xref: /illumos-gate/usr/src/uts/common/io/wpi/wpi.c (revision 46b592853d0f4f11781b6b0a7533f267c6aee132)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/byteorder.h>
29 #include <sys/conf.h>
30 #include <sys/cmn_err.h>
31 #include <sys/stat.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/strsubr.h>
35 #include <sys/ethernet.h>
36 #include <inet/common.h>
37 #include <inet/nd.h>
38 #include <inet/mi.h>
39 #include <sys/note.h>
40 #include <sys/stream.h>
41 #include <sys/strsun.h>
42 #include <sys/modctl.h>
43 #include <sys/devops.h>
44 #include <sys/dlpi.h>
45 #include <sys/mac_provider.h>
46 #include <sys/mac_wifi.h>
47 #include <sys/net80211.h>
48 #include <sys/net80211_proto.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/pci.h>
52 
53 #include "wpireg.h"
54 #include "wpivar.h"
55 #include <inet/wifi_ioctl.h>
56 
57 #ifdef DEBUG
58 #define	WPI_DEBUG_80211		(1 << 0)
59 #define	WPI_DEBUG_CMD		(1 << 1)
60 #define	WPI_DEBUG_DMA		(1 << 2)
61 #define	WPI_DEBUG_EEPROM	(1 << 3)
62 #define	WPI_DEBUG_FW		(1 << 4)
63 #define	WPI_DEBUG_HW		(1 << 5)
64 #define	WPI_DEBUG_INTR		(1 << 6)
65 #define	WPI_DEBUG_MRR		(1 << 7)
66 #define	WPI_DEBUG_PIO		(1 << 8)
67 #define	WPI_DEBUG_RX		(1 << 9)
68 #define	WPI_DEBUG_SCAN		(1 << 10)
69 #define	WPI_DEBUG_TX		(1 << 11)
70 #define	WPI_DEBUG_RATECTL	(1 << 12)
71 #define	WPI_DEBUG_RADIO		(1 << 13)
72 #define	WPI_DEBUG_RESUME	(1 << 14)
73 uint32_t wpi_dbg_flags = 0;
74 #define	WPI_DBG(x) \
75 	wpi_dbg x
76 #else
77 #define	WPI_DBG(x)
78 #endif
79 
80 static void	*wpi_soft_state_p = NULL;
81 static uint8_t wpi_fw_bin [] = {
82 #include "fw-wpi/ipw3945.ucode.hex"
83 };
84 
85 /* DMA attributes for a shared page */
86 static ddi_dma_attr_t sh_dma_attr = {
87 	DMA_ATTR_V0,	/* version of this structure */
88 	0,		/* lowest usable address */
89 	0xffffffffU,	/* highest usable address */
90 	0xffffffffU,	/* maximum DMAable byte count */
91 	0x1000,		/* alignment in bytes */
92 	0x1000,		/* burst sizes (any?) */
93 	1,		/* minimum transfer */
94 	0xffffffffU,	/* maximum transfer */
95 	0xffffffffU,	/* maximum segment length */
96 	1,		/* maximum number of segments */
97 	1,		/* granularity */
98 	0,		/* flags (reserved) */
99 };
100 
101 /* DMA attributes for a ring descriptor */
102 static ddi_dma_attr_t ring_desc_dma_attr = {
103 	DMA_ATTR_V0,	/* version of this structure */
104 	0,		/* lowest usable address */
105 	0xffffffffU,	/* highest usable address */
106 	0xffffffffU,	/* maximum DMAable byte count */
107 	0x4000,		/* alignment in bytes */
108 	0x100,		/* burst sizes (any?) */
109 	1,		/* minimum transfer */
110 	0xffffffffU,	/* maximum transfer */
111 	0xffffffffU,	/* maximum segment length */
112 	1,		/* maximum number of segments */
113 	1,		/* granularity */
114 	0,		/* flags (reserved) */
115 };
116 
117 
118 /* DMA attributes for a tx cmd */
119 static ddi_dma_attr_t tx_cmd_dma_attr = {
120 	DMA_ATTR_V0,	/* version of this structure */
121 	0,		/* lowest usable address */
122 	0xffffffffU,	/* highest usable address */
123 	0xffffffffU,	/* maximum DMAable byte count */
124 	4,		/* alignment in bytes */
125 	0x100,		/* burst sizes (any?) */
126 	1,		/* minimum transfer */
127 	0xffffffffU,	/* maximum transfer */
128 	0xffffffffU,	/* maximum segment length */
129 	1,		/* maximum number of segments */
130 	1,		/* granularity */
131 	0,		/* flags (reserved) */
132 };
133 
134 /* DMA attributes for a rx buffer */
135 static ddi_dma_attr_t rx_buffer_dma_attr = {
136 	DMA_ATTR_V0,	/* version of this structure */
137 	0,		/* lowest usable address */
138 	0xffffffffU,	/* highest usable address */
139 	0xffffffffU,	/* maximum DMAable byte count */
140 	1,		/* alignment in bytes */
141 	0x100,		/* burst sizes (any?) */
142 	1,		/* minimum transfer */
143 	0xffffffffU,	/* maximum transfer */
144 	0xffffffffU,	/* maximum segment length */
145 	1,		/* maximum number of segments */
146 	1,		/* granularity */
147 	0,		/* flags (reserved) */
148 };
149 
150 /*
151  * DMA attributes for a tx buffer.
152  * the maximum number of segments is 4 for the hardware.
153  * now all the wifi drivers put the whole frame in a single
154  * descriptor, so we define the maximum  number of segments 4,
155  * just the same as the rx_buffer. we consider leverage the HW
156  * ability in the future, that is why we don't define rx and tx
157  * buffer_dma_attr as the same.
158  */
159 static ddi_dma_attr_t tx_buffer_dma_attr = {
160 	DMA_ATTR_V0,	/* version of this structure */
161 	0,		/* lowest usable address */
162 	0xffffffffU,	/* highest usable address */
163 	0xffffffffU,	/* maximum DMAable byte count */
164 	1,		/* alignment in bytes */
165 	0x100,		/* burst sizes (any?) */
166 	1,		/* minimum transfer */
167 	0xffffffffU,	/* maximum transfer */
168 	0xffffffffU,	/* maximum segment length */
169 	1,		/* maximum number of segments */
170 	1,		/* granularity */
171 	0,		/* flags (reserved) */
172 };
173 
174 /* DMA attributes for a load firmware */
175 static ddi_dma_attr_t fw_buffer_dma_attr = {
176 	DMA_ATTR_V0,	/* version of this structure */
177 	0,		/* lowest usable address */
178 	0xffffffffU,	/* highest usable address */
179 	0x7fffffff,	/* maximum DMAable byte count */
180 	4,		/* alignment in bytes */
181 	0x100,		/* burst sizes (any?) */
182 	1,		/* minimum transfer */
183 	0xffffffffU,	/* maximum transfer */
184 	0xffffffffU,	/* maximum segment length */
185 	4,		/* maximum number of segments */
186 	1,		/* granularity */
187 	0,		/* flags (reserved) */
188 };
189 
190 /* regs access attributes */
191 static ddi_device_acc_attr_t wpi_reg_accattr = {
192 	DDI_DEVICE_ATTR_V0,
193 	DDI_STRUCTURE_LE_ACC,
194 	DDI_STRICTORDER_ACC,
195 	DDI_DEFAULT_ACC
196 };
197 
198 /* DMA access attributes */
199 static ddi_device_acc_attr_t wpi_dma_accattr = {
200 	DDI_DEVICE_ATTR_V0,
201 	DDI_NEVERSWAP_ACC,
202 	DDI_STRICTORDER_ACC,
203 	DDI_DEFAULT_ACC
204 };
205 
206 static int	wpi_ring_init(wpi_sc_t *);
207 static void	wpi_ring_free(wpi_sc_t *);
208 static int	wpi_alloc_shared(wpi_sc_t *);
209 static void	wpi_free_shared(wpi_sc_t *);
210 static int	wpi_alloc_fw_dma(wpi_sc_t *);
211 static void	wpi_free_fw_dma(wpi_sc_t *);
212 static int	wpi_alloc_rx_ring(wpi_sc_t *);
213 static void	wpi_reset_rx_ring(wpi_sc_t *);
214 static void	wpi_free_rx_ring(wpi_sc_t *);
215 static int	wpi_alloc_tx_ring(wpi_sc_t *, wpi_tx_ring_t *, int, int);
216 static void	wpi_reset_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
217 static void	wpi_free_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
218 
219 static ieee80211_node_t *wpi_node_alloc(ieee80211com_t *);
220 static void	wpi_node_free(ieee80211_node_t *);
221 static int	wpi_newstate(ieee80211com_t *, enum ieee80211_state, int);
222 static int	wpi_key_set(ieee80211com_t *, const struct ieee80211_key *,
223     const uint8_t mac[IEEE80211_ADDR_LEN]);
224 static void	wpi_mem_lock(wpi_sc_t *);
225 static void	wpi_mem_unlock(wpi_sc_t *);
226 static uint32_t	wpi_mem_read(wpi_sc_t *, uint16_t);
227 static void	wpi_mem_write(wpi_sc_t *, uint16_t, uint32_t);
228 static void	wpi_mem_write_region_4(wpi_sc_t *, uint16_t,
229 		    const uint32_t *, int);
230 static uint16_t	wpi_read_prom_word(wpi_sc_t *, uint32_t);
231 static int	wpi_load_microcode(wpi_sc_t *);
232 static int	wpi_load_firmware(wpi_sc_t *, uint32_t);
233 static void	wpi_rx_intr(wpi_sc_t *, wpi_rx_desc_t *,
234 		    wpi_rx_data_t *);
235 static void	wpi_tx_intr(wpi_sc_t *, wpi_rx_desc_t *,
236 		    wpi_rx_data_t *);
237 static void	wpi_cmd_intr(wpi_sc_t *, wpi_rx_desc_t *);
238 static uint_t	wpi_intr(caddr_t);
239 static uint_t	wpi_notif_softintr(caddr_t);
240 static uint8_t	wpi_plcp_signal(int);
241 static void	wpi_read_eeprom(wpi_sc_t *);
242 static int	wpi_cmd(wpi_sc_t *, int, const void *, int, int);
243 static int	wpi_mrr_setup(wpi_sc_t *);
244 static void	wpi_set_led(wpi_sc_t *, uint8_t, uint8_t, uint8_t);
245 static int	wpi_auth(wpi_sc_t *);
246 static int	wpi_scan(wpi_sc_t *);
247 static int	wpi_config(wpi_sc_t *);
248 static void	wpi_stop_master(wpi_sc_t *);
249 static int	wpi_power_up(wpi_sc_t *);
250 static int	wpi_reset(wpi_sc_t *);
251 static void	wpi_hw_config(wpi_sc_t *);
252 static int	wpi_init(wpi_sc_t *);
253 static void	wpi_stop(wpi_sc_t *);
254 static int	wpi_quiesce(dev_info_t *dip);
255 static void	wpi_amrr_init(wpi_amrr_t *);
256 static void	wpi_amrr_timeout(wpi_sc_t *);
257 static void	wpi_amrr_ratectl(void *, ieee80211_node_t *);
258 
259 static int wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
260 static int wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
261 
262 /*
263  * GLD specific operations
264  */
265 static int	wpi_m_stat(void *arg, uint_t stat, uint64_t *val);
266 static int	wpi_m_start(void *arg);
267 static void	wpi_m_stop(void *arg);
268 static int	wpi_m_unicst(void *arg, const uint8_t *macaddr);
269 static int	wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m);
270 static int	wpi_m_promisc(void *arg, boolean_t on);
271 static mblk_t  *wpi_m_tx(void *arg, mblk_t *mp);
272 static void	wpi_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
273 static int	wpi_m_setprop(void *arg, const char *pr_name,
274     mac_prop_id_t wldp_pr_num, uint_t wldp_length, const void *wldp_buf);
275 static int	wpi_m_getprop(void *arg, const char *pr_name,
276     mac_prop_id_t wldp_pr_num, uint_t pr_flags, uint_t wldp_lenth,
277     void *wldp_buf, uint_t *);
278 static void	wpi_destroy_locks(wpi_sc_t *sc);
279 static int	wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
280 static void	wpi_thread(wpi_sc_t *sc);
281 static int	wpi_fast_recover(wpi_sc_t *sc);
282 
283 /*
284  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
285  */
286 static const struct ieee80211_rateset wpi_rateset_11b =
287 	{ 4, { 2, 4, 11, 22 } };
288 
289 static const struct ieee80211_rateset wpi_rateset_11g =
290 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
291 
292 static const uint8_t wpi_ridx_to_signal[] = {
293 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
294 	/* R1-R4 (ral/ural is R4-R1) */
295 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
296 	/* CCK: device-dependent */
297 	10, 20, 55, 110
298 };
299 
300 /*
301  * For mfthread only
302  */
303 extern pri_t minclsyspri;
304 
305 /*
306  * Module Loading Data & Entry Points
307  */
308 DDI_DEFINE_STREAM_OPS(wpi_devops, nulldev, nulldev, wpi_attach,
309     wpi_detach, nodev, NULL, D_MP, NULL, wpi_quiesce);
310 
311 static struct modldrv wpi_modldrv = {
312 	&mod_driverops,
313 	"Intel(R) PRO/Wireless 3945ABG driver",
314 	&wpi_devops
315 };
316 
317 static struct modlinkage wpi_modlinkage = {
318 	MODREV_1,
319 	&wpi_modldrv,
320 	NULL
321 };
322 
323 int
324 _init(void)
325 {
326 	int	status;
327 
328 	status = ddi_soft_state_init(&wpi_soft_state_p,
329 	    sizeof (wpi_sc_t), 1);
330 	if (status != DDI_SUCCESS)
331 		return (status);
332 
333 	mac_init_ops(&wpi_devops, "wpi");
334 	status = mod_install(&wpi_modlinkage);
335 	if (status != DDI_SUCCESS) {
336 		mac_fini_ops(&wpi_devops);
337 		ddi_soft_state_fini(&wpi_soft_state_p);
338 	}
339 
340 	return (status);
341 }
342 
343 int
344 _fini(void)
345 {
346 	int status;
347 
348 	status = mod_remove(&wpi_modlinkage);
349 	if (status == DDI_SUCCESS) {
350 		mac_fini_ops(&wpi_devops);
351 		ddi_soft_state_fini(&wpi_soft_state_p);
352 	}
353 
354 	return (status);
355 }
356 
357 int
358 _info(struct modinfo *mip)
359 {
360 	return (mod_info(&wpi_modlinkage, mip));
361 }
362 
363 /*
364  * Mac Call Back entries
365  */
366 mac_callbacks_t	wpi_m_callbacks = {
367 	MC_IOCTL | MC_SETPROP | MC_GETPROP,
368 	wpi_m_stat,
369 	wpi_m_start,
370 	wpi_m_stop,
371 	wpi_m_promisc,
372 	wpi_m_multicst,
373 	wpi_m_unicst,
374 	wpi_m_tx,
375 	wpi_m_ioctl,
376 	NULL,
377 	NULL,
378 	NULL,
379 	wpi_m_setprop,
380 	wpi_m_getprop
381 };
382 
383 #ifdef DEBUG
384 void
385 wpi_dbg(uint32_t flags, const char *fmt, ...)
386 {
387 	va_list	ap;
388 
389 	if (flags & wpi_dbg_flags) {
390 		va_start(ap, fmt);
391 		vcmn_err(CE_NOTE, fmt, ap);
392 		va_end(ap);
393 	}
394 }
395 #endif
396 /*
397  * device operations
398  */
399 int
400 wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
401 {
402 	wpi_sc_t		*sc;
403 	ddi_acc_handle_t	cfg_handle;
404 	caddr_t			cfg_base;
405 	ieee80211com_t	*ic;
406 	int			instance, err, i;
407 	char			strbuf[32];
408 	wifi_data_t		wd = { 0 };
409 	mac_register_t		*macp;
410 
411 	switch (cmd) {
412 	case DDI_ATTACH:
413 		break;
414 	case DDI_RESUME:
415 		sc = ddi_get_soft_state(wpi_soft_state_p,
416 		    ddi_get_instance(dip));
417 		ASSERT(sc != NULL);
418 
419 		mutex_enter(&sc->sc_glock);
420 		sc->sc_flags &= ~WPI_F_SUSPEND;
421 		mutex_exit(&sc->sc_glock);
422 
423 		if (sc->sc_flags & WPI_F_RUNNING)
424 			(void) wpi_init(sc);
425 
426 		mutex_enter(&sc->sc_glock);
427 		sc->sc_flags |= WPI_F_LAZY_RESUME;
428 		mutex_exit(&sc->sc_glock);
429 
430 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: resume \n"));
431 		return (DDI_SUCCESS);
432 	default:
433 		err = DDI_FAILURE;
434 		goto attach_fail1;
435 	}
436 
437 	instance = ddi_get_instance(dip);
438 	err = ddi_soft_state_zalloc(wpi_soft_state_p, instance);
439 	if (err != DDI_SUCCESS) {
440 		cmn_err(CE_WARN,
441 		    "wpi_attach(): failed to allocate soft state\n");
442 		goto attach_fail1;
443 	}
444 	sc = ddi_get_soft_state(wpi_soft_state_p, instance);
445 	sc->sc_dip = dip;
446 
447 	err = ddi_regs_map_setup(dip, 0, &cfg_base, 0, 0,
448 	    &wpi_reg_accattr, &cfg_handle);
449 	if (err != DDI_SUCCESS) {
450 		cmn_err(CE_WARN,
451 		    "wpi_attach(): failed to map config spaces regs\n");
452 		goto attach_fail2;
453 	}
454 	sc->sc_rev = ddi_get8(cfg_handle,
455 	    (uint8_t *)(cfg_base + PCI_CONF_REVID));
456 	ddi_put8(cfg_handle, (uint8_t *)(cfg_base + 0x41), 0);
457 	sc->sc_clsz = ddi_get16(cfg_handle,
458 	    (uint16_t *)(cfg_base + PCI_CONF_CACHE_LINESZ));
459 	ddi_regs_map_free(&cfg_handle);
460 	if (!sc->sc_clsz)
461 		sc->sc_clsz = 16;
462 	sc->sc_clsz = (sc->sc_clsz << 2);
463 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
464 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
465 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
466 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
467 	/*
468 	 * Map operating registers
469 	 */
470 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
471 	    0, 0, &wpi_reg_accattr, &sc->sc_handle);
472 	if (err != DDI_SUCCESS) {
473 		cmn_err(CE_WARN,
474 		    "wpi_attach(): failed to map device regs\n");
475 		goto attach_fail2;
476 	}
477 
478 	/*
479 	 * Allocate shared page.
480 	 */
481 	err = wpi_alloc_shared(sc);
482 	if (err != DDI_SUCCESS) {
483 		cmn_err(CE_WARN, "failed to allocate shared page\n");
484 		goto attach_fail3;
485 	}
486 
487 	/*
488 	 * Get the hw conf, including MAC address, then init all rings.
489 	 */
490 	wpi_read_eeprom(sc);
491 	err = wpi_ring_init(sc);
492 	if (err != DDI_SUCCESS) {
493 		cmn_err(CE_WARN, "wpi_attach(): "
494 		    "failed to allocate and initialize ring\n");
495 		goto attach_fail4;
496 	}
497 
498 	sc->sc_hdr = (const wpi_firmware_hdr_t *)wpi_fw_bin;
499 
500 	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
501 	sc->sc_text = (const char *)(sc->sc_hdr + 1);
502 	sc->sc_data = sc->sc_text + LE_32(sc->sc_hdr->textsz);
503 	sc->sc_boot = sc->sc_data + LE_32(sc->sc_hdr->datasz);
504 	err = wpi_alloc_fw_dma(sc);
505 	if (err != DDI_SUCCESS) {
506 		cmn_err(CE_WARN, "wpi_attach(): "
507 		    "failed to allocate firmware dma\n");
508 		goto attach_fail5;
509 	}
510 
511 	/*
512 	 * Initialize mutexs and condvars
513 	 */
514 	err = ddi_get_iblock_cookie(dip, 0, &sc->sc_iblk);
515 	if (err != DDI_SUCCESS) {
516 		cmn_err(CE_WARN,
517 		    "wpi_attach(): failed to do ddi_get_iblock_cookie()\n");
518 		goto attach_fail6;
519 	}
520 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, sc->sc_iblk);
521 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER, sc->sc_iblk);
522 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
523 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
524 
525 	/*
526 	 * initialize the mfthread
527 	 */
528 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
529 	    (void *) sc->sc_iblk);
530 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
531 	sc->sc_mf_thread = NULL;
532 	sc->sc_mf_thread_switch = 0;
533 	/*
534 	 * Initialize the wifi part, which will be used by
535 	 * generic layer
536 	 */
537 	ic = &sc->sc_ic;
538 	ic->ic_phytype  = IEEE80211_T_OFDM;
539 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
540 	ic->ic_state    = IEEE80211_S_INIT;
541 	ic->ic_maxrssi  = 70; /* experimental number */
542 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
543 	    IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
544 
545 	/*
546 	 * use software WEP and TKIP, hardware CCMP;
547 	 */
548 	ic->ic_caps |= IEEE80211_C_AES_CCM;
549 	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
550 
551 	/* set supported .11b and .11g rates */
552 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
553 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
554 
555 	/* set supported .11b and .11g channels (1 through 14) */
556 	for (i = 1; i <= 14; i++) {
557 		ic->ic_sup_channels[i].ich_freq =
558 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
559 		ic->ic_sup_channels[i].ich_flags =
560 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
561 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ |
562 		    IEEE80211_CHAN_PASSIVE;
563 	}
564 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
565 	ic->ic_xmit = wpi_send;
566 	/*
567 	 * init Wifi layer
568 	 */
569 	ieee80211_attach(ic);
570 
571 	/* register WPA door */
572 	ieee80211_register_door(ic, ddi_driver_name(dip),
573 	    ddi_get_instance(dip));
574 
575 	/*
576 	 * Override 80211 default routines
577 	 */
578 	sc->sc_newstate = ic->ic_newstate;
579 	ic->ic_newstate = wpi_newstate;
580 	ic->ic_node_alloc = wpi_node_alloc;
581 	ic->ic_node_free = wpi_node_free;
582 	ic->ic_crypto.cs_key_set = wpi_key_set;
583 	ieee80211_media_init(ic);
584 	/*
585 	 * initialize default tx key
586 	 */
587 	ic->ic_def_txkey = 0;
588 
589 	err = ddi_add_softintr(dip, DDI_SOFTINT_LOW,
590 	    &sc->sc_notif_softint_id, &sc->sc_iblk, NULL, wpi_notif_softintr,
591 	    (caddr_t)sc);
592 	if (err != DDI_SUCCESS) {
593 		cmn_err(CE_WARN,
594 		    "wpi_attach(): failed to do ddi_add_softintr()\n");
595 		goto attach_fail7;
596 	}
597 
598 	/*
599 	 * Add the interrupt handler
600 	 */
601 	err = ddi_add_intr(dip, 0, &sc->sc_iblk, NULL,
602 	    wpi_intr, (caddr_t)sc);
603 	if (err != DDI_SUCCESS) {
604 		cmn_err(CE_WARN,
605 		    "wpi_attach(): failed to do ddi_add_intr()\n");
606 		goto attach_fail8;
607 	}
608 
609 	/*
610 	 * Initialize pointer to device specific functions
611 	 */
612 	wd.wd_secalloc = WIFI_SEC_NONE;
613 	wd.wd_opmode = ic->ic_opmode;
614 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
615 
616 	macp = mac_alloc(MAC_VERSION);
617 	if (err != DDI_SUCCESS) {
618 		cmn_err(CE_WARN,
619 		    "wpi_attach(): failed to do mac_alloc()\n");
620 		goto attach_fail9;
621 	}
622 
623 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
624 	macp->m_driver		= sc;
625 	macp->m_dip		= dip;
626 	macp->m_src_addr	= ic->ic_macaddr;
627 	macp->m_callbacks	= &wpi_m_callbacks;
628 	macp->m_min_sdu		= 0;
629 	macp->m_max_sdu		= IEEE80211_MTU;
630 	macp->m_pdata		= &wd;
631 	macp->m_pdata_size	= sizeof (wd);
632 
633 	/*
634 	 * Register the macp to mac
635 	 */
636 	err = mac_register(macp, &ic->ic_mach);
637 	mac_free(macp);
638 	if (err != DDI_SUCCESS) {
639 		cmn_err(CE_WARN,
640 		    "wpi_attach(): failed to do mac_register()\n");
641 		goto attach_fail9;
642 	}
643 
644 	/*
645 	 * Create minor node of type DDI_NT_NET_WIFI
646 	 */
647 	(void) snprintf(strbuf, sizeof (strbuf), "wpi%d", instance);
648 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
649 	    instance + 1, DDI_NT_NET_WIFI, 0);
650 	if (err != DDI_SUCCESS)
651 		cmn_err(CE_WARN,
652 		    "wpi_attach(): failed to do ddi_create_minor_node()\n");
653 
654 	/*
655 	 * Notify link is down now
656 	 */
657 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
658 
659 	/*
660 	 * create the mf thread to handle the link status,
661 	 * recovery fatal error, etc.
662 	 */
663 
664 	sc->sc_mf_thread_switch = 1;
665 	if (sc->sc_mf_thread == NULL)
666 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
667 		    wpi_thread, sc, 0, &p0, TS_RUN, minclsyspri);
668 
669 	sc->sc_flags |= WPI_F_ATTACHED;
670 
671 	return (DDI_SUCCESS);
672 attach_fail9:
673 	ddi_remove_intr(dip, 0, sc->sc_iblk);
674 attach_fail8:
675 	ddi_remove_softintr(sc->sc_notif_softint_id);
676 	sc->sc_notif_softint_id = NULL;
677 attach_fail7:
678 	ieee80211_detach(ic);
679 	wpi_destroy_locks(sc);
680 attach_fail6:
681 	wpi_free_fw_dma(sc);
682 attach_fail5:
683 	wpi_ring_free(sc);
684 attach_fail4:
685 	wpi_free_shared(sc);
686 attach_fail3:
687 	ddi_regs_map_free(&sc->sc_handle);
688 attach_fail2:
689 	ddi_soft_state_free(wpi_soft_state_p, instance);
690 attach_fail1:
691 	return (err);
692 }
693 
694 int
695 wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
696 {
697 	wpi_sc_t	*sc;
698 	int err;
699 
700 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
701 	ASSERT(sc != NULL);
702 
703 	switch (cmd) {
704 	case DDI_DETACH:
705 		break;
706 	case DDI_SUSPEND:
707 		mutex_enter(&sc->sc_glock);
708 		sc->sc_flags |= WPI_F_SUSPEND;
709 		mutex_exit(&sc->sc_glock);
710 
711 		if (sc->sc_flags & WPI_F_RUNNING) {
712 			wpi_stop(sc);
713 		}
714 
715 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: suspend \n"));
716 		return (DDI_SUCCESS);
717 	default:
718 		return (DDI_FAILURE);
719 	}
720 	if (!(sc->sc_flags & WPI_F_ATTACHED))
721 		return (DDI_FAILURE);
722 
723 	err = mac_disable(sc->sc_ic.ic_mach);
724 	if (err != DDI_SUCCESS)
725 		return (err);
726 
727 	/*
728 	 * Destroy the mf_thread
729 	 */
730 	mutex_enter(&sc->sc_mt_lock);
731 	sc->sc_mf_thread_switch = 0;
732 	while (sc->sc_mf_thread != NULL) {
733 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
734 			break;
735 	}
736 	mutex_exit(&sc->sc_mt_lock);
737 
738 	wpi_stop(sc);
739 
740 	/*
741 	 * Unregiste from the MAC layer subsystem
742 	 */
743 	(void) mac_unregister(sc->sc_ic.ic_mach);
744 
745 	mutex_enter(&sc->sc_glock);
746 	wpi_free_fw_dma(sc);
747 	wpi_ring_free(sc);
748 	wpi_free_shared(sc);
749 	mutex_exit(&sc->sc_glock);
750 
751 	ddi_remove_intr(dip, 0, sc->sc_iblk);
752 	ddi_remove_softintr(sc->sc_notif_softint_id);
753 	sc->sc_notif_softint_id = NULL;
754 
755 	/*
756 	 * detach ieee80211
757 	 */
758 	ieee80211_detach(&sc->sc_ic);
759 
760 	wpi_destroy_locks(sc);
761 
762 	ddi_regs_map_free(&sc->sc_handle);
763 	ddi_remove_minor_node(dip, NULL);
764 	ddi_soft_state_free(wpi_soft_state_p, ddi_get_instance(dip));
765 
766 	return (DDI_SUCCESS);
767 }
768 
769 static void
770 wpi_destroy_locks(wpi_sc_t *sc)
771 {
772 	cv_destroy(&sc->sc_mt_cv);
773 	mutex_destroy(&sc->sc_mt_lock);
774 	cv_destroy(&sc->sc_cmd_cv);
775 	cv_destroy(&sc->sc_fw_cv);
776 	mutex_destroy(&sc->sc_tx_lock);
777 	mutex_destroy(&sc->sc_glock);
778 }
779 
780 /*
781  * Allocate an area of memory and a DMA handle for accessing it
782  */
783 static int
784 wpi_alloc_dma_mem(wpi_sc_t *sc, size_t memsize, ddi_dma_attr_t *dma_attr_p,
785 	ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, wpi_dma_t *dma_p)
786 {
787 	caddr_t vaddr;
788 	int err;
789 
790 	/*
791 	 * Allocate handle
792 	 */
793 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
794 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
795 	if (err != DDI_SUCCESS) {
796 		dma_p->dma_hdl = NULL;
797 		return (DDI_FAILURE);
798 	}
799 
800 	/*
801 	 * Allocate memory
802 	 */
803 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
804 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
805 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
806 	if (err != DDI_SUCCESS) {
807 		ddi_dma_free_handle(&dma_p->dma_hdl);
808 		dma_p->dma_hdl = NULL;
809 		dma_p->acc_hdl = NULL;
810 		return (DDI_FAILURE);
811 	}
812 
813 	/*
814 	 * Bind the two together
815 	 */
816 	dma_p->mem_va = vaddr;
817 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
818 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
819 	    &dma_p->cookie, &dma_p->ncookies);
820 	if (err != DDI_DMA_MAPPED) {
821 		ddi_dma_mem_free(&dma_p->acc_hdl);
822 		ddi_dma_free_handle(&dma_p->dma_hdl);
823 		dma_p->acc_hdl = NULL;
824 		dma_p->dma_hdl = NULL;
825 		return (DDI_FAILURE);
826 	}
827 
828 	dma_p->nslots = ~0U;
829 	dma_p->size = ~0U;
830 	dma_p->token = ~0U;
831 	dma_p->offset = 0;
832 	return (DDI_SUCCESS);
833 }
834 
835 /*
836  * Free one allocated area of DMAable memory
837  */
838 static void
839 wpi_free_dma_mem(wpi_dma_t *dma_p)
840 {
841 	if (dma_p->dma_hdl != NULL) {
842 		if (dma_p->ncookies) {
843 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
844 			dma_p->ncookies = 0;
845 		}
846 		ddi_dma_free_handle(&dma_p->dma_hdl);
847 		dma_p->dma_hdl = NULL;
848 	}
849 
850 	if (dma_p->acc_hdl != NULL) {
851 		ddi_dma_mem_free(&dma_p->acc_hdl);
852 		dma_p->acc_hdl = NULL;
853 	}
854 }
855 
856 /*
857  * Allocate an area of dma memory for firmware load.
858  * Idealy, this allocation should be a one time action, that is,
859  * the memory will be freed after the firmware is uploaded to the
860  * card. but since a recovery mechanism for the fatal firmware need
861  * reload the firmware, and re-allocate dma at run time may be failed,
862  * so we allocate it at attach and keep it in the whole lifecycle of
863  * the driver.
864  */
865 static int
866 wpi_alloc_fw_dma(wpi_sc_t *sc)
867 {
868 	int i, err = DDI_SUCCESS;
869 	wpi_dma_t *dma_p;
870 
871 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
872 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
873 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
874 	    &sc->sc_dma_fw_text);
875 	dma_p = &sc->sc_dma_fw_text;
876 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
877 	    dma_p->ncookies, dma_p->cookie.dmac_address,
878 	    dma_p->cookie.dmac_size));
879 	if (err != DDI_SUCCESS) {
880 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
881 		    "text dma memory");
882 		goto fail;
883 	}
884 	for (i = 0; i < dma_p->ncookies; i++) {
885 		sc->sc_fw_text_cookie[i] = dma_p->cookie;
886 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
887 	}
888 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
889 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
890 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
891 	    &sc->sc_dma_fw_data);
892 	dma_p = &sc->sc_dma_fw_data;
893 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
894 	    dma_p->ncookies, dma_p->cookie.dmac_address,
895 	    dma_p->cookie.dmac_size));
896 	if (err != DDI_SUCCESS) {
897 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
898 		    "data dma memory");
899 		goto fail;
900 	}
901 	for (i = 0; i < dma_p->ncookies; i++) {
902 		sc->sc_fw_data_cookie[i] = dma_p->cookie;
903 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
904 	}
905 fail:
906 	return (err);
907 }
908 
909 static void
910 wpi_free_fw_dma(wpi_sc_t *sc)
911 {
912 	wpi_free_dma_mem(&sc->sc_dma_fw_text);
913 	wpi_free_dma_mem(&sc->sc_dma_fw_data);
914 }
915 
916 /*
917  * Allocate a shared page between host and NIC.
918  */
919 static int
920 wpi_alloc_shared(wpi_sc_t *sc)
921 {
922 	int err = DDI_SUCCESS;
923 
924 	/* must be aligned on a 4K-page boundary */
925 	err = wpi_alloc_dma_mem(sc, sizeof (wpi_shared_t),
926 	    &sh_dma_attr, &wpi_dma_accattr,
927 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
928 	    &sc->sc_dma_sh);
929 	if (err != DDI_SUCCESS)
930 		goto fail;
931 	sc->sc_shared = (wpi_shared_t *)sc->sc_dma_sh.mem_va;
932 	return (err);
933 
934 fail:
935 	wpi_free_shared(sc);
936 	return (err);
937 }
938 
939 static void
940 wpi_free_shared(wpi_sc_t *sc)
941 {
942 	wpi_free_dma_mem(&sc->sc_dma_sh);
943 }
944 
945 static int
946 wpi_alloc_rx_ring(wpi_sc_t *sc)
947 {
948 	wpi_rx_ring_t *ring;
949 	wpi_rx_data_t *data;
950 	int i, err = DDI_SUCCESS;
951 
952 	ring = &sc->sc_rxq;
953 	ring->cur = 0;
954 
955 	err = wpi_alloc_dma_mem(sc, WPI_RX_RING_COUNT * sizeof (uint32_t),
956 	    &ring_desc_dma_attr, &wpi_dma_accattr,
957 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
958 	    &ring->dma_desc);
959 	if (err != DDI_SUCCESS) {
960 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring desc failed\n"));
961 		goto fail;
962 	}
963 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
964 
965 	/*
966 	 * Allocate Rx buffers.
967 	 */
968 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
969 		data = &ring->data[i];
970 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
971 		    &rx_buffer_dma_attr, &wpi_dma_accattr,
972 		    DDI_DMA_READ | DDI_DMA_STREAMING,
973 		    &data->dma_data);
974 		if (err != DDI_SUCCESS) {
975 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring buf[%d] "
976 			    "failed\n", i));
977 			goto fail;
978 		}
979 
980 		ring->desc[i] = LE_32(data->dma_data.cookie.dmac_address);
981 	}
982 
983 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
984 
985 	return (err);
986 
987 fail:
988 	wpi_free_rx_ring(sc);
989 	return (err);
990 }
991 
992 static void
993 wpi_reset_rx_ring(wpi_sc_t *sc)
994 {
995 	int ntries;
996 
997 	wpi_mem_lock(sc);
998 
999 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1000 	for (ntries = 0; ntries < 2000; ntries++) {
1001 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1002 			break;
1003 		DELAY(1000);
1004 	}
1005 	if (ntries == 2000)
1006 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Rx ring\n"));
1007 
1008 	wpi_mem_unlock(sc);
1009 
1010 	sc->sc_rxq.cur = 0;
1011 }
1012 
1013 static void
1014 wpi_free_rx_ring(wpi_sc_t *sc)
1015 {
1016 	int i;
1017 
1018 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1019 		if (sc->sc_rxq.data[i].dma_data.dma_hdl)
1020 			WPI_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
1021 			    DDI_DMA_SYNC_FORCPU);
1022 		wpi_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
1023 	}
1024 
1025 	if (sc->sc_rxq.dma_desc.dma_hdl)
1026 		WPI_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
1027 	wpi_free_dma_mem(&sc->sc_rxq.dma_desc);
1028 }
1029 
1030 static int
1031 wpi_alloc_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring, int count, int qid)
1032 {
1033 	wpi_tx_data_t *data;
1034 	wpi_tx_desc_t *desc_h;
1035 	uint32_t paddr_desc_h;
1036 	wpi_tx_cmd_t *cmd_h;
1037 	uint32_t paddr_cmd_h;
1038 	int i, err = DDI_SUCCESS;
1039 
1040 	ring->qid = qid;
1041 	ring->count = count;
1042 	ring->queued = 0;
1043 	ring->cur = 0;
1044 
1045 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_desc_t),
1046 	    &ring_desc_dma_attr, &wpi_dma_accattr,
1047 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1048 	    &ring->dma_desc);
1049 	if (err != DDI_SUCCESS) {
1050 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring desc[%d] failed\n",
1051 		    qid));
1052 		goto fail;
1053 	}
1054 
1055 	/* update shared page with ring's base address */
1056 	sc->sc_shared->txbase[qid] = ring->dma_desc.cookie.dmac_address;
1057 
1058 	desc_h = (wpi_tx_desc_t *)ring->dma_desc.mem_va;
1059 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1060 
1061 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_cmd_t),
1062 	    &tx_cmd_dma_attr, &wpi_dma_accattr,
1063 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1064 	    &ring->dma_cmd);
1065 	if (err != DDI_SUCCESS) {
1066 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring cmd[%d] failed\n",
1067 		    qid));
1068 		goto fail;
1069 	}
1070 
1071 	cmd_h = (wpi_tx_cmd_t *)ring->dma_cmd.mem_va;
1072 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1073 
1074 	/*
1075 	 * Allocate Tx buffers.
1076 	 */
1077 	ring->data = kmem_zalloc(sizeof (wpi_tx_data_t) * count, KM_NOSLEEP);
1078 	if (ring->data == NULL) {
1079 		WPI_DBG((WPI_DEBUG_DMA, "could not allocate tx data slots\n"));
1080 		goto fail;
1081 	}
1082 
1083 	for (i = 0; i < count; i++) {
1084 		data = &ring->data[i];
1085 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1086 		    &tx_buffer_dma_attr, &wpi_dma_accattr,
1087 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1088 		    &data->dma_data);
1089 		if (err != DDI_SUCCESS) {
1090 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring buf[%d] "
1091 			    "failed\n", i));
1092 			goto fail;
1093 		}
1094 
1095 		data->desc = desc_h + i;
1096 		data->paddr_desc = paddr_desc_h +
1097 		    ((uintptr_t)data->desc - (uintptr_t)desc_h);
1098 		data->cmd = cmd_h + i;
1099 		data->paddr_cmd = paddr_cmd_h +
1100 		    ((uintptr_t)data->cmd - (uintptr_t)cmd_h);
1101 	}
1102 
1103 	return (err);
1104 
1105 fail:
1106 	wpi_free_tx_ring(sc, ring);
1107 	return (err);
1108 }
1109 
1110 static void
1111 wpi_reset_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1112 {
1113 	wpi_tx_data_t *data;
1114 	int i, ntries;
1115 
1116 	wpi_mem_lock(sc);
1117 
1118 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1119 	for (ntries = 0; ntries < 100; ntries++) {
1120 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1121 			break;
1122 		DELAY(10);
1123 	}
1124 #ifdef DEBUG
1125 	if (ntries == 100 && wpi_dbg_flags > 0) {
1126 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Tx ring %d\n",
1127 		    ring->qid));
1128 	}
1129 #endif
1130 	wpi_mem_unlock(sc);
1131 
1132 	if (!(sc->sc_flags & WPI_F_QUIESCED)) {
1133 		for (i = 0; i < ring->count; i++) {
1134 			data = &ring->data[i];
1135 			WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1136 		}
1137 	}
1138 
1139 	ring->queued = 0;
1140 	ring->cur = 0;
1141 }
1142 
1143 /*ARGSUSED*/
1144 static void
1145 wpi_free_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1146 {
1147 	int i;
1148 
1149 	if (ring->dma_desc.dma_hdl != NULL)
1150 		WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1151 	wpi_free_dma_mem(&ring->dma_desc);
1152 
1153 	if (ring->dma_cmd.dma_hdl != NULL)
1154 		WPI_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1155 	wpi_free_dma_mem(&ring->dma_cmd);
1156 
1157 	if (ring->data != NULL) {
1158 		for (i = 0; i < ring->count; i++) {
1159 			if (ring->data[i].dma_data.dma_hdl)
1160 				WPI_DMA_SYNC(ring->data[i].dma_data,
1161 				    DDI_DMA_SYNC_FORDEV);
1162 			wpi_free_dma_mem(&ring->data[i].dma_data);
1163 		}
1164 		kmem_free(ring->data, ring->count * sizeof (wpi_tx_data_t));
1165 		ring->data = NULL;
1166 	}
1167 }
1168 
1169 static int
1170 wpi_ring_init(wpi_sc_t *sc)
1171 {
1172 	int i, err = DDI_SUCCESS;
1173 
1174 	for (i = 0; i < 4; i++) {
1175 		err = wpi_alloc_tx_ring(sc, &sc->sc_txq[i], WPI_TX_RING_COUNT,
1176 		    i);
1177 		if (err != DDI_SUCCESS)
1178 			goto fail;
1179 	}
1180 	err = wpi_alloc_tx_ring(sc, &sc->sc_cmdq, WPI_CMD_RING_COUNT, 4);
1181 	if (err != DDI_SUCCESS)
1182 		goto fail;
1183 	err = wpi_alloc_tx_ring(sc, &sc->sc_svcq, WPI_SVC_RING_COUNT, 5);
1184 	if (err != DDI_SUCCESS)
1185 		goto fail;
1186 	err = wpi_alloc_rx_ring(sc);
1187 	if (err != DDI_SUCCESS)
1188 		goto fail;
1189 	return (err);
1190 
1191 fail:
1192 	return (err);
1193 }
1194 
1195 static void
1196 wpi_ring_free(wpi_sc_t *sc)
1197 {
1198 	int i = 4;
1199 
1200 	wpi_free_rx_ring(sc);
1201 	wpi_free_tx_ring(sc, &sc->sc_svcq);
1202 	wpi_free_tx_ring(sc, &sc->sc_cmdq);
1203 	while (--i >= 0) {
1204 		wpi_free_tx_ring(sc, &sc->sc_txq[i]);
1205 	}
1206 }
1207 
1208 /* ARGSUSED */
1209 static ieee80211_node_t *
1210 wpi_node_alloc(ieee80211com_t *ic)
1211 {
1212 	wpi_amrr_t *amrr;
1213 
1214 	amrr = kmem_zalloc(sizeof (wpi_amrr_t), KM_SLEEP);
1215 	if (amrr != NULL)
1216 		wpi_amrr_init(amrr);
1217 	return (&amrr->in);
1218 }
1219 
1220 static void
1221 wpi_node_free(ieee80211_node_t *in)
1222 {
1223 	ieee80211com_t *ic = in->in_ic;
1224 
1225 	ic->ic_node_cleanup(in);
1226 	if (in->in_wpa_ie != NULL)
1227 		ieee80211_free(in->in_wpa_ie);
1228 	kmem_free(in, sizeof (wpi_amrr_t));
1229 }
1230 
1231 /*ARGSUSED*/
1232 static int
1233 wpi_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1234 {
1235 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1236 	ieee80211_node_t *in = ic->ic_bss;
1237 	enum ieee80211_state ostate;
1238 	int i, err = WPI_SUCCESS;
1239 
1240 	mutex_enter(&sc->sc_glock);
1241 	ostate = ic->ic_state;
1242 	switch (nstate) {
1243 	case IEEE80211_S_SCAN:
1244 		switch (ostate) {
1245 		case IEEE80211_S_INIT:
1246 		{
1247 			wpi_node_t node;
1248 
1249 			sc->sc_flags |= WPI_F_SCANNING;
1250 			sc->sc_scan_next = 0;
1251 
1252 			/* make the link LED blink while we're scanning */
1253 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1254 
1255 			/*
1256 			 * clear association to receive beacons from all
1257 			 * BSS'es
1258 			 */
1259 			sc->sc_config.state = 0;
1260 			sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1261 
1262 			WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x "
1263 			    "filter %x\n",
1264 			    sc->sc_config.chan, sc->sc_config.flags,
1265 			    sc->sc_config.filter));
1266 
1267 			err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1268 			    sizeof (wpi_config_t), 1);
1269 			if (err != WPI_SUCCESS) {
1270 				cmn_err(CE_WARN,
1271 				    "could not clear association\n");
1272 				sc->sc_flags &= ~WPI_F_SCANNING;
1273 				mutex_exit(&sc->sc_glock);
1274 				return (err);
1275 			}
1276 
1277 			/* add broadcast node to send probe request */
1278 			(void) memset(&node, 0, sizeof (node));
1279 			(void) memset(&node.bssid, 0xff, IEEE80211_ADDR_LEN);
1280 			node.id = WPI_ID_BROADCAST;
1281 
1282 			err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node,
1283 			    sizeof (node), 1);
1284 			if (err != WPI_SUCCESS) {
1285 				cmn_err(CE_WARN,
1286 				    "could not add broadcast node\n");
1287 				sc->sc_flags &= ~WPI_F_SCANNING;
1288 				mutex_exit(&sc->sc_glock);
1289 				return (err);
1290 			}
1291 			break;
1292 		}
1293 		case IEEE80211_S_SCAN:
1294 			mutex_exit(&sc->sc_glock);
1295 			/* step to next channel before actual FW scan */
1296 			err = sc->sc_newstate(ic, nstate, arg);
1297 			mutex_enter(&sc->sc_glock);
1298 			if ((err != 0) || ((err = wpi_scan(sc)) != 0)) {
1299 				cmn_err(CE_WARN,
1300 				    "could not initiate scan\n");
1301 				sc->sc_flags &= ~WPI_F_SCANNING;
1302 				ieee80211_cancel_scan(ic);
1303 			}
1304 			mutex_exit(&sc->sc_glock);
1305 			return (err);
1306 		default:
1307 			break;
1308 		}
1309 		sc->sc_clk = 0;
1310 		break;
1311 
1312 	case IEEE80211_S_AUTH:
1313 		if (ostate == IEEE80211_S_SCAN) {
1314 			sc->sc_flags &= ~WPI_F_SCANNING;
1315 		}
1316 
1317 		/* reset state to handle reassociations correctly */
1318 		sc->sc_config.state = 0;
1319 		sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1320 
1321 		if ((err = wpi_auth(sc)) != 0) {
1322 			WPI_DBG((WPI_DEBUG_80211,
1323 			    "could not send authentication request\n"));
1324 			mutex_exit(&sc->sc_glock);
1325 			return (err);
1326 		}
1327 		break;
1328 
1329 	case IEEE80211_S_RUN:
1330 		if (ostate == IEEE80211_S_SCAN) {
1331 			sc->sc_flags &= ~WPI_F_SCANNING;
1332 		}
1333 
1334 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1335 			/* link LED blinks while monitoring */
1336 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1337 			break;
1338 		}
1339 
1340 		if (ic->ic_opmode != IEEE80211_M_STA) {
1341 			(void) wpi_auth(sc);
1342 			/* need setup beacon here */
1343 		}
1344 		WPI_DBG((WPI_DEBUG_80211, "wpi: associated."));
1345 
1346 		/* update adapter's configuration */
1347 		sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
1348 		/* short preamble/slot time are negotiated when associating */
1349 		sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
1350 		    WPI_CONFIG_SHSLOT);
1351 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1352 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
1353 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1354 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
1355 		sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
1356 		if (ic->ic_opmode != IEEE80211_M_STA)
1357 			sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
1358 
1359 		WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
1360 		    sc->sc_config.chan, sc->sc_config.flags));
1361 		err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1362 		    sizeof (wpi_config_t), 1);
1363 		if (err != WPI_SUCCESS) {
1364 			WPI_DBG((WPI_DEBUG_80211,
1365 			    "could not update configuration\n"));
1366 			mutex_exit(&sc->sc_glock);
1367 			return (err);
1368 		}
1369 
1370 		/* start automatic rate control */
1371 		mutex_enter(&sc->sc_mt_lock);
1372 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1373 			sc->sc_flags |= WPI_F_RATE_AUTO_CTL;
1374 			/* set rate to some reasonable initial value */
1375 			i = in->in_rates.ir_nrates - 1;
1376 			while (i > 0 && IEEE80211_RATE(i) > 72)
1377 				i--;
1378 			in->in_txrate = i;
1379 		} else {
1380 			sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
1381 		}
1382 		mutex_exit(&sc->sc_mt_lock);
1383 
1384 		/* link LED always on while associated */
1385 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1386 		break;
1387 
1388 	case IEEE80211_S_INIT:
1389 		sc->sc_flags &= ~WPI_F_SCANNING;
1390 		break;
1391 
1392 	case IEEE80211_S_ASSOC:
1393 		sc->sc_flags &= ~WPI_F_SCANNING;
1394 		break;
1395 	}
1396 
1397 	mutex_exit(&sc->sc_glock);
1398 	return (sc->sc_newstate(ic, nstate, arg));
1399 }
1400 
1401 /*ARGSUSED*/
1402 static int wpi_key_set(ieee80211com_t *ic, const struct ieee80211_key *k,
1403     const uint8_t mac[IEEE80211_ADDR_LEN])
1404 {
1405 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1406 	wpi_node_t node;
1407 	int err;
1408 
1409 	switch (k->wk_cipher->ic_cipher) {
1410 	case IEEE80211_CIPHER_WEP:
1411 	case IEEE80211_CIPHER_TKIP:
1412 		return (1); /* sofeware do it. */
1413 	case IEEE80211_CIPHER_AES_CCM:
1414 		break;
1415 	default:
1416 		return (0);
1417 	}
1418 	sc->sc_config.filter &= ~(WPI_FILTER_NODECRYPTUNI |
1419 	    WPI_FILTER_NODECRYPTMUL);
1420 
1421 	mutex_enter(&sc->sc_glock);
1422 
1423 	/* update ap/multicast node */
1424 	(void) memset(&node, 0, sizeof (node));
1425 	if (IEEE80211_IS_MULTICAST(mac)) {
1426 		(void) memset(node.bssid, 0xff, 6);
1427 		node.id = WPI_ID_BROADCAST;
1428 	} else {
1429 		IEEE80211_ADDR_COPY(node.bssid, ic->ic_bss->in_bssid);
1430 		node.id = WPI_ID_BSS;
1431 	}
1432 	if (k->wk_flags & IEEE80211_KEY_XMIT) {
1433 		node.key_flags = 0;
1434 		node.keyp = k->wk_keyix;
1435 	} else {
1436 		node.key_flags = (1 << 14);
1437 		node.keyp = k->wk_keyix + 4;
1438 	}
1439 	(void) memcpy(node.key, k->wk_key, k->wk_keylen);
1440 	node.key_flags |= (2 | (1 << 3) | (k->wk_keyix << 8));
1441 	node.sta_mask = 1;
1442 	node.control = 1;
1443 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
1444 	if (err != WPI_SUCCESS) {
1445 		cmn_err(CE_WARN, "wpi_key_set():"
1446 		    "failed to update ap node\n");
1447 		mutex_exit(&sc->sc_glock);
1448 		return (0);
1449 	}
1450 	mutex_exit(&sc->sc_glock);
1451 	return (1);
1452 }
1453 
1454 /*
1455  * Grab exclusive access to NIC memory.
1456  */
1457 static void
1458 wpi_mem_lock(wpi_sc_t *sc)
1459 {
1460 	uint32_t tmp;
1461 	int ntries;
1462 
1463 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1464 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1465 
1466 	/* spin until we actually get the lock */
1467 	for (ntries = 0; ntries < 1000; ntries++) {
1468 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1469 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1470 			break;
1471 		DELAY(10);
1472 	}
1473 	if (ntries == 1000)
1474 		WPI_DBG((WPI_DEBUG_PIO, "could not lock memory\n"));
1475 }
1476 
1477 /*
1478  * Release lock on NIC memory.
1479  */
1480 static void
1481 wpi_mem_unlock(wpi_sc_t *sc)
1482 {
1483 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1484 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1485 }
1486 
1487 static uint32_t
1488 wpi_mem_read(wpi_sc_t *sc, uint16_t addr)
1489 {
1490 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1491 	return (WPI_READ(sc, WPI_READ_MEM_DATA));
1492 }
1493 
1494 static void
1495 wpi_mem_write(wpi_sc_t *sc, uint16_t addr, uint32_t data)
1496 {
1497 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1498 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1499 }
1500 
1501 static void
1502 wpi_mem_write_region_4(wpi_sc_t *sc, uint16_t addr,
1503     const uint32_t *data, int wlen)
1504 {
1505 	for (; wlen > 0; wlen--, data++, addr += 4)
1506 		wpi_mem_write(sc, addr, *data);
1507 }
1508 
1509 /*
1510  * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
1511  * using the traditional bit-bang method.
1512  */
1513 static uint16_t
1514 wpi_read_prom_word(wpi_sc_t *sc, uint32_t addr)
1515 {
1516 	uint32_t val;
1517 	int ntries;
1518 
1519 	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1520 
1521 	wpi_mem_lock(sc);
1522 	for (ntries = 0; ntries < 10; ntries++) {
1523 		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1524 			break;
1525 		DELAY(10);
1526 	}
1527 	wpi_mem_unlock(sc);
1528 
1529 	if (ntries == 10) {
1530 		WPI_DBG((WPI_DEBUG_PIO, "could not read EEPROM\n"));
1531 		return (0xdead);
1532 	}
1533 	return (val >> 16);
1534 }
1535 
1536 /*
1537  * The firmware boot code is small and is intended to be copied directly into
1538  * the NIC internal memory.
1539  */
1540 static int
1541 wpi_load_microcode(wpi_sc_t *sc)
1542 {
1543 	const char *ucode;
1544 	int size;
1545 
1546 	ucode = sc->sc_boot;
1547 	size = LE_32(sc->sc_hdr->bootsz);
1548 	/* check that microcode size is a multiple of 4 */
1549 	if (size & 3)
1550 		return (EINVAL);
1551 
1552 	size /= sizeof (uint32_t);
1553 
1554 	wpi_mem_lock(sc);
1555 
1556 	/* copy microcode image into NIC memory */
1557 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1558 	    size);
1559 
1560 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1561 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1562 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1563 
1564 	/* run microcode */
1565 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1566 
1567 	wpi_mem_unlock(sc);
1568 
1569 	return (WPI_SUCCESS);
1570 }
1571 
1572 /*
1573  * The firmware text and data segments are transferred to the NIC using DMA.
1574  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1575  * where to find it.  Once the NIC has copied the firmware into its internal
1576  * memory, we can free our local copy in the driver.
1577  */
1578 static int
1579 wpi_load_firmware(wpi_sc_t *sc, uint32_t target)
1580 {
1581 	const char *fw;
1582 	int size;
1583 	wpi_dma_t *dma_p;
1584 	ddi_dma_cookie_t *cookie;
1585 	wpi_tx_desc_t desc;
1586 	int i, ntries, err = WPI_SUCCESS;
1587 
1588 	/* only text and data here */
1589 	if (target == WPI_FW_TEXT) {
1590 		fw = sc->sc_text;
1591 		size = LE_32(sc->sc_hdr->textsz);
1592 		dma_p = &sc->sc_dma_fw_text;
1593 		cookie = sc->sc_fw_text_cookie;
1594 	} else {
1595 		fw = sc->sc_data;
1596 		size = LE_32(sc->sc_hdr->datasz);
1597 		dma_p = &sc->sc_dma_fw_data;
1598 		cookie = sc->sc_fw_data_cookie;
1599 	}
1600 
1601 	/* copy firmware image to DMA-safe memory */
1602 	(void) memcpy(dma_p->mem_va, fw, size);
1603 
1604 	/* make sure the adapter will get up-to-date values */
1605 	(void) ddi_dma_sync(dma_p->dma_hdl, 0, size, DDI_DMA_SYNC_FORDEV);
1606 
1607 	(void) memset(&desc, 0, sizeof (desc));
1608 	desc.flags = LE_32(WPI_PAD32(size) << 28 | dma_p->ncookies << 24);
1609 	for (i = 0; i < dma_p->ncookies; i++) {
1610 		WPI_DBG((WPI_DEBUG_DMA, "cookie%d addr:%x size:%x\n",
1611 		    i, cookie[i].dmac_address, cookie[i].dmac_size));
1612 		desc.segs[i].addr = cookie[i].dmac_address;
1613 		desc.segs[i].len = (uint32_t)cookie[i].dmac_size;
1614 	}
1615 
1616 	wpi_mem_lock(sc);
1617 
1618 	/* tell adapter where to copy image in its internal memory */
1619 	WPI_WRITE(sc, WPI_FW_TARGET, target);
1620 
1621 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1622 
1623 	/* copy firmware descriptor into NIC memory */
1624 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1625 	    sizeof desc / sizeof (uint32_t));
1626 
1627 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1628 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1629 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1630 
1631 	/* wait while the adapter is busy copying the firmware */
1632 	for (ntries = 0; ntries < 100; ntries++) {
1633 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1634 			break;
1635 		DELAY(1000);
1636 	}
1637 	if (ntries == 100) {
1638 		WPI_DBG((WPI_DEBUG_FW, "timeout transferring firmware\n"));
1639 		err = ETIMEDOUT;
1640 	}
1641 
1642 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1643 
1644 	wpi_mem_unlock(sc);
1645 
1646 	return (err);
1647 }
1648 
1649 /*ARGSUSED*/
1650 static void
1651 wpi_rx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1652 {
1653 	ieee80211com_t *ic = &sc->sc_ic;
1654 	wpi_rx_ring_t *ring = &sc->sc_rxq;
1655 	wpi_rx_stat_t *stat;
1656 	wpi_rx_head_t *head;
1657 	wpi_rx_tail_t *tail;
1658 	ieee80211_node_t *in;
1659 	struct ieee80211_frame *wh;
1660 	mblk_t *mp;
1661 	uint16_t len;
1662 
1663 	stat = (wpi_rx_stat_t *)(desc + 1);
1664 
1665 	if (stat->len > WPI_STAT_MAXLEN) {
1666 		WPI_DBG((WPI_DEBUG_RX, "invalid rx statistic header\n"));
1667 		return;
1668 	}
1669 
1670 	head = (wpi_rx_head_t *)((caddr_t)(stat + 1) + stat->len);
1671 	tail = (wpi_rx_tail_t *)((caddr_t)(head + 1) + LE_16(head->len));
1672 
1673 	len = LE_16(head->len);
1674 
1675 	WPI_DBG((WPI_DEBUG_RX, "rx intr: idx=%d len=%d stat len=%d rssi=%d "
1676 	    "rate=%x chan=%d tstamp=%llu", ring->cur, LE_32(desc->len),
1677 	    len, (int8_t)stat->rssi, head->rate, head->chan,
1678 	    LE_64(tail->tstamp)));
1679 
1680 	if ((len < 20) || (len > sc->sc_dmabuf_sz)) {
1681 		sc->sc_rx_err++;
1682 		return;
1683 	}
1684 
1685 	/*
1686 	 * Discard Rx frames with bad CRC early
1687 	 */
1688 	if ((LE_32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1689 		WPI_DBG((WPI_DEBUG_RX, "rx tail flags error %x\n",
1690 		    LE_32(tail->flags)));
1691 		sc->sc_rx_err++;
1692 		return;
1693 	}
1694 
1695 	/* update Rx descriptor */
1696 	/* ring->desc[ring->cur] = LE_32(data->dma_data.cookie.dmac_address); */
1697 
1698 #ifdef WPI_BPF
1699 #ifndef WPI_CURRENT
1700 	if (sc->sc_drvbpf != NULL) {
1701 #else
1702 	if (bpf_peers_present(sc->sc_drvbpf)) {
1703 #endif
1704 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1705 
1706 		tap->wr_flags = 0;
1707 		tap->wr_rate = head->rate;
1708 		tap->wr_chan_freq =
1709 		    LE_16(ic->ic_channels[head->chan].ic_freq);
1710 		tap->wr_chan_flags =
1711 		    LE_16(ic->ic_channels[head->chan].ic_flags);
1712 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1713 		tap->wr_dbm_antnoise = (int8_t)LE_16(stat->noise);
1714 		tap->wr_tsft = tail->tstamp;
1715 		tap->wr_antenna = (LE_16(head->flags) >> 4) & 0xf;
1716 		switch (head->rate) {
1717 		/* CCK rates */
1718 		case  10: tap->wr_rate =   2; break;
1719 		case  20: tap->wr_rate =   4; break;
1720 		case  55: tap->wr_rate =  11; break;
1721 		case 110: tap->wr_rate =  22; break;
1722 		/* OFDM rates */
1723 		case 0xd: tap->wr_rate =  12; break;
1724 		case 0xf: tap->wr_rate =  18; break;
1725 		case 0x5: tap->wr_rate =  24; break;
1726 		case 0x7: tap->wr_rate =  36; break;
1727 		case 0x9: tap->wr_rate =  48; break;
1728 		case 0xb: tap->wr_rate =  72; break;
1729 		case 0x1: tap->wr_rate =  96; break;
1730 		case 0x3: tap->wr_rate = 108; break;
1731 		/* unknown rate: should not happen */
1732 		default:  tap->wr_rate =   0;
1733 		}
1734 		if (LE_16(head->flags) & 0x4)
1735 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1736 
1737 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1738 	}
1739 #endif
1740 	/* grab a reference to the source node */
1741 	wh = (struct ieee80211_frame *)(head + 1);
1742 
1743 #ifdef DEBUG
1744 	if (wpi_dbg_flags & WPI_DEBUG_RX)
1745 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
1746 #endif
1747 
1748 	in = ieee80211_find_rxnode(ic, wh);
1749 	mp = allocb(len, BPRI_MED);
1750 	if (mp) {
1751 		(void) memcpy(mp->b_wptr, wh, len);
1752 		mp->b_wptr += len;
1753 
1754 		/* send the frame to the 802.11 layer */
1755 		(void) ieee80211_input(ic, mp, in, stat->rssi, 0);
1756 	} else {
1757 		sc->sc_rx_nobuf++;
1758 		WPI_DBG((WPI_DEBUG_RX,
1759 		    "wpi_rx_intr(): alloc rx buf failed\n"));
1760 	}
1761 	/* release node reference */
1762 	ieee80211_free_node(in);
1763 }
1764 
1765 /*ARGSUSED*/
1766 static void
1767 wpi_tx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1768 {
1769 	ieee80211com_t *ic = &sc->sc_ic;
1770 	wpi_tx_ring_t *ring = &sc->sc_txq[desc->qid & 0x3];
1771 	/* wpi_tx_data_t *txdata = &ring->data[desc->idx]; */
1772 	wpi_tx_stat_t *stat = (wpi_tx_stat_t *)(desc + 1);
1773 	wpi_amrr_t *amrr = (wpi_amrr_t *)ic->ic_bss;
1774 
1775 	WPI_DBG((WPI_DEBUG_TX, "tx done: qid=%d idx=%d retries=%d nkill=%d "
1776 	    "rate=%x duration=%d status=%x\n",
1777 	    desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate,
1778 	    LE_32(stat->duration), LE_32(stat->status)));
1779 
1780 	amrr->txcnt++;
1781 	WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
1782 	if (stat->ntries > 0) {
1783 		amrr->retrycnt++;
1784 		sc->sc_tx_retries++;
1785 		WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d retries\n",
1786 		    amrr->retrycnt));
1787 	}
1788 
1789 	sc->sc_tx_timer = 0;
1790 
1791 	mutex_enter(&sc->sc_tx_lock);
1792 	ring->queued--;
1793 	if (ring->queued < 0)
1794 		ring->queued = 0;
1795 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
1796 		sc->sc_need_reschedule = 0;
1797 		mutex_exit(&sc->sc_tx_lock);
1798 		mac_tx_update(ic->ic_mach);
1799 		mutex_enter(&sc->sc_tx_lock);
1800 	}
1801 	mutex_exit(&sc->sc_tx_lock);
1802 }
1803 
1804 static void
1805 wpi_cmd_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc)
1806 {
1807 	if ((desc->qid & 7) != 4) {
1808 		return;	/* not a command ack */
1809 	}
1810 	mutex_enter(&sc->sc_glock);
1811 	sc->sc_flags |= WPI_F_CMD_DONE;
1812 	cv_signal(&sc->sc_cmd_cv);
1813 	mutex_exit(&sc->sc_glock);
1814 }
1815 
1816 static uint_t
1817 wpi_notif_softintr(caddr_t arg)
1818 {
1819 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1820 	wpi_rx_desc_t *desc;
1821 	wpi_rx_data_t *data;
1822 	uint32_t hw;
1823 
1824 	mutex_enter(&sc->sc_glock);
1825 	if (sc->sc_notif_softint_pending != 1) {
1826 		mutex_exit(&sc->sc_glock);
1827 		return (DDI_INTR_UNCLAIMED);
1828 	}
1829 	mutex_exit(&sc->sc_glock);
1830 
1831 	hw = LE_32(sc->sc_shared->next);
1832 
1833 	while (sc->sc_rxq.cur != hw) {
1834 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
1835 		desc = (wpi_rx_desc_t *)data->dma_data.mem_va;
1836 
1837 		WPI_DBG((WPI_DEBUG_INTR, "rx notification hw = %d cur = %d "
1838 		    "qid=%x idx=%d flags=%x type=%d len=%d\n",
1839 		    hw, sc->sc_rxq.cur, desc->qid, desc->idx, desc->flags,
1840 		    desc->type, LE_32(desc->len)));
1841 
1842 		if (!(desc->qid & 0x80))	/* reply to a command */
1843 			wpi_cmd_intr(sc, desc);
1844 
1845 		switch (desc->type) {
1846 		case WPI_RX_DONE:
1847 			/* a 802.11 frame was received */
1848 			wpi_rx_intr(sc, desc, data);
1849 			break;
1850 
1851 		case WPI_TX_DONE:
1852 			/* a 802.11 frame has been transmitted */
1853 			wpi_tx_intr(sc, desc, data);
1854 			break;
1855 
1856 		case WPI_UC_READY:
1857 		{
1858 			wpi_ucode_info_t *uc =
1859 			    (wpi_ucode_info_t *)(desc + 1);
1860 
1861 			/* the microcontroller is ready */
1862 			WPI_DBG((WPI_DEBUG_FW,
1863 			    "microcode alive notification version %x "
1864 			    "alive %x\n", LE_32(uc->version),
1865 			    LE_32(uc->valid)));
1866 
1867 			if (LE_32(uc->valid) != 1) {
1868 				WPI_DBG((WPI_DEBUG_FW,
1869 				    "microcontroller initialization failed\n"));
1870 			}
1871 			break;
1872 		}
1873 		case WPI_STATE_CHANGED:
1874 		{
1875 			uint32_t *status = (uint32_t *)(desc + 1);
1876 
1877 			/* enabled/disabled notification */
1878 			WPI_DBG((WPI_DEBUG_RADIO, "state changed to %x\n",
1879 			    LE_32(*status)));
1880 
1881 			if (LE_32(*status) & 1) {
1882 				/*
1883 				 * the radio button has to be pushed(OFF). It
1884 				 * is considered as a hw error, the
1885 				 * wpi_thread() tries to recover it after the
1886 				 * button is pushed again(ON)
1887 				 */
1888 				cmn_err(CE_NOTE,
1889 				    "wpi: Radio transmitter is off\n");
1890 				sc->sc_ostate = sc->sc_ic.ic_state;
1891 				ieee80211_new_state(&sc->sc_ic,
1892 				    IEEE80211_S_INIT, -1);
1893 				sc->sc_flags |=
1894 				    (WPI_F_HW_ERR_RECOVER | WPI_F_RADIO_OFF);
1895 			}
1896 			break;
1897 		}
1898 		case WPI_START_SCAN:
1899 		{
1900 			wpi_start_scan_t *scan =
1901 			    (wpi_start_scan_t *)(desc + 1);
1902 
1903 			WPI_DBG((WPI_DEBUG_SCAN,
1904 			    "scanning channel %d status %x\n",
1905 			    scan->chan, LE_32(scan->status)));
1906 
1907 			break;
1908 		}
1909 		case WPI_STOP_SCAN:
1910 		{
1911 			wpi_stop_scan_t *scan =
1912 			    (wpi_stop_scan_t *)(desc + 1);
1913 
1914 			WPI_DBG((WPI_DEBUG_SCAN,
1915 			    "completed channel %d (burst of %d) status %02x\n",
1916 			    scan->chan, scan->nchan, scan->status));
1917 
1918 			sc->sc_scan_pending = 0;
1919 			sc->sc_scan_next++;
1920 			break;
1921 		}
1922 		default:
1923 			break;
1924 		}
1925 
1926 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % WPI_RX_RING_COUNT;
1927 	}
1928 
1929 	/* tell the firmware what we have processed */
1930 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1931 	WPI_WRITE(sc, WPI_RX_WIDX, hw & (~7));
1932 	mutex_enter(&sc->sc_glock);
1933 	sc->sc_notif_softint_pending = 0;
1934 	mutex_exit(&sc->sc_glock);
1935 
1936 	return (DDI_INTR_CLAIMED);
1937 }
1938 
1939 static uint_t
1940 wpi_intr(caddr_t arg)
1941 {
1942 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1943 	uint32_t r, rfh;
1944 
1945 	mutex_enter(&sc->sc_glock);
1946 	if (sc->sc_flags & WPI_F_SUSPEND) {
1947 		mutex_exit(&sc->sc_glock);
1948 		return (DDI_INTR_UNCLAIMED);
1949 	}
1950 
1951 	r = WPI_READ(sc, WPI_INTR);
1952 	if (r == 0 || r == 0xffffffff) {
1953 		mutex_exit(&sc->sc_glock);
1954 		return (DDI_INTR_UNCLAIMED);
1955 	}
1956 
1957 	WPI_DBG((WPI_DEBUG_INTR, "interrupt reg %x\n", r));
1958 
1959 	rfh = WPI_READ(sc, WPI_INTR_STATUS);
1960 	/* disable interrupts */
1961 	WPI_WRITE(sc, WPI_MASK, 0);
1962 	/* ack interrupts */
1963 	WPI_WRITE(sc, WPI_INTR, r);
1964 	WPI_WRITE(sc, WPI_INTR_STATUS, rfh);
1965 
1966 	if (sc->sc_notif_softint_id == NULL) {
1967 		mutex_exit(&sc->sc_glock);
1968 		return (DDI_INTR_CLAIMED);
1969 	}
1970 
1971 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1972 		WPI_DBG((WPI_DEBUG_FW, "fatal firmware error\n"));
1973 		mutex_exit(&sc->sc_glock);
1974 		wpi_stop(sc);
1975 		if (!(sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
1976 			sc->sc_ostate = sc->sc_ic.ic_state;
1977 		}
1978 
1979 		/* not capable of fast recovery */
1980 		if (!WPI_CHK_FAST_RECOVER(sc))
1981 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1982 
1983 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
1984 		return (DDI_INTR_CLAIMED);
1985 	}
1986 
1987 	if ((r & (WPI_RX_INTR | WPI_RX_SWINT)) ||
1988 	    (rfh & 0x40070000)) {
1989 		sc->sc_notif_softint_pending = 1;
1990 		ddi_trigger_softintr(sc->sc_notif_softint_id);
1991 	}
1992 
1993 	if (r & WPI_ALIVE_INTR)	{ /* firmware initialized */
1994 		sc->sc_flags |= WPI_F_FW_INIT;
1995 		cv_signal(&sc->sc_fw_cv);
1996 	}
1997 
1998 	/* re-enable interrupts */
1999 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
2000 	mutex_exit(&sc->sc_glock);
2001 
2002 	return (DDI_INTR_CLAIMED);
2003 }
2004 
2005 static uint8_t
2006 wpi_plcp_signal(int rate)
2007 {
2008 	switch (rate) {
2009 	/* CCK rates (returned values are device-dependent) */
2010 	case 2:		return (10);
2011 	case 4:		return (20);
2012 	case 11:	return (55);
2013 	case 22:	return (110);
2014 
2015 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2016 	/* R1-R4 (ral/ural is R4-R1) */
2017 	case 12:	return (0xd);
2018 	case 18:	return (0xf);
2019 	case 24:	return (0x5);
2020 	case 36:	return (0x7);
2021 	case 48:	return (0x9);
2022 	case 72:	return (0xb);
2023 	case 96:	return (0x1);
2024 	case 108:	return (0x3);
2025 
2026 	/* unsupported rates (should not get there) */
2027 	default:	return (0);
2028 	}
2029 }
2030 
2031 static mblk_t *
2032 wpi_m_tx(void *arg, mblk_t *mp)
2033 {
2034 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2035 	ieee80211com_t	*ic = &sc->sc_ic;
2036 	mblk_t			*next;
2037 
2038 	if (sc->sc_flags & WPI_F_SUSPEND) {
2039 		freemsgchain(mp);
2040 		return (NULL);
2041 	}
2042 
2043 	if (ic->ic_state != IEEE80211_S_RUN) {
2044 		freemsgchain(mp);
2045 		return (NULL);
2046 	}
2047 
2048 	if ((sc->sc_flags & WPI_F_HW_ERR_RECOVER) &&
2049 	    WPI_CHK_FAST_RECOVER(sc)) {
2050 		WPI_DBG((WPI_DEBUG_FW, "wpi_m_tx(): hold queue\n"));
2051 		return (mp);
2052 	}
2053 
2054 	while (mp != NULL) {
2055 		next = mp->b_next;
2056 		mp->b_next = NULL;
2057 		if (wpi_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
2058 			mp->b_next = next;
2059 			break;
2060 		}
2061 		mp = next;
2062 	}
2063 	return (mp);
2064 }
2065 
2066 /* ARGSUSED */
2067 static int
2068 wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2069 {
2070 	wpi_sc_t *sc = (wpi_sc_t *)ic;
2071 	wpi_tx_ring_t *ring;
2072 	wpi_tx_desc_t *desc;
2073 	wpi_tx_data_t *data;
2074 	wpi_tx_cmd_t *cmd;
2075 	wpi_cmd_data_t *tx;
2076 	ieee80211_node_t *in;
2077 	struct ieee80211_frame *wh;
2078 	struct ieee80211_key *k;
2079 	mblk_t *m, *m0;
2080 	int rate, hdrlen, len, mblen, off, err = WPI_SUCCESS;
2081 
2082 	ring = ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ?
2083 	    (&sc->sc_txq[0]) : (&sc->sc_txq[1]);
2084 	data = &ring->data[ring->cur];
2085 	desc = data->desc;
2086 	cmd = data->cmd;
2087 	bzero(desc, sizeof (*desc));
2088 	bzero(cmd, sizeof (*cmd));
2089 
2090 	mutex_enter(&sc->sc_tx_lock);
2091 	if (sc->sc_flags & WPI_F_SUSPEND) {
2092 		mutex_exit(&sc->sc_tx_lock);
2093 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2094 		    IEEE80211_FC0_TYPE_DATA) {
2095 			freemsg(mp);
2096 		}
2097 		err = ENXIO;
2098 		goto exit;
2099 	}
2100 
2101 	if (ring->queued > ring->count - 64) {
2102 		WPI_DBG((WPI_DEBUG_TX, "wpi_send(): no txbuf\n"));
2103 		sc->sc_need_reschedule = 1;
2104 		mutex_exit(&sc->sc_tx_lock);
2105 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2106 		    IEEE80211_FC0_TYPE_DATA) {
2107 			freemsg(mp);
2108 		}
2109 		sc->sc_tx_nobuf++;
2110 		err = ENOMEM;
2111 		goto exit;
2112 	}
2113 	mutex_exit(&sc->sc_tx_lock);
2114 
2115 	hdrlen = sizeof (struct ieee80211_frame);
2116 
2117 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
2118 	if (m == NULL) { /* can not alloc buf, drop this package */
2119 		cmn_err(CE_WARN,
2120 		    "wpi_send(): failed to allocate msgbuf\n");
2121 		freemsg(mp);
2122 		err = WPI_SUCCESS;
2123 		goto exit;
2124 	}
2125 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
2126 		mblen = MBLKL(m0);
2127 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
2128 		off += mblen;
2129 	}
2130 	m->b_wptr += off;
2131 	freemsg(mp);
2132 
2133 	wh = (struct ieee80211_frame *)m->b_rptr;
2134 
2135 	in = ieee80211_find_txnode(ic, wh->i_addr1);
2136 	if (in == NULL) {
2137 		cmn_err(CE_WARN, "wpi_send(): failed to find tx node\n");
2138 		freemsg(m);
2139 		sc->sc_tx_err++;
2140 		err = WPI_SUCCESS;
2141 		goto exit;
2142 	}
2143 
2144 	(void) ieee80211_encap(ic, m, in);
2145 
2146 	cmd->code = WPI_CMD_TX_DATA;
2147 	cmd->flags = 0;
2148 	cmd->qid = ring->qid;
2149 	cmd->idx = ring->cur;
2150 
2151 	tx = (wpi_cmd_data_t *)cmd->data;
2152 	tx->flags = 0;
2153 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2154 		tx->flags |= LE_32(WPI_TX_NEED_ACK);
2155 	} else {
2156 		tx->flags &= ~(LE_32(WPI_TX_NEED_ACK));
2157 	}
2158 
2159 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2160 		k = ieee80211_crypto_encap(ic, m);
2161 		if (k == NULL) {
2162 			freemsg(m);
2163 			sc->sc_tx_err++;
2164 			err = WPI_SUCCESS;
2165 			goto exit;
2166 		}
2167 
2168 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2169 			tx->security = 2; /* for CCMP */
2170 			tx->flags |= LE_32(WPI_TX_NEED_ACK);
2171 			(void) memcpy(&tx->key, k->wk_key, k->wk_keylen);
2172 		}
2173 
2174 		/* packet header may have moved, reset our local pointer */
2175 		wh = (struct ieee80211_frame *)m->b_rptr;
2176 	}
2177 
2178 	len = msgdsize(m);
2179 
2180 #ifdef DEBUG
2181 	if (wpi_dbg_flags & WPI_DEBUG_TX)
2182 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
2183 #endif
2184 
2185 	/* pickup a rate */
2186 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2187 	    IEEE80211_FC0_TYPE_MGT) {
2188 		/* mgmt frames are sent at the lowest available bit-rate */
2189 		rate = 2;
2190 	} else {
2191 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
2192 			rate = ic->ic_fixed_rate;
2193 		} else
2194 			rate = in->in_rates.ir_rates[in->in_txrate];
2195 	}
2196 	rate &= IEEE80211_RATE_VAL;
2197 	WPI_DBG((WPI_DEBUG_RATECTL, "tx rate[%d of %d] = %x",
2198 	    in->in_txrate, in->in_rates.ir_nrates, rate));
2199 #ifdef WPI_BPF
2200 #ifndef WPI_CURRENT
2201 	if (sc->sc_drvbpf != NULL) {
2202 #else
2203 	if (bpf_peers_present(sc->sc_drvbpf)) {
2204 #endif
2205 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2206 
2207 		tap->wt_flags = 0;
2208 		tap->wt_chan_freq = LE_16(ic->ic_curchan->ic_freq);
2209 		tap->wt_chan_flags = LE_16(ic->ic_curchan->ic_flags);
2210 		tap->wt_rate = rate;
2211 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2212 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2213 
2214 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2215 	}
2216 #endif
2217 
2218 	tx->flags |= (LE_32(WPI_TX_AUTO_SEQ));
2219 	tx->flags |= LE_32(WPI_TX_BT_DISABLE | WPI_TX_CALIBRATION);
2220 
2221 	/* retrieve destination node's id */
2222 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
2223 	    WPI_ID_BSS;
2224 
2225 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2226 	    IEEE80211_FC0_TYPE_MGT) {
2227 		/* tell h/w to set timestamp in probe responses */
2228 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2229 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2230 			tx->flags |= LE_32(WPI_TX_INSERT_TSTAMP);
2231 
2232 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2233 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2234 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2235 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2236 			tx->timeout = 3;
2237 		else
2238 			tx->timeout = 2;
2239 	} else
2240 		tx->timeout = 0;
2241 
2242 	tx->rate = wpi_plcp_signal(rate);
2243 
2244 	/* be very persistant at sending frames out */
2245 	tx->rts_ntries = 7;
2246 	tx->data_ntries = 15;
2247 
2248 	tx->cck_mask  = 0x0f;
2249 	tx->ofdm_mask = 0xff;
2250 	tx->lifetime  = LE_32(0xffffffff);
2251 
2252 	tx->len = LE_16(len);
2253 
2254 	/* save and trim IEEE802.11 header */
2255 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
2256 	m->b_rptr += hdrlen;
2257 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
2258 
2259 	WPI_DBG((WPI_DEBUG_TX, "sending data: qid=%d idx=%d len=%d", ring->qid,
2260 	    ring->cur, len));
2261 
2262 	/* first scatter/gather segment is used by the tx data command */
2263 	desc->flags = LE_32(WPI_PAD32(len) << 28 | (2) << 24);
2264 	desc->segs[0].addr = LE_32(data->paddr_cmd);
2265 	desc->segs[0].len  = LE_32(
2266 	    roundup(4 + sizeof (wpi_cmd_data_t) + hdrlen, 4));
2267 	desc->segs[1].addr = LE_32(data->dma_data.cookie.dmac_address);
2268 	desc->segs[1].len  = LE_32(len - hdrlen);
2269 
2270 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2271 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2272 
2273 	mutex_enter(&sc->sc_tx_lock);
2274 	ring->queued++;
2275 	mutex_exit(&sc->sc_tx_lock);
2276 
2277 	/* kick ring */
2278 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2279 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2280 	freemsg(m);
2281 	/* release node reference */
2282 	ieee80211_free_node(in);
2283 
2284 	ic->ic_stats.is_tx_bytes += len;
2285 	ic->ic_stats.is_tx_frags++;
2286 
2287 	if (sc->sc_tx_timer == 0)
2288 		sc->sc_tx_timer = 5;
2289 exit:
2290 	return (err);
2291 }
2292 
2293 static void
2294 wpi_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2295 {
2296 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2297 	ieee80211com_t	*ic = &sc->sc_ic;
2298 	int		err;
2299 
2300 	err = ieee80211_ioctl(ic, wq, mp);
2301 	if (err == ENETRESET) {
2302 		/*
2303 		 * This is special for the hidden AP connection.
2304 		 * In any case, we should make sure only one 'scan'
2305 		 * in the driver for a 'connect' CLI command. So
2306 		 * when connecting to a hidden AP, the scan is just
2307 		 * sent out to the air when we know the desired
2308 		 * essid of the AP we want to connect.
2309 		 */
2310 		if (ic->ic_des_esslen) {
2311 			if (sc->sc_flags & WPI_F_RUNNING) {
2312 				wpi_m_stop(sc);
2313 				(void) wpi_m_start(sc);
2314 				(void) ieee80211_new_state(ic,
2315 				    IEEE80211_S_SCAN, -1);
2316 			}
2317 		}
2318 	}
2319 }
2320 
2321 /*
2322  * Callback functions for get/set properties
2323  */
2324 /* ARGSUSED */
2325 static int
2326 wpi_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2327     uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm)
2328 {
2329 	int		err = 0;
2330 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2331 
2332 	err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_name,
2333 	    pr_flags, wldp_length, wldp_buf, perm);
2334 
2335 	return (err);
2336 }
2337 static int
2338 wpi_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2339     uint_t wldp_length, const void *wldp_buf)
2340 {
2341 	int		err;
2342 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2343 	ieee80211com_t  *ic = &sc->sc_ic;
2344 
2345 	err = ieee80211_setprop(ic, pr_name, wldp_pr_name,
2346 	    wldp_length, wldp_buf);
2347 
2348 	if (err == ENETRESET) {
2349 		if (ic->ic_des_esslen) {
2350 			if (sc->sc_flags & WPI_F_RUNNING) {
2351 				wpi_m_stop(sc);
2352 				(void) wpi_m_start(sc);
2353 				(void) ieee80211_new_state(ic,
2354 				    IEEE80211_S_SCAN, -1);
2355 			}
2356 		}
2357 
2358 		err = 0;
2359 	}
2360 
2361 	return (err);
2362 }
2363 
2364 /*ARGSUSED*/
2365 static int
2366 wpi_m_stat(void *arg, uint_t stat, uint64_t *val)
2367 {
2368 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2369 	ieee80211com_t	*ic = &sc->sc_ic;
2370 	ieee80211_node_t *in;
2371 
2372 	mutex_enter(&sc->sc_glock);
2373 	switch (stat) {
2374 	case MAC_STAT_IFSPEED:
2375 		in = ic->ic_bss;
2376 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2377 		    IEEE80211_RATE(in->in_txrate) :
2378 		    ic->ic_fixed_rate) / 2 * 1000000;
2379 		break;
2380 	case MAC_STAT_NOXMTBUF:
2381 		*val = sc->sc_tx_nobuf;
2382 		break;
2383 	case MAC_STAT_NORCVBUF:
2384 		*val = sc->sc_rx_nobuf;
2385 		break;
2386 	case MAC_STAT_IERRORS:
2387 		*val = sc->sc_rx_err;
2388 		break;
2389 	case MAC_STAT_RBYTES:
2390 		*val = ic->ic_stats.is_rx_bytes;
2391 		break;
2392 	case MAC_STAT_IPACKETS:
2393 		*val = ic->ic_stats.is_rx_frags;
2394 		break;
2395 	case MAC_STAT_OBYTES:
2396 		*val = ic->ic_stats.is_tx_bytes;
2397 		break;
2398 	case MAC_STAT_OPACKETS:
2399 		*val = ic->ic_stats.is_tx_frags;
2400 		break;
2401 	case MAC_STAT_OERRORS:
2402 	case WIFI_STAT_TX_FAILED:
2403 		*val = sc->sc_tx_err;
2404 		break;
2405 	case WIFI_STAT_TX_RETRANS:
2406 		*val = sc->sc_tx_retries;
2407 		break;
2408 	case WIFI_STAT_FCS_ERRORS:
2409 	case WIFI_STAT_WEP_ERRORS:
2410 	case WIFI_STAT_TX_FRAGS:
2411 	case WIFI_STAT_MCAST_TX:
2412 	case WIFI_STAT_RTS_SUCCESS:
2413 	case WIFI_STAT_RTS_FAILURE:
2414 	case WIFI_STAT_ACK_FAILURE:
2415 	case WIFI_STAT_RX_FRAGS:
2416 	case WIFI_STAT_MCAST_RX:
2417 	case WIFI_STAT_RX_DUPS:
2418 		mutex_exit(&sc->sc_glock);
2419 		return (ieee80211_stat(ic, stat, val));
2420 	default:
2421 		mutex_exit(&sc->sc_glock);
2422 		return (ENOTSUP);
2423 	}
2424 	mutex_exit(&sc->sc_glock);
2425 
2426 	return (WPI_SUCCESS);
2427 
2428 }
2429 
2430 static int
2431 wpi_m_start(void *arg)
2432 {
2433 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2434 	ieee80211com_t	*ic = &sc->sc_ic;
2435 	int err;
2436 
2437 	err = wpi_init(sc);
2438 	if (err != WPI_SUCCESS) {
2439 		wpi_stop(sc);
2440 		DELAY(1000000);
2441 		err = wpi_init(sc);
2442 	}
2443 
2444 	if (err) {
2445 		/*
2446 		 * The hw init err(eg. RF is OFF). Return Success to make
2447 		 * the 'plumb' succeed. The wpi_thread() tries to re-init
2448 		 * background.
2449 		 */
2450 		mutex_enter(&sc->sc_glock);
2451 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2452 		mutex_exit(&sc->sc_glock);
2453 		return (WPI_SUCCESS);
2454 	}
2455 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2456 	mutex_enter(&sc->sc_glock);
2457 	sc->sc_flags |= WPI_F_RUNNING;
2458 	mutex_exit(&sc->sc_glock);
2459 
2460 	return (WPI_SUCCESS);
2461 }
2462 
2463 static void
2464 wpi_m_stop(void *arg)
2465 {
2466 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2467 	ieee80211com_t	*ic = &sc->sc_ic;
2468 
2469 	wpi_stop(sc);
2470 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2471 	mutex_enter(&sc->sc_mt_lock);
2472 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2473 	sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
2474 	mutex_exit(&sc->sc_mt_lock);
2475 	mutex_enter(&sc->sc_glock);
2476 	sc->sc_flags &= ~WPI_F_RUNNING;
2477 	mutex_exit(&sc->sc_glock);
2478 }
2479 
2480 /*ARGSUSED*/
2481 static int
2482 wpi_m_unicst(void *arg, const uint8_t *macaddr)
2483 {
2484 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2485 	ieee80211com_t	*ic = &sc->sc_ic;
2486 	int err;
2487 
2488 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
2489 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2490 		mutex_enter(&sc->sc_glock);
2491 		err = wpi_config(sc);
2492 		mutex_exit(&sc->sc_glock);
2493 		if (err != WPI_SUCCESS) {
2494 			cmn_err(CE_WARN,
2495 			    "wpi_m_unicst(): "
2496 			    "failed to configure device\n");
2497 			goto fail;
2498 		}
2499 	}
2500 	return (WPI_SUCCESS);
2501 fail:
2502 	return (err);
2503 }
2504 
2505 /*ARGSUSED*/
2506 static int
2507 wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m)
2508 {
2509 	return (WPI_SUCCESS);
2510 }
2511 
2512 /*ARGSUSED*/
2513 static int
2514 wpi_m_promisc(void *arg, boolean_t on)
2515 {
2516 	return (WPI_SUCCESS);
2517 }
2518 
2519 static void
2520 wpi_thread(wpi_sc_t *sc)
2521 {
2522 	ieee80211com_t	*ic = &sc->sc_ic;
2523 	clock_t clk;
2524 	int times = 0, err, n = 0, timeout = 0;
2525 	uint32_t tmp;
2526 
2527 	mutex_enter(&sc->sc_mt_lock);
2528 	while (sc->sc_mf_thread_switch) {
2529 		tmp = WPI_READ(sc, WPI_GPIO_CTL);
2530 		if (tmp & WPI_GPIO_HW_RF_KILL) {
2531 			sc->sc_flags &= ~WPI_F_RADIO_OFF;
2532 		} else {
2533 			sc->sc_flags |= WPI_F_RADIO_OFF;
2534 		}
2535 		/*
2536 		 * If in SUSPEND or the RF is OFF, do nothing
2537 		 */
2538 		if ((sc->sc_flags & WPI_F_SUSPEND) ||
2539 		    (sc->sc_flags & WPI_F_RADIO_OFF)) {
2540 			mutex_exit(&sc->sc_mt_lock);
2541 			delay(drv_usectohz(100000));
2542 			mutex_enter(&sc->sc_mt_lock);
2543 			continue;
2544 		}
2545 
2546 		/*
2547 		 * recovery fatal error
2548 		 */
2549 		if (ic->ic_mach &&
2550 		    (sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
2551 
2552 			WPI_DBG((WPI_DEBUG_FW,
2553 			    "wpi_thread(): "
2554 			    "try to recover fatal hw error: %d\n", times++));
2555 
2556 			wpi_stop(sc);
2557 
2558 			if (WPI_CHK_FAST_RECOVER(sc)) {
2559 				/* save runtime configuration */
2560 				bcopy(&sc->sc_config, &sc->sc_config_save,
2561 				    sizeof (sc->sc_config));
2562 			} else {
2563 				mutex_exit(&sc->sc_mt_lock);
2564 				ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2565 				delay(drv_usectohz(2000000));
2566 				mutex_enter(&sc->sc_mt_lock);
2567 			}
2568 
2569 			err = wpi_init(sc);
2570 			if (err != WPI_SUCCESS) {
2571 				n++;
2572 				if (n < 3)
2573 					continue;
2574 			}
2575 			n = 0;
2576 			if (!err)
2577 				sc->sc_flags |= WPI_F_RUNNING;
2578 
2579 			if (!WPI_CHK_FAST_RECOVER(sc) ||
2580 			    wpi_fast_recover(sc) != WPI_SUCCESS) {
2581 				sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2582 
2583 				mutex_exit(&sc->sc_mt_lock);
2584 				delay(drv_usectohz(2000000));
2585 				if (sc->sc_ostate != IEEE80211_S_INIT)
2586 					ieee80211_new_state(ic,
2587 					    IEEE80211_S_SCAN, 0);
2588 				mutex_enter(&sc->sc_mt_lock);
2589 			}
2590 		}
2591 
2592 		if (ic->ic_mach && (sc->sc_flags & WPI_F_LAZY_RESUME)) {
2593 			WPI_DBG((WPI_DEBUG_RESUME,
2594 			    "wpi_thread(): "
2595 			    "lazy resume\n"));
2596 			sc->sc_flags &= ~WPI_F_LAZY_RESUME;
2597 			mutex_exit(&sc->sc_mt_lock);
2598 			/*
2599 			 * NB: under WPA mode, this call hangs (door problem?)
2600 			 * when called in wpi_attach() and wpi_detach() while
2601 			 * system is in the procedure of CPR. To be safe, let
2602 			 * the thread do this.
2603 			 */
2604 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
2605 			mutex_enter(&sc->sc_mt_lock);
2606 		}
2607 
2608 		/*
2609 		 * scan next channel
2610 		 */
2611 		if (ic->ic_mach &&
2612 		    (sc->sc_flags & WPI_F_SCANNING) && sc->sc_scan_next) {
2613 
2614 			WPI_DBG((WPI_DEBUG_SCAN,
2615 			    "wpi_thread(): "
2616 			    "wait for probe response\n"));
2617 
2618 			sc->sc_scan_next--;
2619 			mutex_exit(&sc->sc_mt_lock);
2620 			delay(drv_usectohz(200000));
2621 			if (sc->sc_flags & WPI_F_SCANNING)
2622 				ieee80211_next_scan(ic);
2623 			mutex_enter(&sc->sc_mt_lock);
2624 		}
2625 
2626 		/*
2627 		 * rate ctl
2628 		 */
2629 		if (ic->ic_mach &&
2630 		    (sc->sc_flags & WPI_F_RATE_AUTO_CTL)) {
2631 			clk = ddi_get_lbolt();
2632 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
2633 				wpi_amrr_timeout(sc);
2634 			}
2635 		}
2636 		mutex_exit(&sc->sc_mt_lock);
2637 		delay(drv_usectohz(100000));
2638 		mutex_enter(&sc->sc_mt_lock);
2639 		if (sc->sc_tx_timer) {
2640 			timeout++;
2641 			if (timeout == 10) {
2642 				sc->sc_tx_timer--;
2643 				if (sc->sc_tx_timer == 0) {
2644 					sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2645 					sc->sc_ostate = IEEE80211_S_RUN;
2646 					WPI_DBG((WPI_DEBUG_FW,
2647 					    "wpi_thread(): send fail\n"));
2648 				}
2649 				timeout = 0;
2650 			}
2651 		}
2652 	}
2653 	sc->sc_mf_thread = NULL;
2654 	cv_signal(&sc->sc_mt_cv);
2655 	mutex_exit(&sc->sc_mt_lock);
2656 }
2657 
2658 /*
2659  * Extract various information from EEPROM.
2660  */
2661 static void
2662 wpi_read_eeprom(wpi_sc_t *sc)
2663 {
2664 	ieee80211com_t *ic = &sc->sc_ic;
2665 	uint16_t val;
2666 	int i;
2667 
2668 	/* read MAC address */
2669 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
2670 	ic->ic_macaddr[0] = val & 0xff;
2671 	ic->ic_macaddr[1] = val >> 8;
2672 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
2673 	ic->ic_macaddr[2] = val & 0xff;
2674 	ic->ic_macaddr[3] = val >> 8;
2675 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
2676 	ic->ic_macaddr[4] = val & 0xff;
2677 	ic->ic_macaddr[5] = val >> 8;
2678 
2679 	WPI_DBG((WPI_DEBUG_EEPROM,
2680 	    "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
2681 	    ic->ic_macaddr[0], ic->ic_macaddr[1],
2682 	    ic->ic_macaddr[2], ic->ic_macaddr[3],
2683 	    ic->ic_macaddr[4], ic->ic_macaddr[5]));
2684 	/* read power settings for 2.4GHz channels */
2685 	for (i = 0; i < 14; i++) {
2686 		sc->sc_pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
2687 		sc->sc_pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
2688 		WPI_DBG((WPI_DEBUG_EEPROM,
2689 		    "channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
2690 		    sc->sc_pwr1[i], sc->sc_pwr2[i]));
2691 	}
2692 }
2693 
2694 /*
2695  * Send a command to the firmware.
2696  */
2697 static int
2698 wpi_cmd(wpi_sc_t *sc, int code, const void *buf, int size, int async)
2699 {
2700 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2701 	wpi_tx_desc_t *desc;
2702 	wpi_tx_cmd_t *cmd;
2703 
2704 	ASSERT(size <= sizeof (cmd->data));
2705 	ASSERT(mutex_owned(&sc->sc_glock));
2706 
2707 	WPI_DBG((WPI_DEBUG_CMD, "wpi_cmd() # code[%d]", code));
2708 	desc = ring->data[ring->cur].desc;
2709 	cmd = ring->data[ring->cur].cmd;
2710 
2711 	cmd->code = (uint8_t)code;
2712 	cmd->flags = 0;
2713 	cmd->qid = ring->qid;
2714 	cmd->idx = ring->cur;
2715 	(void) memcpy(cmd->data, buf, size);
2716 
2717 	desc->flags = LE_32(WPI_PAD32(size) << 28 | 1 << 24);
2718 	desc->segs[0].addr = ring->data[ring->cur].paddr_cmd;
2719 	desc->segs[0].len  = 4 + size;
2720 
2721 	/* kick cmd ring */
2722 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2723 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2724 
2725 	if (async)
2726 		return (WPI_SUCCESS);
2727 	else {
2728 		clock_t clk;
2729 		sc->sc_flags &= ~WPI_F_CMD_DONE;
2730 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
2731 		while (!(sc->sc_flags & WPI_F_CMD_DONE)) {
2732 			if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk)
2733 			    < 0)
2734 				break;
2735 		}
2736 		if (sc->sc_flags & WPI_F_CMD_DONE)
2737 			return (WPI_SUCCESS);
2738 		else
2739 			return (WPI_FAIL);
2740 	}
2741 }
2742 
2743 /*
2744  * Configure h/w multi-rate retries.
2745  */
2746 static int
2747 wpi_mrr_setup(wpi_sc_t *sc)
2748 {
2749 	wpi_mrr_setup_t mrr;
2750 	int i, err;
2751 
2752 	/* CCK rates (not used with 802.11a) */
2753 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2754 		mrr.rates[i].flags = 0;
2755 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2756 		/* fallback to the immediate lower CCK rate (if any) */
2757 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2758 		/* try one time at this rate before falling back to "next" */
2759 		mrr.rates[i].ntries = 1;
2760 	}
2761 
2762 	/* OFDM rates (not used with 802.11b) */
2763 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2764 		mrr.rates[i].flags = 0;
2765 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2766 		/* fallback to the immediate lower OFDM rate (if any) */
2767 		mrr.rates[i].next = (i == WPI_OFDM6) ? WPI_OFDM6 : i - 1;
2768 		/* try one time at this rate before falling back to "next" */
2769 		mrr.rates[i].ntries = 1;
2770 	}
2771 
2772 	/* setup MRR for control frames */
2773 	mrr.which = LE_32(WPI_MRR_CTL);
2774 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2775 	if (err != WPI_SUCCESS) {
2776 		WPI_DBG((WPI_DEBUG_MRR,
2777 		    "could not setup MRR for control frames\n"));
2778 		return (err);
2779 	}
2780 
2781 	/* setup MRR for data frames */
2782 	mrr.which = LE_32(WPI_MRR_DATA);
2783 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2784 	if (err != WPI_SUCCESS) {
2785 		WPI_DBG((WPI_DEBUG_MRR,
2786 		    "could not setup MRR for data frames\n"));
2787 		return (err);
2788 	}
2789 
2790 	return (WPI_SUCCESS);
2791 }
2792 
2793 static void
2794 wpi_set_led(wpi_sc_t *sc, uint8_t which, uint8_t off, uint8_t on)
2795 {
2796 	wpi_cmd_led_t led;
2797 
2798 	led.which = which;
2799 	led.unit = LE_32(100000);	/* on/off in unit of 100ms */
2800 	led.off = off;
2801 	led.on = on;
2802 
2803 	(void) wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof (led), 1);
2804 }
2805 
2806 static int
2807 wpi_auth(wpi_sc_t *sc)
2808 {
2809 	ieee80211com_t *ic = &sc->sc_ic;
2810 	ieee80211_node_t *in = ic->ic_bss;
2811 	wpi_node_t node;
2812 	int err;
2813 
2814 	/* update adapter's configuration */
2815 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
2816 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
2817 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2818 		sc->sc_config.cck_mask  = 0x03;
2819 		sc->sc_config.ofdm_mask = 0;
2820 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
2821 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
2822 		sc->sc_config.cck_mask  = 0;
2823 		sc->sc_config.ofdm_mask = 0x15;
2824 	} else {	/* assume 802.11b/g */
2825 		sc->sc_config.cck_mask  = 0x0f;
2826 		sc->sc_config.ofdm_mask = 0xff;
2827 	}
2828 
2829 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x cck %x ofdm %x"
2830 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
2831 	    sc->sc_config.chan, sc->sc_config.flags,
2832 	    sc->sc_config.cck_mask, sc->sc_config.ofdm_mask,
2833 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
2834 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
2835 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
2836 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2837 	    sizeof (wpi_config_t), 1);
2838 	if (err != WPI_SUCCESS) {
2839 		cmn_err(CE_WARN, "wpi_auth(): failed to configurate chan%d\n",
2840 		    sc->sc_config.chan);
2841 		return (err);
2842 	}
2843 
2844 	/* add default node */
2845 	(void) memset(&node, 0, sizeof (node));
2846 	IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
2847 	node.id = WPI_ID_BSS;
2848 	node.rate = wpi_plcp_signal(2);
2849 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
2850 	if (err != WPI_SUCCESS) {
2851 		cmn_err(CE_WARN, "wpi_auth(): failed to add BSS node\n");
2852 		return (err);
2853 	}
2854 
2855 	err = wpi_mrr_setup(sc);
2856 	if (err != WPI_SUCCESS) {
2857 		cmn_err(CE_WARN, "wpi_auth(): failed to setup MRR\n");
2858 		return (err);
2859 	}
2860 
2861 	return (WPI_SUCCESS);
2862 }
2863 
2864 /*
2865  * Send a scan request to the firmware.
2866  */
2867 static int
2868 wpi_scan(wpi_sc_t *sc)
2869 {
2870 	ieee80211com_t *ic = &sc->sc_ic;
2871 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2872 	wpi_tx_desc_t *desc;
2873 	wpi_tx_data_t *data;
2874 	wpi_tx_cmd_t *cmd;
2875 	wpi_scan_hdr_t *hdr;
2876 	wpi_scan_chan_t *chan;
2877 	struct ieee80211_frame *wh;
2878 	ieee80211_node_t *in = ic->ic_bss;
2879 	uint8_t essid[IEEE80211_NWID_LEN+1];
2880 	struct ieee80211_rateset *rs;
2881 	enum ieee80211_phymode mode;
2882 	uint8_t *frm;
2883 	int i, pktlen, nrates;
2884 
2885 	/* previous scan not completed */
2886 	if (sc->sc_scan_pending) {
2887 		WPI_DBG((WPI_DEBUG_SCAN, "previous scan not completed\n"));
2888 		return (WPI_SUCCESS);
2889 	}
2890 
2891 	data = &ring->data[ring->cur];
2892 	desc = data->desc;
2893 	cmd = (wpi_tx_cmd_t *)data->dma_data.mem_va;
2894 
2895 	cmd->code = WPI_CMD_SCAN;
2896 	cmd->flags = 0;
2897 	cmd->qid = ring->qid;
2898 	cmd->idx = ring->cur;
2899 
2900 	hdr = (wpi_scan_hdr_t *)cmd->data;
2901 	(void) memset(hdr, 0, sizeof (wpi_scan_hdr_t));
2902 	hdr->first = 1;
2903 	hdr->nchan = 1;
2904 	hdr->len = hdr->nchan * sizeof (wpi_scan_chan_t);
2905 	hdr->quiet = LE_16(50);
2906 	hdr->threshold = LE_16(1);
2907 	hdr->filter = LE_32(5);
2908 	hdr->rate = wpi_plcp_signal(2);
2909 	hdr->id = WPI_ID_BROADCAST;
2910 	hdr->mask = LE_32(0xffffffff);
2911 	hdr->esslen = ic->ic_des_esslen;
2912 
2913 	if (ic->ic_des_esslen) {
2914 		bcopy(ic->ic_des_essid, essid, ic->ic_des_esslen);
2915 		essid[ic->ic_des_esslen] = '\0';
2916 		WPI_DBG((WPI_DEBUG_SCAN, "directed scan %s\n", essid));
2917 
2918 		bcopy(ic->ic_des_essid, hdr->essid, ic->ic_des_esslen);
2919 	} else {
2920 		bzero(hdr->essid, sizeof (hdr->essid));
2921 	}
2922 
2923 	/*
2924 	 * Build a probe request frame.  Most of the following code is a
2925 	 * copy & paste of what is done in net80211.  Unfortunately, the
2926 	 * functions to add IEs are static and thus can't be reused here.
2927 	 */
2928 	wh = (struct ieee80211_frame *)(hdr + 1);
2929 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2930 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2931 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2932 	(void) memset(wh->i_addr1, 0xff, 6);
2933 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
2934 	(void) memset(wh->i_addr3, 0xff, 6);
2935 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2936 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2937 
2938 	frm = (uint8_t *)(wh + 1);
2939 
2940 	/* add essid IE */
2941 	if (in->in_esslen) {
2942 		bcopy(in->in_essid, essid, in->in_esslen);
2943 		essid[in->in_esslen] = '\0';
2944 		WPI_DBG((WPI_DEBUG_SCAN, "probe with ESSID %s\n",
2945 		    essid));
2946 	}
2947 	*frm++ = IEEE80211_ELEMID_SSID;
2948 	*frm++ = in->in_esslen;
2949 	(void) memcpy(frm, in->in_essid, in->in_esslen);
2950 	frm += in->in_esslen;
2951 
2952 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
2953 	rs = &ic->ic_sup_rates[mode];
2954 
2955 	/* add supported rates IE */
2956 	*frm++ = IEEE80211_ELEMID_RATES;
2957 	nrates = rs->ir_nrates;
2958 	if (nrates > IEEE80211_RATE_SIZE)
2959 		nrates = IEEE80211_RATE_SIZE;
2960 	*frm++ = (uint8_t)nrates;
2961 	(void) memcpy(frm, rs->ir_rates, nrates);
2962 	frm += nrates;
2963 
2964 	/* add supported xrates IE */
2965 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
2966 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
2967 		*frm++ = IEEE80211_ELEMID_XRATES;
2968 		*frm++ = (uint8_t)nrates;
2969 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
2970 		frm += nrates;
2971 	}
2972 
2973 	/* add optionnal IE (usually an RSN IE) */
2974 	if (ic->ic_opt_ie != NULL) {
2975 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2976 		frm += ic->ic_opt_ie_len;
2977 	}
2978 
2979 	/* setup length of probe request */
2980 	hdr->pbrlen = LE_16((uintptr_t)frm - (uintptr_t)wh);
2981 
2982 	/* align on a 4-byte boundary */
2983 	chan = (wpi_scan_chan_t *)frm;
2984 	for (i = 1; i <= hdr->nchan; i++, chan++) {
2985 		if (ic->ic_des_esslen) {
2986 			chan->flags = 0x3;
2987 		} else {
2988 			chan->flags = 0x1;
2989 		}
2990 		chan->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2991 		chan->magic = LE_16(0x62ab);
2992 		chan->active = LE_16(50);
2993 		chan->passive = LE_16(120);
2994 
2995 		frm += sizeof (wpi_scan_chan_t);
2996 	}
2997 
2998 	pktlen = (uintptr_t)frm - (uintptr_t)cmd;
2999 
3000 	desc->flags = LE_32(WPI_PAD32(pktlen) << 28 | 1 << 24);
3001 	desc->segs[0].addr = LE_32(data->dma_data.cookie.dmac_address);
3002 	desc->segs[0].len  = LE_32(pktlen);
3003 
3004 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
3005 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
3006 
3007 	/* kick cmd ring */
3008 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
3009 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
3010 
3011 	sc->sc_scan_pending = 1;
3012 
3013 	return (WPI_SUCCESS);	/* will be notified async. of failure/success */
3014 }
3015 
3016 static int
3017 wpi_config(wpi_sc_t *sc)
3018 {
3019 	ieee80211com_t *ic = &sc->sc_ic;
3020 	wpi_txpower_t txpower;
3021 	wpi_power_t power;
3022 #ifdef WPI_BLUE_COEXISTENCE
3023 	wpi_bluetooth_t bluetooth;
3024 #endif
3025 	wpi_node_t node;
3026 	int err;
3027 
3028 	/* Intel's binary only daemon is a joke.. */
3029 
3030 	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
3031 	(void) memset(&txpower, 0, sizeof (txpower));
3032 	(void) memcpy(txpower.pwr1, sc->sc_pwr1, 14 * sizeof (uint16_t));
3033 	(void) memcpy(txpower.pwr2, sc->sc_pwr2, 14 * sizeof (uint16_t));
3034 	err = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof (txpower), 0);
3035 	if (err != WPI_SUCCESS) {
3036 		cmn_err(CE_WARN, "wpi_config(): failed to set txpower\n");
3037 		return (err);
3038 	}
3039 
3040 	/* set power mode */
3041 	(void) memset(&power, 0, sizeof (power));
3042 	power.flags = LE_32(0x8);
3043 	err = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof (power), 0);
3044 	if (err != WPI_SUCCESS) {
3045 		cmn_err(CE_WARN, "wpi_config(): failed to set power mode\n");
3046 		return (err);
3047 	}
3048 #ifdef WPI_BLUE_COEXISTENCE
3049 	/* configure bluetooth coexistence */
3050 	(void) memset(&bluetooth, 0, sizeof (bluetooth));
3051 	bluetooth.flags = 3;
3052 	bluetooth.lead = 0xaa;
3053 	bluetooth.kill = 1;
3054 	err = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth,
3055 	    sizeof (bluetooth), 0);
3056 	if (err != WPI_SUCCESS) {
3057 		cmn_err(CE_WARN,
3058 		    "wpi_config(): "
3059 		    "failed to configurate bluetooth coexistence\n");
3060 		return (err);
3061 	}
3062 #endif
3063 	/* configure adapter */
3064 	(void) memset(&sc->sc_config, 0, sizeof (wpi_config_t));
3065 	IEEE80211_ADDR_COPY(sc->sc_config.myaddr, ic->ic_macaddr);
3066 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3067 	sc->sc_config.flags = LE_32(WPI_CONFIG_TSF | WPI_CONFIG_AUTO |
3068 	    WPI_CONFIG_24GHZ);
3069 	sc->sc_config.filter = 0;
3070 	switch (ic->ic_opmode) {
3071 	case IEEE80211_M_STA:
3072 		sc->sc_config.mode = WPI_MODE_STA;
3073 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST);
3074 		break;
3075 	case IEEE80211_M_IBSS:
3076 	case IEEE80211_M_AHDEMO:
3077 		sc->sc_config.mode = WPI_MODE_IBSS;
3078 		break;
3079 	case IEEE80211_M_HOSTAP:
3080 		sc->sc_config.mode = WPI_MODE_HOSTAP;
3081 		break;
3082 	case IEEE80211_M_MONITOR:
3083 		sc->sc_config.mode = WPI_MODE_MONITOR;
3084 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
3085 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3086 		break;
3087 	}
3088 	sc->sc_config.cck_mask  = 0x0f;	/* not yet negotiated */
3089 	sc->sc_config.ofdm_mask = 0xff;	/* not yet negotiated */
3090 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
3091 	    sizeof (wpi_config_t), 0);
3092 	if (err != WPI_SUCCESS) {
3093 		cmn_err(CE_WARN, "wpi_config(): "
3094 		    "failed to set configure command\n");
3095 		return (err);
3096 	}
3097 
3098 	/* add broadcast node */
3099 	(void) memset(&node, 0, sizeof (node));
3100 	(void) memset(node.bssid, 0xff, 6);
3101 	node.id = WPI_ID_BROADCAST;
3102 	node.rate = wpi_plcp_signal(2);
3103 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 0);
3104 	if (err != WPI_SUCCESS) {
3105 		cmn_err(CE_WARN, "wpi_config(): "
3106 		    "failed to add broadcast node\n");
3107 		return (err);
3108 	}
3109 
3110 	return (WPI_SUCCESS);
3111 }
3112 
3113 static void
3114 wpi_stop_master(wpi_sc_t *sc)
3115 {
3116 	uint32_t tmp;
3117 	int ntries;
3118 
3119 	tmp = WPI_READ(sc, WPI_RESET);
3120 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3121 
3122 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3123 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3124 		return;	/* already asleep */
3125 
3126 	for (ntries = 0; ntries < 2000; ntries++) {
3127 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3128 			break;
3129 		DELAY(1000);
3130 	}
3131 	if (ntries == 2000)
3132 		WPI_DBG((WPI_DEBUG_HW, "timeout waiting for master\n"));
3133 }
3134 
3135 static int
3136 wpi_power_up(wpi_sc_t *sc)
3137 {
3138 	uint32_t tmp;
3139 	int ntries;
3140 
3141 	wpi_mem_lock(sc);
3142 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3143 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3144 	wpi_mem_unlock(sc);
3145 
3146 	for (ntries = 0; ntries < 5000; ntries++) {
3147 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3148 			break;
3149 		DELAY(10);
3150 	}
3151 	if (ntries == 5000) {
3152 		cmn_err(CE_WARN,
3153 		    "wpi_power_up(): timeout waiting for NIC to power up\n");
3154 		return (ETIMEDOUT);
3155 	}
3156 	return (WPI_SUCCESS);
3157 }
3158 
3159 static int
3160 wpi_reset(wpi_sc_t *sc)
3161 {
3162 	uint32_t tmp;
3163 	int ntries;
3164 
3165 	/* clear any pending interrupts */
3166 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3167 
3168 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3169 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3170 
3171 	tmp = WPI_READ(sc, WPI_CHICKEN);
3172 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3173 
3174 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3175 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3176 
3177 	/* wait for clock stabilization */
3178 	for (ntries = 0; ntries < 1000; ntries++) {
3179 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3180 			break;
3181 		DELAY(10);
3182 	}
3183 	if (ntries == 1000) {
3184 		cmn_err(CE_WARN,
3185 		    "wpi_reset(): timeout waiting for clock stabilization\n");
3186 		return (ETIMEDOUT);
3187 	}
3188 
3189 	/* initialize EEPROM */
3190 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3191 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3192 		cmn_err(CE_WARN, "wpi_reset(): EEPROM not found\n");
3193 		return (EIO);
3194 	}
3195 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3196 
3197 	return (WPI_SUCCESS);
3198 }
3199 
3200 static void
3201 wpi_hw_config(wpi_sc_t *sc)
3202 {
3203 	uint16_t val;
3204 	uint32_t hw;
3205 
3206 	/* voodoo from the Linux "driver".. */
3207 	hw = WPI_READ(sc, WPI_HWCONFIG);
3208 
3209 	if ((sc->sc_rev & 0xc0) == 0x40)
3210 		hw |= WPI_HW_ALM_MB;
3211 	else if (!(sc->sc_rev & 0x80))
3212 		hw |= WPI_HW_ALM_MM;
3213 
3214 	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
3215 	if ((val & 0xff) == 0x80)
3216 		hw |= WPI_HW_SKU_MRC;
3217 
3218 	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
3219 	hw &= ~WPI_HW_REV_D;
3220 	if ((val & 0xf0) == 0xd0)
3221 		hw |= WPI_HW_REV_D;
3222 
3223 	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
3224 	if ((val & 0xff) > 1)
3225 		hw |= WPI_HW_TYPE_B;
3226 
3227 	WPI_DBG((WPI_DEBUG_HW, "setting h/w config %x\n", hw));
3228 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3229 }
3230 
3231 static int
3232 wpi_init(wpi_sc_t *sc)
3233 {
3234 	uint32_t tmp;
3235 	int qid, ntries, err;
3236 	clock_t clk;
3237 
3238 	mutex_enter(&sc->sc_glock);
3239 	sc->sc_flags &= ~WPI_F_FW_INIT;
3240 
3241 	(void) wpi_reset(sc);
3242 
3243 	wpi_mem_lock(sc);
3244 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3245 	DELAY(20);
3246 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3247 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3248 	wpi_mem_unlock(sc);
3249 
3250 	(void) wpi_power_up(sc);
3251 	wpi_hw_config(sc);
3252 
3253 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3254 	if (!(tmp & WPI_GPIO_HW_RF_KILL)) {
3255 		cmn_err(CE_WARN, "wpi_init(): Radio transmitter is off\n");
3256 		goto fail1;
3257 	}
3258 
3259 	/* init Rx ring */
3260 	wpi_mem_lock(sc);
3261 	WPI_WRITE(sc, WPI_RX_BASE, sc->sc_rxq.dma_desc.cookie.dmac_address);
3262 	WPI_WRITE(sc, WPI_RX_RIDX_PTR,
3263 	    (uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
3264 	    offsetof(wpi_shared_t, next)));
3265 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & (~7));
3266 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3267 	wpi_mem_unlock(sc);
3268 
3269 	/* init Tx rings */
3270 	wpi_mem_lock(sc);
3271 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3272 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3273 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3274 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3275 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3276 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3277 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3278 
3279 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->sc_dma_sh.cookie.dmac_address);
3280 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3281 
3282 	for (qid = 0; qid < 6; qid++) {
3283 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3284 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3285 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3286 	}
3287 	wpi_mem_unlock(sc);
3288 
3289 	/* clear "radio off" and "disable command" bits (reversed logic) */
3290 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3291 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3292 
3293 	/* clear any pending interrupts */
3294 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3295 
3296 	/* enable interrupts */
3297 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3298 
3299 	/* load firmware boot code into NIC */
3300 	err = wpi_load_microcode(sc);
3301 	if (err != WPI_SUCCESS) {
3302 		cmn_err(CE_WARN, "wpi_init(): failed to load microcode\n");
3303 		goto fail1;
3304 	}
3305 
3306 	/* load firmware .text segment into NIC */
3307 	err = wpi_load_firmware(sc, WPI_FW_TEXT);
3308 	if (err != WPI_SUCCESS) {
3309 		cmn_err(CE_WARN, "wpi_init(): "
3310 		    "failed to load firmware(text)\n");
3311 		goto fail1;
3312 	}
3313 
3314 	/* load firmware .data segment into NIC */
3315 	err = wpi_load_firmware(sc, WPI_FW_DATA);
3316 	if (err != WPI_SUCCESS) {
3317 		cmn_err(CE_WARN, "wpi_init(): "
3318 		    "failed to load firmware(data)\n");
3319 		goto fail1;
3320 	}
3321 
3322 	/* now press "execute" ;-) */
3323 	tmp = WPI_READ(sc, WPI_RESET);
3324 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
3325 	WPI_WRITE(sc, WPI_RESET, tmp);
3326 
3327 	/* ..and wait at most one second for adapter to initialize */
3328 	clk = ddi_get_lbolt() + drv_usectohz(2000000);
3329 	while (!(sc->sc_flags & WPI_F_FW_INIT)) {
3330 		if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
3331 			break;
3332 	}
3333 	if (!(sc->sc_flags & WPI_F_FW_INIT)) {
3334 		cmn_err(CE_WARN,
3335 		    "wpi_init(): timeout waiting for firmware init\n");
3336 		goto fail1;
3337 	}
3338 
3339 	/* wait for thermal sensors to calibrate */
3340 	for (ntries = 0; ntries < 1000; ntries++) {
3341 		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
3342 			break;
3343 		DELAY(10);
3344 	}
3345 
3346 	if (ntries == 1000) {
3347 		WPI_DBG((WPI_DEBUG_HW,
3348 		    "wpi_init(): timeout waiting for thermal sensors "
3349 		    "calibration\n"));
3350 	}
3351 
3352 	WPI_DBG((WPI_DEBUG_HW, "temperature %d\n",
3353 	    (int)WPI_READ(sc, WPI_TEMPERATURE)));
3354 
3355 	err = wpi_config(sc);
3356 	if (err) {
3357 		cmn_err(CE_WARN, "wpi_init(): failed to configure device\n");
3358 		goto fail1;
3359 	}
3360 
3361 	mutex_exit(&sc->sc_glock);
3362 	return (WPI_SUCCESS);
3363 
3364 fail1:
3365 	err = WPI_FAIL;
3366 	mutex_exit(&sc->sc_glock);
3367 	return (err);
3368 }
3369 
3370 static int
3371 wpi_fast_recover(wpi_sc_t *sc)
3372 {
3373 	ieee80211com_t *ic = &sc->sc_ic;
3374 	int err;
3375 
3376 	mutex_enter(&sc->sc_glock);
3377 
3378 	/* restore runtime configuration */
3379 	bcopy(&sc->sc_config_save, &sc->sc_config,
3380 	    sizeof (sc->sc_config));
3381 
3382 	sc->sc_config.state = 0;
3383 	sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
3384 
3385 	if ((err = wpi_auth(sc)) != 0) {
3386 		cmn_err(CE_WARN, "wpi_fast_recover(): "
3387 		    "failed to setup authentication\n");
3388 		mutex_exit(&sc->sc_glock);
3389 		return (err);
3390 	}
3391 
3392 	sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
3393 	sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
3394 	    WPI_CONFIG_SHSLOT);
3395 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3396 		sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
3397 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3398 		sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
3399 	sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
3400 	if (ic->ic_opmode != IEEE80211_M_STA)
3401 		sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
3402 
3403 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
3404 	    sc->sc_config.chan, sc->sc_config.flags));
3405 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
3406 	    sizeof (wpi_config_t), 1);
3407 	if (err != WPI_SUCCESS) {
3408 		cmn_err(CE_WARN, "failed to setup association\n");
3409 		mutex_exit(&sc->sc_glock);
3410 		return (err);
3411 	}
3412 	/* link LED on */
3413 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3414 
3415 	mutex_exit(&sc->sc_glock);
3416 
3417 	/* update keys */
3418 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
3419 		for (int i = 0; i < IEEE80211_KEY_MAX; i++) {
3420 			if (ic->ic_nw_keys[i].wk_keyix == IEEE80211_KEYIX_NONE)
3421 				continue;
3422 			err = wpi_key_set(ic, &ic->ic_nw_keys[i],
3423 			    ic->ic_bss->in_macaddr);
3424 			/* failure */
3425 			if (err == 0) {
3426 				cmn_err(CE_WARN, "wpi_fast_recover(): "
3427 				    "failed to setup hardware keys\n");
3428 				return (WPI_FAIL);
3429 			}
3430 		}
3431 	}
3432 
3433 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
3434 
3435 	/* start queue */
3436 	WPI_DBG((WPI_DEBUG_FW, "wpi_fast_recover(): resume xmit\n"));
3437 	mac_tx_update(ic->ic_mach);
3438 
3439 	return (WPI_SUCCESS);
3440 }
3441 
3442 /*
3443  * quiesce(9E) entry point.
3444  * This function is called when the system is single-threaded at high
3445  * PIL with preemption disabled. Therefore, this function must not be
3446  * blocked.
3447  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
3448  * DDI_FAILURE indicates an error condition and should almost never happen.
3449  */
3450 static int
3451 wpi_quiesce(dev_info_t *dip)
3452 {
3453 	wpi_sc_t *sc;
3454 
3455 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
3456 	if (sc == NULL)
3457 		return (DDI_FAILURE);
3458 
3459 #ifdef DEBUG
3460 	/* by pass any messages, if it's quiesce */
3461 	wpi_dbg_flags = 0;
3462 #endif
3463 
3464 	/*
3465 	 * No more blocking is allowed while we are in the
3466 	 * quiesce(9E) entry point.
3467 	 */
3468 	sc->sc_flags |= WPI_F_QUIESCED;
3469 
3470 	/*
3471 	 * Disable and mask all interrupts.
3472 	 */
3473 	wpi_stop(sc);
3474 	return (DDI_SUCCESS);
3475 }
3476 
3477 static void
3478 wpi_stop(wpi_sc_t *sc)
3479 {
3480 	uint32_t tmp;
3481 	int ac;
3482 
3483 	/* no mutex operation, if it's quiesced */
3484 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3485 		mutex_enter(&sc->sc_glock);
3486 
3487 	/* disable interrupts */
3488 	WPI_WRITE(sc, WPI_MASK, 0);
3489 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3490 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3491 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3492 
3493 	wpi_mem_lock(sc);
3494 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3495 	wpi_mem_unlock(sc);
3496 
3497 	/* reset all Tx rings */
3498 	for (ac = 0; ac < 4; ac++)
3499 		wpi_reset_tx_ring(sc, &sc->sc_txq[ac]);
3500 	wpi_reset_tx_ring(sc, &sc->sc_cmdq);
3501 	wpi_reset_tx_ring(sc, &sc->sc_svcq);
3502 
3503 	/* reset Rx ring */
3504 	wpi_reset_rx_ring(sc);
3505 
3506 	wpi_mem_lock(sc);
3507 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3508 	wpi_mem_unlock(sc);
3509 
3510 	DELAY(5);
3511 
3512 	wpi_stop_master(sc);
3513 
3514 	sc->sc_tx_timer = 0;
3515 	sc->sc_flags &= ~WPI_F_SCANNING;
3516 	sc->sc_scan_pending = 0;
3517 	sc->sc_scan_next = 0;
3518 
3519 	tmp = WPI_READ(sc, WPI_RESET);
3520 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3521 
3522 	/* no mutex operation, if it's quiesced */
3523 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3524 		mutex_exit(&sc->sc_glock);
3525 }
3526 
3527 /*
3528  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
3529  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
3530  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
3531  * INRIA Sophia - Projet Planete
3532  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
3533  */
3534 #define	is_success(amrr)	\
3535 	((amrr)->retrycnt < (amrr)->txcnt / 10)
3536 #define	is_failure(amrr)	\
3537 	((amrr)->retrycnt > (amrr)->txcnt / 3)
3538 #define	is_enough(amrr)		\
3539 	((amrr)->txcnt > 100)
3540 #define	is_min_rate(in)		\
3541 	((in)->in_txrate == 0)
3542 #define	is_max_rate(in)		\
3543 	((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
3544 #define	increase_rate(in)	\
3545 	((in)->in_txrate++)
3546 #define	decrease_rate(in)	\
3547 	((in)->in_txrate--)
3548 #define	reset_cnt(amrr)		\
3549 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
3550 
3551 #define	WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
3552 #define	WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
3553 
3554 static void
3555 wpi_amrr_init(wpi_amrr_t *amrr)
3556 {
3557 	amrr->success = 0;
3558 	amrr->recovery = 0;
3559 	amrr->txcnt = amrr->retrycnt = 0;
3560 	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3561 }
3562 
3563 static void
3564 wpi_amrr_timeout(wpi_sc_t *sc)
3565 {
3566 	ieee80211com_t *ic = &sc->sc_ic;
3567 
3568 	WPI_DBG((WPI_DEBUG_RATECTL, "wpi_amrr_timeout() enter\n"));
3569 	if (ic->ic_opmode == IEEE80211_M_STA)
3570 		wpi_amrr_ratectl(NULL, ic->ic_bss);
3571 	else
3572 		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
3573 	sc->sc_clk = ddi_get_lbolt();
3574 }
3575 
3576 /* ARGSUSED */
3577 static void
3578 wpi_amrr_ratectl(void *arg, ieee80211_node_t *in)
3579 {
3580 	wpi_amrr_t *amrr = (wpi_amrr_t *)in;
3581 	int need_change = 0;
3582 
3583 	if (is_success(amrr) && is_enough(amrr)) {
3584 		amrr->success++;
3585 		if (amrr->success >= amrr->success_threshold &&
3586 		    !is_max_rate(in)) {
3587 			amrr->recovery = 1;
3588 			amrr->success = 0;
3589 			increase_rate(in);
3590 			WPI_DBG((WPI_DEBUG_RATECTL,
3591 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
3592 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3593 			need_change = 1;
3594 		} else {
3595 			amrr->recovery = 0;
3596 		}
3597 	} else if (is_failure(amrr)) {
3598 		amrr->success = 0;
3599 		if (!is_min_rate(in)) {
3600 			if (amrr->recovery) {
3601 				amrr->success_threshold++;
3602 				if (amrr->success_threshold >
3603 				    WPI_AMRR_MAX_SUCCESS_THRESHOLD)
3604 					amrr->success_threshold =
3605 					    WPI_AMRR_MAX_SUCCESS_THRESHOLD;
3606 			} else {
3607 				amrr->success_threshold =
3608 				    WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3609 			}
3610 			decrease_rate(in);
3611 			WPI_DBG((WPI_DEBUG_RATECTL,
3612 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
3613 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3614 			need_change = 1;
3615 		}
3616 		amrr->recovery = 0;	/* paper is incorrect */
3617 	}
3618 
3619 	if (is_enough(amrr) || need_change)
3620 		reset_cnt(amrr);
3621 }
3622