xref: /illumos-gate/usr/src/uts/common/io/tl.c (revision 6863ede29751efd2be66ec1b48c3c0ee705d7d61)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  * Copyright 2020 Joyent, Inc.
29  */
30 
31 /*
32  * Multithreaded STREAMS Local Transport Provider.
33  *
34  * OVERVIEW
35  * ========
36  *
37  * This driver provides TLI as well as socket semantics.  It provides
38  * connectionless, connection oriented, and connection oriented with orderly
39  * release transports for TLI and sockets. Each transport type has separate name
40  * spaces (i.e. it is not possible to connect from a socket to a TLI endpoint) -
41  * this removes any name space conflicts when binding to socket style transport
42  * addresses.
43  *
44  * NOTE: There is one exception: Socket ticots and ticotsord transports share
45  * the same namespace. In fact, sockets always use ticotsord type transport.
46  *
47  * The driver mode is specified during open() by the minor number used for
48  * open.
49  *
50  *  The sockets in addition have the following semantic differences:
51  *  No support for passing up credentials (TL_SET[U]CRED).
52  *
53  *	Options are passed through transparently on T_CONN_REQ to T_CONN_IND,
54  *	from T_UNITDATA_REQ to T_UNIDATA_IND, and from T_OPTDATA_REQ to
55  *	T_OPTDATA_IND.
56  *
57  *	The T_CONN_CON is generated when processing the T_CONN_REQ i.e. before
58  *	a T_CONN_RES is received from the acceptor. This means that a socket
59  *	connect will complete before the peer has called accept.
60  *
61  *
62  * MULTITHREADING
63  * ==============
64  *
65  * The driver does not use STREAMS protection mechanisms. Instead it uses a
66  * generic "serializer" abstraction. Most of the operations are executed behind
67  * the serializer and are, essentially single-threaded. All functions executed
68  * behind the same serializer are strictly serialized. So if one thread calls
69  * serializer_enter(serializer, foo, mp1, arg1); and another thread calls
70  * serializer_enter(serializer, bar, mp2, arg1); then (depending on which one
71  * was called) the actual sequence will be foo(mp1, arg1); bar(mp1, arg2) or
72  * bar(mp1, arg2); foo(mp1, arg1); But foo() and bar() will never run at the
73  * same time.
74  *
75  * Connectionless transport use a single serializer per transport type (one for
76  * TLI and one for sockets. Connection-oriented transports use finer-grained
77  * serializers.
78  *
79  * All COTS-type endpoints start their life with private serializers. During
80  * connection request processing the endpoint serializer is switched to the
81  * listener's serializer and the rest of T_CONN_REQ processing is done on the
82  * listener serializer. During T_CONN_RES processing the eager serializer is
83  * switched from listener to acceptor serializer and after that point all
84  * processing for eager and acceptor happens on this serializer. To avoid races
85  * with endpoint closes while its serializer may be changing closes are blocked
86  * while serializers are manipulated.
87  *
88  * References accounting
89  * ---------------------
90  *
91  * Endpoints are reference counted and freed when the last reference is
92  * dropped. Functions within the serializer may access an endpoint state even
93  * after an endpoint closed. The te_closing being set on the endpoint indicates
94  * that the endpoint entered its close routine.
95  *
96  * One reference is held for each opened endpoint instance. The reference
97  * counter is incremented when the endpoint is linked to another endpoint and
98  * decremented when the link disappears. It is also incremented when the
99  * endpoint is found by the hash table lookup. This increment is atomic with the
100  * lookup itself and happens while the hash table read lock is held.
101  *
102  * Close synchronization
103  * ---------------------
104  *
105  * During close the endpoint as marked as closing using te_closing flag. It is
106  * usually enough to check for te_closing flag since all other state changes
107  * happen after this flag is set and the close entered serializer. Immediately
108  * after setting te_closing flag tl_close() enters serializer and waits until
109  * the callback finishes. This allows all functions called within serializer to
110  * simply check te_closing without any locks.
111  *
112  * Serializer management.
113  * ---------------------
114  *
115  * For COTS transports serializers are created when the endpoint is constructed
116  * and destroyed when the endpoint is destructed. CLTS transports use global
117  * serializers - one for sockets and one for TLI.
118  *
119  * COTS serializers have separate reference counts to deal with several
120  * endpoints sharing the same serializer. There is a subtle problem related to
121  * the serializer destruction. The serializer should never be destroyed by any
122  * function executed inside serializer. This means that close has to wait till
123  * all serializer activity for this endpoint is finished before it can drop the
124  * last reference on the endpoint (which may as well free the serializer).  This
125  * is only relevant for COTS transports which manage serializers
126  * dynamically. For CLTS transports close may complete without waiting for all
127  * serializer activity to finish since serializer is only destroyed at driver
128  * detach time.
129  *
130  * COTS endpoints keep track of the number of outstanding requests on the
131  * serializer for the endpoint. The code handling accept() avoids changing
132  * client serializer if it has any pending messages on the serializer and
133  * instead moves acceptor to listener's serializer.
134  *
135  *
136  * Use of hash tables
137  * ------------------
138  *
139  * The driver uses modhash hash table implementation. Each transport uses two
140  * hash tables - one for finding endpoints by acceptor ID and another one for
141  * finding endpoints by address. For sockets TICOTS and TICOTSORD share the same
142  * pair of hash tables since sockets only use TICOTSORD.
143  *
144  * All hash tables lookups increment a reference count for returned endpoints,
145  * so we may safely check the endpoint state even when the endpoint is removed
146  * from the hash by another thread immediately after it is found.
147  *
148  *
149  * CLOSE processing
150  * ================
151  *
152  * The driver enters serializer twice on close(). The close sequence is the
153  * following:
154  *
155  * 1) Wait until closing is safe (te_closewait becomes zero)
156  *	This step is needed to prevent close during serializer switches. In most
157  *	cases (close happening after connection establishment) te_closewait is
158  *	zero.
159  * 1) Set te_closing.
160  * 2) Call tl_close_ser() within serializer and wait for it to complete.
161  *
162  *      te_close_ser simply marks endpoint and wakes up waiting tl_close().
163  *	It also needs to clear write-side q_next pointers - this should be done
164  *	before qprocsoff().
165  *
166  *    This synchronous serializer entry during close is needed to ensure that
167  *    the queue is valid everywhere inside the serializer.
168  *
169  *    Note that in many cases close will execute tl_close_ser() synchronously,
170  *    so it will not wait at all.
171  *
172  * 3) Calls qprocsoff().
173  * 4) Calls tl_close_finish_ser() within the serializer and waits for it to
174  *	complete (for COTS transports). For CLTS transport there is no wait.
175  *
176  *	tl_close_finish_ser() Finishes the close process and wakes up waiting
177  *	close if there is any.
178  *
179  *    Note that in most cases close will enter te_close_ser_finish()
180  *    synchronously and will not wait at all.
181  *
182  *
183  * Flow Control
184  * ============
185  *
186  * The driver implements both read and write side service routines. No one calls
187  * putq() on the read queue. The read side service routine tl_rsrv() is called
188  * when the read side stream is back-enabled. It enters serializer synchronously
189  * (waits till serializer processing is complete). Within serializer it
190  * back-enables all endpoints blocked by the queue for connection-less
191  * transports and enables write side service processing for the peer for
192  * connection-oriented transports.
193  *
194  * Read and write side service routines use special mblk_sized space in the
195  * endpoint structure to enter perimeter.
196  *
197  * Write-side flow control
198  * -----------------------
199  *
200  * Write side flow control is a bit tricky. The driver needs to deal with two
201  * message queues - the explicit STREAMS message queue maintained by
202  * putq()/getq()/putbq() and the implicit queue within the serializer. These two
203  * queues should be synchronized to preserve message ordering and should
204  * maintain a single order determined by the order in which messages enter
205  * tl_wput(). In order to maintain the ordering between these two queues the
206  * STREAMS queue is only manipulated within the serializer, so the ordering is
207  * provided by the serializer.
208  *
209  * Functions called from the tl_wsrv() sometimes may call putbq(). To
210  * immediately stop any further processing of the STREAMS message queues the
211  * code calling putbq() also sets the te_nowsrv flag in the endpoint. The write
212  * side service processing stops when the flag is set.
213  *
214  * The tl_wsrv() function enters serializer synchronously and waits for it to
215  * complete. The serializer call-back tl_wsrv_ser() either drains all messages
216  * on the STREAMS queue or terminates when it notices the te_nowsrv flag
217  * set. Note that the maximum amount of messages processed by tl_wput_ser() is
218  * always bounded by the amount of messages on the STREAMS queue at the time
219  * tl_wsrv_ser() is entered. Any new messages may only appear on the STREAMS
220  * queue from another serialized entry which can't happen in parallel. This
221  * guarantees that tl_wput_ser() is complete in bounded time (there is no risk
222  * of it draining forever while writer places new messages on the STREAMS
223  * queue).
224  *
225  * Note that a closing endpoint never sets te_nowsrv and never calls putbq().
226  *
227  *
228  * Unix Domain Sockets
229  * ===================
230  *
231  * The driver knows the structure of Unix Domain sockets addresses and treats
232  * them differently from generic TLI addresses. For sockets implicit binds are
233  * requested by setting SOU_MAGIC_IMPLICIT in the soua_magic part of the address
234  * instead of using address length of zero. Explicit binds specify
235  * SOU_MAGIC_EXPLICIT as magic.
236  *
237  * For implicit binds we always use minor number as soua_vp part of the address
238  * and avoid any hash table lookups. This saves two hash tables lookups per
239  * anonymous bind.
240  *
241  * For explicit address we hash the vnode pointer instead of hashing the
242  * full-scale address+zone+length. Hashing by pointer is more efficient then
243  * hashing by the full address.
244  *
245  * For unix domain sockets the te_ap is always pointing to te_uxaddr part of the
246  * tep structure, so it should be never freed.
247  *
248  * Also for sockets the driver always uses minor number as acceptor id.
249  *
250  * TPI VIOLATIONS
251  * --------------
252  *
253  * This driver violates TPI in several respects for Unix Domain Sockets:
254  *
255  * 1) It treats O_T_BIND_REQ as T_BIND_REQ and refuses bind if an explicit bind
256  *	is requested and the endpoint is already in use. There is no point in
257  *	generating an unused address since this address will be rejected by
258  *	sockfs anyway. For implicit binds it always generates a new address
259  *	(sets soua_vp to its minor number).
260  *
261  * 2) It always uses minor number as acceptor ID and never uses queue
262  *	pointer. It is ok since sockets get acceptor ID from T_CAPABILITY_REQ
263  *	message and they do not use the queue pointer.
264  *
265  * 3) For Listener sockets the usual sequence is to issue bind() zero backlog
266  *	followed by listen(). The listen() should be issued with non-zero
267  *	backlog, so sotpi_listen() issues unbind request followed by bind
268  *	request to the same address but with a non-zero qlen value. Both
269  *	tl_bind() and tl_unbind() require write lock on the hash table to
270  *	insert/remove the address. The driver does not remove the address from
271  *	the hash for endpoints that are bound to the explicit address and have
272  *	backlog of zero. During T_BIND_REQ processing if the address requested
273  *	is equal to the address the endpoint already has it updates the backlog
274  *	without reinserting the address in the hash table. This optimization
275  *	avoids two hash table updates for each listener created. It always
276  *	avoids the problem of a "stolen" address when another listener may use
277  *	the same address between the unbind and bind and suddenly listen() fails
278  *	because address is in use even though the bind() succeeded.
279  *
280  *
281  * CONNECTIONLESS TRANSPORTS
282  * =========================
283  *
284  * Connectionless transports all share the same serializer (one for TLI and one
285  * for Sockets). Functions executing behind serializer can check or modify state
286  * of any endpoint.
287  *
288  * When endpoint X talks to another endpoint Y it caches the pointer to Y in the
289  * te_lastep field. The next time X talks to some address A it checks whether A
290  * is the same as Y's address and if it is there is no need to lookup Y. If the
291  * address is different or the state of Y is not appropriate (e.g. closed or not
292  * idle) X does a lookup using tl_find_peer() and caches the new address.
293  * NOTE: tl_find_peer() never returns closing endpoint and it places a refhold
294  * on the endpoint found.
295  *
296  * During close of endpoint Y it doesn't try to remove itself from other
297  * endpoints caches. They will detect that Y is gone and will search the peer
298  * endpoint again.
299  *
300  * Flow Control Handling.
301  * ----------------------
302  *
303  * Each connectionless endpoint keeps a list of endpoints which are
304  * flow-controlled by its queue. It also keeps a pointer to the queue which
305  * flow-controls itself.  Whenever flow control releases for endpoint X it
306  * enables all queues from the list. During close it also back-enables everyone
307  * in the list. If X is flow-controlled when it is closing it removes it from
308  * the peers list.
309  *
310  * DATA STRUCTURES
311  * ===============
312  *
313  * Each endpoint is represented by the tl_endpt_t structure which keeps all the
314  * endpoint state. For connection-oriented transports it has a keeps a list
315  * of pending connections (tl_icon_t). For connectionless transports it keeps a
316  * list of endpoints flow controlled by this one.
317  *
318  * Each transport type is represented by a per-transport data structure
319  * tl_transport_state_t. It contains a pointer to an acceptor ID hash and the
320  * endpoint address hash tables for each transport. It also contains pointer to
321  * transport serializer for connectionless transports.
322  *
323  * Each endpoint keeps a link to its transport structure, so the code can find
324  * all per-transport information quickly.
325  */
326 
327 #include	<sys/types.h>
328 #include	<sys/inttypes.h>
329 #include	<sys/stream.h>
330 #include	<sys/stropts.h>
331 #define	_SUN_TPI_VERSION 2
332 #include	<sys/tihdr.h>
333 #include	<sys/strlog.h>
334 #include	<sys/debug.h>
335 #include	<sys/cred.h>
336 #include	<sys/errno.h>
337 #include	<sys/kmem.h>
338 #include	<sys/id_space.h>
339 #include	<sys/modhash.h>
340 #include	<sys/mkdev.h>
341 #include	<sys/tl.h>
342 #include	<sys/stat.h>
343 #include	<sys/conf.h>
344 #include	<sys/modctl.h>
345 #include	<sys/strsun.h>
346 #include	<sys/socket.h>
347 #include	<sys/socketvar.h>
348 #include	<sys/sysmacros.h>
349 #include	<sys/xti_xtiopt.h>
350 #include	<sys/ddi.h>
351 #include	<sys/sunddi.h>
352 #include	<sys/zone.h>
353 #include	<inet/common.h>	/* typedef int (*pfi_t)() for inet/optcom.h */
354 #include	<inet/optcom.h>
355 #include	<sys/strsubr.h>
356 #include	<sys/ucred.h>
357 #include	<sys/suntpi.h>
358 #include	<sys/list.h>
359 #include	<sys/serializer.h>
360 
361 /*
362  * TBD List
363  * 14 Eliminate state changes through table
364  * 16. AF_UNIX socket options
365  * 17. connect() for ticlts
366  * 18. support for "netstat" to show AF_UNIX plus TLI local
367  *	transport connections
368  * 21. sanity check to flushing on sending M_ERROR
369  */
370 
371 /*
372  * CONSTANT DECLARATIONS
373  * --------------------
374  */
375 
376 /*
377  * Local declarations
378  */
379 #define	BADSEQNUM	(-1)	/* initial seq number used by T_DISCON_IND */
380 #define	TL_BUFWAIT	(10000)	/* usecs to wait for allocb buffer timeout */
381 #define	TL_TIDUSZ (64*1024)	/* tidu size when "strmsgz" is unlimited (0) */
382 /*
383  * Hash tables size.
384  */
385 #define	TL_HASH_SIZE 311
386 
387 /*
388  * Definitions for module_info
389  */
390 #define		TL_ID		(104)		/* module ID number */
391 #define		TL_NAME		"tl"		/* module name */
392 #define		TL_MINPSZ	(0)		/* min packet size */
393 #define		TL_MAXPSZ	INFPSZ		/* max packet size ZZZ */
394 #define		TL_HIWAT	(16*1024)	/* hi water mark */
395 #define		TL_LOWAT	(256)		/* lo water mark */
396 /*
397  * Definition of minor numbers/modes for new transport provider modes.
398  * We view the socket use as a separate mode to get a separate name space.
399  */
400 #define		TL_TICOTS	0	/* connection oriented transport */
401 #define		TL_TICOTSORD	1	/* COTS w/ orderly release */
402 #define		TL_TICLTS	2	/* connectionless transport */
403 #define		TL_UNUSED	3
404 #define		TL_SOCKET	4	/* Socket */
405 #define		TL_SOCK_COTS	(TL_SOCKET | TL_TICOTS)
406 #define		TL_SOCK_COTSORD	(TL_SOCKET | TL_TICOTSORD)
407 #define		TL_SOCK_CLTS	(TL_SOCKET | TL_TICLTS)
408 
409 #define		TL_MINOR_MASK	0x7
410 #define		TL_MINOR_START	(TL_TICLTS + 1)
411 
412 /*
413  * LOCAL MACROS
414  */
415 #define	T_ALIGN(p)	P2ROUNDUP((p), sizeof (t_scalar_t))
416 
417 /*
418  * STREAMS DRIVER ENTRY POINTS PROTOTYPES
419  */
420 static int tl_open(queue_t *, dev_t *, int, int, cred_t *);
421 static int tl_close(queue_t *, int, cred_t *);
422 static int tl_wput(queue_t *, mblk_t *);
423 static int tl_wsrv(queue_t *);
424 static int tl_rsrv(queue_t *);
425 
426 static int tl_attach(dev_info_t *, ddi_attach_cmd_t);
427 static int tl_detach(dev_info_t *, ddi_detach_cmd_t);
428 static int tl_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
429 
430 
431 /*
432  * GLOBAL DATA STRUCTURES AND VARIABLES
433  * -----------------------------------
434  */
435 
436 /*
437  * Table representing database of all options managed by T_SVR4_OPTMGMT_REQ
438  * For now, we only manage the SO_RECVUCRED option but we also have
439  * harmless dummy options to make things work with some common code we access.
440  */
441 opdes_t	tl_opt_arr[] = {
442 	/* The SO_TYPE is needed for the hack below */
443 	{
444 		SO_TYPE,
445 		SOL_SOCKET,
446 		OA_R,
447 		OA_R,
448 		OP_NP,
449 		0,
450 		sizeof (t_scalar_t),
451 		0
452 	},
453 	{
454 		SO_RECVUCRED,
455 		SOL_SOCKET,
456 		OA_RW,
457 		OA_RW,
458 		OP_NP,
459 		0,
460 		sizeof (int),
461 		0
462 	}
463 };
464 
465 /*
466  * Table of all supported levels
467  * Note: Some levels (e.g. XTI_GENERIC) may be valid but may not have
468  * any supported options so we need this info separately.
469  *
470  * This is needed only for topmost tpi providers.
471  */
472 optlevel_t	tl_valid_levels_arr[] = {
473 	XTI_GENERIC,
474 	SOL_SOCKET,
475 	TL_PROT_LEVEL
476 };
477 
478 #define	TL_VALID_LEVELS_CNT	A_CNT(tl_valid_levels_arr)
479 /*
480  * Current upper bound on the amount of space needed to return all options.
481  * Additional options with data size of sizeof(long) are handled automatically.
482  * Others need hand job.
483  */
484 #define	TL_MAX_OPT_BUF_LEN						\
485 		((A_CNT(tl_opt_arr) << 2) +				\
486 		(A_CNT(tl_opt_arr) * sizeof (struct opthdr)) +		\
487 		+ 64 + sizeof (struct T_optmgmt_ack))
488 
489 #define	TL_OPT_ARR_CNT	A_CNT(tl_opt_arr)
490 
491 /*
492  *	transport addr structure
493  */
494 typedef struct tl_addr {
495 	zoneid_t	ta_zoneid;		/* Zone scope of address */
496 	t_scalar_t	ta_alen;		/* length of abuf */
497 	void		*ta_abuf;		/* the addr itself */
498 } tl_addr_t;
499 
500 /*
501  * Refcounted version of serializer.
502  */
503 typedef struct tl_serializer {
504 	uint_t		ts_refcnt;
505 	serializer_t	*ts_serializer;
506 } tl_serializer_t;
507 
508 /*
509  * Each transport type has a separate state.
510  * Per-transport state.
511  */
512 typedef struct tl_transport_state {
513 	char		*tr_name;
514 	minor_t		tr_minor;
515 	uint32_t	tr_defaddr;
516 	mod_hash_t	*tr_ai_hash;
517 	mod_hash_t	*tr_addr_hash;
518 	tl_serializer_t	*tr_serializer;
519 } tl_transport_state_t;
520 
521 #define	TL_DFADDR 0x1000
522 
523 static tl_transport_state_t tl_transports[] = {
524 	{ "ticots", TL_TICOTS, TL_DFADDR, NULL, NULL, NULL },
525 	{ "ticotsord", TL_TICOTSORD, TL_DFADDR, NULL, NULL, NULL },
526 	{ "ticlts", TL_TICLTS, TL_DFADDR, NULL, NULL, NULL },
527 	{ "undefined", TL_UNUSED, TL_DFADDR, NULL, NULL, NULL },
528 	{ "sticots", TL_SOCK_COTS, TL_DFADDR, NULL, NULL, NULL },
529 	{ "sticotsord", TL_SOCK_COTSORD, TL_DFADDR, NULL, NULL },
530 	{ "sticlts", TL_SOCK_CLTS, TL_DFADDR, NULL, NULL, NULL }
531 };
532 
533 #define	TL_MAXTRANSPORT A_CNT(tl_transports)
534 
535 struct tl_endpt;
536 typedef struct tl_endpt tl_endpt_t;
537 
538 typedef void (tlproc_t)(mblk_t *, tl_endpt_t *);
539 
540 /*
541  * Data structure used to represent pending connects.
542  * Records enough information so that the connecting peer can close
543  * before the connection gets accepted.
544  */
545 typedef struct tl_icon {
546 	list_node_t	ti_node;
547 	struct tl_endpt *ti_tep;	/* NULL if peer has already closed */
548 	mblk_t		*ti_mp;		/* b_next list of data + ordrel_ind */
549 	t_scalar_t	ti_seqno;	/* Sequence number */
550 } tl_icon_t;
551 
552 typedef struct so_ux_addr soux_addr_t;
553 #define	TL_SOUX_ADDRLEN sizeof (soux_addr_t)
554 
555 /*
556  * Maximum number of unaccepted connection indications allowed per listener.
557  */
558 #define	TL_MAXQLEN	4096
559 int tl_maxqlen = TL_MAXQLEN;
560 
561 /*
562  *	transport endpoint structure
563  */
564 struct tl_endpt {
565 	queue_t		*te_rq;		/* stream read queue */
566 	queue_t		*te_wq;		/* stream write queue */
567 	uint32_t	te_refcnt;
568 	int32_t		te_state;	/* TPI state of endpoint */
569 	minor_t		te_minor;	/* minor number */
570 #define	te_seqno	te_minor
571 	uint_t		te_flag;	/* flag field */
572 	boolean_t	te_nowsrv;
573 	tl_serializer_t	*te_ser;	/* Serializer to use */
574 #define	te_serializer	te_ser->ts_serializer
575 
576 	soux_addr_t	te_uxaddr;	/* Socket address */
577 #define	te_magic	te_uxaddr.soua_magic
578 #define	te_vp		te_uxaddr.soua_vp
579 	tl_addr_t	te_ap;		/* addr bound to this endpt */
580 #define	te_zoneid te_ap.ta_zoneid
581 #define	te_alen	te_ap.ta_alen
582 #define	te_abuf	te_ap.ta_abuf
583 
584 	tl_transport_state_t *te_transport;
585 #define	te_addrhash	te_transport->tr_addr_hash
586 #define	te_aihash	te_transport->tr_ai_hash
587 #define	te_defaddr	te_transport->tr_defaddr
588 	cred_t		*te_credp;	/* endpoint user credentials */
589 	mod_hash_hndl_t	te_hash_hndl;	/* Handle for address hash */
590 
591 	/*
592 	 * State specific for connection-oriented and connectionless transports.
593 	 */
594 	union {
595 		/* Connection-oriented state. */
596 		struct {
597 			t_uscalar_t _te_nicon;	/* count of conn requests */
598 			t_uscalar_t _te_qlen;	/* max conn requests */
599 			tl_endpt_t  *_te_oconp;	/* conn request pending */
600 			tl_endpt_t  *_te_conp;	/* connected endpt */
601 #ifndef _ILP32
602 			void	    *_te_pad;
603 #endif
604 			list_t	_te_iconp;	/* list of conn ind. pending */
605 		} _te_cots_state;
606 		/* Connection-less state. */
607 		struct {
608 			tl_endpt_t *_te_lastep;	/* last dest. endpoint */
609 			tl_endpt_t *_te_flowq;	/* flow controlled on whom */
610 			list_node_t _te_flows;	/* lists of connections */
611 			list_t  _te_flowlist;	/* Who flowcontrols on me */
612 		} _te_clts_state;
613 	} _te_transport_state;
614 #define	te_nicon	_te_transport_state._te_cots_state._te_nicon
615 #define	te_qlen		_te_transport_state._te_cots_state._te_qlen
616 #define	te_oconp	_te_transport_state._te_cots_state._te_oconp
617 #define	te_conp		_te_transport_state._te_cots_state._te_conp
618 #define	te_iconp	_te_transport_state._te_cots_state._te_iconp
619 #define	te_lastep	_te_transport_state._te_clts_state._te_lastep
620 #define	te_flowq	_te_transport_state._te_clts_state._te_flowq
621 #define	te_flowlist	_te_transport_state._te_clts_state._te_flowlist
622 #define	te_flows	_te_transport_state._te_clts_state._te_flows
623 
624 	bufcall_id_t	te_bufcid;	/* outstanding bufcall id */
625 	timeout_id_t	te_timoutid;	/* outstanding timeout id */
626 	pid_t		te_cpid;	/* cached pid of endpoint */
627 	t_uscalar_t	te_acceptor_id;	/* acceptor id for T_CONN_RES */
628 	/*
629 	 * Pieces of the endpoint state needed for closing.
630 	 */
631 	kmutex_t	te_closelock;
632 	kcondvar_t	te_closecv;
633 	uint8_t		te_closing;	/* The endpoint started closing */
634 	uint8_t		te_closewait;	/* Wait in close until zero */
635 	mblk_t		te_closemp;	/* for entering serializer on close */
636 	mblk_t		te_rsrvmp;	/* for entering serializer on rsrv */
637 	mblk_t		te_wsrvmp;	/* for entering serializer on wsrv */
638 	kmutex_t	te_srv_lock;
639 	kcondvar_t	te_srv_cv;
640 	uint8_t		te_rsrv_active;	/* Running in tl_rsrv()	*/
641 	uint8_t		te_wsrv_active;	/* Running in tl_wsrv()	*/
642 	/*
643 	 * Pieces of the endpoint state needed for serializer transitions.
644 	 */
645 	kmutex_t	te_ser_lock;	/* Protects the count below */
646 	uint_t		te_ser_count;	/* Number of messages on serializer */
647 };
648 
649 /*
650  * Flag values. Lower 4 bits specify that transport used.
651  * TL_LISTENER, TL_ACCEPTOR, TL_ACCEPTED and TL_EAGER are for debugging only,
652  * they allow to identify the endpoint more easily.
653  */
654 #define	TL_LISTENER	0x00010	/* the listener endpoint */
655 #define	TL_ACCEPTOR	0x00020	/* the accepting endpoint */
656 #define	TL_EAGER	0x00040	/* connecting endpoint */
657 #define	TL_ACCEPTED	0x00080	/* accepted connection */
658 #define	TL_SETCRED	0x00100	/* flag to indicate sending of credentials */
659 #define	TL_SETUCRED	0x00200	/* flag to indicate sending of ucred */
660 #define	TL_SOCKUCRED	0x00400	/* flag to indicate sending of SCM_UCRED */
661 #define	TL_ADDRHASHED	0x01000	/* Endpoint address is stored in te_addrhash */
662 #define	TL_CLOSE_SER	0x10000	/* Endpoint close has entered the serializer */
663 /*
664  * Boolean checks for the endpoint type.
665  */
666 #define		IS_CLTS(x)	(((x)->te_flag & TL_TICLTS) != 0)
667 #define		IS_COTS(x)	(((x)->te_flag & TL_TICLTS) == 0)
668 #define		IS_COTSORD(x)	(((x)->te_flag & TL_TICOTSORD) != 0)
669 #define		IS_SOCKET(x)	(((x)->te_flag & TL_SOCKET) != 0)
670 
671 /*
672  * Certain operations are always used together. These macros reduce the chance
673  * of missing a part of a combination.
674  */
675 #define	TL_UNCONNECT(x) { tl_refrele(x); x = NULL; }
676 #define	TL_REMOVE_PEER(x) { if ((x) != NULL) TL_UNCONNECT(x) }
677 
678 #define	TL_PUTBQ(x, mp) {		\
679 	ASSERT(!((x)->te_flag & TL_CLOSE_SER));	\
680 	(x)->te_nowsrv = B_TRUE;	\
681 	(void) putbq((x)->te_wq, mp);	\
682 }
683 
684 #define	TL_QENABLE(x) { (x)->te_nowsrv = B_FALSE; qenable((x)->te_wq); }
685 #define	TL_PUTQ(x, mp) { (x)->te_nowsrv = B_FALSE; (void)putq((x)->te_wq, mp); }
686 
687 /*
688  * STREAMS driver glue data structures.
689  */
690 static	struct	module_info	tl_minfo = {
691 	TL_ID,			/* mi_idnum */
692 	TL_NAME,		/* mi_idname */
693 	TL_MINPSZ,		/* mi_minpsz */
694 	TL_MAXPSZ,		/* mi_maxpsz */
695 	TL_HIWAT,		/* mi_hiwat */
696 	TL_LOWAT		/* mi_lowat */
697 };
698 
699 static	struct	qinit	tl_rinit = {
700 	NULL,			/* qi_putp */
701 	tl_rsrv,		/* qi_srvp */
702 	tl_open,		/* qi_qopen */
703 	tl_close,		/* qi_qclose */
704 	NULL,			/* qi_qadmin */
705 	&tl_minfo,		/* qi_minfo */
706 	NULL			/* qi_mstat */
707 };
708 
709 static	struct	qinit	tl_winit = {
710 	tl_wput,		/* qi_putp */
711 	tl_wsrv,		/* qi_srvp */
712 	NULL,			/* qi_qopen */
713 	NULL,			/* qi_qclose */
714 	NULL,			/* qi_qadmin */
715 	&tl_minfo,		/* qi_minfo */
716 	NULL			/* qi_mstat */
717 };
718 
719 static	struct streamtab	tlinfo = {
720 	&tl_rinit,		/* st_rdinit */
721 	&tl_winit,		/* st_wrinit */
722 	NULL,			/* st_muxrinit */
723 	NULL			/* st_muxwrinit */
724 };
725 
726 DDI_DEFINE_STREAM_OPS(tl_devops, nulldev, nulldev, tl_attach, tl_detach,
727     nulldev, tl_info, D_MP, &tlinfo, ddi_quiesce_not_supported);
728 
729 static struct modldrv modldrv = {
730 	&mod_driverops,		/* Type of module -- pseudo driver here */
731 	"TPI Local Transport (tl)",
732 	&tl_devops,		/* driver ops */
733 };
734 
735 /*
736  * Module linkage information for the kernel.
737  */
738 static struct modlinkage modlinkage = {
739 	MODREV_1,
740 	&modldrv,
741 	NULL
742 };
743 
744 /*
745  * Templates for response to info request
746  * Check sanity of unlimited connect data etc.
747  */
748 
749 #define		TL_CLTS_PROVIDER_FLAG	(XPG4_1 | SENDZERO)
750 #define		TL_COTS_PROVIDER_FLAG	(XPG4_1 | SENDZERO)
751 
752 static struct T_info_ack tl_cots_info_ack =
753 	{
754 		T_INFO_ACK,	/* PRIM_type -always T_INFO_ACK */
755 		T_INFINITE,	/* TSDU size */
756 		T_INFINITE,	/* ETSDU size */
757 		T_INFINITE,	/* CDATA_size */
758 		T_INFINITE,	/* DDATA_size */
759 		T_INFINITE,	/* ADDR_size  */
760 		T_INFINITE,	/* OPT_size */
761 		0,		/* TIDU_size - fill at run time */
762 		T_COTS,		/* SERV_type */
763 		-1,		/* CURRENT_state */
764 		TL_COTS_PROVIDER_FLAG	/* PROVIDER_flag */
765 	};
766 
767 static struct T_info_ack tl_clts_info_ack =
768 	{
769 		T_INFO_ACK,	/* PRIM_type - always T_INFO_ACK */
770 		0,		/* TSDU_size - fill at run time */
771 		-2,		/* ETSDU_size -2 => not supported */
772 		-2,		/* CDATA_size -2 => not supported */
773 		-2,		/* DDATA_size  -2 => not supported */
774 		-1,		/* ADDR_size -1 => infinite */
775 		-1,		/* OPT_size */
776 		0,		/* TIDU_size - fill at run time */
777 		T_CLTS,		/* SERV_type */
778 		-1,		/* CURRENT_state */
779 		TL_CLTS_PROVIDER_FLAG /* PROVIDER_flag */
780 	};
781 
782 /*
783  * private copy of devinfo pointer used in tl_info
784  */
785 static dev_info_t *tl_dip;
786 
787 /*
788  * Endpoints cache.
789  */
790 static kmem_cache_t *tl_cache;
791 /*
792  * Minor number space.
793  */
794 static id_space_t *tl_minors;
795 
796 /*
797  * Default Data Unit size.
798  */
799 static t_scalar_t tl_tidusz;
800 
801 /*
802  * Size of hash tables.
803  */
804 static size_t tl_hash_size = TL_HASH_SIZE;
805 
806 /*
807  * Debug and test variable ONLY. Turn off T_CONN_IND queueing
808  * for sockets.
809  */
810 static int tl_disable_early_connect = 0;
811 static int tl_client_closing_when_accepting;
812 
813 static int tl_serializer_noswitch;
814 
815 #define	nr	127		/* not reachable */
816 
817 #define	TE_NOEVENTS	28
818 
819 static char nextstate[TE_NOEVENTS][TS_NOSTATES] = {
820 				/* STATES */
821 	/* 0  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 */
822 
823 /* Initialization events */
824 
825 #define	TE_BIND_REQ	0	/* bind request				*/
826 	{ 1, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr},
827 #define	TE_UNBIND_REQ	1	/* unbind request			*/
828 	{nr, nr, nr,  2, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr},
829 #define	TE_OPTMGMT_REQ	2	/* manage options req			*/
830 	{nr, nr, nr,  4, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr},
831 #define	TE_BIND_ACK	3	/* bind acknowledment			*/
832 	{nr,  3, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr},
833 #define	TE_OPTMGMT_ACK	4	/* manage options ack			*/
834 	{nr, nr, nr, nr,  3, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr},
835 #define	TE_ERROR_ACK	5	/* error acknowledgment			*/
836 	{nr,  0,  3, nr,  3,  3, nr, nr,  7, nr, nr, nr,  6,  7,  9, 10, 11},
837 #define	TE_OK_ACK1	6	/* ok ack  seqcnt == 0			*/
838 	{nr, nr,  0, nr, nr,  6, nr, nr, nr, nr, nr, nr,  3, nr,  3,  3,  3},
839 #define	TE_OK_ACK2	7	/* ok ack  seqcnt == 1, q == resq	*/
840 	{nr, nr, nr, nr, nr, nr, nr, nr,  9, nr, nr, nr, nr,  3, nr, nr, nr},
841 #define	TE_OK_ACK3	8	/* ok ack  seqcnt == 1, q != resq	*/
842 	{nr, nr, nr, nr, nr, nr, nr, nr,  3, nr, nr, nr, nr,  3, nr, nr, nr},
843 #define	TE_OK_ACK4	9	/* ok ack  seqcnt > 1			*/
844 	{nr, nr, nr, nr, nr, nr, nr, nr,  7, nr, nr, nr, nr,  7, nr, nr, nr},
845 
846 /* Connection oriented events */
847 #define	TE_CONN_REQ	10	/* connection request			*/
848 	{nr, nr, nr,  5, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr},
849 #define	TE_CONN_RES	11	/* connection response			*/
850 	{nr, nr, nr, nr, nr, nr, nr,  8, nr, nr, nr, nr, nr, nr, nr, nr, nr},
851 #define	TE_DISCON_REQ	12	/* disconnect request			*/
852 	{nr, nr, nr, nr, nr, nr, 12, 13, nr, 14, 15, 16, nr, nr, nr, nr, nr},
853 #define	TE_DATA_REQ	13	/* data request				*/
854 	{nr, nr, nr, nr, nr, nr, nr, nr, nr,  9, nr, 11, nr, nr, nr, nr, nr},
855 #define	TE_EXDATA_REQ	14	/* expedited data request		*/
856 	{nr, nr, nr, nr, nr, nr, nr, nr, nr,  9, nr, 11, nr, nr, nr, nr, nr},
857 #define	TE_ORDREL_REQ	15	/* orderly release req			*/
858 	{nr, nr, nr, nr, nr, nr, nr, nr, nr, 10, nr,  3, nr, nr, nr, nr, nr},
859 #define	TE_CONN_IND	16	/* connection indication		*/
860 	{nr, nr, nr,  7, nr, nr, nr,  7, nr, nr, nr, nr, nr, nr, nr, nr, nr},
861 #define	TE_CONN_CON	17	/* connection confirmation		*/
862 	{nr, nr, nr, nr, nr, nr,  9, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr},
863 #define	TE_DATA_IND	18	/* data indication			*/
864 	{nr, nr, nr, nr, nr, nr, nr, nr, nr,  9, 10, nr, nr, nr, nr, nr, nr},
865 #define	TE_EXDATA_IND	19	/* expedited data indication		*/
866 	{nr, nr, nr, nr, nr, nr, nr, nr, nr,  9, 10, nr, nr, nr, nr, nr, nr},
867 #define	TE_ORDREL_IND	20	/* orderly release ind			*/
868 	{nr, nr, nr, nr, nr, nr, nr, nr, nr, 11,  3, nr, nr, nr, nr, nr, nr},
869 #define	TE_DISCON_IND1	21	/* disconnect indication seq == 0	*/
870 	{nr, nr, nr, nr, nr, nr,  3, nr, nr,  3,  3,  3, nr, nr, nr, nr, nr},
871 #define	TE_DISCON_IND2	22	/* disconnect indication seq == 1	*/
872 	{nr, nr, nr, nr, nr, nr, nr,  3, nr, nr, nr, nr, nr, nr, nr, nr, nr},
873 #define	TE_DISCON_IND3	23	/* disconnect indication seq > 1	*/
874 	{nr, nr, nr, nr, nr, nr, nr,  7, nr, nr, nr, nr, nr, nr, nr, nr, nr},
875 #define	TE_PASS_CONN	24	/* pass connection			*/
876 	{nr, nr, nr,  9, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr},
877 
878 
879 /* Unit data events */
880 
881 #define	TE_UNITDATA_REQ	25	/* unitdata request			*/
882 	{nr, nr, nr,  3, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr},
883 #define	TE_UNITDATA_IND	26	/* unitdata indication			*/
884 	{nr, nr, nr,  3, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr},
885 #define	TE_UDERROR_IND	27	/* unitdata error indication		*/
886 	{nr, nr, nr,  3, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr, nr},
887 };
888 
889 
890 
891 /*
892  * LOCAL FUNCTION PROTOTYPES
893  * -------------------------
894  */
895 static boolean_t tl_eqaddr(tl_addr_t *, tl_addr_t *);
896 static void tl_do_proto(mblk_t *, tl_endpt_t *);
897 static void tl_do_ioctl(mblk_t *, tl_endpt_t *);
898 static void tl_do_ioctl_ser(mblk_t *, tl_endpt_t *);
899 static void tl_error_ack(queue_t *, mblk_t *, t_scalar_t, t_scalar_t,
900     t_scalar_t);
901 static void tl_bind(mblk_t *, tl_endpt_t *);
902 static void tl_bind_ser(mblk_t *, tl_endpt_t *);
903 static void tl_ok_ack(queue_t *, mblk_t  *mp, t_scalar_t);
904 static void tl_unbind(mblk_t *, tl_endpt_t *);
905 static void tl_optmgmt(queue_t *, mblk_t *);
906 static void tl_conn_req(queue_t *, mblk_t *);
907 static void tl_conn_req_ser(mblk_t *, tl_endpt_t *);
908 static void tl_conn_res(mblk_t *, tl_endpt_t *);
909 static void tl_discon_req(mblk_t *, tl_endpt_t *);
910 static void tl_capability_req(mblk_t *, tl_endpt_t *);
911 static void tl_info_req_ser(mblk_t *, tl_endpt_t *);
912 static void tl_addr_req_ser(mblk_t *, tl_endpt_t *);
913 static void tl_info_req(mblk_t *, tl_endpt_t *);
914 static void tl_addr_req(mblk_t *, tl_endpt_t *);
915 static void tl_connected_cots_addr_req(mblk_t *, tl_endpt_t *);
916 static void tl_data(mblk_t  *, tl_endpt_t *);
917 static void tl_exdata(mblk_t *, tl_endpt_t *);
918 static void tl_ordrel(mblk_t *, tl_endpt_t *);
919 static void tl_unitdata(mblk_t *, tl_endpt_t *);
920 static void tl_unitdata_ser(mblk_t *, tl_endpt_t *);
921 static void tl_uderr(queue_t *, mblk_t *, t_scalar_t);
922 static tl_endpt_t *tl_find_peer(tl_endpt_t *, tl_addr_t *);
923 static tl_endpt_t *tl_sock_find_peer(tl_endpt_t *, struct so_ux_addr *);
924 static boolean_t tl_get_any_addr(tl_endpt_t *, tl_addr_t *);
925 static void tl_cl_backenable(tl_endpt_t *);
926 static void tl_co_unconnect(tl_endpt_t *);
927 static mblk_t *tl_resizemp(mblk_t *, ssize_t);
928 static void tl_discon_ind(tl_endpt_t *, uint32_t);
929 static mblk_t *tl_discon_ind_alloc(uint32_t, t_scalar_t);
930 static mblk_t *tl_ordrel_ind_alloc(void);
931 static tl_icon_t *tl_icon_find(tl_endpt_t *, t_scalar_t);
932 static void tl_icon_queuemsg(tl_endpt_t *, t_scalar_t, mblk_t *);
933 static boolean_t tl_icon_hasprim(tl_endpt_t *, t_scalar_t, t_scalar_t);
934 static void tl_icon_sendmsgs(tl_endpt_t *, mblk_t **);
935 static void tl_icon_freemsgs(mblk_t **);
936 static void tl_merror(queue_t *, mblk_t *, int);
937 static void tl_fill_option(uchar_t *, cred_t *, pid_t, int, cred_t *);
938 static int tl_default_opt(queue_t *, int, int, uchar_t *);
939 static int tl_get_opt(queue_t *, int, int, uchar_t *);
940 static int tl_set_opt(queue_t *, uint_t, int, int, uint_t, uchar_t *, uint_t *,
941     uchar_t *, void *, cred_t *);
942 static void tl_memrecover(queue_t *, mblk_t *, size_t);
943 static void tl_freetip(tl_endpt_t *, tl_icon_t *);
944 static void tl_free(tl_endpt_t *);
945 static int  tl_constructor(void *, void *, int);
946 static void tl_destructor(void *, void *);
947 static void tl_find_callback(mod_hash_key_t, mod_hash_val_t);
948 static tl_serializer_t *tl_serializer_alloc(int);
949 static void tl_serializer_refhold(tl_serializer_t *);
950 static void tl_serializer_refrele(tl_serializer_t *);
951 static void tl_serializer_enter(tl_endpt_t *, tlproc_t, mblk_t *);
952 static void tl_serializer_exit(tl_endpt_t *);
953 static boolean_t tl_noclose(tl_endpt_t *);
954 static void tl_closeok(tl_endpt_t *);
955 static void tl_refhold(tl_endpt_t *);
956 static void tl_refrele(tl_endpt_t *);
957 static int tl_hash_cmp_addr(mod_hash_key_t, mod_hash_key_t);
958 static uint_t tl_hash_by_addr(void *, mod_hash_key_t);
959 static void tl_close_ser(mblk_t *, tl_endpt_t *);
960 static void tl_close_finish_ser(mblk_t *, tl_endpt_t *);
961 static void tl_wput_data_ser(mblk_t *, tl_endpt_t *);
962 static void tl_proto_ser(mblk_t *, tl_endpt_t *);
963 static void tl_putq_ser(mblk_t *, tl_endpt_t *);
964 static void tl_wput_common_ser(mblk_t *, tl_endpt_t *);
965 static void tl_wput_ser(mblk_t *, tl_endpt_t *);
966 static void tl_wsrv_ser(mblk_t *, tl_endpt_t *);
967 static void tl_rsrv_ser(mblk_t *, tl_endpt_t *);
968 static void tl_addr_unbind(tl_endpt_t *);
969 
970 /*
971  * Intialize option database object for TL
972  */
973 
974 optdb_obj_t tl_opt_obj = {
975 	tl_default_opt,		/* TL default value function pointer */
976 	tl_get_opt,		/* TL get function pointer */
977 	tl_set_opt,		/* TL set function pointer */
978 	TL_OPT_ARR_CNT,		/* TL option database count of entries */
979 	tl_opt_arr,		/* TL option database */
980 	TL_VALID_LEVELS_CNT,	/* TL valid level count of entries */
981 	tl_valid_levels_arr	/* TL valid level array */
982 };
983 
984 /*
985  * LOCAL FUNCTIONS AND DRIVER ENTRY POINTS
986  * ---------------------------------------
987  */
988 
989 /*
990  * Loadable module routines
991  */
992 int
993 _init(void)
994 {
995 	return (mod_install(&modlinkage));
996 }
997 
998 int
999 _fini(void)
1000 {
1001 	return (mod_remove(&modlinkage));
1002 }
1003 
1004 int
1005 _info(struct modinfo *modinfop)
1006 {
1007 	return (mod_info(&modlinkage, modinfop));
1008 }
1009 
1010 /*
1011  * Driver Entry Points and Other routines
1012  */
1013 static int
1014 tl_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
1015 {
1016 	int i;
1017 	char name[32];
1018 
1019 	/*
1020 	 * Resume from a checkpoint state.
1021 	 */
1022 	if (cmd == DDI_RESUME)
1023 		return (DDI_SUCCESS);
1024 
1025 	if (cmd != DDI_ATTACH)
1026 		return (DDI_FAILURE);
1027 
1028 	/*
1029 	 * Deduce TIDU size to use.  Note: "strmsgsz" being 0 has semantics that
1030 	 * streams message sizes can be unlimited. We use a defined constant
1031 	 * instead.
1032 	 */
1033 	tl_tidusz = strmsgsz != 0 ? (t_scalar_t)strmsgsz : TL_TIDUSZ;
1034 
1035 	/*
1036 	 * Create subdevices for each transport.
1037 	 */
1038 	for (i = 0; i < TL_UNUSED; i++) {
1039 		if (ddi_create_minor_node(devi,
1040 		    tl_transports[i].tr_name,
1041 		    S_IFCHR, tl_transports[i].tr_minor,
1042 		    DDI_PSEUDO, 0) == DDI_FAILURE) {
1043 			ddi_remove_minor_node(devi, NULL);
1044 			return (DDI_FAILURE);
1045 		}
1046 	}
1047 
1048 	tl_cache = kmem_cache_create("tl_cache", sizeof (tl_endpt_t),
1049 	    0, tl_constructor, tl_destructor, NULL, NULL, NULL, 0);
1050 
1051 	if (tl_cache == NULL) {
1052 		ddi_remove_minor_node(devi, NULL);
1053 		return (DDI_FAILURE);
1054 	}
1055 
1056 	tl_minors = id_space_create("tl_minor_space",
1057 	    TL_MINOR_START, MAXMIN32 - TL_MINOR_START + 1);
1058 
1059 	/*
1060 	 * Create ID space for minor numbers
1061 	 */
1062 	for (i = 0; i < TL_MAXTRANSPORT; i++) {
1063 		tl_transport_state_t *t = &tl_transports[i];
1064 
1065 		if (i == TL_UNUSED)
1066 			continue;
1067 
1068 		/* Socket COTSORD shares namespace with COTS */
1069 		if (i == TL_SOCK_COTSORD) {
1070 			t->tr_ai_hash =
1071 			    tl_transports[TL_SOCK_COTS].tr_ai_hash;
1072 			ASSERT(t->tr_ai_hash != NULL);
1073 			t->tr_addr_hash =
1074 			    tl_transports[TL_SOCK_COTS].tr_addr_hash;
1075 			ASSERT(t->tr_addr_hash != NULL);
1076 			continue;
1077 		}
1078 
1079 		/*
1080 		 * Create hash tables.
1081 		 */
1082 		(void) snprintf(name, sizeof (name), "%s_ai_hash",
1083 		    t->tr_name);
1084 #ifdef _ILP32
1085 		if (i & TL_SOCKET)
1086 			t->tr_ai_hash =
1087 			    mod_hash_create_idhash(name, tl_hash_size - 1,
1088 			    mod_hash_null_valdtor);
1089 		else
1090 			t->tr_ai_hash =
1091 			    mod_hash_create_ptrhash(name, tl_hash_size,
1092 			    mod_hash_null_valdtor, sizeof (queue_t));
1093 #else
1094 		t->tr_ai_hash =
1095 		    mod_hash_create_idhash(name, tl_hash_size - 1,
1096 		    mod_hash_null_valdtor);
1097 #endif /* _ILP32 */
1098 
1099 		if (i & TL_SOCKET) {
1100 			(void) snprintf(name, sizeof (name), "%s_sockaddr_hash",
1101 			    t->tr_name);
1102 			t->tr_addr_hash = mod_hash_create_ptrhash(name,
1103 			    tl_hash_size, mod_hash_null_valdtor,
1104 			    sizeof (uintptr_t));
1105 		} else {
1106 			(void) snprintf(name, sizeof (name), "%s_addr_hash",
1107 			    t->tr_name);
1108 			t->tr_addr_hash = mod_hash_create_extended(name,
1109 			    tl_hash_size, mod_hash_null_keydtor,
1110 			    mod_hash_null_valdtor,
1111 			    tl_hash_by_addr, NULL, tl_hash_cmp_addr, KM_SLEEP);
1112 		}
1113 
1114 		/* Create serializer for connectionless transports. */
1115 		if (i & TL_TICLTS)
1116 			t->tr_serializer = tl_serializer_alloc(KM_SLEEP);
1117 	}
1118 
1119 	tl_dip = devi;
1120 
1121 	return (DDI_SUCCESS);
1122 }
1123 
1124 static int
1125 tl_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
1126 {
1127 	int i;
1128 
1129 	if (cmd == DDI_SUSPEND)
1130 		return (DDI_SUCCESS);
1131 
1132 	if (cmd != DDI_DETACH)
1133 		return (DDI_FAILURE);
1134 
1135 	/*
1136 	 * Destroy arenas and hash tables.
1137 	 */
1138 	for (i = 0; i < TL_MAXTRANSPORT; i++) {
1139 		tl_transport_state_t *t = &tl_transports[i];
1140 
1141 		if ((i == TL_UNUSED) || (i == TL_SOCK_COTSORD))
1142 			continue;
1143 
1144 		EQUIV(i & TL_TICLTS, t->tr_serializer != NULL);
1145 		if (t->tr_serializer != NULL) {
1146 			tl_serializer_refrele(t->tr_serializer);
1147 			t->tr_serializer = NULL;
1148 		}
1149 
1150 #ifdef _ILP32
1151 		if (i & TL_SOCKET)
1152 			mod_hash_destroy_idhash(t->tr_ai_hash);
1153 		else
1154 			mod_hash_destroy_ptrhash(t->tr_ai_hash);
1155 #else
1156 		mod_hash_destroy_idhash(t->tr_ai_hash);
1157 #endif /* _ILP32 */
1158 		t->tr_ai_hash = NULL;
1159 		if (i & TL_SOCKET)
1160 			mod_hash_destroy_ptrhash(t->tr_addr_hash);
1161 		else
1162 			mod_hash_destroy_hash(t->tr_addr_hash);
1163 		t->tr_addr_hash = NULL;
1164 	}
1165 
1166 	kmem_cache_destroy(tl_cache);
1167 	tl_cache = NULL;
1168 	id_space_destroy(tl_minors);
1169 	tl_minors = NULL;
1170 	ddi_remove_minor_node(devi, NULL);
1171 	return (DDI_SUCCESS);
1172 }
1173 
1174 /* ARGSUSED */
1175 static int
1176 tl_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1177 {
1178 
1179 	int retcode = DDI_FAILURE;
1180 
1181 	switch (infocmd) {
1182 
1183 	case DDI_INFO_DEVT2DEVINFO:
1184 		if (tl_dip != NULL) {
1185 			*result = (void *)tl_dip;
1186 			retcode = DDI_SUCCESS;
1187 		}
1188 		break;
1189 
1190 	case DDI_INFO_DEVT2INSTANCE:
1191 		*result = NULL;
1192 		retcode = DDI_SUCCESS;
1193 		break;
1194 
1195 	default:
1196 		break;
1197 	}
1198 	return (retcode);
1199 }
1200 
1201 /*
1202  * Endpoint reference management.
1203  */
1204 static void
1205 tl_refhold(tl_endpt_t *tep)
1206 {
1207 	atomic_inc_32(&tep->te_refcnt);
1208 }
1209 
1210 static void
1211 tl_refrele(tl_endpt_t *tep)
1212 {
1213 	ASSERT(tep->te_refcnt != 0);
1214 
1215 	if (atomic_dec_32_nv(&tep->te_refcnt) == 0)
1216 		tl_free(tep);
1217 }
1218 
1219 /*ARGSUSED*/
1220 static int
1221 tl_constructor(void *buf, void *cdrarg, int kmflags)
1222 {
1223 	tl_endpt_t *tep = buf;
1224 
1225 	bzero(tep, sizeof (tl_endpt_t));
1226 	mutex_init(&tep->te_closelock, NULL, MUTEX_DEFAULT, NULL);
1227 	cv_init(&tep->te_closecv, NULL, CV_DEFAULT, NULL);
1228 	mutex_init(&tep->te_srv_lock, NULL, MUTEX_DEFAULT, NULL);
1229 	cv_init(&tep->te_srv_cv, NULL, CV_DEFAULT, NULL);
1230 	mutex_init(&tep->te_ser_lock, NULL, MUTEX_DEFAULT, NULL);
1231 
1232 	return (0);
1233 }
1234 
1235 /*ARGSUSED*/
1236 static void
1237 tl_destructor(void *buf, void *cdrarg)
1238 {
1239 	tl_endpt_t *tep = buf;
1240 
1241 	mutex_destroy(&tep->te_closelock);
1242 	cv_destroy(&tep->te_closecv);
1243 	mutex_destroy(&tep->te_srv_lock);
1244 	cv_destroy(&tep->te_srv_cv);
1245 	mutex_destroy(&tep->te_ser_lock);
1246 }
1247 
1248 static void
1249 tl_free(tl_endpt_t *tep)
1250 {
1251 	ASSERT(tep->te_refcnt == 0);
1252 	ASSERT(tep->te_transport != NULL);
1253 	ASSERT(tep->te_rq == NULL);
1254 	ASSERT(tep->te_wq == NULL);
1255 	ASSERT(tep->te_ser != NULL);
1256 	ASSERT(tep->te_ser_count == 0);
1257 	ASSERT(!(tep->te_flag & TL_ADDRHASHED));
1258 
1259 	if (IS_SOCKET(tep)) {
1260 		ASSERT(tep->te_alen == TL_SOUX_ADDRLEN);
1261 		ASSERT(tep->te_abuf == &tep->te_uxaddr);
1262 		ASSERT(tep->te_vp == (void *)(uintptr_t)tep->te_minor);
1263 		ASSERT(tep->te_magic == SOU_MAGIC_IMPLICIT);
1264 	} else if (tep->te_abuf != NULL) {
1265 		kmem_free(tep->te_abuf, tep->te_alen);
1266 		tep->te_alen = -1; /* uninitialized */
1267 		tep->te_abuf = NULL;
1268 	} else {
1269 		ASSERT(tep->te_alen == -1);
1270 	}
1271 
1272 	id_free(tl_minors, tep->te_minor);
1273 	ASSERT(tep->te_credp == NULL);
1274 
1275 	if (tep->te_hash_hndl != NULL)
1276 		mod_hash_cancel(tep->te_addrhash, &tep->te_hash_hndl);
1277 
1278 	if (IS_COTS(tep)) {
1279 		TL_REMOVE_PEER(tep->te_conp);
1280 		TL_REMOVE_PEER(tep->te_oconp);
1281 		tl_serializer_refrele(tep->te_ser);
1282 		tep->te_ser = NULL;
1283 		ASSERT(tep->te_nicon == 0);
1284 		ASSERT(list_head(&tep->te_iconp) == NULL);
1285 	} else {
1286 		ASSERT(tep->te_lastep == NULL);
1287 		ASSERT(list_head(&tep->te_flowlist) == NULL);
1288 		ASSERT(tep->te_flowq == NULL);
1289 	}
1290 
1291 	ASSERT(tep->te_bufcid == 0);
1292 	ASSERT(tep->te_timoutid == 0);
1293 	bzero(&tep->te_ap, sizeof (tep->te_ap));
1294 	tep->te_acceptor_id = 0;
1295 
1296 	ASSERT(tep->te_closewait == 0);
1297 	ASSERT(!tep->te_rsrv_active);
1298 	ASSERT(!tep->te_wsrv_active);
1299 	tep->te_closing = 0;
1300 	tep->te_nowsrv = B_FALSE;
1301 	tep->te_flag = 0;
1302 
1303 	kmem_cache_free(tl_cache, tep);
1304 }
1305 
1306 /*
1307  * Allocate/free reference-counted wrappers for serializers.
1308  */
1309 static tl_serializer_t *
1310 tl_serializer_alloc(int flags)
1311 {
1312 	tl_serializer_t *s = kmem_alloc(sizeof (tl_serializer_t), flags);
1313 	serializer_t *ser;
1314 
1315 	if (s == NULL)
1316 		return (NULL);
1317 
1318 	ser = serializer_create(flags);
1319 
1320 	if (ser == NULL) {
1321 		kmem_free(s, sizeof (tl_serializer_t));
1322 		return (NULL);
1323 	}
1324 
1325 	s->ts_refcnt = 1;
1326 	s->ts_serializer = ser;
1327 	return (s);
1328 }
1329 
1330 static void
1331 tl_serializer_refhold(tl_serializer_t *s)
1332 {
1333 	atomic_inc_32(&s->ts_refcnt);
1334 }
1335 
1336 static void
1337 tl_serializer_refrele(tl_serializer_t *s)
1338 {
1339 	if (atomic_dec_32_nv(&s->ts_refcnt) == 0) {
1340 		serializer_destroy(s->ts_serializer);
1341 		kmem_free(s, sizeof (tl_serializer_t));
1342 	}
1343 }
1344 
1345 /*
1346  * Post a request on the endpoint serializer. For COTS transports keep track of
1347  * the number of pending requests.
1348  */
1349 static void
1350 tl_serializer_enter(tl_endpt_t *tep, tlproc_t tlproc, mblk_t *mp)
1351 {
1352 	if (IS_COTS(tep)) {
1353 		mutex_enter(&tep->te_ser_lock);
1354 		tep->te_ser_count++;
1355 		mutex_exit(&tep->te_ser_lock);
1356 	}
1357 	serializer_enter(tep->te_serializer, (srproc_t *)tlproc, mp, tep);
1358 }
1359 
1360 /*
1361  * Complete processing the request on the serializer. Decrement the counter for
1362  * pending requests for COTS transports.
1363  */
1364 static void
1365 tl_serializer_exit(tl_endpt_t *tep)
1366 {
1367 	if (IS_COTS(tep)) {
1368 		mutex_enter(&tep->te_ser_lock);
1369 		ASSERT(tep->te_ser_count != 0);
1370 		tep->te_ser_count--;
1371 		mutex_exit(&tep->te_ser_lock);
1372 	}
1373 }
1374 
1375 /*
1376  * Hash management functions.
1377  */
1378 
1379 /*
1380  * Return TRUE if two addresses are equal, false otherwise.
1381  */
1382 static boolean_t
1383 tl_eqaddr(tl_addr_t *ap1, tl_addr_t *ap2)
1384 {
1385 	return ((ap1->ta_alen > 0) &&
1386 	    (ap1->ta_alen == ap2->ta_alen) &&
1387 	    (ap1->ta_zoneid == ap2->ta_zoneid) &&
1388 	    (bcmp(ap1->ta_abuf, ap2->ta_abuf, ap1->ta_alen) == 0));
1389 }
1390 
1391 /*
1392  * This function is called whenever an endpoint is found in the hash table.
1393  */
1394 /* ARGSUSED0 */
1395 static void
1396 tl_find_callback(mod_hash_key_t key, mod_hash_val_t val)
1397 {
1398 	tl_refhold((tl_endpt_t *)val);
1399 }
1400 
1401 /*
1402  * Address hash function.
1403  */
1404 /* ARGSUSED */
1405 static uint_t
1406 tl_hash_by_addr(void *hash_data, mod_hash_key_t key)
1407 {
1408 	tl_addr_t *ap = (tl_addr_t *)key;
1409 	size_t	len = ap->ta_alen;
1410 	uchar_t *p = ap->ta_abuf;
1411 	uint_t i, g;
1412 
1413 	ASSERT((len > 0) && (p != NULL));
1414 
1415 	for (i = ap->ta_zoneid; len -- != 0; p++) {
1416 		i = (i << 4) + (*p);
1417 		if ((g = (i & 0xf0000000U)) != 0) {
1418 			i ^= (g >> 24);
1419 			i ^= g;
1420 		}
1421 	}
1422 	return (i);
1423 }
1424 
1425 /*
1426  * This function is used by hash lookups. It compares two generic addresses.
1427  */
1428 static int
1429 tl_hash_cmp_addr(mod_hash_key_t key1, mod_hash_key_t key2)
1430 {
1431 #ifdef	DEBUG
1432 	tl_addr_t *ap1 = (tl_addr_t *)key1;
1433 	tl_addr_t *ap2 = (tl_addr_t *)key2;
1434 
1435 	ASSERT(key1 != NULL);
1436 	ASSERT(key2 != NULL);
1437 
1438 	ASSERT(ap1->ta_abuf != NULL);
1439 	ASSERT(ap2->ta_abuf != NULL);
1440 	ASSERT(ap1->ta_alen > 0);
1441 	ASSERT(ap2->ta_alen > 0);
1442 #endif
1443 
1444 	return (!tl_eqaddr((tl_addr_t *)key1, (tl_addr_t *)key2));
1445 }
1446 
1447 /*
1448  * Prevent endpoint from closing if possible.
1449  * Return B_TRUE on success, B_FALSE on failure.
1450  */
1451 static boolean_t
1452 tl_noclose(tl_endpt_t *tep)
1453 {
1454 	boolean_t rc = B_FALSE;
1455 
1456 	mutex_enter(&tep->te_closelock);
1457 	if (!tep->te_closing) {
1458 		ASSERT(tep->te_closewait == 0);
1459 		tep->te_closewait++;
1460 		rc = B_TRUE;
1461 	}
1462 	mutex_exit(&tep->te_closelock);
1463 	return (rc);
1464 }
1465 
1466 /*
1467  * Allow endpoint to close if needed.
1468  */
1469 static void
1470 tl_closeok(tl_endpt_t *tep)
1471 {
1472 	ASSERT(tep->te_closewait > 0);
1473 	mutex_enter(&tep->te_closelock);
1474 	ASSERT(tep->te_closewait == 1);
1475 	tep->te_closewait--;
1476 	cv_signal(&tep->te_closecv);
1477 	mutex_exit(&tep->te_closelock);
1478 }
1479 
1480 /*
1481  * STREAMS open entry point.
1482  */
1483 /* ARGSUSED */
1484 static int
1485 tl_open(queue_t	*rq, dev_t *devp, int oflag, int sflag,	cred_t	*credp)
1486 {
1487 	tl_endpt_t *tep;
1488 	minor_t	    minor = getminor(*devp);
1489 
1490 	/*
1491 	 * Driver is called directly. Both CLONEOPEN and MODOPEN
1492 	 * are illegal
1493 	 */
1494 	if ((sflag == CLONEOPEN) || (sflag == MODOPEN))
1495 		return (ENXIO);
1496 
1497 	if (rq->q_ptr != NULL)
1498 		return (0);
1499 
1500 	/* Minor number should specify the mode used for the driver. */
1501 	if ((minor >= TL_UNUSED))
1502 		return (ENXIO);
1503 
1504 	if (oflag & SO_SOCKSTR) {
1505 		minor |= TL_SOCKET;
1506 	}
1507 
1508 	tep = kmem_cache_alloc(tl_cache, KM_SLEEP);
1509 	tep->te_refcnt = 1;
1510 	tep->te_cpid = curproc->p_pid;
1511 	rq->q_ptr = WR(rq)->q_ptr = tep;
1512 	tep->te_state = TS_UNBND;
1513 	tep->te_credp = credp;
1514 	crhold(credp);
1515 	tep->te_zoneid = getzoneid();
1516 
1517 	tep->te_flag = minor & TL_MINOR_MASK;
1518 	tep->te_transport = &tl_transports[minor];
1519 
1520 	/* Allocate a unique minor number for this instance. */
1521 	tep->te_minor = (minor_t)id_alloc(tl_minors);
1522 
1523 	/* Reserve hash handle for bind(). */
1524 	(void) mod_hash_reserve(tep->te_addrhash, &tep->te_hash_hndl);
1525 
1526 	/* Transport-specific initialization */
1527 	if (IS_COTS(tep)) {
1528 		/* Use private serializer */
1529 		tep->te_ser = tl_serializer_alloc(KM_SLEEP);
1530 
1531 		/* Create list for pending connections */
1532 		list_create(&tep->te_iconp, sizeof (tl_icon_t),
1533 		    offsetof(tl_icon_t, ti_node));
1534 		tep->te_qlen = 0;
1535 		tep->te_nicon = 0;
1536 		tep->te_oconp = NULL;
1537 		tep->te_conp = NULL;
1538 	} else {
1539 		/* Use shared serializer */
1540 		tep->te_ser = tep->te_transport->tr_serializer;
1541 		bzero(&tep->te_flows, sizeof (list_node_t));
1542 		/* Create list for flow control */
1543 		list_create(&tep->te_flowlist, sizeof (tl_endpt_t),
1544 		    offsetof(tl_endpt_t, te_flows));
1545 		tep->te_flowq = NULL;
1546 		tep->te_lastep = NULL;
1547 
1548 	}
1549 
1550 	/* Initialize endpoint address */
1551 	if (IS_SOCKET(tep)) {
1552 		/* Socket-specific address handling. */
1553 		tep->te_alen = TL_SOUX_ADDRLEN;
1554 		tep->te_abuf = &tep->te_uxaddr;
1555 		tep->te_vp = (void *)(uintptr_t)tep->te_minor;
1556 		tep->te_magic = SOU_MAGIC_IMPLICIT;
1557 	} else {
1558 		tep->te_alen = -1;
1559 		tep->te_abuf = NULL;
1560 	}
1561 
1562 	/* clone the driver */
1563 	*devp = makedevice(getmajor(*devp), tep->te_minor);
1564 
1565 	tep->te_rq = rq;
1566 	tep->te_wq = WR(rq);
1567 
1568 #ifdef	_ILP32
1569 	if (IS_SOCKET(tep))
1570 		tep->te_acceptor_id = tep->te_minor;
1571 	else
1572 		tep->te_acceptor_id = (t_uscalar_t)rq;
1573 #else
1574 	tep->te_acceptor_id = tep->te_minor;
1575 #endif	/* _ILP32 */
1576 
1577 
1578 	qprocson(rq);
1579 
1580 	/*
1581 	 * Insert acceptor ID in the hash. The AI hash always sleeps on
1582 	 * insertion so insertion can't fail.
1583 	 */
1584 	(void) mod_hash_insert(tep->te_transport->tr_ai_hash,
1585 	    (mod_hash_key_t)(uintptr_t)tep->te_acceptor_id,
1586 	    (mod_hash_val_t)tep);
1587 
1588 	return (0);
1589 }
1590 
1591 /* ARGSUSED1 */
1592 static int
1593 tl_close(queue_t *rq, int flag,	cred_t *credp)
1594 {
1595 	tl_endpt_t *tep = (tl_endpt_t *)rq->q_ptr;
1596 	tl_endpt_t *elp = NULL;
1597 	queue_t *wq = tep->te_wq;
1598 	int rc;
1599 
1600 	ASSERT(wq == WR(rq));
1601 
1602 	/*
1603 	 * Remove the endpoint from acceptor hash.
1604 	 */
1605 	rc = mod_hash_remove(tep->te_transport->tr_ai_hash,
1606 	    (mod_hash_key_t)(uintptr_t)tep->te_acceptor_id,
1607 	    (mod_hash_val_t *)&elp);
1608 	ASSERT(rc == 0 && tep == elp);
1609 	if ((rc != 0) || (tep != elp)) {
1610 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
1611 		    SL_TRACE | SL_ERROR,
1612 		    "tl_close:inconsistency in AI hash"));
1613 	}
1614 
1615 	/*
1616 	 * Wait till close is safe, then mark endpoint as closing.
1617 	 */
1618 	mutex_enter(&tep->te_closelock);
1619 	while (tep->te_closewait)
1620 		cv_wait(&tep->te_closecv, &tep->te_closelock);
1621 	tep->te_closing = B_TRUE;
1622 	/*
1623 	 * Will wait for the serializer part of the close to finish, so set
1624 	 * te_closewait now.
1625 	 */
1626 	tep->te_closewait = 1;
1627 	tep->te_nowsrv = B_FALSE;
1628 	mutex_exit(&tep->te_closelock);
1629 
1630 	/*
1631 	 * tl_close_ser doesn't drop reference, so no need to tl_refhold.
1632 	 * It is safe because close will wait for tl_close_ser to finish.
1633 	 */
1634 	tl_serializer_enter(tep, tl_close_ser, &tep->te_closemp);
1635 
1636 	/*
1637 	 * Wait for the first phase of close to complete before qprocsoff().
1638 	 */
1639 	mutex_enter(&tep->te_closelock);
1640 	while (tep->te_closewait)
1641 		cv_wait(&tep->te_closecv, &tep->te_closelock);
1642 	mutex_exit(&tep->te_closelock);
1643 
1644 	qprocsoff(rq);
1645 
1646 	if (tep->te_bufcid) {
1647 		qunbufcall(rq, tep->te_bufcid);
1648 		tep->te_bufcid = 0;
1649 	}
1650 	if (tep->te_timoutid) {
1651 		(void) quntimeout(rq, tep->te_timoutid);
1652 		tep->te_timoutid = 0;
1653 	}
1654 
1655 	/*
1656 	 * Finish close behind serializer.
1657 	 *
1658 	 * For a CLTS endpoint increase a refcount and continue close processing
1659 	 * with serializer protection. This processing may happen asynchronously
1660 	 * with the completion of tl_close().
1661 	 *
1662 	 * Fot a COTS endpoint wait before destroying tep since the serializer
1663 	 * may go away together with tep and we need to destroy serializer
1664 	 * outside of serializer context.
1665 	 */
1666 	ASSERT(tep->te_closewait == 0);
1667 	if (IS_COTS(tep))
1668 		tep->te_closewait = 1;
1669 	else
1670 		tl_refhold(tep);
1671 
1672 	tl_serializer_enter(tep, tl_close_finish_ser, &tep->te_closemp);
1673 
1674 	/*
1675 	 * For connection-oriented transports wait for all serializer activity
1676 	 * to settle down.
1677 	 */
1678 	if (IS_COTS(tep)) {
1679 		mutex_enter(&tep->te_closelock);
1680 		while (tep->te_closewait)
1681 			cv_wait(&tep->te_closecv, &tep->te_closelock);
1682 		mutex_exit(&tep->te_closelock);
1683 	}
1684 
1685 	crfree(tep->te_credp);
1686 	tep->te_credp = NULL;
1687 	tep->te_wq = NULL;
1688 	tl_refrele(tep);
1689 	/*
1690 	 * tep is likely to be destroyed now, so can't reference it any more.
1691 	 */
1692 
1693 	rq->q_ptr = wq->q_ptr = NULL;
1694 	return (0);
1695 }
1696 
1697 /*
1698  * First phase of close processing done behind the serializer.
1699  *
1700  * Do not drop the reference in the end - tl_close() wants this reference to
1701  * stay.
1702  */
1703 /* ARGSUSED0 */
1704 static void
1705 tl_close_ser(mblk_t *mp, tl_endpt_t *tep)
1706 {
1707 	ASSERT(tep->te_closing);
1708 	ASSERT(tep->te_closewait == 1);
1709 	ASSERT(!(tep->te_flag & TL_CLOSE_SER));
1710 
1711 	tep->te_flag |= TL_CLOSE_SER;
1712 
1713 	/*
1714 	 * Drain out all messages on queue except for TL_TICOTS where the
1715 	 * abortive release semantics permit discarding of data on close
1716 	 */
1717 	if (tep->te_wq->q_first && (IS_CLTS(tep) || IS_COTSORD(tep))) {
1718 		tl_wsrv_ser(NULL, tep);
1719 	}
1720 
1721 	/* Remove address from hash table. */
1722 	tl_addr_unbind(tep);
1723 	/*
1724 	 * qprocsoff() gets confused when q->q_next is not NULL on the write
1725 	 * queue of the driver, so clear these before qprocsoff() is called.
1726 	 * Also clear q_next for the peer since this queue is going away.
1727 	 */
1728 	if (IS_COTS(tep) && !IS_SOCKET(tep)) {
1729 		tl_endpt_t *peer_tep = tep->te_conp;
1730 
1731 		tep->te_wq->q_next = NULL;
1732 		if ((peer_tep != NULL) && !peer_tep->te_closing)
1733 			peer_tep->te_wq->q_next = NULL;
1734 	}
1735 
1736 	tep->te_rq = NULL;
1737 
1738 	/* wake up tl_close() */
1739 	tl_closeok(tep);
1740 	tl_serializer_exit(tep);
1741 }
1742 
1743 /*
1744  * Second phase of tl_close(). Should wakeup tl_close() for COTS mode and drop
1745  * the reference for CLTS.
1746  *
1747  * Called from serializer. Should drop reference count for CLTS only.
1748  */
1749 /* ARGSUSED0 */
1750 static void
1751 tl_close_finish_ser(mblk_t *mp, tl_endpt_t *tep)
1752 {
1753 	ASSERT(tep->te_closing);
1754 	IMPLY(IS_CLTS(tep), tep->te_closewait == 0);
1755 	IMPLY(IS_COTS(tep), tep->te_closewait == 1);
1756 
1757 	tep->te_state = -1;	/* Uninitialized */
1758 	if (IS_COTS(tep)) {
1759 		tl_co_unconnect(tep);
1760 	} else {
1761 		/* Connectionless specific cleanup */
1762 		TL_REMOVE_PEER(tep->te_lastep);
1763 		/*
1764 		 * Backenable anybody that is flow controlled waiting for
1765 		 * this endpoint.
1766 		 */
1767 		tl_cl_backenable(tep);
1768 		if (tep->te_flowq != NULL) {
1769 			list_remove(&(tep->te_flowq->te_flowlist), tep);
1770 			tep->te_flowq = NULL;
1771 		}
1772 	}
1773 
1774 	tl_serializer_exit(tep);
1775 	if (IS_COTS(tep))
1776 		tl_closeok(tep);
1777 	else
1778 		tl_refrele(tep);
1779 }
1780 
1781 /*
1782  * STREAMS write-side put procedure.
1783  * Enter serializer for most of the processing.
1784  *
1785  * The T_CONN_REQ is processed outside of serializer.
1786  */
1787 static int
1788 tl_wput(queue_t *wq, mblk_t *mp)
1789 {
1790 	tl_endpt_t		*tep = (tl_endpt_t *)wq->q_ptr;
1791 	ssize_t			msz = MBLKL(mp);
1792 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
1793 	tlproc_t		*tl_proc = NULL;
1794 
1795 	switch (DB_TYPE(mp)) {
1796 	case M_DATA:
1797 		/* Only valid for connection-oriented transports */
1798 		if (IS_CLTS(tep)) {
1799 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1800 			    SL_TRACE | SL_ERROR,
1801 			    "tl_wput:M_DATA invalid for ticlts driver"));
1802 			tl_merror(wq, mp, EPROTO);
1803 			return (0);
1804 		}
1805 		tl_proc = tl_wput_data_ser;
1806 		break;
1807 
1808 	case M_IOCTL:
1809 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
1810 		case TL_IOC_CREDOPT:
1811 			/* FALLTHROUGH */
1812 		case TL_IOC_UCREDOPT:
1813 			/*
1814 			 * Serialize endpoint state change.
1815 			 */
1816 			tl_proc = tl_do_ioctl_ser;
1817 			break;
1818 
1819 		default:
1820 			miocnak(wq, mp, 0, EINVAL);
1821 			return (0);
1822 		}
1823 		break;
1824 
1825 	case M_FLUSH:
1826 		/*
1827 		 * do canonical M_FLUSH processing
1828 		 */
1829 		if (*mp->b_rptr & FLUSHW) {
1830 			flushq(wq, FLUSHALL);
1831 			*mp->b_rptr &= ~FLUSHW;
1832 		}
1833 		if (*mp->b_rptr & FLUSHR) {
1834 			flushq(RD(wq), FLUSHALL);
1835 			qreply(wq, mp);
1836 		} else {
1837 			freemsg(mp);
1838 		}
1839 		return (0);
1840 
1841 	case M_PROTO:
1842 		if (msz < sizeof (prim->type)) {
1843 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1844 			    SL_TRACE | SL_ERROR,
1845 			    "tl_wput:M_PROTO data too short"));
1846 			tl_merror(wq, mp, EPROTO);
1847 			return (0);
1848 		}
1849 		switch (prim->type) {
1850 		case T_OPTMGMT_REQ:
1851 		case T_SVR4_OPTMGMT_REQ:
1852 			/*
1853 			 * Process TPI option management requests immediately
1854 			 * in put procedure regardless of in-order processing
1855 			 * of already queued messages.
1856 			 * (Note: This driver supports AF_UNIX socket
1857 			 * implementation.  Unless we implement this processing,
1858 			 * setsockopt() on socket endpoint will block on flow
1859 			 * controlled endpoints which it should not. That is
1860 			 * required for successful execution of VSU socket tests
1861 			 * and is consistent with BSD socket behavior).
1862 			 */
1863 			tl_optmgmt(wq, mp);
1864 			return (0);
1865 		case O_T_BIND_REQ:
1866 		case T_BIND_REQ:
1867 			tl_proc = tl_bind_ser;
1868 			break;
1869 		case T_CONN_REQ:
1870 			if (IS_CLTS(tep)) {
1871 				tl_merror(wq, mp, EPROTO);
1872 				return (0);
1873 			}
1874 			tl_conn_req(wq, mp);
1875 			return (0);
1876 		case T_DATA_REQ:
1877 		case T_OPTDATA_REQ:
1878 		case T_EXDATA_REQ:
1879 		case T_ORDREL_REQ:
1880 			tl_proc = tl_putq_ser;
1881 			break;
1882 		case T_UNITDATA_REQ:
1883 			if (IS_COTS(tep) ||
1884 			    (msz < sizeof (struct T_unitdata_req))) {
1885 				tl_merror(wq, mp, EPROTO);
1886 				return (0);
1887 			}
1888 			if ((tep->te_state == TS_IDLE) && !wq->q_first) {
1889 				tl_proc = tl_unitdata_ser;
1890 			} else {
1891 				tl_proc = tl_putq_ser;
1892 			}
1893 			break;
1894 		default:
1895 			/*
1896 			 * process in service procedure if message already
1897 			 * queued (maintain in-order processing)
1898 			 */
1899 			if (wq->q_first != NULL) {
1900 				tl_proc = tl_putq_ser;
1901 			} else {
1902 				tl_proc = tl_wput_ser;
1903 			}
1904 			break;
1905 		}
1906 		break;
1907 
1908 	case M_PCPROTO:
1909 		/*
1910 		 * Check that the message has enough data to figure out TPI
1911 		 * primitive.
1912 		 */
1913 		if (msz < sizeof (prim->type)) {
1914 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1915 			    SL_TRACE | SL_ERROR,
1916 			    "tl_wput:M_PCROTO data too short"));
1917 			tl_merror(wq, mp, EPROTO);
1918 			return (0);
1919 		}
1920 		switch (prim->type) {
1921 		case T_CAPABILITY_REQ:
1922 			tl_capability_req(mp, tep);
1923 			return (0);
1924 		case T_INFO_REQ:
1925 			tl_proc = tl_info_req_ser;
1926 			break;
1927 		case T_ADDR_REQ:
1928 			tl_proc = tl_addr_req_ser;
1929 			break;
1930 
1931 		default:
1932 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1933 			    SL_TRACE | SL_ERROR,
1934 			    "tl_wput:unknown TPI msg primitive"));
1935 			tl_merror(wq, mp, EPROTO);
1936 			return (0);
1937 		}
1938 		break;
1939 	default:
1940 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
1941 		    "tl_wput:default:unexpected Streams message"));
1942 		freemsg(mp);
1943 		return (0);
1944 	}
1945 
1946 	/*
1947 	 * Continue processing via serializer.
1948 	 */
1949 	ASSERT(tl_proc != NULL);
1950 	tl_refhold(tep);
1951 	tl_serializer_enter(tep, tl_proc, mp);
1952 	return (0);
1953 }
1954 
1955 /*
1956  * Place message on the queue while preserving order.
1957  */
1958 static void
1959 tl_putq_ser(mblk_t *mp, tl_endpt_t *tep)
1960 {
1961 	if (tep->te_closing) {
1962 		tl_wput_ser(mp, tep);
1963 	} else {
1964 		TL_PUTQ(tep, mp);
1965 		tl_serializer_exit(tep);
1966 		tl_refrele(tep);
1967 	}
1968 
1969 }
1970 
1971 static void
1972 tl_wput_common_ser(mblk_t *mp, tl_endpt_t *tep)
1973 {
1974 	ASSERT((DB_TYPE(mp) == M_DATA) || (DB_TYPE(mp) == M_PROTO));
1975 
1976 	switch (DB_TYPE(mp)) {
1977 	case M_DATA:
1978 		tl_data(mp, tep);
1979 		break;
1980 	case M_PROTO:
1981 		tl_do_proto(mp, tep);
1982 		break;
1983 	default:
1984 		freemsg(mp);
1985 		break;
1986 	}
1987 }
1988 
1989 /*
1990  * Write side put procedure called from serializer.
1991  */
1992 static void
1993 tl_wput_ser(mblk_t *mp, tl_endpt_t *tep)
1994 {
1995 	tl_wput_common_ser(mp, tep);
1996 	tl_serializer_exit(tep);
1997 	tl_refrele(tep);
1998 }
1999 
2000 /*
2001  * M_DATA processing. Called from serializer.
2002  */
2003 static void
2004 tl_wput_data_ser(mblk_t *mp, tl_endpt_t *tep)
2005 {
2006 	tl_endpt_t	*peer_tep = tep->te_conp;
2007 	queue_t		*peer_rq;
2008 
2009 	ASSERT(DB_TYPE(mp) == M_DATA);
2010 	ASSERT(IS_COTS(tep));
2011 
2012 	IMPLY(peer_tep, tep->te_serializer == peer_tep->te_serializer);
2013 
2014 	/*
2015 	 * fastpath for data. Ignore flow control if tep is closing.
2016 	 */
2017 	if ((peer_tep != NULL) &&
2018 	    !peer_tep->te_closing &&
2019 	    ((tep->te_state == TS_DATA_XFER) ||
2020 	    (tep->te_state == TS_WREQ_ORDREL)) &&
2021 	    (tep->te_wq != NULL) &&
2022 	    (tep->te_wq->q_first == NULL) &&
2023 	    (peer_tep->te_state == TS_DATA_XFER ||
2024 	    peer_tep->te_state == TS_WIND_ORDREL ||
2025 	    peer_tep->te_state == TS_WREQ_ORDREL) &&
2026 	    ((peer_rq = peer_tep->te_rq) != NULL) &&
2027 	    (canputnext(peer_rq) || tep->te_closing)) {
2028 		putnext(peer_rq, mp);
2029 	} else if (tep->te_closing) {
2030 		/*
2031 		 * It is possible that by the time we got here tep started to
2032 		 * close. If the write queue is not empty, and the state is
2033 		 * TS_DATA_XFER the data should be delivered in order, so we
2034 		 * call putq() instead of freeing the data.
2035 		 */
2036 		if ((tep->te_wq != NULL) &&
2037 		    ((tep->te_state == TS_DATA_XFER) ||
2038 		    (tep->te_state == TS_WREQ_ORDREL))) {
2039 			TL_PUTQ(tep, mp);
2040 		} else {
2041 			freemsg(mp);
2042 		}
2043 	} else {
2044 		TL_PUTQ(tep, mp);
2045 	}
2046 
2047 	tl_serializer_exit(tep);
2048 	tl_refrele(tep);
2049 }
2050 
2051 /*
2052  * Write side service routine.
2053  *
2054  * All actual processing happens within serializer which is entered
2055  * synchronously. It is possible that by the time tl_wsrv() wakes up, some new
2056  * messages that need processing may have arrived, so tl_wsrv repeats until
2057  * queue is empty or te_nowsrv is set.
2058  */
2059 static int
2060 tl_wsrv(queue_t *wq)
2061 {
2062 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
2063 
2064 	while ((wq->q_first != NULL) && !tep->te_nowsrv) {
2065 		mutex_enter(&tep->te_srv_lock);
2066 		ASSERT(tep->te_wsrv_active == B_FALSE);
2067 		tep->te_wsrv_active = B_TRUE;
2068 		mutex_exit(&tep->te_srv_lock);
2069 
2070 		tl_serializer_enter(tep, tl_wsrv_ser, &tep->te_wsrvmp);
2071 
2072 		/*
2073 		 * Wait for serializer job to complete.
2074 		 */
2075 		mutex_enter(&tep->te_srv_lock);
2076 		while (tep->te_wsrv_active) {
2077 			cv_wait(&tep->te_srv_cv, &tep->te_srv_lock);
2078 		}
2079 		cv_signal(&tep->te_srv_cv);
2080 		mutex_exit(&tep->te_srv_lock);
2081 	}
2082 	return (0);
2083 }
2084 
2085 /*
2086  * Serialized write side processing of the STREAMS queue.
2087  * May be called either from tl_wsrv() or from tl_close() in which case ser_mp
2088  * is NULL.
2089  */
2090 static void
2091 tl_wsrv_ser(mblk_t *ser_mp, tl_endpt_t *tep)
2092 {
2093 	mblk_t *mp;
2094 	queue_t *wq = tep->te_wq;
2095 
2096 	ASSERT(wq != NULL);
2097 	while (!tep->te_nowsrv && (mp = getq(wq)) != NULL) {
2098 		tl_wput_common_ser(mp, tep);
2099 	}
2100 
2101 	/*
2102 	 * Wakeup service routine unless called from close.
2103 	 * If ser_mp is specified, the caller is tl_wsrv().
2104 	 * Otherwise, the caller is tl_close_ser(). Since tl_close_ser() doesn't
2105 	 * call tl_serializer_enter() before calling tl_wsrv_ser(), there should
2106 	 * be no matching tl_serializer_exit() in this case.
2107 	 * Also, there is no need to wakeup anyone since tl_close_ser() is not
2108 	 * waiting on te_srv_cv.
2109 	 */
2110 	if (ser_mp != NULL) {
2111 		/*
2112 		 * We are called from tl_wsrv.
2113 		 */
2114 		mutex_enter(&tep->te_srv_lock);
2115 		ASSERT(tep->te_wsrv_active);
2116 		tep->te_wsrv_active = B_FALSE;
2117 		cv_signal(&tep->te_srv_cv);
2118 		mutex_exit(&tep->te_srv_lock);
2119 		tl_serializer_exit(tep);
2120 	}
2121 }
2122 
2123 /*
2124  * Called when the stream is backenabled. Enter serializer and qenable everyone
2125  * flow controlled by tep.
2126  *
2127  * NOTE: The service routine should enter serializer synchronously. Otherwise it
2128  * is possible that two instances of tl_rsrv will be running reusing the same
2129  * rsrv mblk.
2130  */
2131 static int
2132 tl_rsrv(queue_t *rq)
2133 {
2134 	tl_endpt_t *tep = (tl_endpt_t *)rq->q_ptr;
2135 
2136 	ASSERT(rq->q_first == NULL);
2137 	ASSERT(tep->te_rsrv_active == 0);
2138 
2139 	tep->te_rsrv_active = B_TRUE;
2140 	tl_serializer_enter(tep, tl_rsrv_ser, &tep->te_rsrvmp);
2141 	/*
2142 	 * Wait for serializer job to complete.
2143 	 */
2144 	mutex_enter(&tep->te_srv_lock);
2145 	while (tep->te_rsrv_active) {
2146 		cv_wait(&tep->te_srv_cv, &tep->te_srv_lock);
2147 	}
2148 	cv_signal(&tep->te_srv_cv);
2149 	mutex_exit(&tep->te_srv_lock);
2150 	return (0);
2151 }
2152 
2153 /* ARGSUSED */
2154 static void
2155 tl_rsrv_ser(mblk_t *mp, tl_endpt_t *tep)
2156 {
2157 	tl_endpt_t *peer_tep;
2158 
2159 	if (IS_CLTS(tep) && tep->te_state == TS_IDLE) {
2160 		tl_cl_backenable(tep);
2161 	} else if (
2162 	    IS_COTS(tep) &&
2163 	    ((peer_tep = tep->te_conp) != NULL) &&
2164 	    !peer_tep->te_closing &&
2165 	    ((tep->te_state == TS_DATA_XFER) ||
2166 	    (tep->te_state == TS_WIND_ORDREL)||
2167 	    (tep->te_state == TS_WREQ_ORDREL))) {
2168 		TL_QENABLE(peer_tep);
2169 	}
2170 
2171 	/*
2172 	 * Wakeup read side service routine.
2173 	 */
2174 	mutex_enter(&tep->te_srv_lock);
2175 	ASSERT(tep->te_rsrv_active);
2176 	tep->te_rsrv_active = B_FALSE;
2177 	cv_signal(&tep->te_srv_cv);
2178 	mutex_exit(&tep->te_srv_lock);
2179 	tl_serializer_exit(tep);
2180 }
2181 
2182 /*
2183  * process M_PROTO messages. Always called from serializer.
2184  */
2185 static void
2186 tl_do_proto(mblk_t *mp, tl_endpt_t *tep)
2187 {
2188 	ssize_t			msz = MBLKL(mp);
2189 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
2190 
2191 	/* Message size was validated by tl_wput(). */
2192 	ASSERT(msz >= sizeof (prim->type));
2193 
2194 	switch (prim->type) {
2195 	case T_UNBIND_REQ:
2196 		tl_unbind(mp, tep);
2197 		break;
2198 
2199 	case T_ADDR_REQ:
2200 		tl_addr_req(mp, tep);
2201 		break;
2202 
2203 	case O_T_CONN_RES:
2204 	case T_CONN_RES:
2205 		if (IS_CLTS(tep)) {
2206 			tl_merror(tep->te_wq, mp, EPROTO);
2207 			break;
2208 		}
2209 		tl_conn_res(mp, tep);
2210 		break;
2211 
2212 	case T_DISCON_REQ:
2213 		if (IS_CLTS(tep)) {
2214 			tl_merror(tep->te_wq, mp, EPROTO);
2215 			break;
2216 		}
2217 		tl_discon_req(mp, tep);
2218 		break;
2219 
2220 	case T_DATA_REQ:
2221 		if (IS_CLTS(tep)) {
2222 			tl_merror(tep->te_wq, mp, EPROTO);
2223 			break;
2224 		}
2225 		tl_data(mp, tep);
2226 		break;
2227 
2228 	case T_OPTDATA_REQ:
2229 		if (IS_CLTS(tep)) {
2230 			tl_merror(tep->te_wq, mp, EPROTO);
2231 			break;
2232 		}
2233 		tl_data(mp, tep);
2234 		break;
2235 
2236 	case T_EXDATA_REQ:
2237 		if (IS_CLTS(tep)) {
2238 			tl_merror(tep->te_wq, mp, EPROTO);
2239 			break;
2240 		}
2241 		tl_exdata(mp, tep);
2242 		break;
2243 
2244 	case T_ORDREL_REQ:
2245 		if (!IS_COTSORD(tep)) {
2246 			tl_merror(tep->te_wq, mp, EPROTO);
2247 			break;
2248 		}
2249 		tl_ordrel(mp, tep);
2250 		break;
2251 
2252 	case T_UNITDATA_REQ:
2253 		if (IS_COTS(tep)) {
2254 			tl_merror(tep->te_wq, mp, EPROTO);
2255 			break;
2256 		}
2257 		tl_unitdata(mp, tep);
2258 		break;
2259 
2260 	default:
2261 		tl_merror(tep->te_wq, mp, EPROTO);
2262 		break;
2263 	}
2264 }
2265 
2266 /*
2267  * Process ioctl from serializer.
2268  * This is a wrapper around tl_do_ioctl().
2269  */
2270 static void
2271 tl_do_ioctl_ser(mblk_t *mp, tl_endpt_t *tep)
2272 {
2273 	if (!tep->te_closing)
2274 		tl_do_ioctl(mp, tep);
2275 	else
2276 		freemsg(mp);
2277 
2278 	tl_serializer_exit(tep);
2279 	tl_refrele(tep);
2280 }
2281 
2282 static void
2283 tl_do_ioctl(mblk_t *mp, tl_endpt_t *tep)
2284 {
2285 	struct iocblk *iocbp = (struct iocblk *)mp->b_rptr;
2286 	int cmd = iocbp->ioc_cmd;
2287 	queue_t *wq = tep->te_wq;
2288 	int error;
2289 	int thisopt, otheropt;
2290 
2291 	ASSERT((cmd == TL_IOC_CREDOPT) || (cmd == TL_IOC_UCREDOPT));
2292 
2293 	switch (cmd) {
2294 	case TL_IOC_CREDOPT:
2295 		if (cmd == TL_IOC_CREDOPT) {
2296 			thisopt = TL_SETCRED;
2297 			otheropt = TL_SETUCRED;
2298 		} else {
2299 			/* FALLTHROUGH */
2300 	case TL_IOC_UCREDOPT:
2301 			thisopt = TL_SETUCRED;
2302 			otheropt = TL_SETCRED;
2303 		}
2304 		/*
2305 		 * The credentials passing does not apply to sockets.
2306 		 * Only one of the cred options can be set at a given time.
2307 		 */
2308 		if (IS_SOCKET(tep) || (tep->te_flag & otheropt)) {
2309 			miocnak(wq, mp, 0, EINVAL);
2310 			return;
2311 		}
2312 
2313 		/*
2314 		 * Turn on generation of credential options for
2315 		 * T_conn_req, T_conn_con, T_unidata_ind.
2316 		 */
2317 		error = miocpullup(mp, sizeof (uint32_t));
2318 		if (error != 0) {
2319 			miocnak(wq, mp, 0, error);
2320 			return;
2321 		}
2322 		if (!IS_P2ALIGNED(mp->b_cont->b_rptr, sizeof (uint32_t))) {
2323 			miocnak(wq, mp, 0, EINVAL);
2324 			return;
2325 		}
2326 
2327 		if (*(uint32_t *)mp->b_cont->b_rptr)
2328 			tep->te_flag |= thisopt;
2329 		else
2330 			tep->te_flag &= ~thisopt;
2331 
2332 		miocack(wq, mp, 0, 0);
2333 		break;
2334 
2335 	default:
2336 		/* Should not be here */
2337 		miocnak(wq, mp, 0, EINVAL);
2338 		break;
2339 	}
2340 }
2341 
2342 
2343 /*
2344  * send T_ERROR_ACK
2345  * Note: assumes enough memory or caller passed big enough mp
2346  *	- no recovery from allocb failures
2347  */
2348 
2349 static void
2350 tl_error_ack(queue_t *wq, mblk_t *mp, t_scalar_t tli_err,
2351     t_scalar_t unix_err, t_scalar_t type)
2352 {
2353 	struct T_error_ack *err_ack;
2354 	mblk_t *ackmp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
2355 	    M_PCPROTO, T_ERROR_ACK);
2356 
2357 	if (ackmp == NULL) {
2358 		(void) (STRLOG(TL_ID, 0, 1, SL_TRACE | SL_ERROR,
2359 		    "tl_error_ack:out of mblk memory"));
2360 		tl_merror(wq, NULL, ENOSR);
2361 		return;
2362 	}
2363 	err_ack = (struct T_error_ack *)ackmp->b_rptr;
2364 	err_ack->ERROR_prim = type;
2365 	err_ack->TLI_error = tli_err;
2366 	err_ack->UNIX_error = unix_err;
2367 
2368 	/*
2369 	 * send error ack message
2370 	 */
2371 	qreply(wq, ackmp);
2372 }
2373 
2374 
2375 
2376 /*
2377  * send T_OK_ACK
2378  * Note: assumes enough memory or caller passed big enough mp
2379  *	- no recovery from allocb failures
2380  */
2381 static void
2382 tl_ok_ack(queue_t *wq, mblk_t *mp, t_scalar_t type)
2383 {
2384 	struct T_ok_ack *ok_ack;
2385 	mblk_t *ackmp = tpi_ack_alloc(mp, sizeof (struct T_ok_ack),
2386 	    M_PCPROTO, T_OK_ACK);
2387 
2388 	if (ackmp == NULL) {
2389 		tl_merror(wq, NULL, ENOMEM);
2390 		return;
2391 	}
2392 
2393 	ok_ack = (struct T_ok_ack *)ackmp->b_rptr;
2394 	ok_ack->CORRECT_prim = type;
2395 
2396 	(void) qreply(wq, ackmp);
2397 }
2398 
2399 /*
2400  * Process T_BIND_REQ and O_T_BIND_REQ from serializer.
2401  * This is a wrapper around tl_bind().
2402  */
2403 static void
2404 tl_bind_ser(mblk_t *mp, tl_endpt_t *tep)
2405 {
2406 	if (!tep->te_closing)
2407 		tl_bind(mp, tep);
2408 	else
2409 		freemsg(mp);
2410 
2411 	tl_serializer_exit(tep);
2412 	tl_refrele(tep);
2413 }
2414 
2415 /*
2416  * Process T_BIND_REQ and O_T_BIND_REQ TPI requests.
2417  * Assumes that the endpoint is in the unbound.
2418  */
2419 static void
2420 tl_bind(mblk_t *mp, tl_endpt_t *tep)
2421 {
2422 	queue_t			*wq = tep->te_wq;
2423 	struct T_bind_ack	*b_ack;
2424 	struct T_bind_req	*bind = (struct T_bind_req *)mp->b_rptr;
2425 	mblk_t			*ackmp, *bamp;
2426 	soux_addr_t		ux_addr;
2427 	t_uscalar_t		qlen = 0;
2428 	t_scalar_t		alen, aoff;
2429 	tl_addr_t		addr_req;
2430 	void			*addr_startp;
2431 	ssize_t			msz = MBLKL(mp), basize;
2432 	t_scalar_t		tli_err = 0, unix_err = 0;
2433 	t_scalar_t		save_prim_type = bind->PRIM_type;
2434 	t_scalar_t		save_state = tep->te_state;
2435 
2436 	if (tep->te_state != TS_UNBND) {
2437 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2438 		    SL_TRACE | SL_ERROR,
2439 		    "tl_wput:bind_request:out of state, state=%d",
2440 		    tep->te_state));
2441 		tli_err = TOUTSTATE;
2442 		goto error;
2443 	}
2444 
2445 	if (msz < sizeof (struct T_bind_req)) {
2446 		tli_err = TSYSERR;
2447 		unix_err = EINVAL;
2448 		goto error;
2449 	}
2450 
2451 	tep->te_state = nextstate[TE_BIND_REQ][tep->te_state];
2452 
2453 	ASSERT((bind->PRIM_type == O_T_BIND_REQ) ||
2454 	    (bind->PRIM_type == T_BIND_REQ));
2455 
2456 	alen = bind->ADDR_length;
2457 	aoff = bind->ADDR_offset;
2458 
2459 	/* negotiate max conn req pending */
2460 	if (IS_COTS(tep)) {
2461 		qlen = bind->CONIND_number;
2462 		if (qlen > tl_maxqlen)
2463 			qlen = tl_maxqlen;
2464 	}
2465 
2466 	/*
2467 	 * Reserve hash handle. It can only be NULL if the endpoint is unbound
2468 	 * and bound again.
2469 	 */
2470 	if ((tep->te_hash_hndl == NULL) &&
2471 	    ((tep->te_flag & TL_ADDRHASHED) == 0) &&
2472 	    mod_hash_reserve_nosleep(tep->te_addrhash,
2473 	    &tep->te_hash_hndl) != 0) {
2474 		tli_err = TSYSERR;
2475 		unix_err = ENOSR;
2476 		goto error;
2477 	}
2478 
2479 	/*
2480 	 * Verify address correctness.
2481 	 */
2482 	if (IS_SOCKET(tep)) {
2483 		ASSERT(bind->PRIM_type == O_T_BIND_REQ);
2484 
2485 		if ((alen != TL_SOUX_ADDRLEN) ||
2486 		    (aoff < 0) ||
2487 		    (aoff + alen > msz)) {
2488 			(void) (STRLOG(TL_ID, tep->te_minor,
2489 			    1, SL_TRACE | SL_ERROR,
2490 			    "tl_bind: invalid socket addr"));
2491 			tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
2492 			tli_err = TSYSERR;
2493 			unix_err = EINVAL;
2494 			goto error;
2495 		}
2496 		/* Copy address from message to local buffer. */
2497 		bcopy(mp->b_rptr + aoff, &ux_addr, sizeof (ux_addr));
2498 		/*
2499 		 * Check that we got correct address from sockets
2500 		 */
2501 		if ((ux_addr.soua_magic != SOU_MAGIC_EXPLICIT) &&
2502 		    (ux_addr.soua_magic != SOU_MAGIC_IMPLICIT)) {
2503 			(void) (STRLOG(TL_ID, tep->te_minor,
2504 			    1, SL_TRACE | SL_ERROR,
2505 			    "tl_bind: invalid socket magic"));
2506 			tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
2507 			tli_err = TSYSERR;
2508 			unix_err = EINVAL;
2509 			goto error;
2510 		}
2511 		if ((ux_addr.soua_magic == SOU_MAGIC_IMPLICIT) &&
2512 		    (ux_addr.soua_vp != NULL)) {
2513 			(void) (STRLOG(TL_ID, tep->te_minor,
2514 			    1, SL_TRACE | SL_ERROR,
2515 			    "tl_bind: implicit addr non-empty"));
2516 			tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
2517 			tli_err = TSYSERR;
2518 			unix_err = EINVAL;
2519 			goto error;
2520 		}
2521 		if ((ux_addr.soua_magic == SOU_MAGIC_EXPLICIT) &&
2522 		    (ux_addr.soua_vp == NULL)) {
2523 			(void) (STRLOG(TL_ID, tep->te_minor,
2524 			    1, SL_TRACE | SL_ERROR,
2525 			    "tl_bind: explicit addr empty"));
2526 			tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
2527 			tli_err = TSYSERR;
2528 			unix_err = EINVAL;
2529 			goto error;
2530 		}
2531 	} else {
2532 		if ((alen > 0) && ((aoff < 0) ||
2533 		    ((ssize_t)(aoff + alen) > msz) ||
2534 		    ((aoff + alen) < 0))) {
2535 			(void) (STRLOG(TL_ID, tep->te_minor,
2536 			    1, SL_TRACE | SL_ERROR,
2537 			    "tl_bind: invalid message"));
2538 			tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
2539 			tli_err = TSYSERR;
2540 			unix_err = EINVAL;
2541 			goto error;
2542 		}
2543 		if ((alen < 0) || (alen > (msz - sizeof (struct T_bind_req)))) {
2544 			(void) (STRLOG(TL_ID, tep->te_minor,
2545 			    1, SL_TRACE | SL_ERROR,
2546 			    "tl_bind: bad addr in  message"));
2547 			tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
2548 			tli_err = TBADADDR;
2549 			goto error;
2550 		}
2551 #ifdef DEBUG
2552 		/*
2553 		 * Mild form of ASSERT()ion to detect broken TPI apps.
2554 		 * if (!assertion)
2555 		 *	log warning;
2556 		 */
2557 		if (!((alen == 0 && aoff == 0) ||
2558 			(aoff >= (t_scalar_t)(sizeof (struct T_bind_req))))) {
2559 			(void) (STRLOG(TL_ID, tep->te_minor,
2560 				    3, SL_TRACE | SL_ERROR,
2561 				    "tl_bind: addr overlaps TPI message"));
2562 		}
2563 #endif
2564 	}
2565 
2566 	/*
2567 	 * Bind the address provided or allocate one if requested.
2568 	 * Allow rebinds with a new qlen value.
2569 	 */
2570 	if (IS_SOCKET(tep)) {
2571 		/*
2572 		 * For anonymous requests the te_ap is already set up properly
2573 		 * so use minor number as an address.
2574 		 * For explicit requests need to check whether the address is
2575 		 * already in use.
2576 		 */
2577 		if (ux_addr.soua_magic == SOU_MAGIC_EXPLICIT) {
2578 			int rc;
2579 
2580 			if (tep->te_flag & TL_ADDRHASHED) {
2581 				ASSERT(IS_COTS(tep) && tep->te_qlen == 0);
2582 				if (tep->te_vp == ux_addr.soua_vp)
2583 					goto skip_addr_bind;
2584 				else /* Rebind to a new address. */
2585 					tl_addr_unbind(tep);
2586 			}
2587 			/*
2588 			 * Insert address in the hash if it is not already
2589 			 * there.  Since we use preallocated handle, the insert
2590 			 * can fail only if the key is already present.
2591 			 */
2592 			rc = mod_hash_insert_reserve(tep->te_addrhash,
2593 			    (mod_hash_key_t)ux_addr.soua_vp,
2594 			    (mod_hash_val_t)tep, tep->te_hash_hndl);
2595 
2596 			if (rc != 0) {
2597 				ASSERT(rc == MH_ERR_DUPLICATE);
2598 				/*
2599 				 * Violate O_T_BIND_REQ semantics and fail with
2600 				 * TADDRBUSY - sockets will not use any address
2601 				 * other than supplied one for explicit binds.
2602 				 */
2603 				(void) (STRLOG(TL_ID, tep->te_minor, 1,
2604 				    SL_TRACE | SL_ERROR,
2605 				    "tl_bind:requested addr %p is busy",
2606 				    ux_addr.soua_vp));
2607 				tli_err = TADDRBUSY;
2608 				unix_err = 0;
2609 				goto error;
2610 			}
2611 			tep->te_uxaddr = ux_addr;
2612 			tep->te_flag |= TL_ADDRHASHED;
2613 			tep->te_hash_hndl = NULL;
2614 		}
2615 	} else if (alen == 0) {
2616 		/*
2617 		 * assign any free address
2618 		 */
2619 		if (!tl_get_any_addr(tep, NULL)) {
2620 			(void) (STRLOG(TL_ID, tep->te_minor,
2621 			    1, SL_TRACE | SL_ERROR,
2622 			    "tl_bind:failed to get buffer for any "
2623 			    "address"));
2624 			tli_err = TSYSERR;
2625 			unix_err = ENOSR;
2626 			goto error;
2627 		}
2628 	} else {
2629 		addr_req.ta_alen = alen;
2630 		addr_req.ta_abuf = (mp->b_rptr + aoff);
2631 		addr_req.ta_zoneid = tep->te_zoneid;
2632 
2633 		tep->te_abuf = kmem_zalloc((size_t)alen, KM_NOSLEEP);
2634 		if (tep->te_abuf == NULL) {
2635 			tli_err = TSYSERR;
2636 			unix_err = ENOSR;
2637 			goto error;
2638 		}
2639 		bcopy(addr_req.ta_abuf, tep->te_abuf, addr_req.ta_alen);
2640 		tep->te_alen = alen;
2641 
2642 		if (mod_hash_insert_reserve(tep->te_addrhash,
2643 		    (mod_hash_key_t)&tep->te_ap, (mod_hash_val_t)tep,
2644 		    tep->te_hash_hndl) != 0) {
2645 			if (save_prim_type == T_BIND_REQ) {
2646 				/*
2647 				 * The bind semantics for this primitive
2648 				 * require a failure if the exact address
2649 				 * requested is busy
2650 				 */
2651 				(void) (STRLOG(TL_ID, tep->te_minor, 1,
2652 				    SL_TRACE | SL_ERROR,
2653 				    "tl_bind:requested addr is busy"));
2654 				tli_err = TADDRBUSY;
2655 				unix_err = 0;
2656 				goto error;
2657 			}
2658 
2659 			/*
2660 			 * O_T_BIND_REQ semantics say if address if requested
2661 			 * address is busy, bind to any available free address
2662 			 */
2663 			if (!tl_get_any_addr(tep, &addr_req)) {
2664 				(void) (STRLOG(TL_ID, tep->te_minor, 1,
2665 				    SL_TRACE | SL_ERROR,
2666 				    "tl_bind:unable to get any addr buf"));
2667 				tli_err = TSYSERR;
2668 				unix_err = ENOMEM;
2669 				goto error;
2670 			}
2671 		} else {
2672 			tep->te_flag |= TL_ADDRHASHED;
2673 			tep->te_hash_hndl = NULL;
2674 		}
2675 	}
2676 
2677 	ASSERT(tep->te_alen >= 0);
2678 
2679 skip_addr_bind:
2680 	/*
2681 	 * prepare T_BIND_ACK TPI message
2682 	 */
2683 	basize = sizeof (struct T_bind_ack) + tep->te_alen;
2684 	bamp = reallocb(mp, basize, 0);
2685 	if (bamp == NULL) {
2686 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
2687 		    "tl_wput:tl_bind: allocb failed"));
2688 		/*
2689 		 * roll back state changes
2690 		 */
2691 		tl_addr_unbind(tep);
2692 		tep->te_state = TS_UNBND;
2693 		tl_memrecover(wq, mp, basize);
2694 		return;
2695 	}
2696 
2697 	DB_TYPE(bamp) = M_PCPROTO;
2698 	bamp->b_wptr = bamp->b_rptr + basize;
2699 	b_ack = (struct T_bind_ack *)bamp->b_rptr;
2700 	b_ack->PRIM_type = T_BIND_ACK;
2701 	b_ack->CONIND_number = qlen;
2702 	b_ack->ADDR_length = tep->te_alen;
2703 	b_ack->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_ack);
2704 	addr_startp = bamp->b_rptr + b_ack->ADDR_offset;
2705 	bcopy(tep->te_abuf, addr_startp, tep->te_alen);
2706 
2707 	if (IS_COTS(tep)) {
2708 		tep->te_qlen = qlen;
2709 		if (qlen > 0)
2710 			tep->te_flag |= TL_LISTENER;
2711 	}
2712 
2713 	tep->te_state = nextstate[TE_BIND_ACK][tep->te_state];
2714 	/*
2715 	 * send T_BIND_ACK message
2716 	 */
2717 	(void) qreply(wq, bamp);
2718 	return;
2719 
2720 error:
2721 	ackmp = reallocb(mp, sizeof (struct T_error_ack), 0);
2722 	if (ackmp == NULL) {
2723 		/*
2724 		 * roll back state changes
2725 		 */
2726 		tep->te_state = save_state;
2727 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2728 		return;
2729 	}
2730 	tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
2731 	tl_error_ack(wq, ackmp, tli_err, unix_err, save_prim_type);
2732 }
2733 
2734 /*
2735  * Process T_UNBIND_REQ.
2736  * Called from serializer.
2737  */
2738 static void
2739 tl_unbind(mblk_t *mp, tl_endpt_t *tep)
2740 {
2741 	queue_t *wq;
2742 	mblk_t *ackmp;
2743 
2744 	if (tep->te_closing) {
2745 		freemsg(mp);
2746 		return;
2747 	}
2748 
2749 	wq = tep->te_wq;
2750 
2751 	/*
2752 	 * preallocate memory for max of T_OK_ACK and T_ERROR_ACK
2753 	 * ==> allocate for T_ERROR_ACK (known max)
2754 	 */
2755 	if ((ackmp = reallocb(mp, sizeof (struct T_error_ack), 0)) == NULL) {
2756 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2757 		return;
2758 	}
2759 	/*
2760 	 * memory resources committed
2761 	 * Note: no message validation. T_UNBIND_REQ message is
2762 	 * same size as PRIM_type field so already verified earlier.
2763 	 */
2764 
2765 	/*
2766 	 * validate state
2767 	 */
2768 	if (tep->te_state != TS_IDLE) {
2769 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2770 		    SL_TRACE | SL_ERROR,
2771 		    "tl_wput:T_UNBIND_REQ:out of state, state=%d",
2772 		    tep->te_state));
2773 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_UNBIND_REQ);
2774 		return;
2775 	}
2776 	tep->te_state = nextstate[TE_UNBIND_REQ][tep->te_state];
2777 
2778 	/*
2779 	 * TPI says on T_UNBIND_REQ:
2780 	 *    send up a M_FLUSH to flush both
2781 	 *    read and write queues
2782 	 */
2783 	(void) putnextctl1(RD(wq), M_FLUSH, FLUSHRW);
2784 
2785 	if (!IS_SOCKET(tep) || !IS_CLTS(tep) || tep->te_qlen != 0 ||
2786 	    tep->te_magic != SOU_MAGIC_EXPLICIT) {
2787 
2788 		/*
2789 		 * Sockets use bind with qlen==0 followed by bind() to
2790 		 * the same address with qlen > 0 for listeners.
2791 		 * We allow rebind with a new qlen value.
2792 		 */
2793 		tl_addr_unbind(tep);
2794 	}
2795 
2796 	tep->te_state = nextstate[TE_OK_ACK1][tep->te_state];
2797 	/*
2798 	 * send  T_OK_ACK
2799 	 */
2800 	tl_ok_ack(wq, ackmp, T_UNBIND_REQ);
2801 }
2802 
2803 
2804 /*
2805  * Option management code from drv/ip is used here
2806  * Note: TL_PROT_LEVEL/TL_IOC_CREDOPT option is not part of tl_opt_arr
2807  *	database of options. So optcom_req() will fail T_SVR4_OPTMGMT_REQ.
2808  *	However, that is what we want as that option is 'unorthodox'
2809  *	and only valid in T_CONN_IND, T_CONN_CON  and T_UNITDATA_IND
2810  *	and not in T_SVR4_OPTMGMT_REQ/ACK
2811  * Note2: use of optcom_req means this routine is an exception to
2812  *	 recovery from allocb() failures.
2813  */
2814 
2815 static void
2816 tl_optmgmt(queue_t *wq, mblk_t *mp)
2817 {
2818 	tl_endpt_t *tep;
2819 	mblk_t *ackmp;
2820 	union T_primitives *prim;
2821 	cred_t *cr;
2822 
2823 	tep = (tl_endpt_t *)wq->q_ptr;
2824 	prim = (union T_primitives *)mp->b_rptr;
2825 
2826 	/*
2827 	 * All Solaris components should pass a db_credp
2828 	 * for this TPI message, hence we ASSERT.
2829 	 * But in case there is some other M_PROTO that looks
2830 	 * like a TPI message sent by some other kernel
2831 	 * component, we check and return an error.
2832 	 */
2833 	cr = msg_getcred(mp, NULL);
2834 	ASSERT(cr != NULL);
2835 	if (cr == NULL) {
2836 		tl_error_ack(wq, mp, TSYSERR, EINVAL, prim->type);
2837 		return;
2838 	}
2839 
2840 	/*  all states OK for AF_UNIX options ? */
2841 	if (!IS_SOCKET(tep) && tep->te_state != TS_IDLE &&
2842 	    prim->type == T_SVR4_OPTMGMT_REQ) {
2843 		/*
2844 		 * Broken TLI semantics that options can only be managed
2845 		 * in TS_IDLE state. Needed for Sparc ABI test suite that
2846 		 * tests this TLI (mis)feature using this device driver.
2847 		 */
2848 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2849 		    SL_TRACE | SL_ERROR,
2850 		    "tl_wput:T_SVR4_OPTMGMT_REQ:out of state, state=%d",
2851 		    tep->te_state));
2852 		/*
2853 		 * preallocate memory for T_ERROR_ACK
2854 		 */
2855 		ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
2856 		if (ackmp == NULL) {
2857 			tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2858 			return;
2859 		}
2860 
2861 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_SVR4_OPTMGMT_REQ);
2862 		freemsg(mp);
2863 		return;
2864 	}
2865 
2866 	/*
2867 	 * call common option management routine from drv/ip
2868 	 */
2869 	if (prim->type == T_SVR4_OPTMGMT_REQ) {
2870 		svr4_optcom_req(wq, mp, cr, &tl_opt_obj);
2871 	} else {
2872 		ASSERT(prim->type == T_OPTMGMT_REQ);
2873 		tpi_optcom_req(wq, mp, cr, &tl_opt_obj);
2874 	}
2875 }
2876 
2877 /*
2878  * Handle T_conn_req - the driver part of accept().
2879  * If TL_SET[U]CRED generate the credentials options.
2880  * If this is a socket pass through options unmodified.
2881  * For sockets generate the T_CONN_CON here instead of
2882  * waiting for the T_CONN_RES.
2883  */
2884 static void
2885 tl_conn_req(queue_t *wq, mblk_t *mp)
2886 {
2887 	tl_endpt_t		*tep = (tl_endpt_t *)wq->q_ptr;
2888 	struct T_conn_req	*creq = (struct T_conn_req *)mp->b_rptr;
2889 	ssize_t			msz = MBLKL(mp);
2890 	t_scalar_t		alen, aoff, olen, ooff,	err = 0;
2891 	tl_endpt_t		*peer_tep = NULL;
2892 	mblk_t			*ackmp;
2893 	mblk_t			*dimp;
2894 	struct T_discon_ind	*di;
2895 	soux_addr_t		ux_addr;
2896 	tl_addr_t		dst;
2897 
2898 	ASSERT(IS_COTS(tep));
2899 
2900 	if (tep->te_closing) {
2901 		freemsg(mp);
2902 		return;
2903 	}
2904 
2905 	/*
2906 	 * preallocate memory for:
2907 	 * 1. max of T_ERROR_ACK and T_OK_ACK
2908 	 *	==> known max T_ERROR_ACK
2909 	 * 2. max of T_DISCON_IND and T_CONN_IND
2910 	 */
2911 	ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
2912 	if (ackmp == NULL) {
2913 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2914 		return;
2915 	}
2916 	/*
2917 	 * memory committed for T_OK_ACK/T_ERROR_ACK now
2918 	 * will be committed for T_DISCON_IND/T_CONN_IND later
2919 	 */
2920 
2921 	if (tep->te_state != TS_IDLE) {
2922 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2923 		    SL_TRACE | SL_ERROR,
2924 		    "tl_wput:T_CONN_REQ:out of state, state=%d",
2925 		    tep->te_state));
2926 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_CONN_REQ);
2927 		freemsg(mp);
2928 		return;
2929 	}
2930 
2931 	/*
2932 	 * validate the message
2933 	 * Note: dereference fields in struct inside message only
2934 	 * after validating the message length.
2935 	 */
2936 	if (msz < sizeof (struct T_conn_req)) {
2937 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
2938 		    "tl_conn_req:invalid message length"));
2939 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2940 		freemsg(mp);
2941 		return;
2942 	}
2943 	alen = creq->DEST_length;
2944 	aoff = creq->DEST_offset;
2945 	olen = creq->OPT_length;
2946 	ooff = creq->OPT_offset;
2947 	if (olen == 0)
2948 		ooff = 0;
2949 
2950 	if (IS_SOCKET(tep)) {
2951 		if ((alen != TL_SOUX_ADDRLEN) ||
2952 		    (aoff < 0) ||
2953 		    (aoff + alen > msz) ||
2954 		    (alen > msz - sizeof (struct T_conn_req))) {
2955 			(void) (STRLOG(TL_ID, tep->te_minor,
2956 				    1, SL_TRACE | SL_ERROR,
2957 				    "tl_conn_req: invalid socket addr"));
2958 			tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2959 			freemsg(mp);
2960 			return;
2961 		}
2962 		bcopy(mp->b_rptr + aoff, &ux_addr, TL_SOUX_ADDRLEN);
2963 		if ((ux_addr.soua_magic != SOU_MAGIC_IMPLICIT) &&
2964 		    (ux_addr.soua_magic != SOU_MAGIC_EXPLICIT)) {
2965 			(void) (STRLOG(TL_ID, tep->te_minor,
2966 			    1, SL_TRACE | SL_ERROR,
2967 			    "tl_conn_req: invalid socket magic"));
2968 			tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2969 			freemsg(mp);
2970 			return;
2971 		}
2972 	} else {
2973 		if ((alen > 0 && ((aoff + alen) > msz || aoff + alen < 0)) ||
2974 		    (olen > 0 && ((ssize_t)(ooff + olen) > msz ||
2975 		    ooff + olen < 0)) ||
2976 		    olen < 0 || ooff < 0) {
2977 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
2978 			    SL_TRACE | SL_ERROR,
2979 			    "tl_conn_req:invalid message"));
2980 			tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2981 			freemsg(mp);
2982 			return;
2983 		}
2984 
2985 		if (alen <= 0 || aoff < 0 ||
2986 		    (ssize_t)alen > msz - sizeof (struct T_conn_req)) {
2987 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
2988 				    SL_TRACE | SL_ERROR,
2989 				    "tl_conn_req:bad addr in message, "
2990 				    "alen=%d, msz=%ld",
2991 				    alen, msz));
2992 			tl_error_ack(wq, ackmp, TBADADDR, 0, T_CONN_REQ);
2993 			freemsg(mp);
2994 			return;
2995 		}
2996 #ifdef DEBUG
2997 		/*
2998 		 * Mild form of ASSERT()ion to detect broken TPI apps.
2999 		 * if (!assertion)
3000 		 *	log warning;
3001 		 */
3002 		if (!(aoff >= (t_scalar_t)sizeof (struct T_conn_req))) {
3003 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
3004 			    SL_TRACE | SL_ERROR,
3005 			    "tl_conn_req: addr overlaps TPI message"));
3006 		}
3007 #endif
3008 		if (olen) {
3009 			/*
3010 			 * no opts in connect req
3011 			 * supported in this provider except for sockets.
3012 			 */
3013 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
3014 			    SL_TRACE | SL_ERROR,
3015 			    "tl_conn_req:options not supported "
3016 			    "in message"));
3017 			tl_error_ack(wq, ackmp, TBADOPT, 0, T_CONN_REQ);
3018 			freemsg(mp);
3019 			return;
3020 		}
3021 	}
3022 
3023 	/*
3024 	 * Prevent tep from closing on us.
3025 	 */
3026 	if (!tl_noclose(tep)) {
3027 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
3028 		    "tl_conn_req:endpoint is closing"));
3029 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_CONN_REQ);
3030 		freemsg(mp);
3031 		return;
3032 	}
3033 
3034 	tep->te_state = nextstate[TE_CONN_REQ][tep->te_state];
3035 	/*
3036 	 * get endpoint to connect to
3037 	 * check that peer with DEST addr is bound to addr
3038 	 * and has CONIND_number > 0
3039 	 */
3040 	dst.ta_alen = alen;
3041 	dst.ta_abuf = mp->b_rptr + aoff;
3042 	dst.ta_zoneid = tep->te_zoneid;
3043 
3044 	/*
3045 	 * Verify if remote addr is in use
3046 	 */
3047 	peer_tep = (IS_SOCKET(tep) ?
3048 	    tl_sock_find_peer(tep, &ux_addr) :
3049 	    tl_find_peer(tep, &dst));
3050 
3051 	if (peer_tep == NULL) {
3052 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
3053 		    "tl_conn_req:no one at connect address"));
3054 		err = ECONNREFUSED;
3055 	} else if (peer_tep->te_nicon >= peer_tep->te_qlen)  {
3056 		/*
3057 		 * validate that number of incoming connection is
3058 		 * not to capacity on destination endpoint
3059 		 */
3060 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE,
3061 		    "tl_conn_req: qlen overflow connection refused"));
3062 		err = ECONNREFUSED;
3063 	}
3064 
3065 	/*
3066 	 * Send T_DISCON_IND in case of error
3067 	 */
3068 	if (err != 0) {
3069 		if (peer_tep != NULL)
3070 			tl_refrele(peer_tep);
3071 		/* We are still expected to send T_OK_ACK */
3072 		tep->te_state = nextstate[TE_OK_ACK1][tep->te_state];
3073 		tl_ok_ack(tep->te_wq, ackmp, T_CONN_REQ);
3074 		tl_closeok(tep);
3075 		dimp = tpi_ack_alloc(mp, sizeof (struct T_discon_ind),
3076 		    M_PROTO, T_DISCON_IND);
3077 		if (dimp == NULL) {
3078 			tl_merror(wq, NULL, ENOSR);
3079 			return;
3080 		}
3081 		di = (struct T_discon_ind *)dimp->b_rptr;
3082 		di->DISCON_reason = err;
3083 		di->SEQ_number = BADSEQNUM;
3084 
3085 		tep->te_state = TS_IDLE;
3086 		/*
3087 		 * send T_DISCON_IND message
3088 		 */
3089 		putnext(tep->te_rq, dimp);
3090 		return;
3091 	}
3092 
3093 	ASSERT(IS_COTS(peer_tep));
3094 
3095 	/*
3096 	 * Found the listener. At this point processing will continue on
3097 	 * listener serializer. Close of the endpoint should be blocked while we
3098 	 * switch serializers.
3099 	 */
3100 	tl_serializer_refhold(peer_tep->te_ser);
3101 	tl_serializer_refrele(tep->te_ser);
3102 	tep->te_ser = peer_tep->te_ser;
3103 	ASSERT(tep->te_oconp == NULL);
3104 	tep->te_oconp = peer_tep;
3105 
3106 	/*
3107 	 * It is safe to close now. Close may continue on listener serializer.
3108 	 */
3109 	tl_closeok(tep);
3110 
3111 	/*
3112 	 * Pass ackmp to tl_conn_req_ser. Note that mp->b_cont may contain user
3113 	 * data, so we link mp to ackmp.
3114 	 */
3115 	ackmp->b_cont = mp;
3116 	mp = ackmp;
3117 
3118 	tl_refhold(tep);
3119 	tl_serializer_enter(tep, tl_conn_req_ser, mp);
3120 }
3121 
3122 /*
3123  * Finish T_CONN_REQ processing on listener serializer.
3124  */
3125 static void
3126 tl_conn_req_ser(mblk_t *mp, tl_endpt_t *tep)
3127 {
3128 	queue_t		*wq;
3129 	tl_endpt_t	*peer_tep = tep->te_oconp;
3130 	mblk_t		*confmp, *cimp, *indmp;
3131 	void		*opts = NULL;
3132 	mblk_t		*ackmp = mp;
3133 	struct T_conn_req	*creq = (struct T_conn_req *)mp->b_cont->b_rptr;
3134 	struct T_conn_ind	*ci;
3135 	tl_icon_t	*tip;
3136 	void		*addr_startp;
3137 	t_scalar_t	olen = creq->OPT_length;
3138 	t_scalar_t	ooff = creq->OPT_offset;
3139 	size_t		ci_msz;
3140 	size_t		size;
3141 	cred_t		*cr = NULL;
3142 	pid_t		cpid;
3143 
3144 	if (tep->te_closing) {
3145 		TL_UNCONNECT(tep->te_oconp);
3146 		tl_serializer_exit(tep);
3147 		tl_refrele(tep);
3148 		freemsg(mp);
3149 		return;
3150 	}
3151 
3152 	wq = tep->te_wq;
3153 	tep->te_flag |= TL_EAGER;
3154 
3155 	/*
3156 	 * Extract preallocated ackmp from mp.
3157 	 */
3158 	mp = mp->b_cont;
3159 	ackmp->b_cont = NULL;
3160 
3161 	if (olen == 0)
3162 		ooff = 0;
3163 
3164 	if (peer_tep->te_closing ||
3165 	    !((peer_tep->te_state == TS_IDLE) ||
3166 	    (peer_tep->te_state == TS_WRES_CIND))) {
3167 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE | SL_ERROR,
3168 		    "tl_conn_req:peer in bad state (%d)",
3169 		    peer_tep->te_state));
3170 		TL_UNCONNECT(tep->te_oconp);
3171 		tl_error_ack(wq, mp, TSYSERR, ECONNREFUSED, T_CONN_REQ);
3172 		freemsg(ackmp);
3173 		tl_serializer_exit(tep);
3174 		tl_refrele(tep);
3175 		return;
3176 	}
3177 
3178 	/*
3179 	 * preallocate now for T_DISCON_IND or T_CONN_IND
3180 	 */
3181 	/*
3182 	 * calculate length of T_CONN_IND message
3183 	 */
3184 	if (peer_tep->te_flag & (TL_SETCRED | TL_SETUCRED)) {
3185 		cr = msg_getcred(mp, &cpid);
3186 		ASSERT(cr != NULL);
3187 		if (peer_tep->te_flag & TL_SETCRED) {
3188 			ooff = 0;
3189 			olen = (t_scalar_t) sizeof (struct opthdr) +
3190 			    OPTLEN(sizeof (tl_credopt_t));
3191 			/* 1 option only */
3192 		} else {
3193 			ooff = 0;
3194 			olen = (t_scalar_t)sizeof (struct opthdr) +
3195 			    OPTLEN(ucredminsize(cr));
3196 			/* 1 option only */
3197 		}
3198 	}
3199 	ci_msz = sizeof (struct T_conn_ind) + tep->te_alen;
3200 	ci_msz = T_ALIGN(ci_msz) + olen;
3201 	size = max(ci_msz, sizeof (struct T_discon_ind));
3202 
3203 	/*
3204 	 * Save options from mp - we'll need them for T_CONN_IND.
3205 	 */
3206 	if (ooff != 0) {
3207 		opts = kmem_alloc(olen, KM_NOSLEEP);
3208 		if (opts == NULL) {
3209 			/*
3210 			 * roll back state changes
3211 			 */
3212 			tep->te_state = TS_IDLE;
3213 			tl_memrecover(wq, mp, size);
3214 			freemsg(ackmp);
3215 			TL_UNCONNECT(tep->te_oconp);
3216 			tl_serializer_exit(tep);
3217 			tl_refrele(tep);
3218 			return;
3219 		}
3220 		/* Copy options to a temp buffer */
3221 		bcopy(mp->b_rptr + ooff, opts, olen);
3222 	}
3223 
3224 	if (IS_SOCKET(tep) && !tl_disable_early_connect) {
3225 		/*
3226 		 * Generate a T_CONN_CON that has the identical address
3227 		 * (and options) as the T_CONN_REQ.
3228 		 * NOTE: assumes that the T_conn_req and T_conn_con structures
3229 		 * are isomorphic.
3230 		 */
3231 		confmp = copyb(mp);
3232 		if (confmp == NULL) {
3233 			/*
3234 			 * roll back state changes
3235 			 */
3236 			tep->te_state = TS_IDLE;
3237 			tl_memrecover(wq, mp, mp->b_wptr - mp->b_rptr);
3238 			freemsg(ackmp);
3239 			if (opts != NULL)
3240 				kmem_free(opts, olen);
3241 			TL_UNCONNECT(tep->te_oconp);
3242 			tl_serializer_exit(tep);
3243 			tl_refrele(tep);
3244 			return;
3245 		}
3246 		((struct T_conn_con *)(confmp->b_rptr))->PRIM_type =
3247 		    T_CONN_CON;
3248 	} else {
3249 		confmp = NULL;
3250 	}
3251 	if ((indmp = reallocb(mp, size, 0)) == NULL) {
3252 		/*
3253 		 * roll back state changes
3254 		 */
3255 		tep->te_state = TS_IDLE;
3256 		tl_memrecover(wq, mp, size);
3257 		freemsg(ackmp);
3258 		if (opts != NULL)
3259 			kmem_free(opts, olen);
3260 		freemsg(confmp);
3261 		TL_UNCONNECT(tep->te_oconp);
3262 		tl_serializer_exit(tep);
3263 		tl_refrele(tep);
3264 		return;
3265 	}
3266 
3267 	tip = kmem_zalloc(sizeof (*tip), KM_NOSLEEP);
3268 	if (tip == NULL) {
3269 		/*
3270 		 * roll back state changes
3271 		 */
3272 		tep->te_state = TS_IDLE;
3273 		tl_memrecover(wq, indmp, sizeof (*tip));
3274 		freemsg(ackmp);
3275 		if (opts != NULL)
3276 			kmem_free(opts, olen);
3277 		freemsg(confmp);
3278 		TL_UNCONNECT(tep->te_oconp);
3279 		tl_serializer_exit(tep);
3280 		tl_refrele(tep);
3281 		return;
3282 	}
3283 	tip->ti_mp = NULL;
3284 
3285 	/*
3286 	 * memory is now committed for T_DISCON_IND/T_CONN_IND/T_CONN_CON
3287 	 * and tl_icon_t cell.
3288 	 */
3289 
3290 	/*
3291 	 * ack validity of request and send the peer credential in the ACK.
3292 	 */
3293 	tep->te_state = nextstate[TE_OK_ACK1][tep->te_state];
3294 
3295 	if (peer_tep != NULL && peer_tep->te_credp != NULL &&
3296 	    confmp != NULL) {
3297 		mblk_setcred(confmp, peer_tep->te_credp, peer_tep->te_cpid);
3298 	}
3299 
3300 	tl_ok_ack(wq, ackmp, T_CONN_REQ);
3301 
3302 	/*
3303 	 * prepare message to send T_CONN_IND
3304 	 */
3305 	/*
3306 	 * allocate the message - original data blocks retained
3307 	 * in the returned mblk
3308 	 */
3309 	cimp = tl_resizemp(indmp, size);
3310 	if (cimp == NULL) {
3311 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE | SL_ERROR,
3312 		    "tl_conn_req:con_ind:allocb failure"));
3313 		tl_merror(wq, indmp, ENOMEM);
3314 		TL_UNCONNECT(tep->te_oconp);
3315 		tl_serializer_exit(tep);
3316 		tl_refrele(tep);
3317 		if (opts != NULL)
3318 			kmem_free(opts, olen);
3319 		freemsg(confmp);
3320 		ASSERT(tip->ti_mp == NULL);
3321 		kmem_free(tip, sizeof (*tip));
3322 		return;
3323 	}
3324 
3325 	DB_TYPE(cimp) = M_PROTO;
3326 	ci = (struct T_conn_ind *)cimp->b_rptr;
3327 	ci->PRIM_type  = T_CONN_IND;
3328 	ci->SRC_offset = (t_scalar_t)sizeof (struct T_conn_ind);
3329 	ci->SRC_length = tep->te_alen;
3330 	ci->SEQ_number = tep->te_seqno;
3331 
3332 	addr_startp = cimp->b_rptr + ci->SRC_offset;
3333 	bcopy(tep->te_abuf, addr_startp, tep->te_alen);
3334 	if (peer_tep->te_flag & (TL_SETCRED|TL_SETUCRED)) {
3335 
3336 		ci->OPT_offset = (t_scalar_t)T_ALIGN(ci->SRC_offset +
3337 		    ci->SRC_length);
3338 		ci->OPT_length = olen; /* because only 1 option */
3339 		tl_fill_option(cimp->b_rptr + ci->OPT_offset,
3340 		    cr, cpid,
3341 		    peer_tep->te_flag, peer_tep->te_credp);
3342 	} else if (ooff != 0) {
3343 		/* Copy option from T_CONN_REQ */
3344 		ci->OPT_offset = (t_scalar_t)T_ALIGN(ci->SRC_offset +
3345 		    ci->SRC_length);
3346 		ci->OPT_length = olen;
3347 		ASSERT(opts != NULL);
3348 		bcopy(opts, (void *)((uintptr_t)ci + ci->OPT_offset), olen);
3349 	} else {
3350 		ci->OPT_offset = 0;
3351 		ci->OPT_length = 0;
3352 	}
3353 	if (opts != NULL)
3354 		kmem_free(opts, olen);
3355 
3356 	/*
3357 	 * register connection request with server peer
3358 	 * append to list of incoming connections
3359 	 * increment references for both peer_tep and tep: peer_tep is placed on
3360 	 * te_oconp and tep is placed on listeners queue.
3361 	 */
3362 	tip->ti_tep = tep;
3363 	tip->ti_seqno = tep->te_seqno;
3364 	list_insert_tail(&peer_tep->te_iconp, tip);
3365 	peer_tep->te_nicon++;
3366 
3367 	peer_tep->te_state = nextstate[TE_CONN_IND][peer_tep->te_state];
3368 	/*
3369 	 * send the T_CONN_IND message
3370 	 */
3371 	putnext(peer_tep->te_rq, cimp);
3372 
3373 	/*
3374 	 * Send a T_CONN_CON message for sockets.
3375 	 * Disable the queues until we have reached the correct state!
3376 	 */
3377 	if (confmp != NULL) {
3378 		tep->te_state = nextstate[TE_CONN_CON][tep->te_state];
3379 		noenable(wq);
3380 		putnext(tep->te_rq, confmp);
3381 	}
3382 	/*
3383 	 * Now we need to increment tep reference because tep is referenced by
3384 	 * server list of pending connections. We also need to decrement
3385 	 * reference before exiting serializer. Two operations void each other
3386 	 * so we don't modify reference at all.
3387 	 */
3388 	ASSERT(tep->te_refcnt >= 2);
3389 	ASSERT(peer_tep->te_refcnt >= 2);
3390 	tl_serializer_exit(tep);
3391 }
3392 
3393 
3394 
3395 /*
3396  * Handle T_conn_res on listener stream. Called on listener serializer.
3397  * tl_conn_req has already generated the T_CONN_CON.
3398  * tl_conn_res is called on listener serializer.
3399  * No one accesses acceptor at this point, so it is safe to modify acceptor.
3400  * Switch eager serializer to acceptor's.
3401  *
3402  * If TL_SET[U]CRED generate the credentials options.
3403  * For sockets tl_conn_req has already generated the T_CONN_CON.
3404  */
3405 static void
3406 tl_conn_res(mblk_t *mp, tl_endpt_t *tep)
3407 {
3408 	queue_t			*wq;
3409 	struct T_conn_res	*cres = (struct T_conn_res *)mp->b_rptr;
3410 	ssize_t			msz = MBLKL(mp);
3411 	t_scalar_t		olen, ooff, err = 0;
3412 	t_scalar_t		prim = cres->PRIM_type;
3413 	uchar_t			*addr_startp;
3414 	tl_endpt_t		*acc_ep = NULL, *cl_ep = NULL;
3415 	tl_icon_t		*tip;
3416 	size_t			size;
3417 	mblk_t			*ackmp, *respmp;
3418 	mblk_t			*dimp, *ccmp = NULL;
3419 	struct T_discon_ind	*di;
3420 	struct T_conn_con	*cc;
3421 	boolean_t		client_noclose_set = B_FALSE;
3422 	boolean_t		switch_client_serializer = B_TRUE;
3423 
3424 	ASSERT(IS_COTS(tep));
3425 
3426 	if (tep->te_closing) {
3427 		freemsg(mp);
3428 		return;
3429 	}
3430 
3431 	wq = tep->te_wq;
3432 
3433 	/*
3434 	 * preallocate memory for:
3435 	 * 1. max of T_ERROR_ACK and T_OK_ACK
3436 	 *	==> known max T_ERROR_ACK
3437 	 * 2. max of T_DISCON_IND and T_CONN_CON
3438 	 */
3439 	ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
3440 	if (ackmp == NULL) {
3441 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
3442 		return;
3443 	}
3444 	/*
3445 	 * memory committed for T_OK_ACK/T_ERROR_ACK now
3446 	 * will be committed for T_DISCON_IND/T_CONN_CON later
3447 	 */
3448 
3449 
3450 	ASSERT(prim == T_CONN_RES || prim == O_T_CONN_RES);
3451 
3452 	/*
3453 	 * validate state
3454 	 */
3455 	if (tep->te_state != TS_WRES_CIND) {
3456 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
3457 		    SL_TRACE | SL_ERROR,
3458 		    "tl_wput:T_CONN_RES:out of state, state=%d",
3459 		    tep->te_state));
3460 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, prim);
3461 		freemsg(mp);
3462 		return;
3463 	}
3464 
3465 	/*
3466 	 * validate the message
3467 	 * Note: dereference fields in struct inside message only
3468 	 * after validating the message length.
3469 	 */
3470 	if (msz < sizeof (struct T_conn_res)) {
3471 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
3472 		    "tl_conn_res:invalid message length"));
3473 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, prim);
3474 		freemsg(mp);
3475 		return;
3476 	}
3477 	olen = cres->OPT_length;
3478 	ooff = cres->OPT_offset;
3479 	if (((olen > 0) && ((ooff + olen) > msz))) {
3480 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
3481 		    "tl_conn_res:invalid message"));
3482 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, prim);
3483 		freemsg(mp);
3484 		return;
3485 	}
3486 	if (olen) {
3487 		/*
3488 		 * no opts in connect res
3489 		 * supported in this provider
3490 		 */
3491 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
3492 		    "tl_conn_res:options not supported in message"));
3493 		tl_error_ack(wq, ackmp, TBADOPT, 0, prim);
3494 		freemsg(mp);
3495 		return;
3496 	}
3497 
3498 	tep->te_state = nextstate[TE_CONN_RES][tep->te_state];
3499 	ASSERT(tep->te_state == TS_WACK_CRES);
3500 
3501 	if (cres->SEQ_number < TL_MINOR_START &&
3502 	    cres->SEQ_number >= BADSEQNUM) {
3503 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE | SL_ERROR,
3504 		    "tl_conn_res:remote endpoint sequence number bad"));
3505 		tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
3506 		tl_error_ack(wq, ackmp, TBADSEQ, 0, prim);
3507 		freemsg(mp);
3508 		return;
3509 	}
3510 
3511 	/*
3512 	 * find accepting endpoint. Will have extra reference if found.
3513 	 */
3514 	if (mod_hash_find_cb(tep->te_transport->tr_ai_hash,
3515 	    (mod_hash_key_t)(uintptr_t)cres->ACCEPTOR_id,
3516 	    (mod_hash_val_t *)&acc_ep, tl_find_callback) != 0) {
3517 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE | SL_ERROR,
3518 		    "tl_conn_res:bad accepting endpoint"));
3519 		tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
3520 		tl_error_ack(wq, ackmp, TBADF, 0, prim);
3521 		freemsg(mp);
3522 		return;
3523 	}
3524 
3525 	/*
3526 	 * Prevent acceptor from closing.
3527 	 */
3528 	if (!tl_noclose(acc_ep)) {
3529 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE | SL_ERROR,
3530 		    "tl_conn_res:bad accepting endpoint"));
3531 		tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
3532 		tl_error_ack(wq, ackmp, TBADF, 0, prim);
3533 		tl_refrele(acc_ep);
3534 		freemsg(mp);
3535 		return;
3536 	}
3537 
3538 	acc_ep->te_flag |= TL_ACCEPTOR;
3539 
3540 	/*
3541 	 * validate that accepting endpoint, if different from listening
3542 	 * has address bound => state is TS_IDLE
3543 	 * TROUBLE in XPG4 !!?
3544 	 */
3545 	if ((tep != acc_ep) && (acc_ep->te_state != TS_IDLE)) {
3546 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE | SL_ERROR,
3547 		    "tl_conn_res:accepting endpoint has no address bound,"
3548 		    "state=%d", acc_ep->te_state));
3549 		tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
3550 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, prim);
3551 		freemsg(mp);
3552 		tl_closeok(acc_ep);
3553 		tl_refrele(acc_ep);
3554 		return;
3555 	}
3556 
3557 	/*
3558 	 * validate if accepting endpt same as listening, then
3559 	 * no other incoming connection should be on the queue
3560 	 */
3561 
3562 	if ((tep == acc_ep) && (tep->te_nicon > 1)) {
3563 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE | SL_ERROR,
3564 		    "tl_conn_res: > 1 conn_ind on listener-acceptor"));
3565 		tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
3566 		tl_error_ack(wq, ackmp, TBADF, 0, prim);
3567 		freemsg(mp);
3568 		tl_closeok(acc_ep);
3569 		tl_refrele(acc_ep);
3570 		return;
3571 	}
3572 
3573 	/*
3574 	 * Mark for deletion, the entry corresponding to client
3575 	 * on list of pending connections made by the listener
3576 	 *  search list to see if client is one of the
3577 	 * recorded as a listener.
3578 	 */
3579 	tip = tl_icon_find(tep, cres->SEQ_number);
3580 	if (tip == NULL) {
3581 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE | SL_ERROR,
3582 		    "tl_conn_res:no client in listener list"));
3583 		tep->te_state = nextstate[TE_ERROR_ACK][tep->te_state];
3584 		tl_error_ack(wq, ackmp, TBADSEQ, 0, prim);
3585 		freemsg(mp);
3586 		tl_closeok(acc_ep);
3587 		tl_refrele(acc_ep);
3588 		return;
3589 	}
3590 
3591 	/*
3592 	 * If ti_tep is NULL the client has already closed. In this case
3593 	 * the code below will avoid any action on the client side
3594 	 * but complete the server and acceptor state transitions.
3595 	 */
3596 	ASSERT(tip->ti_tep == NULL ||
3597 	    tip->ti_tep->te_seqno == cres->SEQ_number);
3598 	cl_ep = tip->ti_tep;
3599 
3600 	/*
3601 	 * If the client is present it is switched from listener's to acceptor's
3602 	 * serializer. We should block client closes while serializers are
3603 	 * being switched.
3604 	 *
3605 	 * It is possible that the client is present but is currently being
3606 	 * closed. There are two possible cases:
3607 	 *
3608 	 * 1) The client has already entered tl_close_finish_ser() and sent
3609 	 *    T_ORDREL_IND. In this case we can just ignore the client (but we
3610 	 *    still need to send all messages from tip->ti_mp to the acceptor).
3611 	 *
3612 	 * 2) The client started the close but has not entered
3613 	 *    tl_close_finish_ser() yet. In this case, the client is already
3614 	 *    proceeding asynchronously on the listener's serializer, so we're
3615 	 *    forced to change the acceptor to use the listener's serializer to
3616 	 *    ensure that any operations on the acceptor are serialized with
3617 	 *    respect to the close that's in-progress.
3618 	 */
3619 	if (cl_ep != NULL) {
3620 		if (tl_noclose(cl_ep)) {
3621 			client_noclose_set = B_TRUE;
3622 		} else {
3623 			/*
3624 			 * Client is closing. If it it has sent the
3625 			 * T_ORDREL_IND, we can simply ignore it - otherwise,
3626 			 * we have to let let the client continue until it is
3627 			 * sent.
3628 			 *
3629 			 * If we do continue using the client, acceptor will
3630 			 * switch to client's serializer which is used by client
3631 			 * for its close.
3632 			 */
3633 			tl_client_closing_when_accepting++;
3634 			switch_client_serializer = B_FALSE;
3635 			if (!IS_SOCKET(cl_ep) || tl_disable_early_connect ||
3636 			    cl_ep->te_state == -1)
3637 				cl_ep = NULL;
3638 		}
3639 	}
3640 
3641 	if (cl_ep != NULL) {
3642 		/*
3643 		 * validate client state to be TS_WCON_CREQ or TS_DATA_XFER
3644 		 * (latter for sockets only)
3645 		 */
3646 		if (cl_ep->te_state != TS_WCON_CREQ &&
3647 		    (cl_ep->te_state != TS_DATA_XFER &&
3648 		    IS_SOCKET(cl_ep))) {
3649 			err = ECONNREFUSED;
3650 			/*
3651 			 * T_DISCON_IND sent later after committing memory
3652 			 * and acking validity of request
3653 			 */
3654 			(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE,
3655 			    "tl_conn_res:peer in bad state"));
3656 		}
3657 
3658 		/*
3659 		 * preallocate now for T_DISCON_IND or T_CONN_CONN
3660 		 * ack validity of request (T_OK_ACK) after memory committed
3661 		 */
3662 
3663 		if (err) {
3664 			size = sizeof (struct T_discon_ind);
3665 		} else {
3666 			/*
3667 			 * calculate length of T_CONN_CON message
3668 			 */
3669 			olen = 0;
3670 			if (cl_ep->te_flag & TL_SETCRED) {
3671 				olen = (t_scalar_t)sizeof (struct opthdr) +
3672 				    OPTLEN(sizeof (tl_credopt_t));
3673 			} else if (cl_ep->te_flag & TL_SETUCRED) {
3674 				olen = (t_scalar_t)sizeof (struct opthdr) +
3675 				    OPTLEN(ucredminsize(acc_ep->te_credp));
3676 			}
3677 			size = T_ALIGN(sizeof (struct T_conn_con) +
3678 			    acc_ep->te_alen) + olen;
3679 		}
3680 		if ((respmp = reallocb(mp, size, 0)) == NULL) {
3681 			/*
3682 			 * roll back state changes
3683 			 */
3684 			tep->te_state = TS_WRES_CIND;
3685 			tl_memrecover(wq, mp, size);
3686 			freemsg(ackmp);
3687 			if (client_noclose_set)
3688 				tl_closeok(cl_ep);
3689 			tl_closeok(acc_ep);
3690 			tl_refrele(acc_ep);
3691 			return;
3692 		}
3693 		mp = NULL;
3694 	}
3695 
3696 	/*
3697 	 * Now ack validity of request
3698 	 */
3699 	if (tep->te_nicon == 1) {
3700 		if (tep == acc_ep)
3701 			tep->te_state = nextstate[TE_OK_ACK2][tep->te_state];
3702 		else
3703 			tep->te_state = nextstate[TE_OK_ACK3][tep->te_state];
3704 	} else {
3705 		tep->te_state = nextstate[TE_OK_ACK4][tep->te_state];
3706 	}
3707 
3708 	/*
3709 	 * send T_DISCON_IND now if client state validation failed earlier
3710 	 */
3711 	if (err) {
3712 		tl_ok_ack(wq, ackmp, prim);
3713 		/*
3714 		 * flush the queues - why always ?
3715 		 */
3716 		(void) putnextctl1(acc_ep->te_rq, M_FLUSH, FLUSHR);
3717 
3718 		dimp = tl_resizemp(respmp, size);
3719 		if (dimp == NULL) {
3720 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
3721 			    SL_TRACE | SL_ERROR,
3722 			    "tl_conn_res:con_ind:allocb failure"));
3723 			tl_merror(wq, respmp, ENOMEM);
3724 			tl_closeok(acc_ep);
3725 			if (client_noclose_set)
3726 				tl_closeok(cl_ep);
3727 			tl_refrele(acc_ep);
3728 			return;
3729 		}
3730 		if (dimp->b_cont) {
3731 			/* no user data in provider generated discon ind */
3732 			freemsg(dimp->b_cont);
3733 			dimp->b_cont = NULL;
3734 		}
3735 
3736 		DB_TYPE(dimp) = M_PROTO;
3737 		di = (struct T_discon_ind *)dimp->b_rptr;
3738 		di->PRIM_type  = T_DISCON_IND;
3739 		di->DISCON_reason = err;
3740 		di->SEQ_number = BADSEQNUM;
3741 
3742 		tep->te_state = TS_IDLE;
3743 		/*
3744 		 * send T_DISCON_IND message
3745 		 */
3746 		putnext(acc_ep->te_rq, dimp);
3747 		if (client_noclose_set)
3748 			tl_closeok(cl_ep);
3749 		tl_closeok(acc_ep);
3750 		tl_refrele(acc_ep);
3751 		return;
3752 	}
3753 
3754 	/*
3755 	 * now start connecting the accepting endpoint
3756 	 */
3757 	if (tep != acc_ep)
3758 		acc_ep->te_state = nextstate[TE_PASS_CONN][acc_ep->te_state];
3759 
3760 	if (cl_ep == NULL) {
3761 		/*
3762 		 * The client has already closed. Send up any queued messages
3763 		 * and change the state accordingly.
3764 		 */
3765 		tl_ok_ack(wq, ackmp, prim);
3766 		tl_icon_sendmsgs(acc_ep, &tip->ti_mp);
3767 
3768 		/*
3769 		 * remove endpoint from incoming connection
3770 		 * delete client from list of incoming connections
3771 		 */
3772 		tl_freetip(tep, tip);
3773 		freemsg(mp);
3774 		tl_closeok(acc_ep);
3775 		tl_refrele(acc_ep);
3776 		return;
3777 	} else if (tip->ti_mp != NULL) {
3778 		/*
3779 		 * The client could have queued a T_DISCON_IND which needs
3780 		 * to be sent up.
3781 		 * Note that t_discon_req can not operate the same as
3782 		 * t_data_req since it is not possible for it to putbq
3783 		 * the message and return -1 due to the use of qwriter.
3784 		 */
3785 		tl_icon_sendmsgs(acc_ep, &tip->ti_mp);
3786 	}
3787 
3788 	/*
3789 	 * prepare connect confirm T_CONN_CON message
3790 	 */
3791 
3792 	/*
3793 	 * allocate the message - original data blocks
3794 	 * retained in the returned mblk
3795 	 */
3796 	if (!IS_SOCKET(cl_ep) || tl_disable_early_connect) {
3797 		ccmp = tl_resizemp(respmp, size);
3798 		if (ccmp == NULL) {
3799 			tl_ok_ack(wq, ackmp, prim);
3800 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
3801 			    SL_TRACE | SL_ERROR,
3802 			    "tl_conn_res:conn_con:allocb failure"));
3803 			tl_merror(wq, respmp, ENOMEM);
3804 			tl_closeok(acc_ep);
3805 			if (client_noclose_set)
3806 				tl_closeok(cl_ep);
3807 			tl_refrele(acc_ep);
3808 			return;
3809 		}
3810 
3811 		DB_TYPE(ccmp) = M_PROTO;
3812 		cc = (struct T_conn_con *)ccmp->b_rptr;
3813 		cc->PRIM_type  = T_CONN_CON;
3814 		cc->RES_offset = (t_scalar_t)sizeof (struct T_conn_con);
3815 		cc->RES_length = acc_ep->te_alen;
3816 		addr_startp = ccmp->b_rptr + cc->RES_offset;
3817 		bcopy(acc_ep->te_abuf, addr_startp, acc_ep->te_alen);
3818 		if (cl_ep->te_flag & (TL_SETCRED | TL_SETUCRED)) {
3819 			cc->OPT_offset = (t_scalar_t)T_ALIGN(cc->RES_offset +
3820 			    cc->RES_length);
3821 			cc->OPT_length = olen;
3822 			tl_fill_option(ccmp->b_rptr + cc->OPT_offset,
3823 			    acc_ep->te_credp, acc_ep->te_cpid, cl_ep->te_flag,
3824 			    cl_ep->te_credp);
3825 		} else {
3826 			cc->OPT_offset = 0;
3827 			cc->OPT_length = 0;
3828 		}
3829 		/*
3830 		 * Forward the credential in the packet so it can be picked up
3831 		 * at the higher layers for more complete credential processing
3832 		 */
3833 		mblk_setcred(ccmp, acc_ep->te_credp, acc_ep->te_cpid);
3834 	} else {
3835 		freemsg(respmp);
3836 		respmp = NULL;
3837 	}
3838 
3839 	/*
3840 	 * make connection linking
3841 	 * accepting and client endpoints
3842 	 * No need to increment references:
3843 	 *	on client: it should already have one from tip->ti_tep linkage.
3844 	 *	on acceptor is should already have one from the table lookup.
3845 	 *
3846 	 * At this point both client and acceptor can't close. Set client
3847 	 * serializer to acceptor's.
3848 	 */
3849 	ASSERT(cl_ep->te_refcnt >= 2);
3850 	ASSERT(acc_ep->te_refcnt >= 2);
3851 	ASSERT(cl_ep->te_conp == NULL);
3852 	ASSERT(acc_ep->te_conp == NULL);
3853 	cl_ep->te_conp = acc_ep;
3854 	acc_ep->te_conp = cl_ep;
3855 	ASSERT(cl_ep->te_ser == tep->te_ser);
3856 	if (switch_client_serializer) {
3857 		mutex_enter(&cl_ep->te_ser_lock);
3858 		if (cl_ep->te_ser_count > 0) {
3859 			switch_client_serializer = B_FALSE;
3860 			tl_serializer_noswitch++;
3861 		} else {
3862 			/*
3863 			 * Move client to the acceptor's serializer.
3864 			 */
3865 			tl_serializer_refhold(acc_ep->te_ser);
3866 			tl_serializer_refrele(cl_ep->te_ser);
3867 			cl_ep->te_ser = acc_ep->te_ser;
3868 		}
3869 		mutex_exit(&cl_ep->te_ser_lock);
3870 	}
3871 	if (!switch_client_serializer) {
3872 		/*
3873 		 * It is not possible to switch client to use acceptor's.
3874 		 * Move acceptor to client's serializer (which is the same as
3875 		 * listener's).
3876 		 */
3877 		tl_serializer_refhold(cl_ep->te_ser);
3878 		tl_serializer_refrele(acc_ep->te_ser);
3879 		acc_ep->te_ser = cl_ep->te_ser;
3880 	}
3881 
3882 	TL_REMOVE_PEER(cl_ep->te_oconp);
3883 	TL_REMOVE_PEER(acc_ep->te_oconp);
3884 
3885 	/*
3886 	 * remove endpoint from incoming connection
3887 	 * delete client from list of incoming connections
3888 	 */
3889 	tip->ti_tep = NULL;
3890 	tl_freetip(tep, tip);
3891 	tl_ok_ack(wq, ackmp, prim);
3892 
3893 	/*
3894 	 * data blocks already linked in reallocb()
3895 	 */
3896 
3897 	/*
3898 	 * link queues so that I_SENDFD will work
3899 	 */
3900 	if (!IS_SOCKET(tep)) {
3901 		acc_ep->te_wq->q_next = cl_ep->te_rq;
3902 		cl_ep->te_wq->q_next = acc_ep->te_rq;
3903 	}
3904 
3905 	/*
3906 	 * send T_CONN_CON up on client side unless it was already
3907 	 * done (for a socket). In cases any data or ordrel req has been
3908 	 * queued make sure that the service procedure runs.
3909 	 */
3910 	if (IS_SOCKET(cl_ep) && !tl_disable_early_connect) {
3911 		enableok(cl_ep->te_wq);
3912 		TL_QENABLE(cl_ep);
3913 		if (ccmp != NULL)
3914 			freemsg(ccmp);
3915 	} else {
3916 		/*
3917 		 * change client state on TE_CONN_CON event
3918 		 */
3919 		cl_ep->te_state = nextstate[TE_CONN_CON][cl_ep->te_state];
3920 		putnext(cl_ep->te_rq, ccmp);
3921 	}
3922 
3923 	/* Mark the both endpoints as accepted */
3924 	cl_ep->te_flag |= TL_ACCEPTED;
3925 	acc_ep->te_flag |= TL_ACCEPTED;
3926 
3927 	/*
3928 	 * Allow client and acceptor to close.
3929 	 */
3930 	tl_closeok(acc_ep);
3931 	if (client_noclose_set)
3932 		tl_closeok(cl_ep);
3933 }
3934 
3935 
3936 
3937 
3938 static void
3939 tl_discon_req(mblk_t *mp, tl_endpt_t *tep)
3940 {
3941 	queue_t			*wq;
3942 	struct T_discon_req	*dr;
3943 	ssize_t			msz;
3944 	tl_endpt_t		*peer_tep = tep->te_conp;
3945 	tl_endpt_t		*srv_tep = tep->te_oconp;
3946 	tl_icon_t		*tip;
3947 	size_t			size;
3948 	mblk_t			*ackmp, *dimp, *respmp;
3949 	struct T_discon_ind	*di;
3950 	t_scalar_t		save_state, new_state;
3951 
3952 	if (tep->te_closing) {
3953 		freemsg(mp);
3954 		return;
3955 	}
3956 
3957 	if ((peer_tep != NULL) && peer_tep->te_closing) {
3958 		TL_UNCONNECT(tep->te_conp);
3959 		peer_tep = NULL;
3960 	}
3961 	if ((srv_tep != NULL) && srv_tep->te_closing) {
3962 		TL_UNCONNECT(tep->te_oconp);
3963 		srv_tep = NULL;
3964 	}
3965 
3966 	wq = tep->te_wq;
3967 
3968 	/*
3969 	 * preallocate memory for:
3970 	 * 1. max of T_ERROR_ACK and T_OK_ACK
3971 	 *	==> known max T_ERROR_ACK
3972 	 * 2. for  T_DISCON_IND
3973 	 */
3974 	ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
3975 	if (ackmp == NULL) {
3976 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
3977 		return;
3978 	}
3979 	/*
3980 	 * memory committed for T_OK_ACK/T_ERROR_ACK now
3981 	 * will be committed for T_DISCON_IND  later
3982 	 */
3983 
3984 	dr = (struct T_discon_req *)mp->b_rptr;
3985 	msz = MBLKL(mp);
3986 
3987 	/*
3988 	 * validate the state
3989 	 */
3990 	save_state = new_state = tep->te_state;
3991 	if (!(save_state >= TS_WCON_CREQ && save_state <= TS_WRES_CIND) &&
3992 	    !(save_state >= TS_DATA_XFER && save_state <= TS_WREQ_ORDREL)) {
3993 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
3994 		    SL_TRACE | SL_ERROR,
3995 		    "tl_wput:T_DISCON_REQ:out of state, state=%d",
3996 		    tep->te_state));
3997 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_DISCON_REQ);
3998 		freemsg(mp);
3999 		return;
4000 	}
4001 	/*
4002 	 * Defer committing the state change until it is determined if
4003 	 * the message will be queued with the tl_icon or not.
4004 	 */
4005 	new_state  = nextstate[TE_DISCON_REQ][tep->te_state];
4006 
4007 	/* validate the message */
4008 	if (msz < sizeof (struct T_discon_req)) {
4009 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4010 		    "tl_discon_req:invalid message"));
4011 		tep->te_state = nextstate[TE_ERROR_ACK][new_state];
4012 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_DISCON_REQ);
4013 		freemsg(mp);
4014 		return;
4015 	}
4016 
4017 	/*
4018 	 * if server, then validate that client exists
4019 	 * by connection sequence number etc.
4020 	 */
4021 	if (tep->te_nicon > 0) { /* server */
4022 
4023 		/*
4024 		 * search server list for disconnect client
4025 		 */
4026 		tip = tl_icon_find(tep, dr->SEQ_number);
4027 		if (tip == NULL) {
4028 			(void) (STRLOG(TL_ID, tep->te_minor, 2,
4029 			    SL_TRACE | SL_ERROR,
4030 			    "tl_discon_req:no disconnect endpoint"));
4031 			tep->te_state = nextstate[TE_ERROR_ACK][new_state];
4032 			tl_error_ack(wq, ackmp, TBADSEQ, 0, T_DISCON_REQ);
4033 			freemsg(mp);
4034 			return;
4035 		}
4036 		/*
4037 		 * If ti_tep is NULL the client has already closed. In this case
4038 		 * the code below will avoid any action on the client side.
4039 		 */
4040 
4041 		IMPLY(tip->ti_tep != NULL,
4042 		    tip->ti_tep->te_seqno == dr->SEQ_number);
4043 		peer_tep = tip->ti_tep;
4044 	}
4045 
4046 	/*
4047 	 * preallocate now for T_DISCON_IND
4048 	 * ack validity of request (T_OK_ACK) after memory committed
4049 	 */
4050 	size = sizeof (struct T_discon_ind);
4051 	if ((respmp = reallocb(mp, size, 0)) == NULL) {
4052 		tl_memrecover(wq, mp, size);
4053 		freemsg(ackmp);
4054 		return;
4055 	}
4056 
4057 	/*
4058 	 * prepare message to ack validity of request
4059 	 */
4060 	if (tep->te_nicon == 0) {
4061 		new_state = nextstate[TE_OK_ACK1][new_state];
4062 	} else {
4063 		if (tep->te_nicon == 1)
4064 			new_state = nextstate[TE_OK_ACK2][new_state];
4065 		else
4066 			new_state = nextstate[TE_OK_ACK4][new_state];
4067 	}
4068 
4069 	/*
4070 	 * Flushing queues according to TPI. Using the old state.
4071 	 */
4072 	if ((tep->te_nicon <= 1) &&
4073 	    ((save_state == TS_DATA_XFER) ||
4074 	    (save_state == TS_WIND_ORDREL) ||
4075 	    (save_state == TS_WREQ_ORDREL)))
4076 		(void) putnextctl1(RD(wq), M_FLUSH, FLUSHRW);
4077 
4078 	/* send T_OK_ACK up  */
4079 	tl_ok_ack(wq, ackmp, T_DISCON_REQ);
4080 
4081 	/*
4082 	 * now do disconnect business
4083 	 */
4084 	if (tep->te_nicon > 0) { /* listener */
4085 		if (peer_tep != NULL && !peer_tep->te_closing) {
4086 			/*
4087 			 * disconnect incoming connect request pending to tep
4088 			 */
4089 			if ((dimp = tl_resizemp(respmp, size)) == NULL) {
4090 				(void) (STRLOG(TL_ID, tep->te_minor, 2,
4091 				    SL_TRACE | SL_ERROR,
4092 				    "tl_discon_req: reallocb failed"));
4093 				tep->te_state = new_state;
4094 				tl_merror(wq, respmp, ENOMEM);
4095 				return;
4096 			}
4097 			di = (struct T_discon_ind *)dimp->b_rptr;
4098 			di->SEQ_number = BADSEQNUM;
4099 			save_state = peer_tep->te_state;
4100 			peer_tep->te_state = TS_IDLE;
4101 
4102 			TL_REMOVE_PEER(peer_tep->te_oconp);
4103 			enableok(peer_tep->te_wq);
4104 			TL_QENABLE(peer_tep);
4105 		} else {
4106 			freemsg(respmp);
4107 			dimp = NULL;
4108 		}
4109 
4110 		/*
4111 		 * remove endpoint from incoming connection list
4112 		 * - remove disconnect client from list on server
4113 		 */
4114 		tl_freetip(tep, tip);
4115 	} else if ((peer_tep = tep->te_oconp) != NULL) { /* client */
4116 		/*
4117 		 * disconnect an outgoing request pending from tep
4118 		 */
4119 
4120 		if ((dimp = tl_resizemp(respmp, size)) == NULL) {
4121 			(void) (STRLOG(TL_ID, tep->te_minor, 2,
4122 			    SL_TRACE | SL_ERROR,
4123 			    "tl_discon_req: reallocb failed"));
4124 			tep->te_state = new_state;
4125 			tl_merror(wq, respmp, ENOMEM);
4126 			return;
4127 		}
4128 		di = (struct T_discon_ind *)dimp->b_rptr;
4129 		DB_TYPE(dimp) = M_PROTO;
4130 		di->PRIM_type  = T_DISCON_IND;
4131 		di->DISCON_reason = ECONNRESET;
4132 		di->SEQ_number = tep->te_seqno;
4133 
4134 		/*
4135 		 * If this is a socket the T_DISCON_IND is queued with
4136 		 * the T_CONN_IND. Otherwise the T_CONN_IND is removed
4137 		 * from the list of pending connections.
4138 		 * Note that when te_oconp is set the peer better have
4139 		 * a t_connind_t for the client.
4140 		 */
4141 		if (IS_SOCKET(tep) && !tl_disable_early_connect) {
4142 			/*
4143 			 * No need to check that
4144 			 * ti_tep == NULL since the T_DISCON_IND
4145 			 * takes precedence over other queued
4146 			 * messages.
4147 			 */
4148 			tl_icon_queuemsg(peer_tep, tep->te_seqno, dimp);
4149 			peer_tep = NULL;
4150 			dimp = NULL;
4151 			/*
4152 			 * Can't clear te_oconp since tl_co_unconnect needs
4153 			 * it as a hint not to free the tep.
4154 			 * Keep the state unchanged since tl_conn_res inspects
4155 			 * it.
4156 			 */
4157 			new_state = tep->te_state;
4158 		} else {
4159 			/* Found - delete it */
4160 			tip = tl_icon_find(peer_tep, tep->te_seqno);
4161 			if (tip != NULL) {
4162 				ASSERT(tep == tip->ti_tep);
4163 				save_state = peer_tep->te_state;
4164 				if (peer_tep->te_nicon == 1)
4165 					peer_tep->te_state =
4166 					    nextstate[TE_DISCON_IND2]
4167 					    [peer_tep->te_state];
4168 				else
4169 					peer_tep->te_state =
4170 					    nextstate[TE_DISCON_IND3]
4171 					    [peer_tep->te_state];
4172 				tl_freetip(peer_tep, tip);
4173 			}
4174 			ASSERT(tep->te_oconp != NULL);
4175 			TL_UNCONNECT(tep->te_oconp);
4176 		}
4177 	} else if ((peer_tep = tep->te_conp) != NULL) { /* connected! */
4178 		if ((dimp = tl_resizemp(respmp, size)) == NULL) {
4179 			(void) (STRLOG(TL_ID, tep->te_minor, 2,
4180 			    SL_TRACE | SL_ERROR,
4181 			    "tl_discon_req: reallocb failed"));
4182 			tep->te_state = new_state;
4183 			tl_merror(wq, respmp, ENOMEM);
4184 			return;
4185 		}
4186 		di = (struct T_discon_ind *)dimp->b_rptr;
4187 		di->SEQ_number = BADSEQNUM;
4188 
4189 		save_state = peer_tep->te_state;
4190 		peer_tep->te_state = TS_IDLE;
4191 	} else {
4192 		/* Not connected */
4193 		tep->te_state = new_state;
4194 		freemsg(respmp);
4195 		return;
4196 	}
4197 
4198 	/* Commit state changes */
4199 	tep->te_state = new_state;
4200 
4201 	if (peer_tep == NULL) {
4202 		ASSERT(dimp == NULL);
4203 		goto done;
4204 	}
4205 	/*
4206 	 * Flush queues on peer before sending up
4207 	 * T_DISCON_IND according to TPI
4208 	 */
4209 
4210 	if ((save_state == TS_DATA_XFER) ||
4211 	    (save_state == TS_WIND_ORDREL) ||
4212 	    (save_state == TS_WREQ_ORDREL))
4213 		(void) putnextctl1(peer_tep->te_rq, M_FLUSH, FLUSHRW);
4214 
4215 	DB_TYPE(dimp) = M_PROTO;
4216 	di->PRIM_type  = T_DISCON_IND;
4217 	di->DISCON_reason = ECONNRESET;
4218 
4219 	/*
4220 	 * data blocks already linked into dimp by reallocb()
4221 	 */
4222 	/*
4223 	 * send indication message to peer user module
4224 	 */
4225 	ASSERT(dimp != NULL);
4226 	putnext(peer_tep->te_rq, dimp);
4227 done:
4228 	if (tep->te_conp) {	/* disconnect pointers if connected */
4229 		ASSERT(!peer_tep->te_closing);
4230 
4231 		/*
4232 		 * Messages may be queued on peer's write queue
4233 		 * waiting to be processed by its write service
4234 		 * procedure. Before the pointer to the peer transport
4235 		 * structure is set to NULL, qenable the peer's write
4236 		 * queue so that the queued up messages are processed.
4237 		 */
4238 		if ((save_state == TS_DATA_XFER) ||
4239 		    (save_state == TS_WIND_ORDREL) ||
4240 		    (save_state == TS_WREQ_ORDREL))
4241 			TL_QENABLE(peer_tep);
4242 		ASSERT(peer_tep != NULL && peer_tep->te_conp != NULL);
4243 		TL_UNCONNECT(peer_tep->te_conp);
4244 		if (!IS_SOCKET(tep)) {
4245 			/*
4246 			 * unlink the streams
4247 			 */
4248 			tep->te_wq->q_next = NULL;
4249 			peer_tep->te_wq->q_next = NULL;
4250 		}
4251 		TL_UNCONNECT(tep->te_conp);
4252 	}
4253 }
4254 
4255 static void
4256 tl_addr_req_ser(mblk_t *mp, tl_endpt_t *tep)
4257 {
4258 	if (!tep->te_closing)
4259 		tl_addr_req(mp, tep);
4260 	else
4261 		freemsg(mp);
4262 
4263 	tl_serializer_exit(tep);
4264 	tl_refrele(tep);
4265 }
4266 
4267 static void
4268 tl_addr_req(mblk_t *mp, tl_endpt_t *tep)
4269 {
4270 	queue_t			*wq;
4271 	size_t			ack_sz;
4272 	mblk_t			*ackmp;
4273 	struct T_addr_ack	*taa;
4274 
4275 	if (tep->te_closing) {
4276 		freemsg(mp);
4277 		return;
4278 	}
4279 
4280 	wq = tep->te_wq;
4281 
4282 	/*
4283 	 * Note: T_ADDR_REQ message has only PRIM_type field
4284 	 * so it is already validated earlier.
4285 	 */
4286 
4287 	if (IS_CLTS(tep) ||
4288 	    (tep->te_state > TS_WREQ_ORDREL) ||
4289 	    (tep->te_state < TS_DATA_XFER)) {
4290 		/*
4291 		 * Either connectionless or connection oriented but not
4292 		 * in connected data transfer state or half-closed states.
4293 		 */
4294 		ack_sz = sizeof (struct T_addr_ack);
4295 		if (tep->te_state >= TS_IDLE)
4296 			/* is bound */
4297 			ack_sz += tep->te_alen;
4298 		ackmp = reallocb(mp, ack_sz, 0);
4299 		if (ackmp == NULL) {
4300 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4301 			    SL_TRACE | SL_ERROR,
4302 			    "tl_addr_req: reallocb failed"));
4303 			tl_memrecover(wq, mp, ack_sz);
4304 			return;
4305 		}
4306 
4307 		taa = (struct T_addr_ack *)ackmp->b_rptr;
4308 
4309 		bzero(taa, sizeof (struct T_addr_ack));
4310 
4311 		taa->PRIM_type = T_ADDR_ACK;
4312 		ackmp->b_datap->db_type = M_PCPROTO;
4313 		ackmp->b_wptr = (uchar_t *)&taa[1];
4314 
4315 		if (tep->te_state >= TS_IDLE) {
4316 			/* endpoint is bound */
4317 			taa->LOCADDR_length = tep->te_alen;
4318 			taa->LOCADDR_offset = (t_scalar_t)sizeof (*taa);
4319 
4320 			bcopy(tep->te_abuf, ackmp->b_wptr,
4321 			    tep->te_alen);
4322 			ackmp->b_wptr += tep->te_alen;
4323 			ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
4324 		}
4325 
4326 		(void) qreply(wq, ackmp);
4327 	} else {
4328 		ASSERT(tep->te_state == TS_DATA_XFER ||
4329 		    tep->te_state == TS_WIND_ORDREL ||
4330 		    tep->te_state == TS_WREQ_ORDREL);
4331 		/* connection oriented in data transfer */
4332 		tl_connected_cots_addr_req(mp, tep);
4333 	}
4334 }
4335 
4336 
4337 static void
4338 tl_connected_cots_addr_req(mblk_t *mp, tl_endpt_t *tep)
4339 {
4340 	tl_endpt_t		*peer_tep = tep->te_conp;
4341 	size_t			ack_sz;
4342 	mblk_t			*ackmp;
4343 	struct T_addr_ack	*taa;
4344 	uchar_t			*addr_startp;
4345 
4346 	if (tep->te_closing) {
4347 		freemsg(mp);
4348 		return;
4349 	}
4350 
4351 	if (peer_tep == NULL || peer_tep->te_closing) {
4352 		tl_error_ack(tep->te_wq, mp, TSYSERR, ECONNRESET, T_ADDR_REQ);
4353 		return;
4354 	}
4355 
4356 	ASSERT(tep->te_state >= TS_IDLE);
4357 
4358 	ack_sz = sizeof (struct T_addr_ack);
4359 	ack_sz += T_ALIGN(tep->te_alen);
4360 	ack_sz += peer_tep->te_alen;
4361 
4362 	ackmp = tpi_ack_alloc(mp, ack_sz, M_PCPROTO, T_ADDR_ACK);
4363 	if (ackmp == NULL) {
4364 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4365 		    "tl_connected_cots_addr_req: reallocb failed"));
4366 		tl_memrecover(tep->te_wq, mp, ack_sz);
4367 		return;
4368 	}
4369 
4370 	taa = (struct T_addr_ack *)ackmp->b_rptr;
4371 
4372 	/* endpoint is bound */
4373 	taa->LOCADDR_length = tep->te_alen;
4374 	taa->LOCADDR_offset = (t_scalar_t)sizeof (*taa);
4375 
4376 	addr_startp = (uchar_t *)&taa[1];
4377 
4378 	bcopy(tep->te_abuf, addr_startp,
4379 	    tep->te_alen);
4380 
4381 	taa->REMADDR_length = peer_tep->te_alen;
4382 	taa->REMADDR_offset = (t_scalar_t)T_ALIGN(taa->LOCADDR_offset +
4383 	    taa->LOCADDR_length);
4384 	addr_startp = ackmp->b_rptr + taa->REMADDR_offset;
4385 	bcopy(peer_tep->te_abuf, addr_startp,
4386 	    peer_tep->te_alen);
4387 	ackmp->b_wptr = (uchar_t *)ackmp->b_rptr +
4388 	    taa->REMADDR_offset + peer_tep->te_alen;
4389 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
4390 
4391 	putnext(tep->te_rq, ackmp);
4392 }
4393 
4394 static void
4395 tl_copy_info(struct T_info_ack *ia, tl_endpt_t *tep)
4396 {
4397 	if (IS_CLTS(tep)) {
4398 		*ia = tl_clts_info_ack;
4399 		ia->TSDU_size = tl_tidusz; /* TSDU and TIDU size are same */
4400 	} else {
4401 		*ia = tl_cots_info_ack;
4402 		if (IS_COTSORD(tep))
4403 			ia->SERV_type = T_COTS_ORD;
4404 	}
4405 	ia->TIDU_size = tl_tidusz;
4406 	ia->CURRENT_state = tep->te_state;
4407 }
4408 
4409 /*
4410  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
4411  * tl_wput.
4412  */
4413 static void
4414 tl_capability_req(mblk_t *mp, tl_endpt_t *tep)
4415 {
4416 	mblk_t			*ackmp;
4417 	t_uscalar_t		cap_bits1;
4418 	struct T_capability_ack	*tcap;
4419 
4420 	if (tep->te_closing) {
4421 		freemsg(mp);
4422 		return;
4423 	}
4424 
4425 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
4426 
4427 	ackmp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
4428 	    M_PCPROTO, T_CAPABILITY_ACK);
4429 	if (ackmp == NULL) {
4430 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4431 		    "tl_capability_req: reallocb failed"));
4432 		tl_memrecover(tep->te_wq, mp,
4433 		    sizeof (struct T_capability_ack));
4434 		return;
4435 	}
4436 
4437 	tcap = (struct T_capability_ack *)ackmp->b_rptr;
4438 	tcap->CAP_bits1 = 0;
4439 
4440 	if (cap_bits1 & TC1_INFO) {
4441 		tl_copy_info(&tcap->INFO_ack, tep);
4442 		tcap->CAP_bits1 |= TC1_INFO;
4443 	}
4444 
4445 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
4446 		tcap->ACCEPTOR_id = tep->te_acceptor_id;
4447 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
4448 	}
4449 
4450 	putnext(tep->te_rq, ackmp);
4451 }
4452 
4453 static void
4454 tl_info_req_ser(mblk_t *mp, tl_endpt_t *tep)
4455 {
4456 	if (!tep->te_closing)
4457 		tl_info_req(mp, tep);
4458 	else
4459 		freemsg(mp);
4460 
4461 	tl_serializer_exit(tep);
4462 	tl_refrele(tep);
4463 }
4464 
4465 static void
4466 tl_info_req(mblk_t *mp, tl_endpt_t *tep)
4467 {
4468 	mblk_t *ackmp;
4469 
4470 	ackmp = tpi_ack_alloc(mp, sizeof (struct T_info_ack),
4471 	    M_PCPROTO, T_INFO_ACK);
4472 	if (ackmp == NULL) {
4473 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4474 		    "tl_info_req: reallocb failed"));
4475 		tl_memrecover(tep->te_wq, mp, sizeof (struct T_info_ack));
4476 		return;
4477 	}
4478 
4479 	/*
4480 	 * fill in T_INFO_ACK contents
4481 	 */
4482 	tl_copy_info((struct T_info_ack *)ackmp->b_rptr, tep);
4483 
4484 	/*
4485 	 * send ack message
4486 	 */
4487 	putnext(tep->te_rq, ackmp);
4488 }
4489 
4490 /*
4491  * Handle M_DATA, T_data_req and T_optdata_req.
4492  * If this is a socket pass through T_optdata_req options unmodified.
4493  */
4494 static void
4495 tl_data(mblk_t *mp, tl_endpt_t *tep)
4496 {
4497 	queue_t			*wq = tep->te_wq;
4498 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
4499 	ssize_t			msz = MBLKL(mp);
4500 	tl_endpt_t		*peer_tep;
4501 	queue_t			*peer_rq;
4502 	boolean_t		closing = tep->te_closing;
4503 
4504 	if (IS_CLTS(tep)) {
4505 		(void) (STRLOG(TL_ID, tep->te_minor, 2,
4506 		    SL_TRACE | SL_ERROR,
4507 		    "tl_wput:clts:unattached M_DATA"));
4508 		if (!closing) {
4509 			tl_merror(wq, mp, EPROTO);
4510 		} else {
4511 			freemsg(mp);
4512 		}
4513 		return;
4514 	}
4515 
4516 	/*
4517 	 * If the endpoint is closing it should still forward any data to the
4518 	 * peer (if it has one). If it is not allowed to forward it can just
4519 	 * free the message.
4520 	 */
4521 	if (closing &&
4522 	    (tep->te_state != TS_DATA_XFER) &&
4523 	    (tep->te_state != TS_WREQ_ORDREL)) {
4524 		freemsg(mp);
4525 		return;
4526 	}
4527 
4528 	if (DB_TYPE(mp) == M_PROTO) {
4529 		if (prim->type == T_DATA_REQ &&
4530 		    msz < sizeof (struct T_data_req)) {
4531 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4532 				SL_TRACE | SL_ERROR,
4533 				"tl_data:T_DATA_REQ:invalid message"));
4534 			if (!closing) {
4535 				tl_merror(wq, mp, EPROTO);
4536 			} else {
4537 				freemsg(mp);
4538 			}
4539 			return;
4540 		} else if (prim->type == T_OPTDATA_REQ &&
4541 		    (msz < sizeof (struct T_optdata_req) || !IS_SOCKET(tep))) {
4542 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4543 			    SL_TRACE | SL_ERROR,
4544 			    "tl_data:T_OPTDATA_REQ:invalid message"));
4545 			if (!closing) {
4546 				tl_merror(wq, mp, EPROTO);
4547 			} else {
4548 				freemsg(mp);
4549 			}
4550 			return;
4551 		}
4552 	}
4553 
4554 	/*
4555 	 * connection oriented provider
4556 	 */
4557 	switch (tep->te_state) {
4558 	case TS_IDLE:
4559 		/*
4560 		 * Other end not here - do nothing.
4561 		 */
4562 		freemsg(mp);
4563 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE | SL_ERROR,
4564 		    "tl_data:cots with endpoint idle"));
4565 		return;
4566 
4567 	case TS_DATA_XFER:
4568 		/* valid states */
4569 		if (tep->te_conp != NULL)
4570 			break;
4571 
4572 		if (tep->te_oconp == NULL) {
4573 			if (!closing) {
4574 				tl_merror(wq, mp, EPROTO);
4575 			} else {
4576 				freemsg(mp);
4577 			}
4578 			return;
4579 		}
4580 		/*
4581 		 * For a socket the T_CONN_CON is sent early thus
4582 		 * the peer might not yet have accepted the connection.
4583 		 * If we are closing queue the packet with the T_CONN_IND.
4584 		 * Otherwise defer processing the packet until the peer
4585 		 * accepts the connection.
4586 		 * Note that the queue is noenabled when we go into this
4587 		 * state.
4588 		 */
4589 		if (!closing) {
4590 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4591 			    SL_TRACE | SL_ERROR,
4592 			    "tl_data: ocon"));
4593 			TL_PUTBQ(tep, mp);
4594 			return;
4595 		}
4596 		if (DB_TYPE(mp) == M_PROTO) {
4597 			if (msz < sizeof (t_scalar_t)) {
4598 				freemsg(mp);
4599 				return;
4600 			}
4601 			/* reuse message block - just change REQ to IND */
4602 			if (prim->type == T_DATA_REQ)
4603 				prim->type = T_DATA_IND;
4604 			else
4605 				prim->type = T_OPTDATA_IND;
4606 		}
4607 		tl_icon_queuemsg(tep->te_oconp, tep->te_seqno, mp);
4608 		return;
4609 
4610 	case TS_WREQ_ORDREL:
4611 		if (tep->te_conp == NULL) {
4612 			/*
4613 			 * Other end closed - generate discon_ind
4614 			 * with reason 0 to cause an EPIPE but no
4615 			 * read side error on AF_UNIX sockets.
4616 			 */
4617 			freemsg(mp);
4618 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
4619 			    SL_TRACE | SL_ERROR,
4620 			    "tl_data: WREQ_ORDREL and no peer"));
4621 			tl_discon_ind(tep, 0);
4622 			return;
4623 		}
4624 		break;
4625 
4626 	default:
4627 		/* invalid state for event TE_DATA_REQ */
4628 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4629 		    "tl_data:cots:out of state"));
4630 		tl_merror(wq, mp, EPROTO);
4631 		return;
4632 	}
4633 	/*
4634 	 * tep->te_state = nextstate[TE_DATA_REQ][tep->te_state];
4635 	 * (State stays same on this event)
4636 	 */
4637 
4638 	/*
4639 	 * get connected endpoint
4640 	 */
4641 	if (((peer_tep = tep->te_conp) == NULL) || peer_tep->te_closing) {
4642 		freemsg(mp);
4643 		/* Peer closed */
4644 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4645 		    "tl_data: peer gone"));
4646 		return;
4647 	}
4648 
4649 	ASSERT(tep->te_serializer == peer_tep->te_serializer);
4650 	peer_rq = peer_tep->te_rq;
4651 
4652 	/*
4653 	 * Put it back if flow controlled
4654 	 * Note: Messages already on queue when we are closing is bounded
4655 	 * so we can ignore flow control.
4656 	 */
4657 	if (!canputnext(peer_rq) && !closing) {
4658 		TL_PUTBQ(tep, mp);
4659 		return;
4660 	}
4661 
4662 	/*
4663 	 * validate peer state
4664 	 */
4665 	switch (peer_tep->te_state) {
4666 	case TS_DATA_XFER:
4667 	case TS_WIND_ORDREL:
4668 		/* valid states */
4669 		break;
4670 	default:
4671 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4672 		    "tl_data:rx side:invalid state"));
4673 		tl_merror(peer_tep->te_wq, mp, EPROTO);
4674 		return;
4675 	}
4676 	if (DB_TYPE(mp) == M_PROTO) {
4677 		/* reuse message block - just change REQ to IND */
4678 		if (prim->type == T_DATA_REQ)
4679 			prim->type = T_DATA_IND;
4680 		else
4681 			prim->type = T_OPTDATA_IND;
4682 	}
4683 	/*
4684 	 * peer_tep->te_state = nextstate[TE_DATA_IND][peer_tep->te_state];
4685 	 * (peer state stays same on this event)
4686 	 */
4687 	/*
4688 	 * send data to connected peer
4689 	 */
4690 	putnext(peer_rq, mp);
4691 }
4692 
4693 
4694 
4695 static void
4696 tl_exdata(mblk_t *mp, tl_endpt_t *tep)
4697 {
4698 	queue_t			*wq = tep->te_wq;
4699 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
4700 	ssize_t			msz = MBLKL(mp);
4701 	tl_endpt_t		*peer_tep;
4702 	queue_t			*peer_rq;
4703 	boolean_t		closing = tep->te_closing;
4704 
4705 	if (msz < sizeof (struct T_exdata_req)) {
4706 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4707 		    "tl_exdata:invalid message"));
4708 		if (!closing) {
4709 			tl_merror(wq, mp, EPROTO);
4710 		} else {
4711 			freemsg(mp);
4712 		}
4713 		return;
4714 	}
4715 
4716 	/*
4717 	 * If the endpoint is closing it should still forward any data to the
4718 	 * peer (if it has one). If it is not allowed to forward it can just
4719 	 * free the message.
4720 	 */
4721 	if (closing &&
4722 	    (tep->te_state != TS_DATA_XFER) &&
4723 	    (tep->te_state != TS_WREQ_ORDREL)) {
4724 		freemsg(mp);
4725 		return;
4726 	}
4727 
4728 	/*
4729 	 * validate state
4730 	 */
4731 	switch (tep->te_state) {
4732 	case TS_IDLE:
4733 		/*
4734 		 * Other end not here - do nothing.
4735 		 */
4736 		freemsg(mp);
4737 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE | SL_ERROR,
4738 		    "tl_exdata:cots with endpoint idle"));
4739 		return;
4740 
4741 	case TS_DATA_XFER:
4742 		/* valid states */
4743 		if (tep->te_conp != NULL)
4744 			break;
4745 
4746 		if (tep->te_oconp == NULL) {
4747 			if (!closing) {
4748 				tl_merror(wq, mp, EPROTO);
4749 			} else {
4750 				freemsg(mp);
4751 			}
4752 			return;
4753 		}
4754 		/*
4755 		 * For a socket the T_CONN_CON is sent early thus
4756 		 * the peer might not yet have accepted the connection.
4757 		 * If we are closing queue the packet with the T_CONN_IND.
4758 		 * Otherwise defer processing the packet until the peer
4759 		 * accepts the connection.
4760 		 * Note that the queue is noenabled when we go into this
4761 		 * state.
4762 		 */
4763 		if (!closing) {
4764 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4765 			    SL_TRACE | SL_ERROR,
4766 			    "tl_exdata: ocon"));
4767 			TL_PUTBQ(tep, mp);
4768 			return;
4769 		}
4770 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4771 		    "tl_exdata: closing socket ocon"));
4772 		prim->type = T_EXDATA_IND;
4773 		tl_icon_queuemsg(tep->te_oconp, tep->te_seqno, mp);
4774 		return;
4775 
4776 	case TS_WREQ_ORDREL:
4777 		if (tep->te_conp == NULL) {
4778 			/*
4779 			 * Other end closed - generate discon_ind
4780 			 * with reason 0 to cause an EPIPE but no
4781 			 * read side error on AF_UNIX sockets.
4782 			 */
4783 			freemsg(mp);
4784 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
4785 			    SL_TRACE | SL_ERROR,
4786 			    "tl_exdata: WREQ_ORDREL and no peer"));
4787 			tl_discon_ind(tep, 0);
4788 			return;
4789 		}
4790 		break;
4791 
4792 	default:
4793 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
4794 		    SL_TRACE | SL_ERROR,
4795 		    "tl_wput:T_EXDATA_REQ:out of state, state=%d",
4796 		    tep->te_state));
4797 		tl_merror(wq, mp, EPROTO);
4798 		return;
4799 	}
4800 	/*
4801 	 * tep->te_state = nextstate[TE_EXDATA_REQ][tep->te_state];
4802 	 * (state stays same on this event)
4803 	 */
4804 
4805 	/*
4806 	 * get connected endpoint
4807 	 */
4808 	if (((peer_tep = tep->te_conp) == NULL) || peer_tep->te_closing) {
4809 		freemsg(mp);
4810 		/* Peer closed */
4811 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4812 		    "tl_exdata: peer gone"));
4813 		return;
4814 	}
4815 
4816 	peer_rq = peer_tep->te_rq;
4817 
4818 	/*
4819 	 * Put it back if flow controlled
4820 	 * Note: Messages already on queue when we are closing is bounded
4821 	 * so we can ignore flow control.
4822 	 */
4823 	if (!canputnext(peer_rq) && !closing) {
4824 		TL_PUTBQ(tep, mp);
4825 		return;
4826 	}
4827 
4828 	/*
4829 	 * validate state on peer
4830 	 */
4831 	switch (peer_tep->te_state) {
4832 	case TS_DATA_XFER:
4833 	case TS_WIND_ORDREL:
4834 		/* valid states */
4835 		break;
4836 	default:
4837 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4838 		    "tl_exdata:rx side:invalid state"));
4839 		tl_merror(peer_tep->te_wq, mp, EPROTO);
4840 		return;
4841 	}
4842 	/*
4843 	 * peer_tep->te_state = nextstate[TE_DATA_IND][peer_tep->te_state];
4844 	 * (peer state stays same on this event)
4845 	 */
4846 	/*
4847 	 * reuse message block
4848 	 */
4849 	prim->type = T_EXDATA_IND;
4850 
4851 	/*
4852 	 * send data to connected peer
4853 	 */
4854 	putnext(peer_rq, mp);
4855 }
4856 
4857 
4858 
4859 static void
4860 tl_ordrel(mblk_t *mp, tl_endpt_t *tep)
4861 {
4862 	queue_t			*wq = tep->te_wq;
4863 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
4864 	ssize_t			msz = MBLKL(mp);
4865 	tl_endpt_t		*peer_tep;
4866 	queue_t			*peer_rq;
4867 	boolean_t		closing = tep->te_closing;
4868 
4869 	if (msz < sizeof (struct T_ordrel_req)) {
4870 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4871 		    "tl_ordrel:invalid message"));
4872 		if (!closing) {
4873 			tl_merror(wq, mp, EPROTO);
4874 		} else {
4875 			freemsg(mp);
4876 		}
4877 		return;
4878 	}
4879 
4880 	/*
4881 	 * validate state
4882 	 */
4883 	switch (tep->te_state) {
4884 	case TS_DATA_XFER:
4885 	case TS_WREQ_ORDREL:
4886 		/* valid states */
4887 		if (tep->te_conp != NULL)
4888 			break;
4889 
4890 		if (tep->te_oconp == NULL)
4891 			break;
4892 
4893 		/*
4894 		 * For a socket the T_CONN_CON is sent early thus
4895 		 * the peer might not yet have accepted the connection.
4896 		 * If we are closing queue the packet with the T_CONN_IND.
4897 		 * Otherwise defer processing the packet until the peer
4898 		 * accepts the connection.
4899 		 * Note that the queue is noenabled when we go into this
4900 		 * state.
4901 		 */
4902 		if (!closing) {
4903 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4904 			    SL_TRACE | SL_ERROR,
4905 			    "tl_ordlrel: ocon"));
4906 			TL_PUTBQ(tep, mp);
4907 			return;
4908 		}
4909 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4910 		    "tl_ordlrel: closing socket ocon"));
4911 		prim->type = T_ORDREL_IND;
4912 		(void) tl_icon_queuemsg(tep->te_oconp, tep->te_seqno, mp);
4913 		return;
4914 
4915 	default:
4916 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
4917 		    SL_TRACE | SL_ERROR,
4918 		    "tl_wput:T_ORDREL_REQ:out of state, state=%d",
4919 		    tep->te_state));
4920 		if (!closing) {
4921 			tl_merror(wq, mp, EPROTO);
4922 		} else {
4923 			freemsg(mp);
4924 		}
4925 		return;
4926 	}
4927 	tep->te_state = nextstate[TE_ORDREL_REQ][tep->te_state];
4928 
4929 	/*
4930 	 * get connected endpoint
4931 	 */
4932 	if (((peer_tep = tep->te_conp) == NULL) || peer_tep->te_closing) {
4933 		/* Peer closed */
4934 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4935 		    "tl_ordrel: peer gone"));
4936 		freemsg(mp);
4937 		return;
4938 	}
4939 
4940 	peer_rq = peer_tep->te_rq;
4941 
4942 	/*
4943 	 * Put it back if flow controlled except when we are closing.
4944 	 * Note: Messages already on queue when we are closing is bounded
4945 	 * so we can ignore flow control.
4946 	 */
4947 	if (!canputnext(peer_rq) && !closing) {
4948 		TL_PUTBQ(tep, mp);
4949 		return;
4950 	}
4951 
4952 	/*
4953 	 * validate state on peer
4954 	 */
4955 	switch (peer_tep->te_state) {
4956 	case TS_DATA_XFER:
4957 	case TS_WIND_ORDREL:
4958 		/* valid states */
4959 		break;
4960 	default:
4961 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
4962 		    "tl_ordrel:rx side:invalid state"));
4963 		tl_merror(peer_tep->te_wq, mp, EPROTO);
4964 		return;
4965 	}
4966 	peer_tep->te_state = nextstate[TE_ORDREL_IND][peer_tep->te_state];
4967 
4968 	/*
4969 	 * reuse message block
4970 	 */
4971 	prim->type = T_ORDREL_IND;
4972 	(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4973 	    "tl_ordrel: send ordrel_ind"));
4974 
4975 	/*
4976 	 * send data to connected peer
4977 	 */
4978 	putnext(peer_rq, mp);
4979 }
4980 
4981 
4982 /*
4983  * Send T_UDERROR_IND. The error should be from the <sys/errno.h> space.
4984  */
4985 static void
4986 tl_uderr(queue_t *wq, mblk_t *mp, t_scalar_t err)
4987 {
4988 	size_t			err_sz;
4989 	tl_endpt_t		*tep;
4990 	struct T_unitdata_req	*udreq;
4991 	mblk_t			*err_mp;
4992 	t_scalar_t		alen;
4993 	t_scalar_t		olen;
4994 	struct T_uderror_ind	*uderr;
4995 	uchar_t			*addr_startp;
4996 
4997 	err_sz = sizeof (struct T_uderror_ind);
4998 	tep = (tl_endpt_t *)wq->q_ptr;
4999 	udreq = (struct T_unitdata_req *)mp->b_rptr;
5000 	alen = udreq->DEST_length;
5001 	olen = udreq->OPT_length;
5002 
5003 	if (alen > 0)
5004 		err_sz = T_ALIGN(err_sz + alen);
5005 	if (olen > 0)
5006 		err_sz += olen;
5007 
5008 	err_mp = allocb(err_sz, BPRI_MED);
5009 	if (err_mp == NULL) {
5010 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE | SL_ERROR,
5011 		    "tl_uderr:allocb failure"));
5012 		/*
5013 		 * Note: no rollback of state needed as it does
5014 		 * not change in connectionless transport
5015 		 */
5016 		tl_memrecover(wq, mp, err_sz);
5017 		return;
5018 	}
5019 
5020 	DB_TYPE(err_mp) = M_PROTO;
5021 	err_mp->b_wptr = err_mp->b_rptr + err_sz;
5022 	uderr = (struct T_uderror_ind *)err_mp->b_rptr;
5023 	uderr->PRIM_type = T_UDERROR_IND;
5024 	uderr->ERROR_type = err;
5025 	uderr->DEST_length = alen;
5026 	uderr->OPT_length = olen;
5027 	if (alen <= 0) {
5028 		uderr->DEST_offset = 0;
5029 	} else {
5030 		uderr->DEST_offset =
5031 		    (t_scalar_t)sizeof (struct T_uderror_ind);
5032 		addr_startp = mp->b_rptr + udreq->DEST_offset;
5033 		bcopy(addr_startp, err_mp->b_rptr + uderr->DEST_offset,
5034 		    (size_t)alen);
5035 	}
5036 	if (olen <= 0) {
5037 		uderr->OPT_offset = 0;
5038 	} else {
5039 		uderr->OPT_offset =
5040 		    (t_scalar_t)T_ALIGN(sizeof (struct T_uderror_ind) +
5041 		    uderr->DEST_length);
5042 		addr_startp = mp->b_rptr + udreq->OPT_offset;
5043 		bcopy(addr_startp, err_mp->b_rptr+uderr->OPT_offset,
5044 		    (size_t)olen);
5045 	}
5046 	freemsg(mp);
5047 
5048 	/*
5049 	 * send indication message
5050 	 */
5051 	tep->te_state = nextstate[TE_UDERROR_IND][tep->te_state];
5052 
5053 	qreply(wq, err_mp);
5054 }
5055 
5056 static void
5057 tl_unitdata_ser(mblk_t *mp, tl_endpt_t *tep)
5058 {
5059 	queue_t *wq = tep->te_wq;
5060 
5061 	if (!tep->te_closing && (wq->q_first != NULL)) {
5062 		TL_PUTQ(tep, mp);
5063 	} else {
5064 		if (tep->te_rq != NULL)
5065 			tl_unitdata(mp, tep);
5066 		else
5067 			freemsg(mp);
5068 	}
5069 
5070 	tl_serializer_exit(tep);
5071 	tl_refrele(tep);
5072 }
5073 
5074 /*
5075  * Handle T_unitdata_req.
5076  * If TL_SET[U]CRED or TL_SOCKUCRED generate the credentials options.
5077  * If this is a socket pass through options unmodified.
5078  */
5079 static void
5080 tl_unitdata(mblk_t *mp, tl_endpt_t *tep)
5081 {
5082 	queue_t			*wq = tep->te_wq;
5083 	soux_addr_t		ux_addr;
5084 	tl_addr_t		destaddr;
5085 	uchar_t			*addr_startp;
5086 	tl_endpt_t		*peer_tep;
5087 	struct T_unitdata_ind	*udind;
5088 	struct T_unitdata_req	*udreq;
5089 	ssize_t			msz, ui_sz, reuse_mb_sz;
5090 	t_scalar_t		alen, aoff, olen, ooff;
5091 	t_scalar_t		oldolen = 0;
5092 	cred_t			*cr = NULL;
5093 	pid_t			cpid;
5094 
5095 	udreq = (struct T_unitdata_req *)mp->b_rptr;
5096 	msz = MBLKL(mp);
5097 
5098 	/*
5099 	 * validate the state
5100 	 */
5101 	if (tep->te_state != TS_IDLE) {
5102 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
5103 		    SL_TRACE | SL_ERROR,
5104 		    "tl_wput:T_CONN_REQ:out of state"));
5105 		tl_merror(wq, mp, EPROTO);
5106 		return;
5107 	}
5108 	/*
5109 	 * tep->te_state = nextstate[TE_UNITDATA_REQ][tep->te_state];
5110 	 * (state does not change on this event)
5111 	 */
5112 
5113 	/*
5114 	 * validate the message
5115 	 * Note: dereference fields in struct inside message only
5116 	 * after validating the message length.
5117 	 */
5118 	if (msz < sizeof (struct T_unitdata_req)) {
5119 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
5120 		    "tl_unitdata:invalid message length"));
5121 		tl_merror(wq, mp, EINVAL);
5122 		return;
5123 	}
5124 	alen = udreq->DEST_length;
5125 	aoff = udreq->DEST_offset;
5126 	oldolen = olen = udreq->OPT_length;
5127 	ooff = udreq->OPT_offset;
5128 	if (olen == 0)
5129 		ooff = 0;
5130 
5131 	if (IS_SOCKET(tep)) {
5132 		if ((alen != TL_SOUX_ADDRLEN) ||
5133 		    (aoff < 0) ||
5134 		    (aoff + alen > msz) ||
5135 		    (olen < 0) || (ooff < 0) ||
5136 		    ((olen > 0) && ((ooff + olen) > msz))) {
5137 			(void) (STRLOG(TL_ID, tep->te_minor,
5138 			    1, SL_TRACE | SL_ERROR,
5139 			    "tl_unitdata_req: invalid socket addr "
5140 			    "(msz=%d, al=%d, ao=%d, ol=%d, oo = %d)",
5141 			    (int)msz, alen, aoff, olen, ooff));
5142 			tl_error_ack(wq, mp, TSYSERR, EINVAL, T_UNITDATA_REQ);
5143 			return;
5144 		}
5145 		bcopy(mp->b_rptr + aoff, &ux_addr, TL_SOUX_ADDRLEN);
5146 
5147 		if ((ux_addr.soua_magic != SOU_MAGIC_IMPLICIT) &&
5148 		    (ux_addr.soua_magic != SOU_MAGIC_EXPLICIT)) {
5149 			(void) (STRLOG(TL_ID, tep->te_minor,
5150 			    1, SL_TRACE | SL_ERROR,
5151 			    "tl_conn_req: invalid socket magic"));
5152 			tl_error_ack(wq, mp, TSYSERR, EINVAL, T_UNITDATA_REQ);
5153 			return;
5154 		}
5155 	} else {
5156 		if ((alen < 0) ||
5157 		    (aoff < 0) ||
5158 		    ((alen > 0) && ((aoff + alen) > msz)) ||
5159 		    ((ssize_t)alen > (msz - sizeof (struct T_unitdata_req))) ||
5160 		    ((aoff + alen) < 0) ||
5161 		    ((olen > 0) && ((ooff + olen) > msz)) ||
5162 		    (olen < 0) ||
5163 		    (ooff < 0) ||
5164 		    ((ssize_t)olen > (msz - sizeof (struct T_unitdata_req)))) {
5165 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
5166 				    SL_TRACE | SL_ERROR,
5167 				    "tl_unitdata:invalid unit data message"));
5168 			tl_merror(wq, mp, EINVAL);
5169 			return;
5170 		}
5171 	}
5172 
5173 	/* Options not supported unless it's a socket */
5174 	if (alen == 0 || (olen != 0 && !IS_SOCKET(tep))) {
5175 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE | SL_ERROR,
5176 		    "tl_unitdata:option use(unsupported) or zero len addr"));
5177 		tl_uderr(wq, mp, EPROTO);
5178 		return;
5179 	}
5180 #ifdef DEBUG
5181 	/*
5182 	 * Mild form of ASSERT()ion to detect broken TPI apps.
5183 	 * if (!assertion)
5184 	 *	log warning;
5185 	 */
5186 	if (!(aoff >= (t_scalar_t)sizeof (struct T_unitdata_req))) {
5187 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE | SL_ERROR,
5188 		    "tl_unitdata:addr overlaps TPI message"));
5189 	}
5190 #endif
5191 	/*
5192 	 * get destination endpoint
5193 	 */
5194 	destaddr.ta_alen = alen;
5195 	destaddr.ta_abuf = mp->b_rptr + aoff;
5196 	destaddr.ta_zoneid = tep->te_zoneid;
5197 
5198 	/*
5199 	 * Check whether the destination is the same that was used previously
5200 	 * and the destination endpoint is in the right state. If something is
5201 	 * wrong, find destination again and cache it.
5202 	 */
5203 	peer_tep = tep->te_lastep;
5204 
5205 	if ((peer_tep == NULL) || peer_tep->te_closing ||
5206 	    (peer_tep->te_state != TS_IDLE) ||
5207 	    !tl_eqaddr(&destaddr, &peer_tep->te_ap)) {
5208 		/*
5209 		 * Not the same as cached destination , need to find the right
5210 		 * destination.
5211 		 */
5212 		peer_tep = (IS_SOCKET(tep) ?
5213 		    tl_sock_find_peer(tep, &ux_addr) :
5214 		    tl_find_peer(tep, &destaddr));
5215 
5216 		if (peer_tep == NULL) {
5217 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5218 			    SL_TRACE | SL_ERROR,
5219 			    "tl_unitdata:no one at destination address"));
5220 			tl_uderr(wq, mp, ECONNRESET);
5221 			return;
5222 		}
5223 
5224 		/*
5225 		 * Cache the new peer.
5226 		 */
5227 		if (tep->te_lastep != NULL)
5228 			tl_refrele(tep->te_lastep);
5229 
5230 		tep->te_lastep = peer_tep;
5231 	}
5232 
5233 	if (peer_tep->te_state != TS_IDLE) {
5234 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
5235 		    "tl_unitdata:provider in invalid state"));
5236 		tl_uderr(wq, mp, EPROTO);
5237 		return;
5238 	}
5239 
5240 	ASSERT(peer_tep->te_rq != NULL);
5241 
5242 	/*
5243 	 * Put it back if flow controlled except when we are closing.
5244 	 * Note: Messages already on queue when we are closing is bounded
5245 	 * so we can ignore flow control.
5246 	 */
5247 	if (!canputnext(peer_tep->te_rq) && !(tep->te_closing)) {
5248 		/* record what we are flow controlled on */
5249 		if (tep->te_flowq != NULL) {
5250 			list_remove(&tep->te_flowq->te_flowlist, tep);
5251 		}
5252 		list_insert_head(&peer_tep->te_flowlist, tep);
5253 		tep->te_flowq = peer_tep;
5254 		TL_PUTBQ(tep, mp);
5255 		return;
5256 	}
5257 	/*
5258 	 * prepare indication message
5259 	 */
5260 
5261 	/*
5262 	 * calculate length of message
5263 	 */
5264 	if (peer_tep->te_flag & (TL_SETCRED | TL_SETUCRED | TL_SOCKUCRED)) {
5265 		cr = msg_getcred(mp, &cpid);
5266 		ASSERT(cr != NULL);
5267 
5268 		if (peer_tep->te_flag & TL_SETCRED) {
5269 			ASSERT(olen == 0);
5270 			olen = (t_scalar_t)sizeof (struct opthdr) +
5271 			    OPTLEN(sizeof (tl_credopt_t));
5272 						/* 1 option only */
5273 		} else if (peer_tep->te_flag & TL_SETUCRED) {
5274 			ASSERT(olen == 0);
5275 			olen = (t_scalar_t)sizeof (struct opthdr) +
5276 			    OPTLEN(ucredminsize(cr));
5277 						/* 1 option only */
5278 		} else {
5279 			/* Possibly more than one option */
5280 			olen += (t_scalar_t)sizeof (struct T_opthdr) +
5281 			    OPTLEN(ucredminsize(cr));
5282 		}
5283 	}
5284 
5285 	ui_sz = T_ALIGN(sizeof (struct T_unitdata_ind) + tep->te_alen) + olen;
5286 	reuse_mb_sz = T_ALIGN(sizeof (struct T_unitdata_ind) + alen) + olen;
5287 
5288 	/*
5289 	 * If the unitdata_ind fits and we are not adding options
5290 	 * reuse the udreq mblk.
5291 	 *
5292 	 * Otherwise, it is possible we need to append an option if one of the
5293 	 * te_flag bits is set. This requires extra space in the data block for
5294 	 * the additional option but the traditional technique used below to
5295 	 * allocate a new block and copy into it will not work when there is a
5296 	 * message block with a free pointer (since we don't know anything
5297 	 * about the layout of the data, pointers referencing or within the
5298 	 * data, etc.). To handle this possibility the upper layers may have
5299 	 * preallocated some space to use for appending an option. We check the
5300 	 * overall mblock size against the size we need ('reuse_mb_sz' with the
5301 	 * original address length [alen] to ensure we won't overrun the
5302 	 * current mblk data size) to see if there is free space and thus
5303 	 * avoid allocating a new message block.
5304 	 */
5305 	if (msz >= ui_sz && alen >= tep->te_alen &&
5306 	    !(peer_tep->te_flag & (TL_SETCRED | TL_SETUCRED | TL_SOCKUCRED))) {
5307 		/*
5308 		 * Reuse the original mblk. Leave options in place.
5309 		 */
5310 		udind = (struct T_unitdata_ind *)mp->b_rptr;
5311 		udind->PRIM_type = T_UNITDATA_IND;
5312 		udind->SRC_length = tep->te_alen;
5313 		addr_startp = mp->b_rptr + udind->SRC_offset;
5314 		bcopy(tep->te_abuf, addr_startp, tep->te_alen);
5315 
5316 	} else if (MBLKSIZE(mp) >= reuse_mb_sz && alen >= tep->te_alen &&
5317 	    mp->b_datap->db_frtnp != NULL) {
5318 		/*
5319 		 * We have a message block with a free pointer, but extra space
5320 		 * has been pre-allocated for us in case we need to append an
5321 		 * option. Reuse the original mblk, leaving existing options in
5322 		 * place.
5323 		 */
5324 		udind = (struct T_unitdata_ind *)mp->b_rptr;
5325 		udind->PRIM_type = T_UNITDATA_IND;
5326 		udind->SRC_length = tep->te_alen;
5327 		addr_startp = mp->b_rptr + udind->SRC_offset;
5328 		bcopy(tep->te_abuf, addr_startp, tep->te_alen);
5329 
5330 		if (peer_tep->te_flag &
5331 		    (TL_SETCRED | TL_SETUCRED | TL_SOCKUCRED)) {
5332 			ASSERT(cr != NULL);
5333 			/*
5334 			 * We're appending one new option here after the
5335 			 * original ones.
5336 			 */
5337 			tl_fill_option(mp->b_rptr + udind->OPT_offset + oldolen,
5338 			    cr, cpid, peer_tep->te_flag, peer_tep->te_credp);
5339 		}
5340 
5341 	} else if (mp->b_datap->db_frtnp != NULL) {
5342 		/*
5343 		 * The next block creates a new mp and tries to copy the data
5344 		 * block into it, but that cannot handle a message with a free
5345 		 * pointer (for more details see the comment in kstrputmsg()
5346 		 * where dupmsg() is called). Since we can never properly
5347 		 * duplicate the mp while also extending the data, just error
5348 		 * out now.
5349 		 */
5350 		tl_uderr(wq, mp, EPROTO);
5351 		return;
5352 	} else {
5353 		/* Allocate a new T_unitdata_ind message */
5354 		mblk_t *ui_mp;
5355 
5356 		ui_mp = allocb(ui_sz, BPRI_MED);
5357 		if (ui_mp == NULL) {
5358 			(void) (STRLOG(TL_ID, tep->te_minor, 4, SL_TRACE,
5359 			    "tl_unitdata:allocb failure:message queued"));
5360 			tl_memrecover(wq, mp, ui_sz);
5361 			return;
5362 		}
5363 
5364 		/*
5365 		 * fill in T_UNITDATA_IND contents
5366 		 */
5367 		DB_TYPE(ui_mp) = M_PROTO;
5368 		ui_mp->b_wptr = ui_mp->b_rptr + ui_sz;
5369 		udind = (struct T_unitdata_ind *)ui_mp->b_rptr;
5370 		udind->PRIM_type = T_UNITDATA_IND;
5371 		udind->SRC_offset = (t_scalar_t)sizeof (struct T_unitdata_ind);
5372 		udind->SRC_length = tep->te_alen;
5373 		addr_startp = ui_mp->b_rptr + udind->SRC_offset;
5374 		bcopy(tep->te_abuf, addr_startp, tep->te_alen);
5375 		udind->OPT_offset =
5376 		    (t_scalar_t)T_ALIGN(udind->SRC_offset + udind->SRC_length);
5377 		udind->OPT_length = olen;
5378 		if (peer_tep->te_flag &
5379 		    (TL_SETCRED | TL_SETUCRED | TL_SOCKUCRED)) {
5380 
5381 			if (oldolen != 0) {
5382 				bcopy((void *)((uintptr_t)udreq + ooff),
5383 				    (void *)((uintptr_t)udind +
5384 				    udind->OPT_offset),
5385 				    oldolen);
5386 			}
5387 			ASSERT(cr != NULL);
5388 
5389 			tl_fill_option(ui_mp->b_rptr + udind->OPT_offset +
5390 			    oldolen, cr, cpid,
5391 			    peer_tep->te_flag, peer_tep->te_credp);
5392 		} else {
5393 			bcopy((void *)((uintptr_t)udreq + ooff),
5394 			    (void *)((uintptr_t)udind + udind->OPT_offset),
5395 			    olen);
5396 		}
5397 
5398 		/*
5399 		 * relink data blocks from mp to ui_mp
5400 		 */
5401 		ui_mp->b_cont = mp->b_cont;
5402 		freeb(mp);
5403 		mp = ui_mp;
5404 	}
5405 	/*
5406 	 * send indication message
5407 	 */
5408 	peer_tep->te_state = nextstate[TE_UNITDATA_IND][peer_tep->te_state];
5409 	putnext(peer_tep->te_rq, mp);
5410 }
5411 
5412 
5413 
5414 /*
5415  * Check if a given addr is in use.
5416  * Endpoint ptr returned or NULL if not found.
5417  * The name space is separate for each mode. This implies that
5418  * sockets get their own name space.
5419  */
5420 static tl_endpt_t *
5421 tl_find_peer(tl_endpt_t *tep, tl_addr_t *ap)
5422 {
5423 	tl_endpt_t *peer_tep = NULL;
5424 	int rc = mod_hash_find_cb(tep->te_addrhash, (mod_hash_key_t)ap,
5425 	    (mod_hash_val_t *)&peer_tep, tl_find_callback);
5426 
5427 	ASSERT(!IS_SOCKET(tep));
5428 
5429 	ASSERT(ap != NULL && ap->ta_alen > 0);
5430 	ASSERT(ap->ta_zoneid == tep->te_zoneid);
5431 	ASSERT(ap->ta_abuf != NULL);
5432 	EQUIV(rc == 0, peer_tep != NULL);
5433 	IMPLY(rc == 0,
5434 	    (tep->te_zoneid == peer_tep->te_zoneid) &&
5435 	    (tep->te_transport == peer_tep->te_transport));
5436 
5437 	if ((rc == 0) && (peer_tep->te_closing)) {
5438 		tl_refrele(peer_tep);
5439 		peer_tep = NULL;
5440 	}
5441 
5442 	return (peer_tep);
5443 }
5444 
5445 /*
5446  * Find peer for a socket based on unix domain address.
5447  * For implicit addresses our peer can be found by minor number in ai hash. For
5448  * explicit binds we look vnode address at addr_hash.
5449  */
5450 static tl_endpt_t *
5451 tl_sock_find_peer(tl_endpt_t *tep, soux_addr_t *ux_addr)
5452 {
5453 	tl_endpt_t *peer_tep = NULL;
5454 	mod_hash_t *hash = ux_addr->soua_magic == SOU_MAGIC_IMPLICIT ?
5455 	    tep->te_aihash : tep->te_addrhash;
5456 	int rc = mod_hash_find_cb(hash, (mod_hash_key_t)ux_addr->soua_vp,
5457 	    (mod_hash_val_t *)&peer_tep, tl_find_callback);
5458 
5459 	ASSERT(IS_SOCKET(tep));
5460 	EQUIV(rc == 0, peer_tep != NULL);
5461 	IMPLY(rc == 0, (tep->te_transport == peer_tep->te_transport));
5462 
5463 	if (peer_tep != NULL) {
5464 		/* Don't attempt to use closing peer. */
5465 		if (peer_tep->te_closing)
5466 			goto errout;
5467 
5468 		/*
5469 		 * Cross-zone unix sockets are permitted, but for Trusted
5470 		 * Extensions only, the "server" for these must be in the
5471 		 * global zone.
5472 		 */
5473 		if ((peer_tep->te_zoneid != tep->te_zoneid) &&
5474 		    is_system_labeled() &&
5475 		    (peer_tep->te_zoneid != GLOBAL_ZONEID))
5476 			goto errout;
5477 	}
5478 
5479 	return (peer_tep);
5480 
5481 errout:
5482 	tl_refrele(peer_tep);
5483 	return (NULL);
5484 }
5485 
5486 /*
5487  * Generate a free addr and return it in struct pointed by ap
5488  * but allocating space for address buffer.
5489  * The generated address will be at least 4 bytes long and, if req->ta_alen
5490  * exceeds 4 bytes, be req->ta_alen bytes long.
5491  *
5492  * If address is found it will be inserted in the hash.
5493  *
5494  * If req->ta_alen is larger than the default alen (4 bytes) the last
5495  * alen-4 bytes will always be the same as in req.
5496  *
5497  * Return 0 for failure.
5498  * Return non-zero for success.
5499  */
5500 static boolean_t
5501 tl_get_any_addr(tl_endpt_t *tep, tl_addr_t *req)
5502 {
5503 	t_scalar_t	alen;
5504 	uint32_t	loopcnt;	/* Limit loop to 2^32 */
5505 
5506 	ASSERT(tep->te_hash_hndl != NULL);
5507 	ASSERT(!IS_SOCKET(tep));
5508 
5509 	if (tep->te_hash_hndl == NULL)
5510 		return (B_FALSE);
5511 
5512 	/*
5513 	 * check if default addr is in use
5514 	 * if it is - bump it and try again
5515 	 */
5516 	if (req == NULL) {
5517 		alen = sizeof (uint32_t);
5518 	} else {
5519 		alen = max(req->ta_alen, sizeof (uint32_t));
5520 		ASSERT(tep->te_zoneid == req->ta_zoneid);
5521 	}
5522 
5523 	if (tep->te_alen < alen) {
5524 		void *abuf = kmem_zalloc((size_t)alen, KM_NOSLEEP);
5525 
5526 		/*
5527 		 * Not enough space in tep->ta_ap to hold the address,
5528 		 * allocate a bigger space.
5529 		 */
5530 		if (abuf == NULL)
5531 			return (B_FALSE);
5532 
5533 		if (tep->te_alen > 0)
5534 			kmem_free(tep->te_abuf, tep->te_alen);
5535 
5536 		tep->te_alen = alen;
5537 		tep->te_abuf = abuf;
5538 	}
5539 
5540 	/* Copy in the address in req */
5541 	if (req != NULL) {
5542 		ASSERT(alen >= req->ta_alen);
5543 		bcopy(req->ta_abuf, tep->te_abuf, (size_t)req->ta_alen);
5544 	}
5545 
5546 	/*
5547 	 * First try minor number then try default addresses.
5548 	 */
5549 	bcopy(&tep->te_minor, tep->te_abuf, sizeof (uint32_t));
5550 
5551 	for (loopcnt = 0; loopcnt < UINT32_MAX; loopcnt++) {
5552 		if (mod_hash_insert_reserve(tep->te_addrhash,
5553 		    (mod_hash_key_t)&tep->te_ap, (mod_hash_val_t)tep,
5554 		    tep->te_hash_hndl) == 0) {
5555 			/*
5556 			 * found free address
5557 			 */
5558 			tep->te_flag |= TL_ADDRHASHED;
5559 			tep->te_hash_hndl = NULL;
5560 
5561 			return (B_TRUE); /* successful return */
5562 		}
5563 		/*
5564 		 * Use default address.
5565 		 */
5566 		bcopy(&tep->te_defaddr, tep->te_abuf, sizeof (uint32_t));
5567 		atomic_inc_32(&tep->te_defaddr);
5568 	}
5569 
5570 	/*
5571 	 * Failed to find anything.
5572 	 */
5573 	(void) (STRLOG(TL_ID, -1, 1, SL_ERROR,
5574 	    "tl_get_any_addr:looped 2^32 times"));
5575 	return (B_FALSE);
5576 }
5577 
5578 /*
5579  * reallocb + set r/w ptrs to reflect size.
5580  */
5581 static mblk_t *
5582 tl_resizemp(mblk_t *mp, ssize_t new_size)
5583 {
5584 	if ((mp = reallocb(mp, new_size, 0)) == NULL)
5585 		return (NULL);
5586 
5587 	mp->b_rptr = DB_BASE(mp);
5588 	mp->b_wptr = mp->b_rptr + new_size;
5589 	return (mp);
5590 }
5591 
5592 static void
5593 tl_cl_backenable(tl_endpt_t *tep)
5594 {
5595 	list_t *l = &tep->te_flowlist;
5596 	tl_endpt_t *elp;
5597 
5598 	ASSERT(IS_CLTS(tep));
5599 
5600 	for (elp = list_head(l); elp != NULL; elp = list_head(l)) {
5601 		ASSERT(tep->te_ser == elp->te_ser);
5602 		ASSERT(elp->te_flowq == tep);
5603 		if (!elp->te_closing)
5604 			TL_QENABLE(elp);
5605 		elp->te_flowq = NULL;
5606 		list_remove(l, elp);
5607 	}
5608 }
5609 
5610 /*
5611  * Unconnect endpoints.
5612  */
5613 static void
5614 tl_co_unconnect(tl_endpt_t *tep)
5615 {
5616 	tl_endpt_t	*peer_tep = tep->te_conp;
5617 	tl_endpt_t	*srv_tep = tep->te_oconp;
5618 	list_t		*l;
5619 	tl_icon_t	*tip;
5620 	tl_endpt_t	*cl_tep;
5621 	mblk_t		*d_mp;
5622 
5623 	ASSERT(IS_COTS(tep));
5624 	/*
5625 	 * If our peer is closing, don't use it.
5626 	 */
5627 	if ((peer_tep != NULL) && peer_tep->te_closing) {
5628 		TL_UNCONNECT(tep->te_conp);
5629 		peer_tep = NULL;
5630 	}
5631 	if ((srv_tep != NULL) && srv_tep->te_closing) {
5632 		TL_UNCONNECT(tep->te_oconp);
5633 		srv_tep = NULL;
5634 	}
5635 
5636 	if (tep->te_nicon > 0) {
5637 		l = &tep->te_iconp;
5638 		/*
5639 		 * If incoming requests pending, change state
5640 		 * of clients on disconnect ind event and send
5641 		 * discon_ind pdu to modules above them
5642 		 * for server: all clients get disconnect
5643 		 */
5644 
5645 		while (tep->te_nicon > 0) {
5646 			tip    = list_head(l);
5647 			cl_tep = tip->ti_tep;
5648 
5649 			if (cl_tep == NULL) {
5650 				tl_freetip(tep, tip);
5651 				continue;
5652 			}
5653 
5654 			if (cl_tep->te_oconp != NULL) {
5655 				ASSERT(cl_tep != cl_tep->te_oconp);
5656 				TL_UNCONNECT(cl_tep->te_oconp);
5657 			}
5658 
5659 			if (cl_tep->te_closing) {
5660 				tl_freetip(tep, tip);
5661 				continue;
5662 			}
5663 
5664 			enableok(cl_tep->te_wq);
5665 			TL_QENABLE(cl_tep);
5666 			d_mp = tl_discon_ind_alloc(ECONNREFUSED, BADSEQNUM);
5667 			if (d_mp != NULL) {
5668 				cl_tep->te_state = TS_IDLE;
5669 				putnext(cl_tep->te_rq, d_mp);
5670 			} else {
5671 				(void) (STRLOG(TL_ID, tep->te_minor, 3,
5672 				    SL_TRACE | SL_ERROR,
5673 				    "tl_co_unconnect:icmng: "
5674 				    "allocb failure"));
5675 			}
5676 			tl_freetip(tep, tip);
5677 		}
5678 	} else if (srv_tep != NULL) {
5679 		/*
5680 		 * If outgoing request pending, change state
5681 		 * of server on discon ind event
5682 		 */
5683 
5684 		if (IS_SOCKET(tep) && !tl_disable_early_connect &&
5685 		    IS_COTSORD(srv_tep) &&
5686 		    !tl_icon_hasprim(srv_tep, tep->te_seqno, T_ORDREL_IND)) {
5687 			/*
5688 			 * Queue ordrel_ind for server to be picked up
5689 			 * when the connection is accepted.
5690 			 */
5691 			d_mp = tl_ordrel_ind_alloc();
5692 		} else {
5693 			/*
5694 			 * send discon_ind to server
5695 			 */
5696 			d_mp = tl_discon_ind_alloc(ECONNRESET, tep->te_seqno);
5697 		}
5698 		if (d_mp == NULL) {
5699 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5700 			    SL_TRACE | SL_ERROR,
5701 			    "tl_co_unconnect:outgoing:allocb failure"));
5702 			TL_UNCONNECT(tep->te_oconp);
5703 			goto discon_peer;
5704 		}
5705 
5706 		/*
5707 		 * If this is a socket the T_DISCON_IND is queued with
5708 		 * the T_CONN_IND. Otherwise the T_CONN_IND is removed
5709 		 * from the list of pending connections.
5710 		 * Note that when te_oconp is set the peer better have
5711 		 * a t_connind_t for the client.
5712 		 */
5713 		if (IS_SOCKET(tep) && !tl_disable_early_connect) {
5714 			/*
5715 			 * Queue the disconnection message.
5716 			 */
5717 			tl_icon_queuemsg(srv_tep, tep->te_seqno, d_mp);
5718 		} else {
5719 			tip = tl_icon_find(srv_tep, tep->te_seqno);
5720 			if (tip == NULL) {
5721 				freemsg(d_mp);
5722 			} else {
5723 				ASSERT(tep == tip->ti_tep);
5724 				ASSERT(tep->te_ser == srv_tep->te_ser);
5725 				/*
5726 				 * Delete tip from the server list.
5727 				 */
5728 				if (srv_tep->te_nicon == 1) {
5729 					srv_tep->te_state =
5730 					    nextstate[TE_DISCON_IND2]
5731 					    [srv_tep->te_state];
5732 				} else {
5733 					srv_tep->te_state =
5734 					    nextstate[TE_DISCON_IND3]
5735 					    [srv_tep->te_state];
5736 				}
5737 				ASSERT(*(uint32_t *)(d_mp->b_rptr) ==
5738 				    T_DISCON_IND);
5739 				putnext(srv_tep->te_rq, d_mp);
5740 				tl_freetip(srv_tep, tip);
5741 			}
5742 			TL_UNCONNECT(tep->te_oconp);
5743 			srv_tep = NULL;
5744 		}
5745 	} else if (peer_tep != NULL) {
5746 		/*
5747 		 * unconnect existing connection
5748 		 * If connected, change state of peer on
5749 		 * discon ind event and send discon ind pdu
5750 		 * to module above it
5751 		 */
5752 
5753 		ASSERT(tep->te_ser == peer_tep->te_ser);
5754 		if (IS_COTSORD(peer_tep) &&
5755 		    (peer_tep->te_state == TS_WIND_ORDREL ||
5756 		    peer_tep->te_state == TS_DATA_XFER)) {
5757 			/*
5758 			 * send ordrel ind
5759 			 */
5760 			(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
5761 			"tl_co_unconnect:connected: ordrel_ind state %d->%d",
5762 			    peer_tep->te_state,
5763 			    nextstate[TE_ORDREL_IND][peer_tep->te_state]));
5764 			d_mp = tl_ordrel_ind_alloc();
5765 			if (d_mp == NULL) {
5766 				(void) (STRLOG(TL_ID, tep->te_minor, 3,
5767 				    SL_TRACE | SL_ERROR,
5768 				    "tl_co_unconnect:connected:"
5769 				    "allocb failure"));
5770 				/*
5771 				 * Continue with cleaning up peer as
5772 				 * this side may go away with the close
5773 				 */
5774 				TL_QENABLE(peer_tep);
5775 				goto discon_peer;
5776 			}
5777 			peer_tep->te_state =
5778 			    nextstate[TE_ORDREL_IND][peer_tep->te_state];
5779 
5780 			putnext(peer_tep->te_rq, d_mp);
5781 			/*
5782 			 * Handle flow control case.  This will generate
5783 			 * a t_discon_ind message with reason 0 if there
5784 			 * is data queued on the write side.
5785 			 */
5786 			TL_QENABLE(peer_tep);
5787 		} else if (IS_COTSORD(peer_tep) &&
5788 		    peer_tep->te_state == TS_WREQ_ORDREL) {
5789 			/*
5790 			 * Sent an ordrel_ind. We send a discon with
5791 			 * with error 0 to inform that the peer is gone.
5792 			 */
5793 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5794 			    SL_TRACE | SL_ERROR,
5795 			    "tl_co_unconnect: discon in state %d",
5796 			    tep->te_state));
5797 			tl_discon_ind(peer_tep, 0);
5798 		} else {
5799 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5800 			    SL_TRACE | SL_ERROR,
5801 			    "tl_co_unconnect: state %d", tep->te_state));
5802 			tl_discon_ind(peer_tep, ECONNRESET);
5803 		}
5804 
5805 discon_peer:
5806 		/*
5807 		 * Disconnect cross-pointers only for close
5808 		 */
5809 		if (tep->te_closing) {
5810 			peer_tep = tep->te_conp;
5811 			TL_REMOVE_PEER(peer_tep->te_conp);
5812 			TL_REMOVE_PEER(tep->te_conp);
5813 		}
5814 	}
5815 }
5816 
5817 /*
5818  * Note: The following routine does not recover from allocb()
5819  * failures
5820  * The reason should be from the <sys/errno.h> space.
5821  */
5822 static void
5823 tl_discon_ind(tl_endpt_t *tep, uint32_t reason)
5824 {
5825 	mblk_t *d_mp;
5826 
5827 	if (tep->te_closing)
5828 		return;
5829 
5830 	/*
5831 	 * flush the queues.
5832 	 */
5833 	flushq(tep->te_rq, FLUSHDATA);
5834 	(void) putnextctl1(tep->te_rq, M_FLUSH, FLUSHRW);
5835 
5836 	/*
5837 	 * send discon ind
5838 	 */
5839 	d_mp = tl_discon_ind_alloc(reason, tep->te_seqno);
5840 	if (d_mp == NULL) {
5841 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE | SL_ERROR,
5842 		    "tl_discon_ind:allocb failure"));
5843 		return;
5844 	}
5845 	tep->te_state = TS_IDLE;
5846 	putnext(tep->te_rq, d_mp);
5847 }
5848 
5849 /*
5850  * Note: The following routine does not recover from allocb()
5851  * failures
5852  * The reason should be from the <sys/errno.h> space.
5853  */
5854 static mblk_t *
5855 tl_discon_ind_alloc(uint32_t reason, t_scalar_t seqnum)
5856 {
5857 	mblk_t *mp;
5858 	struct T_discon_ind *tdi;
5859 
5860 	if (mp = allocb(sizeof (struct T_discon_ind), BPRI_MED)) {
5861 		DB_TYPE(mp) = M_PROTO;
5862 		mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
5863 		tdi = (struct T_discon_ind *)mp->b_rptr;
5864 		tdi->PRIM_type = T_DISCON_IND;
5865 		tdi->DISCON_reason = reason;
5866 		tdi->SEQ_number = seqnum;
5867 	}
5868 	return (mp);
5869 }
5870 
5871 
5872 /*
5873  * Note: The following routine does not recover from allocb()
5874  * failures
5875  */
5876 static mblk_t *
5877 tl_ordrel_ind_alloc(void)
5878 {
5879 	mblk_t *mp;
5880 	struct T_ordrel_ind *toi;
5881 
5882 	if (mp = allocb(sizeof (struct T_ordrel_ind), BPRI_MED)) {
5883 		DB_TYPE(mp) = M_PROTO;
5884 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ordrel_ind);
5885 		toi = (struct T_ordrel_ind *)mp->b_rptr;
5886 		toi->PRIM_type = T_ORDREL_IND;
5887 	}
5888 	return (mp);
5889 }
5890 
5891 
5892 /*
5893  * Lookup the seqno in the list of queued connections.
5894  */
5895 static tl_icon_t *
5896 tl_icon_find(tl_endpt_t *tep, t_scalar_t seqno)
5897 {
5898 	list_t *l = &tep->te_iconp;
5899 	tl_icon_t *tip = list_head(l);
5900 
5901 	ASSERT(seqno != 0);
5902 
5903 	for (; tip != NULL && (tip->ti_seqno != seqno); tip = list_next(l, tip))
5904 		;
5905 
5906 	return (tip);
5907 }
5908 
5909 /*
5910  * Queue data for a given T_CONN_IND while verifying that redundant
5911  * messages, such as a T_ORDREL_IND after a T_DISCON_IND, are not queued.
5912  * Used when the originator of the connection closes.
5913  */
5914 static void
5915 tl_icon_queuemsg(tl_endpt_t *tep, t_scalar_t seqno, mblk_t *nmp)
5916 {
5917 	tl_icon_t		*tip;
5918 	mblk_t			**mpp, *mp;
5919 	int			prim, nprim;
5920 
5921 	if (nmp->b_datap->db_type == M_PROTO)
5922 		nprim = ((union T_primitives *)nmp->b_rptr)->type;
5923 	else
5924 		nprim = -1;	/* M_DATA */
5925 
5926 	tip = tl_icon_find(tep, seqno);
5927 	if (tip == NULL) {
5928 		freemsg(nmp);
5929 		return;
5930 	}
5931 
5932 	ASSERT(tip->ti_seqno != 0);
5933 	mpp = &tip->ti_mp;
5934 	while (*mpp != NULL) {
5935 		mp = *mpp;
5936 
5937 		if (mp->b_datap->db_type == M_PROTO)
5938 			prim = ((union T_primitives *)mp->b_rptr)->type;
5939 		else
5940 			prim = -1;	/* M_DATA */
5941 
5942 		/*
5943 		 * Allow nothing after a T_DISCON_IND
5944 		 */
5945 		if (prim == T_DISCON_IND) {
5946 			freemsg(nmp);
5947 			return;
5948 		}
5949 		/*
5950 		 * Only allow a T_DISCON_IND after an T_ORDREL_IND
5951 		 */
5952 		if (prim == T_ORDREL_IND && nprim != T_DISCON_IND) {
5953 			freemsg(nmp);
5954 			return;
5955 		}
5956 		mpp = &(mp->b_next);
5957 	}
5958 	*mpp = nmp;
5959 }
5960 
5961 /*
5962  * Verify if a certain TPI primitive exists on the connind queue.
5963  * Use prim -1 for M_DATA.
5964  * Return non-zero if found.
5965  */
5966 static boolean_t
5967 tl_icon_hasprim(tl_endpt_t *tep, t_scalar_t seqno, t_scalar_t prim)
5968 {
5969 	tl_icon_t *tip = tl_icon_find(tep, seqno);
5970 	boolean_t found = B_FALSE;
5971 
5972 	if (tip != NULL) {
5973 		mblk_t *mp;
5974 		for (mp = tip->ti_mp; !found && mp != NULL; mp = mp->b_next) {
5975 			found = (DB_TYPE(mp) == M_PROTO &&
5976 			    ((union T_primitives *)mp->b_rptr)->type == prim);
5977 		}
5978 	}
5979 	return (found);
5980 }
5981 
5982 /*
5983  * Send the b_next mblk chain that has accumulated before the connection
5984  * was accepted. Perform the necessary state transitions.
5985  */
5986 static void
5987 tl_icon_sendmsgs(tl_endpt_t *tep, mblk_t **mpp)
5988 {
5989 	mblk_t			*mp;
5990 	union T_primitives	*primp;
5991 
5992 	if (tep->te_closing) {
5993 		tl_icon_freemsgs(mpp);
5994 		return;
5995 	}
5996 
5997 	ASSERT(tep->te_state == TS_DATA_XFER);
5998 	ASSERT(tep->te_rq->q_first == NULL);
5999 
6000 	while ((mp = *mpp) != NULL) {
6001 		*mpp = mp->b_next;
6002 		mp->b_next = NULL;
6003 
6004 		ASSERT((DB_TYPE(mp) == M_DATA) || (DB_TYPE(mp) == M_PROTO));
6005 		switch (DB_TYPE(mp)) {
6006 		default:
6007 			freemsg(mp);
6008 			break;
6009 		case M_DATA:
6010 			putnext(tep->te_rq, mp);
6011 			break;
6012 		case M_PROTO:
6013 			primp = (union T_primitives *)mp->b_rptr;
6014 			switch (primp->type) {
6015 			case T_UNITDATA_IND:
6016 			case T_DATA_IND:
6017 			case T_OPTDATA_IND:
6018 			case T_EXDATA_IND:
6019 				putnext(tep->te_rq, mp);
6020 				break;
6021 			case T_ORDREL_IND:
6022 				tep->te_state = nextstate[TE_ORDREL_IND]
6023 				    [tep->te_state];
6024 				putnext(tep->te_rq, mp);
6025 				break;
6026 			case T_DISCON_IND:
6027 				tep->te_state = TS_IDLE;
6028 				putnext(tep->te_rq, mp);
6029 				break;
6030 			default:
6031 #ifdef DEBUG
6032 				cmn_err(CE_PANIC,
6033 				    "tl_icon_sendmsgs: unknown primitive");
6034 #endif /* DEBUG */
6035 				freemsg(mp);
6036 				break;
6037 			}
6038 			break;
6039 		}
6040 	}
6041 }
6042 
6043 /*
6044  * Free the b_next mblk chain that has accumulated before the connection
6045  * was accepted.
6046  */
6047 static void
6048 tl_icon_freemsgs(mblk_t **mpp)
6049 {
6050 	mblk_t *mp;
6051 
6052 	while ((mp = *mpp) != NULL) {
6053 		*mpp = mp->b_next;
6054 		mp->b_next = NULL;
6055 		freemsg(mp);
6056 	}
6057 }
6058 
6059 /*
6060  * Send M_ERROR
6061  * Note: assumes caller ensured enough space in mp or enough
6062  *	memory available. Does not attempt recovery from allocb()
6063  *	failures
6064  */
6065 
6066 static void
6067 tl_merror(queue_t *wq, mblk_t *mp, int error)
6068 {
6069 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
6070 
6071 	if (tep->te_closing) {
6072 		freemsg(mp);
6073 		return;
6074 	}
6075 
6076 	(void) (STRLOG(TL_ID, tep->te_minor, 1,
6077 	    SL_TRACE | SL_ERROR,
6078 	    "tl_merror: tep=%p, err=%d", (void *)tep, error));
6079 
6080 	/*
6081 	 * flush all messages on queue. we are shutting
6082 	 * the stream down on fatal error
6083 	 */
6084 	flushq(wq, FLUSHALL);
6085 	if (IS_COTS(tep)) {
6086 		/* connection oriented - unconnect endpoints */
6087 		tl_co_unconnect(tep);
6088 	}
6089 	if (mp->b_cont) {
6090 		freemsg(mp->b_cont);
6091 		mp->b_cont = NULL;
6092 	}
6093 
6094 	if ((MBLKSIZE(mp) < 1) || (DB_REF(mp) > 1)) {
6095 		freemsg(mp);
6096 		mp = allocb(1, BPRI_HI);
6097 		if (mp == NULL) {
6098 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
6099 			    SL_TRACE | SL_ERROR,
6100 			    "tl_merror:M_PROTO: out of memory"));
6101 			return;
6102 		}
6103 	}
6104 	if (mp) {
6105 		DB_TYPE(mp) = M_ERROR;
6106 		mp->b_rptr = DB_BASE(mp);
6107 		*mp->b_rptr = (char)error;
6108 		mp->b_wptr = mp->b_rptr + sizeof (char);
6109 		qreply(wq, mp);
6110 	} else {
6111 		(void) putnextctl1(tep->te_rq, M_ERROR, error);
6112 	}
6113 }
6114 
6115 static void
6116 tl_fill_option(uchar_t *buf, cred_t *cr, pid_t cpid, int flag, cred_t *pcr)
6117 {
6118 	ASSERT(cr != NULL);
6119 
6120 	if (flag & TL_SETCRED) {
6121 		struct opthdr *opt = (struct opthdr *)buf;
6122 		tl_credopt_t *tlcred;
6123 
6124 		opt->level = TL_PROT_LEVEL;
6125 		opt->name = TL_OPT_PEER_CRED;
6126 		opt->len = (t_uscalar_t)OPTLEN(sizeof (tl_credopt_t));
6127 
6128 		tlcred = (tl_credopt_t *)(opt + 1);
6129 		tlcred->tc_uid = crgetuid(cr);
6130 		tlcred->tc_gid = crgetgid(cr);
6131 		tlcred->tc_ruid = crgetruid(cr);
6132 		tlcred->tc_rgid = crgetrgid(cr);
6133 		tlcred->tc_suid = crgetsuid(cr);
6134 		tlcred->tc_sgid = crgetsgid(cr);
6135 		tlcred->tc_ngroups = crgetngroups(cr);
6136 	} else if (flag & TL_SETUCRED) {
6137 		struct opthdr *opt = (struct opthdr *)buf;
6138 
6139 		opt->level = TL_PROT_LEVEL;
6140 		opt->name = TL_OPT_PEER_UCRED;
6141 		opt->len = (t_uscalar_t)OPTLEN(ucredminsize(cr));
6142 
6143 		(void) cred2ucred(cr, cpid, (void *)(opt + 1), pcr);
6144 	} else {
6145 		struct T_opthdr *topt = (struct T_opthdr *)buf;
6146 		ASSERT(flag & TL_SOCKUCRED);
6147 
6148 		topt->level = SOL_SOCKET;
6149 		topt->name = SCM_UCRED;
6150 		topt->len = ucredminsize(cr) + sizeof (*topt);
6151 		topt->status = 0;
6152 		(void) cred2ucred(cr, cpid, (void *)(topt + 1), pcr);
6153 	}
6154 }
6155 
6156 /* ARGSUSED */
6157 static int
6158 tl_default_opt(queue_t *wq, int level, int name, uchar_t *ptr)
6159 {
6160 	/* no default value processed in protocol specific code currently */
6161 	return (-1);
6162 }
6163 
6164 /* ARGSUSED */
6165 static int
6166 tl_get_opt(queue_t *wq, int level, int name, uchar_t *ptr)
6167 {
6168 	int len;
6169 	tl_endpt_t *tep;
6170 	int *valp;
6171 
6172 	tep = (tl_endpt_t *)wq->q_ptr;
6173 
6174 	len = 0;
6175 
6176 	/*
6177 	 * Assumes: option level and name sanity check done elsewhere
6178 	 */
6179 
6180 	switch (level) {
6181 	case SOL_SOCKET:
6182 		if (!IS_SOCKET(tep))
6183 			break;
6184 		switch (name) {
6185 		case SO_RECVUCRED:
6186 			len = sizeof (int);
6187 			valp = (int *)ptr;
6188 			*valp = (tep->te_flag & TL_SOCKUCRED) != 0;
6189 			break;
6190 		default:
6191 			break;
6192 		}
6193 		break;
6194 	case TL_PROT_LEVEL:
6195 		switch (name) {
6196 		case TL_OPT_PEER_CRED:
6197 		case TL_OPT_PEER_UCRED:
6198 			/*
6199 			 * option not supposed to retrieved directly
6200 			 * Only sent in T_CON_{IND,CON}, T_UNITDATA_IND
6201 			 * when some internal flags set by other options
6202 			 * Direct retrieval always designed to fail(ignored)
6203 			 * for this option.
6204 			 */
6205 			break;
6206 		}
6207 	}
6208 	return (len);
6209 }
6210 
6211 /* ARGSUSED */
6212 static int
6213 tl_set_opt(queue_t *wq, uint_t mgmt_flags, int level, int name, uint_t inlen,
6214     uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs,
6215     cred_t *cr)
6216 {
6217 	int error;
6218 	tl_endpt_t *tep;
6219 
6220 	tep = (tl_endpt_t *)wq->q_ptr;
6221 
6222 	error = 0;		/* NOERROR */
6223 
6224 	/*
6225 	 * Assumes: option level and name sanity checks done elsewhere
6226 	 */
6227 
6228 	switch (level) {
6229 	case SOL_SOCKET:
6230 		if (!IS_SOCKET(tep)) {
6231 			error = EINVAL;
6232 			break;
6233 		}
6234 		/*
6235 		 * TBD: fill in other AF_UNIX socket options and then stop
6236 		 * returning error.
6237 		 */
6238 		switch (name) {
6239 		case SO_RECVUCRED:
6240 			/*
6241 			 * We only support this for datagram sockets;
6242 			 * getpeerucred handles the connection oriented
6243 			 * transports.
6244 			 */
6245 			if (!IS_CLTS(tep)) {
6246 				error = EINVAL;
6247 				break;
6248 			}
6249 			if (*(int *)invalp == 0)
6250 				tep->te_flag &= ~TL_SOCKUCRED;
6251 			else
6252 				tep->te_flag |= TL_SOCKUCRED;
6253 			break;
6254 		default:
6255 			error = EINVAL;
6256 			break;
6257 		}
6258 		break;
6259 	case TL_PROT_LEVEL:
6260 		switch (name) {
6261 		case TL_OPT_PEER_CRED:
6262 		case TL_OPT_PEER_UCRED:
6263 			/*
6264 			 * option not supposed to be set directly
6265 			 * Its value in initialized for each endpoint at
6266 			 * driver open time.
6267 			 * Direct setting always designed to fail for this
6268 			 * option.
6269 			 */
6270 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
6271 			    SL_TRACE | SL_ERROR,
6272 			    "tl_set_opt: option is not supported"));
6273 			error = EPROTO;
6274 			break;
6275 		}
6276 	}
6277 	return (error);
6278 }
6279 
6280 
6281 static void
6282 tl_timer(void *arg)
6283 {
6284 	queue_t *wq = arg;
6285 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
6286 
6287 	ASSERT(tep);
6288 
6289 	tep->te_timoutid = 0;
6290 
6291 	enableok(wq);
6292 	/*
6293 	 * Note: can call wsrv directly here and save context switch
6294 	 * Consider change when qtimeout (not timeout) is active
6295 	 */
6296 	qenable(wq);
6297 }
6298 
6299 static void
6300 tl_buffer(void *arg)
6301 {
6302 	queue_t *wq = arg;
6303 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
6304 
6305 	ASSERT(tep);
6306 
6307 	tep->te_bufcid = 0;
6308 	tep->te_nowsrv = B_FALSE;
6309 
6310 	enableok(wq);
6311 	/*
6312 	 *  Note: can call wsrv directly here and save context switch
6313 	 * Consider change when qbufcall (not bufcall) is active
6314 	 */
6315 	qenable(wq);
6316 }
6317 
6318 static void
6319 tl_memrecover(queue_t *wq, mblk_t *mp, size_t size)
6320 {
6321 	tl_endpt_t *tep;
6322 
6323 	tep = (tl_endpt_t *)wq->q_ptr;
6324 
6325 	if (tep->te_closing) {
6326 		freemsg(mp);
6327 		return;
6328 	}
6329 	noenable(wq);
6330 
6331 	(void) insq(wq, wq->q_first, mp);
6332 
6333 	if (tep->te_bufcid || tep->te_timoutid) {
6334 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE | SL_ERROR,
6335 		    "tl_memrecover:recover %p pending", (void *)wq));
6336 		return;
6337 	}
6338 
6339 	tep->te_bufcid = qbufcall(wq, size, BPRI_MED, tl_buffer, wq);
6340 	if (tep->te_bufcid == NULL) {
6341 		tep->te_timoutid = qtimeout(wq, tl_timer, wq,
6342 		    drv_usectohz(TL_BUFWAIT));
6343 	}
6344 }
6345 
6346 static void
6347 tl_freetip(tl_endpt_t *tep, tl_icon_t *tip)
6348 {
6349 	ASSERT(tip->ti_seqno != 0);
6350 
6351 	if (tip->ti_mp != NULL) {
6352 		tl_icon_freemsgs(&tip->ti_mp);
6353 		tip->ti_mp = NULL;
6354 	}
6355 	if (tip->ti_tep != NULL) {
6356 		tl_refrele(tip->ti_tep);
6357 		tip->ti_tep = NULL;
6358 	}
6359 	list_remove(&tep->te_iconp, tip);
6360 	kmem_free(tip, sizeof (tl_icon_t));
6361 	tep->te_nicon--;
6362 }
6363 
6364 /*
6365  * Remove address from address hash.
6366  */
6367 static void
6368 tl_addr_unbind(tl_endpt_t *tep)
6369 {
6370 	tl_endpt_t *elp;
6371 
6372 	if (tep->te_flag & TL_ADDRHASHED) {
6373 		if (IS_SOCKET(tep)) {
6374 			(void) mod_hash_remove(tep->te_addrhash,
6375 			    (mod_hash_key_t)tep->te_vp,
6376 			    (mod_hash_val_t *)&elp);
6377 			tep->te_vp = (void *)(uintptr_t)tep->te_minor;
6378 			tep->te_magic = SOU_MAGIC_IMPLICIT;
6379 		} else {
6380 			(void) mod_hash_remove(tep->te_addrhash,
6381 			    (mod_hash_key_t)&tep->te_ap,
6382 			    (mod_hash_val_t *)&elp);
6383 			(void) kmem_free(tep->te_abuf, tep->te_alen);
6384 			tep->te_alen = -1;
6385 			tep->te_abuf = NULL;
6386 		}
6387 		tep->te_flag &= ~TL_ADDRHASHED;
6388 	}
6389 }
6390