xref: /illumos-gate/usr/src/uts/common/krtld/kobj.c (revision ac20c57d6652cecf7859e3346336b9a48e5d5f82)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Kernel's linker/loader
30  */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/sysmacros.h>
35 #include <sys/systm.h>
36 #include <sys/user.h>
37 #include <sys/kmem.h>
38 #include <sys/reboot.h>
39 #include <sys/bootconf.h>
40 #include <sys/debug.h>
41 #include <sys/uio.h>
42 #include <sys/file.h>
43 #include <sys/vnode.h>
44 #include <sys/user.h>
45 #include <sys/mman.h>
46 #include <vm/as.h>
47 #include <vm/seg_kp.h>
48 #include <vm/seg_kmem.h>
49 #include <sys/elf.h>
50 #include <sys/elf_notes.h>
51 #include <sys/vmsystm.h>
52 #include <sys/kdi.h>
53 #include <sys/atomic.h>
54 #include <sys/kmdb.h>
55 
56 #include <sys/link.h>
57 #include <sys/kobj.h>
58 #include <sys/ksyms.h>
59 #include <sys/disp.h>
60 #include <sys/modctl.h>
61 #include <sys/varargs.h>
62 #include <sys/kstat.h>
63 #include <sys/kobj_impl.h>
64 #include <sys/callb.h>
65 #include <sys/cmn_err.h>
66 #include <sys/tnf_probe.h>
67 
68 #include <reloc.h>
69 #include <kobj_kdi.h>
70 #include <sys/sha1.h>
71 #include <sys/crypto/elfsign.h>
72 
73 #if !defined(__sparc)
74 #include <sys/bootvfs.h>
75 #endif
76 
77 /*
78  * do_symbols() error codes
79  */
80 #define	DOSYM_UNDEF		-1	/* undefined symbol */
81 #define	DOSYM_UNSAFE		-2	/* MT-unsafe driver symbol */
82 
83 static void synthetic_bootaux(char *, val_t *);
84 static struct module *load_exec(val_t *, char *);
85 static void load_linker(val_t *);
86 static struct modctl *add_primary(const char *filename, int);
87 static int bind_primary(val_t *, int);
88 static int load_primary(struct module *, int);
89 static int load_kmdb(val_t *);
90 static int get_progbits(struct module *, struct _buf *);
91 static int get_syms(struct module *, struct _buf *);
92 static int get_ctf(struct module *, struct _buf *);
93 static void get_signature(struct module *, struct _buf *);
94 static int do_common(struct module *);
95 static void add_dependent(struct module *, struct module *);
96 static int do_dependents(struct modctl *, char *, size_t);
97 static int do_symbols(struct module *, Elf64_Addr);
98 static void module_assign(struct modctl *, struct module *);
99 static void free_module_data(struct module *);
100 static char *depends_on(struct module *);
101 static char *getmodpath(const char *);
102 static char *basename(char *);
103 static void attr_val(val_t *);
104 static char *find_libmacro(char *);
105 static char *expand_libmacro(char *, char *, char *);
106 static int read_bootflags(void);
107 static int kobj_boot_open(char *, int);
108 static int kobj_boot_close(int);
109 static int kobj_boot_seek(int, off_t, off_t);
110 static int kobj_boot_read(int, caddr_t, size_t);
111 static int kobj_boot_fstat(int, struct bootstat *);
112 
113 static Sym *lookup_one(struct module *, const char *);
114 static void sym_insert(struct module *, char *, symid_t);
115 static Sym *sym_lookup(struct module *, Sym *);
116 
117 /*PRINTFLIKE2*/
118 static void kprintf(void *, const char *, ...)  __KPRINTFLIKE(2);
119 
120 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
121 static void kobjopen_free(struct kobjopen_tctl *ltp);
122 static void kobjopen_thread(struct kobjopen_tctl *ltp);
123 
124 extern int kcopy(const void *, void *, size_t);
125 extern int elf_mach_ok(Ehdr *);
126 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
127 
128 static void tnf_unsplice_probes(unsigned int, struct modctl *);
129 
130 extern int modrootloaded;
131 extern int swaploaded;
132 extern int bop_io_quiesced;
133 extern int last_module_id;
134 
135 #ifdef KOBJ_DEBUG
136 /*
137  * Values that can be or'd in to kobj_debug and their effects:
138  *
139  *	D_DEBUG		- misc. debugging information.
140  *	D_SYMBOLS	- list symbols and their values as they are entered
141  *			  into the hash table
142  *	D_RELOCATIONS	- display relocation processing information
143  *	D_LOADING	- display information about each module as it
144  *			  is loaded.
145  */
146 int kobj_debug = 0;
147 
148 #define	KOBJ_MARK(s)	if (kobj_debug & D_DEBUG)	\
149 	(_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
150 #else
151 #define	KOBJ_MARK(s)	/* discard */
152 #endif
153 
154 #define	MODPATH_PROPNAME	"module-path"
155 
156 #ifdef MODDIR_SUFFIX
157 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
158 #else
159 #define	slash_moddir_suffix_slash	""
160 #endif
161 
162 #define	_moddebug	get_weakish_int(&moddebug)
163 #define	_modrootloaded	get_weakish_int(&modrootloaded)
164 #define	_swaploaded	get_weakish_int(&swaploaded)
165 #define	_ioquiesced	get_weakish_int(&bop_io_quiesced)
166 
167 #define	mod(X)		(struct module *)((X)->modl_modp->mod_mp)
168 
169 void	*romp;		/* rom vector (opaque to us) */
170 struct bootops *ops;	/* bootops vector */
171 void *dbvec;		/* debug vector */
172 
173 /*
174  * kobjopen thread control structure
175  */
176 struct kobjopen_tctl {
177 	ksema_t		sema;
178 	char		*name;		/* name of file */
179 	struct vnode	*vp;		/* vnode return from vn_open() */
180 	int		Errno;		/* error return from vnopen    */
181 };
182 
183 /*
184  * Structure for defining dynamically expandable library macros
185  */
186 
187 struct lib_macro_info {
188 	char	*lmi_list;		/* ptr to list of possible choices */
189 	char	*lmi_macroname;		/* pointer to macro name */
190 	ushort_t lmi_ba_index;		/* index into bootaux vector */
191 	ushort_t lmi_macrolen;		/* macro length */
192 } libmacros[] = {
193 	{ NULL, "CPU", BA_CPU, 0 },
194 	{ NULL, "MMU", BA_MMU, 0 }
195 };
196 
197 #define	NLIBMACROS	sizeof (libmacros) / sizeof (struct lib_macro_info)
198 
199 char *boot_cpu_compatible_list;			/* make $CPU available */
200 
201 #ifdef	MPSAS
202 void	sas_prisyms(struct modctl_list *);
203 void	sas_syms(struct module *);
204 #endif
205 
206 char *kobj_module_path;				/* module search path */
207 vmem_t	*text_arena;				/* module text arena */
208 static vmem_t *data_arena;			/* module data & bss arena */
209 static vmem_t *ctf_arena;			/* CTF debug data arena */
210 static struct modctl *kobj_modules = NULL;	/* modules loaded */
211 int kobj_mmu_pagesize;				/* system pagesize */
212 static int lg_pagesize;				/* "large" pagesize */
213 static int kobj_last_module_id = 0;		/* id assignment */
214 static kmutex_t kobj_lock;			/* protects mach memory list */
215 
216 /*
217  * The following functions have been implemented by the kernel.
218  * However, many 3rd party drivers provide their own implementations
219  * of these functions.  When such drivers are loaded, messages
220  * indicateing that these symbols have been mulply defined will be
221  * emitted to the console.  To avoid alarming customers for no good
222  * reason, we simply suppress such warnings for the following set of
223  * functions.
224  */
225 static char *suppress_sym_list[] =
226 {
227 	"strstr",
228 	"strncat",
229 	"strlcat",
230 	"strlcpy",
231 	"strspn",
232 	"memcpy",
233 	"memset",
234 	"memmove",
235 	"memcmp",
236 	"memchr",
237 	"__udivdi3",
238 	"__divdi3",
239 	"__umoddi3",
240 	"__moddi3",
241 	NULL		/* This entry must exist */
242 };
243 
244 /* indexed by KOBJ_NOTIFY_* */
245 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
246 
247 /*
248  * TNF probe management globals
249  */
250 tnf_probe_control_t	*__tnf_probe_list_head = NULL;
251 tnf_tag_data_t		*__tnf_tag_list_head = NULL;
252 int			tnf_changed_probe_list = 0;
253 
254 /*
255  * Prefix for statically defined tracing (SDT) DTrace probes.
256  */
257 const char		*sdt_prefix = "__dtrace_probe_";
258 
259 #if defined(__sparc)
260 /*
261  * Some PROMs return SUNW,UltraSPARC when they actually have
262  * SUNW,UltraSPARC-II cpus. SInce we're now filtering out all
263  * SUNW,UltraSPARC systems during the boot phase, we can safely
264  * point the auxv CPU value at SUNW,UltraSPARC-II. This is what
265  * we point it at.
266  */
267 const char		*ultra_2 = "SUNW,UltraSPARC-II";
268 #endif
269 
270 /*
271  * Beginning and end of the kernel's dynamic text/data segments.
272  */
273 static caddr_t _text;
274 static caddr_t _etext;
275 static caddr_t _data;
276 
277 /*
278  * XXX Hmm. The sparc linker fails to define this symbol.
279  */
280 #if !defined(__sparc)
281 extern
282 #endif
283 caddr_t _edata;
284 
285 static Addr dynseg = 0;	/* load address of "dynamic" segment */
286 
287 int standalone = 1;			/* an unwholey kernel? */
288 int use_iflush;				/* iflush after relocations */
289 
290 /*
291  * _kobj_printf()
292  *
293  * Common printf function pointer. Can handle only one conversion
294  * specification in the format string. Some of the functions invoked
295  * through this function pointer cannot handle more that one conversion
296  * specification in the format string.
297  */
298 void (*_kobj_printf)(void *, const char *, ...);	/* printf routine */
299 
300 static kobj_stat_t kobj_stat;
301 
302 #define	MINALIGN	8	/* at least a double-word */
303 
304 int
305 get_weakish_int(int *ip)
306 {
307 	if (standalone)
308 		return (0);
309 	return (ip == NULL ? 0 : *ip);
310 }
311 
312 static void *
313 get_weakish_pointer(void **ptrp)
314 {
315 	if (standalone)
316 		return (0);
317 	return (ptrp == NULL ? 0 : *ptrp);
318 }
319 
320 /*
321  * XXX fix dependencies on "kernel"; this should work
322  * for other standalone binaries as well.
323  *
324  * XXX Fix hashing code to use one pointer to
325  * hash entries.
326  *	|----------|
327  *	| nbuckets |
328  *	|----------|
329  *	| nchains  |
330  *	|----------|
331  *	| bucket[] |
332  *	|----------|
333  *	| chain[]  |
334  *	|----------|
335  */
336 
337 /*
338  * Load, bind and relocate all modules that
339  * form the primary kernel. At this point, our
340  * externals have not been relocated.
341  */
342 void
343 kobj_init(
344 	void *romvec,
345 	void *dvec,
346 	struct bootops *bootvec,
347 	val_t *bootaux)
348 {
349 	struct module *mp;
350 	struct modctl *modp;
351 	Addr entry;
352 	char filename[MAXPATHLEN];
353 
354 	/*
355 	 * Save these to pass on to
356 	 * the booted standalone.
357 	 */
358 	romp = romvec;
359 	dbvec = dvec;
360 
361 	ops = bootvec;
362 #if defined(__i386) || defined(__amd64)
363 	_kobj_printf = (void (*)(void *, const char *, ...))ops->bsys_printf;
364 #else
365 	_kobj_printf = (void (*)(void *, const char *, ...))bop_putsarg;
366 #endif
367 	KOBJ_MARK("Entered kobj_init()");
368 
369 #if defined(__sparc)
370 	/* XXXQ should suppress this test on sun4v */
371 	if (bootaux[BA_CPU].ba_ptr) {
372 		if (strcmp("SUNW,UltraSPARC", bootaux[BA_CPU].ba_ptr) == 0) {
373 			bootaux[BA_CPU].ba_ptr = (void *) ultra_2;
374 		}
375 	}
376 #endif
377 
378 	/*
379 	 * Check bootops version.
380 	 */
381 	if (BOP_GETVERSION(ops) != BO_VERSION) {
382 		_kobj_printf(ops, "Warning: Using boot version %d, ",
383 		    BOP_GETVERSION(ops));
384 		_kobj_printf(ops, "expected %d\n", BO_VERSION);
385 	}
386 #ifdef KOBJ_DEBUG
387 	else if (kobj_debug & D_DEBUG) {
388 		/*
389 		 * Say -something- so we know we got this far ..
390 		 */
391 		_kobj_printf(ops, "krtld: Using boot version %d.\n",
392 		    BOP_GETVERSION(ops));
393 	}
394 #endif
395 
396 	(void) BOP_GETPROP(ops, "whoami", filename);
397 
398 	/*
399 	 * We don't support standalone debuggers anymore.  The use of kadb
400 	 * will interfere with the later use of kmdb.  Let the user mend
401 	 * their ways now.  Users will reach this message if they still
402 	 * have the kadb binary on their system (perhaps they used an old
403 	 * bfu, or maybe they intentionally copied it there) and have
404 	 * specified its use in a way that eluded our checking in the boot
405 	 * program.
406 	 */
407 	if (dvec != NULL) {
408 		_kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
409 		    "kadb are no longer supported\n\n");
410 		goto fail;
411 	}
412 
413 #ifndef __sparc
414 	{
415 		/* on x86, we always boot with a ramdisk */
416 		extern int kobj_boot_mountroot(void);
417 		(void) kobj_boot_mountroot();
418 
419 		/*
420 		 * Now that the ramdisk is mounted, finish boot property
421 		 * initialization.
422 		 */
423 		boot_prop_finish();
424 	}
425 #endif
426 
427 #if !defined(_UNIX_KRTLD)
428 	/*
429 	 * If 'unix' is linked together with 'krtld' into one executable,
430 	 * the early boot code does -not- hand us any of the dynamic metadata
431 	 * about the executable. In particular, it does not read in, map or
432 	 * otherwise look at the program headers. We fake all that up now.
433 	 *
434 	 * We do this early as DTrace static probes and tnf probes both call
435 	 * undefined references.  We have to process those relocations before
436 	 * calling any of them.
437 	 */
438 	if (bootaux[BA_PHDR].ba_ptr == NULL)
439 		synthetic_bootaux(filename, bootaux);
440 #endif
441 
442 	/*
443 	 * Save the interesting attribute-values
444 	 * (scanned by kobj_boot).
445 	 */
446 	attr_val(bootaux);
447 
448 	/*
449 	 * Set the module search path.
450 	 */
451 	kobj_module_path = getmodpath(filename);
452 
453 	boot_cpu_compatible_list = find_libmacro("CPU");
454 
455 	/*
456 	 * These two modules have actually been
457 	 * loaded by boot, but we finish the job
458 	 * by introducing them into the world of
459 	 * loadable modules.
460 	 */
461 
462 	mp = load_exec(bootaux, filename);
463 	load_linker(bootaux);
464 
465 	/*
466 	 * Load all the primary dependent modules.
467 	 */
468 	if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
469 		goto fail;
470 
471 	/*
472 	 * Glue it together.
473 	 */
474 	if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
475 		goto fail;
476 
477 	entry = bootaux[BA_ENTRY].ba_val;
478 
479 #ifdef	__sparc
480 	/*
481 	 * On sparcv9, boot scratch memory is running out.
482 	 * Free the temporary allocations here to allow boot
483 	 * to continue.
484 	 */
485 	kobj_tmp_free();
486 #endif
487 
488 	/*
489 	 * Get the boot flags
490 	 */
491 	bootflags(ops);
492 
493 	if (boothowto & RB_VERBOSE)
494 		kobj_lm_dump(KOBJ_LM_PRIMARY);
495 
496 	kobj_kdi_init();
497 
498 	if (boothowto & RB_KMDB) {
499 		if (load_kmdb(bootaux) < 0)
500 			goto fail;
501 	}
502 
503 	/*
504 	 * Post setup.
505 	 */
506 #ifdef	MPSAS
507 	sas_prisyms(kobj_lm_lookup(KOBJ_LM_PRIMARY));
508 #endif
509 	s_text = _text;
510 	e_text = _etext;
511 	s_data = _data;
512 	e_data = _edata;
513 
514 	kobj_sync_instruction_memory(s_text, e_text - s_text);
515 
516 #ifdef	KOBJ_DEBUG
517 	if (kobj_debug & D_DEBUG)
518 		_kobj_printf(ops,
519 		    "krtld: transferring control to: 0x%p\n", entry);
520 #endif
521 
522 	/*
523 	 * Make sure the mod system knows about the modules already loaded.
524 	 */
525 	last_module_id = kobj_last_module_id;
526 	bcopy(kobj_modules, &modules, sizeof (modules));
527 	modp = &modules;
528 	do {
529 		if (modp->mod_next == kobj_modules)
530 			modp->mod_next = &modules;
531 		if (modp->mod_prev == kobj_modules)
532 			modp->mod_prev = &modules;
533 	} while ((modp = modp->mod_next) != &modules);
534 
535 	standalone = 0;
536 
537 #ifdef	__sparc
538 	/*
539 	 * On sparcv9, boot scratch memory is running out.
540 	 * Free the temporary allocations here to allow boot
541 	 * to continue.
542 	 */
543 	kobj_tmp_free();
544 #endif
545 
546 	_kobj_printf = kprintf;
547 	exitto((caddr_t)entry);
548 fail:
549 
550 	_kobj_printf(ops, "krtld: error during initial load/link phase\n");
551 
552 #if !defined(_UNIX_KRTLD)
553 	_kobj_printf(ops, "\n");
554 	_kobj_printf(ops, "krtld could neither locate nor resolve symbols"
555 	    " for:\n");
556 	_kobj_printf(ops, "    %s\n", filename);
557 	_kobj_printf(ops, "in the boot archive. Please verify that this"
558 	    " file\n");
559 	_kobj_printf(ops, "matches what is found in the boot archive.\n");
560 	_kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
561 	    " fix this.\n");
562 	bop_panic("Unable to boot");
563 #endif
564 }
565 
566 #if !defined(_UNIX_KRTLD)
567 /*
568  * Synthesize additional metadata that describes the executable.
569  *
570  * (When the dynamic executable has an interpreter, the boot program
571  * does all this for us.  Where we don't have an interpreter, (or a
572  * even a boot program, perhaps) we have to do this for ourselves.)
573  */
574 static void
575 synthetic_bootaux(char *filename, val_t *bootaux)
576 {
577 	Ehdr ehdr;
578 	caddr_t phdrbase;
579 	struct _buf *file;
580 	int i, n;
581 
582 	/*
583 	 * Elf header
584 	 */
585 	KOBJ_MARK("synthetic_bootaux()");
586 	KOBJ_MARK(filename);
587 	file = kobj_open_file(filename);
588 	if (file == (struct _buf *)-1) {
589 		_kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
590 		return;
591 	}
592 	KOBJ_MARK("reading program headers");
593 	if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
594 		_kobj_printf(ops, "krtld: %s: failed to read ehder\n",
595 		    filename);
596 		return;
597 	}
598 
599 	/*
600 	 * Program headers
601 	 */
602 	bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
603 	bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
604 	n = ehdr.e_phentsize * ehdr.e_phnum;
605 
606 	phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
607 
608 	if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
609 		_kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
610 		    filename);
611 		return;
612 	}
613 	bootaux[BA_PHDR].ba_ptr = phdrbase;
614 	kobj_close_file(file);
615 	KOBJ_MARK("closed file");
616 
617 	/*
618 	 * Find the dynamic section address
619 	 */
620 	for (i = 0; i < ehdr.e_phnum; i++) {
621 		Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
622 
623 		if (phdr->p_type == PT_DYNAMIC) {
624 			bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
625 			break;
626 		}
627 	}
628 	KOBJ_MARK("synthetic_bootaux() done");
629 }
630 #endif
631 
632 /*
633  * Set up any global information derived
634  * from attribute/values in the boot or
635  * aux vector.
636  */
637 static void
638 attr_val(val_t *bootaux)
639 {
640 	Phdr *phdr;
641 	int phnum, phsize;
642 	int i;
643 
644 	KOBJ_MARK("attr_val()");
645 	kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
646 	lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
647 	use_iflush = bootaux[BA_IFLUSH].ba_val;
648 
649 	phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
650 	phnum = bootaux[BA_PHNUM].ba_val;
651 	phsize = bootaux[BA_PHENT].ba_val;
652 	for (i = 0; i < phnum; i++) {
653 		phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
654 
655 		if (phdr->p_type != PT_LOAD)
656 			continue;
657 		/*
658 		 * Bounds of the various segments.
659 		 */
660 		if (!(phdr->p_flags & PF_X)) {
661 #if defined(_UNIX_KRTLD)
662 			dynseg = phdr->p_vaddr;
663 #else
664 			ASSERT(phdr->p_vaddr == 0);
665 #endif
666 		} else {
667 			if (phdr->p_flags & PF_W) {
668 				_data = (caddr_t)phdr->p_vaddr;
669 				_edata = _data + phdr->p_memsz;
670 			} else {
671 				_text = (caddr_t)phdr->p_vaddr;
672 				_etext = _text + phdr->p_memsz;
673 			}
674 		}
675 	}
676 
677 	/* To do the kobj_alloc, _edata needs to be set. */
678 	for (i = 0; i < NLIBMACROS; i++) {
679 		if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
680 			libmacros[i].lmi_list = kobj_alloc(
681 			    strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
682 			    1, KM_WAIT);
683 			(void) strcpy(libmacros[i].lmi_list,
684 			    bootaux[libmacros[i].lmi_ba_index].ba_ptr);
685 		}
686 		libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
687 	}
688 }
689 
690 /*
691  * Set up the booted executable.
692  */
693 static struct module *
694 load_exec(val_t *bootaux, char *filename)
695 {
696 	struct modctl *cp;
697 	struct module *mp;
698 	Dyn *dyn;
699 	Sym *sp;
700 	int i, lsize, osize, nsize, allocsize;
701 	char *libname, *tmp;
702 
703 	/*
704 	 * Set the module search path.
705 	 */
706 	kobj_module_path = getmodpath(filename);
707 
708 #ifdef KOBJ_DEBUG
709 	if (kobj_debug & D_DEBUG)
710 		_kobj_printf(ops, "module path '%s'\n", kobj_module_path);
711 #endif
712 
713 	KOBJ_MARK("add_primary");
714 	cp = add_primary(filename, KOBJ_LM_PRIMARY);
715 
716 	KOBJ_MARK("struct module");
717 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
718 	cp->mod_mp = mp;
719 
720 	/*
721 	 * We don't have the following information
722 	 * since this module is an executable and not
723 	 * a relocatable .o.
724 	 */
725 	mp->symtbl_section = 0;
726 	mp->shdrs = NULL;
727 	mp->strhdr = NULL;
728 
729 	/*
730 	 * Since this module is the only exception,
731 	 * we cons up some section headers.
732 	 */
733 	KOBJ_MARK("symhdr");
734 	mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
735 
736 	KOBJ_MARK("strhdr");
737 	mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
738 
739 	mp->symhdr->sh_type = SHT_SYMTAB;
740 	mp->strhdr->sh_type = SHT_STRTAB;
741 	/*
742 	 * Scan the dynamic structure.
743 	 */
744 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
745 	    dyn->d_tag != DT_NULL; dyn++) {
746 		switch (dyn->d_tag) {
747 		case DT_SYMTAB:
748 			dyn->d_un.d_ptr += dynseg;
749 			mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
750 			mp->symhdr->sh_addr = dyn->d_un.d_ptr;
751 			break;
752 		case DT_HASH:
753 			dyn->d_un.d_ptr += dynseg;
754 			mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
755 			mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
756 			break;
757 		case DT_STRTAB:
758 			dyn->d_un.d_ptr += dynseg;
759 			mp->strings = (char *)dyn->d_un.d_ptr;
760 			mp->strhdr->sh_addr = dyn->d_un.d_ptr;
761 			break;
762 		case DT_STRSZ:
763 			mp->strhdr->sh_size = dyn->d_un.d_val;
764 			break;
765 		case DT_SYMENT:
766 			mp->symhdr->sh_entsize = dyn->d_un.d_val;
767 			break;
768 		}
769 	}
770 
771 	/*
772 	 * Collapse any DT_NEEDED entries into one string.
773 	 */
774 	nsize = osize = 0;
775 	allocsize = MAXPATHLEN;
776 
777 	KOBJ_MARK("depends_on");
778 	mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
779 
780 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
781 	    dyn->d_tag != DT_NULL; dyn++)
782 		if (dyn->d_tag == DT_NEEDED) {
783 			char *_lib;
784 
785 			libname = mp->strings + dyn->d_un.d_val;
786 			if (strchr(libname, '$') != NULL) {
787 				if ((_lib = expand_libmacro(libname,
788 				    filename, filename)) != NULL)
789 					libname = _lib;
790 				else
791 					_kobj_printf(ops, "krtld: "
792 					    "load_exec: fail to "
793 					    "expand %s\n", libname);
794 			}
795 			lsize = strlen(libname);
796 			nsize += lsize;
797 			if (nsize + 1 > allocsize) {
798 				KOBJ_MARK("grow depends_on");
799 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
800 				    KM_WAIT);
801 				bcopy(mp->depends_on, tmp, osize);
802 				kobj_free(mp->depends_on, allocsize);
803 				mp->depends_on = tmp;
804 				allocsize += MAXPATHLEN;
805 			}
806 			bcopy(libname, mp->depends_on + osize, lsize);
807 			*(mp->depends_on + nsize) = ' '; /* seperate */
808 			nsize++;
809 			osize = nsize;
810 		}
811 	if (nsize) {
812 		mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
813 		/*
814 		 * alloc with exact size and copy whatever it got over
815 		 */
816 		KOBJ_MARK("realloc depends_on");
817 		tmp = kobj_alloc(nsize, KM_WAIT);
818 		bcopy(mp->depends_on, tmp, nsize);
819 		kobj_free(mp->depends_on, allocsize);
820 		mp->depends_on = tmp;
821 	} else {
822 		kobj_free(mp->depends_on, allocsize);
823 		mp->depends_on = NULL;
824 	}
825 
826 	mp->flags = KOBJ_EXEC|KOBJ_PRIM;	/* NOT a relocatable .o */
827 	mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
828 	/*
829 	 * We allocate our own table since we don't
830 	 * hash undefined references.
831 	 */
832 	KOBJ_MARK("chains");
833 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
834 	KOBJ_MARK("buckets");
835 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
836 
837 	mp->text = _text;
838 	mp->data = _data;
839 
840 	mp->text_size = _etext - _text;
841 	mp->data_size = _edata - _data;
842 
843 	cp->mod_text = mp->text;
844 	cp->mod_text_size = mp->text_size;
845 
846 	mp->filename = cp->mod_filename;
847 
848 #ifdef	KOBJ_DEBUG
849 	if (kobj_debug & D_LOADING) {
850 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
851 		_kobj_printf(ops, "\ttext: 0x%p", mp->text);
852 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
853 		_kobj_printf(ops, "\tdata: 0x%p", mp->data);
854 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
855 	}
856 #endif /* KOBJ_DEBUG */
857 
858 	/*
859 	 * Insert symbols into the hash table.
860 	 */
861 	for (i = 0; i < mp->nsyms; i++) {
862 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
863 
864 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
865 			continue;
866 #ifdef	__sparc
867 		/*
868 		 * Register symbols are ignored in the kernel
869 		 */
870 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
871 			continue;
872 #endif	/* __sparc */
873 
874 		sym_insert(mp, mp->strings + sp->st_name, i);
875 	}
876 
877 	KOBJ_MARK("load_exec done");
878 	return (mp);
879 }
880 
881 /*
882  * Set up the linker module (if it's compiled in, LDNAME is NULL)
883  */
884 static void
885 load_linker(val_t *bootaux)
886 {
887 	struct module *kmp = (struct module *)kobj_modules->mod_mp;
888 	struct module *mp;
889 	struct modctl *cp;
890 	int i;
891 	Shdr *shp;
892 	Sym *sp;
893 	int shsize;
894 	char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
895 
896 	/*
897 	 * On some architectures, krtld is compiled into the kernel.
898 	 */
899 	if (dlname == NULL)
900 		return;
901 
902 	cp = add_primary(dlname, KOBJ_LM_PRIMARY);
903 
904 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
905 
906 	cp->mod_mp = mp;
907 	mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
908 	shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
909 	mp->shdrs = kobj_alloc(shsize, KM_WAIT);
910 	bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
911 
912 	for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
913 		shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
914 
915 		if (shp->sh_flags & SHF_ALLOC) {
916 			if (shp->sh_flags & SHF_WRITE) {
917 				if (mp->data == NULL)
918 					mp->data = (char *)shp->sh_addr;
919 			} else if (mp->text == NULL) {
920 				mp->text = (char *)shp->sh_addr;
921 			}
922 		}
923 		if (shp->sh_type == SHT_SYMTAB) {
924 			mp->symtbl_section = i;
925 			mp->symhdr = shp;
926 			mp->symspace = mp->symtbl = (char *)shp->sh_addr;
927 		}
928 	}
929 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
930 	mp->flags = KOBJ_INTERP|KOBJ_PRIM;
931 	mp->strhdr = (Shdr *)
932 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
933 	mp->strings = (char *)mp->strhdr->sh_addr;
934 	mp->hashsize = kobj_gethashsize(mp->nsyms);
935 
936 	mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
937 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t);
938 
939 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
940 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
941 
942 	mp->bss = bootaux[BA_BSS].ba_val;
943 	mp->bss_align = 0;	/* pre-aligned during allocation */
944 	mp->bss_size = (uintptr_t)_edata - mp->bss;
945 	mp->text_size = _etext - mp->text;
946 	mp->data_size = _edata - mp->data;
947 	mp->filename = cp->mod_filename;
948 	cp->mod_text = mp->text;
949 	cp->mod_text_size = mp->text_size;
950 
951 	/*
952 	 * Now that we've figured out where the linker is,
953 	 * set the limits for the booted object.
954 	 */
955 	kmp->text_size = (size_t)(mp->text - kmp->text);
956 	kmp->data_size = (size_t)(mp->data - kmp->data);
957 	kobj_modules->mod_text_size = kmp->text_size;
958 
959 #ifdef	KOBJ_DEBUG
960 	if (kobj_debug & D_LOADING) {
961 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
962 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
963 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
964 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
965 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
966 	}
967 #endif /* KOBJ_DEBUG */
968 
969 	/*
970 	 * Insert the symbols into the hash table.
971 	 */
972 	for (i = 0; i < mp->nsyms; i++) {
973 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
974 
975 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
976 			continue;
977 		if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
978 			if (sp->st_shndx == SHN_COMMON)
979 				sp->st_shndx = SHN_ABS;
980 		}
981 		sym_insert(mp, mp->strings + sp->st_name, i);
982 	}
983 
984 }
985 
986 static kobj_notify_list_t **
987 kobj_notify_lookup(uint_t type)
988 {
989 	ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
990 	    sizeof (kobj_notify_list_t *));
991 
992 	return (&kobj_notifiers[type]);
993 }
994 
995 int
996 kobj_notify_add(kobj_notify_list_t *knp)
997 {
998 	kobj_notify_list_t **knl;
999 
1000 	knl = kobj_notify_lookup(knp->kn_type);
1001 
1002 	knp->kn_next = NULL;
1003 	knp->kn_prev = NULL;
1004 
1005 	mutex_enter(&kobj_lock);
1006 
1007 	if (*knl != NULL) {
1008 		(*knl)->kn_prev = knp;
1009 		knp->kn_next = *knl;
1010 	}
1011 	(*knl) = knp;
1012 
1013 	mutex_exit(&kobj_lock);
1014 	return (0);
1015 }
1016 
1017 int
1018 kobj_notify_remove(kobj_notify_list_t *knp)
1019 {
1020 	kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1021 	kobj_notify_list_t *tknp;
1022 
1023 	mutex_enter(&kobj_lock);
1024 
1025 	/* LINTED */
1026 	if (tknp = knp->kn_next)
1027 		tknp->kn_prev = knp->kn_prev;
1028 
1029 	/* LINTED */
1030 	if (tknp = knp->kn_prev)
1031 		tknp->kn_next = knp->kn_next;
1032 	else
1033 		*knl = knp->kn_next;
1034 
1035 	mutex_exit(&kobj_lock);
1036 
1037 	return (0);
1038 }
1039 
1040 /*
1041  * Notify all interested callbacks of a specified change in module state.
1042  */
1043 static void
1044 kobj_notify(int type, struct modctl *modp)
1045 {
1046 	kobj_notify_list_t *knp;
1047 
1048 	if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1049 		return;
1050 
1051 	mutex_enter(&kobj_lock);
1052 
1053 	for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1054 		knp->kn_func(type, modp);
1055 
1056 	/*
1057 	 * KDI notification must be last (it has to allow for work done by the
1058 	 * other notification callbacks), so we call it manually.
1059 	 */
1060 	kobj_kdi_mod_notify(type, modp);
1061 
1062 	mutex_exit(&kobj_lock);
1063 }
1064 
1065 /*
1066  * Ask boot for the module path.
1067  */
1068 /*ARGSUSED*/
1069 static char *
1070 getmodpath(const char *filename)
1071 {
1072 	char *path;
1073 	int len;
1074 
1075 #if defined(_UNIX_KRTLD)
1076 	/*
1077 	 * The boot program provides the module name when it detects
1078 	 * that the executable has an interpreter, thus we can ask
1079 	 * it directly in this case.
1080 	 */
1081 	if ((len = BOP_GETPROPLEN(ops, MODPATH_PROPNAME)) == -1)
1082 		return (MOD_DEFPATH);
1083 
1084 	path = kobj_zalloc(len, KM_WAIT);
1085 
1086 	(void) BOP_GETPROP(ops, MODPATH_PROPNAME, path);
1087 
1088 	return (*path ? path : MOD_DEFPATH);
1089 
1090 #else
1091 
1092 	/*
1093 	 * Construct the directory path from the filename.
1094 	 */
1095 
1096 	char *p;
1097 	const char isastr[] = "/amd64";
1098 	size_t isalen = strlen(isastr);
1099 
1100 	if ((p = strrchr(filename, '/')) == NULL)
1101 		return (MOD_DEFPATH);
1102 
1103 	while (p > filename && *(p - 1) == '/')
1104 		p--;	/* remove trailing '/' characters */
1105 	if (p == filename)
1106 		p++;	/* so "/" -is- the modpath in this case */
1107 
1108 	/*
1109 	 * Remove optional isa-dependent directory name - the module
1110 	 * subsystem will put this back again (!)
1111 	 */
1112 	len = p - filename;
1113 	if (len > isalen &&
1114 	    strncmp(&filename[len - isalen], isastr, isalen) == 0)
1115 		p -= isalen;
1116 
1117 	/*
1118 	 * "/platform/mumblefrotz" + " " + MOD_DEFPATH
1119 	 */
1120 	len += (p - filename) + 1 + strlen(MOD_DEFPATH) + 1;
1121 
1122 	path = kobj_zalloc(len, KM_WAIT);
1123 	(void) strncpy(path, filename, p - filename);
1124 	(void) strcat(path, " ");
1125 	return (strcat(path, MOD_DEFPATH));
1126 #endif
1127 }
1128 
1129 static struct modctl *
1130 add_primary(const char *filename, int lmid)
1131 {
1132 	struct modctl *cp;
1133 
1134 	cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1135 
1136 	cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1137 
1138 	/*
1139 	 * For symbol lookup, we assemble our own
1140 	 * modctl list of the primary modules.
1141 	 */
1142 
1143 	(void) strcpy(cp->mod_filename, filename);
1144 	cp->mod_modname = basename(cp->mod_filename);
1145 
1146 	/* set values for modinfo assuming that the load will work */
1147 	cp->mod_prim = 1;
1148 	cp->mod_loaded = 1;
1149 	cp->mod_installed = 1;
1150 	cp->mod_loadcnt = 1;
1151 	cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1152 
1153 	cp->mod_id = kobj_last_module_id++;
1154 
1155 	/*
1156 	 * Link the module in. We'll pass this info on
1157 	 * to the mod squad later.
1158 	 */
1159 	if (kobj_modules == NULL) {
1160 		kobj_modules = cp;
1161 		cp->mod_prev = cp->mod_next = cp;
1162 	} else {
1163 		cp->mod_prev = kobj_modules->mod_prev;
1164 		cp->mod_next = kobj_modules;
1165 		kobj_modules->mod_prev->mod_next = cp;
1166 		kobj_modules->mod_prev = cp;
1167 	}
1168 
1169 	kobj_lm_append(lmid, cp);
1170 
1171 	return (cp);
1172 }
1173 
1174 static int
1175 bind_primary(val_t *bootaux, int lmid)
1176 {
1177 	struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1178 	struct modctl_list *lp;
1179 	struct module *mp;
1180 
1181 	/*
1182 	 * Do common symbols.
1183 	 */
1184 	for (lp = linkmap; lp; lp = lp->modl_next) {
1185 		mp = mod(lp);
1186 
1187 		/*
1188 		 * Don't do common section relocations for modules that
1189 		 * don't need it.
1190 		 */
1191 		if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1192 			continue;
1193 
1194 		if (do_common(mp) < 0)
1195 			return (-1);
1196 	}
1197 
1198 	/*
1199 	 * Resolve symbols.
1200 	 */
1201 	for (lp = linkmap; lp; lp = lp->modl_next) {
1202 		mp = mod(lp);
1203 
1204 		if (do_symbols(mp, 0) < 0)
1205 			return (-1);
1206 	}
1207 
1208 	/*
1209 	 * Do relocations.
1210 	 */
1211 	for (lp = linkmap; lp; lp = lp->modl_next) {
1212 		mp = mod(lp);
1213 
1214 		if (mp->flags & KOBJ_EXEC) {
1215 			Dyn *dyn;
1216 			Word relasz = 0, relaent = 0;
1217 			Word shtype;
1218 			char *rela = NULL;
1219 
1220 			for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1221 			    dyn->d_tag != DT_NULL; dyn++) {
1222 				switch (dyn->d_tag) {
1223 				case DT_RELASZ:
1224 				case DT_RELSZ:
1225 					relasz = dyn->d_un.d_val;
1226 					break;
1227 				case DT_RELAENT:
1228 				case DT_RELENT:
1229 					relaent = dyn->d_un.d_val;
1230 					break;
1231 				case DT_RELA:
1232 					shtype = SHT_RELA;
1233 					rela = (char *)(dyn->d_un.d_ptr +
1234 					    dynseg);
1235 					break;
1236 				case DT_REL:
1237 					shtype = SHT_REL;
1238 					rela = (char *)(dyn->d_un.d_ptr +
1239 					    dynseg);
1240 					break;
1241 				}
1242 			}
1243 			if (relasz == 0 ||
1244 			    relaent == 0 || rela == NULL) {
1245 				_kobj_printf(ops, "krtld: bind_primary(): "
1246 				    "no relocation information found for "
1247 				    "module %s\n", mp->filename);
1248 				return (-1);
1249 			}
1250 #ifdef	KOBJ_DEBUG
1251 			if (kobj_debug & D_RELOCATIONS)
1252 				_kobj_printf(ops, "krtld: relocating: file=%s "
1253 				    "KOBJ_EXEC\n", mp->filename);
1254 #endif
1255 			if (do_relocate(mp, rela, shtype, relasz/relaent,
1256 			    relaent, (Addr)mp->text) < 0)
1257 				return (-1);
1258 		} else {
1259 			if (do_relocations(mp) < 0)
1260 				return (-1);
1261 		}
1262 
1263 		kobj_sync_instruction_memory(mp->text, mp->text_size);
1264 	}
1265 
1266 	for (lp = linkmap; lp; lp = lp->modl_next) {
1267 		mp = mod(lp);
1268 
1269 		/*
1270 		 * We need to re-read the full symbol table for the boot file,
1271 		 * since we couldn't use the full one before.  We also need to
1272 		 * load the CTF sections of both the boot file and the
1273 		 * interpreter (us).
1274 		 */
1275 		if (mp->flags & KOBJ_EXEC) {
1276 			struct _buf *file;
1277 			int n;
1278 
1279 			file = kobj_open_file(mp->filename);
1280 			if (file == (struct _buf *)-1)
1281 				return (-1);
1282 			if (kobj_read_file(file, (char *)&mp->hdr,
1283 			    sizeof (mp->hdr), 0) < 0)
1284 				return (-1);
1285 			n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1286 			mp->shdrs = kobj_alloc(n, KM_WAIT);
1287 			if (kobj_read_file(file, mp->shdrs, n,
1288 			    mp->hdr.e_shoff) < 0)
1289 				return (-1);
1290 			if (get_syms(mp, file) < 0)
1291 				return (-1);
1292 			if (get_ctf(mp, file) < 0)
1293 				return (-1);
1294 			kobj_close_file(file);
1295 			mp->flags |= KOBJ_RELOCATED;
1296 
1297 		} else if (mp->flags & KOBJ_INTERP) {
1298 			struct _buf *file;
1299 
1300 			/*
1301 			 * The interpreter path fragment in mp->filename
1302 			 * will already have the module directory suffix
1303 			 * in it (if appropriate).
1304 			 */
1305 			file = kobj_open_path(mp->filename, 1, 0);
1306 			if (file == (struct _buf *)-1)
1307 				return (-1);
1308 			if (get_ctf(mp, file) < 0)
1309 				return (-1);
1310 			kobj_close_file(file);
1311 			mp->flags |= KOBJ_RELOCATED;
1312 		}
1313 	}
1314 
1315 	return (0);
1316 }
1317 
1318 static struct modctl *
1319 mod_already_loaded(char *modname)
1320 {
1321 	struct modctl *mctl = kobj_modules;
1322 
1323 	do {
1324 		if (strcmp(modname, mctl->mod_filename) == 0)
1325 			return (mctl);
1326 		mctl = mctl->mod_next;
1327 
1328 	} while (mctl != kobj_modules);
1329 
1330 	return (NULL);
1331 }
1332 
1333 /*
1334  * Load all the primary dependent modules.
1335  */
1336 static int
1337 load_primary(struct module *mp, int lmid)
1338 {
1339 	struct modctl *cp;
1340 	struct module *dmp;
1341 	char *p, *q;
1342 	char modname[MODMAXNAMELEN];
1343 
1344 	if ((p = mp->depends_on) == NULL)
1345 		return (0);
1346 
1347 	/* CONSTANTCONDITION */
1348 	while (1) {
1349 		/*
1350 		 * Skip space.
1351 		 */
1352 		while (*p && (*p == ' ' || *p == '\t'))
1353 			p++;
1354 		/*
1355 		 * Get module name.
1356 		 */
1357 		q = modname;
1358 		while (*p && *p != ' ' && *p != '\t')
1359 			*q++ = *p++;
1360 
1361 		if (q == modname)
1362 			break;
1363 
1364 		*q = '\0';
1365 		/*
1366 		 * Check for dup dependencies.
1367 		 */
1368 		if (strcmp(modname, "dtracestubs") == 0 ||
1369 		    mod_already_loaded(modname) != NULL)
1370 			continue;
1371 
1372 		cp = add_primary(modname, lmid);
1373 		cp->mod_busy = 1;
1374 		/*
1375 		 * Load it.
1376 		 */
1377 		(void) kobj_load_module(cp, 1);
1378 		cp->mod_busy = 0;
1379 
1380 		if ((dmp = cp->mod_mp) == NULL) {
1381 			cp->mod_loaded = 0;
1382 			cp->mod_installed = 0;
1383 			cp->mod_loadcnt = 0;
1384 			return (-1);
1385 		}
1386 
1387 		add_dependent(mp, dmp);
1388 		dmp->flags |= KOBJ_PRIM;
1389 
1390 		/*
1391 		 * Recurse.
1392 		 */
1393 		if (load_primary(dmp, lmid) == -1) {
1394 			cp->mod_loaded = 0;
1395 			cp->mod_installed = 0;
1396 			cp->mod_loadcnt = 0;
1397 			return (-1);
1398 		}
1399 	}
1400 	return (0);
1401 }
1402 
1403 static int
1404 console_is_usb_serial(void)
1405 {
1406 	char *console;
1407 	int len, ret;
1408 
1409 	if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1410 		return (0);
1411 
1412 	console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1413 	(void) BOP_GETPROP(ops, "console", console);
1414 	ret = (strcmp(console, "usb-serial") == 0);
1415 	kobj_free(console, len);
1416 
1417 	return (ret);
1418 }
1419 
1420 static int
1421 load_kmdb(val_t *bootaux)
1422 {
1423 	struct modctl *mctl;
1424 	struct module *mp;
1425 	Sym *sym;
1426 
1427 	if (console_is_usb_serial()) {
1428 		_kobj_printf(ops, "kmdb not loaded "
1429 		    "(unsupported on usb serial console)\n");
1430 		return (0);
1431 	}
1432 
1433 	_kobj_printf(ops, "Loading kmdb...\n");
1434 
1435 	if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1436 		return (-1);
1437 
1438 	mctl->mod_busy = 1;
1439 	(void) kobj_load_module(mctl, 1);
1440 	mctl->mod_busy = 0;
1441 
1442 	if ((mp = mctl->mod_mp) == NULL)
1443 		return (-1);
1444 
1445 	mp->flags |= KOBJ_PRIM;
1446 
1447 	if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1448 		return (-1);
1449 
1450 	if (boothowto & RB_VERBOSE)
1451 		kobj_lm_dump(KOBJ_LM_DEBUGGER);
1452 
1453 	if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1454 		return (-1);
1455 
1456 	if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1457 		return (-1);
1458 
1459 #ifdef	KOBJ_DEBUG
1460 	if (kobj_debug & D_DEBUG) {
1461 		_kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1462 		    sym->st_value);
1463 		_kobj_printf(ops, "\tops 0x%p\n", ops);
1464 		_kobj_printf(ops, "\tromp 0x%p\n", romp);
1465 	}
1466 #endif
1467 
1468 	if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1469 	    (const char **)kobj_kmdb_argv) < 0)
1470 		return (-1);
1471 
1472 	return (0);
1473 }
1474 
1475 /*
1476  * Return a string listing module dependencies.
1477  */
1478 static char *
1479 depends_on(struct module *mp)
1480 {
1481 	Sym *sp;
1482 	char *depstr, *q;
1483 
1484 	/*
1485 	 * The module doesn't have a depends_on value, so let's try it the
1486 	 * old-fashioned way - via "_depends_on"
1487 	 */
1488 	if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1489 		return (NULL);
1490 
1491 	q = (char *)sp->st_value;
1492 
1493 	/*
1494 	 * Idiot checks. Make sure it's
1495 	 * in-bounds and NULL terminated.
1496 	 */
1497 	if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1498 		_kobj_printf(ops, "Error processing dependency for %s\n",
1499 		    mp->filename);
1500 		return (NULL);
1501 	}
1502 
1503 	depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1504 	(void) strcpy(depstr, q);
1505 
1506 	return (depstr);
1507 }
1508 
1509 void
1510 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1511 {
1512 	struct module *mp;
1513 	mp = (struct module *)xmp;
1514 
1515 	modinfo->mi_base = mp->text;
1516 	modinfo->mi_size = mp->text_size + mp->data_size;
1517 }
1518 
1519 /*
1520  * kobj_export_ksyms() performs the following services:
1521  *
1522  * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1523  * (2) Removes unneeded symbols to save space.
1524  * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1525  * (4) Makes the symbol table visible to /dev/ksyms.
1526  */
1527 static void
1528 kobj_export_ksyms(struct module *mp)
1529 {
1530 	Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1531 	Sym *sp, *osp;
1532 	char *name;
1533 	size_t namelen;
1534 	struct module *omp;
1535 	uint_t nsyms;
1536 	size_t symsize = mp->symhdr->sh_entsize;
1537 	size_t locals = 1;
1538 	size_t strsize;
1539 
1540 	/*
1541 	 * Make a copy of the original module structure.
1542 	 */
1543 	omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1544 	bcopy(mp, omp, sizeof (struct module));
1545 
1546 	/*
1547 	 * Compute the sizes of the new symbol table sections.
1548 	 */
1549 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1550 		if (osp->st_value == 0)
1551 			continue;
1552 		if (sym_lookup(omp, osp) == NULL)
1553 			continue;
1554 		name = omp->strings + osp->st_name;
1555 		namelen = strlen(name);
1556 		if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1557 			locals++;
1558 		nsyms++;
1559 		strsize += namelen + 1;
1560 	}
1561 
1562 	mp->nsyms = nsyms;
1563 	mp->hashsize = kobj_gethashsize(mp->nsyms);
1564 
1565 	/*
1566 	 * ksyms_lock must be held as writer during any operation that
1567 	 * modifies ksyms_arena, including allocation from same, and
1568 	 * must not be dropped until the arena is vmem_walk()able.
1569 	 */
1570 	rw_enter(&ksyms_lock, RW_WRITER);
1571 
1572 	/*
1573 	 * Allocate space for the new section headers (symtab and strtab),
1574 	 * symbol table, buckets, chains, and strings.
1575 	 */
1576 	mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1577 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1578 
1579 	if (mp->flags & KOBJ_NOKSYMS) {
1580 		mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1581 	} else {
1582 		mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1583 		    VM_BESTFIT | VM_SLEEP);
1584 	}
1585 	bzero(mp->symspace, mp->symsize);
1586 
1587 	/*
1588 	 * Divvy up symspace.
1589 	 */
1590 	mp->shdrs = mp->symspace;
1591 	mp->symhdr = (Shdr *)mp->shdrs;
1592 	mp->strhdr = (Shdr *)(mp->symhdr + 1);
1593 	mp->symtbl = (char *)(mp->strhdr + 1);
1594 	mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1595 	mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1596 	mp->strings = (char *)(mp->chains + nsyms);
1597 
1598 	/*
1599 	 * Fill in the new section headers (symtab and strtab).
1600 	 */
1601 	mp->hdr.e_shnum = 2;
1602 	mp->symtbl_section = 0;
1603 
1604 	mp->symhdr->sh_type = SHT_SYMTAB;
1605 	mp->symhdr->sh_addr = (Addr)mp->symtbl;
1606 	mp->symhdr->sh_size = nsyms * symsize;
1607 	mp->symhdr->sh_link = 1;
1608 	mp->symhdr->sh_info = locals;
1609 	mp->symhdr->sh_addralign = sizeof (Addr);
1610 	mp->symhdr->sh_entsize = symsize;
1611 
1612 	mp->strhdr->sh_type = SHT_STRTAB;
1613 	mp->strhdr->sh_addr = (Addr)mp->strings;
1614 	mp->strhdr->sh_size = strsize;
1615 	mp->strhdr->sh_addralign = 1;
1616 
1617 	/*
1618 	 * Construct the new symbol table.
1619 	 */
1620 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1621 		if (osp->st_value == 0)
1622 			continue;
1623 		if (sym_lookup(omp, osp) == NULL)
1624 			continue;
1625 		name = omp->strings + osp->st_name;
1626 		namelen = strlen(name);
1627 		sp = (Sym *)(mp->symtbl + symsize * nsyms);
1628 		bcopy(osp, sp, symsize);
1629 		bcopy(name, mp->strings + strsize, namelen);
1630 		sp->st_name = strsize;
1631 		sym_insert(mp, name, nsyms);
1632 		nsyms++;
1633 		strsize += namelen + 1;
1634 	}
1635 
1636 	rw_exit(&ksyms_lock);
1637 
1638 	/*
1639 	 * Free the old section headers -- we'll never need them again.
1640 	 */
1641 	if (!(mp->flags & KOBJ_PRIM)) {
1642 		uint_t	shn;
1643 		Shdr	*shp;
1644 
1645 		for (shn = 1; shn < omp->hdr.e_shnum; shn++) {
1646 			shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1647 			switch (shp->sh_type) {
1648 			case SHT_RELA:
1649 			case SHT_REL:
1650 				if (shp->sh_addr != 0) {
1651 					kobj_free((void *)shp->sh_addr,
1652 					    shp->sh_size);
1653 				}
1654 				break;
1655 			}
1656 		}
1657 		kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1658 	}
1659 	/*
1660 	 * Discard the old symbol table and our copy of the module strucure.
1661 	 */
1662 	if (!(mp->flags & KOBJ_PRIM))
1663 		kobj_free(omp->symspace, omp->symsize);
1664 	kobj_free(omp, sizeof (struct module));
1665 }
1666 
1667 static void
1668 kobj_export_ctf(struct module *mp)
1669 {
1670 	char *data = mp->ctfdata;
1671 	size_t size = mp->ctfsize;
1672 
1673 	if (data != NULL) {
1674 		if (_moddebug & MODDEBUG_NOCTF) {
1675 			mp->ctfdata = NULL;
1676 			mp->ctfsize = 0;
1677 		} else {
1678 			mp->ctfdata = vmem_alloc(ctf_arena, size,
1679 			    VM_BESTFIT | VM_SLEEP);
1680 			bcopy(data, mp->ctfdata, size);
1681 		}
1682 
1683 		if (!(mp->flags & KOBJ_PRIM))
1684 			kobj_free(data, size);
1685 	}
1686 }
1687 
1688 void
1689 kobj_export_module(struct module *mp)
1690 {
1691 	kobj_export_ksyms(mp);
1692 	kobj_export_ctf(mp);
1693 
1694 	mp->flags |= KOBJ_EXPORTED;
1695 }
1696 
1697 static int
1698 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1699 {
1700 	char *path = NULL, *depstr = NULL;
1701 	int allocsize = 0, osize = 0, nsize = 0;
1702 	char *libname, *tmp;
1703 	int lsize;
1704 	Dyn *dynp;
1705 
1706 	for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1707 		switch (dynp->d_tag) {
1708 		case DT_NEEDED:
1709 			/*
1710 			 * Read the DT_NEEDED entries, expanding the macros they
1711 			 * contain (if any), and concatenating them into a
1712 			 * single space-separated dependency list.
1713 			 */
1714 			libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1715 
1716 			if (strchr(libname, '$') != NULL) {
1717 				char *_lib;
1718 
1719 				if (path == NULL)
1720 					path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1721 				if ((_lib = expand_libmacro(libname, path,
1722 				    path)) != NULL)
1723 					libname = _lib;
1724 				else {
1725 					_kobj_printf(ops, "krtld: "
1726 					    "process_dynamic: failed to expand "
1727 					    "%s\n", libname);
1728 				}
1729 			}
1730 
1731 			lsize = strlen(libname);
1732 			nsize += lsize;
1733 			if (nsize + 1 > allocsize) {
1734 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
1735 				    KM_WAIT);
1736 				if (depstr != NULL) {
1737 					bcopy(depstr, tmp, osize);
1738 					kobj_free(depstr, allocsize);
1739 				}
1740 				depstr = tmp;
1741 				allocsize += MAXPATHLEN;
1742 			}
1743 			bcopy(libname, depstr + osize, lsize);
1744 			*(depstr + nsize) = ' '; /* separator */
1745 			nsize++;
1746 			osize = nsize;
1747 			break;
1748 
1749 		case DT_FLAGS_1:
1750 			if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1751 				mp->flags |= KOBJ_IGNMULDEF;
1752 			if (dynp->d_un.d_val & DF_1_NOKSYMS)
1753 				mp->flags |= KOBJ_NOKSYMS;
1754 
1755 			break;
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * finish up the depends string (if any)
1761 	 */
1762 	if (depstr != NULL) {
1763 		*(depstr + nsize - 1) = '\0'; /* overwrite seperator w/term */
1764 		if (path != NULL)
1765 			kobj_free(path, MAXPATHLEN);
1766 
1767 		tmp = kobj_alloc(nsize, KM_WAIT);
1768 		bcopy(depstr, tmp, nsize);
1769 		kobj_free(depstr, allocsize);
1770 		depstr = tmp;
1771 
1772 		mp->depends_on = depstr;
1773 	}
1774 
1775 	return (0);
1776 }
1777 
1778 static int
1779 do_dynamic(struct module *mp, struct _buf *file)
1780 {
1781 	Shdr *dshp, *dstrp, *shp;
1782 	char *dyndata, *dstrdata;
1783 	int dshn, shn, rc;
1784 
1785 	/* find and validate the dynamic section (if any) */
1786 
1787 	for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1788 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1789 		switch (shp->sh_type) {
1790 		case SHT_DYNAMIC:
1791 			if (dshp != NULL) {
1792 				_kobj_printf(ops, "krtld: get_dynamic: %s, ",
1793 				    mp->filename);
1794 				_kobj_printf(ops,
1795 				    "multiple dynamic sections\n");
1796 				return (-1);
1797 			} else {
1798 				dshp = shp;
1799 				dshn = shn;
1800 			}
1801 			break;
1802 		}
1803 	}
1804 
1805 	if (dshp == NULL)
1806 		return (0);
1807 
1808 	if (dshp->sh_link > mp->hdr.e_shnum) {
1809 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1810 		_kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1811 		return (-1);
1812 	}
1813 	dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1814 
1815 	if (dstrp->sh_type != SHT_STRTAB) {
1816 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1817 		_kobj_printf(ops, "sh_link not a string table for section %d\n",
1818 		    dshn);
1819 		return (-1);
1820 	}
1821 
1822 	/* read it from disk */
1823 
1824 	dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1825 	if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1826 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1827 		_kobj_printf(ops, "error reading section %d\n", dshn);
1828 
1829 		kobj_free(dyndata, dshp->sh_size);
1830 		return (-1);
1831 	}
1832 
1833 	dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1834 	if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1835 	    dstrp->sh_offset) < 0) {
1836 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1837 		_kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1838 
1839 		kobj_free(dyndata, dshp->sh_size);
1840 		kobj_free(dstrdata, dstrp->sh_size);
1841 		return (-1);
1842 	}
1843 
1844 	/* pull the interesting pieces out */
1845 
1846 	rc = process_dynamic(mp, dyndata, dstrdata);
1847 
1848 	kobj_free(dyndata, dshp->sh_size);
1849 	kobj_free(dstrdata, dstrp->sh_size);
1850 
1851 	return (rc);
1852 }
1853 
1854 void
1855 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1856 {
1857 	if (!standalone) {
1858 		if (mp->ctfdata != NULL) {
1859 			if (vmem_contains(ctf_arena, mp->ctfdata,
1860 			    mp->ctfsize)) {
1861 				vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1862 			} else {
1863 				kobj_free(mp->ctfdata, mp->ctfsize);
1864 			}
1865 		}
1866 	}
1867 
1868 	/*
1869 	 * The order is very important here.  We need to make sure that
1870 	 * consumers, at any given instant, see a consistent state.  We'd
1871 	 * rather they see no CTF data than the address of one buffer and the
1872 	 * size of another.
1873 	 */
1874 	mp->ctfdata = NULL;
1875 	membar_producer();
1876 	mp->ctfsize = size;
1877 	mp->ctfdata = data;
1878 	membar_producer();
1879 }
1880 
1881 int
1882 kobj_load_module(struct modctl *modp, int use_path)
1883 {
1884 	char *filename = modp->mod_filename;
1885 	char *modname = modp->mod_modname;
1886 	int i;
1887 	int n;
1888 	struct _buf *file;
1889 	struct module *mp = NULL;
1890 #ifdef MODDIR_SUFFIX
1891 	int no_suffixdir_drv = 0;
1892 #endif
1893 
1894 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1895 
1896 	/*
1897 	 * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1898 	 * kmdb contains a bunch of symbols with well-known names, symbols
1899 	 * which will mask the real versions, thus causing no end of trouble
1900 	 * for mdb.
1901 	 */
1902 	if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1903 		mp->flags |= KOBJ_NOKSYMS;
1904 
1905 	file = kobj_open_path(filename, use_path, 1);
1906 	if (file == (struct _buf *)-1) {
1907 #ifdef MODDIR_SUFFIX
1908 		file = kobj_open_path(filename, use_path, 0);
1909 #endif
1910 		if (file == (struct _buf *)-1) {
1911 			kobj_free(mp, sizeof (*mp));
1912 			goto bad;
1913 		}
1914 #ifdef MODDIR_SUFFIX
1915 		/*
1916 		 * There is no driver module in the ISA specific (suffix)
1917 		 * subdirectory but there is a module in the parent directory.
1918 		 */
1919 		if (strncmp(filename, "drv/", 4) == 0) {
1920 			no_suffixdir_drv = 1;
1921 		}
1922 #endif
1923 	}
1924 
1925 	mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1926 	(void) strcpy(mp->filename, file->_name);
1927 
1928 	if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1929 		_kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1930 		    modname);
1931 		kobj_free(mp->filename, strlen(file->_name) + 1);
1932 		kobj_free(mp, sizeof (*mp));
1933 		goto bad;
1934 	}
1935 	for (i = 0; i < SELFMAG; i++) {
1936 		if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1937 			if (_moddebug & MODDEBUG_ERRMSG)
1938 				_kobj_printf(ops, "%s not an elf module\n",
1939 				    modname);
1940 			kobj_free(mp->filename, strlen(file->_name) + 1);
1941 			kobj_free(mp, sizeof (*mp));
1942 			goto bad;
1943 		}
1944 	}
1945 	/*
1946 	 * It's ELF, but is it our ISA?  Interpreting the header
1947 	 * from a file for a byte-swapped ISA could cause a huge
1948 	 * and unsatisfiable value to be passed to kobj_alloc below
1949 	 * and therefore hang booting.
1950 	 */
1951 	if (!elf_mach_ok(&mp->hdr)) {
1952 		if (_moddebug & MODDEBUG_ERRMSG)
1953 			_kobj_printf(ops, "%s not an elf module for this ISA\n",
1954 			    modname);
1955 		kobj_free(mp->filename, strlen(file->_name) + 1);
1956 		kobj_free(mp, sizeof (*mp));
1957 #ifdef MODDIR_SUFFIX
1958 		/*
1959 		 * The driver mod is not in the ISA specific subdirectory
1960 		 * and the module in the parent directory is not our ISA.
1961 		 * If it is our ISA, for now we will silently succeed.
1962 		 */
1963 		if (no_suffixdir_drv == 1) {
1964 			cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1965 			    " not found\n", modname);
1966 		}
1967 #endif
1968 		goto bad;
1969 	}
1970 
1971 	/*
1972 	 * All modules, save for unix, should be relocatable (as opposed to
1973 	 * dynamic).  Dynamic modules come with PLTs and GOTs, which can't
1974 	 * currently be processed by krtld.
1975 	 */
1976 	if (mp->hdr.e_type != ET_REL) {
1977 		if (_moddebug & MODDEBUG_ERRMSG)
1978 			_kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1979 			    "module\n", modname);
1980 		kobj_free(mp->filename, strlen(file->_name) + 1);
1981 		kobj_free(mp, sizeof (*mp));
1982 		goto bad;
1983 	}
1984 
1985 	n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1986 	mp->shdrs = kobj_alloc(n, KM_WAIT);
1987 
1988 	if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1989 		_kobj_printf(ops, "kobj_load_module: %s error reading "
1990 		    "section headers\n", modname);
1991 		kobj_free(mp->shdrs, n);
1992 		kobj_free(mp->filename, strlen(file->_name) + 1);
1993 		kobj_free(mp, sizeof (*mp));
1994 		goto bad;
1995 	}
1996 
1997 	kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1998 	module_assign(modp, mp);
1999 
2000 	/* read in sections */
2001 	if (get_progbits(mp, file) < 0) {
2002 		_kobj_printf(ops, "%s error reading sections\n", modname);
2003 		goto bad;
2004 	}
2005 
2006 	if (do_dynamic(mp, file) < 0) {
2007 		_kobj_printf(ops, "%s error reading dynamic section\n",
2008 		    modname);
2009 		goto bad;
2010 	}
2011 
2012 	modp->mod_text = mp->text;
2013 	modp->mod_text_size = mp->text_size;
2014 
2015 	/* read in symbols; adjust values for each section's real address */
2016 	if (get_syms(mp, file) < 0) {
2017 		_kobj_printf(ops, "%s error reading symbols\n",
2018 		    modname);
2019 		goto bad;
2020 	}
2021 
2022 	/*
2023 	 * If we didn't dependency information from the dynamic section, look
2024 	 * for it the old-fashioned way.
2025 	 */
2026 	if (mp->depends_on == NULL)
2027 		mp->depends_on = depends_on(mp);
2028 
2029 	if (get_ctf(mp, file) < 0) {
2030 		_kobj_printf(ops, "%s debug information will not "
2031 		    "be available\n", modname);
2032 	}
2033 
2034 	/* primary kernel modules do not have a signature section */
2035 	if (!(mp->flags & KOBJ_PRIM))
2036 		get_signature(mp, file);
2037 
2038 #ifdef	KOBJ_DEBUG
2039 	if (kobj_debug & D_LOADING) {
2040 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
2041 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
2042 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
2043 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
2044 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
2045 	}
2046 #endif /* KOBJ_DEBUG */
2047 
2048 	/*
2049 	 * For primary kernel modules, we defer
2050 	 * symbol resolution and relocation until
2051 	 * all primary objects have been loaded.
2052 	 */
2053 	if (!standalone) {
2054 		int ddrval, dcrval;
2055 		char *dependent_modname;
2056 		/* load all dependents */
2057 		dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2058 		ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2059 
2060 		/*
2061 		 * resolve undefined and common symbols,
2062 		 * also allocates common space
2063 		 */
2064 		if ((dcrval = do_common(mp)) < 0) {
2065 			switch (dcrval) {
2066 			case DOSYM_UNSAFE:
2067 				_kobj_printf(ops, "WARNING: mod_load: "
2068 				    "MT-unsafe module '%s' rejected\n",
2069 				    modname);
2070 				break;
2071 			case DOSYM_UNDEF:
2072 				_kobj_printf(ops, "WARNING: mod_load: "
2073 				    "cannot load module '%s'\n",
2074 				    modname);
2075 				if (ddrval == -1) {
2076 					_kobj_printf(ops, "WARNING: %s: ",
2077 					    modname);
2078 					_kobj_printf(ops,
2079 					    "unable to resolve dependency, "
2080 					    "module '%s' not found\n",
2081 					    dependent_modname);
2082 				}
2083 				break;
2084 			}
2085 		}
2086 		kobj_free(dependent_modname, MODMAXNAMELEN);
2087 		if (dcrval < 0)
2088 			goto bad;
2089 
2090 		/* process relocation tables */
2091 		if (do_relocations(mp) < 0) {
2092 			_kobj_printf(ops, "%s error doing relocations\n",
2093 			    modname);
2094 			goto bad;
2095 		}
2096 
2097 		if (mp->destination) {
2098 			off_t	off = (uintptr_t)mp->destination & PAGEOFFSET;
2099 			caddr_t	base = (caddr_t)mp->destination - off;
2100 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2101 
2102 			hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2103 			vmem_free(heap_arena, base, size);
2104 		}
2105 
2106 		/* sync_instruction_memory */
2107 		kobj_sync_instruction_memory(mp->text, mp->text_size);
2108 #ifdef	MPSAS
2109 		sas_syms(mp);
2110 #endif
2111 		kobj_export_module(mp);
2112 		kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2113 	}
2114 	kobj_close_file(file);
2115 	return (0);
2116 bad:
2117 	if (file != (struct _buf *)-1)
2118 		kobj_close_file(file);
2119 	if (modp->mod_mp != NULL)
2120 		free_module_data(modp->mod_mp);
2121 
2122 	module_assign(modp, NULL);
2123 	return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2124 }
2125 
2126 int
2127 kobj_load_primary_module(struct modctl *modp)
2128 {
2129 	struct modctl *dep;
2130 	struct module *mp;
2131 
2132 	if (kobj_load_module(modp, 0) != 0)
2133 		return (-1);
2134 
2135 	mp = modp->mod_mp;
2136 	mp->flags |= KOBJ_PRIM;
2137 
2138 	/* Bind new module to its dependents */
2139 	if (mp->depends_on != NULL && (dep =
2140 	    mod_already_loaded(mp->depends_on)) == NULL) {
2141 #ifdef	KOBJ_DEBUG
2142 		if (kobj_debug & D_DEBUG) {
2143 			_kobj_printf(ops, "krtld: failed to resolve deps "
2144 			    "for primary %s\n", modp->mod_modname);
2145 		}
2146 #endif
2147 		return (-1);
2148 	}
2149 
2150 	add_dependent(mp, dep->mod_mp);
2151 
2152 	/*
2153 	 * Relocate it.  This module may not be part of a link map, so we
2154 	 * can't use bind_primary.
2155 	 */
2156 	if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2157 	    do_relocations(mp) < 0) {
2158 #ifdef	KOBJ_DEBUG
2159 		if (kobj_debug & D_DEBUG) {
2160 			_kobj_printf(ops, "krtld: failed to relocate "
2161 			    "primary %s\n", modp->mod_modname);
2162 		}
2163 #endif
2164 		return (-1);
2165 	}
2166 
2167 	return (0);
2168 }
2169 
2170 static void
2171 module_assign(struct modctl *cp, struct module *mp)
2172 {
2173 	if (standalone) {
2174 		cp->mod_mp = mp;
2175 		return;
2176 	}
2177 	mutex_enter(&mod_lock);
2178 	cp->mod_mp = mp;
2179 	cp->mod_gencount++;
2180 	mutex_exit(&mod_lock);
2181 }
2182 
2183 void
2184 kobj_unload_module(struct modctl *modp)
2185 {
2186 	struct module *mp = modp->mod_mp;
2187 
2188 	if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2189 		_kobj_printf(ops, "text for %s ", mp->filename);
2190 		_kobj_printf(ops, "was at %p\n", mp->text);
2191 		mp->text = NULL;	/* don't actually free it */
2192 	}
2193 
2194 	kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2195 
2196 	/*
2197 	 * Null out mod_mp first, so consumers (debuggers) know not to look
2198 	 * at the module structure any more.
2199 	 */
2200 	mutex_enter(&mod_lock);
2201 	modp->mod_mp = NULL;
2202 	mutex_exit(&mod_lock);
2203 
2204 	kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2205 	free_module_data(mp);
2206 }
2207 
2208 static void
2209 free_module_data(struct module *mp)
2210 {
2211 	struct module_list *lp, *tmp;
2212 	int ksyms_exported = 0;
2213 
2214 	lp = mp->head;
2215 	while (lp) {
2216 		tmp = lp;
2217 		lp = lp->next;
2218 		kobj_free((char *)tmp, sizeof (*tmp));
2219 	}
2220 
2221 	rw_enter(&ksyms_lock, RW_WRITER);
2222 	if (mp->symspace) {
2223 		if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2224 			vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2225 			ksyms_exported = 1;
2226 		} else {
2227 			if (mp->flags & KOBJ_NOKSYMS)
2228 				ksyms_exported = 1;
2229 			kobj_free(mp->symspace, mp->symsize);
2230 		}
2231 	}
2232 	rw_exit(&ksyms_lock);
2233 
2234 	if (mp->ctfdata) {
2235 		if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2236 			vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2237 		else
2238 			kobj_free(mp->ctfdata, mp->ctfsize);
2239 	}
2240 
2241 	if (mp->sigdata)
2242 		kobj_free(mp->sigdata, mp->sigsize);
2243 
2244 	/*
2245 	 * We did not get far enough into kobj_export_ksyms() to free allocated
2246 	 * buffers because we encounted error conditions. Free the buffers.
2247 	 */
2248 	if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2249 		uint_t shn;
2250 		Shdr *shp;
2251 
2252 		for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2253 			shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2254 			switch (shp->sh_type) {
2255 			case SHT_RELA:
2256 			case SHT_REL:
2257 				if (shp->sh_addr != 0)
2258 					kobj_free((void *)shp->sh_addr,
2259 					    shp->sh_size);
2260 				break;
2261 			}
2262 		}
2263 err_free_done:
2264 		if (!(mp->flags & KOBJ_PRIM)) {
2265 			kobj_free(mp->shdrs,
2266 			    mp->hdr.e_shentsize * mp->hdr.e_shnum);
2267 		}
2268 	}
2269 
2270 	if (mp->bss)
2271 		vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2272 
2273 	if (mp->fbt_tab)
2274 		kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2275 
2276 	if (mp->textwin_base)
2277 		kobj_textwin_free(mp);
2278 
2279 	if (mp->sdt_probes != NULL) {
2280 		sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2281 
2282 		while (sdp != NULL) {
2283 			next = sdp->sdpd_next;
2284 			kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2285 			kobj_free(sdp, sizeof (sdt_probedesc_t));
2286 			sdp = next;
2287 		}
2288 	}
2289 
2290 	if (mp->sdt_tab)
2291 		kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2292 	if (mp->text)
2293 		vmem_free(text_arena, mp->text, mp->text_size);
2294 	if (mp->data)
2295 		vmem_free(data_arena, mp->data, mp->data_size);
2296 	if (mp->depends_on)
2297 		kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2298 	if (mp->filename)
2299 		kobj_free(mp->filename, strlen(mp->filename)+1);
2300 
2301 	kobj_free((char *)mp, sizeof (*mp));
2302 }
2303 
2304 static int
2305 get_progbits(struct module *mp, struct _buf *file)
2306 {
2307 	struct proginfo *tp, *dp, *sdp;
2308 	Shdr *shp;
2309 	reloc_dest_t dest = NULL;
2310 	uintptr_t bits_ptr;
2311 	uintptr_t text = 0, data, sdata = 0, textptr;
2312 	uint_t shn;
2313 	int err = -1;
2314 
2315 	tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT);
2316 	dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT);
2317 	sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT);
2318 	/*
2319 	 * loop through sections to find out how much space we need
2320 	 * for text, data, (also bss that is already assigned)
2321 	 */
2322 	if (get_progbits_size(mp, tp, dp, sdp) < 0)
2323 		goto done;
2324 
2325 	mp->text_size = tp->size;
2326 	mp->data_size = dp->size;
2327 
2328 	if (standalone) {
2329 		caddr_t limit = _data;
2330 
2331 		if (lg_pagesize && _text + lg_pagesize < limit)
2332 			limit = _text + lg_pagesize;
2333 
2334 		mp->text = kobj_segbrk(&_etext, mp->text_size,
2335 		    tp->align, limit);
2336 		/*
2337 		 * If we can't grow the text segment, try the
2338 		 * data segment before failing.
2339 		 */
2340 		if (mp->text == NULL) {
2341 			mp->text = kobj_segbrk(&_edata, mp->text_size,
2342 			    tp->align, 0);
2343 		}
2344 
2345 		mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2346 
2347 		if (mp->text == NULL || mp->data == NULL)
2348 			goto done;
2349 
2350 	} else {
2351 		if (text_arena == NULL)
2352 			kobj_vmem_init(&text_arena, &data_arena);
2353 
2354 		/*
2355 		 * some architectures may want to load the module on a
2356 		 * page that is currently read only. It may not be
2357 		 * possible for those architectures to remap their page
2358 		 * on the fly. So we provide a facility for them to hang
2359 		 * a private hook where the memory they assign the module
2360 		 * is not the actual place where the module loads.
2361 		 *
2362 		 * In this case there are two addresses that deal with the
2363 		 * modload.
2364 		 * 1) the final destination of the module
2365 		 * 2) the address that is used to view the newly
2366 		 * loaded module until all the relocations relative to 1
2367 		 * above are completed.
2368 		 *
2369 		 * That is what dest is used for below.
2370 		 */
2371 		mp->text_size += tp->align;
2372 		mp->data_size += dp->align;
2373 
2374 		mp->text = kobj_text_alloc(text_arena, mp->text_size);
2375 
2376 		/*
2377 		 * a remap is taking place. Align the text ptr relative
2378 		 * to the secondary mapping. That is where the bits will
2379 		 * be read in.
2380 		 */
2381 		if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2382 		    mp->text, mp->text_size)) {
2383 			off_t	off = (uintptr_t)mp->text & PAGEOFFSET;
2384 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2385 			caddr_t	map = vmem_alloc(heap_arena, size, VM_SLEEP);
2386 			caddr_t orig = mp->text - off;
2387 			pgcnt_t pages = size / PAGESIZE;
2388 
2389 			dest = (reloc_dest_t)(map + off);
2390 			text = ALIGN((uintptr_t)dest, tp->align);
2391 
2392 			while (pages--) {
2393 				hat_devload(kas.a_hat, map, PAGESIZE,
2394 				    hat_getpfnum(kas.a_hat, orig),
2395 				    PROT_READ | PROT_WRITE | PROT_EXEC,
2396 				    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2397 				map += PAGESIZE;
2398 				orig += PAGESIZE;
2399 			}
2400 			/*
2401 			 * Since we set up a non-cacheable mapping, we need
2402 			 * to flush any old entries in the cache that might
2403 			 * be left around from the read-only mapping.
2404 			 */
2405 			dcache_flushall();
2406 		}
2407 		if (mp->data_size)
2408 			mp->data = vmem_alloc(data_arena, mp->data_size,
2409 			    VM_SLEEP | VM_BESTFIT);
2410 	}
2411 	textptr = (uintptr_t)mp->text;
2412 	textptr = ALIGN(textptr, tp->align);
2413 	mp->destination = dest;
2414 
2415 	/*
2416 	 * This is the case where a remap is not being done.
2417 	 */
2418 	if (text == 0)
2419 		text = ALIGN((uintptr_t)mp->text, tp->align);
2420 	data = ALIGN((uintptr_t)mp->data, dp->align);
2421 
2422 	/* now loop though sections assigning addresses and loading the data */
2423 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2424 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2425 		if (!(shp->sh_flags & SHF_ALLOC))
2426 			continue;
2427 
2428 		if ((shp->sh_flags & SHF_WRITE) == 0)
2429 			bits_ptr = text;
2430 		else if (shp->sh_flags & SHF_NEUT_SHORT)
2431 			bits_ptr = sdata;
2432 		else
2433 			bits_ptr = data;
2434 
2435 		bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2436 
2437 		if (shp->sh_type == SHT_NOBITS) {
2438 			/*
2439 			 * Zero bss.
2440 			 */
2441 			bzero((caddr_t)bits_ptr, shp->sh_size);
2442 			shp->sh_type = SHT_PROGBITS;
2443 		} else {
2444 			if (kobj_read_file(file, (char *)bits_ptr,
2445 			    shp->sh_size, shp->sh_offset) < 0)
2446 				goto done;
2447 		}
2448 
2449 		if (shp->sh_flags & SHF_WRITE) {
2450 			shp->sh_addr = bits_ptr;
2451 		} else {
2452 			textptr = ALIGN(textptr, shp->sh_addralign);
2453 			shp->sh_addr = textptr;
2454 			textptr += shp->sh_size;
2455 		}
2456 
2457 		bits_ptr += shp->sh_size;
2458 		if ((shp->sh_flags & SHF_WRITE) == 0)
2459 			text = bits_ptr;
2460 		else if (shp->sh_flags & SHF_NEUT_SHORT)
2461 			sdata = bits_ptr;
2462 		else
2463 			data = bits_ptr;
2464 	}
2465 
2466 	err = 0;
2467 done:
2468 	/*
2469 	 * Free and mark as freed the section headers here so that
2470 	 * free_module_data() does not have to worry about this buffer.
2471 	 *
2472 	 * This buffer is freed here because one of the possible reasons
2473 	 * for error is a section with non-zero sh_addr and in that case
2474 	 * free_module_data() would have no way of recognizing that this
2475 	 * buffer was unallocated.
2476 	 */
2477 	if (err != 0) {
2478 		kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2479 		mp->shdrs = NULL;
2480 	}
2481 
2482 	(void) kobj_free(tp, sizeof (struct proginfo));
2483 	(void) kobj_free(dp, sizeof (struct proginfo));
2484 	(void) kobj_free(sdp, sizeof (struct proginfo));
2485 
2486 	return (err);
2487 }
2488 
2489 /*
2490  * Go through suppress_sym_list to see if "multiply defined"
2491  * warning of this symbol should be suppressed.  Return 1 if
2492  * warning should be suppressed, 0 otherwise.
2493  */
2494 static int
2495 kobj_suppress_warning(char *symname)
2496 {
2497 	int	i;
2498 
2499 	for (i = 0; suppress_sym_list[i] != NULL; i++) {
2500 		if (strcmp(suppress_sym_list[i], symname) == 0)
2501 			return (1);
2502 	}
2503 
2504 	return (0);
2505 }
2506 
2507 static int
2508 get_syms(struct module *mp, struct _buf *file)
2509 {
2510 	uint_t		shn;
2511 	Shdr	*shp;
2512 	uint_t		i;
2513 	Sym	*sp, *ksp;
2514 	char		*symname;
2515 	int		dosymtab = 0;
2516 	extern char 	stubs_base[], stubs_end[];
2517 
2518 	/*
2519 	 * Find the interesting sections.
2520 	 */
2521 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2522 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2523 		switch (shp->sh_type) {
2524 		case SHT_SYMTAB:
2525 			mp->symtbl_section = shn;
2526 			mp->symhdr = shp;
2527 			dosymtab++;
2528 			break;
2529 
2530 		case SHT_RELA:
2531 		case SHT_REL:
2532 			/*
2533 			 * Already loaded.
2534 			 */
2535 			if (shp->sh_addr)
2536 				continue;
2537 			shp->sh_addr = (Addr)
2538 			    kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2539 
2540 			if (kobj_read_file(file, (char *)shp->sh_addr,
2541 			    shp->sh_size, shp->sh_offset) < 0) {
2542 				_kobj_printf(ops, "krtld: get_syms: %s, ",
2543 				    mp->filename);
2544 				_kobj_printf(ops, "error reading section %d\n",
2545 				    shn);
2546 				return (-1);
2547 			}
2548 			break;
2549 		}
2550 	}
2551 
2552 	/*
2553 	 * This is true for a stripped executable.  In the case of
2554 	 * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2555 	 * and since that symbol information is still present everything
2556 	 * is just fine.
2557 	 */
2558 	if (!dosymtab) {
2559 		if (mp->flags & KOBJ_EXEC)
2560 			return (0);
2561 		_kobj_printf(ops, "krtld: get_syms: %s ",
2562 		    mp->filename);
2563 		_kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2564 		return (-1);
2565 	}
2566 
2567 	/*
2568 	 * get the associated string table header
2569 	 */
2570 	if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2571 		return (-1);
2572 	mp->strhdr = (Shdr *)
2573 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2574 
2575 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2576 	mp->hashsize = kobj_gethashsize(mp->nsyms);
2577 
2578 	/*
2579 	 * Allocate space for the symbol table, buckets, chains, and strings.
2580 	 */
2581 	mp->symsize = mp->symhdr->sh_size +
2582 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2583 	mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2584 
2585 	mp->symtbl = mp->symspace;
2586 	mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2587 	mp->chains = mp->buckets + mp->hashsize;
2588 	mp->strings = (char *)(mp->chains + mp->nsyms);
2589 
2590 	if (kobj_read_file(file, mp->symtbl,
2591 	    mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2592 	    kobj_read_file(file, mp->strings,
2593 	    mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2594 		return (-1);
2595 
2596 	/*
2597 	 * loop through the symbol table adjusting values to account
2598 	 * for where each section got loaded into memory.  Also
2599 	 * fill in the hash table.
2600 	 */
2601 	for (i = 1; i < mp->nsyms; i++) {
2602 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2603 		if (sp->st_shndx < SHN_LORESERVE) {
2604 			if (sp->st_shndx >= mp->hdr.e_shnum) {
2605 				_kobj_printf(ops, "%s bad shndx ",
2606 				    file->_name);
2607 				_kobj_printf(ops, "in symbol %d\n", i);
2608 				return (-1);
2609 			}
2610 			shp = (Shdr *)
2611 			    (mp->shdrs +
2612 			    sp->st_shndx * mp->hdr.e_shentsize);
2613 			if (!(mp->flags & KOBJ_EXEC))
2614 				sp->st_value += shp->sh_addr;
2615 		}
2616 
2617 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2618 			continue;
2619 		if (sp->st_name >= mp->strhdr->sh_size)
2620 			return (-1);
2621 
2622 		symname = mp->strings + sp->st_name;
2623 
2624 		if (!(mp->flags & KOBJ_EXEC) &&
2625 		    ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2626 			ksp = kobj_lookup_all(mp, symname, 0);
2627 
2628 			if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2629 			    !kobj_suppress_warning(symname) &&
2630 			    sp->st_shndx != SHN_UNDEF &&
2631 			    sp->st_shndx != SHN_COMMON &&
2632 			    ksp->st_shndx != SHN_UNDEF &&
2633 			    ksp->st_shndx != SHN_COMMON) {
2634 				/*
2635 				 * Unless this symbol is a stub, it's multiply
2636 				 * defined.  Multiply-defined symbols are
2637 				 * usually bad, but some objects (kmdb) have
2638 				 * a legitimate need to have their own
2639 				 * copies of common functions.
2640 				 */
2641 				if ((standalone ||
2642 				    ksp->st_value < (uintptr_t)stubs_base ||
2643 				    ksp->st_value >= (uintptr_t)stubs_end) &&
2644 				    !(mp->flags & KOBJ_IGNMULDEF)) {
2645 					_kobj_printf(ops,
2646 					    "%s symbol ", file->_name);
2647 					_kobj_printf(ops,
2648 					    "%s multiply defined\n", symname);
2649 				}
2650 			}
2651 		}
2652 
2653 		sym_insert(mp, symname, i);
2654 	}
2655 
2656 	return (0);
2657 }
2658 
2659 static int
2660 get_ctf(struct module *mp, struct _buf *file)
2661 {
2662 	char *shstrtab, *ctfdata;
2663 	size_t shstrlen;
2664 	Shdr *shp;
2665 	uint_t i;
2666 
2667 	if (_moddebug & MODDEBUG_NOCTF)
2668 		return (0); /* do not attempt to even load CTF data */
2669 
2670 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2671 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2672 		    mp->filename);
2673 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2674 		    mp->hdr.e_shstrndx);
2675 		return (-1);
2676 	}
2677 
2678 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2679 	shstrlen = shp->sh_size;
2680 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2681 
2682 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2683 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2684 		    mp->filename);
2685 		_kobj_printf(ops, "error reading section %u\n",
2686 		    mp->hdr.e_shstrndx);
2687 		kobj_free(shstrtab, shstrlen);
2688 		return (-1);
2689 	}
2690 
2691 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2692 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2693 
2694 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2695 		    strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2696 			ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2697 
2698 			if (kobj_read_file(file, ctfdata, shp->sh_size,
2699 			    shp->sh_offset) < 0) {
2700 				_kobj_printf(ops, "krtld: get_ctf: %s, error "
2701 				    "reading .SUNW_ctf data\n", mp->filename);
2702 				kobj_free(ctfdata, shp->sh_size);
2703 				kobj_free(shstrtab, shstrlen);
2704 				return (-1);
2705 			}
2706 
2707 			mp->ctfdata = ctfdata;
2708 			mp->ctfsize = shp->sh_size;
2709 			break;
2710 		}
2711 	}
2712 
2713 	kobj_free(shstrtab, shstrlen);
2714 	return (0);
2715 }
2716 
2717 #define	SHA1_DIGEST_LENGTH	20	/* SHA1 digest length in bytes */
2718 
2719 /*
2720  * Return the hash of the ELF sections that are memory resident.
2721  * i.e. text and data.  We skip a SHT_NOBITS section since it occupies
2722  * no space in the file. We use SHA1 here since libelfsign uses
2723  * it and both places need to use the same algorithm.
2724  */
2725 static void
2726 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2727 {
2728 	uint_t shn;
2729 	Shdr *shp;
2730 	SHA1_CTX ctx;
2731 
2732 	SHA1Init(&ctx);
2733 
2734 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2735 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2736 		if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2737 			continue;
2738 
2739 		/*
2740 		 * The check should ideally be shp->sh_type == SHT_NOBITS.
2741 		 * However, we can't do that check here as get_progbits()
2742 		 * resets the type.
2743 		 */
2744 		if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2745 			continue;
2746 #ifdef	KOBJ_DEBUG
2747 		if (kobj_debug & D_DEBUG)
2748 			_kobj_printf(ops,
2749 			    "krtld: crypto_es_hash: updating hash with"
2750 			    " %s data size=%d\n", shstrtab + shp->sh_name,
2751 			    shp->sh_size);
2752 #endif
2753 		ASSERT(shp->sh_addr != NULL);
2754 		SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2755 	}
2756 
2757 	SHA1Final((uchar_t *)hash, &ctx);
2758 }
2759 
2760 /*
2761  * Get the .SUNW_signature section for the module, it it exists.
2762  *
2763  * This section exists only for crypto modules. None of the
2764  * primary modules have this section currently.
2765  */
2766 static void
2767 get_signature(struct module *mp, struct _buf *file)
2768 {
2769 	char *shstrtab, *sigdata = NULL;
2770 	size_t shstrlen;
2771 	Shdr *shp;
2772 	uint_t i;
2773 
2774 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2775 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2776 		    mp->filename);
2777 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2778 		    mp->hdr.e_shstrndx);
2779 		return;
2780 	}
2781 
2782 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2783 	shstrlen = shp->sh_size;
2784 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2785 
2786 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2787 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2788 		    mp->filename);
2789 		_kobj_printf(ops, "error reading section %u\n",
2790 		    mp->hdr.e_shstrndx);
2791 		kobj_free(shstrtab, shstrlen);
2792 		return;
2793 	}
2794 
2795 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2796 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2797 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2798 		    strcmp(shstrtab + shp->sh_name,
2799 		    ELF_SIGNATURE_SECTION) == 0) {
2800 			filesig_vers_t filesig_version;
2801 			size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2802 			sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2803 
2804 			if (kobj_read_file(file, sigdata, shp->sh_size,
2805 			    shp->sh_offset) < 0) {
2806 				_kobj_printf(ops, "krtld: get_signature: %s,"
2807 				    " error reading .SUNW_signature data\n",
2808 				    mp->filename);
2809 				kobj_free(sigdata, sigsize);
2810 				kobj_free(shstrtab, shstrlen);
2811 				return;
2812 			}
2813 			filesig_version = ((struct filesignatures *)sigdata)->
2814 			    filesig_sig.filesig_version;
2815 			if (!(filesig_version == FILESIG_VERSION1 ||
2816 			    filesig_version == FILESIG_VERSION3)) {
2817 				/* skip versions we don't understand */
2818 				kobj_free(sigdata, sigsize);
2819 				kobj_free(shstrtab, shstrlen);
2820 				return;
2821 			}
2822 
2823 			mp->sigdata = sigdata;
2824 			mp->sigsize = sigsize;
2825 			break;
2826 		}
2827 	}
2828 
2829 	if (sigdata != NULL) {
2830 		crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2831 	}
2832 
2833 	kobj_free(shstrtab, shstrlen);
2834 }
2835 
2836 static void
2837 add_dependent(struct module *mp, struct module *dep)
2838 {
2839 	struct module_list *lp;
2840 
2841 	for (lp = mp->head; lp; lp = lp->next) {
2842 		if (lp->mp == dep)
2843 			return;	/* already on the list */
2844 	}
2845 
2846 	if (lp == NULL) {
2847 		lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2848 
2849 		lp->mp = dep;
2850 		lp->next = NULL;
2851 		if (mp->tail)
2852 			mp->tail->next = lp;
2853 		else
2854 			mp->head = lp;
2855 		mp->tail = lp;
2856 	}
2857 }
2858 
2859 static int
2860 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2861 {
2862 	struct module *mp;
2863 	struct modctl *req;
2864 	char *d, *p, *q;
2865 	int c;
2866 	char *err_modname = NULL;
2867 
2868 	mp = modp->mod_mp;
2869 
2870 	if ((p = mp->depends_on) == NULL)
2871 		return (0);
2872 
2873 	for (;;) {
2874 		/*
2875 		 * Skip space.
2876 		 */
2877 		while (*p && (*p == ' ' || *p == '\t'))
2878 			p++;
2879 		/*
2880 		 * Get module name.
2881 		 */
2882 		d = p;
2883 		q = modname;
2884 		c = 0;
2885 		while (*p && *p != ' ' && *p != '\t') {
2886 			if (c < modnamelen - 1) {
2887 				*q++ = *p;
2888 				c++;
2889 			}
2890 			p++;
2891 		}
2892 
2893 		if (q == modname)
2894 			break;
2895 
2896 		if (c == modnamelen - 1) {
2897 			char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2898 
2899 			(void) strncpy(dep, d,  p - d + 1);
2900 			dep[p - d] = '\0';
2901 
2902 			_kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2903 			_kobj_printf(ops, "'%s' too long ", dep);
2904 			_kobj_printf(ops, "(max %d chars)\n", modnamelen);
2905 
2906 			kobj_free(dep, p - d + 1);
2907 
2908 			return (-1);
2909 		}
2910 
2911 		*q = '\0';
2912 		if ((req = mod_load_requisite(modp, modname)) == NULL) {
2913 #ifndef	KOBJ_DEBUG
2914 			if (_moddebug & MODDEBUG_LOADMSG) {
2915 #endif	/* KOBJ_DEBUG */
2916 				_kobj_printf(ops,
2917 				    "%s: unable to resolve dependency, ",
2918 				    modp->mod_modname);
2919 				_kobj_printf(ops, "cannot load module '%s'\n",
2920 				    modname);
2921 #ifndef	KOBJ_DEBUG
2922 			}
2923 #endif	/* KOBJ_DEBUG */
2924 			if (err_modname == NULL) {
2925 				/*
2926 				 * This must be the same size as the modname
2927 				 * one.
2928 				 */
2929 				err_modname = kobj_zalloc(MODMAXNAMELEN,
2930 				    KM_WAIT);
2931 
2932 				/*
2933 				 * We can use strcpy() here without fearing
2934 				 * the NULL terminator because the size of
2935 				 * err_modname is the same as one of modname,
2936 				 * and it's filled with zeros.
2937 				 */
2938 				(void) strcpy(err_modname, modname);
2939 			}
2940 			continue;
2941 		}
2942 
2943 		add_dependent(mp, req->mod_mp);
2944 		mod_release_mod(req);
2945 
2946 	}
2947 
2948 	if (err_modname != NULL) {
2949 		/*
2950 		 * Copy the first module name where you detect an error to keep
2951 		 * its behavior the same as before.
2952 		 * This way keeps minimizing the memory use for error
2953 		 * modules, and this might be important at boot time because
2954 		 * the memory usage is a crucial factor for booting in most
2955 		 * cases. You can expect more verbose messages when using
2956 		 * a debug kernel or setting a bit in moddebug.
2957 		 */
2958 		bzero(modname, MODMAXNAMELEN);
2959 		(void) strcpy(modname, err_modname);
2960 		kobj_free(err_modname, MODMAXNAMELEN);
2961 		return (-1);
2962 	}
2963 
2964 	return (0);
2965 }
2966 
2967 static int
2968 do_common(struct module *mp)
2969 {
2970 	int err;
2971 
2972 	/*
2973 	 * first time through, assign all symbols defined in other
2974 	 * modules, and count up how much common space will be needed
2975 	 * (bss_size and bss_align)
2976 	 */
2977 	if ((err = do_symbols(mp, 0)) < 0)
2978 		return (err);
2979 	/*
2980 	 * increase bss_size by the maximum delta that could be
2981 	 * computed by the ALIGN below
2982 	 */
2983 	mp->bss_size += mp->bss_align;
2984 	if (mp->bss_size) {
2985 		if (standalone)
2986 			mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2987 			    MINALIGN, 0);
2988 		else
2989 			mp->bss = (uintptr_t)vmem_alloc(data_arena,
2990 			    mp->bss_size, VM_SLEEP | VM_BESTFIT);
2991 		bzero((void *)mp->bss, mp->bss_size);
2992 		/* now assign addresses to all common symbols */
2993 		if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2994 			return (err);
2995 	}
2996 	return (0);
2997 }
2998 
2999 static int
3000 do_symbols(struct module *mp, Elf64_Addr bss_base)
3001 {
3002 	int bss_align;
3003 	uintptr_t bss_ptr;
3004 	int err;
3005 	int i;
3006 	Sym *sp, *sp1;
3007 	char *name;
3008 	int assign;
3009 	int resolved = 1;
3010 
3011 	/*
3012 	 * Nothing left to do (optimization).
3013 	 */
3014 	if (mp->flags & KOBJ_RESOLVED)
3015 		return (0);
3016 
3017 	assign = (bss_base) ? 1 : 0;
3018 	bss_ptr = bss_base;
3019 	bss_align = 0;
3020 	err = 0;
3021 
3022 	for (i = 1; i < mp->nsyms; i++) {
3023 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
3024 		/*
3025 		 * we know that st_name is in bounds, since get_sections
3026 		 * has already checked all of the symbols
3027 		 */
3028 		name = mp->strings + sp->st_name;
3029 		if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
3030 			continue;
3031 #ifdef	__sparc
3032 		/*
3033 		 * Register symbols are ignored in the kernel
3034 		 */
3035 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
3036 			if (*name != '\0') {
3037 				_kobj_printf(ops, "%s: named REGISTER symbol ",
3038 				    mp->filename);
3039 				_kobj_printf(ops, "not supported '%s'\n",
3040 				    name);
3041 				err = DOSYM_UNDEF;
3042 			}
3043 			continue;
3044 		}
3045 #endif	/* __sparc */
3046 		/*
3047 		 * TLS symbols are ignored in the kernel
3048 		 */
3049 		if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
3050 			_kobj_printf(ops, "%s: TLS symbol ",
3051 			    mp->filename);
3052 			_kobj_printf(ops, "not supported '%s'\n",
3053 			    name);
3054 			err = DOSYM_UNDEF;
3055 			continue;
3056 		}
3057 
3058 		if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3059 			if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3060 				sp->st_shndx = SHN_ABS;
3061 				sp->st_value = sp1->st_value;
3062 				continue;
3063 			}
3064 		}
3065 
3066 		if (sp->st_shndx == SHN_UNDEF) {
3067 			resolved = 0;
3068 
3069 			if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3070 				continue;
3071 
3072 			/*
3073 			 * If it's not a weak reference and it's
3074 			 * not a primary object, it's an error.
3075 			 * (Primary objects may take more than
3076 			 * one pass to resolve)
3077 			 */
3078 			if (!(mp->flags & KOBJ_PRIM) &&
3079 			    ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3080 				_kobj_printf(ops, "%s: undefined symbol",
3081 				    mp->filename);
3082 				_kobj_printf(ops, " '%s'\n", name);
3083 				/*
3084 				 * Try to determine whether this symbol
3085 				 * represents a dependency on obsolete
3086 				 * unsafe driver support.  This is just
3087 				 * to make the warning more informative.
3088 				 */
3089 				if (strcmp(name, "sleep") == 0 ||
3090 				    strcmp(name, "unsleep") == 0 ||
3091 				    strcmp(name, "wakeup") == 0 ||
3092 				    strcmp(name, "bsd_compat_ioctl") == 0 ||
3093 				    strcmp(name, "unsafe_driver") == 0 ||
3094 				    strncmp(name, "spl", 3) == 0 ||
3095 				    strncmp(name, "i_ddi_spl", 9) == 0)
3096 					err = DOSYM_UNSAFE;
3097 				if (err == 0)
3098 					err = DOSYM_UNDEF;
3099 			}
3100 			continue;
3101 		}
3102 		/*
3103 		 * It's a common symbol - st_value is the
3104 		 * required alignment.
3105 		 */
3106 		if (sp->st_value > bss_align)
3107 			bss_align = sp->st_value;
3108 		bss_ptr = ALIGN(bss_ptr, sp->st_value);
3109 		if (assign) {
3110 			sp->st_shndx = SHN_ABS;
3111 			sp->st_value = bss_ptr;
3112 		}
3113 		bss_ptr += sp->st_size;
3114 	}
3115 	if (err)
3116 		return (err);
3117 	if (assign == 0 && mp->bss == NULL) {
3118 		mp->bss_align = bss_align;
3119 		mp->bss_size = bss_ptr;
3120 	} else if (resolved) {
3121 		mp->flags |= KOBJ_RESOLVED;
3122 	}
3123 
3124 	return (0);
3125 }
3126 
3127 uint_t
3128 kobj_hash_name(const char *p)
3129 {
3130 	unsigned int g;
3131 	uint_t hval;
3132 
3133 	hval = 0;
3134 	while (*p) {
3135 		hval = (hval << 4) + *p++;
3136 		if ((g = (hval & 0xf0000000)) != 0)
3137 			hval ^= g >> 24;
3138 		hval &= ~g;
3139 	}
3140 	return (hval);
3141 }
3142 
3143 /* look for name in all modules */
3144 uintptr_t
3145 kobj_getsymvalue(char *name, int kernelonly)
3146 {
3147 	Sym		*sp;
3148 	struct modctl	*modp;
3149 	struct module	*mp;
3150 	uintptr_t	value = 0;
3151 
3152 	if ((sp = kobj_lookup_kernel(name)) != NULL)
3153 		return ((uintptr_t)sp->st_value);
3154 
3155 	if (kernelonly)
3156 		return (0);	/* didn't find it in the kernel so give up */
3157 
3158 	mutex_enter(&mod_lock);
3159 	modp = &modules;
3160 	do {
3161 		mp = (struct module *)modp->mod_mp;
3162 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3163 		    (sp = lookup_one(mp, name))) {
3164 			value = (uintptr_t)sp->st_value;
3165 			break;
3166 		}
3167 	} while ((modp = modp->mod_next) != &modules);
3168 	mutex_exit(&mod_lock);
3169 	return (value);
3170 }
3171 
3172 /* look for a symbol near value. */
3173 char *
3174 kobj_getsymname(uintptr_t value, ulong_t *offset)
3175 {
3176 	char *name = NULL;
3177 	struct modctl *modp;
3178 
3179 	struct modctl_list *lp;
3180 	struct module *mp;
3181 
3182 	/*
3183 	 * Loop through the primary kernel modules.
3184 	 */
3185 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3186 		mp = mod(lp);
3187 
3188 		if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3189 			return (name);
3190 	}
3191 
3192 	mutex_enter(&mod_lock);
3193 	modp = &modules;
3194 	do {
3195 		mp = (struct module *)modp->mod_mp;
3196 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3197 		    (name = kobj_searchsym(mp, value, offset)))
3198 			break;
3199 	} while ((modp = modp->mod_next) != &modules);
3200 	mutex_exit(&mod_lock);
3201 	return (name);
3202 }
3203 
3204 /* return address of symbol and size */
3205 
3206 uintptr_t
3207 kobj_getelfsym(char *name, void *mp, int *size)
3208 {
3209 	Sym *sp;
3210 
3211 	if (mp == NULL)
3212 		sp = kobj_lookup_kernel(name);
3213 	else
3214 		sp = lookup_one(mp, name);
3215 
3216 	if (sp == NULL)
3217 		return (0);
3218 
3219 	*size = (int)sp->st_size;
3220 	return ((uintptr_t)sp->st_value);
3221 }
3222 
3223 uintptr_t
3224 kobj_lookup(struct module *mod, const char *name)
3225 {
3226 	Sym *sp;
3227 
3228 	sp = lookup_one(mod, name);
3229 
3230 	if (sp == NULL)
3231 		return (0);
3232 
3233 	return ((uintptr_t)sp->st_value);
3234 }
3235 
3236 char *
3237 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3238 {
3239 	Sym *symtabptr;
3240 	char *strtabptr;
3241 	int symnum;
3242 	Sym *sym;
3243 	Sym *cursym;
3244 	uintptr_t curval;
3245 
3246 	*offset = (ulong_t)-1l;		/* assume not found */
3247 	cursym  = NULL;
3248 
3249 	if (kobj_addrcheck(mp, (void *)value) != 0)
3250 		return (NULL);		/* not in this module */
3251 
3252 	strtabptr  = mp->strings;
3253 	symtabptr  = (Sym *)mp->symtbl;
3254 
3255 	/*
3256 	 * Scan the module's symbol table for a symbol <= value
3257 	 */
3258 	for (symnum = 1, sym = symtabptr + 1;
3259 	    symnum < mp->nsyms; symnum++, sym = (Sym *)
3260 	    ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3261 		if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3262 			if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3263 				continue;
3264 			if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3265 			    ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3266 				continue;
3267 		}
3268 
3269 		curval = (uintptr_t)sym->st_value;
3270 
3271 		if (curval > value)
3272 			continue;
3273 
3274 		/*
3275 		 * If one or both are functions...
3276 		 */
3277 		if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3278 		    ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3279 			/* Ignore if the address is out of the bounds */
3280 			if (value - sym->st_value >= sym->st_size)
3281 				continue;
3282 
3283 			if (cursym != NULL &&
3284 			    ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3285 				/* Prefer the function to the non-function */
3286 				if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3287 					continue;
3288 
3289 				/* Prefer the larger of the two functions */
3290 				if (sym->st_size <= cursym->st_size)
3291 					continue;
3292 			}
3293 		} else if (value - curval >= *offset) {
3294 			continue;
3295 		}
3296 
3297 		*offset = (ulong_t)(value - curval);
3298 		cursym = sym;
3299 	}
3300 	if (cursym == NULL)
3301 		return (NULL);
3302 
3303 	return (strtabptr + cursym->st_name);
3304 }
3305 
3306 Sym *
3307 kobj_lookup_all(struct module *mp, char *name, int include_self)
3308 {
3309 	Sym *sp;
3310 	struct module_list *mlp;
3311 	struct modctl_list *clp;
3312 	struct module *mmp;
3313 
3314 	if (include_self && (sp = lookup_one(mp, name)) != NULL)
3315 		return (sp);
3316 
3317 	for (mlp = mp->head; mlp; mlp = mlp->next) {
3318 		if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3319 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3320 			return (sp);
3321 	}
3322 
3323 	/*
3324 	 * Loop through the primary kernel modules.
3325 	 */
3326 	for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3327 		mmp = mod(clp);
3328 
3329 		if (mmp == NULL || mp == mmp)
3330 			continue;
3331 
3332 		if ((sp = lookup_one(mmp, name)) != NULL &&
3333 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3334 			return (sp);
3335 	}
3336 	return (NULL);
3337 }
3338 
3339 Sym *
3340 kobj_lookup_kernel(const char *name)
3341 {
3342 	struct modctl_list *lp;
3343 	struct module *mp;
3344 	Sym *sp;
3345 
3346 	/*
3347 	 * Loop through the primary kernel modules.
3348 	 */
3349 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3350 		mp = mod(lp);
3351 
3352 		if (mp == NULL)
3353 			continue;
3354 
3355 		if ((sp = lookup_one(mp, name)) != NULL)
3356 			return (sp);
3357 	}
3358 	return (NULL);
3359 }
3360 
3361 static Sym *
3362 lookup_one(struct module *mp, const char *name)
3363 {
3364 	symid_t *ip;
3365 	char *name1;
3366 	Sym *sp;
3367 
3368 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3369 	    ip = &mp->chains[*ip]) {
3370 		sp = (Sym *)(mp->symtbl +
3371 		    mp->symhdr->sh_entsize * *ip);
3372 		name1 = mp->strings + sp->st_name;
3373 		if (strcmp(name, name1) == 0 &&
3374 		    ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3375 		    sp->st_shndx != SHN_UNDEF &&
3376 		    sp->st_shndx != SHN_COMMON)
3377 			return (sp);
3378 	}
3379 	return (NULL);
3380 }
3381 
3382 /*
3383  * Lookup a given symbol pointer in the module's symbol hash.  If the symbol
3384  * is hashed, return the symbol pointer; otherwise return NULL.
3385  */
3386 static Sym *
3387 sym_lookup(struct module *mp, Sym *ksp)
3388 {
3389 	char *name = mp->strings + ksp->st_name;
3390 	symid_t *ip;
3391 	Sym *sp;
3392 
3393 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3394 	    ip = &mp->chains[*ip]) {
3395 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3396 		if (sp == ksp)
3397 			return (ksp);
3398 	}
3399 	return (NULL);
3400 }
3401 
3402 static void
3403 sym_insert(struct module *mp, char *name, symid_t index)
3404 {
3405 	symid_t *ip;
3406 
3407 #ifdef KOBJ_DEBUG
3408 		if (kobj_debug & D_SYMBOLS) {
3409 			static struct module *lastmp = NULL;
3410 			Sym *sp;
3411 			if (lastmp != mp) {
3412 				_kobj_printf(ops,
3413 				    "krtld: symbol entry: file=%s\n",
3414 				    mp->filename);
3415 				_kobj_printf(ops,
3416 				    "krtld:\tsymndx\tvalue\t\t"
3417 				    "symbol name\n");
3418 				lastmp = mp;
3419 			}
3420 			sp = (Sym *)(mp->symtbl +
3421 			    index * mp->symhdr->sh_entsize);
3422 			_kobj_printf(ops, "krtld:\t[%3d]", index);
3423 			_kobj_printf(ops, "\t0x%lx", sp->st_value);
3424 			_kobj_printf(ops, "\t%s\n", name);
3425 		}
3426 
3427 #endif
3428 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3429 	    ip = &mp->chains[*ip]) {
3430 		;
3431 	}
3432 	*ip = index;
3433 }
3434 
3435 struct modctl *
3436 kobj_boot_mod_lookup(const char *modname)
3437 {
3438 	struct modctl *mctl = kobj_modules;
3439 
3440 	do {
3441 		if (strcmp(modname, mctl->mod_modname) == 0)
3442 			return (mctl);
3443 	} while ((mctl = mctl->mod_next) != kobj_modules);
3444 
3445 	return (NULL);
3446 }
3447 
3448 /*
3449  * Determine if the module exists.
3450  */
3451 int
3452 kobj_path_exists(char *name, int use_path)
3453 {
3454 	struct _buf *file;
3455 
3456 	file = kobj_open_path(name, use_path, 1);
3457 #ifdef	MODDIR_SUFFIX
3458 	if (file == (struct _buf *)-1)
3459 		file = kobj_open_path(name, use_path, 0);
3460 #endif	/* MODDIR_SUFFIX */
3461 	if (file == (struct _buf *)-1)
3462 		return (0);
3463 	kobj_close_file(file);
3464 	return (1);
3465 }
3466 
3467 /*
3468  * fullname is dynamically allocated to be able to hold the
3469  * maximum size string that can be constructed from name.
3470  * path is exactly like the shell PATH variable.
3471  */
3472 struct _buf *
3473 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3474 {
3475 	char *p, *q;
3476 	char *pathp;
3477 	char *pathpsave;
3478 	char *fullname;
3479 	int maxpathlen;
3480 	struct _buf *file;
3481 
3482 #if !defined(MODDIR_SUFFIX)
3483 	use_moddir_suffix = B_FALSE;
3484 #endif
3485 
3486 	if (!use_path)
3487 		pathp = "";		/* use name as specified */
3488 	else
3489 		pathp = kobj_module_path;
3490 					/* use configured default path */
3491 
3492 	pathpsave = pathp;		/* keep this for error reporting */
3493 
3494 	/*
3495 	 * Allocate enough space for the largest possible fullname.
3496 	 * since path is of the form <directory> : <directory> : ...
3497 	 * we're potentially allocating a little more than we need to
3498 	 * but we'll allocate the exact amount when we find the right directory.
3499 	 * (The + 3 below is one for NULL terminator and one for the '/'
3500 	 * we might have to add at the beginning of path and one for
3501 	 * the '/' between path and name.)
3502 	 */
3503 	maxpathlen = strlen(pathp) + strlen(name) + 3;
3504 	/* sizeof includes null */
3505 	maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3506 	fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3507 
3508 	for (;;) {
3509 		p = fullname;
3510 		if (*pathp != '\0' && *pathp != '/')
3511 			*p++ = '/';	/* path must start with '/' */
3512 		while (*pathp && *pathp != ':' && *pathp != ' ')
3513 			*p++ = *pathp++;
3514 		if (p != fullname && p[-1] != '/')
3515 			*p++ = '/';
3516 		if (use_moddir_suffix) {
3517 			char *b = basename(name);
3518 			char *s;
3519 
3520 			/* copy everything up to the base name */
3521 			q = name;
3522 			while (q != b && *q)
3523 				*p++ = *q++;
3524 			s = slash_moddir_suffix_slash;
3525 			while (*s)
3526 				*p++ = *s++;
3527 			/* copy the rest */
3528 			while (*b)
3529 				*p++ = *b++;
3530 		} else {
3531 			q = name;
3532 			while (*q)
3533 				*p++ = *q++;
3534 		}
3535 		*p = 0;
3536 		if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3537 			kobj_free(fullname, maxpathlen);
3538 			return (file);
3539 		}
3540 		if (*pathp == 0)
3541 			break;
3542 		pathp++;
3543 	}
3544 	kobj_free(fullname, maxpathlen);
3545 	if (_moddebug & MODDEBUG_ERRMSG) {
3546 		_kobj_printf(ops, "can't open %s,", name);
3547 		_kobj_printf(ops, " path is %s\n", pathpsave);
3548 	}
3549 	return ((struct _buf *)-1);
3550 }
3551 
3552 intptr_t
3553 kobj_open(char *filename)
3554 {
3555 	struct vnode *vp;
3556 	int fd;
3557 
3558 	if (_modrootloaded) {
3559 		struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3560 		int Errno;
3561 
3562 		/*
3563 		 * Hand off the open to a thread who has a
3564 		 * stack size capable handling the request.
3565 		 */
3566 		if (curthread != &t0) {
3567 			(void) thread_create(NULL, DEFAULTSTKSZ * 2,
3568 			    kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3569 			sema_p(&ltp->sema);
3570 			Errno = ltp->Errno;
3571 			vp = ltp->vp;
3572 		} else {
3573 			/*
3574 			 * 1098067: module creds should not be those of the
3575 			 * caller
3576 			 */
3577 			cred_t *saved_cred = curthread->t_cred;
3578 			curthread->t_cred = kcred;
3579 			Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3580 			    0, 0, rootdir);
3581 			curthread->t_cred = saved_cred;
3582 		}
3583 		kobjopen_free(ltp);
3584 
3585 		if (Errno) {
3586 			if (_moddebug & MODDEBUG_ERRMSG) {
3587 				_kobj_printf(ops,
3588 				    "kobj_open: vn_open of %s fails, ",
3589 				    filename);
3590 				_kobj_printf(ops, "Errno = %d\n", Errno);
3591 			}
3592 			return (-1);
3593 		} else {
3594 			if (_moddebug & MODDEBUG_ERRMSG) {
3595 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3596 				_kobj_printf(ops, " vp = %p\n", vp);
3597 			}
3598 			return ((intptr_t)vp);
3599 		}
3600 	} else {
3601 		fd = kobj_boot_open(filename, 0);
3602 
3603 		if (_moddebug & MODDEBUG_ERRMSG) {
3604 			if (fd < 0)
3605 				_kobj_printf(ops,
3606 				    "kobj_open: can't open %s\n", filename);
3607 			else {
3608 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3609 				_kobj_printf(ops, " descr = 0x%x\n", fd);
3610 			}
3611 		}
3612 		return ((intptr_t)fd);
3613 	}
3614 }
3615 
3616 /*
3617  * Calls to kobj_open() are handled off to this routine as a separate thread.
3618  */
3619 static void
3620 kobjopen_thread(struct kobjopen_tctl *ltp)
3621 {
3622 	kmutex_t	cpr_lk;
3623 	callb_cpr_t	cpr_i;
3624 
3625 	mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3626 	CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3627 	ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3628 	    0, 0);
3629 	sema_v(&ltp->sema);
3630 	mutex_enter(&cpr_lk);
3631 	CALLB_CPR_EXIT(&cpr_i);
3632 	mutex_destroy(&cpr_lk);
3633 	thread_exit();
3634 }
3635 
3636 /*
3637  * allocate and initialize a kobjopen thread structure
3638  */
3639 static struct kobjopen_tctl *
3640 kobjopen_alloc(char *filename)
3641 {
3642 	struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3643 
3644 	ASSERT(filename != NULL);
3645 
3646 	ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3647 	bcopy(filename, ltp->name, strlen(filename) + 1);
3648 	sema_init(&ltp->sema, 0, NULL, SEMA_DEFAULT, NULL);
3649 	return (ltp);
3650 }
3651 
3652 /*
3653  * free a kobjopen thread control structure
3654  */
3655 static void
3656 kobjopen_free(struct kobjopen_tctl *ltp)
3657 {
3658 	sema_destroy(&ltp->sema);
3659 	kmem_free(ltp->name, strlen(ltp->name) + 1);
3660 	kmem_free(ltp, sizeof (*ltp));
3661 }
3662 
3663 int
3664 kobj_read(intptr_t descr, char *buf, unsigned size, unsigned offset)
3665 {
3666 	int stat;
3667 	ssize_t resid;
3668 
3669 	if (_modrootloaded) {
3670 		if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3671 		    (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3672 		    &resid)) != 0) {
3673 			_kobj_printf(ops,
3674 			    "vn_rdwr failed with error 0x%x\n", stat);
3675 			return (-1);
3676 		}
3677 		return (size - resid);
3678 	} else {
3679 		int count = 0;
3680 
3681 		if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3682 			_kobj_printf(ops,
3683 			    "kobj_read: seek 0x%x failed\n", offset);
3684 			return (-1);
3685 		}
3686 
3687 		count = kobj_boot_read((int)descr, buf, size);
3688 		if (count < size) {
3689 			if (_moddebug & MODDEBUG_ERRMSG) {
3690 				_kobj_printf(ops,
3691 				    "kobj_read: req %d bytes, ", size);
3692 				_kobj_printf(ops, "got %d\n", count);
3693 			}
3694 		}
3695 		return (count);
3696 	}
3697 }
3698 
3699 void
3700 kobj_close(intptr_t descr)
3701 {
3702 	if (_moddebug & MODDEBUG_ERRMSG)
3703 		_kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3704 
3705 	if (_modrootloaded) {
3706 		struct vnode *vp = (struct vnode *)descr;
3707 		(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED());
3708 		VN_RELE(vp);
3709 	} else
3710 		(void) kobj_boot_close((int)descr);
3711 }
3712 
3713 int
3714 kobj_fstat(intptr_t descr, struct bootstat *buf)
3715 {
3716 	if (buf == NULL)
3717 		return (-1);
3718 
3719 	if (_modrootloaded) {
3720 		vattr_t vattr;
3721 		struct vnode *vp = (struct vnode *)descr;
3722 		if (VOP_GETATTR(vp, &vattr, 0, kcred) != 0)
3723 			return (-1);
3724 
3725 		/*
3726 		 * The vattr and bootstat structures are similar, but not
3727 		 * identical.  We do our best to fill in the bootstat structure
3728 		 * from the contents of vattr (transfering only the ones that
3729 		 * are obvious.
3730 		 */
3731 
3732 		buf->st_mode = (uint32_t)vattr.va_mode;
3733 		buf->st_nlink = (uint32_t)vattr.va_nlink;
3734 		buf->st_uid = (int32_t)vattr.va_uid;
3735 		buf->st_gid = (int32_t)vattr.va_gid;
3736 		buf->st_rdev = (uint64_t)vattr.va_rdev;
3737 		buf->st_size = (uint64_t)vattr.va_size;
3738 		buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3739 		buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3740 		buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3741 		buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3742 		buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3743 		buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3744 		buf->st_blksize = (int32_t)vattr.va_blksize;
3745 		buf->st_blocks = (int64_t)vattr.va_nblocks;
3746 
3747 		return (0);
3748 	}
3749 
3750 	return (kobj_boot_fstat((int)descr, buf));
3751 }
3752 
3753 
3754 struct _buf *
3755 kobj_open_file(char *name)
3756 {
3757 	struct _buf *file;
3758 	intptr_t fd;
3759 
3760 	if ((fd = kobj_open(name)) == -1) {
3761 		return ((struct _buf *)-1);
3762 	}
3763 
3764 	file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3765 	file->_fd = fd;
3766 	file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3767 	file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT|KM_TMP);
3768 	file->_cnt = file->_size = file->_off = 0;
3769 	file->_ln = 1;
3770 	file->_ptr = file->_base;
3771 	(void) strcpy(file->_name, name);
3772 	return (file);
3773 }
3774 
3775 void
3776 kobj_close_file(struct _buf *file)
3777 {
3778 	kobj_close(file->_fd);
3779 	kobj_free(file->_base, MAXBSIZE);
3780 	kobj_free(file->_name, strlen(file->_name)+1);
3781 	kobj_free(file, sizeof (struct _buf));
3782 }
3783 
3784 int
3785 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
3786 {
3787 	int b_size, c_size;
3788 	int b_off;	/* Offset into buffer for start of bcopy */
3789 	int count = 0;
3790 	int page_addr;
3791 
3792 	if (_moddebug & MODDEBUG_ERRMSG) {
3793 		_kobj_printf(ops, "kobj_read_file: size=%x,", size);
3794 		_kobj_printf(ops, " offset=%x at", off);
3795 		_kobj_printf(ops, " buf=%x\n", buf);
3796 	}
3797 
3798 	while (size) {
3799 		page_addr = F_PAGE(off);
3800 		b_size = file->_size;
3801 		/*
3802 		 * If we have the filesystem page the caller's referring to
3803 		 * and we have something in the buffer,
3804 		 * satisfy as much of the request from the buffer as we can.
3805 		 */
3806 		if (page_addr == file->_off && b_size > 0) {
3807 			b_off = B_OFFSET(off);
3808 			c_size = b_size - b_off;
3809 			/*
3810 			 * If there's nothing to copy, we're at EOF.
3811 			 */
3812 			if (c_size <= 0)
3813 				break;
3814 			if (c_size > size)
3815 				c_size = size;
3816 			if (buf) {
3817 				if (_moddebug & MODDEBUG_ERRMSG)
3818 					_kobj_printf(ops, "copying %x bytes\n",
3819 					    c_size);
3820 				bcopy(file->_base+b_off, buf, c_size);
3821 				size -= c_size;
3822 				off += c_size;
3823 				buf += c_size;
3824 				count += c_size;
3825 			} else {
3826 				_kobj_printf(ops, "kobj_read: system error");
3827 				count = -1;
3828 				break;
3829 			}
3830 		} else {
3831 			/*
3832 			 * If the caller's offset is page aligned and
3833 			 * the caller want's at least a filesystem page and
3834 			 * the caller provided a buffer,
3835 			 * read directly into the caller's buffer.
3836 			 */
3837 			if (page_addr == off &&
3838 			    (c_size = F_PAGE(size)) && buf) {
3839 				c_size = kobj_read(file->_fd, buf, c_size,
3840 				    page_addr);
3841 				if (c_size < 0) {
3842 					count = -1;
3843 					break;
3844 				}
3845 				count += c_size;
3846 				if (c_size != F_PAGE(size))
3847 					break;
3848 				size -= c_size;
3849 				off += c_size;
3850 				buf += c_size;
3851 			/*
3852 			 * Otherwise, read into our buffer and copy next time
3853 			 * around the loop.
3854 			 */
3855 			} else {
3856 				file->_off = page_addr;
3857 				c_size = kobj_read(file->_fd, file->_base,
3858 				    MAXBSIZE, page_addr);
3859 				file->_ptr = file->_base;
3860 				file->_cnt = c_size;
3861 				file->_size = c_size;
3862 				/*
3863 				 * If a _filbuf call or nothing read, break.
3864 				 */
3865 				if (buf == NULL || c_size <= 0) {
3866 					count = c_size;
3867 					break;
3868 				}
3869 			}
3870 			if (_moddebug & MODDEBUG_ERRMSG)
3871 				_kobj_printf(ops, "read %x bytes\n", c_size);
3872 		}
3873 	}
3874 	if (_moddebug & MODDEBUG_ERRMSG)
3875 		_kobj_printf(ops, "count = %x\n", count);
3876 
3877 	return (count);
3878 }
3879 
3880 int
3881 kobj_filbuf(struct _buf *f)
3882 {
3883 	if (kobj_read_file(f, NULL, MAXBSIZE, f->_off + f->_size) > 0)
3884 		return (kobj_getc(f));
3885 	return (-1);
3886 }
3887 
3888 void
3889 kobj_free(void *address, size_t size)
3890 {
3891 	if (standalone)
3892 		return;
3893 
3894 	kmem_free(address, size);
3895 	kobj_stat.nfree_calls++;
3896 	kobj_stat.nfree += size;
3897 }
3898 
3899 void *
3900 kobj_zalloc(size_t size, int flag)
3901 {
3902 	void *v;
3903 
3904 	if ((v = kobj_alloc(size, flag)) != 0) {
3905 		bzero(v, size);
3906 	}
3907 
3908 	return (v);
3909 }
3910 
3911 void *
3912 kobj_alloc(size_t size, int flag)
3913 {
3914 	/*
3915 	 * If we are running standalone in the
3916 	 * linker, we ask boot for memory.
3917 	 * Either it's temporary memory that we lose
3918 	 * once boot is mapped out or we allocate it
3919 	 * permanently using the dynamic data segment.
3920 	 */
3921 	if (standalone) {
3922 #ifdef __sparc
3923 		if (flag & KM_TMP) {
3924 			return (kobj_tmp_alloc(size));
3925 		} else if (flag & KM_SCRATCH) {
3926 			void *buf = kobj_bs_alloc(size);
3927 
3928 			if (buf != NULL)
3929 				return (buf);
3930 #ifdef	KOBJ_DEBUG
3931 			if (kobj_debug & D_DEBUG) {
3932 				_kobj_printf(ops, "krtld: failed scratch alloc "
3933 				    "of %lu bytes -- falling back\n", size);
3934 			}
3935 #endif
3936 		}
3937 
3938 #else /* x86 */
3939 		if (flag & (KM_TMP | KM_SCRATCH))
3940 			return (BOP_ALLOC(ops, 0, size, MINALIGN));
3941 #endif
3942 		return (kobj_segbrk(&_edata, size, MINALIGN, 0));
3943 	}
3944 
3945 	kobj_stat.nalloc_calls++;
3946 	kobj_stat.nalloc += size;
3947 
3948 	return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
3949 }
3950 
3951 /*
3952  * Allow the "mod" system to sync up with the work
3953  * already done by kobj during the initial loading
3954  * of the kernel.  This also gives us a chance
3955  * to reallocate memory that belongs to boot.
3956  */
3957 void
3958 kobj_sync(void)
3959 {
3960 	struct modctl_list *lp, **lpp;
3961 
3962 	/*
3963 	 * The module path can be set in /etc/system via 'moddir' commands
3964 	 */
3965 	if (default_path != NULL)
3966 		kobj_module_path = default_path;
3967 	else
3968 		default_path = kobj_module_path;
3969 
3970 	ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
3971 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
3972 
3973 	ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
3974 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
3975 
3976 	/*
3977 	 * Move symbol tables from boot memory to ksyms_arena.
3978 	 */
3979 	for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
3980 		for (lp = *lpp; lp != NULL; lp = lp->modl_next)
3981 			kobj_export_module(mod(lp));
3982 	}
3983 }
3984 
3985 caddr_t
3986 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
3987 {
3988 	uintptr_t va, pva;
3989 	size_t alloc_pgsz = kobj_mmu_pagesize;
3990 	size_t alloc_align = BO_NO_ALIGN;
3991 	size_t alloc_size;
3992 
3993 	/*
3994 	 * If we are using "large" mappings for the kernel,
3995 	 * request aligned memory from boot using the
3996 	 * "large" pagesize.
3997 	 */
3998 	if (lg_pagesize) {
3999 		alloc_align = lg_pagesize;
4000 		alloc_pgsz = lg_pagesize;
4001 	}
4002 	va = ALIGN((uintptr_t)*spp, align);
4003 	pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4004 	/*
4005 	 * Need more pages?
4006 	 */
4007 	if (va + size > pva) {
4008 		uintptr_t npva;
4009 
4010 		alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4011 		/*
4012 		 * Check for overlapping segments.
4013 		 */
4014 		if (limit && limit <= *spp + alloc_size) {
4015 			return ((caddr_t)0);
4016 		}
4017 
4018 		npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4019 		    alloc_size, alloc_align);
4020 
4021 		if (npva == NULL) {
4022 			_kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4023 			    alloc_size);
4024 			_kobj_printf(ops, " aligned %lx", alloc_align);
4025 			_kobj_printf(ops, " at 0x%lx\n", pva);
4026 			return (NULL);
4027 		}
4028 	}
4029 	*spp = (caddr_t)(va + size);
4030 
4031 	return ((caddr_t)va);
4032 }
4033 
4034 /*
4035  * Calculate the number of output hash buckets.
4036  * We use the next prime larger than n / 4,
4037  * so the average hash chain is about 4 entries.
4038  * More buckets would just be a waste of memory.
4039  */
4040 uint_t
4041 kobj_gethashsize(uint_t n)
4042 {
4043 	int f;
4044 	int hsize = MAX(n / 4, 2);
4045 
4046 	for (f = 2; f * f <= hsize; f++)
4047 		if (hsize % f == 0)
4048 			hsize += f = 1;
4049 
4050 	return (hsize);
4051 }
4052 
4053 /*
4054  * Get the file size.
4055  *
4056  * Before root is mounted, files are compressed in the boot_archive ramdisk
4057  * (in the memory). kobj_fstat would return the compressed file size.
4058  * In order to get the uncompressed file size, read the file to the end and
4059  * count its size.
4060  */
4061 int
4062 kobj_get_filesize(struct _buf *file, uint64_t *size)
4063 {
4064 	if (_modrootloaded) {
4065 		struct bootstat bst;
4066 
4067 		if (kobj_fstat(file->_fd, &bst) != 0)
4068 			return (EIO);
4069 		*size = bst.st_size;
4070 	} else {
4071 		char *buf;
4072 		int count;
4073 		uint64_t offset = 0;
4074 
4075 		buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4076 		do {
4077 			count = kobj_read_file(file, buf, MAXBSIZE, offset);
4078 			if (count < 0) {
4079 				kmem_free(buf, MAXBSIZE);
4080 				return (EIO);
4081 			}
4082 			offset += count;
4083 		} while (count == MAXBSIZE);
4084 		kmem_free(buf, MAXBSIZE);
4085 
4086 		*size = offset;
4087 	}
4088 
4089 	return (0);
4090 }
4091 
4092 static char *
4093 basename(char *s)
4094 {
4095 	char *p, *q;
4096 
4097 	q = NULL;
4098 	p = s;
4099 	do {
4100 		if (*p == '/')
4101 			q = p;
4102 	} while (*p++);
4103 	return (q ? q + 1 : s);
4104 }
4105 
4106 /*ARGSUSED*/
4107 static void
4108 kprintf(void *op, const char *fmt, ...)
4109 {
4110 	va_list adx;
4111 
4112 	va_start(adx, fmt);
4113 	vprintf(fmt, adx);
4114 	va_end(adx);
4115 }
4116 
4117 void
4118 kobj_stat_get(kobj_stat_t *kp)
4119 {
4120 	*kp = kobj_stat;
4121 }
4122 
4123 int
4124 kobj_getpagesize()
4125 {
4126 	return (lg_pagesize);
4127 }
4128 
4129 void
4130 kobj_textwin_alloc(struct module *mp)
4131 {
4132 	ASSERT(MUTEX_HELD(&mod_lock));
4133 
4134 	if (mp->textwin != NULL)
4135 		return;
4136 
4137 	/*
4138 	 * If the text is not contained in the heap, then it is not contained
4139 	 * by a writable mapping.  (Specifically, it's on the nucleus page.)
4140 	 * We allocate a read/write mapping for this module's text to allow
4141 	 * the text to be patched without calling hot_patch_kernel_text()
4142 	 * (which is quite slow).
4143 	 */
4144 	if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4145 		uintptr_t text = (uintptr_t)mp->text;
4146 		uintptr_t size = (uintptr_t)mp->text_size;
4147 		uintptr_t i;
4148 		caddr_t va;
4149 		size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4150 		    (text & PAGEMASK);
4151 
4152 		va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4153 
4154 		for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4155 			hat_devload(kas.a_hat, va, PAGESIZE,
4156 			    hat_getpfnum(kas.a_hat, (caddr_t)i),
4157 			    PROT_READ | PROT_WRITE,
4158 			    HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4159 			va += PAGESIZE;
4160 		}
4161 
4162 		mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4163 	} else {
4164 		mp->textwin = mp->text;
4165 	}
4166 }
4167 
4168 void
4169 kobj_textwin_free(struct module *mp)
4170 {
4171 	uintptr_t text = (uintptr_t)mp->text;
4172 	uintptr_t tsize = (uintptr_t)mp->text_size;
4173 	size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4174 	    (text & PAGEMASK));
4175 
4176 	mp->textwin = NULL;
4177 
4178 	if (mp->textwin_base == NULL)
4179 		return;
4180 
4181 	hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4182 	vmem_free(heap_arena, mp->textwin_base, size);
4183 	mp->textwin_base = NULL;
4184 }
4185 
4186 static char *
4187 find_libmacro(char *name)
4188 {
4189 	int lmi;
4190 
4191 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4192 		if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4193 			return (libmacros[lmi].lmi_list);
4194 	}
4195 	return (NULL);
4196 }
4197 
4198 /*
4199  * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4200  * returns path if successful, else NULL
4201  * Support multiple $MACROs expansion and the first valid path will be returned
4202  * Caller's responsibility to provide enough space in path to expand
4203  */
4204 char *
4205 expand_libmacro(char *tail, char *path, char *pathend)
4206 {
4207 	char c, *p, *p1, *p2, *path2, *endp;
4208 	int diff, lmi, macrolen, valid_macro, more_macro;
4209 	struct _buf *file;
4210 
4211 	/*
4212 	 * check for $MACROS between nulls or slashes
4213 	 */
4214 	p = strchr(tail, '$');
4215 	if (p == NULL)
4216 		return (NULL);
4217 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4218 		macrolen = libmacros[lmi].lmi_macrolen;
4219 		if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4220 			break;
4221 	}
4222 
4223 	valid_macro = 0;
4224 	if (lmi < NLIBMACROS) {
4225 		/*
4226 		 * The following checks are used to restrict expansion of
4227 		 * macros to those that form a full directory/file name
4228 		 * and to keep the behavior same as before.  If this
4229 		 * restriction is removed or no longer valid in the future,
4230 		 * the checks below can be deleted.
4231 		 */
4232 		if ((p == tail) || (*(p - 1) == '/')) {
4233 			c = *(p + macrolen + 1);
4234 			if (c == '/' || c == '\0')
4235 				valid_macro = 1;
4236 		}
4237 	}
4238 
4239 	if (!valid_macro) {
4240 		p2 = strchr(p, '/');
4241 		/*
4242 		 * if no more macro to expand, then just copy whatever left
4243 		 * and check whether it exists
4244 		 */
4245 		if (p2 == NULL || strchr(p2, '$') == NULL) {
4246 			(void) strcpy(pathend, tail);
4247 			if ((file = kobj_open_path(path, 1, 1)) !=
4248 			    (struct _buf *)-1) {
4249 				kobj_close_file(file);
4250 				return (path);
4251 			} else
4252 				return (NULL);
4253 		} else {
4254 			/*
4255 			 * copy all chars before '/' and call expand_libmacro()
4256 			 * again
4257 			 */
4258 			diff = p2 - tail;
4259 			bcopy(tail, pathend, diff);
4260 			pathend += diff;
4261 			*(pathend) = '\0';
4262 			return (expand_libmacro(p2, path, pathend));
4263 		}
4264 	}
4265 
4266 	more_macro = 0;
4267 	if (c != '\0') {
4268 		endp = p + macrolen + 1;
4269 		if (strchr(endp, '$') != NULL)
4270 			more_macro = 1;
4271 	} else
4272 		endp = NULL;
4273 
4274 	/*
4275 	 * copy lmi_list and split it into components.
4276 	 * then put the part of tail before $MACRO into path
4277 	 * at pathend
4278 	 */
4279 	diff = p - tail;
4280 	if (diff > 0)
4281 		bcopy(tail, pathend, diff);
4282 	path2 = pathend + diff;
4283 	p1 = libmacros[lmi].lmi_list;
4284 	while (p1 && (*p1 != '\0')) {
4285 		p2 = strchr(p1, ':');
4286 		if (p2) {
4287 			diff = p2 - p1;
4288 			bcopy(p1, path2, diff);
4289 			*(path2 + diff) = '\0';
4290 		} else {
4291 			diff = strlen(p1);
4292 			bcopy(p1, path2, diff + 1);
4293 		}
4294 		/* copy endp only if there isn't any more macro to expand */
4295 		if (!more_macro && (endp != NULL))
4296 			(void) strcat(path2, endp);
4297 		file = kobj_open_path(path, 1, 1);
4298 		if (file != (struct _buf *)-1) {
4299 			kobj_close_file(file);
4300 			/*
4301 			 * if more macros to expand then call expand_libmacro(),
4302 			 * else return path which has the whole path
4303 			 */
4304 			if (!more_macro || (expand_libmacro(endp, path,
4305 			    path2 + diff) != NULL)) {
4306 				return (path);
4307 			}
4308 		}
4309 		if (p2)
4310 			p1 = ++p2;
4311 		else
4312 			return (NULL);
4313 	}
4314 	return (NULL);
4315 }
4316 
4317 static void
4318 tnf_add_notifyunload(kobj_notify_f *fp)
4319 {
4320 	kobj_notify_list_t *entry;
4321 
4322 	entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT);
4323 	entry->kn_type = KOBJ_NOTIFY_MODUNLOADING;
4324 	entry->kn_func = fp;
4325 	(void) kobj_notify_add(entry);
4326 }
4327 
4328 /* ARGSUSED */
4329 static void
4330 tnf_unsplice_probes(unsigned int what, struct modctl *mod)
4331 {
4332 	extern tnf_probe_control_t *__tnf_probe_list_head;
4333 	extern tnf_tag_data_t *__tnf_tag_list_head;
4334 	tnf_probe_control_t **p;
4335 	tnf_tag_data_t **q;
4336 	struct module *mp = mod->mod_mp;
4337 
4338 	if (!(mp->flags & KOBJ_TNF_PROBE))
4339 		return;
4340 
4341 	for (p = &__tnf_probe_list_head; *p; )
4342 		if (kobj_addrcheck(mp, (char *)*p) == 0)
4343 			*p = (*p)->next;
4344 		else
4345 			p = &(*p)->next;
4346 
4347 	for (q = &__tnf_tag_list_head; *q; )
4348 		if (kobj_addrcheck(mp, (char *)*q) == 0)
4349 			*q = (tnf_tag_data_t *)(*q)->tag_version;
4350 		else
4351 			q = (tnf_tag_data_t **)&(*q)->tag_version;
4352 
4353 	tnf_changed_probe_list = 1;
4354 }
4355 
4356 int
4357 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist,
4358     tnf_tag_data_t *tlist)
4359 {
4360 	int result = 0;
4361 	static int add_notify = 1;
4362 
4363 	if (plist) {
4364 		tnf_probe_control_t *pl;
4365 
4366 		for (pl = plist; pl->next; )
4367 			pl = pl->next;
4368 
4369 		if (!boot_load)
4370 			mutex_enter(&mod_lock);
4371 		tnf_changed_probe_list = 1;
4372 		pl->next = __tnf_probe_list_head;
4373 		__tnf_probe_list_head = plist;
4374 		if (!boot_load)
4375 			mutex_exit(&mod_lock);
4376 		result = 1;
4377 	}
4378 
4379 	if (tlist) {
4380 		tnf_tag_data_t *tl;
4381 
4382 		for (tl = tlist; tl->tag_version; )
4383 			tl = (tnf_tag_data_t *)tl->tag_version;
4384 
4385 		if (!boot_load)
4386 			mutex_enter(&mod_lock);
4387 		tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head;
4388 		__tnf_tag_list_head = tlist;
4389 		if (!boot_load)
4390 			mutex_exit(&mod_lock);
4391 		result = 1;
4392 	}
4393 	if (!boot_load && result && add_notify) {
4394 		tnf_add_notifyunload(tnf_unsplice_probes);
4395 		add_notify = 0;
4396 	}
4397 	return (result);
4398 }
4399 
4400 #if defined(__x86)
4401 /*
4402  * This code is for the purpose of manually recording which files
4403  * needs to go into the boot archive on any given system.
4404  *
4405  * To enable the code, set kobj_file_bufsize in /etc/system
4406  * and reboot the system, then use mdb to look at kobj_file_buf.
4407  */
4408 static void
4409 kobj_record_file(char *filename)
4410 {
4411 	extern char *kobj_file_buf;
4412 	extern int kobj_file_bufsize;
4413 	static char *buf;
4414 	static int size = 0;
4415 	int n;
4416 
4417 	if (standalone)		/* kernel symbol not available */
4418 		return;
4419 
4420 	if (kobj_file_bufsize == 0)	/* don't bother */
4421 		return;
4422 
4423 	if (kobj_file_buf == NULL) {	/* allocate buffer */
4424 		size = kobj_file_bufsize;
4425 		buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4426 	}
4427 
4428 	n = snprintf(buf, size, "%s\n", filename);
4429 	if (n > size)
4430 		n = size;
4431 	size -= n;
4432 	buf += n;
4433 }
4434 #endif	/* __x86 */
4435 
4436 static int
4437 kobj_boot_fstat(int fd, struct bootstat *stp)
4438 {
4439 #if defined(__sparc)
4440 	if (!standalone && _ioquiesced)
4441 		return (-1);
4442 	return (BOP_FSTAT(ops, fd, stp));
4443 #else
4444 	return (BRD_FSTAT(bfs_ops, fd, stp));
4445 #endif
4446 }
4447 
4448 /*
4449  * XXX these wrappers should go away when sparc is converted
4450  * boot from ramdisk
4451  */
4452 static int
4453 kobj_boot_open(char *filename, int flags)
4454 {
4455 #if defined(__sparc)
4456 	/*
4457 	 * If io via bootops is quiesced, it means boot is no longer
4458 	 * available to us.  We make it look as if we can't open the
4459 	 * named file - which is reasonably accurate.
4460 	 */
4461 	if (!standalone && _ioquiesced)
4462 		return (-1);
4463 
4464 	return (BOP_OPEN(ops, filename, flags));
4465 #else /* x86 */
4466 	kobj_record_file(filename);
4467 	return (BRD_OPEN(bfs_ops, filename, flags));
4468 #endif
4469 }
4470 
4471 static int
4472 kobj_boot_close(int fd)
4473 {
4474 #if defined(__sparc)
4475 	if (!standalone && _ioquiesced)
4476 		return (-1);
4477 
4478 	return (BOP_CLOSE(ops, fd));
4479 #else /* x86 */
4480 	return (BRD_CLOSE(bfs_ops, fd));
4481 #endif
4482 }
4483 
4484 /*ARGSUSED*/
4485 static int
4486 kobj_boot_seek(int fd, off_t hi, off_t lo)
4487 {
4488 #if defined(__sparc)
4489 	return (BOP_SEEK(ops, fd, hi, lo));
4490 #else
4491 	return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4492 #endif
4493 }
4494 
4495 static int
4496 kobj_boot_read(int fd, caddr_t buf, size_t size)
4497 {
4498 #if defined(__sparc)
4499 	return (BOP_READ(ops, fd, buf, size));
4500 #else
4501 	return (BRD_READ(bfs_ops, fd, buf, size));
4502 #endif
4503 }
4504