xref: /illumos-gate/usr/src/uts/common/io/yge/yge.c (revision d8a7fe16f62711cdc5c4267da8b34ff24a6b668c)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * This driver was derived from the FreeBSD if_msk.c driver, which
8  * bears the following copyright attributions and licenses.
9  */
10 
11 /*
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  */
47 /*
48  * Copyright (c) 1997, 1998, 1999, 2000
49  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions
53  * are met:
54  * 1. Redistributions of source code must retain the above copyright
55  *    notice, this list of conditions and the following disclaimer.
56  * 2. Redistributions in binary form must reproduce the above copyright
57  *    notice, this list of conditions and the following disclaimer in the
58  *    documentation and/or other materials provided with the distribution.
59  * 3. All advertising materials mentioning features or use of this software
60  *    must display the following acknowledgement:
61  *	This product includes software developed by Bill Paul.
62  * 4. Neither the name of the author nor the names of any co-contributors
63  *    may be used to endorse or promote products derived from this software
64  *    without specific prior written permission.
65  *
66  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
67  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
70  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
71  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
72  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
73  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
74  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
75  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
76  * THE POSSIBILITY OF SUCH DAMAGE.
77  */
78 /*
79  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
80  *
81  * Permission to use, copy, modify, and distribute this software for any
82  * purpose with or without fee is hereby granted, provided that the above
83  * copyright notice and this permission notice appear in all copies.
84  *
85  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
86  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
87  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
88  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
89  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
90  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
91  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
92  */
93 
94 #include <sys/varargs.h>
95 #include <sys/types.h>
96 #include <sys/modctl.h>
97 #include <sys/conf.h>
98 #include <sys/devops.h>
99 #include <sys/stream.h>
100 #include <sys/strsun.h>
101 #include <sys/cmn_err.h>
102 #include <sys/ethernet.h>
103 #include <sys/kmem.h>
104 #include <sys/time.h>
105 #include <sys/pci.h>
106 #include <sys/mii.h>
107 #include <sys/miiregs.h>
108 #include <sys/mac.h>
109 #include <sys/mac_ether.h>
110 #include <sys/mac_provider.h>
111 #include <sys/debug.h>
112 #include <sys/note.h>
113 #include <sys/ddi.h>
114 #include <sys/sunddi.h>
115 #include <sys/vlan.h>
116 
117 #include "yge.h"
118 
119 static struct ddi_device_acc_attr yge_regs_attr = {
120 	DDI_DEVICE_ATTR_V0,
121 	DDI_STRUCTURE_LE_ACC,
122 	DDI_STRICTORDER_ACC
123 };
124 
125 static struct ddi_device_acc_attr yge_ring_attr = {
126 	DDI_DEVICE_ATTR_V0,
127 	DDI_STRUCTURE_LE_ACC,
128 	DDI_STRICTORDER_ACC
129 };
130 
131 static struct ddi_device_acc_attr yge_buf_attr = {
132 	DDI_DEVICE_ATTR_V0,
133 	DDI_NEVERSWAP_ACC,
134 	DDI_STRICTORDER_ACC
135 };
136 
137 #define	DESC_ALIGN	0x1000
138 
139 static ddi_dma_attr_t yge_ring_dma_attr = {
140 	DMA_ATTR_V0,		/* dma_attr_version */
141 	0,			/* dma_attr_addr_lo */
142 	0x00000000ffffffffull,	/* dma_attr_addr_hi */
143 	0x00000000ffffffffull,	/* dma_attr_count_max */
144 	DESC_ALIGN,		/* dma_attr_align */
145 	0x000007fc,		/* dma_attr_burstsizes */
146 	1,			/* dma_attr_minxfer */
147 	0x00000000ffffffffull,	/* dma_attr_maxxfer */
148 	0x00000000ffffffffull,	/* dma_attr_seg */
149 	1,			/* dma_attr_sgllen */
150 	1,			/* dma_attr_granular */
151 	0			/* dma_attr_flags */
152 };
153 
154 static ddi_dma_attr_t yge_buf_dma_attr = {
155 	DMA_ATTR_V0,		/* dma_attr_version */
156 	0,			/* dma_attr_addr_lo */
157 	0x00000000ffffffffull,	/* dma_attr_addr_hi */
158 	0x00000000ffffffffull,	/* dma_attr_count_max */
159 	1,			/* dma_attr_align */
160 	0x0000fffc,		/* dma_attr_burstsizes */
161 	1,			/* dma_attr_minxfer */
162 	0x000000000000ffffull,	/* dma_attr_maxxfer */
163 	0x00000000ffffffffull,	/* dma_attr_seg */
164 	8,			/* dma_attr_sgllen */
165 	1,			/* dma_attr_granular */
166 	0			/* dma_attr_flags */
167 };
168 
169 
170 static int yge_attach(yge_dev_t *);
171 static void yge_detach(yge_dev_t *);
172 static int yge_suspend(yge_dev_t *);
173 static int yge_resume(yge_dev_t *);
174 
175 static void yge_reset(yge_dev_t *);
176 static void yge_setup_rambuffer(yge_dev_t *);
177 
178 static int yge_init_port(yge_port_t *);
179 static void yge_uninit_port(yge_port_t *);
180 static int yge_register_port(yge_port_t *);
181 static int yge_unregister_port(yge_port_t *);
182 
183 static void yge_tick(void *);
184 static uint_t yge_intr(caddr_t, caddr_t);
185 static int yge_intr_gmac(yge_port_t *);
186 static void yge_intr_enable(yge_dev_t *);
187 static void yge_intr_disable(yge_dev_t *);
188 static boolean_t yge_handle_events(yge_dev_t *, mblk_t **, mblk_t **, int *);
189 static void yge_handle_hwerr(yge_port_t *, uint32_t);
190 static void yge_intr_hwerr(yge_dev_t *);
191 static mblk_t *yge_rxeof(yge_port_t *, uint32_t, int);
192 static void yge_txeof(yge_port_t *, int);
193 static boolean_t yge_send(yge_port_t *, mblk_t *);
194 static void yge_set_prefetch(yge_dev_t *, int, yge_ring_t *);
195 static void yge_set_rambuffer(yge_port_t *);
196 static void yge_start_port(yge_port_t *);
197 static void yge_stop_port(yge_port_t *);
198 static void yge_phy_power(yge_dev_t *, boolean_t);
199 static int yge_alloc_ring(yge_port_t *, yge_dev_t *, yge_ring_t *, uint32_t);
200 static void yge_free_ring(yge_ring_t *);
201 static uint8_t yge_find_capability(yge_dev_t *, uint8_t);
202 
203 static int yge_txrx_dma_alloc(yge_port_t *);
204 static void yge_txrx_dma_free(yge_port_t *);
205 static void yge_init_rx_ring(yge_port_t *);
206 static void yge_init_tx_ring(yge_port_t *);
207 
208 static uint16_t yge_mii_readreg(yge_port_t *, uint8_t, uint8_t);
209 static void yge_mii_writereg(yge_port_t *, uint8_t, uint8_t, uint16_t);
210 
211 static uint16_t yge_mii_read(void *, uint8_t, uint8_t);
212 static void yge_mii_write(void *, uint8_t, uint8_t, uint16_t);
213 static void yge_mii_notify(void *, link_state_t);
214 
215 static void yge_setrxfilt(yge_port_t *);
216 static void yge_restart_task(yge_dev_t *);
217 static void yge_task(void *);
218 static void yge_dispatch(yge_dev_t *, int);
219 
220 static void yge_stats_clear(yge_port_t *);
221 static void yge_stats_update(yge_port_t *);
222 static uint32_t yge_hashbit(const uint8_t *);
223 
224 static int yge_m_unicst(void *, const uint8_t *);
225 static int yge_m_multicst(void *, boolean_t, const uint8_t *);
226 static int yge_m_promisc(void *, boolean_t);
227 static mblk_t *yge_m_tx(void *, mblk_t *);
228 static int yge_m_stat(void *, uint_t, uint64_t *);
229 static int yge_m_start(void *);
230 static void yge_m_stop(void *);
231 static int yge_m_getprop(void *, const char *, mac_prop_id_t, uint_t,
232     uint_t, void *, uint_t *);
233 static int yge_m_setprop(void *, const char *, mac_prop_id_t, uint_t,
234     const void *);
235 static void yge_m_ioctl(void *, queue_t *, mblk_t *);
236 
237 void yge_error(yge_dev_t *, yge_port_t *, char *, ...);
238 extern void yge_phys_update(yge_port_t *);
239 extern int yge_phys_restart(yge_port_t *, boolean_t);
240 extern int yge_phys_init(yge_port_t *, phy_readreg_t, phy_writereg_t);
241 
242 static mac_callbacks_t yge_m_callbacks = {
243 	MC_IOCTL | MC_SETPROP | MC_GETPROP,
244 	yge_m_stat,
245 	yge_m_start,
246 	yge_m_stop,
247 	yge_m_promisc,
248 	yge_m_multicst,
249 	yge_m_unicst,
250 	yge_m_tx,
251 	yge_m_ioctl,
252 	NULL,		/* mc_getcapab */
253 	NULL,		/* mc_open */
254 	NULL,		/* mc_close */
255 	yge_m_setprop,
256 	yge_m_getprop,
257 };
258 
259 static mii_ops_t yge_mii_ops = {
260 	MII_OPS_VERSION,
261 	yge_mii_read,
262 	yge_mii_write,
263 	yge_mii_notify,
264 	NULL	/* reset */
265 };
266 
267 /*
268  * This is the low level interface routine to read from the PHY
269  * MII registers. There is multiple steps to these accesses. First
270  * the register number is written to an address register. Then after
271  * a specified delay status is checked until the data is present.
272  */
273 static uint16_t
274 yge_mii_readreg(yge_port_t *port, uint8_t phy, uint8_t reg)
275 {
276 	yge_dev_t *dev = port->p_dev;
277 	int pnum = port->p_port;
278 	uint16_t val;
279 
280 	GMAC_WRITE_2(dev, pnum, GM_SMI_CTRL,
281 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
282 
283 	for (int i = 0; i < YGE_TIMEOUT; i += 10) {
284 		drv_usecwait(10);
285 		val = GMAC_READ_2(dev, pnum, GM_SMI_CTRL);
286 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
287 			val = GMAC_READ_2(dev, pnum, GM_SMI_DATA);
288 			return (val);
289 		}
290 	}
291 
292 	return (0xffff);
293 }
294 
295 /*
296  * This is the low level interface routine to write to the PHY
297  * MII registers. There is multiple steps to these accesses. The
298  * data and the target registers address are written to the PHY.
299  * Then the PHY is polled until it is done with the write. Note
300  * that the delays are specified and required!
301  */
302 static void
303 yge_mii_writereg(yge_port_t *port, uint8_t phy, uint8_t reg, uint16_t val)
304 {
305 	yge_dev_t *dev = port->p_dev;
306 	int pnum = port->p_port;
307 
308 	GMAC_WRITE_2(dev, pnum, GM_SMI_DATA, val);
309 	GMAC_WRITE_2(dev, pnum, GM_SMI_CTRL,
310 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
311 
312 	for (int i = 0; i < YGE_TIMEOUT; i += 10) {
313 		drv_usecwait(10);
314 		if ((GMAC_READ_2(dev, pnum, GM_SMI_CTRL) & GM_SMI_CT_BUSY) == 0)
315 			return;
316 	}
317 
318 	yge_error(NULL, port, "phy write timeout");
319 }
320 
321 static uint16_t
322 yge_mii_read(void *arg, uint8_t phy, uint8_t reg)
323 {
324 	yge_port_t *port = arg;
325 	uint16_t rv;
326 
327 	PHY_LOCK(port->p_dev);
328 	rv = yge_mii_readreg(port, phy, reg);
329 	PHY_UNLOCK(port->p_dev);
330 	return (rv);
331 }
332 
333 static void
334 yge_mii_write(void *arg, uint8_t phy, uint8_t reg, uint16_t val)
335 {
336 	yge_port_t *port = arg;
337 
338 	PHY_LOCK(port->p_dev);
339 	yge_mii_writereg(port, phy, reg, val);
340 	PHY_UNLOCK(port->p_dev);
341 }
342 
343 /*
344  * The MII common code calls this function to let the MAC driver
345  * know when there has been a change in status.
346  */
347 void
348 yge_mii_notify(void *arg, link_state_t link)
349 {
350 	yge_port_t *port = arg;
351 	yge_dev_t *dev = port->p_dev;
352 	uint32_t gmac;
353 	uint32_t gpcr;
354 	link_flowctrl_t	fc;
355 	link_duplex_t duplex;
356 	int speed;
357 
358 	fc = mii_get_flowctrl(port->p_mii);
359 	duplex = mii_get_duplex(port->p_mii);
360 	speed = mii_get_speed(port->p_mii);
361 
362 	DEV_LOCK(dev);
363 
364 	if (link == LINK_STATE_UP) {
365 
366 		/* Enable Tx FIFO Underrun. */
367 		CSR_WRITE_1(dev, MR_ADDR(port->p_port, GMAC_IRQ_MSK),
368 		    GM_IS_TX_FF_UR |	/* TX FIFO underflow */
369 		    GM_IS_RX_FF_OR);	/* RX FIFO overflow */
370 
371 		gpcr = GM_GPCR_AU_ALL_DIS;
372 
373 		switch (fc) {
374 		case LINK_FLOWCTRL_BI:
375 			gmac = GMC_PAUSE_ON;
376 			gpcr &= ~(GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS);
377 			break;
378 		case LINK_FLOWCTRL_TX:
379 			gmac = GMC_PAUSE_ON;
380 			gpcr |= GM_GPCR_FC_RX_DIS;
381 			break;
382 		case LINK_FLOWCTRL_RX:
383 			gmac = GMC_PAUSE_ON;
384 			gpcr |= GM_GPCR_FC_TX_DIS;
385 			break;
386 		case LINK_FLOWCTRL_NONE:
387 		default:
388 			gmac = GMC_PAUSE_OFF;
389 			gpcr |= GM_GPCR_FC_RX_DIS;
390 			gpcr |= GM_GPCR_FC_TX_DIS;
391 			break;
392 		}
393 
394 		gpcr &= ~((GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100));
395 		switch (speed) {
396 		case 1000:
397 			gpcr |= GM_GPCR_SPEED_1000;
398 			break;
399 		case 100:
400 			gpcr |= GM_GPCR_SPEED_100;
401 			break;
402 		case 10:
403 		default:
404 			break;
405 		}
406 
407 		if (duplex == LINK_DUPLEX_FULL) {
408 			gpcr |= GM_GPCR_DUP_FULL;
409 		} else {
410 			gpcr &= ~(GM_GPCR_DUP_FULL);
411 			gmac = GMC_PAUSE_OFF;
412 			gpcr |= GM_GPCR_FC_RX_DIS;
413 			gpcr |= GM_GPCR_FC_TX_DIS;
414 		}
415 
416 		gpcr |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
417 		GMAC_WRITE_2(dev, port->p_port, GM_GP_CTRL, gpcr);
418 
419 		/* Read again to ensure writing. */
420 		(void) GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
421 
422 		/* write out the flow control gmac setting */
423 		CSR_WRITE_4(dev, MR_ADDR(port->p_port, GMAC_CTRL), gmac);
424 
425 	} else {
426 		/* Disable Rx/Tx MAC. */
427 		gpcr = GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
428 		gpcr &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
429 		GMAC_WRITE_2(dev, port->p_port, GM_GP_CTRL, gpcr);
430 
431 		/* Read again to ensure writing. */
432 		(void) GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
433 	}
434 
435 	DEV_UNLOCK(dev);
436 
437 	mac_link_update(port->p_mh, link);
438 
439 	if (port->p_running && (link == LINK_STATE_UP)) {
440 		mac_tx_update(port->p_mh);
441 	}
442 }
443 
444 static void
445 yge_setrxfilt(yge_port_t *port)
446 {
447 	yge_dev_t	*dev;
448 	uint16_t	mode;
449 	uint8_t		*ea;
450 	uint32_t	*mchash;
451 	int		pnum;
452 
453 	dev = port->p_dev;
454 	pnum = port->p_port;
455 	ea = port->p_curraddr;
456 	mchash = port->p_mchash;
457 
458 	if (dev->d_suspended)
459 		return;
460 
461 	/* Set station address. */
462 	for (int i = 0; i < (ETHERADDRL / 2); i++) {
463 		GMAC_WRITE_2(dev, pnum, GM_SRC_ADDR_1L + i * 4,
464 		    ((uint16_t)ea[i * 2] | ((uint16_t)ea[(i * 2) + 1] << 8)));
465 	}
466 	for (int i = 0; i < (ETHERADDRL / 2); i++) {
467 		GMAC_WRITE_2(dev, pnum, GM_SRC_ADDR_2L + i * 4,
468 		    ((uint16_t)ea[i * 2] | ((uint16_t)ea[(i * 2) + 1] << 8)));
469 	}
470 
471 	/* Figure out receive filtering mode. */
472 	mode = GMAC_READ_2(dev, pnum, GM_RX_CTRL);
473 	if (port->p_promisc) {
474 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
475 	} else {
476 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
477 	}
478 	/* Write the multicast filter. */
479 	GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H1, mchash[0] & 0xffff);
480 	GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H2, (mchash[0] >> 16) & 0xffff);
481 	GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H3, mchash[1] & 0xffff);
482 	GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H4, (mchash[1] >> 16) & 0xffff);
483 	/* Write the receive filtering mode. */
484 	GMAC_WRITE_2(dev, pnum, GM_RX_CTRL, mode);
485 }
486 
487 static void
488 yge_init_rx_ring(yge_port_t *port)
489 {
490 	yge_buf_t *rxb;
491 	yge_ring_t *ring;
492 	int prod;
493 
494 	port->p_rx_cons = 0;
495 	port->p_rx_putwm = YGE_PUT_WM;
496 	ring = &port->p_rx_ring;
497 
498 	/* ala bzero, but uses safer acch access */
499 	CLEARRING(ring);
500 
501 	for (prod = 0; prod < YGE_RX_RING_CNT; prod++) {
502 		/* Hang out receive buffers. */
503 		rxb = &port->p_rx_buf[prod];
504 
505 		PUTADDR(ring, prod, rxb->b_paddr);
506 		PUTCTRL(ring, prod, port->p_framesize | OP_PACKET | HW_OWNER);
507 	}
508 
509 	SYNCRING(ring, DDI_DMA_SYNC_FORDEV);
510 
511 	yge_set_prefetch(port->p_dev, port->p_rxq, ring);
512 
513 	/* Update prefetch unit. */
514 	CSR_WRITE_2(port->p_dev,
515 	    Y2_PREF_Q_ADDR(port->p_rxq, PREF_UNIT_PUT_IDX_REG),
516 	    YGE_RX_RING_CNT - 1);
517 }
518 
519 static void
520 yge_init_tx_ring(yge_port_t *port)
521 {
522 	yge_ring_t *ring = &port->p_tx_ring;
523 
524 	port->p_tx_prod = 0;
525 	port->p_tx_cons = 0;
526 	port->p_tx_cnt = 0;
527 
528 	CLEARRING(ring);
529 	SYNCRING(ring, DDI_DMA_SYNC_FORDEV);
530 
531 	yge_set_prefetch(port->p_dev, port->p_txq, ring);
532 }
533 
534 static void
535 yge_setup_rambuffer(yge_dev_t *dev)
536 {
537 	int next;
538 	int i;
539 
540 	/* Get adapter SRAM size. */
541 	dev->d_ramsize = CSR_READ_1(dev, B2_E_0) * 4;
542 	if (dev->d_ramsize == 0)
543 		return;
544 
545 	dev->d_pflags |= PORT_FLAG_RAMBUF;
546 	/*
547 	 * Give receiver 2/3 of memory and round down to the multiple
548 	 * of 1024. Tx/Rx RAM buffer size of Yukon 2 should be multiple
549 	 * of 1024.
550 	 */
551 	dev->d_rxqsize = (((dev->d_ramsize * 1024 * 2) / 3) & ~(1024 - 1));
552 	dev->d_txqsize = (dev->d_ramsize * 1024) - dev->d_rxqsize;
553 
554 	for (i = 0, next = 0; i < dev->d_num_port; i++) {
555 		dev->d_rxqstart[i] = next;
556 		dev->d_rxqend[i] = next + dev->d_rxqsize - 1;
557 		next = dev->d_rxqend[i] + 1;
558 		dev->d_txqstart[i] = next;
559 		dev->d_txqend[i] = next + dev->d_txqsize - 1;
560 		next = dev->d_txqend[i] + 1;
561 	}
562 }
563 
564 static void
565 yge_phy_power(yge_dev_t *dev, boolean_t powerup)
566 {
567 	uint32_t val;
568 	int i;
569 
570 	if (powerup) {
571 		/* Switch power to VCC (WA for VAUX problem). */
572 		CSR_WRITE_1(dev, B0_POWER_CTRL,
573 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
574 		/* Disable Core Clock Division, set Clock Select to 0. */
575 		CSR_WRITE_4(dev, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
576 
577 		val = 0;
578 		if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
579 		    dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
580 			/* Enable bits are inverted. */
581 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
582 			    Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
583 			    Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
584 		}
585 		/*
586 		 * Enable PCI & Core Clock, enable clock gating for both Links.
587 		 */
588 		CSR_WRITE_1(dev, B2_Y2_CLK_GATE, val);
589 
590 		val = pci_config_get32(dev->d_pcih, PCI_OUR_REG_1);
591 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
592 		if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
593 		    dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
594 			/* Deassert Low Power for 1st PHY. */
595 			val |= PCI_Y2_PHY1_COMA;
596 			if (dev->d_num_port > 1)
597 				val |= PCI_Y2_PHY2_COMA;
598 		}
599 
600 		/* Release PHY from PowerDown/COMA mode. */
601 		pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, val);
602 
603 		switch (dev->d_hw_id) {
604 		case CHIP_ID_YUKON_EC_U:
605 		case CHIP_ID_YUKON_EX:
606 		case CHIP_ID_YUKON_FE_P: {
607 			uint32_t our;
608 
609 			CSR_WRITE_2(dev, B0_CTST, Y2_HW_WOL_OFF);
610 
611 			/* Enable all clocks. */
612 			pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
613 
614 			our = pci_config_get32(dev->d_pcih, PCI_OUR_REG_4);
615 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
616 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
617 			/* Set all bits to 0 except bits 15..12. */
618 			pci_config_put32(dev->d_pcih, PCI_OUR_REG_4, our);
619 
620 			/* Set to default value. */
621 			our = pci_config_get32(dev->d_pcih, PCI_OUR_REG_5);
622 			our &= P_CTL_TIM_VMAIN_AV_MSK;
623 			pci_config_put32(dev->d_pcih, PCI_OUR_REG_5, our);
624 
625 			pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, 0);
626 
627 			/*
628 			 * Enable workaround for dev 4.107 on Yukon-Ultra
629 			 * and Extreme
630 			 */
631 			our = CSR_READ_4(dev, B2_GP_IO);
632 			our |= GLB_GPIO_STAT_RACE_DIS;
633 			CSR_WRITE_4(dev, B2_GP_IO, our);
634 
635 			(void) CSR_READ_4(dev, B2_GP_IO);
636 			break;
637 		}
638 		default:
639 			break;
640 		}
641 
642 		for (i = 0; i < dev->d_num_port; i++) {
643 			CSR_WRITE_2(dev, MR_ADDR(i, GMAC_LINK_CTRL),
644 			    GMLC_RST_SET);
645 			CSR_WRITE_2(dev, MR_ADDR(i, GMAC_LINK_CTRL),
646 			    GMLC_RST_CLR);
647 		}
648 	} else {
649 		val = pci_config_get32(dev->d_pcih, PCI_OUR_REG_1);
650 		if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
651 		    dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
652 			val &= ~PCI_Y2_PHY1_COMA;
653 			if (dev->d_num_port > 1)
654 				val &= ~PCI_Y2_PHY2_COMA;
655 			val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
656 		} else {
657 			val |= (PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
658 		}
659 		pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, val);
660 
661 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
662 		    Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
663 		    Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
664 		if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
665 		    dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
666 			/* Enable bits are inverted. */
667 			val = 0;
668 		}
669 		/*
670 		 * Disable PCI & Core Clock, disable clock gating for
671 		 * both Links.
672 		 */
673 		CSR_WRITE_1(dev, B2_Y2_CLK_GATE, val);
674 		CSR_WRITE_1(dev, B0_POWER_CTRL,
675 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
676 	}
677 }
678 
679 static void
680 yge_reset(yge_dev_t *dev)
681 {
682 	uint64_t addr;
683 	uint16_t status;
684 	uint32_t val;
685 	int i;
686 	ddi_acc_handle_t	pcih = dev->d_pcih;
687 
688 	/* Turn off ASF */
689 	if (dev->d_hw_id == CHIP_ID_YUKON_EX) {
690 		status = CSR_READ_2(dev, B28_Y2_ASF_STAT_CMD);
691 		/* Clear AHB bridge & microcontroller reset */
692 		status &= ~Y2_ASF_CPU_MODE;
693 		status &= ~Y2_ASF_AHB_RST;
694 		/* Clear ASF microcontroller state */
695 		status &= ~Y2_ASF_STAT_MSK;
696 		CSR_WRITE_2(dev, B28_Y2_ASF_STAT_CMD, status);
697 	} else {
698 		CSR_WRITE_1(dev, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
699 	}
700 	CSR_WRITE_2(dev, B0_CTST, Y2_ASF_DISABLE);
701 
702 	/*
703 	 * Since we disabled ASF, S/W reset is required for Power Management.
704 	 */
705 	CSR_WRITE_1(dev, B0_CTST, CS_RST_SET);
706 	CSR_WRITE_1(dev, B0_CTST, CS_RST_CLR);
707 
708 	/* Allow writes to PCI config space */
709 	CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
710 
711 	/* Clear all error bits in the PCI status register. */
712 	status = pci_config_get16(pcih, PCI_CONF_STAT);
713 	CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
714 
715 	status |= (PCI_STAT_S_PERROR | PCI_STAT_S_SYSERR | PCI_STAT_R_MAST_AB |
716 	    PCI_STAT_R_TARG_AB | PCI_STAT_PERROR);
717 	pci_config_put16(pcih, PCI_CONF_STAT, status);
718 
719 	CSR_WRITE_1(dev, B0_CTST, CS_MRST_CLR);
720 
721 	switch (dev->d_bustype) {
722 	case PEX_BUS:
723 		/* Clear all PEX errors. */
724 		CSR_PCI_WRITE_4(dev, Y2_CFG_AER + AER_UNCOR_ERR, 0xffffffff);
725 
726 		/* is error bit status stuck? */
727 		val = CSR_PCI_READ_4(dev, PEX_UNC_ERR_STAT);
728 		if ((val & PEX_RX_OV) != 0) {
729 			dev->d_intrmask &= ~Y2_IS_HW_ERR;
730 			dev->d_intrhwemask &= ~Y2_IS_PCI_EXP;
731 		}
732 		break;
733 	case PCI_BUS:
734 		/* Set Cache Line Size to 2 (8 bytes) if configured to 0. */
735 		if (pci_config_get8(pcih, PCI_CONF_CACHE_LINESZ) == 0)
736 			pci_config_put16(pcih, PCI_CONF_CACHE_LINESZ, 2);
737 		break;
738 	case PCIX_BUS:
739 		/* Set Cache Line Size to 2 (8 bytes) if configured to 0. */
740 		if (pci_config_get8(pcih, PCI_CONF_CACHE_LINESZ) == 0)
741 			pci_config_put16(pcih, PCI_CONF_CACHE_LINESZ, 2);
742 
743 		/* Set Cache Line Size opt. */
744 		val = pci_config_get32(pcih, PCI_OUR_REG_1);
745 		val |= PCI_CLS_OPT;
746 		pci_config_put32(pcih, PCI_OUR_REG_1, val);
747 		break;
748 	}
749 
750 	/* Set PHY power state. */
751 	yge_phy_power(dev, B_TRUE);
752 
753 	/* Reset GPHY/GMAC Control */
754 	for (i = 0; i < dev->d_num_port; i++) {
755 		/* GPHY Control reset. */
756 		CSR_WRITE_4(dev, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
757 		CSR_WRITE_4(dev, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
758 		/* GMAC Control reset. */
759 		CSR_WRITE_4(dev, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
760 		CSR_WRITE_4(dev, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
761 		if (dev->d_hw_id == CHIP_ID_YUKON_EX ||
762 		    dev->d_hw_id == CHIP_ID_YUKON_SUPR) {
763 			CSR_WRITE_2(dev, MR_ADDR(i, GMAC_CTRL),
764 			    (GMC_BYP_RETR_ON | GMC_BYP_MACSECRX_ON |
765 			    GMC_BYP_MACSECTX_ON));
766 		}
767 		CSR_WRITE_2(dev, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
768 
769 	}
770 	CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
771 
772 	/* LED On. */
773 	CSR_WRITE_2(dev, B0_CTST, Y2_LED_STAT_ON);
774 
775 	/* Clear TWSI IRQ. */
776 	CSR_WRITE_4(dev, B2_I2C_IRQ, I2C_CLR_IRQ);
777 
778 	/* Turn off hardware timer. */
779 	CSR_WRITE_1(dev, B2_TI_CTRL, TIM_STOP);
780 	CSR_WRITE_1(dev, B2_TI_CTRL, TIM_CLR_IRQ);
781 
782 	/* Turn off descriptor polling. */
783 	CSR_WRITE_1(dev, B28_DPT_CTRL, DPT_STOP);
784 
785 	/* Turn off time stamps. */
786 	CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_STOP);
787 	CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
788 
789 	/* Don't permit config space writing */
790 	CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
791 
792 	/* enable TX Arbiters */
793 	for (i = 0; i < dev->d_num_port; i++)
794 		CSR_WRITE_1(dev, MR_ADDR(i, TXA_CTRL), TXA_ENA_ARB);
795 
796 	/* Configure timeout values. */
797 	for (i = 0; i < dev->d_num_port; i++) {
798 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
799 
800 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1), RI_TO_53);
801 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1), RI_TO_53);
802 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1), RI_TO_53);
803 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1), RI_TO_53);
804 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1), RI_TO_53);
805 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1), RI_TO_53);
806 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2), RI_TO_53);
807 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2), RI_TO_53);
808 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2), RI_TO_53);
809 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2), RI_TO_53);
810 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2), RI_TO_53);
811 		CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2), RI_TO_53);
812 	}
813 
814 	/* Disable all interrupts. */
815 	CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
816 	(void) CSR_READ_4(dev, B0_HWE_IMSK);
817 	CSR_WRITE_4(dev, B0_IMSK, 0);
818 	(void) CSR_READ_4(dev, B0_IMSK);
819 
820 	/*
821 	 * On dual port PCI-X card, there is an problem where status
822 	 * can be received out of order due to split transactions.
823 	 */
824 	if (dev->d_bustype == PCIX_BUS && dev->d_num_port > 1) {
825 		int pcix;
826 		uint16_t pcix_cmd;
827 
828 		if ((pcix = yge_find_capability(dev, PCI_CAP_ID_PCIX)) != 0) {
829 			pcix_cmd = pci_config_get16(pcih, pcix + 2);
830 			/* Clear Max Outstanding Split Transactions. */
831 			pcix_cmd &= ~0x70;
832 			CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
833 			pci_config_put16(pcih, pcix + 2, pcix_cmd);
834 			CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
835 		}
836 	}
837 	if (dev->d_bustype == PEX_BUS) {
838 		uint16_t v, width;
839 
840 		v = pci_config_get16(pcih, PEX_DEV_CTRL);
841 		/* Change Max. Read Request Size to 4096 bytes. */
842 		v &= ~PEX_DC_MAX_RRS_MSK;
843 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
844 		pci_config_put16(pcih, PEX_DEV_CTRL, v);
845 		width = pci_config_get16(pcih, PEX_LNK_STAT);
846 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
847 		v = pci_config_get16(pcih, PEX_LNK_CAP);
848 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
849 		if (v != width)
850 			yge_error(dev, NULL,
851 			    "Negotiated width of PCIe link(x%d) != "
852 			    "max. width of link(x%d)\n", width, v);
853 	}
854 
855 	/* Clear status list. */
856 	CLEARRING(&dev->d_status_ring);
857 	SYNCRING(&dev->d_status_ring, DDI_DMA_SYNC_FORDEV);
858 
859 	dev->d_stat_cons = 0;
860 
861 	CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_RST_SET);
862 	CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_RST_CLR);
863 
864 	/* Set the status list base address. */
865 	addr = dev->d_status_ring.r_paddr;
866 	CSR_WRITE_4(dev, STAT_LIST_ADDR_LO, YGE_ADDR_LO(addr));
867 	CSR_WRITE_4(dev, STAT_LIST_ADDR_HI, YGE_ADDR_HI(addr));
868 
869 	/* Set the status list last index. */
870 	CSR_WRITE_2(dev, STAT_LAST_IDX, YGE_STAT_RING_CNT - 1);
871 	CSR_WRITE_2(dev, STAT_PUT_IDX, 0);
872 
873 	if (dev->d_hw_id == CHIP_ID_YUKON_EC &&
874 	    dev->d_hw_rev == CHIP_REV_YU_EC_A1) {
875 		/* WA for dev. #4.3 */
876 		CSR_WRITE_2(dev, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
877 		/* WA for dev #4.18 */
878 		CSR_WRITE_1(dev, STAT_FIFO_WM, 0x21);
879 		CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 7);
880 	} else {
881 		CSR_WRITE_2(dev, STAT_TX_IDX_TH, 10);
882 		CSR_WRITE_1(dev, STAT_FIFO_WM, 16);
883 
884 		/* ISR status FIFO watermark */
885 		if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
886 		    dev->d_hw_rev == CHIP_REV_YU_XL_A0)
887 			CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 4);
888 		else
889 			CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 16);
890 
891 		CSR_WRITE_4(dev, STAT_ISR_TIMER_INI, 0x0190);
892 	}
893 
894 	/*
895 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
896 	 */
897 	CSR_WRITE_4(dev, STAT_TX_TIMER_INI, YGE_USECS(dev, 1000));
898 
899 	/* Enable status unit. */
900 	CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_OP_ON);
901 
902 	CSR_WRITE_1(dev, STAT_TX_TIMER_CTRL, TIM_START);
903 	CSR_WRITE_1(dev, STAT_LEV_TIMER_CTRL, TIM_START);
904 	CSR_WRITE_1(dev, STAT_ISR_TIMER_CTRL, TIM_START);
905 }
906 
907 static int
908 yge_init_port(yge_port_t *port)
909 {
910 	yge_dev_t *dev = port->p_dev;
911 	int i;
912 	mac_register_t *macp;
913 
914 	port->p_flags = dev->d_pflags;
915 	port->p_ppa = ddi_get_instance(dev->d_dip) + (port->p_port * 100);
916 
917 	port->p_tx_buf = kmem_zalloc(sizeof (yge_buf_t) * YGE_TX_RING_CNT,
918 	    KM_SLEEP);
919 	port->p_rx_buf = kmem_zalloc(sizeof (yge_buf_t) * YGE_RX_RING_CNT,
920 	    KM_SLEEP);
921 
922 	/* Setup Tx/Rx queue register offsets. */
923 	if (port->p_port == YGE_PORT_A) {
924 		port->p_txq = Q_XA1;
925 		port->p_txsq = Q_XS1;
926 		port->p_rxq = Q_R1;
927 	} else {
928 		port->p_txq = Q_XA2;
929 		port->p_txsq = Q_XS2;
930 		port->p_rxq = Q_R2;
931 	}
932 
933 	/* Disable jumbo frame for Yukon FE. */
934 	if (dev->d_hw_id == CHIP_ID_YUKON_FE)
935 		port->p_flags |= PORT_FLAG_NOJUMBO;
936 
937 	/*
938 	 * Start out assuming a regular MTU.  Users can change this
939 	 * with dladm.  The dladm daemon is supposed to issue commands
940 	 * to change the default MTU using m_setprop during early boot
941 	 * (before the interface is plumbed) if the user has so
942 	 * requested.
943 	 */
944 	port->p_mtu = ETHERMTU;
945 
946 	port->p_mii = mii_alloc(port, dev->d_dip, &yge_mii_ops);
947 	if (port->p_mii == NULL) {
948 		yge_error(NULL, port, "MII handle allocation failed");
949 		return (DDI_FAILURE);
950 	}
951 	/* We assume all parts support asymmetric pause */
952 	mii_set_pauseable(port->p_mii, B_TRUE, B_TRUE);
953 
954 	/*
955 	 * Get station address for this interface. Note that
956 	 * dual port cards actually come with three station
957 	 * addresses: one for each port, plus an extra. The
958 	 * extra one is used by the SysKonnect driver software
959 	 * as a 'virtual' station address for when both ports
960 	 * are operating in failover mode. Currently we don't
961 	 * use this extra address.
962 	 */
963 	for (i = 0; i < ETHERADDRL; i++) {
964 		port->p_curraddr[i] =
965 		    CSR_READ_1(dev, B2_MAC_1 + (port->p_port * 8) + i);
966 	}
967 
968 	/* Register with Nemo. */
969 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
970 		yge_error(NULL, port, "MAC handle allocation failed");
971 		return (DDI_FAILURE);
972 	}
973 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
974 	macp->m_driver = port;
975 	macp->m_dip = dev->d_dip;
976 	macp->m_src_addr = port->p_curraddr;
977 	macp->m_callbacks = &yge_m_callbacks;
978 	macp->m_min_sdu = 0;
979 	macp->m_max_sdu = port->p_mtu;
980 	macp->m_instance = port->p_ppa;
981 	macp->m_margin = VLAN_TAGSZ;
982 
983 	port->p_mreg = macp;
984 
985 	return (DDI_SUCCESS);
986 }
987 
988 static int
989 yge_add_intr(yge_dev_t *dev, int intr_type)
990 {
991 	dev_info_t		*dip;
992 	int			count;
993 	int			actual;
994 	int			rv;
995 	int 			i, j;
996 
997 	dip = dev->d_dip;
998 
999 	rv = ddi_intr_get_nintrs(dip, intr_type, &count);
1000 	if ((rv != DDI_SUCCESS) || (count == 0)) {
1001 		yge_error(dev, NULL,
1002 		    "ddi_intr_get_nintrs failed, rv %d, count %d", rv, count);
1003 		return (DDI_FAILURE);
1004 	}
1005 
1006 	/*
1007 	 * Allocate the interrupt.  Note that we only bother with a single
1008 	 * interrupt.  One could argue that for MSI devices with dual ports,
1009 	 * it would be nice to have a separate interrupt per port.  But right
1010 	 * now I don't know how to configure that, so we'll just settle for
1011 	 * a single interrupt.
1012 	 */
1013 	dev->d_intrcnt = 1;
1014 
1015 	dev->d_intrsize = count * sizeof (ddi_intr_handle_t);
1016 	dev->d_intrh = kmem_zalloc(dev->d_intrsize, KM_SLEEP);
1017 	if (dev->d_intrh == NULL) {
1018 		yge_error(dev, NULL, "Unable to allocate interrupt handle");
1019 		return (DDI_FAILURE);
1020 	}
1021 
1022 	rv = ddi_intr_alloc(dip, dev->d_intrh, intr_type, 0, dev->d_intrcnt,
1023 	    &actual, DDI_INTR_ALLOC_STRICT);
1024 	if ((rv != DDI_SUCCESS) || (actual == 0)) {
1025 		yge_error(dev, NULL,
1026 		    "Unable to allocate interrupt, %d, count %d",
1027 		    rv, actual);
1028 		kmem_free(dev->d_intrh, dev->d_intrsize);
1029 		return (DDI_FAILURE);
1030 	}
1031 
1032 	if ((rv = ddi_intr_get_pri(dev->d_intrh[0], &dev->d_intrpri)) !=
1033 	    DDI_SUCCESS) {
1034 		for (i = 0; i < dev->d_intrcnt; i++)
1035 			(void) ddi_intr_free(dev->d_intrh[i]);
1036 		yge_error(dev, NULL,
1037 		    "Unable to get interrupt priority, %d", rv);
1038 		kmem_free(dev->d_intrh, dev->d_intrsize);
1039 		return (DDI_FAILURE);
1040 	}
1041 
1042 	if ((rv = ddi_intr_get_cap(dev->d_intrh[0], &dev->d_intrcap)) !=
1043 	    DDI_SUCCESS) {
1044 		yge_error(dev, NULL,
1045 		    "Unable to get interrupt capabilities, %d", rv);
1046 		for (i = 0; i < dev->d_intrcnt; i++)
1047 			(void) ddi_intr_free(dev->d_intrh[i]);
1048 		kmem_free(dev->d_intrh, dev->d_intrsize);
1049 		return (DDI_FAILURE);
1050 	}
1051 
1052 	/* register interrupt handler to kernel */
1053 	for (i = 0; i < dev->d_intrcnt; i++) {
1054 		if ((rv = ddi_intr_add_handler(dev->d_intrh[i], yge_intr,
1055 		    dev, NULL)) != DDI_SUCCESS) {
1056 			yge_error(dev, NULL,
1057 			    "Unable to add interrupt handler, %d", rv);
1058 			for (j = 0; j < i; j++)
1059 				(void) ddi_intr_remove_handler(dev->d_intrh[j]);
1060 			for (i = 0; i < dev->d_intrcnt; i++)
1061 				(void) ddi_intr_free(dev->d_intrh[i]);
1062 			kmem_free(dev->d_intrh, dev->d_intrsize);
1063 			return (DDI_FAILURE);
1064 		}
1065 	}
1066 
1067 	mutex_init(&dev->d_rxlock, NULL, MUTEX_DRIVER,
1068 	    DDI_INTR_PRI(dev->d_intrpri));
1069 	mutex_init(&dev->d_txlock, NULL, MUTEX_DRIVER,
1070 	    DDI_INTR_PRI(dev->d_intrpri));
1071 	mutex_init(&dev->d_phylock, NULL, MUTEX_DRIVER,
1072 	    DDI_INTR_PRI(dev->d_intrpri));
1073 	mutex_init(&dev->d_task_mtx, NULL, MUTEX_DRIVER,
1074 	    DDI_INTR_PRI(dev->d_intrpri));
1075 
1076 	return (DDI_SUCCESS);
1077 }
1078 
1079 static int
1080 yge_attach_intr(yge_dev_t *dev)
1081 {
1082 	dev_info_t *dip = dev->d_dip;
1083 	int intr_types;
1084 	int rv;
1085 
1086 	/* Allocate IRQ resources. */
1087 	rv = ddi_intr_get_supported_types(dip, &intr_types);
1088 	if (rv != DDI_SUCCESS) {
1089 		yge_error(dev, NULL,
1090 		    "Unable to determine supported interrupt types, %d", rv);
1091 		return (DDI_FAILURE);
1092 	}
1093 
1094 	/*
1095 	 * We default to not supporting MSI.  We've found some device
1096 	 * and motherboard combinations don't always work well with
1097 	 * MSI interrupts.  Users may override this if they choose.
1098 	 */
1099 	if (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "msi_enable", 0) == 0) {
1100 		/* If msi disable property present, disable both msix/msi. */
1101 		if (intr_types & DDI_INTR_TYPE_FIXED) {
1102 			intr_types &= ~(DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX);
1103 		}
1104 	}
1105 
1106 	if (intr_types & DDI_INTR_TYPE_MSIX) {
1107 		if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_MSIX)) ==
1108 		    DDI_SUCCESS)
1109 			return (DDI_SUCCESS);
1110 	}
1111 
1112 	if (intr_types & DDI_INTR_TYPE_MSI) {
1113 		if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_MSI)) ==
1114 		    DDI_SUCCESS)
1115 			return (DDI_SUCCESS);
1116 	}
1117 
1118 	if (intr_types & DDI_INTR_TYPE_FIXED) {
1119 		if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_FIXED)) ==
1120 		    DDI_SUCCESS)
1121 			return (DDI_SUCCESS);
1122 	}
1123 
1124 	yge_error(dev, NULL, "Unable to configure any interrupts");
1125 	return (DDI_FAILURE);
1126 }
1127 
1128 static void
1129 yge_intr_enable(yge_dev_t *dev)
1130 {
1131 	int i;
1132 	if (dev->d_intrcap & DDI_INTR_FLAG_BLOCK) {
1133 		/* Call ddi_intr_block_enable() for MSI interrupts */
1134 		(void) ddi_intr_block_enable(dev->d_intrh, dev->d_intrcnt);
1135 	} else {
1136 		/* Call ddi_intr_enable for FIXED interrupts */
1137 		for (i = 0; i < dev->d_intrcnt; i++)
1138 			(void) ddi_intr_enable(dev->d_intrh[i]);
1139 	}
1140 }
1141 
1142 void
1143 yge_intr_disable(yge_dev_t *dev)
1144 {
1145 	int i;
1146 
1147 	if (dev->d_intrcap & DDI_INTR_FLAG_BLOCK) {
1148 		(void) ddi_intr_block_disable(dev->d_intrh, dev->d_intrcnt);
1149 	} else {
1150 		for (i = 0; i < dev->d_intrcnt; i++)
1151 			(void) ddi_intr_disable(dev->d_intrh[i]);
1152 	}
1153 }
1154 
1155 static uint8_t
1156 yge_find_capability(yge_dev_t *dev, uint8_t cap)
1157 {
1158 	uint8_t ptr;
1159 	uint16_t capit;
1160 	ddi_acc_handle_t pcih = dev->d_pcih;
1161 
1162 	if ((pci_config_get16(pcih, PCI_CONF_STAT) & PCI_STAT_CAP) == 0) {
1163 		return (0);
1164 	}
1165 	/* This assumes PCI, and not CardBus. */
1166 	ptr = pci_config_get8(pcih, PCI_CONF_CAP_PTR);
1167 	while (ptr != 0) {
1168 		capit = pci_config_get8(pcih, ptr + PCI_CAP_ID);
1169 		if (capit == cap) {
1170 			return (ptr);
1171 		}
1172 		ptr = pci_config_get8(pcih, ptr + PCI_CAP_NEXT_PTR);
1173 	}
1174 	return (0);
1175 }
1176 
1177 static int
1178 yge_attach(yge_dev_t *dev)
1179 {
1180 	dev_info_t	*dip = dev->d_dip;
1181 	int		rv;
1182 	int		nattached;
1183 	uint8_t		pm_cap;
1184 
1185 	if (pci_config_setup(dip, &dev->d_pcih) != DDI_SUCCESS) {
1186 		yge_error(dev, NULL, "Unable to map PCI configuration space");
1187 		goto fail;
1188 	}
1189 
1190 	/*
1191 	 * Map control/status registers.
1192 	 */
1193 
1194 	/* ensure the pmcsr status is D0 state */
1195 	pm_cap = yge_find_capability(dev, PCI_CAP_ID_PM);
1196 	if (pm_cap != 0) {
1197 		uint16_t pmcsr;
1198 		pmcsr = pci_config_get16(dev->d_pcih, pm_cap + PCI_PMCSR);
1199 		pmcsr &= ~PCI_PMCSR_STATE_MASK;
1200 		pci_config_put16(dev->d_pcih, pm_cap + PCI_PMCSR,
1201 		    pmcsr | PCI_PMCSR_D0);
1202 	}
1203 
1204 	/* Enable PCI access and bus master. */
1205 	pci_config_put16(dev->d_pcih, PCI_CONF_COMM,
1206 	    pci_config_get16(dev->d_pcih, PCI_CONF_COMM) |
1207 	    PCI_COMM_IO | PCI_COMM_MAE | PCI_COMM_ME);
1208 
1209 
1210 	/* Allocate I/O resource */
1211 	rv = ddi_regs_map_setup(dip, 1, &dev->d_regs, 0, 0, &yge_regs_attr,
1212 	    &dev->d_regsh);
1213 	if (rv != DDI_SUCCESS) {
1214 		yge_error(dev, NULL, "Unable to map device registers");
1215 		goto fail;
1216 	}
1217 
1218 
1219 	/* Enable all clocks. */
1220 	CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1221 	pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
1222 	CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1223 
1224 	CSR_WRITE_2(dev, B0_CTST, CS_RST_CLR);
1225 	dev->d_hw_id = CSR_READ_1(dev, B2_CHIP_ID);
1226 	dev->d_hw_rev = (CSR_READ_1(dev, B2_MAC_CFG) >> 4) & 0x0f;
1227 
1228 
1229 	/*
1230 	 * Bail out if chip is not recognized.  Note that we only enforce
1231 	 * this in production builds.  The Ultra-2 (88e8057) has a problem
1232 	 * right now where TX works fine, but RX seems not to.  So we've
1233 	 * disabled that for now.
1234 	 */
1235 	if (dev->d_hw_id < CHIP_ID_YUKON_XL ||
1236 	    dev->d_hw_id >= CHIP_ID_YUKON_UL_2) {
1237 		yge_error(dev, NULL, "Unknown device: id=0x%02x, rev=0x%02x",
1238 		    dev->d_hw_id, dev->d_hw_rev);
1239 #ifndef	DEBUG
1240 		goto fail;
1241 #endif
1242 	}
1243 
1244 	/* Soft reset. */
1245 	CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
1246 	CSR_WRITE_2(dev, B0_CTST, CS_RST_CLR);
1247 	dev->d_pmd = CSR_READ_1(dev, B2_PMD_TYP);
1248 	if (dev->d_pmd == 'L' || dev->d_pmd == 'S' || dev->d_pmd == 'P')
1249 		dev->d_coppertype = 0;
1250 	else
1251 		dev->d_coppertype = 1;
1252 	/* Check number of MACs. */
1253 	dev->d_num_port = 1;
1254 	if ((CSR_READ_1(dev, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1255 	    CFG_DUAL_MAC_MSK) {
1256 		if (!(CSR_READ_1(dev, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1257 			dev->d_num_port++;
1258 	}
1259 
1260 	/* Check bus type. */
1261 	if (yge_find_capability(dev, PCI_CAP_ID_PCI_E) != 0) {
1262 		dev->d_bustype = PEX_BUS;
1263 	} else if (yge_find_capability(dev, PCI_CAP_ID_PCIX) != 0) {
1264 		dev->d_bustype = PCIX_BUS;
1265 	} else {
1266 		dev->d_bustype = PCI_BUS;
1267 	}
1268 
1269 	switch (dev->d_hw_id) {
1270 	case CHIP_ID_YUKON_EC:
1271 		dev->d_clock = 125;	/* 125 Mhz */
1272 		break;
1273 	case CHIP_ID_YUKON_UL_2:
1274 		dev->d_clock = 125;	/* 125 Mhz */
1275 		break;
1276 	case CHIP_ID_YUKON_SUPR:
1277 		dev->d_clock = 125;	/* 125 Mhz */
1278 		break;
1279 	case CHIP_ID_YUKON_EC_U:
1280 		dev->d_clock = 125;	/* 125 Mhz */
1281 		break;
1282 	case CHIP_ID_YUKON_EX:
1283 		dev->d_clock = 125;	/* 125 Mhz */
1284 		break;
1285 	case CHIP_ID_YUKON_FE:
1286 		dev->d_clock = 100;	/* 100 Mhz */
1287 		break;
1288 	case CHIP_ID_YUKON_FE_P:
1289 		dev->d_clock = 50;	/* 50 Mhz */
1290 		break;
1291 	case CHIP_ID_YUKON_XL:
1292 		dev->d_clock = 156;	/* 156 Mhz */
1293 		break;
1294 	default:
1295 		dev->d_clock = 156;	/* 156 Mhz */
1296 		break;
1297 	}
1298 
1299 	dev->d_process_limit = YGE_RX_RING_CNT/2;
1300 
1301 	rv = yge_alloc_ring(NULL, dev, &dev->d_status_ring, YGE_STAT_RING_CNT);
1302 	if (rv != DDI_SUCCESS)
1303 		goto fail;
1304 
1305 	/* Setup event taskq. */
1306 	dev->d_task_q = ddi_taskq_create(dip, "tq", 1, TASKQ_DEFAULTPRI, 0);
1307 	if (dev->d_task_q == NULL) {
1308 		yge_error(dev, NULL, "failed to create taskq");
1309 		goto fail;
1310 	}
1311 
1312 	/* Init the condition variable */
1313 	cv_init(&dev->d_task_cv, NULL, CV_DRIVER, NULL);
1314 
1315 	/* Allocate IRQ resources. */
1316 	if ((rv = yge_attach_intr(dev)) != DDI_SUCCESS) {
1317 		goto fail;
1318 	}
1319 
1320 	/* Set base interrupt mask. */
1321 	dev->d_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1322 	dev->d_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1323 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1324 
1325 	/* Reset the adapter. */
1326 	yge_reset(dev);
1327 
1328 	yge_setup_rambuffer(dev);
1329 
1330 	nattached = 0;
1331 	for (int i = 0; i < dev->d_num_port; i++) {
1332 		yge_port_t *port = dev->d_port[i];
1333 		if (yge_init_port(port) != DDI_SUCCESS) {
1334 			goto fail;
1335 		}
1336 	}
1337 
1338 	yge_intr_enable(dev);
1339 
1340 	/* set up the periodic to run once per second */
1341 	dev->d_periodic = ddi_periodic_add(yge_tick, dev, 1000000000, 0);
1342 
1343 	for (int i = 0; i < dev->d_num_port; i++) {
1344 		yge_port_t *port = dev->d_port[i];
1345 		if (yge_register_port(port) == DDI_SUCCESS) {
1346 			nattached++;
1347 		}
1348 	}
1349 
1350 	if (nattached == 0) {
1351 		goto fail;
1352 	}
1353 
1354 	/* Dispatch the taskq */
1355 	if (ddi_taskq_dispatch(dev->d_task_q, yge_task, dev, DDI_SLEEP) !=
1356 	    DDI_SUCCESS) {
1357 		yge_error(dev, NULL, "failed to start taskq");
1358 		goto fail;
1359 	}
1360 
1361 	ddi_report_dev(dip);
1362 
1363 	return (DDI_SUCCESS);
1364 
1365 fail:
1366 	yge_detach(dev);
1367 	return (DDI_FAILURE);
1368 }
1369 
1370 static int
1371 yge_register_port(yge_port_t *port)
1372 {
1373 	if (mac_register(port->p_mreg, &port->p_mh) != DDI_SUCCESS) {
1374 		yge_error(NULL, port, "MAC registration failed");
1375 		return (DDI_FAILURE);
1376 	}
1377 
1378 	return (DDI_SUCCESS);
1379 }
1380 
1381 static int
1382 yge_unregister_port(yge_port_t *port)
1383 {
1384 	if ((port->p_mh) && (mac_unregister(port->p_mh) != 0)) {
1385 		return (DDI_FAILURE);
1386 	}
1387 	port->p_mh = NULL;
1388 	return (DDI_SUCCESS);
1389 }
1390 
1391 /*
1392  * Free up port specific resources. This is called only when the
1393  * port is not registered (and hence not running).
1394  */
1395 static void
1396 yge_uninit_port(yge_port_t *port)
1397 {
1398 	ASSERT(!port->p_running);
1399 
1400 	if (port->p_mreg)
1401 		mac_free(port->p_mreg);
1402 
1403 	if (port->p_mii)
1404 		mii_free(port->p_mii);
1405 
1406 	yge_txrx_dma_free(port);
1407 
1408 	if (port->p_tx_buf)
1409 		kmem_free(port->p_tx_buf,
1410 		    sizeof (yge_buf_t) * YGE_TX_RING_CNT);
1411 	if (port->p_rx_buf)
1412 		kmem_free(port->p_rx_buf,
1413 		    sizeof (yge_buf_t) * YGE_RX_RING_CNT);
1414 }
1415 
1416 static void
1417 yge_detach(yge_dev_t *dev)
1418 {
1419 	/*
1420 	 * Turn off the periodic.
1421 	 */
1422 	if (dev->d_periodic)
1423 		ddi_periodic_delete(dev->d_periodic);
1424 
1425 	for (int i = 0; i < dev->d_num_port; i++) {
1426 		yge_uninit_port(dev->d_port[i]);
1427 	}
1428 
1429 	/*
1430 	 * Make sure all interrupts are disabled.
1431 	 */
1432 	CSR_WRITE_4(dev, B0_IMSK, 0);
1433 	(void) CSR_READ_4(dev, B0_IMSK);
1434 	CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
1435 	(void) CSR_READ_4(dev, B0_HWE_IMSK);
1436 
1437 	/* LED Off. */
1438 	CSR_WRITE_2(dev, B0_CTST, Y2_LED_STAT_OFF);
1439 
1440 	/* Put hardware reset. */
1441 	CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
1442 
1443 	yge_free_ring(&dev->d_status_ring);
1444 
1445 	if (dev->d_task_q != NULL) {
1446 		yge_dispatch(dev, YGE_TASK_EXIT);
1447 		ddi_taskq_destroy(dev->d_task_q);
1448 		dev->d_task_q = NULL;
1449 	}
1450 
1451 	cv_destroy(&dev->d_task_cv);
1452 
1453 	yge_intr_disable(dev);
1454 
1455 	if (dev->d_intrh != NULL) {
1456 		for (int i = 0; i < dev->d_intrcnt; i++) {
1457 			(void) ddi_intr_remove_handler(dev->d_intrh[i]);
1458 			(void) ddi_intr_free(dev->d_intrh[i]);
1459 		}
1460 		kmem_free(dev->d_intrh, dev->d_intrsize);
1461 		mutex_destroy(&dev->d_phylock);
1462 		mutex_destroy(&dev->d_txlock);
1463 		mutex_destroy(&dev->d_rxlock);
1464 		mutex_destroy(&dev->d_task_mtx);
1465 	}
1466 	if (dev->d_regsh != NULL)
1467 		ddi_regs_map_free(&dev->d_regsh);
1468 
1469 	if (dev->d_pcih != NULL)
1470 		pci_config_teardown(&dev->d_pcih);
1471 }
1472 
1473 static int
1474 yge_alloc_ring(yge_port_t *port, yge_dev_t *dev, yge_ring_t *ring, uint32_t num)
1475 {
1476 	dev_info_t		*dip;
1477 	caddr_t			kaddr;
1478 	size_t			len;
1479 	int			rv;
1480 	ddi_dma_cookie_t	dmac;
1481 	unsigned		ndmac;
1482 
1483 	if (port && !dev)
1484 		dev = port->p_dev;
1485 	dip = dev->d_dip;
1486 
1487 	ring->r_num = num;
1488 
1489 	rv = ddi_dma_alloc_handle(dip, &yge_ring_dma_attr, DDI_DMA_DONTWAIT,
1490 	    NULL, &ring->r_dmah);
1491 	if (rv != DDI_SUCCESS) {
1492 		yge_error(dev, port, "Unable to allocate ring DMA handle");
1493 		return (DDI_FAILURE);
1494 	}
1495 
1496 	rv = ddi_dma_mem_alloc(ring->r_dmah, num * sizeof (yge_desc_t),
1497 	    &yge_ring_attr, DDI_DMA_CONSISTENT, DDI_DMA_DONTWAIT, NULL,
1498 	    &kaddr, &len, &ring->r_acch);
1499 	if (rv != DDI_SUCCESS) {
1500 		yge_error(dev, port, "Unable to allocate ring DMA memory");
1501 		return (DDI_FAILURE);
1502 	}
1503 	ring->r_size = len;
1504 	ring->r_kaddr = (void *)kaddr;
1505 
1506 	bzero(kaddr, len);
1507 
1508 	rv = ddi_dma_addr_bind_handle(ring->r_dmah, NULL, kaddr,
1509 	    len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
1510 	    &dmac, &ndmac);
1511 	if (rv != DDI_DMA_MAPPED) {
1512 		yge_error(dev, port, "Unable to bind ring DMA handle");
1513 		return (DDI_FAILURE);
1514 	}
1515 	ASSERT(ndmac == 1);
1516 	ring->r_paddr = dmac.dmac_address;
1517 
1518 	return (DDI_SUCCESS);
1519 }
1520 
1521 static void
1522 yge_free_ring(yge_ring_t *ring)
1523 {
1524 	if (ring->r_paddr)
1525 		(void) ddi_dma_unbind_handle(ring->r_dmah);
1526 	ring->r_paddr = 0;
1527 	if (ring->r_acch)
1528 		ddi_dma_mem_free(&ring->r_acch);
1529 	ring->r_kaddr = NULL;
1530 	ring->r_acch = NULL;
1531 	if (ring->r_dmah)
1532 		ddi_dma_free_handle(&ring->r_dmah);
1533 	ring->r_dmah = NULL;
1534 }
1535 
1536 static int
1537 yge_alloc_buf(yge_port_t *port, yge_buf_t *b, size_t bufsz, int flag)
1538 {
1539 	yge_dev_t	*dev = port->p_dev;
1540 	size_t		l;
1541 	int		sflag;
1542 	int 		rv;
1543 	ddi_dma_cookie_t	dmac;
1544 	unsigned		ndmac;
1545 
1546 	sflag = flag & (DDI_DMA_STREAMING | DDI_DMA_CONSISTENT);
1547 
1548 	/* Now allocate Tx buffers. */
1549 	rv = ddi_dma_alloc_handle(dev->d_dip, &yge_buf_dma_attr,
1550 	    DDI_DMA_DONTWAIT, NULL, &b->b_dmah);
1551 	if (rv != DDI_SUCCESS) {
1552 		yge_error(NULL, port, "Unable to alloc DMA handle for buffer");
1553 		return (DDI_FAILURE);
1554 	}
1555 
1556 	rv = ddi_dma_mem_alloc(b->b_dmah, bufsz, &yge_buf_attr,
1557 	    sflag, DDI_DMA_DONTWAIT, NULL, &b->b_buf, &l, &b->b_acch);
1558 	if (rv != DDI_SUCCESS) {
1559 		yge_error(NULL, port, "Unable to alloc DMA memory for buffer");
1560 		return (DDI_FAILURE);
1561 	}
1562 
1563 	rv = ddi_dma_addr_bind_handle(b->b_dmah, NULL, b->b_buf, l, flag,
1564 	    DDI_DMA_DONTWAIT, NULL, &dmac, &ndmac);
1565 	if (rv != DDI_DMA_MAPPED) {
1566 		yge_error(NULL, port, "Unable to bind DMA handle for buffer");
1567 		return (DDI_FAILURE);
1568 	}
1569 	ASSERT(ndmac == 1);
1570 	b->b_paddr = dmac.dmac_address;
1571 	return (DDI_SUCCESS);
1572 }
1573 
1574 static void
1575 yge_free_buf(yge_buf_t *b)
1576 {
1577 	if (b->b_paddr)
1578 		(void) ddi_dma_unbind_handle(b->b_dmah);
1579 	b->b_paddr = 0;
1580 	if (b->b_acch)
1581 		ddi_dma_mem_free(&b->b_acch);
1582 	b->b_buf = NULL;
1583 	b->b_acch = NULL;
1584 	if (b->b_dmah)
1585 		ddi_dma_free_handle(&b->b_dmah);
1586 	b->b_dmah = NULL;
1587 }
1588 
1589 static int
1590 yge_txrx_dma_alloc(yge_port_t *port)
1591 {
1592 	uint32_t		bufsz;
1593 	int			rv;
1594 	int			i;
1595 	yge_buf_t		*b;
1596 
1597 	/*
1598 	 * It seems that Yukon II supports full 64 bit DMA operations.
1599 	 * But we limit it to 32 bits only for now.  The 64 bit
1600 	 * operation would require substantially more complex
1601 	 * descriptor handling, since in such a case we would need two
1602 	 * LEs to represent a single physical address.
1603 	 *
1604 	 * If we find that this is limiting us, then we should go back
1605 	 * and re-examine it.
1606 	 */
1607 
1608 	/* Note our preferred buffer size. */
1609 	bufsz = port->p_mtu;
1610 
1611 	/* Allocate Tx ring. */
1612 	rv = yge_alloc_ring(port, NULL, &port->p_tx_ring, YGE_TX_RING_CNT);
1613 	if (rv != DDI_SUCCESS) {
1614 		return (DDI_FAILURE);
1615 	}
1616 
1617 	/* Now allocate Tx buffers. */
1618 	b = port->p_tx_buf;
1619 	for (i = 0; i < YGE_TX_RING_CNT; i++) {
1620 		rv = yge_alloc_buf(port, b, bufsz,
1621 		    DDI_DMA_STREAMING | DDI_DMA_WRITE);
1622 		if (rv != DDI_SUCCESS) {
1623 			return (DDI_FAILURE);
1624 		}
1625 		b++;
1626 	}
1627 
1628 	/* Allocate Rx ring. */
1629 	rv = yge_alloc_ring(port, NULL, &port->p_rx_ring, YGE_RX_RING_CNT);
1630 	if (rv != DDI_SUCCESS) {
1631 		return (DDI_FAILURE);
1632 	}
1633 
1634 	/* Now allocate Rx buffers. */
1635 	b = port->p_rx_buf;
1636 	for (i = 0; i < YGE_RX_RING_CNT; i++) {
1637 		rv =  yge_alloc_buf(port, b, bufsz,
1638 		    DDI_DMA_STREAMING | DDI_DMA_READ);
1639 		if (rv != DDI_SUCCESS) {
1640 			return (DDI_FAILURE);
1641 		}
1642 		b++;
1643 	}
1644 
1645 	return (DDI_SUCCESS);
1646 }
1647 
1648 static void
1649 yge_txrx_dma_free(yge_port_t *port)
1650 {
1651 	yge_buf_t	*b;
1652 
1653 	/* Tx ring. */
1654 	yge_free_ring(&port->p_tx_ring);
1655 
1656 	/* Rx ring. */
1657 	yge_free_ring(&port->p_rx_ring);
1658 
1659 	/* Tx buffers. */
1660 	b = port->p_tx_buf;
1661 	for (int i = 0; i < YGE_TX_RING_CNT; i++, b++) {
1662 		yge_free_buf(b);
1663 	}
1664 	/* Rx buffers. */
1665 	b = port->p_rx_buf;
1666 	for (int i = 0; i < YGE_RX_RING_CNT; i++, b++) {
1667 		yge_free_buf(b);
1668 	}
1669 }
1670 
1671 boolean_t
1672 yge_send(yge_port_t *port, mblk_t *mp)
1673 {
1674 	yge_ring_t *ring = &port->p_tx_ring;
1675 	yge_buf_t *txb;
1676 	int16_t prod;
1677 	size_t len;
1678 
1679 	/*
1680 	 * For now we're not going to support checksum offload or LSO.
1681 	 */
1682 
1683 	len = msgsize(mp);
1684 	if (len > port->p_framesize) {
1685 		/* too big! */
1686 		freemsg(mp);
1687 		return (B_TRUE);
1688 	}
1689 
1690 	/* Check number of available descriptors. */
1691 	if (port->p_tx_cnt + 1 >=
1692 	    (YGE_TX_RING_CNT - YGE_RESERVED_TX_DESC_CNT)) {
1693 		port->p_wantw = B_TRUE;
1694 		return (B_FALSE);
1695 	}
1696 
1697 	prod = port->p_tx_prod;
1698 
1699 	txb = &port->p_tx_buf[prod];
1700 	mcopymsg(mp, txb->b_buf);
1701 	SYNCBUF(txb, DDI_DMA_SYNC_FORDEV);
1702 
1703 	PUTADDR(ring, prod, txb->b_paddr);
1704 	PUTCTRL(ring, prod, len | OP_PACKET | HW_OWNER | EOP);
1705 	SYNCENTRY(ring, prod, DDI_DMA_SYNC_FORDEV);
1706 	port->p_tx_cnt++;
1707 
1708 	YGE_INC(prod, YGE_TX_RING_CNT);
1709 
1710 	/* Update producer index. */
1711 	port->p_tx_prod = prod;
1712 
1713 	return (B_TRUE);
1714 }
1715 
1716 static int
1717 yge_suspend(yge_dev_t *dev)
1718 {
1719 	for (int i = 0; i < dev->d_num_port; i++) {
1720 		yge_port_t *port = dev->d_port[i];
1721 		mii_suspend(port->p_mii);
1722 	}
1723 
1724 
1725 	DEV_LOCK(dev);
1726 
1727 	for (int i = 0; i < dev->d_num_port; i++) {
1728 		yge_port_t *port = dev->d_port[i];
1729 
1730 		if (port->p_running) {
1731 			yge_stop_port(port);
1732 		}
1733 	}
1734 
1735 	/* Disable all interrupts. */
1736 	CSR_WRITE_4(dev, B0_IMSK, 0);
1737 	(void) CSR_READ_4(dev, B0_IMSK);
1738 	CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
1739 	(void) CSR_READ_4(dev, B0_HWE_IMSK);
1740 
1741 	yge_phy_power(dev, B_FALSE);
1742 
1743 	/* Put hardware reset. */
1744 	CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
1745 	dev->d_suspended = B_TRUE;
1746 
1747 	DEV_UNLOCK(dev);
1748 
1749 	return (DDI_SUCCESS);
1750 }
1751 
1752 static int
1753 yge_resume(yge_dev_t *dev)
1754 {
1755 	uint8_t pm_cap;
1756 
1757 	DEV_LOCK(dev);
1758 
1759 	/* ensure the pmcsr status is D0 state */
1760 	CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1761 
1762 	if ((pm_cap = yge_find_capability(dev, PCI_CAP_ID_PM)) != 0) {
1763 		uint16_t pmcsr;
1764 		pmcsr = pci_config_get16(dev->d_pcih, pm_cap + PCI_PMCSR);
1765 		pmcsr &= ~PCI_PMCSR_STATE_MASK;
1766 		pci_config_put16(dev->d_pcih, pm_cap + PCI_PMCSR,
1767 		    pmcsr | PCI_PMCSR_D0);
1768 	}
1769 
1770 	/* Enable PCI access and bus master. */
1771 	pci_config_put16(dev->d_pcih, PCI_CONF_COMM,
1772 	    pci_config_get16(dev->d_pcih, PCI_CONF_COMM) |
1773 	    PCI_COMM_IO | PCI_COMM_MAE | PCI_COMM_ME);
1774 
1775 	/* Enable all clocks. */
1776 	switch (dev->d_hw_id) {
1777 	case CHIP_ID_YUKON_EX:
1778 	case CHIP_ID_YUKON_EC_U:
1779 	case CHIP_ID_YUKON_FE_P:
1780 		pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
1781 		break;
1782 	}
1783 
1784 	CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1785 
1786 	yge_reset(dev);
1787 
1788 	/* Make sure interrupts are reenabled */
1789 	CSR_WRITE_4(dev, B0_IMSK, 0);
1790 	CSR_WRITE_4(dev, B0_IMSK, Y2_IS_HW_ERR | Y2_IS_STAT_BMU);
1791 	CSR_WRITE_4(dev, B0_HWE_IMSK,
1792 	    Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1793 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP);
1794 
1795 	for (int i = 0; i < dev->d_num_port; i++) {
1796 		yge_port_t *port = dev->d_port[i];
1797 
1798 		if (port != NULL && port->p_running) {
1799 			yge_start_port(port);
1800 		}
1801 	}
1802 	dev->d_suspended = B_FALSE;
1803 
1804 	DEV_UNLOCK(dev);
1805 
1806 	/* Reset MII layer */
1807 	for (int i = 0; i < dev->d_num_port; i++) {
1808 		yge_port_t *port = dev->d_port[i];
1809 
1810 		if (port->p_running) {
1811 			mii_resume(port->p_mii);
1812 			mac_tx_update(port->p_mh);
1813 		}
1814 	}
1815 
1816 	return (DDI_SUCCESS);
1817 }
1818 
1819 static mblk_t *
1820 yge_rxeof(yge_port_t *port, uint32_t status, int len)
1821 {
1822 	yge_dev_t *dev = port->p_dev;
1823 	mblk_t	*mp;
1824 	int cons, rxlen;
1825 	yge_buf_t *rxb;
1826 	yge_ring_t *ring;
1827 
1828 	ASSERT(mutex_owned(&dev->d_rxlock));
1829 
1830 	if (!port->p_running)
1831 		return (NULL);
1832 
1833 	ring = &port->p_rx_ring;
1834 	cons = port->p_rx_cons;
1835 	rxlen = status >> 16;
1836 	rxb = &port->p_rx_buf[cons];
1837 	mp = NULL;
1838 
1839 
1840 	if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
1841 	    (dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
1842 		/*
1843 		 * Apparently the status for this chip is not reliable.
1844 		 * Only perform minimal consistency checking; the MAC
1845 		 * and upper protocols will have to filter any garbage.
1846 		 */
1847 		if ((len > port->p_framesize) || (rxlen != len)) {
1848 			goto bad;
1849 		}
1850 	} else {
1851 		if ((len > port->p_framesize) || (rxlen != len) ||
1852 		    ((status & GMR_FS_ANY_ERR) != 0) ||
1853 		    ((status & GMR_FS_RX_OK) == 0)) {
1854 			goto bad;
1855 		}
1856 	}
1857 
1858 	if ((mp = allocb(len + YGE_HEADROOM, BPRI_HI)) != NULL) {
1859 
1860 		/* good packet - yay */
1861 		mp->b_rptr += YGE_HEADROOM;
1862 		SYNCBUF(rxb, DDI_DMA_SYNC_FORKERNEL);
1863 		bcopy(rxb->b_buf, mp->b_rptr, len);
1864 		mp->b_wptr = mp->b_rptr + len;
1865 	} else {
1866 		port->p_stats.rx_nobuf++;
1867 	}
1868 
1869 bad:
1870 
1871 	PUTCTRL(ring, cons, port->p_framesize | OP_PACKET | HW_OWNER);
1872 	SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORDEV);
1873 
1874 	CSR_WRITE_2(dev,
1875 	    Y2_PREF_Q_ADDR(port->p_rxq, PREF_UNIT_PUT_IDX_REG),
1876 	    cons);
1877 
1878 	YGE_INC(port->p_rx_cons, YGE_RX_RING_CNT);
1879 
1880 	return (mp);
1881 }
1882 
1883 static boolean_t
1884 yge_txeof_locked(yge_port_t *port, int idx)
1885 {
1886 	int prog;
1887 	int16_t cons;
1888 	boolean_t resched;
1889 
1890 	if (!port->p_running) {
1891 		return (B_FALSE);
1892 	}
1893 
1894 	cons = port->p_tx_cons;
1895 	prog = 0;
1896 	for (; cons != idx; YGE_INC(cons, YGE_TX_RING_CNT)) {
1897 		if (port->p_tx_cnt <= 0)
1898 			break;
1899 		prog++;
1900 		port->p_tx_cnt--;
1901 		/* No need to sync LEs as we didn't update LEs. */
1902 	}
1903 
1904 	port->p_tx_cons = cons;
1905 
1906 	if (prog > 0) {
1907 		resched = port->p_wantw;
1908 		port->p_tx_wdog = 0;
1909 		port->p_wantw = B_FALSE;
1910 		return (resched);
1911 	} else {
1912 		return (B_FALSE);
1913 	}
1914 }
1915 
1916 static void
1917 yge_txeof(yge_port_t *port, int idx)
1918 {
1919 	boolean_t resched;
1920 
1921 	TX_LOCK(port->p_dev);
1922 
1923 	resched = yge_txeof_locked(port, idx);
1924 
1925 	TX_UNLOCK(port->p_dev);
1926 
1927 	if (resched && port->p_running) {
1928 		mac_tx_update(port->p_mh);
1929 	}
1930 }
1931 
1932 static void
1933 yge_restart_task(yge_dev_t *dev)
1934 {
1935 	yge_port_t *port;
1936 
1937 	DEV_LOCK(dev);
1938 
1939 	/* Cancel pending I/O and free all Rx/Tx buffers. */
1940 	for (int i = 0; i < dev->d_num_port; i++) {
1941 		port = dev->d_port[i];
1942 		if (port->p_running)
1943 			yge_stop_port(dev->d_port[i]);
1944 	}
1945 	yge_reset(dev);
1946 	for (int i = 0; i < dev->d_num_port; i++) {
1947 		port = dev->d_port[i];
1948 
1949 		if (port->p_running)
1950 			yge_start_port(port);
1951 	}
1952 
1953 	DEV_UNLOCK(dev);
1954 
1955 	for (int i = 0; i < dev->d_num_port; i++) {
1956 		port = dev->d_port[i];
1957 
1958 		mii_reset(port->p_mii);
1959 		if (port->p_running)
1960 			mac_tx_update(port->p_mh);
1961 	}
1962 }
1963 
1964 static void
1965 yge_tick(void *arg)
1966 {
1967 	yge_dev_t *dev = arg;
1968 	yge_port_t *port;
1969 	boolean_t restart = B_FALSE;
1970 	boolean_t resched = B_FALSE;
1971 	int idx;
1972 
1973 	DEV_LOCK(dev);
1974 
1975 	if (dev->d_suspended) {
1976 		DEV_UNLOCK(dev);
1977 		return;
1978 	}
1979 
1980 	for (int i = 0; i < dev->d_num_port; i++) {
1981 		port = dev->d_port[i];
1982 
1983 		if (!port->p_running)
1984 			continue;
1985 
1986 		if (port->p_tx_cnt) {
1987 			uint32_t ridx;
1988 
1989 			/*
1990 			 * Reclaim first as there is a possibility of losing
1991 			 * Tx completion interrupts.
1992 			 */
1993 			ridx = port->p_port == YGE_PORT_A ?
1994 			    STAT_TXA1_RIDX : STAT_TXA2_RIDX;
1995 			idx = CSR_READ_2(dev, ridx);
1996 			if (port->p_tx_cons != idx) {
1997 				resched = yge_txeof_locked(port, idx);
1998 
1999 			} else {
2000 
2001 				/* detect TX hang */
2002 				port->p_tx_wdog++;
2003 				if (port->p_tx_wdog > YGE_TX_TIMEOUT) {
2004 					port->p_tx_wdog = 0;
2005 					yge_error(NULL, port,
2006 					    "TX hang detected!");
2007 					restart = B_TRUE;
2008 				}
2009 			}
2010 		}
2011 	}
2012 
2013 	DEV_UNLOCK(dev);
2014 	if (restart) {
2015 		yge_dispatch(dev, YGE_TASK_RESTART);
2016 	} else {
2017 		if (resched) {
2018 			for (int i = 0; i < dev->d_num_port; i++) {
2019 				port = dev->d_port[i];
2020 
2021 				if (port->p_running)
2022 					mac_tx_update(port->p_mh);
2023 			}
2024 		}
2025 	}
2026 }
2027 
2028 static int
2029 yge_intr_gmac(yge_port_t *port)
2030 {
2031 	yge_dev_t *dev = port->p_dev;
2032 	int pnum = port->p_port;
2033 	uint8_t status;
2034 	int dispatch_wrk = 0;
2035 
2036 	status = CSR_READ_1(dev, MR_ADDR(pnum, GMAC_IRQ_SRC));
2037 
2038 	/* GMAC Rx FIFO overrun. */
2039 	if ((status & GM_IS_RX_FF_OR) != 0) {
2040 		CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2041 		yge_error(NULL, port, "Rx FIFO overrun!");
2042 		dispatch_wrk |= YGE_TASK_RESTART;
2043 	}
2044 	/* GMAC Tx FIFO underrun. */
2045 	if ((status & GM_IS_TX_FF_UR) != 0) {
2046 		CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2047 		yge_error(NULL, port, "Tx FIFO underrun!");
2048 		/*
2049 		 * In case of Tx underrun, we may need to flush/reset
2050 		 * Tx MAC but that would also require
2051 		 * resynchronization with status LEs. Reinitializing
2052 		 * status LEs would affect the other port in dual MAC
2053 		 * configuration so it should be avoided if we can.
2054 		 * Due to lack of documentation it's all vague guess
2055 		 * but it needs more investigation.
2056 		 */
2057 	}
2058 	return (dispatch_wrk);
2059 }
2060 
2061 static void
2062 yge_handle_hwerr(yge_port_t *port, uint32_t status)
2063 {
2064 	yge_dev_t	*dev = port->p_dev;
2065 
2066 	if ((status & Y2_IS_PAR_RD1) != 0) {
2067 		yge_error(NULL, port, "RAM buffer read parity error");
2068 		/* Clear IRQ. */
2069 		CSR_WRITE_2(dev, SELECT_RAM_BUFFER(port->p_port, B3_RI_CTRL),
2070 		    RI_CLR_RD_PERR);
2071 	}
2072 	if ((status & Y2_IS_PAR_WR1) != 0) {
2073 		yge_error(NULL, port, "RAM buffer write parity error");
2074 		/* Clear IRQ. */
2075 		CSR_WRITE_2(dev, SELECT_RAM_BUFFER(port->p_port, B3_RI_CTRL),
2076 		    RI_CLR_WR_PERR);
2077 	}
2078 	if ((status & Y2_IS_PAR_MAC1) != 0) {
2079 		yge_error(NULL, port, "Tx MAC parity error");
2080 		/* Clear IRQ. */
2081 		CSR_WRITE_4(dev, MR_ADDR(port->p_port, TX_GMF_CTRL_T),
2082 		    GMF_CLI_TX_PE);
2083 	}
2084 	if ((status & Y2_IS_PAR_RX1) != 0) {
2085 		yge_error(NULL, port, "Rx parity error");
2086 		/* Clear IRQ. */
2087 		CSR_WRITE_4(dev, Q_ADDR(port->p_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
2088 	}
2089 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
2090 		yge_error(NULL, port, "TCP segmentation error");
2091 		/* Clear IRQ. */
2092 		CSR_WRITE_4(dev, Q_ADDR(port->p_txq, Q_CSR), BMU_CLR_IRQ_TCP);
2093 	}
2094 }
2095 
2096 static void
2097 yge_intr_hwerr(yge_dev_t *dev)
2098 {
2099 	uint32_t status;
2100 	uint32_t tlphead[4];
2101 
2102 	status = CSR_READ_4(dev, B0_HWE_ISRC);
2103 	/* Time Stamp timer overflow. */
2104 	if ((status & Y2_IS_TIST_OV) != 0)
2105 		CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2106 	if ((status & Y2_IS_PCI_NEXP) != 0) {
2107 		/*
2108 		 * PCI Express Error occurred which is not described in PEX
2109 		 * spec.
2110 		 * This error is also mapped either to Master Abort(
2111 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
2112 		 * can only be cleared there.
2113 		 */
2114 		yge_error(dev, NULL, "PCI Express protocol violation error");
2115 	}
2116 
2117 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
2118 		uint16_t v16;
2119 
2120 		if ((status & Y2_IS_IRQ_STAT) != 0)
2121 			yge_error(dev, NULL, "Unexpected IRQ Status error");
2122 		if ((status & Y2_IS_MST_ERR) != 0)
2123 			yge_error(dev, NULL, "Unexpected IRQ Master error");
2124 		/* Reset all bits in the PCI status register. */
2125 		v16 = pci_config_get16(dev->d_pcih, PCI_CONF_STAT);
2126 		CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2127 		pci_config_put16(dev->d_pcih, PCI_CONF_STAT, v16 |
2128 		    PCI_STAT_S_PERROR | PCI_STAT_S_SYSERR | PCI_STAT_R_MAST_AB |
2129 		    PCI_STAT_R_TARG_AB | PCI_STAT_PERROR);
2130 		CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2131 	}
2132 
2133 	/* Check for PCI Express Uncorrectable Error. */
2134 	if ((status & Y2_IS_PCI_EXP) != 0) {
2135 		uint32_t v32;
2136 
2137 		/*
2138 		 * On PCI Express bus bridges are called root complexes (RC).
2139 		 * PCI Express errors are recognized by the root complex too,
2140 		 * which requests the system to handle the problem. After
2141 		 * error occurrence it may be that no access to the adapter
2142 		 * may be performed any longer.
2143 		 */
2144 
2145 		v32 = CSR_PCI_READ_4(dev, PEX_UNC_ERR_STAT);
2146 		if ((v32 & PEX_UNSUP_REQ) != 0) {
2147 			/* Ignore unsupported request error. */
2148 			yge_error(dev, NULL,
2149 			    "Uncorrectable PCI Express error");
2150 		}
2151 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
2152 			int i;
2153 
2154 			/* Get TLP header form Log Registers. */
2155 			for (i = 0; i < 4; i++)
2156 				tlphead[i] = CSR_PCI_READ_4(dev,
2157 				    PEX_HEADER_LOG + i * 4);
2158 			/* Check for vendor defined broadcast message. */
2159 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
2160 				dev->d_intrhwemask &= ~Y2_IS_PCI_EXP;
2161 				CSR_WRITE_4(dev, B0_HWE_IMSK,
2162 				    dev->d_intrhwemask);
2163 				(void) CSR_READ_4(dev, B0_HWE_IMSK);
2164 			}
2165 		}
2166 		/* Clear the interrupt. */
2167 		CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2168 		CSR_PCI_WRITE_4(dev, PEX_UNC_ERR_STAT, 0xffffffff);
2169 		CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2170 	}
2171 
2172 	if ((status & Y2_HWE_L1_MASK) != 0 && dev->d_port[YGE_PORT_A] != NULL)
2173 		yge_handle_hwerr(dev->d_port[YGE_PORT_A], status);
2174 	if ((status & Y2_HWE_L2_MASK) != 0 && dev->d_port[YGE_PORT_B] != NULL)
2175 		yge_handle_hwerr(dev->d_port[YGE_PORT_B], status >> 8);
2176 }
2177 
2178 /*
2179  * Returns B_TRUE if there is potentially more work to do.
2180  */
2181 static boolean_t
2182 yge_handle_events(yge_dev_t *dev, mblk_t **heads, mblk_t **tails, int *txindex)
2183 {
2184 	yge_port_t *port;
2185 	yge_ring_t *ring;
2186 	uint32_t control, status;
2187 	int cons, idx, len, pnum;
2188 	mblk_t *mp;
2189 	uint32_t rxprogs[2];
2190 
2191 	rxprogs[0] = rxprogs[1] = 0;
2192 
2193 	idx = CSR_READ_2(dev, STAT_PUT_IDX);
2194 	if (idx == dev->d_stat_cons) {
2195 		return (B_FALSE);
2196 	}
2197 
2198 	ring = &dev->d_status_ring;
2199 
2200 	for (cons = dev->d_stat_cons; cons != idx; ) {
2201 		/* Sync status LE. */
2202 		SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORKERNEL);
2203 		control = GETCTRL(ring, cons);
2204 		if ((control & HW_OWNER) == 0) {
2205 			yge_error(dev, NULL, "Status descriptor error: "
2206 			    "index %d, control %x", cons, control);
2207 			break;
2208 		}
2209 
2210 		status = GETSTAT(ring, cons);
2211 
2212 		control &= ~HW_OWNER;
2213 		len = control & STLE_LEN_MASK;
2214 		pnum = ((control >> 16) & 0x01);
2215 		port = dev->d_port[pnum];
2216 		if (port == NULL) {
2217 			yge_error(dev, NULL, "Invalid port opcode: 0x%08x",
2218 			    control & STLE_OP_MASK);
2219 			goto finish;
2220 		}
2221 
2222 		switch (control & STLE_OP_MASK) {
2223 		case OP_RXSTAT:
2224 			mp = yge_rxeof(port, status, len);
2225 			if (mp != NULL) {
2226 				if (heads[pnum] == NULL)
2227 					heads[pnum] = mp;
2228 				else
2229 					tails[pnum]->b_next = mp;
2230 				tails[pnum] = mp;
2231 			}
2232 
2233 			rxprogs[pnum]++;
2234 			break;
2235 
2236 		case OP_TXINDEXLE:
2237 			txindex[0] = status & STLE_TXA1_MSKL;
2238 			txindex[1] =
2239 			    ((status & STLE_TXA2_MSKL) >> STLE_TXA2_SHIFTL) |
2240 			    ((len & STLE_TXA2_MSKH) << STLE_TXA2_SHIFTH);
2241 			break;
2242 		default:
2243 			yge_error(dev, NULL, "Unhandled opcode: 0x%08x",
2244 			    control & STLE_OP_MASK);
2245 			break;
2246 		}
2247 finish:
2248 
2249 		/* Give it back to HW. */
2250 		PUTCTRL(ring, cons, control);
2251 		SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORDEV);
2252 
2253 		YGE_INC(cons, YGE_STAT_RING_CNT);
2254 		if (rxprogs[pnum] > dev->d_process_limit) {
2255 			break;
2256 		}
2257 	}
2258 
2259 	dev->d_stat_cons = cons;
2260 	if (dev->d_stat_cons != CSR_READ_2(dev, STAT_PUT_IDX))
2261 		return (B_TRUE);
2262 	else
2263 		return (B_FALSE);
2264 }
2265 
2266 /*ARGSUSED1*/
2267 static uint_t
2268 yge_intr(caddr_t arg1, caddr_t arg2)
2269 {
2270 	yge_dev_t	*dev;
2271 	yge_port_t	*port1;
2272 	yge_port_t	*port2;
2273 	uint32_t	status;
2274 	mblk_t		*heads[2], *tails[2];
2275 	int		txindex[2];
2276 	int		dispatch_wrk;
2277 
2278 	dev = (void *)arg1;
2279 
2280 	heads[0] = heads[1] = NULL;
2281 	tails[0] = tails[1] = NULL;
2282 	txindex[0] = txindex[1] = -1;
2283 	dispatch_wrk = 0;
2284 
2285 	port1 = dev->d_port[YGE_PORT_A];
2286 	port2 = dev->d_port[YGE_PORT_B];
2287 
2288 	RX_LOCK(dev);
2289 
2290 	if (dev->d_suspended) {
2291 		RX_UNLOCK(dev);
2292 		return (DDI_INTR_UNCLAIMED);
2293 	}
2294 
2295 	/* Get interrupt source. */
2296 	status = CSR_READ_4(dev, B0_Y2_SP_ISRC2);
2297 	if (status == 0 || status == 0xffffffff ||
2298 	    (status & dev->d_intrmask) == 0) { /* Stray interrupt ? */
2299 		/* Reenable interrupts. */
2300 		CSR_WRITE_4(dev, B0_Y2_SP_ICR, 2);
2301 		RX_UNLOCK(dev);
2302 		return (DDI_INTR_UNCLAIMED);
2303 	}
2304 
2305 	if ((status & Y2_IS_HW_ERR) != 0) {
2306 		yge_intr_hwerr(dev);
2307 	}
2308 
2309 	if (status & Y2_IS_IRQ_MAC1) {
2310 		dispatch_wrk |= yge_intr_gmac(port1);
2311 	}
2312 	if (status & Y2_IS_IRQ_MAC2) {
2313 		dispatch_wrk |= yge_intr_gmac(port2);
2314 	}
2315 
2316 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
2317 		yge_error(NULL, status & Y2_IS_CHK_RX1 ? port1 : port2,
2318 		    "Rx descriptor error");
2319 		dev->d_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
2320 		CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2321 		(void) CSR_READ_4(dev, B0_IMSK);
2322 	}
2323 	if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
2324 		yge_error(NULL, status & Y2_IS_CHK_TXA1 ? port1 : port2,
2325 		    "Tx descriptor error");
2326 		dev->d_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
2327 		CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2328 		(void) CSR_READ_4(dev, B0_IMSK);
2329 	}
2330 
2331 	/* handle events until it returns false */
2332 	while (yge_handle_events(dev, heads, tails, txindex))
2333 		/* NOP */;
2334 
2335 	/* Do receive/transmit events */
2336 	if ((status & Y2_IS_STAT_BMU)) {
2337 		CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_CLR_IRQ);
2338 	}
2339 
2340 	/* Reenable interrupts. */
2341 	CSR_WRITE_4(dev, B0_Y2_SP_ICR, 2);
2342 
2343 	RX_UNLOCK(dev);
2344 
2345 	if (dispatch_wrk) {
2346 		yge_dispatch(dev, dispatch_wrk);
2347 	}
2348 
2349 	if (port1->p_running) {
2350 		if (txindex[0] >= 0) {
2351 			yge_txeof(port1, txindex[0]);
2352 		}
2353 		if (heads[0])
2354 			mac_rx(port1->p_mh, NULL, heads[0]);
2355 	} else {
2356 		if (heads[0]) {
2357 			mblk_t *mp;
2358 			while ((mp = heads[0]) != NULL) {
2359 				heads[0] = mp->b_next;
2360 				freemsg(mp);
2361 			}
2362 		}
2363 	}
2364 
2365 	if (port2->p_running) {
2366 		if (txindex[1] >= 0) {
2367 			yge_txeof(port2, txindex[1]);
2368 		}
2369 		if (heads[1])
2370 			mac_rx(port2->p_mh, NULL, heads[1]);
2371 	} else {
2372 		if (heads[1]) {
2373 			mblk_t *mp;
2374 			while ((mp = heads[1]) != NULL) {
2375 				heads[1] = mp->b_next;
2376 				freemsg(mp);
2377 			}
2378 		}
2379 	}
2380 
2381 	return (DDI_INTR_CLAIMED);
2382 }
2383 
2384 static void
2385 yge_set_tx_stfwd(yge_port_t *port)
2386 {
2387 	yge_dev_t *dev = port->p_dev;
2388 	int pnum = port->p_port;
2389 
2390 	switch (dev->d_hw_id) {
2391 	case CHIP_ID_YUKON_EX:
2392 		if (dev->d_hw_rev == CHIP_REV_YU_EX_A0)
2393 			goto yukon_ex_workaround;
2394 
2395 		if (port->p_mtu > ETHERMTU)
2396 			CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2397 			    TX_JUMBO_ENA | TX_STFW_ENA);
2398 		else
2399 			CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2400 			    TX_JUMBO_DIS | TX_STFW_ENA);
2401 		break;
2402 	default:
2403 yukon_ex_workaround:
2404 		if (port->p_mtu > ETHERMTU) {
2405 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
2406 			CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_AE_THR),
2407 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
2408 			/* Disable Store & Forward mode for Tx. */
2409 			CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2410 			    TX_JUMBO_ENA | TX_STFW_DIS);
2411 		} else {
2412 			/* Enable Store & Forward mode for Tx. */
2413 			CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2414 			    TX_JUMBO_DIS | TX_STFW_ENA);
2415 		}
2416 		break;
2417 	}
2418 }
2419 
2420 static void
2421 yge_start_port(yge_port_t *port)
2422 {
2423 	yge_dev_t *dev = port->p_dev;
2424 	uint16_t gmac;
2425 	int32_t pnum;
2426 	int32_t rxq;
2427 	int32_t txq;
2428 	uint32_t reg;
2429 
2430 	pnum = port->p_port;
2431 	txq = port->p_txq;
2432 	rxq = port->p_rxq;
2433 
2434 	if (port->p_mtu < ETHERMTU)
2435 		port->p_framesize = ETHERMTU;
2436 	else
2437 		port->p_framesize = port->p_mtu;
2438 	port->p_framesize += sizeof (struct ether_vlan_header);
2439 
2440 	/*
2441 	 * Note for the future, if we enable offloads:
2442 	 * In Yukon EC Ultra, TSO & checksum offload is not
2443 	 * supported for jumbo frame.
2444 	 */
2445 
2446 	/* GMAC Control reset */
2447 	CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_RST_SET);
2448 	CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_RST_CLR);
2449 	CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_F_LOOPB_OFF);
2450 	if (dev->d_hw_id == CHIP_ID_YUKON_EX)
2451 		CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL),
2452 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
2453 		    GMC_BYP_RETR_ON);
2454 	/*
2455 	 * Initialize GMAC first such that speed/duplex/flow-control
2456 	 * parameters are renegotiated with the interface is brought up.
2457 	 */
2458 	GMAC_WRITE_2(dev, pnum, GM_GP_CTRL, 0);
2459 
2460 	/* Dummy read the Interrupt Source Register. */
2461 	(void) CSR_READ_1(dev, MR_ADDR(pnum, GMAC_IRQ_SRC));
2462 
2463 	/* Clear MIB stats. */
2464 	yge_stats_clear(port);
2465 
2466 	/* Disable FCS. */
2467 	GMAC_WRITE_2(dev, pnum, GM_RX_CTRL, GM_RXCR_CRC_DIS);
2468 
2469 	/* Setup Transmit Control Register. */
2470 	GMAC_WRITE_2(dev, pnum, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2471 
2472 	/* Setup Transmit Flow Control Register. */
2473 	GMAC_WRITE_2(dev, pnum, GM_TX_FLOW_CTRL, 0xffff);
2474 
2475 	/* Setup Transmit Parameter Register. */
2476 	GMAC_WRITE_2(dev, pnum, GM_TX_PARAM,
2477 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2478 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
2479 
2480 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
2481 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2482 
2483 	if (port->p_mtu > ETHERMTU)
2484 		gmac |= GM_SMOD_JUMBO_ENA;
2485 	GMAC_WRITE_2(dev, pnum, GM_SERIAL_MODE, gmac);
2486 
2487 	/* Disable interrupts for counter overflows. */
2488 	GMAC_WRITE_2(dev, pnum, GM_TX_IRQ_MSK, 0);
2489 	GMAC_WRITE_2(dev, pnum, GM_RX_IRQ_MSK, 0);
2490 	GMAC_WRITE_2(dev, pnum, GM_TR_IRQ_MSK, 0);
2491 
2492 	/* Configure Rx MAC FIFO. */
2493 	CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_SET);
2494 	CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_CLR);
2495 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2496 	if (dev->d_hw_id == CHIP_ID_YUKON_FE_P ||
2497 	    dev->d_hw_id == CHIP_ID_YUKON_EX)
2498 		reg |= GMF_RX_OVER_ON;
2499 	CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), reg);
2500 
2501 	/* Set receive filter. */
2502 	yge_setrxfilt(port);
2503 
2504 	/* Flush Rx MAC FIFO on any flow control or error. */
2505 	CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
2506 
2507 	/*
2508 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
2509 	 * due to hardware hang on receipt of pause frames.
2510 	 */
2511 	reg = RX_GMF_FL_THR_DEF + 1;
2512 	/* FE+ magic */
2513 	if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
2514 	    (dev->d_hw_rev == CHIP_REV_YU_FE2_A0))
2515 		reg = 0x178;
2516 
2517 	CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_FL_THR), reg);
2518 
2519 	/* Configure Tx MAC FIFO. */
2520 	CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_SET);
2521 	CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_CLR);
2522 	CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_OPER_ON);
2523 
2524 	/* Disable hardware VLAN tag insertion/stripping. */
2525 	CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
2526 	CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
2527 
2528 	if ((port->p_flags & PORT_FLAG_RAMBUF) == 0) {
2529 		/* Set Rx Pause threshold. */
2530 		if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
2531 		    (dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
2532 			CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_LP_THR),
2533 			    MSK_ECU_LLPP);
2534 			CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_UP_THR),
2535 			    MSK_FEP_ULPP);
2536 		} else {
2537 			CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_LP_THR),
2538 			    MSK_ECU_LLPP);
2539 			CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_UP_THR),
2540 			    MSK_ECU_ULPP);
2541 		}
2542 		/* Configure store-and-forward for TX */
2543 		yge_set_tx_stfwd(port);
2544 	}
2545 
2546 	if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
2547 	    (dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
2548 		/* Disable dynamic watermark */
2549 		reg = CSR_READ_4(dev, MR_ADDR(pnum, TX_GMF_EA));
2550 		reg &= ~TX_DYN_WM_ENA;
2551 		CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_EA), reg);
2552 	}
2553 
2554 	/*
2555 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
2556 	 * arbiter as we don't use Sync Tx queue.
2557 	 */
2558 	CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL),
2559 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2560 	/* Enable the RAM Interface Arbiter. */
2561 	CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL), TXA_ENA_ARB);
2562 
2563 	/* Setup RAM buffer. */
2564 	yge_set_rambuffer(port);
2565 
2566 	/* Disable Tx sync Queue. */
2567 	CSR_WRITE_1(dev, RB_ADDR(port->p_txsq, RB_CTRL), RB_RST_SET);
2568 
2569 	/* Setup Tx Queue Bus Memory Interface. */
2570 	CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_CLR_RESET);
2571 	CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_OPER_INIT);
2572 	CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_FIFO_OP_ON);
2573 	CSR_WRITE_2(dev, Q_ADDR(txq, Q_WM), MSK_BMU_TX_WM);
2574 
2575 	switch (dev->d_hw_id) {
2576 	case CHIP_ID_YUKON_EC_U:
2577 		if (dev->d_hw_rev == CHIP_REV_YU_EC_U_A0) {
2578 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
2579 			CSR_WRITE_2(dev, Q_ADDR(txq, Q_AL), MSK_ECU_TXFF_LEV);
2580 		}
2581 		break;
2582 	case CHIP_ID_YUKON_EX:
2583 		/*
2584 		 * Yukon Extreme seems to have silicon bug for
2585 		 * automatic Tx checksum calculation capability.
2586 		 */
2587 		if (dev->d_hw_rev == CHIP_REV_YU_EX_B0)
2588 			CSR_WRITE_4(dev, Q_ADDR(txq, Q_F), F_TX_CHK_AUTO_OFF);
2589 		break;
2590 	}
2591 
2592 	/* Setup Rx Queue Bus Memory Interface. */
2593 	CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_CLR_RESET);
2594 	CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_OPER_INIT);
2595 	CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_FIFO_OP_ON);
2596 	if (dev->d_bustype == PEX_BUS) {
2597 		CSR_WRITE_2(dev, Q_ADDR(rxq, Q_WM), 0x80);
2598 	} else {
2599 		CSR_WRITE_2(dev, Q_ADDR(rxq, Q_WM), MSK_BMU_RX_WM);
2600 	}
2601 	if (dev->d_hw_id == CHIP_ID_YUKON_EC_U &&
2602 	    dev->d_hw_rev >= CHIP_REV_YU_EC_U_A1) {
2603 		/* MAC Rx RAM Read is controlled by hardware. */
2604 		CSR_WRITE_4(dev, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
2605 	}
2606 
2607 	yge_init_tx_ring(port);
2608 
2609 	/* Disable Rx checksum offload and RSS hash. */
2610 	CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR),
2611 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
2612 
2613 	yge_init_rx_ring(port);
2614 
2615 	/* Configure interrupt handling. */
2616 	if (port == dev->d_port[YGE_PORT_A]) {
2617 		dev->d_intrmask |= Y2_IS_PORT_A;
2618 		dev->d_intrhwemask |= Y2_HWE_L1_MASK;
2619 	} else if (port == dev->d_port[YGE_PORT_B]) {
2620 		dev->d_intrmask |= Y2_IS_PORT_B;
2621 		dev->d_intrhwemask |= Y2_HWE_L2_MASK;
2622 	}
2623 	CSR_WRITE_4(dev, B0_HWE_IMSK, dev->d_intrhwemask);
2624 	(void) CSR_READ_4(dev, B0_HWE_IMSK);
2625 	CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2626 	(void) CSR_READ_4(dev, B0_IMSK);
2627 
2628 	/* Enable RX/TX GMAC */
2629 	gmac = GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2630 	gmac |= (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2631 	GMAC_WRITE_2(port->p_dev, port->p_port, GM_GP_CTRL, gmac);
2632 	/* Read again to ensure writing. */
2633 	(void) GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2634 
2635 	/* Reset TX timer */
2636 	port->p_tx_wdog = 0;
2637 }
2638 
2639 static void
2640 yge_set_rambuffer(yge_port_t *port)
2641 {
2642 	yge_dev_t *dev;
2643 	int ltpp, utpp;
2644 	int pnum;
2645 	uint32_t rxq;
2646 	uint32_t txq;
2647 
2648 	dev = port->p_dev;
2649 	pnum = port->p_port;
2650 	rxq = port->p_rxq;
2651 	txq = port->p_txq;
2652 
2653 	if ((port->p_flags & PORT_FLAG_RAMBUF) == 0)
2654 		return;
2655 
2656 	/* Setup Rx Queue. */
2657 	CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_RST_CLR);
2658 	CSR_WRITE_4(dev, RB_ADDR(rxq, RB_START), dev->d_rxqstart[pnum] / 8);
2659 	CSR_WRITE_4(dev, RB_ADDR(rxq, RB_END), dev->d_rxqend[pnum] / 8);
2660 	CSR_WRITE_4(dev, RB_ADDR(rxq, RB_WP), dev->d_rxqstart[pnum] / 8);
2661 	CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RP), dev->d_rxqstart[pnum] / 8);
2662 
2663 	utpp =
2664 	    (dev->d_rxqend[pnum] + 1 - dev->d_rxqstart[pnum] - RB_ULPP) / 8;
2665 	ltpp =
2666 	    (dev->d_rxqend[pnum] + 1 - dev->d_rxqstart[pnum] - RB_LLPP_B) / 8;
2667 
2668 	if (dev->d_rxqsize < MSK_MIN_RXQ_SIZE)
2669 		ltpp += (RB_LLPP_B - RB_LLPP_S) / 8;
2670 
2671 	CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RX_UTPP), utpp);
2672 	CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RX_LTPP), ltpp);
2673 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
2674 
2675 	CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_ENA_OP_MD);
2676 	(void) CSR_READ_1(dev, RB_ADDR(rxq, RB_CTRL));
2677 
2678 	/* Setup Tx Queue. */
2679 	CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_CLR);
2680 	CSR_WRITE_4(dev, RB_ADDR(txq, RB_START), dev->d_txqstart[pnum] / 8);
2681 	CSR_WRITE_4(dev, RB_ADDR(txq, RB_END),  dev->d_txqend[pnum] / 8);
2682 	CSR_WRITE_4(dev, RB_ADDR(txq, RB_WP), dev->d_txqstart[pnum] / 8);
2683 	CSR_WRITE_4(dev, RB_ADDR(txq, RB_RP), dev->d_txqstart[pnum] / 8);
2684 	/* Enable Store & Forward for Tx side. */
2685 	CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_ENA_STFWD);
2686 	CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_ENA_OP_MD);
2687 	(void) CSR_READ_1(dev, RB_ADDR(txq, RB_CTRL));
2688 }
2689 
2690 static void
2691 yge_set_prefetch(yge_dev_t *dev, int qaddr, yge_ring_t *ring)
2692 {
2693 	/* Reset the prefetch unit. */
2694 	CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
2695 	    PREF_UNIT_RST_SET);
2696 	CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
2697 	    PREF_UNIT_RST_CLR);
2698 	/* Set LE base address. */
2699 	CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
2700 	    YGE_ADDR_LO(ring->r_paddr));
2701 	CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
2702 	    YGE_ADDR_HI(ring->r_paddr));
2703 	/* Set the list last index. */
2704 	CSR_WRITE_2(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
2705 	    ring->r_num - 1);
2706 	/* Turn on prefetch unit. */
2707 	CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
2708 	    PREF_UNIT_OP_ON);
2709 	/* Dummy read to ensure write. */
2710 	(void) CSR_READ_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
2711 }
2712 
2713 static void
2714 yge_stop_port(yge_port_t *port)
2715 {
2716 	yge_dev_t *dev = port->p_dev;
2717 	int pnum = port->p_port;
2718 	uint32_t txq = port->p_txq;
2719 	uint32_t rxq = port->p_rxq;
2720 	uint32_t val;
2721 	int i;
2722 
2723 	dev = port->p_dev;
2724 
2725 	/*
2726 	 * shutdown timeout
2727 	 */
2728 	port->p_tx_wdog = 0;
2729 
2730 	/* Disable interrupts. */
2731 	if (pnum == YGE_PORT_A) {
2732 		dev->d_intrmask &= ~Y2_IS_PORT_A;
2733 		dev->d_intrhwemask &= ~Y2_HWE_L1_MASK;
2734 	} else {
2735 		dev->d_intrmask &= ~Y2_IS_PORT_B;
2736 		dev->d_intrhwemask &= ~Y2_HWE_L2_MASK;
2737 	}
2738 	CSR_WRITE_4(dev, B0_HWE_IMSK, dev->d_intrhwemask);
2739 	(void) CSR_READ_4(dev, B0_HWE_IMSK);
2740 	CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2741 	(void) CSR_READ_4(dev, B0_IMSK);
2742 
2743 	/* Disable Tx/Rx MAC. */
2744 	val = GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2745 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2746 	GMAC_WRITE_2(dev, pnum, GM_GP_CTRL, val);
2747 	/* Read again to ensure writing. */
2748 	(void) GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2749 
2750 	/* Update stats and clear counters. */
2751 	yge_stats_update(port);
2752 
2753 	/* Stop Tx BMU. */
2754 	CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_STOP);
2755 	val = CSR_READ_4(dev, Q_ADDR(txq, Q_CSR));
2756 	for (i = 0; i < YGE_TIMEOUT; i += 10) {
2757 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
2758 			CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_STOP);
2759 			val = CSR_READ_4(dev, Q_ADDR(txq, Q_CSR));
2760 		} else
2761 			break;
2762 		drv_usecwait(10);
2763 	}
2764 	/* This is probably fairly catastrophic. */
2765 	if ((val & (BMU_STOP | BMU_IDLE)) == 0)
2766 		yge_error(NULL, port, "Tx BMU stop failed");
2767 
2768 	CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_SET | RB_DIS_OP_MD);
2769 
2770 	/* Disable all GMAC interrupt. */
2771 	CSR_WRITE_1(dev, MR_ADDR(pnum, GMAC_IRQ_MSK), 0);
2772 
2773 	/* Disable the RAM Interface Arbiter. */
2774 	CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL), TXA_DIS_ARB);
2775 
2776 	/* Reset the PCI FIFO of the async Tx queue */
2777 	CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
2778 
2779 	/* Reset the Tx prefetch units. */
2780 	CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(txq, PREF_UNIT_CTRL_REG),
2781 	    PREF_UNIT_RST_SET);
2782 
2783 	/* Reset the RAM Buffer async Tx queue. */
2784 	CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_SET);
2785 
2786 	/* Reset Tx MAC FIFO. */
2787 	CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_SET);
2788 	/* Set Pause Off. */
2789 	CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_PAUSE_OFF);
2790 
2791 	/*
2792 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
2793 	 * reach the end of packet and since we can't make sure that we have
2794 	 * incoming data, we must reset the BMU while it is not during a DMA
2795 	 * transfer. Since it is possible that the Rx path is still active,
2796 	 * the Rx RAM buffer will be stopped first, so any possible incoming
2797 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
2798 	 * BMU is polled until any DMA in progress is ended and only then it
2799 	 * will be reset.
2800 	 */
2801 
2802 	/* Disable the RAM Buffer receive queue. */
2803 	CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
2804 	for (i = 0; i < YGE_TIMEOUT; i += 10) {
2805 		if (CSR_READ_1(dev, RB_ADDR(rxq, Q_RSL)) ==
2806 		    CSR_READ_1(dev, RB_ADDR(rxq, Q_RL)))
2807 			break;
2808 		drv_usecwait(10);
2809 	}
2810 	/* This is probably nearly a fatal error. */
2811 	if (i == YGE_TIMEOUT)
2812 		yge_error(NULL, port, "Rx BMU stop failed");
2813 
2814 	CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
2815 	/* Reset the Rx prefetch unit. */
2816 	CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(rxq, PREF_UNIT_CTRL_REG),
2817 	    PREF_UNIT_RST_SET);
2818 	/* Reset the RAM Buffer receive queue. */
2819 	CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_RST_SET);
2820 	/* Reset Rx MAC FIFO. */
2821 	CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_SET);
2822 }
2823 
2824 /*
2825  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
2826  * counter clears high 16 bits of the counter such that accessing
2827  * lower 16 bits should be the last operation.
2828  */
2829 #define	YGE_READ_MIB32(x, y)					\
2830 	GMAC_READ_4(dev, x, y)
2831 
2832 #define	YGE_READ_MIB64(x, y)					\
2833 	((((uint64_t)YGE_READ_MIB32(x, (y) + 8)) << 32) +	\
2834 	    (uint64_t)YGE_READ_MIB32(x, y))
2835 
2836 static void
2837 yge_stats_clear(yge_port_t *port)
2838 {
2839 	yge_dev_t *dev;
2840 	uint16_t gmac;
2841 	int32_t pnum;
2842 
2843 	pnum = port->p_port;
2844 	dev = port->p_dev;
2845 
2846 	/* Set MIB Clear Counter Mode. */
2847 	gmac = GMAC_READ_2(dev, pnum, GM_PHY_ADDR);
2848 	GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
2849 	/* Read all MIB Counters with Clear Mode set. */
2850 	for (int i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += 4)
2851 		(void) YGE_READ_MIB32(pnum, i);
2852 	/* Clear MIB Clear Counter Mode. */
2853 	gmac &= ~GM_PAR_MIB_CLR;
2854 	GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac);
2855 }
2856 
2857 static void
2858 yge_stats_update(yge_port_t *port)
2859 {
2860 	yge_dev_t *dev;
2861 	struct yge_hw_stats *stats;
2862 	uint16_t gmac;
2863 	int32_t	pnum;
2864 
2865 	dev = port->p_dev;
2866 	pnum = port->p_port;
2867 
2868 	if (dev->d_suspended || !port->p_running) {
2869 		return;
2870 	}
2871 	stats = &port->p_stats;
2872 	/* Set MIB Clear Counter Mode. */
2873 	gmac = GMAC_READ_2(dev, pnum, GM_PHY_ADDR);
2874 	GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
2875 
2876 	/* Rx stats. */
2877 	stats->rx_ucast_frames +=	YGE_READ_MIB32(pnum, GM_RXF_UC_OK);
2878 	stats->rx_bcast_frames +=	YGE_READ_MIB32(pnum, GM_RXF_BC_OK);
2879 	stats->rx_pause_frames +=	YGE_READ_MIB32(pnum, GM_RXF_MPAUSE);
2880 	stats->rx_mcast_frames +=	YGE_READ_MIB32(pnum, GM_RXF_MC_OK);
2881 	stats->rx_crc_errs +=		YGE_READ_MIB32(pnum, GM_RXF_FCS_ERR);
2882 	(void) YGE_READ_MIB32(pnum, GM_RXF_SPARE1);
2883 	stats->rx_good_octets +=	YGE_READ_MIB64(pnum, GM_RXO_OK_LO);
2884 	stats->rx_bad_octets +=		YGE_READ_MIB64(pnum, GM_RXO_ERR_LO);
2885 	stats->rx_runts +=		YGE_READ_MIB32(pnum, GM_RXF_SHT);
2886 	stats->rx_runt_errs +=		YGE_READ_MIB32(pnum, GM_RXE_FRAG);
2887 	stats->rx_pkts_64 +=		YGE_READ_MIB32(pnum, GM_RXF_64B);
2888 	stats->rx_pkts_65_127 +=	YGE_READ_MIB32(pnum, GM_RXF_127B);
2889 	stats->rx_pkts_128_255 +=	YGE_READ_MIB32(pnum, GM_RXF_255B);
2890 	stats->rx_pkts_256_511 +=	YGE_READ_MIB32(pnum, GM_RXF_511B);
2891 	stats->rx_pkts_512_1023 +=	YGE_READ_MIB32(pnum, GM_RXF_1023B);
2892 	stats->rx_pkts_1024_1518 +=	YGE_READ_MIB32(pnum, GM_RXF_1518B);
2893 	stats->rx_pkts_1519_max +=	YGE_READ_MIB32(pnum, GM_RXF_MAX_SZ);
2894 	stats->rx_pkts_too_long +=	YGE_READ_MIB32(pnum, GM_RXF_LNG_ERR);
2895 	stats->rx_pkts_jabbers +=	YGE_READ_MIB32(pnum, GM_RXF_JAB_PKT);
2896 	(void) YGE_READ_MIB32(pnum, GM_RXF_SPARE2);
2897 	stats->rx_fifo_oflows +=	YGE_READ_MIB32(pnum, GM_RXE_FIFO_OV);
2898 	(void) YGE_READ_MIB32(pnum, GM_RXF_SPARE3);
2899 
2900 	/* Tx stats. */
2901 	stats->tx_ucast_frames +=	YGE_READ_MIB32(pnum, GM_TXF_UC_OK);
2902 	stats->tx_bcast_frames +=	YGE_READ_MIB32(pnum, GM_TXF_BC_OK);
2903 	stats->tx_pause_frames +=	YGE_READ_MIB32(pnum, GM_TXF_MPAUSE);
2904 	stats->tx_mcast_frames +=	YGE_READ_MIB32(pnum, GM_TXF_MC_OK);
2905 	stats->tx_octets +=		YGE_READ_MIB64(pnum, GM_TXO_OK_LO);
2906 	stats->tx_pkts_64 +=		YGE_READ_MIB32(pnum, GM_TXF_64B);
2907 	stats->tx_pkts_65_127 +=	YGE_READ_MIB32(pnum, GM_TXF_127B);
2908 	stats->tx_pkts_128_255 +=	YGE_READ_MIB32(pnum, GM_TXF_255B);
2909 	stats->tx_pkts_256_511 +=	YGE_READ_MIB32(pnum, GM_TXF_511B);
2910 	stats->tx_pkts_512_1023 +=	YGE_READ_MIB32(pnum, GM_TXF_1023B);
2911 	stats->tx_pkts_1024_1518 +=	YGE_READ_MIB32(pnum, GM_TXF_1518B);
2912 	stats->tx_pkts_1519_max +=	YGE_READ_MIB32(pnum, GM_TXF_MAX_SZ);
2913 	(void) YGE_READ_MIB32(pnum, GM_TXF_SPARE1);
2914 	stats->tx_colls +=		YGE_READ_MIB32(pnum, GM_TXF_COL);
2915 	stats->tx_late_colls +=		YGE_READ_MIB32(pnum, GM_TXF_LAT_COL);
2916 	stats->tx_excess_colls +=	YGE_READ_MIB32(pnum, GM_TXF_ABO_COL);
2917 	stats->tx_multi_colls +=	YGE_READ_MIB32(pnum, GM_TXF_MUL_COL);
2918 	stats->tx_single_colls +=	YGE_READ_MIB32(pnum, GM_TXF_SNG_COL);
2919 	stats->tx_underflows +=		YGE_READ_MIB32(pnum, GM_TXE_FIFO_UR);
2920 	/* Clear MIB Clear Counter Mode. */
2921 	gmac &= ~GM_PAR_MIB_CLR;
2922 	GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac);
2923 }
2924 
2925 #undef YGE_READ_MIB32
2926 #undef YGE_READ_MIB64
2927 
2928 uint32_t
2929 yge_hashbit(const uint8_t *addr)
2930 {
2931 	int		idx;
2932 	int		bit;
2933 	uint_t		data;
2934 	uint32_t	crc;
2935 #define	POLY_BE	0x04c11db7
2936 
2937 	crc = 0xffffffff;
2938 	for (idx = 0; idx < 6; idx++) {
2939 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
2940 			crc = (crc << 1)
2941 			    ^ ((((crc >> 31) ^ data) & 1) ? POLY_BE : 0);
2942 		}
2943 	}
2944 #undef	POLY_BE
2945 
2946 	return (crc % 64);
2947 }
2948 
2949 int
2950 yge_m_stat(void *arg, uint_t stat, uint64_t *val)
2951 {
2952 	yge_port_t	*port = arg;
2953 	struct yge_hw_stats *stats = &port->p_stats;
2954 
2955 	if (stat == MAC_STAT_IFSPEED) {
2956 		/*
2957 		 * This is the first stat we are asked about.  We update only
2958 		 * for this stat, to avoid paying the hefty cost of the update
2959 		 * once for each stat.
2960 		 */
2961 		DEV_LOCK(port->p_dev);
2962 		yge_stats_update(port);
2963 		DEV_UNLOCK(port->p_dev);
2964 	}
2965 
2966 	if (mii_m_getstat(port->p_mii, stat, val) == 0) {
2967 		return (0);
2968 	}
2969 
2970 	switch (stat) {
2971 	case MAC_STAT_MULTIRCV:
2972 		*val = stats->rx_mcast_frames;
2973 		break;
2974 
2975 	case MAC_STAT_BRDCSTRCV:
2976 		*val = stats->rx_bcast_frames;
2977 		break;
2978 
2979 	case MAC_STAT_MULTIXMT:
2980 		*val = stats->tx_mcast_frames;
2981 		break;
2982 
2983 	case MAC_STAT_BRDCSTXMT:
2984 		*val = stats->tx_bcast_frames;
2985 		break;
2986 
2987 	case MAC_STAT_IPACKETS:
2988 		*val = stats->rx_ucast_frames;
2989 		break;
2990 
2991 	case MAC_STAT_RBYTES:
2992 		*val = stats->rx_good_octets;
2993 		break;
2994 
2995 	case MAC_STAT_OPACKETS:
2996 		*val = stats->tx_ucast_frames;
2997 		break;
2998 
2999 	case MAC_STAT_OBYTES:
3000 		*val = stats->tx_octets;
3001 		break;
3002 
3003 	case MAC_STAT_NORCVBUF:
3004 		*val = stats->rx_nobuf;
3005 		break;
3006 
3007 	case MAC_STAT_COLLISIONS:
3008 		*val = stats->tx_colls;
3009 		break;
3010 
3011 	case ETHER_STAT_ALIGN_ERRORS:
3012 		*val = stats->rx_runt_errs;
3013 		break;
3014 
3015 	case ETHER_STAT_FCS_ERRORS:
3016 		*val = stats->rx_crc_errs;
3017 		break;
3018 
3019 	case ETHER_STAT_FIRST_COLLISIONS:
3020 		*val  = stats->tx_single_colls;
3021 		break;
3022 
3023 	case ETHER_STAT_MULTI_COLLISIONS:
3024 		*val = stats->tx_multi_colls;
3025 		break;
3026 
3027 	case ETHER_STAT_TX_LATE_COLLISIONS:
3028 		*val = stats->tx_late_colls;
3029 		break;
3030 
3031 	case ETHER_STAT_EX_COLLISIONS:
3032 		*val = stats->tx_excess_colls;
3033 		break;
3034 
3035 	case ETHER_STAT_TOOLONG_ERRORS:
3036 		*val = stats->rx_pkts_too_long;
3037 		break;
3038 
3039 	case MAC_STAT_OVERFLOWS:
3040 		*val = stats->rx_fifo_oflows;
3041 		break;
3042 
3043 	case MAC_STAT_UNDERFLOWS:
3044 		*val = stats->tx_underflows;
3045 		break;
3046 
3047 	case ETHER_STAT_TOOSHORT_ERRORS:
3048 		*val = stats->rx_runts;
3049 		break;
3050 
3051 	case ETHER_STAT_JABBER_ERRORS:
3052 		*val = stats->rx_pkts_jabbers;
3053 		break;
3054 
3055 	default:
3056 		return (ENOTSUP);
3057 	}
3058 	return (0);
3059 }
3060 
3061 int
3062 yge_m_start(void *arg)
3063 {
3064 	yge_port_t	*port = arg;
3065 
3066 	DEV_LOCK(port->p_dev);
3067 
3068 	/*
3069 	 * We defer resource allocation to this point, because we
3070 	 * don't want to waste DMA resources that might better be used
3071 	 * elsewhere, if the port is not actually being used.
3072 	 *
3073 	 * Furthermore, this gives us a more graceful handling of dynamic
3074 	 * MTU modification.
3075 	 */
3076 	if (yge_txrx_dma_alloc(port) != DDI_SUCCESS) {
3077 		/* Make sure we free up partially allocated resources. */
3078 		yge_txrx_dma_free(port);
3079 		DEV_UNLOCK(port->p_dev);
3080 		return (ENOMEM);
3081 	}
3082 
3083 	if (!port->p_dev->d_suspended)
3084 		yge_start_port(port);
3085 	port->p_running = B_TRUE;
3086 	DEV_UNLOCK(port->p_dev);
3087 
3088 	mii_start(port->p_mii);
3089 
3090 	return (0);
3091 }
3092 
3093 void
3094 yge_m_stop(void *arg)
3095 {
3096 	yge_port_t	*port = arg;
3097 	yge_dev_t	*dev = port->p_dev;
3098 
3099 	DEV_LOCK(dev);
3100 	if (!dev->d_suspended)
3101 		yge_stop_port(port);
3102 
3103 	port->p_running = B_FALSE;
3104 
3105 	/* Release resources we don't need */
3106 	yge_txrx_dma_free(port);
3107 	DEV_UNLOCK(dev);
3108 }
3109 
3110 int
3111 yge_m_promisc(void *arg, boolean_t on)
3112 {
3113 	yge_port_t	*port = arg;
3114 
3115 	DEV_LOCK(port->p_dev);
3116 
3117 	/* Save current promiscuous mode. */
3118 	port->p_promisc = on;
3119 	yge_setrxfilt(port);
3120 
3121 	DEV_UNLOCK(port->p_dev);
3122 
3123 	return (0);
3124 }
3125 
3126 int
3127 yge_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
3128 {
3129 	yge_port_t	*port = arg;
3130 	int		bit;
3131 	boolean_t	update;
3132 
3133 	bit = yge_hashbit(addr);
3134 	ASSERT(bit < 64);
3135 
3136 	DEV_LOCK(port->p_dev);
3137 	if (add) {
3138 		if (port->p_mccount[bit] == 0) {
3139 			/* Set the corresponding bit in the hash table. */
3140 			port->p_mchash[bit / 32] |= (1 << (bit % 32));
3141 			update = B_TRUE;
3142 		}
3143 		port->p_mccount[bit]++;
3144 	} else {
3145 		ASSERT(port->p_mccount[bit] > 0);
3146 		port->p_mccount[bit]--;
3147 		if (port->p_mccount[bit] == 0) {
3148 			port->p_mchash[bit / 32] &= ~(1 << (bit % 32));
3149 			update = B_TRUE;
3150 		}
3151 	}
3152 
3153 	if (update) {
3154 		yge_setrxfilt(port);
3155 	}
3156 	DEV_UNLOCK(port->p_dev);
3157 	return (0);
3158 }
3159 
3160 int
3161 yge_m_unicst(void *arg, const uint8_t *macaddr)
3162 {
3163 	yge_port_t	*port = arg;
3164 
3165 	DEV_LOCK(port->p_dev);
3166 
3167 	bcopy(macaddr, port->p_curraddr, ETHERADDRL);
3168 	yge_setrxfilt(port);
3169 
3170 	DEV_UNLOCK(port->p_dev);
3171 
3172 	return (0);
3173 }
3174 
3175 mblk_t *
3176 yge_m_tx(void *arg, mblk_t *mp)
3177 {
3178 	yge_port_t	*port = arg;
3179 	mblk_t		*nmp;
3180 	int		enq = 0;
3181 	uint32_t	ridx;
3182 	int		idx;
3183 	boolean_t	resched = B_FALSE;
3184 
3185 	TX_LOCK(port->p_dev);
3186 
3187 	if (port->p_dev->d_suspended) {
3188 
3189 		TX_UNLOCK(port->p_dev);
3190 
3191 		while ((nmp = mp) != NULL) {
3192 			/* carrier_errors++; */
3193 			mp = mp->b_next;
3194 			freemsg(nmp);
3195 		}
3196 		return (NULL);
3197 	}
3198 
3199 	/* attempt a reclaim */
3200 	ridx = port->p_port == YGE_PORT_A ?
3201 	    STAT_TXA1_RIDX : STAT_TXA2_RIDX;
3202 	idx = CSR_READ_2(port->p_dev, ridx);
3203 	if (port->p_tx_cons != idx)
3204 		resched = yge_txeof_locked(port, idx);
3205 
3206 	while (mp != NULL) {
3207 		nmp = mp->b_next;
3208 		mp->b_next = NULL;
3209 
3210 		if (!yge_send(port, mp)) {
3211 			mp->b_next = nmp;
3212 			break;
3213 		}
3214 		enq++;
3215 		mp = nmp;
3216 
3217 	}
3218 	if (enq > 0) {
3219 		/* Transmit */
3220 		CSR_WRITE_2(port->p_dev,
3221 		    Y2_PREF_Q_ADDR(port->p_txq, PREF_UNIT_PUT_IDX_REG),
3222 		    port->p_tx_prod);
3223 	}
3224 
3225 	TX_UNLOCK(port->p_dev);
3226 
3227 	if (resched)
3228 		mac_tx_update(port->p_mh);
3229 
3230 	return (mp);
3231 }
3232 
3233 void
3234 yge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
3235 {
3236 #ifdef	YGE_MII_LOOPBACK
3237 	/* LINTED E_FUNC_SET_NOT_USED */
3238 	yge_port_t	*port = arg;
3239 
3240 	/*
3241 	 * Right now, the MII common layer does not properly handle
3242 	 * loopback on these PHYs.  Fixing this should be done at some
3243 	 * point in the future.
3244 	 */
3245 	if (mii_m_loop_ioctl(port->p_mii, wq, mp))
3246 		return;
3247 #else
3248 	_NOTE(ARGUNUSED(arg));
3249 #endif
3250 
3251 	miocnak(wq, mp, 0, EINVAL);
3252 }
3253 
3254 int
3255 yge_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3256     uint_t pr_valsize, const void *pr_val)
3257 {
3258 	yge_port_t	*port = arg;
3259 	uint32_t	new_mtu;
3260 	int err = 0;
3261 
3262 	err = mii_m_setprop(port->p_mii, pr_name, pr_num, pr_valsize, pr_val);
3263 	if (err != ENOTSUP) {
3264 		return (err);
3265 	}
3266 
3267 	DEV_LOCK(port->p_dev);
3268 
3269 	switch (pr_num) {
3270 	case MAC_PROP_MTU:
3271 		if (pr_valsize < sizeof (new_mtu)) {
3272 			err = EINVAL;
3273 			break;
3274 		}
3275 		bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3276 		if (new_mtu == port->p_mtu) {
3277 			/* no change */
3278 			err = 0;
3279 			break;
3280 		}
3281 		if (new_mtu < ETHERMTU) {
3282 			yge_error(NULL, port,
3283 			    "Maximum MTU size too small: %d", new_mtu);
3284 			err = EINVAL;
3285 			break;
3286 		}
3287 		if (new_mtu > (port->p_flags & PORT_FLAG_NOJUMBO ?
3288 		    ETHERMTU : YGE_JUMBO_MTU)) {
3289 			yge_error(NULL, port,
3290 			    "Maximum MTU size too big: %d", new_mtu);
3291 			err = EINVAL;
3292 			break;
3293 		}
3294 		if (port->p_running) {
3295 			yge_error(NULL, port,
3296 			    "Unable to change maximum MTU while running");
3297 			err = EBUSY;
3298 			break;
3299 		}
3300 
3301 
3302 		/*
3303 		 * NB: It would probably be better not to hold the
3304 		 * DEVLOCK, but releasing it creates a potential race
3305 		 * if m_start is called concurrently.
3306 		 *
3307 		 * It turns out that the MAC layer guarantees safety
3308 		 * for us here by using a cut out for this kind of
3309 		 * notification call back anyway.
3310 		 *
3311 		 * See R8. and R14. in mac.c locking comments, which read
3312 		 * as follows:
3313 		 *
3314 		 * R8. Since it is not guaranteed (see R14) that
3315 		 * drivers won't hold locks across mac driver
3316 		 * interfaces, the MAC layer must provide a cut out
3317 		 * for control interfaces like upcall notifications
3318 		 * and start them in a separate thread.
3319 		 *
3320 		 * R14. It would be preferable if MAC drivers don't
3321 		 * hold any locks across any mac call. However at a
3322 		 * minimum they must not hold any locks across data
3323 		 * upcalls. They must also make sure that all
3324 		 * references to mac data structures are cleaned up
3325 		 * and that it is single threaded at mac_unregister
3326 		 * time.
3327 		 */
3328 		err = mac_maxsdu_update(port->p_mh, new_mtu);
3329 		if (err != 0) {
3330 			/* This should never occur! */
3331 			yge_error(NULL, port,
3332 			    "Failed notifying GLDv3 of new maximum MTU");
3333 		} else {
3334 			port->p_mtu = new_mtu;
3335 		}
3336 		break;
3337 
3338 	default:
3339 		err = ENOTSUP;
3340 		break;
3341 	}
3342 
3343 err:
3344 	DEV_UNLOCK(port->p_dev);
3345 
3346 	return (err);
3347 }
3348 
3349 int
3350 yge_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3351     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3352 {
3353 	yge_port_t	*port = arg;
3354 	mac_propval_range_t range;
3355 	int err;
3356 
3357 	err = mii_m_getprop(port->p_mii, pr_name, pr_num, pr_flags,
3358 	    pr_valsize, pr_val, perm);
3359 	if (err != ENOTSUP) {
3360 		return (err);
3361 	}
3362 
3363 	if (pr_valsize == 0)
3364 		return (EINVAL);
3365 
3366 	bzero(pr_val, pr_valsize);
3367 	*perm = MAC_PROP_PERM_RW;
3368 
3369 	switch (pr_num) {
3370 	case MAC_PROP_MTU:
3371 		if (!(pr_flags & MAC_PROP_POSSIBLE)) {
3372 			err = ENOTSUP;
3373 			break;
3374 		}
3375 		if (pr_valsize < sizeof (mac_propval_range_t))
3376 			return (EINVAL);
3377 		range.mpr_count = 1;
3378 		range.mpr_type = MAC_PROPVAL_UINT32;
3379 		range.range_uint32[0].mpur_min = ETHERMTU;
3380 		range.range_uint32[0].mpur_max =
3381 		    port->p_flags & PORT_FLAG_NOJUMBO ?
3382 		    ETHERMTU : YGE_JUMBO_MTU;
3383 		bcopy(&range, pr_val, sizeof (range));
3384 		err = 0;
3385 		break;
3386 
3387 	default:
3388 		err = ENOTSUP;
3389 		break;
3390 	}
3391 	return (err);
3392 }
3393 
3394 void
3395 yge_dispatch(yge_dev_t *dev, int flag)
3396 {
3397 	TASK_LOCK(dev);
3398 	dev->d_task_flags |= flag;
3399 	TASK_SIGNAL(dev);
3400 	TASK_UNLOCK(dev);
3401 }
3402 
3403 void
3404 yge_task(void *arg)
3405 {
3406 	yge_dev_t	*dev = arg;
3407 	int		flags;
3408 
3409 	for (;;) {
3410 
3411 		TASK_LOCK(dev);
3412 		while ((flags = dev->d_task_flags) == 0)
3413 			TASK_WAIT(dev);
3414 
3415 		dev->d_task_flags = 0;
3416 		TASK_UNLOCK(dev);
3417 
3418 		/*
3419 		 * This should be the first thing after the sleep so if we are
3420 		 * requested to exit we do that and not waste time doing work
3421 		 * we will then abandone.
3422 		 */
3423 		if (flags & YGE_TASK_EXIT)
3424 			break;
3425 
3426 		/* all processing done without holding locks */
3427 		if (flags & YGE_TASK_RESTART)
3428 			yge_restart_task(dev);
3429 	}
3430 }
3431 
3432 void
3433 yge_error(yge_dev_t *dev, yge_port_t *port, char *fmt, ...)
3434 {
3435 	va_list		ap;
3436 	char		buf[256];
3437 	dev_info_t	*dip;
3438 
3439 	va_start(ap, fmt);
3440 	(void) vsnprintf(buf, sizeof (buf), fmt, ap);
3441 	va_end(ap);
3442 
3443 	if (dev == NULL)
3444 		dev = port->p_dev;
3445 	dip = dev->d_dip;
3446 	cmn_err(CE_WARN, "%s%d: %s",
3447 	    ddi_driver_name(dip),
3448 	    ddi_get_instance(dip) + port ? port->p_ppa : 0,
3449 	    buf);
3450 }
3451 
3452 static int
3453 yge_ddi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3454 {
3455 	yge_dev_t	*dev;
3456 	int		rv;
3457 
3458 	switch (cmd) {
3459 	case DDI_ATTACH:
3460 		dev = kmem_zalloc(sizeof (*dev), KM_SLEEP);
3461 		dev->d_port[0] = kmem_zalloc(sizeof (yge_port_t), KM_SLEEP);
3462 		dev->d_port[1] = kmem_zalloc(sizeof (yge_port_t), KM_SLEEP);
3463 		dev->d_dip = dip;
3464 		ddi_set_driver_private(dip, dev);
3465 
3466 		dev->d_port[0]->p_port = 0;
3467 		dev->d_port[0]->p_dev = dev;
3468 		dev->d_port[1]->p_port = 0;
3469 		dev->d_port[1]->p_dev = dev;
3470 
3471 		rv = yge_attach(dev);
3472 		if (rv != DDI_SUCCESS) {
3473 			ddi_set_driver_private(dip, 0);
3474 			kmem_free(dev->d_port[1], sizeof (yge_port_t));
3475 			kmem_free(dev->d_port[0], sizeof (yge_port_t));
3476 			kmem_free(dev, sizeof (*dev));
3477 		}
3478 		return (rv);
3479 
3480 	case DDI_RESUME:
3481 		dev = ddi_get_driver_private(dip);
3482 		ASSERT(dev != NULL);
3483 		return (yge_resume(dev));
3484 
3485 	default:
3486 		return (DDI_FAILURE);
3487 	}
3488 }
3489 
3490 static int
3491 yge_ddi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3492 {
3493 	yge_dev_t	*dev;
3494 	int		rv;
3495 
3496 	switch (cmd) {
3497 	case DDI_DETACH:
3498 
3499 		dev = ddi_get_driver_private(dip);
3500 
3501 		/* attempt to unregister MACs from Nemo */
3502 		for (int i = 0; i < dev->d_num_port; i++) {
3503 			rv = yge_unregister_port(dev->d_port[i]);
3504 			if (rv != DDI_SUCCESS) {
3505 				return (DDI_FAILURE);
3506 			}
3507 		}
3508 
3509 		ASSERT(dip == dev->d_dip);
3510 		yge_detach(dev);
3511 		ddi_set_driver_private(dip, 0);
3512 		kmem_free(dev->d_port[1], sizeof (yge_port_t));
3513 		kmem_free(dev->d_port[0], sizeof (yge_port_t));
3514 		kmem_free(dev, sizeof (*dev));
3515 		return (DDI_SUCCESS);
3516 
3517 	case DDI_SUSPEND:
3518 		dev = ddi_get_driver_private(dip);
3519 		ASSERT(dev != NULL);
3520 		return (yge_suspend(dev));
3521 
3522 	default:
3523 		return (DDI_FAILURE);
3524 	}
3525 }
3526 
3527 static int
3528 yge_quiesce(dev_info_t *dip)
3529 {
3530 	yge_dev_t *dev;
3531 
3532 	dev = ddi_get_driver_private(dip);
3533 	ASSERT(dev != NULL);
3534 
3535 	/* NB: No locking!  We are called in single threaded context */
3536 	for (int i = 0; i < dev->d_num_port; i++) {
3537 		yge_port_t *port = dev->d_port[i];
3538 		if (port->p_running)
3539 			yge_stop_port(port);
3540 	}
3541 
3542 	/* Disable all interrupts. */
3543 	CSR_WRITE_4(dev, B0_IMSK, 0);
3544 	(void) CSR_READ_4(dev, B0_IMSK);
3545 	CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
3546 	(void) CSR_READ_4(dev, B0_HWE_IMSK);
3547 
3548 	/* Put hardware into reset. */
3549 	CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
3550 
3551 	return (DDI_SUCCESS);
3552 }
3553 
3554 /*
3555  * Stream information
3556  */
3557 DDI_DEFINE_STREAM_OPS(yge_devops, nulldev, nulldev, yge_ddi_attach,
3558     yge_ddi_detach, nodev, NULL, D_MP, NULL, yge_quiesce);
3559 
3560 /*
3561  * Module linkage information.
3562  */
3563 
3564 static struct modldrv yge_modldrv = {
3565 	&mod_driverops,			/* drv_modops */
3566 	"Yukon 2 Ethernet",		/* drv_linkinfo */
3567 	&yge_devops			/* drv_dev_ops */
3568 };
3569 
3570 static struct modlinkage yge_modlinkage = {
3571 	MODREV_1,		/* ml_rev */
3572 	&yge_modldrv,		/* ml_linkage */
3573 	NULL
3574 };
3575 
3576 /*
3577  * DDI entry points.
3578  */
3579 int
3580 _init(void)
3581 {
3582 	int	rv;
3583 	mac_init_ops(&yge_devops, "yge");
3584 	if ((rv = mod_install(&yge_modlinkage)) != DDI_SUCCESS) {
3585 		mac_fini_ops(&yge_devops);
3586 	}
3587 	return (rv);
3588 }
3589 
3590 int
3591 _fini(void)
3592 {
3593 	int	rv;
3594 	if ((rv = mod_remove(&yge_modlinkage)) == DDI_SUCCESS) {
3595 		mac_fini_ops(&yge_devops);
3596 	}
3597 	return (rv);
3598 }
3599 
3600 int
3601 _info(struct modinfo *modinfop)
3602 {
3603 	return (mod_info(&yge_modlinkage, modinfop));
3604 }
3605