xref: /illumos-gate/usr/src/uts/common/krtld/kobj.c (revision 0dcef4d473c5c7a38a378de19d7cb1b3a6a9bf6e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>.
27  * All rights reserved. Use is subject to license terms.
28  * Copyright (c) 2018, Joyent, Inc.
29  */
30 
31 /*
32  * Kernel's linker/loader
33  */
34 
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/sysmacros.h>
38 #include <sys/systm.h>
39 #include <sys/user.h>
40 #include <sys/kmem.h>
41 #include <sys/reboot.h>
42 #include <sys/bootconf.h>
43 #include <sys/debug.h>
44 #include <sys/uio.h>
45 #include <sys/file.h>
46 #include <sys/vnode.h>
47 #include <sys/user.h>
48 #include <sys/mman.h>
49 #include <vm/as.h>
50 #include <vm/seg_kp.h>
51 #include <vm/seg_kmem.h>
52 #include <sys/elf.h>
53 #include <sys/elf_notes.h>
54 #include <sys/vmsystm.h>
55 #include <sys/kdi.h>
56 #include <sys/atomic.h>
57 #include <sys/kmdb.h>
58 
59 #include <sys/link.h>
60 #include <sys/kobj.h>
61 #include <sys/ksyms.h>
62 #include <sys/disp.h>
63 #include <sys/modctl.h>
64 #include <sys/varargs.h>
65 #include <sys/kstat.h>
66 #include <sys/kobj_impl.h>
67 #include <sys/fs/decomp.h>
68 #include <sys/callb.h>
69 #include <sys/cmn_err.h>
70 #include <sys/tnf_probe.h>
71 #include <sys/zmod.h>
72 
73 #include <krtld/reloc.h>
74 #include <krtld/kobj_kdi.h>
75 #include <sys/sha1.h>
76 #include <sys/crypto/elfsign.h>
77 
78 #if !defined(_OBP)
79 #include <sys/bootvfs.h>
80 #endif
81 
82 /*
83  * do_symbols() error codes
84  */
85 #define	DOSYM_UNDEF		-1	/* undefined symbol */
86 #define	DOSYM_UNSAFE		-2	/* MT-unsafe driver symbol */
87 
88 #if !defined(_OBP)
89 static void synthetic_bootaux(char *, val_t *);
90 #endif
91 
92 static struct module *load_exec(val_t *, char *);
93 static void load_linker(val_t *);
94 static struct modctl *add_primary(const char *filename, int);
95 static int bind_primary(val_t *, int);
96 static int load_primary(struct module *, int);
97 static int load_kmdb(val_t *);
98 static int get_progbits(struct module *, struct _buf *);
99 static int get_syms(struct module *, struct _buf *);
100 static int get_ctf(struct module *, struct _buf *);
101 static void get_signature(struct module *, struct _buf *);
102 static int do_common(struct module *);
103 static void add_dependent(struct module *, struct module *);
104 static int do_dependents(struct modctl *, char *, size_t);
105 static int do_symbols(struct module *, Elf64_Addr);
106 static void module_assign(struct modctl *, struct module *);
107 static void free_module_data(struct module *);
108 static char *depends_on(struct module *);
109 static char *getmodpath(const char *);
110 static char *basename(char *);
111 static void attr_val(val_t *);
112 static char *find_libmacro(char *);
113 static char *expand_libmacro(char *, char *, char *);
114 static int read_bootflags(void);
115 static int kobj_comp_setup(struct _buf *, struct compinfo *);
116 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t);
117 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t);
118 static int kobj_boot_open(char *, int);
119 static int kobj_boot_close(int);
120 static int kobj_boot_seek(int, off_t, off_t);
121 static int kobj_boot_read(int, caddr_t, size_t);
122 static int kobj_boot_fstat(int, struct bootstat *);
123 static int kobj_boot_compinfo(int, struct compinfo *);
124 
125 static Sym *lookup_one(struct module *, const char *);
126 static void sym_insert(struct module *, char *, symid_t);
127 static Sym *sym_lookup(struct module *, Sym *);
128 
129 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
130 static void kobjopen_free(struct kobjopen_tctl *ltp);
131 static void kobjopen_thread(struct kobjopen_tctl *ltp);
132 static int kobj_is_compressed(intptr_t);
133 
134 extern int kcopy(const void *, void *, size_t);
135 extern int elf_mach_ok(Ehdr *);
136 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
137 
138 #if !defined(_OBP)
139 extern int kobj_boot_mountroot(void);
140 #endif
141 
142 static void tnf_unsplice_probes(uint_t, struct modctl *);
143 extern tnf_probe_control_t *__tnf_probe_list_head;
144 extern tnf_tag_data_t *__tnf_tag_list_head;
145 
146 extern int modrootloaded;
147 extern int swaploaded;
148 extern int bop_io_quiesced;
149 extern int last_module_id;
150 
151 extern char stubs_base[];
152 extern char stubs_end[];
153 
154 #ifdef KOBJ_DEBUG
155 /*
156  * Values that can be or'd in to kobj_debug and their effects:
157  *
158  *	D_DEBUG		- misc. debugging information.
159  *	D_SYMBOLS	- list symbols and their values as they are entered
160  *			  into the hash table
161  *	D_RELOCATIONS	- display relocation processing information
162  *	D_LOADING	- display information about each module as it
163  *			  is loaded.
164  */
165 int kobj_debug = 0;
166 
167 #define	KOBJ_MARK(s)	if (kobj_debug & D_DEBUG)	\
168 	(_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
169 #else
170 #define	KOBJ_MARK(s)	/* discard */
171 #endif
172 
173 #define	MODPATH_PROPNAME	"module-path"
174 
175 #ifdef MODDIR_SUFFIX
176 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
177 #else
178 #define	slash_moddir_suffix_slash	""
179 #endif
180 
181 #define	_moddebug	get_weakish_int(&moddebug)
182 #define	_modrootloaded	get_weakish_int(&modrootloaded)
183 #define	_swaploaded	get_weakish_int(&swaploaded)
184 #define	_ioquiesced	get_weakish_int(&bop_io_quiesced)
185 
186 #define	mod(X)		(struct module *)((X)->modl_modp->mod_mp)
187 
188 void	*romp;		/* rom vector (opaque to us) */
189 struct bootops *ops;	/* bootops vector */
190 void *dbvec;		/* debug vector */
191 
192 /*
193  * kobjopen thread control structure
194  */
195 struct kobjopen_tctl {
196 	ksema_t		sema;
197 	char		*name;		/* name of file */
198 	struct vnode	*vp;		/* vnode return from vn_open() */
199 	int		Errno;		/* error return from vnopen    */
200 };
201 
202 /*
203  * Structure for defining dynamically expandable library macros
204  */
205 
206 struct lib_macro_info {
207 	char	*lmi_list;		/* ptr to list of possible choices */
208 	char	*lmi_macroname;		/* pointer to macro name */
209 	ushort_t lmi_ba_index;		/* index into bootaux vector */
210 	ushort_t lmi_macrolen;		/* macro length */
211 } libmacros[] = {
212 	{ NULL, "CPU", BA_CPU, 0 },
213 	{ NULL, "MMU", BA_MMU, 0 }
214 };
215 
216 #define	NLIBMACROS	sizeof (libmacros) / sizeof (struct lib_macro_info)
217 
218 char *boot_cpu_compatible_list;			/* make $CPU available */
219 
220 char *kobj_module_path;				/* module search path */
221 vmem_t	*text_arena;				/* module text arena */
222 static vmem_t *data_arena;			/* module data & bss arena */
223 static vmem_t *ctf_arena;			/* CTF debug data arena */
224 static struct modctl *kobj_modules = NULL;	/* modules loaded */
225 int kobj_mmu_pagesize;				/* system pagesize */
226 static int lg_pagesize;				/* "large" pagesize */
227 static int kobj_last_module_id = 0;		/* id assignment */
228 static kmutex_t kobj_lock;			/* protects mach memory list */
229 
230 /*
231  * The following functions have been implemented by the kernel.
232  * However, many 3rd party drivers provide their own implementations
233  * of these functions.  When such drivers are loaded, messages
234  * indicating that these symbols have been multiply defined will be
235  * emitted to the console.  To avoid alarming customers for no good
236  * reason, we simply suppress such warnings for the following set of
237  * functions.
238  */
239 static char *suppress_sym_list[] =
240 {
241 	"strstr",
242 	"strncat",
243 	"strlcat",
244 	"strlcpy",
245 	"strspn",
246 	"memcpy",
247 	"memset",
248 	"memmove",
249 	"memcmp",
250 	"memchr",
251 	"__udivdi3",
252 	"__divdi3",
253 	"__umoddi3",
254 	"__moddi3",
255 	NULL		/* This entry must exist */
256 };
257 
258 /* indexed by KOBJ_NOTIFY_* */
259 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
260 
261 /*
262  * TNF probe management globals
263  */
264 tnf_probe_control_t	*__tnf_probe_list_head = NULL;
265 tnf_tag_data_t		*__tnf_tag_list_head = NULL;
266 int			tnf_changed_probe_list = 0;
267 
268 /*
269  * Prefix for statically defined tracing (SDT) DTrace probes.
270  */
271 const char		*sdt_prefix = "__dtrace_probe_";
272 
273 /*
274  * Beginning and end of the kernel's dynamic text/data segments.
275  */
276 static caddr_t _text;
277 static caddr_t _etext;
278 static caddr_t _data;
279 
280 /*
281  * The sparc linker doesn't create a memory location
282  * for a variable named _edata, so _edata can only be
283  * referred to, not modified.  krtld needs a static
284  * variable to modify it - within krtld, of course -
285  * outside of krtld, e_data is used in all kernels.
286  */
287 #if defined(__sparc)
288 static caddr_t _edata;
289 #else
290 extern caddr_t _edata;
291 #endif
292 
293 Addr dynseg = 0;	/* load address of "dynamic" segment */
294 size_t dynsize;		/* "dynamic" segment size */
295 
296 
297 int standalone = 1;			/* an unwholey kernel? */
298 int use_iflush;				/* iflush after relocations */
299 
300 /*
301  * _kobj_printf() and _vkobj_printf()
302  *
303  * Common printf function pointer. Can handle only one conversion
304  * specification in the format string. Some of the functions invoked
305  * through this function pointer cannot handle more that one conversion
306  * specification in the format string.
307  */
308 void (*_kobj_printf)(void *, const char *, ...);	/* printf routine */
309 void (*_vkobj_printf)(void *, const char *, va_list);	/* vprintf routine */
310 
311 /*
312  * Standalone function pointers for use within krtld.
313  * Many platforms implement optimized platmod versions of
314  * utilities such as bcopy and any such are not yet available
315  * until the kernel is more completely stitched together.
316  * See kobj_impl.h
317  */
318 void (*kobj_bcopy)(const void *, void *, size_t);
319 void (*kobj_bzero)(void *, size_t);
320 size_t (*kobj_strlcat)(char *, const char *, size_t);
321 
322 static kobj_stat_t kobj_stat;
323 
324 #define	MINALIGN	8	/* at least a double-word */
325 
326 int
327 get_weakish_int(int *ip)
328 {
329 	if (standalone)
330 		return (0);
331 	return (ip == NULL ? 0 : *ip);
332 }
333 
334 static void *
335 get_weakish_pointer(void **ptrp)
336 {
337 	if (standalone)
338 		return (0);
339 	return (ptrp == NULL ? 0 : *ptrp);
340 }
341 
342 /*
343  * XXX fix dependencies on "kernel"; this should work
344  * for other standalone binaries as well.
345  *
346  * XXX Fix hashing code to use one pointer to
347  * hash entries.
348  *	|----------|
349  *	| nbuckets |
350  *	|----------|
351  *	| nchains  |
352  *	|----------|
353  *	| bucket[] |
354  *	|----------|
355  *	| chain[]  |
356  *	|----------|
357  */
358 
359 /*
360  * Load, bind and relocate all modules that
361  * form the primary kernel. At this point, our
362  * externals have not been relocated.
363  */
364 void
365 kobj_init(
366 	void *romvec,
367 	void *dvec,
368 	struct bootops *bootvec,
369 	val_t *bootaux)
370 {
371 	struct module *mp;
372 	struct modctl *modp;
373 	Addr entry;
374 	char filename[MAXPATHLEN];
375 
376 	/*
377 	 * Save these to pass on to
378 	 * the booted standalone.
379 	 */
380 	romp = romvec;
381 	dbvec = dvec;
382 
383 	ops = bootvec;
384 	kobj_setup_standalone_vectors();
385 
386 	KOBJ_MARK("Entered kobj_init()");
387 
388 	(void) BOP_GETPROP(ops, "whoami", filename);
389 
390 	/*
391 	 * We don't support standalone debuggers anymore.  The use of kadb
392 	 * will interfere with the later use of kmdb.  Let the user mend
393 	 * their ways now.  Users will reach this message if they still
394 	 * have the kadb binary on their system (perhaps they used an old
395 	 * bfu, or maybe they intentionally copied it there) and have
396 	 * specified its use in a way that eluded our checking in the boot
397 	 * program.
398 	 */
399 	if (dvec != NULL) {
400 		_kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
401 		    "kadb are no longer supported\n\n");
402 		goto fail;
403 	}
404 
405 #if defined(_OBP)
406 	/*
407 	 * OBP allows us to read both the ramdisk and
408 	 * the underlying root fs when root is a disk.
409 	 * This can lower incidences of unbootable systems
410 	 * when the archive is out-of-date with the /etc
411 	 * state files.
412 	 */
413 	if (BOP_MOUNTROOT() != BOOT_SVC_OK) {
414 		_kobj_printf(ops, "can't mount boot fs\n");
415 		goto fail;
416 	}
417 #else
418 	{
419 		/* on x86, we always boot with a ramdisk */
420 		(void) kobj_boot_mountroot();
421 
422 		/*
423 		 * Now that the ramdisk is mounted, finish boot property
424 		 * initialization.
425 		 */
426 		boot_prop_finish();
427 	}
428 
429 #if !defined(_UNIX_KRTLD)
430 	/*
431 	 * 'unix' is linked together with 'krtld' into one executable and
432 	 * the early boot code does -not- hand us any of the dynamic metadata
433 	 * about the executable. In particular, it does not read in, map or
434 	 * otherwise look at the program headers. We fake all that up now.
435 	 *
436 	 * We do this early as DTrace static probes and tnf probes both call
437 	 * undefined references.  We have to process those relocations before
438 	 * calling any of them.
439 	 *
440 	 * OBP tells kobj_start() where the ELF image is in memory, so it
441 	 * synthesized bootaux before kobj_init() was called
442 	 */
443 	if (bootaux[BA_PHDR].ba_ptr == NULL)
444 		synthetic_bootaux(filename, bootaux);
445 
446 #endif	/* !_UNIX_KRTLD */
447 #endif	/* _OBP */
448 
449 	/*
450 	 * Save the interesting attribute-values
451 	 * (scanned by kobj_boot).
452 	 */
453 	attr_val(bootaux);
454 
455 	/*
456 	 * Set the module search path.
457 	 */
458 	kobj_module_path = getmodpath(filename);
459 
460 	boot_cpu_compatible_list = find_libmacro("CPU");
461 
462 	/*
463 	 * These two modules have actually been
464 	 * loaded by boot, but we finish the job
465 	 * by introducing them into the world of
466 	 * loadable modules.
467 	 */
468 
469 	mp = load_exec(bootaux, filename);
470 	load_linker(bootaux);
471 
472 	/*
473 	 * Load all the primary dependent modules.
474 	 */
475 	if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
476 		goto fail;
477 
478 	/*
479 	 * Glue it together.
480 	 */
481 	if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
482 		goto fail;
483 
484 	entry = bootaux[BA_ENTRY].ba_val;
485 
486 	/*
487 	 * Get the boot flags
488 	 */
489 	bootflags(ops);
490 
491 	if (boothowto & RB_VERBOSE)
492 		kobj_lm_dump(KOBJ_LM_PRIMARY);
493 
494 	kobj_kdi_init();
495 
496 	if (boothowto & RB_KMDB) {
497 		if (load_kmdb(bootaux) < 0)
498 			goto fail;
499 	}
500 
501 	/*
502 	 * Post setup.
503 	 */
504 	s_text = _text;
505 	e_text = _etext;
506 	s_data = _data;
507 	e_data = _edata;
508 
509 	kobj_sync_instruction_memory(s_text, e_text - s_text);
510 
511 #ifdef	KOBJ_DEBUG
512 	if (kobj_debug & D_DEBUG)
513 		_kobj_printf(ops,
514 		    "krtld: transferring control to: 0x%p\n", entry);
515 #endif
516 
517 	/*
518 	 * Make sure the mod system knows about the modules already loaded.
519 	 */
520 	last_module_id = kobj_last_module_id;
521 	bcopy(kobj_modules, &modules, sizeof (modules));
522 	modp = &modules;
523 	do {
524 		if (modp->mod_next == kobj_modules)
525 			modp->mod_next = &modules;
526 		if (modp->mod_prev == kobj_modules)
527 			modp->mod_prev = &modules;
528 	} while ((modp = modp->mod_next) != &modules);
529 
530 	standalone = 0;
531 
532 #ifdef	KOBJ_DEBUG
533 	if (kobj_debug & D_DEBUG)
534 		_kobj_printf(ops,
535 		    "krtld: really transferring control to: 0x%p\n", entry);
536 #endif
537 
538 	/* restore printf/bcopy/bzero vectors before returning */
539 	kobj_restore_vectors();
540 
541 #if defined(_DBOOT)
542 	/*
543 	 * krtld was called from a dboot ELF section, the embedded
544 	 * dboot code contains the real entry via bootaux
545 	 */
546 	exitto((caddr_t)entry);
547 #else
548 	/*
549 	 * krtld was directly called from startup
550 	 */
551 	return;
552 #endif
553 
554 fail:
555 
556 	_kobj_printf(ops, "krtld: error during initial load/link phase\n");
557 
558 #if !defined(_UNIX_KRTLD)
559 	_kobj_printf(ops, "\n");
560 	_kobj_printf(ops, "krtld could neither locate nor resolve symbols"
561 	    " for:\n");
562 	_kobj_printf(ops, "    %s\n", filename);
563 	_kobj_printf(ops, "in the boot archive. Please verify that this"
564 	    " file\n");
565 	_kobj_printf(ops, "matches what is found in the boot archive.\n");
566 	_kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
567 	    " fix this.\n");
568 	bop_panic("Unable to boot");
569 #endif
570 }
571 
572 #if !defined(_UNIX_KRTLD) && !defined(_OBP)
573 /*
574  * Synthesize additional metadata that describes the executable if
575  * krtld's caller didn't do it.
576  *
577  * (When the dynamic executable has an interpreter, the boot program
578  * does all this for us.  Where we don't have an interpreter, (or a
579  * even a boot program, perhaps) we have to do this for ourselves.)
580  */
581 static void
582 synthetic_bootaux(char *filename, val_t *bootaux)
583 {
584 	Ehdr ehdr;
585 	caddr_t phdrbase;
586 	struct _buf *file;
587 	int i, n;
588 
589 	/*
590 	 * Elf header
591 	 */
592 	KOBJ_MARK("synthetic_bootaux()");
593 	KOBJ_MARK(filename);
594 	file = kobj_open_file(filename);
595 	if (file == (struct _buf *)-1) {
596 		_kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
597 		return;
598 	}
599 	KOBJ_MARK("reading program headers");
600 	if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
601 		_kobj_printf(ops, "krtld: %s: failed to read ehder\n",
602 		    filename);
603 		return;
604 	}
605 
606 	/*
607 	 * Program headers
608 	 */
609 	bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
610 	bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
611 	n = ehdr.e_phentsize * ehdr.e_phnum;
612 
613 	phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
614 
615 	if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
616 		_kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
617 		    filename);
618 		return;
619 	}
620 	bootaux[BA_PHDR].ba_ptr = phdrbase;
621 	kobj_close_file(file);
622 	KOBJ_MARK("closed file");
623 
624 	/*
625 	 * Find the dynamic section address
626 	 */
627 	for (i = 0; i < ehdr.e_phnum; i++) {
628 		Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
629 
630 		if (phdr->p_type == PT_DYNAMIC) {
631 			bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
632 			break;
633 		}
634 	}
635 	KOBJ_MARK("synthetic_bootaux() done");
636 }
637 #endif	/* !_UNIX_KRTLD && !_OBP */
638 
639 /*
640  * Set up any global information derived
641  * from attribute/values in the boot or
642  * aux vector.
643  */
644 static void
645 attr_val(val_t *bootaux)
646 {
647 	Phdr *phdr;
648 	int phnum, phsize;
649 	int i;
650 
651 	KOBJ_MARK("attr_val()");
652 	kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
653 	lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
654 	use_iflush = bootaux[BA_IFLUSH].ba_val;
655 
656 	phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
657 	phnum = bootaux[BA_PHNUM].ba_val;
658 	phsize = bootaux[BA_PHENT].ba_val;
659 	for (i = 0; i < phnum; i++) {
660 		phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
661 
662 		if (phdr->p_type != PT_LOAD) {
663 			continue;
664 		}
665 		/*
666 		 * Bounds of the various segments.
667 		 */
668 		if (!(phdr->p_flags & PF_X)) {
669 #if defined(_RELSEG)
670 			/*
671 			 * sparc kernel puts the dynamic info
672 			 * into a separate segment, which is
673 			 * free'd in bop_fini()
674 			 */
675 			ASSERT(phdr->p_vaddr != 0);
676 			dynseg = phdr->p_vaddr;
677 			dynsize = phdr->p_memsz;
678 #else
679 			ASSERT(phdr->p_vaddr == 0);
680 #endif
681 		} else {
682 			if (phdr->p_flags & PF_W) {
683 				_data = (caddr_t)phdr->p_vaddr;
684 				_edata = _data + phdr->p_memsz;
685 			} else {
686 				_text = (caddr_t)phdr->p_vaddr;
687 				_etext = _text + phdr->p_memsz;
688 			}
689 		}
690 	}
691 
692 	/* To do the kobj_alloc, _edata needs to be set. */
693 	for (i = 0; i < NLIBMACROS; i++) {
694 		if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
695 			libmacros[i].lmi_list = kobj_alloc(
696 			    strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
697 			    1, KM_WAIT);
698 			(void) strcpy(libmacros[i].lmi_list,
699 			    bootaux[libmacros[i].lmi_ba_index].ba_ptr);
700 		}
701 		libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
702 	}
703 }
704 
705 /*
706  * Set up the booted executable.
707  */
708 static struct module *
709 load_exec(val_t *bootaux, char *filename)
710 {
711 	struct modctl *cp;
712 	struct module *mp;
713 	Dyn *dyn;
714 	Sym *sp;
715 	int i, lsize, osize, nsize, allocsize;
716 	char *libname, *tmp;
717 	char path[MAXPATHLEN];
718 
719 #ifdef KOBJ_DEBUG
720 	if (kobj_debug & D_DEBUG)
721 		_kobj_printf(ops, "module path '%s'\n", kobj_module_path);
722 #endif
723 
724 	KOBJ_MARK("add_primary");
725 	cp = add_primary(filename, KOBJ_LM_PRIMARY);
726 
727 	KOBJ_MARK("struct module");
728 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
729 	cp->mod_mp = mp;
730 
731 	/*
732 	 * We don't have the following information
733 	 * since this module is an executable and not
734 	 * a relocatable .o.
735 	 */
736 	mp->symtbl_section = 0;
737 	mp->shdrs = NULL;
738 	mp->strhdr = NULL;
739 
740 	/*
741 	 * Since this module is the only exception,
742 	 * we cons up some section headers.
743 	 */
744 	KOBJ_MARK("symhdr");
745 	mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
746 
747 	KOBJ_MARK("strhdr");
748 	mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
749 
750 	mp->symhdr->sh_type = SHT_SYMTAB;
751 	mp->strhdr->sh_type = SHT_STRTAB;
752 	/*
753 	 * Scan the dynamic structure.
754 	 */
755 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
756 	    dyn->d_tag != DT_NULL; dyn++) {
757 		switch (dyn->d_tag) {
758 		case DT_SYMTAB:
759 			mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
760 			mp->symhdr->sh_addr = dyn->d_un.d_ptr;
761 			break;
762 		case DT_HASH:
763 			mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
764 			mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
765 			break;
766 		case DT_STRTAB:
767 			mp->strings = (char *)dyn->d_un.d_ptr;
768 			mp->strhdr->sh_addr = dyn->d_un.d_ptr;
769 			break;
770 		case DT_STRSZ:
771 			mp->strhdr->sh_size = dyn->d_un.d_val;
772 			break;
773 		case DT_SYMENT:
774 			mp->symhdr->sh_entsize = dyn->d_un.d_val;
775 			break;
776 		}
777 	}
778 
779 	/*
780 	 * Collapse any DT_NEEDED entries into one string.
781 	 */
782 	nsize = osize = 0;
783 	allocsize = MAXPATHLEN;
784 
785 	KOBJ_MARK("depends_on");
786 	mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
787 
788 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
789 	    dyn->d_tag != DT_NULL; dyn++)
790 		if (dyn->d_tag == DT_NEEDED) {
791 			char *_lib;
792 
793 			libname = mp->strings + dyn->d_un.d_val;
794 			if (strchr(libname, '$') != NULL) {
795 				if ((_lib = expand_libmacro(libname,
796 				    path, path)) != NULL)
797 					libname = _lib;
798 				else
799 					_kobj_printf(ops, "krtld: "
800 					    "load_exec: fail to "
801 					    "expand %s\n", libname);
802 			}
803 			lsize = strlen(libname);
804 			nsize += lsize;
805 			if (nsize + 1 > allocsize) {
806 				KOBJ_MARK("grow depends_on");
807 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
808 				    KM_WAIT);
809 				bcopy(mp->depends_on, tmp, osize);
810 				kobj_free(mp->depends_on, allocsize);
811 				mp->depends_on = tmp;
812 				allocsize += MAXPATHLEN;
813 			}
814 			bcopy(libname, mp->depends_on + osize, lsize);
815 			*(mp->depends_on + nsize) = ' '; /* separate */
816 			nsize++;
817 			osize = nsize;
818 		}
819 	if (nsize) {
820 		mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
821 		/*
822 		 * alloc with exact size and copy whatever it got over
823 		 */
824 		KOBJ_MARK("realloc depends_on");
825 		tmp = kobj_alloc(nsize, KM_WAIT);
826 		bcopy(mp->depends_on, tmp, nsize);
827 		kobj_free(mp->depends_on, allocsize);
828 		mp->depends_on = tmp;
829 	} else {
830 		kobj_free(mp->depends_on, allocsize);
831 		mp->depends_on = NULL;
832 	}
833 
834 	mp->flags = KOBJ_EXEC|KOBJ_PRIM;	/* NOT a relocatable .o */
835 	mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
836 	/*
837 	 * We allocate our own table since we don't
838 	 * hash undefined references.
839 	 */
840 	KOBJ_MARK("chains");
841 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
842 	KOBJ_MARK("buckets");
843 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
844 
845 	mp->text = _text;
846 	mp->data = _data;
847 
848 	mp->text_size = _etext - _text;
849 	mp->data_size = _edata - _data;
850 
851 	cp->mod_text = mp->text;
852 	cp->mod_text_size = mp->text_size;
853 
854 	mp->filename = cp->mod_filename;
855 
856 #ifdef	KOBJ_DEBUG
857 	if (kobj_debug & D_LOADING) {
858 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
859 		_kobj_printf(ops, "\ttext: 0x%p", mp->text);
860 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
861 		_kobj_printf(ops, "\tdata: 0x%p", mp->data);
862 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
863 	}
864 #endif /* KOBJ_DEBUG */
865 
866 	/*
867 	 * Insert symbols into the hash table.
868 	 */
869 	for (i = 0; i < mp->nsyms; i++) {
870 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
871 
872 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
873 			continue;
874 #if defined(__sparc)
875 		/*
876 		 * Register symbols are ignored in the kernel
877 		 */
878 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
879 			continue;
880 #endif	/* __sparc */
881 
882 		sym_insert(mp, mp->strings + sp->st_name, i);
883 	}
884 
885 	KOBJ_MARK("load_exec done");
886 	return (mp);
887 }
888 
889 /*
890  * Set up the linker module (if it's compiled in, LDNAME is NULL)
891  */
892 static void
893 load_linker(val_t *bootaux)
894 {
895 	struct module *kmp = (struct module *)kobj_modules->mod_mp;
896 	struct module *mp;
897 	struct modctl *cp;
898 	int i;
899 	Shdr *shp;
900 	Sym *sp;
901 	int shsize;
902 	char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
903 
904 	/*
905 	 * On some architectures, krtld is compiled into the kernel.
906 	 */
907 	if (dlname == NULL)
908 		return;
909 
910 	cp = add_primary(dlname, KOBJ_LM_PRIMARY);
911 
912 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
913 
914 	cp->mod_mp = mp;
915 	mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
916 	shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
917 	mp->shdrs = kobj_alloc(shsize, KM_WAIT);
918 	bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
919 
920 	for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
921 		shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
922 
923 		if (shp->sh_flags & SHF_ALLOC) {
924 			if (shp->sh_flags & SHF_WRITE) {
925 				if (mp->data == NULL)
926 					mp->data = (char *)shp->sh_addr;
927 			} else if (mp->text == NULL) {
928 				mp->text = (char *)shp->sh_addr;
929 			}
930 		}
931 		if (shp->sh_type == SHT_SYMTAB) {
932 			mp->symtbl_section = i;
933 			mp->symhdr = shp;
934 			mp->symspace = mp->symtbl = (char *)shp->sh_addr;
935 		}
936 	}
937 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
938 	mp->flags = KOBJ_INTERP|KOBJ_PRIM;
939 	mp->strhdr = (Shdr *)
940 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
941 	mp->strings = (char *)mp->strhdr->sh_addr;
942 	mp->hashsize = kobj_gethashsize(mp->nsyms);
943 
944 	mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
945 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t);
946 
947 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
948 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
949 
950 	mp->bss = bootaux[BA_BSS].ba_val;
951 	mp->bss_align = 0;	/* pre-aligned during allocation */
952 	mp->bss_size = (uintptr_t)_edata - mp->bss;
953 	mp->text_size = _etext - mp->text;
954 	mp->data_size = _edata - mp->data;
955 	mp->filename = cp->mod_filename;
956 	cp->mod_text = mp->text;
957 	cp->mod_text_size = mp->text_size;
958 
959 	/*
960 	 * Now that we've figured out where the linker is,
961 	 * set the limits for the booted object.
962 	 */
963 	kmp->text_size = (size_t)(mp->text - kmp->text);
964 	kmp->data_size = (size_t)(mp->data - kmp->data);
965 	kobj_modules->mod_text_size = kmp->text_size;
966 
967 #ifdef	KOBJ_DEBUG
968 	if (kobj_debug & D_LOADING) {
969 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
970 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
971 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
972 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
973 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
974 	}
975 #endif /* KOBJ_DEBUG */
976 
977 	/*
978 	 * Insert the symbols into the hash table.
979 	 */
980 	for (i = 0; i < mp->nsyms; i++) {
981 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
982 
983 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
984 			continue;
985 		if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
986 			if (sp->st_shndx == SHN_COMMON)
987 				sp->st_shndx = SHN_ABS;
988 		}
989 		sym_insert(mp, mp->strings + sp->st_name, i);
990 	}
991 
992 }
993 
994 static kobj_notify_list_t **
995 kobj_notify_lookup(uint_t type)
996 {
997 	ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
998 	    sizeof (kobj_notify_list_t *));
999 
1000 	return (&kobj_notifiers[type]);
1001 }
1002 
1003 int
1004 kobj_notify_add(kobj_notify_list_t *knp)
1005 {
1006 	kobj_notify_list_t **knl;
1007 
1008 	knl = kobj_notify_lookup(knp->kn_type);
1009 
1010 	knp->kn_next = NULL;
1011 	knp->kn_prev = NULL;
1012 
1013 	mutex_enter(&kobj_lock);
1014 
1015 	if (*knl != NULL) {
1016 		(*knl)->kn_prev = knp;
1017 		knp->kn_next = *knl;
1018 	}
1019 	(*knl) = knp;
1020 
1021 	mutex_exit(&kobj_lock);
1022 	return (0);
1023 }
1024 
1025 int
1026 kobj_notify_remove(kobj_notify_list_t *knp)
1027 {
1028 	kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1029 	kobj_notify_list_t *tknp;
1030 
1031 	mutex_enter(&kobj_lock);
1032 
1033 	/* LINTED */
1034 	if (tknp = knp->kn_next)
1035 		tknp->kn_prev = knp->kn_prev;
1036 
1037 	/* LINTED */
1038 	if (tknp = knp->kn_prev)
1039 		tknp->kn_next = knp->kn_next;
1040 	else
1041 		*knl = knp->kn_next;
1042 
1043 	mutex_exit(&kobj_lock);
1044 
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Notify all interested callbacks of a specified change in module state.
1050  */
1051 static void
1052 kobj_notify(int type, struct modctl *modp)
1053 {
1054 	kobj_notify_list_t *knp;
1055 
1056 	if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1057 		return;
1058 
1059 	mutex_enter(&kobj_lock);
1060 
1061 	for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1062 		knp->kn_func(type, modp);
1063 
1064 	/*
1065 	 * KDI notification must be last (it has to allow for work done by the
1066 	 * other notification callbacks), so we call it manually.
1067 	 */
1068 	kobj_kdi_mod_notify(type, modp);
1069 
1070 	mutex_exit(&kobj_lock);
1071 }
1072 
1073 /*
1074  * Create the module path.
1075  */
1076 static char *
1077 getmodpath(const char *filename)
1078 {
1079 	char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT);
1080 
1081 	/*
1082 	 * Platform code gets first crack, then add
1083 	 * the default components
1084 	 */
1085 	mach_modpath(path, filename);
1086 	if (*path != '\0')
1087 		(void) strcat(path, " ");
1088 	return (strcat(path, MOD_DEFPATH));
1089 }
1090 
1091 static struct modctl *
1092 add_primary(const char *filename, int lmid)
1093 {
1094 	struct modctl *cp;
1095 
1096 	cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1097 
1098 	cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1099 
1100 	/*
1101 	 * For symbol lookup, we assemble our own
1102 	 * modctl list of the primary modules.
1103 	 */
1104 
1105 	(void) strcpy(cp->mod_filename, filename);
1106 	cp->mod_modname = basename(cp->mod_filename);
1107 
1108 	/* set values for modinfo assuming that the load will work */
1109 	cp->mod_prim = 1;
1110 	cp->mod_loaded = 1;
1111 	cp->mod_installed = 1;
1112 	cp->mod_loadcnt = 1;
1113 	cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1114 
1115 	cp->mod_id = kobj_last_module_id++;
1116 
1117 	/*
1118 	 * Link the module in. We'll pass this info on
1119 	 * to the mod squad later.
1120 	 */
1121 	if (kobj_modules == NULL) {
1122 		kobj_modules = cp;
1123 		cp->mod_prev = cp->mod_next = cp;
1124 	} else {
1125 		cp->mod_prev = kobj_modules->mod_prev;
1126 		cp->mod_next = kobj_modules;
1127 		kobj_modules->mod_prev->mod_next = cp;
1128 		kobj_modules->mod_prev = cp;
1129 	}
1130 
1131 	kobj_lm_append(lmid, cp);
1132 
1133 	return (cp);
1134 }
1135 
1136 static int
1137 bind_primary(val_t *bootaux, int lmid)
1138 {
1139 	struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1140 	struct modctl_list *lp;
1141 	struct module *mp;
1142 
1143 	/*
1144 	 * Do common symbols.
1145 	 */
1146 	for (lp = linkmap; lp; lp = lp->modl_next) {
1147 		mp = mod(lp);
1148 
1149 		/*
1150 		 * Don't do common section relocations for modules that
1151 		 * don't need it.
1152 		 */
1153 		if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1154 			continue;
1155 
1156 		if (do_common(mp) < 0)
1157 			return (-1);
1158 	}
1159 
1160 	/*
1161 	 * Resolve symbols.
1162 	 */
1163 	for (lp = linkmap; lp; lp = lp->modl_next) {
1164 		mp = mod(lp);
1165 
1166 		if (do_symbols(mp, 0) < 0)
1167 			return (-1);
1168 	}
1169 
1170 	/*
1171 	 * Do relocations.
1172 	 */
1173 	for (lp = linkmap; lp; lp = lp->modl_next) {
1174 		mp = mod(lp);
1175 
1176 		if (mp->flags & KOBJ_EXEC) {
1177 			Dyn *dyn;
1178 			Word relasz = 0, relaent = 0;
1179 			Word shtype;
1180 			char *rela = NULL;
1181 
1182 			for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1183 			    dyn->d_tag != DT_NULL; dyn++) {
1184 				switch (dyn->d_tag) {
1185 				case DT_RELASZ:
1186 				case DT_RELSZ:
1187 					relasz = dyn->d_un.d_val;
1188 					break;
1189 				case DT_RELAENT:
1190 				case DT_RELENT:
1191 					relaent = dyn->d_un.d_val;
1192 					break;
1193 				case DT_RELA:
1194 					shtype = SHT_RELA;
1195 					rela = (char *)dyn->d_un.d_ptr;
1196 					break;
1197 				case DT_REL:
1198 					shtype = SHT_REL;
1199 					rela = (char *)dyn->d_un.d_ptr;
1200 					break;
1201 				}
1202 			}
1203 			if (relasz == 0 ||
1204 			    relaent == 0 || rela == NULL) {
1205 				_kobj_printf(ops, "krtld: bind_primary(): "
1206 				    "no relocation information found for "
1207 				    "module %s\n", mp->filename);
1208 				return (-1);
1209 			}
1210 #ifdef	KOBJ_DEBUG
1211 			if (kobj_debug & D_RELOCATIONS)
1212 				_kobj_printf(ops, "krtld: relocating: file=%s "
1213 				    "KOBJ_EXEC\n", mp->filename);
1214 #endif
1215 			if (do_relocate(mp, rela, shtype, relasz/relaent,
1216 			    relaent, (Addr)mp->text) < 0)
1217 				return (-1);
1218 		} else {
1219 			if (do_relocations(mp) < 0)
1220 				return (-1);
1221 		}
1222 
1223 		kobj_sync_instruction_memory(mp->text, mp->text_size);
1224 	}
1225 
1226 	for (lp = linkmap; lp; lp = lp->modl_next) {
1227 		mp = mod(lp);
1228 
1229 		/*
1230 		 * We need to re-read the full symbol table for the boot file,
1231 		 * since we couldn't use the full one before.  We also need to
1232 		 * load the CTF sections of both the boot file and the
1233 		 * interpreter (us).
1234 		 */
1235 		if (mp->flags & KOBJ_EXEC) {
1236 			struct _buf *file;
1237 			int n;
1238 
1239 			file = kobj_open_file(mp->filename);
1240 			if (file == (struct _buf *)-1)
1241 				return (-1);
1242 			if (kobj_read_file(file, (char *)&mp->hdr,
1243 			    sizeof (mp->hdr), 0) < 0)
1244 				return (-1);
1245 			n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1246 			mp->shdrs = kobj_alloc(n, KM_WAIT);
1247 			if (kobj_read_file(file, mp->shdrs, n,
1248 			    mp->hdr.e_shoff) < 0)
1249 				return (-1);
1250 			if (get_syms(mp, file) < 0)
1251 				return (-1);
1252 			if (get_ctf(mp, file) < 0)
1253 				return (-1);
1254 			kobj_close_file(file);
1255 			mp->flags |= KOBJ_RELOCATED;
1256 
1257 		} else if (mp->flags & KOBJ_INTERP) {
1258 			struct _buf *file;
1259 
1260 			/*
1261 			 * The interpreter path fragment in mp->filename
1262 			 * will already have the module directory suffix
1263 			 * in it (if appropriate).
1264 			 */
1265 			file = kobj_open_path(mp->filename, 1, 0);
1266 			if (file == (struct _buf *)-1)
1267 				return (-1);
1268 			if (get_ctf(mp, file) < 0)
1269 				return (-1);
1270 			kobj_close_file(file);
1271 			mp->flags |= KOBJ_RELOCATED;
1272 		}
1273 	}
1274 
1275 	return (0);
1276 }
1277 
1278 static struct modctl *
1279 mod_already_loaded(char *modname)
1280 {
1281 	struct modctl *mctl = kobj_modules;
1282 
1283 	do {
1284 		if (strcmp(modname, mctl->mod_filename) == 0)
1285 			return (mctl);
1286 		mctl = mctl->mod_next;
1287 
1288 	} while (mctl != kobj_modules);
1289 
1290 	return (NULL);
1291 }
1292 
1293 /*
1294  * Load all the primary dependent modules.
1295  */
1296 static int
1297 load_primary(struct module *mp, int lmid)
1298 {
1299 	struct modctl *cp;
1300 	struct module *dmp;
1301 	char *p, *q;
1302 	char modname[MODMAXNAMELEN];
1303 
1304 	if ((p = mp->depends_on) == NULL)
1305 		return (0);
1306 
1307 	/* CONSTANTCONDITION */
1308 	while (1) {
1309 		/*
1310 		 * Skip space.
1311 		 */
1312 		while (*p && (*p == ' ' || *p == '\t'))
1313 			p++;
1314 		/*
1315 		 * Get module name.
1316 		 */
1317 		q = modname;
1318 		while (*p && *p != ' ' && *p != '\t')
1319 			*q++ = *p++;
1320 
1321 		if (q == modname)
1322 			break;
1323 
1324 		*q = '\0';
1325 		/*
1326 		 * Check for dup dependencies.
1327 		 */
1328 		if (strcmp(modname, "dtracestubs") == 0 ||
1329 		    mod_already_loaded(modname) != NULL)
1330 			continue;
1331 
1332 		cp = add_primary(modname, lmid);
1333 		cp->mod_busy = 1;
1334 		/*
1335 		 * Load it.
1336 		 */
1337 		(void) kobj_load_module(cp, 1);
1338 		cp->mod_busy = 0;
1339 
1340 		if ((dmp = cp->mod_mp) == NULL) {
1341 			cp->mod_loaded = 0;
1342 			cp->mod_installed = 0;
1343 			cp->mod_loadcnt = 0;
1344 			return (-1);
1345 		}
1346 
1347 		add_dependent(mp, dmp);
1348 		dmp->flags |= KOBJ_PRIM;
1349 
1350 		/*
1351 		 * Recurse.
1352 		 */
1353 		if (load_primary(dmp, lmid) == -1) {
1354 			cp->mod_loaded = 0;
1355 			cp->mod_installed = 0;
1356 			cp->mod_loadcnt = 0;
1357 			return (-1);
1358 		}
1359 	}
1360 	return (0);
1361 }
1362 
1363 static int
1364 console_is_usb_serial(void)
1365 {
1366 	char *console;
1367 	int len, ret;
1368 
1369 	if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1370 		return (0);
1371 
1372 	console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1373 	(void) BOP_GETPROP(ops, "console", console);
1374 	ret = (strcmp(console, "usb-serial") == 0);
1375 	kobj_free(console, len);
1376 
1377 	return (ret);
1378 }
1379 
1380 static int
1381 load_kmdb(val_t *bootaux)
1382 {
1383 	struct modctl *mctl;
1384 	struct module *mp;
1385 	Sym *sym;
1386 
1387 	if (console_is_usb_serial()) {
1388 		_kobj_printf(ops, "kmdb not loaded "
1389 		    "(unsupported on usb serial console)\n");
1390 		return (0);
1391 	}
1392 
1393 	_kobj_printf(ops, "Loading kmdb...\n");
1394 
1395 	if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1396 		return (-1);
1397 
1398 	mctl->mod_busy = 1;
1399 	(void) kobj_load_module(mctl, 1);
1400 	mctl->mod_busy = 0;
1401 
1402 	if ((mp = mctl->mod_mp) == NULL)
1403 		return (-1);
1404 
1405 	mp->flags |= KOBJ_PRIM;
1406 
1407 	if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1408 		return (-1);
1409 
1410 	if (boothowto & RB_VERBOSE)
1411 		kobj_lm_dump(KOBJ_LM_DEBUGGER);
1412 
1413 	if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1414 		return (-1);
1415 
1416 	if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1417 		return (-1);
1418 
1419 #ifdef	KOBJ_DEBUG
1420 	if (kobj_debug & D_DEBUG) {
1421 		_kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1422 		    sym->st_value);
1423 		_kobj_printf(ops, "\tops 0x%p\n", ops);
1424 		_kobj_printf(ops, "\tromp 0x%p\n", romp);
1425 	}
1426 #endif
1427 
1428 	if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1429 	    (const char **)kobj_kmdb_argv) < 0)
1430 		return (-1);
1431 
1432 	return (0);
1433 }
1434 
1435 /*
1436  * Return a string listing module dependencies.
1437  */
1438 static char *
1439 depends_on(struct module *mp)
1440 {
1441 	Sym *sp;
1442 	char *depstr, *q;
1443 
1444 	/*
1445 	 * The module doesn't have a depends_on value, so let's try it the
1446 	 * old-fashioned way - via "_depends_on"
1447 	 */
1448 	if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1449 		return (NULL);
1450 
1451 	q = (char *)sp->st_value;
1452 
1453 #ifdef KOBJ_DEBUG
1454 	/*
1455 	 * _depends_on is a deprecated interface, so we warn about its use
1456 	 * irrespective of subsequent processing errors. How else are we going
1457 	 * to be able to deco this interface completely?
1458 	 * Changes initially limited to DEBUG because third-party modules
1459 	 * should be flagged to developers before general use base.
1460 	 */
1461 	_kobj_printf(ops,
1462 	    "Warning: %s uses deprecated _depends_on interface.\n",
1463 	    mp->filename);
1464 	_kobj_printf(ops, "Please notify module developer or vendor.\n");
1465 #endif
1466 
1467 	/*
1468 	 * Idiot checks. Make sure it's
1469 	 * in-bounds and NULL terminated.
1470 	 */
1471 	if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1472 		_kobj_printf(ops, "Error processing dependency for %s\n",
1473 		    mp->filename);
1474 		return (NULL);
1475 	}
1476 
1477 	depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1478 	(void) strcpy(depstr, q);
1479 
1480 	return (depstr);
1481 }
1482 
1483 void
1484 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1485 {
1486 	struct module *mp;
1487 	mp = (struct module *)xmp;
1488 
1489 	modinfo->mi_base = mp->text;
1490 	modinfo->mi_size = mp->text_size + mp->data_size;
1491 }
1492 
1493 /*
1494  * kobj_export_ksyms() performs the following services:
1495  *
1496  * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1497  * (2) Removes unneeded symbols to save space.
1498  * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1499  * (4) Makes the symbol table visible to /dev/ksyms.
1500  */
1501 static void
1502 kobj_export_ksyms(struct module *mp)
1503 {
1504 	Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1505 	Sym *sp, *osp;
1506 	char *name;
1507 	size_t namelen;
1508 	struct module *omp;
1509 	uint_t nsyms;
1510 	size_t symsize = mp->symhdr->sh_entsize;
1511 	size_t locals = 1;
1512 	size_t strsize;
1513 
1514 	/*
1515 	 * Make a copy of the original module structure.
1516 	 */
1517 	omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1518 	bcopy(mp, omp, sizeof (struct module));
1519 
1520 	/*
1521 	 * Compute the sizes of the new symbol table sections.
1522 	 */
1523 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1524 		if (osp->st_value == 0)
1525 			continue;
1526 		if (sym_lookup(omp, osp) == NULL)
1527 			continue;
1528 		name = omp->strings + osp->st_name;
1529 		namelen = strlen(name);
1530 		if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1531 			locals++;
1532 		nsyms++;
1533 		strsize += namelen + 1;
1534 	}
1535 
1536 	mp->nsyms = nsyms;
1537 	mp->hashsize = kobj_gethashsize(mp->nsyms);
1538 
1539 	/*
1540 	 * ksyms_lock must be held as writer during any operation that
1541 	 * modifies ksyms_arena, including allocation from same, and
1542 	 * must not be dropped until the arena is vmem_walk()able.
1543 	 */
1544 	rw_enter(&ksyms_lock, RW_WRITER);
1545 
1546 	/*
1547 	 * Allocate space for the new section headers (symtab and strtab),
1548 	 * symbol table, buckets, chains, and strings.
1549 	 */
1550 	mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1551 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1552 
1553 	if (mp->flags & KOBJ_NOKSYMS) {
1554 		mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1555 	} else {
1556 		mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1557 		    VM_BESTFIT | VM_SLEEP);
1558 	}
1559 	bzero(mp->symspace, mp->symsize);
1560 
1561 	/*
1562 	 * Divvy up symspace.
1563 	 */
1564 	mp->shdrs = mp->symspace;
1565 	mp->symhdr = (Shdr *)mp->shdrs;
1566 	mp->strhdr = (Shdr *)(mp->symhdr + 1);
1567 	mp->symtbl = (char *)(mp->strhdr + 1);
1568 	mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1569 	mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1570 	mp->strings = (char *)(mp->chains + nsyms);
1571 
1572 	/*
1573 	 * Fill in the new section headers (symtab and strtab).
1574 	 */
1575 	mp->hdr.e_shnum = 2;
1576 	mp->symtbl_section = 0;
1577 
1578 	mp->symhdr->sh_type = SHT_SYMTAB;
1579 	mp->symhdr->sh_addr = (Addr)mp->symtbl;
1580 	mp->symhdr->sh_size = nsyms * symsize;
1581 	mp->symhdr->sh_link = 1;
1582 	mp->symhdr->sh_info = locals;
1583 	mp->symhdr->sh_addralign = sizeof (Addr);
1584 	mp->symhdr->sh_entsize = symsize;
1585 
1586 	mp->strhdr->sh_type = SHT_STRTAB;
1587 	mp->strhdr->sh_addr = (Addr)mp->strings;
1588 	mp->strhdr->sh_size = strsize;
1589 	mp->strhdr->sh_addralign = 1;
1590 
1591 	/*
1592 	 * Construct the new symbol table.
1593 	 */
1594 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1595 		if (osp->st_value == 0)
1596 			continue;
1597 		if (sym_lookup(omp, osp) == NULL)
1598 			continue;
1599 		name = omp->strings + osp->st_name;
1600 		namelen = strlen(name);
1601 		sp = (Sym *)(mp->symtbl + symsize * nsyms);
1602 		bcopy(osp, sp, symsize);
1603 		bcopy(name, mp->strings + strsize, namelen);
1604 		sp->st_name = strsize;
1605 		sym_insert(mp, name, nsyms);
1606 		nsyms++;
1607 		strsize += namelen + 1;
1608 	}
1609 
1610 	rw_exit(&ksyms_lock);
1611 
1612 	/*
1613 	 * Free the old section headers -- we'll never need them again.
1614 	 */
1615 	if (!(mp->flags & KOBJ_PRIM)) {
1616 		uint_t	shn;
1617 		Shdr	*shp;
1618 
1619 		for (shn = 1; shn < omp->hdr.e_shnum; shn++) {
1620 			shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1621 			switch (shp->sh_type) {
1622 			case SHT_RELA:
1623 			case SHT_REL:
1624 				if (shp->sh_addr != 0) {
1625 					kobj_free((void *)shp->sh_addr,
1626 					    shp->sh_size);
1627 				}
1628 				break;
1629 			}
1630 		}
1631 		kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1632 	}
1633 	/*
1634 	 * Discard the old symbol table and our copy of the module strucure.
1635 	 */
1636 	if (!(mp->flags & KOBJ_PRIM))
1637 		kobj_free(omp->symspace, omp->symsize);
1638 	kobj_free(omp, sizeof (struct module));
1639 }
1640 
1641 static void
1642 kobj_export_ctf(struct module *mp)
1643 {
1644 	char *data = mp->ctfdata;
1645 	size_t size = mp->ctfsize;
1646 
1647 	if (data != NULL) {
1648 		if (_moddebug & MODDEBUG_NOCTF) {
1649 			mp->ctfdata = NULL;
1650 			mp->ctfsize = 0;
1651 		} else {
1652 			mp->ctfdata = vmem_alloc(ctf_arena, size,
1653 			    VM_BESTFIT | VM_SLEEP);
1654 			bcopy(data, mp->ctfdata, size);
1655 		}
1656 
1657 		if (!(mp->flags & KOBJ_PRIM))
1658 			kobj_free(data, size);
1659 	}
1660 }
1661 
1662 void
1663 kobj_export_module(struct module *mp)
1664 {
1665 	kobj_export_ksyms(mp);
1666 	kobj_export_ctf(mp);
1667 
1668 	mp->flags |= KOBJ_EXPORTED;
1669 }
1670 
1671 static int
1672 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1673 {
1674 	char *path = NULL, *depstr = NULL;
1675 	int allocsize = 0, osize = 0, nsize = 0;
1676 	char *libname, *tmp;
1677 	int lsize;
1678 	Dyn *dynp;
1679 
1680 	for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1681 		switch (dynp->d_tag) {
1682 		case DT_NEEDED:
1683 			/*
1684 			 * Read the DT_NEEDED entries, expanding the macros they
1685 			 * contain (if any), and concatenating them into a
1686 			 * single space-separated dependency list.
1687 			 */
1688 			libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1689 
1690 			if (strchr(libname, '$') != NULL) {
1691 				char *_lib;
1692 
1693 				if (path == NULL)
1694 					path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1695 				if ((_lib = expand_libmacro(libname, path,
1696 				    path)) != NULL)
1697 					libname = _lib;
1698 				else {
1699 					_kobj_printf(ops, "krtld: "
1700 					    "process_dynamic: failed to expand "
1701 					    "%s\n", libname);
1702 				}
1703 			}
1704 
1705 			lsize = strlen(libname);
1706 			nsize += lsize;
1707 			if (nsize + 1 > allocsize) {
1708 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
1709 				    KM_WAIT);
1710 				if (depstr != NULL) {
1711 					bcopy(depstr, tmp, osize);
1712 					kobj_free(depstr, allocsize);
1713 				}
1714 				depstr = tmp;
1715 				allocsize += MAXPATHLEN;
1716 			}
1717 			bcopy(libname, depstr + osize, lsize);
1718 			*(depstr + nsize) = ' '; /* separator */
1719 			nsize++;
1720 			osize = nsize;
1721 			break;
1722 
1723 		case DT_FLAGS_1:
1724 			if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1725 				mp->flags |= KOBJ_IGNMULDEF;
1726 			if (dynp->d_un.d_val & DF_1_NOKSYMS)
1727 				mp->flags |= KOBJ_NOKSYMS;
1728 
1729 			break;
1730 		}
1731 	}
1732 
1733 	/*
1734 	 * finish up the depends string (if any)
1735 	 */
1736 	if (depstr != NULL) {
1737 		*(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */
1738 		if (path != NULL)
1739 			kobj_free(path, MAXPATHLEN);
1740 
1741 		tmp = kobj_alloc(nsize, KM_WAIT);
1742 		bcopy(depstr, tmp, nsize);
1743 		kobj_free(depstr, allocsize);
1744 		depstr = tmp;
1745 
1746 		mp->depends_on = depstr;
1747 	}
1748 
1749 	return (0);
1750 }
1751 
1752 static int
1753 do_dynamic(struct module *mp, struct _buf *file)
1754 {
1755 	Shdr *dshp, *dstrp, *shp;
1756 	char *dyndata, *dstrdata;
1757 	int dshn, shn, rc;
1758 
1759 	/* find and validate the dynamic section (if any) */
1760 
1761 	for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1762 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1763 		switch (shp->sh_type) {
1764 		case SHT_DYNAMIC:
1765 			if (dshp != NULL) {
1766 				_kobj_printf(ops, "krtld: get_dynamic: %s, ",
1767 				    mp->filename);
1768 				_kobj_printf(ops,
1769 				    "multiple dynamic sections\n");
1770 				return (-1);
1771 			} else {
1772 				dshp = shp;
1773 				dshn = shn;
1774 			}
1775 			break;
1776 		}
1777 	}
1778 
1779 	if (dshp == NULL)
1780 		return (0);
1781 
1782 	if (dshp->sh_link > mp->hdr.e_shnum) {
1783 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1784 		_kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1785 		return (-1);
1786 	}
1787 	dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1788 
1789 	if (dstrp->sh_type != SHT_STRTAB) {
1790 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1791 		_kobj_printf(ops, "sh_link not a string table for section %d\n",
1792 		    dshn);
1793 		return (-1);
1794 	}
1795 
1796 	/* read it from disk */
1797 
1798 	dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1799 	if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1800 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1801 		_kobj_printf(ops, "error reading section %d\n", dshn);
1802 
1803 		kobj_free(dyndata, dshp->sh_size);
1804 		return (-1);
1805 	}
1806 
1807 	dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1808 	if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1809 	    dstrp->sh_offset) < 0) {
1810 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1811 		_kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1812 
1813 		kobj_free(dyndata, dshp->sh_size);
1814 		kobj_free(dstrdata, dstrp->sh_size);
1815 		return (-1);
1816 	}
1817 
1818 	/* pull the interesting pieces out */
1819 
1820 	rc = process_dynamic(mp, dyndata, dstrdata);
1821 
1822 	kobj_free(dyndata, dshp->sh_size);
1823 	kobj_free(dstrdata, dstrp->sh_size);
1824 
1825 	return (rc);
1826 }
1827 
1828 void
1829 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1830 {
1831 	if (!standalone) {
1832 		if (mp->ctfdata != NULL) {
1833 			if (vmem_contains(ctf_arena, mp->ctfdata,
1834 			    mp->ctfsize)) {
1835 				vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1836 			} else {
1837 				kobj_free(mp->ctfdata, mp->ctfsize);
1838 			}
1839 		}
1840 	}
1841 
1842 	/*
1843 	 * The order is very important here.  We need to make sure that
1844 	 * consumers, at any given instant, see a consistent state.  We'd
1845 	 * rather they see no CTF data than the address of one buffer and the
1846 	 * size of another.
1847 	 */
1848 	mp->ctfdata = NULL;
1849 	membar_producer();
1850 	mp->ctfsize = size;
1851 	mp->ctfdata = data;
1852 	membar_producer();
1853 }
1854 
1855 int
1856 kobj_load_module(struct modctl *modp, int use_path)
1857 {
1858 	char *filename = modp->mod_filename;
1859 	char *modname = modp->mod_modname;
1860 	int i;
1861 	int n;
1862 	struct _buf *file;
1863 	struct module *mp = NULL;
1864 #ifdef MODDIR_SUFFIX
1865 	int no_suffixdir_drv = 0;
1866 #endif
1867 
1868 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1869 
1870 	/*
1871 	 * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1872 	 * kmdb contains a bunch of symbols with well-known names, symbols
1873 	 * which will mask the real versions, thus causing no end of trouble
1874 	 * for mdb.
1875 	 */
1876 	if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1877 		mp->flags |= KOBJ_NOKSYMS;
1878 
1879 	file = kobj_open_path(filename, use_path, 1);
1880 	if (file == (struct _buf *)-1) {
1881 #ifdef MODDIR_SUFFIX
1882 		file = kobj_open_path(filename, use_path, 0);
1883 #endif
1884 		if (file == (struct _buf *)-1) {
1885 			kobj_free(mp, sizeof (*mp));
1886 			goto bad;
1887 		}
1888 #ifdef MODDIR_SUFFIX
1889 		/*
1890 		 * There is no driver module in the ISA specific (suffix)
1891 		 * subdirectory but there is a module in the parent directory.
1892 		 */
1893 		if (strncmp(filename, "drv/", 4) == 0) {
1894 			no_suffixdir_drv = 1;
1895 		}
1896 #endif
1897 	}
1898 
1899 	mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1900 	(void) strcpy(mp->filename, file->_name);
1901 
1902 	if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1903 		_kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1904 		    modname);
1905 		kobj_free(mp->filename, strlen(file->_name) + 1);
1906 		kobj_free(mp, sizeof (*mp));
1907 		goto bad;
1908 	}
1909 	for (i = 0; i < SELFMAG; i++) {
1910 		if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1911 			if (_moddebug & MODDEBUG_ERRMSG)
1912 				_kobj_printf(ops, "%s not an elf module\n",
1913 				    modname);
1914 			kobj_free(mp->filename, strlen(file->_name) + 1);
1915 			kobj_free(mp, sizeof (*mp));
1916 			goto bad;
1917 		}
1918 	}
1919 	/*
1920 	 * It's ELF, but is it our ISA?  Interpreting the header
1921 	 * from a file for a byte-swapped ISA could cause a huge
1922 	 * and unsatisfiable value to be passed to kobj_alloc below
1923 	 * and therefore hang booting.
1924 	 */
1925 	if (!elf_mach_ok(&mp->hdr)) {
1926 		if (_moddebug & MODDEBUG_ERRMSG)
1927 			_kobj_printf(ops, "%s not an elf module for this ISA\n",
1928 			    modname);
1929 		kobj_free(mp->filename, strlen(file->_name) + 1);
1930 		kobj_free(mp, sizeof (*mp));
1931 #ifdef MODDIR_SUFFIX
1932 		/*
1933 		 * The driver mod is not in the ISA specific subdirectory
1934 		 * and the module in the parent directory is not our ISA.
1935 		 * If it is our ISA, for now we will silently succeed.
1936 		 */
1937 		if (no_suffixdir_drv == 1) {
1938 			cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1939 			    " not found\n", modname);
1940 		}
1941 #endif
1942 		goto bad;
1943 	}
1944 
1945 	/*
1946 	 * All modules, save for unix, should be relocatable (as opposed to
1947 	 * dynamic).  Dynamic modules come with PLTs and GOTs, which can't
1948 	 * currently be processed by krtld.
1949 	 */
1950 	if (mp->hdr.e_type != ET_REL) {
1951 		if (_moddebug & MODDEBUG_ERRMSG)
1952 			_kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1953 			    "module\n", modname);
1954 		kobj_free(mp->filename, strlen(file->_name) + 1);
1955 		kobj_free(mp, sizeof (*mp));
1956 		goto bad;
1957 	}
1958 
1959 	n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1960 	mp->shdrs = kobj_alloc(n, KM_WAIT);
1961 
1962 	if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1963 		_kobj_printf(ops, "kobj_load_module: %s error reading "
1964 		    "section headers\n", modname);
1965 		kobj_free(mp->shdrs, n);
1966 		kobj_free(mp->filename, strlen(file->_name) + 1);
1967 		kobj_free(mp, sizeof (*mp));
1968 		goto bad;
1969 	}
1970 
1971 	kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1972 	module_assign(modp, mp);
1973 
1974 	/* read in sections */
1975 	if (get_progbits(mp, file) < 0) {
1976 		_kobj_printf(ops, "%s error reading sections\n", modname);
1977 		goto bad;
1978 	}
1979 
1980 	if (do_dynamic(mp, file) < 0) {
1981 		_kobj_printf(ops, "%s error reading dynamic section\n",
1982 		    modname);
1983 		goto bad;
1984 	}
1985 
1986 	modp->mod_text = mp->text;
1987 	modp->mod_text_size = mp->text_size;
1988 
1989 	/* read in symbols; adjust values for each section's real address */
1990 	if (get_syms(mp, file) < 0) {
1991 		_kobj_printf(ops, "%s error reading symbols\n",
1992 		    modname);
1993 		goto bad;
1994 	}
1995 
1996 	/*
1997 	 * If we didn't dependency information from the dynamic section, look
1998 	 * for it the old-fashioned way.
1999 	 */
2000 	if (mp->depends_on == NULL)
2001 		mp->depends_on = depends_on(mp);
2002 
2003 	if (get_ctf(mp, file) < 0) {
2004 		_kobj_printf(ops, "%s debug information will not "
2005 		    "be available\n", modname);
2006 	}
2007 
2008 	/* primary kernel modules do not have a signature section */
2009 	if (!(mp->flags & KOBJ_PRIM))
2010 		get_signature(mp, file);
2011 
2012 #ifdef	KOBJ_DEBUG
2013 	if (kobj_debug & D_LOADING) {
2014 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
2015 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
2016 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
2017 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
2018 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
2019 	}
2020 #endif /* KOBJ_DEBUG */
2021 
2022 	/*
2023 	 * For primary kernel modules, we defer
2024 	 * symbol resolution and relocation until
2025 	 * all primary objects have been loaded.
2026 	 */
2027 	if (!standalone) {
2028 		int ddrval, dcrval;
2029 		char *dependent_modname;
2030 		/* load all dependents */
2031 		dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2032 		ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2033 
2034 		/*
2035 		 * resolve undefined and common symbols,
2036 		 * also allocates common space
2037 		 */
2038 		if ((dcrval = do_common(mp)) < 0) {
2039 			switch (dcrval) {
2040 			case DOSYM_UNSAFE:
2041 				_kobj_printf(ops, "WARNING: mod_load: "
2042 				    "MT-unsafe module '%s' rejected\n",
2043 				    modname);
2044 				break;
2045 			case DOSYM_UNDEF:
2046 				_kobj_printf(ops, "WARNING: mod_load: "
2047 				    "cannot load module '%s'\n",
2048 				    modname);
2049 				if (ddrval == -1) {
2050 					_kobj_printf(ops, "WARNING: %s: ",
2051 					    modname);
2052 					_kobj_printf(ops,
2053 					    "unable to resolve dependency, "
2054 					    "module '%s' not found\n",
2055 					    dependent_modname);
2056 				}
2057 				break;
2058 			}
2059 		}
2060 		kobj_free(dependent_modname, MODMAXNAMELEN);
2061 		if (dcrval < 0)
2062 			goto bad;
2063 
2064 		/* process relocation tables */
2065 		if (do_relocations(mp) < 0) {
2066 			_kobj_printf(ops, "%s error doing relocations\n",
2067 			    modname);
2068 			goto bad;
2069 		}
2070 
2071 		if (mp->destination) {
2072 			off_t	off = (uintptr_t)mp->destination & PAGEOFFSET;
2073 			caddr_t	base = (caddr_t)mp->destination - off;
2074 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2075 
2076 			hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2077 			vmem_free(heap_arena, base, size);
2078 		}
2079 
2080 		/* sync_instruction_memory */
2081 		kobj_sync_instruction_memory(mp->text, mp->text_size);
2082 		kobj_export_module(mp);
2083 		kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2084 	}
2085 	kobj_close_file(file);
2086 	return (0);
2087 bad:
2088 	if (file != (struct _buf *)-1)
2089 		kobj_close_file(file);
2090 	if (modp->mod_mp != NULL)
2091 		free_module_data(modp->mod_mp);
2092 
2093 	module_assign(modp, NULL);
2094 	return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2095 }
2096 
2097 int
2098 kobj_load_primary_module(struct modctl *modp)
2099 {
2100 	struct modctl *dep;
2101 	struct module *mp;
2102 
2103 	if (kobj_load_module(modp, 0) != 0)
2104 		return (-1);
2105 
2106 	mp = modp->mod_mp;
2107 	mp->flags |= KOBJ_PRIM;
2108 
2109 	/* Bind new module to its dependents */
2110 	if (mp->depends_on != NULL && (dep =
2111 	    mod_already_loaded(mp->depends_on)) == NULL) {
2112 #ifdef	KOBJ_DEBUG
2113 		if (kobj_debug & D_DEBUG) {
2114 			_kobj_printf(ops, "krtld: failed to resolve deps "
2115 			    "for primary %s\n", modp->mod_modname);
2116 		}
2117 #endif
2118 		return (-1);
2119 	}
2120 
2121 	add_dependent(mp, dep->mod_mp);
2122 
2123 	/*
2124 	 * Relocate it.  This module may not be part of a link map, so we
2125 	 * can't use bind_primary.
2126 	 */
2127 	if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2128 	    do_relocations(mp) < 0) {
2129 #ifdef	KOBJ_DEBUG
2130 		if (kobj_debug & D_DEBUG) {
2131 			_kobj_printf(ops, "krtld: failed to relocate "
2132 			    "primary %s\n", modp->mod_modname);
2133 		}
2134 #endif
2135 		return (-1);
2136 	}
2137 
2138 	return (0);
2139 }
2140 
2141 static void
2142 module_assign(struct modctl *cp, struct module *mp)
2143 {
2144 	if (standalone) {
2145 		cp->mod_mp = mp;
2146 		return;
2147 	}
2148 	mutex_enter(&mod_lock);
2149 	cp->mod_mp = mp;
2150 	cp->mod_gencount++;
2151 	mutex_exit(&mod_lock);
2152 }
2153 
2154 void
2155 kobj_unload_module(struct modctl *modp)
2156 {
2157 	struct module *mp = modp->mod_mp;
2158 
2159 	if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2160 		_kobj_printf(ops, "text for %s ", mp->filename);
2161 		_kobj_printf(ops, "was at %p\n", mp->text);
2162 		mp->text = NULL;	/* don't actually free it */
2163 	}
2164 
2165 	kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2166 
2167 	/*
2168 	 * Null out mod_mp first, so consumers (debuggers) know not to look
2169 	 * at the module structure any more.
2170 	 */
2171 	mutex_enter(&mod_lock);
2172 	modp->mod_mp = NULL;
2173 	mutex_exit(&mod_lock);
2174 
2175 	kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2176 	free_module_data(mp);
2177 }
2178 
2179 static void
2180 free_module_data(struct module *mp)
2181 {
2182 	struct module_list *lp, *tmp;
2183 	int ksyms_exported = 0;
2184 
2185 	lp = mp->head;
2186 	while (lp) {
2187 		tmp = lp;
2188 		lp = lp->next;
2189 		kobj_free((char *)tmp, sizeof (*tmp));
2190 	}
2191 
2192 	rw_enter(&ksyms_lock, RW_WRITER);
2193 	if (mp->symspace) {
2194 		if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2195 			vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2196 			ksyms_exported = 1;
2197 		} else {
2198 			if (mp->flags & KOBJ_NOKSYMS)
2199 				ksyms_exported = 1;
2200 			kobj_free(mp->symspace, mp->symsize);
2201 		}
2202 	}
2203 	rw_exit(&ksyms_lock);
2204 
2205 	if (mp->ctfdata) {
2206 		if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2207 			vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2208 		else
2209 			kobj_free(mp->ctfdata, mp->ctfsize);
2210 	}
2211 
2212 	if (mp->sigdata)
2213 		kobj_free(mp->sigdata, mp->sigsize);
2214 
2215 	/*
2216 	 * We did not get far enough into kobj_export_ksyms() to free allocated
2217 	 * buffers because we encounted error conditions. Free the buffers.
2218 	 */
2219 	if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2220 		uint_t shn;
2221 		Shdr *shp;
2222 
2223 		for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2224 			shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2225 			switch (shp->sh_type) {
2226 			case SHT_RELA:
2227 			case SHT_REL:
2228 				if (shp->sh_addr != 0)
2229 					kobj_free((void *)shp->sh_addr,
2230 					    shp->sh_size);
2231 				break;
2232 			}
2233 		}
2234 err_free_done:
2235 		if (!(mp->flags & KOBJ_PRIM)) {
2236 			kobj_free(mp->shdrs,
2237 			    mp->hdr.e_shentsize * mp->hdr.e_shnum);
2238 		}
2239 	}
2240 
2241 	if (mp->bss)
2242 		vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2243 
2244 	if (mp->fbt_tab)
2245 		kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2246 
2247 	if (mp->textwin_base)
2248 		kobj_textwin_free(mp);
2249 
2250 	if (mp->sdt_probes != NULL) {
2251 		sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2252 
2253 		while (sdp != NULL) {
2254 			next = sdp->sdpd_next;
2255 			kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2256 			kobj_free(sdp, sizeof (sdt_probedesc_t));
2257 			sdp = next;
2258 		}
2259 	}
2260 
2261 	if (mp->sdt_tab)
2262 		kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2263 	if (mp->text)
2264 		vmem_free(text_arena, mp->text, mp->text_size);
2265 	if (mp->data)
2266 		vmem_free(data_arena, mp->data, mp->data_size);
2267 	if (mp->depends_on)
2268 		kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2269 	if (mp->filename)
2270 		kobj_free(mp->filename, strlen(mp->filename)+1);
2271 
2272 	kobj_free((char *)mp, sizeof (*mp));
2273 }
2274 
2275 static int
2276 get_progbits(struct module *mp, struct _buf *file)
2277 {
2278 	struct proginfo *tp, *dp, *sdp;
2279 	Shdr *shp;
2280 	reloc_dest_t dest = NULL;
2281 	uintptr_t bits_ptr;
2282 	uintptr_t text = 0, data, textptr;
2283 	uint_t shn;
2284 	int err = -1;
2285 
2286 	tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2287 	dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2288 	sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2289 	/*
2290 	 * loop through sections to find out how much space we need
2291 	 * for text, data, (also bss that is already assigned)
2292 	 */
2293 	if (get_progbits_size(mp, tp, dp, sdp) < 0)
2294 		goto done;
2295 
2296 	mp->text_size = tp->size;
2297 	mp->data_size = dp->size;
2298 
2299 	if (standalone) {
2300 		caddr_t limit = _data;
2301 
2302 		if (lg_pagesize && _text + lg_pagesize < limit)
2303 			limit = _text + lg_pagesize;
2304 
2305 		mp->text = kobj_segbrk(&_etext, mp->text_size,
2306 		    tp->align, limit);
2307 		/*
2308 		 * If we can't grow the text segment, try the
2309 		 * data segment before failing.
2310 		 */
2311 		if (mp->text == NULL) {
2312 			mp->text = kobj_segbrk(&_edata, mp->text_size,
2313 			    tp->align, 0);
2314 		}
2315 
2316 		mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2317 
2318 		if (mp->text == NULL || mp->data == NULL)
2319 			goto done;
2320 
2321 	} else {
2322 		if (text_arena == NULL)
2323 			kobj_vmem_init(&text_arena, &data_arena);
2324 
2325 		/*
2326 		 * some architectures may want to load the module on a
2327 		 * page that is currently read only. It may not be
2328 		 * possible for those architectures to remap their page
2329 		 * on the fly. So we provide a facility for them to hang
2330 		 * a private hook where the memory they assign the module
2331 		 * is not the actual place where the module loads.
2332 		 *
2333 		 * In this case there are two addresses that deal with the
2334 		 * modload.
2335 		 * 1) the final destination of the module
2336 		 * 2) the address that is used to view the newly
2337 		 * loaded module until all the relocations relative to 1
2338 		 * above are completed.
2339 		 *
2340 		 * That is what dest is used for below.
2341 		 */
2342 		mp->text_size += tp->align;
2343 		mp->data_size += dp->align;
2344 
2345 		mp->text = kobj_text_alloc(text_arena, mp->text_size);
2346 
2347 		/*
2348 		 * a remap is taking place. Align the text ptr relative
2349 		 * to the secondary mapping. That is where the bits will
2350 		 * be read in.
2351 		 */
2352 		if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2353 		    mp->text, mp->text_size)) {
2354 			off_t	off = (uintptr_t)mp->text & PAGEOFFSET;
2355 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2356 			caddr_t	map = vmem_alloc(heap_arena, size, VM_SLEEP);
2357 			caddr_t orig = mp->text - off;
2358 			pgcnt_t pages = size / PAGESIZE;
2359 
2360 			dest = (reloc_dest_t)(map + off);
2361 			text = ALIGN((uintptr_t)dest, tp->align);
2362 
2363 			while (pages--) {
2364 				hat_devload(kas.a_hat, map, PAGESIZE,
2365 				    hat_getpfnum(kas.a_hat, orig),
2366 				    PROT_READ | PROT_WRITE | PROT_EXEC,
2367 				    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2368 				map += PAGESIZE;
2369 				orig += PAGESIZE;
2370 			}
2371 			/*
2372 			 * Since we set up a non-cacheable mapping, we need
2373 			 * to flush any old entries in the cache that might
2374 			 * be left around from the read-only mapping.
2375 			 */
2376 			dcache_flushall();
2377 		}
2378 		if (mp->data_size)
2379 			mp->data = vmem_alloc(data_arena, mp->data_size,
2380 			    VM_SLEEP | VM_BESTFIT);
2381 	}
2382 	textptr = (uintptr_t)mp->text;
2383 	textptr = ALIGN(textptr, tp->align);
2384 	mp->destination = dest;
2385 
2386 	/*
2387 	 * This is the case where a remap is not being done.
2388 	 */
2389 	if (text == 0)
2390 		text = ALIGN((uintptr_t)mp->text, tp->align);
2391 	data = ALIGN((uintptr_t)mp->data, dp->align);
2392 
2393 	/* now loop though sections assigning addresses and loading the data */
2394 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2395 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2396 		if (!(shp->sh_flags & SHF_ALLOC))
2397 			continue;
2398 
2399 		if ((shp->sh_flags & SHF_WRITE) == 0)
2400 			bits_ptr = text;
2401 		else
2402 			bits_ptr = data;
2403 
2404 		bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2405 
2406 		if (shp->sh_type == SHT_NOBITS) {
2407 			/*
2408 			 * Zero bss.
2409 			 */
2410 			bzero((caddr_t)bits_ptr, shp->sh_size);
2411 			shp->sh_type = SHT_PROGBITS;
2412 		} else {
2413 			if (kobj_read_file(file, (char *)bits_ptr,
2414 			    shp->sh_size, shp->sh_offset) < 0)
2415 				goto done;
2416 		}
2417 
2418 		if (shp->sh_flags & SHF_WRITE) {
2419 			shp->sh_addr = bits_ptr;
2420 		} else {
2421 			textptr = ALIGN(textptr, shp->sh_addralign);
2422 			shp->sh_addr = textptr;
2423 			textptr += shp->sh_size;
2424 		}
2425 
2426 		bits_ptr += shp->sh_size;
2427 		if ((shp->sh_flags & SHF_WRITE) == 0)
2428 			text = bits_ptr;
2429 		else
2430 			data = bits_ptr;
2431 	}
2432 
2433 	err = 0;
2434 done:
2435 	/*
2436 	 * Free and mark as freed the section headers here so that
2437 	 * free_module_data() does not have to worry about this buffer.
2438 	 *
2439 	 * This buffer is freed here because one of the possible reasons
2440 	 * for error is a section with non-zero sh_addr and in that case
2441 	 * free_module_data() would have no way of recognizing that this
2442 	 * buffer was unallocated.
2443 	 */
2444 	if (err != 0) {
2445 		kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2446 		mp->shdrs = NULL;
2447 	}
2448 
2449 	(void) kobj_free(tp, sizeof (struct proginfo));
2450 	(void) kobj_free(dp, sizeof (struct proginfo));
2451 	(void) kobj_free(sdp, sizeof (struct proginfo));
2452 
2453 	return (err);
2454 }
2455 
2456 /*
2457  * Go through suppress_sym_list to see if "multiply defined"
2458  * warning of this symbol should be suppressed.  Return 1 if
2459  * warning should be suppressed, 0 otherwise.
2460  */
2461 static int
2462 kobj_suppress_warning(char *symname)
2463 {
2464 	int	i;
2465 
2466 	for (i = 0; suppress_sym_list[i] != NULL; i++) {
2467 		if (strcmp(suppress_sym_list[i], symname) == 0)
2468 			return (1);
2469 	}
2470 
2471 	return (0);
2472 }
2473 
2474 static int
2475 get_syms(struct module *mp, struct _buf *file)
2476 {
2477 	uint_t		shn;
2478 	Shdr	*shp;
2479 	uint_t		i;
2480 	Sym	*sp, *ksp;
2481 	char		*symname;
2482 	int		dosymtab = 0;
2483 
2484 	/*
2485 	 * Find the interesting sections.
2486 	 */
2487 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2488 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2489 		switch (shp->sh_type) {
2490 		case SHT_SYMTAB:
2491 			mp->symtbl_section = shn;
2492 			mp->symhdr = shp;
2493 			dosymtab++;
2494 			break;
2495 
2496 		case SHT_RELA:
2497 		case SHT_REL:
2498 			/*
2499 			 * Already loaded.
2500 			 */
2501 			if (shp->sh_addr)
2502 				continue;
2503 
2504 			/* KM_TMP since kobj_free'd in do_relocations */
2505 			shp->sh_addr = (Addr)
2506 			    kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2507 
2508 			if (kobj_read_file(file, (char *)shp->sh_addr,
2509 			    shp->sh_size, shp->sh_offset) < 0) {
2510 				_kobj_printf(ops, "krtld: get_syms: %s, ",
2511 				    mp->filename);
2512 				_kobj_printf(ops, "error reading section %d\n",
2513 				    shn);
2514 				return (-1);
2515 			}
2516 			break;
2517 		}
2518 	}
2519 
2520 	/*
2521 	 * This is true for a stripped executable.  In the case of
2522 	 * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2523 	 * and since that symbol information is still present everything
2524 	 * is just fine.
2525 	 */
2526 	if (!dosymtab) {
2527 		if (mp->flags & KOBJ_EXEC)
2528 			return (0);
2529 		_kobj_printf(ops, "krtld: get_syms: %s ",
2530 		    mp->filename);
2531 		_kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2532 		return (-1);
2533 	}
2534 
2535 	/*
2536 	 * get the associated string table header
2537 	 */
2538 	if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2539 		return (-1);
2540 	mp->strhdr = (Shdr *)
2541 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2542 
2543 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2544 	mp->hashsize = kobj_gethashsize(mp->nsyms);
2545 
2546 	/*
2547 	 * Allocate space for the symbol table, buckets, chains, and strings.
2548 	 */
2549 	mp->symsize = mp->symhdr->sh_size +
2550 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2551 	mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2552 
2553 	mp->symtbl = mp->symspace;
2554 	mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2555 	mp->chains = mp->buckets + mp->hashsize;
2556 	mp->strings = (char *)(mp->chains + mp->nsyms);
2557 
2558 	if (kobj_read_file(file, mp->symtbl,
2559 	    mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2560 	    kobj_read_file(file, mp->strings,
2561 	    mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2562 		return (-1);
2563 
2564 	/*
2565 	 * loop through the symbol table adjusting values to account
2566 	 * for where each section got loaded into memory.  Also
2567 	 * fill in the hash table.
2568 	 */
2569 	for (i = 1; i < mp->nsyms; i++) {
2570 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2571 		if (sp->st_shndx < SHN_LORESERVE) {
2572 			if (sp->st_shndx >= mp->hdr.e_shnum) {
2573 				_kobj_printf(ops, "%s bad shndx ",
2574 				    file->_name);
2575 				_kobj_printf(ops, "in symbol %d\n", i);
2576 				return (-1);
2577 			}
2578 			shp = (Shdr *)
2579 			    (mp->shdrs +
2580 			    sp->st_shndx * mp->hdr.e_shentsize);
2581 			if (!(mp->flags & KOBJ_EXEC))
2582 				sp->st_value += shp->sh_addr;
2583 		}
2584 
2585 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2586 			continue;
2587 		if (sp->st_name >= mp->strhdr->sh_size)
2588 			return (-1);
2589 
2590 		symname = mp->strings + sp->st_name;
2591 
2592 		if (!(mp->flags & KOBJ_EXEC) &&
2593 		    ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2594 			ksp = kobj_lookup_all(mp, symname, 0);
2595 
2596 			if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2597 			    !kobj_suppress_warning(symname) &&
2598 			    sp->st_shndx != SHN_UNDEF &&
2599 			    sp->st_shndx != SHN_COMMON &&
2600 			    ksp->st_shndx != SHN_UNDEF &&
2601 			    ksp->st_shndx != SHN_COMMON) {
2602 				/*
2603 				 * Unless this symbol is a stub, it's multiply
2604 				 * defined.  Multiply-defined symbols are
2605 				 * usually bad, but some objects (kmdb) have
2606 				 * a legitimate need to have their own
2607 				 * copies of common functions.
2608 				 */
2609 				if ((standalone ||
2610 				    ksp->st_value < (uintptr_t)stubs_base ||
2611 				    ksp->st_value >= (uintptr_t)stubs_end) &&
2612 				    !(mp->flags & KOBJ_IGNMULDEF)) {
2613 					_kobj_printf(ops,
2614 					    "%s symbol ", file->_name);
2615 					_kobj_printf(ops,
2616 					    "%s multiply defined\n", symname);
2617 				}
2618 			}
2619 		}
2620 
2621 		sym_insert(mp, symname, i);
2622 	}
2623 
2624 	return (0);
2625 }
2626 
2627 static int
2628 get_ctf(struct module *mp, struct _buf *file)
2629 {
2630 	char *shstrtab, *ctfdata;
2631 	size_t shstrlen;
2632 	Shdr *shp;
2633 	uint_t i;
2634 
2635 	if (_moddebug & MODDEBUG_NOCTF)
2636 		return (0); /* do not attempt to even load CTF data */
2637 
2638 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2639 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2640 		    mp->filename);
2641 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2642 		    mp->hdr.e_shstrndx);
2643 		return (-1);
2644 	}
2645 
2646 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2647 	shstrlen = shp->sh_size;
2648 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2649 
2650 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2651 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2652 		    mp->filename);
2653 		_kobj_printf(ops, "error reading section %u\n",
2654 		    mp->hdr.e_shstrndx);
2655 		kobj_free(shstrtab, shstrlen);
2656 		return (-1);
2657 	}
2658 
2659 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2660 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2661 
2662 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2663 		    strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2664 			ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2665 
2666 			if (kobj_read_file(file, ctfdata, shp->sh_size,
2667 			    shp->sh_offset) < 0) {
2668 				_kobj_printf(ops, "krtld: get_ctf: %s, error "
2669 				    "reading .SUNW_ctf data\n", mp->filename);
2670 				kobj_free(ctfdata, shp->sh_size);
2671 				kobj_free(shstrtab, shstrlen);
2672 				return (-1);
2673 			}
2674 
2675 			mp->ctfdata = ctfdata;
2676 			mp->ctfsize = shp->sh_size;
2677 			break;
2678 		}
2679 	}
2680 
2681 	kobj_free(shstrtab, shstrlen);
2682 	return (0);
2683 }
2684 
2685 #define	SHA1_DIGEST_LENGTH	20	/* SHA1 digest length in bytes */
2686 
2687 /*
2688  * Return the hash of the ELF sections that are memory resident.
2689  * i.e. text and data.  We skip a SHT_NOBITS section since it occupies
2690  * no space in the file. We use SHA1 here since libelfsign uses
2691  * it and both places need to use the same algorithm.
2692  */
2693 static void
2694 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2695 {
2696 	uint_t shn;
2697 	Shdr *shp;
2698 	SHA1_CTX ctx;
2699 
2700 	SHA1Init(&ctx);
2701 
2702 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2703 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2704 		if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2705 			continue;
2706 
2707 		/*
2708 		 * The check should ideally be shp->sh_type == SHT_NOBITS.
2709 		 * However, we can't do that check here as get_progbits()
2710 		 * resets the type.
2711 		 */
2712 		if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2713 			continue;
2714 #ifdef	KOBJ_DEBUG
2715 		if (kobj_debug & D_DEBUG)
2716 			_kobj_printf(ops,
2717 			    "krtld: crypto_es_hash: updating hash with"
2718 			    " %s data size=%d\n", shstrtab + shp->sh_name,
2719 			    shp->sh_size);
2720 #endif
2721 		ASSERT(shp->sh_addr != 0);
2722 		SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2723 	}
2724 
2725 	SHA1Final((uchar_t *)hash, &ctx);
2726 }
2727 
2728 /*
2729  * Get the .SUNW_signature section for the module, it it exists.
2730  *
2731  * This section exists only for crypto modules. None of the
2732  * primary modules have this section currently.
2733  */
2734 static void
2735 get_signature(struct module *mp, struct _buf *file)
2736 {
2737 	char *shstrtab, *sigdata = NULL;
2738 	size_t shstrlen;
2739 	Shdr *shp;
2740 	uint_t i;
2741 
2742 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2743 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2744 		    mp->filename);
2745 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2746 		    mp->hdr.e_shstrndx);
2747 		return;
2748 	}
2749 
2750 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2751 	shstrlen = shp->sh_size;
2752 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2753 
2754 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2755 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2756 		    mp->filename);
2757 		_kobj_printf(ops, "error reading section %u\n",
2758 		    mp->hdr.e_shstrndx);
2759 		kobj_free(shstrtab, shstrlen);
2760 		return;
2761 	}
2762 
2763 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2764 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2765 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2766 		    strcmp(shstrtab + shp->sh_name,
2767 		    ELF_SIGNATURE_SECTION) == 0) {
2768 			filesig_vers_t filesig_version;
2769 			size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2770 			sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2771 
2772 			if (kobj_read_file(file, sigdata, shp->sh_size,
2773 			    shp->sh_offset) < 0) {
2774 				_kobj_printf(ops, "krtld: get_signature: %s,"
2775 				    " error reading .SUNW_signature data\n",
2776 				    mp->filename);
2777 				kobj_free(sigdata, sigsize);
2778 				kobj_free(shstrtab, shstrlen);
2779 				return;
2780 			}
2781 			filesig_version = ((struct filesignatures *)sigdata)->
2782 			    filesig_sig.filesig_version;
2783 			if (!(filesig_version == FILESIG_VERSION1 ||
2784 			    filesig_version == FILESIG_VERSION3)) {
2785 				/* skip versions we don't understand */
2786 				kobj_free(sigdata, sigsize);
2787 				kobj_free(shstrtab, shstrlen);
2788 				return;
2789 			}
2790 
2791 			mp->sigdata = sigdata;
2792 			mp->sigsize = sigsize;
2793 			break;
2794 		}
2795 	}
2796 
2797 	if (sigdata != NULL) {
2798 		crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2799 	}
2800 
2801 	kobj_free(shstrtab, shstrlen);
2802 }
2803 
2804 static void
2805 add_dependent(struct module *mp, struct module *dep)
2806 {
2807 	struct module_list *lp;
2808 
2809 	for (lp = mp->head; lp; lp = lp->next) {
2810 		if (lp->mp == dep)
2811 			return;	/* already on the list */
2812 	}
2813 
2814 	if (lp == NULL) {
2815 		lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2816 
2817 		lp->mp = dep;
2818 		lp->next = NULL;
2819 		if (mp->tail)
2820 			mp->tail->next = lp;
2821 		else
2822 			mp->head = lp;
2823 		mp->tail = lp;
2824 	}
2825 }
2826 
2827 static int
2828 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2829 {
2830 	struct module *mp;
2831 	struct modctl *req;
2832 	char *d, *p, *q;
2833 	int c;
2834 	char *err_modname = NULL;
2835 
2836 	mp = modp->mod_mp;
2837 
2838 	if ((p = mp->depends_on) == NULL)
2839 		return (0);
2840 
2841 	for (;;) {
2842 		/*
2843 		 * Skip space.
2844 		 */
2845 		while (*p && (*p == ' ' || *p == '\t'))
2846 			p++;
2847 		/*
2848 		 * Get module name.
2849 		 */
2850 		d = p;
2851 		q = modname;
2852 		c = 0;
2853 		while (*p && *p != ' ' && *p != '\t') {
2854 			if (c < modnamelen - 1) {
2855 				*q++ = *p;
2856 				c++;
2857 			}
2858 			p++;
2859 		}
2860 
2861 		if (q == modname)
2862 			break;
2863 
2864 		if (c == modnamelen - 1) {
2865 			char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2866 
2867 			(void) strncpy(dep, d,  p - d + 1);
2868 			dep[p - d] = '\0';
2869 
2870 			_kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2871 			_kobj_printf(ops, "'%s' too long ", dep);
2872 			_kobj_printf(ops, "(max %d chars)\n", modnamelen);
2873 
2874 			kobj_free(dep, p - d + 1);
2875 
2876 			return (-1);
2877 		}
2878 
2879 		*q = '\0';
2880 		if ((req = mod_load_requisite(modp, modname)) == NULL) {
2881 #ifndef	KOBJ_DEBUG
2882 			if (_moddebug & MODDEBUG_LOADMSG) {
2883 #endif	/* KOBJ_DEBUG */
2884 				_kobj_printf(ops,
2885 				    "%s: unable to resolve dependency, ",
2886 				    modp->mod_modname);
2887 				_kobj_printf(ops, "cannot load module '%s'\n",
2888 				    modname);
2889 #ifndef	KOBJ_DEBUG
2890 			}
2891 #endif	/* KOBJ_DEBUG */
2892 			if (err_modname == NULL) {
2893 				/*
2894 				 * This must be the same size as the modname
2895 				 * one.
2896 				 */
2897 				err_modname = kobj_zalloc(MODMAXNAMELEN,
2898 				    KM_WAIT);
2899 
2900 				/*
2901 				 * We can use strcpy() here without fearing
2902 				 * the NULL terminator because the size of
2903 				 * err_modname is the same as one of modname,
2904 				 * and it's filled with zeros.
2905 				 */
2906 				(void) strcpy(err_modname, modname);
2907 			}
2908 			continue;
2909 		}
2910 
2911 		add_dependent(mp, req->mod_mp);
2912 		mod_release_mod(req);
2913 
2914 	}
2915 
2916 	if (err_modname != NULL) {
2917 		/*
2918 		 * Copy the first module name where you detect an error to keep
2919 		 * its behavior the same as before.
2920 		 * This way keeps minimizing the memory use for error
2921 		 * modules, and this might be important at boot time because
2922 		 * the memory usage is a crucial factor for booting in most
2923 		 * cases. You can expect more verbose messages when using
2924 		 * a debug kernel or setting a bit in moddebug.
2925 		 */
2926 		bzero(modname, MODMAXNAMELEN);
2927 		(void) strcpy(modname, err_modname);
2928 		kobj_free(err_modname, MODMAXNAMELEN);
2929 		return (-1);
2930 	}
2931 
2932 	return (0);
2933 }
2934 
2935 static int
2936 do_common(struct module *mp)
2937 {
2938 	int err;
2939 
2940 	/*
2941 	 * first time through, assign all symbols defined in other
2942 	 * modules, and count up how much common space will be needed
2943 	 * (bss_size and bss_align)
2944 	 */
2945 	if ((err = do_symbols(mp, 0)) < 0)
2946 		return (err);
2947 	/*
2948 	 * increase bss_size by the maximum delta that could be
2949 	 * computed by the ALIGN below
2950 	 */
2951 	mp->bss_size += mp->bss_align;
2952 	if (mp->bss_size) {
2953 		if (standalone)
2954 			mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2955 			    MINALIGN, 0);
2956 		else
2957 			mp->bss = (uintptr_t)vmem_alloc(data_arena,
2958 			    mp->bss_size, VM_SLEEP | VM_BESTFIT);
2959 		bzero((void *)mp->bss, mp->bss_size);
2960 		/* now assign addresses to all common symbols */
2961 		if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2962 			return (err);
2963 	}
2964 	return (0);
2965 }
2966 
2967 static int
2968 do_symbols(struct module *mp, Elf64_Addr bss_base)
2969 {
2970 	int bss_align;
2971 	uintptr_t bss_ptr;
2972 	int err;
2973 	int i;
2974 	Sym *sp, *sp1;
2975 	char *name;
2976 	int assign;
2977 	int resolved = 1;
2978 
2979 	/*
2980 	 * Nothing left to do (optimization).
2981 	 */
2982 	if (mp->flags & KOBJ_RESOLVED)
2983 		return (0);
2984 
2985 	assign = (bss_base) ? 1 : 0;
2986 	bss_ptr = bss_base;
2987 	bss_align = 0;
2988 	err = 0;
2989 
2990 	for (i = 1; i < mp->nsyms; i++) {
2991 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
2992 		/*
2993 		 * we know that st_name is in bounds, since get_sections
2994 		 * has already checked all of the symbols
2995 		 */
2996 		name = mp->strings + sp->st_name;
2997 		if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
2998 			continue;
2999 #if defined(__sparc)
3000 		/*
3001 		 * Register symbols are ignored in the kernel
3002 		 */
3003 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
3004 			if (*name != '\0') {
3005 				_kobj_printf(ops, "%s: named REGISTER symbol ",
3006 				    mp->filename);
3007 				_kobj_printf(ops, "not supported '%s'\n",
3008 				    name);
3009 				err = DOSYM_UNDEF;
3010 			}
3011 			continue;
3012 		}
3013 #endif	/* __sparc */
3014 		/*
3015 		 * TLS symbols are ignored in the kernel
3016 		 */
3017 		if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
3018 			_kobj_printf(ops, "%s: TLS symbol ",
3019 			    mp->filename);
3020 			_kobj_printf(ops, "not supported '%s'\n",
3021 			    name);
3022 			err = DOSYM_UNDEF;
3023 			continue;
3024 		}
3025 
3026 		if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3027 			if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3028 				sp->st_shndx = SHN_ABS;
3029 				sp->st_value = sp1->st_value;
3030 				continue;
3031 			}
3032 		}
3033 
3034 		if (sp->st_shndx == SHN_UNDEF) {
3035 			resolved = 0;
3036 
3037 			if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3038 				continue;
3039 
3040 			/*
3041 			 * If it's not a weak reference and it's
3042 			 * not a primary object, it's an error.
3043 			 * (Primary objects may take more than
3044 			 * one pass to resolve)
3045 			 */
3046 			if (!(mp->flags & KOBJ_PRIM) &&
3047 			    ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3048 				_kobj_printf(ops, "%s: undefined symbol",
3049 				    mp->filename);
3050 				_kobj_printf(ops, " '%s'\n", name);
3051 				/*
3052 				 * Try to determine whether this symbol
3053 				 * represents a dependency on obsolete
3054 				 * unsafe driver support.  This is just
3055 				 * to make the warning more informative.
3056 				 */
3057 				if (strcmp(name, "sleep") == 0 ||
3058 				    strcmp(name, "unsleep") == 0 ||
3059 				    strcmp(name, "wakeup") == 0 ||
3060 				    strcmp(name, "bsd_compat_ioctl") == 0 ||
3061 				    strcmp(name, "unsafe_driver") == 0 ||
3062 				    strncmp(name, "spl", 3) == 0 ||
3063 				    strncmp(name, "i_ddi_spl", 9) == 0)
3064 					err = DOSYM_UNSAFE;
3065 				if (err == 0)
3066 					err = DOSYM_UNDEF;
3067 			}
3068 			continue;
3069 		}
3070 		/*
3071 		 * It's a common symbol - st_value is the
3072 		 * required alignment.
3073 		 */
3074 		if (sp->st_value > bss_align)
3075 			bss_align = sp->st_value;
3076 		bss_ptr = ALIGN(bss_ptr, sp->st_value);
3077 		if (assign) {
3078 			sp->st_shndx = SHN_ABS;
3079 			sp->st_value = bss_ptr;
3080 		}
3081 		bss_ptr += sp->st_size;
3082 	}
3083 	if (err)
3084 		return (err);
3085 	if (assign == 0 && mp->bss == 0) {
3086 		mp->bss_align = bss_align;
3087 		mp->bss_size = bss_ptr;
3088 	} else if (resolved) {
3089 		mp->flags |= KOBJ_RESOLVED;
3090 	}
3091 
3092 	return (0);
3093 }
3094 
3095 uint_t
3096 kobj_hash_name(const char *p)
3097 {
3098 	uint_t g;
3099 	uint_t hval;
3100 
3101 	hval = 0;
3102 	while (*p) {
3103 		hval = (hval << 4) + *p++;
3104 		if ((g = (hval & 0xf0000000)) != 0)
3105 			hval ^= g >> 24;
3106 		hval &= ~g;
3107 	}
3108 	return (hval);
3109 }
3110 
3111 /* look for name in all modules */
3112 uintptr_t
3113 kobj_getsymvalue(char *name, int kernelonly)
3114 {
3115 	Sym		*sp;
3116 	struct modctl	*modp;
3117 	struct module	*mp;
3118 	uintptr_t	value = 0;
3119 
3120 	if ((sp = kobj_lookup_kernel(name)) != NULL)
3121 		return ((uintptr_t)sp->st_value);
3122 
3123 	if (kernelonly)
3124 		return (0);	/* didn't find it in the kernel so give up */
3125 
3126 	mutex_enter(&mod_lock);
3127 	modp = &modules;
3128 	do {
3129 		mp = (struct module *)modp->mod_mp;
3130 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3131 		    (sp = lookup_one(mp, name))) {
3132 			value = (uintptr_t)sp->st_value;
3133 			break;
3134 		}
3135 	} while ((modp = modp->mod_next) != &modules);
3136 	mutex_exit(&mod_lock);
3137 	return (value);
3138 }
3139 
3140 /* look for a symbol near value. */
3141 char *
3142 kobj_getsymname(uintptr_t value, ulong_t *offset)
3143 {
3144 	char *name = NULL;
3145 	struct modctl *modp;
3146 
3147 	struct modctl_list *lp;
3148 	struct module *mp;
3149 
3150 	/*
3151 	 * Loop through the primary kernel modules.
3152 	 */
3153 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3154 		mp = mod(lp);
3155 
3156 		if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3157 			return (name);
3158 	}
3159 
3160 	mutex_enter(&mod_lock);
3161 	modp = &modules;
3162 	do {
3163 		mp = (struct module *)modp->mod_mp;
3164 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3165 		    (name = kobj_searchsym(mp, value, offset)))
3166 			break;
3167 	} while ((modp = modp->mod_next) != &modules);
3168 	mutex_exit(&mod_lock);
3169 	return (name);
3170 }
3171 
3172 /* return address of symbol and size */
3173 
3174 uintptr_t
3175 kobj_getelfsym(char *name, void *mp, int *size)
3176 {
3177 	Sym *sp;
3178 
3179 	if (mp == NULL)
3180 		sp = kobj_lookup_kernel(name);
3181 	else
3182 		sp = lookup_one(mp, name);
3183 
3184 	if (sp == NULL)
3185 		return (0);
3186 
3187 	*size = (int)sp->st_size;
3188 	return ((uintptr_t)sp->st_value);
3189 }
3190 
3191 uintptr_t
3192 kobj_lookup(struct module *mod, const char *name)
3193 {
3194 	Sym *sp;
3195 
3196 	sp = lookup_one(mod, name);
3197 
3198 	if (sp == NULL)
3199 		return (0);
3200 
3201 	return ((uintptr_t)sp->st_value);
3202 }
3203 
3204 char *
3205 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3206 {
3207 	Sym *symtabptr;
3208 	char *strtabptr;
3209 	int symnum;
3210 	Sym *sym;
3211 	Sym *cursym;
3212 	uintptr_t curval;
3213 
3214 	*offset = (ulong_t)-1l;		/* assume not found */
3215 	cursym  = NULL;
3216 
3217 	if (kobj_addrcheck(mp, (void *)value) != 0)
3218 		return (NULL);		/* not in this module */
3219 
3220 	strtabptr  = mp->strings;
3221 	symtabptr  = (Sym *)mp->symtbl;
3222 
3223 	/*
3224 	 * Scan the module's symbol table for a symbol <= value
3225 	 */
3226 	for (symnum = 1, sym = symtabptr + 1;
3227 	    symnum < mp->nsyms; symnum++, sym = (Sym *)
3228 	    ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3229 		if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3230 			if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3231 				continue;
3232 			if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3233 			    ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3234 				continue;
3235 		}
3236 
3237 		curval = (uintptr_t)sym->st_value;
3238 
3239 		if (curval > value)
3240 			continue;
3241 
3242 		/*
3243 		 * If one or both are functions...
3244 		 */
3245 		if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3246 		    ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3247 			/* Ignore if the address is out of the bounds */
3248 			if (value - sym->st_value >= sym->st_size)
3249 				continue;
3250 
3251 			if (cursym != NULL &&
3252 			    ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3253 				/* Prefer the function to the non-function */
3254 				if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3255 					continue;
3256 
3257 				/* Prefer the larger of the two functions */
3258 				if (sym->st_size <= cursym->st_size)
3259 					continue;
3260 			}
3261 		} else if (value - curval >= *offset) {
3262 			continue;
3263 		}
3264 
3265 		*offset = (ulong_t)(value - curval);
3266 		cursym = sym;
3267 	}
3268 	if (cursym == NULL)
3269 		return (NULL);
3270 
3271 	return (strtabptr + cursym->st_name);
3272 }
3273 
3274 Sym *
3275 kobj_lookup_all(struct module *mp, char *name, int include_self)
3276 {
3277 	Sym *sp;
3278 	struct module_list *mlp;
3279 	struct modctl_list *clp;
3280 	struct module *mmp;
3281 
3282 	if (include_self && (sp = lookup_one(mp, name)) != NULL)
3283 		return (sp);
3284 
3285 	for (mlp = mp->head; mlp; mlp = mlp->next) {
3286 		if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3287 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3288 			return (sp);
3289 	}
3290 
3291 	/*
3292 	 * Loop through the primary kernel modules.
3293 	 */
3294 	for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3295 		mmp = mod(clp);
3296 
3297 		if (mmp == NULL || mp == mmp)
3298 			continue;
3299 
3300 		if ((sp = lookup_one(mmp, name)) != NULL &&
3301 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3302 			return (sp);
3303 	}
3304 	return (NULL);
3305 }
3306 
3307 Sym *
3308 kobj_lookup_kernel(const char *name)
3309 {
3310 	struct modctl_list *lp;
3311 	struct module *mp;
3312 	Sym *sp;
3313 
3314 	/*
3315 	 * Loop through the primary kernel modules.
3316 	 */
3317 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3318 		mp = mod(lp);
3319 
3320 		if (mp == NULL)
3321 			continue;
3322 
3323 		if ((sp = lookup_one(mp, name)) != NULL)
3324 			return (sp);
3325 	}
3326 	return (NULL);
3327 }
3328 
3329 static Sym *
3330 lookup_one(struct module *mp, const char *name)
3331 {
3332 	symid_t *ip;
3333 	char *name1;
3334 	Sym *sp;
3335 
3336 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3337 	    ip = &mp->chains[*ip]) {
3338 		sp = (Sym *)(mp->symtbl +
3339 		    mp->symhdr->sh_entsize * *ip);
3340 		name1 = mp->strings + sp->st_name;
3341 		if (strcmp(name, name1) == 0 &&
3342 		    ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3343 		    sp->st_shndx != SHN_UNDEF &&
3344 		    sp->st_shndx != SHN_COMMON)
3345 			return (sp);
3346 	}
3347 	return (NULL);
3348 }
3349 
3350 /*
3351  * Lookup a given symbol pointer in the module's symbol hash.  If the symbol
3352  * is hashed, return the symbol pointer; otherwise return NULL.
3353  */
3354 static Sym *
3355 sym_lookup(struct module *mp, Sym *ksp)
3356 {
3357 	char *name = mp->strings + ksp->st_name;
3358 	symid_t *ip;
3359 	Sym *sp;
3360 
3361 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3362 	    ip = &mp->chains[*ip]) {
3363 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3364 		if (sp == ksp)
3365 			return (ksp);
3366 	}
3367 	return (NULL);
3368 }
3369 
3370 static void
3371 sym_insert(struct module *mp, char *name, symid_t index)
3372 {
3373 	symid_t *ip;
3374 
3375 #ifdef KOBJ_DEBUG
3376 	if (kobj_debug & D_SYMBOLS) {
3377 		static struct module *lastmp = NULL;
3378 		Sym *sp;
3379 		if (lastmp != mp) {
3380 			_kobj_printf(ops,
3381 			    "krtld: symbol entry: file=%s\n",
3382 			    mp->filename);
3383 			_kobj_printf(ops,
3384 			    "krtld:\tsymndx\tvalue\t\t"
3385 			    "symbol name\n");
3386 			lastmp = mp;
3387 		}
3388 		sp = (Sym *)(mp->symtbl +
3389 		    index * mp->symhdr->sh_entsize);
3390 		_kobj_printf(ops, "krtld:\t[%3d]", index);
3391 		_kobj_printf(ops, "\t0x%lx", sp->st_value);
3392 		_kobj_printf(ops, "\t%s\n", name);
3393 	}
3394 #endif
3395 
3396 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3397 	    ip = &mp->chains[*ip]) {
3398 		;
3399 	}
3400 	*ip = index;
3401 }
3402 
3403 struct modctl *
3404 kobj_boot_mod_lookup(const char *modname)
3405 {
3406 	struct modctl *mctl = kobj_modules;
3407 
3408 	do {
3409 		if (strcmp(modname, mctl->mod_modname) == 0)
3410 			return (mctl);
3411 	} while ((mctl = mctl->mod_next) != kobj_modules);
3412 
3413 	return (NULL);
3414 }
3415 
3416 /*
3417  * Determine if the module exists.
3418  */
3419 int
3420 kobj_path_exists(char *name, int use_path)
3421 {
3422 	struct _buf *file;
3423 
3424 	file = kobj_open_path(name, use_path, 1);
3425 #ifdef	MODDIR_SUFFIX
3426 	if (file == (struct _buf *)-1)
3427 		file = kobj_open_path(name, use_path, 0);
3428 #endif	/* MODDIR_SUFFIX */
3429 	if (file == (struct _buf *)-1)
3430 		return (0);
3431 	kobj_close_file(file);
3432 	return (1);
3433 }
3434 
3435 /*
3436  * fullname is dynamically allocated to be able to hold the
3437  * maximum size string that can be constructed from name.
3438  * path is exactly like the shell PATH variable.
3439  */
3440 struct _buf *
3441 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3442 {
3443 	char *p, *q;
3444 	char *pathp;
3445 	char *pathpsave;
3446 	char *fullname;
3447 	int maxpathlen;
3448 	struct _buf *file;
3449 
3450 #if !defined(MODDIR_SUFFIX)
3451 	use_moddir_suffix = B_FALSE;
3452 #endif
3453 
3454 	if (!use_path)
3455 		pathp = "";		/* use name as specified */
3456 	else
3457 		pathp = kobj_module_path;
3458 					/* use configured default path */
3459 
3460 	pathpsave = pathp;		/* keep this for error reporting */
3461 
3462 	/*
3463 	 * Allocate enough space for the largest possible fullname.
3464 	 * since path is of the form <directory> : <directory> : ...
3465 	 * we're potentially allocating a little more than we need to
3466 	 * but we'll allocate the exact amount when we find the right directory.
3467 	 * (The + 3 below is one for NULL terminator and one for the '/'
3468 	 * we might have to add at the beginning of path and one for
3469 	 * the '/' between path and name.)
3470 	 */
3471 	maxpathlen = strlen(pathp) + strlen(name) + 3;
3472 	/* sizeof includes null */
3473 	maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3474 	fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3475 
3476 	for (;;) {
3477 		p = fullname;
3478 		if (*pathp != '\0' && *pathp != '/')
3479 			*p++ = '/';	/* path must start with '/' */
3480 		while (*pathp && *pathp != ':' && *pathp != ' ')
3481 			*p++ = *pathp++;
3482 		if (p != fullname && p[-1] != '/')
3483 			*p++ = '/';
3484 		if (use_moddir_suffix) {
3485 			char *b = basename(name);
3486 			char *s;
3487 
3488 			/* copy everything up to the base name */
3489 			q = name;
3490 			while (q != b && *q)
3491 				*p++ = *q++;
3492 			s = slash_moddir_suffix_slash;
3493 			while (*s)
3494 				*p++ = *s++;
3495 			/* copy the rest */
3496 			while (*b)
3497 				*p++ = *b++;
3498 		} else {
3499 			q = name;
3500 			while (*q)
3501 				*p++ = *q++;
3502 		}
3503 		*p = 0;
3504 		if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3505 			kobj_free(fullname, maxpathlen);
3506 			return (file);
3507 		}
3508 		while (*pathp == ' ' || *pathp == ':')
3509 			pathp++;
3510 		if (*pathp == 0)
3511 			break;
3512 
3513 	}
3514 	kobj_free(fullname, maxpathlen);
3515 	if (_moddebug & MODDEBUG_ERRMSG) {
3516 		_kobj_printf(ops, "can't open %s,", name);
3517 		_kobj_printf(ops, " path is %s\n", pathpsave);
3518 	}
3519 	return ((struct _buf *)-1);
3520 }
3521 
3522 intptr_t
3523 kobj_open(char *filename)
3524 {
3525 	struct vnode *vp;
3526 	int fd;
3527 
3528 	if (_modrootloaded) {
3529 		struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3530 		int Errno;
3531 
3532 		/*
3533 		 * Hand off the open to a thread who has a
3534 		 * stack size capable handling the request.
3535 		 */
3536 		if (curthread != &t0) {
3537 			(void) thread_create(NULL, DEFAULTSTKSZ * 2,
3538 			    kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3539 			sema_p(&ltp->sema);
3540 			Errno = ltp->Errno;
3541 			vp = ltp->vp;
3542 		} else {
3543 			/*
3544 			 * 1098067: module creds should not be those of the
3545 			 * caller
3546 			 */
3547 			cred_t *saved_cred = curthread->t_cred;
3548 			curthread->t_cred = kcred;
3549 			Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3550 			    0, 0, rootdir, -1);
3551 			curthread->t_cred = saved_cred;
3552 		}
3553 		kobjopen_free(ltp);
3554 
3555 		if (Errno) {
3556 			if (_moddebug & MODDEBUG_ERRMSG) {
3557 				_kobj_printf(ops,
3558 				    "kobj_open: vn_open of %s fails, ",
3559 				    filename);
3560 				_kobj_printf(ops, "Errno = %d\n", Errno);
3561 			}
3562 			return (-1);
3563 		} else {
3564 			if (_moddebug & MODDEBUG_ERRMSG) {
3565 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3566 				_kobj_printf(ops, " vp = %p\n", vp);
3567 			}
3568 			return ((intptr_t)vp);
3569 		}
3570 	} else {
3571 		fd = kobj_boot_open(filename, 0);
3572 
3573 		if (_moddebug & MODDEBUG_ERRMSG) {
3574 			if (fd < 0)
3575 				_kobj_printf(ops,
3576 				    "kobj_open: can't open %s\n", filename);
3577 			else {
3578 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3579 				_kobj_printf(ops, " descr = 0x%x\n", fd);
3580 			}
3581 		}
3582 		return ((intptr_t)fd);
3583 	}
3584 }
3585 
3586 /*
3587  * Calls to kobj_open() are handled off to this routine as a separate thread.
3588  */
3589 static void
3590 kobjopen_thread(struct kobjopen_tctl *ltp)
3591 {
3592 	kmutex_t	cpr_lk;
3593 	callb_cpr_t	cpr_i;
3594 
3595 	mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3596 	CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3597 	ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3598 	    0, 0);
3599 	sema_v(&ltp->sema);
3600 	mutex_enter(&cpr_lk);
3601 	CALLB_CPR_EXIT(&cpr_i);
3602 	mutex_destroy(&cpr_lk);
3603 	thread_exit();
3604 }
3605 
3606 /*
3607  * allocate and initialize a kobjopen thread structure
3608  */
3609 static struct kobjopen_tctl *
3610 kobjopen_alloc(char *filename)
3611 {
3612 	struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3613 
3614 	ASSERT(filename != NULL);
3615 
3616 	ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3617 	bcopy(filename, ltp->name, strlen(filename) + 1);
3618 	sema_init(&ltp->sema, 0, NULL, SEMA_DEFAULT, NULL);
3619 	return (ltp);
3620 }
3621 
3622 /*
3623  * free a kobjopen thread control structure
3624  */
3625 static void
3626 kobjopen_free(struct kobjopen_tctl *ltp)
3627 {
3628 	sema_destroy(&ltp->sema);
3629 	kmem_free(ltp->name, strlen(ltp->name) + 1);
3630 	kmem_free(ltp, sizeof (*ltp));
3631 }
3632 
3633 int
3634 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset)
3635 {
3636 	int stat;
3637 	ssize_t resid;
3638 
3639 	if (_modrootloaded) {
3640 		if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3641 		    (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3642 		    &resid)) != 0) {
3643 			_kobj_printf(ops,
3644 			    "vn_rdwr failed with error 0x%x\n", stat);
3645 			return (-1);
3646 		}
3647 		return (size - resid);
3648 	} else {
3649 		int count = 0;
3650 
3651 		if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3652 			_kobj_printf(ops,
3653 			    "kobj_read: seek 0x%x failed\n", offset);
3654 			return (-1);
3655 		}
3656 
3657 		count = kobj_boot_read((int)descr, buf, size);
3658 		if (count < size) {
3659 			if (_moddebug & MODDEBUG_ERRMSG) {
3660 				_kobj_printf(ops,
3661 				    "kobj_read: req %d bytes, ", size);
3662 				_kobj_printf(ops, "got %d\n", count);
3663 			}
3664 		}
3665 		return (count);
3666 	}
3667 }
3668 
3669 void
3670 kobj_close(intptr_t descr)
3671 {
3672 	if (_moddebug & MODDEBUG_ERRMSG)
3673 		_kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3674 
3675 	if (_modrootloaded) {
3676 		struct vnode *vp = (struct vnode *)descr;
3677 		(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
3678 		VN_RELE(vp);
3679 	} else
3680 		(void) kobj_boot_close((int)descr);
3681 }
3682 
3683 int
3684 kobj_fstat(intptr_t descr, struct bootstat *buf)
3685 {
3686 	if (buf == NULL)
3687 		return (-1);
3688 
3689 	if (_modrootloaded) {
3690 		vattr_t vattr;
3691 		struct vnode *vp = (struct vnode *)descr;
3692 		if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3693 			return (-1);
3694 
3695 		/*
3696 		 * The vattr and bootstat structures are similar, but not
3697 		 * identical.  We do our best to fill in the bootstat structure
3698 		 * from the contents of vattr (transfering only the ones that
3699 		 * are obvious.
3700 		 */
3701 
3702 		buf->st_mode = (uint32_t)vattr.va_mode;
3703 		buf->st_nlink = (uint32_t)vattr.va_nlink;
3704 		buf->st_uid = (int32_t)vattr.va_uid;
3705 		buf->st_gid = (int32_t)vattr.va_gid;
3706 		buf->st_rdev = (uint64_t)vattr.va_rdev;
3707 		buf->st_size = (uint64_t)vattr.va_size;
3708 		buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3709 		buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3710 		buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3711 		buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3712 		buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3713 		buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3714 		buf->st_blksize = (int32_t)vattr.va_blksize;
3715 		buf->st_blocks = (int64_t)vattr.va_nblocks;
3716 
3717 		return (0);
3718 	}
3719 
3720 	return (kobj_boot_fstat((int)descr, buf));
3721 }
3722 
3723 
3724 struct _buf *
3725 kobj_open_file(char *name)
3726 {
3727 	struct _buf *file;
3728 	struct compinfo cbuf;
3729 	intptr_t fd;
3730 
3731 	if ((fd = kobj_open(name)) == -1) {
3732 		return ((struct _buf *)-1);
3733 	}
3734 
3735 	file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3736 	file->_fd = fd;
3737 	file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3738 	file->_cnt = file->_size = file->_off = 0;
3739 	file->_ln = 1;
3740 	file->_ptr = file->_base;
3741 	(void) strcpy(file->_name, name);
3742 
3743 	/*
3744 	 * Before root is mounted, we must check
3745 	 * for a compressed file and do our own
3746 	 * buffering.
3747 	 */
3748 	if (_modrootloaded) {
3749 		file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT);
3750 		file->_bsize = MAXBSIZE;
3751 
3752 		/* Check if the file is compressed */
3753 		file->_iscmp = kobj_is_compressed(fd);
3754 	} else {
3755 		if (kobj_boot_compinfo(fd, &cbuf) != 0) {
3756 			kobj_close_file(file);
3757 			return ((struct _buf *)-1);
3758 		}
3759 		file->_iscmp = cbuf.iscmp;
3760 		if (file->_iscmp) {
3761 			if (kobj_comp_setup(file, &cbuf) != 0) {
3762 				kobj_close_file(file);
3763 				return ((struct _buf *)-1);
3764 			}
3765 		} else {
3766 			file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP);
3767 			file->_bsize = cbuf.blksize;
3768 		}
3769 	}
3770 	return (file);
3771 }
3772 
3773 static int
3774 kobj_comp_setup(struct _buf *file, struct compinfo *cip)
3775 {
3776 	struct comphdr *hdr;
3777 
3778 	/*
3779 	 * read the compressed image into memory,
3780 	 * so we can deompress from there
3781 	 */
3782 	file->_dsize = cip->fsize;
3783 	file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP);
3784 	if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) {
3785 		kobj_free(file->_dbuf, cip->fsize);
3786 		return (-1);
3787 	}
3788 
3789 	hdr = kobj_comphdr(file);
3790 	if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION ||
3791 	    hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 ||
3792 	    !ISP2(hdr->ch_blksize)) {
3793 		kobj_free(file->_dbuf, cip->fsize);
3794 		return (-1);
3795 	}
3796 	file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP);
3797 	file->_bsize = hdr->ch_blksize;
3798 	return (0);
3799 }
3800 
3801 void
3802 kobj_close_file(struct _buf *file)
3803 {
3804 	kobj_close(file->_fd);
3805 	if (file->_base != NULL)
3806 		kobj_free(file->_base, file->_bsize);
3807 	if (file->_dbuf != NULL)
3808 		kobj_free(file->_dbuf, file->_dsize);
3809 	kobj_free(file->_name, strlen(file->_name)+1);
3810 	kobj_free(file, sizeof (struct _buf));
3811 }
3812 
3813 int
3814 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off)
3815 {
3816 	int b_size, c_size;
3817 	int b_off;	/* Offset into buffer for start of bcopy */
3818 	int count = 0;
3819 	int page_addr;
3820 
3821 	if (_moddebug & MODDEBUG_ERRMSG) {
3822 		_kobj_printf(ops, "kobj_read_file: size=%x,", size);
3823 		_kobj_printf(ops, " offset=%x at", off);
3824 		_kobj_printf(ops, " buf=%x\n", buf);
3825 	}
3826 
3827 	/*
3828 	 * Handle compressed (gzip for now) file here. First get the
3829 	 * compressed size, then read the image into memory and finally
3830 	 * call zlib to decompress the image at the supplied memory buffer.
3831 	 */
3832 	if (file->_iscmp == CH_MAGIC_GZIP) {
3833 		ulong_t dlen;
3834 		vattr_t vattr;
3835 		struct vnode *vp = (struct vnode *)file->_fd;
3836 		ssize_t resid;
3837 		int err = 0;
3838 
3839 		if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3840 			return (-1);
3841 
3842 		file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP);
3843 		file->_dsize = vattr.va_size;
3844 
3845 		/* Read the compressed file into memory */
3846 		if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size,
3847 		    (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3848 		    &resid)) != 0) {
3849 
3850 			_kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, "
3851 			    "error code 0x%x\n", err);
3852 			return (-1);
3853 		}
3854 
3855 		dlen = size;
3856 
3857 		/* Decompress the image at the supplied memory buffer */
3858 		if ((err = z_uncompress(buf, &dlen, file->_dbuf,
3859 		    vattr.va_size)) != Z_OK) {
3860 			_kobj_printf(ops, "kobj_read_file: z_uncompress "
3861 			    "failed, error code : 0x%x\n", err);
3862 			return (-1);
3863 		}
3864 
3865 		if (dlen != size) {
3866 			_kobj_printf(ops, "kobj_read_file: z_uncompress "
3867 			    "failed to uncompress (size returned 0x%x , "
3868 			    "expected size: 0x%x)\n", dlen, size);
3869 			return (-1);
3870 		}
3871 
3872 		return (0);
3873 	}
3874 
3875 	while (size) {
3876 		page_addr = F_PAGE(file, off);
3877 		b_size = file->_size;
3878 		/*
3879 		 * If we have the filesystem page the caller's referring to
3880 		 * and we have something in the buffer,
3881 		 * satisfy as much of the request from the buffer as we can.
3882 		 */
3883 		if (page_addr == file->_off && b_size > 0) {
3884 			b_off = B_OFFSET(file, off);
3885 			c_size = b_size - b_off;
3886 			/*
3887 			 * If there's nothing to copy, we're at EOF.
3888 			 */
3889 			if (c_size <= 0)
3890 				break;
3891 			if (c_size > size)
3892 				c_size = size;
3893 			if (buf) {
3894 				if (_moddebug & MODDEBUG_ERRMSG)
3895 					_kobj_printf(ops, "copying %x bytes\n",
3896 					    c_size);
3897 				bcopy(file->_base+b_off, buf, c_size);
3898 				size -= c_size;
3899 				off += c_size;
3900 				buf += c_size;
3901 				count += c_size;
3902 			} else {
3903 				_kobj_printf(ops, "kobj_read: system error");
3904 				count = -1;
3905 				break;
3906 			}
3907 		} else {
3908 			/*
3909 			 * If the caller's offset is page aligned and
3910 			 * the caller want's at least a filesystem page and
3911 			 * the caller provided a buffer,
3912 			 * read directly into the caller's buffer.
3913 			 */
3914 			if (page_addr == off &&
3915 			    (c_size = F_BLKS(file, size)) && buf) {
3916 				c_size = kobj_read_blks(file, buf, c_size,
3917 				    page_addr);
3918 				if (c_size < 0) {
3919 					count = -1;
3920 					break;
3921 				}
3922 				count += c_size;
3923 				if (c_size != F_BLKS(file, size))
3924 					break;
3925 				size -= c_size;
3926 				off += c_size;
3927 				buf += c_size;
3928 			/*
3929 			 * Otherwise, read into our buffer and copy next time
3930 			 * around the loop.
3931 			 */
3932 			} else {
3933 				file->_off = page_addr;
3934 				c_size = kobj_read_blks(file, file->_base,
3935 				    file->_bsize, page_addr);
3936 				file->_ptr = file->_base;
3937 				file->_cnt = c_size;
3938 				file->_size = c_size;
3939 				/*
3940 				 * If a _filbuf call or nothing read, break.
3941 				 */
3942 				if (buf == NULL || c_size <= 0) {
3943 					count = c_size;
3944 					break;
3945 				}
3946 			}
3947 			if (_moddebug & MODDEBUG_ERRMSG)
3948 				_kobj_printf(ops, "read %x bytes\n", c_size);
3949 		}
3950 	}
3951 	if (_moddebug & MODDEBUG_ERRMSG)
3952 		_kobj_printf(ops, "count = %x\n", count);
3953 
3954 	return (count);
3955 }
3956 
3957 static int
3958 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off)
3959 {
3960 	int ret;
3961 
3962 	ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0);
3963 	if (file->_iscmp) {
3964 		uint_t blks;
3965 		int nret;
3966 
3967 		ret = 0;
3968 		for (blks = size / file->_bsize; blks != 0; blks--) {
3969 			nret = kobj_uncomp_blk(file, buf, off);
3970 			if (nret == -1)
3971 				return (-1);
3972 			buf += nret;
3973 			off += nret;
3974 			ret += nret;
3975 			if (nret < file->_bsize)
3976 				break;
3977 		}
3978 	} else
3979 		ret = kobj_read(file->_fd, buf, size, off);
3980 	return (ret);
3981 }
3982 
3983 static int
3984 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off)
3985 {
3986 	struct comphdr *hdr = kobj_comphdr(file);
3987 	ulong_t dlen, slen;
3988 	caddr_t src;
3989 	int i;
3990 
3991 	dlen = file->_bsize;
3992 	i = off / file->_bsize;
3993 	src = file->_dbuf + hdr->ch_blkmap[i];
3994 	if (i == hdr->ch_fsize / file->_bsize)
3995 		slen = file->_dsize - hdr->ch_blkmap[i];
3996 	else
3997 		slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i];
3998 	if (z_uncompress(buf, &dlen, src, slen) != Z_OK)
3999 		return (-1);
4000 	return (dlen);
4001 }
4002 
4003 int
4004 kobj_filbuf(struct _buf *f)
4005 {
4006 	if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0)
4007 		return (kobj_getc(f));
4008 	return (-1);
4009 }
4010 
4011 void
4012 kobj_free(void *address, size_t size)
4013 {
4014 	if (standalone)
4015 		return;
4016 
4017 	kmem_free(address, size);
4018 	kobj_stat.nfree_calls++;
4019 	kobj_stat.nfree += size;
4020 }
4021 
4022 void *
4023 kobj_zalloc(size_t size, int flag)
4024 {
4025 	void *v;
4026 
4027 	if ((v = kobj_alloc(size, flag)) != 0) {
4028 		bzero(v, size);
4029 	}
4030 
4031 	return (v);
4032 }
4033 
4034 void *
4035 kobj_alloc(size_t size, int flag)
4036 {
4037 	/*
4038 	 * If we are running standalone in the
4039 	 * linker, we ask boot for memory.
4040 	 * Either it's temporary memory that we lose
4041 	 * once boot is mapped out or we allocate it
4042 	 * permanently using the dynamic data segment.
4043 	 */
4044 	if (standalone) {
4045 #if defined(_OBP)
4046 		if (flag & (KM_TMP | KM_SCRATCH))
4047 			return (bop_temp_alloc(size, MINALIGN));
4048 #else
4049 		if (flag & (KM_TMP | KM_SCRATCH))
4050 			return (BOP_ALLOC(ops, 0, size, MINALIGN));
4051 #endif
4052 		return (kobj_segbrk(&_edata, size, MINALIGN, 0));
4053 	}
4054 
4055 	kobj_stat.nalloc_calls++;
4056 	kobj_stat.nalloc += size;
4057 
4058 	return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
4059 }
4060 
4061 /*
4062  * Allow the "mod" system to sync up with the work
4063  * already done by kobj during the initial loading
4064  * of the kernel.  This also gives us a chance
4065  * to reallocate memory that belongs to boot.
4066  */
4067 void
4068 kobj_sync(void)
4069 {
4070 	struct modctl_list *lp, **lpp;
4071 
4072 	/*
4073 	 * The module path can be set in /etc/system via 'moddir' commands
4074 	 */
4075 	if (default_path != NULL)
4076 		kobj_module_path = default_path;
4077 	else
4078 		default_path = kobj_module_path;
4079 
4080 	ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
4081 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4082 
4083 	ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
4084 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4085 
4086 	/*
4087 	 * Move symbol tables from boot memory to ksyms_arena.
4088 	 */
4089 	for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
4090 		for (lp = *lpp; lp != NULL; lp = lp->modl_next)
4091 			kobj_export_module(mod(lp));
4092 	}
4093 }
4094 
4095 caddr_t
4096 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
4097 {
4098 	uintptr_t va, pva;
4099 	size_t alloc_pgsz = kobj_mmu_pagesize;
4100 	size_t alloc_align = BO_NO_ALIGN;
4101 	size_t alloc_size;
4102 
4103 	/*
4104 	 * If we are using "large" mappings for the kernel,
4105 	 * request aligned memory from boot using the
4106 	 * "large" pagesize.
4107 	 */
4108 	if (lg_pagesize) {
4109 		alloc_align = lg_pagesize;
4110 		alloc_pgsz = lg_pagesize;
4111 	}
4112 
4113 #if defined(__sparc)
4114 	/* account for redzone */
4115 	if (limit)
4116 		limit -= alloc_pgsz;
4117 #endif	/* __sparc */
4118 
4119 	va = ALIGN((uintptr_t)*spp, align);
4120 	pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4121 	/*
4122 	 * Need more pages?
4123 	 */
4124 	if (va + size > pva) {
4125 		uintptr_t npva;
4126 
4127 		alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4128 		/*
4129 		 * Check for overlapping segments.
4130 		 */
4131 		if (limit && limit <= *spp + alloc_size) {
4132 			return ((caddr_t)0);
4133 		}
4134 
4135 		npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4136 		    alloc_size, alloc_align);
4137 
4138 		if (npva == 0) {
4139 			_kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4140 			    alloc_size);
4141 			_kobj_printf(ops, " aligned %lx", alloc_align);
4142 			_kobj_printf(ops, " at 0x%lx\n", pva);
4143 			return (NULL);
4144 		}
4145 	}
4146 	*spp = (caddr_t)(va + size);
4147 
4148 	return ((caddr_t)va);
4149 }
4150 
4151 /*
4152  * Calculate the number of output hash buckets.
4153  * We use the next prime larger than n / 4,
4154  * so the average hash chain is about 4 entries.
4155  * More buckets would just be a waste of memory.
4156  */
4157 uint_t
4158 kobj_gethashsize(uint_t n)
4159 {
4160 	int f;
4161 	int hsize = MAX(n / 4, 2);
4162 
4163 	for (f = 2; f * f <= hsize; f++)
4164 		if (hsize % f == 0)
4165 			hsize += f = 1;
4166 
4167 	return (hsize);
4168 }
4169 
4170 /*
4171  * Get the file size.
4172  *
4173  * Before root is mounted, files are compressed in the boot_archive ramdisk
4174  * (in the memory). kobj_fstat would return the compressed file size.
4175  * In order to get the uncompressed file size, read the file to the end and
4176  * count its size.
4177  */
4178 int
4179 kobj_get_filesize(struct _buf *file, uint64_t *size)
4180 {
4181 	int err = 0;
4182 	ssize_t resid;
4183 	uint32_t buf;
4184 
4185 	if (_modrootloaded) {
4186 		struct bootstat bst;
4187 
4188 		if (kobj_fstat(file->_fd, &bst) != 0)
4189 			return (EIO);
4190 		*size = bst.st_size;
4191 
4192 		if (file->_iscmp == CH_MAGIC_GZIP) {
4193 			/*
4194 			 * Read the last 4 bytes of the compressed (gzip)
4195 			 * image to get the size of its uncompressed
4196 			 * version.
4197 			 */
4198 			if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd,
4199 			    (char *)(&buf), 4, (offset_t)(*size - 4),
4200 			    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid))
4201 			    != 0) {
4202 				_kobj_printf(ops, "kobj_get_filesize: "
4203 				    "vn_rdwr() failed with error 0x%x\n", err);
4204 				return (-1);
4205 			}
4206 
4207 			*size =  (uint64_t)buf;
4208 		}
4209 	} else {
4210 
4211 #if defined(_OBP)
4212 		struct bootstat bsb;
4213 
4214 		if (file->_iscmp) {
4215 			struct comphdr *hdr = kobj_comphdr(file);
4216 
4217 			*size = hdr->ch_fsize;
4218 		} else if (kobj_boot_fstat(file->_fd, &bsb) != 0)
4219 			return (EIO);
4220 		else
4221 			*size = bsb.st_size;
4222 #else
4223 		char *buf;
4224 		int count;
4225 		uint64_t offset = 0;
4226 
4227 		buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4228 		do {
4229 			count = kobj_read_file(file, buf, MAXBSIZE, offset);
4230 			if (count < 0) {
4231 				kmem_free(buf, MAXBSIZE);
4232 				return (EIO);
4233 			}
4234 			offset += count;
4235 		} while (count == MAXBSIZE);
4236 		kmem_free(buf, MAXBSIZE);
4237 
4238 		*size = offset;
4239 #endif
4240 	}
4241 
4242 	return (0);
4243 }
4244 
4245 static char *
4246 basename(char *s)
4247 {
4248 	char *p, *q;
4249 
4250 	q = NULL;
4251 	p = s;
4252 	do {
4253 		if (*p == '/')
4254 			q = p;
4255 	} while (*p++);
4256 	return (q ? q + 1 : s);
4257 }
4258 
4259 void
4260 kobj_stat_get(kobj_stat_t *kp)
4261 {
4262 	*kp = kobj_stat;
4263 }
4264 
4265 int
4266 kobj_getpagesize()
4267 {
4268 	return (lg_pagesize);
4269 }
4270 
4271 void
4272 kobj_textwin_alloc(struct module *mp)
4273 {
4274 	ASSERT(MUTEX_HELD(&mod_lock));
4275 
4276 	if (mp->textwin != NULL)
4277 		return;
4278 
4279 	/*
4280 	 * If the text is not contained in the heap, then it is not contained
4281 	 * by a writable mapping.  (Specifically, it's on the nucleus page.)
4282 	 * We allocate a read/write mapping for this module's text to allow
4283 	 * the text to be patched without calling hot_patch_kernel_text()
4284 	 * (which is quite slow).
4285 	 */
4286 	if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4287 		uintptr_t text = (uintptr_t)mp->text;
4288 		uintptr_t size = (uintptr_t)mp->text_size;
4289 		uintptr_t i;
4290 		caddr_t va;
4291 		size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4292 		    (text & PAGEMASK);
4293 
4294 		va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4295 
4296 		for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4297 			hat_devload(kas.a_hat, va, PAGESIZE,
4298 			    hat_getpfnum(kas.a_hat, (caddr_t)i),
4299 			    PROT_READ | PROT_WRITE,
4300 			    HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4301 			va += PAGESIZE;
4302 		}
4303 
4304 		mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4305 	} else {
4306 		mp->textwin = mp->text;
4307 	}
4308 }
4309 
4310 void
4311 kobj_textwin_free(struct module *mp)
4312 {
4313 	uintptr_t text = (uintptr_t)mp->text;
4314 	uintptr_t tsize = (uintptr_t)mp->text_size;
4315 	size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4316 	    (text & PAGEMASK));
4317 
4318 	mp->textwin = NULL;
4319 
4320 	if (mp->textwin_base == NULL)
4321 		return;
4322 
4323 	hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4324 	vmem_free(heap_arena, mp->textwin_base, size);
4325 	mp->textwin_base = NULL;
4326 }
4327 
4328 static char *
4329 find_libmacro(char *name)
4330 {
4331 	int lmi;
4332 
4333 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4334 		if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4335 			return (libmacros[lmi].lmi_list);
4336 	}
4337 	return (NULL);
4338 }
4339 
4340 /*
4341  * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4342  * returns path if successful, else NULL
4343  * Support multiple $MACROs expansion and the first valid path will be returned
4344  * Caller's responsibility to provide enough space in path to expand
4345  */
4346 char *
4347 expand_libmacro(char *tail, char *path, char *pathend)
4348 {
4349 	char c, *p, *p1, *p2, *path2, *endp;
4350 	int diff, lmi, macrolen, valid_macro, more_macro;
4351 	struct _buf *file;
4352 
4353 	/*
4354 	 * check for $MACROS between nulls or slashes
4355 	 */
4356 	p = strchr(tail, '$');
4357 	if (p == NULL)
4358 		return (NULL);
4359 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4360 		macrolen = libmacros[lmi].lmi_macrolen;
4361 		if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4362 			break;
4363 	}
4364 
4365 	valid_macro = 0;
4366 	if (lmi < NLIBMACROS) {
4367 		/*
4368 		 * The following checks are used to restrict expansion of
4369 		 * macros to those that form a full directory/file name
4370 		 * and to keep the behavior same as before.  If this
4371 		 * restriction is removed or no longer valid in the future,
4372 		 * the checks below can be deleted.
4373 		 */
4374 		if ((p == tail) || (*(p - 1) == '/')) {
4375 			c = *(p + macrolen + 1);
4376 			if (c == '/' || c == '\0')
4377 				valid_macro = 1;
4378 		}
4379 	}
4380 
4381 	if (!valid_macro) {
4382 		p2 = strchr(p, '/');
4383 		/*
4384 		 * if no more macro to expand, then just copy whatever left
4385 		 * and check whether it exists
4386 		 */
4387 		if (p2 == NULL || strchr(p2, '$') == NULL) {
4388 			(void) strcpy(pathend, tail);
4389 			if ((file = kobj_open_path(path, 1, 1)) !=
4390 			    (struct _buf *)-1) {
4391 				kobj_close_file(file);
4392 				return (path);
4393 			} else
4394 				return (NULL);
4395 		} else {
4396 			/*
4397 			 * copy all chars before '/' and call expand_libmacro()
4398 			 * again
4399 			 */
4400 			diff = p2 - tail;
4401 			bcopy(tail, pathend, diff);
4402 			pathend += diff;
4403 			*(pathend) = '\0';
4404 			return (expand_libmacro(p2, path, pathend));
4405 		}
4406 	}
4407 
4408 	more_macro = 0;
4409 	if (c != '\0') {
4410 		endp = p + macrolen + 1;
4411 		if (strchr(endp, '$') != NULL)
4412 			more_macro = 1;
4413 	} else
4414 		endp = NULL;
4415 
4416 	/*
4417 	 * copy lmi_list and split it into components.
4418 	 * then put the part of tail before $MACRO into path
4419 	 * at pathend
4420 	 */
4421 	diff = p - tail;
4422 	if (diff > 0)
4423 		bcopy(tail, pathend, diff);
4424 	path2 = pathend + diff;
4425 	p1 = libmacros[lmi].lmi_list;
4426 	while (p1 && (*p1 != '\0')) {
4427 		p2 = strchr(p1, ':');
4428 		if (p2) {
4429 			diff = p2 - p1;
4430 			bcopy(p1, path2, diff);
4431 			*(path2 + diff) = '\0';
4432 		} else {
4433 			diff = strlen(p1);
4434 			bcopy(p1, path2, diff + 1);
4435 		}
4436 		/* copy endp only if there isn't any more macro to expand */
4437 		if (!more_macro && (endp != NULL))
4438 			(void) strcat(path2, endp);
4439 		file = kobj_open_path(path, 1, 1);
4440 		if (file != (struct _buf *)-1) {
4441 			kobj_close_file(file);
4442 			/*
4443 			 * if more macros to expand then call expand_libmacro(),
4444 			 * else return path which has the whole path
4445 			 */
4446 			if (!more_macro || (expand_libmacro(endp, path,
4447 			    path2 + diff) != NULL)) {
4448 				return (path);
4449 			}
4450 		}
4451 		if (p2)
4452 			p1 = ++p2;
4453 		else
4454 			return (NULL);
4455 	}
4456 	return (NULL);
4457 }
4458 
4459 static void
4460 tnf_add_notifyunload(kobj_notify_f *fp)
4461 {
4462 	kobj_notify_list_t *entry;
4463 
4464 	entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT);
4465 	entry->kn_type = KOBJ_NOTIFY_MODUNLOADING;
4466 	entry->kn_func = fp;
4467 	(void) kobj_notify_add(entry);
4468 }
4469 
4470 /* ARGSUSED */
4471 static void
4472 tnf_unsplice_probes(uint_t what, struct modctl *mod)
4473 {
4474 	tnf_probe_control_t **p;
4475 	tnf_tag_data_t **q;
4476 	struct module *mp = mod->mod_mp;
4477 
4478 	if (!(mp->flags & KOBJ_TNF_PROBE))
4479 		return;
4480 
4481 	for (p = &__tnf_probe_list_head; *p; )
4482 		if (kobj_addrcheck(mp, (char *)*p) == 0)
4483 			*p = (*p)->next;
4484 		else
4485 			p = &(*p)->next;
4486 
4487 	for (q = &__tnf_tag_list_head; *q; )
4488 		if (kobj_addrcheck(mp, (char *)*q) == 0)
4489 			*q = (tnf_tag_data_t *)(*q)->tag_version;
4490 		else
4491 			q = (tnf_tag_data_t **)&(*q)->tag_version;
4492 
4493 	tnf_changed_probe_list = 1;
4494 }
4495 
4496 int
4497 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist,
4498     tnf_tag_data_t *tlist)
4499 {
4500 	int result = 0;
4501 	static int add_notify = 1;
4502 
4503 	if (plist) {
4504 		tnf_probe_control_t *pl;
4505 
4506 		for (pl = plist; pl->next; )
4507 			pl = pl->next;
4508 
4509 		if (!boot_load)
4510 			mutex_enter(&mod_lock);
4511 		tnf_changed_probe_list = 1;
4512 		pl->next = __tnf_probe_list_head;
4513 		__tnf_probe_list_head = plist;
4514 		if (!boot_load)
4515 			mutex_exit(&mod_lock);
4516 		result = 1;
4517 	}
4518 
4519 	if (tlist) {
4520 		tnf_tag_data_t *tl;
4521 
4522 		for (tl = tlist; tl->tag_version; )
4523 			tl = (tnf_tag_data_t *)tl->tag_version;
4524 
4525 		if (!boot_load)
4526 			mutex_enter(&mod_lock);
4527 		tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head;
4528 		__tnf_tag_list_head = tlist;
4529 		if (!boot_load)
4530 			mutex_exit(&mod_lock);
4531 		result = 1;
4532 	}
4533 	if (!boot_load && result && add_notify) {
4534 		tnf_add_notifyunload(tnf_unsplice_probes);
4535 		add_notify = 0;
4536 	}
4537 	return (result);
4538 }
4539 
4540 char *kobj_file_buf;
4541 int kobj_file_bufsize;
4542 
4543 /*
4544  * This code is for the purpose of manually recording which files
4545  * needs to go into the boot archive on any given system.
4546  *
4547  * To enable the code, set kobj_file_bufsize in /etc/system
4548  * and reboot the system, then use mdb to look at kobj_file_buf.
4549  */
4550 static void
4551 kobj_record_file(char *filename)
4552 {
4553 	static char *buf;
4554 	static int size = 0;
4555 	int n;
4556 
4557 	if (kobj_file_bufsize == 0)	/* don't bother */
4558 		return;
4559 
4560 	if (kobj_file_buf == NULL) {	/* allocate buffer */
4561 		size = kobj_file_bufsize;
4562 		buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4563 	}
4564 
4565 	n = snprintf(buf, size, "%s\n", filename);
4566 	if (n > size)
4567 		n = size;
4568 	size -= n;
4569 	buf += n;
4570 }
4571 
4572 static int
4573 kobj_boot_fstat(int fd, struct bootstat *stp)
4574 {
4575 #if defined(_OBP)
4576 	if (!standalone && _ioquiesced)
4577 		return (-1);
4578 	return (BOP_FSTAT(ops, fd, stp));
4579 #else
4580 	return (BRD_FSTAT(bfs_ops, fd, stp));
4581 #endif
4582 }
4583 
4584 static int
4585 kobj_boot_open(char *filename, int flags)
4586 {
4587 #if defined(_OBP)
4588 
4589 	/*
4590 	 * If io via bootops is quiesced, it means boot is no longer
4591 	 * available to us.  We make it look as if we can't open the
4592 	 * named file - which is reasonably accurate.
4593 	 */
4594 	if (!standalone && _ioquiesced)
4595 		return (-1);
4596 
4597 	kobj_record_file(filename);
4598 	return (BOP_OPEN(filename, flags));
4599 #else /* x86 */
4600 	kobj_record_file(filename);
4601 	return (BRD_OPEN(bfs_ops, filename, flags));
4602 #endif
4603 }
4604 
4605 static int
4606 kobj_boot_close(int fd)
4607 {
4608 #if defined(_OBP)
4609 	if (!standalone && _ioquiesced)
4610 		return (-1);
4611 
4612 	return (BOP_CLOSE(fd));
4613 #else /* x86 */
4614 	return (BRD_CLOSE(bfs_ops, fd));
4615 #endif
4616 }
4617 
4618 /*ARGSUSED*/
4619 static int
4620 kobj_boot_seek(int fd, off_t hi, off_t lo)
4621 {
4622 #if defined(_OBP)
4623 	return (BOP_SEEK(fd, lo) == -1 ? -1 : 0);
4624 #else
4625 	return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4626 #endif
4627 }
4628 
4629 static int
4630 kobj_boot_read(int fd, caddr_t buf, size_t size)
4631 {
4632 #if defined(_OBP)
4633 	return (BOP_READ(fd, buf, size));
4634 #else
4635 	return (BRD_READ(bfs_ops, fd, buf, size));
4636 #endif
4637 }
4638 
4639 static int
4640 kobj_boot_compinfo(int fd, struct compinfo *cb)
4641 {
4642 	return (boot_compinfo(fd, cb));
4643 }
4644 
4645 /*
4646  * Check if the file is compressed (for now we handle only gzip).
4647  * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise.
4648  */
4649 static int
4650 kobj_is_compressed(intptr_t fd)
4651 {
4652 	struct vnode *vp = (struct vnode *)fd;
4653 	ssize_t resid;
4654 	uint16_t magic_buf;
4655 	int err = 0;
4656 
4657 	if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf),
4658 	    sizeof (magic_buf), (offset_t)(0),
4659 	    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
4660 
4661 		_kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, "
4662 		    "error code 0x%x\n", err);
4663 		return (0);
4664 	}
4665 
4666 	if (magic_buf == CH_MAGIC_GZIP)
4667 		return (CH_MAGIC_GZIP);
4668 
4669 	return (0);
4670 }
4671