xref: /illumos-gate/usr/src/uts/common/io/wpi/wpi.c (revision da6c28aaf62fa55f0fdb8004aa40f88f23bf53f0)
1 /*
2  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #pragma ident	"%Z%%M%	%I%	%E% SMI"
24 
25 /*
26  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
27  */
28 
29 #include <sys/types.h>
30 #include <sys/byteorder.h>
31 #include <sys/conf.h>
32 #include <sys/cmn_err.h>
33 #include <sys/stat.h>
34 #include <sys/ddi.h>
35 #include <sys/sunddi.h>
36 #include <sys/strsubr.h>
37 #include <sys/ethernet.h>
38 #include <inet/common.h>
39 #include <inet/nd.h>
40 #include <inet/mi.h>
41 #include <sys/note.h>
42 #include <sys/stream.h>
43 #include <sys/strsun.h>
44 #include <sys/modctl.h>
45 #include <sys/devops.h>
46 #include <sys/dlpi.h>
47 #include <sys/mac.h>
48 #include <sys/mac_wifi.h>
49 #include <sys/net80211.h>
50 #include <sys/net80211_proto.h>
51 #include <sys/varargs.h>
52 #include <sys/policy.h>
53 #include <sys/pci.h>
54 
55 #include "wpireg.h"
56 #include "wpivar.h"
57 #include <inet/wifi_ioctl.h>
58 
59 #ifdef DEBUG
60 #define	WPI_DEBUG_80211		(1 << 0)
61 #define	WPI_DEBUG_CMD		(1 << 1)
62 #define	WPI_DEBUG_DMA		(1 << 2)
63 #define	WPI_DEBUG_EEPROM	(1 << 3)
64 #define	WPI_DEBUG_FW		(1 << 4)
65 #define	WPI_DEBUG_HW		(1 << 5)
66 #define	WPI_DEBUG_INTR		(1 << 6)
67 #define	WPI_DEBUG_MRR		(1 << 7)
68 #define	WPI_DEBUG_PIO		(1 << 8)
69 #define	WPI_DEBUG_RX		(1 << 9)
70 #define	WPI_DEBUG_SCAN		(1 << 10)
71 #define	WPI_DEBUG_TX		(1 << 11)
72 #define	WPI_DEBUG_RATECTL	(1 << 12)
73 #define	WPI_DEBUG_RADIO		(1 << 13)
74 uint32_t wpi_dbg_flags = 0;
75 #define	WPI_DBG(x) \
76 	wpi_dbg x
77 #else
78 #define	WPI_DBG(x)
79 #endif
80 
81 static void	*wpi_soft_state_p = NULL;
82 static uint8_t wpi_fw_bin [] = {
83 #include "fw-wpi/ipw3945.ucode.hex"
84 };
85 
86 /* DMA attributes for a shared page */
87 static ddi_dma_attr_t sh_dma_attr = {
88 	DMA_ATTR_V0,	/* version of this structure */
89 	0,		/* lowest usable address */
90 	0xffffffffU,	/* highest usable address */
91 	0xffffffffU,	/* maximum DMAable byte count */
92 	0x1000,		/* alignment in bytes */
93 	0x1000,		/* burst sizes (any?) */
94 	1,		/* minimum transfer */
95 	0xffffffffU,	/* maximum transfer */
96 	0xffffffffU,	/* maximum segment length */
97 	1,		/* maximum number of segments */
98 	1,		/* granularity */
99 	0,		/* flags (reserved) */
100 };
101 
102 /* DMA attributes for a ring descriptor */
103 static ddi_dma_attr_t ring_desc_dma_attr = {
104 	DMA_ATTR_V0,	/* version of this structure */
105 	0,		/* lowest usable address */
106 	0xffffffffU,	/* highest usable address */
107 	0xffffffffU,	/* maximum DMAable byte count */
108 	0x4000,		/* alignment in bytes */
109 	0x100,		/* burst sizes (any?) */
110 	1,		/* minimum transfer */
111 	0xffffffffU,	/* maximum transfer */
112 	0xffffffffU,	/* maximum segment length */
113 	1,		/* maximum number of segments */
114 	1,		/* granularity */
115 	0,		/* flags (reserved) */
116 };
117 
118 
119 /* DMA attributes for a tx cmd */
120 static ddi_dma_attr_t tx_cmd_dma_attr = {
121 	DMA_ATTR_V0,	/* version of this structure */
122 	0,		/* lowest usable address */
123 	0xffffffffU,	/* highest usable address */
124 	0xffffffffU,	/* maximum DMAable byte count */
125 	4,		/* alignment in bytes */
126 	0x100,		/* burst sizes (any?) */
127 	1,		/* minimum transfer */
128 	0xffffffffU,	/* maximum transfer */
129 	0xffffffffU,	/* maximum segment length */
130 	1,		/* maximum number of segments */
131 	1,		/* granularity */
132 	0,		/* flags (reserved) */
133 };
134 
135 /* DMA attributes for a rx buffer */
136 static ddi_dma_attr_t rx_buffer_dma_attr = {
137 	DMA_ATTR_V0,	/* version of this structure */
138 	0,		/* lowest usable address */
139 	0xffffffffU,	/* highest usable address */
140 	0xffffffffU,	/* maximum DMAable byte count */
141 	1,		/* alignment in bytes */
142 	0x100,		/* burst sizes (any?) */
143 	1,		/* minimum transfer */
144 	0xffffffffU,	/* maximum transfer */
145 	0xffffffffU,	/* maximum segment length */
146 	1,		/* maximum number of segments */
147 	1,		/* granularity */
148 	0,		/* flags (reserved) */
149 };
150 
151 /*
152  * DMA attributes for a tx buffer.
153  * the maximum number of segments is 4 for the hardware.
154  * now all the wifi drivers put the whole frame in a single
155  * descriptor, so we define the maximum  number of segments 4,
156  * just the same as the rx_buffer. we consider leverage the HW
157  * ability in the future, that is why we don't define rx and tx
158  * buffer_dma_attr as the same.
159  */
160 static ddi_dma_attr_t tx_buffer_dma_attr = {
161 	DMA_ATTR_V0,	/* version of this structure */
162 	0,		/* lowest usable address */
163 	0xffffffffU,	/* highest usable address */
164 	0xffffffffU,	/* maximum DMAable byte count */
165 	1,		/* alignment in bytes */
166 	0x100,		/* burst sizes (any?) */
167 	1,		/* minimum transfer */
168 	0xffffffffU,	/* maximum transfer */
169 	0xffffffffU,	/* maximum segment length */
170 	1,		/* maximum number of segments */
171 	1,		/* granularity */
172 	0,		/* flags (reserved) */
173 };
174 
175 /* DMA attributes for a load firmware */
176 static ddi_dma_attr_t fw_buffer_dma_attr = {
177 	DMA_ATTR_V0,	/* version of this structure */
178 	0,		/* lowest usable address */
179 	0xffffffffU,	/* highest usable address */
180 	0x7fffffff,	/* maximum DMAable byte count */
181 	4,		/* alignment in bytes */
182 	0x100,		/* burst sizes (any?) */
183 	1,		/* minimum transfer */
184 	0xffffffffU,	/* maximum transfer */
185 	0xffffffffU,	/* maximum segment length */
186 	4,		/* maximum number of segments */
187 	1,		/* granularity */
188 	0,		/* flags (reserved) */
189 };
190 
191 /* regs access attributes */
192 static ddi_device_acc_attr_t wpi_reg_accattr = {
193 	DDI_DEVICE_ATTR_V0,
194 	DDI_STRUCTURE_LE_ACC,
195 	DDI_STRICTORDER_ACC,
196 	DDI_DEFAULT_ACC
197 };
198 
199 /* DMA access attributes */
200 static ddi_device_acc_attr_t wpi_dma_accattr = {
201 	DDI_DEVICE_ATTR_V0,
202 	DDI_NEVERSWAP_ACC,
203 	DDI_STRICTORDER_ACC,
204 	DDI_DEFAULT_ACC
205 };
206 
207 static int	wpi_ring_init(wpi_sc_t *);
208 static void	wpi_ring_free(wpi_sc_t *);
209 static int	wpi_alloc_shared(wpi_sc_t *);
210 static void	wpi_free_shared(wpi_sc_t *);
211 static int	wpi_alloc_fw_dma(wpi_sc_t *);
212 static void	wpi_free_fw_dma(wpi_sc_t *);
213 static int	wpi_alloc_rx_ring(wpi_sc_t *);
214 static void	wpi_reset_rx_ring(wpi_sc_t *);
215 static void	wpi_free_rx_ring(wpi_sc_t *);
216 static int	wpi_alloc_tx_ring(wpi_sc_t *, wpi_tx_ring_t *, int, int);
217 static void	wpi_reset_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
218 static void	wpi_free_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
219 
220 static ieee80211_node_t *wpi_node_alloc(ieee80211com_t *);
221 static void	wpi_node_free(ieee80211_node_t *);
222 static int	wpi_newstate(ieee80211com_t *, enum ieee80211_state, int);
223 static int	wpi_key_set(ieee80211com_t *, const struct ieee80211_key *,
224     const uint8_t mac[IEEE80211_ADDR_LEN]);
225 static void	wpi_mem_lock(wpi_sc_t *);
226 static void	wpi_mem_unlock(wpi_sc_t *);
227 static uint32_t	wpi_mem_read(wpi_sc_t *, uint16_t);
228 static void	wpi_mem_write(wpi_sc_t *, uint16_t, uint32_t);
229 static void	wpi_mem_write_region_4(wpi_sc_t *, uint16_t,
230 		    const uint32_t *, int);
231 static uint16_t	wpi_read_prom_word(wpi_sc_t *, uint32_t);
232 static int	wpi_load_microcode(wpi_sc_t *);
233 static int	wpi_load_firmware(wpi_sc_t *, uint32_t);
234 static void	wpi_rx_intr(wpi_sc_t *, wpi_rx_desc_t *,
235 		    wpi_rx_data_t *);
236 static void	wpi_tx_intr(wpi_sc_t *, wpi_rx_desc_t *,
237 		    wpi_rx_data_t *);
238 static void	wpi_cmd_intr(wpi_sc_t *, wpi_rx_desc_t *);
239 static uint_t	wpi_intr(caddr_t);
240 static uint_t	wpi_notif_softintr(caddr_t);
241 static uint8_t	wpi_plcp_signal(int);
242 static void	wpi_read_eeprom(wpi_sc_t *);
243 static int	wpi_cmd(wpi_sc_t *, int, const void *, int, int);
244 static int	wpi_mrr_setup(wpi_sc_t *);
245 static void	wpi_set_led(wpi_sc_t *, uint8_t, uint8_t, uint8_t);
246 static int	wpi_auth(wpi_sc_t *);
247 static int	wpi_scan(wpi_sc_t *);
248 static int	wpi_config(wpi_sc_t *);
249 static void	wpi_stop_master(wpi_sc_t *);
250 static int	wpi_power_up(wpi_sc_t *);
251 static int	wpi_reset(wpi_sc_t *);
252 static void	wpi_hw_config(wpi_sc_t *);
253 static int	wpi_init(wpi_sc_t *);
254 static void	wpi_stop(wpi_sc_t *);
255 static void	wpi_amrr_init(wpi_amrr_t *);
256 static void	wpi_amrr_timeout(wpi_sc_t *);
257 static void	wpi_amrr_ratectl(void *, ieee80211_node_t *);
258 
259 static int wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
260 static int wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
261 
262 /*
263  * GLD specific operations
264  */
265 static int	wpi_m_stat(void *arg, uint_t stat, uint64_t *val);
266 static int	wpi_m_start(void *arg);
267 static void	wpi_m_stop(void *arg);
268 static int	wpi_m_unicst(void *arg, const uint8_t *macaddr);
269 static int	wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m);
270 static int	wpi_m_promisc(void *arg, boolean_t on);
271 static mblk_t  *wpi_m_tx(void *arg, mblk_t *mp);
272 static void	wpi_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
273 
274 static void	wpi_destroy_locks(wpi_sc_t *sc);
275 static int	wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
276 static void	wpi_thread(wpi_sc_t *sc);
277 
278 /*
279  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
280  */
281 static const struct ieee80211_rateset wpi_rateset_11b =
282 	{ 4, { 2, 4, 11, 22 } };
283 
284 static const struct ieee80211_rateset wpi_rateset_11g =
285 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
286 
287 static const uint8_t wpi_ridx_to_signal[] = {
288 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
289 	/* R1-R4 (ral/ural is R4-R1) */
290 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
291 	/* CCK: device-dependent */
292 	10, 20, 55, 110
293 };
294 
295 /*
296  * For mfthread only
297  */
298 extern pri_t minclsyspri;
299 
300 /*
301  * Module Loading Data & Entry Points
302  */
303 DDI_DEFINE_STREAM_OPS(wpi_devops, nulldev, nulldev, wpi_attach,
304     wpi_detach, nodev, NULL, D_MP, NULL);
305 
306 static struct modldrv wpi_modldrv = {
307 	&mod_driverops,
308 	"Intel(R) PRO/Wireless 3945ABG driver",
309 	&wpi_devops
310 };
311 
312 static struct modlinkage wpi_modlinkage = {
313 	MODREV_1,
314 	&wpi_modldrv,
315 	NULL
316 };
317 
318 int
319 _init(void)
320 {
321 	int	status;
322 
323 	status = ddi_soft_state_init(&wpi_soft_state_p,
324 	    sizeof (wpi_sc_t), 1);
325 	if (status != DDI_SUCCESS)
326 		return (status);
327 
328 	mac_init_ops(&wpi_devops, "wpi");
329 	status = mod_install(&wpi_modlinkage);
330 	if (status != DDI_SUCCESS) {
331 		mac_fini_ops(&wpi_devops);
332 		ddi_soft_state_fini(&wpi_soft_state_p);
333 	}
334 
335 	return (status);
336 }
337 
338 int
339 _fini(void)
340 {
341 	int status;
342 
343 	status = mod_remove(&wpi_modlinkage);
344 	if (status == DDI_SUCCESS) {
345 		mac_fini_ops(&wpi_devops);
346 		ddi_soft_state_fini(&wpi_soft_state_p);
347 	}
348 
349 	return (status);
350 }
351 
352 int
353 _info(struct modinfo *mip)
354 {
355 	return (mod_info(&wpi_modlinkage, mip));
356 }
357 
358 /*
359  * Mac Call Back entries
360  */
361 mac_callbacks_t	wpi_m_callbacks = {
362 	MC_IOCTL,
363 	wpi_m_stat,
364 	wpi_m_start,
365 	wpi_m_stop,
366 	wpi_m_promisc,
367 	wpi_m_multicst,
368 	wpi_m_unicst,
369 	wpi_m_tx,
370 	NULL,
371 	wpi_m_ioctl
372 };
373 
374 #ifdef DEBUG
375 void
376 wpi_dbg(uint32_t flags, const char *fmt, ...)
377 {
378 	va_list	ap;
379 
380 	if (flags & wpi_dbg_flags) {
381 		va_start(ap, fmt);
382 		vcmn_err(CE_NOTE, fmt, ap);
383 		va_end(ap);
384 	}
385 }
386 #endif
387 /*
388  * device operations
389  */
390 int
391 wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
392 {
393 	wpi_sc_t		*sc;
394 	ddi_acc_handle_t	cfg_handle;
395 	caddr_t			cfg_base;
396 	ieee80211com_t	*ic;
397 	int			instance, err, i;
398 	char			strbuf[32];
399 	wifi_data_t		wd = { 0 };
400 	mac_register_t		*macp;
401 
402 	if (cmd != DDI_ATTACH) {
403 		err = DDI_FAILURE;
404 		goto attach_fail1;
405 	}
406 
407 	instance = ddi_get_instance(dip);
408 	err = ddi_soft_state_zalloc(wpi_soft_state_p, instance);
409 	if (err != DDI_SUCCESS) {
410 		cmn_err(CE_WARN,
411 		    "wpi_attach(): failed to allocate soft state\n");
412 		goto attach_fail1;
413 	}
414 	sc = ddi_get_soft_state(wpi_soft_state_p, instance);
415 	sc->sc_dip = dip;
416 
417 	err = ddi_regs_map_setup(dip, 0, &cfg_base, 0, 0,
418 	    &wpi_reg_accattr, &cfg_handle);
419 	if (err != DDI_SUCCESS) {
420 		cmn_err(CE_WARN,
421 		    "wpi_attach(): failed to map config spaces regs\n");
422 		goto attach_fail2;
423 	}
424 	sc->sc_rev = ddi_get8(cfg_handle,
425 	    (uint8_t *)(cfg_base + PCI_CONF_REVID));
426 	ddi_put8(cfg_handle, (uint8_t *)(cfg_base + 0x41), 0);
427 	sc->sc_clsz = ddi_get16(cfg_handle,
428 	    (uint16_t *)(cfg_base + PCI_CONF_CACHE_LINESZ));
429 	ddi_regs_map_free(&cfg_handle);
430 	if (!sc->sc_clsz)
431 		sc->sc_clsz = 16;
432 	sc->sc_clsz = (sc->sc_clsz << 2);
433 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
434 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
435 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
436 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
437 	/*
438 	 * Map operating registers
439 	 */
440 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
441 	    0, 0, &wpi_reg_accattr, &sc->sc_handle);
442 	if (err != DDI_SUCCESS) {
443 		cmn_err(CE_WARN,
444 		    "wpi_attach(): failed to map device regs\n");
445 		goto attach_fail2;
446 	}
447 
448 	/*
449 	 * Allocate shared page.
450 	 */
451 	err = wpi_alloc_shared(sc);
452 	if (err != DDI_SUCCESS) {
453 		cmn_err(CE_WARN, "failed to allocate shared page\n");
454 		goto attach_fail3;
455 	}
456 
457 	/*
458 	 * Get the hw conf, including MAC address, then init all rings.
459 	 */
460 	wpi_read_eeprom(sc);
461 	err = wpi_ring_init(sc);
462 	if (err != DDI_SUCCESS) {
463 		cmn_err(CE_WARN, "wpi_attach(): "
464 		    "failed to allocate and initialize ring\n");
465 		goto attach_fail4;
466 	}
467 
468 	sc->sc_hdr = (const wpi_firmware_hdr_t *)wpi_fw_bin;
469 
470 	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
471 	sc->sc_text = (const char *)(sc->sc_hdr + 1);
472 	sc->sc_data = sc->sc_text + LE_32(sc->sc_hdr->textsz);
473 	sc->sc_boot = sc->sc_data + LE_32(sc->sc_hdr->datasz);
474 	err = wpi_alloc_fw_dma(sc);
475 	if (err != DDI_SUCCESS) {
476 		cmn_err(CE_WARN, "wpi_attach(): "
477 		    "failed to allocate firmware dma\n");
478 		goto attach_fail5;
479 	}
480 
481 	/*
482 	 * Initialize mutexs and condvars
483 	 */
484 	err = ddi_get_iblock_cookie(dip, 0, &sc->sc_iblk);
485 	if (err != DDI_SUCCESS) {
486 		cmn_err(CE_WARN,
487 		    "wpi_attach(): failed to do ddi_get_iblock_cookie()\n");
488 		goto attach_fail6;
489 	}
490 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, sc->sc_iblk);
491 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER, sc->sc_iblk);
492 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
493 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
494 	cv_init(&sc->sc_tx_cv, "tx-ring", CV_DRIVER, NULL);
495 	/*
496 	 * initialize the mfthread
497 	 */
498 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
499 	    (void *) sc->sc_iblk);
500 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
501 	sc->sc_mf_thread = NULL;
502 	sc->sc_mf_thread_switch = 0;
503 	/*
504 	 * Initialize the wifi part, which will be used by
505 	 * generic layer
506 	 */
507 	ic = &sc->sc_ic;
508 	ic->ic_phytype  = IEEE80211_T_OFDM;
509 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
510 	ic->ic_state    = IEEE80211_S_INIT;
511 	ic->ic_maxrssi  = 70; /* experimental number */
512 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
513 	    IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
514 
515 	/*
516 	 * use software WEP and TKIP, hardware CCMP;
517 	 */
518 	ic->ic_caps |= IEEE80211_C_AES_CCM;
519 	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
520 
521 	/* set supported .11b and .11g rates */
522 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
523 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
524 
525 	/* set supported .11b and .11g channels (1 through 14) */
526 	for (i = 1; i <= 14; i++) {
527 		ic->ic_sup_channels[i].ich_freq =
528 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
529 		ic->ic_sup_channels[i].ich_flags =
530 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
531 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
532 	}
533 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
534 	ic->ic_xmit = wpi_send;
535 	/*
536 	 * init Wifi layer
537 	 */
538 	ieee80211_attach(ic);
539 
540 	/* register WPA door */
541 	ieee80211_register_door(ic, ddi_driver_name(dip),
542 	    ddi_get_instance(dip));
543 
544 	/*
545 	 * Override 80211 default routines
546 	 */
547 	sc->sc_newstate = ic->ic_newstate;
548 	ic->ic_newstate = wpi_newstate;
549 	ic->ic_node_alloc = wpi_node_alloc;
550 	ic->ic_node_free = wpi_node_free;
551 	ic->ic_crypto.cs_key_set = wpi_key_set;
552 	ieee80211_media_init(ic);
553 	/*
554 	 * initialize default tx key
555 	 */
556 	ic->ic_def_txkey = 0;
557 
558 	err = ddi_add_softintr(dip, DDI_SOFTINT_LOW,
559 	    &sc->sc_notif_softint_id, &sc->sc_iblk, NULL, wpi_notif_softintr,
560 	    (caddr_t)sc);
561 	if (err != DDI_SUCCESS) {
562 		cmn_err(CE_WARN,
563 		    "wpi_attach(): failed to do ddi_add_softintr()\n");
564 		goto attach_fail7;
565 	}
566 
567 	/*
568 	 * Add the interrupt handler
569 	 */
570 	err = ddi_add_intr(dip, 0, &sc->sc_iblk, NULL,
571 	    wpi_intr, (caddr_t)sc);
572 	if (err != DDI_SUCCESS) {
573 		cmn_err(CE_WARN,
574 		    "wpi_attach(): failed to do ddi_add_intr()\n");
575 		goto attach_fail8;
576 	}
577 
578 	/*
579 	 * Initialize pointer to device specific functions
580 	 */
581 	wd.wd_secalloc = WIFI_SEC_NONE;
582 	wd.wd_opmode = ic->ic_opmode;
583 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
584 
585 	macp = mac_alloc(MAC_VERSION);
586 	if (err != DDI_SUCCESS) {
587 		cmn_err(CE_WARN,
588 		    "wpi_attach(): failed to do mac_alloc()\n");
589 		goto attach_fail9;
590 	}
591 
592 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
593 	macp->m_driver		= sc;
594 	macp->m_dip		= dip;
595 	macp->m_src_addr	= ic->ic_macaddr;
596 	macp->m_callbacks	= &wpi_m_callbacks;
597 	macp->m_min_sdu		= 0;
598 	macp->m_max_sdu		= IEEE80211_MTU;
599 	macp->m_pdata		= &wd;
600 	macp->m_pdata_size	= sizeof (wd);
601 
602 	/*
603 	 * Register the macp to mac
604 	 */
605 	err = mac_register(macp, &ic->ic_mach);
606 	mac_free(macp);
607 	if (err != DDI_SUCCESS) {
608 		cmn_err(CE_WARN,
609 		    "wpi_attach(): failed to do mac_register()\n");
610 		goto attach_fail9;
611 	}
612 
613 	/*
614 	 * Create minor node of type DDI_NT_NET_WIFI
615 	 */
616 	(void) snprintf(strbuf, sizeof (strbuf), "wpi%d", instance);
617 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
618 	    instance + 1, DDI_NT_NET_WIFI, 0);
619 	if (err != DDI_SUCCESS)
620 		cmn_err(CE_WARN,
621 		    "wpi_attach(): failed to do ddi_create_minor_node()\n");
622 
623 	/*
624 	 * Notify link is down now
625 	 */
626 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
627 
628 	/*
629 	 * create the mf thread to handle the link status,
630 	 * recovery fatal error, etc.
631 	 */
632 
633 	sc->sc_mf_thread_switch = 1;
634 	if (sc->sc_mf_thread == NULL)
635 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
636 		    wpi_thread, sc, 0, &p0, TS_RUN, minclsyspri);
637 
638 	sc->sc_flags |= WPI_F_ATTACHED;
639 
640 	return (DDI_SUCCESS);
641 attach_fail9:
642 	ddi_remove_intr(dip, 0, sc->sc_iblk);
643 attach_fail8:
644 	ddi_remove_softintr(sc->sc_notif_softint_id);
645 	sc->sc_notif_softint_id = NULL;
646 attach_fail7:
647 	ieee80211_detach(ic);
648 	wpi_destroy_locks(sc);
649 attach_fail6:
650 	wpi_free_fw_dma(sc);
651 attach_fail5:
652 	wpi_ring_free(sc);
653 attach_fail4:
654 	wpi_free_shared(sc);
655 attach_fail3:
656 	ddi_regs_map_free(&sc->sc_handle);
657 attach_fail2:
658 	ddi_soft_state_free(wpi_soft_state_p, instance);
659 attach_fail1:
660 	return (err);
661 }
662 
663 int
664 wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
665 {
666 	wpi_sc_t	*sc;
667 	int err;
668 
669 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
670 	ASSERT(sc != NULL);
671 
672 	if (cmd != DDI_DETACH)
673 		return (DDI_FAILURE);
674 	if (!(sc->sc_flags & WPI_F_ATTACHED))
675 		return (DDI_FAILURE);
676 
677 	/*
678 	 * Destroy the mf_thread
679 	 */
680 	mutex_enter(&sc->sc_mt_lock);
681 	sc->sc_mf_thread_switch = 0;
682 	while (sc->sc_mf_thread != NULL) {
683 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
684 			break;
685 	}
686 	mutex_exit(&sc->sc_mt_lock);
687 
688 	wpi_stop(sc);
689 
690 	/*
691 	 * Unregiste from the MAC layer subsystem
692 	 */
693 	err = mac_unregister(sc->sc_ic.ic_mach);
694 	if (err != DDI_SUCCESS)
695 		return (err);
696 
697 	mutex_enter(&sc->sc_glock);
698 	wpi_free_fw_dma(sc);
699 	wpi_ring_free(sc);
700 	wpi_free_shared(sc);
701 	mutex_exit(&sc->sc_glock);
702 
703 	ddi_remove_intr(dip, 0, sc->sc_iblk);
704 	ddi_remove_softintr(sc->sc_notif_softint_id);
705 	sc->sc_notif_softint_id = NULL;
706 
707 	/*
708 	 * detach ieee80211
709 	 */
710 	ieee80211_detach(&sc->sc_ic);
711 
712 	wpi_destroy_locks(sc);
713 
714 	ddi_regs_map_free(&sc->sc_handle);
715 	ddi_remove_minor_node(dip, NULL);
716 	ddi_soft_state_free(wpi_soft_state_p, ddi_get_instance(dip));
717 
718 	return (DDI_SUCCESS);
719 }
720 
721 static void
722 wpi_destroy_locks(wpi_sc_t *sc)
723 {
724 	cv_destroy(&sc->sc_mt_cv);
725 	mutex_destroy(&sc->sc_mt_lock);
726 	cv_destroy(&sc->sc_tx_cv);
727 	cv_destroy(&sc->sc_cmd_cv);
728 	cv_destroy(&sc->sc_fw_cv);
729 	mutex_destroy(&sc->sc_tx_lock);
730 	mutex_destroy(&sc->sc_glock);
731 }
732 
733 /*
734  * Allocate an area of memory and a DMA handle for accessing it
735  */
736 static int
737 wpi_alloc_dma_mem(wpi_sc_t *sc, size_t memsize, ddi_dma_attr_t *dma_attr_p,
738 	ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, wpi_dma_t *dma_p)
739 {
740 	caddr_t vaddr;
741 	int err;
742 
743 	/*
744 	 * Allocate handle
745 	 */
746 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
747 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
748 	if (err != DDI_SUCCESS) {
749 		dma_p->dma_hdl = NULL;
750 		return (DDI_FAILURE);
751 	}
752 
753 	/*
754 	 * Allocate memory
755 	 */
756 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
757 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
758 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
759 	if (err != DDI_SUCCESS) {
760 		ddi_dma_free_handle(&dma_p->dma_hdl);
761 		dma_p->dma_hdl = NULL;
762 		dma_p->acc_hdl = NULL;
763 		return (DDI_FAILURE);
764 	}
765 
766 	/*
767 	 * Bind the two together
768 	 */
769 	dma_p->mem_va = vaddr;
770 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
771 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
772 	    &dma_p->cookie, &dma_p->ncookies);
773 	if (err != DDI_DMA_MAPPED) {
774 		ddi_dma_mem_free(&dma_p->acc_hdl);
775 		ddi_dma_free_handle(&dma_p->dma_hdl);
776 		dma_p->acc_hdl = NULL;
777 		dma_p->dma_hdl = NULL;
778 		return (DDI_FAILURE);
779 	}
780 
781 	dma_p->nslots = ~0U;
782 	dma_p->size = ~0U;
783 	dma_p->token = ~0U;
784 	dma_p->offset = 0;
785 	return (DDI_SUCCESS);
786 }
787 
788 /*
789  * Free one allocated area of DMAable memory
790  */
791 static void
792 wpi_free_dma_mem(wpi_dma_t *dma_p)
793 {
794 	if (dma_p->dma_hdl != NULL) {
795 		if (dma_p->ncookies) {
796 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
797 			dma_p->ncookies = 0;
798 		}
799 		ddi_dma_free_handle(&dma_p->dma_hdl);
800 		dma_p->dma_hdl = NULL;
801 	}
802 
803 	if (dma_p->acc_hdl != NULL) {
804 		ddi_dma_mem_free(&dma_p->acc_hdl);
805 		dma_p->acc_hdl = NULL;
806 	}
807 }
808 
809 /*
810  * Allocate an area of dma memory for firmware load.
811  * Idealy, this allocation should be a one time action, that is,
812  * the memory will be freed after the firmware is uploaded to the
813  * card. but since a recovery mechanism for the fatal firmware need
814  * reload the firmware, and re-allocate dma at run time may be failed,
815  * so we allocate it at attach and keep it in the whole lifecycle of
816  * the driver.
817  */
818 static int
819 wpi_alloc_fw_dma(wpi_sc_t *sc)
820 {
821 	int i, err = DDI_SUCCESS;
822 	wpi_dma_t *dma_p;
823 
824 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
825 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
826 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
827 	    &sc->sc_dma_fw_text);
828 	dma_p = &sc->sc_dma_fw_text;
829 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
830 	    dma_p->ncookies, dma_p->cookie.dmac_address,
831 	    dma_p->cookie.dmac_size));
832 	if (err != DDI_SUCCESS) {
833 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
834 		    "text dma memory");
835 		goto fail;
836 	}
837 	for (i = 0; i < dma_p->ncookies; i++) {
838 		sc->sc_fw_text_cookie[i] = dma_p->cookie;
839 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
840 	}
841 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
842 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
843 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
844 	    &sc->sc_dma_fw_data);
845 	dma_p = &sc->sc_dma_fw_data;
846 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
847 	    dma_p->ncookies, dma_p->cookie.dmac_address,
848 	    dma_p->cookie.dmac_size));
849 	if (err != DDI_SUCCESS) {
850 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
851 		    "data dma memory");
852 		goto fail;
853 	}
854 	for (i = 0; i < dma_p->ncookies; i++) {
855 		sc->sc_fw_data_cookie[i] = dma_p->cookie;
856 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
857 	}
858 fail:
859 	return (err);
860 }
861 
862 static void
863 wpi_free_fw_dma(wpi_sc_t *sc)
864 {
865 	wpi_free_dma_mem(&sc->sc_dma_fw_text);
866 	wpi_free_dma_mem(&sc->sc_dma_fw_data);
867 }
868 
869 /*
870  * Allocate a shared page between host and NIC.
871  */
872 static int
873 wpi_alloc_shared(wpi_sc_t *sc)
874 {
875 	int err = DDI_SUCCESS;
876 
877 	/* must be aligned on a 4K-page boundary */
878 	err = wpi_alloc_dma_mem(sc, sizeof (wpi_shared_t),
879 	    &sh_dma_attr, &wpi_dma_accattr,
880 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
881 	    &sc->sc_dma_sh);
882 	if (err != DDI_SUCCESS)
883 		goto fail;
884 	sc->sc_shared = (wpi_shared_t *)sc->sc_dma_sh.mem_va;
885 	return (err);
886 
887 fail:
888 	wpi_free_shared(sc);
889 	return (err);
890 }
891 
892 static void
893 wpi_free_shared(wpi_sc_t *sc)
894 {
895 	wpi_free_dma_mem(&sc->sc_dma_sh);
896 }
897 
898 static int
899 wpi_alloc_rx_ring(wpi_sc_t *sc)
900 {
901 	wpi_rx_ring_t *ring;
902 	wpi_rx_data_t *data;
903 	int i, err = DDI_SUCCESS;
904 
905 	ring = &sc->sc_rxq;
906 	ring->cur = 0;
907 
908 	err = wpi_alloc_dma_mem(sc, WPI_RX_RING_COUNT * sizeof (uint32_t),
909 	    &ring_desc_dma_attr, &wpi_dma_accattr,
910 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
911 	    &ring->dma_desc);
912 	if (err != DDI_SUCCESS) {
913 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring desc failed\n"));
914 		goto fail;
915 	}
916 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
917 
918 	/*
919 	 * Allocate Rx buffers.
920 	 */
921 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
922 		data = &ring->data[i];
923 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
924 		    &rx_buffer_dma_attr, &wpi_dma_accattr,
925 		    DDI_DMA_READ | DDI_DMA_STREAMING,
926 		    &data->dma_data);
927 		if (err != DDI_SUCCESS) {
928 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring buf[%d] "
929 			    "failed\n", i));
930 			goto fail;
931 		}
932 
933 		ring->desc[i] = LE_32(data->dma_data.cookie.dmac_address);
934 	}
935 
936 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
937 
938 	return (err);
939 
940 fail:
941 	wpi_free_rx_ring(sc);
942 	return (err);
943 }
944 
945 static void
946 wpi_reset_rx_ring(wpi_sc_t *sc)
947 {
948 	int ntries;
949 
950 	wpi_mem_lock(sc);
951 
952 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
953 	for (ntries = 0; ntries < 2000; ntries++) {
954 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
955 			break;
956 		DELAY(1000);
957 	}
958 #ifdef DEBUG
959 	if (ntries == 2000)
960 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Rx ring\n"));
961 #endif
962 	wpi_mem_unlock(sc);
963 
964 	sc->sc_rxq.cur = 0;
965 }
966 
967 static void
968 wpi_free_rx_ring(wpi_sc_t *sc)
969 {
970 	int i;
971 
972 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
973 		if (sc->sc_rxq.data[i].dma_data.dma_hdl)
974 			WPI_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
975 			    DDI_DMA_SYNC_FORCPU);
976 		wpi_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
977 	}
978 
979 	if (sc->sc_rxq.dma_desc.dma_hdl)
980 		WPI_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
981 	wpi_free_dma_mem(&sc->sc_rxq.dma_desc);
982 }
983 
984 static int
985 wpi_alloc_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring, int count, int qid)
986 {
987 	wpi_tx_data_t *data;
988 	wpi_tx_desc_t *desc_h;
989 	uint32_t paddr_desc_h;
990 	wpi_tx_cmd_t *cmd_h;
991 	uint32_t paddr_cmd_h;
992 	int i, err = DDI_SUCCESS;
993 
994 	ring->qid = qid;
995 	ring->count = count;
996 	ring->queued = 0;
997 	ring->cur = 0;
998 
999 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_desc_t),
1000 	    &ring_desc_dma_attr, &wpi_dma_accattr,
1001 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1002 	    &ring->dma_desc);
1003 	if (err != DDI_SUCCESS) {
1004 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring desc[%d] failed\n",
1005 		    qid));
1006 		goto fail;
1007 	}
1008 
1009 	/* update shared page with ring's base address */
1010 	sc->sc_shared->txbase[qid] = ring->dma_desc.cookie.dmac_address;
1011 
1012 	desc_h = (wpi_tx_desc_t *)ring->dma_desc.mem_va;
1013 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1014 
1015 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_cmd_t),
1016 	    &tx_cmd_dma_attr, &wpi_dma_accattr,
1017 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1018 	    &ring->dma_cmd);
1019 	if (err != DDI_SUCCESS) {
1020 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring cmd[%d] failed\n",
1021 		    qid));
1022 		goto fail;
1023 	}
1024 
1025 	cmd_h = (wpi_tx_cmd_t *)ring->dma_cmd.mem_va;
1026 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1027 
1028 	/*
1029 	 * Allocate Tx buffers.
1030 	 */
1031 	ring->data = kmem_zalloc(sizeof (wpi_tx_data_t) * count, KM_NOSLEEP);
1032 	if (ring->data == NULL) {
1033 		WPI_DBG((WPI_DEBUG_DMA, "could not allocate tx data slots\n"));
1034 		goto fail;
1035 	}
1036 
1037 	for (i = 0; i < count; i++) {
1038 		data = &ring->data[i];
1039 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1040 		    &tx_buffer_dma_attr, &wpi_dma_accattr,
1041 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1042 		    &data->dma_data);
1043 		if (err != DDI_SUCCESS) {
1044 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring buf[%d] "
1045 			    "failed\n", i));
1046 			goto fail;
1047 		}
1048 
1049 		data->desc = desc_h + i;
1050 		data->paddr_desc = paddr_desc_h +
1051 		    ((caddr_t)data->desc - (caddr_t)desc_h);
1052 		data->cmd = cmd_h + i;
1053 		data->paddr_cmd = paddr_cmd_h +
1054 		    ((caddr_t)data->cmd - (caddr_t)cmd_h);
1055 	}
1056 
1057 	return (err);
1058 
1059 fail:
1060 	if (ring->data)
1061 		kmem_free(ring->data, sizeof (wpi_tx_data_t) * count);
1062 	wpi_free_tx_ring(sc, ring);
1063 	return (err);
1064 }
1065 
1066 static void
1067 wpi_reset_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1068 {
1069 	wpi_tx_data_t *data;
1070 	int i, ntries;
1071 
1072 	wpi_mem_lock(sc);
1073 
1074 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1075 	for (ntries = 0; ntries < 100; ntries++) {
1076 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1077 			break;
1078 		DELAY(10);
1079 	}
1080 #ifdef DEBUG
1081 	if (ntries == 100 && wpi_dbg_flags > 0) {
1082 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Tx ring %d\n",
1083 		    ring->qid));
1084 	}
1085 #endif
1086 	wpi_mem_unlock(sc);
1087 
1088 	for (i = 0; i < ring->count; i++) {
1089 		data = &ring->data[i];
1090 		WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1091 	}
1092 
1093 	ring->queued = 0;
1094 	ring->cur = 0;
1095 }
1096 
1097 /*ARGSUSED*/
1098 static void
1099 wpi_free_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1100 {
1101 	int i;
1102 
1103 	if (ring->dma_desc.dma_hdl != NULL)
1104 		WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1105 	wpi_free_dma_mem(&ring->dma_desc);
1106 
1107 	if (ring->dma_cmd.dma_hdl != NULL)
1108 		WPI_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1109 	wpi_free_dma_mem(&ring->dma_cmd);
1110 
1111 	if (ring->data != NULL) {
1112 		for (i = 0; i < ring->count; i++) {
1113 			if (ring->data[i].dma_data.dma_hdl)
1114 				WPI_DMA_SYNC(ring->data[i].dma_data,
1115 				    DDI_DMA_SYNC_FORDEV);
1116 			wpi_free_dma_mem(&ring->data[i].dma_data);
1117 		}
1118 		kmem_free(ring->data, ring->count * sizeof (wpi_tx_data_t));
1119 	}
1120 }
1121 
1122 static int
1123 wpi_ring_init(wpi_sc_t *sc)
1124 {
1125 	int i, err = DDI_SUCCESS;
1126 
1127 	for (i = 0; i < 4; i++) {
1128 		err = wpi_alloc_tx_ring(sc, &sc->sc_txq[i], WPI_TX_RING_COUNT,
1129 		    i);
1130 		if (err != DDI_SUCCESS)
1131 			goto fail;
1132 	}
1133 	err = wpi_alloc_tx_ring(sc, &sc->sc_cmdq, WPI_CMD_RING_COUNT, 4);
1134 	if (err != DDI_SUCCESS)
1135 		goto fail;
1136 	err = wpi_alloc_tx_ring(sc, &sc->sc_svcq, WPI_SVC_RING_COUNT, 5);
1137 	if (err != DDI_SUCCESS)
1138 		goto fail;
1139 	err = wpi_alloc_rx_ring(sc);
1140 	if (err != DDI_SUCCESS)
1141 		goto fail;
1142 	return (err);
1143 
1144 fail:
1145 	return (err);
1146 }
1147 
1148 static void
1149 wpi_ring_free(wpi_sc_t *sc)
1150 {
1151 	int i = 4;
1152 
1153 	wpi_free_rx_ring(sc);
1154 	wpi_free_tx_ring(sc, &sc->sc_svcq);
1155 	wpi_free_tx_ring(sc, &sc->sc_cmdq);
1156 	while (--i >= 0) {
1157 		wpi_free_tx_ring(sc, &sc->sc_txq[i]);
1158 	}
1159 }
1160 
1161 /* ARGSUSED */
1162 static ieee80211_node_t *
1163 wpi_node_alloc(ieee80211com_t *ic)
1164 {
1165 	wpi_amrr_t *amrr;
1166 
1167 	amrr = kmem_zalloc(sizeof (wpi_amrr_t), KM_SLEEP);
1168 	if (amrr != NULL)
1169 		wpi_amrr_init(amrr);
1170 	return (&amrr->in);
1171 }
1172 
1173 static void
1174 wpi_node_free(ieee80211_node_t *in)
1175 {
1176 	ieee80211com_t *ic = in->in_ic;
1177 
1178 	ic->ic_node_cleanup(in);
1179 	if (in->in_wpa_ie != NULL)
1180 		ieee80211_free(in->in_wpa_ie);
1181 	kmem_free(in, sizeof (wpi_amrr_t));
1182 }
1183 
1184 /*ARGSUSED*/
1185 static int
1186 wpi_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1187 {
1188 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1189 	ieee80211_node_t *in = ic->ic_bss;
1190 	int i, err = WPI_SUCCESS;
1191 
1192 	mutex_enter(&sc->sc_glock);
1193 	switch (nstate) {
1194 	case IEEE80211_S_SCAN:
1195 		/* ieee80211_node_table_reset(&ic->ic_scan); */
1196 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1197 		/* make the link LED blink while we're scanning */
1198 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1199 
1200 		if ((err = wpi_scan(sc)) != 0) {
1201 			WPI_DBG((WPI_DEBUG_80211, "could not initiate scan\n"));
1202 			ic->ic_flags &= ~(IEEE80211_F_SCAN |
1203 			    IEEE80211_F_ASCAN);
1204 			mutex_exit(&sc->sc_glock);
1205 			return (err);
1206 		}
1207 		ic->ic_state = nstate;
1208 		sc->sc_clk = 0;
1209 
1210 		mutex_exit(&sc->sc_glock);
1211 		return (WPI_SUCCESS);
1212 
1213 	case IEEE80211_S_AUTH:
1214 		/* reset state to handle reassociations correctly */
1215 		sc->sc_config.state = 0;
1216 		sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1217 
1218 		if ((err = wpi_auth(sc)) != 0) {
1219 			WPI_DBG((WPI_DEBUG_80211,
1220 			    "could not send authentication request\n"));
1221 			mutex_exit(&sc->sc_glock);
1222 			return (err);
1223 		}
1224 		break;
1225 
1226 	case IEEE80211_S_RUN:
1227 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1228 			/* link LED blinks while monitoring */
1229 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1230 			break;
1231 		}
1232 
1233 		if (ic->ic_opmode != IEEE80211_M_STA) {
1234 			(void) wpi_auth(sc);
1235 			/* need setup beacon here */
1236 		}
1237 		WPI_DBG((WPI_DEBUG_80211, "wpi: associated."));
1238 
1239 		/* update adapter's configuration */
1240 		sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
1241 		/* short preamble/slot time are negotiated when associating */
1242 		sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
1243 		    WPI_CONFIG_SHSLOT);
1244 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1245 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
1246 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1247 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
1248 		sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
1249 		if (ic->ic_opmode != IEEE80211_M_STA)
1250 			sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
1251 
1252 		WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
1253 		    sc->sc_config.chan, sc->sc_config.flags));
1254 		err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1255 		    sizeof (wpi_config_t), 1);
1256 		if (err != WPI_SUCCESS) {
1257 			WPI_DBG((WPI_DEBUG_80211,
1258 			    "could not update configuration\n"));
1259 			mutex_exit(&sc->sc_glock);
1260 			return (err);
1261 		}
1262 
1263 		/* start automatic rate control */
1264 		mutex_enter(&sc->sc_mt_lock);
1265 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1266 			sc->sc_flags |= WPI_F_RATE_AUTO_CTL;
1267 			/* set rate to some reasonable initial value */
1268 			i = in->in_rates.ir_nrates - 1;
1269 			while (i > 0 && IEEE80211_RATE(i) > 72)
1270 				i--;
1271 			in->in_txrate = i;
1272 		} else {
1273 			sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
1274 		}
1275 		mutex_exit(&sc->sc_mt_lock);
1276 
1277 		/* link LED always on while associated */
1278 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1279 		break;
1280 
1281 	case IEEE80211_S_INIT:
1282 	case IEEE80211_S_ASSOC:
1283 		break;
1284 	}
1285 
1286 	mutex_exit(&sc->sc_glock);
1287 	return (sc->sc_newstate(ic, nstate, arg));
1288 }
1289 
1290 /*ARGSUSED*/
1291 static int wpi_key_set(ieee80211com_t *ic, const struct ieee80211_key *k,
1292     const uint8_t mac[IEEE80211_ADDR_LEN])
1293 {
1294 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1295 	wpi_node_t node;
1296 	int err;
1297 
1298 	switch (k->wk_cipher->ic_cipher) {
1299 	case IEEE80211_CIPHER_WEP:
1300 	case IEEE80211_CIPHER_TKIP:
1301 		return (1); /* sofeware do it. */
1302 	case IEEE80211_CIPHER_AES_CCM:
1303 		break;
1304 	default:
1305 		return (0);
1306 	}
1307 	sc->sc_config.filter &= ~(WPI_FILTER_NODECRYPTUNI |
1308 	    WPI_FILTER_NODECRYPTMUL);
1309 
1310 	mutex_enter(&sc->sc_glock);
1311 
1312 	/* update ap/multicast node */
1313 	(void) memset(&node, 0, sizeof (node));
1314 	if (IEEE80211_IS_MULTICAST(mac)) {
1315 		(void) memset(node.bssid, 0xff, 6);
1316 		node.id = WPI_ID_BROADCAST;
1317 	} else {
1318 		IEEE80211_ADDR_COPY(node.bssid, ic->ic_bss->in_bssid);
1319 		node.id = WPI_ID_BSS;
1320 	}
1321 	if (k->wk_flags & IEEE80211_KEY_XMIT) {
1322 		node.key_flags = 0;
1323 		node.keyp = k->wk_keyix;
1324 	} else {
1325 		node.key_flags = (1 << 14);
1326 		node.keyp = k->wk_keyix + 4;
1327 	}
1328 	(void) memcpy(node.key, k->wk_key, k->wk_keylen);
1329 	node.key_flags |= (2 | (1 << 3) | (k->wk_keyix << 8));
1330 	node.sta_mask = 1;
1331 	node.control = 1;
1332 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
1333 	if (err != WPI_SUCCESS) {
1334 		cmn_err(CE_WARN, "wpi_key_set():"
1335 		    "failed to update ap node\n");
1336 		mutex_exit(&sc->sc_glock);
1337 		return (0);
1338 	}
1339 	mutex_exit(&sc->sc_glock);
1340 	return (1);
1341 }
1342 
1343 /*
1344  * Grab exclusive access to NIC memory.
1345  */
1346 static void
1347 wpi_mem_lock(wpi_sc_t *sc)
1348 {
1349 	uint32_t tmp;
1350 	int ntries;
1351 
1352 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1353 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1354 
1355 	/* spin until we actually get the lock */
1356 	for (ntries = 0; ntries < 1000; ntries++) {
1357 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1358 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1359 			break;
1360 		DELAY(10);
1361 	}
1362 	if (ntries == 1000)
1363 		WPI_DBG((WPI_DEBUG_PIO, "could not lock memory\n"));
1364 }
1365 
1366 /*
1367  * Release lock on NIC memory.
1368  */
1369 static void
1370 wpi_mem_unlock(wpi_sc_t *sc)
1371 {
1372 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1373 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1374 }
1375 
1376 static uint32_t
1377 wpi_mem_read(wpi_sc_t *sc, uint16_t addr)
1378 {
1379 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1380 	return (WPI_READ(sc, WPI_READ_MEM_DATA));
1381 }
1382 
1383 static void
1384 wpi_mem_write(wpi_sc_t *sc, uint16_t addr, uint32_t data)
1385 {
1386 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1387 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1388 }
1389 
1390 static void
1391 wpi_mem_write_region_4(wpi_sc_t *sc, uint16_t addr,
1392     const uint32_t *data, int wlen)
1393 {
1394 	for (; wlen > 0; wlen--, data++, addr += 4)
1395 		wpi_mem_write(sc, addr, *data);
1396 }
1397 
1398 /*
1399  * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
1400  * using the traditional bit-bang method.
1401  */
1402 static uint16_t
1403 wpi_read_prom_word(wpi_sc_t *sc, uint32_t addr)
1404 {
1405 	uint32_t val;
1406 	int ntries;
1407 
1408 	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1409 
1410 	wpi_mem_lock(sc);
1411 	for (ntries = 0; ntries < 10; ntries++) {
1412 		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1413 			break;
1414 		DELAY(10);
1415 	}
1416 	wpi_mem_unlock(sc);
1417 
1418 	if (ntries == 10) {
1419 		WPI_DBG((WPI_DEBUG_PIO, "could not read EEPROM\n"));
1420 		return (0xdead);
1421 	}
1422 	return (val >> 16);
1423 }
1424 
1425 /*
1426  * The firmware boot code is small and is intended to be copied directly into
1427  * the NIC internal memory.
1428  */
1429 static int
1430 wpi_load_microcode(wpi_sc_t *sc)
1431 {
1432 	const char *ucode;
1433 	int size;
1434 
1435 	ucode = sc->sc_boot;
1436 	size = LE_32(sc->sc_hdr->bootsz);
1437 	/* check that microcode size is a multiple of 4 */
1438 	if (size & 3)
1439 		return (EINVAL);
1440 
1441 	size /= sizeof (uint32_t);
1442 
1443 	wpi_mem_lock(sc);
1444 
1445 	/* copy microcode image into NIC memory */
1446 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1447 	    size);
1448 
1449 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1450 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1451 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1452 
1453 	/* run microcode */
1454 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1455 
1456 	wpi_mem_unlock(sc);
1457 
1458 	return (WPI_SUCCESS);
1459 }
1460 
1461 /*
1462  * The firmware text and data segments are transferred to the NIC using DMA.
1463  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1464  * where to find it.  Once the NIC has copied the firmware into its internal
1465  * memory, we can free our local copy in the driver.
1466  */
1467 static int
1468 wpi_load_firmware(wpi_sc_t *sc, uint32_t target)
1469 {
1470 	const char *fw;
1471 	int size;
1472 	wpi_dma_t *dma_p;
1473 	ddi_dma_cookie_t *cookie;
1474 	wpi_tx_desc_t desc;
1475 	int i, ntries, err = WPI_SUCCESS;
1476 
1477 	/* only text and data here */
1478 	if (target == WPI_FW_TEXT) {
1479 		fw = sc->sc_text;
1480 		size = LE_32(sc->sc_hdr->textsz);
1481 		dma_p = &sc->sc_dma_fw_text;
1482 		cookie = sc->sc_fw_text_cookie;
1483 	} else {
1484 		fw = sc->sc_data;
1485 		size = LE_32(sc->sc_hdr->datasz);
1486 		dma_p = &sc->sc_dma_fw_data;
1487 		cookie = sc->sc_fw_data_cookie;
1488 	}
1489 
1490 	/* copy firmware image to DMA-safe memory */
1491 	(void) memcpy(dma_p->mem_va, fw, size);
1492 
1493 	/* make sure the adapter will get up-to-date values */
1494 	(void) ddi_dma_sync(dma_p->dma_hdl, 0, size, DDI_DMA_SYNC_FORDEV);
1495 
1496 	(void) memset(&desc, 0, sizeof (desc));
1497 	desc.flags = LE_32(WPI_PAD32(size) << 28 | dma_p->ncookies << 24);
1498 	for (i = 0; i < dma_p->ncookies; i++) {
1499 		WPI_DBG((WPI_DEBUG_DMA, "cookie%d addr:%x size:%x\n",
1500 		    i, cookie[i].dmac_address, cookie[i].dmac_size));
1501 		desc.segs[i].addr = cookie[i].dmac_address;
1502 		desc.segs[i].len = (uint32_t)cookie[i].dmac_size;
1503 	}
1504 
1505 	wpi_mem_lock(sc);
1506 
1507 	/* tell adapter where to copy image in its internal memory */
1508 	WPI_WRITE(sc, WPI_FW_TARGET, target);
1509 
1510 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1511 
1512 	/* copy firmware descriptor into NIC memory */
1513 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1514 	    sizeof desc / sizeof (uint32_t));
1515 
1516 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1517 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1518 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1519 
1520 	/* wait while the adapter is busy copying the firmware */
1521 	for (ntries = 0; ntries < 100; ntries++) {
1522 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1523 			break;
1524 		DELAY(1000);
1525 	}
1526 	if (ntries == 100) {
1527 		WPI_DBG((WPI_DEBUG_FW, "timeout transferring firmware\n"));
1528 		err = ETIMEDOUT;
1529 	}
1530 
1531 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1532 
1533 	wpi_mem_unlock(sc);
1534 
1535 	return (err);
1536 }
1537 
1538 /*ARGSUSED*/
1539 static void
1540 wpi_rx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1541 {
1542 	ieee80211com_t *ic = &sc->sc_ic;
1543 	wpi_rx_ring_t *ring = &sc->sc_rxq;
1544 	wpi_rx_stat_t *stat;
1545 	wpi_rx_head_t *head;
1546 	wpi_rx_tail_t *tail;
1547 	ieee80211_node_t *in;
1548 	struct ieee80211_frame *wh;
1549 	mblk_t *mp;
1550 	uint16_t len;
1551 
1552 	stat = (wpi_rx_stat_t *)(desc + 1);
1553 
1554 	if (stat->len > WPI_STAT_MAXLEN) {
1555 		WPI_DBG((WPI_DEBUG_RX, "invalid rx statistic header\n"));
1556 		return;
1557 	}
1558 
1559 	head = (wpi_rx_head_t *)((caddr_t)(stat + 1) + stat->len);
1560 	tail = (wpi_rx_tail_t *)((caddr_t)(head + 1) + LE_16(head->len));
1561 
1562 	len = LE_16(head->len);
1563 
1564 	WPI_DBG((WPI_DEBUG_RX, "rx intr: idx=%d len=%d stat len=%d rssi=%d "
1565 	    "rate=%x chan=%d tstamp=%llu", ring->cur, LE_32(desc->len),
1566 	    len, (int8_t)stat->rssi, head->rate, head->chan,
1567 	    LE_64(tail->tstamp)));
1568 
1569 	if ((len < 20) || (len > sc->sc_dmabuf_sz)) {
1570 		sc->sc_rx_err++;
1571 		return;
1572 	}
1573 
1574 	/*
1575 	 * Discard Rx frames with bad CRC early
1576 	 */
1577 	if ((LE_32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1578 		WPI_DBG((WPI_DEBUG_RX, "rx tail flags error %x\n",
1579 		    LE_32(tail->flags)));
1580 		sc->sc_rx_err++;
1581 		return;
1582 	}
1583 
1584 	/* update Rx descriptor */
1585 	/* ring->desc[ring->cur] = LE_32(data->dma_data.cookie.dmac_address); */
1586 
1587 #ifdef WPI_BPF
1588 #ifndef WPI_CURRENT
1589 	if (sc->sc_drvbpf != NULL) {
1590 #else
1591 	if (bpf_peers_present(sc->sc_drvbpf)) {
1592 #endif
1593 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1594 
1595 		tap->wr_flags = 0;
1596 		tap->wr_rate = head->rate;
1597 		tap->wr_chan_freq =
1598 		    LE_16(ic->ic_channels[head->chan].ic_freq);
1599 		tap->wr_chan_flags =
1600 		    LE_16(ic->ic_channels[head->chan].ic_flags);
1601 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1602 		tap->wr_dbm_antnoise = (int8_t)LE_16(stat->noise);
1603 		tap->wr_tsft = tail->tstamp;
1604 		tap->wr_antenna = (LE_16(head->flags) >> 4) & 0xf;
1605 		switch (head->rate) {
1606 		/* CCK rates */
1607 		case  10: tap->wr_rate =   2; break;
1608 		case  20: tap->wr_rate =   4; break;
1609 		case  55: tap->wr_rate =  11; break;
1610 		case 110: tap->wr_rate =  22; break;
1611 		/* OFDM rates */
1612 		case 0xd: tap->wr_rate =  12; break;
1613 		case 0xf: tap->wr_rate =  18; break;
1614 		case 0x5: tap->wr_rate =  24; break;
1615 		case 0x7: tap->wr_rate =  36; break;
1616 		case 0x9: tap->wr_rate =  48; break;
1617 		case 0xb: tap->wr_rate =  72; break;
1618 		case 0x1: tap->wr_rate =  96; break;
1619 		case 0x3: tap->wr_rate = 108; break;
1620 		/* unknown rate: should not happen */
1621 		default:  tap->wr_rate =   0;
1622 		}
1623 		if (LE_16(head->flags) & 0x4)
1624 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1625 
1626 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1627 	}
1628 #endif
1629 	/* grab a reference to the source node */
1630 	wh = (struct ieee80211_frame *)(head + 1);
1631 
1632 #ifdef DEBUG
1633 	if (wpi_dbg_flags & WPI_DEBUG_RX)
1634 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
1635 #endif
1636 
1637 	in = ieee80211_find_rxnode(ic, wh);
1638 	mp = allocb(len, BPRI_MED);
1639 	if (mp) {
1640 		(void) memcpy(mp->b_wptr, wh, len);
1641 		mp->b_wptr += len;
1642 
1643 		/* send the frame to the 802.11 layer */
1644 		(void) ieee80211_input(ic, mp, in, stat->rssi, 0);
1645 	} else {
1646 		sc->sc_rx_nobuf++;
1647 		WPI_DBG((WPI_DEBUG_RX,
1648 		    "wpi_rx_intr(): alloc rx buf failed\n"));
1649 	}
1650 	/* release node reference */
1651 	ieee80211_free_node(in);
1652 }
1653 
1654 /*ARGSUSED*/
1655 static void
1656 wpi_tx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1657 {
1658 	ieee80211com_t *ic = &sc->sc_ic;
1659 	wpi_tx_ring_t *ring = &sc->sc_txq[desc->qid & 0x3];
1660 	/* wpi_tx_data_t *txdata = &ring->data[desc->idx]; */
1661 	wpi_tx_stat_t *stat = (wpi_tx_stat_t *)(desc + 1);
1662 	wpi_amrr_t *amrr = (wpi_amrr_t *)ic->ic_bss;
1663 
1664 	WPI_DBG((WPI_DEBUG_TX, "tx done: qid=%d idx=%d retries=%d nkill=%d "
1665 	    "rate=%x duration=%d status=%x\n",
1666 	    desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate,
1667 	    LE_32(stat->duration), LE_32(stat->status)));
1668 
1669 	amrr->txcnt++;
1670 	WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
1671 	if (stat->ntries > 0) {
1672 		amrr->retrycnt++;
1673 		sc->sc_tx_retries++;
1674 		WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d retries\n",
1675 		    amrr->retrycnt));
1676 	}
1677 
1678 	sc->sc_tx_timer = 0;
1679 
1680 	mutex_enter(&sc->sc_tx_lock);
1681 	ring->queued--;
1682 	if (ring->queued < 0)
1683 		ring->queued = 0;
1684 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
1685 		sc->sc_need_reschedule = 0;
1686 		mutex_exit(&sc->sc_tx_lock);
1687 		mac_tx_update(ic->ic_mach);
1688 		mutex_enter(&sc->sc_tx_lock);
1689 	}
1690 	mutex_exit(&sc->sc_tx_lock);
1691 }
1692 
1693 static void
1694 wpi_cmd_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc)
1695 {
1696 	if ((desc->qid & 7) != 4) {
1697 		return;	/* not a command ack */
1698 	}
1699 	mutex_enter(&sc->sc_glock);
1700 	sc->sc_flags |= WPI_F_CMD_DONE;
1701 	cv_signal(&sc->sc_cmd_cv);
1702 	mutex_exit(&sc->sc_glock);
1703 }
1704 
1705 static uint_t
1706 wpi_notif_softintr(caddr_t arg)
1707 {
1708 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1709 	ieee80211com_t *ic = &sc->sc_ic;
1710 	wpi_rx_desc_t *desc;
1711 	wpi_rx_data_t *data;
1712 	uint32_t hw;
1713 
1714 	mutex_enter(&sc->sc_glock);
1715 	if (sc->sc_notif_softint_pending != 1) {
1716 		mutex_exit(&sc->sc_glock);
1717 		return (DDI_INTR_UNCLAIMED);
1718 	}
1719 	mutex_exit(&sc->sc_glock);
1720 
1721 	hw = LE_32(sc->sc_shared->next);
1722 
1723 	while (sc->sc_rxq.cur != hw) {
1724 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
1725 		desc = (wpi_rx_desc_t *)data->dma_data.mem_va;
1726 
1727 		WPI_DBG((WPI_DEBUG_INTR, "rx notification hw = %d cur = %d "
1728 		    "qid=%x idx=%d flags=%x type=%d len=%d\n",
1729 		    hw, sc->sc_rxq.cur, desc->qid, desc->idx, desc->flags,
1730 		    desc->type, LE_32(desc->len)));
1731 
1732 		if (!(desc->qid & 0x80))	/* reply to a command */
1733 			wpi_cmd_intr(sc, desc);
1734 
1735 		switch (desc->type) {
1736 		case WPI_RX_DONE:
1737 			/* a 802.11 frame was received */
1738 			wpi_rx_intr(sc, desc, data);
1739 			break;
1740 
1741 		case WPI_TX_DONE:
1742 			/* a 802.11 frame has been transmitted */
1743 			wpi_tx_intr(sc, desc, data);
1744 			break;
1745 
1746 		case WPI_UC_READY:
1747 		{
1748 			wpi_ucode_info_t *uc =
1749 			    (wpi_ucode_info_t *)(desc + 1);
1750 
1751 			/* the microcontroller is ready */
1752 			WPI_DBG((WPI_DEBUG_FW,
1753 			    "microcode alive notification version %x "
1754 			    "alive %x\n", LE_32(uc->version),
1755 			    LE_32(uc->valid)));
1756 
1757 			if (LE_32(uc->valid) != 1) {
1758 				WPI_DBG((WPI_DEBUG_FW,
1759 				    "microcontroller initialization failed\n"));
1760 			}
1761 			break;
1762 		}
1763 		case WPI_STATE_CHANGED:
1764 		{
1765 			uint32_t *status = (uint32_t *)(desc + 1);
1766 
1767 			/* enabled/disabled notification */
1768 			WPI_DBG((WPI_DEBUG_RADIO, "state changed to %x\n",
1769 			    LE_32(*status)));
1770 
1771 			if (LE_32(*status) & 1) {
1772 				/* the radio button has to be pushed */
1773 				cmn_err(CE_NOTE,
1774 				    "wpi: Radio transmitter is off\n");
1775 			}
1776 			break;
1777 		}
1778 		case WPI_START_SCAN:
1779 		{
1780 			wpi_start_scan_t *scan =
1781 			    (wpi_start_scan_t *)(desc + 1);
1782 
1783 			WPI_DBG((WPI_DEBUG_SCAN,
1784 			    "scanning channel %d status %x\n",
1785 			    scan->chan, LE_32(scan->status)));
1786 
1787 			/* fix current channel */
1788 			ic->ic_curchan = &ic->ic_sup_channels[scan->chan];
1789 			break;
1790 		}
1791 		case WPI_STOP_SCAN:
1792 			WPI_DBG((WPI_DEBUG_SCAN, "scan finished\n"));
1793 			ieee80211_end_scan(ic);
1794 			break;
1795 		}
1796 
1797 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % WPI_RX_RING_COUNT;
1798 	}
1799 
1800 	/* tell the firmware what we have processed */
1801 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1802 	WPI_WRITE(sc, WPI_RX_WIDX, hw & (~7));
1803 	mutex_enter(&sc->sc_glock);
1804 	sc->sc_notif_softint_pending = 0;
1805 	mutex_exit(&sc->sc_glock);
1806 
1807 	return (DDI_INTR_CLAIMED);
1808 }
1809 
1810 static uint_t
1811 wpi_intr(caddr_t arg)
1812 {
1813 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1814 	uint32_t r;
1815 
1816 	mutex_enter(&sc->sc_glock);
1817 	r = WPI_READ(sc, WPI_INTR);
1818 	if (r == 0 || r == 0xffffffff) {
1819 		mutex_exit(&sc->sc_glock);
1820 		return (DDI_INTR_UNCLAIMED);
1821 	}
1822 
1823 	WPI_DBG((WPI_DEBUG_INTR, "interrupt reg %x\n", r));
1824 
1825 	/* disable interrupts */
1826 	WPI_WRITE(sc, WPI_MASK, 0);
1827 	/* ack interrupts */
1828 	WPI_WRITE(sc, WPI_INTR, r);
1829 
1830 	if (sc->sc_notif_softint_id == NULL) {
1831 		mutex_exit(&sc->sc_glock);
1832 		return (DDI_INTR_CLAIMED);
1833 	}
1834 
1835 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1836 		WPI_DBG((WPI_DEBUG_FW, "fatal firmware error\n"));
1837 		mutex_exit(&sc->sc_glock);
1838 		wpi_stop(sc);
1839 		sc->sc_ostate = sc->sc_ic.ic_state;
1840 		ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1841 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
1842 		return (DDI_INTR_CLAIMED);
1843 	}
1844 
1845 	if (r & WPI_RX_INTR) {
1846 		sc->sc_notif_softint_pending = 1;
1847 		ddi_trigger_softintr(sc->sc_notif_softint_id);
1848 	}
1849 
1850 	if (r & WPI_ALIVE_INTR)	{ /* firmware initialized */
1851 		sc->sc_flags |= WPI_F_FW_INIT;
1852 		cv_signal(&sc->sc_fw_cv);
1853 	}
1854 
1855 	/* re-enable interrupts */
1856 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1857 	mutex_exit(&sc->sc_glock);
1858 
1859 	return (DDI_INTR_CLAIMED);
1860 }
1861 
1862 static uint8_t
1863 wpi_plcp_signal(int rate)
1864 {
1865 	switch (rate) {
1866 	/* CCK rates (returned values are device-dependent) */
1867 	case 2:		return (10);
1868 	case 4:		return (20);
1869 	case 11:	return (55);
1870 	case 22:	return (110);
1871 
1872 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1873 	/* R1-R4 (ral/ural is R4-R1) */
1874 	case 12:	return (0xd);
1875 	case 18:	return (0xf);
1876 	case 24:	return (0x5);
1877 	case 36:	return (0x7);
1878 	case 48:	return (0x9);
1879 	case 72:	return (0xb);
1880 	case 96:	return (0x1);
1881 	case 108:	return (0x3);
1882 
1883 	/* unsupported rates (should not get there) */
1884 	default:	return (0);
1885 	}
1886 }
1887 
1888 static mblk_t *
1889 wpi_m_tx(void *arg, mblk_t *mp)
1890 {
1891 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
1892 	ieee80211com_t	*ic = &sc->sc_ic;
1893 	mblk_t			*next;
1894 
1895 	if (ic->ic_state != IEEE80211_S_RUN) {
1896 		freemsgchain(mp);
1897 		return (NULL);
1898 	}
1899 
1900 	while (mp != NULL) {
1901 		next = mp->b_next;
1902 		mp->b_next = NULL;
1903 		if (wpi_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
1904 			mp->b_next = next;
1905 			break;
1906 		}
1907 		mp = next;
1908 	}
1909 	return (mp);
1910 }
1911 
1912 /* ARGSUSED */
1913 static int
1914 wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
1915 {
1916 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1917 	wpi_tx_ring_t *ring;
1918 	wpi_tx_desc_t *desc;
1919 	wpi_tx_data_t *data;
1920 	wpi_tx_cmd_t *cmd;
1921 	wpi_cmd_data_t *tx;
1922 	ieee80211_node_t *in;
1923 	struct ieee80211_frame *wh;
1924 	struct ieee80211_key *k;
1925 	mblk_t *m, *m0;
1926 	int rate, hdrlen, len, mblen, off, err = WPI_SUCCESS;
1927 
1928 	ring = ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ?
1929 	    (&sc->sc_txq[0]) : (&sc->sc_txq[1]);
1930 	data = &ring->data[ring->cur];
1931 	desc = data->desc;
1932 	cmd = data->cmd;
1933 	bzero(desc, sizeof (*desc));
1934 	bzero(cmd, sizeof (*cmd));
1935 
1936 	mutex_enter(&sc->sc_tx_lock);
1937 	if (ring->queued > ring->count - 64) {
1938 		WPI_DBG((WPI_DEBUG_TX, "wpi_send(): no txbuf\n"));
1939 		sc->sc_need_reschedule = 1;
1940 		mutex_exit(&sc->sc_tx_lock);
1941 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
1942 		    IEEE80211_FC0_TYPE_DATA) {
1943 			freemsg(mp);
1944 		}
1945 		sc->sc_tx_nobuf++;
1946 		err = WPI_FAIL;
1947 		goto exit;
1948 	}
1949 	mutex_exit(&sc->sc_tx_lock);
1950 
1951 	hdrlen = sizeof (struct ieee80211_frame);
1952 
1953 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
1954 	if (m == NULL) { /* can not alloc buf, drop this package */
1955 		cmn_err(CE_WARN,
1956 		    "wpi_send(): failed to allocate msgbuf\n");
1957 		freemsg(mp);
1958 		err = WPI_SUCCESS;
1959 		goto exit;
1960 	}
1961 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
1962 		mblen = MBLKL(m0);
1963 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
1964 		off += mblen;
1965 	}
1966 	m->b_wptr += off;
1967 	freemsg(mp);
1968 
1969 	wh = (struct ieee80211_frame *)m->b_rptr;
1970 
1971 	in = ieee80211_find_txnode(ic, wh->i_addr1);
1972 	if (in == NULL) {
1973 		cmn_err(CE_WARN, "wpi_send(): failed to find tx node\n");
1974 		freemsg(m);
1975 		sc->sc_tx_err++;
1976 		err = WPI_SUCCESS;
1977 		goto exit;
1978 	}
1979 
1980 	(void) ieee80211_encap(ic, m, in);
1981 
1982 	cmd->code = WPI_CMD_TX_DATA;
1983 	cmd->flags = 0;
1984 	cmd->qid = ring->qid;
1985 	cmd->idx = ring->cur;
1986 
1987 	tx = (wpi_cmd_data_t *)cmd->data;
1988 	tx->flags = 0;
1989 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1990 		tx->flags |= LE_32(WPI_TX_NEED_ACK);
1991 	} else {
1992 		tx->flags &= ~(LE_32(WPI_TX_NEED_ACK));
1993 	}
1994 
1995 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1996 		k = ieee80211_crypto_encap(ic, m);
1997 		if (k == NULL) {
1998 			freemsg(m);
1999 			sc->sc_tx_err++;
2000 			err = WPI_SUCCESS;
2001 			goto exit;
2002 		}
2003 
2004 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2005 			tx->security = 2; /* for CCMP */
2006 			tx->flags |= LE_32(WPI_TX_NEED_ACK);
2007 			(void) memcpy(&tx->key, k->wk_key, k->wk_keylen);
2008 		}
2009 
2010 		/* packet header may have moved, reset our local pointer */
2011 		wh = (struct ieee80211_frame *)m->b_rptr;
2012 	}
2013 
2014 	len = msgdsize(m);
2015 
2016 #ifdef DEBUG
2017 	if (wpi_dbg_flags & WPI_DEBUG_TX)
2018 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
2019 #endif
2020 
2021 	/* pickup a rate */
2022 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2023 	    IEEE80211_FC0_TYPE_MGT) {
2024 		/* mgmt frames are sent at the lowest available bit-rate */
2025 		rate = 2;
2026 	} else {
2027 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
2028 			rate = ic->ic_fixed_rate;
2029 		} else
2030 			rate = in->in_rates.ir_rates[in->in_txrate];
2031 	}
2032 	rate &= IEEE80211_RATE_VAL;
2033 	WPI_DBG((WPI_DEBUG_RATECTL, "tx rate[%d of %d] = %x",
2034 	    in->in_txrate, in->in_rates.ir_nrates, rate));
2035 #ifdef WPI_BPF
2036 #ifndef WPI_CURRENT
2037 	if (sc->sc_drvbpf != NULL) {
2038 #else
2039 	if (bpf_peers_present(sc->sc_drvbpf)) {
2040 #endif
2041 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2042 
2043 		tap->wt_flags = 0;
2044 		tap->wt_chan_freq = LE_16(ic->ic_curchan->ic_freq);
2045 		tap->wt_chan_flags = LE_16(ic->ic_curchan->ic_flags);
2046 		tap->wt_rate = rate;
2047 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2048 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2049 
2050 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2051 	}
2052 #endif
2053 
2054 	tx->flags |= (LE_32(WPI_TX_AUTO_SEQ));
2055 	tx->flags |= LE_32(WPI_TX_BT_DISABLE | WPI_TX_CALIBRATION);
2056 
2057 	/* retrieve destination node's id */
2058 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
2059 	    WPI_ID_BSS;
2060 
2061 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2062 	    IEEE80211_FC0_TYPE_MGT) {
2063 		/* tell h/w to set timestamp in probe responses */
2064 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2065 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2066 			tx->flags |= LE_32(WPI_TX_INSERT_TSTAMP);
2067 
2068 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2069 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2070 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2071 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2072 			tx->timeout = 3;
2073 		else
2074 			tx->timeout = 2;
2075 	} else
2076 		tx->timeout = 0;
2077 
2078 	tx->rate = wpi_plcp_signal(rate);
2079 
2080 	/* be very persistant at sending frames out */
2081 	tx->rts_ntries = 7;
2082 	tx->data_ntries = 15;
2083 
2084 	tx->cck_mask  = 0x0f;
2085 	tx->ofdm_mask = 0xff;
2086 	tx->lifetime  = LE_32(0xffffffff);
2087 
2088 	tx->len = LE_16(len);
2089 
2090 	/* save and trim IEEE802.11 header */
2091 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
2092 	m->b_rptr += hdrlen;
2093 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
2094 
2095 	WPI_DBG((WPI_DEBUG_TX, "sending data: qid=%d idx=%d len=%d", ring->qid,
2096 	    ring->cur, len));
2097 
2098 	/* first scatter/gather segment is used by the tx data command */
2099 	desc->flags = LE_32(WPI_PAD32(len) << 28 | (2) << 24);
2100 	desc->segs[0].addr = LE_32(data->paddr_cmd);
2101 	desc->segs[0].len  = LE_32(
2102 	    roundup(4 + sizeof (wpi_cmd_data_t) + hdrlen, 4));
2103 	desc->segs[1].addr = LE_32(data->dma_data.cookie.dmac_address);
2104 	desc->segs[1].len  = LE_32(len - hdrlen);
2105 
2106 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2107 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2108 
2109 	mutex_enter(&sc->sc_tx_lock);
2110 	ring->queued++;
2111 	mutex_exit(&sc->sc_tx_lock);
2112 
2113 	/* kick ring */
2114 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2115 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2116 	freemsg(m);
2117 	/* release node reference */
2118 	ieee80211_free_node(in);
2119 
2120 	ic->ic_stats.is_tx_bytes += len;
2121 	ic->ic_stats.is_tx_frags++;
2122 
2123 	if (sc->sc_tx_timer == 0)
2124 		sc->sc_tx_timer = 5;
2125 exit:
2126 	return (err);
2127 }
2128 
2129 static void
2130 wpi_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2131 {
2132 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2133 	ieee80211com_t	*ic = &sc->sc_ic;
2134 	int		err;
2135 
2136 	err = ieee80211_ioctl(ic, wq, mp);
2137 	if (err == ENETRESET) {
2138 		(void) ieee80211_new_state(ic,
2139 		    IEEE80211_S_SCAN, -1);
2140 	}
2141 }
2142 
2143 /*ARGSUSED*/
2144 static int
2145 wpi_m_stat(void *arg, uint_t stat, uint64_t *val)
2146 {
2147 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2148 	ieee80211com_t	*ic = &sc->sc_ic;
2149 	ieee80211_node_t *in = ic->ic_bss;
2150 	struct ieee80211_rateset *rs = &in->in_rates;
2151 
2152 	mutex_enter(&sc->sc_glock);
2153 	switch (stat) {
2154 	case MAC_STAT_IFSPEED:
2155 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2156 		    (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL)
2157 		    : ic->ic_fixed_rate) * 5000000ull;
2158 		break;
2159 	case MAC_STAT_NOXMTBUF:
2160 		*val = sc->sc_tx_nobuf;
2161 		break;
2162 	case MAC_STAT_NORCVBUF:
2163 		*val = sc->sc_rx_nobuf;
2164 		break;
2165 	case MAC_STAT_IERRORS:
2166 		*val = sc->sc_rx_err;
2167 		break;
2168 	case MAC_STAT_RBYTES:
2169 		*val = ic->ic_stats.is_rx_bytes;
2170 		break;
2171 	case MAC_STAT_IPACKETS:
2172 		*val = ic->ic_stats.is_rx_frags;
2173 		break;
2174 	case MAC_STAT_OBYTES:
2175 		*val = ic->ic_stats.is_tx_bytes;
2176 		break;
2177 	case MAC_STAT_OPACKETS:
2178 		*val = ic->ic_stats.is_tx_frags;
2179 		break;
2180 	case MAC_STAT_OERRORS:
2181 	case WIFI_STAT_TX_FAILED:
2182 		*val = sc->sc_tx_err;
2183 		break;
2184 	case WIFI_STAT_TX_RETRANS:
2185 		*val = sc->sc_tx_retries;
2186 		break;
2187 	case WIFI_STAT_FCS_ERRORS:
2188 	case WIFI_STAT_WEP_ERRORS:
2189 	case WIFI_STAT_TX_FRAGS:
2190 	case WIFI_STAT_MCAST_TX:
2191 	case WIFI_STAT_RTS_SUCCESS:
2192 	case WIFI_STAT_RTS_FAILURE:
2193 	case WIFI_STAT_ACK_FAILURE:
2194 	case WIFI_STAT_RX_FRAGS:
2195 	case WIFI_STAT_MCAST_RX:
2196 	case WIFI_STAT_RX_DUPS:
2197 		mutex_exit(&sc->sc_glock);
2198 		return (ieee80211_stat(ic, stat, val));
2199 	default:
2200 		mutex_exit(&sc->sc_glock);
2201 		return (ENOTSUP);
2202 	}
2203 	mutex_exit(&sc->sc_glock);
2204 
2205 	return (WPI_SUCCESS);
2206 
2207 }
2208 
2209 static int
2210 wpi_m_start(void *arg)
2211 {
2212 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2213 	ieee80211com_t	*ic = &sc->sc_ic;
2214 	int err;
2215 
2216 	err = wpi_init(sc);
2217 	if (err != WPI_SUCCESS) {
2218 		wpi_stop(sc);
2219 		DELAY(1000000);
2220 		err = wpi_init(sc);
2221 	}
2222 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2223 
2224 	return (err);
2225 }
2226 
2227 static void
2228 wpi_m_stop(void *arg)
2229 {
2230 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2231 	ieee80211com_t	*ic = &sc->sc_ic;
2232 
2233 	wpi_stop(sc);
2234 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2235 	mutex_enter(&sc->sc_mt_lock);
2236 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2237 	sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
2238 	mutex_exit(&sc->sc_mt_lock);
2239 }
2240 
2241 /*ARGSUSED*/
2242 static int
2243 wpi_m_unicst(void *arg, const uint8_t *macaddr)
2244 {
2245 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2246 	ieee80211com_t	*ic = &sc->sc_ic;
2247 	int err;
2248 
2249 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
2250 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2251 		mutex_enter(&sc->sc_glock);
2252 		err = wpi_config(sc);
2253 		mutex_exit(&sc->sc_glock);
2254 		if (err != WPI_SUCCESS) {
2255 			cmn_err(CE_WARN,
2256 			    "wpi_m_unicst(): "
2257 			    "failed to configure device\n");
2258 			goto fail;
2259 		}
2260 	}
2261 	return (WPI_SUCCESS);
2262 fail:
2263 	return (err);
2264 }
2265 
2266 /*ARGSUSED*/
2267 static int
2268 wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m)
2269 {
2270 	return (WPI_SUCCESS);
2271 }
2272 
2273 /*ARGSUSED*/
2274 static int
2275 wpi_m_promisc(void *arg, boolean_t on)
2276 {
2277 	return (WPI_SUCCESS);
2278 }
2279 
2280 static void
2281 wpi_thread(wpi_sc_t *sc)
2282 {
2283 	ieee80211com_t	*ic = &sc->sc_ic;
2284 	clock_t clk;
2285 	int times = 0, err, n = 0, timeout = 0;
2286 
2287 	mutex_enter(&sc->sc_mt_lock);
2288 	while (sc->sc_mf_thread_switch) {
2289 		/*
2290 		 * recovery fatal error
2291 		 */
2292 		if (ic->ic_mach &&
2293 		    (sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
2294 
2295 			WPI_DBG((WPI_DEBUG_FW,
2296 			    "wpi_thread(): "
2297 			    "try to recover fatal hw error: %d\n", times++));
2298 
2299 			wpi_stop(sc);
2300 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2301 
2302 			mutex_exit(&sc->sc_mt_lock);
2303 			delay(drv_usectohz(2000000));
2304 			mutex_enter(&sc->sc_mt_lock);
2305 			err = wpi_init(sc);
2306 			if (err != WPI_SUCCESS) {
2307 				n++;
2308 				if (n < 3)
2309 					continue;
2310 			}
2311 			n = 0;
2312 			sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2313 			mutex_exit(&sc->sc_mt_lock);
2314 			delay(drv_usectohz(2000000));
2315 			if (sc->sc_ostate != IEEE80211_S_INIT)
2316 				ieee80211_begin_scan(ic, 0);
2317 			mutex_enter(&sc->sc_mt_lock);
2318 		}
2319 
2320 		/*
2321 		 * rate ctl
2322 		 */
2323 		if (ic->ic_mach &&
2324 		    (sc->sc_flags & WPI_F_RATE_AUTO_CTL)) {
2325 			clk = ddi_get_lbolt();
2326 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
2327 				wpi_amrr_timeout(sc);
2328 			}
2329 		}
2330 		mutex_exit(&sc->sc_mt_lock);
2331 		delay(drv_usectohz(100000));
2332 		mutex_enter(&sc->sc_mt_lock);
2333 		if (sc->sc_tx_timer) {
2334 			timeout++;
2335 			if (timeout == 10) {
2336 				sc->sc_tx_timer--;
2337 				if (sc->sc_tx_timer == 0) {
2338 					sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2339 					sc->sc_ostate = IEEE80211_S_RUN;
2340 				}
2341 				timeout = 0;
2342 			}
2343 		}
2344 	}
2345 	sc->sc_mf_thread = NULL;
2346 	cv_signal(&sc->sc_mt_cv);
2347 	mutex_exit(&sc->sc_mt_lock);
2348 }
2349 
2350 /*
2351  * Extract various information from EEPROM.
2352  */
2353 static void
2354 wpi_read_eeprom(wpi_sc_t *sc)
2355 {
2356 	ieee80211com_t *ic = &sc->sc_ic;
2357 	uint16_t val;
2358 	int i;
2359 
2360 	/* read MAC address */
2361 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
2362 	ic->ic_macaddr[0] = val & 0xff;
2363 	ic->ic_macaddr[1] = val >> 8;
2364 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
2365 	ic->ic_macaddr[2] = val & 0xff;
2366 	ic->ic_macaddr[3] = val >> 8;
2367 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
2368 	ic->ic_macaddr[4] = val & 0xff;
2369 	ic->ic_macaddr[5] = val >> 8;
2370 
2371 	WPI_DBG((WPI_DEBUG_EEPROM,
2372 	    "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
2373 	    ic->ic_macaddr[0], ic->ic_macaddr[1],
2374 	    ic->ic_macaddr[2], ic->ic_macaddr[3],
2375 	    ic->ic_macaddr[4], ic->ic_macaddr[5]));
2376 	/* read power settings for 2.4GHz channels */
2377 	for (i = 0; i < 14; i++) {
2378 		sc->sc_pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
2379 		sc->sc_pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
2380 		WPI_DBG((WPI_DEBUG_EEPROM,
2381 		    "channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
2382 		    sc->sc_pwr1[i], sc->sc_pwr2[i]));
2383 	}
2384 }
2385 
2386 /*
2387  * Send a command to the firmware.
2388  */
2389 static int
2390 wpi_cmd(wpi_sc_t *sc, int code, const void *buf, int size, int async)
2391 {
2392 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2393 	wpi_tx_desc_t *desc;
2394 	wpi_tx_cmd_t *cmd;
2395 
2396 	ASSERT(size <= sizeof (cmd->data));
2397 	ASSERT(mutex_owned(&sc->sc_glock));
2398 
2399 	WPI_DBG((WPI_DEBUG_CMD, "wpi_cmd() # code[%d]", code));
2400 	desc = ring->data[ring->cur].desc;
2401 	cmd = ring->data[ring->cur].cmd;
2402 
2403 	cmd->code = (uint8_t)code;
2404 	cmd->flags = 0;
2405 	cmd->qid = ring->qid;
2406 	cmd->idx = ring->cur;
2407 	(void) memcpy(cmd->data, buf, size);
2408 
2409 	desc->flags = LE_32(WPI_PAD32(size) << 28 | 1 << 24);
2410 	desc->segs[0].addr = ring->data[ring->cur].paddr_cmd;
2411 	desc->segs[0].len  = 4 + size;
2412 
2413 	/* kick cmd ring */
2414 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2415 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2416 
2417 	if (async)
2418 		return (WPI_SUCCESS);
2419 	else {
2420 		clock_t clk;
2421 		sc->sc_flags &= ~WPI_F_CMD_DONE;
2422 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
2423 		while (!(sc->sc_flags & WPI_F_CMD_DONE)) {
2424 			if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk)
2425 			    < 0)
2426 				break;
2427 		}
2428 		if (sc->sc_flags & WPI_F_CMD_DONE)
2429 			return (WPI_SUCCESS);
2430 		else
2431 			return (WPI_FAIL);
2432 	}
2433 }
2434 
2435 /*
2436  * Configure h/w multi-rate retries.
2437  */
2438 static int
2439 wpi_mrr_setup(wpi_sc_t *sc)
2440 {
2441 	wpi_mrr_setup_t mrr;
2442 	int i, err;
2443 
2444 	/* CCK rates (not used with 802.11a) */
2445 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2446 		mrr.rates[i].flags = 0;
2447 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2448 		/* fallback to the immediate lower CCK rate (if any) */
2449 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2450 		/* try one time at this rate before falling back to "next" */
2451 		mrr.rates[i].ntries = 1;
2452 	}
2453 
2454 	/* OFDM rates (not used with 802.11b) */
2455 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2456 		mrr.rates[i].flags = 0;
2457 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2458 		/* fallback to the immediate lower OFDM rate (if any) */
2459 		mrr.rates[i].next = (i == WPI_OFDM6) ? WPI_OFDM6 : i - 1;
2460 		/* try one time at this rate before falling back to "next" */
2461 		mrr.rates[i].ntries = 1;
2462 	}
2463 
2464 	/* setup MRR for control frames */
2465 	mrr.which = LE_32(WPI_MRR_CTL);
2466 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2467 	if (err != WPI_SUCCESS) {
2468 		WPI_DBG((WPI_DEBUG_MRR,
2469 		    "could not setup MRR for control frames\n"));
2470 		return (err);
2471 	}
2472 
2473 	/* setup MRR for data frames */
2474 	mrr.which = LE_32(WPI_MRR_DATA);
2475 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2476 	if (err != WPI_SUCCESS) {
2477 		WPI_DBG((WPI_DEBUG_MRR,
2478 		    "could not setup MRR for data frames\n"));
2479 		return (err);
2480 	}
2481 
2482 	return (WPI_SUCCESS);
2483 }
2484 
2485 static void
2486 wpi_set_led(wpi_sc_t *sc, uint8_t which, uint8_t off, uint8_t on)
2487 {
2488 	wpi_cmd_led_t led;
2489 
2490 	led.which = which;
2491 	led.unit = LE_32(100000);	/* on/off in unit of 100ms */
2492 	led.off = off;
2493 	led.on = on;
2494 
2495 	(void) wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof (led), 1);
2496 }
2497 
2498 static int
2499 wpi_auth(wpi_sc_t *sc)
2500 {
2501 	ieee80211com_t *ic = &sc->sc_ic;
2502 	ieee80211_node_t *in = ic->ic_bss;
2503 	wpi_node_t node;
2504 	int err;
2505 
2506 	/* update adapter's configuration */
2507 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
2508 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
2509 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2510 		sc->sc_config.cck_mask  = 0x03;
2511 		sc->sc_config.ofdm_mask = 0;
2512 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
2513 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
2514 		sc->sc_config.cck_mask  = 0;
2515 		sc->sc_config.ofdm_mask = 0x15;
2516 	} else {	/* assume 802.11b/g */
2517 		sc->sc_config.cck_mask  = 0x0f;
2518 		sc->sc_config.ofdm_mask = 0x15;
2519 	}
2520 
2521 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x cck %x ofdm %x"
2522 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
2523 	    sc->sc_config.chan, sc->sc_config.flags,
2524 	    sc->sc_config.cck_mask, sc->sc_config.ofdm_mask,
2525 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
2526 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
2527 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
2528 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2529 	    sizeof (wpi_config_t), 1);
2530 	if (err != WPI_SUCCESS) {
2531 		cmn_err(CE_WARN, "wpi_auth(): failed to configurate chan%d\n",
2532 		    sc->sc_config.chan);
2533 		return (err);
2534 	}
2535 
2536 	/* add default node */
2537 	(void) memset(&node, 0, sizeof (node));
2538 	IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
2539 	node.id = WPI_ID_BSS;
2540 	node.rate = wpi_plcp_signal(2);
2541 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
2542 	if (err != WPI_SUCCESS) {
2543 		cmn_err(CE_WARN, "wpi_auth(): failed to add BSS node\n");
2544 		return (err);
2545 	}
2546 
2547 	err = wpi_mrr_setup(sc);
2548 	if (err != WPI_SUCCESS) {
2549 		cmn_err(CE_WARN, "wpi_auth(): failed to setup MRR\n");
2550 		return (err);
2551 	}
2552 
2553 	return (WPI_SUCCESS);
2554 }
2555 
2556 /*
2557  * Send a scan request to the firmware.
2558  */
2559 static int
2560 wpi_scan(wpi_sc_t *sc)
2561 {
2562 	ieee80211com_t *ic = &sc->sc_ic;
2563 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2564 	wpi_tx_desc_t *desc;
2565 	wpi_tx_data_t *data;
2566 	wpi_tx_cmd_t *cmd;
2567 	wpi_scan_hdr_t *hdr;
2568 	wpi_scan_chan_t *chan;
2569 	struct ieee80211_frame *wh;
2570 	ieee80211_node_t *in = ic->ic_bss;
2571 	struct ieee80211_rateset *rs;
2572 	enum ieee80211_phymode mode;
2573 	uint8_t *frm;
2574 	int i, pktlen, nrates;
2575 
2576 	data = &ring->data[ring->cur];
2577 	desc = data->desc;
2578 	cmd = (wpi_tx_cmd_t *)data->dma_data.mem_va;
2579 
2580 	cmd->code = WPI_CMD_SCAN;
2581 	cmd->flags = 0;
2582 	cmd->qid = ring->qid;
2583 	cmd->idx = ring->cur;
2584 
2585 	hdr = (wpi_scan_hdr_t *)cmd->data;
2586 	(void) memset(hdr, 0, sizeof (wpi_scan_hdr_t));
2587 	hdr->first = 1;
2588 	hdr->nchan = 14;
2589 	hdr->len = hdr->nchan * sizeof (wpi_scan_chan_t);
2590 	hdr->quiet = LE_16(5);
2591 	hdr->threshold = LE_16(1);
2592 	hdr->filter = LE_32(5);
2593 	hdr->rate = wpi_plcp_signal(2);
2594 	hdr->id = WPI_ID_BROADCAST;
2595 	hdr->mask = LE_32(0xffffffff);
2596 	hdr->esslen = ic->ic_des_esslen;
2597 	if (ic->ic_des_esslen)
2598 		bcopy(ic->ic_des_essid, hdr->essid, ic->ic_des_esslen);
2599 	else
2600 		bzero(hdr->essid, sizeof (hdr->essid));
2601 	/*
2602 	 * Build a probe request frame.  Most of the following code is a
2603 	 * copy & paste of what is done in net80211.  Unfortunately, the
2604 	 * functions to add IEs are static and thus can't be reused here.
2605 	 */
2606 	wh = (struct ieee80211_frame *)(hdr + 1);
2607 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2608 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2609 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2610 	(void) memset(wh->i_addr1, 0xff, 6);
2611 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
2612 	(void) memset(wh->i_addr3, 0xff, 6);
2613 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2614 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2615 
2616 	frm = (uint8_t *)(wh + 1);
2617 
2618 	/* add essid IE */
2619 	*frm++ = IEEE80211_ELEMID_SSID;
2620 	*frm++ = in->in_esslen;
2621 	(void) memcpy(frm, in->in_essid, in->in_esslen);
2622 	frm += in->in_esslen;
2623 
2624 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
2625 	rs = &ic->ic_sup_rates[mode];
2626 
2627 	/* add supported rates IE */
2628 	*frm++ = IEEE80211_ELEMID_RATES;
2629 	nrates = rs->ir_nrates;
2630 	if (nrates > IEEE80211_RATE_SIZE)
2631 		nrates = IEEE80211_RATE_SIZE;
2632 	*frm++ = (uint8_t)nrates;
2633 	(void) memcpy(frm, rs->ir_rates, nrates);
2634 	frm += nrates;
2635 
2636 	/* add supported xrates IE */
2637 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
2638 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
2639 		*frm++ = IEEE80211_ELEMID_XRATES;
2640 		*frm++ = (uint8_t)nrates;
2641 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
2642 		frm += nrates;
2643 	}
2644 
2645 	/* add optionnal IE (usually an RSN IE) */
2646 	if (ic->ic_opt_ie != NULL) {
2647 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2648 		frm += ic->ic_opt_ie_len;
2649 	}
2650 
2651 	/* setup length of probe request */
2652 	hdr->pbrlen = LE_16(frm - (uint8_t *)wh);
2653 
2654 	/* align on a 4-byte boundary */
2655 	chan = (wpi_scan_chan_t *)frm;
2656 	for (i = 1; i <= hdr->nchan; i++, chan++) {
2657 		chan->flags = 3;
2658 		chan->chan = (uint8_t)i;
2659 		chan->magic = LE_16(0x62ab);
2660 		chan->active = LE_16(20);
2661 		chan->passive = LE_16(120);
2662 
2663 		frm += sizeof (wpi_scan_chan_t);
2664 	}
2665 
2666 	pktlen = frm - (uint8_t *)cmd;
2667 
2668 	desc->flags = LE_32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2669 	desc->segs[0].addr = LE_32(data->dma_data.cookie.dmac_address);
2670 	desc->segs[0].len  = LE_32(pktlen);
2671 
2672 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2673 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2674 
2675 	/* kick cmd ring */
2676 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2677 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2678 
2679 	return (WPI_SUCCESS);	/* will be notified async. of failure/success */
2680 }
2681 
2682 static int
2683 wpi_config(wpi_sc_t *sc)
2684 {
2685 	ieee80211com_t *ic = &sc->sc_ic;
2686 	wpi_txpower_t txpower;
2687 	wpi_power_t power;
2688 #ifdef WPI_BLUE_COEXISTENCE
2689 	wpi_bluetooth_t bluetooth;
2690 #endif
2691 	wpi_node_t node;
2692 	int err;
2693 
2694 	/* Intel's binary only daemon is a joke.. */
2695 
2696 	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
2697 	(void) memset(&txpower, 0, sizeof (txpower));
2698 	(void) memcpy(txpower.pwr1, sc->sc_pwr1, 14 * sizeof (uint16_t));
2699 	(void) memcpy(txpower.pwr2, sc->sc_pwr2, 14 * sizeof (uint16_t));
2700 	err = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof (txpower), 0);
2701 	if (err != WPI_SUCCESS) {
2702 		cmn_err(CE_WARN, "wpi_config(): failed to set txpower\n");
2703 		return (err);
2704 	}
2705 
2706 	/* set power mode */
2707 	(void) memset(&power, 0, sizeof (power));
2708 	power.flags = LE_32(0x8);
2709 	err = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof (power), 0);
2710 	if (err != WPI_SUCCESS) {
2711 		cmn_err(CE_WARN, "wpi_config(): failed to set power mode\n");
2712 		return (err);
2713 	}
2714 #ifdef WPI_BLUE_COEXISTENCE
2715 	/* configure bluetooth coexistence */
2716 	(void) memset(&bluetooth, 0, sizeof (bluetooth));
2717 	bluetooth.flags = 3;
2718 	bluetooth.lead = 0xaa;
2719 	bluetooth.kill = 1;
2720 	err = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth,
2721 	    sizeof (bluetooth), 0);
2722 	if (err != WPI_SUCCESS) {
2723 		cmn_err(CE_WARN,
2724 		    "wpi_config(): "
2725 		    "failed to configurate bluetooth coexistence\n");
2726 		return (err);
2727 	}
2728 #endif
2729 	/* configure adapter */
2730 	(void) memset(&sc->sc_config, 0, sizeof (wpi_config_t));
2731 	IEEE80211_ADDR_COPY(sc->sc_config.myaddr, ic->ic_macaddr);
2732 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2733 	sc->sc_config.flags = LE_32(WPI_CONFIG_TSF | WPI_CONFIG_AUTO |
2734 	    WPI_CONFIG_24GHZ);
2735 	sc->sc_config.filter = 0;
2736 	switch (ic->ic_opmode) {
2737 	case IEEE80211_M_STA:
2738 		sc->sc_config.mode = WPI_MODE_STA;
2739 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
2740 		    WPI_FILTER_NODECRYPTUNI | WPI_FILTER_NODECRYPTMUL);
2741 		break;
2742 	case IEEE80211_M_IBSS:
2743 	case IEEE80211_M_AHDEMO:
2744 		sc->sc_config.mode = WPI_MODE_IBSS;
2745 		break;
2746 	case IEEE80211_M_HOSTAP:
2747 		sc->sc_config.mode = WPI_MODE_HOSTAP;
2748 		break;
2749 	case IEEE80211_M_MONITOR:
2750 		sc->sc_config.mode = WPI_MODE_MONITOR;
2751 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
2752 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2753 		break;
2754 	}
2755 	sc->sc_config.cck_mask  = 0x0f;	/* not yet negotiated */
2756 	sc->sc_config.ofdm_mask = 0xff;	/* not yet negotiated */
2757 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2758 	    sizeof (wpi_config_t), 0);
2759 	if (err != WPI_SUCCESS) {
2760 		cmn_err(CE_WARN, "wpi_config(): "
2761 		    "failed to set configure command\n");
2762 		return (err);
2763 	}
2764 
2765 	/* add broadcast node */
2766 	(void) memset(&node, 0, sizeof (node));
2767 	(void) memset(node.bssid, 0xff, 6);
2768 	node.id = WPI_ID_BROADCAST;
2769 	node.rate = wpi_plcp_signal(2);
2770 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 0);
2771 	if (err != WPI_SUCCESS) {
2772 		cmn_err(CE_WARN, "wpi_config(): "
2773 		    "failed to add broadcast node\n");
2774 		return (err);
2775 	}
2776 
2777 	return (WPI_SUCCESS);
2778 }
2779 
2780 static void
2781 wpi_stop_master(wpi_sc_t *sc)
2782 {
2783 	uint32_t tmp;
2784 	int ntries;
2785 
2786 	tmp = WPI_READ(sc, WPI_RESET);
2787 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2788 
2789 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2790 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2791 		return;	/* already asleep */
2792 
2793 	for (ntries = 0; ntries < 2000; ntries++) {
2794 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2795 			break;
2796 		DELAY(1000);
2797 	}
2798 	if (ntries == 2000)
2799 		WPI_DBG((WPI_DEBUG_HW, "timeout waiting for master\n"));
2800 }
2801 
2802 static int
2803 wpi_power_up(wpi_sc_t *sc)
2804 {
2805 	uint32_t tmp;
2806 	int ntries;
2807 
2808 	wpi_mem_lock(sc);
2809 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2810 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2811 	wpi_mem_unlock(sc);
2812 
2813 	for (ntries = 0; ntries < 5000; ntries++) {
2814 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2815 			break;
2816 		DELAY(10);
2817 	}
2818 	if (ntries == 5000) {
2819 		cmn_err(CE_WARN,
2820 		    "wpi_power_up(): timeout waiting for NIC to power up\n");
2821 		return (ETIMEDOUT);
2822 	}
2823 	return (WPI_SUCCESS);
2824 }
2825 
2826 static int
2827 wpi_reset(wpi_sc_t *sc)
2828 {
2829 	uint32_t tmp;
2830 	int ntries;
2831 
2832 	/* clear any pending interrupts */
2833 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2834 
2835 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2836 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2837 
2838 	tmp = WPI_READ(sc, WPI_CHICKEN);
2839 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2840 
2841 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2842 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2843 
2844 	/* wait for clock stabilization */
2845 	for (ntries = 0; ntries < 1000; ntries++) {
2846 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2847 			break;
2848 		DELAY(10);
2849 	}
2850 	if (ntries == 1000) {
2851 		cmn_err(CE_WARN,
2852 		    "wpi_reset(): timeout waiting for clock stabilization\n");
2853 		return (ETIMEDOUT);
2854 	}
2855 
2856 	/* initialize EEPROM */
2857 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2858 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2859 		cmn_err(CE_WARN, "wpi_reset(): EEPROM not found\n");
2860 		return (EIO);
2861 	}
2862 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2863 
2864 	return (WPI_SUCCESS);
2865 }
2866 
2867 static void
2868 wpi_hw_config(wpi_sc_t *sc)
2869 {
2870 	uint16_t val;
2871 	uint32_t hw;
2872 
2873 	/* voodoo from the Linux "driver".. */
2874 	hw = WPI_READ(sc, WPI_HWCONFIG);
2875 
2876 	if ((sc->sc_rev & 0xc0) == 0x40)
2877 		hw |= WPI_HW_ALM_MB;
2878 	else if (!(sc->sc_rev & 0x80))
2879 		hw |= WPI_HW_ALM_MM;
2880 
2881 	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
2882 	if ((val & 0xff) == 0x80)
2883 		hw |= WPI_HW_SKU_MRC;
2884 
2885 	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
2886 	hw &= ~WPI_HW_REV_D;
2887 	if ((val & 0xf0) == 0xd0)
2888 		hw |= WPI_HW_REV_D;
2889 
2890 	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
2891 	if ((val & 0xff) > 1)
2892 		hw |= WPI_HW_TYPE_B;
2893 
2894 	WPI_DBG((WPI_DEBUG_HW, "setting h/w config %x\n", hw));
2895 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2896 }
2897 
2898 static int
2899 wpi_init(wpi_sc_t *sc)
2900 {
2901 	uint32_t tmp;
2902 	int qid, ntries, err;
2903 	clock_t clk;
2904 
2905 	mutex_enter(&sc->sc_glock);
2906 	sc->sc_flags &= ~WPI_F_FW_INIT;
2907 
2908 	(void) wpi_reset(sc);
2909 
2910 	wpi_mem_lock(sc);
2911 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2912 	DELAY(20);
2913 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2914 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2915 	wpi_mem_unlock(sc);
2916 
2917 	(void) wpi_power_up(sc);
2918 	wpi_hw_config(sc);
2919 
2920 	/* init Rx ring */
2921 	wpi_mem_lock(sc);
2922 	WPI_WRITE(sc, WPI_RX_BASE, sc->sc_rxq.dma_desc.cookie.dmac_address);
2923 	WPI_WRITE(sc, WPI_RX_RIDX_PTR,
2924 	    (uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
2925 	    offsetof(wpi_shared_t, next)));
2926 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & (~7));
2927 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
2928 	wpi_mem_unlock(sc);
2929 
2930 	/* init Tx rings */
2931 	wpi_mem_lock(sc);
2932 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
2933 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
2934 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
2935 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
2936 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
2937 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
2938 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
2939 
2940 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->sc_dma_sh.cookie.dmac_address);
2941 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
2942 
2943 	for (qid = 0; qid < 6; qid++) {
2944 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
2945 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
2946 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
2947 	}
2948 	wpi_mem_unlock(sc);
2949 
2950 	/* clear "radio off" and "disable command" bits (reversed logic) */
2951 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2952 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2953 
2954 	/* clear any pending interrupts */
2955 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2956 
2957 	/* enable interrupts */
2958 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
2959 
2960 	/* load firmware boot code into NIC */
2961 	err = wpi_load_microcode(sc);
2962 	if (err != WPI_SUCCESS) {
2963 		cmn_err(CE_WARN, "wpi_init(): failed to load microcode\n");
2964 		goto fail1;
2965 	}
2966 
2967 	/* load firmware .text segment into NIC */
2968 	err = wpi_load_firmware(sc, WPI_FW_TEXT);
2969 	if (err != WPI_SUCCESS) {
2970 		cmn_err(CE_WARN, "wpi_init(): "
2971 		    "failed to load firmware(text)\n");
2972 		goto fail1;
2973 	}
2974 
2975 	/* load firmware .data segment into NIC */
2976 	err = wpi_load_firmware(sc, WPI_FW_DATA);
2977 	if (err != WPI_SUCCESS) {
2978 		cmn_err(CE_WARN, "wpi_init(): "
2979 		    "failed to load firmware(data)\n");
2980 		goto fail1;
2981 	}
2982 
2983 	/* now press "execute" ;-) */
2984 	tmp = WPI_READ(sc, WPI_RESET);
2985 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
2986 	WPI_WRITE(sc, WPI_RESET, tmp);
2987 
2988 	/* ..and wait at most one second for adapter to initialize */
2989 	clk = ddi_get_lbolt() + drv_usectohz(2000000);
2990 	while (!(sc->sc_flags & WPI_F_FW_INIT)) {
2991 		if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
2992 			break;
2993 	}
2994 	if (!(sc->sc_flags & WPI_F_FW_INIT)) {
2995 		cmn_err(CE_WARN,
2996 		    "wpi_init(): timeout waiting for firmware init\n");
2997 		goto fail1;
2998 	}
2999 
3000 	/* wait for thermal sensors to calibrate */
3001 	for (ntries = 0; ntries < 1000; ntries++) {
3002 		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
3003 			break;
3004 		DELAY(10);
3005 	}
3006 
3007 	if (ntries == 1000) {
3008 		WPI_DBG((WPI_DEBUG_HW,
3009 		    "wpi_init(): timeout waiting for thermal sensors "
3010 		    "calibration\n"));
3011 	}
3012 
3013 	WPI_DBG((WPI_DEBUG_HW, "temperature %d\n",
3014 	    (int)WPI_READ(sc, WPI_TEMPERATURE)));
3015 
3016 	err = wpi_config(sc);
3017 	if (err) {
3018 		cmn_err(CE_WARN, "wpi_init(): failed to configure device\n");
3019 		goto fail1;
3020 	}
3021 
3022 	mutex_exit(&sc->sc_glock);
3023 	return (WPI_SUCCESS);
3024 
3025 fail1:
3026 	err = WPI_FAIL;
3027 	mutex_exit(&sc->sc_glock);
3028 	return (err);
3029 }
3030 
3031 static void
3032 wpi_stop(wpi_sc_t *sc)
3033 {
3034 	uint32_t tmp;
3035 	int ac;
3036 
3037 
3038 	mutex_enter(&sc->sc_glock);
3039 	/* disable interrupts */
3040 	WPI_WRITE(sc, WPI_MASK, 0);
3041 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3042 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3043 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3044 
3045 	wpi_mem_lock(sc);
3046 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3047 	wpi_mem_unlock(sc);
3048 
3049 	/* reset all Tx rings */
3050 	for (ac = 0; ac < 4; ac++)
3051 		wpi_reset_tx_ring(sc, &sc->sc_txq[ac]);
3052 	wpi_reset_tx_ring(sc, &sc->sc_cmdq);
3053 	wpi_reset_tx_ring(sc, &sc->sc_svcq);
3054 
3055 	/* reset Rx ring */
3056 	wpi_reset_rx_ring(sc);
3057 
3058 	wpi_mem_lock(sc);
3059 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3060 	wpi_mem_unlock(sc);
3061 
3062 	DELAY(5);
3063 
3064 	wpi_stop_master(sc);
3065 
3066 	sc->sc_tx_timer = 0;
3067 	tmp = WPI_READ(sc, WPI_RESET);
3068 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3069 	mutex_exit(&sc->sc_glock);
3070 }
3071 
3072 /*
3073  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
3074  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
3075  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
3076  * INRIA Sophia - Projet Planete
3077  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
3078  */
3079 #define	is_success(amrr)	\
3080 	((amrr)->retrycnt < (amrr)->txcnt / 10)
3081 #define	is_failure(amrr)	\
3082 	((amrr)->retrycnt > (amrr)->txcnt / 3)
3083 #define	is_enough(amrr)		\
3084 	((amrr)->txcnt > 100)
3085 #define	is_min_rate(in)		\
3086 	((in)->in_txrate == 0)
3087 #define	is_max_rate(in)		\
3088 	((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
3089 #define	increase_rate(in)	\
3090 	((in)->in_txrate++)
3091 #define	decrease_rate(in)	\
3092 	((in)->in_txrate--)
3093 #define	reset_cnt(amrr)		\
3094 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
3095 
3096 #define	WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
3097 #define	WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
3098 
3099 static void
3100 wpi_amrr_init(wpi_amrr_t *amrr)
3101 {
3102 	amrr->success = 0;
3103 	amrr->recovery = 0;
3104 	amrr->txcnt = amrr->retrycnt = 0;
3105 	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3106 }
3107 
3108 static void
3109 wpi_amrr_timeout(wpi_sc_t *sc)
3110 {
3111 	ieee80211com_t *ic = &sc->sc_ic;
3112 
3113 	WPI_DBG((WPI_DEBUG_RATECTL, "wpi_amrr_timeout() enter\n"));
3114 	if (ic->ic_opmode == IEEE80211_M_STA)
3115 		wpi_amrr_ratectl(NULL, ic->ic_bss);
3116 	else
3117 		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
3118 	sc->sc_clk = ddi_get_lbolt();
3119 }
3120 
3121 /* ARGSUSED */
3122 static void
3123 wpi_amrr_ratectl(void *arg, ieee80211_node_t *in)
3124 {
3125 	wpi_amrr_t *amrr = (wpi_amrr_t *)in;
3126 	int need_change = 0;
3127 
3128 	if (is_success(amrr) && is_enough(amrr)) {
3129 		amrr->success++;
3130 		if (amrr->success >= amrr->success_threshold &&
3131 		    !is_max_rate(in)) {
3132 			amrr->recovery = 1;
3133 			amrr->success = 0;
3134 			increase_rate(in);
3135 			WPI_DBG((WPI_DEBUG_RATECTL,
3136 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
3137 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3138 			need_change = 1;
3139 		} else {
3140 			amrr->recovery = 0;
3141 		}
3142 	} else if (is_failure(amrr)) {
3143 		amrr->success = 0;
3144 		if (!is_min_rate(in)) {
3145 			if (amrr->recovery) {
3146 				amrr->success_threshold++;
3147 				if (amrr->success_threshold >
3148 				    WPI_AMRR_MAX_SUCCESS_THRESHOLD)
3149 					amrr->success_threshold =
3150 					    WPI_AMRR_MAX_SUCCESS_THRESHOLD;
3151 			} else {
3152 				amrr->success_threshold =
3153 				    WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3154 			}
3155 			decrease_rate(in);
3156 			WPI_DBG((WPI_DEBUG_RATECTL,
3157 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
3158 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3159 			need_change = 1;
3160 		}
3161 		amrr->recovery = 0;	/* paper is incorrect */
3162 	}
3163 
3164 	if (is_enough(amrr) || need_change)
3165 		reset_cnt(amrr);
3166 }
3167