xref: /illumos-gate/usr/src/uts/common/io/wpi/wpi.c (revision ca4eed8b351c42874d1c1d9360d832914a0ffd1b)
1 /*
2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/byteorder.h>
29 #include <sys/conf.h>
30 #include <sys/cmn_err.h>
31 #include <sys/stat.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/strsubr.h>
35 #include <sys/ethernet.h>
36 #include <inet/common.h>
37 #include <inet/nd.h>
38 #include <inet/mi.h>
39 #include <sys/note.h>
40 #include <sys/stream.h>
41 #include <sys/strsun.h>
42 #include <sys/modctl.h>
43 #include <sys/devops.h>
44 #include <sys/dlpi.h>
45 #include <sys/mac.h>
46 #include <sys/mac_wifi.h>
47 #include <sys/net80211.h>
48 #include <sys/net80211_proto.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/pci.h>
52 
53 #include "wpireg.h"
54 #include "wpivar.h"
55 #include <inet/wifi_ioctl.h>
56 
57 #ifdef DEBUG
58 #define	WPI_DEBUG_80211		(1 << 0)
59 #define	WPI_DEBUG_CMD		(1 << 1)
60 #define	WPI_DEBUG_DMA		(1 << 2)
61 #define	WPI_DEBUG_EEPROM	(1 << 3)
62 #define	WPI_DEBUG_FW		(1 << 4)
63 #define	WPI_DEBUG_HW		(1 << 5)
64 #define	WPI_DEBUG_INTR		(1 << 6)
65 #define	WPI_DEBUG_MRR		(1 << 7)
66 #define	WPI_DEBUG_PIO		(1 << 8)
67 #define	WPI_DEBUG_RX		(1 << 9)
68 #define	WPI_DEBUG_SCAN		(1 << 10)
69 #define	WPI_DEBUG_TX		(1 << 11)
70 #define	WPI_DEBUG_RATECTL	(1 << 12)
71 #define	WPI_DEBUG_RADIO		(1 << 13)
72 #define	WPI_DEBUG_RESUME	(1 << 14)
73 uint32_t wpi_dbg_flags = 0;
74 #define	WPI_DBG(x) \
75 	wpi_dbg x
76 #else
77 #define	WPI_DBG(x)
78 #endif
79 
80 static void	*wpi_soft_state_p = NULL;
81 static uint8_t wpi_fw_bin [] = {
82 #include "fw-wpi/ipw3945.ucode.hex"
83 };
84 
85 /* DMA attributes for a shared page */
86 static ddi_dma_attr_t sh_dma_attr = {
87 	DMA_ATTR_V0,	/* version of this structure */
88 	0,		/* lowest usable address */
89 	0xffffffffU,	/* highest usable address */
90 	0xffffffffU,	/* maximum DMAable byte count */
91 	0x1000,		/* alignment in bytes */
92 	0x1000,		/* burst sizes (any?) */
93 	1,		/* minimum transfer */
94 	0xffffffffU,	/* maximum transfer */
95 	0xffffffffU,	/* maximum segment length */
96 	1,		/* maximum number of segments */
97 	1,		/* granularity */
98 	0,		/* flags (reserved) */
99 };
100 
101 /* DMA attributes for a ring descriptor */
102 static ddi_dma_attr_t ring_desc_dma_attr = {
103 	DMA_ATTR_V0,	/* version of this structure */
104 	0,		/* lowest usable address */
105 	0xffffffffU,	/* highest usable address */
106 	0xffffffffU,	/* maximum DMAable byte count */
107 	0x4000,		/* alignment in bytes */
108 	0x100,		/* burst sizes (any?) */
109 	1,		/* minimum transfer */
110 	0xffffffffU,	/* maximum transfer */
111 	0xffffffffU,	/* maximum segment length */
112 	1,		/* maximum number of segments */
113 	1,		/* granularity */
114 	0,		/* flags (reserved) */
115 };
116 
117 
118 /* DMA attributes for a tx cmd */
119 static ddi_dma_attr_t tx_cmd_dma_attr = {
120 	DMA_ATTR_V0,	/* version of this structure */
121 	0,		/* lowest usable address */
122 	0xffffffffU,	/* highest usable address */
123 	0xffffffffU,	/* maximum DMAable byte count */
124 	4,		/* alignment in bytes */
125 	0x100,		/* burst sizes (any?) */
126 	1,		/* minimum transfer */
127 	0xffffffffU,	/* maximum transfer */
128 	0xffffffffU,	/* maximum segment length */
129 	1,		/* maximum number of segments */
130 	1,		/* granularity */
131 	0,		/* flags (reserved) */
132 };
133 
134 /* DMA attributes for a rx buffer */
135 static ddi_dma_attr_t rx_buffer_dma_attr = {
136 	DMA_ATTR_V0,	/* version of this structure */
137 	0,		/* lowest usable address */
138 	0xffffffffU,	/* highest usable address */
139 	0xffffffffU,	/* maximum DMAable byte count */
140 	1,		/* alignment in bytes */
141 	0x100,		/* burst sizes (any?) */
142 	1,		/* minimum transfer */
143 	0xffffffffU,	/* maximum transfer */
144 	0xffffffffU,	/* maximum segment length */
145 	1,		/* maximum number of segments */
146 	1,		/* granularity */
147 	0,		/* flags (reserved) */
148 };
149 
150 /*
151  * DMA attributes for a tx buffer.
152  * the maximum number of segments is 4 for the hardware.
153  * now all the wifi drivers put the whole frame in a single
154  * descriptor, so we define the maximum  number of segments 4,
155  * just the same as the rx_buffer. we consider leverage the HW
156  * ability in the future, that is why we don't define rx and tx
157  * buffer_dma_attr as the same.
158  */
159 static ddi_dma_attr_t tx_buffer_dma_attr = {
160 	DMA_ATTR_V0,	/* version of this structure */
161 	0,		/* lowest usable address */
162 	0xffffffffU,	/* highest usable address */
163 	0xffffffffU,	/* maximum DMAable byte count */
164 	1,		/* alignment in bytes */
165 	0x100,		/* burst sizes (any?) */
166 	1,		/* minimum transfer */
167 	0xffffffffU,	/* maximum transfer */
168 	0xffffffffU,	/* maximum segment length */
169 	1,		/* maximum number of segments */
170 	1,		/* granularity */
171 	0,		/* flags (reserved) */
172 };
173 
174 /* DMA attributes for a load firmware */
175 static ddi_dma_attr_t fw_buffer_dma_attr = {
176 	DMA_ATTR_V0,	/* version of this structure */
177 	0,		/* lowest usable address */
178 	0xffffffffU,	/* highest usable address */
179 	0x7fffffff,	/* maximum DMAable byte count */
180 	4,		/* alignment in bytes */
181 	0x100,		/* burst sizes (any?) */
182 	1,		/* minimum transfer */
183 	0xffffffffU,	/* maximum transfer */
184 	0xffffffffU,	/* maximum segment length */
185 	4,		/* maximum number of segments */
186 	1,		/* granularity */
187 	0,		/* flags (reserved) */
188 };
189 
190 /* regs access attributes */
191 static ddi_device_acc_attr_t wpi_reg_accattr = {
192 	DDI_DEVICE_ATTR_V0,
193 	DDI_STRUCTURE_LE_ACC,
194 	DDI_STRICTORDER_ACC,
195 	DDI_DEFAULT_ACC
196 };
197 
198 /* DMA access attributes */
199 static ddi_device_acc_attr_t wpi_dma_accattr = {
200 	DDI_DEVICE_ATTR_V0,
201 	DDI_NEVERSWAP_ACC,
202 	DDI_STRICTORDER_ACC,
203 	DDI_DEFAULT_ACC
204 };
205 
206 static int	wpi_ring_init(wpi_sc_t *);
207 static void	wpi_ring_free(wpi_sc_t *);
208 static int	wpi_alloc_shared(wpi_sc_t *);
209 static void	wpi_free_shared(wpi_sc_t *);
210 static int	wpi_alloc_fw_dma(wpi_sc_t *);
211 static void	wpi_free_fw_dma(wpi_sc_t *);
212 static int	wpi_alloc_rx_ring(wpi_sc_t *);
213 static void	wpi_reset_rx_ring(wpi_sc_t *);
214 static void	wpi_free_rx_ring(wpi_sc_t *);
215 static int	wpi_alloc_tx_ring(wpi_sc_t *, wpi_tx_ring_t *, int, int);
216 static void	wpi_reset_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
217 static void	wpi_free_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
218 
219 static ieee80211_node_t *wpi_node_alloc(ieee80211com_t *);
220 static void	wpi_node_free(ieee80211_node_t *);
221 static int	wpi_newstate(ieee80211com_t *, enum ieee80211_state, int);
222 static int	wpi_key_set(ieee80211com_t *, const struct ieee80211_key *,
223     const uint8_t mac[IEEE80211_ADDR_LEN]);
224 static void	wpi_mem_lock(wpi_sc_t *);
225 static void	wpi_mem_unlock(wpi_sc_t *);
226 static uint32_t	wpi_mem_read(wpi_sc_t *, uint16_t);
227 static void	wpi_mem_write(wpi_sc_t *, uint16_t, uint32_t);
228 static void	wpi_mem_write_region_4(wpi_sc_t *, uint16_t,
229 		    const uint32_t *, int);
230 static uint16_t	wpi_read_prom_word(wpi_sc_t *, uint32_t);
231 static int	wpi_load_microcode(wpi_sc_t *);
232 static int	wpi_load_firmware(wpi_sc_t *, uint32_t);
233 static void	wpi_rx_intr(wpi_sc_t *, wpi_rx_desc_t *,
234 		    wpi_rx_data_t *);
235 static void	wpi_tx_intr(wpi_sc_t *, wpi_rx_desc_t *,
236 		    wpi_rx_data_t *);
237 static void	wpi_cmd_intr(wpi_sc_t *, wpi_rx_desc_t *);
238 static uint_t	wpi_intr(caddr_t);
239 static uint_t	wpi_notif_softintr(caddr_t);
240 static uint8_t	wpi_plcp_signal(int);
241 static void	wpi_read_eeprom(wpi_sc_t *);
242 static int	wpi_cmd(wpi_sc_t *, int, const void *, int, int);
243 static int	wpi_mrr_setup(wpi_sc_t *);
244 static void	wpi_set_led(wpi_sc_t *, uint8_t, uint8_t, uint8_t);
245 static int	wpi_auth(wpi_sc_t *);
246 static int	wpi_scan(wpi_sc_t *);
247 static int	wpi_config(wpi_sc_t *);
248 static void	wpi_stop_master(wpi_sc_t *);
249 static int	wpi_power_up(wpi_sc_t *);
250 static int	wpi_reset(wpi_sc_t *);
251 static void	wpi_hw_config(wpi_sc_t *);
252 static int	wpi_init(wpi_sc_t *);
253 static void	wpi_stop(wpi_sc_t *);
254 static void	wpi_amrr_init(wpi_amrr_t *);
255 static void	wpi_amrr_timeout(wpi_sc_t *);
256 static void	wpi_amrr_ratectl(void *, ieee80211_node_t *);
257 
258 static int wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
259 static int wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
260 
261 /*
262  * GLD specific operations
263  */
264 static int	wpi_m_stat(void *arg, uint_t stat, uint64_t *val);
265 static int	wpi_m_start(void *arg);
266 static void	wpi_m_stop(void *arg);
267 static int	wpi_m_unicst(void *arg, const uint8_t *macaddr);
268 static int	wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m);
269 static int	wpi_m_promisc(void *arg, boolean_t on);
270 static mblk_t  *wpi_m_tx(void *arg, mblk_t *mp);
271 static void	wpi_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
272 static int	wpi_m_setprop(void *arg, const char *pr_name,
273     mac_prop_id_t wldp_pr_num, uint_t wldp_length, const void *wldp_buf);
274 static int	wpi_m_getprop(void *arg, const char *pr_name,
275     mac_prop_id_t wldp_pr_num, uint_t pr_flags, uint_t wldp_lenth,
276     void *wldp_buf, uint_t *);
277 static void	wpi_destroy_locks(wpi_sc_t *sc);
278 static int	wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
279 static void	wpi_thread(wpi_sc_t *sc);
280 
281 /*
282  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
283  */
284 static const struct ieee80211_rateset wpi_rateset_11b =
285 	{ 4, { 2, 4, 11, 22 } };
286 
287 static const struct ieee80211_rateset wpi_rateset_11g =
288 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
289 
290 static const uint8_t wpi_ridx_to_signal[] = {
291 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
292 	/* R1-R4 (ral/ural is R4-R1) */
293 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
294 	/* CCK: device-dependent */
295 	10, 20, 55, 110
296 };
297 
298 /*
299  * For mfthread only
300  */
301 extern pri_t minclsyspri;
302 
303 /*
304  * Module Loading Data & Entry Points
305  */
306 DDI_DEFINE_STREAM_OPS(wpi_devops, nulldev, nulldev, wpi_attach,
307     wpi_detach, nodev, NULL, D_MP, NULL, ddi_quiesce_not_supported);
308 
309 static struct modldrv wpi_modldrv = {
310 	&mod_driverops,
311 	"Intel(R) PRO/Wireless 3945ABG driver",
312 	&wpi_devops
313 };
314 
315 static struct modlinkage wpi_modlinkage = {
316 	MODREV_1,
317 	&wpi_modldrv,
318 	NULL
319 };
320 
321 int
322 _init(void)
323 {
324 	int	status;
325 
326 	status = ddi_soft_state_init(&wpi_soft_state_p,
327 	    sizeof (wpi_sc_t), 1);
328 	if (status != DDI_SUCCESS)
329 		return (status);
330 
331 	mac_init_ops(&wpi_devops, "wpi");
332 	status = mod_install(&wpi_modlinkage);
333 	if (status != DDI_SUCCESS) {
334 		mac_fini_ops(&wpi_devops);
335 		ddi_soft_state_fini(&wpi_soft_state_p);
336 	}
337 
338 	return (status);
339 }
340 
341 int
342 _fini(void)
343 {
344 	int status;
345 
346 	status = mod_remove(&wpi_modlinkage);
347 	if (status == DDI_SUCCESS) {
348 		mac_fini_ops(&wpi_devops);
349 		ddi_soft_state_fini(&wpi_soft_state_p);
350 	}
351 
352 	return (status);
353 }
354 
355 int
356 _info(struct modinfo *mip)
357 {
358 	return (mod_info(&wpi_modlinkage, mip));
359 }
360 
361 /*
362  * Mac Call Back entries
363  */
364 mac_callbacks_t	wpi_m_callbacks = {
365 	MC_IOCTL | MC_SETPROP | MC_GETPROP,
366 	wpi_m_stat,
367 	wpi_m_start,
368 	wpi_m_stop,
369 	wpi_m_promisc,
370 	wpi_m_multicst,
371 	wpi_m_unicst,
372 	wpi_m_tx,
373 	NULL,
374 	wpi_m_ioctl,
375 	NULL,
376 	NULL,
377 	NULL,
378 	wpi_m_setprop,
379 	wpi_m_getprop
380 };
381 
382 #ifdef DEBUG
383 void
384 wpi_dbg(uint32_t flags, const char *fmt, ...)
385 {
386 	va_list	ap;
387 
388 	if (flags & wpi_dbg_flags) {
389 		va_start(ap, fmt);
390 		vcmn_err(CE_NOTE, fmt, ap);
391 		va_end(ap);
392 	}
393 }
394 #endif
395 /*
396  * device operations
397  */
398 int
399 wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
400 {
401 	wpi_sc_t		*sc;
402 	ddi_acc_handle_t	cfg_handle;
403 	caddr_t			cfg_base;
404 	ieee80211com_t	*ic;
405 	int			instance, err, i;
406 	char			strbuf[32];
407 	wifi_data_t		wd = { 0 };
408 	mac_register_t		*macp;
409 
410 	switch (cmd) {
411 	case DDI_ATTACH:
412 		break;
413 	case DDI_RESUME:
414 		sc = ddi_get_soft_state(wpi_soft_state_p,
415 		    ddi_get_instance(dip));
416 		ASSERT(sc != NULL);
417 		mutex_enter(&sc->sc_glock);
418 		sc->sc_flags &= ~WPI_F_SUSPEND;
419 		mutex_exit(&sc->sc_glock);
420 		if (sc->sc_flags & WPI_F_RUNNING) {
421 			(void) wpi_init(sc);
422 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
423 		}
424 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: resume \n"));
425 		return (DDI_SUCCESS);
426 	default:
427 		err = DDI_FAILURE;
428 		goto attach_fail1;
429 	}
430 
431 	instance = ddi_get_instance(dip);
432 	err = ddi_soft_state_zalloc(wpi_soft_state_p, instance);
433 	if (err != DDI_SUCCESS) {
434 		cmn_err(CE_WARN,
435 		    "wpi_attach(): failed to allocate soft state\n");
436 		goto attach_fail1;
437 	}
438 	sc = ddi_get_soft_state(wpi_soft_state_p, instance);
439 	sc->sc_dip = dip;
440 
441 	err = ddi_regs_map_setup(dip, 0, &cfg_base, 0, 0,
442 	    &wpi_reg_accattr, &cfg_handle);
443 	if (err != DDI_SUCCESS) {
444 		cmn_err(CE_WARN,
445 		    "wpi_attach(): failed to map config spaces regs\n");
446 		goto attach_fail2;
447 	}
448 	sc->sc_rev = ddi_get8(cfg_handle,
449 	    (uint8_t *)(cfg_base + PCI_CONF_REVID));
450 	ddi_put8(cfg_handle, (uint8_t *)(cfg_base + 0x41), 0);
451 	sc->sc_clsz = ddi_get16(cfg_handle,
452 	    (uint16_t *)(cfg_base + PCI_CONF_CACHE_LINESZ));
453 	ddi_regs_map_free(&cfg_handle);
454 	if (!sc->sc_clsz)
455 		sc->sc_clsz = 16;
456 	sc->sc_clsz = (sc->sc_clsz << 2);
457 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
458 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
459 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
460 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
461 	/*
462 	 * Map operating registers
463 	 */
464 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
465 	    0, 0, &wpi_reg_accattr, &sc->sc_handle);
466 	if (err != DDI_SUCCESS) {
467 		cmn_err(CE_WARN,
468 		    "wpi_attach(): failed to map device regs\n");
469 		goto attach_fail2;
470 	}
471 
472 	/*
473 	 * Allocate shared page.
474 	 */
475 	err = wpi_alloc_shared(sc);
476 	if (err != DDI_SUCCESS) {
477 		cmn_err(CE_WARN, "failed to allocate shared page\n");
478 		goto attach_fail3;
479 	}
480 
481 	/*
482 	 * Get the hw conf, including MAC address, then init all rings.
483 	 */
484 	wpi_read_eeprom(sc);
485 	err = wpi_ring_init(sc);
486 	if (err != DDI_SUCCESS) {
487 		cmn_err(CE_WARN, "wpi_attach(): "
488 		    "failed to allocate and initialize ring\n");
489 		goto attach_fail4;
490 	}
491 
492 	sc->sc_hdr = (const wpi_firmware_hdr_t *)wpi_fw_bin;
493 
494 	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
495 	sc->sc_text = (const char *)(sc->sc_hdr + 1);
496 	sc->sc_data = sc->sc_text + LE_32(sc->sc_hdr->textsz);
497 	sc->sc_boot = sc->sc_data + LE_32(sc->sc_hdr->datasz);
498 	err = wpi_alloc_fw_dma(sc);
499 	if (err != DDI_SUCCESS) {
500 		cmn_err(CE_WARN, "wpi_attach(): "
501 		    "failed to allocate firmware dma\n");
502 		goto attach_fail5;
503 	}
504 
505 	/*
506 	 * Initialize mutexs and condvars
507 	 */
508 	err = ddi_get_iblock_cookie(dip, 0, &sc->sc_iblk);
509 	if (err != DDI_SUCCESS) {
510 		cmn_err(CE_WARN,
511 		    "wpi_attach(): failed to do ddi_get_iblock_cookie()\n");
512 		goto attach_fail6;
513 	}
514 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, sc->sc_iblk);
515 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER, sc->sc_iblk);
516 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
517 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
518 
519 	/*
520 	 * initialize the mfthread
521 	 */
522 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
523 	    (void *) sc->sc_iblk);
524 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
525 	sc->sc_mf_thread = NULL;
526 	sc->sc_mf_thread_switch = 0;
527 	/*
528 	 * Initialize the wifi part, which will be used by
529 	 * generic layer
530 	 */
531 	ic = &sc->sc_ic;
532 	ic->ic_phytype  = IEEE80211_T_OFDM;
533 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
534 	ic->ic_state    = IEEE80211_S_INIT;
535 	ic->ic_maxrssi  = 70; /* experimental number */
536 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
537 	    IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
538 
539 	/*
540 	 * use software WEP and TKIP, hardware CCMP;
541 	 */
542 	ic->ic_caps |= IEEE80211_C_AES_CCM;
543 	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
544 
545 	/* set supported .11b and .11g rates */
546 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
547 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
548 
549 	/* set supported .11b and .11g channels (1 through 14) */
550 	for (i = 1; i <= 14; i++) {
551 		ic->ic_sup_channels[i].ich_freq =
552 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
553 		ic->ic_sup_channels[i].ich_flags =
554 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
555 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ |
556 		    IEEE80211_CHAN_PASSIVE;
557 	}
558 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
559 	ic->ic_xmit = wpi_send;
560 	/*
561 	 * init Wifi layer
562 	 */
563 	ieee80211_attach(ic);
564 
565 	/* register WPA door */
566 	ieee80211_register_door(ic, ddi_driver_name(dip),
567 	    ddi_get_instance(dip));
568 
569 	/*
570 	 * Override 80211 default routines
571 	 */
572 	sc->sc_newstate = ic->ic_newstate;
573 	ic->ic_newstate = wpi_newstate;
574 	ic->ic_node_alloc = wpi_node_alloc;
575 	ic->ic_node_free = wpi_node_free;
576 	ic->ic_crypto.cs_key_set = wpi_key_set;
577 	ieee80211_media_init(ic);
578 	/*
579 	 * initialize default tx key
580 	 */
581 	ic->ic_def_txkey = 0;
582 
583 	err = ddi_add_softintr(dip, DDI_SOFTINT_LOW,
584 	    &sc->sc_notif_softint_id, &sc->sc_iblk, NULL, wpi_notif_softintr,
585 	    (caddr_t)sc);
586 	if (err != DDI_SUCCESS) {
587 		cmn_err(CE_WARN,
588 		    "wpi_attach(): failed to do ddi_add_softintr()\n");
589 		goto attach_fail7;
590 	}
591 
592 	/*
593 	 * Add the interrupt handler
594 	 */
595 	err = ddi_add_intr(dip, 0, &sc->sc_iblk, NULL,
596 	    wpi_intr, (caddr_t)sc);
597 	if (err != DDI_SUCCESS) {
598 		cmn_err(CE_WARN,
599 		    "wpi_attach(): failed to do ddi_add_intr()\n");
600 		goto attach_fail8;
601 	}
602 
603 	/*
604 	 * Initialize pointer to device specific functions
605 	 */
606 	wd.wd_secalloc = WIFI_SEC_NONE;
607 	wd.wd_opmode = ic->ic_opmode;
608 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
609 
610 	macp = mac_alloc(MAC_VERSION);
611 	if (err != DDI_SUCCESS) {
612 		cmn_err(CE_WARN,
613 		    "wpi_attach(): failed to do mac_alloc()\n");
614 		goto attach_fail9;
615 	}
616 
617 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
618 	macp->m_driver		= sc;
619 	macp->m_dip		= dip;
620 	macp->m_src_addr	= ic->ic_macaddr;
621 	macp->m_callbacks	= &wpi_m_callbacks;
622 	macp->m_min_sdu		= 0;
623 	macp->m_max_sdu		= IEEE80211_MTU;
624 	macp->m_pdata		= &wd;
625 	macp->m_pdata_size	= sizeof (wd);
626 
627 	/*
628 	 * Register the macp to mac
629 	 */
630 	err = mac_register(macp, &ic->ic_mach);
631 	mac_free(macp);
632 	if (err != DDI_SUCCESS) {
633 		cmn_err(CE_WARN,
634 		    "wpi_attach(): failed to do mac_register()\n");
635 		goto attach_fail9;
636 	}
637 
638 	/*
639 	 * Create minor node of type DDI_NT_NET_WIFI
640 	 */
641 	(void) snprintf(strbuf, sizeof (strbuf), "wpi%d", instance);
642 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
643 	    instance + 1, DDI_NT_NET_WIFI, 0);
644 	if (err != DDI_SUCCESS)
645 		cmn_err(CE_WARN,
646 		    "wpi_attach(): failed to do ddi_create_minor_node()\n");
647 
648 	/*
649 	 * Notify link is down now
650 	 */
651 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
652 
653 	/*
654 	 * create the mf thread to handle the link status,
655 	 * recovery fatal error, etc.
656 	 */
657 
658 	sc->sc_mf_thread_switch = 1;
659 	if (sc->sc_mf_thread == NULL)
660 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
661 		    wpi_thread, sc, 0, &p0, TS_RUN, minclsyspri);
662 
663 	sc->sc_flags |= WPI_F_ATTACHED;
664 
665 	return (DDI_SUCCESS);
666 attach_fail9:
667 	ddi_remove_intr(dip, 0, sc->sc_iblk);
668 attach_fail8:
669 	ddi_remove_softintr(sc->sc_notif_softint_id);
670 	sc->sc_notif_softint_id = NULL;
671 attach_fail7:
672 	ieee80211_detach(ic);
673 	wpi_destroy_locks(sc);
674 attach_fail6:
675 	wpi_free_fw_dma(sc);
676 attach_fail5:
677 	wpi_ring_free(sc);
678 attach_fail4:
679 	wpi_free_shared(sc);
680 attach_fail3:
681 	ddi_regs_map_free(&sc->sc_handle);
682 attach_fail2:
683 	ddi_soft_state_free(wpi_soft_state_p, instance);
684 attach_fail1:
685 	return (err);
686 }
687 
688 int
689 wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
690 {
691 	wpi_sc_t	*sc;
692 	int err;
693 
694 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
695 	ASSERT(sc != NULL);
696 
697 	switch (cmd) {
698 	case DDI_DETACH:
699 		break;
700 	case DDI_SUSPEND:
701 		if (sc->sc_flags & WPI_F_RUNNING) {
702 			wpi_stop(sc);
703 		}
704 		mutex_enter(&sc->sc_glock);
705 		sc->sc_flags |= WPI_F_SUSPEND;
706 		mutex_exit(&sc->sc_glock);
707 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: suspend \n"));
708 		return (DDI_SUCCESS);
709 	default:
710 		return (DDI_FAILURE);
711 	}
712 	if (!(sc->sc_flags & WPI_F_ATTACHED))
713 		return (DDI_FAILURE);
714 
715 	err = mac_disable(sc->sc_ic.ic_mach);
716 	if (err != DDI_SUCCESS)
717 		return (err);
718 
719 	/*
720 	 * Destroy the mf_thread
721 	 */
722 	mutex_enter(&sc->sc_mt_lock);
723 	sc->sc_mf_thread_switch = 0;
724 	while (sc->sc_mf_thread != NULL) {
725 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
726 			break;
727 	}
728 	mutex_exit(&sc->sc_mt_lock);
729 
730 	wpi_stop(sc);
731 
732 	/*
733 	 * Unregiste from the MAC layer subsystem
734 	 */
735 	(void) mac_unregister(sc->sc_ic.ic_mach);
736 
737 	mutex_enter(&sc->sc_glock);
738 	wpi_free_fw_dma(sc);
739 	wpi_ring_free(sc);
740 	wpi_free_shared(sc);
741 	mutex_exit(&sc->sc_glock);
742 
743 	ddi_remove_intr(dip, 0, sc->sc_iblk);
744 	ddi_remove_softintr(sc->sc_notif_softint_id);
745 	sc->sc_notif_softint_id = NULL;
746 
747 	/*
748 	 * detach ieee80211
749 	 */
750 	ieee80211_detach(&sc->sc_ic);
751 
752 	wpi_destroy_locks(sc);
753 
754 	ddi_regs_map_free(&sc->sc_handle);
755 	ddi_remove_minor_node(dip, NULL);
756 	ddi_soft_state_free(wpi_soft_state_p, ddi_get_instance(dip));
757 
758 	return (DDI_SUCCESS);
759 }
760 
761 static void
762 wpi_destroy_locks(wpi_sc_t *sc)
763 {
764 	cv_destroy(&sc->sc_mt_cv);
765 	mutex_destroy(&sc->sc_mt_lock);
766 	cv_destroy(&sc->sc_cmd_cv);
767 	cv_destroy(&sc->sc_fw_cv);
768 	mutex_destroy(&sc->sc_tx_lock);
769 	mutex_destroy(&sc->sc_glock);
770 }
771 
772 /*
773  * Allocate an area of memory and a DMA handle for accessing it
774  */
775 static int
776 wpi_alloc_dma_mem(wpi_sc_t *sc, size_t memsize, ddi_dma_attr_t *dma_attr_p,
777 	ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, wpi_dma_t *dma_p)
778 {
779 	caddr_t vaddr;
780 	int err;
781 
782 	/*
783 	 * Allocate handle
784 	 */
785 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
786 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
787 	if (err != DDI_SUCCESS) {
788 		dma_p->dma_hdl = NULL;
789 		return (DDI_FAILURE);
790 	}
791 
792 	/*
793 	 * Allocate memory
794 	 */
795 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
796 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
797 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
798 	if (err != DDI_SUCCESS) {
799 		ddi_dma_free_handle(&dma_p->dma_hdl);
800 		dma_p->dma_hdl = NULL;
801 		dma_p->acc_hdl = NULL;
802 		return (DDI_FAILURE);
803 	}
804 
805 	/*
806 	 * Bind the two together
807 	 */
808 	dma_p->mem_va = vaddr;
809 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
810 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
811 	    &dma_p->cookie, &dma_p->ncookies);
812 	if (err != DDI_DMA_MAPPED) {
813 		ddi_dma_mem_free(&dma_p->acc_hdl);
814 		ddi_dma_free_handle(&dma_p->dma_hdl);
815 		dma_p->acc_hdl = NULL;
816 		dma_p->dma_hdl = NULL;
817 		return (DDI_FAILURE);
818 	}
819 
820 	dma_p->nslots = ~0U;
821 	dma_p->size = ~0U;
822 	dma_p->token = ~0U;
823 	dma_p->offset = 0;
824 	return (DDI_SUCCESS);
825 }
826 
827 /*
828  * Free one allocated area of DMAable memory
829  */
830 static void
831 wpi_free_dma_mem(wpi_dma_t *dma_p)
832 {
833 	if (dma_p->dma_hdl != NULL) {
834 		if (dma_p->ncookies) {
835 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
836 			dma_p->ncookies = 0;
837 		}
838 		ddi_dma_free_handle(&dma_p->dma_hdl);
839 		dma_p->dma_hdl = NULL;
840 	}
841 
842 	if (dma_p->acc_hdl != NULL) {
843 		ddi_dma_mem_free(&dma_p->acc_hdl);
844 		dma_p->acc_hdl = NULL;
845 	}
846 }
847 
848 /*
849  * Allocate an area of dma memory for firmware load.
850  * Idealy, this allocation should be a one time action, that is,
851  * the memory will be freed after the firmware is uploaded to the
852  * card. but since a recovery mechanism for the fatal firmware need
853  * reload the firmware, and re-allocate dma at run time may be failed,
854  * so we allocate it at attach and keep it in the whole lifecycle of
855  * the driver.
856  */
857 static int
858 wpi_alloc_fw_dma(wpi_sc_t *sc)
859 {
860 	int i, err = DDI_SUCCESS;
861 	wpi_dma_t *dma_p;
862 
863 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
864 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
865 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
866 	    &sc->sc_dma_fw_text);
867 	dma_p = &sc->sc_dma_fw_text;
868 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
869 	    dma_p->ncookies, dma_p->cookie.dmac_address,
870 	    dma_p->cookie.dmac_size));
871 	if (err != DDI_SUCCESS) {
872 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
873 		    "text dma memory");
874 		goto fail;
875 	}
876 	for (i = 0; i < dma_p->ncookies; i++) {
877 		sc->sc_fw_text_cookie[i] = dma_p->cookie;
878 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
879 	}
880 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
881 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
882 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
883 	    &sc->sc_dma_fw_data);
884 	dma_p = &sc->sc_dma_fw_data;
885 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
886 	    dma_p->ncookies, dma_p->cookie.dmac_address,
887 	    dma_p->cookie.dmac_size));
888 	if (err != DDI_SUCCESS) {
889 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
890 		    "data dma memory");
891 		goto fail;
892 	}
893 	for (i = 0; i < dma_p->ncookies; i++) {
894 		sc->sc_fw_data_cookie[i] = dma_p->cookie;
895 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
896 	}
897 fail:
898 	return (err);
899 }
900 
901 static void
902 wpi_free_fw_dma(wpi_sc_t *sc)
903 {
904 	wpi_free_dma_mem(&sc->sc_dma_fw_text);
905 	wpi_free_dma_mem(&sc->sc_dma_fw_data);
906 }
907 
908 /*
909  * Allocate a shared page between host and NIC.
910  */
911 static int
912 wpi_alloc_shared(wpi_sc_t *sc)
913 {
914 	int err = DDI_SUCCESS;
915 
916 	/* must be aligned on a 4K-page boundary */
917 	err = wpi_alloc_dma_mem(sc, sizeof (wpi_shared_t),
918 	    &sh_dma_attr, &wpi_dma_accattr,
919 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
920 	    &sc->sc_dma_sh);
921 	if (err != DDI_SUCCESS)
922 		goto fail;
923 	sc->sc_shared = (wpi_shared_t *)sc->sc_dma_sh.mem_va;
924 	return (err);
925 
926 fail:
927 	wpi_free_shared(sc);
928 	return (err);
929 }
930 
931 static void
932 wpi_free_shared(wpi_sc_t *sc)
933 {
934 	wpi_free_dma_mem(&sc->sc_dma_sh);
935 }
936 
937 static int
938 wpi_alloc_rx_ring(wpi_sc_t *sc)
939 {
940 	wpi_rx_ring_t *ring;
941 	wpi_rx_data_t *data;
942 	int i, err = DDI_SUCCESS;
943 
944 	ring = &sc->sc_rxq;
945 	ring->cur = 0;
946 
947 	err = wpi_alloc_dma_mem(sc, WPI_RX_RING_COUNT * sizeof (uint32_t),
948 	    &ring_desc_dma_attr, &wpi_dma_accattr,
949 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
950 	    &ring->dma_desc);
951 	if (err != DDI_SUCCESS) {
952 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring desc failed\n"));
953 		goto fail;
954 	}
955 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
956 
957 	/*
958 	 * Allocate Rx buffers.
959 	 */
960 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
961 		data = &ring->data[i];
962 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
963 		    &rx_buffer_dma_attr, &wpi_dma_accattr,
964 		    DDI_DMA_READ | DDI_DMA_STREAMING,
965 		    &data->dma_data);
966 		if (err != DDI_SUCCESS) {
967 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring buf[%d] "
968 			    "failed\n", i));
969 			goto fail;
970 		}
971 
972 		ring->desc[i] = LE_32(data->dma_data.cookie.dmac_address);
973 	}
974 
975 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
976 
977 	return (err);
978 
979 fail:
980 	wpi_free_rx_ring(sc);
981 	return (err);
982 }
983 
984 static void
985 wpi_reset_rx_ring(wpi_sc_t *sc)
986 {
987 	int ntries;
988 
989 	wpi_mem_lock(sc);
990 
991 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
992 	for (ntries = 0; ntries < 2000; ntries++) {
993 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
994 			break;
995 		DELAY(1000);
996 	}
997 	if (ntries == 2000)
998 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Rx ring\n"));
999 
1000 	wpi_mem_unlock(sc);
1001 
1002 	sc->sc_rxq.cur = 0;
1003 }
1004 
1005 static void
1006 wpi_free_rx_ring(wpi_sc_t *sc)
1007 {
1008 	int i;
1009 
1010 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1011 		if (sc->sc_rxq.data[i].dma_data.dma_hdl)
1012 			WPI_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
1013 			    DDI_DMA_SYNC_FORCPU);
1014 		wpi_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
1015 	}
1016 
1017 	if (sc->sc_rxq.dma_desc.dma_hdl)
1018 		WPI_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
1019 	wpi_free_dma_mem(&sc->sc_rxq.dma_desc);
1020 }
1021 
1022 static int
1023 wpi_alloc_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring, int count, int qid)
1024 {
1025 	wpi_tx_data_t *data;
1026 	wpi_tx_desc_t *desc_h;
1027 	uint32_t paddr_desc_h;
1028 	wpi_tx_cmd_t *cmd_h;
1029 	uint32_t paddr_cmd_h;
1030 	int i, err = DDI_SUCCESS;
1031 
1032 	ring->qid = qid;
1033 	ring->count = count;
1034 	ring->queued = 0;
1035 	ring->cur = 0;
1036 
1037 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_desc_t),
1038 	    &ring_desc_dma_attr, &wpi_dma_accattr,
1039 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1040 	    &ring->dma_desc);
1041 	if (err != DDI_SUCCESS) {
1042 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring desc[%d] failed\n",
1043 		    qid));
1044 		goto fail;
1045 	}
1046 
1047 	/* update shared page with ring's base address */
1048 	sc->sc_shared->txbase[qid] = ring->dma_desc.cookie.dmac_address;
1049 
1050 	desc_h = (wpi_tx_desc_t *)ring->dma_desc.mem_va;
1051 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1052 
1053 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_cmd_t),
1054 	    &tx_cmd_dma_attr, &wpi_dma_accattr,
1055 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1056 	    &ring->dma_cmd);
1057 	if (err != DDI_SUCCESS) {
1058 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring cmd[%d] failed\n",
1059 		    qid));
1060 		goto fail;
1061 	}
1062 
1063 	cmd_h = (wpi_tx_cmd_t *)ring->dma_cmd.mem_va;
1064 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1065 
1066 	/*
1067 	 * Allocate Tx buffers.
1068 	 */
1069 	ring->data = kmem_zalloc(sizeof (wpi_tx_data_t) * count, KM_NOSLEEP);
1070 	if (ring->data == NULL) {
1071 		WPI_DBG((WPI_DEBUG_DMA, "could not allocate tx data slots\n"));
1072 		goto fail;
1073 	}
1074 
1075 	for (i = 0; i < count; i++) {
1076 		data = &ring->data[i];
1077 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1078 		    &tx_buffer_dma_attr, &wpi_dma_accattr,
1079 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1080 		    &data->dma_data);
1081 		if (err != DDI_SUCCESS) {
1082 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring buf[%d] "
1083 			    "failed\n", i));
1084 			goto fail;
1085 		}
1086 
1087 		data->desc = desc_h + i;
1088 		data->paddr_desc = paddr_desc_h +
1089 		    ((uintptr_t)data->desc - (uintptr_t)desc_h);
1090 		data->cmd = cmd_h + i;
1091 		data->paddr_cmd = paddr_cmd_h +
1092 		    ((uintptr_t)data->cmd - (uintptr_t)cmd_h);
1093 	}
1094 
1095 	return (err);
1096 
1097 fail:
1098 	wpi_free_tx_ring(sc, ring);
1099 	return (err);
1100 }
1101 
1102 static void
1103 wpi_reset_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1104 {
1105 	wpi_tx_data_t *data;
1106 	int i, ntries;
1107 
1108 	wpi_mem_lock(sc);
1109 
1110 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1111 	for (ntries = 0; ntries < 100; ntries++) {
1112 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1113 			break;
1114 		DELAY(10);
1115 	}
1116 #ifdef DEBUG
1117 	if (ntries == 100 && wpi_dbg_flags > 0) {
1118 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Tx ring %d\n",
1119 		    ring->qid));
1120 	}
1121 #endif
1122 	wpi_mem_unlock(sc);
1123 
1124 	for (i = 0; i < ring->count; i++) {
1125 		data = &ring->data[i];
1126 		WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1127 	}
1128 
1129 	ring->queued = 0;
1130 	ring->cur = 0;
1131 }
1132 
1133 /*ARGSUSED*/
1134 static void
1135 wpi_free_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1136 {
1137 	int i;
1138 
1139 	if (ring->dma_desc.dma_hdl != NULL)
1140 		WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1141 	wpi_free_dma_mem(&ring->dma_desc);
1142 
1143 	if (ring->dma_cmd.dma_hdl != NULL)
1144 		WPI_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1145 	wpi_free_dma_mem(&ring->dma_cmd);
1146 
1147 	if (ring->data != NULL) {
1148 		for (i = 0; i < ring->count; i++) {
1149 			if (ring->data[i].dma_data.dma_hdl)
1150 				WPI_DMA_SYNC(ring->data[i].dma_data,
1151 				    DDI_DMA_SYNC_FORDEV);
1152 			wpi_free_dma_mem(&ring->data[i].dma_data);
1153 		}
1154 		kmem_free(ring->data, ring->count * sizeof (wpi_tx_data_t));
1155 		ring->data = NULL;
1156 	}
1157 }
1158 
1159 static int
1160 wpi_ring_init(wpi_sc_t *sc)
1161 {
1162 	int i, err = DDI_SUCCESS;
1163 
1164 	for (i = 0; i < 4; i++) {
1165 		err = wpi_alloc_tx_ring(sc, &sc->sc_txq[i], WPI_TX_RING_COUNT,
1166 		    i);
1167 		if (err != DDI_SUCCESS)
1168 			goto fail;
1169 	}
1170 	err = wpi_alloc_tx_ring(sc, &sc->sc_cmdq, WPI_CMD_RING_COUNT, 4);
1171 	if (err != DDI_SUCCESS)
1172 		goto fail;
1173 	err = wpi_alloc_tx_ring(sc, &sc->sc_svcq, WPI_SVC_RING_COUNT, 5);
1174 	if (err != DDI_SUCCESS)
1175 		goto fail;
1176 	err = wpi_alloc_rx_ring(sc);
1177 	if (err != DDI_SUCCESS)
1178 		goto fail;
1179 	return (err);
1180 
1181 fail:
1182 	return (err);
1183 }
1184 
1185 static void
1186 wpi_ring_free(wpi_sc_t *sc)
1187 {
1188 	int i = 4;
1189 
1190 	wpi_free_rx_ring(sc);
1191 	wpi_free_tx_ring(sc, &sc->sc_svcq);
1192 	wpi_free_tx_ring(sc, &sc->sc_cmdq);
1193 	while (--i >= 0) {
1194 		wpi_free_tx_ring(sc, &sc->sc_txq[i]);
1195 	}
1196 }
1197 
1198 /* ARGSUSED */
1199 static ieee80211_node_t *
1200 wpi_node_alloc(ieee80211com_t *ic)
1201 {
1202 	wpi_amrr_t *amrr;
1203 
1204 	amrr = kmem_zalloc(sizeof (wpi_amrr_t), KM_SLEEP);
1205 	if (amrr != NULL)
1206 		wpi_amrr_init(amrr);
1207 	return (&amrr->in);
1208 }
1209 
1210 static void
1211 wpi_node_free(ieee80211_node_t *in)
1212 {
1213 	ieee80211com_t *ic = in->in_ic;
1214 
1215 	ic->ic_node_cleanup(in);
1216 	if (in->in_wpa_ie != NULL)
1217 		ieee80211_free(in->in_wpa_ie);
1218 	kmem_free(in, sizeof (wpi_amrr_t));
1219 }
1220 
1221 /*ARGSUSED*/
1222 static int
1223 wpi_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1224 {
1225 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1226 	ieee80211_node_t *in = ic->ic_bss;
1227 	enum ieee80211_state ostate;
1228 	int i, err = WPI_SUCCESS;
1229 
1230 	mutex_enter(&sc->sc_glock);
1231 	ostate = ic->ic_state;
1232 	switch (nstate) {
1233 	case IEEE80211_S_SCAN:
1234 		switch (ostate) {
1235 		case IEEE80211_S_INIT:
1236 		{
1237 			wpi_node_t node;
1238 
1239 			sc->sc_flags |= WPI_F_SCANNING;
1240 			sc->sc_scan_next = 0;
1241 
1242 			/* make the link LED blink while we're scanning */
1243 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1244 
1245 			/*
1246 			 * clear association to receive beacons from all
1247 			 * BSS'es
1248 			 */
1249 			sc->sc_config.state = 0;
1250 			sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1251 
1252 			WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x "
1253 			    "filter %x\n",
1254 			    sc->sc_config.chan, sc->sc_config.flags,
1255 			    sc->sc_config.filter));
1256 
1257 			err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1258 			    sizeof (wpi_config_t), 1);
1259 			if (err != WPI_SUCCESS) {
1260 				cmn_err(CE_WARN,
1261 				    "could not clear association\n");
1262 				sc->sc_flags &= ~WPI_F_SCANNING;
1263 				mutex_exit(&sc->sc_glock);
1264 				return (err);
1265 			}
1266 
1267 			/* add broadcast node to send probe request */
1268 			(void) memset(&node, 0, sizeof (node));
1269 			(void) memset(&node.bssid, 0xff, IEEE80211_ADDR_LEN);
1270 			node.id = WPI_ID_BROADCAST;
1271 
1272 			err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node,
1273 			    sizeof (node), 1);
1274 			if (err != WPI_SUCCESS) {
1275 				cmn_err(CE_WARN,
1276 				    "could not add broadcast node\n");
1277 				sc->sc_flags &= ~WPI_F_SCANNING;
1278 				mutex_exit(&sc->sc_glock);
1279 				return (err);
1280 			}
1281 			break;
1282 		}
1283 		case IEEE80211_S_SCAN:
1284 			mutex_exit(&sc->sc_glock);
1285 			/* step to next channel before actual FW scan */
1286 			err = sc->sc_newstate(ic, nstate, arg);
1287 			mutex_enter(&sc->sc_glock);
1288 			if ((err != 0) || ((err = wpi_scan(sc)) != 0)) {
1289 				cmn_err(CE_WARN,
1290 				    "could not initiate scan\n");
1291 				sc->sc_flags &= ~WPI_F_SCANNING;
1292 				ieee80211_cancel_scan(ic);
1293 			}
1294 			mutex_exit(&sc->sc_glock);
1295 			return (err);
1296 		default:
1297 			break;
1298 		}
1299 		sc->sc_clk = 0;
1300 		break;
1301 
1302 	case IEEE80211_S_AUTH:
1303 		if (ostate == IEEE80211_S_SCAN) {
1304 			sc->sc_flags &= ~WPI_F_SCANNING;
1305 		}
1306 
1307 		/* reset state to handle reassociations correctly */
1308 		sc->sc_config.state = 0;
1309 		sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1310 
1311 		if ((err = wpi_auth(sc)) != 0) {
1312 			WPI_DBG((WPI_DEBUG_80211,
1313 			    "could not send authentication request\n"));
1314 			mutex_exit(&sc->sc_glock);
1315 			return (err);
1316 		}
1317 		break;
1318 
1319 	case IEEE80211_S_RUN:
1320 		if (ostate == IEEE80211_S_SCAN) {
1321 			sc->sc_flags &= ~WPI_F_SCANNING;
1322 		}
1323 
1324 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1325 			/* link LED blinks while monitoring */
1326 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1327 			break;
1328 		}
1329 
1330 		if (ic->ic_opmode != IEEE80211_M_STA) {
1331 			(void) wpi_auth(sc);
1332 			/* need setup beacon here */
1333 		}
1334 		WPI_DBG((WPI_DEBUG_80211, "wpi: associated."));
1335 
1336 		/* update adapter's configuration */
1337 		sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
1338 		/* short preamble/slot time are negotiated when associating */
1339 		sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
1340 		    WPI_CONFIG_SHSLOT);
1341 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1342 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
1343 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1344 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
1345 		sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
1346 		if (ic->ic_opmode != IEEE80211_M_STA)
1347 			sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
1348 
1349 		WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
1350 		    sc->sc_config.chan, sc->sc_config.flags));
1351 		err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1352 		    sizeof (wpi_config_t), 1);
1353 		if (err != WPI_SUCCESS) {
1354 			WPI_DBG((WPI_DEBUG_80211,
1355 			    "could not update configuration\n"));
1356 			mutex_exit(&sc->sc_glock);
1357 			return (err);
1358 		}
1359 
1360 		/* start automatic rate control */
1361 		mutex_enter(&sc->sc_mt_lock);
1362 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1363 			sc->sc_flags |= WPI_F_RATE_AUTO_CTL;
1364 			/* set rate to some reasonable initial value */
1365 			i = in->in_rates.ir_nrates - 1;
1366 			while (i > 0 && IEEE80211_RATE(i) > 72)
1367 				i--;
1368 			in->in_txrate = i;
1369 		} else {
1370 			sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
1371 		}
1372 		mutex_exit(&sc->sc_mt_lock);
1373 
1374 		/* link LED always on while associated */
1375 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1376 		break;
1377 
1378 	case IEEE80211_S_INIT:
1379 		sc->sc_flags &= ~WPI_F_SCANNING;
1380 		break;
1381 
1382 	case IEEE80211_S_ASSOC:
1383 		sc->sc_flags &= ~WPI_F_SCANNING;
1384 		break;
1385 	}
1386 
1387 	mutex_exit(&sc->sc_glock);
1388 	return (sc->sc_newstate(ic, nstate, arg));
1389 }
1390 
1391 /*ARGSUSED*/
1392 static int wpi_key_set(ieee80211com_t *ic, const struct ieee80211_key *k,
1393     const uint8_t mac[IEEE80211_ADDR_LEN])
1394 {
1395 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1396 	wpi_node_t node;
1397 	int err;
1398 
1399 	switch (k->wk_cipher->ic_cipher) {
1400 	case IEEE80211_CIPHER_WEP:
1401 	case IEEE80211_CIPHER_TKIP:
1402 		return (1); /* sofeware do it. */
1403 	case IEEE80211_CIPHER_AES_CCM:
1404 		break;
1405 	default:
1406 		return (0);
1407 	}
1408 	sc->sc_config.filter &= ~(WPI_FILTER_NODECRYPTUNI |
1409 	    WPI_FILTER_NODECRYPTMUL);
1410 
1411 	mutex_enter(&sc->sc_glock);
1412 
1413 	/* update ap/multicast node */
1414 	(void) memset(&node, 0, sizeof (node));
1415 	if (IEEE80211_IS_MULTICAST(mac)) {
1416 		(void) memset(node.bssid, 0xff, 6);
1417 		node.id = WPI_ID_BROADCAST;
1418 	} else {
1419 		IEEE80211_ADDR_COPY(node.bssid, ic->ic_bss->in_bssid);
1420 		node.id = WPI_ID_BSS;
1421 	}
1422 	if (k->wk_flags & IEEE80211_KEY_XMIT) {
1423 		node.key_flags = 0;
1424 		node.keyp = k->wk_keyix;
1425 	} else {
1426 		node.key_flags = (1 << 14);
1427 		node.keyp = k->wk_keyix + 4;
1428 	}
1429 	(void) memcpy(node.key, k->wk_key, k->wk_keylen);
1430 	node.key_flags |= (2 | (1 << 3) | (k->wk_keyix << 8));
1431 	node.sta_mask = 1;
1432 	node.control = 1;
1433 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
1434 	if (err != WPI_SUCCESS) {
1435 		cmn_err(CE_WARN, "wpi_key_set():"
1436 		    "failed to update ap node\n");
1437 		mutex_exit(&sc->sc_glock);
1438 		return (0);
1439 	}
1440 	mutex_exit(&sc->sc_glock);
1441 	return (1);
1442 }
1443 
1444 /*
1445  * Grab exclusive access to NIC memory.
1446  */
1447 static void
1448 wpi_mem_lock(wpi_sc_t *sc)
1449 {
1450 	uint32_t tmp;
1451 	int ntries;
1452 
1453 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1454 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1455 
1456 	/* spin until we actually get the lock */
1457 	for (ntries = 0; ntries < 1000; ntries++) {
1458 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1459 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1460 			break;
1461 		DELAY(10);
1462 	}
1463 	if (ntries == 1000)
1464 		WPI_DBG((WPI_DEBUG_PIO, "could not lock memory\n"));
1465 }
1466 
1467 /*
1468  * Release lock on NIC memory.
1469  */
1470 static void
1471 wpi_mem_unlock(wpi_sc_t *sc)
1472 {
1473 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1474 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1475 }
1476 
1477 static uint32_t
1478 wpi_mem_read(wpi_sc_t *sc, uint16_t addr)
1479 {
1480 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1481 	return (WPI_READ(sc, WPI_READ_MEM_DATA));
1482 }
1483 
1484 static void
1485 wpi_mem_write(wpi_sc_t *sc, uint16_t addr, uint32_t data)
1486 {
1487 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1488 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1489 }
1490 
1491 static void
1492 wpi_mem_write_region_4(wpi_sc_t *sc, uint16_t addr,
1493     const uint32_t *data, int wlen)
1494 {
1495 	for (; wlen > 0; wlen--, data++, addr += 4)
1496 		wpi_mem_write(sc, addr, *data);
1497 }
1498 
1499 /*
1500  * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
1501  * using the traditional bit-bang method.
1502  */
1503 static uint16_t
1504 wpi_read_prom_word(wpi_sc_t *sc, uint32_t addr)
1505 {
1506 	uint32_t val;
1507 	int ntries;
1508 
1509 	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1510 
1511 	wpi_mem_lock(sc);
1512 	for (ntries = 0; ntries < 10; ntries++) {
1513 		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1514 			break;
1515 		DELAY(10);
1516 	}
1517 	wpi_mem_unlock(sc);
1518 
1519 	if (ntries == 10) {
1520 		WPI_DBG((WPI_DEBUG_PIO, "could not read EEPROM\n"));
1521 		return (0xdead);
1522 	}
1523 	return (val >> 16);
1524 }
1525 
1526 /*
1527  * The firmware boot code is small and is intended to be copied directly into
1528  * the NIC internal memory.
1529  */
1530 static int
1531 wpi_load_microcode(wpi_sc_t *sc)
1532 {
1533 	const char *ucode;
1534 	int size;
1535 
1536 	ucode = sc->sc_boot;
1537 	size = LE_32(sc->sc_hdr->bootsz);
1538 	/* check that microcode size is a multiple of 4 */
1539 	if (size & 3)
1540 		return (EINVAL);
1541 
1542 	size /= sizeof (uint32_t);
1543 
1544 	wpi_mem_lock(sc);
1545 
1546 	/* copy microcode image into NIC memory */
1547 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1548 	    size);
1549 
1550 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1551 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1552 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1553 
1554 	/* run microcode */
1555 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1556 
1557 	wpi_mem_unlock(sc);
1558 
1559 	return (WPI_SUCCESS);
1560 }
1561 
1562 /*
1563  * The firmware text and data segments are transferred to the NIC using DMA.
1564  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1565  * where to find it.  Once the NIC has copied the firmware into its internal
1566  * memory, we can free our local copy in the driver.
1567  */
1568 static int
1569 wpi_load_firmware(wpi_sc_t *sc, uint32_t target)
1570 {
1571 	const char *fw;
1572 	int size;
1573 	wpi_dma_t *dma_p;
1574 	ddi_dma_cookie_t *cookie;
1575 	wpi_tx_desc_t desc;
1576 	int i, ntries, err = WPI_SUCCESS;
1577 
1578 	/* only text and data here */
1579 	if (target == WPI_FW_TEXT) {
1580 		fw = sc->sc_text;
1581 		size = LE_32(sc->sc_hdr->textsz);
1582 		dma_p = &sc->sc_dma_fw_text;
1583 		cookie = sc->sc_fw_text_cookie;
1584 	} else {
1585 		fw = sc->sc_data;
1586 		size = LE_32(sc->sc_hdr->datasz);
1587 		dma_p = &sc->sc_dma_fw_data;
1588 		cookie = sc->sc_fw_data_cookie;
1589 	}
1590 
1591 	/* copy firmware image to DMA-safe memory */
1592 	(void) memcpy(dma_p->mem_va, fw, size);
1593 
1594 	/* make sure the adapter will get up-to-date values */
1595 	(void) ddi_dma_sync(dma_p->dma_hdl, 0, size, DDI_DMA_SYNC_FORDEV);
1596 
1597 	(void) memset(&desc, 0, sizeof (desc));
1598 	desc.flags = LE_32(WPI_PAD32(size) << 28 | dma_p->ncookies << 24);
1599 	for (i = 0; i < dma_p->ncookies; i++) {
1600 		WPI_DBG((WPI_DEBUG_DMA, "cookie%d addr:%x size:%x\n",
1601 		    i, cookie[i].dmac_address, cookie[i].dmac_size));
1602 		desc.segs[i].addr = cookie[i].dmac_address;
1603 		desc.segs[i].len = (uint32_t)cookie[i].dmac_size;
1604 	}
1605 
1606 	wpi_mem_lock(sc);
1607 
1608 	/* tell adapter where to copy image in its internal memory */
1609 	WPI_WRITE(sc, WPI_FW_TARGET, target);
1610 
1611 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1612 
1613 	/* copy firmware descriptor into NIC memory */
1614 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1615 	    sizeof desc / sizeof (uint32_t));
1616 
1617 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1618 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1619 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1620 
1621 	/* wait while the adapter is busy copying the firmware */
1622 	for (ntries = 0; ntries < 100; ntries++) {
1623 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1624 			break;
1625 		DELAY(1000);
1626 	}
1627 	if (ntries == 100) {
1628 		WPI_DBG((WPI_DEBUG_FW, "timeout transferring firmware\n"));
1629 		err = ETIMEDOUT;
1630 	}
1631 
1632 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1633 
1634 	wpi_mem_unlock(sc);
1635 
1636 	return (err);
1637 }
1638 
1639 /*ARGSUSED*/
1640 static void
1641 wpi_rx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1642 {
1643 	ieee80211com_t *ic = &sc->sc_ic;
1644 	wpi_rx_ring_t *ring = &sc->sc_rxq;
1645 	wpi_rx_stat_t *stat;
1646 	wpi_rx_head_t *head;
1647 	wpi_rx_tail_t *tail;
1648 	ieee80211_node_t *in;
1649 	struct ieee80211_frame *wh;
1650 	mblk_t *mp;
1651 	uint16_t len;
1652 
1653 	stat = (wpi_rx_stat_t *)(desc + 1);
1654 
1655 	if (stat->len > WPI_STAT_MAXLEN) {
1656 		WPI_DBG((WPI_DEBUG_RX, "invalid rx statistic header\n"));
1657 		return;
1658 	}
1659 
1660 	head = (wpi_rx_head_t *)((caddr_t)(stat + 1) + stat->len);
1661 	tail = (wpi_rx_tail_t *)((caddr_t)(head + 1) + LE_16(head->len));
1662 
1663 	len = LE_16(head->len);
1664 
1665 	WPI_DBG((WPI_DEBUG_RX, "rx intr: idx=%d len=%d stat len=%d rssi=%d "
1666 	    "rate=%x chan=%d tstamp=%llu", ring->cur, LE_32(desc->len),
1667 	    len, (int8_t)stat->rssi, head->rate, head->chan,
1668 	    LE_64(tail->tstamp)));
1669 
1670 	if ((len < 20) || (len > sc->sc_dmabuf_sz)) {
1671 		sc->sc_rx_err++;
1672 		return;
1673 	}
1674 
1675 	/*
1676 	 * Discard Rx frames with bad CRC early
1677 	 */
1678 	if ((LE_32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1679 		WPI_DBG((WPI_DEBUG_RX, "rx tail flags error %x\n",
1680 		    LE_32(tail->flags)));
1681 		sc->sc_rx_err++;
1682 		return;
1683 	}
1684 
1685 	/* update Rx descriptor */
1686 	/* ring->desc[ring->cur] = LE_32(data->dma_data.cookie.dmac_address); */
1687 
1688 #ifdef WPI_BPF
1689 #ifndef WPI_CURRENT
1690 	if (sc->sc_drvbpf != NULL) {
1691 #else
1692 	if (bpf_peers_present(sc->sc_drvbpf)) {
1693 #endif
1694 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1695 
1696 		tap->wr_flags = 0;
1697 		tap->wr_rate = head->rate;
1698 		tap->wr_chan_freq =
1699 		    LE_16(ic->ic_channels[head->chan].ic_freq);
1700 		tap->wr_chan_flags =
1701 		    LE_16(ic->ic_channels[head->chan].ic_flags);
1702 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1703 		tap->wr_dbm_antnoise = (int8_t)LE_16(stat->noise);
1704 		tap->wr_tsft = tail->tstamp;
1705 		tap->wr_antenna = (LE_16(head->flags) >> 4) & 0xf;
1706 		switch (head->rate) {
1707 		/* CCK rates */
1708 		case  10: tap->wr_rate =   2; break;
1709 		case  20: tap->wr_rate =   4; break;
1710 		case  55: tap->wr_rate =  11; break;
1711 		case 110: tap->wr_rate =  22; break;
1712 		/* OFDM rates */
1713 		case 0xd: tap->wr_rate =  12; break;
1714 		case 0xf: tap->wr_rate =  18; break;
1715 		case 0x5: tap->wr_rate =  24; break;
1716 		case 0x7: tap->wr_rate =  36; break;
1717 		case 0x9: tap->wr_rate =  48; break;
1718 		case 0xb: tap->wr_rate =  72; break;
1719 		case 0x1: tap->wr_rate =  96; break;
1720 		case 0x3: tap->wr_rate = 108; break;
1721 		/* unknown rate: should not happen */
1722 		default:  tap->wr_rate =   0;
1723 		}
1724 		if (LE_16(head->flags) & 0x4)
1725 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1726 
1727 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1728 	}
1729 #endif
1730 	/* grab a reference to the source node */
1731 	wh = (struct ieee80211_frame *)(head + 1);
1732 
1733 #ifdef DEBUG
1734 	if (wpi_dbg_flags & WPI_DEBUG_RX)
1735 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
1736 #endif
1737 
1738 	in = ieee80211_find_rxnode(ic, wh);
1739 	mp = allocb(len, BPRI_MED);
1740 	if (mp) {
1741 		(void) memcpy(mp->b_wptr, wh, len);
1742 		mp->b_wptr += len;
1743 
1744 		/* send the frame to the 802.11 layer */
1745 		(void) ieee80211_input(ic, mp, in, stat->rssi, 0);
1746 	} else {
1747 		sc->sc_rx_nobuf++;
1748 		WPI_DBG((WPI_DEBUG_RX,
1749 		    "wpi_rx_intr(): alloc rx buf failed\n"));
1750 	}
1751 	/* release node reference */
1752 	ieee80211_free_node(in);
1753 }
1754 
1755 /*ARGSUSED*/
1756 static void
1757 wpi_tx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1758 {
1759 	ieee80211com_t *ic = &sc->sc_ic;
1760 	wpi_tx_ring_t *ring = &sc->sc_txq[desc->qid & 0x3];
1761 	/* wpi_tx_data_t *txdata = &ring->data[desc->idx]; */
1762 	wpi_tx_stat_t *stat = (wpi_tx_stat_t *)(desc + 1);
1763 	wpi_amrr_t *amrr = (wpi_amrr_t *)ic->ic_bss;
1764 
1765 	WPI_DBG((WPI_DEBUG_TX, "tx done: qid=%d idx=%d retries=%d nkill=%d "
1766 	    "rate=%x duration=%d status=%x\n",
1767 	    desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate,
1768 	    LE_32(stat->duration), LE_32(stat->status)));
1769 
1770 	amrr->txcnt++;
1771 	WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
1772 	if (stat->ntries > 0) {
1773 		amrr->retrycnt++;
1774 		sc->sc_tx_retries++;
1775 		WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d retries\n",
1776 		    amrr->retrycnt));
1777 	}
1778 
1779 	sc->sc_tx_timer = 0;
1780 
1781 	mutex_enter(&sc->sc_tx_lock);
1782 	ring->queued--;
1783 	if (ring->queued < 0)
1784 		ring->queued = 0;
1785 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
1786 		sc->sc_need_reschedule = 0;
1787 		mutex_exit(&sc->sc_tx_lock);
1788 		mac_tx_update(ic->ic_mach);
1789 		mutex_enter(&sc->sc_tx_lock);
1790 	}
1791 	mutex_exit(&sc->sc_tx_lock);
1792 }
1793 
1794 static void
1795 wpi_cmd_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc)
1796 {
1797 	if ((desc->qid & 7) != 4) {
1798 		return;	/* not a command ack */
1799 	}
1800 	mutex_enter(&sc->sc_glock);
1801 	sc->sc_flags |= WPI_F_CMD_DONE;
1802 	cv_signal(&sc->sc_cmd_cv);
1803 	mutex_exit(&sc->sc_glock);
1804 }
1805 
1806 static uint_t
1807 wpi_notif_softintr(caddr_t arg)
1808 {
1809 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1810 	wpi_rx_desc_t *desc;
1811 	wpi_rx_data_t *data;
1812 	uint32_t hw;
1813 
1814 	mutex_enter(&sc->sc_glock);
1815 	if (sc->sc_notif_softint_pending != 1) {
1816 		mutex_exit(&sc->sc_glock);
1817 		return (DDI_INTR_UNCLAIMED);
1818 	}
1819 	mutex_exit(&sc->sc_glock);
1820 
1821 	hw = LE_32(sc->sc_shared->next);
1822 
1823 	while (sc->sc_rxq.cur != hw) {
1824 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
1825 		desc = (wpi_rx_desc_t *)data->dma_data.mem_va;
1826 
1827 		WPI_DBG((WPI_DEBUG_INTR, "rx notification hw = %d cur = %d "
1828 		    "qid=%x idx=%d flags=%x type=%d len=%d\n",
1829 		    hw, sc->sc_rxq.cur, desc->qid, desc->idx, desc->flags,
1830 		    desc->type, LE_32(desc->len)));
1831 
1832 		if (!(desc->qid & 0x80))	/* reply to a command */
1833 			wpi_cmd_intr(sc, desc);
1834 
1835 		switch (desc->type) {
1836 		case WPI_RX_DONE:
1837 			/* a 802.11 frame was received */
1838 			wpi_rx_intr(sc, desc, data);
1839 			break;
1840 
1841 		case WPI_TX_DONE:
1842 			/* a 802.11 frame has been transmitted */
1843 			wpi_tx_intr(sc, desc, data);
1844 			break;
1845 
1846 		case WPI_UC_READY:
1847 		{
1848 			wpi_ucode_info_t *uc =
1849 			    (wpi_ucode_info_t *)(desc + 1);
1850 
1851 			/* the microcontroller is ready */
1852 			WPI_DBG((WPI_DEBUG_FW,
1853 			    "microcode alive notification version %x "
1854 			    "alive %x\n", LE_32(uc->version),
1855 			    LE_32(uc->valid)));
1856 
1857 			if (LE_32(uc->valid) != 1) {
1858 				WPI_DBG((WPI_DEBUG_FW,
1859 				    "microcontroller initialization failed\n"));
1860 			}
1861 			break;
1862 		}
1863 		case WPI_STATE_CHANGED:
1864 		{
1865 			uint32_t *status = (uint32_t *)(desc + 1);
1866 
1867 			/* enabled/disabled notification */
1868 			WPI_DBG((WPI_DEBUG_RADIO, "state changed to %x\n",
1869 			    LE_32(*status)));
1870 
1871 			if (LE_32(*status) & 1) {
1872 				/*
1873 				 * the radio button has to be pushed(OFF). It
1874 				 * is considered as a hw error, the
1875 				 * wpi_thread() tries to recover it after the
1876 				 * button is pushed again(ON)
1877 				 */
1878 				cmn_err(CE_NOTE,
1879 				    "wpi: Radio transmitter is off\n");
1880 				sc->sc_ostate = sc->sc_ic.ic_state;
1881 				ieee80211_new_state(&sc->sc_ic,
1882 				    IEEE80211_S_INIT, -1);
1883 				sc->sc_flags |=
1884 				    (WPI_F_HW_ERR_RECOVER | WPI_F_RADIO_OFF);
1885 			}
1886 			break;
1887 		}
1888 		case WPI_START_SCAN:
1889 		{
1890 			wpi_start_scan_t *scan =
1891 			    (wpi_start_scan_t *)(desc + 1);
1892 
1893 			WPI_DBG((WPI_DEBUG_SCAN,
1894 			    "scanning channel %d status %x\n",
1895 			    scan->chan, LE_32(scan->status)));
1896 
1897 			break;
1898 		}
1899 		case WPI_STOP_SCAN:
1900 		{
1901 			wpi_stop_scan_t *scan =
1902 			    (wpi_stop_scan_t *)(desc + 1);
1903 
1904 			WPI_DBG((WPI_DEBUG_SCAN,
1905 			    "completed channel %d (burst of %d) status %02x\n",
1906 			    scan->chan, scan->nchan, scan->status));
1907 
1908 			sc->sc_scan_pending = 0;
1909 			sc->sc_scan_next++;
1910 			break;
1911 		}
1912 		default:
1913 			break;
1914 		}
1915 
1916 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % WPI_RX_RING_COUNT;
1917 	}
1918 
1919 	/* tell the firmware what we have processed */
1920 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1921 	WPI_WRITE(sc, WPI_RX_WIDX, hw & (~7));
1922 	mutex_enter(&sc->sc_glock);
1923 	sc->sc_notif_softint_pending = 0;
1924 	mutex_exit(&sc->sc_glock);
1925 
1926 	return (DDI_INTR_CLAIMED);
1927 }
1928 
1929 static uint_t
1930 wpi_intr(caddr_t arg)
1931 {
1932 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1933 	uint32_t r, rfh;
1934 
1935 	mutex_enter(&sc->sc_glock);
1936 	if (sc->sc_flags & WPI_F_SUSPEND) {
1937 		mutex_exit(&sc->sc_glock);
1938 		return (DDI_INTR_UNCLAIMED);
1939 	}
1940 
1941 	r = WPI_READ(sc, WPI_INTR);
1942 	if (r == 0 || r == 0xffffffff) {
1943 		mutex_exit(&sc->sc_glock);
1944 		return (DDI_INTR_UNCLAIMED);
1945 	}
1946 
1947 	WPI_DBG((WPI_DEBUG_INTR, "interrupt reg %x\n", r));
1948 
1949 	rfh = WPI_READ(sc, WPI_INTR_STATUS);
1950 	/* disable interrupts */
1951 	WPI_WRITE(sc, WPI_MASK, 0);
1952 	/* ack interrupts */
1953 	WPI_WRITE(sc, WPI_INTR, r);
1954 	WPI_WRITE(sc, WPI_INTR_STATUS, rfh);
1955 
1956 	if (sc->sc_notif_softint_id == NULL) {
1957 		mutex_exit(&sc->sc_glock);
1958 		return (DDI_INTR_CLAIMED);
1959 	}
1960 
1961 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1962 		WPI_DBG((WPI_DEBUG_FW, "fatal firmware error\n"));
1963 		mutex_exit(&sc->sc_glock);
1964 		wpi_stop(sc);
1965 		if (!(sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
1966 			sc->sc_ostate = sc->sc_ic.ic_state;
1967 		}
1968 		ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1969 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
1970 		return (DDI_INTR_CLAIMED);
1971 	}
1972 
1973 	if ((r & (WPI_RX_INTR | WPI_RX_SWINT)) ||
1974 	    (rfh & 0x40070000)) {
1975 		sc->sc_notif_softint_pending = 1;
1976 		ddi_trigger_softintr(sc->sc_notif_softint_id);
1977 	}
1978 
1979 	if (r & WPI_ALIVE_INTR)	{ /* firmware initialized */
1980 		sc->sc_flags |= WPI_F_FW_INIT;
1981 		cv_signal(&sc->sc_fw_cv);
1982 	}
1983 
1984 	/* re-enable interrupts */
1985 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1986 	mutex_exit(&sc->sc_glock);
1987 
1988 	return (DDI_INTR_CLAIMED);
1989 }
1990 
1991 static uint8_t
1992 wpi_plcp_signal(int rate)
1993 {
1994 	switch (rate) {
1995 	/* CCK rates (returned values are device-dependent) */
1996 	case 2:		return (10);
1997 	case 4:		return (20);
1998 	case 11:	return (55);
1999 	case 22:	return (110);
2000 
2001 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2002 	/* R1-R4 (ral/ural is R4-R1) */
2003 	case 12:	return (0xd);
2004 	case 18:	return (0xf);
2005 	case 24:	return (0x5);
2006 	case 36:	return (0x7);
2007 	case 48:	return (0x9);
2008 	case 72:	return (0xb);
2009 	case 96:	return (0x1);
2010 	case 108:	return (0x3);
2011 
2012 	/* unsupported rates (should not get there) */
2013 	default:	return (0);
2014 	}
2015 }
2016 
2017 static mblk_t *
2018 wpi_m_tx(void *arg, mblk_t *mp)
2019 {
2020 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2021 	ieee80211com_t	*ic = &sc->sc_ic;
2022 	mblk_t			*next;
2023 
2024 	if (sc->sc_flags & WPI_F_SUSPEND) {
2025 		freemsgchain(mp);
2026 		return (NULL);
2027 	}
2028 
2029 	if (ic->ic_state != IEEE80211_S_RUN) {
2030 		freemsgchain(mp);
2031 		return (NULL);
2032 	}
2033 
2034 	while (mp != NULL) {
2035 		next = mp->b_next;
2036 		mp->b_next = NULL;
2037 		if (wpi_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
2038 			mp->b_next = next;
2039 			break;
2040 		}
2041 		mp = next;
2042 	}
2043 	return (mp);
2044 }
2045 
2046 /* ARGSUSED */
2047 static int
2048 wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2049 {
2050 	wpi_sc_t *sc = (wpi_sc_t *)ic;
2051 	wpi_tx_ring_t *ring;
2052 	wpi_tx_desc_t *desc;
2053 	wpi_tx_data_t *data;
2054 	wpi_tx_cmd_t *cmd;
2055 	wpi_cmd_data_t *tx;
2056 	ieee80211_node_t *in;
2057 	struct ieee80211_frame *wh;
2058 	struct ieee80211_key *k;
2059 	mblk_t *m, *m0;
2060 	int rate, hdrlen, len, mblen, off, err = WPI_SUCCESS;
2061 
2062 	ring = ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ?
2063 	    (&sc->sc_txq[0]) : (&sc->sc_txq[1]);
2064 	data = &ring->data[ring->cur];
2065 	desc = data->desc;
2066 	cmd = data->cmd;
2067 	bzero(desc, sizeof (*desc));
2068 	bzero(cmd, sizeof (*cmd));
2069 
2070 	mutex_enter(&sc->sc_tx_lock);
2071 	if (sc->sc_flags & WPI_F_SUSPEND) {
2072 		mutex_exit(&sc->sc_tx_lock);
2073 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2074 		    IEEE80211_FC0_TYPE_DATA) {
2075 			freemsg(mp);
2076 		}
2077 		err = ENXIO;
2078 		goto exit;
2079 	}
2080 
2081 	if (ring->queued > ring->count - 64) {
2082 		WPI_DBG((WPI_DEBUG_TX, "wpi_send(): no txbuf\n"));
2083 		sc->sc_need_reschedule = 1;
2084 		mutex_exit(&sc->sc_tx_lock);
2085 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2086 		    IEEE80211_FC0_TYPE_DATA) {
2087 			freemsg(mp);
2088 		}
2089 		sc->sc_tx_nobuf++;
2090 		err = ENOMEM;
2091 		goto exit;
2092 	}
2093 	mutex_exit(&sc->sc_tx_lock);
2094 
2095 	hdrlen = sizeof (struct ieee80211_frame);
2096 
2097 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
2098 	if (m == NULL) { /* can not alloc buf, drop this package */
2099 		cmn_err(CE_WARN,
2100 		    "wpi_send(): failed to allocate msgbuf\n");
2101 		freemsg(mp);
2102 		err = WPI_SUCCESS;
2103 		goto exit;
2104 	}
2105 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
2106 		mblen = MBLKL(m0);
2107 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
2108 		off += mblen;
2109 	}
2110 	m->b_wptr += off;
2111 	freemsg(mp);
2112 
2113 	wh = (struct ieee80211_frame *)m->b_rptr;
2114 
2115 	in = ieee80211_find_txnode(ic, wh->i_addr1);
2116 	if (in == NULL) {
2117 		cmn_err(CE_WARN, "wpi_send(): failed to find tx node\n");
2118 		freemsg(m);
2119 		sc->sc_tx_err++;
2120 		err = WPI_SUCCESS;
2121 		goto exit;
2122 	}
2123 
2124 	(void) ieee80211_encap(ic, m, in);
2125 
2126 	cmd->code = WPI_CMD_TX_DATA;
2127 	cmd->flags = 0;
2128 	cmd->qid = ring->qid;
2129 	cmd->idx = ring->cur;
2130 
2131 	tx = (wpi_cmd_data_t *)cmd->data;
2132 	tx->flags = 0;
2133 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2134 		tx->flags |= LE_32(WPI_TX_NEED_ACK);
2135 	} else {
2136 		tx->flags &= ~(LE_32(WPI_TX_NEED_ACK));
2137 	}
2138 
2139 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2140 		k = ieee80211_crypto_encap(ic, m);
2141 		if (k == NULL) {
2142 			freemsg(m);
2143 			sc->sc_tx_err++;
2144 			err = WPI_SUCCESS;
2145 			goto exit;
2146 		}
2147 
2148 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2149 			tx->security = 2; /* for CCMP */
2150 			tx->flags |= LE_32(WPI_TX_NEED_ACK);
2151 			(void) memcpy(&tx->key, k->wk_key, k->wk_keylen);
2152 		}
2153 
2154 		/* packet header may have moved, reset our local pointer */
2155 		wh = (struct ieee80211_frame *)m->b_rptr;
2156 	}
2157 
2158 	len = msgdsize(m);
2159 
2160 #ifdef DEBUG
2161 	if (wpi_dbg_flags & WPI_DEBUG_TX)
2162 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
2163 #endif
2164 
2165 	/* pickup a rate */
2166 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2167 	    IEEE80211_FC0_TYPE_MGT) {
2168 		/* mgmt frames are sent at the lowest available bit-rate */
2169 		rate = 2;
2170 	} else {
2171 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
2172 			rate = ic->ic_fixed_rate;
2173 		} else
2174 			rate = in->in_rates.ir_rates[in->in_txrate];
2175 	}
2176 	rate &= IEEE80211_RATE_VAL;
2177 	WPI_DBG((WPI_DEBUG_RATECTL, "tx rate[%d of %d] = %x",
2178 	    in->in_txrate, in->in_rates.ir_nrates, rate));
2179 #ifdef WPI_BPF
2180 #ifndef WPI_CURRENT
2181 	if (sc->sc_drvbpf != NULL) {
2182 #else
2183 	if (bpf_peers_present(sc->sc_drvbpf)) {
2184 #endif
2185 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2186 
2187 		tap->wt_flags = 0;
2188 		tap->wt_chan_freq = LE_16(ic->ic_curchan->ic_freq);
2189 		tap->wt_chan_flags = LE_16(ic->ic_curchan->ic_flags);
2190 		tap->wt_rate = rate;
2191 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2192 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2193 
2194 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2195 	}
2196 #endif
2197 
2198 	tx->flags |= (LE_32(WPI_TX_AUTO_SEQ));
2199 	tx->flags |= LE_32(WPI_TX_BT_DISABLE | WPI_TX_CALIBRATION);
2200 
2201 	/* retrieve destination node's id */
2202 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
2203 	    WPI_ID_BSS;
2204 
2205 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2206 	    IEEE80211_FC0_TYPE_MGT) {
2207 		/* tell h/w to set timestamp in probe responses */
2208 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2209 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2210 			tx->flags |= LE_32(WPI_TX_INSERT_TSTAMP);
2211 
2212 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2213 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2214 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2215 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2216 			tx->timeout = 3;
2217 		else
2218 			tx->timeout = 2;
2219 	} else
2220 		tx->timeout = 0;
2221 
2222 	tx->rate = wpi_plcp_signal(rate);
2223 
2224 	/* be very persistant at sending frames out */
2225 	tx->rts_ntries = 7;
2226 	tx->data_ntries = 15;
2227 
2228 	tx->cck_mask  = 0x0f;
2229 	tx->ofdm_mask = 0xff;
2230 	tx->lifetime  = LE_32(0xffffffff);
2231 
2232 	tx->len = LE_16(len);
2233 
2234 	/* save and trim IEEE802.11 header */
2235 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
2236 	m->b_rptr += hdrlen;
2237 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
2238 
2239 	WPI_DBG((WPI_DEBUG_TX, "sending data: qid=%d idx=%d len=%d", ring->qid,
2240 	    ring->cur, len));
2241 
2242 	/* first scatter/gather segment is used by the tx data command */
2243 	desc->flags = LE_32(WPI_PAD32(len) << 28 | (2) << 24);
2244 	desc->segs[0].addr = LE_32(data->paddr_cmd);
2245 	desc->segs[0].len  = LE_32(
2246 	    roundup(4 + sizeof (wpi_cmd_data_t) + hdrlen, 4));
2247 	desc->segs[1].addr = LE_32(data->dma_data.cookie.dmac_address);
2248 	desc->segs[1].len  = LE_32(len - hdrlen);
2249 
2250 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2251 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2252 
2253 	mutex_enter(&sc->sc_tx_lock);
2254 	ring->queued++;
2255 	mutex_exit(&sc->sc_tx_lock);
2256 
2257 	/* kick ring */
2258 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2259 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2260 	freemsg(m);
2261 	/* release node reference */
2262 	ieee80211_free_node(in);
2263 
2264 	ic->ic_stats.is_tx_bytes += len;
2265 	ic->ic_stats.is_tx_frags++;
2266 
2267 	if (sc->sc_tx_timer == 0)
2268 		sc->sc_tx_timer = 5;
2269 exit:
2270 	return (err);
2271 }
2272 
2273 static void
2274 wpi_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2275 {
2276 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2277 	ieee80211com_t	*ic = &sc->sc_ic;
2278 	int		err;
2279 
2280 	err = ieee80211_ioctl(ic, wq, mp);
2281 	if (err == ENETRESET) {
2282 		/*
2283 		 * This is special for the hidden AP connection.
2284 		 * In any case, we should make sure only one 'scan'
2285 		 * in the driver for a 'connect' CLI command. So
2286 		 * when connecting to a hidden AP, the scan is just
2287 		 * sent out to the air when we know the desired
2288 		 * essid of the AP we want to connect.
2289 		 */
2290 		if (ic->ic_des_esslen) {
2291 			if (sc->sc_flags & WPI_F_RUNNING) {
2292 				wpi_m_stop(sc);
2293 				(void) wpi_m_start(sc);
2294 				(void) ieee80211_new_state(ic,
2295 				    IEEE80211_S_SCAN, -1);
2296 			}
2297 		}
2298 	}
2299 }
2300 
2301 /*
2302  * Callback functions for get/set properties
2303  */
2304 /* ARGSUSED */
2305 static int
2306 wpi_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2307     uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm)
2308 {
2309 	int		err = 0;
2310 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2311 
2312 	err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_name,
2313 	    pr_flags, wldp_length, wldp_buf, perm);
2314 
2315 	return (err);
2316 }
2317 static int
2318 wpi_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2319     uint_t wldp_length, const void *wldp_buf)
2320 {
2321 	int		err;
2322 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2323 	ieee80211com_t  *ic = &sc->sc_ic;
2324 
2325 	err = ieee80211_setprop(ic, pr_name, wldp_pr_name,
2326 	    wldp_length, wldp_buf);
2327 
2328 	if (err == ENETRESET) {
2329 		if (ic->ic_des_esslen) {
2330 			if (sc->sc_flags & WPI_F_RUNNING) {
2331 				wpi_m_stop(sc);
2332 				(void) wpi_m_start(sc);
2333 				(void) ieee80211_new_state(ic,
2334 				    IEEE80211_S_SCAN, -1);
2335 			}
2336 		}
2337 
2338 		err = 0;
2339 	}
2340 
2341 	return (err);
2342 }
2343 
2344 /*ARGSUSED*/
2345 static int
2346 wpi_m_stat(void *arg, uint_t stat, uint64_t *val)
2347 {
2348 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2349 	ieee80211com_t	*ic = &sc->sc_ic;
2350 	ieee80211_node_t *in;
2351 
2352 	mutex_enter(&sc->sc_glock);
2353 	switch (stat) {
2354 	case MAC_STAT_IFSPEED:
2355 		in = ic->ic_bss;
2356 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2357 		    IEEE80211_RATE(in->in_txrate) :
2358 		    ic->ic_fixed_rate) / 2 * 1000000;
2359 		break;
2360 	case MAC_STAT_NOXMTBUF:
2361 		*val = sc->sc_tx_nobuf;
2362 		break;
2363 	case MAC_STAT_NORCVBUF:
2364 		*val = sc->sc_rx_nobuf;
2365 		break;
2366 	case MAC_STAT_IERRORS:
2367 		*val = sc->sc_rx_err;
2368 		break;
2369 	case MAC_STAT_RBYTES:
2370 		*val = ic->ic_stats.is_rx_bytes;
2371 		break;
2372 	case MAC_STAT_IPACKETS:
2373 		*val = ic->ic_stats.is_rx_frags;
2374 		break;
2375 	case MAC_STAT_OBYTES:
2376 		*val = ic->ic_stats.is_tx_bytes;
2377 		break;
2378 	case MAC_STAT_OPACKETS:
2379 		*val = ic->ic_stats.is_tx_frags;
2380 		break;
2381 	case MAC_STAT_OERRORS:
2382 	case WIFI_STAT_TX_FAILED:
2383 		*val = sc->sc_tx_err;
2384 		break;
2385 	case WIFI_STAT_TX_RETRANS:
2386 		*val = sc->sc_tx_retries;
2387 		break;
2388 	case WIFI_STAT_FCS_ERRORS:
2389 	case WIFI_STAT_WEP_ERRORS:
2390 	case WIFI_STAT_TX_FRAGS:
2391 	case WIFI_STAT_MCAST_TX:
2392 	case WIFI_STAT_RTS_SUCCESS:
2393 	case WIFI_STAT_RTS_FAILURE:
2394 	case WIFI_STAT_ACK_FAILURE:
2395 	case WIFI_STAT_RX_FRAGS:
2396 	case WIFI_STAT_MCAST_RX:
2397 	case WIFI_STAT_RX_DUPS:
2398 		mutex_exit(&sc->sc_glock);
2399 		return (ieee80211_stat(ic, stat, val));
2400 	default:
2401 		mutex_exit(&sc->sc_glock);
2402 		return (ENOTSUP);
2403 	}
2404 	mutex_exit(&sc->sc_glock);
2405 
2406 	return (WPI_SUCCESS);
2407 
2408 }
2409 
2410 static int
2411 wpi_m_start(void *arg)
2412 {
2413 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2414 	ieee80211com_t	*ic = &sc->sc_ic;
2415 	int err;
2416 
2417 	err = wpi_init(sc);
2418 	if (err != WPI_SUCCESS) {
2419 		wpi_stop(sc);
2420 		DELAY(1000000);
2421 		err = wpi_init(sc);
2422 	}
2423 
2424 	if (err) {
2425 		/*
2426 		 * The hw init err(eg. RF is OFF). Return Success to make
2427 		 * the 'plumb' succeed. The wpi_thread() tries to re-init
2428 		 * background.
2429 		 */
2430 		mutex_enter(&sc->sc_glock);
2431 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2432 		mutex_exit(&sc->sc_glock);
2433 		return (WPI_SUCCESS);
2434 	}
2435 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2436 	mutex_enter(&sc->sc_glock);
2437 	sc->sc_flags |= WPI_F_RUNNING;
2438 	mutex_exit(&sc->sc_glock);
2439 
2440 	return (WPI_SUCCESS);
2441 }
2442 
2443 static void
2444 wpi_m_stop(void *arg)
2445 {
2446 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2447 	ieee80211com_t	*ic = &sc->sc_ic;
2448 
2449 	wpi_stop(sc);
2450 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2451 	mutex_enter(&sc->sc_mt_lock);
2452 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2453 	sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
2454 	mutex_exit(&sc->sc_mt_lock);
2455 	mutex_enter(&sc->sc_glock);
2456 	sc->sc_flags &= ~WPI_F_RUNNING;
2457 	mutex_exit(&sc->sc_glock);
2458 }
2459 
2460 /*ARGSUSED*/
2461 static int
2462 wpi_m_unicst(void *arg, const uint8_t *macaddr)
2463 {
2464 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2465 	ieee80211com_t	*ic = &sc->sc_ic;
2466 	int err;
2467 
2468 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
2469 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2470 		mutex_enter(&sc->sc_glock);
2471 		err = wpi_config(sc);
2472 		mutex_exit(&sc->sc_glock);
2473 		if (err != WPI_SUCCESS) {
2474 			cmn_err(CE_WARN,
2475 			    "wpi_m_unicst(): "
2476 			    "failed to configure device\n");
2477 			goto fail;
2478 		}
2479 	}
2480 	return (WPI_SUCCESS);
2481 fail:
2482 	return (err);
2483 }
2484 
2485 /*ARGSUSED*/
2486 static int
2487 wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m)
2488 {
2489 	return (WPI_SUCCESS);
2490 }
2491 
2492 /*ARGSUSED*/
2493 static int
2494 wpi_m_promisc(void *arg, boolean_t on)
2495 {
2496 	return (WPI_SUCCESS);
2497 }
2498 
2499 static void
2500 wpi_thread(wpi_sc_t *sc)
2501 {
2502 	ieee80211com_t	*ic = &sc->sc_ic;
2503 	clock_t clk;
2504 	int times = 0, err, n = 0, timeout = 0;
2505 	uint32_t tmp;
2506 
2507 	mutex_enter(&sc->sc_mt_lock);
2508 	while (sc->sc_mf_thread_switch) {
2509 		tmp = WPI_READ(sc, WPI_GPIO_CTL);
2510 		if (tmp & WPI_GPIO_HW_RF_KILL) {
2511 			sc->sc_flags &= ~WPI_F_RADIO_OFF;
2512 		} else {
2513 			sc->sc_flags |= WPI_F_RADIO_OFF;
2514 		}
2515 		/*
2516 		 * If in SUSPEND or the RF is OFF, do nothing
2517 		 */
2518 		if ((sc->sc_flags & WPI_F_SUSPEND) ||
2519 		    (sc->sc_flags & WPI_F_RADIO_OFF)) {
2520 			mutex_exit(&sc->sc_mt_lock);
2521 			delay(drv_usectohz(100000));
2522 			mutex_enter(&sc->sc_mt_lock);
2523 			continue;
2524 		}
2525 
2526 		/*
2527 		 * recovery fatal error
2528 		 */
2529 		if (ic->ic_mach &&
2530 		    (sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
2531 
2532 			WPI_DBG((WPI_DEBUG_FW,
2533 			    "wpi_thread(): "
2534 			    "try to recover fatal hw error: %d\n", times++));
2535 
2536 			wpi_stop(sc);
2537 			mutex_exit(&sc->sc_mt_lock);
2538 
2539 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2540 			delay(drv_usectohz(2000000));
2541 
2542 			mutex_enter(&sc->sc_mt_lock);
2543 			err = wpi_init(sc);
2544 			if (err != WPI_SUCCESS) {
2545 				n++;
2546 				if (n < 3)
2547 					continue;
2548 			}
2549 			n = 0;
2550 			if (!err)
2551 				sc->sc_flags |= WPI_F_RUNNING;
2552 			sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2553 			mutex_exit(&sc->sc_mt_lock);
2554 			delay(drv_usectohz(2000000));
2555 			if (sc->sc_ostate != IEEE80211_S_INIT)
2556 				ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
2557 			mutex_enter(&sc->sc_mt_lock);
2558 		}
2559 
2560 		/*
2561 		 * scan next channel
2562 		 */
2563 		if (ic->ic_mach &&
2564 		    (sc->sc_flags & WPI_F_SCANNING) && sc->sc_scan_next) {
2565 
2566 			WPI_DBG((WPI_DEBUG_SCAN,
2567 			    "wpi_thread(): "
2568 			    "wait for probe response\n"));
2569 
2570 			sc->sc_scan_next--;
2571 			mutex_exit(&sc->sc_mt_lock);
2572 			delay(drv_usectohz(200000));
2573 			ieee80211_next_scan(ic);
2574 			mutex_enter(&sc->sc_mt_lock);
2575 		}
2576 
2577 		/*
2578 		 * rate ctl
2579 		 */
2580 		if (ic->ic_mach &&
2581 		    (sc->sc_flags & WPI_F_RATE_AUTO_CTL)) {
2582 			clk = ddi_get_lbolt();
2583 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
2584 				wpi_amrr_timeout(sc);
2585 			}
2586 		}
2587 		mutex_exit(&sc->sc_mt_lock);
2588 		delay(drv_usectohz(100000));
2589 		mutex_enter(&sc->sc_mt_lock);
2590 		if (sc->sc_tx_timer) {
2591 			timeout++;
2592 			if (timeout == 10) {
2593 				sc->sc_tx_timer--;
2594 				if (sc->sc_tx_timer == 0) {
2595 					sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2596 					sc->sc_ostate = IEEE80211_S_RUN;
2597 					WPI_DBG((WPI_DEBUG_FW,
2598 					    "wpi_thread(): send fail\n"));
2599 				}
2600 				timeout = 0;
2601 			}
2602 		}
2603 	}
2604 	sc->sc_mf_thread = NULL;
2605 	cv_signal(&sc->sc_mt_cv);
2606 	mutex_exit(&sc->sc_mt_lock);
2607 }
2608 
2609 /*
2610  * Extract various information from EEPROM.
2611  */
2612 static void
2613 wpi_read_eeprom(wpi_sc_t *sc)
2614 {
2615 	ieee80211com_t *ic = &sc->sc_ic;
2616 	uint16_t val;
2617 	int i;
2618 
2619 	/* read MAC address */
2620 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
2621 	ic->ic_macaddr[0] = val & 0xff;
2622 	ic->ic_macaddr[1] = val >> 8;
2623 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
2624 	ic->ic_macaddr[2] = val & 0xff;
2625 	ic->ic_macaddr[3] = val >> 8;
2626 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
2627 	ic->ic_macaddr[4] = val & 0xff;
2628 	ic->ic_macaddr[5] = val >> 8;
2629 
2630 	WPI_DBG((WPI_DEBUG_EEPROM,
2631 	    "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
2632 	    ic->ic_macaddr[0], ic->ic_macaddr[1],
2633 	    ic->ic_macaddr[2], ic->ic_macaddr[3],
2634 	    ic->ic_macaddr[4], ic->ic_macaddr[5]));
2635 	/* read power settings for 2.4GHz channels */
2636 	for (i = 0; i < 14; i++) {
2637 		sc->sc_pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
2638 		sc->sc_pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
2639 		WPI_DBG((WPI_DEBUG_EEPROM,
2640 		    "channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
2641 		    sc->sc_pwr1[i], sc->sc_pwr2[i]));
2642 	}
2643 }
2644 
2645 /*
2646  * Send a command to the firmware.
2647  */
2648 static int
2649 wpi_cmd(wpi_sc_t *sc, int code, const void *buf, int size, int async)
2650 {
2651 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2652 	wpi_tx_desc_t *desc;
2653 	wpi_tx_cmd_t *cmd;
2654 
2655 	ASSERT(size <= sizeof (cmd->data));
2656 	ASSERT(mutex_owned(&sc->sc_glock));
2657 
2658 	WPI_DBG((WPI_DEBUG_CMD, "wpi_cmd() # code[%d]", code));
2659 	desc = ring->data[ring->cur].desc;
2660 	cmd = ring->data[ring->cur].cmd;
2661 
2662 	cmd->code = (uint8_t)code;
2663 	cmd->flags = 0;
2664 	cmd->qid = ring->qid;
2665 	cmd->idx = ring->cur;
2666 	(void) memcpy(cmd->data, buf, size);
2667 
2668 	desc->flags = LE_32(WPI_PAD32(size) << 28 | 1 << 24);
2669 	desc->segs[0].addr = ring->data[ring->cur].paddr_cmd;
2670 	desc->segs[0].len  = 4 + size;
2671 
2672 	/* kick cmd ring */
2673 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2674 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2675 
2676 	if (async)
2677 		return (WPI_SUCCESS);
2678 	else {
2679 		clock_t clk;
2680 		sc->sc_flags &= ~WPI_F_CMD_DONE;
2681 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
2682 		while (!(sc->sc_flags & WPI_F_CMD_DONE)) {
2683 			if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk)
2684 			    < 0)
2685 				break;
2686 		}
2687 		if (sc->sc_flags & WPI_F_CMD_DONE)
2688 			return (WPI_SUCCESS);
2689 		else
2690 			return (WPI_FAIL);
2691 	}
2692 }
2693 
2694 /*
2695  * Configure h/w multi-rate retries.
2696  */
2697 static int
2698 wpi_mrr_setup(wpi_sc_t *sc)
2699 {
2700 	wpi_mrr_setup_t mrr;
2701 	int i, err;
2702 
2703 	/* CCK rates (not used with 802.11a) */
2704 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2705 		mrr.rates[i].flags = 0;
2706 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2707 		/* fallback to the immediate lower CCK rate (if any) */
2708 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2709 		/* try one time at this rate before falling back to "next" */
2710 		mrr.rates[i].ntries = 1;
2711 	}
2712 
2713 	/* OFDM rates (not used with 802.11b) */
2714 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2715 		mrr.rates[i].flags = 0;
2716 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2717 		/* fallback to the immediate lower OFDM rate (if any) */
2718 		mrr.rates[i].next = (i == WPI_OFDM6) ? WPI_OFDM6 : i - 1;
2719 		/* try one time at this rate before falling back to "next" */
2720 		mrr.rates[i].ntries = 1;
2721 	}
2722 
2723 	/* setup MRR for control frames */
2724 	mrr.which = LE_32(WPI_MRR_CTL);
2725 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2726 	if (err != WPI_SUCCESS) {
2727 		WPI_DBG((WPI_DEBUG_MRR,
2728 		    "could not setup MRR for control frames\n"));
2729 		return (err);
2730 	}
2731 
2732 	/* setup MRR for data frames */
2733 	mrr.which = LE_32(WPI_MRR_DATA);
2734 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2735 	if (err != WPI_SUCCESS) {
2736 		WPI_DBG((WPI_DEBUG_MRR,
2737 		    "could not setup MRR for data frames\n"));
2738 		return (err);
2739 	}
2740 
2741 	return (WPI_SUCCESS);
2742 }
2743 
2744 static void
2745 wpi_set_led(wpi_sc_t *sc, uint8_t which, uint8_t off, uint8_t on)
2746 {
2747 	wpi_cmd_led_t led;
2748 
2749 	led.which = which;
2750 	led.unit = LE_32(100000);	/* on/off in unit of 100ms */
2751 	led.off = off;
2752 	led.on = on;
2753 
2754 	(void) wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof (led), 1);
2755 }
2756 
2757 static int
2758 wpi_auth(wpi_sc_t *sc)
2759 {
2760 	ieee80211com_t *ic = &sc->sc_ic;
2761 	ieee80211_node_t *in = ic->ic_bss;
2762 	wpi_node_t node;
2763 	int err;
2764 
2765 	/* update adapter's configuration */
2766 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
2767 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
2768 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2769 		sc->sc_config.cck_mask  = 0x03;
2770 		sc->sc_config.ofdm_mask = 0;
2771 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
2772 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
2773 		sc->sc_config.cck_mask  = 0;
2774 		sc->sc_config.ofdm_mask = 0x15;
2775 	} else {	/* assume 802.11b/g */
2776 		sc->sc_config.cck_mask  = 0x0f;
2777 		sc->sc_config.ofdm_mask = 0xff;
2778 	}
2779 
2780 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x cck %x ofdm %x"
2781 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
2782 	    sc->sc_config.chan, sc->sc_config.flags,
2783 	    sc->sc_config.cck_mask, sc->sc_config.ofdm_mask,
2784 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
2785 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
2786 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
2787 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2788 	    sizeof (wpi_config_t), 1);
2789 	if (err != WPI_SUCCESS) {
2790 		cmn_err(CE_WARN, "wpi_auth(): failed to configurate chan%d\n",
2791 		    sc->sc_config.chan);
2792 		return (err);
2793 	}
2794 
2795 	/* add default node */
2796 	(void) memset(&node, 0, sizeof (node));
2797 	IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
2798 	node.id = WPI_ID_BSS;
2799 	node.rate = wpi_plcp_signal(2);
2800 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
2801 	if (err != WPI_SUCCESS) {
2802 		cmn_err(CE_WARN, "wpi_auth(): failed to add BSS node\n");
2803 		return (err);
2804 	}
2805 
2806 	err = wpi_mrr_setup(sc);
2807 	if (err != WPI_SUCCESS) {
2808 		cmn_err(CE_WARN, "wpi_auth(): failed to setup MRR\n");
2809 		return (err);
2810 	}
2811 
2812 	return (WPI_SUCCESS);
2813 }
2814 
2815 /*
2816  * Send a scan request to the firmware.
2817  */
2818 static int
2819 wpi_scan(wpi_sc_t *sc)
2820 {
2821 	ieee80211com_t *ic = &sc->sc_ic;
2822 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2823 	wpi_tx_desc_t *desc;
2824 	wpi_tx_data_t *data;
2825 	wpi_tx_cmd_t *cmd;
2826 	wpi_scan_hdr_t *hdr;
2827 	wpi_scan_chan_t *chan;
2828 	struct ieee80211_frame *wh;
2829 	ieee80211_node_t *in = ic->ic_bss;
2830 	uint8_t essid[IEEE80211_NWID_LEN+1];
2831 	struct ieee80211_rateset *rs;
2832 	enum ieee80211_phymode mode;
2833 	uint8_t *frm;
2834 	int i, pktlen, nrates;
2835 
2836 	/* previous scan not completed */
2837 	if (sc->sc_scan_pending) {
2838 		WPI_DBG((WPI_DEBUG_SCAN, "previous scan not completed\n"));
2839 		return (WPI_SUCCESS);
2840 	}
2841 
2842 	data = &ring->data[ring->cur];
2843 	desc = data->desc;
2844 	cmd = (wpi_tx_cmd_t *)data->dma_data.mem_va;
2845 
2846 	cmd->code = WPI_CMD_SCAN;
2847 	cmd->flags = 0;
2848 	cmd->qid = ring->qid;
2849 	cmd->idx = ring->cur;
2850 
2851 	hdr = (wpi_scan_hdr_t *)cmd->data;
2852 	(void) memset(hdr, 0, sizeof (wpi_scan_hdr_t));
2853 	hdr->first = 1;
2854 	hdr->nchan = 1;
2855 	hdr->len = hdr->nchan * sizeof (wpi_scan_chan_t);
2856 	hdr->quiet = LE_16(50);
2857 	hdr->threshold = LE_16(1);
2858 	hdr->filter = LE_32(5);
2859 	hdr->rate = wpi_plcp_signal(2);
2860 	hdr->id = WPI_ID_BROADCAST;
2861 	hdr->mask = LE_32(0xffffffff);
2862 	hdr->esslen = ic->ic_des_esslen;
2863 
2864 	if (ic->ic_des_esslen) {
2865 		bcopy(ic->ic_des_essid, essid, ic->ic_des_esslen);
2866 		essid[ic->ic_des_esslen] = '\0';
2867 		WPI_DBG((WPI_DEBUG_SCAN, "directed scan %s\n", essid));
2868 
2869 		bcopy(ic->ic_des_essid, hdr->essid, ic->ic_des_esslen);
2870 	} else {
2871 		bzero(hdr->essid, sizeof (hdr->essid));
2872 	}
2873 
2874 	/*
2875 	 * Build a probe request frame.  Most of the following code is a
2876 	 * copy & paste of what is done in net80211.  Unfortunately, the
2877 	 * functions to add IEs are static and thus can't be reused here.
2878 	 */
2879 	wh = (struct ieee80211_frame *)(hdr + 1);
2880 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2881 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2882 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2883 	(void) memset(wh->i_addr1, 0xff, 6);
2884 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
2885 	(void) memset(wh->i_addr3, 0xff, 6);
2886 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2887 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2888 
2889 	frm = (uint8_t *)(wh + 1);
2890 
2891 	/* add essid IE */
2892 	if (in->in_esslen) {
2893 		bcopy(in->in_essid, essid, in->in_esslen);
2894 		essid[in->in_esslen] = '\0';
2895 		WPI_DBG((WPI_DEBUG_SCAN, "probe with ESSID %s\n",
2896 		    essid));
2897 	}
2898 	*frm++ = IEEE80211_ELEMID_SSID;
2899 	*frm++ = in->in_esslen;
2900 	(void) memcpy(frm, in->in_essid, in->in_esslen);
2901 	frm += in->in_esslen;
2902 
2903 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
2904 	rs = &ic->ic_sup_rates[mode];
2905 
2906 	/* add supported rates IE */
2907 	*frm++ = IEEE80211_ELEMID_RATES;
2908 	nrates = rs->ir_nrates;
2909 	if (nrates > IEEE80211_RATE_SIZE)
2910 		nrates = IEEE80211_RATE_SIZE;
2911 	*frm++ = (uint8_t)nrates;
2912 	(void) memcpy(frm, rs->ir_rates, nrates);
2913 	frm += nrates;
2914 
2915 	/* add supported xrates IE */
2916 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
2917 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
2918 		*frm++ = IEEE80211_ELEMID_XRATES;
2919 		*frm++ = (uint8_t)nrates;
2920 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
2921 		frm += nrates;
2922 	}
2923 
2924 	/* add optionnal IE (usually an RSN IE) */
2925 	if (ic->ic_opt_ie != NULL) {
2926 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2927 		frm += ic->ic_opt_ie_len;
2928 	}
2929 
2930 	/* setup length of probe request */
2931 	hdr->pbrlen = LE_16((uintptr_t)frm - (uintptr_t)wh);
2932 
2933 	/* align on a 4-byte boundary */
2934 	chan = (wpi_scan_chan_t *)frm;
2935 	for (i = 1; i <= hdr->nchan; i++, chan++) {
2936 		if (ic->ic_des_esslen) {
2937 			chan->flags = 0x3;
2938 		} else {
2939 			chan->flags = 0x1;
2940 		}
2941 		chan->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2942 		chan->magic = LE_16(0x62ab);
2943 		chan->active = LE_16(50);
2944 		chan->passive = LE_16(120);
2945 
2946 		frm += sizeof (wpi_scan_chan_t);
2947 	}
2948 
2949 	pktlen = (uintptr_t)frm - (uintptr_t)cmd;
2950 
2951 	desc->flags = LE_32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2952 	desc->segs[0].addr = LE_32(data->dma_data.cookie.dmac_address);
2953 	desc->segs[0].len  = LE_32(pktlen);
2954 
2955 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2956 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2957 
2958 	/* kick cmd ring */
2959 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2960 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2961 
2962 	sc->sc_scan_pending = 1;
2963 
2964 	return (WPI_SUCCESS);	/* will be notified async. of failure/success */
2965 }
2966 
2967 static int
2968 wpi_config(wpi_sc_t *sc)
2969 {
2970 	ieee80211com_t *ic = &sc->sc_ic;
2971 	wpi_txpower_t txpower;
2972 	wpi_power_t power;
2973 #ifdef WPI_BLUE_COEXISTENCE
2974 	wpi_bluetooth_t bluetooth;
2975 #endif
2976 	wpi_node_t node;
2977 	int err;
2978 
2979 	/* Intel's binary only daemon is a joke.. */
2980 
2981 	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
2982 	(void) memset(&txpower, 0, sizeof (txpower));
2983 	(void) memcpy(txpower.pwr1, sc->sc_pwr1, 14 * sizeof (uint16_t));
2984 	(void) memcpy(txpower.pwr2, sc->sc_pwr2, 14 * sizeof (uint16_t));
2985 	err = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof (txpower), 0);
2986 	if (err != WPI_SUCCESS) {
2987 		cmn_err(CE_WARN, "wpi_config(): failed to set txpower\n");
2988 		return (err);
2989 	}
2990 
2991 	/* set power mode */
2992 	(void) memset(&power, 0, sizeof (power));
2993 	power.flags = LE_32(0x8);
2994 	err = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof (power), 0);
2995 	if (err != WPI_SUCCESS) {
2996 		cmn_err(CE_WARN, "wpi_config(): failed to set power mode\n");
2997 		return (err);
2998 	}
2999 #ifdef WPI_BLUE_COEXISTENCE
3000 	/* configure bluetooth coexistence */
3001 	(void) memset(&bluetooth, 0, sizeof (bluetooth));
3002 	bluetooth.flags = 3;
3003 	bluetooth.lead = 0xaa;
3004 	bluetooth.kill = 1;
3005 	err = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth,
3006 	    sizeof (bluetooth), 0);
3007 	if (err != WPI_SUCCESS) {
3008 		cmn_err(CE_WARN,
3009 		    "wpi_config(): "
3010 		    "failed to configurate bluetooth coexistence\n");
3011 		return (err);
3012 	}
3013 #endif
3014 	/* configure adapter */
3015 	(void) memset(&sc->sc_config, 0, sizeof (wpi_config_t));
3016 	IEEE80211_ADDR_COPY(sc->sc_config.myaddr, ic->ic_macaddr);
3017 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3018 	sc->sc_config.flags = LE_32(WPI_CONFIG_TSF | WPI_CONFIG_AUTO |
3019 	    WPI_CONFIG_24GHZ);
3020 	sc->sc_config.filter = 0;
3021 	switch (ic->ic_opmode) {
3022 	case IEEE80211_M_STA:
3023 		sc->sc_config.mode = WPI_MODE_STA;
3024 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST);
3025 		break;
3026 	case IEEE80211_M_IBSS:
3027 	case IEEE80211_M_AHDEMO:
3028 		sc->sc_config.mode = WPI_MODE_IBSS;
3029 		break;
3030 	case IEEE80211_M_HOSTAP:
3031 		sc->sc_config.mode = WPI_MODE_HOSTAP;
3032 		break;
3033 	case IEEE80211_M_MONITOR:
3034 		sc->sc_config.mode = WPI_MODE_MONITOR;
3035 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
3036 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3037 		break;
3038 	}
3039 	sc->sc_config.cck_mask  = 0x0f;	/* not yet negotiated */
3040 	sc->sc_config.ofdm_mask = 0xff;	/* not yet negotiated */
3041 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
3042 	    sizeof (wpi_config_t), 0);
3043 	if (err != WPI_SUCCESS) {
3044 		cmn_err(CE_WARN, "wpi_config(): "
3045 		    "failed to set configure command\n");
3046 		return (err);
3047 	}
3048 
3049 	/* add broadcast node */
3050 	(void) memset(&node, 0, sizeof (node));
3051 	(void) memset(node.bssid, 0xff, 6);
3052 	node.id = WPI_ID_BROADCAST;
3053 	node.rate = wpi_plcp_signal(2);
3054 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 0);
3055 	if (err != WPI_SUCCESS) {
3056 		cmn_err(CE_WARN, "wpi_config(): "
3057 		    "failed to add broadcast node\n");
3058 		return (err);
3059 	}
3060 
3061 	return (WPI_SUCCESS);
3062 }
3063 
3064 static void
3065 wpi_stop_master(wpi_sc_t *sc)
3066 {
3067 	uint32_t tmp;
3068 	int ntries;
3069 
3070 	tmp = WPI_READ(sc, WPI_RESET);
3071 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3072 
3073 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3074 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3075 		return;	/* already asleep */
3076 
3077 	for (ntries = 0; ntries < 2000; ntries++) {
3078 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3079 			break;
3080 		DELAY(1000);
3081 	}
3082 	if (ntries == 2000)
3083 		WPI_DBG((WPI_DEBUG_HW, "timeout waiting for master\n"));
3084 }
3085 
3086 static int
3087 wpi_power_up(wpi_sc_t *sc)
3088 {
3089 	uint32_t tmp;
3090 	int ntries;
3091 
3092 	wpi_mem_lock(sc);
3093 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3094 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3095 	wpi_mem_unlock(sc);
3096 
3097 	for (ntries = 0; ntries < 5000; ntries++) {
3098 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3099 			break;
3100 		DELAY(10);
3101 	}
3102 	if (ntries == 5000) {
3103 		cmn_err(CE_WARN,
3104 		    "wpi_power_up(): timeout waiting for NIC to power up\n");
3105 		return (ETIMEDOUT);
3106 	}
3107 	return (WPI_SUCCESS);
3108 }
3109 
3110 static int
3111 wpi_reset(wpi_sc_t *sc)
3112 {
3113 	uint32_t tmp;
3114 	int ntries;
3115 
3116 	/* clear any pending interrupts */
3117 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3118 
3119 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3120 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3121 
3122 	tmp = WPI_READ(sc, WPI_CHICKEN);
3123 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3124 
3125 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3126 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3127 
3128 	/* wait for clock stabilization */
3129 	for (ntries = 0; ntries < 1000; ntries++) {
3130 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3131 			break;
3132 		DELAY(10);
3133 	}
3134 	if (ntries == 1000) {
3135 		cmn_err(CE_WARN,
3136 		    "wpi_reset(): timeout waiting for clock stabilization\n");
3137 		return (ETIMEDOUT);
3138 	}
3139 
3140 	/* initialize EEPROM */
3141 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3142 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3143 		cmn_err(CE_WARN, "wpi_reset(): EEPROM not found\n");
3144 		return (EIO);
3145 	}
3146 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3147 
3148 	return (WPI_SUCCESS);
3149 }
3150 
3151 static void
3152 wpi_hw_config(wpi_sc_t *sc)
3153 {
3154 	uint16_t val;
3155 	uint32_t hw;
3156 
3157 	/* voodoo from the Linux "driver".. */
3158 	hw = WPI_READ(sc, WPI_HWCONFIG);
3159 
3160 	if ((sc->sc_rev & 0xc0) == 0x40)
3161 		hw |= WPI_HW_ALM_MB;
3162 	else if (!(sc->sc_rev & 0x80))
3163 		hw |= WPI_HW_ALM_MM;
3164 
3165 	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
3166 	if ((val & 0xff) == 0x80)
3167 		hw |= WPI_HW_SKU_MRC;
3168 
3169 	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
3170 	hw &= ~WPI_HW_REV_D;
3171 	if ((val & 0xf0) == 0xd0)
3172 		hw |= WPI_HW_REV_D;
3173 
3174 	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
3175 	if ((val & 0xff) > 1)
3176 		hw |= WPI_HW_TYPE_B;
3177 
3178 	WPI_DBG((WPI_DEBUG_HW, "setting h/w config %x\n", hw));
3179 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3180 }
3181 
3182 static int
3183 wpi_init(wpi_sc_t *sc)
3184 {
3185 	uint32_t tmp;
3186 	int qid, ntries, err;
3187 	clock_t clk;
3188 
3189 	mutex_enter(&sc->sc_glock);
3190 	sc->sc_flags &= ~WPI_F_FW_INIT;
3191 
3192 	(void) wpi_reset(sc);
3193 
3194 	wpi_mem_lock(sc);
3195 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3196 	DELAY(20);
3197 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3198 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3199 	wpi_mem_unlock(sc);
3200 
3201 	(void) wpi_power_up(sc);
3202 	wpi_hw_config(sc);
3203 
3204 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3205 	if (!(tmp & WPI_GPIO_HW_RF_KILL)) {
3206 		cmn_err(CE_WARN, "wpi_init(): Radio transmitter is off\n");
3207 		goto fail1;
3208 	}
3209 
3210 	/* init Rx ring */
3211 	wpi_mem_lock(sc);
3212 	WPI_WRITE(sc, WPI_RX_BASE, sc->sc_rxq.dma_desc.cookie.dmac_address);
3213 	WPI_WRITE(sc, WPI_RX_RIDX_PTR,
3214 	    (uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
3215 	    offsetof(wpi_shared_t, next)));
3216 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & (~7));
3217 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3218 	wpi_mem_unlock(sc);
3219 
3220 	/* init Tx rings */
3221 	wpi_mem_lock(sc);
3222 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3223 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3224 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3225 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3226 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3227 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3228 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3229 
3230 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->sc_dma_sh.cookie.dmac_address);
3231 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3232 
3233 	for (qid = 0; qid < 6; qid++) {
3234 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3235 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3236 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3237 	}
3238 	wpi_mem_unlock(sc);
3239 
3240 	/* clear "radio off" and "disable command" bits (reversed logic) */
3241 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3242 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3243 
3244 	/* clear any pending interrupts */
3245 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3246 
3247 	/* enable interrupts */
3248 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3249 
3250 	/* load firmware boot code into NIC */
3251 	err = wpi_load_microcode(sc);
3252 	if (err != WPI_SUCCESS) {
3253 		cmn_err(CE_WARN, "wpi_init(): failed to load microcode\n");
3254 		goto fail1;
3255 	}
3256 
3257 	/* load firmware .text segment into NIC */
3258 	err = wpi_load_firmware(sc, WPI_FW_TEXT);
3259 	if (err != WPI_SUCCESS) {
3260 		cmn_err(CE_WARN, "wpi_init(): "
3261 		    "failed to load firmware(text)\n");
3262 		goto fail1;
3263 	}
3264 
3265 	/* load firmware .data segment into NIC */
3266 	err = wpi_load_firmware(sc, WPI_FW_DATA);
3267 	if (err != WPI_SUCCESS) {
3268 		cmn_err(CE_WARN, "wpi_init(): "
3269 		    "failed to load firmware(data)\n");
3270 		goto fail1;
3271 	}
3272 
3273 	/* now press "execute" ;-) */
3274 	tmp = WPI_READ(sc, WPI_RESET);
3275 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
3276 	WPI_WRITE(sc, WPI_RESET, tmp);
3277 
3278 	/* ..and wait at most one second for adapter to initialize */
3279 	clk = ddi_get_lbolt() + drv_usectohz(2000000);
3280 	while (!(sc->sc_flags & WPI_F_FW_INIT)) {
3281 		if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
3282 			break;
3283 	}
3284 	if (!(sc->sc_flags & WPI_F_FW_INIT)) {
3285 		cmn_err(CE_WARN,
3286 		    "wpi_init(): timeout waiting for firmware init\n");
3287 		goto fail1;
3288 	}
3289 
3290 	/* wait for thermal sensors to calibrate */
3291 	for (ntries = 0; ntries < 1000; ntries++) {
3292 		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
3293 			break;
3294 		DELAY(10);
3295 	}
3296 
3297 	if (ntries == 1000) {
3298 		WPI_DBG((WPI_DEBUG_HW,
3299 		    "wpi_init(): timeout waiting for thermal sensors "
3300 		    "calibration\n"));
3301 	}
3302 
3303 	WPI_DBG((WPI_DEBUG_HW, "temperature %d\n",
3304 	    (int)WPI_READ(sc, WPI_TEMPERATURE)));
3305 
3306 	err = wpi_config(sc);
3307 	if (err) {
3308 		cmn_err(CE_WARN, "wpi_init(): failed to configure device\n");
3309 		goto fail1;
3310 	}
3311 
3312 	mutex_exit(&sc->sc_glock);
3313 	return (WPI_SUCCESS);
3314 
3315 fail1:
3316 	err = WPI_FAIL;
3317 	mutex_exit(&sc->sc_glock);
3318 	return (err);
3319 }
3320 
3321 static void
3322 wpi_stop(wpi_sc_t *sc)
3323 {
3324 	uint32_t tmp;
3325 	int ac;
3326 
3327 
3328 	mutex_enter(&sc->sc_glock);
3329 	/* disable interrupts */
3330 	WPI_WRITE(sc, WPI_MASK, 0);
3331 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3332 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3333 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3334 
3335 	wpi_mem_lock(sc);
3336 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3337 	wpi_mem_unlock(sc);
3338 
3339 	/* reset all Tx rings */
3340 	for (ac = 0; ac < 4; ac++)
3341 		wpi_reset_tx_ring(sc, &sc->sc_txq[ac]);
3342 	wpi_reset_tx_ring(sc, &sc->sc_cmdq);
3343 	wpi_reset_tx_ring(sc, &sc->sc_svcq);
3344 
3345 	/* reset Rx ring */
3346 	wpi_reset_rx_ring(sc);
3347 
3348 	wpi_mem_lock(sc);
3349 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3350 	wpi_mem_unlock(sc);
3351 
3352 	DELAY(5);
3353 
3354 	wpi_stop_master(sc);
3355 
3356 	sc->sc_tx_timer = 0;
3357 	sc->sc_flags &= ~WPI_F_SCANNING;
3358 	sc->sc_scan_pending = 0;
3359 	sc->sc_scan_next = 0;
3360 
3361 	tmp = WPI_READ(sc, WPI_RESET);
3362 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3363 
3364 	mutex_exit(&sc->sc_glock);
3365 }
3366 
3367 /*
3368  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
3369  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
3370  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
3371  * INRIA Sophia - Projet Planete
3372  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
3373  */
3374 #define	is_success(amrr)	\
3375 	((amrr)->retrycnt < (amrr)->txcnt / 10)
3376 #define	is_failure(amrr)	\
3377 	((amrr)->retrycnt > (amrr)->txcnt / 3)
3378 #define	is_enough(amrr)		\
3379 	((amrr)->txcnt > 100)
3380 #define	is_min_rate(in)		\
3381 	((in)->in_txrate == 0)
3382 #define	is_max_rate(in)		\
3383 	((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
3384 #define	increase_rate(in)	\
3385 	((in)->in_txrate++)
3386 #define	decrease_rate(in)	\
3387 	((in)->in_txrate--)
3388 #define	reset_cnt(amrr)		\
3389 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
3390 
3391 #define	WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
3392 #define	WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
3393 
3394 static void
3395 wpi_amrr_init(wpi_amrr_t *amrr)
3396 {
3397 	amrr->success = 0;
3398 	amrr->recovery = 0;
3399 	amrr->txcnt = amrr->retrycnt = 0;
3400 	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3401 }
3402 
3403 static void
3404 wpi_amrr_timeout(wpi_sc_t *sc)
3405 {
3406 	ieee80211com_t *ic = &sc->sc_ic;
3407 
3408 	WPI_DBG((WPI_DEBUG_RATECTL, "wpi_amrr_timeout() enter\n"));
3409 	if (ic->ic_opmode == IEEE80211_M_STA)
3410 		wpi_amrr_ratectl(NULL, ic->ic_bss);
3411 	else
3412 		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
3413 	sc->sc_clk = ddi_get_lbolt();
3414 }
3415 
3416 /* ARGSUSED */
3417 static void
3418 wpi_amrr_ratectl(void *arg, ieee80211_node_t *in)
3419 {
3420 	wpi_amrr_t *amrr = (wpi_amrr_t *)in;
3421 	int need_change = 0;
3422 
3423 	if (is_success(amrr) && is_enough(amrr)) {
3424 		amrr->success++;
3425 		if (amrr->success >= amrr->success_threshold &&
3426 		    !is_max_rate(in)) {
3427 			amrr->recovery = 1;
3428 			amrr->success = 0;
3429 			increase_rate(in);
3430 			WPI_DBG((WPI_DEBUG_RATECTL,
3431 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
3432 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3433 			need_change = 1;
3434 		} else {
3435 			amrr->recovery = 0;
3436 		}
3437 	} else if (is_failure(amrr)) {
3438 		amrr->success = 0;
3439 		if (!is_min_rate(in)) {
3440 			if (amrr->recovery) {
3441 				amrr->success_threshold++;
3442 				if (amrr->success_threshold >
3443 				    WPI_AMRR_MAX_SUCCESS_THRESHOLD)
3444 					amrr->success_threshold =
3445 					    WPI_AMRR_MAX_SUCCESS_THRESHOLD;
3446 			} else {
3447 				amrr->success_threshold =
3448 				    WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3449 			}
3450 			decrease_rate(in);
3451 			WPI_DBG((WPI_DEBUG_RATECTL,
3452 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
3453 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3454 			need_change = 1;
3455 		}
3456 		amrr->recovery = 0;	/* paper is incorrect */
3457 	}
3458 
3459 	if (is_enough(amrr) || need_change)
3460 		reset_cnt(amrr);
3461 }
3462