xref: /illumos-gate/usr/src/uts/common/io/wpi/wpi.c (revision d09832051bb4b41ce2b3202c09fceedc089678af)
1 /*
2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/byteorder.h>
29 #include <sys/conf.h>
30 #include <sys/cmn_err.h>
31 #include <sys/stat.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/strsubr.h>
35 #include <sys/ethernet.h>
36 #include <inet/common.h>
37 #include <inet/nd.h>
38 #include <inet/mi.h>
39 #include <sys/note.h>
40 #include <sys/stream.h>
41 #include <sys/strsun.h>
42 #include <sys/modctl.h>
43 #include <sys/devops.h>
44 #include <sys/dlpi.h>
45 #include <sys/mac_provider.h>
46 #include <sys/mac_wifi.h>
47 #include <sys/net80211.h>
48 #include <sys/net80211_proto.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/pci.h>
52 
53 #include "wpireg.h"
54 #include "wpivar.h"
55 #include <inet/wifi_ioctl.h>
56 
57 #ifdef DEBUG
58 #define	WPI_DEBUG_80211		(1 << 0)
59 #define	WPI_DEBUG_CMD		(1 << 1)
60 #define	WPI_DEBUG_DMA		(1 << 2)
61 #define	WPI_DEBUG_EEPROM	(1 << 3)
62 #define	WPI_DEBUG_FW		(1 << 4)
63 #define	WPI_DEBUG_HW		(1 << 5)
64 #define	WPI_DEBUG_INTR		(1 << 6)
65 #define	WPI_DEBUG_MRR		(1 << 7)
66 #define	WPI_DEBUG_PIO		(1 << 8)
67 #define	WPI_DEBUG_RX		(1 << 9)
68 #define	WPI_DEBUG_SCAN		(1 << 10)
69 #define	WPI_DEBUG_TX		(1 << 11)
70 #define	WPI_DEBUG_RATECTL	(1 << 12)
71 #define	WPI_DEBUG_RADIO		(1 << 13)
72 #define	WPI_DEBUG_RESUME	(1 << 14)
73 uint32_t wpi_dbg_flags = 0;
74 #define	WPI_DBG(x) \
75 	wpi_dbg x
76 #else
77 #define	WPI_DBG(x)
78 #endif
79 
80 static void	*wpi_soft_state_p = NULL;
81 static uint8_t wpi_fw_bin [] = {
82 #include "fw-wpi/ipw3945.ucode.hex"
83 };
84 
85 /* DMA attributes for a shared page */
86 static ddi_dma_attr_t sh_dma_attr = {
87 	DMA_ATTR_V0,	/* version of this structure */
88 	0,		/* lowest usable address */
89 	0xffffffffU,	/* highest usable address */
90 	0xffffffffU,	/* maximum DMAable byte count */
91 	0x1000,		/* alignment in bytes */
92 	0x1000,		/* burst sizes (any?) */
93 	1,		/* minimum transfer */
94 	0xffffffffU,	/* maximum transfer */
95 	0xffffffffU,	/* maximum segment length */
96 	1,		/* maximum number of segments */
97 	1,		/* granularity */
98 	0,		/* flags (reserved) */
99 };
100 
101 /* DMA attributes for a ring descriptor */
102 static ddi_dma_attr_t ring_desc_dma_attr = {
103 	DMA_ATTR_V0,	/* version of this structure */
104 	0,		/* lowest usable address */
105 	0xffffffffU,	/* highest usable address */
106 	0xffffffffU,	/* maximum DMAable byte count */
107 	0x4000,		/* alignment in bytes */
108 	0x100,		/* burst sizes (any?) */
109 	1,		/* minimum transfer */
110 	0xffffffffU,	/* maximum transfer */
111 	0xffffffffU,	/* maximum segment length */
112 	1,		/* maximum number of segments */
113 	1,		/* granularity */
114 	0,		/* flags (reserved) */
115 };
116 
117 
118 /* DMA attributes for a tx cmd */
119 static ddi_dma_attr_t tx_cmd_dma_attr = {
120 	DMA_ATTR_V0,	/* version of this structure */
121 	0,		/* lowest usable address */
122 	0xffffffffU,	/* highest usable address */
123 	0xffffffffU,	/* maximum DMAable byte count */
124 	4,		/* alignment in bytes */
125 	0x100,		/* burst sizes (any?) */
126 	1,		/* minimum transfer */
127 	0xffffffffU,	/* maximum transfer */
128 	0xffffffffU,	/* maximum segment length */
129 	1,		/* maximum number of segments */
130 	1,		/* granularity */
131 	0,		/* flags (reserved) */
132 };
133 
134 /* DMA attributes for a rx buffer */
135 static ddi_dma_attr_t rx_buffer_dma_attr = {
136 	DMA_ATTR_V0,	/* version of this structure */
137 	0,		/* lowest usable address */
138 	0xffffffffU,	/* highest usable address */
139 	0xffffffffU,	/* maximum DMAable byte count */
140 	1,		/* alignment in bytes */
141 	0x100,		/* burst sizes (any?) */
142 	1,		/* minimum transfer */
143 	0xffffffffU,	/* maximum transfer */
144 	0xffffffffU,	/* maximum segment length */
145 	1,		/* maximum number of segments */
146 	1,		/* granularity */
147 	0,		/* flags (reserved) */
148 };
149 
150 /*
151  * DMA attributes for a tx buffer.
152  * the maximum number of segments is 4 for the hardware.
153  * now all the wifi drivers put the whole frame in a single
154  * descriptor, so we define the maximum  number of segments 4,
155  * just the same as the rx_buffer. we consider leverage the HW
156  * ability in the future, that is why we don't define rx and tx
157  * buffer_dma_attr as the same.
158  */
159 static ddi_dma_attr_t tx_buffer_dma_attr = {
160 	DMA_ATTR_V0,	/* version of this structure */
161 	0,		/* lowest usable address */
162 	0xffffffffU,	/* highest usable address */
163 	0xffffffffU,	/* maximum DMAable byte count */
164 	1,		/* alignment in bytes */
165 	0x100,		/* burst sizes (any?) */
166 	1,		/* minimum transfer */
167 	0xffffffffU,	/* maximum transfer */
168 	0xffffffffU,	/* maximum segment length */
169 	1,		/* maximum number of segments */
170 	1,		/* granularity */
171 	0,		/* flags (reserved) */
172 };
173 
174 /* DMA attributes for a load firmware */
175 static ddi_dma_attr_t fw_buffer_dma_attr = {
176 	DMA_ATTR_V0,	/* version of this structure */
177 	0,		/* lowest usable address */
178 	0xffffffffU,	/* highest usable address */
179 	0x7fffffff,	/* maximum DMAable byte count */
180 	4,		/* alignment in bytes */
181 	0x100,		/* burst sizes (any?) */
182 	1,		/* minimum transfer */
183 	0xffffffffU,	/* maximum transfer */
184 	0xffffffffU,	/* maximum segment length */
185 	4,		/* maximum number of segments */
186 	1,		/* granularity */
187 	0,		/* flags (reserved) */
188 };
189 
190 /* regs access attributes */
191 static ddi_device_acc_attr_t wpi_reg_accattr = {
192 	DDI_DEVICE_ATTR_V0,
193 	DDI_STRUCTURE_LE_ACC,
194 	DDI_STRICTORDER_ACC,
195 	DDI_DEFAULT_ACC
196 };
197 
198 /* DMA access attributes */
199 static ddi_device_acc_attr_t wpi_dma_accattr = {
200 	DDI_DEVICE_ATTR_V0,
201 	DDI_NEVERSWAP_ACC,
202 	DDI_STRICTORDER_ACC,
203 	DDI_DEFAULT_ACC
204 };
205 
206 static int	wpi_ring_init(wpi_sc_t *);
207 static void	wpi_ring_free(wpi_sc_t *);
208 static int	wpi_alloc_shared(wpi_sc_t *);
209 static void	wpi_free_shared(wpi_sc_t *);
210 static int	wpi_alloc_fw_dma(wpi_sc_t *);
211 static void	wpi_free_fw_dma(wpi_sc_t *);
212 static int	wpi_alloc_rx_ring(wpi_sc_t *);
213 static void	wpi_reset_rx_ring(wpi_sc_t *);
214 static void	wpi_free_rx_ring(wpi_sc_t *);
215 static int	wpi_alloc_tx_ring(wpi_sc_t *, wpi_tx_ring_t *, int, int);
216 static void	wpi_reset_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
217 static void	wpi_free_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
218 
219 static ieee80211_node_t *wpi_node_alloc(ieee80211com_t *);
220 static void	wpi_node_free(ieee80211_node_t *);
221 static int	wpi_newstate(ieee80211com_t *, enum ieee80211_state, int);
222 static int	wpi_key_set(ieee80211com_t *, const struct ieee80211_key *,
223     const uint8_t mac[IEEE80211_ADDR_LEN]);
224 static void	wpi_mem_lock(wpi_sc_t *);
225 static void	wpi_mem_unlock(wpi_sc_t *);
226 static uint32_t	wpi_mem_read(wpi_sc_t *, uint16_t);
227 static void	wpi_mem_write(wpi_sc_t *, uint16_t, uint32_t);
228 static void	wpi_mem_write_region_4(wpi_sc_t *, uint16_t,
229 		    const uint32_t *, int);
230 static uint16_t	wpi_read_prom_word(wpi_sc_t *, uint32_t);
231 static int	wpi_load_microcode(wpi_sc_t *);
232 static int	wpi_load_firmware(wpi_sc_t *, uint32_t);
233 static void	wpi_rx_intr(wpi_sc_t *, wpi_rx_desc_t *,
234 		    wpi_rx_data_t *);
235 static void	wpi_tx_intr(wpi_sc_t *, wpi_rx_desc_t *,
236 		    wpi_rx_data_t *);
237 static void	wpi_cmd_intr(wpi_sc_t *, wpi_rx_desc_t *);
238 static uint_t	wpi_intr(caddr_t);
239 static uint_t	wpi_notif_softintr(caddr_t);
240 static uint8_t	wpi_plcp_signal(int);
241 static void	wpi_read_eeprom(wpi_sc_t *);
242 static int	wpi_cmd(wpi_sc_t *, int, const void *, int, int);
243 static int	wpi_mrr_setup(wpi_sc_t *);
244 static void	wpi_set_led(wpi_sc_t *, uint8_t, uint8_t, uint8_t);
245 static int	wpi_auth(wpi_sc_t *);
246 static int	wpi_scan(wpi_sc_t *);
247 static int	wpi_config(wpi_sc_t *);
248 static void	wpi_stop_master(wpi_sc_t *);
249 static int	wpi_power_up(wpi_sc_t *);
250 static int	wpi_reset(wpi_sc_t *);
251 static void	wpi_hw_config(wpi_sc_t *);
252 static int	wpi_init(wpi_sc_t *);
253 static void	wpi_stop(wpi_sc_t *);
254 static int	wpi_quiesce(dev_info_t *dip);
255 static void	wpi_amrr_init(wpi_amrr_t *);
256 static void	wpi_amrr_timeout(wpi_sc_t *);
257 static void	wpi_amrr_ratectl(void *, ieee80211_node_t *);
258 
259 static int wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
260 static int wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
261 
262 /*
263  * GLD specific operations
264  */
265 static int	wpi_m_stat(void *arg, uint_t stat, uint64_t *val);
266 static int	wpi_m_start(void *arg);
267 static void	wpi_m_stop(void *arg);
268 static int	wpi_m_unicst(void *arg, const uint8_t *macaddr);
269 static int	wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m);
270 static int	wpi_m_promisc(void *arg, boolean_t on);
271 static mblk_t  *wpi_m_tx(void *arg, mblk_t *mp);
272 static void	wpi_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
273 static int	wpi_m_setprop(void *arg, const char *pr_name,
274     mac_prop_id_t wldp_pr_num, uint_t wldp_length, const void *wldp_buf);
275 static int	wpi_m_getprop(void *arg, const char *pr_name,
276     mac_prop_id_t wldp_pr_num, uint_t pr_flags, uint_t wldp_lenth,
277     void *wldp_buf, uint_t *);
278 static void	wpi_destroy_locks(wpi_sc_t *sc);
279 static int	wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
280 static void	wpi_thread(wpi_sc_t *sc);
281 
282 /*
283  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
284  */
285 static const struct ieee80211_rateset wpi_rateset_11b =
286 	{ 4, { 2, 4, 11, 22 } };
287 
288 static const struct ieee80211_rateset wpi_rateset_11g =
289 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
290 
291 static const uint8_t wpi_ridx_to_signal[] = {
292 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
293 	/* R1-R4 (ral/ural is R4-R1) */
294 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
295 	/* CCK: device-dependent */
296 	10, 20, 55, 110
297 };
298 
299 /*
300  * For mfthread only
301  */
302 extern pri_t minclsyspri;
303 
304 /*
305  * Module Loading Data & Entry Points
306  */
307 DDI_DEFINE_STREAM_OPS(wpi_devops, nulldev, nulldev, wpi_attach,
308     wpi_detach, nodev, NULL, D_MP, NULL, wpi_quiesce);
309 
310 static struct modldrv wpi_modldrv = {
311 	&mod_driverops,
312 	"Intel(R) PRO/Wireless 3945ABG driver",
313 	&wpi_devops
314 };
315 
316 static struct modlinkage wpi_modlinkage = {
317 	MODREV_1,
318 	&wpi_modldrv,
319 	NULL
320 };
321 
322 int
323 _init(void)
324 {
325 	int	status;
326 
327 	status = ddi_soft_state_init(&wpi_soft_state_p,
328 	    sizeof (wpi_sc_t), 1);
329 	if (status != DDI_SUCCESS)
330 		return (status);
331 
332 	mac_init_ops(&wpi_devops, "wpi");
333 	status = mod_install(&wpi_modlinkage);
334 	if (status != DDI_SUCCESS) {
335 		mac_fini_ops(&wpi_devops);
336 		ddi_soft_state_fini(&wpi_soft_state_p);
337 	}
338 
339 	return (status);
340 }
341 
342 int
343 _fini(void)
344 {
345 	int status;
346 
347 	status = mod_remove(&wpi_modlinkage);
348 	if (status == DDI_SUCCESS) {
349 		mac_fini_ops(&wpi_devops);
350 		ddi_soft_state_fini(&wpi_soft_state_p);
351 	}
352 
353 	return (status);
354 }
355 
356 int
357 _info(struct modinfo *mip)
358 {
359 	return (mod_info(&wpi_modlinkage, mip));
360 }
361 
362 /*
363  * Mac Call Back entries
364  */
365 mac_callbacks_t	wpi_m_callbacks = {
366 	MC_IOCTL | MC_SETPROP | MC_GETPROP,
367 	wpi_m_stat,
368 	wpi_m_start,
369 	wpi_m_stop,
370 	wpi_m_promisc,
371 	wpi_m_multicst,
372 	wpi_m_unicst,
373 	wpi_m_tx,
374 	wpi_m_ioctl,
375 	NULL,
376 	NULL,
377 	NULL,
378 	wpi_m_setprop,
379 	wpi_m_getprop
380 };
381 
382 #ifdef DEBUG
383 void
384 wpi_dbg(uint32_t flags, const char *fmt, ...)
385 {
386 	va_list	ap;
387 
388 	if (flags & wpi_dbg_flags) {
389 		va_start(ap, fmt);
390 		vcmn_err(CE_NOTE, fmt, ap);
391 		va_end(ap);
392 	}
393 }
394 #endif
395 /*
396  * device operations
397  */
398 int
399 wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
400 {
401 	wpi_sc_t		*sc;
402 	ddi_acc_handle_t	cfg_handle;
403 	caddr_t			cfg_base;
404 	ieee80211com_t	*ic;
405 	int			instance, err, i;
406 	char			strbuf[32];
407 	wifi_data_t		wd = { 0 };
408 	mac_register_t		*macp;
409 
410 	switch (cmd) {
411 	case DDI_ATTACH:
412 		break;
413 	case DDI_RESUME:
414 		sc = ddi_get_soft_state(wpi_soft_state_p,
415 		    ddi_get_instance(dip));
416 		ASSERT(sc != NULL);
417 		if (sc->sc_flags & WPI_F_RUNNING)
418 			(void) wpi_init(sc);
419 
420 		mutex_enter(&sc->sc_glock);
421 		sc->sc_flags &= ~WPI_F_SUSPEND;
422 		sc->sc_flags |= WPI_F_LAZY_RESUME;
423 		mutex_exit(&sc->sc_glock);
424 
425 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: resume \n"));
426 		return (DDI_SUCCESS);
427 	default:
428 		err = DDI_FAILURE;
429 		goto attach_fail1;
430 	}
431 
432 	instance = ddi_get_instance(dip);
433 	err = ddi_soft_state_zalloc(wpi_soft_state_p, instance);
434 	if (err != DDI_SUCCESS) {
435 		cmn_err(CE_WARN,
436 		    "wpi_attach(): failed to allocate soft state\n");
437 		goto attach_fail1;
438 	}
439 	sc = ddi_get_soft_state(wpi_soft_state_p, instance);
440 	sc->sc_dip = dip;
441 
442 	err = ddi_regs_map_setup(dip, 0, &cfg_base, 0, 0,
443 	    &wpi_reg_accattr, &cfg_handle);
444 	if (err != DDI_SUCCESS) {
445 		cmn_err(CE_WARN,
446 		    "wpi_attach(): failed to map config spaces regs\n");
447 		goto attach_fail2;
448 	}
449 	sc->sc_rev = ddi_get8(cfg_handle,
450 	    (uint8_t *)(cfg_base + PCI_CONF_REVID));
451 	ddi_put8(cfg_handle, (uint8_t *)(cfg_base + 0x41), 0);
452 	sc->sc_clsz = ddi_get16(cfg_handle,
453 	    (uint16_t *)(cfg_base + PCI_CONF_CACHE_LINESZ));
454 	ddi_regs_map_free(&cfg_handle);
455 	if (!sc->sc_clsz)
456 		sc->sc_clsz = 16;
457 	sc->sc_clsz = (sc->sc_clsz << 2);
458 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
459 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
460 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
461 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
462 	/*
463 	 * Map operating registers
464 	 */
465 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
466 	    0, 0, &wpi_reg_accattr, &sc->sc_handle);
467 	if (err != DDI_SUCCESS) {
468 		cmn_err(CE_WARN,
469 		    "wpi_attach(): failed to map device regs\n");
470 		goto attach_fail2;
471 	}
472 
473 	/*
474 	 * Allocate shared page.
475 	 */
476 	err = wpi_alloc_shared(sc);
477 	if (err != DDI_SUCCESS) {
478 		cmn_err(CE_WARN, "failed to allocate shared page\n");
479 		goto attach_fail3;
480 	}
481 
482 	/*
483 	 * Get the hw conf, including MAC address, then init all rings.
484 	 */
485 	wpi_read_eeprom(sc);
486 	err = wpi_ring_init(sc);
487 	if (err != DDI_SUCCESS) {
488 		cmn_err(CE_WARN, "wpi_attach(): "
489 		    "failed to allocate and initialize ring\n");
490 		goto attach_fail4;
491 	}
492 
493 	sc->sc_hdr = (const wpi_firmware_hdr_t *)wpi_fw_bin;
494 
495 	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
496 	sc->sc_text = (const char *)(sc->sc_hdr + 1);
497 	sc->sc_data = sc->sc_text + LE_32(sc->sc_hdr->textsz);
498 	sc->sc_boot = sc->sc_data + LE_32(sc->sc_hdr->datasz);
499 	err = wpi_alloc_fw_dma(sc);
500 	if (err != DDI_SUCCESS) {
501 		cmn_err(CE_WARN, "wpi_attach(): "
502 		    "failed to allocate firmware dma\n");
503 		goto attach_fail5;
504 	}
505 
506 	/*
507 	 * Initialize mutexs and condvars
508 	 */
509 	err = ddi_get_iblock_cookie(dip, 0, &sc->sc_iblk);
510 	if (err != DDI_SUCCESS) {
511 		cmn_err(CE_WARN,
512 		    "wpi_attach(): failed to do ddi_get_iblock_cookie()\n");
513 		goto attach_fail6;
514 	}
515 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, sc->sc_iblk);
516 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER, sc->sc_iblk);
517 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
518 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
519 
520 	/*
521 	 * initialize the mfthread
522 	 */
523 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
524 	    (void *) sc->sc_iblk);
525 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
526 	sc->sc_mf_thread = NULL;
527 	sc->sc_mf_thread_switch = 0;
528 	/*
529 	 * Initialize the wifi part, which will be used by
530 	 * generic layer
531 	 */
532 	ic = &sc->sc_ic;
533 	ic->ic_phytype  = IEEE80211_T_OFDM;
534 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
535 	ic->ic_state    = IEEE80211_S_INIT;
536 	ic->ic_maxrssi  = 70; /* experimental number */
537 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
538 	    IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
539 
540 	/*
541 	 * use software WEP and TKIP, hardware CCMP;
542 	 */
543 	ic->ic_caps |= IEEE80211_C_AES_CCM;
544 	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
545 
546 	/* set supported .11b and .11g rates */
547 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
548 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
549 
550 	/* set supported .11b and .11g channels (1 through 14) */
551 	for (i = 1; i <= 14; i++) {
552 		ic->ic_sup_channels[i].ich_freq =
553 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
554 		ic->ic_sup_channels[i].ich_flags =
555 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
556 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ |
557 		    IEEE80211_CHAN_PASSIVE;
558 	}
559 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
560 	ic->ic_xmit = wpi_send;
561 	/*
562 	 * init Wifi layer
563 	 */
564 	ieee80211_attach(ic);
565 
566 	/* register WPA door */
567 	ieee80211_register_door(ic, ddi_driver_name(dip),
568 	    ddi_get_instance(dip));
569 
570 	/*
571 	 * Override 80211 default routines
572 	 */
573 	sc->sc_newstate = ic->ic_newstate;
574 	ic->ic_newstate = wpi_newstate;
575 	ic->ic_node_alloc = wpi_node_alloc;
576 	ic->ic_node_free = wpi_node_free;
577 	ic->ic_crypto.cs_key_set = wpi_key_set;
578 	ieee80211_media_init(ic);
579 	/*
580 	 * initialize default tx key
581 	 */
582 	ic->ic_def_txkey = 0;
583 
584 	err = ddi_add_softintr(dip, DDI_SOFTINT_LOW,
585 	    &sc->sc_notif_softint_id, &sc->sc_iblk, NULL, wpi_notif_softintr,
586 	    (caddr_t)sc);
587 	if (err != DDI_SUCCESS) {
588 		cmn_err(CE_WARN,
589 		    "wpi_attach(): failed to do ddi_add_softintr()\n");
590 		goto attach_fail7;
591 	}
592 
593 	/*
594 	 * Add the interrupt handler
595 	 */
596 	err = ddi_add_intr(dip, 0, &sc->sc_iblk, NULL,
597 	    wpi_intr, (caddr_t)sc);
598 	if (err != DDI_SUCCESS) {
599 		cmn_err(CE_WARN,
600 		    "wpi_attach(): failed to do ddi_add_intr()\n");
601 		goto attach_fail8;
602 	}
603 
604 	/*
605 	 * Initialize pointer to device specific functions
606 	 */
607 	wd.wd_secalloc = WIFI_SEC_NONE;
608 	wd.wd_opmode = ic->ic_opmode;
609 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
610 
611 	macp = mac_alloc(MAC_VERSION);
612 	if (err != DDI_SUCCESS) {
613 		cmn_err(CE_WARN,
614 		    "wpi_attach(): failed to do mac_alloc()\n");
615 		goto attach_fail9;
616 	}
617 
618 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
619 	macp->m_driver		= sc;
620 	macp->m_dip		= dip;
621 	macp->m_src_addr	= ic->ic_macaddr;
622 	macp->m_callbacks	= &wpi_m_callbacks;
623 	macp->m_min_sdu		= 0;
624 	macp->m_max_sdu		= IEEE80211_MTU;
625 	macp->m_pdata		= &wd;
626 	macp->m_pdata_size	= sizeof (wd);
627 
628 	/*
629 	 * Register the macp to mac
630 	 */
631 	err = mac_register(macp, &ic->ic_mach);
632 	mac_free(macp);
633 	if (err != DDI_SUCCESS) {
634 		cmn_err(CE_WARN,
635 		    "wpi_attach(): failed to do mac_register()\n");
636 		goto attach_fail9;
637 	}
638 
639 	/*
640 	 * Create minor node of type DDI_NT_NET_WIFI
641 	 */
642 	(void) snprintf(strbuf, sizeof (strbuf), "wpi%d", instance);
643 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
644 	    instance + 1, DDI_NT_NET_WIFI, 0);
645 	if (err != DDI_SUCCESS)
646 		cmn_err(CE_WARN,
647 		    "wpi_attach(): failed to do ddi_create_minor_node()\n");
648 
649 	/*
650 	 * Notify link is down now
651 	 */
652 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
653 
654 	/*
655 	 * create the mf thread to handle the link status,
656 	 * recovery fatal error, etc.
657 	 */
658 
659 	sc->sc_mf_thread_switch = 1;
660 	if (sc->sc_mf_thread == NULL)
661 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
662 		    wpi_thread, sc, 0, &p0, TS_RUN, minclsyspri);
663 
664 	sc->sc_flags |= WPI_F_ATTACHED;
665 
666 	return (DDI_SUCCESS);
667 attach_fail9:
668 	ddi_remove_intr(dip, 0, sc->sc_iblk);
669 attach_fail8:
670 	ddi_remove_softintr(sc->sc_notif_softint_id);
671 	sc->sc_notif_softint_id = NULL;
672 attach_fail7:
673 	ieee80211_detach(ic);
674 	wpi_destroy_locks(sc);
675 attach_fail6:
676 	wpi_free_fw_dma(sc);
677 attach_fail5:
678 	wpi_ring_free(sc);
679 attach_fail4:
680 	wpi_free_shared(sc);
681 attach_fail3:
682 	ddi_regs_map_free(&sc->sc_handle);
683 attach_fail2:
684 	ddi_soft_state_free(wpi_soft_state_p, instance);
685 attach_fail1:
686 	return (err);
687 }
688 
689 int
690 wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
691 {
692 	wpi_sc_t	*sc;
693 	int err;
694 
695 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
696 	ASSERT(sc != NULL);
697 
698 	switch (cmd) {
699 	case DDI_DETACH:
700 		break;
701 	case DDI_SUSPEND:
702 		mutex_enter(&sc->sc_glock);
703 		sc->sc_flags |= WPI_F_SUSPEND;
704 		mutex_exit(&sc->sc_glock);
705 
706 		if (sc->sc_flags & WPI_F_RUNNING) {
707 			wpi_stop(sc);
708 		}
709 
710 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: suspend \n"));
711 		return (DDI_SUCCESS);
712 	default:
713 		return (DDI_FAILURE);
714 	}
715 	if (!(sc->sc_flags & WPI_F_ATTACHED))
716 		return (DDI_FAILURE);
717 
718 	err = mac_disable(sc->sc_ic.ic_mach);
719 	if (err != DDI_SUCCESS)
720 		return (err);
721 
722 	/*
723 	 * Destroy the mf_thread
724 	 */
725 	mutex_enter(&sc->sc_mt_lock);
726 	sc->sc_mf_thread_switch = 0;
727 	while (sc->sc_mf_thread != NULL) {
728 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
729 			break;
730 	}
731 	mutex_exit(&sc->sc_mt_lock);
732 
733 	wpi_stop(sc);
734 
735 	/*
736 	 * Unregiste from the MAC layer subsystem
737 	 */
738 	(void) mac_unregister(sc->sc_ic.ic_mach);
739 
740 	mutex_enter(&sc->sc_glock);
741 	wpi_free_fw_dma(sc);
742 	wpi_ring_free(sc);
743 	wpi_free_shared(sc);
744 	mutex_exit(&sc->sc_glock);
745 
746 	ddi_remove_intr(dip, 0, sc->sc_iblk);
747 	ddi_remove_softintr(sc->sc_notif_softint_id);
748 	sc->sc_notif_softint_id = NULL;
749 
750 	/*
751 	 * detach ieee80211
752 	 */
753 	ieee80211_detach(&sc->sc_ic);
754 
755 	wpi_destroy_locks(sc);
756 
757 	ddi_regs_map_free(&sc->sc_handle);
758 	ddi_remove_minor_node(dip, NULL);
759 	ddi_soft_state_free(wpi_soft_state_p, ddi_get_instance(dip));
760 
761 	return (DDI_SUCCESS);
762 }
763 
764 static void
765 wpi_destroy_locks(wpi_sc_t *sc)
766 {
767 	cv_destroy(&sc->sc_mt_cv);
768 	mutex_destroy(&sc->sc_mt_lock);
769 	cv_destroy(&sc->sc_cmd_cv);
770 	cv_destroy(&sc->sc_fw_cv);
771 	mutex_destroy(&sc->sc_tx_lock);
772 	mutex_destroy(&sc->sc_glock);
773 }
774 
775 /*
776  * Allocate an area of memory and a DMA handle for accessing it
777  */
778 static int
779 wpi_alloc_dma_mem(wpi_sc_t *sc, size_t memsize, ddi_dma_attr_t *dma_attr_p,
780 	ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, wpi_dma_t *dma_p)
781 {
782 	caddr_t vaddr;
783 	int err;
784 
785 	/*
786 	 * Allocate handle
787 	 */
788 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
789 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
790 	if (err != DDI_SUCCESS) {
791 		dma_p->dma_hdl = NULL;
792 		return (DDI_FAILURE);
793 	}
794 
795 	/*
796 	 * Allocate memory
797 	 */
798 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
799 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
800 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
801 	if (err != DDI_SUCCESS) {
802 		ddi_dma_free_handle(&dma_p->dma_hdl);
803 		dma_p->dma_hdl = NULL;
804 		dma_p->acc_hdl = NULL;
805 		return (DDI_FAILURE);
806 	}
807 
808 	/*
809 	 * Bind the two together
810 	 */
811 	dma_p->mem_va = vaddr;
812 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
813 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
814 	    &dma_p->cookie, &dma_p->ncookies);
815 	if (err != DDI_DMA_MAPPED) {
816 		ddi_dma_mem_free(&dma_p->acc_hdl);
817 		ddi_dma_free_handle(&dma_p->dma_hdl);
818 		dma_p->acc_hdl = NULL;
819 		dma_p->dma_hdl = NULL;
820 		return (DDI_FAILURE);
821 	}
822 
823 	dma_p->nslots = ~0U;
824 	dma_p->size = ~0U;
825 	dma_p->token = ~0U;
826 	dma_p->offset = 0;
827 	return (DDI_SUCCESS);
828 }
829 
830 /*
831  * Free one allocated area of DMAable memory
832  */
833 static void
834 wpi_free_dma_mem(wpi_dma_t *dma_p)
835 {
836 	if (dma_p->dma_hdl != NULL) {
837 		if (dma_p->ncookies) {
838 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
839 			dma_p->ncookies = 0;
840 		}
841 		ddi_dma_free_handle(&dma_p->dma_hdl);
842 		dma_p->dma_hdl = NULL;
843 	}
844 
845 	if (dma_p->acc_hdl != NULL) {
846 		ddi_dma_mem_free(&dma_p->acc_hdl);
847 		dma_p->acc_hdl = NULL;
848 	}
849 }
850 
851 /*
852  * Allocate an area of dma memory for firmware load.
853  * Idealy, this allocation should be a one time action, that is,
854  * the memory will be freed after the firmware is uploaded to the
855  * card. but since a recovery mechanism for the fatal firmware need
856  * reload the firmware, and re-allocate dma at run time may be failed,
857  * so we allocate it at attach and keep it in the whole lifecycle of
858  * the driver.
859  */
860 static int
861 wpi_alloc_fw_dma(wpi_sc_t *sc)
862 {
863 	int i, err = DDI_SUCCESS;
864 	wpi_dma_t *dma_p;
865 
866 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
867 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
868 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
869 	    &sc->sc_dma_fw_text);
870 	dma_p = &sc->sc_dma_fw_text;
871 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
872 	    dma_p->ncookies, dma_p->cookie.dmac_address,
873 	    dma_p->cookie.dmac_size));
874 	if (err != DDI_SUCCESS) {
875 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
876 		    "text dma memory");
877 		goto fail;
878 	}
879 	for (i = 0; i < dma_p->ncookies; i++) {
880 		sc->sc_fw_text_cookie[i] = dma_p->cookie;
881 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
882 	}
883 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
884 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
885 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
886 	    &sc->sc_dma_fw_data);
887 	dma_p = &sc->sc_dma_fw_data;
888 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
889 	    dma_p->ncookies, dma_p->cookie.dmac_address,
890 	    dma_p->cookie.dmac_size));
891 	if (err != DDI_SUCCESS) {
892 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
893 		    "data dma memory");
894 		goto fail;
895 	}
896 	for (i = 0; i < dma_p->ncookies; i++) {
897 		sc->sc_fw_data_cookie[i] = dma_p->cookie;
898 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
899 	}
900 fail:
901 	return (err);
902 }
903 
904 static void
905 wpi_free_fw_dma(wpi_sc_t *sc)
906 {
907 	wpi_free_dma_mem(&sc->sc_dma_fw_text);
908 	wpi_free_dma_mem(&sc->sc_dma_fw_data);
909 }
910 
911 /*
912  * Allocate a shared page between host and NIC.
913  */
914 static int
915 wpi_alloc_shared(wpi_sc_t *sc)
916 {
917 	int err = DDI_SUCCESS;
918 
919 	/* must be aligned on a 4K-page boundary */
920 	err = wpi_alloc_dma_mem(sc, sizeof (wpi_shared_t),
921 	    &sh_dma_attr, &wpi_dma_accattr,
922 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
923 	    &sc->sc_dma_sh);
924 	if (err != DDI_SUCCESS)
925 		goto fail;
926 	sc->sc_shared = (wpi_shared_t *)sc->sc_dma_sh.mem_va;
927 	return (err);
928 
929 fail:
930 	wpi_free_shared(sc);
931 	return (err);
932 }
933 
934 static void
935 wpi_free_shared(wpi_sc_t *sc)
936 {
937 	wpi_free_dma_mem(&sc->sc_dma_sh);
938 }
939 
940 static int
941 wpi_alloc_rx_ring(wpi_sc_t *sc)
942 {
943 	wpi_rx_ring_t *ring;
944 	wpi_rx_data_t *data;
945 	int i, err = DDI_SUCCESS;
946 
947 	ring = &sc->sc_rxq;
948 	ring->cur = 0;
949 
950 	err = wpi_alloc_dma_mem(sc, WPI_RX_RING_COUNT * sizeof (uint32_t),
951 	    &ring_desc_dma_attr, &wpi_dma_accattr,
952 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
953 	    &ring->dma_desc);
954 	if (err != DDI_SUCCESS) {
955 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring desc failed\n"));
956 		goto fail;
957 	}
958 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
959 
960 	/*
961 	 * Allocate Rx buffers.
962 	 */
963 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
964 		data = &ring->data[i];
965 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
966 		    &rx_buffer_dma_attr, &wpi_dma_accattr,
967 		    DDI_DMA_READ | DDI_DMA_STREAMING,
968 		    &data->dma_data);
969 		if (err != DDI_SUCCESS) {
970 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring buf[%d] "
971 			    "failed\n", i));
972 			goto fail;
973 		}
974 
975 		ring->desc[i] = LE_32(data->dma_data.cookie.dmac_address);
976 	}
977 
978 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
979 
980 	return (err);
981 
982 fail:
983 	wpi_free_rx_ring(sc);
984 	return (err);
985 }
986 
987 static void
988 wpi_reset_rx_ring(wpi_sc_t *sc)
989 {
990 	int ntries;
991 
992 	wpi_mem_lock(sc);
993 
994 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
995 	for (ntries = 0; ntries < 2000; ntries++) {
996 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
997 			break;
998 		DELAY(1000);
999 	}
1000 	if (ntries == 2000)
1001 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Rx ring\n"));
1002 
1003 	wpi_mem_unlock(sc);
1004 
1005 	sc->sc_rxq.cur = 0;
1006 }
1007 
1008 static void
1009 wpi_free_rx_ring(wpi_sc_t *sc)
1010 {
1011 	int i;
1012 
1013 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1014 		if (sc->sc_rxq.data[i].dma_data.dma_hdl)
1015 			WPI_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
1016 			    DDI_DMA_SYNC_FORCPU);
1017 		wpi_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
1018 	}
1019 
1020 	if (sc->sc_rxq.dma_desc.dma_hdl)
1021 		WPI_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
1022 	wpi_free_dma_mem(&sc->sc_rxq.dma_desc);
1023 }
1024 
1025 static int
1026 wpi_alloc_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring, int count, int qid)
1027 {
1028 	wpi_tx_data_t *data;
1029 	wpi_tx_desc_t *desc_h;
1030 	uint32_t paddr_desc_h;
1031 	wpi_tx_cmd_t *cmd_h;
1032 	uint32_t paddr_cmd_h;
1033 	int i, err = DDI_SUCCESS;
1034 
1035 	ring->qid = qid;
1036 	ring->count = count;
1037 	ring->queued = 0;
1038 	ring->cur = 0;
1039 
1040 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_desc_t),
1041 	    &ring_desc_dma_attr, &wpi_dma_accattr,
1042 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1043 	    &ring->dma_desc);
1044 	if (err != DDI_SUCCESS) {
1045 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring desc[%d] failed\n",
1046 		    qid));
1047 		goto fail;
1048 	}
1049 
1050 	/* update shared page with ring's base address */
1051 	sc->sc_shared->txbase[qid] = ring->dma_desc.cookie.dmac_address;
1052 
1053 	desc_h = (wpi_tx_desc_t *)ring->dma_desc.mem_va;
1054 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1055 
1056 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_cmd_t),
1057 	    &tx_cmd_dma_attr, &wpi_dma_accattr,
1058 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1059 	    &ring->dma_cmd);
1060 	if (err != DDI_SUCCESS) {
1061 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring cmd[%d] failed\n",
1062 		    qid));
1063 		goto fail;
1064 	}
1065 
1066 	cmd_h = (wpi_tx_cmd_t *)ring->dma_cmd.mem_va;
1067 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1068 
1069 	/*
1070 	 * Allocate Tx buffers.
1071 	 */
1072 	ring->data = kmem_zalloc(sizeof (wpi_tx_data_t) * count, KM_NOSLEEP);
1073 	if (ring->data == NULL) {
1074 		WPI_DBG((WPI_DEBUG_DMA, "could not allocate tx data slots\n"));
1075 		goto fail;
1076 	}
1077 
1078 	for (i = 0; i < count; i++) {
1079 		data = &ring->data[i];
1080 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1081 		    &tx_buffer_dma_attr, &wpi_dma_accattr,
1082 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1083 		    &data->dma_data);
1084 		if (err != DDI_SUCCESS) {
1085 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring buf[%d] "
1086 			    "failed\n", i));
1087 			goto fail;
1088 		}
1089 
1090 		data->desc = desc_h + i;
1091 		data->paddr_desc = paddr_desc_h +
1092 		    ((uintptr_t)data->desc - (uintptr_t)desc_h);
1093 		data->cmd = cmd_h + i;
1094 		data->paddr_cmd = paddr_cmd_h +
1095 		    ((uintptr_t)data->cmd - (uintptr_t)cmd_h);
1096 	}
1097 
1098 	return (err);
1099 
1100 fail:
1101 	wpi_free_tx_ring(sc, ring);
1102 	return (err);
1103 }
1104 
1105 static void
1106 wpi_reset_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1107 {
1108 	wpi_tx_data_t *data;
1109 	int i, ntries;
1110 
1111 	wpi_mem_lock(sc);
1112 
1113 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1114 	for (ntries = 0; ntries < 100; ntries++) {
1115 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1116 			break;
1117 		DELAY(10);
1118 	}
1119 #ifdef DEBUG
1120 	if (ntries == 100 && wpi_dbg_flags > 0) {
1121 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Tx ring %d\n",
1122 		    ring->qid));
1123 	}
1124 #endif
1125 	wpi_mem_unlock(sc);
1126 
1127 	if (!(sc->sc_flags & WPI_F_QUIESCED)) {
1128 		for (i = 0; i < ring->count; i++) {
1129 			data = &ring->data[i];
1130 			WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1131 		}
1132 	}
1133 
1134 	ring->queued = 0;
1135 	ring->cur = 0;
1136 }
1137 
1138 /*ARGSUSED*/
1139 static void
1140 wpi_free_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1141 {
1142 	int i;
1143 
1144 	if (ring->dma_desc.dma_hdl != NULL)
1145 		WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1146 	wpi_free_dma_mem(&ring->dma_desc);
1147 
1148 	if (ring->dma_cmd.dma_hdl != NULL)
1149 		WPI_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1150 	wpi_free_dma_mem(&ring->dma_cmd);
1151 
1152 	if (ring->data != NULL) {
1153 		for (i = 0; i < ring->count; i++) {
1154 			if (ring->data[i].dma_data.dma_hdl)
1155 				WPI_DMA_SYNC(ring->data[i].dma_data,
1156 				    DDI_DMA_SYNC_FORDEV);
1157 			wpi_free_dma_mem(&ring->data[i].dma_data);
1158 		}
1159 		kmem_free(ring->data, ring->count * sizeof (wpi_tx_data_t));
1160 		ring->data = NULL;
1161 	}
1162 }
1163 
1164 static int
1165 wpi_ring_init(wpi_sc_t *sc)
1166 {
1167 	int i, err = DDI_SUCCESS;
1168 
1169 	for (i = 0; i < 4; i++) {
1170 		err = wpi_alloc_tx_ring(sc, &sc->sc_txq[i], WPI_TX_RING_COUNT,
1171 		    i);
1172 		if (err != DDI_SUCCESS)
1173 			goto fail;
1174 	}
1175 	err = wpi_alloc_tx_ring(sc, &sc->sc_cmdq, WPI_CMD_RING_COUNT, 4);
1176 	if (err != DDI_SUCCESS)
1177 		goto fail;
1178 	err = wpi_alloc_tx_ring(sc, &sc->sc_svcq, WPI_SVC_RING_COUNT, 5);
1179 	if (err != DDI_SUCCESS)
1180 		goto fail;
1181 	err = wpi_alloc_rx_ring(sc);
1182 	if (err != DDI_SUCCESS)
1183 		goto fail;
1184 	return (err);
1185 
1186 fail:
1187 	return (err);
1188 }
1189 
1190 static void
1191 wpi_ring_free(wpi_sc_t *sc)
1192 {
1193 	int i = 4;
1194 
1195 	wpi_free_rx_ring(sc);
1196 	wpi_free_tx_ring(sc, &sc->sc_svcq);
1197 	wpi_free_tx_ring(sc, &sc->sc_cmdq);
1198 	while (--i >= 0) {
1199 		wpi_free_tx_ring(sc, &sc->sc_txq[i]);
1200 	}
1201 }
1202 
1203 /* ARGSUSED */
1204 static ieee80211_node_t *
1205 wpi_node_alloc(ieee80211com_t *ic)
1206 {
1207 	wpi_amrr_t *amrr;
1208 
1209 	amrr = kmem_zalloc(sizeof (wpi_amrr_t), KM_SLEEP);
1210 	if (amrr != NULL)
1211 		wpi_amrr_init(amrr);
1212 	return (&amrr->in);
1213 }
1214 
1215 static void
1216 wpi_node_free(ieee80211_node_t *in)
1217 {
1218 	ieee80211com_t *ic = in->in_ic;
1219 
1220 	ic->ic_node_cleanup(in);
1221 	if (in->in_wpa_ie != NULL)
1222 		ieee80211_free(in->in_wpa_ie);
1223 	kmem_free(in, sizeof (wpi_amrr_t));
1224 }
1225 
1226 /*ARGSUSED*/
1227 static int
1228 wpi_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1229 {
1230 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1231 	ieee80211_node_t *in = ic->ic_bss;
1232 	enum ieee80211_state ostate;
1233 	int i, err = WPI_SUCCESS;
1234 
1235 	mutex_enter(&sc->sc_glock);
1236 	ostate = ic->ic_state;
1237 	switch (nstate) {
1238 	case IEEE80211_S_SCAN:
1239 		switch (ostate) {
1240 		case IEEE80211_S_INIT:
1241 		{
1242 			wpi_node_t node;
1243 
1244 			sc->sc_flags |= WPI_F_SCANNING;
1245 			sc->sc_scan_next = 0;
1246 
1247 			/* make the link LED blink while we're scanning */
1248 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1249 
1250 			/*
1251 			 * clear association to receive beacons from all
1252 			 * BSS'es
1253 			 */
1254 			sc->sc_config.state = 0;
1255 			sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1256 
1257 			WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x "
1258 			    "filter %x\n",
1259 			    sc->sc_config.chan, sc->sc_config.flags,
1260 			    sc->sc_config.filter));
1261 
1262 			err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1263 			    sizeof (wpi_config_t), 1);
1264 			if (err != WPI_SUCCESS) {
1265 				cmn_err(CE_WARN,
1266 				    "could not clear association\n");
1267 				sc->sc_flags &= ~WPI_F_SCANNING;
1268 				mutex_exit(&sc->sc_glock);
1269 				return (err);
1270 			}
1271 
1272 			/* add broadcast node to send probe request */
1273 			(void) memset(&node, 0, sizeof (node));
1274 			(void) memset(&node.bssid, 0xff, IEEE80211_ADDR_LEN);
1275 			node.id = WPI_ID_BROADCAST;
1276 
1277 			err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node,
1278 			    sizeof (node), 1);
1279 			if (err != WPI_SUCCESS) {
1280 				cmn_err(CE_WARN,
1281 				    "could not add broadcast node\n");
1282 				sc->sc_flags &= ~WPI_F_SCANNING;
1283 				mutex_exit(&sc->sc_glock);
1284 				return (err);
1285 			}
1286 			break;
1287 		}
1288 		case IEEE80211_S_SCAN:
1289 			mutex_exit(&sc->sc_glock);
1290 			/* step to next channel before actual FW scan */
1291 			err = sc->sc_newstate(ic, nstate, arg);
1292 			mutex_enter(&sc->sc_glock);
1293 			if ((err != 0) || ((err = wpi_scan(sc)) != 0)) {
1294 				cmn_err(CE_WARN,
1295 				    "could not initiate scan\n");
1296 				sc->sc_flags &= ~WPI_F_SCANNING;
1297 				ieee80211_cancel_scan(ic);
1298 			}
1299 			mutex_exit(&sc->sc_glock);
1300 			return (err);
1301 		default:
1302 			break;
1303 		}
1304 		sc->sc_clk = 0;
1305 		break;
1306 
1307 	case IEEE80211_S_AUTH:
1308 		if (ostate == IEEE80211_S_SCAN) {
1309 			sc->sc_flags &= ~WPI_F_SCANNING;
1310 		}
1311 
1312 		/* reset state to handle reassociations correctly */
1313 		sc->sc_config.state = 0;
1314 		sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1315 
1316 		if ((err = wpi_auth(sc)) != 0) {
1317 			WPI_DBG((WPI_DEBUG_80211,
1318 			    "could not send authentication request\n"));
1319 			mutex_exit(&sc->sc_glock);
1320 			return (err);
1321 		}
1322 		break;
1323 
1324 	case IEEE80211_S_RUN:
1325 		if (ostate == IEEE80211_S_SCAN) {
1326 			sc->sc_flags &= ~WPI_F_SCANNING;
1327 		}
1328 
1329 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1330 			/* link LED blinks while monitoring */
1331 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1332 			break;
1333 		}
1334 
1335 		if (ic->ic_opmode != IEEE80211_M_STA) {
1336 			(void) wpi_auth(sc);
1337 			/* need setup beacon here */
1338 		}
1339 		WPI_DBG((WPI_DEBUG_80211, "wpi: associated."));
1340 
1341 		/* update adapter's configuration */
1342 		sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
1343 		/* short preamble/slot time are negotiated when associating */
1344 		sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
1345 		    WPI_CONFIG_SHSLOT);
1346 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1347 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
1348 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1349 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
1350 		sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
1351 		if (ic->ic_opmode != IEEE80211_M_STA)
1352 			sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
1353 
1354 		WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
1355 		    sc->sc_config.chan, sc->sc_config.flags));
1356 		err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1357 		    sizeof (wpi_config_t), 1);
1358 		if (err != WPI_SUCCESS) {
1359 			WPI_DBG((WPI_DEBUG_80211,
1360 			    "could not update configuration\n"));
1361 			mutex_exit(&sc->sc_glock);
1362 			return (err);
1363 		}
1364 
1365 		/* start automatic rate control */
1366 		mutex_enter(&sc->sc_mt_lock);
1367 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1368 			sc->sc_flags |= WPI_F_RATE_AUTO_CTL;
1369 			/* set rate to some reasonable initial value */
1370 			i = in->in_rates.ir_nrates - 1;
1371 			while (i > 0 && IEEE80211_RATE(i) > 72)
1372 				i--;
1373 			in->in_txrate = i;
1374 		} else {
1375 			sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
1376 		}
1377 		mutex_exit(&sc->sc_mt_lock);
1378 
1379 		/* link LED always on while associated */
1380 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1381 		break;
1382 
1383 	case IEEE80211_S_INIT:
1384 		sc->sc_flags &= ~WPI_F_SCANNING;
1385 		break;
1386 
1387 	case IEEE80211_S_ASSOC:
1388 		sc->sc_flags &= ~WPI_F_SCANNING;
1389 		break;
1390 	}
1391 
1392 	mutex_exit(&sc->sc_glock);
1393 	return (sc->sc_newstate(ic, nstate, arg));
1394 }
1395 
1396 /*ARGSUSED*/
1397 static int wpi_key_set(ieee80211com_t *ic, const struct ieee80211_key *k,
1398     const uint8_t mac[IEEE80211_ADDR_LEN])
1399 {
1400 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1401 	wpi_node_t node;
1402 	int err;
1403 
1404 	switch (k->wk_cipher->ic_cipher) {
1405 	case IEEE80211_CIPHER_WEP:
1406 	case IEEE80211_CIPHER_TKIP:
1407 		return (1); /* sofeware do it. */
1408 	case IEEE80211_CIPHER_AES_CCM:
1409 		break;
1410 	default:
1411 		return (0);
1412 	}
1413 	sc->sc_config.filter &= ~(WPI_FILTER_NODECRYPTUNI |
1414 	    WPI_FILTER_NODECRYPTMUL);
1415 
1416 	mutex_enter(&sc->sc_glock);
1417 
1418 	/* update ap/multicast node */
1419 	(void) memset(&node, 0, sizeof (node));
1420 	if (IEEE80211_IS_MULTICAST(mac)) {
1421 		(void) memset(node.bssid, 0xff, 6);
1422 		node.id = WPI_ID_BROADCAST;
1423 	} else {
1424 		IEEE80211_ADDR_COPY(node.bssid, ic->ic_bss->in_bssid);
1425 		node.id = WPI_ID_BSS;
1426 	}
1427 	if (k->wk_flags & IEEE80211_KEY_XMIT) {
1428 		node.key_flags = 0;
1429 		node.keyp = k->wk_keyix;
1430 	} else {
1431 		node.key_flags = (1 << 14);
1432 		node.keyp = k->wk_keyix + 4;
1433 	}
1434 	(void) memcpy(node.key, k->wk_key, k->wk_keylen);
1435 	node.key_flags |= (2 | (1 << 3) | (k->wk_keyix << 8));
1436 	node.sta_mask = 1;
1437 	node.control = 1;
1438 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
1439 	if (err != WPI_SUCCESS) {
1440 		cmn_err(CE_WARN, "wpi_key_set():"
1441 		    "failed to update ap node\n");
1442 		mutex_exit(&sc->sc_glock);
1443 		return (0);
1444 	}
1445 	mutex_exit(&sc->sc_glock);
1446 	return (1);
1447 }
1448 
1449 /*
1450  * Grab exclusive access to NIC memory.
1451  */
1452 static void
1453 wpi_mem_lock(wpi_sc_t *sc)
1454 {
1455 	uint32_t tmp;
1456 	int ntries;
1457 
1458 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1459 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1460 
1461 	/* spin until we actually get the lock */
1462 	for (ntries = 0; ntries < 1000; ntries++) {
1463 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1464 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1465 			break;
1466 		DELAY(10);
1467 	}
1468 	if (ntries == 1000)
1469 		WPI_DBG((WPI_DEBUG_PIO, "could not lock memory\n"));
1470 }
1471 
1472 /*
1473  * Release lock on NIC memory.
1474  */
1475 static void
1476 wpi_mem_unlock(wpi_sc_t *sc)
1477 {
1478 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1479 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1480 }
1481 
1482 static uint32_t
1483 wpi_mem_read(wpi_sc_t *sc, uint16_t addr)
1484 {
1485 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1486 	return (WPI_READ(sc, WPI_READ_MEM_DATA));
1487 }
1488 
1489 static void
1490 wpi_mem_write(wpi_sc_t *sc, uint16_t addr, uint32_t data)
1491 {
1492 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1493 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1494 }
1495 
1496 static void
1497 wpi_mem_write_region_4(wpi_sc_t *sc, uint16_t addr,
1498     const uint32_t *data, int wlen)
1499 {
1500 	for (; wlen > 0; wlen--, data++, addr += 4)
1501 		wpi_mem_write(sc, addr, *data);
1502 }
1503 
1504 /*
1505  * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
1506  * using the traditional bit-bang method.
1507  */
1508 static uint16_t
1509 wpi_read_prom_word(wpi_sc_t *sc, uint32_t addr)
1510 {
1511 	uint32_t val;
1512 	int ntries;
1513 
1514 	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1515 
1516 	wpi_mem_lock(sc);
1517 	for (ntries = 0; ntries < 10; ntries++) {
1518 		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1519 			break;
1520 		DELAY(10);
1521 	}
1522 	wpi_mem_unlock(sc);
1523 
1524 	if (ntries == 10) {
1525 		WPI_DBG((WPI_DEBUG_PIO, "could not read EEPROM\n"));
1526 		return (0xdead);
1527 	}
1528 	return (val >> 16);
1529 }
1530 
1531 /*
1532  * The firmware boot code is small and is intended to be copied directly into
1533  * the NIC internal memory.
1534  */
1535 static int
1536 wpi_load_microcode(wpi_sc_t *sc)
1537 {
1538 	const char *ucode;
1539 	int size;
1540 
1541 	ucode = sc->sc_boot;
1542 	size = LE_32(sc->sc_hdr->bootsz);
1543 	/* check that microcode size is a multiple of 4 */
1544 	if (size & 3)
1545 		return (EINVAL);
1546 
1547 	size /= sizeof (uint32_t);
1548 
1549 	wpi_mem_lock(sc);
1550 
1551 	/* copy microcode image into NIC memory */
1552 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1553 	    size);
1554 
1555 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1556 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1557 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1558 
1559 	/* run microcode */
1560 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1561 
1562 	wpi_mem_unlock(sc);
1563 
1564 	return (WPI_SUCCESS);
1565 }
1566 
1567 /*
1568  * The firmware text and data segments are transferred to the NIC using DMA.
1569  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1570  * where to find it.  Once the NIC has copied the firmware into its internal
1571  * memory, we can free our local copy in the driver.
1572  */
1573 static int
1574 wpi_load_firmware(wpi_sc_t *sc, uint32_t target)
1575 {
1576 	const char *fw;
1577 	int size;
1578 	wpi_dma_t *dma_p;
1579 	ddi_dma_cookie_t *cookie;
1580 	wpi_tx_desc_t desc;
1581 	int i, ntries, err = WPI_SUCCESS;
1582 
1583 	/* only text and data here */
1584 	if (target == WPI_FW_TEXT) {
1585 		fw = sc->sc_text;
1586 		size = LE_32(sc->sc_hdr->textsz);
1587 		dma_p = &sc->sc_dma_fw_text;
1588 		cookie = sc->sc_fw_text_cookie;
1589 	} else {
1590 		fw = sc->sc_data;
1591 		size = LE_32(sc->sc_hdr->datasz);
1592 		dma_p = &sc->sc_dma_fw_data;
1593 		cookie = sc->sc_fw_data_cookie;
1594 	}
1595 
1596 	/* copy firmware image to DMA-safe memory */
1597 	(void) memcpy(dma_p->mem_va, fw, size);
1598 
1599 	/* make sure the adapter will get up-to-date values */
1600 	(void) ddi_dma_sync(dma_p->dma_hdl, 0, size, DDI_DMA_SYNC_FORDEV);
1601 
1602 	(void) memset(&desc, 0, sizeof (desc));
1603 	desc.flags = LE_32(WPI_PAD32(size) << 28 | dma_p->ncookies << 24);
1604 	for (i = 0; i < dma_p->ncookies; i++) {
1605 		WPI_DBG((WPI_DEBUG_DMA, "cookie%d addr:%x size:%x\n",
1606 		    i, cookie[i].dmac_address, cookie[i].dmac_size));
1607 		desc.segs[i].addr = cookie[i].dmac_address;
1608 		desc.segs[i].len = (uint32_t)cookie[i].dmac_size;
1609 	}
1610 
1611 	wpi_mem_lock(sc);
1612 
1613 	/* tell adapter where to copy image in its internal memory */
1614 	WPI_WRITE(sc, WPI_FW_TARGET, target);
1615 
1616 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1617 
1618 	/* copy firmware descriptor into NIC memory */
1619 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1620 	    sizeof desc / sizeof (uint32_t));
1621 
1622 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1623 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1624 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1625 
1626 	/* wait while the adapter is busy copying the firmware */
1627 	for (ntries = 0; ntries < 100; ntries++) {
1628 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1629 			break;
1630 		DELAY(1000);
1631 	}
1632 	if (ntries == 100) {
1633 		WPI_DBG((WPI_DEBUG_FW, "timeout transferring firmware\n"));
1634 		err = ETIMEDOUT;
1635 	}
1636 
1637 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1638 
1639 	wpi_mem_unlock(sc);
1640 
1641 	return (err);
1642 }
1643 
1644 /*ARGSUSED*/
1645 static void
1646 wpi_rx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1647 {
1648 	ieee80211com_t *ic = &sc->sc_ic;
1649 	wpi_rx_ring_t *ring = &sc->sc_rxq;
1650 	wpi_rx_stat_t *stat;
1651 	wpi_rx_head_t *head;
1652 	wpi_rx_tail_t *tail;
1653 	ieee80211_node_t *in;
1654 	struct ieee80211_frame *wh;
1655 	mblk_t *mp;
1656 	uint16_t len;
1657 
1658 	stat = (wpi_rx_stat_t *)(desc + 1);
1659 
1660 	if (stat->len > WPI_STAT_MAXLEN) {
1661 		WPI_DBG((WPI_DEBUG_RX, "invalid rx statistic header\n"));
1662 		return;
1663 	}
1664 
1665 	head = (wpi_rx_head_t *)((caddr_t)(stat + 1) + stat->len);
1666 	tail = (wpi_rx_tail_t *)((caddr_t)(head + 1) + LE_16(head->len));
1667 
1668 	len = LE_16(head->len);
1669 
1670 	WPI_DBG((WPI_DEBUG_RX, "rx intr: idx=%d len=%d stat len=%d rssi=%d "
1671 	    "rate=%x chan=%d tstamp=%llu", ring->cur, LE_32(desc->len),
1672 	    len, (int8_t)stat->rssi, head->rate, head->chan,
1673 	    LE_64(tail->tstamp)));
1674 
1675 	if ((len < 20) || (len > sc->sc_dmabuf_sz)) {
1676 		sc->sc_rx_err++;
1677 		return;
1678 	}
1679 
1680 	/*
1681 	 * Discard Rx frames with bad CRC early
1682 	 */
1683 	if ((LE_32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1684 		WPI_DBG((WPI_DEBUG_RX, "rx tail flags error %x\n",
1685 		    LE_32(tail->flags)));
1686 		sc->sc_rx_err++;
1687 		return;
1688 	}
1689 
1690 	/* update Rx descriptor */
1691 	/* ring->desc[ring->cur] = LE_32(data->dma_data.cookie.dmac_address); */
1692 
1693 #ifdef WPI_BPF
1694 #ifndef WPI_CURRENT
1695 	if (sc->sc_drvbpf != NULL) {
1696 #else
1697 	if (bpf_peers_present(sc->sc_drvbpf)) {
1698 #endif
1699 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1700 
1701 		tap->wr_flags = 0;
1702 		tap->wr_rate = head->rate;
1703 		tap->wr_chan_freq =
1704 		    LE_16(ic->ic_channels[head->chan].ic_freq);
1705 		tap->wr_chan_flags =
1706 		    LE_16(ic->ic_channels[head->chan].ic_flags);
1707 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1708 		tap->wr_dbm_antnoise = (int8_t)LE_16(stat->noise);
1709 		tap->wr_tsft = tail->tstamp;
1710 		tap->wr_antenna = (LE_16(head->flags) >> 4) & 0xf;
1711 		switch (head->rate) {
1712 		/* CCK rates */
1713 		case  10: tap->wr_rate =   2; break;
1714 		case  20: tap->wr_rate =   4; break;
1715 		case  55: tap->wr_rate =  11; break;
1716 		case 110: tap->wr_rate =  22; break;
1717 		/* OFDM rates */
1718 		case 0xd: tap->wr_rate =  12; break;
1719 		case 0xf: tap->wr_rate =  18; break;
1720 		case 0x5: tap->wr_rate =  24; break;
1721 		case 0x7: tap->wr_rate =  36; break;
1722 		case 0x9: tap->wr_rate =  48; break;
1723 		case 0xb: tap->wr_rate =  72; break;
1724 		case 0x1: tap->wr_rate =  96; break;
1725 		case 0x3: tap->wr_rate = 108; break;
1726 		/* unknown rate: should not happen */
1727 		default:  tap->wr_rate =   0;
1728 		}
1729 		if (LE_16(head->flags) & 0x4)
1730 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1731 
1732 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1733 	}
1734 #endif
1735 	/* grab a reference to the source node */
1736 	wh = (struct ieee80211_frame *)(head + 1);
1737 
1738 #ifdef DEBUG
1739 	if (wpi_dbg_flags & WPI_DEBUG_RX)
1740 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
1741 #endif
1742 
1743 	in = ieee80211_find_rxnode(ic, wh);
1744 	mp = allocb(len, BPRI_MED);
1745 	if (mp) {
1746 		(void) memcpy(mp->b_wptr, wh, len);
1747 		mp->b_wptr += len;
1748 
1749 		/* send the frame to the 802.11 layer */
1750 		(void) ieee80211_input(ic, mp, in, stat->rssi, 0);
1751 	} else {
1752 		sc->sc_rx_nobuf++;
1753 		WPI_DBG((WPI_DEBUG_RX,
1754 		    "wpi_rx_intr(): alloc rx buf failed\n"));
1755 	}
1756 	/* release node reference */
1757 	ieee80211_free_node(in);
1758 }
1759 
1760 /*ARGSUSED*/
1761 static void
1762 wpi_tx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1763 {
1764 	ieee80211com_t *ic = &sc->sc_ic;
1765 	wpi_tx_ring_t *ring = &sc->sc_txq[desc->qid & 0x3];
1766 	/* wpi_tx_data_t *txdata = &ring->data[desc->idx]; */
1767 	wpi_tx_stat_t *stat = (wpi_tx_stat_t *)(desc + 1);
1768 	wpi_amrr_t *amrr = (wpi_amrr_t *)ic->ic_bss;
1769 
1770 	WPI_DBG((WPI_DEBUG_TX, "tx done: qid=%d idx=%d retries=%d nkill=%d "
1771 	    "rate=%x duration=%d status=%x\n",
1772 	    desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate,
1773 	    LE_32(stat->duration), LE_32(stat->status)));
1774 
1775 	amrr->txcnt++;
1776 	WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
1777 	if (stat->ntries > 0) {
1778 		amrr->retrycnt++;
1779 		sc->sc_tx_retries++;
1780 		WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d retries\n",
1781 		    amrr->retrycnt));
1782 	}
1783 
1784 	sc->sc_tx_timer = 0;
1785 
1786 	mutex_enter(&sc->sc_tx_lock);
1787 	ring->queued--;
1788 	if (ring->queued < 0)
1789 		ring->queued = 0;
1790 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
1791 		sc->sc_need_reschedule = 0;
1792 		mutex_exit(&sc->sc_tx_lock);
1793 		mac_tx_update(ic->ic_mach);
1794 		mutex_enter(&sc->sc_tx_lock);
1795 	}
1796 	mutex_exit(&sc->sc_tx_lock);
1797 }
1798 
1799 static void
1800 wpi_cmd_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc)
1801 {
1802 	if ((desc->qid & 7) != 4) {
1803 		return;	/* not a command ack */
1804 	}
1805 	mutex_enter(&sc->sc_glock);
1806 	sc->sc_flags |= WPI_F_CMD_DONE;
1807 	cv_signal(&sc->sc_cmd_cv);
1808 	mutex_exit(&sc->sc_glock);
1809 }
1810 
1811 static uint_t
1812 wpi_notif_softintr(caddr_t arg)
1813 {
1814 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1815 	wpi_rx_desc_t *desc;
1816 	wpi_rx_data_t *data;
1817 	uint32_t hw;
1818 
1819 	mutex_enter(&sc->sc_glock);
1820 	if (sc->sc_notif_softint_pending != 1) {
1821 		mutex_exit(&sc->sc_glock);
1822 		return (DDI_INTR_UNCLAIMED);
1823 	}
1824 	mutex_exit(&sc->sc_glock);
1825 
1826 	hw = LE_32(sc->sc_shared->next);
1827 
1828 	while (sc->sc_rxq.cur != hw) {
1829 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
1830 		desc = (wpi_rx_desc_t *)data->dma_data.mem_va;
1831 
1832 		WPI_DBG((WPI_DEBUG_INTR, "rx notification hw = %d cur = %d "
1833 		    "qid=%x idx=%d flags=%x type=%d len=%d\n",
1834 		    hw, sc->sc_rxq.cur, desc->qid, desc->idx, desc->flags,
1835 		    desc->type, LE_32(desc->len)));
1836 
1837 		if (!(desc->qid & 0x80))	/* reply to a command */
1838 			wpi_cmd_intr(sc, desc);
1839 
1840 		switch (desc->type) {
1841 		case WPI_RX_DONE:
1842 			/* a 802.11 frame was received */
1843 			wpi_rx_intr(sc, desc, data);
1844 			break;
1845 
1846 		case WPI_TX_DONE:
1847 			/* a 802.11 frame has been transmitted */
1848 			wpi_tx_intr(sc, desc, data);
1849 			break;
1850 
1851 		case WPI_UC_READY:
1852 		{
1853 			wpi_ucode_info_t *uc =
1854 			    (wpi_ucode_info_t *)(desc + 1);
1855 
1856 			/* the microcontroller is ready */
1857 			WPI_DBG((WPI_DEBUG_FW,
1858 			    "microcode alive notification version %x "
1859 			    "alive %x\n", LE_32(uc->version),
1860 			    LE_32(uc->valid)));
1861 
1862 			if (LE_32(uc->valid) != 1) {
1863 				WPI_DBG((WPI_DEBUG_FW,
1864 				    "microcontroller initialization failed\n"));
1865 			}
1866 			break;
1867 		}
1868 		case WPI_STATE_CHANGED:
1869 		{
1870 			uint32_t *status = (uint32_t *)(desc + 1);
1871 
1872 			/* enabled/disabled notification */
1873 			WPI_DBG((WPI_DEBUG_RADIO, "state changed to %x\n",
1874 			    LE_32(*status)));
1875 
1876 			if (LE_32(*status) & 1) {
1877 				/*
1878 				 * the radio button has to be pushed(OFF). It
1879 				 * is considered as a hw error, the
1880 				 * wpi_thread() tries to recover it after the
1881 				 * button is pushed again(ON)
1882 				 */
1883 				cmn_err(CE_NOTE,
1884 				    "wpi: Radio transmitter is off\n");
1885 				sc->sc_ostate = sc->sc_ic.ic_state;
1886 				ieee80211_new_state(&sc->sc_ic,
1887 				    IEEE80211_S_INIT, -1);
1888 				sc->sc_flags |=
1889 				    (WPI_F_HW_ERR_RECOVER | WPI_F_RADIO_OFF);
1890 			}
1891 			break;
1892 		}
1893 		case WPI_START_SCAN:
1894 		{
1895 			wpi_start_scan_t *scan =
1896 			    (wpi_start_scan_t *)(desc + 1);
1897 
1898 			WPI_DBG((WPI_DEBUG_SCAN,
1899 			    "scanning channel %d status %x\n",
1900 			    scan->chan, LE_32(scan->status)));
1901 
1902 			break;
1903 		}
1904 		case WPI_STOP_SCAN:
1905 		{
1906 			wpi_stop_scan_t *scan =
1907 			    (wpi_stop_scan_t *)(desc + 1);
1908 
1909 			WPI_DBG((WPI_DEBUG_SCAN,
1910 			    "completed channel %d (burst of %d) status %02x\n",
1911 			    scan->chan, scan->nchan, scan->status));
1912 
1913 			sc->sc_scan_pending = 0;
1914 			sc->sc_scan_next++;
1915 			break;
1916 		}
1917 		default:
1918 			break;
1919 		}
1920 
1921 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % WPI_RX_RING_COUNT;
1922 	}
1923 
1924 	/* tell the firmware what we have processed */
1925 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1926 	WPI_WRITE(sc, WPI_RX_WIDX, hw & (~7));
1927 	mutex_enter(&sc->sc_glock);
1928 	sc->sc_notif_softint_pending = 0;
1929 	mutex_exit(&sc->sc_glock);
1930 
1931 	return (DDI_INTR_CLAIMED);
1932 }
1933 
1934 static uint_t
1935 wpi_intr(caddr_t arg)
1936 {
1937 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1938 	uint32_t r, rfh;
1939 
1940 	mutex_enter(&sc->sc_glock);
1941 	if (sc->sc_flags & WPI_F_SUSPEND) {
1942 		mutex_exit(&sc->sc_glock);
1943 		return (DDI_INTR_UNCLAIMED);
1944 	}
1945 
1946 	r = WPI_READ(sc, WPI_INTR);
1947 	if (r == 0 || r == 0xffffffff) {
1948 		mutex_exit(&sc->sc_glock);
1949 		return (DDI_INTR_UNCLAIMED);
1950 	}
1951 
1952 	WPI_DBG((WPI_DEBUG_INTR, "interrupt reg %x\n", r));
1953 
1954 	rfh = WPI_READ(sc, WPI_INTR_STATUS);
1955 	/* disable interrupts */
1956 	WPI_WRITE(sc, WPI_MASK, 0);
1957 	/* ack interrupts */
1958 	WPI_WRITE(sc, WPI_INTR, r);
1959 	WPI_WRITE(sc, WPI_INTR_STATUS, rfh);
1960 
1961 	if (sc->sc_notif_softint_id == NULL) {
1962 		mutex_exit(&sc->sc_glock);
1963 		return (DDI_INTR_CLAIMED);
1964 	}
1965 
1966 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1967 		WPI_DBG((WPI_DEBUG_FW, "fatal firmware error\n"));
1968 		mutex_exit(&sc->sc_glock);
1969 		wpi_stop(sc);
1970 		if (!(sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
1971 			sc->sc_ostate = sc->sc_ic.ic_state;
1972 		}
1973 		ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1974 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
1975 		return (DDI_INTR_CLAIMED);
1976 	}
1977 
1978 	if ((r & (WPI_RX_INTR | WPI_RX_SWINT)) ||
1979 	    (rfh & 0x40070000)) {
1980 		sc->sc_notif_softint_pending = 1;
1981 		ddi_trigger_softintr(sc->sc_notif_softint_id);
1982 	}
1983 
1984 	if (r & WPI_ALIVE_INTR)	{ /* firmware initialized */
1985 		sc->sc_flags |= WPI_F_FW_INIT;
1986 		cv_signal(&sc->sc_fw_cv);
1987 	}
1988 
1989 	/* re-enable interrupts */
1990 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1991 	mutex_exit(&sc->sc_glock);
1992 
1993 	return (DDI_INTR_CLAIMED);
1994 }
1995 
1996 static uint8_t
1997 wpi_plcp_signal(int rate)
1998 {
1999 	switch (rate) {
2000 	/* CCK rates (returned values are device-dependent) */
2001 	case 2:		return (10);
2002 	case 4:		return (20);
2003 	case 11:	return (55);
2004 	case 22:	return (110);
2005 
2006 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2007 	/* R1-R4 (ral/ural is R4-R1) */
2008 	case 12:	return (0xd);
2009 	case 18:	return (0xf);
2010 	case 24:	return (0x5);
2011 	case 36:	return (0x7);
2012 	case 48:	return (0x9);
2013 	case 72:	return (0xb);
2014 	case 96:	return (0x1);
2015 	case 108:	return (0x3);
2016 
2017 	/* unsupported rates (should not get there) */
2018 	default:	return (0);
2019 	}
2020 }
2021 
2022 static mblk_t *
2023 wpi_m_tx(void *arg, mblk_t *mp)
2024 {
2025 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2026 	ieee80211com_t	*ic = &sc->sc_ic;
2027 	mblk_t			*next;
2028 
2029 	if (sc->sc_flags & WPI_F_SUSPEND) {
2030 		freemsgchain(mp);
2031 		return (NULL);
2032 	}
2033 
2034 	if (ic->ic_state != IEEE80211_S_RUN) {
2035 		freemsgchain(mp);
2036 		return (NULL);
2037 	}
2038 
2039 	while (mp != NULL) {
2040 		next = mp->b_next;
2041 		mp->b_next = NULL;
2042 		if (wpi_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
2043 			mp->b_next = next;
2044 			break;
2045 		}
2046 		mp = next;
2047 	}
2048 	return (mp);
2049 }
2050 
2051 /* ARGSUSED */
2052 static int
2053 wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2054 {
2055 	wpi_sc_t *sc = (wpi_sc_t *)ic;
2056 	wpi_tx_ring_t *ring;
2057 	wpi_tx_desc_t *desc;
2058 	wpi_tx_data_t *data;
2059 	wpi_tx_cmd_t *cmd;
2060 	wpi_cmd_data_t *tx;
2061 	ieee80211_node_t *in;
2062 	struct ieee80211_frame *wh;
2063 	struct ieee80211_key *k;
2064 	mblk_t *m, *m0;
2065 	int rate, hdrlen, len, mblen, off, err = WPI_SUCCESS;
2066 
2067 	ring = ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ?
2068 	    (&sc->sc_txq[0]) : (&sc->sc_txq[1]);
2069 	data = &ring->data[ring->cur];
2070 	desc = data->desc;
2071 	cmd = data->cmd;
2072 	bzero(desc, sizeof (*desc));
2073 	bzero(cmd, sizeof (*cmd));
2074 
2075 	mutex_enter(&sc->sc_tx_lock);
2076 	if (sc->sc_flags & WPI_F_SUSPEND) {
2077 		mutex_exit(&sc->sc_tx_lock);
2078 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2079 		    IEEE80211_FC0_TYPE_DATA) {
2080 			freemsg(mp);
2081 		}
2082 		err = ENXIO;
2083 		goto exit;
2084 	}
2085 
2086 	if (ring->queued > ring->count - 64) {
2087 		WPI_DBG((WPI_DEBUG_TX, "wpi_send(): no txbuf\n"));
2088 		sc->sc_need_reschedule = 1;
2089 		mutex_exit(&sc->sc_tx_lock);
2090 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2091 		    IEEE80211_FC0_TYPE_DATA) {
2092 			freemsg(mp);
2093 		}
2094 		sc->sc_tx_nobuf++;
2095 		err = ENOMEM;
2096 		goto exit;
2097 	}
2098 	mutex_exit(&sc->sc_tx_lock);
2099 
2100 	hdrlen = sizeof (struct ieee80211_frame);
2101 
2102 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
2103 	if (m == NULL) { /* can not alloc buf, drop this package */
2104 		cmn_err(CE_WARN,
2105 		    "wpi_send(): failed to allocate msgbuf\n");
2106 		freemsg(mp);
2107 		err = WPI_SUCCESS;
2108 		goto exit;
2109 	}
2110 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
2111 		mblen = MBLKL(m0);
2112 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
2113 		off += mblen;
2114 	}
2115 	m->b_wptr += off;
2116 	freemsg(mp);
2117 
2118 	wh = (struct ieee80211_frame *)m->b_rptr;
2119 
2120 	in = ieee80211_find_txnode(ic, wh->i_addr1);
2121 	if (in == NULL) {
2122 		cmn_err(CE_WARN, "wpi_send(): failed to find tx node\n");
2123 		freemsg(m);
2124 		sc->sc_tx_err++;
2125 		err = WPI_SUCCESS;
2126 		goto exit;
2127 	}
2128 
2129 	(void) ieee80211_encap(ic, m, in);
2130 
2131 	cmd->code = WPI_CMD_TX_DATA;
2132 	cmd->flags = 0;
2133 	cmd->qid = ring->qid;
2134 	cmd->idx = ring->cur;
2135 
2136 	tx = (wpi_cmd_data_t *)cmd->data;
2137 	tx->flags = 0;
2138 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2139 		tx->flags |= LE_32(WPI_TX_NEED_ACK);
2140 	} else {
2141 		tx->flags &= ~(LE_32(WPI_TX_NEED_ACK));
2142 	}
2143 
2144 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2145 		k = ieee80211_crypto_encap(ic, m);
2146 		if (k == NULL) {
2147 			freemsg(m);
2148 			sc->sc_tx_err++;
2149 			err = WPI_SUCCESS;
2150 			goto exit;
2151 		}
2152 
2153 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2154 			tx->security = 2; /* for CCMP */
2155 			tx->flags |= LE_32(WPI_TX_NEED_ACK);
2156 			(void) memcpy(&tx->key, k->wk_key, k->wk_keylen);
2157 		}
2158 
2159 		/* packet header may have moved, reset our local pointer */
2160 		wh = (struct ieee80211_frame *)m->b_rptr;
2161 	}
2162 
2163 	len = msgdsize(m);
2164 
2165 #ifdef DEBUG
2166 	if (wpi_dbg_flags & WPI_DEBUG_TX)
2167 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
2168 #endif
2169 
2170 	/* pickup a rate */
2171 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2172 	    IEEE80211_FC0_TYPE_MGT) {
2173 		/* mgmt frames are sent at the lowest available bit-rate */
2174 		rate = 2;
2175 	} else {
2176 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
2177 			rate = ic->ic_fixed_rate;
2178 		} else
2179 			rate = in->in_rates.ir_rates[in->in_txrate];
2180 	}
2181 	rate &= IEEE80211_RATE_VAL;
2182 	WPI_DBG((WPI_DEBUG_RATECTL, "tx rate[%d of %d] = %x",
2183 	    in->in_txrate, in->in_rates.ir_nrates, rate));
2184 #ifdef WPI_BPF
2185 #ifndef WPI_CURRENT
2186 	if (sc->sc_drvbpf != NULL) {
2187 #else
2188 	if (bpf_peers_present(sc->sc_drvbpf)) {
2189 #endif
2190 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2191 
2192 		tap->wt_flags = 0;
2193 		tap->wt_chan_freq = LE_16(ic->ic_curchan->ic_freq);
2194 		tap->wt_chan_flags = LE_16(ic->ic_curchan->ic_flags);
2195 		tap->wt_rate = rate;
2196 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2197 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2198 
2199 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2200 	}
2201 #endif
2202 
2203 	tx->flags |= (LE_32(WPI_TX_AUTO_SEQ));
2204 	tx->flags |= LE_32(WPI_TX_BT_DISABLE | WPI_TX_CALIBRATION);
2205 
2206 	/* retrieve destination node's id */
2207 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
2208 	    WPI_ID_BSS;
2209 
2210 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2211 	    IEEE80211_FC0_TYPE_MGT) {
2212 		/* tell h/w to set timestamp in probe responses */
2213 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2214 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2215 			tx->flags |= LE_32(WPI_TX_INSERT_TSTAMP);
2216 
2217 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2218 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2219 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2220 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2221 			tx->timeout = 3;
2222 		else
2223 			tx->timeout = 2;
2224 	} else
2225 		tx->timeout = 0;
2226 
2227 	tx->rate = wpi_plcp_signal(rate);
2228 
2229 	/* be very persistant at sending frames out */
2230 	tx->rts_ntries = 7;
2231 	tx->data_ntries = 15;
2232 
2233 	tx->cck_mask  = 0x0f;
2234 	tx->ofdm_mask = 0xff;
2235 	tx->lifetime  = LE_32(0xffffffff);
2236 
2237 	tx->len = LE_16(len);
2238 
2239 	/* save and trim IEEE802.11 header */
2240 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
2241 	m->b_rptr += hdrlen;
2242 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
2243 
2244 	WPI_DBG((WPI_DEBUG_TX, "sending data: qid=%d idx=%d len=%d", ring->qid,
2245 	    ring->cur, len));
2246 
2247 	/* first scatter/gather segment is used by the tx data command */
2248 	desc->flags = LE_32(WPI_PAD32(len) << 28 | (2) << 24);
2249 	desc->segs[0].addr = LE_32(data->paddr_cmd);
2250 	desc->segs[0].len  = LE_32(
2251 	    roundup(4 + sizeof (wpi_cmd_data_t) + hdrlen, 4));
2252 	desc->segs[1].addr = LE_32(data->dma_data.cookie.dmac_address);
2253 	desc->segs[1].len  = LE_32(len - hdrlen);
2254 
2255 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2256 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2257 
2258 	mutex_enter(&sc->sc_tx_lock);
2259 	ring->queued++;
2260 	mutex_exit(&sc->sc_tx_lock);
2261 
2262 	/* kick ring */
2263 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2264 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2265 	freemsg(m);
2266 	/* release node reference */
2267 	ieee80211_free_node(in);
2268 
2269 	ic->ic_stats.is_tx_bytes += len;
2270 	ic->ic_stats.is_tx_frags++;
2271 
2272 	if (sc->sc_tx_timer == 0)
2273 		sc->sc_tx_timer = 5;
2274 exit:
2275 	return (err);
2276 }
2277 
2278 static void
2279 wpi_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2280 {
2281 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2282 	ieee80211com_t	*ic = &sc->sc_ic;
2283 	int		err;
2284 
2285 	mutex_enter(&sc->sc_glock);
2286 	if (sc->sc_flags & (WPI_F_SUSPEND | WPI_F_HW_ERR_RECOVER)) {
2287 		miocnak(wq, mp, 0, ENXIO);
2288 		mutex_exit(&sc->sc_glock);
2289 		return;
2290 	}
2291 	mutex_exit(&sc->sc_glock);
2292 
2293 	err = ieee80211_ioctl(ic, wq, mp);
2294 	if (err == ENETRESET) {
2295 		/*
2296 		 * This is special for the hidden AP connection.
2297 		 * In any case, we should make sure only one 'scan'
2298 		 * in the driver for a 'connect' CLI command. So
2299 		 * when connecting to a hidden AP, the scan is just
2300 		 * sent out to the air when we know the desired
2301 		 * essid of the AP we want to connect.
2302 		 */
2303 		if (ic->ic_des_esslen) {
2304 			if (sc->sc_flags & WPI_F_RUNNING) {
2305 				wpi_m_stop(sc);
2306 				(void) wpi_m_start(sc);
2307 				(void) ieee80211_new_state(ic,
2308 				    IEEE80211_S_SCAN, -1);
2309 			}
2310 		}
2311 	}
2312 }
2313 
2314 /*
2315  * Callback functions for get/set properties
2316  */
2317 /* ARGSUSED */
2318 static int
2319 wpi_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2320     uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm)
2321 {
2322 	int		err = 0;
2323 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2324 
2325 	err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_name,
2326 	    pr_flags, wldp_length, wldp_buf, perm);
2327 
2328 	return (err);
2329 }
2330 static int
2331 wpi_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2332     uint_t wldp_length, const void *wldp_buf)
2333 {
2334 	int		err;
2335 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2336 	ieee80211com_t  *ic = &sc->sc_ic;
2337 
2338 	mutex_enter(&sc->sc_glock);
2339 	if (sc->sc_flags & (WPI_F_SUSPEND | WPI_F_HW_ERR_RECOVER)) {
2340 		mutex_exit(&sc->sc_glock);
2341 		return (ENXIO);
2342 	}
2343 	mutex_exit(&sc->sc_glock);
2344 
2345 	err = ieee80211_setprop(ic, pr_name, wldp_pr_name,
2346 	    wldp_length, wldp_buf);
2347 
2348 	if (err == ENETRESET) {
2349 		if (ic->ic_des_esslen) {
2350 			if (sc->sc_flags & WPI_F_RUNNING) {
2351 				wpi_m_stop(sc);
2352 				(void) wpi_m_start(sc);
2353 				(void) ieee80211_new_state(ic,
2354 				    IEEE80211_S_SCAN, -1);
2355 			}
2356 		}
2357 
2358 		err = 0;
2359 	}
2360 
2361 	return (err);
2362 }
2363 
2364 /*ARGSUSED*/
2365 static int
2366 wpi_m_stat(void *arg, uint_t stat, uint64_t *val)
2367 {
2368 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2369 	ieee80211com_t	*ic = &sc->sc_ic;
2370 	ieee80211_node_t *in;
2371 
2372 	mutex_enter(&sc->sc_glock);
2373 	switch (stat) {
2374 	case MAC_STAT_IFSPEED:
2375 		in = ic->ic_bss;
2376 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2377 		    IEEE80211_RATE(in->in_txrate) :
2378 		    ic->ic_fixed_rate) / 2 * 1000000;
2379 		break;
2380 	case MAC_STAT_NOXMTBUF:
2381 		*val = sc->sc_tx_nobuf;
2382 		break;
2383 	case MAC_STAT_NORCVBUF:
2384 		*val = sc->sc_rx_nobuf;
2385 		break;
2386 	case MAC_STAT_IERRORS:
2387 		*val = sc->sc_rx_err;
2388 		break;
2389 	case MAC_STAT_RBYTES:
2390 		*val = ic->ic_stats.is_rx_bytes;
2391 		break;
2392 	case MAC_STAT_IPACKETS:
2393 		*val = ic->ic_stats.is_rx_frags;
2394 		break;
2395 	case MAC_STAT_OBYTES:
2396 		*val = ic->ic_stats.is_tx_bytes;
2397 		break;
2398 	case MAC_STAT_OPACKETS:
2399 		*val = ic->ic_stats.is_tx_frags;
2400 		break;
2401 	case MAC_STAT_OERRORS:
2402 	case WIFI_STAT_TX_FAILED:
2403 		*val = sc->sc_tx_err;
2404 		break;
2405 	case WIFI_STAT_TX_RETRANS:
2406 		*val = sc->sc_tx_retries;
2407 		break;
2408 	case WIFI_STAT_FCS_ERRORS:
2409 	case WIFI_STAT_WEP_ERRORS:
2410 	case WIFI_STAT_TX_FRAGS:
2411 	case WIFI_STAT_MCAST_TX:
2412 	case WIFI_STAT_RTS_SUCCESS:
2413 	case WIFI_STAT_RTS_FAILURE:
2414 	case WIFI_STAT_ACK_FAILURE:
2415 	case WIFI_STAT_RX_FRAGS:
2416 	case WIFI_STAT_MCAST_RX:
2417 	case WIFI_STAT_RX_DUPS:
2418 		mutex_exit(&sc->sc_glock);
2419 		return (ieee80211_stat(ic, stat, val));
2420 	default:
2421 		mutex_exit(&sc->sc_glock);
2422 		return (ENOTSUP);
2423 	}
2424 	mutex_exit(&sc->sc_glock);
2425 
2426 	return (WPI_SUCCESS);
2427 
2428 }
2429 
2430 static int
2431 wpi_m_start(void *arg)
2432 {
2433 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2434 	ieee80211com_t	*ic = &sc->sc_ic;
2435 	int err;
2436 
2437 	err = wpi_init(sc);
2438 	if (err != WPI_SUCCESS) {
2439 		wpi_stop(sc);
2440 		DELAY(1000000);
2441 		err = wpi_init(sc);
2442 	}
2443 
2444 	if (err) {
2445 		/*
2446 		 * The hw init err(eg. RF is OFF). Return Success to make
2447 		 * the 'plumb' succeed. The wpi_thread() tries to re-init
2448 		 * background.
2449 		 */
2450 		mutex_enter(&sc->sc_glock);
2451 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2452 		mutex_exit(&sc->sc_glock);
2453 		return (WPI_SUCCESS);
2454 	}
2455 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2456 	mutex_enter(&sc->sc_glock);
2457 	sc->sc_flags |= WPI_F_RUNNING;
2458 	mutex_exit(&sc->sc_glock);
2459 
2460 	return (WPI_SUCCESS);
2461 }
2462 
2463 static void
2464 wpi_m_stop(void *arg)
2465 {
2466 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2467 	ieee80211com_t	*ic = &sc->sc_ic;
2468 
2469 	wpi_stop(sc);
2470 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2471 	mutex_enter(&sc->sc_mt_lock);
2472 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2473 	sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
2474 	mutex_exit(&sc->sc_mt_lock);
2475 	mutex_enter(&sc->sc_glock);
2476 	sc->sc_flags &= ~WPI_F_RUNNING;
2477 	mutex_exit(&sc->sc_glock);
2478 }
2479 
2480 /*ARGSUSED*/
2481 static int
2482 wpi_m_unicst(void *arg, const uint8_t *macaddr)
2483 {
2484 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2485 	ieee80211com_t	*ic = &sc->sc_ic;
2486 	int err;
2487 
2488 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
2489 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2490 		mutex_enter(&sc->sc_glock);
2491 		err = wpi_config(sc);
2492 		mutex_exit(&sc->sc_glock);
2493 		if (err != WPI_SUCCESS) {
2494 			cmn_err(CE_WARN,
2495 			    "wpi_m_unicst(): "
2496 			    "failed to configure device\n");
2497 			goto fail;
2498 		}
2499 	}
2500 	return (WPI_SUCCESS);
2501 fail:
2502 	return (err);
2503 }
2504 
2505 /*ARGSUSED*/
2506 static int
2507 wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m)
2508 {
2509 	return (WPI_SUCCESS);
2510 }
2511 
2512 /*ARGSUSED*/
2513 static int
2514 wpi_m_promisc(void *arg, boolean_t on)
2515 {
2516 	return (WPI_SUCCESS);
2517 }
2518 
2519 static void
2520 wpi_thread(wpi_sc_t *sc)
2521 {
2522 	ieee80211com_t	*ic = &sc->sc_ic;
2523 	clock_t clk;
2524 	int times = 0, err, n = 0, timeout = 0;
2525 	uint32_t tmp;
2526 
2527 	mutex_enter(&sc->sc_mt_lock);
2528 	while (sc->sc_mf_thread_switch) {
2529 		tmp = WPI_READ(sc, WPI_GPIO_CTL);
2530 		if (tmp & WPI_GPIO_HW_RF_KILL) {
2531 			sc->sc_flags &= ~WPI_F_RADIO_OFF;
2532 		} else {
2533 			sc->sc_flags |= WPI_F_RADIO_OFF;
2534 		}
2535 		/*
2536 		 * If in SUSPEND or the RF is OFF, do nothing
2537 		 */
2538 		if ((sc->sc_flags & WPI_F_SUSPEND) ||
2539 		    (sc->sc_flags & WPI_F_RADIO_OFF)) {
2540 			mutex_exit(&sc->sc_mt_lock);
2541 			delay(drv_usectohz(100000));
2542 			mutex_enter(&sc->sc_mt_lock);
2543 			continue;
2544 		}
2545 
2546 		/*
2547 		 * recovery fatal error
2548 		 */
2549 		if (ic->ic_mach &&
2550 		    (sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
2551 
2552 			WPI_DBG((WPI_DEBUG_FW,
2553 			    "wpi_thread(): "
2554 			    "try to recover fatal hw error: %d\n", times++));
2555 
2556 			wpi_stop(sc);
2557 			mutex_exit(&sc->sc_mt_lock);
2558 
2559 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2560 			delay(drv_usectohz(2000000));
2561 
2562 			mutex_enter(&sc->sc_mt_lock);
2563 			err = wpi_init(sc);
2564 			if (err != WPI_SUCCESS) {
2565 				n++;
2566 				if (n < 3)
2567 					continue;
2568 			}
2569 			n = 0;
2570 			if (!err)
2571 				sc->sc_flags |= WPI_F_RUNNING;
2572 			sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2573 			mutex_exit(&sc->sc_mt_lock);
2574 			delay(drv_usectohz(2000000));
2575 			if (sc->sc_ostate != IEEE80211_S_INIT)
2576 				ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
2577 			mutex_enter(&sc->sc_mt_lock);
2578 		}
2579 
2580 		if (ic->ic_mach && (sc->sc_flags & WPI_F_LAZY_RESUME)) {
2581 			WPI_DBG((WPI_DEBUG_RESUME,
2582 			    "wpi_thread(): "
2583 			    "lazy resume\n"));
2584 			sc->sc_flags &= ~WPI_F_LAZY_RESUME;
2585 			mutex_exit(&sc->sc_mt_lock);
2586 			/*
2587 			 * NB: under WPA mode, this call hangs (door problem?)
2588 			 * when called in wpi_attach() and wpi_detach() while
2589 			 * system is in the procedure of CPR. To be safe, let
2590 			 * the thread do this.
2591 			 */
2592 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
2593 			mutex_enter(&sc->sc_mt_lock);
2594 		}
2595 
2596 		/*
2597 		 * scan next channel
2598 		 */
2599 		if (ic->ic_mach &&
2600 		    (sc->sc_flags & WPI_F_SCANNING) && sc->sc_scan_next) {
2601 
2602 			WPI_DBG((WPI_DEBUG_SCAN,
2603 			    "wpi_thread(): "
2604 			    "wait for probe response\n"));
2605 
2606 			sc->sc_scan_next--;
2607 			mutex_exit(&sc->sc_mt_lock);
2608 			delay(drv_usectohz(200000));
2609 			if (sc->sc_flags & WPI_F_SCANNING)
2610 				ieee80211_next_scan(ic);
2611 			mutex_enter(&sc->sc_mt_lock);
2612 		}
2613 
2614 		/*
2615 		 * rate ctl
2616 		 */
2617 		if (ic->ic_mach &&
2618 		    (sc->sc_flags & WPI_F_RATE_AUTO_CTL)) {
2619 			clk = ddi_get_lbolt();
2620 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
2621 				wpi_amrr_timeout(sc);
2622 			}
2623 		}
2624 		mutex_exit(&sc->sc_mt_lock);
2625 		delay(drv_usectohz(100000));
2626 		mutex_enter(&sc->sc_mt_lock);
2627 		if (sc->sc_tx_timer) {
2628 			timeout++;
2629 			if (timeout == 10) {
2630 				sc->sc_tx_timer--;
2631 				if (sc->sc_tx_timer == 0) {
2632 					sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2633 					sc->sc_ostate = IEEE80211_S_RUN;
2634 					WPI_DBG((WPI_DEBUG_FW,
2635 					    "wpi_thread(): send fail\n"));
2636 				}
2637 				timeout = 0;
2638 			}
2639 		}
2640 	}
2641 	sc->sc_mf_thread = NULL;
2642 	cv_signal(&sc->sc_mt_cv);
2643 	mutex_exit(&sc->sc_mt_lock);
2644 }
2645 
2646 /*
2647  * Extract various information from EEPROM.
2648  */
2649 static void
2650 wpi_read_eeprom(wpi_sc_t *sc)
2651 {
2652 	ieee80211com_t *ic = &sc->sc_ic;
2653 	uint16_t val;
2654 	int i;
2655 
2656 	/* read MAC address */
2657 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
2658 	ic->ic_macaddr[0] = val & 0xff;
2659 	ic->ic_macaddr[1] = val >> 8;
2660 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
2661 	ic->ic_macaddr[2] = val & 0xff;
2662 	ic->ic_macaddr[3] = val >> 8;
2663 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
2664 	ic->ic_macaddr[4] = val & 0xff;
2665 	ic->ic_macaddr[5] = val >> 8;
2666 
2667 	WPI_DBG((WPI_DEBUG_EEPROM,
2668 	    "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
2669 	    ic->ic_macaddr[0], ic->ic_macaddr[1],
2670 	    ic->ic_macaddr[2], ic->ic_macaddr[3],
2671 	    ic->ic_macaddr[4], ic->ic_macaddr[5]));
2672 	/* read power settings for 2.4GHz channels */
2673 	for (i = 0; i < 14; i++) {
2674 		sc->sc_pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
2675 		sc->sc_pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
2676 		WPI_DBG((WPI_DEBUG_EEPROM,
2677 		    "channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
2678 		    sc->sc_pwr1[i], sc->sc_pwr2[i]));
2679 	}
2680 }
2681 
2682 /*
2683  * Send a command to the firmware.
2684  */
2685 static int
2686 wpi_cmd(wpi_sc_t *sc, int code, const void *buf, int size, int async)
2687 {
2688 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2689 	wpi_tx_desc_t *desc;
2690 	wpi_tx_cmd_t *cmd;
2691 
2692 	ASSERT(size <= sizeof (cmd->data));
2693 	ASSERT(mutex_owned(&sc->sc_glock));
2694 
2695 	WPI_DBG((WPI_DEBUG_CMD, "wpi_cmd() # code[%d]", code));
2696 	desc = ring->data[ring->cur].desc;
2697 	cmd = ring->data[ring->cur].cmd;
2698 
2699 	cmd->code = (uint8_t)code;
2700 	cmd->flags = 0;
2701 	cmd->qid = ring->qid;
2702 	cmd->idx = ring->cur;
2703 	(void) memcpy(cmd->data, buf, size);
2704 
2705 	desc->flags = LE_32(WPI_PAD32(size) << 28 | 1 << 24);
2706 	desc->segs[0].addr = ring->data[ring->cur].paddr_cmd;
2707 	desc->segs[0].len  = 4 + size;
2708 
2709 	/* kick cmd ring */
2710 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2711 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2712 
2713 	if (async)
2714 		return (WPI_SUCCESS);
2715 	else {
2716 		clock_t clk;
2717 		sc->sc_flags &= ~WPI_F_CMD_DONE;
2718 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
2719 		while (!(sc->sc_flags & WPI_F_CMD_DONE)) {
2720 			if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk)
2721 			    < 0)
2722 				break;
2723 		}
2724 		if (sc->sc_flags & WPI_F_CMD_DONE)
2725 			return (WPI_SUCCESS);
2726 		else
2727 			return (WPI_FAIL);
2728 	}
2729 }
2730 
2731 /*
2732  * Configure h/w multi-rate retries.
2733  */
2734 static int
2735 wpi_mrr_setup(wpi_sc_t *sc)
2736 {
2737 	wpi_mrr_setup_t mrr;
2738 	int i, err;
2739 
2740 	/* CCK rates (not used with 802.11a) */
2741 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2742 		mrr.rates[i].flags = 0;
2743 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2744 		/* fallback to the immediate lower CCK rate (if any) */
2745 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2746 		/* try one time at this rate before falling back to "next" */
2747 		mrr.rates[i].ntries = 1;
2748 	}
2749 
2750 	/* OFDM rates (not used with 802.11b) */
2751 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2752 		mrr.rates[i].flags = 0;
2753 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2754 		/* fallback to the immediate lower OFDM rate (if any) */
2755 		mrr.rates[i].next = (i == WPI_OFDM6) ? WPI_OFDM6 : i - 1;
2756 		/* try one time at this rate before falling back to "next" */
2757 		mrr.rates[i].ntries = 1;
2758 	}
2759 
2760 	/* setup MRR for control frames */
2761 	mrr.which = LE_32(WPI_MRR_CTL);
2762 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2763 	if (err != WPI_SUCCESS) {
2764 		WPI_DBG((WPI_DEBUG_MRR,
2765 		    "could not setup MRR for control frames\n"));
2766 		return (err);
2767 	}
2768 
2769 	/* setup MRR for data frames */
2770 	mrr.which = LE_32(WPI_MRR_DATA);
2771 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2772 	if (err != WPI_SUCCESS) {
2773 		WPI_DBG((WPI_DEBUG_MRR,
2774 		    "could not setup MRR for data frames\n"));
2775 		return (err);
2776 	}
2777 
2778 	return (WPI_SUCCESS);
2779 }
2780 
2781 static void
2782 wpi_set_led(wpi_sc_t *sc, uint8_t which, uint8_t off, uint8_t on)
2783 {
2784 	wpi_cmd_led_t led;
2785 
2786 	led.which = which;
2787 	led.unit = LE_32(100000);	/* on/off in unit of 100ms */
2788 	led.off = off;
2789 	led.on = on;
2790 
2791 	(void) wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof (led), 1);
2792 }
2793 
2794 static int
2795 wpi_auth(wpi_sc_t *sc)
2796 {
2797 	ieee80211com_t *ic = &sc->sc_ic;
2798 	ieee80211_node_t *in = ic->ic_bss;
2799 	wpi_node_t node;
2800 	int err;
2801 
2802 	/* update adapter's configuration */
2803 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
2804 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
2805 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2806 		sc->sc_config.cck_mask  = 0x03;
2807 		sc->sc_config.ofdm_mask = 0;
2808 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
2809 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
2810 		sc->sc_config.cck_mask  = 0;
2811 		sc->sc_config.ofdm_mask = 0x15;
2812 	} else {	/* assume 802.11b/g */
2813 		sc->sc_config.cck_mask  = 0x0f;
2814 		sc->sc_config.ofdm_mask = 0xff;
2815 	}
2816 
2817 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x cck %x ofdm %x"
2818 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
2819 	    sc->sc_config.chan, sc->sc_config.flags,
2820 	    sc->sc_config.cck_mask, sc->sc_config.ofdm_mask,
2821 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
2822 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
2823 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
2824 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2825 	    sizeof (wpi_config_t), 1);
2826 	if (err != WPI_SUCCESS) {
2827 		cmn_err(CE_WARN, "wpi_auth(): failed to configurate chan%d\n",
2828 		    sc->sc_config.chan);
2829 		return (err);
2830 	}
2831 
2832 	/* add default node */
2833 	(void) memset(&node, 0, sizeof (node));
2834 	IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
2835 	node.id = WPI_ID_BSS;
2836 	node.rate = wpi_plcp_signal(2);
2837 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
2838 	if (err != WPI_SUCCESS) {
2839 		cmn_err(CE_WARN, "wpi_auth(): failed to add BSS node\n");
2840 		return (err);
2841 	}
2842 
2843 	err = wpi_mrr_setup(sc);
2844 	if (err != WPI_SUCCESS) {
2845 		cmn_err(CE_WARN, "wpi_auth(): failed to setup MRR\n");
2846 		return (err);
2847 	}
2848 
2849 	return (WPI_SUCCESS);
2850 }
2851 
2852 /*
2853  * Send a scan request to the firmware.
2854  */
2855 static int
2856 wpi_scan(wpi_sc_t *sc)
2857 {
2858 	ieee80211com_t *ic = &sc->sc_ic;
2859 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2860 	wpi_tx_desc_t *desc;
2861 	wpi_tx_data_t *data;
2862 	wpi_tx_cmd_t *cmd;
2863 	wpi_scan_hdr_t *hdr;
2864 	wpi_scan_chan_t *chan;
2865 	struct ieee80211_frame *wh;
2866 	ieee80211_node_t *in = ic->ic_bss;
2867 	uint8_t essid[IEEE80211_NWID_LEN+1];
2868 	struct ieee80211_rateset *rs;
2869 	enum ieee80211_phymode mode;
2870 	uint8_t *frm;
2871 	int i, pktlen, nrates;
2872 
2873 	/* previous scan not completed */
2874 	if (sc->sc_scan_pending) {
2875 		WPI_DBG((WPI_DEBUG_SCAN, "previous scan not completed\n"));
2876 		return (WPI_SUCCESS);
2877 	}
2878 
2879 	data = &ring->data[ring->cur];
2880 	desc = data->desc;
2881 	cmd = (wpi_tx_cmd_t *)data->dma_data.mem_va;
2882 
2883 	cmd->code = WPI_CMD_SCAN;
2884 	cmd->flags = 0;
2885 	cmd->qid = ring->qid;
2886 	cmd->idx = ring->cur;
2887 
2888 	hdr = (wpi_scan_hdr_t *)cmd->data;
2889 	(void) memset(hdr, 0, sizeof (wpi_scan_hdr_t));
2890 	hdr->first = 1;
2891 	hdr->nchan = 1;
2892 	hdr->len = hdr->nchan * sizeof (wpi_scan_chan_t);
2893 	hdr->quiet = LE_16(50);
2894 	hdr->threshold = LE_16(1);
2895 	hdr->filter = LE_32(5);
2896 	hdr->rate = wpi_plcp_signal(2);
2897 	hdr->id = WPI_ID_BROADCAST;
2898 	hdr->mask = LE_32(0xffffffff);
2899 	hdr->esslen = ic->ic_des_esslen;
2900 
2901 	if (ic->ic_des_esslen) {
2902 		bcopy(ic->ic_des_essid, essid, ic->ic_des_esslen);
2903 		essid[ic->ic_des_esslen] = '\0';
2904 		WPI_DBG((WPI_DEBUG_SCAN, "directed scan %s\n", essid));
2905 
2906 		bcopy(ic->ic_des_essid, hdr->essid, ic->ic_des_esslen);
2907 	} else {
2908 		bzero(hdr->essid, sizeof (hdr->essid));
2909 	}
2910 
2911 	/*
2912 	 * Build a probe request frame.  Most of the following code is a
2913 	 * copy & paste of what is done in net80211.  Unfortunately, the
2914 	 * functions to add IEs are static and thus can't be reused here.
2915 	 */
2916 	wh = (struct ieee80211_frame *)(hdr + 1);
2917 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2918 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2919 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2920 	(void) memset(wh->i_addr1, 0xff, 6);
2921 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
2922 	(void) memset(wh->i_addr3, 0xff, 6);
2923 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2924 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2925 
2926 	frm = (uint8_t *)(wh + 1);
2927 
2928 	/* add essid IE */
2929 	if (in->in_esslen) {
2930 		bcopy(in->in_essid, essid, in->in_esslen);
2931 		essid[in->in_esslen] = '\0';
2932 		WPI_DBG((WPI_DEBUG_SCAN, "probe with ESSID %s\n",
2933 		    essid));
2934 	}
2935 	*frm++ = IEEE80211_ELEMID_SSID;
2936 	*frm++ = in->in_esslen;
2937 	(void) memcpy(frm, in->in_essid, in->in_esslen);
2938 	frm += in->in_esslen;
2939 
2940 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
2941 	rs = &ic->ic_sup_rates[mode];
2942 
2943 	/* add supported rates IE */
2944 	*frm++ = IEEE80211_ELEMID_RATES;
2945 	nrates = rs->ir_nrates;
2946 	if (nrates > IEEE80211_RATE_SIZE)
2947 		nrates = IEEE80211_RATE_SIZE;
2948 	*frm++ = (uint8_t)nrates;
2949 	(void) memcpy(frm, rs->ir_rates, nrates);
2950 	frm += nrates;
2951 
2952 	/* add supported xrates IE */
2953 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
2954 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
2955 		*frm++ = IEEE80211_ELEMID_XRATES;
2956 		*frm++ = (uint8_t)nrates;
2957 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
2958 		frm += nrates;
2959 	}
2960 
2961 	/* add optionnal IE (usually an RSN IE) */
2962 	if (ic->ic_opt_ie != NULL) {
2963 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2964 		frm += ic->ic_opt_ie_len;
2965 	}
2966 
2967 	/* setup length of probe request */
2968 	hdr->pbrlen = LE_16((uintptr_t)frm - (uintptr_t)wh);
2969 
2970 	/* align on a 4-byte boundary */
2971 	chan = (wpi_scan_chan_t *)frm;
2972 	for (i = 1; i <= hdr->nchan; i++, chan++) {
2973 		if (ic->ic_des_esslen) {
2974 			chan->flags = 0x3;
2975 		} else {
2976 			chan->flags = 0x1;
2977 		}
2978 		chan->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2979 		chan->magic = LE_16(0x62ab);
2980 		chan->active = LE_16(50);
2981 		chan->passive = LE_16(120);
2982 
2983 		frm += sizeof (wpi_scan_chan_t);
2984 	}
2985 
2986 	pktlen = (uintptr_t)frm - (uintptr_t)cmd;
2987 
2988 	desc->flags = LE_32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2989 	desc->segs[0].addr = LE_32(data->dma_data.cookie.dmac_address);
2990 	desc->segs[0].len  = LE_32(pktlen);
2991 
2992 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2993 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2994 
2995 	/* kick cmd ring */
2996 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2997 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2998 
2999 	sc->sc_scan_pending = 1;
3000 
3001 	return (WPI_SUCCESS);	/* will be notified async. of failure/success */
3002 }
3003 
3004 static int
3005 wpi_config(wpi_sc_t *sc)
3006 {
3007 	ieee80211com_t *ic = &sc->sc_ic;
3008 	wpi_txpower_t txpower;
3009 	wpi_power_t power;
3010 #ifdef WPI_BLUE_COEXISTENCE
3011 	wpi_bluetooth_t bluetooth;
3012 #endif
3013 	wpi_node_t node;
3014 	int err;
3015 
3016 	/* Intel's binary only daemon is a joke.. */
3017 
3018 	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
3019 	(void) memset(&txpower, 0, sizeof (txpower));
3020 	(void) memcpy(txpower.pwr1, sc->sc_pwr1, 14 * sizeof (uint16_t));
3021 	(void) memcpy(txpower.pwr2, sc->sc_pwr2, 14 * sizeof (uint16_t));
3022 	err = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof (txpower), 0);
3023 	if (err != WPI_SUCCESS) {
3024 		cmn_err(CE_WARN, "wpi_config(): failed to set txpower\n");
3025 		return (err);
3026 	}
3027 
3028 	/* set power mode */
3029 	(void) memset(&power, 0, sizeof (power));
3030 	power.flags = LE_32(0x8);
3031 	err = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof (power), 0);
3032 	if (err != WPI_SUCCESS) {
3033 		cmn_err(CE_WARN, "wpi_config(): failed to set power mode\n");
3034 		return (err);
3035 	}
3036 #ifdef WPI_BLUE_COEXISTENCE
3037 	/* configure bluetooth coexistence */
3038 	(void) memset(&bluetooth, 0, sizeof (bluetooth));
3039 	bluetooth.flags = 3;
3040 	bluetooth.lead = 0xaa;
3041 	bluetooth.kill = 1;
3042 	err = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth,
3043 	    sizeof (bluetooth), 0);
3044 	if (err != WPI_SUCCESS) {
3045 		cmn_err(CE_WARN,
3046 		    "wpi_config(): "
3047 		    "failed to configurate bluetooth coexistence\n");
3048 		return (err);
3049 	}
3050 #endif
3051 	/* configure adapter */
3052 	(void) memset(&sc->sc_config, 0, sizeof (wpi_config_t));
3053 	IEEE80211_ADDR_COPY(sc->sc_config.myaddr, ic->ic_macaddr);
3054 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3055 	sc->sc_config.flags = LE_32(WPI_CONFIG_TSF | WPI_CONFIG_AUTO |
3056 	    WPI_CONFIG_24GHZ);
3057 	sc->sc_config.filter = 0;
3058 	switch (ic->ic_opmode) {
3059 	case IEEE80211_M_STA:
3060 		sc->sc_config.mode = WPI_MODE_STA;
3061 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST);
3062 		break;
3063 	case IEEE80211_M_IBSS:
3064 	case IEEE80211_M_AHDEMO:
3065 		sc->sc_config.mode = WPI_MODE_IBSS;
3066 		break;
3067 	case IEEE80211_M_HOSTAP:
3068 		sc->sc_config.mode = WPI_MODE_HOSTAP;
3069 		break;
3070 	case IEEE80211_M_MONITOR:
3071 		sc->sc_config.mode = WPI_MODE_MONITOR;
3072 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
3073 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3074 		break;
3075 	}
3076 	sc->sc_config.cck_mask  = 0x0f;	/* not yet negotiated */
3077 	sc->sc_config.ofdm_mask = 0xff;	/* not yet negotiated */
3078 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
3079 	    sizeof (wpi_config_t), 0);
3080 	if (err != WPI_SUCCESS) {
3081 		cmn_err(CE_WARN, "wpi_config(): "
3082 		    "failed to set configure command\n");
3083 		return (err);
3084 	}
3085 
3086 	/* add broadcast node */
3087 	(void) memset(&node, 0, sizeof (node));
3088 	(void) memset(node.bssid, 0xff, 6);
3089 	node.id = WPI_ID_BROADCAST;
3090 	node.rate = wpi_plcp_signal(2);
3091 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 0);
3092 	if (err != WPI_SUCCESS) {
3093 		cmn_err(CE_WARN, "wpi_config(): "
3094 		    "failed to add broadcast node\n");
3095 		return (err);
3096 	}
3097 
3098 	return (WPI_SUCCESS);
3099 }
3100 
3101 static void
3102 wpi_stop_master(wpi_sc_t *sc)
3103 {
3104 	uint32_t tmp;
3105 	int ntries;
3106 
3107 	tmp = WPI_READ(sc, WPI_RESET);
3108 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3109 
3110 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3111 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3112 		return;	/* already asleep */
3113 
3114 	for (ntries = 0; ntries < 2000; ntries++) {
3115 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3116 			break;
3117 		DELAY(1000);
3118 	}
3119 	if (ntries == 2000)
3120 		WPI_DBG((WPI_DEBUG_HW, "timeout waiting for master\n"));
3121 }
3122 
3123 static int
3124 wpi_power_up(wpi_sc_t *sc)
3125 {
3126 	uint32_t tmp;
3127 	int ntries;
3128 
3129 	wpi_mem_lock(sc);
3130 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3131 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3132 	wpi_mem_unlock(sc);
3133 
3134 	for (ntries = 0; ntries < 5000; ntries++) {
3135 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3136 			break;
3137 		DELAY(10);
3138 	}
3139 	if (ntries == 5000) {
3140 		cmn_err(CE_WARN,
3141 		    "wpi_power_up(): timeout waiting for NIC to power up\n");
3142 		return (ETIMEDOUT);
3143 	}
3144 	return (WPI_SUCCESS);
3145 }
3146 
3147 static int
3148 wpi_reset(wpi_sc_t *sc)
3149 {
3150 	uint32_t tmp;
3151 	int ntries;
3152 
3153 	/* clear any pending interrupts */
3154 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3155 
3156 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3157 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3158 
3159 	tmp = WPI_READ(sc, WPI_CHICKEN);
3160 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3161 
3162 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3163 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3164 
3165 	/* wait for clock stabilization */
3166 	for (ntries = 0; ntries < 1000; ntries++) {
3167 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3168 			break;
3169 		DELAY(10);
3170 	}
3171 	if (ntries == 1000) {
3172 		cmn_err(CE_WARN,
3173 		    "wpi_reset(): timeout waiting for clock stabilization\n");
3174 		return (ETIMEDOUT);
3175 	}
3176 
3177 	/* initialize EEPROM */
3178 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3179 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3180 		cmn_err(CE_WARN, "wpi_reset(): EEPROM not found\n");
3181 		return (EIO);
3182 	}
3183 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3184 
3185 	return (WPI_SUCCESS);
3186 }
3187 
3188 static void
3189 wpi_hw_config(wpi_sc_t *sc)
3190 {
3191 	uint16_t val;
3192 	uint32_t hw;
3193 
3194 	/* voodoo from the Linux "driver".. */
3195 	hw = WPI_READ(sc, WPI_HWCONFIG);
3196 
3197 	if ((sc->sc_rev & 0xc0) == 0x40)
3198 		hw |= WPI_HW_ALM_MB;
3199 	else if (!(sc->sc_rev & 0x80))
3200 		hw |= WPI_HW_ALM_MM;
3201 
3202 	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
3203 	if ((val & 0xff) == 0x80)
3204 		hw |= WPI_HW_SKU_MRC;
3205 
3206 	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
3207 	hw &= ~WPI_HW_REV_D;
3208 	if ((val & 0xf0) == 0xd0)
3209 		hw |= WPI_HW_REV_D;
3210 
3211 	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
3212 	if ((val & 0xff) > 1)
3213 		hw |= WPI_HW_TYPE_B;
3214 
3215 	WPI_DBG((WPI_DEBUG_HW, "setting h/w config %x\n", hw));
3216 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3217 }
3218 
3219 static int
3220 wpi_init(wpi_sc_t *sc)
3221 {
3222 	uint32_t tmp;
3223 	int qid, ntries, err;
3224 	clock_t clk;
3225 
3226 	mutex_enter(&sc->sc_glock);
3227 	sc->sc_flags &= ~WPI_F_FW_INIT;
3228 
3229 	(void) wpi_reset(sc);
3230 
3231 	wpi_mem_lock(sc);
3232 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3233 	DELAY(20);
3234 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3235 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3236 	wpi_mem_unlock(sc);
3237 
3238 	(void) wpi_power_up(sc);
3239 	wpi_hw_config(sc);
3240 
3241 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3242 	if (!(tmp & WPI_GPIO_HW_RF_KILL)) {
3243 		cmn_err(CE_WARN, "wpi_init(): Radio transmitter is off\n");
3244 		goto fail1;
3245 	}
3246 
3247 	/* init Rx ring */
3248 	wpi_mem_lock(sc);
3249 	WPI_WRITE(sc, WPI_RX_BASE, sc->sc_rxq.dma_desc.cookie.dmac_address);
3250 	WPI_WRITE(sc, WPI_RX_RIDX_PTR,
3251 	    (uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
3252 	    offsetof(wpi_shared_t, next)));
3253 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & (~7));
3254 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3255 	wpi_mem_unlock(sc);
3256 
3257 	/* init Tx rings */
3258 	wpi_mem_lock(sc);
3259 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3260 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3261 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3262 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3263 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3264 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3265 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3266 
3267 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->sc_dma_sh.cookie.dmac_address);
3268 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3269 
3270 	for (qid = 0; qid < 6; qid++) {
3271 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3272 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3273 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3274 	}
3275 	wpi_mem_unlock(sc);
3276 
3277 	/* clear "radio off" and "disable command" bits (reversed logic) */
3278 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3279 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3280 
3281 	/* clear any pending interrupts */
3282 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3283 
3284 	/* enable interrupts */
3285 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3286 
3287 	/* load firmware boot code into NIC */
3288 	err = wpi_load_microcode(sc);
3289 	if (err != WPI_SUCCESS) {
3290 		cmn_err(CE_WARN, "wpi_init(): failed to load microcode\n");
3291 		goto fail1;
3292 	}
3293 
3294 	/* load firmware .text segment into NIC */
3295 	err = wpi_load_firmware(sc, WPI_FW_TEXT);
3296 	if (err != WPI_SUCCESS) {
3297 		cmn_err(CE_WARN, "wpi_init(): "
3298 		    "failed to load firmware(text)\n");
3299 		goto fail1;
3300 	}
3301 
3302 	/* load firmware .data segment into NIC */
3303 	err = wpi_load_firmware(sc, WPI_FW_DATA);
3304 	if (err != WPI_SUCCESS) {
3305 		cmn_err(CE_WARN, "wpi_init(): "
3306 		    "failed to load firmware(data)\n");
3307 		goto fail1;
3308 	}
3309 
3310 	/* now press "execute" ;-) */
3311 	tmp = WPI_READ(sc, WPI_RESET);
3312 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
3313 	WPI_WRITE(sc, WPI_RESET, tmp);
3314 
3315 	/* ..and wait at most one second for adapter to initialize */
3316 	clk = ddi_get_lbolt() + drv_usectohz(2000000);
3317 	while (!(sc->sc_flags & WPI_F_FW_INIT)) {
3318 		if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
3319 			break;
3320 	}
3321 	if (!(sc->sc_flags & WPI_F_FW_INIT)) {
3322 		cmn_err(CE_WARN,
3323 		    "wpi_init(): timeout waiting for firmware init\n");
3324 		goto fail1;
3325 	}
3326 
3327 	/* wait for thermal sensors to calibrate */
3328 	for (ntries = 0; ntries < 1000; ntries++) {
3329 		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
3330 			break;
3331 		DELAY(10);
3332 	}
3333 
3334 	if (ntries == 1000) {
3335 		WPI_DBG((WPI_DEBUG_HW,
3336 		    "wpi_init(): timeout waiting for thermal sensors "
3337 		    "calibration\n"));
3338 	}
3339 
3340 	WPI_DBG((WPI_DEBUG_HW, "temperature %d\n",
3341 	    (int)WPI_READ(sc, WPI_TEMPERATURE)));
3342 
3343 	err = wpi_config(sc);
3344 	if (err) {
3345 		cmn_err(CE_WARN, "wpi_init(): failed to configure device\n");
3346 		goto fail1;
3347 	}
3348 
3349 	mutex_exit(&sc->sc_glock);
3350 	return (WPI_SUCCESS);
3351 
3352 fail1:
3353 	err = WPI_FAIL;
3354 	mutex_exit(&sc->sc_glock);
3355 	return (err);
3356 }
3357 
3358 /*
3359  * quiesce(9E) entry point.
3360  * This function is called when the system is single-threaded at high
3361  * PIL with preemption disabled. Therefore, this function must not be
3362  * blocked.
3363  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
3364  * DDI_FAILURE indicates an error condition and should almost never happen.
3365  */
3366 static int
3367 wpi_quiesce(dev_info_t *dip)
3368 {
3369 	wpi_sc_t *sc;
3370 
3371 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
3372 	if (sc == NULL)
3373 		return (DDI_FAILURE);
3374 
3375 #ifdef DEBUG
3376 	/* by pass any messages, if it's quiesce */
3377 	wpi_dbg_flags = 0;
3378 #endif
3379 
3380 	/*
3381 	 * No more blocking is allowed while we are in the
3382 	 * quiesce(9E) entry point.
3383 	 */
3384 	sc->sc_flags |= WPI_F_QUIESCED;
3385 
3386 	/*
3387 	 * Disable and mask all interrupts.
3388 	 */
3389 	wpi_stop(sc);
3390 	return (DDI_SUCCESS);
3391 }
3392 
3393 static void
3394 wpi_stop(wpi_sc_t *sc)
3395 {
3396 	uint32_t tmp;
3397 	int ac;
3398 
3399 	/* no mutex operation, if it's quiesced */
3400 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3401 		mutex_enter(&sc->sc_glock);
3402 
3403 	/* disable interrupts */
3404 	WPI_WRITE(sc, WPI_MASK, 0);
3405 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3406 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3407 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3408 
3409 	wpi_mem_lock(sc);
3410 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3411 	wpi_mem_unlock(sc);
3412 
3413 	/* reset all Tx rings */
3414 	for (ac = 0; ac < 4; ac++)
3415 		wpi_reset_tx_ring(sc, &sc->sc_txq[ac]);
3416 	wpi_reset_tx_ring(sc, &sc->sc_cmdq);
3417 	wpi_reset_tx_ring(sc, &sc->sc_svcq);
3418 
3419 	/* reset Rx ring */
3420 	wpi_reset_rx_ring(sc);
3421 
3422 	wpi_mem_lock(sc);
3423 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3424 	wpi_mem_unlock(sc);
3425 
3426 	DELAY(5);
3427 
3428 	wpi_stop_master(sc);
3429 
3430 	sc->sc_tx_timer = 0;
3431 	sc->sc_flags &= ~WPI_F_SCANNING;
3432 	sc->sc_scan_pending = 0;
3433 	sc->sc_scan_next = 0;
3434 
3435 	tmp = WPI_READ(sc, WPI_RESET);
3436 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3437 
3438 	/* no mutex operation, if it's quiesced */
3439 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3440 		mutex_exit(&sc->sc_glock);
3441 }
3442 
3443 /*
3444  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
3445  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
3446  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
3447  * INRIA Sophia - Projet Planete
3448  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
3449  */
3450 #define	is_success(amrr)	\
3451 	((amrr)->retrycnt < (amrr)->txcnt / 10)
3452 #define	is_failure(amrr)	\
3453 	((amrr)->retrycnt > (amrr)->txcnt / 3)
3454 #define	is_enough(amrr)		\
3455 	((amrr)->txcnt > 100)
3456 #define	is_min_rate(in)		\
3457 	((in)->in_txrate == 0)
3458 #define	is_max_rate(in)		\
3459 	((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
3460 #define	increase_rate(in)	\
3461 	((in)->in_txrate++)
3462 #define	decrease_rate(in)	\
3463 	((in)->in_txrate--)
3464 #define	reset_cnt(amrr)		\
3465 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
3466 
3467 #define	WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
3468 #define	WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
3469 
3470 static void
3471 wpi_amrr_init(wpi_amrr_t *amrr)
3472 {
3473 	amrr->success = 0;
3474 	amrr->recovery = 0;
3475 	amrr->txcnt = amrr->retrycnt = 0;
3476 	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3477 }
3478 
3479 static void
3480 wpi_amrr_timeout(wpi_sc_t *sc)
3481 {
3482 	ieee80211com_t *ic = &sc->sc_ic;
3483 
3484 	WPI_DBG((WPI_DEBUG_RATECTL, "wpi_amrr_timeout() enter\n"));
3485 	if (ic->ic_opmode == IEEE80211_M_STA)
3486 		wpi_amrr_ratectl(NULL, ic->ic_bss);
3487 	else
3488 		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
3489 	sc->sc_clk = ddi_get_lbolt();
3490 }
3491 
3492 /* ARGSUSED */
3493 static void
3494 wpi_amrr_ratectl(void *arg, ieee80211_node_t *in)
3495 {
3496 	wpi_amrr_t *amrr = (wpi_amrr_t *)in;
3497 	int need_change = 0;
3498 
3499 	if (is_success(amrr) && is_enough(amrr)) {
3500 		amrr->success++;
3501 		if (amrr->success >= amrr->success_threshold &&
3502 		    !is_max_rate(in)) {
3503 			amrr->recovery = 1;
3504 			amrr->success = 0;
3505 			increase_rate(in);
3506 			WPI_DBG((WPI_DEBUG_RATECTL,
3507 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
3508 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3509 			need_change = 1;
3510 		} else {
3511 			amrr->recovery = 0;
3512 		}
3513 	} else if (is_failure(amrr)) {
3514 		amrr->success = 0;
3515 		if (!is_min_rate(in)) {
3516 			if (amrr->recovery) {
3517 				amrr->success_threshold++;
3518 				if (amrr->success_threshold >
3519 				    WPI_AMRR_MAX_SUCCESS_THRESHOLD)
3520 					amrr->success_threshold =
3521 					    WPI_AMRR_MAX_SUCCESS_THRESHOLD;
3522 			} else {
3523 				amrr->success_threshold =
3524 				    WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3525 			}
3526 			decrease_rate(in);
3527 			WPI_DBG((WPI_DEBUG_RATECTL,
3528 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
3529 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3530 			need_change = 1;
3531 		}
3532 		amrr->recovery = 0;	/* paper is incorrect */
3533 	}
3534 
3535 	if (is_enough(amrr) || need_change)
3536 		reset_cnt(amrr);
3537 }
3538