1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>. 27 * All rights reserved. Use is subject to license terms. 28 * Copyright 2020 Joyent, Inc. 29 */ 30 31 /* 32 * Kernel's linker/loader 33 */ 34 35 #include <sys/types.h> 36 #include <sys/param.h> 37 #include <sys/sysmacros.h> 38 #include <sys/systm.h> 39 #include <sys/user.h> 40 #include <sys/kmem.h> 41 #include <sys/reboot.h> 42 #include <sys/bootconf.h> 43 #include <sys/debug.h> 44 #include <sys/uio.h> 45 #include <sys/file.h> 46 #include <sys/vnode.h> 47 #include <sys/user.h> 48 #include <sys/mman.h> 49 #include <vm/as.h> 50 #include <vm/seg_kp.h> 51 #include <vm/seg_kmem.h> 52 #include <sys/elf.h> 53 #include <sys/elf_notes.h> 54 #include <sys/vmsystm.h> 55 #include <sys/kdi.h> 56 #include <sys/atomic.h> 57 #include <sys/kmdb.h> 58 59 #include <sys/link.h> 60 #include <sys/kobj.h> 61 #include <sys/ksyms.h> 62 #include <sys/disp.h> 63 #include <sys/modctl.h> 64 #include <sys/varargs.h> 65 #include <sys/kstat.h> 66 #include <sys/kobj_impl.h> 67 #include <sys/fs/decomp.h> 68 #include <sys/callb.h> 69 #include <sys/cmn_err.h> 70 #include <sys/tnf_probe.h> 71 #include <sys/zmod.h> 72 73 #include <krtld/reloc.h> 74 #include <krtld/kobj_kdi.h> 75 #include <sys/sha1.h> 76 #include <sys/crypto/elfsign.h> 77 78 #if !defined(_OBP) 79 #include <sys/bootvfs.h> 80 #endif 81 82 /* 83 * do_symbols() error codes 84 */ 85 #define DOSYM_UNDEF -1 /* undefined symbol */ 86 #define DOSYM_UNSAFE -2 /* MT-unsafe driver symbol */ 87 88 #if !defined(_OBP) 89 static void synthetic_bootaux(char *, val_t *); 90 #endif 91 92 static struct module *load_exec(val_t *, char *); 93 static void load_linker(val_t *); 94 static struct modctl *add_primary(const char *filename, int); 95 static int bind_primary(val_t *, int); 96 static int load_primary(struct module *, int); 97 static int load_kmdb(val_t *); 98 static int get_progbits(struct module *, struct _buf *); 99 static int get_syms(struct module *, struct _buf *); 100 static int get_ctf(struct module *, struct _buf *); 101 static void get_signature(struct module *, struct _buf *); 102 static int do_common(struct module *); 103 static void add_dependent(struct module *, struct module *); 104 static int do_dependents(struct modctl *, char *, size_t); 105 static int do_symbols(struct module *, Elf64_Addr); 106 static void module_assign(struct modctl *, struct module *); 107 static void free_module_data(struct module *); 108 static char *depends_on(struct module *); 109 static char *getmodpath(const char *); 110 static char *basename(char *); 111 static void attr_val(val_t *); 112 static char *find_libmacro(char *); 113 static char *expand_libmacro(char *, char *, char *); 114 static int read_bootflags(void); 115 static int kobj_comp_setup(struct _buf *, struct compinfo *); 116 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t); 117 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t); 118 static int kobj_boot_open(char *, int); 119 static int kobj_boot_close(int); 120 static int kobj_boot_seek(int, off_t, off_t); 121 static int kobj_boot_read(int, caddr_t, size_t); 122 static int kobj_boot_fstat(int, struct bootstat *); 123 static int kobj_boot_compinfo(int, struct compinfo *); 124 125 static Sym *lookup_one(struct module *, const char *); 126 static void sym_insert(struct module *, char *, symid_t); 127 static Sym *sym_lookup(struct module *, Sym *); 128 129 static struct kobjopen_tctl *kobjopen_alloc(char *filename); 130 static void kobjopen_free(struct kobjopen_tctl *ltp); 131 static void kobjopen_thread(struct kobjopen_tctl *ltp); 132 static int kobj_is_compressed(intptr_t); 133 134 extern int kcopy(const void *, void *, size_t); 135 extern int elf_mach_ok(Ehdr *); 136 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *); 137 138 #if !defined(_OBP) 139 extern int kobj_boot_mountroot(void); 140 #endif 141 142 static void tnf_unsplice_probes(uint_t, struct modctl *); 143 extern tnf_probe_control_t *__tnf_probe_list_head; 144 extern tnf_tag_data_t *__tnf_tag_list_head; 145 146 extern int modrootloaded; 147 extern int swaploaded; 148 extern int bop_io_quiesced; 149 extern int last_module_id; 150 151 extern char stubs_base[]; 152 extern char stubs_end[]; 153 154 #ifdef KOBJ_DEBUG 155 /* 156 * Values that can be or'd in to kobj_debug and their effects: 157 * 158 * D_DEBUG - misc. debugging information. 159 * D_SYMBOLS - list symbols and their values as they are entered 160 * into the hash table 161 * D_RELOCATIONS - display relocation processing information 162 * D_LOADING - display information about each module as it 163 * is loaded. 164 */ 165 int kobj_debug = 0; 166 167 #define KOBJ_MARK(s) if (kobj_debug & D_DEBUG) \ 168 (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s)) 169 #else 170 #define KOBJ_MARK(s) /* discard */ 171 #endif 172 173 #define MODPATH_PROPNAME "module-path" 174 175 #ifdef MODDIR_SUFFIX 176 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/"; 177 #else 178 #define slash_moddir_suffix_slash "" 179 #endif 180 181 #define _moddebug get_weakish_int(&moddebug) 182 #define _modrootloaded get_weakish_int(&modrootloaded) 183 #define _swaploaded get_weakish_int(&swaploaded) 184 #define _ioquiesced get_weakish_int(&bop_io_quiesced) 185 186 #define mod(X) (struct module *)((X)->modl_modp->mod_mp) 187 188 void *romp; /* rom vector (opaque to us) */ 189 struct bootops *ops; /* bootops vector */ 190 void *dbvec; /* debug vector */ 191 192 /* 193 * kobjopen thread control structure 194 */ 195 struct kobjopen_tctl { 196 ksema_t sema; 197 char *name; /* name of file */ 198 struct vnode *vp; /* vnode return from vn_open() */ 199 int Errno; /* error return from vnopen */ 200 }; 201 202 /* 203 * Structure for defining dynamically expandable library macros 204 */ 205 206 struct lib_macro_info { 207 char *lmi_list; /* ptr to list of possible choices */ 208 char *lmi_macroname; /* pointer to macro name */ 209 ushort_t lmi_ba_index; /* index into bootaux vector */ 210 ushort_t lmi_macrolen; /* macro length */ 211 } libmacros[] = { 212 { NULL, "CPU", BA_CPU, 0 }, 213 { NULL, "MMU", BA_MMU, 0 } 214 }; 215 216 #define NLIBMACROS sizeof (libmacros) / sizeof (struct lib_macro_info) 217 218 char *boot_cpu_compatible_list; /* make $CPU available */ 219 220 char *kobj_module_path; /* module search path */ 221 vmem_t *text_arena; /* module text arena */ 222 static vmem_t *data_arena; /* module data & bss arena */ 223 static vmem_t *ctf_arena; /* CTF debug data arena */ 224 static struct modctl *kobj_modules = NULL; /* modules loaded */ 225 int kobj_mmu_pagesize; /* system pagesize */ 226 static int lg_pagesize; /* "large" pagesize */ 227 static int kobj_last_module_id = 0; /* id assignment */ 228 static kmutex_t kobj_lock; /* protects mach memory list */ 229 230 /* 231 * The following functions have been implemented by the kernel. 232 * However, many 3rd party drivers provide their own implementations 233 * of these functions. When such drivers are loaded, messages 234 * indicating that these symbols have been multiply defined will be 235 * emitted to the console. To avoid alarming customers for no good 236 * reason, we simply suppress such warnings for the following set of 237 * functions. 238 */ 239 static char *suppress_sym_list[] = 240 { 241 "strstr", 242 "strncat", 243 "strlcat", 244 "strlcpy", 245 "strspn", 246 "memcpy", 247 "memset", 248 "memmove", 249 "memcmp", 250 "memchr", 251 "__udivdi3", 252 "__divdi3", 253 "__umoddi3", 254 "__moddi3", 255 NULL /* This entry must exist */ 256 }; 257 258 /* indexed by KOBJ_NOTIFY_* */ 259 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1]; 260 261 /* 262 * TNF probe management globals 263 */ 264 tnf_probe_control_t *__tnf_probe_list_head = NULL; 265 tnf_tag_data_t *__tnf_tag_list_head = NULL; 266 int tnf_changed_probe_list = 0; 267 268 /* 269 * Prefix for statically defined tracing (SDT) DTrace probes. 270 */ 271 const char *sdt_prefix = "__dtrace_probe_"; 272 273 /* 274 * Beginning and end of the kernel's dynamic text/data segments. 275 */ 276 static caddr_t _text; 277 static caddr_t _etext; 278 static caddr_t _data; 279 280 /* 281 * The sparc linker doesn't create a memory location 282 * for a variable named _edata, so _edata can only be 283 * referred to, not modified. krtld needs a static 284 * variable to modify it - within krtld, of course - 285 * outside of krtld, e_data is used in all kernels. 286 */ 287 #if defined(__sparc) 288 static caddr_t _edata; 289 #else 290 extern caddr_t _edata; 291 #endif 292 293 Addr dynseg = 0; /* load address of "dynamic" segment */ 294 size_t dynsize; /* "dynamic" segment size */ 295 296 297 int standalone = 1; /* an unwholey kernel? */ 298 int use_iflush; /* iflush after relocations */ 299 300 /* 301 * _kobj_printf() and _vkobj_printf() 302 * 303 * Common printf function pointer. Can handle only one conversion 304 * specification in the format string. Some of the functions invoked 305 * through this function pointer cannot handle more that one conversion 306 * specification in the format string. 307 */ 308 void (*_kobj_printf)(void *, const char *, ...) __KPRINTFLIKE(2); 309 void (*_vkobj_printf)(void *, const char *, va_list) __KVPRINTFLIKE(2); 310 311 /* 312 * Standalone function pointers for use within krtld. 313 * Many platforms implement optimized platmod versions of 314 * utilities such as bcopy and any such are not yet available 315 * until the kernel is more completely stitched together. 316 * See kobj_impl.h 317 */ 318 void (*kobj_bcopy)(const void *, void *, size_t); 319 void (*kobj_bzero)(void *, size_t); 320 size_t (*kobj_strlcat)(char *, const char *, size_t); 321 322 static kobj_stat_t kobj_stat; 323 324 #define MINALIGN 8 /* at least a double-word */ 325 326 int 327 get_weakish_int(int *ip) 328 { 329 if (standalone) 330 return (0); 331 return (ip == NULL ? 0 : *ip); 332 } 333 334 static void * 335 get_weakish_pointer(void **ptrp) 336 { 337 if (standalone) 338 return (0); 339 return (ptrp == NULL ? 0 : *ptrp); 340 } 341 342 /* 343 * XXX fix dependencies on "kernel"; this should work 344 * for other standalone binaries as well. 345 * 346 * XXX Fix hashing code to use one pointer to 347 * hash entries. 348 * |----------| 349 * | nbuckets | 350 * |----------| 351 * | nchains | 352 * |----------| 353 * | bucket[] | 354 * |----------| 355 * | chain[] | 356 * |----------| 357 */ 358 359 /* 360 * Load, bind and relocate all modules that 361 * form the primary kernel. At this point, our 362 * externals have not been relocated. 363 */ 364 void 365 kobj_init( 366 void *romvec, 367 void *dvec, 368 struct bootops *bootvec, 369 val_t *bootaux) 370 { 371 struct module *mp; 372 struct modctl *modp; 373 Addr entry; 374 char filename[MAXPATHLEN]; 375 376 /* 377 * Save these to pass on to 378 * the booted standalone. 379 */ 380 romp = romvec; 381 dbvec = dvec; 382 383 ops = bootvec; 384 kobj_setup_standalone_vectors(); 385 386 KOBJ_MARK("Entered kobj_init()"); 387 388 (void) BOP_GETPROP(ops, "whoami", filename); 389 390 /* 391 * We don't support standalone debuggers anymore. The use of kadb 392 * will interfere with the later use of kmdb. Let the user mend 393 * their ways now. Users will reach this message if they still 394 * have the kadb binary on their system (perhaps they used an old 395 * bfu, or maybe they intentionally copied it there) and have 396 * specified its use in a way that eluded our checking in the boot 397 * program. 398 */ 399 if (dvec != NULL) { 400 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as " 401 "kadb are no longer supported\n\n"); 402 goto fail; 403 } 404 405 #if defined(_OBP) 406 /* 407 * OBP allows us to read both the ramdisk and 408 * the underlying root fs when root is a disk. 409 * This can lower incidences of unbootable systems 410 * when the archive is out-of-date with the /etc 411 * state files. 412 */ 413 if (BOP_MOUNTROOT() != BOOT_SVC_OK) { 414 _kobj_printf(ops, "can't mount boot fs\n"); 415 goto fail; 416 } 417 #else 418 { 419 /* on x86, we always boot with a ramdisk */ 420 (void) kobj_boot_mountroot(); 421 422 /* 423 * Now that the ramdisk is mounted, finish boot property 424 * initialization. 425 */ 426 read_bootenvrc(); 427 } 428 429 #if !defined(_UNIX_KRTLD) 430 /* 431 * 'unix' is linked together with 'krtld' into one executable and 432 * the early boot code does -not- hand us any of the dynamic metadata 433 * about the executable. In particular, it does not read in, map or 434 * otherwise look at the program headers. We fake all that up now. 435 * 436 * We do this early as DTrace static probes and tnf probes both call 437 * undefined references. We have to process those relocations before 438 * calling any of them. 439 * 440 * OBP tells kobj_start() where the ELF image is in memory, so it 441 * synthesized bootaux before kobj_init() was called 442 */ 443 if (bootaux[BA_PHDR].ba_ptr == NULL) 444 synthetic_bootaux(filename, bootaux); 445 446 #endif /* !_UNIX_KRTLD */ 447 #endif /* _OBP */ 448 449 /* 450 * Save the interesting attribute-values 451 * (scanned by kobj_boot). 452 */ 453 attr_val(bootaux); 454 455 /* 456 * Set the module search path. 457 */ 458 kobj_module_path = getmodpath(filename); 459 460 boot_cpu_compatible_list = find_libmacro("CPU"); 461 462 /* 463 * These two modules have actually been 464 * loaded by boot, but we finish the job 465 * by introducing them into the world of 466 * loadable modules. 467 */ 468 469 mp = load_exec(bootaux, filename); 470 load_linker(bootaux); 471 472 /* 473 * Load all the primary dependent modules. 474 */ 475 if (load_primary(mp, KOBJ_LM_PRIMARY) == -1) 476 goto fail; 477 478 /* 479 * Glue it together. 480 */ 481 if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1) 482 goto fail; 483 484 entry = bootaux[BA_ENTRY].ba_val; 485 486 /* 487 * Get the boot flags 488 */ 489 bootflags(ops); 490 491 if (boothowto & RB_VERBOSE) 492 kobj_lm_dump(KOBJ_LM_PRIMARY); 493 494 kobj_kdi_init(); 495 496 if (boothowto & RB_KMDB) { 497 if (load_kmdb(bootaux) < 0) 498 goto fail; 499 } 500 501 /* 502 * Post setup. 503 */ 504 s_text = _text; 505 e_text = _etext; 506 s_data = _data; 507 e_data = _edata; 508 509 kobj_sync_instruction_memory(s_text, e_text - s_text); 510 511 #ifdef KOBJ_DEBUG 512 if (kobj_debug & D_DEBUG) 513 _kobj_printf(ops, 514 "krtld: transferring control to: 0x%lx\n", entry); 515 #endif 516 517 /* 518 * Make sure the mod system knows about the modules already loaded. 519 */ 520 last_module_id = kobj_last_module_id; 521 bcopy(kobj_modules, &modules, sizeof (modules)); 522 modp = &modules; 523 do { 524 if (modp->mod_next == kobj_modules) 525 modp->mod_next = &modules; 526 if (modp->mod_prev == kobj_modules) 527 modp->mod_prev = &modules; 528 } while ((modp = modp->mod_next) != &modules); 529 530 standalone = 0; 531 532 #ifdef KOBJ_DEBUG 533 if (kobj_debug & D_DEBUG) 534 _kobj_printf(ops, 535 "krtld: really transferring control to: 0x%lx\n", entry); 536 #endif 537 538 /* restore printf/bcopy/bzero vectors before returning */ 539 kobj_restore_vectors(); 540 541 #if defined(_DBOOT) 542 /* 543 * krtld was called from a dboot ELF section, the embedded 544 * dboot code contains the real entry via bootaux 545 */ 546 exitto((caddr_t)entry); 547 #else 548 /* 549 * krtld was directly called from startup 550 */ 551 return; 552 #endif 553 554 fail: 555 556 _kobj_printf(ops, "krtld: error during initial load/link phase\n"); 557 558 #if !defined(_UNIX_KRTLD) 559 _kobj_printf(ops, "\n"); 560 _kobj_printf(ops, "krtld could neither locate nor resolve symbols" 561 " for:\n"); 562 _kobj_printf(ops, " %s\n", filename); 563 _kobj_printf(ops, "in the boot archive. Please verify that this" 564 " file\n"); 565 _kobj_printf(ops, "matches what is found in the boot archive.\n"); 566 _kobj_printf(ops, "You may need to boot using the Solaris failsafe to" 567 " fix this.\n"); 568 bop_panic("Unable to boot"); 569 #endif 570 } 571 572 #if !defined(_UNIX_KRTLD) && !defined(_OBP) 573 /* 574 * Synthesize additional metadata that describes the executable if 575 * krtld's caller didn't do it. 576 * 577 * (When the dynamic executable has an interpreter, the boot program 578 * does all this for us. Where we don't have an interpreter, (or a 579 * even a boot program, perhaps) we have to do this for ourselves.) 580 */ 581 static void 582 synthetic_bootaux(char *filename, val_t *bootaux) 583 { 584 Ehdr ehdr; 585 caddr_t phdrbase; 586 struct _buf *file; 587 int i, n; 588 589 /* 590 * Elf header 591 */ 592 KOBJ_MARK("synthetic_bootaux()"); 593 KOBJ_MARK(filename); 594 file = kobj_open_file(filename); 595 if (file == (struct _buf *)-1) { 596 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename); 597 return; 598 } 599 KOBJ_MARK("reading program headers"); 600 if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) { 601 _kobj_printf(ops, "krtld: %s: failed to read ehder\n", 602 filename); 603 return; 604 } 605 606 /* 607 * Program headers 608 */ 609 bootaux[BA_PHNUM].ba_val = ehdr.e_phnum; 610 bootaux[BA_PHENT].ba_val = ehdr.e_phentsize; 611 n = ehdr.e_phentsize * ehdr.e_phnum; 612 613 phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP); 614 615 if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) { 616 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n", 617 filename); 618 return; 619 } 620 bootaux[BA_PHDR].ba_ptr = phdrbase; 621 kobj_close_file(file); 622 KOBJ_MARK("closed file"); 623 624 /* 625 * Find the dynamic section address 626 */ 627 for (i = 0; i < ehdr.e_phnum; i++) { 628 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i); 629 630 if (phdr->p_type == PT_DYNAMIC) { 631 bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr; 632 break; 633 } 634 } 635 KOBJ_MARK("synthetic_bootaux() done"); 636 } 637 #endif /* !_UNIX_KRTLD && !_OBP */ 638 639 /* 640 * Set up any global information derived 641 * from attribute/values in the boot or 642 * aux vector. 643 */ 644 static void 645 attr_val(val_t *bootaux) 646 { 647 Phdr *phdr; 648 int phnum, phsize; 649 int i; 650 651 KOBJ_MARK("attr_val()"); 652 kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val; 653 lg_pagesize = bootaux[BA_LPAGESZ].ba_val; 654 use_iflush = bootaux[BA_IFLUSH].ba_val; 655 656 phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr; 657 phnum = bootaux[BA_PHNUM].ba_val; 658 phsize = bootaux[BA_PHENT].ba_val; 659 for (i = 0; i < phnum; i++) { 660 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize); 661 662 if (phdr->p_type != PT_LOAD) { 663 continue; 664 } 665 /* 666 * Bounds of the various segments. 667 */ 668 if (!(phdr->p_flags & PF_X)) { 669 #if defined(_RELSEG) 670 /* 671 * sparc kernel puts the dynamic info 672 * into a separate segment, which is 673 * free'd in bop_fini() 674 */ 675 ASSERT(phdr->p_vaddr != 0); 676 dynseg = phdr->p_vaddr; 677 dynsize = phdr->p_memsz; 678 #else 679 ASSERT(phdr->p_vaddr == 0); 680 #endif 681 } else { 682 if (phdr->p_flags & PF_W) { 683 _data = (caddr_t)phdr->p_vaddr; 684 _edata = _data + phdr->p_memsz; 685 } else { 686 _text = (caddr_t)phdr->p_vaddr; 687 _etext = _text + phdr->p_memsz; 688 } 689 } 690 } 691 692 /* To do the kobj_alloc, _edata needs to be set. */ 693 for (i = 0; i < NLIBMACROS; i++) { 694 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) { 695 libmacros[i].lmi_list = kobj_alloc( 696 strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) + 697 1, KM_WAIT); 698 (void) strcpy(libmacros[i].lmi_list, 699 bootaux[libmacros[i].lmi_ba_index].ba_ptr); 700 } 701 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname); 702 } 703 } 704 705 /* 706 * Set up the booted executable. 707 */ 708 static struct module * 709 load_exec(val_t *bootaux, char *filename) 710 { 711 struct modctl *cp; 712 struct module *mp; 713 Dyn *dyn; 714 Sym *sp; 715 int i, lsize, osize, nsize, allocsize; 716 char *libname, *tmp; 717 char path[MAXPATHLEN]; 718 719 #ifdef KOBJ_DEBUG 720 if (kobj_debug & D_DEBUG) 721 _kobj_printf(ops, "module path '%s'\n", kobj_module_path); 722 #endif 723 724 KOBJ_MARK("add_primary"); 725 cp = add_primary(filename, KOBJ_LM_PRIMARY); 726 727 KOBJ_MARK("struct module"); 728 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 729 cp->mod_mp = mp; 730 731 /* 732 * We don't have the following information 733 * since this module is an executable and not 734 * a relocatable .o. 735 */ 736 mp->symtbl_section = 0; 737 mp->shdrs = NULL; 738 mp->strhdr = NULL; 739 740 /* 741 * Since this module is the only exception, 742 * we cons up some section headers. 743 */ 744 KOBJ_MARK("symhdr"); 745 mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 746 747 KOBJ_MARK("strhdr"); 748 mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 749 750 mp->symhdr->sh_type = SHT_SYMTAB; 751 mp->strhdr->sh_type = SHT_STRTAB; 752 /* 753 * Scan the dynamic structure. 754 */ 755 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 756 dyn->d_tag != DT_NULL; dyn++) { 757 switch (dyn->d_tag) { 758 case DT_SYMTAB: 759 mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr; 760 mp->symhdr->sh_addr = dyn->d_un.d_ptr; 761 break; 762 case DT_HASH: 763 mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1); 764 mp->hashsize = *(uint_t *)dyn->d_un.d_ptr; 765 break; 766 case DT_STRTAB: 767 mp->strings = (char *)dyn->d_un.d_ptr; 768 mp->strhdr->sh_addr = dyn->d_un.d_ptr; 769 break; 770 case DT_STRSZ: 771 mp->strhdr->sh_size = dyn->d_un.d_val; 772 break; 773 case DT_SYMENT: 774 mp->symhdr->sh_entsize = dyn->d_un.d_val; 775 break; 776 } 777 } 778 779 /* 780 * Collapse any DT_NEEDED entries into one string. 781 */ 782 nsize = osize = 0; 783 allocsize = MAXPATHLEN; 784 785 KOBJ_MARK("depends_on"); 786 mp->depends_on = kobj_alloc(allocsize, KM_WAIT); 787 788 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 789 dyn->d_tag != DT_NULL; dyn++) 790 if (dyn->d_tag == DT_NEEDED) { 791 char *_lib; 792 793 libname = mp->strings + dyn->d_un.d_val; 794 if (strchr(libname, '$') != NULL) { 795 if ((_lib = expand_libmacro(libname, 796 path, path)) != NULL) 797 libname = _lib; 798 else 799 _kobj_printf(ops, "krtld: " 800 "load_exec: fail to " 801 "expand %s\n", libname); 802 } 803 lsize = strlen(libname); 804 nsize += lsize; 805 if (nsize + 1 > allocsize) { 806 KOBJ_MARK("grow depends_on"); 807 tmp = kobj_alloc(allocsize + MAXPATHLEN, 808 KM_WAIT); 809 bcopy(mp->depends_on, tmp, osize); 810 kobj_free(mp->depends_on, allocsize); 811 mp->depends_on = tmp; 812 allocsize += MAXPATHLEN; 813 } 814 bcopy(libname, mp->depends_on + osize, lsize); 815 *(mp->depends_on + nsize) = ' '; /* separate */ 816 nsize++; 817 osize = nsize; 818 } 819 if (nsize) { 820 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */ 821 /* 822 * alloc with exact size and copy whatever it got over 823 */ 824 KOBJ_MARK("realloc depends_on"); 825 tmp = kobj_alloc(nsize, KM_WAIT); 826 bcopy(mp->depends_on, tmp, nsize); 827 kobj_free(mp->depends_on, allocsize); 828 mp->depends_on = tmp; 829 } else { 830 kobj_free(mp->depends_on, allocsize); 831 mp->depends_on = NULL; 832 } 833 834 mp->flags = KOBJ_EXEC|KOBJ_PRIM; /* NOT a relocatable .o */ 835 mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize; 836 /* 837 * We allocate our own table since we don't 838 * hash undefined references. 839 */ 840 KOBJ_MARK("chains"); 841 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 842 KOBJ_MARK("buckets"); 843 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 844 845 mp->text = _text; 846 mp->data = _data; 847 848 mp->text_size = _etext - _text; 849 mp->data_size = _edata - _data; 850 851 cp->mod_text = mp->text; 852 cp->mod_text_size = mp->text_size; 853 854 mp->filename = cp->mod_filename; 855 856 #ifdef KOBJ_DEBUG 857 if (kobj_debug & D_LOADING) { 858 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 859 _kobj_printf(ops, "\ttext: 0x%p", mp->text); 860 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size); 861 _kobj_printf(ops, "\tdata: 0x%p", mp->data); 862 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size); 863 } 864 #endif /* KOBJ_DEBUG */ 865 866 /* 867 * Insert symbols into the hash table. 868 */ 869 for (i = 0; i < mp->nsyms; i++) { 870 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 871 872 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 873 continue; 874 #if defined(__sparc) 875 /* 876 * Register symbols are ignored in the kernel 877 */ 878 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) 879 continue; 880 #endif /* __sparc */ 881 882 sym_insert(mp, mp->strings + sp->st_name, i); 883 } 884 885 KOBJ_MARK("load_exec done"); 886 return (mp); 887 } 888 889 /* 890 * Set up the linker module (if it's compiled in, LDNAME is NULL) 891 */ 892 static void 893 load_linker(val_t *bootaux) 894 { 895 struct module *kmp = (struct module *)kobj_modules->mod_mp; 896 struct module *mp; 897 struct modctl *cp; 898 int i; 899 Shdr *shp; 900 Sym *sp; 901 int shsize; 902 char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr; 903 904 /* 905 * On some architectures, krtld is compiled into the kernel. 906 */ 907 if (dlname == NULL) 908 return; 909 910 cp = add_primary(dlname, KOBJ_LM_PRIMARY); 911 912 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 913 914 cp->mod_mp = mp; 915 mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr; 916 shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum; 917 mp->shdrs = kobj_alloc(shsize, KM_WAIT); 918 bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize); 919 920 for (i = 1; i < (int)mp->hdr.e_shnum; i++) { 921 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize)); 922 923 if (shp->sh_flags & SHF_ALLOC) { 924 if (shp->sh_flags & SHF_WRITE) { 925 if (mp->data == NULL) 926 mp->data = (char *)shp->sh_addr; 927 } else if (mp->text == NULL) { 928 mp->text = (char *)shp->sh_addr; 929 } 930 } 931 if (shp->sh_type == SHT_SYMTAB) { 932 mp->symtbl_section = i; 933 mp->symhdr = shp; 934 mp->symspace = mp->symtbl = (char *)shp->sh_addr; 935 } 936 } 937 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 938 mp->flags = KOBJ_INTERP|KOBJ_PRIM; 939 mp->strhdr = (Shdr *) 940 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 941 mp->strings = (char *)mp->strhdr->sh_addr; 942 mp->hashsize = kobj_gethashsize(mp->nsyms); 943 944 mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) + 945 (mp->hashsize + mp->nsyms) * sizeof (symid_t); 946 947 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 948 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 949 950 mp->bss = bootaux[BA_BSS].ba_val; 951 mp->bss_align = 0; /* pre-aligned during allocation */ 952 mp->bss_size = (uintptr_t)_edata - mp->bss; 953 mp->text_size = _etext - mp->text; 954 mp->data_size = _edata - mp->data; 955 mp->filename = cp->mod_filename; 956 cp->mod_text = mp->text; 957 cp->mod_text_size = mp->text_size; 958 959 /* 960 * Now that we've figured out where the linker is, 961 * set the limits for the booted object. 962 */ 963 kmp->text_size = (size_t)(mp->text - kmp->text); 964 kmp->data_size = (size_t)(mp->data - kmp->data); 965 kobj_modules->mod_text_size = kmp->text_size; 966 967 #ifdef KOBJ_DEBUG 968 if (kobj_debug & D_LOADING) { 969 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 970 _kobj_printf(ops, "\ttext:0x%p", mp->text); 971 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size); 972 _kobj_printf(ops, "\tdata:0x%p", mp->data); 973 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size); 974 } 975 #endif /* KOBJ_DEBUG */ 976 977 /* 978 * Insert the symbols into the hash table. 979 */ 980 for (i = 0; i < mp->nsyms; i++) { 981 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 982 983 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 984 continue; 985 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 986 if (sp->st_shndx == SHN_COMMON) 987 sp->st_shndx = SHN_ABS; 988 } 989 sym_insert(mp, mp->strings + sp->st_name, i); 990 } 991 992 } 993 994 static kobj_notify_list_t ** 995 kobj_notify_lookup(uint_t type) 996 { 997 ASSERT(type != 0 && type < sizeof (kobj_notifiers) / 998 sizeof (kobj_notify_list_t *)); 999 1000 return (&kobj_notifiers[type]); 1001 } 1002 1003 int 1004 kobj_notify_add(kobj_notify_list_t *knp) 1005 { 1006 kobj_notify_list_t **knl; 1007 1008 knl = kobj_notify_lookup(knp->kn_type); 1009 1010 knp->kn_next = NULL; 1011 knp->kn_prev = NULL; 1012 1013 mutex_enter(&kobj_lock); 1014 1015 if (*knl != NULL) { 1016 (*knl)->kn_prev = knp; 1017 knp->kn_next = *knl; 1018 } 1019 (*knl) = knp; 1020 1021 mutex_exit(&kobj_lock); 1022 return (0); 1023 } 1024 1025 int 1026 kobj_notify_remove(kobj_notify_list_t *knp) 1027 { 1028 kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type); 1029 kobj_notify_list_t *tknp; 1030 1031 mutex_enter(&kobj_lock); 1032 1033 if ((tknp = knp->kn_next) != NULL) 1034 tknp->kn_prev = knp->kn_prev; 1035 1036 if ((tknp = knp->kn_prev) != NULL) 1037 tknp->kn_next = knp->kn_next; 1038 else 1039 *knl = knp->kn_next; 1040 1041 mutex_exit(&kobj_lock); 1042 1043 return (0); 1044 } 1045 1046 /* 1047 * Notify all interested callbacks of a specified change in module state. 1048 */ 1049 static void 1050 kobj_notify(int type, struct modctl *modp) 1051 { 1052 kobj_notify_list_t *knp; 1053 1054 if (modp->mod_loadflags & MOD_NONOTIFY || standalone) 1055 return; 1056 1057 mutex_enter(&kobj_lock); 1058 1059 for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next) 1060 knp->kn_func(type, modp); 1061 1062 /* 1063 * KDI notification must be last (it has to allow for work done by the 1064 * other notification callbacks), so we call it manually. 1065 */ 1066 kobj_kdi_mod_notify(type, modp); 1067 1068 mutex_exit(&kobj_lock); 1069 } 1070 1071 /* 1072 * Create the module path. 1073 */ 1074 static char * 1075 getmodpath(const char *filename) 1076 { 1077 char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT); 1078 1079 /* 1080 * Platform code gets first crack, then add 1081 * the default components 1082 */ 1083 mach_modpath(path, filename); 1084 if (*path != '\0') 1085 (void) strcat(path, " "); 1086 return (strcat(path, MOD_DEFPATH)); 1087 } 1088 1089 static struct modctl * 1090 add_primary(const char *filename, int lmid) 1091 { 1092 struct modctl *cp; 1093 1094 cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT); 1095 1096 cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT); 1097 1098 /* 1099 * For symbol lookup, we assemble our own 1100 * modctl list of the primary modules. 1101 */ 1102 1103 (void) strcpy(cp->mod_filename, filename); 1104 cp->mod_modname = basename(cp->mod_filename); 1105 1106 /* set values for modinfo assuming that the load will work */ 1107 cp->mod_prim = 1; 1108 cp->mod_loaded = 1; 1109 cp->mod_installed = 1; 1110 cp->mod_loadcnt = 1; 1111 cp->mod_loadflags = MOD_NOAUTOUNLOAD; 1112 1113 cp->mod_id = kobj_last_module_id++; 1114 1115 /* 1116 * Link the module in. We'll pass this info on 1117 * to the mod squad later. 1118 */ 1119 if (kobj_modules == NULL) { 1120 kobj_modules = cp; 1121 cp->mod_prev = cp->mod_next = cp; 1122 } else { 1123 cp->mod_prev = kobj_modules->mod_prev; 1124 cp->mod_next = kobj_modules; 1125 kobj_modules->mod_prev->mod_next = cp; 1126 kobj_modules->mod_prev = cp; 1127 } 1128 1129 kobj_lm_append(lmid, cp); 1130 1131 return (cp); 1132 } 1133 1134 static int 1135 bind_primary(val_t *bootaux, int lmid) 1136 { 1137 struct modctl_list *linkmap = kobj_lm_lookup(lmid); 1138 struct modctl_list *lp; 1139 struct module *mp; 1140 1141 /* 1142 * Do common symbols. 1143 */ 1144 for (lp = linkmap; lp; lp = lp->modl_next) { 1145 mp = mod(lp); 1146 1147 /* 1148 * Don't do common section relocations for modules that 1149 * don't need it. 1150 */ 1151 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP)) 1152 continue; 1153 1154 if (do_common(mp) < 0) 1155 return (-1); 1156 } 1157 1158 /* 1159 * Resolve symbols. 1160 */ 1161 for (lp = linkmap; lp; lp = lp->modl_next) { 1162 mp = mod(lp); 1163 1164 if (do_symbols(mp, 0) < 0) 1165 return (-1); 1166 } 1167 1168 /* 1169 * Do relocations. 1170 */ 1171 for (lp = linkmap; lp; lp = lp->modl_next) { 1172 mp = mod(lp); 1173 1174 if (mp->flags & KOBJ_EXEC) { 1175 Dyn *dyn; 1176 Word relasz = 0, relaent = 0; 1177 char *rela = NULL; 1178 1179 for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr; 1180 dyn->d_tag != DT_NULL; dyn++) { 1181 switch (dyn->d_tag) { 1182 case DT_RELASZ: 1183 case DT_RELSZ: 1184 relasz = dyn->d_un.d_val; 1185 break; 1186 case DT_RELAENT: 1187 case DT_RELENT: 1188 relaent = dyn->d_un.d_val; 1189 break; 1190 case DT_RELA: 1191 rela = (char *)dyn->d_un.d_ptr; 1192 break; 1193 case DT_REL: 1194 rela = (char *)dyn->d_un.d_ptr; 1195 break; 1196 } 1197 } 1198 if (relasz == 0 || 1199 relaent == 0 || rela == NULL) { 1200 _kobj_printf(ops, "krtld: bind_primary(): " 1201 "no relocation information found for " 1202 "module %s\n", mp->filename); 1203 return (-1); 1204 } 1205 #ifdef KOBJ_DEBUG 1206 if (kobj_debug & D_RELOCATIONS) 1207 _kobj_printf(ops, "krtld: relocating: file=%s " 1208 "KOBJ_EXEC\n", mp->filename); 1209 #endif 1210 if (do_relocate(mp, rela, relasz/relaent, relaent, 1211 (Addr)mp->text) < 0) 1212 return (-1); 1213 } else { 1214 if (do_relocations(mp) < 0) 1215 return (-1); 1216 } 1217 1218 kobj_sync_instruction_memory(mp->text, mp->text_size); 1219 } 1220 1221 for (lp = linkmap; lp; lp = lp->modl_next) { 1222 mp = mod(lp); 1223 1224 /* 1225 * We need to re-read the full symbol table for the boot file, 1226 * since we couldn't use the full one before. We also need to 1227 * load the CTF sections of both the boot file and the 1228 * interpreter (us). 1229 */ 1230 if (mp->flags & KOBJ_EXEC) { 1231 struct _buf *file; 1232 int n; 1233 1234 file = kobj_open_file(mp->filename); 1235 if (file == (struct _buf *)-1) 1236 return (-1); 1237 if (kobj_read_file(file, (char *)&mp->hdr, 1238 sizeof (mp->hdr), 0) < 0) 1239 return (-1); 1240 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 1241 mp->shdrs = kobj_alloc(n, KM_WAIT); 1242 if (kobj_read_file(file, mp->shdrs, n, 1243 mp->hdr.e_shoff) < 0) 1244 return (-1); 1245 if (get_syms(mp, file) < 0) 1246 return (-1); 1247 if (get_ctf(mp, file) < 0) 1248 return (-1); 1249 kobj_close_file(file); 1250 mp->flags |= KOBJ_RELOCATED; 1251 1252 } else if (mp->flags & KOBJ_INTERP) { 1253 struct _buf *file; 1254 1255 /* 1256 * The interpreter path fragment in mp->filename 1257 * will already have the module directory suffix 1258 * in it (if appropriate). 1259 */ 1260 file = kobj_open_path(mp->filename, 1, 0); 1261 if (file == (struct _buf *)-1) 1262 return (-1); 1263 if (get_ctf(mp, file) < 0) 1264 return (-1); 1265 kobj_close_file(file); 1266 mp->flags |= KOBJ_RELOCATED; 1267 } 1268 } 1269 1270 return (0); 1271 } 1272 1273 static struct modctl * 1274 mod_already_loaded(char *modname) 1275 { 1276 struct modctl *mctl = kobj_modules; 1277 1278 do { 1279 if (strcmp(modname, mctl->mod_filename) == 0) 1280 return (mctl); 1281 mctl = mctl->mod_next; 1282 1283 } while (mctl != kobj_modules); 1284 1285 return (NULL); 1286 } 1287 1288 /* 1289 * Load all the primary dependent modules. 1290 */ 1291 static int 1292 load_primary(struct module *mp, int lmid) 1293 { 1294 struct modctl *cp; 1295 struct module *dmp; 1296 char *p, *q; 1297 char modname[MODMAXNAMELEN]; 1298 1299 if ((p = mp->depends_on) == NULL) 1300 return (0); 1301 1302 /* CONSTANTCONDITION */ 1303 while (1) { 1304 /* 1305 * Skip space. 1306 */ 1307 while (*p && (*p == ' ' || *p == '\t')) 1308 p++; 1309 /* 1310 * Get module name. 1311 */ 1312 q = modname; 1313 while (*p && *p != ' ' && *p != '\t') 1314 *q++ = *p++; 1315 1316 if (q == modname) 1317 break; 1318 1319 *q = '\0'; 1320 /* 1321 * Check for dup dependencies. 1322 */ 1323 if (strcmp(modname, "dtracestubs") == 0 || 1324 mod_already_loaded(modname) != NULL) 1325 continue; 1326 1327 cp = add_primary(modname, lmid); 1328 cp->mod_busy = 1; 1329 /* 1330 * Load it. 1331 */ 1332 (void) kobj_load_module(cp, 1); 1333 cp->mod_busy = 0; 1334 1335 if ((dmp = cp->mod_mp) == NULL) { 1336 cp->mod_loaded = 0; 1337 cp->mod_installed = 0; 1338 cp->mod_loadcnt = 0; 1339 return (-1); 1340 } 1341 1342 add_dependent(mp, dmp); 1343 dmp->flags |= KOBJ_PRIM; 1344 1345 /* 1346 * Recurse. 1347 */ 1348 if (load_primary(dmp, lmid) == -1) { 1349 cp->mod_loaded = 0; 1350 cp->mod_installed = 0; 1351 cp->mod_loadcnt = 0; 1352 return (-1); 1353 } 1354 } 1355 return (0); 1356 } 1357 1358 static int 1359 console_is_usb_serial(void) 1360 { 1361 char *console; 1362 int len, ret; 1363 1364 if ((len = BOP_GETPROPLEN(ops, "console")) == -1) 1365 return (0); 1366 1367 console = kobj_zalloc(len, KM_WAIT|KM_TMP); 1368 (void) BOP_GETPROP(ops, "console", console); 1369 ret = (strcmp(console, "usb-serial") == 0); 1370 kobj_free(console, len); 1371 1372 return (ret); 1373 } 1374 1375 static int 1376 load_kmdb(val_t *bootaux) 1377 { 1378 struct modctl *mctl; 1379 struct module *mp; 1380 Sym *sym; 1381 1382 if (console_is_usb_serial()) { 1383 _kobj_printf(ops, "kmdb not loaded " 1384 "(unsupported on usb serial console)\n"); 1385 return (0); 1386 } 1387 1388 _kobj_printf(ops, "Loading kmdb...\n"); 1389 1390 if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL) 1391 return (-1); 1392 1393 mctl->mod_busy = 1; 1394 (void) kobj_load_module(mctl, 1); 1395 mctl->mod_busy = 0; 1396 1397 if ((mp = mctl->mod_mp) == NULL) 1398 return (-1); 1399 1400 mp->flags |= KOBJ_PRIM; 1401 1402 if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0) 1403 return (-1); 1404 1405 if (boothowto & RB_VERBOSE) 1406 kobj_lm_dump(KOBJ_LM_DEBUGGER); 1407 1408 if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0) 1409 return (-1); 1410 1411 if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL) 1412 return (-1); 1413 1414 #ifdef KOBJ_DEBUG 1415 if (kobj_debug & D_DEBUG) { 1416 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n", 1417 sym->st_value); 1418 _kobj_printf(ops, "\tops 0x%p\n", ops); 1419 _kobj_printf(ops, "\tromp 0x%p\n", romp); 1420 } 1421 #endif 1422 1423 if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0, 1424 (const char **)kobj_kmdb_argv) < 0) 1425 return (-1); 1426 1427 return (0); 1428 } 1429 1430 /* 1431 * Return a string listing module dependencies. 1432 */ 1433 static char * 1434 depends_on(struct module *mp) 1435 { 1436 Sym *sp; 1437 char *depstr, *q; 1438 1439 /* 1440 * The module doesn't have a depends_on value, so let's try it the 1441 * old-fashioned way - via "_depends_on" 1442 */ 1443 if ((sp = lookup_one(mp, "_depends_on")) == NULL) 1444 return (NULL); 1445 1446 q = (char *)sp->st_value; 1447 1448 #ifdef KOBJ_DEBUG 1449 /* 1450 * _depends_on is a deprecated interface, so we warn about its use 1451 * irrespective of subsequent processing errors. How else are we going 1452 * to be able to deco this interface completely? 1453 * Changes initially limited to DEBUG because third-party modules 1454 * should be flagged to developers before general use base. 1455 */ 1456 _kobj_printf(ops, 1457 "Warning: %s uses deprecated _depends_on interface.\n", 1458 mp->filename); 1459 _kobj_printf(ops, "Please notify module developer or vendor.\n"); 1460 #endif 1461 1462 /* 1463 * Idiot checks. Make sure it's 1464 * in-bounds and NULL terminated. 1465 */ 1466 if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') { 1467 _kobj_printf(ops, "Error processing dependency for %s\n", 1468 mp->filename); 1469 return (NULL); 1470 } 1471 1472 depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT); 1473 (void) strcpy(depstr, q); 1474 1475 return (depstr); 1476 } 1477 1478 void 1479 kobj_getmodinfo(void *xmp, struct modinfo *modinfo) 1480 { 1481 struct module *mp; 1482 mp = (struct module *)xmp; 1483 1484 modinfo->mi_base = mp->text; 1485 modinfo->mi_size = mp->text_size + mp->data_size; 1486 } 1487 1488 /* 1489 * kobj_export_ksyms() performs the following services: 1490 * 1491 * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena. 1492 * (2) Removes unneeded symbols to save space. 1493 * (3) Reduces memory footprint by using VM_BESTFIT allocations. 1494 * (4) Makes the symbol table visible to /dev/ksyms. 1495 */ 1496 static void 1497 kobj_export_ksyms(struct module *mp) 1498 { 1499 Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size); 1500 Sym *sp, *osp; 1501 char *name; 1502 size_t namelen; 1503 struct module *omp; 1504 uint_t nsyms; 1505 size_t symsize = mp->symhdr->sh_entsize; 1506 size_t locals = 1; 1507 size_t strsize; 1508 1509 /* 1510 * Make a copy of the original module structure. 1511 */ 1512 omp = kobj_alloc(sizeof (struct module), KM_WAIT); 1513 bcopy(mp, omp, sizeof (struct module)); 1514 1515 /* 1516 * Compute the sizes of the new symbol table sections. 1517 */ 1518 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1519 if (osp->st_value == 0) 1520 continue; 1521 if (sym_lookup(omp, osp) == NULL) 1522 continue; 1523 name = omp->strings + osp->st_name; 1524 namelen = strlen(name); 1525 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL) 1526 locals++; 1527 nsyms++; 1528 strsize += namelen + 1; 1529 } 1530 1531 mp->nsyms = nsyms; 1532 mp->hashsize = kobj_gethashsize(mp->nsyms); 1533 1534 /* 1535 * ksyms_lock must be held as writer during any operation that 1536 * modifies ksyms_arena, including allocation from same, and 1537 * must not be dropped until the arena is vmem_walk()able. 1538 */ 1539 rw_enter(&ksyms_lock, RW_WRITER); 1540 1541 /* 1542 * Allocate space for the new section headers (symtab and strtab), 1543 * symbol table, buckets, chains, and strings. 1544 */ 1545 mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) + 1546 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize; 1547 1548 if (mp->flags & KOBJ_NOKSYMS) { 1549 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT); 1550 } else { 1551 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize, 1552 VM_BESTFIT | VM_SLEEP); 1553 } 1554 bzero(mp->symspace, mp->symsize); 1555 1556 /* 1557 * Divvy up symspace. 1558 */ 1559 mp->shdrs = mp->symspace; 1560 mp->symhdr = (Shdr *)mp->shdrs; 1561 mp->strhdr = (Shdr *)(mp->symhdr + 1); 1562 mp->symtbl = (char *)(mp->strhdr + 1); 1563 mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize)); 1564 mp->chains = (symid_t *)(mp->buckets + mp->hashsize); 1565 mp->strings = (char *)(mp->chains + nsyms); 1566 1567 /* 1568 * Fill in the new section headers (symtab and strtab). 1569 */ 1570 mp->hdr.e_shnum = 2; 1571 mp->symtbl_section = 0; 1572 1573 mp->symhdr->sh_type = SHT_SYMTAB; 1574 mp->symhdr->sh_addr = (Addr)mp->symtbl; 1575 mp->symhdr->sh_size = nsyms * symsize; 1576 mp->symhdr->sh_link = 1; 1577 mp->symhdr->sh_info = locals; 1578 mp->symhdr->sh_addralign = sizeof (Addr); 1579 mp->symhdr->sh_entsize = symsize; 1580 1581 mp->strhdr->sh_type = SHT_STRTAB; 1582 mp->strhdr->sh_addr = (Addr)mp->strings; 1583 mp->strhdr->sh_size = strsize; 1584 mp->strhdr->sh_addralign = 1; 1585 1586 /* 1587 * Construct the new symbol table. 1588 */ 1589 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1590 if (osp->st_value == 0) 1591 continue; 1592 if (sym_lookup(omp, osp) == NULL) 1593 continue; 1594 name = omp->strings + osp->st_name; 1595 namelen = strlen(name); 1596 sp = (Sym *)(mp->symtbl + symsize * nsyms); 1597 bcopy(osp, sp, symsize); 1598 bcopy(name, mp->strings + strsize, namelen); 1599 sp->st_name = strsize; 1600 sym_insert(mp, name, nsyms); 1601 nsyms++; 1602 strsize += namelen + 1; 1603 } 1604 1605 rw_exit(&ksyms_lock); 1606 1607 /* 1608 * Free the old section headers -- we'll never need them again. 1609 */ 1610 if (!(mp->flags & KOBJ_PRIM)) { 1611 uint_t shn; 1612 Shdr *shp; 1613 1614 for (shn = 1; shn < omp->hdr.e_shnum; shn++) { 1615 shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize); 1616 switch (shp->sh_type) { 1617 case SHT_RELA: 1618 case SHT_REL: 1619 if (shp->sh_addr != 0) { 1620 kobj_free((void *)shp->sh_addr, 1621 shp->sh_size); 1622 } 1623 break; 1624 } 1625 } 1626 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum); 1627 } 1628 /* 1629 * Discard the old symbol table and our copy of the module strucure. 1630 */ 1631 if (!(mp->flags & KOBJ_PRIM)) 1632 kobj_free(omp->symspace, omp->symsize); 1633 kobj_free(omp, sizeof (struct module)); 1634 } 1635 1636 static void 1637 kobj_export_ctf(struct module *mp) 1638 { 1639 char *data = mp->ctfdata; 1640 size_t size = mp->ctfsize; 1641 1642 if (data != NULL) { 1643 if (_moddebug & MODDEBUG_NOCTF) { 1644 mp->ctfdata = NULL; 1645 mp->ctfsize = 0; 1646 } else { 1647 mp->ctfdata = vmem_alloc(ctf_arena, size, 1648 VM_BESTFIT | VM_SLEEP); 1649 bcopy(data, mp->ctfdata, size); 1650 } 1651 1652 if (!(mp->flags & KOBJ_PRIM)) 1653 kobj_free(data, size); 1654 } 1655 } 1656 1657 void 1658 kobj_export_module(struct module *mp) 1659 { 1660 kobj_export_ksyms(mp); 1661 kobj_export_ctf(mp); 1662 1663 mp->flags |= KOBJ_EXPORTED; 1664 } 1665 1666 static int 1667 process_dynamic(struct module *mp, char *dyndata, char *strdata) 1668 { 1669 char *path = NULL, *depstr = NULL; 1670 int allocsize = 0, osize = 0, nsize = 0; 1671 char *libname, *tmp; 1672 int lsize; 1673 Dyn *dynp; 1674 1675 for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) { 1676 switch (dynp->d_tag) { 1677 case DT_NEEDED: 1678 /* 1679 * Read the DT_NEEDED entries, expanding the macros they 1680 * contain (if any), and concatenating them into a 1681 * single space-separated dependency list. 1682 */ 1683 libname = (ulong_t)dynp->d_un.d_ptr + strdata; 1684 1685 if (strchr(libname, '$') != NULL) { 1686 char *_lib; 1687 1688 if (path == NULL) 1689 path = kobj_alloc(MAXPATHLEN, KM_WAIT); 1690 if ((_lib = expand_libmacro(libname, path, 1691 path)) != NULL) 1692 libname = _lib; 1693 else { 1694 _kobj_printf(ops, "krtld: " 1695 "process_dynamic: failed to expand " 1696 "%s\n", libname); 1697 } 1698 } 1699 1700 lsize = strlen(libname); 1701 nsize += lsize; 1702 if (nsize + 1 > allocsize) { 1703 tmp = kobj_alloc(allocsize + MAXPATHLEN, 1704 KM_WAIT); 1705 if (depstr != NULL) { 1706 bcopy(depstr, tmp, osize); 1707 kobj_free(depstr, allocsize); 1708 } 1709 depstr = tmp; 1710 allocsize += MAXPATHLEN; 1711 } 1712 bcopy(libname, depstr + osize, lsize); 1713 *(depstr + nsize) = ' '; /* separator */ 1714 nsize++; 1715 osize = nsize; 1716 break; 1717 1718 case DT_FLAGS_1: 1719 if (dynp->d_un.d_val & DF_1_IGNMULDEF) 1720 mp->flags |= KOBJ_IGNMULDEF; 1721 if (dynp->d_un.d_val & DF_1_NOKSYMS) 1722 mp->flags |= KOBJ_NOKSYMS; 1723 1724 break; 1725 } 1726 } 1727 1728 /* 1729 * finish up the depends string (if any) 1730 */ 1731 if (depstr != NULL) { 1732 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */ 1733 if (path != NULL) 1734 kobj_free(path, MAXPATHLEN); 1735 1736 tmp = kobj_alloc(nsize, KM_WAIT); 1737 bcopy(depstr, tmp, nsize); 1738 kobj_free(depstr, allocsize); 1739 depstr = tmp; 1740 1741 mp->depends_on = depstr; 1742 } 1743 1744 return (0); 1745 } 1746 1747 static int 1748 do_dynamic(struct module *mp, struct _buf *file) 1749 { 1750 Shdr *dshp, *dstrp, *shp; 1751 char *dyndata, *dstrdata; 1752 int dshn, shn, rc; 1753 1754 /* find and validate the dynamic section (if any) */ 1755 1756 for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) { 1757 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 1758 switch (shp->sh_type) { 1759 case SHT_DYNAMIC: 1760 if (dshp != NULL) { 1761 _kobj_printf(ops, "krtld: get_dynamic: %s, ", 1762 mp->filename); 1763 _kobj_printf(ops, 1764 "multiple dynamic sections\n"); 1765 return (-1); 1766 } else { 1767 dshp = shp; 1768 dshn = shn; 1769 } 1770 break; 1771 } 1772 } 1773 1774 if (dshp == NULL) 1775 return (0); 1776 1777 if (dshp->sh_link > mp->hdr.e_shnum) { 1778 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1779 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link); 1780 return (-1); 1781 } 1782 dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize); 1783 1784 if (dstrp->sh_type != SHT_STRTAB) { 1785 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1786 _kobj_printf(ops, "sh_link not a string table for section %d\n", 1787 dshn); 1788 return (-1); 1789 } 1790 1791 /* read it from disk */ 1792 1793 dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP); 1794 if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) { 1795 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1796 _kobj_printf(ops, "error reading section %d\n", dshn); 1797 1798 kobj_free(dyndata, dshp->sh_size); 1799 return (-1); 1800 } 1801 1802 dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP); 1803 if (kobj_read_file(file, dstrdata, dstrp->sh_size, 1804 dstrp->sh_offset) < 0) { 1805 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1806 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link); 1807 1808 kobj_free(dyndata, dshp->sh_size); 1809 kobj_free(dstrdata, dstrp->sh_size); 1810 return (-1); 1811 } 1812 1813 /* pull the interesting pieces out */ 1814 1815 rc = process_dynamic(mp, dyndata, dstrdata); 1816 1817 kobj_free(dyndata, dshp->sh_size); 1818 kobj_free(dstrdata, dstrp->sh_size); 1819 1820 return (rc); 1821 } 1822 1823 void 1824 kobj_set_ctf(struct module *mp, caddr_t data, size_t size) 1825 { 1826 if (!standalone) { 1827 if (mp->ctfdata != NULL) { 1828 if (vmem_contains(ctf_arena, mp->ctfdata, 1829 mp->ctfsize)) { 1830 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 1831 } else { 1832 kobj_free(mp->ctfdata, mp->ctfsize); 1833 } 1834 } 1835 } 1836 1837 /* 1838 * The order is very important here. We need to make sure that 1839 * consumers, at any given instant, see a consistent state. We'd 1840 * rather they see no CTF data than the address of one buffer and the 1841 * size of another. 1842 */ 1843 mp->ctfdata = NULL; 1844 membar_producer(); 1845 mp->ctfsize = size; 1846 mp->ctfdata = data; 1847 membar_producer(); 1848 } 1849 1850 int 1851 kobj_load_module(struct modctl *modp, int use_path) 1852 { 1853 char *filename = modp->mod_filename; 1854 char *modname = modp->mod_modname; 1855 int i; 1856 int n; 1857 struct _buf *file; 1858 struct module *mp = NULL; 1859 #ifdef MODDIR_SUFFIX 1860 int no_suffixdir_drv = 0; 1861 #endif 1862 1863 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 1864 1865 /* 1866 * We need to prevent kmdb's symbols from leaking into /dev/ksyms. 1867 * kmdb contains a bunch of symbols with well-known names, symbols 1868 * which will mask the real versions, thus causing no end of trouble 1869 * for mdb. 1870 */ 1871 if (strcmp(modp->mod_modname, "kmdbmod") == 0) 1872 mp->flags |= KOBJ_NOKSYMS; 1873 1874 file = kobj_open_path(filename, use_path, 1); 1875 if (file == (struct _buf *)-1) { 1876 #ifdef MODDIR_SUFFIX 1877 file = kobj_open_path(filename, use_path, 0); 1878 #endif 1879 if (file == (struct _buf *)-1) { 1880 kobj_free(mp, sizeof (*mp)); 1881 goto bad; 1882 } 1883 #ifdef MODDIR_SUFFIX 1884 /* 1885 * There is no driver module in the ISA specific (suffix) 1886 * subdirectory but there is a module in the parent directory. 1887 */ 1888 if (strncmp(filename, "drv/", 4) == 0) { 1889 no_suffixdir_drv = 1; 1890 } 1891 #endif 1892 } 1893 1894 mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT); 1895 (void) strcpy(mp->filename, file->_name); 1896 1897 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) { 1898 _kobj_printf(ops, "kobj_load_module: %s read header failed\n", 1899 modname); 1900 kobj_free(mp->filename, strlen(file->_name) + 1); 1901 kobj_free(mp, sizeof (*mp)); 1902 goto bad; 1903 } 1904 for (i = 0; i < SELFMAG; i++) { 1905 if (mp->hdr.e_ident[i] != ELFMAG[i]) { 1906 if (_moddebug & MODDEBUG_ERRMSG) 1907 _kobj_printf(ops, "%s not an elf module\n", 1908 modname); 1909 kobj_free(mp->filename, strlen(file->_name) + 1); 1910 kobj_free(mp, sizeof (*mp)); 1911 goto bad; 1912 } 1913 } 1914 /* 1915 * It's ELF, but is it our ISA? Interpreting the header 1916 * from a file for a byte-swapped ISA could cause a huge 1917 * and unsatisfiable value to be passed to kobj_alloc below 1918 * and therefore hang booting. 1919 */ 1920 if (!elf_mach_ok(&mp->hdr)) { 1921 if (_moddebug & MODDEBUG_ERRMSG) 1922 _kobj_printf(ops, "%s not an elf module for this ISA\n", 1923 modname); 1924 kobj_free(mp->filename, strlen(file->_name) + 1); 1925 kobj_free(mp, sizeof (*mp)); 1926 #ifdef MODDIR_SUFFIX 1927 /* 1928 * The driver mod is not in the ISA specific subdirectory 1929 * and the module in the parent directory is not our ISA. 1930 * If it is our ISA, for now we will silently succeed. 1931 */ 1932 if (no_suffixdir_drv == 1) { 1933 cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module" 1934 " not found\n", modname); 1935 } 1936 #endif 1937 goto bad; 1938 } 1939 1940 /* 1941 * All modules, save for unix, should be relocatable (as opposed to 1942 * dynamic). Dynamic modules come with PLTs and GOTs, which can't 1943 * currently be processed by krtld. 1944 */ 1945 if (mp->hdr.e_type != ET_REL) { 1946 if (_moddebug & MODDEBUG_ERRMSG) 1947 _kobj_printf(ops, "%s isn't a relocatable (ET_REL) " 1948 "module\n", modname); 1949 kobj_free(mp->filename, strlen(file->_name) + 1); 1950 kobj_free(mp, sizeof (*mp)); 1951 goto bad; 1952 } 1953 1954 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 1955 mp->shdrs = kobj_alloc(n, KM_WAIT); 1956 1957 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) { 1958 _kobj_printf(ops, "kobj_load_module: %s error reading " 1959 "section headers\n", modname); 1960 kobj_free(mp->shdrs, n); 1961 kobj_free(mp->filename, strlen(file->_name) + 1); 1962 kobj_free(mp, sizeof (*mp)); 1963 goto bad; 1964 } 1965 1966 kobj_notify(KOBJ_NOTIFY_MODLOADING, modp); 1967 module_assign(modp, mp); 1968 1969 /* read in sections */ 1970 if (get_progbits(mp, file) < 0) { 1971 _kobj_printf(ops, "%s error reading sections\n", modname); 1972 goto bad; 1973 } 1974 1975 if (do_dynamic(mp, file) < 0) { 1976 _kobj_printf(ops, "%s error reading dynamic section\n", 1977 modname); 1978 goto bad; 1979 } 1980 1981 modp->mod_text = mp->text; 1982 modp->mod_text_size = mp->text_size; 1983 1984 /* read in symbols; adjust values for each section's real address */ 1985 if (get_syms(mp, file) < 0) { 1986 _kobj_printf(ops, "%s error reading symbols\n", 1987 modname); 1988 goto bad; 1989 } 1990 1991 /* 1992 * If we didn't dependency information from the dynamic section, look 1993 * for it the old-fashioned way. 1994 */ 1995 if (mp->depends_on == NULL) 1996 mp->depends_on = depends_on(mp); 1997 1998 if (get_ctf(mp, file) < 0) { 1999 _kobj_printf(ops, "%s debug information will not " 2000 "be available\n", modname); 2001 } 2002 2003 /* primary kernel modules do not have a signature section */ 2004 if (!(mp->flags & KOBJ_PRIM)) 2005 get_signature(mp, file); 2006 2007 #ifdef KOBJ_DEBUG 2008 if (kobj_debug & D_LOADING) { 2009 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 2010 _kobj_printf(ops, "\ttext:0x%p", mp->text); 2011 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size); 2012 _kobj_printf(ops, "\tdata:0x%p", mp->data); 2013 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size); 2014 } 2015 #endif /* KOBJ_DEBUG */ 2016 2017 /* 2018 * For primary kernel modules, we defer 2019 * symbol resolution and relocation until 2020 * all primary objects have been loaded. 2021 */ 2022 if (!standalone) { 2023 int ddrval, dcrval; 2024 char *dependent_modname; 2025 /* load all dependents */ 2026 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT); 2027 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN); 2028 2029 /* 2030 * resolve undefined and common symbols, 2031 * also allocates common space 2032 */ 2033 if ((dcrval = do_common(mp)) < 0) { 2034 switch (dcrval) { 2035 case DOSYM_UNSAFE: 2036 _kobj_printf(ops, "WARNING: mod_load: " 2037 "MT-unsafe module '%s' rejected\n", 2038 modname); 2039 break; 2040 case DOSYM_UNDEF: 2041 _kobj_printf(ops, "WARNING: mod_load: " 2042 "cannot load module '%s'\n", 2043 modname); 2044 if (ddrval == -1) { 2045 _kobj_printf(ops, "WARNING: %s: ", 2046 modname); 2047 _kobj_printf(ops, 2048 "unable to resolve dependency, " 2049 "module '%s' not found\n", 2050 dependent_modname); 2051 } 2052 break; 2053 } 2054 } 2055 kobj_free(dependent_modname, MODMAXNAMELEN); 2056 if (dcrval < 0) 2057 goto bad; 2058 2059 /* process relocation tables */ 2060 if (do_relocations(mp) < 0) { 2061 _kobj_printf(ops, "%s error doing relocations\n", 2062 modname); 2063 goto bad; 2064 } 2065 2066 if (mp->destination) { 2067 off_t off = (uintptr_t)mp->destination & PAGEOFFSET; 2068 caddr_t base = (caddr_t)mp->destination - off; 2069 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2070 2071 hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK); 2072 vmem_free(heap_arena, base, size); 2073 } 2074 2075 /* sync_instruction_memory */ 2076 kobj_sync_instruction_memory(mp->text, mp->text_size); 2077 kobj_export_module(mp); 2078 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp); 2079 } 2080 kobj_close_file(file); 2081 return (0); 2082 bad: 2083 if (file != (struct _buf *)-1) 2084 kobj_close_file(file); 2085 if (modp->mod_mp != NULL) 2086 free_module_data(modp->mod_mp); 2087 2088 module_assign(modp, NULL); 2089 return ((file == (struct _buf *)-1) ? ENOENT : EINVAL); 2090 } 2091 2092 int 2093 kobj_load_primary_module(struct modctl *modp) 2094 { 2095 struct modctl *dep; 2096 struct module *mp; 2097 2098 if (kobj_load_module(modp, 0) != 0) 2099 return (-1); 2100 2101 dep = NULL; 2102 mp = modp->mod_mp; 2103 mp->flags |= KOBJ_PRIM; 2104 2105 /* Bind new module to its dependents */ 2106 if (mp->depends_on != NULL && (dep = 2107 mod_already_loaded(mp->depends_on)) == NULL) { 2108 #ifdef KOBJ_DEBUG 2109 if (kobj_debug & D_DEBUG) { 2110 _kobj_printf(ops, "krtld: failed to resolve deps " 2111 "for primary %s\n", modp->mod_modname); 2112 } 2113 #endif 2114 return (-1); 2115 } 2116 2117 if (dep != NULL) 2118 add_dependent(mp, dep->mod_mp); 2119 2120 /* 2121 * Relocate it. This module may not be part of a link map, so we 2122 * can't use bind_primary. 2123 */ 2124 if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 || 2125 do_relocations(mp) < 0) { 2126 #ifdef KOBJ_DEBUG 2127 if (kobj_debug & D_DEBUG) { 2128 _kobj_printf(ops, "krtld: failed to relocate " 2129 "primary %s\n", modp->mod_modname); 2130 } 2131 #endif 2132 return (-1); 2133 } 2134 2135 return (0); 2136 } 2137 2138 static void 2139 module_assign(struct modctl *cp, struct module *mp) 2140 { 2141 if (standalone) { 2142 cp->mod_mp = mp; 2143 return; 2144 } 2145 mutex_enter(&mod_lock); 2146 cp->mod_mp = mp; 2147 cp->mod_gencount++; 2148 mutex_exit(&mod_lock); 2149 } 2150 2151 void 2152 kobj_unload_module(struct modctl *modp) 2153 { 2154 struct module *mp = modp->mod_mp; 2155 2156 if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) { 2157 _kobj_printf(ops, "text for %s ", mp->filename); 2158 _kobj_printf(ops, "was at %p\n", mp->text); 2159 mp->text = NULL; /* don't actually free it */ 2160 } 2161 2162 kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp); 2163 2164 /* 2165 * Null out mod_mp first, so consumers (debuggers) know not to look 2166 * at the module structure any more. 2167 */ 2168 mutex_enter(&mod_lock); 2169 modp->mod_mp = NULL; 2170 mutex_exit(&mod_lock); 2171 2172 kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp); 2173 free_module_data(mp); 2174 } 2175 2176 static void 2177 free_module_data(struct module *mp) 2178 { 2179 struct module_list *lp, *tmp; 2180 hotinline_desc_t *hid, *next; 2181 int ksyms_exported = 0; 2182 2183 lp = mp->head; 2184 while (lp) { 2185 tmp = lp; 2186 lp = lp->next; 2187 kobj_free((char *)tmp, sizeof (*tmp)); 2188 } 2189 2190 /* release hotinlines */ 2191 hid = mp->hi_calls; 2192 while (hid != NULL) { 2193 next = hid->hid_next; 2194 kobj_free(hid->hid_symname, strlen(hid->hid_symname) + 1); 2195 kobj_free(hid, sizeof (hotinline_desc_t)); 2196 hid = next; 2197 } 2198 2199 rw_enter(&ksyms_lock, RW_WRITER); 2200 if (mp->symspace) { 2201 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) { 2202 vmem_free(ksyms_arena, mp->symspace, mp->symsize); 2203 ksyms_exported = 1; 2204 } else { 2205 if (mp->flags & KOBJ_NOKSYMS) 2206 ksyms_exported = 1; 2207 kobj_free(mp->symspace, mp->symsize); 2208 } 2209 } 2210 rw_exit(&ksyms_lock); 2211 2212 if (mp->ctfdata) { 2213 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize)) 2214 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 2215 else 2216 kobj_free(mp->ctfdata, mp->ctfsize); 2217 } 2218 2219 if (mp->sigdata) 2220 kobj_free(mp->sigdata, mp->sigsize); 2221 2222 /* 2223 * We did not get far enough into kobj_export_ksyms() to free allocated 2224 * buffers because we encounted error conditions. Free the buffers. 2225 */ 2226 if ((ksyms_exported == 0) && (mp->shdrs != NULL)) { 2227 uint_t shn; 2228 Shdr *shp; 2229 2230 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2231 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2232 switch (shp->sh_type) { 2233 case SHT_RELA: 2234 case SHT_REL: 2235 if (shp->sh_addr != 0) 2236 kobj_free((void *)shp->sh_addr, 2237 shp->sh_size); 2238 break; 2239 } 2240 } 2241 2242 if (!(mp->flags & KOBJ_PRIM)) { 2243 kobj_free(mp->shdrs, 2244 mp->hdr.e_shentsize * mp->hdr.e_shnum); 2245 } 2246 } 2247 2248 if (mp->bss) 2249 vmem_free(data_arena, (void *)mp->bss, mp->bss_size); 2250 2251 if (mp->fbt_tab) 2252 kobj_texthole_free(mp->fbt_tab, mp->fbt_size); 2253 2254 if (mp->textwin_base) 2255 kobj_textwin_free(mp); 2256 2257 if (mp->sdt_probes != NULL) { 2258 sdt_probedesc_t *sdp = mp->sdt_probes, *next; 2259 2260 while (sdp != NULL) { 2261 next = sdp->sdpd_next; 2262 kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1); 2263 kobj_free(sdp, sizeof (sdt_probedesc_t)); 2264 sdp = next; 2265 } 2266 } 2267 2268 if (mp->sdt_tab) 2269 kobj_texthole_free(mp->sdt_tab, mp->sdt_size); 2270 if (mp->text) 2271 vmem_free(text_arena, mp->text, mp->text_size); 2272 if (mp->data) 2273 vmem_free(data_arena, mp->data, mp->data_size); 2274 if (mp->depends_on) 2275 kobj_free(mp->depends_on, strlen(mp->depends_on)+1); 2276 if (mp->filename) 2277 kobj_free(mp->filename, strlen(mp->filename)+1); 2278 2279 kobj_free((char *)mp, sizeof (*mp)); 2280 } 2281 2282 static int 2283 get_progbits(struct module *mp, struct _buf *file) 2284 { 2285 struct proginfo *tp, *dp, *sdp; 2286 Shdr *shp; 2287 reloc_dest_t dest = NULL; 2288 uintptr_t bits_ptr; 2289 uintptr_t text = 0, data, textptr; 2290 uint_t shn; 2291 int err = -1; 2292 2293 tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2294 dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2295 sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2296 /* 2297 * loop through sections to find out how much space we need 2298 * for text, data, (also bss that is already assigned) 2299 */ 2300 if (get_progbits_size(mp, tp, dp, sdp) < 0) 2301 goto done; 2302 2303 mp->text_size = tp->size; 2304 mp->data_size = dp->size; 2305 2306 if (standalone) { 2307 caddr_t limit = _data; 2308 2309 if (lg_pagesize && _text + lg_pagesize < limit) 2310 limit = _text + lg_pagesize; 2311 2312 mp->text = kobj_segbrk(&_etext, mp->text_size, 2313 tp->align, limit); 2314 /* 2315 * If we can't grow the text segment, try the 2316 * data segment before failing. 2317 */ 2318 if (mp->text == NULL) { 2319 mp->text = kobj_segbrk(&_edata, mp->text_size, 2320 tp->align, 0); 2321 } 2322 2323 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0); 2324 2325 if (mp->text == NULL || mp->data == NULL) 2326 goto done; 2327 2328 } else { 2329 if (text_arena == NULL) 2330 kobj_vmem_init(&text_arena, &data_arena); 2331 2332 /* 2333 * some architectures may want to load the module on a 2334 * page that is currently read only. It may not be 2335 * possible for those architectures to remap their page 2336 * on the fly. So we provide a facility for them to hang 2337 * a private hook where the memory they assign the module 2338 * is not the actual place where the module loads. 2339 * 2340 * In this case there are two addresses that deal with the 2341 * modload. 2342 * 1) the final destination of the module 2343 * 2) the address that is used to view the newly 2344 * loaded module until all the relocations relative to 1 2345 * above are completed. 2346 * 2347 * That is what dest is used for below. 2348 */ 2349 mp->text_size += tp->align; 2350 mp->data_size += dp->align; 2351 2352 mp->text = kobj_text_alloc(text_arena, mp->text_size); 2353 2354 /* 2355 * a remap is taking place. Align the text ptr relative 2356 * to the secondary mapping. That is where the bits will 2357 * be read in. 2358 */ 2359 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena, 2360 mp->text, mp->text_size)) { 2361 off_t off = (uintptr_t)mp->text & PAGEOFFSET; 2362 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2363 caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP); 2364 caddr_t orig = mp->text - off; 2365 pgcnt_t pages = size / PAGESIZE; 2366 2367 dest = (reloc_dest_t)(map + off); 2368 text = ALIGN((uintptr_t)dest, tp->align); 2369 2370 while (pages--) { 2371 hat_devload(kas.a_hat, map, PAGESIZE, 2372 hat_getpfnum(kas.a_hat, orig), 2373 PROT_READ | PROT_WRITE | PROT_EXEC, 2374 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 2375 map += PAGESIZE; 2376 orig += PAGESIZE; 2377 } 2378 /* 2379 * Since we set up a non-cacheable mapping, we need 2380 * to flush any old entries in the cache that might 2381 * be left around from the read-only mapping. 2382 */ 2383 dcache_flushall(); 2384 } 2385 if (mp->data_size) 2386 mp->data = vmem_alloc(data_arena, mp->data_size, 2387 VM_SLEEP | VM_BESTFIT); 2388 } 2389 textptr = (uintptr_t)mp->text; 2390 textptr = ALIGN(textptr, tp->align); 2391 mp->destination = dest; 2392 2393 /* 2394 * This is the case where a remap is not being done. 2395 */ 2396 if (text == 0) 2397 text = ALIGN((uintptr_t)mp->text, tp->align); 2398 data = ALIGN((uintptr_t)mp->data, dp->align); 2399 2400 /* now loop though sections assigning addresses and loading the data */ 2401 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2402 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2403 if (!(shp->sh_flags & SHF_ALLOC)) 2404 continue; 2405 2406 if ((shp->sh_flags & SHF_WRITE) == 0) 2407 bits_ptr = text; 2408 else 2409 bits_ptr = data; 2410 2411 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign); 2412 2413 if (shp->sh_type == SHT_NOBITS) { 2414 /* 2415 * Zero bss. 2416 */ 2417 bzero((caddr_t)bits_ptr, shp->sh_size); 2418 shp->sh_type = SHT_PROGBITS; 2419 } else { 2420 if (kobj_read_file(file, (char *)bits_ptr, 2421 shp->sh_size, shp->sh_offset) < 0) 2422 goto done; 2423 } 2424 2425 if (shp->sh_flags & SHF_WRITE) { 2426 shp->sh_addr = bits_ptr; 2427 } else { 2428 textptr = ALIGN(textptr, shp->sh_addralign); 2429 shp->sh_addr = textptr; 2430 textptr += shp->sh_size; 2431 } 2432 2433 bits_ptr += shp->sh_size; 2434 if ((shp->sh_flags & SHF_WRITE) == 0) 2435 text = bits_ptr; 2436 else 2437 data = bits_ptr; 2438 } 2439 2440 err = 0; 2441 done: 2442 /* 2443 * Free and mark as freed the section headers here so that 2444 * free_module_data() does not have to worry about this buffer. 2445 * 2446 * This buffer is freed here because one of the possible reasons 2447 * for error is a section with non-zero sh_addr and in that case 2448 * free_module_data() would have no way of recognizing that this 2449 * buffer was unallocated. 2450 */ 2451 if (err != 0) { 2452 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); 2453 mp->shdrs = NULL; 2454 } 2455 2456 (void) kobj_free(tp, sizeof (struct proginfo)); 2457 (void) kobj_free(dp, sizeof (struct proginfo)); 2458 (void) kobj_free(sdp, sizeof (struct proginfo)); 2459 2460 return (err); 2461 } 2462 2463 /* 2464 * Go through suppress_sym_list to see if "multiply defined" 2465 * warning of this symbol should be suppressed. Return 1 if 2466 * warning should be suppressed, 0 otherwise. 2467 */ 2468 static int 2469 kobj_suppress_warning(char *symname) 2470 { 2471 int i; 2472 2473 for (i = 0; suppress_sym_list[i] != NULL; i++) { 2474 if (strcmp(suppress_sym_list[i], symname) == 0) 2475 return (1); 2476 } 2477 2478 return (0); 2479 } 2480 2481 static int 2482 get_syms(struct module *mp, struct _buf *file) 2483 { 2484 uint_t shn; 2485 Shdr *shp; 2486 uint_t i; 2487 Sym *sp, *ksp; 2488 char *symname; 2489 int dosymtab = 0; 2490 2491 /* 2492 * Find the interesting sections. 2493 */ 2494 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2495 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2496 switch (shp->sh_type) { 2497 case SHT_SYMTAB: 2498 mp->symtbl_section = shn; 2499 mp->symhdr = shp; 2500 dosymtab++; 2501 break; 2502 2503 case SHT_RELA: 2504 case SHT_REL: 2505 /* 2506 * Already loaded. 2507 */ 2508 if (shp->sh_addr) 2509 continue; 2510 2511 /* KM_TMP since kobj_free'd in do_relocations */ 2512 shp->sh_addr = (Addr) 2513 kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP); 2514 2515 if (kobj_read_file(file, (char *)shp->sh_addr, 2516 shp->sh_size, shp->sh_offset) < 0) { 2517 _kobj_printf(ops, "krtld: get_syms: %s, ", 2518 mp->filename); 2519 _kobj_printf(ops, "error reading section %d\n", 2520 shn); 2521 return (-1); 2522 } 2523 break; 2524 } 2525 } 2526 2527 /* 2528 * This is true for a stripped executable. In the case of 2529 * 'unix' it can be stripped but it still contains the SHT_DYNSYM, 2530 * and since that symbol information is still present everything 2531 * is just fine. 2532 */ 2533 if (!dosymtab) { 2534 if (mp->flags & KOBJ_EXEC) 2535 return (0); 2536 _kobj_printf(ops, "krtld: get_syms: %s ", 2537 mp->filename); 2538 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n"); 2539 return (-1); 2540 } 2541 2542 /* 2543 * get the associated string table header 2544 */ 2545 if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum)) 2546 return (-1); 2547 mp->strhdr = (Shdr *) 2548 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 2549 2550 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 2551 mp->hashsize = kobj_gethashsize(mp->nsyms); 2552 2553 /* 2554 * Allocate space for the symbol table, buckets, chains, and strings. 2555 */ 2556 mp->symsize = mp->symhdr->sh_size + 2557 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size; 2558 mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH); 2559 2560 mp->symtbl = mp->symspace; 2561 mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size); 2562 mp->chains = mp->buckets + mp->hashsize; 2563 mp->strings = (char *)(mp->chains + mp->nsyms); 2564 2565 if (kobj_read_file(file, mp->symtbl, 2566 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 || 2567 kobj_read_file(file, mp->strings, 2568 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0) 2569 return (-1); 2570 2571 /* 2572 * loop through the symbol table adjusting values to account 2573 * for where each section got loaded into memory. Also 2574 * fill in the hash table. 2575 */ 2576 for (i = 1; i < mp->nsyms; i++) { 2577 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 2578 if (sp->st_shndx < SHN_LORESERVE) { 2579 if (sp->st_shndx >= mp->hdr.e_shnum) { 2580 _kobj_printf(ops, "%s bad shndx ", 2581 file->_name); 2582 _kobj_printf(ops, "in symbol %d\n", i); 2583 return (-1); 2584 } 2585 shp = (Shdr *) 2586 (mp->shdrs + 2587 sp->st_shndx * mp->hdr.e_shentsize); 2588 if (!(mp->flags & KOBJ_EXEC)) 2589 sp->st_value += shp->sh_addr; 2590 } 2591 2592 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 2593 continue; 2594 if (sp->st_name >= mp->strhdr->sh_size) 2595 return (-1); 2596 2597 symname = mp->strings + sp->st_name; 2598 2599 if (!(mp->flags & KOBJ_EXEC) && 2600 ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 2601 ksp = kobj_lookup_all(mp, symname, 0); 2602 2603 if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL && 2604 !kobj_suppress_warning(symname) && 2605 sp->st_shndx != SHN_UNDEF && 2606 sp->st_shndx != SHN_COMMON && 2607 ksp->st_shndx != SHN_UNDEF && 2608 ksp->st_shndx != SHN_COMMON) { 2609 /* 2610 * Unless this symbol is a stub, it's multiply 2611 * defined. Multiply-defined symbols are 2612 * usually bad, but some objects (kmdb) have 2613 * a legitimate need to have their own 2614 * copies of common functions. 2615 */ 2616 if ((standalone || 2617 ksp->st_value < (uintptr_t)stubs_base || 2618 ksp->st_value >= (uintptr_t)stubs_end) && 2619 !(mp->flags & KOBJ_IGNMULDEF)) { 2620 _kobj_printf(ops, 2621 "%s symbol ", file->_name); 2622 _kobj_printf(ops, 2623 "%s multiply defined\n", symname); 2624 } 2625 } 2626 } 2627 2628 sym_insert(mp, symname, i); 2629 } 2630 2631 return (0); 2632 } 2633 2634 static int 2635 get_ctf(struct module *mp, struct _buf *file) 2636 { 2637 char *shstrtab, *ctfdata; 2638 size_t shstrlen; 2639 Shdr *shp; 2640 uint_t i; 2641 2642 if (_moddebug & MODDEBUG_NOCTF) 2643 return (0); /* do not attempt to even load CTF data */ 2644 2645 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { 2646 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2647 mp->filename); 2648 _kobj_printf(ops, "corrupt e_shstrndx %u\n", 2649 mp->hdr.e_shstrndx); 2650 return (-1); 2651 } 2652 2653 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 2654 shstrlen = shp->sh_size; 2655 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2656 2657 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2658 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2659 mp->filename); 2660 _kobj_printf(ops, "error reading section %u\n", 2661 mp->hdr.e_shstrndx); 2662 kobj_free(shstrtab, shstrlen); 2663 return (-1); 2664 } 2665 2666 for (i = 0; i < mp->hdr.e_shnum; i++) { 2667 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2668 2669 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2670 strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) { 2671 ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH); 2672 2673 if (kobj_read_file(file, ctfdata, shp->sh_size, 2674 shp->sh_offset) < 0) { 2675 _kobj_printf(ops, "krtld: get_ctf: %s, error " 2676 "reading .SUNW_ctf data\n", mp->filename); 2677 kobj_free(ctfdata, shp->sh_size); 2678 kobj_free(shstrtab, shstrlen); 2679 return (-1); 2680 } 2681 2682 mp->ctfdata = ctfdata; 2683 mp->ctfsize = shp->sh_size; 2684 break; 2685 } 2686 } 2687 2688 kobj_free(shstrtab, shstrlen); 2689 return (0); 2690 } 2691 2692 #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */ 2693 2694 /* 2695 * Return the hash of the ELF sections that are memory resident. 2696 * i.e. text and data. We skip a SHT_NOBITS section since it occupies 2697 * no space in the file. We use SHA1 here since libelfsign uses 2698 * it and both places need to use the same algorithm. 2699 */ 2700 static void 2701 crypto_es_hash(struct module *mp, char *hash, char *shstrtab) 2702 { 2703 uint_t shn; 2704 Shdr *shp; 2705 SHA1_CTX ctx; 2706 2707 SHA1Init(&ctx); 2708 2709 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2710 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2711 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0) 2712 continue; 2713 2714 /* 2715 * The check should ideally be shp->sh_type == SHT_NOBITS. 2716 * However, we can't do that check here as get_progbits() 2717 * resets the type. 2718 */ 2719 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0) 2720 continue; 2721 #ifdef KOBJ_DEBUG 2722 if (kobj_debug & D_DEBUG) 2723 _kobj_printf(ops, 2724 "krtld: crypto_es_hash: updating hash with" 2725 " %s data size=%lx\n", shstrtab + shp->sh_name, 2726 (size_t)shp->sh_size); 2727 #endif 2728 ASSERT(shp->sh_addr != 0); 2729 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size); 2730 } 2731 2732 SHA1Final((uchar_t *)hash, &ctx); 2733 } 2734 2735 /* 2736 * Get the .SUNW_signature section for the module, it it exists. 2737 * 2738 * This section exists only for crypto modules. None of the 2739 * primary modules have this section currently. 2740 */ 2741 static void 2742 get_signature(struct module *mp, struct _buf *file) 2743 { 2744 char *shstrtab, *sigdata = NULL; 2745 size_t shstrlen; 2746 Shdr *shp; 2747 uint_t i; 2748 2749 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { 2750 _kobj_printf(ops, "krtld: get_signature: %s, ", 2751 mp->filename); 2752 _kobj_printf(ops, "corrupt e_shstrndx %u\n", 2753 mp->hdr.e_shstrndx); 2754 return; 2755 } 2756 2757 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 2758 shstrlen = shp->sh_size; 2759 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2760 2761 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2762 _kobj_printf(ops, "krtld: get_signature: %s, ", 2763 mp->filename); 2764 _kobj_printf(ops, "error reading section %u\n", 2765 mp->hdr.e_shstrndx); 2766 kobj_free(shstrtab, shstrlen); 2767 return; 2768 } 2769 2770 for (i = 0; i < mp->hdr.e_shnum; i++) { 2771 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2772 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2773 strcmp(shstrtab + shp->sh_name, 2774 ELF_SIGNATURE_SECTION) == 0) { 2775 filesig_vers_t filesig_version; 2776 size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH; 2777 sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH); 2778 2779 if (kobj_read_file(file, sigdata, shp->sh_size, 2780 shp->sh_offset) < 0) { 2781 _kobj_printf(ops, "krtld: get_signature: %s," 2782 " error reading .SUNW_signature data\n", 2783 mp->filename); 2784 kobj_free(sigdata, sigsize); 2785 kobj_free(shstrtab, shstrlen); 2786 return; 2787 } 2788 filesig_version = ((struct filesignatures *)sigdata)-> 2789 filesig_sig.filesig_version; 2790 if (!(filesig_version == FILESIG_VERSION1 || 2791 filesig_version == FILESIG_VERSION3)) { 2792 /* skip versions we don't understand */ 2793 kobj_free(sigdata, sigsize); 2794 kobj_free(shstrtab, shstrlen); 2795 return; 2796 } 2797 2798 mp->sigdata = sigdata; 2799 mp->sigsize = sigsize; 2800 break; 2801 } 2802 } 2803 2804 if (sigdata != NULL) { 2805 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab); 2806 } 2807 2808 kobj_free(shstrtab, shstrlen); 2809 } 2810 2811 static void 2812 add_dependent(struct module *mp, struct module *dep) 2813 { 2814 struct module_list *lp; 2815 2816 for (lp = mp->head; lp; lp = lp->next) { 2817 if (lp->mp == dep) 2818 return; /* already on the list */ 2819 } 2820 2821 if (lp == NULL) { 2822 lp = kobj_zalloc(sizeof (*lp), KM_WAIT); 2823 2824 lp->mp = dep; 2825 lp->next = NULL; 2826 if (mp->tail) 2827 mp->tail->next = lp; 2828 else 2829 mp->head = lp; 2830 mp->tail = lp; 2831 } 2832 } 2833 2834 static int 2835 do_dependents(struct modctl *modp, char *modname, size_t modnamelen) 2836 { 2837 struct module *mp; 2838 struct modctl *req; 2839 char *d, *p, *q; 2840 int c; 2841 char *err_modname = NULL; 2842 2843 mp = modp->mod_mp; 2844 2845 if ((p = mp->depends_on) == NULL) 2846 return (0); 2847 2848 for (;;) { 2849 /* 2850 * Skip space. 2851 */ 2852 while (*p && (*p == ' ' || *p == '\t')) 2853 p++; 2854 /* 2855 * Get module name. 2856 */ 2857 d = p; 2858 q = modname; 2859 c = 0; 2860 while (*p && *p != ' ' && *p != '\t') { 2861 if (c < modnamelen - 1) { 2862 *q++ = *p; 2863 c++; 2864 } 2865 p++; 2866 } 2867 2868 if (q == modname) 2869 break; 2870 2871 if (c == modnamelen - 1) { 2872 char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP); 2873 2874 (void) strncpy(dep, d, p - d + 1); 2875 dep[p - d] = '\0'; 2876 2877 _kobj_printf(ops, "%s: dependency ", modp->mod_modname); 2878 _kobj_printf(ops, "'%s' too long ", dep); 2879 _kobj_printf(ops, "(max %d chars)\n", (int)modnamelen); 2880 2881 kobj_free(dep, p - d + 1); 2882 2883 return (-1); 2884 } 2885 2886 *q = '\0'; 2887 if ((req = mod_load_requisite(modp, modname)) == NULL) { 2888 #ifndef KOBJ_DEBUG 2889 if (_moddebug & MODDEBUG_LOADMSG) { 2890 #endif /* KOBJ_DEBUG */ 2891 _kobj_printf(ops, 2892 "%s: unable to resolve dependency, ", 2893 modp->mod_modname); 2894 _kobj_printf(ops, "cannot load module '%s'\n", 2895 modname); 2896 #ifndef KOBJ_DEBUG 2897 } 2898 #endif /* KOBJ_DEBUG */ 2899 if (err_modname == NULL) { 2900 /* 2901 * This must be the same size as the modname 2902 * one. 2903 */ 2904 err_modname = kobj_zalloc(MODMAXNAMELEN, 2905 KM_WAIT); 2906 2907 /* 2908 * We can use strcpy() here without fearing 2909 * the NULL terminator because the size of 2910 * err_modname is the same as one of modname, 2911 * and it's filled with zeros. 2912 */ 2913 (void) strcpy(err_modname, modname); 2914 } 2915 continue; 2916 } 2917 2918 add_dependent(mp, req->mod_mp); 2919 mod_release_mod(req); 2920 2921 } 2922 2923 if (err_modname != NULL) { 2924 /* 2925 * Copy the first module name where you detect an error to keep 2926 * its behavior the same as before. 2927 * This way keeps minimizing the memory use for error 2928 * modules, and this might be important at boot time because 2929 * the memory usage is a crucial factor for booting in most 2930 * cases. You can expect more verbose messages when using 2931 * a debug kernel or setting a bit in moddebug. 2932 */ 2933 bzero(modname, MODMAXNAMELEN); 2934 (void) strcpy(modname, err_modname); 2935 kobj_free(err_modname, MODMAXNAMELEN); 2936 return (-1); 2937 } 2938 2939 return (0); 2940 } 2941 2942 static int 2943 do_common(struct module *mp) 2944 { 2945 int err; 2946 2947 /* 2948 * first time through, assign all symbols defined in other 2949 * modules, and count up how much common space will be needed 2950 * (bss_size and bss_align) 2951 */ 2952 if ((err = do_symbols(mp, 0)) < 0) 2953 return (err); 2954 /* 2955 * increase bss_size by the maximum delta that could be 2956 * computed by the ALIGN below 2957 */ 2958 mp->bss_size += mp->bss_align; 2959 if (mp->bss_size) { 2960 if (standalone) 2961 mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size, 2962 MINALIGN, 0); 2963 else 2964 mp->bss = (uintptr_t)vmem_alloc(data_arena, 2965 mp->bss_size, VM_SLEEP | VM_BESTFIT); 2966 bzero((void *)mp->bss, mp->bss_size); 2967 /* now assign addresses to all common symbols */ 2968 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0) 2969 return (err); 2970 } 2971 return (0); 2972 } 2973 2974 static int 2975 do_symbols(struct module *mp, Elf64_Addr bss_base) 2976 { 2977 int bss_align; 2978 uintptr_t bss_ptr; 2979 int err; 2980 int i; 2981 Sym *sp, *sp1; 2982 char *name; 2983 int assign; 2984 int resolved = 1; 2985 2986 /* 2987 * Nothing left to do (optimization). 2988 */ 2989 if (mp->flags & KOBJ_RESOLVED) 2990 return (0); 2991 2992 assign = (bss_base) ? 1 : 0; 2993 bss_ptr = bss_base; 2994 bss_align = 0; 2995 err = 0; 2996 2997 for (i = 1; i < mp->nsyms; i++) { 2998 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i); 2999 /* 3000 * we know that st_name is in bounds, since get_sections 3001 * has already checked all of the symbols 3002 */ 3003 name = mp->strings + sp->st_name; 3004 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON) 3005 continue; 3006 #if defined(__sparc) 3007 /* 3008 * Register symbols are ignored in the kernel 3009 */ 3010 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) { 3011 if (*name != '\0') { 3012 _kobj_printf(ops, "%s: named REGISTER symbol ", 3013 mp->filename); 3014 _kobj_printf(ops, "not supported '%s'\n", 3015 name); 3016 err = DOSYM_UNDEF; 3017 } 3018 continue; 3019 } 3020 #endif /* __sparc */ 3021 /* 3022 * TLS symbols are ignored in the kernel 3023 */ 3024 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) { 3025 _kobj_printf(ops, "%s: TLS symbol ", 3026 mp->filename); 3027 _kobj_printf(ops, "not supported '%s'\n", 3028 name); 3029 err = DOSYM_UNDEF; 3030 continue; 3031 } 3032 3033 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) { 3034 if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) { 3035 sp->st_shndx = SHN_ABS; 3036 sp->st_value = sp1->st_value; 3037 continue; 3038 } 3039 } 3040 3041 if (sp->st_shndx == SHN_UNDEF) { 3042 resolved = 0; 3043 3044 /* 3045 * Skip over sdt probes and smap calls, 3046 * they're relocated later. 3047 */ 3048 if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0) 3049 continue; 3050 #if defined(__x86) 3051 if (strcmp(name, "smap_enable") == 0 || 3052 strcmp(name, "smap_disable") == 0) 3053 continue; 3054 #endif /* defined(__x86) */ 3055 3056 3057 /* 3058 * If it's not a weak reference and it's 3059 * not a primary object, it's an error. 3060 * (Primary objects may take more than 3061 * one pass to resolve) 3062 */ 3063 if (!(mp->flags & KOBJ_PRIM) && 3064 ELF_ST_BIND(sp->st_info) != STB_WEAK) { 3065 _kobj_printf(ops, "%s: undefined symbol", 3066 mp->filename); 3067 _kobj_printf(ops, " '%s'\n", name); 3068 /* 3069 * Try to determine whether this symbol 3070 * represents a dependency on obsolete 3071 * unsafe driver support. This is just 3072 * to make the warning more informative. 3073 */ 3074 if (strcmp(name, "sleep") == 0 || 3075 strcmp(name, "unsleep") == 0 || 3076 strcmp(name, "wakeup") == 0 || 3077 strcmp(name, "bsd_compat_ioctl") == 0 || 3078 strcmp(name, "unsafe_driver") == 0 || 3079 strncmp(name, "spl", 3) == 0 || 3080 strncmp(name, "i_ddi_spl", 9) == 0) 3081 err = DOSYM_UNSAFE; 3082 if (err == 0) 3083 err = DOSYM_UNDEF; 3084 } 3085 continue; 3086 } 3087 /* 3088 * It's a common symbol - st_value is the 3089 * required alignment. 3090 */ 3091 if (sp->st_value > bss_align) 3092 bss_align = sp->st_value; 3093 bss_ptr = ALIGN(bss_ptr, sp->st_value); 3094 if (assign) { 3095 sp->st_shndx = SHN_ABS; 3096 sp->st_value = bss_ptr; 3097 } 3098 bss_ptr += sp->st_size; 3099 } 3100 if (err) 3101 return (err); 3102 if (assign == 0 && mp->bss == 0) { 3103 mp->bss_align = bss_align; 3104 mp->bss_size = bss_ptr; 3105 } else if (resolved) { 3106 mp->flags |= KOBJ_RESOLVED; 3107 } 3108 3109 return (0); 3110 } 3111 3112 uint_t 3113 kobj_hash_name(const char *p) 3114 { 3115 uint_t g; 3116 uint_t hval; 3117 3118 hval = 0; 3119 while (*p) { 3120 hval = (hval << 4) + *p++; 3121 if ((g = (hval & 0xf0000000)) != 0) 3122 hval ^= g >> 24; 3123 hval &= ~g; 3124 } 3125 return (hval); 3126 } 3127 3128 /* look for name in all modules */ 3129 uintptr_t 3130 kobj_getsymvalue(char *name, int kernelonly) 3131 { 3132 Sym *sp; 3133 struct modctl *modp; 3134 struct module *mp; 3135 uintptr_t value = 0; 3136 3137 if ((sp = kobj_lookup_kernel(name)) != NULL) 3138 return ((uintptr_t)sp->st_value); 3139 3140 if (kernelonly) 3141 return (0); /* didn't find it in the kernel so give up */ 3142 3143 mutex_enter(&mod_lock); 3144 modp = &modules; 3145 do { 3146 mp = (struct module *)modp->mod_mp; 3147 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3148 (sp = lookup_one(mp, name))) { 3149 value = (uintptr_t)sp->st_value; 3150 break; 3151 } 3152 } while ((modp = modp->mod_next) != &modules); 3153 mutex_exit(&mod_lock); 3154 return (value); 3155 } 3156 3157 /* look for a symbol near value. */ 3158 char * 3159 kobj_getsymname(uintptr_t value, ulong_t *offset) 3160 { 3161 char *name = NULL; 3162 struct modctl *modp; 3163 3164 struct modctl_list *lp; 3165 struct module *mp; 3166 3167 /* 3168 * Loop through the primary kernel modules. 3169 */ 3170 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3171 mp = mod(lp); 3172 3173 if ((name = kobj_searchsym(mp, value, offset)) != NULL) 3174 return (name); 3175 } 3176 3177 mutex_enter(&mod_lock); 3178 modp = &modules; 3179 do { 3180 mp = (struct module *)modp->mod_mp; 3181 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3182 (name = kobj_searchsym(mp, value, offset))) 3183 break; 3184 } while ((modp = modp->mod_next) != &modules); 3185 mutex_exit(&mod_lock); 3186 return (name); 3187 } 3188 3189 /* return address of symbol and size */ 3190 3191 uintptr_t 3192 kobj_getelfsym(char *name, void *mp, int *size) 3193 { 3194 Sym *sp; 3195 3196 if (mp == NULL) 3197 sp = kobj_lookup_kernel(name); 3198 else 3199 sp = lookup_one(mp, name); 3200 3201 if (sp == NULL) 3202 return (0); 3203 3204 *size = (int)sp->st_size; 3205 return ((uintptr_t)sp->st_value); 3206 } 3207 3208 uintptr_t 3209 kobj_lookup(struct module *mod, const char *name) 3210 { 3211 Sym *sp; 3212 3213 sp = lookup_one(mod, name); 3214 3215 if (sp == NULL) 3216 return (0); 3217 3218 return ((uintptr_t)sp->st_value); 3219 } 3220 3221 char * 3222 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset) 3223 { 3224 Sym *symtabptr; 3225 char *strtabptr; 3226 int symnum; 3227 Sym *sym; 3228 Sym *cursym; 3229 uintptr_t curval; 3230 3231 *offset = (ulong_t)-1l; /* assume not found */ 3232 cursym = NULL; 3233 3234 if (kobj_addrcheck(mp, (void *)value) != 0) 3235 return (NULL); /* not in this module */ 3236 3237 strtabptr = mp->strings; 3238 symtabptr = (Sym *)mp->symtbl; 3239 3240 /* 3241 * Scan the module's symbol table for a symbol <= value 3242 */ 3243 for (symnum = 1, sym = symtabptr + 1; 3244 symnum < mp->nsyms; symnum++, sym = (Sym *) 3245 ((uintptr_t)sym + mp->symhdr->sh_entsize)) { 3246 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) { 3247 if (ELF_ST_BIND(sym->st_info) != STB_LOCAL) 3248 continue; 3249 if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT && 3250 ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3251 continue; 3252 } 3253 3254 curval = (uintptr_t)sym->st_value; 3255 3256 if (curval > value) 3257 continue; 3258 3259 /* 3260 * If one or both are functions... 3261 */ 3262 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL && 3263 ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) { 3264 /* Ignore if the address is out of the bounds */ 3265 if (value - sym->st_value >= sym->st_size) 3266 continue; 3267 3268 if (cursym != NULL && 3269 ELF_ST_TYPE(cursym->st_info) == STT_FUNC) { 3270 /* Prefer the function to the non-function */ 3271 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3272 continue; 3273 3274 /* Prefer the larger of the two functions */ 3275 if (sym->st_size <= cursym->st_size) 3276 continue; 3277 } 3278 } else if (value - curval >= *offset) { 3279 continue; 3280 } 3281 3282 *offset = (ulong_t)(value - curval); 3283 cursym = sym; 3284 } 3285 if (cursym == NULL) 3286 return (NULL); 3287 3288 return (strtabptr + cursym->st_name); 3289 } 3290 3291 Sym * 3292 kobj_lookup_all(struct module *mp, char *name, int include_self) 3293 { 3294 Sym *sp; 3295 struct module_list *mlp; 3296 struct modctl_list *clp; 3297 struct module *mmp; 3298 3299 if (include_self && (sp = lookup_one(mp, name)) != NULL) 3300 return (sp); 3301 3302 for (mlp = mp->head; mlp; mlp = mlp->next) { 3303 if ((sp = lookup_one(mlp->mp, name)) != NULL && 3304 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3305 return (sp); 3306 } 3307 3308 /* 3309 * Loop through the primary kernel modules. 3310 */ 3311 for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) { 3312 mmp = mod(clp); 3313 3314 if (mmp == NULL || mp == mmp) 3315 continue; 3316 3317 if ((sp = lookup_one(mmp, name)) != NULL && 3318 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3319 return (sp); 3320 } 3321 return (NULL); 3322 } 3323 3324 Sym * 3325 kobj_lookup_kernel(const char *name) 3326 { 3327 struct modctl_list *lp; 3328 struct module *mp; 3329 Sym *sp; 3330 3331 /* 3332 * Loop through the primary kernel modules. 3333 */ 3334 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3335 mp = mod(lp); 3336 3337 if (mp == NULL) 3338 continue; 3339 3340 if ((sp = lookup_one(mp, name)) != NULL) 3341 return (sp); 3342 } 3343 return (NULL); 3344 } 3345 3346 static Sym * 3347 lookup_one(struct module *mp, const char *name) 3348 { 3349 symid_t *ip; 3350 char *name1; 3351 Sym *sp; 3352 3353 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3354 ip = &mp->chains[*ip]) { 3355 sp = (Sym *)(mp->symtbl + 3356 mp->symhdr->sh_entsize * *ip); 3357 name1 = mp->strings + sp->st_name; 3358 if (strcmp(name, name1) == 0 && 3359 ELF_ST_TYPE(sp->st_info) != STT_FILE && 3360 sp->st_shndx != SHN_UNDEF && 3361 sp->st_shndx != SHN_COMMON) 3362 return (sp); 3363 } 3364 return (NULL); 3365 } 3366 3367 /* 3368 * Lookup a given symbol pointer in the module's symbol hash. If the symbol 3369 * is hashed, return the symbol pointer; otherwise return NULL. 3370 */ 3371 static Sym * 3372 sym_lookup(struct module *mp, Sym *ksp) 3373 { 3374 char *name = mp->strings + ksp->st_name; 3375 symid_t *ip; 3376 Sym *sp; 3377 3378 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3379 ip = &mp->chains[*ip]) { 3380 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip); 3381 if (sp == ksp) 3382 return (ksp); 3383 } 3384 return (NULL); 3385 } 3386 3387 static void 3388 sym_insert(struct module *mp, char *name, symid_t index) 3389 { 3390 symid_t *ip; 3391 3392 #ifdef KOBJ_DEBUG 3393 if (kobj_debug & D_SYMBOLS) { 3394 static struct module *lastmp = NULL; 3395 Sym *sp; 3396 if (lastmp != mp) { 3397 _kobj_printf(ops, 3398 "krtld: symbol entry: file=%s\n", 3399 mp->filename); 3400 _kobj_printf(ops, 3401 "krtld:\tsymndx\tvalue\t\t" 3402 "symbol name\n"); 3403 lastmp = mp; 3404 } 3405 sp = (Sym *)(mp->symtbl + 3406 index * mp->symhdr->sh_entsize); 3407 _kobj_printf(ops, "krtld:\t[%3d]", index); 3408 _kobj_printf(ops, "\t0x%lx", sp->st_value); 3409 _kobj_printf(ops, "\t%s\n", name); 3410 } 3411 #endif 3412 3413 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3414 ip = &mp->chains[*ip]) { 3415 ; 3416 } 3417 *ip = index; 3418 } 3419 3420 struct modctl * 3421 kobj_boot_mod_lookup(const char *modname) 3422 { 3423 struct modctl *mctl = kobj_modules; 3424 3425 do { 3426 if (strcmp(modname, mctl->mod_modname) == 0) 3427 return (mctl); 3428 } while ((mctl = mctl->mod_next) != kobj_modules); 3429 3430 return (NULL); 3431 } 3432 3433 /* 3434 * Determine if the module exists. 3435 */ 3436 int 3437 kobj_path_exists(char *name, int use_path) 3438 { 3439 struct _buf *file; 3440 3441 file = kobj_open_path(name, use_path, 1); 3442 #ifdef MODDIR_SUFFIX 3443 if (file == (struct _buf *)-1) 3444 file = kobj_open_path(name, use_path, 0); 3445 #endif /* MODDIR_SUFFIX */ 3446 if (file == (struct _buf *)-1) 3447 return (0); 3448 kobj_close_file(file); 3449 return (1); 3450 } 3451 3452 /* 3453 * fullname is dynamically allocated to be able to hold the 3454 * maximum size string that can be constructed from name. 3455 * path is exactly like the shell PATH variable. 3456 */ 3457 struct _buf * 3458 kobj_open_path(char *name, int use_path, int use_moddir_suffix) 3459 { 3460 char *p, *q; 3461 char *pathp; 3462 char *pathpsave; 3463 char *fullname; 3464 int maxpathlen; 3465 struct _buf *file; 3466 3467 #if !defined(MODDIR_SUFFIX) 3468 use_moddir_suffix = B_FALSE; 3469 #endif 3470 3471 if (!use_path) 3472 pathp = ""; /* use name as specified */ 3473 else 3474 pathp = kobj_module_path; 3475 /* use configured default path */ 3476 3477 pathpsave = pathp; /* keep this for error reporting */ 3478 3479 /* 3480 * Allocate enough space for the largest possible fullname. 3481 * since path is of the form <directory> : <directory> : ... 3482 * we're potentially allocating a little more than we need to 3483 * but we'll allocate the exact amount when we find the right directory. 3484 * (The + 3 below is one for NULL terminator and one for the '/' 3485 * we might have to add at the beginning of path and one for 3486 * the '/' between path and name.) 3487 */ 3488 maxpathlen = strlen(pathp) + strlen(name) + 3; 3489 /* sizeof includes null */ 3490 maxpathlen += sizeof (slash_moddir_suffix_slash) - 1; 3491 fullname = kobj_zalloc(maxpathlen, KM_WAIT); 3492 3493 for (;;) { 3494 p = fullname; 3495 if (*pathp != '\0' && *pathp != '/') 3496 *p++ = '/'; /* path must start with '/' */ 3497 while (*pathp && *pathp != ':' && *pathp != ' ') 3498 *p++ = *pathp++; 3499 if (p != fullname && p[-1] != '/') 3500 *p++ = '/'; 3501 if (use_moddir_suffix) { 3502 char *b = basename(name); 3503 char *s; 3504 3505 /* copy everything up to the base name */ 3506 q = name; 3507 while (q != b && *q) 3508 *p++ = *q++; 3509 s = slash_moddir_suffix_slash; 3510 while (*s) 3511 *p++ = *s++; 3512 /* copy the rest */ 3513 while (*b) 3514 *p++ = *b++; 3515 } else { 3516 q = name; 3517 while (*q) 3518 *p++ = *q++; 3519 } 3520 *p = 0; 3521 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) { 3522 kobj_free(fullname, maxpathlen); 3523 return (file); 3524 } 3525 while (*pathp == ' ' || *pathp == ':') 3526 pathp++; 3527 if (*pathp == 0) 3528 break; 3529 3530 } 3531 kobj_free(fullname, maxpathlen); 3532 if (_moddebug & MODDEBUG_ERRMSG) { 3533 _kobj_printf(ops, "can't open %s,", name); 3534 _kobj_printf(ops, " path is %s\n", pathpsave); 3535 } 3536 return ((struct _buf *)-1); 3537 } 3538 3539 intptr_t 3540 kobj_open(char *filename) 3541 { 3542 struct vnode *vp; 3543 int fd; 3544 3545 if (_modrootloaded) { 3546 struct kobjopen_tctl *ltp = kobjopen_alloc(filename); 3547 int Errno; 3548 3549 /* 3550 * Hand off the open to a thread who has a 3551 * stack size capable handling the request. 3552 */ 3553 if (curthread != &t0) { 3554 (void) thread_create(NULL, DEFAULTSTKSZ * 2, 3555 kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri); 3556 sema_p(<p->sema); 3557 Errno = ltp->Errno; 3558 vp = ltp->vp; 3559 } else { 3560 /* 3561 * 1098067: module creds should not be those of the 3562 * caller 3563 */ 3564 cred_t *saved_cred = curthread->t_cred; 3565 curthread->t_cred = kcred; 3566 Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp, 3567 0, 0, rootdir, -1); 3568 curthread->t_cred = saved_cred; 3569 } 3570 kobjopen_free(ltp); 3571 3572 if (Errno) { 3573 if (_moddebug & MODDEBUG_ERRMSG) { 3574 _kobj_printf(ops, 3575 "kobj_open: vn_open of %s fails, ", 3576 filename); 3577 _kobj_printf(ops, "Errno = %d\n", Errno); 3578 } 3579 return (-1); 3580 } else { 3581 if (_moddebug & MODDEBUG_ERRMSG) { 3582 _kobj_printf(ops, "kobj_open: '%s'", filename); 3583 _kobj_printf(ops, " vp = %p\n", vp); 3584 } 3585 return ((intptr_t)vp); 3586 } 3587 } else { 3588 fd = kobj_boot_open(filename, 0); 3589 3590 if (_moddebug & MODDEBUG_ERRMSG) { 3591 if (fd < 0) 3592 _kobj_printf(ops, 3593 "kobj_open: can't open %s\n", filename); 3594 else { 3595 _kobj_printf(ops, "kobj_open: '%s'", filename); 3596 _kobj_printf(ops, " descr = 0x%x\n", fd); 3597 } 3598 } 3599 return ((intptr_t)fd); 3600 } 3601 } 3602 3603 /* 3604 * Calls to kobj_open() are handled off to this routine as a separate thread. 3605 */ 3606 static void 3607 kobjopen_thread(struct kobjopen_tctl *ltp) 3608 { 3609 kmutex_t cpr_lk; 3610 callb_cpr_t cpr_i; 3611 3612 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL); 3613 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen"); 3614 ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp), 3615 0, 0); 3616 sema_v(<p->sema); 3617 mutex_enter(&cpr_lk); 3618 CALLB_CPR_EXIT(&cpr_i); 3619 mutex_destroy(&cpr_lk); 3620 thread_exit(); 3621 } 3622 3623 /* 3624 * allocate and initialize a kobjopen thread structure 3625 */ 3626 static struct kobjopen_tctl * 3627 kobjopen_alloc(char *filename) 3628 { 3629 struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP); 3630 3631 ASSERT(filename != NULL); 3632 3633 ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP); 3634 bcopy(filename, ltp->name, strlen(filename) + 1); 3635 sema_init(<p->sema, 0, NULL, SEMA_DEFAULT, NULL); 3636 return (ltp); 3637 } 3638 3639 /* 3640 * free a kobjopen thread control structure 3641 */ 3642 static void 3643 kobjopen_free(struct kobjopen_tctl *ltp) 3644 { 3645 sema_destroy(<p->sema); 3646 kmem_free(ltp->name, strlen(ltp->name) + 1); 3647 kmem_free(ltp, sizeof (*ltp)); 3648 } 3649 3650 int 3651 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset) 3652 { 3653 int stat; 3654 ssize_t resid; 3655 3656 if (_modrootloaded) { 3657 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size, 3658 (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), 3659 &resid)) != 0) { 3660 _kobj_printf(ops, 3661 "vn_rdwr failed with error 0x%x\n", stat); 3662 return (-1); 3663 } 3664 return (size - resid); 3665 } else { 3666 int count = 0; 3667 3668 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) { 3669 _kobj_printf(ops, 3670 "kobj_read: seek 0x%x failed\n", offset); 3671 return (-1); 3672 } 3673 3674 count = kobj_boot_read((int)descr, buf, size); 3675 if (count < size) { 3676 if (_moddebug & MODDEBUG_ERRMSG) { 3677 _kobj_printf(ops, 3678 "kobj_read: req %d bytes, ", size); 3679 _kobj_printf(ops, "got %d\n", count); 3680 } 3681 } 3682 return (count); 3683 } 3684 } 3685 3686 void 3687 kobj_close(intptr_t descr) 3688 { 3689 if (_moddebug & MODDEBUG_ERRMSG) 3690 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr); 3691 3692 if (_modrootloaded) { 3693 struct vnode *vp = (struct vnode *)descr; 3694 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 3695 VN_RELE(vp); 3696 } else 3697 (void) kobj_boot_close((int)descr); 3698 } 3699 3700 int 3701 kobj_fstat(intptr_t descr, struct bootstat *buf) 3702 { 3703 if (buf == NULL) 3704 return (-1); 3705 3706 if (_modrootloaded) { 3707 vattr_t vattr; 3708 struct vnode *vp = (struct vnode *)descr; 3709 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) 3710 return (-1); 3711 3712 /* 3713 * The vattr and bootstat structures are similar, but not 3714 * identical. We do our best to fill in the bootstat structure 3715 * from the contents of vattr (transfering only the ones that 3716 * are obvious. 3717 */ 3718 3719 buf->st_mode = (uint32_t)vattr.va_mode; 3720 buf->st_nlink = (uint32_t)vattr.va_nlink; 3721 buf->st_uid = (int32_t)vattr.va_uid; 3722 buf->st_gid = (int32_t)vattr.va_gid; 3723 buf->st_rdev = (uint64_t)vattr.va_rdev; 3724 buf->st_size = (uint64_t)vattr.va_size; 3725 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec; 3726 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec; 3727 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec; 3728 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec; 3729 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec; 3730 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec; 3731 buf->st_blksize = (int32_t)vattr.va_blksize; 3732 buf->st_blocks = (int64_t)vattr.va_nblocks; 3733 3734 return (0); 3735 } 3736 3737 return (kobj_boot_fstat((int)descr, buf)); 3738 } 3739 3740 3741 struct _buf * 3742 kobj_open_file(char *name) 3743 { 3744 struct _buf *file; 3745 struct compinfo cbuf; 3746 intptr_t fd; 3747 3748 if ((fd = kobj_open(name)) == -1) { 3749 return ((struct _buf *)-1); 3750 } 3751 3752 file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP); 3753 file->_fd = fd; 3754 file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP); 3755 file->_cnt = file->_size = file->_off = 0; 3756 file->_ln = 1; 3757 file->_ptr = file->_base; 3758 (void) strcpy(file->_name, name); 3759 3760 /* 3761 * Before root is mounted, we must check 3762 * for a compressed file and do our own 3763 * buffering. 3764 */ 3765 if (_modrootloaded) { 3766 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT); 3767 file->_bsize = MAXBSIZE; 3768 3769 /* Check if the file is compressed */ 3770 file->_iscmp = kobj_is_compressed(fd); 3771 } else { 3772 if (kobj_boot_compinfo(fd, &cbuf) != 0) { 3773 kobj_close_file(file); 3774 return ((struct _buf *)-1); 3775 } 3776 file->_iscmp = cbuf.iscmp; 3777 if (file->_iscmp) { 3778 if (kobj_comp_setup(file, &cbuf) != 0) { 3779 kobj_close_file(file); 3780 return ((struct _buf *)-1); 3781 } 3782 } else { 3783 file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP); 3784 file->_bsize = cbuf.blksize; 3785 } 3786 } 3787 return (file); 3788 } 3789 3790 static int 3791 kobj_comp_setup(struct _buf *file, struct compinfo *cip) 3792 { 3793 struct comphdr *hdr; 3794 3795 /* 3796 * read the compressed image into memory, 3797 * so we can deompress from there 3798 */ 3799 file->_dsize = cip->fsize; 3800 file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP); 3801 if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) { 3802 kobj_free(file->_dbuf, cip->fsize); 3803 return (-1); 3804 } 3805 3806 hdr = kobj_comphdr(file); 3807 if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION || 3808 hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 || 3809 !ISP2(hdr->ch_blksize)) { 3810 kobj_free(file->_dbuf, cip->fsize); 3811 return (-1); 3812 } 3813 file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP); 3814 file->_bsize = hdr->ch_blksize; 3815 return (0); 3816 } 3817 3818 void 3819 kobj_close_file(struct _buf *file) 3820 { 3821 kobj_close(file->_fd); 3822 if (file->_base != NULL) 3823 kobj_free(file->_base, file->_bsize); 3824 if (file->_dbuf != NULL) 3825 kobj_free(file->_dbuf, file->_dsize); 3826 kobj_free(file->_name, strlen(file->_name)+1); 3827 kobj_free(file, sizeof (struct _buf)); 3828 } 3829 3830 int 3831 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off) 3832 { 3833 int b_size, c_size; 3834 int b_off; /* Offset into buffer for start of bcopy */ 3835 int count = 0; 3836 int page_addr; 3837 3838 if (_moddebug & MODDEBUG_ERRMSG) { 3839 _kobj_printf(ops, "kobj_read_file: size=%x,", size); 3840 _kobj_printf(ops, " offset=%x at", off); 3841 _kobj_printf(ops, " buf=%lx\n", (uintptr_t)buf); 3842 } 3843 3844 /* 3845 * Handle compressed (gzip for now) file here. First get the 3846 * compressed size, then read the image into memory and finally 3847 * call zlib to decompress the image at the supplied memory buffer. 3848 */ 3849 if (file->_iscmp == CH_MAGIC_GZIP) { 3850 ulong_t dlen; 3851 vattr_t vattr; 3852 struct vnode *vp = (struct vnode *)file->_fd; 3853 ssize_t resid; 3854 int err = 0; 3855 3856 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) 3857 return (-1); 3858 3859 file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP); 3860 file->_dsize = vattr.va_size; 3861 3862 /* Read the compressed file into memory */ 3863 if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size, 3864 (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), 3865 &resid)) != 0) { 3866 3867 _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, " 3868 "error code 0x%x\n", err); 3869 return (-1); 3870 } 3871 3872 dlen = size; 3873 3874 /* Decompress the image at the supplied memory buffer */ 3875 if ((err = z_uncompress(buf, &dlen, file->_dbuf, 3876 vattr.va_size)) != Z_OK) { 3877 _kobj_printf(ops, "kobj_read_file: z_uncompress " 3878 "failed, error code : 0x%x\n", err); 3879 return (-1); 3880 } 3881 3882 if (dlen != size) { 3883 _kobj_printf(ops, "kobj_read_file: z_uncompress " 3884 "failed to uncompress (size returned 0x%lx , " 3885 "expected size: 0x%x)\n", dlen, size); 3886 return (-1); 3887 } 3888 3889 return (0); 3890 } 3891 3892 while (size) { 3893 page_addr = F_PAGE(file, off); 3894 b_size = file->_size; 3895 /* 3896 * If we have the filesystem page the caller's referring to 3897 * and we have something in the buffer, 3898 * satisfy as much of the request from the buffer as we can. 3899 */ 3900 if (page_addr == file->_off && b_size > 0) { 3901 b_off = B_OFFSET(file, off); 3902 c_size = b_size - b_off; 3903 /* 3904 * If there's nothing to copy, we're at EOF. 3905 */ 3906 if (c_size <= 0) 3907 break; 3908 if (c_size > size) 3909 c_size = size; 3910 if (buf) { 3911 if (_moddebug & MODDEBUG_ERRMSG) 3912 _kobj_printf(ops, "copying %x bytes\n", 3913 c_size); 3914 bcopy(file->_base+b_off, buf, c_size); 3915 size -= c_size; 3916 off += c_size; 3917 buf += c_size; 3918 count += c_size; 3919 } else { 3920 _kobj_printf(ops, "kobj_read: system error"); 3921 count = -1; 3922 break; 3923 } 3924 } else { 3925 /* 3926 * If the caller's offset is page aligned and 3927 * the caller want's at least a filesystem page and 3928 * the caller provided a buffer, 3929 * read directly into the caller's buffer. 3930 */ 3931 if (page_addr == off && 3932 (c_size = F_BLKS(file, size)) && buf) { 3933 c_size = kobj_read_blks(file, buf, c_size, 3934 page_addr); 3935 if (c_size < 0) { 3936 count = -1; 3937 break; 3938 } 3939 count += c_size; 3940 if (c_size != F_BLKS(file, size)) 3941 break; 3942 size -= c_size; 3943 off += c_size; 3944 buf += c_size; 3945 /* 3946 * Otherwise, read into our buffer and copy next time 3947 * around the loop. 3948 */ 3949 } else { 3950 file->_off = page_addr; 3951 c_size = kobj_read_blks(file, file->_base, 3952 file->_bsize, page_addr); 3953 file->_ptr = file->_base; 3954 file->_cnt = c_size; 3955 file->_size = c_size; 3956 /* 3957 * If a _filbuf call or nothing read, break. 3958 */ 3959 if (buf == NULL || c_size <= 0) { 3960 count = c_size; 3961 break; 3962 } 3963 } 3964 if (_moddebug & MODDEBUG_ERRMSG) 3965 _kobj_printf(ops, "read %x bytes\n", c_size); 3966 } 3967 } 3968 if (_moddebug & MODDEBUG_ERRMSG) 3969 _kobj_printf(ops, "count = %x\n", count); 3970 3971 return (count); 3972 } 3973 3974 static int 3975 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off) 3976 { 3977 int ret; 3978 3979 ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0); 3980 if (file->_iscmp) { 3981 uint_t blks; 3982 int nret; 3983 3984 ret = 0; 3985 for (blks = size / file->_bsize; blks != 0; blks--) { 3986 nret = kobj_uncomp_blk(file, buf, off); 3987 if (nret == -1) 3988 return (-1); 3989 buf += nret; 3990 off += nret; 3991 ret += nret; 3992 if (nret < file->_bsize) 3993 break; 3994 } 3995 } else 3996 ret = kobj_read(file->_fd, buf, size, off); 3997 return (ret); 3998 } 3999 4000 static int 4001 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off) 4002 { 4003 struct comphdr *hdr = kobj_comphdr(file); 4004 ulong_t dlen, slen; 4005 caddr_t src; 4006 int i; 4007 4008 dlen = file->_bsize; 4009 i = off / file->_bsize; 4010 src = file->_dbuf + hdr->ch_blkmap[i]; 4011 if (i == hdr->ch_fsize / file->_bsize) 4012 slen = file->_dsize - hdr->ch_blkmap[i]; 4013 else 4014 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i]; 4015 if (z_uncompress(buf, &dlen, src, slen) != Z_OK) 4016 return (-1); 4017 return (dlen); 4018 } 4019 4020 int 4021 kobj_filbuf(struct _buf *f) 4022 { 4023 if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0) 4024 return (kobj_getc(f)); 4025 return (-1); 4026 } 4027 4028 void 4029 kobj_free(void *address, size_t size) 4030 { 4031 if (standalone) 4032 return; 4033 4034 kmem_free(address, size); 4035 kobj_stat.nfree_calls++; 4036 kobj_stat.nfree += size; 4037 } 4038 4039 void * 4040 kobj_zalloc(size_t size, int flag) 4041 { 4042 void *v; 4043 4044 if ((v = kobj_alloc(size, flag)) != 0) { 4045 bzero(v, size); 4046 } 4047 4048 return (v); 4049 } 4050 4051 void * 4052 kobj_alloc(size_t size, int flag) 4053 { 4054 /* 4055 * If we are running standalone in the 4056 * linker, we ask boot for memory. 4057 * Either it's temporary memory that we lose 4058 * once boot is mapped out or we allocate it 4059 * permanently using the dynamic data segment. 4060 */ 4061 if (standalone) { 4062 #if defined(_OBP) 4063 if (flag & (KM_TMP | KM_SCRATCH)) 4064 return (bop_temp_alloc(size, MINALIGN)); 4065 #else 4066 if (flag & (KM_TMP | KM_SCRATCH)) 4067 return (BOP_ALLOC(ops, 0, size, MINALIGN)); 4068 #endif 4069 return (kobj_segbrk(&_edata, size, MINALIGN, 0)); 4070 } 4071 4072 kobj_stat.nalloc_calls++; 4073 kobj_stat.nalloc += size; 4074 4075 return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)); 4076 } 4077 4078 /* 4079 * Allow the "mod" system to sync up with the work 4080 * already done by kobj during the initial loading 4081 * of the kernel. This also gives us a chance 4082 * to reallocate memory that belongs to boot. 4083 */ 4084 void 4085 kobj_sync(void) 4086 { 4087 struct modctl_list *lp, **lpp; 4088 4089 /* 4090 * The module path can be set in /etc/system via 'moddir' commands 4091 */ 4092 if (default_path != NULL) 4093 kobj_module_path = default_path; 4094 else 4095 default_path = kobj_module_path; 4096 4097 ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t), 4098 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4099 4100 ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t), 4101 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4102 4103 /* 4104 * Move symbol tables from boot memory to ksyms_arena. 4105 */ 4106 for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) { 4107 for (lp = *lpp; lp != NULL; lp = lp->modl_next) 4108 kobj_export_module(mod(lp)); 4109 } 4110 } 4111 4112 caddr_t 4113 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit) 4114 { 4115 uintptr_t va, pva; 4116 size_t alloc_pgsz = kobj_mmu_pagesize; 4117 size_t alloc_align = BO_NO_ALIGN; 4118 size_t alloc_size; 4119 4120 /* 4121 * If we are using "large" mappings for the kernel, 4122 * request aligned memory from boot using the 4123 * "large" pagesize. 4124 */ 4125 if (lg_pagesize) { 4126 alloc_align = lg_pagesize; 4127 alloc_pgsz = lg_pagesize; 4128 } 4129 4130 #if defined(__sparc) 4131 /* account for redzone */ 4132 if (limit) 4133 limit -= alloc_pgsz; 4134 #endif /* __sparc */ 4135 4136 va = ALIGN((uintptr_t)*spp, align); 4137 pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz); 4138 /* 4139 * Need more pages? 4140 */ 4141 if (va + size > pva) { 4142 uintptr_t npva; 4143 4144 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz); 4145 /* 4146 * Check for overlapping segments. 4147 */ 4148 if (limit && limit <= *spp + alloc_size) { 4149 return ((caddr_t)0); 4150 } 4151 4152 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva, 4153 alloc_size, alloc_align); 4154 4155 if (npva == 0) { 4156 _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes", 4157 alloc_size); 4158 _kobj_printf(ops, " aligned %lx", alloc_align); 4159 _kobj_printf(ops, " at 0x%lx\n", pva); 4160 return (NULL); 4161 } 4162 } 4163 *spp = (caddr_t)(va + size); 4164 4165 return ((caddr_t)va); 4166 } 4167 4168 /* 4169 * Calculate the number of output hash buckets. 4170 * We use the next prime larger than n / 4, 4171 * so the average hash chain is about 4 entries. 4172 * More buckets would just be a waste of memory. 4173 */ 4174 uint_t 4175 kobj_gethashsize(uint_t n) 4176 { 4177 int f; 4178 int hsize = MAX(n / 4, 2); 4179 4180 for (f = 2; f * f <= hsize; f++) 4181 if (hsize % f == 0) 4182 hsize += f = 1; 4183 4184 return (hsize); 4185 } 4186 4187 /* 4188 * Get the file size. 4189 * 4190 * Before root is mounted, files are compressed in the boot_archive ramdisk 4191 * (in the memory). kobj_fstat would return the compressed file size. 4192 * In order to get the uncompressed file size, read the file to the end and 4193 * count its size. 4194 */ 4195 int 4196 kobj_get_filesize(struct _buf *file, uint64_t *size) 4197 { 4198 int err = 0; 4199 ssize_t resid; 4200 uint32_t buf; 4201 4202 if (_modrootloaded) { 4203 struct bootstat bst; 4204 4205 if (kobj_fstat(file->_fd, &bst) != 0) 4206 return (EIO); 4207 *size = bst.st_size; 4208 4209 if (file->_iscmp == CH_MAGIC_GZIP) { 4210 /* 4211 * Read the last 4 bytes of the compressed (gzip) 4212 * image to get the size of its uncompressed 4213 * version. 4214 */ 4215 if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd, 4216 (char *)(&buf), 4, (offset_t)(*size - 4), 4217 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 4218 != 0) { 4219 _kobj_printf(ops, "kobj_get_filesize: " 4220 "vn_rdwr() failed with error 0x%x\n", err); 4221 return (-1); 4222 } 4223 4224 *size = (uint64_t)buf; 4225 } 4226 } else { 4227 4228 #if defined(_OBP) 4229 struct bootstat bsb; 4230 4231 if (file->_iscmp) { 4232 struct comphdr *hdr = kobj_comphdr(file); 4233 4234 *size = hdr->ch_fsize; 4235 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0) 4236 return (EIO); 4237 else 4238 *size = bsb.st_size; 4239 #else 4240 char *buf; 4241 int count; 4242 uint64_t offset = 0; 4243 4244 buf = kmem_alloc(MAXBSIZE, KM_SLEEP); 4245 do { 4246 count = kobj_read_file(file, buf, MAXBSIZE, offset); 4247 if (count < 0) { 4248 kmem_free(buf, MAXBSIZE); 4249 return (EIO); 4250 } 4251 offset += count; 4252 } while (count == MAXBSIZE); 4253 kmem_free(buf, MAXBSIZE); 4254 4255 *size = offset; 4256 #endif 4257 } 4258 4259 return (0); 4260 } 4261 4262 static char * 4263 basename(char *s) 4264 { 4265 char *p, *q; 4266 4267 q = NULL; 4268 p = s; 4269 do { 4270 if (*p == '/') 4271 q = p; 4272 } while (*p++); 4273 return (q ? q + 1 : s); 4274 } 4275 4276 void 4277 kobj_stat_get(kobj_stat_t *kp) 4278 { 4279 *kp = kobj_stat; 4280 } 4281 4282 int 4283 kobj_getpagesize() 4284 { 4285 return (lg_pagesize); 4286 } 4287 4288 void 4289 kobj_textwin_alloc(struct module *mp) 4290 { 4291 ASSERT(MUTEX_HELD(&mod_lock)); 4292 4293 if (mp->textwin != NULL) 4294 return; 4295 4296 /* 4297 * If the text is not contained in the heap, then it is not contained 4298 * by a writable mapping. (Specifically, it's on the nucleus page.) 4299 * We allocate a read/write mapping for this module's text to allow 4300 * the text to be patched without calling hot_patch_kernel_text() 4301 * (which is quite slow). 4302 */ 4303 if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) { 4304 uintptr_t text = (uintptr_t)mp->text; 4305 uintptr_t size = (uintptr_t)mp->text_size; 4306 uintptr_t i; 4307 caddr_t va; 4308 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) - 4309 (text & PAGEMASK); 4310 4311 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP); 4312 4313 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) { 4314 hat_devload(kas.a_hat, va, PAGESIZE, 4315 hat_getpfnum(kas.a_hat, (caddr_t)i), 4316 PROT_READ | PROT_WRITE, 4317 HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4318 va += PAGESIZE; 4319 } 4320 4321 mp->textwin = mp->textwin_base + (text & PAGEOFFSET); 4322 } else { 4323 mp->textwin = mp->text; 4324 } 4325 } 4326 4327 void 4328 kobj_textwin_free(struct module *mp) 4329 { 4330 uintptr_t text = (uintptr_t)mp->text; 4331 uintptr_t tsize = (uintptr_t)mp->text_size; 4332 size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) - 4333 (text & PAGEMASK)); 4334 4335 mp->textwin = NULL; 4336 4337 if (mp->textwin_base == NULL) 4338 return; 4339 4340 hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK); 4341 vmem_free(heap_arena, mp->textwin_base, size); 4342 mp->textwin_base = NULL; 4343 } 4344 4345 static char * 4346 find_libmacro(char *name) 4347 { 4348 int lmi; 4349 4350 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4351 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0) 4352 return (libmacros[lmi].lmi_list); 4353 } 4354 return (NULL); 4355 } 4356 4357 /* 4358 * Check for $MACRO in tail (string to expand) and expand it in path at pathend 4359 * returns path if successful, else NULL 4360 * Support multiple $MACROs expansion and the first valid path will be returned 4361 * Caller's responsibility to provide enough space in path to expand 4362 */ 4363 char * 4364 expand_libmacro(char *tail, char *path, char *pathend) 4365 { 4366 char c, *p, *p1, *p2, *path2, *endp; 4367 int diff, lmi, macrolen, valid_macro, more_macro; 4368 struct _buf *file; 4369 4370 /* 4371 * check for $MACROS between nulls or slashes 4372 */ 4373 p = strchr(tail, '$'); 4374 if (p == NULL) 4375 return (NULL); 4376 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4377 macrolen = libmacros[lmi].lmi_macrolen; 4378 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0) 4379 break; 4380 } 4381 4382 valid_macro = 0; 4383 if (lmi < NLIBMACROS) { 4384 /* 4385 * The following checks are used to restrict expansion of 4386 * macros to those that form a full directory/file name 4387 * and to keep the behavior same as before. If this 4388 * restriction is removed or no longer valid in the future, 4389 * the checks below can be deleted. 4390 */ 4391 if ((p == tail) || (*(p - 1) == '/')) { 4392 c = *(p + macrolen + 1); 4393 if (c == '/' || c == '\0') 4394 valid_macro = 1; 4395 } 4396 } 4397 4398 if (!valid_macro) { 4399 p2 = strchr(p, '/'); 4400 /* 4401 * if no more macro to expand, then just copy whatever left 4402 * and check whether it exists 4403 */ 4404 if (p2 == NULL || strchr(p2, '$') == NULL) { 4405 (void) strcpy(pathend, tail); 4406 if ((file = kobj_open_path(path, 1, 1)) != 4407 (struct _buf *)-1) { 4408 kobj_close_file(file); 4409 return (path); 4410 } else 4411 return (NULL); 4412 } else { 4413 /* 4414 * copy all chars before '/' and call expand_libmacro() 4415 * again 4416 */ 4417 diff = p2 - tail; 4418 bcopy(tail, pathend, diff); 4419 pathend += diff; 4420 *(pathend) = '\0'; 4421 return (expand_libmacro(p2, path, pathend)); 4422 } 4423 } 4424 4425 more_macro = 0; 4426 if (c != '\0') { 4427 endp = p + macrolen + 1; 4428 if (strchr(endp, '$') != NULL) 4429 more_macro = 1; 4430 } else 4431 endp = NULL; 4432 4433 /* 4434 * copy lmi_list and split it into components. 4435 * then put the part of tail before $MACRO into path 4436 * at pathend 4437 */ 4438 diff = p - tail; 4439 if (diff > 0) 4440 bcopy(tail, pathend, diff); 4441 path2 = pathend + diff; 4442 p1 = libmacros[lmi].lmi_list; 4443 while (p1 && (*p1 != '\0')) { 4444 p2 = strchr(p1, ':'); 4445 if (p2) { 4446 diff = p2 - p1; 4447 bcopy(p1, path2, diff); 4448 *(path2 + diff) = '\0'; 4449 } else { 4450 diff = strlen(p1); 4451 bcopy(p1, path2, diff + 1); 4452 } 4453 /* copy endp only if there isn't any more macro to expand */ 4454 if (!more_macro && (endp != NULL)) 4455 (void) strcat(path2, endp); 4456 file = kobj_open_path(path, 1, 1); 4457 if (file != (struct _buf *)-1) { 4458 kobj_close_file(file); 4459 /* 4460 * if more macros to expand then call expand_libmacro(), 4461 * else return path which has the whole path 4462 */ 4463 if (!more_macro || (expand_libmacro(endp, path, 4464 path2 + diff) != NULL)) { 4465 return (path); 4466 } 4467 } 4468 if (p2) 4469 p1 = ++p2; 4470 else 4471 return (NULL); 4472 } 4473 return (NULL); 4474 } 4475 4476 static void 4477 tnf_add_notifyunload(kobj_notify_f *fp) 4478 { 4479 kobj_notify_list_t *entry; 4480 4481 entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT); 4482 entry->kn_type = KOBJ_NOTIFY_MODUNLOADING; 4483 entry->kn_func = fp; 4484 (void) kobj_notify_add(entry); 4485 } 4486 4487 /* ARGSUSED */ 4488 static void 4489 tnf_unsplice_probes(uint_t what, struct modctl *mod) 4490 { 4491 tnf_probe_control_t **p; 4492 tnf_tag_data_t **q; 4493 struct module *mp = mod->mod_mp; 4494 4495 if (!(mp->flags & KOBJ_TNF_PROBE)) 4496 return; 4497 4498 for (p = &__tnf_probe_list_head; *p; ) 4499 if (kobj_addrcheck(mp, (char *)*p) == 0) 4500 *p = (*p)->next; 4501 else 4502 p = &(*p)->next; 4503 4504 for (q = &__tnf_tag_list_head; *q; ) 4505 if (kobj_addrcheck(mp, (char *)*q) == 0) 4506 *q = (tnf_tag_data_t *)(*q)->tag_version; 4507 else 4508 q = (tnf_tag_data_t **)&(*q)->tag_version; 4509 4510 tnf_changed_probe_list = 1; 4511 } 4512 4513 int 4514 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist, 4515 tnf_tag_data_t *tlist) 4516 { 4517 int result = 0; 4518 static int add_notify = 1; 4519 4520 if (plist) { 4521 tnf_probe_control_t *pl; 4522 4523 for (pl = plist; pl->next; ) 4524 pl = pl->next; 4525 4526 if (!boot_load) 4527 mutex_enter(&mod_lock); 4528 tnf_changed_probe_list = 1; 4529 pl->next = __tnf_probe_list_head; 4530 __tnf_probe_list_head = plist; 4531 if (!boot_load) 4532 mutex_exit(&mod_lock); 4533 result = 1; 4534 } 4535 4536 if (tlist) { 4537 tnf_tag_data_t *tl; 4538 4539 for (tl = tlist; tl->tag_version; ) 4540 tl = (tnf_tag_data_t *)tl->tag_version; 4541 4542 if (!boot_load) 4543 mutex_enter(&mod_lock); 4544 tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head; 4545 __tnf_tag_list_head = tlist; 4546 if (!boot_load) 4547 mutex_exit(&mod_lock); 4548 result = 1; 4549 } 4550 if (!boot_load && result && add_notify) { 4551 tnf_add_notifyunload(tnf_unsplice_probes); 4552 add_notify = 0; 4553 } 4554 return (result); 4555 } 4556 4557 char *kobj_file_buf; 4558 int kobj_file_bufsize; 4559 4560 /* 4561 * This code is for the purpose of manually recording which files 4562 * needs to go into the boot archive on any given system. 4563 * 4564 * To enable the code, set kobj_file_bufsize in /etc/system 4565 * and reboot the system, then use mdb to look at kobj_file_buf. 4566 */ 4567 static void 4568 kobj_record_file(char *filename) 4569 { 4570 static char *buf; 4571 static int size = 0; 4572 int n; 4573 4574 if (kobj_file_bufsize == 0) /* don't bother */ 4575 return; 4576 4577 if (kobj_file_buf == NULL) { /* allocate buffer */ 4578 size = kobj_file_bufsize; 4579 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP); 4580 } 4581 4582 n = snprintf(buf, size, "%s\n", filename); 4583 if (n > size) 4584 n = size; 4585 size -= n; 4586 buf += n; 4587 } 4588 4589 static int 4590 kobj_boot_fstat(int fd, struct bootstat *stp) 4591 { 4592 #if defined(_OBP) 4593 if (!standalone && _ioquiesced) 4594 return (-1); 4595 return (BOP_FSTAT(ops, fd, stp)); 4596 #else 4597 return (BRD_FSTAT(bfs_ops, fd, stp)); 4598 #endif 4599 } 4600 4601 static int 4602 kobj_boot_open(char *filename, int flags) 4603 { 4604 #if defined(_OBP) 4605 4606 /* 4607 * If io via bootops is quiesced, it means boot is no longer 4608 * available to us. We make it look as if we can't open the 4609 * named file - which is reasonably accurate. 4610 */ 4611 if (!standalone && _ioquiesced) 4612 return (-1); 4613 4614 kobj_record_file(filename); 4615 return (BOP_OPEN(filename, flags)); 4616 #else /* x86 */ 4617 kobj_record_file(filename); 4618 return (BRD_OPEN(bfs_ops, filename, flags)); 4619 #endif 4620 } 4621 4622 static int 4623 kobj_boot_close(int fd) 4624 { 4625 #if defined(_OBP) 4626 if (!standalone && _ioquiesced) 4627 return (-1); 4628 4629 return (BOP_CLOSE(fd)); 4630 #else /* x86 */ 4631 return (BRD_CLOSE(bfs_ops, fd)); 4632 #endif 4633 } 4634 4635 /*ARGSUSED*/ 4636 static int 4637 kobj_boot_seek(int fd, off_t hi, off_t lo) 4638 { 4639 #if defined(_OBP) 4640 return (BOP_SEEK(fd, lo) == -1 ? -1 : 0); 4641 #else 4642 return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET)); 4643 #endif 4644 } 4645 4646 static int 4647 kobj_boot_read(int fd, caddr_t buf, size_t size) 4648 { 4649 #if defined(_OBP) 4650 return (BOP_READ(fd, buf, size)); 4651 #else 4652 return (BRD_READ(bfs_ops, fd, buf, size)); 4653 #endif 4654 } 4655 4656 static int 4657 kobj_boot_compinfo(int fd, struct compinfo *cb) 4658 { 4659 return (boot_compinfo(fd, cb)); 4660 } 4661 4662 /* 4663 * Check if the file is compressed (for now we handle only gzip). 4664 * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise. 4665 */ 4666 static int 4667 kobj_is_compressed(intptr_t fd) 4668 { 4669 struct vnode *vp = (struct vnode *)fd; 4670 ssize_t resid; 4671 uint16_t magic_buf; 4672 int err = 0; 4673 4674 if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf), 4675 sizeof (magic_buf), (offset_t)(0), 4676 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 4677 4678 _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, " 4679 "error code 0x%x\n", err); 4680 return (0); 4681 } 4682 4683 if (magic_buf == CH_MAGIC_GZIP) 4684 return (CH_MAGIC_GZIP); 4685 4686 return (0); 4687 } 4688