xref: /illumos-gate/usr/src/uts/common/io/tl.c (revision bdb9230ac765cb7af3fc1f4119caf2c5720dceb3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Multithreaded STREAMS Local Transport Provider.
28  *
29  * OVERVIEW
30  * ========
31  *
32  * This driver provides TLI as well as socket semantics.  It provides
33  * connectionless, connection oriented, and connection oriented with orderly
34  * release transports for TLI and sockets. Each transport type has separate name
35  * spaces (i.e. it is not possible to connect from a socket to a TLI endpoint) -
36  * this removes any name space conflicts when binding to socket style transport
37  * addresses.
38  *
39  * NOTE: There is one exception: Socket ticots and ticotsord transports share
40  * the same namespace. In fact, sockets always use ticotsord type transport.
41  *
42  * The driver mode is specified during open() by the minor number used for
43  * open.
44  *
45  *  The sockets in addition have the following semantic differences:
46  *  No support for passing up credentials (TL_SET[U]CRED).
47  *
48  *	Options are passed through transparently on T_CONN_REQ to T_CONN_IND,
49  *	from T_UNITDATA_REQ to T_UNIDATA_IND, and from T_OPTDATA_REQ to
50  *	T_OPTDATA_IND.
51  *
52  *	The T_CONN_CON is generated when processing the T_CONN_REQ i.e. before
53  *	a T_CONN_RES is received from the acceptor. This means that a socket
54  *	connect will complete before the peer has called accept.
55  *
56  *
57  * MULTITHREADING
58  * ==============
59  *
60  * The driver does not use STREAMS protection mechanisms. Instead it uses a
61  * generic "serializer" abstraction. Most of the operations are executed behind
62  * the serializer and are, essentially single-threaded. All functions executed
63  * behind the same serializer are strictly serialized. So if one thread calls
64  * serializer_enter(serializer, foo, mp1, arg1); and another thread calls
65  * serializer_enter(serializer, bar, mp2, arg1); then (depending on which one
66  * was called) the actual sequence will be foo(mp1, arg1); bar(mp1, arg2) or
67  * bar(mp1, arg2); foo(mp1, arg1); But foo() and bar() will never run at the
68  * same time.
69  *
70  * Connectionless transport use a single serializer per transport type (one for
71  * TLI and one for sockets. Connection-oriented transports use finer-grained
72  * serializers.
73  *
74  * All COTS-type endpoints start their life with private serializers. During
75  * connection request processing the endpoint serializer is switched to the
76  * listener's serializer and the rest of T_CONN_REQ processing is done on the
77  * listener serializer. During T_CONN_RES processing the eager serializer is
78  * switched from listener to acceptor serializer and after that point all
79  * processing for eager and acceptor happens on this serializer. To avoid races
80  * with endpoint closes while its serializer may be changing closes are blocked
81  * while serializers are manipulated.
82  *
83  * References accounting
84  * ---------------------
85  *
86  * Endpoints are reference counted and freed when the last reference is
87  * dropped. Functions within the serializer may access an endpoint state even
88  * after an endpoint closed. The te_closing being set on the endpoint indicates
89  * that the endpoint entered its close routine.
90  *
91  * One reference is held for each opened endpoint instance. The reference
92  * counter is incremented when the endpoint is linked to another endpoint and
93  * decremented when the link disappears. It is also incremented when the
94  * endpoint is found by the hash table lookup. This increment is atomic with the
95  * lookup itself and happens while the hash table read lock is held.
96  *
97  * Close synchronization
98  * ---------------------
99  *
100  * During close the endpoint as marked as closing using te_closing flag. It is
101  * usually enough to check for te_closing flag since all other state changes
102  * happen after this flag is set and the close entered serializer. Immediately
103  * after setting te_closing flag tl_close() enters serializer and waits until
104  * the callback finishes. This allows all functions called within serializer to
105  * simply check te_closing without any locks.
106  *
107  * Serializer management.
108  * ---------------------
109  *
110  * For COTS transports serializers are created when the endpoint is constructed
111  * and destroyed when the endpoint is destructed. CLTS transports use global
112  * serializers - one for sockets and one for TLI.
113  *
114  * COTS serializers have separate reference counts to deal with several
115  * endpoints sharing the same serializer. There is a subtle problem related to
116  * the serializer destruction. The serializer should never be destroyed by any
117  * function executed inside serializer. This means that close has to wait till
118  * all serializer activity for this endpoint is finished before it can drop the
119  * last reference on the endpoint (which may as well free the serializer).  This
120  * is only relevant for COTS transports which manage serializers
121  * dynamically. For CLTS transports close may complete without waiting for all
122  * serializer activity to finish since serializer is only destroyed at driver
123  * detach time.
124  *
125  * COTS endpoints keep track of the number of outstanding requests on the
126  * serializer for the endpoint. The code handling accept() avoids changing
127  * client serializer if it has any pending messages on the serializer and
128  * instead moves acceptor to listener's serializer.
129  *
130  *
131  * Use of hash tables
132  * ------------------
133  *
134  * The driver uses modhash hash table implementation. Each transport uses two
135  * hash tables - one for finding endpoints by acceptor ID and another one for
136  * finding endpoints by address. For sockets TICOTS and TICOTSORD share the same
137  * pair of hash tables since sockets only use TICOTSORD.
138  *
139  * All hash tables lookups increment a reference count for returned endpoints,
140  * so we may safely check the endpoint state even when the endpoint is removed
141  * from the hash by another thread immediately after it is found.
142  *
143  *
144  * CLOSE processing
145  * ================
146  *
147  * The driver enters serializer twice on close(). The close sequence is the
148  * following:
149  *
150  * 1) Wait until closing is safe (te_closewait becomes zero)
151  *	This step is needed to prevent close during serializer switches. In most
152  *	cases (close happening after connection establishment) te_closewait is
153  *	zero.
154  * 1) Set te_closing.
155  * 2) Call tl_close_ser() within serializer and wait for it to complete.
156  *
157  *      te_close_ser simply marks endpoint and wakes up waiting tl_close().
158  *	It also needs to clear write-side q_next pointers - this should be done
159  *	before qprocsoff().
160  *
161  *    This synchronous serializer entry during close is needed to ensure that
162  *    the queue is valid everywhere inside the serializer.
163  *
164  *    Note that in many cases close will execute tl_close_ser() synchronously,
165  *    so it will not wait at all.
166  *
167  * 3) Calls qprocsoff().
168  * 4) Calls tl_close_finish_ser() within the serializer and waits for it to
169  *	complete (for COTS transports). For CLTS transport there is no wait.
170  *
171  *	tl_close_finish_ser() Finishes the close process and wakes up waiting
172  *	close if there is any.
173  *
174  *    Note that in most cases close will enter te_close_ser_finish()
175  *    synchronously and will not wait at all.
176  *
177  *
178  * Flow Control
179  * ============
180  *
181  * The driver implements both read and write side service routines. No one calls
182  * putq() on the read queue. The read side service routine tl_rsrv() is called
183  * when the read side stream is back-enabled. It enters serializer synchronously
184  * (waits till serializer processing is complete). Within serializer it
185  * back-enables all endpoints blocked by the queue for connection-less
186  * transports and enables write side service processing for the peer for
187  * connection-oriented transports.
188  *
189  * Read and write side service routines use special mblk_sized space in the
190  * endpoint structure to enter perimeter.
191  *
192  * Write-side flow control
193  * -----------------------
194  *
195  * Write side flow control is a bit tricky. The driver needs to deal with two
196  * message queues - the explicit STREAMS message queue maintained by
197  * putq()/getq()/putbq() and the implicit queue within the serializer. These two
198  * queues should be synchronized to preserve message ordering and should
199  * maintain a single order determined by the order in which messages enter
200  * tl_wput(). In order to maintain the ordering between these two queues the
201  * STREAMS queue is only manipulated within the serializer, so the ordering is
202  * provided by the serializer.
203  *
204  * Functions called from the tl_wsrv() sometimes may call putbq(). To
205  * immediately stop any further processing of the STREAMS message queues the
206  * code calling putbq() also sets the te_nowsrv flag in the endpoint. The write
207  * side service processing stops when the flag is set.
208  *
209  * The tl_wsrv() function enters serializer synchronously and waits for it to
210  * complete. The serializer call-back tl_wsrv_ser() either drains all messages
211  * on the STREAMS queue or terminates when it notices the te_nowsrv flag
212  * set. Note that the maximum amount of messages processed by tl_wput_ser() is
213  * always bounded by the amount of messages on the STREAMS queue at the time
214  * tl_wsrv_ser() is entered. Any new messages may only appear on the STREAMS
215  * queue from another serialized entry which can't happen in parallel. This
216  * guarantees that tl_wput_ser() is complete in bounded time (there is no risk
217  * of it draining forever while writer places new messages on the STREAMS
218  * queue).
219  *
220  * Note that a closing endpoint never sets te_nowsrv and never calls putbq().
221  *
222  *
223  * Unix Domain Sockets
224  * ===================
225  *
226  * The driver knows the structure of Unix Domain sockets addresses and treats
227  * them differently from generic TLI addresses. For sockets implicit binds are
228  * requested by setting SOU_MAGIC_IMPLICIT in the soua_magic part of the address
229  * instead of using address length of zero. Explicit binds specify
230  * SOU_MAGIC_EXPLICIT as magic.
231  *
232  * For implicit binds we always use minor number as soua_vp part of the address
233  * and avoid any hash table lookups. This saves two hash tables lookups per
234  * anonymous bind.
235  *
236  * For explicit address we hash the vnode pointer instead of hashing the
237  * full-scale address+zone+length. Hashing by pointer is more efficient then
238  * hashing by the full address.
239  *
240  * For unix domain sockets the te_ap is always pointing to te_uxaddr part of the
241  * tep structure, so it should be never freed.
242  *
243  * Also for sockets the driver always uses minor number as acceptor id.
244  *
245  * TPI VIOLATIONS
246  * --------------
247  *
248  * This driver violates TPI in several respects for Unix Domain Sockets:
249  *
250  * 1) It treats O_T_BIND_REQ as T_BIND_REQ and refuses bind if an explicit bind
251  *	is requested and the endpoint is already in use. There is no point in
252  *	generating an unused address since this address will be rejected by
253  *	sockfs anyway. For implicit binds it always generates a new address
254  *	(sets soua_vp to its minor number).
255  *
256  * 2) It always uses minor number as acceptor ID and never uses queue
257  *	pointer. It is ok since sockets get acceptor ID from T_CAPABILITY_REQ
258  *	message and they do not use the queue pointer.
259  *
260  * 3) For Listener sockets the usual sequence is to issue bind() zero backlog
261  *	followed by listen(). The listen() should be issued with non-zero
262  *	backlog, so sotpi_listen() issues unbind request followed by bind
263  *	request to the same address but with a non-zero qlen value. Both
264  *	tl_bind() and tl_unbind() require write lock on the hash table to
265  *	insert/remove the address. The driver does not remove the address from
266  *	the hash for endpoints that are bound to the explicit address and have
267  *	backlog of zero. During T_BIND_REQ processing if the address requested
268  *	is equal to the address the endpoint already has it updates the backlog
269  *	without reinserting the address in the hash table. This optimization
270  *	avoids two hash table updates for each listener created. It always
271  *	avoids the problem of a "stolen" address when another listener may use
272  *	the same address between the unbind and bind and suddenly listen() fails
273  *	because address is in use even though the bind() succeeded.
274  *
275  *
276  * CONNECTIONLESS TRANSPORTS
277  * =========================
278  *
279  * Connectionless transports all share the same serializer (one for TLI and one
280  * for Sockets). Functions executing behind serializer can check or modify state
281  * of any endpoint.
282  *
283  * When endpoint X talks to another endpoint Y it caches the pointer to Y in the
284  * te_lastep field. The next time X talks to some address A it checks whether A
285  * is the same as Y's address and if it is there is no need to lookup Y. If the
286  * address is different or the state of Y is not appropriate (e.g. closed or not
287  * idle) X does a lookup using tl_find_peer() and caches the new address.
288  * NOTE: tl_find_peer() never returns closing endpoint and it places a refhold
289  * on the endpoint found.
290  *
291  * During close of endpoint Y it doesn't try to remove itself from other
292  * endpoints caches. They will detect that Y is gone and will search the peer
293  * endpoint again.
294  *
295  * Flow Control Handling.
296  * ----------------------
297  *
298  * Each connectionless endpoint keeps a list of endpoints which are
299  * flow-controlled by its queue. It also keeps a pointer to the queue which
300  * flow-controls itself.  Whenever flow control releases for endpoint X it
301  * enables all queues from the list. During close it also back-enables everyone
302  * in the list. If X is flow-controlled when it is closing it removes it from
303  * the peers list.
304  *
305  * DATA STRUCTURES
306  * ===============
307  *
308  * Each endpoint is represented by the tl_endpt_t structure which keeps all the
309  * endpoint state. For connection-oriented transports it has a keeps a list
310  * of pending connections (tl_icon_t). For connectionless transports it keeps a
311  * list of endpoints flow controlled by this one.
312  *
313  * Each transport type is represented by a per-transport data structure
314  * tl_transport_state_t. It contains a pointer to an acceptor ID hash and the
315  * endpoint address hash tables for each transport. It also contains pointer to
316  * transport serializer for connectionless transports.
317  *
318  * Each endpoint keeps a link to its transport structure, so the code can find
319  * all per-transport information quickly.
320  */
321 
322 #include	<sys/types.h>
323 #include	<sys/inttypes.h>
324 #include	<sys/stream.h>
325 #include	<sys/stropts.h>
326 #define	_SUN_TPI_VERSION 2
327 #include	<sys/tihdr.h>
328 #include	<sys/strlog.h>
329 #include	<sys/debug.h>
330 #include	<sys/cred.h>
331 #include	<sys/errno.h>
332 #include	<sys/kmem.h>
333 #include	<sys/id_space.h>
334 #include	<sys/modhash.h>
335 #include	<sys/mkdev.h>
336 #include	<sys/tl.h>
337 #include	<sys/stat.h>
338 #include	<sys/conf.h>
339 #include	<sys/modctl.h>
340 #include	<sys/strsun.h>
341 #include	<sys/socket.h>
342 #include	<sys/socketvar.h>
343 #include	<sys/sysmacros.h>
344 #include	<sys/xti_xtiopt.h>
345 #include	<sys/ddi.h>
346 #include	<sys/sunddi.h>
347 #include	<sys/zone.h>
348 #include	<inet/common.h>	/* typedef int (*pfi_t)() for inet/optcom.h */
349 #include	<inet/optcom.h>
350 #include	<sys/strsubr.h>
351 #include	<sys/ucred.h>
352 #include	<sys/suntpi.h>
353 #include	<sys/list.h>
354 #include	<sys/serializer.h>
355 
356 /*
357  * TBD List
358  * 14 Eliminate state changes through table
359  * 16. AF_UNIX socket options
360  * 17. connect() for ticlts
361  * 18. support for "netstat" to show AF_UNIX plus TLI local
362  *	transport connections
363  * 21. sanity check to flushing on sending M_ERROR
364  */
365 
366 /*
367  * CONSTANT DECLARATIONS
368  * --------------------
369  */
370 
371 /*
372  * Local declarations
373  */
374 #define	NEXTSTATE(EV, ST)	ti_statetbl[EV][ST]
375 
376 #define	BADSEQNUM	(-1)	/* initial seq number used by T_DISCON_IND */
377 #define	TL_BUFWAIT	(10000)	/* usecs to wait for allocb buffer timeout */
378 #define	TL_TIDUSZ (64*1024)	/* tidu size when "strmsgz" is unlimited (0) */
379 /*
380  * Hash tables size.
381  */
382 #define	TL_HASH_SIZE 311
383 
384 /*
385  * Definitions for module_info
386  */
387 #define		TL_ID		(104)		/* module ID number */
388 #define		TL_NAME		"tl"		/* module name */
389 #define		TL_MINPSZ	(0)		/* min packet size */
390 #define		TL_MAXPSZ	INFPSZ 		/* max packet size ZZZ */
391 #define		TL_HIWAT	(16*1024)	/* hi water mark */
392 #define		TL_LOWAT	(256)		/* lo water mark */
393 /*
394  * Definition of minor numbers/modes for new transport provider modes.
395  * We view the socket use as a separate mode to get a separate name space.
396  */
397 #define		TL_TICOTS	0	/* connection oriented transport */
398 #define		TL_TICOTSORD 	1	/* COTS w/ orderly release */
399 #define		TL_TICLTS 	2	/* connectionless transport */
400 #define		TL_UNUSED	3
401 #define		TL_SOCKET	4	/* Socket */
402 #define		TL_SOCK_COTS	(TL_SOCKET|TL_TICOTS)
403 #define		TL_SOCK_COTSORD	(TL_SOCKET|TL_TICOTSORD)
404 #define		TL_SOCK_CLTS	(TL_SOCKET|TL_TICLTS)
405 
406 #define		TL_MINOR_MASK	0x7
407 #define		TL_MINOR_START	(TL_TICLTS + 1)
408 
409 /*
410  * LOCAL MACROS
411  */
412 #define	T_ALIGN(p)	P2ROUNDUP((p), sizeof (t_scalar_t))
413 
414 /*
415  * EXTERNAL VARIABLE DECLARATIONS
416  * -----------------------------
417  */
418 /*
419  * state table defined in the OS space.c
420  */
421 extern	char	ti_statetbl[TE_NOEVENTS][TS_NOSTATES];
422 
423 /*
424  * STREAMS DRIVER ENTRY POINTS PROTOTYPES
425  */
426 static int tl_open(queue_t *, dev_t *, int, int, cred_t *);
427 static int tl_close(queue_t *, int, cred_t *);
428 static void tl_wput(queue_t *, mblk_t *);
429 static void tl_wsrv(queue_t *);
430 static void tl_rsrv(queue_t *);
431 
432 static int tl_attach(dev_info_t *, ddi_attach_cmd_t);
433 static int tl_detach(dev_info_t *, ddi_detach_cmd_t);
434 static int tl_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
435 
436 
437 /*
438  * GLOBAL DATA STRUCTURES AND VARIABLES
439  * -----------------------------------
440  */
441 
442 /*
443  * Table representing database of all options managed by T_SVR4_OPTMGMT_REQ
444  * For now, we only manage the SO_RECVUCRED option but we also have
445  * harmless dummy options to make things work with some common code we access.
446  */
447 opdes_t	tl_opt_arr[] = {
448 	/* The SO_TYPE is needed for the hack below */
449 	{
450 		SO_TYPE,
451 		SOL_SOCKET,
452 		OA_R,
453 		OA_R,
454 		OP_NP,
455 		OP_PASSNEXT,
456 		sizeof (t_scalar_t),
457 		0
458 	},
459 	{
460 		SO_RECVUCRED,
461 		SOL_SOCKET,
462 		OA_RW,
463 		OA_RW,
464 		OP_NP,
465 		OP_PASSNEXT,
466 		sizeof (int),
467 		0
468 	}
469 };
470 
471 /*
472  * Table of all supported levels
473  * Note: Some levels (e.g. XTI_GENERIC) may be valid but may not have
474  * any supported options so we need this info separately.
475  *
476  * This is needed only for topmost tpi providers.
477  */
478 optlevel_t	tl_valid_levels_arr[] = {
479 	XTI_GENERIC,
480 	SOL_SOCKET,
481 	TL_PROT_LEVEL
482 };
483 
484 #define	TL_VALID_LEVELS_CNT	A_CNT(tl_valid_levels_arr)
485 /*
486  * Current upper bound on the amount of space needed to return all options.
487  * Additional options with data size of sizeof(long) are handled automatically.
488  * Others need hand job.
489  */
490 #define	TL_MAX_OPT_BUF_LEN						\
491 		((A_CNT(tl_opt_arr) << 2) +				\
492 		(A_CNT(tl_opt_arr) * sizeof (struct opthdr)) +		\
493 		+ 64 + sizeof (struct T_optmgmt_ack))
494 
495 #define	TL_OPT_ARR_CNT	A_CNT(tl_opt_arr)
496 
497 /*
498  *	transport addr structure
499  */
500 typedef struct tl_addr {
501 	zoneid_t	ta_zoneid;		/* Zone scope of address */
502 	t_scalar_t	ta_alen;		/* length of abuf */
503 	void		*ta_abuf;		/* the addr itself */
504 } tl_addr_t;
505 
506 /*
507  * Refcounted version of serializer.
508  */
509 typedef struct tl_serializer {
510 	uint_t		ts_refcnt;
511 	serializer_t	*ts_serializer;
512 } tl_serializer_t;
513 
514 /*
515  * Each transport type has a separate state.
516  * Per-transport state.
517  */
518 typedef struct tl_transport_state {
519 	char		*tr_name;
520 	minor_t		tr_minor;
521 	uint32_t	tr_defaddr;
522 	mod_hash_t	*tr_ai_hash;
523 	mod_hash_t	*tr_addr_hash;
524 	tl_serializer_t	*tr_serializer;
525 } tl_transport_state_t;
526 
527 #define	TL_DFADDR 0x1000
528 
529 static tl_transport_state_t tl_transports[] = {
530 	{ "ticots", TL_TICOTS, TL_DFADDR, NULL, NULL, NULL },
531 	{ "ticotsord", TL_TICOTSORD, TL_DFADDR, NULL, NULL, NULL },
532 	{ "ticlts", TL_TICLTS, TL_DFADDR, NULL, NULL, NULL },
533 	{ "undefined", TL_UNUSED, TL_DFADDR, NULL, NULL, NULL },
534 	{ "sticots", TL_SOCK_COTS, TL_DFADDR, NULL, NULL, NULL },
535 	{ "sticotsord", TL_SOCK_COTSORD, TL_DFADDR, NULL, NULL },
536 	{ "sticlts", TL_SOCK_CLTS, TL_DFADDR, NULL, NULL, NULL }
537 };
538 
539 #define	TL_MAXTRANSPORT A_CNT(tl_transports)
540 
541 struct tl_endpt;
542 typedef struct tl_endpt tl_endpt_t;
543 
544 typedef void (tlproc_t)(mblk_t *, tl_endpt_t *);
545 
546 /*
547  * Data structure used to represent pending connects.
548  * Records enough information so that the connecting peer can close
549  * before the connection gets accepted.
550  */
551 typedef struct tl_icon {
552 	list_node_t	ti_node;
553 	struct tl_endpt *ti_tep;	/* NULL if peer has already closed */
554 	mblk_t		*ti_mp;		/* b_next list of data + ordrel_ind */
555 	t_scalar_t	ti_seqno;	/* Sequence number */
556 } tl_icon_t;
557 
558 typedef struct so_ux_addr soux_addr_t;
559 #define	TL_SOUX_ADDRLEN sizeof (soux_addr_t)
560 
561 /*
562  * Maximum number of unaccepted connection indications allowed per listener.
563  */
564 #define	TL_MAXQLEN	4096
565 int tl_maxqlen = TL_MAXQLEN;
566 
567 /*
568  *	transport endpoint structure
569  */
570 struct tl_endpt {
571 	queue_t		*te_rq;		/* stream read queue */
572 	queue_t		*te_wq;		/* stream write queue */
573 	uint32_t	te_refcnt;
574 	int32_t 	te_state;	/* TPI state of endpoint */
575 	minor_t		te_minor;	/* minor number */
576 #define	te_seqno	te_minor
577 	uint_t		te_flag;	/* flag field */
578 	boolean_t	te_nowsrv;
579 	tl_serializer_t	*te_ser;	/* Serializer to use */
580 #define	te_serializer	te_ser->ts_serializer
581 
582 	soux_addr_t	te_uxaddr;	/* Socket address */
583 #define	te_magic	te_uxaddr.soua_magic
584 #define	te_vp		te_uxaddr.soua_vp
585 	tl_addr_t	te_ap;		/* addr bound to this endpt */
586 #define	te_zoneid te_ap.ta_zoneid
587 #define	te_alen	te_ap.ta_alen
588 #define	te_abuf	te_ap.ta_abuf
589 
590 	tl_transport_state_t *te_transport;
591 #define	te_addrhash	te_transport->tr_addr_hash
592 #define	te_aihash	te_transport->tr_ai_hash
593 #define	te_defaddr	te_transport->tr_defaddr
594 	cred_t		*te_credp;	/* endpoint user credentials */
595 	mod_hash_hndl_t	te_hash_hndl;	/* Handle for address hash */
596 
597 	/*
598 	 * State specific for connection-oriented and connectionless transports.
599 	 */
600 	union {
601 		/* Connection-oriented state. */
602 		struct {
603 			t_uscalar_t _te_nicon;	/* count of conn requests */
604 			t_uscalar_t _te_qlen;	/* max conn requests */
605 			tl_endpt_t  *_te_oconp;	/* conn request pending */
606 			tl_endpt_t  *_te_conp;	/* connected endpt */
607 #ifndef _ILP32
608 			void	    *_te_pad;
609 #endif
610 			list_t	_te_iconp;	/* list of conn ind. pending */
611 		} _te_cots_state;
612 		/* Connection-less state. */
613 		struct {
614 			tl_endpt_t *_te_lastep;	/* last dest. endpoint */
615 			tl_endpt_t *_te_flowq;	/* flow controlled on whom */
616 			list_node_t _te_flows;	/* lists of connections */
617 			list_t  _te_flowlist;	/* Who flowcontrols on me */
618 		} _te_clts_state;
619 	} _te_transport_state;
620 #define	te_nicon	_te_transport_state._te_cots_state._te_nicon
621 #define	te_qlen		_te_transport_state._te_cots_state._te_qlen
622 #define	te_oconp	_te_transport_state._te_cots_state._te_oconp
623 #define	te_conp		_te_transport_state._te_cots_state._te_conp
624 #define	te_iconp	_te_transport_state._te_cots_state._te_iconp
625 #define	te_lastep	_te_transport_state._te_clts_state._te_lastep
626 #define	te_flowq	_te_transport_state._te_clts_state._te_flowq
627 #define	te_flowlist	_te_transport_state._te_clts_state._te_flowlist
628 #define	te_flows	_te_transport_state._te_clts_state._te_flows
629 
630 	bufcall_id_t	te_bufcid;	/* outstanding bufcall id */
631 	timeout_id_t	te_timoutid;	/* outstanding timeout id */
632 	pid_t		te_cpid;	/* cached pid of endpoint */
633 	t_uscalar_t	te_acceptor_id;	/* acceptor id for T_CONN_RES */
634 	/*
635 	 * Pieces of the endpoint state needed for closing.
636 	 */
637 	kmutex_t	te_closelock;
638 	kcondvar_t	te_closecv;
639 	uint8_t		te_closing;	/* The endpoint started closing */
640 	uint8_t		te_closewait;	/* Wait in close until zero */
641 	mblk_t		te_closemp;	/* for entering serializer on close */
642 	mblk_t		te_rsrvmp;	/* for entering serializer on rsrv */
643 	mblk_t		te_wsrvmp;	/* for entering serializer on wsrv */
644 	kmutex_t	te_srv_lock;
645 	kcondvar_t	te_srv_cv;
646 	uint8_t		te_rsrv_active;	/* Running in tl_rsrv()	*/
647 	uint8_t		te_wsrv_active;	/* Running in tl_wsrv()	*/
648 	/*
649 	 * Pieces of the endpoint state needed for serializer transitions.
650 	 */
651 	kmutex_t	te_ser_lock;	/* Protects the count below */
652 	uint_t		te_ser_count;	/* Number of messages on serializer */
653 };
654 
655 /*
656  * Flag values. Lower 4 bits specify that transport used.
657  * TL_LISTENER, TL_ACCEPTOR, TL_ACCEPTED and TL_EAGER are for debugging only,
658  * they allow to identify the endpoint more easily.
659  */
660 #define	TL_LISTENER	0x00010	/* the listener endpoint */
661 #define	TL_ACCEPTOR	0x00020	/* the accepting endpoint */
662 #define	TL_EAGER	0x00040	/* connecting endpoint */
663 #define	TL_ACCEPTED	0x00080	/* accepted connection */
664 #define	TL_SETCRED	0x00100	/* flag to indicate sending of credentials */
665 #define	TL_SETUCRED	0x00200	/* flag to indicate sending of ucred */
666 #define	TL_SOCKUCRED	0x00400	/* flag to indicate sending of SCM_UCRED */
667 #define	TL_ADDRHASHED	0x01000	/* Endpoint address is stored in te_addrhash */
668 #define	TL_CLOSE_SER	0x10000	/* Endpoint close has entered the serializer */
669 /*
670  * Boolean checks for the endpoint type.
671  */
672 #define		IS_CLTS(x)	(((x)->te_flag & TL_TICLTS) != 0)
673 #define		IS_COTS(x)	(((x)->te_flag & TL_TICLTS) == 0)
674 #define		IS_COTSORD(x)	(((x)->te_flag & TL_TICOTSORD) != 0)
675 #define		IS_SOCKET(x)	(((x)->te_flag & TL_SOCKET) != 0)
676 
677 /*
678  * Certain operations are always used together. These macros reduce the chance
679  * of missing a part of a combination.
680  */
681 #define	TL_UNCONNECT(x) { tl_refrele(x); x = NULL; }
682 #define	TL_REMOVE_PEER(x) { if ((x) != NULL) TL_UNCONNECT(x) }
683 
684 #define	TL_PUTBQ(x, mp) {		\
685 	ASSERT(!((x)->te_flag & TL_CLOSE_SER));	\
686 	(x)->te_nowsrv = B_TRUE;	\
687 	(void) putbq((x)->te_wq, mp);	\
688 }
689 
690 #define	TL_QENABLE(x) { (x)->te_nowsrv = B_FALSE; qenable((x)->te_wq); }
691 #define	TL_PUTQ(x, mp) { (x)->te_nowsrv = B_FALSE; (void)putq((x)->te_wq, mp); }
692 
693 /*
694  * STREAMS driver glue data structures.
695  */
696 static	struct	module_info	tl_minfo = {
697 	TL_ID,			/* mi_idnum */
698 	TL_NAME,		/* mi_idname */
699 	TL_MINPSZ,		/* mi_minpsz */
700 	TL_MAXPSZ,		/* mi_maxpsz */
701 	TL_HIWAT,		/* mi_hiwat */
702 	TL_LOWAT		/* mi_lowat */
703 };
704 
705 static	struct	qinit	tl_rinit = {
706 	NULL,			/* qi_putp */
707 	(int (*)())tl_rsrv,	/* qi_srvp */
708 	tl_open,		/* qi_qopen */
709 	tl_close,		/* qi_qclose */
710 	NULL,			/* qi_qadmin */
711 	&tl_minfo,		/* qi_minfo */
712 	NULL			/* qi_mstat */
713 };
714 
715 static	struct	qinit	tl_winit = {
716 	(int (*)())tl_wput,	/* qi_putp */
717 	(int (*)())tl_wsrv,	/* qi_srvp */
718 	NULL,			/* qi_qopen */
719 	NULL,			/* qi_qclose */
720 	NULL,			/* qi_qadmin */
721 	&tl_minfo,		/* qi_minfo */
722 	NULL			/* qi_mstat */
723 };
724 
725 static	struct streamtab	tlinfo = {
726 	&tl_rinit,		/* st_rdinit */
727 	&tl_winit,		/* st_wrinit */
728 	NULL,			/* st_muxrinit */
729 	NULL			/* st_muxwrinit */
730 };
731 
732 DDI_DEFINE_STREAM_OPS(tl_devops, nulldev, nulldev, tl_attach, tl_detach,
733     nulldev, tl_info, D_MP, &tlinfo, ddi_quiesce_not_supported);
734 
735 static struct modldrv modldrv = {
736 	&mod_driverops,		/* Type of module -- pseudo driver here */
737 	"TPI Local Transport (tl)",
738 	&tl_devops,		/* driver ops */
739 };
740 
741 /*
742  * Module linkage information for the kernel.
743  */
744 static struct modlinkage modlinkage = {
745 	MODREV_1,
746 	&modldrv,
747 	NULL
748 };
749 
750 /*
751  * Templates for response to info request
752  * Check sanity of unlimited connect data etc.
753  */
754 
755 #define		TL_CLTS_PROVIDER_FLAG	(XPG4_1|SENDZERO)
756 #define		TL_COTS_PROVIDER_FLAG	(XPG4_1|SENDZERO)
757 
758 static struct T_info_ack tl_cots_info_ack =
759 	{
760 		T_INFO_ACK,	/* PRIM_type -always T_INFO_ACK */
761 		T_INFINITE,	/* TSDU size */
762 		T_INFINITE,	/* ETSDU size */
763 		T_INFINITE,	/* CDATA_size */
764 		T_INFINITE,	/* DDATA_size */
765 		T_INFINITE,	/* ADDR_size  */
766 		T_INFINITE,	/* OPT_size */
767 		0,		/* TIDU_size - fill at run time */
768 		T_COTS,		/* SERV_type */
769 		-1,		/* CURRENT_state */
770 		TL_COTS_PROVIDER_FLAG	/* PROVIDER_flag */
771 	};
772 
773 static struct T_info_ack tl_clts_info_ack =
774 	{
775 		T_INFO_ACK,	/* PRIM_type - always T_INFO_ACK */
776 		0,		/* TSDU_size - fill at run time */
777 		-2,		/* ETSDU_size -2 => not supported */
778 		-2,		/* CDATA_size -2 => not supported */
779 		-2,		/* DDATA_size  -2 => not supported */
780 		-1,		/* ADDR_size -1 => unlimited */
781 		-1,		/* OPT_size */
782 		0,		/* TIDU_size - fill at run time */
783 		T_CLTS,		/* SERV_type */
784 		-1,		/* CURRENT_state */
785 		TL_CLTS_PROVIDER_FLAG /* PROVIDER_flag */
786 	};
787 
788 /*
789  * private copy of devinfo pointer used in tl_info
790  */
791 static dev_info_t *tl_dip;
792 
793 /*
794  * Endpoints cache.
795  */
796 static kmem_cache_t *tl_cache;
797 /*
798  * Minor number space.
799  */
800 static id_space_t *tl_minors;
801 
802 /*
803  * Default Data Unit size.
804  */
805 static t_scalar_t tl_tidusz;
806 
807 /*
808  * Size of hash tables.
809  */
810 static size_t tl_hash_size = TL_HASH_SIZE;
811 
812 /*
813  * Debug and test variable ONLY. Turn off T_CONN_IND queueing
814  * for sockets.
815  */
816 static int tl_disable_early_connect = 0;
817 static int tl_client_closing_when_accepting;
818 
819 static int tl_serializer_noswitch;
820 
821 /*
822  * LOCAL FUNCTION PROTOTYPES
823  * -------------------------
824  */
825 static boolean_t tl_eqaddr(tl_addr_t *, tl_addr_t *);
826 static void tl_do_proto(mblk_t *, tl_endpt_t *);
827 static void tl_do_ioctl(mblk_t *, tl_endpt_t *);
828 static void tl_do_ioctl_ser(mblk_t *, tl_endpt_t *);
829 static void tl_error_ack(queue_t *, mblk_t *, t_scalar_t, t_scalar_t,
830 	t_scalar_t);
831 static void tl_bind(mblk_t *, tl_endpt_t *);
832 static void tl_bind_ser(mblk_t *, tl_endpt_t *);
833 static void tl_ok_ack(queue_t *, mblk_t  *mp, t_scalar_t);
834 static void tl_unbind(mblk_t *, tl_endpt_t *);
835 static void tl_optmgmt(queue_t *, mblk_t *);
836 static void tl_conn_req(queue_t *, mblk_t *);
837 static void tl_conn_req_ser(mblk_t *, tl_endpt_t *);
838 static void tl_conn_res(mblk_t *, tl_endpt_t *);
839 static void tl_discon_req(mblk_t *, tl_endpt_t *);
840 static void tl_capability_req(mblk_t *, tl_endpt_t *);
841 static void tl_info_req_ser(mblk_t *, tl_endpt_t *);
842 static void tl_info_req(mblk_t *, tl_endpt_t *);
843 static void tl_addr_req(mblk_t *, tl_endpt_t *);
844 static void tl_connected_cots_addr_req(mblk_t *, tl_endpt_t *);
845 static void tl_data(mblk_t  *, tl_endpt_t *);
846 static void tl_exdata(mblk_t *, tl_endpt_t *);
847 static void tl_ordrel(mblk_t *, tl_endpt_t *);
848 static void tl_unitdata(mblk_t *, tl_endpt_t *);
849 static void tl_unitdata_ser(mblk_t *, tl_endpt_t *);
850 static void tl_uderr(queue_t *, mblk_t *, t_scalar_t);
851 static tl_endpt_t *tl_find_peer(tl_endpt_t *, tl_addr_t *);
852 static tl_endpt_t *tl_sock_find_peer(tl_endpt_t *, struct so_ux_addr *);
853 static boolean_t tl_get_any_addr(tl_endpt_t *, tl_addr_t *);
854 static void tl_cl_backenable(tl_endpt_t *);
855 static void tl_co_unconnect(tl_endpt_t *);
856 static mblk_t *tl_resizemp(mblk_t *, ssize_t);
857 static void tl_discon_ind(tl_endpt_t *, uint32_t);
858 static mblk_t *tl_discon_ind_alloc(uint32_t, t_scalar_t);
859 static mblk_t *tl_ordrel_ind_alloc(void);
860 static tl_icon_t *tl_icon_find(tl_endpt_t *, t_scalar_t);
861 static void tl_icon_queuemsg(tl_endpt_t *, t_scalar_t, mblk_t *);
862 static boolean_t tl_icon_hasprim(tl_endpt_t *, t_scalar_t, t_scalar_t);
863 static void tl_icon_sendmsgs(tl_endpt_t *, mblk_t **);
864 static void tl_icon_freemsgs(mblk_t **);
865 static void tl_merror(queue_t *, mblk_t *, int);
866 static void tl_fill_option(uchar_t *, cred_t *, pid_t, int, cred_t *);
867 static int tl_default_opt(queue_t *, int, int, uchar_t *);
868 static int tl_get_opt(queue_t *, int, int, uchar_t *);
869 static int tl_set_opt(queue_t *, uint_t, int, int, uint_t, uchar_t *, uint_t *,
870     uchar_t *, void *, cred_t *, mblk_t *);
871 static void tl_memrecover(queue_t *, mblk_t *, size_t);
872 static void tl_freetip(tl_endpt_t *, tl_icon_t *);
873 static void tl_free(tl_endpt_t *);
874 static int  tl_constructor(void *, void *, int);
875 static void tl_destructor(void *, void *);
876 static void tl_find_callback(mod_hash_key_t, mod_hash_val_t);
877 static tl_serializer_t *tl_serializer_alloc(int);
878 static void tl_serializer_refhold(tl_serializer_t *);
879 static void tl_serializer_refrele(tl_serializer_t *);
880 static void tl_serializer_enter(tl_endpt_t *, tlproc_t, mblk_t *);
881 static void tl_serializer_exit(tl_endpt_t *);
882 static boolean_t tl_noclose(tl_endpt_t *);
883 static void tl_closeok(tl_endpt_t *);
884 static void tl_refhold(tl_endpt_t *);
885 static void tl_refrele(tl_endpt_t *);
886 static int tl_hash_cmp_addr(mod_hash_key_t, mod_hash_key_t);
887 static uint_t tl_hash_by_addr(void *, mod_hash_key_t);
888 static void tl_close_ser(mblk_t *, tl_endpt_t *);
889 static void tl_close_finish_ser(mblk_t *, tl_endpt_t *);
890 static void tl_wput_data_ser(mblk_t *, tl_endpt_t *);
891 static void tl_proto_ser(mblk_t *, tl_endpt_t *);
892 static void tl_putq_ser(mblk_t *, tl_endpt_t *);
893 static void tl_wput_common_ser(mblk_t *, tl_endpt_t *);
894 static void tl_wput_ser(mblk_t *, tl_endpt_t *);
895 static void tl_wsrv_ser(mblk_t *, tl_endpt_t *);
896 static void tl_rsrv_ser(mblk_t *, tl_endpt_t *);
897 static void tl_addr_unbind(tl_endpt_t *);
898 
899 /*
900  * Intialize option database object for TL
901  */
902 
903 optdb_obj_t tl_opt_obj = {
904 	tl_default_opt,		/* TL default value function pointer */
905 	tl_get_opt,		/* TL get function pointer */
906 	tl_set_opt,		/* TL set function pointer */
907 	B_TRUE,			/* TL is tpi provider */
908 	TL_OPT_ARR_CNT,		/* TL option database count of entries */
909 	tl_opt_arr,		/* TL option database */
910 	TL_VALID_LEVELS_CNT,	/* TL valid level count of entries */
911 	tl_valid_levels_arr	/* TL valid level array */
912 };
913 
914 /*
915  * Logical operations.
916  *
917  * IMPLY(X, Y) means that X implies Y i.e. when X is true, Y
918  * should also be true.
919  *
920  * EQUIV(X, Y) is logical equivalence. Both X and Y should be true or false at
921  * the same time.
922  */
923 #define	IMPLY(X, Y)	(!(X) || (Y))
924 #define	EQUIV(X, Y)	(IMPLY(X, Y) && IMPLY(Y, X))
925 
926 /*
927  * LOCAL FUNCTIONS AND DRIVER ENTRY POINTS
928  * ---------------------------------------
929  */
930 
931 /*
932  * Loadable module routines
933  */
934 int
935 _init(void)
936 {
937 	return (mod_install(&modlinkage));
938 }
939 
940 int
941 _fini(void)
942 {
943 	return (mod_remove(&modlinkage));
944 }
945 
946 int
947 _info(struct modinfo *modinfop)
948 {
949 	return (mod_info(&modlinkage, modinfop));
950 }
951 
952 /*
953  * Driver Entry Points and Other routines
954  */
955 static int
956 tl_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
957 {
958 	int i;
959 	char name[32];
960 
961 	/*
962 	 * Resume from a checkpoint state.
963 	 */
964 	if (cmd == DDI_RESUME)
965 		return (DDI_SUCCESS);
966 
967 	if (cmd != DDI_ATTACH)
968 		return (DDI_FAILURE);
969 
970 	/*
971 	 * Deduce TIDU size to use.  Note: "strmsgsz" being 0 has semantics that
972 	 * streams message sizes can be unlimited. We use a defined constant
973 	 * instead.
974 	 */
975 	tl_tidusz = strmsgsz != 0 ? (t_scalar_t)strmsgsz : TL_TIDUSZ;
976 
977 	/*
978 	 * Create subdevices for each transport.
979 	 */
980 	for (i = 0; i < TL_UNUSED; i++) {
981 		if (ddi_create_minor_node(devi,
982 		    tl_transports[i].tr_name,
983 		    S_IFCHR, tl_transports[i].tr_minor,
984 		    DDI_PSEUDO, NULL) == DDI_FAILURE) {
985 			ddi_remove_minor_node(devi, NULL);
986 			return (DDI_FAILURE);
987 		}
988 	}
989 
990 	tl_cache = kmem_cache_create("tl_cache", sizeof (tl_endpt_t),
991 	    0, tl_constructor, tl_destructor, NULL, NULL, NULL, 0);
992 
993 	if (tl_cache == NULL) {
994 		ddi_remove_minor_node(devi, NULL);
995 		return (DDI_FAILURE);
996 	}
997 
998 	tl_minors = id_space_create("tl_minor_space",
999 	    TL_MINOR_START, MAXMIN32 - TL_MINOR_START + 1);
1000 
1001 	/*
1002 	 * Create ID space for minor numbers
1003 	 */
1004 	for (i = 0; i < TL_MAXTRANSPORT; i++) {
1005 		tl_transport_state_t *t = &tl_transports[i];
1006 
1007 		if (i == TL_UNUSED)
1008 			continue;
1009 
1010 		/* Socket COTSORD shares namespace with COTS */
1011 		if (i == TL_SOCK_COTSORD) {
1012 			t->tr_ai_hash =
1013 			    tl_transports[TL_SOCK_COTS].tr_ai_hash;
1014 			ASSERT(t->tr_ai_hash != NULL);
1015 			t->tr_addr_hash =
1016 			    tl_transports[TL_SOCK_COTS].tr_addr_hash;
1017 			ASSERT(t->tr_addr_hash != NULL);
1018 			continue;
1019 		}
1020 
1021 		/*
1022 		 * Create hash tables.
1023 		 */
1024 		(void) snprintf(name, sizeof (name), "%s_ai_hash",
1025 		    t->tr_name);
1026 #ifdef _ILP32
1027 		if (i & TL_SOCKET)
1028 			t->tr_ai_hash =
1029 			    mod_hash_create_idhash(name, tl_hash_size - 1,
1030 			    mod_hash_null_valdtor);
1031 		else
1032 			t->tr_ai_hash =
1033 			    mod_hash_create_ptrhash(name, tl_hash_size,
1034 			    mod_hash_null_valdtor, sizeof (queue_t));
1035 #else
1036 		t->tr_ai_hash =
1037 		    mod_hash_create_idhash(name, tl_hash_size - 1,
1038 		    mod_hash_null_valdtor);
1039 #endif /* _ILP32 */
1040 
1041 		if (i & TL_SOCKET) {
1042 			(void) snprintf(name, sizeof (name), "%s_sockaddr_hash",
1043 			    t->tr_name);
1044 			t->tr_addr_hash = mod_hash_create_ptrhash(name,
1045 			    tl_hash_size, mod_hash_null_valdtor,
1046 			    sizeof (uintptr_t));
1047 		} else {
1048 			(void) snprintf(name, sizeof (name), "%s_addr_hash",
1049 			    t->tr_name);
1050 			t->tr_addr_hash = mod_hash_create_extended(name,
1051 			    tl_hash_size, mod_hash_null_keydtor,
1052 			    mod_hash_null_valdtor,
1053 			    tl_hash_by_addr, NULL, tl_hash_cmp_addr, KM_SLEEP);
1054 		}
1055 
1056 		/* Create serializer for connectionless transports. */
1057 		if (i & TL_TICLTS)
1058 			t->tr_serializer = tl_serializer_alloc(KM_SLEEP);
1059 	}
1060 
1061 	tl_dip = devi;
1062 
1063 	return (DDI_SUCCESS);
1064 }
1065 
1066 static int
1067 tl_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
1068 {
1069 	int i;
1070 
1071 	if (cmd == DDI_SUSPEND)
1072 		return (DDI_SUCCESS);
1073 
1074 	if (cmd != DDI_DETACH)
1075 		return (DDI_FAILURE);
1076 
1077 	/*
1078 	 * Destroy arenas and hash tables.
1079 	 */
1080 	for (i = 0; i < TL_MAXTRANSPORT; i++) {
1081 		tl_transport_state_t *t = &tl_transports[i];
1082 
1083 		if ((i == TL_UNUSED) || (i == TL_SOCK_COTSORD))
1084 			continue;
1085 
1086 		ASSERT(EQUIV(i & TL_TICLTS, t->tr_serializer != NULL));
1087 		if (t->tr_serializer != NULL) {
1088 			tl_serializer_refrele(t->tr_serializer);
1089 			t->tr_serializer = NULL;
1090 		}
1091 
1092 #ifdef _ILP32
1093 		if (i & TL_SOCKET)
1094 			mod_hash_destroy_idhash(t->tr_ai_hash);
1095 		else
1096 			mod_hash_destroy_ptrhash(t->tr_ai_hash);
1097 #else
1098 		mod_hash_destroy_idhash(t->tr_ai_hash);
1099 #endif /* _ILP32 */
1100 		t->tr_ai_hash = NULL;
1101 		if (i & TL_SOCKET)
1102 			mod_hash_destroy_ptrhash(t->tr_addr_hash);
1103 		else
1104 			mod_hash_destroy_hash(t->tr_addr_hash);
1105 		t->tr_addr_hash = NULL;
1106 	}
1107 
1108 	kmem_cache_destroy(tl_cache);
1109 	tl_cache = NULL;
1110 	id_space_destroy(tl_minors);
1111 	tl_minors = NULL;
1112 	ddi_remove_minor_node(devi, NULL);
1113 	return (DDI_SUCCESS);
1114 }
1115 
1116 /* ARGSUSED */
1117 static int
1118 tl_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1119 {
1120 
1121 	int retcode = DDI_FAILURE;
1122 
1123 	switch (infocmd) {
1124 
1125 	case DDI_INFO_DEVT2DEVINFO:
1126 		if (tl_dip != NULL) {
1127 			*result = (void *)tl_dip;
1128 			retcode = DDI_SUCCESS;
1129 		}
1130 		break;
1131 
1132 	case DDI_INFO_DEVT2INSTANCE:
1133 		*result = (void *)0;
1134 		retcode = DDI_SUCCESS;
1135 		break;
1136 
1137 	default:
1138 		break;
1139 	}
1140 	return (retcode);
1141 }
1142 
1143 /*
1144  * Endpoint reference management.
1145  */
1146 static void
1147 tl_refhold(tl_endpt_t *tep)
1148 {
1149 	atomic_add_32(&tep->te_refcnt, 1);
1150 }
1151 
1152 static void
1153 tl_refrele(tl_endpt_t *tep)
1154 {
1155 	ASSERT(tep->te_refcnt != 0);
1156 
1157 	if (atomic_add_32_nv(&tep->te_refcnt, -1) == 0)
1158 		tl_free(tep);
1159 }
1160 
1161 /*ARGSUSED*/
1162 static int
1163 tl_constructor(void *buf, void *cdrarg, int kmflags)
1164 {
1165 	tl_endpt_t *tep = buf;
1166 
1167 	bzero(tep, sizeof (tl_endpt_t));
1168 	mutex_init(&tep->te_closelock, NULL, MUTEX_DEFAULT, NULL);
1169 	cv_init(&tep->te_closecv, NULL, CV_DEFAULT, NULL);
1170 	mutex_init(&tep->te_srv_lock, NULL, MUTEX_DEFAULT, NULL);
1171 	cv_init(&tep->te_srv_cv, NULL, CV_DEFAULT, NULL);
1172 	mutex_init(&tep->te_ser_lock, NULL, MUTEX_DEFAULT, NULL);
1173 
1174 	return (0);
1175 }
1176 
1177 /*ARGSUSED*/
1178 static void
1179 tl_destructor(void *buf, void *cdrarg)
1180 {
1181 	tl_endpt_t *tep = buf;
1182 
1183 	mutex_destroy(&tep->te_closelock);
1184 	cv_destroy(&tep->te_closecv);
1185 	mutex_destroy(&tep->te_srv_lock);
1186 	cv_destroy(&tep->te_srv_cv);
1187 	mutex_destroy(&tep->te_ser_lock);
1188 }
1189 
1190 static void
1191 tl_free(tl_endpt_t *tep)
1192 {
1193 	ASSERT(tep->te_refcnt == 0);
1194 	ASSERT(tep->te_transport != NULL);
1195 	ASSERT(tep->te_rq == NULL);
1196 	ASSERT(tep->te_wq == NULL);
1197 	ASSERT(tep->te_ser != NULL);
1198 	ASSERT(tep->te_ser_count == 0);
1199 	ASSERT(! (tep->te_flag & TL_ADDRHASHED));
1200 
1201 	if (IS_SOCKET(tep)) {
1202 		ASSERT(tep->te_alen == TL_SOUX_ADDRLEN);
1203 		ASSERT(tep->te_abuf == &tep->te_uxaddr);
1204 		ASSERT(tep->te_vp == (void *)(uintptr_t)tep->te_minor);
1205 		ASSERT(tep->te_magic == SOU_MAGIC_IMPLICIT);
1206 	} else if (tep->te_abuf != NULL) {
1207 		kmem_free(tep->te_abuf, tep->te_alen);
1208 		tep->te_alen = -1; /* uninitialized */
1209 		tep->te_abuf = NULL;
1210 	} else {
1211 		ASSERT(tep->te_alen == -1);
1212 	}
1213 
1214 	id_free(tl_minors, tep->te_minor);
1215 	ASSERT(tep->te_credp == NULL);
1216 
1217 	if (tep->te_hash_hndl != NULL)
1218 		mod_hash_cancel(tep->te_addrhash, &tep->te_hash_hndl);
1219 
1220 	if (IS_COTS(tep)) {
1221 		TL_REMOVE_PEER(tep->te_conp);
1222 		TL_REMOVE_PEER(tep->te_oconp);
1223 		tl_serializer_refrele(tep->te_ser);
1224 		tep->te_ser = NULL;
1225 		ASSERT(tep->te_nicon == 0);
1226 		ASSERT(list_head(&tep->te_iconp) == NULL);
1227 	} else {
1228 		ASSERT(tep->te_lastep == NULL);
1229 		ASSERT(list_head(&tep->te_flowlist) == NULL);
1230 		ASSERT(tep->te_flowq == NULL);
1231 	}
1232 
1233 	ASSERT(tep->te_bufcid == 0);
1234 	ASSERT(tep->te_timoutid == 0);
1235 	bzero(&tep->te_ap, sizeof (tep->te_ap));
1236 	tep->te_acceptor_id = 0;
1237 
1238 	ASSERT(tep->te_closewait == 0);
1239 	ASSERT(!tep->te_rsrv_active);
1240 	ASSERT(!tep->te_wsrv_active);
1241 	tep->te_closing = 0;
1242 	tep->te_nowsrv = B_FALSE;
1243 	tep->te_flag = 0;
1244 
1245 	kmem_cache_free(tl_cache, tep);
1246 }
1247 
1248 /*
1249  * Allocate/free reference-counted wrappers for serializers.
1250  */
1251 static tl_serializer_t *
1252 tl_serializer_alloc(int flags)
1253 {
1254 	tl_serializer_t *s = kmem_alloc(sizeof (tl_serializer_t), flags);
1255 	serializer_t *ser;
1256 
1257 	if (s == NULL)
1258 		return (NULL);
1259 
1260 	ser = serializer_create(flags);
1261 
1262 	if (ser == NULL) {
1263 		kmem_free(s, sizeof (tl_serializer_t));
1264 		return (NULL);
1265 	}
1266 
1267 	s->ts_refcnt = 1;
1268 	s->ts_serializer = ser;
1269 	return (s);
1270 }
1271 
1272 static void
1273 tl_serializer_refhold(tl_serializer_t *s)
1274 {
1275 	atomic_add_32(&s->ts_refcnt, 1);
1276 }
1277 
1278 static void
1279 tl_serializer_refrele(tl_serializer_t *s)
1280 {
1281 	if (atomic_add_32_nv(&s->ts_refcnt, -1) == 0) {
1282 		serializer_destroy(s->ts_serializer);
1283 		kmem_free(s, sizeof (tl_serializer_t));
1284 	}
1285 }
1286 
1287 /*
1288  * Post a request on the endpoint serializer. For COTS transports keep track of
1289  * the number of pending requests.
1290  */
1291 static void
1292 tl_serializer_enter(tl_endpt_t *tep, tlproc_t tlproc, mblk_t *mp)
1293 {
1294 	if (IS_COTS(tep)) {
1295 		mutex_enter(&tep->te_ser_lock);
1296 		tep->te_ser_count++;
1297 		mutex_exit(&tep->te_ser_lock);
1298 	}
1299 	serializer_enter(tep->te_serializer, (srproc_t *)tlproc, mp, tep);
1300 }
1301 
1302 /*
1303  * Complete processing the request on the serializer. Decrement the counter for
1304  * pending requests for COTS transports.
1305  */
1306 static void
1307 tl_serializer_exit(tl_endpt_t *tep)
1308 {
1309 	if (IS_COTS(tep)) {
1310 		mutex_enter(&tep->te_ser_lock);
1311 		ASSERT(tep->te_ser_count != 0);
1312 		tep->te_ser_count--;
1313 		mutex_exit(&tep->te_ser_lock);
1314 	}
1315 }
1316 
1317 /*
1318  * Hash management functions.
1319  */
1320 
1321 /*
1322  * Return TRUE if two addresses are equal, false otherwise.
1323  */
1324 static boolean_t
1325 tl_eqaddr(tl_addr_t *ap1, tl_addr_t *ap2)
1326 {
1327 	return ((ap1->ta_alen > 0) &&
1328 	    (ap1->ta_alen == ap2->ta_alen) &&
1329 	    (ap1->ta_zoneid == ap2->ta_zoneid) &&
1330 	    (bcmp(ap1->ta_abuf, ap2->ta_abuf, ap1->ta_alen) == 0));
1331 }
1332 
1333 /*
1334  * This function is called whenever an endpoint is found in the hash table.
1335  */
1336 /* ARGSUSED0 */
1337 static void
1338 tl_find_callback(mod_hash_key_t key, mod_hash_val_t val)
1339 {
1340 	tl_refhold((tl_endpt_t *)val);
1341 }
1342 
1343 /*
1344  * Address hash function.
1345  */
1346 /* ARGSUSED */
1347 static uint_t
1348 tl_hash_by_addr(void *hash_data, mod_hash_key_t key)
1349 {
1350 	tl_addr_t *ap = (tl_addr_t *)key;
1351 	size_t	len = ap->ta_alen;
1352 	uchar_t *p = ap->ta_abuf;
1353 	uint_t i, g;
1354 
1355 	ASSERT((len > 0) && (p != NULL));
1356 
1357 	for (i = ap->ta_zoneid; len -- != 0; p++) {
1358 		i = (i << 4) + (*p);
1359 		if ((g = (i & 0xf0000000U)) != 0) {
1360 			i ^= (g >> 24);
1361 			i ^= g;
1362 		}
1363 	}
1364 	return (i);
1365 }
1366 
1367 /*
1368  * This function is used by hash lookups. It compares two generic addresses.
1369  */
1370 static int
1371 tl_hash_cmp_addr(mod_hash_key_t key1, mod_hash_key_t key2)
1372 {
1373 #ifdef 	DEBUG
1374 	tl_addr_t *ap1 = (tl_addr_t *)key1;
1375 	tl_addr_t *ap2 = (tl_addr_t *)key2;
1376 
1377 	ASSERT(key1 != NULL);
1378 	ASSERT(key2 != NULL);
1379 
1380 	ASSERT(ap1->ta_abuf != NULL);
1381 	ASSERT(ap2->ta_abuf != NULL);
1382 	ASSERT(ap1->ta_alen > 0);
1383 	ASSERT(ap2->ta_alen > 0);
1384 #endif
1385 
1386 	return (! tl_eqaddr((tl_addr_t *)key1, (tl_addr_t *)key2));
1387 }
1388 
1389 /*
1390  * Prevent endpoint from closing if possible.
1391  * Return B_TRUE on success, B_FALSE on failure.
1392  */
1393 static boolean_t
1394 tl_noclose(tl_endpt_t *tep)
1395 {
1396 	boolean_t rc = B_FALSE;
1397 
1398 	mutex_enter(&tep->te_closelock);
1399 	if (! tep->te_closing) {
1400 		ASSERT(tep->te_closewait == 0);
1401 		tep->te_closewait++;
1402 		rc = B_TRUE;
1403 	}
1404 	mutex_exit(&tep->te_closelock);
1405 	return (rc);
1406 }
1407 
1408 /*
1409  * Allow endpoint to close if needed.
1410  */
1411 static void
1412 tl_closeok(tl_endpt_t *tep)
1413 {
1414 	ASSERT(tep->te_closewait > 0);
1415 	mutex_enter(&tep->te_closelock);
1416 	ASSERT(tep->te_closewait == 1);
1417 	tep->te_closewait--;
1418 	cv_signal(&tep->te_closecv);
1419 	mutex_exit(&tep->te_closelock);
1420 }
1421 
1422 /*
1423  * STREAMS open entry point.
1424  */
1425 /* ARGSUSED */
1426 static int
1427 tl_open(queue_t	*rq, dev_t *devp, int oflag, int sflag,	cred_t	*credp)
1428 {
1429 	tl_endpt_t *tep;
1430 	minor_t	    minor = getminor(*devp);
1431 
1432 	/*
1433 	 * Driver is called directly. Both CLONEOPEN and MODOPEN
1434 	 * are illegal
1435 	 */
1436 	if ((sflag == CLONEOPEN) || (sflag == MODOPEN))
1437 		return (ENXIO);
1438 
1439 	if (rq->q_ptr != NULL)
1440 		return (0);
1441 
1442 	/* Minor number should specify the mode used for the driver. */
1443 	if ((minor >= TL_UNUSED))
1444 		return (ENXIO);
1445 
1446 	if (oflag & SO_SOCKSTR) {
1447 		minor |= TL_SOCKET;
1448 	}
1449 
1450 	tep = kmem_cache_alloc(tl_cache, KM_SLEEP);
1451 	tep->te_refcnt = 1;
1452 	tep->te_cpid = curproc->p_pid;
1453 	rq->q_ptr = WR(rq)->q_ptr = tep;
1454 	tep->te_state = TS_UNBND;
1455 	tep->te_credp = credp;
1456 	crhold(credp);
1457 	tep->te_zoneid = getzoneid();
1458 
1459 	tep->te_flag = minor & TL_MINOR_MASK;
1460 	tep->te_transport = &tl_transports[minor];
1461 
1462 	/* Allocate a unique minor number for this instance. */
1463 	tep->te_minor = (minor_t)id_alloc(tl_minors);
1464 
1465 	/* Reserve hash handle for bind(). */
1466 	(void) mod_hash_reserve(tep->te_addrhash, &tep->te_hash_hndl);
1467 
1468 	/* Transport-specific initialization */
1469 	if (IS_COTS(tep)) {
1470 		/* Use private serializer */
1471 		tep->te_ser = tl_serializer_alloc(KM_SLEEP);
1472 
1473 		/* Create list for pending connections */
1474 		list_create(&tep->te_iconp, sizeof (tl_icon_t),
1475 		    offsetof(tl_icon_t, ti_node));
1476 		tep->te_qlen = 0;
1477 		tep->te_nicon = 0;
1478 		tep->te_oconp = NULL;
1479 		tep->te_conp = NULL;
1480 	} else {
1481 		/* Use shared serializer */
1482 		tep->te_ser = tep->te_transport->tr_serializer;
1483 		bzero(&tep->te_flows, sizeof (list_node_t));
1484 		/* Create list for flow control */
1485 		list_create(&tep->te_flowlist, sizeof (tl_endpt_t),
1486 		    offsetof(tl_endpt_t, te_flows));
1487 		tep->te_flowq = NULL;
1488 		tep->te_lastep = NULL;
1489 
1490 	}
1491 
1492 	/* Initialize endpoint address */
1493 	if (IS_SOCKET(tep)) {
1494 		/* Socket-specific address handling. */
1495 		tep->te_alen = TL_SOUX_ADDRLEN;
1496 		tep->te_abuf = &tep->te_uxaddr;
1497 		tep->te_vp = (void *)(uintptr_t)tep->te_minor;
1498 		tep->te_magic = SOU_MAGIC_IMPLICIT;
1499 	} else {
1500 		tep->te_alen = -1;
1501 		tep->te_abuf = NULL;
1502 	}
1503 
1504 	/* clone the driver */
1505 	*devp = makedevice(getmajor(*devp), tep->te_minor);
1506 
1507 	tep->te_rq = rq;
1508 	tep->te_wq = WR(rq);
1509 
1510 #ifdef	_ILP32
1511 	if (IS_SOCKET(tep))
1512 		tep->te_acceptor_id = tep->te_minor;
1513 	else
1514 		tep->te_acceptor_id = (t_uscalar_t)rq;
1515 #else
1516 	tep->te_acceptor_id = tep->te_minor;
1517 #endif	/* _ILP32 */
1518 
1519 
1520 	qprocson(rq);
1521 
1522 	/*
1523 	 * Insert acceptor ID in the hash. The AI hash always sleeps on
1524 	 * insertion so insertion can't fail.
1525 	 */
1526 	(void) mod_hash_insert(tep->te_transport->tr_ai_hash,
1527 	    (mod_hash_key_t)(uintptr_t)tep->te_acceptor_id,
1528 	    (mod_hash_val_t)tep);
1529 
1530 	return (0);
1531 }
1532 
1533 /* ARGSUSED1 */
1534 static int
1535 tl_close(queue_t *rq, int flag,	cred_t *credp)
1536 {
1537 	tl_endpt_t *tep = (tl_endpt_t *)rq->q_ptr;
1538 	tl_endpt_t *elp = NULL;
1539 	queue_t *wq = tep->te_wq;
1540 	int rc;
1541 
1542 	ASSERT(wq == WR(rq));
1543 
1544 	/*
1545 	 * Remove the endpoint from acceptor hash.
1546 	 */
1547 	rc = mod_hash_remove(tep->te_transport->tr_ai_hash,
1548 	    (mod_hash_key_t)(uintptr_t)tep->te_acceptor_id,
1549 	    (mod_hash_val_t *)&elp);
1550 	ASSERT(rc == 0 && tep == elp);
1551 	if ((rc != 0) || (tep != elp)) {
1552 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
1553 		    SL_TRACE|SL_ERROR,
1554 		    "tl_close:inconsistency in AI hash"));
1555 	}
1556 
1557 	/*
1558 	 * Wait till close is safe, then mark endpoint as closing.
1559 	 */
1560 	mutex_enter(&tep->te_closelock);
1561 	while (tep->te_closewait)
1562 		cv_wait(&tep->te_closecv, &tep->te_closelock);
1563 	tep->te_closing = B_TRUE;
1564 	/*
1565 	 * Will wait for the serializer part of the close to finish, so set
1566 	 * te_closewait now.
1567 	 */
1568 	tep->te_closewait = 1;
1569 	tep->te_nowsrv = B_FALSE;
1570 	mutex_exit(&tep->te_closelock);
1571 
1572 	/*
1573 	 * tl_close_ser doesn't drop reference, so no need to tl_refhold.
1574 	 * It is safe because close will wait for tl_close_ser to finish.
1575 	 */
1576 	tl_serializer_enter(tep, tl_close_ser, &tep->te_closemp);
1577 
1578 	/*
1579 	 * Wait for the first phase of close to complete before qprocsoff().
1580 	 */
1581 	mutex_enter(&tep->te_closelock);
1582 	while (tep->te_closewait)
1583 		cv_wait(&tep->te_closecv, &tep->te_closelock);
1584 	mutex_exit(&tep->te_closelock);
1585 
1586 	qprocsoff(rq);
1587 
1588 	if (tep->te_bufcid) {
1589 		qunbufcall(rq, tep->te_bufcid);
1590 		tep->te_bufcid = 0;
1591 	}
1592 	if (tep->te_timoutid) {
1593 		(void) quntimeout(rq, tep->te_timoutid);
1594 		tep->te_timoutid = 0;
1595 	}
1596 
1597 	/*
1598 	 * Finish close behind serializer.
1599 	 *
1600 	 * For a CLTS endpoint increase a refcount and continue close processing
1601 	 * with serializer protection. This processing may happen asynchronously
1602 	 * with the completion of tl_close().
1603 	 *
1604 	 * Fot a COTS endpoint wait before destroying tep since the serializer
1605 	 * may go away together with tep and we need to destroy serializer
1606 	 * outside of serializer context.
1607 	 */
1608 	ASSERT(tep->te_closewait == 0);
1609 	if (IS_COTS(tep))
1610 		tep->te_closewait = 1;
1611 	else
1612 		tl_refhold(tep);
1613 
1614 	tl_serializer_enter(tep, tl_close_finish_ser, &tep->te_closemp);
1615 
1616 	/*
1617 	 * For connection-oriented transports wait for all serializer activity
1618 	 * to settle down.
1619 	 */
1620 	if (IS_COTS(tep)) {
1621 		mutex_enter(&tep->te_closelock);
1622 		while (tep->te_closewait)
1623 			cv_wait(&tep->te_closecv, &tep->te_closelock);
1624 		mutex_exit(&tep->te_closelock);
1625 	}
1626 
1627 	crfree(tep->te_credp);
1628 	tep->te_credp = NULL;
1629 	tep->te_wq = NULL;
1630 	tl_refrele(tep);
1631 	/*
1632 	 * tep is likely to be destroyed now, so can't reference it any more.
1633 	 */
1634 
1635 	rq->q_ptr = wq->q_ptr = NULL;
1636 	return (0);
1637 }
1638 
1639 /*
1640  * First phase of close processing done behind the serializer.
1641  *
1642  * Do not drop the reference in the end - tl_close() wants this reference to
1643  * stay.
1644  */
1645 /* ARGSUSED0 */
1646 static void
1647 tl_close_ser(mblk_t *mp, tl_endpt_t *tep)
1648 {
1649 	ASSERT(tep->te_closing);
1650 	ASSERT(tep->te_closewait == 1);
1651 	ASSERT(!(tep->te_flag & TL_CLOSE_SER));
1652 
1653 	tep->te_flag |= TL_CLOSE_SER;
1654 
1655 	/*
1656 	 * Drain out all messages on queue except for TL_TICOTS where the
1657 	 * abortive release semantics permit discarding of data on close
1658 	 */
1659 	if (tep->te_wq->q_first && (IS_CLTS(tep) || IS_COTSORD(tep))) {
1660 		tl_wsrv_ser(NULL, tep);
1661 	}
1662 
1663 	/* Remove address from hash table. */
1664 	tl_addr_unbind(tep);
1665 	/*
1666 	 * qprocsoff() gets confused when q->q_next is not NULL on the write
1667 	 * queue of the driver, so clear these before qprocsoff() is called.
1668 	 * Also clear q_next for the peer since this queue is going away.
1669 	 */
1670 	if (IS_COTS(tep) && !IS_SOCKET(tep)) {
1671 		tl_endpt_t *peer_tep = tep->te_conp;
1672 
1673 		tep->te_wq->q_next = NULL;
1674 		if ((peer_tep != NULL) && !peer_tep->te_closing)
1675 			peer_tep->te_wq->q_next = NULL;
1676 	}
1677 
1678 	tep->te_rq = NULL;
1679 
1680 	/* wake up tl_close() */
1681 	tl_closeok(tep);
1682 	tl_serializer_exit(tep);
1683 }
1684 
1685 /*
1686  * Second phase of tl_close(). Should wakeup tl_close() for COTS mode and drop
1687  * the reference for CLTS.
1688  *
1689  * Called from serializer. Should drop reference count for CLTS only.
1690  */
1691 /* ARGSUSED0 */
1692 static void
1693 tl_close_finish_ser(mblk_t *mp, tl_endpt_t *tep)
1694 {
1695 	ASSERT(tep->te_closing);
1696 	ASSERT(IMPLY(IS_CLTS(tep), tep->te_closewait == 0));
1697 	ASSERT(IMPLY(IS_COTS(tep), tep->te_closewait == 1));
1698 
1699 	tep->te_state = -1;	/* Uninitialized */
1700 	if (IS_COTS(tep)) {
1701 		tl_co_unconnect(tep);
1702 	} else {
1703 		/* Connectionless specific cleanup */
1704 		TL_REMOVE_PEER(tep->te_lastep);
1705 		/*
1706 		 * Backenable anybody that is flow controlled waiting for
1707 		 * this endpoint.
1708 		 */
1709 		tl_cl_backenable(tep);
1710 		if (tep->te_flowq != NULL) {
1711 			list_remove(&(tep->te_flowq->te_flowlist), tep);
1712 			tep->te_flowq = NULL;
1713 		}
1714 	}
1715 
1716 	tl_serializer_exit(tep);
1717 	if (IS_COTS(tep))
1718 		tl_closeok(tep);
1719 	else
1720 		tl_refrele(tep);
1721 }
1722 
1723 /*
1724  * STREAMS write-side put procedure.
1725  * Enter serializer for most of the processing.
1726  *
1727  * The T_CONN_REQ is processed outside of serializer.
1728  */
1729 static void
1730 tl_wput(queue_t *wq, mblk_t *mp)
1731 {
1732 	tl_endpt_t		*tep = (tl_endpt_t *)wq->q_ptr;
1733 	ssize_t			msz = MBLKL(mp);
1734 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
1735 	tlproc_t		*tl_proc = NULL;
1736 
1737 	switch (DB_TYPE(mp)) {
1738 	case M_DATA:
1739 		/* Only valid for connection-oriented transports */
1740 		if (IS_CLTS(tep)) {
1741 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1742 			    SL_TRACE|SL_ERROR,
1743 			    "tl_wput:M_DATA invalid for ticlts driver"));
1744 			tl_merror(wq, mp, EPROTO);
1745 			return;
1746 		}
1747 		tl_proc = tl_wput_data_ser;
1748 		break;
1749 
1750 	case M_IOCTL:
1751 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
1752 		case TL_IOC_CREDOPT:
1753 			/* FALLTHROUGH */
1754 		case TL_IOC_UCREDOPT:
1755 			/*
1756 			 * Serialize endpoint state change.
1757 			 */
1758 			tl_proc = tl_do_ioctl_ser;
1759 			break;
1760 
1761 		default:
1762 			miocnak(wq, mp, 0, EINVAL);
1763 			return;
1764 		}
1765 		break;
1766 
1767 	case M_FLUSH:
1768 		/*
1769 		 * do canonical M_FLUSH processing
1770 		 */
1771 		if (*mp->b_rptr & FLUSHW) {
1772 			flushq(wq, FLUSHALL);
1773 			*mp->b_rptr &= ~FLUSHW;
1774 		}
1775 		if (*mp->b_rptr & FLUSHR) {
1776 			flushq(RD(wq), FLUSHALL);
1777 			qreply(wq, mp);
1778 		} else {
1779 			freemsg(mp);
1780 		}
1781 		return;
1782 
1783 	case M_PROTO:
1784 		if (msz < sizeof (prim->type)) {
1785 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1786 			    SL_TRACE|SL_ERROR,
1787 			    "tl_wput:M_PROTO data too short"));
1788 			tl_merror(wq, mp, EPROTO);
1789 			return;
1790 		}
1791 		switch (prim->type) {
1792 		case T_OPTMGMT_REQ:
1793 		case T_SVR4_OPTMGMT_REQ:
1794 			/*
1795 			 * Process TPI option management requests immediately
1796 			 * in put procedure regardless of in-order processing
1797 			 * of already queued messages.
1798 			 * (Note: This driver supports AF_UNIX socket
1799 			 * implementation.  Unless we implement this processing,
1800 			 * setsockopt() on socket endpoint will block on flow
1801 			 * controlled endpoints which it should not. That is
1802 			 * required for successful execution of VSU socket tests
1803 			 * and is consistent with BSD socket behavior).
1804 			 */
1805 			tl_optmgmt(wq, mp);
1806 			return;
1807 		case O_T_BIND_REQ:
1808 		case T_BIND_REQ:
1809 			tl_proc = tl_bind_ser;
1810 			break;
1811 		case T_CONN_REQ:
1812 			if (IS_CLTS(tep)) {
1813 				tl_merror(wq, mp, EPROTO);
1814 				return;
1815 			}
1816 			tl_conn_req(wq, mp);
1817 			return;
1818 		case T_DATA_REQ:
1819 		case T_OPTDATA_REQ:
1820 		case T_EXDATA_REQ:
1821 		case T_ORDREL_REQ:
1822 			tl_proc = tl_putq_ser;
1823 			break;
1824 		case T_UNITDATA_REQ:
1825 			if (IS_COTS(tep) ||
1826 			    (msz < sizeof (struct T_unitdata_req))) {
1827 				tl_merror(wq, mp, EPROTO);
1828 				return;
1829 			}
1830 			if ((tep->te_state == TS_IDLE) && !wq->q_first) {
1831 				tl_proc = tl_unitdata_ser;
1832 			} else {
1833 				tl_proc = tl_putq_ser;
1834 			}
1835 			break;
1836 		default:
1837 			/*
1838 			 * process in service procedure if message already
1839 			 * queued (maintain in-order processing)
1840 			 */
1841 			if (wq->q_first != NULL) {
1842 				tl_proc = tl_putq_ser;
1843 			} else {
1844 				tl_proc = tl_wput_ser;
1845 			}
1846 			break;
1847 		}
1848 		break;
1849 
1850 	case M_PCPROTO:
1851 		/*
1852 		 * Check that the message has enough data to figure out TPI
1853 		 * primitive.
1854 		 */
1855 		if (msz < sizeof (prim->type)) {
1856 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1857 			    SL_TRACE|SL_ERROR,
1858 			    "tl_wput:M_PCROTO data too short"));
1859 			tl_merror(wq, mp, EPROTO);
1860 			return;
1861 		}
1862 		switch (prim->type) {
1863 		case T_CAPABILITY_REQ:
1864 			tl_capability_req(mp, tep);
1865 			return;
1866 		case T_INFO_REQ:
1867 			tl_proc = tl_info_req_ser;
1868 			break;
1869 		default:
1870 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1871 			    SL_TRACE|SL_ERROR,
1872 			    "tl_wput:unknown TPI msg primitive"));
1873 			tl_merror(wq, mp, EPROTO);
1874 			return;
1875 		}
1876 		break;
1877 	default:
1878 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
1879 		    "tl_wput:default:unexpected Streams message"));
1880 		freemsg(mp);
1881 		return;
1882 	}
1883 
1884 	/*
1885 	 * Continue processing via serializer.
1886 	 */
1887 	ASSERT(tl_proc != NULL);
1888 	tl_refhold(tep);
1889 	tl_serializer_enter(tep, tl_proc, mp);
1890 }
1891 
1892 /*
1893  * Place message on the queue while preserving order.
1894  */
1895 static void
1896 tl_putq_ser(mblk_t *mp, tl_endpt_t *tep)
1897 {
1898 	if (tep->te_closing) {
1899 		tl_wput_ser(mp, tep);
1900 	} else {
1901 		TL_PUTQ(tep, mp);
1902 		tl_serializer_exit(tep);
1903 		tl_refrele(tep);
1904 	}
1905 
1906 }
1907 
1908 static void
1909 tl_wput_common_ser(mblk_t *mp, tl_endpt_t *tep)
1910 {
1911 	ASSERT((DB_TYPE(mp) == M_DATA) || (DB_TYPE(mp) == M_PROTO));
1912 
1913 	switch (DB_TYPE(mp)) {
1914 	case M_DATA:
1915 		tl_data(mp, tep);
1916 		break;
1917 	case M_PROTO:
1918 		tl_do_proto(mp, tep);
1919 		break;
1920 	default:
1921 		freemsg(mp);
1922 		break;
1923 	}
1924 }
1925 
1926 /*
1927  * Write side put procedure called from serializer.
1928  */
1929 static void
1930 tl_wput_ser(mblk_t *mp, tl_endpt_t *tep)
1931 {
1932 	tl_wput_common_ser(mp, tep);
1933 	tl_serializer_exit(tep);
1934 	tl_refrele(tep);
1935 }
1936 
1937 /*
1938  * M_DATA processing. Called from serializer.
1939  */
1940 static void
1941 tl_wput_data_ser(mblk_t *mp, tl_endpt_t *tep)
1942 {
1943 	tl_endpt_t	*peer_tep = tep->te_conp;
1944 	queue_t		*peer_rq;
1945 
1946 	ASSERT(DB_TYPE(mp) == M_DATA);
1947 	ASSERT(IS_COTS(tep));
1948 
1949 	ASSERT(IMPLY(peer_tep, tep->te_serializer == peer_tep->te_serializer));
1950 
1951 	/*
1952 	 * fastpath for data. Ignore flow control if tep is closing.
1953 	 */
1954 	if ((peer_tep != NULL) &&
1955 	    !peer_tep->te_closing &&
1956 	    ((tep->te_state == TS_DATA_XFER) ||
1957 	    (tep->te_state == TS_WREQ_ORDREL)) &&
1958 	    (tep->te_wq != NULL) &&
1959 	    (tep->te_wq->q_first == NULL) &&
1960 	    ((peer_tep->te_state == TS_DATA_XFER) ||
1961 	    (peer_tep->te_state == TS_WREQ_ORDREL))	&&
1962 	    ((peer_rq = peer_tep->te_rq) != NULL) &&
1963 	    (canputnext(peer_rq) || tep->te_closing)) {
1964 		putnext(peer_rq, mp);
1965 	} else if (tep->te_closing) {
1966 		/*
1967 		 * It is possible that by the time we got here tep started to
1968 		 * close. If the write queue is not empty, and the state is
1969 		 * TS_DATA_XFER the data should be delivered in order, so we
1970 		 * call putq() instead of freeing the data.
1971 		 */
1972 		if ((tep->te_wq != NULL) &&
1973 		    ((tep->te_state == TS_DATA_XFER) ||
1974 		    (tep->te_state == TS_WREQ_ORDREL))) {
1975 			TL_PUTQ(tep, mp);
1976 		} else {
1977 			freemsg(mp);
1978 		}
1979 	} else {
1980 		TL_PUTQ(tep, mp);
1981 	}
1982 
1983 	tl_serializer_exit(tep);
1984 	tl_refrele(tep);
1985 }
1986 
1987 /*
1988  * Write side service routine.
1989  *
1990  * All actual processing happens within serializer which is entered
1991  * synchronously. It is possible that by the time tl_wsrv() wakes up, some new
1992  * messages that need processing may have arrived, so tl_wsrv repeats until
1993  * queue is empty or te_nowsrv is set.
1994  */
1995 static void
1996 tl_wsrv(queue_t *wq)
1997 {
1998 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
1999 
2000 	while ((wq->q_first != NULL) && !tep->te_nowsrv) {
2001 		mutex_enter(&tep->te_srv_lock);
2002 		ASSERT(tep->te_wsrv_active == B_FALSE);
2003 		tep->te_wsrv_active = B_TRUE;
2004 		mutex_exit(&tep->te_srv_lock);
2005 
2006 		tl_serializer_enter(tep, tl_wsrv_ser, &tep->te_wsrvmp);
2007 
2008 		/*
2009 		 * Wait for serializer job to complete.
2010 		 */
2011 		mutex_enter(&tep->te_srv_lock);
2012 		while (tep->te_wsrv_active) {
2013 			cv_wait(&tep->te_srv_cv, &tep->te_srv_lock);
2014 		}
2015 		cv_signal(&tep->te_srv_cv);
2016 		mutex_exit(&tep->te_srv_lock);
2017 	}
2018 }
2019 
2020 /*
2021  * Serialized write side processing of the STREAMS queue.
2022  * May be called either from tl_wsrv() or from tl_close() in which case ser_mp
2023  * is NULL.
2024  */
2025 static void
2026 tl_wsrv_ser(mblk_t *ser_mp, tl_endpt_t *tep)
2027 {
2028 	mblk_t *mp;
2029 	queue_t *wq = tep->te_wq;
2030 
2031 	ASSERT(wq != NULL);
2032 	while (!tep->te_nowsrv && (mp = getq(wq)) != NULL) {
2033 		tl_wput_common_ser(mp, tep);
2034 	}
2035 
2036 	/*
2037 	 * Wakeup service routine unless called from close.
2038 	 * If ser_mp is specified, the caller is tl_wsrv().
2039 	 * Otherwise, the caller is tl_close_ser(). Since tl_close_ser() doesn't
2040 	 * call tl_serializer_enter() before calling tl_wsrv_ser(), there should
2041 	 * be no matching tl_serializer_exit() in this case.
2042 	 * Also, there is no need to wakeup anyone since tl_close_ser() is not
2043 	 * waiting on te_srv_cv.
2044 	 */
2045 	if (ser_mp != NULL) {
2046 		/*
2047 		 * We are called from tl_wsrv.
2048 		 */
2049 		mutex_enter(&tep->te_srv_lock);
2050 		ASSERT(tep->te_wsrv_active);
2051 		tep->te_wsrv_active = B_FALSE;
2052 		cv_signal(&tep->te_srv_cv);
2053 		mutex_exit(&tep->te_srv_lock);
2054 		tl_serializer_exit(tep);
2055 	}
2056 }
2057 
2058 /*
2059  * Called when the stream is backenabled. Enter serializer and qenable everyone
2060  * flow controlled by tep.
2061  *
2062  * NOTE: The service routine should enter serializer synchronously. Otherwise it
2063  * is possible that two instances of tl_rsrv will be running reusing the same
2064  * rsrv mblk.
2065  */
2066 static void
2067 tl_rsrv(queue_t *rq)
2068 {
2069 	tl_endpt_t *tep = (tl_endpt_t *)rq->q_ptr;
2070 
2071 	ASSERT(rq->q_first == NULL);
2072 	ASSERT(tep->te_rsrv_active == 0);
2073 
2074 	tep->te_rsrv_active = B_TRUE;
2075 	tl_serializer_enter(tep, tl_rsrv_ser, &tep->te_rsrvmp);
2076 	/*
2077 	 * Wait for serializer job to complete.
2078 	 */
2079 	mutex_enter(&tep->te_srv_lock);
2080 	while (tep->te_rsrv_active) {
2081 		cv_wait(&tep->te_srv_cv, &tep->te_srv_lock);
2082 	}
2083 	cv_signal(&tep->te_srv_cv);
2084 	mutex_exit(&tep->te_srv_lock);
2085 }
2086 
2087 /* ARGSUSED */
2088 static void
2089 tl_rsrv_ser(mblk_t *mp, tl_endpt_t *tep)
2090 {
2091 	tl_endpt_t *peer_tep;
2092 
2093 	if (IS_CLTS(tep) && tep->te_state == TS_IDLE) {
2094 		tl_cl_backenable(tep);
2095 	} else if (
2096 	    IS_COTS(tep) &&
2097 	    ((peer_tep = tep->te_conp) != NULL) &&
2098 	    !peer_tep->te_closing &&
2099 	    ((tep->te_state == TS_DATA_XFER) ||
2100 	    (tep->te_state == TS_WIND_ORDREL)||
2101 	    (tep->te_state == TS_WREQ_ORDREL))) {
2102 		TL_QENABLE(peer_tep);
2103 	}
2104 
2105 	/*
2106 	 * Wakeup read side service routine.
2107 	 */
2108 	mutex_enter(&tep->te_srv_lock);
2109 	ASSERT(tep->te_rsrv_active);
2110 	tep->te_rsrv_active = B_FALSE;
2111 	cv_signal(&tep->te_srv_cv);
2112 	mutex_exit(&tep->te_srv_lock);
2113 	tl_serializer_exit(tep);
2114 }
2115 
2116 /*
2117  * process M_PROTO messages. Always called from serializer.
2118  */
2119 static void
2120 tl_do_proto(mblk_t *mp, tl_endpt_t *tep)
2121 {
2122 	ssize_t			msz = MBLKL(mp);
2123 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
2124 
2125 	/* Message size was validated by tl_wput(). */
2126 	ASSERT(msz >= sizeof (prim->type));
2127 
2128 	switch (prim->type) {
2129 	case T_UNBIND_REQ:
2130 		tl_unbind(mp, tep);
2131 		break;
2132 
2133 	case T_ADDR_REQ:
2134 		tl_addr_req(mp, tep);
2135 		break;
2136 
2137 	case O_T_CONN_RES:
2138 	case T_CONN_RES:
2139 		if (IS_CLTS(tep)) {
2140 			tl_merror(tep->te_wq, mp, EPROTO);
2141 			break;
2142 		}
2143 		tl_conn_res(mp, tep);
2144 		break;
2145 
2146 	case T_DISCON_REQ:
2147 		if (IS_CLTS(tep)) {
2148 			tl_merror(tep->te_wq, mp, EPROTO);
2149 			break;
2150 		}
2151 		tl_discon_req(mp, tep);
2152 		break;
2153 
2154 	case T_DATA_REQ:
2155 		if (IS_CLTS(tep)) {
2156 			tl_merror(tep->te_wq, mp, EPROTO);
2157 			break;
2158 		}
2159 		tl_data(mp, tep);
2160 		break;
2161 
2162 	case T_OPTDATA_REQ:
2163 		if (IS_CLTS(tep)) {
2164 			tl_merror(tep->te_wq, mp, EPROTO);
2165 			break;
2166 		}
2167 		tl_data(mp, tep);
2168 		break;
2169 
2170 	case T_EXDATA_REQ:
2171 		if (IS_CLTS(tep)) {
2172 			tl_merror(tep->te_wq, mp, EPROTO);
2173 			break;
2174 		}
2175 		tl_exdata(mp, tep);
2176 		break;
2177 
2178 	case T_ORDREL_REQ:
2179 		if (! IS_COTSORD(tep)) {
2180 			tl_merror(tep->te_wq, mp, EPROTO);
2181 			break;
2182 		}
2183 		tl_ordrel(mp, tep);
2184 		break;
2185 
2186 	case T_UNITDATA_REQ:
2187 		if (IS_COTS(tep)) {
2188 			tl_merror(tep->te_wq, mp, EPROTO);
2189 			break;
2190 		}
2191 		tl_unitdata(mp, tep);
2192 		break;
2193 
2194 	default:
2195 		tl_merror(tep->te_wq, mp, EPROTO);
2196 		break;
2197 	}
2198 }
2199 
2200 /*
2201  * Process ioctl from serializer.
2202  * This is a wrapper around tl_do_ioctl().
2203  */
2204 static void
2205 tl_do_ioctl_ser(mblk_t *mp, tl_endpt_t *tep)
2206 {
2207 	if (! tep->te_closing)
2208 		tl_do_ioctl(mp, tep);
2209 	else
2210 		freemsg(mp);
2211 
2212 	tl_serializer_exit(tep);
2213 	tl_refrele(tep);
2214 }
2215 
2216 static void
2217 tl_do_ioctl(mblk_t *mp, tl_endpt_t *tep)
2218 {
2219 	struct iocblk *iocbp = (struct iocblk *)mp->b_rptr;
2220 	int cmd = iocbp->ioc_cmd;
2221 	queue_t *wq = tep->te_wq;
2222 	int error;
2223 	int thisopt, otheropt;
2224 
2225 	ASSERT((cmd == TL_IOC_CREDOPT) || (cmd == TL_IOC_UCREDOPT));
2226 
2227 	switch (cmd) {
2228 	case TL_IOC_CREDOPT:
2229 		if (cmd == TL_IOC_CREDOPT) {
2230 			thisopt = TL_SETCRED;
2231 			otheropt = TL_SETUCRED;
2232 		} else {
2233 			/* FALLTHROUGH */
2234 	case TL_IOC_UCREDOPT:
2235 			thisopt = TL_SETUCRED;
2236 			otheropt = TL_SETCRED;
2237 		}
2238 		/*
2239 		 * The credentials passing does not apply to sockets.
2240 		 * Only one of the cred options can be set at a given time.
2241 		 */
2242 		if (IS_SOCKET(tep) || (tep->te_flag & otheropt)) {
2243 			miocnak(wq, mp, 0, EINVAL);
2244 			return;
2245 		}
2246 
2247 		/*
2248 		 * Turn on generation of credential options for
2249 		 * T_conn_req, T_conn_con, T_unidata_ind.
2250 		 */
2251 		error = miocpullup(mp, sizeof (uint32_t));
2252 		if (error != 0) {
2253 			miocnak(wq, mp, 0, error);
2254 			return;
2255 		}
2256 		if (!IS_P2ALIGNED(mp->b_cont->b_rptr, sizeof (uint32_t))) {
2257 			miocnak(wq, mp, 0, EINVAL);
2258 			return;
2259 		}
2260 
2261 		if (*(uint32_t *)mp->b_cont->b_rptr)
2262 			tep->te_flag |= thisopt;
2263 		else
2264 			tep->te_flag &= ~thisopt;
2265 
2266 		miocack(wq, mp, 0, 0);
2267 		break;
2268 
2269 	default:
2270 		/* Should not be here */
2271 		miocnak(wq, mp, 0, EINVAL);
2272 		break;
2273 	}
2274 }
2275 
2276 
2277 /*
2278  * send T_ERROR_ACK
2279  * Note: assumes enough memory or caller passed big enough mp
2280  *	- no recovery from allocb failures
2281  */
2282 
2283 static void
2284 tl_error_ack(queue_t *wq, mblk_t *mp, t_scalar_t tli_err,
2285     t_scalar_t unix_err, t_scalar_t type)
2286 {
2287 	struct T_error_ack *err_ack;
2288 	mblk_t *ackmp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
2289 	    M_PCPROTO, T_ERROR_ACK);
2290 
2291 	if (ackmp == NULL) {
2292 		(void) (STRLOG(TL_ID, 0, 1, SL_TRACE|SL_ERROR,
2293 		    "tl_error_ack:out of mblk memory"));
2294 		tl_merror(wq, NULL, ENOSR);
2295 		return;
2296 	}
2297 	err_ack = (struct T_error_ack *)ackmp->b_rptr;
2298 	err_ack->ERROR_prim = type;
2299 	err_ack->TLI_error = tli_err;
2300 	err_ack->UNIX_error = unix_err;
2301 
2302 	/*
2303 	 * send error ack message
2304 	 */
2305 	qreply(wq, ackmp);
2306 }
2307 
2308 
2309 
2310 /*
2311  * send T_OK_ACK
2312  * Note: assumes enough memory or caller passed big enough mp
2313  *	- no recovery from allocb failures
2314  */
2315 static void
2316 tl_ok_ack(queue_t *wq, mblk_t *mp, t_scalar_t type)
2317 {
2318 	struct T_ok_ack *ok_ack;
2319 	mblk_t *ackmp = tpi_ack_alloc(mp, sizeof (struct T_ok_ack),
2320 	    M_PCPROTO, T_OK_ACK);
2321 
2322 	if (ackmp == NULL) {
2323 		tl_merror(wq, NULL, ENOMEM);
2324 		return;
2325 	}
2326 
2327 	ok_ack = (struct T_ok_ack *)ackmp->b_rptr;
2328 	ok_ack->CORRECT_prim = type;
2329 
2330 	(void) qreply(wq, ackmp);
2331 }
2332 
2333 /*
2334  * Process T_BIND_REQ and O_T_BIND_REQ from serializer.
2335  * This is a wrapper around tl_bind().
2336  */
2337 static void
2338 tl_bind_ser(mblk_t *mp, tl_endpt_t *tep)
2339 {
2340 	if (! tep->te_closing)
2341 		tl_bind(mp, tep);
2342 	else
2343 		freemsg(mp);
2344 
2345 	tl_serializer_exit(tep);
2346 	tl_refrele(tep);
2347 }
2348 
2349 /*
2350  * Process T_BIND_REQ and O_T_BIND_REQ TPI requests.
2351  * Assumes that the endpoint is in the unbound.
2352  */
2353 static void
2354 tl_bind(mblk_t *mp, tl_endpt_t *tep)
2355 {
2356 	queue_t			*wq = tep->te_wq;
2357 	struct T_bind_ack	*b_ack;
2358 	struct T_bind_req	*bind = (struct T_bind_req *)mp->b_rptr;
2359 	mblk_t			*ackmp, *bamp;
2360 	soux_addr_t		ux_addr;
2361 	t_uscalar_t		qlen = 0;
2362 	t_scalar_t		alen, aoff;
2363 	tl_addr_t		addr_req;
2364 	void			*addr_startp;
2365 	ssize_t			msz = MBLKL(mp), basize;
2366 	t_scalar_t		tli_err = 0, unix_err = 0;
2367 	t_scalar_t		save_prim_type = bind->PRIM_type;
2368 	t_scalar_t		save_state = tep->te_state;
2369 
2370 	if (tep->te_state != TS_UNBND) {
2371 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2372 		    SL_TRACE|SL_ERROR,
2373 		    "tl_wput:bind_request:out of state, state=%d",
2374 		    tep->te_state));
2375 		tli_err = TOUTSTATE;
2376 		goto error;
2377 	}
2378 
2379 	if (msz < sizeof (struct T_bind_req)) {
2380 		tli_err = TSYSERR; unix_err = EINVAL;
2381 		goto error;
2382 	}
2383 
2384 	tep->te_state = NEXTSTATE(TE_BIND_REQ, tep->te_state);
2385 
2386 	ASSERT((bind->PRIM_type == O_T_BIND_REQ) ||
2387 	    (bind->PRIM_type == T_BIND_REQ));
2388 
2389 	alen = bind->ADDR_length;
2390 	aoff = bind->ADDR_offset;
2391 
2392 	/* negotiate max conn req pending */
2393 	if (IS_COTS(tep)) {
2394 		qlen = bind->CONIND_number;
2395 		if (qlen > tl_maxqlen)
2396 			qlen = tl_maxqlen;
2397 	}
2398 
2399 	/*
2400 	 * Reserve hash handle. It can only be NULL if the endpoint is unbound
2401 	 * and bound again.
2402 	 */
2403 	if ((tep->te_hash_hndl == NULL) &&
2404 	    ((tep->te_flag & TL_ADDRHASHED) == 0) &&
2405 	    mod_hash_reserve_nosleep(tep->te_addrhash,
2406 	    &tep->te_hash_hndl) != 0) {
2407 		tli_err = TSYSERR; unix_err = ENOSR;
2408 		goto error;
2409 	}
2410 
2411 	/*
2412 	 * Verify address correctness.
2413 	 */
2414 	if (IS_SOCKET(tep)) {
2415 		ASSERT(bind->PRIM_type == O_T_BIND_REQ);
2416 
2417 		if ((alen != TL_SOUX_ADDRLEN) ||
2418 		    (aoff < 0) ||
2419 		    (aoff + alen > msz)) {
2420 			(void) (STRLOG(TL_ID, tep->te_minor,
2421 			    1, SL_TRACE|SL_ERROR,
2422 			    "tl_bind: invalid socket addr"));
2423 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2424 			tli_err = TSYSERR; unix_err = EINVAL;
2425 			goto error;
2426 		}
2427 		/* Copy address from message to local buffer. */
2428 		bcopy(mp->b_rptr + aoff, &ux_addr, sizeof (ux_addr));
2429 		/*
2430 		 * Check that we got correct address from sockets
2431 		 */
2432 		if ((ux_addr.soua_magic != SOU_MAGIC_EXPLICIT) &&
2433 		    (ux_addr.soua_magic != SOU_MAGIC_IMPLICIT)) {
2434 			(void) (STRLOG(TL_ID, tep->te_minor,
2435 			    1, SL_TRACE|SL_ERROR,
2436 			    "tl_bind: invalid socket magic"));
2437 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2438 			tli_err = TSYSERR; unix_err = EINVAL;
2439 			goto error;
2440 		}
2441 		if ((ux_addr.soua_magic == SOU_MAGIC_IMPLICIT) &&
2442 		    (ux_addr.soua_vp != NULL)) {
2443 			(void) (STRLOG(TL_ID, tep->te_minor,
2444 			    1, SL_TRACE|SL_ERROR,
2445 			    "tl_bind: implicit addr non-empty"));
2446 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2447 			tli_err = TSYSERR; unix_err = EINVAL;
2448 			goto error;
2449 		}
2450 		if ((ux_addr.soua_magic == SOU_MAGIC_EXPLICIT) &&
2451 		    (ux_addr.soua_vp == NULL)) {
2452 			(void) (STRLOG(TL_ID, tep->te_minor,
2453 			    1, SL_TRACE|SL_ERROR,
2454 			    "tl_bind: explicit addr empty"));
2455 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2456 			tli_err = TSYSERR; unix_err = EINVAL;
2457 			goto error;
2458 		}
2459 	} else {
2460 		if ((alen > 0) && ((aoff < 0) ||
2461 		    ((ssize_t)(aoff + alen) > msz) ||
2462 		    ((aoff + alen) < 0))) {
2463 			(void) (STRLOG(TL_ID, tep->te_minor,
2464 			    1, SL_TRACE|SL_ERROR,
2465 			    "tl_bind: invalid message"));
2466 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2467 			tli_err = TSYSERR; unix_err = EINVAL;
2468 			goto error;
2469 		}
2470 		if ((alen < 0) || (alen > (msz - sizeof (struct T_bind_req)))) {
2471 			(void) (STRLOG(TL_ID, tep->te_minor,
2472 			    1, SL_TRACE|SL_ERROR,
2473 			    "tl_bind: bad addr in  message"));
2474 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2475 			tli_err = TBADADDR;
2476 			goto error;
2477 		}
2478 #ifdef DEBUG
2479 		/*
2480 		 * Mild form of ASSERT()ion to detect broken TPI apps.
2481 		 * if (! assertion)
2482 		 *	log warning;
2483 		 */
2484 		if (! ((alen == 0 && aoff == 0) ||
2485 			(aoff >= (t_scalar_t)(sizeof (struct T_bind_req))))) {
2486 			(void) (STRLOG(TL_ID, tep->te_minor,
2487 				    3, SL_TRACE|SL_ERROR,
2488 				    "tl_bind: addr overlaps TPI message"));
2489 		}
2490 #endif
2491 	}
2492 
2493 	/*
2494 	 * Bind the address provided or allocate one if requested.
2495 	 * Allow rebinds with a new qlen value.
2496 	 */
2497 	if (IS_SOCKET(tep)) {
2498 		/*
2499 		 * For anonymous requests the te_ap is already set up properly
2500 		 * so use minor number as an address.
2501 		 * For explicit requests need to check whether the address is
2502 		 * already in use.
2503 		 */
2504 		if (ux_addr.soua_magic == SOU_MAGIC_EXPLICIT) {
2505 			int rc;
2506 
2507 			if (tep->te_flag & TL_ADDRHASHED) {
2508 				ASSERT(IS_COTS(tep) && tep->te_qlen == 0);
2509 				if (tep->te_vp == ux_addr.soua_vp)
2510 					goto skip_addr_bind;
2511 				else /* Rebind to a new address. */
2512 					tl_addr_unbind(tep);
2513 			}
2514 			/*
2515 			 * Insert address in the hash if it is not already
2516 			 * there.  Since we use preallocated handle, the insert
2517 			 * can fail only if the key is already present.
2518 			 */
2519 			rc = mod_hash_insert_reserve(tep->te_addrhash,
2520 			    (mod_hash_key_t)ux_addr.soua_vp,
2521 			    (mod_hash_val_t)tep, tep->te_hash_hndl);
2522 
2523 			if (rc != 0) {
2524 				ASSERT(rc == MH_ERR_DUPLICATE);
2525 				/*
2526 				 * Violate O_T_BIND_REQ semantics and fail with
2527 				 * TADDRBUSY - sockets will not use any address
2528 				 * other than supplied one for explicit binds.
2529 				 */
2530 				(void) (STRLOG(TL_ID, tep->te_minor, 1,
2531 				    SL_TRACE|SL_ERROR,
2532 				    "tl_bind:requested addr %p is busy",
2533 				    ux_addr.soua_vp));
2534 				tli_err = TADDRBUSY; unix_err = 0;
2535 				goto error;
2536 			}
2537 			tep->te_uxaddr = ux_addr;
2538 			tep->te_flag |= TL_ADDRHASHED;
2539 			tep->te_hash_hndl = NULL;
2540 		}
2541 	} else if (alen == 0) {
2542 		/*
2543 		 * assign any free address
2544 		 */
2545 		if (! tl_get_any_addr(tep, NULL)) {
2546 			(void) (STRLOG(TL_ID, tep->te_minor,
2547 			    1, SL_TRACE|SL_ERROR,
2548 			    "tl_bind:failed to get buffer for any "
2549 			    "address"));
2550 			tli_err = TSYSERR; unix_err = ENOSR;
2551 			goto error;
2552 		}
2553 	} else {
2554 		addr_req.ta_alen = alen;
2555 		addr_req.ta_abuf = (mp->b_rptr + aoff);
2556 		addr_req.ta_zoneid = tep->te_zoneid;
2557 
2558 		tep->te_abuf = kmem_zalloc((size_t)alen, KM_NOSLEEP);
2559 		if (tep->te_abuf == NULL) {
2560 			tli_err = TSYSERR; unix_err = ENOSR;
2561 			goto error;
2562 		}
2563 		bcopy(addr_req.ta_abuf, tep->te_abuf, addr_req.ta_alen);
2564 		tep->te_alen = alen;
2565 
2566 		if (mod_hash_insert_reserve(tep->te_addrhash,
2567 		    (mod_hash_key_t)&tep->te_ap, (mod_hash_val_t)tep,
2568 		    tep->te_hash_hndl) != 0) {
2569 			if (save_prim_type == T_BIND_REQ) {
2570 				/*
2571 				 * The bind semantics for this primitive
2572 				 * require a failure if the exact address
2573 				 * requested is busy
2574 				 */
2575 				(void) (STRLOG(TL_ID, tep->te_minor, 1,
2576 				    SL_TRACE|SL_ERROR,
2577 				    "tl_bind:requested addr is busy"));
2578 				tli_err = TADDRBUSY; unix_err = 0;
2579 				goto error;
2580 			}
2581 
2582 			/*
2583 			 * O_T_BIND_REQ semantics say if address if requested
2584 			 * address is busy, bind to any available free address
2585 			 */
2586 			if (! tl_get_any_addr(tep, &addr_req)) {
2587 				(void) (STRLOG(TL_ID, tep->te_minor, 1,
2588 				    SL_TRACE|SL_ERROR,
2589 				    "tl_bind:unable to get any addr buf"));
2590 				tli_err = TSYSERR; unix_err = ENOMEM;
2591 				goto error;
2592 			}
2593 		} else {
2594 			tep->te_flag |= TL_ADDRHASHED;
2595 			tep->te_hash_hndl = NULL;
2596 		}
2597 	}
2598 
2599 	ASSERT(tep->te_alen >= 0);
2600 
2601 skip_addr_bind:
2602 	/*
2603 	 * prepare T_BIND_ACK TPI message
2604 	 */
2605 	basize = sizeof (struct T_bind_ack) + tep->te_alen;
2606 	bamp = reallocb(mp, basize, 0);
2607 	if (bamp == NULL) {
2608 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
2609 		    "tl_wput:tl_bind: allocb failed"));
2610 		/*
2611 		 * roll back state changes
2612 		 */
2613 		tl_addr_unbind(tep);
2614 		tep->te_state = TS_UNBND;
2615 		tl_memrecover(wq, mp, basize);
2616 		return;
2617 	}
2618 
2619 	DB_TYPE(bamp) = M_PCPROTO;
2620 	bamp->b_wptr = bamp->b_rptr + basize;
2621 	b_ack = (struct T_bind_ack *)bamp->b_rptr;
2622 	b_ack->PRIM_type = T_BIND_ACK;
2623 	b_ack->CONIND_number = qlen;
2624 	b_ack->ADDR_length = tep->te_alen;
2625 	b_ack->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_ack);
2626 	addr_startp = bamp->b_rptr + b_ack->ADDR_offset;
2627 	bcopy(tep->te_abuf, addr_startp, tep->te_alen);
2628 
2629 	if (IS_COTS(tep)) {
2630 		tep->te_qlen = qlen;
2631 		if (qlen > 0)
2632 			tep->te_flag |= TL_LISTENER;
2633 	}
2634 
2635 	tep->te_state = NEXTSTATE(TE_BIND_ACK, tep->te_state);
2636 	/*
2637 	 * send T_BIND_ACK message
2638 	 */
2639 	(void) qreply(wq, bamp);
2640 	return;
2641 
2642 error:
2643 	ackmp = reallocb(mp, sizeof (struct T_error_ack), 0);
2644 	if (ackmp == NULL) {
2645 		/*
2646 		 * roll back state changes
2647 		 */
2648 		tep->te_state = save_state;
2649 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2650 		return;
2651 	}
2652 	tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2653 	tl_error_ack(wq, ackmp, tli_err, unix_err, save_prim_type);
2654 }
2655 
2656 /*
2657  * Process T_UNBIND_REQ.
2658  * Called from serializer.
2659  */
2660 static void
2661 tl_unbind(mblk_t *mp, tl_endpt_t *tep)
2662 {
2663 	queue_t *wq;
2664 	mblk_t *ackmp;
2665 
2666 	if (tep->te_closing) {
2667 		freemsg(mp);
2668 		return;
2669 	}
2670 
2671 	wq = tep->te_wq;
2672 
2673 	/*
2674 	 * preallocate memory for max of T_OK_ACK and T_ERROR_ACK
2675 	 * ==> allocate for T_ERROR_ACK (known max)
2676 	 */
2677 	if ((ackmp = reallocb(mp, sizeof (struct T_error_ack), 0)) == NULL) {
2678 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2679 		return;
2680 	}
2681 	/*
2682 	 * memory resources committed
2683 	 * Note: no message validation. T_UNBIND_REQ message is
2684 	 * same size as PRIM_type field so already verified earlier.
2685 	 */
2686 
2687 	/*
2688 	 * validate state
2689 	 */
2690 	if (tep->te_state != TS_IDLE) {
2691 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2692 		    SL_TRACE|SL_ERROR,
2693 		    "tl_wput:T_UNBIND_REQ:out of state, state=%d",
2694 		    tep->te_state));
2695 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_UNBIND_REQ);
2696 		return;
2697 	}
2698 	tep->te_state = NEXTSTATE(TE_UNBIND_REQ, tep->te_state);
2699 
2700 	/*
2701 	 * TPI says on T_UNBIND_REQ:
2702 	 *    send up a M_FLUSH to flush both
2703 	 *    read and write queues
2704 	 */
2705 	(void) putnextctl1(RD(wq), M_FLUSH, FLUSHRW);
2706 
2707 	if (! IS_SOCKET(tep) || !IS_CLTS(tep) || tep->te_qlen != 0 ||
2708 	    tep->te_magic != SOU_MAGIC_EXPLICIT) {
2709 
2710 		/*
2711 		 * Sockets use bind with qlen==0 followed by bind() to
2712 		 * the same address with qlen > 0 for listeners.
2713 		 * We allow rebind with a new qlen value.
2714 		 */
2715 		tl_addr_unbind(tep);
2716 	}
2717 
2718 	tep->te_state = NEXTSTATE(TE_OK_ACK1, tep->te_state);
2719 	/*
2720 	 * send  T_OK_ACK
2721 	 */
2722 	tl_ok_ack(wq, ackmp, T_UNBIND_REQ);
2723 }
2724 
2725 
2726 /*
2727  * Option management code from drv/ip is used here
2728  * Note: TL_PROT_LEVEL/TL_IOC_CREDOPT option is not part of tl_opt_arr
2729  *	database of options. So optcom_req() will fail T_SVR4_OPTMGMT_REQ.
2730  *	However, that is what we want as that option is 'unorthodox'
2731  *	and only valid in T_CONN_IND, T_CONN_CON  and T_UNITDATA_IND
2732  *	and not in T_SVR4_OPTMGMT_REQ/ACK
2733  * Note2: use of optcom_req means this routine is an exception to
2734  *	 recovery from allocb() failures.
2735  */
2736 
2737 static void
2738 tl_optmgmt(queue_t *wq, mblk_t *mp)
2739 {
2740 	tl_endpt_t *tep;
2741 	mblk_t *ackmp;
2742 	union T_primitives *prim;
2743 	cred_t *cr;
2744 
2745 	tep = (tl_endpt_t *)wq->q_ptr;
2746 	prim = (union T_primitives *)mp->b_rptr;
2747 
2748 	/*
2749 	 * All Solaris components should pass a db_credp
2750 	 * for this TPI message, hence we ASSERT.
2751 	 * But in case there is some other M_PROTO that looks
2752 	 * like a TPI message sent by some other kernel
2753 	 * component, we check and return an error.
2754 	 */
2755 	cr = msg_getcred(mp, NULL);
2756 	ASSERT(cr != NULL);
2757 	if (cr == NULL) {
2758 		tl_error_ack(wq, mp, TSYSERR, EINVAL, prim->type);
2759 		return;
2760 	}
2761 
2762 	/*  all states OK for AF_UNIX options ? */
2763 	if (!IS_SOCKET(tep) && tep->te_state != TS_IDLE &&
2764 	    prim->type == T_SVR4_OPTMGMT_REQ) {
2765 		/*
2766 		 * Broken TLI semantics that options can only be managed
2767 		 * in TS_IDLE state. Needed for Sparc ABI test suite that
2768 		 * tests this TLI (mis)feature using this device driver.
2769 		 */
2770 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2771 		    SL_TRACE|SL_ERROR,
2772 		    "tl_wput:T_SVR4_OPTMGMT_REQ:out of state, state=%d",
2773 		    tep->te_state));
2774 		/*
2775 		 * preallocate memory for T_ERROR_ACK
2776 		 */
2777 		ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
2778 		if (! ackmp) {
2779 			tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2780 			return;
2781 		}
2782 
2783 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_SVR4_OPTMGMT_REQ);
2784 		freemsg(mp);
2785 		return;
2786 	}
2787 
2788 	/*
2789 	 * call common option management routine from drv/ip
2790 	 */
2791 	if (prim->type == T_SVR4_OPTMGMT_REQ) {
2792 		(void) svr4_optcom_req(wq, mp, cr, &tl_opt_obj,
2793 		    B_FALSE);
2794 	} else {
2795 		ASSERT(prim->type == T_OPTMGMT_REQ);
2796 		(void) tpi_optcom_req(wq, mp, cr, &tl_opt_obj,
2797 		    B_FALSE);
2798 	}
2799 }
2800 
2801 /*
2802  * Handle T_conn_req - the driver part of accept().
2803  * If TL_SET[U]CRED generate the credentials options.
2804  * If this is a socket pass through options unmodified.
2805  * For sockets generate the T_CONN_CON here instead of
2806  * waiting for the T_CONN_RES.
2807  */
2808 static void
2809 tl_conn_req(queue_t *wq, mblk_t *mp)
2810 {
2811 	tl_endpt_t		*tep = (tl_endpt_t *)wq->q_ptr;
2812 	struct T_conn_req	*creq = (struct T_conn_req *)mp->b_rptr;
2813 	ssize_t			msz = MBLKL(mp);
2814 	t_scalar_t		alen, aoff, olen, ooff,	err = 0;
2815 	tl_endpt_t		*peer_tep = NULL;
2816 	mblk_t			*ackmp;
2817 	mblk_t			*dimp;
2818 	struct T_discon_ind	*di;
2819 	soux_addr_t		ux_addr;
2820 	tl_addr_t		dst;
2821 
2822 	ASSERT(IS_COTS(tep));
2823 
2824 	if (tep->te_closing) {
2825 		freemsg(mp);
2826 		return;
2827 	}
2828 
2829 	/*
2830 	 * preallocate memory for:
2831 	 * 1. max of T_ERROR_ACK and T_OK_ACK
2832 	 *	==> known max T_ERROR_ACK
2833 	 * 2. max of T_DISCON_IND and T_CONN_IND
2834 	 */
2835 	ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
2836 	if (! ackmp) {
2837 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2838 		return;
2839 	}
2840 	/*
2841 	 * memory committed for T_OK_ACK/T_ERROR_ACK now
2842 	 * will be committed for T_DISCON_IND/T_CONN_IND later
2843 	 */
2844 
2845 	if (tep->te_state != TS_IDLE) {
2846 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2847 		    SL_TRACE|SL_ERROR,
2848 		    "tl_wput:T_CONN_REQ:out of state, state=%d",
2849 		    tep->te_state));
2850 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_CONN_REQ);
2851 		freemsg(mp);
2852 		return;
2853 	}
2854 
2855 	/*
2856 	 * validate the message
2857 	 * Note: dereference fields in struct inside message only
2858 	 * after validating the message length.
2859 	 */
2860 	if (msz < sizeof (struct T_conn_req)) {
2861 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
2862 		    "tl_conn_req:invalid message length"));
2863 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2864 		freemsg(mp);
2865 		return;
2866 	}
2867 	alen = creq->DEST_length;
2868 	aoff = creq->DEST_offset;
2869 	olen = creq->OPT_length;
2870 	ooff = creq->OPT_offset;
2871 	if (olen == 0)
2872 		ooff = 0;
2873 
2874 	if (IS_SOCKET(tep)) {
2875 		if ((alen != TL_SOUX_ADDRLEN) ||
2876 		    (aoff < 0) ||
2877 		    (aoff + alen > msz) ||
2878 		    (alen > msz - sizeof (struct T_conn_req))) {
2879 			(void) (STRLOG(TL_ID, tep->te_minor,
2880 				    1, SL_TRACE|SL_ERROR,
2881 				    "tl_conn_req: invalid socket addr"));
2882 			tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2883 			freemsg(mp);
2884 			return;
2885 		}
2886 		bcopy(mp->b_rptr + aoff, &ux_addr, TL_SOUX_ADDRLEN);
2887 		if ((ux_addr.soua_magic != SOU_MAGIC_IMPLICIT) &&
2888 		    (ux_addr.soua_magic != SOU_MAGIC_EXPLICIT)) {
2889 			(void) (STRLOG(TL_ID, tep->te_minor,
2890 			    1, SL_TRACE|SL_ERROR,
2891 			    "tl_conn_req: invalid socket magic"));
2892 			tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2893 			freemsg(mp);
2894 			return;
2895 		}
2896 	} else {
2897 		if ((alen > 0 && ((aoff + alen) > msz || aoff + alen < 0)) ||
2898 		    (olen > 0 && ((ssize_t)(ooff + olen) > msz ||
2899 		    ooff + olen < 0)) ||
2900 		    olen < 0 || ooff < 0) {
2901 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
2902 			    SL_TRACE|SL_ERROR,
2903 			    "tl_conn_req:invalid message"));
2904 			tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2905 			freemsg(mp);
2906 			return;
2907 		}
2908 
2909 		if (alen <= 0 || aoff < 0 ||
2910 		    (ssize_t)alen > msz - sizeof (struct T_conn_req)) {
2911 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
2912 				    SL_TRACE|SL_ERROR,
2913 				    "tl_conn_req:bad addr in message, "
2914 				    "alen=%d, msz=%ld",
2915 				    alen, msz));
2916 			tl_error_ack(wq, ackmp, TBADADDR, 0, T_CONN_REQ);
2917 			freemsg(mp);
2918 			return;
2919 		}
2920 #ifdef DEBUG
2921 		/*
2922 		 * Mild form of ASSERT()ion to detect broken TPI apps.
2923 		 * if (! assertion)
2924 		 *	log warning;
2925 		 */
2926 		if (! (aoff >= (t_scalar_t)sizeof (struct T_conn_req))) {
2927 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
2928 			    SL_TRACE|SL_ERROR,
2929 			    "tl_conn_req: addr overlaps TPI message"));
2930 		}
2931 #endif
2932 		if (olen) {
2933 			/*
2934 			 * no opts in connect req
2935 			 * supported in this provider except for sockets.
2936 			 */
2937 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
2938 			    SL_TRACE|SL_ERROR,
2939 			    "tl_conn_req:options not supported "
2940 			    "in message"));
2941 			tl_error_ack(wq, ackmp, TBADOPT, 0, T_CONN_REQ);
2942 			freemsg(mp);
2943 			return;
2944 		}
2945 	}
2946 
2947 	/*
2948 	 * Prevent tep from closing on us.
2949 	 */
2950 	if (! tl_noclose(tep)) {
2951 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
2952 		    "tl_conn_req:endpoint is closing"));
2953 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_CONN_REQ);
2954 		freemsg(mp);
2955 		return;
2956 	}
2957 
2958 	tep->te_state = NEXTSTATE(TE_CONN_REQ, tep->te_state);
2959 	/*
2960 	 * get endpoint to connect to
2961 	 * check that peer with DEST addr is bound to addr
2962 	 * and has CONIND_number > 0
2963 	 */
2964 	dst.ta_alen = alen;
2965 	dst.ta_abuf = mp->b_rptr + aoff;
2966 	dst.ta_zoneid = tep->te_zoneid;
2967 
2968 	/*
2969 	 * Verify if remote addr is in use
2970 	 */
2971 	peer_tep = (IS_SOCKET(tep) ?
2972 	    tl_sock_find_peer(tep, &ux_addr) :
2973 	    tl_find_peer(tep, &dst));
2974 
2975 	if (peer_tep == NULL) {
2976 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
2977 		    "tl_conn_req:no one at connect address"));
2978 		err = ECONNREFUSED;
2979 	} else if (peer_tep->te_nicon >= peer_tep->te_qlen)  {
2980 		/*
2981 		 * validate that number of incoming connection is
2982 		 * not to capacity on destination endpoint
2983 		 */
2984 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE,
2985 		    "tl_conn_req: qlen overflow connection refused"));
2986 			err = ECONNREFUSED;
2987 	}
2988 
2989 	/*
2990 	 * Send T_DISCON_IND in case of error
2991 	 */
2992 	if (err != 0) {
2993 		if (peer_tep != NULL)
2994 			tl_refrele(peer_tep);
2995 		/* We are still expected to send T_OK_ACK */
2996 		tep->te_state = NEXTSTATE(TE_OK_ACK1, tep->te_state);
2997 		tl_ok_ack(tep->te_wq, ackmp, T_CONN_REQ);
2998 		tl_closeok(tep);
2999 		dimp = tpi_ack_alloc(mp, sizeof (struct T_discon_ind),
3000 		    M_PROTO, T_DISCON_IND);
3001 		if (dimp == NULL) {
3002 			tl_merror(wq, NULL, ENOSR);
3003 			return;
3004 		}
3005 		di = (struct T_discon_ind *)dimp->b_rptr;
3006 		di->DISCON_reason = err;
3007 		di->SEQ_number = BADSEQNUM;
3008 
3009 		tep->te_state = TS_IDLE;
3010 		/*
3011 		 * send T_DISCON_IND message
3012 		 */
3013 		putnext(tep->te_rq, dimp);
3014 		return;
3015 	}
3016 
3017 	ASSERT(IS_COTS(peer_tep));
3018 
3019 	/*
3020 	 * Found the listener. At this point processing will continue on
3021 	 * listener serializer. Close of the endpoint should be blocked while we
3022 	 * switch serializers.
3023 	 */
3024 	tl_serializer_refhold(peer_tep->te_ser);
3025 	tl_serializer_refrele(tep->te_ser);
3026 	tep->te_ser = peer_tep->te_ser;
3027 	ASSERT(tep->te_oconp == NULL);
3028 	tep->te_oconp = peer_tep;
3029 
3030 	/*
3031 	 * It is safe to close now. Close may continue on listener serializer.
3032 	 */
3033 	tl_closeok(tep);
3034 
3035 	/*
3036 	 * Pass ackmp to tl_conn_req_ser. Note that mp->b_cont may contain user
3037 	 * data, so we link mp to ackmp.
3038 	 */
3039 	ackmp->b_cont = mp;
3040 	mp = ackmp;
3041 
3042 	tl_refhold(tep);
3043 	tl_serializer_enter(tep, tl_conn_req_ser, mp);
3044 }
3045 
3046 /*
3047  * Finish T_CONN_REQ processing on listener serializer.
3048  */
3049 static void
3050 tl_conn_req_ser(mblk_t *mp, tl_endpt_t *tep)
3051 {
3052 	queue_t		*wq;
3053 	tl_endpt_t	*peer_tep = tep->te_oconp;
3054 	mblk_t		*confmp, *cimp, *indmp;
3055 	void		*opts = NULL;
3056 	mblk_t		*ackmp = mp;
3057 	struct T_conn_req	*creq = (struct T_conn_req *)mp->b_cont->b_rptr;
3058 	struct T_conn_ind	*ci;
3059 	tl_icon_t	*tip;
3060 	void		*addr_startp;
3061 	t_scalar_t	olen = creq->OPT_length;
3062 	t_scalar_t	ooff = creq->OPT_offset;
3063 	size_t 		ci_msz;
3064 	size_t		size;
3065 
3066 	if (tep->te_closing) {
3067 		TL_UNCONNECT(tep->te_oconp);
3068 		tl_serializer_exit(tep);
3069 		tl_refrele(tep);
3070 		freemsg(mp);
3071 		return;
3072 	}
3073 
3074 	wq = tep->te_wq;
3075 	tep->te_flag |= TL_EAGER;
3076 
3077 	/*
3078 	 * Extract preallocated ackmp from mp.
3079 	 */
3080 	mp = mp->b_cont;
3081 	ackmp->b_cont = NULL;
3082 
3083 	if (olen == 0)
3084 		ooff = 0;
3085 
3086 	if (peer_tep->te_closing ||
3087 	    !((peer_tep->te_state == TS_IDLE) ||
3088 	    (peer_tep->te_state == TS_WRES_CIND))) {
3089 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE | SL_ERROR,
3090 		    "tl_conn_req:peer in bad state (%d)",
3091 		    peer_tep->te_state));
3092 		TL_UNCONNECT(tep->te_oconp);
3093 		tl_error_ack(wq, mp, TSYSERR, ECONNREFUSED, T_CONN_REQ);
3094 		freemsg(ackmp);
3095 		tl_serializer_exit(tep);
3096 		tl_refrele(tep);
3097 		return;
3098 	}
3099 
3100 	/*
3101 	 * preallocate now for T_DISCON_IND or T_CONN_IND
3102 	 */
3103 	/*
3104 	 * calculate length of T_CONN_IND message
3105 	 */
3106 	if (peer_tep->te_flag & TL_SETCRED) {
3107 		ooff = 0;
3108 		olen = (t_scalar_t) sizeof (struct opthdr) +
3109 		    OPTLEN(sizeof (tl_credopt_t));
3110 		/* 1 option only */
3111 	} else if (peer_tep->te_flag & TL_SETUCRED) {
3112 		ooff = 0;
3113 		olen = (t_scalar_t)sizeof (struct opthdr) +
3114 		    OPTLEN(ucredsize);
3115 		/* 1 option only */
3116 	}
3117 	ci_msz = sizeof (struct T_conn_ind) + tep->te_alen;
3118 	ci_msz = T_ALIGN(ci_msz) + olen;
3119 	size = max(ci_msz, sizeof (struct T_discon_ind));
3120 
3121 	/*
3122 	 * Save options from mp - we'll need them for T_CONN_IND.
3123 	 */
3124 	if (ooff != 0) {
3125 		opts = kmem_alloc(olen, KM_NOSLEEP);
3126 		if (opts == NULL) {
3127 			/*
3128 			 * roll back state changes
3129 			 */
3130 			tep->te_state = TS_IDLE;
3131 			tl_memrecover(wq, mp, size);
3132 			freemsg(ackmp);
3133 			TL_UNCONNECT(tep->te_oconp);
3134 			tl_serializer_exit(tep);
3135 			tl_refrele(tep);
3136 			return;
3137 		}
3138 		/* Copy options to a temp buffer */
3139 		bcopy(mp->b_rptr + ooff, opts, olen);
3140 	}
3141 
3142 	if (IS_SOCKET(tep) && !tl_disable_early_connect) {
3143 		/*
3144 		 * Generate a T_CONN_CON that has the identical address
3145 		 * (and options) as the T_CONN_REQ.
3146 		 * NOTE: assumes that the T_conn_req and T_conn_con structures
3147 		 * are isomorphic.
3148 		 */
3149 		confmp = copyb(mp);
3150 		if (! confmp) {
3151 			/*
3152 			 * roll back state changes
3153 			 */
3154 			tep->te_state = TS_IDLE;
3155 			tl_memrecover(wq, mp, mp->b_wptr - mp->b_rptr);
3156 			freemsg(ackmp);
3157 			if (opts != NULL)
3158 				kmem_free(opts, olen);
3159 			TL_UNCONNECT(tep->te_oconp);
3160 			tl_serializer_exit(tep);
3161 			tl_refrele(tep);
3162 			return;
3163 		}
3164 		((struct T_conn_con *)(confmp->b_rptr))->PRIM_type =
3165 		    T_CONN_CON;
3166 	} else {
3167 		confmp = NULL;
3168 	}
3169 	if ((indmp = reallocb(mp, size, 0)) == NULL) {
3170 		/*
3171 		 * roll back state changes
3172 		 */
3173 		tep->te_state = TS_IDLE;
3174 		tl_memrecover(wq, mp, size);
3175 		freemsg(ackmp);
3176 		if (opts != NULL)
3177 			kmem_free(opts, olen);
3178 		freemsg(confmp);
3179 		TL_UNCONNECT(tep->te_oconp);
3180 		tl_serializer_exit(tep);
3181 		tl_refrele(tep);
3182 		return;
3183 	}
3184 
3185 	tip = kmem_zalloc(sizeof (*tip), KM_NOSLEEP);
3186 	if (tip == NULL) {
3187 		/*
3188 		 * roll back state changes
3189 		 */
3190 		tep->te_state = TS_IDLE;
3191 		tl_memrecover(wq, indmp, sizeof (*tip));
3192 		freemsg(ackmp);
3193 		if (opts != NULL)
3194 			kmem_free(opts, olen);
3195 		freemsg(confmp);
3196 		TL_UNCONNECT(tep->te_oconp);
3197 		tl_serializer_exit(tep);
3198 		tl_refrele(tep);
3199 		return;
3200 	}
3201 	tip->ti_mp = NULL;
3202 
3203 	/*
3204 	 * memory is now committed for T_DISCON_IND/T_CONN_IND/T_CONN_CON
3205 	 * and tl_icon_t cell.
3206 	 */
3207 
3208 	/*
3209 	 * ack validity of request and send the peer credential in the ACK.
3210 	 */
3211 	tep->te_state = NEXTSTATE(TE_OK_ACK1, tep->te_state);
3212 
3213 	if (peer_tep != NULL && peer_tep->te_credp != NULL &&
3214 	    confmp != NULL) {
3215 		mblk_setcred(confmp, peer_tep->te_credp, peer_tep->te_cpid);
3216 	}
3217 
3218 	tl_ok_ack(wq, ackmp, T_CONN_REQ);
3219 
3220 	/*
3221 	 * prepare message to send T_CONN_IND
3222 	 */
3223 	/*
3224 	 * allocate the message - original data blocks retained
3225 	 * in the returned mblk
3226 	 */
3227 	cimp = tl_resizemp(indmp, size);
3228 	if (! cimp) {
3229 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
3230 		    "tl_conn_req:con_ind:allocb failure"));
3231 		tl_merror(wq, indmp, ENOMEM);
3232 		TL_UNCONNECT(tep->te_oconp);
3233 		tl_serializer_exit(tep);
3234 		tl_refrele(tep);
3235 		if (opts != NULL)
3236 			kmem_free(opts, olen);
3237 		freemsg(confmp);
3238 		ASSERT(tip->ti_mp == NULL);
3239 		kmem_free(tip, sizeof (*tip));
3240 		return;
3241 	}
3242 
3243 	DB_TYPE(cimp) = M_PROTO;
3244 	ci = (struct T_conn_ind *)cimp->b_rptr;
3245 	ci->PRIM_type  = T_CONN_IND;
3246 	ci->SRC_offset = (t_scalar_t)sizeof (struct T_conn_ind);
3247 	ci->SRC_length = tep->te_alen;
3248 	ci->SEQ_number = tep->te_seqno;
3249 
3250 	addr_startp = cimp->b_rptr + ci->SRC_offset;
3251 	bcopy(tep->te_abuf, addr_startp, tep->te_alen);
3252 	if (peer_tep->te_flag & (TL_SETCRED|TL_SETUCRED)) {
3253 		cred_t *cr;
3254 		pid_t cpid;
3255 
3256 		ci->OPT_offset = (t_scalar_t)T_ALIGN(ci->SRC_offset +
3257 		    ci->SRC_length);
3258 		ci->OPT_length = olen; /* because only 1 option */
3259 		cr = msg_getcred(cimp, &cpid);
3260 		ASSERT(cr != NULL);
3261 		tl_fill_option(cimp->b_rptr + ci->OPT_offset,
3262 		    cr, cpid,
3263 		    peer_tep->te_flag, peer_tep->te_credp);
3264 	} else if (ooff != 0) {
3265 		/* Copy option from T_CONN_REQ */
3266 		ci->OPT_offset = (t_scalar_t)T_ALIGN(ci->SRC_offset +
3267 		    ci->SRC_length);
3268 		ci->OPT_length = olen;
3269 		ASSERT(opts != NULL);
3270 		bcopy(opts, (void *)((uintptr_t)ci + ci->OPT_offset), olen);
3271 	} else {
3272 		ci->OPT_offset = 0;
3273 		ci->OPT_length = 0;
3274 	}
3275 	if (opts != NULL)
3276 		kmem_free(opts, olen);
3277 
3278 	/*
3279 	 * register connection request with server peer
3280 	 * append to list of incoming connections
3281 	 * increment references for both peer_tep and tep: peer_tep is placed on
3282 	 * te_oconp and tep is placed on listeners queue.
3283 	 */
3284 	tip->ti_tep = tep;
3285 	tip->ti_seqno = tep->te_seqno;
3286 	list_insert_tail(&peer_tep->te_iconp, tip);
3287 	peer_tep->te_nicon++;
3288 
3289 	peer_tep->te_state = NEXTSTATE(TE_CONN_IND, peer_tep->te_state);
3290 	/*
3291 	 * send the T_CONN_IND message
3292 	 */
3293 	putnext(peer_tep->te_rq, cimp);
3294 
3295 	/*
3296 	 * Send a T_CONN_CON message for sockets.
3297 	 * Disable the queues until we have reached the correct state!
3298 	 */
3299 	if (confmp != NULL) {
3300 		tep->te_state = NEXTSTATE(TE_CONN_CON, tep->te_state);
3301 		noenable(wq);
3302 		putnext(tep->te_rq, confmp);
3303 	}
3304 	/*
3305 	 * Now we need to increment tep reference because tep is referenced by
3306 	 * server list of pending connections. We also need to decrement
3307 	 * reference before exiting serializer. Two operations void each other
3308 	 * so we don't modify reference at all.
3309 	 */
3310 	ASSERT(tep->te_refcnt >= 2);
3311 	ASSERT(peer_tep->te_refcnt >= 2);
3312 	tl_serializer_exit(tep);
3313 }
3314 
3315 
3316 
3317 /*
3318  * Handle T_conn_res on listener stream. Called on listener serializer.
3319  * tl_conn_req has already generated the T_CONN_CON.
3320  * tl_conn_res is called on listener serializer.
3321  * No one accesses acceptor at this point, so it is safe to modify acceptor.
3322  * Switch eager serializer to acceptor's.
3323  *
3324  * If TL_SET[U]CRED generate the credentials options.
3325  * For sockets tl_conn_req has already generated the T_CONN_CON.
3326  */
3327 static void
3328 tl_conn_res(mblk_t *mp, tl_endpt_t *tep)
3329 {
3330 	queue_t			*wq;
3331 	struct T_conn_res	*cres = (struct T_conn_res *)mp->b_rptr;
3332 	ssize_t			msz = MBLKL(mp);
3333 	t_scalar_t		olen, ooff, err = 0;
3334 	t_scalar_t		prim = cres->PRIM_type;
3335 	uchar_t			*addr_startp;
3336 	tl_endpt_t 		*acc_ep = NULL, *cl_ep = NULL;
3337 	tl_icon_t		*tip;
3338 	size_t			size;
3339 	mblk_t			*ackmp, *respmp;
3340 	mblk_t			*dimp, *ccmp = NULL;
3341 	struct T_discon_ind	*di;
3342 	struct T_conn_con	*cc;
3343 	boolean_t		client_noclose_set = B_FALSE;
3344 	boolean_t		switch_client_serializer = B_TRUE;
3345 
3346 	ASSERT(IS_COTS(tep));
3347 
3348 	if (tep->te_closing) {
3349 		freemsg(mp);
3350 		return;
3351 	}
3352 
3353 	wq = tep->te_wq;
3354 
3355 	/*
3356 	 * preallocate memory for:
3357 	 * 1. max of T_ERROR_ACK and T_OK_ACK
3358 	 *	==> known max T_ERROR_ACK
3359 	 * 2. max of T_DISCON_IND and T_CONN_CON
3360 	 */
3361 	ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
3362 	if (! ackmp) {
3363 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
3364 		return;
3365 	}
3366 	/*
3367 	 * memory committed for T_OK_ACK/T_ERROR_ACK now
3368 	 * will be committed for T_DISCON_IND/T_CONN_CON later
3369 	 */
3370 
3371 
3372 	ASSERT(prim == T_CONN_RES || prim == O_T_CONN_RES);
3373 
3374 	/*
3375 	 * validate state
3376 	 */
3377 	if (tep->te_state != TS_WRES_CIND) {
3378 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
3379 		    SL_TRACE|SL_ERROR,
3380 		    "tl_wput:T_CONN_RES:out of state, state=%d",
3381 		    tep->te_state));
3382 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, prim);
3383 		freemsg(mp);
3384 		return;
3385 	}
3386 
3387 	/*
3388 	 * validate the message
3389 	 * Note: dereference fields in struct inside message only
3390 	 * after validating the message length.
3391 	 */
3392 	if (msz < sizeof (struct T_conn_res)) {
3393 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
3394 		    "tl_conn_res:invalid message length"));
3395 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, prim);
3396 		freemsg(mp);
3397 		return;
3398 	}
3399 	olen = cres->OPT_length;
3400 	ooff = cres->OPT_offset;
3401 	if (((olen > 0) && ((ooff + olen) > msz))) {
3402 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
3403 		    "tl_conn_res:invalid message"));
3404 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, prim);
3405 		freemsg(mp);
3406 		return;
3407 	}
3408 	if (olen) {
3409 		/*
3410 		 * no opts in connect res
3411 		 * supported in this provider
3412 		 */
3413 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
3414 		    "tl_conn_res:options not supported in message"));
3415 		tl_error_ack(wq, ackmp, TBADOPT, 0, prim);
3416 		freemsg(mp);
3417 		return;
3418 	}
3419 
3420 	tep->te_state = NEXTSTATE(TE_CONN_RES, tep->te_state);
3421 	ASSERT(tep->te_state == TS_WACK_CRES);
3422 
3423 	if (cres->SEQ_number < TL_MINOR_START &&
3424 	    cres->SEQ_number >= BADSEQNUM) {
3425 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE|SL_ERROR,
3426 		    "tl_conn_res:remote endpoint sequence number bad"));
3427 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3428 		tl_error_ack(wq, ackmp, TBADSEQ, 0, prim);
3429 		freemsg(mp);
3430 		return;
3431 	}
3432 
3433 	/*
3434 	 * find accepting endpoint. Will have extra reference if found.
3435 	 */
3436 	if (mod_hash_find_cb(tep->te_transport->tr_ai_hash,
3437 	    (mod_hash_key_t)(uintptr_t)cres->ACCEPTOR_id,
3438 	    (mod_hash_val_t *)&acc_ep, tl_find_callback) != 0) {
3439 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE|SL_ERROR,
3440 		    "tl_conn_res:bad accepting endpoint"));
3441 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3442 		tl_error_ack(wq, ackmp, TBADF, 0, prim);
3443 		freemsg(mp);
3444 		return;
3445 	}
3446 
3447 	/*
3448 	 * Prevent acceptor from closing.
3449 	 */
3450 	if (! tl_noclose(acc_ep)) {
3451 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE|SL_ERROR,
3452 		    "tl_conn_res:bad accepting endpoint"));
3453 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3454 		tl_error_ack(wq, ackmp, TBADF, 0, prim);
3455 		tl_refrele(acc_ep);
3456 		freemsg(mp);
3457 		return;
3458 	}
3459 
3460 	acc_ep->te_flag |= TL_ACCEPTOR;
3461 
3462 	/*
3463 	 * validate that accepting endpoint, if different from listening
3464 	 * has address bound => state is TS_IDLE
3465 	 * TROUBLE in XPG4 !!?
3466 	 */
3467 	if ((tep != acc_ep) && (acc_ep->te_state != TS_IDLE)) {
3468 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE|SL_ERROR,
3469 		    "tl_conn_res:accepting endpoint has no address bound,"
3470 		    "state=%d", acc_ep->te_state));
3471 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3472 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, prim);
3473 		freemsg(mp);
3474 		tl_closeok(acc_ep);
3475 		tl_refrele(acc_ep);
3476 		return;
3477 	}
3478 
3479 	/*
3480 	 * validate if accepting endpt same as listening, then
3481 	 * no other incoming connection should be on the queue
3482 	 */
3483 
3484 	if ((tep == acc_ep) && (tep->te_nicon > 1)) {
3485 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
3486 		    "tl_conn_res: > 1 conn_ind on listener-acceptor"));
3487 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3488 		tl_error_ack(wq, ackmp, TBADF, 0, prim);
3489 		freemsg(mp);
3490 		tl_closeok(acc_ep);
3491 		tl_refrele(acc_ep);
3492 		return;
3493 	}
3494 
3495 	/*
3496 	 * Mark for deletion, the entry corresponding to client
3497 	 * on list of pending connections made by the listener
3498 	 *  search list to see if client is one of the
3499 	 * recorded as a listener.
3500 	 */
3501 	tip = tl_icon_find(tep, cres->SEQ_number);
3502 	if (tip == NULL) {
3503 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE|SL_ERROR,
3504 		    "tl_conn_res:no client in listener list"));
3505 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3506 		tl_error_ack(wq, ackmp, TBADSEQ, 0, prim);
3507 		freemsg(mp);
3508 		tl_closeok(acc_ep);
3509 		tl_refrele(acc_ep);
3510 		return;
3511 	}
3512 
3513 	/*
3514 	 * If ti_tep is NULL the client has already closed. In this case
3515 	 * the code below will avoid any action on the client side
3516 	 * but complete the server and acceptor state transitions.
3517 	 */
3518 	ASSERT(tip->ti_tep == NULL ||
3519 	    tip->ti_tep->te_seqno == cres->SEQ_number);
3520 	cl_ep = tip->ti_tep;
3521 
3522 	/*
3523 	 * If the client is present it is switched from listener's to acceptor's
3524 	 * serializer. We should block client closes while serializers are
3525 	 * being switched.
3526 	 *
3527 	 * It is possible that the client is present but is currently being
3528 	 * closed. There are two possible cases:
3529 	 *
3530 	 * 1) The client has already entered tl_close_finish_ser() and sent
3531 	 *    T_ORDREL_IND. In this case we can just ignore the client (but we
3532 	 *    still need to send all messages from tip->ti_mp to the acceptor).
3533 	 *
3534 	 * 2) The client started the close but has not entered
3535 	 *    tl_close_finish_ser() yet. In this case, the client is already
3536 	 *    proceeding asynchronously on the listener's serializer, so we're
3537 	 *    forced to change the acceptor to use the listener's serializer to
3538 	 *    ensure that any operations on the acceptor are serialized with
3539 	 *    respect to the close that's in-progress.
3540 	 */
3541 	if (cl_ep != NULL) {
3542 		if (tl_noclose(cl_ep)) {
3543 			client_noclose_set = B_TRUE;
3544 		} else {
3545 			/*
3546 			 * Client is closing. If it it has sent the
3547 			 * T_ORDREL_IND, we can simply ignore it - otherwise,
3548 			 * we have to let let the client continue until it is
3549 			 * sent.
3550 			 *
3551 			 * If we do continue using the client, acceptor will
3552 			 * switch to client's serializer which is used by client
3553 			 * for its close.
3554 			 */
3555 			tl_client_closing_when_accepting++;
3556 			switch_client_serializer = B_FALSE;
3557 			if (!IS_SOCKET(cl_ep) || tl_disable_early_connect ||
3558 			    cl_ep->te_state == -1)
3559 				cl_ep = NULL;
3560 		}
3561 	}
3562 
3563 	if (cl_ep != NULL) {
3564 		/*
3565 		 * validate client state to be TS_WCON_CREQ or TS_DATA_XFER
3566 		 * (latter for sockets only)
3567 		 */
3568 		if (cl_ep->te_state != TS_WCON_CREQ &&
3569 		    (cl_ep->te_state != TS_DATA_XFER &&
3570 		    IS_SOCKET(cl_ep))) {
3571 			err = ECONNREFUSED;
3572 			/*
3573 			 * T_DISCON_IND sent later after committing memory
3574 			 * and acking validity of request
3575 			 */
3576 			(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE,
3577 			    "tl_conn_res:peer in bad state"));
3578 		}
3579 
3580 		/*
3581 		 * preallocate now for T_DISCON_IND or T_CONN_CONN
3582 		 * ack validity of request (T_OK_ACK) after memory committed
3583 		 */
3584 
3585 		if (err)
3586 			size = sizeof (struct T_discon_ind);
3587 		else {
3588 			/*
3589 			 * calculate length of T_CONN_CON message
3590 			 */
3591 			olen = 0;
3592 			if (cl_ep->te_flag & TL_SETCRED) {
3593 				olen = (t_scalar_t)sizeof (struct opthdr) +
3594 				    OPTLEN(sizeof (tl_credopt_t));
3595 			} else if (cl_ep->te_flag & TL_SETUCRED) {
3596 				olen = (t_scalar_t)sizeof (struct opthdr) +
3597 				    OPTLEN(ucredsize);
3598 			}
3599 			size = T_ALIGN(sizeof (struct T_conn_con) +
3600 			    acc_ep->te_alen) + olen;
3601 		}
3602 		if ((respmp = reallocb(mp, size, 0)) == NULL) {
3603 			/*
3604 			 * roll back state changes
3605 			 */
3606 			tep->te_state = TS_WRES_CIND;
3607 			tl_memrecover(wq, mp, size);
3608 			freemsg(ackmp);
3609 			if (client_noclose_set)
3610 				tl_closeok(cl_ep);
3611 			tl_closeok(acc_ep);
3612 			tl_refrele(acc_ep);
3613 			return;
3614 		}
3615 		mp = NULL;
3616 	}
3617 
3618 	/*
3619 	 * Now ack validity of request
3620 	 */
3621 	if (tep->te_nicon == 1) {
3622 		if (tep == acc_ep)
3623 			tep->te_state = NEXTSTATE(TE_OK_ACK2, tep->te_state);
3624 		else
3625 			tep->te_state = NEXTSTATE(TE_OK_ACK3, tep->te_state);
3626 	} else
3627 		tep->te_state = NEXTSTATE(TE_OK_ACK4, tep->te_state);
3628 
3629 	/*
3630 	 * send T_DISCON_IND now if client state validation failed earlier
3631 	 */
3632 	if (err) {
3633 		tl_ok_ack(wq, ackmp, prim);
3634 		/*
3635 		 * flush the queues - why always ?
3636 		 */
3637 		(void) putnextctl1(acc_ep->te_rq, M_FLUSH, FLUSHR);
3638 
3639 		dimp = tl_resizemp(respmp, size);
3640 		if (! dimp) {
3641 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
3642 			    SL_TRACE|SL_ERROR,
3643 			    "tl_conn_res:con_ind:allocb failure"));
3644 			tl_merror(wq, respmp, ENOMEM);
3645 			tl_closeok(acc_ep);
3646 			if (client_noclose_set)
3647 				tl_closeok(cl_ep);
3648 			tl_refrele(acc_ep);
3649 			return;
3650 		}
3651 		if (dimp->b_cont) {
3652 			/* no user data in provider generated discon ind */
3653 			freemsg(dimp->b_cont);
3654 			dimp->b_cont = NULL;
3655 		}
3656 
3657 		DB_TYPE(dimp) = M_PROTO;
3658 		di = (struct T_discon_ind *)dimp->b_rptr;
3659 		di->PRIM_type  = T_DISCON_IND;
3660 		di->DISCON_reason = err;
3661 		di->SEQ_number = BADSEQNUM;
3662 
3663 		tep->te_state = TS_IDLE;
3664 		/*
3665 		 * send T_DISCON_IND message
3666 		 */
3667 		putnext(acc_ep->te_rq, dimp);
3668 		if (client_noclose_set)
3669 			tl_closeok(cl_ep);
3670 		tl_closeok(acc_ep);
3671 		tl_refrele(acc_ep);
3672 		return;
3673 	}
3674 
3675 	/*
3676 	 * now start connecting the accepting endpoint
3677 	 */
3678 	if (tep != acc_ep)
3679 		acc_ep->te_state = NEXTSTATE(TE_PASS_CONN, acc_ep->te_state);
3680 
3681 	if (cl_ep == NULL) {
3682 		/*
3683 		 * The client has already closed. Send up any queued messages
3684 		 * and change the state accordingly.
3685 		 */
3686 		tl_ok_ack(wq, ackmp, prim);
3687 		tl_icon_sendmsgs(acc_ep, &tip->ti_mp);
3688 
3689 		/*
3690 		 * remove endpoint from incoming connection
3691 		 * delete client from list of incoming connections
3692 		 */
3693 		tl_freetip(tep, tip);
3694 		freemsg(mp);
3695 		tl_closeok(acc_ep);
3696 		tl_refrele(acc_ep);
3697 		return;
3698 	} else if (tip->ti_mp != NULL) {
3699 		/*
3700 		 * The client could have queued a T_DISCON_IND which needs
3701 		 * to be sent up.
3702 		 * Note that t_discon_req can not operate the same as
3703 		 * t_data_req since it is not possible for it to putbq
3704 		 * the message and return -1 due to the use of qwriter.
3705 		 */
3706 		tl_icon_sendmsgs(acc_ep, &tip->ti_mp);
3707 	}
3708 
3709 	/*
3710 	 * prepare connect confirm T_CONN_CON message
3711 	 */
3712 
3713 	/*
3714 	 * allocate the message - original data blocks
3715 	 * retained in the returned mblk
3716 	 */
3717 	if (! IS_SOCKET(cl_ep) || tl_disable_early_connect) {
3718 		ccmp = tl_resizemp(respmp, size);
3719 		if (ccmp == NULL) {
3720 			tl_ok_ack(wq, ackmp, prim);
3721 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
3722 			    SL_TRACE|SL_ERROR,
3723 			    "tl_conn_res:conn_con:allocb failure"));
3724 			tl_merror(wq, respmp, ENOMEM);
3725 			tl_closeok(acc_ep);
3726 			if (client_noclose_set)
3727 				tl_closeok(cl_ep);
3728 			tl_refrele(acc_ep);
3729 			return;
3730 		}
3731 
3732 		DB_TYPE(ccmp) = M_PROTO;
3733 		cc = (struct T_conn_con *)ccmp->b_rptr;
3734 		cc->PRIM_type  = T_CONN_CON;
3735 		cc->RES_offset = (t_scalar_t)sizeof (struct T_conn_con);
3736 		cc->RES_length = acc_ep->te_alen;
3737 		addr_startp = ccmp->b_rptr + cc->RES_offset;
3738 		bcopy(acc_ep->te_abuf, addr_startp, acc_ep->te_alen);
3739 		if (cl_ep->te_flag & (TL_SETCRED|TL_SETUCRED)) {
3740 			cc->OPT_offset = (t_scalar_t)T_ALIGN(cc->RES_offset +
3741 			    cc->RES_length);
3742 			cc->OPT_length = olen;
3743 			tl_fill_option(ccmp->b_rptr + cc->OPT_offset,
3744 			    acc_ep->te_credp, acc_ep->te_cpid, cl_ep->te_flag,
3745 			    cl_ep->te_credp);
3746 		} else {
3747 			cc->OPT_offset = 0;
3748 			cc->OPT_length = 0;
3749 		}
3750 		/*
3751 		 * Forward the credential in the packet so it can be picked up
3752 		 * at the higher layers for more complete credential processing
3753 		 */
3754 		mblk_setcred(ccmp, acc_ep->te_credp, acc_ep->te_cpid);
3755 	} else {
3756 		freemsg(respmp);
3757 		respmp = NULL;
3758 	}
3759 
3760 	/*
3761 	 * make connection linking
3762 	 * accepting and client endpoints
3763 	 * No need to increment references:
3764 	 *	on client: it should already have one from tip->ti_tep linkage.
3765 	 *	on acceptor is should already have one from the table lookup.
3766 	 *
3767 	 * At this point both client and acceptor can't close. Set client
3768 	 * serializer to acceptor's.
3769 	 */
3770 	ASSERT(cl_ep->te_refcnt >= 2);
3771 	ASSERT(acc_ep->te_refcnt >= 2);
3772 	ASSERT(cl_ep->te_conp == NULL);
3773 	ASSERT(acc_ep->te_conp == NULL);
3774 	cl_ep->te_conp = acc_ep;
3775 	acc_ep->te_conp = cl_ep;
3776 	ASSERT(cl_ep->te_ser == tep->te_ser);
3777 	if (switch_client_serializer) {
3778 		mutex_enter(&cl_ep->te_ser_lock);
3779 		if (cl_ep->te_ser_count > 0) {
3780 			switch_client_serializer = B_FALSE;
3781 			tl_serializer_noswitch++;
3782 		} else {
3783 			/*
3784 			 * Move client to the acceptor's serializer.
3785 			 */
3786 			tl_serializer_refhold(acc_ep->te_ser);
3787 			tl_serializer_refrele(cl_ep->te_ser);
3788 			cl_ep->te_ser = acc_ep->te_ser;
3789 		}
3790 		mutex_exit(&cl_ep->te_ser_lock);
3791 	}
3792 	if (!switch_client_serializer) {
3793 		/*
3794 		 * It is not possible to switch client to use acceptor's.
3795 		 * Move acceptor to client's serializer (which is the same as
3796 		 * listener's).
3797 		 */
3798 		tl_serializer_refhold(cl_ep->te_ser);
3799 		tl_serializer_refrele(acc_ep->te_ser);
3800 		acc_ep->te_ser = cl_ep->te_ser;
3801 	}
3802 
3803 	TL_REMOVE_PEER(cl_ep->te_oconp);
3804 	TL_REMOVE_PEER(acc_ep->te_oconp);
3805 
3806 	/*
3807 	 * remove endpoint from incoming connection
3808 	 * delete client from list of incoming connections
3809 	 */
3810 	tip->ti_tep = NULL;
3811 	tl_freetip(tep, tip);
3812 	tl_ok_ack(wq, ackmp, prim);
3813 
3814 	/*
3815 	 * data blocks already linked in reallocb()
3816 	 */
3817 
3818 	/*
3819 	 * link queues so that I_SENDFD will work
3820 	 */
3821 	if (! IS_SOCKET(tep)) {
3822 		acc_ep->te_wq->q_next = cl_ep->te_rq;
3823 		cl_ep->te_wq->q_next = acc_ep->te_rq;
3824 	}
3825 
3826 	/*
3827 	 * send T_CONN_CON up on client side unless it was already
3828 	 * done (for a socket). In cases any data or ordrel req has been
3829 	 * queued make sure that the service procedure runs.
3830 	 */
3831 	if (IS_SOCKET(cl_ep) && !tl_disable_early_connect) {
3832 		enableok(cl_ep->te_wq);
3833 		TL_QENABLE(cl_ep);
3834 		if (ccmp != NULL)
3835 			freemsg(ccmp);
3836 	} else {
3837 		/*
3838 		 * change client state on TE_CONN_CON event
3839 		 */
3840 		cl_ep->te_state = NEXTSTATE(TE_CONN_CON, cl_ep->te_state);
3841 		putnext(cl_ep->te_rq, ccmp);
3842 	}
3843 
3844 	/* Mark the both endpoints as accepted */
3845 	cl_ep->te_flag |= TL_ACCEPTED;
3846 	acc_ep->te_flag |= TL_ACCEPTED;
3847 
3848 	/*
3849 	 * Allow client and acceptor to close.
3850 	 */
3851 	tl_closeok(acc_ep);
3852 	if (client_noclose_set)
3853 		tl_closeok(cl_ep);
3854 }
3855 
3856 
3857 
3858 
3859 static void
3860 tl_discon_req(mblk_t *mp, tl_endpt_t *tep)
3861 {
3862 	queue_t			*wq;
3863 	struct T_discon_req	*dr;
3864 	ssize_t			msz;
3865 	tl_endpt_t		*peer_tep = tep->te_conp;
3866 	tl_endpt_t		*srv_tep = tep->te_oconp;
3867 	tl_icon_t		*tip;
3868 	size_t			size;
3869 	mblk_t			*ackmp, *dimp, *respmp;
3870 	struct T_discon_ind	*di;
3871 	t_scalar_t		save_state, new_state;
3872 
3873 	if (tep->te_closing) {
3874 		freemsg(mp);
3875 		return;
3876 	}
3877 
3878 	if ((peer_tep != NULL) && peer_tep->te_closing) {
3879 		TL_UNCONNECT(tep->te_conp);
3880 		peer_tep = NULL;
3881 	}
3882 	if ((srv_tep != NULL) && srv_tep->te_closing) {
3883 		TL_UNCONNECT(tep->te_oconp);
3884 		srv_tep = NULL;
3885 	}
3886 
3887 	wq = tep->te_wq;
3888 
3889 	/*
3890 	 * preallocate memory for:
3891 	 * 1. max of T_ERROR_ACK and T_OK_ACK
3892 	 *	==> known max T_ERROR_ACK
3893 	 * 2. for  T_DISCON_IND
3894 	 */
3895 	ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
3896 	if (! ackmp) {
3897 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
3898 		return;
3899 	}
3900 	/*
3901 	 * memory committed for T_OK_ACK/T_ERROR_ACK now
3902 	 * will be committed for T_DISCON_IND  later
3903 	 */
3904 
3905 	dr = (struct T_discon_req *)mp->b_rptr;
3906 	msz = MBLKL(mp);
3907 
3908 	/*
3909 	 * validate the state
3910 	 */
3911 	save_state = new_state = tep->te_state;
3912 	if (! (save_state >= TS_WCON_CREQ && save_state <= TS_WRES_CIND) &&
3913 	    ! (save_state >= TS_DATA_XFER && save_state <= TS_WREQ_ORDREL)) {
3914 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
3915 		    SL_TRACE|SL_ERROR,
3916 		    "tl_wput:T_DISCON_REQ:out of state, state=%d",
3917 		    tep->te_state));
3918 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_DISCON_REQ);
3919 		freemsg(mp);
3920 		return;
3921 	}
3922 	/*
3923 	 * Defer committing the state change until it is determined if
3924 	 * the message will be queued with the tl_icon or not.
3925 	 */
3926 	new_state  = NEXTSTATE(TE_DISCON_REQ, tep->te_state);
3927 
3928 	/* validate the message */
3929 	if (msz < sizeof (struct T_discon_req)) {
3930 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
3931 		    "tl_discon_req:invalid message"));
3932 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, new_state);
3933 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_DISCON_REQ);
3934 		freemsg(mp);
3935 		return;
3936 	}
3937 
3938 	/*
3939 	 * if server, then validate that client exists
3940 	 * by connection sequence number etc.
3941 	 */
3942 	if (tep->te_nicon > 0) { /* server */
3943 
3944 		/*
3945 		 * search server list for disconnect client
3946 		 */
3947 		tip = tl_icon_find(tep, dr->SEQ_number);
3948 		if (tip == NULL) {
3949 			(void) (STRLOG(TL_ID, tep->te_minor, 2,
3950 			    SL_TRACE|SL_ERROR,
3951 			    "tl_discon_req:no disconnect endpoint"));
3952 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, new_state);
3953 			tl_error_ack(wq, ackmp, TBADSEQ, 0, T_DISCON_REQ);
3954 			freemsg(mp);
3955 			return;
3956 		}
3957 		/*
3958 		 * If ti_tep is NULL the client has already closed. In this case
3959 		 * the code below will avoid any action on the client side.
3960 		 */
3961 
3962 		ASSERT(IMPLY(tip->ti_tep != NULL,
3963 		    tip->ti_tep->te_seqno == dr->SEQ_number));
3964 		peer_tep = tip->ti_tep;
3965 	}
3966 
3967 	/*
3968 	 * preallocate now for T_DISCON_IND
3969 	 * ack validity of request (T_OK_ACK) after memory committed
3970 	 */
3971 	size = sizeof (struct T_discon_ind);
3972 	if ((respmp = reallocb(mp, size, 0)) == NULL) {
3973 		tl_memrecover(wq, mp, size);
3974 		freemsg(ackmp);
3975 		return;
3976 	}
3977 
3978 	/*
3979 	 * prepare message to ack validity of request
3980 	 */
3981 	if (tep->te_nicon == 0)
3982 		new_state = NEXTSTATE(TE_OK_ACK1, new_state);
3983 	else
3984 		if (tep->te_nicon == 1)
3985 			new_state = NEXTSTATE(TE_OK_ACK2, new_state);
3986 		else
3987 			new_state = NEXTSTATE(TE_OK_ACK4, new_state);
3988 
3989 	/*
3990 	 * Flushing queues according to TPI. Using the old state.
3991 	 */
3992 	if ((tep->te_nicon <= 1) &&
3993 	    ((save_state == TS_DATA_XFER) ||
3994 	    (save_state == TS_WIND_ORDREL) ||
3995 	    (save_state == TS_WREQ_ORDREL)))
3996 		(void) putnextctl1(RD(wq), M_FLUSH, FLUSHRW);
3997 
3998 	/* send T_OK_ACK up  */
3999 	tl_ok_ack(wq, ackmp, T_DISCON_REQ);
4000 
4001 	/*
4002 	 * now do disconnect business
4003 	 */
4004 	if (tep->te_nicon > 0) { /* listener */
4005 		if (peer_tep != NULL && !peer_tep->te_closing) {
4006 			/*
4007 			 * disconnect incoming connect request pending to tep
4008 			 */
4009 			if ((dimp = tl_resizemp(respmp, size)) == NULL) {
4010 				(void) (STRLOG(TL_ID, tep->te_minor, 2,
4011 				    SL_TRACE|SL_ERROR,
4012 				    "tl_discon_req: reallocb failed"));
4013 				tep->te_state = new_state;
4014 				tl_merror(wq, respmp, ENOMEM);
4015 				return;
4016 			}
4017 			di = (struct T_discon_ind *)dimp->b_rptr;
4018 			di->SEQ_number = BADSEQNUM;
4019 			save_state = peer_tep->te_state;
4020 			peer_tep->te_state = TS_IDLE;
4021 
4022 			TL_REMOVE_PEER(peer_tep->te_oconp);
4023 			enableok(peer_tep->te_wq);
4024 			TL_QENABLE(peer_tep);
4025 		} else {
4026 			freemsg(respmp);
4027 			dimp = NULL;
4028 		}
4029 
4030 		/*
4031 		 * remove endpoint from incoming connection list
4032 		 * - remove disconnect client from list on server
4033 		 */
4034 		tl_freetip(tep, tip);
4035 	} else if ((peer_tep = tep->te_oconp) != NULL) { /* client */
4036 		/*
4037 		 * disconnect an outgoing request pending from tep
4038 		 */
4039 
4040 		if ((dimp = tl_resizemp(respmp, size)) == NULL) {
4041 			(void) (STRLOG(TL_ID, tep->te_minor, 2,
4042 			    SL_TRACE|SL_ERROR,
4043 			    "tl_discon_req: reallocb failed"));
4044 			tep->te_state = new_state;
4045 			tl_merror(wq, respmp, ENOMEM);
4046 			return;
4047 		}
4048 		di = (struct T_discon_ind *)dimp->b_rptr;
4049 		DB_TYPE(dimp) = M_PROTO;
4050 		di->PRIM_type  = T_DISCON_IND;
4051 		di->DISCON_reason = ECONNRESET;
4052 		di->SEQ_number = tep->te_seqno;
4053 
4054 		/*
4055 		 * If this is a socket the T_DISCON_IND is queued with
4056 		 * the T_CONN_IND. Otherwise the T_CONN_IND is removed
4057 		 * from the list of pending connections.
4058 		 * Note that when te_oconp is set the peer better have
4059 		 * a t_connind_t for the client.
4060 		 */
4061 		if (IS_SOCKET(tep) && !tl_disable_early_connect) {
4062 			/*
4063 			 * No need to check that
4064 			 * ti_tep == NULL since the T_DISCON_IND
4065 			 * takes precedence over other queued
4066 			 * messages.
4067 			 */
4068 			tl_icon_queuemsg(peer_tep, tep->te_seqno, dimp);
4069 			peer_tep = NULL;
4070 			dimp = NULL;
4071 			/*
4072 			 * Can't clear te_oconp since tl_co_unconnect needs
4073 			 * it as a hint not to free the tep.
4074 			 * Keep the state unchanged since tl_conn_res inspects
4075 			 * it.
4076 			 */
4077 			new_state = tep->te_state;
4078 		} else {
4079 			/* Found - delete it */
4080 			tip = tl_icon_find(peer_tep, tep->te_seqno);
4081 			if (tip != NULL) {
4082 				ASSERT(tep == tip->ti_tep);
4083 				save_state = peer_tep->te_state;
4084 				if (peer_tep->te_nicon == 1)
4085 					peer_tep->te_state =
4086 					    NEXTSTATE(TE_DISCON_IND2,
4087 					    peer_tep->te_state);
4088 				else
4089 					peer_tep->te_state =
4090 					    NEXTSTATE(TE_DISCON_IND3,
4091 					    peer_tep->te_state);
4092 				tl_freetip(peer_tep, tip);
4093 			}
4094 			ASSERT(tep->te_oconp != NULL);
4095 			TL_UNCONNECT(tep->te_oconp);
4096 		}
4097 	} else if ((peer_tep = tep->te_conp) != NULL) { /* connected! */
4098 		if ((dimp = tl_resizemp(respmp, size)) == NULL) {
4099 			(void) (STRLOG(TL_ID, tep->te_minor, 2,
4100 			    SL_TRACE|SL_ERROR,
4101 			    "tl_discon_req: reallocb failed"));
4102 			tep->te_state = new_state;
4103 			tl_merror(wq, respmp, ENOMEM);
4104 			return;
4105 		}
4106 		di = (struct T_discon_ind *)dimp->b_rptr;
4107 		di->SEQ_number = BADSEQNUM;
4108 
4109 		save_state = peer_tep->te_state;
4110 		peer_tep->te_state = TS_IDLE;
4111 	} else {
4112 		/* Not connected */
4113 		tep->te_state = new_state;
4114 		freemsg(respmp);
4115 		return;
4116 	}
4117 
4118 	/* Commit state changes */
4119 	tep->te_state = new_state;
4120 
4121 	if (peer_tep == NULL) {
4122 		ASSERT(dimp == NULL);
4123 		goto done;
4124 	}
4125 	/*
4126 	 * Flush queues on peer before sending up
4127 	 * T_DISCON_IND according to TPI
4128 	 */
4129 
4130 	if ((save_state == TS_DATA_XFER) ||
4131 	    (save_state == TS_WIND_ORDREL) ||
4132 	    (save_state == TS_WREQ_ORDREL))
4133 		(void) putnextctl1(peer_tep->te_rq, M_FLUSH, FLUSHRW);
4134 
4135 	DB_TYPE(dimp) = M_PROTO;
4136 	di->PRIM_type  = T_DISCON_IND;
4137 	di->DISCON_reason = ECONNRESET;
4138 
4139 	/*
4140 	 * data blocks already linked into dimp by reallocb()
4141 	 */
4142 	/*
4143 	 * send indication message to peer user module
4144 	 */
4145 	ASSERT(dimp != NULL);
4146 	putnext(peer_tep->te_rq, dimp);
4147 done:
4148 	if (tep->te_conp) {	/* disconnect pointers if connected */
4149 		ASSERT(! peer_tep->te_closing);
4150 
4151 		/*
4152 		 * Messages may be queued on peer's write queue
4153 		 * waiting to be processed by its write service
4154 		 * procedure. Before the pointer to the peer transport
4155 		 * structure is set to NULL, qenable the peer's write
4156 		 * queue so that the queued up messages are processed.
4157 		 */
4158 		if ((save_state == TS_DATA_XFER) ||
4159 		    (save_state == TS_WIND_ORDREL) ||
4160 		    (save_state == TS_WREQ_ORDREL))
4161 			TL_QENABLE(peer_tep);
4162 		ASSERT(peer_tep != NULL && peer_tep->te_conp != NULL);
4163 		TL_UNCONNECT(peer_tep->te_conp);
4164 		if (! IS_SOCKET(tep)) {
4165 			/*
4166 			 * unlink the streams
4167 			 */
4168 			tep->te_wq->q_next = NULL;
4169 			peer_tep->te_wq->q_next = NULL;
4170 		}
4171 		TL_UNCONNECT(tep->te_conp);
4172 	}
4173 }
4174 
4175 
4176 static void
4177 tl_addr_req(mblk_t *mp, tl_endpt_t *tep)
4178 {
4179 	queue_t			*wq;
4180 	size_t			ack_sz;
4181 	mblk_t			*ackmp;
4182 	struct T_addr_ack	*taa;
4183 
4184 	if (tep->te_closing) {
4185 		freemsg(mp);
4186 		return;
4187 	}
4188 
4189 	wq = tep->te_wq;
4190 
4191 	/*
4192 	 * Note: T_ADDR_REQ message has only PRIM_type field
4193 	 * so it is already validated earlier.
4194 	 */
4195 
4196 	if (IS_CLTS(tep) ||
4197 	    (tep->te_state > TS_WREQ_ORDREL) ||
4198 	    (tep->te_state < TS_DATA_XFER)) {
4199 		/*
4200 		 * Either connectionless or connection oriented but not
4201 		 * in connected data transfer state or half-closed states.
4202 		 */
4203 		ack_sz = sizeof (struct T_addr_ack);
4204 		if (tep->te_state >= TS_IDLE)
4205 			/* is bound */
4206 			ack_sz += tep->te_alen;
4207 		ackmp = reallocb(mp, ack_sz, 0);
4208 		if (ackmp == NULL) {
4209 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4210 			    SL_TRACE|SL_ERROR,
4211 			    "tl_addr_req: reallocb failed"));
4212 			tl_memrecover(wq, mp, ack_sz);
4213 			return;
4214 		}
4215 
4216 		taa = (struct T_addr_ack *)ackmp->b_rptr;
4217 
4218 		bzero(taa, sizeof (struct T_addr_ack));
4219 
4220 		taa->PRIM_type = T_ADDR_ACK;
4221 		ackmp->b_datap->db_type = M_PCPROTO;
4222 		ackmp->b_wptr = (uchar_t *)&taa[1];
4223 
4224 		if (tep->te_state >= TS_IDLE) {
4225 			/* endpoint is bound */
4226 			taa->LOCADDR_length = tep->te_alen;
4227 			taa->LOCADDR_offset = (t_scalar_t)sizeof (*taa);
4228 
4229 			bcopy(tep->te_abuf, ackmp->b_wptr,
4230 			    tep->te_alen);
4231 			ackmp->b_wptr += tep->te_alen;
4232 			ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
4233 		}
4234 
4235 		(void) qreply(wq, ackmp);
4236 	} else {
4237 		ASSERT(tep->te_state == TS_DATA_XFER ||
4238 		    tep->te_state == TS_WIND_ORDREL ||
4239 		    tep->te_state == TS_WREQ_ORDREL);
4240 		/* connection oriented in data transfer */
4241 		tl_connected_cots_addr_req(mp, tep);
4242 	}
4243 }
4244 
4245 
4246 static void
4247 tl_connected_cots_addr_req(mblk_t *mp, tl_endpt_t *tep)
4248 {
4249 	tl_endpt_t		*peer_tep;
4250 	size_t			ack_sz;
4251 	mblk_t			*ackmp;
4252 	struct T_addr_ack	*taa;
4253 	uchar_t			*addr_startp;
4254 
4255 	if (tep->te_closing) {
4256 		freemsg(mp);
4257 		return;
4258 	}
4259 
4260 	ASSERT(tep->te_state >= TS_IDLE);
4261 
4262 	ack_sz = sizeof (struct T_addr_ack);
4263 	ack_sz += T_ALIGN(tep->te_alen);
4264 	peer_tep = tep->te_conp;
4265 	ack_sz += peer_tep->te_alen;
4266 
4267 	ackmp = tpi_ack_alloc(mp, ack_sz, M_PCPROTO, T_ADDR_ACK);
4268 	if (ackmp == NULL) {
4269 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4270 		    "tl_connected_cots_addr_req: reallocb failed"));
4271 		tl_memrecover(tep->te_wq, mp, ack_sz);
4272 		return;
4273 	}
4274 
4275 	taa = (struct T_addr_ack *)ackmp->b_rptr;
4276 
4277 	/* endpoint is bound */
4278 	taa->LOCADDR_length = tep->te_alen;
4279 	taa->LOCADDR_offset = (t_scalar_t)sizeof (*taa);
4280 
4281 	addr_startp = (uchar_t *)&taa[1];
4282 
4283 	bcopy(tep->te_abuf, addr_startp,
4284 	    tep->te_alen);
4285 
4286 	taa->REMADDR_length = peer_tep->te_alen;
4287 	taa->REMADDR_offset = (t_scalar_t)T_ALIGN(taa->LOCADDR_offset +
4288 	    taa->LOCADDR_length);
4289 	addr_startp = ackmp->b_rptr + taa->REMADDR_offset;
4290 	bcopy(peer_tep->te_abuf, addr_startp,
4291 	    peer_tep->te_alen);
4292 	ackmp->b_wptr = (uchar_t *)ackmp->b_rptr +
4293 	    taa->REMADDR_offset + peer_tep->te_alen;
4294 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
4295 
4296 	putnext(tep->te_rq, ackmp);
4297 }
4298 
4299 static void
4300 tl_copy_info(struct T_info_ack *ia, tl_endpt_t *tep)
4301 {
4302 	if (IS_CLTS(tep)) {
4303 		*ia = tl_clts_info_ack;
4304 		ia->TSDU_size = tl_tidusz; /* TSDU and TIDU size are same */
4305 	} else {
4306 		*ia = tl_cots_info_ack;
4307 		if (IS_COTSORD(tep))
4308 			ia->SERV_type = T_COTS_ORD;
4309 	}
4310 	ia->TIDU_size = tl_tidusz;
4311 	ia->CURRENT_state = tep->te_state;
4312 }
4313 
4314 /*
4315  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
4316  * tl_wput.
4317  */
4318 static void
4319 tl_capability_req(mblk_t *mp, tl_endpt_t *tep)
4320 {
4321 	mblk_t			*ackmp;
4322 	t_uscalar_t		cap_bits1;
4323 	struct T_capability_ack	*tcap;
4324 
4325 	if (tep->te_closing) {
4326 		freemsg(mp);
4327 		return;
4328 	}
4329 
4330 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
4331 
4332 	ackmp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
4333 	    M_PCPROTO, T_CAPABILITY_ACK);
4334 	if (ackmp == NULL) {
4335 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4336 		    "tl_capability_req: reallocb failed"));
4337 		tl_memrecover(tep->te_wq, mp,
4338 		    sizeof (struct T_capability_ack));
4339 		return;
4340 	}
4341 
4342 	tcap = (struct T_capability_ack *)ackmp->b_rptr;
4343 	tcap->CAP_bits1 = 0;
4344 
4345 	if (cap_bits1 & TC1_INFO) {
4346 		tl_copy_info(&tcap->INFO_ack, tep);
4347 		tcap->CAP_bits1 |= TC1_INFO;
4348 	}
4349 
4350 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
4351 		tcap->ACCEPTOR_id = tep->te_acceptor_id;
4352 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
4353 	}
4354 
4355 	putnext(tep->te_rq, ackmp);
4356 }
4357 
4358 static void
4359 tl_info_req_ser(mblk_t *mp, tl_endpt_t *tep)
4360 {
4361 	if (! tep->te_closing)
4362 		tl_info_req(mp, tep);
4363 	else
4364 		freemsg(mp);
4365 
4366 	tl_serializer_exit(tep);
4367 	tl_refrele(tep);
4368 }
4369 
4370 static void
4371 tl_info_req(mblk_t *mp, tl_endpt_t *tep)
4372 {
4373 	mblk_t *ackmp;
4374 
4375 	ackmp = tpi_ack_alloc(mp, sizeof (struct T_info_ack),
4376 	    M_PCPROTO, T_INFO_ACK);
4377 	if (ackmp == NULL) {
4378 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4379 		    "tl_info_req: reallocb failed"));
4380 		tl_memrecover(tep->te_wq, mp, sizeof (struct T_info_ack));
4381 		return;
4382 	}
4383 
4384 	/*
4385 	 * fill in T_INFO_ACK contents
4386 	 */
4387 	tl_copy_info((struct T_info_ack *)ackmp->b_rptr, tep);
4388 
4389 	/*
4390 	 * send ack message
4391 	 */
4392 	putnext(tep->te_rq, ackmp);
4393 }
4394 
4395 /*
4396  * Handle M_DATA, T_data_req and T_optdata_req.
4397  * If this is a socket pass through T_optdata_req options unmodified.
4398  */
4399 static void
4400 tl_data(mblk_t *mp, tl_endpt_t *tep)
4401 {
4402 	queue_t			*wq = tep->te_wq;
4403 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
4404 	ssize_t			msz = MBLKL(mp);
4405 	tl_endpt_t		*peer_tep;
4406 	queue_t			*peer_rq;
4407 	boolean_t		closing = tep->te_closing;
4408 
4409 	if (IS_CLTS(tep)) {
4410 		(void) (STRLOG(TL_ID, tep->te_minor, 2,
4411 		    SL_TRACE|SL_ERROR,
4412 		    "tl_wput:clts:unattached M_DATA"));
4413 		if (!closing) {
4414 			tl_merror(wq, mp, EPROTO);
4415 		} else {
4416 			freemsg(mp);
4417 		}
4418 		return;
4419 	}
4420 
4421 	/*
4422 	 * If the endpoint is closing it should still forward any data to the
4423 	 * peer (if it has one). If it is not allowed to forward it can just
4424 	 * free the message.
4425 	 */
4426 	if (closing &&
4427 	    (tep->te_state != TS_DATA_XFER) &&
4428 	    (tep->te_state != TS_WREQ_ORDREL)) {
4429 		freemsg(mp);
4430 		return;
4431 	}
4432 
4433 	if (DB_TYPE(mp) == M_PROTO) {
4434 		if (prim->type == T_DATA_REQ &&
4435 		    msz < sizeof (struct T_data_req)) {
4436 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4437 				SL_TRACE|SL_ERROR,
4438 				"tl_data:T_DATA_REQ:invalid message"));
4439 			if (!closing) {
4440 				tl_merror(wq, mp, EPROTO);
4441 			} else {
4442 				freemsg(mp);
4443 			}
4444 			return;
4445 		} else if (prim->type == T_OPTDATA_REQ &&
4446 		    (msz < sizeof (struct T_optdata_req) || !IS_SOCKET(tep))) {
4447 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4448 			    SL_TRACE|SL_ERROR,
4449 			    "tl_data:T_OPTDATA_REQ:invalid message"));
4450 			if (!closing) {
4451 				tl_merror(wq, mp, EPROTO);
4452 			} else {
4453 				freemsg(mp);
4454 			}
4455 			return;
4456 		}
4457 	}
4458 
4459 	/*
4460 	 * connection oriented provider
4461 	 */
4462 	switch (tep->te_state) {
4463 	case TS_IDLE:
4464 		/*
4465 		 * Other end not here - do nothing.
4466 		 */
4467 		freemsg(mp);
4468 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
4469 		    "tl_data:cots with endpoint idle"));
4470 		return;
4471 
4472 	case TS_DATA_XFER:
4473 		/* valid states */
4474 		if (tep->te_conp != NULL)
4475 			break;
4476 
4477 		if (tep->te_oconp == NULL) {
4478 			if (!closing) {
4479 				tl_merror(wq, mp, EPROTO);
4480 			} else {
4481 				freemsg(mp);
4482 			}
4483 			return;
4484 		}
4485 		/*
4486 		 * For a socket the T_CONN_CON is sent early thus
4487 		 * the peer might not yet have accepted the connection.
4488 		 * If we are closing queue the packet with the T_CONN_IND.
4489 		 * Otherwise defer processing the packet until the peer
4490 		 * accepts the connection.
4491 		 * Note that the queue is noenabled when we go into this
4492 		 * state.
4493 		 */
4494 		if (!closing) {
4495 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4496 			    SL_TRACE|SL_ERROR,
4497 			    "tl_data: ocon"));
4498 			TL_PUTBQ(tep, mp);
4499 			return;
4500 		}
4501 		if (DB_TYPE(mp) == M_PROTO) {
4502 			if (msz < sizeof (t_scalar_t)) {
4503 				freemsg(mp);
4504 				return;
4505 			}
4506 			/* reuse message block - just change REQ to IND */
4507 			if (prim->type == T_DATA_REQ)
4508 				prim->type = T_DATA_IND;
4509 			else
4510 				prim->type = T_OPTDATA_IND;
4511 		}
4512 		tl_icon_queuemsg(tep->te_oconp, tep->te_seqno, mp);
4513 		return;
4514 
4515 	case TS_WREQ_ORDREL:
4516 		if (tep->te_conp == NULL) {
4517 			/*
4518 			 * Other end closed - generate discon_ind
4519 			 * with reason 0 to cause an EPIPE but no
4520 			 * read side error on AF_UNIX sockets.
4521 			 */
4522 			freemsg(mp);
4523 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
4524 			    SL_TRACE|SL_ERROR,
4525 			    "tl_data: WREQ_ORDREL and no peer"));
4526 			tl_discon_ind(tep, 0);
4527 			return;
4528 		}
4529 		break;
4530 
4531 	default:
4532 		/* invalid state for event TE_DATA_REQ */
4533 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4534 		    "tl_data:cots:out of state"));
4535 		tl_merror(wq, mp, EPROTO);
4536 		return;
4537 	}
4538 	/*
4539 	 * tep->te_state = NEXTSTATE(TE_DATA_REQ, tep->te_state);
4540 	 * (State stays same on this event)
4541 	 */
4542 
4543 	/*
4544 	 * get connected endpoint
4545 	 */
4546 	if (((peer_tep = tep->te_conp) == NULL) || peer_tep->te_closing) {
4547 		freemsg(mp);
4548 		/* Peer closed */
4549 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4550 		    "tl_data: peer gone"));
4551 		return;
4552 	}
4553 
4554 	ASSERT(tep->te_serializer == peer_tep->te_serializer);
4555 	peer_rq = peer_tep->te_rq;
4556 
4557 	/*
4558 	 * Put it back if flow controlled
4559 	 * Note: Messages already on queue when we are closing is bounded
4560 	 * so we can ignore flow control.
4561 	 */
4562 	if (!canputnext(peer_rq) && !closing) {
4563 		TL_PUTBQ(tep, mp);
4564 		return;
4565 	}
4566 
4567 	/*
4568 	 * validate peer state
4569 	 */
4570 	switch (peer_tep->te_state) {
4571 	case TS_DATA_XFER:
4572 	case TS_WIND_ORDREL:
4573 		/* valid states */
4574 		break;
4575 	default:
4576 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4577 		    "tl_data:rx side:invalid state"));
4578 		tl_merror(peer_tep->te_wq, mp, EPROTO);
4579 		return;
4580 	}
4581 	if (DB_TYPE(mp) == M_PROTO) {
4582 		/* reuse message block - just change REQ to IND */
4583 		if (prim->type == T_DATA_REQ)
4584 			prim->type = T_DATA_IND;
4585 		else
4586 			prim->type = T_OPTDATA_IND;
4587 	}
4588 	/*
4589 	 * peer_tep->te_state = NEXTSTATE(TE_DATA_IND, peer_tep->te_state);
4590 	 * (peer state stays same on this event)
4591 	 */
4592 	/*
4593 	 * send data to connected peer
4594 	 */
4595 	putnext(peer_rq, mp);
4596 }
4597 
4598 
4599 
4600 static void
4601 tl_exdata(mblk_t *mp, tl_endpt_t *tep)
4602 {
4603 	queue_t			*wq = tep->te_wq;
4604 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
4605 	ssize_t			msz = MBLKL(mp);
4606 	tl_endpt_t		*peer_tep;
4607 	queue_t			*peer_rq;
4608 	boolean_t		closing = tep->te_closing;
4609 
4610 	if (msz < sizeof (struct T_exdata_req)) {
4611 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4612 		    "tl_exdata:invalid message"));
4613 		if (!closing) {
4614 			tl_merror(wq, mp, EPROTO);
4615 		} else {
4616 			freemsg(mp);
4617 		}
4618 		return;
4619 	}
4620 
4621 	/*
4622 	 * If the endpoint is closing it should still forward any data to the
4623 	 * peer (if it has one). If it is not allowed to forward it can just
4624 	 * free the message.
4625 	 */
4626 	if (closing &&
4627 	    (tep->te_state != TS_DATA_XFER) &&
4628 	    (tep->te_state != TS_WREQ_ORDREL)) {
4629 		freemsg(mp);
4630 		return;
4631 	}
4632 
4633 	/*
4634 	 * validate state
4635 	 */
4636 	switch (tep->te_state) {
4637 	case TS_IDLE:
4638 		/*
4639 		 * Other end not here - do nothing.
4640 		 */
4641 		freemsg(mp);
4642 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
4643 		    "tl_exdata:cots with endpoint idle"));
4644 		return;
4645 
4646 	case TS_DATA_XFER:
4647 		/* valid states */
4648 		if (tep->te_conp != NULL)
4649 			break;
4650 
4651 		if (tep->te_oconp == NULL) {
4652 			if (!closing) {
4653 				tl_merror(wq, mp, EPROTO);
4654 			} else {
4655 				freemsg(mp);
4656 			}
4657 			return;
4658 		}
4659 		/*
4660 		 * For a socket the T_CONN_CON is sent early thus
4661 		 * the peer might not yet have accepted the connection.
4662 		 * If we are closing queue the packet with the T_CONN_IND.
4663 		 * Otherwise defer processing the packet until the peer
4664 		 * accepts the connection.
4665 		 * Note that the queue is noenabled when we go into this
4666 		 * state.
4667 		 */
4668 		if (!closing) {
4669 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4670 			    SL_TRACE|SL_ERROR,
4671 			    "tl_exdata: ocon"));
4672 			TL_PUTBQ(tep, mp);
4673 			return;
4674 		}
4675 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4676 		    "tl_exdata: closing socket ocon"));
4677 		prim->type = T_EXDATA_IND;
4678 		tl_icon_queuemsg(tep->te_oconp, tep->te_seqno, mp);
4679 		return;
4680 
4681 	case TS_WREQ_ORDREL:
4682 		if (tep->te_conp == NULL) {
4683 			/*
4684 			 * Other end closed - generate discon_ind
4685 			 * with reason 0 to cause an EPIPE but no
4686 			 * read side error on AF_UNIX sockets.
4687 			 */
4688 			freemsg(mp);
4689 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
4690 			    SL_TRACE|SL_ERROR,
4691 			    "tl_exdata: WREQ_ORDREL and no peer"));
4692 			tl_discon_ind(tep, 0);
4693 			return;
4694 		}
4695 		break;
4696 
4697 	default:
4698 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
4699 		    SL_TRACE|SL_ERROR,
4700 		    "tl_wput:T_EXDATA_REQ:out of state, state=%d",
4701 		    tep->te_state));
4702 		tl_merror(wq, mp, EPROTO);
4703 		return;
4704 	}
4705 	/*
4706 	 * tep->te_state = NEXTSTATE(TE_EXDATA_REQ, tep->te_state);
4707 	 * (state stays same on this event)
4708 	 */
4709 
4710 	/*
4711 	 * get connected endpoint
4712 	 */
4713 	if (((peer_tep = tep->te_conp) == NULL) || peer_tep->te_closing) {
4714 		freemsg(mp);
4715 		/* Peer closed */
4716 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4717 		    "tl_exdata: peer gone"));
4718 		return;
4719 	}
4720 
4721 	peer_rq = peer_tep->te_rq;
4722 
4723 	/*
4724 	 * Put it back if flow controlled
4725 	 * Note: Messages already on queue when we are closing is bounded
4726 	 * so we can ignore flow control.
4727 	 */
4728 	if (!canputnext(peer_rq) && !closing) {
4729 		TL_PUTBQ(tep, mp);
4730 		return;
4731 	}
4732 
4733 	/*
4734 	 * validate state on peer
4735 	 */
4736 	switch (peer_tep->te_state) {
4737 	case TS_DATA_XFER:
4738 	case TS_WIND_ORDREL:
4739 		/* valid states */
4740 		break;
4741 	default:
4742 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4743 		    "tl_exdata:rx side:invalid state"));
4744 		tl_merror(peer_tep->te_wq, mp, EPROTO);
4745 		return;
4746 	}
4747 	/*
4748 	 * peer_tep->te_state = NEXTSTATE(TE_DATA_IND, peer_tep->te_state);
4749 	 * (peer state stays same on this event)
4750 	 */
4751 	/*
4752 	 * reuse message block
4753 	 */
4754 	prim->type = T_EXDATA_IND;
4755 
4756 	/*
4757 	 * send data to connected peer
4758 	 */
4759 	putnext(peer_rq, mp);
4760 }
4761 
4762 
4763 
4764 static void
4765 tl_ordrel(mblk_t *mp, tl_endpt_t *tep)
4766 {
4767 	queue_t			*wq =  tep->te_wq;
4768 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
4769 	ssize_t			msz = MBLKL(mp);
4770 	tl_endpt_t		*peer_tep;
4771 	queue_t			*peer_rq;
4772 	boolean_t		closing = tep->te_closing;
4773 
4774 	if (msz < sizeof (struct T_ordrel_req)) {
4775 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4776 		    "tl_ordrel:invalid message"));
4777 		if (!closing) {
4778 			tl_merror(wq, mp, EPROTO);
4779 		} else {
4780 			freemsg(mp);
4781 		}
4782 		return;
4783 	}
4784 
4785 	/*
4786 	 * validate state
4787 	 */
4788 	switch (tep->te_state) {
4789 	case TS_DATA_XFER:
4790 	case TS_WREQ_ORDREL:
4791 		/* valid states */
4792 		if (tep->te_conp != NULL)
4793 			break;
4794 
4795 		if (tep->te_oconp == NULL)
4796 			break;
4797 
4798 		/*
4799 		 * For a socket the T_CONN_CON is sent early thus
4800 		 * the peer might not yet have accepted the connection.
4801 		 * If we are closing queue the packet with the T_CONN_IND.
4802 		 * Otherwise defer processing the packet until the peer
4803 		 * accepts the connection.
4804 		 * Note that the queue is noenabled when we go into this
4805 		 * state.
4806 		 */
4807 		if (!closing) {
4808 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4809 			    SL_TRACE|SL_ERROR,
4810 			    "tl_ordlrel: ocon"));
4811 			TL_PUTBQ(tep, mp);
4812 			return;
4813 		}
4814 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4815 		    "tl_ordlrel: closing socket ocon"));
4816 		prim->type = T_ORDREL_IND;
4817 		(void) tl_icon_queuemsg(tep->te_oconp, tep->te_seqno, mp);
4818 		return;
4819 
4820 	default:
4821 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
4822 		    SL_TRACE|SL_ERROR,
4823 		    "tl_wput:T_ORDREL_REQ:out of state, state=%d",
4824 		    tep->te_state));
4825 		if (!closing) {
4826 			tl_merror(wq, mp, EPROTO);
4827 		} else {
4828 			freemsg(mp);
4829 		}
4830 		return;
4831 	}
4832 	tep->te_state = NEXTSTATE(TE_ORDREL_REQ, tep->te_state);
4833 
4834 	/*
4835 	 * get connected endpoint
4836 	 */
4837 	if (((peer_tep = tep->te_conp) == NULL) || peer_tep->te_closing) {
4838 		/* Peer closed */
4839 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4840 		    "tl_ordrel: peer gone"));
4841 		freemsg(mp);
4842 		return;
4843 	}
4844 
4845 	peer_rq = peer_tep->te_rq;
4846 
4847 	/*
4848 	 * Put it back if flow controlled except when we are closing.
4849 	 * Note: Messages already on queue when we are closing is bounded
4850 	 * so we can ignore flow control.
4851 	 */
4852 	if (! canputnext(peer_rq) && !closing) {
4853 		TL_PUTBQ(tep, mp);
4854 		return;
4855 	}
4856 
4857 	/*
4858 	 * validate state on peer
4859 	 */
4860 	switch (peer_tep->te_state) {
4861 	case TS_DATA_XFER:
4862 	case TS_WIND_ORDREL:
4863 		/* valid states */
4864 		break;
4865 	default:
4866 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4867 		    "tl_ordrel:rx side:invalid state"));
4868 		tl_merror(peer_tep->te_wq, mp, EPROTO);
4869 		return;
4870 	}
4871 	peer_tep->te_state = NEXTSTATE(TE_ORDREL_IND, peer_tep->te_state);
4872 
4873 	/*
4874 	 * reuse message block
4875 	 */
4876 	prim->type = T_ORDREL_IND;
4877 	(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4878 	    "tl_ordrel: send ordrel_ind"));
4879 
4880 	/*
4881 	 * send data to connected peer
4882 	 */
4883 	putnext(peer_rq, mp);
4884 }
4885 
4886 
4887 /*
4888  * Send T_UDERROR_IND. The error should be from the <sys/errno.h> space.
4889  */
4890 static void
4891 tl_uderr(queue_t *wq, mblk_t *mp, t_scalar_t err)
4892 {
4893 	size_t			err_sz;
4894 	tl_endpt_t		*tep;
4895 	struct T_unitdata_req	*udreq;
4896 	mblk_t			*err_mp;
4897 	t_scalar_t		alen;
4898 	t_scalar_t		olen;
4899 	struct T_uderror_ind	*uderr;
4900 	uchar_t			*addr_startp;
4901 
4902 	err_sz = sizeof (struct T_uderror_ind);
4903 	tep = (tl_endpt_t *)wq->q_ptr;
4904 	udreq = (struct T_unitdata_req *)mp->b_rptr;
4905 	alen = udreq->DEST_length;
4906 	olen = udreq->OPT_length;
4907 
4908 	if (alen > 0)
4909 		err_sz = T_ALIGN(err_sz + alen);
4910 	if (olen > 0)
4911 		err_sz += olen;
4912 
4913 	err_mp = allocb(err_sz, BPRI_MED);
4914 	if (! err_mp) {
4915 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
4916 		    "tl_uderr:allocb failure"));
4917 		/*
4918 		 * Note: no rollback of state needed as it does
4919 		 * not change in connectionless transport
4920 		 */
4921 		tl_memrecover(wq, mp, err_sz);
4922 		return;
4923 	}
4924 
4925 	DB_TYPE(err_mp) = M_PROTO;
4926 	err_mp->b_wptr = err_mp->b_rptr + err_sz;
4927 	uderr = (struct T_uderror_ind *)err_mp->b_rptr;
4928 	uderr->PRIM_type = T_UDERROR_IND;
4929 	uderr->ERROR_type = err;
4930 	uderr->DEST_length = alen;
4931 	uderr->OPT_length = olen;
4932 	if (alen <= 0) {
4933 		uderr->DEST_offset = 0;
4934 	} else {
4935 		uderr->DEST_offset =
4936 		    (t_scalar_t)sizeof (struct T_uderror_ind);
4937 		addr_startp  = mp->b_rptr + udreq->DEST_offset;
4938 		bcopy(addr_startp, err_mp->b_rptr + uderr->DEST_offset,
4939 		    (size_t)alen);
4940 	}
4941 	if (olen <= 0) {
4942 		uderr->OPT_offset = 0;
4943 	} else {
4944 		uderr->OPT_offset =
4945 		    (t_scalar_t)T_ALIGN(sizeof (struct T_uderror_ind) +
4946 		    uderr->DEST_length);
4947 		addr_startp  = mp->b_rptr + udreq->OPT_offset;
4948 		bcopy(addr_startp, err_mp->b_rptr+uderr->OPT_offset,
4949 		    (size_t)olen);
4950 	}
4951 	freemsg(mp);
4952 
4953 	/*
4954 	 * send indication message
4955 	 */
4956 	tep->te_state = NEXTSTATE(TE_UDERROR_IND, tep->te_state);
4957 
4958 	qreply(wq, err_mp);
4959 }
4960 
4961 static void
4962 tl_unitdata_ser(mblk_t *mp, tl_endpt_t *tep)
4963 {
4964 	queue_t *wq = tep->te_wq;
4965 
4966 	if (!tep->te_closing && (wq->q_first != NULL)) {
4967 		TL_PUTQ(tep, mp);
4968 	} else if (tep->te_rq != NULL)
4969 		tl_unitdata(mp, tep);
4970 	else
4971 		freemsg(mp);
4972 
4973 	tl_serializer_exit(tep);
4974 	tl_refrele(tep);
4975 }
4976 
4977 /*
4978  * Handle T_unitdata_req.
4979  * If TL_SET[U]CRED or TL_SOCKUCRED generate the credentials options.
4980  * If this is a socket pass through options unmodified.
4981  */
4982 static void
4983 tl_unitdata(mblk_t *mp, tl_endpt_t *tep)
4984 {
4985 	queue_t			*wq = tep->te_wq;
4986 	soux_addr_t		ux_addr;
4987 	tl_addr_t		destaddr;
4988 	uchar_t			*addr_startp;
4989 	tl_endpt_t		*peer_tep;
4990 	struct T_unitdata_ind	*udind;
4991 	struct T_unitdata_req	*udreq;
4992 	ssize_t			msz, ui_sz;
4993 	t_scalar_t		alen, aoff, olen, ooff;
4994 	t_scalar_t		oldolen = 0;
4995 
4996 	udreq = (struct T_unitdata_req *)mp->b_rptr;
4997 	msz = MBLKL(mp);
4998 
4999 	/*
5000 	 * validate the state
5001 	 */
5002 	if (tep->te_state != TS_IDLE) {
5003 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
5004 		    SL_TRACE|SL_ERROR,
5005 		    "tl_wput:T_CONN_REQ:out of state"));
5006 		tl_merror(wq, mp, EPROTO);
5007 		return;
5008 	}
5009 	/*
5010 	 * tep->te_state = NEXTSTATE(TE_UNITDATA_REQ, tep->te_state);
5011 	 * (state does not change on this event)
5012 	 */
5013 
5014 	/*
5015 	 * validate the message
5016 	 * Note: dereference fields in struct inside message only
5017 	 * after validating the message length.
5018 	 */
5019 	if (msz < sizeof (struct T_unitdata_req)) {
5020 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
5021 		    "tl_unitdata:invalid message length"));
5022 		tl_merror(wq, mp, EINVAL);
5023 		return;
5024 	}
5025 	alen = udreq->DEST_length;
5026 	aoff = udreq->DEST_offset;
5027 	oldolen = olen = udreq->OPT_length;
5028 	ooff = udreq->OPT_offset;
5029 	if (olen == 0)
5030 		ooff = 0;
5031 
5032 	if (IS_SOCKET(tep)) {
5033 		if ((alen != TL_SOUX_ADDRLEN) ||
5034 		    (aoff < 0) ||
5035 		    (aoff + alen > msz) ||
5036 		    (olen < 0) || (ooff < 0) ||
5037 		    ((olen > 0) && ((ooff + olen) > msz))) {
5038 			(void) (STRLOG(TL_ID, tep->te_minor,
5039 			    1, SL_TRACE|SL_ERROR,
5040 			    "tl_unitdata_req: invalid socket addr "
5041 			    "(msz=%d, al=%d, ao=%d, ol=%d, oo = %d)",
5042 			    (int)msz, alen, aoff, olen, ooff));
5043 			tl_error_ack(wq, mp, TSYSERR, EINVAL, T_UNITDATA_REQ);
5044 			return;
5045 		}
5046 		bcopy(mp->b_rptr + aoff, &ux_addr, TL_SOUX_ADDRLEN);
5047 
5048 		if ((ux_addr.soua_magic != SOU_MAGIC_IMPLICIT) &&
5049 		    (ux_addr.soua_magic != SOU_MAGIC_EXPLICIT)) {
5050 			(void) (STRLOG(TL_ID, tep->te_minor,
5051 			    1, SL_TRACE|SL_ERROR,
5052 			    "tl_conn_req: invalid socket magic"));
5053 			tl_error_ack(wq, mp, TSYSERR, EINVAL, T_UNITDATA_REQ);
5054 			return;
5055 		}
5056 	} else {
5057 		if ((alen < 0) ||
5058 		    (aoff < 0) ||
5059 		    ((alen > 0) && ((aoff + alen) > msz)) ||
5060 		    ((ssize_t)alen > (msz - sizeof (struct T_unitdata_req))) ||
5061 		    ((aoff + alen) < 0) ||
5062 		    ((olen > 0) && ((ooff + olen) > msz)) ||
5063 		    (olen < 0) ||
5064 		    (ooff < 0) ||
5065 		    ((ssize_t)olen > (msz - sizeof (struct T_unitdata_req)))) {
5066 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
5067 				    SL_TRACE|SL_ERROR,
5068 				    "tl_unitdata:invalid unit data message"));
5069 			tl_merror(wq, mp, EINVAL);
5070 			return;
5071 		}
5072 	}
5073 
5074 	/* Options not supported unless it's a socket */
5075 	if (alen == 0 || (olen != 0 && !IS_SOCKET(tep))) {
5076 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
5077 		    "tl_unitdata:option use(unsupported) or zero len addr"));
5078 		tl_uderr(wq, mp, EPROTO);
5079 		return;
5080 	}
5081 #ifdef DEBUG
5082 	/*
5083 	 * Mild form of ASSERT()ion to detect broken TPI apps.
5084 	 * if (! assertion)
5085 	 *	log warning;
5086 	 */
5087 	if (! (aoff >= (t_scalar_t)sizeof (struct T_unitdata_req))) {
5088 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
5089 		    "tl_unitdata:addr overlaps TPI message"));
5090 	}
5091 #endif
5092 	/*
5093 	 * get destination endpoint
5094 	 */
5095 	destaddr.ta_alen = alen;
5096 	destaddr.ta_abuf = mp->b_rptr + aoff;
5097 	destaddr.ta_zoneid = tep->te_zoneid;
5098 
5099 	/*
5100 	 * Check whether the destination is the same that was used previously
5101 	 * and the destination endpoint is in the right state. If something is
5102 	 * wrong, find destination again and cache it.
5103 	 */
5104 	peer_tep = tep->te_lastep;
5105 
5106 	if ((peer_tep == NULL) || peer_tep->te_closing ||
5107 	    (peer_tep->te_state != TS_IDLE) ||
5108 	    !tl_eqaddr(&destaddr, &peer_tep->te_ap)) {
5109 		/*
5110 		 * Not the same as cached destination , need to find the right
5111 		 * destination.
5112 		 */
5113 		peer_tep = (IS_SOCKET(tep) ?
5114 		    tl_sock_find_peer(tep, &ux_addr) :
5115 		    tl_find_peer(tep, &destaddr));
5116 
5117 		if (peer_tep == NULL) {
5118 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5119 			    SL_TRACE|SL_ERROR,
5120 			    "tl_unitdata:no one at destination address"));
5121 			tl_uderr(wq, mp, ECONNRESET);
5122 			return;
5123 		}
5124 
5125 		/*
5126 		 * Cache the new peer.
5127 		 */
5128 		if (tep->te_lastep != NULL)
5129 			tl_refrele(tep->te_lastep);
5130 
5131 		tep->te_lastep = peer_tep;
5132 	}
5133 
5134 	if (peer_tep->te_state != TS_IDLE) {
5135 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
5136 		    "tl_unitdata:provider in invalid state"));
5137 		tl_uderr(wq, mp, EPROTO);
5138 		return;
5139 	}
5140 
5141 	ASSERT(peer_tep->te_rq != NULL);
5142 
5143 	/*
5144 	 * Put it back if flow controlled except when we are closing.
5145 	 * Note: Messages already on queue when we are closing is bounded
5146 	 * so we can ignore flow control.
5147 	 */
5148 	if (!canputnext(peer_tep->te_rq) && !(tep->te_closing)) {
5149 		/* record what we are flow controlled on */
5150 		if (tep->te_flowq != NULL) {
5151 			list_remove(&tep->te_flowq->te_flowlist, tep);
5152 		}
5153 		list_insert_head(&peer_tep->te_flowlist, tep);
5154 		tep->te_flowq = peer_tep;
5155 		TL_PUTBQ(tep, mp);
5156 		return;
5157 	}
5158 	/*
5159 	 * prepare indication message
5160 	 */
5161 
5162 	/*
5163 	 * calculate length of message
5164 	 */
5165 	if (peer_tep->te_flag & TL_SETCRED) {
5166 		ASSERT(olen == 0);
5167 		olen = (t_scalar_t)sizeof (struct opthdr) +
5168 		    OPTLEN(sizeof (tl_credopt_t));
5169 					/* 1 option only */
5170 	} else if (peer_tep->te_flag & TL_SETUCRED) {
5171 		ASSERT(olen == 0);
5172 		olen = (t_scalar_t)sizeof (struct opthdr) + OPTLEN(ucredsize);
5173 					/* 1 option only */
5174 	} else if (peer_tep->te_flag & TL_SOCKUCRED) {
5175 		/* Possibly more than one option */
5176 		olen += (t_scalar_t)sizeof (struct T_opthdr) +
5177 		    OPTLEN(ucredsize);
5178 	}
5179 
5180 	ui_sz = T_ALIGN(sizeof (struct T_unitdata_ind) + tep->te_alen) +
5181 	    olen;
5182 	/*
5183 	 * If the unitdata_ind fits and we are not adding options
5184 	 * reuse the udreq mblk.
5185 	 */
5186 	if (msz >= ui_sz && alen >= tep->te_alen &&
5187 	    !(peer_tep->te_flag & (TL_SETCRED|TL_SETUCRED|TL_SOCKUCRED))) {
5188 		/*
5189 		 * Reuse the original mblk. Leave options in place.
5190 		 */
5191 		udind =  (struct T_unitdata_ind *)mp->b_rptr;
5192 		udind->PRIM_type = T_UNITDATA_IND;
5193 		udind->SRC_length = tep->te_alen;
5194 		addr_startp = mp->b_rptr + udind->SRC_offset;
5195 		bcopy(tep->te_abuf, addr_startp, tep->te_alen);
5196 	} else {
5197 		/* Allocate a new T_unidata_ind message */
5198 		mblk_t *ui_mp;
5199 
5200 		ui_mp = allocb(ui_sz, BPRI_MED);
5201 		if (! ui_mp) {
5202 			(void) (STRLOG(TL_ID, tep->te_minor, 4, SL_TRACE,
5203 			    "tl_unitdata:allocb failure:message queued"));
5204 			tl_memrecover(wq, mp, ui_sz);
5205 			return;
5206 		}
5207 
5208 		/*
5209 		 * fill in T_UNITDATA_IND contents
5210 		 */
5211 		DB_TYPE(ui_mp) = M_PROTO;
5212 		ui_mp->b_wptr = ui_mp->b_rptr + ui_sz;
5213 		udind =  (struct T_unitdata_ind *)ui_mp->b_rptr;
5214 		udind->PRIM_type = T_UNITDATA_IND;
5215 		udind->SRC_offset = (t_scalar_t)sizeof (struct T_unitdata_ind);
5216 		udind->SRC_length = tep->te_alen;
5217 		addr_startp = ui_mp->b_rptr + udind->SRC_offset;
5218 		bcopy(tep->te_abuf, addr_startp, tep->te_alen);
5219 		udind->OPT_offset =
5220 		    (t_scalar_t)T_ALIGN(udind->SRC_offset + udind->SRC_length);
5221 		udind->OPT_length = olen;
5222 		if (peer_tep->te_flag & (TL_SETCRED|TL_SETUCRED|TL_SOCKUCRED)) {
5223 			cred_t *cr;
5224 			pid_t cpid;
5225 
5226 			if (oldolen != 0) {
5227 				bcopy((void *)((uintptr_t)udreq + ooff),
5228 				    (void *)((uintptr_t)udind +
5229 				    udind->OPT_offset),
5230 				    oldolen);
5231 			}
5232 			cr = msg_getcred(mp, &cpid);
5233 			ASSERT(cr != NULL);
5234 
5235 			tl_fill_option(ui_mp->b_rptr + udind->OPT_offset +
5236 			    oldolen, cr, cpid,
5237 			    peer_tep->te_flag, peer_tep->te_credp);
5238 		} else {
5239 			bcopy((void *)((uintptr_t)udreq + ooff),
5240 			    (void *)((uintptr_t)udind + udind->OPT_offset),
5241 			    olen);
5242 		}
5243 
5244 		/*
5245 		 * relink data blocks from mp to ui_mp
5246 		 */
5247 		ui_mp->b_cont = mp->b_cont;
5248 		freeb(mp);
5249 		mp = ui_mp;
5250 	}
5251 	/*
5252 	 * send indication message
5253 	 */
5254 	peer_tep->te_state = NEXTSTATE(TE_UNITDATA_IND, peer_tep->te_state);
5255 	putnext(peer_tep->te_rq, mp);
5256 }
5257 
5258 
5259 
5260 /*
5261  * Check if a given addr is in use.
5262  * Endpoint ptr returned or NULL if not found.
5263  * The name space is separate for each mode. This implies that
5264  * sockets get their own name space.
5265  */
5266 static tl_endpt_t *
5267 tl_find_peer(tl_endpt_t *tep, tl_addr_t *ap)
5268 {
5269 	tl_endpt_t *peer_tep = NULL;
5270 	int rc = mod_hash_find_cb(tep->te_addrhash, (mod_hash_key_t)ap,
5271 	    (mod_hash_val_t *)&peer_tep, tl_find_callback);
5272 
5273 	ASSERT(! IS_SOCKET(tep));
5274 
5275 	ASSERT(ap != NULL && ap->ta_alen > 0);
5276 	ASSERT(ap->ta_zoneid == tep->te_zoneid);
5277 	ASSERT(ap->ta_abuf != NULL);
5278 	ASSERT(EQUIV(rc == 0, peer_tep != NULL));
5279 	ASSERT(IMPLY(rc == 0,
5280 	    (tep->te_zoneid == peer_tep->te_zoneid) &&
5281 	    (tep->te_transport == peer_tep->te_transport)));
5282 
5283 	if ((rc == 0) && (peer_tep->te_closing)) {
5284 		tl_refrele(peer_tep);
5285 		peer_tep = NULL;
5286 	}
5287 
5288 	return (peer_tep);
5289 }
5290 
5291 /*
5292  * Find peer for a socket based on unix domain address.
5293  * For implicit addresses our peer can be found by minor number in ai hash. For
5294  * explicit binds we look vnode address at addr_hash.
5295  */
5296 static tl_endpt_t *
5297 tl_sock_find_peer(tl_endpt_t *tep, soux_addr_t *ux_addr)
5298 {
5299 	tl_endpt_t *peer_tep = NULL;
5300 	mod_hash_t *hash = ux_addr->soua_magic == SOU_MAGIC_IMPLICIT ?
5301 	    tep->te_aihash : tep->te_addrhash;
5302 	int rc = mod_hash_find_cb(hash, (mod_hash_key_t)ux_addr->soua_vp,
5303 	    (mod_hash_val_t *)&peer_tep, tl_find_callback);
5304 
5305 	ASSERT(IS_SOCKET(tep));
5306 	ASSERT(EQUIV(rc == 0, peer_tep != NULL));
5307 	ASSERT(IMPLY(rc == 0, (tep->te_transport == peer_tep->te_transport)));
5308 
5309 	if (peer_tep != NULL) {
5310 		/* Don't attempt to use closing peer. */
5311 		if (peer_tep->te_closing)
5312 			goto errout;
5313 
5314 		/*
5315 		 * Cross-zone unix sockets are permitted, but for Trusted
5316 		 * Extensions only, the "server" for these must be in the
5317 		 * global zone.
5318 		 */
5319 		if ((peer_tep->te_zoneid != tep->te_zoneid) &&
5320 		    is_system_labeled() &&
5321 		    (peer_tep->te_zoneid != GLOBAL_ZONEID))
5322 			goto errout;
5323 	}
5324 
5325 	return (peer_tep);
5326 
5327 errout:
5328 	tl_refrele(peer_tep);
5329 	return (NULL);
5330 }
5331 
5332 /*
5333  * Generate a free addr and return it in struct pointed by ap
5334  * but allocating space for address buffer.
5335  * The generated address will be at least 4 bytes long and, if req->ta_alen
5336  * exceeds 4 bytes, be req->ta_alen bytes long.
5337  *
5338  * If address is found it will be inserted in the hash.
5339  *
5340  * If req->ta_alen is larger than the default alen (4 bytes) the last
5341  * alen-4 bytes will always be the same as in req.
5342  *
5343  * Return 0 for failure.
5344  * Return non-zero for success.
5345  */
5346 static boolean_t
5347 tl_get_any_addr(tl_endpt_t *tep, tl_addr_t *req)
5348 {
5349 	t_scalar_t	alen;
5350 	uint32_t	loopcnt;	/* Limit loop to 2^32 */
5351 
5352 	ASSERT(tep->te_hash_hndl != NULL);
5353 	ASSERT(! IS_SOCKET(tep));
5354 
5355 	if (tep->te_hash_hndl == NULL)
5356 		return (B_FALSE);
5357 
5358 	/*
5359 	 * check if default addr is in use
5360 	 * if it is - bump it and try again
5361 	 */
5362 	if (req == NULL) {
5363 		alen = sizeof (uint32_t);
5364 	} else {
5365 		alen = max(req->ta_alen, sizeof (uint32_t));
5366 		ASSERT(tep->te_zoneid == req->ta_zoneid);
5367 	}
5368 
5369 	if (tep->te_alen < alen) {
5370 		void *abuf = kmem_zalloc((size_t)alen, KM_NOSLEEP);
5371 
5372 		/*
5373 		 * Not enough space in tep->ta_ap to hold the address,
5374 		 * allocate a bigger space.
5375 		 */
5376 		if (abuf == NULL)
5377 			return (B_FALSE);
5378 
5379 		if (tep->te_alen > 0)
5380 			kmem_free(tep->te_abuf, tep->te_alen);
5381 
5382 		tep->te_alen = alen;
5383 		tep->te_abuf = abuf;
5384 	}
5385 
5386 	/* Copy in the address in req */
5387 	if (req != NULL) {
5388 		ASSERT(alen >= req->ta_alen);
5389 		bcopy(req->ta_abuf, tep->te_abuf, (size_t)req->ta_alen);
5390 	}
5391 
5392 	/*
5393 	 * First try minor number then try default addresses.
5394 	 */
5395 	bcopy(&tep->te_minor, tep->te_abuf, sizeof (uint32_t));
5396 
5397 	for (loopcnt = 0; loopcnt < UINT32_MAX; loopcnt++) {
5398 		if (mod_hash_insert_reserve(tep->te_addrhash,
5399 		    (mod_hash_key_t)&tep->te_ap, (mod_hash_val_t)tep,
5400 		    tep->te_hash_hndl) == 0) {
5401 			/*
5402 			 * found free address
5403 			 */
5404 			tep->te_flag |= TL_ADDRHASHED;
5405 			tep->te_hash_hndl = NULL;
5406 
5407 			return (B_TRUE); /* successful return */
5408 		}
5409 		/*
5410 		 * Use default address.
5411 		 */
5412 		bcopy(&tep->te_defaddr, tep->te_abuf, sizeof (uint32_t));
5413 		atomic_add_32(&tep->te_defaddr, 1);
5414 	}
5415 
5416 	/*
5417 	 * Failed to find anything.
5418 	 */
5419 	(void) (STRLOG(TL_ID, -1, 1, SL_ERROR,
5420 	    "tl_get_any_addr:looped 2^32 times"));
5421 	return (B_FALSE);
5422 }
5423 
5424 /*
5425  * reallocb + set r/w ptrs to reflect size.
5426  */
5427 static mblk_t *
5428 tl_resizemp(mblk_t *mp, ssize_t new_size)
5429 {
5430 	if ((mp = reallocb(mp, new_size, 0)) == NULL)
5431 		return (NULL);
5432 
5433 	mp->b_rptr = DB_BASE(mp);
5434 	mp->b_wptr = mp->b_rptr + new_size;
5435 	return (mp);
5436 }
5437 
5438 static void
5439 tl_cl_backenable(tl_endpt_t *tep)
5440 {
5441 	list_t *l = &tep->te_flowlist;
5442 	tl_endpt_t *elp;
5443 
5444 	ASSERT(IS_CLTS(tep));
5445 
5446 	for (elp = list_head(l); elp != NULL; elp = list_head(l)) {
5447 		ASSERT(tep->te_ser == elp->te_ser);
5448 		ASSERT(elp->te_flowq == tep);
5449 		if (! elp->te_closing)
5450 			TL_QENABLE(elp);
5451 		elp->te_flowq = NULL;
5452 		list_remove(l, elp);
5453 	}
5454 }
5455 
5456 /*
5457  * Unconnect endpoints.
5458  */
5459 static void
5460 tl_co_unconnect(tl_endpt_t *tep)
5461 {
5462 	tl_endpt_t	*peer_tep = tep->te_conp;
5463 	tl_endpt_t	*srv_tep = tep->te_oconp;
5464 	list_t		*l;
5465 	tl_icon_t  	*tip;
5466 	tl_endpt_t	*cl_tep;
5467 	mblk_t		*d_mp;
5468 
5469 	ASSERT(IS_COTS(tep));
5470 	/*
5471 	 * If our peer is closing, don't use it.
5472 	 */
5473 	if ((peer_tep != NULL) && peer_tep->te_closing) {
5474 		TL_UNCONNECT(tep->te_conp);
5475 		peer_tep = NULL;
5476 	}
5477 	if ((srv_tep != NULL) && srv_tep->te_closing) {
5478 		TL_UNCONNECT(tep->te_oconp);
5479 		srv_tep = NULL;
5480 	}
5481 
5482 	if (tep->te_nicon > 0) {
5483 		l = &tep->te_iconp;
5484 		/*
5485 		 * If incoming requests pending, change state
5486 		 * of clients on disconnect ind event and send
5487 		 * discon_ind pdu to modules above them
5488 		 * for server: all clients get disconnect
5489 		 */
5490 
5491 		while (tep->te_nicon > 0) {
5492 			tip    = list_head(l);
5493 			cl_tep = tip->ti_tep;
5494 
5495 			if (cl_tep == NULL) {
5496 				tl_freetip(tep, tip);
5497 				continue;
5498 			}
5499 
5500 			if (cl_tep->te_oconp != NULL) {
5501 				ASSERT(cl_tep != cl_tep->te_oconp);
5502 				TL_UNCONNECT(cl_tep->te_oconp);
5503 			}
5504 
5505 			if (cl_tep->te_closing) {
5506 				tl_freetip(tep, tip);
5507 				continue;
5508 			}
5509 
5510 			enableok(cl_tep->te_wq);
5511 			TL_QENABLE(cl_tep);
5512 			d_mp = tl_discon_ind_alloc(ECONNREFUSED, BADSEQNUM);
5513 			if (d_mp != NULL) {
5514 				cl_tep->te_state = TS_IDLE;
5515 				putnext(cl_tep->te_rq, d_mp);
5516 			} else {
5517 				(void) (STRLOG(TL_ID, tep->te_minor, 3,
5518 				    SL_TRACE|SL_ERROR,
5519 				    "tl_co_unconnect:icmng: "
5520 				    "allocb failure"));
5521 			}
5522 			tl_freetip(tep, tip);
5523 		}
5524 	} else if (srv_tep != NULL) {
5525 		/*
5526 		 * If outgoing request pending, change state
5527 		 * of server on discon ind event
5528 		 */
5529 
5530 		if (IS_SOCKET(tep) && !tl_disable_early_connect &&
5531 		    IS_COTSORD(srv_tep) &&
5532 		    !tl_icon_hasprim(srv_tep, tep->te_seqno, T_ORDREL_IND)) {
5533 			/*
5534 			 * Queue ordrel_ind for server to be picked up
5535 			 * when the connection is accepted.
5536 			 */
5537 			d_mp = tl_ordrel_ind_alloc();
5538 		} else {
5539 			/*
5540 			 * send discon_ind to server
5541 			 */
5542 			d_mp = tl_discon_ind_alloc(ECONNRESET, tep->te_seqno);
5543 		}
5544 		if (d_mp == NULL) {
5545 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5546 			    SL_TRACE|SL_ERROR,
5547 			    "tl_co_unconnect:outgoing:allocb failure"));
5548 			TL_UNCONNECT(tep->te_oconp);
5549 			goto discon_peer;
5550 		}
5551 
5552 		/*
5553 		 * If this is a socket the T_DISCON_IND is queued with
5554 		 * the T_CONN_IND. Otherwise the T_CONN_IND is removed
5555 		 * from the list of pending connections.
5556 		 * Note that when te_oconp is set the peer better have
5557 		 * a t_connind_t for the client.
5558 		 */
5559 		if (IS_SOCKET(tep) && !tl_disable_early_connect) {
5560 			/*
5561 			 * Queue the disconnection message.
5562 			 */
5563 			tl_icon_queuemsg(srv_tep, tep->te_seqno, d_mp);
5564 		} else {
5565 			tip = tl_icon_find(srv_tep, tep->te_seqno);
5566 			if (tip == NULL) {
5567 				freemsg(d_mp);
5568 			} else {
5569 				ASSERT(tep == tip->ti_tep);
5570 				ASSERT(tep->te_ser == srv_tep->te_ser);
5571 				/*
5572 				 * Delete tip from the server list.
5573 				 */
5574 				if (srv_tep->te_nicon == 1) {
5575 					srv_tep->te_state =
5576 					    NEXTSTATE(TE_DISCON_IND2,
5577 					    srv_tep->te_state);
5578 				} else {
5579 					srv_tep->te_state =
5580 					    NEXTSTATE(TE_DISCON_IND3,
5581 					    srv_tep->te_state);
5582 				}
5583 				ASSERT(*(uint32_t *)(d_mp->b_rptr) ==
5584 				    T_DISCON_IND);
5585 				putnext(srv_tep->te_rq, d_mp);
5586 				tl_freetip(srv_tep, tip);
5587 			}
5588 			TL_UNCONNECT(tep->te_oconp);
5589 			srv_tep = NULL;
5590 		}
5591 	} else if (peer_tep != NULL) {
5592 		/*
5593 		 * unconnect existing connection
5594 		 * If connected, change state of peer on
5595 		 * discon ind event and send discon ind pdu
5596 		 * to module above it
5597 		 */
5598 
5599 		ASSERT(tep->te_ser == peer_tep->te_ser);
5600 		if (IS_COTSORD(peer_tep) &&
5601 		    (peer_tep->te_state == TS_WIND_ORDREL ||
5602 		    peer_tep->te_state == TS_DATA_XFER)) {
5603 			/*
5604 			 * send ordrel ind
5605 			 */
5606 			(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
5607 			"tl_co_unconnect:connected: ordrel_ind state %d->%d",
5608 			    peer_tep->te_state,
5609 			    NEXTSTATE(TE_ORDREL_IND, peer_tep->te_state)));
5610 			d_mp = tl_ordrel_ind_alloc();
5611 			if (! d_mp) {
5612 				(void) (STRLOG(TL_ID, tep->te_minor, 3,
5613 				    SL_TRACE|SL_ERROR,
5614 				    "tl_co_unconnect:connected:"
5615 				    "allocb failure"));
5616 				/*
5617 				 * Continue with cleaning up peer as
5618 				 * this side may go away with the close
5619 				 */
5620 				TL_QENABLE(peer_tep);
5621 				goto discon_peer;
5622 			}
5623 			peer_tep->te_state =
5624 			    NEXTSTATE(TE_ORDREL_IND, peer_tep->te_state);
5625 
5626 			putnext(peer_tep->te_rq, d_mp);
5627 			/*
5628 			 * Handle flow control case.  This will generate
5629 			 * a t_discon_ind message with reason 0 if there
5630 			 * is data queued on the write side.
5631 			 */
5632 			TL_QENABLE(peer_tep);
5633 		} else if (IS_COTSORD(peer_tep) &&
5634 		    peer_tep->te_state == TS_WREQ_ORDREL) {
5635 			/*
5636 			 * Sent an ordrel_ind. We send a discon with
5637 			 * with error 0 to inform that the peer is gone.
5638 			 */
5639 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5640 			    SL_TRACE|SL_ERROR,
5641 			    "tl_co_unconnect: discon in state %d",
5642 			    tep->te_state));
5643 			tl_discon_ind(peer_tep, 0);
5644 		} else {
5645 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5646 			    SL_TRACE|SL_ERROR,
5647 			    "tl_co_unconnect: state %d", tep->te_state));
5648 			tl_discon_ind(peer_tep, ECONNRESET);
5649 		}
5650 
5651 discon_peer:
5652 		/*
5653 		 * Disconnect cross-pointers only for close
5654 		 */
5655 		if (tep->te_closing) {
5656 			peer_tep = tep->te_conp;
5657 			TL_REMOVE_PEER(peer_tep->te_conp);
5658 			TL_REMOVE_PEER(tep->te_conp);
5659 		}
5660 	}
5661 }
5662 
5663 /*
5664  * Note: The following routine does not recover from allocb()
5665  * failures
5666  * The reason should be from the <sys/errno.h> space.
5667  */
5668 static void
5669 tl_discon_ind(tl_endpt_t *tep, uint32_t reason)
5670 {
5671 	mblk_t *d_mp;
5672 
5673 	if (tep->te_closing)
5674 		return;
5675 
5676 	/*
5677 	 * flush the queues.
5678 	 */
5679 	flushq(tep->te_rq, FLUSHDATA);
5680 	(void) putnextctl1(tep->te_rq, M_FLUSH, FLUSHRW);
5681 
5682 	/*
5683 	 * send discon ind
5684 	 */
5685 	d_mp = tl_discon_ind_alloc(reason, tep->te_seqno);
5686 	if (! d_mp) {
5687 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
5688 		    "tl_discon_ind:allocb failure"));
5689 		return;
5690 	}
5691 	tep->te_state = TS_IDLE;
5692 	putnext(tep->te_rq, d_mp);
5693 }
5694 
5695 /*
5696  * Note: The following routine does not recover from allocb()
5697  * failures
5698  * The reason should be from the <sys/errno.h> space.
5699  */
5700 static mblk_t *
5701 tl_discon_ind_alloc(uint32_t reason, t_scalar_t seqnum)
5702 {
5703 	mblk_t *mp;
5704 	struct T_discon_ind *tdi;
5705 
5706 	if (mp = allocb(sizeof (struct T_discon_ind), BPRI_MED)) {
5707 		DB_TYPE(mp) = M_PROTO;
5708 		mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
5709 		tdi = (struct T_discon_ind *)mp->b_rptr;
5710 		tdi->PRIM_type = T_DISCON_IND;
5711 		tdi->DISCON_reason = reason;
5712 		tdi->SEQ_number = seqnum;
5713 	}
5714 	return (mp);
5715 }
5716 
5717 
5718 /*
5719  * Note: The following routine does not recover from allocb()
5720  * failures
5721  */
5722 static mblk_t *
5723 tl_ordrel_ind_alloc(void)
5724 {
5725 	mblk_t *mp;
5726 	struct T_ordrel_ind *toi;
5727 
5728 	if (mp = allocb(sizeof (struct T_ordrel_ind), BPRI_MED)) {
5729 		DB_TYPE(mp) = M_PROTO;
5730 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ordrel_ind);
5731 		toi = (struct T_ordrel_ind *)mp->b_rptr;
5732 		toi->PRIM_type = T_ORDREL_IND;
5733 	}
5734 	return (mp);
5735 }
5736 
5737 
5738 /*
5739  * Lookup the seqno in the list of queued connections.
5740  */
5741 static tl_icon_t *
5742 tl_icon_find(tl_endpt_t *tep, t_scalar_t seqno)
5743 {
5744 	list_t *l = &tep->te_iconp;
5745 	tl_icon_t *tip = list_head(l);
5746 
5747 	ASSERT(seqno != 0);
5748 
5749 	for (; tip != NULL && (tip->ti_seqno != seqno); tip = list_next(l, tip))
5750 		;
5751 
5752 	return (tip);
5753 }
5754 
5755 /*
5756  * Queue data for a given T_CONN_IND while verifying that redundant
5757  * messages, such as a T_ORDREL_IND after a T_DISCON_IND, are not queued.
5758  * Used when the originator of the connection closes.
5759  */
5760 static void
5761 tl_icon_queuemsg(tl_endpt_t *tep, t_scalar_t seqno, mblk_t *nmp)
5762 {
5763 	tl_icon_t		*tip;
5764 	mblk_t			**mpp, *mp;
5765 	int			prim, nprim;
5766 
5767 	if (nmp->b_datap->db_type == M_PROTO)
5768 		nprim = ((union T_primitives *)nmp->b_rptr)->type;
5769 	else
5770 		nprim = -1;	/* M_DATA */
5771 
5772 	tip = tl_icon_find(tep, seqno);
5773 	if (tip == NULL) {
5774 		freemsg(nmp);
5775 		return;
5776 	}
5777 
5778 	ASSERT(tip->ti_seqno != 0);
5779 	mpp = &tip->ti_mp;
5780 	while (*mpp != NULL) {
5781 		mp = *mpp;
5782 
5783 		if (mp->b_datap->db_type == M_PROTO)
5784 			prim = ((union T_primitives *)mp->b_rptr)->type;
5785 		else
5786 			prim = -1;	/* M_DATA */
5787 
5788 		/*
5789 		 * Allow nothing after a T_DISCON_IND
5790 		 */
5791 		if (prim == T_DISCON_IND) {
5792 			freemsg(nmp);
5793 			return;
5794 		}
5795 		/*
5796 		 * Only allow a T_DISCON_IND after an T_ORDREL_IND
5797 		 */
5798 		if (prim == T_ORDREL_IND && nprim != T_DISCON_IND) {
5799 			freemsg(nmp);
5800 			return;
5801 		}
5802 		mpp = &(mp->b_next);
5803 	}
5804 	*mpp = nmp;
5805 }
5806 
5807 /*
5808  * Verify if a certain TPI primitive exists on the connind queue.
5809  * Use prim -1 for M_DATA.
5810  * Return non-zero if found.
5811  */
5812 static boolean_t
5813 tl_icon_hasprim(tl_endpt_t *tep, t_scalar_t seqno, t_scalar_t prim)
5814 {
5815 	tl_icon_t *tip = tl_icon_find(tep, seqno);
5816 	boolean_t found = B_FALSE;
5817 
5818 	if (tip != NULL) {
5819 		mblk_t *mp;
5820 		for (mp = tip->ti_mp; !found && mp != NULL; mp = mp->b_next) {
5821 			found = (DB_TYPE(mp) == M_PROTO &&
5822 			    ((union T_primitives *)mp->b_rptr)->type == prim);
5823 		}
5824 	}
5825 	return (found);
5826 }
5827 
5828 /*
5829  * Send the b_next mblk chain that has accumulated before the connection
5830  * was accepted. Perform the necessary state transitions.
5831  */
5832 static void
5833 tl_icon_sendmsgs(tl_endpt_t *tep, mblk_t **mpp)
5834 {
5835 	mblk_t			*mp;
5836 	union T_primitives	*primp;
5837 
5838 	if (tep->te_closing) {
5839 		tl_icon_freemsgs(mpp);
5840 		return;
5841 	}
5842 
5843 	ASSERT(tep->te_state == TS_DATA_XFER);
5844 	ASSERT(tep->te_rq->q_first == NULL);
5845 
5846 	while ((mp = *mpp) != NULL) {
5847 		*mpp = mp->b_next;
5848 		mp->b_next = NULL;
5849 
5850 		ASSERT((DB_TYPE(mp) == M_DATA) || (DB_TYPE(mp) == M_PROTO));
5851 		switch (DB_TYPE(mp)) {
5852 		default:
5853 			freemsg(mp);
5854 			break;
5855 		case M_DATA:
5856 			putnext(tep->te_rq, mp);
5857 			break;
5858 		case M_PROTO:
5859 			primp = (union T_primitives *)mp->b_rptr;
5860 			switch (primp->type) {
5861 			case T_UNITDATA_IND:
5862 			case T_DATA_IND:
5863 			case T_OPTDATA_IND:
5864 			case T_EXDATA_IND:
5865 				putnext(tep->te_rq, mp);
5866 				break;
5867 			case T_ORDREL_IND:
5868 				tep->te_state = NEXTSTATE(TE_ORDREL_IND,
5869 				    tep->te_state);
5870 				putnext(tep->te_rq, mp);
5871 				break;
5872 			case T_DISCON_IND:
5873 				tep->te_state = TS_IDLE;
5874 				putnext(tep->te_rq, mp);
5875 				break;
5876 			default:
5877 #ifdef DEBUG
5878 				cmn_err(CE_PANIC,
5879 				    "tl_icon_sendmsgs: unknown primitive");
5880 #endif /* DEBUG */
5881 				freemsg(mp);
5882 				break;
5883 			}
5884 			break;
5885 		}
5886 	}
5887 }
5888 
5889 /*
5890  * Free the b_next mblk chain that has accumulated before the connection
5891  * was accepted.
5892  */
5893 static void
5894 tl_icon_freemsgs(mblk_t **mpp)
5895 {
5896 	mblk_t *mp;
5897 
5898 	while ((mp = *mpp) != NULL) {
5899 		*mpp = mp->b_next;
5900 		mp->b_next = NULL;
5901 		freemsg(mp);
5902 	}
5903 }
5904 
5905 /*
5906  * Send M_ERROR
5907  * Note: assumes caller ensured enough space in mp or enough
5908  *	memory available. Does not attempt recovery from allocb()
5909  *	failures
5910  */
5911 
5912 static void
5913 tl_merror(queue_t *wq, mblk_t *mp, int error)
5914 {
5915 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
5916 
5917 	if (tep->te_closing) {
5918 		freemsg(mp);
5919 		return;
5920 	}
5921 
5922 	(void) (STRLOG(TL_ID, tep->te_minor, 1,
5923 	    SL_TRACE|SL_ERROR,
5924 	    "tl_merror: tep=%p, err=%d", (void *)tep, error));
5925 
5926 	/*
5927 	 * flush all messages on queue. we are shutting
5928 	 * the stream down on fatal error
5929 	 */
5930 	flushq(wq, FLUSHALL);
5931 	if (IS_COTS(tep)) {
5932 		/* connection oriented - unconnect endpoints */
5933 		tl_co_unconnect(tep);
5934 	}
5935 	if (mp->b_cont) {
5936 		freemsg(mp->b_cont);
5937 		mp->b_cont = NULL;
5938 	}
5939 
5940 	if ((MBLKSIZE(mp) < 1) || (DB_REF(mp) > 1)) {
5941 		freemsg(mp);
5942 		mp = allocb(1, BPRI_HI);
5943 		if (!mp) {
5944 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
5945 			    SL_TRACE|SL_ERROR,
5946 			    "tl_merror:M_PROTO: out of memory"));
5947 			return;
5948 		}
5949 	}
5950 	if (mp) {
5951 		DB_TYPE(mp) = M_ERROR;
5952 		mp->b_rptr = DB_BASE(mp);
5953 		*mp->b_rptr = (char)error;
5954 		mp->b_wptr = mp->b_rptr + sizeof (char);
5955 		qreply(wq, mp);
5956 	} else {
5957 		(void) putnextctl1(tep->te_rq, M_ERROR, error);
5958 	}
5959 }
5960 
5961 static void
5962 tl_fill_option(uchar_t *buf, cred_t *cr, pid_t cpid, int flag, cred_t *pcr)
5963 {
5964 	ASSERT(cr != NULL);
5965 
5966 	if (flag & TL_SETCRED) {
5967 		struct opthdr *opt = (struct opthdr *)buf;
5968 		tl_credopt_t *tlcred;
5969 
5970 		opt->level = TL_PROT_LEVEL;
5971 		opt->name = TL_OPT_PEER_CRED;
5972 		opt->len = (t_uscalar_t)OPTLEN(sizeof (tl_credopt_t));
5973 
5974 		tlcred = (tl_credopt_t *)(opt + 1);
5975 		tlcred->tc_uid = crgetuid(cr);
5976 		tlcred->tc_gid = crgetgid(cr);
5977 		tlcred->tc_ruid = crgetruid(cr);
5978 		tlcred->tc_rgid = crgetrgid(cr);
5979 		tlcred->tc_suid = crgetsuid(cr);
5980 		tlcred->tc_sgid = crgetsgid(cr);
5981 		tlcred->tc_ngroups = crgetngroups(cr);
5982 	} else if (flag & TL_SETUCRED) {
5983 		struct opthdr *opt = (struct opthdr *)buf;
5984 
5985 		opt->level = TL_PROT_LEVEL;
5986 		opt->name = TL_OPT_PEER_UCRED;
5987 		opt->len = (t_uscalar_t)OPTLEN(ucredsize);
5988 
5989 		(void) cred2ucred(cr, cpid, (void *)(opt + 1), pcr);
5990 	} else {
5991 		struct T_opthdr *topt = (struct T_opthdr *)buf;
5992 		ASSERT(flag & TL_SOCKUCRED);
5993 
5994 		topt->level = SOL_SOCKET;
5995 		topt->name = SCM_UCRED;
5996 		topt->len = ucredsize + sizeof (*topt);
5997 		topt->status = 0;
5998 		(void) cred2ucred(cr, cpid, (void *)(topt + 1), pcr);
5999 	}
6000 }
6001 
6002 /* ARGSUSED */
6003 static int
6004 tl_default_opt(queue_t *wq, int level, int name, uchar_t *ptr)
6005 {
6006 	/* no default value processed in protocol specific code currently */
6007 	return (-1);
6008 }
6009 
6010 /* ARGSUSED */
6011 static int
6012 tl_get_opt(queue_t *wq, int level, int name, uchar_t *ptr)
6013 {
6014 	int len;
6015 	tl_endpt_t *tep;
6016 	int *valp;
6017 
6018 	tep = (tl_endpt_t *)wq->q_ptr;
6019 
6020 	len = 0;
6021 
6022 	/*
6023 	 * Assumes: option level and name sanity check done elsewhere
6024 	 */
6025 
6026 	switch (level) {
6027 	case SOL_SOCKET:
6028 		if (! IS_SOCKET(tep))
6029 			break;
6030 		switch (name) {
6031 		case SO_RECVUCRED:
6032 			len = sizeof (int);
6033 			valp = (int *)ptr;
6034 			*valp = (tep->te_flag & TL_SOCKUCRED) != 0;
6035 			break;
6036 		default:
6037 			break;
6038 		}
6039 		break;
6040 	case TL_PROT_LEVEL:
6041 		switch (name) {
6042 		case TL_OPT_PEER_CRED:
6043 		case TL_OPT_PEER_UCRED:
6044 			/*
6045 			 * option not supposed to retrieved directly
6046 			 * Only sent in T_CON_{IND,CON}, T_UNITDATA_IND
6047 			 * when some internal flags set by other options
6048 			 * Direct retrieval always designed to fail(ignored)
6049 			 * for this option.
6050 			 */
6051 			break;
6052 		}
6053 	}
6054 	return (len);
6055 }
6056 
6057 /* ARGSUSED */
6058 static int
6059 tl_set_opt(
6060 	queue_t		*wq,
6061 	uint_t		mgmt_flags,
6062 	int		level,
6063 	int		name,
6064 	uint_t		inlen,
6065 	uchar_t		*invalp,
6066 	uint_t		*outlenp,
6067 	uchar_t		*outvalp,
6068 	void		*thisdg_attrs,
6069 	cred_t		*cr,
6070 	mblk_t		*mblk)
6071 {
6072 	int error;
6073 	tl_endpt_t *tep;
6074 
6075 	tep = (tl_endpt_t *)wq->q_ptr;
6076 
6077 	error = 0;		/* NOERROR */
6078 
6079 	/*
6080 	 * Assumes: option level and name sanity checks done elsewhere
6081 	 */
6082 
6083 	switch (level) {
6084 	case SOL_SOCKET:
6085 		if (! IS_SOCKET(tep)) {
6086 			error = EINVAL;
6087 			break;
6088 		}
6089 		/*
6090 		 * TBD: fill in other AF_UNIX socket options and then stop
6091 		 * returning error.
6092 		 */
6093 		switch (name) {
6094 		case SO_RECVUCRED:
6095 			/*
6096 			 * We only support this for datagram sockets;
6097 			 * getpeerucred handles the connection oriented
6098 			 * transports.
6099 			 */
6100 			if (! IS_CLTS(tep)) {
6101 				error = EINVAL;
6102 				break;
6103 			}
6104 			if (*(int *)invalp == 0)
6105 				tep->te_flag &= ~TL_SOCKUCRED;
6106 			else
6107 				tep->te_flag |= TL_SOCKUCRED;
6108 			break;
6109 		default:
6110 			error = EINVAL;
6111 			break;
6112 		}
6113 		break;
6114 	case TL_PROT_LEVEL:
6115 		switch (name) {
6116 		case TL_OPT_PEER_CRED:
6117 		case TL_OPT_PEER_UCRED:
6118 			/*
6119 			 * option not supposed to be set directly
6120 			 * Its value in initialized for each endpoint at
6121 			 * driver open time.
6122 			 * Direct setting always designed to fail for this
6123 			 * option.
6124 			 */
6125 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
6126 			    SL_TRACE|SL_ERROR,
6127 			    "tl_set_opt: option is not supported"));
6128 			error = EPROTO;
6129 			break;
6130 		}
6131 	}
6132 	return (error);
6133 }
6134 
6135 
6136 static void
6137 tl_timer(void *arg)
6138 {
6139 	queue_t *wq = arg;
6140 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
6141 
6142 	ASSERT(tep);
6143 
6144 	tep->te_timoutid = 0;
6145 
6146 	enableok(wq);
6147 	/*
6148 	 * Note: can call wsrv directly here and save context switch
6149 	 * Consider change when qtimeout (not timeout) is active
6150 	 */
6151 	qenable(wq);
6152 }
6153 
6154 static void
6155 tl_buffer(void *arg)
6156 {
6157 	queue_t *wq = arg;
6158 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
6159 
6160 	ASSERT(tep);
6161 
6162 	tep->te_bufcid = 0;
6163 	tep->te_nowsrv = B_FALSE;
6164 
6165 	enableok(wq);
6166 	/*
6167 	 *  Note: can call wsrv directly here and save context switch
6168 	 * Consider change when qbufcall (not bufcall) is active
6169 	 */
6170 	qenable(wq);
6171 }
6172 
6173 static void
6174 tl_memrecover(queue_t *wq, mblk_t *mp, size_t size)
6175 {
6176 	tl_endpt_t *tep;
6177 
6178 	tep = (tl_endpt_t *)wq->q_ptr;
6179 
6180 	if (tep->te_closing) {
6181 		freemsg(mp);
6182 		return;
6183 	}
6184 	noenable(wq);
6185 
6186 	(void) insq(wq, wq->q_first, mp);
6187 
6188 	if (tep->te_bufcid || tep->te_timoutid) {
6189 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
6190 		    "tl_memrecover:recover %p pending", (void *)wq));
6191 		return;
6192 	}
6193 
6194 	if (!(tep->te_bufcid = qbufcall(wq, size, BPRI_MED, tl_buffer, wq))) {
6195 		tep->te_timoutid = qtimeout(wq, tl_timer, wq,
6196 		    drv_usectohz(TL_BUFWAIT));
6197 	}
6198 }
6199 
6200 static void
6201 tl_freetip(tl_endpt_t *tep, tl_icon_t *tip)
6202 {
6203 	ASSERT(tip->ti_seqno != 0);
6204 
6205 	if (tip->ti_mp != NULL) {
6206 		tl_icon_freemsgs(&tip->ti_mp);
6207 		tip->ti_mp = NULL;
6208 	}
6209 	if (tip->ti_tep != NULL) {
6210 		tl_refrele(tip->ti_tep);
6211 		tip->ti_tep = NULL;
6212 	}
6213 	list_remove(&tep->te_iconp, tip);
6214 	kmem_free(tip, sizeof (tl_icon_t));
6215 	tep->te_nicon--;
6216 }
6217 
6218 /*
6219  * Remove address from address hash.
6220  */
6221 static void
6222 tl_addr_unbind(tl_endpt_t *tep)
6223 {
6224 	tl_endpt_t *elp;
6225 
6226 	if (tep->te_flag & TL_ADDRHASHED) {
6227 		if (IS_SOCKET(tep)) {
6228 			(void) mod_hash_remove(tep->te_addrhash,
6229 			    (mod_hash_key_t)tep->te_vp,
6230 			    (mod_hash_val_t *)&elp);
6231 			tep->te_vp = (void *)(uintptr_t)tep->te_minor;
6232 			tep->te_magic = SOU_MAGIC_IMPLICIT;
6233 		} else {
6234 			(void) mod_hash_remove(tep->te_addrhash,
6235 			    (mod_hash_key_t)&tep->te_ap,
6236 			    (mod_hash_val_t *)&elp);
6237 			(void) kmem_free(tep->te_abuf, tep->te_alen);
6238 			tep->te_alen = -1;
6239 			tep->te_abuf = NULL;
6240 		}
6241 		tep->te_flag &= ~TL_ADDRHASHED;
6242 	}
6243 }
6244