1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>. 27 * All rights reserved. Use is subject to license terms. 28 * Copyright 2020 Joyent, Inc. 29 * Copyright 2025 MNX Cloud, Inc. 30 * Copyright 2025 Oxide Computer Company 31 */ 32 33 /* 34 * Kernel's linker/loader 35 */ 36 37 #include <sys/types.h> 38 #include <sys/param.h> 39 #include <sys/sysmacros.h> 40 #include <sys/systm.h> 41 #include <sys/user.h> 42 #include <sys/kmem.h> 43 #include <sys/reboot.h> 44 #include <sys/bootconf.h> 45 #include <sys/debug.h> 46 #include <sys/uio.h> 47 #include <sys/file.h> 48 #include <sys/vnode.h> 49 #include <sys/user.h> 50 #include <sys/mman.h> 51 #include <vm/as.h> 52 #include <vm/seg_kp.h> 53 #include <vm/seg_kmem.h> 54 #include <sys/elf.h> 55 #include <sys/elf_notes.h> 56 #include <sys/vmsystm.h> 57 #include <sys/kdi.h> 58 #include <sys/atomic.h> 59 #include <sys/kmdb.h> 60 61 #include <sys/link.h> 62 #include <sys/kobj.h> 63 #include <sys/ksyms.h> 64 #include <sys/disp.h> 65 #include <sys/modctl.h> 66 #include <sys/varargs.h> 67 #include <sys/kstat.h> 68 #include <sys/kobj_impl.h> 69 #include <sys/fs/decomp.h> 70 #include <sys/callb.h> 71 #include <sys/cmn_err.h> 72 #include <sys/zmod.h> 73 74 #include <krtld/reloc.h> 75 #include <krtld/kobj_kdi.h> 76 #include <sys/sha1.h> 77 #include <sys/crypto/elfsign.h> 78 79 #if !defined(_OBP) 80 #include <sys/bootvfs.h> 81 #endif 82 83 /* 84 * do_symbols() error codes 85 */ 86 #define DOSYM_UNDEF -1 /* undefined symbol */ 87 #define DOSYM_UNSAFE -2 /* MT-unsafe driver symbol */ 88 89 #if !defined(_OBP) 90 static void synthetic_bootaux(char *, val_t *); 91 #endif 92 93 static struct module *load_exec(val_t *, char *); 94 static void load_linker(val_t *); 95 static struct modctl *add_primary(const char *filename, int); 96 static int bind_primary(val_t *, int); 97 static int load_primary(struct module *, int); 98 static int load_kmdb(val_t *); 99 static int get_progbits(struct module *, struct _buf *); 100 static int get_syms(struct module *, struct _buf *); 101 static int get_ctf(struct module *, struct _buf *); 102 static void get_signature(struct module *, struct _buf *); 103 static int do_common(struct module *); 104 static void add_dependent(struct module *, struct module *); 105 static int do_dependents(struct modctl *, char *, size_t); 106 static int do_symbols(struct module *, Elf64_Addr); 107 static void module_assign(struct modctl *, struct module *); 108 static void free_module_data(struct module *); 109 static char *depends_on(struct module *); 110 static char *getmodpath(const char *); 111 static char *basename(char *); 112 static void attr_val(val_t *); 113 static char *find_libmacro(char *); 114 static char *expand_libmacro(char *, char *, char *); 115 static int read_bootflags(void); 116 static int kobj_comp_setup(struct _buf *, struct compinfo *); 117 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t); 118 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t); 119 static int kobj_boot_open(char *, int); 120 static int kobj_boot_close(int); 121 static int kobj_boot_seek(int, off_t, off_t); 122 static int kobj_boot_read(int, caddr_t, size_t); 123 static int kobj_boot_fstat(int, struct bootstat *); 124 static int kobj_boot_compinfo(int, struct compinfo *); 125 126 static Sym *lookup_one(struct module *, const char *); 127 static void sym_insert(struct module *, char *, symid_t); 128 static Sym *sym_lookup(struct module *, Sym *); 129 130 static struct kobjopen_tctl *kobjopen_alloc(char *filename); 131 static void kobjopen_free(struct kobjopen_tctl *ltp); 132 static void kobjopen_thread(struct kobjopen_tctl *ltp); 133 static int kobj_is_compressed(intptr_t); 134 135 extern int kcopy(const void *, void *, size_t); 136 extern int elf_mach_ok(Ehdr *); 137 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *); 138 139 #if !defined(_OBP) 140 extern int kobj_boot_mountroot(void); 141 #endif 142 143 extern int modrootloaded; 144 extern int swaploaded; 145 extern int bop_io_quiesced; 146 extern int last_module_id; 147 148 extern char stubs_base[]; 149 extern char stubs_end[]; 150 151 #ifdef KOBJ_DEBUG 152 /* 153 * Values that can be or'd in to kobj_debug and their effects: 154 * 155 * D_DEBUG - misc. debugging information. 156 * D_SYMBOLS - list symbols and their values as they are entered 157 * into the hash table 158 * D_RELOCATIONS - display relocation processing information 159 * D_LOADING - display information about each module as it 160 * is loaded. 161 */ 162 int kobj_debug = 0; 163 164 #define KOBJ_MARK(s) if (kobj_debug & D_DEBUG) \ 165 (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s)) 166 #else 167 #define KOBJ_MARK(s) /* discard */ 168 #endif 169 170 #define MODPATH_PROPNAME "module-path" 171 172 #ifdef MODDIR_SUFFIX 173 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/"; 174 #else 175 #define slash_moddir_suffix_slash "" 176 #endif 177 178 #define _moddebug get_weakish_int(&moddebug) 179 #define _modrootloaded get_weakish_int(&modrootloaded) 180 #define _swaploaded get_weakish_int(&swaploaded) 181 #define _ioquiesced get_weakish_int(&bop_io_quiesced) 182 183 #define mod(X) (struct module *)((X)->modl_modp->mod_mp) 184 185 void *romp; /* rom vector (opaque to us) */ 186 struct bootops *ops; /* bootops vector */ 187 void *dbvec; /* debug vector */ 188 189 /* 190 * kobjopen thread control structure 191 */ 192 struct kobjopen_tctl { 193 ksema_t sema; 194 char *name; /* name of file */ 195 struct vnode *vp; /* vnode return from vn_open() */ 196 int Errno; /* error return from vnopen */ 197 }; 198 199 /* 200 * Structure for defining dynamically expandable library macros 201 */ 202 203 struct lib_macro_info { 204 char *lmi_list; /* ptr to list of possible choices */ 205 char *lmi_macroname; /* pointer to macro name */ 206 ushort_t lmi_ba_index; /* index into bootaux vector */ 207 ushort_t lmi_macrolen; /* macro length */ 208 } libmacros[] = { 209 { NULL, "CPU", BA_CPU, 0 }, 210 { NULL, "MMU", BA_MMU, 0 } 211 }; 212 213 #define NLIBMACROS sizeof (libmacros) / sizeof (struct lib_macro_info) 214 215 char *boot_cpu_compatible_list; /* make $CPU available */ 216 217 char *kobj_module_path; /* module search path */ 218 vmem_t *text_arena; /* module text arena */ 219 static vmem_t *data_arena; /* module data & bss arena */ 220 static vmem_t *ctf_arena; /* CTF debug data arena */ 221 static struct modctl *kobj_modules = NULL; /* modules loaded */ 222 int kobj_mmu_pagesize; /* system pagesize */ 223 static int lg_pagesize; /* "large" pagesize */ 224 static int kobj_last_module_id = 0; /* id assignment */ 225 static kmutex_t kobj_lock; /* protects mach memory list */ 226 227 /* 228 * The following functions have been implemented by the kernel. 229 * However, many 3rd party drivers provide their own implementations 230 * of these functions. When such drivers are loaded, messages 231 * indicating that these symbols have been multiply defined will be 232 * emitted to the console. To avoid alarming customers for no good 233 * reason, we simply suppress such warnings for the following set of 234 * functions. 235 */ 236 static char *suppress_sym_list[] = 237 { 238 "strstr", 239 "strncat", 240 "strlcat", 241 "strlcpy", 242 "strspn", 243 "memcpy", 244 "memset", 245 "memmove", 246 "memcmp", 247 "memchr", 248 "__udivdi3", 249 "__divdi3", 250 "__umoddi3", 251 "__moddi3", 252 NULL /* This entry must exist */ 253 }; 254 255 /* indexed by KOBJ_NOTIFY_* */ 256 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1]; 257 258 /* 259 * Prefix for statically defined tracing (SDT) DTrace probes. 260 */ 261 const char *sdt_prefix = "__dtrace_probe_"; 262 263 /* 264 * Beginning and end of the kernel's dynamic text/data segments. 265 */ 266 static caddr_t _text; 267 static caddr_t _etext; 268 static caddr_t _data; 269 270 /* 271 * The sparc linker doesn't create a memory location 272 * for a variable named _edata, so _edata can only be 273 * referred to, not modified. krtld needs a static 274 * variable to modify it - within krtld, of course - 275 * outside of krtld, e_data is used in all kernels. 276 */ 277 #if defined(__sparc) 278 static caddr_t _edata; 279 #else 280 extern caddr_t _edata; 281 #endif 282 283 Addr dynseg = 0; /* load address of "dynamic" segment */ 284 size_t dynsize; /* "dynamic" segment size */ 285 286 287 int standalone = 1; /* an unwholey kernel? */ 288 int use_iflush; /* iflush after relocations */ 289 290 /* 291 * _kobj_printf() and _vkobj_printf() 292 * 293 * Common printf function pointer. Can handle only one conversion 294 * specification in the format string. Some of the functions invoked 295 * through this function pointer cannot handle more that one conversion 296 * specification in the format string. 297 */ 298 void (*_kobj_printf)(void *, const char *, ...) __KPRINTFLIKE(2); 299 void (*_vkobj_printf)(void *, const char *, va_list) __KVPRINTFLIKE(2); 300 301 /* 302 * Standalone function pointers for use within krtld. 303 * Many platforms implement optimized platmod versions of 304 * utilities such as bcopy and any such are not yet available 305 * until the kernel is more completely stitched together. 306 * See kobj_impl.h 307 */ 308 void (*kobj_bcopy)(const void *, void *, size_t); 309 void (*kobj_bzero)(void *, size_t); 310 size_t (*kobj_strlcat)(char *, const char *, size_t); 311 312 static kobj_stat_t kobj_stat; 313 314 #define MINALIGN 8 /* at least a double-word */ 315 316 int 317 get_weakish_int(int *ip) 318 { 319 if (standalone) 320 return (0); 321 return (ip == NULL ? 0 : *ip); 322 } 323 324 static void * 325 get_weakish_pointer(void **ptrp) 326 { 327 if (standalone) 328 return (0); 329 return (ptrp == NULL ? 0 : *ptrp); 330 } 331 332 /* 333 * XXX fix dependencies on "kernel"; this should work 334 * for other standalone binaries as well. 335 * 336 * XXX Fix hashing code to use one pointer to 337 * hash entries. 338 * |----------| 339 * | nbuckets | 340 * |----------| 341 * | nchains | 342 * |----------| 343 * | bucket[] | 344 * |----------| 345 * | chain[] | 346 * |----------| 347 */ 348 349 /* 350 * Load, bind and relocate all modules that 351 * form the primary kernel. At this point, our 352 * externals have not been relocated. 353 */ 354 void 355 kobj_init( 356 void *romvec, 357 void *dvec, 358 struct bootops *bootvec, 359 val_t *bootaux) 360 { 361 struct module *mp; 362 struct modctl *modp; 363 Addr entry; 364 char filename[MAXPATHLEN]; 365 366 /* 367 * Save these to pass on to 368 * the booted standalone. 369 */ 370 romp = romvec; 371 dbvec = dvec; 372 373 ops = bootvec; 374 kobj_setup_standalone_vectors(); 375 376 KOBJ_MARK("Entered kobj_init()"); 377 378 (void) BOP_GETPROP(ops, "whoami", filename); 379 380 /* 381 * We don't support standalone debuggers anymore. The use of kadb 382 * will interfere with the later use of kmdb. Let the user mend 383 * their ways now. Users will reach this message if they still 384 * have the kadb binary on their system (perhaps they used an old 385 * bfu, or maybe they intentionally copied it there) and have 386 * specified its use in a way that eluded our checking in the boot 387 * program. 388 */ 389 if (dvec != NULL) { 390 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as " 391 "kadb are no longer supported\n\n"); 392 goto fail; 393 } 394 395 #if defined(_OBP) 396 /* 397 * OBP allows us to read both the ramdisk and 398 * the underlying root fs when root is a disk. 399 * This can lower incidences of unbootable systems 400 * when the archive is out-of-date with the /etc 401 * state files. 402 */ 403 if (BOP_MOUNTROOT() != BOOT_SVC_OK) { 404 _kobj_printf(ops, "can't mount boot fs\n"); 405 goto fail; 406 } 407 #else 408 /* on x86, we always boot with a ramdisk */ 409 if (kobj_boot_mountroot() != 0) { 410 goto fail; 411 } 412 413 /* 414 * Now that the ramdisk is mounted, finish boot property 415 * initialization. 416 */ 417 read_bootenvrc(); 418 419 #if !defined(_UNIX_KRTLD) 420 /* 421 * 'unix' is linked together with 'krtld' into one executable and 422 * the early boot code does -not- hand us any of the dynamic metadata 423 * about the executable. In particular, it does not read in, map or 424 * otherwise look at the program headers. We fake all that up now. 425 * 426 * We do this early as DTrace static probes call undefined references. 427 * We have to process those relocations before calling any of them. 428 * 429 * OBP tells kobj_start() where the ELF image is in memory, so it 430 * synthesized bootaux before kobj_init() was called 431 */ 432 if (bootaux[BA_PHDR].ba_ptr == NULL) 433 synthetic_bootaux(filename, bootaux); 434 435 #endif /* !_UNIX_KRTLD */ 436 #endif /* _OBP */ 437 438 /* 439 * Save the interesting attribute-values 440 * (scanned by kobj_boot). 441 */ 442 attr_val(bootaux); 443 444 /* 445 * Set the module search path. 446 */ 447 kobj_module_path = getmodpath(filename); 448 449 boot_cpu_compatible_list = find_libmacro("CPU"); 450 451 /* 452 * These two modules have actually been 453 * loaded by boot, but we finish the job 454 * by introducing them into the world of 455 * loadable modules. 456 */ 457 458 mp = load_exec(bootaux, filename); 459 load_linker(bootaux); 460 461 /* 462 * Load all the primary dependent modules. 463 */ 464 if (load_primary(mp, KOBJ_LM_PRIMARY) == -1) 465 goto fail; 466 467 /* 468 * Glue it together. 469 */ 470 if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1) 471 goto fail; 472 473 entry = bootaux[BA_ENTRY].ba_val; 474 475 /* 476 * Get the boot flags 477 */ 478 bootflags(ops); 479 480 if (boothowto & RB_VERBOSE) 481 kobj_lm_dump(KOBJ_LM_PRIMARY); 482 483 kobj_kdi_init(); 484 485 if (boothowto & RB_KMDB) { 486 if (load_kmdb(bootaux) < 0) 487 goto fail; 488 } 489 490 /* 491 * Post setup. 492 */ 493 s_text = _text; 494 e_text = _etext; 495 s_data = _data; 496 e_data = _edata; 497 498 kobj_sync_instruction_memory(s_text, e_text - s_text); 499 500 #ifdef KOBJ_DEBUG 501 if (kobj_debug & D_DEBUG) 502 _kobj_printf(ops, 503 "krtld: transferring control to: 0x%lx\n", entry); 504 #endif 505 506 /* 507 * Make sure the mod system knows about the modules already loaded. 508 */ 509 last_module_id = kobj_last_module_id; 510 bcopy(kobj_modules, &modules, sizeof (modules)); 511 modp = &modules; 512 do { 513 if (modp->mod_next == kobj_modules) 514 modp->mod_next = &modules; 515 if (modp->mod_prev == kobj_modules) 516 modp->mod_prev = &modules; 517 } while ((modp = modp->mod_next) != &modules); 518 519 standalone = 0; 520 521 #ifdef KOBJ_DEBUG 522 if (kobj_debug & D_DEBUG) 523 _kobj_printf(ops, 524 "krtld: really transferring control to: 0x%lx\n", entry); 525 #endif 526 527 /* restore printf/bcopy/bzero vectors before returning */ 528 kobj_restore_vectors(); 529 530 #if defined(_DBOOT) 531 /* 532 * krtld was called from a dboot ELF section, the embedded 533 * dboot code contains the real entry via bootaux 534 */ 535 exitto((caddr_t)entry); 536 #else 537 /* 538 * krtld was directly called from startup 539 */ 540 return; 541 #endif 542 543 fail: 544 545 _kobj_printf(ops, "krtld: error during initial load/link phase\n"); 546 547 #if !defined(_UNIX_KRTLD) 548 _kobj_printf(ops, "\n"); 549 _kobj_printf(ops, "krtld could neither locate nor resolve symbols" 550 " for:\n"); 551 _kobj_printf(ops, " %s\n", filename); 552 _kobj_printf(ops, "in the boot archive. Please verify that this" 553 " file\n"); 554 _kobj_printf(ops, "matches what is found in the boot archive.\n"); 555 _kobj_printf(ops, "You may need to boot using the Solaris failsafe to" 556 " fix this.\n"); 557 bop_panic("Unable to boot"); 558 #endif 559 } 560 561 #if !defined(_UNIX_KRTLD) && !defined(_OBP) 562 /* 563 * Synthesize additional metadata that describes the executable if 564 * krtld's caller didn't do it. 565 * 566 * (When the dynamic executable has an interpreter, the boot program 567 * does all this for us. Where we don't have an interpreter, (or a 568 * even a boot program, perhaps) we have to do this for ourselves.) 569 */ 570 static void 571 synthetic_bootaux(char *filename, val_t *bootaux) 572 { 573 Ehdr ehdr; 574 caddr_t phdrbase; 575 struct _buf *file; 576 int i, n; 577 578 /* 579 * Elf header 580 */ 581 KOBJ_MARK("synthetic_bootaux()"); 582 KOBJ_MARK(filename); 583 file = kobj_open_file(filename); 584 if (file == (struct _buf *)-1) { 585 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename); 586 return; 587 } 588 KOBJ_MARK("reading program headers"); 589 if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) { 590 _kobj_printf(ops, "krtld: %s: failed to read ehder\n", 591 filename); 592 return; 593 } 594 595 /* 596 * Program headers 597 */ 598 bootaux[BA_PHNUM].ba_val = ehdr.e_phnum; 599 bootaux[BA_PHENT].ba_val = ehdr.e_phentsize; 600 n = ehdr.e_phentsize * ehdr.e_phnum; 601 602 phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP); 603 604 if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) { 605 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n", 606 filename); 607 return; 608 } 609 bootaux[BA_PHDR].ba_ptr = phdrbase; 610 kobj_close_file(file); 611 KOBJ_MARK("closed file"); 612 613 /* 614 * Find the dynamic section address 615 */ 616 for (i = 0; i < ehdr.e_phnum; i++) { 617 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i); 618 619 if (phdr->p_type == PT_DYNAMIC) { 620 bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr; 621 break; 622 } 623 } 624 KOBJ_MARK("synthetic_bootaux() done"); 625 } 626 #endif /* !_UNIX_KRTLD && !_OBP */ 627 628 /* 629 * Set up any global information derived 630 * from attribute/values in the boot or 631 * aux vector. 632 */ 633 static void 634 attr_val(val_t *bootaux) 635 { 636 Phdr *phdr; 637 int phnum, phsize; 638 int i; 639 640 KOBJ_MARK("attr_val()"); 641 kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val; 642 lg_pagesize = bootaux[BA_LPAGESZ].ba_val; 643 use_iflush = bootaux[BA_IFLUSH].ba_val; 644 645 phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr; 646 phnum = bootaux[BA_PHNUM].ba_val; 647 phsize = bootaux[BA_PHENT].ba_val; 648 for (i = 0; i < phnum; i++) { 649 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize); 650 651 if (phdr->p_type != PT_LOAD) { 652 continue; 653 } 654 /* 655 * Bounds of the various segments. 656 */ 657 if (!(phdr->p_flags & PF_X)) { 658 #if defined(_RELSEG) 659 /* 660 * sparc kernel puts the dynamic info 661 * into a separate segment, which is 662 * free'd in bop_fini() 663 */ 664 ASSERT(phdr->p_vaddr != 0); 665 dynseg = phdr->p_vaddr; 666 dynsize = phdr->p_memsz; 667 #else 668 ASSERT(phdr->p_vaddr == 0); 669 #endif 670 } else { 671 if (phdr->p_flags & PF_W) { 672 _data = (caddr_t)phdr->p_vaddr; 673 _edata = _data + phdr->p_memsz; 674 } else { 675 _text = (caddr_t)phdr->p_vaddr; 676 _etext = _text + phdr->p_memsz; 677 } 678 } 679 } 680 681 /* To do the kobj_alloc, _edata needs to be set. */ 682 for (i = 0; i < NLIBMACROS; i++) { 683 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) { 684 libmacros[i].lmi_list = kobj_alloc( 685 strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) + 686 1, KM_WAIT); 687 (void) strcpy(libmacros[i].lmi_list, 688 bootaux[libmacros[i].lmi_ba_index].ba_ptr); 689 } 690 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname); 691 } 692 } 693 694 /* 695 * Set up the booted executable. 696 */ 697 static struct module * 698 load_exec(val_t *bootaux, char *filename) 699 { 700 struct modctl *cp; 701 struct module *mp; 702 Dyn *dyn; 703 Sym *sp; 704 int i, lsize, osize, nsize, allocsize; 705 char *libname, *tmp; 706 char path[MAXPATHLEN]; 707 708 #ifdef KOBJ_DEBUG 709 if (kobj_debug & D_DEBUG) 710 _kobj_printf(ops, "module path '%s'\n", kobj_module_path); 711 #endif 712 713 KOBJ_MARK("add_primary"); 714 cp = add_primary(filename, KOBJ_LM_PRIMARY); 715 716 KOBJ_MARK("struct module"); 717 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 718 cp->mod_mp = mp; 719 720 /* 721 * We don't have the following information 722 * since this module is an executable and not 723 * a relocatable .o. 724 */ 725 mp->symtbl_section = 0; 726 mp->shdrs = NULL; 727 mp->strhdr = NULL; 728 729 /* 730 * Since this module is the only exception, 731 * we cons up some section headers. 732 */ 733 KOBJ_MARK("symhdr"); 734 mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 735 736 KOBJ_MARK("strhdr"); 737 mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 738 739 mp->symhdr->sh_type = SHT_SYMTAB; 740 mp->strhdr->sh_type = SHT_STRTAB; 741 /* 742 * Scan the dynamic structure. 743 */ 744 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 745 dyn->d_tag != DT_NULL; dyn++) { 746 switch (dyn->d_tag) { 747 case DT_SYMTAB: 748 mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr; 749 mp->symhdr->sh_addr = dyn->d_un.d_ptr; 750 break; 751 case DT_HASH: 752 mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1); 753 mp->hashsize = *(uint_t *)dyn->d_un.d_ptr; 754 break; 755 case DT_STRTAB: 756 mp->strings = (char *)dyn->d_un.d_ptr; 757 mp->strhdr->sh_addr = dyn->d_un.d_ptr; 758 break; 759 case DT_STRSZ: 760 mp->strhdr->sh_size = dyn->d_un.d_val; 761 break; 762 case DT_SYMENT: 763 mp->symhdr->sh_entsize = dyn->d_un.d_val; 764 break; 765 } 766 } 767 768 /* 769 * Collapse any DT_NEEDED entries into one string. 770 */ 771 nsize = osize = 0; 772 allocsize = MAXPATHLEN; 773 774 KOBJ_MARK("depends_on"); 775 mp->depends_on = kobj_alloc(allocsize, KM_WAIT); 776 777 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 778 dyn->d_tag != DT_NULL; dyn++) 779 if (dyn->d_tag == DT_NEEDED) { 780 char *_lib; 781 782 libname = mp->strings + dyn->d_un.d_val; 783 if (strchr(libname, '$') != NULL) { 784 if ((_lib = expand_libmacro(libname, 785 path, path)) != NULL) 786 libname = _lib; 787 else 788 _kobj_printf(ops, "krtld: " 789 "load_exec: fail to " 790 "expand %s\n", libname); 791 } 792 lsize = strlen(libname); 793 nsize += lsize; 794 if (nsize + 1 > allocsize) { 795 KOBJ_MARK("grow depends_on"); 796 tmp = kobj_alloc(allocsize + MAXPATHLEN, 797 KM_WAIT); 798 bcopy(mp->depends_on, tmp, osize); 799 kobj_free(mp->depends_on, allocsize); 800 mp->depends_on = tmp; 801 allocsize += MAXPATHLEN; 802 } 803 bcopy(libname, mp->depends_on + osize, lsize); 804 *(mp->depends_on + nsize) = ' '; /* separate */ 805 nsize++; 806 osize = nsize; 807 } 808 if (nsize) { 809 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */ 810 /* 811 * alloc with exact size and copy whatever it got over 812 */ 813 KOBJ_MARK("realloc depends_on"); 814 tmp = kobj_alloc(nsize, KM_WAIT); 815 bcopy(mp->depends_on, tmp, nsize); 816 kobj_free(mp->depends_on, allocsize); 817 mp->depends_on = tmp; 818 } else { 819 kobj_free(mp->depends_on, allocsize); 820 mp->depends_on = NULL; 821 } 822 823 mp->flags = KOBJ_EXEC|KOBJ_PRIM; /* NOT a relocatable .o */ 824 mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize; 825 /* 826 * We allocate our own table since we don't 827 * hash undefined references. 828 */ 829 KOBJ_MARK("chains"); 830 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 831 KOBJ_MARK("buckets"); 832 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 833 834 mp->text = _text; 835 mp->data = _data; 836 837 mp->text_size = _etext - _text; 838 mp->data_size = _edata - _data; 839 840 cp->mod_text = mp->text; 841 cp->mod_text_size = mp->text_size; 842 843 mp->filename = cp->mod_filename; 844 845 #ifdef KOBJ_DEBUG 846 if (kobj_debug & D_LOADING) { 847 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 848 _kobj_printf(ops, "\ttext: 0x%p", mp->text); 849 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size); 850 _kobj_printf(ops, "\tdata: 0x%p", mp->data); 851 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size); 852 } 853 #endif /* KOBJ_DEBUG */ 854 855 /* 856 * Insert symbols into the hash table. 857 */ 858 for (i = 0; i < mp->nsyms; i++) { 859 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 860 861 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 862 continue; 863 #if defined(__sparc) 864 /* 865 * Register symbols are ignored in the kernel 866 */ 867 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) 868 continue; 869 #endif /* __sparc */ 870 871 sym_insert(mp, mp->strings + sp->st_name, i); 872 } 873 874 KOBJ_MARK("load_exec done"); 875 return (mp); 876 } 877 878 static boolean_t 879 is_extended_ehdr(const Ehdr *hdr) 880 { 881 /* 882 * If any of e_shnum, e_shstrndx, or e_phnum are at their sentinel 883 * value, this indicates that an extended ELF header is in use. That 884 * means that one or more of these values is too large to fit in the 885 * elf header and the true values for those are in the first section 886 * header. 887 */ 888 return ((hdr->e_shnum == 0 && hdr->e_shoff != 0) || 889 hdr->e_phnum == PN_XNUM || hdr->e_shstrndx == SHN_XINDEX); 890 } 891 892 /* 893 * Set up the linker module (if it's compiled in, LDNAME is NULL) 894 */ 895 static void 896 load_linker(val_t *bootaux) 897 { 898 struct module *kmp = (struct module *)kobj_modules->mod_mp; 899 struct module *mp; 900 struct modctl *cp; 901 int i; 902 Shdr *shp; 903 Sym *sp; 904 int shsize; 905 char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr; 906 Ehdr *ehdr = (Ehdr *)bootaux[BA_LDELF].ba_ptr; 907 908 /* 909 * On some architectures, krtld is compiled into the kernel. 910 */ 911 if (dlname == NULL) 912 return; 913 914 /* 915 * We don't support loading the linker from an ELF object which uses an 916 * extended header. That's identified by looking for sentinel values in 917 * selected header fields. 918 */ 919 if (is_extended_ehdr(ehdr)) { 920 bop_panic( 921 "linker %s has an extended ELF header; unable to load.", 922 dlname); 923 } 924 925 cp = add_primary(dlname, KOBJ_LM_PRIMARY); 926 927 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 928 929 cp->mod_mp = mp; 930 mp->hdr = *ehdr; 931 mp->shnum = mp->hdr.e_shnum; 932 mp->phnum = mp->hdr.e_phnum; 933 mp->shstrndx = mp->hdr.e_shstrndx; 934 shsize = mp->hdr.e_shentsize * mp->shnum; 935 mp->shdrs = kobj_alloc(shsize, KM_WAIT); 936 bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize); 937 938 for (i = 1; i < (int)mp->shnum; i++) { 939 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize)); 940 941 if (shp->sh_flags & SHF_ALLOC) { 942 if (shp->sh_flags & SHF_WRITE) { 943 if (mp->data == NULL) 944 mp->data = (char *)shp->sh_addr; 945 } else if (mp->text == NULL) { 946 mp->text = (char *)shp->sh_addr; 947 } 948 } 949 if (shp->sh_type == SHT_SYMTAB) { 950 mp->symtbl_section = i; 951 mp->symhdr = shp; 952 mp->symspace = mp->symtbl = (char *)shp->sh_addr; 953 } 954 } 955 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 956 mp->flags = KOBJ_INTERP|KOBJ_PRIM; 957 mp->strhdr = (Shdr *) 958 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 959 mp->strings = (char *)mp->strhdr->sh_addr; 960 mp->hashsize = kobj_gethashsize(mp->nsyms); 961 962 mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) + 963 (mp->hashsize + mp->nsyms) * sizeof (symid_t); 964 965 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 966 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 967 968 mp->bss = bootaux[BA_BSS].ba_val; 969 mp->bss_align = 0; /* pre-aligned during allocation */ 970 mp->bss_size = (uintptr_t)_edata - mp->bss; 971 mp->text_size = _etext - mp->text; 972 mp->data_size = _edata - mp->data; 973 mp->filename = cp->mod_filename; 974 cp->mod_text = mp->text; 975 cp->mod_text_size = mp->text_size; 976 977 /* 978 * Now that we've figured out where the linker is, 979 * set the limits for the booted object. 980 */ 981 kmp->text_size = (size_t)(mp->text - kmp->text); 982 kmp->data_size = (size_t)(mp->data - kmp->data); 983 kobj_modules->mod_text_size = kmp->text_size; 984 985 #ifdef KOBJ_DEBUG 986 if (kobj_debug & D_LOADING) { 987 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 988 _kobj_printf(ops, "\ttext:0x%p", mp->text); 989 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size); 990 _kobj_printf(ops, "\tdata:0x%p", mp->data); 991 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size); 992 } 993 #endif /* KOBJ_DEBUG */ 994 995 /* 996 * Insert the symbols into the hash table. 997 */ 998 for (i = 0; i < mp->nsyms; i++) { 999 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 1000 1001 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 1002 continue; 1003 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 1004 if (sp->st_shndx == SHN_COMMON) 1005 sp->st_shndx = SHN_ABS; 1006 } 1007 sym_insert(mp, mp->strings + sp->st_name, i); 1008 } 1009 1010 } 1011 1012 static kobj_notify_list_t ** 1013 kobj_notify_lookup(uint_t type) 1014 { 1015 ASSERT(type != 0 && type < sizeof (kobj_notifiers) / 1016 sizeof (kobj_notify_list_t *)); 1017 1018 return (&kobj_notifiers[type]); 1019 } 1020 1021 int 1022 kobj_notify_add(kobj_notify_list_t *knp) 1023 { 1024 kobj_notify_list_t **knl; 1025 1026 knl = kobj_notify_lookup(knp->kn_type); 1027 1028 knp->kn_next = NULL; 1029 knp->kn_prev = NULL; 1030 1031 mutex_enter(&kobj_lock); 1032 1033 if (*knl != NULL) { 1034 (*knl)->kn_prev = knp; 1035 knp->kn_next = *knl; 1036 } 1037 (*knl) = knp; 1038 1039 mutex_exit(&kobj_lock); 1040 return (0); 1041 } 1042 1043 int 1044 kobj_notify_remove(kobj_notify_list_t *knp) 1045 { 1046 kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type); 1047 kobj_notify_list_t *tknp; 1048 1049 mutex_enter(&kobj_lock); 1050 1051 if ((tknp = knp->kn_next) != NULL) 1052 tknp->kn_prev = knp->kn_prev; 1053 1054 if ((tknp = knp->kn_prev) != NULL) 1055 tknp->kn_next = knp->kn_next; 1056 else 1057 *knl = knp->kn_next; 1058 1059 mutex_exit(&kobj_lock); 1060 1061 return (0); 1062 } 1063 1064 /* 1065 * Notify all interested callbacks of a specified change in module state. 1066 */ 1067 static void 1068 kobj_notify(int type, struct modctl *modp) 1069 { 1070 kobj_notify_list_t *knp; 1071 1072 if (modp->mod_loadflags & MOD_NONOTIFY || standalone) 1073 return; 1074 1075 mutex_enter(&kobj_lock); 1076 1077 for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next) 1078 knp->kn_func(type, modp); 1079 1080 /* 1081 * KDI notification must be last (it has to allow for work done by the 1082 * other notification callbacks), so we call it manually. 1083 */ 1084 kobj_kdi_mod_notify(type, modp); 1085 1086 mutex_exit(&kobj_lock); 1087 } 1088 1089 /* 1090 * Create the module path. 1091 */ 1092 static char * 1093 getmodpath(const char *filename) 1094 { 1095 char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT); 1096 1097 /* 1098 * Platform code gets first crack, then add 1099 * the default components 1100 */ 1101 mach_modpath(path, filename); 1102 if (*path != '\0') 1103 (void) strcat(path, " "); 1104 return (strcat(path, MOD_DEFPATH)); 1105 } 1106 1107 static struct modctl * 1108 add_primary(const char *filename, int lmid) 1109 { 1110 struct modctl *cp; 1111 1112 cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT); 1113 1114 cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT); 1115 1116 /* 1117 * For symbol lookup, we assemble our own 1118 * modctl list of the primary modules. 1119 */ 1120 1121 (void) strcpy(cp->mod_filename, filename); 1122 cp->mod_modname = basename(cp->mod_filename); 1123 1124 /* set values for modinfo assuming that the load will work */ 1125 cp->mod_prim = 1; 1126 cp->mod_loaded = 1; 1127 cp->mod_installed = 1; 1128 cp->mod_loadcnt = 1; 1129 cp->mod_loadflags = MOD_NOAUTOUNLOAD; 1130 1131 cp->mod_id = kobj_last_module_id++; 1132 1133 /* 1134 * Link the module in. We'll pass this info on 1135 * to the mod squad later. 1136 */ 1137 if (kobj_modules == NULL) { 1138 kobj_modules = cp; 1139 cp->mod_prev = cp->mod_next = cp; 1140 } else { 1141 cp->mod_prev = kobj_modules->mod_prev; 1142 cp->mod_next = kobj_modules; 1143 kobj_modules->mod_prev->mod_next = cp; 1144 kobj_modules->mod_prev = cp; 1145 } 1146 1147 kobj_lm_append(lmid, cp); 1148 1149 return (cp); 1150 } 1151 1152 static int 1153 kobj_load_elfhdr(struct _buf *file, struct module *mp) 1154 { 1155 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) { 1156 _kobj_printf(ops, "kobj_load_elfhdr: %s read header failed\n", 1157 mp->filename); 1158 return (-1); 1159 } 1160 1161 mp->shnum = mp->hdr.e_shnum; 1162 mp->shstrndx = mp->hdr.e_shstrndx; 1163 mp->phnum = mp->hdr.e_phnum; 1164 1165 /* 1166 * If there is an extended ELF header we need to read in the first 1167 * section header to access the values for fields that don't fit in 1168 * the standard header. 1169 */ 1170 if (is_extended_ehdr(&mp->hdr)) { 1171 Shdr hdr0; 1172 1173 if (mp->hdr.e_shoff == 0 || 1174 kobj_read_file(file, (char *)&hdr0, sizeof (hdr0), 1175 mp->hdr.e_shoff) < 0) { 1176 _kobj_printf(ops, 1177 "kobj_load_elfhdr: %s read ext header failed\n", 1178 mp->filename); 1179 return (-1); 1180 } 1181 1182 if (mp->shnum == 0) 1183 mp->shnum = hdr0.sh_size; 1184 if (mp->shstrndx == SHN_XINDEX) 1185 mp->shstrndx = hdr0.sh_link; 1186 if (mp->phnum == PN_XNUM && hdr0.sh_info != 0) 1187 mp->phnum = hdr0.sh_info; 1188 } 1189 1190 return (0); 1191 } 1192 1193 static int 1194 bind_primary(val_t *bootaux, int lmid) 1195 { 1196 struct modctl_list *linkmap = kobj_lm_lookup(lmid); 1197 struct modctl_list *lp; 1198 struct module *mp; 1199 1200 /* 1201 * Do common symbols. 1202 */ 1203 for (lp = linkmap; lp; lp = lp->modl_next) { 1204 mp = mod(lp); 1205 1206 /* 1207 * Don't do common section relocations for modules that 1208 * don't need it. 1209 */ 1210 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP)) 1211 continue; 1212 1213 if (do_common(mp) < 0) 1214 return (-1); 1215 } 1216 1217 /* 1218 * Resolve symbols. 1219 */ 1220 for (lp = linkmap; lp; lp = lp->modl_next) { 1221 mp = mod(lp); 1222 1223 if (do_symbols(mp, 0) < 0) 1224 return (-1); 1225 } 1226 1227 /* 1228 * Do relocations. 1229 */ 1230 for (lp = linkmap; lp; lp = lp->modl_next) { 1231 mp = mod(lp); 1232 1233 if (mp->flags & KOBJ_EXEC) { 1234 Dyn *dyn; 1235 Word relasz = 0, relaent = 0; 1236 char *rela = NULL; 1237 1238 for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr; 1239 dyn->d_tag != DT_NULL; dyn++) { 1240 switch (dyn->d_tag) { 1241 case DT_RELASZ: 1242 case DT_RELSZ: 1243 relasz = dyn->d_un.d_val; 1244 break; 1245 case DT_RELAENT: 1246 case DT_RELENT: 1247 relaent = dyn->d_un.d_val; 1248 break; 1249 case DT_RELA: 1250 rela = (char *)dyn->d_un.d_ptr; 1251 break; 1252 case DT_REL: 1253 rela = (char *)dyn->d_un.d_ptr; 1254 break; 1255 } 1256 } 1257 if (relasz == 0 || 1258 relaent == 0 || rela == NULL) { 1259 _kobj_printf(ops, "krtld: bind_primary(): " 1260 "no relocation information found for " 1261 "module %s\n", mp->filename); 1262 return (-1); 1263 } 1264 #ifdef KOBJ_DEBUG 1265 if (kobj_debug & D_RELOCATIONS) 1266 _kobj_printf(ops, "krtld: relocating: file=%s " 1267 "KOBJ_EXEC\n", mp->filename); 1268 #endif 1269 if (do_relocate(mp, rela, relasz/relaent, relaent, 1270 (Addr)mp->text) < 0) 1271 return (-1); 1272 } else { 1273 if (do_relocations(mp) < 0) 1274 return (-1); 1275 } 1276 1277 kobj_sync_instruction_memory(mp->text, mp->text_size); 1278 } 1279 1280 for (lp = linkmap; lp; lp = lp->modl_next) { 1281 mp = mod(lp); 1282 1283 /* 1284 * We need to re-read the full symbol table for the boot file, 1285 * since we couldn't use the full one before. We also need to 1286 * load the CTF sections of both the boot file and the 1287 * interpreter (us). 1288 */ 1289 if (mp->flags & KOBJ_EXEC) { 1290 struct _buf *file; 1291 int n; 1292 1293 file = kobj_open_file(mp->filename); 1294 if (file == (struct _buf *)-1) 1295 return (-1); 1296 if (kobj_load_elfhdr(file, mp) < 0) 1297 return (-1); 1298 n = mp->hdr.e_shentsize * mp->shnum; 1299 mp->shdrs = kobj_alloc(n, KM_WAIT); 1300 if (kobj_read_file(file, mp->shdrs, n, 1301 mp->hdr.e_shoff) < 0) 1302 return (-1); 1303 if (get_syms(mp, file) < 0) 1304 return (-1); 1305 if (get_ctf(mp, file) < 0) 1306 return (-1); 1307 kobj_close_file(file); 1308 mp->flags |= KOBJ_RELOCATED; 1309 1310 } else if (mp->flags & KOBJ_INTERP) { 1311 struct _buf *file; 1312 1313 /* 1314 * The interpreter path fragment in mp->filename 1315 * will already have the module directory suffix 1316 * in it (if appropriate). 1317 */ 1318 file = kobj_open_path(mp->filename, 1, 0); 1319 if (file == (struct _buf *)-1) 1320 return (-1); 1321 if (get_ctf(mp, file) < 0) 1322 return (-1); 1323 kobj_close_file(file); 1324 mp->flags |= KOBJ_RELOCATED; 1325 } 1326 } 1327 1328 return (0); 1329 } 1330 1331 static struct modctl * 1332 mod_already_loaded(char *modname) 1333 { 1334 struct modctl *mctl = kobj_modules; 1335 1336 do { 1337 if (strcmp(modname, mctl->mod_filename) == 0) 1338 return (mctl); 1339 mctl = mctl->mod_next; 1340 1341 } while (mctl != kobj_modules); 1342 1343 return (NULL); 1344 } 1345 1346 /* 1347 * Load all the primary dependent modules. 1348 */ 1349 static int 1350 load_primary(struct module *mp, int lmid) 1351 { 1352 struct modctl *cp; 1353 struct module *dmp; 1354 char *p, *q; 1355 char modname[MODMAXNAMELEN]; 1356 1357 if ((p = mp->depends_on) == NULL) 1358 return (0); 1359 1360 /* CONSTANTCONDITION */ 1361 while (1) { 1362 /* 1363 * Skip space. 1364 */ 1365 while (*p && (*p == ' ' || *p == '\t')) 1366 p++; 1367 /* 1368 * Get module name. 1369 */ 1370 q = modname; 1371 while (*p && *p != ' ' && *p != '\t') 1372 *q++ = *p++; 1373 1374 if (q == modname) 1375 break; 1376 1377 *q = '\0'; 1378 /* 1379 * Check for dup dependencies. 1380 */ 1381 if (strcmp(modname, "dtracestubs") == 0 || 1382 mod_already_loaded(modname) != NULL) 1383 continue; 1384 1385 cp = add_primary(modname, lmid); 1386 cp->mod_busy = 1; 1387 /* 1388 * Load it. 1389 */ 1390 (void) kobj_load_module(cp, 1); 1391 cp->mod_busy = 0; 1392 1393 if ((dmp = cp->mod_mp) == NULL) { 1394 cp->mod_loaded = 0; 1395 cp->mod_installed = 0; 1396 cp->mod_loadcnt = 0; 1397 return (-1); 1398 } 1399 1400 add_dependent(mp, dmp); 1401 dmp->flags |= KOBJ_PRIM; 1402 1403 /* 1404 * Recurse. 1405 */ 1406 if (load_primary(dmp, lmid) == -1) { 1407 cp->mod_loaded = 0; 1408 cp->mod_installed = 0; 1409 cp->mod_loadcnt = 0; 1410 return (-1); 1411 } 1412 } 1413 return (0); 1414 } 1415 1416 static int 1417 console_is_usb_serial(void) 1418 { 1419 char *console; 1420 int len, ret; 1421 1422 if ((len = BOP_GETPROPLEN(ops, "console")) == -1) 1423 return (0); 1424 1425 console = kobj_zalloc(len, KM_WAIT|KM_TMP); 1426 (void) BOP_GETPROP(ops, "console", console); 1427 ret = (strcmp(console, "usb-serial") == 0); 1428 kobj_free(console, len); 1429 1430 return (ret); 1431 } 1432 1433 static int 1434 load_kmdb(val_t *bootaux) 1435 { 1436 struct modctl *mctl; 1437 struct module *mp; 1438 Sym *sym; 1439 1440 if (console_is_usb_serial()) { 1441 _kobj_printf(ops, "kmdb not loaded " 1442 "(unsupported on usb serial console)\n"); 1443 return (0); 1444 } 1445 1446 _kobj_printf(ops, "Loading kmdb...\n"); 1447 1448 if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL) 1449 return (-1); 1450 1451 mctl->mod_busy = 1; 1452 (void) kobj_load_module(mctl, 1); 1453 mctl->mod_busy = 0; 1454 1455 if ((mp = mctl->mod_mp) == NULL) 1456 return (-1); 1457 1458 mp->flags |= KOBJ_PRIM; 1459 1460 if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0) 1461 return (-1); 1462 1463 if (boothowto & RB_VERBOSE) 1464 kobj_lm_dump(KOBJ_LM_DEBUGGER); 1465 1466 if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0) 1467 return (-1); 1468 1469 if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL) 1470 return (-1); 1471 1472 #ifdef KOBJ_DEBUG 1473 if (kobj_debug & D_DEBUG) { 1474 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n", 1475 sym->st_value); 1476 _kobj_printf(ops, "\tops 0x%p\n", ops); 1477 _kobj_printf(ops, "\tromp 0x%p\n", romp); 1478 } 1479 #endif 1480 1481 if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0, 1482 (const char **)kobj_kmdb_argv) < 0) 1483 return (-1); 1484 1485 return (0); 1486 } 1487 1488 /* 1489 * Return a string listing module dependencies. 1490 */ 1491 static char * 1492 depends_on(struct module *mp) 1493 { 1494 Sym *sp; 1495 char *depstr, *q; 1496 1497 /* 1498 * The module doesn't have a depends_on value, so let's try it the 1499 * old-fashioned way - via "_depends_on" 1500 */ 1501 if ((sp = lookup_one(mp, "_depends_on")) == NULL) 1502 return (NULL); 1503 1504 q = (char *)sp->st_value; 1505 1506 #ifdef KOBJ_DEBUG 1507 /* 1508 * _depends_on is a deprecated interface, so we warn about its use 1509 * irrespective of subsequent processing errors. How else are we going 1510 * to be able to deco this interface completely? 1511 * Changes initially limited to DEBUG because third-party modules 1512 * should be flagged to developers before general use base. 1513 */ 1514 _kobj_printf(ops, 1515 "Warning: %s uses deprecated _depends_on interface.\n", 1516 mp->filename); 1517 _kobj_printf(ops, "Please notify module developer or vendor.\n"); 1518 #endif 1519 1520 /* 1521 * Idiot checks. Make sure it's 1522 * in-bounds and NULL terminated. 1523 */ 1524 if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') { 1525 _kobj_printf(ops, "Error processing dependency for %s\n", 1526 mp->filename); 1527 return (NULL); 1528 } 1529 1530 depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT); 1531 (void) strcpy(depstr, q); 1532 1533 return (depstr); 1534 } 1535 1536 void 1537 kobj_getmodinfo(void *xmp, struct modinfo *modinfo) 1538 { 1539 struct module *mp; 1540 mp = (struct module *)xmp; 1541 1542 modinfo->mi_base = mp->text; 1543 modinfo->mi_size = mp->text_size + mp->data_size; 1544 } 1545 1546 /* 1547 * kobj_export_ksyms() performs the following services: 1548 * 1549 * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena. 1550 * (2) Removes unneeded symbols to save space. 1551 * (3) Reduces memory footprint by using VM_BESTFIT allocations. 1552 * (4) Makes the symbol table visible to /dev/ksyms. 1553 */ 1554 static void 1555 kobj_export_ksyms(struct module *mp) 1556 { 1557 Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size); 1558 Sym *sp, *osp; 1559 char *name; 1560 size_t namelen; 1561 struct module *omp; 1562 uint_t nsyms; 1563 size_t symsize = mp->symhdr->sh_entsize; 1564 size_t locals = 1; 1565 size_t strsize; 1566 1567 /* 1568 * Make a copy of the original module structure. 1569 */ 1570 omp = kobj_alloc(sizeof (struct module), KM_WAIT); 1571 bcopy(mp, omp, sizeof (struct module)); 1572 1573 /* 1574 * Compute the sizes of the new symbol table sections. 1575 */ 1576 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1577 if (osp->st_value == 0) 1578 continue; 1579 if (sym_lookup(omp, osp) == NULL) 1580 continue; 1581 name = omp->strings + osp->st_name; 1582 namelen = strlen(name); 1583 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL) 1584 locals++; 1585 nsyms++; 1586 strsize += namelen + 1; 1587 } 1588 1589 mp->nsyms = nsyms; 1590 mp->hashsize = kobj_gethashsize(mp->nsyms); 1591 1592 /* 1593 * ksyms_lock must be held as writer during any operation that 1594 * modifies ksyms_arena, including allocation from same, and 1595 * must not be dropped until the arena is vmem_walk()able. 1596 */ 1597 rw_enter(&ksyms_lock, RW_WRITER); 1598 1599 /* 1600 * Allocate space for the new section headers (symtab and strtab), 1601 * symbol table, buckets, chains, and strings. 1602 */ 1603 mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) + 1604 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize; 1605 1606 if (mp->flags & KOBJ_NOKSYMS) { 1607 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT); 1608 } else { 1609 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize, 1610 VM_BESTFIT | VM_SLEEP); 1611 } 1612 bzero(mp->symspace, mp->symsize); 1613 1614 /* 1615 * Divvy up symspace. 1616 */ 1617 mp->shdrs = mp->symspace; 1618 mp->symhdr = (Shdr *)mp->shdrs; 1619 mp->strhdr = (Shdr *)(mp->symhdr + 1); 1620 mp->symtbl = (char *)(mp->strhdr + 1); 1621 mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize)); 1622 mp->chains = (symid_t *)(mp->buckets + mp->hashsize); 1623 mp->strings = (char *)(mp->chains + nsyms); 1624 1625 /* 1626 * Fill in the new section headers (symtab and strtab). 1627 */ 1628 mp->shnum = 2; 1629 mp->symtbl_section = 0; 1630 1631 mp->symhdr->sh_type = SHT_SYMTAB; 1632 mp->symhdr->sh_addr = (Addr)mp->symtbl; 1633 mp->symhdr->sh_size = nsyms * symsize; 1634 mp->symhdr->sh_link = 1; 1635 mp->symhdr->sh_info = locals; 1636 mp->symhdr->sh_addralign = sizeof (Addr); 1637 mp->symhdr->sh_entsize = symsize; 1638 1639 mp->strhdr->sh_type = SHT_STRTAB; 1640 mp->strhdr->sh_addr = (Addr)mp->strings; 1641 mp->strhdr->sh_size = strsize; 1642 mp->strhdr->sh_addralign = 1; 1643 1644 /* 1645 * Construct the new symbol table. 1646 */ 1647 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1648 if (osp->st_value == 0) 1649 continue; 1650 if (sym_lookup(omp, osp) == NULL) 1651 continue; 1652 name = omp->strings + osp->st_name; 1653 namelen = strlen(name); 1654 sp = (Sym *)(mp->symtbl + symsize * nsyms); 1655 bcopy(osp, sp, symsize); 1656 bcopy(name, mp->strings + strsize, namelen); 1657 sp->st_name = strsize; 1658 sym_insert(mp, name, nsyms); 1659 nsyms++; 1660 strsize += namelen + 1; 1661 } 1662 1663 rw_exit(&ksyms_lock); 1664 1665 /* 1666 * Free the old section headers -- we'll never need them again. 1667 */ 1668 if (!(mp->flags & KOBJ_PRIM)) { 1669 uint_t shn; 1670 Shdr *shp; 1671 1672 for (shn = 1; shn < omp->shnum; shn++) { 1673 shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize); 1674 switch (shp->sh_type) { 1675 case SHT_RELA: 1676 case SHT_REL: 1677 if (shp->sh_addr != 0) { 1678 kobj_free((void *)shp->sh_addr, 1679 shp->sh_size); 1680 } 1681 break; 1682 } 1683 } 1684 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->shnum); 1685 } 1686 /* 1687 * Discard the old symbol table and our copy of the module strucure. 1688 */ 1689 if (!(mp->flags & KOBJ_PRIM)) 1690 kobj_free(omp->symspace, omp->symsize); 1691 kobj_free(omp, sizeof (struct module)); 1692 } 1693 1694 static void 1695 kobj_export_ctf(struct module *mp) 1696 { 1697 char *data = mp->ctfdata; 1698 size_t size = mp->ctfsize; 1699 1700 if (data != NULL) { 1701 if (_moddebug & MODDEBUG_NOCTF) { 1702 mp->ctfdata = NULL; 1703 mp->ctfsize = 0; 1704 } else { 1705 mp->ctfdata = vmem_alloc(ctf_arena, size, 1706 VM_BESTFIT | VM_SLEEP); 1707 bcopy(data, mp->ctfdata, size); 1708 } 1709 1710 if (!(mp->flags & KOBJ_PRIM)) 1711 kobj_free(data, size); 1712 } 1713 } 1714 1715 void 1716 kobj_export_module(struct module *mp) 1717 { 1718 kobj_export_ksyms(mp); 1719 kobj_export_ctf(mp); 1720 1721 mp->flags |= KOBJ_EXPORTED; 1722 } 1723 1724 static int 1725 process_dynamic(struct module *mp, char *dyndata, char *strdata) 1726 { 1727 char *path = NULL, *depstr = NULL; 1728 int allocsize = 0, osize = 0, nsize = 0; 1729 char *libname, *tmp; 1730 int lsize; 1731 Dyn *dynp; 1732 1733 for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) { 1734 switch (dynp->d_tag) { 1735 case DT_NEEDED: 1736 /* 1737 * Read the DT_NEEDED entries, expanding the macros they 1738 * contain (if any), and concatenating them into a 1739 * single space-separated dependency list. 1740 */ 1741 libname = (ulong_t)dynp->d_un.d_ptr + strdata; 1742 1743 if (strchr(libname, '$') != NULL) { 1744 char *_lib; 1745 1746 if (path == NULL) 1747 path = kobj_alloc(MAXPATHLEN, KM_WAIT); 1748 if ((_lib = expand_libmacro(libname, path, 1749 path)) != NULL) 1750 libname = _lib; 1751 else { 1752 _kobj_printf(ops, "krtld: " 1753 "process_dynamic: failed to expand " 1754 "%s\n", libname); 1755 } 1756 } 1757 1758 lsize = strlen(libname); 1759 nsize += lsize; 1760 if (nsize + 1 > allocsize) { 1761 tmp = kobj_alloc(allocsize + MAXPATHLEN, 1762 KM_WAIT); 1763 if (depstr != NULL) { 1764 bcopy(depstr, tmp, osize); 1765 kobj_free(depstr, allocsize); 1766 } 1767 depstr = tmp; 1768 allocsize += MAXPATHLEN; 1769 } 1770 bcopy(libname, depstr + osize, lsize); 1771 *(depstr + nsize) = ' '; /* separator */ 1772 nsize++; 1773 osize = nsize; 1774 break; 1775 1776 case DT_FLAGS_1: 1777 if (dynp->d_un.d_val & DF_1_IGNMULDEF) 1778 mp->flags |= KOBJ_IGNMULDEF; 1779 if (dynp->d_un.d_val & DF_1_NOKSYMS) 1780 mp->flags |= KOBJ_NOKSYMS; 1781 1782 break; 1783 } 1784 } 1785 1786 /* 1787 * finish up the depends string (if any) 1788 */ 1789 if (depstr != NULL) { 1790 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */ 1791 if (path != NULL) 1792 kobj_free(path, MAXPATHLEN); 1793 1794 tmp = kobj_alloc(nsize, KM_WAIT); 1795 bcopy(depstr, tmp, nsize); 1796 kobj_free(depstr, allocsize); 1797 depstr = tmp; 1798 1799 mp->depends_on = depstr; 1800 } 1801 1802 return (0); 1803 } 1804 1805 static int 1806 do_dynamic(struct module *mp, struct _buf *file) 1807 { 1808 Shdr *dshp, *dstrp, *shp; 1809 char *dyndata, *dstrdata; 1810 int dshn, shn, rc; 1811 1812 /* find and validate the dynamic section (if any) */ 1813 1814 for (dshp = NULL, shn = 1; shn < mp->shnum; shn++) { 1815 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 1816 switch (shp->sh_type) { 1817 case SHT_DYNAMIC: 1818 if (dshp != NULL) { 1819 _kobj_printf(ops, "krtld: get_dynamic: %s, ", 1820 mp->filename); 1821 _kobj_printf(ops, 1822 "multiple dynamic sections\n"); 1823 return (-1); 1824 } else { 1825 dshp = shp; 1826 dshn = shn; 1827 } 1828 break; 1829 } 1830 } 1831 1832 if (dshp == NULL) 1833 return (0); 1834 1835 if (dshp->sh_link > mp->shnum) { 1836 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1837 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link); 1838 return (-1); 1839 } 1840 dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize); 1841 1842 if (dstrp->sh_type != SHT_STRTAB) { 1843 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1844 _kobj_printf(ops, "sh_link not a string table for section %d\n", 1845 dshn); 1846 return (-1); 1847 } 1848 1849 /* read it from disk */ 1850 1851 dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP); 1852 if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) { 1853 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1854 _kobj_printf(ops, "error reading section %d\n", dshn); 1855 1856 kobj_free(dyndata, dshp->sh_size); 1857 return (-1); 1858 } 1859 1860 dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP); 1861 if (kobj_read_file(file, dstrdata, dstrp->sh_size, 1862 dstrp->sh_offset) < 0) { 1863 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1864 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link); 1865 1866 kobj_free(dyndata, dshp->sh_size); 1867 kobj_free(dstrdata, dstrp->sh_size); 1868 return (-1); 1869 } 1870 1871 /* pull the interesting pieces out */ 1872 1873 rc = process_dynamic(mp, dyndata, dstrdata); 1874 1875 kobj_free(dyndata, dshp->sh_size); 1876 kobj_free(dstrdata, dstrp->sh_size); 1877 1878 return (rc); 1879 } 1880 1881 void 1882 kobj_set_ctf(struct module *mp, caddr_t data, size_t size) 1883 { 1884 if (!standalone) { 1885 if (mp->ctfdata != NULL) { 1886 if (vmem_contains(ctf_arena, mp->ctfdata, 1887 mp->ctfsize)) { 1888 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 1889 } else { 1890 kobj_free(mp->ctfdata, mp->ctfsize); 1891 } 1892 } 1893 } 1894 1895 /* 1896 * The order is very important here. We need to make sure that 1897 * consumers, at any given instant, see a consistent state. We'd 1898 * rather they see no CTF data than the address of one buffer and the 1899 * size of another. 1900 */ 1901 mp->ctfdata = NULL; 1902 membar_producer(); 1903 mp->ctfsize = size; 1904 mp->ctfdata = data; 1905 membar_producer(); 1906 } 1907 1908 int 1909 kobj_load_module(struct modctl *modp, int use_path) 1910 { 1911 char *filename = modp->mod_filename; 1912 char *modname = modp->mod_modname; 1913 int i; 1914 int n; 1915 struct _buf *file; 1916 struct module *mp = NULL; 1917 #ifdef MODDIR_SUFFIX 1918 int no_suffixdir_drv = 0; 1919 #endif 1920 1921 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 1922 1923 /* 1924 * We need to prevent kmdb's symbols from leaking into /dev/ksyms. 1925 * kmdb contains a bunch of symbols with well-known names, symbols 1926 * which will mask the real versions, thus causing no end of trouble 1927 * for mdb. 1928 */ 1929 if (strcmp(modp->mod_modname, "kmdbmod") == 0) 1930 mp->flags |= KOBJ_NOKSYMS; 1931 1932 file = kobj_open_path(filename, use_path, 1); 1933 if (file == (struct _buf *)-1) { 1934 #ifdef MODDIR_SUFFIX 1935 file = kobj_open_path(filename, use_path, 0); 1936 #endif 1937 if (file == (struct _buf *)-1) { 1938 kobj_free(mp, sizeof (*mp)); 1939 goto bad; 1940 } 1941 #ifdef MODDIR_SUFFIX 1942 /* 1943 * There is no driver module in the ISA specific (suffix) 1944 * subdirectory but there is a module in the parent directory. 1945 */ 1946 if (strncmp(filename, "drv/", 4) == 0) { 1947 no_suffixdir_drv = 1; 1948 } 1949 #endif 1950 } 1951 1952 mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT); 1953 (void) strcpy(mp->filename, file->_name); 1954 1955 if (kobj_load_elfhdr(file, mp) != 0) { 1956 kobj_free(mp->filename, strlen(file->_name) + 1); 1957 kobj_free(mp, sizeof (*mp)); 1958 goto bad; 1959 } 1960 1961 for (i = 0; i < SELFMAG; i++) { 1962 if (mp->hdr.e_ident[i] != ELFMAG[i]) { 1963 if (_moddebug & MODDEBUG_ERRMSG) 1964 _kobj_printf(ops, "%s not an elf module\n", 1965 modname); 1966 kobj_free(mp->filename, strlen(file->_name) + 1); 1967 kobj_free(mp, sizeof (*mp)); 1968 goto bad; 1969 } 1970 } 1971 /* 1972 * It's ELF, but is it our ISA? Interpreting the header 1973 * from a file for a byte-swapped ISA could cause a huge 1974 * and unsatisfiable value to be passed to kobj_alloc below 1975 * and therefore hang booting. 1976 */ 1977 if (!elf_mach_ok(&mp->hdr)) { 1978 if (_moddebug & MODDEBUG_ERRMSG) 1979 _kobj_printf(ops, "%s not an elf module for this ISA\n", 1980 modname); 1981 kobj_free(mp->filename, strlen(file->_name) + 1); 1982 kobj_free(mp, sizeof (*mp)); 1983 #ifdef MODDIR_SUFFIX 1984 /* 1985 * The driver mod is not in the ISA specific subdirectory 1986 * and the module in the parent directory is not our ISA. 1987 * If it is our ISA, for now we will silently succeed. 1988 */ 1989 if (no_suffixdir_drv == 1) { 1990 cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module" 1991 " not found\n", modname); 1992 } 1993 #endif 1994 goto bad; 1995 } 1996 1997 /* 1998 * All modules, save for unix, should be relocatable (as opposed to 1999 * dynamic). Dynamic modules come with PLTs and GOTs, which can't 2000 * currently be processed by krtld. 2001 */ 2002 if (mp->hdr.e_type != ET_REL) { 2003 if (_moddebug & MODDEBUG_ERRMSG) 2004 _kobj_printf(ops, "%s isn't a relocatable (ET_REL) " 2005 "module\n", modname); 2006 kobj_free(mp->filename, strlen(file->_name) + 1); 2007 kobj_free(mp, sizeof (*mp)); 2008 goto bad; 2009 } 2010 2011 n = mp->hdr.e_shentsize * mp->shnum; 2012 mp->shdrs = kobj_alloc(n, KM_WAIT); 2013 2014 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) { 2015 _kobj_printf(ops, "kobj_load_module: %s error reading " 2016 "section headers\n", modname); 2017 kobj_free(mp->shdrs, n); 2018 kobj_free(mp->filename, strlen(file->_name) + 1); 2019 kobj_free(mp, sizeof (*mp)); 2020 goto bad; 2021 } 2022 2023 kobj_notify(KOBJ_NOTIFY_MODLOADING, modp); 2024 module_assign(modp, mp); 2025 2026 /* read in sections */ 2027 if (get_progbits(mp, file) < 0) { 2028 _kobj_printf(ops, "%s error reading sections\n", modname); 2029 goto bad; 2030 } 2031 2032 if (do_dynamic(mp, file) < 0) { 2033 _kobj_printf(ops, "%s error reading dynamic section\n", 2034 modname); 2035 goto bad; 2036 } 2037 2038 modp->mod_text = mp->text; 2039 modp->mod_text_size = mp->text_size; 2040 2041 /* read in symbols; adjust values for each section's real address */ 2042 if (get_syms(mp, file) < 0) { 2043 _kobj_printf(ops, "%s error reading symbols\n", 2044 modname); 2045 goto bad; 2046 } 2047 2048 /* 2049 * If we didn't dependency information from the dynamic section, look 2050 * for it the old-fashioned way. 2051 */ 2052 if (mp->depends_on == NULL) 2053 mp->depends_on = depends_on(mp); 2054 2055 if (get_ctf(mp, file) < 0) { 2056 _kobj_printf(ops, "%s debug information will not " 2057 "be available\n", modname); 2058 } 2059 2060 /* primary kernel modules do not have a signature section */ 2061 if (!(mp->flags & KOBJ_PRIM)) 2062 get_signature(mp, file); 2063 2064 #ifdef KOBJ_DEBUG 2065 if (kobj_debug & D_LOADING) { 2066 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 2067 _kobj_printf(ops, "\ttext:0x%p", mp->text); 2068 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size); 2069 _kobj_printf(ops, "\tdata:0x%p", mp->data); 2070 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size); 2071 } 2072 #endif /* KOBJ_DEBUG */ 2073 2074 /* 2075 * For primary kernel modules, we defer 2076 * symbol resolution and relocation until 2077 * all primary objects have been loaded. 2078 */ 2079 if (!standalone) { 2080 int ddrval, dcrval; 2081 char *dependent_modname; 2082 /* load all dependents */ 2083 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT); 2084 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN); 2085 2086 /* 2087 * resolve undefined and common symbols, 2088 * also allocates common space 2089 */ 2090 if ((dcrval = do_common(mp)) < 0) { 2091 switch (dcrval) { 2092 case DOSYM_UNSAFE: 2093 _kobj_printf(ops, "WARNING: mod_load: " 2094 "MT-unsafe module '%s' rejected\n", 2095 modname); 2096 break; 2097 case DOSYM_UNDEF: 2098 _kobj_printf(ops, "WARNING: mod_load: " 2099 "cannot load module '%s'\n", 2100 modname); 2101 if (ddrval == -1) { 2102 _kobj_printf(ops, "WARNING: %s: ", 2103 modname); 2104 _kobj_printf(ops, 2105 "unable to resolve dependency, " 2106 "module '%s' not found\n", 2107 dependent_modname); 2108 } 2109 break; 2110 } 2111 } 2112 kobj_free(dependent_modname, MODMAXNAMELEN); 2113 if (dcrval < 0) 2114 goto bad; 2115 2116 /* process relocation tables */ 2117 if (do_relocations(mp) < 0) { 2118 _kobj_printf(ops, "%s error doing relocations\n", 2119 modname); 2120 goto bad; 2121 } 2122 2123 if (mp->destination) { 2124 off_t off = (uintptr_t)mp->destination & PAGEOFFSET; 2125 caddr_t base = (caddr_t)mp->destination - off; 2126 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2127 2128 hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK); 2129 vmem_free(heap_arena, base, size); 2130 } 2131 2132 /* sync_instruction_memory */ 2133 kobj_sync_instruction_memory(mp->text, mp->text_size); 2134 kobj_export_module(mp); 2135 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp); 2136 } 2137 kobj_close_file(file); 2138 return (0); 2139 bad: 2140 if (file != (struct _buf *)-1) 2141 kobj_close_file(file); 2142 if (modp->mod_mp != NULL) 2143 free_module_data(modp->mod_mp); 2144 2145 module_assign(modp, NULL); 2146 return ((file == (struct _buf *)-1) ? ENOENT : EINVAL); 2147 } 2148 2149 int 2150 kobj_load_primary_module(struct modctl *modp) 2151 { 2152 struct modctl *dep; 2153 struct module *mp; 2154 2155 if (kobj_load_module(modp, 0) != 0) 2156 return (-1); 2157 2158 dep = NULL; 2159 mp = modp->mod_mp; 2160 mp->flags |= KOBJ_PRIM; 2161 2162 /* Bind new module to its dependents */ 2163 if (mp->depends_on != NULL && (dep = 2164 mod_already_loaded(mp->depends_on)) == NULL) { 2165 #ifdef KOBJ_DEBUG 2166 if (kobj_debug & D_DEBUG) { 2167 _kobj_printf(ops, "krtld: failed to resolve deps " 2168 "for primary %s\n", modp->mod_modname); 2169 } 2170 #endif 2171 return (-1); 2172 } 2173 2174 if (dep != NULL) 2175 add_dependent(mp, dep->mod_mp); 2176 2177 /* 2178 * Relocate it. This module may not be part of a link map, so we 2179 * can't use bind_primary. 2180 */ 2181 if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 || 2182 do_relocations(mp) < 0) { 2183 #ifdef KOBJ_DEBUG 2184 if (kobj_debug & D_DEBUG) { 2185 _kobj_printf(ops, "krtld: failed to relocate " 2186 "primary %s\n", modp->mod_modname); 2187 } 2188 #endif 2189 return (-1); 2190 } 2191 2192 return (0); 2193 } 2194 2195 static void 2196 module_assign(struct modctl *cp, struct module *mp) 2197 { 2198 if (standalone) { 2199 cp->mod_mp = mp; 2200 return; 2201 } 2202 mutex_enter(&mod_lock); 2203 cp->mod_mp = mp; 2204 cp->mod_gencount++; 2205 mutex_exit(&mod_lock); 2206 } 2207 2208 void 2209 kobj_unload_module(struct modctl *modp) 2210 { 2211 struct module *mp = modp->mod_mp; 2212 2213 if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) { 2214 _kobj_printf(ops, "text for %s ", mp->filename); 2215 _kobj_printf(ops, "was at %p\n", mp->text); 2216 mp->text = NULL; /* don't actually free it */ 2217 } 2218 2219 kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp); 2220 2221 /* 2222 * Null out mod_mp first, so consumers (debuggers) know not to look 2223 * at the module structure any more. 2224 */ 2225 mutex_enter(&mod_lock); 2226 modp->mod_mp = NULL; 2227 mutex_exit(&mod_lock); 2228 2229 kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp); 2230 free_module_data(mp); 2231 } 2232 2233 static void 2234 free_module_data(struct module *mp) 2235 { 2236 struct module_list *lp, *tmp; 2237 hotinline_desc_t *hid, *next; 2238 int ksyms_exported = 0; 2239 2240 lp = mp->head; 2241 while (lp) { 2242 tmp = lp; 2243 lp = lp->next; 2244 kobj_free((char *)tmp, sizeof (*tmp)); 2245 } 2246 2247 /* release hotinlines */ 2248 hid = mp->hi_calls; 2249 while (hid != NULL) { 2250 next = hid->hid_next; 2251 kobj_free(hid->hid_symname, strlen(hid->hid_symname) + 1); 2252 kobj_free(hid, sizeof (hotinline_desc_t)); 2253 hid = next; 2254 } 2255 2256 rw_enter(&ksyms_lock, RW_WRITER); 2257 if (mp->symspace) { 2258 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) { 2259 vmem_free(ksyms_arena, mp->symspace, mp->symsize); 2260 ksyms_exported = 1; 2261 } else { 2262 if (mp->flags & KOBJ_NOKSYMS) 2263 ksyms_exported = 1; 2264 kobj_free(mp->symspace, mp->symsize); 2265 } 2266 } 2267 rw_exit(&ksyms_lock); 2268 2269 if (mp->ctfdata) { 2270 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize)) 2271 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 2272 else 2273 kobj_free(mp->ctfdata, mp->ctfsize); 2274 } 2275 2276 if (mp->sigdata) 2277 kobj_free(mp->sigdata, mp->sigsize); 2278 2279 /* 2280 * We did not get far enough into kobj_export_ksyms() to free allocated 2281 * buffers because we encounted error conditions. Free the buffers. 2282 */ 2283 if ((ksyms_exported == 0) && (mp->shdrs != NULL)) { 2284 uint_t shn; 2285 Shdr *shp; 2286 2287 for (shn = 1; shn < mp->shnum; shn++) { 2288 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2289 switch (shp->sh_type) { 2290 case SHT_RELA: 2291 case SHT_REL: 2292 if (shp->sh_addr != 0) 2293 kobj_free((void *)shp->sh_addr, 2294 shp->sh_size); 2295 break; 2296 } 2297 } 2298 2299 if (!(mp->flags & KOBJ_PRIM)) { 2300 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->shnum); 2301 } 2302 } 2303 2304 if (mp->bss) 2305 vmem_free(data_arena, (void *)mp->bss, mp->bss_size); 2306 2307 if (mp->fbt_tab) 2308 kobj_texthole_free(mp->fbt_tab, mp->fbt_size); 2309 2310 if (mp->textwin_base) 2311 kobj_textwin_free(mp); 2312 2313 if (mp->sdt_probes != NULL) { 2314 sdt_probedesc_t *sdp = mp->sdt_probes, *next; 2315 2316 while (sdp != NULL) { 2317 next = sdp->sdpd_next; 2318 kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1); 2319 kobj_free(sdp, sizeof (sdt_probedesc_t)); 2320 sdp = next; 2321 } 2322 } 2323 2324 if (mp->sdt_tab) 2325 kobj_texthole_free(mp->sdt_tab, mp->sdt_size); 2326 if (mp->text) 2327 vmem_free(text_arena, mp->text, mp->text_size); 2328 if (mp->data) 2329 vmem_free(data_arena, mp->data, mp->data_size); 2330 if (mp->depends_on) 2331 kobj_free(mp->depends_on, strlen(mp->depends_on)+1); 2332 if (mp->filename) 2333 kobj_free(mp->filename, strlen(mp->filename)+1); 2334 2335 kobj_free((char *)mp, sizeof (*mp)); 2336 } 2337 2338 static int 2339 get_progbits(struct module *mp, struct _buf *file) 2340 { 2341 struct proginfo *tp, *dp, *sdp; 2342 Shdr *shp; 2343 reloc_dest_t dest = NULL; 2344 uintptr_t bits_ptr; 2345 uintptr_t text = 0, data, textptr; 2346 uint_t shn; 2347 int err = -1; 2348 2349 tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2350 dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2351 sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2352 /* 2353 * loop through sections to find out how much space we need 2354 * for text, data, (also bss that is already assigned) 2355 */ 2356 if (get_progbits_size(mp, tp, dp, sdp) < 0) 2357 goto done; 2358 2359 mp->text_size = tp->size; 2360 mp->data_size = dp->size; 2361 2362 if (standalone) { 2363 caddr_t limit = _data; 2364 2365 if (lg_pagesize && _text + lg_pagesize < limit) 2366 limit = _text + lg_pagesize; 2367 2368 mp->text = kobj_segbrk(&_etext, mp->text_size, 2369 tp->align, limit); 2370 /* 2371 * If we can't grow the text segment, try the 2372 * data segment before failing. 2373 */ 2374 if (mp->text == NULL) { 2375 mp->text = kobj_segbrk(&_edata, mp->text_size, 2376 tp->align, 0); 2377 } 2378 2379 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0); 2380 2381 if (mp->text == NULL || mp->data == NULL) 2382 goto done; 2383 2384 } else { 2385 if (text_arena == NULL) 2386 kobj_vmem_init(&text_arena, &data_arena); 2387 2388 /* 2389 * some architectures may want to load the module on a 2390 * page that is currently read only. It may not be 2391 * possible for those architectures to remap their page 2392 * on the fly. So we provide a facility for them to hang 2393 * a private hook where the memory they assign the module 2394 * is not the actual place where the module loads. 2395 * 2396 * In this case there are two addresses that deal with the 2397 * modload. 2398 * 1) the final destination of the module 2399 * 2) the address that is used to view the newly 2400 * loaded module until all the relocations relative to 1 2401 * above are completed. 2402 * 2403 * That is what dest is used for below. 2404 */ 2405 mp->text_size += tp->align; 2406 mp->data_size += dp->align; 2407 2408 mp->text = kobj_text_alloc(text_arena, mp->text_size); 2409 2410 /* 2411 * a remap is taking place. Align the text ptr relative 2412 * to the secondary mapping. That is where the bits will 2413 * be read in. 2414 */ 2415 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena, 2416 mp->text, mp->text_size)) { 2417 off_t off = (uintptr_t)mp->text & PAGEOFFSET; 2418 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2419 caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP); 2420 caddr_t orig = mp->text - off; 2421 pgcnt_t pages = size / PAGESIZE; 2422 2423 dest = (reloc_dest_t)(map + off); 2424 text = ALIGN((uintptr_t)dest, tp->align); 2425 2426 while (pages--) { 2427 hat_devload(kas.a_hat, map, PAGESIZE, 2428 hat_getpfnum(kas.a_hat, orig), 2429 PROT_READ | PROT_WRITE | PROT_EXEC, 2430 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 2431 map += PAGESIZE; 2432 orig += PAGESIZE; 2433 } 2434 /* 2435 * Since we set up a non-cacheable mapping, we need 2436 * to flush any old entries in the cache that might 2437 * be left around from the read-only mapping. 2438 */ 2439 dcache_flushall(); 2440 } 2441 if (mp->data_size) 2442 mp->data = vmem_alloc(data_arena, mp->data_size, 2443 VM_SLEEP | VM_BESTFIT); 2444 } 2445 textptr = (uintptr_t)mp->text; 2446 textptr = ALIGN(textptr, tp->align); 2447 mp->destination = dest; 2448 2449 /* 2450 * This is the case where a remap is not being done. 2451 */ 2452 if (text == 0) 2453 text = ALIGN((uintptr_t)mp->text, tp->align); 2454 data = ALIGN((uintptr_t)mp->data, dp->align); 2455 2456 /* now loop though sections assigning addresses and loading the data */ 2457 for (shn = 1; shn < mp->shnum; shn++) { 2458 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2459 if (!(shp->sh_flags & SHF_ALLOC)) 2460 continue; 2461 2462 if ((shp->sh_flags & SHF_WRITE) == 0) 2463 bits_ptr = text; 2464 else 2465 bits_ptr = data; 2466 2467 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign); 2468 2469 if (shp->sh_type == SHT_NOBITS) { 2470 /* 2471 * Zero bss. 2472 */ 2473 bzero((caddr_t)bits_ptr, shp->sh_size); 2474 shp->sh_type = SHT_PROGBITS; 2475 } else { 2476 if (kobj_read_file(file, (char *)bits_ptr, 2477 shp->sh_size, shp->sh_offset) < 0) 2478 goto done; 2479 } 2480 2481 if (shp->sh_flags & SHF_WRITE) { 2482 shp->sh_addr = bits_ptr; 2483 } else { 2484 textptr = ALIGN(textptr, shp->sh_addralign); 2485 shp->sh_addr = textptr; 2486 textptr += shp->sh_size; 2487 } 2488 2489 bits_ptr += shp->sh_size; 2490 if ((shp->sh_flags & SHF_WRITE) == 0) 2491 text = bits_ptr; 2492 else 2493 data = bits_ptr; 2494 } 2495 2496 err = 0; 2497 done: 2498 /* 2499 * Free and mark as freed the section headers here so that 2500 * free_module_data() does not have to worry about this buffer. 2501 * 2502 * This buffer is freed here because one of the possible reasons 2503 * for error is a section with non-zero sh_addr and in that case 2504 * free_module_data() would have no way of recognizing that this 2505 * buffer was unallocated. 2506 */ 2507 if (err != 0) { 2508 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->shnum); 2509 mp->shdrs = NULL; 2510 } 2511 2512 (void) kobj_free(tp, sizeof (struct proginfo)); 2513 (void) kobj_free(dp, sizeof (struct proginfo)); 2514 (void) kobj_free(sdp, sizeof (struct proginfo)); 2515 2516 return (err); 2517 } 2518 2519 /* 2520 * Go through suppress_sym_list to see if "multiply defined" 2521 * warning of this symbol should be suppressed. Return 1 if 2522 * warning should be suppressed, 0 otherwise. 2523 */ 2524 static int 2525 kobj_suppress_warning(char *symname) 2526 { 2527 int i; 2528 2529 for (i = 0; suppress_sym_list[i] != NULL; i++) { 2530 if (strcmp(suppress_sym_list[i], symname) == 0) 2531 return (1); 2532 } 2533 2534 return (0); 2535 } 2536 2537 static int 2538 get_syms(struct module *mp, struct _buf *file) 2539 { 2540 uint_t shn; 2541 Shdr *shp; 2542 uint_t i; 2543 Sym *sp, *ksp; 2544 Shdr *symxhdr = NULL; 2545 Elf32_Word *symxtbl = NULL; 2546 char *symname; 2547 int dosymtab = 0; 2548 int err = -1; 2549 2550 /* 2551 * Find the interesting sections. 2552 */ 2553 for (shn = 1; shn < mp->shnum; shn++) { 2554 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2555 switch (shp->sh_type) { 2556 case SHT_SYMTAB: 2557 mp->symtbl_section = shn; 2558 mp->symhdr = shp; 2559 dosymtab++; 2560 break; 2561 2562 case SHT_SYMTAB_SHNDX: 2563 symxhdr = shp; 2564 break; 2565 2566 case SHT_RELA: 2567 case SHT_REL: 2568 /* 2569 * Already loaded. 2570 */ 2571 if (shp->sh_addr) 2572 continue; 2573 2574 /* KM_TMP since kobj_free'd in do_relocations */ 2575 shp->sh_addr = (Addr) 2576 kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP); 2577 2578 if (kobj_read_file(file, (char *)shp->sh_addr, 2579 shp->sh_size, shp->sh_offset) < 0) { 2580 _kobj_printf(ops, "krtld: get_syms: %s, ", 2581 mp->filename); 2582 _kobj_printf(ops, "error reading section %d\n", 2583 shn); 2584 return (-1); 2585 } 2586 break; 2587 } 2588 } 2589 2590 /* 2591 * This is true for a stripped executable. In the case of 2592 * 'unix' it can be stripped but it still contains the SHT_DYNSYM, 2593 * and since that symbol information is still present everything 2594 * is just fine. 2595 */ 2596 if (!dosymtab) { 2597 if (mp->flags & KOBJ_EXEC) 2598 return (0); 2599 _kobj_printf(ops, "krtld: get_syms: %s ", 2600 mp->filename); 2601 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n"); 2602 return (-1); 2603 } 2604 2605 /* 2606 * get the associated string table header 2607 */ 2608 if (mp->symhdr == NULL || mp->symhdr->sh_link >= mp->shnum) 2609 return (-1); 2610 mp->strhdr = (Shdr *) 2611 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 2612 2613 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 2614 mp->hashsize = kobj_gethashsize(mp->nsyms); 2615 2616 /* 2617 * Allocate space for the symbol table, buckets, chains, and strings. 2618 */ 2619 mp->symsize = mp->symhdr->sh_size + 2620 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size; 2621 mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH); 2622 2623 mp->symtbl = mp->symspace; 2624 mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size); 2625 mp->chains = mp->buckets + mp->hashsize; 2626 mp->strings = (char *)(mp->chains + mp->nsyms); 2627 2628 if (kobj_read_file(file, mp->symtbl, 2629 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0) { 2630 _kobj_printf(ops, "%s failed to read symbol table\n", 2631 file->_name); 2632 return (-1); 2633 } 2634 if (kobj_read_file(file, mp->strings, 2635 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0) { 2636 _kobj_printf(ops, "%s failed to read string table\n", 2637 file->_name); 2638 return (-1); 2639 } 2640 2641 if (symxhdr != NULL) { 2642 symxtbl = kobj_zalloc(symxhdr->sh_size, KM_WAIT|KM_SCRATCH); 2643 if (kobj_read_file(file, (char *)symxtbl, symxhdr->sh_size, 2644 symxhdr->sh_offset) < 0) { 2645 _kobj_printf(ops, 2646 "%s failed to read symbol shndx table\n", 2647 file->_name); 2648 goto out; 2649 } 2650 } 2651 2652 /* 2653 * loop through the symbol table adjusting values to account 2654 * for where each section got loaded into memory. Also 2655 * fill in the hash table. 2656 */ 2657 for (i = 1; i < mp->nsyms; i++) { 2658 Elf32_Word shndx; 2659 2660 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 2661 2662 /* 2663 * If the section header value is the sentinel value SHN_XINDEX 2664 * and we found a SHT_SYMTAB_SHNDX section, look up the 2665 * real index from there. 2666 */ 2667 shndx = sp->st_shndx; 2668 if (shndx == SHN_XINDEX && symxhdr != NULL) { 2669 if (i * sizeof (Elf32_Word) >= symxhdr->sh_size) { 2670 _kobj_printf(ops, 2671 "%s extended shndx out of range ", 2672 file->_name); 2673 _kobj_printf(ops, "in symbol %d\n", i); 2674 goto out; 2675 } 2676 shndx = symxtbl[i]; 2677 } 2678 2679 if (shndx < SHN_LORESERVE) { 2680 if (shndx >= mp->shnum) { 2681 _kobj_printf(ops, "%s bad shndx ", 2682 file->_name); 2683 _kobj_printf(ops, "in symbol %d\n", i); 2684 goto out; 2685 } 2686 shp = (Shdr *)(mp->shdrs + shndx * mp->hdr.e_shentsize); 2687 if (!(mp->flags & KOBJ_EXEC)) 2688 sp->st_value += shp->sh_addr; 2689 } 2690 2691 if (sp->st_name == 0 || shndx == SHN_UNDEF) 2692 continue; 2693 if (sp->st_name >= mp->strhdr->sh_size) 2694 goto out; 2695 2696 symname = mp->strings + sp->st_name; 2697 2698 if (!(mp->flags & KOBJ_EXEC) && 2699 ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 2700 ksp = kobj_lookup_all(mp, symname, 0); 2701 2702 if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL && 2703 !kobj_suppress_warning(symname) && 2704 sp->st_shndx != SHN_UNDEF && 2705 sp->st_shndx != SHN_COMMON && 2706 ksp->st_shndx != SHN_UNDEF && 2707 ksp->st_shndx != SHN_COMMON) { 2708 /* 2709 * Unless this symbol is a stub, it's multiply 2710 * defined. Multiply-defined symbols are 2711 * usually bad, but some objects (kmdb) have 2712 * a legitimate need to have their own 2713 * copies of common functions. 2714 */ 2715 if ((standalone || 2716 ksp->st_value < (uintptr_t)stubs_base || 2717 ksp->st_value >= (uintptr_t)stubs_end) && 2718 !(mp->flags & KOBJ_IGNMULDEF)) { 2719 _kobj_printf(ops, 2720 "%s symbol ", file->_name); 2721 _kobj_printf(ops, 2722 "%s multiply defined\n", symname); 2723 } 2724 } 2725 } 2726 2727 sym_insert(mp, symname, i); 2728 } 2729 2730 err = 0; 2731 2732 out: 2733 if (symxhdr != NULL) 2734 kobj_free(symxtbl, symxhdr->sh_size); 2735 2736 return (err); 2737 } 2738 2739 static int 2740 get_ctf(struct module *mp, struct _buf *file) 2741 { 2742 char *shstrtab, *ctfdata; 2743 size_t shstrlen; 2744 Shdr *shp; 2745 uint_t i; 2746 2747 if (_moddebug & MODDEBUG_NOCTF) 2748 return (0); /* do not attempt to even load CTF data */ 2749 2750 if (mp->shstrndx >= mp->shnum) { 2751 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2752 mp->filename); 2753 _kobj_printf(ops, "corrupt shstrndx %u\n", 2754 mp->shstrndx); 2755 return (-1); 2756 } 2757 2758 shp = (Shdr *)(mp->shdrs + mp->shstrndx * mp->hdr.e_shentsize); 2759 shstrlen = shp->sh_size; 2760 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2761 2762 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2763 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2764 mp->filename); 2765 _kobj_printf(ops, "error reading section %u\n", 2766 mp->shstrndx); 2767 kobj_free(shstrtab, shstrlen); 2768 return (-1); 2769 } 2770 2771 for (i = 0; i < mp->shnum; i++) { 2772 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2773 2774 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2775 strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) { 2776 ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH); 2777 2778 if (kobj_read_file(file, ctfdata, shp->sh_size, 2779 shp->sh_offset) < 0) { 2780 _kobj_printf(ops, "krtld: get_ctf: %s, error " 2781 "reading .SUNW_ctf data\n", mp->filename); 2782 kobj_free(ctfdata, shp->sh_size); 2783 kobj_free(shstrtab, shstrlen); 2784 return (-1); 2785 } 2786 2787 mp->ctfdata = ctfdata; 2788 mp->ctfsize = shp->sh_size; 2789 break; 2790 } 2791 } 2792 2793 kobj_free(shstrtab, shstrlen); 2794 return (0); 2795 } 2796 2797 #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */ 2798 2799 /* 2800 * Return the hash of the ELF sections that are memory resident. 2801 * i.e. text and data. We skip a SHT_NOBITS section since it occupies 2802 * no space in the file. We use SHA1 here since libelfsign uses 2803 * it and both places need to use the same algorithm. 2804 */ 2805 static void 2806 crypto_es_hash(struct module *mp, char *hash, char *shstrtab) 2807 { 2808 uint_t shn; 2809 Shdr *shp; 2810 SHA1_CTX ctx; 2811 2812 SHA1Init(&ctx); 2813 2814 for (shn = 1; shn < mp->shnum; shn++) { 2815 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2816 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0) 2817 continue; 2818 2819 /* 2820 * The check should ideally be shp->sh_type == SHT_NOBITS. 2821 * However, we can't do that check here as get_progbits() 2822 * resets the type. 2823 */ 2824 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0) 2825 continue; 2826 #ifdef KOBJ_DEBUG 2827 if (kobj_debug & D_DEBUG) 2828 _kobj_printf(ops, 2829 "krtld: crypto_es_hash: updating hash with" 2830 " %s data size=%lx\n", shstrtab + shp->sh_name, 2831 (size_t)shp->sh_size); 2832 #endif 2833 ASSERT(shp->sh_addr != 0); 2834 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size); 2835 } 2836 2837 SHA1Final((uchar_t *)hash, &ctx); 2838 } 2839 2840 /* 2841 * Get the .SUNW_signature section for the module, it it exists. 2842 * 2843 * This section exists only for crypto modules. None of the 2844 * primary modules have this section currently. 2845 */ 2846 static void 2847 get_signature(struct module *mp, struct _buf *file) 2848 { 2849 char *shstrtab, *sigdata = NULL; 2850 size_t shstrlen; 2851 Shdr *shp; 2852 uint_t i; 2853 2854 if (mp->shstrndx >= mp->shnum) { 2855 _kobj_printf(ops, "krtld: get_signature: %s, ", 2856 mp->filename); 2857 _kobj_printf(ops, "corrupt shstrndx %u\n", 2858 mp->shstrndx); 2859 return; 2860 } 2861 2862 shp = (Shdr *)(mp->shdrs + mp->shstrndx * mp->hdr.e_shentsize); 2863 shstrlen = shp->sh_size; 2864 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2865 2866 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2867 _kobj_printf(ops, "krtld: get_signature: %s, ", 2868 mp->filename); 2869 _kobj_printf(ops, "error reading section %u\n", 2870 mp->shstrndx); 2871 kobj_free(shstrtab, shstrlen); 2872 return; 2873 } 2874 2875 for (i = 0; i < mp->shnum; i++) { 2876 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2877 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2878 strcmp(shstrtab + shp->sh_name, 2879 ELF_SIGNATURE_SECTION) == 0) { 2880 filesig_vers_t filesig_version; 2881 size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH; 2882 sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH); 2883 2884 if (kobj_read_file(file, sigdata, shp->sh_size, 2885 shp->sh_offset) < 0) { 2886 _kobj_printf(ops, "krtld: get_signature: %s," 2887 " error reading .SUNW_signature data\n", 2888 mp->filename); 2889 kobj_free(sigdata, sigsize); 2890 kobj_free(shstrtab, shstrlen); 2891 return; 2892 } 2893 filesig_version = ((struct filesignatures *)sigdata)-> 2894 filesig_sig.filesig_version; 2895 if (!(filesig_version == FILESIG_VERSION1 || 2896 filesig_version == FILESIG_VERSION3)) { 2897 /* skip versions we don't understand */ 2898 kobj_free(sigdata, sigsize); 2899 kobj_free(shstrtab, shstrlen); 2900 return; 2901 } 2902 2903 mp->sigdata = sigdata; 2904 mp->sigsize = sigsize; 2905 break; 2906 } 2907 } 2908 2909 if (sigdata != NULL) { 2910 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab); 2911 } 2912 2913 kobj_free(shstrtab, shstrlen); 2914 } 2915 2916 static void 2917 add_dependent(struct module *mp, struct module *dep) 2918 { 2919 struct module_list *lp; 2920 2921 for (lp = mp->head; lp; lp = lp->next) { 2922 if (lp->mp == dep) 2923 return; /* already on the list */ 2924 } 2925 2926 if (lp == NULL) { 2927 lp = kobj_zalloc(sizeof (*lp), KM_WAIT); 2928 2929 lp->mp = dep; 2930 lp->next = NULL; 2931 if (mp->tail) 2932 mp->tail->next = lp; 2933 else 2934 mp->head = lp; 2935 mp->tail = lp; 2936 } 2937 } 2938 2939 static int 2940 do_dependents(struct modctl *modp, char *modname, size_t modnamelen) 2941 { 2942 struct module *mp; 2943 struct modctl *req; 2944 char *d, *p, *q; 2945 int c; 2946 char *err_modname = NULL; 2947 2948 mp = modp->mod_mp; 2949 2950 if ((p = mp->depends_on) == NULL) 2951 return (0); 2952 2953 for (;;) { 2954 /* 2955 * Skip space. 2956 */ 2957 while (*p && (*p == ' ' || *p == '\t')) 2958 p++; 2959 /* 2960 * Get module name. 2961 */ 2962 d = p; 2963 q = modname; 2964 c = 0; 2965 while (*p && *p != ' ' && *p != '\t') { 2966 if (c < modnamelen - 1) { 2967 *q++ = *p; 2968 c++; 2969 } 2970 p++; 2971 } 2972 2973 if (q == modname) 2974 break; 2975 2976 if (c == modnamelen - 1) { 2977 char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP); 2978 2979 (void) strncpy(dep, d, p - d + 1); 2980 dep[p - d] = '\0'; 2981 2982 _kobj_printf(ops, "%s: dependency ", modp->mod_modname); 2983 _kobj_printf(ops, "'%s' too long ", dep); 2984 _kobj_printf(ops, "(max %d chars)\n", (int)modnamelen); 2985 2986 kobj_free(dep, p - d + 1); 2987 2988 return (-1); 2989 } 2990 2991 *q = '\0'; 2992 if ((req = mod_load_requisite(modp, modname)) == NULL) { 2993 #ifndef KOBJ_DEBUG 2994 if (_moddebug & MODDEBUG_LOADMSG) { 2995 #endif /* KOBJ_DEBUG */ 2996 _kobj_printf(ops, 2997 "%s: unable to resolve dependency, ", 2998 modp->mod_modname); 2999 _kobj_printf(ops, "cannot load module '%s'\n", 3000 modname); 3001 #ifndef KOBJ_DEBUG 3002 } 3003 #endif /* KOBJ_DEBUG */ 3004 if (err_modname == NULL) { 3005 /* 3006 * This must be the same size as the modname 3007 * one. 3008 */ 3009 err_modname = kobj_zalloc(MODMAXNAMELEN, 3010 KM_WAIT); 3011 3012 /* 3013 * We can use strcpy() here without fearing 3014 * the NULL terminator because the size of 3015 * err_modname is the same as one of modname, 3016 * and it's filled with zeros. 3017 */ 3018 (void) strcpy(err_modname, modname); 3019 } 3020 continue; 3021 } 3022 3023 add_dependent(mp, req->mod_mp); 3024 mod_release_mod(req); 3025 3026 } 3027 3028 if (err_modname != NULL) { 3029 /* 3030 * Copy the first module name where you detect an error to keep 3031 * its behavior the same as before. 3032 * This way keeps minimizing the memory use for error 3033 * modules, and this might be important at boot time because 3034 * the memory usage is a crucial factor for booting in most 3035 * cases. You can expect more verbose messages when using 3036 * a debug kernel or setting a bit in moddebug. 3037 */ 3038 bzero(modname, MODMAXNAMELEN); 3039 (void) strcpy(modname, err_modname); 3040 kobj_free(err_modname, MODMAXNAMELEN); 3041 return (-1); 3042 } 3043 3044 return (0); 3045 } 3046 3047 static int 3048 do_common(struct module *mp) 3049 { 3050 int err; 3051 3052 /* 3053 * first time through, assign all symbols defined in other 3054 * modules, and count up how much common space will be needed 3055 * (bss_size and bss_align) 3056 */ 3057 if ((err = do_symbols(mp, 0)) < 0) 3058 return (err); 3059 /* 3060 * increase bss_size by the maximum delta that could be 3061 * computed by the ALIGN below 3062 */ 3063 mp->bss_size += mp->bss_align; 3064 if (mp->bss_size) { 3065 if (standalone) 3066 mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size, 3067 MINALIGN, 0); 3068 else 3069 mp->bss = (uintptr_t)vmem_alloc(data_arena, 3070 mp->bss_size, VM_SLEEP | VM_BESTFIT); 3071 bzero((void *)mp->bss, mp->bss_size); 3072 /* now assign addresses to all common symbols */ 3073 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0) 3074 return (err); 3075 } 3076 return (0); 3077 } 3078 3079 static int 3080 do_symbols(struct module *mp, Elf64_Addr bss_base) 3081 { 3082 int bss_align; 3083 uintptr_t bss_ptr; 3084 int err; 3085 int i; 3086 Sym *sp, *sp1; 3087 char *name; 3088 int assign; 3089 int resolved = 1; 3090 3091 /* 3092 * Nothing left to do (optimization). 3093 */ 3094 if (mp->flags & KOBJ_RESOLVED) 3095 return (0); 3096 3097 assign = (bss_base) ? 1 : 0; 3098 bss_ptr = bss_base; 3099 bss_align = 0; 3100 err = 0; 3101 3102 for (i = 1; i < mp->nsyms; i++) { 3103 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i); 3104 /* 3105 * we know that st_name is in bounds, since get_sections 3106 * has already checked all of the symbols 3107 */ 3108 name = mp->strings + sp->st_name; 3109 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON) 3110 continue; 3111 #if defined(__sparc) 3112 /* 3113 * Register symbols are ignored in the kernel 3114 */ 3115 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) { 3116 if (*name != '\0') { 3117 _kobj_printf(ops, "%s: named REGISTER symbol ", 3118 mp->filename); 3119 _kobj_printf(ops, "not supported '%s'\n", 3120 name); 3121 err = DOSYM_UNDEF; 3122 } 3123 continue; 3124 } 3125 #endif /* __sparc */ 3126 /* 3127 * TLS symbols are ignored in the kernel 3128 */ 3129 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) { 3130 _kobj_printf(ops, "%s: TLS symbol ", 3131 mp->filename); 3132 _kobj_printf(ops, "not supported '%s'\n", 3133 name); 3134 err = DOSYM_UNDEF; 3135 continue; 3136 } 3137 3138 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) { 3139 if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) { 3140 sp->st_shndx = SHN_ABS; 3141 sp->st_value = sp1->st_value; 3142 continue; 3143 } 3144 } 3145 3146 if (sp->st_shndx == SHN_UNDEF) { 3147 resolved = 0; 3148 3149 /* 3150 * Skip over sdt probes and smap calls, 3151 * they're relocated later. 3152 */ 3153 if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0) 3154 continue; 3155 #if defined(__x86) 3156 if (strcmp(name, "smap_enable") == 0 || 3157 strcmp(name, "smap_disable") == 0) 3158 continue; 3159 #endif /* defined(__x86) */ 3160 3161 3162 /* 3163 * If it's not a weak reference and it's 3164 * not a primary object, it's an error. 3165 * (Primary objects may take more than 3166 * one pass to resolve) 3167 */ 3168 if (!(mp->flags & KOBJ_PRIM) && 3169 ELF_ST_BIND(sp->st_info) != STB_WEAK) { 3170 _kobj_printf(ops, "%s: undefined symbol", 3171 mp->filename); 3172 _kobj_printf(ops, " '%s'\n", name); 3173 /* 3174 * Try to determine whether this symbol 3175 * represents a dependency on obsolete 3176 * unsafe driver support. This is just 3177 * to make the warning more informative. 3178 */ 3179 if (strcmp(name, "sleep") == 0 || 3180 strcmp(name, "unsleep") == 0 || 3181 strcmp(name, "wakeup") == 0 || 3182 strcmp(name, "bsd_compat_ioctl") == 0 || 3183 strcmp(name, "unsafe_driver") == 0 || 3184 strncmp(name, "spl", 3) == 0 || 3185 strncmp(name, "i_ddi_spl", 9) == 0) 3186 err = DOSYM_UNSAFE; 3187 if (err == 0) 3188 err = DOSYM_UNDEF; 3189 } 3190 continue; 3191 } 3192 /* 3193 * It's a common symbol - st_value is the 3194 * required alignment. 3195 */ 3196 if (sp->st_value > bss_align) 3197 bss_align = sp->st_value; 3198 bss_ptr = ALIGN(bss_ptr, sp->st_value); 3199 if (assign) { 3200 sp->st_shndx = SHN_ABS; 3201 sp->st_value = bss_ptr; 3202 } 3203 bss_ptr += sp->st_size; 3204 } 3205 if (err) 3206 return (err); 3207 if (assign == 0 && mp->bss == 0) { 3208 mp->bss_align = bss_align; 3209 mp->bss_size = bss_ptr; 3210 } else if (resolved) { 3211 mp->flags |= KOBJ_RESOLVED; 3212 } 3213 3214 return (0); 3215 } 3216 3217 uint_t 3218 kobj_hash_name(const char *p) 3219 { 3220 uint_t g; 3221 uint_t hval; 3222 3223 hval = 0; 3224 while (*p) { 3225 hval = (hval << 4) + *p++; 3226 if ((g = (hval & 0xf0000000)) != 0) 3227 hval ^= g >> 24; 3228 hval &= ~g; 3229 } 3230 return (hval); 3231 } 3232 3233 /* look for name in all modules */ 3234 uintptr_t 3235 kobj_getsymvalue(char *name, int kernelonly) 3236 { 3237 Sym *sp; 3238 struct modctl *modp; 3239 struct module *mp; 3240 uintptr_t value = 0; 3241 3242 if ((sp = kobj_lookup_kernel(name)) != NULL) 3243 return ((uintptr_t)sp->st_value); 3244 3245 if (kernelonly) 3246 return (0); /* didn't find it in the kernel so give up */ 3247 3248 mutex_enter(&mod_lock); 3249 modp = &modules; 3250 do { 3251 mp = (struct module *)modp->mod_mp; 3252 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3253 (sp = lookup_one(mp, name))) { 3254 value = (uintptr_t)sp->st_value; 3255 break; 3256 } 3257 } while ((modp = modp->mod_next) != &modules); 3258 mutex_exit(&mod_lock); 3259 return (value); 3260 } 3261 3262 /* look for a symbol near value. */ 3263 char * 3264 kobj_getsymname(uintptr_t value, ulong_t *offset) 3265 { 3266 char *name = NULL; 3267 struct modctl *modp; 3268 3269 struct modctl_list *lp; 3270 struct module *mp; 3271 3272 /* 3273 * Trap handler got us there, but we may not have whole kernel yet. 3274 */ 3275 if (standalone) 3276 return (NULL); 3277 3278 /* 3279 * Loop through the primary kernel modules. 3280 */ 3281 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3282 mp = mod(lp); 3283 3284 if ((name = kobj_searchsym(mp, value, offset)) != NULL) 3285 return (name); 3286 } 3287 3288 mutex_enter(&mod_lock); 3289 modp = &modules; 3290 do { 3291 mp = (struct module *)modp->mod_mp; 3292 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3293 (name = kobj_searchsym(mp, value, offset))) 3294 break; 3295 } while ((modp = modp->mod_next) != &modules); 3296 mutex_exit(&mod_lock); 3297 return (name); 3298 } 3299 3300 /* return address of symbol and size */ 3301 3302 uintptr_t 3303 kobj_getelfsym(char *name, void *mp, int *size) 3304 { 3305 Sym *sp; 3306 3307 if (mp == NULL) 3308 sp = kobj_lookup_kernel(name); 3309 else 3310 sp = lookup_one(mp, name); 3311 3312 if (sp == NULL) 3313 return (0); 3314 3315 *size = (int)sp->st_size; 3316 return ((uintptr_t)sp->st_value); 3317 } 3318 3319 uintptr_t 3320 kobj_lookup(struct module *mod, const char *name) 3321 { 3322 Sym *sp; 3323 3324 sp = lookup_one(mod, name); 3325 3326 if (sp == NULL) 3327 return (0); 3328 3329 return ((uintptr_t)sp->st_value); 3330 } 3331 3332 char * 3333 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset) 3334 { 3335 Sym *symtabptr; 3336 char *strtabptr; 3337 int symnum; 3338 Sym *sym; 3339 Sym *cursym; 3340 uintptr_t curval; 3341 3342 *offset = (ulong_t)-1l; /* assume not found */ 3343 cursym = NULL; 3344 3345 if (kobj_addrcheck(mp, (void *)value) != 0) 3346 return (NULL); /* not in this module */ 3347 3348 strtabptr = mp->strings; 3349 symtabptr = (Sym *)mp->symtbl; 3350 3351 /* 3352 * Scan the module's symbol table for a symbol <= value 3353 */ 3354 for (symnum = 1, sym = symtabptr + 1; 3355 symnum < mp->nsyms; symnum++, sym = (Sym *) 3356 ((uintptr_t)sym + mp->symhdr->sh_entsize)) { 3357 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) { 3358 if (ELF_ST_BIND(sym->st_info) != STB_LOCAL) 3359 continue; 3360 if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT && 3361 ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3362 continue; 3363 } 3364 3365 curval = (uintptr_t)sym->st_value; 3366 3367 if (curval > value) 3368 continue; 3369 3370 /* 3371 * If one or both are functions... 3372 */ 3373 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL && 3374 ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) { 3375 /* Ignore if the address is out of the bounds */ 3376 if (value - sym->st_value >= sym->st_size) 3377 continue; 3378 3379 if (cursym != NULL && 3380 ELF_ST_TYPE(cursym->st_info) == STT_FUNC) { 3381 /* Prefer the function to the non-function */ 3382 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3383 continue; 3384 3385 /* Prefer the larger of the two functions */ 3386 if (sym->st_size <= cursym->st_size) 3387 continue; 3388 } 3389 } else if (value - curval >= *offset) { 3390 continue; 3391 } 3392 3393 *offset = (ulong_t)(value - curval); 3394 cursym = sym; 3395 } 3396 if (cursym == NULL) 3397 return (NULL); 3398 3399 return (strtabptr + cursym->st_name); 3400 } 3401 3402 Sym * 3403 kobj_lookup_all(struct module *mp, char *name, int include_self) 3404 { 3405 Sym *sp; 3406 struct module_list *mlp; 3407 struct modctl_list *clp; 3408 struct module *mmp; 3409 3410 if (include_self && (sp = lookup_one(mp, name)) != NULL) 3411 return (sp); 3412 3413 for (mlp = mp->head; mlp; mlp = mlp->next) { 3414 if ((sp = lookup_one(mlp->mp, name)) != NULL && 3415 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3416 return (sp); 3417 } 3418 3419 /* 3420 * Loop through the primary kernel modules. 3421 */ 3422 for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) { 3423 mmp = mod(clp); 3424 3425 if (mmp == NULL || mp == mmp) 3426 continue; 3427 3428 if ((sp = lookup_one(mmp, name)) != NULL && 3429 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3430 return (sp); 3431 } 3432 return (NULL); 3433 } 3434 3435 Sym * 3436 kobj_lookup_kernel(const char *name) 3437 { 3438 struct modctl_list *lp; 3439 struct module *mp; 3440 Sym *sp; 3441 3442 /* 3443 * Loop through the primary kernel modules. 3444 */ 3445 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3446 mp = mod(lp); 3447 3448 if (mp == NULL) 3449 continue; 3450 3451 if ((sp = lookup_one(mp, name)) != NULL) 3452 return (sp); 3453 } 3454 return (NULL); 3455 } 3456 3457 static Sym * 3458 lookup_one(struct module *mp, const char *name) 3459 { 3460 symid_t *ip; 3461 char *name1; 3462 Sym *sp; 3463 3464 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3465 ip = &mp->chains[*ip]) { 3466 sp = (Sym *)(mp->symtbl + 3467 mp->symhdr->sh_entsize * *ip); 3468 name1 = mp->strings + sp->st_name; 3469 if (strcmp(name, name1) == 0 && 3470 ELF_ST_TYPE(sp->st_info) != STT_FILE && 3471 sp->st_shndx != SHN_UNDEF && 3472 sp->st_shndx != SHN_COMMON) 3473 return (sp); 3474 } 3475 return (NULL); 3476 } 3477 3478 /* 3479 * Lookup a given symbol pointer in the module's symbol hash. If the symbol 3480 * is hashed, return the symbol pointer; otherwise return NULL. 3481 */ 3482 static Sym * 3483 sym_lookup(struct module *mp, Sym *ksp) 3484 { 3485 char *name = mp->strings + ksp->st_name; 3486 symid_t *ip; 3487 Sym *sp; 3488 3489 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3490 ip = &mp->chains[*ip]) { 3491 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip); 3492 if (sp == ksp) 3493 return (ksp); 3494 } 3495 return (NULL); 3496 } 3497 3498 static void 3499 sym_insert(struct module *mp, char *name, symid_t index) 3500 { 3501 symid_t *ip; 3502 3503 #ifdef KOBJ_DEBUG 3504 if (kobj_debug & D_SYMBOLS) { 3505 static struct module *lastmp = NULL; 3506 Sym *sp; 3507 if (lastmp != mp) { 3508 _kobj_printf(ops, 3509 "krtld: symbol entry: file=%s\n", 3510 mp->filename); 3511 _kobj_printf(ops, 3512 "krtld:\tsymndx\tvalue\t\t" 3513 "symbol name\n"); 3514 lastmp = mp; 3515 } 3516 sp = (Sym *)(mp->symtbl + 3517 index * mp->symhdr->sh_entsize); 3518 _kobj_printf(ops, "krtld:\t[%3d]", index); 3519 _kobj_printf(ops, "\t0x%lx", sp->st_value); 3520 _kobj_printf(ops, "\t%s\n", name); 3521 } 3522 #endif 3523 3524 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3525 ip = &mp->chains[*ip]) { 3526 ; 3527 } 3528 *ip = index; 3529 } 3530 3531 struct modctl * 3532 kobj_boot_mod_lookup(const char *modname) 3533 { 3534 struct modctl *mctl = kobj_modules; 3535 3536 do { 3537 if (strcmp(modname, mctl->mod_modname) == 0) 3538 return (mctl); 3539 } while ((mctl = mctl->mod_next) != kobj_modules); 3540 3541 return (NULL); 3542 } 3543 3544 /* 3545 * Determine if the module exists. 3546 */ 3547 int 3548 kobj_path_exists(char *name, int use_path) 3549 { 3550 struct _buf *file; 3551 3552 file = kobj_open_path(name, use_path, 1); 3553 #ifdef MODDIR_SUFFIX 3554 if (file == (struct _buf *)-1) 3555 file = kobj_open_path(name, use_path, 0); 3556 #endif /* MODDIR_SUFFIX */ 3557 if (file == (struct _buf *)-1) 3558 return (0); 3559 kobj_close_file(file); 3560 return (1); 3561 } 3562 3563 /* 3564 * fullname is dynamically allocated to be able to hold the 3565 * maximum size string that can be constructed from name. 3566 * path is exactly like the shell PATH variable. 3567 */ 3568 struct _buf * 3569 kobj_open_path(char *name, int use_path, int use_moddir_suffix) 3570 { 3571 char *p, *q; 3572 char *pathp; 3573 char *pathpsave; 3574 char *fullname; 3575 int maxpathlen; 3576 struct _buf *file; 3577 3578 #if !defined(MODDIR_SUFFIX) 3579 use_moddir_suffix = B_FALSE; 3580 #endif 3581 3582 if (!use_path) 3583 pathp = ""; /* use name as specified */ 3584 else 3585 pathp = kobj_module_path; 3586 /* use configured default path */ 3587 3588 pathpsave = pathp; /* keep this for error reporting */ 3589 3590 /* 3591 * Allocate enough space for the largest possible fullname. 3592 * since path is of the form <directory> : <directory> : ... 3593 * we're potentially allocating a little more than we need to 3594 * but we'll allocate the exact amount when we find the right directory. 3595 * (The + 3 below is one for NULL terminator and one for the '/' 3596 * we might have to add at the beginning of path and one for 3597 * the '/' between path and name.) 3598 */ 3599 maxpathlen = strlen(pathp) + strlen(name) + 3; 3600 /* sizeof includes null */ 3601 maxpathlen += sizeof (slash_moddir_suffix_slash) - 1; 3602 fullname = kobj_zalloc(maxpathlen, KM_WAIT); 3603 3604 for (;;) { 3605 p = fullname; 3606 if (*pathp != '\0' && *pathp != '/') 3607 *p++ = '/'; /* path must start with '/' */ 3608 while (*pathp && *pathp != ':' && *pathp != ' ') 3609 *p++ = *pathp++; 3610 if (p != fullname && p[-1] != '/') 3611 *p++ = '/'; 3612 if (use_moddir_suffix) { 3613 char *b = basename(name); 3614 char *s; 3615 3616 /* copy everything up to the base name */ 3617 q = name; 3618 while (q != b && *q) 3619 *p++ = *q++; 3620 s = slash_moddir_suffix_slash; 3621 while (*s) 3622 *p++ = *s++; 3623 /* copy the rest */ 3624 while (*b) 3625 *p++ = *b++; 3626 } else { 3627 q = name; 3628 while (*q) 3629 *p++ = *q++; 3630 } 3631 *p = 0; 3632 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) { 3633 kobj_free(fullname, maxpathlen); 3634 return (file); 3635 } 3636 while (*pathp == ' ' || *pathp == ':') 3637 pathp++; 3638 if (*pathp == 0) 3639 break; 3640 3641 } 3642 kobj_free(fullname, maxpathlen); 3643 if (_moddebug & MODDEBUG_ERRMSG) { 3644 _kobj_printf(ops, "can't open %s,", name); 3645 _kobj_printf(ops, " path is %s\n", pathpsave); 3646 } 3647 return ((struct _buf *)-1); 3648 } 3649 3650 intptr_t 3651 kobj_open(char *filename) 3652 { 3653 struct vnode *vp; 3654 int fd; 3655 3656 if (_modrootloaded) { 3657 struct kobjopen_tctl *ltp = kobjopen_alloc(filename); 3658 int Errno; 3659 3660 /* 3661 * Hand off the open to a thread who has a 3662 * stack size capable handling the request. 3663 */ 3664 if (curthread != &t0) { 3665 (void) thread_create(NULL, DEFAULTSTKSZ * 2, 3666 kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri); 3667 sema_p(<p->sema); 3668 Errno = ltp->Errno; 3669 vp = ltp->vp; 3670 } else { 3671 /* 3672 * 1098067: module creds should not be those of the 3673 * caller 3674 */ 3675 cred_t *saved_cred = curthread->t_cred; 3676 curthread->t_cred = kcred; 3677 Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp, 3678 0, 0, rootdir, -1); 3679 curthread->t_cred = saved_cred; 3680 } 3681 kobjopen_free(ltp); 3682 3683 if (Errno) { 3684 if (_moddebug & MODDEBUG_ERRMSG) { 3685 _kobj_printf(ops, 3686 "kobj_open: vn_open of %s fails, ", 3687 filename); 3688 _kobj_printf(ops, "Errno = %d\n", Errno); 3689 } 3690 return (-1); 3691 } else { 3692 if (_moddebug & MODDEBUG_ERRMSG) { 3693 _kobj_printf(ops, "kobj_open: '%s'", filename); 3694 _kobj_printf(ops, " vp = %p\n", vp); 3695 } 3696 return ((intptr_t)vp); 3697 } 3698 } else { 3699 fd = kobj_boot_open(filename, 0); 3700 3701 if (_moddebug & MODDEBUG_ERRMSG) { 3702 if (fd < 0) 3703 _kobj_printf(ops, 3704 "kobj_open: can't open %s\n", filename); 3705 else { 3706 _kobj_printf(ops, "kobj_open: '%s'", filename); 3707 _kobj_printf(ops, " descr = 0x%x\n", fd); 3708 } 3709 } 3710 return ((intptr_t)fd); 3711 } 3712 } 3713 3714 /* 3715 * Calls to kobj_open() are handled off to this routine as a separate thread. 3716 */ 3717 static void 3718 kobjopen_thread(struct kobjopen_tctl *ltp) 3719 { 3720 kmutex_t cpr_lk; 3721 callb_cpr_t cpr_i; 3722 3723 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL); 3724 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen"); 3725 ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp), 3726 0, 0); 3727 sema_v(<p->sema); 3728 mutex_enter(&cpr_lk); 3729 CALLB_CPR_EXIT(&cpr_i); 3730 mutex_destroy(&cpr_lk); 3731 thread_exit(); 3732 } 3733 3734 /* 3735 * allocate and initialize a kobjopen thread structure 3736 */ 3737 static struct kobjopen_tctl * 3738 kobjopen_alloc(char *filename) 3739 { 3740 struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP); 3741 3742 ASSERT(filename != NULL); 3743 3744 ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP); 3745 bcopy(filename, ltp->name, strlen(filename) + 1); 3746 sema_init(<p->sema, 0, NULL, SEMA_DEFAULT, NULL); 3747 return (ltp); 3748 } 3749 3750 /* 3751 * free a kobjopen thread control structure 3752 */ 3753 static void 3754 kobjopen_free(struct kobjopen_tctl *ltp) 3755 { 3756 sema_destroy(<p->sema); 3757 kmem_free(ltp->name, strlen(ltp->name) + 1); 3758 kmem_free(ltp, sizeof (*ltp)); 3759 } 3760 3761 int 3762 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset) 3763 { 3764 int stat; 3765 ssize_t resid; 3766 3767 if (_modrootloaded) { 3768 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size, 3769 (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), 3770 &resid)) != 0) { 3771 _kobj_printf(ops, 3772 "vn_rdwr failed with error 0x%x\n", stat); 3773 return (-1); 3774 } 3775 return (size - resid); 3776 } else { 3777 int count = 0; 3778 3779 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) { 3780 _kobj_printf(ops, 3781 "kobj_read: seek 0x%x failed\n", offset); 3782 return (-1); 3783 } 3784 3785 count = kobj_boot_read((int)descr, buf, size); 3786 if (count < size) { 3787 if (_moddebug & MODDEBUG_ERRMSG) { 3788 _kobj_printf(ops, 3789 "kobj_read: req %d bytes, ", size); 3790 _kobj_printf(ops, "got %d\n", count); 3791 } 3792 } 3793 return (count); 3794 } 3795 } 3796 3797 void 3798 kobj_close(intptr_t descr) 3799 { 3800 if (_moddebug & MODDEBUG_ERRMSG) 3801 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr); 3802 3803 if (_modrootloaded) { 3804 struct vnode *vp = (struct vnode *)descr; 3805 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 3806 VN_RELE(vp); 3807 } else 3808 (void) kobj_boot_close((int)descr); 3809 } 3810 3811 int 3812 kobj_fstat(intptr_t descr, struct bootstat *buf) 3813 { 3814 if (buf == NULL) 3815 return (-1); 3816 3817 if (_modrootloaded) { 3818 vattr_t vattr; 3819 struct vnode *vp = (struct vnode *)descr; 3820 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) 3821 return (-1); 3822 3823 /* 3824 * The vattr and bootstat structures are similar, but not 3825 * identical. We do our best to fill in the bootstat structure 3826 * from the contents of vattr (transfering only the ones that 3827 * are obvious. 3828 */ 3829 3830 buf->st_mode = (uint32_t)vattr.va_mode; 3831 buf->st_nlink = (uint32_t)vattr.va_nlink; 3832 buf->st_uid = (int32_t)vattr.va_uid; 3833 buf->st_gid = (int32_t)vattr.va_gid; 3834 buf->st_rdev = (uint64_t)vattr.va_rdev; 3835 buf->st_size = (uint64_t)vattr.va_size; 3836 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec; 3837 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec; 3838 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec; 3839 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec; 3840 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec; 3841 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec; 3842 buf->st_blksize = (int32_t)vattr.va_blksize; 3843 buf->st_blocks = (int64_t)vattr.va_nblocks; 3844 3845 return (0); 3846 } 3847 3848 return (kobj_boot_fstat((int)descr, buf)); 3849 } 3850 3851 3852 struct _buf * 3853 kobj_open_file(char *name) 3854 { 3855 struct _buf *file; 3856 struct compinfo cbuf; 3857 intptr_t fd; 3858 3859 if ((fd = kobj_open(name)) == -1) { 3860 return ((struct _buf *)-1); 3861 } 3862 3863 file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP); 3864 file->_fd = fd; 3865 file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP); 3866 file->_cnt = file->_size = file->_off = 0; 3867 file->_ln = 1; 3868 file->_ptr = file->_base; 3869 (void) strcpy(file->_name, name); 3870 3871 /* 3872 * Before root is mounted, we must check 3873 * for a compressed file and do our own 3874 * buffering. 3875 */ 3876 if (_modrootloaded) { 3877 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT); 3878 file->_bsize = MAXBSIZE; 3879 3880 /* Check if the file is compressed */ 3881 file->_iscmp = kobj_is_compressed(fd); 3882 } else { 3883 if (kobj_boot_compinfo(fd, &cbuf) != 0) { 3884 kobj_close_file(file); 3885 return ((struct _buf *)-1); 3886 } 3887 file->_iscmp = cbuf.iscmp; 3888 if (file->_iscmp) { 3889 if (kobj_comp_setup(file, &cbuf) != 0) { 3890 kobj_close_file(file); 3891 return ((struct _buf *)-1); 3892 } 3893 } else { 3894 file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP); 3895 file->_bsize = cbuf.blksize; 3896 } 3897 } 3898 return (file); 3899 } 3900 3901 static int 3902 kobj_comp_setup(struct _buf *file, struct compinfo *cip) 3903 { 3904 struct comphdr *hdr; 3905 3906 /* 3907 * read the compressed image into memory, 3908 * so we can deompress from there 3909 */ 3910 file->_dsize = cip->fsize; 3911 file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP); 3912 if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) { 3913 kobj_free(file->_dbuf, cip->fsize); 3914 return (-1); 3915 } 3916 3917 hdr = kobj_comphdr(file); 3918 if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION || 3919 hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 || 3920 !ISP2(hdr->ch_blksize)) { 3921 kobj_free(file->_dbuf, cip->fsize); 3922 return (-1); 3923 } 3924 file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP); 3925 file->_bsize = hdr->ch_blksize; 3926 return (0); 3927 } 3928 3929 void 3930 kobj_close_file(struct _buf *file) 3931 { 3932 kobj_close(file->_fd); 3933 if (file->_base != NULL) 3934 kobj_free(file->_base, file->_bsize); 3935 if (file->_dbuf != NULL) 3936 kobj_free(file->_dbuf, file->_dsize); 3937 kobj_free(file->_name, strlen(file->_name)+1); 3938 kobj_free(file, sizeof (struct _buf)); 3939 } 3940 3941 int 3942 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off) 3943 { 3944 int b_size, c_size; 3945 int b_off; /* Offset into buffer for start of bcopy */ 3946 int count = 0; 3947 int page_addr; 3948 3949 if (_moddebug & MODDEBUG_ERRMSG) { 3950 _kobj_printf(ops, "kobj_read_file: size=%x,", size); 3951 _kobj_printf(ops, " offset=%x at", off); 3952 _kobj_printf(ops, " buf=%lx\n", (uintptr_t)buf); 3953 } 3954 3955 /* 3956 * Handle compressed (gzip for now) file here. First get the 3957 * compressed size, then read the image into memory and finally 3958 * call zlib to decompress the image at the supplied memory buffer. 3959 */ 3960 if (file->_iscmp == CH_MAGIC_GZIP) { 3961 ulong_t dlen; 3962 vattr_t vattr; 3963 struct vnode *vp = (struct vnode *)file->_fd; 3964 ssize_t resid; 3965 int err = 0; 3966 3967 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) 3968 return (-1); 3969 3970 file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP); 3971 file->_dsize = vattr.va_size; 3972 3973 /* Read the compressed file into memory */ 3974 if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size, 3975 (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), 3976 &resid)) != 0) { 3977 3978 _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, " 3979 "error code 0x%x\n", err); 3980 return (-1); 3981 } 3982 3983 dlen = size; 3984 3985 /* Decompress the image at the supplied memory buffer */ 3986 if ((err = z_uncompress(buf, &dlen, file->_dbuf, 3987 vattr.va_size)) != Z_OK) { 3988 _kobj_printf(ops, "kobj_read_file: z_uncompress " 3989 "failed, error code : 0x%x\n", err); 3990 return (-1); 3991 } 3992 3993 if (dlen != size) { 3994 _kobj_printf(ops, "kobj_read_file: z_uncompress " 3995 "failed to uncompress (size returned 0x%lx , " 3996 "expected size: 0x%x)\n", dlen, size); 3997 return (-1); 3998 } 3999 4000 return (0); 4001 } 4002 4003 while (size) { 4004 page_addr = F_PAGE(file, off); 4005 b_size = file->_size; 4006 /* 4007 * If we have the filesystem page the caller's referring to 4008 * and we have something in the buffer, 4009 * satisfy as much of the request from the buffer as we can. 4010 */ 4011 if (page_addr == file->_off && b_size > 0) { 4012 b_off = B_OFFSET(file, off); 4013 c_size = b_size - b_off; 4014 /* 4015 * If there's nothing to copy, we're at EOF. 4016 */ 4017 if (c_size <= 0) 4018 break; 4019 if (c_size > size) 4020 c_size = size; 4021 if (buf) { 4022 if (_moddebug & MODDEBUG_ERRMSG) 4023 _kobj_printf(ops, "copying %x bytes\n", 4024 c_size); 4025 bcopy(file->_base+b_off, buf, c_size); 4026 size -= c_size; 4027 off += c_size; 4028 buf += c_size; 4029 count += c_size; 4030 } else { 4031 _kobj_printf(ops, "kobj_read: system error"); 4032 count = -1; 4033 break; 4034 } 4035 } else { 4036 /* 4037 * If the caller's offset is page aligned and 4038 * the caller want's at least a filesystem page and 4039 * the caller provided a buffer, 4040 * read directly into the caller's buffer. 4041 */ 4042 if (page_addr == off && 4043 (c_size = F_BLKS(file, size)) && buf) { 4044 c_size = kobj_read_blks(file, buf, c_size, 4045 page_addr); 4046 if (c_size < 0) { 4047 count = -1; 4048 break; 4049 } 4050 count += c_size; 4051 if (c_size != F_BLKS(file, size)) 4052 break; 4053 size -= c_size; 4054 off += c_size; 4055 buf += c_size; 4056 /* 4057 * Otherwise, read into our buffer and copy next time 4058 * around the loop. 4059 */ 4060 } else { 4061 file->_off = page_addr; 4062 c_size = kobj_read_blks(file, file->_base, 4063 file->_bsize, page_addr); 4064 file->_ptr = file->_base; 4065 file->_cnt = c_size; 4066 file->_size = c_size; 4067 /* 4068 * If a _filbuf call or nothing read, break. 4069 */ 4070 if (buf == NULL || c_size <= 0) { 4071 count = c_size; 4072 break; 4073 } 4074 } 4075 if (_moddebug & MODDEBUG_ERRMSG) 4076 _kobj_printf(ops, "read %x bytes\n", c_size); 4077 } 4078 } 4079 if (_moddebug & MODDEBUG_ERRMSG) 4080 _kobj_printf(ops, "count = %x\n", count); 4081 4082 return (count); 4083 } 4084 4085 static int 4086 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off) 4087 { 4088 int ret; 4089 4090 ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0); 4091 if (file->_iscmp) { 4092 uint_t blks; 4093 int nret; 4094 4095 ret = 0; 4096 for (blks = size / file->_bsize; blks != 0; blks--) { 4097 nret = kobj_uncomp_blk(file, buf, off); 4098 if (nret == -1) 4099 return (-1); 4100 buf += nret; 4101 off += nret; 4102 ret += nret; 4103 if (nret < file->_bsize) 4104 break; 4105 } 4106 } else 4107 ret = kobj_read(file->_fd, buf, size, off); 4108 return (ret); 4109 } 4110 4111 static int 4112 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off) 4113 { 4114 struct comphdr *hdr = kobj_comphdr(file); 4115 ulong_t dlen, slen; 4116 caddr_t src; 4117 int i; 4118 4119 dlen = file->_bsize; 4120 i = off / file->_bsize; 4121 src = file->_dbuf + hdr->ch_blkmap[i]; 4122 if (i == hdr->ch_fsize / file->_bsize) 4123 slen = file->_dsize - hdr->ch_blkmap[i]; 4124 else 4125 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i]; 4126 if (z_uncompress(buf, &dlen, src, slen) != Z_OK) 4127 return (-1); 4128 return (dlen); 4129 } 4130 4131 int 4132 kobj_filbuf(struct _buf *f) 4133 { 4134 if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0) 4135 return (kobj_getc(f)); 4136 return (-1); 4137 } 4138 4139 void 4140 kobj_free(void *address, size_t size) 4141 { 4142 if (standalone) 4143 return; 4144 4145 kmem_free(address, size); 4146 kobj_stat.nfree_calls++; 4147 kobj_stat.nfree += size; 4148 } 4149 4150 void * 4151 kobj_zalloc(size_t size, int flag) 4152 { 4153 void *v; 4154 4155 if ((v = kobj_alloc(size, flag)) != 0) { 4156 bzero(v, size); 4157 } 4158 4159 return (v); 4160 } 4161 4162 void * 4163 kobj_alloc(size_t size, int flag) 4164 { 4165 /* 4166 * If we are running standalone in the 4167 * linker, we ask boot for memory. 4168 * Either it's temporary memory that we lose 4169 * once boot is mapped out or we allocate it 4170 * permanently using the dynamic data segment. 4171 */ 4172 if (standalone) { 4173 #if defined(_OBP) 4174 if (flag & (KM_TMP | KM_SCRATCH)) 4175 return (bop_temp_alloc(size, MINALIGN)); 4176 #else 4177 if (flag & (KM_TMP | KM_SCRATCH)) 4178 return (BOP_ALLOC(ops, 0, size, MINALIGN)); 4179 #endif 4180 return (kobj_segbrk(&_edata, size, MINALIGN, 0)); 4181 } 4182 4183 kobj_stat.nalloc_calls++; 4184 kobj_stat.nalloc += size; 4185 4186 return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)); 4187 } 4188 4189 /* 4190 * Allow the "mod" system to sync up with the work 4191 * already done by kobj during the initial loading 4192 * of the kernel. This also gives us a chance 4193 * to reallocate memory that belongs to boot. 4194 */ 4195 void 4196 kobj_sync(void) 4197 { 4198 struct modctl_list *lp, **lpp; 4199 4200 /* 4201 * The module path can be set in /etc/system via 'moddir' commands 4202 */ 4203 if (default_path != NULL) 4204 kobj_module_path = default_path; 4205 else 4206 default_path = kobj_module_path; 4207 4208 ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t), 4209 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4210 4211 ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t), 4212 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4213 4214 /* 4215 * Move symbol tables from boot memory to ksyms_arena. 4216 */ 4217 for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) { 4218 for (lp = *lpp; lp != NULL; lp = lp->modl_next) 4219 kobj_export_module(mod(lp)); 4220 } 4221 } 4222 4223 caddr_t 4224 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit) 4225 { 4226 uintptr_t va, pva; 4227 size_t alloc_pgsz = kobj_mmu_pagesize; 4228 size_t alloc_align = BO_NO_ALIGN; 4229 size_t alloc_size; 4230 4231 /* 4232 * If we are using "large" mappings for the kernel, 4233 * request aligned memory from boot using the 4234 * "large" pagesize. 4235 */ 4236 if (lg_pagesize) { 4237 alloc_align = lg_pagesize; 4238 alloc_pgsz = lg_pagesize; 4239 } 4240 4241 #if defined(__sparc) 4242 /* account for redzone */ 4243 if (limit) 4244 limit -= alloc_pgsz; 4245 #endif /* __sparc */ 4246 4247 va = ALIGN((uintptr_t)*spp, align); 4248 pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz); 4249 /* 4250 * Need more pages? 4251 */ 4252 if (va + size > pva) { 4253 uintptr_t npva; 4254 4255 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz); 4256 /* 4257 * Check for overlapping segments. 4258 */ 4259 if (limit && limit <= *spp + alloc_size) { 4260 return ((caddr_t)0); 4261 } 4262 4263 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva, 4264 alloc_size, alloc_align); 4265 4266 if (npva == 0) { 4267 _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes", 4268 alloc_size); 4269 _kobj_printf(ops, " aligned %lx", alloc_align); 4270 _kobj_printf(ops, " at 0x%lx\n", pva); 4271 return (NULL); 4272 } 4273 } 4274 *spp = (caddr_t)(va + size); 4275 4276 return ((caddr_t)va); 4277 } 4278 4279 /* 4280 * Calculate the number of output hash buckets. 4281 * We use the next prime larger than n / 4, 4282 * so the average hash chain is about 4 entries. 4283 * More buckets would just be a waste of memory. 4284 */ 4285 uint_t 4286 kobj_gethashsize(uint_t n) 4287 { 4288 int f; 4289 int hsize = MAX(n / 4, 2); 4290 4291 for (f = 2; f * f <= hsize; f++) 4292 if (hsize % f == 0) 4293 hsize += f = 1; 4294 4295 return (hsize); 4296 } 4297 4298 /* 4299 * Get the file size. 4300 * 4301 * Before root is mounted, files are compressed in the boot_archive ramdisk 4302 * (in the memory). kobj_fstat would return the compressed file size. 4303 * In order to get the uncompressed file size, read the file to the end and 4304 * count its size. 4305 */ 4306 int 4307 kobj_get_filesize(struct _buf *file, uint64_t *size) 4308 { 4309 int err = 0; 4310 ssize_t resid; 4311 uint32_t buf; 4312 4313 if (_modrootloaded) { 4314 struct bootstat bst; 4315 4316 if (kobj_fstat(file->_fd, &bst) != 0) 4317 return (EIO); 4318 *size = bst.st_size; 4319 4320 if (file->_iscmp == CH_MAGIC_GZIP) { 4321 /* 4322 * Read the last 4 bytes of the compressed (gzip) 4323 * image to get the size of its uncompressed 4324 * version. 4325 */ 4326 if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd, 4327 (char *)(&buf), 4, (offset_t)(*size - 4), 4328 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 4329 != 0) { 4330 _kobj_printf(ops, "kobj_get_filesize: " 4331 "vn_rdwr() failed with error 0x%x\n", err); 4332 return (-1); 4333 } 4334 4335 *size = (uint64_t)buf; 4336 } 4337 } else { 4338 4339 #if defined(_OBP) 4340 struct bootstat bsb; 4341 4342 if (file->_iscmp) { 4343 struct comphdr *hdr = kobj_comphdr(file); 4344 4345 *size = hdr->ch_fsize; 4346 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0) 4347 return (EIO); 4348 else 4349 *size = bsb.st_size; 4350 #else 4351 char *buf; 4352 int count; 4353 uint64_t offset = 0; 4354 4355 buf = kmem_alloc(MAXBSIZE, KM_SLEEP); 4356 do { 4357 count = kobj_read_file(file, buf, MAXBSIZE, offset); 4358 if (count < 0) { 4359 kmem_free(buf, MAXBSIZE); 4360 return (EIO); 4361 } 4362 offset += count; 4363 } while (count == MAXBSIZE); 4364 kmem_free(buf, MAXBSIZE); 4365 4366 *size = offset; 4367 #endif 4368 } 4369 4370 return (0); 4371 } 4372 4373 static char * 4374 basename(char *s) 4375 { 4376 char *p, *q; 4377 4378 q = NULL; 4379 p = s; 4380 do { 4381 if (*p == '/') 4382 q = p; 4383 } while (*p++); 4384 return (q ? q + 1 : s); 4385 } 4386 4387 void 4388 kobj_stat_get(kobj_stat_t *kp) 4389 { 4390 *kp = kobj_stat; 4391 } 4392 4393 int 4394 kobj_getpagesize() 4395 { 4396 return (lg_pagesize); 4397 } 4398 4399 void 4400 kobj_textwin_alloc(struct module *mp) 4401 { 4402 ASSERT(MUTEX_HELD(&mod_lock)); 4403 4404 if (mp->textwin != NULL) 4405 return; 4406 4407 /* 4408 * If the text is not contained in the heap, then it is not contained 4409 * by a writable mapping. (Specifically, it's on the nucleus page.) 4410 * We allocate a read/write mapping for this module's text to allow 4411 * the text to be patched without calling hot_patch_kernel_text() 4412 * (which is quite slow). 4413 */ 4414 if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) { 4415 uintptr_t text = (uintptr_t)mp->text; 4416 uintptr_t size = (uintptr_t)mp->text_size; 4417 uintptr_t i; 4418 caddr_t va; 4419 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) - 4420 (text & PAGEMASK); 4421 4422 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP); 4423 4424 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) { 4425 hat_devload(kas.a_hat, va, PAGESIZE, 4426 hat_getpfnum(kas.a_hat, (caddr_t)i), 4427 PROT_READ | PROT_WRITE, 4428 HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4429 va += PAGESIZE; 4430 } 4431 4432 mp->textwin = mp->textwin_base + (text & PAGEOFFSET); 4433 } else { 4434 mp->textwin = mp->text; 4435 } 4436 } 4437 4438 void 4439 kobj_textwin_free(struct module *mp) 4440 { 4441 uintptr_t text = (uintptr_t)mp->text; 4442 uintptr_t tsize = (uintptr_t)mp->text_size; 4443 size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) - 4444 (text & PAGEMASK)); 4445 4446 mp->textwin = NULL; 4447 4448 if (mp->textwin_base == NULL) 4449 return; 4450 4451 hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK); 4452 vmem_free(heap_arena, mp->textwin_base, size); 4453 mp->textwin_base = NULL; 4454 } 4455 4456 static char * 4457 find_libmacro(char *name) 4458 { 4459 int lmi; 4460 4461 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4462 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0) 4463 return (libmacros[lmi].lmi_list); 4464 } 4465 return (NULL); 4466 } 4467 4468 /* 4469 * Check for $MACRO in tail (string to expand) and expand it in path at pathend 4470 * returns path if successful, else NULL 4471 * Support multiple $MACROs expansion and the first valid path will be returned 4472 * Caller's responsibility to provide enough space in path to expand 4473 */ 4474 char * 4475 expand_libmacro(char *tail, char *path, char *pathend) 4476 { 4477 char c, *p, *p1, *p2, *path2, *endp; 4478 int diff, lmi, macrolen, valid_macro, more_macro; 4479 struct _buf *file; 4480 4481 /* 4482 * check for $MACROS between nulls or slashes 4483 */ 4484 p = strchr(tail, '$'); 4485 if (p == NULL) 4486 return (NULL); 4487 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4488 macrolen = libmacros[lmi].lmi_macrolen; 4489 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0) 4490 break; 4491 } 4492 4493 valid_macro = 0; 4494 if (lmi < NLIBMACROS) { 4495 /* 4496 * The following checks are used to restrict expansion of 4497 * macros to those that form a full directory/file name 4498 * and to keep the behavior same as before. If this 4499 * restriction is removed or no longer valid in the future, 4500 * the checks below can be deleted. 4501 */ 4502 if ((p == tail) || (*(p - 1) == '/')) { 4503 c = *(p + macrolen + 1); 4504 if (c == '/' || c == '\0') 4505 valid_macro = 1; 4506 } 4507 } 4508 4509 if (!valid_macro) { 4510 p2 = strchr(p, '/'); 4511 /* 4512 * if no more macro to expand, then just copy whatever left 4513 * and check whether it exists 4514 */ 4515 if (p2 == NULL || strchr(p2, '$') == NULL) { 4516 (void) strcpy(pathend, tail); 4517 if ((file = kobj_open_path(path, 1, 1)) != 4518 (struct _buf *)-1) { 4519 kobj_close_file(file); 4520 return (path); 4521 } else 4522 return (NULL); 4523 } else { 4524 /* 4525 * copy all chars before '/' and call expand_libmacro() 4526 * again 4527 */ 4528 diff = p2 - tail; 4529 bcopy(tail, pathend, diff); 4530 pathend += diff; 4531 *(pathend) = '\0'; 4532 return (expand_libmacro(p2, path, pathend)); 4533 } 4534 } 4535 4536 more_macro = 0; 4537 if (c != '\0') { 4538 endp = p + macrolen + 1; 4539 if (strchr(endp, '$') != NULL) 4540 more_macro = 1; 4541 } else 4542 endp = NULL; 4543 4544 /* 4545 * copy lmi_list and split it into components. 4546 * then put the part of tail before $MACRO into path 4547 * at pathend 4548 */ 4549 diff = p - tail; 4550 if (diff > 0) 4551 bcopy(tail, pathend, diff); 4552 path2 = pathend + diff; 4553 p1 = libmacros[lmi].lmi_list; 4554 while (p1 && (*p1 != '\0')) { 4555 p2 = strchr(p1, ':'); 4556 if (p2) { 4557 diff = p2 - p1; 4558 bcopy(p1, path2, diff); 4559 *(path2 + diff) = '\0'; 4560 } else { 4561 diff = strlen(p1); 4562 bcopy(p1, path2, diff + 1); 4563 } 4564 /* copy endp only if there isn't any more macro to expand */ 4565 if (!more_macro && (endp != NULL)) 4566 (void) strcat(path2, endp); 4567 file = kobj_open_path(path, 1, 1); 4568 if (file != (struct _buf *)-1) { 4569 kobj_close_file(file); 4570 /* 4571 * if more macros to expand then call expand_libmacro(), 4572 * else return path which has the whole path 4573 */ 4574 if (!more_macro || (expand_libmacro(endp, path, 4575 path2 + diff) != NULL)) { 4576 return (path); 4577 } 4578 } 4579 if (p2) 4580 p1 = ++p2; 4581 else 4582 return (NULL); 4583 } 4584 return (NULL); 4585 } 4586 4587 char *kobj_file_buf; 4588 int kobj_file_bufsize; 4589 4590 /* 4591 * This code is for the purpose of manually recording which files 4592 * needs to go into the boot archive on any given system. 4593 * 4594 * To enable the code, set kobj_file_bufsize in /etc/system 4595 * and reboot the system, then use mdb to look at kobj_file_buf. 4596 */ 4597 static void 4598 kobj_record_file(char *filename) 4599 { 4600 static char *buf; 4601 static int size = 0; 4602 int n; 4603 4604 if (kobj_file_bufsize == 0) /* don't bother */ 4605 return; 4606 4607 if (kobj_file_buf == NULL) { /* allocate buffer */ 4608 size = kobj_file_bufsize; 4609 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP); 4610 } 4611 4612 n = snprintf(buf, size, "%s\n", filename); 4613 if (n > size) 4614 n = size; 4615 size -= n; 4616 buf += n; 4617 } 4618 4619 static int 4620 kobj_boot_fstat(int fd, struct bootstat *stp) 4621 { 4622 #if defined(_OBP) 4623 if (!standalone && _ioquiesced) 4624 return (-1); 4625 return (BOP_FSTAT(ops, fd, stp)); 4626 #else 4627 return (BRD_FSTAT(bfs_ops, fd, stp)); 4628 #endif 4629 } 4630 4631 static int 4632 kobj_boot_open(char *filename, int flags) 4633 { 4634 #if defined(_OBP) 4635 4636 /* 4637 * If io via bootops is quiesced, it means boot is no longer 4638 * available to us. We make it look as if we can't open the 4639 * named file - which is reasonably accurate. 4640 */ 4641 if (!standalone && _ioquiesced) 4642 return (-1); 4643 4644 kobj_record_file(filename); 4645 return (BOP_OPEN(filename, flags)); 4646 #else /* x86 */ 4647 kobj_record_file(filename); 4648 return (BRD_OPEN(bfs_ops, filename, flags)); 4649 #endif 4650 } 4651 4652 static int 4653 kobj_boot_close(int fd) 4654 { 4655 #if defined(_OBP) 4656 if (!standalone && _ioquiesced) 4657 return (-1); 4658 4659 return (BOP_CLOSE(fd)); 4660 #else /* x86 */ 4661 return (BRD_CLOSE(bfs_ops, fd)); 4662 #endif 4663 } 4664 4665 static int 4666 kobj_boot_seek(int fd, off_t hi __unused, off_t lo) 4667 { 4668 #if defined(_OBP) 4669 return (BOP_SEEK(fd, lo) == -1 ? -1 : 0); 4670 #else 4671 return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET)); 4672 #endif 4673 } 4674 4675 static int 4676 kobj_boot_read(int fd, caddr_t buf, size_t size) 4677 { 4678 #if defined(_OBP) 4679 return (BOP_READ(fd, buf, size)); 4680 #else 4681 return (BRD_READ(bfs_ops, fd, buf, size)); 4682 #endif 4683 } 4684 4685 static int 4686 kobj_boot_compinfo(int fd, struct compinfo *cb) 4687 { 4688 return (boot_compinfo(fd, cb)); 4689 } 4690 4691 /* 4692 * Check if the file is compressed (for now we handle only gzip). 4693 * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise. 4694 */ 4695 static int 4696 kobj_is_compressed(intptr_t fd) 4697 { 4698 struct vnode *vp = (struct vnode *)fd; 4699 ssize_t resid; 4700 uint16_t magic_buf; 4701 int err = 0; 4702 4703 if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf), 4704 sizeof (magic_buf), (offset_t)(0), 4705 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 4706 4707 _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, " 4708 "error code 0x%x\n", err); 4709 return (0); 4710 } 4711 4712 if (magic_buf == CH_MAGIC_GZIP) 4713 return (CH_MAGIC_GZIP); 4714 4715 return (0); 4716 } 4717