xref: /illumos-gate/usr/src/uts/common/io/timod.c (revision a55b6846f87afedf14b3f9b64fbb8c0d0a3f2fe2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /* ONC_PLUS EXTRACT START */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * Transport Interface Library cooperating module - issue 2
34  */
35 
36 /* ONC_PLUS EXTRACT END */
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/stream.h>
40 #include <sys/stropts.h>
41 #include <sys/strsubr.h>
42 #define	_SUN_TPI_VERSION 2
43 #include <sys/tihdr.h>
44 #include <sys/timod.h>
45 #include <sys/suntpi.h>
46 #include <sys/debug.h>
47 #include <sys/strlog.h>
48 #include <sys/errno.h>
49 #include <sys/cred.h>
50 #include <sys/cmn_err.h>
51 #include <sys/kmem.h>
52 #include <sys/sysmacros.h>
53 #include <sys/ddi.h>
54 #include <sys/sunddi.h>
55 #include <sys/strsun.h>
56 #include <c2/audit.h>
57 
58 /*
59  * This is the loadable module wrapper.
60  */
61 #include <sys/conf.h>
62 #include <sys/modctl.h>
63 
64 static struct streamtab timinfo;
65 
66 static struct fmodsw fsw = {
67 	"timod",
68 	&timinfo,
69 	D_MTQPAIR | D_MP,
70 };
71 
72 /*
73  * Module linkage information for the kernel.
74  */
75 
76 static struct modlstrmod modlstrmod = {
77 	&mod_strmodops, "transport interface str mod", &fsw
78 };
79 
80 static struct modlinkage modlinkage = {
81 	MODREV_1, &modlstrmod, NULL
82 };
83 
84 static krwlock_t	tim_list_rwlock;
85 
86 /*
87  * This module keeps track of capabilities of underlying transport. Information
88  * is persistent through module invocations (open/close). Currently it remembers
89  * whether underlying transport supports TI_GET{MY,PEER}NAME ioctls and
90  * T_CAPABILITY_REQ message. This module either passes ioctl/messages to the
91  * transport or emulates it when transport doesn't understand these
92  * ioctl/messages.
93  *
94  * It is assumed that transport supports T_CAPABILITY_REQ when timod receives
95  * T_CAPABILITY_ACK from the transport. There is no current standard describing
96  * transport behaviour when it receives unknown message type, so following
97  * reactions are expected and handled:
98  *
99  * 1) Transport drops unknown T_CAPABILITY_REQ message type. In this case timod
100  *    will wait for tcap_wait time and assume that transport doesn't provide
101  *    this message type. T_CAPABILITY_REQ should never travel over the wire, so
102  *    timeout value should only take into consideration internal processing time
103  *    for the message. From user standpoint it may mean that an application will
104  *    hang for TCAP_WAIT time in the kernel the first time this message is used
105  *    with some particular transport (e.g. TCP/IP) during system uptime.
106  *
107  * 2) Transport responds with T_ERROR_ACK specifying T_CAPABILITY_REQ as
108  *    original message type. In this case it is assumed that transport doesn't
109  *    support it (which may not always be true - some transports return
110  *    T_ERROR_ACK in other cases like lack of system memory).
111  *
112  * 3) Transport responds with M_ERROR, effectively shutting down the
113  *    stream. Unfortunately there is no standard way to pass the reason of
114  *    M_ERROR message back to the caller, so it is assumed that if M_ERROR was
115  *    sent in response to T_CAPABILITY_REQ message, transport doesn't support
116  *    it.
117  *
118  * It is possible under certain circumstances that timod will incorrectly assume
119  * that underlying transport doesn't provide T_CAPABILITY_REQ message type. In
120  * this "worst-case" scenario timod will emulate its functionality by itself and
121  * will provide only TC1_INFO capability. All other bits in CAP_bits1 field are
122  * cleaned. TC1_INFO is emulated by sending T_INFO_REQ down to transport
123  * provider.
124  */
125 
126 /*
127  * Notes about locking:
128  *
129  * tim_list_rwlock protects the list of tim_tim structures itself.  When this
130  * lock is held, the list itself is stable, but the contents of the entries
131  * themselves might not be.
132  *
133  * The rest of the members are generally protected by D_MTQPAIR, which
134  * specifies a default exclusive inner perimeter.  If you're looking at
135  * q->q_ptr, then it's stable.
136  *
137  * There's one exception to this rule: tim_peer{maxlen,len,name}.  These members
138  * are touched without entering the associated STREAMS perimeter because we
139  * get the pointer via tim_findlink() rather than q_ptr.  These are protected
140  * by tim_mutex instead.  If you don't hold that lock, don't look at them.
141  *
142  * (It would be possible to separate out the 'set by T_CONN_RES' cases from the
143  * others, but there appears to be no reason to do so.)
144  */
145 struct tim_tim {
146 	uint32_t	tim_flags;
147 	t_uscalar_t	tim_backlog;
148 	mblk_t		*tim_iocsave;
149 	t_scalar_t	tim_mymaxlen;
150 	t_scalar_t	tim_mylen;
151 	caddr_t		tim_myname;
152 	t_scalar_t	tim_peermaxlen;
153 	t_scalar_t	tim_peerlen;
154 	caddr_t		tim_peername;
155 	cred_t		*tim_peercred;
156 	mblk_t		*tim_consave;
157 	bufcall_id_t	tim_wbufcid;
158 	bufcall_id_t	tim_rbufcid;
159 	timeout_id_t	tim_wtimoutid;
160 	timeout_id_t	tim_rtimoutid;
161 	/* Protected by the global tim_list_rwlock for all instances */
162 	struct tim_tim	*tim_next;
163 	struct tim_tim	**tim_ptpn;
164 	t_uscalar_t	tim_acceptor;
165 	t_scalar_t	tim_saved_prim;		/* Primitive from message */
166 						/*  part of ioctl. */
167 	timeout_id_t	tim_tcap_timoutid;	/* For T_CAP_REQ timeout */
168 	tpi_provinfo_t	*tim_provinfo;		/* Transport description */
169 	kmutex_t	tim_mutex;		/* protect tim_peer* */
170 	pid_t		tim_cpid;
171 };
172 
173 
174 /*
175  * Local flags used with tim_flags field in instance structure of
176  * type 'struct _ti_user' declared above.
177  * Historical note:
178  * This namespace constants were previously declared in a
179  * a very messed up namespace in timod.h
180  *
181  * There may be 3 states for transport:
182  *
183  * 1) It provides T_CAPABILITY_REQ
184  * 2) It does not provide T_CAPABILITY_REQ
185  * 3) It is not known yet whether transport provides T_CAPABILITY_REQ or not.
186  *
187  * It is assumed that the underlying transport either provides
188  * T_CAPABILITY_REQ or not and this does not changes during the
189  * system lifetime.
190  *
191  */
192 #define	PEEK_RDQ_EXPIND 0x0001	/* look for expinds on stream rd queues */
193 #define	WAITIOCACK	0x0002	/* waiting for info for ioctl act	*/
194 #define	CLTS		0x0004	/* connectionless transport		*/
195 #define	COTS		0x0008	/* connection-oriented transport	*/
196 #define	CONNWAIT	0x0010	/* waiting for connect confirmation	*/
197 #define	LOCORDREL	0x0020	/* local end has orderly released	*/
198 #define	REMORDREL	0x0040	/* remote end had orderly released	*/
199 #define	NAMEPROC	0x0080	/* processing a NAME ioctl		*/
200 /* ONC_PLUS EXTRACT START */
201 #define	DO_MYNAME	0x0100	/* timod handles TI_GETMYNAME		*/
202 /* ONC_PLUS EXTRACT END */
203 #define	DO_PEERNAME	0x0200	/* timod handles TI_GETPEERNAME		*/
204 #define	TI_CAP_RECVD	0x0400	/* TI_CAPABILITY received		*/
205 #define	CAP_WANTS_INFO	0x0800	/* TI_CAPABILITY has TC1_INFO set	*/
206 #define	WAIT_IOCINFOACK	0x1000	/* T_INFO_REQ generated from ioctl	*/
207 #define	WAIT_CONNRESACK	0x2000	/* waiting for T_OK_ACK to T_CONN_RES	*/
208 
209 
210 /* Debugging facilities */
211 /*
212  * Logging needed for debugging timod should only appear in DEBUG kernel.
213  */
214 #ifdef DEBUG
215 #define	TILOG(msg, arg)		tilog((msg), (arg))
216 #define	TILOGP(msg, arg)	tilogp((msg), (arg))
217 #else
218 #define	TILOG(msg, arg)
219 #define	TILOGP(msg, arg)
220 #endif
221 
222 
223 /*
224  * Sleep timeout for T_CAPABILITY_REQ. This message never travels across
225  * network, so timeout value should be enough to cover all internal processing
226  * time.
227  */
228 clock_t tim_tcap_wait = 2;
229 
230 /* Sleep timeout in tim_recover() */
231 #define	TIMWAIT	(1*hz)
232 /* Sleep timeout in tim_ioctl_retry() 0.2 seconds */
233 #define	TIMIOCWAIT	(200*hz/1000)
234 
235 /*
236  * Return values for ti_doname().
237  */
238 #define	DONAME_FAIL	0	/* failing ioctl (done) */
239 #define	DONAME_DONE	1	/* done processing */
240 #define	DONAME_CONT	2	/* continue proceesing (not done yet) */
241 
242 /*
243  * Function prototypes
244  */
245 static int ti_doname(queue_t *, mblk_t *);
246 static int ti_expind_on_rdqueues(queue_t *);
247 static void tim_ioctl_send_reply(queue_t *, mblk_t *, mblk_t *);
248 static void tim_send_ioc_error_ack(queue_t *, struct tim_tim *, mblk_t *);
249 static void tim_tcap_timer(void *);
250 static void tim_tcap_genreply(queue_t *, struct tim_tim *);
251 static void tim_send_reply(queue_t *, mblk_t *, struct tim_tim *, t_scalar_t);
252 static void tim_answer_ti_sync(queue_t *, mblk_t *, struct tim_tim *,
253     mblk_t *, uint32_t);
254 static void tim_send_ioctl_tpi_msg(queue_t *, mblk_t *, struct tim_tim *,
255 	struct iocblk *);
256 static void tim_clear_peer(struct tim_tim *);
257 
258 int
259 _init(void)
260 {
261 	int	error;
262 
263 	rw_init(&tim_list_rwlock, NULL, RW_DRIVER, NULL);
264 	error = mod_install(&modlinkage);
265 	if (error != 0) {
266 		rw_destroy(&tim_list_rwlock);
267 		return (error);
268 	}
269 
270 	return (0);
271 }
272 
273 int
274 _fini(void)
275 {
276 	int	error;
277 
278 	error = mod_remove(&modlinkage);
279 	if (error != 0)
280 		return (error);
281 	rw_destroy(&tim_list_rwlock);
282 	return (0);
283 }
284 
285 int
286 _info(struct modinfo *modinfop)
287 {
288 	return (mod_info(&modlinkage, modinfop));
289 }
290 
291 
292 /*
293  * Hash list for all instances. Used to find tim_tim structure based on
294  * ACCEPTOR_id in T_CONN_RES. Protected by tim_list_rwlock.
295  */
296 #define	TIM_HASH_SIZE	256
297 #ifdef	_ILP32
298 #define	TIM_HASH(id) (((uintptr_t)(id) >> 8) % TIM_HASH_SIZE)
299 #else
300 #define	TIM_HASH(id) ((uintptr_t)(id) % TIM_HASH_SIZE)
301 #endif	/* _ILP32 */
302 static struct tim_tim	*tim_hash[TIM_HASH_SIZE];
303 int		tim_cnt = 0;
304 
305 static void tilog(char *, t_scalar_t);
306 static void tilogp(char *, uintptr_t);
307 static mblk_t *tim_filladdr(queue_t *, mblk_t *, boolean_t);
308 static void tim_addlink(struct tim_tim	*);
309 static void tim_dellink(struct tim_tim	*);
310 static struct tim_tim *tim_findlink(t_uscalar_t);
311 static void tim_recover(queue_t *, mblk_t *, t_scalar_t);
312 static void tim_ioctl_retry(queue_t *);
313 
314 int dotilog = 0;
315 
316 #define	TIMOD_ID	3
317 
318 /* ONC_PLUS EXTRACT START */
319 static int timodopen(queue_t *, dev_t *, int, int, cred_t *);
320 /* ONC_PLUS EXTRACT END */
321 static int timodclose(queue_t *, int, cred_t *);
322 static void timodwput(queue_t *, mblk_t *);
323 static void timodrput(queue_t *, mblk_t *);
324 /* ONC_PLUS EXTRACT START */
325 static void timodrsrv(queue_t *);
326 /* ONC_PLUS EXTRACT END */
327 static void timodwsrv(queue_t *);
328 /* ONC_PLUS EXTRACT START */
329 static int timodrproc(queue_t *, mblk_t *);
330 static int timodwproc(queue_t *, mblk_t *);
331 /* ONC_PLUS EXTRACT END */
332 
333 /* stream data structure definitions */
334 
335 static struct module_info timod_info =
336 	{TIMOD_ID, "timod", 0, INFPSZ, 512, 128};
337 static struct qinit timodrinit = {
338 	(int (*)())timodrput,
339 	(int (*)())timodrsrv,
340 	timodopen,
341 	timodclose,
342 	nulldev,
343 	&timod_info,
344 	NULL
345 };
346 static struct qinit timodwinit = {
347 	(int (*)())timodwput,
348 	(int (*)())timodwsrv,
349 	timodopen,
350 	timodclose,
351 	nulldev,
352 	&timod_info,
353 	NULL
354 };
355 static struct streamtab timinfo = { &timodrinit, &timodwinit, NULL, NULL };
356 
357 /* ONC_PLUS EXTRACT START */
358 /*
359  * timodopen -	open routine gets called when the module gets pushed
360  *		onto the stream.
361  */
362 /*ARGSUSED*/
363 static int
364 timodopen(
365 	queue_t *q,
366 	dev_t *devp,
367 	int flag,
368 	int sflag,
369 	cred_t *crp)
370 {
371 	struct tim_tim *tp;
372 	struct stroptions *sop;
373 	mblk_t *bp;
374 
375 	ASSERT(q != NULL);
376 
377 	if (q->q_ptr) {
378 		return (0);
379 	}
380 
381 	if ((bp = allocb(sizeof (struct stroptions), BPRI_MED)) == 0)
382 		return (ENOMEM);
383 
384 	tp = kmem_zalloc(sizeof (struct tim_tim), KM_SLEEP);
385 
386 	tp->tim_cpid = -1;
387 	tp->tim_saved_prim = -1;
388 
389 	mutex_init(&tp->tim_mutex, NULL, MUTEX_DEFAULT, NULL);
390 
391 	q->q_ptr = (caddr_t)tp;
392 	WR(q)->q_ptr = (caddr_t)tp;
393 
394 	tilogp("timodopen: Allocated for tp %lx\n", (uintptr_t)tp);
395 	tilogp("timodopen: Allocated for q %lx\n", (uintptr_t)q);
396 
397 	/* Must be done before tpi_findprov and _ILP32 q_next walk below */
398 	qprocson(q);
399 
400 	tp->tim_provinfo = tpi_findprov(q);
401 
402 	/*
403 	 * Defer allocation of the buffers for the local address and
404 	 * the peer's address until we need them.
405 	 * Assume that timod has to handle getname until we here
406 	 * an iocack from the transport provider or we know that
407 	 * transport provider doesn't understand it.
408 	 */
409 	if (tp->tim_provinfo->tpi_myname != PI_YES) {
410 		TILOG("timodopen: setting DO_MYNAME\n", 0);
411 		tp->tim_flags |= DO_MYNAME;
412 	}
413 
414 	if (tp->tim_provinfo->tpi_peername != PI_YES) {
415 		TILOG("timodopen: setting DO_PEERNAME\n", 0);
416 		tp->tim_flags |= DO_PEERNAME;
417 	}
418 
419 #ifdef	_ILP32
420 	{
421 		queue_t *driverq;
422 
423 		/*
424 		 * Find my driver's read queue (for T_CONN_RES handling)
425 		 */
426 		driverq = WR(q);
427 		while (SAMESTR(driverq))
428 			driverq = driverq->q_next;
429 
430 		tp->tim_acceptor = (t_uscalar_t)RD(driverq);
431 	}
432 #else
433 	tp->tim_acceptor = (t_uscalar_t)getminor(*devp);
434 #endif	/* _ILP32 */
435 
436 	/*
437 	 * Add this one to the list.
438 	 */
439 	tim_addlink(tp);
440 
441 	/*
442 	 * Send M_SETOPTS to stream head to make sure M_PCPROTO messages
443 	 * are not flushed. This prevents application deadlocks.
444 	 */
445 	bp->b_datap->db_type = M_SETOPTS;
446 	bp->b_wptr += sizeof (struct stroptions);
447 	sop = (struct stroptions *)bp->b_rptr;
448 	sop->so_flags = SO_READOPT;
449 	sop->so_readopt = RFLUSHPCPROT;
450 
451 	putnext(q, bp);
452 
453 	return (0);
454 }
455 
456 static void
457 tim_timer(void *arg)
458 {
459 	queue_t *q = arg;
460 	struct tim_tim *tp = (struct tim_tim *)q->q_ptr;
461 
462 	ASSERT(tp);
463 
464 	if (q->q_flag & QREADR) {
465 		ASSERT(tp->tim_rtimoutid);
466 		tp->tim_rtimoutid = 0;
467 	} else {
468 		ASSERT(tp->tim_wtimoutid);
469 		tp->tim_wtimoutid = 0;
470 	}
471 	enableok(q);
472 	qenable(q);
473 }
474 
475 static void
476 tim_buffer(void *arg)
477 {
478 	queue_t *q = arg;
479 	struct tim_tim *tp = (struct tim_tim *)q->q_ptr;
480 
481 	ASSERT(tp);
482 
483 	if (q->q_flag & QREADR) {
484 		ASSERT(tp->tim_rbufcid);
485 		tp->tim_rbufcid = 0;
486 	} else {
487 		ASSERT(tp->tim_wbufcid);
488 		tp->tim_wbufcid = 0;
489 	}
490 	enableok(q);
491 	qenable(q);
492 }
493 /* ONC_PLUS EXTRACT END */
494 
495 /*
496  * timodclose - This routine gets called when the module gets popped
497  * off of the stream.
498  */
499 /*ARGSUSED*/
500 static int
501 timodclose(
502 	queue_t *q,
503 	int flag,
504 	cred_t *crp)
505 {
506 	struct tim_tim *tp;
507 	mblk_t *mp;
508 	mblk_t *nmp;
509 
510 	ASSERT(q != NULL);
511 
512 	tp = (struct tim_tim *)q->q_ptr;
513 	q->q_ptr = NULL;
514 
515 	ASSERT(tp != NULL);
516 
517 	tilogp("timodclose: Entered for tp %lx\n", (uintptr_t)tp);
518 	tilogp("timodclose: Entered for q %lx\n", (uintptr_t)q);
519 
520 	qprocsoff(q);
521 	tim_dellink(tp);
522 
523 	/*
524 	 * Cancel any outstanding bufcall
525 	 * or timeout requests.
526 	 */
527 	if (tp->tim_wbufcid) {
528 		qunbufcall(q, tp->tim_wbufcid);
529 		tp->tim_wbufcid = 0;
530 	}
531 	if (tp->tim_rbufcid) {
532 		qunbufcall(q, tp->tim_rbufcid);
533 		tp->tim_rbufcid = 0;
534 	}
535 	if (tp->tim_wtimoutid) {
536 		(void) quntimeout(q, tp->tim_wtimoutid);
537 		tp->tim_wtimoutid = 0;
538 	}
539 	if (tp->tim_rtimoutid) {
540 		(void) quntimeout(q, tp->tim_rtimoutid);
541 		tp->tim_rtimoutid = 0;
542 	}
543 
544 	if (tp->tim_tcap_timoutid != 0) {
545 		(void) quntimeout(q, tp->tim_tcap_timoutid);
546 		tp->tim_tcap_timoutid = 0;
547 	}
548 
549 	if (tp->tim_iocsave != NULL)
550 		freemsg(tp->tim_iocsave);
551 	mp = tp->tim_consave;
552 	while (mp) {
553 		nmp = mp->b_next;
554 		mp->b_next = NULL;
555 		freemsg(mp);
556 		mp = nmp;
557 	}
558 	ASSERT(tp->tim_mymaxlen >= 0);
559 	if (tp->tim_mymaxlen != 0)
560 		kmem_free(tp->tim_myname, (size_t)tp->tim_mymaxlen);
561 	ASSERT(tp->tim_peermaxlen >= 0);
562 	if (tp->tim_peermaxlen != 0)
563 		kmem_free(tp->tim_peername, (size_t)tp->tim_peermaxlen);
564 
565 	q->q_ptr = WR(q)->q_ptr = NULL;
566 
567 	mutex_destroy(&tp->tim_mutex);
568 
569 	if (tp->tim_peercred != NULL)
570 		crfree(tp->tim_peercred);
571 
572 	kmem_free(tp, sizeof (struct tim_tim));
573 
574 	return (0);
575 }
576 
577 /*
578  * timodrput -	Module read put procedure.  This is called from
579  *		the module, driver, or stream head upstream/downstream.
580  *		Handles M_FLUSH, M_DATA and some M_PROTO (T_DATA_IND,
581  *		and T_UNITDATA_IND) messages. All others are queued to
582  *		be handled by the service procedures.
583  */
584 static void
585 timodrput(queue_t *q, mblk_t *mp)
586 {
587 	union T_primitives *pptr;
588 
589 	/*
590 	 * During flow control and other instances when messages
591 	 * are on queue, queue up a non high priority message
592 	 */
593 	if (q->q_first != 0 && mp->b_datap->db_type < QPCTL) {
594 		(void) putq(q, mp);
595 		return;
596 	}
597 
598 	/*
599 	 * Inline processing of data (to avoid additional procedure call).
600 	 * Rest is handled in timodrproc.
601 	 */
602 
603 	switch (mp->b_datap->db_type) {
604 	case M_DATA:
605 		if (bcanputnext(q, mp->b_band))
606 			putnext(q, mp);
607 		else
608 			(void) putq(q, mp);
609 		break;
610 	case M_PROTO:
611 	case M_PCPROTO:
612 		if (MBLKL(mp) < sizeof (t_scalar_t)) {
613 			if (mp->b_datap->db_type == M_PCPROTO ||
614 			    bcanputnext(q, mp->b_band)) {
615 				putnext(q, mp);
616 			} else {
617 				(void) putq(q, mp);
618 			}
619 			break;
620 		}
621 		pptr = (union T_primitives *)mp->b_rptr;
622 		switch (pptr->type) {
623 		case T_EXDATA_IND:
624 		case T_DATA_IND:
625 		case T_UNITDATA_IND:
626 			if (bcanputnext(q, mp->b_band))
627 				putnext(q, mp);
628 			else
629 				(void) putq(q, mp);
630 			break;
631 		default:
632 			(void) timodrproc(q, mp);
633 			break;
634 		}
635 		break;
636 	default:
637 		(void) timodrproc(q, mp);
638 		break;
639 	}
640 }
641 
642 /* ONC_PLUS EXTRACT START */
643 /*
644  * timodrsrv -	Module read queue service procedure.  This is called when
645  *		messages are placed on an empty queue, when high priority
646  *		messages are placed on the queue, and when flow control
647  *		restrictions subside.  This code used to be included in a
648  *		put procedure, but it was moved to a service procedure
649  *		because several points were added where memory allocation
650  *		could fail, and there is no reasonable recovery mechanism
651  *		from the put procedure.
652  */
653 /*ARGSUSED*/
654 static void
655 timodrsrv(queue_t *q)
656 {
657 /* ONC_PLUS EXTRACT END */
658 	mblk_t *mp;
659 	struct tim_tim *tp;
660 
661 	ASSERT(q != NULL);
662 
663 	tp = (struct tim_tim *)q->q_ptr;
664 	if (!tp)
665 	    return;
666 
667 	while ((mp = getq(q)) != NULL) {
668 		if (timodrproc(q, mp)) {
669 			/*
670 			 * timodrproc did a putbq - stop processing
671 			 * messages.
672 			 */
673 			return;
674 		}
675 	}
676 /* ONC_PLUS EXTRACT START */
677 }
678 
679 /*
680  * Perform common processing when a T_CAPABILITY_ACK or T_INFO_ACK
681  * arrive.  Set the queue properties and adjust the tim_flags according
682  * to the service type.
683  */
684 static void
685 timodprocessinfo(queue_t *q, struct tim_tim *tp, struct T_info_ack *tia)
686 {
687 	TILOG("timodprocessinfo: strqset(%d)\n", tia->TIDU_size);
688 	(void) strqset(q, QMAXPSZ, 0, tia->TIDU_size);
689 	(void) strqset(OTHERQ(q), QMAXPSZ, 0, tia->TIDU_size);
690 
691 	if ((tia->SERV_type == T_COTS) || (tia->SERV_type == T_COTS_ORD))
692 		tp->tim_flags = (tp->tim_flags & ~CLTS) | COTS;
693 	else if (tia->SERV_type == T_CLTS)
694 		tp->tim_flags = (tp->tim_flags & ~COTS) | CLTS;
695 }
696 
697 static int
698 timodrproc(queue_t *q, mblk_t *mp)
699 {
700 	union T_primitives *pptr;
701 	struct tim_tim *tp;
702 	struct iocblk *iocbp;
703 	mblk_t *nbp;
704 	size_t blen;
705 /* ONC_PLUS EXTRACT END */
706 
707 	tp = (struct tim_tim *)q->q_ptr;
708 
709 /* ONC_PLUS EXTRACT START */
710 	switch (mp->b_datap->db_type) {
711 	default:
712 		putnext(q, mp);
713 		break;
714 
715 	case M_ERROR:
716 		TILOG("timodrproc: Got M_ERROR, flags = %x\n", tp->tim_flags);
717 		/*
718 		 * There is no specified standard response for driver when it
719 		 * receives unknown message type and M_ERROR is one
720 		 * possibility. If we send T_CAPABILITY_REQ down and transport
721 		 * provider responds with M_ERROR we assume that it doesn't
722 		 * understand this message type. This assumption may be
723 		 * sometimes incorrect (transport may reply with M_ERROR for
724 		 * some other reason) but there is no way for us to distinguish
725 		 * between different cases. In the worst case timod and everyone
726 		 * else sharing global transport description with it may end up
727 		 * emulating T_CAPABILITY_REQ.
728 		 */
729 
730 		/*
731 		 * Check that we are waiting for T_CAPABILITY_ACK and
732 		 * T_CAPABILITY_REQ is not implemented by transport or emulated
733 		 * by timod.
734 		 */
735 		if ((tp->tim_provinfo->tpi_capability == PI_DONTKNOW) &&
736 		    ((tp->tim_flags & TI_CAP_RECVD) != 0)) {
737 			/*
738 			 * Good chances that this transport doesn't provide
739 			 * T_CAPABILITY_REQ. Mark this information  permanently
740 			 * for the module + transport combination.
741 			 */
742 			PI_PROVLOCK(tp->tim_provinfo);
743 			if (tp->tim_provinfo->tpi_capability == PI_DONTKNOW)
744 				tp->tim_provinfo->tpi_capability = PI_NO;
745 			PI_PROVUNLOCK(tp->tim_provinfo);
746 			if (tp->tim_tcap_timoutid != 0) {
747 				(void) quntimeout(q, tp->tim_tcap_timoutid);
748 				tp->tim_tcap_timoutid = 0;
749 			}
750 		}
751 		putnext(q, mp);
752 		break;
753 	case M_DATA:
754 		if (!bcanputnext(q, mp->b_band)) {
755 			(void) putbq(q, mp);
756 			return (1);
757 		}
758 		putnext(q, mp);
759 		break;
760 
761 	case M_PROTO:
762 	case M_PCPROTO:
763 		blen = MBLKL(mp);
764 		if (blen < sizeof (t_scalar_t)) {
765 			/*
766 			 * Note: it's not actually possible to get
767 			 * here with db_type M_PCPROTO, because
768 			 * timodrput has already checked MBLKL, and
769 			 * thus the assertion below.  If the length
770 			 * was too short, then the message would have
771 			 * already been putnext'd, and would thus
772 			 * never appear here.  Just the same, the code
773 			 * below handles the impossible case since
774 			 * it's easy to do and saves future
775 			 * maintainers from unfortunate accidents.
776 			 */
777 			ASSERT(mp->b_datap->db_type == M_PROTO);
778 			if (mp->b_datap->db_type == M_PROTO &&
779 			    !bcanputnext(q, mp->b_band)) {
780 				(void) putbq(q, mp);
781 				return (1);
782 			}
783 			putnext(q, mp);
784 			break;
785 		}
786 
787 		pptr = (union T_primitives *)mp->b_rptr;
788 		switch (pptr->type) {
789 		default:
790 /* ONC_PLUS EXTRACT END */
791 
792 #ifdef C2_AUDIT
793 			if (audit_active)
794 				audit_sock(T_UNITDATA_IND, q, mp, TIMOD_ID);
795 #endif
796 /* ONC_PLUS EXTRACT START */
797 			putnext(q, mp);
798 			break;
799 /* ONC_PLUS EXTRACT END */
800 
801 		case T_ERROR_ACK:
802 			/* Restore db_type - recover() might have changed it */
803 			mp->b_datap->db_type = M_PCPROTO;
804 			if (blen < sizeof (struct T_error_ack)) {
805 				putnext(q, mp);
806 				break;
807 			}
808 
809 			tilog("timodrproc: Got T_ERROR_ACK, flags = %x\n",
810 			    tp->tim_flags);
811 
812 			if ((tp->tim_flags & WAIT_CONNRESACK) &&
813 			    tp->tim_saved_prim == pptr->error_ack.ERROR_prim) {
814 				tp->tim_flags &=
815 				    ~(WAIT_CONNRESACK | WAITIOCACK);
816 				freemsg(tp->tim_iocsave);
817 				tp->tim_iocsave = NULL;
818 				tp->tim_saved_prim = -1;
819 				putnext(q, mp);
820 			} else if (tp->tim_flags & WAITIOCACK) {
821 				tim_send_ioc_error_ack(q, tp, mp);
822 			} else {
823 				putnext(q, mp);
824 			}
825 			break;
826 
827 		case T_OK_ACK:
828 			if (blen < sizeof (pptr->ok_ack)) {
829 				mp->b_datap->db_type = M_PCPROTO;
830 				putnext(q, mp);
831 				break;
832 			}
833 
834 			tilog("timodrproc: Got T_OK_ACK\n", 0);
835 
836 			if (pptr->ok_ack.CORRECT_prim == T_UNBIND_REQ)
837 				tp->tim_mylen = 0;
838 
839 			if ((tp->tim_flags & WAIT_CONNRESACK) &&
840 			    tp->tim_saved_prim == pptr->ok_ack.CORRECT_prim) {
841 				struct T_conn_res *resp;
842 				struct T_conn_ind *indp;
843 				struct tim_tim *ntp;
844 				caddr_t ptr;
845 
846 				rw_enter(&tim_list_rwlock, RW_READER);
847 				resp = (struct T_conn_res *)
848 				    tp->tim_iocsave->b_rptr;
849 				ntp = tim_findlink(resp->ACCEPTOR_id);
850 				if (ntp == NULL)
851 					goto cresackout;
852 
853 				mutex_enter(&ntp->tim_mutex);
854 				if (ntp->tim_peercred != NULL)
855 					crfree(ntp->tim_peercred);
856 				ntp->tim_peercred =
857 				    DB_CRED(tp->tim_iocsave->b_cont);
858 				ntp->tim_cpid =
859 				    DB_CPID(tp->tim_iocsave->b_cont);
860 				if (ntp->tim_peercred != NULL)
861 					crhold(ntp->tim_peercred);
862 
863 				if (!(ntp->tim_flags & DO_PEERNAME)) {
864 					mutex_exit(&ntp->tim_mutex);
865 					goto cresackout;
866 				}
867 
868 				indp = (struct T_conn_ind *)
869 				    tp->tim_iocsave->b_cont->b_rptr;
870 				/* true as message is put on list */
871 				ASSERT(indp->SRC_length >= 0);
872 
873 				if (indp->SRC_length > ntp->tim_peermaxlen) {
874 					ptr = kmem_alloc(indp->SRC_length,
875 					    KM_NOSLEEP);
876 					if (ptr == NULL) {
877 						mutex_exit(&ntp->tim_mutex);
878 						rw_exit(&tim_list_rwlock);
879 						tilog("timodwproc: kmem_alloc "
880 						    "failed, attempting "
881 						    "recovery\n", 0);
882 						tim_recover(q, mp,
883 						    indp->SRC_length);
884 						return (1);
885 					}
886 					if (ntp->tim_peermaxlen > 0)
887 						kmem_free(ntp->tim_peername,
888 						    ntp->tim_peermaxlen);
889 					ntp->tim_peername = ptr;
890 					ntp->tim_peermaxlen = indp->SRC_length;
891 				}
892 				ntp->tim_peerlen = indp->SRC_length;
893 				ptr = (caddr_t)indp + indp->SRC_offset;
894 				bcopy(ptr, ntp->tim_peername, ntp->tim_peerlen);
895 
896 				mutex_exit(&ntp->tim_mutex);
897 
898 			cresackout:
899 				rw_exit(&tim_list_rwlock);
900 				tp->tim_flags &=
901 				    ~(WAIT_CONNRESACK | WAITIOCACK);
902 				freemsg(tp->tim_iocsave);
903 				tp->tim_iocsave = NULL;
904 				tp->tim_saved_prim = -1;
905 			}
906 
907 			tim_send_reply(q, mp, tp, pptr->ok_ack.CORRECT_prim);
908 			break;
909 
910 /* ONC_PLUS EXTRACT START */
911 		case T_BIND_ACK: {
912 			struct T_bind_ack *ackp =
913 			    (struct T_bind_ack *)mp->b_rptr;
914 
915 			/* Restore db_type - recover() might have changed it */
916 			mp->b_datap->db_type = M_PCPROTO;
917 			if (blen < sizeof (*ackp)) {
918 				putnext(q, mp);
919 				break;
920 			}
921 
922 			/* save negotiated backlog */
923 			tp->tim_backlog = ackp->CONIND_number;
924 
925 			if (((tp->tim_flags & WAITIOCACK) == 0) ||
926 			    ((tp->tim_saved_prim != O_T_BIND_REQ) &&
927 				(tp->tim_saved_prim != T_BIND_REQ))) {
928 				putnext(q, mp);
929 				break;
930 			}
931 			ASSERT(tp->tim_iocsave != NULL);
932 
933 			if (tp->tim_flags & DO_MYNAME) {
934 				caddr_t p;
935 
936 				if (ackp->ADDR_length < 0 ||
937 				    mp->b_rptr + ackp->ADDR_offset +
938 				    ackp->ADDR_length > mp->b_wptr) {
939 					putnext(q, mp);
940 					break;
941 				}
942 				if (ackp->ADDR_length > tp->tim_mymaxlen) {
943 					p = kmem_alloc(ackp->ADDR_length,
944 					    KM_NOSLEEP);
945 					if (p == NULL) {
946 						tilog("timodrproc: kmem_alloc "
947 						    "failed attempt recovery",
948 						    0);
949 
950 						tim_recover(q, mp,
951 						    ackp->ADDR_length);
952 						return (1);
953 					}
954 					ASSERT(tp->tim_mymaxlen >= 0);
955 					if (tp->tim_mymaxlen != NULL) {
956 						kmem_free(tp->tim_myname,
957 						    tp->tim_mymaxlen);
958 					}
959 					tp->tim_myname = p;
960 					tp->tim_mymaxlen = ackp->ADDR_length;
961 				}
962 				tp->tim_mylen = ackp->ADDR_length;
963 				bcopy(mp->b_rptr + ackp->ADDR_offset,
964 				    tp->tim_myname, tp->tim_mylen);
965 			}
966 			tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
967 			tp->tim_iocsave = NULL;
968 			tp->tim_saved_prim = -1;
969 			tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
970 			    TI_CAP_RECVD | CAP_WANTS_INFO);
971 			break;
972 		}
973 
974 /* ONC_PLUS EXTRACT END */
975 	    case T_OPTMGMT_ACK:
976 
977 		tilog("timodrproc: Got T_OPTMGMT_ACK\n", 0);
978 
979 		/* Restore db_type - recover() might have change it */
980 		mp->b_datap->db_type = M_PCPROTO;
981 
982 		if (((tp->tim_flags & WAITIOCACK) == 0) ||
983 		    ((tp->tim_saved_prim != T_SVR4_OPTMGMT_REQ) &&
984 		    (tp->tim_saved_prim != T_OPTMGMT_REQ))) {
985 			putnext(q, mp);
986 		} else {
987 			ASSERT(tp->tim_iocsave != NULL);
988 			tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
989 			tp->tim_iocsave = NULL;
990 			tp->tim_saved_prim = -1;
991 			tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
992 			    TI_CAP_RECVD | CAP_WANTS_INFO);
993 		}
994 		break;
995 
996 		case T_INFO_ACK: {
997 		    struct T_info_ack *tia = (struct T_info_ack *)pptr;
998 
999 		    /* Restore db_type - recover() might have changed it */
1000 		    mp->b_datap->db_type = M_PCPROTO;
1001 
1002 		    if (blen < sizeof (*tia)) {
1003 			putnext(q, mp);
1004 			break;
1005 		    }
1006 
1007 		    tilog("timodrproc: Got T_INFO_ACK, flags = %x\n",
1008 			tp->tim_flags);
1009 
1010 		    timodprocessinfo(q, tp, tia);
1011 
1012 		    TILOG("timodrproc: flags = %x\n", tp->tim_flags);
1013 		    if ((tp->tim_flags & WAITIOCACK) != 0) {
1014 			size_t	expected_ack_size;
1015 			ssize_t	deficit;
1016 			int	ioc_cmd;
1017 			struct T_capability_ack *tcap;
1018 
1019 			/*
1020 			 * The only case when T_INFO_ACK may be received back
1021 			 * when we are waiting for ioctl to complete is when
1022 			 * this ioctl sent T_INFO_REQ down.
1023 			 */
1024 			if (!(tp->tim_flags & WAIT_IOCINFOACK)) {
1025 				putnext(q, mp);
1026 				break;
1027 			}
1028 			ASSERT(tp->tim_iocsave != NULL);
1029 
1030 			iocbp = (struct iocblk *)tp->tim_iocsave->b_rptr;
1031 			ioc_cmd = iocbp->ioc_cmd;
1032 
1033 			/*
1034 			 * Was it sent from TI_CAPABILITY emulation?
1035 			 */
1036 			if (ioc_cmd == TI_CAPABILITY) {
1037 				struct T_info_ack	saved_info;
1038 
1039 				/*
1040 				 * Perform sanity checks. The only case when we
1041 				 * send T_INFO_REQ from TI_CAPABILITY is when
1042 				 * timod emulates T_CAPABILITY_REQ and CAP_bits1
1043 				 * has TC1_INFO set.
1044 				 */
1045 				if ((tp->tim_flags &
1046 				    (TI_CAP_RECVD | CAP_WANTS_INFO)) !=
1047 				    (TI_CAP_RECVD | CAP_WANTS_INFO)) {
1048 					putnext(q, mp);
1049 					break;
1050 				}
1051 
1052 				TILOG("timodrproc: emulating TI_CAPABILITY/"
1053 				    "info\n", 0);
1054 
1055 				/* Save info & reuse mp for T_CAPABILITY_ACK */
1056 				saved_info = *tia;
1057 
1058 				mp = tpi_ack_alloc(mp,
1059 				    sizeof (struct T_capability_ack),
1060 				    M_PCPROTO, T_CAPABILITY_ACK);
1061 
1062 				if (mp == NULL) {
1063 					tilog("timodrproc: realloc failed, "
1064 					    "no recovery attempted\n", 0);
1065 					return (1);
1066 				}
1067 
1068 				/*
1069 				 * Copy T_INFO information into T_CAPABILITY_ACK
1070 				 */
1071 				tcap = (struct T_capability_ack *)mp->b_rptr;
1072 				tcap->CAP_bits1 = TC1_INFO;
1073 				tcap->INFO_ack = saved_info;
1074 				tp->tim_flags &= ~(WAITIOCACK |
1075 				    WAIT_IOCINFOACK | TI_CAP_RECVD |
1076 				    CAP_WANTS_INFO);
1077 				tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
1078 				tp->tim_iocsave = NULL;
1079 				tp->tim_saved_prim = -1;
1080 				break;
1081 			}
1082 
1083 			/*
1084 			 * The code for TI_SYNC/TI_GETINFO is left here only for
1085 			 * backward compatibility with staticaly linked old
1086 			 * applications. New TLI/XTI code should use
1087 			 * TI_CAPABILITY for getting transport info and should
1088 			 * not use TI_GETINFO/TI_SYNC for this purpose.
1089 			 */
1090 
1091 			/*
1092 			 * make sure the message sent back is the size of
1093 			 * the "expected ack"
1094 			 * For TI_GETINFO, expected ack size is
1095 			 *	sizeof (T_info_ack)
1096 			 * For TI_SYNC, expected ack size is
1097 			 *	sizeof (struct ti_sync_ack);
1098 			 */
1099 			if (ioc_cmd != TI_GETINFO && ioc_cmd != TI_SYNC) {
1100 				putnext(q, mp);
1101 				break;
1102 			}
1103 
1104 			expected_ack_size =
1105 				sizeof (struct T_info_ack); /* TI_GETINFO */
1106 			if (iocbp->ioc_cmd == TI_SYNC) {
1107 				expected_ack_size = 2 * sizeof (uint32_t) +
1108 				    sizeof (struct ti_sync_ack);
1109 			}
1110 			deficit = expected_ack_size - blen;
1111 
1112 			if (deficit != 0) {
1113 				if (mp->b_datap->db_lim - mp->b_wptr <
1114 				    deficit) {
1115 				    mblk_t *tmp = allocb(expected_ack_size,
1116 					BPRI_HI);
1117 				    if (tmp == NULL) {
1118 					ASSERT(MBLKSIZE(mp) >=
1119 						sizeof (struct T_error_ack));
1120 
1121 					tilog("timodrproc: allocb failed no "
1122 					    "recovery attempt\n", 0);
1123 
1124 					mp->b_rptr = mp->b_datap->db_base;
1125 					pptr = (union T_primitives *)
1126 						mp->b_rptr;
1127 					pptr->error_ack.ERROR_prim = T_INFO_REQ;
1128 					pptr->error_ack.TLI_error = TSYSERR;
1129 					pptr->error_ack.UNIX_error = EAGAIN;
1130 					pptr->error_ack.PRIM_type = T_ERROR_ACK;
1131 					mp->b_datap->db_type = M_PCPROTO;
1132 					tim_send_ioc_error_ack(q, tp, mp);
1133 					break;
1134 				    } else {
1135 					bcopy(mp->b_rptr, tmp->b_rptr, blen);
1136 					tmp->b_wptr += blen;
1137 					pptr = (union T_primitives *)
1138 					    tmp->b_rptr;
1139 					freemsg(mp);
1140 					mp = tmp;
1141 				    }
1142 				}
1143 			}
1144 			/*
1145 			 * We now have "mp" which has enough space for an
1146 			 * appropriate ack and contains struct T_info_ack
1147 			 * that the transport provider returned. We now
1148 			 * stuff it with more stuff to fullfill
1149 			 * TI_SYNC ioctl needs, as necessary
1150 			 */
1151 			if (iocbp->ioc_cmd == TI_SYNC) {
1152 				/*
1153 				 * Assumes struct T_info_ack is first embedded
1154 				 * type in struct ti_sync_ack so it is
1155 				 * automatically there.
1156 				 */
1157 				struct ti_sync_ack *tsap =
1158 				    (struct ti_sync_ack *)mp->b_rptr;
1159 
1160 				/*
1161 				 * tsap->tsa_qlen needs to be set only if
1162 				 * TSRF_QLEN_REQ flag is set, but for
1163 				 * compatibility with statically linked
1164 				 * applications it is set here regardless of the
1165 				 * flag since old XTI library expected it to be
1166 				 * set.
1167 				 */
1168 				tsap->tsa_qlen = tp->tim_backlog;
1169 				tsap->tsa_flags = 0x0; /* intialize clear */
1170 				if (tp->tim_flags & PEEK_RDQ_EXPIND) {
1171 					/*
1172 					 * Request to peek for EXPIND in
1173 					 * rcvbuf.
1174 					 */
1175 					if (ti_expind_on_rdqueues(q)) {
1176 						/*
1177 						 * Expedited data is
1178 						 * queued on the stream
1179 						 * read side
1180 						 */
1181 						tsap->tsa_flags |=
1182 						    TSAF_EXP_QUEUED;
1183 					}
1184 					tp->tim_flags &=
1185 					    ~PEEK_RDQ_EXPIND;
1186 				}
1187 				mp->b_wptr += 2*sizeof (uint32_t);
1188 			}
1189 			tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
1190 			tp->tim_iocsave = NULL;
1191 			tp->tim_saved_prim = -1;
1192 			tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
1193 			    TI_CAP_RECVD | CAP_WANTS_INFO);
1194 			break;
1195 		    }
1196 	    }
1197 
1198 	    putnext(q, mp);
1199 	    break;
1200 
1201 	    case T_ADDR_ACK:
1202 		tilog("timodrproc: Got T_ADDR_ACK\n", 0);
1203 		tim_send_reply(q, mp, tp, T_ADDR_REQ);
1204 		break;
1205 
1206 /* ONC_PLUS EXTRACT START */
1207 		case T_CONN_IND: {
1208 			struct T_conn_ind *tcip =
1209 			    (struct T_conn_ind *)mp->b_rptr;
1210 
1211 			tilog("timodrproc: Got T_CONN_IND\n", 0);
1212 
1213 			if (blen >= sizeof (*tcip) &&
1214 			    MBLKIN(mp, tcip->SRC_offset, tcip->SRC_length)) {
1215 				if (((nbp = dupmsg(mp)) != NULL) ||
1216 				    ((nbp = copymsg(mp)) != NULL)) {
1217 					nbp->b_next = tp->tim_consave;
1218 					tp->tim_consave = nbp;
1219 				} else {
1220 					tim_recover(q, mp,
1221 					    (t_scalar_t)sizeof (mblk_t));
1222 					return (1);
1223 				}
1224 			}
1225 /* ONC_PLUS EXTRACT END */
1226 #ifdef C2_AUDIT
1227 			if (audit_active)
1228 				audit_sock(T_CONN_IND, q, mp, TIMOD_ID);
1229 #endif
1230 /* ONC_PLUS EXTRACT START */
1231 			putnext(q, mp);
1232 			break;
1233 		}
1234 
1235 /* ONC_PLUS EXTRACT END */
1236 	    case T_CONN_CON:
1237 		mutex_enter(&tp->tim_mutex);
1238 		if (tp->tim_peercred != NULL)
1239 			crfree(tp->tim_peercred);
1240 		tp->tim_peercred = DB_CRED(mp);
1241 		if (tp->tim_peercred != NULL)
1242 			crhold(tp->tim_peercred);
1243 		tp->tim_cpid = DB_CPID(mp);
1244 		mutex_exit(&tp->tim_mutex);
1245 
1246 		tilog("timodrproc: Got T_CONN_CON\n", 0);
1247 
1248 		tp->tim_flags &= ~CONNWAIT;
1249 		putnext(q, mp);
1250 		break;
1251 
1252 	    case T_DISCON_IND: {
1253 		struct T_discon_ind *disp;
1254 		struct T_conn_ind *conp;
1255 		mblk_t *pbp = NULL;
1256 
1257 		if (q->q_first != 0)
1258 			tilog("timodrput: T_DISCON_IND - flow control\n", 0);
1259 
1260 		if (blen < sizeof (*disp)) {
1261 			putnext(q, mp);
1262 			break;
1263 		}
1264 
1265 		disp = (struct T_discon_ind *)mp->b_rptr;
1266 
1267 		tilog("timodrproc: Got T_DISCON_IND Reason: %d\n",
1268 			disp->DISCON_reason);
1269 
1270 		tp->tim_flags &= ~(CONNWAIT|LOCORDREL|REMORDREL);
1271 		tim_clear_peer(tp);
1272 		for (nbp = tp->tim_consave; nbp; nbp = nbp->b_next) {
1273 		    conp = (struct T_conn_ind *)nbp->b_rptr;
1274 		    if (conp->SEQ_number == disp->SEQ_number)
1275 			break;
1276 		    pbp = nbp;
1277 		}
1278 		if (nbp) {
1279 		    if (pbp)
1280 			pbp->b_next = nbp->b_next;
1281 		    else
1282 			tp->tim_consave = nbp->b_next;
1283 		    nbp->b_next = NULL;
1284 		    freemsg(nbp);
1285 		}
1286 		putnext(q, mp);
1287 		break;
1288 	    }
1289 
1290 	    case T_ORDREL_IND:
1291 
1292 		tilog("timodrproc: Got T_ORDREL_IND\n", 0);
1293 
1294 		if (tp->tim_flags & LOCORDREL) {
1295 			tp->tim_flags &= ~(LOCORDREL|REMORDREL);
1296 			tim_clear_peer(tp);
1297 		} else {
1298 			tp->tim_flags |= REMORDREL;
1299 		}
1300 		putnext(q, mp);
1301 		break;
1302 
1303 	    case T_EXDATA_IND:
1304 	    case T_DATA_IND:
1305 	    case T_UNITDATA_IND:
1306 		if (pptr->type == T_EXDATA_IND)
1307 			tilog("timodrproc: Got T_EXDATA_IND\n", 0);
1308 
1309 		if (!bcanputnext(q, mp->b_band)) {
1310 			(void) putbq(q, mp);
1311 			return (1);
1312 		}
1313 		putnext(q, mp);
1314 		break;
1315 
1316 	    case T_CAPABILITY_ACK: {
1317 			struct T_capability_ack	*tca;
1318 
1319 			if (blen < sizeof (*tca)) {
1320 				putnext(q, mp);
1321 				break;
1322 			}
1323 
1324 			/* This transport supports T_CAPABILITY_REQ */
1325 			tilog("timodrproc: Got T_CAPABILITY_ACK\n", 0);
1326 
1327 			PI_PROVLOCK(tp->tim_provinfo);
1328 			if (tp->tim_provinfo->tpi_capability != PI_YES)
1329 				tp->tim_provinfo->tpi_capability = PI_YES;
1330 			PI_PROVUNLOCK(tp->tim_provinfo);
1331 
1332 			/* Reset possible pending timeout */
1333 			if (tp->tim_tcap_timoutid != 0) {
1334 				(void) quntimeout(q, tp->tim_tcap_timoutid);
1335 				tp->tim_tcap_timoutid = 0;
1336 			}
1337 
1338 			tca = (struct T_capability_ack *)mp->b_rptr;
1339 
1340 			if (tca->CAP_bits1 & TC1_INFO)
1341 				timodprocessinfo(q, tp, &tca->INFO_ack);
1342 
1343 			tim_send_reply(q, mp, tp, T_CAPABILITY_REQ);
1344 		}
1345 		break;
1346 	    }
1347 	    break;
1348 
1349 /* ONC_PLUS EXTRACT START */
1350 	case M_FLUSH:
1351 
1352 		tilog("timodrproc: Got M_FLUSH\n", 0);
1353 
1354 		if (*mp->b_rptr & FLUSHR) {
1355 			if (*mp->b_rptr & FLUSHBAND)
1356 				flushband(q, *(mp->b_rptr + 1), FLUSHDATA);
1357 			else
1358 				flushq(q, FLUSHDATA);
1359 		}
1360 		putnext(q, mp);
1361 		break;
1362 /* ONC_PLUS EXTRACT END */
1363 
1364 	case M_IOCACK:
1365 	    iocbp = (struct iocblk *)mp->b_rptr;
1366 
1367 	    tilog("timodrproc: Got M_IOCACK\n", 0);
1368 
1369 	    if (iocbp->ioc_cmd == TI_GETMYNAME) {
1370 
1371 		/*
1372 		 * Transport provider supports this ioctl,
1373 		 * so I don't have to.
1374 		 */
1375 		if ((tp->tim_flags & DO_MYNAME) != 0) {
1376 			tp->tim_flags &= ~DO_MYNAME;
1377 			PI_PROVLOCK(tp->tim_provinfo);
1378 			tp->tim_provinfo->tpi_myname = PI_YES;
1379 			PI_PROVUNLOCK(tp->tim_provinfo);
1380 		}
1381 
1382 		ASSERT(tp->tim_mymaxlen >= 0);
1383 		if (tp->tim_mymaxlen != 0) {
1384 			kmem_free(tp->tim_myname, (size_t)tp->tim_mymaxlen);
1385 			tp->tim_myname = NULL;
1386 			tp->tim_mymaxlen = 0;
1387 		}
1388 		/* tim_iocsave may already be overwritten. */
1389 		if (tp->tim_saved_prim == -1) {
1390 			freemsg(tp->tim_iocsave);
1391 			tp->tim_iocsave = NULL;
1392 		}
1393 	    } else if (iocbp->ioc_cmd == TI_GETPEERNAME) {
1394 		boolean_t clearit;
1395 
1396 		/*
1397 		 * Transport provider supports this ioctl,
1398 		 * so I don't have to.
1399 		 */
1400 		if ((tp->tim_flags & DO_PEERNAME) != 0) {
1401 			tp->tim_flags &= ~DO_PEERNAME;
1402 			PI_PROVLOCK(tp->tim_provinfo);
1403 			tp->tim_provinfo->tpi_peername = PI_YES;
1404 			PI_PROVUNLOCK(tp->tim_provinfo);
1405 		}
1406 
1407 		mutex_enter(&tp->tim_mutex);
1408 		ASSERT(tp->tim_peermaxlen >= 0);
1409 		clearit = tp->tim_peermaxlen != 0;
1410 		if (clearit) {
1411 			kmem_free(tp->tim_peername, tp->tim_peermaxlen);
1412 			tp->tim_peername = NULL;
1413 			tp->tim_peermaxlen = 0;
1414 			tp->tim_peerlen = 0;
1415 		}
1416 		mutex_exit(&tp->tim_mutex);
1417 		if (clearit) {
1418 			mblk_t *bp;
1419 
1420 			bp = tp->tim_consave;
1421 			while (bp != NULL) {
1422 				nbp = bp->b_next;
1423 				bp->b_next = NULL;
1424 				freemsg(bp);
1425 				bp = nbp;
1426 			}
1427 			tp->tim_consave = NULL;
1428 		}
1429 		/* tim_iocsave may already be overwritten. */
1430 		if (tp->tim_saved_prim == -1) {
1431 			freemsg(tp->tim_iocsave);
1432 			tp->tim_iocsave = NULL;
1433 		}
1434 	    }
1435 	    putnext(q, mp);
1436 	    break;
1437 
1438 /* ONC_PLUS EXTRACT START */
1439 	case M_IOCNAK:
1440 
1441 	    tilog("timodrproc: Got M_IOCNAK\n", 0);
1442 
1443 	    iocbp = (struct iocblk *)mp->b_rptr;
1444 	    if (((iocbp->ioc_cmd == TI_GETMYNAME) ||
1445 		(iocbp->ioc_cmd == TI_GETPEERNAME)) &&
1446 		((iocbp->ioc_error == EINVAL) || (iocbp->ioc_error == 0))) {
1447 		    PI_PROVLOCK(tp->tim_provinfo);
1448 		    if (iocbp->ioc_cmd == TI_GETMYNAME) {
1449 			    if (tp->tim_provinfo->tpi_myname == PI_DONTKNOW)
1450 				    tp->tim_provinfo->tpi_myname = PI_NO;
1451 		    } else if (iocbp->ioc_cmd == TI_GETPEERNAME) {
1452 			    if (tp->tim_provinfo->tpi_peername == PI_DONTKNOW)
1453 				    tp->tim_provinfo->tpi_peername = PI_NO;
1454 		    }
1455 		    PI_PROVUNLOCK(tp->tim_provinfo);
1456 		    /* tim_iocsave may already be overwritten. */
1457 		    if ((tp->tim_iocsave != NULL) &&
1458 			(tp->tim_saved_prim == -1)) {
1459 			    freemsg(mp);
1460 			    mp = tp->tim_iocsave;
1461 			    tp->tim_iocsave = NULL;
1462 			    tp->tim_flags |= NAMEPROC;
1463 			    if (ti_doname(WR(q), mp) != DONAME_CONT) {
1464 				    tp->tim_flags &= ~NAMEPROC;
1465 			    }
1466 			    break;
1467 		    }
1468 	    }
1469 	    putnext(q, mp);
1470 	    break;
1471 /* ONC_PLUS EXTRACT END */
1472 	}
1473 
1474 	return (0);
1475 }
1476 
1477 /* ONC_PLUS EXTRACT START */
1478 /*
1479  * timodwput -	Module write put procedure.  This is called from
1480  *		the module, driver, or stream head upstream/downstream.
1481  *		Handles M_FLUSH, M_DATA and some M_PROTO (T_DATA_REQ,
1482  *		and T_UNITDATA_REQ) messages. All others are queued to
1483  *		be handled by the service procedures.
1484  */
1485 
1486 static void
1487 timodwput(queue_t *q, mblk_t *mp)
1488 {
1489 	union T_primitives *pptr;
1490 	struct tim_tim *tp;
1491 	struct iocblk *iocbp;
1492 
1493 	/*
1494 	 * Enqueue normal-priority messages if our queue already
1495 	 * holds some messages for deferred processing but don't
1496 	 * enqueue those M_IOCTLs which will result in an
1497 	 * M_PCPROTO (ie, high priority) message being created.
1498 	 */
1499 /* ONC_PLUS EXTRACT END */
1500 	if (q->q_first != 0 && mp->b_datap->db_type < QPCTL) {
1501 		if (mp->b_datap->db_type == M_IOCTL) {
1502 			iocbp = (struct iocblk *)mp->b_rptr;
1503 			switch (iocbp->ioc_cmd) {
1504 			default:
1505 				(void) putq(q, mp);
1506 				return;
1507 
1508 			case TI_GETINFO:
1509 			case TI_SYNC:
1510 			case TI_CAPABILITY:
1511 				break;
1512 			}
1513 		} else {
1514 			(void) putq(q, mp);
1515 			return;
1516 		}
1517 	}
1518 /* ONC_PLUS EXTRACT START */
1519 	/*
1520 	 * Inline processing of data (to avoid additional procedure call).
1521 	 * Rest is handled in timodwproc.
1522 	 */
1523 
1524 	switch (mp->b_datap->db_type) {
1525 	case M_DATA:
1526 		tp = (struct tim_tim *)q->q_ptr;
1527 		ASSERT(tp);
1528 		if (tp->tim_flags & CLTS) {
1529 			mblk_t	*tmp;
1530 
1531 			if ((tmp = tim_filladdr(q, mp, B_FALSE)) == NULL) {
1532 				(void) putq(q, mp);
1533 				break;
1534 			} else {
1535 				mp = tmp;
1536 			}
1537 		}
1538 		if (bcanputnext(q, mp->b_band))
1539 			putnext(q, mp);
1540 		else
1541 			(void) putq(q, mp);
1542 		break;
1543 	case M_PROTO:
1544 	case M_PCPROTO:
1545 		pptr = (union T_primitives *)mp->b_rptr;
1546 		switch (pptr->type) {
1547 /* ONC_PLUS EXTRACT END */
1548 		case T_UNITDATA_REQ:
1549 			tp = (struct tim_tim *)q->q_ptr;
1550 			ASSERT(tp);
1551 			if (tp->tim_flags & CLTS) {
1552 				mblk_t	*tmp;
1553 
1554 				tmp = tim_filladdr(q, mp, B_FALSE);
1555 				if (tmp == NULL) {
1556 					(void) putq(q, mp);
1557 					break;
1558 				} else {
1559 					mp = tmp;
1560 				}
1561 			}
1562 			if (bcanputnext(q, mp->b_band))
1563 				putnext(q, mp);
1564 			else
1565 				(void) putq(q, mp);
1566 			break;
1567 
1568 		case T_DATA_REQ:
1569 		case T_EXDATA_REQ:
1570 			if (bcanputnext(q, mp->b_band))
1571 				putnext(q, mp);
1572 			else
1573 				(void) putq(q, mp);
1574 			break;
1575 		default:
1576 			(void) timodwproc(q, mp);
1577 			break;
1578 		}
1579 		break;
1580 /* ONC_PLUS EXTRACT START */
1581 	default:
1582 		(void) timodwproc(q, mp);
1583 		break;
1584 	}
1585 }
1586 /*
1587  * timodwsrv -	Module write queue service procedure.
1588  *		This is called when messages are placed on an empty queue,
1589  *		when high priority messages are placed on the queue, and
1590  *		when flow control restrictions subside.  This code used to
1591  *		be included in a put procedure, but it was moved to a
1592  *		service procedure because several points were added where
1593  *		memory allocation could fail, and there is no reasonable
1594  *		recovery mechanism from the put procedure.
1595  */
1596 static void
1597 timodwsrv(queue_t *q)
1598 {
1599 	mblk_t *mp;
1600 
1601 	ASSERT(q != NULL);
1602 	if (q->q_ptr == NULL)
1603 	    return;
1604 
1605 	while ((mp = getq(q)) != NULL) {
1606 		if (timodwproc(q, mp)) {
1607 			/*
1608 			 * timodwproc did a putbq - stop processing
1609 			 * messages.
1610 			 */
1611 			return;
1612 		}
1613 	}
1614 }
1615 
1616 /*
1617  * Common routine to process write side messages
1618  */
1619 
1620 static int
1621 timodwproc(queue_t *q, mblk_t *mp)
1622 {
1623 	union T_primitives *pptr;
1624 	struct tim_tim *tp;
1625 	mblk_t *tmp;
1626 	struct iocblk *iocbp;
1627 	int error;
1628 
1629 	tp = (struct tim_tim *)q->q_ptr;
1630 
1631 	switch (mp->b_datap->db_type) {
1632 	default:
1633 		putnext(q, mp);
1634 		break;
1635 /* ONC_PLUS EXTRACT END */
1636 
1637 	case M_DATA:
1638 		if (tp->tim_flags & CLTS) {
1639 			if ((tmp = tim_filladdr(q, mp, B_TRUE)) == NULL) {
1640 				return (1);
1641 			} else {
1642 				mp = tmp;
1643 			}
1644 		}
1645 		if (!bcanputnext(q, mp->b_band)) {
1646 			(void) putbq(q, mp);
1647 			return (1);
1648 		}
1649 		putnext(q, mp);
1650 		break;
1651 
1652 /* ONC_PLUS EXTRACT START */
1653 	case M_IOCTL:
1654 
1655 		iocbp = (struct iocblk *)mp->b_rptr;
1656 		TILOG("timodwproc: Got M_IOCTL(%d)\n", iocbp->ioc_cmd);
1657 
1658 		ASSERT(MBLKL(mp) == sizeof (struct iocblk));
1659 
1660 		/*
1661 		 * TPI requires we await response to a previously sent message
1662 		 * before handling another, put it back on the head of queue.
1663 		 * Since putbq() may see QWANTR unset when called from the
1664 		 * service procedure, the queue must be explicitly scheduled
1665 		 * for service, as no backenable will occur for this case.
1666 		 * tim_ioctl_retry() sets a timer to handle the qenable.
1667 		 */
1668 		if (tp->tim_flags & WAITIOCACK) {
1669 			TILOG("timodwproc: putbq M_IOCTL(%d)\n",
1670 			    iocbp->ioc_cmd);
1671 			(void) putbq(q, mp);
1672 			/* Called from timodwsrv() and messages on queue */
1673 			if (!(q->q_flag & QWANTR))
1674 				tim_ioctl_retry(q);
1675 			return (1);
1676 		}
1677 /* ONC_PLUS EXTRACT END */
1678 
1679 		switch (iocbp->ioc_cmd) {
1680 		default:
1681 			putnext(q, mp);
1682 			break;
1683 
1684 		case _I_GETPEERCRED:
1685 			if ((tp->tim_flags & COTS) == 0) {
1686 				miocnak(q, mp, 0, ENOTSUP);
1687 			} else {
1688 				mblk_t *cmp = mp->b_cont;
1689 				k_peercred_t *kp = NULL;
1690 
1691 				mutex_enter(&tp->tim_mutex);
1692 				if (cmp != NULL &&
1693 				    iocbp->ioc_flag == IOC_NATIVE &&
1694 				    (tp->tim_flags &
1695 					(CONNWAIT|LOCORDREL|REMORDREL)) == 0 &&
1696 				    tp->tim_peercred != NULL &&
1697 				    DB_TYPE(cmp) == M_DATA &&
1698 				    MBLKL(cmp) == sizeof (k_peercred_t)) {
1699 					kp = (k_peercred_t *)cmp->b_rptr;
1700 					crhold(kp->pc_cr = tp->tim_peercred);
1701 					kp->pc_cpid = tp->tim_cpid;
1702 				}
1703 				mutex_exit(&tp->tim_mutex);
1704 				if (kp != NULL)
1705 					miocack(q, mp, sizeof (*kp), 0);
1706 				else
1707 					miocnak(q, mp, 0, ENOTCONN);
1708 			}
1709 			break;
1710 		case TI_BIND:
1711 		case TI_UNBIND:
1712 		case TI_OPTMGMT:
1713 		case TI_GETADDRS:
1714 			TILOG("timodwproc: TI_{BIND|UNBIND|OPTMGMT|GETADDRS}"
1715 			    "\n", 0);
1716 
1717 			/*
1718 			 * We know that tim_send_ioctl_tpi_msg() is only
1719 			 * going to examine the `type' field, so we only
1720 			 * check that we can access that much data.
1721 			 */
1722 			error = miocpullup(mp, sizeof (t_scalar_t));
1723 			if (error != 0) {
1724 				miocnak(q, mp, 0, error);
1725 				break;
1726 			}
1727 			tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1728 			break;
1729 
1730 		case TI_GETINFO:
1731 			TILOG("timodwproc: TI_GETINFO\n", 0);
1732 			error = miocpullup(mp, sizeof (struct T_info_req));
1733 			if (error != 0) {
1734 				miocnak(q, mp, 0, error);
1735 				break;
1736 			}
1737 			tp->tim_flags |= WAIT_IOCINFOACK;
1738 			tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1739 			break;
1740 
1741 		case TI_SYNC: {
1742 			mblk_t *tsr_mp;
1743 			struct ti_sync_req *tsr;
1744 			uint32_t tsr_flags;
1745 
1746 			error = miocpullup(mp, sizeof (struct ti_sync_req));
1747 			if (error != 0) {
1748 				miocnak(q, mp, 0, error);
1749 				break;
1750 			}
1751 
1752 			tsr_mp = mp->b_cont;
1753 			tsr = (struct ti_sync_req *)tsr_mp->b_rptr;
1754 			TILOG("timodwproc: TI_SYNC(%x)\n", tsr->tsr_flags);
1755 
1756 			/*
1757 			 * Save out the value of tsr_flags, in case we
1758 			 * reallocb() tsr_mp (below).
1759 			 */
1760 			tsr_flags = tsr->tsr_flags;
1761 			if ((tsr_flags & TSRF_INFO_REQ) == 0) {
1762 				mblk_t *ack_mp = reallocb(tsr_mp,
1763 				    sizeof (struct ti_sync_ack), 0);
1764 
1765 				/* Can reply immediately. */
1766 				mp->b_cont = NULL;
1767 				if (ack_mp == NULL) {
1768 					tilog("timodwproc: allocb failed no "
1769 					    "recovery attempt\n", 0);
1770 					freemsg(tsr_mp);
1771 					miocnak(q, mp, 0, ENOMEM);
1772 				} else {
1773 					tim_answer_ti_sync(q, mp, tp,
1774 					    ack_mp, tsr_flags);
1775 				}
1776 				break;
1777 			}
1778 
1779 			/*
1780 			 * This code is retained for compatibility with
1781 			 * old statically linked applications. New code
1782 			 * should use TI_CAPABILITY for all TPI
1783 			 * information and should not use TSRF_INFO_REQ
1784 			 * flag.
1785 			 *
1786 			 * defer processsing necessary to rput procedure
1787 			 * as we need to get information from transport
1788 			 * driver. Set flags that will tell the read
1789 			 * side the work needed on this request.
1790 			 */
1791 
1792 			if (tsr_flags & TSRF_IS_EXP_IN_RCVBUF)
1793 				tp->tim_flags |= PEEK_RDQ_EXPIND;
1794 
1795 			/*
1796 			 * Convert message to a T_INFO_REQ message; relies
1797 			 * on sizeof (struct ti_sync_req) >= sizeof (struct
1798 			 * T_info_req)).
1799 			 */
1800 			ASSERT(MBLKL(tsr_mp) >= sizeof (struct T_info_req));
1801 
1802 			((struct T_info_req *)tsr_mp->b_rptr)->PRIM_type =
1803 			    T_INFO_REQ;
1804 			tsr_mp->b_wptr = tsr_mp->b_rptr +
1805 			    sizeof (struct T_info_req);
1806 			tp->tim_flags |= WAIT_IOCINFOACK;
1807 			tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1808 		}
1809 		break;
1810 
1811 		case TI_CAPABILITY: {
1812 			mblk_t *tcsr_mp;
1813 			struct T_capability_req *tcr;
1814 
1815 			error = miocpullup(mp, sizeof (*tcr));
1816 			if (error != 0) {
1817 				miocnak(q, mp, 0, error);
1818 				break;
1819 			}
1820 
1821 			tcsr_mp = mp->b_cont;
1822 			tcr = (struct T_capability_req *)tcsr_mp->b_rptr;
1823 			TILOG("timodwproc: TI_CAPABILITY(CAP_bits1 = %x)\n",
1824 			    tcr->CAP_bits1);
1825 
1826 			if (tcr->PRIM_type != T_CAPABILITY_REQ) {
1827 				TILOG("timodwproc: invalid msg type %d\n",
1828 				    tcr->PRIM_type);
1829 				miocnak(q, mp, 0, EPROTO);
1830 				break;
1831 			}
1832 
1833 			switch (tp->tim_provinfo->tpi_capability) {
1834 			case PI_YES:
1835 				/* Just send T_CAPABILITY_REQ down */
1836 				tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1837 				break;
1838 
1839 			case PI_DONTKNOW:
1840 				/*
1841 				 * It is unknown yet whether transport provides
1842 				 * T_CAPABILITY_REQ or not. Send message down
1843 				 * and wait for reply.
1844 				 */
1845 
1846 				ASSERT(tp->tim_tcap_timoutid == 0);
1847 				if ((tcr->CAP_bits1 & TC1_INFO) == 0) {
1848 					tp->tim_flags |= TI_CAP_RECVD;
1849 				} else {
1850 					tp->tim_flags |= (TI_CAP_RECVD |
1851 					    CAP_WANTS_INFO);
1852 				}
1853 
1854 				tp->tim_tcap_timoutid = qtimeout(q,
1855 				    tim_tcap_timer, q, tim_tcap_wait * hz);
1856 				tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1857 				break;
1858 
1859 			case PI_NO:
1860 				/*
1861 				 * Transport doesn't support T_CAPABILITY_REQ.
1862 				 * Either reply immediately or send T_INFO_REQ
1863 				 * if needed.
1864 				 */
1865 				if ((tcr->CAP_bits1 & TC1_INFO) != 0) {
1866 					tp->tim_flags |= (TI_CAP_RECVD |
1867 					    CAP_WANTS_INFO | WAIT_IOCINFOACK);
1868 					TILOG("timodwproc: sending down "
1869 					    "T_INFO_REQ, flags = %x\n",
1870 					    tp->tim_flags);
1871 
1872 				/*
1873 				 * Generate T_INFO_REQ message and send
1874 				 * it down
1875 				 */
1876 					((struct T_info_req *)tcsr_mp->b_rptr)->
1877 					    PRIM_type = T_INFO_REQ;
1878 					tcsr_mp->b_wptr = tcsr_mp->b_rptr +
1879 					    sizeof (struct T_info_req);
1880 					tim_send_ioctl_tpi_msg(q, mp, tp,
1881 					    iocbp);
1882 					break;
1883 				}
1884 
1885 
1886 				/*
1887 				 * Can reply immediately. Just send back
1888 				 * T_CAPABILITY_ACK with CAP_bits1 set to 0.
1889 				 */
1890 				mp->b_cont = tcsr_mp = tpi_ack_alloc(mp->b_cont,
1891 				    sizeof (struct T_capability_ack), M_PCPROTO,
1892 				    T_CAPABILITY_ACK);
1893 
1894 				if (tcsr_mp == NULL) {
1895 					tilog("timodwproc: allocb failed no "
1896 					    "recovery attempt\n", 0);
1897 					miocnak(q, mp, 0, ENOMEM);
1898 					break;
1899 				}
1900 
1901 				tp->tim_flags &= ~(WAITIOCACK | TI_CAP_RECVD |
1902 				    WAIT_IOCINFOACK | CAP_WANTS_INFO);
1903 				((struct T_capability_ack *)
1904 				    tcsr_mp->b_rptr)->CAP_bits1 = 0;
1905 				tim_ioctl_send_reply(q, mp, tcsr_mp);
1906 
1907 				/*
1908 				 * It could happen when timod is awaiting ack
1909 				 * for TI_GETPEERNAME/TI_GETMYNAME.
1910 				 */
1911 				if (tp->tim_iocsave != NULL) {
1912 					freemsg(tp->tim_iocsave);
1913 					tp->tim_iocsave = NULL;
1914 					tp->tim_saved_prim = -1;
1915 				}
1916 				break;
1917 
1918 			default:
1919 				cmn_err(CE_PANIC,
1920 				    "timodwproc: unknown tpi_capability value "
1921 				    "%d\n", tp->tim_provinfo->tpi_capability);
1922 				break;
1923 			}
1924 		}
1925 		break;
1926 
1927 /* ONC_PLUS EXTRACT START */
1928 		case TI_GETMYNAME:
1929 
1930 			tilog("timodwproc: Got TI_GETMYNAME\n", 0);
1931 
1932 			if (tp->tim_provinfo->tpi_myname == PI_YES) {
1933 				putnext(q, mp);
1934 				break;
1935 			}
1936 			goto getname;
1937 
1938 		case TI_GETPEERNAME:
1939 
1940 			tilog("timodwproc: Got TI_GETPEERNAME\n", 0);
1941 
1942 			if (tp->tim_provinfo->tpi_peername == PI_YES) {
1943 				putnext(q, mp);
1944 				break;
1945 			}
1946 getname:
1947 			if ((tmp = copymsg(mp)) == NULL) {
1948 				tim_recover(q, mp, msgsize(mp));
1949 				return (1);
1950 			}
1951 			/*
1952 			 * tim_iocsave may be non-NULL when timod is awaiting
1953 			 * ack for another TI_GETPEERNAME/TI_GETMYNAME.
1954 			 */
1955 			freemsg(tp->tim_iocsave);
1956 			tp->tim_iocsave = mp;
1957 			tp->tim_saved_prim = -1;
1958 			putnext(q, tmp);
1959 			break;
1960 			}
1961 		break;
1962 
1963 	case M_IOCDATA:
1964 
1965 		if (tp->tim_flags & NAMEPROC) {
1966 			if (ti_doname(q, mp) != DONAME_CONT) {
1967 				tp->tim_flags &= ~NAMEPROC;
1968 			}
1969 		} else
1970 			putnext(q, mp);
1971 		break;
1972 
1973 	case M_PROTO:
1974 	case M_PCPROTO:
1975 		if (MBLKL(mp) < sizeof (t_scalar_t)) {
1976 			merror(q, mp, EPROTO);
1977 			return (1);
1978 		}
1979 
1980 		pptr = (union T_primitives *)mp->b_rptr;
1981 		switch (pptr->type) {
1982 		default:
1983 			putnext(q, mp);
1984 			break;
1985 
1986 		case T_EXDATA_REQ:
1987 		case T_DATA_REQ:
1988 			if (pptr->type == T_EXDATA_REQ)
1989 				tilog("timodwproc: Got T_EXDATA_REQ\n", 0);
1990 
1991 		if (!bcanputnext(q, mp->b_band)) {
1992 			(void) putbq(q, mp);
1993 			return (1);
1994 		}
1995 		putnext(q, mp);
1996 		break;
1997 /* ONC_PLUS EXTRACT END */
1998 
1999 		case T_UNITDATA_REQ:
2000 			if (tp->tim_flags & CLTS) {
2001 				tmp = tim_filladdr(q, mp, B_TRUE);
2002 				if (tmp == NULL) {
2003 					return (1);
2004 				} else {
2005 					mp = tmp;
2006 				}
2007 			}
2008 #ifdef C2_AUDIT
2009 			if (audit_active)
2010 				audit_sock(T_UNITDATA_REQ, q, mp, TIMOD_ID);
2011 #endif
2012 		if (!bcanputnext(q, mp->b_band)) {
2013 				(void) putbq(q, mp);
2014 				return (1);
2015 			}
2016 			putnext(q, mp);
2017 			break;
2018 
2019 /* ONC_PLUS EXTRACT START */
2020 		case T_CONN_REQ: {
2021 			struct T_conn_req *reqp = (struct T_conn_req *)
2022 			    mp->b_rptr;
2023 			void *p;
2024 
2025 			tilog("timodwproc: Got T_CONN_REQ\n", 0);
2026 
2027 			if (MBLKL(mp) < sizeof (struct T_conn_req)) {
2028 				merror(q, mp, EPROTO);
2029 				return (1);
2030 			}
2031 
2032 			if (tp->tim_flags & DO_PEERNAME) {
2033 				if (!MBLKIN(mp, reqp->DEST_offset,
2034 				    reqp->DEST_length)) {
2035 					merror(q, mp, EPROTO);
2036 					return (1);
2037 				}
2038 				ASSERT(reqp->DEST_length >= 0);
2039 				mutex_enter(&tp->tim_mutex);
2040 				if (reqp->DEST_length > tp->tim_peermaxlen) {
2041 					p = kmem_alloc(reqp->DEST_length,
2042 					    KM_NOSLEEP);
2043 					if (p == NULL) {
2044 						mutex_exit(&tp->tim_mutex);
2045 						tilog("timodwproc: kmem_alloc "
2046 						    "failed, attempting "
2047 						    "recovery\n", 0);
2048 						tim_recover(q, mp,
2049 						    reqp->DEST_length);
2050 						return (1);
2051 					}
2052 					if (tp->tim_peermaxlen)
2053 						kmem_free(tp->tim_peername,
2054 						    tp->tim_peermaxlen);
2055 					tp->tim_peername = p;
2056 					tp->tim_peermaxlen = reqp->DEST_length;
2057 				}
2058 				tp->tim_peerlen = reqp->DEST_length;
2059 				p = mp->b_rptr + reqp->DEST_offset;
2060 				bcopy(p, tp->tim_peername, tp->tim_peerlen);
2061 				mutex_exit(&tp->tim_mutex);
2062 			}
2063 			if (tp->tim_flags & COTS)
2064 				tp->tim_flags |= CONNWAIT;
2065 /* ONC_PLUS EXTRACT END */
2066 #ifdef C2_AUDIT
2067 			if (audit_active)
2068 				audit_sock(T_CONN_REQ, q, mp, TIMOD_ID);
2069 #endif
2070 /* ONC_PLUS EXTRACT START */
2071 		putnext(q, mp);
2072 		break;
2073 	    }
2074 
2075 		case O_T_CONN_RES:
2076 		case T_CONN_RES: {
2077 			struct T_conn_res *resp;
2078 			struct T_conn_ind *indp;
2079 			mblk_t *pmp = NULL;
2080 			mblk_t *nbp;
2081 
2082 			if (MBLKL(mp) < sizeof (struct T_conn_res) ||
2083 			    (tp->tim_flags & WAITIOCACK)) {
2084 				merror(q, mp, EPROTO);
2085 				return (1);
2086 			}
2087 
2088 			resp = (struct T_conn_res *)mp->b_rptr;
2089 			for (tmp = tp->tim_consave; tmp != NULL;
2090 			    tmp = tmp->b_next) {
2091 				indp = (struct T_conn_ind *)tmp->b_rptr;
2092 				if (indp->SEQ_number == resp->SEQ_number)
2093 					break;
2094 				pmp = tmp;
2095 			}
2096 			if (tmp == NULL)
2097 				goto cresout;
2098 
2099 			if ((nbp = dupb(mp)) == NULL &&
2100 			    (nbp = copyb(mp)) == NULL) {
2101 				tim_recover(q, mp, msgsize(mp));
2102 				return (1);
2103 			}
2104 
2105 			if (pmp != NULL)
2106 				pmp->b_next = tmp->b_next;
2107 			else
2108 				tp->tim_consave = tmp->b_next;
2109 			tmp->b_next = NULL;
2110 
2111 			/*
2112 			 * Construct a list with:
2113 			 *	nbp - copy of user's original request
2114 			 *	tmp - the extracted T_conn_ind
2115 			 */
2116 			nbp->b_cont = tmp;
2117 			/*
2118 			 * tim_iocsave may be non-NULL when timod is awaiting
2119 			 * ack for TI_GETPEERNAME/TI_GETMYNAME.
2120 			 */
2121 			freemsg(tp->tim_iocsave);
2122 			tp->tim_iocsave = nbp;
2123 			tp->tim_saved_prim = pptr->type;
2124 			tp->tim_flags |= WAIT_CONNRESACK | WAITIOCACK;
2125 
2126 		cresout:
2127 			putnext(q, mp);
2128 			break;
2129 		}
2130 
2131 /* ONC_PLUS EXTRACT END */
2132 		case T_DISCON_REQ: {
2133 			struct T_discon_req *disp;
2134 			struct T_conn_ind *conp;
2135 			mblk_t *pmp = NULL;
2136 
2137 			if (MBLKL(mp) < sizeof (struct T_discon_req)) {
2138 				merror(q, mp, EPROTO);
2139 				return (1);
2140 			}
2141 
2142 			disp = (struct T_discon_req *)mp->b_rptr;
2143 			tp->tim_flags &= ~(CONNWAIT|LOCORDREL|REMORDREL);
2144 			tim_clear_peer(tp);
2145 
2146 			/*
2147 			 * If we are already connected, there won't
2148 			 * be any messages on tim_consave.
2149 			 */
2150 			for (tmp = tp->tim_consave; tmp; tmp = tmp->b_next) {
2151 				conp = (struct T_conn_ind *)tmp->b_rptr;
2152 				if (conp->SEQ_number == disp->SEQ_number)
2153 					break;
2154 				pmp = tmp;
2155 			}
2156 			if (tmp) {
2157 				if (pmp)
2158 					pmp->b_next = tmp->b_next;
2159 				else
2160 					tp->tim_consave = tmp->b_next;
2161 				tmp->b_next = NULL;
2162 				freemsg(tmp);
2163 			}
2164 			putnext(q, mp);
2165 			break;
2166 		}
2167 
2168 		case T_ORDREL_REQ:
2169 			if (tp->tim_flags & REMORDREL) {
2170 				tp->tim_flags &= ~(LOCORDREL|REMORDREL);
2171 				tim_clear_peer(tp);
2172 			} else {
2173 				tp->tim_flags |= LOCORDREL;
2174 			}
2175 			putnext(q, mp);
2176 			break;
2177 
2178 		case T_CAPABILITY_REQ:
2179 			tilog("timodwproc: Got T_CAPABILITY_REQ\n", 0);
2180 			/*
2181 			 * XXX: We may know at this point whether transport
2182 			 * provides T_CAPABILITY_REQ or not and we may utilise
2183 			 * this knowledge here.
2184 			 */
2185 			putnext(q, mp);
2186 			break;
2187 /* ONC_PLUS EXTRACT START */
2188 		}
2189 		break;
2190 	case M_FLUSH:
2191 
2192 		tilog("timodwproc: Got M_FLUSH\n", 0);
2193 
2194 		if (*mp->b_rptr & FLUSHW) {
2195 			if (*mp->b_rptr & FLUSHBAND)
2196 				flushband(q, *(mp->b_rptr + 1), FLUSHDATA);
2197 			else
2198 				flushq(q, FLUSHDATA);
2199 		}
2200 		putnext(q, mp);
2201 		break;
2202 	}
2203 
2204 	return (0);
2205 }
2206 
2207 static void
2208 tilog(char *str, t_scalar_t arg)
2209 {
2210 	if (dotilog) {
2211 		if (dotilog & 2)
2212 			cmn_err(CE_CONT, str, arg);
2213 		if (dotilog & 4)
2214 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
2215 			    str, arg);
2216 		else
2217 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE, str, arg);
2218 	}
2219 }
2220 
2221 static void
2222 tilogp(char *str, uintptr_t arg)
2223 {
2224 	if (dotilog) {
2225 		if (dotilog & 2)
2226 			cmn_err(CE_CONT, str, arg);
2227 		if (dotilog & 4)
2228 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
2229 			    str, arg);
2230 		else
2231 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE, str, arg);
2232 	}
2233 }
2234 
2235 
2236 /*
2237  * Process the TI_GETNAME ioctl.  If no name exists, return len = 0
2238  * in strbuf structures.  The state transitions are determined by what
2239  * is hung of cq_private (cp_private) in the copyresp (copyreq) structure.
2240  * The high-level steps in the ioctl processing are as follows:
2241  *
2242  * 1) we recieve an transparent M_IOCTL with the arg in the second message
2243  *	block of the message.
2244  * 2) we send up an M_COPYIN request for the strbuf structure pointed to
2245  *	by arg.  The block containing arg is hung off cq_private.
2246  * 3) we receive an M_IOCDATA response with cp->cp_private->b_cont == NULL.
2247  *	This means that the strbuf structure is found in the message block
2248  *	mp->b_cont.
2249  * 4) we send up an M_COPYOUT request with the strbuf message hung off
2250  *	cq_private->b_cont.  The address we are copying to is strbuf.buf.
2251  *	we set strbuf.len to 0 to indicate that we should copy the strbuf
2252  *	structure the next time.  The message mp->b_cont contains the
2253  *	address info.
2254  * 5) we receive an M_IOCDATA with cp_private->b_cont != NULL and
2255  *	strbuf.len == 0.  Restore strbuf.len to either tp->tim_mylen or
2256  *	tp->tim_peerlen.
2257  * 6) we send up an M_COPYOUT request with a copy of the strbuf message
2258  *	hung off mp->b_cont.  In the strbuf structure in the message hung
2259  *	off cq_private->b_cont, we set strbuf.len to 0 and strbuf.maxlen
2260  *	to 0.  This means that the next step is to ACK the ioctl.
2261  * 7) we receive an M_IOCDATA message with cp_private->b_cont != NULL and
2262  *	strbuf.len == 0 and strbuf.maxlen == 0.  Free up cp->private and
2263  *	send an M_IOCACK upstream, and we are done.
2264  *
2265  */
2266 static int
2267 ti_doname(
2268 	queue_t *q,		/* queue message arrived at */
2269 	mblk_t *mp)		/* M_IOCTL or M_IOCDATA message only */
2270 {
2271 	struct iocblk *iocp;
2272 	struct copyreq *cqp;
2273 	STRUCT_HANDLE(strbuf, sb);
2274 	struct copyresp *csp;
2275 	int ret;
2276 	mblk_t *bp;
2277 	struct tim_tim *tp = q->q_ptr;
2278 	boolean_t getpeer;
2279 
2280 	switch (mp->b_datap->db_type) {
2281 	case M_IOCTL:
2282 		iocp = (struct iocblk *)mp->b_rptr;
2283 		if ((iocp->ioc_cmd != TI_GETMYNAME) &&
2284 		    (iocp->ioc_cmd != TI_GETPEERNAME)) {
2285 			tilog("ti_doname: bad M_IOCTL command\n", 0);
2286 			miocnak(q, mp, 0, EINVAL);
2287 			ret = DONAME_FAIL;
2288 			break;
2289 		}
2290 		if ((iocp->ioc_count != TRANSPARENT)) {
2291 			miocnak(q, mp, 0, EINVAL);
2292 			ret = DONAME_FAIL;
2293 			break;
2294 		}
2295 
2296 		cqp = (struct copyreq *)mp->b_rptr;
2297 		cqp->cq_private = mp->b_cont;
2298 		cqp->cq_addr = (caddr_t)*(intptr_t *)mp->b_cont->b_rptr;
2299 		mp->b_cont = NULL;
2300 		cqp->cq_size = SIZEOF_STRUCT(strbuf, iocp->ioc_flag);
2301 		cqp->cq_flag = 0;
2302 		mp->b_datap->db_type = M_COPYIN;
2303 		mp->b_wptr = mp->b_rptr + sizeof (struct copyreq);
2304 		qreply(q, mp);
2305 		ret = DONAME_CONT;
2306 		break;
2307 
2308 	case M_IOCDATA:
2309 		csp = (struct copyresp *)mp->b_rptr;
2310 		iocp = (struct iocblk *)mp->b_rptr;
2311 		cqp = (struct copyreq *)mp->b_rptr;
2312 		if ((csp->cp_cmd != TI_GETMYNAME) &&
2313 		    (csp->cp_cmd != TI_GETPEERNAME)) {
2314 			cmn_err(CE_WARN, "ti_doname: bad M_IOCDATA command\n");
2315 			miocnak(q, mp, 0, EINVAL);
2316 			ret = DONAME_FAIL;
2317 			break;
2318 		}
2319 		if (csp->cp_rval) {	/* error */
2320 			freemsg(csp->cp_private);
2321 			freemsg(mp);
2322 			ret = DONAME_FAIL;
2323 			break;
2324 		}
2325 		ASSERT(csp->cp_private != NULL);
2326 		getpeer = csp->cp_cmd == TI_GETPEERNAME;
2327 		if (getpeer)
2328 			mutex_enter(&tp->tim_mutex);
2329 		if (csp->cp_private->b_cont == NULL) {	/* got strbuf */
2330 			ASSERT(mp->b_cont);
2331 			STRUCT_SET_HANDLE(sb, iocp->ioc_flag,
2332 			    (void *)mp->b_cont->b_rptr);
2333 			if (getpeer) {
2334 				if (tp->tim_peerlen == 0) {
2335 					/* copy just strbuf */
2336 					STRUCT_FSET(sb, len, 0);
2337 				} else if (tp->tim_peerlen >
2338 				    STRUCT_FGET(sb, maxlen)) {
2339 					mutex_exit(&tp->tim_mutex);
2340 					miocnak(q, mp, 0, ENAMETOOLONG);
2341 					ret = DONAME_FAIL;
2342 					break;
2343 				} else {
2344 					/* copy buffer */
2345 					STRUCT_FSET(sb, len, tp->tim_peerlen);
2346 				}
2347 			} else {
2348 				if (tp->tim_mylen == 0) {
2349 					/* copy just strbuf */
2350 					STRUCT_FSET(sb, len, 0);
2351 				} else if (tp->tim_mylen >
2352 				    STRUCT_FGET(sb, maxlen)) {
2353 					freemsg(csp->cp_private);
2354 					miocnak(q, mp, 0, ENAMETOOLONG);
2355 					ret = DONAME_FAIL;
2356 					break;
2357 				} else {
2358 					/* copy buffer */
2359 					STRUCT_FSET(sb, len, tp->tim_mylen);
2360 				}
2361 			}
2362 			csp->cp_private->b_cont = mp->b_cont;
2363 			mp->b_cont = NULL;
2364 		}
2365 		STRUCT_SET_HANDLE(sb, iocp->ioc_flag,
2366 		    (void *)csp->cp_private->b_cont->b_rptr);
2367 		if (STRUCT_FGET(sb, len) == 0) {
2368 			/*
2369 			 * restore strbuf.len
2370 			 */
2371 			if (getpeer)
2372 				STRUCT_FSET(sb, len, tp->tim_peerlen);
2373 			else
2374 				STRUCT_FSET(sb, len, tp->tim_mylen);
2375 
2376 			if (getpeer)
2377 				mutex_exit(&tp->tim_mutex);
2378 			if (STRUCT_FGET(sb, maxlen) == 0) {
2379 
2380 				/*
2381 				 * ack the ioctl
2382 				 */
2383 				freemsg(csp->cp_private);
2384 				tim_ioctl_send_reply(q, mp, NULL);
2385 				ret = DONAME_DONE;
2386 				break;
2387 			}
2388 
2389 			if ((bp = allocb(STRUCT_SIZE(sb), BPRI_MED)) == NULL) {
2390 
2391 				tilog(
2392 			"ti_doname: allocb failed no recovery attempt\n", 0);
2393 
2394 				freemsg(csp->cp_private);
2395 				miocnak(q, mp, 0, EAGAIN);
2396 				ret = DONAME_FAIL;
2397 				break;
2398 			}
2399 			bp->b_wptr += STRUCT_SIZE(sb);
2400 			bcopy(STRUCT_BUF(sb), bp->b_rptr, STRUCT_SIZE(sb));
2401 			cqp->cq_addr =
2402 			    (caddr_t)*(intptr_t *)csp->cp_private->b_rptr;
2403 			cqp->cq_size = STRUCT_SIZE(sb);
2404 			cqp->cq_flag = 0;
2405 			mp->b_datap->db_type = M_COPYOUT;
2406 			mp->b_cont = bp;
2407 			STRUCT_FSET(sb, len, 0);
2408 			STRUCT_FSET(sb, maxlen, 0); /* ack next time around */
2409 			qreply(q, mp);
2410 			ret = DONAME_CONT;
2411 			break;
2412 		}
2413 
2414 		/*
2415 		 * copy the address to the user
2416 		 */
2417 		if ((bp = allocb((size_t)STRUCT_FGET(sb, len), BPRI_MED))
2418 		    == NULL) {
2419 			if (getpeer)
2420 				mutex_exit(&tp->tim_mutex);
2421 
2422 			tilog("ti_doname: allocb failed no recovery attempt\n",
2423 			    0);
2424 
2425 			freemsg(csp->cp_private);
2426 			miocnak(q, mp, 0, EAGAIN);
2427 			ret = DONAME_FAIL;
2428 			break;
2429 		}
2430 		bp->b_wptr += STRUCT_FGET(sb, len);
2431 		if (getpeer) {
2432 			bcopy(tp->tim_peername, bp->b_rptr,
2433 			    STRUCT_FGET(sb, len));
2434 			mutex_exit(&tp->tim_mutex);
2435 		} else {
2436 			bcopy(tp->tim_myname, bp->b_rptr, STRUCT_FGET(sb, len));
2437 		}
2438 		cqp->cq_addr = (caddr_t)STRUCT_FGETP(sb, buf);
2439 		cqp->cq_size = STRUCT_FGET(sb, len);
2440 		cqp->cq_flag = 0;
2441 		mp->b_datap->db_type = M_COPYOUT;
2442 		mp->b_cont = bp;
2443 		STRUCT_FSET(sb, len, 0); /* copy the strbuf next time around */
2444 		qreply(q, mp);
2445 		ret = DONAME_CONT;
2446 		break;
2447 
2448 	default:
2449 		tilog("ti_doname: freeing bad message type = %d\n",
2450 		    mp->b_datap->db_type);
2451 		freemsg(mp);
2452 		ret = DONAME_FAIL;
2453 		break;
2454 	}
2455 	return (ret);
2456 }
2457 
2458 /* ONC_PLUS EXTRACT END */
2459 
2460 /*
2461  * Fill in the address of a connectionless data packet if a connect
2462  * had been done on this endpoint.
2463  */
2464 static mblk_t *
2465 tim_filladdr(queue_t *q, mblk_t *mp, boolean_t dorecover)
2466 {
2467 	mblk_t *bp;
2468 	struct tim_tim *tp;
2469 	struct T_unitdata_req *up;
2470 	struct T_unitdata_req *nup;
2471 	size_t plen;
2472 
2473 	tp = (struct tim_tim *)q->q_ptr;
2474 	if (mp->b_datap->db_type == M_DATA) {
2475 		mutex_enter(&tp->tim_mutex);
2476 		bp = allocb(sizeof (struct T_unitdata_req) + tp->tim_peerlen,
2477 		    BPRI_MED);
2478 		if (bp != NULL) {
2479 			bp->b_datap->db_type = M_PROTO;
2480 			up = (struct T_unitdata_req *)bp->b_rptr;
2481 			up->PRIM_type = T_UNITDATA_REQ;
2482 			up->DEST_length = tp->tim_peerlen;
2483 			bp->b_wptr += sizeof (struct T_unitdata_req);
2484 			up->DEST_offset = sizeof (struct T_unitdata_req);
2485 			up->OPT_length = 0;
2486 			up->OPT_offset = 0;
2487 			if (tp->tim_peerlen > 0) {
2488 				bcopy(tp->tim_peername, bp->b_wptr,
2489 				    tp->tim_peerlen);
2490 				bp->b_wptr += tp->tim_peerlen;
2491 			}
2492 			bp->b_cont = mp;
2493 		}
2494 	} else {
2495 		ASSERT(mp->b_datap->db_type == M_PROTO);
2496 		up = (struct T_unitdata_req *)mp->b_rptr;
2497 		ASSERT(up->PRIM_type == T_UNITDATA_REQ);
2498 		if (up->DEST_length != 0)
2499 			return (mp);
2500 		mutex_enter(&tp->tim_mutex);
2501 		bp = allocb(sizeof (struct T_unitdata_req) + up->OPT_length +
2502 		    tp->tim_peerlen, BPRI_MED);
2503 		if (bp != NULL) {
2504 			bp->b_datap->db_type = M_PROTO;
2505 			nup = (struct T_unitdata_req *)bp->b_rptr;
2506 			nup->PRIM_type = T_UNITDATA_REQ;
2507 			nup->DEST_length = plen = tp->tim_peerlen;
2508 			bp->b_wptr += sizeof (struct T_unitdata_req);
2509 			nup->DEST_offset = sizeof (struct T_unitdata_req);
2510 			if (plen > 0) {
2511 				bcopy(tp->tim_peername, bp->b_wptr, plen);
2512 				bp->b_wptr += plen;
2513 			}
2514 			mutex_exit(&tp->tim_mutex);
2515 			if (up->OPT_length == 0) {
2516 				nup->OPT_length = 0;
2517 				nup->OPT_offset = 0;
2518 			} else {
2519 				nup->OPT_length = up->OPT_length;
2520 				nup->OPT_offset =
2521 				    sizeof (struct T_unitdata_req) + plen;
2522 				bcopy((mp->b_wptr + up->OPT_offset), bp->b_wptr,
2523 				    up->OPT_length);
2524 				bp->b_wptr += up->OPT_length;
2525 			}
2526 			bp->b_cont = mp->b_cont;
2527 			mp->b_cont = NULL;
2528 			freeb(mp);
2529 			return (bp);
2530 		}
2531 	}
2532 	ASSERT(MUTEX_HELD(&tp->tim_mutex));
2533 	if (bp == NULL && dorecover) {
2534 		tim_recover(q, mp,
2535 		    sizeof (struct T_unitdata_req) + tp->tim_peerlen);
2536 	}
2537 	mutex_exit(&tp->tim_mutex);
2538 	return (bp);
2539 }
2540 
2541 static void
2542 tim_addlink(struct tim_tim *tp)
2543 {
2544 	struct tim_tim **tpp;
2545 	struct tim_tim	*next;
2546 
2547 	tpp = &tim_hash[TIM_HASH(tp->tim_acceptor)];
2548 	rw_enter(&tim_list_rwlock, RW_WRITER);
2549 
2550 	if ((next = *tpp) != NULL)
2551 		next->tim_ptpn = &tp->tim_next;
2552 	tp->tim_next = next;
2553 	tp->tim_ptpn = tpp;
2554 	*tpp = tp;
2555 
2556 	tim_cnt++;
2557 
2558 	rw_exit(&tim_list_rwlock);
2559 }
2560 
2561 static void
2562 tim_dellink(struct tim_tim *tp)
2563 {
2564 	struct tim_tim	*next;
2565 
2566 	rw_enter(&tim_list_rwlock, RW_WRITER);
2567 
2568 	if ((next = tp->tim_next) != NULL)
2569 		next->tim_ptpn = tp->tim_ptpn;
2570 	*(tp->tim_ptpn) = next;
2571 
2572 	tim_cnt--;
2573 
2574 	rw_exit(&tim_list_rwlock);
2575 }
2576 
2577 static struct tim_tim *
2578 tim_findlink(t_uscalar_t id)
2579 {
2580 	struct tim_tim	*tp;
2581 
2582 	ASSERT(rw_lock_held(&tim_list_rwlock));
2583 
2584 	for (tp = tim_hash[TIM_HASH(id)]; tp != NULL; tp = tp->tim_next) {
2585 		if (tp->tim_acceptor == id) {
2586 			break;
2587 		}
2588 	}
2589 	return (tp);
2590 }
2591 
2592 /* ONC_PLUS EXTRACT START */
2593 static void
2594 tim_recover(queue_t *q, mblk_t *mp, t_scalar_t size)
2595 {
2596 	struct tim_tim	*tp;
2597 	bufcall_id_t	bid;
2598 	timeout_id_t	tid;
2599 
2600 	tp = (struct tim_tim *)q->q_ptr;
2601 
2602 	/*
2603 	 * Avoid re-enabling the queue.
2604 	 */
2605 	if (mp->b_datap->db_type == M_PCPROTO)
2606 		mp->b_datap->db_type = M_PROTO;
2607 	noenable(q);
2608 	(void) putbq(q, mp);
2609 
2610 	/*
2611 	 * Make sure there is at most one outstanding request per queue.
2612 	 */
2613 	if (q->q_flag & QREADR) {
2614 		if (tp->tim_rtimoutid || tp->tim_rbufcid)
2615 			return;
2616 	} else {
2617 		if (tp->tim_wtimoutid || tp->tim_wbufcid)
2618 			return;
2619 	}
2620 	if (!(bid = qbufcall(RD(q), (size_t)size, BPRI_MED, tim_buffer, q))) {
2621 		tid = qtimeout(RD(q), tim_timer, q, TIMWAIT);
2622 		if (q->q_flag & QREADR)
2623 			tp->tim_rtimoutid = tid;
2624 		else
2625 			tp->tim_wtimoutid = tid;
2626 	} else	{
2627 		if (q->q_flag & QREADR)
2628 			tp->tim_rbufcid = bid;
2629 		else
2630 			tp->tim_wbufcid = bid;
2631 	}
2632 }
2633 
2634 /*
2635  * Timod is waiting on a downstream ioctl reply, come back soon
2636  * to reschedule the write side service routine, which will check
2637  * if the ioctl is done and another can proceed.
2638  */
2639 static void
2640 tim_ioctl_retry(queue_t *q)
2641 {
2642 	struct tim_tim  *tp;
2643 
2644 	tp = (struct tim_tim *)q->q_ptr;
2645 
2646 	/*
2647 	 * Make sure there is at most one outstanding request per wqueue.
2648 	 */
2649 	if (tp->tim_wtimoutid || tp->tim_wbufcid)
2650 		return;
2651 
2652 	tp->tim_wtimoutid = qtimeout(RD(q), tim_timer, q, TIMIOCWAIT);
2653 }
2654 
2655 /*
2656  * Inspect the data on read queues starting from read queues passed as
2657  * paramter (timod read queue) and traverse until
2658  * q_next is NULL (stream head). Look for a TPI T_EXDATA_IND message
2659  * reutrn 1 if found, 0 if not found.
2660  */
2661 static int
2662 ti_expind_on_rdqueues(queue_t *rq)
2663 {
2664 	mblk_t *bp;
2665 	queue_t *q;
2666 
2667 	q = rq;
2668 	/*
2669 	 * We are going to walk q_next, so protect stream from plumbing
2670 	 * changes.
2671 	 */
2672 	claimstr(q);
2673 	do {
2674 		/*
2675 		 * Hold QLOCK while referencing data on queues
2676 		 */
2677 		mutex_enter(QLOCK(rq));
2678 		bp = rq->q_first;
2679 		while (bp != NULL) {
2680 			/*
2681 			 * Walk the messages on the queue looking
2682 			 * for a possible T_EXDATA_IND
2683 			 */
2684 			if ((bp->b_datap->db_type == M_PROTO) &&
2685 			    ((bp->b_wptr - bp->b_rptr) >=
2686 				sizeof (struct T_exdata_ind)) &&
2687 			    (((struct T_exdata_ind *)bp->b_rptr)->PRIM_type
2688 				== T_EXDATA_IND)) {
2689 				/* bp is T_EXDATA_IND */
2690 				mutex_exit(QLOCK(rq));
2691 				releasestr(q); /* decrement sd_refcnt  */
2692 				return (1); /* expdata is on a read queue */
2693 			}
2694 			bp = bp->b_next; /* next message */
2695 		}
2696 		mutex_exit(QLOCK(rq));
2697 		rq = rq->q_next;	/* next upstream queue */
2698 	} while (rq != NULL);
2699 	releasestr(q);
2700 	return (0);		/* no expdata on read queues */
2701 }
2702 
2703 /* ONC_PLUS EXTRACT END */
2704 static void
2705 tim_tcap_timer(void *q_ptr)
2706 {
2707 	queue_t *q = (queue_t *)q_ptr;
2708 	struct tim_tim *tp = (struct tim_tim *)q->q_ptr;
2709 
2710 	ASSERT(tp != NULL && tp->tim_tcap_timoutid != 0);
2711 	ASSERT((tp->tim_flags & TI_CAP_RECVD) != 0);
2712 
2713 	tp->tim_tcap_timoutid = 0;
2714 	TILOG("tim_tcap_timer: fired\n", 0);
2715 	tim_tcap_genreply(q, tp);
2716 }
2717 
2718 /*
2719  * tim_tcap_genreply() is called either from timeout routine or when
2720  * T_ERROR_ACK is received. In both cases it means that underlying
2721  * transport doesn't provide T_CAPABILITY_REQ.
2722  */
2723 static void
2724 tim_tcap_genreply(queue_t *q, struct tim_tim *tp)
2725 {
2726 	mblk_t		*mp = tp->tim_iocsave;
2727 	struct iocblk	*iocbp;
2728 
2729 	TILOG("timodrproc: tim_tcap_genreply\n", 0);
2730 
2731 	ASSERT(tp == (struct tim_tim *)q->q_ptr);
2732 	ASSERT(mp != NULL);
2733 
2734 	iocbp = (struct iocblk *)mp->b_rptr;
2735 	ASSERT(iocbp != NULL);
2736 	ASSERT(MBLKL(mp) == sizeof (struct iocblk));
2737 	ASSERT(iocbp->ioc_cmd == TI_CAPABILITY);
2738 	ASSERT(mp->b_cont == NULL);
2739 
2740 	/* Save this information permanently in the module */
2741 	PI_PROVLOCK(tp->tim_provinfo);
2742 	if (tp->tim_provinfo->tpi_capability == PI_DONTKNOW)
2743 		tp->tim_provinfo->tpi_capability = PI_NO;
2744 	PI_PROVUNLOCK(tp->tim_provinfo);
2745 
2746 	if (tp->tim_tcap_timoutid != 0) {
2747 		(void) quntimeout(q, tp->tim_tcap_timoutid);
2748 		tp->tim_tcap_timoutid = 0;
2749 	}
2750 
2751 	if ((tp->tim_flags & CAP_WANTS_INFO) != 0) {
2752 		/* Send T_INFO_REQ down */
2753 		mblk_t *tirmp = tpi_ack_alloc(NULL,
2754 		    sizeof (struct T_info_req), M_PCPROTO, T_INFO_REQ);
2755 
2756 		if (tirmp != NULL) {
2757 			/* Emulate TC1_INFO */
2758 			TILOG("emulate_tcap_ioc_req: sending T_INFO_REQ\n", 0);
2759 			tp->tim_flags |= WAIT_IOCINFOACK;
2760 			putnext(WR(q), tirmp);
2761 		} else {
2762 			tilog("emulate_tcap_req: allocb fail, "
2763 			    "no recovery attmpt\n", 0);
2764 			tp->tim_iocsave = NULL;
2765 			tp->tim_saved_prim = -1;
2766 			tp->tim_flags &= ~(TI_CAP_RECVD | WAITIOCACK |
2767 			    CAP_WANTS_INFO | WAIT_IOCINFOACK);
2768 			miocnak(q, mp, 0, ENOMEM);
2769 		}
2770 	} else {
2771 		/* Reply immediately */
2772 		mblk_t *ackmp = tpi_ack_alloc(NULL,
2773 		    sizeof (struct T_capability_ack), M_PCPROTO,
2774 		    T_CAPABILITY_ACK);
2775 
2776 		mp->b_cont = ackmp;
2777 
2778 		if (ackmp != NULL) {
2779 			((struct T_capability_ack *)
2780 			    ackmp->b_rptr)->CAP_bits1 = 0;
2781 			tim_ioctl_send_reply(q, mp, ackmp);
2782 			tp->tim_iocsave = NULL;
2783 			tp->tim_saved_prim = -1;
2784 			tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
2785 			    TI_CAP_RECVD | CAP_WANTS_INFO);
2786 		} else {
2787 			tilog("timodwproc:allocb failed no "
2788 			    "recovery attempt\n", 0);
2789 			tp->tim_iocsave = NULL;
2790 			tp->tim_saved_prim = -1;
2791 			tp->tim_flags &= ~(TI_CAP_RECVD | WAITIOCACK |
2792 			    CAP_WANTS_INFO | WAIT_IOCINFOACK);
2793 			miocnak(q, mp, 0, ENOMEM);
2794 		}
2795 	}
2796 }
2797 
2798 
2799 static void
2800 tim_ioctl_send_reply(queue_t *q, mblk_t *ioc_mp, mblk_t *mp)
2801 {
2802 	struct iocblk	*iocbp;
2803 
2804 	ASSERT(q != NULL && ioc_mp != NULL);
2805 
2806 	ioc_mp->b_datap->db_type = M_IOCACK;
2807 	if (mp != NULL)
2808 		mp->b_datap->db_type = M_DATA;
2809 
2810 	if (ioc_mp->b_cont != mp) {
2811 		/* It is safe to call freemsg for NULL pointers */
2812 		freemsg(ioc_mp->b_cont);
2813 		ioc_mp->b_cont = mp;
2814 	}
2815 	iocbp = (struct iocblk *)ioc_mp->b_rptr;
2816 	iocbp->ioc_error = 0;
2817 	iocbp->ioc_rval = 0;
2818 	/*
2819 	 * All ioctl's may return more data than was specified by
2820 	 * count arg. For TI_CAPABILITY count is treated as maximum data size.
2821 	 */
2822 	if (mp == NULL)
2823 		iocbp->ioc_count = 0;
2824 	else if (iocbp->ioc_cmd != TI_CAPABILITY)
2825 		iocbp->ioc_count = msgsize(mp);
2826 	else {
2827 		iocbp->ioc_count = MIN(MBLKL(mp), iocbp->ioc_count);
2828 		/* Truncate message if too large */
2829 		mp->b_wptr = mp->b_rptr + iocbp->ioc_count;
2830 	}
2831 
2832 	TILOG("iosendreply: ioc_cmd = %d, ", iocbp->ioc_cmd);
2833 	putnext(RD(q), ioc_mp);
2834 }
2835 
2836 /*
2837  * Send M_IOCACK for errors.
2838  */
2839 static void
2840 tim_send_ioc_error_ack(queue_t *q, struct tim_tim *tp, mblk_t *mp)
2841 {
2842 	struct T_error_ack *tea = (struct T_error_ack *)mp->b_rptr;
2843 	t_scalar_t error_prim;
2844 
2845 	mp->b_wptr = mp->b_rptr + sizeof (struct T_error_ack);
2846 	ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
2847 	error_prim = tea->ERROR_prim;
2848 
2849 	ASSERT(tp->tim_iocsave != NULL);
2850 	ASSERT(tp->tim_iocsave->b_cont != mp);
2851 
2852 	/* Always send this to the read side of the queue */
2853 	q = RD(q);
2854 
2855 	TILOG("tim_send_ioc_error_ack: prim = %d\n", tp->tim_saved_prim);
2856 
2857 	if (tp->tim_saved_prim != error_prim) {
2858 		putnext(q, mp);
2859 	} else if (error_prim == T_CAPABILITY_REQ) {
2860 		TILOG("timodrproc: T_ERROR_ACK/T_CAPABILITY_REQ\n", 0);
2861 		ASSERT(tp->tim_iocsave->b_cont == NULL);
2862 
2863 		tim_tcap_genreply(q, tp);
2864 		freemsg(mp);
2865 	} else {
2866 		struct iocblk *iocbp = (struct iocblk *)tp->tim_iocsave->b_rptr;
2867 
2868 		TILOG("tim_send_ioc_error_ack: T_ERROR_ACK: prim %d\n",
2869 		    error_prim);
2870 		ASSERT(tp->tim_iocsave->b_cont == NULL);
2871 
2872 		switch (error_prim) {
2873 		default:
2874 			TILOG("timodrproc: Unknown T_ERROR_ACK:  tlierror %d\n",
2875 			    tea->TLI_error);
2876 
2877 			putnext(q, mp);
2878 			break;
2879 
2880 		case T_INFO_REQ:
2881 		case T_SVR4_OPTMGMT_REQ:
2882 		case T_OPTMGMT_REQ:
2883 		case O_T_BIND_REQ:
2884 		case T_BIND_REQ:
2885 		case T_UNBIND_REQ:
2886 		case T_ADDR_REQ:
2887 		case T_CAPABILITY_REQ:
2888 
2889 			TILOG("ioc_err_ack: T_ERROR_ACK: tlierror %x\n",
2890 			    tea->TLI_error);
2891 
2892 			/* get saved ioctl msg and set values */
2893 			iocbp->ioc_count = 0;
2894 			iocbp->ioc_error = 0;
2895 			iocbp->ioc_rval = tea->TLI_error;
2896 			if (iocbp->ioc_rval == TSYSERR)
2897 				iocbp->ioc_rval |= tea->UNIX_error << 8;
2898 			tp->tim_iocsave->b_datap->db_type = M_IOCACK;
2899 			freemsg(mp);
2900 			putnext(q, tp->tim_iocsave);
2901 			tp->tim_iocsave = NULL;
2902 			tp->tim_saved_prim = -1;
2903 			tp->tim_flags &= ~(WAITIOCACK | TI_CAP_RECVD |
2904 			    CAP_WANTS_INFO | WAIT_IOCINFOACK);
2905 			break;
2906 		}
2907 	}
2908 }
2909 
2910 /*
2911  * Send reply to a usual message or ioctl message upstream.
2912  * Should be called from the read side only.
2913  */
2914 static void
2915 tim_send_reply(queue_t *q, mblk_t *mp, struct tim_tim *tp, t_scalar_t prim)
2916 {
2917 	ASSERT(mp != NULL && q != NULL && tp != NULL);
2918 	ASSERT(q == RD(q));
2919 
2920 	/* Restore db_type - recover() might have changed it */
2921 	mp->b_datap->db_type = M_PCPROTO;
2922 
2923 	if (((tp->tim_flags & WAITIOCACK) == 0) || (tp->tim_saved_prim != prim))
2924 		putnext(q, mp);
2925 	else {
2926 		ASSERT(tp->tim_iocsave != NULL);
2927 		tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
2928 		tp->tim_iocsave = NULL;
2929 		tp->tim_saved_prim = -1;
2930 		tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
2931 		    TI_CAP_RECVD | CAP_WANTS_INFO);
2932 	}
2933 }
2934 
2935 /*
2936  * Reply to TI_SYNC reequest without sending anything downstream.
2937  */
2938 static void
2939 tim_answer_ti_sync(queue_t *q, mblk_t *mp, struct tim_tim *tp,
2940     mblk_t *ackmp, uint32_t tsr_flags)
2941 {
2942 	struct ti_sync_ack *tsap;
2943 
2944 	ASSERT(q != NULL && q == WR(q) && ackmp != NULL);
2945 
2946 	tsap = (struct ti_sync_ack *)ackmp->b_rptr;
2947 	bzero(tsap, sizeof (struct ti_sync_ack));
2948 	ackmp->b_wptr = ackmp->b_rptr + sizeof (struct ti_sync_ack);
2949 
2950 	if (tsr_flags == 0 ||
2951 	    (tsr_flags & ~(TSRF_QLEN_REQ | TSRF_IS_EXP_IN_RCVBUF)) != 0) {
2952 		/*
2953 		 * unsupported/bad flag setting
2954 		 * or no flag set.
2955 		 */
2956 		TILOG("timodwproc: unsupported/bad flag setting %x\n",
2957 		    tsr_flags);
2958 		freemsg(ackmp);
2959 		miocnak(q, mp, 0, EINVAL);
2960 		return;
2961 	}
2962 
2963 	if ((tsr_flags & TSRF_QLEN_REQ) != 0)
2964 		tsap->tsa_qlen = tp->tim_backlog;
2965 
2966 	if ((tsr_flags & TSRF_IS_EXP_IN_RCVBUF) != 0 &&
2967 	    ti_expind_on_rdqueues(RD(q))) {
2968 		/*
2969 		 * Expedited data is queued on
2970 		 * the stream read side
2971 		 */
2972 		tsap->tsa_flags |= TSAF_EXP_QUEUED;
2973 	}
2974 
2975 	tim_ioctl_send_reply(q, mp, ackmp);
2976 	tp->tim_iocsave = NULL;
2977 	tp->tim_saved_prim = -1;
2978 	tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
2979 	    TI_CAP_RECVD | CAP_WANTS_INFO);
2980 }
2981 
2982 /*
2983  * Send TPI message from IOCTL message, ssave original ioctl header and TPI
2984  * message type. Should be called from write side only.
2985  */
2986 static void
2987 tim_send_ioctl_tpi_msg(queue_t *q, mblk_t *mp, struct tim_tim *tp,
2988 	struct iocblk *iocb)
2989 {
2990 	mblk_t *tmp;
2991 	int ioc_cmd = iocb->ioc_cmd;
2992 
2993 	ASSERT(q != NULL && mp != NULL && tp != NULL);
2994 	ASSERT(q == WR(q));
2995 	ASSERT(mp->b_cont != NULL);
2996 
2997 	tp->tim_iocsave = mp;
2998 	tmp = mp->b_cont;
2999 
3000 	mp->b_cont = NULL;
3001 	tp->tim_flags |= WAITIOCACK;
3002 	tp->tim_saved_prim = ((union T_primitives *)tmp->b_rptr)->type;
3003 
3004 	/*
3005 	 * For TI_GETINFO, the attached message is a T_INFO_REQ
3006 	 * For TI_SYNC, we generate the T_INFO_REQ message above
3007 	 * For TI_CAPABILITY the attached message is either
3008 	 * T_CAPABILITY_REQ or T_INFO_REQ.
3009 	 * Among TPI request messages possible,
3010 	 *	T_INFO_REQ/T_CAPABILITY_ACK messages are a M_PCPROTO, rest
3011 	 *	are M_PROTO
3012 	 */
3013 	if (ioc_cmd == TI_GETINFO || ioc_cmd == TI_SYNC ||
3014 	    ioc_cmd == TI_CAPABILITY) {
3015 		tmp->b_datap->db_type = M_PCPROTO;
3016 	} else {
3017 		tmp->b_datap->db_type = M_PROTO;
3018 	}
3019 
3020 	/* Verify credentials in STREAM */
3021 	ASSERT(iocb->ioc_cr == NULL || iocb->ioc_cr == DB_CRED(tmp));
3022 
3023 	TILOG("timodwproc: sending down %d\n", tp->tim_saved_prim);
3024 	putnext(q, tmp);
3025 }
3026 
3027 static void
3028 tim_clear_peer(struct tim_tim *tp)
3029 {
3030 	mutex_enter(&tp->tim_mutex);
3031 	if (tp->tim_peercred != NULL) {
3032 		crfree(tp->tim_peercred);
3033 		tp->tim_peercred = NULL;
3034 	}
3035 	tp->tim_peerlen = 0;
3036 	mutex_exit(&tp->tim_mutex);
3037 }
3038