s`%s", \ 1751 mod_containing_pc(caller()), f ? f : "..."); \ 1752 } \ 1753 } 1754 1755 /* 1756 * delay_common: common delay code. 1757 */ 1758 static void 1759 delay_common(clock_t ticks) 1760 { 1761 kthread_t *t = curthread; 1762 clock_t deadline; 1763 clock_t timeleft; 1764 callout_id_t id; 1765 1766 /* If timeouts aren't running all we can do is spin. */ 1767 if (panicstr || devinfo_freeze) { 1768 /* Convert delay(9F) call into drv_usecwait(9F) call. */ 1769 if (ticks > 0) 1770 drv_usecwait(TICK_TO_USEC(ticks)); 1771 return; 1772 } 1773 1774 deadline = ddi_get_lbolt() + ticks; 1775 while ((timeleft = deadline - ddi_get_lbolt()) > 0) { 1776 mutex_enter(&t->t_delay_lock); 1777 id = timeout_default(delay_wakeup, t, timeleft); 1778 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1779 mutex_exit(&t->t_delay_lock); 1780 (void) untimeout_default(id, 0); 1781 } 1782 } 1783 1784 /* 1785 * Delay specified number of clock ticks. 1786 */ 1787 void 1788 delay(clock_t ticks) 1789 { 1790 DELAY_CONTEXT_CHECK(); 1791 1792 delay_common(ticks); 1793 } 1794 1795 /* 1796 * Delay a random number of clock ticks between 1 and ticks. 1797 */ 1798 void 1799 delay_random(clock_t ticks) 1800 { 1801 int r; 1802 1803 DELAY_CONTEXT_CHECK(); 1804 1805 (void) random_get_pseudo_bytes((void *)&r, sizeof (r)); 1806 if (ticks == 0) 1807 ticks = 1; 1808 ticks = (r % ticks) + 1; 1809 delay_common(ticks); 1810 } 1811 1812 /* 1813 * Like delay, but interruptible by a signal. 1814 */ 1815 int 1816 delay_sig(clock_t ticks) 1817 { 1818 kthread_t *t = curthread; 1819 clock_t deadline; 1820 clock_t rc; 1821 1822 /* If timeouts aren't running all we can do is spin. */ 1823 if (panicstr || devinfo_freeze) { 1824 if (ticks > 0) 1825 drv_usecwait(TICK_TO_USEC(ticks)); 1826 return (0); 1827 } 1828 1829 deadline = ddi_get_lbolt() + ticks; 1830 mutex_enter(&t->t_delay_lock); 1831 do { 1832 rc = cv_timedwait_sig(&t->t_delay_cv, 1833 &t->t_delay_lock, deadline); 1834 /* loop until past deadline or signaled */ 1835 } while (rc > 0); 1836 mutex_exit(&t->t_delay_lock); 1837 if (rc == 0) 1838 return (EINTR); 1839 return (0); 1840 } 1841 1842 1843 #define SECONDS_PER_DAY 86400 1844 1845 /* 1846 * Initialize the system time based on the TOD chip. approx is used as 1847 * an approximation of time (e.g. from the filesystem) in the event that 1848 * the TOD chip has been cleared or is unresponsive. An approx of -1 1849 * means the filesystem doesn't keep time. 1850 */ 1851 void 1852 clkset(time_t approx) 1853 { 1854 timestruc_t ts; 1855 int spl; 1856 int set_clock = 0; 1857 1858 mutex_enter(&tod_lock); 1859 ts = tod_get(); 1860 1861 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1862 /* 1863 * If the TOD chip is reporting some time after 1971, 1864 * then it probably didn't lose power or become otherwise 1865 * cleared in the recent past; check to assure that 1866 * the time coming from the filesystem isn't in the future 1867 * according to the TOD chip. 1868 */ 1869 if (approx != -1 && approx > ts.tv_sec) { 1870 cmn_err(CE_WARN, "Last shutdown is later " 1871 "than time on time-of-day chip; check date."); 1872 } 1873 } else { 1874 /* 1875 * If the TOD chip isn't giving correct time, set it to the 1876 * greater of i) approx and ii) 1987. That way if approx 1877 * is negative or is earlier than 1987, we set the clock 1878 * back to a time when Oliver North, ALF and Dire Straits 1879 * were all on the collective brain: 1987. 1880 */ 1881 timestruc_t tmp; 1882 time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1883 ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date); 1884 ts.tv_nsec = 0; 1885 1886 /* 1887 * Attempt to write the new time to the TOD chip. Set spl high 1888 * to avoid getting preempted between the tod_set and tod_get. 1889 */ 1890 spl = splhi(); 1891 tod_set(ts); 1892 tmp = tod_get(); 1893 splx(spl); 1894 1895 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1896 tod_broken = 1; 1897 dosynctodr = 0; 1898 cmn_err(CE_WARN, "Time-of-day chip unresponsive."); 1899 } else { 1900 cmn_err(CE_WARN, "Time-of-day chip had " 1901 "incorrect date; check and reset."); 1902 } 1903 set_clock = 1; 1904 } 1905 1906 if (!boot_time) { 1907 boot_time = ts.tv_sec; 1908 global_zone->zone_boot_time = ts.tv_sec; 1909 set_clock = 1; 1910 } 1911 1912 if (set_clock) 1913 set_hrestime(&ts); 1914 1915 mutex_exit(&tod_lock); 1916 } 1917 1918 int timechanged; /* for testing if the system time has been reset */ 1919 1920 void 1921 set_hrestime(timestruc_t *ts) 1922 { 1923 int spl = hr_clock_lock(); 1924 hrestime = *ts; 1925 membar_enter(); /* hrestime must be visible before timechanged++ */ 1926 timedelta = 0; 1927 timechanged++; 1928 hr_clock_unlock(spl); 1929 callout_hrestime(); 1930 } 1931 1932 static uint_t deadman_seconds; 1933 static uint32_t deadman_panics; 1934 static int deadman_enabled = 0; 1935 static int deadman_panic_timers = 1; 1936 1937 static void 1938 deadman(void) 1939 { 1940 if (panicstr) { 1941 /* 1942 * During panic, other CPUs besides the panic 1943 * master continue to handle cyclics and some other 1944 * interrupts. The code below is intended to be 1945 * single threaded, so any CPU other than the master 1946 * must keep out. 1947 */ 1948 if (CPU->cpu_id != panic_cpu.cpu_id) 1949 return; 1950 1951 if (!deadman_panic_timers) 1952 return; /* allow all timers to be manually disabled */ 1953 1954 /* 1955 * If we are generating a crash dump or syncing filesystems and 1956 * the corresponding timer is set, decrement it and re-enter 1957 * the panic code to abort it and advance to the next state. 1958 * The panic states and triggers are explained in panic.c. 1959 */ 1960 if (panic_dump) { 1961 if (dump_timeleft && (--dump_timeleft == 0)) { 1962 panic("panic dump timeout"); 1963 /*NOTREACHED*/ 1964 } 1965 } 1966 return; 1967 } 1968 1969 if (deadman_counter != CPU->cpu_deadman_counter) { 1970 CPU->cpu_deadman_counter = deadman_counter; 1971 CPU->cpu_deadman_countdown = deadman_seconds; 1972 return; 1973 } 1974 1975 if (--CPU->cpu_deadman_countdown > 0) 1976 return; 1977 1978 /* 1979 * Regardless of whether or not we actually bring the system down, 1980 * bump the deadman_panics variable. 1981 * 1982 * N.B. deadman_panics is incremented once for each CPU that 1983 * passes through here. It's expected that all the CPUs will 1984 * detect this condition within one second of each other, so 1985 * when deadman_enabled is off, deadman_panics will 1986 * typically be a multiple of the total number of CPUs in 1987 * the system. 1988 */ 1989 atomic_inc_32(&deadman_panics); 1990 1991 if (!deadman_enabled) { 1992 CPU->cpu_deadman_countdown = deadman_seconds; 1993 return; 1994 } 1995 1996 /* 1997 * If we're here, we want to bring the system down. 1998 */ 1999 panic("deadman: timed out after %d seconds of clock " 2000 "inactivity", deadman_seconds); 2001 /*NOTREACHED*/ 2002 } 2003 2004 /*ARGSUSED*/ 2005 static void 2006 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 2007 { 2008 cpu->cpu_deadman_counter = 0; 2009 cpu->cpu_deadman_countdown = deadman_seconds; 2010 2011 hdlr->cyh_func = (cyc_func_t)deadman; 2012 hdlr->cyh_level = CY_HIGH_LEVEL; 2013 hdlr->cyh_arg = NULL; 2014 2015 /* 2016 * Stagger the CPUs so that they don't all run deadman() at 2017 * the same time. Simplest reason to do this is to make it 2018 * more likely that only one CPU will panic in case of a 2019 * timeout. This is (strictly speaking) an aesthetic, not a 2020 * technical consideration. 2021 */ 2022 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 2023 when->cyt_interval = NANOSEC; 2024 } 2025 2026 2027 void 2028 deadman_init(void) 2029 { 2030 cyc_omni_handler_t hdlr; 2031 2032 if (deadman_seconds == 0) 2033 deadman_seconds = snoop_interval / MICROSEC; 2034 2035 if (snooping) 2036 deadman_enabled = 1; 2037 2038 hdlr.cyo_online = deadman_online; 2039 hdlr.cyo_offline = NULL; 2040 hdlr.cyo_arg = NULL; 2041 2042 mutex_enter(&cpu_lock); 2043 deadman_cyclic = cyclic_add_omni(&hdlr); 2044 mutex_exit(&cpu_lock); 2045 } 2046 2047 /* 2048 * tod_fault() is for updating tod validate mechanism state: 2049 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 2050 * currently used for debugging only 2051 * (2) The following four cases detected by tod validate mechanism: 2052 * TOD_REVERSED: current tod value is less than previous value. 2053 * TOD_STALLED: current tod value hasn't advanced. 2054 * TOD_JUMPED: current tod value advanced too far from previous value. 2055 * TOD_RATECHANGED: the ratio between average tod delta and 2056 * average tick delta has changed. 2057 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is 2058 * a virtual TOD provided by a hypervisor. 2059 */ 2060 enum tod_fault_type 2061 tod_fault(enum tod_fault_type ftype, int off) 2062 { 2063 ASSERT(MUTEX_HELD(&tod_lock)); 2064 2065 if (tod_faulted != ftype) { 2066 switch (ftype) { 2067 case TOD_NOFAULT: 2068 plat_tod_fault(TOD_NOFAULT); 2069 cmn_err(CE_NOTE, "Restarted tracking " 2070 "Time of Day clock."); 2071 tod_faulted = ftype; 2072 break; 2073 case TOD_REVERSED: 2074 case TOD_JUMPED: 2075 if (tod_faulted == TOD_NOFAULT) { 2076 plat_tod_fault(ftype); 2077 cmn_err(CE_WARN, "Time of Day clock error: " 2078 "reason [%s by 0x%x]. -- " 2079 " Stopped tracking Time Of Day clock.", 2080 tod_fault_table[ftype], off); 2081 tod_faulted = ftype; 2082 } 2083 break; 2084 case TOD_STALLED: 2085 case TOD_RATECHANGED: 2086 if (tod_faulted == TOD_NOFAULT) { 2087 plat_tod_fault(ftype); 2088 cmn_err(CE_WARN, "Time of Day clock error: " 2089 "reason [%s]. -- " 2090 " Stopped tracking Time Of Day clock.", 2091 tod_fault_table[ftype]); 2092 tod_faulted = ftype; 2093 } 2094 break; 2095 case TOD_RDONLY: 2096 if (tod_faulted == TOD_NOFAULT) { 2097 plat_tod_fault(ftype); 2098 cmn_err(CE_NOTE, "!Time of Day clock is " 2099 "Read-Only; set of Date/Time will not " 2100 "persist across reboot."); 2101 tod_faulted = ftype; 2102 } 2103 break; 2104 default: 2105 break; 2106 } 2107 } 2108 return (tod_faulted); 2109 } 2110 2111 /* 2112 * Two functions that allow tod_status_flag to be manipulated by functions 2113 * external to this file. 2114 */ 2115 2116 void 2117 tod_status_set(int tod_flag) 2118 { 2119 tod_status_flag |= tod_flag; 2120 } 2121 2122 void 2123 tod_status_clear(int tod_flag) 2124 { 2125 tod_status_flag &= ~tod_flag; 2126 } 2127 2128 /* 2129 * Record a timestamp and the value passed to tod_set(). The next call to 2130 * tod_validate() can use these values, prev_set_tick and prev_set_tod, 2131 * when checking the timestruc_t returned by tod_get(). Ordinarily, 2132 * tod_validate() will use prev_tick and prev_tod for this task but these 2133 * become obsolete, and will be re-assigned with the prev_set_* values, 2134 * in the case when the TOD is re-written. 2135 */ 2136 void 2137 tod_set_prev(timestruc_t ts) 2138 { 2139 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2140 tod_validate_deferred) { 2141 return; 2142 } 2143 prev_set_tick = gethrtime(); 2144 /* 2145 * A negative value will be set to zero in utc_to_tod() so we fake 2146 * a zero here in such a case. This would need to change if the 2147 * behavior of utc_to_tod() changes. 2148 */ 2149 prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec; 2150 } 2151 2152 /* 2153 * tod_validate() is used for checking values returned by tod_get(). 2154 * Four error cases can be detected by this routine: 2155 * TOD_REVERSED: current tod value is less than previous. 2156 * TOD_STALLED: current tod value hasn't advanced. 2157 * TOD_JUMPED: current tod value advanced too far from previous value. 2158 * TOD_RATECHANGED: the ratio between average tod delta and 2159 * average tick delta has changed. 2160 */ 2161 time_t 2162 tod_validate(time_t tod) 2163 { 2164 time_t diff_tod; 2165 hrtime_t diff_tick; 2166 2167 long dtick; 2168 int dtick_delta; 2169 2170 int off = 0; 2171 enum tod_fault_type tod_bad = TOD_NOFAULT; 2172 2173 static int firsttime = 1; 2174 2175 static time_t prev_tod = 0; 2176 static hrtime_t prev_tick = 0; 2177 static long dtick_avg = TOD_REF_FREQ; 2178 2179 int cpr_resume_done = 0; 2180 int dr_resume_done = 0; 2181 2182 hrtime_t tick = gethrtime(); 2183 2184 ASSERT(MUTEX_HELD(&tod_lock)); 2185 2186 /* 2187 * tod_validate_enable is patchable via /etc/system. 2188 * If TOD is already faulted, or if TOD validation is deferred, 2189 * there is nothing to do. 2190 */ 2191 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2192 tod_validate_deferred) { 2193 return (tod); 2194 } 2195 2196 /* 2197 * If this is the first time through, we just need to save the tod 2198 * we were called with and hrtime so we can use them next time to 2199 * validate tod_get(). 2200 */ 2201 if (firsttime) { 2202 firsttime = 0; 2203 prev_tod = tod; 2204 prev_tick = tick; 2205 return (tod); 2206 } 2207 2208 /* 2209 * Handle any flags that have been turned on by tod_status_set(). 2210 * In the case where a tod_set() is done and then a subsequent 2211 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are 2212 * true), we treat the TOD_GET_FAILED with precedence by switching 2213 * off the flag, returning tod and leaving TOD_SET_DONE asserted 2214 * until such time as tod_get() completes successfully. 2215 */ 2216 if (tod_status_flag & TOD_GET_FAILED) { 2217 /* 2218 * tod_get() has encountered an issue, possibly transitory, 2219 * when reading TOD. We'll just return the incoming tod 2220 * value (which is actually hrestime.tv_sec in this case) 2221 * and when we get a genuine tod, following a successful 2222 * tod_get(), we can validate using prev_tod and prev_tick. 2223 */ 2224 tod_status_flag &= ~TOD_GET_FAILED; 2225 return (tod); 2226 } else if (tod_status_flag & TOD_SET_DONE) { 2227 /* 2228 * TOD has been modified. Just before the TOD was written, 2229 * tod_set_prev() saved tod and hrtime; we can now use 2230 * those values, prev_set_tod and prev_set_tick, to validate 2231 * the incoming tod that's just been read. 2232 */ 2233 prev_tod = prev_set_tod; 2234 prev_tick = prev_set_tick; 2235 dtick_avg = TOD_REF_FREQ; 2236 tod_status_flag &= ~TOD_SET_DONE; 2237 /* 2238 * If a tod_set() preceded a cpr_suspend() without an 2239 * intervening tod_validate(), we need to ensure that a 2240 * TOD_JUMPED condition is ignored. 2241 * Note this isn't a concern in the case of DR as we've 2242 * just reassigned dtick_avg, above. 2243 */ 2244 if (tod_status_flag & TOD_CPR_RESUME_DONE) { 2245 cpr_resume_done = 1; 2246 tod_status_flag &= ~TOD_CPR_RESUME_DONE; 2247 } 2248 } else if (tod_status_flag & TOD_CPR_RESUME_DONE) { 2249 /* 2250 * The system's coming back from a checkpoint resume. 2251 */ 2252 cpr_resume_done = 1; 2253 tod_status_flag &= ~TOD_CPR_RESUME_DONE; 2254 /* 2255 * We need to handle the possibility of a CPR suspend 2256 * operation having been initiated whilst a DR event was 2257 * in-flight. 2258 */ 2259 if (tod_status_flag & TOD_DR_RESUME_DONE) { 2260 dr_resume_done = 1; 2261 tod_status_flag &= ~TOD_DR_RESUME_DONE; 2262 } 2263 } else if (tod_status_flag & TOD_DR_RESUME_DONE) { 2264 /* 2265 * A Dynamic Reconfiguration event has taken place. 2266 */ 2267 dr_resume_done = 1; 2268 tod_status_flag &= ~TOD_DR_RESUME_DONE; 2269 } 2270 2271 /* test hook */ 2272 switch (tod_unit_test) { 2273 case 1: /* for testing jumping tod */ 2274 tod += tod_test_injector; 2275 tod_unit_test = 0; 2276 break; 2277 case 2: /* for testing stuck tod bit */ 2278 tod |= 1 << tod_test_injector; 2279 tod_unit_test = 0; 2280 break; 2281 case 3: /* for testing stalled tod */ 2282 tod = prev_tod; 2283 tod_unit_test = 0; 2284 break; 2285 case 4: /* reset tod fault status */ 2286 (void) tod_fault(TOD_NOFAULT, 0); 2287 tod_unit_test = 0; 2288 break; 2289 default: 2290 break; 2291 } 2292 2293 diff_tod = tod - prev_tod; 2294 diff_tick = tick - prev_tick; 2295 2296 ASSERT(diff_tick >= 0); 2297 2298 if (diff_tod < 0) { 2299 /* ERROR - tod reversed */ 2300 tod_bad = TOD_REVERSED; 2301 off = (int)(prev_tod - tod); 2302 } else if (diff_tod == 0) { 2303 /* tod did not advance */ 2304 if (diff_tick > TOD_STALL_THRESHOLD) { 2305 /* ERROR - tod stalled */ 2306 tod_bad = TOD_STALLED; 2307 } else { 2308 /* 2309 * Make sure we don't update prev_tick 2310 * so that diff_tick is calculated since 2311 * the first diff_tod == 0 2312 */ 2313 return (tod); 2314 } 2315 } else { 2316 /* calculate dtick */ 2317 dtick = diff_tick / diff_tod; 2318 2319 /* update dtick averages */ 2320 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2321 2322 /* 2323 * Calculate dtick_delta as 2324 * variation from reference freq in quartiles 2325 */ 2326 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2327 (TOD_REF_FREQ >> 2); 2328 2329 /* 2330 * Even with a perfectly functioning TOD device, 2331 * when the number of elapsed seconds is low the 2332 * algorithm can calculate a rate that is beyond 2333 * tolerance, causing an error. The algorithm is 2334 * inaccurate when elapsed time is low (less than 2335 * 5 seconds). 2336 */ 2337 if (diff_tod > 4) { 2338 if (dtick < TOD_JUMP_THRESHOLD) { 2339 /* 2340 * If we've just done a CPR resume, we detect 2341 * a jump in the TOD but, actually, what's 2342 * happened is that the TOD has been increasing 2343 * whilst the system was suspended and the tick 2344 * count hasn't kept up. We consider the first 2345 * occurrence of this after a resume as normal 2346 * and ignore it; otherwise, in a non-resume 2347 * case, we regard it as a TOD problem. 2348 */ 2349 if (!cpr_resume_done) { 2350 /* ERROR - tod jumped */ 2351 tod_bad = TOD_JUMPED; 2352 off = (int)diff_tod; 2353 } 2354 } 2355 if (dtick_delta) { 2356 /* 2357 * If we've just done a DR resume, dtick_avg 2358 * can go a bit askew so we reset it and carry 2359 * on; otherwise, the TOD is in error. 2360 */ 2361 if (dr_resume_done) { 2362 dtick_avg = TOD_REF_FREQ; 2363 } else { 2364 /* ERROR - change in clock rate */ 2365 tod_bad = TOD_RATECHANGED; 2366 } 2367 } 2368 } 2369 } 2370 2371 if (tod_bad != TOD_NOFAULT) { 2372 (void) tod_fault(tod_bad, off); 2373 2374 /* 2375 * Disable dosynctodr since we are going to fault 2376 * the TOD chip anyway here 2377 */ 2378 dosynctodr = 0; 2379 2380 /* 2381 * Set tod to the correct value from hrestime 2382 */ 2383 tod = hrestime.tv_sec; 2384 } 2385 2386 prev_tod = tod; 2387 prev_tick = tick; 2388 return (tod); 2389 } 2390 2391 static void 2392 calcloadavg(int nrun, uint64_t *hp_ave) 2393 { 2394 static int64_t f[3] = { 135, 27, 9 }; 2395 uint_t i; 2396 int64_t q, r; 2397 2398 /* 2399 * Compute load average over the last 1, 5, and 15 minutes 2400 * (60, 300, and 900 seconds). The constants in f[3] are for 2401 * exponential decay: 2402 * (1 - exp(-1/60)) << 13 = 135, 2403 * (1 - exp(-1/300)) << 13 = 27, 2404 * (1 - exp(-1/900)) << 13 = 9. 2405 */ 2406 2407 /* 2408 * a little hoop-jumping to avoid integer overflow 2409 */ 2410 for (i = 0; i < 3; i++) { 2411 q = (hp_ave[i] >> 16) << 7; 2412 r = (hp_ave[i] & 0xffff) << 7; 2413 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2414 } 2415 } 2416 2417 /* 2418 * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to 2419 * calculate the value of lbolt according to the current mode. In the event 2420 * driven mode (the default), lbolt is calculated by dividing the current hires 2421 * time by the number of nanoseconds per clock tick. In the cyclic driven mode 2422 * an internal variable is incremented at each firing of the lbolt cyclic 2423 * and returned by lbolt_cyclic_driven(). 2424 * 2425 * The system will transition from event to cyclic driven mode when the number 2426 * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a 2427 * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to 2428 * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is 2429 * causing enough activity to cross the thresholds. 2430 */ 2431 int64_t 2432 lbolt_bootstrap(void) 2433 { 2434 return (0); 2435 } 2436 2437 /* ARGSUSED */ 2438 uint_t 2439 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2) 2440 { 2441 hrtime_t ts, exp; 2442 int ret; 2443 2444 ASSERT(lbolt_hybrid != lbolt_cyclic_driven); 2445 2446 kpreempt_disable(); 2447 2448 ts = gethrtime(); 2449 lb_info->lbi_internal = (ts/nsec_per_tick); 2450 2451 /* 2452 * Align the next expiration to a clock tick boundary. 2453 */ 2454 exp = ts + nsec_per_tick - 1; 2455 exp = (exp/nsec_per_tick) * nsec_per_tick; 2456 2457 ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp); 2458 ASSERT(ret); 2459 2460 lbolt_hybrid = lbolt_cyclic_driven; 2461 lb_info->lbi_cyc_deactivate = B_FALSE; 2462 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2463 2464 kpreempt_enable(); 2465 2466 ret = atomic_dec_32_nv(&lb_info->lbi_token); 2467 ASSERT(ret == 0); 2468 2469 return (1); 2470 } 2471 2472 int64_t 2473 lbolt_event_driven(void) 2474 { 2475 hrtime_t ts; 2476 int64_t lb; 2477 int ret, cpu = CPU->cpu_seqid; 2478 2479 ts = gethrtime(); 2480 ASSERT(ts > 0); 2481 2482 ASSERT(nsec_per_tick > 0); 2483 lb = (ts/nsec_per_tick); 2484 2485 /* 2486 * Switch to cyclic mode if the number of calls to this routine 2487 * has reached the threshold within the interval. 2488 */ 2489 if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) { 2490 2491 if (--lb_cpu[cpu].lbc_counter == 0) { 2492 /* 2493 * Reached the threshold within the interval, reset 2494 * the usage statistics. 2495 */ 2496 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2497 lb_cpu[cpu].lbc_cnt_start = lb; 2498 2499 /* 2500 * Make sure only one thread reprograms the 2501 * lbolt cyclic and changes the mode. 2502 */ 2503 if (panicstr == NULL && 2504 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2505 2506 if (lbolt_hybrid == lbolt_cyclic_driven) { 2507 ret = atomic_dec_32_nv( 2508 &lb_info->lbi_token); 2509 ASSERT(ret == 0); 2510 } else { 2511 lbolt_softint_post(); 2512 } 2513 } 2514 } 2515 } else { 2516 /* 2517 * Exceeded the interval, reset the usage statistics. 2518 */ 2519 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2520 lb_cpu[cpu].lbc_cnt_start = lb; 2521 } 2522 2523 ASSERT(lb >= lb_info->lbi_debug_time); 2524 2525 return (lb - lb_info->lbi_debug_time); 2526 } 2527 2528 int64_t 2529 lbolt_cyclic_driven(void) 2530 { 2531 int64_t lb = lb_info->lbi_internal; 2532 int cpu; 2533 2534 /* 2535 * If a CPU has already prevented the lbolt cyclic from deactivating 2536 * itself, don't bother tracking the usage. Otherwise check if we're 2537 * within the interval and how the per CPU counter is doing. 2538 */ 2539 if (lb_info->lbi_cyc_deactivate) { 2540 cpu = CPU->cpu_seqid; 2541 if ((lb - lb_cpu[cpu].lbc_cnt_start) < 2542 lb_info->lbi_thresh_interval) { 2543 2544 if (lb_cpu[cpu].lbc_counter == 0) 2545 /* 2546 * Reached the threshold within the interval, 2547 * prevent the lbolt cyclic from turning itself 2548 * off. 2549 */ 2550 lb_info->lbi_cyc_deactivate = B_FALSE; 2551 else 2552 lb_cpu[cpu].lbc_counter--; 2553 } else { 2554 /* 2555 * Only reset the usage statistics when we have 2556 * exceeded the interval. 2557 */ 2558 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2559 lb_cpu[cpu].lbc_cnt_start = lb; 2560 } 2561 } 2562 2563 ASSERT(lb >= lb_info->lbi_debug_time); 2564 2565 return (lb - lb_info->lbi_debug_time); 2566 } 2567 2568 /* 2569 * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy 2570 * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers. 2571 * It is inactive by default, and will be activated when switching from event 2572 * to cyclic driven lbolt. The cyclic will turn itself off unless signaled 2573 * by lbolt_cyclic_driven(). 2574 */ 2575 static void 2576 lbolt_cyclic(void) 2577 { 2578 int ret; 2579 2580 lb_info->lbi_internal++; 2581 2582 if (!lbolt_cyc_only) { 2583 2584 if (lb_info->lbi_cyc_deactivate) { 2585 /* 2586 * Switching from cyclic to event driven mode. 2587 */ 2588 if (panicstr == NULL && 2589 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2590 2591 if (lbolt_hybrid == lbolt_event_driven) { 2592 ret = atomic_dec_32_nv( 2593 &lb_info->lbi_token); 2594 ASSERT(ret == 0); 2595 return; 2596 } 2597 2598 kpreempt_disable(); 2599 2600 lbolt_hybrid = lbolt_event_driven; 2601 ret = cyclic_reprogram( 2602 lb_info->id.lbi_cyclic_id, 2603 CY_INFINITY); 2604 ASSERT(ret); 2605 2606 kpreempt_enable(); 2607 2608 ret = atomic_dec_32_nv(&lb_info->lbi_token); 2609 ASSERT(ret == 0); 2610 } 2611 } 2612 2613 /* 2614 * The lbolt cyclic should not try to deactivate itself before 2615 * the sampling period has elapsed. 2616 */ 2617 if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >= 2618 lb_info->lbi_thresh_interval) { 2619 lb_info->lbi_cyc_deactivate = B_TRUE; 2620 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2621 } 2622 } 2623 } 2624 2625 /* 2626 * Since the lbolt service was historically cyclic driven, it must be 'stopped' 2627 * when the system drops into the kernel debugger. lbolt_debug_entry() is 2628 * called by the KDI system claim callbacks to record a hires timestamp at 2629 * debug enter time. lbolt_debug_return() is called by the sistem release 2630 * callbacks to account for the time spent in the debugger. The value is then 2631 * accumulated in the lb_info structure and used by lbolt_event_driven() and 2632 * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine. 2633 */ 2634 void 2635 lbolt_debug_entry(void) 2636 { 2637 if (lbolt_hybrid != lbolt_bootstrap) { 2638 ASSERT(lb_info != NULL); 2639 lb_info->lbi_debug_ts = gethrtime(); 2640 } 2641 } 2642 2643 /* 2644 * Calculate the time spent in the debugger and add it to the lbolt info 2645 * structure. We also update the internal lbolt value in case we were in 2646 * cyclic driven mode going in. 2647 */ 2648 void 2649 lbolt_debug_return(void) 2650 { 2651 hrtime_t ts; 2652 2653 if (lbolt_hybrid != lbolt_bootstrap) { 2654 ASSERT(lb_info != NULL); 2655 ASSERT(nsec_per_tick > 0); 2656 2657 ts = gethrtime(); 2658 lb_info->lbi_internal = (ts/nsec_per_tick); 2659 lb_info->lbi_debug_time += 2660 ((ts - lb_info->lbi_debug_ts)/nsec_per_tick); 2661 2662 lb_info->lbi_debug_ts = 0; 2663 } 2664 } 2665