1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 27 /* 28 * Universal Host Controller Driver (UHCI) 29 * 30 * The UHCI driver is a driver which interfaces to the Universal 31 * Serial Bus Driver (USBA) and the Host Controller (HC). The interface to 32 * the Host Controller is defined by the UHCI. 33 * This file contains misc functions. 34 */ 35 #include <sys/usb/hcd/uhci/uhcid.h> 36 #include <sys/usb/hcd/uhci/uhciutil.h> 37 #include <sys/usb/hcd/uhci/uhcipolled.h> 38 39 #include <sys/disp.h> 40 41 /* Globals */ 42 extern uint_t uhci_td_pool_size; /* Num TDs */ 43 extern uint_t uhci_qh_pool_size; /* Num QHs */ 44 extern ushort_t uhci_tree_bottom_nodes[]; 45 extern void *uhci_statep; 46 47 /* function prototypes */ 48 static void uhci_build_interrupt_lattice(uhci_state_t *uhcip); 49 static int uhci_init_frame_lst_table(dev_info_t *dip, uhci_state_t *uhcip); 50 51 static uint_t uhci_lattice_height(uint_t bandwidth); 52 static uint_t uhci_lattice_parent(uint_t node); 53 static uint_t uhci_leftmost_leaf(uint_t node, uint_t height); 54 static uint_t uhci_compute_total_bandwidth(usb_ep_descr_t *endpoint, 55 usb_port_status_t port_status); 56 57 static int uhci_bandwidth_adjust(uhci_state_t *uhcip, 58 usb_ep_descr_t *endpoint, usb_port_status_t port_status); 59 60 static uhci_td_t *uhci_allocate_td_from_pool(uhci_state_t *uhcip); 61 static void uhci_fill_in_td(uhci_state_t *uhcip, 62 uhci_td_t *td, uhci_td_t *current_dummy, 63 uint32_t buffer_offset, size_t length, 64 uhci_pipe_private_t *pp, uchar_t PID, 65 usb_req_attrs_t attrs, uhci_trans_wrapper_t *tw); 66 static uint32_t uhci_get_tw_paddr_by_offs(uhci_state_t *uhcip, 67 uint32_t buffer_offset, size_t length, 68 uhci_trans_wrapper_t *tw); 69 static uhci_trans_wrapper_t *uhci_create_transfer_wrapper( 70 uhci_state_t *uhcip, uhci_pipe_private_t *pp, 71 size_t length, usb_flags_t usb_flags); 72 static uhci_trans_wrapper_t *uhci_create_isoc_transfer_wrapper( 73 uhci_state_t *uhcip, uhci_pipe_private_t *pp, 74 usb_isoc_req_t *req, size_t length, 75 usb_flags_t usb_flags); 76 77 static int uhci_create_setup_pkt(uhci_state_t *uhcip, 78 uhci_pipe_private_t *pp, uhci_trans_wrapper_t *tw); 79 static void uhci_insert_ctrl_qh(uhci_state_t *uhcip, 80 uhci_pipe_private_t *pp); 81 static void uhci_remove_ctrl_qh(uhci_state_t *uhcip, 82 uhci_pipe_private_t *pp); 83 static void uhci_insert_intr_qh(uhci_state_t *uhcip, 84 uhci_pipe_private_t *pp); 85 static void uhci_remove_intr_qh(uhci_state_t *uhcip, 86 uhci_pipe_private_t *pp); 87 static void uhci_remove_bulk_qh(uhci_state_t *uhcip, 88 uhci_pipe_private_t *pp); 89 static void uhci_insert_bulk_qh(uhci_state_t *uhcip, 90 uhci_pipe_private_t *pp); 91 static void uhci_handle_bulk_td_errors(uhci_state_t *uhcip, uhci_td_t *td); 92 static int uhci_alloc_memory_for_tds(uhci_state_t *uhcip, uint_t num_tds, 93 uhci_bulk_isoc_xfer_t *info); 94 static int uhci_alloc_bulk_isoc_tds(uhci_state_t *uhcip, uint_t num_tds, 95 uhci_bulk_isoc_xfer_t *info); 96 static void uhci_get_isoc_td_by_index(uhci_state_t *uhcip, 97 uhci_bulk_isoc_xfer_t *info, uint_t index, 98 uhci_td_t **tdpp, uhci_bulk_isoc_td_pool_t **td_pool_pp); 99 static void uhci_get_bulk_td_by_paddr(uhci_state_t *uhcip, 100 uhci_bulk_isoc_xfer_t *info, uint32_t paddr, 101 uhci_bulk_isoc_td_pool_t **td_pool_pp); 102 103 static int uhci_handle_isoc_receive(uhci_state_t *uhcip, 104 uhci_pipe_private_t *pp, uhci_trans_wrapper_t *tw); 105 static void uhci_delete_isoc_td(uhci_state_t *uhcip, 106 uhci_td_t *td); 107 #ifdef DEBUG 108 static void uhci_print_td(uhci_state_t *uhcip, uhci_td_t *td); 109 static void uhci_print_qh(uhci_state_t *uhcip, queue_head_t *qh); 110 #endif 111 112 113 /* 114 * uhci_build_interrupt_lattice: 115 * 116 * Construct the interrupt lattice tree using static Queue Head pointers. 117 * This interrupt lattice tree will have total of 63 queue heads and the 118 * Host Controller (HC) processes queue heads every frame. 119 */ 120 static void 121 uhci_build_interrupt_lattice(uhci_state_t *uhcip) 122 { 123 int half_list = NUM_INTR_QH_LISTS / 2; 124 uint16_t i, j, k; 125 uhci_td_t *sof_td, *isoc_td; 126 uintptr_t addr; 127 queue_head_t *list_array = uhcip->uhci_qh_pool_addr; 128 queue_head_t *tmp_qh; 129 frame_lst_table_t *frame_lst_tablep = 130 uhcip->uhci_frame_lst_tablep; 131 132 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 133 "uhci_build_interrupt_lattice:"); 134 135 /* 136 * Reserve the first 63 queue head structures in the pool as static 137 * queue heads & these are required for constructing interrupt 138 * lattice tree. 139 */ 140 for (i = 0; i < NUM_INTR_QH_LISTS; i++) { 141 SetQH32(uhcip, list_array[i].link_ptr, HC_END_OF_LIST); 142 SetQH32(uhcip, list_array[i].element_ptr, HC_END_OF_LIST); 143 list_array[i].qh_flag = QUEUE_HEAD_FLAG_STATIC; 144 list_array[i].node = i; 145 } 146 147 /* Build the interrupt lattice tree */ 148 for (i = 0; i < half_list - 1; i++) { 149 /* 150 * The next pointer in the host controller queue head 151 * descriptor must contain an iommu address. Calculate 152 * the offset into the cpu address and add this to the 153 * starting iommu address. 154 */ 155 addr = QH_PADDR(&list_array[i]) | HC_QUEUE_HEAD; 156 157 SetQH32(uhcip, list_array[2*i + 1].link_ptr, addr); 158 SetQH32(uhcip, list_array[2*i + 2].link_ptr, addr); 159 } 160 161 /* 162 * Initialize the interrupt list in the Frame list Table 163 * so that it points to the bottom of the tree. 164 */ 165 for (i = 0, j = 0; i < pow_2(TREE_HEIGHT); i++) { 166 addr = QH_PADDR(&list_array[half_list + i - 1]); 167 for (k = 0; k < pow_2(VIRTUAL_TREE_HEIGHT); k++) { 168 SetFL32(uhcip, 169 frame_lst_tablep[uhci_tree_bottom_nodes[j++]], 170 addr | HC_QUEUE_HEAD); 171 } 172 } 173 174 /* 175 * Create a controller and bulk Queue heads 176 */ 177 uhcip->uhci_ctrl_xfers_q_head = uhci_alloc_queue_head(uhcip); 178 tmp_qh = uhcip->uhci_ctrl_xfers_q_tail = uhcip->uhci_ctrl_xfers_q_head; 179 180 SetQH32(uhcip, list_array[0].link_ptr, 181 (QH_PADDR(tmp_qh) | HC_QUEUE_HEAD)); 182 183 uhcip->uhci_bulk_xfers_q_head = uhci_alloc_queue_head(uhcip); 184 uhcip->uhci_bulk_xfers_q_tail = uhcip->uhci_bulk_xfers_q_head; 185 SetQH32(uhcip, tmp_qh->link_ptr, 186 (QH_PADDR(uhcip->uhci_bulk_xfers_q_head)|HC_QUEUE_HEAD)); 187 188 SetQH32(uhcip, uhcip->uhci_bulk_xfers_q_head->link_ptr, HC_END_OF_LIST); 189 190 /* 191 * Add a dummy TD to the static queue head 0. THis is used 192 * to generate an at the end of frame. 193 */ 194 sof_td = uhci_allocate_td_from_pool(uhcip); 195 196 SetQH32(uhcip, list_array[0].element_ptr, 197 TD_PADDR(sof_td) | HC_TD_HEAD); 198 SetTD32(uhcip, sof_td->link_ptr, HC_END_OF_LIST); 199 uhcip->uhci_sof_td = sof_td; 200 201 /* 202 * Add a dummy td that is used to generate an interrupt for 203 * every 1024 frames. 204 */ 205 isoc_td = uhci_allocate_td_from_pool(uhcip); 206 SetTD32(uhcip, isoc_td->link_ptr, HC_END_OF_LIST); 207 uhcip->uhci_isoc_td = isoc_td; 208 209 uhcip->uhci_isoc_qh = uhci_alloc_queue_head(uhcip); 210 SetQH32(uhcip, uhcip->uhci_isoc_qh->link_ptr, 211 GetFL32(uhcip, uhcip->uhci_frame_lst_tablep[MAX_FRAME_NUM])); 212 SetQH32(uhcip, uhcip->uhci_isoc_qh->element_ptr, TD_PADDR(isoc_td)); 213 SetFL32(uhcip, uhcip->uhci_frame_lst_tablep[MAX_FRAME_NUM], 214 QH_PADDR(uhcip->uhci_isoc_qh) | HC_QUEUE_HEAD); 215 } 216 217 218 /* 219 * uhci_allocate_pools: 220 * Allocate the system memory for the Queue Heads Descriptor and 221 * for the Transfer Descriptor (TD) pools. Both QH and TD structures 222 * must be aligned to a 16 byte boundary. 223 */ 224 int 225 uhci_allocate_pools(uhci_state_t *uhcip) 226 { 227 dev_info_t *dip = uhcip->uhci_dip; 228 size_t real_length; 229 int i, result; 230 uint_t ccount; 231 ddi_device_acc_attr_t dev_attr; 232 233 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 234 "uhci_allocate_pools:"); 235 236 /* The host controller will be little endian */ 237 dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 238 dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 239 dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 240 241 /* Allocate the TD pool DMA handle */ 242 if (ddi_dma_alloc_handle(dip, &uhcip->uhci_dma_attr, DDI_DMA_SLEEP, 0, 243 &uhcip->uhci_td_pool_dma_handle) != DDI_SUCCESS) { 244 245 return (USB_FAILURE); 246 } 247 248 /* Allocate the memory for the TD pool */ 249 if (ddi_dma_mem_alloc(uhcip->uhci_td_pool_dma_handle, 250 uhci_td_pool_size * sizeof (uhci_td_t), 251 &dev_attr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, 0, 252 (caddr_t *)&uhcip->uhci_td_pool_addr, &real_length, 253 &uhcip->uhci_td_pool_mem_handle)) { 254 255 return (USB_FAILURE); 256 } 257 258 /* Map the TD pool into the I/O address space */ 259 result = ddi_dma_addr_bind_handle(uhcip->uhci_td_pool_dma_handle, 260 NULL, (caddr_t)uhcip->uhci_td_pool_addr, real_length, 261 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, 262 NULL, &uhcip->uhci_td_pool_cookie, &ccount); 263 264 bzero((void *)uhcip->uhci_td_pool_addr, 265 uhci_td_pool_size * sizeof (uhci_td_t)); 266 267 /* Process the result */ 268 if (result == DDI_DMA_MAPPED) { 269 /* The cookie count should be 1 */ 270 if (ccount != 1) { 271 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 272 "uhci_allocate_pools: More than 1 cookie"); 273 274 return (USB_FAILURE); 275 } 276 } else { 277 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 278 "uhci_allocate_pools: Result = %d", result); 279 280 uhci_decode_ddi_dma_addr_bind_handle_result(uhcip, result); 281 282 return (USB_FAILURE); 283 } 284 285 uhcip->uhci_dma_addr_bind_flag |= UHCI_TD_POOL_BOUND; 286 287 /* Initialize the TD pool */ 288 for (i = 0; i < uhci_td_pool_size; i++) { 289 uhcip->uhci_td_pool_addr[i].flag = TD_FLAG_FREE; 290 } 291 292 /* Allocate the TD pool DMA handle */ 293 if (ddi_dma_alloc_handle(dip, &uhcip->uhci_dma_attr, DDI_DMA_SLEEP, 294 0, &uhcip->uhci_qh_pool_dma_handle) != DDI_SUCCESS) { 295 296 return (USB_FAILURE); 297 } 298 299 /* Allocate the memory for the QH pool */ 300 if (ddi_dma_mem_alloc(uhcip->uhci_qh_pool_dma_handle, 301 uhci_qh_pool_size * sizeof (queue_head_t), 302 &dev_attr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, 0, 303 (caddr_t *)&uhcip->uhci_qh_pool_addr, &real_length, 304 &uhcip->uhci_qh_pool_mem_handle) != DDI_SUCCESS) { 305 306 return (USB_FAILURE); 307 } 308 309 result = ddi_dma_addr_bind_handle(uhcip->uhci_qh_pool_dma_handle, 310 NULL, (caddr_t)uhcip->uhci_qh_pool_addr, real_length, 311 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, 312 &uhcip->uhci_qh_pool_cookie, &ccount); 313 314 /* Process the result */ 315 if (result == DDI_DMA_MAPPED) { 316 /* The cookie count should be 1 */ 317 if (ccount != 1) { 318 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 319 "uhci_allocate_pools: More than 1 cookie"); 320 321 return (USB_FAILURE); 322 } 323 } else { 324 uhci_decode_ddi_dma_addr_bind_handle_result(uhcip, result); 325 326 return (USB_FAILURE); 327 } 328 329 uhcip->uhci_dma_addr_bind_flag |= UHCI_QH_POOL_BOUND; 330 331 bzero((void *)uhcip->uhci_qh_pool_addr, 332 uhci_qh_pool_size * sizeof (queue_head_t)); 333 334 /* Initialize the QH pool */ 335 for (i = 0; i < uhci_qh_pool_size; i ++) { 336 uhcip->uhci_qh_pool_addr[i].qh_flag = QUEUE_HEAD_FLAG_FREE; 337 } 338 339 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 340 "uhci_allocate_pools: Completed"); 341 342 return (USB_SUCCESS); 343 } 344 345 346 /* 347 * uhci_free_pools: 348 * Cleanup on attach failure or detach 349 */ 350 void 351 uhci_free_pools(uhci_state_t *uhcip) 352 { 353 int i, flag, rval; 354 uhci_td_t *td; 355 uhci_trans_wrapper_t *tw; 356 357 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 358 "uhci_free_pools:"); 359 360 if (uhcip->uhci_td_pool_addr && uhcip->uhci_td_pool_mem_handle) { 361 for (i = 0; i < uhci_td_pool_size; i ++) { 362 td = &uhcip->uhci_td_pool_addr[i]; 363 364 flag = uhcip->uhci_td_pool_addr[i].flag; 365 if ((flag != TD_FLAG_FREE) && 366 (flag != TD_FLAG_DUMMY) && (td->tw != NULL)) { 367 tw = td->tw; 368 uhci_free_tw(uhcip, tw); 369 } 370 371 } 372 373 if (uhcip->uhci_dma_addr_bind_flag & UHCI_TD_POOL_BOUND) { 374 rval = ddi_dma_unbind_handle( 375 uhcip->uhci_td_pool_dma_handle); 376 ASSERT(rval == DDI_SUCCESS); 377 } 378 379 ddi_dma_mem_free(&uhcip->uhci_td_pool_mem_handle); 380 } 381 382 /* Free the TD pool */ 383 if (uhcip->uhci_td_pool_dma_handle) { 384 ddi_dma_free_handle(&uhcip->uhci_td_pool_dma_handle); 385 } 386 387 if (uhcip->uhci_qh_pool_addr && uhcip->uhci_qh_pool_mem_handle) { 388 if (uhcip->uhci_dma_addr_bind_flag & UHCI_QH_POOL_BOUND) { 389 rval = ddi_dma_unbind_handle( 390 uhcip->uhci_qh_pool_dma_handle); 391 ASSERT(rval == DDI_SUCCESS); 392 } 393 ddi_dma_mem_free(&uhcip->uhci_qh_pool_mem_handle); 394 } 395 396 /* Free the QH pool */ 397 if (uhcip->uhci_qh_pool_dma_handle) { 398 ddi_dma_free_handle(&uhcip->uhci_qh_pool_dma_handle); 399 } 400 401 /* Free the Frame list Table area */ 402 if (uhcip->uhci_frame_lst_tablep && uhcip->uhci_flt_mem_handle) { 403 if (uhcip->uhci_dma_addr_bind_flag & UHCI_FLA_POOL_BOUND) { 404 rval = ddi_dma_unbind_handle( 405 uhcip->uhci_flt_dma_handle); 406 ASSERT(rval == DDI_SUCCESS); 407 } 408 ddi_dma_mem_free(&uhcip->uhci_flt_mem_handle); 409 } 410 411 if (uhcip->uhci_flt_dma_handle) { 412 ddi_dma_free_handle(&uhcip->uhci_flt_dma_handle); 413 } 414 } 415 416 417 /* 418 * uhci_decode_ddi_dma_addr_bind_handle_result: 419 * Process the return values of ddi_dma_addr_bind_handle() 420 */ 421 void 422 uhci_decode_ddi_dma_addr_bind_handle_result(uhci_state_t *uhcip, int result) 423 { 424 char *msg; 425 426 USB_DPRINTF_L4(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 427 "uhci_decode_ddi_dma_addr_bind_handle_result:"); 428 429 switch (result) { 430 case DDI_DMA_PARTIAL_MAP: 431 msg = "Partial transfers not allowed"; 432 break; 433 case DDI_DMA_INUSE: 434 msg = "Handle is in use"; 435 break; 436 case DDI_DMA_NORESOURCES: 437 msg = "No resources"; 438 break; 439 case DDI_DMA_NOMAPPING: 440 msg = "No mapping"; 441 break; 442 case DDI_DMA_TOOBIG: 443 msg = "Object is too big"; 444 break; 445 default: 446 msg = "Unknown dma error"; 447 } 448 449 USB_DPRINTF_L4(PRINT_MASK_ALL, uhcip->uhci_log_hdl, "%s", msg); 450 } 451 452 453 /* 454 * uhci_init_ctlr: 455 * Initialize the Host Controller (HC). 456 */ 457 int 458 uhci_init_ctlr(uhci_state_t *uhcip) 459 { 460 dev_info_t *dip = uhcip->uhci_dip; 461 uint_t cmd_reg; 462 uint_t frame_base_addr; 463 464 mutex_enter(&uhcip->uhci_int_mutex); 465 466 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, "uhci_init_ctlr:"); 467 468 /* 469 * When USB legacy mode is enabled, the BIOS manages the USB keyboard 470 * attached to the UHCI controller. It has been observed that some 471 * times the BIOS does not clear the interrupts in the legacy mode 472 * register in the PCI configuration space. So, disable the SMI intrs 473 * and route the intrs to PIRQD here. 474 */ 475 pci_config_put16(uhcip->uhci_config_handle, 476 LEGACYMODE_REG_OFFSET, LEGACYMODE_REG_INIT_VALUE); 477 478 /* 479 * Disable all the interrupts. 480 */ 481 Set_OpReg16(USBINTR, DISABLE_ALL_INTRS); 482 483 cmd_reg = Get_OpReg16(USBCMD); 484 cmd_reg &= (~USBCMD_REG_HC_RUN); 485 486 /* Stop the controller */ 487 Set_OpReg16(USBCMD, cmd_reg); 488 489 /* Reset the host controller */ 490 Set_OpReg16(USBCMD, USBCMD_REG_GBL_RESET); 491 492 /* Wait 10ms for reset to complete */ 493 mutex_exit(&uhcip->uhci_int_mutex); 494 delay(drv_usectohz(UHCI_RESET_DELAY)); 495 mutex_enter(&uhcip->uhci_int_mutex); 496 497 Set_OpReg16(USBCMD, 0); 498 499 /* Set the frame number to zero */ 500 Set_OpReg16(FRNUM, 0); 501 502 if (uhcip->uhci_hc_soft_state == UHCI_CTLR_INIT_STATE) { 503 /* Initialize the Frame list base address area */ 504 if (uhci_init_frame_lst_table(dip, uhcip) != USB_SUCCESS) { 505 mutex_exit(&uhcip->uhci_int_mutex); 506 507 return (USB_FAILURE); 508 } 509 } 510 511 /* Save the contents of the Frame Interval Registers */ 512 uhcip->uhci_frame_interval = Get_OpReg8(SOFMOD); 513 514 frame_base_addr = uhcip->uhci_flt_cookie.dmac_address; 515 516 /* Set the Frame list base address */ 517 Set_OpReg32(FRBASEADD, frame_base_addr); 518 519 /* 520 * Begin sending SOFs 521 * Set the Host Controller Functional State to Operational 522 */ 523 cmd_reg = Get_OpReg16(USBCMD); 524 cmd_reg |= (USBCMD_REG_HC_RUN | USBCMD_REG_MAXPKT_64 | 525 USBCMD_REG_CONFIG_FLAG); 526 527 Set_OpReg16(USBCMD, cmd_reg); 528 529 /* 530 * Verify the Command and interrupt enable registers, 531 * a sanity check whether actually initialized or not 532 */ 533 cmd_reg = Get_OpReg16(USBCMD); 534 535 if (!(cmd_reg & (USBCMD_REG_HC_RUN | USBCMD_REG_MAXPKT_64 | 536 USBCMD_REG_CONFIG_FLAG))) { 537 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 538 "uhci_init_ctlr: Controller initialization failed"); 539 mutex_exit(&uhcip->uhci_int_mutex); 540 541 return (USB_FAILURE); 542 } 543 544 /* 545 * Set the ioc bit of the isoc intr td. This enables 546 * the generation of an interrupt for every 1024 frames. 547 */ 548 SetTD_ioc(uhcip, uhcip->uhci_isoc_td, 1); 549 550 /* Set host controller soft state to operational */ 551 uhcip->uhci_hc_soft_state = UHCI_CTLR_OPERATIONAL_STATE; 552 mutex_exit(&uhcip->uhci_int_mutex); 553 554 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 555 "uhci_init_ctlr: Completed"); 556 557 return (USB_SUCCESS); 558 } 559 560 561 /* 562 * uhci_uninit_ctlr: 563 * uninitialize the Host Controller (HC). 564 */ 565 void 566 uhci_uninit_ctlr(uhci_state_t *uhcip) 567 { 568 if (uhcip->uhci_regs_handle) { 569 /* Disable all the interrupts. */ 570 Set_OpReg16(USBINTR, DISABLE_ALL_INTRS); 571 572 /* Complete the current transaction and then halt. */ 573 Set_OpReg16(USBCMD, 0); 574 575 /* Wait for sometime */ 576 mutex_exit(&uhcip->uhci_int_mutex); 577 delay(drv_usectohz(UHCI_TIMEWAIT)); 578 mutex_enter(&uhcip->uhci_int_mutex); 579 } 580 } 581 582 583 /* 584 * uhci_map_regs: 585 * The Host Controller (HC) contains a set of on-chip operational 586 * registers and which should be mapped into a non-cacheable 587 * portion of the system addressable space. 588 */ 589 int 590 uhci_map_regs(uhci_state_t *uhcip) 591 { 592 dev_info_t *dip = uhcip->uhci_dip; 593 int index; 594 uint32_t regs_prop_len; 595 int32_t *regs_list; 596 uint16_t command_reg; 597 ddi_device_acc_attr_t attr; 598 599 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, "uhci_map_regs:"); 600 601 /* The host controller will be little endian */ 602 attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 603 attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 604 attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 605 606 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, uhcip->uhci_dip, 607 DDI_PROP_DONTPASS, "reg", ®s_list, ®s_prop_len) != 608 DDI_PROP_SUCCESS) { 609 610 return (USB_FAILURE); 611 } 612 613 for (index = 0; index * 5 < regs_prop_len; index++) { 614 if (regs_list[index * 5] & UHCI_PROP_MASK) { 615 break; 616 } 617 } 618 619 /* 620 * Deallocate the memory allocated by the ddi_prop_lookup_int_array 621 */ 622 ddi_prop_free(regs_list); 623 624 if (index * 5 >= regs_prop_len) { 625 626 return (USB_FAILURE); 627 } 628 629 /* Map in operational registers */ 630 if (ddi_regs_map_setup(dip, index, (caddr_t *)&uhcip->uhci_regsp, 631 0, sizeof (hc_regs_t), &attr, &uhcip->uhci_regs_handle) != 632 DDI_SUCCESS) { 633 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 634 "ddi_regs_map_setup: failed"); 635 636 return (USB_FAILURE); 637 } 638 639 if (pci_config_setup(dip, &uhcip->uhci_config_handle) != DDI_SUCCESS) { 640 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 641 "uhci_map_regs: Config error"); 642 643 return (USB_FAILURE); 644 } 645 646 /* Make sure Memory Access Enable and Master Enable are set */ 647 command_reg = pci_config_get16(uhcip->uhci_config_handle, 648 PCI_CONF_COMM); 649 if (!(command_reg & (PCI_COMM_MAE | PCI_COMM_ME))) { 650 USB_DPRINTF_L3(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 651 "uhci_map_regs: No MAE/ME"); 652 } 653 654 command_reg |= PCI_COMM_MAE | PCI_COMM_ME; 655 pci_config_put16(uhcip->uhci_config_handle, PCI_CONF_COMM, command_reg); 656 657 /* 658 * Check whether I/O base address is configured and enabled. 659 */ 660 if (!(command_reg & PCI_COMM_IO)) { 661 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 662 "I/O Base address access disabled"); 663 664 return (USB_FAILURE); 665 } 666 /* 667 * Get the IO base address of the controller 668 */ 669 uhcip->uhci_iobase = (pci_config_get16(uhcip->uhci_config_handle, 670 PCI_CONF_IOBASE) & PCI_CONF_IOBASE_MASK); 671 672 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 673 "uhci_map_regs: Completed"); 674 675 return (USB_SUCCESS); 676 } 677 678 679 void 680 uhci_unmap_regs(uhci_state_t *uhcip) 681 { 682 /* Unmap the UHCI registers */ 683 if (uhcip->uhci_regs_handle) { 684 /* Reset the host controller */ 685 Set_OpReg16(USBCMD, USBCMD_REG_GBL_RESET); 686 687 ddi_regs_map_free(&uhcip->uhci_regs_handle); 688 } 689 690 if (uhcip->uhci_config_handle) { 691 pci_config_teardown(&uhcip->uhci_config_handle); 692 } 693 } 694 695 696 /* 697 * uhci_set_dma_attributes: 698 * Set the limits in the DMA attributes structure. Most of the values used 699 * in the DMA limit structres are the default values as specified by the 700 * Writing PCI device drivers document. 701 */ 702 void 703 uhci_set_dma_attributes(uhci_state_t *uhcip) 704 { 705 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 706 "uhci_set_dma_attributes:"); 707 708 /* Initialize the DMA attributes */ 709 uhcip->uhci_dma_attr.dma_attr_version = DMA_ATTR_V0; 710 uhcip->uhci_dma_attr.dma_attr_addr_lo = 0x00000000ull; 711 uhcip->uhci_dma_attr.dma_attr_addr_hi = 0xfffffff0ull; 712 713 /* 32 bit addressing */ 714 uhcip->uhci_dma_attr.dma_attr_count_max = 0xffffffull; 715 716 /* 717 * Setting the dam_att_align to 512, some times fails the 718 * binding handle. I dont know why ? But setting to 16 will 719 * be right for our case (16 byte alignment required per 720 * UHCI spec for TD descriptors). 721 */ 722 723 /* 16 byte alignment */ 724 uhcip->uhci_dma_attr.dma_attr_align = 0x10; 725 726 /* 727 * Since PCI specification is byte alignment, the 728 * burstsize field should be set to 1 for PCI devices. 729 */ 730 uhcip->uhci_dma_attr.dma_attr_burstsizes = 0x1; 731 732 uhcip->uhci_dma_attr.dma_attr_minxfer = 0x1; 733 uhcip->uhci_dma_attr.dma_attr_maxxfer = 0xffffffull; 734 uhcip->uhci_dma_attr.dma_attr_seg = 0xffffffffull; 735 uhcip->uhci_dma_attr.dma_attr_sgllen = 1; 736 uhcip->uhci_dma_attr.dma_attr_granular = 1; 737 uhcip->uhci_dma_attr.dma_attr_flags = 0; 738 } 739 740 741 uint_t 742 pow_2(uint_t x) 743 { 744 return ((x == 0) ? 1 : (1 << x)); 745 } 746 747 748 uint_t 749 log_2(uint_t x) 750 { 751 int ret_val = 0; 752 753 while (x != 1) { 754 ret_val++; 755 x = x >> 1; 756 } 757 758 return (ret_val); 759 } 760 761 762 /* 763 * uhci_obtain_state: 764 */ 765 uhci_state_t * 766 uhci_obtain_state(dev_info_t *dip) 767 { 768 int instance = ddi_get_instance(dip); 769 uhci_state_t *state = ddi_get_soft_state(uhci_statep, instance); 770 771 ASSERT(state != NULL); 772 773 return (state); 774 } 775 776 777 /* 778 * uhci_alloc_hcdi_ops: 779 * The HCDI interfaces or entry points are the software interfaces used by 780 * the Universal Serial Bus Driver (USBA) to access the services of the 781 * Host Controller Driver (HCD). During HCD initialization, inform USBA 782 * about all available HCDI interfaces or entry points. 783 */ 784 usba_hcdi_ops_t * 785 uhci_alloc_hcdi_ops(uhci_state_t *uhcip) 786 { 787 usba_hcdi_ops_t *hcdi_ops; 788 789 USB_DPRINTF_L4(PRINT_MASK_HCDI, uhcip->uhci_log_hdl, 790 "uhci_alloc_hcdi_ops:"); 791 792 hcdi_ops = usba_alloc_hcdi_ops(); 793 794 hcdi_ops->usba_hcdi_ops_version = HCDI_OPS_VERSION_1; 795 796 hcdi_ops->usba_hcdi_pipe_open = uhci_hcdi_pipe_open; 797 hcdi_ops->usba_hcdi_pipe_close = uhci_hcdi_pipe_close; 798 hcdi_ops->usba_hcdi_pipe_reset = uhci_hcdi_pipe_reset; 799 hcdi_ops->usba_hcdi_pipe_reset_data_toggle = 800 uhci_hcdi_pipe_reset_data_toggle; 801 802 hcdi_ops->usba_hcdi_pipe_ctrl_xfer = uhci_hcdi_pipe_ctrl_xfer; 803 hcdi_ops->usba_hcdi_pipe_bulk_xfer = uhci_hcdi_pipe_bulk_xfer; 804 hcdi_ops->usba_hcdi_pipe_intr_xfer = uhci_hcdi_pipe_intr_xfer; 805 hcdi_ops->usba_hcdi_pipe_isoc_xfer = uhci_hcdi_pipe_isoc_xfer; 806 807 hcdi_ops->usba_hcdi_bulk_transfer_size = uhci_hcdi_bulk_transfer_size; 808 hcdi_ops->usba_hcdi_pipe_stop_intr_polling = 809 uhci_hcdi_pipe_stop_intr_polling; 810 hcdi_ops->usba_hcdi_pipe_stop_isoc_polling = 811 uhci_hcdi_pipe_stop_isoc_polling; 812 813 hcdi_ops->usba_hcdi_get_current_frame_number = 814 uhci_hcdi_get_current_frame_number; 815 hcdi_ops->usba_hcdi_get_max_isoc_pkts = uhci_hcdi_get_max_isoc_pkts; 816 817 hcdi_ops->usba_hcdi_console_input_init = uhci_hcdi_polled_input_init; 818 hcdi_ops->usba_hcdi_console_input_enter = uhci_hcdi_polled_input_enter; 819 hcdi_ops->usba_hcdi_console_read = uhci_hcdi_polled_read; 820 hcdi_ops->usba_hcdi_console_input_exit = uhci_hcdi_polled_input_exit; 821 hcdi_ops->usba_hcdi_console_input_fini = uhci_hcdi_polled_input_fini; 822 823 hcdi_ops->usba_hcdi_console_output_init = uhci_hcdi_polled_output_init; 824 hcdi_ops->usba_hcdi_console_output_enter = 825 uhci_hcdi_polled_output_enter; 826 hcdi_ops->usba_hcdi_console_write = uhci_hcdi_polled_write; 827 hcdi_ops->usba_hcdi_console_output_exit = uhci_hcdi_polled_output_exit; 828 hcdi_ops->usba_hcdi_console_output_fini = uhci_hcdi_polled_output_fini; 829 830 return (hcdi_ops); 831 } 832 833 834 /* 835 * uhci_init_frame_lst_table : 836 * Allocate the system memory and initialize Host Controller 837 * Frame list table area The starting of the Frame list Table 838 * area must be 4096 byte aligned. 839 */ 840 static int 841 uhci_init_frame_lst_table(dev_info_t *dip, uhci_state_t *uhcip) 842 { 843 int result; 844 uint_t ccount; 845 size_t real_length; 846 ddi_device_acc_attr_t dev_attr; 847 848 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 849 850 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 851 "uhci_init_frame_lst_table:"); 852 853 /* The host controller will be little endian */ 854 dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 855 dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 856 dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 857 858 /* 4K alignment required */ 859 uhcip->uhci_dma_attr.dma_attr_align = 0x1000; 860 861 /* Create space for the HCCA block */ 862 if (ddi_dma_alloc_handle(dip, &uhcip->uhci_dma_attr, DDI_DMA_SLEEP, 863 0, &uhcip->uhci_flt_dma_handle) != DDI_SUCCESS) { 864 865 return (USB_FAILURE); 866 } 867 868 /* Reset to default 16 bytes */ 869 uhcip->uhci_dma_attr.dma_attr_align = 0x10; 870 871 if (ddi_dma_mem_alloc(uhcip->uhci_flt_dma_handle, 872 SIZE_OF_FRAME_LST_TABLE, &dev_attr, DDI_DMA_CONSISTENT, 873 DDI_DMA_SLEEP, 0, (caddr_t *)&uhcip->uhci_frame_lst_tablep, 874 &real_length, &uhcip->uhci_flt_mem_handle)) { 875 876 return (USB_FAILURE); 877 } 878 879 /* Map the whole Frame list base area into the I/O address space */ 880 result = ddi_dma_addr_bind_handle(uhcip->uhci_flt_dma_handle, 881 NULL, (caddr_t)uhcip->uhci_frame_lst_tablep, real_length, 882 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, 883 &uhcip->uhci_flt_cookie, &ccount); 884 885 if (result == DDI_DMA_MAPPED) { 886 /* The cookie count should be 1 */ 887 if (ccount != 1) { 888 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 889 "uhci_init_frame_list_table: More than 1 cookie"); 890 891 return (USB_FAILURE); 892 } 893 } else { 894 uhci_decode_ddi_dma_addr_bind_handle_result(uhcip, result); 895 896 return (USB_FAILURE); 897 } 898 899 uhcip->uhci_dma_addr_bind_flag |= UHCI_FLA_POOL_BOUND; 900 901 bzero((void *)uhcip->uhci_frame_lst_tablep, real_length); 902 903 /* Initialize the interrupt lists */ 904 uhci_build_interrupt_lattice(uhcip); 905 906 return (USB_SUCCESS); 907 } 908 909 910 /* 911 * uhci_alloc_queue_head: 912 * Allocate a queue head 913 */ 914 queue_head_t * 915 uhci_alloc_queue_head(uhci_state_t *uhcip) 916 { 917 int index; 918 uhci_td_t *dummy_td; 919 queue_head_t *queue_head; 920 921 USB_DPRINTF_L4(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 922 "uhci_alloc_queue_head"); 923 924 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 925 926 /* Allocate a dummy td first. */ 927 if ((dummy_td = uhci_allocate_td_from_pool(uhcip)) == NULL) { 928 929 USB_DPRINTF_L2(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 930 "uhci_alloc_queue_head: allocate td from pool failed"); 931 932 return (NULL); 933 } 934 935 /* 936 * The first 63 queue heads in the Queue Head (QH) 937 * buffer pool are reserved for building interrupt lattice 938 * tree. Search for a blank Queue head in the QH buffer pool. 939 */ 940 for (index = NUM_STATIC_NODES; index < uhci_qh_pool_size; index++) { 941 if (uhcip->uhci_qh_pool_addr[index].qh_flag == 942 QUEUE_HEAD_FLAG_FREE) { 943 break; 944 } 945 } 946 947 USB_DPRINTF_L3(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 948 "uhci_alloc_queue_head: Allocated %d", index); 949 950 if (index == uhci_qh_pool_size) { 951 USB_DPRINTF_L2(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 952 "uhci_alloc_queue_head: All QH exhausted"); 953 954 /* Free the dummy td allocated for this qh. */ 955 dummy_td->flag = TD_FLAG_FREE; 956 957 return (NULL); 958 } 959 960 queue_head = &uhcip->uhci_qh_pool_addr[index]; 961 USB_DPRINTF_L4(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 962 "uhci_alloc_queue_head: Allocated address 0x%p", 963 (void *)queue_head); 964 965 bzero((void *)queue_head, sizeof (queue_head_t)); 966 SetQH32(uhcip, queue_head->link_ptr, HC_END_OF_LIST); 967 SetQH32(uhcip, queue_head->element_ptr, HC_END_OF_LIST); 968 queue_head->prev_qh = NULL; 969 queue_head->qh_flag = QUEUE_HEAD_FLAG_BUSY; 970 971 bzero((char *)dummy_td, sizeof (uhci_td_t)); 972 queue_head->td_tailp = dummy_td; 973 SetQH32(uhcip, queue_head->element_ptr, TD_PADDR(dummy_td)); 974 975 return (queue_head); 976 } 977 978 979 /* 980 * uhci_allocate_bandwidth: 981 * Figure out whether or not this interval may be supported. Return 982 * the index into the lattice if it can be supported. Return 983 * allocation failure if it can not be supported. 984 */ 985 int 986 uhci_allocate_bandwidth( 987 uhci_state_t *uhcip, 988 usba_pipe_handle_data_t *pipe_handle, 989 uint_t *node) 990 { 991 int bandwidth; /* Requested bandwidth */ 992 uint_t min, min_index; 993 uint_t i; 994 uint_t height; /* Bandwidth's height in the tree */ 995 uint_t leftmost; 996 uint_t length; 997 uint32_t paddr; 998 queue_head_t *tmp_qh; 999 usb_ep_descr_t *endpoint = &pipe_handle->p_ep; 1000 1001 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 1002 1003 /* 1004 * Calculate the length in bytes of a transaction on this 1005 * periodic endpoint. 1006 */ 1007 mutex_enter(&pipe_handle->p_usba_device->usb_mutex); 1008 1009 length = uhci_compute_total_bandwidth(endpoint, 1010 pipe_handle->p_usba_device->usb_port_status); 1011 mutex_exit(&pipe_handle->p_usba_device->usb_mutex); 1012 1013 /* 1014 * If the length in bytes plus the allocated bandwidth exceeds 1015 * the maximum, return bandwidth allocation failure. 1016 */ 1017 if ((length + uhcip->uhci_bandwidth_intr_min + 1018 uhcip->uhci_bandwidth_isoch_sum) > (MAX_PERIODIC_BANDWIDTH)) { 1019 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1020 "uhci_allocate_bandwidth: " 1021 "Reached maximum bandwidth value and cannot allocate " 1022 "bandwidth for a given Interrupt/Isoch endpoint"); 1023 1024 return (USB_NO_BANDWIDTH); 1025 } 1026 1027 /* 1028 * ISOC xfers are not supported at this point type 1029 */ 1030 if (UHCI_XFER_TYPE(endpoint) == USB_EP_ATTR_ISOCH) { 1031 uhcip->uhci_bandwidth_isoch_sum += length; 1032 1033 return (USB_SUCCESS); 1034 } 1035 1036 /* 1037 * This is an interrupt endpoint. 1038 * Adjust bandwidth to be a power of 2 1039 */ 1040 mutex_enter(&pipe_handle->p_usba_device->usb_mutex); 1041 bandwidth = uhci_bandwidth_adjust(uhcip, endpoint, 1042 pipe_handle->p_usba_device->usb_port_status); 1043 mutex_exit(&pipe_handle->p_usba_device->usb_mutex); 1044 1045 /* 1046 * If this bandwidth can't be supported, 1047 * return allocation failure. 1048 */ 1049 if (bandwidth == USB_FAILURE) { 1050 1051 return (USB_FAILURE); 1052 } 1053 1054 USB_DPRINTF_L3(PRINT_MASK_BW, uhcip->uhci_log_hdl, 1055 "The new bandwidth is %d", bandwidth); 1056 1057 /* Find the leaf with the smallest allocated bandwidth */ 1058 min_index = 0; 1059 min = uhcip->uhci_bandwidth[0]; 1060 1061 for (i = 1; i < NUM_FRAME_LST_ENTRIES; i++) { 1062 if (uhcip->uhci_bandwidth[i] < min) { 1063 min_index = i; 1064 min = uhcip->uhci_bandwidth[i]; 1065 } 1066 } 1067 1068 USB_DPRINTF_L3(PRINT_MASK_BW, uhcip->uhci_log_hdl, 1069 "The leaf with minimal bandwidth %d, " 1070 "The smallest bandwidth %d", min_index, min); 1071 1072 /* 1073 * Find the index into the lattice given the 1074 * leaf with the smallest allocated bandwidth. 1075 */ 1076 height = uhci_lattice_height(bandwidth); 1077 USB_DPRINTF_L3(PRINT_MASK_BW, uhcip->uhci_log_hdl, 1078 "The height is %d", height); 1079 1080 *node = uhci_tree_bottom_nodes[min_index]; 1081 1082 /* check if there are isocs TDs scheduled for this frame */ 1083 if (uhcip->uhci_isoc_q_tailp[*node]) { 1084 paddr = (uhcip->uhci_isoc_q_tailp[*node]->link_ptr & 1085 FRAME_LST_PTR_MASK); 1086 } else { 1087 paddr = (uhcip->uhci_frame_lst_tablep[*node] & 1088 FRAME_LST_PTR_MASK); 1089 } 1090 1091 tmp_qh = QH_VADDR(paddr); 1092 *node = tmp_qh->node; 1093 for (i = 0; i < height; i++) { 1094 *node = uhci_lattice_parent(*node); 1095 } 1096 1097 USB_DPRINTF_L3(PRINT_MASK_BW, uhcip->uhci_log_hdl, 1098 "The real node is %d", *node); 1099 1100 /* 1101 * Find the leftmost leaf in the subtree specified by the node. 1102 */ 1103 leftmost = uhci_leftmost_leaf(*node, height); 1104 USB_DPRINTF_L3(PRINT_MASK_BW, uhcip->uhci_log_hdl, 1105 "Leftmost %d", leftmost); 1106 1107 for (i = leftmost; i < leftmost + 1108 (NUM_FRAME_LST_ENTRIES/bandwidth); i ++) { 1109 1110 if ((length + uhcip->uhci_bandwidth_isoch_sum + 1111 uhcip->uhci_bandwidth[i]) > MAX_PERIODIC_BANDWIDTH) { 1112 1113 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1114 "uhci_allocate_bandwidth: " 1115 "Reached maximum bandwidth value and cannot " 1116 "allocate bandwidth for Interrupt endpoint"); 1117 1118 return (USB_NO_BANDWIDTH); 1119 } 1120 } 1121 1122 /* 1123 * All the leaves for this node must be updated with the bandwidth. 1124 */ 1125 for (i = leftmost; i < leftmost + 1126 (NUM_FRAME_LST_ENTRIES/bandwidth); i ++) { 1127 uhcip->uhci_bandwidth[i] += length; 1128 } 1129 1130 /* Find the leaf with the smallest allocated bandwidth */ 1131 min_index = 0; 1132 min = uhcip->uhci_bandwidth[0]; 1133 1134 for (i = 1; i < NUM_FRAME_LST_ENTRIES; i++) { 1135 if (uhcip->uhci_bandwidth[i] < min) { 1136 min_index = i; 1137 min = uhcip->uhci_bandwidth[i]; 1138 } 1139 } 1140 1141 /* Save the minimum for later use */ 1142 uhcip->uhci_bandwidth_intr_min = min; 1143 1144 return (USB_SUCCESS); 1145 } 1146 1147 1148 /* 1149 * uhci_deallocate_bandwidth: 1150 * Deallocate bandwidth for the given node in the lattice 1151 * and the length of transfer. 1152 */ 1153 void 1154 uhci_deallocate_bandwidth(uhci_state_t *uhcip, 1155 usba_pipe_handle_data_t *pipe_handle) 1156 { 1157 uint_t bandwidth; 1158 uint_t height; 1159 uint_t leftmost; 1160 uint_t i; 1161 uint_t min; 1162 usb_ep_descr_t *endpoint = &pipe_handle->p_ep; 1163 uint_t node, length; 1164 uhci_pipe_private_t *pp = 1165 (uhci_pipe_private_t *)pipe_handle->p_hcd_private; 1166 1167 /* This routine is protected by the uhci_int_mutex */ 1168 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 1169 1170 /* Obtain the length */ 1171 mutex_enter(&pipe_handle->p_usba_device->usb_mutex); 1172 length = uhci_compute_total_bandwidth(endpoint, 1173 pipe_handle->p_usba_device->usb_port_status); 1174 mutex_exit(&pipe_handle->p_usba_device->usb_mutex); 1175 1176 /* 1177 * If this is an isochronous endpoint, just delete endpoint's 1178 * bandwidth from the total allocated isochronous bandwidth. 1179 */ 1180 if (UHCI_XFER_TYPE(endpoint) == USB_EP_ATTR_ISOCH) { 1181 uhcip->uhci_bandwidth_isoch_sum -= length; 1182 1183 return; 1184 } 1185 1186 /* Obtain the node */ 1187 node = pp->pp_node; 1188 1189 /* Adjust bandwidth to be a power of 2 */ 1190 mutex_enter(&pipe_handle->p_usba_device->usb_mutex); 1191 bandwidth = uhci_bandwidth_adjust(uhcip, endpoint, 1192 pipe_handle->p_usba_device->usb_port_status); 1193 mutex_exit(&pipe_handle->p_usba_device->usb_mutex); 1194 1195 /* Find the height in the tree */ 1196 height = uhci_lattice_height(bandwidth); 1197 1198 /* 1199 * Find the leftmost leaf in the subtree specified by the node 1200 */ 1201 leftmost = uhci_leftmost_leaf(node, height); 1202 1203 /* Delete the bandwith from the appropriate lists */ 1204 for (i = leftmost; i < leftmost + (NUM_FRAME_LST_ENTRIES/bandwidth); 1205 i ++) { 1206 uhcip->uhci_bandwidth[i] -= length; 1207 } 1208 1209 min = uhcip->uhci_bandwidth[0]; 1210 1211 /* Recompute the minimum */ 1212 for (i = 1; i < NUM_FRAME_LST_ENTRIES; i++) { 1213 if (uhcip->uhci_bandwidth[i] < min) { 1214 min = uhcip->uhci_bandwidth[i]; 1215 } 1216 } 1217 1218 /* Save the minimum for later use */ 1219 uhcip->uhci_bandwidth_intr_min = min; 1220 } 1221 1222 1223 /* 1224 * uhci_compute_total_bandwidth: 1225 * 1226 * Given a periodic endpoint (interrupt or isochronous) determine the total 1227 * bandwidth for one transaction. The UHCI host controller traverses the 1228 * endpoint descriptor lists on a first-come-first-serve basis. When the HC 1229 * services an endpoint, only a single transaction attempt is made. The HC 1230 * moves to the next Endpoint Descriptor after the first transaction attempt 1231 * rather than finishing the entire Transfer Descriptor. Therefore, when a 1232 * Transfer Descriptor is inserted into the lattice, we will only count the 1233 * number of bytes for one transaction. 1234 * 1235 * The following are the formulas used for calculating bandwidth in terms 1236 * bytes and it is for the single USB full speed and low speed transaction 1237 * respectively. The protocol overheads will be different for each of type 1238 * of USB transfer and all these formulas & protocol overheads are derived 1239 * from the 5.9.3 section of USB Specification & with the help of Bandwidth 1240 * Analysis white paper which is posted on the USB developer forum. 1241 * 1242 * Full-Speed: 1243 * Protocol overhead + ((MaxPacketSize * 7)/6 ) + Host_Delay 1244 * 1245 * Low-Speed: 1246 * Protocol overhead + Hub LS overhead + 1247 * (Low-Speed clock * ((MaxPacketSize * 7)/6 )) + Host_Delay 1248 */ 1249 static uint_t 1250 uhci_compute_total_bandwidth(usb_ep_descr_t *endpoint, 1251 usb_port_status_t port_status) 1252 { 1253 uint_t bandwidth; 1254 ushort_t MaxPacketSize = endpoint->wMaxPacketSize; 1255 1256 /* Add Host Controller specific delay to required bandwidth */ 1257 bandwidth = HOST_CONTROLLER_DELAY; 1258 1259 /* Add bit-stuffing overhead */ 1260 MaxPacketSize = (ushort_t)((MaxPacketSize * 7) / 6); 1261 1262 /* Low Speed interrupt transaction */ 1263 if (port_status == USBA_LOW_SPEED_DEV) { 1264 /* Low Speed interrupt transaction */ 1265 bandwidth += (LOW_SPEED_PROTO_OVERHEAD + 1266 HUB_LOW_SPEED_PROTO_OVERHEAD + 1267 (LOW_SPEED_CLOCK * MaxPacketSize)); 1268 } else { 1269 /* Full Speed transaction */ 1270 bandwidth += MaxPacketSize; 1271 1272 if (UHCI_XFER_TYPE(endpoint) == USB_EP_ATTR_INTR) { 1273 /* Full Speed interrupt transaction */ 1274 bandwidth += FS_NON_ISOC_PROTO_OVERHEAD; 1275 } else { 1276 /* Isochronus and input transaction */ 1277 if (UHCI_XFER_DIR(endpoint) == USB_EP_DIR_IN) { 1278 bandwidth += FS_ISOC_INPUT_PROTO_OVERHEAD; 1279 } else { 1280 /* Isochronus and output transaction */ 1281 bandwidth += FS_ISOC_OUTPUT_PROTO_OVERHEAD; 1282 } 1283 } 1284 } 1285 1286 return (bandwidth); 1287 } 1288 1289 1290 /* 1291 * uhci_bandwidth_adjust: 1292 */ 1293 static int 1294 uhci_bandwidth_adjust( 1295 uhci_state_t *uhcip, 1296 usb_ep_descr_t *endpoint, 1297 usb_port_status_t port_status) 1298 { 1299 int i = 0; 1300 uint_t interval; 1301 1302 /* 1303 * Get the polling interval from the endpoint descriptor 1304 */ 1305 interval = endpoint->bInterval; 1306 1307 /* 1308 * The bInterval value in the endpoint descriptor can range 1309 * from 1 to 255ms. The interrupt lattice has 32 leaf nodes, 1310 * and the host controller cycles through these nodes every 1311 * 32ms. The longest polling interval that the controller 1312 * supports is 32ms. 1313 */ 1314 1315 /* 1316 * Return an error if the polling interval is less than 1ms 1317 * and greater than 255ms 1318 */ 1319 if ((interval < MIN_POLL_INTERVAL) || (interval > MAX_POLL_INTERVAL)) { 1320 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1321 "uhci_bandwidth_adjust: Endpoint's poll interval must be " 1322 "between %d and %d ms", MIN_POLL_INTERVAL, 1323 MAX_POLL_INTERVAL); 1324 1325 return (USB_FAILURE); 1326 } 1327 1328 /* 1329 * According USB Specifications, a full-speed endpoint can 1330 * specify a desired polling interval 1ms to 255ms and a low 1331 * speed endpoints are limited to specifying only 10ms to 1332 * 255ms. But some old keyboards & mice uses polling interval 1333 * of 8ms. For compatibility purpose, we are using polling 1334 * interval between 8ms & 255ms for low speed endpoints. 1335 */ 1336 if ((port_status == USBA_LOW_SPEED_DEV) && 1337 (interval < MIN_LOW_SPEED_POLL_INTERVAL)) { 1338 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1339 "uhci_bandwidth_adjust: Low speed endpoint's poll interval " 1340 "must be >= %d ms, adjusted", 1341 MIN_LOW_SPEED_POLL_INTERVAL); 1342 1343 interval = MIN_LOW_SPEED_POLL_INTERVAL; 1344 } 1345 1346 /* 1347 * If polling interval is greater than 32ms, 1348 * adjust polling interval equal to 32ms. 1349 */ 1350 if (interval > 32) { 1351 interval = 32; 1352 } 1353 1354 /* 1355 * Find the nearest power of 2 that's less 1356 * than interval. 1357 */ 1358 while ((pow_2(i)) <= interval) { 1359 i++; 1360 } 1361 1362 return (pow_2((i - 1))); 1363 } 1364 1365 1366 /* 1367 * uhci_lattice_height: 1368 * Given the requested bandwidth, find the height in the tree at 1369 * which the nodes for this bandwidth fall. The height is measured 1370 * as the number of nodes from the leaf to the level specified by 1371 * bandwidth The root of the tree is at height TREE_HEIGHT. 1372 */ 1373 static uint_t 1374 uhci_lattice_height(uint_t bandwidth) 1375 { 1376 return (TREE_HEIGHT - (log_2(bandwidth))); 1377 } 1378 1379 1380 static uint_t 1381 uhci_lattice_parent(uint_t node) 1382 { 1383 return (((node % 2) == 0) ? ((node/2) - 1) : (node/2)); 1384 } 1385 1386 1387 /* 1388 * uhci_leftmost_leaf: 1389 * Find the leftmost leaf in the subtree specified by the node. 1390 * Height refers to number of nodes from the bottom of the tree 1391 * to the node, including the node. 1392 */ 1393 static uint_t 1394 uhci_leftmost_leaf(uint_t node, uint_t height) 1395 { 1396 node = pow_2(height + VIRTUAL_TREE_HEIGHT) * (node+1) - 1397 NUM_FRAME_LST_ENTRIES; 1398 return (node); 1399 } 1400 1401 1402 /* 1403 * uhci_insert_qh: 1404 * Add the Queue Head (QH) into the Host Controller's (HC) 1405 * appropriate queue head list. 1406 */ 1407 void 1408 uhci_insert_qh(uhci_state_t *uhcip, usba_pipe_handle_data_t *ph) 1409 { 1410 uhci_pipe_private_t *pp = (uhci_pipe_private_t *)ph->p_hcd_private; 1411 1412 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1413 "uhci_insert_qh:"); 1414 1415 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 1416 1417 switch (UHCI_XFER_TYPE(&ph->p_ep)) { 1418 case USB_EP_ATTR_CONTROL: 1419 uhci_insert_ctrl_qh(uhcip, pp); 1420 break; 1421 case USB_EP_ATTR_BULK: 1422 uhci_insert_bulk_qh(uhcip, pp); 1423 break; 1424 case USB_EP_ATTR_INTR: 1425 uhci_insert_intr_qh(uhcip, pp); 1426 break; 1427 case USB_EP_ATTR_ISOCH: 1428 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 1429 "uhci_insert_qh: Illegal request"); 1430 break; 1431 } 1432 } 1433 1434 1435 /* 1436 * uhci_insert_ctrl_qh: 1437 * Insert a control QH into the Host Controller's (HC) control QH list. 1438 */ 1439 static void 1440 uhci_insert_ctrl_qh(uhci_state_t *uhcip, uhci_pipe_private_t *pp) 1441 { 1442 queue_head_t *qh = pp->pp_qh; 1443 1444 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1445 "uhci_insert_ctrl_qh:"); 1446 1447 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 1448 1449 if (uhcip->uhci_ctrl_xfers_q_head == uhcip->uhci_ctrl_xfers_q_tail) { 1450 uhcip->uhci_ctrl_xfers_q_head->prev_qh = UHCI_INVALID_PTR; 1451 } 1452 1453 SetQH32(uhcip, qh->link_ptr, 1454 GetQH32(uhcip, uhcip->uhci_ctrl_xfers_q_tail->link_ptr)); 1455 qh->prev_qh = uhcip->uhci_ctrl_xfers_q_tail; 1456 SetQH32(uhcip, uhcip->uhci_ctrl_xfers_q_tail->link_ptr, 1457 QH_PADDR(qh) | HC_QUEUE_HEAD); 1458 uhcip->uhci_ctrl_xfers_q_tail = qh; 1459 1460 } 1461 1462 1463 /* 1464 * uhci_insert_bulk_qh: 1465 * Insert a bulk QH into the Host Controller's (HC) bulk QH list. 1466 */ 1467 static void 1468 uhci_insert_bulk_qh(uhci_state_t *uhcip, uhci_pipe_private_t *pp) 1469 { 1470 queue_head_t *qh = pp->pp_qh; 1471 1472 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1473 "uhci_insert_bulk_qh:"); 1474 1475 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 1476 1477 if (uhcip->uhci_bulk_xfers_q_head == uhcip->uhci_bulk_xfers_q_tail) { 1478 uhcip->uhci_bulk_xfers_q_head->prev_qh = UHCI_INVALID_PTR; 1479 } else if (uhcip->uhci_bulk_xfers_q_head->link_ptr == 1480 uhcip->uhci_bulk_xfers_q_tail->link_ptr) { 1481 1482 /* If there is already a loop, we should keep the loop. */ 1483 qh->link_ptr = uhcip->uhci_bulk_xfers_q_tail->link_ptr; 1484 } 1485 1486 qh->prev_qh = uhcip->uhci_bulk_xfers_q_tail; 1487 SetQH32(uhcip, uhcip->uhci_bulk_xfers_q_tail->link_ptr, 1488 QH_PADDR(qh) | HC_QUEUE_HEAD); 1489 uhcip->uhci_bulk_xfers_q_tail = qh; 1490 } 1491 1492 1493 /* 1494 * uhci_insert_intr_qh: 1495 * Insert a periodic Queue head i.e Interrupt queue head into the 1496 * Host Controller's (HC) interrupt lattice tree. 1497 */ 1498 static void 1499 uhci_insert_intr_qh(uhci_state_t *uhcip, uhci_pipe_private_t *pp) 1500 { 1501 uint_t node = pp->pp_node; /* The appropriate node was */ 1502 /* found during the opening */ 1503 /* of the pipe. */ 1504 queue_head_t *qh = pp->pp_qh; 1505 queue_head_t *next_lattice_qh, *lattice_qh; 1506 1507 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1508 "uhci_insert_intr_qh:"); 1509 1510 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 1511 1512 /* Find the lattice queue head */ 1513 lattice_qh = &uhcip->uhci_qh_pool_addr[node]; 1514 next_lattice_qh = 1515 QH_VADDR(GetQH32(uhcip, lattice_qh->link_ptr) & QH_LINK_PTR_MASK); 1516 1517 next_lattice_qh->prev_qh = qh; 1518 qh->link_ptr = lattice_qh->link_ptr; 1519 qh->prev_qh = lattice_qh; 1520 SetQH32(uhcip, lattice_qh->link_ptr, QH_PADDR(qh) | HC_QUEUE_HEAD); 1521 pp->pp_data_toggle = 0; 1522 } 1523 1524 1525 /* 1526 * uhci_insert_intr_td: 1527 * Create a TD and a data buffer for an interrupt endpoint. 1528 */ 1529 int 1530 uhci_insert_intr_td( 1531 uhci_state_t *uhcip, 1532 usba_pipe_handle_data_t *ph, 1533 usb_intr_req_t *req, 1534 usb_flags_t flags) 1535 { 1536 int error, pipe_dir; 1537 uint_t length, mps; 1538 uint32_t buf_offs; 1539 uhci_td_t *tmp_td; 1540 usb_intr_req_t *intr_reqp; 1541 uhci_pipe_private_t *pp = (uhci_pipe_private_t *)ph->p_hcd_private; 1542 uhci_trans_wrapper_t *tw; 1543 1544 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1545 "uhci_insert_intr_td: req: 0x%p", (void *)req); 1546 1547 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 1548 1549 /* Get the interrupt pipe direction */ 1550 pipe_dir = UHCI_XFER_DIR(&ph->p_ep); 1551 1552 /* Get the current interrupt request pointer */ 1553 if (req) { 1554 length = req->intr_len; 1555 } else { 1556 ASSERT(pipe_dir == USB_EP_DIR_IN); 1557 length = (pp->pp_client_periodic_in_reqp) ? 1558 (((usb_intr_req_t *)pp-> 1559 pp_client_periodic_in_reqp)->intr_len) : 1560 ph->p_ep.wMaxPacketSize; 1561 } 1562 1563 /* Check the size of interrupt request */ 1564 if (length > UHCI_MAX_TD_XFER_SIZE) { 1565 1566 /* the length shouldn't exceed 8K */ 1567 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1568 "uhci_insert_intr_td: Intr request size 0x%x is " 1569 "more than 0x%x", length, UHCI_MAX_TD_XFER_SIZE); 1570 1571 return (USB_INVALID_REQUEST); 1572 } 1573 1574 USB_DPRINTF_L3(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1575 "uhci_insert_intr_td: length: 0x%x", length); 1576 1577 /* Allocate a transaction wrapper */ 1578 if ((tw = uhci_create_transfer_wrapper(uhcip, pp, length, flags)) == 1579 NULL) { 1580 1581 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1582 "uhci_insert_intr_td: TW allocation failed"); 1583 1584 return (USB_NO_RESOURCES); 1585 } 1586 1587 /* 1588 * Initialize the callback and any callback 1589 * data for when the td completes. 1590 */ 1591 tw->tw_handle_td = uhci_handle_intr_td; 1592 tw->tw_handle_callback_value = NULL; 1593 tw->tw_direction = (pipe_dir == USB_EP_DIR_OUT) ? 1594 PID_OUT : PID_IN; 1595 tw->tw_curr_xfer_reqp = (usb_opaque_t)req; 1596 1597 /* 1598 * If it is an Interrupt IN request and interrupt request is NULL, 1599 * allocate the usb interrupt request structure for the current 1600 * interrupt polling request. 1601 */ 1602 if (tw->tw_direction == PID_IN) { 1603 if ((error = uhci_allocate_periodic_in_resource(uhcip, 1604 pp, tw, flags)) != USB_SUCCESS) { 1605 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1606 "uhci_insert_intr_td: Interrupt request structure " 1607 "allocation failed"); 1608 1609 /* free the transfer wrapper */ 1610 uhci_deallocate_tw(uhcip, pp, tw); 1611 1612 return (error); 1613 } 1614 } 1615 1616 intr_reqp = (usb_intr_req_t *)tw->tw_curr_xfer_reqp; 1617 ASSERT(tw->tw_curr_xfer_reqp != NULL); 1618 1619 tw->tw_timeout_cnt = (intr_reqp->intr_attributes & USB_ATTRS_ONE_XFER) ? 1620 intr_reqp->intr_timeout : 0; 1621 1622 /* DATA IN */ 1623 if (tw->tw_direction == PID_IN) { 1624 /* Insert the td onto the queue head */ 1625 error = uhci_insert_hc_td(uhcip, 0, 1626 length, pp, tw, PID_IN, intr_reqp->intr_attributes); 1627 1628 if (error != USB_SUCCESS) { 1629 1630 uhci_deallocate_periodic_in_resource(uhcip, pp, tw); 1631 /* free the transfer wrapper */ 1632 uhci_deallocate_tw(uhcip, pp, tw); 1633 1634 return (USB_NO_RESOURCES); 1635 } 1636 tw->tw_bytes_xfered = 0; 1637 1638 return (USB_SUCCESS); 1639 } 1640 1641 if (req->intr_len) { 1642 /* DATA OUT */ 1643 ASSERT(req->intr_data != NULL); 1644 1645 /* Copy the data into the message */ 1646 ddi_rep_put8(tw->tw_accesshandle, req->intr_data->b_rptr, 1647 (uint8_t *)tw->tw_buf, req->intr_len, DDI_DEV_AUTOINCR); 1648 } 1649 1650 /* set tw->tw_claim flag, so that nobody else works on this tw. */ 1651 tw->tw_claim = UHCI_INTR_HDLR_CLAIMED; 1652 1653 mps = ph->p_ep.wMaxPacketSize; 1654 buf_offs = 0; 1655 1656 /* Insert tds onto the queue head */ 1657 while (length > 0) { 1658 1659 error = uhci_insert_hc_td(uhcip, buf_offs, 1660 (length > mps) ? mps : length, 1661 pp, tw, PID_OUT, 1662 intr_reqp->intr_attributes); 1663 1664 if (error != USB_SUCCESS) { 1665 /* no resource. */ 1666 break; 1667 } 1668 1669 if (length <= mps) { 1670 /* inserted all data. */ 1671 length = 0; 1672 1673 } else { 1674 1675 buf_offs += mps; 1676 length -= mps; 1677 } 1678 } 1679 1680 if (error != USB_SUCCESS) { 1681 1682 USB_DPRINTF_L2(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 1683 "uhci_insert_intr_td: allocate td failed, free resource"); 1684 1685 /* remove all the tds */ 1686 while (tw->tw_hctd_head != NULL) { 1687 uhci_delete_td(uhcip, tw->tw_hctd_head); 1688 } 1689 1690 tw->tw_claim = UHCI_NOT_CLAIMED; 1691 uhci_deallocate_tw(uhcip, pp, tw); 1692 1693 return (error); 1694 } 1695 1696 /* allow HC to xfer the tds of this tw */ 1697 tmp_td = tw->tw_hctd_head; 1698 while (tmp_td != NULL) { 1699 1700 SetTD_status(uhcip, tmp_td, UHCI_TD_ACTIVE); 1701 tmp_td = tmp_td->tw_td_next; 1702 } 1703 1704 tw->tw_bytes_xfered = 0; 1705 tw->tw_claim = UHCI_NOT_CLAIMED; 1706 1707 return (error); 1708 } 1709 1710 1711 /* 1712 * uhci_create_transfer_wrapper: 1713 * Create a Transaction Wrapper (TW) for non-isoc transfer types. 1714 * This involves the allocating of DMA resources. 1715 * 1716 * For non-isoc transfers, one DMA handle and one DMA buffer are 1717 * allocated per transfer. The DMA buffer may contain multiple 1718 * DMA cookies and the cookies should meet certain alignment 1719 * requirement to be able to fit in the multiple TDs. The alignment 1720 * needs to ensure: 1721 * 1. the size of a cookie be larger than max TD length (0x500) 1722 * 2. the size of a cookie be a multiple of wMaxPacketSize of the 1723 * ctrl/bulk pipes 1724 * 1725 * wMaxPacketSize for ctrl and bulk pipes may be 8, 16, 32 or 64 bytes. 1726 * So the alignment should be a multiple of 64. wMaxPacketSize for intr 1727 * pipes is a little different since it only specifies the max to be 1728 * 64 bytes, but as long as an intr transfer is limited to max TD length, 1729 * any alignment can work if the cookie size is larger than max TD length. 1730 * 1731 * Considering the above conditions, 2K alignment is used. 4K alignment 1732 * should also be fine. 1733 */ 1734 static uhci_trans_wrapper_t * 1735 uhci_create_transfer_wrapper( 1736 uhci_state_t *uhcip, 1737 uhci_pipe_private_t *pp, 1738 size_t length, 1739 usb_flags_t usb_flags) 1740 { 1741 size_t real_length; 1742 uhci_trans_wrapper_t *tw; 1743 ddi_device_acc_attr_t dev_attr; 1744 ddi_dma_attr_t dma_attr; 1745 int kmem_flag; 1746 int (*dmamem_wait)(caddr_t); 1747 usba_pipe_handle_data_t *ph = pp->pp_pipe_handle; 1748 1749 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1750 "uhci_create_transfer_wrapper: length = 0x%lx flags = 0x%x", 1751 length, usb_flags); 1752 1753 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 1754 1755 /* isochronous pipe should not call into this function */ 1756 if (UHCI_XFER_TYPE(&ph->p_ep) == USB_EP_ATTR_ISOCH) { 1757 1758 return (NULL); 1759 } 1760 1761 /* SLEEP flag should not be used while holding mutex */ 1762 kmem_flag = KM_NOSLEEP; 1763 dmamem_wait = DDI_DMA_DONTWAIT; 1764 1765 /* Allocate space for the transfer wrapper */ 1766 if ((tw = kmem_zalloc(sizeof (uhci_trans_wrapper_t), kmem_flag)) == 1767 NULL) { 1768 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1769 "uhci_create_transfer_wrapper: kmem_alloc failed"); 1770 1771 return (NULL); 1772 } 1773 1774 /* zero-length packet doesn't need to allocate dma memory */ 1775 if (length == 0) { 1776 1777 goto dmadone; 1778 } 1779 1780 /* allow sg lists for transfer wrapper dma memory */ 1781 bcopy(&uhcip->uhci_dma_attr, &dma_attr, sizeof (ddi_dma_attr_t)); 1782 dma_attr.dma_attr_sgllen = UHCI_DMA_ATTR_SGLLEN; 1783 dma_attr.dma_attr_align = UHCI_DMA_ATTR_ALIGN; 1784 1785 /* Store the transfer length */ 1786 tw->tw_length = length; 1787 1788 /* Allocate the DMA handle */ 1789 if (ddi_dma_alloc_handle(uhcip->uhci_dip, &dma_attr, dmamem_wait, 1790 0, &tw->tw_dmahandle) != DDI_SUCCESS) { 1791 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1792 "uhci_create_transfer_wrapper: Alloc handle failed"); 1793 kmem_free(tw, sizeof (uhci_trans_wrapper_t)); 1794 1795 return (NULL); 1796 } 1797 1798 dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 1799 dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 1800 dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 1801 1802 /* Allocate the memory */ 1803 if (ddi_dma_mem_alloc(tw->tw_dmahandle, tw->tw_length, &dev_attr, 1804 DDI_DMA_CONSISTENT, dmamem_wait, NULL, (caddr_t *)&tw->tw_buf, 1805 &real_length, &tw->tw_accesshandle) != DDI_SUCCESS) { 1806 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1807 "uhci_create_transfer_wrapper: dma_mem_alloc fail"); 1808 ddi_dma_free_handle(&tw->tw_dmahandle); 1809 kmem_free(tw, sizeof (uhci_trans_wrapper_t)); 1810 1811 return (NULL); 1812 } 1813 1814 ASSERT(real_length >= length); 1815 1816 /* Bind the handle */ 1817 if (ddi_dma_addr_bind_handle(tw->tw_dmahandle, NULL, 1818 (caddr_t)tw->tw_buf, real_length, DDI_DMA_RDWR|DDI_DMA_CONSISTENT, 1819 dmamem_wait, NULL, &tw->tw_cookie, &tw->tw_ncookies) != 1820 DDI_DMA_MAPPED) { 1821 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1822 "uhci_create_transfer_wrapper: Bind handle failed"); 1823 ddi_dma_mem_free(&tw->tw_accesshandle); 1824 ddi_dma_free_handle(&tw->tw_dmahandle); 1825 kmem_free(tw, sizeof (uhci_trans_wrapper_t)); 1826 1827 return (NULL); 1828 } 1829 1830 tw->tw_cookie_idx = 0; 1831 tw->tw_dma_offs = 0; 1832 1833 dmadone: 1834 /* 1835 * Only allow one wrapper to be added at a time. Insert the 1836 * new transaction wrapper into the list for this pipe. 1837 */ 1838 if (pp->pp_tw_head == NULL) { 1839 pp->pp_tw_head = tw; 1840 pp->pp_tw_tail = tw; 1841 } else { 1842 pp->pp_tw_tail->tw_next = tw; 1843 pp->pp_tw_tail = tw; 1844 ASSERT(tw->tw_next == NULL); 1845 } 1846 1847 /* Store a back pointer to the pipe private structure */ 1848 tw->tw_pipe_private = pp; 1849 1850 /* Store the transfer type - synchronous or asynchronous */ 1851 tw->tw_flags = usb_flags; 1852 1853 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 1854 "uhci_create_transfer_wrapper: tw = 0x%p, ncookies = %u", 1855 (void *)tw, tw->tw_ncookies); 1856 1857 return (tw); 1858 } 1859 1860 1861 /* 1862 * uhci_insert_hc_td: 1863 * Insert a Transfer Descriptor (TD) on an QH. 1864 */ 1865 int 1866 uhci_insert_hc_td( 1867 uhci_state_t *uhcip, 1868 uint32_t buffer_offset, 1869 size_t hcgtd_length, 1870 uhci_pipe_private_t *pp, 1871 uhci_trans_wrapper_t *tw, 1872 uchar_t PID, 1873 usb_req_attrs_t attrs) 1874 { 1875 uhci_td_t *td, *current_dummy; 1876 queue_head_t *qh = pp->pp_qh; 1877 1878 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 1879 1880 if ((td = uhci_allocate_td_from_pool(uhcip)) == NULL) { 1881 1882 return (USB_NO_RESOURCES); 1883 } 1884 1885 current_dummy = qh->td_tailp; 1886 1887 USB_DPRINTF_L4(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 1888 "uhci_insert_hc_td: td %p, attrs = 0x%x", (void *)td, attrs); 1889 1890 /* 1891 * Fill in the current dummy td and 1892 * add the new dummy to the end. 1893 */ 1894 uhci_fill_in_td(uhcip, td, current_dummy, buffer_offset, 1895 hcgtd_length, pp, PID, attrs, tw); 1896 1897 /* 1898 * Allow HC hardware xfer the td, except interrupt out td. 1899 */ 1900 if ((tw->tw_handle_td != uhci_handle_intr_td) || (PID != PID_OUT)) { 1901 1902 SetTD_status(uhcip, current_dummy, UHCI_TD_ACTIVE); 1903 } 1904 1905 /* Insert this td onto the tw */ 1906 1907 if (tw->tw_hctd_head == NULL) { 1908 ASSERT(tw->tw_hctd_tail == NULL); 1909 tw->tw_hctd_head = current_dummy; 1910 tw->tw_hctd_tail = current_dummy; 1911 } else { 1912 /* Add the td to the end of the list */ 1913 tw->tw_hctd_tail->tw_td_next = current_dummy; 1914 tw->tw_hctd_tail = current_dummy; 1915 } 1916 1917 /* 1918 * Insert the TD on to the QH. When this occurs, 1919 * the Host Controller will see the newly filled in TD 1920 */ 1921 current_dummy->outst_td_next = NULL; 1922 current_dummy->outst_td_prev = uhcip->uhci_outst_tds_tail; 1923 if (uhcip->uhci_outst_tds_head == NULL) { 1924 uhcip->uhci_outst_tds_head = current_dummy; 1925 } else { 1926 uhcip->uhci_outst_tds_tail->outst_td_next = current_dummy; 1927 } 1928 uhcip->uhci_outst_tds_tail = current_dummy; 1929 current_dummy->tw = tw; 1930 1931 return (USB_SUCCESS); 1932 } 1933 1934 1935 /* 1936 * uhci_fill_in_td: 1937 * Fill in the fields of a Transfer Descriptor (TD). 1938 */ 1939 static void 1940 uhci_fill_in_td( 1941 uhci_state_t *uhcip, 1942 uhci_td_t *td, 1943 uhci_td_t *current_dummy, 1944 uint32_t buffer_offset, 1945 size_t length, 1946 uhci_pipe_private_t *pp, 1947 uchar_t PID, 1948 usb_req_attrs_t attrs, 1949 uhci_trans_wrapper_t *tw) 1950 { 1951 usba_pipe_handle_data_t *ph = pp->pp_pipe_handle; 1952 uint32_t buf_addr; 1953 1954 USB_DPRINTF_L4(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 1955 "uhci_fill_in_td: td 0x%p buf_offs 0x%x len 0x%lx " 1956 "attrs 0x%x", (void *)td, buffer_offset, length, attrs); 1957 1958 /* 1959 * If this is an isochronous TD, just return 1960 */ 1961 if (UHCI_XFER_TYPE(&ph->p_ep) == USB_EP_ATTR_ISOCH) { 1962 1963 return; 1964 } 1965 1966 /* The maximum transfer length of UHCI cannot exceed 0x500 bytes */ 1967 ASSERT(length <= UHCI_MAX_TD_XFER_SIZE); 1968 1969 bzero((char *)td, sizeof (uhci_td_t)); /* Clear the TD */ 1970 SetTD32(uhcip, current_dummy->link_ptr, TD_PADDR(td)); 1971 1972 if (attrs & USB_ATTRS_SHORT_XFER_OK) { 1973 SetTD_spd(uhcip, current_dummy, 1); 1974 } 1975 1976 mutex_enter(&ph->p_usba_device->usb_mutex); 1977 if (ph->p_usba_device->usb_port_status == USBA_LOW_SPEED_DEV) { 1978 SetTD_ls(uhcip, current_dummy, LOW_SPEED_DEVICE); 1979 } 1980 1981 SetTD_c_err(uhcip, current_dummy, UHCI_MAX_ERR_COUNT); 1982 SetTD_mlen(uhcip, current_dummy, 1983 (length == 0) ? ZERO_LENGTH : (length - 1)); 1984 SetTD_dtogg(uhcip, current_dummy, pp->pp_data_toggle); 1985 1986 /* Adjust the data toggle bit */ 1987 ADJ_DATA_TOGGLE(pp); 1988 1989 SetTD_devaddr(uhcip, current_dummy, ph->p_usba_device->usb_addr); 1990 SetTD_endpt(uhcip, current_dummy, 1991 ph->p_ep.bEndpointAddress & END_POINT_ADDRESS_MASK); 1992 SetTD_PID(uhcip, current_dummy, PID); 1993 SetTD_ioc(uhcip, current_dummy, INTERRUPT_ON_COMPLETION); 1994 1995 buf_addr = uhci_get_tw_paddr_by_offs(uhcip, buffer_offset, length, tw); 1996 SetTD32(uhcip, current_dummy->buffer_address, buf_addr); 1997 1998 td->qh_td_prev = current_dummy; 1999 current_dummy->qh_td_prev = NULL; 2000 pp->pp_qh->td_tailp = td; 2001 mutex_exit(&ph->p_usba_device->usb_mutex); 2002 } 2003 2004 /* 2005 * uhci_get_tw_paddr_by_offs: 2006 * Walk through the DMA cookies of a TW buffer to retrieve 2007 * the device address used for a TD. 2008 * 2009 * buffer_offset - the starting offset into the TW buffer, where the 2010 * TD should transfer from. When a TW has more than 2011 * one TD, the TDs must be filled in increasing order. 2012 */ 2013 static uint32_t 2014 uhci_get_tw_paddr_by_offs( 2015 uhci_state_t *uhcip, 2016 uint32_t buffer_offset, 2017 size_t length, 2018 uhci_trans_wrapper_t *tw) 2019 { 2020 uint32_t buf_addr; 2021 int rem_len; 2022 2023 USB_DPRINTF_L4(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 2024 "uhci_get_tw_paddr_by_offs: buf_offs 0x%x len 0x%lx", 2025 buffer_offset, length); 2026 2027 /* 2028 * TDs must be filled in increasing DMA offset order. 2029 * tw_dma_offs is initialized to be 0 at TW creation and 2030 * is only increased in this function. 2031 */ 2032 ASSERT(length == 0 || buffer_offset >= tw->tw_dma_offs); 2033 2034 if (length == 0) { 2035 buf_addr = 0; 2036 2037 return (buf_addr); 2038 } 2039 2040 /* 2041 * Advance to the next DMA cookie until finding the cookie 2042 * that buffer_offset falls in. 2043 * It is very likely this loop will never repeat more than 2044 * once. It is here just to accommodate the case buffer_offset 2045 * is increased by multiple cookies during two consecutive 2046 * calls into this function. In that case, the interim DMA 2047 * buffer is allowed to be skipped. 2048 */ 2049 while ((tw->tw_dma_offs + tw->tw_cookie.dmac_size) <= 2050 buffer_offset) { 2051 /* 2052 * tw_dma_offs always points to the starting offset 2053 * of a cookie 2054 */ 2055 tw->tw_dma_offs += tw->tw_cookie.dmac_size; 2056 ddi_dma_nextcookie(tw->tw_dmahandle, &tw->tw_cookie); 2057 tw->tw_cookie_idx++; 2058 ASSERT(tw->tw_cookie_idx < tw->tw_ncookies); 2059 } 2060 2061 /* 2062 * Counting the remained buffer length to be filled in 2063 * the TDs for current DMA cookie 2064 */ 2065 rem_len = (tw->tw_dma_offs + tw->tw_cookie.dmac_size) - 2066 buffer_offset; 2067 2068 /* Calculate the beginning address of the buffer */ 2069 ASSERT(length <= rem_len); 2070 buf_addr = (buffer_offset - tw->tw_dma_offs) + 2071 tw->tw_cookie.dmac_address; 2072 2073 USB_DPRINTF_L3(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 2074 "uhci_get_tw_paddr_by_offs: dmac_addr 0x%x dmac_size " 2075 "0x%lx idx %d", buf_addr, tw->tw_cookie.dmac_size, 2076 tw->tw_cookie_idx); 2077 2078 return (buf_addr); 2079 } 2080 2081 2082 /* 2083 * uhci_modify_td_active_bits: 2084 * Sets active bit in all the tds of QH to INACTIVE so that 2085 * the HC stops processing the TD's related to the QH. 2086 */ 2087 void 2088 uhci_modify_td_active_bits( 2089 uhci_state_t *uhcip, 2090 uhci_pipe_private_t *pp) 2091 { 2092 uhci_td_t *td_head; 2093 usb_ep_descr_t *ept = &pp->pp_pipe_handle->p_ep; 2094 uhci_trans_wrapper_t *tw_head = pp->pp_tw_head; 2095 2096 USB_DPRINTF_L4(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 2097 "uhci_modify_td_active_bits: tw head %p", (void *)tw_head); 2098 2099 while (tw_head != NULL) { 2100 tw_head->tw_claim = UHCI_MODIFY_TD_BITS_CLAIMED; 2101 td_head = tw_head->tw_hctd_head; 2102 2103 while (td_head) { 2104 if (UHCI_XFER_TYPE(ept) == USB_EP_ATTR_ISOCH) { 2105 SetTD_status(uhcip, td_head, 2106 GetTD_status(uhcip, td_head) & TD_INACTIVE); 2107 } else { 2108 SetTD32(uhcip, td_head->link_ptr, 2109 GetTD32(uhcip, td_head->link_ptr) | 2110 HC_END_OF_LIST); 2111 } 2112 2113 td_head = td_head->tw_td_next; 2114 } 2115 tw_head = tw_head->tw_next; 2116 } 2117 } 2118 2119 2120 /* 2121 * uhci_insert_ctrl_td: 2122 * Create a TD and a data buffer for a control Queue Head. 2123 */ 2124 int 2125 uhci_insert_ctrl_td( 2126 uhci_state_t *uhcip, 2127 usba_pipe_handle_data_t *ph, 2128 usb_ctrl_req_t *ctrl_reqp, 2129 usb_flags_t flags) 2130 { 2131 uhci_pipe_private_t *pp = (uhci_pipe_private_t *)ph->p_hcd_private; 2132 uhci_trans_wrapper_t *tw; 2133 size_t ctrl_buf_size; 2134 2135 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 2136 "uhci_insert_ctrl_td: timeout: 0x%x", ctrl_reqp->ctrl_timeout); 2137 2138 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 2139 2140 /* 2141 * If we have a control data phase, make the data buffer start 2142 * on the next 64-byte boundary so as to ensure the DMA cookie 2143 * can fit in the multiple TDs. The buffer in the range of 2144 * [SETUP_SIZE, UHCI_CTRL_EPT_MAX_SIZE) is just for padding 2145 * and not to be transferred. 2146 */ 2147 if (ctrl_reqp->ctrl_wLength) { 2148 ctrl_buf_size = UHCI_CTRL_EPT_MAX_SIZE + 2149 ctrl_reqp->ctrl_wLength; 2150 } else { 2151 ctrl_buf_size = SETUP_SIZE; 2152 } 2153 2154 /* Allocate a transaction wrapper */ 2155 if ((tw = uhci_create_transfer_wrapper(uhcip, pp, 2156 ctrl_buf_size, flags)) == NULL) { 2157 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 2158 "uhci_insert_ctrl_td: TW allocation failed"); 2159 2160 return (USB_NO_RESOURCES); 2161 } 2162 2163 pp->pp_data_toggle = 0; 2164 2165 tw->tw_curr_xfer_reqp = (usb_opaque_t)ctrl_reqp; 2166 tw->tw_bytes_xfered = 0; 2167 tw->tw_bytes_pending = ctrl_reqp->ctrl_wLength; 2168 tw->tw_timeout_cnt = max(UHCI_CTRL_TIMEOUT, ctrl_reqp->ctrl_timeout); 2169 2170 /* 2171 * Initialize the callback and any callback 2172 * data for when the td completes. 2173 */ 2174 tw->tw_handle_td = uhci_handle_ctrl_td; 2175 tw->tw_handle_callback_value = NULL; 2176 2177 if ((uhci_create_setup_pkt(uhcip, pp, tw)) != USB_SUCCESS) { 2178 tw->tw_ctrl_state = 0; 2179 2180 /* free the transfer wrapper */ 2181 uhci_deallocate_tw(uhcip, pp, tw); 2182 2183 return (USB_NO_RESOURCES); 2184 } 2185 2186 tw->tw_ctrl_state = SETUP; 2187 2188 return (USB_SUCCESS); 2189 } 2190 2191 2192 /* 2193 * uhci_create_setup_pkt: 2194 * create a setup packet to initiate a control transfer. 2195 * 2196 * OHCI driver has seen the case where devices fail if there is 2197 * more than one control transfer to the device within a frame. 2198 * So, the UHCI ensures that only one TD will be put on the control 2199 * pipe to one device (to be consistent with OHCI driver). 2200 */ 2201 static int 2202 uhci_create_setup_pkt( 2203 uhci_state_t *uhcip, 2204 uhci_pipe_private_t *pp, 2205 uhci_trans_wrapper_t *tw) 2206 { 2207 int sdata; 2208 usb_ctrl_req_t *req = (usb_ctrl_req_t *)tw->tw_curr_xfer_reqp; 2209 2210 USB_DPRINTF_L4(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 2211 "uhci_create_setup_pkt: 0x%x 0x%x 0x%x 0x%x 0x%x 0x%p", 2212 req->ctrl_bmRequestType, req->ctrl_bRequest, req->ctrl_wValue, 2213 req->ctrl_wIndex, req->ctrl_wLength, (void *)req->ctrl_data); 2214 2215 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 2216 ASSERT(tw != NULL); 2217 2218 /* Create the first four bytes of the setup packet */ 2219 sdata = (req->ctrl_bmRequestType | (req->ctrl_bRequest << 8) | 2220 (req->ctrl_wValue << 16)); 2221 ddi_put32(tw->tw_accesshandle, (uint_t *)tw->tw_buf, sdata); 2222 2223 /* Create the second four bytes */ 2224 sdata = (uint32_t)(req->ctrl_wIndex | (req->ctrl_wLength << 16)); 2225 ddi_put32(tw->tw_accesshandle, 2226 (uint_t *)(tw->tw_buf + sizeof (uint_t)), sdata); 2227 2228 /* 2229 * The TD's are placed on the QH one at a time. 2230 * Once this TD is placed on the done list, the 2231 * data or status phase TD will be enqueued. 2232 */ 2233 if ((uhci_insert_hc_td(uhcip, 0, SETUP_SIZE, 2234 pp, tw, PID_SETUP, req->ctrl_attributes)) != USB_SUCCESS) { 2235 2236 return (USB_NO_RESOURCES); 2237 } 2238 2239 USB_DPRINTF_L3(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 2240 "Create_setup: pp = 0x%p, attrs = 0x%x", (void *)pp, 2241 req->ctrl_attributes); 2242 2243 /* 2244 * If this control transfer has a data phase, record the 2245 * direction. If the data phase is an OUT transaction , 2246 * copy the data into the buffer of the transfer wrapper. 2247 */ 2248 if (req->ctrl_wLength != 0) { 2249 /* There is a data stage. Find the direction */ 2250 if (req->ctrl_bmRequestType & USB_DEV_REQ_DEV_TO_HOST) { 2251 tw->tw_direction = PID_IN; 2252 } else { 2253 tw->tw_direction = PID_OUT; 2254 2255 /* Copy the data into the buffer */ 2256 ddi_rep_put8(tw->tw_accesshandle, 2257 req->ctrl_data->b_rptr, 2258 (uint8_t *)(tw->tw_buf + UHCI_CTRL_EPT_MAX_SIZE), 2259 req->ctrl_wLength, 2260 DDI_DEV_AUTOINCR); 2261 } 2262 } 2263 2264 return (USB_SUCCESS); 2265 } 2266 2267 2268 /* 2269 * uhci_create_stats: 2270 * Allocate and initialize the uhci kstat structures 2271 */ 2272 void 2273 uhci_create_stats(uhci_state_t *uhcip) 2274 { 2275 int i; 2276 char kstatname[KSTAT_STRLEN]; 2277 char *usbtypes[USB_N_COUNT_KSTATS] = 2278 {"ctrl", "isoch", "bulk", "intr"}; 2279 uint_t instance = uhcip->uhci_instance; 2280 const char *dname = ddi_driver_name(uhcip->uhci_dip); 2281 uhci_intrs_stats_t *isp; 2282 2283 if (UHCI_INTRS_STATS(uhcip) == NULL) { 2284 (void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,intrs", 2285 dname, instance); 2286 UHCI_INTRS_STATS(uhcip) = kstat_create("usba", instance, 2287 kstatname, "usb_interrupts", KSTAT_TYPE_NAMED, 2288 sizeof (uhci_intrs_stats_t) / sizeof (kstat_named_t), 2289 KSTAT_FLAG_PERSISTENT); 2290 2291 if (UHCI_INTRS_STATS(uhcip) != NULL) { 2292 isp = UHCI_INTRS_STATS_DATA(uhcip); 2293 kstat_named_init(&isp->uhci_intrs_hc_halted, 2294 "HC Halted", KSTAT_DATA_UINT64); 2295 kstat_named_init(&isp->uhci_intrs_hc_process_err, 2296 "HC Process Errors", KSTAT_DATA_UINT64); 2297 kstat_named_init(&isp->uhci_intrs_host_sys_err, 2298 "Host Sys Errors", KSTAT_DATA_UINT64); 2299 kstat_named_init(&isp->uhci_intrs_resume_detected, 2300 "Resume Detected", KSTAT_DATA_UINT64); 2301 kstat_named_init(&isp->uhci_intrs_usb_err_intr, 2302 "USB Error", KSTAT_DATA_UINT64); 2303 kstat_named_init(&isp->uhci_intrs_usb_intr, 2304 "USB Interrupts", KSTAT_DATA_UINT64); 2305 kstat_named_init(&isp->uhci_intrs_total, 2306 "Total Interrupts", KSTAT_DATA_UINT64); 2307 kstat_named_init(&isp->uhci_intrs_not_claimed, 2308 "Not Claimed", KSTAT_DATA_UINT64); 2309 2310 UHCI_INTRS_STATS(uhcip)->ks_private = uhcip; 2311 UHCI_INTRS_STATS(uhcip)->ks_update = nulldev; 2312 kstat_install(UHCI_INTRS_STATS(uhcip)); 2313 } 2314 } 2315 2316 if (UHCI_TOTAL_STATS(uhcip) == NULL) { 2317 (void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,total", 2318 dname, instance); 2319 UHCI_TOTAL_STATS(uhcip) = kstat_create("usba", instance, 2320 kstatname, "usb_byte_count", KSTAT_TYPE_IO, 1, 2321 KSTAT_FLAG_PERSISTENT); 2322 2323 if (UHCI_TOTAL_STATS(uhcip) != NULL) { 2324 kstat_install(UHCI_TOTAL_STATS(uhcip)); 2325 } 2326 } 2327 2328 for (i = 0; i < USB_N_COUNT_KSTATS; i++) { 2329 if (uhcip->uhci_count_stats[i] == NULL) { 2330 (void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,%s", 2331 dname, instance, usbtypes[i]); 2332 uhcip->uhci_count_stats[i] = kstat_create("usba", 2333 instance, kstatname, "usb_byte_count", 2334 KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 2335 2336 if (uhcip->uhci_count_stats[i] != NULL) { 2337 kstat_install(uhcip->uhci_count_stats[i]); 2338 } 2339 } 2340 } 2341 } 2342 2343 2344 /* 2345 * uhci_destroy_stats: 2346 * Clean up uhci kstat structures 2347 */ 2348 void 2349 uhci_destroy_stats(uhci_state_t *uhcip) 2350 { 2351 int i; 2352 2353 if (UHCI_INTRS_STATS(uhcip)) { 2354 kstat_delete(UHCI_INTRS_STATS(uhcip)); 2355 UHCI_INTRS_STATS(uhcip) = NULL; 2356 } 2357 2358 if (UHCI_TOTAL_STATS(uhcip)) { 2359 kstat_delete(UHCI_TOTAL_STATS(uhcip)); 2360 UHCI_TOTAL_STATS(uhcip) = NULL; 2361 } 2362 2363 for (i = 0; i < USB_N_COUNT_KSTATS; i++) { 2364 if (uhcip->uhci_count_stats[i]) { 2365 kstat_delete(uhcip->uhci_count_stats[i]); 2366 uhcip->uhci_count_stats[i] = NULL; 2367 } 2368 } 2369 } 2370 2371 2372 void 2373 uhci_do_intrs_stats(uhci_state_t *uhcip, int val) 2374 { 2375 if (UHCI_INTRS_STATS(uhcip) == NULL) { 2376 2377 return; 2378 } 2379 2380 UHCI_INTRS_STATS_DATA(uhcip)->uhci_intrs_total.value.ui64++; 2381 switch (val) { 2382 case USBSTS_REG_HC_HALTED: 2383 UHCI_INTRS_STATS_DATA(uhcip)->uhci_intrs_hc_halted.value.ui64++; 2384 break; 2385 case USBSTS_REG_HC_PROCESS_ERR: 2386 UHCI_INTRS_STATS_DATA(uhcip)-> 2387 uhci_intrs_hc_process_err.value.ui64++; 2388 break; 2389 case USBSTS_REG_HOST_SYS_ERR: 2390 UHCI_INTRS_STATS_DATA(uhcip)-> 2391 uhci_intrs_host_sys_err.value.ui64++; 2392 break; 2393 case USBSTS_REG_RESUME_DETECT: 2394 UHCI_INTRS_STATS_DATA(uhcip)-> 2395 uhci_intrs_resume_detected.value.ui64++; 2396 break; 2397 case USBSTS_REG_USB_ERR_INTR: 2398 UHCI_INTRS_STATS_DATA(uhcip)-> 2399 uhci_intrs_usb_err_intr.value.ui64++; 2400 break; 2401 case USBSTS_REG_USB_INTR: 2402 UHCI_INTRS_STATS_DATA(uhcip)->uhci_intrs_usb_intr.value.ui64++; 2403 break; 2404 default: 2405 UHCI_INTRS_STATS_DATA(uhcip)-> 2406 uhci_intrs_not_claimed.value.ui64++; 2407 break; 2408 } 2409 } 2410 2411 2412 void 2413 uhci_do_byte_stats(uhci_state_t *uhcip, size_t len, uint8_t attr, uint8_t addr) 2414 { 2415 uint8_t type = attr & USB_EP_ATTR_MASK; 2416 uint8_t dir = addr & USB_EP_DIR_MASK; 2417 2418 switch (dir) { 2419 case USB_EP_DIR_IN: 2420 UHCI_TOTAL_STATS_DATA(uhcip)->reads++; 2421 UHCI_TOTAL_STATS_DATA(uhcip)->nread += len; 2422 switch (type) { 2423 case USB_EP_ATTR_CONTROL: 2424 UHCI_CTRL_STATS(uhcip)->reads++; 2425 UHCI_CTRL_STATS(uhcip)->nread += len; 2426 break; 2427 case USB_EP_ATTR_BULK: 2428 UHCI_BULK_STATS(uhcip)->reads++; 2429 UHCI_BULK_STATS(uhcip)->nread += len; 2430 break; 2431 case USB_EP_ATTR_INTR: 2432 UHCI_INTR_STATS(uhcip)->reads++; 2433 UHCI_INTR_STATS(uhcip)->nread += len; 2434 break; 2435 case USB_EP_ATTR_ISOCH: 2436 UHCI_ISOC_STATS(uhcip)->reads++; 2437 UHCI_ISOC_STATS(uhcip)->nread += len; 2438 break; 2439 } 2440 break; 2441 case USB_EP_DIR_OUT: 2442 UHCI_TOTAL_STATS_DATA(uhcip)->writes++; 2443 UHCI_TOTAL_STATS_DATA(uhcip)->nwritten += len; 2444 switch (type) { 2445 case USB_EP_ATTR_CONTROL: 2446 UHCI_CTRL_STATS(uhcip)->writes++; 2447 UHCI_CTRL_STATS(uhcip)->nwritten += len; 2448 break; 2449 case USB_EP_ATTR_BULK: 2450 UHCI_BULK_STATS(uhcip)->writes++; 2451 UHCI_BULK_STATS(uhcip)->nwritten += len; 2452 break; 2453 case USB_EP_ATTR_INTR: 2454 UHCI_INTR_STATS(uhcip)->writes++; 2455 UHCI_INTR_STATS(uhcip)->nwritten += len; 2456 break; 2457 case USB_EP_ATTR_ISOCH: 2458 UHCI_ISOC_STATS(uhcip)->writes++; 2459 UHCI_ISOC_STATS(uhcip)->nwritten += len; 2460 break; 2461 } 2462 break; 2463 } 2464 } 2465 2466 2467 /* 2468 * uhci_free_tw: 2469 * Free the Transfer Wrapper (TW). 2470 */ 2471 void 2472 uhci_free_tw(uhci_state_t *uhcip, uhci_trans_wrapper_t *tw) 2473 { 2474 int rval, i; 2475 2476 USB_DPRINTF_L4(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, "uhci_free_tw:"); 2477 2478 ASSERT(tw != NULL); 2479 2480 if (tw->tw_isoc_strtlen > 0) { 2481 ASSERT(tw->tw_isoc_bufs != NULL); 2482 for (i = 0; i < tw->tw_ncookies; i++) { 2483 rval = ddi_dma_unbind_handle( 2484 tw->tw_isoc_bufs[i].dma_handle); 2485 ASSERT(rval == USB_SUCCESS); 2486 ddi_dma_mem_free(&tw->tw_isoc_bufs[i].mem_handle); 2487 ddi_dma_free_handle(&tw->tw_isoc_bufs[i].dma_handle); 2488 } 2489 kmem_free(tw->tw_isoc_bufs, tw->tw_isoc_strtlen); 2490 } else if (tw->tw_dmahandle != NULL) { 2491 rval = ddi_dma_unbind_handle(tw->tw_dmahandle); 2492 ASSERT(rval == DDI_SUCCESS); 2493 2494 ddi_dma_mem_free(&tw->tw_accesshandle); 2495 ddi_dma_free_handle(&tw->tw_dmahandle); 2496 } 2497 2498 kmem_free(tw, sizeof (uhci_trans_wrapper_t)); 2499 } 2500 2501 2502 /* 2503 * uhci_deallocate_tw: 2504 * Deallocate of a Transaction Wrapper (TW) and this involves 2505 * the freeing of DMA resources. 2506 */ 2507 void 2508 uhci_deallocate_tw(uhci_state_t *uhcip, 2509 uhci_pipe_private_t *pp, uhci_trans_wrapper_t *tw) 2510 { 2511 uhci_trans_wrapper_t *head; 2512 2513 USB_DPRINTF_L4(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 2514 "uhci_deallocate_tw:"); 2515 2516 /* 2517 * If the transfer wrapper has no Host Controller (HC) 2518 * Transfer Descriptors (TD) associated with it, then 2519 * remove the transfer wrapper. The transfers are done 2520 * in FIFO order, so this should be the first transfer 2521 * wrapper on the list. 2522 */ 2523 if (tw->tw_hctd_head != NULL) { 2524 ASSERT(tw->tw_hctd_tail != NULL); 2525 2526 return; 2527 } 2528 2529 ASSERT(tw->tw_hctd_tail == NULL); 2530 ASSERT(pp->pp_tw_head != NULL); 2531 2532 /* 2533 * If pp->pp_tw_head is NULL, set the tail also to NULL. 2534 */ 2535 head = pp->pp_tw_head; 2536 2537 if (head == tw) { 2538 pp->pp_tw_head = head->tw_next; 2539 if (pp->pp_tw_head == NULL) { 2540 pp->pp_tw_tail = NULL; 2541 } 2542 } else { 2543 while (head->tw_next != tw) 2544 head = head->tw_next; 2545 head->tw_next = tw->tw_next; 2546 if (tw->tw_next == NULL) { 2547 pp->pp_tw_tail = head; 2548 } 2549 } 2550 uhci_free_tw(uhcip, tw); 2551 } 2552 2553 2554 void 2555 uhci_delete_td(uhci_state_t *uhcip, uhci_td_t *td) 2556 { 2557 uhci_td_t *tmp_td; 2558 uhci_trans_wrapper_t *tw = td->tw; 2559 2560 if ((td->outst_td_next == NULL) && (td->outst_td_prev == NULL)) { 2561 uhcip->uhci_outst_tds_head = NULL; 2562 uhcip->uhci_outst_tds_tail = NULL; 2563 } else if (td->outst_td_next == NULL) { 2564 td->outst_td_prev->outst_td_next = NULL; 2565 uhcip->uhci_outst_tds_tail = td->outst_td_prev; 2566 } else if (td->outst_td_prev == NULL) { 2567 td->outst_td_next->outst_td_prev = NULL; 2568 uhcip->uhci_outst_tds_head = td->outst_td_next; 2569 } else { 2570 td->outst_td_prev->outst_td_next = td->outst_td_next; 2571 td->outst_td_next->outst_td_prev = td->outst_td_prev; 2572 } 2573 2574 tmp_td = tw->tw_hctd_head; 2575 2576 if (tmp_td != td) { 2577 while (tmp_td->tw_td_next != td) { 2578 tmp_td = tmp_td->tw_td_next; 2579 } 2580 ASSERT(tmp_td); 2581 tmp_td->tw_td_next = td->tw_td_next; 2582 if (td->tw_td_next == NULL) { 2583 tw->tw_hctd_tail = tmp_td; 2584 } 2585 } else { 2586 tw->tw_hctd_head = tw->tw_hctd_head->tw_td_next; 2587 if (tw->tw_hctd_head == NULL) { 2588 tw->tw_hctd_tail = NULL; 2589 } 2590 } 2591 2592 td->flag = TD_FLAG_FREE; 2593 } 2594 2595 2596 void 2597 uhci_remove_tds_tws( 2598 uhci_state_t *uhcip, 2599 usba_pipe_handle_data_t *ph) 2600 { 2601 usb_opaque_t curr_reqp; 2602 uhci_pipe_private_t *pp = (uhci_pipe_private_t *)ph->p_hcd_private; 2603 usb_ep_descr_t *ept = &pp->pp_pipe_handle->p_ep; 2604 uhci_trans_wrapper_t *tw_tmp; 2605 uhci_trans_wrapper_t *tw_head = pp->pp_tw_head; 2606 2607 while (tw_head != NULL) { 2608 tw_tmp = tw_head; 2609 tw_head = tw_head->tw_next; 2610 2611 curr_reqp = tw_tmp->tw_curr_xfer_reqp; 2612 if (curr_reqp) { 2613 /* do this for control/bulk/intr */ 2614 if ((tw_tmp->tw_direction == PID_IN) && 2615 (UHCI_XFER_TYPE(ept) == USB_EP_ATTR_INTR)) { 2616 uhci_deallocate_periodic_in_resource(uhcip, 2617 pp, tw_tmp); 2618 } else { 2619 uhci_hcdi_callback(uhcip, pp, 2620 pp->pp_pipe_handle, tw_tmp, USB_CR_FLUSHED); 2621 } 2622 } /* end of curr_reqp */ 2623 2624 if (tw_tmp->tw_claim != UHCI_MODIFY_TD_BITS_CLAIMED) { 2625 continue; 2626 } 2627 2628 while (tw_tmp->tw_hctd_head != NULL) { 2629 uhci_delete_td(uhcip, tw_tmp->tw_hctd_head); 2630 } 2631 2632 uhci_deallocate_tw(uhcip, pp, tw_tmp); 2633 } 2634 } 2635 2636 2637 /* 2638 * uhci_remove_qh: 2639 * Remove the Queue Head from the Host Controller's 2640 * appropriate QH list. 2641 */ 2642 void 2643 uhci_remove_qh(uhci_state_t *uhcip, uhci_pipe_private_t *pp) 2644 { 2645 uhci_td_t *dummy_td; 2646 2647 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 2648 2649 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 2650 "uhci_remove_qh:"); 2651 2652 dummy_td = pp->pp_qh->td_tailp; 2653 dummy_td->flag = TD_FLAG_FREE; 2654 2655 switch (UHCI_XFER_TYPE(&pp->pp_pipe_handle->p_ep)) { 2656 case USB_EP_ATTR_CONTROL: 2657 uhci_remove_ctrl_qh(uhcip, pp); 2658 break; 2659 case USB_EP_ATTR_BULK: 2660 uhci_remove_bulk_qh(uhcip, pp); 2661 break; 2662 case USB_EP_ATTR_INTR: 2663 uhci_remove_intr_qh(uhcip, pp); 2664 break; 2665 } 2666 } 2667 2668 2669 static void 2670 uhci_remove_intr_qh(uhci_state_t *uhcip, uhci_pipe_private_t *pp) 2671 { 2672 queue_head_t *qh = pp->pp_qh; 2673 queue_head_t *next_lattice_qh = 2674 QH_VADDR(GetQH32(uhcip, qh->link_ptr) & QH_LINK_PTR_MASK); 2675 2676 qh->prev_qh->link_ptr = qh->link_ptr; 2677 next_lattice_qh->prev_qh = qh->prev_qh; 2678 qh->qh_flag = QUEUE_HEAD_FLAG_FREE; 2679 2680 } 2681 2682 /* 2683 * uhci_remove_bulk_qh: 2684 * Remove a bulk QH from the Host Controller's QH list. There may be a 2685 * loop for bulk QHs, we must care about this while removing a bulk QH. 2686 */ 2687 static void 2688 uhci_remove_bulk_qh(uhci_state_t *uhcip, uhci_pipe_private_t *pp) 2689 { 2690 queue_head_t *qh = pp->pp_qh; 2691 queue_head_t *next_lattice_qh; 2692 uint32_t paddr; 2693 2694 paddr = (GetQH32(uhcip, qh->link_ptr) & QH_LINK_PTR_MASK); 2695 next_lattice_qh = (qh == uhcip->uhci_bulk_xfers_q_tail) ? 2696 0 : QH_VADDR(paddr); 2697 2698 if ((qh == uhcip->uhci_bulk_xfers_q_tail) && 2699 (qh->prev_qh == uhcip->uhci_bulk_xfers_q_head)) { 2700 SetQH32(uhcip, qh->prev_qh->link_ptr, HC_END_OF_LIST); 2701 } else { 2702 qh->prev_qh->link_ptr = qh->link_ptr; 2703 } 2704 2705 if (next_lattice_qh == NULL) { 2706 uhcip->uhci_bulk_xfers_q_tail = qh->prev_qh; 2707 } else { 2708 next_lattice_qh->prev_qh = qh->prev_qh; 2709 } 2710 2711 qh->qh_flag = QUEUE_HEAD_FLAG_FREE; 2712 2713 } 2714 2715 2716 static void 2717 uhci_remove_ctrl_qh(uhci_state_t *uhcip, uhci_pipe_private_t *pp) 2718 { 2719 queue_head_t *qh = pp->pp_qh; 2720 queue_head_t *next_lattice_qh = 2721 QH_VADDR(GetQH32(uhcip, qh->link_ptr) & QH_LINK_PTR_MASK); 2722 2723 qh->prev_qh->link_ptr = qh->link_ptr; 2724 if (next_lattice_qh->prev_qh != NULL) { 2725 next_lattice_qh->prev_qh = qh->prev_qh; 2726 } else { 2727 uhcip->uhci_ctrl_xfers_q_tail = qh->prev_qh; 2728 } 2729 2730 qh->qh_flag = QUEUE_HEAD_FLAG_FREE; 2731 } 2732 2733 2734 /* 2735 * uhci_allocate_td_from_pool: 2736 * Allocate a Transfer Descriptor (TD) from the TD buffer pool. 2737 */ 2738 static uhci_td_t * 2739 uhci_allocate_td_from_pool(uhci_state_t *uhcip) 2740 { 2741 int index; 2742 uhci_td_t *td; 2743 2744 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 2745 2746 /* 2747 * Search for a blank Transfer Descriptor (TD) 2748 * in the TD buffer pool. 2749 */ 2750 for (index = 0; index < uhci_td_pool_size; index ++) { 2751 if (uhcip->uhci_td_pool_addr[index].flag == TD_FLAG_FREE) { 2752 break; 2753 } 2754 } 2755 2756 if (index == uhci_td_pool_size) { 2757 USB_DPRINTF_L2(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 2758 "uhci_allocate_td_from_pool: TD exhausted"); 2759 2760 return (NULL); 2761 } 2762 2763 USB_DPRINTF_L4(PRINT_MASK_ALLOC, uhcip->uhci_log_hdl, 2764 "uhci_allocate_td_from_pool: Allocated %d", index); 2765 2766 /* Create a new dummy for the end of the TD list */ 2767 td = &uhcip->uhci_td_pool_addr[index]; 2768 2769 /* Mark the newly allocated TD as a dummy */ 2770 td->flag = TD_FLAG_DUMMY; 2771 td->qh_td_prev = NULL; 2772 2773 return (td); 2774 } 2775 2776 2777 /* 2778 * uhci_insert_bulk_td: 2779 */ 2780 int 2781 uhci_insert_bulk_td( 2782 uhci_state_t *uhcip, 2783 usba_pipe_handle_data_t *ph, 2784 usb_bulk_req_t *req, 2785 usb_flags_t flags) 2786 { 2787 size_t length; 2788 uint_t mps; /* MaxPacketSize */ 2789 uint_t num_bulk_tds, i, j; 2790 uint32_t buf_offs; 2791 uhci_td_t *bulk_td_ptr; 2792 uhci_td_t *current_dummy, *tmp_td; 2793 uhci_pipe_private_t *pp = (uhci_pipe_private_t *)ph->p_hcd_private; 2794 uhci_trans_wrapper_t *tw; 2795 uhci_bulk_isoc_xfer_t *bulk_xfer_info; 2796 uhci_bulk_isoc_td_pool_t *td_pool_ptr; 2797 2798 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 2799 "uhci_insert_bulk_td: req: 0x%p, flags = 0x%x", (void *)req, flags); 2800 2801 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 2802 2803 /* 2804 * Create transfer wrapper 2805 */ 2806 if ((tw = uhci_create_transfer_wrapper(uhcip, pp, req->bulk_len, 2807 flags)) == NULL) { 2808 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 2809 "uhci_insert_bulk_td: TW allocation failed"); 2810 2811 return (USB_NO_RESOURCES); 2812 } 2813 2814 tw->tw_bytes_xfered = 0; 2815 tw->tw_bytes_pending = req->bulk_len; 2816 tw->tw_handle_td = uhci_handle_bulk_td; 2817 tw->tw_handle_callback_value = (usb_opaque_t)req->bulk_data; 2818 tw->tw_timeout_cnt = req->bulk_timeout; 2819 tw->tw_data = req->bulk_data; 2820 tw->tw_curr_xfer_reqp = (usb_opaque_t)req; 2821 2822 /* Get the bulk pipe direction */ 2823 tw->tw_direction = (UHCI_XFER_DIR(&ph->p_ep) == USB_EP_DIR_OUT) ? 2824 PID_OUT : PID_IN; 2825 2826 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 2827 "uhci_insert_bulk_td: direction: 0x%x", tw->tw_direction); 2828 2829 /* If the DATA OUT, copy the data into transfer buffer. */ 2830 if (tw->tw_direction == PID_OUT) { 2831 if (req->bulk_len) { 2832 ASSERT(req->bulk_data != NULL); 2833 2834 /* Copy the data into the message */ 2835 ddi_rep_put8(tw->tw_accesshandle, 2836 req->bulk_data->b_rptr, 2837 (uint8_t *)tw->tw_buf, 2838 req->bulk_len, DDI_DEV_AUTOINCR); 2839 } 2840 } 2841 2842 /* Get the max packet size. */ 2843 length = mps = pp->pp_pipe_handle->p_ep.wMaxPacketSize; 2844 2845 /* 2846 * Calculate number of TD's to insert in the current frame interval. 2847 * Max number TD's allowed (driver implementation) is 128 2848 * in one frame interval. Once all the TD's are completed 2849 * then the remaining TD's will be inserted into the lattice 2850 * in the uhci_handle_bulk_td(). 2851 */ 2852 if ((tw->tw_bytes_pending / mps) >= MAX_NUM_BULK_TDS_PER_XFER) { 2853 num_bulk_tds = MAX_NUM_BULK_TDS_PER_XFER; 2854 } else { 2855 num_bulk_tds = (tw->tw_bytes_pending / mps); 2856 2857 if (tw->tw_bytes_pending % mps || tw->tw_bytes_pending == 0) { 2858 num_bulk_tds++; 2859 length = (tw->tw_bytes_pending % mps); 2860 } 2861 } 2862 2863 /* 2864 * Allocate memory for the bulk xfer information structure 2865 */ 2866 if ((bulk_xfer_info = kmem_zalloc( 2867 sizeof (uhci_bulk_isoc_xfer_t), KM_NOSLEEP)) == NULL) { 2868 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 2869 "uhci_insert_bulk_td: kmem_zalloc failed"); 2870 2871 /* Free the transfer wrapper */ 2872 uhci_deallocate_tw(uhcip, pp, tw); 2873 2874 return (USB_FAILURE); 2875 } 2876 2877 /* Allocate memory for the bulk TD's */ 2878 if (uhci_alloc_bulk_isoc_tds(uhcip, num_bulk_tds, bulk_xfer_info) != 2879 USB_SUCCESS) { 2880 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 2881 "uhci_insert_bulk_td: alloc_bulk_isoc_tds failed"); 2882 2883 kmem_free(bulk_xfer_info, sizeof (uhci_bulk_isoc_xfer_t)); 2884 2885 /* Free the transfer wrapper */ 2886 uhci_deallocate_tw(uhcip, pp, tw); 2887 2888 return (USB_FAILURE); 2889 } 2890 2891 td_pool_ptr = &bulk_xfer_info->td_pools[0]; 2892 bulk_td_ptr = (uhci_td_t *)td_pool_ptr->pool_addr; 2893 bulk_td_ptr[0].qh_td_prev = NULL; 2894 current_dummy = pp->pp_qh->td_tailp; 2895 buf_offs = 0; 2896 pp->pp_qh->bulk_xfer_info = bulk_xfer_info; 2897 2898 /* Fill up all the bulk TD's */ 2899 for (i = 0; i < bulk_xfer_info->num_pools; i++) { 2900 for (j = 0; j < (td_pool_ptr->num_tds - 1); j++) { 2901 uhci_fill_in_bulk_isoc_td(uhcip, &bulk_td_ptr[j], 2902 &bulk_td_ptr[j+1], BULKTD_PADDR(td_pool_ptr, 2903 &bulk_td_ptr[j+1]), ph, buf_offs, mps, tw); 2904 buf_offs += mps; 2905 } 2906 2907 /* fill in the last TD */ 2908 if (i == (bulk_xfer_info->num_pools - 1)) { 2909 uhci_fill_in_bulk_isoc_td(uhcip, &bulk_td_ptr[j], 2910 current_dummy, TD_PADDR(current_dummy), 2911 ph, buf_offs, length, tw); 2912 } else { 2913 /* fill in the TD at the tail of a pool */ 2914 tmp_td = &bulk_td_ptr[j]; 2915 td_pool_ptr = &bulk_xfer_info->td_pools[i + 1]; 2916 bulk_td_ptr = (uhci_td_t *)td_pool_ptr->pool_addr; 2917 uhci_fill_in_bulk_isoc_td(uhcip, tmp_td, 2918 &bulk_td_ptr[0], BULKTD_PADDR(td_pool_ptr, 2919 &bulk_td_ptr[0]), ph, buf_offs, mps, tw); 2920 buf_offs += mps; 2921 } 2922 } 2923 2924 bulk_xfer_info->num_tds = (ushort_t)num_bulk_tds; 2925 2926 /* 2927 * Point the end of the lattice tree to the start of the bulk xfers 2928 * queue head. This allows the HC to execute the same Queue Head/TD 2929 * in the same frame. There are some bulk devices, which NAKs after 2930 * completing each TD. As a result, the performance on such devices 2931 * is very bad. This loop will provide a chance to execute NAk'ed 2932 * bulk TDs again in the same frame. 2933 */ 2934 if (uhcip->uhci_pending_bulk_cmds++ == 0) { 2935 uhcip->uhci_bulk_xfers_q_tail->link_ptr = 2936 uhcip->uhci_bulk_xfers_q_head->link_ptr; 2937 USB_DPRINTF_L3(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 2938 "uhci_insert_bulk_td: count = %d no tds %d", 2939 uhcip->uhci_pending_bulk_cmds, num_bulk_tds); 2940 } 2941 2942 /* Insert on the bulk queue head for the execution by HC */ 2943 SetQH32(uhcip, pp->pp_qh->element_ptr, 2944 bulk_xfer_info->td_pools[0].cookie.dmac_address); 2945 2946 return (USB_SUCCESS); 2947 } 2948 2949 2950 /* 2951 * uhci_fill_in_bulk_isoc_td 2952 * Fills the bulk/isoc TD 2953 * 2954 * offset - different meanings for bulk and isoc TDs: 2955 * starting offset into the TW buffer for a bulk TD 2956 * and the index into the isoc packet list for an isoc TD 2957 */ 2958 void 2959 uhci_fill_in_bulk_isoc_td(uhci_state_t *uhcip, uhci_td_t *current_td, 2960 uhci_td_t *next_td, 2961 uint32_t next_td_paddr, 2962 usba_pipe_handle_data_t *ph, 2963 uint_t offset, 2964 uint_t length, 2965 uhci_trans_wrapper_t *tw) 2966 { 2967 uhci_pipe_private_t *pp = (uhci_pipe_private_t *)ph->p_hcd_private; 2968 usb_ep_descr_t *ept = &pp->pp_pipe_handle->p_ep; 2969 uint32_t buf_addr; 2970 2971 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 2972 "uhci_fill_in_bulk_isoc_td: tw 0x%p offs 0x%x length 0x%x", 2973 (void *)tw, offset, length); 2974 2975 bzero((char *)current_td, sizeof (uhci_td_t)); 2976 SetTD32(uhcip, current_td->link_ptr, next_td_paddr | HC_DEPTH_FIRST); 2977 2978 switch (UHCI_XFER_TYPE(ept)) { 2979 case USB_EP_ATTR_ISOCH: 2980 if (((usb_isoc_req_t *)tw->tw_curr_xfer_reqp)->isoc_attributes 2981 & USB_ATTRS_SHORT_XFER_OK) { 2982 SetTD_spd(uhcip, current_td, 1); 2983 } 2984 break; 2985 case USB_EP_ATTR_BULK: 2986 if (((usb_bulk_req_t *)tw->tw_curr_xfer_reqp)->bulk_attributes 2987 & USB_ATTRS_SHORT_XFER_OK) { 2988 SetTD_spd(uhcip, current_td, 1); 2989 } 2990 break; 2991 } 2992 2993 mutex_enter(&ph->p_usba_device->usb_mutex); 2994 2995 SetTD_c_err(uhcip, current_td, UHCI_MAX_ERR_COUNT); 2996 SetTD_status(uhcip, current_td, UHCI_TD_ACTIVE); 2997 SetTD_ioc(uhcip, current_td, INTERRUPT_ON_COMPLETION); 2998 SetTD_mlen(uhcip, current_td, 2999 (length == 0) ? ZERO_LENGTH : (length - 1)); 3000 SetTD_dtogg(uhcip, current_td, pp->pp_data_toggle); 3001 SetTD_devaddr(uhcip, current_td, ph->p_usba_device->usb_addr); 3002 SetTD_endpt(uhcip, current_td, ph->p_ep.bEndpointAddress & 3003 END_POINT_ADDRESS_MASK); 3004 SetTD_PID(uhcip, current_td, tw->tw_direction); 3005 3006 /* Get the right buffer address for the current TD */ 3007 switch (UHCI_XFER_TYPE(ept)) { 3008 case USB_EP_ATTR_ISOCH: 3009 buf_addr = tw->tw_isoc_bufs[offset].cookie.dmac_address; 3010 break; 3011 case USB_EP_ATTR_BULK: 3012 buf_addr = uhci_get_tw_paddr_by_offs(uhcip, offset, 3013 length, tw); 3014 break; 3015 } 3016 SetTD32(uhcip, current_td->buffer_address, buf_addr); 3017 3018 /* 3019 * Adjust the data toggle. 3020 * The data toggle bit must always be 0 for isoc transfers. 3021 * And set the "iso" bit in the TD for isoc transfers. 3022 */ 3023 if (UHCI_XFER_TYPE(ept) == USB_EP_ATTR_ISOCH) { 3024 pp->pp_data_toggle = 0; 3025 SetTD_iso(uhcip, current_td, 1); 3026 } else { 3027 ADJ_DATA_TOGGLE(pp); 3028 next_td->qh_td_prev = current_td; 3029 pp->pp_qh->td_tailp = next_td; 3030 } 3031 3032 current_td->outst_td_next = NULL; 3033 current_td->outst_td_prev = uhcip->uhci_outst_tds_tail; 3034 if (uhcip->uhci_outst_tds_head == NULL) { 3035 uhcip->uhci_outst_tds_head = current_td; 3036 } else { 3037 uhcip->uhci_outst_tds_tail->outst_td_next = current_td; 3038 } 3039 uhcip->uhci_outst_tds_tail = current_td; 3040 current_td->tw = tw; 3041 3042 if (tw->tw_hctd_head == NULL) { 3043 ASSERT(tw->tw_hctd_tail == NULL); 3044 tw->tw_hctd_head = current_td; 3045 tw->tw_hctd_tail = current_td; 3046 } else { 3047 /* Add the td to the end of the list */ 3048 tw->tw_hctd_tail->tw_td_next = current_td; 3049 tw->tw_hctd_tail = current_td; 3050 } 3051 3052 mutex_exit(&ph->p_usba_device->usb_mutex); 3053 } 3054 3055 3056 /* 3057 * uhci_alloc_bulk_isoc_tds: 3058 * - Allocates the isoc/bulk TD pools. It will allocate one whole 3059 * pool to store all the TDs if the system allows. Only when the 3060 * first allocation fails, it tries to allocate several small 3061 * pools with each pool limited in physical page size. 3062 */ 3063 static int 3064 uhci_alloc_bulk_isoc_tds( 3065 uhci_state_t *uhcip, 3066 uint_t num_tds, 3067 uhci_bulk_isoc_xfer_t *info) 3068 { 3069 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3070 "uhci_alloc_bulk_isoc_tds: num_tds: 0x%x info: 0x%p", 3071 num_tds, (void *)info); 3072 3073 info->num_pools = 1; 3074 /* allocate as a whole pool at the first time */ 3075 if (uhci_alloc_memory_for_tds(uhcip, num_tds, info) != 3076 USB_SUCCESS) { 3077 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3078 "alloc_memory_for_tds failed: num_tds %d num_pools %d", 3079 num_tds, info->num_pools); 3080 3081 /* reduce the td number per pool and alloc again */ 3082 info->num_pools = num_tds / UHCI_MAX_TD_NUM_PER_POOL; 3083 if (num_tds % UHCI_MAX_TD_NUM_PER_POOL) { 3084 info->num_pools++; 3085 } 3086 3087 if (uhci_alloc_memory_for_tds(uhcip, num_tds, info) != 3088 USB_SUCCESS) { 3089 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3090 "alloc_memory_for_tds failed: num_tds %d " 3091 "num_pools %d", num_tds, info->num_pools); 3092 3093 return (USB_NO_RESOURCES); 3094 } 3095 } 3096 3097 return (USB_SUCCESS); 3098 } 3099 3100 3101 /* 3102 * uhci_alloc_memory_for_tds: 3103 * - Allocates memory for the isoc/bulk td pools. 3104 */ 3105 static int 3106 uhci_alloc_memory_for_tds( 3107 uhci_state_t *uhcip, 3108 uint_t num_tds, 3109 uhci_bulk_isoc_xfer_t *info) 3110 { 3111 int result, i, j, err; 3112 size_t real_length; 3113 uint_t ccount, num; 3114 ddi_device_acc_attr_t dev_attr; 3115 uhci_bulk_isoc_td_pool_t *td_pool_ptr1, *td_pool_ptr2; 3116 3117 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 3118 "uhci_alloc_memory_for_tds: num_tds: 0x%x info: 0x%p " 3119 "num_pools: %u", num_tds, (void *)info, info->num_pools); 3120 3121 /* The host controller will be little endian */ 3122 dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 3123 dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 3124 dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 3125 3126 /* Allocate the TD pool structures */ 3127 if ((info->td_pools = kmem_zalloc( 3128 (sizeof (uhci_bulk_isoc_td_pool_t) * info->num_pools), 3129 KM_SLEEP)) == NULL) { 3130 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 3131 "uhci_alloc_memory_for_tds: alloc td_pools failed"); 3132 3133 return (USB_FAILURE); 3134 } 3135 3136 for (i = 0; i < info->num_pools; i++) { 3137 if (info->num_pools == 1) { 3138 num = num_tds; 3139 } else if (i < (info->num_pools - 1)) { 3140 num = UHCI_MAX_TD_NUM_PER_POOL; 3141 } else { 3142 num = (num_tds % UHCI_MAX_TD_NUM_PER_POOL); 3143 } 3144 3145 td_pool_ptr1 = &info->td_pools[i]; 3146 3147 /* Allocate the bulk TD pool DMA handle */ 3148 if (ddi_dma_alloc_handle(uhcip->uhci_dip, 3149 &uhcip->uhci_dma_attr, DDI_DMA_SLEEP, 0, 3150 &td_pool_ptr1->dma_handle) != DDI_SUCCESS) { 3151 3152 for (j = 0; j < i; j++) { 3153 td_pool_ptr2 = &info->td_pools[j]; 3154 result = ddi_dma_unbind_handle( 3155 td_pool_ptr2->dma_handle); 3156 ASSERT(result == DDI_SUCCESS); 3157 ddi_dma_mem_free(&td_pool_ptr2->mem_handle); 3158 ddi_dma_free_handle(&td_pool_ptr2->dma_handle); 3159 } 3160 3161 kmem_free(info->td_pools, 3162 (sizeof (uhci_bulk_isoc_td_pool_t) * 3163 info->num_pools)); 3164 3165 return (USB_FAILURE); 3166 } 3167 3168 /* Allocate the memory for the bulk TD pool */ 3169 if (ddi_dma_mem_alloc(td_pool_ptr1->dma_handle, 3170 num * sizeof (uhci_td_t), &dev_attr, 3171 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, 0, 3172 &td_pool_ptr1->pool_addr, &real_length, 3173 &td_pool_ptr1->mem_handle) != DDI_SUCCESS) { 3174 3175 ddi_dma_free_handle(&td_pool_ptr1->dma_handle); 3176 3177 for (j = 0; j < i; j++) { 3178 td_pool_ptr2 = &info->td_pools[j]; 3179 result = ddi_dma_unbind_handle( 3180 td_pool_ptr2->dma_handle); 3181 ASSERT(result == DDI_SUCCESS); 3182 ddi_dma_mem_free(&td_pool_ptr2->mem_handle); 3183 ddi_dma_free_handle(&td_pool_ptr2->dma_handle); 3184 } 3185 3186 kmem_free(info->td_pools, 3187 (sizeof (uhci_bulk_isoc_td_pool_t) * 3188 info->num_pools)); 3189 3190 return (USB_FAILURE); 3191 } 3192 3193 /* Map the bulk TD pool into the I/O address space */ 3194 result = ddi_dma_addr_bind_handle(td_pool_ptr1->dma_handle, 3195 NULL, (caddr_t)td_pool_ptr1->pool_addr, real_length, 3196 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, 3197 &td_pool_ptr1->cookie, &ccount); 3198 3199 /* Process the result */ 3200 err = USB_SUCCESS; 3201 3202 if (result != DDI_DMA_MAPPED) { 3203 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 3204 "uhci_allocate_memory_for_tds: Result = %d", 3205 result); 3206 uhci_decode_ddi_dma_addr_bind_handle_result(uhcip, 3207 result); 3208 3209 err = USB_FAILURE; 3210 } 3211 3212 if ((result == DDI_DMA_MAPPED) && (ccount != 1)) { 3213 /* The cookie count should be 1 */ 3214 USB_DPRINTF_L2(PRINT_MASK_ATTA, 3215 uhcip->uhci_log_hdl, 3216 "uhci_allocate_memory_for_tds: " 3217 "More than 1 cookie"); 3218 3219 result = ddi_dma_unbind_handle( 3220 td_pool_ptr1->dma_handle); 3221 ASSERT(result == DDI_SUCCESS); 3222 3223 err = USB_FAILURE; 3224 } 3225 3226 if (err == USB_FAILURE) { 3227 3228 ddi_dma_mem_free(&td_pool_ptr1->mem_handle); 3229 ddi_dma_free_handle(&td_pool_ptr1->dma_handle); 3230 3231 for (j = 0; j < i; j++) { 3232 td_pool_ptr2 = &info->td_pools[j]; 3233 result = ddi_dma_unbind_handle( 3234 td_pool_ptr2->dma_handle); 3235 ASSERT(result == DDI_SUCCESS); 3236 ddi_dma_mem_free(&td_pool_ptr2->mem_handle); 3237 ddi_dma_free_handle(&td_pool_ptr2->dma_handle); 3238 } 3239 3240 kmem_free(info->td_pools, 3241 (sizeof (uhci_bulk_isoc_td_pool_t) * 3242 info->num_pools)); 3243 3244 return (USB_FAILURE); 3245 } 3246 3247 bzero((void *)td_pool_ptr1->pool_addr, 3248 num * sizeof (uhci_td_t)); 3249 td_pool_ptr1->num_tds = (ushort_t)num; 3250 } 3251 3252 return (USB_SUCCESS); 3253 } 3254 3255 3256 /* 3257 * uhci_handle_bulk_td: 3258 * 3259 * Handles the completed bulk transfer descriptors 3260 */ 3261 void 3262 uhci_handle_bulk_td(uhci_state_t *uhcip, uhci_td_t *td) 3263 { 3264 uint_t num_bulk_tds, index, td_count, j; 3265 usb_cr_t error; 3266 uint_t length, bytes_xfered; 3267 ushort_t MaxPacketSize; 3268 uint32_t buf_offs, paddr; 3269 uhci_td_t *bulk_td_ptr, *current_dummy, *td_head; 3270 uhci_td_t *tmp_td; 3271 queue_head_t *qh, *next_qh; 3272 uhci_trans_wrapper_t *tw = td->tw; 3273 uhci_pipe_private_t *pp = tw->tw_pipe_private; 3274 uhci_bulk_isoc_xfer_t *bulk_xfer_info; 3275 uhci_bulk_isoc_td_pool_t *td_pool_ptr; 3276 usba_pipe_handle_data_t *ph; 3277 3278 USB_DPRINTF_L4(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 3279 "uhci_handle_bulk_td: td = 0x%p tw = 0x%p", (void *)td, (void *)tw); 3280 3281 /* 3282 * Update the tw_bytes_pending, and tw_bytes_xfered 3283 */ 3284 bytes_xfered = ZERO_LENGTH; 3285 3286 /* 3287 * Check whether there are any errors occurred in the xfer. 3288 * If so, update the data_toggle for the queue head and 3289 * return error to the upper layer. 3290 */ 3291 if (GetTD_status(uhcip, td) & TD_STATUS_MASK) { 3292 uhci_handle_bulk_td_errors(uhcip, td); 3293 3294 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3295 "uhci_handle_bulk_td: error; data toggle: 0x%x", 3296 pp->pp_data_toggle); 3297 3298 return; 3299 } 3300 3301 /* 3302 * Update the tw_bytes_pending, and tw_bytes_xfered 3303 */ 3304 bytes_xfered = GetTD_alen(uhcip, td); 3305 if (bytes_xfered != ZERO_LENGTH) { 3306 tw->tw_bytes_pending -= (bytes_xfered + 1); 3307 tw->tw_bytes_xfered += (bytes_xfered + 1); 3308 } 3309 3310 /* 3311 * Get Bulk pipe information and pipe handle 3312 */ 3313 bulk_xfer_info = pp->pp_qh->bulk_xfer_info; 3314 ph = tw->tw_pipe_private->pp_pipe_handle; 3315 3316 /* 3317 * Check whether data underrun occurred. 3318 * If so, complete the transfer 3319 * Update the data toggle bit 3320 */ 3321 if (bytes_xfered != GetTD_mlen(uhcip, td)) { 3322 bulk_xfer_info->num_tds = 1; 3323 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 3324 "uhci_handle_bulk_td: Data underrun occured"); 3325 3326 pp->pp_data_toggle = GetTD_dtogg(uhcip, td) == 0 ? 1 : 0; 3327 } 3328 3329 /* 3330 * If the TD's in the current frame are completed, then check 3331 * whether we have any more bytes to xfer. If so, insert TD's. 3332 * If no more bytes needs to be transferred, then do callback to the 3333 * upper layer. 3334 * If the TD's in the current frame are not completed, then 3335 * just delete the TD from the linked lists. 3336 */ 3337 USB_DPRINTF_L3(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3338 "uhci_handle_bulk_td: completed TD data toggle: 0x%x", 3339 GetTD_dtogg(uhcip, td)); 3340 3341 if (--bulk_xfer_info->num_tds == 0) { 3342 uhci_delete_td(uhcip, td); 3343 3344 if ((tw->tw_bytes_pending) && 3345 (GetTD_mlen(uhcip, td) - GetTD_alen(uhcip, td) == 0)) { 3346 3347 MaxPacketSize = pp->pp_pipe_handle->p_ep.wMaxPacketSize; 3348 length = MaxPacketSize; 3349 3350 qh = pp->pp_qh; 3351 paddr = GetQH32(uhcip, qh->link_ptr) & QH_LINK_PTR_MASK; 3352 if (GetQH32(uhcip, qh->link_ptr) != 3353 GetQH32(uhcip, 3354 uhcip->uhci_bulk_xfers_q_head->link_ptr)) { 3355 next_qh = QH_VADDR(paddr); 3356 SetQH32(uhcip, qh->prev_qh->link_ptr, 3357 paddr|(0x2)); 3358 next_qh->prev_qh = qh->prev_qh; 3359 SetQH32(uhcip, qh->link_ptr, 3360 GetQH32(uhcip, 3361 uhcip->uhci_bulk_xfers_q_head->link_ptr)); 3362 qh->prev_qh = uhcip->uhci_bulk_xfers_q_tail; 3363 SetQH32(uhcip, 3364 uhcip->uhci_bulk_xfers_q_tail->link_ptr, 3365 QH_PADDR(qh) | 0x2); 3366 uhcip->uhci_bulk_xfers_q_tail = qh; 3367 } 3368 3369 if ((tw->tw_bytes_pending / MaxPacketSize) >= 3370 MAX_NUM_BULK_TDS_PER_XFER) { 3371 num_bulk_tds = MAX_NUM_BULK_TDS_PER_XFER; 3372 } else { 3373 num_bulk_tds = 3374 (tw->tw_bytes_pending / MaxPacketSize); 3375 if (tw->tw_bytes_pending % MaxPacketSize) { 3376 num_bulk_tds++; 3377 length = (tw->tw_bytes_pending % 3378 MaxPacketSize); 3379 } 3380 } 3381 3382 current_dummy = pp->pp_qh->td_tailp; 3383 td_pool_ptr = &bulk_xfer_info->td_pools[0]; 3384 bulk_td_ptr = (uhci_td_t *)td_pool_ptr->pool_addr; 3385 buf_offs = tw->tw_bytes_xfered; 3386 td_count = num_bulk_tds; 3387 index = 0; 3388 3389 /* reuse the TDs to transfer more data */ 3390 while (td_count > 0) { 3391 for (j = 0; 3392 (j < (td_pool_ptr->num_tds - 1)) && 3393 (td_count > 1); j++, td_count--) { 3394 uhci_fill_in_bulk_isoc_td(uhcip, 3395 &bulk_td_ptr[j], &bulk_td_ptr[j+1], 3396 BULKTD_PADDR(td_pool_ptr, 3397 &bulk_td_ptr[j+1]), ph, buf_offs, 3398 MaxPacketSize, tw); 3399 buf_offs += MaxPacketSize; 3400 } 3401 3402 if (td_count == 1) { 3403 uhci_fill_in_bulk_isoc_td(uhcip, 3404 &bulk_td_ptr[j], current_dummy, 3405 TD_PADDR(current_dummy), ph, 3406 buf_offs, length, tw); 3407 3408 break; 3409 } else { 3410 tmp_td = &bulk_td_ptr[j]; 3411 ASSERT(index < 3412 (bulk_xfer_info->num_pools - 1)); 3413 td_pool_ptr = &bulk_xfer_info-> 3414 td_pools[index + 1]; 3415 bulk_td_ptr = (uhci_td_t *) 3416 td_pool_ptr->pool_addr; 3417 uhci_fill_in_bulk_isoc_td(uhcip, 3418 tmp_td, &bulk_td_ptr[0], 3419 BULKTD_PADDR(td_pool_ptr, 3420 &bulk_td_ptr[0]), ph, buf_offs, 3421 MaxPacketSize, tw); 3422 buf_offs += MaxPacketSize; 3423 td_count--; 3424 index++; 3425 } 3426 } 3427 3428 pp->pp_qh->bulk_xfer_info = bulk_xfer_info; 3429 bulk_xfer_info->num_tds = (ushort_t)num_bulk_tds; 3430 SetQH32(uhcip, pp->pp_qh->element_ptr, 3431 bulk_xfer_info->td_pools[0].cookie.dmac_address); 3432 } else { 3433 usba_pipe_handle_data_t *usb_pp = pp->pp_pipe_handle; 3434 3435 pp->pp_qh->bulk_xfer_info = NULL; 3436 3437 if (tw->tw_bytes_pending) { 3438 /* Update the element pointer */ 3439 SetQH32(uhcip, pp->pp_qh->element_ptr, 3440 TD_PADDR(pp->pp_qh->td_tailp)); 3441 3442 /* Remove all the tds */ 3443 td_head = tw->tw_hctd_head; 3444 while (td_head != NULL) { 3445 uhci_delete_td(uhcip, td_head); 3446 td_head = tw->tw_hctd_head; 3447 } 3448 } 3449 3450 if (tw->tw_direction == PID_IN) { 3451 usb_req_attrs_t attrs = ((usb_bulk_req_t *) 3452 tw->tw_curr_xfer_reqp)->bulk_attributes; 3453 3454 error = USB_CR_OK; 3455 3456 /* Data run occurred */ 3457 if (tw->tw_bytes_pending && 3458 (!(attrs & USB_ATTRS_SHORT_XFER_OK))) { 3459 error = USB_CR_DATA_UNDERRUN; 3460 } 3461 3462 uhci_sendup_td_message(uhcip, error, tw); 3463 } else { 3464 uhci_do_byte_stats(uhcip, tw->tw_length, 3465 usb_pp->p_ep.bmAttributes, 3466 usb_pp->p_ep.bEndpointAddress); 3467 3468 /* Data underrun occurred */ 3469 if (tw->tw_bytes_pending) { 3470 3471 tw->tw_data->b_rptr += 3472 tw->tw_bytes_xfered; 3473 3474 USB_DPRINTF_L2(PRINT_MASK_ATTA, 3475 uhcip->uhci_log_hdl, 3476 "uhci_handle_bulk_td: " 3477 "data underrun occurred"); 3478 3479 uhci_hcdi_callback(uhcip, pp, 3480 tw->tw_pipe_private->pp_pipe_handle, 3481 tw, USB_CR_DATA_UNDERRUN); 3482 } else { 3483 uhci_hcdi_callback(uhcip, pp, 3484 tw->tw_pipe_private->pp_pipe_handle, 3485 tw, USB_CR_OK); 3486 } 3487 } /* direction */ 3488 3489 /* Deallocate DMA memory */ 3490 uhci_deallocate_tw(uhcip, pp, tw); 3491 for (j = 0; j < bulk_xfer_info->num_pools; j++) { 3492 td_pool_ptr = &bulk_xfer_info->td_pools[j]; 3493 (void) ddi_dma_unbind_handle( 3494 td_pool_ptr->dma_handle); 3495 ddi_dma_mem_free(&td_pool_ptr->mem_handle); 3496 ddi_dma_free_handle(&td_pool_ptr->dma_handle); 3497 } 3498 kmem_free(bulk_xfer_info->td_pools, 3499 (sizeof (uhci_bulk_isoc_td_pool_t) * 3500 bulk_xfer_info->num_pools)); 3501 kmem_free(bulk_xfer_info, 3502 sizeof (uhci_bulk_isoc_xfer_t)); 3503 3504 /* 3505 * When there are no pending bulk commands, point the 3506 * end of the lattice tree to NULL. This will make sure 3507 * that the HC control does not loop anymore and PCI 3508 * bus is not affected. 3509 */ 3510 if (--uhcip->uhci_pending_bulk_cmds == 0) { 3511 uhcip->uhci_bulk_xfers_q_tail->link_ptr = 3512 HC_END_OF_LIST; 3513 USB_DPRINTF_L3(PRINT_MASK_ATTA, 3514 uhcip->uhci_log_hdl, 3515 "uhci_handle_bulk_td: count = %d", 3516 uhcip->uhci_pending_bulk_cmds); 3517 } 3518 } 3519 } else { 3520 uhci_delete_td(uhcip, td); 3521 } 3522 } 3523 3524 3525 void 3526 uhci_handle_bulk_td_errors(uhci_state_t *uhcip, uhci_td_t *td) 3527 { 3528 usb_cr_t usb_err; 3529 uint32_t paddr_tail, element_ptr, paddr; 3530 uhci_td_t *next_td; 3531 uhci_pipe_private_t *pp; 3532 uhci_trans_wrapper_t *tw = td->tw; 3533 usba_pipe_handle_data_t *ph; 3534 uhci_bulk_isoc_td_pool_t *td_pool_ptr = NULL; 3535 3536 USB_DPRINTF_L2(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 3537 "uhci_handle_bulk_td_errors: td = %p", (void *)td); 3538 3539 #ifdef DEBUG 3540 uhci_print_td(uhcip, td); 3541 #endif 3542 3543 tw = td->tw; 3544 ph = tw->tw_pipe_private->pp_pipe_handle; 3545 pp = (uhci_pipe_private_t *)ph->p_hcd_private; 3546 3547 /* 3548 * Find the type of error occurred and return the error 3549 * to the upper layer. And adjust the data toggle. 3550 */ 3551 element_ptr = GetQH32(uhcip, pp->pp_qh->element_ptr) & 3552 QH_ELEMENT_PTR_MASK; 3553 paddr_tail = TD_PADDR(pp->pp_qh->td_tailp); 3554 3555 /* 3556 * If a timeout occurs before a transfer has completed, 3557 * the timeout handler sets the CRC/Timeout bit and clears the Active 3558 * bit in the link_ptr for each td in the transfer. 3559 * It then waits (at least) 1 ms so that any tds the controller might 3560 * have been executing will have completed. 3561 * So at this point element_ptr will point to either: 3562 * 1) the next td for the transfer (which has not been executed, 3563 * and has the CRC/Timeout status bit set and Active bit cleared), 3564 * 2) the dummy td for this qh. 3565 * So if the element_ptr does not point to the dummy td, we know 3566 * it points to the next td that would have been executed. 3567 * That td has the data toggle we want to save. 3568 * All outstanding tds have been marked as CRC/Timeout, 3569 * so it doesn't matter which td we pass to uhci_parse_td_error 3570 * for the error status. 3571 */ 3572 if (element_ptr != paddr_tail) { 3573 paddr = (element_ptr & QH_ELEMENT_PTR_MASK); 3574 uhci_get_bulk_td_by_paddr(uhcip, pp->pp_qh->bulk_xfer_info, 3575 paddr, &td_pool_ptr); 3576 next_td = BULKTD_VADDR(td_pool_ptr, paddr); 3577 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3578 "uhci_handle_bulk_td_errors: next td = %p", 3579 (void *)next_td); 3580 3581 usb_err = uhci_parse_td_error(uhcip, pp, next_td); 3582 } else { 3583 usb_err = uhci_parse_td_error(uhcip, pp, td); 3584 } 3585 3586 /* 3587 * Update the link pointer. 3588 */ 3589 SetQH32(uhcip, pp->pp_qh->element_ptr, TD_PADDR(pp->pp_qh->td_tailp)); 3590 3591 /* 3592 * Send up number of bytes transferred before the error condition. 3593 */ 3594 if ((tw->tw_direction == PID_OUT) && tw->tw_data) { 3595 tw->tw_data->b_rptr += tw->tw_bytes_xfered; 3596 } 3597 3598 uhci_remove_bulk_tds_tws(uhcip, tw->tw_pipe_private, UHCI_IN_ERROR); 3599 3600 /* 3601 * When there are no pending bulk commands, point the end of the 3602 * lattice tree to NULL. This will make sure that the HC control 3603 * does not loop anymore and PCI bus is not affected. 3604 */ 3605 if (--uhcip->uhci_pending_bulk_cmds == 0) { 3606 uhcip->uhci_bulk_xfers_q_tail->link_ptr = HC_END_OF_LIST; 3607 USB_DPRINTF_L3(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 3608 "uhci_handle_bulk_td_errors: count = %d", 3609 uhcip->uhci_pending_bulk_cmds); 3610 } 3611 3612 uhci_hcdi_callback(uhcip, pp, ph, tw, usb_err); 3613 uhci_deallocate_tw(uhcip, pp, tw); 3614 } 3615 3616 3617 /* 3618 * uhci_get_bulk_td_by_paddr: 3619 * Obtain the address of the TD pool the physical address falls in. 3620 * 3621 * td_pool_pp - pointer to the address of the TD pool containing the paddr 3622 */ 3623 /* ARGSUSED */ 3624 static void 3625 uhci_get_bulk_td_by_paddr( 3626 uhci_state_t *uhcip, 3627 uhci_bulk_isoc_xfer_t *info, 3628 uint32_t paddr, 3629 uhci_bulk_isoc_td_pool_t **td_pool_pp) 3630 { 3631 uint_t i = 0; 3632 3633 while (i < info->num_pools) { 3634 *td_pool_pp = &info->td_pools[i]; 3635 if (((*td_pool_pp)->cookie.dmac_address <= paddr) && 3636 (((*td_pool_pp)->cookie.dmac_address + 3637 (*td_pool_pp)->cookie.dmac_size) > paddr)) { 3638 3639 break; 3640 } 3641 i++; 3642 } 3643 3644 ASSERT(i < info->num_pools); 3645 } 3646 3647 3648 void 3649 uhci_remove_bulk_tds_tws( 3650 uhci_state_t *uhcip, 3651 uhci_pipe_private_t *pp, 3652 int what) 3653 { 3654 uint_t rval, i; 3655 uhci_td_t *head; 3656 uhci_td_t *head_next; 3657 usb_opaque_t curr_reqp; 3658 uhci_bulk_isoc_xfer_t *info; 3659 uhci_bulk_isoc_td_pool_t *td_pool_ptr; 3660 3661 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 3662 3663 if ((info = pp->pp_qh->bulk_xfer_info) == NULL) { 3664 3665 return; 3666 } 3667 3668 head = uhcip->uhci_outst_tds_head; 3669 3670 while (head) { 3671 uhci_trans_wrapper_t *tw_tmp = head->tw; 3672 head_next = head->outst_td_next; 3673 3674 if (pp->pp_qh == tw_tmp->tw_pipe_private->pp_qh) { 3675 curr_reqp = tw_tmp->tw_curr_xfer_reqp; 3676 if (curr_reqp && 3677 ((what == UHCI_IN_CLOSE) || 3678 (what == UHCI_IN_RESET))) { 3679 uhci_hcdi_callback(uhcip, pp, 3680 pp->pp_pipe_handle, 3681 tw_tmp, USB_CR_FLUSHED); 3682 } /* end of curr_reqp */ 3683 3684 uhci_delete_td(uhcip, head); 3685 3686 if (what == UHCI_IN_CLOSE || what == UHCI_IN_RESET) { 3687 ASSERT(info->num_tds > 0); 3688 if (--info->num_tds == 0) { 3689 uhci_deallocate_tw(uhcip, pp, tw_tmp); 3690 3691 /* 3692 * This will make sure that the HC 3693 * does not loop anymore when there 3694 * are no pending bulk commands. 3695 */ 3696 if (--uhcip->uhci_pending_bulk_cmds 3697 == 0) { 3698 uhcip->uhci_bulk_xfers_q_tail-> 3699 link_ptr = HC_END_OF_LIST; 3700 USB_DPRINTF_L3(PRINT_MASK_ATTA, 3701 uhcip->uhci_log_hdl, 3702 "uhci_remove_bulk_tds_tws:" 3703 " count = %d", 3704 uhcip-> 3705 uhci_pending_bulk_cmds); 3706 } 3707 } 3708 } 3709 } 3710 3711 head = head_next; 3712 } 3713 3714 if (what == UHCI_IN_CLOSE || what == UHCI_IN_RESET) { 3715 ASSERT(info->num_tds == 0); 3716 } 3717 3718 for (i = 0; i < info->num_pools; i++) { 3719 td_pool_ptr = &info->td_pools[i]; 3720 rval = ddi_dma_unbind_handle(td_pool_ptr->dma_handle); 3721 ASSERT(rval == DDI_SUCCESS); 3722 ddi_dma_mem_free(&td_pool_ptr->mem_handle); 3723 ddi_dma_free_handle(&td_pool_ptr->dma_handle); 3724 } 3725 kmem_free(info->td_pools, (sizeof (uhci_bulk_isoc_td_pool_t) * 3726 info->num_pools)); 3727 kmem_free(info, sizeof (uhci_bulk_isoc_xfer_t)); 3728 pp->pp_qh->bulk_xfer_info = NULL; 3729 } 3730 3731 3732 /* 3733 * uhci_save_data_toggle () 3734 * Save the data toggle in the usba_device structure 3735 */ 3736 void 3737 uhci_save_data_toggle(uhci_pipe_private_t *pp) 3738 { 3739 usba_pipe_handle_data_t *ph = pp->pp_pipe_handle; 3740 3741 /* Save the data toggle in the usb devices structure. */ 3742 mutex_enter(&ph->p_mutex); 3743 usba_hcdi_set_data_toggle(ph->p_usba_device, ph->p_ep.bEndpointAddress, 3744 pp->pp_data_toggle); 3745 mutex_exit(&ph->p_mutex); 3746 } 3747 3748 /* 3749 * uhci_create_isoc_transfer_wrapper: 3750 * Create a Transaction Wrapper (TW) for isoc transfer. 3751 * This involves the allocating of DMA resources. 3752 * 3753 * For isoc transfers, one isoc transfer includes multiple packets 3754 * and each packet may have a different length. So each packet is 3755 * transfered by one TD. We only know the individual packet length 3756 * won't exceed 1023 bytes, but we don't know exactly the lengths. 3757 * It is hard to make one physically discontiguous DMA buffer which 3758 * can fit in all the TDs like what can be done to the ctrl/bulk/ 3759 * intr transfers. It is also undesirable to make one physically 3760 * contiguous DMA buffer for all the packets, since this may easily 3761 * fail when the system is in low memory. So an individual DMA 3762 * buffer is allocated for an individual isoc packet and each DMA 3763 * buffer is physically contiguous. An extra structure is allocated 3764 * to save the multiple DMA handles. 3765 */ 3766 static uhci_trans_wrapper_t * 3767 uhci_create_isoc_transfer_wrapper( 3768 uhci_state_t *uhcip, 3769 uhci_pipe_private_t *pp, 3770 usb_isoc_req_t *req, 3771 size_t length, 3772 usb_flags_t usb_flags) 3773 { 3774 int result; 3775 size_t real_length, strtlen, xfer_size; 3776 uhci_trans_wrapper_t *tw; 3777 ddi_device_acc_attr_t dev_attr; 3778 ddi_dma_attr_t dma_attr; 3779 int kmem_flag; 3780 int (*dmamem_wait)(caddr_t); 3781 uint_t i, j, ccount; 3782 usb_isoc_req_t *tmp_req = req; 3783 3784 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 3785 3786 if (UHCI_XFER_TYPE(&pp->pp_pipe_handle->p_ep) != USB_EP_ATTR_ISOCH) { 3787 3788 return (NULL); 3789 } 3790 3791 if ((req == NULL) && (UHCI_XFER_DIR(&pp->pp_pipe_handle->p_ep) == 3792 USB_EP_DIR_IN)) { 3793 tmp_req = (usb_isoc_req_t *)pp->pp_client_periodic_in_reqp; 3794 } 3795 3796 if (tmp_req == NULL) { 3797 3798 return (NULL); 3799 } 3800 3801 3802 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3803 "uhci_create_isoc_transfer_wrapper: length = 0x%lx flags = 0x%x", 3804 length, usb_flags); 3805 3806 /* SLEEP flag should not be used in interrupt context */ 3807 if (servicing_interrupt()) { 3808 kmem_flag = KM_NOSLEEP; 3809 dmamem_wait = DDI_DMA_DONTWAIT; 3810 } else { 3811 kmem_flag = KM_SLEEP; 3812 dmamem_wait = DDI_DMA_SLEEP; 3813 } 3814 3815 /* Allocate space for the transfer wrapper */ 3816 if ((tw = kmem_zalloc(sizeof (uhci_trans_wrapper_t), kmem_flag)) == 3817 NULL) { 3818 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3819 "uhci_create_isoc_transfer_wrapper: kmem_alloc failed"); 3820 3821 return (NULL); 3822 } 3823 3824 /* Allocate space for the isoc buffer handles */ 3825 strtlen = sizeof (uhci_isoc_buf_t) * tmp_req->isoc_pkts_count; 3826 if ((tw->tw_isoc_bufs = kmem_zalloc(strtlen, kmem_flag)) == NULL) { 3827 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3828 "uhci_create_isoc_transfer_wrapper: kmem_alloc " 3829 "isoc buffer failed"); 3830 kmem_free(tw, sizeof (uhci_trans_wrapper_t)); 3831 3832 return (NULL); 3833 } 3834 3835 bcopy(&uhcip->uhci_dma_attr, &dma_attr, sizeof (ddi_dma_attr_t)); 3836 dma_attr.dma_attr_sgllen = 1; 3837 3838 dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 3839 dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 3840 dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 3841 3842 /* Store the transfer length */ 3843 tw->tw_length = length; 3844 3845 for (i = 0; i < tmp_req->isoc_pkts_count; i++) { 3846 tw->tw_isoc_bufs[i].index = (ushort_t)i; 3847 3848 /* Allocate the DMA handle */ 3849 if ((result = ddi_dma_alloc_handle(uhcip->uhci_dip, &dma_attr, 3850 dmamem_wait, 0, &tw->tw_isoc_bufs[i].dma_handle)) != 3851 DDI_SUCCESS) { 3852 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3853 "uhci_create_isoc_transfer_wrapper: " 3854 "Alloc handle %d failed", i); 3855 3856 for (j = 0; j < i; j++) { 3857 result = ddi_dma_unbind_handle( 3858 tw->tw_isoc_bufs[j].dma_handle); 3859 ASSERT(result == USB_SUCCESS); 3860 ddi_dma_mem_free(&tw->tw_isoc_bufs[j]. 3861 mem_handle); 3862 ddi_dma_free_handle(&tw->tw_isoc_bufs[j]. 3863 dma_handle); 3864 } 3865 kmem_free(tw->tw_isoc_bufs, strtlen); 3866 kmem_free(tw, sizeof (uhci_trans_wrapper_t)); 3867 3868 return (NULL); 3869 } 3870 3871 /* Allocate the memory */ 3872 xfer_size = tmp_req->isoc_pkt_descr[i].isoc_pkt_length; 3873 if ((result = ddi_dma_mem_alloc(tw->tw_isoc_bufs[i].dma_handle, 3874 xfer_size, &dev_attr, DDI_DMA_CONSISTENT, dmamem_wait, 3875 NULL, (caddr_t *)&tw->tw_isoc_bufs[i].buf_addr, 3876 &real_length, &tw->tw_isoc_bufs[i].mem_handle)) != 3877 DDI_SUCCESS) { 3878 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3879 "uhci_create_isoc_transfer_wrapper: " 3880 "dma_mem_alloc %d fail", i); 3881 ddi_dma_free_handle(&tw->tw_isoc_bufs[i].dma_handle); 3882 3883 for (j = 0; j < i; j++) { 3884 result = ddi_dma_unbind_handle( 3885 tw->tw_isoc_bufs[j].dma_handle); 3886 ASSERT(result == USB_SUCCESS); 3887 ddi_dma_mem_free(&tw->tw_isoc_bufs[j]. 3888 mem_handle); 3889 ddi_dma_free_handle(&tw->tw_isoc_bufs[j]. 3890 dma_handle); 3891 } 3892 kmem_free(tw->tw_isoc_bufs, strtlen); 3893 kmem_free(tw, sizeof (uhci_trans_wrapper_t)); 3894 3895 return (NULL); 3896 } 3897 3898 ASSERT(real_length >= xfer_size); 3899 3900 /* Bind the handle */ 3901 result = ddi_dma_addr_bind_handle( 3902 tw->tw_isoc_bufs[i].dma_handle, NULL, 3903 (caddr_t)tw->tw_isoc_bufs[i].buf_addr, real_length, 3904 DDI_DMA_RDWR|DDI_DMA_CONSISTENT, dmamem_wait, NULL, 3905 &tw->tw_isoc_bufs[i].cookie, &ccount); 3906 3907 if ((result == DDI_DMA_MAPPED) && (ccount == 1)) { 3908 tw->tw_isoc_bufs[i].length = xfer_size; 3909 3910 continue; 3911 } else { 3912 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3913 "uhci_create_isoc_transfer_wrapper: " 3914 "Bind handle %d failed", i); 3915 if (result == DDI_DMA_MAPPED) { 3916 result = ddi_dma_unbind_handle( 3917 tw->tw_isoc_bufs[i].dma_handle); 3918 ASSERT(result == USB_SUCCESS); 3919 } 3920 ddi_dma_mem_free(&tw->tw_isoc_bufs[i].mem_handle); 3921 ddi_dma_free_handle(&tw->tw_isoc_bufs[i].dma_handle); 3922 3923 for (j = 0; j < i; j++) { 3924 result = ddi_dma_unbind_handle( 3925 tw->tw_isoc_bufs[j].dma_handle); 3926 ASSERT(result == USB_SUCCESS); 3927 ddi_dma_mem_free(&tw->tw_isoc_bufs[j]. 3928 mem_handle); 3929 ddi_dma_free_handle(&tw->tw_isoc_bufs[j]. 3930 dma_handle); 3931 } 3932 kmem_free(tw->tw_isoc_bufs, strtlen); 3933 kmem_free(tw, sizeof (uhci_trans_wrapper_t)); 3934 3935 return (NULL); 3936 } 3937 } 3938 3939 tw->tw_ncookies = tmp_req->isoc_pkts_count; 3940 tw->tw_isoc_strtlen = strtlen; 3941 3942 /* 3943 * Only allow one wrapper to be added at a time. Insert the 3944 * new transaction wrapper into the list for this pipe. 3945 */ 3946 if (pp->pp_tw_head == NULL) { 3947 pp->pp_tw_head = tw; 3948 pp->pp_tw_tail = tw; 3949 } else { 3950 pp->pp_tw_tail->tw_next = tw; 3951 pp->pp_tw_tail = tw; 3952 ASSERT(tw->tw_next == NULL); 3953 } 3954 3955 /* Store a back pointer to the pipe private structure */ 3956 tw->tw_pipe_private = pp; 3957 3958 /* Store the transfer type - synchronous or asynchronous */ 3959 tw->tw_flags = usb_flags; 3960 3961 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 3962 "uhci_create_isoc_transfer_wrapper: tw = 0x%p, ncookies = %u", 3963 (void *)tw, tw->tw_ncookies); 3964 3965 return (tw); 3966 } 3967 3968 /* 3969 * uhci_insert_isoc_td: 3970 * - Create transfer wrapper 3971 * - Allocate memory for the isoc td's 3972 * - Fill up all the TD's and submit to the HC 3973 * - Update all the linked lists 3974 */ 3975 int 3976 uhci_insert_isoc_td( 3977 uhci_state_t *uhcip, 3978 usba_pipe_handle_data_t *ph, 3979 usb_isoc_req_t *isoc_req, 3980 size_t length, 3981 usb_flags_t flags) 3982 { 3983 int rval = USB_SUCCESS; 3984 int error; 3985 uint_t ddic; 3986 uint32_t i, j, index; 3987 uint32_t bytes_to_xfer; 3988 uint32_t expired_frames = 0; 3989 usb_frame_number_t start_frame, end_frame, current_frame; 3990 uhci_td_t *td_ptr; 3991 uhci_pipe_private_t *pp = (uhci_pipe_private_t *)ph->p_hcd_private; 3992 uhci_trans_wrapper_t *tw; 3993 uhci_bulk_isoc_xfer_t *isoc_xfer_info; 3994 uhci_bulk_isoc_td_pool_t *td_pool_ptr; 3995 3996 USB_DPRINTF_L4(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 3997 "uhci_insert_isoc_td: ph = 0x%p isoc req = %p length = %lu", 3998 (void *)ph, (void *)isoc_req, length); 3999 4000 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 4001 4002 /* Allocate a transfer wrapper */ 4003 if ((tw = uhci_create_isoc_transfer_wrapper(uhcip, pp, isoc_req, 4004 length, flags)) == NULL) { 4005 USB_DPRINTF_L2(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4006 "uhci_insert_isoc_td: TW allocation failed"); 4007 4008 return (USB_NO_RESOURCES); 4009 } 4010 4011 /* Save current isochronous request pointer */ 4012 tw->tw_curr_xfer_reqp = (usb_opaque_t)isoc_req; 4013 4014 /* 4015 * Initialize the transfer wrapper. These values are useful 4016 * for sending back the reply. 4017 */ 4018 tw->tw_handle_td = uhci_handle_isoc_td; 4019 tw->tw_handle_callback_value = NULL; 4020 tw->tw_direction = (UHCI_XFER_DIR(&ph->p_ep) == USB_EP_DIR_OUT) ? 4021 PID_OUT : PID_IN; 4022 4023 /* 4024 * If the transfer isoc send, then copy the data from the request 4025 * to the transfer wrapper. 4026 */ 4027 if ((tw->tw_direction == PID_OUT) && length) { 4028 uchar_t *p; 4029 4030 ASSERT(isoc_req->isoc_data != NULL); 4031 p = isoc_req->isoc_data->b_rptr; 4032 4033 /* Copy the data into the message */ 4034 for (i = 0; i < isoc_req->isoc_pkts_count; i++) { 4035 ddi_rep_put8(tw->tw_isoc_bufs[i].mem_handle, 4036 p, (uint8_t *)tw->tw_isoc_bufs[i].buf_addr, 4037 isoc_req->isoc_pkt_descr[i].isoc_pkt_length, 4038 DDI_DEV_AUTOINCR); 4039 p += isoc_req->isoc_pkt_descr[i].isoc_pkt_length; 4040 } 4041 } 4042 4043 if (tw->tw_direction == PID_IN) { 4044 if ((rval = uhci_allocate_periodic_in_resource(uhcip, pp, tw, 4045 flags)) != USB_SUCCESS) { 4046 USB_DPRINTF_L2(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4047 "uhci_insert_isoc_td: isoc_req_t alloc failed"); 4048 uhci_deallocate_tw(uhcip, pp, tw); 4049 4050 return (rval); 4051 } 4052 4053 isoc_req = (usb_isoc_req_t *)tw->tw_curr_xfer_reqp; 4054 } 4055 4056 tw->tw_isoc_req = (usb_isoc_req_t *)tw->tw_curr_xfer_reqp; 4057 4058 /* Get the pointer to the isoc_xfer_info structure */ 4059 isoc_xfer_info = (uhci_bulk_isoc_xfer_t *)&tw->tw_xfer_info; 4060 isoc_xfer_info->num_tds = isoc_req->isoc_pkts_count; 4061 4062 /* 4063 * Allocate memory for isoc tds 4064 */ 4065 if ((rval = uhci_alloc_bulk_isoc_tds(uhcip, isoc_req->isoc_pkts_count, 4066 isoc_xfer_info)) != USB_SUCCESS) { 4067 USB_DPRINTF_L2(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4068 "uhci_alloc_bulk_isoc_td: Memory allocation failure"); 4069 4070 if (tw->tw_direction == PID_IN) { 4071 uhci_deallocate_periodic_in_resource(uhcip, pp, tw); 4072 } 4073 uhci_deallocate_tw(uhcip, pp, tw); 4074 4075 return (rval); 4076 } 4077 4078 /* 4079 * Get the isoc td pool address, buffer address and 4080 * max packet size that the device supports. 4081 */ 4082 td_pool_ptr = &isoc_xfer_info->td_pools[0]; 4083 td_ptr = (uhci_td_t *)td_pool_ptr->pool_addr; 4084 index = 0; 4085 4086 /* 4087 * Fill up the isoc tds 4088 */ 4089 USB_DPRINTF_L3(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4090 "uhci_insert_isoc_td : isoc pkts %d", isoc_req->isoc_pkts_count); 4091 4092 for (i = 0; i < isoc_xfer_info->num_pools; i++) { 4093 for (j = 0; j < td_pool_ptr->num_tds; j++) { 4094 bytes_to_xfer = 4095 isoc_req->isoc_pkt_descr[index].isoc_pkt_length; 4096 4097 uhci_fill_in_bulk_isoc_td(uhcip, &td_ptr[j], 4098 (uhci_td_t *)NULL, HC_END_OF_LIST, ph, index, 4099 bytes_to_xfer, tw); 4100 td_ptr[j].isoc_pkt_index = (ushort_t)index; 4101 index++; 4102 } 4103 4104 if (i < (isoc_xfer_info->num_pools - 1)) { 4105 td_pool_ptr = &isoc_xfer_info->td_pools[i + 1]; 4106 td_ptr = (uhci_td_t *)td_pool_ptr->pool_addr; 4107 } 4108 } 4109 4110 /* 4111 * Get the starting frame number. 4112 * The client drivers sets the flag USB_ATTRS_ISOC_XFER_ASAP to inform 4113 * the HCD to care of starting frame number. 4114 * 4115 * Following code is very time critical. So, perform atomic execution. 4116 */ 4117 ddic = ddi_enter_critical(); 4118 current_frame = uhci_get_sw_frame_number(uhcip); 4119 4120 if (isoc_req->isoc_attributes & USB_ATTRS_ISOC_START_FRAME) { 4121 start_frame = isoc_req->isoc_frame_no; 4122 end_frame = start_frame + isoc_req->isoc_pkts_count; 4123 4124 /* Check available frames */ 4125 if ((end_frame - current_frame) < UHCI_MAX_ISOC_FRAMES) { 4126 if (current_frame > start_frame) { 4127 if ((current_frame + FRNUM_OFFSET) < 4128 end_frame) { 4129 expired_frames = current_frame + 4130 FRNUM_OFFSET - start_frame; 4131 start_frame = current_frame + 4132 FRNUM_OFFSET; 4133 } else { 4134 rval = USB_INVALID_START_FRAME; 4135 } 4136 } 4137 } else { 4138 rval = USB_INVALID_START_FRAME; 4139 } 4140 4141 } else if (isoc_req->isoc_attributes & USB_ATTRS_ISOC_XFER_ASAP) { 4142 start_frame = pp->pp_frame_num; 4143 4144 if (start_frame == INVALID_FRNUM) { 4145 start_frame = current_frame + FRNUM_OFFSET; 4146 } else if (current_frame > start_frame) { 4147 start_frame = current_frame + FRNUM_OFFSET; 4148 } 4149 4150 end_frame = start_frame + isoc_req->isoc_pkts_count; 4151 isoc_req->isoc_frame_no = start_frame; 4152 4153 } 4154 4155 if (rval != USB_SUCCESS) { 4156 4157 /* Exit the critical */ 4158 ddi_exit_critical(ddic); 4159 4160 USB_DPRINTF_L2(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4161 "uhci_insert_isoc_td: Invalid starting frame number"); 4162 4163 if (tw->tw_direction == PID_IN) { 4164 uhci_deallocate_periodic_in_resource(uhcip, pp, tw); 4165 } 4166 4167 while (tw->tw_hctd_head) { 4168 uhci_delete_td(uhcip, tw->tw_hctd_head); 4169 } 4170 4171 for (i = 0; i < isoc_xfer_info->num_pools; i++) { 4172 td_pool_ptr = &isoc_xfer_info->td_pools[i]; 4173 error = ddi_dma_unbind_handle(td_pool_ptr->dma_handle); 4174 ASSERT(error == DDI_SUCCESS); 4175 ddi_dma_mem_free(&td_pool_ptr->mem_handle); 4176 ddi_dma_free_handle(&td_pool_ptr->dma_handle); 4177 } 4178 kmem_free(isoc_xfer_info->td_pools, 4179 (sizeof (uhci_bulk_isoc_td_pool_t) * 4180 isoc_xfer_info->num_pools)); 4181 4182 uhci_deallocate_tw(uhcip, pp, tw); 4183 4184 return (rval); 4185 } 4186 4187 for (i = 0; i < expired_frames; i++) { 4188 isoc_req->isoc_pkt_descr[i].isoc_pkt_status = 4189 USB_CR_NOT_ACCESSED; 4190 isoc_req->isoc_pkt_descr[i].isoc_pkt_actual_length = 4191 isoc_req->isoc_pkt_descr[i].isoc_pkt_length; 4192 uhci_get_isoc_td_by_index(uhcip, isoc_xfer_info, i, 4193 &td_ptr, &td_pool_ptr); 4194 uhci_delete_td(uhcip, td_ptr); 4195 --isoc_xfer_info->num_tds; 4196 } 4197 4198 /* 4199 * Add the TD's to the HC list 4200 */ 4201 start_frame = (start_frame & 0x3ff); 4202 for (; i < isoc_req->isoc_pkts_count; i++) { 4203 uhci_get_isoc_td_by_index(uhcip, isoc_xfer_info, i, 4204 &td_ptr, &td_pool_ptr); 4205 if (uhcip->uhci_isoc_q_tailp[start_frame]) { 4206 td_ptr->isoc_prev = 4207 uhcip->uhci_isoc_q_tailp[start_frame]; 4208 td_ptr->isoc_next = NULL; 4209 td_ptr->link_ptr = 4210 uhcip->uhci_isoc_q_tailp[start_frame]->link_ptr; 4211 uhcip->uhci_isoc_q_tailp[start_frame]->isoc_next = 4212 td_ptr; 4213 SetTD32(uhcip, 4214 uhcip->uhci_isoc_q_tailp[start_frame]->link_ptr, 4215 ISOCTD_PADDR(td_pool_ptr, td_ptr)); 4216 uhcip->uhci_isoc_q_tailp[start_frame] = td_ptr; 4217 } else { 4218 uhcip->uhci_isoc_q_tailp[start_frame] = td_ptr; 4219 td_ptr->isoc_next = NULL; 4220 td_ptr->isoc_prev = NULL; 4221 SetTD32(uhcip, td_ptr->link_ptr, 4222 GetFL32(uhcip, 4223 uhcip->uhci_frame_lst_tablep[start_frame])); 4224 SetFL32(uhcip, 4225 uhcip->uhci_frame_lst_tablep[start_frame], 4226 ISOCTD_PADDR(td_pool_ptr, td_ptr)); 4227 } 4228 td_ptr->starting_frame = (uint_t)start_frame; 4229 4230 if (++start_frame == NUM_FRAME_LST_ENTRIES) 4231 start_frame = 0; 4232 } 4233 4234 ddi_exit_critical(ddic); 4235 pp->pp_frame_num = end_frame; 4236 4237 USB_DPRINTF_L4(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4238 "uhci_insert_isoc_td: current frame number 0x%llx, pipe frame num" 4239 " 0x%llx", (unsigned long long)current_frame, 4240 (unsigned long long)(pp->pp_frame_num)); 4241 4242 return (rval); 4243 } 4244 4245 4246 /* 4247 * uhci_get_isoc_td_by_index: 4248 * Obtain the addresses of the TD pool and the TD at the index. 4249 * 4250 * tdpp - pointer to the address of the TD at the isoc packet index 4251 * td_pool_pp - pointer to the address of the TD pool containing 4252 * the specified TD 4253 */ 4254 /* ARGSUSED */ 4255 static void 4256 uhci_get_isoc_td_by_index( 4257 uhci_state_t *uhcip, 4258 uhci_bulk_isoc_xfer_t *info, 4259 uint_t index, 4260 uhci_td_t **tdpp, 4261 uhci_bulk_isoc_td_pool_t **td_pool_pp) 4262 { 4263 uint_t i = 0, j = 0; 4264 uhci_td_t *td_ptr; 4265 4266 while (j < info->num_pools) { 4267 if ((i + info->td_pools[j].num_tds) <= index) { 4268 i += info->td_pools[j].num_tds; 4269 j++; 4270 } else { 4271 i = index - i; 4272 4273 break; 4274 } 4275 } 4276 4277 ASSERT(j < info->num_pools); 4278 *td_pool_pp = &info->td_pools[j]; 4279 td_ptr = (uhci_td_t *)((*td_pool_pp)->pool_addr); 4280 *tdpp = &td_ptr[i]; 4281 } 4282 4283 4284 /* 4285 * uhci_handle_isoc_td: 4286 * Handles the completed isoc tds 4287 */ 4288 void 4289 uhci_handle_isoc_td(uhci_state_t *uhcip, uhci_td_t *td) 4290 { 4291 uint_t rval, i; 4292 uint32_t pkt_index = td->isoc_pkt_index; 4293 usb_cr_t cr; 4294 uhci_trans_wrapper_t *tw = td->tw; 4295 usb_isoc_req_t *isoc_req = (usb_isoc_req_t *)tw->tw_isoc_req; 4296 uhci_pipe_private_t *pp = tw->tw_pipe_private; 4297 uhci_bulk_isoc_xfer_t *isoc_xfer_info = &tw->tw_xfer_info; 4298 usba_pipe_handle_data_t *usb_pp; 4299 uhci_bulk_isoc_td_pool_t *td_pool_ptr; 4300 4301 USB_DPRINTF_L4(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4302 "uhci_handle_isoc_td: td = 0x%p, pp = 0x%p, tw = 0x%p, req = 0x%p, " 4303 "index = %x", (void *)td, (void *)pp, (void *)tw, (void *)isoc_req, 4304 pkt_index); 4305 4306 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 4307 4308 usb_pp = pp->pp_pipe_handle; 4309 4310 /* 4311 * Check whether there are any errors occurred. If so, update error 4312 * count and return it to the upper.But never return a non zero 4313 * completion reason. 4314 */ 4315 cr = USB_CR_OK; 4316 if (GetTD_status(uhcip, td) & TD_STATUS_MASK) { 4317 USB_DPRINTF_L2(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4318 "uhci_handle_isoc_td: Error Occurred: TD Status = %x", 4319 GetTD_status(uhcip, td)); 4320 isoc_req->isoc_error_count++; 4321 } 4322 4323 if (isoc_req != NULL) { 4324 isoc_req->isoc_pkt_descr[pkt_index].isoc_pkt_status = cr; 4325 isoc_req->isoc_pkt_descr[pkt_index].isoc_pkt_actual_length = 4326 (GetTD_alen(uhcip, td) == ZERO_LENGTH) ? 0 : 4327 GetTD_alen(uhcip, td) + 1; 4328 } 4329 4330 uhci_delete_isoc_td(uhcip, td); 4331 4332 if (--isoc_xfer_info->num_tds != 0) { 4333 USB_DPRINTF_L3(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4334 "uhci_handle_isoc_td: Number of TDs %d", 4335 isoc_xfer_info->num_tds); 4336 4337 return; 4338 } 4339 4340 tw->tw_claim = UHCI_INTR_HDLR_CLAIMED; 4341 if (tw->tw_direction == PID_IN) { 4342 uhci_sendup_td_message(uhcip, cr, tw); 4343 4344 if ((uhci_handle_isoc_receive(uhcip, pp, tw)) != USB_SUCCESS) { 4345 USB_DPRINTF_L3(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4346 "uhci_handle_isoc_td: Drop message"); 4347 } 4348 4349 } else { 4350 /* update kstats only for OUT. sendup_td_msg() does it for IN */ 4351 uhci_do_byte_stats(uhcip, tw->tw_length, 4352 usb_pp->p_ep.bmAttributes, usb_pp->p_ep.bEndpointAddress); 4353 4354 uhci_hcdi_callback(uhcip, pp, usb_pp, tw, USB_CR_OK); 4355 } 4356 4357 for (i = 0; i < isoc_xfer_info->num_pools; i++) { 4358 td_pool_ptr = &isoc_xfer_info->td_pools[i]; 4359 rval = ddi_dma_unbind_handle(td_pool_ptr->dma_handle); 4360 ASSERT(rval == DDI_SUCCESS); 4361 ddi_dma_mem_free(&td_pool_ptr->mem_handle); 4362 ddi_dma_free_handle(&td_pool_ptr->dma_handle); 4363 } 4364 kmem_free(isoc_xfer_info->td_pools, 4365 (sizeof (uhci_bulk_isoc_td_pool_t) * 4366 isoc_xfer_info->num_pools)); 4367 uhci_deallocate_tw(uhcip, pp, tw); 4368 } 4369 4370 4371 /* 4372 * uhci_handle_isoc_receive: 4373 * - Sends the isoc data to the client 4374 * - Inserts another isoc receive request 4375 */ 4376 static int 4377 uhci_handle_isoc_receive( 4378 uhci_state_t *uhcip, 4379 uhci_pipe_private_t *pp, 4380 uhci_trans_wrapper_t *tw) 4381 { 4382 USB_DPRINTF_L4(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4383 "uhci_handle_isoc_receive: tw = 0x%p", (void *)tw); 4384 4385 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 4386 4387 /* 4388 * -- check for pipe state being polling before 4389 * inserting a new request. Check when is TD 4390 * de-allocation being done? (so we can reuse the same TD) 4391 */ 4392 if (uhci_start_isoc_receive_polling(uhcip, 4393 pp->pp_pipe_handle, (usb_isoc_req_t *)tw->tw_curr_xfer_reqp, 4394 0) != USB_SUCCESS) { 4395 USB_DPRINTF_L2(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4396 "uhci_handle_isoc_receive: receive polling failed"); 4397 4398 return (USB_FAILURE); 4399 } 4400 4401 return (USB_SUCCESS); 4402 } 4403 4404 4405 /* 4406 * uhci_delete_isoc_td: 4407 * - Delete from the outstanding command queue 4408 * - Delete from the tw queue 4409 * - Delete from the isoc queue 4410 * - Delete from the HOST CONTROLLER list 4411 */ 4412 static void 4413 uhci_delete_isoc_td(uhci_state_t *uhcip, uhci_td_t *td) 4414 { 4415 uint32_t starting_frame = td->starting_frame; 4416 4417 if ((td->isoc_next == NULL) && (td->isoc_prev == NULL)) { 4418 SetFL32(uhcip, uhcip->uhci_frame_lst_tablep[starting_frame], 4419 GetTD32(uhcip, td->link_ptr)); 4420 uhcip->uhci_isoc_q_tailp[starting_frame] = 0; 4421 } else if (td->isoc_next == NULL) { 4422 td->isoc_prev->link_ptr = td->link_ptr; 4423 td->isoc_prev->isoc_next = NULL; 4424 uhcip->uhci_isoc_q_tailp[starting_frame] = td->isoc_prev; 4425 } else if (td->isoc_prev == NULL) { 4426 td->isoc_next->isoc_prev = NULL; 4427 SetFL32(uhcip, uhcip->uhci_frame_lst_tablep[starting_frame], 4428 GetTD32(uhcip, td->link_ptr)); 4429 } else { 4430 td->isoc_prev->isoc_next = td->isoc_next; 4431 td->isoc_next->isoc_prev = td->isoc_prev; 4432 td->isoc_prev->link_ptr = td->link_ptr; 4433 } 4434 4435 uhci_delete_td(uhcip, td); 4436 } 4437 4438 4439 /* 4440 * uhci_send_isoc_receive 4441 * - Allocates usb_isoc_request 4442 * - Updates the isoc request 4443 * - Inserts the isoc td's into the HC processing list. 4444 */ 4445 int 4446 uhci_start_isoc_receive_polling( 4447 uhci_state_t *uhcip, 4448 usba_pipe_handle_data_t *ph, 4449 usb_isoc_req_t *isoc_req, 4450 usb_flags_t usb_flags) 4451 { 4452 int ii, error; 4453 size_t max_isoc_xfer_size, length, isoc_pkts_length; 4454 ushort_t isoc_pkt_count; 4455 uhci_pipe_private_t *pp = (uhci_pipe_private_t *)ph->p_hcd_private; 4456 usb_isoc_pkt_descr_t *isoc_pkt_descr; 4457 4458 USB_DPRINTF_L4(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4459 "uhci_start_isoc_receive_polling: usb_flags = %x", usb_flags); 4460 4461 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 4462 4463 max_isoc_xfer_size = ph->p_ep.wMaxPacketSize * UHCI_MAX_ISOC_PKTS; 4464 4465 if (isoc_req) { 4466 isoc_pkt_descr = isoc_req->isoc_pkt_descr; 4467 isoc_pkt_count = isoc_req->isoc_pkts_count; 4468 isoc_pkts_length = isoc_req->isoc_pkts_length; 4469 } else { 4470 isoc_pkt_descr = ((usb_isoc_req_t *) 4471 pp->pp_client_periodic_in_reqp)->isoc_pkt_descr; 4472 isoc_pkt_count = ((usb_isoc_req_t *) 4473 pp->pp_client_periodic_in_reqp)->isoc_pkts_count; 4474 isoc_pkts_length = ((usb_isoc_req_t *) 4475 pp->pp_client_periodic_in_reqp)->isoc_pkts_length; 4476 } 4477 4478 for (ii = 0, length = 0; ii < isoc_pkt_count; ii++) { 4479 length += isoc_pkt_descr->isoc_pkt_length; 4480 isoc_pkt_descr++; 4481 } 4482 4483 if ((isoc_pkts_length) && (isoc_pkts_length != length)) { 4484 4485 USB_DPRINTF_L2(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 4486 "uhci_start_isoc_receive_polling: isoc_pkts_length 0x%lx " 4487 "is not equal to the sum of all pkt lengths 0x%lx in " 4488 "an isoc request", isoc_pkts_length, length); 4489 4490 return (USB_FAILURE); 4491 } 4492 4493 /* Check the size of isochronous request */ 4494 if (length > max_isoc_xfer_size) { 4495 USB_DPRINTF_L4(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4496 "uhci_start_isoc_receive_polling: " 4497 "Max isoc request size = %lx, Given isoc req size = %lx", 4498 max_isoc_xfer_size, length); 4499 4500 return (USB_FAILURE); 4501 } 4502 4503 /* Add the TD into the Host Controller's isoc list */ 4504 error = uhci_insert_isoc_td(uhcip, ph, isoc_req, length, usb_flags); 4505 4506 return (error); 4507 } 4508 4509 4510 /* 4511 * uhci_remove_isoc_tds_tws 4512 * This routine scans the pipe and removes all the td's 4513 * and transfer wrappers and deallocates the memory 4514 * associated with those td's and tw's. 4515 */ 4516 void 4517 uhci_remove_isoc_tds_tws(uhci_state_t *uhcip, uhci_pipe_private_t *pp) 4518 { 4519 uint_t rval, i; 4520 uhci_td_t *tmp_td, *td_head; 4521 usb_isoc_req_t *isoc_req; 4522 uhci_trans_wrapper_t *tmp_tw, *tw_head; 4523 uhci_bulk_isoc_xfer_t *isoc_xfer_info; 4524 uhci_bulk_isoc_td_pool_t *td_pool_ptr; 4525 4526 USB_DPRINTF_L4(PRINT_MASK_ISOC, uhcip->uhci_log_hdl, 4527 "uhci_remove_isoc_tds_tws: pp = %p", (void *)pp); 4528 4529 tw_head = pp->pp_tw_head; 4530 while (tw_head) { 4531 tmp_tw = tw_head; 4532 tw_head = tw_head->tw_next; 4533 td_head = tmp_tw->tw_hctd_head; 4534 if (tmp_tw->tw_direction == PID_IN) { 4535 uhci_deallocate_periodic_in_resource(uhcip, pp, 4536 tmp_tw); 4537 } else if (tmp_tw->tw_direction == PID_OUT) { 4538 uhci_hcdi_callback(uhcip, pp, pp->pp_pipe_handle, 4539 tmp_tw, USB_CR_FLUSHED); 4540 } 4541 4542 while (td_head) { 4543 tmp_td = td_head; 4544 td_head = td_head->tw_td_next; 4545 uhci_delete_isoc_td(uhcip, tmp_td); 4546 } 4547 4548 isoc_req = (usb_isoc_req_t *)tmp_tw->tw_isoc_req; 4549 if (isoc_req) { 4550 usb_free_isoc_req(isoc_req); 4551 } 4552 4553 ASSERT(tmp_tw->tw_hctd_head == NULL); 4554 4555 if (tmp_tw->tw_xfer_info.td_pools) { 4556 isoc_xfer_info = 4557 (uhci_bulk_isoc_xfer_t *)&tmp_tw->tw_xfer_info; 4558 for (i = 0; i < isoc_xfer_info->num_pools; i++) { 4559 td_pool_ptr = &isoc_xfer_info->td_pools[i]; 4560 rval = ddi_dma_unbind_handle( 4561 td_pool_ptr->dma_handle); 4562 ASSERT(rval == DDI_SUCCESS); 4563 ddi_dma_mem_free(&td_pool_ptr->mem_handle); 4564 ddi_dma_free_handle(&td_pool_ptr->dma_handle); 4565 } 4566 kmem_free(isoc_xfer_info->td_pools, 4567 (sizeof (uhci_bulk_isoc_td_pool_t) * 4568 isoc_xfer_info->num_pools)); 4569 } 4570 4571 uhci_deallocate_tw(uhcip, pp, tmp_tw); 4572 } 4573 } 4574 4575 4576 /* 4577 * uhci_isoc_update_sw_frame_number() 4578 * to avoid code duplication, call uhci_get_sw_frame_number() 4579 */ 4580 void 4581 uhci_isoc_update_sw_frame_number(uhci_state_t *uhcip) 4582 { 4583 (void) uhci_get_sw_frame_number(uhcip); 4584 } 4585 4586 4587 /* 4588 * uhci_get_sw_frame_number: 4589 * Hold the uhci_int_mutex before calling this routine. 4590 */ 4591 uint64_t 4592 uhci_get_sw_frame_number(uhci_state_t *uhcip) 4593 { 4594 uint64_t sw_frnum, hw_frnum, current_frnum; 4595 4596 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 4597 4598 sw_frnum = uhcip->uhci_sw_frnum; 4599 hw_frnum = Get_OpReg16(FRNUM); 4600 4601 /* 4602 * Check bit 10 in the software counter and hardware frame counter. 4603 * If both are same, then don't increment the software frame counter 4604 * (Bit 10 of hw frame counter toggle for every 1024 frames) 4605 * The lower 11 bits of software counter contains the hardware frame 4606 * counter value. The MSB (bit 10) of software counter is incremented 4607 * for every 1024 frames either here or in get frame number routine. 4608 */ 4609 if ((sw_frnum & UHCI_BIT_10_MASK) == (hw_frnum & UHCI_BIT_10_MASK)) { 4610 /* The MSB of hw counter did not toggle */ 4611 current_frnum = ((sw_frnum & (SW_FRNUM_MASK)) | hw_frnum); 4612 } else { 4613 /* 4614 * The hw counter wrapped around. And the interrupt handler 4615 * did not get a chance to update the sw frame counter. 4616 * So, update the sw frame counter and return correct frame no. 4617 */ 4618 sw_frnum >>= UHCI_SIZE_OF_HW_FRNUM - 1; 4619 current_frnum = 4620 ((++sw_frnum << (UHCI_SIZE_OF_HW_FRNUM - 1)) | hw_frnum); 4621 } 4622 uhcip->uhci_sw_frnum = current_frnum; 4623 4624 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 4625 "uhci_get_sw_frame_number: sw=%lld hd=%lld", 4626 (unsigned long long)(uhcip->uhci_sw_frnum), 4627 (unsigned long long)hw_frnum); 4628 4629 return (current_frnum); 4630 } 4631 4632 4633 /* 4634 * uhci_cmd_timeout_hdlr: 4635 * This routine will get called for every second. It checks for 4636 * timed out control commands/bulk commands. Timeout any commands 4637 * that exceeds the time out period specified by the pipe policy. 4638 */ 4639 void 4640 uhci_cmd_timeout_hdlr(void *arg) 4641 { 4642 uint_t flag = B_FALSE; 4643 uhci_td_t *head, *tmp_td; 4644 uhci_state_t *uhcip = (uhci_state_t *)arg; 4645 uhci_pipe_private_t *pp; 4646 4647 /* 4648 * Check whether any of the control xfers are timed out. 4649 * If so, complete those commands with time out as reason. 4650 */ 4651 mutex_enter(&uhcip->uhci_int_mutex); 4652 head = uhcip->uhci_outst_tds_head; 4653 4654 while (head) { 4655 /* 4656 * If timeout out is zero, then dont timeout command. 4657 */ 4658 if (head->tw->tw_timeout_cnt == 0) { 4659 head = head->outst_td_next; 4660 continue; 4661 } 4662 4663 if (!(head->tw->tw_flags & TW_TIMEOUT_FLAG)) { 4664 head->tw->tw_flags |= TW_TIMEOUT_FLAG; 4665 --head->tw->tw_timeout_cnt; 4666 } 4667 4668 /* only do it for bulk and control TDs */ 4669 if ((head->tw->tw_timeout_cnt == 0) && 4670 (head->tw->tw_handle_td != uhci_handle_isoc_td)) { 4671 4672 USB_DPRINTF_L3(PRINT_MASK_ATTA, uhcip->uhci_log_hdl, 4673 "Command timed out: td = %p", (void *)head); 4674 4675 head->tw->tw_claim = UHCI_TIMEOUT_HDLR_CLAIMED; 4676 4677 /* 4678 * Check finally whether the command completed 4679 */ 4680 if (GetTD_status(uhcip, head) & UHCI_TD_ACTIVE) { 4681 SetTD32(uhcip, head->link_ptr, 4682 GetTD32(uhcip, head->link_ptr) | 4683 HC_END_OF_LIST); 4684 pp = head->tw->tw_pipe_private; 4685 SetQH32(uhcip, pp->pp_qh->element_ptr, 4686 GetQH32(uhcip, pp->pp_qh->element_ptr) | 4687 HC_END_OF_LIST); 4688 } 4689 4690 flag = B_TRUE; 4691 } 4692 4693 head = head->outst_td_next; 4694 } 4695 4696 if (flag) { 4697 (void) uhci_wait_for_sof(uhcip); 4698 } 4699 4700 head = uhcip->uhci_outst_tds_head; 4701 while (head) { 4702 if (head->tw->tw_flags & TW_TIMEOUT_FLAG) { 4703 head->tw->tw_flags &= ~TW_TIMEOUT_FLAG; 4704 } 4705 if (head->tw->tw_claim == UHCI_TIMEOUT_HDLR_CLAIMED) { 4706 head->tw->tw_claim = UHCI_NOT_CLAIMED; 4707 tmp_td = head->tw->tw_hctd_head; 4708 while (tmp_td) { 4709 SetTD_status(uhcip, tmp_td, 4710 UHCI_TD_CRC_TIMEOUT); 4711 tmp_td = tmp_td->tw_td_next; 4712 } 4713 } 4714 head = head->outst_td_next; 4715 } 4716 4717 /* 4718 * Process the td which was completed before shifting from normal 4719 * mode to polled mode 4720 */ 4721 if (uhcip->uhci_polled_flag == UHCI_POLLED_FLAG_TRUE) { 4722 uhci_process_submitted_td_queue(uhcip); 4723 uhcip->uhci_polled_flag = UHCI_POLLED_FLAG_FALSE; 4724 } else if (flag) { 4725 /* Process the completed/timed out commands */ 4726 uhci_process_submitted_td_queue(uhcip); 4727 } 4728 4729 /* Re-register the control/bulk/intr commands' timeout handler */ 4730 if (uhcip->uhci_cmd_timeout_id) { 4731 uhcip->uhci_cmd_timeout_id = timeout(uhci_cmd_timeout_hdlr, 4732 (void *)uhcip, UHCI_ONE_SECOND); 4733 } 4734 4735 mutex_exit(&uhcip->uhci_int_mutex); 4736 } 4737 4738 4739 /* 4740 * uhci_wait_for_sof: 4741 * Wait for the start of the next frame (implying any changes made in the 4742 * lattice have now taken effect). 4743 * To be sure this is the case, we wait for the completion of the current 4744 * frame (which might have already been pending), then another complete 4745 * frame to ensure everything has taken effect. 4746 */ 4747 int 4748 uhci_wait_for_sof(uhci_state_t *uhcip) 4749 { 4750 int n, error; 4751 ushort_t cmd_reg; 4752 usb_frame_number_t before_frame_number, after_frame_number; 4753 clock_t rval; 4754 USB_DPRINTF_L4(PRINT_MASK_LISTS, uhcip->uhci_log_hdl, 4755 "uhci_wait_for_sof: uhcip = %p", (void *)uhcip); 4756 4757 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 4758 4759 error = uhci_state_is_operational(uhcip); 4760 4761 if (error != USB_SUCCESS) { 4762 4763 return (error); 4764 } 4765 4766 before_frame_number = uhci_get_sw_frame_number(uhcip); 4767 for (n = 0; n < MAX_SOF_WAIT_COUNT; n++) { 4768 SetTD_ioc(uhcip, uhcip->uhci_sof_td, 1); 4769 uhcip->uhci_cv_signal = B_TRUE; 4770 4771 rval = cv_reltimedwait(&uhcip->uhci_cv_SOF, 4772 &uhcip->uhci_int_mutex, UHCI_ONE_SECOND, TR_CLOCK_TICK); 4773 4774 after_frame_number = uhci_get_sw_frame_number(uhcip); 4775 if ((rval == -1) && 4776 (after_frame_number <= before_frame_number)) { 4777 cmd_reg = Get_OpReg16(USBCMD); 4778 Set_OpReg16(USBCMD, (cmd_reg | USBCMD_REG_HC_RUN)); 4779 Set_OpReg16(USBINTR, ENABLE_ALL_INTRS); 4780 after_frame_number = uhci_get_sw_frame_number(uhcip); 4781 } 4782 before_frame_number = after_frame_number; 4783 } 4784 4785 SetTD_ioc(uhcip, uhcip->uhci_sof_td, 0); 4786 4787 return (uhcip->uhci_cv_signal ? USB_FAILURE : USB_SUCCESS); 4788 4789 } 4790 4791 /* 4792 * uhci_allocate_periodic_in_resource: 4793 * Allocate interrupt/isochronous request structure for the 4794 * interrupt/isochronous IN transfer. 4795 */ 4796 int 4797 uhci_allocate_periodic_in_resource( 4798 uhci_state_t *uhcip, 4799 uhci_pipe_private_t *pp, 4800 uhci_trans_wrapper_t *tw, 4801 usb_flags_t flags) 4802 { 4803 size_t length = 0; 4804 usb_opaque_t client_periodic_in_reqp; 4805 usb_intr_req_t *cur_intr_req; 4806 usb_isoc_req_t *curr_isoc_reqp; 4807 usba_pipe_handle_data_t *ph = pp->pp_pipe_handle; 4808 4809 USB_DPRINTF_L4(PRINT_MASK_HCDI, uhcip->uhci_log_hdl, 4810 "uhci_allocate_periodic_in_resource:\n\t" 4811 "ph = 0x%p, pp = 0x%p, tw = 0x%p, flags = 0x%x", 4812 (void *)ph, (void *)pp, (void *)tw, flags); 4813 4814 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 4815 4816 /* Check the current periodic in request pointer */ 4817 if (tw->tw_curr_xfer_reqp) { 4818 USB_DPRINTF_L2(PRINT_MASK_HCDI, uhcip->uhci_log_hdl, 4819 "uhci_allocate_periodic_in_resource: Interrupt " 4820 "request structure already exists: " 4821 "allocation failed"); 4822 4823 return (USB_SUCCESS); 4824 } 4825 4826 /* Get the client periodic in request pointer */ 4827 client_periodic_in_reqp = pp->pp_client_periodic_in_reqp; 4828 4829 /* 4830 * If it a periodic IN request and periodic request is NULL, 4831 * allocate corresponding usb periodic IN request for the 4832 * current periodic polling request and copy the information 4833 * from the saved periodic request structure. 4834 */ 4835 if (UHCI_XFER_TYPE(&ph->p_ep) == USB_EP_ATTR_INTR) { 4836 /* Get the interrupt transfer length */ 4837 length = ((usb_intr_req_t *)client_periodic_in_reqp)-> 4838 intr_len; 4839 4840 cur_intr_req = usba_hcdi_dup_intr_req(ph->p_dip, 4841 (usb_intr_req_t *)client_periodic_in_reqp, length, flags); 4842 if (cur_intr_req == NULL) { 4843 USB_DPRINTF_L2(PRINT_MASK_HCDI, uhcip->uhci_log_hdl, 4844 "uhci_allocate_periodic_in_resource: Interrupt " 4845 "request structure allocation failed"); 4846 4847 return (USB_NO_RESOURCES); 4848 } 4849 4850 /* Check and save the timeout value */ 4851 tw->tw_timeout_cnt = (cur_intr_req->intr_attributes & 4852 USB_ATTRS_ONE_XFER) ? cur_intr_req->intr_timeout: 0; 4853 tw->tw_curr_xfer_reqp = (usb_opaque_t)cur_intr_req; 4854 tw->tw_length = cur_intr_req->intr_len; 4855 } else { 4856 ASSERT(client_periodic_in_reqp != NULL); 4857 4858 if ((curr_isoc_reqp = usba_hcdi_dup_isoc_req(ph->p_dip, 4859 (usb_isoc_req_t *)client_periodic_in_reqp, flags)) == 4860 NULL) { 4861 USB_DPRINTF_L2(PRINT_MASK_HCDI, uhcip->uhci_log_hdl, 4862 "uhci_allocate_periodic_in_resource: Isochronous " 4863 "request structure allocation failed"); 4864 4865 return (USB_NO_RESOURCES); 4866 } 4867 4868 /* 4869 * Save the client's isochronous request pointer and 4870 * length of isochronous transfer in transfer wrapper. 4871 * The dup'ed request is saved in pp_client_periodic_in_reqp 4872 */ 4873 tw->tw_curr_xfer_reqp = 4874 (usb_opaque_t)pp->pp_client_periodic_in_reqp; 4875 pp->pp_client_periodic_in_reqp = (usb_opaque_t)curr_isoc_reqp; 4876 } 4877 4878 mutex_enter(&ph->p_mutex); 4879 ph->p_req_count++; 4880 mutex_exit(&ph->p_mutex); 4881 4882 return (USB_SUCCESS); 4883 } 4884 4885 4886 /* 4887 * uhci_deallocate_periodic_in_resource: 4888 * Deallocate interrupt/isochronous request structure for the 4889 * interrupt/isochronous IN transfer. 4890 */ 4891 void 4892 uhci_deallocate_periodic_in_resource( 4893 uhci_state_t *uhcip, 4894 uhci_pipe_private_t *pp, 4895 uhci_trans_wrapper_t *tw) 4896 { 4897 usb_opaque_t curr_xfer_reqp; 4898 usba_pipe_handle_data_t *ph = pp->pp_pipe_handle; 4899 4900 USB_DPRINTF_L4(PRINT_MASK_HCDI, uhcip->uhci_log_hdl, 4901 "uhci_deallocate_periodic_in_resource: " 4902 "pp = 0x%p tw = 0x%p", (void *)pp, (void *)tw); 4903 4904 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 4905 4906 curr_xfer_reqp = tw->tw_curr_xfer_reqp; 4907 if (curr_xfer_reqp) { 4908 /* 4909 * Reset periodic in request usb isoch 4910 * packet request pointers to null. 4911 */ 4912 tw->tw_curr_xfer_reqp = NULL; 4913 tw->tw_isoc_req = NULL; 4914 4915 mutex_enter(&ph->p_mutex); 4916 ph->p_req_count--; 4917 mutex_exit(&ph->p_mutex); 4918 4919 /* 4920 * Free pre-allocated interrupt or isochronous requests. 4921 */ 4922 switch (UHCI_XFER_TYPE(&ph->p_ep)) { 4923 case USB_EP_ATTR_INTR: 4924 usb_free_intr_req((usb_intr_req_t *)curr_xfer_reqp); 4925 break; 4926 case USB_EP_ATTR_ISOCH: 4927 usb_free_isoc_req((usb_isoc_req_t *)curr_xfer_reqp); 4928 break; 4929 } 4930 } 4931 } 4932 4933 4934 /* 4935 * uhci_hcdi_callback() 4936 * convenience wrapper around usba_hcdi_callback() 4937 */ 4938 void 4939 uhci_hcdi_callback(uhci_state_t *uhcip, uhci_pipe_private_t *pp, 4940 usba_pipe_handle_data_t *ph, uhci_trans_wrapper_t *tw, usb_cr_t cr) 4941 { 4942 usb_opaque_t curr_xfer_reqp; 4943 4944 USB_DPRINTF_L4(PRINT_MASK_HCDI, uhcip->uhci_log_hdl, 4945 "uhci_hcdi_callback: ph = 0x%p, tw = 0x%p, cr = 0x%x", 4946 (void *)ph, (void *)tw, cr); 4947 4948 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 4949 4950 if (tw && tw->tw_curr_xfer_reqp) { 4951 curr_xfer_reqp = tw->tw_curr_xfer_reqp; 4952 tw->tw_curr_xfer_reqp = NULL; 4953 tw->tw_isoc_req = NULL; 4954 } else { 4955 ASSERT(pp->pp_client_periodic_in_reqp != NULL); 4956 4957 curr_xfer_reqp = pp->pp_client_periodic_in_reqp; 4958 pp->pp_client_periodic_in_reqp = NULL; 4959 } 4960 4961 ASSERT(curr_xfer_reqp != NULL); 4962 4963 mutex_exit(&uhcip->uhci_int_mutex); 4964 usba_hcdi_cb(ph, curr_xfer_reqp, cr); 4965 mutex_enter(&uhcip->uhci_int_mutex); 4966 } 4967 4968 4969 /* 4970 * uhci_state_is_operational: 4971 * 4972 * Check the Host controller state and return proper values. 4973 */ 4974 int 4975 uhci_state_is_operational(uhci_state_t *uhcip) 4976 { 4977 int val; 4978 4979 ASSERT(mutex_owned(&uhcip->uhci_int_mutex)); 4980 4981 switch (uhcip->uhci_hc_soft_state) { 4982 case UHCI_CTLR_INIT_STATE: 4983 case UHCI_CTLR_SUSPEND_STATE: 4984 val = USB_FAILURE; 4985 break; 4986 case UHCI_CTLR_OPERATIONAL_STATE: 4987 val = USB_SUCCESS; 4988 break; 4989 case UHCI_CTLR_ERROR_STATE: 4990 val = USB_HC_HARDWARE_ERROR; 4991 break; 4992 default: 4993 val = USB_FAILURE; 4994 break; 4995 } 4996 4997 return (val); 4998 } 4999 5000 5001 #ifdef DEBUG 5002 static void 5003 uhci_print_td(uhci_state_t *uhcip, uhci_td_t *td) 5004 { 5005 uint_t *ptr = (uint_t *)td; 5006 5007 #ifndef lint 5008 _NOTE(NO_COMPETING_THREADS_NOW); 5009 #endif 5010 USB_DPRINTF_L3(PRINT_MASK_DUMPING, uhcip->uhci_log_hdl, 5011 "\tDWORD 1 0x%x\t DWORD 2 0x%x", ptr[0], ptr[1]); 5012 USB_DPRINTF_L3(PRINT_MASK_DUMPING, uhcip->uhci_log_hdl, 5013 "\tDWORD 3 0x%x\t DWORD 4 0x%x", ptr[2], ptr[3]); 5014 USB_DPRINTF_L3(PRINT_MASK_DUMPING, uhcip->uhci_log_hdl, 5015 "\tBytes xfered = %d", td->tw->tw_bytes_xfered); 5016 USB_DPRINTF_L3(PRINT_MASK_DUMPING, uhcip->uhci_log_hdl, 5017 "\tBytes Pending = %d", td->tw->tw_bytes_pending); 5018 USB_DPRINTF_L3(PRINT_MASK_DUMPING, uhcip->uhci_log_hdl, 5019 "Queue Head Details:"); 5020 uhci_print_qh(uhcip, td->tw->tw_pipe_private->pp_qh); 5021 5022 #ifndef lint 5023 _NOTE(COMPETING_THREADS_NOW); 5024 #endif 5025 } 5026 5027 5028 static void 5029 uhci_print_qh(uhci_state_t *uhcip, queue_head_t *qh) 5030 { 5031 uint_t *ptr = (uint_t *)qh; 5032 5033 USB_DPRINTF_L3(PRINT_MASK_DUMPING, uhcip->uhci_log_hdl, 5034 "\tLink Ptr = %x Element Ptr = %x", ptr[0], ptr[1]); 5035 } 5036 #endif 5037