xref: /illumos-gate/usr/src/uts/common/krtld/kobj.c (revision 2f3d18f2c9f61603677fcb22d59f7157bae89d7e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>.
27  * All rights reserved. Use is subject to license terms.
28  */
29 
30 /*
31  * Kernel's linker/loader
32  */
33 
34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <sys/sysmacros.h>
37 #include <sys/systm.h>
38 #include <sys/user.h>
39 #include <sys/kmem.h>
40 #include <sys/reboot.h>
41 #include <sys/bootconf.h>
42 #include <sys/debug.h>
43 #include <sys/uio.h>
44 #include <sys/file.h>
45 #include <sys/vnode.h>
46 #include <sys/user.h>
47 #include <sys/mman.h>
48 #include <vm/as.h>
49 #include <vm/seg_kp.h>
50 #include <vm/seg_kmem.h>
51 #include <sys/elf.h>
52 #include <sys/elf_notes.h>
53 #include <sys/vmsystm.h>
54 #include <sys/kdi.h>
55 #include <sys/atomic.h>
56 #include <sys/kmdb.h>
57 
58 #include <sys/link.h>
59 #include <sys/kobj.h>
60 #include <sys/ksyms.h>
61 #include <sys/disp.h>
62 #include <sys/modctl.h>
63 #include <sys/varargs.h>
64 #include <sys/kstat.h>
65 #include <sys/kobj_impl.h>
66 #include <sys/fs/decomp.h>
67 #include <sys/callb.h>
68 #include <sys/cmn_err.h>
69 #include <sys/tnf_probe.h>
70 #include <sys/zmod.h>
71 
72 #include <krtld/reloc.h>
73 #include <krtld/kobj_kdi.h>
74 #include <sys/sha1.h>
75 #include <sys/crypto/elfsign.h>
76 
77 #if !defined(_OBP)
78 #include <sys/bootvfs.h>
79 #endif
80 
81 /*
82  * do_symbols() error codes
83  */
84 #define	DOSYM_UNDEF		-1	/* undefined symbol */
85 #define	DOSYM_UNSAFE		-2	/* MT-unsafe driver symbol */
86 
87 #if !defined(_OBP)
88 static void synthetic_bootaux(char *, val_t *);
89 #endif
90 
91 static struct module *load_exec(val_t *, char *);
92 static void load_linker(val_t *);
93 static struct modctl *add_primary(const char *filename, int);
94 static int bind_primary(val_t *, int);
95 static int load_primary(struct module *, int);
96 static int load_kmdb(val_t *);
97 static int get_progbits(struct module *, struct _buf *);
98 static int get_syms(struct module *, struct _buf *);
99 static int get_ctf(struct module *, struct _buf *);
100 static void get_signature(struct module *, struct _buf *);
101 static int do_common(struct module *);
102 static void add_dependent(struct module *, struct module *);
103 static int do_dependents(struct modctl *, char *, size_t);
104 static int do_symbols(struct module *, Elf64_Addr);
105 static void module_assign(struct modctl *, struct module *);
106 static void free_module_data(struct module *);
107 static char *depends_on(struct module *);
108 static char *getmodpath(const char *);
109 static char *basename(char *);
110 static void attr_val(val_t *);
111 static char *find_libmacro(char *);
112 static char *expand_libmacro(char *, char *, char *);
113 static int read_bootflags(void);
114 static int kobj_comp_setup(struct _buf *, struct compinfo *);
115 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t);
116 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t);
117 static int kobj_boot_open(char *, int);
118 static int kobj_boot_close(int);
119 static int kobj_boot_seek(int, off_t, off_t);
120 static int kobj_boot_read(int, caddr_t, size_t);
121 static int kobj_boot_fstat(int, struct bootstat *);
122 static int kobj_boot_compinfo(int, struct compinfo *);
123 
124 static Sym *lookup_one(struct module *, const char *);
125 static void sym_insert(struct module *, char *, symid_t);
126 static Sym *sym_lookup(struct module *, Sym *);
127 
128 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
129 static void kobjopen_free(struct kobjopen_tctl *ltp);
130 static void kobjopen_thread(struct kobjopen_tctl *ltp);
131 static int kobj_is_compressed(intptr_t);
132 
133 extern int kcopy(const void *, void *, size_t);
134 extern int elf_mach_ok(Ehdr *);
135 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
136 
137 #if !defined(_OBP)
138 extern int kobj_boot_mountroot(void);
139 #endif
140 
141 static void tnf_unsplice_probes(uint_t, struct modctl *);
142 extern tnf_probe_control_t *__tnf_probe_list_head;
143 extern tnf_tag_data_t *__tnf_tag_list_head;
144 
145 extern int modrootloaded;
146 extern int swaploaded;
147 extern int bop_io_quiesced;
148 extern int last_module_id;
149 
150 extern char stubs_base[];
151 extern char stubs_end[];
152 
153 #ifdef KOBJ_DEBUG
154 /*
155  * Values that can be or'd in to kobj_debug and their effects:
156  *
157  *	D_DEBUG		- misc. debugging information.
158  *	D_SYMBOLS	- list symbols and their values as they are entered
159  *			  into the hash table
160  *	D_RELOCATIONS	- display relocation processing information
161  *	D_LOADING	- display information about each module as it
162  *			  is loaded.
163  */
164 int kobj_debug = 0;
165 
166 #define	KOBJ_MARK(s)	if (kobj_debug & D_DEBUG)	\
167 	(_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
168 #else
169 #define	KOBJ_MARK(s)	/* discard */
170 #endif
171 
172 #define	MODPATH_PROPNAME	"module-path"
173 
174 #ifdef MODDIR_SUFFIX
175 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
176 #else
177 #define	slash_moddir_suffix_slash	""
178 #endif
179 
180 #define	_moddebug	get_weakish_int(&moddebug)
181 #define	_modrootloaded	get_weakish_int(&modrootloaded)
182 #define	_swaploaded	get_weakish_int(&swaploaded)
183 #define	_ioquiesced	get_weakish_int(&bop_io_quiesced)
184 
185 #define	mod(X)		(struct module *)((X)->modl_modp->mod_mp)
186 
187 void	*romp;		/* rom vector (opaque to us) */
188 struct bootops *ops;	/* bootops vector */
189 void *dbvec;		/* debug vector */
190 
191 /*
192  * kobjopen thread control structure
193  */
194 struct kobjopen_tctl {
195 	ksema_t		sema;
196 	char		*name;		/* name of file */
197 	struct vnode	*vp;		/* vnode return from vn_open() */
198 	int		Errno;		/* error return from vnopen    */
199 };
200 
201 /*
202  * Structure for defining dynamically expandable library macros
203  */
204 
205 struct lib_macro_info {
206 	char	*lmi_list;		/* ptr to list of possible choices */
207 	char	*lmi_macroname;		/* pointer to macro name */
208 	ushort_t lmi_ba_index;		/* index into bootaux vector */
209 	ushort_t lmi_macrolen;		/* macro length */
210 } libmacros[] = {
211 	{ NULL, "CPU", BA_CPU, 0 },
212 	{ NULL, "MMU", BA_MMU, 0 }
213 };
214 
215 #define	NLIBMACROS	sizeof (libmacros) / sizeof (struct lib_macro_info)
216 
217 char *boot_cpu_compatible_list;			/* make $CPU available */
218 
219 char *kobj_module_path;				/* module search path */
220 vmem_t	*text_arena;				/* module text arena */
221 static vmem_t *data_arena;			/* module data & bss arena */
222 static vmem_t *ctf_arena;			/* CTF debug data arena */
223 static struct modctl *kobj_modules = NULL;	/* modules loaded */
224 int kobj_mmu_pagesize;				/* system pagesize */
225 static int lg_pagesize;				/* "large" pagesize */
226 static int kobj_last_module_id = 0;		/* id assignment */
227 static kmutex_t kobj_lock;			/* protects mach memory list */
228 
229 /*
230  * The following functions have been implemented by the kernel.
231  * However, many 3rd party drivers provide their own implementations
232  * of these functions.  When such drivers are loaded, messages
233  * indicating that these symbols have been multiply defined will be
234  * emitted to the console.  To avoid alarming customers for no good
235  * reason, we simply suppress such warnings for the following set of
236  * functions.
237  */
238 static char *suppress_sym_list[] =
239 {
240 	"strstr",
241 	"strncat",
242 	"strlcat",
243 	"strlcpy",
244 	"strspn",
245 	"memcpy",
246 	"memset",
247 	"memmove",
248 	"memcmp",
249 	"memchr",
250 	"__udivdi3",
251 	"__divdi3",
252 	"__umoddi3",
253 	"__moddi3",
254 	NULL		/* This entry must exist */
255 };
256 
257 /* indexed by KOBJ_NOTIFY_* */
258 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
259 
260 /*
261  * TNF probe management globals
262  */
263 tnf_probe_control_t	*__tnf_probe_list_head = NULL;
264 tnf_tag_data_t		*__tnf_tag_list_head = NULL;
265 int			tnf_changed_probe_list = 0;
266 
267 /*
268  * Prefix for statically defined tracing (SDT) DTrace probes.
269  */
270 const char		*sdt_prefix = "__dtrace_probe_";
271 
272 /*
273  * Beginning and end of the kernel's dynamic text/data segments.
274  */
275 static caddr_t _text;
276 static caddr_t _etext;
277 static caddr_t _data;
278 
279 /*
280  * The sparc linker doesn't create a memory location
281  * for a variable named _edata, so _edata can only be
282  * referred to, not modified.  krtld needs a static
283  * variable to modify it - within krtld, of course -
284  * outside of krtld, e_data is used in all kernels.
285  */
286 #if defined(__sparc)
287 static caddr_t _edata;
288 #else
289 extern caddr_t _edata;
290 #endif
291 
292 Addr dynseg = 0;	/* load address of "dynamic" segment */
293 size_t dynsize;		/* "dynamic" segment size */
294 
295 
296 int standalone = 1;			/* an unwholey kernel? */
297 int use_iflush;				/* iflush after relocations */
298 
299 /*
300  * _kobj_printf() and _vkobj_printf()
301  *
302  * Common printf function pointer. Can handle only one conversion
303  * specification in the format string. Some of the functions invoked
304  * through this function pointer cannot handle more that one conversion
305  * specification in the format string.
306  */
307 void (*_kobj_printf)(void *, const char *, ...);	/* printf routine */
308 void (*_vkobj_printf)(void *, const char *, va_list);	/* vprintf routine */
309 
310 /*
311  * Standalone function pointers for use within krtld.
312  * Many platforms implement optimized platmod versions of
313  * utilities such as bcopy and any such are not yet available
314  * until the kernel is more completely stitched together.
315  * See kobj_impl.h
316  */
317 void (*kobj_bcopy)(const void *, void *, size_t);
318 void (*kobj_bzero)(void *, size_t);
319 size_t (*kobj_strlcat)(char *, const char *, size_t);
320 
321 static kobj_stat_t kobj_stat;
322 
323 #define	MINALIGN	8	/* at least a double-word */
324 
325 int
326 get_weakish_int(int *ip)
327 {
328 	if (standalone)
329 		return (0);
330 	return (ip == NULL ? 0 : *ip);
331 }
332 
333 static void *
334 get_weakish_pointer(void **ptrp)
335 {
336 	if (standalone)
337 		return (0);
338 	return (ptrp == NULL ? 0 : *ptrp);
339 }
340 
341 /*
342  * XXX fix dependencies on "kernel"; this should work
343  * for other standalone binaries as well.
344  *
345  * XXX Fix hashing code to use one pointer to
346  * hash entries.
347  *	|----------|
348  *	| nbuckets |
349  *	|----------|
350  *	| nchains  |
351  *	|----------|
352  *	| bucket[] |
353  *	|----------|
354  *	| chain[]  |
355  *	|----------|
356  */
357 
358 /*
359  * Load, bind and relocate all modules that
360  * form the primary kernel. At this point, our
361  * externals have not been relocated.
362  */
363 void
364 kobj_init(
365 	void *romvec,
366 	void *dvec,
367 	struct bootops *bootvec,
368 	val_t *bootaux)
369 {
370 	struct module *mp;
371 	struct modctl *modp;
372 	Addr entry;
373 	char filename[MAXPATHLEN];
374 
375 	/*
376 	 * Save these to pass on to
377 	 * the booted standalone.
378 	 */
379 	romp = romvec;
380 	dbvec = dvec;
381 
382 	ops = bootvec;
383 	kobj_setup_standalone_vectors();
384 
385 	KOBJ_MARK("Entered kobj_init()");
386 
387 	(void) BOP_GETPROP(ops, "whoami", filename);
388 
389 	/*
390 	 * We don't support standalone debuggers anymore.  The use of kadb
391 	 * will interfere with the later use of kmdb.  Let the user mend
392 	 * their ways now.  Users will reach this message if they still
393 	 * have the kadb binary on their system (perhaps they used an old
394 	 * bfu, or maybe they intentionally copied it there) and have
395 	 * specified its use in a way that eluded our checking in the boot
396 	 * program.
397 	 */
398 	if (dvec != NULL) {
399 		_kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
400 		    "kadb are no longer supported\n\n");
401 		goto fail;
402 	}
403 
404 #if defined(_OBP)
405 	/*
406 	 * OBP allows us to read both the ramdisk and
407 	 * the underlying root fs when root is a disk.
408 	 * This can lower incidences of unbootable systems
409 	 * when the archive is out-of-date with the /etc
410 	 * state files.
411 	 */
412 	if (BOP_MOUNTROOT() != BOOT_SVC_OK) {
413 		_kobj_printf(ops, "can't mount boot fs\n");
414 		goto fail;
415 	}
416 #else
417 	{
418 		/* on x86, we always boot with a ramdisk */
419 		(void) kobj_boot_mountroot();
420 
421 		/*
422 		 * Now that the ramdisk is mounted, finish boot property
423 		 * initialization.
424 		 */
425 		boot_prop_finish();
426 	}
427 
428 #if !defined(_UNIX_KRTLD)
429 	/*
430 	 * 'unix' is linked together with 'krtld' into one executable and
431 	 * the early boot code does -not- hand us any of the dynamic metadata
432 	 * about the executable. In particular, it does not read in, map or
433 	 * otherwise look at the program headers. We fake all that up now.
434 	 *
435 	 * We do this early as DTrace static probes and tnf probes both call
436 	 * undefined references.  We have to process those relocations before
437 	 * calling any of them.
438 	 *
439 	 * OBP tells kobj_start() where the ELF image is in memory, so it
440 	 * synthesized bootaux before kobj_init() was called
441 	 */
442 	if (bootaux[BA_PHDR].ba_ptr == NULL)
443 		synthetic_bootaux(filename, bootaux);
444 
445 #endif	/* !_UNIX_KRTLD */
446 #endif	/* _OBP */
447 
448 	/*
449 	 * Save the interesting attribute-values
450 	 * (scanned by kobj_boot).
451 	 */
452 	attr_val(bootaux);
453 
454 	/*
455 	 * Set the module search path.
456 	 */
457 	kobj_module_path = getmodpath(filename);
458 
459 	boot_cpu_compatible_list = find_libmacro("CPU");
460 
461 	/*
462 	 * These two modules have actually been
463 	 * loaded by boot, but we finish the job
464 	 * by introducing them into the world of
465 	 * loadable modules.
466 	 */
467 
468 	mp = load_exec(bootaux, filename);
469 	load_linker(bootaux);
470 
471 	/*
472 	 * Load all the primary dependent modules.
473 	 */
474 	if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
475 		goto fail;
476 
477 	/*
478 	 * Glue it together.
479 	 */
480 	if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
481 		goto fail;
482 
483 	entry = bootaux[BA_ENTRY].ba_val;
484 
485 	/*
486 	 * Get the boot flags
487 	 */
488 	bootflags(ops);
489 
490 	if (boothowto & RB_VERBOSE)
491 		kobj_lm_dump(KOBJ_LM_PRIMARY);
492 
493 	kobj_kdi_init();
494 
495 	if (boothowto & RB_KMDB) {
496 		if (load_kmdb(bootaux) < 0)
497 			goto fail;
498 	}
499 
500 	/*
501 	 * Post setup.
502 	 */
503 	s_text = _text;
504 	e_text = _etext;
505 	s_data = _data;
506 	e_data = _edata;
507 
508 	kobj_sync_instruction_memory(s_text, e_text - s_text);
509 
510 #ifdef	KOBJ_DEBUG
511 	if (kobj_debug & D_DEBUG)
512 		_kobj_printf(ops,
513 		    "krtld: transferring control to: 0x%p\n", entry);
514 #endif
515 
516 	/*
517 	 * Make sure the mod system knows about the modules already loaded.
518 	 */
519 	last_module_id = kobj_last_module_id;
520 	bcopy(kobj_modules, &modules, sizeof (modules));
521 	modp = &modules;
522 	do {
523 		if (modp->mod_next == kobj_modules)
524 			modp->mod_next = &modules;
525 		if (modp->mod_prev == kobj_modules)
526 			modp->mod_prev = &modules;
527 	} while ((modp = modp->mod_next) != &modules);
528 
529 	standalone = 0;
530 
531 #ifdef	KOBJ_DEBUG
532 	if (kobj_debug & D_DEBUG)
533 		_kobj_printf(ops,
534 		    "krtld: really transferring control to: 0x%p\n", entry);
535 #endif
536 
537 	/* restore printf/bcopy/bzero vectors before returning */
538 	kobj_restore_vectors();
539 
540 #if defined(_DBOOT)
541 	/*
542 	 * krtld was called from a dboot ELF section, the embedded
543 	 * dboot code contains the real entry via bootaux
544 	 */
545 	exitto((caddr_t)entry);
546 #else
547 	/*
548 	 * krtld was directly called from startup
549 	 */
550 	return;
551 #endif
552 
553 fail:
554 
555 	_kobj_printf(ops, "krtld: error during initial load/link phase\n");
556 
557 #if !defined(_UNIX_KRTLD)
558 	_kobj_printf(ops, "\n");
559 	_kobj_printf(ops, "krtld could neither locate nor resolve symbols"
560 	    " for:\n");
561 	_kobj_printf(ops, "    %s\n", filename);
562 	_kobj_printf(ops, "in the boot archive. Please verify that this"
563 	    " file\n");
564 	_kobj_printf(ops, "matches what is found in the boot archive.\n");
565 	_kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
566 	    " fix this.\n");
567 	bop_panic("Unable to boot");
568 #endif
569 }
570 
571 #if !defined(_UNIX_KRTLD) && !defined(_OBP)
572 /*
573  * Synthesize additional metadata that describes the executable if
574  * krtld's caller didn't do it.
575  *
576  * (When the dynamic executable has an interpreter, the boot program
577  * does all this for us.  Where we don't have an interpreter, (or a
578  * even a boot program, perhaps) we have to do this for ourselves.)
579  */
580 static void
581 synthetic_bootaux(char *filename, val_t *bootaux)
582 {
583 	Ehdr ehdr;
584 	caddr_t phdrbase;
585 	struct _buf *file;
586 	int i, n;
587 
588 	/*
589 	 * Elf header
590 	 */
591 	KOBJ_MARK("synthetic_bootaux()");
592 	KOBJ_MARK(filename);
593 	file = kobj_open_file(filename);
594 	if (file == (struct _buf *)-1) {
595 		_kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
596 		return;
597 	}
598 	KOBJ_MARK("reading program headers");
599 	if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
600 		_kobj_printf(ops, "krtld: %s: failed to read ehder\n",
601 		    filename);
602 		return;
603 	}
604 
605 	/*
606 	 * Program headers
607 	 */
608 	bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
609 	bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
610 	n = ehdr.e_phentsize * ehdr.e_phnum;
611 
612 	phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
613 
614 	if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
615 		_kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
616 		    filename);
617 		return;
618 	}
619 	bootaux[BA_PHDR].ba_ptr = phdrbase;
620 	kobj_close_file(file);
621 	KOBJ_MARK("closed file");
622 
623 	/*
624 	 * Find the dynamic section address
625 	 */
626 	for (i = 0; i < ehdr.e_phnum; i++) {
627 		Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
628 
629 		if (phdr->p_type == PT_DYNAMIC) {
630 			bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
631 			break;
632 		}
633 	}
634 	KOBJ_MARK("synthetic_bootaux() done");
635 }
636 #endif	/* !_UNIX_KRTLD && !_OBP */
637 
638 /*
639  * Set up any global information derived
640  * from attribute/values in the boot or
641  * aux vector.
642  */
643 static void
644 attr_val(val_t *bootaux)
645 {
646 	Phdr *phdr;
647 	int phnum, phsize;
648 	int i;
649 
650 	KOBJ_MARK("attr_val()");
651 	kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
652 	lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
653 	use_iflush = bootaux[BA_IFLUSH].ba_val;
654 
655 	phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
656 	phnum = bootaux[BA_PHNUM].ba_val;
657 	phsize = bootaux[BA_PHENT].ba_val;
658 	for (i = 0; i < phnum; i++) {
659 		phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
660 
661 		if (phdr->p_type != PT_LOAD) {
662 			continue;
663 		}
664 		/*
665 		 * Bounds of the various segments.
666 		 */
667 		if (!(phdr->p_flags & PF_X)) {
668 #if defined(_RELSEG)
669 			/*
670 			 * sparc kernel puts the dynamic info
671 			 * into a separate segment, which is
672 			 * free'd in bop_fini()
673 			 */
674 			ASSERT(phdr->p_vaddr != 0);
675 			dynseg = phdr->p_vaddr;
676 			dynsize = phdr->p_memsz;
677 #else
678 			ASSERT(phdr->p_vaddr == 0);
679 #endif
680 		} else {
681 			if (phdr->p_flags & PF_W) {
682 				_data = (caddr_t)phdr->p_vaddr;
683 				_edata = _data + phdr->p_memsz;
684 			} else {
685 				_text = (caddr_t)phdr->p_vaddr;
686 				_etext = _text + phdr->p_memsz;
687 			}
688 		}
689 	}
690 
691 	/* To do the kobj_alloc, _edata needs to be set. */
692 	for (i = 0; i < NLIBMACROS; i++) {
693 		if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
694 			libmacros[i].lmi_list = kobj_alloc(
695 			    strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
696 			    1, KM_WAIT);
697 			(void) strcpy(libmacros[i].lmi_list,
698 			    bootaux[libmacros[i].lmi_ba_index].ba_ptr);
699 		}
700 		libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
701 	}
702 }
703 
704 /*
705  * Set up the booted executable.
706  */
707 static struct module *
708 load_exec(val_t *bootaux, char *filename)
709 {
710 	struct modctl *cp;
711 	struct module *mp;
712 	Dyn *dyn;
713 	Sym *sp;
714 	int i, lsize, osize, nsize, allocsize;
715 	char *libname, *tmp;
716 	char path[MAXPATHLEN];
717 
718 #ifdef KOBJ_DEBUG
719 	if (kobj_debug & D_DEBUG)
720 		_kobj_printf(ops, "module path '%s'\n", kobj_module_path);
721 #endif
722 
723 	KOBJ_MARK("add_primary");
724 	cp = add_primary(filename, KOBJ_LM_PRIMARY);
725 
726 	KOBJ_MARK("struct module");
727 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
728 	cp->mod_mp = mp;
729 
730 	/*
731 	 * We don't have the following information
732 	 * since this module is an executable and not
733 	 * a relocatable .o.
734 	 */
735 	mp->symtbl_section = 0;
736 	mp->shdrs = NULL;
737 	mp->strhdr = NULL;
738 
739 	/*
740 	 * Since this module is the only exception,
741 	 * we cons up some section headers.
742 	 */
743 	KOBJ_MARK("symhdr");
744 	mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
745 
746 	KOBJ_MARK("strhdr");
747 	mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
748 
749 	mp->symhdr->sh_type = SHT_SYMTAB;
750 	mp->strhdr->sh_type = SHT_STRTAB;
751 	/*
752 	 * Scan the dynamic structure.
753 	 */
754 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
755 	    dyn->d_tag != DT_NULL; dyn++) {
756 		switch (dyn->d_tag) {
757 		case DT_SYMTAB:
758 			mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
759 			mp->symhdr->sh_addr = dyn->d_un.d_ptr;
760 			break;
761 		case DT_HASH:
762 			mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
763 			mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
764 			break;
765 		case DT_STRTAB:
766 			mp->strings = (char *)dyn->d_un.d_ptr;
767 			mp->strhdr->sh_addr = dyn->d_un.d_ptr;
768 			break;
769 		case DT_STRSZ:
770 			mp->strhdr->sh_size = dyn->d_un.d_val;
771 			break;
772 		case DT_SYMENT:
773 			mp->symhdr->sh_entsize = dyn->d_un.d_val;
774 			break;
775 		}
776 	}
777 
778 	/*
779 	 * Collapse any DT_NEEDED entries into one string.
780 	 */
781 	nsize = osize = 0;
782 	allocsize = MAXPATHLEN;
783 
784 	KOBJ_MARK("depends_on");
785 	mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
786 
787 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
788 	    dyn->d_tag != DT_NULL; dyn++)
789 		if (dyn->d_tag == DT_NEEDED) {
790 			char *_lib;
791 
792 			libname = mp->strings + dyn->d_un.d_val;
793 			if (strchr(libname, '$') != NULL) {
794 				if ((_lib = expand_libmacro(libname,
795 				    path, path)) != NULL)
796 					libname = _lib;
797 				else
798 					_kobj_printf(ops, "krtld: "
799 					    "load_exec: fail to "
800 					    "expand %s\n", libname);
801 			}
802 			lsize = strlen(libname);
803 			nsize += lsize;
804 			if (nsize + 1 > allocsize) {
805 				KOBJ_MARK("grow depends_on");
806 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
807 				    KM_WAIT);
808 				bcopy(mp->depends_on, tmp, osize);
809 				kobj_free(mp->depends_on, allocsize);
810 				mp->depends_on = tmp;
811 				allocsize += MAXPATHLEN;
812 			}
813 			bcopy(libname, mp->depends_on + osize, lsize);
814 			*(mp->depends_on + nsize) = ' '; /* separate */
815 			nsize++;
816 			osize = nsize;
817 		}
818 	if (nsize) {
819 		mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
820 		/*
821 		 * alloc with exact size and copy whatever it got over
822 		 */
823 		KOBJ_MARK("realloc depends_on");
824 		tmp = kobj_alloc(nsize, KM_WAIT);
825 		bcopy(mp->depends_on, tmp, nsize);
826 		kobj_free(mp->depends_on, allocsize);
827 		mp->depends_on = tmp;
828 	} else {
829 		kobj_free(mp->depends_on, allocsize);
830 		mp->depends_on = NULL;
831 	}
832 
833 	mp->flags = KOBJ_EXEC|KOBJ_PRIM;	/* NOT a relocatable .o */
834 	mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
835 	/*
836 	 * We allocate our own table since we don't
837 	 * hash undefined references.
838 	 */
839 	KOBJ_MARK("chains");
840 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
841 	KOBJ_MARK("buckets");
842 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
843 
844 	mp->text = _text;
845 	mp->data = _data;
846 
847 	mp->text_size = _etext - _text;
848 	mp->data_size = _edata - _data;
849 
850 	cp->mod_text = mp->text;
851 	cp->mod_text_size = mp->text_size;
852 
853 	mp->filename = cp->mod_filename;
854 
855 #ifdef	KOBJ_DEBUG
856 	if (kobj_debug & D_LOADING) {
857 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
858 		_kobj_printf(ops, "\ttext: 0x%p", mp->text);
859 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
860 		_kobj_printf(ops, "\tdata: 0x%p", mp->data);
861 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
862 	}
863 #endif /* KOBJ_DEBUG */
864 
865 	/*
866 	 * Insert symbols into the hash table.
867 	 */
868 	for (i = 0; i < mp->nsyms; i++) {
869 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
870 
871 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
872 			continue;
873 #if defined(__sparc)
874 		/*
875 		 * Register symbols are ignored in the kernel
876 		 */
877 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
878 			continue;
879 #endif	/* __sparc */
880 
881 		sym_insert(mp, mp->strings + sp->st_name, i);
882 	}
883 
884 	KOBJ_MARK("load_exec done");
885 	return (mp);
886 }
887 
888 /*
889  * Set up the linker module (if it's compiled in, LDNAME is NULL)
890  */
891 static void
892 load_linker(val_t *bootaux)
893 {
894 	struct module *kmp = (struct module *)kobj_modules->mod_mp;
895 	struct module *mp;
896 	struct modctl *cp;
897 	int i;
898 	Shdr *shp;
899 	Sym *sp;
900 	int shsize;
901 	char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
902 
903 	/*
904 	 * On some architectures, krtld is compiled into the kernel.
905 	 */
906 	if (dlname == NULL)
907 		return;
908 
909 	cp = add_primary(dlname, KOBJ_LM_PRIMARY);
910 
911 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
912 
913 	cp->mod_mp = mp;
914 	mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
915 	shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
916 	mp->shdrs = kobj_alloc(shsize, KM_WAIT);
917 	bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
918 
919 	for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
920 		shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
921 
922 		if (shp->sh_flags & SHF_ALLOC) {
923 			if (shp->sh_flags & SHF_WRITE) {
924 				if (mp->data == NULL)
925 					mp->data = (char *)shp->sh_addr;
926 			} else if (mp->text == NULL) {
927 				mp->text = (char *)shp->sh_addr;
928 			}
929 		}
930 		if (shp->sh_type == SHT_SYMTAB) {
931 			mp->symtbl_section = i;
932 			mp->symhdr = shp;
933 			mp->symspace = mp->symtbl = (char *)shp->sh_addr;
934 		}
935 	}
936 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
937 	mp->flags = KOBJ_INTERP|KOBJ_PRIM;
938 	mp->strhdr = (Shdr *)
939 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
940 	mp->strings = (char *)mp->strhdr->sh_addr;
941 	mp->hashsize = kobj_gethashsize(mp->nsyms);
942 
943 	mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
944 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t);
945 
946 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
947 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
948 
949 	mp->bss = bootaux[BA_BSS].ba_val;
950 	mp->bss_align = 0;	/* pre-aligned during allocation */
951 	mp->bss_size = (uintptr_t)_edata - mp->bss;
952 	mp->text_size = _etext - mp->text;
953 	mp->data_size = _edata - mp->data;
954 	mp->filename = cp->mod_filename;
955 	cp->mod_text = mp->text;
956 	cp->mod_text_size = mp->text_size;
957 
958 	/*
959 	 * Now that we've figured out where the linker is,
960 	 * set the limits for the booted object.
961 	 */
962 	kmp->text_size = (size_t)(mp->text - kmp->text);
963 	kmp->data_size = (size_t)(mp->data - kmp->data);
964 	kobj_modules->mod_text_size = kmp->text_size;
965 
966 #ifdef	KOBJ_DEBUG
967 	if (kobj_debug & D_LOADING) {
968 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
969 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
970 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
971 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
972 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
973 	}
974 #endif /* KOBJ_DEBUG */
975 
976 	/*
977 	 * Insert the symbols into the hash table.
978 	 */
979 	for (i = 0; i < mp->nsyms; i++) {
980 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
981 
982 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
983 			continue;
984 		if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
985 			if (sp->st_shndx == SHN_COMMON)
986 				sp->st_shndx = SHN_ABS;
987 		}
988 		sym_insert(mp, mp->strings + sp->st_name, i);
989 	}
990 
991 }
992 
993 static kobj_notify_list_t **
994 kobj_notify_lookup(uint_t type)
995 {
996 	ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
997 	    sizeof (kobj_notify_list_t *));
998 
999 	return (&kobj_notifiers[type]);
1000 }
1001 
1002 int
1003 kobj_notify_add(kobj_notify_list_t *knp)
1004 {
1005 	kobj_notify_list_t **knl;
1006 
1007 	knl = kobj_notify_lookup(knp->kn_type);
1008 
1009 	knp->kn_next = NULL;
1010 	knp->kn_prev = NULL;
1011 
1012 	mutex_enter(&kobj_lock);
1013 
1014 	if (*knl != NULL) {
1015 		(*knl)->kn_prev = knp;
1016 		knp->kn_next = *knl;
1017 	}
1018 	(*knl) = knp;
1019 
1020 	mutex_exit(&kobj_lock);
1021 	return (0);
1022 }
1023 
1024 int
1025 kobj_notify_remove(kobj_notify_list_t *knp)
1026 {
1027 	kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1028 	kobj_notify_list_t *tknp;
1029 
1030 	mutex_enter(&kobj_lock);
1031 
1032 	/* LINTED */
1033 	if (tknp = knp->kn_next)
1034 		tknp->kn_prev = knp->kn_prev;
1035 
1036 	/* LINTED */
1037 	if (tknp = knp->kn_prev)
1038 		tknp->kn_next = knp->kn_next;
1039 	else
1040 		*knl = knp->kn_next;
1041 
1042 	mutex_exit(&kobj_lock);
1043 
1044 	return (0);
1045 }
1046 
1047 /*
1048  * Notify all interested callbacks of a specified change in module state.
1049  */
1050 static void
1051 kobj_notify(int type, struct modctl *modp)
1052 {
1053 	kobj_notify_list_t *knp;
1054 
1055 	if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1056 		return;
1057 
1058 	mutex_enter(&kobj_lock);
1059 
1060 	for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1061 		knp->kn_func(type, modp);
1062 
1063 	/*
1064 	 * KDI notification must be last (it has to allow for work done by the
1065 	 * other notification callbacks), so we call it manually.
1066 	 */
1067 	kobj_kdi_mod_notify(type, modp);
1068 
1069 	mutex_exit(&kobj_lock);
1070 }
1071 
1072 /*
1073  * Create the module path.
1074  */
1075 static char *
1076 getmodpath(const char *filename)
1077 {
1078 	char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT);
1079 
1080 	/*
1081 	 * Platform code gets first crack, then add
1082 	 * the default components
1083 	 */
1084 	mach_modpath(path, filename);
1085 	if (*path != '\0')
1086 		(void) strcat(path, " ");
1087 	return (strcat(path, MOD_DEFPATH));
1088 }
1089 
1090 static struct modctl *
1091 add_primary(const char *filename, int lmid)
1092 {
1093 	struct modctl *cp;
1094 
1095 	cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1096 
1097 	cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1098 
1099 	/*
1100 	 * For symbol lookup, we assemble our own
1101 	 * modctl list of the primary modules.
1102 	 */
1103 
1104 	(void) strcpy(cp->mod_filename, filename);
1105 	cp->mod_modname = basename(cp->mod_filename);
1106 
1107 	/* set values for modinfo assuming that the load will work */
1108 	cp->mod_prim = 1;
1109 	cp->mod_loaded = 1;
1110 	cp->mod_installed = 1;
1111 	cp->mod_loadcnt = 1;
1112 	cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1113 
1114 	cp->mod_id = kobj_last_module_id++;
1115 
1116 	/*
1117 	 * Link the module in. We'll pass this info on
1118 	 * to the mod squad later.
1119 	 */
1120 	if (kobj_modules == NULL) {
1121 		kobj_modules = cp;
1122 		cp->mod_prev = cp->mod_next = cp;
1123 	} else {
1124 		cp->mod_prev = kobj_modules->mod_prev;
1125 		cp->mod_next = kobj_modules;
1126 		kobj_modules->mod_prev->mod_next = cp;
1127 		kobj_modules->mod_prev = cp;
1128 	}
1129 
1130 	kobj_lm_append(lmid, cp);
1131 
1132 	return (cp);
1133 }
1134 
1135 static int
1136 bind_primary(val_t *bootaux, int lmid)
1137 {
1138 	struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1139 	struct modctl_list *lp;
1140 	struct module *mp;
1141 
1142 	/*
1143 	 * Do common symbols.
1144 	 */
1145 	for (lp = linkmap; lp; lp = lp->modl_next) {
1146 		mp = mod(lp);
1147 
1148 		/*
1149 		 * Don't do common section relocations for modules that
1150 		 * don't need it.
1151 		 */
1152 		if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1153 			continue;
1154 
1155 		if (do_common(mp) < 0)
1156 			return (-1);
1157 	}
1158 
1159 	/*
1160 	 * Resolve symbols.
1161 	 */
1162 	for (lp = linkmap; lp; lp = lp->modl_next) {
1163 		mp = mod(lp);
1164 
1165 		if (do_symbols(mp, 0) < 0)
1166 			return (-1);
1167 	}
1168 
1169 	/*
1170 	 * Do relocations.
1171 	 */
1172 	for (lp = linkmap; lp; lp = lp->modl_next) {
1173 		mp = mod(lp);
1174 
1175 		if (mp->flags & KOBJ_EXEC) {
1176 			Dyn *dyn;
1177 			Word relasz = 0, relaent = 0;
1178 			Word shtype;
1179 			char *rela = NULL;
1180 
1181 			for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1182 			    dyn->d_tag != DT_NULL; dyn++) {
1183 				switch (dyn->d_tag) {
1184 				case DT_RELASZ:
1185 				case DT_RELSZ:
1186 					relasz = dyn->d_un.d_val;
1187 					break;
1188 				case DT_RELAENT:
1189 				case DT_RELENT:
1190 					relaent = dyn->d_un.d_val;
1191 					break;
1192 				case DT_RELA:
1193 					shtype = SHT_RELA;
1194 					rela = (char *)dyn->d_un.d_ptr;
1195 					break;
1196 				case DT_REL:
1197 					shtype = SHT_REL;
1198 					rela = (char *)dyn->d_un.d_ptr;
1199 					break;
1200 				}
1201 			}
1202 			if (relasz == 0 ||
1203 			    relaent == 0 || rela == NULL) {
1204 				_kobj_printf(ops, "krtld: bind_primary(): "
1205 				    "no relocation information found for "
1206 				    "module %s\n", mp->filename);
1207 				return (-1);
1208 			}
1209 #ifdef	KOBJ_DEBUG
1210 			if (kobj_debug & D_RELOCATIONS)
1211 				_kobj_printf(ops, "krtld: relocating: file=%s "
1212 				    "KOBJ_EXEC\n", mp->filename);
1213 #endif
1214 			if (do_relocate(mp, rela, shtype, relasz/relaent,
1215 			    relaent, (Addr)mp->text) < 0)
1216 				return (-1);
1217 		} else {
1218 			if (do_relocations(mp) < 0)
1219 				return (-1);
1220 		}
1221 
1222 		kobj_sync_instruction_memory(mp->text, mp->text_size);
1223 	}
1224 
1225 	for (lp = linkmap; lp; lp = lp->modl_next) {
1226 		mp = mod(lp);
1227 
1228 		/*
1229 		 * We need to re-read the full symbol table for the boot file,
1230 		 * since we couldn't use the full one before.  We also need to
1231 		 * load the CTF sections of both the boot file and the
1232 		 * interpreter (us).
1233 		 */
1234 		if (mp->flags & KOBJ_EXEC) {
1235 			struct _buf *file;
1236 			int n;
1237 
1238 			file = kobj_open_file(mp->filename);
1239 			if (file == (struct _buf *)-1)
1240 				return (-1);
1241 			if (kobj_read_file(file, (char *)&mp->hdr,
1242 			    sizeof (mp->hdr), 0) < 0)
1243 				return (-1);
1244 			n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1245 			mp->shdrs = kobj_alloc(n, KM_WAIT);
1246 			if (kobj_read_file(file, mp->shdrs, n,
1247 			    mp->hdr.e_shoff) < 0)
1248 				return (-1);
1249 			if (get_syms(mp, file) < 0)
1250 				return (-1);
1251 			if (get_ctf(mp, file) < 0)
1252 				return (-1);
1253 			kobj_close_file(file);
1254 			mp->flags |= KOBJ_RELOCATED;
1255 
1256 		} else if (mp->flags & KOBJ_INTERP) {
1257 			struct _buf *file;
1258 
1259 			/*
1260 			 * The interpreter path fragment in mp->filename
1261 			 * will already have the module directory suffix
1262 			 * in it (if appropriate).
1263 			 */
1264 			file = kobj_open_path(mp->filename, 1, 0);
1265 			if (file == (struct _buf *)-1)
1266 				return (-1);
1267 			if (get_ctf(mp, file) < 0)
1268 				return (-1);
1269 			kobj_close_file(file);
1270 			mp->flags |= KOBJ_RELOCATED;
1271 		}
1272 	}
1273 
1274 	return (0);
1275 }
1276 
1277 static struct modctl *
1278 mod_already_loaded(char *modname)
1279 {
1280 	struct modctl *mctl = kobj_modules;
1281 
1282 	do {
1283 		if (strcmp(modname, mctl->mod_filename) == 0)
1284 			return (mctl);
1285 		mctl = mctl->mod_next;
1286 
1287 	} while (mctl != kobj_modules);
1288 
1289 	return (NULL);
1290 }
1291 
1292 /*
1293  * Load all the primary dependent modules.
1294  */
1295 static int
1296 load_primary(struct module *mp, int lmid)
1297 {
1298 	struct modctl *cp;
1299 	struct module *dmp;
1300 	char *p, *q;
1301 	char modname[MODMAXNAMELEN];
1302 
1303 	if ((p = mp->depends_on) == NULL)
1304 		return (0);
1305 
1306 	/* CONSTANTCONDITION */
1307 	while (1) {
1308 		/*
1309 		 * Skip space.
1310 		 */
1311 		while (*p && (*p == ' ' || *p == '\t'))
1312 			p++;
1313 		/*
1314 		 * Get module name.
1315 		 */
1316 		q = modname;
1317 		while (*p && *p != ' ' && *p != '\t')
1318 			*q++ = *p++;
1319 
1320 		if (q == modname)
1321 			break;
1322 
1323 		*q = '\0';
1324 		/*
1325 		 * Check for dup dependencies.
1326 		 */
1327 		if (strcmp(modname, "dtracestubs") == 0 ||
1328 		    mod_already_loaded(modname) != NULL)
1329 			continue;
1330 
1331 		cp = add_primary(modname, lmid);
1332 		cp->mod_busy = 1;
1333 		/*
1334 		 * Load it.
1335 		 */
1336 		(void) kobj_load_module(cp, 1);
1337 		cp->mod_busy = 0;
1338 
1339 		if ((dmp = cp->mod_mp) == NULL) {
1340 			cp->mod_loaded = 0;
1341 			cp->mod_installed = 0;
1342 			cp->mod_loadcnt = 0;
1343 			return (-1);
1344 		}
1345 
1346 		add_dependent(mp, dmp);
1347 		dmp->flags |= KOBJ_PRIM;
1348 
1349 		/*
1350 		 * Recurse.
1351 		 */
1352 		if (load_primary(dmp, lmid) == -1) {
1353 			cp->mod_loaded = 0;
1354 			cp->mod_installed = 0;
1355 			cp->mod_loadcnt = 0;
1356 			return (-1);
1357 		}
1358 	}
1359 	return (0);
1360 }
1361 
1362 static int
1363 console_is_usb_serial(void)
1364 {
1365 	char *console;
1366 	int len, ret;
1367 
1368 	if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1369 		return (0);
1370 
1371 	console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1372 	(void) BOP_GETPROP(ops, "console", console);
1373 	ret = (strcmp(console, "usb-serial") == 0);
1374 	kobj_free(console, len);
1375 
1376 	return (ret);
1377 }
1378 
1379 static int
1380 load_kmdb(val_t *bootaux)
1381 {
1382 	struct modctl *mctl;
1383 	struct module *mp;
1384 	Sym *sym;
1385 
1386 	if (console_is_usb_serial()) {
1387 		_kobj_printf(ops, "kmdb not loaded "
1388 		    "(unsupported on usb serial console)\n");
1389 		return (0);
1390 	}
1391 
1392 	_kobj_printf(ops, "Loading kmdb...\n");
1393 
1394 	if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1395 		return (-1);
1396 
1397 	mctl->mod_busy = 1;
1398 	(void) kobj_load_module(mctl, 1);
1399 	mctl->mod_busy = 0;
1400 
1401 	if ((mp = mctl->mod_mp) == NULL)
1402 		return (-1);
1403 
1404 	mp->flags |= KOBJ_PRIM;
1405 
1406 	if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1407 		return (-1);
1408 
1409 	if (boothowto & RB_VERBOSE)
1410 		kobj_lm_dump(KOBJ_LM_DEBUGGER);
1411 
1412 	if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1413 		return (-1);
1414 
1415 	if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1416 		return (-1);
1417 
1418 #ifdef	KOBJ_DEBUG
1419 	if (kobj_debug & D_DEBUG) {
1420 		_kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1421 		    sym->st_value);
1422 		_kobj_printf(ops, "\tops 0x%p\n", ops);
1423 		_kobj_printf(ops, "\tromp 0x%p\n", romp);
1424 	}
1425 #endif
1426 
1427 	if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1428 	    (const char **)kobj_kmdb_argv) < 0)
1429 		return (-1);
1430 
1431 	return (0);
1432 }
1433 
1434 /*
1435  * Return a string listing module dependencies.
1436  */
1437 static char *
1438 depends_on(struct module *mp)
1439 {
1440 	Sym *sp;
1441 	char *depstr, *q;
1442 
1443 	/*
1444 	 * The module doesn't have a depends_on value, so let's try it the
1445 	 * old-fashioned way - via "_depends_on"
1446 	 */
1447 	if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1448 		return (NULL);
1449 
1450 	q = (char *)sp->st_value;
1451 
1452 #ifdef KOBJ_DEBUG
1453 	/*
1454 	 * _depends_on is a deprecated interface, so we warn about its use
1455 	 * irrespective of subsequent processing errors. How else are we going
1456 	 * to be able to deco this interface completely?
1457 	 * Changes initially limited to DEBUG because third-party modules
1458 	 * should be flagged to developers before general use base.
1459 	 */
1460 	_kobj_printf(ops,
1461 	    "Warning: %s uses deprecated _depends_on interface.\n",
1462 	    mp->filename);
1463 	_kobj_printf(ops, "Please notify module developer or vendor.\n");
1464 #endif
1465 
1466 	/*
1467 	 * Idiot checks. Make sure it's
1468 	 * in-bounds and NULL terminated.
1469 	 */
1470 	if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1471 		_kobj_printf(ops, "Error processing dependency for %s\n",
1472 		    mp->filename);
1473 		return (NULL);
1474 	}
1475 
1476 	depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1477 	(void) strcpy(depstr, q);
1478 
1479 	return (depstr);
1480 }
1481 
1482 void
1483 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1484 {
1485 	struct module *mp;
1486 	mp = (struct module *)xmp;
1487 
1488 	modinfo->mi_base = mp->text;
1489 	modinfo->mi_size = mp->text_size + mp->data_size;
1490 }
1491 
1492 /*
1493  * kobj_export_ksyms() performs the following services:
1494  *
1495  * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1496  * (2) Removes unneeded symbols to save space.
1497  * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1498  * (4) Makes the symbol table visible to /dev/ksyms.
1499  */
1500 static void
1501 kobj_export_ksyms(struct module *mp)
1502 {
1503 	Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1504 	Sym *sp, *osp;
1505 	char *name;
1506 	size_t namelen;
1507 	struct module *omp;
1508 	uint_t nsyms;
1509 	size_t symsize = mp->symhdr->sh_entsize;
1510 	size_t locals = 1;
1511 	size_t strsize;
1512 
1513 	/*
1514 	 * Make a copy of the original module structure.
1515 	 */
1516 	omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1517 	bcopy(mp, omp, sizeof (struct module));
1518 
1519 	/*
1520 	 * Compute the sizes of the new symbol table sections.
1521 	 */
1522 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1523 		if (osp->st_value == 0)
1524 			continue;
1525 		if (sym_lookup(omp, osp) == NULL)
1526 			continue;
1527 		name = omp->strings + osp->st_name;
1528 		namelen = strlen(name);
1529 		if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1530 			locals++;
1531 		nsyms++;
1532 		strsize += namelen + 1;
1533 	}
1534 
1535 	mp->nsyms = nsyms;
1536 	mp->hashsize = kobj_gethashsize(mp->nsyms);
1537 
1538 	/*
1539 	 * ksyms_lock must be held as writer during any operation that
1540 	 * modifies ksyms_arena, including allocation from same, and
1541 	 * must not be dropped until the arena is vmem_walk()able.
1542 	 */
1543 	rw_enter(&ksyms_lock, RW_WRITER);
1544 
1545 	/*
1546 	 * Allocate space for the new section headers (symtab and strtab),
1547 	 * symbol table, buckets, chains, and strings.
1548 	 */
1549 	mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1550 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1551 
1552 	if (mp->flags & KOBJ_NOKSYMS) {
1553 		mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1554 	} else {
1555 		mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1556 		    VM_BESTFIT | VM_SLEEP);
1557 	}
1558 	bzero(mp->symspace, mp->symsize);
1559 
1560 	/*
1561 	 * Divvy up symspace.
1562 	 */
1563 	mp->shdrs = mp->symspace;
1564 	mp->symhdr = (Shdr *)mp->shdrs;
1565 	mp->strhdr = (Shdr *)(mp->symhdr + 1);
1566 	mp->symtbl = (char *)(mp->strhdr + 1);
1567 	mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1568 	mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1569 	mp->strings = (char *)(mp->chains + nsyms);
1570 
1571 	/*
1572 	 * Fill in the new section headers (symtab and strtab).
1573 	 */
1574 	mp->hdr.e_shnum = 2;
1575 	mp->symtbl_section = 0;
1576 
1577 	mp->symhdr->sh_type = SHT_SYMTAB;
1578 	mp->symhdr->sh_addr = (Addr)mp->symtbl;
1579 	mp->symhdr->sh_size = nsyms * symsize;
1580 	mp->symhdr->sh_link = 1;
1581 	mp->symhdr->sh_info = locals;
1582 	mp->symhdr->sh_addralign = sizeof (Addr);
1583 	mp->symhdr->sh_entsize = symsize;
1584 
1585 	mp->strhdr->sh_type = SHT_STRTAB;
1586 	mp->strhdr->sh_addr = (Addr)mp->strings;
1587 	mp->strhdr->sh_size = strsize;
1588 	mp->strhdr->sh_addralign = 1;
1589 
1590 	/*
1591 	 * Construct the new symbol table.
1592 	 */
1593 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1594 		if (osp->st_value == 0)
1595 			continue;
1596 		if (sym_lookup(omp, osp) == NULL)
1597 			continue;
1598 		name = omp->strings + osp->st_name;
1599 		namelen = strlen(name);
1600 		sp = (Sym *)(mp->symtbl + symsize * nsyms);
1601 		bcopy(osp, sp, symsize);
1602 		bcopy(name, mp->strings + strsize, namelen);
1603 		sp->st_name = strsize;
1604 		sym_insert(mp, name, nsyms);
1605 		nsyms++;
1606 		strsize += namelen + 1;
1607 	}
1608 
1609 	rw_exit(&ksyms_lock);
1610 
1611 	/*
1612 	 * Free the old section headers -- we'll never need them again.
1613 	 */
1614 	if (!(mp->flags & KOBJ_PRIM)) {
1615 		uint_t	shn;
1616 		Shdr	*shp;
1617 
1618 		for (shn = 1; shn < omp->hdr.e_shnum; shn++) {
1619 			shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1620 			switch (shp->sh_type) {
1621 			case SHT_RELA:
1622 			case SHT_REL:
1623 				if (shp->sh_addr != 0) {
1624 					kobj_free((void *)shp->sh_addr,
1625 					    shp->sh_size);
1626 				}
1627 				break;
1628 			}
1629 		}
1630 		kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1631 	}
1632 	/*
1633 	 * Discard the old symbol table and our copy of the module strucure.
1634 	 */
1635 	if (!(mp->flags & KOBJ_PRIM))
1636 		kobj_free(omp->symspace, omp->symsize);
1637 	kobj_free(omp, sizeof (struct module));
1638 }
1639 
1640 static void
1641 kobj_export_ctf(struct module *mp)
1642 {
1643 	char *data = mp->ctfdata;
1644 	size_t size = mp->ctfsize;
1645 
1646 	if (data != NULL) {
1647 		if (_moddebug & MODDEBUG_NOCTF) {
1648 			mp->ctfdata = NULL;
1649 			mp->ctfsize = 0;
1650 		} else {
1651 			mp->ctfdata = vmem_alloc(ctf_arena, size,
1652 			    VM_BESTFIT | VM_SLEEP);
1653 			bcopy(data, mp->ctfdata, size);
1654 		}
1655 
1656 		if (!(mp->flags & KOBJ_PRIM))
1657 			kobj_free(data, size);
1658 	}
1659 }
1660 
1661 void
1662 kobj_export_module(struct module *mp)
1663 {
1664 	kobj_export_ksyms(mp);
1665 	kobj_export_ctf(mp);
1666 
1667 	mp->flags |= KOBJ_EXPORTED;
1668 }
1669 
1670 static int
1671 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1672 {
1673 	char *path = NULL, *depstr = NULL;
1674 	int allocsize = 0, osize = 0, nsize = 0;
1675 	char *libname, *tmp;
1676 	int lsize;
1677 	Dyn *dynp;
1678 
1679 	for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1680 		switch (dynp->d_tag) {
1681 		case DT_NEEDED:
1682 			/*
1683 			 * Read the DT_NEEDED entries, expanding the macros they
1684 			 * contain (if any), and concatenating them into a
1685 			 * single space-separated dependency list.
1686 			 */
1687 			libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1688 
1689 			if (strchr(libname, '$') != NULL) {
1690 				char *_lib;
1691 
1692 				if (path == NULL)
1693 					path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1694 				if ((_lib = expand_libmacro(libname, path,
1695 				    path)) != NULL)
1696 					libname = _lib;
1697 				else {
1698 					_kobj_printf(ops, "krtld: "
1699 					    "process_dynamic: failed to expand "
1700 					    "%s\n", libname);
1701 				}
1702 			}
1703 
1704 			lsize = strlen(libname);
1705 			nsize += lsize;
1706 			if (nsize + 1 > allocsize) {
1707 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
1708 				    KM_WAIT);
1709 				if (depstr != NULL) {
1710 					bcopy(depstr, tmp, osize);
1711 					kobj_free(depstr, allocsize);
1712 				}
1713 				depstr = tmp;
1714 				allocsize += MAXPATHLEN;
1715 			}
1716 			bcopy(libname, depstr + osize, lsize);
1717 			*(depstr + nsize) = ' '; /* separator */
1718 			nsize++;
1719 			osize = nsize;
1720 			break;
1721 
1722 		case DT_FLAGS_1:
1723 			if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1724 				mp->flags |= KOBJ_IGNMULDEF;
1725 			if (dynp->d_un.d_val & DF_1_NOKSYMS)
1726 				mp->flags |= KOBJ_NOKSYMS;
1727 
1728 			break;
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * finish up the depends string (if any)
1734 	 */
1735 	if (depstr != NULL) {
1736 		*(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */
1737 		if (path != NULL)
1738 			kobj_free(path, MAXPATHLEN);
1739 
1740 		tmp = kobj_alloc(nsize, KM_WAIT);
1741 		bcopy(depstr, tmp, nsize);
1742 		kobj_free(depstr, allocsize);
1743 		depstr = tmp;
1744 
1745 		mp->depends_on = depstr;
1746 	}
1747 
1748 	return (0);
1749 }
1750 
1751 static int
1752 do_dynamic(struct module *mp, struct _buf *file)
1753 {
1754 	Shdr *dshp, *dstrp, *shp;
1755 	char *dyndata, *dstrdata;
1756 	int dshn, shn, rc;
1757 
1758 	/* find and validate the dynamic section (if any) */
1759 
1760 	for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1761 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1762 		switch (shp->sh_type) {
1763 		case SHT_DYNAMIC:
1764 			if (dshp != NULL) {
1765 				_kobj_printf(ops, "krtld: get_dynamic: %s, ",
1766 				    mp->filename);
1767 				_kobj_printf(ops,
1768 				    "multiple dynamic sections\n");
1769 				return (-1);
1770 			} else {
1771 				dshp = shp;
1772 				dshn = shn;
1773 			}
1774 			break;
1775 		}
1776 	}
1777 
1778 	if (dshp == NULL)
1779 		return (0);
1780 
1781 	if (dshp->sh_link > mp->hdr.e_shnum) {
1782 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1783 		_kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1784 		return (-1);
1785 	}
1786 	dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1787 
1788 	if (dstrp->sh_type != SHT_STRTAB) {
1789 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1790 		_kobj_printf(ops, "sh_link not a string table for section %d\n",
1791 		    dshn);
1792 		return (-1);
1793 	}
1794 
1795 	/* read it from disk */
1796 
1797 	dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1798 	if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1799 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1800 		_kobj_printf(ops, "error reading section %d\n", dshn);
1801 
1802 		kobj_free(dyndata, dshp->sh_size);
1803 		return (-1);
1804 	}
1805 
1806 	dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1807 	if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1808 	    dstrp->sh_offset) < 0) {
1809 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1810 		_kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1811 
1812 		kobj_free(dyndata, dshp->sh_size);
1813 		kobj_free(dstrdata, dstrp->sh_size);
1814 		return (-1);
1815 	}
1816 
1817 	/* pull the interesting pieces out */
1818 
1819 	rc = process_dynamic(mp, dyndata, dstrdata);
1820 
1821 	kobj_free(dyndata, dshp->sh_size);
1822 	kobj_free(dstrdata, dstrp->sh_size);
1823 
1824 	return (rc);
1825 }
1826 
1827 void
1828 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1829 {
1830 	if (!standalone) {
1831 		if (mp->ctfdata != NULL) {
1832 			if (vmem_contains(ctf_arena, mp->ctfdata,
1833 			    mp->ctfsize)) {
1834 				vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1835 			} else {
1836 				kobj_free(mp->ctfdata, mp->ctfsize);
1837 			}
1838 		}
1839 	}
1840 
1841 	/*
1842 	 * The order is very important here.  We need to make sure that
1843 	 * consumers, at any given instant, see a consistent state.  We'd
1844 	 * rather they see no CTF data than the address of one buffer and the
1845 	 * size of another.
1846 	 */
1847 	mp->ctfdata = NULL;
1848 	membar_producer();
1849 	mp->ctfsize = size;
1850 	mp->ctfdata = data;
1851 	membar_producer();
1852 }
1853 
1854 int
1855 kobj_load_module(struct modctl *modp, int use_path)
1856 {
1857 	char *filename = modp->mod_filename;
1858 	char *modname = modp->mod_modname;
1859 	int i;
1860 	int n;
1861 	struct _buf *file;
1862 	struct module *mp = NULL;
1863 #ifdef MODDIR_SUFFIX
1864 	int no_suffixdir_drv = 0;
1865 #endif
1866 
1867 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1868 
1869 	/*
1870 	 * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1871 	 * kmdb contains a bunch of symbols with well-known names, symbols
1872 	 * which will mask the real versions, thus causing no end of trouble
1873 	 * for mdb.
1874 	 */
1875 	if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1876 		mp->flags |= KOBJ_NOKSYMS;
1877 
1878 	file = kobj_open_path(filename, use_path, 1);
1879 	if (file == (struct _buf *)-1) {
1880 #ifdef MODDIR_SUFFIX
1881 		file = kobj_open_path(filename, use_path, 0);
1882 #endif
1883 		if (file == (struct _buf *)-1) {
1884 			kobj_free(mp, sizeof (*mp));
1885 			goto bad;
1886 		}
1887 #ifdef MODDIR_SUFFIX
1888 		/*
1889 		 * There is no driver module in the ISA specific (suffix)
1890 		 * subdirectory but there is a module in the parent directory.
1891 		 */
1892 		if (strncmp(filename, "drv/", 4) == 0) {
1893 			no_suffixdir_drv = 1;
1894 		}
1895 #endif
1896 	}
1897 
1898 	mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1899 	(void) strcpy(mp->filename, file->_name);
1900 
1901 	if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1902 		_kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1903 		    modname);
1904 		kobj_free(mp->filename, strlen(file->_name) + 1);
1905 		kobj_free(mp, sizeof (*mp));
1906 		goto bad;
1907 	}
1908 	for (i = 0; i < SELFMAG; i++) {
1909 		if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1910 			if (_moddebug & MODDEBUG_ERRMSG)
1911 				_kobj_printf(ops, "%s not an elf module\n",
1912 				    modname);
1913 			kobj_free(mp->filename, strlen(file->_name) + 1);
1914 			kobj_free(mp, sizeof (*mp));
1915 			goto bad;
1916 		}
1917 	}
1918 	/*
1919 	 * It's ELF, but is it our ISA?  Interpreting the header
1920 	 * from a file for a byte-swapped ISA could cause a huge
1921 	 * and unsatisfiable value to be passed to kobj_alloc below
1922 	 * and therefore hang booting.
1923 	 */
1924 	if (!elf_mach_ok(&mp->hdr)) {
1925 		if (_moddebug & MODDEBUG_ERRMSG)
1926 			_kobj_printf(ops, "%s not an elf module for this ISA\n",
1927 			    modname);
1928 		kobj_free(mp->filename, strlen(file->_name) + 1);
1929 		kobj_free(mp, sizeof (*mp));
1930 #ifdef MODDIR_SUFFIX
1931 		/*
1932 		 * The driver mod is not in the ISA specific subdirectory
1933 		 * and the module in the parent directory is not our ISA.
1934 		 * If it is our ISA, for now we will silently succeed.
1935 		 */
1936 		if (no_suffixdir_drv == 1) {
1937 			cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1938 			    " not found\n", modname);
1939 		}
1940 #endif
1941 		goto bad;
1942 	}
1943 
1944 	/*
1945 	 * All modules, save for unix, should be relocatable (as opposed to
1946 	 * dynamic).  Dynamic modules come with PLTs and GOTs, which can't
1947 	 * currently be processed by krtld.
1948 	 */
1949 	if (mp->hdr.e_type != ET_REL) {
1950 		if (_moddebug & MODDEBUG_ERRMSG)
1951 			_kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1952 			    "module\n", modname);
1953 		kobj_free(mp->filename, strlen(file->_name) + 1);
1954 		kobj_free(mp, sizeof (*mp));
1955 		goto bad;
1956 	}
1957 
1958 	n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1959 	mp->shdrs = kobj_alloc(n, KM_WAIT);
1960 
1961 	if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1962 		_kobj_printf(ops, "kobj_load_module: %s error reading "
1963 		    "section headers\n", modname);
1964 		kobj_free(mp->shdrs, n);
1965 		kobj_free(mp->filename, strlen(file->_name) + 1);
1966 		kobj_free(mp, sizeof (*mp));
1967 		goto bad;
1968 	}
1969 
1970 	kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1971 	module_assign(modp, mp);
1972 
1973 	/* read in sections */
1974 	if (get_progbits(mp, file) < 0) {
1975 		_kobj_printf(ops, "%s error reading sections\n", modname);
1976 		goto bad;
1977 	}
1978 
1979 	if (do_dynamic(mp, file) < 0) {
1980 		_kobj_printf(ops, "%s error reading dynamic section\n",
1981 		    modname);
1982 		goto bad;
1983 	}
1984 
1985 	modp->mod_text = mp->text;
1986 	modp->mod_text_size = mp->text_size;
1987 
1988 	/* read in symbols; adjust values for each section's real address */
1989 	if (get_syms(mp, file) < 0) {
1990 		_kobj_printf(ops, "%s error reading symbols\n",
1991 		    modname);
1992 		goto bad;
1993 	}
1994 
1995 	/*
1996 	 * If we didn't dependency information from the dynamic section, look
1997 	 * for it the old-fashioned way.
1998 	 */
1999 	if (mp->depends_on == NULL)
2000 		mp->depends_on = depends_on(mp);
2001 
2002 	if (get_ctf(mp, file) < 0) {
2003 		_kobj_printf(ops, "%s debug information will not "
2004 		    "be available\n", modname);
2005 	}
2006 
2007 	/* primary kernel modules do not have a signature section */
2008 	if (!(mp->flags & KOBJ_PRIM))
2009 		get_signature(mp, file);
2010 
2011 #ifdef	KOBJ_DEBUG
2012 	if (kobj_debug & D_LOADING) {
2013 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
2014 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
2015 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
2016 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
2017 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
2018 	}
2019 #endif /* KOBJ_DEBUG */
2020 
2021 	/*
2022 	 * For primary kernel modules, we defer
2023 	 * symbol resolution and relocation until
2024 	 * all primary objects have been loaded.
2025 	 */
2026 	if (!standalone) {
2027 		int ddrval, dcrval;
2028 		char *dependent_modname;
2029 		/* load all dependents */
2030 		dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2031 		ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2032 
2033 		/*
2034 		 * resolve undefined and common symbols,
2035 		 * also allocates common space
2036 		 */
2037 		if ((dcrval = do_common(mp)) < 0) {
2038 			switch (dcrval) {
2039 			case DOSYM_UNSAFE:
2040 				_kobj_printf(ops, "WARNING: mod_load: "
2041 				    "MT-unsafe module '%s' rejected\n",
2042 				    modname);
2043 				break;
2044 			case DOSYM_UNDEF:
2045 				_kobj_printf(ops, "WARNING: mod_load: "
2046 				    "cannot load module '%s'\n",
2047 				    modname);
2048 				if (ddrval == -1) {
2049 					_kobj_printf(ops, "WARNING: %s: ",
2050 					    modname);
2051 					_kobj_printf(ops,
2052 					    "unable to resolve dependency, "
2053 					    "module '%s' not found\n",
2054 					    dependent_modname);
2055 				}
2056 				break;
2057 			}
2058 		}
2059 		kobj_free(dependent_modname, MODMAXNAMELEN);
2060 		if (dcrval < 0)
2061 			goto bad;
2062 
2063 		/* process relocation tables */
2064 		if (do_relocations(mp) < 0) {
2065 			_kobj_printf(ops, "%s error doing relocations\n",
2066 			    modname);
2067 			goto bad;
2068 		}
2069 
2070 		if (mp->destination) {
2071 			off_t	off = (uintptr_t)mp->destination & PAGEOFFSET;
2072 			caddr_t	base = (caddr_t)mp->destination - off;
2073 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2074 
2075 			hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2076 			vmem_free(heap_arena, base, size);
2077 		}
2078 
2079 		/* sync_instruction_memory */
2080 		kobj_sync_instruction_memory(mp->text, mp->text_size);
2081 		kobj_export_module(mp);
2082 		kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2083 	}
2084 	kobj_close_file(file);
2085 	return (0);
2086 bad:
2087 	if (file != (struct _buf *)-1)
2088 		kobj_close_file(file);
2089 	if (modp->mod_mp != NULL)
2090 		free_module_data(modp->mod_mp);
2091 
2092 	module_assign(modp, NULL);
2093 	return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2094 }
2095 
2096 int
2097 kobj_load_primary_module(struct modctl *modp)
2098 {
2099 	struct modctl *dep;
2100 	struct module *mp;
2101 
2102 	if (kobj_load_module(modp, 0) != 0)
2103 		return (-1);
2104 
2105 	mp = modp->mod_mp;
2106 	mp->flags |= KOBJ_PRIM;
2107 
2108 	/* Bind new module to its dependents */
2109 	if (mp->depends_on != NULL && (dep =
2110 	    mod_already_loaded(mp->depends_on)) == NULL) {
2111 #ifdef	KOBJ_DEBUG
2112 		if (kobj_debug & D_DEBUG) {
2113 			_kobj_printf(ops, "krtld: failed to resolve deps "
2114 			    "for primary %s\n", modp->mod_modname);
2115 		}
2116 #endif
2117 		return (-1);
2118 	}
2119 
2120 	add_dependent(mp, dep->mod_mp);
2121 
2122 	/*
2123 	 * Relocate it.  This module may not be part of a link map, so we
2124 	 * can't use bind_primary.
2125 	 */
2126 	if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2127 	    do_relocations(mp) < 0) {
2128 #ifdef	KOBJ_DEBUG
2129 		if (kobj_debug & D_DEBUG) {
2130 			_kobj_printf(ops, "krtld: failed to relocate "
2131 			    "primary %s\n", modp->mod_modname);
2132 		}
2133 #endif
2134 		return (-1);
2135 	}
2136 
2137 	return (0);
2138 }
2139 
2140 static void
2141 module_assign(struct modctl *cp, struct module *mp)
2142 {
2143 	if (standalone) {
2144 		cp->mod_mp = mp;
2145 		return;
2146 	}
2147 	mutex_enter(&mod_lock);
2148 	cp->mod_mp = mp;
2149 	cp->mod_gencount++;
2150 	mutex_exit(&mod_lock);
2151 }
2152 
2153 void
2154 kobj_unload_module(struct modctl *modp)
2155 {
2156 	struct module *mp = modp->mod_mp;
2157 
2158 	if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2159 		_kobj_printf(ops, "text for %s ", mp->filename);
2160 		_kobj_printf(ops, "was at %p\n", mp->text);
2161 		mp->text = NULL;	/* don't actually free it */
2162 	}
2163 
2164 	kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2165 
2166 	/*
2167 	 * Null out mod_mp first, so consumers (debuggers) know not to look
2168 	 * at the module structure any more.
2169 	 */
2170 	mutex_enter(&mod_lock);
2171 	modp->mod_mp = NULL;
2172 	mutex_exit(&mod_lock);
2173 
2174 	kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2175 	free_module_data(mp);
2176 }
2177 
2178 static void
2179 free_module_data(struct module *mp)
2180 {
2181 	struct module_list *lp, *tmp;
2182 	int ksyms_exported = 0;
2183 
2184 	lp = mp->head;
2185 	while (lp) {
2186 		tmp = lp;
2187 		lp = lp->next;
2188 		kobj_free((char *)tmp, sizeof (*tmp));
2189 	}
2190 
2191 	rw_enter(&ksyms_lock, RW_WRITER);
2192 	if (mp->symspace) {
2193 		if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2194 			vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2195 			ksyms_exported = 1;
2196 		} else {
2197 			if (mp->flags & KOBJ_NOKSYMS)
2198 				ksyms_exported = 1;
2199 			kobj_free(mp->symspace, mp->symsize);
2200 		}
2201 	}
2202 	rw_exit(&ksyms_lock);
2203 
2204 	if (mp->ctfdata) {
2205 		if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2206 			vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2207 		else
2208 			kobj_free(mp->ctfdata, mp->ctfsize);
2209 	}
2210 
2211 	if (mp->sigdata)
2212 		kobj_free(mp->sigdata, mp->sigsize);
2213 
2214 	/*
2215 	 * We did not get far enough into kobj_export_ksyms() to free allocated
2216 	 * buffers because we encounted error conditions. Free the buffers.
2217 	 */
2218 	if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2219 		uint_t shn;
2220 		Shdr *shp;
2221 
2222 		for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2223 			shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2224 			switch (shp->sh_type) {
2225 			case SHT_RELA:
2226 			case SHT_REL:
2227 				if (shp->sh_addr != 0)
2228 					kobj_free((void *)shp->sh_addr,
2229 					    shp->sh_size);
2230 				break;
2231 			}
2232 		}
2233 err_free_done:
2234 		if (!(mp->flags & KOBJ_PRIM)) {
2235 			kobj_free(mp->shdrs,
2236 			    mp->hdr.e_shentsize * mp->hdr.e_shnum);
2237 		}
2238 	}
2239 
2240 	if (mp->bss)
2241 		vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2242 
2243 	if (mp->fbt_tab)
2244 		kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2245 
2246 	if (mp->textwin_base)
2247 		kobj_textwin_free(mp);
2248 
2249 	if (mp->sdt_probes != NULL) {
2250 		sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2251 
2252 		while (sdp != NULL) {
2253 			next = sdp->sdpd_next;
2254 			kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2255 			kobj_free(sdp, sizeof (sdt_probedesc_t));
2256 			sdp = next;
2257 		}
2258 	}
2259 
2260 	if (mp->sdt_tab)
2261 		kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2262 	if (mp->text)
2263 		vmem_free(text_arena, mp->text, mp->text_size);
2264 	if (mp->data)
2265 		vmem_free(data_arena, mp->data, mp->data_size);
2266 	if (mp->depends_on)
2267 		kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2268 	if (mp->filename)
2269 		kobj_free(mp->filename, strlen(mp->filename)+1);
2270 
2271 	kobj_free((char *)mp, sizeof (*mp));
2272 }
2273 
2274 static int
2275 get_progbits(struct module *mp, struct _buf *file)
2276 {
2277 	struct proginfo *tp, *dp, *sdp;
2278 	Shdr *shp;
2279 	reloc_dest_t dest = NULL;
2280 	uintptr_t bits_ptr;
2281 	uintptr_t text = 0, data, textptr;
2282 	uint_t shn;
2283 	int err = -1;
2284 
2285 	tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2286 	dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2287 	sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2288 	/*
2289 	 * loop through sections to find out how much space we need
2290 	 * for text, data, (also bss that is already assigned)
2291 	 */
2292 	if (get_progbits_size(mp, tp, dp, sdp) < 0)
2293 		goto done;
2294 
2295 	mp->text_size = tp->size;
2296 	mp->data_size = dp->size;
2297 
2298 	if (standalone) {
2299 		caddr_t limit = _data;
2300 
2301 		if (lg_pagesize && _text + lg_pagesize < limit)
2302 			limit = _text + lg_pagesize;
2303 
2304 		mp->text = kobj_segbrk(&_etext, mp->text_size,
2305 		    tp->align, limit);
2306 		/*
2307 		 * If we can't grow the text segment, try the
2308 		 * data segment before failing.
2309 		 */
2310 		if (mp->text == NULL) {
2311 			mp->text = kobj_segbrk(&_edata, mp->text_size,
2312 			    tp->align, 0);
2313 		}
2314 
2315 		mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2316 
2317 		if (mp->text == NULL || mp->data == NULL)
2318 			goto done;
2319 
2320 	} else {
2321 		if (text_arena == NULL)
2322 			kobj_vmem_init(&text_arena, &data_arena);
2323 
2324 		/*
2325 		 * some architectures may want to load the module on a
2326 		 * page that is currently read only. It may not be
2327 		 * possible for those architectures to remap their page
2328 		 * on the fly. So we provide a facility for them to hang
2329 		 * a private hook where the memory they assign the module
2330 		 * is not the actual place where the module loads.
2331 		 *
2332 		 * In this case there are two addresses that deal with the
2333 		 * modload.
2334 		 * 1) the final destination of the module
2335 		 * 2) the address that is used to view the newly
2336 		 * loaded module until all the relocations relative to 1
2337 		 * above are completed.
2338 		 *
2339 		 * That is what dest is used for below.
2340 		 */
2341 		mp->text_size += tp->align;
2342 		mp->data_size += dp->align;
2343 
2344 		mp->text = kobj_text_alloc(text_arena, mp->text_size);
2345 
2346 		/*
2347 		 * a remap is taking place. Align the text ptr relative
2348 		 * to the secondary mapping. That is where the bits will
2349 		 * be read in.
2350 		 */
2351 		if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2352 		    mp->text, mp->text_size)) {
2353 			off_t	off = (uintptr_t)mp->text & PAGEOFFSET;
2354 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2355 			caddr_t	map = vmem_alloc(heap_arena, size, VM_SLEEP);
2356 			caddr_t orig = mp->text - off;
2357 			pgcnt_t pages = size / PAGESIZE;
2358 
2359 			dest = (reloc_dest_t)(map + off);
2360 			text = ALIGN((uintptr_t)dest, tp->align);
2361 
2362 			while (pages--) {
2363 				hat_devload(kas.a_hat, map, PAGESIZE,
2364 				    hat_getpfnum(kas.a_hat, orig),
2365 				    PROT_READ | PROT_WRITE | PROT_EXEC,
2366 				    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2367 				map += PAGESIZE;
2368 				orig += PAGESIZE;
2369 			}
2370 			/*
2371 			 * Since we set up a non-cacheable mapping, we need
2372 			 * to flush any old entries in the cache that might
2373 			 * be left around from the read-only mapping.
2374 			 */
2375 			dcache_flushall();
2376 		}
2377 		if (mp->data_size)
2378 			mp->data = vmem_alloc(data_arena, mp->data_size,
2379 			    VM_SLEEP | VM_BESTFIT);
2380 	}
2381 	textptr = (uintptr_t)mp->text;
2382 	textptr = ALIGN(textptr, tp->align);
2383 	mp->destination = dest;
2384 
2385 	/*
2386 	 * This is the case where a remap is not being done.
2387 	 */
2388 	if (text == 0)
2389 		text = ALIGN((uintptr_t)mp->text, tp->align);
2390 	data = ALIGN((uintptr_t)mp->data, dp->align);
2391 
2392 	/* now loop though sections assigning addresses and loading the data */
2393 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2394 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2395 		if (!(shp->sh_flags & SHF_ALLOC))
2396 			continue;
2397 
2398 		if ((shp->sh_flags & SHF_WRITE) == 0)
2399 			bits_ptr = text;
2400 		else
2401 			bits_ptr = data;
2402 
2403 		bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2404 
2405 		if (shp->sh_type == SHT_NOBITS) {
2406 			/*
2407 			 * Zero bss.
2408 			 */
2409 			bzero((caddr_t)bits_ptr, shp->sh_size);
2410 			shp->sh_type = SHT_PROGBITS;
2411 		} else {
2412 			if (kobj_read_file(file, (char *)bits_ptr,
2413 			    shp->sh_size, shp->sh_offset) < 0)
2414 				goto done;
2415 		}
2416 
2417 		if (shp->sh_flags & SHF_WRITE) {
2418 			shp->sh_addr = bits_ptr;
2419 		} else {
2420 			textptr = ALIGN(textptr, shp->sh_addralign);
2421 			shp->sh_addr = textptr;
2422 			textptr += shp->sh_size;
2423 		}
2424 
2425 		bits_ptr += shp->sh_size;
2426 		if ((shp->sh_flags & SHF_WRITE) == 0)
2427 			text = bits_ptr;
2428 		else
2429 			data = bits_ptr;
2430 	}
2431 
2432 	err = 0;
2433 done:
2434 	/*
2435 	 * Free and mark as freed the section headers here so that
2436 	 * free_module_data() does not have to worry about this buffer.
2437 	 *
2438 	 * This buffer is freed here because one of the possible reasons
2439 	 * for error is a section with non-zero sh_addr and in that case
2440 	 * free_module_data() would have no way of recognizing that this
2441 	 * buffer was unallocated.
2442 	 */
2443 	if (err != 0) {
2444 		kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2445 		mp->shdrs = NULL;
2446 	}
2447 
2448 	(void) kobj_free(tp, sizeof (struct proginfo));
2449 	(void) kobj_free(dp, sizeof (struct proginfo));
2450 	(void) kobj_free(sdp, sizeof (struct proginfo));
2451 
2452 	return (err);
2453 }
2454 
2455 /*
2456  * Go through suppress_sym_list to see if "multiply defined"
2457  * warning of this symbol should be suppressed.  Return 1 if
2458  * warning should be suppressed, 0 otherwise.
2459  */
2460 static int
2461 kobj_suppress_warning(char *symname)
2462 {
2463 	int	i;
2464 
2465 	for (i = 0; suppress_sym_list[i] != NULL; i++) {
2466 		if (strcmp(suppress_sym_list[i], symname) == 0)
2467 			return (1);
2468 	}
2469 
2470 	return (0);
2471 }
2472 
2473 static int
2474 get_syms(struct module *mp, struct _buf *file)
2475 {
2476 	uint_t		shn;
2477 	Shdr	*shp;
2478 	uint_t		i;
2479 	Sym	*sp, *ksp;
2480 	char		*symname;
2481 	int		dosymtab = 0;
2482 
2483 	/*
2484 	 * Find the interesting sections.
2485 	 */
2486 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2487 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2488 		switch (shp->sh_type) {
2489 		case SHT_SYMTAB:
2490 			mp->symtbl_section = shn;
2491 			mp->symhdr = shp;
2492 			dosymtab++;
2493 			break;
2494 
2495 		case SHT_RELA:
2496 		case SHT_REL:
2497 			/*
2498 			 * Already loaded.
2499 			 */
2500 			if (shp->sh_addr)
2501 				continue;
2502 
2503 			/* KM_TMP since kobj_free'd in do_relocations */
2504 			shp->sh_addr = (Addr)
2505 			    kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2506 
2507 			if (kobj_read_file(file, (char *)shp->sh_addr,
2508 			    shp->sh_size, shp->sh_offset) < 0) {
2509 				_kobj_printf(ops, "krtld: get_syms: %s, ",
2510 				    mp->filename);
2511 				_kobj_printf(ops, "error reading section %d\n",
2512 				    shn);
2513 				return (-1);
2514 			}
2515 			break;
2516 		}
2517 	}
2518 
2519 	/*
2520 	 * This is true for a stripped executable.  In the case of
2521 	 * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2522 	 * and since that symbol information is still present everything
2523 	 * is just fine.
2524 	 */
2525 	if (!dosymtab) {
2526 		if (mp->flags & KOBJ_EXEC)
2527 			return (0);
2528 		_kobj_printf(ops, "krtld: get_syms: %s ",
2529 		    mp->filename);
2530 		_kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2531 		return (-1);
2532 	}
2533 
2534 	/*
2535 	 * get the associated string table header
2536 	 */
2537 	if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2538 		return (-1);
2539 	mp->strhdr = (Shdr *)
2540 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2541 
2542 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2543 	mp->hashsize = kobj_gethashsize(mp->nsyms);
2544 
2545 	/*
2546 	 * Allocate space for the symbol table, buckets, chains, and strings.
2547 	 */
2548 	mp->symsize = mp->symhdr->sh_size +
2549 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2550 	mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2551 
2552 	mp->symtbl = mp->symspace;
2553 	mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2554 	mp->chains = mp->buckets + mp->hashsize;
2555 	mp->strings = (char *)(mp->chains + mp->nsyms);
2556 
2557 	if (kobj_read_file(file, mp->symtbl,
2558 	    mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2559 	    kobj_read_file(file, mp->strings,
2560 	    mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2561 		return (-1);
2562 
2563 	/*
2564 	 * loop through the symbol table adjusting values to account
2565 	 * for where each section got loaded into memory.  Also
2566 	 * fill in the hash table.
2567 	 */
2568 	for (i = 1; i < mp->nsyms; i++) {
2569 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2570 		if (sp->st_shndx < SHN_LORESERVE) {
2571 			if (sp->st_shndx >= mp->hdr.e_shnum) {
2572 				_kobj_printf(ops, "%s bad shndx ",
2573 				    file->_name);
2574 				_kobj_printf(ops, "in symbol %d\n", i);
2575 				return (-1);
2576 			}
2577 			shp = (Shdr *)
2578 			    (mp->shdrs +
2579 			    sp->st_shndx * mp->hdr.e_shentsize);
2580 			if (!(mp->flags & KOBJ_EXEC))
2581 				sp->st_value += shp->sh_addr;
2582 		}
2583 
2584 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2585 			continue;
2586 		if (sp->st_name >= mp->strhdr->sh_size)
2587 			return (-1);
2588 
2589 		symname = mp->strings + sp->st_name;
2590 
2591 		if (!(mp->flags & KOBJ_EXEC) &&
2592 		    ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2593 			ksp = kobj_lookup_all(mp, symname, 0);
2594 
2595 			if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2596 			    !kobj_suppress_warning(symname) &&
2597 			    sp->st_shndx != SHN_UNDEF &&
2598 			    sp->st_shndx != SHN_COMMON &&
2599 			    ksp->st_shndx != SHN_UNDEF &&
2600 			    ksp->st_shndx != SHN_COMMON) {
2601 				/*
2602 				 * Unless this symbol is a stub, it's multiply
2603 				 * defined.  Multiply-defined symbols are
2604 				 * usually bad, but some objects (kmdb) have
2605 				 * a legitimate need to have their own
2606 				 * copies of common functions.
2607 				 */
2608 				if ((standalone ||
2609 				    ksp->st_value < (uintptr_t)stubs_base ||
2610 				    ksp->st_value >= (uintptr_t)stubs_end) &&
2611 				    !(mp->flags & KOBJ_IGNMULDEF)) {
2612 					_kobj_printf(ops,
2613 					    "%s symbol ", file->_name);
2614 					_kobj_printf(ops,
2615 					    "%s multiply defined\n", symname);
2616 				}
2617 			}
2618 		}
2619 
2620 		sym_insert(mp, symname, i);
2621 	}
2622 
2623 	return (0);
2624 }
2625 
2626 static int
2627 get_ctf(struct module *mp, struct _buf *file)
2628 {
2629 	char *shstrtab, *ctfdata;
2630 	size_t shstrlen;
2631 	Shdr *shp;
2632 	uint_t i;
2633 
2634 	if (_moddebug & MODDEBUG_NOCTF)
2635 		return (0); /* do not attempt to even load CTF data */
2636 
2637 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2638 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2639 		    mp->filename);
2640 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2641 		    mp->hdr.e_shstrndx);
2642 		return (-1);
2643 	}
2644 
2645 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2646 	shstrlen = shp->sh_size;
2647 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2648 
2649 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2650 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2651 		    mp->filename);
2652 		_kobj_printf(ops, "error reading section %u\n",
2653 		    mp->hdr.e_shstrndx);
2654 		kobj_free(shstrtab, shstrlen);
2655 		return (-1);
2656 	}
2657 
2658 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2659 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2660 
2661 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2662 		    strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2663 			ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2664 
2665 			if (kobj_read_file(file, ctfdata, shp->sh_size,
2666 			    shp->sh_offset) < 0) {
2667 				_kobj_printf(ops, "krtld: get_ctf: %s, error "
2668 				    "reading .SUNW_ctf data\n", mp->filename);
2669 				kobj_free(ctfdata, shp->sh_size);
2670 				kobj_free(shstrtab, shstrlen);
2671 				return (-1);
2672 			}
2673 
2674 			mp->ctfdata = ctfdata;
2675 			mp->ctfsize = shp->sh_size;
2676 			break;
2677 		}
2678 	}
2679 
2680 	kobj_free(shstrtab, shstrlen);
2681 	return (0);
2682 }
2683 
2684 #define	SHA1_DIGEST_LENGTH	20	/* SHA1 digest length in bytes */
2685 
2686 /*
2687  * Return the hash of the ELF sections that are memory resident.
2688  * i.e. text and data.  We skip a SHT_NOBITS section since it occupies
2689  * no space in the file. We use SHA1 here since libelfsign uses
2690  * it and both places need to use the same algorithm.
2691  */
2692 static void
2693 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2694 {
2695 	uint_t shn;
2696 	Shdr *shp;
2697 	SHA1_CTX ctx;
2698 
2699 	SHA1Init(&ctx);
2700 
2701 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2702 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2703 		if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2704 			continue;
2705 
2706 		/*
2707 		 * The check should ideally be shp->sh_type == SHT_NOBITS.
2708 		 * However, we can't do that check here as get_progbits()
2709 		 * resets the type.
2710 		 */
2711 		if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2712 			continue;
2713 #ifdef	KOBJ_DEBUG
2714 		if (kobj_debug & D_DEBUG)
2715 			_kobj_printf(ops,
2716 			    "krtld: crypto_es_hash: updating hash with"
2717 			    " %s data size=%d\n", shstrtab + shp->sh_name,
2718 			    shp->sh_size);
2719 #endif
2720 		ASSERT(shp->sh_addr != NULL);
2721 		SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2722 	}
2723 
2724 	SHA1Final((uchar_t *)hash, &ctx);
2725 }
2726 
2727 /*
2728  * Get the .SUNW_signature section for the module, it it exists.
2729  *
2730  * This section exists only for crypto modules. None of the
2731  * primary modules have this section currently.
2732  */
2733 static void
2734 get_signature(struct module *mp, struct _buf *file)
2735 {
2736 	char *shstrtab, *sigdata = NULL;
2737 	size_t shstrlen;
2738 	Shdr *shp;
2739 	uint_t i;
2740 
2741 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2742 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2743 		    mp->filename);
2744 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2745 		    mp->hdr.e_shstrndx);
2746 		return;
2747 	}
2748 
2749 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2750 	shstrlen = shp->sh_size;
2751 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2752 
2753 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2754 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2755 		    mp->filename);
2756 		_kobj_printf(ops, "error reading section %u\n",
2757 		    mp->hdr.e_shstrndx);
2758 		kobj_free(shstrtab, shstrlen);
2759 		return;
2760 	}
2761 
2762 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2763 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2764 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2765 		    strcmp(shstrtab + shp->sh_name,
2766 		    ELF_SIGNATURE_SECTION) == 0) {
2767 			filesig_vers_t filesig_version;
2768 			size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2769 			sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2770 
2771 			if (kobj_read_file(file, sigdata, shp->sh_size,
2772 			    shp->sh_offset) < 0) {
2773 				_kobj_printf(ops, "krtld: get_signature: %s,"
2774 				    " error reading .SUNW_signature data\n",
2775 				    mp->filename);
2776 				kobj_free(sigdata, sigsize);
2777 				kobj_free(shstrtab, shstrlen);
2778 				return;
2779 			}
2780 			filesig_version = ((struct filesignatures *)sigdata)->
2781 			    filesig_sig.filesig_version;
2782 			if (!(filesig_version == FILESIG_VERSION1 ||
2783 			    filesig_version == FILESIG_VERSION3)) {
2784 				/* skip versions we don't understand */
2785 				kobj_free(sigdata, sigsize);
2786 				kobj_free(shstrtab, shstrlen);
2787 				return;
2788 			}
2789 
2790 			mp->sigdata = sigdata;
2791 			mp->sigsize = sigsize;
2792 			break;
2793 		}
2794 	}
2795 
2796 	if (sigdata != NULL) {
2797 		crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2798 	}
2799 
2800 	kobj_free(shstrtab, shstrlen);
2801 }
2802 
2803 static void
2804 add_dependent(struct module *mp, struct module *dep)
2805 {
2806 	struct module_list *lp;
2807 
2808 	for (lp = mp->head; lp; lp = lp->next) {
2809 		if (lp->mp == dep)
2810 			return;	/* already on the list */
2811 	}
2812 
2813 	if (lp == NULL) {
2814 		lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2815 
2816 		lp->mp = dep;
2817 		lp->next = NULL;
2818 		if (mp->tail)
2819 			mp->tail->next = lp;
2820 		else
2821 			mp->head = lp;
2822 		mp->tail = lp;
2823 	}
2824 }
2825 
2826 static int
2827 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2828 {
2829 	struct module *mp;
2830 	struct modctl *req;
2831 	char *d, *p, *q;
2832 	int c;
2833 	char *err_modname = NULL;
2834 
2835 	mp = modp->mod_mp;
2836 
2837 	if ((p = mp->depends_on) == NULL)
2838 		return (0);
2839 
2840 	for (;;) {
2841 		/*
2842 		 * Skip space.
2843 		 */
2844 		while (*p && (*p == ' ' || *p == '\t'))
2845 			p++;
2846 		/*
2847 		 * Get module name.
2848 		 */
2849 		d = p;
2850 		q = modname;
2851 		c = 0;
2852 		while (*p && *p != ' ' && *p != '\t') {
2853 			if (c < modnamelen - 1) {
2854 				*q++ = *p;
2855 				c++;
2856 			}
2857 			p++;
2858 		}
2859 
2860 		if (q == modname)
2861 			break;
2862 
2863 		if (c == modnamelen - 1) {
2864 			char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2865 
2866 			(void) strncpy(dep, d,  p - d + 1);
2867 			dep[p - d] = '\0';
2868 
2869 			_kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2870 			_kobj_printf(ops, "'%s' too long ", dep);
2871 			_kobj_printf(ops, "(max %d chars)\n", modnamelen);
2872 
2873 			kobj_free(dep, p - d + 1);
2874 
2875 			return (-1);
2876 		}
2877 
2878 		*q = '\0';
2879 		if ((req = mod_load_requisite(modp, modname)) == NULL) {
2880 #ifndef	KOBJ_DEBUG
2881 			if (_moddebug & MODDEBUG_LOADMSG) {
2882 #endif	/* KOBJ_DEBUG */
2883 				_kobj_printf(ops,
2884 				    "%s: unable to resolve dependency, ",
2885 				    modp->mod_modname);
2886 				_kobj_printf(ops, "cannot load module '%s'\n",
2887 				    modname);
2888 #ifndef	KOBJ_DEBUG
2889 			}
2890 #endif	/* KOBJ_DEBUG */
2891 			if (err_modname == NULL) {
2892 				/*
2893 				 * This must be the same size as the modname
2894 				 * one.
2895 				 */
2896 				err_modname = kobj_zalloc(MODMAXNAMELEN,
2897 				    KM_WAIT);
2898 
2899 				/*
2900 				 * We can use strcpy() here without fearing
2901 				 * the NULL terminator because the size of
2902 				 * err_modname is the same as one of modname,
2903 				 * and it's filled with zeros.
2904 				 */
2905 				(void) strcpy(err_modname, modname);
2906 			}
2907 			continue;
2908 		}
2909 
2910 		add_dependent(mp, req->mod_mp);
2911 		mod_release_mod(req);
2912 
2913 	}
2914 
2915 	if (err_modname != NULL) {
2916 		/*
2917 		 * Copy the first module name where you detect an error to keep
2918 		 * its behavior the same as before.
2919 		 * This way keeps minimizing the memory use for error
2920 		 * modules, and this might be important at boot time because
2921 		 * the memory usage is a crucial factor for booting in most
2922 		 * cases. You can expect more verbose messages when using
2923 		 * a debug kernel or setting a bit in moddebug.
2924 		 */
2925 		bzero(modname, MODMAXNAMELEN);
2926 		(void) strcpy(modname, err_modname);
2927 		kobj_free(err_modname, MODMAXNAMELEN);
2928 		return (-1);
2929 	}
2930 
2931 	return (0);
2932 }
2933 
2934 static int
2935 do_common(struct module *mp)
2936 {
2937 	int err;
2938 
2939 	/*
2940 	 * first time through, assign all symbols defined in other
2941 	 * modules, and count up how much common space will be needed
2942 	 * (bss_size and bss_align)
2943 	 */
2944 	if ((err = do_symbols(mp, 0)) < 0)
2945 		return (err);
2946 	/*
2947 	 * increase bss_size by the maximum delta that could be
2948 	 * computed by the ALIGN below
2949 	 */
2950 	mp->bss_size += mp->bss_align;
2951 	if (mp->bss_size) {
2952 		if (standalone)
2953 			mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2954 			    MINALIGN, 0);
2955 		else
2956 			mp->bss = (uintptr_t)vmem_alloc(data_arena,
2957 			    mp->bss_size, VM_SLEEP | VM_BESTFIT);
2958 		bzero((void *)mp->bss, mp->bss_size);
2959 		/* now assign addresses to all common symbols */
2960 		if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2961 			return (err);
2962 	}
2963 	return (0);
2964 }
2965 
2966 static int
2967 do_symbols(struct module *mp, Elf64_Addr bss_base)
2968 {
2969 	int bss_align;
2970 	uintptr_t bss_ptr;
2971 	int err;
2972 	int i;
2973 	Sym *sp, *sp1;
2974 	char *name;
2975 	int assign;
2976 	int resolved = 1;
2977 
2978 	/*
2979 	 * Nothing left to do (optimization).
2980 	 */
2981 	if (mp->flags & KOBJ_RESOLVED)
2982 		return (0);
2983 
2984 	assign = (bss_base) ? 1 : 0;
2985 	bss_ptr = bss_base;
2986 	bss_align = 0;
2987 	err = 0;
2988 
2989 	for (i = 1; i < mp->nsyms; i++) {
2990 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
2991 		/*
2992 		 * we know that st_name is in bounds, since get_sections
2993 		 * has already checked all of the symbols
2994 		 */
2995 		name = mp->strings + sp->st_name;
2996 		if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
2997 			continue;
2998 #if defined(__sparc)
2999 		/*
3000 		 * Register symbols are ignored in the kernel
3001 		 */
3002 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
3003 			if (*name != '\0') {
3004 				_kobj_printf(ops, "%s: named REGISTER symbol ",
3005 				    mp->filename);
3006 				_kobj_printf(ops, "not supported '%s'\n",
3007 				    name);
3008 				err = DOSYM_UNDEF;
3009 			}
3010 			continue;
3011 		}
3012 #endif	/* __sparc */
3013 		/*
3014 		 * TLS symbols are ignored in the kernel
3015 		 */
3016 		if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
3017 			_kobj_printf(ops, "%s: TLS symbol ",
3018 			    mp->filename);
3019 			_kobj_printf(ops, "not supported '%s'\n",
3020 			    name);
3021 			err = DOSYM_UNDEF;
3022 			continue;
3023 		}
3024 
3025 		if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3026 			if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3027 				sp->st_shndx = SHN_ABS;
3028 				sp->st_value = sp1->st_value;
3029 				continue;
3030 			}
3031 		}
3032 
3033 		if (sp->st_shndx == SHN_UNDEF) {
3034 			resolved = 0;
3035 
3036 			if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3037 				continue;
3038 
3039 			/*
3040 			 * If it's not a weak reference and it's
3041 			 * not a primary object, it's an error.
3042 			 * (Primary objects may take more than
3043 			 * one pass to resolve)
3044 			 */
3045 			if (!(mp->flags & KOBJ_PRIM) &&
3046 			    ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3047 				_kobj_printf(ops, "%s: undefined symbol",
3048 				    mp->filename);
3049 				_kobj_printf(ops, " '%s'\n", name);
3050 				/*
3051 				 * Try to determine whether this symbol
3052 				 * represents a dependency on obsolete
3053 				 * unsafe driver support.  This is just
3054 				 * to make the warning more informative.
3055 				 */
3056 				if (strcmp(name, "sleep") == 0 ||
3057 				    strcmp(name, "unsleep") == 0 ||
3058 				    strcmp(name, "wakeup") == 0 ||
3059 				    strcmp(name, "bsd_compat_ioctl") == 0 ||
3060 				    strcmp(name, "unsafe_driver") == 0 ||
3061 				    strncmp(name, "spl", 3) == 0 ||
3062 				    strncmp(name, "i_ddi_spl", 9) == 0)
3063 					err = DOSYM_UNSAFE;
3064 				if (err == 0)
3065 					err = DOSYM_UNDEF;
3066 			}
3067 			continue;
3068 		}
3069 		/*
3070 		 * It's a common symbol - st_value is the
3071 		 * required alignment.
3072 		 */
3073 		if (sp->st_value > bss_align)
3074 			bss_align = sp->st_value;
3075 		bss_ptr = ALIGN(bss_ptr, sp->st_value);
3076 		if (assign) {
3077 			sp->st_shndx = SHN_ABS;
3078 			sp->st_value = bss_ptr;
3079 		}
3080 		bss_ptr += sp->st_size;
3081 	}
3082 	if (err)
3083 		return (err);
3084 	if (assign == 0 && mp->bss == NULL) {
3085 		mp->bss_align = bss_align;
3086 		mp->bss_size = bss_ptr;
3087 	} else if (resolved) {
3088 		mp->flags |= KOBJ_RESOLVED;
3089 	}
3090 
3091 	return (0);
3092 }
3093 
3094 uint_t
3095 kobj_hash_name(const char *p)
3096 {
3097 	uint_t g;
3098 	uint_t hval;
3099 
3100 	hval = 0;
3101 	while (*p) {
3102 		hval = (hval << 4) + *p++;
3103 		if ((g = (hval & 0xf0000000)) != 0)
3104 			hval ^= g >> 24;
3105 		hval &= ~g;
3106 	}
3107 	return (hval);
3108 }
3109 
3110 /* look for name in all modules */
3111 uintptr_t
3112 kobj_getsymvalue(char *name, int kernelonly)
3113 {
3114 	Sym		*sp;
3115 	struct modctl	*modp;
3116 	struct module	*mp;
3117 	uintptr_t	value = 0;
3118 
3119 	if ((sp = kobj_lookup_kernel(name)) != NULL)
3120 		return ((uintptr_t)sp->st_value);
3121 
3122 	if (kernelonly)
3123 		return (0);	/* didn't find it in the kernel so give up */
3124 
3125 	mutex_enter(&mod_lock);
3126 	modp = &modules;
3127 	do {
3128 		mp = (struct module *)modp->mod_mp;
3129 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3130 		    (sp = lookup_one(mp, name))) {
3131 			value = (uintptr_t)sp->st_value;
3132 			break;
3133 		}
3134 	} while ((modp = modp->mod_next) != &modules);
3135 	mutex_exit(&mod_lock);
3136 	return (value);
3137 }
3138 
3139 /* look for a symbol near value. */
3140 char *
3141 kobj_getsymname(uintptr_t value, ulong_t *offset)
3142 {
3143 	char *name = NULL;
3144 	struct modctl *modp;
3145 
3146 	struct modctl_list *lp;
3147 	struct module *mp;
3148 
3149 	/*
3150 	 * Loop through the primary kernel modules.
3151 	 */
3152 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3153 		mp = mod(lp);
3154 
3155 		if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3156 			return (name);
3157 	}
3158 
3159 	mutex_enter(&mod_lock);
3160 	modp = &modules;
3161 	do {
3162 		mp = (struct module *)modp->mod_mp;
3163 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3164 		    (name = kobj_searchsym(mp, value, offset)))
3165 			break;
3166 	} while ((modp = modp->mod_next) != &modules);
3167 	mutex_exit(&mod_lock);
3168 	return (name);
3169 }
3170 
3171 /* return address of symbol and size */
3172 
3173 uintptr_t
3174 kobj_getelfsym(char *name, void *mp, int *size)
3175 {
3176 	Sym *sp;
3177 
3178 	if (mp == NULL)
3179 		sp = kobj_lookup_kernel(name);
3180 	else
3181 		sp = lookup_one(mp, name);
3182 
3183 	if (sp == NULL)
3184 		return (0);
3185 
3186 	*size = (int)sp->st_size;
3187 	return ((uintptr_t)sp->st_value);
3188 }
3189 
3190 uintptr_t
3191 kobj_lookup(struct module *mod, const char *name)
3192 {
3193 	Sym *sp;
3194 
3195 	sp = lookup_one(mod, name);
3196 
3197 	if (sp == NULL)
3198 		return (0);
3199 
3200 	return ((uintptr_t)sp->st_value);
3201 }
3202 
3203 char *
3204 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3205 {
3206 	Sym *symtabptr;
3207 	char *strtabptr;
3208 	int symnum;
3209 	Sym *sym;
3210 	Sym *cursym;
3211 	uintptr_t curval;
3212 
3213 	*offset = (ulong_t)-1l;		/* assume not found */
3214 	cursym  = NULL;
3215 
3216 	if (kobj_addrcheck(mp, (void *)value) != 0)
3217 		return (NULL);		/* not in this module */
3218 
3219 	strtabptr  = mp->strings;
3220 	symtabptr  = (Sym *)mp->symtbl;
3221 
3222 	/*
3223 	 * Scan the module's symbol table for a symbol <= value
3224 	 */
3225 	for (symnum = 1, sym = symtabptr + 1;
3226 	    symnum < mp->nsyms; symnum++, sym = (Sym *)
3227 	    ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3228 		if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3229 			if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3230 				continue;
3231 			if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3232 			    ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3233 				continue;
3234 		}
3235 
3236 		curval = (uintptr_t)sym->st_value;
3237 
3238 		if (curval > value)
3239 			continue;
3240 
3241 		/*
3242 		 * If one or both are functions...
3243 		 */
3244 		if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3245 		    ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3246 			/* Ignore if the address is out of the bounds */
3247 			if (value - sym->st_value >= sym->st_size)
3248 				continue;
3249 
3250 			if (cursym != NULL &&
3251 			    ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3252 				/* Prefer the function to the non-function */
3253 				if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3254 					continue;
3255 
3256 				/* Prefer the larger of the two functions */
3257 				if (sym->st_size <= cursym->st_size)
3258 					continue;
3259 			}
3260 		} else if (value - curval >= *offset) {
3261 			continue;
3262 		}
3263 
3264 		*offset = (ulong_t)(value - curval);
3265 		cursym = sym;
3266 	}
3267 	if (cursym == NULL)
3268 		return (NULL);
3269 
3270 	return (strtabptr + cursym->st_name);
3271 }
3272 
3273 Sym *
3274 kobj_lookup_all(struct module *mp, char *name, int include_self)
3275 {
3276 	Sym *sp;
3277 	struct module_list *mlp;
3278 	struct modctl_list *clp;
3279 	struct module *mmp;
3280 
3281 	if (include_self && (sp = lookup_one(mp, name)) != NULL)
3282 		return (sp);
3283 
3284 	for (mlp = mp->head; mlp; mlp = mlp->next) {
3285 		if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3286 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3287 			return (sp);
3288 	}
3289 
3290 	/*
3291 	 * Loop through the primary kernel modules.
3292 	 */
3293 	for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3294 		mmp = mod(clp);
3295 
3296 		if (mmp == NULL || mp == mmp)
3297 			continue;
3298 
3299 		if ((sp = lookup_one(mmp, name)) != NULL &&
3300 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3301 			return (sp);
3302 	}
3303 	return (NULL);
3304 }
3305 
3306 Sym *
3307 kobj_lookup_kernel(const char *name)
3308 {
3309 	struct modctl_list *lp;
3310 	struct module *mp;
3311 	Sym *sp;
3312 
3313 	/*
3314 	 * Loop through the primary kernel modules.
3315 	 */
3316 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3317 		mp = mod(lp);
3318 
3319 		if (mp == NULL)
3320 			continue;
3321 
3322 		if ((sp = lookup_one(mp, name)) != NULL)
3323 			return (sp);
3324 	}
3325 	return (NULL);
3326 }
3327 
3328 static Sym *
3329 lookup_one(struct module *mp, const char *name)
3330 {
3331 	symid_t *ip;
3332 	char *name1;
3333 	Sym *sp;
3334 
3335 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3336 	    ip = &mp->chains[*ip]) {
3337 		sp = (Sym *)(mp->symtbl +
3338 		    mp->symhdr->sh_entsize * *ip);
3339 		name1 = mp->strings + sp->st_name;
3340 		if (strcmp(name, name1) == 0 &&
3341 		    ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3342 		    sp->st_shndx != SHN_UNDEF &&
3343 		    sp->st_shndx != SHN_COMMON)
3344 			return (sp);
3345 	}
3346 	return (NULL);
3347 }
3348 
3349 /*
3350  * Lookup a given symbol pointer in the module's symbol hash.  If the symbol
3351  * is hashed, return the symbol pointer; otherwise return NULL.
3352  */
3353 static Sym *
3354 sym_lookup(struct module *mp, Sym *ksp)
3355 {
3356 	char *name = mp->strings + ksp->st_name;
3357 	symid_t *ip;
3358 	Sym *sp;
3359 
3360 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3361 	    ip = &mp->chains[*ip]) {
3362 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3363 		if (sp == ksp)
3364 			return (ksp);
3365 	}
3366 	return (NULL);
3367 }
3368 
3369 static void
3370 sym_insert(struct module *mp, char *name, symid_t index)
3371 {
3372 	symid_t *ip;
3373 
3374 #ifdef KOBJ_DEBUG
3375 		if (kobj_debug & D_SYMBOLS) {
3376 			static struct module *lastmp = NULL;
3377 			Sym *sp;
3378 			if (lastmp != mp) {
3379 				_kobj_printf(ops,
3380 				    "krtld: symbol entry: file=%s\n",
3381 				    mp->filename);
3382 				_kobj_printf(ops,
3383 				    "krtld:\tsymndx\tvalue\t\t"
3384 				    "symbol name\n");
3385 				lastmp = mp;
3386 			}
3387 			sp = (Sym *)(mp->symtbl +
3388 			    index * mp->symhdr->sh_entsize);
3389 			_kobj_printf(ops, "krtld:\t[%3d]", index);
3390 			_kobj_printf(ops, "\t0x%lx", sp->st_value);
3391 			_kobj_printf(ops, "\t%s\n", name);
3392 		}
3393 
3394 #endif
3395 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3396 	    ip = &mp->chains[*ip]) {
3397 		;
3398 	}
3399 	*ip = index;
3400 }
3401 
3402 struct modctl *
3403 kobj_boot_mod_lookup(const char *modname)
3404 {
3405 	struct modctl *mctl = kobj_modules;
3406 
3407 	do {
3408 		if (strcmp(modname, mctl->mod_modname) == 0)
3409 			return (mctl);
3410 	} while ((mctl = mctl->mod_next) != kobj_modules);
3411 
3412 	return (NULL);
3413 }
3414 
3415 /*
3416  * Determine if the module exists.
3417  */
3418 int
3419 kobj_path_exists(char *name, int use_path)
3420 {
3421 	struct _buf *file;
3422 
3423 	file = kobj_open_path(name, use_path, 1);
3424 #ifdef	MODDIR_SUFFIX
3425 	if (file == (struct _buf *)-1)
3426 		file = kobj_open_path(name, use_path, 0);
3427 #endif	/* MODDIR_SUFFIX */
3428 	if (file == (struct _buf *)-1)
3429 		return (0);
3430 	kobj_close_file(file);
3431 	return (1);
3432 }
3433 
3434 /*
3435  * fullname is dynamically allocated to be able to hold the
3436  * maximum size string that can be constructed from name.
3437  * path is exactly like the shell PATH variable.
3438  */
3439 struct _buf *
3440 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3441 {
3442 	char *p, *q;
3443 	char *pathp;
3444 	char *pathpsave;
3445 	char *fullname;
3446 	int maxpathlen;
3447 	struct _buf *file;
3448 
3449 #if !defined(MODDIR_SUFFIX)
3450 	use_moddir_suffix = B_FALSE;
3451 #endif
3452 
3453 	if (!use_path)
3454 		pathp = "";		/* use name as specified */
3455 	else
3456 		pathp = kobj_module_path;
3457 					/* use configured default path */
3458 
3459 	pathpsave = pathp;		/* keep this for error reporting */
3460 
3461 	/*
3462 	 * Allocate enough space for the largest possible fullname.
3463 	 * since path is of the form <directory> : <directory> : ...
3464 	 * we're potentially allocating a little more than we need to
3465 	 * but we'll allocate the exact amount when we find the right directory.
3466 	 * (The + 3 below is one for NULL terminator and one for the '/'
3467 	 * we might have to add at the beginning of path and one for
3468 	 * the '/' between path and name.)
3469 	 */
3470 	maxpathlen = strlen(pathp) + strlen(name) + 3;
3471 	/* sizeof includes null */
3472 	maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3473 	fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3474 
3475 	for (;;) {
3476 		p = fullname;
3477 		if (*pathp != '\0' && *pathp != '/')
3478 			*p++ = '/';	/* path must start with '/' */
3479 		while (*pathp && *pathp != ':' && *pathp != ' ')
3480 			*p++ = *pathp++;
3481 		if (p != fullname && p[-1] != '/')
3482 			*p++ = '/';
3483 		if (use_moddir_suffix) {
3484 			char *b = basename(name);
3485 			char *s;
3486 
3487 			/* copy everything up to the base name */
3488 			q = name;
3489 			while (q != b && *q)
3490 				*p++ = *q++;
3491 			s = slash_moddir_suffix_slash;
3492 			while (*s)
3493 				*p++ = *s++;
3494 			/* copy the rest */
3495 			while (*b)
3496 				*p++ = *b++;
3497 		} else {
3498 			q = name;
3499 			while (*q)
3500 				*p++ = *q++;
3501 		}
3502 		*p = 0;
3503 		if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3504 			kobj_free(fullname, maxpathlen);
3505 			return (file);
3506 		}
3507 		while (*pathp == ' ' || *pathp == ':')
3508 			pathp++;
3509 		if (*pathp == 0)
3510 			break;
3511 
3512 	}
3513 	kobj_free(fullname, maxpathlen);
3514 	if (_moddebug & MODDEBUG_ERRMSG) {
3515 		_kobj_printf(ops, "can't open %s,", name);
3516 		_kobj_printf(ops, " path is %s\n", pathpsave);
3517 	}
3518 	return ((struct _buf *)-1);
3519 }
3520 
3521 intptr_t
3522 kobj_open(char *filename)
3523 {
3524 	struct vnode *vp;
3525 	int fd;
3526 
3527 	if (_modrootloaded) {
3528 		struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3529 		int Errno;
3530 
3531 		/*
3532 		 * Hand off the open to a thread who has a
3533 		 * stack size capable handling the request.
3534 		 */
3535 		if (curthread != &t0) {
3536 			(void) thread_create(NULL, DEFAULTSTKSZ * 2,
3537 			    kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3538 			sema_p(&ltp->sema);
3539 			Errno = ltp->Errno;
3540 			vp = ltp->vp;
3541 		} else {
3542 			/*
3543 			 * 1098067: module creds should not be those of the
3544 			 * caller
3545 			 */
3546 			cred_t *saved_cred = curthread->t_cred;
3547 			curthread->t_cred = kcred;
3548 			Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3549 			    0, 0, rootdir, -1);
3550 			curthread->t_cred = saved_cred;
3551 		}
3552 		kobjopen_free(ltp);
3553 
3554 		if (Errno) {
3555 			if (_moddebug & MODDEBUG_ERRMSG) {
3556 				_kobj_printf(ops,
3557 				    "kobj_open: vn_open of %s fails, ",
3558 				    filename);
3559 				_kobj_printf(ops, "Errno = %d\n", Errno);
3560 			}
3561 			return (-1);
3562 		} else {
3563 			if (_moddebug & MODDEBUG_ERRMSG) {
3564 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3565 				_kobj_printf(ops, " vp = %p\n", vp);
3566 			}
3567 			return ((intptr_t)vp);
3568 		}
3569 	} else {
3570 		fd = kobj_boot_open(filename, 0);
3571 
3572 		if (_moddebug & MODDEBUG_ERRMSG) {
3573 			if (fd < 0)
3574 				_kobj_printf(ops,
3575 				    "kobj_open: can't open %s\n", filename);
3576 			else {
3577 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3578 				_kobj_printf(ops, " descr = 0x%x\n", fd);
3579 			}
3580 		}
3581 		return ((intptr_t)fd);
3582 	}
3583 }
3584 
3585 /*
3586  * Calls to kobj_open() are handled off to this routine as a separate thread.
3587  */
3588 static void
3589 kobjopen_thread(struct kobjopen_tctl *ltp)
3590 {
3591 	kmutex_t	cpr_lk;
3592 	callb_cpr_t	cpr_i;
3593 
3594 	mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3595 	CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3596 	ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3597 	    0, 0);
3598 	sema_v(&ltp->sema);
3599 	mutex_enter(&cpr_lk);
3600 	CALLB_CPR_EXIT(&cpr_i);
3601 	mutex_destroy(&cpr_lk);
3602 	thread_exit();
3603 }
3604 
3605 /*
3606  * allocate and initialize a kobjopen thread structure
3607  */
3608 static struct kobjopen_tctl *
3609 kobjopen_alloc(char *filename)
3610 {
3611 	struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3612 
3613 	ASSERT(filename != NULL);
3614 
3615 	ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3616 	bcopy(filename, ltp->name, strlen(filename) + 1);
3617 	sema_init(&ltp->sema, 0, NULL, SEMA_DEFAULT, NULL);
3618 	return (ltp);
3619 }
3620 
3621 /*
3622  * free a kobjopen thread control structure
3623  */
3624 static void
3625 kobjopen_free(struct kobjopen_tctl *ltp)
3626 {
3627 	sema_destroy(&ltp->sema);
3628 	kmem_free(ltp->name, strlen(ltp->name) + 1);
3629 	kmem_free(ltp, sizeof (*ltp));
3630 }
3631 
3632 int
3633 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset)
3634 {
3635 	int stat;
3636 	ssize_t resid;
3637 
3638 	if (_modrootloaded) {
3639 		if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3640 		    (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3641 		    &resid)) != 0) {
3642 			_kobj_printf(ops,
3643 			    "vn_rdwr failed with error 0x%x\n", stat);
3644 			return (-1);
3645 		}
3646 		return (size - resid);
3647 	} else {
3648 		int count = 0;
3649 
3650 		if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3651 			_kobj_printf(ops,
3652 			    "kobj_read: seek 0x%x failed\n", offset);
3653 			return (-1);
3654 		}
3655 
3656 		count = kobj_boot_read((int)descr, buf, size);
3657 		if (count < size) {
3658 			if (_moddebug & MODDEBUG_ERRMSG) {
3659 				_kobj_printf(ops,
3660 				    "kobj_read: req %d bytes, ", size);
3661 				_kobj_printf(ops, "got %d\n", count);
3662 			}
3663 		}
3664 		return (count);
3665 	}
3666 }
3667 
3668 void
3669 kobj_close(intptr_t descr)
3670 {
3671 	if (_moddebug & MODDEBUG_ERRMSG)
3672 		_kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3673 
3674 	if (_modrootloaded) {
3675 		struct vnode *vp = (struct vnode *)descr;
3676 		(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
3677 		VN_RELE(vp);
3678 	} else
3679 		(void) kobj_boot_close((int)descr);
3680 }
3681 
3682 int
3683 kobj_fstat(intptr_t descr, struct bootstat *buf)
3684 {
3685 	if (buf == NULL)
3686 		return (-1);
3687 
3688 	if (_modrootloaded) {
3689 		vattr_t vattr;
3690 		struct vnode *vp = (struct vnode *)descr;
3691 		if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3692 			return (-1);
3693 
3694 		/*
3695 		 * The vattr and bootstat structures are similar, but not
3696 		 * identical.  We do our best to fill in the bootstat structure
3697 		 * from the contents of vattr (transfering only the ones that
3698 		 * are obvious.
3699 		 */
3700 
3701 		buf->st_mode = (uint32_t)vattr.va_mode;
3702 		buf->st_nlink = (uint32_t)vattr.va_nlink;
3703 		buf->st_uid = (int32_t)vattr.va_uid;
3704 		buf->st_gid = (int32_t)vattr.va_gid;
3705 		buf->st_rdev = (uint64_t)vattr.va_rdev;
3706 		buf->st_size = (uint64_t)vattr.va_size;
3707 		buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3708 		buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3709 		buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3710 		buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3711 		buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3712 		buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3713 		buf->st_blksize = (int32_t)vattr.va_blksize;
3714 		buf->st_blocks = (int64_t)vattr.va_nblocks;
3715 
3716 		return (0);
3717 	}
3718 
3719 	return (kobj_boot_fstat((int)descr, buf));
3720 }
3721 
3722 
3723 struct _buf *
3724 kobj_open_file(char *name)
3725 {
3726 	struct _buf *file;
3727 	struct compinfo cbuf;
3728 	intptr_t fd;
3729 
3730 	if ((fd = kobj_open(name)) == -1) {
3731 		return ((struct _buf *)-1);
3732 	}
3733 
3734 	file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3735 	file->_fd = fd;
3736 	file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3737 	file->_cnt = file->_size = file->_off = 0;
3738 	file->_ln = 1;
3739 	file->_ptr = file->_base;
3740 	(void) strcpy(file->_name, name);
3741 
3742 	/*
3743 	 * Before root is mounted, we must check
3744 	 * for a compressed file and do our own
3745 	 * buffering.
3746 	 */
3747 	if (_modrootloaded) {
3748 		file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT);
3749 		file->_bsize = MAXBSIZE;
3750 
3751 		/* Check if the file is compressed */
3752 		file->_iscmp = kobj_is_compressed(fd);
3753 	} else {
3754 		if (kobj_boot_compinfo(fd, &cbuf) != 0) {
3755 			kobj_close_file(file);
3756 			return ((struct _buf *)-1);
3757 		}
3758 		file->_iscmp = cbuf.iscmp;
3759 		if (file->_iscmp) {
3760 			if (kobj_comp_setup(file, &cbuf) != 0) {
3761 				kobj_close_file(file);
3762 				return ((struct _buf *)-1);
3763 			}
3764 		} else {
3765 			file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP);
3766 			file->_bsize = cbuf.blksize;
3767 		}
3768 	}
3769 	return (file);
3770 }
3771 
3772 static int
3773 kobj_comp_setup(struct _buf *file, struct compinfo *cip)
3774 {
3775 	struct comphdr *hdr;
3776 
3777 	/*
3778 	 * read the compressed image into memory,
3779 	 * so we can deompress from there
3780 	 */
3781 	file->_dsize = cip->fsize;
3782 	file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP);
3783 	if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) {
3784 		kobj_free(file->_dbuf, cip->fsize);
3785 		return (-1);
3786 	}
3787 
3788 	hdr = kobj_comphdr(file);
3789 	if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION ||
3790 	    hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 ||
3791 	    !ISP2(hdr->ch_blksize)) {
3792 		kobj_free(file->_dbuf, cip->fsize);
3793 		return (-1);
3794 	}
3795 	file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP);
3796 	file->_bsize = hdr->ch_blksize;
3797 	return (0);
3798 }
3799 
3800 void
3801 kobj_close_file(struct _buf *file)
3802 {
3803 	kobj_close(file->_fd);
3804 	if (file->_base != NULL)
3805 		kobj_free(file->_base, file->_bsize);
3806 	if (file->_dbuf != NULL)
3807 		kobj_free(file->_dbuf, file->_dsize);
3808 	kobj_free(file->_name, strlen(file->_name)+1);
3809 	kobj_free(file, sizeof (struct _buf));
3810 }
3811 
3812 int
3813 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off)
3814 {
3815 	int b_size, c_size;
3816 	int b_off;	/* Offset into buffer for start of bcopy */
3817 	int count = 0;
3818 	int page_addr;
3819 
3820 	if (_moddebug & MODDEBUG_ERRMSG) {
3821 		_kobj_printf(ops, "kobj_read_file: size=%x,", size);
3822 		_kobj_printf(ops, " offset=%x at", off);
3823 		_kobj_printf(ops, " buf=%x\n", buf);
3824 	}
3825 
3826 	/*
3827 	 * Handle compressed (gzip for now) file here. First get the
3828 	 * compressed size, then read the image into memory and finally
3829 	 * call zlib to decompress the image at the supplied memory buffer.
3830 	 */
3831 	if (file->_iscmp == CH_MAGIC_GZIP) {
3832 		ulong_t dlen;
3833 		vattr_t vattr;
3834 		struct vnode *vp = (struct vnode *)file->_fd;
3835 		ssize_t resid;
3836 		int err = 0;
3837 
3838 		if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3839 			return (-1);
3840 
3841 		file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP);
3842 		file->_dsize = vattr.va_size;
3843 
3844 		/* Read the compressed file into memory */
3845 		if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size,
3846 		    (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3847 		    &resid)) != 0) {
3848 
3849 			_kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, "
3850 			    "error code 0x%x\n", err);
3851 			return (-1);
3852 		}
3853 
3854 		dlen = size;
3855 
3856 		/* Decompress the image at the supplied memory buffer */
3857 		if ((err = z_uncompress(buf, &dlen, file->_dbuf,
3858 		    vattr.va_size)) != Z_OK) {
3859 			_kobj_printf(ops, "kobj_read_file: z_uncompress "
3860 			    "failed, error code : 0x%x\n", err);
3861 			return (-1);
3862 		}
3863 
3864 		if (dlen != size) {
3865 			_kobj_printf(ops, "kobj_read_file: z_uncompress "
3866 			    "failed to uncompress (size returned 0x%x , "
3867 			    "expected size: 0x%x)\n", dlen, size);
3868 			return (-1);
3869 		}
3870 
3871 		return (0);
3872 	}
3873 
3874 	while (size) {
3875 		page_addr = F_PAGE(file, off);
3876 		b_size = file->_size;
3877 		/*
3878 		 * If we have the filesystem page the caller's referring to
3879 		 * and we have something in the buffer,
3880 		 * satisfy as much of the request from the buffer as we can.
3881 		 */
3882 		if (page_addr == file->_off && b_size > 0) {
3883 			b_off = B_OFFSET(file, off);
3884 			c_size = b_size - b_off;
3885 			/*
3886 			 * If there's nothing to copy, we're at EOF.
3887 			 */
3888 			if (c_size <= 0)
3889 				break;
3890 			if (c_size > size)
3891 				c_size = size;
3892 			if (buf) {
3893 				if (_moddebug & MODDEBUG_ERRMSG)
3894 					_kobj_printf(ops, "copying %x bytes\n",
3895 					    c_size);
3896 				bcopy(file->_base+b_off, buf, c_size);
3897 				size -= c_size;
3898 				off += c_size;
3899 				buf += c_size;
3900 				count += c_size;
3901 			} else {
3902 				_kobj_printf(ops, "kobj_read: system error");
3903 				count = -1;
3904 				break;
3905 			}
3906 		} else {
3907 			/*
3908 			 * If the caller's offset is page aligned and
3909 			 * the caller want's at least a filesystem page and
3910 			 * the caller provided a buffer,
3911 			 * read directly into the caller's buffer.
3912 			 */
3913 			if (page_addr == off &&
3914 			    (c_size = F_BLKS(file, size)) && buf) {
3915 				c_size = kobj_read_blks(file, buf, c_size,
3916 				    page_addr);
3917 				if (c_size < 0) {
3918 					count = -1;
3919 					break;
3920 				}
3921 				count += c_size;
3922 				if (c_size != F_BLKS(file, size))
3923 					break;
3924 				size -= c_size;
3925 				off += c_size;
3926 				buf += c_size;
3927 			/*
3928 			 * Otherwise, read into our buffer and copy next time
3929 			 * around the loop.
3930 			 */
3931 			} else {
3932 				file->_off = page_addr;
3933 				c_size = kobj_read_blks(file, file->_base,
3934 				    file->_bsize, page_addr);
3935 				file->_ptr = file->_base;
3936 				file->_cnt = c_size;
3937 				file->_size = c_size;
3938 				/*
3939 				 * If a _filbuf call or nothing read, break.
3940 				 */
3941 				if (buf == NULL || c_size <= 0) {
3942 					count = c_size;
3943 					break;
3944 				}
3945 			}
3946 			if (_moddebug & MODDEBUG_ERRMSG)
3947 				_kobj_printf(ops, "read %x bytes\n", c_size);
3948 		}
3949 	}
3950 	if (_moddebug & MODDEBUG_ERRMSG)
3951 		_kobj_printf(ops, "count = %x\n", count);
3952 
3953 	return (count);
3954 }
3955 
3956 static int
3957 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off)
3958 {
3959 	int ret;
3960 
3961 	ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0);
3962 	if (file->_iscmp) {
3963 		uint_t blks;
3964 		int nret;
3965 
3966 		ret = 0;
3967 		for (blks = size / file->_bsize; blks != 0; blks--) {
3968 			nret = kobj_uncomp_blk(file, buf, off);
3969 			if (nret == -1)
3970 				return (-1);
3971 			buf += nret;
3972 			off += nret;
3973 			ret += nret;
3974 			if (nret < file->_bsize)
3975 				break;
3976 		}
3977 	} else
3978 		ret = kobj_read(file->_fd, buf, size, off);
3979 	return (ret);
3980 }
3981 
3982 static int
3983 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off)
3984 {
3985 	struct comphdr *hdr = kobj_comphdr(file);
3986 	ulong_t dlen, slen;
3987 	caddr_t src;
3988 	int i;
3989 
3990 	dlen = file->_bsize;
3991 	i = off / file->_bsize;
3992 	src = file->_dbuf + hdr->ch_blkmap[i];
3993 	if (i == hdr->ch_fsize / file->_bsize)
3994 		slen = file->_dsize - hdr->ch_blkmap[i];
3995 	else
3996 		slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i];
3997 	if (z_uncompress(buf, &dlen, src, slen) != Z_OK)
3998 		return (-1);
3999 	return (dlen);
4000 }
4001 
4002 int
4003 kobj_filbuf(struct _buf *f)
4004 {
4005 	if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0)
4006 		return (kobj_getc(f));
4007 	return (-1);
4008 }
4009 
4010 void
4011 kobj_free(void *address, size_t size)
4012 {
4013 	if (standalone)
4014 		return;
4015 
4016 	kmem_free(address, size);
4017 	kobj_stat.nfree_calls++;
4018 	kobj_stat.nfree += size;
4019 }
4020 
4021 void *
4022 kobj_zalloc(size_t size, int flag)
4023 {
4024 	void *v;
4025 
4026 	if ((v = kobj_alloc(size, flag)) != 0) {
4027 		bzero(v, size);
4028 	}
4029 
4030 	return (v);
4031 }
4032 
4033 void *
4034 kobj_alloc(size_t size, int flag)
4035 {
4036 	/*
4037 	 * If we are running standalone in the
4038 	 * linker, we ask boot for memory.
4039 	 * Either it's temporary memory that we lose
4040 	 * once boot is mapped out or we allocate it
4041 	 * permanently using the dynamic data segment.
4042 	 */
4043 	if (standalone) {
4044 #if defined(_OBP)
4045 		if (flag & (KM_TMP | KM_SCRATCH))
4046 			return (bop_temp_alloc(size, MINALIGN));
4047 #else
4048 		if (flag & (KM_TMP | KM_SCRATCH))
4049 			return (BOP_ALLOC(ops, 0, size, MINALIGN));
4050 #endif
4051 		return (kobj_segbrk(&_edata, size, MINALIGN, 0));
4052 	}
4053 
4054 	kobj_stat.nalloc_calls++;
4055 	kobj_stat.nalloc += size;
4056 
4057 	return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
4058 }
4059 
4060 /*
4061  * Allow the "mod" system to sync up with the work
4062  * already done by kobj during the initial loading
4063  * of the kernel.  This also gives us a chance
4064  * to reallocate memory that belongs to boot.
4065  */
4066 void
4067 kobj_sync(void)
4068 {
4069 	struct modctl_list *lp, **lpp;
4070 
4071 	/*
4072 	 * The module path can be set in /etc/system via 'moddir' commands
4073 	 */
4074 	if (default_path != NULL)
4075 		kobj_module_path = default_path;
4076 	else
4077 		default_path = kobj_module_path;
4078 
4079 	ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
4080 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4081 
4082 	ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
4083 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4084 
4085 	/*
4086 	 * Move symbol tables from boot memory to ksyms_arena.
4087 	 */
4088 	for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
4089 		for (lp = *lpp; lp != NULL; lp = lp->modl_next)
4090 			kobj_export_module(mod(lp));
4091 	}
4092 }
4093 
4094 caddr_t
4095 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
4096 {
4097 	uintptr_t va, pva;
4098 	size_t alloc_pgsz = kobj_mmu_pagesize;
4099 	size_t alloc_align = BO_NO_ALIGN;
4100 	size_t alloc_size;
4101 
4102 	/*
4103 	 * If we are using "large" mappings for the kernel,
4104 	 * request aligned memory from boot using the
4105 	 * "large" pagesize.
4106 	 */
4107 	if (lg_pagesize) {
4108 		alloc_align = lg_pagesize;
4109 		alloc_pgsz = lg_pagesize;
4110 	}
4111 
4112 #if defined(__sparc)
4113 	/* account for redzone */
4114 	if (limit)
4115 		limit -= alloc_pgsz;
4116 #endif	/* __sparc */
4117 
4118 	va = ALIGN((uintptr_t)*spp, align);
4119 	pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4120 	/*
4121 	 * Need more pages?
4122 	 */
4123 	if (va + size > pva) {
4124 		uintptr_t npva;
4125 
4126 		alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4127 		/*
4128 		 * Check for overlapping segments.
4129 		 */
4130 		if (limit && limit <= *spp + alloc_size) {
4131 			return ((caddr_t)0);
4132 		}
4133 
4134 		npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4135 		    alloc_size, alloc_align);
4136 
4137 		if (npva == NULL) {
4138 			_kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4139 			    alloc_size);
4140 			_kobj_printf(ops, " aligned %lx", alloc_align);
4141 			_kobj_printf(ops, " at 0x%lx\n", pva);
4142 			return (NULL);
4143 		}
4144 	}
4145 	*spp = (caddr_t)(va + size);
4146 
4147 	return ((caddr_t)va);
4148 }
4149 
4150 /*
4151  * Calculate the number of output hash buckets.
4152  * We use the next prime larger than n / 4,
4153  * so the average hash chain is about 4 entries.
4154  * More buckets would just be a waste of memory.
4155  */
4156 uint_t
4157 kobj_gethashsize(uint_t n)
4158 {
4159 	int f;
4160 	int hsize = MAX(n / 4, 2);
4161 
4162 	for (f = 2; f * f <= hsize; f++)
4163 		if (hsize % f == 0)
4164 			hsize += f = 1;
4165 
4166 	return (hsize);
4167 }
4168 
4169 /*
4170  * Get the file size.
4171  *
4172  * Before root is mounted, files are compressed in the boot_archive ramdisk
4173  * (in the memory). kobj_fstat would return the compressed file size.
4174  * In order to get the uncompressed file size, read the file to the end and
4175  * count its size.
4176  */
4177 int
4178 kobj_get_filesize(struct _buf *file, uint64_t *size)
4179 {
4180 	int err = 0;
4181 	ssize_t resid;
4182 	uint32_t buf;
4183 
4184 	if (_modrootloaded) {
4185 		struct bootstat bst;
4186 
4187 		if (kobj_fstat(file->_fd, &bst) != 0)
4188 			return (EIO);
4189 		*size = bst.st_size;
4190 
4191 		if (file->_iscmp == CH_MAGIC_GZIP) {
4192 			/*
4193 			 * Read the last 4 bytes of the compressed (gzip)
4194 			 * image to get the size of its uncompressed
4195 			 * version.
4196 			 */
4197 			if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd,
4198 			    (char *)(&buf), 4, (offset_t)(*size - 4),
4199 			    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid))
4200 			    != 0) {
4201 				_kobj_printf(ops, "kobj_get_filesize: "
4202 				    "vn_rdwr() failed with error 0x%x\n", err);
4203 				return (-1);
4204 			}
4205 
4206 			*size =  (uint64_t)buf;
4207 		}
4208 	} else {
4209 
4210 #if defined(_OBP)
4211 		struct bootstat bsb;
4212 
4213 		if (file->_iscmp) {
4214 			struct comphdr *hdr = kobj_comphdr(file);
4215 
4216 			*size = hdr->ch_fsize;
4217 		} else if (kobj_boot_fstat(file->_fd, &bsb) != 0)
4218 			return (EIO);
4219 		else
4220 			*size = bsb.st_size;
4221 #else
4222 		char *buf;
4223 		int count;
4224 		uint64_t offset = 0;
4225 
4226 		buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4227 		do {
4228 			count = kobj_read_file(file, buf, MAXBSIZE, offset);
4229 			if (count < 0) {
4230 				kmem_free(buf, MAXBSIZE);
4231 				return (EIO);
4232 			}
4233 			offset += count;
4234 		} while (count == MAXBSIZE);
4235 		kmem_free(buf, MAXBSIZE);
4236 
4237 		*size = offset;
4238 #endif
4239 	}
4240 
4241 	return (0);
4242 }
4243 
4244 static char *
4245 basename(char *s)
4246 {
4247 	char *p, *q;
4248 
4249 	q = NULL;
4250 	p = s;
4251 	do {
4252 		if (*p == '/')
4253 			q = p;
4254 	} while (*p++);
4255 	return (q ? q + 1 : s);
4256 }
4257 
4258 void
4259 kobj_stat_get(kobj_stat_t *kp)
4260 {
4261 	*kp = kobj_stat;
4262 }
4263 
4264 int
4265 kobj_getpagesize()
4266 {
4267 	return (lg_pagesize);
4268 }
4269 
4270 void
4271 kobj_textwin_alloc(struct module *mp)
4272 {
4273 	ASSERT(MUTEX_HELD(&mod_lock));
4274 
4275 	if (mp->textwin != NULL)
4276 		return;
4277 
4278 	/*
4279 	 * If the text is not contained in the heap, then it is not contained
4280 	 * by a writable mapping.  (Specifically, it's on the nucleus page.)
4281 	 * We allocate a read/write mapping for this module's text to allow
4282 	 * the text to be patched without calling hot_patch_kernel_text()
4283 	 * (which is quite slow).
4284 	 */
4285 	if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4286 		uintptr_t text = (uintptr_t)mp->text;
4287 		uintptr_t size = (uintptr_t)mp->text_size;
4288 		uintptr_t i;
4289 		caddr_t va;
4290 		size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4291 		    (text & PAGEMASK);
4292 
4293 		va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4294 
4295 		for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4296 			hat_devload(kas.a_hat, va, PAGESIZE,
4297 			    hat_getpfnum(kas.a_hat, (caddr_t)i),
4298 			    PROT_READ | PROT_WRITE,
4299 			    HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4300 			va += PAGESIZE;
4301 		}
4302 
4303 		mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4304 	} else {
4305 		mp->textwin = mp->text;
4306 	}
4307 }
4308 
4309 void
4310 kobj_textwin_free(struct module *mp)
4311 {
4312 	uintptr_t text = (uintptr_t)mp->text;
4313 	uintptr_t tsize = (uintptr_t)mp->text_size;
4314 	size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4315 	    (text & PAGEMASK));
4316 
4317 	mp->textwin = NULL;
4318 
4319 	if (mp->textwin_base == NULL)
4320 		return;
4321 
4322 	hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4323 	vmem_free(heap_arena, mp->textwin_base, size);
4324 	mp->textwin_base = NULL;
4325 }
4326 
4327 static char *
4328 find_libmacro(char *name)
4329 {
4330 	int lmi;
4331 
4332 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4333 		if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4334 			return (libmacros[lmi].lmi_list);
4335 	}
4336 	return (NULL);
4337 }
4338 
4339 /*
4340  * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4341  * returns path if successful, else NULL
4342  * Support multiple $MACROs expansion and the first valid path will be returned
4343  * Caller's responsibility to provide enough space in path to expand
4344  */
4345 char *
4346 expand_libmacro(char *tail, char *path, char *pathend)
4347 {
4348 	char c, *p, *p1, *p2, *path2, *endp;
4349 	int diff, lmi, macrolen, valid_macro, more_macro;
4350 	struct _buf *file;
4351 
4352 	/*
4353 	 * check for $MACROS between nulls or slashes
4354 	 */
4355 	p = strchr(tail, '$');
4356 	if (p == NULL)
4357 		return (NULL);
4358 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4359 		macrolen = libmacros[lmi].lmi_macrolen;
4360 		if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4361 			break;
4362 	}
4363 
4364 	valid_macro = 0;
4365 	if (lmi < NLIBMACROS) {
4366 		/*
4367 		 * The following checks are used to restrict expansion of
4368 		 * macros to those that form a full directory/file name
4369 		 * and to keep the behavior same as before.  If this
4370 		 * restriction is removed or no longer valid in the future,
4371 		 * the checks below can be deleted.
4372 		 */
4373 		if ((p == tail) || (*(p - 1) == '/')) {
4374 			c = *(p + macrolen + 1);
4375 			if (c == '/' || c == '\0')
4376 				valid_macro = 1;
4377 		}
4378 	}
4379 
4380 	if (!valid_macro) {
4381 		p2 = strchr(p, '/');
4382 		/*
4383 		 * if no more macro to expand, then just copy whatever left
4384 		 * and check whether it exists
4385 		 */
4386 		if (p2 == NULL || strchr(p2, '$') == NULL) {
4387 			(void) strcpy(pathend, tail);
4388 			if ((file = kobj_open_path(path, 1, 1)) !=
4389 			    (struct _buf *)-1) {
4390 				kobj_close_file(file);
4391 				return (path);
4392 			} else
4393 				return (NULL);
4394 		} else {
4395 			/*
4396 			 * copy all chars before '/' and call expand_libmacro()
4397 			 * again
4398 			 */
4399 			diff = p2 - tail;
4400 			bcopy(tail, pathend, diff);
4401 			pathend += diff;
4402 			*(pathend) = '\0';
4403 			return (expand_libmacro(p2, path, pathend));
4404 		}
4405 	}
4406 
4407 	more_macro = 0;
4408 	if (c != '\0') {
4409 		endp = p + macrolen + 1;
4410 		if (strchr(endp, '$') != NULL)
4411 			more_macro = 1;
4412 	} else
4413 		endp = NULL;
4414 
4415 	/*
4416 	 * copy lmi_list and split it into components.
4417 	 * then put the part of tail before $MACRO into path
4418 	 * at pathend
4419 	 */
4420 	diff = p - tail;
4421 	if (diff > 0)
4422 		bcopy(tail, pathend, diff);
4423 	path2 = pathend + diff;
4424 	p1 = libmacros[lmi].lmi_list;
4425 	while (p1 && (*p1 != '\0')) {
4426 		p2 = strchr(p1, ':');
4427 		if (p2) {
4428 			diff = p2 - p1;
4429 			bcopy(p1, path2, diff);
4430 			*(path2 + diff) = '\0';
4431 		} else {
4432 			diff = strlen(p1);
4433 			bcopy(p1, path2, diff + 1);
4434 		}
4435 		/* copy endp only if there isn't any more macro to expand */
4436 		if (!more_macro && (endp != NULL))
4437 			(void) strcat(path2, endp);
4438 		file = kobj_open_path(path, 1, 1);
4439 		if (file != (struct _buf *)-1) {
4440 			kobj_close_file(file);
4441 			/*
4442 			 * if more macros to expand then call expand_libmacro(),
4443 			 * else return path which has the whole path
4444 			 */
4445 			if (!more_macro || (expand_libmacro(endp, path,
4446 			    path2 + diff) != NULL)) {
4447 				return (path);
4448 			}
4449 		}
4450 		if (p2)
4451 			p1 = ++p2;
4452 		else
4453 			return (NULL);
4454 	}
4455 	return (NULL);
4456 }
4457 
4458 static void
4459 tnf_add_notifyunload(kobj_notify_f *fp)
4460 {
4461 	kobj_notify_list_t *entry;
4462 
4463 	entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT);
4464 	entry->kn_type = KOBJ_NOTIFY_MODUNLOADING;
4465 	entry->kn_func = fp;
4466 	(void) kobj_notify_add(entry);
4467 }
4468 
4469 /* ARGSUSED */
4470 static void
4471 tnf_unsplice_probes(uint_t what, struct modctl *mod)
4472 {
4473 	tnf_probe_control_t **p;
4474 	tnf_tag_data_t **q;
4475 	struct module *mp = mod->mod_mp;
4476 
4477 	if (!(mp->flags & KOBJ_TNF_PROBE))
4478 		return;
4479 
4480 	for (p = &__tnf_probe_list_head; *p; )
4481 		if (kobj_addrcheck(mp, (char *)*p) == 0)
4482 			*p = (*p)->next;
4483 		else
4484 			p = &(*p)->next;
4485 
4486 	for (q = &__tnf_tag_list_head; *q; )
4487 		if (kobj_addrcheck(mp, (char *)*q) == 0)
4488 			*q = (tnf_tag_data_t *)(*q)->tag_version;
4489 		else
4490 			q = (tnf_tag_data_t **)&(*q)->tag_version;
4491 
4492 	tnf_changed_probe_list = 1;
4493 }
4494 
4495 int
4496 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist,
4497     tnf_tag_data_t *tlist)
4498 {
4499 	int result = 0;
4500 	static int add_notify = 1;
4501 
4502 	if (plist) {
4503 		tnf_probe_control_t *pl;
4504 
4505 		for (pl = plist; pl->next; )
4506 			pl = pl->next;
4507 
4508 		if (!boot_load)
4509 			mutex_enter(&mod_lock);
4510 		tnf_changed_probe_list = 1;
4511 		pl->next = __tnf_probe_list_head;
4512 		__tnf_probe_list_head = plist;
4513 		if (!boot_load)
4514 			mutex_exit(&mod_lock);
4515 		result = 1;
4516 	}
4517 
4518 	if (tlist) {
4519 		tnf_tag_data_t *tl;
4520 
4521 		for (tl = tlist; tl->tag_version; )
4522 			tl = (tnf_tag_data_t *)tl->tag_version;
4523 
4524 		if (!boot_load)
4525 			mutex_enter(&mod_lock);
4526 		tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head;
4527 		__tnf_tag_list_head = tlist;
4528 		if (!boot_load)
4529 			mutex_exit(&mod_lock);
4530 		result = 1;
4531 	}
4532 	if (!boot_load && result && add_notify) {
4533 		tnf_add_notifyunload(tnf_unsplice_probes);
4534 		add_notify = 0;
4535 	}
4536 	return (result);
4537 }
4538 
4539 char *kobj_file_buf;
4540 int kobj_file_bufsize;
4541 
4542 /*
4543  * This code is for the purpose of manually recording which files
4544  * needs to go into the boot archive on any given system.
4545  *
4546  * To enable the code, set kobj_file_bufsize in /etc/system
4547  * and reboot the system, then use mdb to look at kobj_file_buf.
4548  */
4549 static void
4550 kobj_record_file(char *filename)
4551 {
4552 	static char *buf;
4553 	static int size = 0;
4554 	int n;
4555 
4556 	if (kobj_file_bufsize == 0)	/* don't bother */
4557 		return;
4558 
4559 	if (kobj_file_buf == NULL) {	/* allocate buffer */
4560 		size = kobj_file_bufsize;
4561 		buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4562 	}
4563 
4564 	n = snprintf(buf, size, "%s\n", filename);
4565 	if (n > size)
4566 		n = size;
4567 	size -= n;
4568 	buf += n;
4569 }
4570 
4571 static int
4572 kobj_boot_fstat(int fd, struct bootstat *stp)
4573 {
4574 #if defined(_OBP)
4575 	if (!standalone && _ioquiesced)
4576 		return (-1);
4577 	return (BOP_FSTAT(ops, fd, stp));
4578 #else
4579 	return (BRD_FSTAT(bfs_ops, fd, stp));
4580 #endif
4581 }
4582 
4583 static int
4584 kobj_boot_open(char *filename, int flags)
4585 {
4586 #if defined(_OBP)
4587 
4588 	/*
4589 	 * If io via bootops is quiesced, it means boot is no longer
4590 	 * available to us.  We make it look as if we can't open the
4591 	 * named file - which is reasonably accurate.
4592 	 */
4593 	if (!standalone && _ioquiesced)
4594 		return (-1);
4595 
4596 	kobj_record_file(filename);
4597 	return (BOP_OPEN(filename, flags));
4598 #else /* x86 */
4599 	kobj_record_file(filename);
4600 	return (BRD_OPEN(bfs_ops, filename, flags));
4601 #endif
4602 }
4603 
4604 static int
4605 kobj_boot_close(int fd)
4606 {
4607 #if defined(_OBP)
4608 	if (!standalone && _ioquiesced)
4609 		return (-1);
4610 
4611 	return (BOP_CLOSE(fd));
4612 #else /* x86 */
4613 	return (BRD_CLOSE(bfs_ops, fd));
4614 #endif
4615 }
4616 
4617 /*ARGSUSED*/
4618 static int
4619 kobj_boot_seek(int fd, off_t hi, off_t lo)
4620 {
4621 #if defined(_OBP)
4622 	return (BOP_SEEK(fd, lo) == -1 ? -1 : 0);
4623 #else
4624 	return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4625 #endif
4626 }
4627 
4628 static int
4629 kobj_boot_read(int fd, caddr_t buf, size_t size)
4630 {
4631 #if defined(_OBP)
4632 	return (BOP_READ(fd, buf, size));
4633 #else
4634 	return (BRD_READ(bfs_ops, fd, buf, size));
4635 #endif
4636 }
4637 
4638 static int
4639 kobj_boot_compinfo(int fd, struct compinfo *cb)
4640 {
4641 	return (boot_compinfo(fd, cb));
4642 }
4643 
4644 /*
4645  * Check if the file is compressed (for now we handle only gzip).
4646  * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise.
4647  */
4648 static int
4649 kobj_is_compressed(intptr_t fd)
4650 {
4651 	struct vnode *vp = (struct vnode *)fd;
4652 	ssize_t resid;
4653 	uint16_t magic_buf;
4654 	int err = 0;
4655 
4656 	if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf),
4657 	    sizeof (magic_buf), (offset_t)(0),
4658 	    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
4659 
4660 		_kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, "
4661 		    "error code 0x%x\n", err);
4662 		return (0);
4663 	}
4664 
4665 	if (magic_buf == CH_MAGIC_GZIP)
4666 		return (CH_MAGIC_GZIP);
4667 
4668 	return (0);
4669 }
4670