xref: /illumos-gate/usr/src/uts/common/krtld/kobj.c (revision 11845c326ad8c691a402c512ccf50d1792fd6aab)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>.
27  * All rights reserved. Use is subject to license terms.
28  * Copyright 2020 Joyent, Inc.
29  */
30 
31 /*
32  * Kernel's linker/loader
33  */
34 
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/sysmacros.h>
38 #include <sys/systm.h>
39 #include <sys/user.h>
40 #include <sys/kmem.h>
41 #include <sys/reboot.h>
42 #include <sys/bootconf.h>
43 #include <sys/debug.h>
44 #include <sys/uio.h>
45 #include <sys/file.h>
46 #include <sys/vnode.h>
47 #include <sys/user.h>
48 #include <sys/mman.h>
49 #include <vm/as.h>
50 #include <vm/seg_kp.h>
51 #include <vm/seg_kmem.h>
52 #include <sys/elf.h>
53 #include <sys/elf_notes.h>
54 #include <sys/vmsystm.h>
55 #include <sys/kdi.h>
56 #include <sys/atomic.h>
57 #include <sys/kmdb.h>
58 
59 #include <sys/link.h>
60 #include <sys/kobj.h>
61 #include <sys/ksyms.h>
62 #include <sys/disp.h>
63 #include <sys/modctl.h>
64 #include <sys/varargs.h>
65 #include <sys/kstat.h>
66 #include <sys/kobj_impl.h>
67 #include <sys/fs/decomp.h>
68 #include <sys/callb.h>
69 #include <sys/cmn_err.h>
70 #include <sys/zmod.h>
71 
72 #include <krtld/reloc.h>
73 #include <krtld/kobj_kdi.h>
74 #include <sys/sha1.h>
75 #include <sys/crypto/elfsign.h>
76 
77 #if !defined(_OBP)
78 #include <sys/bootvfs.h>
79 #endif
80 
81 /*
82  * do_symbols() error codes
83  */
84 #define	DOSYM_UNDEF		-1	/* undefined symbol */
85 #define	DOSYM_UNSAFE		-2	/* MT-unsafe driver symbol */
86 
87 #if !defined(_OBP)
88 static void synthetic_bootaux(char *, val_t *);
89 #endif
90 
91 static struct module *load_exec(val_t *, char *);
92 static void load_linker(val_t *);
93 static struct modctl *add_primary(const char *filename, int);
94 static int bind_primary(val_t *, int);
95 static int load_primary(struct module *, int);
96 static int load_kmdb(val_t *);
97 static int get_progbits(struct module *, struct _buf *);
98 static int get_syms(struct module *, struct _buf *);
99 static int get_ctf(struct module *, struct _buf *);
100 static void get_signature(struct module *, struct _buf *);
101 static int do_common(struct module *);
102 static void add_dependent(struct module *, struct module *);
103 static int do_dependents(struct modctl *, char *, size_t);
104 static int do_symbols(struct module *, Elf64_Addr);
105 static void module_assign(struct modctl *, struct module *);
106 static void free_module_data(struct module *);
107 static char *depends_on(struct module *);
108 static char *getmodpath(const char *);
109 static char *basename(char *);
110 static void attr_val(val_t *);
111 static char *find_libmacro(char *);
112 static char *expand_libmacro(char *, char *, char *);
113 static int read_bootflags(void);
114 static int kobj_comp_setup(struct _buf *, struct compinfo *);
115 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t);
116 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t);
117 static int kobj_boot_open(char *, int);
118 static int kobj_boot_close(int);
119 static int kobj_boot_seek(int, off_t, off_t);
120 static int kobj_boot_read(int, caddr_t, size_t);
121 static int kobj_boot_fstat(int, struct bootstat *);
122 static int kobj_boot_compinfo(int, struct compinfo *);
123 
124 static Sym *lookup_one(struct module *, const char *);
125 static void sym_insert(struct module *, char *, symid_t);
126 static Sym *sym_lookup(struct module *, Sym *);
127 
128 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
129 static void kobjopen_free(struct kobjopen_tctl *ltp);
130 static void kobjopen_thread(struct kobjopen_tctl *ltp);
131 static int kobj_is_compressed(intptr_t);
132 
133 extern int kcopy(const void *, void *, size_t);
134 extern int elf_mach_ok(Ehdr *);
135 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
136 
137 #if !defined(_OBP)
138 extern int kobj_boot_mountroot(void);
139 #endif
140 
141 extern int modrootloaded;
142 extern int swaploaded;
143 extern int bop_io_quiesced;
144 extern int last_module_id;
145 
146 extern char stubs_base[];
147 extern char stubs_end[];
148 
149 #ifdef KOBJ_DEBUG
150 /*
151  * Values that can be or'd in to kobj_debug and their effects:
152  *
153  *	D_DEBUG		- misc. debugging information.
154  *	D_SYMBOLS	- list symbols and their values as they are entered
155  *			  into the hash table
156  *	D_RELOCATIONS	- display relocation processing information
157  *	D_LOADING	- display information about each module as it
158  *			  is loaded.
159  */
160 int kobj_debug = 0;
161 
162 #define	KOBJ_MARK(s)	if (kobj_debug & D_DEBUG)	\
163 	(_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
164 #else
165 #define	KOBJ_MARK(s)	/* discard */
166 #endif
167 
168 #define	MODPATH_PROPNAME	"module-path"
169 
170 #ifdef MODDIR_SUFFIX
171 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
172 #else
173 #define	slash_moddir_suffix_slash	""
174 #endif
175 
176 #define	_moddebug	get_weakish_int(&moddebug)
177 #define	_modrootloaded	get_weakish_int(&modrootloaded)
178 #define	_swaploaded	get_weakish_int(&swaploaded)
179 #define	_ioquiesced	get_weakish_int(&bop_io_quiesced)
180 
181 #define	mod(X)		(struct module *)((X)->modl_modp->mod_mp)
182 
183 void	*romp;		/* rom vector (opaque to us) */
184 struct bootops *ops;	/* bootops vector */
185 void *dbvec;		/* debug vector */
186 
187 /*
188  * kobjopen thread control structure
189  */
190 struct kobjopen_tctl {
191 	ksema_t		sema;
192 	char		*name;		/* name of file */
193 	struct vnode	*vp;		/* vnode return from vn_open() */
194 	int		Errno;		/* error return from vnopen    */
195 };
196 
197 /*
198  * Structure for defining dynamically expandable library macros
199  */
200 
201 struct lib_macro_info {
202 	char	*lmi_list;		/* ptr to list of possible choices */
203 	char	*lmi_macroname;		/* pointer to macro name */
204 	ushort_t lmi_ba_index;		/* index into bootaux vector */
205 	ushort_t lmi_macrolen;		/* macro length */
206 } libmacros[] = {
207 	{ NULL, "CPU", BA_CPU, 0 },
208 	{ NULL, "MMU", BA_MMU, 0 }
209 };
210 
211 #define	NLIBMACROS	sizeof (libmacros) / sizeof (struct lib_macro_info)
212 
213 char *boot_cpu_compatible_list;			/* make $CPU available */
214 
215 char *kobj_module_path;				/* module search path */
216 vmem_t	*text_arena;				/* module text arena */
217 static vmem_t *data_arena;			/* module data & bss arena */
218 static vmem_t *ctf_arena;			/* CTF debug data arena */
219 static struct modctl *kobj_modules = NULL;	/* modules loaded */
220 int kobj_mmu_pagesize;				/* system pagesize */
221 static int lg_pagesize;				/* "large" pagesize */
222 static int kobj_last_module_id = 0;		/* id assignment */
223 static kmutex_t kobj_lock;			/* protects mach memory list */
224 
225 /*
226  * The following functions have been implemented by the kernel.
227  * However, many 3rd party drivers provide their own implementations
228  * of these functions.  When such drivers are loaded, messages
229  * indicating that these symbols have been multiply defined will be
230  * emitted to the console.  To avoid alarming customers for no good
231  * reason, we simply suppress such warnings for the following set of
232  * functions.
233  */
234 static char *suppress_sym_list[] =
235 {
236 	"strstr",
237 	"strncat",
238 	"strlcat",
239 	"strlcpy",
240 	"strspn",
241 	"memcpy",
242 	"memset",
243 	"memmove",
244 	"memcmp",
245 	"memchr",
246 	"__udivdi3",
247 	"__divdi3",
248 	"__umoddi3",
249 	"__moddi3",
250 	NULL		/* This entry must exist */
251 };
252 
253 /* indexed by KOBJ_NOTIFY_* */
254 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
255 
256 /*
257  * Prefix for statically defined tracing (SDT) DTrace probes.
258  */
259 const char		*sdt_prefix = "__dtrace_probe_";
260 
261 /*
262  * Beginning and end of the kernel's dynamic text/data segments.
263  */
264 static caddr_t _text;
265 static caddr_t _etext;
266 static caddr_t _data;
267 
268 /*
269  * The sparc linker doesn't create a memory location
270  * for a variable named _edata, so _edata can only be
271  * referred to, not modified.  krtld needs a static
272  * variable to modify it - within krtld, of course -
273  * outside of krtld, e_data is used in all kernels.
274  */
275 #if defined(__sparc)
276 static caddr_t _edata;
277 #else
278 extern caddr_t _edata;
279 #endif
280 
281 Addr dynseg = 0;	/* load address of "dynamic" segment */
282 size_t dynsize;		/* "dynamic" segment size */
283 
284 
285 int standalone = 1;			/* an unwholey kernel? */
286 int use_iflush;				/* iflush after relocations */
287 
288 /*
289  * _kobj_printf() and _vkobj_printf()
290  *
291  * Common printf function pointer. Can handle only one conversion
292  * specification in the format string. Some of the functions invoked
293  * through this function pointer cannot handle more that one conversion
294  * specification in the format string.
295  */
296 void (*_kobj_printf)(void *, const char *, ...) __KPRINTFLIKE(2);
297 void (*_vkobj_printf)(void *, const char *, va_list) __KVPRINTFLIKE(2);
298 
299 /*
300  * Standalone function pointers for use within krtld.
301  * Many platforms implement optimized platmod versions of
302  * utilities such as bcopy and any such are not yet available
303  * until the kernel is more completely stitched together.
304  * See kobj_impl.h
305  */
306 void (*kobj_bcopy)(const void *, void *, size_t);
307 void (*kobj_bzero)(void *, size_t);
308 size_t (*kobj_strlcat)(char *, const char *, size_t);
309 
310 static kobj_stat_t kobj_stat;
311 
312 #define	MINALIGN	8	/* at least a double-word */
313 
314 int
315 get_weakish_int(int *ip)
316 {
317 	if (standalone)
318 		return (0);
319 	return (ip == NULL ? 0 : *ip);
320 }
321 
322 static void *
323 get_weakish_pointer(void **ptrp)
324 {
325 	if (standalone)
326 		return (0);
327 	return (ptrp == NULL ? 0 : *ptrp);
328 }
329 
330 /*
331  * XXX fix dependencies on "kernel"; this should work
332  * for other standalone binaries as well.
333  *
334  * XXX Fix hashing code to use one pointer to
335  * hash entries.
336  *	|----------|
337  *	| nbuckets |
338  *	|----------|
339  *	| nchains  |
340  *	|----------|
341  *	| bucket[] |
342  *	|----------|
343  *	| chain[]  |
344  *	|----------|
345  */
346 
347 /*
348  * Load, bind and relocate all modules that
349  * form the primary kernel. At this point, our
350  * externals have not been relocated.
351  */
352 void
353 kobj_init(
354 	void *romvec,
355 	void *dvec,
356 	struct bootops *bootvec,
357 	val_t *bootaux)
358 {
359 	struct module *mp;
360 	struct modctl *modp;
361 	Addr entry;
362 	char filename[MAXPATHLEN];
363 
364 	/*
365 	 * Save these to pass on to
366 	 * the booted standalone.
367 	 */
368 	romp = romvec;
369 	dbvec = dvec;
370 
371 	ops = bootvec;
372 	kobj_setup_standalone_vectors();
373 
374 	KOBJ_MARK("Entered kobj_init()");
375 
376 	(void) BOP_GETPROP(ops, "whoami", filename);
377 
378 	/*
379 	 * We don't support standalone debuggers anymore.  The use of kadb
380 	 * will interfere with the later use of kmdb.  Let the user mend
381 	 * their ways now.  Users will reach this message if they still
382 	 * have the kadb binary on their system (perhaps they used an old
383 	 * bfu, or maybe they intentionally copied it there) and have
384 	 * specified its use in a way that eluded our checking in the boot
385 	 * program.
386 	 */
387 	if (dvec != NULL) {
388 		_kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
389 		    "kadb are no longer supported\n\n");
390 		goto fail;
391 	}
392 
393 #if defined(_OBP)
394 	/*
395 	 * OBP allows us to read both the ramdisk and
396 	 * the underlying root fs when root is a disk.
397 	 * This can lower incidences of unbootable systems
398 	 * when the archive is out-of-date with the /etc
399 	 * state files.
400 	 */
401 	if (BOP_MOUNTROOT() != BOOT_SVC_OK) {
402 		_kobj_printf(ops, "can't mount boot fs\n");
403 		goto fail;
404 	}
405 #else
406 	{
407 		/* on x86, we always boot with a ramdisk */
408 		(void) kobj_boot_mountroot();
409 
410 		/*
411 		 * Now that the ramdisk is mounted, finish boot property
412 		 * initialization.
413 		 */
414 		read_bootenvrc();
415 	}
416 
417 #if !defined(_UNIX_KRTLD)
418 	/*
419 	 * 'unix' is linked together with 'krtld' into one executable and
420 	 * the early boot code does -not- hand us any of the dynamic metadata
421 	 * about the executable. In particular, it does not read in, map or
422 	 * otherwise look at the program headers. We fake all that up now.
423 	 *
424 	 * We do this early as DTrace static probes call undefined references.
425 	 * We have to process those relocations before calling any of them.
426 	 *
427 	 * OBP tells kobj_start() where the ELF image is in memory, so it
428 	 * synthesized bootaux before kobj_init() was called
429 	 */
430 	if (bootaux[BA_PHDR].ba_ptr == NULL)
431 		synthetic_bootaux(filename, bootaux);
432 
433 #endif	/* !_UNIX_KRTLD */
434 #endif	/* _OBP */
435 
436 	/*
437 	 * Save the interesting attribute-values
438 	 * (scanned by kobj_boot).
439 	 */
440 	attr_val(bootaux);
441 
442 	/*
443 	 * Set the module search path.
444 	 */
445 	kobj_module_path = getmodpath(filename);
446 
447 	boot_cpu_compatible_list = find_libmacro("CPU");
448 
449 	/*
450 	 * These two modules have actually been
451 	 * loaded by boot, but we finish the job
452 	 * by introducing them into the world of
453 	 * loadable modules.
454 	 */
455 
456 	mp = load_exec(bootaux, filename);
457 	load_linker(bootaux);
458 
459 	/*
460 	 * Load all the primary dependent modules.
461 	 */
462 	if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
463 		goto fail;
464 
465 	/*
466 	 * Glue it together.
467 	 */
468 	if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
469 		goto fail;
470 
471 	entry = bootaux[BA_ENTRY].ba_val;
472 
473 	/*
474 	 * Get the boot flags
475 	 */
476 	bootflags(ops);
477 
478 	if (boothowto & RB_VERBOSE)
479 		kobj_lm_dump(KOBJ_LM_PRIMARY);
480 
481 	kobj_kdi_init();
482 
483 	if (boothowto & RB_KMDB) {
484 		if (load_kmdb(bootaux) < 0)
485 			goto fail;
486 	}
487 
488 	/*
489 	 * Post setup.
490 	 */
491 	s_text = _text;
492 	e_text = _etext;
493 	s_data = _data;
494 	e_data = _edata;
495 
496 	kobj_sync_instruction_memory(s_text, e_text - s_text);
497 
498 #ifdef	KOBJ_DEBUG
499 	if (kobj_debug & D_DEBUG)
500 		_kobj_printf(ops,
501 		    "krtld: transferring control to: 0x%lx\n", entry);
502 #endif
503 
504 	/*
505 	 * Make sure the mod system knows about the modules already loaded.
506 	 */
507 	last_module_id = kobj_last_module_id;
508 	bcopy(kobj_modules, &modules, sizeof (modules));
509 	modp = &modules;
510 	do {
511 		if (modp->mod_next == kobj_modules)
512 			modp->mod_next = &modules;
513 		if (modp->mod_prev == kobj_modules)
514 			modp->mod_prev = &modules;
515 	} while ((modp = modp->mod_next) != &modules);
516 
517 	standalone = 0;
518 
519 #ifdef	KOBJ_DEBUG
520 	if (kobj_debug & D_DEBUG)
521 		_kobj_printf(ops,
522 		    "krtld: really transferring control to: 0x%lx\n", entry);
523 #endif
524 
525 	/* restore printf/bcopy/bzero vectors before returning */
526 	kobj_restore_vectors();
527 
528 #if defined(_DBOOT)
529 	/*
530 	 * krtld was called from a dboot ELF section, the embedded
531 	 * dboot code contains the real entry via bootaux
532 	 */
533 	exitto((caddr_t)entry);
534 #else
535 	/*
536 	 * krtld was directly called from startup
537 	 */
538 	return;
539 #endif
540 
541 fail:
542 
543 	_kobj_printf(ops, "krtld: error during initial load/link phase\n");
544 
545 #if !defined(_UNIX_KRTLD)
546 	_kobj_printf(ops, "\n");
547 	_kobj_printf(ops, "krtld could neither locate nor resolve symbols"
548 	    " for:\n");
549 	_kobj_printf(ops, "    %s\n", filename);
550 	_kobj_printf(ops, "in the boot archive. Please verify that this"
551 	    " file\n");
552 	_kobj_printf(ops, "matches what is found in the boot archive.\n");
553 	_kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
554 	    " fix this.\n");
555 	bop_panic("Unable to boot");
556 #endif
557 }
558 
559 #if !defined(_UNIX_KRTLD) && !defined(_OBP)
560 /*
561  * Synthesize additional metadata that describes the executable if
562  * krtld's caller didn't do it.
563  *
564  * (When the dynamic executable has an interpreter, the boot program
565  * does all this for us.  Where we don't have an interpreter, (or a
566  * even a boot program, perhaps) we have to do this for ourselves.)
567  */
568 static void
569 synthetic_bootaux(char *filename, val_t *bootaux)
570 {
571 	Ehdr ehdr;
572 	caddr_t phdrbase;
573 	struct _buf *file;
574 	int i, n;
575 
576 	/*
577 	 * Elf header
578 	 */
579 	KOBJ_MARK("synthetic_bootaux()");
580 	KOBJ_MARK(filename);
581 	file = kobj_open_file(filename);
582 	if (file == (struct _buf *)-1) {
583 		_kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
584 		return;
585 	}
586 	KOBJ_MARK("reading program headers");
587 	if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
588 		_kobj_printf(ops, "krtld: %s: failed to read ehder\n",
589 		    filename);
590 		return;
591 	}
592 
593 	/*
594 	 * Program headers
595 	 */
596 	bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
597 	bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
598 	n = ehdr.e_phentsize * ehdr.e_phnum;
599 
600 	phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
601 
602 	if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
603 		_kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
604 		    filename);
605 		return;
606 	}
607 	bootaux[BA_PHDR].ba_ptr = phdrbase;
608 	kobj_close_file(file);
609 	KOBJ_MARK("closed file");
610 
611 	/*
612 	 * Find the dynamic section address
613 	 */
614 	for (i = 0; i < ehdr.e_phnum; i++) {
615 		Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
616 
617 		if (phdr->p_type == PT_DYNAMIC) {
618 			bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
619 			break;
620 		}
621 	}
622 	KOBJ_MARK("synthetic_bootaux() done");
623 }
624 #endif	/* !_UNIX_KRTLD && !_OBP */
625 
626 /*
627  * Set up any global information derived
628  * from attribute/values in the boot or
629  * aux vector.
630  */
631 static void
632 attr_val(val_t *bootaux)
633 {
634 	Phdr *phdr;
635 	int phnum, phsize;
636 	int i;
637 
638 	KOBJ_MARK("attr_val()");
639 	kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
640 	lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
641 	use_iflush = bootaux[BA_IFLUSH].ba_val;
642 
643 	phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
644 	phnum = bootaux[BA_PHNUM].ba_val;
645 	phsize = bootaux[BA_PHENT].ba_val;
646 	for (i = 0; i < phnum; i++) {
647 		phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
648 
649 		if (phdr->p_type != PT_LOAD) {
650 			continue;
651 		}
652 		/*
653 		 * Bounds of the various segments.
654 		 */
655 		if (!(phdr->p_flags & PF_X)) {
656 #if defined(_RELSEG)
657 			/*
658 			 * sparc kernel puts the dynamic info
659 			 * into a separate segment, which is
660 			 * free'd in bop_fini()
661 			 */
662 			ASSERT(phdr->p_vaddr != 0);
663 			dynseg = phdr->p_vaddr;
664 			dynsize = phdr->p_memsz;
665 #else
666 			ASSERT(phdr->p_vaddr == 0);
667 #endif
668 		} else {
669 			if (phdr->p_flags & PF_W) {
670 				_data = (caddr_t)phdr->p_vaddr;
671 				_edata = _data + phdr->p_memsz;
672 			} else {
673 				_text = (caddr_t)phdr->p_vaddr;
674 				_etext = _text + phdr->p_memsz;
675 			}
676 		}
677 	}
678 
679 	/* To do the kobj_alloc, _edata needs to be set. */
680 	for (i = 0; i < NLIBMACROS; i++) {
681 		if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
682 			libmacros[i].lmi_list = kobj_alloc(
683 			    strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
684 			    1, KM_WAIT);
685 			(void) strcpy(libmacros[i].lmi_list,
686 			    bootaux[libmacros[i].lmi_ba_index].ba_ptr);
687 		}
688 		libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
689 	}
690 }
691 
692 /*
693  * Set up the booted executable.
694  */
695 static struct module *
696 load_exec(val_t *bootaux, char *filename)
697 {
698 	struct modctl *cp;
699 	struct module *mp;
700 	Dyn *dyn;
701 	Sym *sp;
702 	int i, lsize, osize, nsize, allocsize;
703 	char *libname, *tmp;
704 	char path[MAXPATHLEN];
705 
706 #ifdef KOBJ_DEBUG
707 	if (kobj_debug & D_DEBUG)
708 		_kobj_printf(ops, "module path '%s'\n", kobj_module_path);
709 #endif
710 
711 	KOBJ_MARK("add_primary");
712 	cp = add_primary(filename, KOBJ_LM_PRIMARY);
713 
714 	KOBJ_MARK("struct module");
715 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
716 	cp->mod_mp = mp;
717 
718 	/*
719 	 * We don't have the following information
720 	 * since this module is an executable and not
721 	 * a relocatable .o.
722 	 */
723 	mp->symtbl_section = 0;
724 	mp->shdrs = NULL;
725 	mp->strhdr = NULL;
726 
727 	/*
728 	 * Since this module is the only exception,
729 	 * we cons up some section headers.
730 	 */
731 	KOBJ_MARK("symhdr");
732 	mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
733 
734 	KOBJ_MARK("strhdr");
735 	mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
736 
737 	mp->symhdr->sh_type = SHT_SYMTAB;
738 	mp->strhdr->sh_type = SHT_STRTAB;
739 	/*
740 	 * Scan the dynamic structure.
741 	 */
742 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
743 	    dyn->d_tag != DT_NULL; dyn++) {
744 		switch (dyn->d_tag) {
745 		case DT_SYMTAB:
746 			mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
747 			mp->symhdr->sh_addr = dyn->d_un.d_ptr;
748 			break;
749 		case DT_HASH:
750 			mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
751 			mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
752 			break;
753 		case DT_STRTAB:
754 			mp->strings = (char *)dyn->d_un.d_ptr;
755 			mp->strhdr->sh_addr = dyn->d_un.d_ptr;
756 			break;
757 		case DT_STRSZ:
758 			mp->strhdr->sh_size = dyn->d_un.d_val;
759 			break;
760 		case DT_SYMENT:
761 			mp->symhdr->sh_entsize = dyn->d_un.d_val;
762 			break;
763 		}
764 	}
765 
766 	/*
767 	 * Collapse any DT_NEEDED entries into one string.
768 	 */
769 	nsize = osize = 0;
770 	allocsize = MAXPATHLEN;
771 
772 	KOBJ_MARK("depends_on");
773 	mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
774 
775 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
776 	    dyn->d_tag != DT_NULL; dyn++)
777 		if (dyn->d_tag == DT_NEEDED) {
778 			char *_lib;
779 
780 			libname = mp->strings + dyn->d_un.d_val;
781 			if (strchr(libname, '$') != NULL) {
782 				if ((_lib = expand_libmacro(libname,
783 				    path, path)) != NULL)
784 					libname = _lib;
785 				else
786 					_kobj_printf(ops, "krtld: "
787 					    "load_exec: fail to "
788 					    "expand %s\n", libname);
789 			}
790 			lsize = strlen(libname);
791 			nsize += lsize;
792 			if (nsize + 1 > allocsize) {
793 				KOBJ_MARK("grow depends_on");
794 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
795 				    KM_WAIT);
796 				bcopy(mp->depends_on, tmp, osize);
797 				kobj_free(mp->depends_on, allocsize);
798 				mp->depends_on = tmp;
799 				allocsize += MAXPATHLEN;
800 			}
801 			bcopy(libname, mp->depends_on + osize, lsize);
802 			*(mp->depends_on + nsize) = ' '; /* separate */
803 			nsize++;
804 			osize = nsize;
805 		}
806 	if (nsize) {
807 		mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
808 		/*
809 		 * alloc with exact size and copy whatever it got over
810 		 */
811 		KOBJ_MARK("realloc depends_on");
812 		tmp = kobj_alloc(nsize, KM_WAIT);
813 		bcopy(mp->depends_on, tmp, nsize);
814 		kobj_free(mp->depends_on, allocsize);
815 		mp->depends_on = tmp;
816 	} else {
817 		kobj_free(mp->depends_on, allocsize);
818 		mp->depends_on = NULL;
819 	}
820 
821 	mp->flags = KOBJ_EXEC|KOBJ_PRIM;	/* NOT a relocatable .o */
822 	mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
823 	/*
824 	 * We allocate our own table since we don't
825 	 * hash undefined references.
826 	 */
827 	KOBJ_MARK("chains");
828 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
829 	KOBJ_MARK("buckets");
830 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
831 
832 	mp->text = _text;
833 	mp->data = _data;
834 
835 	mp->text_size = _etext - _text;
836 	mp->data_size = _edata - _data;
837 
838 	cp->mod_text = mp->text;
839 	cp->mod_text_size = mp->text_size;
840 
841 	mp->filename = cp->mod_filename;
842 
843 #ifdef	KOBJ_DEBUG
844 	if (kobj_debug & D_LOADING) {
845 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
846 		_kobj_printf(ops, "\ttext: 0x%p", mp->text);
847 		_kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
848 		_kobj_printf(ops, "\tdata: 0x%p", mp->data);
849 		_kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
850 	}
851 #endif /* KOBJ_DEBUG */
852 
853 	/*
854 	 * Insert symbols into the hash table.
855 	 */
856 	for (i = 0; i < mp->nsyms; i++) {
857 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
858 
859 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
860 			continue;
861 #if defined(__sparc)
862 		/*
863 		 * Register symbols are ignored in the kernel
864 		 */
865 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
866 			continue;
867 #endif	/* __sparc */
868 
869 		sym_insert(mp, mp->strings + sp->st_name, i);
870 	}
871 
872 	KOBJ_MARK("load_exec done");
873 	return (mp);
874 }
875 
876 /*
877  * Set up the linker module (if it's compiled in, LDNAME is NULL)
878  */
879 static void
880 load_linker(val_t *bootaux)
881 {
882 	struct module *kmp = (struct module *)kobj_modules->mod_mp;
883 	struct module *mp;
884 	struct modctl *cp;
885 	int i;
886 	Shdr *shp;
887 	Sym *sp;
888 	int shsize;
889 	char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
890 
891 	/*
892 	 * On some architectures, krtld is compiled into the kernel.
893 	 */
894 	if (dlname == NULL)
895 		return;
896 
897 	cp = add_primary(dlname, KOBJ_LM_PRIMARY);
898 
899 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
900 
901 	cp->mod_mp = mp;
902 	mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
903 	shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
904 	mp->shdrs = kobj_alloc(shsize, KM_WAIT);
905 	bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
906 
907 	for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
908 		shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
909 
910 		if (shp->sh_flags & SHF_ALLOC) {
911 			if (shp->sh_flags & SHF_WRITE) {
912 				if (mp->data == NULL)
913 					mp->data = (char *)shp->sh_addr;
914 			} else if (mp->text == NULL) {
915 				mp->text = (char *)shp->sh_addr;
916 			}
917 		}
918 		if (shp->sh_type == SHT_SYMTAB) {
919 			mp->symtbl_section = i;
920 			mp->symhdr = shp;
921 			mp->symspace = mp->symtbl = (char *)shp->sh_addr;
922 		}
923 	}
924 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
925 	mp->flags = KOBJ_INTERP|KOBJ_PRIM;
926 	mp->strhdr = (Shdr *)
927 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
928 	mp->strings = (char *)mp->strhdr->sh_addr;
929 	mp->hashsize = kobj_gethashsize(mp->nsyms);
930 
931 	mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
932 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t);
933 
934 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
935 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
936 
937 	mp->bss = bootaux[BA_BSS].ba_val;
938 	mp->bss_align = 0;	/* pre-aligned during allocation */
939 	mp->bss_size = (uintptr_t)_edata - mp->bss;
940 	mp->text_size = _etext - mp->text;
941 	mp->data_size = _edata - mp->data;
942 	mp->filename = cp->mod_filename;
943 	cp->mod_text = mp->text;
944 	cp->mod_text_size = mp->text_size;
945 
946 	/*
947 	 * Now that we've figured out where the linker is,
948 	 * set the limits for the booted object.
949 	 */
950 	kmp->text_size = (size_t)(mp->text - kmp->text);
951 	kmp->data_size = (size_t)(mp->data - kmp->data);
952 	kobj_modules->mod_text_size = kmp->text_size;
953 
954 #ifdef	KOBJ_DEBUG
955 	if (kobj_debug & D_LOADING) {
956 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
957 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
958 		_kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
959 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
960 		_kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
961 	}
962 #endif /* KOBJ_DEBUG */
963 
964 	/*
965 	 * Insert the symbols into the hash table.
966 	 */
967 	for (i = 0; i < mp->nsyms; i++) {
968 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
969 
970 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
971 			continue;
972 		if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
973 			if (sp->st_shndx == SHN_COMMON)
974 				sp->st_shndx = SHN_ABS;
975 		}
976 		sym_insert(mp, mp->strings + sp->st_name, i);
977 	}
978 
979 }
980 
981 static kobj_notify_list_t **
982 kobj_notify_lookup(uint_t type)
983 {
984 	ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
985 	    sizeof (kobj_notify_list_t *));
986 
987 	return (&kobj_notifiers[type]);
988 }
989 
990 int
991 kobj_notify_add(kobj_notify_list_t *knp)
992 {
993 	kobj_notify_list_t **knl;
994 
995 	knl = kobj_notify_lookup(knp->kn_type);
996 
997 	knp->kn_next = NULL;
998 	knp->kn_prev = NULL;
999 
1000 	mutex_enter(&kobj_lock);
1001 
1002 	if (*knl != NULL) {
1003 		(*knl)->kn_prev = knp;
1004 		knp->kn_next = *knl;
1005 	}
1006 	(*knl) = knp;
1007 
1008 	mutex_exit(&kobj_lock);
1009 	return (0);
1010 }
1011 
1012 int
1013 kobj_notify_remove(kobj_notify_list_t *knp)
1014 {
1015 	kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1016 	kobj_notify_list_t *tknp;
1017 
1018 	mutex_enter(&kobj_lock);
1019 
1020 	if ((tknp = knp->kn_next) != NULL)
1021 		tknp->kn_prev = knp->kn_prev;
1022 
1023 	if ((tknp = knp->kn_prev) != NULL)
1024 		tknp->kn_next = knp->kn_next;
1025 	else
1026 		*knl = knp->kn_next;
1027 
1028 	mutex_exit(&kobj_lock);
1029 
1030 	return (0);
1031 }
1032 
1033 /*
1034  * Notify all interested callbacks of a specified change in module state.
1035  */
1036 static void
1037 kobj_notify(int type, struct modctl *modp)
1038 {
1039 	kobj_notify_list_t *knp;
1040 
1041 	if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1042 		return;
1043 
1044 	mutex_enter(&kobj_lock);
1045 
1046 	for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1047 		knp->kn_func(type, modp);
1048 
1049 	/*
1050 	 * KDI notification must be last (it has to allow for work done by the
1051 	 * other notification callbacks), so we call it manually.
1052 	 */
1053 	kobj_kdi_mod_notify(type, modp);
1054 
1055 	mutex_exit(&kobj_lock);
1056 }
1057 
1058 /*
1059  * Create the module path.
1060  */
1061 static char *
1062 getmodpath(const char *filename)
1063 {
1064 	char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT);
1065 
1066 	/*
1067 	 * Platform code gets first crack, then add
1068 	 * the default components
1069 	 */
1070 	mach_modpath(path, filename);
1071 	if (*path != '\0')
1072 		(void) strcat(path, " ");
1073 	return (strcat(path, MOD_DEFPATH));
1074 }
1075 
1076 static struct modctl *
1077 add_primary(const char *filename, int lmid)
1078 {
1079 	struct modctl *cp;
1080 
1081 	cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1082 
1083 	cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1084 
1085 	/*
1086 	 * For symbol lookup, we assemble our own
1087 	 * modctl list of the primary modules.
1088 	 */
1089 
1090 	(void) strcpy(cp->mod_filename, filename);
1091 	cp->mod_modname = basename(cp->mod_filename);
1092 
1093 	/* set values for modinfo assuming that the load will work */
1094 	cp->mod_prim = 1;
1095 	cp->mod_loaded = 1;
1096 	cp->mod_installed = 1;
1097 	cp->mod_loadcnt = 1;
1098 	cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1099 
1100 	cp->mod_id = kobj_last_module_id++;
1101 
1102 	/*
1103 	 * Link the module in. We'll pass this info on
1104 	 * to the mod squad later.
1105 	 */
1106 	if (kobj_modules == NULL) {
1107 		kobj_modules = cp;
1108 		cp->mod_prev = cp->mod_next = cp;
1109 	} else {
1110 		cp->mod_prev = kobj_modules->mod_prev;
1111 		cp->mod_next = kobj_modules;
1112 		kobj_modules->mod_prev->mod_next = cp;
1113 		kobj_modules->mod_prev = cp;
1114 	}
1115 
1116 	kobj_lm_append(lmid, cp);
1117 
1118 	return (cp);
1119 }
1120 
1121 static int
1122 bind_primary(val_t *bootaux, int lmid)
1123 {
1124 	struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1125 	struct modctl_list *lp;
1126 	struct module *mp;
1127 
1128 	/*
1129 	 * Do common symbols.
1130 	 */
1131 	for (lp = linkmap; lp; lp = lp->modl_next) {
1132 		mp = mod(lp);
1133 
1134 		/*
1135 		 * Don't do common section relocations for modules that
1136 		 * don't need it.
1137 		 */
1138 		if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1139 			continue;
1140 
1141 		if (do_common(mp) < 0)
1142 			return (-1);
1143 	}
1144 
1145 	/*
1146 	 * Resolve symbols.
1147 	 */
1148 	for (lp = linkmap; lp; lp = lp->modl_next) {
1149 		mp = mod(lp);
1150 
1151 		if (do_symbols(mp, 0) < 0)
1152 			return (-1);
1153 	}
1154 
1155 	/*
1156 	 * Do relocations.
1157 	 */
1158 	for (lp = linkmap; lp; lp = lp->modl_next) {
1159 		mp = mod(lp);
1160 
1161 		if (mp->flags & KOBJ_EXEC) {
1162 			Dyn *dyn;
1163 			Word relasz = 0, relaent = 0;
1164 			char *rela = NULL;
1165 
1166 			for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1167 			    dyn->d_tag != DT_NULL; dyn++) {
1168 				switch (dyn->d_tag) {
1169 				case DT_RELASZ:
1170 				case DT_RELSZ:
1171 					relasz = dyn->d_un.d_val;
1172 					break;
1173 				case DT_RELAENT:
1174 				case DT_RELENT:
1175 					relaent = dyn->d_un.d_val;
1176 					break;
1177 				case DT_RELA:
1178 					rela = (char *)dyn->d_un.d_ptr;
1179 					break;
1180 				case DT_REL:
1181 					rela = (char *)dyn->d_un.d_ptr;
1182 					break;
1183 				}
1184 			}
1185 			if (relasz == 0 ||
1186 			    relaent == 0 || rela == NULL) {
1187 				_kobj_printf(ops, "krtld: bind_primary(): "
1188 				    "no relocation information found for "
1189 				    "module %s\n", mp->filename);
1190 				return (-1);
1191 			}
1192 #ifdef	KOBJ_DEBUG
1193 			if (kobj_debug & D_RELOCATIONS)
1194 				_kobj_printf(ops, "krtld: relocating: file=%s "
1195 				    "KOBJ_EXEC\n", mp->filename);
1196 #endif
1197 			if (do_relocate(mp, rela, relasz/relaent, relaent,
1198 			    (Addr)mp->text) < 0)
1199 				return (-1);
1200 		} else {
1201 			if (do_relocations(mp) < 0)
1202 				return (-1);
1203 		}
1204 
1205 		kobj_sync_instruction_memory(mp->text, mp->text_size);
1206 	}
1207 
1208 	for (lp = linkmap; lp; lp = lp->modl_next) {
1209 		mp = mod(lp);
1210 
1211 		/*
1212 		 * We need to re-read the full symbol table for the boot file,
1213 		 * since we couldn't use the full one before.  We also need to
1214 		 * load the CTF sections of both the boot file and the
1215 		 * interpreter (us).
1216 		 */
1217 		if (mp->flags & KOBJ_EXEC) {
1218 			struct _buf *file;
1219 			int n;
1220 
1221 			file = kobj_open_file(mp->filename);
1222 			if (file == (struct _buf *)-1)
1223 				return (-1);
1224 			if (kobj_read_file(file, (char *)&mp->hdr,
1225 			    sizeof (mp->hdr), 0) < 0)
1226 				return (-1);
1227 			n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1228 			mp->shdrs = kobj_alloc(n, KM_WAIT);
1229 			if (kobj_read_file(file, mp->shdrs, n,
1230 			    mp->hdr.e_shoff) < 0)
1231 				return (-1);
1232 			if (get_syms(mp, file) < 0)
1233 				return (-1);
1234 			if (get_ctf(mp, file) < 0)
1235 				return (-1);
1236 			kobj_close_file(file);
1237 			mp->flags |= KOBJ_RELOCATED;
1238 
1239 		} else if (mp->flags & KOBJ_INTERP) {
1240 			struct _buf *file;
1241 
1242 			/*
1243 			 * The interpreter path fragment in mp->filename
1244 			 * will already have the module directory suffix
1245 			 * in it (if appropriate).
1246 			 */
1247 			file = kobj_open_path(mp->filename, 1, 0);
1248 			if (file == (struct _buf *)-1)
1249 				return (-1);
1250 			if (get_ctf(mp, file) < 0)
1251 				return (-1);
1252 			kobj_close_file(file);
1253 			mp->flags |= KOBJ_RELOCATED;
1254 		}
1255 	}
1256 
1257 	return (0);
1258 }
1259 
1260 static struct modctl *
1261 mod_already_loaded(char *modname)
1262 {
1263 	struct modctl *mctl = kobj_modules;
1264 
1265 	do {
1266 		if (strcmp(modname, mctl->mod_filename) == 0)
1267 			return (mctl);
1268 		mctl = mctl->mod_next;
1269 
1270 	} while (mctl != kobj_modules);
1271 
1272 	return (NULL);
1273 }
1274 
1275 /*
1276  * Load all the primary dependent modules.
1277  */
1278 static int
1279 load_primary(struct module *mp, int lmid)
1280 {
1281 	struct modctl *cp;
1282 	struct module *dmp;
1283 	char *p, *q;
1284 	char modname[MODMAXNAMELEN];
1285 
1286 	if ((p = mp->depends_on) == NULL)
1287 		return (0);
1288 
1289 	/* CONSTANTCONDITION */
1290 	while (1) {
1291 		/*
1292 		 * Skip space.
1293 		 */
1294 		while (*p && (*p == ' ' || *p == '\t'))
1295 			p++;
1296 		/*
1297 		 * Get module name.
1298 		 */
1299 		q = modname;
1300 		while (*p && *p != ' ' && *p != '\t')
1301 			*q++ = *p++;
1302 
1303 		if (q == modname)
1304 			break;
1305 
1306 		*q = '\0';
1307 		/*
1308 		 * Check for dup dependencies.
1309 		 */
1310 		if (strcmp(modname, "dtracestubs") == 0 ||
1311 		    mod_already_loaded(modname) != NULL)
1312 			continue;
1313 
1314 		cp = add_primary(modname, lmid);
1315 		cp->mod_busy = 1;
1316 		/*
1317 		 * Load it.
1318 		 */
1319 		(void) kobj_load_module(cp, 1);
1320 		cp->mod_busy = 0;
1321 
1322 		if ((dmp = cp->mod_mp) == NULL) {
1323 			cp->mod_loaded = 0;
1324 			cp->mod_installed = 0;
1325 			cp->mod_loadcnt = 0;
1326 			return (-1);
1327 		}
1328 
1329 		add_dependent(mp, dmp);
1330 		dmp->flags |= KOBJ_PRIM;
1331 
1332 		/*
1333 		 * Recurse.
1334 		 */
1335 		if (load_primary(dmp, lmid) == -1) {
1336 			cp->mod_loaded = 0;
1337 			cp->mod_installed = 0;
1338 			cp->mod_loadcnt = 0;
1339 			return (-1);
1340 		}
1341 	}
1342 	return (0);
1343 }
1344 
1345 static int
1346 console_is_usb_serial(void)
1347 {
1348 	char *console;
1349 	int len, ret;
1350 
1351 	if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1352 		return (0);
1353 
1354 	console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1355 	(void) BOP_GETPROP(ops, "console", console);
1356 	ret = (strcmp(console, "usb-serial") == 0);
1357 	kobj_free(console, len);
1358 
1359 	return (ret);
1360 }
1361 
1362 static int
1363 load_kmdb(val_t *bootaux)
1364 {
1365 	struct modctl *mctl;
1366 	struct module *mp;
1367 	Sym *sym;
1368 
1369 	if (console_is_usb_serial()) {
1370 		_kobj_printf(ops, "kmdb not loaded "
1371 		    "(unsupported on usb serial console)\n");
1372 		return (0);
1373 	}
1374 
1375 	_kobj_printf(ops, "Loading kmdb...\n");
1376 
1377 	if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1378 		return (-1);
1379 
1380 	mctl->mod_busy = 1;
1381 	(void) kobj_load_module(mctl, 1);
1382 	mctl->mod_busy = 0;
1383 
1384 	if ((mp = mctl->mod_mp) == NULL)
1385 		return (-1);
1386 
1387 	mp->flags |= KOBJ_PRIM;
1388 
1389 	if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1390 		return (-1);
1391 
1392 	if (boothowto & RB_VERBOSE)
1393 		kobj_lm_dump(KOBJ_LM_DEBUGGER);
1394 
1395 	if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1396 		return (-1);
1397 
1398 	if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1399 		return (-1);
1400 
1401 #ifdef	KOBJ_DEBUG
1402 	if (kobj_debug & D_DEBUG) {
1403 		_kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1404 		    sym->st_value);
1405 		_kobj_printf(ops, "\tops 0x%p\n", ops);
1406 		_kobj_printf(ops, "\tromp 0x%p\n", romp);
1407 	}
1408 #endif
1409 
1410 	if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1411 	    (const char **)kobj_kmdb_argv) < 0)
1412 		return (-1);
1413 
1414 	return (0);
1415 }
1416 
1417 /*
1418  * Return a string listing module dependencies.
1419  */
1420 static char *
1421 depends_on(struct module *mp)
1422 {
1423 	Sym *sp;
1424 	char *depstr, *q;
1425 
1426 	/*
1427 	 * The module doesn't have a depends_on value, so let's try it the
1428 	 * old-fashioned way - via "_depends_on"
1429 	 */
1430 	if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1431 		return (NULL);
1432 
1433 	q = (char *)sp->st_value;
1434 
1435 #ifdef KOBJ_DEBUG
1436 	/*
1437 	 * _depends_on is a deprecated interface, so we warn about its use
1438 	 * irrespective of subsequent processing errors. How else are we going
1439 	 * to be able to deco this interface completely?
1440 	 * Changes initially limited to DEBUG because third-party modules
1441 	 * should be flagged to developers before general use base.
1442 	 */
1443 	_kobj_printf(ops,
1444 	    "Warning: %s uses deprecated _depends_on interface.\n",
1445 	    mp->filename);
1446 	_kobj_printf(ops, "Please notify module developer or vendor.\n");
1447 #endif
1448 
1449 	/*
1450 	 * Idiot checks. Make sure it's
1451 	 * in-bounds and NULL terminated.
1452 	 */
1453 	if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1454 		_kobj_printf(ops, "Error processing dependency for %s\n",
1455 		    mp->filename);
1456 		return (NULL);
1457 	}
1458 
1459 	depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1460 	(void) strcpy(depstr, q);
1461 
1462 	return (depstr);
1463 }
1464 
1465 void
1466 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1467 {
1468 	struct module *mp;
1469 	mp = (struct module *)xmp;
1470 
1471 	modinfo->mi_base = mp->text;
1472 	modinfo->mi_size = mp->text_size + mp->data_size;
1473 }
1474 
1475 /*
1476  * kobj_export_ksyms() performs the following services:
1477  *
1478  * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1479  * (2) Removes unneeded symbols to save space.
1480  * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1481  * (4) Makes the symbol table visible to /dev/ksyms.
1482  */
1483 static void
1484 kobj_export_ksyms(struct module *mp)
1485 {
1486 	Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1487 	Sym *sp, *osp;
1488 	char *name;
1489 	size_t namelen;
1490 	struct module *omp;
1491 	uint_t nsyms;
1492 	size_t symsize = mp->symhdr->sh_entsize;
1493 	size_t locals = 1;
1494 	size_t strsize;
1495 
1496 	/*
1497 	 * Make a copy of the original module structure.
1498 	 */
1499 	omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1500 	bcopy(mp, omp, sizeof (struct module));
1501 
1502 	/*
1503 	 * Compute the sizes of the new symbol table sections.
1504 	 */
1505 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1506 		if (osp->st_value == 0)
1507 			continue;
1508 		if (sym_lookup(omp, osp) == NULL)
1509 			continue;
1510 		name = omp->strings + osp->st_name;
1511 		namelen = strlen(name);
1512 		if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1513 			locals++;
1514 		nsyms++;
1515 		strsize += namelen + 1;
1516 	}
1517 
1518 	mp->nsyms = nsyms;
1519 	mp->hashsize = kobj_gethashsize(mp->nsyms);
1520 
1521 	/*
1522 	 * ksyms_lock must be held as writer during any operation that
1523 	 * modifies ksyms_arena, including allocation from same, and
1524 	 * must not be dropped until the arena is vmem_walk()able.
1525 	 */
1526 	rw_enter(&ksyms_lock, RW_WRITER);
1527 
1528 	/*
1529 	 * Allocate space for the new section headers (symtab and strtab),
1530 	 * symbol table, buckets, chains, and strings.
1531 	 */
1532 	mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1533 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1534 
1535 	if (mp->flags & KOBJ_NOKSYMS) {
1536 		mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1537 	} else {
1538 		mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1539 		    VM_BESTFIT | VM_SLEEP);
1540 	}
1541 	bzero(mp->symspace, mp->symsize);
1542 
1543 	/*
1544 	 * Divvy up symspace.
1545 	 */
1546 	mp->shdrs = mp->symspace;
1547 	mp->symhdr = (Shdr *)mp->shdrs;
1548 	mp->strhdr = (Shdr *)(mp->symhdr + 1);
1549 	mp->symtbl = (char *)(mp->strhdr + 1);
1550 	mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1551 	mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1552 	mp->strings = (char *)(mp->chains + nsyms);
1553 
1554 	/*
1555 	 * Fill in the new section headers (symtab and strtab).
1556 	 */
1557 	mp->hdr.e_shnum = 2;
1558 	mp->symtbl_section = 0;
1559 
1560 	mp->symhdr->sh_type = SHT_SYMTAB;
1561 	mp->symhdr->sh_addr = (Addr)mp->symtbl;
1562 	mp->symhdr->sh_size = nsyms * symsize;
1563 	mp->symhdr->sh_link = 1;
1564 	mp->symhdr->sh_info = locals;
1565 	mp->symhdr->sh_addralign = sizeof (Addr);
1566 	mp->symhdr->sh_entsize = symsize;
1567 
1568 	mp->strhdr->sh_type = SHT_STRTAB;
1569 	mp->strhdr->sh_addr = (Addr)mp->strings;
1570 	mp->strhdr->sh_size = strsize;
1571 	mp->strhdr->sh_addralign = 1;
1572 
1573 	/*
1574 	 * Construct the new symbol table.
1575 	 */
1576 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1577 		if (osp->st_value == 0)
1578 			continue;
1579 		if (sym_lookup(omp, osp) == NULL)
1580 			continue;
1581 		name = omp->strings + osp->st_name;
1582 		namelen = strlen(name);
1583 		sp = (Sym *)(mp->symtbl + symsize * nsyms);
1584 		bcopy(osp, sp, symsize);
1585 		bcopy(name, mp->strings + strsize, namelen);
1586 		sp->st_name = strsize;
1587 		sym_insert(mp, name, nsyms);
1588 		nsyms++;
1589 		strsize += namelen + 1;
1590 	}
1591 
1592 	rw_exit(&ksyms_lock);
1593 
1594 	/*
1595 	 * Free the old section headers -- we'll never need them again.
1596 	 */
1597 	if (!(mp->flags & KOBJ_PRIM)) {
1598 		uint_t	shn;
1599 		Shdr	*shp;
1600 
1601 		for (shn = 1; shn < omp->hdr.e_shnum; shn++) {
1602 			shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1603 			switch (shp->sh_type) {
1604 			case SHT_RELA:
1605 			case SHT_REL:
1606 				if (shp->sh_addr != 0) {
1607 					kobj_free((void *)shp->sh_addr,
1608 					    shp->sh_size);
1609 				}
1610 				break;
1611 			}
1612 		}
1613 		kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1614 	}
1615 	/*
1616 	 * Discard the old symbol table and our copy of the module strucure.
1617 	 */
1618 	if (!(mp->flags & KOBJ_PRIM))
1619 		kobj_free(omp->symspace, omp->symsize);
1620 	kobj_free(omp, sizeof (struct module));
1621 }
1622 
1623 static void
1624 kobj_export_ctf(struct module *mp)
1625 {
1626 	char *data = mp->ctfdata;
1627 	size_t size = mp->ctfsize;
1628 
1629 	if (data != NULL) {
1630 		if (_moddebug & MODDEBUG_NOCTF) {
1631 			mp->ctfdata = NULL;
1632 			mp->ctfsize = 0;
1633 		} else {
1634 			mp->ctfdata = vmem_alloc(ctf_arena, size,
1635 			    VM_BESTFIT | VM_SLEEP);
1636 			bcopy(data, mp->ctfdata, size);
1637 		}
1638 
1639 		if (!(mp->flags & KOBJ_PRIM))
1640 			kobj_free(data, size);
1641 	}
1642 }
1643 
1644 void
1645 kobj_export_module(struct module *mp)
1646 {
1647 	kobj_export_ksyms(mp);
1648 	kobj_export_ctf(mp);
1649 
1650 	mp->flags |= KOBJ_EXPORTED;
1651 }
1652 
1653 static int
1654 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1655 {
1656 	char *path = NULL, *depstr = NULL;
1657 	int allocsize = 0, osize = 0, nsize = 0;
1658 	char *libname, *tmp;
1659 	int lsize;
1660 	Dyn *dynp;
1661 
1662 	for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1663 		switch (dynp->d_tag) {
1664 		case DT_NEEDED:
1665 			/*
1666 			 * Read the DT_NEEDED entries, expanding the macros they
1667 			 * contain (if any), and concatenating them into a
1668 			 * single space-separated dependency list.
1669 			 */
1670 			libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1671 
1672 			if (strchr(libname, '$') != NULL) {
1673 				char *_lib;
1674 
1675 				if (path == NULL)
1676 					path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1677 				if ((_lib = expand_libmacro(libname, path,
1678 				    path)) != NULL)
1679 					libname = _lib;
1680 				else {
1681 					_kobj_printf(ops, "krtld: "
1682 					    "process_dynamic: failed to expand "
1683 					    "%s\n", libname);
1684 				}
1685 			}
1686 
1687 			lsize = strlen(libname);
1688 			nsize += lsize;
1689 			if (nsize + 1 > allocsize) {
1690 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
1691 				    KM_WAIT);
1692 				if (depstr != NULL) {
1693 					bcopy(depstr, tmp, osize);
1694 					kobj_free(depstr, allocsize);
1695 				}
1696 				depstr = tmp;
1697 				allocsize += MAXPATHLEN;
1698 			}
1699 			bcopy(libname, depstr + osize, lsize);
1700 			*(depstr + nsize) = ' '; /* separator */
1701 			nsize++;
1702 			osize = nsize;
1703 			break;
1704 
1705 		case DT_FLAGS_1:
1706 			if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1707 				mp->flags |= KOBJ_IGNMULDEF;
1708 			if (dynp->d_un.d_val & DF_1_NOKSYMS)
1709 				mp->flags |= KOBJ_NOKSYMS;
1710 
1711 			break;
1712 		}
1713 	}
1714 
1715 	/*
1716 	 * finish up the depends string (if any)
1717 	 */
1718 	if (depstr != NULL) {
1719 		*(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */
1720 		if (path != NULL)
1721 			kobj_free(path, MAXPATHLEN);
1722 
1723 		tmp = kobj_alloc(nsize, KM_WAIT);
1724 		bcopy(depstr, tmp, nsize);
1725 		kobj_free(depstr, allocsize);
1726 		depstr = tmp;
1727 
1728 		mp->depends_on = depstr;
1729 	}
1730 
1731 	return (0);
1732 }
1733 
1734 static int
1735 do_dynamic(struct module *mp, struct _buf *file)
1736 {
1737 	Shdr *dshp, *dstrp, *shp;
1738 	char *dyndata, *dstrdata;
1739 	int dshn, shn, rc;
1740 
1741 	/* find and validate the dynamic section (if any) */
1742 
1743 	for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1744 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1745 		switch (shp->sh_type) {
1746 		case SHT_DYNAMIC:
1747 			if (dshp != NULL) {
1748 				_kobj_printf(ops, "krtld: get_dynamic: %s, ",
1749 				    mp->filename);
1750 				_kobj_printf(ops,
1751 				    "multiple dynamic sections\n");
1752 				return (-1);
1753 			} else {
1754 				dshp = shp;
1755 				dshn = shn;
1756 			}
1757 			break;
1758 		}
1759 	}
1760 
1761 	if (dshp == NULL)
1762 		return (0);
1763 
1764 	if (dshp->sh_link > mp->hdr.e_shnum) {
1765 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1766 		_kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1767 		return (-1);
1768 	}
1769 	dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1770 
1771 	if (dstrp->sh_type != SHT_STRTAB) {
1772 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1773 		_kobj_printf(ops, "sh_link not a string table for section %d\n",
1774 		    dshn);
1775 		return (-1);
1776 	}
1777 
1778 	/* read it from disk */
1779 
1780 	dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1781 	if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1782 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1783 		_kobj_printf(ops, "error reading section %d\n", dshn);
1784 
1785 		kobj_free(dyndata, dshp->sh_size);
1786 		return (-1);
1787 	}
1788 
1789 	dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1790 	if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1791 	    dstrp->sh_offset) < 0) {
1792 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1793 		_kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1794 
1795 		kobj_free(dyndata, dshp->sh_size);
1796 		kobj_free(dstrdata, dstrp->sh_size);
1797 		return (-1);
1798 	}
1799 
1800 	/* pull the interesting pieces out */
1801 
1802 	rc = process_dynamic(mp, dyndata, dstrdata);
1803 
1804 	kobj_free(dyndata, dshp->sh_size);
1805 	kobj_free(dstrdata, dstrp->sh_size);
1806 
1807 	return (rc);
1808 }
1809 
1810 void
1811 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1812 {
1813 	if (!standalone) {
1814 		if (mp->ctfdata != NULL) {
1815 			if (vmem_contains(ctf_arena, mp->ctfdata,
1816 			    mp->ctfsize)) {
1817 				vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1818 			} else {
1819 				kobj_free(mp->ctfdata, mp->ctfsize);
1820 			}
1821 		}
1822 	}
1823 
1824 	/*
1825 	 * The order is very important here.  We need to make sure that
1826 	 * consumers, at any given instant, see a consistent state.  We'd
1827 	 * rather they see no CTF data than the address of one buffer and the
1828 	 * size of another.
1829 	 */
1830 	mp->ctfdata = NULL;
1831 	membar_producer();
1832 	mp->ctfsize = size;
1833 	mp->ctfdata = data;
1834 	membar_producer();
1835 }
1836 
1837 int
1838 kobj_load_module(struct modctl *modp, int use_path)
1839 {
1840 	char *filename = modp->mod_filename;
1841 	char *modname = modp->mod_modname;
1842 	int i;
1843 	int n;
1844 	struct _buf *file;
1845 	struct module *mp = NULL;
1846 #ifdef MODDIR_SUFFIX
1847 	int no_suffixdir_drv = 0;
1848 #endif
1849 
1850 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1851 
1852 	/*
1853 	 * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1854 	 * kmdb contains a bunch of symbols with well-known names, symbols
1855 	 * which will mask the real versions, thus causing no end of trouble
1856 	 * for mdb.
1857 	 */
1858 	if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1859 		mp->flags |= KOBJ_NOKSYMS;
1860 
1861 	file = kobj_open_path(filename, use_path, 1);
1862 	if (file == (struct _buf *)-1) {
1863 #ifdef MODDIR_SUFFIX
1864 		file = kobj_open_path(filename, use_path, 0);
1865 #endif
1866 		if (file == (struct _buf *)-1) {
1867 			kobj_free(mp, sizeof (*mp));
1868 			goto bad;
1869 		}
1870 #ifdef MODDIR_SUFFIX
1871 		/*
1872 		 * There is no driver module in the ISA specific (suffix)
1873 		 * subdirectory but there is a module in the parent directory.
1874 		 */
1875 		if (strncmp(filename, "drv/", 4) == 0) {
1876 			no_suffixdir_drv = 1;
1877 		}
1878 #endif
1879 	}
1880 
1881 	mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1882 	(void) strcpy(mp->filename, file->_name);
1883 
1884 	if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1885 		_kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1886 		    modname);
1887 		kobj_free(mp->filename, strlen(file->_name) + 1);
1888 		kobj_free(mp, sizeof (*mp));
1889 		goto bad;
1890 	}
1891 	for (i = 0; i < SELFMAG; i++) {
1892 		if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1893 			if (_moddebug & MODDEBUG_ERRMSG)
1894 				_kobj_printf(ops, "%s not an elf module\n",
1895 				    modname);
1896 			kobj_free(mp->filename, strlen(file->_name) + 1);
1897 			kobj_free(mp, sizeof (*mp));
1898 			goto bad;
1899 		}
1900 	}
1901 	/*
1902 	 * It's ELF, but is it our ISA?  Interpreting the header
1903 	 * from a file for a byte-swapped ISA could cause a huge
1904 	 * and unsatisfiable value to be passed to kobj_alloc below
1905 	 * and therefore hang booting.
1906 	 */
1907 	if (!elf_mach_ok(&mp->hdr)) {
1908 		if (_moddebug & MODDEBUG_ERRMSG)
1909 			_kobj_printf(ops, "%s not an elf module for this ISA\n",
1910 			    modname);
1911 		kobj_free(mp->filename, strlen(file->_name) + 1);
1912 		kobj_free(mp, sizeof (*mp));
1913 #ifdef MODDIR_SUFFIX
1914 		/*
1915 		 * The driver mod is not in the ISA specific subdirectory
1916 		 * and the module in the parent directory is not our ISA.
1917 		 * If it is our ISA, for now we will silently succeed.
1918 		 */
1919 		if (no_suffixdir_drv == 1) {
1920 			cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1921 			    " not found\n", modname);
1922 		}
1923 #endif
1924 		goto bad;
1925 	}
1926 
1927 	/*
1928 	 * All modules, save for unix, should be relocatable (as opposed to
1929 	 * dynamic).  Dynamic modules come with PLTs and GOTs, which can't
1930 	 * currently be processed by krtld.
1931 	 */
1932 	if (mp->hdr.e_type != ET_REL) {
1933 		if (_moddebug & MODDEBUG_ERRMSG)
1934 			_kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1935 			    "module\n", modname);
1936 		kobj_free(mp->filename, strlen(file->_name) + 1);
1937 		kobj_free(mp, sizeof (*mp));
1938 		goto bad;
1939 	}
1940 
1941 	n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1942 	mp->shdrs = kobj_alloc(n, KM_WAIT);
1943 
1944 	if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1945 		_kobj_printf(ops, "kobj_load_module: %s error reading "
1946 		    "section headers\n", modname);
1947 		kobj_free(mp->shdrs, n);
1948 		kobj_free(mp->filename, strlen(file->_name) + 1);
1949 		kobj_free(mp, sizeof (*mp));
1950 		goto bad;
1951 	}
1952 
1953 	kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1954 	module_assign(modp, mp);
1955 
1956 	/* read in sections */
1957 	if (get_progbits(mp, file) < 0) {
1958 		_kobj_printf(ops, "%s error reading sections\n", modname);
1959 		goto bad;
1960 	}
1961 
1962 	if (do_dynamic(mp, file) < 0) {
1963 		_kobj_printf(ops, "%s error reading dynamic section\n",
1964 		    modname);
1965 		goto bad;
1966 	}
1967 
1968 	modp->mod_text = mp->text;
1969 	modp->mod_text_size = mp->text_size;
1970 
1971 	/* read in symbols; adjust values for each section's real address */
1972 	if (get_syms(mp, file) < 0) {
1973 		_kobj_printf(ops, "%s error reading symbols\n",
1974 		    modname);
1975 		goto bad;
1976 	}
1977 
1978 	/*
1979 	 * If we didn't dependency information from the dynamic section, look
1980 	 * for it the old-fashioned way.
1981 	 */
1982 	if (mp->depends_on == NULL)
1983 		mp->depends_on = depends_on(mp);
1984 
1985 	if (get_ctf(mp, file) < 0) {
1986 		_kobj_printf(ops, "%s debug information will not "
1987 		    "be available\n", modname);
1988 	}
1989 
1990 	/* primary kernel modules do not have a signature section */
1991 	if (!(mp->flags & KOBJ_PRIM))
1992 		get_signature(mp, file);
1993 
1994 #ifdef	KOBJ_DEBUG
1995 	if (kobj_debug & D_LOADING) {
1996 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
1997 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
1998 		_kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
1999 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
2000 		_kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
2001 	}
2002 #endif /* KOBJ_DEBUG */
2003 
2004 	/*
2005 	 * For primary kernel modules, we defer
2006 	 * symbol resolution and relocation until
2007 	 * all primary objects have been loaded.
2008 	 */
2009 	if (!standalone) {
2010 		int ddrval, dcrval;
2011 		char *dependent_modname;
2012 		/* load all dependents */
2013 		dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2014 		ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2015 
2016 		/*
2017 		 * resolve undefined and common symbols,
2018 		 * also allocates common space
2019 		 */
2020 		if ((dcrval = do_common(mp)) < 0) {
2021 			switch (dcrval) {
2022 			case DOSYM_UNSAFE:
2023 				_kobj_printf(ops, "WARNING: mod_load: "
2024 				    "MT-unsafe module '%s' rejected\n",
2025 				    modname);
2026 				break;
2027 			case DOSYM_UNDEF:
2028 				_kobj_printf(ops, "WARNING: mod_load: "
2029 				    "cannot load module '%s'\n",
2030 				    modname);
2031 				if (ddrval == -1) {
2032 					_kobj_printf(ops, "WARNING: %s: ",
2033 					    modname);
2034 					_kobj_printf(ops,
2035 					    "unable to resolve dependency, "
2036 					    "module '%s' not found\n",
2037 					    dependent_modname);
2038 				}
2039 				break;
2040 			}
2041 		}
2042 		kobj_free(dependent_modname, MODMAXNAMELEN);
2043 		if (dcrval < 0)
2044 			goto bad;
2045 
2046 		/* process relocation tables */
2047 		if (do_relocations(mp) < 0) {
2048 			_kobj_printf(ops, "%s error doing relocations\n",
2049 			    modname);
2050 			goto bad;
2051 		}
2052 
2053 		if (mp->destination) {
2054 			off_t	off = (uintptr_t)mp->destination & PAGEOFFSET;
2055 			caddr_t	base = (caddr_t)mp->destination - off;
2056 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2057 
2058 			hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2059 			vmem_free(heap_arena, base, size);
2060 		}
2061 
2062 		/* sync_instruction_memory */
2063 		kobj_sync_instruction_memory(mp->text, mp->text_size);
2064 		kobj_export_module(mp);
2065 		kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2066 	}
2067 	kobj_close_file(file);
2068 	return (0);
2069 bad:
2070 	if (file != (struct _buf *)-1)
2071 		kobj_close_file(file);
2072 	if (modp->mod_mp != NULL)
2073 		free_module_data(modp->mod_mp);
2074 
2075 	module_assign(modp, NULL);
2076 	return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2077 }
2078 
2079 int
2080 kobj_load_primary_module(struct modctl *modp)
2081 {
2082 	struct modctl *dep;
2083 	struct module *mp;
2084 
2085 	if (kobj_load_module(modp, 0) != 0)
2086 		return (-1);
2087 
2088 	dep = NULL;
2089 	mp = modp->mod_mp;
2090 	mp->flags |= KOBJ_PRIM;
2091 
2092 	/* Bind new module to its dependents */
2093 	if (mp->depends_on != NULL && (dep =
2094 	    mod_already_loaded(mp->depends_on)) == NULL) {
2095 #ifdef	KOBJ_DEBUG
2096 		if (kobj_debug & D_DEBUG) {
2097 			_kobj_printf(ops, "krtld: failed to resolve deps "
2098 			    "for primary %s\n", modp->mod_modname);
2099 		}
2100 #endif
2101 		return (-1);
2102 	}
2103 
2104 	if (dep != NULL)
2105 		add_dependent(mp, dep->mod_mp);
2106 
2107 	/*
2108 	 * Relocate it.  This module may not be part of a link map, so we
2109 	 * can't use bind_primary.
2110 	 */
2111 	if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2112 	    do_relocations(mp) < 0) {
2113 #ifdef	KOBJ_DEBUG
2114 		if (kobj_debug & D_DEBUG) {
2115 			_kobj_printf(ops, "krtld: failed to relocate "
2116 			    "primary %s\n", modp->mod_modname);
2117 		}
2118 #endif
2119 		return (-1);
2120 	}
2121 
2122 	return (0);
2123 }
2124 
2125 static void
2126 module_assign(struct modctl *cp, struct module *mp)
2127 {
2128 	if (standalone) {
2129 		cp->mod_mp = mp;
2130 		return;
2131 	}
2132 	mutex_enter(&mod_lock);
2133 	cp->mod_mp = mp;
2134 	cp->mod_gencount++;
2135 	mutex_exit(&mod_lock);
2136 }
2137 
2138 void
2139 kobj_unload_module(struct modctl *modp)
2140 {
2141 	struct module *mp = modp->mod_mp;
2142 
2143 	if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2144 		_kobj_printf(ops, "text for %s ", mp->filename);
2145 		_kobj_printf(ops, "was at %p\n", mp->text);
2146 		mp->text = NULL;	/* don't actually free it */
2147 	}
2148 
2149 	kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2150 
2151 	/*
2152 	 * Null out mod_mp first, so consumers (debuggers) know not to look
2153 	 * at the module structure any more.
2154 	 */
2155 	mutex_enter(&mod_lock);
2156 	modp->mod_mp = NULL;
2157 	mutex_exit(&mod_lock);
2158 
2159 	kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2160 	free_module_data(mp);
2161 }
2162 
2163 static void
2164 free_module_data(struct module *mp)
2165 {
2166 	struct module_list *lp, *tmp;
2167 	hotinline_desc_t *hid, *next;
2168 	int ksyms_exported = 0;
2169 
2170 	lp = mp->head;
2171 	while (lp) {
2172 		tmp = lp;
2173 		lp = lp->next;
2174 		kobj_free((char *)tmp, sizeof (*tmp));
2175 	}
2176 
2177 	/* release hotinlines */
2178 	hid = mp->hi_calls;
2179 	while (hid != NULL) {
2180 		next = hid->hid_next;
2181 		kobj_free(hid->hid_symname, strlen(hid->hid_symname) + 1);
2182 		kobj_free(hid, sizeof (hotinline_desc_t));
2183 		hid = next;
2184 	}
2185 
2186 	rw_enter(&ksyms_lock, RW_WRITER);
2187 	if (mp->symspace) {
2188 		if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2189 			vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2190 			ksyms_exported = 1;
2191 		} else {
2192 			if (mp->flags & KOBJ_NOKSYMS)
2193 				ksyms_exported = 1;
2194 			kobj_free(mp->symspace, mp->symsize);
2195 		}
2196 	}
2197 	rw_exit(&ksyms_lock);
2198 
2199 	if (mp->ctfdata) {
2200 		if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2201 			vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2202 		else
2203 			kobj_free(mp->ctfdata, mp->ctfsize);
2204 	}
2205 
2206 	if (mp->sigdata)
2207 		kobj_free(mp->sigdata, mp->sigsize);
2208 
2209 	/*
2210 	 * We did not get far enough into kobj_export_ksyms() to free allocated
2211 	 * buffers because we encounted error conditions. Free the buffers.
2212 	 */
2213 	if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2214 		uint_t shn;
2215 		Shdr *shp;
2216 
2217 		for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2218 			shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2219 			switch (shp->sh_type) {
2220 			case SHT_RELA:
2221 			case SHT_REL:
2222 				if (shp->sh_addr != 0)
2223 					kobj_free((void *)shp->sh_addr,
2224 					    shp->sh_size);
2225 				break;
2226 			}
2227 		}
2228 
2229 		if (!(mp->flags & KOBJ_PRIM)) {
2230 			kobj_free(mp->shdrs,
2231 			    mp->hdr.e_shentsize * mp->hdr.e_shnum);
2232 		}
2233 	}
2234 
2235 	if (mp->bss)
2236 		vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2237 
2238 	if (mp->fbt_tab)
2239 		kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2240 
2241 	if (mp->textwin_base)
2242 		kobj_textwin_free(mp);
2243 
2244 	if (mp->sdt_probes != NULL) {
2245 		sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2246 
2247 		while (sdp != NULL) {
2248 			next = sdp->sdpd_next;
2249 			kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2250 			kobj_free(sdp, sizeof (sdt_probedesc_t));
2251 			sdp = next;
2252 		}
2253 	}
2254 
2255 	if (mp->sdt_tab)
2256 		kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2257 	if (mp->text)
2258 		vmem_free(text_arena, mp->text, mp->text_size);
2259 	if (mp->data)
2260 		vmem_free(data_arena, mp->data, mp->data_size);
2261 	if (mp->depends_on)
2262 		kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2263 	if (mp->filename)
2264 		kobj_free(mp->filename, strlen(mp->filename)+1);
2265 
2266 	kobj_free((char *)mp, sizeof (*mp));
2267 }
2268 
2269 static int
2270 get_progbits(struct module *mp, struct _buf *file)
2271 {
2272 	struct proginfo *tp, *dp, *sdp;
2273 	Shdr *shp;
2274 	reloc_dest_t dest = NULL;
2275 	uintptr_t bits_ptr;
2276 	uintptr_t text = 0, data, textptr;
2277 	uint_t shn;
2278 	int err = -1;
2279 
2280 	tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2281 	dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2282 	sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2283 	/*
2284 	 * loop through sections to find out how much space we need
2285 	 * for text, data, (also bss that is already assigned)
2286 	 */
2287 	if (get_progbits_size(mp, tp, dp, sdp) < 0)
2288 		goto done;
2289 
2290 	mp->text_size = tp->size;
2291 	mp->data_size = dp->size;
2292 
2293 	if (standalone) {
2294 		caddr_t limit = _data;
2295 
2296 		if (lg_pagesize && _text + lg_pagesize < limit)
2297 			limit = _text + lg_pagesize;
2298 
2299 		mp->text = kobj_segbrk(&_etext, mp->text_size,
2300 		    tp->align, limit);
2301 		/*
2302 		 * If we can't grow the text segment, try the
2303 		 * data segment before failing.
2304 		 */
2305 		if (mp->text == NULL) {
2306 			mp->text = kobj_segbrk(&_edata, mp->text_size,
2307 			    tp->align, 0);
2308 		}
2309 
2310 		mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2311 
2312 		if (mp->text == NULL || mp->data == NULL)
2313 			goto done;
2314 
2315 	} else {
2316 		if (text_arena == NULL)
2317 			kobj_vmem_init(&text_arena, &data_arena);
2318 
2319 		/*
2320 		 * some architectures may want to load the module on a
2321 		 * page that is currently read only. It may not be
2322 		 * possible for those architectures to remap their page
2323 		 * on the fly. So we provide a facility for them to hang
2324 		 * a private hook where the memory they assign the module
2325 		 * is not the actual place where the module loads.
2326 		 *
2327 		 * In this case there are two addresses that deal with the
2328 		 * modload.
2329 		 * 1) the final destination of the module
2330 		 * 2) the address that is used to view the newly
2331 		 * loaded module until all the relocations relative to 1
2332 		 * above are completed.
2333 		 *
2334 		 * That is what dest is used for below.
2335 		 */
2336 		mp->text_size += tp->align;
2337 		mp->data_size += dp->align;
2338 
2339 		mp->text = kobj_text_alloc(text_arena, mp->text_size);
2340 
2341 		/*
2342 		 * a remap is taking place. Align the text ptr relative
2343 		 * to the secondary mapping. That is where the bits will
2344 		 * be read in.
2345 		 */
2346 		if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2347 		    mp->text, mp->text_size)) {
2348 			off_t	off = (uintptr_t)mp->text & PAGEOFFSET;
2349 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2350 			caddr_t	map = vmem_alloc(heap_arena, size, VM_SLEEP);
2351 			caddr_t orig = mp->text - off;
2352 			pgcnt_t pages = size / PAGESIZE;
2353 
2354 			dest = (reloc_dest_t)(map + off);
2355 			text = ALIGN((uintptr_t)dest, tp->align);
2356 
2357 			while (pages--) {
2358 				hat_devload(kas.a_hat, map, PAGESIZE,
2359 				    hat_getpfnum(kas.a_hat, orig),
2360 				    PROT_READ | PROT_WRITE | PROT_EXEC,
2361 				    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2362 				map += PAGESIZE;
2363 				orig += PAGESIZE;
2364 			}
2365 			/*
2366 			 * Since we set up a non-cacheable mapping, we need
2367 			 * to flush any old entries in the cache that might
2368 			 * be left around from the read-only mapping.
2369 			 */
2370 			dcache_flushall();
2371 		}
2372 		if (mp->data_size)
2373 			mp->data = vmem_alloc(data_arena, mp->data_size,
2374 			    VM_SLEEP | VM_BESTFIT);
2375 	}
2376 	textptr = (uintptr_t)mp->text;
2377 	textptr = ALIGN(textptr, tp->align);
2378 	mp->destination = dest;
2379 
2380 	/*
2381 	 * This is the case where a remap is not being done.
2382 	 */
2383 	if (text == 0)
2384 		text = ALIGN((uintptr_t)mp->text, tp->align);
2385 	data = ALIGN((uintptr_t)mp->data, dp->align);
2386 
2387 	/* now loop though sections assigning addresses and loading the data */
2388 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2389 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2390 		if (!(shp->sh_flags & SHF_ALLOC))
2391 			continue;
2392 
2393 		if ((shp->sh_flags & SHF_WRITE) == 0)
2394 			bits_ptr = text;
2395 		else
2396 			bits_ptr = data;
2397 
2398 		bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2399 
2400 		if (shp->sh_type == SHT_NOBITS) {
2401 			/*
2402 			 * Zero bss.
2403 			 */
2404 			bzero((caddr_t)bits_ptr, shp->sh_size);
2405 			shp->sh_type = SHT_PROGBITS;
2406 		} else {
2407 			if (kobj_read_file(file, (char *)bits_ptr,
2408 			    shp->sh_size, shp->sh_offset) < 0)
2409 				goto done;
2410 		}
2411 
2412 		if (shp->sh_flags & SHF_WRITE) {
2413 			shp->sh_addr = bits_ptr;
2414 		} else {
2415 			textptr = ALIGN(textptr, shp->sh_addralign);
2416 			shp->sh_addr = textptr;
2417 			textptr += shp->sh_size;
2418 		}
2419 
2420 		bits_ptr += shp->sh_size;
2421 		if ((shp->sh_flags & SHF_WRITE) == 0)
2422 			text = bits_ptr;
2423 		else
2424 			data = bits_ptr;
2425 	}
2426 
2427 	err = 0;
2428 done:
2429 	/*
2430 	 * Free and mark as freed the section headers here so that
2431 	 * free_module_data() does not have to worry about this buffer.
2432 	 *
2433 	 * This buffer is freed here because one of the possible reasons
2434 	 * for error is a section with non-zero sh_addr and in that case
2435 	 * free_module_data() would have no way of recognizing that this
2436 	 * buffer was unallocated.
2437 	 */
2438 	if (err != 0) {
2439 		kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2440 		mp->shdrs = NULL;
2441 	}
2442 
2443 	(void) kobj_free(tp, sizeof (struct proginfo));
2444 	(void) kobj_free(dp, sizeof (struct proginfo));
2445 	(void) kobj_free(sdp, sizeof (struct proginfo));
2446 
2447 	return (err);
2448 }
2449 
2450 /*
2451  * Go through suppress_sym_list to see if "multiply defined"
2452  * warning of this symbol should be suppressed.  Return 1 if
2453  * warning should be suppressed, 0 otherwise.
2454  */
2455 static int
2456 kobj_suppress_warning(char *symname)
2457 {
2458 	int	i;
2459 
2460 	for (i = 0; suppress_sym_list[i] != NULL; i++) {
2461 		if (strcmp(suppress_sym_list[i], symname) == 0)
2462 			return (1);
2463 	}
2464 
2465 	return (0);
2466 }
2467 
2468 static int
2469 get_syms(struct module *mp, struct _buf *file)
2470 {
2471 	uint_t		shn;
2472 	Shdr	*shp;
2473 	uint_t		i;
2474 	Sym	*sp, *ksp;
2475 	char		*symname;
2476 	int		dosymtab = 0;
2477 
2478 	/*
2479 	 * Find the interesting sections.
2480 	 */
2481 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2482 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2483 		switch (shp->sh_type) {
2484 		case SHT_SYMTAB:
2485 			mp->symtbl_section = shn;
2486 			mp->symhdr = shp;
2487 			dosymtab++;
2488 			break;
2489 
2490 		case SHT_RELA:
2491 		case SHT_REL:
2492 			/*
2493 			 * Already loaded.
2494 			 */
2495 			if (shp->sh_addr)
2496 				continue;
2497 
2498 			/* KM_TMP since kobj_free'd in do_relocations */
2499 			shp->sh_addr = (Addr)
2500 			    kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2501 
2502 			if (kobj_read_file(file, (char *)shp->sh_addr,
2503 			    shp->sh_size, shp->sh_offset) < 0) {
2504 				_kobj_printf(ops, "krtld: get_syms: %s, ",
2505 				    mp->filename);
2506 				_kobj_printf(ops, "error reading section %d\n",
2507 				    shn);
2508 				return (-1);
2509 			}
2510 			break;
2511 		}
2512 	}
2513 
2514 	/*
2515 	 * This is true for a stripped executable.  In the case of
2516 	 * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2517 	 * and since that symbol information is still present everything
2518 	 * is just fine.
2519 	 */
2520 	if (!dosymtab) {
2521 		if (mp->flags & KOBJ_EXEC)
2522 			return (0);
2523 		_kobj_printf(ops, "krtld: get_syms: %s ",
2524 		    mp->filename);
2525 		_kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2526 		return (-1);
2527 	}
2528 
2529 	/*
2530 	 * get the associated string table header
2531 	 */
2532 	if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2533 		return (-1);
2534 	mp->strhdr = (Shdr *)
2535 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2536 
2537 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2538 	mp->hashsize = kobj_gethashsize(mp->nsyms);
2539 
2540 	/*
2541 	 * Allocate space for the symbol table, buckets, chains, and strings.
2542 	 */
2543 	mp->symsize = mp->symhdr->sh_size +
2544 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2545 	mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2546 
2547 	mp->symtbl = mp->symspace;
2548 	mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2549 	mp->chains = mp->buckets + mp->hashsize;
2550 	mp->strings = (char *)(mp->chains + mp->nsyms);
2551 
2552 	if (kobj_read_file(file, mp->symtbl,
2553 	    mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2554 	    kobj_read_file(file, mp->strings,
2555 	    mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2556 		return (-1);
2557 
2558 	/*
2559 	 * loop through the symbol table adjusting values to account
2560 	 * for where each section got loaded into memory.  Also
2561 	 * fill in the hash table.
2562 	 */
2563 	for (i = 1; i < mp->nsyms; i++) {
2564 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2565 		if (sp->st_shndx < SHN_LORESERVE) {
2566 			if (sp->st_shndx >= mp->hdr.e_shnum) {
2567 				_kobj_printf(ops, "%s bad shndx ",
2568 				    file->_name);
2569 				_kobj_printf(ops, "in symbol %d\n", i);
2570 				return (-1);
2571 			}
2572 			shp = (Shdr *)
2573 			    (mp->shdrs +
2574 			    sp->st_shndx * mp->hdr.e_shentsize);
2575 			if (!(mp->flags & KOBJ_EXEC))
2576 				sp->st_value += shp->sh_addr;
2577 		}
2578 
2579 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2580 			continue;
2581 		if (sp->st_name >= mp->strhdr->sh_size)
2582 			return (-1);
2583 
2584 		symname = mp->strings + sp->st_name;
2585 
2586 		if (!(mp->flags & KOBJ_EXEC) &&
2587 		    ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2588 			ksp = kobj_lookup_all(mp, symname, 0);
2589 
2590 			if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2591 			    !kobj_suppress_warning(symname) &&
2592 			    sp->st_shndx != SHN_UNDEF &&
2593 			    sp->st_shndx != SHN_COMMON &&
2594 			    ksp->st_shndx != SHN_UNDEF &&
2595 			    ksp->st_shndx != SHN_COMMON) {
2596 				/*
2597 				 * Unless this symbol is a stub, it's multiply
2598 				 * defined.  Multiply-defined symbols are
2599 				 * usually bad, but some objects (kmdb) have
2600 				 * a legitimate need to have their own
2601 				 * copies of common functions.
2602 				 */
2603 				if ((standalone ||
2604 				    ksp->st_value < (uintptr_t)stubs_base ||
2605 				    ksp->st_value >= (uintptr_t)stubs_end) &&
2606 				    !(mp->flags & KOBJ_IGNMULDEF)) {
2607 					_kobj_printf(ops,
2608 					    "%s symbol ", file->_name);
2609 					_kobj_printf(ops,
2610 					    "%s multiply defined\n", symname);
2611 				}
2612 			}
2613 		}
2614 
2615 		sym_insert(mp, symname, i);
2616 	}
2617 
2618 	return (0);
2619 }
2620 
2621 static int
2622 get_ctf(struct module *mp, struct _buf *file)
2623 {
2624 	char *shstrtab, *ctfdata;
2625 	size_t shstrlen;
2626 	Shdr *shp;
2627 	uint_t i;
2628 
2629 	if (_moddebug & MODDEBUG_NOCTF)
2630 		return (0); /* do not attempt to even load CTF data */
2631 
2632 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2633 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2634 		    mp->filename);
2635 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2636 		    mp->hdr.e_shstrndx);
2637 		return (-1);
2638 	}
2639 
2640 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2641 	shstrlen = shp->sh_size;
2642 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2643 
2644 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2645 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2646 		    mp->filename);
2647 		_kobj_printf(ops, "error reading section %u\n",
2648 		    mp->hdr.e_shstrndx);
2649 		kobj_free(shstrtab, shstrlen);
2650 		return (-1);
2651 	}
2652 
2653 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2654 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2655 
2656 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2657 		    strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2658 			ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2659 
2660 			if (kobj_read_file(file, ctfdata, shp->sh_size,
2661 			    shp->sh_offset) < 0) {
2662 				_kobj_printf(ops, "krtld: get_ctf: %s, error "
2663 				    "reading .SUNW_ctf data\n", mp->filename);
2664 				kobj_free(ctfdata, shp->sh_size);
2665 				kobj_free(shstrtab, shstrlen);
2666 				return (-1);
2667 			}
2668 
2669 			mp->ctfdata = ctfdata;
2670 			mp->ctfsize = shp->sh_size;
2671 			break;
2672 		}
2673 	}
2674 
2675 	kobj_free(shstrtab, shstrlen);
2676 	return (0);
2677 }
2678 
2679 #define	SHA1_DIGEST_LENGTH	20	/* SHA1 digest length in bytes */
2680 
2681 /*
2682  * Return the hash of the ELF sections that are memory resident.
2683  * i.e. text and data.  We skip a SHT_NOBITS section since it occupies
2684  * no space in the file. We use SHA1 here since libelfsign uses
2685  * it and both places need to use the same algorithm.
2686  */
2687 static void
2688 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2689 {
2690 	uint_t shn;
2691 	Shdr *shp;
2692 	SHA1_CTX ctx;
2693 
2694 	SHA1Init(&ctx);
2695 
2696 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2697 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2698 		if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2699 			continue;
2700 
2701 		/*
2702 		 * The check should ideally be shp->sh_type == SHT_NOBITS.
2703 		 * However, we can't do that check here as get_progbits()
2704 		 * resets the type.
2705 		 */
2706 		if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2707 			continue;
2708 #ifdef	KOBJ_DEBUG
2709 		if (kobj_debug & D_DEBUG)
2710 			_kobj_printf(ops,
2711 			    "krtld: crypto_es_hash: updating hash with"
2712 			    " %s data size=%lx\n", shstrtab + shp->sh_name,
2713 			    (size_t)shp->sh_size);
2714 #endif
2715 		ASSERT(shp->sh_addr != 0);
2716 		SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2717 	}
2718 
2719 	SHA1Final((uchar_t *)hash, &ctx);
2720 }
2721 
2722 /*
2723  * Get the .SUNW_signature section for the module, it it exists.
2724  *
2725  * This section exists only for crypto modules. None of the
2726  * primary modules have this section currently.
2727  */
2728 static void
2729 get_signature(struct module *mp, struct _buf *file)
2730 {
2731 	char *shstrtab, *sigdata = NULL;
2732 	size_t shstrlen;
2733 	Shdr *shp;
2734 	uint_t i;
2735 
2736 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2737 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2738 		    mp->filename);
2739 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2740 		    mp->hdr.e_shstrndx);
2741 		return;
2742 	}
2743 
2744 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2745 	shstrlen = shp->sh_size;
2746 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2747 
2748 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2749 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2750 		    mp->filename);
2751 		_kobj_printf(ops, "error reading section %u\n",
2752 		    mp->hdr.e_shstrndx);
2753 		kobj_free(shstrtab, shstrlen);
2754 		return;
2755 	}
2756 
2757 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2758 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2759 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2760 		    strcmp(shstrtab + shp->sh_name,
2761 		    ELF_SIGNATURE_SECTION) == 0) {
2762 			filesig_vers_t filesig_version;
2763 			size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2764 			sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2765 
2766 			if (kobj_read_file(file, sigdata, shp->sh_size,
2767 			    shp->sh_offset) < 0) {
2768 				_kobj_printf(ops, "krtld: get_signature: %s,"
2769 				    " error reading .SUNW_signature data\n",
2770 				    mp->filename);
2771 				kobj_free(sigdata, sigsize);
2772 				kobj_free(shstrtab, shstrlen);
2773 				return;
2774 			}
2775 			filesig_version = ((struct filesignatures *)sigdata)->
2776 			    filesig_sig.filesig_version;
2777 			if (!(filesig_version == FILESIG_VERSION1 ||
2778 			    filesig_version == FILESIG_VERSION3)) {
2779 				/* skip versions we don't understand */
2780 				kobj_free(sigdata, sigsize);
2781 				kobj_free(shstrtab, shstrlen);
2782 				return;
2783 			}
2784 
2785 			mp->sigdata = sigdata;
2786 			mp->sigsize = sigsize;
2787 			break;
2788 		}
2789 	}
2790 
2791 	if (sigdata != NULL) {
2792 		crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2793 	}
2794 
2795 	kobj_free(shstrtab, shstrlen);
2796 }
2797 
2798 static void
2799 add_dependent(struct module *mp, struct module *dep)
2800 {
2801 	struct module_list *lp;
2802 
2803 	for (lp = mp->head; lp; lp = lp->next) {
2804 		if (lp->mp == dep)
2805 			return;	/* already on the list */
2806 	}
2807 
2808 	if (lp == NULL) {
2809 		lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2810 
2811 		lp->mp = dep;
2812 		lp->next = NULL;
2813 		if (mp->tail)
2814 			mp->tail->next = lp;
2815 		else
2816 			mp->head = lp;
2817 		mp->tail = lp;
2818 	}
2819 }
2820 
2821 static int
2822 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2823 {
2824 	struct module *mp;
2825 	struct modctl *req;
2826 	char *d, *p, *q;
2827 	int c;
2828 	char *err_modname = NULL;
2829 
2830 	mp = modp->mod_mp;
2831 
2832 	if ((p = mp->depends_on) == NULL)
2833 		return (0);
2834 
2835 	for (;;) {
2836 		/*
2837 		 * Skip space.
2838 		 */
2839 		while (*p && (*p == ' ' || *p == '\t'))
2840 			p++;
2841 		/*
2842 		 * Get module name.
2843 		 */
2844 		d = p;
2845 		q = modname;
2846 		c = 0;
2847 		while (*p && *p != ' ' && *p != '\t') {
2848 			if (c < modnamelen - 1) {
2849 				*q++ = *p;
2850 				c++;
2851 			}
2852 			p++;
2853 		}
2854 
2855 		if (q == modname)
2856 			break;
2857 
2858 		if (c == modnamelen - 1) {
2859 			char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2860 
2861 			(void) strncpy(dep, d,  p - d + 1);
2862 			dep[p - d] = '\0';
2863 
2864 			_kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2865 			_kobj_printf(ops, "'%s' too long ", dep);
2866 			_kobj_printf(ops, "(max %d chars)\n", (int)modnamelen);
2867 
2868 			kobj_free(dep, p - d + 1);
2869 
2870 			return (-1);
2871 		}
2872 
2873 		*q = '\0';
2874 		if ((req = mod_load_requisite(modp, modname)) == NULL) {
2875 #ifndef	KOBJ_DEBUG
2876 			if (_moddebug & MODDEBUG_LOADMSG) {
2877 #endif	/* KOBJ_DEBUG */
2878 				_kobj_printf(ops,
2879 				    "%s: unable to resolve dependency, ",
2880 				    modp->mod_modname);
2881 				_kobj_printf(ops, "cannot load module '%s'\n",
2882 				    modname);
2883 #ifndef	KOBJ_DEBUG
2884 			}
2885 #endif	/* KOBJ_DEBUG */
2886 			if (err_modname == NULL) {
2887 				/*
2888 				 * This must be the same size as the modname
2889 				 * one.
2890 				 */
2891 				err_modname = kobj_zalloc(MODMAXNAMELEN,
2892 				    KM_WAIT);
2893 
2894 				/*
2895 				 * We can use strcpy() here without fearing
2896 				 * the NULL terminator because the size of
2897 				 * err_modname is the same as one of modname,
2898 				 * and it's filled with zeros.
2899 				 */
2900 				(void) strcpy(err_modname, modname);
2901 			}
2902 			continue;
2903 		}
2904 
2905 		add_dependent(mp, req->mod_mp);
2906 		mod_release_mod(req);
2907 
2908 	}
2909 
2910 	if (err_modname != NULL) {
2911 		/*
2912 		 * Copy the first module name where you detect an error to keep
2913 		 * its behavior the same as before.
2914 		 * This way keeps minimizing the memory use for error
2915 		 * modules, and this might be important at boot time because
2916 		 * the memory usage is a crucial factor for booting in most
2917 		 * cases. You can expect more verbose messages when using
2918 		 * a debug kernel or setting a bit in moddebug.
2919 		 */
2920 		bzero(modname, MODMAXNAMELEN);
2921 		(void) strcpy(modname, err_modname);
2922 		kobj_free(err_modname, MODMAXNAMELEN);
2923 		return (-1);
2924 	}
2925 
2926 	return (0);
2927 }
2928 
2929 static int
2930 do_common(struct module *mp)
2931 {
2932 	int err;
2933 
2934 	/*
2935 	 * first time through, assign all symbols defined in other
2936 	 * modules, and count up how much common space will be needed
2937 	 * (bss_size and bss_align)
2938 	 */
2939 	if ((err = do_symbols(mp, 0)) < 0)
2940 		return (err);
2941 	/*
2942 	 * increase bss_size by the maximum delta that could be
2943 	 * computed by the ALIGN below
2944 	 */
2945 	mp->bss_size += mp->bss_align;
2946 	if (mp->bss_size) {
2947 		if (standalone)
2948 			mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2949 			    MINALIGN, 0);
2950 		else
2951 			mp->bss = (uintptr_t)vmem_alloc(data_arena,
2952 			    mp->bss_size, VM_SLEEP | VM_BESTFIT);
2953 		bzero((void *)mp->bss, mp->bss_size);
2954 		/* now assign addresses to all common symbols */
2955 		if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2956 			return (err);
2957 	}
2958 	return (0);
2959 }
2960 
2961 static int
2962 do_symbols(struct module *mp, Elf64_Addr bss_base)
2963 {
2964 	int bss_align;
2965 	uintptr_t bss_ptr;
2966 	int err;
2967 	int i;
2968 	Sym *sp, *sp1;
2969 	char *name;
2970 	int assign;
2971 	int resolved = 1;
2972 
2973 	/*
2974 	 * Nothing left to do (optimization).
2975 	 */
2976 	if (mp->flags & KOBJ_RESOLVED)
2977 		return (0);
2978 
2979 	assign = (bss_base) ? 1 : 0;
2980 	bss_ptr = bss_base;
2981 	bss_align = 0;
2982 	err = 0;
2983 
2984 	for (i = 1; i < mp->nsyms; i++) {
2985 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
2986 		/*
2987 		 * we know that st_name is in bounds, since get_sections
2988 		 * has already checked all of the symbols
2989 		 */
2990 		name = mp->strings + sp->st_name;
2991 		if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
2992 			continue;
2993 #if defined(__sparc)
2994 		/*
2995 		 * Register symbols are ignored in the kernel
2996 		 */
2997 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
2998 			if (*name != '\0') {
2999 				_kobj_printf(ops, "%s: named REGISTER symbol ",
3000 				    mp->filename);
3001 				_kobj_printf(ops, "not supported '%s'\n",
3002 				    name);
3003 				err = DOSYM_UNDEF;
3004 			}
3005 			continue;
3006 		}
3007 #endif	/* __sparc */
3008 		/*
3009 		 * TLS symbols are ignored in the kernel
3010 		 */
3011 		if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
3012 			_kobj_printf(ops, "%s: TLS symbol ",
3013 			    mp->filename);
3014 			_kobj_printf(ops, "not supported '%s'\n",
3015 			    name);
3016 			err = DOSYM_UNDEF;
3017 			continue;
3018 		}
3019 
3020 		if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3021 			if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3022 				sp->st_shndx = SHN_ABS;
3023 				sp->st_value = sp1->st_value;
3024 				continue;
3025 			}
3026 		}
3027 
3028 		if (sp->st_shndx == SHN_UNDEF) {
3029 			resolved = 0;
3030 
3031 			/*
3032 			 * Skip over sdt probes and smap calls,
3033 			 * they're relocated later.
3034 			 */
3035 			if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3036 				continue;
3037 #if defined(__x86)
3038 			if (strcmp(name, "smap_enable") == 0 ||
3039 			    strcmp(name, "smap_disable") == 0)
3040 				continue;
3041 #endif /* defined(__x86) */
3042 
3043 
3044 			/*
3045 			 * If it's not a weak reference and it's
3046 			 * not a primary object, it's an error.
3047 			 * (Primary objects may take more than
3048 			 * one pass to resolve)
3049 			 */
3050 			if (!(mp->flags & KOBJ_PRIM) &&
3051 			    ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3052 				_kobj_printf(ops, "%s: undefined symbol",
3053 				    mp->filename);
3054 				_kobj_printf(ops, " '%s'\n", name);
3055 				/*
3056 				 * Try to determine whether this symbol
3057 				 * represents a dependency on obsolete
3058 				 * unsafe driver support.  This is just
3059 				 * to make the warning more informative.
3060 				 */
3061 				if (strcmp(name, "sleep") == 0 ||
3062 				    strcmp(name, "unsleep") == 0 ||
3063 				    strcmp(name, "wakeup") == 0 ||
3064 				    strcmp(name, "bsd_compat_ioctl") == 0 ||
3065 				    strcmp(name, "unsafe_driver") == 0 ||
3066 				    strncmp(name, "spl", 3) == 0 ||
3067 				    strncmp(name, "i_ddi_spl", 9) == 0)
3068 					err = DOSYM_UNSAFE;
3069 				if (err == 0)
3070 					err = DOSYM_UNDEF;
3071 			}
3072 			continue;
3073 		}
3074 		/*
3075 		 * It's a common symbol - st_value is the
3076 		 * required alignment.
3077 		 */
3078 		if (sp->st_value > bss_align)
3079 			bss_align = sp->st_value;
3080 		bss_ptr = ALIGN(bss_ptr, sp->st_value);
3081 		if (assign) {
3082 			sp->st_shndx = SHN_ABS;
3083 			sp->st_value = bss_ptr;
3084 		}
3085 		bss_ptr += sp->st_size;
3086 	}
3087 	if (err)
3088 		return (err);
3089 	if (assign == 0 && mp->bss == 0) {
3090 		mp->bss_align = bss_align;
3091 		mp->bss_size = bss_ptr;
3092 	} else if (resolved) {
3093 		mp->flags |= KOBJ_RESOLVED;
3094 	}
3095 
3096 	return (0);
3097 }
3098 
3099 uint_t
3100 kobj_hash_name(const char *p)
3101 {
3102 	uint_t g;
3103 	uint_t hval;
3104 
3105 	hval = 0;
3106 	while (*p) {
3107 		hval = (hval << 4) + *p++;
3108 		if ((g = (hval & 0xf0000000)) != 0)
3109 			hval ^= g >> 24;
3110 		hval &= ~g;
3111 	}
3112 	return (hval);
3113 }
3114 
3115 /* look for name in all modules */
3116 uintptr_t
3117 kobj_getsymvalue(char *name, int kernelonly)
3118 {
3119 	Sym		*sp;
3120 	struct modctl	*modp;
3121 	struct module	*mp;
3122 	uintptr_t	value = 0;
3123 
3124 	if ((sp = kobj_lookup_kernel(name)) != NULL)
3125 		return ((uintptr_t)sp->st_value);
3126 
3127 	if (kernelonly)
3128 		return (0);	/* didn't find it in the kernel so give up */
3129 
3130 	mutex_enter(&mod_lock);
3131 	modp = &modules;
3132 	do {
3133 		mp = (struct module *)modp->mod_mp;
3134 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3135 		    (sp = lookup_one(mp, name))) {
3136 			value = (uintptr_t)sp->st_value;
3137 			break;
3138 		}
3139 	} while ((modp = modp->mod_next) != &modules);
3140 	mutex_exit(&mod_lock);
3141 	return (value);
3142 }
3143 
3144 /* look for a symbol near value. */
3145 char *
3146 kobj_getsymname(uintptr_t value, ulong_t *offset)
3147 {
3148 	char *name = NULL;
3149 	struct modctl *modp;
3150 
3151 	struct modctl_list *lp;
3152 	struct module *mp;
3153 
3154 	/*
3155 	 * Loop through the primary kernel modules.
3156 	 */
3157 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3158 		mp = mod(lp);
3159 
3160 		if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3161 			return (name);
3162 	}
3163 
3164 	mutex_enter(&mod_lock);
3165 	modp = &modules;
3166 	do {
3167 		mp = (struct module *)modp->mod_mp;
3168 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3169 		    (name = kobj_searchsym(mp, value, offset)))
3170 			break;
3171 	} while ((modp = modp->mod_next) != &modules);
3172 	mutex_exit(&mod_lock);
3173 	return (name);
3174 }
3175 
3176 /* return address of symbol and size */
3177 
3178 uintptr_t
3179 kobj_getelfsym(char *name, void *mp, int *size)
3180 {
3181 	Sym *sp;
3182 
3183 	if (mp == NULL)
3184 		sp = kobj_lookup_kernel(name);
3185 	else
3186 		sp = lookup_one(mp, name);
3187 
3188 	if (sp == NULL)
3189 		return (0);
3190 
3191 	*size = (int)sp->st_size;
3192 	return ((uintptr_t)sp->st_value);
3193 }
3194 
3195 uintptr_t
3196 kobj_lookup(struct module *mod, const char *name)
3197 {
3198 	Sym *sp;
3199 
3200 	sp = lookup_one(mod, name);
3201 
3202 	if (sp == NULL)
3203 		return (0);
3204 
3205 	return ((uintptr_t)sp->st_value);
3206 }
3207 
3208 char *
3209 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3210 {
3211 	Sym *symtabptr;
3212 	char *strtabptr;
3213 	int symnum;
3214 	Sym *sym;
3215 	Sym *cursym;
3216 	uintptr_t curval;
3217 
3218 	*offset = (ulong_t)-1l;		/* assume not found */
3219 	cursym  = NULL;
3220 
3221 	if (kobj_addrcheck(mp, (void *)value) != 0)
3222 		return (NULL);		/* not in this module */
3223 
3224 	strtabptr  = mp->strings;
3225 	symtabptr  = (Sym *)mp->symtbl;
3226 
3227 	/*
3228 	 * Scan the module's symbol table for a symbol <= value
3229 	 */
3230 	for (symnum = 1, sym = symtabptr + 1;
3231 	    symnum < mp->nsyms; symnum++, sym = (Sym *)
3232 	    ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3233 		if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3234 			if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3235 				continue;
3236 			if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3237 			    ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3238 				continue;
3239 		}
3240 
3241 		curval = (uintptr_t)sym->st_value;
3242 
3243 		if (curval > value)
3244 			continue;
3245 
3246 		/*
3247 		 * If one or both are functions...
3248 		 */
3249 		if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3250 		    ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3251 			/* Ignore if the address is out of the bounds */
3252 			if (value - sym->st_value >= sym->st_size)
3253 				continue;
3254 
3255 			if (cursym != NULL &&
3256 			    ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3257 				/* Prefer the function to the non-function */
3258 				if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3259 					continue;
3260 
3261 				/* Prefer the larger of the two functions */
3262 				if (sym->st_size <= cursym->st_size)
3263 					continue;
3264 			}
3265 		} else if (value - curval >= *offset) {
3266 			continue;
3267 		}
3268 
3269 		*offset = (ulong_t)(value - curval);
3270 		cursym = sym;
3271 	}
3272 	if (cursym == NULL)
3273 		return (NULL);
3274 
3275 	return (strtabptr + cursym->st_name);
3276 }
3277 
3278 Sym *
3279 kobj_lookup_all(struct module *mp, char *name, int include_self)
3280 {
3281 	Sym *sp;
3282 	struct module_list *mlp;
3283 	struct modctl_list *clp;
3284 	struct module *mmp;
3285 
3286 	if (include_self && (sp = lookup_one(mp, name)) != NULL)
3287 		return (sp);
3288 
3289 	for (mlp = mp->head; mlp; mlp = mlp->next) {
3290 		if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3291 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3292 			return (sp);
3293 	}
3294 
3295 	/*
3296 	 * Loop through the primary kernel modules.
3297 	 */
3298 	for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3299 		mmp = mod(clp);
3300 
3301 		if (mmp == NULL || mp == mmp)
3302 			continue;
3303 
3304 		if ((sp = lookup_one(mmp, name)) != NULL &&
3305 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3306 			return (sp);
3307 	}
3308 	return (NULL);
3309 }
3310 
3311 Sym *
3312 kobj_lookup_kernel(const char *name)
3313 {
3314 	struct modctl_list *lp;
3315 	struct module *mp;
3316 	Sym *sp;
3317 
3318 	/*
3319 	 * Loop through the primary kernel modules.
3320 	 */
3321 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3322 		mp = mod(lp);
3323 
3324 		if (mp == NULL)
3325 			continue;
3326 
3327 		if ((sp = lookup_one(mp, name)) != NULL)
3328 			return (sp);
3329 	}
3330 	return (NULL);
3331 }
3332 
3333 static Sym *
3334 lookup_one(struct module *mp, const char *name)
3335 {
3336 	symid_t *ip;
3337 	char *name1;
3338 	Sym *sp;
3339 
3340 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3341 	    ip = &mp->chains[*ip]) {
3342 		sp = (Sym *)(mp->symtbl +
3343 		    mp->symhdr->sh_entsize * *ip);
3344 		name1 = mp->strings + sp->st_name;
3345 		if (strcmp(name, name1) == 0 &&
3346 		    ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3347 		    sp->st_shndx != SHN_UNDEF &&
3348 		    sp->st_shndx != SHN_COMMON)
3349 			return (sp);
3350 	}
3351 	return (NULL);
3352 }
3353 
3354 /*
3355  * Lookup a given symbol pointer in the module's symbol hash.  If the symbol
3356  * is hashed, return the symbol pointer; otherwise return NULL.
3357  */
3358 static Sym *
3359 sym_lookup(struct module *mp, Sym *ksp)
3360 {
3361 	char *name = mp->strings + ksp->st_name;
3362 	symid_t *ip;
3363 	Sym *sp;
3364 
3365 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3366 	    ip = &mp->chains[*ip]) {
3367 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3368 		if (sp == ksp)
3369 			return (ksp);
3370 	}
3371 	return (NULL);
3372 }
3373 
3374 static void
3375 sym_insert(struct module *mp, char *name, symid_t index)
3376 {
3377 	symid_t *ip;
3378 
3379 #ifdef KOBJ_DEBUG
3380 	if (kobj_debug & D_SYMBOLS) {
3381 		static struct module *lastmp = NULL;
3382 		Sym *sp;
3383 		if (lastmp != mp) {
3384 			_kobj_printf(ops,
3385 			    "krtld: symbol entry: file=%s\n",
3386 			    mp->filename);
3387 			_kobj_printf(ops,
3388 			    "krtld:\tsymndx\tvalue\t\t"
3389 			    "symbol name\n");
3390 			lastmp = mp;
3391 		}
3392 		sp = (Sym *)(mp->symtbl +
3393 		    index * mp->symhdr->sh_entsize);
3394 		_kobj_printf(ops, "krtld:\t[%3d]", index);
3395 		_kobj_printf(ops, "\t0x%lx", sp->st_value);
3396 		_kobj_printf(ops, "\t%s\n", name);
3397 	}
3398 #endif
3399 
3400 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3401 	    ip = &mp->chains[*ip]) {
3402 		;
3403 	}
3404 	*ip = index;
3405 }
3406 
3407 struct modctl *
3408 kobj_boot_mod_lookup(const char *modname)
3409 {
3410 	struct modctl *mctl = kobj_modules;
3411 
3412 	do {
3413 		if (strcmp(modname, mctl->mod_modname) == 0)
3414 			return (mctl);
3415 	} while ((mctl = mctl->mod_next) != kobj_modules);
3416 
3417 	return (NULL);
3418 }
3419 
3420 /*
3421  * Determine if the module exists.
3422  */
3423 int
3424 kobj_path_exists(char *name, int use_path)
3425 {
3426 	struct _buf *file;
3427 
3428 	file = kobj_open_path(name, use_path, 1);
3429 #ifdef	MODDIR_SUFFIX
3430 	if (file == (struct _buf *)-1)
3431 		file = kobj_open_path(name, use_path, 0);
3432 #endif	/* MODDIR_SUFFIX */
3433 	if (file == (struct _buf *)-1)
3434 		return (0);
3435 	kobj_close_file(file);
3436 	return (1);
3437 }
3438 
3439 /*
3440  * fullname is dynamically allocated to be able to hold the
3441  * maximum size string that can be constructed from name.
3442  * path is exactly like the shell PATH variable.
3443  */
3444 struct _buf *
3445 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3446 {
3447 	char *p, *q;
3448 	char *pathp;
3449 	char *pathpsave;
3450 	char *fullname;
3451 	int maxpathlen;
3452 	struct _buf *file;
3453 
3454 #if !defined(MODDIR_SUFFIX)
3455 	use_moddir_suffix = B_FALSE;
3456 #endif
3457 
3458 	if (!use_path)
3459 		pathp = "";		/* use name as specified */
3460 	else
3461 		pathp = kobj_module_path;
3462 					/* use configured default path */
3463 
3464 	pathpsave = pathp;		/* keep this for error reporting */
3465 
3466 	/*
3467 	 * Allocate enough space for the largest possible fullname.
3468 	 * since path is of the form <directory> : <directory> : ...
3469 	 * we're potentially allocating a little more than we need to
3470 	 * but we'll allocate the exact amount when we find the right directory.
3471 	 * (The + 3 below is one for NULL terminator and one for the '/'
3472 	 * we might have to add at the beginning of path and one for
3473 	 * the '/' between path and name.)
3474 	 */
3475 	maxpathlen = strlen(pathp) + strlen(name) + 3;
3476 	/* sizeof includes null */
3477 	maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3478 	fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3479 
3480 	for (;;) {
3481 		p = fullname;
3482 		if (*pathp != '\0' && *pathp != '/')
3483 			*p++ = '/';	/* path must start with '/' */
3484 		while (*pathp && *pathp != ':' && *pathp != ' ')
3485 			*p++ = *pathp++;
3486 		if (p != fullname && p[-1] != '/')
3487 			*p++ = '/';
3488 		if (use_moddir_suffix) {
3489 			char *b = basename(name);
3490 			char *s;
3491 
3492 			/* copy everything up to the base name */
3493 			q = name;
3494 			while (q != b && *q)
3495 				*p++ = *q++;
3496 			s = slash_moddir_suffix_slash;
3497 			while (*s)
3498 				*p++ = *s++;
3499 			/* copy the rest */
3500 			while (*b)
3501 				*p++ = *b++;
3502 		} else {
3503 			q = name;
3504 			while (*q)
3505 				*p++ = *q++;
3506 		}
3507 		*p = 0;
3508 		if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3509 			kobj_free(fullname, maxpathlen);
3510 			return (file);
3511 		}
3512 		while (*pathp == ' ' || *pathp == ':')
3513 			pathp++;
3514 		if (*pathp == 0)
3515 			break;
3516 
3517 	}
3518 	kobj_free(fullname, maxpathlen);
3519 	if (_moddebug & MODDEBUG_ERRMSG) {
3520 		_kobj_printf(ops, "can't open %s,", name);
3521 		_kobj_printf(ops, " path is %s\n", pathpsave);
3522 	}
3523 	return ((struct _buf *)-1);
3524 }
3525 
3526 intptr_t
3527 kobj_open(char *filename)
3528 {
3529 	struct vnode *vp;
3530 	int fd;
3531 
3532 	if (_modrootloaded) {
3533 		struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3534 		int Errno;
3535 
3536 		/*
3537 		 * Hand off the open to a thread who has a
3538 		 * stack size capable handling the request.
3539 		 */
3540 		if (curthread != &t0) {
3541 			(void) thread_create(NULL, DEFAULTSTKSZ * 2,
3542 			    kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3543 			sema_p(&ltp->sema);
3544 			Errno = ltp->Errno;
3545 			vp = ltp->vp;
3546 		} else {
3547 			/*
3548 			 * 1098067: module creds should not be those of the
3549 			 * caller
3550 			 */
3551 			cred_t *saved_cred = curthread->t_cred;
3552 			curthread->t_cred = kcred;
3553 			Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3554 			    0, 0, rootdir, -1);
3555 			curthread->t_cred = saved_cred;
3556 		}
3557 		kobjopen_free(ltp);
3558 
3559 		if (Errno) {
3560 			if (_moddebug & MODDEBUG_ERRMSG) {
3561 				_kobj_printf(ops,
3562 				    "kobj_open: vn_open of %s fails, ",
3563 				    filename);
3564 				_kobj_printf(ops, "Errno = %d\n", Errno);
3565 			}
3566 			return (-1);
3567 		} else {
3568 			if (_moddebug & MODDEBUG_ERRMSG) {
3569 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3570 				_kobj_printf(ops, " vp = %p\n", vp);
3571 			}
3572 			return ((intptr_t)vp);
3573 		}
3574 	} else {
3575 		fd = kobj_boot_open(filename, 0);
3576 
3577 		if (_moddebug & MODDEBUG_ERRMSG) {
3578 			if (fd < 0)
3579 				_kobj_printf(ops,
3580 				    "kobj_open: can't open %s\n", filename);
3581 			else {
3582 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3583 				_kobj_printf(ops, " descr = 0x%x\n", fd);
3584 			}
3585 		}
3586 		return ((intptr_t)fd);
3587 	}
3588 }
3589 
3590 /*
3591  * Calls to kobj_open() are handled off to this routine as a separate thread.
3592  */
3593 static void
3594 kobjopen_thread(struct kobjopen_tctl *ltp)
3595 {
3596 	kmutex_t	cpr_lk;
3597 	callb_cpr_t	cpr_i;
3598 
3599 	mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3600 	CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3601 	ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3602 	    0, 0);
3603 	sema_v(&ltp->sema);
3604 	mutex_enter(&cpr_lk);
3605 	CALLB_CPR_EXIT(&cpr_i);
3606 	mutex_destroy(&cpr_lk);
3607 	thread_exit();
3608 }
3609 
3610 /*
3611  * allocate and initialize a kobjopen thread structure
3612  */
3613 static struct kobjopen_tctl *
3614 kobjopen_alloc(char *filename)
3615 {
3616 	struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3617 
3618 	ASSERT(filename != NULL);
3619 
3620 	ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3621 	bcopy(filename, ltp->name, strlen(filename) + 1);
3622 	sema_init(&ltp->sema, 0, NULL, SEMA_DEFAULT, NULL);
3623 	return (ltp);
3624 }
3625 
3626 /*
3627  * free a kobjopen thread control structure
3628  */
3629 static void
3630 kobjopen_free(struct kobjopen_tctl *ltp)
3631 {
3632 	sema_destroy(&ltp->sema);
3633 	kmem_free(ltp->name, strlen(ltp->name) + 1);
3634 	kmem_free(ltp, sizeof (*ltp));
3635 }
3636 
3637 int
3638 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset)
3639 {
3640 	int stat;
3641 	ssize_t resid;
3642 
3643 	if (_modrootloaded) {
3644 		if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3645 		    (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3646 		    &resid)) != 0) {
3647 			_kobj_printf(ops,
3648 			    "vn_rdwr failed with error 0x%x\n", stat);
3649 			return (-1);
3650 		}
3651 		return (size - resid);
3652 	} else {
3653 		int count = 0;
3654 
3655 		if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3656 			_kobj_printf(ops,
3657 			    "kobj_read: seek 0x%x failed\n", offset);
3658 			return (-1);
3659 		}
3660 
3661 		count = kobj_boot_read((int)descr, buf, size);
3662 		if (count < size) {
3663 			if (_moddebug & MODDEBUG_ERRMSG) {
3664 				_kobj_printf(ops,
3665 				    "kobj_read: req %d bytes, ", size);
3666 				_kobj_printf(ops, "got %d\n", count);
3667 			}
3668 		}
3669 		return (count);
3670 	}
3671 }
3672 
3673 void
3674 kobj_close(intptr_t descr)
3675 {
3676 	if (_moddebug & MODDEBUG_ERRMSG)
3677 		_kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3678 
3679 	if (_modrootloaded) {
3680 		struct vnode *vp = (struct vnode *)descr;
3681 		(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
3682 		VN_RELE(vp);
3683 	} else
3684 		(void) kobj_boot_close((int)descr);
3685 }
3686 
3687 int
3688 kobj_fstat(intptr_t descr, struct bootstat *buf)
3689 {
3690 	if (buf == NULL)
3691 		return (-1);
3692 
3693 	if (_modrootloaded) {
3694 		vattr_t vattr;
3695 		struct vnode *vp = (struct vnode *)descr;
3696 		if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3697 			return (-1);
3698 
3699 		/*
3700 		 * The vattr and bootstat structures are similar, but not
3701 		 * identical.  We do our best to fill in the bootstat structure
3702 		 * from the contents of vattr (transfering only the ones that
3703 		 * are obvious.
3704 		 */
3705 
3706 		buf->st_mode = (uint32_t)vattr.va_mode;
3707 		buf->st_nlink = (uint32_t)vattr.va_nlink;
3708 		buf->st_uid = (int32_t)vattr.va_uid;
3709 		buf->st_gid = (int32_t)vattr.va_gid;
3710 		buf->st_rdev = (uint64_t)vattr.va_rdev;
3711 		buf->st_size = (uint64_t)vattr.va_size;
3712 		buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3713 		buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3714 		buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3715 		buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3716 		buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3717 		buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3718 		buf->st_blksize = (int32_t)vattr.va_blksize;
3719 		buf->st_blocks = (int64_t)vattr.va_nblocks;
3720 
3721 		return (0);
3722 	}
3723 
3724 	return (kobj_boot_fstat((int)descr, buf));
3725 }
3726 
3727 
3728 struct _buf *
3729 kobj_open_file(char *name)
3730 {
3731 	struct _buf *file;
3732 	struct compinfo cbuf;
3733 	intptr_t fd;
3734 
3735 	if ((fd = kobj_open(name)) == -1) {
3736 		return ((struct _buf *)-1);
3737 	}
3738 
3739 	file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3740 	file->_fd = fd;
3741 	file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3742 	file->_cnt = file->_size = file->_off = 0;
3743 	file->_ln = 1;
3744 	file->_ptr = file->_base;
3745 	(void) strcpy(file->_name, name);
3746 
3747 	/*
3748 	 * Before root is mounted, we must check
3749 	 * for a compressed file and do our own
3750 	 * buffering.
3751 	 */
3752 	if (_modrootloaded) {
3753 		file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT);
3754 		file->_bsize = MAXBSIZE;
3755 
3756 		/* Check if the file is compressed */
3757 		file->_iscmp = kobj_is_compressed(fd);
3758 	} else {
3759 		if (kobj_boot_compinfo(fd, &cbuf) != 0) {
3760 			kobj_close_file(file);
3761 			return ((struct _buf *)-1);
3762 		}
3763 		file->_iscmp = cbuf.iscmp;
3764 		if (file->_iscmp) {
3765 			if (kobj_comp_setup(file, &cbuf) != 0) {
3766 				kobj_close_file(file);
3767 				return ((struct _buf *)-1);
3768 			}
3769 		} else {
3770 			file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP);
3771 			file->_bsize = cbuf.blksize;
3772 		}
3773 	}
3774 	return (file);
3775 }
3776 
3777 static int
3778 kobj_comp_setup(struct _buf *file, struct compinfo *cip)
3779 {
3780 	struct comphdr *hdr;
3781 
3782 	/*
3783 	 * read the compressed image into memory,
3784 	 * so we can deompress from there
3785 	 */
3786 	file->_dsize = cip->fsize;
3787 	file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP);
3788 	if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) {
3789 		kobj_free(file->_dbuf, cip->fsize);
3790 		return (-1);
3791 	}
3792 
3793 	hdr = kobj_comphdr(file);
3794 	if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION ||
3795 	    hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 ||
3796 	    !ISP2(hdr->ch_blksize)) {
3797 		kobj_free(file->_dbuf, cip->fsize);
3798 		return (-1);
3799 	}
3800 	file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP);
3801 	file->_bsize = hdr->ch_blksize;
3802 	return (0);
3803 }
3804 
3805 void
3806 kobj_close_file(struct _buf *file)
3807 {
3808 	kobj_close(file->_fd);
3809 	if (file->_base != NULL)
3810 		kobj_free(file->_base, file->_bsize);
3811 	if (file->_dbuf != NULL)
3812 		kobj_free(file->_dbuf, file->_dsize);
3813 	kobj_free(file->_name, strlen(file->_name)+1);
3814 	kobj_free(file, sizeof (struct _buf));
3815 }
3816 
3817 int
3818 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off)
3819 {
3820 	int b_size, c_size;
3821 	int b_off;	/* Offset into buffer for start of bcopy */
3822 	int count = 0;
3823 	int page_addr;
3824 
3825 	if (_moddebug & MODDEBUG_ERRMSG) {
3826 		_kobj_printf(ops, "kobj_read_file: size=%x,", size);
3827 		_kobj_printf(ops, " offset=%x at", off);
3828 		_kobj_printf(ops, " buf=%lx\n", (uintptr_t)buf);
3829 	}
3830 
3831 	/*
3832 	 * Handle compressed (gzip for now) file here. First get the
3833 	 * compressed size, then read the image into memory and finally
3834 	 * call zlib to decompress the image at the supplied memory buffer.
3835 	 */
3836 	if (file->_iscmp == CH_MAGIC_GZIP) {
3837 		ulong_t dlen;
3838 		vattr_t vattr;
3839 		struct vnode *vp = (struct vnode *)file->_fd;
3840 		ssize_t resid;
3841 		int err = 0;
3842 
3843 		if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3844 			return (-1);
3845 
3846 		file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP);
3847 		file->_dsize = vattr.va_size;
3848 
3849 		/* Read the compressed file into memory */
3850 		if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size,
3851 		    (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3852 		    &resid)) != 0) {
3853 
3854 			_kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, "
3855 			    "error code 0x%x\n", err);
3856 			return (-1);
3857 		}
3858 
3859 		dlen = size;
3860 
3861 		/* Decompress the image at the supplied memory buffer */
3862 		if ((err = z_uncompress(buf, &dlen, file->_dbuf,
3863 		    vattr.va_size)) != Z_OK) {
3864 			_kobj_printf(ops, "kobj_read_file: z_uncompress "
3865 			    "failed, error code : 0x%x\n", err);
3866 			return (-1);
3867 		}
3868 
3869 		if (dlen != size) {
3870 			_kobj_printf(ops, "kobj_read_file: z_uncompress "
3871 			    "failed to uncompress (size returned 0x%lx , "
3872 			    "expected size: 0x%x)\n", dlen, size);
3873 			return (-1);
3874 		}
3875 
3876 		return (0);
3877 	}
3878 
3879 	while (size) {
3880 		page_addr = F_PAGE(file, off);
3881 		b_size = file->_size;
3882 		/*
3883 		 * If we have the filesystem page the caller's referring to
3884 		 * and we have something in the buffer,
3885 		 * satisfy as much of the request from the buffer as we can.
3886 		 */
3887 		if (page_addr == file->_off && b_size > 0) {
3888 			b_off = B_OFFSET(file, off);
3889 			c_size = b_size - b_off;
3890 			/*
3891 			 * If there's nothing to copy, we're at EOF.
3892 			 */
3893 			if (c_size <= 0)
3894 				break;
3895 			if (c_size > size)
3896 				c_size = size;
3897 			if (buf) {
3898 				if (_moddebug & MODDEBUG_ERRMSG)
3899 					_kobj_printf(ops, "copying %x bytes\n",
3900 					    c_size);
3901 				bcopy(file->_base+b_off, buf, c_size);
3902 				size -= c_size;
3903 				off += c_size;
3904 				buf += c_size;
3905 				count += c_size;
3906 			} else {
3907 				_kobj_printf(ops, "kobj_read: system error");
3908 				count = -1;
3909 				break;
3910 			}
3911 		} else {
3912 			/*
3913 			 * If the caller's offset is page aligned and
3914 			 * the caller want's at least a filesystem page and
3915 			 * the caller provided a buffer,
3916 			 * read directly into the caller's buffer.
3917 			 */
3918 			if (page_addr == off &&
3919 			    (c_size = F_BLKS(file, size)) && buf) {
3920 				c_size = kobj_read_blks(file, buf, c_size,
3921 				    page_addr);
3922 				if (c_size < 0) {
3923 					count = -1;
3924 					break;
3925 				}
3926 				count += c_size;
3927 				if (c_size != F_BLKS(file, size))
3928 					break;
3929 				size -= c_size;
3930 				off += c_size;
3931 				buf += c_size;
3932 			/*
3933 			 * Otherwise, read into our buffer and copy next time
3934 			 * around the loop.
3935 			 */
3936 			} else {
3937 				file->_off = page_addr;
3938 				c_size = kobj_read_blks(file, file->_base,
3939 				    file->_bsize, page_addr);
3940 				file->_ptr = file->_base;
3941 				file->_cnt = c_size;
3942 				file->_size = c_size;
3943 				/*
3944 				 * If a _filbuf call or nothing read, break.
3945 				 */
3946 				if (buf == NULL || c_size <= 0) {
3947 					count = c_size;
3948 					break;
3949 				}
3950 			}
3951 			if (_moddebug & MODDEBUG_ERRMSG)
3952 				_kobj_printf(ops, "read %x bytes\n", c_size);
3953 		}
3954 	}
3955 	if (_moddebug & MODDEBUG_ERRMSG)
3956 		_kobj_printf(ops, "count = %x\n", count);
3957 
3958 	return (count);
3959 }
3960 
3961 static int
3962 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off)
3963 {
3964 	int ret;
3965 
3966 	ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0);
3967 	if (file->_iscmp) {
3968 		uint_t blks;
3969 		int nret;
3970 
3971 		ret = 0;
3972 		for (blks = size / file->_bsize; blks != 0; blks--) {
3973 			nret = kobj_uncomp_blk(file, buf, off);
3974 			if (nret == -1)
3975 				return (-1);
3976 			buf += nret;
3977 			off += nret;
3978 			ret += nret;
3979 			if (nret < file->_bsize)
3980 				break;
3981 		}
3982 	} else
3983 		ret = kobj_read(file->_fd, buf, size, off);
3984 	return (ret);
3985 }
3986 
3987 static int
3988 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off)
3989 {
3990 	struct comphdr *hdr = kobj_comphdr(file);
3991 	ulong_t dlen, slen;
3992 	caddr_t src;
3993 	int i;
3994 
3995 	dlen = file->_bsize;
3996 	i = off / file->_bsize;
3997 	src = file->_dbuf + hdr->ch_blkmap[i];
3998 	if (i == hdr->ch_fsize / file->_bsize)
3999 		slen = file->_dsize - hdr->ch_blkmap[i];
4000 	else
4001 		slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i];
4002 	if (z_uncompress(buf, &dlen, src, slen) != Z_OK)
4003 		return (-1);
4004 	return (dlen);
4005 }
4006 
4007 int
4008 kobj_filbuf(struct _buf *f)
4009 {
4010 	if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0)
4011 		return (kobj_getc(f));
4012 	return (-1);
4013 }
4014 
4015 void
4016 kobj_free(void *address, size_t size)
4017 {
4018 	if (standalone)
4019 		return;
4020 
4021 	kmem_free(address, size);
4022 	kobj_stat.nfree_calls++;
4023 	kobj_stat.nfree += size;
4024 }
4025 
4026 void *
4027 kobj_zalloc(size_t size, int flag)
4028 {
4029 	void *v;
4030 
4031 	if ((v = kobj_alloc(size, flag)) != 0) {
4032 		bzero(v, size);
4033 	}
4034 
4035 	return (v);
4036 }
4037 
4038 void *
4039 kobj_alloc(size_t size, int flag)
4040 {
4041 	/*
4042 	 * If we are running standalone in the
4043 	 * linker, we ask boot for memory.
4044 	 * Either it's temporary memory that we lose
4045 	 * once boot is mapped out or we allocate it
4046 	 * permanently using the dynamic data segment.
4047 	 */
4048 	if (standalone) {
4049 #if defined(_OBP)
4050 		if (flag & (KM_TMP | KM_SCRATCH))
4051 			return (bop_temp_alloc(size, MINALIGN));
4052 #else
4053 		if (flag & (KM_TMP | KM_SCRATCH))
4054 			return (BOP_ALLOC(ops, 0, size, MINALIGN));
4055 #endif
4056 		return (kobj_segbrk(&_edata, size, MINALIGN, 0));
4057 	}
4058 
4059 	kobj_stat.nalloc_calls++;
4060 	kobj_stat.nalloc += size;
4061 
4062 	return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
4063 }
4064 
4065 /*
4066  * Allow the "mod" system to sync up with the work
4067  * already done by kobj during the initial loading
4068  * of the kernel.  This also gives us a chance
4069  * to reallocate memory that belongs to boot.
4070  */
4071 void
4072 kobj_sync(void)
4073 {
4074 	struct modctl_list *lp, **lpp;
4075 
4076 	/*
4077 	 * The module path can be set in /etc/system via 'moddir' commands
4078 	 */
4079 	if (default_path != NULL)
4080 		kobj_module_path = default_path;
4081 	else
4082 		default_path = kobj_module_path;
4083 
4084 	ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
4085 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4086 
4087 	ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
4088 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4089 
4090 	/*
4091 	 * Move symbol tables from boot memory to ksyms_arena.
4092 	 */
4093 	for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
4094 		for (lp = *lpp; lp != NULL; lp = lp->modl_next)
4095 			kobj_export_module(mod(lp));
4096 	}
4097 }
4098 
4099 caddr_t
4100 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
4101 {
4102 	uintptr_t va, pva;
4103 	size_t alloc_pgsz = kobj_mmu_pagesize;
4104 	size_t alloc_align = BO_NO_ALIGN;
4105 	size_t alloc_size;
4106 
4107 	/*
4108 	 * If we are using "large" mappings for the kernel,
4109 	 * request aligned memory from boot using the
4110 	 * "large" pagesize.
4111 	 */
4112 	if (lg_pagesize) {
4113 		alloc_align = lg_pagesize;
4114 		alloc_pgsz = lg_pagesize;
4115 	}
4116 
4117 #if defined(__sparc)
4118 	/* account for redzone */
4119 	if (limit)
4120 		limit -= alloc_pgsz;
4121 #endif	/* __sparc */
4122 
4123 	va = ALIGN((uintptr_t)*spp, align);
4124 	pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4125 	/*
4126 	 * Need more pages?
4127 	 */
4128 	if (va + size > pva) {
4129 		uintptr_t npva;
4130 
4131 		alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4132 		/*
4133 		 * Check for overlapping segments.
4134 		 */
4135 		if (limit && limit <= *spp + alloc_size) {
4136 			return ((caddr_t)0);
4137 		}
4138 
4139 		npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4140 		    alloc_size, alloc_align);
4141 
4142 		if (npva == 0) {
4143 			_kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4144 			    alloc_size);
4145 			_kobj_printf(ops, " aligned %lx", alloc_align);
4146 			_kobj_printf(ops, " at 0x%lx\n", pva);
4147 			return (NULL);
4148 		}
4149 	}
4150 	*spp = (caddr_t)(va + size);
4151 
4152 	return ((caddr_t)va);
4153 }
4154 
4155 /*
4156  * Calculate the number of output hash buckets.
4157  * We use the next prime larger than n / 4,
4158  * so the average hash chain is about 4 entries.
4159  * More buckets would just be a waste of memory.
4160  */
4161 uint_t
4162 kobj_gethashsize(uint_t n)
4163 {
4164 	int f;
4165 	int hsize = MAX(n / 4, 2);
4166 
4167 	for (f = 2; f * f <= hsize; f++)
4168 		if (hsize % f == 0)
4169 			hsize += f = 1;
4170 
4171 	return (hsize);
4172 }
4173 
4174 /*
4175  * Get the file size.
4176  *
4177  * Before root is mounted, files are compressed in the boot_archive ramdisk
4178  * (in the memory). kobj_fstat would return the compressed file size.
4179  * In order to get the uncompressed file size, read the file to the end and
4180  * count its size.
4181  */
4182 int
4183 kobj_get_filesize(struct _buf *file, uint64_t *size)
4184 {
4185 	int err = 0;
4186 	ssize_t resid;
4187 	uint32_t buf;
4188 
4189 	if (_modrootloaded) {
4190 		struct bootstat bst;
4191 
4192 		if (kobj_fstat(file->_fd, &bst) != 0)
4193 			return (EIO);
4194 		*size = bst.st_size;
4195 
4196 		if (file->_iscmp == CH_MAGIC_GZIP) {
4197 			/*
4198 			 * Read the last 4 bytes of the compressed (gzip)
4199 			 * image to get the size of its uncompressed
4200 			 * version.
4201 			 */
4202 			if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd,
4203 			    (char *)(&buf), 4, (offset_t)(*size - 4),
4204 			    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid))
4205 			    != 0) {
4206 				_kobj_printf(ops, "kobj_get_filesize: "
4207 				    "vn_rdwr() failed with error 0x%x\n", err);
4208 				return (-1);
4209 			}
4210 
4211 			*size =  (uint64_t)buf;
4212 		}
4213 	} else {
4214 
4215 #if defined(_OBP)
4216 		struct bootstat bsb;
4217 
4218 		if (file->_iscmp) {
4219 			struct comphdr *hdr = kobj_comphdr(file);
4220 
4221 			*size = hdr->ch_fsize;
4222 		} else if (kobj_boot_fstat(file->_fd, &bsb) != 0)
4223 			return (EIO);
4224 		else
4225 			*size = bsb.st_size;
4226 #else
4227 		char *buf;
4228 		int count;
4229 		uint64_t offset = 0;
4230 
4231 		buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4232 		do {
4233 			count = kobj_read_file(file, buf, MAXBSIZE, offset);
4234 			if (count < 0) {
4235 				kmem_free(buf, MAXBSIZE);
4236 				return (EIO);
4237 			}
4238 			offset += count;
4239 		} while (count == MAXBSIZE);
4240 		kmem_free(buf, MAXBSIZE);
4241 
4242 		*size = offset;
4243 #endif
4244 	}
4245 
4246 	return (0);
4247 }
4248 
4249 static char *
4250 basename(char *s)
4251 {
4252 	char *p, *q;
4253 
4254 	q = NULL;
4255 	p = s;
4256 	do {
4257 		if (*p == '/')
4258 			q = p;
4259 	} while (*p++);
4260 	return (q ? q + 1 : s);
4261 }
4262 
4263 void
4264 kobj_stat_get(kobj_stat_t *kp)
4265 {
4266 	*kp = kobj_stat;
4267 }
4268 
4269 int
4270 kobj_getpagesize()
4271 {
4272 	return (lg_pagesize);
4273 }
4274 
4275 void
4276 kobj_textwin_alloc(struct module *mp)
4277 {
4278 	ASSERT(MUTEX_HELD(&mod_lock));
4279 
4280 	if (mp->textwin != NULL)
4281 		return;
4282 
4283 	/*
4284 	 * If the text is not contained in the heap, then it is not contained
4285 	 * by a writable mapping.  (Specifically, it's on the nucleus page.)
4286 	 * We allocate a read/write mapping for this module's text to allow
4287 	 * the text to be patched without calling hot_patch_kernel_text()
4288 	 * (which is quite slow).
4289 	 */
4290 	if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4291 		uintptr_t text = (uintptr_t)mp->text;
4292 		uintptr_t size = (uintptr_t)mp->text_size;
4293 		uintptr_t i;
4294 		caddr_t va;
4295 		size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4296 		    (text & PAGEMASK);
4297 
4298 		va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4299 
4300 		for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4301 			hat_devload(kas.a_hat, va, PAGESIZE,
4302 			    hat_getpfnum(kas.a_hat, (caddr_t)i),
4303 			    PROT_READ | PROT_WRITE,
4304 			    HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4305 			va += PAGESIZE;
4306 		}
4307 
4308 		mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4309 	} else {
4310 		mp->textwin = mp->text;
4311 	}
4312 }
4313 
4314 void
4315 kobj_textwin_free(struct module *mp)
4316 {
4317 	uintptr_t text = (uintptr_t)mp->text;
4318 	uintptr_t tsize = (uintptr_t)mp->text_size;
4319 	size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4320 	    (text & PAGEMASK));
4321 
4322 	mp->textwin = NULL;
4323 
4324 	if (mp->textwin_base == NULL)
4325 		return;
4326 
4327 	hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4328 	vmem_free(heap_arena, mp->textwin_base, size);
4329 	mp->textwin_base = NULL;
4330 }
4331 
4332 static char *
4333 find_libmacro(char *name)
4334 {
4335 	int lmi;
4336 
4337 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4338 		if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4339 			return (libmacros[lmi].lmi_list);
4340 	}
4341 	return (NULL);
4342 }
4343 
4344 /*
4345  * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4346  * returns path if successful, else NULL
4347  * Support multiple $MACROs expansion and the first valid path will be returned
4348  * Caller's responsibility to provide enough space in path to expand
4349  */
4350 char *
4351 expand_libmacro(char *tail, char *path, char *pathend)
4352 {
4353 	char c, *p, *p1, *p2, *path2, *endp;
4354 	int diff, lmi, macrolen, valid_macro, more_macro;
4355 	struct _buf *file;
4356 
4357 	/*
4358 	 * check for $MACROS between nulls or slashes
4359 	 */
4360 	p = strchr(tail, '$');
4361 	if (p == NULL)
4362 		return (NULL);
4363 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4364 		macrolen = libmacros[lmi].lmi_macrolen;
4365 		if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4366 			break;
4367 	}
4368 
4369 	valid_macro = 0;
4370 	if (lmi < NLIBMACROS) {
4371 		/*
4372 		 * The following checks are used to restrict expansion of
4373 		 * macros to those that form a full directory/file name
4374 		 * and to keep the behavior same as before.  If this
4375 		 * restriction is removed or no longer valid in the future,
4376 		 * the checks below can be deleted.
4377 		 */
4378 		if ((p == tail) || (*(p - 1) == '/')) {
4379 			c = *(p + macrolen + 1);
4380 			if (c == '/' || c == '\0')
4381 				valid_macro = 1;
4382 		}
4383 	}
4384 
4385 	if (!valid_macro) {
4386 		p2 = strchr(p, '/');
4387 		/*
4388 		 * if no more macro to expand, then just copy whatever left
4389 		 * and check whether it exists
4390 		 */
4391 		if (p2 == NULL || strchr(p2, '$') == NULL) {
4392 			(void) strcpy(pathend, tail);
4393 			if ((file = kobj_open_path(path, 1, 1)) !=
4394 			    (struct _buf *)-1) {
4395 				kobj_close_file(file);
4396 				return (path);
4397 			} else
4398 				return (NULL);
4399 		} else {
4400 			/*
4401 			 * copy all chars before '/' and call expand_libmacro()
4402 			 * again
4403 			 */
4404 			diff = p2 - tail;
4405 			bcopy(tail, pathend, diff);
4406 			pathend += diff;
4407 			*(pathend) = '\0';
4408 			return (expand_libmacro(p2, path, pathend));
4409 		}
4410 	}
4411 
4412 	more_macro = 0;
4413 	if (c != '\0') {
4414 		endp = p + macrolen + 1;
4415 		if (strchr(endp, '$') != NULL)
4416 			more_macro = 1;
4417 	} else
4418 		endp = NULL;
4419 
4420 	/*
4421 	 * copy lmi_list and split it into components.
4422 	 * then put the part of tail before $MACRO into path
4423 	 * at pathend
4424 	 */
4425 	diff = p - tail;
4426 	if (diff > 0)
4427 		bcopy(tail, pathend, diff);
4428 	path2 = pathend + diff;
4429 	p1 = libmacros[lmi].lmi_list;
4430 	while (p1 && (*p1 != '\0')) {
4431 		p2 = strchr(p1, ':');
4432 		if (p2) {
4433 			diff = p2 - p1;
4434 			bcopy(p1, path2, diff);
4435 			*(path2 + diff) = '\0';
4436 		} else {
4437 			diff = strlen(p1);
4438 			bcopy(p1, path2, diff + 1);
4439 		}
4440 		/* copy endp only if there isn't any more macro to expand */
4441 		if (!more_macro && (endp != NULL))
4442 			(void) strcat(path2, endp);
4443 		file = kobj_open_path(path, 1, 1);
4444 		if (file != (struct _buf *)-1) {
4445 			kobj_close_file(file);
4446 			/*
4447 			 * if more macros to expand then call expand_libmacro(),
4448 			 * else return path which has the whole path
4449 			 */
4450 			if (!more_macro || (expand_libmacro(endp, path,
4451 			    path2 + diff) != NULL)) {
4452 				return (path);
4453 			}
4454 		}
4455 		if (p2)
4456 			p1 = ++p2;
4457 		else
4458 			return (NULL);
4459 	}
4460 	return (NULL);
4461 }
4462 
4463 char *kobj_file_buf;
4464 int kobj_file_bufsize;
4465 
4466 /*
4467  * This code is for the purpose of manually recording which files
4468  * needs to go into the boot archive on any given system.
4469  *
4470  * To enable the code, set kobj_file_bufsize in /etc/system
4471  * and reboot the system, then use mdb to look at kobj_file_buf.
4472  */
4473 static void
4474 kobj_record_file(char *filename)
4475 {
4476 	static char *buf;
4477 	static int size = 0;
4478 	int n;
4479 
4480 	if (kobj_file_bufsize == 0)	/* don't bother */
4481 		return;
4482 
4483 	if (kobj_file_buf == NULL) {	/* allocate buffer */
4484 		size = kobj_file_bufsize;
4485 		buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4486 	}
4487 
4488 	n = snprintf(buf, size, "%s\n", filename);
4489 	if (n > size)
4490 		n = size;
4491 	size -= n;
4492 	buf += n;
4493 }
4494 
4495 static int
4496 kobj_boot_fstat(int fd, struct bootstat *stp)
4497 {
4498 #if defined(_OBP)
4499 	if (!standalone && _ioquiesced)
4500 		return (-1);
4501 	return (BOP_FSTAT(ops, fd, stp));
4502 #else
4503 	return (BRD_FSTAT(bfs_ops, fd, stp));
4504 #endif
4505 }
4506 
4507 static int
4508 kobj_boot_open(char *filename, int flags)
4509 {
4510 #if defined(_OBP)
4511 
4512 	/*
4513 	 * If io via bootops is quiesced, it means boot is no longer
4514 	 * available to us.  We make it look as if we can't open the
4515 	 * named file - which is reasonably accurate.
4516 	 */
4517 	if (!standalone && _ioquiesced)
4518 		return (-1);
4519 
4520 	kobj_record_file(filename);
4521 	return (BOP_OPEN(filename, flags));
4522 #else /* x86 */
4523 	kobj_record_file(filename);
4524 	return (BRD_OPEN(bfs_ops, filename, flags));
4525 #endif
4526 }
4527 
4528 static int
4529 kobj_boot_close(int fd)
4530 {
4531 #if defined(_OBP)
4532 	if (!standalone && _ioquiesced)
4533 		return (-1);
4534 
4535 	return (BOP_CLOSE(fd));
4536 #else /* x86 */
4537 	return (BRD_CLOSE(bfs_ops, fd));
4538 #endif
4539 }
4540 
4541 /*ARGSUSED*/
4542 static int
4543 kobj_boot_seek(int fd, off_t hi, off_t lo)
4544 {
4545 #if defined(_OBP)
4546 	return (BOP_SEEK(fd, lo) == -1 ? -1 : 0);
4547 #else
4548 	return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4549 #endif
4550 }
4551 
4552 static int
4553 kobj_boot_read(int fd, caddr_t buf, size_t size)
4554 {
4555 #if defined(_OBP)
4556 	return (BOP_READ(fd, buf, size));
4557 #else
4558 	return (BRD_READ(bfs_ops, fd, buf, size));
4559 #endif
4560 }
4561 
4562 static int
4563 kobj_boot_compinfo(int fd, struct compinfo *cb)
4564 {
4565 	return (boot_compinfo(fd, cb));
4566 }
4567 
4568 /*
4569  * Check if the file is compressed (for now we handle only gzip).
4570  * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise.
4571  */
4572 static int
4573 kobj_is_compressed(intptr_t fd)
4574 {
4575 	struct vnode *vp = (struct vnode *)fd;
4576 	ssize_t resid;
4577 	uint16_t magic_buf;
4578 	int err = 0;
4579 
4580 	if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf),
4581 	    sizeof (magic_buf), (offset_t)(0),
4582 	    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
4583 
4584 		_kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, "
4585 		    "error code 0x%x\n", err);
4586 		return (0);
4587 	}
4588 
4589 	if (magic_buf == CH_MAGIC_GZIP)
4590 		return (CH_MAGIC_GZIP);
4591 
4592 	return (0);
4593 }
4594