xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision ddece0baf7ff3a228bcd106c2bb2303ac0c9af89)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 
68 
69 /*
70  * Loadable module info.
71  */
72 #if (defined(__fibre))
73 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
75 #else
76 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
77 char _depends_on[]	= "misc/scsi misc/cmlb";
78 #endif
79 
80 /*
81  * Define the interconnect type, to allow the driver to distinguish
82  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
83  *
84  * This is really for backward compatability. In the future, the driver
85  * should actually check the "interconnect-type" property as reported by
86  * the HBA; however at present this property is not defined by all HBAs,
87  * so we will use this #define (1) to permit the driver to run in
88  * backward-compatability mode; and (2) to print a notification message
89  * if an FC HBA does not support the "interconnect-type" property.  The
90  * behavior of the driver will be to assume parallel SCSI behaviors unless
91  * the "interconnect-type" property is defined by the HBA **AND** has a
92  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
93  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
94  * Channel behaviors (as per the old ssd).  (Note that the
95  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
96  * will result in the driver assuming parallel SCSI behaviors.)
97  *
98  * (see common/sys/scsi/impl/services.h)
99  *
100  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
101  * since some FC HBAs may already support that, and there is some code in
102  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
103  * default would confuse that code, and besides things should work fine
104  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
105  * "interconnect_type" property.
106  *
107  */
108 #if (defined(__fibre))
109 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
110 #else
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
112 #endif
113 
114 /*
115  * The name of the driver, established from the module name in _init.
116  */
117 static	char *sd_label			= NULL;
118 
119 /*
120  * Driver name is unfortunately prefixed on some driver.conf properties.
121  */
122 #if (defined(__fibre))
123 #define	sd_max_xfer_size		ssd_max_xfer_size
124 #define	sd_config_list			ssd_config_list
125 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
126 static	char *sd_config_list		= "ssd-config-list";
127 #else
128 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
129 static	char *sd_config_list		= "sd-config-list";
130 #endif
131 
132 /*
133  * Driver global variables
134  */
135 
136 #if (defined(__fibre))
137 /*
138  * These #defines are to avoid namespace collisions that occur because this
139  * code is currently used to compile two seperate driver modules: sd and ssd.
140  * All global variables need to be treated this way (even if declared static)
141  * in order to allow the debugger to resolve the names properly.
142  * It is anticipated that in the near future the ssd module will be obsoleted,
143  * at which time this namespace issue should go away.
144  */
145 #define	sd_state			ssd_state
146 #define	sd_io_time			ssd_io_time
147 #define	sd_failfast_enable		ssd_failfast_enable
148 #define	sd_ua_retry_count		ssd_ua_retry_count
149 #define	sd_report_pfa			ssd_report_pfa
150 #define	sd_max_throttle			ssd_max_throttle
151 #define	sd_min_throttle			ssd_min_throttle
152 #define	sd_rot_delay			ssd_rot_delay
153 
154 #define	sd_retry_on_reservation_conflict	\
155 					ssd_retry_on_reservation_conflict
156 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
157 #define	sd_resv_conflict_name		ssd_resv_conflict_name
158 
159 #define	sd_component_mask		ssd_component_mask
160 #define	sd_level_mask			ssd_level_mask
161 #define	sd_debug_un			ssd_debug_un
162 #define	sd_error_level			ssd_error_level
163 
164 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
165 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
166 
167 #define	sd_tr				ssd_tr
168 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
169 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
170 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
171 #define	sd_check_media_time		ssd_check_media_time
172 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
173 #define	sd_label_mutex			ssd_label_mutex
174 #define	sd_detach_mutex			ssd_detach_mutex
175 #define	sd_log_buf			ssd_log_buf
176 #define	sd_log_mutex			ssd_log_mutex
177 
178 #define	sd_disk_table			ssd_disk_table
179 #define	sd_disk_table_size		ssd_disk_table_size
180 #define	sd_sense_mutex			ssd_sense_mutex
181 #define	sd_cdbtab			ssd_cdbtab
182 
183 #define	sd_cb_ops			ssd_cb_ops
184 #define	sd_ops				ssd_ops
185 #define	sd_additional_codes		ssd_additional_codes
186 #define	sd_tgops			ssd_tgops
187 
188 #define	sd_minor_data			ssd_minor_data
189 #define	sd_minor_data_efi		ssd_minor_data_efi
190 
191 #define	sd_tq				ssd_tq
192 #define	sd_wmr_tq			ssd_wmr_tq
193 #define	sd_taskq_name			ssd_taskq_name
194 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
195 #define	sd_taskq_minalloc		ssd_taskq_minalloc
196 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
197 
198 #define	sd_dump_format_string		ssd_dump_format_string
199 
200 #define	sd_iostart_chain		ssd_iostart_chain
201 #define	sd_iodone_chain			ssd_iodone_chain
202 
203 #define	sd_pm_idletime			ssd_pm_idletime
204 
205 #define	sd_force_pm_supported		ssd_force_pm_supported
206 
207 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
208 
209 #endif
210 
211 
212 #ifdef	SDDEBUG
213 int	sd_force_pm_supported		= 0;
214 #endif	/* SDDEBUG */
215 
216 void *sd_state				= NULL;
217 int sd_io_time				= SD_IO_TIME;
218 int sd_failfast_enable			= 1;
219 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
220 int sd_report_pfa			= 1;
221 int sd_max_throttle			= SD_MAX_THROTTLE;
222 int sd_min_throttle			= SD_MIN_THROTTLE;
223 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
224 int sd_qfull_throttle_enable		= TRUE;
225 
226 int sd_retry_on_reservation_conflict	= 1;
227 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
228 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
229 
230 static int sd_dtype_optical_bind	= -1;
231 
232 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
233 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
234 
235 /*
236  * Global data for debug logging. To enable debug printing, sd_component_mask
237  * and sd_level_mask should be set to the desired bit patterns as outlined in
238  * sddef.h.
239  */
240 uint_t	sd_component_mask		= 0x0;
241 uint_t	sd_level_mask			= 0x0;
242 struct	sd_lun *sd_debug_un		= NULL;
243 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
244 
245 /* Note: these may go away in the future... */
246 static uint32_t	sd_xbuf_active_limit	= 512;
247 static uint32_t sd_xbuf_reserve_limit	= 16;
248 
249 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
250 
251 /*
252  * Timer value used to reset the throttle after it has been reduced
253  * (typically in response to TRAN_BUSY or STATUS_QFULL)
254  */
255 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
256 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
257 
258 /*
259  * Interval value associated with the media change scsi watch.
260  */
261 static int sd_check_media_time		= 3000000;
262 
263 /*
264  * Wait value used for in progress operations during a DDI_SUSPEND
265  */
266 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
267 
268 /*
269  * sd_label_mutex protects a static buffer used in the disk label
270  * component of the driver
271  */
272 static kmutex_t sd_label_mutex;
273 
274 /*
275  * sd_detach_mutex protects un_layer_count, un_detach_count, and
276  * un_opens_in_progress in the sd_lun structure.
277  */
278 static kmutex_t sd_detach_mutex;
279 
280 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
281 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
282 
283 /*
284  * Global buffer and mutex for debug logging
285  */
286 static char	sd_log_buf[1024];
287 static kmutex_t	sd_log_mutex;
288 
289 /*
290  * Structs and globals for recording attached lun information.
291  * This maintains a chain. Each node in the chain represents a SCSI controller.
292  * The structure records the number of luns attached to each target connected
293  * with the controller.
294  * For parallel scsi device only.
295  */
296 struct sd_scsi_hba_tgt_lun {
297 	struct sd_scsi_hba_tgt_lun	*next;
298 	dev_info_t			*pdip;
299 	int				nlun[NTARGETS_WIDE];
300 };
301 
302 /*
303  * Flag to indicate the lun is attached or detached
304  */
305 #define	SD_SCSI_LUN_ATTACH	0
306 #define	SD_SCSI_LUN_DETACH	1
307 
308 static kmutex_t	sd_scsi_target_lun_mutex;
309 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
312     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
313 
314 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
315     sd_scsi_target_lun_head))
316 
317 /*
318  * "Smart" Probe Caching structs, globals, #defines, etc.
319  * For parallel scsi and non-self-identify device only.
320  */
321 
322 /*
323  * The following resources and routines are implemented to support
324  * "smart" probing, which caches the scsi_probe() results in an array,
325  * in order to help avoid long probe times.
326  */
327 struct sd_scsi_probe_cache {
328 	struct	sd_scsi_probe_cache	*next;
329 	dev_info_t	*pdip;
330 	int		cache[NTARGETS_WIDE];
331 };
332 
333 static kmutex_t	sd_scsi_probe_cache_mutex;
334 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
335 
336 /*
337  * Really we only need protection on the head of the linked list, but
338  * better safe than sorry.
339  */
340 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
341     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
342 
343 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
344     sd_scsi_probe_cache_head))
345 
346 
347 /*
348  * Vendor specific data name property declarations
349  */
350 
351 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
352 
353 static sd_tunables seagate_properties = {
354 	SEAGATE_THROTTLE_VALUE,
355 	0,
356 	0,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0
363 };
364 
365 
366 static sd_tunables fujitsu_properties = {
367 	FUJITSU_THROTTLE_VALUE,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0
376 };
377 
378 static sd_tunables ibm_properties = {
379 	IBM_THROTTLE_VALUE,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0
388 };
389 
390 static sd_tunables purple_properties = {
391 	PURPLE_THROTTLE_VALUE,
392 	0,
393 	0,
394 	PURPLE_BUSY_RETRIES,
395 	PURPLE_RESET_RETRY_COUNT,
396 	PURPLE_RESERVE_RELEASE_TIME,
397 	0,
398 	0,
399 	0
400 };
401 
402 static sd_tunables sve_properties = {
403 	SVE_THROTTLE_VALUE,
404 	0,
405 	0,
406 	SVE_BUSY_RETRIES,
407 	SVE_RESET_RETRY_COUNT,
408 	SVE_RESERVE_RELEASE_TIME,
409 	SVE_MIN_THROTTLE_VALUE,
410 	SVE_DISKSORT_DISABLED_FLAG,
411 	0
412 };
413 
414 static sd_tunables maserati_properties = {
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	MASERATI_DISKSORT_DISABLED_FLAG,
423 	MASERATI_LUN_RESET_ENABLED_FLAG
424 };
425 
426 static sd_tunables pirus_properties = {
427 	PIRUS_THROTTLE_VALUE,
428 	0,
429 	PIRUS_NRR_COUNT,
430 	PIRUS_BUSY_RETRIES,
431 	PIRUS_RESET_RETRY_COUNT,
432 	0,
433 	PIRUS_MIN_THROTTLE_VALUE,
434 	PIRUS_DISKSORT_DISABLED_FLAG,
435 	PIRUS_LUN_RESET_ENABLED_FLAG
436 };
437 
438 #endif
439 
440 #if (defined(__sparc) && !defined(__fibre)) || \
441 	(defined(__i386) || defined(__amd64))
442 
443 
444 static sd_tunables elite_properties = {
445 	ELITE_THROTTLE_VALUE,
446 	0,
447 	0,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0
454 };
455 
456 static sd_tunables st31200n_properties = {
457 	ST31200N_THROTTLE_VALUE,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0
466 };
467 
468 #endif /* Fibre or not */
469 
470 static sd_tunables lsi_properties_scsi = {
471 	LSI_THROTTLE_VALUE,
472 	0,
473 	LSI_NOTREADY_RETRIES,
474 	0,
475 	0,
476 	0,
477 	0,
478 	0,
479 	0
480 };
481 
482 static sd_tunables symbios_properties = {
483 	SYMBIOS_THROTTLE_VALUE,
484 	0,
485 	SYMBIOS_NOTREADY_RETRIES,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0
492 };
493 
494 static sd_tunables lsi_properties = {
495 	0,
496 	0,
497 	LSI_NOTREADY_RETRIES,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0,
503 	0
504 };
505 
506 static sd_tunables lsi_oem_properties = {
507 	0,
508 	0,
509 	LSI_OEM_NOTREADY_RETRIES,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0,
515 	0
516 };
517 
518 
519 
520 #if (defined(SD_PROP_TST))
521 
522 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
523 #define	SD_TST_THROTTLE_VAL	16
524 #define	SD_TST_NOTREADY_VAL	12
525 #define	SD_TST_BUSY_VAL		60
526 #define	SD_TST_RST_RETRY_VAL	36
527 #define	SD_TST_RSV_REL_TIME	60
528 
529 static sd_tunables tst_properties = {
530 	SD_TST_THROTTLE_VAL,
531 	SD_TST_CTYPE_VAL,
532 	SD_TST_NOTREADY_VAL,
533 	SD_TST_BUSY_VAL,
534 	SD_TST_RST_RETRY_VAL,
535 	SD_TST_RSV_REL_TIME,
536 	0,
537 	0,
538 	0
539 };
540 #endif
541 
542 /* This is similiar to the ANSI toupper implementation */
543 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
544 
545 /*
546  * Static Driver Configuration Table
547  *
548  * This is the table of disks which need throttle adjustment (or, perhaps
549  * something else as defined by the flags at a future time.)  device_id
550  * is a string consisting of concatenated vid (vendor), pid (product/model)
551  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
552  * the parts of the string are as defined by the sizes in the scsi_inquiry
553  * structure.  Device type is searched as far as the device_id string is
554  * defined.  Flags defines which values are to be set in the driver from the
555  * properties list.
556  *
557  * Entries below which begin and end with a "*" are a special case.
558  * These do not have a specific vendor, and the string which follows
559  * can appear anywhere in the 16 byte PID portion of the inquiry data.
560  *
561  * Entries below which begin and end with a " " (blank) are a special
562  * case. The comparison function will treat multiple consecutive blanks
563  * as equivalent to a single blank. For example, this causes a
564  * sd_disk_table entry of " NEC CDROM " to match a device's id string
565  * of  "NEC       CDROM".
566  *
567  * Note: The MD21 controller type has been obsoleted.
568  *	 ST318202F is a Legacy device
569  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
570  *	 made with an FC connection. The entries here are a legacy.
571  */
572 static sd_disk_config_t sd_disk_table[] = {
573 #if defined(__fibre) || defined(__i386) || defined(__amd64)
574 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
575 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
576 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
577 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
589 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
590 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
591 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
598 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
599 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
600 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
602 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
603 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
604 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
620 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
621 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
622 			SD_CONF_BSET_BSY_RETRY_COUNT|
623 			SD_CONF_BSET_RST_RETRIES|
624 			SD_CONF_BSET_RSV_REL_TIME,
625 		&purple_properties },
626 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
627 		SD_CONF_BSET_BSY_RETRY_COUNT|
628 		SD_CONF_BSET_RST_RETRIES|
629 		SD_CONF_BSET_RSV_REL_TIME|
630 		SD_CONF_BSET_MIN_THROTTLE|
631 		SD_CONF_BSET_DISKSORT_DISABLED,
632 		&sve_properties },
633 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
634 			SD_CONF_BSET_BSY_RETRY_COUNT|
635 			SD_CONF_BSET_RST_RETRIES|
636 			SD_CONF_BSET_RSV_REL_TIME,
637 		&purple_properties },
638 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
639 		SD_CONF_BSET_LUN_RESET_ENABLED,
640 		&maserati_properties },
641 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
642 		SD_CONF_BSET_NRR_COUNT|
643 		SD_CONF_BSET_BSY_RETRY_COUNT|
644 		SD_CONF_BSET_RST_RETRIES|
645 		SD_CONF_BSET_MIN_THROTTLE|
646 		SD_CONF_BSET_DISKSORT_DISABLED|
647 		SD_CONF_BSET_LUN_RESET_ENABLED,
648 		&pirus_properties },
649 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
650 		SD_CONF_BSET_NRR_COUNT|
651 		SD_CONF_BSET_BSY_RETRY_COUNT|
652 		SD_CONF_BSET_RST_RETRIES|
653 		SD_CONF_BSET_MIN_THROTTLE|
654 		SD_CONF_BSET_DISKSORT_DISABLED|
655 		SD_CONF_BSET_LUN_RESET_ENABLED,
656 		&pirus_properties },
657 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
658 		SD_CONF_BSET_NRR_COUNT|
659 		SD_CONF_BSET_BSY_RETRY_COUNT|
660 		SD_CONF_BSET_RST_RETRIES|
661 		SD_CONF_BSET_MIN_THROTTLE|
662 		SD_CONF_BSET_DISKSORT_DISABLED|
663 		SD_CONF_BSET_LUN_RESET_ENABLED,
664 		&pirus_properties },
665 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
666 		SD_CONF_BSET_NRR_COUNT|
667 		SD_CONF_BSET_BSY_RETRY_COUNT|
668 		SD_CONF_BSET_RST_RETRIES|
669 		SD_CONF_BSET_MIN_THROTTLE|
670 		SD_CONF_BSET_DISKSORT_DISABLED|
671 		SD_CONF_BSET_LUN_RESET_ENABLED,
672 		&pirus_properties },
673 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
674 		SD_CONF_BSET_NRR_COUNT|
675 		SD_CONF_BSET_BSY_RETRY_COUNT|
676 		SD_CONF_BSET_RST_RETRIES|
677 		SD_CONF_BSET_MIN_THROTTLE|
678 		SD_CONF_BSET_DISKSORT_DISABLED|
679 		SD_CONF_BSET_LUN_RESET_ENABLED,
680 		&pirus_properties },
681 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
682 		SD_CONF_BSET_NRR_COUNT|
683 		SD_CONF_BSET_BSY_RETRY_COUNT|
684 		SD_CONF_BSET_RST_RETRIES|
685 		SD_CONF_BSET_MIN_THROTTLE|
686 		SD_CONF_BSET_DISKSORT_DISABLED|
687 		SD_CONF_BSET_LUN_RESET_ENABLED,
688 		&pirus_properties },
689 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
690 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
691 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
692 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
693 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
694 #endif /* fibre or NON-sparc platforms */
695 #if ((defined(__sparc) && !defined(__fibre)) ||\
696 	(defined(__i386) || defined(__amd64)))
697 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
698 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
699 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
700 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
701 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
702 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
703 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
704 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
705 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
706 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
707 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
708 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
709 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
710 	    &symbios_properties },
711 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
712 	    &lsi_properties_scsi },
713 #if defined(__i386) || defined(__amd64)
714 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
715 				    | SD_CONF_BSET_READSUB_BCD
716 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
717 				    | SD_CONF_BSET_NO_READ_HEADER
718 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
719 
720 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
721 				    | SD_CONF_BSET_READSUB_BCD
722 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
723 				    | SD_CONF_BSET_NO_READ_HEADER
724 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
725 #endif /* __i386 || __amd64 */
726 #endif /* sparc NON-fibre or NON-sparc platforms */
727 
728 #if (defined(SD_PROP_TST))
729 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
730 				| SD_CONF_BSET_CTYPE
731 				| SD_CONF_BSET_NRR_COUNT
732 				| SD_CONF_BSET_FAB_DEVID
733 				| SD_CONF_BSET_NOCACHE
734 				| SD_CONF_BSET_BSY_RETRY_COUNT
735 				| SD_CONF_BSET_PLAYMSF_BCD
736 				| SD_CONF_BSET_READSUB_BCD
737 				| SD_CONF_BSET_READ_TOC_TRK_BCD
738 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
739 				| SD_CONF_BSET_NO_READ_HEADER
740 				| SD_CONF_BSET_READ_CD_XD4
741 				| SD_CONF_BSET_RST_RETRIES
742 				| SD_CONF_BSET_RSV_REL_TIME
743 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
744 #endif
745 };
746 
747 static const int sd_disk_table_size =
748 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
749 
750 
751 
752 #define	SD_INTERCONNECT_PARALLEL	0
753 #define	SD_INTERCONNECT_FABRIC		1
754 #define	SD_INTERCONNECT_FIBRE		2
755 #define	SD_INTERCONNECT_SSA		3
756 #define	SD_INTERCONNECT_SATA		4
757 #define	SD_IS_PARALLEL_SCSI(un)		\
758 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
759 #define	SD_IS_SERIAL(un)		\
760 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
761 
762 /*
763  * Definitions used by device id registration routines
764  */
765 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
766 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
767 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
768 
769 static kmutex_t sd_sense_mutex = {0};
770 
771 /*
772  * Macros for updates of the driver state
773  */
774 #define	New_state(un, s)        \
775 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
776 #define	Restore_state(un)	\
777 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
778 
779 static struct sd_cdbinfo sd_cdbtab[] = {
780 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
781 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
782 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
783 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
784 };
785 
786 /*
787  * Specifies the number of seconds that must have elapsed since the last
788  * cmd. has completed for a device to be declared idle to the PM framework.
789  */
790 static int sd_pm_idletime = 1;
791 
792 /*
793  * Internal function prototypes
794  */
795 
796 #if (defined(__fibre))
797 /*
798  * These #defines are to avoid namespace collisions that occur because this
799  * code is currently used to compile two seperate driver modules: sd and ssd.
800  * All function names need to be treated this way (even if declared static)
801  * in order to allow the debugger to resolve the names properly.
802  * It is anticipated that in the near future the ssd module will be obsoleted,
803  * at which time this ugliness should go away.
804  */
805 #define	sd_log_trace			ssd_log_trace
806 #define	sd_log_info			ssd_log_info
807 #define	sd_log_err			ssd_log_err
808 #define	sdprobe				ssdprobe
809 #define	sdinfo				ssdinfo
810 #define	sd_prop_op			ssd_prop_op
811 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
812 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
813 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
814 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
815 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
816 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
817 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
818 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
819 #define	sd_spin_up_unit			ssd_spin_up_unit
820 #define	sd_enable_descr_sense		ssd_enable_descr_sense
821 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
822 #define	sd_set_mmc_caps			ssd_set_mmc_caps
823 #define	sd_read_unit_properties		ssd_read_unit_properties
824 #define	sd_process_sdconf_file		ssd_process_sdconf_file
825 #define	sd_process_sdconf_table		ssd_process_sdconf_table
826 #define	sd_sdconf_id_match		ssd_sdconf_id_match
827 #define	sd_blank_cmp			ssd_blank_cmp
828 #define	sd_chk_vers1_data		ssd_chk_vers1_data
829 #define	sd_set_vers1_properties		ssd_set_vers1_properties
830 
831 #define	sd_get_physical_geometry	ssd_get_physical_geometry
832 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
833 #define	sd_update_block_info		ssd_update_block_info
834 #define	sd_register_devid		ssd_register_devid
835 #define	sd_get_devid			ssd_get_devid
836 #define	sd_create_devid			ssd_create_devid
837 #define	sd_write_deviceid		ssd_write_deviceid
838 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
839 #define	sd_setup_pm			ssd_setup_pm
840 #define	sd_create_pm_components		ssd_create_pm_components
841 #define	sd_ddi_suspend			ssd_ddi_suspend
842 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
843 #define	sd_ddi_resume			ssd_ddi_resume
844 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
845 #define	sdpower				ssdpower
846 #define	sdattach			ssdattach
847 #define	sddetach			ssddetach
848 #define	sd_unit_attach			ssd_unit_attach
849 #define	sd_unit_detach			ssd_unit_detach
850 #define	sd_set_unit_attributes		ssd_set_unit_attributes
851 #define	sd_create_errstats		ssd_create_errstats
852 #define	sd_set_errstats			ssd_set_errstats
853 #define	sd_set_pstats			ssd_set_pstats
854 #define	sddump				ssddump
855 #define	sd_scsi_poll			ssd_scsi_poll
856 #define	sd_send_polled_RQS		ssd_send_polled_RQS
857 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
858 #define	sd_init_event_callbacks		ssd_init_event_callbacks
859 #define	sd_event_callback		ssd_event_callback
860 #define	sd_cache_control		ssd_cache_control
861 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
862 #define	sd_make_device			ssd_make_device
863 #define	sdopen				ssdopen
864 #define	sdclose				ssdclose
865 #define	sd_ready_and_valid		ssd_ready_and_valid
866 #define	sdmin				ssdmin
867 #define	sdread				ssdread
868 #define	sdwrite				ssdwrite
869 #define	sdaread				ssdaread
870 #define	sdawrite			ssdawrite
871 #define	sdstrategy			ssdstrategy
872 #define	sdioctl				ssdioctl
873 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
874 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
875 #define	sd_checksum_iostart		ssd_checksum_iostart
876 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
877 #define	sd_pm_iostart			ssd_pm_iostart
878 #define	sd_core_iostart			ssd_core_iostart
879 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
880 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
881 #define	sd_checksum_iodone		ssd_checksum_iodone
882 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
883 #define	sd_pm_iodone			ssd_pm_iodone
884 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
885 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
886 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
887 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
888 #define	sd_buf_iodone			ssd_buf_iodone
889 #define	sd_uscsi_strategy		ssd_uscsi_strategy
890 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
891 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
892 #define	sd_uscsi_iodone			ssd_uscsi_iodone
893 #define	sd_xbuf_strategy		ssd_xbuf_strategy
894 #define	sd_xbuf_init			ssd_xbuf_init
895 #define	sd_pm_entry			ssd_pm_entry
896 #define	sd_pm_exit			ssd_pm_exit
897 
898 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
899 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
900 
901 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
902 #define	sdintr				ssdintr
903 #define	sd_start_cmds			ssd_start_cmds
904 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
905 #define	sd_bioclone_alloc		ssd_bioclone_alloc
906 #define	sd_bioclone_free		ssd_bioclone_free
907 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
908 #define	sd_shadow_buf_free		ssd_shadow_buf_free
909 #define	sd_print_transport_rejected_message	\
910 					ssd_print_transport_rejected_message
911 #define	sd_retry_command		ssd_retry_command
912 #define	sd_set_retry_bp			ssd_set_retry_bp
913 #define	sd_send_request_sense_command	ssd_send_request_sense_command
914 #define	sd_start_retry_command		ssd_start_retry_command
915 #define	sd_start_direct_priority_command	\
916 					ssd_start_direct_priority_command
917 #define	sd_return_failed_command	ssd_return_failed_command
918 #define	sd_return_failed_command_no_restart	\
919 					ssd_return_failed_command_no_restart
920 #define	sd_return_command		ssd_return_command
921 #define	sd_sync_with_callback		ssd_sync_with_callback
922 #define	sdrunout			ssdrunout
923 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
924 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
925 #define	sd_reduce_throttle		ssd_reduce_throttle
926 #define	sd_restore_throttle		ssd_restore_throttle
927 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
928 #define	sd_init_cdb_limits		ssd_init_cdb_limits
929 #define	sd_pkt_status_good		ssd_pkt_status_good
930 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
931 #define	sd_pkt_status_busy		ssd_pkt_status_busy
932 #define	sd_pkt_status_reservation_conflict	\
933 					ssd_pkt_status_reservation_conflict
934 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
935 #define	sd_handle_request_sense		ssd_handle_request_sense
936 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
937 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
938 #define	sd_validate_sense_data		ssd_validate_sense_data
939 #define	sd_decode_sense			ssd_decode_sense
940 #define	sd_print_sense_msg		ssd_print_sense_msg
941 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
942 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
943 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
944 #define	sd_sense_key_medium_or_hardware_error	\
945 					ssd_sense_key_medium_or_hardware_error
946 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
947 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
948 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
949 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
950 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
951 #define	sd_sense_key_default		ssd_sense_key_default
952 #define	sd_print_retry_msg		ssd_print_retry_msg
953 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
954 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
955 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
956 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
957 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
958 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
959 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
960 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
961 #define	sd_pkt_reason_default		ssd_pkt_reason_default
962 #define	sd_reset_target			ssd_reset_target
963 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
964 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
965 #define	sd_taskq_create			ssd_taskq_create
966 #define	sd_taskq_delete			ssd_taskq_delete
967 #define	sd_media_change_task		ssd_media_change_task
968 #define	sd_handle_mchange		ssd_handle_mchange
969 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
970 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
971 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
972 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
973 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
974 					sd_send_scsi_feature_GET_CONFIGURATION
975 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
976 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
977 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
978 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
979 					ssd_send_scsi_PERSISTENT_RESERVE_IN
980 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
981 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
982 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
983 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
984 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
985 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
986 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
987 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
988 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
989 #define	sd_alloc_rqs			ssd_alloc_rqs
990 #define	sd_free_rqs			ssd_free_rqs
991 #define	sd_dump_memory			ssd_dump_memory
992 #define	sd_get_media_info		ssd_get_media_info
993 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
994 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
995 #define	sd_setup_next_xfer		ssd_setup_next_xfer
996 #define	sd_dkio_get_temp		ssd_dkio_get_temp
997 #define	sd_check_mhd			ssd_check_mhd
998 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
999 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1000 #define	sd_sname			ssd_sname
1001 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1002 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1003 #define	sd_take_ownership		ssd_take_ownership
1004 #define	sd_reserve_release		ssd_reserve_release
1005 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1006 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1007 #define	sd_persistent_reservation_in_read_keys	\
1008 					ssd_persistent_reservation_in_read_keys
1009 #define	sd_persistent_reservation_in_read_resv	\
1010 					ssd_persistent_reservation_in_read_resv
1011 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1012 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1013 #define	sd_mhdioc_release		ssd_mhdioc_release
1014 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1015 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1016 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1017 #define	sr_change_blkmode		ssr_change_blkmode
1018 #define	sr_change_speed			ssr_change_speed
1019 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1020 #define	sr_pause_resume			ssr_pause_resume
1021 #define	sr_play_msf			ssr_play_msf
1022 #define	sr_play_trkind			ssr_play_trkind
1023 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1024 #define	sr_read_subchannel		ssr_read_subchannel
1025 #define	sr_read_tocentry		ssr_read_tocentry
1026 #define	sr_read_tochdr			ssr_read_tochdr
1027 #define	sr_read_cdda			ssr_read_cdda
1028 #define	sr_read_cdxa			ssr_read_cdxa
1029 #define	sr_read_mode1			ssr_read_mode1
1030 #define	sr_read_mode2			ssr_read_mode2
1031 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1032 #define	sr_sector_mode			ssr_sector_mode
1033 #define	sr_eject			ssr_eject
1034 #define	sr_ejected			ssr_ejected
1035 #define	sr_check_wp			ssr_check_wp
1036 #define	sd_check_media			ssd_check_media
1037 #define	sd_media_watch_cb		ssd_media_watch_cb
1038 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1039 #define	sr_volume_ctrl			ssr_volume_ctrl
1040 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1041 #define	sd_log_page_supported		ssd_log_page_supported
1042 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1043 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1044 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1045 #define	sd_range_lock			ssd_range_lock
1046 #define	sd_get_range			ssd_get_range
1047 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1048 #define	sd_range_unlock			ssd_range_unlock
1049 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1050 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1051 
1052 #define	sd_iostart_chain		ssd_iostart_chain
1053 #define	sd_iodone_chain			ssd_iodone_chain
1054 #define	sd_initpkt_map			ssd_initpkt_map
1055 #define	sd_destroypkt_map		ssd_destroypkt_map
1056 #define	sd_chain_type_map		ssd_chain_type_map
1057 #define	sd_chain_index_map		ssd_chain_index_map
1058 
1059 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1060 #define	sd_failfast_flushq		ssd_failfast_flushq
1061 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1062 
1063 #define	sd_is_lsi			ssd_is_lsi
1064 #define	sd_tg_rdwr			ssd_tg_rdwr
1065 #define	sd_tg_getinfo			ssd_tg_getinfo
1066 
1067 #endif	/* #if (defined(__fibre)) */
1068 
1069 
1070 int _init(void);
1071 int _fini(void);
1072 int _info(struct modinfo *modinfop);
1073 
1074 /*PRINTFLIKE3*/
1075 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1076 /*PRINTFLIKE3*/
1077 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1078 /*PRINTFLIKE3*/
1079 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1080 
1081 static int sdprobe(dev_info_t *devi);
1082 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1083     void **result);
1084 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1085     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1086 
1087 /*
1088  * Smart probe for parallel scsi
1089  */
1090 static void sd_scsi_probe_cache_init(void);
1091 static void sd_scsi_probe_cache_fini(void);
1092 static void sd_scsi_clear_probe_cache(void);
1093 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1094 
1095 /*
1096  * Attached luns on target for parallel scsi
1097  */
1098 static void sd_scsi_target_lun_init(void);
1099 static void sd_scsi_target_lun_fini(void);
1100 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1101 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1102 
1103 static int	sd_spin_up_unit(struct sd_lun *un);
1104 #ifdef _LP64
1105 static void	sd_enable_descr_sense(struct sd_lun *un);
1106 static void	sd_reenable_dsense_task(void *arg);
1107 #endif /* _LP64 */
1108 
1109 static void	sd_set_mmc_caps(struct sd_lun *un);
1110 
1111 static void sd_read_unit_properties(struct sd_lun *un);
1112 static int  sd_process_sdconf_file(struct sd_lun *un);
1113 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1114     int *data_list, sd_tunables *values);
1115 static void sd_process_sdconf_table(struct sd_lun *un);
1116 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1117 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1118 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1119 	int list_len, char *dataname_ptr);
1120 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1121     sd_tunables *prop_list);
1122 
1123 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1124     int reservation_flag);
1125 static int  sd_get_devid(struct sd_lun *un);
1126 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1127 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1128 static int  sd_write_deviceid(struct sd_lun *un);
1129 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1130 static int  sd_check_vpd_page_support(struct sd_lun *un);
1131 
1132 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1133 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1134 
1135 static int  sd_ddi_suspend(dev_info_t *devi);
1136 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1137 static int  sd_ddi_resume(dev_info_t *devi);
1138 static int  sd_ddi_pm_resume(struct sd_lun *un);
1139 static int  sdpower(dev_info_t *devi, int component, int level);
1140 
1141 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1142 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1143 static int  sd_unit_attach(dev_info_t *devi);
1144 static int  sd_unit_detach(dev_info_t *devi);
1145 
1146 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1147 static void sd_create_errstats(struct sd_lun *un, int instance);
1148 static void sd_set_errstats(struct sd_lun *un);
1149 static void sd_set_pstats(struct sd_lun *un);
1150 
1151 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1152 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1153 static int  sd_send_polled_RQS(struct sd_lun *un);
1154 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1155 
1156 #if (defined(__fibre))
1157 /*
1158  * Event callbacks (photon)
1159  */
1160 static void sd_init_event_callbacks(struct sd_lun *un);
1161 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1162 #endif
1163 
1164 /*
1165  * Defines for sd_cache_control
1166  */
1167 
1168 #define	SD_CACHE_ENABLE		1
1169 #define	SD_CACHE_DISABLE	0
1170 #define	SD_CACHE_NOCHANGE	-1
1171 
1172 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1173 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1174 static dev_t sd_make_device(dev_info_t *devi);
1175 
1176 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1177 	uint64_t capacity);
1178 
1179 /*
1180  * Driver entry point functions.
1181  */
1182 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1183 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1184 static int  sd_ready_and_valid(struct sd_lun *un);
1185 
1186 static void sdmin(struct buf *bp);
1187 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1188 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1189 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1190 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1191 
1192 static int sdstrategy(struct buf *bp);
1193 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1194 
1195 /*
1196  * Function prototypes for layering functions in the iostart chain.
1197  */
1198 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1199 	struct buf *bp);
1200 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1201 	struct buf *bp);
1202 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1203 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1204 	struct buf *bp);
1205 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1206 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1207 
1208 /*
1209  * Function prototypes for layering functions in the iodone chain.
1210  */
1211 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1212 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1213 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1214 	struct buf *bp);
1215 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1216 	struct buf *bp);
1217 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1218 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1219 	struct buf *bp);
1220 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1221 
1222 /*
1223  * Prototypes for functions to support buf(9S) based IO.
1224  */
1225 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1226 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1227 static void sd_destroypkt_for_buf(struct buf *);
1228 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1229 	struct buf *bp, int flags,
1230 	int (*callback)(caddr_t), caddr_t callback_arg,
1231 	diskaddr_t lba, uint32_t blockcount);
1232 #if defined(__i386) || defined(__amd64)
1233 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1234 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1235 #endif /* defined(__i386) || defined(__amd64) */
1236 
1237 /*
1238  * Prototypes for functions to support USCSI IO.
1239  */
1240 static int sd_uscsi_strategy(struct buf *bp);
1241 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1242 static void sd_destroypkt_for_uscsi(struct buf *);
1243 
1244 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1245 	uchar_t chain_type, void *pktinfop);
1246 
1247 static int  sd_pm_entry(struct sd_lun *un);
1248 static void sd_pm_exit(struct sd_lun *un);
1249 
1250 static void sd_pm_idletimeout_handler(void *arg);
1251 
1252 /*
1253  * sd_core internal functions (used at the sd_core_io layer).
1254  */
1255 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1256 static void sdintr(struct scsi_pkt *pktp);
1257 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1258 
1259 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1260 	enum uio_seg dataspace, int path_flag);
1261 
1262 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1263 	daddr_t blkno, int (*func)(struct buf *));
1264 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1265 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1266 static void sd_bioclone_free(struct buf *bp);
1267 static void sd_shadow_buf_free(struct buf *bp);
1268 
1269 static void sd_print_transport_rejected_message(struct sd_lun *un,
1270 	struct sd_xbuf *xp, int code);
1271 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1272     void *arg, int code);
1273 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1274     void *arg, int code);
1275 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1276     void *arg, int code);
1277 
1278 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1279 	int retry_check_flag,
1280 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1281 		int c),
1282 	void *user_arg, int failure_code,  clock_t retry_delay,
1283 	void (*statp)(kstat_io_t *));
1284 
1285 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1286 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1287 
1288 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1289 	struct scsi_pkt *pktp);
1290 static void sd_start_retry_command(void *arg);
1291 static void sd_start_direct_priority_command(void *arg);
1292 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1293 	int errcode);
1294 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1295 	struct buf *bp, int errcode);
1296 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1297 static void sd_sync_with_callback(struct sd_lun *un);
1298 static int sdrunout(caddr_t arg);
1299 
1300 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1301 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1302 
1303 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1304 static void sd_restore_throttle(void *arg);
1305 
1306 static void sd_init_cdb_limits(struct sd_lun *un);
1307 
1308 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1309 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1310 
1311 /*
1312  * Error handling functions
1313  */
1314 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1315 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1316 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1317 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1318 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1319 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1320 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1321 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1322 
1323 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1324 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1325 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1326 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1327 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1328 	struct sd_xbuf *xp);
1329 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1330 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1331 
1332 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1333 	void *arg, int code);
1334 
1335 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1336 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1337 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1338 	uint8_t *sense_datap,
1339 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1340 static void sd_sense_key_not_ready(struct sd_lun *un,
1341 	uint8_t *sense_datap,
1342 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1343 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1344 	uint8_t *sense_datap,
1345 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1346 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1347 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1348 static void sd_sense_key_unit_attention(struct sd_lun *un,
1349 	uint8_t *sense_datap,
1350 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1351 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1352 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1354 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1355 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1356 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1357 static void sd_sense_key_default(struct sd_lun *un,
1358 	uint8_t *sense_datap,
1359 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1360 
1361 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1362 	void *arg, int flag);
1363 
1364 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1365 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1366 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1367 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1368 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1369 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1370 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1371 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1372 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1373 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1374 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1375 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1376 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1377 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1378 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1379 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1380 
1381 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1382 
1383 static void sd_start_stop_unit_callback(void *arg);
1384 static void sd_start_stop_unit_task(void *arg);
1385 
1386 static void sd_taskq_create(void);
1387 static void sd_taskq_delete(void);
1388 static void sd_media_change_task(void *arg);
1389 
1390 static int sd_handle_mchange(struct sd_lun *un);
1391 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1392 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1393 	uint32_t *lbap, int path_flag);
1394 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1395 	uint32_t *lbap, int path_flag);
1396 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1397 	int path_flag);
1398 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1399 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1400 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1401 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1402 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1403 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1404 	uchar_t usr_cmd, uchar_t *usr_bufp);
1405 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1406 	struct dk_callback *dkc);
1407 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1408 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1409 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1410 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1411 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1412 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1413 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1414 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1415 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1416 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1417 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1418 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1419 	size_t buflen, daddr_t start_block, int path_flag);
1420 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1421 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1422 	path_flag)
1423 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1424 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1425 	path_flag)
1426 
1427 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1428 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1429 	uint16_t param_ptr, int path_flag);
1430 
1431 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1432 static void sd_free_rqs(struct sd_lun *un);
1433 
1434 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1435 	uchar_t *data, int len, int fmt);
1436 static void sd_panic_for_res_conflict(struct sd_lun *un);
1437 
1438 /*
1439  * Disk Ioctl Function Prototypes
1440  */
1441 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1442 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1443 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1444 
1445 /*
1446  * Multi-host Ioctl Prototypes
1447  */
1448 static int sd_check_mhd(dev_t dev, int interval);
1449 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1450 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1451 static char *sd_sname(uchar_t status);
1452 static void sd_mhd_resvd_recover(void *arg);
1453 static void sd_resv_reclaim_thread();
1454 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1455 static int sd_reserve_release(dev_t dev, int cmd);
1456 static void sd_rmv_resv_reclaim_req(dev_t dev);
1457 static void sd_mhd_reset_notify_cb(caddr_t arg);
1458 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1459 	mhioc_inkeys_t *usrp, int flag);
1460 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1461 	mhioc_inresvs_t *usrp, int flag);
1462 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1463 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1464 static int sd_mhdioc_release(dev_t dev);
1465 static int sd_mhdioc_register_devid(dev_t dev);
1466 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1467 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1468 
1469 /*
1470  * SCSI removable prototypes
1471  */
1472 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1473 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1474 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1475 static int sr_pause_resume(dev_t dev, int mode);
1476 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1477 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1478 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1479 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1480 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1481 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1482 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1483 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1484 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1485 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1486 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1487 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1488 static int sr_eject(dev_t dev);
1489 static void sr_ejected(register struct sd_lun *un);
1490 static int sr_check_wp(dev_t dev);
1491 static int sd_check_media(dev_t dev, enum dkio_state state);
1492 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1493 static void sd_delayed_cv_broadcast(void *arg);
1494 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1495 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1496 
1497 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1498 
1499 /*
1500  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1501  */
1502 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1503 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1504 static void sd_wm_cache_destructor(void *wm, void *un);
1505 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1506 	daddr_t endb, ushort_t typ);
1507 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1508 	daddr_t endb);
1509 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1510 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1511 static void sd_read_modify_write_task(void * arg);
1512 static int
1513 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1514 	struct buf **bpp);
1515 
1516 
1517 /*
1518  * Function prototypes for failfast support.
1519  */
1520 static void sd_failfast_flushq(struct sd_lun *un);
1521 static int sd_failfast_flushq_callback(struct buf *bp);
1522 
1523 /*
1524  * Function prototypes to check for lsi devices
1525  */
1526 static void sd_is_lsi(struct sd_lun *un);
1527 
1528 /*
1529  * Function prototypes for x86 support
1530  */
1531 #if defined(__i386) || defined(__amd64)
1532 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1533 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1534 #endif
1535 
1536 
1537 /* Function prototypes for cmlb */
1538 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1539     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1540 
1541 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1542 
1543 /*
1544  * Constants for failfast support:
1545  *
1546  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1547  * failfast processing being performed.
1548  *
1549  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1550  * failfast processing on all bufs with B_FAILFAST set.
1551  */
1552 
1553 #define	SD_FAILFAST_INACTIVE		0
1554 #define	SD_FAILFAST_ACTIVE		1
1555 
1556 /*
1557  * Bitmask to control behavior of buf(9S) flushes when a transition to
1558  * the failfast state occurs. Optional bits include:
1559  *
1560  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1561  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1562  * be flushed.
1563  *
1564  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1565  * driver, in addition to the regular wait queue. This includes the xbuf
1566  * queues. When clear, only the driver's wait queue will be flushed.
1567  */
1568 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1569 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1570 
1571 /*
1572  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1573  * to flush all queues within the driver.
1574  */
1575 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1576 
1577 
1578 /*
1579  * SD Testing Fault Injection
1580  */
1581 #ifdef SD_FAULT_INJECTION
1582 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1583 static void sd_faultinjection(struct scsi_pkt *pktp);
1584 static void sd_injection_log(char *buf, struct sd_lun *un);
1585 #endif
1586 
1587 /*
1588  * Device driver ops vector
1589  */
1590 static struct cb_ops sd_cb_ops = {
1591 	sdopen,			/* open */
1592 	sdclose,		/* close */
1593 	sdstrategy,		/* strategy */
1594 	nodev,			/* print */
1595 	sddump,			/* dump */
1596 	sdread,			/* read */
1597 	sdwrite,		/* write */
1598 	sdioctl,		/* ioctl */
1599 	nodev,			/* devmap */
1600 	nodev,			/* mmap */
1601 	nodev,			/* segmap */
1602 	nochpoll,		/* poll */
1603 	sd_prop_op,		/* cb_prop_op */
1604 	0,			/* streamtab  */
1605 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1606 	CB_REV,			/* cb_rev */
1607 	sdaread, 		/* async I/O read entry point */
1608 	sdawrite		/* async I/O write entry point */
1609 };
1610 
1611 static struct dev_ops sd_ops = {
1612 	DEVO_REV,		/* devo_rev, */
1613 	0,			/* refcnt  */
1614 	sdinfo,			/* info */
1615 	nulldev,		/* identify */
1616 	sdprobe,		/* probe */
1617 	sdattach,		/* attach */
1618 	sddetach,		/* detach */
1619 	nodev,			/* reset */
1620 	&sd_cb_ops,		/* driver operations */
1621 	NULL,			/* bus operations */
1622 	sdpower			/* power */
1623 };
1624 
1625 
1626 /*
1627  * This is the loadable module wrapper.
1628  */
1629 #include <sys/modctl.h>
1630 
1631 static struct modldrv modldrv = {
1632 	&mod_driverops,		/* Type of module. This one is a driver */
1633 	SD_MODULE_NAME,		/* Module name. */
1634 	&sd_ops			/* driver ops */
1635 };
1636 
1637 
1638 static struct modlinkage modlinkage = {
1639 	MODREV_1,
1640 	&modldrv,
1641 	NULL
1642 };
1643 
1644 static cmlb_tg_ops_t sd_tgops = {
1645 	TG_DK_OPS_VERSION_1,
1646 	sd_tg_rdwr,
1647 	sd_tg_getinfo
1648 	};
1649 
1650 static struct scsi_asq_key_strings sd_additional_codes[] = {
1651 	0x81, 0, "Logical Unit is Reserved",
1652 	0x85, 0, "Audio Address Not Valid",
1653 	0xb6, 0, "Media Load Mechanism Failed",
1654 	0xB9, 0, "Audio Play Operation Aborted",
1655 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1656 	0x53, 2, "Medium removal prevented",
1657 	0x6f, 0, "Authentication failed during key exchange",
1658 	0x6f, 1, "Key not present",
1659 	0x6f, 2, "Key not established",
1660 	0x6f, 3, "Read without proper authentication",
1661 	0x6f, 4, "Mismatched region to this logical unit",
1662 	0x6f, 5, "Region reset count error",
1663 	0xffff, 0x0, NULL
1664 };
1665 
1666 
1667 /*
1668  * Struct for passing printing information for sense data messages
1669  */
1670 struct sd_sense_info {
1671 	int	ssi_severity;
1672 	int	ssi_pfa_flag;
1673 };
1674 
1675 /*
1676  * Table of function pointers for iostart-side routines. Seperate "chains"
1677  * of layered function calls are formed by placing the function pointers
1678  * sequentially in the desired order. Functions are called according to an
1679  * incrementing table index ordering. The last function in each chain must
1680  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1681  * in the sd_iodone_chain[] array.
1682  *
1683  * Note: It may seem more natural to organize both the iostart and iodone
1684  * functions together, into an array of structures (or some similar
1685  * organization) with a common index, rather than two seperate arrays which
1686  * must be maintained in synchronization. The purpose of this division is
1687  * to achiece improved performance: individual arrays allows for more
1688  * effective cache line utilization on certain platforms.
1689  */
1690 
1691 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1692 
1693 
1694 static sd_chain_t sd_iostart_chain[] = {
1695 
1696 	/* Chain for buf IO for disk drive targets (PM enabled) */
1697 	sd_mapblockaddr_iostart,	/* Index: 0 */
1698 	sd_pm_iostart,			/* Index: 1 */
1699 	sd_core_iostart,		/* Index: 2 */
1700 
1701 	/* Chain for buf IO for disk drive targets (PM disabled) */
1702 	sd_mapblockaddr_iostart,	/* Index: 3 */
1703 	sd_core_iostart,		/* Index: 4 */
1704 
1705 	/* Chain for buf IO for removable-media targets (PM enabled) */
1706 	sd_mapblockaddr_iostart,	/* Index: 5 */
1707 	sd_mapblocksize_iostart,	/* Index: 6 */
1708 	sd_pm_iostart,			/* Index: 7 */
1709 	sd_core_iostart,		/* Index: 8 */
1710 
1711 	/* Chain for buf IO for removable-media targets (PM disabled) */
1712 	sd_mapblockaddr_iostart,	/* Index: 9 */
1713 	sd_mapblocksize_iostart,	/* Index: 10 */
1714 	sd_core_iostart,		/* Index: 11 */
1715 
1716 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1717 	sd_mapblockaddr_iostart,	/* Index: 12 */
1718 	sd_checksum_iostart,		/* Index: 13 */
1719 	sd_pm_iostart,			/* Index: 14 */
1720 	sd_core_iostart,		/* Index: 15 */
1721 
1722 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1723 	sd_mapblockaddr_iostart,	/* Index: 16 */
1724 	sd_checksum_iostart,		/* Index: 17 */
1725 	sd_core_iostart,		/* Index: 18 */
1726 
1727 	/* Chain for USCSI commands (all targets) */
1728 	sd_pm_iostart,			/* Index: 19 */
1729 	sd_core_iostart,		/* Index: 20 */
1730 
1731 	/* Chain for checksumming USCSI commands (all targets) */
1732 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1733 	sd_pm_iostart,			/* Index: 22 */
1734 	sd_core_iostart,		/* Index: 23 */
1735 
1736 	/* Chain for "direct" USCSI commands (all targets) */
1737 	sd_core_iostart,		/* Index: 24 */
1738 
1739 	/* Chain for "direct priority" USCSI commands (all targets) */
1740 	sd_core_iostart,		/* Index: 25 */
1741 };
1742 
1743 /*
1744  * Macros to locate the first function of each iostart chain in the
1745  * sd_iostart_chain[] array. These are located by the index in the array.
1746  */
1747 #define	SD_CHAIN_DISK_IOSTART			0
1748 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1749 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1750 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1751 #define	SD_CHAIN_CHKSUM_IOSTART			12
1752 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1753 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1754 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1755 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1756 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1757 
1758 
1759 /*
1760  * Table of function pointers for the iodone-side routines for the driver-
1761  * internal layering mechanism.  The calling sequence for iodone routines
1762  * uses a decrementing table index, so the last routine called in a chain
1763  * must be at the lowest array index location for that chain.  The last
1764  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1765  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1766  * of the functions in an iodone side chain must correspond to the ordering
1767  * of the iostart routines for that chain.  Note that there is no iodone
1768  * side routine that corresponds to sd_core_iostart(), so there is no
1769  * entry in the table for this.
1770  */
1771 
1772 static sd_chain_t sd_iodone_chain[] = {
1773 
1774 	/* Chain for buf IO for disk drive targets (PM enabled) */
1775 	sd_buf_iodone,			/* Index: 0 */
1776 	sd_mapblockaddr_iodone,		/* Index: 1 */
1777 	sd_pm_iodone,			/* Index: 2 */
1778 
1779 	/* Chain for buf IO for disk drive targets (PM disabled) */
1780 	sd_buf_iodone,			/* Index: 3 */
1781 	sd_mapblockaddr_iodone,		/* Index: 4 */
1782 
1783 	/* Chain for buf IO for removable-media targets (PM enabled) */
1784 	sd_buf_iodone,			/* Index: 5 */
1785 	sd_mapblockaddr_iodone,		/* Index: 6 */
1786 	sd_mapblocksize_iodone,		/* Index: 7 */
1787 	sd_pm_iodone,			/* Index: 8 */
1788 
1789 	/* Chain for buf IO for removable-media targets (PM disabled) */
1790 	sd_buf_iodone,			/* Index: 9 */
1791 	sd_mapblockaddr_iodone,		/* Index: 10 */
1792 	sd_mapblocksize_iodone,		/* Index: 11 */
1793 
1794 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1795 	sd_buf_iodone,			/* Index: 12 */
1796 	sd_mapblockaddr_iodone,		/* Index: 13 */
1797 	sd_checksum_iodone,		/* Index: 14 */
1798 	sd_pm_iodone,			/* Index: 15 */
1799 
1800 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1801 	sd_buf_iodone,			/* Index: 16 */
1802 	sd_mapblockaddr_iodone,		/* Index: 17 */
1803 	sd_checksum_iodone,		/* Index: 18 */
1804 
1805 	/* Chain for USCSI commands (non-checksum targets) */
1806 	sd_uscsi_iodone,		/* Index: 19 */
1807 	sd_pm_iodone,			/* Index: 20 */
1808 
1809 	/* Chain for USCSI commands (checksum targets) */
1810 	sd_uscsi_iodone,		/* Index: 21 */
1811 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1812 	sd_pm_iodone,			/* Index: 22 */
1813 
1814 	/* Chain for "direct" USCSI commands (all targets) */
1815 	sd_uscsi_iodone,		/* Index: 24 */
1816 
1817 	/* Chain for "direct priority" USCSI commands (all targets) */
1818 	sd_uscsi_iodone,		/* Index: 25 */
1819 };
1820 
1821 
1822 /*
1823  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1824  * each iodone-side chain. These are located by the array index, but as the
1825  * iodone side functions are called in a decrementing-index order, the
1826  * highest index number in each chain must be specified (as these correspond
1827  * to the first function in the iodone chain that will be called by the core
1828  * at IO completion time).
1829  */
1830 
1831 #define	SD_CHAIN_DISK_IODONE			2
1832 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1833 #define	SD_CHAIN_RMMEDIA_IODONE			8
1834 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1835 #define	SD_CHAIN_CHKSUM_IODONE			15
1836 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1837 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1838 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1839 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1840 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1841 
1842 
1843 
1844 
1845 /*
1846  * Array to map a layering chain index to the appropriate initpkt routine.
1847  * The redundant entries are present so that the index used for accessing
1848  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1849  * with this table as well.
1850  */
1851 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1852 
1853 static sd_initpkt_t	sd_initpkt_map[] = {
1854 
1855 	/* Chain for buf IO for disk drive targets (PM enabled) */
1856 	sd_initpkt_for_buf,		/* Index: 0 */
1857 	sd_initpkt_for_buf,		/* Index: 1 */
1858 	sd_initpkt_for_buf,		/* Index: 2 */
1859 
1860 	/* Chain for buf IO for disk drive targets (PM disabled) */
1861 	sd_initpkt_for_buf,		/* Index: 3 */
1862 	sd_initpkt_for_buf,		/* Index: 4 */
1863 
1864 	/* Chain for buf IO for removable-media targets (PM enabled) */
1865 	sd_initpkt_for_buf,		/* Index: 5 */
1866 	sd_initpkt_for_buf,		/* Index: 6 */
1867 	sd_initpkt_for_buf,		/* Index: 7 */
1868 	sd_initpkt_for_buf,		/* Index: 8 */
1869 
1870 	/* Chain for buf IO for removable-media targets (PM disabled) */
1871 	sd_initpkt_for_buf,		/* Index: 9 */
1872 	sd_initpkt_for_buf,		/* Index: 10 */
1873 	sd_initpkt_for_buf,		/* Index: 11 */
1874 
1875 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1876 	sd_initpkt_for_buf,		/* Index: 12 */
1877 	sd_initpkt_for_buf,		/* Index: 13 */
1878 	sd_initpkt_for_buf,		/* Index: 14 */
1879 	sd_initpkt_for_buf,		/* Index: 15 */
1880 
1881 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1882 	sd_initpkt_for_buf,		/* Index: 16 */
1883 	sd_initpkt_for_buf,		/* Index: 17 */
1884 	sd_initpkt_for_buf,		/* Index: 18 */
1885 
1886 	/* Chain for USCSI commands (non-checksum targets) */
1887 	sd_initpkt_for_uscsi,		/* Index: 19 */
1888 	sd_initpkt_for_uscsi,		/* Index: 20 */
1889 
1890 	/* Chain for USCSI commands (checksum targets) */
1891 	sd_initpkt_for_uscsi,		/* Index: 21 */
1892 	sd_initpkt_for_uscsi,		/* Index: 22 */
1893 	sd_initpkt_for_uscsi,		/* Index: 22 */
1894 
1895 	/* Chain for "direct" USCSI commands (all targets) */
1896 	sd_initpkt_for_uscsi,		/* Index: 24 */
1897 
1898 	/* Chain for "direct priority" USCSI commands (all targets) */
1899 	sd_initpkt_for_uscsi,		/* Index: 25 */
1900 
1901 };
1902 
1903 
1904 /*
1905  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1906  * The redundant entries are present so that the index used for accessing
1907  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1908  * with this table as well.
1909  */
1910 typedef void (*sd_destroypkt_t)(struct buf *);
1911 
1912 static sd_destroypkt_t	sd_destroypkt_map[] = {
1913 
1914 	/* Chain for buf IO for disk drive targets (PM enabled) */
1915 	sd_destroypkt_for_buf,		/* Index: 0 */
1916 	sd_destroypkt_for_buf,		/* Index: 1 */
1917 	sd_destroypkt_for_buf,		/* Index: 2 */
1918 
1919 	/* Chain for buf IO for disk drive targets (PM disabled) */
1920 	sd_destroypkt_for_buf,		/* Index: 3 */
1921 	sd_destroypkt_for_buf,		/* Index: 4 */
1922 
1923 	/* Chain for buf IO for removable-media targets (PM enabled) */
1924 	sd_destroypkt_for_buf,		/* Index: 5 */
1925 	sd_destroypkt_for_buf,		/* Index: 6 */
1926 	sd_destroypkt_for_buf,		/* Index: 7 */
1927 	sd_destroypkt_for_buf,		/* Index: 8 */
1928 
1929 	/* Chain for buf IO for removable-media targets (PM disabled) */
1930 	sd_destroypkt_for_buf,		/* Index: 9 */
1931 	sd_destroypkt_for_buf,		/* Index: 10 */
1932 	sd_destroypkt_for_buf,		/* Index: 11 */
1933 
1934 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1935 	sd_destroypkt_for_buf,		/* Index: 12 */
1936 	sd_destroypkt_for_buf,		/* Index: 13 */
1937 	sd_destroypkt_for_buf,		/* Index: 14 */
1938 	sd_destroypkt_for_buf,		/* Index: 15 */
1939 
1940 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1941 	sd_destroypkt_for_buf,		/* Index: 16 */
1942 	sd_destroypkt_for_buf,		/* Index: 17 */
1943 	sd_destroypkt_for_buf,		/* Index: 18 */
1944 
1945 	/* Chain for USCSI commands (non-checksum targets) */
1946 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1947 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1948 
1949 	/* Chain for USCSI commands (checksum targets) */
1950 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1951 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1952 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1953 
1954 	/* Chain for "direct" USCSI commands (all targets) */
1955 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1956 
1957 	/* Chain for "direct priority" USCSI commands (all targets) */
1958 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1959 
1960 };
1961 
1962 
1963 
1964 /*
1965  * Array to map a layering chain index to the appropriate chain "type".
1966  * The chain type indicates a specific property/usage of the chain.
1967  * The redundant entries are present so that the index used for accessing
1968  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1969  * with this table as well.
1970  */
1971 
1972 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1973 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1974 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1975 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1976 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1977 						/* (for error recovery) */
1978 
1979 static int sd_chain_type_map[] = {
1980 
1981 	/* Chain for buf IO for disk drive targets (PM enabled) */
1982 	SD_CHAIN_BUFIO,			/* Index: 0 */
1983 	SD_CHAIN_BUFIO,			/* Index: 1 */
1984 	SD_CHAIN_BUFIO,			/* Index: 2 */
1985 
1986 	/* Chain for buf IO for disk drive targets (PM disabled) */
1987 	SD_CHAIN_BUFIO,			/* Index: 3 */
1988 	SD_CHAIN_BUFIO,			/* Index: 4 */
1989 
1990 	/* Chain for buf IO for removable-media targets (PM enabled) */
1991 	SD_CHAIN_BUFIO,			/* Index: 5 */
1992 	SD_CHAIN_BUFIO,			/* Index: 6 */
1993 	SD_CHAIN_BUFIO,			/* Index: 7 */
1994 	SD_CHAIN_BUFIO,			/* Index: 8 */
1995 
1996 	/* Chain for buf IO for removable-media targets (PM disabled) */
1997 	SD_CHAIN_BUFIO,			/* Index: 9 */
1998 	SD_CHAIN_BUFIO,			/* Index: 10 */
1999 	SD_CHAIN_BUFIO,			/* Index: 11 */
2000 
2001 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2002 	SD_CHAIN_BUFIO,			/* Index: 12 */
2003 	SD_CHAIN_BUFIO,			/* Index: 13 */
2004 	SD_CHAIN_BUFIO,			/* Index: 14 */
2005 	SD_CHAIN_BUFIO,			/* Index: 15 */
2006 
2007 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2008 	SD_CHAIN_BUFIO,			/* Index: 16 */
2009 	SD_CHAIN_BUFIO,			/* Index: 17 */
2010 	SD_CHAIN_BUFIO,			/* Index: 18 */
2011 
2012 	/* Chain for USCSI commands (non-checksum targets) */
2013 	SD_CHAIN_USCSI,			/* Index: 19 */
2014 	SD_CHAIN_USCSI,			/* Index: 20 */
2015 
2016 	/* Chain for USCSI commands (checksum targets) */
2017 	SD_CHAIN_USCSI,			/* Index: 21 */
2018 	SD_CHAIN_USCSI,			/* Index: 22 */
2019 	SD_CHAIN_USCSI,			/* Index: 22 */
2020 
2021 	/* Chain for "direct" USCSI commands (all targets) */
2022 	SD_CHAIN_DIRECT,		/* Index: 24 */
2023 
2024 	/* Chain for "direct priority" USCSI commands (all targets) */
2025 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2026 };
2027 
2028 
2029 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2030 #define	SD_IS_BUFIO(xp)			\
2031 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2032 
2033 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2034 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2035 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2036 
2037 
2038 
2039 /*
2040  * Struct, array, and macros to map a specific chain to the appropriate
2041  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2042  *
2043  * The sd_chain_index_map[] array is used at attach time to set the various
2044  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2045  * chain to be used with the instance. This allows different instances to use
2046  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2047  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2048  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2049  * dynamically & without the use of locking; and (2) a layer may update the
2050  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2051  * to allow for deferred processing of an IO within the same chain from a
2052  * different execution context.
2053  */
2054 
2055 struct sd_chain_index {
2056 	int	sci_iostart_index;
2057 	int	sci_iodone_index;
2058 };
2059 
2060 static struct sd_chain_index	sd_chain_index_map[] = {
2061 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2062 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2063 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2064 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2065 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2066 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2067 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2068 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2069 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2070 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2071 };
2072 
2073 
2074 /*
2075  * The following are indexes into the sd_chain_index_map[] array.
2076  */
2077 
2078 /* un->un_buf_chain_type must be set to one of these */
2079 #define	SD_CHAIN_INFO_DISK		0
2080 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2081 #define	SD_CHAIN_INFO_RMMEDIA		2
2082 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2083 #define	SD_CHAIN_INFO_CHKSUM		4
2084 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2085 
2086 /* un->un_uscsi_chain_type must be set to one of these */
2087 #define	SD_CHAIN_INFO_USCSI_CMD		6
2088 /* USCSI with PM disabled is the same as DIRECT */
2089 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2090 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2091 
2092 /* un->un_direct_chain_type must be set to one of these */
2093 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2094 
2095 /* un->un_priority_chain_type must be set to one of these */
2096 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2097 
2098 /* size for devid inquiries */
2099 #define	MAX_INQUIRY_SIZE		0xF0
2100 
2101 /*
2102  * Macros used by functions to pass a given buf(9S) struct along to the
2103  * next function in the layering chain for further processing.
2104  *
2105  * In the following macros, passing more than three arguments to the called
2106  * routines causes the optimizer for the SPARC compiler to stop doing tail
2107  * call elimination which results in significant performance degradation.
2108  */
2109 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2110 	((*(sd_iostart_chain[index]))(index, un, bp))
2111 
2112 #define	SD_BEGIN_IODONE(index, un, bp)	\
2113 	((*(sd_iodone_chain[index]))(index, un, bp))
2114 
2115 #define	SD_NEXT_IOSTART(index, un, bp)				\
2116 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2117 
2118 #define	SD_NEXT_IODONE(index, un, bp)				\
2119 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2120 
2121 /*
2122  *    Function: _init
2123  *
2124  * Description: This is the driver _init(9E) entry point.
2125  *
2126  * Return Code: Returns the value from mod_install(9F) or
2127  *		ddi_soft_state_init(9F) as appropriate.
2128  *
2129  *     Context: Called when driver module loaded.
2130  */
2131 
2132 int
2133 _init(void)
2134 {
2135 	int	err;
2136 
2137 	/* establish driver name from module name */
2138 	sd_label = mod_modname(&modlinkage);
2139 
2140 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2141 		SD_MAXUNIT);
2142 
2143 	if (err != 0) {
2144 		return (err);
2145 	}
2146 
2147 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2148 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2149 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2150 
2151 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2152 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2153 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2154 
2155 	/*
2156 	 * it's ok to init here even for fibre device
2157 	 */
2158 	sd_scsi_probe_cache_init();
2159 
2160 	sd_scsi_target_lun_init();
2161 
2162 	/*
2163 	 * Creating taskq before mod_install ensures that all callers (threads)
2164 	 * that enter the module after a successfull mod_install encounter
2165 	 * a valid taskq.
2166 	 */
2167 	sd_taskq_create();
2168 
2169 	err = mod_install(&modlinkage);
2170 	if (err != 0) {
2171 		/* delete taskq if install fails */
2172 		sd_taskq_delete();
2173 
2174 		mutex_destroy(&sd_detach_mutex);
2175 		mutex_destroy(&sd_log_mutex);
2176 		mutex_destroy(&sd_label_mutex);
2177 
2178 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2179 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2180 		cv_destroy(&sd_tr.srq_inprocess_cv);
2181 
2182 		sd_scsi_probe_cache_fini();
2183 
2184 		sd_scsi_target_lun_fini();
2185 
2186 		ddi_soft_state_fini(&sd_state);
2187 		return (err);
2188 	}
2189 
2190 	return (err);
2191 }
2192 
2193 
2194 /*
2195  *    Function: _fini
2196  *
2197  * Description: This is the driver _fini(9E) entry point.
2198  *
2199  * Return Code: Returns the value from mod_remove(9F)
2200  *
2201  *     Context: Called when driver module is unloaded.
2202  */
2203 
2204 int
2205 _fini(void)
2206 {
2207 	int err;
2208 
2209 	if ((err = mod_remove(&modlinkage)) != 0) {
2210 		return (err);
2211 	}
2212 
2213 	sd_taskq_delete();
2214 
2215 	mutex_destroy(&sd_detach_mutex);
2216 	mutex_destroy(&sd_log_mutex);
2217 	mutex_destroy(&sd_label_mutex);
2218 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2219 
2220 	sd_scsi_probe_cache_fini();
2221 
2222 	sd_scsi_target_lun_fini();
2223 
2224 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2225 	cv_destroy(&sd_tr.srq_inprocess_cv);
2226 
2227 	ddi_soft_state_fini(&sd_state);
2228 
2229 	return (err);
2230 }
2231 
2232 
2233 /*
2234  *    Function: _info
2235  *
2236  * Description: This is the driver _info(9E) entry point.
2237  *
2238  *   Arguments: modinfop - pointer to the driver modinfo structure
2239  *
2240  * Return Code: Returns the value from mod_info(9F).
2241  *
2242  *     Context: Kernel thread context
2243  */
2244 
2245 int
2246 _info(struct modinfo *modinfop)
2247 {
2248 	return (mod_info(&modlinkage, modinfop));
2249 }
2250 
2251 
2252 /*
2253  * The following routines implement the driver message logging facility.
2254  * They provide component- and level- based debug output filtering.
2255  * Output may also be restricted to messages for a single instance by
2256  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2257  * to NULL, then messages for all instances are printed.
2258  *
2259  * These routines have been cloned from each other due to the language
2260  * constraints of macros and variable argument list processing.
2261  */
2262 
2263 
2264 /*
2265  *    Function: sd_log_err
2266  *
2267  * Description: This routine is called by the SD_ERROR macro for debug
2268  *		logging of error conditions.
2269  *
2270  *   Arguments: comp - driver component being logged
2271  *		dev  - pointer to driver info structure
2272  *		fmt  - error string and format to be logged
2273  */
2274 
2275 static void
2276 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2277 {
2278 	va_list		ap;
2279 	dev_info_t	*dev;
2280 
2281 	ASSERT(un != NULL);
2282 	dev = SD_DEVINFO(un);
2283 	ASSERT(dev != NULL);
2284 
2285 	/*
2286 	 * Filter messages based on the global component and level masks.
2287 	 * Also print if un matches the value of sd_debug_un, or if
2288 	 * sd_debug_un is set to NULL.
2289 	 */
2290 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2291 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2292 		mutex_enter(&sd_log_mutex);
2293 		va_start(ap, fmt);
2294 		(void) vsprintf(sd_log_buf, fmt, ap);
2295 		va_end(ap);
2296 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2297 		mutex_exit(&sd_log_mutex);
2298 	}
2299 #ifdef SD_FAULT_INJECTION
2300 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2301 	if (un->sd_injection_mask & comp) {
2302 		mutex_enter(&sd_log_mutex);
2303 		va_start(ap, fmt);
2304 		(void) vsprintf(sd_log_buf, fmt, ap);
2305 		va_end(ap);
2306 		sd_injection_log(sd_log_buf, un);
2307 		mutex_exit(&sd_log_mutex);
2308 	}
2309 #endif
2310 }
2311 
2312 
2313 /*
2314  *    Function: sd_log_info
2315  *
2316  * Description: This routine is called by the SD_INFO macro for debug
2317  *		logging of general purpose informational conditions.
2318  *
2319  *   Arguments: comp - driver component being logged
2320  *		dev  - pointer to driver info structure
2321  *		fmt  - info string and format to be logged
2322  */
2323 
2324 static void
2325 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2326 {
2327 	va_list		ap;
2328 	dev_info_t	*dev;
2329 
2330 	ASSERT(un != NULL);
2331 	dev = SD_DEVINFO(un);
2332 	ASSERT(dev != NULL);
2333 
2334 	/*
2335 	 * Filter messages based on the global component and level masks.
2336 	 * Also print if un matches the value of sd_debug_un, or if
2337 	 * sd_debug_un is set to NULL.
2338 	 */
2339 	if ((sd_component_mask & component) &&
2340 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2341 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2342 		mutex_enter(&sd_log_mutex);
2343 		va_start(ap, fmt);
2344 		(void) vsprintf(sd_log_buf, fmt, ap);
2345 		va_end(ap);
2346 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2347 		mutex_exit(&sd_log_mutex);
2348 	}
2349 #ifdef SD_FAULT_INJECTION
2350 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2351 	if (un->sd_injection_mask & component) {
2352 		mutex_enter(&sd_log_mutex);
2353 		va_start(ap, fmt);
2354 		(void) vsprintf(sd_log_buf, fmt, ap);
2355 		va_end(ap);
2356 		sd_injection_log(sd_log_buf, un);
2357 		mutex_exit(&sd_log_mutex);
2358 	}
2359 #endif
2360 }
2361 
2362 
2363 /*
2364  *    Function: sd_log_trace
2365  *
2366  * Description: This routine is called by the SD_TRACE macro for debug
2367  *		logging of trace conditions (i.e. function entry/exit).
2368  *
2369  *   Arguments: comp - driver component being logged
2370  *		dev  - pointer to driver info structure
2371  *		fmt  - trace string and format to be logged
2372  */
2373 
2374 static void
2375 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2376 {
2377 	va_list		ap;
2378 	dev_info_t	*dev;
2379 
2380 	ASSERT(un != NULL);
2381 	dev = SD_DEVINFO(un);
2382 	ASSERT(dev != NULL);
2383 
2384 	/*
2385 	 * Filter messages based on the global component and level masks.
2386 	 * Also print if un matches the value of sd_debug_un, or if
2387 	 * sd_debug_un is set to NULL.
2388 	 */
2389 	if ((sd_component_mask & component) &&
2390 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2391 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2392 		mutex_enter(&sd_log_mutex);
2393 		va_start(ap, fmt);
2394 		(void) vsprintf(sd_log_buf, fmt, ap);
2395 		va_end(ap);
2396 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2397 		mutex_exit(&sd_log_mutex);
2398 	}
2399 #ifdef SD_FAULT_INJECTION
2400 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2401 	if (un->sd_injection_mask & component) {
2402 		mutex_enter(&sd_log_mutex);
2403 		va_start(ap, fmt);
2404 		(void) vsprintf(sd_log_buf, fmt, ap);
2405 		va_end(ap);
2406 		sd_injection_log(sd_log_buf, un);
2407 		mutex_exit(&sd_log_mutex);
2408 	}
2409 #endif
2410 }
2411 
2412 
2413 /*
2414  *    Function: sdprobe
2415  *
2416  * Description: This is the driver probe(9e) entry point function.
2417  *
2418  *   Arguments: devi - opaque device info handle
2419  *
2420  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2421  *              DDI_PROBE_FAILURE: If the probe failed.
2422  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2423  *				   but may be present in the future.
2424  */
2425 
2426 static int
2427 sdprobe(dev_info_t *devi)
2428 {
2429 	struct scsi_device	*devp;
2430 	int			rval;
2431 	int			instance;
2432 
2433 	/*
2434 	 * if it wasn't for pln, sdprobe could actually be nulldev
2435 	 * in the "__fibre" case.
2436 	 */
2437 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2438 		return (DDI_PROBE_DONTCARE);
2439 	}
2440 
2441 	devp = ddi_get_driver_private(devi);
2442 
2443 	if (devp == NULL) {
2444 		/* Ooops... nexus driver is mis-configured... */
2445 		return (DDI_PROBE_FAILURE);
2446 	}
2447 
2448 	instance = ddi_get_instance(devi);
2449 
2450 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2451 		return (DDI_PROBE_PARTIAL);
2452 	}
2453 
2454 	/*
2455 	 * Call the SCSA utility probe routine to see if we actually
2456 	 * have a target at this SCSI nexus.
2457 	 */
2458 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2459 	case SCSIPROBE_EXISTS:
2460 		switch (devp->sd_inq->inq_dtype) {
2461 		case DTYPE_DIRECT:
2462 			rval = DDI_PROBE_SUCCESS;
2463 			break;
2464 		case DTYPE_RODIRECT:
2465 			/* CDs etc. Can be removable media */
2466 			rval = DDI_PROBE_SUCCESS;
2467 			break;
2468 		case DTYPE_OPTICAL:
2469 			/*
2470 			 * Rewritable optical driver HP115AA
2471 			 * Can also be removable media
2472 			 */
2473 
2474 			/*
2475 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2476 			 * pre solaris 9 sparc sd behavior is required
2477 			 *
2478 			 * If first time through and sd_dtype_optical_bind
2479 			 * has not been set in /etc/system check properties
2480 			 */
2481 
2482 			if (sd_dtype_optical_bind  < 0) {
2483 			    sd_dtype_optical_bind = ddi_prop_get_int
2484 				(DDI_DEV_T_ANY,	devi,	0,
2485 				"optical-device-bind",	1);
2486 			}
2487 
2488 			if (sd_dtype_optical_bind == 0) {
2489 				rval = DDI_PROBE_FAILURE;
2490 			} else {
2491 				rval = DDI_PROBE_SUCCESS;
2492 			}
2493 			break;
2494 
2495 		case DTYPE_NOTPRESENT:
2496 		default:
2497 			rval = DDI_PROBE_FAILURE;
2498 			break;
2499 		}
2500 		break;
2501 	default:
2502 		rval = DDI_PROBE_PARTIAL;
2503 		break;
2504 	}
2505 
2506 	/*
2507 	 * This routine checks for resource allocation prior to freeing,
2508 	 * so it will take care of the "smart probing" case where a
2509 	 * scsi_probe() may or may not have been issued and will *not*
2510 	 * free previously-freed resources.
2511 	 */
2512 	scsi_unprobe(devp);
2513 	return (rval);
2514 }
2515 
2516 
2517 /*
2518  *    Function: sdinfo
2519  *
2520  * Description: This is the driver getinfo(9e) entry point function.
2521  * 		Given the device number, return the devinfo pointer from
2522  *		the scsi_device structure or the instance number
2523  *		associated with the dev_t.
2524  *
2525  *   Arguments: dip     - pointer to device info structure
2526  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2527  *			  DDI_INFO_DEVT2INSTANCE)
2528  *		arg     - driver dev_t
2529  *		resultp - user buffer for request response
2530  *
2531  * Return Code: DDI_SUCCESS
2532  *              DDI_FAILURE
2533  */
2534 /* ARGSUSED */
2535 static int
2536 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2537 {
2538 	struct sd_lun	*un;
2539 	dev_t		dev;
2540 	int		instance;
2541 	int		error;
2542 
2543 	switch (infocmd) {
2544 	case DDI_INFO_DEVT2DEVINFO:
2545 		dev = (dev_t)arg;
2546 		instance = SDUNIT(dev);
2547 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2548 			return (DDI_FAILURE);
2549 		}
2550 		*result = (void *) SD_DEVINFO(un);
2551 		error = DDI_SUCCESS;
2552 		break;
2553 	case DDI_INFO_DEVT2INSTANCE:
2554 		dev = (dev_t)arg;
2555 		instance = SDUNIT(dev);
2556 		*result = (void *)(uintptr_t)instance;
2557 		error = DDI_SUCCESS;
2558 		break;
2559 	default:
2560 		error = DDI_FAILURE;
2561 	}
2562 	return (error);
2563 }
2564 
2565 /*
2566  *    Function: sd_prop_op
2567  *
2568  * Description: This is the driver prop_op(9e) entry point function.
2569  *		Return the number of blocks for the partition in question
2570  *		or forward the request to the property facilities.
2571  *
2572  *   Arguments: dev       - device number
2573  *		dip       - pointer to device info structure
2574  *		prop_op   - property operator
2575  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2576  *		name      - pointer to property name
2577  *		valuep    - pointer or address of the user buffer
2578  *		lengthp   - property length
2579  *
2580  * Return Code: DDI_PROP_SUCCESS
2581  *              DDI_PROP_NOT_FOUND
2582  *              DDI_PROP_UNDEFINED
2583  *              DDI_PROP_NO_MEMORY
2584  *              DDI_PROP_BUF_TOO_SMALL
2585  */
2586 
2587 static int
2588 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2589 	char *name, caddr_t valuep, int *lengthp)
2590 {
2591 	int		instance = ddi_get_instance(dip);
2592 	struct sd_lun	*un;
2593 	uint64_t	nblocks64;
2594 
2595 	/*
2596 	 * Our dynamic properties are all device specific and size oriented.
2597 	 * Requests issued under conditions where size is valid are passed
2598 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2599 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2600 	 */
2601 	un = ddi_get_soft_state(sd_state, instance);
2602 	if ((dev == DDI_DEV_T_ANY) || (un == NULL)) {
2603 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2604 		    name, valuep, lengthp));
2605 	} else if (!SD_IS_VALID_LABEL(un)) {
2606 		(void) cmlb_validate(un->un_cmlbhandle, 0,
2607 		    (void *)SD_PATH_DIRECT);
2608 		if (!SD_IS_VALID_LABEL(un))
2609 			return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2610 			    name, valuep, lengthp));
2611 	}
2612 
2613 	/* get nblocks value */
2614 	ASSERT(!mutex_owned(SD_MUTEX(un)));
2615 
2616 	(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2617 	    (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
2618 
2619 	return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2620 	    name, valuep, lengthp, nblocks64));
2621 }
2622 
2623 /*
2624  * The following functions are for smart probing:
2625  * sd_scsi_probe_cache_init()
2626  * sd_scsi_probe_cache_fini()
2627  * sd_scsi_clear_probe_cache()
2628  * sd_scsi_probe_with_cache()
2629  */
2630 
2631 /*
2632  *    Function: sd_scsi_probe_cache_init
2633  *
2634  * Description: Initializes the probe response cache mutex and head pointer.
2635  *
2636  *     Context: Kernel thread context
2637  */
2638 
2639 static void
2640 sd_scsi_probe_cache_init(void)
2641 {
2642 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2643 	sd_scsi_probe_cache_head = NULL;
2644 }
2645 
2646 
2647 /*
2648  *    Function: sd_scsi_probe_cache_fini
2649  *
2650  * Description: Frees all resources associated with the probe response cache.
2651  *
2652  *     Context: Kernel thread context
2653  */
2654 
2655 static void
2656 sd_scsi_probe_cache_fini(void)
2657 {
2658 	struct sd_scsi_probe_cache *cp;
2659 	struct sd_scsi_probe_cache *ncp;
2660 
2661 	/* Clean up our smart probing linked list */
2662 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2663 		ncp = cp->next;
2664 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2665 	}
2666 	sd_scsi_probe_cache_head = NULL;
2667 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2668 }
2669 
2670 
2671 /*
2672  *    Function: sd_scsi_clear_probe_cache
2673  *
2674  * Description: This routine clears the probe response cache. This is
2675  *		done when open() returns ENXIO so that when deferred
2676  *		attach is attempted (possibly after a device has been
2677  *		turned on) we will retry the probe. Since we don't know
2678  *		which target we failed to open, we just clear the
2679  *		entire cache.
2680  *
2681  *     Context: Kernel thread context
2682  */
2683 
2684 static void
2685 sd_scsi_clear_probe_cache(void)
2686 {
2687 	struct sd_scsi_probe_cache	*cp;
2688 	int				i;
2689 
2690 	mutex_enter(&sd_scsi_probe_cache_mutex);
2691 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2692 		/*
2693 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2694 		 * force probing to be performed the next time
2695 		 * sd_scsi_probe_with_cache is called.
2696 		 */
2697 		for (i = 0; i < NTARGETS_WIDE; i++) {
2698 			cp->cache[i] = SCSIPROBE_EXISTS;
2699 		}
2700 	}
2701 	mutex_exit(&sd_scsi_probe_cache_mutex);
2702 }
2703 
2704 
2705 /*
2706  *    Function: sd_scsi_probe_with_cache
2707  *
2708  * Description: This routine implements support for a scsi device probe
2709  *		with cache. The driver maintains a cache of the target
2710  *		responses to scsi probes. If we get no response from a
2711  *		target during a probe inquiry, we remember that, and we
2712  *		avoid additional calls to scsi_probe on non-zero LUNs
2713  *		on the same target until the cache is cleared. By doing
2714  *		so we avoid the 1/4 sec selection timeout for nonzero
2715  *		LUNs. lun0 of a target is always probed.
2716  *
2717  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2718  *              waitfunc - indicates what the allocator routines should
2719  *			   do when resources are not available. This value
2720  *			   is passed on to scsi_probe() when that routine
2721  *			   is called.
2722  *
2723  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2724  *		otherwise the value returned by scsi_probe(9F).
2725  *
2726  *     Context: Kernel thread context
2727  */
2728 
2729 static int
2730 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2731 {
2732 	struct sd_scsi_probe_cache	*cp;
2733 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2734 	int		lun, tgt;
2735 
2736 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2737 	    SCSI_ADDR_PROP_LUN, 0);
2738 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2739 	    SCSI_ADDR_PROP_TARGET, -1);
2740 
2741 	/* Make sure caching enabled and target in range */
2742 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2743 		/* do it the old way (no cache) */
2744 		return (scsi_probe(devp, waitfn));
2745 	}
2746 
2747 	mutex_enter(&sd_scsi_probe_cache_mutex);
2748 
2749 	/* Find the cache for this scsi bus instance */
2750 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2751 		if (cp->pdip == pdip) {
2752 			break;
2753 		}
2754 	}
2755 
2756 	/* If we can't find a cache for this pdip, create one */
2757 	if (cp == NULL) {
2758 		int i;
2759 
2760 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2761 		    KM_SLEEP);
2762 		cp->pdip = pdip;
2763 		cp->next = sd_scsi_probe_cache_head;
2764 		sd_scsi_probe_cache_head = cp;
2765 		for (i = 0; i < NTARGETS_WIDE; i++) {
2766 			cp->cache[i] = SCSIPROBE_EXISTS;
2767 		}
2768 	}
2769 
2770 	mutex_exit(&sd_scsi_probe_cache_mutex);
2771 
2772 	/* Recompute the cache for this target if LUN zero */
2773 	if (lun == 0) {
2774 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2775 	}
2776 
2777 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2778 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2779 		return (SCSIPROBE_NORESP);
2780 	}
2781 
2782 	/* Do the actual probe; save & return the result */
2783 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2784 }
2785 
2786 
2787 /*
2788  *    Function: sd_scsi_target_lun_init
2789  *
2790  * Description: Initializes the attached lun chain mutex and head pointer.
2791  *
2792  *     Context: Kernel thread context
2793  */
2794 
2795 static void
2796 sd_scsi_target_lun_init(void)
2797 {
2798 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2799 	sd_scsi_target_lun_head = NULL;
2800 }
2801 
2802 
2803 /*
2804  *    Function: sd_scsi_target_lun_fini
2805  *
2806  * Description: Frees all resources associated with the attached lun
2807  *              chain
2808  *
2809  *     Context: Kernel thread context
2810  */
2811 
2812 static void
2813 sd_scsi_target_lun_fini(void)
2814 {
2815 	struct sd_scsi_hba_tgt_lun	*cp;
2816 	struct sd_scsi_hba_tgt_lun	*ncp;
2817 
2818 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2819 		ncp = cp->next;
2820 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2821 	}
2822 	sd_scsi_target_lun_head = NULL;
2823 	mutex_destroy(&sd_scsi_target_lun_mutex);
2824 }
2825 
2826 
2827 /*
2828  *    Function: sd_scsi_get_target_lun_count
2829  *
2830  * Description: This routine will check in the attached lun chain to see
2831  * 		how many luns are attached on the required SCSI controller
2832  * 		and target. Currently, some capabilities like tagged queue
2833  *		are supported per target based by HBA. So all luns in a
2834  *		target have the same capabilities. Based on this assumption,
2835  * 		sd should only set these capabilities once per target. This
2836  *		function is called when sd needs to decide how many luns
2837  *		already attached on a target.
2838  *
2839  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2840  *			  controller device.
2841  *              target	- The target ID on the controller's SCSI bus.
2842  *
2843  * Return Code: The number of luns attached on the required target and
2844  *		controller.
2845  *		-1 if target ID is not in parallel SCSI scope or the given
2846  * 		dip is not in the chain.
2847  *
2848  *     Context: Kernel thread context
2849  */
2850 
2851 static int
2852 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2853 {
2854 	struct sd_scsi_hba_tgt_lun	*cp;
2855 
2856 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2857 		return (-1);
2858 	}
2859 
2860 	mutex_enter(&sd_scsi_target_lun_mutex);
2861 
2862 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2863 		if (cp->pdip == dip) {
2864 			break;
2865 		}
2866 	}
2867 
2868 	mutex_exit(&sd_scsi_target_lun_mutex);
2869 
2870 	if (cp == NULL) {
2871 		return (-1);
2872 	}
2873 
2874 	return (cp->nlun[target]);
2875 }
2876 
2877 
2878 /*
2879  *    Function: sd_scsi_update_lun_on_target
2880  *
2881  * Description: This routine is used to update the attached lun chain when a
2882  *		lun is attached or detached on a target.
2883  *
2884  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2885  *                        controller device.
2886  *              target  - The target ID on the controller's SCSI bus.
2887  *		flag	- Indicate the lun is attached or detached.
2888  *
2889  *     Context: Kernel thread context
2890  */
2891 
2892 static void
2893 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2894 {
2895 	struct sd_scsi_hba_tgt_lun	*cp;
2896 
2897 	mutex_enter(&sd_scsi_target_lun_mutex);
2898 
2899 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2900 		if (cp->pdip == dip) {
2901 			break;
2902 		}
2903 	}
2904 
2905 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2906 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2907 		    KM_SLEEP);
2908 		cp->pdip = dip;
2909 		cp->next = sd_scsi_target_lun_head;
2910 		sd_scsi_target_lun_head = cp;
2911 	}
2912 
2913 	mutex_exit(&sd_scsi_target_lun_mutex);
2914 
2915 	if (cp != NULL) {
2916 		if (flag == SD_SCSI_LUN_ATTACH) {
2917 			cp->nlun[target] ++;
2918 		} else {
2919 			cp->nlun[target] --;
2920 		}
2921 	}
2922 }
2923 
2924 
2925 /*
2926  *    Function: sd_spin_up_unit
2927  *
2928  * Description: Issues the following commands to spin-up the device:
2929  *		START STOP UNIT, and INQUIRY.
2930  *
2931  *   Arguments: un - driver soft state (unit) structure
2932  *
2933  * Return Code: 0 - success
2934  *		EIO - failure
2935  *		EACCES - reservation conflict
2936  *
2937  *     Context: Kernel thread context
2938  */
2939 
2940 static int
2941 sd_spin_up_unit(struct sd_lun *un)
2942 {
2943 	size_t	resid		= 0;
2944 	int	has_conflict	= FALSE;
2945 	uchar_t *bufaddr;
2946 
2947 	ASSERT(un != NULL);
2948 
2949 	/*
2950 	 * Send a throwaway START UNIT command.
2951 	 *
2952 	 * If we fail on this, we don't care presently what precisely
2953 	 * is wrong.  EMC's arrays will also fail this with a check
2954 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2955 	 * we don't want to fail the attach because it may become
2956 	 * "active" later.
2957 	 */
2958 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2959 	    == EACCES)
2960 		has_conflict = TRUE;
2961 
2962 	/*
2963 	 * Send another INQUIRY command to the target. This is necessary for
2964 	 * non-removable media direct access devices because their INQUIRY data
2965 	 * may not be fully qualified until they are spun up (perhaps via the
2966 	 * START command above).  Note: This seems to be needed for some
2967 	 * legacy devices only.) The INQUIRY command should succeed even if a
2968 	 * Reservation Conflict is present.
2969 	 */
2970 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2971 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2972 		kmem_free(bufaddr, SUN_INQSIZE);
2973 		return (EIO);
2974 	}
2975 
2976 	/*
2977 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2978 	 * Note that this routine does not return a failure here even if the
2979 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2980 	 */
2981 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2982 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2983 	}
2984 
2985 	kmem_free(bufaddr, SUN_INQSIZE);
2986 
2987 	/* If we hit a reservation conflict above, tell the caller. */
2988 	if (has_conflict == TRUE) {
2989 		return (EACCES);
2990 	}
2991 
2992 	return (0);
2993 }
2994 
2995 #ifdef _LP64
2996 /*
2997  *    Function: sd_enable_descr_sense
2998  *
2999  * Description: This routine attempts to select descriptor sense format
3000  *		using the Control mode page.  Devices that support 64 bit
3001  *		LBAs (for >2TB luns) should also implement descriptor
3002  *		sense data so we will call this function whenever we see
3003  *		a lun larger than 2TB.  If for some reason the device
3004  *		supports 64 bit LBAs but doesn't support descriptor sense
3005  *		presumably the mode select will fail.  Everything will
3006  *		continue to work normally except that we will not get
3007  *		complete sense data for commands that fail with an LBA
3008  *		larger than 32 bits.
3009  *
3010  *   Arguments: un - driver soft state (unit) structure
3011  *
3012  *     Context: Kernel thread context only
3013  */
3014 
3015 static void
3016 sd_enable_descr_sense(struct sd_lun *un)
3017 {
3018 	uchar_t			*header;
3019 	struct mode_control_scsi3 *ctrl_bufp;
3020 	size_t			buflen;
3021 	size_t			bd_len;
3022 
3023 	/*
3024 	 * Read MODE SENSE page 0xA, Control Mode Page
3025 	 */
3026 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3027 	    sizeof (struct mode_control_scsi3);
3028 	header = kmem_zalloc(buflen, KM_SLEEP);
3029 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3030 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3031 		SD_ERROR(SD_LOG_COMMON, un,
3032 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3033 		goto eds_exit;
3034 	}
3035 
3036 	/*
3037 	 * Determine size of Block Descriptors in order to locate
3038 	 * the mode page data. ATAPI devices return 0, SCSI devices
3039 	 * should return MODE_BLK_DESC_LENGTH.
3040 	 */
3041 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3042 
3043 	ctrl_bufp = (struct mode_control_scsi3 *)
3044 	    (header + MODE_HEADER_LENGTH + bd_len);
3045 
3046 	/*
3047 	 * Clear PS bit for MODE SELECT
3048 	 */
3049 	ctrl_bufp->mode_page.ps = 0;
3050 
3051 	/*
3052 	 * Set D_SENSE to enable descriptor sense format.
3053 	 */
3054 	ctrl_bufp->d_sense = 1;
3055 
3056 	/*
3057 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3058 	 */
3059 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3060 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3061 		SD_INFO(SD_LOG_COMMON, un,
3062 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3063 		goto eds_exit;
3064 	}
3065 
3066 eds_exit:
3067 	kmem_free(header, buflen);
3068 }
3069 
3070 /*
3071  *    Function: sd_reenable_dsense_task
3072  *
3073  * Description: Re-enable descriptor sense after device or bus reset
3074  *
3075  *     Context: Executes in a taskq() thread context
3076  */
3077 static void
3078 sd_reenable_dsense_task(void *arg)
3079 {
3080 	struct	sd_lun	*un = arg;
3081 
3082 	ASSERT(un != NULL);
3083 	sd_enable_descr_sense(un);
3084 }
3085 #endif /* _LP64 */
3086 
3087 /*
3088  *    Function: sd_set_mmc_caps
3089  *
3090  * Description: This routine determines if the device is MMC compliant and if
3091  *		the device supports CDDA via a mode sense of the CDVD
3092  *		capabilities mode page. Also checks if the device is a
3093  *		dvdram writable device.
3094  *
3095  *   Arguments: un - driver soft state (unit) structure
3096  *
3097  *     Context: Kernel thread context only
3098  */
3099 
3100 static void
3101 sd_set_mmc_caps(struct sd_lun *un)
3102 {
3103 	struct mode_header_grp2		*sense_mhp;
3104 	uchar_t				*sense_page;
3105 	caddr_t				buf;
3106 	int				bd_len;
3107 	int				status;
3108 	struct uscsi_cmd		com;
3109 	int				rtn;
3110 	uchar_t				*out_data_rw, *out_data_hd;
3111 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3112 
3113 	ASSERT(un != NULL);
3114 
3115 	/*
3116 	 * The flags which will be set in this function are - mmc compliant,
3117 	 * dvdram writable device, cdda support. Initialize them to FALSE
3118 	 * and if a capability is detected - it will be set to TRUE.
3119 	 */
3120 	un->un_f_mmc_cap = FALSE;
3121 	un->un_f_dvdram_writable_device = FALSE;
3122 	un->un_f_cfg_cdda = FALSE;
3123 
3124 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3125 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3126 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3127 
3128 	if (status != 0) {
3129 		/* command failed; just return */
3130 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3131 		return;
3132 	}
3133 	/*
3134 	 * If the mode sense request for the CDROM CAPABILITIES
3135 	 * page (0x2A) succeeds the device is assumed to be MMC.
3136 	 */
3137 	un->un_f_mmc_cap = TRUE;
3138 
3139 	/* Get to the page data */
3140 	sense_mhp = (struct mode_header_grp2 *)buf;
3141 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3142 	    sense_mhp->bdesc_length_lo;
3143 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3144 		/*
3145 		 * We did not get back the expected block descriptor
3146 		 * length so we cannot determine if the device supports
3147 		 * CDDA. However, we still indicate the device is MMC
3148 		 * according to the successful response to the page
3149 		 * 0x2A mode sense request.
3150 		 */
3151 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3152 		    "sd_set_mmc_caps: Mode Sense returned "
3153 		    "invalid block descriptor length\n");
3154 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3155 		return;
3156 	}
3157 
3158 	/* See if read CDDA is supported */
3159 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3160 	    bd_len);
3161 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3162 
3163 	/* See if writing DVD RAM is supported. */
3164 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3165 	if (un->un_f_dvdram_writable_device == TRUE) {
3166 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3167 		return;
3168 	}
3169 
3170 	/*
3171 	 * If the device presents DVD or CD capabilities in the mode
3172 	 * page, we can return here since a RRD will not have
3173 	 * these capabilities.
3174 	 */
3175 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3176 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3177 		return;
3178 	}
3179 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3180 
3181 	/*
3182 	 * If un->un_f_dvdram_writable_device is still FALSE,
3183 	 * check for a Removable Rigid Disk (RRD).  A RRD
3184 	 * device is identified by the features RANDOM_WRITABLE and
3185 	 * HARDWARE_DEFECT_MANAGEMENT.
3186 	 */
3187 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3188 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3189 
3190 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3191 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3192 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3193 	if (rtn != 0) {
3194 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3195 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3196 		return;
3197 	}
3198 
3199 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3200 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3201 
3202 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3203 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3204 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3205 	if (rtn == 0) {
3206 		/*
3207 		 * We have good information, check for random writable
3208 		 * and hardware defect features.
3209 		 */
3210 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3211 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3212 			un->un_f_dvdram_writable_device = TRUE;
3213 		}
3214 	}
3215 
3216 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3217 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3218 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3219 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3220 }
3221 
3222 /*
3223  *    Function: sd_check_for_writable_cd
3224  *
3225  * Description: This routine determines if the media in the device is
3226  *		writable or not. It uses the get configuration command (0x46)
3227  *		to determine if the media is writable
3228  *
3229  *   Arguments: un - driver soft state (unit) structure
3230  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3231  *                           chain and the normal command waitq, or
3232  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3233  *                           "direct" chain and bypass the normal command
3234  *                           waitq.
3235  *
3236  *     Context: Never called at interrupt context.
3237  */
3238 
3239 static void
3240 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3241 {
3242 	struct uscsi_cmd		com;
3243 	uchar_t				*out_data;
3244 	uchar_t				*rqbuf;
3245 	int				rtn;
3246 	uchar_t				*out_data_rw, *out_data_hd;
3247 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3248 	struct mode_header_grp2		*sense_mhp;
3249 	uchar_t				*sense_page;
3250 	caddr_t				buf;
3251 	int				bd_len;
3252 	int				status;
3253 
3254 	ASSERT(un != NULL);
3255 	ASSERT(mutex_owned(SD_MUTEX(un)));
3256 
3257 	/*
3258 	 * Initialize the writable media to false, if configuration info.
3259 	 * tells us otherwise then only we will set it.
3260 	 */
3261 	un->un_f_mmc_writable_media = FALSE;
3262 	mutex_exit(SD_MUTEX(un));
3263 
3264 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3265 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3266 
3267 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3268 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3269 
3270 	mutex_enter(SD_MUTEX(un));
3271 	if (rtn == 0) {
3272 		/*
3273 		 * We have good information, check for writable DVD.
3274 		 */
3275 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3276 			un->un_f_mmc_writable_media = TRUE;
3277 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3278 			kmem_free(rqbuf, SENSE_LENGTH);
3279 			return;
3280 		}
3281 	}
3282 
3283 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3284 	kmem_free(rqbuf, SENSE_LENGTH);
3285 
3286 	/*
3287 	 * Determine if this is a RRD type device.
3288 	 */
3289 	mutex_exit(SD_MUTEX(un));
3290 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3291 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3292 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3293 	mutex_enter(SD_MUTEX(un));
3294 	if (status != 0) {
3295 		/* command failed; just return */
3296 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3297 		return;
3298 	}
3299 
3300 	/* Get to the page data */
3301 	sense_mhp = (struct mode_header_grp2 *)buf;
3302 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3303 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3304 		/*
3305 		 * We did not get back the expected block descriptor length so
3306 		 * we cannot check the mode page.
3307 		 */
3308 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3309 		    "sd_check_for_writable_cd: Mode Sense returned "
3310 		    "invalid block descriptor length\n");
3311 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3312 		return;
3313 	}
3314 
3315 	/*
3316 	 * If the device presents DVD or CD capabilities in the mode
3317 	 * page, we can return here since a RRD device will not have
3318 	 * these capabilities.
3319 	 */
3320 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3321 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3322 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3323 		return;
3324 	}
3325 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3326 
3327 	/*
3328 	 * If un->un_f_mmc_writable_media is still FALSE,
3329 	 * check for RRD type media.  A RRD device is identified
3330 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3331 	 */
3332 	mutex_exit(SD_MUTEX(un));
3333 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3334 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3335 
3336 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3337 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3338 	    RANDOM_WRITABLE, path_flag);
3339 	if (rtn != 0) {
3340 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3341 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3342 		mutex_enter(SD_MUTEX(un));
3343 		return;
3344 	}
3345 
3346 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3347 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3348 
3349 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3350 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3351 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3352 	mutex_enter(SD_MUTEX(un));
3353 	if (rtn == 0) {
3354 		/*
3355 		 * We have good information, check for random writable
3356 		 * and hardware defect features as current.
3357 		 */
3358 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3359 		    (out_data_rw[10] & 0x1) &&
3360 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3361 		    (out_data_hd[10] & 0x1)) {
3362 			un->un_f_mmc_writable_media = TRUE;
3363 		}
3364 	}
3365 
3366 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3367 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3368 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3369 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3370 }
3371 
3372 /*
3373  *    Function: sd_read_unit_properties
3374  *
3375  * Description: The following implements a property lookup mechanism.
3376  *		Properties for particular disks (keyed on vendor, model
3377  *		and rev numbers) are sought in the sd.conf file via
3378  *		sd_process_sdconf_file(), and if not found there, are
3379  *		looked for in a list hardcoded in this driver via
3380  *		sd_process_sdconf_table() Once located the properties
3381  *		are used to update the driver unit structure.
3382  *
3383  *   Arguments: un - driver soft state (unit) structure
3384  */
3385 
3386 static void
3387 sd_read_unit_properties(struct sd_lun *un)
3388 {
3389 	/*
3390 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3391 	 * the "sd-config-list" property (from the sd.conf file) or if
3392 	 * there was not a match for the inquiry vid/pid. If this event
3393 	 * occurs the static driver configuration table is searched for
3394 	 * a match.
3395 	 */
3396 	ASSERT(un != NULL);
3397 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3398 		sd_process_sdconf_table(un);
3399 	}
3400 
3401 	/* check for LSI device */
3402 	sd_is_lsi(un);
3403 
3404 
3405 }
3406 
3407 
3408 /*
3409  *    Function: sd_process_sdconf_file
3410  *
3411  * Description: Use ddi_getlongprop to obtain the properties from the
3412  *		driver's config file (ie, sd.conf) and update the driver
3413  *		soft state structure accordingly.
3414  *
3415  *   Arguments: un - driver soft state (unit) structure
3416  *
3417  * Return Code: SD_SUCCESS - The properties were successfully set according
3418  *			     to the driver configuration file.
3419  *		SD_FAILURE - The driver config list was not obtained or
3420  *			     there was no vid/pid match. This indicates that
3421  *			     the static config table should be used.
3422  *
3423  * The config file has a property, "sd-config-list", which consists of
3424  * one or more duplets as follows:
3425  *
3426  *  sd-config-list=
3427  *	<duplet>,
3428  *	[<duplet>,]
3429  *	[<duplet>];
3430  *
3431  * The structure of each duplet is as follows:
3432  *
3433  *  <duplet>:= <vid+pid>,<data-property-name_list>
3434  *
3435  * The first entry of the duplet is the device ID string (the concatenated
3436  * vid & pid; not to be confused with a device_id).  This is defined in
3437  * the same way as in the sd_disk_table.
3438  *
3439  * The second part of the duplet is a string that identifies a
3440  * data-property-name-list. The data-property-name-list is defined as
3441  * follows:
3442  *
3443  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3444  *
3445  * The syntax of <data-property-name> depends on the <version> field.
3446  *
3447  * If version = SD_CONF_VERSION_1 we have the following syntax:
3448  *
3449  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3450  *
3451  * where the prop0 value will be used to set prop0 if bit0 set in the
3452  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3453  *
3454  */
3455 
3456 static int
3457 sd_process_sdconf_file(struct sd_lun *un)
3458 {
3459 	char	*config_list = NULL;
3460 	int	config_list_len;
3461 	int	len;
3462 	int	dupletlen = 0;
3463 	char	*vidptr;
3464 	int	vidlen;
3465 	char	*dnlist_ptr;
3466 	char	*dataname_ptr;
3467 	int	dnlist_len;
3468 	int	dataname_len;
3469 	int	*data_list;
3470 	int	data_list_len;
3471 	int	rval = SD_FAILURE;
3472 	int	i;
3473 
3474 	ASSERT(un != NULL);
3475 
3476 	/* Obtain the configuration list associated with the .conf file */
3477 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3478 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3479 	    != DDI_PROP_SUCCESS) {
3480 		return (SD_FAILURE);
3481 	}
3482 
3483 	/*
3484 	 * Compare vids in each duplet to the inquiry vid - if a match is
3485 	 * made, get the data value and update the soft state structure
3486 	 * accordingly.
3487 	 *
3488 	 * Note: This algorithm is complex and difficult to maintain. It should
3489 	 * be replaced with a more robust implementation.
3490 	 */
3491 	for (len = config_list_len, vidptr = config_list; len > 0;
3492 	    vidptr += dupletlen, len -= dupletlen) {
3493 		/*
3494 		 * Note: The assumption here is that each vid entry is on
3495 		 * a unique line from its associated duplet.
3496 		 */
3497 		vidlen = dupletlen = (int)strlen(vidptr);
3498 		if ((vidlen == 0) ||
3499 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3500 			dupletlen++;
3501 			continue;
3502 		}
3503 
3504 		/*
3505 		 * dnlist contains 1 or more blank separated
3506 		 * data-property-name entries
3507 		 */
3508 		dnlist_ptr = vidptr + vidlen + 1;
3509 		dnlist_len = (int)strlen(dnlist_ptr);
3510 		dupletlen += dnlist_len + 2;
3511 
3512 		/*
3513 		 * Set a pointer for the first data-property-name
3514 		 * entry in the list
3515 		 */
3516 		dataname_ptr = dnlist_ptr;
3517 		dataname_len = 0;
3518 
3519 		/*
3520 		 * Loop through all data-property-name entries in the
3521 		 * data-property-name-list setting the properties for each.
3522 		 */
3523 		while (dataname_len < dnlist_len) {
3524 			int version;
3525 
3526 			/*
3527 			 * Determine the length of the current
3528 			 * data-property-name entry by indexing until a
3529 			 * blank or NULL is encountered. When the space is
3530 			 * encountered reset it to a NULL for compliance
3531 			 * with ddi_getlongprop().
3532 			 */
3533 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3534 			    (dataname_ptr[i] != '\0')); i++) {
3535 				;
3536 			}
3537 
3538 			dataname_len += i;
3539 			/* If not null terminated, Make it so */
3540 			if (dataname_ptr[i] == ' ') {
3541 				dataname_ptr[i] = '\0';
3542 			}
3543 			dataname_len++;
3544 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3545 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3546 			    vidptr, dataname_ptr);
3547 
3548 			/* Get the data list */
3549 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3550 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3551 			    != DDI_PROP_SUCCESS) {
3552 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3553 				    "sd_process_sdconf_file: data property (%s)"
3554 				    " has no value\n", dataname_ptr);
3555 				dataname_ptr = dnlist_ptr + dataname_len;
3556 				continue;
3557 			}
3558 
3559 			version = data_list[0];
3560 
3561 			if (version == SD_CONF_VERSION_1) {
3562 				sd_tunables values;
3563 
3564 				/* Set the properties */
3565 				if (sd_chk_vers1_data(un, data_list[1],
3566 				    &data_list[2], data_list_len, dataname_ptr)
3567 				    == SD_SUCCESS) {
3568 					sd_get_tunables_from_conf(un,
3569 					    data_list[1], &data_list[2],
3570 					    &values);
3571 					sd_set_vers1_properties(un,
3572 					    data_list[1], &values);
3573 					rval = SD_SUCCESS;
3574 				} else {
3575 					rval = SD_FAILURE;
3576 				}
3577 			} else {
3578 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3579 				    "data property %s version 0x%x is invalid.",
3580 				    dataname_ptr, version);
3581 				rval = SD_FAILURE;
3582 			}
3583 			kmem_free(data_list, data_list_len);
3584 			dataname_ptr = dnlist_ptr + dataname_len;
3585 		}
3586 	}
3587 
3588 	/* free up the memory allocated by ddi_getlongprop */
3589 	if (config_list) {
3590 		kmem_free(config_list, config_list_len);
3591 	}
3592 
3593 	return (rval);
3594 }
3595 
3596 /*
3597  *    Function: sd_get_tunables_from_conf()
3598  *
3599  *
3600  *    This function reads the data list from the sd.conf file and pulls
3601  *    the values that can have numeric values as arguments and places
3602  *    the values in the apropriate sd_tunables member.
3603  *    Since the order of the data list members varies across platforms
3604  *    This function reads them from the data list in a platform specific
3605  *    order and places them into the correct sd_tunable member that is
3606  *    a consistant across all platforms.
3607  */
3608 static void
3609 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3610     sd_tunables *values)
3611 {
3612 	int i;
3613 	int mask;
3614 
3615 	bzero(values, sizeof (sd_tunables));
3616 
3617 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3618 
3619 		mask = 1 << i;
3620 		if (mask > flags) {
3621 			break;
3622 		}
3623 
3624 		switch (mask & flags) {
3625 		case 0:	/* This mask bit not set in flags */
3626 			continue;
3627 		case SD_CONF_BSET_THROTTLE:
3628 			values->sdt_throttle = data_list[i];
3629 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3630 			    "sd_get_tunables_from_conf: throttle = %d\n",
3631 			    values->sdt_throttle);
3632 			break;
3633 		case SD_CONF_BSET_CTYPE:
3634 			values->sdt_ctype = data_list[i];
3635 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3636 			    "sd_get_tunables_from_conf: ctype = %d\n",
3637 			    values->sdt_ctype);
3638 			break;
3639 		case SD_CONF_BSET_NRR_COUNT:
3640 			values->sdt_not_rdy_retries = data_list[i];
3641 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3642 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3643 			    values->sdt_not_rdy_retries);
3644 			break;
3645 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3646 			values->sdt_busy_retries = data_list[i];
3647 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3648 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3649 			    values->sdt_busy_retries);
3650 			break;
3651 		case SD_CONF_BSET_RST_RETRIES:
3652 			values->sdt_reset_retries = data_list[i];
3653 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3654 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3655 			    values->sdt_reset_retries);
3656 			break;
3657 		case SD_CONF_BSET_RSV_REL_TIME:
3658 			values->sdt_reserv_rel_time = data_list[i];
3659 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3660 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3661 			    values->sdt_reserv_rel_time);
3662 			break;
3663 		case SD_CONF_BSET_MIN_THROTTLE:
3664 			values->sdt_min_throttle = data_list[i];
3665 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3666 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3667 			    values->sdt_min_throttle);
3668 			break;
3669 		case SD_CONF_BSET_DISKSORT_DISABLED:
3670 			values->sdt_disk_sort_dis = data_list[i];
3671 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3672 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3673 			    values->sdt_disk_sort_dis);
3674 			break;
3675 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3676 			values->sdt_lun_reset_enable = data_list[i];
3677 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3678 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3679 			    "\n", values->sdt_lun_reset_enable);
3680 			break;
3681 		}
3682 	}
3683 }
3684 
3685 /*
3686  *    Function: sd_process_sdconf_table
3687  *
3688  * Description: Search the static configuration table for a match on the
3689  *		inquiry vid/pid and update the driver soft state structure
3690  *		according to the table property values for the device.
3691  *
3692  *		The form of a configuration table entry is:
3693  *		  <vid+pid>,<flags>,<property-data>
3694  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3695  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3696  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3697  *
3698  *   Arguments: un - driver soft state (unit) structure
3699  */
3700 
3701 static void
3702 sd_process_sdconf_table(struct sd_lun *un)
3703 {
3704 	char	*id = NULL;
3705 	int	table_index;
3706 	int	idlen;
3707 
3708 	ASSERT(un != NULL);
3709 	for (table_index = 0; table_index < sd_disk_table_size;
3710 	    table_index++) {
3711 		id = sd_disk_table[table_index].device_id;
3712 		idlen = strlen(id);
3713 		if (idlen == 0) {
3714 			continue;
3715 		}
3716 
3717 		/*
3718 		 * The static configuration table currently does not
3719 		 * implement version 10 properties. Additionally,
3720 		 * multiple data-property-name entries are not
3721 		 * implemented in the static configuration table.
3722 		 */
3723 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3724 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3725 			    "sd_process_sdconf_table: disk %s\n", id);
3726 			sd_set_vers1_properties(un,
3727 			    sd_disk_table[table_index].flags,
3728 			    sd_disk_table[table_index].properties);
3729 			break;
3730 		}
3731 	}
3732 }
3733 
3734 
3735 /*
3736  *    Function: sd_sdconf_id_match
3737  *
3738  * Description: This local function implements a case sensitive vid/pid
3739  *		comparison as well as the boundary cases of wild card and
3740  *		multiple blanks.
3741  *
3742  *		Note: An implicit assumption made here is that the scsi
3743  *		inquiry structure will always keep the vid, pid and
3744  *		revision strings in consecutive sequence, so they can be
3745  *		read as a single string. If this assumption is not the
3746  *		case, a separate string, to be used for the check, needs
3747  *		to be built with these strings concatenated.
3748  *
3749  *   Arguments: un - driver soft state (unit) structure
3750  *		id - table or config file vid/pid
3751  *		idlen  - length of the vid/pid (bytes)
3752  *
3753  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3754  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3755  */
3756 
3757 static int
3758 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3759 {
3760 	struct scsi_inquiry	*sd_inq;
3761 	int 			rval = SD_SUCCESS;
3762 
3763 	ASSERT(un != NULL);
3764 	sd_inq = un->un_sd->sd_inq;
3765 	ASSERT(id != NULL);
3766 
3767 	/*
3768 	 * We use the inq_vid as a pointer to a buffer containing the
3769 	 * vid and pid and use the entire vid/pid length of the table
3770 	 * entry for the comparison. This works because the inq_pid
3771 	 * data member follows inq_vid in the scsi_inquiry structure.
3772 	 */
3773 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3774 		/*
3775 		 * The user id string is compared to the inquiry vid/pid
3776 		 * using a case insensitive comparison and ignoring
3777 		 * multiple spaces.
3778 		 */
3779 		rval = sd_blank_cmp(un, id, idlen);
3780 		if (rval != SD_SUCCESS) {
3781 			/*
3782 			 * User id strings that start and end with a "*"
3783 			 * are a special case. These do not have a
3784 			 * specific vendor, and the product string can
3785 			 * appear anywhere in the 16 byte PID portion of
3786 			 * the inquiry data. This is a simple strstr()
3787 			 * type search for the user id in the inquiry data.
3788 			 */
3789 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3790 				char	*pidptr = &id[1];
3791 				int	i;
3792 				int	j;
3793 				int	pidstrlen = idlen - 2;
3794 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3795 				    pidstrlen;
3796 
3797 				if (j < 0) {
3798 					return (SD_FAILURE);
3799 				}
3800 				for (i = 0; i < j; i++) {
3801 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3802 					    pidptr, pidstrlen) == 0) {
3803 						rval = SD_SUCCESS;
3804 						break;
3805 					}
3806 				}
3807 			}
3808 		}
3809 	}
3810 	return (rval);
3811 }
3812 
3813 
3814 /*
3815  *    Function: sd_blank_cmp
3816  *
3817  * Description: If the id string starts and ends with a space, treat
3818  *		multiple consecutive spaces as equivalent to a single
3819  *		space. For example, this causes a sd_disk_table entry
3820  *		of " NEC CDROM " to match a device's id string of
3821  *		"NEC       CDROM".
3822  *
3823  *		Note: The success exit condition for this routine is if
3824  *		the pointer to the table entry is '\0' and the cnt of
3825  *		the inquiry length is zero. This will happen if the inquiry
3826  *		string returned by the device is padded with spaces to be
3827  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3828  *		SCSI spec states that the inquiry string is to be padded with
3829  *		spaces.
3830  *
3831  *   Arguments: un - driver soft state (unit) structure
3832  *		id - table or config file vid/pid
3833  *		idlen  - length of the vid/pid (bytes)
3834  *
3835  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3836  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3837  */
3838 
3839 static int
3840 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3841 {
3842 	char		*p1;
3843 	char		*p2;
3844 	int		cnt;
3845 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3846 	    sizeof (SD_INQUIRY(un)->inq_pid);
3847 
3848 	ASSERT(un != NULL);
3849 	p2 = un->un_sd->sd_inq->inq_vid;
3850 	ASSERT(id != NULL);
3851 	p1 = id;
3852 
3853 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3854 		/*
3855 		 * Note: string p1 is terminated by a NUL but string p2
3856 		 * isn't.  The end of p2 is determined by cnt.
3857 		 */
3858 		for (;;) {
3859 			/* skip over any extra blanks in both strings */
3860 			while ((*p1 != '\0') && (*p1 == ' ')) {
3861 				p1++;
3862 			}
3863 			while ((cnt != 0) && (*p2 == ' ')) {
3864 				p2++;
3865 				cnt--;
3866 			}
3867 
3868 			/* compare the two strings */
3869 			if ((cnt == 0) ||
3870 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3871 				break;
3872 			}
3873 			while ((cnt > 0) &&
3874 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3875 				p1++;
3876 				p2++;
3877 				cnt--;
3878 			}
3879 		}
3880 	}
3881 
3882 	/* return SD_SUCCESS if both strings match */
3883 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3884 }
3885 
3886 
3887 /*
3888  *    Function: sd_chk_vers1_data
3889  *
3890  * Description: Verify the version 1 device properties provided by the
3891  *		user via the configuration file
3892  *
3893  *   Arguments: un	     - driver soft state (unit) structure
3894  *		flags	     - integer mask indicating properties to be set
3895  *		prop_list    - integer list of property values
3896  *		list_len     - length of user provided data
3897  *
3898  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3899  *		SD_FAILURE - Indicates the user provided data is invalid
3900  */
3901 
3902 static int
3903 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3904     int list_len, char *dataname_ptr)
3905 {
3906 	int i;
3907 	int mask = 1;
3908 	int index = 0;
3909 
3910 	ASSERT(un != NULL);
3911 
3912 	/* Check for a NULL property name and list */
3913 	if (dataname_ptr == NULL) {
3914 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3915 		    "sd_chk_vers1_data: NULL data property name.");
3916 		return (SD_FAILURE);
3917 	}
3918 	if (prop_list == NULL) {
3919 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3920 		    "sd_chk_vers1_data: %s NULL data property list.",
3921 		    dataname_ptr);
3922 		return (SD_FAILURE);
3923 	}
3924 
3925 	/* Display a warning if undefined bits are set in the flags */
3926 	if (flags & ~SD_CONF_BIT_MASK) {
3927 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3928 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3929 		    "Properties not set.",
3930 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3931 		return (SD_FAILURE);
3932 	}
3933 
3934 	/*
3935 	 * Verify the length of the list by identifying the highest bit set
3936 	 * in the flags and validating that the property list has a length
3937 	 * up to the index of this bit.
3938 	 */
3939 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3940 		if (flags & mask) {
3941 			index++;
3942 		}
3943 		mask = 1 << i;
3944 	}
3945 	if ((list_len / sizeof (int)) < (index + 2)) {
3946 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3947 		    "sd_chk_vers1_data: "
3948 		    "Data property list %s size is incorrect. "
3949 		    "Properties not set.", dataname_ptr);
3950 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3951 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3952 		return (SD_FAILURE);
3953 	}
3954 	return (SD_SUCCESS);
3955 }
3956 
3957 
3958 /*
3959  *    Function: sd_set_vers1_properties
3960  *
3961  * Description: Set version 1 device properties based on a property list
3962  *		retrieved from the driver configuration file or static
3963  *		configuration table. Version 1 properties have the format:
3964  *
3965  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3966  *
3967  *		where the prop0 value will be used to set prop0 if bit0
3968  *		is set in the flags
3969  *
3970  *   Arguments: un	     - driver soft state (unit) structure
3971  *		flags	     - integer mask indicating properties to be set
3972  *		prop_list    - integer list of property values
3973  */
3974 
3975 static void
3976 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3977 {
3978 	ASSERT(un != NULL);
3979 
3980 	/*
3981 	 * Set the flag to indicate cache is to be disabled. An attempt
3982 	 * to disable the cache via sd_cache_control() will be made
3983 	 * later during attach once the basic initialization is complete.
3984 	 */
3985 	if (flags & SD_CONF_BSET_NOCACHE) {
3986 		un->un_f_opt_disable_cache = TRUE;
3987 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3988 		    "sd_set_vers1_properties: caching disabled flag set\n");
3989 	}
3990 
3991 	/* CD-specific configuration parameters */
3992 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3993 		un->un_f_cfg_playmsf_bcd = TRUE;
3994 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3995 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3996 	}
3997 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3998 		un->un_f_cfg_readsub_bcd = TRUE;
3999 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4000 		    "sd_set_vers1_properties: readsub_bcd set\n");
4001 	}
4002 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4003 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4004 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4005 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4006 	}
4007 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4008 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4009 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4010 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4011 	}
4012 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4013 		un->un_f_cfg_no_read_header = TRUE;
4014 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4015 			    "sd_set_vers1_properties: no_read_header set\n");
4016 	}
4017 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4018 		un->un_f_cfg_read_cd_xd4 = TRUE;
4019 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4020 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4021 	}
4022 
4023 	/* Support for devices which do not have valid/unique serial numbers */
4024 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4025 		un->un_f_opt_fab_devid = TRUE;
4026 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4027 		    "sd_set_vers1_properties: fab_devid bit set\n");
4028 	}
4029 
4030 	/* Support for user throttle configuration */
4031 	if (flags & SD_CONF_BSET_THROTTLE) {
4032 		ASSERT(prop_list != NULL);
4033 		un->un_saved_throttle = un->un_throttle =
4034 		    prop_list->sdt_throttle;
4035 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4036 		    "sd_set_vers1_properties: throttle set to %d\n",
4037 		    prop_list->sdt_throttle);
4038 	}
4039 
4040 	/* Set the per disk retry count according to the conf file or table. */
4041 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4042 		ASSERT(prop_list != NULL);
4043 		if (prop_list->sdt_not_rdy_retries) {
4044 			un->un_notready_retry_count =
4045 				prop_list->sdt_not_rdy_retries;
4046 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4047 			    "sd_set_vers1_properties: not ready retry count"
4048 			    " set to %d\n", un->un_notready_retry_count);
4049 		}
4050 	}
4051 
4052 	/* The controller type is reported for generic disk driver ioctls */
4053 	if (flags & SD_CONF_BSET_CTYPE) {
4054 		ASSERT(prop_list != NULL);
4055 		switch (prop_list->sdt_ctype) {
4056 		case CTYPE_CDROM:
4057 			un->un_ctype = prop_list->sdt_ctype;
4058 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4059 			    "sd_set_vers1_properties: ctype set to "
4060 			    "CTYPE_CDROM\n");
4061 			break;
4062 		case CTYPE_CCS:
4063 			un->un_ctype = prop_list->sdt_ctype;
4064 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4065 				"sd_set_vers1_properties: ctype set to "
4066 				"CTYPE_CCS\n");
4067 			break;
4068 		case CTYPE_ROD:		/* RW optical */
4069 			un->un_ctype = prop_list->sdt_ctype;
4070 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4071 			    "sd_set_vers1_properties: ctype set to "
4072 			    "CTYPE_ROD\n");
4073 			break;
4074 		default:
4075 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4076 			    "sd_set_vers1_properties: Could not set "
4077 			    "invalid ctype value (%d)",
4078 			    prop_list->sdt_ctype);
4079 		}
4080 	}
4081 
4082 	/* Purple failover timeout */
4083 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4084 		ASSERT(prop_list != NULL);
4085 		un->un_busy_retry_count =
4086 			prop_list->sdt_busy_retries;
4087 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4088 		    "sd_set_vers1_properties: "
4089 		    "busy retry count set to %d\n",
4090 		    un->un_busy_retry_count);
4091 	}
4092 
4093 	/* Purple reset retry count */
4094 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4095 		ASSERT(prop_list != NULL);
4096 		un->un_reset_retry_count =
4097 			prop_list->sdt_reset_retries;
4098 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4099 		    "sd_set_vers1_properties: "
4100 		    "reset retry count set to %d\n",
4101 		    un->un_reset_retry_count);
4102 	}
4103 
4104 	/* Purple reservation release timeout */
4105 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4106 		ASSERT(prop_list != NULL);
4107 		un->un_reserve_release_time =
4108 			prop_list->sdt_reserv_rel_time;
4109 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4110 		    "sd_set_vers1_properties: "
4111 		    "reservation release timeout set to %d\n",
4112 		    un->un_reserve_release_time);
4113 	}
4114 
4115 	/*
4116 	 * Driver flag telling the driver to verify that no commands are pending
4117 	 * for a device before issuing a Test Unit Ready. This is a workaround
4118 	 * for a firmware bug in some Seagate eliteI drives.
4119 	 */
4120 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4121 		un->un_f_cfg_tur_check = TRUE;
4122 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4123 		    "sd_set_vers1_properties: tur queue check set\n");
4124 	}
4125 
4126 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4127 		un->un_min_throttle = prop_list->sdt_min_throttle;
4128 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4129 		    "sd_set_vers1_properties: min throttle set to %d\n",
4130 		    un->un_min_throttle);
4131 	}
4132 
4133 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4134 		un->un_f_disksort_disabled =
4135 		    (prop_list->sdt_disk_sort_dis != 0) ?
4136 		    TRUE : FALSE;
4137 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4138 		    "sd_set_vers1_properties: disksort disabled "
4139 		    "flag set to %d\n",
4140 		    prop_list->sdt_disk_sort_dis);
4141 	}
4142 
4143 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4144 		un->un_f_lun_reset_enabled =
4145 		    (prop_list->sdt_lun_reset_enable != 0) ?
4146 		    TRUE : FALSE;
4147 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4148 		    "sd_set_vers1_properties: lun reset enabled "
4149 		    "flag set to %d\n",
4150 		    prop_list->sdt_lun_reset_enable);
4151 	}
4152 
4153 	/*
4154 	 * Validate the throttle values.
4155 	 * If any of the numbers are invalid, set everything to defaults.
4156 	 */
4157 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4158 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4159 	    (un->un_min_throttle > un->un_throttle)) {
4160 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4161 		un->un_min_throttle = sd_min_throttle;
4162 	}
4163 }
4164 
4165 /*
4166  *   Function: sd_is_lsi()
4167  *
4168  *   Description: Check for lsi devices, step throught the static device
4169  *	table to match vid/pid.
4170  *
4171  *   Args: un - ptr to sd_lun
4172  *
4173  *   Notes:  When creating new LSI property, need to add the new LSI property
4174  *		to this function.
4175  */
4176 static void
4177 sd_is_lsi(struct sd_lun *un)
4178 {
4179 	char	*id = NULL;
4180 	int	table_index;
4181 	int	idlen;
4182 	void	*prop;
4183 
4184 	ASSERT(un != NULL);
4185 	for (table_index = 0; table_index < sd_disk_table_size;
4186 	    table_index++) {
4187 		id = sd_disk_table[table_index].device_id;
4188 		idlen = strlen(id);
4189 		if (idlen == 0) {
4190 			continue;
4191 		}
4192 
4193 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4194 			prop = sd_disk_table[table_index].properties;
4195 			if (prop == &lsi_properties ||
4196 			    prop == &lsi_oem_properties ||
4197 			    prop == &lsi_properties_scsi ||
4198 			    prop == &symbios_properties) {
4199 				un->un_f_cfg_is_lsi = TRUE;
4200 			}
4201 			break;
4202 		}
4203 	}
4204 }
4205 
4206 /*
4207  *    Function: sd_get_physical_geometry
4208  *
4209  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4210  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4211  *		target, and use this information to initialize the physical
4212  *		geometry cache specified by pgeom_p.
4213  *
4214  *		MODE SENSE is an optional command, so failure in this case
4215  *		does not necessarily denote an error. We want to use the
4216  *		MODE SENSE commands to derive the physical geometry of the
4217  *		device, but if either command fails, the logical geometry is
4218  *		used as the fallback for disk label geometry in cmlb.
4219  *
4220  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4221  *		have already been initialized for the current target and
4222  *		that the current values be passed as args so that we don't
4223  *		end up ever trying to use -1 as a valid value. This could
4224  *		happen if either value is reset while we're not holding
4225  *		the mutex.
4226  *
4227  *   Arguments: un - driver soft state (unit) structure
4228  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4229  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4230  *			to use the USCSI "direct" chain and bypass the normal
4231  *			command waitq.
4232  *
4233  *     Context: Kernel thread only (can sleep).
4234  */
4235 
4236 static int
4237 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4238 	diskaddr_t capacity, int lbasize, int path_flag)
4239 {
4240 	struct	mode_format	*page3p;
4241 	struct	mode_geometry	*page4p;
4242 	struct	mode_header	*headerp;
4243 	int	sector_size;
4244 	int	nsect;
4245 	int	nhead;
4246 	int	ncyl;
4247 	int	intrlv;
4248 	int	spc;
4249 	diskaddr_t	modesense_capacity;
4250 	int	rpm;
4251 	int	bd_len;
4252 	int	mode_header_length;
4253 	uchar_t	*p3bufp;
4254 	uchar_t	*p4bufp;
4255 	int	cdbsize;
4256 	int 	ret = EIO;
4257 
4258 	ASSERT(un != NULL);
4259 
4260 	if (lbasize == 0) {
4261 		if (ISCD(un)) {
4262 			lbasize = 2048;
4263 		} else {
4264 			lbasize = un->un_sys_blocksize;
4265 		}
4266 	}
4267 	pgeom_p->g_secsize = (unsigned short)lbasize;
4268 
4269 	/*
4270 	 * If the unit is a cd/dvd drive MODE SENSE page three
4271 	 * and MODE SENSE page four are reserved (see SBC spec
4272 	 * and MMC spec). To prevent soft errors just return
4273 	 * using the default LBA size.
4274 	 */
4275 	if (ISCD(un))
4276 		return (ret);
4277 
4278 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4279 
4280 	/*
4281 	 * Retrieve MODE SENSE page 3 - Format Device Page
4282 	 */
4283 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4284 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4285 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4286 	    != 0) {
4287 		SD_ERROR(SD_LOG_COMMON, un,
4288 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4289 		goto page3_exit;
4290 	}
4291 
4292 	/*
4293 	 * Determine size of Block Descriptors in order to locate the mode
4294 	 * page data.  ATAPI devices return 0, SCSI devices should return
4295 	 * MODE_BLK_DESC_LENGTH.
4296 	 */
4297 	headerp = (struct mode_header *)p3bufp;
4298 	if (un->un_f_cfg_is_atapi == TRUE) {
4299 		struct mode_header_grp2 *mhp =
4300 		    (struct mode_header_grp2 *)headerp;
4301 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4302 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4303 	} else {
4304 		mode_header_length = MODE_HEADER_LENGTH;
4305 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4306 	}
4307 
4308 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4309 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4310 		    "received unexpected bd_len of %d, page3\n", bd_len);
4311 		goto page3_exit;
4312 	}
4313 
4314 	page3p = (struct mode_format *)
4315 	    ((caddr_t)headerp + mode_header_length + bd_len);
4316 
4317 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4318 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4319 		    "mode sense pg3 code mismatch %d\n",
4320 		    page3p->mode_page.code);
4321 		goto page3_exit;
4322 	}
4323 
4324 	/*
4325 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4326 	 * complete successfully; otherwise, revert to the logical geometry.
4327 	 * So, we need to save everything in temporary variables.
4328 	 */
4329 	sector_size = BE_16(page3p->data_bytes_sect);
4330 
4331 	/*
4332 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4333 	 */
4334 	if (sector_size == 0) {
4335 		sector_size = un->un_sys_blocksize;
4336 	} else {
4337 		sector_size &= ~(un->un_sys_blocksize - 1);
4338 	}
4339 
4340 	nsect  = BE_16(page3p->sect_track);
4341 	intrlv = BE_16(page3p->interleave);
4342 
4343 	SD_INFO(SD_LOG_COMMON, un,
4344 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4345 	SD_INFO(SD_LOG_COMMON, un,
4346 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4347 	    page3p->mode_page.code, nsect, sector_size);
4348 	SD_INFO(SD_LOG_COMMON, un,
4349 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4350 	    BE_16(page3p->track_skew),
4351 	    BE_16(page3p->cylinder_skew));
4352 
4353 
4354 	/*
4355 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4356 	 */
4357 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4358 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4359 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4360 	    != 0) {
4361 		SD_ERROR(SD_LOG_COMMON, un,
4362 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4363 		goto page4_exit;
4364 	}
4365 
4366 	/*
4367 	 * Determine size of Block Descriptors in order to locate the mode
4368 	 * page data.  ATAPI devices return 0, SCSI devices should return
4369 	 * MODE_BLK_DESC_LENGTH.
4370 	 */
4371 	headerp = (struct mode_header *)p4bufp;
4372 	if (un->un_f_cfg_is_atapi == TRUE) {
4373 		struct mode_header_grp2 *mhp =
4374 		    (struct mode_header_grp2 *)headerp;
4375 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4376 	} else {
4377 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4378 	}
4379 
4380 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4381 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4382 		    "received unexpected bd_len of %d, page4\n", bd_len);
4383 		goto page4_exit;
4384 	}
4385 
4386 	page4p = (struct mode_geometry *)
4387 	    ((caddr_t)headerp + mode_header_length + bd_len);
4388 
4389 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4390 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4391 		    "mode sense pg4 code mismatch %d\n",
4392 		    page4p->mode_page.code);
4393 		goto page4_exit;
4394 	}
4395 
4396 	/*
4397 	 * Stash the data now, after we know that both commands completed.
4398 	 */
4399 
4400 
4401 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4402 	spc   = nhead * nsect;
4403 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4404 	rpm   = BE_16(page4p->rpm);
4405 
4406 	modesense_capacity = spc * ncyl;
4407 
4408 	SD_INFO(SD_LOG_COMMON, un,
4409 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4410 	SD_INFO(SD_LOG_COMMON, un,
4411 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4412 	SD_INFO(SD_LOG_COMMON, un,
4413 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4414 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4415 	    (void *)pgeom_p, capacity);
4416 
4417 	/*
4418 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4419 	 * the product of C * H * S returned by MODE SENSE >= that returned
4420 	 * by read capacity. This is an idiosyncrasy of the original x86
4421 	 * disk subsystem.
4422 	 */
4423 	if (modesense_capacity >= capacity) {
4424 		SD_INFO(SD_LOG_COMMON, un,
4425 		    "sd_get_physical_geometry: adjusting acyl; "
4426 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4427 		    (modesense_capacity - capacity + spc - 1) / spc);
4428 		if (sector_size != 0) {
4429 			/* 1243403: NEC D38x7 drives don't support sec size */
4430 			pgeom_p->g_secsize = (unsigned short)sector_size;
4431 		}
4432 		pgeom_p->g_nsect    = (unsigned short)nsect;
4433 		pgeom_p->g_nhead    = (unsigned short)nhead;
4434 		pgeom_p->g_capacity = capacity;
4435 		pgeom_p->g_acyl	    =
4436 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4437 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4438 	}
4439 
4440 	pgeom_p->g_rpm    = (unsigned short)rpm;
4441 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4442 	ret = 0;
4443 
4444 	SD_INFO(SD_LOG_COMMON, un,
4445 	    "sd_get_physical_geometry: mode sense geometry:\n");
4446 	SD_INFO(SD_LOG_COMMON, un,
4447 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4448 	    nsect, sector_size, intrlv);
4449 	SD_INFO(SD_LOG_COMMON, un,
4450 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4451 	    nhead, ncyl, rpm, modesense_capacity);
4452 	SD_INFO(SD_LOG_COMMON, un,
4453 	    "sd_get_physical_geometry: (cached)\n");
4454 	SD_INFO(SD_LOG_COMMON, un,
4455 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4456 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4457 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4458 	SD_INFO(SD_LOG_COMMON, un,
4459 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4460 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4461 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4462 
4463 page4_exit:
4464 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4465 page3_exit:
4466 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4467 
4468 	return (ret);
4469 }
4470 
4471 /*
4472  *    Function: sd_get_virtual_geometry
4473  *
4474  * Description: Ask the controller to tell us about the target device.
4475  *
4476  *   Arguments: un - pointer to softstate
4477  *		capacity - disk capacity in #blocks
4478  *		lbasize - disk block size in bytes
4479  *
4480  *     Context: Kernel thread only
4481  */
4482 
4483 static int
4484 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4485     diskaddr_t capacity, int lbasize)
4486 {
4487 	uint_t	geombuf;
4488 	int	spc;
4489 
4490 	ASSERT(un != NULL);
4491 
4492 	/* Set sector size, and total number of sectors */
4493 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4494 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4495 
4496 	/* Let the HBA tell us its geometry */
4497 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4498 
4499 	/* A value of -1 indicates an undefined "geometry" property */
4500 	if (geombuf == (-1)) {
4501 		return (EINVAL);
4502 	}
4503 
4504 	/* Initialize the logical geometry cache. */
4505 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4506 	lgeom_p->g_nsect   = geombuf & 0xffff;
4507 	lgeom_p->g_secsize = un->un_sys_blocksize;
4508 
4509 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4510 
4511 	/*
4512 	 * Note: The driver originally converted the capacity value from
4513 	 * target blocks to system blocks. However, the capacity value passed
4514 	 * to this routine is already in terms of system blocks (this scaling
4515 	 * is done when the READ CAPACITY command is issued and processed).
4516 	 * This 'error' may have gone undetected because the usage of g_ncyl
4517 	 * (which is based upon g_capacity) is very limited within the driver
4518 	 */
4519 	lgeom_p->g_capacity = capacity;
4520 
4521 	/*
4522 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4523 	 * hba may return zero values if the device has been removed.
4524 	 */
4525 	if (spc == 0) {
4526 		lgeom_p->g_ncyl = 0;
4527 	} else {
4528 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4529 	}
4530 	lgeom_p->g_acyl = 0;
4531 
4532 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4533 	return (0);
4534 
4535 }
4536 /*
4537  *    Function: sd_update_block_info
4538  *
4539  * Description: Calculate a byte count to sector count bitshift value
4540  *		from sector size.
4541  *
4542  *   Arguments: un: unit struct.
4543  *		lbasize: new target sector size
4544  *		capacity: new target capacity, ie. block count
4545  *
4546  *     Context: Kernel thread context
4547  */
4548 
4549 static void
4550 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4551 {
4552 	if (lbasize != 0) {
4553 		un->un_tgt_blocksize = lbasize;
4554 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4555 	}
4556 
4557 	if (capacity != 0) {
4558 		un->un_blockcount		= capacity;
4559 		un->un_f_blockcount_is_valid	= TRUE;
4560 	}
4561 }
4562 
4563 
4564 /*
4565  *    Function: sd_register_devid
4566  *
4567  * Description: This routine will obtain the device id information from the
4568  *		target, obtain the serial number, and register the device
4569  *		id with the ddi framework.
4570  *
4571  *   Arguments: devi - the system's dev_info_t for the device.
4572  *		un - driver soft state (unit) structure
4573  *		reservation_flag - indicates if a reservation conflict
4574  *		occurred during attach
4575  *
4576  *     Context: Kernel Thread
4577  */
4578 static void
4579 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4580 {
4581 	int		rval		= 0;
4582 	uchar_t		*inq80		= NULL;
4583 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4584 	size_t		inq80_resid	= 0;
4585 	uchar_t		*inq83		= NULL;
4586 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4587 	size_t		inq83_resid	= 0;
4588 
4589 	ASSERT(un != NULL);
4590 	ASSERT(mutex_owned(SD_MUTEX(un)));
4591 	ASSERT((SD_DEVINFO(un)) == devi);
4592 
4593 	/*
4594 	 * This is the case of antiquated Sun disk drives that have the
4595 	 * FAB_DEVID property set in the disk_table.  These drives
4596 	 * manage the devid's by storing them in last 2 available sectors
4597 	 * on the drive and have them fabricated by the ddi layer by calling
4598 	 * ddi_devid_init and passing the DEVID_FAB flag.
4599 	 */
4600 	if (un->un_f_opt_fab_devid == TRUE) {
4601 		/*
4602 		 * Depending on EINVAL isn't reliable, since a reserved disk
4603 		 * may result in invalid geometry, so check to make sure a
4604 		 * reservation conflict did not occur during attach.
4605 		 */
4606 		if ((sd_get_devid(un) == EINVAL) &&
4607 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4608 			/*
4609 			 * The devid is invalid AND there is no reservation
4610 			 * conflict.  Fabricate a new devid.
4611 			 */
4612 			(void) sd_create_devid(un);
4613 		}
4614 
4615 		/* Register the devid if it exists */
4616 		if (un->un_devid != NULL) {
4617 			(void) ddi_devid_register(SD_DEVINFO(un),
4618 			    un->un_devid);
4619 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4620 			    "sd_register_devid: Devid Fabricated\n");
4621 		}
4622 		return;
4623 	}
4624 
4625 	/*
4626 	 * We check the availibility of the World Wide Name (0x83) and Unit
4627 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4628 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4629 	 * 0x83 is availible, that is the best choice.  Our next choice is
4630 	 * 0x80.  If neither are availible, we munge the devid from the device
4631 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4632 	 * to fabricate a devid for non-Sun qualified disks.
4633 	 */
4634 	if (sd_check_vpd_page_support(un) == 0) {
4635 		/* collect page 80 data if available */
4636 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4637 
4638 			mutex_exit(SD_MUTEX(un));
4639 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4640 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4641 			    0x01, 0x80, &inq80_resid);
4642 
4643 			if (rval != 0) {
4644 				kmem_free(inq80, inq80_len);
4645 				inq80 = NULL;
4646 				inq80_len = 0;
4647 			}
4648 			mutex_enter(SD_MUTEX(un));
4649 		}
4650 
4651 		/* collect page 83 data if available */
4652 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4653 			mutex_exit(SD_MUTEX(un));
4654 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4655 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4656 			    0x01, 0x83, &inq83_resid);
4657 
4658 			if (rval != 0) {
4659 				kmem_free(inq83, inq83_len);
4660 				inq83 = NULL;
4661 				inq83_len = 0;
4662 			}
4663 			mutex_enter(SD_MUTEX(un));
4664 		}
4665 	}
4666 
4667 	/* encode best devid possible based on data available */
4668 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4669 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4670 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4671 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4672 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4673 
4674 		/* devid successfully encoded, register devid */
4675 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4676 
4677 	} else {
4678 		/*
4679 		 * Unable to encode a devid based on data available.
4680 		 * This is not a Sun qualified disk.  Older Sun disk
4681 		 * drives that have the SD_FAB_DEVID property
4682 		 * set in the disk_table and non Sun qualified
4683 		 * disks are treated in the same manner.  These
4684 		 * drives manage the devid's by storing them in
4685 		 * last 2 available sectors on the drive and
4686 		 * have them fabricated by the ddi layer by
4687 		 * calling ddi_devid_init and passing the
4688 		 * DEVID_FAB flag.
4689 		 * Create a fabricate devid only if there's no
4690 		 * fabricate devid existed.
4691 		 */
4692 		if (sd_get_devid(un) == EINVAL) {
4693 			(void) sd_create_devid(un);
4694 		}
4695 		un->un_f_opt_fab_devid = TRUE;
4696 
4697 		/* Register the devid if it exists */
4698 		if (un->un_devid != NULL) {
4699 			(void) ddi_devid_register(SD_DEVINFO(un),
4700 			    un->un_devid);
4701 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4702 			    "sd_register_devid: devid fabricated using "
4703 			    "ddi framework\n");
4704 		}
4705 	}
4706 
4707 	/* clean up resources */
4708 	if (inq80 != NULL) {
4709 		kmem_free(inq80, inq80_len);
4710 	}
4711 	if (inq83 != NULL) {
4712 		kmem_free(inq83, inq83_len);
4713 	}
4714 }
4715 
4716 
4717 
4718 /*
4719  *    Function: sd_get_devid
4720  *
4721  * Description: This routine will return 0 if a valid device id has been
4722  *		obtained from the target and stored in the soft state. If a
4723  *		valid device id has not been previously read and stored, a
4724  *		read attempt will be made.
4725  *
4726  *   Arguments: un - driver soft state (unit) structure
4727  *
4728  * Return Code: 0 if we successfully get the device id
4729  *
4730  *     Context: Kernel Thread
4731  */
4732 
4733 static int
4734 sd_get_devid(struct sd_lun *un)
4735 {
4736 	struct dk_devid		*dkdevid;
4737 	ddi_devid_t		tmpid;
4738 	uint_t			*ip;
4739 	size_t			sz;
4740 	diskaddr_t		blk;
4741 	int			status;
4742 	int			chksum;
4743 	int			i;
4744 	size_t			buffer_size;
4745 
4746 	ASSERT(un != NULL);
4747 	ASSERT(mutex_owned(SD_MUTEX(un)));
4748 
4749 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4750 	    un);
4751 
4752 	if (un->un_devid != NULL) {
4753 		return (0);
4754 	}
4755 
4756 	mutex_exit(SD_MUTEX(un));
4757 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4758 	    (void *)SD_PATH_DIRECT) != 0) {
4759 		mutex_enter(SD_MUTEX(un));
4760 		return (EINVAL);
4761 	}
4762 
4763 	/*
4764 	 * Read and verify device id, stored in the reserved cylinders at the
4765 	 * end of the disk. Backup label is on the odd sectors of the last
4766 	 * track of the last cylinder. Device id will be on track of the next
4767 	 * to last cylinder.
4768 	 */
4769 	mutex_enter(SD_MUTEX(un));
4770 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4771 	mutex_exit(SD_MUTEX(un));
4772 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4773 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4774 	    SD_PATH_DIRECT);
4775 	if (status != 0) {
4776 		goto error;
4777 	}
4778 
4779 	/* Validate the revision */
4780 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4781 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4782 		status = EINVAL;
4783 		goto error;
4784 	}
4785 
4786 	/* Calculate the checksum */
4787 	chksum = 0;
4788 	ip = (uint_t *)dkdevid;
4789 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4790 	    i++) {
4791 		chksum ^= ip[i];
4792 	}
4793 
4794 	/* Compare the checksums */
4795 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4796 		status = EINVAL;
4797 		goto error;
4798 	}
4799 
4800 	/* Validate the device id */
4801 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4802 		status = EINVAL;
4803 		goto error;
4804 	}
4805 
4806 	/*
4807 	 * Store the device id in the driver soft state
4808 	 */
4809 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4810 	tmpid = kmem_alloc(sz, KM_SLEEP);
4811 
4812 	mutex_enter(SD_MUTEX(un));
4813 
4814 	un->un_devid = tmpid;
4815 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4816 
4817 	kmem_free(dkdevid, buffer_size);
4818 
4819 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4820 
4821 	return (status);
4822 error:
4823 	mutex_enter(SD_MUTEX(un));
4824 	kmem_free(dkdevid, buffer_size);
4825 	return (status);
4826 }
4827 
4828 
4829 /*
4830  *    Function: sd_create_devid
4831  *
4832  * Description: This routine will fabricate the device id and write it
4833  *		to the disk.
4834  *
4835  *   Arguments: un - driver soft state (unit) structure
4836  *
4837  * Return Code: value of the fabricated device id
4838  *
4839  *     Context: Kernel Thread
4840  */
4841 
4842 static ddi_devid_t
4843 sd_create_devid(struct sd_lun *un)
4844 {
4845 	ASSERT(un != NULL);
4846 
4847 	/* Fabricate the devid */
4848 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4849 	    == DDI_FAILURE) {
4850 		return (NULL);
4851 	}
4852 
4853 	/* Write the devid to disk */
4854 	if (sd_write_deviceid(un) != 0) {
4855 		ddi_devid_free(un->un_devid);
4856 		un->un_devid = NULL;
4857 	}
4858 
4859 	return (un->un_devid);
4860 }
4861 
4862 
4863 /*
4864  *    Function: sd_write_deviceid
4865  *
4866  * Description: This routine will write the device id to the disk
4867  *		reserved sector.
4868  *
4869  *   Arguments: un - driver soft state (unit) structure
4870  *
4871  * Return Code: EINVAL
4872  *		value returned by sd_send_scsi_cmd
4873  *
4874  *     Context: Kernel Thread
4875  */
4876 
4877 static int
4878 sd_write_deviceid(struct sd_lun *un)
4879 {
4880 	struct dk_devid		*dkdevid;
4881 	diskaddr_t		blk;
4882 	uint_t			*ip, chksum;
4883 	int			status;
4884 	int			i;
4885 
4886 	ASSERT(mutex_owned(SD_MUTEX(un)));
4887 
4888 	mutex_exit(SD_MUTEX(un));
4889 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4890 	    (void *)SD_PATH_DIRECT) != 0) {
4891 		mutex_enter(SD_MUTEX(un));
4892 		return (-1);
4893 	}
4894 
4895 
4896 	/* Allocate the buffer */
4897 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
4898 
4899 	/* Fill in the revision */
4900 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
4901 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
4902 
4903 	/* Copy in the device id */
4904 	mutex_enter(SD_MUTEX(un));
4905 	bcopy(un->un_devid, &dkdevid->dkd_devid,
4906 	    ddi_devid_sizeof(un->un_devid));
4907 	mutex_exit(SD_MUTEX(un));
4908 
4909 	/* Calculate the checksum */
4910 	chksum = 0;
4911 	ip = (uint_t *)dkdevid;
4912 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4913 	    i++) {
4914 		chksum ^= ip[i];
4915 	}
4916 
4917 	/* Fill-in checksum */
4918 	DKD_FORMCHKSUM(chksum, dkdevid);
4919 
4920 	/* Write the reserved sector */
4921 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
4922 	    SD_PATH_DIRECT);
4923 
4924 	kmem_free(dkdevid, un->un_sys_blocksize);
4925 
4926 	mutex_enter(SD_MUTEX(un));
4927 	return (status);
4928 }
4929 
4930 
4931 /*
4932  *    Function: sd_check_vpd_page_support
4933  *
4934  * Description: This routine sends an inquiry command with the EVPD bit set and
4935  *		a page code of 0x00 to the device. It is used to determine which
4936  *		vital product pages are availible to find the devid. We are
4937  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
4938  *		device does not support that command.
4939  *
4940  *   Arguments: un  - driver soft state (unit) structure
4941  *
4942  * Return Code: 0 - success
4943  *		1 - check condition
4944  *
4945  *     Context: This routine can sleep.
4946  */
4947 
4948 static int
4949 sd_check_vpd_page_support(struct sd_lun *un)
4950 {
4951 	uchar_t	*page_list	= NULL;
4952 	uchar_t	page_length	= 0xff;	/* Use max possible length */
4953 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
4954 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
4955 	int    	rval		= 0;
4956 	int	counter;
4957 
4958 	ASSERT(un != NULL);
4959 	ASSERT(mutex_owned(SD_MUTEX(un)));
4960 
4961 	mutex_exit(SD_MUTEX(un));
4962 
4963 	/*
4964 	 * We'll set the page length to the maximum to save figuring it out
4965 	 * with an additional call.
4966 	 */
4967 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
4968 
4969 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
4970 	    page_code, NULL);
4971 
4972 	mutex_enter(SD_MUTEX(un));
4973 
4974 	/*
4975 	 * Now we must validate that the device accepted the command, as some
4976 	 * drives do not support it.  If the drive does support it, we will
4977 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
4978 	 * not, we return -1.
4979 	 */
4980 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
4981 		/* Loop to find one of the 2 pages we need */
4982 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
4983 
4984 		/*
4985 		 * Pages are returned in ascending order, and 0x83 is what we
4986 		 * are hoping for.
4987 		 */
4988 		while ((page_list[counter] <= 0x83) &&
4989 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
4990 		    VPD_HEAD_OFFSET))) {
4991 			/*
4992 			 * Add 3 because page_list[3] is the number of
4993 			 * pages minus 3
4994 			 */
4995 
4996 			switch (page_list[counter]) {
4997 			case 0x00:
4998 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
4999 				break;
5000 			case 0x80:
5001 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5002 				break;
5003 			case 0x81:
5004 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5005 				break;
5006 			case 0x82:
5007 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5008 				break;
5009 			case 0x83:
5010 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5011 				break;
5012 			}
5013 			counter++;
5014 		}
5015 
5016 	} else {
5017 		rval = -1;
5018 
5019 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5020 		    "sd_check_vpd_page_support: This drive does not implement "
5021 		    "VPD pages.\n");
5022 	}
5023 
5024 	kmem_free(page_list, page_length);
5025 
5026 	return (rval);
5027 }
5028 
5029 
5030 /*
5031  *    Function: sd_setup_pm
5032  *
5033  * Description: Initialize Power Management on the device
5034  *
5035  *     Context: Kernel Thread
5036  */
5037 
5038 static void
5039 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5040 {
5041 	uint_t	log_page_size;
5042 	uchar_t	*log_page_data;
5043 	int	rval;
5044 
5045 	/*
5046 	 * Since we are called from attach, holding a mutex for
5047 	 * un is unnecessary. Because some of the routines called
5048 	 * from here require SD_MUTEX to not be held, assert this
5049 	 * right up front.
5050 	 */
5051 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5052 	/*
5053 	 * Since the sd device does not have the 'reg' property,
5054 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5055 	 * The following code is to tell cpr that this device
5056 	 * DOES need to be suspended and resumed.
5057 	 */
5058 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5059 	    "pm-hardware-state", "needs-suspend-resume");
5060 
5061 	/*
5062 	 * This complies with the new power management framework
5063 	 * for certain desktop machines. Create the pm_components
5064 	 * property as a string array property.
5065 	 */
5066 	if (un->un_f_pm_supported) {
5067 		/*
5068 		 * not all devices have a motor, try it first.
5069 		 * some devices may return ILLEGAL REQUEST, some
5070 		 * will hang
5071 		 * The following START_STOP_UNIT is used to check if target
5072 		 * device has a motor.
5073 		 */
5074 		un->un_f_start_stop_supported = TRUE;
5075 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5076 		    SD_PATH_DIRECT) != 0) {
5077 			un->un_f_start_stop_supported = FALSE;
5078 		}
5079 
5080 		/*
5081 		 * create pm properties anyways otherwise the parent can't
5082 		 * go to sleep
5083 		 */
5084 		(void) sd_create_pm_components(devi, un);
5085 		un->un_f_pm_is_enabled = TRUE;
5086 		return;
5087 	}
5088 
5089 	if (!un->un_f_log_sense_supported) {
5090 		un->un_power_level = SD_SPINDLE_ON;
5091 		un->un_f_pm_is_enabled = FALSE;
5092 		return;
5093 	}
5094 
5095 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5096 
5097 #ifdef	SDDEBUG
5098 	if (sd_force_pm_supported) {
5099 		/* Force a successful result */
5100 		rval = 1;
5101 	}
5102 #endif
5103 
5104 	/*
5105 	 * If the start-stop cycle counter log page is not supported
5106 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5107 	 * then we should not create the pm_components property.
5108 	 */
5109 	if (rval == -1) {
5110 		/*
5111 		 * Error.
5112 		 * Reading log sense failed, most likely this is
5113 		 * an older drive that does not support log sense.
5114 		 * If this fails auto-pm is not supported.
5115 		 */
5116 		un->un_power_level = SD_SPINDLE_ON;
5117 		un->un_f_pm_is_enabled = FALSE;
5118 
5119 	} else if (rval == 0) {
5120 		/*
5121 		 * Page not found.
5122 		 * The start stop cycle counter is implemented as page
5123 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5124 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5125 		 */
5126 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5127 			/*
5128 			 * Page found, use this one.
5129 			 */
5130 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5131 			un->un_f_pm_is_enabled = TRUE;
5132 		} else {
5133 			/*
5134 			 * Error or page not found.
5135 			 * auto-pm is not supported for this device.
5136 			 */
5137 			un->un_power_level = SD_SPINDLE_ON;
5138 			un->un_f_pm_is_enabled = FALSE;
5139 		}
5140 	} else {
5141 		/*
5142 		 * Page found, use it.
5143 		 */
5144 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5145 		un->un_f_pm_is_enabled = TRUE;
5146 	}
5147 
5148 
5149 	if (un->un_f_pm_is_enabled == TRUE) {
5150 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5151 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5152 
5153 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5154 		    log_page_size, un->un_start_stop_cycle_page,
5155 		    0x01, 0, SD_PATH_DIRECT);
5156 #ifdef	SDDEBUG
5157 		if (sd_force_pm_supported) {
5158 			/* Force a successful result */
5159 			rval = 0;
5160 		}
5161 #endif
5162 
5163 		/*
5164 		 * If the Log sense for Page( Start/stop cycle counter page)
5165 		 * succeeds, then power managment is supported and we can
5166 		 * enable auto-pm.
5167 		 */
5168 		if (rval == 0)  {
5169 			(void) sd_create_pm_components(devi, un);
5170 		} else {
5171 			un->un_power_level = SD_SPINDLE_ON;
5172 			un->un_f_pm_is_enabled = FALSE;
5173 		}
5174 
5175 		kmem_free(log_page_data, log_page_size);
5176 	}
5177 }
5178 
5179 
5180 /*
5181  *    Function: sd_create_pm_components
5182  *
5183  * Description: Initialize PM property.
5184  *
5185  *     Context: Kernel thread context
5186  */
5187 
5188 static void
5189 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5190 {
5191 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5192 
5193 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5194 
5195 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5196 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5197 		/*
5198 		 * When components are initially created they are idle,
5199 		 * power up any non-removables.
5200 		 * Note: the return value of pm_raise_power can't be used
5201 		 * for determining if PM should be enabled for this device.
5202 		 * Even if you check the return values and remove this
5203 		 * property created above, the PM framework will not honor the
5204 		 * change after the first call to pm_raise_power. Hence,
5205 		 * removal of that property does not help if pm_raise_power
5206 		 * fails. In the case of removable media, the start/stop
5207 		 * will fail if the media is not present.
5208 		 */
5209 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5210 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5211 			mutex_enter(SD_MUTEX(un));
5212 			un->un_power_level = SD_SPINDLE_ON;
5213 			mutex_enter(&un->un_pm_mutex);
5214 			/* Set to on and not busy. */
5215 			un->un_pm_count = 0;
5216 		} else {
5217 			mutex_enter(SD_MUTEX(un));
5218 			un->un_power_level = SD_SPINDLE_OFF;
5219 			mutex_enter(&un->un_pm_mutex);
5220 			/* Set to off. */
5221 			un->un_pm_count = -1;
5222 		}
5223 		mutex_exit(&un->un_pm_mutex);
5224 		mutex_exit(SD_MUTEX(un));
5225 	} else {
5226 		un->un_power_level = SD_SPINDLE_ON;
5227 		un->un_f_pm_is_enabled = FALSE;
5228 	}
5229 }
5230 
5231 
5232 /*
5233  *    Function: sd_ddi_suspend
5234  *
5235  * Description: Performs system power-down operations. This includes
5236  *		setting the drive state to indicate its suspended so
5237  *		that no new commands will be accepted. Also, wait for
5238  *		all commands that are in transport or queued to a timer
5239  *		for retry to complete. All timeout threads are cancelled.
5240  *
5241  * Return Code: DDI_FAILURE or DDI_SUCCESS
5242  *
5243  *     Context: Kernel thread context
5244  */
5245 
5246 static int
5247 sd_ddi_suspend(dev_info_t *devi)
5248 {
5249 	struct	sd_lun	*un;
5250 	clock_t		wait_cmds_complete;
5251 
5252 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5253 	if (un == NULL) {
5254 		return (DDI_FAILURE);
5255 	}
5256 
5257 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5258 
5259 	mutex_enter(SD_MUTEX(un));
5260 
5261 	/* Return success if the device is already suspended. */
5262 	if (un->un_state == SD_STATE_SUSPENDED) {
5263 		mutex_exit(SD_MUTEX(un));
5264 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5265 		    "device already suspended, exiting\n");
5266 		return (DDI_SUCCESS);
5267 	}
5268 
5269 	/* Return failure if the device is being used by HA */
5270 	if (un->un_resvd_status &
5271 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5272 		mutex_exit(SD_MUTEX(un));
5273 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5274 		    "device in use by HA, exiting\n");
5275 		return (DDI_FAILURE);
5276 	}
5277 
5278 	/*
5279 	 * Return failure if the device is in a resource wait
5280 	 * or power changing state.
5281 	 */
5282 	if ((un->un_state == SD_STATE_RWAIT) ||
5283 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5284 		mutex_exit(SD_MUTEX(un));
5285 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5286 		    "device in resource wait state, exiting\n");
5287 		return (DDI_FAILURE);
5288 	}
5289 
5290 
5291 	un->un_save_state = un->un_last_state;
5292 	New_state(un, SD_STATE_SUSPENDED);
5293 
5294 	/*
5295 	 * Wait for all commands that are in transport or queued to a timer
5296 	 * for retry to complete.
5297 	 *
5298 	 * While waiting, no new commands will be accepted or sent because of
5299 	 * the new state we set above.
5300 	 *
5301 	 * Wait till current operation has completed. If we are in the resource
5302 	 * wait state (with an intr outstanding) then we need to wait till the
5303 	 * intr completes and starts the next cmd. We want to wait for
5304 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5305 	 */
5306 	wait_cmds_complete = ddi_get_lbolt() +
5307 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5308 
5309 	while (un->un_ncmds_in_transport != 0) {
5310 		/*
5311 		 * Fail if commands do not finish in the specified time.
5312 		 */
5313 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5314 		    wait_cmds_complete) == -1) {
5315 			/*
5316 			 * Undo the state changes made above. Everything
5317 			 * must go back to it's original value.
5318 			 */
5319 			Restore_state(un);
5320 			un->un_last_state = un->un_save_state;
5321 			/* Wake up any threads that might be waiting. */
5322 			cv_broadcast(&un->un_suspend_cv);
5323 			mutex_exit(SD_MUTEX(un));
5324 			SD_ERROR(SD_LOG_IO_PM, un,
5325 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5326 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5327 			return (DDI_FAILURE);
5328 		}
5329 	}
5330 
5331 	/*
5332 	 * Cancel SCSI watch thread and timeouts, if any are active
5333 	 */
5334 
5335 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5336 		opaque_t temp_token = un->un_swr_token;
5337 		mutex_exit(SD_MUTEX(un));
5338 		scsi_watch_suspend(temp_token);
5339 		mutex_enter(SD_MUTEX(un));
5340 	}
5341 
5342 	if (un->un_reset_throttle_timeid != NULL) {
5343 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5344 		un->un_reset_throttle_timeid = NULL;
5345 		mutex_exit(SD_MUTEX(un));
5346 		(void) untimeout(temp_id);
5347 		mutex_enter(SD_MUTEX(un));
5348 	}
5349 
5350 	if (un->un_dcvb_timeid != NULL) {
5351 		timeout_id_t temp_id = un->un_dcvb_timeid;
5352 		un->un_dcvb_timeid = NULL;
5353 		mutex_exit(SD_MUTEX(un));
5354 		(void) untimeout(temp_id);
5355 		mutex_enter(SD_MUTEX(un));
5356 	}
5357 
5358 	mutex_enter(&un->un_pm_mutex);
5359 	if (un->un_pm_timeid != NULL) {
5360 		timeout_id_t temp_id = un->un_pm_timeid;
5361 		un->un_pm_timeid = NULL;
5362 		mutex_exit(&un->un_pm_mutex);
5363 		mutex_exit(SD_MUTEX(un));
5364 		(void) untimeout(temp_id);
5365 		mutex_enter(SD_MUTEX(un));
5366 	} else {
5367 		mutex_exit(&un->un_pm_mutex);
5368 	}
5369 
5370 	if (un->un_retry_timeid != NULL) {
5371 		timeout_id_t temp_id = un->un_retry_timeid;
5372 		un->un_retry_timeid = NULL;
5373 		mutex_exit(SD_MUTEX(un));
5374 		(void) untimeout(temp_id);
5375 		mutex_enter(SD_MUTEX(un));
5376 	}
5377 
5378 	if (un->un_direct_priority_timeid != NULL) {
5379 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5380 		un->un_direct_priority_timeid = NULL;
5381 		mutex_exit(SD_MUTEX(un));
5382 		(void) untimeout(temp_id);
5383 		mutex_enter(SD_MUTEX(un));
5384 	}
5385 
5386 	if (un->un_f_is_fibre == TRUE) {
5387 		/*
5388 		 * Remove callbacks for insert and remove events
5389 		 */
5390 		if (un->un_insert_event != NULL) {
5391 			mutex_exit(SD_MUTEX(un));
5392 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5393 			mutex_enter(SD_MUTEX(un));
5394 			un->un_insert_event = NULL;
5395 		}
5396 
5397 		if (un->un_remove_event != NULL) {
5398 			mutex_exit(SD_MUTEX(un));
5399 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5400 			mutex_enter(SD_MUTEX(un));
5401 			un->un_remove_event = NULL;
5402 		}
5403 	}
5404 
5405 	mutex_exit(SD_MUTEX(un));
5406 
5407 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5408 
5409 	return (DDI_SUCCESS);
5410 }
5411 
5412 
5413 /*
5414  *    Function: sd_ddi_pm_suspend
5415  *
5416  * Description: Set the drive state to low power.
5417  *		Someone else is required to actually change the drive
5418  *		power level.
5419  *
5420  *   Arguments: un - driver soft state (unit) structure
5421  *
5422  * Return Code: DDI_FAILURE or DDI_SUCCESS
5423  *
5424  *     Context: Kernel thread context
5425  */
5426 
5427 static int
5428 sd_ddi_pm_suspend(struct sd_lun *un)
5429 {
5430 	ASSERT(un != NULL);
5431 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5432 
5433 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5434 	mutex_enter(SD_MUTEX(un));
5435 
5436 	/*
5437 	 * Exit if power management is not enabled for this device, or if
5438 	 * the device is being used by HA.
5439 	 */
5440 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5441 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5442 		mutex_exit(SD_MUTEX(un));
5443 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5444 		return (DDI_SUCCESS);
5445 	}
5446 
5447 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5448 	    un->un_ncmds_in_driver);
5449 
5450 	/*
5451 	 * See if the device is not busy, ie.:
5452 	 *    - we have no commands in the driver for this device
5453 	 *    - not waiting for resources
5454 	 */
5455 	if ((un->un_ncmds_in_driver == 0) &&
5456 	    (un->un_state != SD_STATE_RWAIT)) {
5457 		/*
5458 		 * The device is not busy, so it is OK to go to low power state.
5459 		 * Indicate low power, but rely on someone else to actually
5460 		 * change it.
5461 		 */
5462 		mutex_enter(&un->un_pm_mutex);
5463 		un->un_pm_count = -1;
5464 		mutex_exit(&un->un_pm_mutex);
5465 		un->un_power_level = SD_SPINDLE_OFF;
5466 	}
5467 
5468 	mutex_exit(SD_MUTEX(un));
5469 
5470 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5471 
5472 	return (DDI_SUCCESS);
5473 }
5474 
5475 
5476 /*
5477  *    Function: sd_ddi_resume
5478  *
5479  * Description: Performs system power-up operations..
5480  *
5481  * Return Code: DDI_SUCCESS
5482  *		DDI_FAILURE
5483  *
5484  *     Context: Kernel thread context
5485  */
5486 
5487 static int
5488 sd_ddi_resume(dev_info_t *devi)
5489 {
5490 	struct	sd_lun	*un;
5491 
5492 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5493 	if (un == NULL) {
5494 		return (DDI_FAILURE);
5495 	}
5496 
5497 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5498 
5499 	mutex_enter(SD_MUTEX(un));
5500 	Restore_state(un);
5501 
5502 	/*
5503 	 * Restore the state which was saved to give the
5504 	 * the right state in un_last_state
5505 	 */
5506 	un->un_last_state = un->un_save_state;
5507 	/*
5508 	 * Note: throttle comes back at full.
5509 	 * Also note: this MUST be done before calling pm_raise_power
5510 	 * otherwise the system can get hung in biowait. The scenario where
5511 	 * this'll happen is under cpr suspend. Writing of the system
5512 	 * state goes through sddump, which writes 0 to un_throttle. If
5513 	 * writing the system state then fails, example if the partition is
5514 	 * too small, then cpr attempts a resume. If throttle isn't restored
5515 	 * from the saved value until after calling pm_raise_power then
5516 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5517 	 * in biowait.
5518 	 */
5519 	un->un_throttle = un->un_saved_throttle;
5520 
5521 	/*
5522 	 * The chance of failure is very rare as the only command done in power
5523 	 * entry point is START command when you transition from 0->1 or
5524 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5525 	 * which suspend was done. Ignore the return value as the resume should
5526 	 * not be failed. In the case of removable media the media need not be
5527 	 * inserted and hence there is a chance that raise power will fail with
5528 	 * media not present.
5529 	 */
5530 	if (un->un_f_attach_spinup) {
5531 		mutex_exit(SD_MUTEX(un));
5532 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5533 		mutex_enter(SD_MUTEX(un));
5534 	}
5535 
5536 	/*
5537 	 * Don't broadcast to the suspend cv and therefore possibly
5538 	 * start I/O until after power has been restored.
5539 	 */
5540 	cv_broadcast(&un->un_suspend_cv);
5541 	cv_broadcast(&un->un_state_cv);
5542 
5543 	/* restart thread */
5544 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5545 		scsi_watch_resume(un->un_swr_token);
5546 	}
5547 
5548 #if (defined(__fibre))
5549 	if (un->un_f_is_fibre == TRUE) {
5550 		/*
5551 		 * Add callbacks for insert and remove events
5552 		 */
5553 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5554 			sd_init_event_callbacks(un);
5555 		}
5556 	}
5557 #endif
5558 
5559 	/*
5560 	 * Transport any pending commands to the target.
5561 	 *
5562 	 * If this is a low-activity device commands in queue will have to wait
5563 	 * until new commands come in, which may take awhile. Also, we
5564 	 * specifically don't check un_ncmds_in_transport because we know that
5565 	 * there really are no commands in progress after the unit was
5566 	 * suspended and we could have reached the throttle level, been
5567 	 * suspended, and have no new commands coming in for awhile. Highly
5568 	 * unlikely, but so is the low-activity disk scenario.
5569 	 */
5570 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5571 
5572 	sd_start_cmds(un, NULL);
5573 	mutex_exit(SD_MUTEX(un));
5574 
5575 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5576 
5577 	return (DDI_SUCCESS);
5578 }
5579 
5580 
5581 /*
5582  *    Function: sd_ddi_pm_resume
5583  *
5584  * Description: Set the drive state to powered on.
5585  *		Someone else is required to actually change the drive
5586  *		power level.
5587  *
5588  *   Arguments: un - driver soft state (unit) structure
5589  *
5590  * Return Code: DDI_SUCCESS
5591  *
5592  *     Context: Kernel thread context
5593  */
5594 
5595 static int
5596 sd_ddi_pm_resume(struct sd_lun *un)
5597 {
5598 	ASSERT(un != NULL);
5599 
5600 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5601 	mutex_enter(SD_MUTEX(un));
5602 	un->un_power_level = SD_SPINDLE_ON;
5603 
5604 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5605 	mutex_enter(&un->un_pm_mutex);
5606 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5607 		un->un_pm_count++;
5608 		ASSERT(un->un_pm_count == 0);
5609 		/*
5610 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5611 		 * un_suspend_cv is for a system resume, not a power management
5612 		 * device resume. (4297749)
5613 		 *	 cv_broadcast(&un->un_suspend_cv);
5614 		 */
5615 	}
5616 	mutex_exit(&un->un_pm_mutex);
5617 	mutex_exit(SD_MUTEX(un));
5618 
5619 	return (DDI_SUCCESS);
5620 }
5621 
5622 
5623 /*
5624  *    Function: sd_pm_idletimeout_handler
5625  *
5626  * Description: A timer routine that's active only while a device is busy.
5627  *		The purpose is to extend slightly the pm framework's busy
5628  *		view of the device to prevent busy/idle thrashing for
5629  *		back-to-back commands. Do this by comparing the current time
5630  *		to the time at which the last command completed and when the
5631  *		difference is greater than sd_pm_idletime, call
5632  *		pm_idle_component. In addition to indicating idle to the pm
5633  *		framework, update the chain type to again use the internal pm
5634  *		layers of the driver.
5635  *
5636  *   Arguments: arg - driver soft state (unit) structure
5637  *
5638  *     Context: Executes in a timeout(9F) thread context
5639  */
5640 
5641 static void
5642 sd_pm_idletimeout_handler(void *arg)
5643 {
5644 	struct sd_lun *un = arg;
5645 
5646 	time_t	now;
5647 
5648 	mutex_enter(&sd_detach_mutex);
5649 	if (un->un_detach_count != 0) {
5650 		/* Abort if the instance is detaching */
5651 		mutex_exit(&sd_detach_mutex);
5652 		return;
5653 	}
5654 	mutex_exit(&sd_detach_mutex);
5655 
5656 	now = ddi_get_time();
5657 	/*
5658 	 * Grab both mutexes, in the proper order, since we're accessing
5659 	 * both PM and softstate variables.
5660 	 */
5661 	mutex_enter(SD_MUTEX(un));
5662 	mutex_enter(&un->un_pm_mutex);
5663 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5664 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5665 		/*
5666 		 * Update the chain types.
5667 		 * This takes affect on the next new command received.
5668 		 */
5669 		if (un->un_f_non_devbsize_supported) {
5670 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5671 		} else {
5672 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5673 		}
5674 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5675 
5676 		SD_TRACE(SD_LOG_IO_PM, un,
5677 		    "sd_pm_idletimeout_handler: idling device\n");
5678 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5679 		un->un_pm_idle_timeid = NULL;
5680 	} else {
5681 		un->un_pm_idle_timeid =
5682 			timeout(sd_pm_idletimeout_handler, un,
5683 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
5684 	}
5685 	mutex_exit(&un->un_pm_mutex);
5686 	mutex_exit(SD_MUTEX(un));
5687 }
5688 
5689 
5690 /*
5691  *    Function: sd_pm_timeout_handler
5692  *
5693  * Description: Callback to tell framework we are idle.
5694  *
5695  *     Context: timeout(9f) thread context.
5696  */
5697 
5698 static void
5699 sd_pm_timeout_handler(void *arg)
5700 {
5701 	struct sd_lun *un = arg;
5702 
5703 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5704 	mutex_enter(&un->un_pm_mutex);
5705 	un->un_pm_timeid = NULL;
5706 	mutex_exit(&un->un_pm_mutex);
5707 }
5708 
5709 
5710 /*
5711  *    Function: sdpower
5712  *
5713  * Description: PM entry point.
5714  *
5715  * Return Code: DDI_SUCCESS
5716  *		DDI_FAILURE
5717  *
5718  *     Context: Kernel thread context
5719  */
5720 
5721 static int
5722 sdpower(dev_info_t *devi, int component, int level)
5723 {
5724 	struct sd_lun	*un;
5725 	int		instance;
5726 	int		rval = DDI_SUCCESS;
5727 	uint_t		i, log_page_size, maxcycles, ncycles;
5728 	uchar_t		*log_page_data;
5729 	int		log_sense_page;
5730 	int		medium_present;
5731 	time_t		intvlp;
5732 	dev_t		dev;
5733 	struct pm_trans_data	sd_pm_tran_data;
5734 	uchar_t		save_state;
5735 	int		sval;
5736 	uchar_t		state_before_pm;
5737 	int		got_semaphore_here;
5738 
5739 	instance = ddi_get_instance(devi);
5740 
5741 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5742 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5743 	    component != 0) {
5744 		return (DDI_FAILURE);
5745 	}
5746 
5747 	dev = sd_make_device(SD_DEVINFO(un));
5748 
5749 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5750 
5751 	/*
5752 	 * Must synchronize power down with close.
5753 	 * Attempt to decrement/acquire the open/close semaphore,
5754 	 * but do NOT wait on it. If it's not greater than zero,
5755 	 * ie. it can't be decremented without waiting, then
5756 	 * someone else, either open or close, already has it
5757 	 * and the try returns 0. Use that knowledge here to determine
5758 	 * if it's OK to change the device power level.
5759 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5760 	 * here.
5761 	 */
5762 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5763 
5764 	mutex_enter(SD_MUTEX(un));
5765 
5766 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5767 	    un->un_ncmds_in_driver);
5768 
5769 	/*
5770 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5771 	 * already being processed in the driver, or if the semaphore was
5772 	 * not gotten here it indicates an open or close is being processed.
5773 	 * At the same time somebody is requesting to go low power which
5774 	 * can't happen, therefore we need to return failure.
5775 	 */
5776 	if ((level == SD_SPINDLE_OFF) &&
5777 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5778 		mutex_exit(SD_MUTEX(un));
5779 
5780 		if (got_semaphore_here != 0) {
5781 			sema_v(&un->un_semoclose);
5782 		}
5783 		SD_TRACE(SD_LOG_IO_PM, un,
5784 		    "sdpower: exit, device has queued cmds.\n");
5785 		return (DDI_FAILURE);
5786 	}
5787 
5788 	/*
5789 	 * if it is OFFLINE that means the disk is completely dead
5790 	 * in our case we have to put the disk in on or off by sending commands
5791 	 * Of course that will fail anyway so return back here.
5792 	 *
5793 	 * Power changes to a device that's OFFLINE or SUSPENDED
5794 	 * are not allowed.
5795 	 */
5796 	if ((un->un_state == SD_STATE_OFFLINE) ||
5797 	    (un->un_state == SD_STATE_SUSPENDED)) {
5798 		mutex_exit(SD_MUTEX(un));
5799 
5800 		if (got_semaphore_here != 0) {
5801 			sema_v(&un->un_semoclose);
5802 		}
5803 		SD_TRACE(SD_LOG_IO_PM, un,
5804 		    "sdpower: exit, device is off-line.\n");
5805 		return (DDI_FAILURE);
5806 	}
5807 
5808 	/*
5809 	 * Change the device's state to indicate it's power level
5810 	 * is being changed. Do this to prevent a power off in the
5811 	 * middle of commands, which is especially bad on devices
5812 	 * that are really powered off instead of just spun down.
5813 	 */
5814 	state_before_pm = un->un_state;
5815 	un->un_state = SD_STATE_PM_CHANGING;
5816 
5817 	mutex_exit(SD_MUTEX(un));
5818 
5819 	/*
5820 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5821 	 * bypass the following checking, otherwise, check the log
5822 	 * sense information for this device
5823 	 */
5824 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5825 		/*
5826 		 * Get the log sense information to understand whether the
5827 		 * the powercycle counts have gone beyond the threshhold.
5828 		 */
5829 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5830 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5831 
5832 		mutex_enter(SD_MUTEX(un));
5833 		log_sense_page = un->un_start_stop_cycle_page;
5834 		mutex_exit(SD_MUTEX(un));
5835 
5836 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5837 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5838 #ifdef	SDDEBUG
5839 		if (sd_force_pm_supported) {
5840 			/* Force a successful result */
5841 			rval = 0;
5842 		}
5843 #endif
5844 		if (rval != 0) {
5845 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5846 			    "Log Sense Failed\n");
5847 			kmem_free(log_page_data, log_page_size);
5848 			/* Cannot support power management on those drives */
5849 
5850 			if (got_semaphore_here != 0) {
5851 				sema_v(&un->un_semoclose);
5852 			}
5853 			/*
5854 			 * On exit put the state back to it's original value
5855 			 * and broadcast to anyone waiting for the power
5856 			 * change completion.
5857 			 */
5858 			mutex_enter(SD_MUTEX(un));
5859 			un->un_state = state_before_pm;
5860 			cv_broadcast(&un->un_suspend_cv);
5861 			mutex_exit(SD_MUTEX(un));
5862 			SD_TRACE(SD_LOG_IO_PM, un,
5863 			    "sdpower: exit, Log Sense Failed.\n");
5864 			return (DDI_FAILURE);
5865 		}
5866 
5867 		/*
5868 		 * From the page data - Convert the essential information to
5869 		 * pm_trans_data
5870 		 */
5871 		maxcycles =
5872 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5873 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5874 
5875 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5876 
5877 		ncycles =
5878 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
5879 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
5880 
5881 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
5882 
5883 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
5884 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
5885 			    log_page_data[8+i];
5886 		}
5887 
5888 		kmem_free(log_page_data, log_page_size);
5889 
5890 		/*
5891 		 * Call pm_trans_check routine to get the Ok from
5892 		 * the global policy
5893 		 */
5894 
5895 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
5896 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
5897 
5898 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
5899 #ifdef	SDDEBUG
5900 		if (sd_force_pm_supported) {
5901 			/* Force a successful result */
5902 			rval = 1;
5903 		}
5904 #endif
5905 		switch (rval) {
5906 		case 0:
5907 			/*
5908 			 * Not Ok to Power cycle or error in parameters passed
5909 			 * Would have given the advised time to consider power
5910 			 * cycle. Based on the new intvlp parameter we are
5911 			 * supposed to pretend we are busy so that pm framework
5912 			 * will never call our power entry point. Because of
5913 			 * that install a timeout handler and wait for the
5914 			 * recommended time to elapse so that power management
5915 			 * can be effective again.
5916 			 *
5917 			 * To effect this behavior, call pm_busy_component to
5918 			 * indicate to the framework this device is busy.
5919 			 * By not adjusting un_pm_count the rest of PM in
5920 			 * the driver will function normally, and independant
5921 			 * of this but because the framework is told the device
5922 			 * is busy it won't attempt powering down until it gets
5923 			 * a matching idle. The timeout handler sends this.
5924 			 * Note: sd_pm_entry can't be called here to do this
5925 			 * because sdpower may have been called as a result
5926 			 * of a call to pm_raise_power from within sd_pm_entry.
5927 			 *
5928 			 * If a timeout handler is already active then
5929 			 * don't install another.
5930 			 */
5931 			mutex_enter(&un->un_pm_mutex);
5932 			if (un->un_pm_timeid == NULL) {
5933 				un->un_pm_timeid =
5934 				    timeout(sd_pm_timeout_handler,
5935 				    un, intvlp * drv_usectohz(1000000));
5936 				mutex_exit(&un->un_pm_mutex);
5937 				(void) pm_busy_component(SD_DEVINFO(un), 0);
5938 			} else {
5939 				mutex_exit(&un->un_pm_mutex);
5940 			}
5941 			if (got_semaphore_here != 0) {
5942 				sema_v(&un->un_semoclose);
5943 			}
5944 			/*
5945 			 * On exit put the state back to it's original value
5946 			 * and broadcast to anyone waiting for the power
5947 			 * change completion.
5948 			 */
5949 			mutex_enter(SD_MUTEX(un));
5950 			un->un_state = state_before_pm;
5951 			cv_broadcast(&un->un_suspend_cv);
5952 			mutex_exit(SD_MUTEX(un));
5953 
5954 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
5955 			    "trans check Failed, not ok to power cycle.\n");
5956 			return (DDI_FAILURE);
5957 
5958 		case -1:
5959 			if (got_semaphore_here != 0) {
5960 				sema_v(&un->un_semoclose);
5961 			}
5962 			/*
5963 			 * On exit put the state back to it's original value
5964 			 * and broadcast to anyone waiting for the power
5965 			 * change completion.
5966 			 */
5967 			mutex_enter(SD_MUTEX(un));
5968 			un->un_state = state_before_pm;
5969 			cv_broadcast(&un->un_suspend_cv);
5970 			mutex_exit(SD_MUTEX(un));
5971 			SD_TRACE(SD_LOG_IO_PM, un,
5972 			    "sdpower: exit, trans check command Failed.\n");
5973 			return (DDI_FAILURE);
5974 		}
5975 	}
5976 
5977 	if (level == SD_SPINDLE_OFF) {
5978 		/*
5979 		 * Save the last state... if the STOP FAILS we need it
5980 		 * for restoring
5981 		 */
5982 		mutex_enter(SD_MUTEX(un));
5983 		save_state = un->un_last_state;
5984 		/*
5985 		 * There must not be any cmds. getting processed
5986 		 * in the driver when we get here. Power to the
5987 		 * device is potentially going off.
5988 		 */
5989 		ASSERT(un->un_ncmds_in_driver == 0);
5990 		mutex_exit(SD_MUTEX(un));
5991 
5992 		/*
5993 		 * For now suspend the device completely before spindle is
5994 		 * turned off
5995 		 */
5996 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
5997 			if (got_semaphore_here != 0) {
5998 				sema_v(&un->un_semoclose);
5999 			}
6000 			/*
6001 			 * On exit put the state back to it's original value
6002 			 * and broadcast to anyone waiting for the power
6003 			 * change completion.
6004 			 */
6005 			mutex_enter(SD_MUTEX(un));
6006 			un->un_state = state_before_pm;
6007 			cv_broadcast(&un->un_suspend_cv);
6008 			mutex_exit(SD_MUTEX(un));
6009 			SD_TRACE(SD_LOG_IO_PM, un,
6010 			    "sdpower: exit, PM suspend Failed.\n");
6011 			return (DDI_FAILURE);
6012 		}
6013 	}
6014 
6015 	/*
6016 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6017 	 * close, or strategy. Dump no long uses this routine, it uses it's
6018 	 * own code so it can be done in polled mode.
6019 	 */
6020 
6021 	medium_present = TRUE;
6022 
6023 	/*
6024 	 * When powering up, issue a TUR in case the device is at unit
6025 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6026 	 * a deadlock on un_pm_busy_cv will occur.
6027 	 */
6028 	if (level == SD_SPINDLE_ON) {
6029 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6030 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6031 	}
6032 
6033 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6034 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6035 
6036 	sval = sd_send_scsi_START_STOP_UNIT(un,
6037 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6038 	    SD_PATH_DIRECT);
6039 	/* Command failed, check for media present. */
6040 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6041 		medium_present = FALSE;
6042 	}
6043 
6044 	/*
6045 	 * The conditions of interest here are:
6046 	 *   if a spindle off with media present fails,
6047 	 *	then restore the state and return an error.
6048 	 *   else if a spindle on fails,
6049 	 *	then return an error (there's no state to restore).
6050 	 * In all other cases we setup for the new state
6051 	 * and return success.
6052 	 */
6053 	switch (level) {
6054 	case SD_SPINDLE_OFF:
6055 		if ((medium_present == TRUE) && (sval != 0)) {
6056 			/* The stop command from above failed */
6057 			rval = DDI_FAILURE;
6058 			/*
6059 			 * The stop command failed, and we have media
6060 			 * present. Put the level back by calling the
6061 			 * sd_pm_resume() and set the state back to
6062 			 * it's previous value.
6063 			 */
6064 			(void) sd_ddi_pm_resume(un);
6065 			mutex_enter(SD_MUTEX(un));
6066 			un->un_last_state = save_state;
6067 			mutex_exit(SD_MUTEX(un));
6068 			break;
6069 		}
6070 		/*
6071 		 * The stop command from above succeeded.
6072 		 */
6073 		if (un->un_f_monitor_media_state) {
6074 			/*
6075 			 * Terminate watch thread in case of removable media
6076 			 * devices going into low power state. This is as per
6077 			 * the requirements of pm framework, otherwise commands
6078 			 * will be generated for the device (through watch
6079 			 * thread), even when the device is in low power state.
6080 			 */
6081 			mutex_enter(SD_MUTEX(un));
6082 			un->un_f_watcht_stopped = FALSE;
6083 			if (un->un_swr_token != NULL) {
6084 				opaque_t temp_token = un->un_swr_token;
6085 				un->un_f_watcht_stopped = TRUE;
6086 				un->un_swr_token = NULL;
6087 				mutex_exit(SD_MUTEX(un));
6088 				(void) scsi_watch_request_terminate(temp_token,
6089 				    SCSI_WATCH_TERMINATE_WAIT);
6090 			} else {
6091 				mutex_exit(SD_MUTEX(un));
6092 			}
6093 		}
6094 		break;
6095 
6096 	default:	/* The level requested is spindle on... */
6097 		/*
6098 		 * Legacy behavior: return success on a failed spinup
6099 		 * if there is no media in the drive.
6100 		 * Do this by looking at medium_present here.
6101 		 */
6102 		if ((sval != 0) && medium_present) {
6103 			/* The start command from above failed */
6104 			rval = DDI_FAILURE;
6105 			break;
6106 		}
6107 		/*
6108 		 * The start command from above succeeded
6109 		 * Resume the devices now that we have
6110 		 * started the disks
6111 		 */
6112 		(void) sd_ddi_pm_resume(un);
6113 
6114 		/*
6115 		 * Resume the watch thread since it was suspended
6116 		 * when the device went into low power mode.
6117 		 */
6118 		if (un->un_f_monitor_media_state) {
6119 			mutex_enter(SD_MUTEX(un));
6120 			if (un->un_f_watcht_stopped == TRUE) {
6121 				opaque_t temp_token;
6122 
6123 				un->un_f_watcht_stopped = FALSE;
6124 				mutex_exit(SD_MUTEX(un));
6125 				temp_token = scsi_watch_request_submit(
6126 				    SD_SCSI_DEVP(un),
6127 				    sd_check_media_time,
6128 				    SENSE_LENGTH, sd_media_watch_cb,
6129 				    (caddr_t)dev);
6130 				mutex_enter(SD_MUTEX(un));
6131 				un->un_swr_token = temp_token;
6132 			}
6133 			mutex_exit(SD_MUTEX(un));
6134 		}
6135 	}
6136 	if (got_semaphore_here != 0) {
6137 		sema_v(&un->un_semoclose);
6138 	}
6139 	/*
6140 	 * On exit put the state back to it's original value
6141 	 * and broadcast to anyone waiting for the power
6142 	 * change completion.
6143 	 */
6144 	mutex_enter(SD_MUTEX(un));
6145 	un->un_state = state_before_pm;
6146 	cv_broadcast(&un->un_suspend_cv);
6147 	mutex_exit(SD_MUTEX(un));
6148 
6149 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6150 
6151 	return (rval);
6152 }
6153 
6154 
6155 
6156 /*
6157  *    Function: sdattach
6158  *
6159  * Description: Driver's attach(9e) entry point function.
6160  *
6161  *   Arguments: devi - opaque device info handle
6162  *		cmd  - attach  type
6163  *
6164  * Return Code: DDI_SUCCESS
6165  *		DDI_FAILURE
6166  *
6167  *     Context: Kernel thread context
6168  */
6169 
6170 static int
6171 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6172 {
6173 	switch (cmd) {
6174 	case DDI_ATTACH:
6175 		return (sd_unit_attach(devi));
6176 	case DDI_RESUME:
6177 		return (sd_ddi_resume(devi));
6178 	default:
6179 		break;
6180 	}
6181 	return (DDI_FAILURE);
6182 }
6183 
6184 
6185 /*
6186  *    Function: sddetach
6187  *
6188  * Description: Driver's detach(9E) entry point function.
6189  *
6190  *   Arguments: devi - opaque device info handle
6191  *		cmd  - detach  type
6192  *
6193  * Return Code: DDI_SUCCESS
6194  *		DDI_FAILURE
6195  *
6196  *     Context: Kernel thread context
6197  */
6198 
6199 static int
6200 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6201 {
6202 	switch (cmd) {
6203 	case DDI_DETACH:
6204 		return (sd_unit_detach(devi));
6205 	case DDI_SUSPEND:
6206 		return (sd_ddi_suspend(devi));
6207 	default:
6208 		break;
6209 	}
6210 	return (DDI_FAILURE);
6211 }
6212 
6213 
6214 /*
6215  *     Function: sd_sync_with_callback
6216  *
6217  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6218  *		 state while the callback routine is active.
6219  *
6220  *    Arguments: un: softstate structure for the instance
6221  *
6222  *	Context: Kernel thread context
6223  */
6224 
6225 static void
6226 sd_sync_with_callback(struct sd_lun *un)
6227 {
6228 	ASSERT(un != NULL);
6229 
6230 	mutex_enter(SD_MUTEX(un));
6231 
6232 	ASSERT(un->un_in_callback >= 0);
6233 
6234 	while (un->un_in_callback > 0) {
6235 		mutex_exit(SD_MUTEX(un));
6236 		delay(2);
6237 		mutex_enter(SD_MUTEX(un));
6238 	}
6239 
6240 	mutex_exit(SD_MUTEX(un));
6241 }
6242 
6243 /*
6244  *    Function: sd_unit_attach
6245  *
6246  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6247  *		the soft state structure for the device and performs
6248  *		all necessary structure and device initializations.
6249  *
6250  *   Arguments: devi: the system's dev_info_t for the device.
6251  *
6252  * Return Code: DDI_SUCCESS if attach is successful.
6253  *		DDI_FAILURE if any part of the attach fails.
6254  *
6255  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6256  *		Kernel thread context only.  Can sleep.
6257  */
6258 
6259 static int
6260 sd_unit_attach(dev_info_t *devi)
6261 {
6262 	struct	scsi_device	*devp;
6263 	struct	sd_lun		*un;
6264 	char			*variantp;
6265 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6266 	int	instance;
6267 	int	rval;
6268 	int	wc_enabled;
6269 	int	tgt;
6270 	uint64_t	capacity;
6271 	uint_t		lbasize = 0;
6272 	dev_info_t	*pdip = ddi_get_parent(devi);
6273 	int		offbyone = 0;
6274 	int		geom_label_valid = 0;
6275 
6276 	/*
6277 	 * Retrieve the target driver's private data area. This was set
6278 	 * up by the HBA.
6279 	 */
6280 	devp = ddi_get_driver_private(devi);
6281 
6282 	/*
6283 	 * Retrieve the target ID of the device.
6284 	 */
6285 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6286 	    SCSI_ADDR_PROP_TARGET, -1);
6287 
6288 	/*
6289 	 * Since we have no idea what state things were left in by the last
6290 	 * user of the device, set up some 'default' settings, ie. turn 'em
6291 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6292 	 * Do this before the scsi_probe, which sends an inquiry.
6293 	 * This is a fix for bug (4430280).
6294 	 * Of special importance is wide-xfer. The drive could have been left
6295 	 * in wide transfer mode by the last driver to communicate with it,
6296 	 * this includes us. If that's the case, and if the following is not
6297 	 * setup properly or we don't re-negotiate with the drive prior to
6298 	 * transferring data to/from the drive, it causes bus parity errors,
6299 	 * data overruns, and unexpected interrupts. This first occurred when
6300 	 * the fix for bug (4378686) was made.
6301 	 */
6302 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6303 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6304 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6305 
6306 	/*
6307 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6308 	 * on a target. Setting it per lun instance actually sets the
6309 	 * capability of this target, which affects those luns already
6310 	 * attached on the same target. So during attach, we can only disable
6311 	 * this capability only when no other lun has been attached on this
6312 	 * target. By doing this, we assume a target has the same tagged-qing
6313 	 * capability for every lun. The condition can be removed when HBA
6314 	 * is changed to support per lun based tagged-qing capability.
6315 	 */
6316 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6317 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6318 	}
6319 
6320 	/*
6321 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6322 	 * This call will allocate and fill in the scsi_inquiry structure
6323 	 * and point the sd_inq member of the scsi_device structure to it.
6324 	 * If the attach succeeds, then this memory will not be de-allocated
6325 	 * (via scsi_unprobe()) until the instance is detached.
6326 	 */
6327 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6328 		goto probe_failed;
6329 	}
6330 
6331 	/*
6332 	 * Check the device type as specified in the inquiry data and
6333 	 * claim it if it is of a type that we support.
6334 	 */
6335 	switch (devp->sd_inq->inq_dtype) {
6336 	case DTYPE_DIRECT:
6337 		break;
6338 	case DTYPE_RODIRECT:
6339 		break;
6340 	case DTYPE_OPTICAL:
6341 		break;
6342 	case DTYPE_NOTPRESENT:
6343 	default:
6344 		/* Unsupported device type; fail the attach. */
6345 		goto probe_failed;
6346 	}
6347 
6348 	/*
6349 	 * Allocate the soft state structure for this unit.
6350 	 *
6351 	 * We rely upon this memory being set to all zeroes by
6352 	 * ddi_soft_state_zalloc().  We assume that any member of the
6353 	 * soft state structure that is not explicitly initialized by
6354 	 * this routine will have a value of zero.
6355 	 */
6356 	instance = ddi_get_instance(devp->sd_dev);
6357 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6358 		goto probe_failed;
6359 	}
6360 
6361 	/*
6362 	 * Retrieve a pointer to the newly-allocated soft state.
6363 	 *
6364 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6365 	 * was successful, unless something has gone horribly wrong and the
6366 	 * ddi's soft state internals are corrupt (in which case it is
6367 	 * probably better to halt here than just fail the attach....)
6368 	 */
6369 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6370 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6371 		    instance);
6372 		/*NOTREACHED*/
6373 	}
6374 
6375 	/*
6376 	 * Link the back ptr of the driver soft state to the scsi_device
6377 	 * struct for this lun.
6378 	 * Save a pointer to the softstate in the driver-private area of
6379 	 * the scsi_device struct.
6380 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6381 	 * we first set un->un_sd below.
6382 	 */
6383 	un->un_sd = devp;
6384 	devp->sd_private = (opaque_t)un;
6385 
6386 	/*
6387 	 * The following must be after devp is stored in the soft state struct.
6388 	 */
6389 #ifdef SDDEBUG
6390 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6391 	    "%s_unit_attach: un:0x%p instance:%d\n",
6392 	    ddi_driver_name(devi), un, instance);
6393 #endif
6394 
6395 	/*
6396 	 * Set up the device type and node type (for the minor nodes).
6397 	 * By default we assume that the device can at least support the
6398 	 * Common Command Set. Call it a CD-ROM if it reports itself
6399 	 * as a RODIRECT device.
6400 	 */
6401 	switch (devp->sd_inq->inq_dtype) {
6402 	case DTYPE_RODIRECT:
6403 		un->un_node_type = DDI_NT_CD_CHAN;
6404 		un->un_ctype	 = CTYPE_CDROM;
6405 		break;
6406 	case DTYPE_OPTICAL:
6407 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6408 		un->un_ctype	 = CTYPE_ROD;
6409 		break;
6410 	default:
6411 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6412 		un->un_ctype	 = CTYPE_CCS;
6413 		break;
6414 	}
6415 
6416 	/*
6417 	 * Try to read the interconnect type from the HBA.
6418 	 *
6419 	 * Note: This driver is currently compiled as two binaries, a parallel
6420 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6421 	 * differences are determined at compile time. In the future a single
6422 	 * binary will be provided and the inteconnect type will be used to
6423 	 * differentiate between fibre and parallel scsi behaviors. At that time
6424 	 * it will be necessary for all fibre channel HBAs to support this
6425 	 * property.
6426 	 *
6427 	 * set un_f_is_fiber to TRUE ( default fiber )
6428 	 */
6429 	un->un_f_is_fibre = TRUE;
6430 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6431 	case INTERCONNECT_SSA:
6432 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6433 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6434 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6435 		break;
6436 	case INTERCONNECT_PARALLEL:
6437 		un->un_f_is_fibre = FALSE;
6438 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6439 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6440 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6441 		break;
6442 	case INTERCONNECT_SATA:
6443 		un->un_f_is_fibre = FALSE;
6444 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6445 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6446 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6447 		break;
6448 	case INTERCONNECT_FIBRE:
6449 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6450 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6451 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6452 		break;
6453 	case INTERCONNECT_FABRIC:
6454 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6455 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6456 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6457 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6458 		break;
6459 	default:
6460 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6461 		/*
6462 		 * The HBA does not support the "interconnect-type" property
6463 		 * (or did not provide a recognized type).
6464 		 *
6465 		 * Note: This will be obsoleted when a single fibre channel
6466 		 * and parallel scsi driver is delivered. In the meantime the
6467 		 * interconnect type will be set to the platform default.If that
6468 		 * type is not parallel SCSI, it means that we should be
6469 		 * assuming "ssd" semantics. However, here this also means that
6470 		 * the FC HBA is not supporting the "interconnect-type" property
6471 		 * like we expect it to, so log this occurrence.
6472 		 */
6473 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6474 		if (!SD_IS_PARALLEL_SCSI(un)) {
6475 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6476 			    "sd_unit_attach: un:0x%p Assuming "
6477 			    "INTERCONNECT_FIBRE\n", un);
6478 		} else {
6479 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6480 			    "sd_unit_attach: un:0x%p Assuming "
6481 			    "INTERCONNECT_PARALLEL\n", un);
6482 			un->un_f_is_fibre = FALSE;
6483 		}
6484 #else
6485 		/*
6486 		 * Note: This source will be implemented when a single fibre
6487 		 * channel and parallel scsi driver is delivered. The default
6488 		 * will be to assume that if a device does not support the
6489 		 * "interconnect-type" property it is a parallel SCSI HBA and
6490 		 * we will set the interconnect type for parallel scsi.
6491 		 */
6492 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6493 		un->un_f_is_fibre = FALSE;
6494 #endif
6495 		break;
6496 	}
6497 
6498 	if (un->un_f_is_fibre == TRUE) {
6499 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6500 			SCSI_VERSION_3) {
6501 			switch (un->un_interconnect_type) {
6502 			case SD_INTERCONNECT_FIBRE:
6503 			case SD_INTERCONNECT_SSA:
6504 				un->un_node_type = DDI_NT_BLOCK_WWN;
6505 				break;
6506 			default:
6507 				break;
6508 			}
6509 		}
6510 	}
6511 
6512 	/*
6513 	 * Initialize the Request Sense command for the target
6514 	 */
6515 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6516 		goto alloc_rqs_failed;
6517 	}
6518 
6519 	/*
6520 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6521 	 * with seperate binary for sd and ssd.
6522 	 *
6523 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6524 	 * The hardcoded values will go away when Sparc uses 1 binary
6525 	 * for sd and ssd.  This hardcoded values need to match
6526 	 * SD_RETRY_COUNT in sddef.h
6527 	 * The value used is base on interconnect type.
6528 	 * fibre = 3, parallel = 5
6529 	 */
6530 #if defined(__i386) || defined(__amd64)
6531 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6532 #else
6533 	un->un_retry_count = SD_RETRY_COUNT;
6534 #endif
6535 
6536 	/*
6537 	 * Set the per disk retry count to the default number of retries
6538 	 * for disks and CDROMs. This value can be overridden by the
6539 	 * disk property list or an entry in sd.conf.
6540 	 */
6541 	un->un_notready_retry_count =
6542 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6543 			: DISK_NOT_READY_RETRY_COUNT(un);
6544 
6545 	/*
6546 	 * Set the busy retry count to the default value of un_retry_count.
6547 	 * This can be overridden by entries in sd.conf or the device
6548 	 * config table.
6549 	 */
6550 	un->un_busy_retry_count = un->un_retry_count;
6551 
6552 	/*
6553 	 * Init the reset threshold for retries.  This number determines
6554 	 * how many retries must be performed before a reset can be issued
6555 	 * (for certain error conditions). This can be overridden by entries
6556 	 * in sd.conf or the device config table.
6557 	 */
6558 	un->un_reset_retry_count = (un->un_retry_count / 2);
6559 
6560 	/*
6561 	 * Set the victim_retry_count to the default un_retry_count
6562 	 */
6563 	un->un_victim_retry_count = (2 * un->un_retry_count);
6564 
6565 	/*
6566 	 * Set the reservation release timeout to the default value of
6567 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6568 	 * device config table.
6569 	 */
6570 	un->un_reserve_release_time = 5;
6571 
6572 	/*
6573 	 * Set up the default maximum transfer size. Note that this may
6574 	 * get updated later in the attach, when setting up default wide
6575 	 * operations for disks.
6576 	 */
6577 #if defined(__i386) || defined(__amd64)
6578 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6579 #else
6580 	un->un_max_xfer_size = (uint_t)maxphys;
6581 #endif
6582 
6583 	/*
6584 	 * Get "allow bus device reset" property (defaults to "enabled" if
6585 	 * the property was not defined). This is to disable bus resets for
6586 	 * certain kinds of error recovery. Note: In the future when a run-time
6587 	 * fibre check is available the soft state flag should default to
6588 	 * enabled.
6589 	 */
6590 	if (un->un_f_is_fibre == TRUE) {
6591 		un->un_f_allow_bus_device_reset = TRUE;
6592 	} else {
6593 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6594 			"allow-bus-device-reset", 1) != 0) {
6595 			un->un_f_allow_bus_device_reset = TRUE;
6596 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6597 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
6598 				un);
6599 		} else {
6600 			un->un_f_allow_bus_device_reset = FALSE;
6601 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6602 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
6603 				un);
6604 		}
6605 	}
6606 
6607 	/*
6608 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6609 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6610 	 *
6611 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6612 	 * property. The new "variant" property with a value of "atapi" has been
6613 	 * introduced so that future 'variants' of standard SCSI behavior (like
6614 	 * atapi) could be specified by the underlying HBA drivers by supplying
6615 	 * a new value for the "variant" property, instead of having to define a
6616 	 * new property.
6617 	 */
6618 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6619 		un->un_f_cfg_is_atapi = TRUE;
6620 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6621 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6622 	}
6623 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6624 	    &variantp) == DDI_PROP_SUCCESS) {
6625 		if (strcmp(variantp, "atapi") == 0) {
6626 			un->un_f_cfg_is_atapi = TRUE;
6627 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6628 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6629 		}
6630 		ddi_prop_free(variantp);
6631 	}
6632 
6633 	un->un_cmd_timeout	= SD_IO_TIME;
6634 
6635 	/* Info on current states, statuses, etc. (Updated frequently) */
6636 	un->un_state		= SD_STATE_NORMAL;
6637 	un->un_last_state	= SD_STATE_NORMAL;
6638 
6639 	/* Control & status info for command throttling */
6640 	un->un_throttle		= sd_max_throttle;
6641 	un->un_saved_throttle	= sd_max_throttle;
6642 	un->un_min_throttle	= sd_min_throttle;
6643 
6644 	if (un->un_f_is_fibre == TRUE) {
6645 		un->un_f_use_adaptive_throttle = TRUE;
6646 	} else {
6647 		un->un_f_use_adaptive_throttle = FALSE;
6648 	}
6649 
6650 	/* Removable media support. */
6651 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6652 	un->un_mediastate		= DKIO_NONE;
6653 	un->un_specified_mediastate	= DKIO_NONE;
6654 
6655 	/* CVs for suspend/resume (PM or DR) */
6656 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6657 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6658 
6659 	/* Power management support. */
6660 	un->un_power_level = SD_SPINDLE_UNINIT;
6661 
6662 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6663 	un->un_f_wcc_inprog = 0;
6664 
6665 	/*
6666 	 * The open/close semaphore is used to serialize threads executing
6667 	 * in the driver's open & close entry point routines for a given
6668 	 * instance.
6669 	 */
6670 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6671 
6672 	/*
6673 	 * The conf file entry and softstate variable is a forceful override,
6674 	 * meaning a non-zero value must be entered to change the default.
6675 	 */
6676 	un->un_f_disksort_disabled = FALSE;
6677 
6678 	/*
6679 	 * Retrieve the properties from the static driver table or the driver
6680 	 * configuration file (.conf) for this unit and update the soft state
6681 	 * for the device as needed for the indicated properties.
6682 	 * Note: the property configuration needs to occur here as some of the
6683 	 * following routines may have dependancies on soft state flags set
6684 	 * as part of the driver property configuration.
6685 	 */
6686 	sd_read_unit_properties(un);
6687 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6688 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6689 
6690 	/*
6691 	 * Only if a device has "hotpluggable" property, it is
6692 	 * treated as hotpluggable device. Otherwise, it is
6693 	 * regarded as non-hotpluggable one.
6694 	 */
6695 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6696 	    -1) != -1) {
6697 		un->un_f_is_hotpluggable = TRUE;
6698 	}
6699 
6700 	/*
6701 	 * set unit's attributes(flags) according to "hotpluggable" and
6702 	 * RMB bit in INQUIRY data.
6703 	 */
6704 	sd_set_unit_attributes(un, devi);
6705 
6706 	/*
6707 	 * By default, we mark the capacity, lbasize, and geometry
6708 	 * as invalid. Only if we successfully read a valid capacity
6709 	 * will we update the un_blockcount and un_tgt_blocksize with the
6710 	 * valid values (the geometry will be validated later).
6711 	 */
6712 	un->un_f_blockcount_is_valid	= FALSE;
6713 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6714 
6715 	/*
6716 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6717 	 * otherwise.
6718 	 */
6719 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6720 	un->un_blockcount = 0;
6721 
6722 	/*
6723 	 * Set up the per-instance info needed to determine the correct
6724 	 * CDBs and other info for issuing commands to the target.
6725 	 */
6726 	sd_init_cdb_limits(un);
6727 
6728 	/*
6729 	 * Set up the IO chains to use, based upon the target type.
6730 	 */
6731 	if (un->un_f_non_devbsize_supported) {
6732 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6733 	} else {
6734 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6735 	}
6736 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6737 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6738 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6739 
6740 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6741 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6742 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6743 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6744 
6745 
6746 	if (ISCD(un)) {
6747 		un->un_additional_codes = sd_additional_codes;
6748 	} else {
6749 		un->un_additional_codes = NULL;
6750 	}
6751 
6752 	/*
6753 	 * Create the kstats here so they can be available for attach-time
6754 	 * routines that send commands to the unit (either polled or via
6755 	 * sd_send_scsi_cmd).
6756 	 *
6757 	 * Note: This is a critical sequence that needs to be maintained:
6758 	 *	1) Instantiate the kstats here, before any routines using the
6759 	 *	   iopath (i.e. sd_send_scsi_cmd).
6760 	 *	2) Instantiate and initialize the partition stats
6761 	 *	   (sd_set_pstats).
6762 	 *	3) Initialize the error stats (sd_set_errstats), following
6763 	 *	   sd_validate_geometry(),sd_register_devid(),
6764 	 *	   and sd_cache_control().
6765 	 */
6766 
6767 	un->un_stats = kstat_create(sd_label, instance,
6768 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6769 	if (un->un_stats != NULL) {
6770 		un->un_stats->ks_lock = SD_MUTEX(un);
6771 		kstat_install(un->un_stats);
6772 	}
6773 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6774 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6775 
6776 	sd_create_errstats(un, instance);
6777 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6778 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6779 
6780 	/*
6781 	 * The following if/else code was relocated here from below as part
6782 	 * of the fix for bug (4430280). However with the default setup added
6783 	 * on entry to this routine, it's no longer absolutely necessary for
6784 	 * this to be before the call to sd_spin_up_unit.
6785 	 */
6786 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6787 		/*
6788 		 * If SCSI-2 tagged queueing is supported by the target
6789 		 * and by the host adapter then we will enable it.
6790 		 */
6791 		un->un_tagflags = 0;
6792 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6793 		    (devp->sd_inq->inq_cmdque) &&
6794 		    (un->un_f_arq_enabled == TRUE)) {
6795 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6796 			    1, 1) == 1) {
6797 				un->un_tagflags = FLAG_STAG;
6798 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6799 				    "sd_unit_attach: un:0x%p tag queueing "
6800 				    "enabled\n", un);
6801 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6802 			    "untagged-qing", 0) == 1) {
6803 				un->un_f_opt_queueing = TRUE;
6804 				un->un_saved_throttle = un->un_throttle =
6805 				    min(un->un_throttle, 3);
6806 			} else {
6807 				un->un_f_opt_queueing = FALSE;
6808 				un->un_saved_throttle = un->un_throttle = 1;
6809 			}
6810 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6811 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6812 			/* The Host Adapter supports internal queueing. */
6813 			un->un_f_opt_queueing = TRUE;
6814 			un->un_saved_throttle = un->un_throttle =
6815 			    min(un->un_throttle, 3);
6816 		} else {
6817 			un->un_f_opt_queueing = FALSE;
6818 			un->un_saved_throttle = un->un_throttle = 1;
6819 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6820 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6821 		}
6822 
6823 		/*
6824 		 * Enable large transfers for SATA/SAS drives
6825 		 */
6826 		if (SD_IS_SERIAL(un)) {
6827 			un->un_max_xfer_size =
6828 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6829 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6830 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6831 			    "sd_unit_attach: un:0x%p max transfer "
6832 			    "size=0x%x\n", un, un->un_max_xfer_size);
6833 
6834 		}
6835 
6836 		/* Setup or tear down default wide operations for disks */
6837 
6838 		/*
6839 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6840 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6841 		 * system and be set to different values. In the future this
6842 		 * code may need to be updated when the ssd module is
6843 		 * obsoleted and removed from the system. (4299588)
6844 		 */
6845 		if (SD_IS_PARALLEL_SCSI(un) &&
6846 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6847 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6848 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6849 			    1, 1) == 1) {
6850 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6851 				    "sd_unit_attach: un:0x%p Wide Transfer "
6852 				    "enabled\n", un);
6853 			}
6854 
6855 			/*
6856 			 * If tagged queuing has also been enabled, then
6857 			 * enable large xfers
6858 			 */
6859 			if (un->un_saved_throttle == sd_max_throttle) {
6860 				un->un_max_xfer_size =
6861 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6862 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6863 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6864 				    "sd_unit_attach: un:0x%p max transfer "
6865 				    "size=0x%x\n", un, un->un_max_xfer_size);
6866 			}
6867 		} else {
6868 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6869 			    0, 1) == 1) {
6870 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6871 				    "sd_unit_attach: un:0x%p "
6872 				    "Wide Transfer disabled\n", un);
6873 			}
6874 		}
6875 	} else {
6876 		un->un_tagflags = FLAG_STAG;
6877 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
6878 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
6879 	}
6880 
6881 	/*
6882 	 * If this target supports LUN reset, try to enable it.
6883 	 */
6884 	if (un->un_f_lun_reset_enabled) {
6885 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
6886 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6887 			    "un:0x%p lun_reset capability set\n", un);
6888 		} else {
6889 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6890 			    "un:0x%p lun-reset capability not set\n", un);
6891 		}
6892 	}
6893 
6894 	/*
6895 	 * At this point in the attach, we have enough info in the
6896 	 * soft state to be able to issue commands to the target.
6897 	 *
6898 	 * All command paths used below MUST issue their commands as
6899 	 * SD_PATH_DIRECT. This is important as intermediate layers
6900 	 * are not all initialized yet (such as PM).
6901 	 */
6902 
6903 	/*
6904 	 * Send a TEST UNIT READY command to the device. This should clear
6905 	 * any outstanding UNIT ATTENTION that may be present.
6906 	 *
6907 	 * Note: Don't check for success, just track if there is a reservation,
6908 	 * this is a throw away command to clear any unit attentions.
6909 	 *
6910 	 * Note: This MUST be the first command issued to the target during
6911 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
6912 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
6913 	 * with attempts at spinning up a device with no media.
6914 	 */
6915 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
6916 		reservation_flag = SD_TARGET_IS_RESERVED;
6917 	}
6918 
6919 	/*
6920 	 * If the device is NOT a removable media device, attempt to spin
6921 	 * it up (using the START_STOP_UNIT command) and read its capacity
6922 	 * (using the READ CAPACITY command).  Note, however, that either
6923 	 * of these could fail and in some cases we would continue with
6924 	 * the attach despite the failure (see below).
6925 	 */
6926 	if (un->un_f_descr_format_supported) {
6927 		switch (sd_spin_up_unit(un)) {
6928 		case 0:
6929 			/*
6930 			 * Spin-up was successful; now try to read the
6931 			 * capacity.  If successful then save the results
6932 			 * and mark the capacity & lbasize as valid.
6933 			 */
6934 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6935 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
6936 
6937 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
6938 			    &lbasize, SD_PATH_DIRECT)) {
6939 			case 0: {
6940 				if (capacity > DK_MAX_BLOCKS) {
6941 #ifdef _LP64
6942 					if (capacity + 1 >
6943 					    SD_GROUP1_MAX_ADDRESS) {
6944 						/*
6945 						 * Enable descriptor format
6946 						 * sense data so that we can
6947 						 * get 64 bit sense data
6948 						 * fields.
6949 						 */
6950 						sd_enable_descr_sense(un);
6951 					}
6952 #else
6953 					/* 32-bit kernels can't handle this */
6954 					scsi_log(SD_DEVINFO(un),
6955 					    sd_label, CE_WARN,
6956 					    "disk has %llu blocks, which "
6957 					    "is too large for a 32-bit "
6958 					    "kernel", capacity);
6959 
6960 #if defined(__i386) || defined(__amd64)
6961 					/*
6962 					 * 1TB disk was treated as (1T - 512)B
6963 					 * in the past, so that it might have
6964 					 * valid VTOC and solaris partitions,
6965 					 * we have to allow it to continue to
6966 					 * work.
6967 					 */
6968 					if (capacity -1 > DK_MAX_BLOCKS)
6969 #endif
6970 					goto spinup_failed;
6971 #endif
6972 				}
6973 
6974 				/*
6975 				 * Here it's not necessary to check the case:
6976 				 * the capacity of the device is bigger than
6977 				 * what the max hba cdb can support. Because
6978 				 * sd_send_scsi_READ_CAPACITY will retrieve
6979 				 * the capacity by sending USCSI command, which
6980 				 * is constrained by the max hba cdb. Actually,
6981 				 * sd_send_scsi_READ_CAPACITY will return
6982 				 * EINVAL when using bigger cdb than required
6983 				 * cdb length. Will handle this case in
6984 				 * "case EINVAL".
6985 				 */
6986 
6987 				/*
6988 				 * The following relies on
6989 				 * sd_send_scsi_READ_CAPACITY never
6990 				 * returning 0 for capacity and/or lbasize.
6991 				 */
6992 				sd_update_block_info(un, lbasize, capacity);
6993 
6994 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6995 				    "sd_unit_attach: un:0x%p capacity = %ld "
6996 				    "blocks; lbasize= %ld.\n", un,
6997 				    un->un_blockcount, un->un_tgt_blocksize);
6998 
6999 				break;
7000 			}
7001 			case EINVAL:
7002 				/*
7003 				 * In the case where the max-cdb-length property
7004 				 * is smaller than the required CDB length for
7005 				 * a SCSI device, a target driver can fail to
7006 				 * attach to that device.
7007 				 */
7008 				scsi_log(SD_DEVINFO(un),
7009 				    sd_label, CE_WARN,
7010 				    "disk capacity is too large "
7011 				    "for current cdb length");
7012 				goto spinup_failed;
7013 			case EACCES:
7014 				/*
7015 				 * Should never get here if the spin-up
7016 				 * succeeded, but code it in anyway.
7017 				 * From here, just continue with the attach...
7018 				 */
7019 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7020 				    "sd_unit_attach: un:0x%p "
7021 				    "sd_send_scsi_READ_CAPACITY "
7022 				    "returned reservation conflict\n", un);
7023 				reservation_flag = SD_TARGET_IS_RESERVED;
7024 				break;
7025 			default:
7026 				/*
7027 				 * Likewise, should never get here if the
7028 				 * spin-up succeeded. Just continue with
7029 				 * the attach...
7030 				 */
7031 				break;
7032 			}
7033 			break;
7034 		case EACCES:
7035 			/*
7036 			 * Device is reserved by another host.  In this case
7037 			 * we could not spin it up or read the capacity, but
7038 			 * we continue with the attach anyway.
7039 			 */
7040 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7041 			    "sd_unit_attach: un:0x%p spin-up reservation "
7042 			    "conflict.\n", un);
7043 			reservation_flag = SD_TARGET_IS_RESERVED;
7044 			break;
7045 		default:
7046 			/* Fail the attach if the spin-up failed. */
7047 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7048 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7049 			goto spinup_failed;
7050 		}
7051 	}
7052 
7053 	/*
7054 	 * Check to see if this is a MMC drive
7055 	 */
7056 	if (ISCD(un)) {
7057 		sd_set_mmc_caps(un);
7058 	}
7059 
7060 
7061 	/*
7062 	 * Add a zero-length attribute to tell the world we support
7063 	 * kernel ioctls (for layered drivers)
7064 	 */
7065 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7066 	    DDI_KERNEL_IOCTL, NULL, 0);
7067 
7068 	/*
7069 	 * Add a boolean property to tell the world we support
7070 	 * the B_FAILFAST flag (for layered drivers)
7071 	 */
7072 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7073 	    "ddi-failfast-supported", NULL, 0);
7074 
7075 	/*
7076 	 * Initialize power management
7077 	 */
7078 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7079 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7080 	sd_setup_pm(un, devi);
7081 	if (un->un_f_pm_is_enabled == FALSE) {
7082 		/*
7083 		 * For performance, point to a jump table that does
7084 		 * not include pm.
7085 		 * The direct and priority chains don't change with PM.
7086 		 *
7087 		 * Note: this is currently done based on individual device
7088 		 * capabilities. When an interface for determining system
7089 		 * power enabled state becomes available, or when additional
7090 		 * layers are added to the command chain, these values will
7091 		 * have to be re-evaluated for correctness.
7092 		 */
7093 		if (un->un_f_non_devbsize_supported) {
7094 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7095 		} else {
7096 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7097 		}
7098 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7099 	}
7100 
7101 	/*
7102 	 * This property is set to 0 by HA software to avoid retries
7103 	 * on a reserved disk. (The preferred property name is
7104 	 * "retry-on-reservation-conflict") (1189689)
7105 	 *
7106 	 * Note: The use of a global here can have unintended consequences. A
7107 	 * per instance variable is preferrable to match the capabilities of
7108 	 * different underlying hba's (4402600)
7109 	 */
7110 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7111 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7112 	    sd_retry_on_reservation_conflict);
7113 	if (sd_retry_on_reservation_conflict != 0) {
7114 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7115 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7116 		    sd_retry_on_reservation_conflict);
7117 	}
7118 
7119 	/* Set up options for QFULL handling. */
7120 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7121 	    "qfull-retries", -1)) != -1) {
7122 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7123 		    rval, 1);
7124 	}
7125 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7126 	    "qfull-retry-interval", -1)) != -1) {
7127 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7128 		    rval, 1);
7129 	}
7130 
7131 	/*
7132 	 * This just prints a message that announces the existence of the
7133 	 * device. The message is always printed in the system logfile, but
7134 	 * only appears on the console if the system is booted with the
7135 	 * -v (verbose) argument.
7136 	 */
7137 	ddi_report_dev(devi);
7138 
7139 	un->un_mediastate = DKIO_NONE;
7140 
7141 	cmlb_alloc_handle(&un->un_cmlbhandle);
7142 
7143 #if defined(__i386) || defined(__amd64)
7144 	/*
7145 	 * On x86, compensate for off-by-1 legacy error
7146 	 */
7147 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7148 	    (lbasize == un->un_sys_blocksize))
7149 		offbyone = CMLB_OFF_BY_ONE;
7150 #endif
7151 
7152 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7153 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7154 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7155 	    (void *)SD_PATH_DIRECT) != 0) {
7156 		goto cmlb_attach_failed;
7157 	}
7158 
7159 
7160 	/*
7161 	 * Read and validate the device's geometry (ie, disk label)
7162 	 * A new unformatted drive will not have a valid geometry, but
7163 	 * the driver needs to successfully attach to this device so
7164 	 * the drive can be formatted via ioctls.
7165 	 */
7166 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7167 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7168 
7169 	mutex_enter(SD_MUTEX(un));
7170 
7171 	/*
7172 	 * Read and initialize the devid for the unit.
7173 	 */
7174 	ASSERT(un->un_errstats != NULL);
7175 	if (un->un_f_devid_supported) {
7176 		sd_register_devid(un, devi, reservation_flag);
7177 	}
7178 	mutex_exit(SD_MUTEX(un));
7179 
7180 #if (defined(__fibre))
7181 	/*
7182 	 * Register callbacks for fibre only.  You can't do this soley
7183 	 * on the basis of the devid_type because this is hba specific.
7184 	 * We need to query our hba capabilities to find out whether to
7185 	 * register or not.
7186 	 */
7187 	if (un->un_f_is_fibre) {
7188 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7189 		sd_init_event_callbacks(un);
7190 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7191 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
7192 	    }
7193 	}
7194 #endif
7195 
7196 	if (un->un_f_opt_disable_cache == TRUE) {
7197 		/*
7198 		 * Disable both read cache and write cache.  This is
7199 		 * the historic behavior of the keywords in the config file.
7200 		 */
7201 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7202 		    0) {
7203 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7204 			    "sd_unit_attach: un:0x%p Could not disable "
7205 			    "caching", un);
7206 			goto devid_failed;
7207 		}
7208 	}
7209 
7210 	/*
7211 	 * Check the value of the WCE bit now and
7212 	 * set un_f_write_cache_enabled accordingly.
7213 	 */
7214 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7215 	mutex_enter(SD_MUTEX(un));
7216 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7217 	mutex_exit(SD_MUTEX(un));
7218 
7219 	/*
7220 	 * Find out what type of reservation this disk supports.
7221 	 */
7222 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7223 	case 0:
7224 		/*
7225 		 * SCSI-3 reservations are supported.
7226 		 */
7227 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7228 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7229 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7230 		break;
7231 	case ENOTSUP:
7232 		/*
7233 		 * The PERSISTENT RESERVE IN command would not be recognized by
7234 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7235 		 */
7236 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7237 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7238 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7239 		break;
7240 	default:
7241 		/*
7242 		 * default to SCSI-3 reservations
7243 		 */
7244 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7245 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7246 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7247 		break;
7248 	}
7249 
7250 	/*
7251 	 * Set the pstat and error stat values here, so data obtained during the
7252 	 * previous attach-time routines is available.
7253 	 *
7254 	 * Note: This is a critical sequence that needs to be maintained:
7255 	 *	1) Instantiate the kstats before any routines using the iopath
7256 	 *	   (i.e. sd_send_scsi_cmd).
7257 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7258 	 *	   stats (sd_set_pstats)here, following
7259 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7260 	 *	   sd_cache_control().
7261 	 */
7262 
7263 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7264 		sd_set_pstats(un);
7265 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7266 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7267 	}
7268 
7269 	sd_set_errstats(un);
7270 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7271 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7272 
7273 
7274 	/*
7275 	 * After successfully attaching an instance, we record the information
7276 	 * of how many luns have been attached on the relative target and
7277 	 * controller for parallel SCSI. This information is used when sd tries
7278 	 * to set the tagged queuing capability in HBA.
7279 	 */
7280 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7281 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7282 	}
7283 
7284 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7285 	    "sd_unit_attach: un:0x%p exit success\n", un);
7286 
7287 	return (DDI_SUCCESS);
7288 
7289 	/*
7290 	 * An error occurred during the attach; clean up & return failure.
7291 	 */
7292 
7293 devid_failed:
7294 
7295 setup_pm_failed:
7296 	ddi_remove_minor_node(devi, NULL);
7297 
7298 cmlb_attach_failed:
7299 	/*
7300 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7301 	 */
7302 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7303 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7304 
7305 	/*
7306 	 * Refer to the comments of setting tagged-qing in the beginning of
7307 	 * sd_unit_attach. We can only disable tagged queuing when there is
7308 	 * no lun attached on the target.
7309 	 */
7310 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7311 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7312 	}
7313 
7314 	if (un->un_f_is_fibre == FALSE) {
7315 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7316 	}
7317 
7318 spinup_failed:
7319 
7320 	mutex_enter(SD_MUTEX(un));
7321 
7322 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7323 	if (un->un_direct_priority_timeid != NULL) {
7324 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7325 		un->un_direct_priority_timeid = NULL;
7326 		mutex_exit(SD_MUTEX(un));
7327 		(void) untimeout(temp_id);
7328 		mutex_enter(SD_MUTEX(un));
7329 	}
7330 
7331 	/* Cancel any pending start/stop timeouts */
7332 	if (un->un_startstop_timeid != NULL) {
7333 		timeout_id_t temp_id = un->un_startstop_timeid;
7334 		un->un_startstop_timeid = NULL;
7335 		mutex_exit(SD_MUTEX(un));
7336 		(void) untimeout(temp_id);
7337 		mutex_enter(SD_MUTEX(un));
7338 	}
7339 
7340 	/* Cancel any pending reset-throttle timeouts */
7341 	if (un->un_reset_throttle_timeid != NULL) {
7342 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7343 		un->un_reset_throttle_timeid = NULL;
7344 		mutex_exit(SD_MUTEX(un));
7345 		(void) untimeout(temp_id);
7346 		mutex_enter(SD_MUTEX(un));
7347 	}
7348 
7349 	/* Cancel any pending retry timeouts */
7350 	if (un->un_retry_timeid != NULL) {
7351 		timeout_id_t temp_id = un->un_retry_timeid;
7352 		un->un_retry_timeid = NULL;
7353 		mutex_exit(SD_MUTEX(un));
7354 		(void) untimeout(temp_id);
7355 		mutex_enter(SD_MUTEX(un));
7356 	}
7357 
7358 	/* Cancel any pending delayed cv broadcast timeouts */
7359 	if (un->un_dcvb_timeid != NULL) {
7360 		timeout_id_t temp_id = un->un_dcvb_timeid;
7361 		un->un_dcvb_timeid = NULL;
7362 		mutex_exit(SD_MUTEX(un));
7363 		(void) untimeout(temp_id);
7364 		mutex_enter(SD_MUTEX(un));
7365 	}
7366 
7367 	mutex_exit(SD_MUTEX(un));
7368 
7369 	/* There should not be any in-progress I/O so ASSERT this check */
7370 	ASSERT(un->un_ncmds_in_transport == 0);
7371 	ASSERT(un->un_ncmds_in_driver == 0);
7372 
7373 	/* Do not free the softstate if the callback routine is active */
7374 	sd_sync_with_callback(un);
7375 
7376 	/*
7377 	 * Partition stats apparently are not used with removables. These would
7378 	 * not have been created during attach, so no need to clean them up...
7379 	 */
7380 	if (un->un_stats != NULL) {
7381 		kstat_delete(un->un_stats);
7382 		un->un_stats = NULL;
7383 	}
7384 	if (un->un_errstats != NULL) {
7385 		kstat_delete(un->un_errstats);
7386 		un->un_errstats = NULL;
7387 	}
7388 
7389 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7390 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7391 
7392 	ddi_prop_remove_all(devi);
7393 	sema_destroy(&un->un_semoclose);
7394 	cv_destroy(&un->un_state_cv);
7395 
7396 getrbuf_failed:
7397 
7398 	sd_free_rqs(un);
7399 
7400 alloc_rqs_failed:
7401 
7402 	devp->sd_private = NULL;
7403 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7404 
7405 get_softstate_failed:
7406 	/*
7407 	 * Note: the man pages are unclear as to whether or not doing a
7408 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7409 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7410 	 * ddi_get_soft_state() fails.  The implication seems to be
7411 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7412 	 */
7413 	ddi_soft_state_free(sd_state, instance);
7414 
7415 probe_failed:
7416 	scsi_unprobe(devp);
7417 #ifdef SDDEBUG
7418 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
7419 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
7420 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
7421 		    (void *)un);
7422 	}
7423 #endif
7424 	return (DDI_FAILURE);
7425 }
7426 
7427 
7428 /*
7429  *    Function: sd_unit_detach
7430  *
7431  * Description: Performs DDI_DETACH processing for sddetach().
7432  *
7433  * Return Code: DDI_SUCCESS
7434  *		DDI_FAILURE
7435  *
7436  *     Context: Kernel thread context
7437  */
7438 
7439 static int
7440 sd_unit_detach(dev_info_t *devi)
7441 {
7442 	struct scsi_device	*devp;
7443 	struct sd_lun		*un;
7444 	int			i;
7445 	int			tgt;
7446 	dev_t			dev;
7447 	dev_info_t		*pdip = ddi_get_parent(devi);
7448 	int			instance = ddi_get_instance(devi);
7449 
7450 	mutex_enter(&sd_detach_mutex);
7451 
7452 	/*
7453 	 * Fail the detach for any of the following:
7454 	 *  - Unable to get the sd_lun struct for the instance
7455 	 *  - A layered driver has an outstanding open on the instance
7456 	 *  - Another thread is already detaching this instance
7457 	 *  - Another thread is currently performing an open
7458 	 */
7459 	devp = ddi_get_driver_private(devi);
7460 	if ((devp == NULL) ||
7461 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7462 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7463 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7464 		mutex_exit(&sd_detach_mutex);
7465 		return (DDI_FAILURE);
7466 	}
7467 
7468 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7469 
7470 	/*
7471 	 * Mark this instance as currently in a detach, to inhibit any
7472 	 * opens from a layered driver.
7473 	 */
7474 	un->un_detach_count++;
7475 	mutex_exit(&sd_detach_mutex);
7476 
7477 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7478 	    SCSI_ADDR_PROP_TARGET, -1);
7479 
7480 	dev = sd_make_device(SD_DEVINFO(un));
7481 
7482 #ifndef lint
7483 	_NOTE(COMPETING_THREADS_NOW);
7484 #endif
7485 
7486 	mutex_enter(SD_MUTEX(un));
7487 
7488 	/*
7489 	 * Fail the detach if there are any outstanding layered
7490 	 * opens on this device.
7491 	 */
7492 	for (i = 0; i < NDKMAP; i++) {
7493 		if (un->un_ocmap.lyropen[i] != 0) {
7494 			goto err_notclosed;
7495 		}
7496 	}
7497 
7498 	/*
7499 	 * Verify there are NO outstanding commands issued to this device.
7500 	 * ie, un_ncmds_in_transport == 0.
7501 	 * It's possible to have outstanding commands through the physio
7502 	 * code path, even though everything's closed.
7503 	 */
7504 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7505 	    (un->un_direct_priority_timeid != NULL) ||
7506 	    (un->un_state == SD_STATE_RWAIT)) {
7507 		mutex_exit(SD_MUTEX(un));
7508 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7509 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7510 		goto err_stillbusy;
7511 	}
7512 
7513 	/*
7514 	 * If we have the device reserved, release the reservation.
7515 	 */
7516 	if ((un->un_resvd_status & SD_RESERVE) &&
7517 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7518 		mutex_exit(SD_MUTEX(un));
7519 		/*
7520 		 * Note: sd_reserve_release sends a command to the device
7521 		 * via the sd_ioctlcmd() path, and can sleep.
7522 		 */
7523 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7524 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7525 			    "sd_dr_detach: Cannot release reservation \n");
7526 		}
7527 	} else {
7528 		mutex_exit(SD_MUTEX(un));
7529 	}
7530 
7531 	/*
7532 	 * Untimeout any reserve recover, throttle reset, restart unit
7533 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7534 	 * from getting nulled by their callback functions.
7535 	 */
7536 	mutex_enter(SD_MUTEX(un));
7537 	if (un->un_resvd_timeid != NULL) {
7538 		timeout_id_t temp_id = un->un_resvd_timeid;
7539 		un->un_resvd_timeid = NULL;
7540 		mutex_exit(SD_MUTEX(un));
7541 		(void) untimeout(temp_id);
7542 		mutex_enter(SD_MUTEX(un));
7543 	}
7544 
7545 	if (un->un_reset_throttle_timeid != NULL) {
7546 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7547 		un->un_reset_throttle_timeid = NULL;
7548 		mutex_exit(SD_MUTEX(un));
7549 		(void) untimeout(temp_id);
7550 		mutex_enter(SD_MUTEX(un));
7551 	}
7552 
7553 	if (un->un_startstop_timeid != NULL) {
7554 		timeout_id_t temp_id = un->un_startstop_timeid;
7555 		un->un_startstop_timeid = NULL;
7556 		mutex_exit(SD_MUTEX(un));
7557 		(void) untimeout(temp_id);
7558 		mutex_enter(SD_MUTEX(un));
7559 	}
7560 
7561 	if (un->un_dcvb_timeid != NULL) {
7562 		timeout_id_t temp_id = un->un_dcvb_timeid;
7563 		un->un_dcvb_timeid = NULL;
7564 		mutex_exit(SD_MUTEX(un));
7565 		(void) untimeout(temp_id);
7566 	} else {
7567 		mutex_exit(SD_MUTEX(un));
7568 	}
7569 
7570 	/* Remove any pending reservation reclaim requests for this device */
7571 	sd_rmv_resv_reclaim_req(dev);
7572 
7573 	mutex_enter(SD_MUTEX(un));
7574 
7575 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7576 	if (un->un_direct_priority_timeid != NULL) {
7577 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7578 		un->un_direct_priority_timeid = NULL;
7579 		mutex_exit(SD_MUTEX(un));
7580 		(void) untimeout(temp_id);
7581 		mutex_enter(SD_MUTEX(un));
7582 	}
7583 
7584 	/* Cancel any active multi-host disk watch thread requests */
7585 	if (un->un_mhd_token != NULL) {
7586 		mutex_exit(SD_MUTEX(un));
7587 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7588 		if (scsi_watch_request_terminate(un->un_mhd_token,
7589 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7590 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7591 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7592 			/*
7593 			 * Note: We are returning here after having removed
7594 			 * some driver timeouts above. This is consistent with
7595 			 * the legacy implementation but perhaps the watch
7596 			 * terminate call should be made with the wait flag set.
7597 			 */
7598 			goto err_stillbusy;
7599 		}
7600 		mutex_enter(SD_MUTEX(un));
7601 		un->un_mhd_token = NULL;
7602 	}
7603 
7604 	if (un->un_swr_token != NULL) {
7605 		mutex_exit(SD_MUTEX(un));
7606 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7607 		if (scsi_watch_request_terminate(un->un_swr_token,
7608 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7609 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7610 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7611 			/*
7612 			 * Note: We are returning here after having removed
7613 			 * some driver timeouts above. This is consistent with
7614 			 * the legacy implementation but perhaps the watch
7615 			 * terminate call should be made with the wait flag set.
7616 			 */
7617 			goto err_stillbusy;
7618 		}
7619 		mutex_enter(SD_MUTEX(un));
7620 		un->un_swr_token = NULL;
7621 	}
7622 
7623 	mutex_exit(SD_MUTEX(un));
7624 
7625 	/*
7626 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7627 	 * if we have not registered one.
7628 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7629 	 */
7630 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7631 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7632 
7633 	/*
7634 	 * protect the timeout pointers from getting nulled by
7635 	 * their callback functions during the cancellation process.
7636 	 * In such a scenario untimeout can be invoked with a null value.
7637 	 */
7638 	_NOTE(NO_COMPETING_THREADS_NOW);
7639 
7640 	mutex_enter(&un->un_pm_mutex);
7641 	if (un->un_pm_idle_timeid != NULL) {
7642 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7643 		un->un_pm_idle_timeid = NULL;
7644 		mutex_exit(&un->un_pm_mutex);
7645 
7646 		/*
7647 		 * Timeout is active; cancel it.
7648 		 * Note that it'll never be active on a device
7649 		 * that does not support PM therefore we don't
7650 		 * have to check before calling pm_idle_component.
7651 		 */
7652 		(void) untimeout(temp_id);
7653 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7654 		mutex_enter(&un->un_pm_mutex);
7655 	}
7656 
7657 	/*
7658 	 * Check whether there is already a timeout scheduled for power
7659 	 * management. If yes then don't lower the power here, that's.
7660 	 * the timeout handler's job.
7661 	 */
7662 	if (un->un_pm_timeid != NULL) {
7663 		timeout_id_t temp_id = un->un_pm_timeid;
7664 		un->un_pm_timeid = NULL;
7665 		mutex_exit(&un->un_pm_mutex);
7666 		/*
7667 		 * Timeout is active; cancel it.
7668 		 * Note that it'll never be active on a device
7669 		 * that does not support PM therefore we don't
7670 		 * have to check before calling pm_idle_component.
7671 		 */
7672 		(void) untimeout(temp_id);
7673 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7674 
7675 	} else {
7676 		mutex_exit(&un->un_pm_mutex);
7677 		if ((un->un_f_pm_is_enabled == TRUE) &&
7678 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7679 		    DDI_SUCCESS)) {
7680 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7681 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7682 			/*
7683 			 * Fix for bug: 4297749, item # 13
7684 			 * The above test now includes a check to see if PM is
7685 			 * supported by this device before call
7686 			 * pm_lower_power().
7687 			 * Note, the following is not dead code. The call to
7688 			 * pm_lower_power above will generate a call back into
7689 			 * our sdpower routine which might result in a timeout
7690 			 * handler getting activated. Therefore the following
7691 			 * code is valid and necessary.
7692 			 */
7693 			mutex_enter(&un->un_pm_mutex);
7694 			if (un->un_pm_timeid != NULL) {
7695 				timeout_id_t temp_id = un->un_pm_timeid;
7696 				un->un_pm_timeid = NULL;
7697 				mutex_exit(&un->un_pm_mutex);
7698 				(void) untimeout(temp_id);
7699 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7700 			} else {
7701 				mutex_exit(&un->un_pm_mutex);
7702 			}
7703 		}
7704 	}
7705 
7706 	/*
7707 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7708 	 * Relocated here from above to be after the call to
7709 	 * pm_lower_power, which was getting errors.
7710 	 */
7711 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7712 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7713 
7714 	/*
7715 	 * Currently, tagged queuing is supported per target based by HBA.
7716 	 * Setting this per lun instance actually sets the capability of this
7717 	 * target in HBA, which affects those luns already attached on the
7718 	 * same target. So during detach, we can only disable this capability
7719 	 * only when this is the only lun left on this target. By doing
7720 	 * this, we assume a target has the same tagged queuing capability
7721 	 * for every lun. The condition can be removed when HBA is changed to
7722 	 * support per lun based tagged queuing capability.
7723 	 */
7724 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7725 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7726 	}
7727 
7728 	if (un->un_f_is_fibre == FALSE) {
7729 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7730 	}
7731 
7732 	/*
7733 	 * Remove any event callbacks, fibre only
7734 	 */
7735 	if (un->un_f_is_fibre == TRUE) {
7736 		if ((un->un_insert_event != NULL) &&
7737 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
7738 				DDI_SUCCESS)) {
7739 			/*
7740 			 * Note: We are returning here after having done
7741 			 * substantial cleanup above. This is consistent
7742 			 * with the legacy implementation but this may not
7743 			 * be the right thing to do.
7744 			 */
7745 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7746 				"sd_dr_detach: Cannot cancel insert event\n");
7747 			goto err_remove_event;
7748 		}
7749 		un->un_insert_event = NULL;
7750 
7751 		if ((un->un_remove_event != NULL) &&
7752 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
7753 				DDI_SUCCESS)) {
7754 			/*
7755 			 * Note: We are returning here after having done
7756 			 * substantial cleanup above. This is consistent
7757 			 * with the legacy implementation but this may not
7758 			 * be the right thing to do.
7759 			 */
7760 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7761 				"sd_dr_detach: Cannot cancel remove event\n");
7762 			goto err_remove_event;
7763 		}
7764 		un->un_remove_event = NULL;
7765 	}
7766 
7767 	/* Do not free the softstate if the callback routine is active */
7768 	sd_sync_with_callback(un);
7769 
7770 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7771 	cmlb_free_handle(&un->un_cmlbhandle);
7772 
7773 	/*
7774 	 * Hold the detach mutex here, to make sure that no other threads ever
7775 	 * can access a (partially) freed soft state structure.
7776 	 */
7777 	mutex_enter(&sd_detach_mutex);
7778 
7779 	/*
7780 	 * Clean up the soft state struct.
7781 	 * Cleanup is done in reverse order of allocs/inits.
7782 	 * At this point there should be no competing threads anymore.
7783 	 */
7784 
7785 	/* Unregister and free device id. */
7786 	ddi_devid_unregister(devi);
7787 	if (un->un_devid) {
7788 		ddi_devid_free(un->un_devid);
7789 		un->un_devid = NULL;
7790 	}
7791 
7792 	/*
7793 	 * Destroy wmap cache if it exists.
7794 	 */
7795 	if (un->un_wm_cache != NULL) {
7796 		kmem_cache_destroy(un->un_wm_cache);
7797 		un->un_wm_cache = NULL;
7798 	}
7799 
7800 	/*
7801 	 * kstat cleanup is done in detach for all device types (4363169).
7802 	 * We do not want to fail detach if the device kstats are not deleted
7803 	 * since there is a confusion about the devo_refcnt for the device.
7804 	 * We just delete the kstats and let detach complete successfully.
7805 	 */
7806 	if (un->un_stats != NULL) {
7807 		kstat_delete(un->un_stats);
7808 		un->un_stats = NULL;
7809 	}
7810 	if (un->un_errstats != NULL) {
7811 		kstat_delete(un->un_errstats);
7812 		un->un_errstats = NULL;
7813 	}
7814 
7815 	/* Remove partition stats */
7816 	if (un->un_f_pkstats_enabled) {
7817 		for (i = 0; i < NSDMAP; i++) {
7818 			if (un->un_pstats[i] != NULL) {
7819 				kstat_delete(un->un_pstats[i]);
7820 				un->un_pstats[i] = NULL;
7821 			}
7822 		}
7823 	}
7824 
7825 	/* Remove xbuf registration */
7826 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7827 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7828 
7829 	/* Remove driver properties */
7830 	ddi_prop_remove_all(devi);
7831 
7832 	mutex_destroy(&un->un_pm_mutex);
7833 	cv_destroy(&un->un_pm_busy_cv);
7834 
7835 	cv_destroy(&un->un_wcc_cv);
7836 
7837 	/* Open/close semaphore */
7838 	sema_destroy(&un->un_semoclose);
7839 
7840 	/* Removable media condvar. */
7841 	cv_destroy(&un->un_state_cv);
7842 
7843 	/* Suspend/resume condvar. */
7844 	cv_destroy(&un->un_suspend_cv);
7845 	cv_destroy(&un->un_disk_busy_cv);
7846 
7847 	sd_free_rqs(un);
7848 
7849 	/* Free up soft state */
7850 	devp->sd_private = NULL;
7851 
7852 	bzero(un, sizeof (struct sd_lun));
7853 	ddi_soft_state_free(sd_state, instance);
7854 
7855 	mutex_exit(&sd_detach_mutex);
7856 
7857 	/* This frees up the INQUIRY data associated with the device. */
7858 	scsi_unprobe(devp);
7859 
7860 	/*
7861 	 * After successfully detaching an instance, we update the information
7862 	 * of how many luns have been attached in the relative target and
7863 	 * controller for parallel SCSI. This information is used when sd tries
7864 	 * to set the tagged queuing capability in HBA.
7865 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
7866 	 * check if the device is parallel SCSI. However, we don't need to
7867 	 * check here because we've already checked during attach. No device
7868 	 * that is not parallel SCSI is in the chain.
7869 	 */
7870 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7871 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
7872 	}
7873 
7874 	return (DDI_SUCCESS);
7875 
7876 err_notclosed:
7877 	mutex_exit(SD_MUTEX(un));
7878 
7879 err_stillbusy:
7880 	_NOTE(NO_COMPETING_THREADS_NOW);
7881 
7882 err_remove_event:
7883 	mutex_enter(&sd_detach_mutex);
7884 	un->un_detach_count--;
7885 	mutex_exit(&sd_detach_mutex);
7886 
7887 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
7888 	return (DDI_FAILURE);
7889 }
7890 
7891 
7892 /*
7893  *    Function: sd_create_errstats
7894  *
7895  * Description: This routine instantiates the device error stats.
7896  *
7897  *		Note: During attach the stats are instantiated first so they are
7898  *		available for attach-time routines that utilize the driver
7899  *		iopath to send commands to the device. The stats are initialized
7900  *		separately so data obtained during some attach-time routines is
7901  *		available. (4362483)
7902  *
7903  *   Arguments: un - driver soft state (unit) structure
7904  *		instance - driver instance
7905  *
7906  *     Context: Kernel thread context
7907  */
7908 
7909 static void
7910 sd_create_errstats(struct sd_lun *un, int instance)
7911 {
7912 	struct	sd_errstats	*stp;
7913 	char	kstatmodule_err[KSTAT_STRLEN];
7914 	char	kstatname[KSTAT_STRLEN];
7915 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
7916 
7917 	ASSERT(un != NULL);
7918 
7919 	if (un->un_errstats != NULL) {
7920 		return;
7921 	}
7922 
7923 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
7924 	    "%serr", sd_label);
7925 	(void) snprintf(kstatname, sizeof (kstatname),
7926 	    "%s%d,err", sd_label, instance);
7927 
7928 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
7929 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
7930 
7931 	if (un->un_errstats == NULL) {
7932 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7933 		    "sd_create_errstats: Failed kstat_create\n");
7934 		return;
7935 	}
7936 
7937 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
7938 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
7939 	    KSTAT_DATA_UINT32);
7940 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
7941 	    KSTAT_DATA_UINT32);
7942 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
7943 	    KSTAT_DATA_UINT32);
7944 	kstat_named_init(&stp->sd_vid,		"Vendor",
7945 	    KSTAT_DATA_CHAR);
7946 	kstat_named_init(&stp->sd_pid,		"Product",
7947 	    KSTAT_DATA_CHAR);
7948 	kstat_named_init(&stp->sd_revision,	"Revision",
7949 	    KSTAT_DATA_CHAR);
7950 	kstat_named_init(&stp->sd_serial,	"Serial No",
7951 	    KSTAT_DATA_CHAR);
7952 	kstat_named_init(&stp->sd_capacity,	"Size",
7953 	    KSTAT_DATA_ULONGLONG);
7954 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
7955 	    KSTAT_DATA_UINT32);
7956 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
7957 	    KSTAT_DATA_UINT32);
7958 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
7959 	    KSTAT_DATA_UINT32);
7960 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
7961 	    KSTAT_DATA_UINT32);
7962 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
7963 	    KSTAT_DATA_UINT32);
7964 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
7965 	    KSTAT_DATA_UINT32);
7966 
7967 	un->un_errstats->ks_private = un;
7968 	un->un_errstats->ks_update  = nulldev;
7969 
7970 	kstat_install(un->un_errstats);
7971 }
7972 
7973 
7974 /*
7975  *    Function: sd_set_errstats
7976  *
7977  * Description: This routine sets the value of the vendor id, product id,
7978  *		revision, serial number, and capacity device error stats.
7979  *
7980  *		Note: During attach the stats are instantiated first so they are
7981  *		available for attach-time routines that utilize the driver
7982  *		iopath to send commands to the device. The stats are initialized
7983  *		separately so data obtained during some attach-time routines is
7984  *		available. (4362483)
7985  *
7986  *   Arguments: un - driver soft state (unit) structure
7987  *
7988  *     Context: Kernel thread context
7989  */
7990 
7991 static void
7992 sd_set_errstats(struct sd_lun *un)
7993 {
7994 	struct	sd_errstats	*stp;
7995 
7996 	ASSERT(un != NULL);
7997 	ASSERT(un->un_errstats != NULL);
7998 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
7999 	ASSERT(stp != NULL);
8000 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8001 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8002 	(void) strncpy(stp->sd_revision.value.c,
8003 	    un->un_sd->sd_inq->inq_revision, 4);
8004 
8005 	/*
8006 	 * All the errstats are persistent across detach/attach,
8007 	 * so reset all the errstats here in case of the hot
8008 	 * replacement of disk drives, except for not changed
8009 	 * Sun qualified drives.
8010 	 */
8011 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8012 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8013 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8014 		stp->sd_softerrs.value.ui32 = 0;
8015 		stp->sd_harderrs.value.ui32 = 0;
8016 		stp->sd_transerrs.value.ui32 = 0;
8017 		stp->sd_rq_media_err.value.ui32 = 0;
8018 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8019 		stp->sd_rq_nodev_err.value.ui32 = 0;
8020 		stp->sd_rq_recov_err.value.ui32 = 0;
8021 		stp->sd_rq_illrq_err.value.ui32 = 0;
8022 		stp->sd_rq_pfa_err.value.ui32 = 0;
8023 	}
8024 
8025 	/*
8026 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8027 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8028 	 * (4376302))
8029 	 */
8030 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8031 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8032 		    sizeof (SD_INQUIRY(un)->inq_serial));
8033 	}
8034 
8035 	if (un->un_f_blockcount_is_valid != TRUE) {
8036 		/*
8037 		 * Set capacity error stat to 0 for no media. This ensures
8038 		 * a valid capacity is displayed in response to 'iostat -E'
8039 		 * when no media is present in the device.
8040 		 */
8041 		stp->sd_capacity.value.ui64 = 0;
8042 	} else {
8043 		/*
8044 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8045 		 * capacity.
8046 		 *
8047 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8048 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8049 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8050 		 */
8051 		stp->sd_capacity.value.ui64 = (uint64_t)
8052 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8053 	}
8054 }
8055 
8056 
8057 /*
8058  *    Function: sd_set_pstats
8059  *
8060  * Description: This routine instantiates and initializes the partition
8061  *              stats for each partition with more than zero blocks.
8062  *		(4363169)
8063  *
8064  *   Arguments: un - driver soft state (unit) structure
8065  *
8066  *     Context: Kernel thread context
8067  */
8068 
8069 static void
8070 sd_set_pstats(struct sd_lun *un)
8071 {
8072 	char	kstatname[KSTAT_STRLEN];
8073 	int	instance;
8074 	int	i;
8075 	diskaddr_t	nblks = 0;
8076 	char	*partname = NULL;
8077 
8078 	ASSERT(un != NULL);
8079 
8080 	instance = ddi_get_instance(SD_DEVINFO(un));
8081 
8082 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8083 	for (i = 0; i < NSDMAP; i++) {
8084 
8085 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8086 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8087 			continue;
8088 		mutex_enter(SD_MUTEX(un));
8089 
8090 		if ((un->un_pstats[i] == NULL) &&
8091 		    (nblks != 0)) {
8092 
8093 			(void) snprintf(kstatname, sizeof (kstatname),
8094 			    "%s%d,%s", sd_label, instance,
8095 			    partname);
8096 
8097 			un->un_pstats[i] = kstat_create(sd_label,
8098 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8099 			    1, KSTAT_FLAG_PERSISTENT);
8100 			if (un->un_pstats[i] != NULL) {
8101 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8102 				kstat_install(un->un_pstats[i]);
8103 			}
8104 		}
8105 		mutex_exit(SD_MUTEX(un));
8106 	}
8107 }
8108 
8109 
8110 #if (defined(__fibre))
8111 /*
8112  *    Function: sd_init_event_callbacks
8113  *
8114  * Description: This routine initializes the insertion and removal event
8115  *		callbacks. (fibre only)
8116  *
8117  *   Arguments: un - driver soft state (unit) structure
8118  *
8119  *     Context: Kernel thread context
8120  */
8121 
8122 static void
8123 sd_init_event_callbacks(struct sd_lun *un)
8124 {
8125 	ASSERT(un != NULL);
8126 
8127 	if ((un->un_insert_event == NULL) &&
8128 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8129 	    &un->un_insert_event) == DDI_SUCCESS)) {
8130 		/*
8131 		 * Add the callback for an insertion event
8132 		 */
8133 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8134 		    un->un_insert_event, sd_event_callback, (void *)un,
8135 		    &(un->un_insert_cb_id));
8136 	}
8137 
8138 	if ((un->un_remove_event == NULL) &&
8139 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8140 	    &un->un_remove_event) == DDI_SUCCESS)) {
8141 		/*
8142 		 * Add the callback for a removal event
8143 		 */
8144 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8145 		    un->un_remove_event, sd_event_callback, (void *)un,
8146 		    &(un->un_remove_cb_id));
8147 	}
8148 }
8149 
8150 
8151 /*
8152  *    Function: sd_event_callback
8153  *
8154  * Description: This routine handles insert/remove events (photon). The
8155  *		state is changed to OFFLINE which can be used to supress
8156  *		error msgs. (fibre only)
8157  *
8158  *   Arguments: un - driver soft state (unit) structure
8159  *
8160  *     Context: Callout thread context
8161  */
8162 /* ARGSUSED */
8163 static void
8164 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8165     void *bus_impldata)
8166 {
8167 	struct sd_lun *un = (struct sd_lun *)arg;
8168 
8169 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8170 	if (event == un->un_insert_event) {
8171 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8172 		mutex_enter(SD_MUTEX(un));
8173 		if (un->un_state == SD_STATE_OFFLINE) {
8174 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8175 				un->un_state = un->un_last_state;
8176 			} else {
8177 				/*
8178 				 * We have gone through SUSPEND/RESUME while
8179 				 * we were offline. Restore the last state
8180 				 */
8181 				un->un_state = un->un_save_state;
8182 			}
8183 		}
8184 		mutex_exit(SD_MUTEX(un));
8185 
8186 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8187 	} else if (event == un->un_remove_event) {
8188 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8189 		mutex_enter(SD_MUTEX(un));
8190 		/*
8191 		 * We need to handle an event callback that occurs during
8192 		 * the suspend operation, since we don't prevent it.
8193 		 */
8194 		if (un->un_state != SD_STATE_OFFLINE) {
8195 			if (un->un_state != SD_STATE_SUSPENDED) {
8196 				New_state(un, SD_STATE_OFFLINE);
8197 			} else {
8198 				un->un_last_state = SD_STATE_OFFLINE;
8199 			}
8200 		}
8201 		mutex_exit(SD_MUTEX(un));
8202 	} else {
8203 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8204 		    "!Unknown event\n");
8205 	}
8206 
8207 }
8208 #endif
8209 
8210 /*
8211  *    Function: sd_cache_control()
8212  *
8213  * Description: This routine is the driver entry point for setting
8214  *		read and write caching by modifying the WCE (write cache
8215  *		enable) and RCD (read cache disable) bits of mode
8216  *		page 8 (MODEPAGE_CACHING).
8217  *
8218  *   Arguments: un - driver soft state (unit) structure
8219  *		rcd_flag - flag for controlling the read cache
8220  *		wce_flag - flag for controlling the write cache
8221  *
8222  * Return Code: EIO
8223  *		code returned by sd_send_scsi_MODE_SENSE and
8224  *		sd_send_scsi_MODE_SELECT
8225  *
8226  *     Context: Kernel Thread
8227  */
8228 
8229 static int
8230 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8231 {
8232 	struct mode_caching	*mode_caching_page;
8233 	uchar_t			*header;
8234 	size_t			buflen;
8235 	int			hdrlen;
8236 	int			bd_len;
8237 	int			rval = 0;
8238 	struct mode_header_grp2	*mhp;
8239 
8240 	ASSERT(un != NULL);
8241 
8242 	/*
8243 	 * Do a test unit ready, otherwise a mode sense may not work if this
8244 	 * is the first command sent to the device after boot.
8245 	 */
8246 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8247 
8248 	if (un->un_f_cfg_is_atapi == TRUE) {
8249 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8250 	} else {
8251 		hdrlen = MODE_HEADER_LENGTH;
8252 	}
8253 
8254 	/*
8255 	 * Allocate memory for the retrieved mode page and its headers.  Set
8256 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8257 	 * we get all of the mode sense data otherwise, the mode select
8258 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8259 	 */
8260 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8261 		sizeof (struct mode_cache_scsi3);
8262 
8263 	header = kmem_zalloc(buflen, KM_SLEEP);
8264 
8265 	/* Get the information from the device. */
8266 	if (un->un_f_cfg_is_atapi == TRUE) {
8267 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8268 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8269 	} else {
8270 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8271 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8272 	}
8273 	if (rval != 0) {
8274 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8275 		    "sd_cache_control: Mode Sense Failed\n");
8276 		kmem_free(header, buflen);
8277 		return (rval);
8278 	}
8279 
8280 	/*
8281 	 * Determine size of Block Descriptors in order to locate
8282 	 * the mode page data. ATAPI devices return 0, SCSI devices
8283 	 * should return MODE_BLK_DESC_LENGTH.
8284 	 */
8285 	if (un->un_f_cfg_is_atapi == TRUE) {
8286 		mhp	= (struct mode_header_grp2 *)header;
8287 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8288 	} else {
8289 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8290 	}
8291 
8292 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8293 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8294 		    "sd_cache_control: Mode Sense returned invalid "
8295 		    "block descriptor length\n");
8296 		kmem_free(header, buflen);
8297 		return (EIO);
8298 	}
8299 
8300 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8301 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8302 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8303 		    " caching page code mismatch %d\n",
8304 		    mode_caching_page->mode_page.code);
8305 		kmem_free(header, buflen);
8306 		return (EIO);
8307 	}
8308 
8309 	/* Check the relevant bits on successful mode sense. */
8310 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8311 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8312 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8313 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8314 
8315 		size_t sbuflen;
8316 		uchar_t save_pg;
8317 
8318 		/*
8319 		 * Construct select buffer length based on the
8320 		 * length of the sense data returned.
8321 		 */
8322 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8323 				sizeof (struct mode_page) +
8324 				(int)mode_caching_page->mode_page.length;
8325 
8326 		/*
8327 		 * Set the caching bits as requested.
8328 		 */
8329 		if (rcd_flag == SD_CACHE_ENABLE)
8330 			mode_caching_page->rcd = 0;
8331 		else if (rcd_flag == SD_CACHE_DISABLE)
8332 			mode_caching_page->rcd = 1;
8333 
8334 		if (wce_flag == SD_CACHE_ENABLE)
8335 			mode_caching_page->wce = 1;
8336 		else if (wce_flag == SD_CACHE_DISABLE)
8337 			mode_caching_page->wce = 0;
8338 
8339 		/*
8340 		 * Save the page if the mode sense says the
8341 		 * drive supports it.
8342 		 */
8343 		save_pg = mode_caching_page->mode_page.ps ?
8344 				SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8345 
8346 		/* Clear reserved bits before mode select. */
8347 		mode_caching_page->mode_page.ps = 0;
8348 
8349 		/*
8350 		 * Clear out mode header for mode select.
8351 		 * The rest of the retrieved page will be reused.
8352 		 */
8353 		bzero(header, hdrlen);
8354 
8355 		if (un->un_f_cfg_is_atapi == TRUE) {
8356 			mhp = (struct mode_header_grp2 *)header;
8357 			mhp->bdesc_length_hi = bd_len >> 8;
8358 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8359 		} else {
8360 			((struct mode_header *)header)->bdesc_length = bd_len;
8361 		}
8362 
8363 		/* Issue mode select to change the cache settings */
8364 		if (un->un_f_cfg_is_atapi == TRUE) {
8365 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8366 			    sbuflen, save_pg, SD_PATH_DIRECT);
8367 		} else {
8368 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8369 			    sbuflen, save_pg, SD_PATH_DIRECT);
8370 		}
8371 	}
8372 
8373 	kmem_free(header, buflen);
8374 	return (rval);
8375 }
8376 
8377 
8378 /*
8379  *    Function: sd_get_write_cache_enabled()
8380  *
8381  * Description: This routine is the driver entry point for determining if
8382  *		write caching is enabled.  It examines the WCE (write cache
8383  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8384  *
8385  *   Arguments: un - driver soft state (unit) structure
8386  *		is_enabled - pointer to int where write cache enabled state
8387  *		is returned (non-zero -> write cache enabled)
8388  *
8389  *
8390  * Return Code: EIO
8391  *		code returned by sd_send_scsi_MODE_SENSE
8392  *
8393  *     Context: Kernel Thread
8394  *
8395  * NOTE: If ioctl is added to disable write cache, this sequence should
8396  * be followed so that no locking is required for accesses to
8397  * un->un_f_write_cache_enabled:
8398  * 	do mode select to clear wce
8399  * 	do synchronize cache to flush cache
8400  * 	set un->un_f_write_cache_enabled = FALSE
8401  *
8402  * Conversely, an ioctl to enable the write cache should be done
8403  * in this order:
8404  * 	set un->un_f_write_cache_enabled = TRUE
8405  * 	do mode select to set wce
8406  */
8407 
8408 static int
8409 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8410 {
8411 	struct mode_caching	*mode_caching_page;
8412 	uchar_t			*header;
8413 	size_t			buflen;
8414 	int			hdrlen;
8415 	int			bd_len;
8416 	int			rval = 0;
8417 
8418 	ASSERT(un != NULL);
8419 	ASSERT(is_enabled != NULL);
8420 
8421 	/* in case of error, flag as enabled */
8422 	*is_enabled = TRUE;
8423 
8424 	/*
8425 	 * Do a test unit ready, otherwise a mode sense may not work if this
8426 	 * is the first command sent to the device after boot.
8427 	 */
8428 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8429 
8430 	if (un->un_f_cfg_is_atapi == TRUE) {
8431 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8432 	} else {
8433 		hdrlen = MODE_HEADER_LENGTH;
8434 	}
8435 
8436 	/*
8437 	 * Allocate memory for the retrieved mode page and its headers.  Set
8438 	 * a pointer to the page itself.
8439 	 */
8440 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8441 	header = kmem_zalloc(buflen, KM_SLEEP);
8442 
8443 	/* Get the information from the device. */
8444 	if (un->un_f_cfg_is_atapi == TRUE) {
8445 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8446 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8447 	} else {
8448 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8449 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8450 	}
8451 	if (rval != 0) {
8452 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8453 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8454 		kmem_free(header, buflen);
8455 		return (rval);
8456 	}
8457 
8458 	/*
8459 	 * Determine size of Block Descriptors in order to locate
8460 	 * the mode page data. ATAPI devices return 0, SCSI devices
8461 	 * should return MODE_BLK_DESC_LENGTH.
8462 	 */
8463 	if (un->un_f_cfg_is_atapi == TRUE) {
8464 		struct mode_header_grp2	*mhp;
8465 		mhp	= (struct mode_header_grp2 *)header;
8466 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8467 	} else {
8468 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8469 	}
8470 
8471 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8472 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8473 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8474 		    "block descriptor length\n");
8475 		kmem_free(header, buflen);
8476 		return (EIO);
8477 	}
8478 
8479 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8480 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8481 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8482 		    " caching page code mismatch %d\n",
8483 		    mode_caching_page->mode_page.code);
8484 		kmem_free(header, buflen);
8485 		return (EIO);
8486 	}
8487 	*is_enabled = mode_caching_page->wce;
8488 
8489 	kmem_free(header, buflen);
8490 	return (0);
8491 }
8492 
8493 
8494 /*
8495  *    Function: sd_make_device
8496  *
8497  * Description: Utility routine to return the Solaris device number from
8498  *		the data in the device's dev_info structure.
8499  *
8500  * Return Code: The Solaris device number
8501  *
8502  *     Context: Any
8503  */
8504 
8505 static dev_t
8506 sd_make_device(dev_info_t *devi)
8507 {
8508 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8509 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8510 }
8511 
8512 
8513 /*
8514  *    Function: sd_pm_entry
8515  *
8516  * Description: Called at the start of a new command to manage power
8517  *		and busy status of a device. This includes determining whether
8518  *		the current power state of the device is sufficient for
8519  *		performing the command or whether it must be changed.
8520  *		The PM framework is notified appropriately.
8521  *		Only with a return status of DDI_SUCCESS will the
8522  *		component be busy to the framework.
8523  *
8524  *		All callers of sd_pm_entry must check the return status
8525  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8526  *		of DDI_FAILURE indicates the device failed to power up.
8527  *		In this case un_pm_count has been adjusted so the result
8528  *		on exit is still powered down, ie. count is less than 0.
8529  *		Calling sd_pm_exit with this count value hits an ASSERT.
8530  *
8531  * Return Code: DDI_SUCCESS or DDI_FAILURE
8532  *
8533  *     Context: Kernel thread context.
8534  */
8535 
8536 static int
8537 sd_pm_entry(struct sd_lun *un)
8538 {
8539 	int return_status = DDI_SUCCESS;
8540 
8541 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8542 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8543 
8544 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8545 
8546 	if (un->un_f_pm_is_enabled == FALSE) {
8547 		SD_TRACE(SD_LOG_IO_PM, un,
8548 		    "sd_pm_entry: exiting, PM not enabled\n");
8549 		return (return_status);
8550 	}
8551 
8552 	/*
8553 	 * Just increment a counter if PM is enabled. On the transition from
8554 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8555 	 * the count with each IO and mark the device as idle when the count
8556 	 * hits 0.
8557 	 *
8558 	 * If the count is less than 0 the device is powered down. If a powered
8559 	 * down device is successfully powered up then the count must be
8560 	 * incremented to reflect the power up. Note that it'll get incremented
8561 	 * a second time to become busy.
8562 	 *
8563 	 * Because the following has the potential to change the device state
8564 	 * and must release the un_pm_mutex to do so, only one thread can be
8565 	 * allowed through at a time.
8566 	 */
8567 
8568 	mutex_enter(&un->un_pm_mutex);
8569 	while (un->un_pm_busy == TRUE) {
8570 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8571 	}
8572 	un->un_pm_busy = TRUE;
8573 
8574 	if (un->un_pm_count < 1) {
8575 
8576 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8577 
8578 		/*
8579 		 * Indicate we are now busy so the framework won't attempt to
8580 		 * power down the device. This call will only fail if either
8581 		 * we passed a bad component number or the device has no
8582 		 * components. Neither of these should ever happen.
8583 		 */
8584 		mutex_exit(&un->un_pm_mutex);
8585 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8586 		ASSERT(return_status == DDI_SUCCESS);
8587 
8588 		mutex_enter(&un->un_pm_mutex);
8589 
8590 		if (un->un_pm_count < 0) {
8591 			mutex_exit(&un->un_pm_mutex);
8592 
8593 			SD_TRACE(SD_LOG_IO_PM, un,
8594 			    "sd_pm_entry: power up component\n");
8595 
8596 			/*
8597 			 * pm_raise_power will cause sdpower to be called
8598 			 * which brings the device power level to the
8599 			 * desired state, ON in this case. If successful,
8600 			 * un_pm_count and un_power_level will be updated
8601 			 * appropriately.
8602 			 */
8603 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8604 			    SD_SPINDLE_ON);
8605 
8606 			mutex_enter(&un->un_pm_mutex);
8607 
8608 			if (return_status != DDI_SUCCESS) {
8609 				/*
8610 				 * Power up failed.
8611 				 * Idle the device and adjust the count
8612 				 * so the result on exit is that we're
8613 				 * still powered down, ie. count is less than 0.
8614 				 */
8615 				SD_TRACE(SD_LOG_IO_PM, un,
8616 				    "sd_pm_entry: power up failed,"
8617 				    " idle the component\n");
8618 
8619 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8620 				un->un_pm_count--;
8621 			} else {
8622 				/*
8623 				 * Device is powered up, verify the
8624 				 * count is non-negative.
8625 				 * This is debug only.
8626 				 */
8627 				ASSERT(un->un_pm_count == 0);
8628 			}
8629 		}
8630 
8631 		if (return_status == DDI_SUCCESS) {
8632 			/*
8633 			 * For performance, now that the device has been tagged
8634 			 * as busy, and it's known to be powered up, update the
8635 			 * chain types to use jump tables that do not include
8636 			 * pm. This significantly lowers the overhead and
8637 			 * therefore improves performance.
8638 			 */
8639 
8640 			mutex_exit(&un->un_pm_mutex);
8641 			mutex_enter(SD_MUTEX(un));
8642 			SD_TRACE(SD_LOG_IO_PM, un,
8643 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8644 			    un->un_uscsi_chain_type);
8645 
8646 			if (un->un_f_non_devbsize_supported) {
8647 				un->un_buf_chain_type =
8648 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8649 			} else {
8650 				un->un_buf_chain_type =
8651 				    SD_CHAIN_INFO_DISK_NO_PM;
8652 			}
8653 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8654 
8655 			SD_TRACE(SD_LOG_IO_PM, un,
8656 			    "             changed  uscsi_chain_type to   %d\n",
8657 			    un->un_uscsi_chain_type);
8658 			mutex_exit(SD_MUTEX(un));
8659 			mutex_enter(&un->un_pm_mutex);
8660 
8661 			if (un->un_pm_idle_timeid == NULL) {
8662 				/* 300 ms. */
8663 				un->un_pm_idle_timeid =
8664 				    timeout(sd_pm_idletimeout_handler, un,
8665 				    (drv_usectohz((clock_t)300000)));
8666 				/*
8667 				 * Include an extra call to busy which keeps the
8668 				 * device busy with-respect-to the PM layer
8669 				 * until the timer fires, at which time it'll
8670 				 * get the extra idle call.
8671 				 */
8672 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8673 			}
8674 		}
8675 	}
8676 	un->un_pm_busy = FALSE;
8677 	/* Next... */
8678 	cv_signal(&un->un_pm_busy_cv);
8679 
8680 	un->un_pm_count++;
8681 
8682 	SD_TRACE(SD_LOG_IO_PM, un,
8683 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8684 
8685 	mutex_exit(&un->un_pm_mutex);
8686 
8687 	return (return_status);
8688 }
8689 
8690 
8691 /*
8692  *    Function: sd_pm_exit
8693  *
8694  * Description: Called at the completion of a command to manage busy
8695  *		status for the device. If the device becomes idle the
8696  *		PM framework is notified.
8697  *
8698  *     Context: Kernel thread context
8699  */
8700 
8701 static void
8702 sd_pm_exit(struct sd_lun *un)
8703 {
8704 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8705 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8706 
8707 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8708 
8709 	/*
8710 	 * After attach the following flag is only read, so don't
8711 	 * take the penalty of acquiring a mutex for it.
8712 	 */
8713 	if (un->un_f_pm_is_enabled == TRUE) {
8714 
8715 		mutex_enter(&un->un_pm_mutex);
8716 		un->un_pm_count--;
8717 
8718 		SD_TRACE(SD_LOG_IO_PM, un,
8719 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
8720 
8721 		ASSERT(un->un_pm_count >= 0);
8722 		if (un->un_pm_count == 0) {
8723 			mutex_exit(&un->un_pm_mutex);
8724 
8725 			SD_TRACE(SD_LOG_IO_PM, un,
8726 			    "sd_pm_exit: idle component\n");
8727 
8728 			(void) pm_idle_component(SD_DEVINFO(un), 0);
8729 
8730 		} else {
8731 			mutex_exit(&un->un_pm_mutex);
8732 		}
8733 	}
8734 
8735 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
8736 }
8737 
8738 
8739 /*
8740  *    Function: sdopen
8741  *
8742  * Description: Driver's open(9e) entry point function.
8743  *
8744  *   Arguments: dev_i   - pointer to device number
8745  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
8746  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
8747  *		cred_p  - user credential pointer
8748  *
8749  * Return Code: EINVAL
8750  *		ENXIO
8751  *		EIO
8752  *		EROFS
8753  *		EBUSY
8754  *
8755  *     Context: Kernel thread context
8756  */
8757 /* ARGSUSED */
8758 static int
8759 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
8760 {
8761 	struct sd_lun	*un;
8762 	int		nodelay;
8763 	int		part;
8764 	uint64_t	partmask;
8765 	int		instance;
8766 	dev_t		dev;
8767 	int		rval = EIO;
8768 	diskaddr_t	nblks = 0;
8769 
8770 	/* Validate the open type */
8771 	if (otyp >= OTYPCNT) {
8772 		return (EINVAL);
8773 	}
8774 
8775 	dev = *dev_p;
8776 	instance = SDUNIT(dev);
8777 	mutex_enter(&sd_detach_mutex);
8778 
8779 	/*
8780 	 * Fail the open if there is no softstate for the instance, or
8781 	 * if another thread somewhere is trying to detach the instance.
8782 	 */
8783 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
8784 	    (un->un_detach_count != 0)) {
8785 		mutex_exit(&sd_detach_mutex);
8786 		/*
8787 		 * The probe cache only needs to be cleared when open (9e) fails
8788 		 * with ENXIO (4238046).
8789 		 */
8790 		/*
8791 		 * un-conditionally clearing probe cache is ok with
8792 		 * separate sd/ssd binaries
8793 		 * x86 platform can be an issue with both parallel
8794 		 * and fibre in 1 binary
8795 		 */
8796 		sd_scsi_clear_probe_cache();
8797 		return (ENXIO);
8798 	}
8799 
8800 	/*
8801 	 * The un_layer_count is to prevent another thread in specfs from
8802 	 * trying to detach the instance, which can happen when we are
8803 	 * called from a higher-layer driver instead of thru specfs.
8804 	 * This will not be needed when DDI provides a layered driver
8805 	 * interface that allows specfs to know that an instance is in
8806 	 * use by a layered driver & should not be detached.
8807 	 *
8808 	 * Note: the semantics for layered driver opens are exactly one
8809 	 * close for every open.
8810 	 */
8811 	if (otyp == OTYP_LYR) {
8812 		un->un_layer_count++;
8813 	}
8814 
8815 	/*
8816 	 * Keep a count of the current # of opens in progress. This is because
8817 	 * some layered drivers try to call us as a regular open. This can
8818 	 * cause problems that we cannot prevent, however by keeping this count
8819 	 * we can at least keep our open and detach routines from racing against
8820 	 * each other under such conditions.
8821 	 */
8822 	un->un_opens_in_progress++;
8823 	mutex_exit(&sd_detach_mutex);
8824 
8825 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
8826 	part	 = SDPART(dev);
8827 	partmask = 1 << part;
8828 
8829 	/*
8830 	 * We use a semaphore here in order to serialize
8831 	 * open and close requests on the device.
8832 	 */
8833 	sema_p(&un->un_semoclose);
8834 
8835 	mutex_enter(SD_MUTEX(un));
8836 
8837 	/*
8838 	 * All device accesses go thru sdstrategy() where we check
8839 	 * on suspend status but there could be a scsi_poll command,
8840 	 * which bypasses sdstrategy(), so we need to check pm
8841 	 * status.
8842 	 */
8843 
8844 	if (!nodelay) {
8845 		while ((un->un_state == SD_STATE_SUSPENDED) ||
8846 		    (un->un_state == SD_STATE_PM_CHANGING)) {
8847 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
8848 		}
8849 
8850 		mutex_exit(SD_MUTEX(un));
8851 		if (sd_pm_entry(un) != DDI_SUCCESS) {
8852 			rval = EIO;
8853 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
8854 			    "sdopen: sd_pm_entry failed\n");
8855 			goto open_failed_with_pm;
8856 		}
8857 		mutex_enter(SD_MUTEX(un));
8858 	}
8859 
8860 	/* check for previous exclusive open */
8861 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
8862 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
8863 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
8864 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
8865 
8866 	if (un->un_exclopen & (partmask)) {
8867 		goto excl_open_fail;
8868 	}
8869 
8870 	if (flag & FEXCL) {
8871 		int i;
8872 		if (un->un_ocmap.lyropen[part]) {
8873 			goto excl_open_fail;
8874 		}
8875 		for (i = 0; i < (OTYPCNT - 1); i++) {
8876 			if (un->un_ocmap.regopen[i] & (partmask)) {
8877 				goto excl_open_fail;
8878 			}
8879 		}
8880 	}
8881 
8882 	/*
8883 	 * Check the write permission if this is a removable media device,
8884 	 * NDELAY has not been set, and writable permission is requested.
8885 	 *
8886 	 * Note: If NDELAY was set and this is write-protected media the WRITE
8887 	 * attempt will fail with EIO as part of the I/O processing. This is a
8888 	 * more permissive implementation that allows the open to succeed and
8889 	 * WRITE attempts to fail when appropriate.
8890 	 */
8891 	if (un->un_f_chk_wp_open) {
8892 		if ((flag & FWRITE) && (!nodelay)) {
8893 			mutex_exit(SD_MUTEX(un));
8894 			/*
8895 			 * Defer the check for write permission on writable
8896 			 * DVD drive till sdstrategy and will not fail open even
8897 			 * if FWRITE is set as the device can be writable
8898 			 * depending upon the media and the media can change
8899 			 * after the call to open().
8900 			 */
8901 			if (un->un_f_dvdram_writable_device == FALSE) {
8902 				if (ISCD(un) || sr_check_wp(dev)) {
8903 				rval = EROFS;
8904 				mutex_enter(SD_MUTEX(un));
8905 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
8906 				    "write to cd or write protected media\n");
8907 				goto open_fail;
8908 				}
8909 			}
8910 			mutex_enter(SD_MUTEX(un));
8911 		}
8912 	}
8913 
8914 	/*
8915 	 * If opening in NDELAY/NONBLOCK mode, just return.
8916 	 * Check if disk is ready and has a valid geometry later.
8917 	 */
8918 	if (!nodelay) {
8919 		mutex_exit(SD_MUTEX(un));
8920 		rval = sd_ready_and_valid(un);
8921 		mutex_enter(SD_MUTEX(un));
8922 		/*
8923 		 * Fail if device is not ready or if the number of disk
8924 		 * blocks is zero or negative for non CD devices.
8925 		 */
8926 
8927 		nblks = 0;
8928 
8929 		if (rval == SD_READY_VALID && (!ISCD(un))) {
8930 			/* if cmlb_partinfo fails, nblks remains 0 */
8931 			mutex_exit(SD_MUTEX(un));
8932 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
8933 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
8934 			mutex_enter(SD_MUTEX(un));
8935 		}
8936 
8937 		if ((rval != SD_READY_VALID) ||
8938 		    (!ISCD(un) && nblks <= 0)) {
8939 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
8940 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
8941 			    "device not ready or invalid disk block value\n");
8942 			goto open_fail;
8943 		}
8944 #if defined(__i386) || defined(__amd64)
8945 	} else {
8946 		uchar_t *cp;
8947 		/*
8948 		 * x86 requires special nodelay handling, so that p0 is
8949 		 * always defined and accessible.
8950 		 * Invalidate geometry only if device is not already open.
8951 		 */
8952 		cp = &un->un_ocmap.chkd[0];
8953 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
8954 			if (*cp != (uchar_t)0) {
8955 			    break;
8956 			}
8957 			cp++;
8958 		}
8959 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
8960 			mutex_exit(SD_MUTEX(un));
8961 			cmlb_invalidate(un->un_cmlbhandle,
8962 			    (void *)SD_PATH_DIRECT);
8963 			mutex_enter(SD_MUTEX(un));
8964 		}
8965 
8966 #endif
8967 	}
8968 
8969 	if (otyp == OTYP_LYR) {
8970 		un->un_ocmap.lyropen[part]++;
8971 	} else {
8972 		un->un_ocmap.regopen[otyp] |= partmask;
8973 	}
8974 
8975 	/* Set up open and exclusive open flags */
8976 	if (flag & FEXCL) {
8977 		un->un_exclopen |= (partmask);
8978 	}
8979 
8980 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
8981 	    "open of part %d type %d\n", part, otyp);
8982 
8983 	mutex_exit(SD_MUTEX(un));
8984 	if (!nodelay) {
8985 		sd_pm_exit(un);
8986 	}
8987 
8988 	sema_v(&un->un_semoclose);
8989 
8990 	mutex_enter(&sd_detach_mutex);
8991 	un->un_opens_in_progress--;
8992 	mutex_exit(&sd_detach_mutex);
8993 
8994 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
8995 	return (DDI_SUCCESS);
8996 
8997 excl_open_fail:
8998 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
8999 	rval = EBUSY;
9000 
9001 open_fail:
9002 	mutex_exit(SD_MUTEX(un));
9003 
9004 	/*
9005 	 * On a failed open we must exit the pm management.
9006 	 */
9007 	if (!nodelay) {
9008 		sd_pm_exit(un);
9009 	}
9010 open_failed_with_pm:
9011 	sema_v(&un->un_semoclose);
9012 
9013 	mutex_enter(&sd_detach_mutex);
9014 	un->un_opens_in_progress--;
9015 	if (otyp == OTYP_LYR) {
9016 		un->un_layer_count--;
9017 	}
9018 	mutex_exit(&sd_detach_mutex);
9019 
9020 	return (rval);
9021 }
9022 
9023 
9024 /*
9025  *    Function: sdclose
9026  *
9027  * Description: Driver's close(9e) entry point function.
9028  *
9029  *   Arguments: dev    - device number
9030  *		flag   - file status flag, informational only
9031  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9032  *		cred_p - user credential pointer
9033  *
9034  * Return Code: ENXIO
9035  *
9036  *     Context: Kernel thread context
9037  */
9038 /* ARGSUSED */
9039 static int
9040 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9041 {
9042 	struct sd_lun	*un;
9043 	uchar_t		*cp;
9044 	int		part;
9045 	int		nodelay;
9046 	int		rval = 0;
9047 
9048 	/* Validate the open type */
9049 	if (otyp >= OTYPCNT) {
9050 		return (ENXIO);
9051 	}
9052 
9053 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9054 		return (ENXIO);
9055 	}
9056 
9057 	part = SDPART(dev);
9058 	nodelay = flag & (FNDELAY | FNONBLOCK);
9059 
9060 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9061 	    "sdclose: close of part %d type %d\n", part, otyp);
9062 
9063 	/*
9064 	 * We use a semaphore here in order to serialize
9065 	 * open and close requests on the device.
9066 	 */
9067 	sema_p(&un->un_semoclose);
9068 
9069 	mutex_enter(SD_MUTEX(un));
9070 
9071 	/* Don't proceed if power is being changed. */
9072 	while (un->un_state == SD_STATE_PM_CHANGING) {
9073 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9074 	}
9075 
9076 	if (un->un_exclopen & (1 << part)) {
9077 		un->un_exclopen &= ~(1 << part);
9078 	}
9079 
9080 	/* Update the open partition map */
9081 	if (otyp == OTYP_LYR) {
9082 		un->un_ocmap.lyropen[part] -= 1;
9083 	} else {
9084 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9085 	}
9086 
9087 	cp = &un->un_ocmap.chkd[0];
9088 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9089 		if (*cp != NULL) {
9090 			break;
9091 		}
9092 		cp++;
9093 	}
9094 
9095 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9096 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9097 
9098 		/*
9099 		 * We avoid persistance upon the last close, and set
9100 		 * the throttle back to the maximum.
9101 		 */
9102 		un->un_throttle = un->un_saved_throttle;
9103 
9104 		if (un->un_state == SD_STATE_OFFLINE) {
9105 			if (un->un_f_is_fibre == FALSE) {
9106 				scsi_log(SD_DEVINFO(un), sd_label,
9107 					CE_WARN, "offline\n");
9108 			}
9109 			mutex_exit(SD_MUTEX(un));
9110 			cmlb_invalidate(un->un_cmlbhandle,
9111 			    (void *)SD_PATH_DIRECT);
9112 			mutex_enter(SD_MUTEX(un));
9113 
9114 		} else {
9115 			/*
9116 			 * Flush any outstanding writes in NVRAM cache.
9117 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9118 			 * cmd, it may not work for non-Pluto devices.
9119 			 * SYNCHRONIZE CACHE is not required for removables,
9120 			 * except DVD-RAM drives.
9121 			 *
9122 			 * Also note: because SYNCHRONIZE CACHE is currently
9123 			 * the only command issued here that requires the
9124 			 * drive be powered up, only do the power up before
9125 			 * sending the Sync Cache command. If additional
9126 			 * commands are added which require a powered up
9127 			 * drive, the following sequence may have to change.
9128 			 *
9129 			 * And finally, note that parallel SCSI on SPARC
9130 			 * only issues a Sync Cache to DVD-RAM, a newly
9131 			 * supported device.
9132 			 */
9133 #if defined(__i386) || defined(__amd64)
9134 			if (un->un_f_sync_cache_supported ||
9135 			    un->un_f_dvdram_writable_device == TRUE) {
9136 #else
9137 			if (un->un_f_dvdram_writable_device == TRUE) {
9138 #endif
9139 				mutex_exit(SD_MUTEX(un));
9140 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9141 					rval =
9142 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9143 					    NULL);
9144 					/* ignore error if not supported */
9145 					if (rval == ENOTSUP) {
9146 						rval = 0;
9147 					} else if (rval != 0) {
9148 						rval = EIO;
9149 					}
9150 					sd_pm_exit(un);
9151 				} else {
9152 					rval = EIO;
9153 				}
9154 				mutex_enter(SD_MUTEX(un));
9155 			}
9156 
9157 			/*
9158 			 * For devices which supports DOOR_LOCK, send an ALLOW
9159 			 * MEDIA REMOVAL command, but don't get upset if it
9160 			 * fails. We need to raise the power of the drive before
9161 			 * we can call sd_send_scsi_DOORLOCK()
9162 			 */
9163 			if (un->un_f_doorlock_supported) {
9164 				mutex_exit(SD_MUTEX(un));
9165 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9166 					rval = sd_send_scsi_DOORLOCK(un,
9167 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9168 
9169 					sd_pm_exit(un);
9170 					if (ISCD(un) && (rval != 0) &&
9171 					    (nodelay != 0)) {
9172 						rval = ENXIO;
9173 					}
9174 				} else {
9175 					rval = EIO;
9176 				}
9177 				mutex_enter(SD_MUTEX(un));
9178 			}
9179 
9180 			/*
9181 			 * If a device has removable media, invalidate all
9182 			 * parameters related to media, such as geometry,
9183 			 * blocksize, and blockcount.
9184 			 */
9185 			if (un->un_f_has_removable_media) {
9186 				sr_ejected(un);
9187 			}
9188 
9189 			/*
9190 			 * Destroy the cache (if it exists) which was
9191 			 * allocated for the write maps since this is
9192 			 * the last close for this media.
9193 			 */
9194 			if (un->un_wm_cache) {
9195 				/*
9196 				 * Check if there are pending commands.
9197 				 * and if there are give a warning and
9198 				 * do not destroy the cache.
9199 				 */
9200 				if (un->un_ncmds_in_driver > 0) {
9201 					scsi_log(SD_DEVINFO(un),
9202 					    sd_label, CE_WARN,
9203 					    "Unable to clean up memory "
9204 					    "because of pending I/O\n");
9205 				} else {
9206 					kmem_cache_destroy(
9207 					    un->un_wm_cache);
9208 					un->un_wm_cache = NULL;
9209 				}
9210 			}
9211 		}
9212 	}
9213 
9214 	mutex_exit(SD_MUTEX(un));
9215 	sema_v(&un->un_semoclose);
9216 
9217 	if (otyp == OTYP_LYR) {
9218 		mutex_enter(&sd_detach_mutex);
9219 		/*
9220 		 * The detach routine may run when the layer count
9221 		 * drops to zero.
9222 		 */
9223 		un->un_layer_count--;
9224 		mutex_exit(&sd_detach_mutex);
9225 	}
9226 
9227 	return (rval);
9228 }
9229 
9230 
9231 /*
9232  *    Function: sd_ready_and_valid
9233  *
9234  * Description: Test if device is ready and has a valid geometry.
9235  *
9236  *   Arguments: dev - device number
9237  *		un  - driver soft state (unit) structure
9238  *
9239  * Return Code: SD_READY_VALID		ready and valid label
9240  *		SD_NOT_READY_VALID	not ready, no label
9241  *		SD_RESERVED_BY_OTHERS	reservation conflict
9242  *
9243  *     Context: Never called at interrupt context.
9244  */
9245 
9246 static int
9247 sd_ready_and_valid(struct sd_lun *un)
9248 {
9249 	struct sd_errstats	*stp;
9250 	uint64_t		capacity;
9251 	uint_t			lbasize;
9252 	int			rval = SD_READY_VALID;
9253 	char			name_str[48];
9254 	int			is_valid;
9255 
9256 	ASSERT(un != NULL);
9257 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9258 
9259 	mutex_enter(SD_MUTEX(un));
9260 	/*
9261 	 * If a device has removable media, we must check if media is
9262 	 * ready when checking if this device is ready and valid.
9263 	 */
9264 	if (un->un_f_has_removable_media) {
9265 		mutex_exit(SD_MUTEX(un));
9266 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9267 			rval = SD_NOT_READY_VALID;
9268 			mutex_enter(SD_MUTEX(un));
9269 			goto done;
9270 		}
9271 
9272 		is_valid = SD_IS_VALID_LABEL(un);
9273 		mutex_enter(SD_MUTEX(un));
9274 		if (!is_valid ||
9275 		    (un->un_f_blockcount_is_valid == FALSE) ||
9276 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9277 
9278 			/* capacity has to be read every open. */
9279 			mutex_exit(SD_MUTEX(un));
9280 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9281 			    &lbasize, SD_PATH_DIRECT) != 0) {
9282 				cmlb_invalidate(un->un_cmlbhandle,
9283 				    (void *)SD_PATH_DIRECT);
9284 				mutex_enter(SD_MUTEX(un));
9285 				rval = SD_NOT_READY_VALID;
9286 				goto done;
9287 			} else {
9288 				mutex_enter(SD_MUTEX(un));
9289 				sd_update_block_info(un, lbasize, capacity);
9290 			}
9291 		}
9292 
9293 		/*
9294 		 * Check if the media in the device is writable or not.
9295 		 */
9296 		if (!is_valid && ISCD(un)) {
9297 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9298 		}
9299 
9300 	} else {
9301 		/*
9302 		 * Do a test unit ready to clear any unit attention from non-cd
9303 		 * devices.
9304 		 */
9305 		mutex_exit(SD_MUTEX(un));
9306 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9307 		mutex_enter(SD_MUTEX(un));
9308 	}
9309 
9310 
9311 	/*
9312 	 * If this is a non 512 block device, allocate space for
9313 	 * the wmap cache. This is being done here since every time
9314 	 * a media is changed this routine will be called and the
9315 	 * block size is a function of media rather than device.
9316 	 */
9317 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9318 		if (!(un->un_wm_cache)) {
9319 			(void) snprintf(name_str, sizeof (name_str),
9320 			    "%s%d_cache",
9321 			    ddi_driver_name(SD_DEVINFO(un)),
9322 			    ddi_get_instance(SD_DEVINFO(un)));
9323 			un->un_wm_cache = kmem_cache_create(
9324 			    name_str, sizeof (struct sd_w_map),
9325 			    8, sd_wm_cache_constructor,
9326 			    sd_wm_cache_destructor, NULL,
9327 			    (void *)un, NULL, 0);
9328 			if (!(un->un_wm_cache)) {
9329 					rval = ENOMEM;
9330 					goto done;
9331 			}
9332 		}
9333 	}
9334 
9335 	if (un->un_state == SD_STATE_NORMAL) {
9336 		/*
9337 		 * If the target is not yet ready here (defined by a TUR
9338 		 * failure), invalidate the geometry and print an 'offline'
9339 		 * message. This is a legacy message, as the state of the
9340 		 * target is not actually changed to SD_STATE_OFFLINE.
9341 		 *
9342 		 * If the TUR fails for EACCES (Reservation Conflict),
9343 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9344 		 * reservation conflict. If the TUR fails for other
9345 		 * reasons, SD_NOT_READY_VALID will be returned.
9346 		 */
9347 		int err;
9348 
9349 		mutex_exit(SD_MUTEX(un));
9350 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9351 		mutex_enter(SD_MUTEX(un));
9352 
9353 		if (err != 0) {
9354 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9355 			    "offline or reservation conflict\n");
9356 			mutex_exit(SD_MUTEX(un));
9357 			cmlb_invalidate(un->un_cmlbhandle,
9358 			    (void *)SD_PATH_DIRECT);
9359 			mutex_enter(SD_MUTEX(un));
9360 			if (err == EACCES) {
9361 				rval = SD_RESERVED_BY_OTHERS;
9362 			} else {
9363 				rval = SD_NOT_READY_VALID;
9364 			}
9365 			goto done;
9366 		}
9367 	}
9368 
9369 	if (un->un_f_format_in_progress == FALSE) {
9370 		mutex_exit(SD_MUTEX(un));
9371 		if (cmlb_validate(un->un_cmlbhandle, 0,
9372 		    (void *)SD_PATH_DIRECT) != 0) {
9373 			rval = SD_NOT_READY_VALID;
9374 			mutex_enter(SD_MUTEX(un));
9375 			goto done;
9376 		}
9377 		if (un->un_f_pkstats_enabled) {
9378 			sd_set_pstats(un);
9379 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9380 			    "sd_ready_and_valid: un:0x%p pstats created and "
9381 			    "set\n", un);
9382 		}
9383 		mutex_enter(SD_MUTEX(un));
9384 	}
9385 
9386 	/*
9387 	 * If this device supports DOOR_LOCK command, try and send
9388 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9389 	 * if it fails. For a CD, however, it is an error
9390 	 */
9391 	if (un->un_f_doorlock_supported) {
9392 		mutex_exit(SD_MUTEX(un));
9393 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9394 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9395 			rval = SD_NOT_READY_VALID;
9396 			mutex_enter(SD_MUTEX(un));
9397 			goto done;
9398 		}
9399 		mutex_enter(SD_MUTEX(un));
9400 	}
9401 
9402 	/* The state has changed, inform the media watch routines */
9403 	un->un_mediastate = DKIO_INSERTED;
9404 	cv_broadcast(&un->un_state_cv);
9405 	rval = SD_READY_VALID;
9406 
9407 done:
9408 
9409 	/*
9410 	 * Initialize the capacity kstat value, if no media previously
9411 	 * (capacity kstat is 0) and a media has been inserted
9412 	 * (un_blockcount > 0).
9413 	 */
9414 	if (un->un_errstats != NULL) {
9415 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9416 		if ((stp->sd_capacity.value.ui64 == 0) &&
9417 		    (un->un_f_blockcount_is_valid == TRUE)) {
9418 			stp->sd_capacity.value.ui64 =
9419 			    (uint64_t)((uint64_t)un->un_blockcount *
9420 			    un->un_sys_blocksize);
9421 		}
9422 	}
9423 
9424 	mutex_exit(SD_MUTEX(un));
9425 	return (rval);
9426 }
9427 
9428 
9429 /*
9430  *    Function: sdmin
9431  *
9432  * Description: Routine to limit the size of a data transfer. Used in
9433  *		conjunction with physio(9F).
9434  *
9435  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9436  *
9437  *     Context: Kernel thread context.
9438  */
9439 
9440 static void
9441 sdmin(struct buf *bp)
9442 {
9443 	struct sd_lun	*un;
9444 	int		instance;
9445 
9446 	instance = SDUNIT(bp->b_edev);
9447 
9448 	un = ddi_get_soft_state(sd_state, instance);
9449 	ASSERT(un != NULL);
9450 
9451 	if (bp->b_bcount > un->un_max_xfer_size) {
9452 		bp->b_bcount = un->un_max_xfer_size;
9453 	}
9454 }
9455 
9456 
9457 /*
9458  *    Function: sdread
9459  *
9460  * Description: Driver's read(9e) entry point function.
9461  *
9462  *   Arguments: dev   - device number
9463  *		uio   - structure pointer describing where data is to be stored
9464  *			in user's space
9465  *		cred_p  - user credential pointer
9466  *
9467  * Return Code: ENXIO
9468  *		EIO
9469  *		EINVAL
9470  *		value returned by physio
9471  *
9472  *     Context: Kernel thread context.
9473  */
9474 /* ARGSUSED */
9475 static int
9476 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9477 {
9478 	struct sd_lun	*un = NULL;
9479 	int		secmask;
9480 	int		err;
9481 
9482 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9483 		return (ENXIO);
9484 	}
9485 
9486 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9487 
9488 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9489 		mutex_enter(SD_MUTEX(un));
9490 		/*
9491 		 * Because the call to sd_ready_and_valid will issue I/O we
9492 		 * must wait here if either the device is suspended or
9493 		 * if it's power level is changing.
9494 		 */
9495 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9496 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9497 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9498 		}
9499 		un->un_ncmds_in_driver++;
9500 		mutex_exit(SD_MUTEX(un));
9501 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9502 			mutex_enter(SD_MUTEX(un));
9503 			un->un_ncmds_in_driver--;
9504 			ASSERT(un->un_ncmds_in_driver >= 0);
9505 			mutex_exit(SD_MUTEX(un));
9506 			return (EIO);
9507 		}
9508 		mutex_enter(SD_MUTEX(un));
9509 		un->un_ncmds_in_driver--;
9510 		ASSERT(un->un_ncmds_in_driver >= 0);
9511 		mutex_exit(SD_MUTEX(un));
9512 	}
9513 
9514 	/*
9515 	 * Read requests are restricted to multiples of the system block size.
9516 	 */
9517 	secmask = un->un_sys_blocksize - 1;
9518 
9519 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9520 		SD_ERROR(SD_LOG_READ_WRITE, un,
9521 		    "sdread: file offset not modulo %d\n",
9522 		    un->un_sys_blocksize);
9523 		err = EINVAL;
9524 	} else if (uio->uio_iov->iov_len & (secmask)) {
9525 		SD_ERROR(SD_LOG_READ_WRITE, un,
9526 		    "sdread: transfer length not modulo %d\n",
9527 		    un->un_sys_blocksize);
9528 		err = EINVAL;
9529 	} else {
9530 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9531 	}
9532 	return (err);
9533 }
9534 
9535 
9536 /*
9537  *    Function: sdwrite
9538  *
9539  * Description: Driver's write(9e) entry point function.
9540  *
9541  *   Arguments: dev   - device number
9542  *		uio   - structure pointer describing where data is stored in
9543  *			user's space
9544  *		cred_p  - user credential pointer
9545  *
9546  * Return Code: ENXIO
9547  *		EIO
9548  *		EINVAL
9549  *		value returned by physio
9550  *
9551  *     Context: Kernel thread context.
9552  */
9553 /* ARGSUSED */
9554 static int
9555 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9556 {
9557 	struct sd_lun	*un = NULL;
9558 	int		secmask;
9559 	int		err;
9560 
9561 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9562 		return (ENXIO);
9563 	}
9564 
9565 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9566 
9567 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9568 		mutex_enter(SD_MUTEX(un));
9569 		/*
9570 		 * Because the call to sd_ready_and_valid will issue I/O we
9571 		 * must wait here if either the device is suspended or
9572 		 * if it's power level is changing.
9573 		 */
9574 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9575 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9576 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9577 		}
9578 		un->un_ncmds_in_driver++;
9579 		mutex_exit(SD_MUTEX(un));
9580 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9581 			mutex_enter(SD_MUTEX(un));
9582 			un->un_ncmds_in_driver--;
9583 			ASSERT(un->un_ncmds_in_driver >= 0);
9584 			mutex_exit(SD_MUTEX(un));
9585 			return (EIO);
9586 		}
9587 		mutex_enter(SD_MUTEX(un));
9588 		un->un_ncmds_in_driver--;
9589 		ASSERT(un->un_ncmds_in_driver >= 0);
9590 		mutex_exit(SD_MUTEX(un));
9591 	}
9592 
9593 	/*
9594 	 * Write requests are restricted to multiples of the system block size.
9595 	 */
9596 	secmask = un->un_sys_blocksize - 1;
9597 
9598 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9599 		SD_ERROR(SD_LOG_READ_WRITE, un,
9600 		    "sdwrite: file offset not modulo %d\n",
9601 		    un->un_sys_blocksize);
9602 		err = EINVAL;
9603 	} else if (uio->uio_iov->iov_len & (secmask)) {
9604 		SD_ERROR(SD_LOG_READ_WRITE, un,
9605 		    "sdwrite: transfer length not modulo %d\n",
9606 		    un->un_sys_blocksize);
9607 		err = EINVAL;
9608 	} else {
9609 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9610 	}
9611 	return (err);
9612 }
9613 
9614 
9615 /*
9616  *    Function: sdaread
9617  *
9618  * Description: Driver's aread(9e) entry point function.
9619  *
9620  *   Arguments: dev   - device number
9621  *		aio   - structure pointer describing where data is to be stored
9622  *		cred_p  - user credential pointer
9623  *
9624  * Return Code: ENXIO
9625  *		EIO
9626  *		EINVAL
9627  *		value returned by aphysio
9628  *
9629  *     Context: Kernel thread context.
9630  */
9631 /* ARGSUSED */
9632 static int
9633 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9634 {
9635 	struct sd_lun	*un = NULL;
9636 	struct uio	*uio = aio->aio_uio;
9637 	int		secmask;
9638 	int		err;
9639 
9640 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9641 		return (ENXIO);
9642 	}
9643 
9644 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9645 
9646 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9647 		mutex_enter(SD_MUTEX(un));
9648 		/*
9649 		 * Because the call to sd_ready_and_valid will issue I/O we
9650 		 * must wait here if either the device is suspended or
9651 		 * if it's power level is changing.
9652 		 */
9653 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9654 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9655 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9656 		}
9657 		un->un_ncmds_in_driver++;
9658 		mutex_exit(SD_MUTEX(un));
9659 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9660 			mutex_enter(SD_MUTEX(un));
9661 			un->un_ncmds_in_driver--;
9662 			ASSERT(un->un_ncmds_in_driver >= 0);
9663 			mutex_exit(SD_MUTEX(un));
9664 			return (EIO);
9665 		}
9666 		mutex_enter(SD_MUTEX(un));
9667 		un->un_ncmds_in_driver--;
9668 		ASSERT(un->un_ncmds_in_driver >= 0);
9669 		mutex_exit(SD_MUTEX(un));
9670 	}
9671 
9672 	/*
9673 	 * Read requests are restricted to multiples of the system block size.
9674 	 */
9675 	secmask = un->un_sys_blocksize - 1;
9676 
9677 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9678 		SD_ERROR(SD_LOG_READ_WRITE, un,
9679 		    "sdaread: file offset not modulo %d\n",
9680 		    un->un_sys_blocksize);
9681 		err = EINVAL;
9682 	} else if (uio->uio_iov->iov_len & (secmask)) {
9683 		SD_ERROR(SD_LOG_READ_WRITE, un,
9684 		    "sdaread: transfer length not modulo %d\n",
9685 		    un->un_sys_blocksize);
9686 		err = EINVAL;
9687 	} else {
9688 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9689 	}
9690 	return (err);
9691 }
9692 
9693 
9694 /*
9695  *    Function: sdawrite
9696  *
9697  * Description: Driver's awrite(9e) entry point function.
9698  *
9699  *   Arguments: dev   - device number
9700  *		aio   - structure pointer describing where data is stored
9701  *		cred_p  - user credential pointer
9702  *
9703  * Return Code: ENXIO
9704  *		EIO
9705  *		EINVAL
9706  *		value returned by aphysio
9707  *
9708  *     Context: Kernel thread context.
9709  */
9710 /* ARGSUSED */
9711 static int
9712 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9713 {
9714 	struct sd_lun	*un = NULL;
9715 	struct uio	*uio = aio->aio_uio;
9716 	int		secmask;
9717 	int		err;
9718 
9719 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9720 		return (ENXIO);
9721 	}
9722 
9723 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9724 
9725 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9726 		mutex_enter(SD_MUTEX(un));
9727 		/*
9728 		 * Because the call to sd_ready_and_valid will issue I/O we
9729 		 * must wait here if either the device is suspended or
9730 		 * if it's power level is changing.
9731 		 */
9732 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9733 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9734 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9735 		}
9736 		un->un_ncmds_in_driver++;
9737 		mutex_exit(SD_MUTEX(un));
9738 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9739 			mutex_enter(SD_MUTEX(un));
9740 			un->un_ncmds_in_driver--;
9741 			ASSERT(un->un_ncmds_in_driver >= 0);
9742 			mutex_exit(SD_MUTEX(un));
9743 			return (EIO);
9744 		}
9745 		mutex_enter(SD_MUTEX(un));
9746 		un->un_ncmds_in_driver--;
9747 		ASSERT(un->un_ncmds_in_driver >= 0);
9748 		mutex_exit(SD_MUTEX(un));
9749 	}
9750 
9751 	/*
9752 	 * Write requests are restricted to multiples of the system block size.
9753 	 */
9754 	secmask = un->un_sys_blocksize - 1;
9755 
9756 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9757 		SD_ERROR(SD_LOG_READ_WRITE, un,
9758 		    "sdawrite: file offset not modulo %d\n",
9759 		    un->un_sys_blocksize);
9760 		err = EINVAL;
9761 	} else if (uio->uio_iov->iov_len & (secmask)) {
9762 		SD_ERROR(SD_LOG_READ_WRITE, un,
9763 		    "sdawrite: transfer length not modulo %d\n",
9764 		    un->un_sys_blocksize);
9765 		err = EINVAL;
9766 	} else {
9767 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
9768 	}
9769 	return (err);
9770 }
9771 
9772 
9773 
9774 
9775 
9776 /*
9777  * Driver IO processing follows the following sequence:
9778  *
9779  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
9780  *         |                |                     ^
9781  *         v                v                     |
9782  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
9783  *         |                |                     |                   |
9784  *         v                |                     |                   |
9785  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
9786  *         |                |                     ^                   ^
9787  *         v                v                     |                   |
9788  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
9789  *         |                |                     |                   |
9790  *     +---+                |                     +------------+      +-------+
9791  *     |                    |                                  |              |
9792  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9793  *     |                    v                                  |              |
9794  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
9795  *     |                    |                                  ^              |
9796  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9797  *     |                    v                                  |              |
9798  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
9799  *     |                    |                                  ^              |
9800  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9801  *     |                    v                                  |              |
9802  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
9803  *     |                    |                                  ^              |
9804  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
9805  *     |                    v                                  |              |
9806  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
9807  *     |                    |                                  ^              |
9808  *     |                    |                                  |              |
9809  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
9810  *                          |                           ^
9811  *                          v                           |
9812  *                   sd_core_iostart()                  |
9813  *                          |                           |
9814  *                          |                           +------>(*destroypkt)()
9815  *                          +-> sd_start_cmds() <-+     |           |
9816  *                          |                     |     |           v
9817  *                          |                     |     |  scsi_destroy_pkt(9F)
9818  *                          |                     |     |
9819  *                          +->(*initpkt)()       +- sdintr()
9820  *                          |  |                        |  |
9821  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
9822  *                          |  +-> scsi_setup_cdb(9F)   |
9823  *                          |                           |
9824  *                          +--> scsi_transport(9F)     |
9825  *                                     |                |
9826  *                                     +----> SCSA ---->+
9827  *
9828  *
9829  * This code is based upon the following presumtions:
9830  *
9831  *   - iostart and iodone functions operate on buf(9S) structures. These
9832  *     functions perform the necessary operations on the buf(9S) and pass
9833  *     them along to the next function in the chain by using the macros
9834  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
9835  *     (for iodone side functions).
9836  *
9837  *   - The iostart side functions may sleep. The iodone side functions
9838  *     are called under interrupt context and may NOT sleep. Therefore
9839  *     iodone side functions also may not call iostart side functions.
9840  *     (NOTE: iostart side functions should NOT sleep for memory, as
9841  *     this could result in deadlock.)
9842  *
9843  *   - An iostart side function may call its corresponding iodone side
9844  *     function directly (if necessary).
9845  *
9846  *   - In the event of an error, an iostart side function can return a buf(9S)
9847  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
9848  *     b_error in the usual way of course).
9849  *
9850  *   - The taskq mechanism may be used by the iodone side functions to dispatch
9851  *     requests to the iostart side functions.  The iostart side functions in
9852  *     this case would be called under the context of a taskq thread, so it's
9853  *     OK for them to block/sleep/spin in this case.
9854  *
9855  *   - iostart side functions may allocate "shadow" buf(9S) structs and
9856  *     pass them along to the next function in the chain.  The corresponding
9857  *     iodone side functions must coalesce the "shadow" bufs and return
9858  *     the "original" buf to the next higher layer.
9859  *
9860  *   - The b_private field of the buf(9S) struct holds a pointer to
9861  *     an sd_xbuf struct, which contains information needed to
9862  *     construct the scsi_pkt for the command.
9863  *
9864  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
9865  *     layer must acquire & release the SD_MUTEX(un) as needed.
9866  */
9867 
9868 
9869 /*
9870  * Create taskq for all targets in the system. This is created at
9871  * _init(9E) and destroyed at _fini(9E).
9872  *
9873  * Note: here we set the minalloc to a reasonably high number to ensure that
9874  * we will have an adequate supply of task entries available at interrupt time.
9875  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
9876  * sd_create_taskq().  Since we do not want to sleep for allocations at
9877  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
9878  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
9879  * requests any one instant in time.
9880  */
9881 #define	SD_TASKQ_NUMTHREADS	8
9882 #define	SD_TASKQ_MINALLOC	256
9883 #define	SD_TASKQ_MAXALLOC	256
9884 
9885 static taskq_t	*sd_tq = NULL;
9886 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
9887 
9888 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
9889 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
9890 
9891 /*
9892  * The following task queue is being created for the write part of
9893  * read-modify-write of non-512 block size devices.
9894  * Limit the number of threads to 1 for now. This number has been choosen
9895  * considering the fact that it applies only to dvd ram drives/MO drives
9896  * currently. Performance for which is not main criteria at this stage.
9897  * Note: It needs to be explored if we can use a single taskq in future
9898  */
9899 #define	SD_WMR_TASKQ_NUMTHREADS	1
9900 static taskq_t	*sd_wmr_tq = NULL;
9901 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
9902 
9903 /*
9904  *    Function: sd_taskq_create
9905  *
9906  * Description: Create taskq thread(s) and preallocate task entries
9907  *
9908  * Return Code: Returns a pointer to the allocated taskq_t.
9909  *
9910  *     Context: Can sleep. Requires blockable context.
9911  *
9912  *       Notes: - The taskq() facility currently is NOT part of the DDI.
9913  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
9914  *		- taskq_create() will block for memory, also it will panic
9915  *		  if it cannot create the requested number of threads.
9916  *		- Currently taskq_create() creates threads that cannot be
9917  *		  swapped.
9918  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
9919  *		  supply of taskq entries at interrupt time (ie, so that we
9920  *		  do not have to sleep for memory)
9921  */
9922 
9923 static void
9924 sd_taskq_create(void)
9925 {
9926 	char	taskq_name[TASKQ_NAMELEN];
9927 
9928 	ASSERT(sd_tq == NULL);
9929 	ASSERT(sd_wmr_tq == NULL);
9930 
9931 	(void) snprintf(taskq_name, sizeof (taskq_name),
9932 	    "%s_drv_taskq", sd_label);
9933 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
9934 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
9935 	    TASKQ_PREPOPULATE));
9936 
9937 	(void) snprintf(taskq_name, sizeof (taskq_name),
9938 	    "%s_rmw_taskq", sd_label);
9939 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
9940 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
9941 	    TASKQ_PREPOPULATE));
9942 }
9943 
9944 
9945 /*
9946  *    Function: sd_taskq_delete
9947  *
9948  * Description: Complementary cleanup routine for sd_taskq_create().
9949  *
9950  *     Context: Kernel thread context.
9951  */
9952 
9953 static void
9954 sd_taskq_delete(void)
9955 {
9956 	ASSERT(sd_tq != NULL);
9957 	ASSERT(sd_wmr_tq != NULL);
9958 	taskq_destroy(sd_tq);
9959 	taskq_destroy(sd_wmr_tq);
9960 	sd_tq = NULL;
9961 	sd_wmr_tq = NULL;
9962 }
9963 
9964 
9965 /*
9966  *    Function: sdstrategy
9967  *
9968  * Description: Driver's strategy (9E) entry point function.
9969  *
9970  *   Arguments: bp - pointer to buf(9S)
9971  *
9972  * Return Code: Always returns zero
9973  *
9974  *     Context: Kernel thread context.
9975  */
9976 
9977 static int
9978 sdstrategy(struct buf *bp)
9979 {
9980 	struct sd_lun *un;
9981 
9982 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
9983 	if (un == NULL) {
9984 		bioerror(bp, EIO);
9985 		bp->b_resid = bp->b_bcount;
9986 		biodone(bp);
9987 		return (0);
9988 	}
9989 	/* As was done in the past, fail new cmds. if state is dumping. */
9990 	if (un->un_state == SD_STATE_DUMPING) {
9991 		bioerror(bp, ENXIO);
9992 		bp->b_resid = bp->b_bcount;
9993 		biodone(bp);
9994 		return (0);
9995 	}
9996 
9997 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9998 
9999 	/*
10000 	 * Commands may sneak in while we released the mutex in
10001 	 * DDI_SUSPEND, we should block new commands. However, old
10002 	 * commands that are still in the driver at this point should
10003 	 * still be allowed to drain.
10004 	 */
10005 	mutex_enter(SD_MUTEX(un));
10006 	/*
10007 	 * Must wait here if either the device is suspended or
10008 	 * if it's power level is changing.
10009 	 */
10010 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10011 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10012 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10013 	}
10014 
10015 	un->un_ncmds_in_driver++;
10016 
10017 	/*
10018 	 * atapi: Since we are running the CD for now in PIO mode we need to
10019 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10020 	 * the HBA's init_pkt routine.
10021 	 */
10022 	if (un->un_f_cfg_is_atapi == TRUE) {
10023 		mutex_exit(SD_MUTEX(un));
10024 		bp_mapin(bp);
10025 		mutex_enter(SD_MUTEX(un));
10026 	}
10027 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10028 	    un->un_ncmds_in_driver);
10029 
10030 	mutex_exit(SD_MUTEX(un));
10031 
10032 	/*
10033 	 * This will (eventually) allocate the sd_xbuf area and
10034 	 * call sd_xbuf_strategy().  We just want to return the
10035 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10036 	 * imized tail call which saves us a stack frame.
10037 	 */
10038 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10039 }
10040 
10041 
10042 /*
10043  *    Function: sd_xbuf_strategy
10044  *
10045  * Description: Function for initiating IO operations via the
10046  *		ddi_xbuf_qstrategy() mechanism.
10047  *
10048  *     Context: Kernel thread context.
10049  */
10050 
10051 static void
10052 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10053 {
10054 	struct sd_lun *un = arg;
10055 
10056 	ASSERT(bp != NULL);
10057 	ASSERT(xp != NULL);
10058 	ASSERT(un != NULL);
10059 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10060 
10061 	/*
10062 	 * Initialize the fields in the xbuf and save a pointer to the
10063 	 * xbuf in bp->b_private.
10064 	 */
10065 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10066 
10067 	/* Send the buf down the iostart chain */
10068 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10069 }
10070 
10071 
10072 /*
10073  *    Function: sd_xbuf_init
10074  *
10075  * Description: Prepare the given sd_xbuf struct for use.
10076  *
10077  *   Arguments: un - ptr to softstate
10078  *		bp - ptr to associated buf(9S)
10079  *		xp - ptr to associated sd_xbuf
10080  *		chain_type - IO chain type to use:
10081  *			SD_CHAIN_NULL
10082  *			SD_CHAIN_BUFIO
10083  *			SD_CHAIN_USCSI
10084  *			SD_CHAIN_DIRECT
10085  *			SD_CHAIN_DIRECT_PRIORITY
10086  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10087  *			initialization; may be NULL if none.
10088  *
10089  *     Context: Kernel thread context
10090  */
10091 
10092 static void
10093 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10094 	uchar_t chain_type, void *pktinfop)
10095 {
10096 	int index;
10097 
10098 	ASSERT(un != NULL);
10099 	ASSERT(bp != NULL);
10100 	ASSERT(xp != NULL);
10101 
10102 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10103 	    bp, chain_type);
10104 
10105 	xp->xb_un	= un;
10106 	xp->xb_pktp	= NULL;
10107 	xp->xb_pktinfo	= pktinfop;
10108 	xp->xb_private	= bp->b_private;
10109 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10110 
10111 	/*
10112 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10113 	 * upon the specified chain type to use.
10114 	 */
10115 	switch (chain_type) {
10116 	case SD_CHAIN_NULL:
10117 		/*
10118 		 * Fall thru to just use the values for the buf type, even
10119 		 * tho for the NULL chain these values will never be used.
10120 		 */
10121 		/* FALLTHRU */
10122 	case SD_CHAIN_BUFIO:
10123 		index = un->un_buf_chain_type;
10124 		break;
10125 	case SD_CHAIN_USCSI:
10126 		index = un->un_uscsi_chain_type;
10127 		break;
10128 	case SD_CHAIN_DIRECT:
10129 		index = un->un_direct_chain_type;
10130 		break;
10131 	case SD_CHAIN_DIRECT_PRIORITY:
10132 		index = un->un_priority_chain_type;
10133 		break;
10134 	default:
10135 		/* We're really broken if we ever get here... */
10136 		panic("sd_xbuf_init: illegal chain type!");
10137 		/*NOTREACHED*/
10138 	}
10139 
10140 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10141 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10142 
10143 	/*
10144 	 * It might be a bit easier to simply bzero the entire xbuf above,
10145 	 * but it turns out that since we init a fair number of members anyway,
10146 	 * we save a fair number cycles by doing explicit assignment of zero.
10147 	 */
10148 	xp->xb_pkt_flags	= 0;
10149 	xp->xb_dma_resid	= 0;
10150 	xp->xb_retry_count	= 0;
10151 	xp->xb_victim_retry_count = 0;
10152 	xp->xb_ua_retry_count	= 0;
10153 	xp->xb_sense_bp		= NULL;
10154 	xp->xb_sense_status	= 0;
10155 	xp->xb_sense_state	= 0;
10156 	xp->xb_sense_resid	= 0;
10157 
10158 	bp->b_private	= xp;
10159 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10160 	bp->b_resid	= 0;
10161 	bp->av_forw	= NULL;
10162 	bp->av_back	= NULL;
10163 	bioerror(bp, 0);
10164 
10165 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10166 }
10167 
10168 
10169 /*
10170  *    Function: sd_uscsi_strategy
10171  *
10172  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10173  *
10174  *   Arguments: bp - buf struct ptr
10175  *
10176  * Return Code: Always returns 0
10177  *
10178  *     Context: Kernel thread context
10179  */
10180 
10181 static int
10182 sd_uscsi_strategy(struct buf *bp)
10183 {
10184 	struct sd_lun		*un;
10185 	struct sd_uscsi_info	*uip;
10186 	struct sd_xbuf		*xp;
10187 	uchar_t			chain_type;
10188 
10189 	ASSERT(bp != NULL);
10190 
10191 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10192 	if (un == NULL) {
10193 		bioerror(bp, EIO);
10194 		bp->b_resid = bp->b_bcount;
10195 		biodone(bp);
10196 		return (0);
10197 	}
10198 
10199 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10200 
10201 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10202 
10203 	mutex_enter(SD_MUTEX(un));
10204 	/*
10205 	 * atapi: Since we are running the CD for now in PIO mode we need to
10206 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10207 	 * the HBA's init_pkt routine.
10208 	 */
10209 	if (un->un_f_cfg_is_atapi == TRUE) {
10210 		mutex_exit(SD_MUTEX(un));
10211 		bp_mapin(bp);
10212 		mutex_enter(SD_MUTEX(un));
10213 	}
10214 	un->un_ncmds_in_driver++;
10215 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10216 	    un->un_ncmds_in_driver);
10217 	mutex_exit(SD_MUTEX(un));
10218 
10219 	/*
10220 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10221 	 */
10222 	ASSERT(bp->b_private != NULL);
10223 	uip = (struct sd_uscsi_info *)bp->b_private;
10224 
10225 	switch (uip->ui_flags) {
10226 	case SD_PATH_DIRECT:
10227 		chain_type = SD_CHAIN_DIRECT;
10228 		break;
10229 	case SD_PATH_DIRECT_PRIORITY:
10230 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10231 		break;
10232 	default:
10233 		chain_type = SD_CHAIN_USCSI;
10234 		break;
10235 	}
10236 
10237 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
10238 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10239 
10240 	/* Use the index obtained within xbuf_init */
10241 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10242 
10243 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10244 
10245 	return (0);
10246 }
10247 
10248 /*
10249  *    Function: sd_send_scsi_cmd
10250  *
10251  * Description: Runs a USCSI command for user (when called thru sdioctl),
10252  *		or for the driver
10253  *
10254  *   Arguments: dev - the dev_t for the device
10255  *		incmd - ptr to a valid uscsi_cmd struct
10256  *		flag - bit flag, indicating open settings, 32/64 bit type
10257  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10258  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10259  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10260  *			to use the USCSI "direct" chain and bypass the normal
10261  *			command waitq.
10262  *
10263  * Return Code: 0 -  successful completion of the given command
10264  *		EIO - scsi_uscsi_handle_command() failed
10265  *		ENXIO  - soft state not found for specified dev
10266  *		EINVAL
10267  *		EFAULT - copyin/copyout error
10268  *		return code of scsi_uscsi_handle_command():
10269  *			EIO
10270  *			ENXIO
10271  *			EACCES
10272  *
10273  *     Context: Waits for command to complete. Can sleep.
10274  */
10275 
10276 static int
10277 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10278 	enum uio_seg dataspace, int path_flag)
10279 {
10280 	struct sd_uscsi_info	*uip;
10281 	struct uscsi_cmd	*uscmd;
10282 	struct sd_lun	*un;
10283 	int	format = 0;
10284 	int	rval;
10285 
10286 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10287 	if (un == NULL) {
10288 		return (ENXIO);
10289 	}
10290 
10291 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10292 
10293 #ifdef SDDEBUG
10294 	switch (dataspace) {
10295 	case UIO_USERSPACE:
10296 		SD_TRACE(SD_LOG_IO, un,
10297 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10298 		break;
10299 	case UIO_SYSSPACE:
10300 		SD_TRACE(SD_LOG_IO, un,
10301 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10302 		break;
10303 	default:
10304 		SD_TRACE(SD_LOG_IO, un,
10305 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10306 		break;
10307 	}
10308 #endif
10309 
10310 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10311 	    SD_ADDRESS(un), &uscmd);
10312 	if (rval != 0) {
10313 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10314 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10315 		return (rval);
10316 	}
10317 
10318 	if ((uscmd->uscsi_cdb != NULL) &&
10319 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10320 		mutex_enter(SD_MUTEX(un));
10321 		un->un_f_format_in_progress = TRUE;
10322 		mutex_exit(SD_MUTEX(un));
10323 		format = 1;
10324 	}
10325 
10326 	/*
10327 	 * Allocate an sd_uscsi_info struct and fill it with the info
10328 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10329 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10330 	 * since we allocate the buf here in this function, we do not
10331 	 * need to preserve the prior contents of b_private.
10332 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10333 	 */
10334 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10335 	uip->ui_flags = path_flag;
10336 	uip->ui_cmdp = uscmd;
10337 
10338 	/*
10339 	 * Commands sent with priority are intended for error recovery
10340 	 * situations, and do not have retries performed.
10341 	 */
10342 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10343 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10344 	}
10345 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10346 
10347 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10348 	    sd_uscsi_strategy, NULL, uip);
10349 
10350 #ifdef SDDEBUG
10351 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10352 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10353 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10354 	if (uscmd->uscsi_bufaddr != NULL) {
10355 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10356 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10357 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10358 		if (dataspace == UIO_SYSSPACE) {
10359 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10360 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10361 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10362 		}
10363 	}
10364 #endif
10365 
10366 	if (format == 1) {
10367 		mutex_enter(SD_MUTEX(un));
10368 		un->un_f_format_in_progress = FALSE;
10369 		mutex_exit(SD_MUTEX(un));
10370 	}
10371 
10372 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10373 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10374 
10375 	return (rval);
10376 }
10377 
10378 
10379 /*
10380  *    Function: sd_buf_iodone
10381  *
10382  * Description: Frees the sd_xbuf & returns the buf to its originator.
10383  *
10384  *     Context: May be called from interrupt context.
10385  */
10386 /* ARGSUSED */
10387 static void
10388 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10389 {
10390 	struct sd_xbuf *xp;
10391 
10392 	ASSERT(un != NULL);
10393 	ASSERT(bp != NULL);
10394 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10395 
10396 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10397 
10398 	xp = SD_GET_XBUF(bp);
10399 	ASSERT(xp != NULL);
10400 
10401 	mutex_enter(SD_MUTEX(un));
10402 
10403 	/*
10404 	 * Grab time when the cmd completed.
10405 	 * This is used for determining if the system has been
10406 	 * idle long enough to make it idle to the PM framework.
10407 	 * This is for lowering the overhead, and therefore improving
10408 	 * performance per I/O operation.
10409 	 */
10410 	un->un_pm_idle_time = ddi_get_time();
10411 
10412 	un->un_ncmds_in_driver--;
10413 	ASSERT(un->un_ncmds_in_driver >= 0);
10414 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10415 	    un->un_ncmds_in_driver);
10416 
10417 	mutex_exit(SD_MUTEX(un));
10418 
10419 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10420 	biodone(bp);				/* bp is gone after this */
10421 
10422 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10423 }
10424 
10425 
10426 /*
10427  *    Function: sd_uscsi_iodone
10428  *
10429  * Description: Frees the sd_xbuf & returns the buf to its originator.
10430  *
10431  *     Context: May be called from interrupt context.
10432  */
10433 /* ARGSUSED */
10434 static void
10435 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10436 {
10437 	struct sd_xbuf *xp;
10438 
10439 	ASSERT(un != NULL);
10440 	ASSERT(bp != NULL);
10441 
10442 	xp = SD_GET_XBUF(bp);
10443 	ASSERT(xp != NULL);
10444 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10445 
10446 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10447 
10448 	bp->b_private = xp->xb_private;
10449 
10450 	mutex_enter(SD_MUTEX(un));
10451 
10452 	/*
10453 	 * Grab time when the cmd completed.
10454 	 * This is used for determining if the system has been
10455 	 * idle long enough to make it idle to the PM framework.
10456 	 * This is for lowering the overhead, and therefore improving
10457 	 * performance per I/O operation.
10458 	 */
10459 	un->un_pm_idle_time = ddi_get_time();
10460 
10461 	un->un_ncmds_in_driver--;
10462 	ASSERT(un->un_ncmds_in_driver >= 0);
10463 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10464 	    un->un_ncmds_in_driver);
10465 
10466 	mutex_exit(SD_MUTEX(un));
10467 
10468 	kmem_free(xp, sizeof (struct sd_xbuf));
10469 	biodone(bp);
10470 
10471 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10472 }
10473 
10474 
10475 /*
10476  *    Function: sd_mapblockaddr_iostart
10477  *
10478  * Description: Verify request lies withing the partition limits for
10479  *		the indicated minor device.  Issue "overrun" buf if
10480  *		request would exceed partition range.  Converts
10481  *		partition-relative block address to absolute.
10482  *
10483  *     Context: Can sleep
10484  *
10485  *      Issues: This follows what the old code did, in terms of accessing
10486  *		some of the partition info in the unit struct without holding
10487  *		the mutext.  This is a general issue, if the partition info
10488  *		can be altered while IO is in progress... as soon as we send
10489  *		a buf, its partitioning can be invalid before it gets to the
10490  *		device.  Probably the right fix is to move partitioning out
10491  *		of the driver entirely.
10492  */
10493 
10494 static void
10495 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10496 {
10497 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10498 	daddr_t	blocknum;	/* Block number specified by the buf */
10499 	size_t	requested_nblocks;
10500 	size_t	available_nblocks;
10501 	int	partition;
10502 	diskaddr_t	partition_offset;
10503 	struct sd_xbuf *xp;
10504 
10505 
10506 	ASSERT(un != NULL);
10507 	ASSERT(bp != NULL);
10508 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10509 
10510 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10511 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10512 
10513 	xp = SD_GET_XBUF(bp);
10514 	ASSERT(xp != NULL);
10515 
10516 	/*
10517 	 * If the geometry is not indicated as valid, attempt to access
10518 	 * the unit & verify the geometry/label. This can be the case for
10519 	 * removable-media devices, of if the device was opened in
10520 	 * NDELAY/NONBLOCK mode.
10521 	 */
10522 	if (!SD_IS_VALID_LABEL(un) &&
10523 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10524 		/*
10525 		 * For removable devices it is possible to start an I/O
10526 		 * without a media by opening the device in nodelay mode.
10527 		 * Also for writable CDs there can be many scenarios where
10528 		 * there is no geometry yet but volume manager is trying to
10529 		 * issue a read() just because it can see TOC on the CD. So
10530 		 * do not print a message for removables.
10531 		 */
10532 		if (!un->un_f_has_removable_media) {
10533 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10534 			    "i/o to invalid geometry\n");
10535 		}
10536 		bioerror(bp, EIO);
10537 		bp->b_resid = bp->b_bcount;
10538 		SD_BEGIN_IODONE(index, un, bp);
10539 		return;
10540 	}
10541 
10542 	partition = SDPART(bp->b_edev);
10543 
10544 	nblocks = 0;
10545 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10546 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10547 
10548 	/*
10549 	 * blocknum is the starting block number of the request. At this
10550 	 * point it is still relative to the start of the minor device.
10551 	 */
10552 	blocknum = xp->xb_blkno;
10553 
10554 	/*
10555 	 * Legacy: If the starting block number is one past the last block
10556 	 * in the partition, do not set B_ERROR in the buf.
10557 	 */
10558 	if (blocknum == nblocks)  {
10559 		goto error_exit;
10560 	}
10561 
10562 	/*
10563 	 * Confirm that the first block of the request lies within the
10564 	 * partition limits. Also the requested number of bytes must be
10565 	 * a multiple of the system block size.
10566 	 */
10567 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10568 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10569 		bp->b_flags |= B_ERROR;
10570 		goto error_exit;
10571 	}
10572 
10573 	/*
10574 	 * If the requsted # blocks exceeds the available # blocks, that
10575 	 * is an overrun of the partition.
10576 	 */
10577 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10578 	available_nblocks = (size_t)(nblocks - blocknum);
10579 	ASSERT(nblocks >= blocknum);
10580 
10581 	if (requested_nblocks > available_nblocks) {
10582 		/*
10583 		 * Allocate an "overrun" buf to allow the request to proceed
10584 		 * for the amount of space available in the partition. The
10585 		 * amount not transferred will be added into the b_resid
10586 		 * when the operation is complete. The overrun buf
10587 		 * replaces the original buf here, and the original buf
10588 		 * is saved inside the overrun buf, for later use.
10589 		 */
10590 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10591 		    (offset_t)(requested_nblocks - available_nblocks));
10592 		size_t count = bp->b_bcount - resid;
10593 		/*
10594 		 * Note: count is an unsigned entity thus it'll NEVER
10595 		 * be less than 0 so ASSERT the original values are
10596 		 * correct.
10597 		 */
10598 		ASSERT(bp->b_bcount >= resid);
10599 
10600 		bp = sd_bioclone_alloc(bp, count, blocknum,
10601 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
10602 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10603 		ASSERT(xp != NULL);
10604 	}
10605 
10606 	/* At this point there should be no residual for this buf. */
10607 	ASSERT(bp->b_resid == 0);
10608 
10609 	/* Convert the block number to an absolute address. */
10610 	xp->xb_blkno += partition_offset;
10611 
10612 	SD_NEXT_IOSTART(index, un, bp);
10613 
10614 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10615 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10616 
10617 	return;
10618 
10619 error_exit:
10620 	bp->b_resid = bp->b_bcount;
10621 	SD_BEGIN_IODONE(index, un, bp);
10622 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10623 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10624 }
10625 
10626 
10627 /*
10628  *    Function: sd_mapblockaddr_iodone
10629  *
10630  * Description: Completion-side processing for partition management.
10631  *
10632  *     Context: May be called under interrupt context
10633  */
10634 
10635 static void
10636 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10637 {
10638 	/* int	partition; */	/* Not used, see below. */
10639 	ASSERT(un != NULL);
10640 	ASSERT(bp != NULL);
10641 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10642 
10643 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10644 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10645 
10646 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10647 		/*
10648 		 * We have an "overrun" buf to deal with...
10649 		 */
10650 		struct sd_xbuf	*xp;
10651 		struct buf	*obp;	/* ptr to the original buf */
10652 
10653 		xp = SD_GET_XBUF(bp);
10654 		ASSERT(xp != NULL);
10655 
10656 		/* Retrieve the pointer to the original buf */
10657 		obp = (struct buf *)xp->xb_private;
10658 		ASSERT(obp != NULL);
10659 
10660 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10661 		bioerror(obp, bp->b_error);
10662 
10663 		sd_bioclone_free(bp);
10664 
10665 		/*
10666 		 * Get back the original buf.
10667 		 * Note that since the restoration of xb_blkno below
10668 		 * was removed, the sd_xbuf is not needed.
10669 		 */
10670 		bp = obp;
10671 		/*
10672 		 * xp = SD_GET_XBUF(bp);
10673 		 * ASSERT(xp != NULL);
10674 		 */
10675 	}
10676 
10677 	/*
10678 	 * Convert sd->xb_blkno back to a minor-device relative value.
10679 	 * Note: this has been commented out, as it is not needed in the
10680 	 * current implementation of the driver (ie, since this function
10681 	 * is at the top of the layering chains, so the info will be
10682 	 * discarded) and it is in the "hot" IO path.
10683 	 *
10684 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
10685 	 * xp->xb_blkno -= un->un_offset[partition];
10686 	 */
10687 
10688 	SD_NEXT_IODONE(index, un, bp);
10689 
10690 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10691 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
10692 }
10693 
10694 
10695 /*
10696  *    Function: sd_mapblocksize_iostart
10697  *
10698  * Description: Convert between system block size (un->un_sys_blocksize)
10699  *		and target block size (un->un_tgt_blocksize).
10700  *
10701  *     Context: Can sleep to allocate resources.
10702  *
10703  * Assumptions: A higher layer has already performed any partition validation,
10704  *		and converted the xp->xb_blkno to an absolute value relative
10705  *		to the start of the device.
10706  *
10707  *		It is also assumed that the higher layer has implemented
10708  *		an "overrun" mechanism for the case where the request would
10709  *		read/write beyond the end of a partition.  In this case we
10710  *		assume (and ASSERT) that bp->b_resid == 0.
10711  *
10712  *		Note: The implementation for this routine assumes the target
10713  *		block size remains constant between allocation and transport.
10714  */
10715 
10716 static void
10717 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
10718 {
10719 	struct sd_mapblocksize_info	*bsp;
10720 	struct sd_xbuf			*xp;
10721 	offset_t first_byte;
10722 	daddr_t	start_block, end_block;
10723 	daddr_t	request_bytes;
10724 	ushort_t is_aligned = FALSE;
10725 
10726 	ASSERT(un != NULL);
10727 	ASSERT(bp != NULL);
10728 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10729 	ASSERT(bp->b_resid == 0);
10730 
10731 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10732 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
10733 
10734 	/*
10735 	 * For a non-writable CD, a write request is an error
10736 	 */
10737 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
10738 	    (un->un_f_mmc_writable_media == FALSE)) {
10739 		bioerror(bp, EIO);
10740 		bp->b_resid = bp->b_bcount;
10741 		SD_BEGIN_IODONE(index, un, bp);
10742 		return;
10743 	}
10744 
10745 	/*
10746 	 * We do not need a shadow buf if the device is using
10747 	 * un->un_sys_blocksize as its block size or if bcount == 0.
10748 	 * In this case there is no layer-private data block allocated.
10749 	 */
10750 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
10751 	    (bp->b_bcount == 0)) {
10752 		goto done;
10753 	}
10754 
10755 #if defined(__i386) || defined(__amd64)
10756 	/* We do not support non-block-aligned transfers for ROD devices */
10757 	ASSERT(!ISROD(un));
10758 #endif
10759 
10760 	xp = SD_GET_XBUF(bp);
10761 	ASSERT(xp != NULL);
10762 
10763 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10764 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
10765 	    un->un_tgt_blocksize, un->un_sys_blocksize);
10766 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10767 	    "request start block:0x%x\n", xp->xb_blkno);
10768 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10769 	    "request len:0x%x\n", bp->b_bcount);
10770 
10771 	/*
10772 	 * Allocate the layer-private data area for the mapblocksize layer.
10773 	 * Layers are allowed to use the xp_private member of the sd_xbuf
10774 	 * struct to store the pointer to their layer-private data block, but
10775 	 * each layer also has the responsibility of restoring the prior
10776 	 * contents of xb_private before returning the buf/xbuf to the
10777 	 * higher layer that sent it.
10778 	 *
10779 	 * Here we save the prior contents of xp->xb_private into the
10780 	 * bsp->mbs_oprivate field of our layer-private data area. This value
10781 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
10782 	 * the layer-private area and returning the buf/xbuf to the layer
10783 	 * that sent it.
10784 	 *
10785 	 * Note that here we use kmem_zalloc for the allocation as there are
10786 	 * parts of the mapblocksize code that expect certain fields to be
10787 	 * zero unless explicitly set to a required value.
10788 	 */
10789 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
10790 	bsp->mbs_oprivate = xp->xb_private;
10791 	xp->xb_private = bsp;
10792 
10793 	/*
10794 	 * This treats the data on the disk (target) as an array of bytes.
10795 	 * first_byte is the byte offset, from the beginning of the device,
10796 	 * to the location of the request. This is converted from a
10797 	 * un->un_sys_blocksize block address to a byte offset, and then back
10798 	 * to a block address based upon a un->un_tgt_blocksize block size.
10799 	 *
10800 	 * xp->xb_blkno should be absolute upon entry into this function,
10801 	 * but, but it is based upon partitions that use the "system"
10802 	 * block size. It must be adjusted to reflect the block size of
10803 	 * the target.
10804 	 *
10805 	 * Note that end_block is actually the block that follows the last
10806 	 * block of the request, but that's what is needed for the computation.
10807 	 */
10808 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
10809 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
10810 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
10811 	    un->un_tgt_blocksize;
10812 
10813 	/* request_bytes is rounded up to a multiple of the target block size */
10814 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
10815 
10816 	/*
10817 	 * See if the starting address of the request and the request
10818 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
10819 	 * then we do not need to allocate a shadow buf to handle the request.
10820 	 */
10821 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
10822 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
10823 		is_aligned = TRUE;
10824 	}
10825 
10826 	if ((bp->b_flags & B_READ) == 0) {
10827 		/*
10828 		 * Lock the range for a write operation. An aligned request is
10829 		 * considered a simple write; otherwise the request must be a
10830 		 * read-modify-write.
10831 		 */
10832 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
10833 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
10834 	}
10835 
10836 	/*
10837 	 * Alloc a shadow buf if the request is not aligned. Also, this is
10838 	 * where the READ command is generated for a read-modify-write. (The
10839 	 * write phase is deferred until after the read completes.)
10840 	 */
10841 	if (is_aligned == FALSE) {
10842 
10843 		struct sd_mapblocksize_info	*shadow_bsp;
10844 		struct sd_xbuf	*shadow_xp;
10845 		struct buf	*shadow_bp;
10846 
10847 		/*
10848 		 * Allocate the shadow buf and it associated xbuf. Note that
10849 		 * after this call the xb_blkno value in both the original
10850 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
10851 		 * same: absolute relative to the start of the device, and
10852 		 * adjusted for the target block size. The b_blkno in the
10853 		 * shadow buf will also be set to this value. We should never
10854 		 * change b_blkno in the original bp however.
10855 		 *
10856 		 * Note also that the shadow buf will always need to be a
10857 		 * READ command, regardless of whether the incoming command
10858 		 * is a READ or a WRITE.
10859 		 */
10860 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
10861 		    xp->xb_blkno,
10862 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
10863 
10864 		shadow_xp = SD_GET_XBUF(shadow_bp);
10865 
10866 		/*
10867 		 * Allocate the layer-private data for the shadow buf.
10868 		 * (No need to preserve xb_private in the shadow xbuf.)
10869 		 */
10870 		shadow_xp->xb_private = shadow_bsp =
10871 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
10872 
10873 		/*
10874 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
10875 		 * to figure out where the start of the user data is (based upon
10876 		 * the system block size) in the data returned by the READ
10877 		 * command (which will be based upon the target blocksize). Note
10878 		 * that this is only really used if the request is unaligned.
10879 		 */
10880 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
10881 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
10882 		ASSERT((bsp->mbs_copy_offset >= 0) &&
10883 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
10884 
10885 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
10886 
10887 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
10888 
10889 		/* Transfer the wmap (if any) to the shadow buf */
10890 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
10891 		bsp->mbs_wmp = NULL;
10892 
10893 		/*
10894 		 * The shadow buf goes on from here in place of the
10895 		 * original buf.
10896 		 */
10897 		shadow_bsp->mbs_orig_bp = bp;
10898 		bp = shadow_bp;
10899 	}
10900 
10901 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10902 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
10903 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10904 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
10905 	    request_bytes);
10906 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10907 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
10908 
10909 done:
10910 	SD_NEXT_IOSTART(index, un, bp);
10911 
10912 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10913 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
10914 }
10915 
10916 
10917 /*
10918  *    Function: sd_mapblocksize_iodone
10919  *
10920  * Description: Completion side processing for block-size mapping.
10921  *
10922  *     Context: May be called under interrupt context
10923  */
10924 
10925 static void
10926 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
10927 {
10928 	struct sd_mapblocksize_info	*bsp;
10929 	struct sd_xbuf	*xp;
10930 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
10931 	struct buf	*orig_bp;	/* ptr to the original buf */
10932 	offset_t	shadow_end;
10933 	offset_t	request_end;
10934 	offset_t	shadow_start;
10935 	ssize_t		copy_offset;
10936 	size_t		copy_length;
10937 	size_t		shortfall;
10938 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
10939 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
10940 
10941 	ASSERT(un != NULL);
10942 	ASSERT(bp != NULL);
10943 
10944 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10945 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
10946 
10947 	/*
10948 	 * There is no shadow buf or layer-private data if the target is
10949 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
10950 	 */
10951 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
10952 	    (bp->b_bcount == 0)) {
10953 		goto exit;
10954 	}
10955 
10956 	xp = SD_GET_XBUF(bp);
10957 	ASSERT(xp != NULL);
10958 
10959 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
10960 	bsp = xp->xb_private;
10961 
10962 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
10963 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
10964 
10965 	if (is_write) {
10966 		/*
10967 		 * For a WRITE request we must free up the block range that
10968 		 * we have locked up.  This holds regardless of whether this is
10969 		 * an aligned write request or a read-modify-write request.
10970 		 */
10971 		sd_range_unlock(un, bsp->mbs_wmp);
10972 		bsp->mbs_wmp = NULL;
10973 	}
10974 
10975 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
10976 		/*
10977 		 * An aligned read or write command will have no shadow buf;
10978 		 * there is not much else to do with it.
10979 		 */
10980 		goto done;
10981 	}
10982 
10983 	orig_bp = bsp->mbs_orig_bp;
10984 	ASSERT(orig_bp != NULL);
10985 	orig_xp = SD_GET_XBUF(orig_bp);
10986 	ASSERT(orig_xp != NULL);
10987 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10988 
10989 	if (!is_write && has_wmap) {
10990 		/*
10991 		 * A READ with a wmap means this is the READ phase of a
10992 		 * read-modify-write. If an error occurred on the READ then
10993 		 * we do not proceed with the WRITE phase or copy any data.
10994 		 * Just release the write maps and return with an error.
10995 		 */
10996 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
10997 			orig_bp->b_resid = orig_bp->b_bcount;
10998 			bioerror(orig_bp, bp->b_error);
10999 			sd_range_unlock(un, bsp->mbs_wmp);
11000 			goto freebuf_done;
11001 		}
11002 	}
11003 
11004 	/*
11005 	 * Here is where we set up to copy the data from the shadow buf
11006 	 * into the space associated with the original buf.
11007 	 *
11008 	 * To deal with the conversion between block sizes, these
11009 	 * computations treat the data as an array of bytes, with the
11010 	 * first byte (byte 0) corresponding to the first byte in the
11011 	 * first block on the disk.
11012 	 */
11013 
11014 	/*
11015 	 * shadow_start and shadow_len indicate the location and size of
11016 	 * the data returned with the shadow IO request.
11017 	 */
11018 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11019 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11020 
11021 	/*
11022 	 * copy_offset gives the offset (in bytes) from the start of the first
11023 	 * block of the READ request to the beginning of the data.  We retrieve
11024 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11025 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11026 	 * data to be copied (in bytes).
11027 	 */
11028 	copy_offset  = bsp->mbs_copy_offset;
11029 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11030 	copy_length  = orig_bp->b_bcount;
11031 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11032 
11033 	/*
11034 	 * Set up the resid and error fields of orig_bp as appropriate.
11035 	 */
11036 	if (shadow_end >= request_end) {
11037 		/* We got all the requested data; set resid to zero */
11038 		orig_bp->b_resid = 0;
11039 	} else {
11040 		/*
11041 		 * We failed to get enough data to fully satisfy the original
11042 		 * request. Just copy back whatever data we got and set
11043 		 * up the residual and error code as required.
11044 		 *
11045 		 * 'shortfall' is the amount by which the data received with the
11046 		 * shadow buf has "fallen short" of the requested amount.
11047 		 */
11048 		shortfall = (size_t)(request_end - shadow_end);
11049 
11050 		if (shortfall > orig_bp->b_bcount) {
11051 			/*
11052 			 * We did not get enough data to even partially
11053 			 * fulfill the original request.  The residual is
11054 			 * equal to the amount requested.
11055 			 */
11056 			orig_bp->b_resid = orig_bp->b_bcount;
11057 		} else {
11058 			/*
11059 			 * We did not get all the data that we requested
11060 			 * from the device, but we will try to return what
11061 			 * portion we did get.
11062 			 */
11063 			orig_bp->b_resid = shortfall;
11064 		}
11065 		ASSERT(copy_length >= orig_bp->b_resid);
11066 		copy_length  -= orig_bp->b_resid;
11067 	}
11068 
11069 	/* Propagate the error code from the shadow buf to the original buf */
11070 	bioerror(orig_bp, bp->b_error);
11071 
11072 	if (is_write) {
11073 		goto freebuf_done;	/* No data copying for a WRITE */
11074 	}
11075 
11076 	if (has_wmap) {
11077 		/*
11078 		 * This is a READ command from the READ phase of a
11079 		 * read-modify-write request. We have to copy the data given
11080 		 * by the user OVER the data returned by the READ command,
11081 		 * then convert the command from a READ to a WRITE and send
11082 		 * it back to the target.
11083 		 */
11084 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11085 		    copy_length);
11086 
11087 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11088 
11089 		/*
11090 		 * Dispatch the WRITE command to the taskq thread, which
11091 		 * will in turn send the command to the target. When the
11092 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11093 		 * will get called again as part of the iodone chain
11094 		 * processing for it. Note that we will still be dealing
11095 		 * with the shadow buf at that point.
11096 		 */
11097 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11098 		    KM_NOSLEEP) != 0) {
11099 			/*
11100 			 * Dispatch was successful so we are done. Return
11101 			 * without going any higher up the iodone chain. Do
11102 			 * not free up any layer-private data until after the
11103 			 * WRITE completes.
11104 			 */
11105 			return;
11106 		}
11107 
11108 		/*
11109 		 * Dispatch of the WRITE command failed; set up the error
11110 		 * condition and send this IO back up the iodone chain.
11111 		 */
11112 		bioerror(orig_bp, EIO);
11113 		orig_bp->b_resid = orig_bp->b_bcount;
11114 
11115 	} else {
11116 		/*
11117 		 * This is a regular READ request (ie, not a RMW). Copy the
11118 		 * data from the shadow buf into the original buf. The
11119 		 * copy_offset compensates for any "misalignment" between the
11120 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11121 		 * original buf (with its un->un_sys_blocksize blocks).
11122 		 */
11123 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11124 		    copy_length);
11125 	}
11126 
11127 freebuf_done:
11128 
11129 	/*
11130 	 * At this point we still have both the shadow buf AND the original
11131 	 * buf to deal with, as well as the layer-private data area in each.
11132 	 * Local variables are as follows:
11133 	 *
11134 	 * bp -- points to shadow buf
11135 	 * xp -- points to xbuf of shadow buf
11136 	 * bsp -- points to layer-private data area of shadow buf
11137 	 * orig_bp -- points to original buf
11138 	 *
11139 	 * First free the shadow buf and its associated xbuf, then free the
11140 	 * layer-private data area from the shadow buf. There is no need to
11141 	 * restore xb_private in the shadow xbuf.
11142 	 */
11143 	sd_shadow_buf_free(bp);
11144 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11145 
11146 	/*
11147 	 * Now update the local variables to point to the original buf, xbuf,
11148 	 * and layer-private area.
11149 	 */
11150 	bp = orig_bp;
11151 	xp = SD_GET_XBUF(bp);
11152 	ASSERT(xp != NULL);
11153 	ASSERT(xp == orig_xp);
11154 	bsp = xp->xb_private;
11155 	ASSERT(bsp != NULL);
11156 
11157 done:
11158 	/*
11159 	 * Restore xb_private to whatever it was set to by the next higher
11160 	 * layer in the chain, then free the layer-private data area.
11161 	 */
11162 	xp->xb_private = bsp->mbs_oprivate;
11163 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11164 
11165 exit:
11166 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11167 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11168 
11169 	SD_NEXT_IODONE(index, un, bp);
11170 }
11171 
11172 
11173 /*
11174  *    Function: sd_checksum_iostart
11175  *
11176  * Description: A stub function for a layer that's currently not used.
11177  *		For now just a placeholder.
11178  *
11179  *     Context: Kernel thread context
11180  */
11181 
11182 static void
11183 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11184 {
11185 	ASSERT(un != NULL);
11186 	ASSERT(bp != NULL);
11187 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11188 	SD_NEXT_IOSTART(index, un, bp);
11189 }
11190 
11191 
11192 /*
11193  *    Function: sd_checksum_iodone
11194  *
11195  * Description: A stub function for a layer that's currently not used.
11196  *		For now just a placeholder.
11197  *
11198  *     Context: May be called under interrupt context
11199  */
11200 
11201 static void
11202 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11203 {
11204 	ASSERT(un != NULL);
11205 	ASSERT(bp != NULL);
11206 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11207 	SD_NEXT_IODONE(index, un, bp);
11208 }
11209 
11210 
11211 /*
11212  *    Function: sd_checksum_uscsi_iostart
11213  *
11214  * Description: A stub function for a layer that's currently not used.
11215  *		For now just a placeholder.
11216  *
11217  *     Context: Kernel thread context
11218  */
11219 
11220 static void
11221 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11222 {
11223 	ASSERT(un != NULL);
11224 	ASSERT(bp != NULL);
11225 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11226 	SD_NEXT_IOSTART(index, un, bp);
11227 }
11228 
11229 
11230 /*
11231  *    Function: sd_checksum_uscsi_iodone
11232  *
11233  * Description: A stub function for a layer that's currently not used.
11234  *		For now just a placeholder.
11235  *
11236  *     Context: May be called under interrupt context
11237  */
11238 
11239 static void
11240 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11241 {
11242 	ASSERT(un != NULL);
11243 	ASSERT(bp != NULL);
11244 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11245 	SD_NEXT_IODONE(index, un, bp);
11246 }
11247 
11248 
11249 /*
11250  *    Function: sd_pm_iostart
11251  *
11252  * Description: iostart-side routine for Power mangement.
11253  *
11254  *     Context: Kernel thread context
11255  */
11256 
11257 static void
11258 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11259 {
11260 	ASSERT(un != NULL);
11261 	ASSERT(bp != NULL);
11262 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11263 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11264 
11265 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11266 
11267 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11268 		/*
11269 		 * Set up to return the failed buf back up the 'iodone'
11270 		 * side of the calling chain.
11271 		 */
11272 		bioerror(bp, EIO);
11273 		bp->b_resid = bp->b_bcount;
11274 
11275 		SD_BEGIN_IODONE(index, un, bp);
11276 
11277 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11278 		return;
11279 	}
11280 
11281 	SD_NEXT_IOSTART(index, un, bp);
11282 
11283 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11284 }
11285 
11286 
11287 /*
11288  *    Function: sd_pm_iodone
11289  *
11290  * Description: iodone-side routine for power mangement.
11291  *
11292  *     Context: may be called from interrupt context
11293  */
11294 
11295 static void
11296 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11297 {
11298 	ASSERT(un != NULL);
11299 	ASSERT(bp != NULL);
11300 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11301 
11302 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11303 
11304 	/*
11305 	 * After attach the following flag is only read, so don't
11306 	 * take the penalty of acquiring a mutex for it.
11307 	 */
11308 	if (un->un_f_pm_is_enabled == TRUE) {
11309 		sd_pm_exit(un);
11310 	}
11311 
11312 	SD_NEXT_IODONE(index, un, bp);
11313 
11314 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11315 }
11316 
11317 
11318 /*
11319  *    Function: sd_core_iostart
11320  *
11321  * Description: Primary driver function for enqueuing buf(9S) structs from
11322  *		the system and initiating IO to the target device
11323  *
11324  *     Context: Kernel thread context. Can sleep.
11325  *
11326  * Assumptions:  - The given xp->xb_blkno is absolute
11327  *		   (ie, relative to the start of the device).
11328  *		 - The IO is to be done using the native blocksize of
11329  *		   the device, as specified in un->un_tgt_blocksize.
11330  */
11331 /* ARGSUSED */
11332 static void
11333 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11334 {
11335 	struct sd_xbuf *xp;
11336 
11337 	ASSERT(un != NULL);
11338 	ASSERT(bp != NULL);
11339 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11340 	ASSERT(bp->b_resid == 0);
11341 
11342 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11343 
11344 	xp = SD_GET_XBUF(bp);
11345 	ASSERT(xp != NULL);
11346 
11347 	mutex_enter(SD_MUTEX(un));
11348 
11349 	/*
11350 	 * If we are currently in the failfast state, fail any new IO
11351 	 * that has B_FAILFAST set, then return.
11352 	 */
11353 	if ((bp->b_flags & B_FAILFAST) &&
11354 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11355 		mutex_exit(SD_MUTEX(un));
11356 		bioerror(bp, EIO);
11357 		bp->b_resid = bp->b_bcount;
11358 		SD_BEGIN_IODONE(index, un, bp);
11359 		return;
11360 	}
11361 
11362 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11363 		/*
11364 		 * Priority command -- transport it immediately.
11365 		 *
11366 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11367 		 * because all direct priority commands should be associated
11368 		 * with error recovery actions which we don't want to retry.
11369 		 */
11370 		sd_start_cmds(un, bp);
11371 	} else {
11372 		/*
11373 		 * Normal command -- add it to the wait queue, then start
11374 		 * transporting commands from the wait queue.
11375 		 */
11376 		sd_add_buf_to_waitq(un, bp);
11377 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11378 		sd_start_cmds(un, NULL);
11379 	}
11380 
11381 	mutex_exit(SD_MUTEX(un));
11382 
11383 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11384 }
11385 
11386 
11387 /*
11388  *    Function: sd_init_cdb_limits
11389  *
11390  * Description: This is to handle scsi_pkt initialization differences
11391  *		between the driver platforms.
11392  *
11393  *		Legacy behaviors:
11394  *
11395  *		If the block number or the sector count exceeds the
11396  *		capabilities of a Group 0 command, shift over to a
11397  *		Group 1 command. We don't blindly use Group 1
11398  *		commands because a) some drives (CDC Wren IVs) get a
11399  *		bit confused, and b) there is probably a fair amount
11400  *		of speed difference for a target to receive and decode
11401  *		a 10 byte command instead of a 6 byte command.
11402  *
11403  *		The xfer time difference of 6 vs 10 byte CDBs is
11404  *		still significant so this code is still worthwhile.
11405  *		10 byte CDBs are very inefficient with the fas HBA driver
11406  *		and older disks. Each CDB byte took 1 usec with some
11407  *		popular disks.
11408  *
11409  *     Context: Must be called at attach time
11410  */
11411 
11412 static void
11413 sd_init_cdb_limits(struct sd_lun *un)
11414 {
11415 	int hba_cdb_limit;
11416 
11417 	/*
11418 	 * Use CDB_GROUP1 commands for most devices except for
11419 	 * parallel SCSI fixed drives in which case we get better
11420 	 * performance using CDB_GROUP0 commands (where applicable).
11421 	 */
11422 	un->un_mincdb = SD_CDB_GROUP1;
11423 #if !defined(__fibre)
11424 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11425 	    !un->un_f_has_removable_media) {
11426 		un->un_mincdb = SD_CDB_GROUP0;
11427 	}
11428 #endif
11429 
11430 	/*
11431 	 * Try to read the max-cdb-length supported by HBA.
11432 	 */
11433 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11434 	if (0 >= un->un_max_hba_cdb) {
11435 		un->un_max_hba_cdb = CDB_GROUP4;
11436 		hba_cdb_limit = SD_CDB_GROUP4;
11437 	} else if (0 < un->un_max_hba_cdb &&
11438 	    un->un_max_hba_cdb < CDB_GROUP1) {
11439 		hba_cdb_limit = SD_CDB_GROUP0;
11440 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11441 	    un->un_max_hba_cdb < CDB_GROUP5) {
11442 		hba_cdb_limit = SD_CDB_GROUP1;
11443 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11444 	    un->un_max_hba_cdb < CDB_GROUP4) {
11445 		hba_cdb_limit = SD_CDB_GROUP5;
11446 	} else {
11447 		hba_cdb_limit = SD_CDB_GROUP4;
11448 	}
11449 
11450 	/*
11451 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11452 	 * commands for fixed disks unless we are building for a 32 bit
11453 	 * kernel.
11454 	 */
11455 #ifdef _LP64
11456 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11457 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11458 #else
11459 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11460 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11461 #endif
11462 
11463 	/*
11464 	 * x86 systems require the PKT_DMA_PARTIAL flag
11465 	 */
11466 #if defined(__x86)
11467 	un->un_pkt_flags = PKT_DMA_PARTIAL;
11468 #else
11469 	un->un_pkt_flags = 0;
11470 #endif
11471 
11472 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11473 	    ? sizeof (struct scsi_arq_status) : 1);
11474 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11475 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11476 }
11477 
11478 
11479 /*
11480  *    Function: sd_initpkt_for_buf
11481  *
11482  * Description: Allocate and initialize for transport a scsi_pkt struct,
11483  *		based upon the info specified in the given buf struct.
11484  *
11485  *		Assumes the xb_blkno in the request is absolute (ie,
11486  *		relative to the start of the device (NOT partition!).
11487  *		Also assumes that the request is using the native block
11488  *		size of the device (as returned by the READ CAPACITY
11489  *		command).
11490  *
11491  * Return Code: SD_PKT_ALLOC_SUCCESS
11492  *		SD_PKT_ALLOC_FAILURE
11493  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11494  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11495  *
11496  *     Context: Kernel thread and may be called from software interrupt context
11497  *		as part of a sdrunout callback. This function may not block or
11498  *		call routines that block
11499  */
11500 
11501 static int
11502 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11503 {
11504 	struct sd_xbuf	*xp;
11505 	struct scsi_pkt *pktp = NULL;
11506 	struct sd_lun	*un;
11507 	size_t		blockcount;
11508 	daddr_t		startblock;
11509 	int		rval;
11510 	int		cmd_flags;
11511 
11512 	ASSERT(bp != NULL);
11513 	ASSERT(pktpp != NULL);
11514 	xp = SD_GET_XBUF(bp);
11515 	ASSERT(xp != NULL);
11516 	un = SD_GET_UN(bp);
11517 	ASSERT(un != NULL);
11518 	ASSERT(mutex_owned(SD_MUTEX(un)));
11519 	ASSERT(bp->b_resid == 0);
11520 
11521 	SD_TRACE(SD_LOG_IO_CORE, un,
11522 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11523 
11524 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11525 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11526 		/*
11527 		 * Already have a scsi_pkt -- just need DMA resources.
11528 		 * We must recompute the CDB in case the mapping returns
11529 		 * a nonzero pkt_resid.
11530 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11531 		 * that is being retried, the unmap/remap of the DMA resouces
11532 		 * will result in the entire transfer starting over again
11533 		 * from the very first block.
11534 		 */
11535 		ASSERT(xp->xb_pktp != NULL);
11536 		pktp = xp->xb_pktp;
11537 	} else {
11538 		pktp = NULL;
11539 	}
11540 #endif /* __i386 || __amd64 */
11541 
11542 	startblock = xp->xb_blkno;	/* Absolute block num. */
11543 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11544 
11545 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11546 
11547 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11548 
11549 #else
11550 
11551 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11552 
11553 #endif
11554 
11555 	/*
11556 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11557 	 * call scsi_init_pkt, and build the CDB.
11558 	 */
11559 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11560 	    cmd_flags, sdrunout, (caddr_t)un,
11561 	    startblock, blockcount);
11562 
11563 	if (rval == 0) {
11564 		/*
11565 		 * Success.
11566 		 *
11567 		 * If partial DMA is being used and required for this transfer.
11568 		 * set it up here.
11569 		 */
11570 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11571 		    (pktp->pkt_resid != 0)) {
11572 
11573 			/*
11574 			 * Save the CDB length and pkt_resid for the
11575 			 * next xfer
11576 			 */
11577 			xp->xb_dma_resid = pktp->pkt_resid;
11578 
11579 			/* rezero resid */
11580 			pktp->pkt_resid = 0;
11581 
11582 		} else {
11583 			xp->xb_dma_resid = 0;
11584 		}
11585 
11586 		pktp->pkt_flags = un->un_tagflags;
11587 		pktp->pkt_time  = un->un_cmd_timeout;
11588 		pktp->pkt_comp  = sdintr;
11589 
11590 		pktp->pkt_private = bp;
11591 		*pktpp = pktp;
11592 
11593 		SD_TRACE(SD_LOG_IO_CORE, un,
11594 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11595 
11596 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11597 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11598 #endif
11599 
11600 		return (SD_PKT_ALLOC_SUCCESS);
11601 
11602 	}
11603 
11604 	/*
11605 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11606 	 * from sd_setup_rw_pkt.
11607 	 */
11608 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11609 
11610 	if (rval == SD_PKT_ALLOC_FAILURE) {
11611 		*pktpp = NULL;
11612 		/*
11613 		 * Set the driver state to RWAIT to indicate the driver
11614 		 * is waiting on resource allocations. The driver will not
11615 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11616 		 */
11617 		New_state(un, SD_STATE_RWAIT);
11618 
11619 		SD_ERROR(SD_LOG_IO_CORE, un,
11620 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11621 
11622 		if ((bp->b_flags & B_ERROR) != 0) {
11623 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11624 		}
11625 		return (SD_PKT_ALLOC_FAILURE);
11626 	} else {
11627 		/*
11628 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11629 		 *
11630 		 * This should never happen.  Maybe someone messed with the
11631 		 * kernel's minphys?
11632 		 */
11633 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11634 		    "Request rejected: too large for CDB: "
11635 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11636 		SD_ERROR(SD_LOG_IO_CORE, un,
11637 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11638 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11639 
11640 	}
11641 }
11642 
11643 
11644 /*
11645  *    Function: sd_destroypkt_for_buf
11646  *
11647  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11648  *
11649  *     Context: Kernel thread or interrupt context
11650  */
11651 
11652 static void
11653 sd_destroypkt_for_buf(struct buf *bp)
11654 {
11655 	ASSERT(bp != NULL);
11656 	ASSERT(SD_GET_UN(bp) != NULL);
11657 
11658 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11659 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11660 
11661 	ASSERT(SD_GET_PKTP(bp) != NULL);
11662 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11663 
11664 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11665 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11666 }
11667 
11668 /*
11669  *    Function: sd_setup_rw_pkt
11670  *
11671  * Description: Determines appropriate CDB group for the requested LBA
11672  *		and transfer length, calls scsi_init_pkt, and builds
11673  *		the CDB.  Do not use for partial DMA transfers except
11674  *		for the initial transfer since the CDB size must
11675  *		remain constant.
11676  *
11677  *     Context: Kernel thread and may be called from software interrupt
11678  *		context as part of a sdrunout callback. This function may not
11679  *		block or call routines that block
11680  */
11681 
11682 
11683 int
11684 sd_setup_rw_pkt(struct sd_lun *un,
11685     struct scsi_pkt **pktpp, struct buf *bp, int flags,
11686     int (*callback)(caddr_t), caddr_t callback_arg,
11687     diskaddr_t lba, uint32_t blockcount)
11688 {
11689 	struct scsi_pkt *return_pktp;
11690 	union scsi_cdb *cdbp;
11691 	struct sd_cdbinfo *cp = NULL;
11692 	int i;
11693 
11694 	/*
11695 	 * See which size CDB to use, based upon the request.
11696 	 */
11697 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
11698 
11699 		/*
11700 		 * Check lba and block count against sd_cdbtab limits.
11701 		 * In the partial DMA case, we have to use the same size
11702 		 * CDB for all the transfers.  Check lba + blockcount
11703 		 * against the max LBA so we know that segment of the
11704 		 * transfer can use the CDB we select.
11705 		 */
11706 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
11707 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
11708 
11709 			/*
11710 			 * The command will fit into the CDB type
11711 			 * specified by sd_cdbtab[i].
11712 			 */
11713 			cp = sd_cdbtab + i;
11714 
11715 			/*
11716 			 * Call scsi_init_pkt so we can fill in the
11717 			 * CDB.
11718 			 */
11719 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
11720 			    bp, cp->sc_grpcode, un->un_status_len, 0,
11721 			    flags, callback, callback_arg);
11722 
11723 			if (return_pktp != NULL) {
11724 
11725 				/*
11726 				 * Return new value of pkt
11727 				 */
11728 				*pktpp = return_pktp;
11729 
11730 				/*
11731 				 * To be safe, zero the CDB insuring there is
11732 				 * no leftover data from a previous command.
11733 				 */
11734 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
11735 
11736 				/*
11737 				 * Handle partial DMA mapping
11738 				 */
11739 				if (return_pktp->pkt_resid != 0) {
11740 
11741 					/*
11742 					 * Not going to xfer as many blocks as
11743 					 * originally expected
11744 					 */
11745 					blockcount -=
11746 					    SD_BYTES2TGTBLOCKS(un,
11747 						return_pktp->pkt_resid);
11748 				}
11749 
11750 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
11751 
11752 				/*
11753 				 * Set command byte based on the CDB
11754 				 * type we matched.
11755 				 */
11756 				cdbp->scc_cmd = cp->sc_grpmask |
11757 				    ((bp->b_flags & B_READ) ?
11758 					SCMD_READ : SCMD_WRITE);
11759 
11760 				SD_FILL_SCSI1_LUN(un, return_pktp);
11761 
11762 				/*
11763 				 * Fill in LBA and length
11764 				 */
11765 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
11766 				    (cp->sc_grpcode == CDB_GROUP4) ||
11767 				    (cp->sc_grpcode == CDB_GROUP0) ||
11768 				    (cp->sc_grpcode == CDB_GROUP5));
11769 
11770 				if (cp->sc_grpcode == CDB_GROUP1) {
11771 					FORMG1ADDR(cdbp, lba);
11772 					FORMG1COUNT(cdbp, blockcount);
11773 					return (0);
11774 				} else if (cp->sc_grpcode == CDB_GROUP4) {
11775 					FORMG4LONGADDR(cdbp, lba);
11776 					FORMG4COUNT(cdbp, blockcount);
11777 					return (0);
11778 				} else if (cp->sc_grpcode == CDB_GROUP0) {
11779 					FORMG0ADDR(cdbp, lba);
11780 					FORMG0COUNT(cdbp, blockcount);
11781 					return (0);
11782 				} else if (cp->sc_grpcode == CDB_GROUP5) {
11783 					FORMG5ADDR(cdbp, lba);
11784 					FORMG5COUNT(cdbp, blockcount);
11785 					return (0);
11786 				}
11787 
11788 				/*
11789 				 * It should be impossible to not match one
11790 				 * of the CDB types above, so we should never
11791 				 * reach this point.  Set the CDB command byte
11792 				 * to test-unit-ready to avoid writing
11793 				 * to somewhere we don't intend.
11794 				 */
11795 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
11796 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11797 			} else {
11798 				/*
11799 				 * Couldn't get scsi_pkt
11800 				 */
11801 				return (SD_PKT_ALLOC_FAILURE);
11802 			}
11803 		}
11804 	}
11805 
11806 	/*
11807 	 * None of the available CDB types were suitable.  This really
11808 	 * should never happen:  on a 64 bit system we support
11809 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
11810 	 * and on a 32 bit system we will refuse to bind to a device
11811 	 * larger than 2TB so addresses will never be larger than 32 bits.
11812 	 */
11813 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11814 }
11815 
11816 #if defined(__i386) || defined(__amd64)
11817 /*
11818  *    Function: sd_setup_next_rw_pkt
11819  *
11820  * Description: Setup packet for partial DMA transfers, except for the
11821  * 		initial transfer.  sd_setup_rw_pkt should be used for
11822  *		the initial transfer.
11823  *
11824  *     Context: Kernel thread and may be called from interrupt context.
11825  */
11826 
11827 int
11828 sd_setup_next_rw_pkt(struct sd_lun *un,
11829     struct scsi_pkt *pktp, struct buf *bp,
11830     diskaddr_t lba, uint32_t blockcount)
11831 {
11832 	uchar_t com;
11833 	union scsi_cdb *cdbp;
11834 	uchar_t cdb_group_id;
11835 
11836 	ASSERT(pktp != NULL);
11837 	ASSERT(pktp->pkt_cdbp != NULL);
11838 
11839 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
11840 	com = cdbp->scc_cmd;
11841 	cdb_group_id = CDB_GROUPID(com);
11842 
11843 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
11844 	    (cdb_group_id == CDB_GROUPID_1) ||
11845 	    (cdb_group_id == CDB_GROUPID_4) ||
11846 	    (cdb_group_id == CDB_GROUPID_5));
11847 
11848 	/*
11849 	 * Move pkt to the next portion of the xfer.
11850 	 * func is NULL_FUNC so we do not have to release
11851 	 * the disk mutex here.
11852 	 */
11853 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
11854 	    NULL_FUNC, NULL) == pktp) {
11855 		/* Success.  Handle partial DMA */
11856 		if (pktp->pkt_resid != 0) {
11857 			blockcount -=
11858 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
11859 		}
11860 
11861 		cdbp->scc_cmd = com;
11862 		SD_FILL_SCSI1_LUN(un, pktp);
11863 		if (cdb_group_id == CDB_GROUPID_1) {
11864 			FORMG1ADDR(cdbp, lba);
11865 			FORMG1COUNT(cdbp, blockcount);
11866 			return (0);
11867 		} else if (cdb_group_id == CDB_GROUPID_4) {
11868 			FORMG4LONGADDR(cdbp, lba);
11869 			FORMG4COUNT(cdbp, blockcount);
11870 			return (0);
11871 		} else if (cdb_group_id == CDB_GROUPID_0) {
11872 			FORMG0ADDR(cdbp, lba);
11873 			FORMG0COUNT(cdbp, blockcount);
11874 			return (0);
11875 		} else if (cdb_group_id == CDB_GROUPID_5) {
11876 			FORMG5ADDR(cdbp, lba);
11877 			FORMG5COUNT(cdbp, blockcount);
11878 			return (0);
11879 		}
11880 
11881 		/* Unreachable */
11882 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11883 	}
11884 
11885 	/*
11886 	 * Error setting up next portion of cmd transfer.
11887 	 * Something is definitely very wrong and this
11888 	 * should not happen.
11889 	 */
11890 	return (SD_PKT_ALLOC_FAILURE);
11891 }
11892 #endif /* defined(__i386) || defined(__amd64) */
11893 
11894 /*
11895  *    Function: sd_initpkt_for_uscsi
11896  *
11897  * Description: Allocate and initialize for transport a scsi_pkt struct,
11898  *		based upon the info specified in the given uscsi_cmd struct.
11899  *
11900  * Return Code: SD_PKT_ALLOC_SUCCESS
11901  *		SD_PKT_ALLOC_FAILURE
11902  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11903  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11904  *
11905  *     Context: Kernel thread and may be called from software interrupt context
11906  *		as part of a sdrunout callback. This function may not block or
11907  *		call routines that block
11908  */
11909 
11910 static int
11911 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
11912 {
11913 	struct uscsi_cmd *uscmd;
11914 	struct sd_xbuf	*xp;
11915 	struct scsi_pkt	*pktp;
11916 	struct sd_lun	*un;
11917 	uint32_t	flags = 0;
11918 
11919 	ASSERT(bp != NULL);
11920 	ASSERT(pktpp != NULL);
11921 	xp = SD_GET_XBUF(bp);
11922 	ASSERT(xp != NULL);
11923 	un = SD_GET_UN(bp);
11924 	ASSERT(un != NULL);
11925 	ASSERT(mutex_owned(SD_MUTEX(un)));
11926 
11927 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
11928 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
11929 	ASSERT(uscmd != NULL);
11930 
11931 	SD_TRACE(SD_LOG_IO_CORE, un,
11932 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
11933 
11934 	/*
11935 	 * Allocate the scsi_pkt for the command.
11936 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
11937 	 *	 during scsi_init_pkt time and will continue to use the
11938 	 *	 same path as long as the same scsi_pkt is used without
11939 	 *	 intervening scsi_dma_free(). Since uscsi command does
11940 	 *	 not call scsi_dmafree() before retry failed command, it
11941 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
11942 	 *	 set such that scsi_vhci can use other available path for
11943 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
11944 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
11945 	 */
11946 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
11947 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
11948 	    sizeof (struct scsi_arq_status), 0,
11949 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
11950 	    sdrunout, (caddr_t)un);
11951 
11952 	if (pktp == NULL) {
11953 		*pktpp = NULL;
11954 		/*
11955 		 * Set the driver state to RWAIT to indicate the driver
11956 		 * is waiting on resource allocations. The driver will not
11957 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11958 		 */
11959 		New_state(un, SD_STATE_RWAIT);
11960 
11961 		SD_ERROR(SD_LOG_IO_CORE, un,
11962 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
11963 
11964 		if ((bp->b_flags & B_ERROR) != 0) {
11965 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11966 		}
11967 		return (SD_PKT_ALLOC_FAILURE);
11968 	}
11969 
11970 	/*
11971 	 * We do not do DMA breakup for USCSI commands, so return failure
11972 	 * here if all the needed DMA resources were not allocated.
11973 	 */
11974 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
11975 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
11976 		scsi_destroy_pkt(pktp);
11977 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
11978 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
11979 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
11980 	}
11981 
11982 	/* Init the cdb from the given uscsi struct */
11983 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
11984 	    uscmd->uscsi_cdb[0], 0, 0, 0);
11985 
11986 	SD_FILL_SCSI1_LUN(un, pktp);
11987 
11988 	/*
11989 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
11990 	 * for listing of the supported flags.
11991 	 */
11992 
11993 	if (uscmd->uscsi_flags & USCSI_SILENT) {
11994 		flags |= FLAG_SILENT;
11995 	}
11996 
11997 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
11998 		flags |= FLAG_DIAGNOSE;
11999 	}
12000 
12001 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12002 		flags |= FLAG_ISOLATE;
12003 	}
12004 
12005 	if (un->un_f_is_fibre == FALSE) {
12006 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12007 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12008 		}
12009 	}
12010 
12011 	/*
12012 	 * Set the pkt flags here so we save time later.
12013 	 * Note: These flags are NOT in the uscsi man page!!!
12014 	 */
12015 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12016 		flags |= FLAG_HEAD;
12017 	}
12018 
12019 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12020 		flags |= FLAG_NOINTR;
12021 	}
12022 
12023 	/*
12024 	 * For tagged queueing, things get a bit complicated.
12025 	 * Check first for head of queue and last for ordered queue.
12026 	 * If neither head nor order, use the default driver tag flags.
12027 	 */
12028 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12029 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12030 			flags |= FLAG_HTAG;
12031 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12032 			flags |= FLAG_OTAG;
12033 		} else {
12034 			flags |= un->un_tagflags & FLAG_TAGMASK;
12035 		}
12036 	}
12037 
12038 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12039 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12040 	}
12041 
12042 	pktp->pkt_flags = flags;
12043 
12044 	/* Copy the caller's CDB into the pkt... */
12045 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12046 
12047 	if (uscmd->uscsi_timeout == 0) {
12048 		pktp->pkt_time = un->un_uscsi_timeout;
12049 	} else {
12050 		pktp->pkt_time = uscmd->uscsi_timeout;
12051 	}
12052 
12053 	/* need it later to identify USCSI request in sdintr */
12054 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12055 
12056 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12057 
12058 	pktp->pkt_private = bp;
12059 	pktp->pkt_comp = sdintr;
12060 	*pktpp = pktp;
12061 
12062 	SD_TRACE(SD_LOG_IO_CORE, un,
12063 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12064 
12065 	return (SD_PKT_ALLOC_SUCCESS);
12066 }
12067 
12068 
12069 /*
12070  *    Function: sd_destroypkt_for_uscsi
12071  *
12072  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12073  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12074  *		struct.
12075  *
12076  *     Context: May be called under interrupt context
12077  */
12078 
12079 static void
12080 sd_destroypkt_for_uscsi(struct buf *bp)
12081 {
12082 	struct uscsi_cmd *uscmd;
12083 	struct sd_xbuf	*xp;
12084 	struct scsi_pkt	*pktp;
12085 	struct sd_lun	*un;
12086 
12087 	ASSERT(bp != NULL);
12088 	xp = SD_GET_XBUF(bp);
12089 	ASSERT(xp != NULL);
12090 	un = SD_GET_UN(bp);
12091 	ASSERT(un != NULL);
12092 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12093 	pktp = SD_GET_PKTP(bp);
12094 	ASSERT(pktp != NULL);
12095 
12096 	SD_TRACE(SD_LOG_IO_CORE, un,
12097 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12098 
12099 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12100 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12101 	ASSERT(uscmd != NULL);
12102 
12103 	/* Save the status and the residual into the uscsi_cmd struct */
12104 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12105 	uscmd->uscsi_resid  = bp->b_resid;
12106 
12107 	/*
12108 	 * If enabled, copy any saved sense data into the area specified
12109 	 * by the uscsi command.
12110 	 */
12111 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12112 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12113 		/*
12114 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12115 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12116 		 */
12117 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12118 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12119 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
12120 	}
12121 
12122 	/* We are done with the scsi_pkt; free it now */
12123 	ASSERT(SD_GET_PKTP(bp) != NULL);
12124 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12125 
12126 	SD_TRACE(SD_LOG_IO_CORE, un,
12127 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12128 }
12129 
12130 
12131 /*
12132  *    Function: sd_bioclone_alloc
12133  *
12134  * Description: Allocate a buf(9S) and init it as per the given buf
12135  *		and the various arguments.  The associated sd_xbuf
12136  *		struct is (nearly) duplicated.  The struct buf *bp
12137  *		argument is saved in new_xp->xb_private.
12138  *
12139  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12140  *		datalen - size of data area for the shadow bp
12141  *		blkno - starting LBA
12142  *		func - function pointer for b_iodone in the shadow buf. (May
12143  *			be NULL if none.)
12144  *
12145  * Return Code: Pointer to allocates buf(9S) struct
12146  *
12147  *     Context: Can sleep.
12148  */
12149 
12150 static struct buf *
12151 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12152 	daddr_t blkno, int (*func)(struct buf *))
12153 {
12154 	struct	sd_lun	*un;
12155 	struct	sd_xbuf	*xp;
12156 	struct	sd_xbuf	*new_xp;
12157 	struct	buf	*new_bp;
12158 
12159 	ASSERT(bp != NULL);
12160 	xp = SD_GET_XBUF(bp);
12161 	ASSERT(xp != NULL);
12162 	un = SD_GET_UN(bp);
12163 	ASSERT(un != NULL);
12164 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12165 
12166 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12167 	    NULL, KM_SLEEP);
12168 
12169 	new_bp->b_lblkno	= blkno;
12170 
12171 	/*
12172 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12173 	 * original xbuf into it.
12174 	 */
12175 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12176 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12177 
12178 	/*
12179 	 * The given bp is automatically saved in the xb_private member
12180 	 * of the new xbuf.  Callers are allowed to depend on this.
12181 	 */
12182 	new_xp->xb_private = bp;
12183 
12184 	new_bp->b_private  = new_xp;
12185 
12186 	return (new_bp);
12187 }
12188 
12189 /*
12190  *    Function: sd_shadow_buf_alloc
12191  *
12192  * Description: Allocate a buf(9S) and init it as per the given buf
12193  *		and the various arguments.  The associated sd_xbuf
12194  *		struct is (nearly) duplicated.  The struct buf *bp
12195  *		argument is saved in new_xp->xb_private.
12196  *
12197  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12198  *		datalen - size of data area for the shadow bp
12199  *		bflags - B_READ or B_WRITE (pseudo flag)
12200  *		blkno - starting LBA
12201  *		func - function pointer for b_iodone in the shadow buf. (May
12202  *			be NULL if none.)
12203  *
12204  * Return Code: Pointer to allocates buf(9S) struct
12205  *
12206  *     Context: Can sleep.
12207  */
12208 
12209 static struct buf *
12210 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12211 	daddr_t blkno, int (*func)(struct buf *))
12212 {
12213 	struct	sd_lun	*un;
12214 	struct	sd_xbuf	*xp;
12215 	struct	sd_xbuf	*new_xp;
12216 	struct	buf	*new_bp;
12217 
12218 	ASSERT(bp != NULL);
12219 	xp = SD_GET_XBUF(bp);
12220 	ASSERT(xp != NULL);
12221 	un = SD_GET_UN(bp);
12222 	ASSERT(un != NULL);
12223 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12224 
12225 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12226 		bp_mapin(bp);
12227 	}
12228 
12229 	bflags &= (B_READ | B_WRITE);
12230 #if defined(__i386) || defined(__amd64)
12231 	new_bp = getrbuf(KM_SLEEP);
12232 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12233 	new_bp->b_bcount = datalen;
12234 	new_bp->b_flags = bflags |
12235 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12236 #else
12237 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12238 	    datalen, bflags, SLEEP_FUNC, NULL);
12239 #endif
12240 	new_bp->av_forw	= NULL;
12241 	new_bp->av_back	= NULL;
12242 	new_bp->b_dev	= bp->b_dev;
12243 	new_bp->b_blkno	= blkno;
12244 	new_bp->b_iodone = func;
12245 	new_bp->b_edev	= bp->b_edev;
12246 	new_bp->b_resid	= 0;
12247 
12248 	/* We need to preserve the B_FAILFAST flag */
12249 	if (bp->b_flags & B_FAILFAST) {
12250 		new_bp->b_flags |= B_FAILFAST;
12251 	}
12252 
12253 	/*
12254 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12255 	 * original xbuf into it.
12256 	 */
12257 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12258 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12259 
12260 	/* Need later to copy data between the shadow buf & original buf! */
12261 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12262 
12263 	/*
12264 	 * The given bp is automatically saved in the xb_private member
12265 	 * of the new xbuf.  Callers are allowed to depend on this.
12266 	 */
12267 	new_xp->xb_private = bp;
12268 
12269 	new_bp->b_private  = new_xp;
12270 
12271 	return (new_bp);
12272 }
12273 
12274 /*
12275  *    Function: sd_bioclone_free
12276  *
12277  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12278  *		in the larger than partition operation.
12279  *
12280  *     Context: May be called under interrupt context
12281  */
12282 
12283 static void
12284 sd_bioclone_free(struct buf *bp)
12285 {
12286 	struct sd_xbuf	*xp;
12287 
12288 	ASSERT(bp != NULL);
12289 	xp = SD_GET_XBUF(bp);
12290 	ASSERT(xp != NULL);
12291 
12292 	/*
12293 	 * Call bp_mapout() before freeing the buf,  in case a lower
12294 	 * layer or HBA  had done a bp_mapin().  we must do this here
12295 	 * as we are the "originator" of the shadow buf.
12296 	 */
12297 	bp_mapout(bp);
12298 
12299 	/*
12300 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12301 	 * never gets confused by a stale value in this field. (Just a little
12302 	 * extra defensiveness here.)
12303 	 */
12304 	bp->b_iodone = NULL;
12305 
12306 	freerbuf(bp);
12307 
12308 	kmem_free(xp, sizeof (struct sd_xbuf));
12309 }
12310 
12311 /*
12312  *    Function: sd_shadow_buf_free
12313  *
12314  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12315  *
12316  *     Context: May be called under interrupt context
12317  */
12318 
12319 static void
12320 sd_shadow_buf_free(struct buf *bp)
12321 {
12322 	struct sd_xbuf	*xp;
12323 
12324 	ASSERT(bp != NULL);
12325 	xp = SD_GET_XBUF(bp);
12326 	ASSERT(xp != NULL);
12327 
12328 #if defined(__sparc)
12329 	/*
12330 	 * Call bp_mapout() before freeing the buf,  in case a lower
12331 	 * layer or HBA  had done a bp_mapin().  we must do this here
12332 	 * as we are the "originator" of the shadow buf.
12333 	 */
12334 	bp_mapout(bp);
12335 #endif
12336 
12337 	/*
12338 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12339 	 * never gets confused by a stale value in this field. (Just a little
12340 	 * extra defensiveness here.)
12341 	 */
12342 	bp->b_iodone = NULL;
12343 
12344 #if defined(__i386) || defined(__amd64)
12345 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12346 	freerbuf(bp);
12347 #else
12348 	scsi_free_consistent_buf(bp);
12349 #endif
12350 
12351 	kmem_free(xp, sizeof (struct sd_xbuf));
12352 }
12353 
12354 
12355 /*
12356  *    Function: sd_print_transport_rejected_message
12357  *
12358  * Description: This implements the ludicrously complex rules for printing
12359  *		a "transport rejected" message.  This is to address the
12360  *		specific problem of having a flood of this error message
12361  *		produced when a failover occurs.
12362  *
12363  *     Context: Any.
12364  */
12365 
12366 static void
12367 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12368 	int code)
12369 {
12370 	ASSERT(un != NULL);
12371 	ASSERT(mutex_owned(SD_MUTEX(un)));
12372 	ASSERT(xp != NULL);
12373 
12374 	/*
12375 	 * Print the "transport rejected" message under the following
12376 	 * conditions:
12377 	 *
12378 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12379 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12380 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12381 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12382 	 *   scsi_transport(9F) (which indicates that the target might have
12383 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12384 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12385 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12386 	 *   from scsi_transport().
12387 	 *
12388 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12389 	 * the preceeding cases in order for the message to be printed.
12390 	 */
12391 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12392 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12393 		    (code != TRAN_FATAL_ERROR) ||
12394 		    (un->un_tran_fatal_count == 1)) {
12395 			switch (code) {
12396 			case TRAN_BADPKT:
12397 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12398 				    "transport rejected bad packet\n");
12399 				break;
12400 			case TRAN_FATAL_ERROR:
12401 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12402 				    "transport rejected fatal error\n");
12403 				break;
12404 			default:
12405 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12406 				    "transport rejected (%d)\n", code);
12407 				break;
12408 			}
12409 		}
12410 	}
12411 }
12412 
12413 
12414 /*
12415  *    Function: sd_add_buf_to_waitq
12416  *
12417  * Description: Add the given buf(9S) struct to the wait queue for the
12418  *		instance.  If sorting is enabled, then the buf is added
12419  *		to the queue via an elevator sort algorithm (a la
12420  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12421  *		If sorting is not enabled, then the buf is just added
12422  *		to the end of the wait queue.
12423  *
12424  * Return Code: void
12425  *
12426  *     Context: Does not sleep/block, therefore technically can be called
12427  *		from any context.  However if sorting is enabled then the
12428  *		execution time is indeterminate, and may take long if
12429  *		the wait queue grows large.
12430  */
12431 
12432 static void
12433 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12434 {
12435 	struct buf *ap;
12436 
12437 	ASSERT(bp != NULL);
12438 	ASSERT(un != NULL);
12439 	ASSERT(mutex_owned(SD_MUTEX(un)));
12440 
12441 	/* If the queue is empty, add the buf as the only entry & return. */
12442 	if (un->un_waitq_headp == NULL) {
12443 		ASSERT(un->un_waitq_tailp == NULL);
12444 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12445 		bp->av_forw = NULL;
12446 		return;
12447 	}
12448 
12449 	ASSERT(un->un_waitq_tailp != NULL);
12450 
12451 	/*
12452 	 * If sorting is disabled, just add the buf to the tail end of
12453 	 * the wait queue and return.
12454 	 */
12455 	if (un->un_f_disksort_disabled) {
12456 		un->un_waitq_tailp->av_forw = bp;
12457 		un->un_waitq_tailp = bp;
12458 		bp->av_forw = NULL;
12459 		return;
12460 	}
12461 
12462 	/*
12463 	 * Sort thru the list of requests currently on the wait queue
12464 	 * and add the new buf request at the appropriate position.
12465 	 *
12466 	 * The un->un_waitq_headp is an activity chain pointer on which
12467 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12468 	 * first queue holds those requests which are positioned after
12469 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12470 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12471 	 * Thus we implement a one way scan, retracting after reaching
12472 	 * the end of the drive to the first request on the second
12473 	 * queue, at which time it becomes the first queue.
12474 	 * A one-way scan is natural because of the way UNIX read-ahead
12475 	 * blocks are allocated.
12476 	 *
12477 	 * If we lie after the first request, then we must locate the
12478 	 * second request list and add ourselves to it.
12479 	 */
12480 	ap = un->un_waitq_headp;
12481 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12482 		while (ap->av_forw != NULL) {
12483 			/*
12484 			 * Look for an "inversion" in the (normally
12485 			 * ascending) block numbers. This indicates
12486 			 * the start of the second request list.
12487 			 */
12488 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12489 				/*
12490 				 * Search the second request list for the
12491 				 * first request at a larger block number.
12492 				 * We go before that; however if there is
12493 				 * no such request, we go at the end.
12494 				 */
12495 				do {
12496 					if (SD_GET_BLKNO(bp) <
12497 					    SD_GET_BLKNO(ap->av_forw)) {
12498 						goto insert;
12499 					}
12500 					ap = ap->av_forw;
12501 				} while (ap->av_forw != NULL);
12502 				goto insert;		/* after last */
12503 			}
12504 			ap = ap->av_forw;
12505 		}
12506 
12507 		/*
12508 		 * No inversions... we will go after the last, and
12509 		 * be the first request in the second request list.
12510 		 */
12511 		goto insert;
12512 	}
12513 
12514 	/*
12515 	 * Request is at/after the current request...
12516 	 * sort in the first request list.
12517 	 */
12518 	while (ap->av_forw != NULL) {
12519 		/*
12520 		 * We want to go after the current request (1) if
12521 		 * there is an inversion after it (i.e. it is the end
12522 		 * of the first request list), or (2) if the next
12523 		 * request is a larger block no. than our request.
12524 		 */
12525 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12526 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12527 			goto insert;
12528 		}
12529 		ap = ap->av_forw;
12530 	}
12531 
12532 	/*
12533 	 * Neither a second list nor a larger request, therefore
12534 	 * we go at the end of the first list (which is the same
12535 	 * as the end of the whole schebang).
12536 	 */
12537 insert:
12538 	bp->av_forw = ap->av_forw;
12539 	ap->av_forw = bp;
12540 
12541 	/*
12542 	 * If we inserted onto the tail end of the waitq, make sure the
12543 	 * tail pointer is updated.
12544 	 */
12545 	if (ap == un->un_waitq_tailp) {
12546 		un->un_waitq_tailp = bp;
12547 	}
12548 }
12549 
12550 
12551 /*
12552  *    Function: sd_start_cmds
12553  *
12554  * Description: Remove and transport cmds from the driver queues.
12555  *
12556  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12557  *
12558  *		immed_bp - ptr to a buf to be transported immediately. Only
12559  *		the immed_bp is transported; bufs on the waitq are not
12560  *		processed and the un_retry_bp is not checked.  If immed_bp is
12561  *		NULL, then normal queue processing is performed.
12562  *
12563  *     Context: May be called from kernel thread context, interrupt context,
12564  *		or runout callback context. This function may not block or
12565  *		call routines that block.
12566  */
12567 
12568 static void
12569 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12570 {
12571 	struct	sd_xbuf	*xp;
12572 	struct	buf	*bp;
12573 	void	(*statp)(kstat_io_t *);
12574 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12575 	void	(*saved_statp)(kstat_io_t *);
12576 #endif
12577 	int	rval;
12578 
12579 	ASSERT(un != NULL);
12580 	ASSERT(mutex_owned(SD_MUTEX(un)));
12581 	ASSERT(un->un_ncmds_in_transport >= 0);
12582 	ASSERT(un->un_throttle >= 0);
12583 
12584 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12585 
12586 	do {
12587 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12588 		saved_statp = NULL;
12589 #endif
12590 
12591 		/*
12592 		 * If we are syncing or dumping, fail the command to
12593 		 * avoid recursively calling back into scsi_transport().
12594 		 * The dump I/O itself uses a separate code path so this
12595 		 * only prevents non-dump I/O from being sent while dumping.
12596 		 * File system sync takes place before dumping begins.
12597 		 * During panic, filesystem I/O is allowed provided
12598 		 * un_in_callback is <= 1.  This is to prevent recursion
12599 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12600 		 * sd_start_cmds and so on.  See panic.c for more information
12601 		 * about the states the system can be in during panic.
12602 		 */
12603 		if ((un->un_state == SD_STATE_DUMPING) ||
12604 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12605 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12606 			    "sd_start_cmds: panicking\n");
12607 			goto exit;
12608 		}
12609 
12610 		if ((bp = immed_bp) != NULL) {
12611 			/*
12612 			 * We have a bp that must be transported immediately.
12613 			 * It's OK to transport the immed_bp here without doing
12614 			 * the throttle limit check because the immed_bp is
12615 			 * always used in a retry/recovery case. This means
12616 			 * that we know we are not at the throttle limit by
12617 			 * virtue of the fact that to get here we must have
12618 			 * already gotten a command back via sdintr(). This also
12619 			 * relies on (1) the command on un_retry_bp preventing
12620 			 * further commands from the waitq from being issued;
12621 			 * and (2) the code in sd_retry_command checking the
12622 			 * throttle limit before issuing a delayed or immediate
12623 			 * retry. This holds even if the throttle limit is
12624 			 * currently ratcheted down from its maximum value.
12625 			 */
12626 			statp = kstat_runq_enter;
12627 			if (bp == un->un_retry_bp) {
12628 				ASSERT((un->un_retry_statp == NULL) ||
12629 				    (un->un_retry_statp == kstat_waitq_enter) ||
12630 				    (un->un_retry_statp ==
12631 				    kstat_runq_back_to_waitq));
12632 				/*
12633 				 * If the waitq kstat was incremented when
12634 				 * sd_set_retry_bp() queued this bp for a retry,
12635 				 * then we must set up statp so that the waitq
12636 				 * count will get decremented correctly below.
12637 				 * Also we must clear un->un_retry_statp to
12638 				 * ensure that we do not act on a stale value
12639 				 * in this field.
12640 				 */
12641 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12642 				    (un->un_retry_statp ==
12643 				    kstat_runq_back_to_waitq)) {
12644 					statp = kstat_waitq_to_runq;
12645 				}
12646 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12647 				saved_statp = un->un_retry_statp;
12648 #endif
12649 				un->un_retry_statp = NULL;
12650 
12651 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12652 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12653 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12654 				    un, un->un_retry_bp, un->un_throttle,
12655 				    un->un_ncmds_in_transport);
12656 			} else {
12657 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12658 				    "processing priority bp:0x%p\n", bp);
12659 			}
12660 
12661 		} else if ((bp = un->un_waitq_headp) != NULL) {
12662 			/*
12663 			 * A command on the waitq is ready to go, but do not
12664 			 * send it if:
12665 			 *
12666 			 * (1) the throttle limit has been reached, or
12667 			 * (2) a retry is pending, or
12668 			 * (3) a START_STOP_UNIT callback pending, or
12669 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
12670 			 *	command is pending.
12671 			 *
12672 			 * For all of these conditions, IO processing will
12673 			 * restart after the condition is cleared.
12674 			 */
12675 			if (un->un_ncmds_in_transport >= un->un_throttle) {
12676 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12677 				    "sd_start_cmds: exiting, "
12678 				    "throttle limit reached!\n");
12679 				goto exit;
12680 			}
12681 			if (un->un_retry_bp != NULL) {
12682 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12683 				    "sd_start_cmds: exiting, retry pending!\n");
12684 				goto exit;
12685 			}
12686 			if (un->un_startstop_timeid != NULL) {
12687 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12688 				    "sd_start_cmds: exiting, "
12689 				    "START_STOP pending!\n");
12690 				goto exit;
12691 			}
12692 			if (un->un_direct_priority_timeid != NULL) {
12693 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12694 				    "sd_start_cmds: exiting, "
12695 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
12696 				goto exit;
12697 			}
12698 
12699 			/* Dequeue the command */
12700 			un->un_waitq_headp = bp->av_forw;
12701 			if (un->un_waitq_headp == NULL) {
12702 				un->un_waitq_tailp = NULL;
12703 			}
12704 			bp->av_forw = NULL;
12705 			statp = kstat_waitq_to_runq;
12706 			SD_TRACE(SD_LOG_IO_CORE, un,
12707 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
12708 
12709 		} else {
12710 			/* No work to do so bail out now */
12711 			SD_TRACE(SD_LOG_IO_CORE, un,
12712 			    "sd_start_cmds: no more work, exiting!\n");
12713 			goto exit;
12714 		}
12715 
12716 		/*
12717 		 * Reset the state to normal. This is the mechanism by which
12718 		 * the state transitions from either SD_STATE_RWAIT or
12719 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
12720 		 * If state is SD_STATE_PM_CHANGING then this command is
12721 		 * part of the device power control and the state must
12722 		 * not be put back to normal. Doing so would would
12723 		 * allow new commands to proceed when they shouldn't,
12724 		 * the device may be going off.
12725 		 */
12726 		if ((un->un_state != SD_STATE_SUSPENDED) &&
12727 		    (un->un_state != SD_STATE_PM_CHANGING)) {
12728 			New_state(un, SD_STATE_NORMAL);
12729 		    }
12730 
12731 		xp = SD_GET_XBUF(bp);
12732 		ASSERT(xp != NULL);
12733 
12734 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12735 		/*
12736 		 * Allocate the scsi_pkt if we need one, or attach DMA
12737 		 * resources if we have a scsi_pkt that needs them. The
12738 		 * latter should only occur for commands that are being
12739 		 * retried.
12740 		 */
12741 		if ((xp->xb_pktp == NULL) ||
12742 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
12743 #else
12744 		if (xp->xb_pktp == NULL) {
12745 #endif
12746 			/*
12747 			 * There is no scsi_pkt allocated for this buf. Call
12748 			 * the initpkt function to allocate & init one.
12749 			 *
12750 			 * The scsi_init_pkt runout callback functionality is
12751 			 * implemented as follows:
12752 			 *
12753 			 * 1) The initpkt function always calls
12754 			 *    scsi_init_pkt(9F) with sdrunout specified as the
12755 			 *    callback routine.
12756 			 * 2) A successful packet allocation is initialized and
12757 			 *    the I/O is transported.
12758 			 * 3) The I/O associated with an allocation resource
12759 			 *    failure is left on its queue to be retried via
12760 			 *    runout or the next I/O.
12761 			 * 4) The I/O associated with a DMA error is removed
12762 			 *    from the queue and failed with EIO. Processing of
12763 			 *    the transport queues is also halted to be
12764 			 *    restarted via runout or the next I/O.
12765 			 * 5) The I/O associated with a CDB size or packet
12766 			 *    size error is removed from the queue and failed
12767 			 *    with EIO. Processing of the transport queues is
12768 			 *    continued.
12769 			 *
12770 			 * Note: there is no interface for canceling a runout
12771 			 * callback. To prevent the driver from detaching or
12772 			 * suspending while a runout is pending the driver
12773 			 * state is set to SD_STATE_RWAIT
12774 			 *
12775 			 * Note: using the scsi_init_pkt callback facility can
12776 			 * result in an I/O request persisting at the head of
12777 			 * the list which cannot be satisfied even after
12778 			 * multiple retries. In the future the driver may
12779 			 * implement some kind of maximum runout count before
12780 			 * failing an I/O.
12781 			 *
12782 			 * Note: the use of funcp below may seem superfluous,
12783 			 * but it helps warlock figure out the correct
12784 			 * initpkt function calls (see [s]sd.wlcmd).
12785 			 */
12786 			struct scsi_pkt	*pktp;
12787 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
12788 
12789 			ASSERT(bp != un->un_rqs_bp);
12790 
12791 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
12792 			switch ((*funcp)(bp, &pktp)) {
12793 			case  SD_PKT_ALLOC_SUCCESS:
12794 				xp->xb_pktp = pktp;
12795 				SD_TRACE(SD_LOG_IO_CORE, un,
12796 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
12797 				    pktp);
12798 				goto got_pkt;
12799 
12800 			case SD_PKT_ALLOC_FAILURE:
12801 				/*
12802 				 * Temporary (hopefully) resource depletion.
12803 				 * Since retries and RQS commands always have a
12804 				 * scsi_pkt allocated, these cases should never
12805 				 * get here. So the only cases this needs to
12806 				 * handle is a bp from the waitq (which we put
12807 				 * back onto the waitq for sdrunout), or a bp
12808 				 * sent as an immed_bp (which we just fail).
12809 				 */
12810 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12811 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
12812 
12813 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12814 
12815 				if (bp == immed_bp) {
12816 					/*
12817 					 * If SD_XB_DMA_FREED is clear, then
12818 					 * this is a failure to allocate a
12819 					 * scsi_pkt, and we must fail the
12820 					 * command.
12821 					 */
12822 					if ((xp->xb_pkt_flags &
12823 					    SD_XB_DMA_FREED) == 0) {
12824 						break;
12825 					}
12826 
12827 					/*
12828 					 * If this immediate command is NOT our
12829 					 * un_retry_bp, then we must fail it.
12830 					 */
12831 					if (bp != un->un_retry_bp) {
12832 						break;
12833 					}
12834 
12835 					/*
12836 					 * We get here if this cmd is our
12837 					 * un_retry_bp that was DMAFREED, but
12838 					 * scsi_init_pkt() failed to reallocate
12839 					 * DMA resources when we attempted to
12840 					 * retry it. This can happen when an
12841 					 * mpxio failover is in progress, but
12842 					 * we don't want to just fail the
12843 					 * command in this case.
12844 					 *
12845 					 * Use timeout(9F) to restart it after
12846 					 * a 100ms delay.  We don't want to
12847 					 * let sdrunout() restart it, because
12848 					 * sdrunout() is just supposed to start
12849 					 * commands that are sitting on the
12850 					 * wait queue.  The un_retry_bp stays
12851 					 * set until the command completes, but
12852 					 * sdrunout can be called many times
12853 					 * before that happens.  Since sdrunout
12854 					 * cannot tell if the un_retry_bp is
12855 					 * already in the transport, it could
12856 					 * end up calling scsi_transport() for
12857 					 * the un_retry_bp multiple times.
12858 					 *
12859 					 * Also: don't schedule the callback
12860 					 * if some other callback is already
12861 					 * pending.
12862 					 */
12863 					if (un->un_retry_statp == NULL) {
12864 						/*
12865 						 * restore the kstat pointer to
12866 						 * keep kstat counts coherent
12867 						 * when we do retry the command.
12868 						 */
12869 						un->un_retry_statp =
12870 						    saved_statp;
12871 					}
12872 
12873 					if ((un->un_startstop_timeid == NULL) &&
12874 					    (un->un_retry_timeid == NULL) &&
12875 					    (un->un_direct_priority_timeid ==
12876 					    NULL)) {
12877 
12878 						un->un_retry_timeid =
12879 						    timeout(
12880 						    sd_start_retry_command,
12881 						    un, SD_RESTART_TIMEOUT);
12882 					}
12883 					goto exit;
12884 				}
12885 
12886 #else
12887 				if (bp == immed_bp) {
12888 					break;	/* Just fail the command */
12889 				}
12890 #endif
12891 
12892 				/* Add the buf back to the head of the waitq */
12893 				bp->av_forw = un->un_waitq_headp;
12894 				un->un_waitq_headp = bp;
12895 				if (un->un_waitq_tailp == NULL) {
12896 					un->un_waitq_tailp = bp;
12897 				}
12898 				goto exit;
12899 
12900 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
12901 				/*
12902 				 * HBA DMA resource failure. Fail the command
12903 				 * and continue processing of the queues.
12904 				 */
12905 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12906 				    "sd_start_cmds: "
12907 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
12908 				break;
12909 
12910 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
12911 				/*
12912 				 * Note:x86: Partial DMA mapping not supported
12913 				 * for USCSI commands, and all the needed DMA
12914 				 * resources were not allocated.
12915 				 */
12916 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12917 				    "sd_start_cmds: "
12918 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
12919 				break;
12920 
12921 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
12922 				/*
12923 				 * Note:x86: Request cannot fit into CDB based
12924 				 * on lba and len.
12925 				 */
12926 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12927 				    "sd_start_cmds: "
12928 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
12929 				break;
12930 
12931 			default:
12932 				/* Should NEVER get here! */
12933 				panic("scsi_initpkt error");
12934 				/*NOTREACHED*/
12935 			}
12936 
12937 			/*
12938 			 * Fatal error in allocating a scsi_pkt for this buf.
12939 			 * Update kstats & return the buf with an error code.
12940 			 * We must use sd_return_failed_command_no_restart() to
12941 			 * avoid a recursive call back into sd_start_cmds().
12942 			 * However this also means that we must keep processing
12943 			 * the waitq here in order to avoid stalling.
12944 			 */
12945 			if (statp == kstat_waitq_to_runq) {
12946 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
12947 			}
12948 			sd_return_failed_command_no_restart(un, bp, EIO);
12949 			if (bp == immed_bp) {
12950 				/* immed_bp is gone by now, so clear this */
12951 				immed_bp = NULL;
12952 			}
12953 			continue;
12954 		}
12955 got_pkt:
12956 		if (bp == immed_bp) {
12957 			/* goto the head of the class.... */
12958 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
12959 		}
12960 
12961 		un->un_ncmds_in_transport++;
12962 		SD_UPDATE_KSTATS(un, statp, bp);
12963 
12964 		/*
12965 		 * Call scsi_transport() to send the command to the target.
12966 		 * According to SCSA architecture, we must drop the mutex here
12967 		 * before calling scsi_transport() in order to avoid deadlock.
12968 		 * Note that the scsi_pkt's completion routine can be executed
12969 		 * (from interrupt context) even before the call to
12970 		 * scsi_transport() returns.
12971 		 */
12972 		SD_TRACE(SD_LOG_IO_CORE, un,
12973 		    "sd_start_cmds: calling scsi_transport()\n");
12974 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
12975 
12976 		mutex_exit(SD_MUTEX(un));
12977 		rval = scsi_transport(xp->xb_pktp);
12978 		mutex_enter(SD_MUTEX(un));
12979 
12980 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12981 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
12982 
12983 		switch (rval) {
12984 		case TRAN_ACCEPT:
12985 			/* Clear this with every pkt accepted by the HBA */
12986 			un->un_tran_fatal_count = 0;
12987 			break;	/* Success; try the next cmd (if any) */
12988 
12989 		case TRAN_BUSY:
12990 			un->un_ncmds_in_transport--;
12991 			ASSERT(un->un_ncmds_in_transport >= 0);
12992 
12993 			/*
12994 			 * Don't retry request sense, the sense data
12995 			 * is lost when another request is sent.
12996 			 * Free up the rqs buf and retry
12997 			 * the original failed cmd.  Update kstat.
12998 			 */
12999 			if (bp == un->un_rqs_bp) {
13000 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13001 				bp = sd_mark_rqs_idle(un, xp);
13002 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13003 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13004 					kstat_waitq_enter);
13005 				goto exit;
13006 			}
13007 
13008 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13009 			/*
13010 			 * Free the DMA resources for the  scsi_pkt. This will
13011 			 * allow mpxio to select another path the next time
13012 			 * we call scsi_transport() with this scsi_pkt.
13013 			 * See sdintr() for the rationalization behind this.
13014 			 */
13015 			if ((un->un_f_is_fibre == TRUE) &&
13016 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13017 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13018 				scsi_dmafree(xp->xb_pktp);
13019 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13020 			}
13021 #endif
13022 
13023 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13024 				/*
13025 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13026 				 * are for error recovery situations. These do
13027 				 * not use the normal command waitq, so if they
13028 				 * get a TRAN_BUSY we cannot put them back onto
13029 				 * the waitq for later retry. One possible
13030 				 * problem is that there could already be some
13031 				 * other command on un_retry_bp that is waiting
13032 				 * for this one to complete, so we would be
13033 				 * deadlocked if we put this command back onto
13034 				 * the waitq for later retry (since un_retry_bp
13035 				 * must complete before the driver gets back to
13036 				 * commands on the waitq).
13037 				 *
13038 				 * To avoid deadlock we must schedule a callback
13039 				 * that will restart this command after a set
13040 				 * interval.  This should keep retrying for as
13041 				 * long as the underlying transport keeps
13042 				 * returning TRAN_BUSY (just like for other
13043 				 * commands).  Use the same timeout interval as
13044 				 * for the ordinary TRAN_BUSY retry.
13045 				 */
13046 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13047 				    "sd_start_cmds: scsi_transport() returned "
13048 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13049 
13050 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13051 				un->un_direct_priority_timeid =
13052 				    timeout(sd_start_direct_priority_command,
13053 				    bp, SD_BSY_TIMEOUT / 500);
13054 
13055 				goto exit;
13056 			}
13057 
13058 			/*
13059 			 * For TRAN_BUSY, we want to reduce the throttle value,
13060 			 * unless we are retrying a command.
13061 			 */
13062 			if (bp != un->un_retry_bp) {
13063 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13064 			}
13065 
13066 			/*
13067 			 * Set up the bp to be tried again 10 ms later.
13068 			 * Note:x86: Is there a timeout value in the sd_lun
13069 			 * for this condition?
13070 			 */
13071 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13072 				kstat_runq_back_to_waitq);
13073 			goto exit;
13074 
13075 		case TRAN_FATAL_ERROR:
13076 			un->un_tran_fatal_count++;
13077 			/* FALLTHRU */
13078 
13079 		case TRAN_BADPKT:
13080 		default:
13081 			un->un_ncmds_in_transport--;
13082 			ASSERT(un->un_ncmds_in_transport >= 0);
13083 
13084 			/*
13085 			 * If this is our REQUEST SENSE command with a
13086 			 * transport error, we must get back the pointers
13087 			 * to the original buf, and mark the REQUEST
13088 			 * SENSE command as "available".
13089 			 */
13090 			if (bp == un->un_rqs_bp) {
13091 				bp = sd_mark_rqs_idle(un, xp);
13092 				xp = SD_GET_XBUF(bp);
13093 			} else {
13094 				/*
13095 				 * Legacy behavior: do not update transport
13096 				 * error count for request sense commands.
13097 				 */
13098 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13099 			}
13100 
13101 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13102 			sd_print_transport_rejected_message(un, xp, rval);
13103 
13104 			/*
13105 			 * We must use sd_return_failed_command_no_restart() to
13106 			 * avoid a recursive call back into sd_start_cmds().
13107 			 * However this also means that we must keep processing
13108 			 * the waitq here in order to avoid stalling.
13109 			 */
13110 			sd_return_failed_command_no_restart(un, bp, EIO);
13111 
13112 			/*
13113 			 * Notify any threads waiting in sd_ddi_suspend() that
13114 			 * a command completion has occurred.
13115 			 */
13116 			if (un->un_state == SD_STATE_SUSPENDED) {
13117 				cv_broadcast(&un->un_disk_busy_cv);
13118 			}
13119 
13120 			if (bp == immed_bp) {
13121 				/* immed_bp is gone by now, so clear this */
13122 				immed_bp = NULL;
13123 			}
13124 			break;
13125 		}
13126 
13127 	} while (immed_bp == NULL);
13128 
13129 exit:
13130 	ASSERT(mutex_owned(SD_MUTEX(un)));
13131 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13132 }
13133 
13134 
13135 /*
13136  *    Function: sd_return_command
13137  *
13138  * Description: Returns a command to its originator (with or without an
13139  *		error).  Also starts commands waiting to be transported
13140  *		to the target.
13141  *
13142  *     Context: May be called from interrupt, kernel, or timeout context
13143  */
13144 
13145 static void
13146 sd_return_command(struct sd_lun *un, struct buf *bp)
13147 {
13148 	struct sd_xbuf *xp;
13149 #if defined(__i386) || defined(__amd64)
13150 	struct scsi_pkt *pktp;
13151 #endif
13152 
13153 	ASSERT(bp != NULL);
13154 	ASSERT(un != NULL);
13155 	ASSERT(mutex_owned(SD_MUTEX(un)));
13156 	ASSERT(bp != un->un_rqs_bp);
13157 	xp = SD_GET_XBUF(bp);
13158 	ASSERT(xp != NULL);
13159 
13160 #if defined(__i386) || defined(__amd64)
13161 	pktp = SD_GET_PKTP(bp);
13162 #endif
13163 
13164 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13165 
13166 #if defined(__i386) || defined(__amd64)
13167 	/*
13168 	 * Note:x86: check for the "sdrestart failed" case.
13169 	 */
13170 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13171 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13172 		(xp->xb_pktp->pkt_resid == 0)) {
13173 
13174 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13175 			/*
13176 			 * Successfully set up next portion of cmd
13177 			 * transfer, try sending it
13178 			 */
13179 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13180 			    NULL, NULL, 0, (clock_t)0, NULL);
13181 			sd_start_cmds(un, NULL);
13182 			return;	/* Note:x86: need a return here? */
13183 		}
13184 	}
13185 #endif
13186 
13187 	/*
13188 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13189 	 * can happen if upon being re-tried the failfast bp either
13190 	 * succeeded or encountered another error (possibly even a different
13191 	 * error than the one that precipitated the failfast state, but in
13192 	 * that case it would have had to exhaust retries as well). Regardless,
13193 	 * this should not occur whenever the instance is in the active
13194 	 * failfast state.
13195 	 */
13196 	if (bp == un->un_failfast_bp) {
13197 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13198 		un->un_failfast_bp = NULL;
13199 	}
13200 
13201 	/*
13202 	 * Clear the failfast state upon successful completion of ANY cmd.
13203 	 */
13204 	if (bp->b_error == 0) {
13205 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13206 	}
13207 
13208 	/*
13209 	 * This is used if the command was retried one or more times. Show that
13210 	 * we are done with it, and allow processing of the waitq to resume.
13211 	 */
13212 	if (bp == un->un_retry_bp) {
13213 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13214 		    "sd_return_command: un:0x%p: "
13215 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13216 		un->un_retry_bp = NULL;
13217 		un->un_retry_statp = NULL;
13218 	}
13219 
13220 	SD_UPDATE_RDWR_STATS(un, bp);
13221 	SD_UPDATE_PARTITION_STATS(un, bp);
13222 
13223 	switch (un->un_state) {
13224 	case SD_STATE_SUSPENDED:
13225 		/*
13226 		 * Notify any threads waiting in sd_ddi_suspend() that
13227 		 * a command completion has occurred.
13228 		 */
13229 		cv_broadcast(&un->un_disk_busy_cv);
13230 		break;
13231 	default:
13232 		sd_start_cmds(un, NULL);
13233 		break;
13234 	}
13235 
13236 	/* Return this command up the iodone chain to its originator. */
13237 	mutex_exit(SD_MUTEX(un));
13238 
13239 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13240 	xp->xb_pktp = NULL;
13241 
13242 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13243 
13244 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13245 	mutex_enter(SD_MUTEX(un));
13246 
13247 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13248 }
13249 
13250 
13251 /*
13252  *    Function: sd_return_failed_command
13253  *
13254  * Description: Command completion when an error occurred.
13255  *
13256  *     Context: May be called from interrupt context
13257  */
13258 
13259 static void
13260 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13261 {
13262 	ASSERT(bp != NULL);
13263 	ASSERT(un != NULL);
13264 	ASSERT(mutex_owned(SD_MUTEX(un)));
13265 
13266 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13267 	    "sd_return_failed_command: entry\n");
13268 
13269 	/*
13270 	 * b_resid could already be nonzero due to a partial data
13271 	 * transfer, so do not change it here.
13272 	 */
13273 	SD_BIOERROR(bp, errcode);
13274 
13275 	sd_return_command(un, bp);
13276 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13277 	    "sd_return_failed_command: exit\n");
13278 }
13279 
13280 
13281 /*
13282  *    Function: sd_return_failed_command_no_restart
13283  *
13284  * Description: Same as sd_return_failed_command, but ensures that no
13285  *		call back into sd_start_cmds will be issued.
13286  *
13287  *     Context: May be called from interrupt context
13288  */
13289 
13290 static void
13291 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13292 	int errcode)
13293 {
13294 	struct sd_xbuf *xp;
13295 
13296 	ASSERT(bp != NULL);
13297 	ASSERT(un != NULL);
13298 	ASSERT(mutex_owned(SD_MUTEX(un)));
13299 	xp = SD_GET_XBUF(bp);
13300 	ASSERT(xp != NULL);
13301 	ASSERT(errcode != 0);
13302 
13303 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13304 	    "sd_return_failed_command_no_restart: entry\n");
13305 
13306 	/*
13307 	 * b_resid could already be nonzero due to a partial data
13308 	 * transfer, so do not change it here.
13309 	 */
13310 	SD_BIOERROR(bp, errcode);
13311 
13312 	/*
13313 	 * If this is the failfast bp, clear it. This can happen if the
13314 	 * failfast bp encounterd a fatal error when we attempted to
13315 	 * re-try it (such as a scsi_transport(9F) failure).  However
13316 	 * we should NOT be in an active failfast state if the failfast
13317 	 * bp is not NULL.
13318 	 */
13319 	if (bp == un->un_failfast_bp) {
13320 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13321 		un->un_failfast_bp = NULL;
13322 	}
13323 
13324 	if (bp == un->un_retry_bp) {
13325 		/*
13326 		 * This command was retried one or more times. Show that we are
13327 		 * done with it, and allow processing of the waitq to resume.
13328 		 */
13329 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13330 		    "sd_return_failed_command_no_restart: "
13331 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13332 		un->un_retry_bp = NULL;
13333 		un->un_retry_statp = NULL;
13334 	}
13335 
13336 	SD_UPDATE_RDWR_STATS(un, bp);
13337 	SD_UPDATE_PARTITION_STATS(un, bp);
13338 
13339 	mutex_exit(SD_MUTEX(un));
13340 
13341 	if (xp->xb_pktp != NULL) {
13342 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13343 		xp->xb_pktp = NULL;
13344 	}
13345 
13346 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13347 
13348 	mutex_enter(SD_MUTEX(un));
13349 
13350 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13351 	    "sd_return_failed_command_no_restart: exit\n");
13352 }
13353 
13354 
13355 /*
13356  *    Function: sd_retry_command
13357  *
13358  * Description: queue up a command for retry, or (optionally) fail it
13359  *		if retry counts are exhausted.
13360  *
13361  *   Arguments: un - Pointer to the sd_lun struct for the target.
13362  *
13363  *		bp - Pointer to the buf for the command to be retried.
13364  *
13365  *		retry_check_flag - Flag to see which (if any) of the retry
13366  *		   counts should be decremented/checked. If the indicated
13367  *		   retry count is exhausted, then the command will not be
13368  *		   retried; it will be failed instead. This should use a
13369  *		   value equal to one of the following:
13370  *
13371  *			SD_RETRIES_NOCHECK
13372  *			SD_RESD_RETRIES_STANDARD
13373  *			SD_RETRIES_VICTIM
13374  *
13375  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13376  *		   if the check should be made to see of FLAG_ISOLATE is set
13377  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13378  *		   not retried, it is simply failed.
13379  *
13380  *		user_funcp - Ptr to function to call before dispatching the
13381  *		   command. May be NULL if no action needs to be performed.
13382  *		   (Primarily intended for printing messages.)
13383  *
13384  *		user_arg - Optional argument to be passed along to
13385  *		   the user_funcp call.
13386  *
13387  *		failure_code - errno return code to set in the bp if the
13388  *		   command is going to be failed.
13389  *
13390  *		retry_delay - Retry delay interval in (clock_t) units. May
13391  *		   be zero which indicates that the retry should be retried
13392  *		   immediately (ie, without an intervening delay).
13393  *
13394  *		statp - Ptr to kstat function to be updated if the command
13395  *		   is queued for a delayed retry. May be NULL if no kstat
13396  *		   update is desired.
13397  *
13398  *     Context: May be called from interupt context.
13399  */
13400 
13401 static void
13402 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13403 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13404 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13405 	void (*statp)(kstat_io_t *))
13406 {
13407 	struct sd_xbuf	*xp;
13408 	struct scsi_pkt	*pktp;
13409 
13410 	ASSERT(un != NULL);
13411 	ASSERT(mutex_owned(SD_MUTEX(un)));
13412 	ASSERT(bp != NULL);
13413 	xp = SD_GET_XBUF(bp);
13414 	ASSERT(xp != NULL);
13415 	pktp = SD_GET_PKTP(bp);
13416 	ASSERT(pktp != NULL);
13417 
13418 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13419 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13420 
13421 	/*
13422 	 * If we are syncing or dumping, fail the command to avoid
13423 	 * recursively calling back into scsi_transport().
13424 	 */
13425 	if (ddi_in_panic()) {
13426 		goto fail_command_no_log;
13427 	}
13428 
13429 	/*
13430 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13431 	 * log an error and fail the command.
13432 	 */
13433 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13434 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13435 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13436 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13437 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13438 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13439 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13440 		goto fail_command;
13441 	}
13442 
13443 	/*
13444 	 * If we are suspended, then put the command onto head of the
13445 	 * wait queue since we don't want to start more commands.
13446 	 */
13447 	switch (un->un_state) {
13448 	case SD_STATE_SUSPENDED:
13449 	case SD_STATE_DUMPING:
13450 		bp->av_forw = un->un_waitq_headp;
13451 		un->un_waitq_headp = bp;
13452 		if (un->un_waitq_tailp == NULL) {
13453 			un->un_waitq_tailp = bp;
13454 		}
13455 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13456 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13457 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13458 		return;
13459 	default:
13460 		break;
13461 	}
13462 
13463 	/*
13464 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13465 	 * is set; if it is then we do not want to retry the command.
13466 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13467 	 */
13468 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13469 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13470 			goto fail_command;
13471 		}
13472 	}
13473 
13474 
13475 	/*
13476 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13477 	 * command timeout or a selection timeout has occurred. This means
13478 	 * that we were unable to establish an kind of communication with
13479 	 * the target, and subsequent retries and/or commands are likely
13480 	 * to encounter similar results and take a long time to complete.
13481 	 *
13482 	 * If this is a failfast error condition, we need to update the
13483 	 * failfast state, even if this bp does not have B_FAILFAST set.
13484 	 */
13485 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13486 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13487 			ASSERT(un->un_failfast_bp == NULL);
13488 			/*
13489 			 * If we are already in the active failfast state, and
13490 			 * another failfast error condition has been detected,
13491 			 * then fail this command if it has B_FAILFAST set.
13492 			 * If B_FAILFAST is clear, then maintain the legacy
13493 			 * behavior of retrying heroically, even tho this will
13494 			 * take a lot more time to fail the command.
13495 			 */
13496 			if (bp->b_flags & B_FAILFAST) {
13497 				goto fail_command;
13498 			}
13499 		} else {
13500 			/*
13501 			 * We're not in the active failfast state, but we
13502 			 * have a failfast error condition, so we must begin
13503 			 * transition to the next state. We do this regardless
13504 			 * of whether or not this bp has B_FAILFAST set.
13505 			 */
13506 			if (un->un_failfast_bp == NULL) {
13507 				/*
13508 				 * This is the first bp to meet a failfast
13509 				 * condition so save it on un_failfast_bp &
13510 				 * do normal retry processing. Do not enter
13511 				 * active failfast state yet. This marks
13512 				 * entry into the "failfast pending" state.
13513 				 */
13514 				un->un_failfast_bp = bp;
13515 
13516 			} else if (un->un_failfast_bp == bp) {
13517 				/*
13518 				 * This is the second time *this* bp has
13519 				 * encountered a failfast error condition,
13520 				 * so enter active failfast state & flush
13521 				 * queues as appropriate.
13522 				 */
13523 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13524 				un->un_failfast_bp = NULL;
13525 				sd_failfast_flushq(un);
13526 
13527 				/*
13528 				 * Fail this bp now if B_FAILFAST set;
13529 				 * otherwise continue with retries. (It would
13530 				 * be pretty ironic if this bp succeeded on a
13531 				 * subsequent retry after we just flushed all
13532 				 * the queues).
13533 				 */
13534 				if (bp->b_flags & B_FAILFAST) {
13535 					goto fail_command;
13536 				}
13537 
13538 #if !defined(lint) && !defined(__lint)
13539 			} else {
13540 				/*
13541 				 * If neither of the preceeding conditionals
13542 				 * was true, it means that there is some
13543 				 * *other* bp that has met an inital failfast
13544 				 * condition and is currently either being
13545 				 * retried or is waiting to be retried. In
13546 				 * that case we should perform normal retry
13547 				 * processing on *this* bp, since there is a
13548 				 * chance that the current failfast condition
13549 				 * is transient and recoverable. If that does
13550 				 * not turn out to be the case, then retries
13551 				 * will be cleared when the wait queue is
13552 				 * flushed anyway.
13553 				 */
13554 #endif
13555 			}
13556 		}
13557 	} else {
13558 		/*
13559 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13560 		 * likely were able to at least establish some level of
13561 		 * communication with the target and subsequent commands
13562 		 * and/or retries are likely to get through to the target,
13563 		 * In this case we want to be aggressive about clearing
13564 		 * the failfast state. Note that this does not affect
13565 		 * the "failfast pending" condition.
13566 		 */
13567 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13568 	}
13569 
13570 
13571 	/*
13572 	 * Check the specified retry count to see if we can still do
13573 	 * any retries with this pkt before we should fail it.
13574 	 */
13575 	switch (retry_check_flag & SD_RETRIES_MASK) {
13576 	case SD_RETRIES_VICTIM:
13577 		/*
13578 		 * Check the victim retry count. If exhausted, then fall
13579 		 * thru & check against the standard retry count.
13580 		 */
13581 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13582 			/* Increment count & proceed with the retry */
13583 			xp->xb_victim_retry_count++;
13584 			break;
13585 		}
13586 		/* Victim retries exhausted, fall back to std. retries... */
13587 		/* FALLTHRU */
13588 
13589 	case SD_RETRIES_STANDARD:
13590 		if (xp->xb_retry_count >= un->un_retry_count) {
13591 			/* Retries exhausted, fail the command */
13592 			SD_TRACE(SD_LOG_IO_CORE, un,
13593 			    "sd_retry_command: retries exhausted!\n");
13594 			/*
13595 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13596 			 * commands with nonzero pkt_resid.
13597 			 */
13598 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13599 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13600 			    (pktp->pkt_resid != 0)) {
13601 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13602 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13603 					SD_UPDATE_B_RESID(bp, pktp);
13604 				}
13605 			}
13606 			goto fail_command;
13607 		}
13608 		xp->xb_retry_count++;
13609 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13610 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13611 		break;
13612 
13613 	case SD_RETRIES_UA:
13614 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13615 			/* Retries exhausted, fail the command */
13616 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13617 			    "Unit Attention retries exhausted. "
13618 			    "Check the target.\n");
13619 			goto fail_command;
13620 		}
13621 		xp->xb_ua_retry_count++;
13622 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13623 		    "sd_retry_command: retry count:%d\n",
13624 			xp->xb_ua_retry_count);
13625 		break;
13626 
13627 	case SD_RETRIES_BUSY:
13628 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13629 			/* Retries exhausted, fail the command */
13630 			SD_TRACE(SD_LOG_IO_CORE, un,
13631 			    "sd_retry_command: retries exhausted!\n");
13632 			goto fail_command;
13633 		}
13634 		xp->xb_retry_count++;
13635 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13636 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13637 		break;
13638 
13639 	case SD_RETRIES_NOCHECK:
13640 	default:
13641 		/* No retry count to check. Just proceed with the retry */
13642 		break;
13643 	}
13644 
13645 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13646 
13647 	/*
13648 	 * If we were given a zero timeout, we must attempt to retry the
13649 	 * command immediately (ie, without a delay).
13650 	 */
13651 	if (retry_delay == 0) {
13652 		/*
13653 		 * Check some limiting conditions to see if we can actually
13654 		 * do the immediate retry.  If we cannot, then we must
13655 		 * fall back to queueing up a delayed retry.
13656 		 */
13657 		if (un->un_ncmds_in_transport >= un->un_throttle) {
13658 			/*
13659 			 * We are at the throttle limit for the target,
13660 			 * fall back to delayed retry.
13661 			 */
13662 			retry_delay = SD_BSY_TIMEOUT;
13663 			statp = kstat_waitq_enter;
13664 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13665 			    "sd_retry_command: immed. retry hit "
13666 			    "throttle!\n");
13667 		} else {
13668 			/*
13669 			 * We're clear to proceed with the immediate retry.
13670 			 * First call the user-provided function (if any)
13671 			 */
13672 			if (user_funcp != NULL) {
13673 				(*user_funcp)(un, bp, user_arg,
13674 				    SD_IMMEDIATE_RETRY_ISSUED);
13675 #ifdef __lock_lint
13676 				sd_print_incomplete_msg(un, bp, user_arg,
13677 				    SD_IMMEDIATE_RETRY_ISSUED);
13678 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
13679 				    SD_IMMEDIATE_RETRY_ISSUED);
13680 				sd_print_sense_failed_msg(un, bp, user_arg,
13681 				    SD_IMMEDIATE_RETRY_ISSUED);
13682 #endif
13683 			}
13684 
13685 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13686 			    "sd_retry_command: issuing immediate retry\n");
13687 
13688 			/*
13689 			 * Call sd_start_cmds() to transport the command to
13690 			 * the target.
13691 			 */
13692 			sd_start_cmds(un, bp);
13693 
13694 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13695 			    "sd_retry_command exit\n");
13696 			return;
13697 		}
13698 	}
13699 
13700 	/*
13701 	 * Set up to retry the command after a delay.
13702 	 * First call the user-provided function (if any)
13703 	 */
13704 	if (user_funcp != NULL) {
13705 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
13706 	}
13707 
13708 	sd_set_retry_bp(un, bp, retry_delay, statp);
13709 
13710 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13711 	return;
13712 
13713 fail_command:
13714 
13715 	if (user_funcp != NULL) {
13716 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
13717 	}
13718 
13719 fail_command_no_log:
13720 
13721 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13722 	    "sd_retry_command: returning failed command\n");
13723 
13724 	sd_return_failed_command(un, bp, failure_code);
13725 
13726 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13727 }
13728 
13729 
13730 /*
13731  *    Function: sd_set_retry_bp
13732  *
13733  * Description: Set up the given bp for retry.
13734  *
13735  *   Arguments: un - ptr to associated softstate
13736  *		bp - ptr to buf(9S) for the command
13737  *		retry_delay - time interval before issuing retry (may be 0)
13738  *		statp - optional pointer to kstat function
13739  *
13740  *     Context: May be called under interrupt context
13741  */
13742 
13743 static void
13744 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
13745 	void (*statp)(kstat_io_t *))
13746 {
13747 	ASSERT(un != NULL);
13748 	ASSERT(mutex_owned(SD_MUTEX(un)));
13749 	ASSERT(bp != NULL);
13750 
13751 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13752 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
13753 
13754 	/*
13755 	 * Indicate that the command is being retried. This will not allow any
13756 	 * other commands on the wait queue to be transported to the target
13757 	 * until this command has been completed (success or failure). The
13758 	 * "retry command" is not transported to the target until the given
13759 	 * time delay expires, unless the user specified a 0 retry_delay.
13760 	 *
13761 	 * Note: the timeout(9F) callback routine is what actually calls
13762 	 * sd_start_cmds() to transport the command, with the exception of a
13763 	 * zero retry_delay. The only current implementor of a zero retry delay
13764 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
13765 	 */
13766 	if (un->un_retry_bp == NULL) {
13767 		ASSERT(un->un_retry_statp == NULL);
13768 		un->un_retry_bp = bp;
13769 
13770 		/*
13771 		 * If the user has not specified a delay the command should
13772 		 * be queued and no timeout should be scheduled.
13773 		 */
13774 		if (retry_delay == 0) {
13775 			/*
13776 			 * Save the kstat pointer that will be used in the
13777 			 * call to SD_UPDATE_KSTATS() below, so that
13778 			 * sd_start_cmds() can correctly decrement the waitq
13779 			 * count when it is time to transport this command.
13780 			 */
13781 			un->un_retry_statp = statp;
13782 			goto done;
13783 		}
13784 	}
13785 
13786 	if (un->un_retry_bp == bp) {
13787 		/*
13788 		 * Save the kstat pointer that will be used in the call to
13789 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
13790 		 * correctly decrement the waitq count when it is time to
13791 		 * transport this command.
13792 		 */
13793 		un->un_retry_statp = statp;
13794 
13795 		/*
13796 		 * Schedule a timeout if:
13797 		 *   1) The user has specified a delay.
13798 		 *   2) There is not a START_STOP_UNIT callback pending.
13799 		 *
13800 		 * If no delay has been specified, then it is up to the caller
13801 		 * to ensure that IO processing continues without stalling.
13802 		 * Effectively, this means that the caller will issue the
13803 		 * required call to sd_start_cmds(). The START_STOP_UNIT
13804 		 * callback does this after the START STOP UNIT command has
13805 		 * completed. In either of these cases we should not schedule
13806 		 * a timeout callback here.  Also don't schedule the timeout if
13807 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
13808 		 */
13809 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
13810 		    (un->un_direct_priority_timeid == NULL)) {
13811 			un->un_retry_timeid =
13812 			    timeout(sd_start_retry_command, un, retry_delay);
13813 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13814 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
13815 			    " bp:0x%p un_retry_timeid:0x%p\n",
13816 			    un, bp, un->un_retry_timeid);
13817 		}
13818 	} else {
13819 		/*
13820 		 * We only get in here if there is already another command
13821 		 * waiting to be retried.  In this case, we just put the
13822 		 * given command onto the wait queue, so it can be transported
13823 		 * after the current retry command has completed.
13824 		 *
13825 		 * Also we have to make sure that if the command at the head
13826 		 * of the wait queue is the un_failfast_bp, that we do not
13827 		 * put ahead of it any other commands that are to be retried.
13828 		 */
13829 		if ((un->un_failfast_bp != NULL) &&
13830 		    (un->un_failfast_bp == un->un_waitq_headp)) {
13831 			/*
13832 			 * Enqueue this command AFTER the first command on
13833 			 * the wait queue (which is also un_failfast_bp).
13834 			 */
13835 			bp->av_forw = un->un_waitq_headp->av_forw;
13836 			un->un_waitq_headp->av_forw = bp;
13837 			if (un->un_waitq_headp == un->un_waitq_tailp) {
13838 				un->un_waitq_tailp = bp;
13839 			}
13840 		} else {
13841 			/* Enqueue this command at the head of the waitq. */
13842 			bp->av_forw = un->un_waitq_headp;
13843 			un->un_waitq_headp = bp;
13844 			if (un->un_waitq_tailp == NULL) {
13845 				un->un_waitq_tailp = bp;
13846 			}
13847 		}
13848 
13849 		if (statp == NULL) {
13850 			statp = kstat_waitq_enter;
13851 		}
13852 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13853 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
13854 	}
13855 
13856 done:
13857 	if (statp != NULL) {
13858 		SD_UPDATE_KSTATS(un, statp, bp);
13859 	}
13860 
13861 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13862 	    "sd_set_retry_bp: exit un:0x%p\n", un);
13863 }
13864 
13865 
13866 /*
13867  *    Function: sd_start_retry_command
13868  *
13869  * Description: Start the command that has been waiting on the target's
13870  *		retry queue.  Called from timeout(9F) context after the
13871  *		retry delay interval has expired.
13872  *
13873  *   Arguments: arg - pointer to associated softstate for the device.
13874  *
13875  *     Context: timeout(9F) thread context.  May not sleep.
13876  */
13877 
13878 static void
13879 sd_start_retry_command(void *arg)
13880 {
13881 	struct sd_lun *un = arg;
13882 
13883 	ASSERT(un != NULL);
13884 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13885 
13886 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13887 	    "sd_start_retry_command: entry\n");
13888 
13889 	mutex_enter(SD_MUTEX(un));
13890 
13891 	un->un_retry_timeid = NULL;
13892 
13893 	if (un->un_retry_bp != NULL) {
13894 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13895 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
13896 		    un, un->un_retry_bp);
13897 		sd_start_cmds(un, un->un_retry_bp);
13898 	}
13899 
13900 	mutex_exit(SD_MUTEX(un));
13901 
13902 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13903 	    "sd_start_retry_command: exit\n");
13904 }
13905 
13906 
13907 /*
13908  *    Function: sd_start_direct_priority_command
13909  *
13910  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
13911  *		received TRAN_BUSY when we called scsi_transport() to send it
13912  *		to the underlying HBA. This function is called from timeout(9F)
13913  *		context after the delay interval has expired.
13914  *
13915  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
13916  *
13917  *     Context: timeout(9F) thread context.  May not sleep.
13918  */
13919 
13920 static void
13921 sd_start_direct_priority_command(void *arg)
13922 {
13923 	struct buf	*priority_bp = arg;
13924 	struct sd_lun	*un;
13925 
13926 	ASSERT(priority_bp != NULL);
13927 	un = SD_GET_UN(priority_bp);
13928 	ASSERT(un != NULL);
13929 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13930 
13931 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13932 	    "sd_start_direct_priority_command: entry\n");
13933 
13934 	mutex_enter(SD_MUTEX(un));
13935 	un->un_direct_priority_timeid = NULL;
13936 	sd_start_cmds(un, priority_bp);
13937 	mutex_exit(SD_MUTEX(un));
13938 
13939 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13940 	    "sd_start_direct_priority_command: exit\n");
13941 }
13942 
13943 
13944 /*
13945  *    Function: sd_send_request_sense_command
13946  *
13947  * Description: Sends a REQUEST SENSE command to the target
13948  *
13949  *     Context: May be called from interrupt context.
13950  */
13951 
13952 static void
13953 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
13954 	struct scsi_pkt *pktp)
13955 {
13956 	ASSERT(bp != NULL);
13957 	ASSERT(un != NULL);
13958 	ASSERT(mutex_owned(SD_MUTEX(un)));
13959 
13960 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
13961 	    "entry: buf:0x%p\n", bp);
13962 
13963 	/*
13964 	 * If we are syncing or dumping, then fail the command to avoid a
13965 	 * recursive callback into scsi_transport(). Also fail the command
13966 	 * if we are suspended (legacy behavior).
13967 	 */
13968 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
13969 	    (un->un_state == SD_STATE_DUMPING)) {
13970 		sd_return_failed_command(un, bp, EIO);
13971 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13972 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
13973 		return;
13974 	}
13975 
13976 	/*
13977 	 * Retry the failed command and don't issue the request sense if:
13978 	 *    1) the sense buf is busy
13979 	 *    2) we have 1 or more outstanding commands on the target
13980 	 *    (the sense data will be cleared or invalidated any way)
13981 	 *
13982 	 * Note: There could be an issue with not checking a retry limit here,
13983 	 * the problem is determining which retry limit to check.
13984 	 */
13985 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
13986 		/* Don't retry if the command is flagged as non-retryable */
13987 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
13988 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13989 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
13990 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13991 			    "sd_send_request_sense_command: "
13992 			    "at full throttle, retrying exit\n");
13993 		} else {
13994 			sd_return_failed_command(un, bp, EIO);
13995 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13996 			    "sd_send_request_sense_command: "
13997 			    "at full throttle, non-retryable exit\n");
13998 		}
13999 		return;
14000 	}
14001 
14002 	sd_mark_rqs_busy(un, bp);
14003 	sd_start_cmds(un, un->un_rqs_bp);
14004 
14005 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14006 	    "sd_send_request_sense_command: exit\n");
14007 }
14008 
14009 
14010 /*
14011  *    Function: sd_mark_rqs_busy
14012  *
14013  * Description: Indicate that the request sense bp for this instance is
14014  *		in use.
14015  *
14016  *     Context: May be called under interrupt context
14017  */
14018 
14019 static void
14020 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14021 {
14022 	struct sd_xbuf	*sense_xp;
14023 
14024 	ASSERT(un != NULL);
14025 	ASSERT(bp != NULL);
14026 	ASSERT(mutex_owned(SD_MUTEX(un)));
14027 	ASSERT(un->un_sense_isbusy == 0);
14028 
14029 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14030 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14031 
14032 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14033 	ASSERT(sense_xp != NULL);
14034 
14035 	SD_INFO(SD_LOG_IO, un,
14036 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14037 
14038 	ASSERT(sense_xp->xb_pktp != NULL);
14039 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14040 	    == (FLAG_SENSING | FLAG_HEAD));
14041 
14042 	un->un_sense_isbusy = 1;
14043 	un->un_rqs_bp->b_resid = 0;
14044 	sense_xp->xb_pktp->pkt_resid  = 0;
14045 	sense_xp->xb_pktp->pkt_reason = 0;
14046 
14047 	/* So we can get back the bp at interrupt time! */
14048 	sense_xp->xb_sense_bp = bp;
14049 
14050 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14051 
14052 	/*
14053 	 * Mark this buf as awaiting sense data. (This is already set in
14054 	 * the pkt_flags for the RQS packet.)
14055 	 */
14056 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14057 
14058 	sense_xp->xb_retry_count	= 0;
14059 	sense_xp->xb_victim_retry_count = 0;
14060 	sense_xp->xb_ua_retry_count	= 0;
14061 	sense_xp->xb_dma_resid  = 0;
14062 
14063 	/* Clean up the fields for auto-request sense */
14064 	sense_xp->xb_sense_status = 0;
14065 	sense_xp->xb_sense_state  = 0;
14066 	sense_xp->xb_sense_resid  = 0;
14067 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14068 
14069 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14070 }
14071 
14072 
14073 /*
14074  *    Function: sd_mark_rqs_idle
14075  *
14076  * Description: SD_MUTEX must be held continuously through this routine
14077  *		to prevent reuse of the rqs struct before the caller can
14078  *		complete it's processing.
14079  *
14080  * Return Code: Pointer to the RQS buf
14081  *
14082  *     Context: May be called under interrupt context
14083  */
14084 
14085 static struct buf *
14086 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14087 {
14088 	struct buf *bp;
14089 	ASSERT(un != NULL);
14090 	ASSERT(sense_xp != NULL);
14091 	ASSERT(mutex_owned(SD_MUTEX(un)));
14092 	ASSERT(un->un_sense_isbusy != 0);
14093 
14094 	un->un_sense_isbusy = 0;
14095 	bp = sense_xp->xb_sense_bp;
14096 	sense_xp->xb_sense_bp = NULL;
14097 
14098 	/* This pkt is no longer interested in getting sense data */
14099 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14100 
14101 	return (bp);
14102 }
14103 
14104 
14105 
14106 /*
14107  *    Function: sd_alloc_rqs
14108  *
14109  * Description: Set up the unit to receive auto request sense data
14110  *
14111  * Return Code: DDI_SUCCESS or DDI_FAILURE
14112  *
14113  *     Context: Called under attach(9E) context
14114  */
14115 
14116 static int
14117 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14118 {
14119 	struct sd_xbuf *xp;
14120 
14121 	ASSERT(un != NULL);
14122 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14123 	ASSERT(un->un_rqs_bp == NULL);
14124 	ASSERT(un->un_rqs_pktp == NULL);
14125 
14126 	/*
14127 	 * First allocate the required buf and scsi_pkt structs, then set up
14128 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14129 	 */
14130 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14131 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14132 	if (un->un_rqs_bp == NULL) {
14133 		return (DDI_FAILURE);
14134 	}
14135 
14136 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14137 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14138 
14139 	if (un->un_rqs_pktp == NULL) {
14140 		sd_free_rqs(un);
14141 		return (DDI_FAILURE);
14142 	}
14143 
14144 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14145 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14146 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
14147 
14148 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14149 
14150 	/* Set up the other needed members in the ARQ scsi_pkt. */
14151 	un->un_rqs_pktp->pkt_comp   = sdintr;
14152 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14153 	un->un_rqs_pktp->pkt_flags |=
14154 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14155 
14156 	/*
14157 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14158 	 * provide any intpkt, destroypkt routines as we take care of
14159 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14160 	 */
14161 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14162 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14163 	xp->xb_pktp = un->un_rqs_pktp;
14164 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14165 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14166 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14167 
14168 	/*
14169 	 * Save the pointer to the request sense private bp so it can
14170 	 * be retrieved in sdintr.
14171 	 */
14172 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14173 	ASSERT(un->un_rqs_bp->b_private == xp);
14174 
14175 	/*
14176 	 * See if the HBA supports auto-request sense for the specified
14177 	 * target/lun. If it does, then try to enable it (if not already
14178 	 * enabled).
14179 	 *
14180 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14181 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14182 	 * return success.  However, in both of these cases ARQ is always
14183 	 * enabled and scsi_ifgetcap will always return true. The best approach
14184 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14185 	 *
14186 	 * The 3rd case is the HBA (adp) always return enabled on
14187 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14188 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14189 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14190 	 */
14191 
14192 	if (un->un_f_is_fibre == TRUE) {
14193 		un->un_f_arq_enabled = TRUE;
14194 	} else {
14195 #if defined(__i386) || defined(__amd64)
14196 		/*
14197 		 * Circumvent the Adaptec bug, remove this code when
14198 		 * the bug is fixed
14199 		 */
14200 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14201 #endif
14202 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14203 		case 0:
14204 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14205 				"sd_alloc_rqs: HBA supports ARQ\n");
14206 			/*
14207 			 * ARQ is supported by this HBA but currently is not
14208 			 * enabled. Attempt to enable it and if successful then
14209 			 * mark this instance as ARQ enabled.
14210 			 */
14211 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14212 				== 1) {
14213 				/* Successfully enabled ARQ in the HBA */
14214 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14215 					"sd_alloc_rqs: ARQ enabled\n");
14216 				un->un_f_arq_enabled = TRUE;
14217 			} else {
14218 				/* Could not enable ARQ in the HBA */
14219 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14220 				"sd_alloc_rqs: failed ARQ enable\n");
14221 				un->un_f_arq_enabled = FALSE;
14222 			}
14223 			break;
14224 		case 1:
14225 			/*
14226 			 * ARQ is supported by this HBA and is already enabled.
14227 			 * Just mark ARQ as enabled for this instance.
14228 			 */
14229 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14230 				"sd_alloc_rqs: ARQ already enabled\n");
14231 			un->un_f_arq_enabled = TRUE;
14232 			break;
14233 		default:
14234 			/*
14235 			 * ARQ is not supported by this HBA; disable it for this
14236 			 * instance.
14237 			 */
14238 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14239 				"sd_alloc_rqs: HBA does not support ARQ\n");
14240 			un->un_f_arq_enabled = FALSE;
14241 			break;
14242 		}
14243 	}
14244 
14245 	return (DDI_SUCCESS);
14246 }
14247 
14248 
14249 /*
14250  *    Function: sd_free_rqs
14251  *
14252  * Description: Cleanup for the pre-instance RQS command.
14253  *
14254  *     Context: Kernel thread context
14255  */
14256 
14257 static void
14258 sd_free_rqs(struct sd_lun *un)
14259 {
14260 	ASSERT(un != NULL);
14261 
14262 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14263 
14264 	/*
14265 	 * If consistent memory is bound to a scsi_pkt, the pkt
14266 	 * has to be destroyed *before* freeing the consistent memory.
14267 	 * Don't change the sequence of this operations.
14268 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14269 	 * after it was freed in scsi_free_consistent_buf().
14270 	 */
14271 	if (un->un_rqs_pktp != NULL) {
14272 		scsi_destroy_pkt(un->un_rqs_pktp);
14273 		un->un_rqs_pktp = NULL;
14274 	}
14275 
14276 	if (un->un_rqs_bp != NULL) {
14277 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
14278 		scsi_free_consistent_buf(un->un_rqs_bp);
14279 		un->un_rqs_bp = NULL;
14280 	}
14281 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14282 }
14283 
14284 
14285 
14286 /*
14287  *    Function: sd_reduce_throttle
14288  *
14289  * Description: Reduces the maximun # of outstanding commands on a
14290  *		target to the current number of outstanding commands.
14291  *		Queues a tiemout(9F) callback to restore the limit
14292  *		after a specified interval has elapsed.
14293  *		Typically used when we get a TRAN_BUSY return code
14294  *		back from scsi_transport().
14295  *
14296  *   Arguments: un - ptr to the sd_lun softstate struct
14297  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14298  *
14299  *     Context: May be called from interrupt context
14300  */
14301 
14302 static void
14303 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14304 {
14305 	ASSERT(un != NULL);
14306 	ASSERT(mutex_owned(SD_MUTEX(un)));
14307 	ASSERT(un->un_ncmds_in_transport >= 0);
14308 
14309 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14310 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14311 	    un, un->un_throttle, un->un_ncmds_in_transport);
14312 
14313 	if (un->un_throttle > 1) {
14314 		if (un->un_f_use_adaptive_throttle == TRUE) {
14315 			switch (throttle_type) {
14316 			case SD_THROTTLE_TRAN_BUSY:
14317 				if (un->un_busy_throttle == 0) {
14318 					un->un_busy_throttle = un->un_throttle;
14319 				}
14320 				break;
14321 			case SD_THROTTLE_QFULL:
14322 				un->un_busy_throttle = 0;
14323 				break;
14324 			default:
14325 				ASSERT(FALSE);
14326 			}
14327 
14328 			if (un->un_ncmds_in_transport > 0) {
14329 			    un->un_throttle = un->un_ncmds_in_transport;
14330 			}
14331 
14332 		} else {
14333 			if (un->un_ncmds_in_transport == 0) {
14334 				un->un_throttle = 1;
14335 			} else {
14336 				un->un_throttle = un->un_ncmds_in_transport;
14337 			}
14338 		}
14339 	}
14340 
14341 	/* Reschedule the timeout if none is currently active */
14342 	if (un->un_reset_throttle_timeid == NULL) {
14343 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14344 		    un, SD_THROTTLE_RESET_INTERVAL);
14345 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14346 		    "sd_reduce_throttle: timeout scheduled!\n");
14347 	}
14348 
14349 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14350 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14351 }
14352 
14353 
14354 
14355 /*
14356  *    Function: sd_restore_throttle
14357  *
14358  * Description: Callback function for timeout(9F).  Resets the current
14359  *		value of un->un_throttle to its default.
14360  *
14361  *   Arguments: arg - pointer to associated softstate for the device.
14362  *
14363  *     Context: May be called from interrupt context
14364  */
14365 
14366 static void
14367 sd_restore_throttle(void *arg)
14368 {
14369 	struct sd_lun	*un = arg;
14370 
14371 	ASSERT(un != NULL);
14372 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14373 
14374 	mutex_enter(SD_MUTEX(un));
14375 
14376 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14377 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14378 
14379 	un->un_reset_throttle_timeid = NULL;
14380 
14381 	if (un->un_f_use_adaptive_throttle == TRUE) {
14382 		/*
14383 		 * If un_busy_throttle is nonzero, then it contains the
14384 		 * value that un_throttle was when we got a TRAN_BUSY back
14385 		 * from scsi_transport(). We want to revert back to this
14386 		 * value.
14387 		 *
14388 		 * In the QFULL case, the throttle limit will incrementally
14389 		 * increase until it reaches max throttle.
14390 		 */
14391 		if (un->un_busy_throttle > 0) {
14392 			un->un_throttle = un->un_busy_throttle;
14393 			un->un_busy_throttle = 0;
14394 		} else {
14395 			/*
14396 			 * increase throttle by 10% open gate slowly, schedule
14397 			 * another restore if saved throttle has not been
14398 			 * reached
14399 			 */
14400 			short throttle;
14401 			if (sd_qfull_throttle_enable) {
14402 				throttle = un->un_throttle +
14403 				    max((un->un_throttle / 10), 1);
14404 				un->un_throttle =
14405 				    (throttle < un->un_saved_throttle) ?
14406 				    throttle : un->un_saved_throttle;
14407 				if (un->un_throttle < un->un_saved_throttle) {
14408 				    un->un_reset_throttle_timeid =
14409 					timeout(sd_restore_throttle,
14410 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
14411 				}
14412 			}
14413 		}
14414 
14415 		/*
14416 		 * If un_throttle has fallen below the low-water mark, we
14417 		 * restore the maximum value here (and allow it to ratchet
14418 		 * down again if necessary).
14419 		 */
14420 		if (un->un_throttle < un->un_min_throttle) {
14421 			un->un_throttle = un->un_saved_throttle;
14422 		}
14423 	} else {
14424 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14425 		    "restoring limit from 0x%x to 0x%x\n",
14426 		    un->un_throttle, un->un_saved_throttle);
14427 		un->un_throttle = un->un_saved_throttle;
14428 	}
14429 
14430 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14431 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14432 
14433 	sd_start_cmds(un, NULL);
14434 
14435 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14436 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14437 	    un, un->un_throttle);
14438 
14439 	mutex_exit(SD_MUTEX(un));
14440 
14441 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14442 }
14443 
14444 /*
14445  *    Function: sdrunout
14446  *
14447  * Description: Callback routine for scsi_init_pkt when a resource allocation
14448  *		fails.
14449  *
14450  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14451  *		soft state instance.
14452  *
14453  * Return Code: The scsi_init_pkt routine allows for the callback function to
14454  *		return a 0 indicating the callback should be rescheduled or a 1
14455  *		indicating not to reschedule. This routine always returns 1
14456  *		because the driver always provides a callback function to
14457  *		scsi_init_pkt. This results in a callback always being scheduled
14458  *		(via the scsi_init_pkt callback implementation) if a resource
14459  *		failure occurs.
14460  *
14461  *     Context: This callback function may not block or call routines that block
14462  *
14463  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14464  *		request persisting at the head of the list which cannot be
14465  *		satisfied even after multiple retries. In the future the driver
14466  *		may implement some time of maximum runout count before failing
14467  *		an I/O.
14468  */
14469 
14470 static int
14471 sdrunout(caddr_t arg)
14472 {
14473 	struct sd_lun	*un = (struct sd_lun *)arg;
14474 
14475 	ASSERT(un != NULL);
14476 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14477 
14478 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14479 
14480 	mutex_enter(SD_MUTEX(un));
14481 	sd_start_cmds(un, NULL);
14482 	mutex_exit(SD_MUTEX(un));
14483 	/*
14484 	 * This callback routine always returns 1 (i.e. do not reschedule)
14485 	 * because we always specify sdrunout as the callback handler for
14486 	 * scsi_init_pkt inside the call to sd_start_cmds.
14487 	 */
14488 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14489 	return (1);
14490 }
14491 
14492 
14493 /*
14494  *    Function: sdintr
14495  *
14496  * Description: Completion callback routine for scsi_pkt(9S) structs
14497  *		sent to the HBA driver via scsi_transport(9F).
14498  *
14499  *     Context: Interrupt context
14500  */
14501 
14502 static void
14503 sdintr(struct scsi_pkt *pktp)
14504 {
14505 	struct buf	*bp;
14506 	struct sd_xbuf	*xp;
14507 	struct sd_lun	*un;
14508 
14509 	ASSERT(pktp != NULL);
14510 	bp = (struct buf *)pktp->pkt_private;
14511 	ASSERT(bp != NULL);
14512 	xp = SD_GET_XBUF(bp);
14513 	ASSERT(xp != NULL);
14514 	ASSERT(xp->xb_pktp != NULL);
14515 	un = SD_GET_UN(bp);
14516 	ASSERT(un != NULL);
14517 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14518 
14519 #ifdef SD_FAULT_INJECTION
14520 
14521 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14522 	/* SD FaultInjection */
14523 	sd_faultinjection(pktp);
14524 
14525 #endif /* SD_FAULT_INJECTION */
14526 
14527 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14528 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14529 
14530 	mutex_enter(SD_MUTEX(un));
14531 
14532 	/* Reduce the count of the #commands currently in transport */
14533 	un->un_ncmds_in_transport--;
14534 	ASSERT(un->un_ncmds_in_transport >= 0);
14535 
14536 	/* Increment counter to indicate that the callback routine is active */
14537 	un->un_in_callback++;
14538 
14539 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14540 
14541 #ifdef	SDDEBUG
14542 	if (bp == un->un_retry_bp) {
14543 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14544 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14545 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14546 	}
14547 #endif
14548 
14549 	/*
14550 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
14551 	 */
14552 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14553 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14554 			    "Device is gone\n");
14555 		sd_return_failed_command(un, bp, EIO);
14556 		goto exit;
14557 	}
14558 
14559 	/*
14560 	 * First see if the pkt has auto-request sense data with it....
14561 	 * Look at the packet state first so we don't take a performance
14562 	 * hit looking at the arq enabled flag unless absolutely necessary.
14563 	 */
14564 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14565 	    (un->un_f_arq_enabled == TRUE)) {
14566 		/*
14567 		 * The HBA did an auto request sense for this command so check
14568 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14569 		 * driver command that should not be retried.
14570 		 */
14571 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14572 			/*
14573 			 * Save the relevant sense info into the xp for the
14574 			 * original cmd.
14575 			 */
14576 			struct scsi_arq_status *asp;
14577 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14578 			xp->xb_sense_status =
14579 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14580 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14581 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14582 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14583 			    min(sizeof (struct scsi_extended_sense),
14584 			    SENSE_LENGTH));
14585 
14586 			/* fail the command */
14587 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14588 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14589 			sd_return_failed_command(un, bp, EIO);
14590 			goto exit;
14591 		}
14592 
14593 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14594 		/*
14595 		 * We want to either retry or fail this command, so free
14596 		 * the DMA resources here.  If we retry the command then
14597 		 * the DMA resources will be reallocated in sd_start_cmds().
14598 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14599 		 * causes the *entire* transfer to start over again from the
14600 		 * beginning of the request, even for PARTIAL chunks that
14601 		 * have already transferred successfully.
14602 		 */
14603 		if ((un->un_f_is_fibre == TRUE) &&
14604 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14605 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14606 			scsi_dmafree(pktp);
14607 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14608 		}
14609 #endif
14610 
14611 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14612 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14613 
14614 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14615 		goto exit;
14616 	}
14617 
14618 	/* Next see if this is the REQUEST SENSE pkt for the instance */
14619 	if (pktp->pkt_flags & FLAG_SENSING)  {
14620 		/* This pktp is from the unit's REQUEST_SENSE command */
14621 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14622 		    "sdintr: sd_handle_request_sense\n");
14623 		sd_handle_request_sense(un, bp, xp, pktp);
14624 		goto exit;
14625 	}
14626 
14627 	/*
14628 	 * Check to see if the command successfully completed as requested;
14629 	 * this is the most common case (and also the hot performance path).
14630 	 *
14631 	 * Requirements for successful completion are:
14632 	 * pkt_reason is CMD_CMPLT and packet status is status good.
14633 	 * In addition:
14634 	 * - A residual of zero indicates successful completion no matter what
14635 	 *   the command is.
14636 	 * - If the residual is not zero and the command is not a read or
14637 	 *   write, then it's still defined as successful completion. In other
14638 	 *   words, if the command is a read or write the residual must be
14639 	 *   zero for successful completion.
14640 	 * - If the residual is not zero and the command is a read or
14641 	 *   write, and it's a USCSICMD, then it's still defined as
14642 	 *   successful completion.
14643 	 */
14644 	if ((pktp->pkt_reason == CMD_CMPLT) &&
14645 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
14646 
14647 		/*
14648 		 * Since this command is returned with a good status, we
14649 		 * can reset the count for Sonoma failover.
14650 		 */
14651 		un->un_sonoma_failure_count = 0;
14652 
14653 		/*
14654 		 * Return all USCSI commands on good status
14655 		 */
14656 		if (pktp->pkt_resid == 0) {
14657 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14658 			    "sdintr: returning command for resid == 0\n");
14659 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
14660 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
14661 			SD_UPDATE_B_RESID(bp, pktp);
14662 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14663 			    "sdintr: returning command for resid != 0\n");
14664 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14665 			SD_UPDATE_B_RESID(bp, pktp);
14666 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14667 				"sdintr: returning uscsi command\n");
14668 		} else {
14669 			goto not_successful;
14670 		}
14671 		sd_return_command(un, bp);
14672 
14673 		/*
14674 		 * Decrement counter to indicate that the callback routine
14675 		 * is done.
14676 		 */
14677 		un->un_in_callback--;
14678 		ASSERT(un->un_in_callback >= 0);
14679 		mutex_exit(SD_MUTEX(un));
14680 
14681 		return;
14682 	}
14683 
14684 not_successful:
14685 
14686 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14687 	/*
14688 	 * The following is based upon knowledge of the underlying transport
14689 	 * and its use of DMA resources.  This code should be removed when
14690 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
14691 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
14692 	 * and sd_start_cmds().
14693 	 *
14694 	 * Free any DMA resources associated with this command if there
14695 	 * is a chance it could be retried or enqueued for later retry.
14696 	 * If we keep the DMA binding then mpxio cannot reissue the
14697 	 * command on another path whenever a path failure occurs.
14698 	 *
14699 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
14700 	 * causes the *entire* transfer to start over again from the
14701 	 * beginning of the request, even for PARTIAL chunks that
14702 	 * have already transferred successfully.
14703 	 *
14704 	 * This is only done for non-uscsi commands (and also skipped for the
14705 	 * driver's internal RQS command). Also just do this for Fibre Channel
14706 	 * devices as these are the only ones that support mpxio.
14707 	 */
14708 	if ((un->un_f_is_fibre == TRUE) &&
14709 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14710 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14711 		scsi_dmafree(pktp);
14712 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14713 	}
14714 #endif
14715 
14716 	/*
14717 	 * The command did not successfully complete as requested so check
14718 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14719 	 * driver command that should not be retried so just return. If
14720 	 * FLAG_DIAGNOSE is not set the error will be processed below.
14721 	 */
14722 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14723 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14724 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
14725 		/*
14726 		 * Issue a request sense if a check condition caused the error
14727 		 * (we handle the auto request sense case above), otherwise
14728 		 * just fail the command.
14729 		 */
14730 		if ((pktp->pkt_reason == CMD_CMPLT) &&
14731 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
14732 			sd_send_request_sense_command(un, bp, pktp);
14733 		} else {
14734 			sd_return_failed_command(un, bp, EIO);
14735 		}
14736 		goto exit;
14737 	}
14738 
14739 	/*
14740 	 * The command did not successfully complete as requested so process
14741 	 * the error, retry, and/or attempt recovery.
14742 	 */
14743 	switch (pktp->pkt_reason) {
14744 	case CMD_CMPLT:
14745 		switch (SD_GET_PKT_STATUS(pktp)) {
14746 		case STATUS_GOOD:
14747 			/*
14748 			 * The command completed successfully with a non-zero
14749 			 * residual
14750 			 */
14751 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14752 			    "sdintr: STATUS_GOOD \n");
14753 			sd_pkt_status_good(un, bp, xp, pktp);
14754 			break;
14755 
14756 		case STATUS_CHECK:
14757 		case STATUS_TERMINATED:
14758 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14759 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
14760 			sd_pkt_status_check_condition(un, bp, xp, pktp);
14761 			break;
14762 
14763 		case STATUS_BUSY:
14764 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14765 			    "sdintr: STATUS_BUSY\n");
14766 			sd_pkt_status_busy(un, bp, xp, pktp);
14767 			break;
14768 
14769 		case STATUS_RESERVATION_CONFLICT:
14770 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14771 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
14772 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
14773 			break;
14774 
14775 		case STATUS_QFULL:
14776 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14777 			    "sdintr: STATUS_QFULL\n");
14778 			sd_pkt_status_qfull(un, bp, xp, pktp);
14779 			break;
14780 
14781 		case STATUS_MET:
14782 		case STATUS_INTERMEDIATE:
14783 		case STATUS_SCSI2:
14784 		case STATUS_INTERMEDIATE_MET:
14785 		case STATUS_ACA_ACTIVE:
14786 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14787 			    "Unexpected SCSI status received: 0x%x\n",
14788 			    SD_GET_PKT_STATUS(pktp));
14789 			sd_return_failed_command(un, bp, EIO);
14790 			break;
14791 
14792 		default:
14793 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14794 			    "Invalid SCSI status received: 0x%x\n",
14795 			    SD_GET_PKT_STATUS(pktp));
14796 			sd_return_failed_command(un, bp, EIO);
14797 			break;
14798 
14799 		}
14800 		break;
14801 
14802 	case CMD_INCOMPLETE:
14803 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14804 		    "sdintr:  CMD_INCOMPLETE\n");
14805 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
14806 		break;
14807 	case CMD_TRAN_ERR:
14808 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14809 		    "sdintr: CMD_TRAN_ERR\n");
14810 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
14811 		break;
14812 	case CMD_RESET:
14813 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14814 		    "sdintr: CMD_RESET \n");
14815 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
14816 		break;
14817 	case CMD_ABORTED:
14818 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14819 		    "sdintr: CMD_ABORTED \n");
14820 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
14821 		break;
14822 	case CMD_TIMEOUT:
14823 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14824 		    "sdintr: CMD_TIMEOUT\n");
14825 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
14826 		break;
14827 	case CMD_UNX_BUS_FREE:
14828 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14829 		    "sdintr: CMD_UNX_BUS_FREE \n");
14830 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
14831 		break;
14832 	case CMD_TAG_REJECT:
14833 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14834 		    "sdintr: CMD_TAG_REJECT\n");
14835 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
14836 		break;
14837 	default:
14838 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14839 		    "sdintr: default\n");
14840 		sd_pkt_reason_default(un, bp, xp, pktp);
14841 		break;
14842 	}
14843 
14844 exit:
14845 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
14846 
14847 	/* Decrement counter to indicate that the callback routine is done. */
14848 	un->un_in_callback--;
14849 	ASSERT(un->un_in_callback >= 0);
14850 
14851 	/*
14852 	 * At this point, the pkt has been dispatched, ie, it is either
14853 	 * being re-tried or has been returned to its caller and should
14854 	 * not be referenced.
14855 	 */
14856 
14857 	mutex_exit(SD_MUTEX(un));
14858 }
14859 
14860 
14861 /*
14862  *    Function: sd_print_incomplete_msg
14863  *
14864  * Description: Prints the error message for a CMD_INCOMPLETE error.
14865  *
14866  *   Arguments: un - ptr to associated softstate for the device.
14867  *		bp - ptr to the buf(9S) for the command.
14868  *		arg - message string ptr
14869  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
14870  *			or SD_NO_RETRY_ISSUED.
14871  *
14872  *     Context: May be called under interrupt context
14873  */
14874 
14875 static void
14876 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
14877 {
14878 	struct scsi_pkt	*pktp;
14879 	char	*msgp;
14880 	char	*cmdp = arg;
14881 
14882 	ASSERT(un != NULL);
14883 	ASSERT(mutex_owned(SD_MUTEX(un)));
14884 	ASSERT(bp != NULL);
14885 	ASSERT(arg != NULL);
14886 	pktp = SD_GET_PKTP(bp);
14887 	ASSERT(pktp != NULL);
14888 
14889 	switch (code) {
14890 	case SD_DELAYED_RETRY_ISSUED:
14891 	case SD_IMMEDIATE_RETRY_ISSUED:
14892 		msgp = "retrying";
14893 		break;
14894 	case SD_NO_RETRY_ISSUED:
14895 	default:
14896 		msgp = "giving up";
14897 		break;
14898 	}
14899 
14900 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
14901 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14902 		    "incomplete %s- %s\n", cmdp, msgp);
14903 	}
14904 }
14905 
14906 
14907 
14908 /*
14909  *    Function: sd_pkt_status_good
14910  *
14911  * Description: Processing for a STATUS_GOOD code in pkt_status.
14912  *
14913  *     Context: May be called under interrupt context
14914  */
14915 
14916 static void
14917 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
14918 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
14919 {
14920 	char	*cmdp;
14921 
14922 	ASSERT(un != NULL);
14923 	ASSERT(mutex_owned(SD_MUTEX(un)));
14924 	ASSERT(bp != NULL);
14925 	ASSERT(xp != NULL);
14926 	ASSERT(pktp != NULL);
14927 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
14928 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
14929 	ASSERT(pktp->pkt_resid != 0);
14930 
14931 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
14932 
14933 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
14934 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
14935 	case SCMD_READ:
14936 		cmdp = "read";
14937 		break;
14938 	case SCMD_WRITE:
14939 		cmdp = "write";
14940 		break;
14941 	default:
14942 		SD_UPDATE_B_RESID(bp, pktp);
14943 		sd_return_command(un, bp);
14944 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
14945 		return;
14946 	}
14947 
14948 	/*
14949 	 * See if we can retry the read/write, preferrably immediately.
14950 	 * If retries are exhaused, then sd_retry_command() will update
14951 	 * the b_resid count.
14952 	 */
14953 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
14954 	    cmdp, EIO, (clock_t)0, NULL);
14955 
14956 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
14957 }
14958 
14959 
14960 
14961 
14962 
14963 /*
14964  *    Function: sd_handle_request_sense
14965  *
14966  * Description: Processing for non-auto Request Sense command.
14967  *
14968  *   Arguments: un - ptr to associated softstate
14969  *		sense_bp - ptr to buf(9S) for the RQS command
14970  *		sense_xp - ptr to the sd_xbuf for the RQS command
14971  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
14972  *
14973  *     Context: May be called under interrupt context
14974  */
14975 
14976 static void
14977 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
14978 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
14979 {
14980 	struct buf	*cmd_bp;	/* buf for the original command */
14981 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
14982 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
14983 
14984 	ASSERT(un != NULL);
14985 	ASSERT(mutex_owned(SD_MUTEX(un)));
14986 	ASSERT(sense_bp != NULL);
14987 	ASSERT(sense_xp != NULL);
14988 	ASSERT(sense_pktp != NULL);
14989 
14990 	/*
14991 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
14992 	 * RQS command and not the original command.
14993 	 */
14994 	ASSERT(sense_pktp == un->un_rqs_pktp);
14995 	ASSERT(sense_bp   == un->un_rqs_bp);
14996 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
14997 	    (FLAG_SENSING | FLAG_HEAD));
14998 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
14999 	    FLAG_SENSING) == FLAG_SENSING);
15000 
15001 	/* These are the bp, xp, and pktp for the original command */
15002 	cmd_bp = sense_xp->xb_sense_bp;
15003 	cmd_xp = SD_GET_XBUF(cmd_bp);
15004 	cmd_pktp = SD_GET_PKTP(cmd_bp);
15005 
15006 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15007 		/*
15008 		 * The REQUEST SENSE command failed.  Release the REQUEST
15009 		 * SENSE command for re-use, get back the bp for the original
15010 		 * command, and attempt to re-try the original command if
15011 		 * FLAG_DIAGNOSE is not set in the original packet.
15012 		 */
15013 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15014 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15015 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15016 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15017 			    NULL, NULL, EIO, (clock_t)0, NULL);
15018 			return;
15019 		}
15020 	}
15021 
15022 	/*
15023 	 * Save the relevant sense info into the xp for the original cmd.
15024 	 *
15025 	 * Note: if the request sense failed the state info will be zero
15026 	 * as set in sd_mark_rqs_busy()
15027 	 */
15028 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15029 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15030 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
15031 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
15032 
15033 	/*
15034 	 *  Free up the RQS command....
15035 	 *  NOTE:
15036 	 *	Must do this BEFORE calling sd_validate_sense_data!
15037 	 *	sd_validate_sense_data may return the original command in
15038 	 *	which case the pkt will be freed and the flags can no
15039 	 *	longer be touched.
15040 	 *	SD_MUTEX is held through this process until the command
15041 	 *	is dispatched based upon the sense data, so there are
15042 	 *	no race conditions.
15043 	 */
15044 	(void) sd_mark_rqs_idle(un, sense_xp);
15045 
15046 	/*
15047 	 * For a retryable command see if we have valid sense data, if so then
15048 	 * turn it over to sd_decode_sense() to figure out the right course of
15049 	 * action. Just fail a non-retryable command.
15050 	 */
15051 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15052 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
15053 		    SD_SENSE_DATA_IS_VALID) {
15054 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15055 		}
15056 	} else {
15057 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15058 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15059 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15060 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15061 		sd_return_failed_command(un, cmd_bp, EIO);
15062 	}
15063 }
15064 
15065 
15066 
15067 
15068 /*
15069  *    Function: sd_handle_auto_request_sense
15070  *
15071  * Description: Processing for auto-request sense information.
15072  *
15073  *   Arguments: un - ptr to associated softstate
15074  *		bp - ptr to buf(9S) for the command
15075  *		xp - ptr to the sd_xbuf for the command
15076  *		pktp - ptr to the scsi_pkt(9S) for the command
15077  *
15078  *     Context: May be called under interrupt context
15079  */
15080 
15081 static void
15082 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15083 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15084 {
15085 	struct scsi_arq_status *asp;
15086 
15087 	ASSERT(un != NULL);
15088 	ASSERT(mutex_owned(SD_MUTEX(un)));
15089 	ASSERT(bp != NULL);
15090 	ASSERT(xp != NULL);
15091 	ASSERT(pktp != NULL);
15092 	ASSERT(pktp != un->un_rqs_pktp);
15093 	ASSERT(bp   != un->un_rqs_bp);
15094 
15095 	/*
15096 	 * For auto-request sense, we get a scsi_arq_status back from
15097 	 * the HBA, with the sense data in the sts_sensedata member.
15098 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15099 	 */
15100 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15101 
15102 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15103 		/*
15104 		 * The auto REQUEST SENSE failed; see if we can re-try
15105 		 * the original command.
15106 		 */
15107 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15108 		    "auto request sense failed (reason=%s)\n",
15109 		    scsi_rname(asp->sts_rqpkt_reason));
15110 
15111 		sd_reset_target(un, pktp);
15112 
15113 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15114 		    NULL, NULL, EIO, (clock_t)0, NULL);
15115 		return;
15116 	}
15117 
15118 	/* Save the relevant sense info into the xp for the original cmd. */
15119 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15120 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15121 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15122 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15123 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
15124 
15125 	/*
15126 	 * See if we have valid sense data, if so then turn it over to
15127 	 * sd_decode_sense() to figure out the right course of action.
15128 	 */
15129 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
15130 		sd_decode_sense(un, bp, xp, pktp);
15131 	}
15132 }
15133 
15134 
15135 /*
15136  *    Function: sd_print_sense_failed_msg
15137  *
15138  * Description: Print log message when RQS has failed.
15139  *
15140  *   Arguments: un - ptr to associated softstate
15141  *		bp - ptr to buf(9S) for the command
15142  *		arg - generic message string ptr
15143  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15144  *			or SD_NO_RETRY_ISSUED
15145  *
15146  *     Context: May be called from interrupt context
15147  */
15148 
15149 static void
15150 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15151 	int code)
15152 {
15153 	char	*msgp = arg;
15154 
15155 	ASSERT(un != NULL);
15156 	ASSERT(mutex_owned(SD_MUTEX(un)));
15157 	ASSERT(bp != NULL);
15158 
15159 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15160 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15161 	}
15162 }
15163 
15164 
15165 /*
15166  *    Function: sd_validate_sense_data
15167  *
15168  * Description: Check the given sense data for validity.
15169  *		If the sense data is not valid, the command will
15170  *		be either failed or retried!
15171  *
15172  * Return Code: SD_SENSE_DATA_IS_INVALID
15173  *		SD_SENSE_DATA_IS_VALID
15174  *
15175  *     Context: May be called from interrupt context
15176  */
15177 
15178 static int
15179 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
15180 {
15181 	struct scsi_extended_sense *esp;
15182 	struct	scsi_pkt *pktp;
15183 	size_t	actual_len;
15184 	char	*msgp = NULL;
15185 
15186 	ASSERT(un != NULL);
15187 	ASSERT(mutex_owned(SD_MUTEX(un)));
15188 	ASSERT(bp != NULL);
15189 	ASSERT(bp != un->un_rqs_bp);
15190 	ASSERT(xp != NULL);
15191 
15192 	pktp = SD_GET_PKTP(bp);
15193 	ASSERT(pktp != NULL);
15194 
15195 	/*
15196 	 * Check the status of the RQS command (auto or manual).
15197 	 */
15198 	switch (xp->xb_sense_status & STATUS_MASK) {
15199 	case STATUS_GOOD:
15200 		break;
15201 
15202 	case STATUS_RESERVATION_CONFLICT:
15203 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15204 		return (SD_SENSE_DATA_IS_INVALID);
15205 
15206 	case STATUS_BUSY:
15207 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15208 		    "Busy Status on REQUEST SENSE\n");
15209 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15210 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15211 		return (SD_SENSE_DATA_IS_INVALID);
15212 
15213 	case STATUS_QFULL:
15214 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15215 		    "QFULL Status on REQUEST SENSE\n");
15216 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15217 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15218 		return (SD_SENSE_DATA_IS_INVALID);
15219 
15220 	case STATUS_CHECK:
15221 	case STATUS_TERMINATED:
15222 		msgp = "Check Condition on REQUEST SENSE\n";
15223 		goto sense_failed;
15224 
15225 	default:
15226 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15227 		goto sense_failed;
15228 	}
15229 
15230 	/*
15231 	 * See if we got the minimum required amount of sense data.
15232 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15233 	 * or less.
15234 	 */
15235 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
15236 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15237 	    (actual_len == 0)) {
15238 		msgp = "Request Sense couldn't get sense data\n";
15239 		goto sense_failed;
15240 	}
15241 
15242 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15243 		msgp = "Not enough sense information\n";
15244 		goto sense_failed;
15245 	}
15246 
15247 	/*
15248 	 * We require the extended sense data
15249 	 */
15250 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15251 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15252 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15253 			static char tmp[8];
15254 			static char buf[148];
15255 			char *p = (char *)(xp->xb_sense_data);
15256 			int i;
15257 
15258 			mutex_enter(&sd_sense_mutex);
15259 			(void) strcpy(buf, "undecodable sense information:");
15260 			for (i = 0; i < actual_len; i++) {
15261 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15262 				(void) strcpy(&buf[strlen(buf)], tmp);
15263 			}
15264 			i = strlen(buf);
15265 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15266 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15267 			mutex_exit(&sd_sense_mutex);
15268 		}
15269 		/* Note: Legacy behavior, fail the command with no retry */
15270 		sd_return_failed_command(un, bp, EIO);
15271 		return (SD_SENSE_DATA_IS_INVALID);
15272 	}
15273 
15274 	/*
15275 	 * Check that es_code is valid (es_class concatenated with es_code
15276 	 * make up the "response code" field.  es_class will always be 7, so
15277 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15278 	 * format.
15279 	 */
15280 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15281 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15282 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15283 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15284 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15285 		goto sense_failed;
15286 	}
15287 
15288 	return (SD_SENSE_DATA_IS_VALID);
15289 
15290 sense_failed:
15291 	/*
15292 	 * If the request sense failed (for whatever reason), attempt
15293 	 * to retry the original command.
15294 	 */
15295 #if defined(__i386) || defined(__amd64)
15296 	/*
15297 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15298 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15299 	 * for both SCSI/FC.
15300 	 * The SD_RETRY_DELAY value need to be adjusted here
15301 	 * when SD_RETRY_DELAY change in sddef.h
15302 	 */
15303 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15304 	    sd_print_sense_failed_msg, msgp, EIO,
15305 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15306 #else
15307 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15308 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15309 #endif
15310 
15311 	return (SD_SENSE_DATA_IS_INVALID);
15312 }
15313 
15314 
15315 
15316 /*
15317  *    Function: sd_decode_sense
15318  *
15319  * Description: Take recovery action(s) when SCSI Sense Data is received.
15320  *
15321  *     Context: Interrupt context.
15322  */
15323 
15324 static void
15325 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15326 	struct scsi_pkt *pktp)
15327 {
15328 	uint8_t sense_key;
15329 
15330 	ASSERT(un != NULL);
15331 	ASSERT(mutex_owned(SD_MUTEX(un)));
15332 	ASSERT(bp != NULL);
15333 	ASSERT(bp != un->un_rqs_bp);
15334 	ASSERT(xp != NULL);
15335 	ASSERT(pktp != NULL);
15336 
15337 	sense_key = scsi_sense_key(xp->xb_sense_data);
15338 
15339 	switch (sense_key) {
15340 	case KEY_NO_SENSE:
15341 		sd_sense_key_no_sense(un, bp, xp, pktp);
15342 		break;
15343 	case KEY_RECOVERABLE_ERROR:
15344 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15345 		    bp, xp, pktp);
15346 		break;
15347 	case KEY_NOT_READY:
15348 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15349 		    bp, xp, pktp);
15350 		break;
15351 	case KEY_MEDIUM_ERROR:
15352 	case KEY_HARDWARE_ERROR:
15353 		sd_sense_key_medium_or_hardware_error(un,
15354 		    xp->xb_sense_data, bp, xp, pktp);
15355 		break;
15356 	case KEY_ILLEGAL_REQUEST:
15357 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15358 		break;
15359 	case KEY_UNIT_ATTENTION:
15360 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15361 		    bp, xp, pktp);
15362 		break;
15363 	case KEY_WRITE_PROTECT:
15364 	case KEY_VOLUME_OVERFLOW:
15365 	case KEY_MISCOMPARE:
15366 		sd_sense_key_fail_command(un, bp, xp, pktp);
15367 		break;
15368 	case KEY_BLANK_CHECK:
15369 		sd_sense_key_blank_check(un, bp, xp, pktp);
15370 		break;
15371 	case KEY_ABORTED_COMMAND:
15372 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15373 		break;
15374 	case KEY_VENDOR_UNIQUE:
15375 	case KEY_COPY_ABORTED:
15376 	case KEY_EQUAL:
15377 	case KEY_RESERVED:
15378 	default:
15379 		sd_sense_key_default(un, xp->xb_sense_data,
15380 		    bp, xp, pktp);
15381 		break;
15382 	}
15383 }
15384 
15385 
15386 /*
15387  *    Function: sd_dump_memory
15388  *
15389  * Description: Debug logging routine to print the contents of a user provided
15390  *		buffer. The output of the buffer is broken up into 256 byte
15391  *		segments due to a size constraint of the scsi_log.
15392  *		implementation.
15393  *
15394  *   Arguments: un - ptr to softstate
15395  *		comp - component mask
15396  *		title - "title" string to preceed data when printed
15397  *		data - ptr to data block to be printed
15398  *		len - size of data block to be printed
15399  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15400  *
15401  *     Context: May be called from interrupt context
15402  */
15403 
15404 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15405 
15406 static char *sd_dump_format_string[] = {
15407 		" 0x%02x",
15408 		" %c"
15409 };
15410 
15411 static void
15412 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15413     int len, int fmt)
15414 {
15415 	int	i, j;
15416 	int	avail_count;
15417 	int	start_offset;
15418 	int	end_offset;
15419 	size_t	entry_len;
15420 	char	*bufp;
15421 	char	*local_buf;
15422 	char	*format_string;
15423 
15424 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15425 
15426 	/*
15427 	 * In the debug version of the driver, this function is called from a
15428 	 * number of places which are NOPs in the release driver.
15429 	 * The debug driver therefore has additional methods of filtering
15430 	 * debug output.
15431 	 */
15432 #ifdef SDDEBUG
15433 	/*
15434 	 * In the debug version of the driver we can reduce the amount of debug
15435 	 * messages by setting sd_error_level to something other than
15436 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15437 	 * sd_component_mask.
15438 	 */
15439 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15440 	    (sd_error_level != SCSI_ERR_ALL)) {
15441 		return;
15442 	}
15443 	if (((sd_component_mask & comp) == 0) ||
15444 	    (sd_error_level != SCSI_ERR_ALL)) {
15445 		return;
15446 	}
15447 #else
15448 	if (sd_error_level != SCSI_ERR_ALL) {
15449 		return;
15450 	}
15451 #endif
15452 
15453 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15454 	bufp = local_buf;
15455 	/*
15456 	 * Available length is the length of local_buf[], minus the
15457 	 * length of the title string, minus one for the ":", minus
15458 	 * one for the newline, minus one for the NULL terminator.
15459 	 * This gives the #bytes available for holding the printed
15460 	 * values from the given data buffer.
15461 	 */
15462 	if (fmt == SD_LOG_HEX) {
15463 		format_string = sd_dump_format_string[0];
15464 	} else /* SD_LOG_CHAR */ {
15465 		format_string = sd_dump_format_string[1];
15466 	}
15467 	/*
15468 	 * Available count is the number of elements from the given
15469 	 * data buffer that we can fit into the available length.
15470 	 * This is based upon the size of the format string used.
15471 	 * Make one entry and find it's size.
15472 	 */
15473 	(void) sprintf(bufp, format_string, data[0]);
15474 	entry_len = strlen(bufp);
15475 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15476 
15477 	j = 0;
15478 	while (j < len) {
15479 		bufp = local_buf;
15480 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15481 		start_offset = j;
15482 
15483 		end_offset = start_offset + avail_count;
15484 
15485 		(void) sprintf(bufp, "%s:", title);
15486 		bufp += strlen(bufp);
15487 		for (i = start_offset; ((i < end_offset) && (j < len));
15488 		    i++, j++) {
15489 			(void) sprintf(bufp, format_string, data[i]);
15490 			bufp += entry_len;
15491 		}
15492 		(void) sprintf(bufp, "\n");
15493 
15494 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15495 	}
15496 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15497 }
15498 
15499 /*
15500  *    Function: sd_print_sense_msg
15501  *
15502  * Description: Log a message based upon the given sense data.
15503  *
15504  *   Arguments: un - ptr to associated softstate
15505  *		bp - ptr to buf(9S) for the command
15506  *		arg - ptr to associate sd_sense_info struct
15507  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15508  *			or SD_NO_RETRY_ISSUED
15509  *
15510  *     Context: May be called from interrupt context
15511  */
15512 
15513 static void
15514 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15515 {
15516 	struct sd_xbuf	*xp;
15517 	struct scsi_pkt	*pktp;
15518 	uint8_t *sensep;
15519 	daddr_t request_blkno;
15520 	diskaddr_t err_blkno;
15521 	int severity;
15522 	int pfa_flag;
15523 	extern struct scsi_key_strings scsi_cmds[];
15524 
15525 	ASSERT(un != NULL);
15526 	ASSERT(mutex_owned(SD_MUTEX(un)));
15527 	ASSERT(bp != NULL);
15528 	xp = SD_GET_XBUF(bp);
15529 	ASSERT(xp != NULL);
15530 	pktp = SD_GET_PKTP(bp);
15531 	ASSERT(pktp != NULL);
15532 	ASSERT(arg != NULL);
15533 
15534 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15535 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15536 
15537 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15538 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15539 		severity = SCSI_ERR_RETRYABLE;
15540 	}
15541 
15542 	/* Use absolute block number for the request block number */
15543 	request_blkno = xp->xb_blkno;
15544 
15545 	/*
15546 	 * Now try to get the error block number from the sense data
15547 	 */
15548 	sensep = xp->xb_sense_data;
15549 
15550 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15551 		(uint64_t *)&err_blkno)) {
15552 		/*
15553 		 * We retrieved the error block number from the information
15554 		 * portion of the sense data.
15555 		 *
15556 		 * For USCSI commands we are better off using the error
15557 		 * block no. as the requested block no. (This is the best
15558 		 * we can estimate.)
15559 		 */
15560 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15561 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15562 			request_blkno = err_blkno;
15563 		}
15564 	} else {
15565 		/*
15566 		 * Without the es_valid bit set (for fixed format) or an
15567 		 * information descriptor (for descriptor format) we cannot
15568 		 * be certain of the error blkno, so just use the
15569 		 * request_blkno.
15570 		 */
15571 		err_blkno = (diskaddr_t)request_blkno;
15572 	}
15573 
15574 	/*
15575 	 * The following will log the buffer contents for the release driver
15576 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15577 	 * level is set to verbose.
15578 	 */
15579 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15580 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15581 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15582 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
15583 
15584 	if (pfa_flag == FALSE) {
15585 		/* This is normally only set for USCSI */
15586 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
15587 			return;
15588 		}
15589 
15590 		if ((SD_IS_BUFIO(xp) == TRUE) &&
15591 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
15592 		    (severity < sd_error_level))) {
15593 			return;
15594 		}
15595 	}
15596 
15597 	/*
15598 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
15599 	 */
15600 	if ((SD_IS_LSI(un)) &&
15601 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
15602 	    (scsi_sense_asc(sensep) == 0x94) &&
15603 	    (scsi_sense_ascq(sensep) == 0x01)) {
15604 		un->un_sonoma_failure_count++;
15605 		if (un->un_sonoma_failure_count > 1) {
15606 			return;
15607 		}
15608 	}
15609 
15610 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
15611 	    request_blkno, err_blkno, scsi_cmds,
15612 	    (struct scsi_extended_sense *)sensep,
15613 	    un->un_additional_codes, NULL);
15614 }
15615 
15616 /*
15617  *    Function: sd_sense_key_no_sense
15618  *
15619  * Description: Recovery action when sense data was not received.
15620  *
15621  *     Context: May be called from interrupt context
15622  */
15623 
15624 static void
15625 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
15626 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15627 {
15628 	struct sd_sense_info	si;
15629 
15630 	ASSERT(un != NULL);
15631 	ASSERT(mutex_owned(SD_MUTEX(un)));
15632 	ASSERT(bp != NULL);
15633 	ASSERT(xp != NULL);
15634 	ASSERT(pktp != NULL);
15635 
15636 	si.ssi_severity = SCSI_ERR_FATAL;
15637 	si.ssi_pfa_flag = FALSE;
15638 
15639 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
15640 
15641 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15642 		&si, EIO, (clock_t)0, NULL);
15643 }
15644 
15645 
15646 /*
15647  *    Function: sd_sense_key_recoverable_error
15648  *
15649  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
15650  *
15651  *     Context: May be called from interrupt context
15652  */
15653 
15654 static void
15655 sd_sense_key_recoverable_error(struct sd_lun *un,
15656 	uint8_t *sense_datap,
15657 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15658 {
15659 	struct sd_sense_info	si;
15660 	uint8_t asc = scsi_sense_asc(sense_datap);
15661 
15662 	ASSERT(un != NULL);
15663 	ASSERT(mutex_owned(SD_MUTEX(un)));
15664 	ASSERT(bp != NULL);
15665 	ASSERT(xp != NULL);
15666 	ASSERT(pktp != NULL);
15667 
15668 	/*
15669 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
15670 	 */
15671 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
15672 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
15673 		si.ssi_severity = SCSI_ERR_INFO;
15674 		si.ssi_pfa_flag = TRUE;
15675 	} else {
15676 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
15677 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
15678 		si.ssi_severity = SCSI_ERR_RECOVERED;
15679 		si.ssi_pfa_flag = FALSE;
15680 	}
15681 
15682 	if (pktp->pkt_resid == 0) {
15683 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
15684 		sd_return_command(un, bp);
15685 		return;
15686 	}
15687 
15688 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15689 	    &si, EIO, (clock_t)0, NULL);
15690 }
15691 
15692 
15693 
15694 
15695 /*
15696  *    Function: sd_sense_key_not_ready
15697  *
15698  * Description: Recovery actions for a SCSI "Not Ready" sense key.
15699  *
15700  *     Context: May be called from interrupt context
15701  */
15702 
15703 static void
15704 sd_sense_key_not_ready(struct sd_lun *un,
15705 	uint8_t *sense_datap,
15706 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15707 {
15708 	struct sd_sense_info	si;
15709 	uint8_t asc = scsi_sense_asc(sense_datap);
15710 	uint8_t ascq = scsi_sense_ascq(sense_datap);
15711 
15712 	ASSERT(un != NULL);
15713 	ASSERT(mutex_owned(SD_MUTEX(un)));
15714 	ASSERT(bp != NULL);
15715 	ASSERT(xp != NULL);
15716 	ASSERT(pktp != NULL);
15717 
15718 	si.ssi_severity = SCSI_ERR_FATAL;
15719 	si.ssi_pfa_flag = FALSE;
15720 
15721 	/*
15722 	 * Update error stats after first NOT READY error. Disks may have
15723 	 * been powered down and may need to be restarted.  For CDROMs,
15724 	 * report NOT READY errors only if media is present.
15725 	 */
15726 	if ((ISCD(un) && (asc == 0x3A)) ||
15727 	    (xp->xb_retry_count > 0)) {
15728 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15729 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
15730 	}
15731 
15732 	/*
15733 	 * Just fail if the "not ready" retry limit has been reached.
15734 	 */
15735 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
15736 		/* Special check for error message printing for removables. */
15737 		if (un->un_f_has_removable_media && (asc == 0x04) &&
15738 		    (ascq >= 0x04)) {
15739 			si.ssi_severity = SCSI_ERR_ALL;
15740 		}
15741 		goto fail_command;
15742 	}
15743 
15744 	/*
15745 	 * Check the ASC and ASCQ in the sense data as needed, to determine
15746 	 * what to do.
15747 	 */
15748 	switch (asc) {
15749 	case 0x04:	/* LOGICAL UNIT NOT READY */
15750 		/*
15751 		 * disk drives that don't spin up result in a very long delay
15752 		 * in format without warning messages. We will log a message
15753 		 * if the error level is set to verbose.
15754 		 */
15755 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
15756 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15757 			    "logical unit not ready, resetting disk\n");
15758 		}
15759 
15760 		/*
15761 		 * There are different requirements for CDROMs and disks for
15762 		 * the number of retries.  If a CD-ROM is giving this, it is
15763 		 * probably reading TOC and is in the process of getting
15764 		 * ready, so we should keep on trying for a long time to make
15765 		 * sure that all types of media are taken in account (for
15766 		 * some media the drive takes a long time to read TOC).  For
15767 		 * disks we do not want to retry this too many times as this
15768 		 * can cause a long hang in format when the drive refuses to
15769 		 * spin up (a very common failure).
15770 		 */
15771 		switch (ascq) {
15772 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
15773 			/*
15774 			 * Disk drives frequently refuse to spin up which
15775 			 * results in a very long hang in format without
15776 			 * warning messages.
15777 			 *
15778 			 * Note: This code preserves the legacy behavior of
15779 			 * comparing xb_retry_count against zero for fibre
15780 			 * channel targets instead of comparing against the
15781 			 * un_reset_retry_count value.  The reason for this
15782 			 * discrepancy has been so utterly lost beneath the
15783 			 * Sands of Time that even Indiana Jones could not
15784 			 * find it.
15785 			 */
15786 			if (un->un_f_is_fibre == TRUE) {
15787 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
15788 					(xp->xb_retry_count > 0)) &&
15789 					(un->un_startstop_timeid == NULL)) {
15790 					scsi_log(SD_DEVINFO(un), sd_label,
15791 					CE_WARN, "logical unit not ready, "
15792 					"resetting disk\n");
15793 					sd_reset_target(un, pktp);
15794 				}
15795 			} else {
15796 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
15797 					(xp->xb_retry_count >
15798 					un->un_reset_retry_count)) &&
15799 					(un->un_startstop_timeid == NULL)) {
15800 					scsi_log(SD_DEVINFO(un), sd_label,
15801 					CE_WARN, "logical unit not ready, "
15802 					"resetting disk\n");
15803 					sd_reset_target(un, pktp);
15804 				}
15805 			}
15806 			break;
15807 
15808 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
15809 			/*
15810 			 * If the target is in the process of becoming
15811 			 * ready, just proceed with the retry. This can
15812 			 * happen with CD-ROMs that take a long time to
15813 			 * read TOC after a power cycle or reset.
15814 			 */
15815 			goto do_retry;
15816 
15817 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
15818 			break;
15819 
15820 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
15821 			/*
15822 			 * Retries cannot help here so just fail right away.
15823 			 */
15824 			goto fail_command;
15825 
15826 		case 0x88:
15827 			/*
15828 			 * Vendor-unique code for T3/T4: it indicates a
15829 			 * path problem in a mutipathed config, but as far as
15830 			 * the target driver is concerned it equates to a fatal
15831 			 * error, so we should just fail the command right away
15832 			 * (without printing anything to the console). If this
15833 			 * is not a T3/T4, fall thru to the default recovery
15834 			 * action.
15835 			 * T3/T4 is FC only, don't need to check is_fibre
15836 			 */
15837 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
15838 				sd_return_failed_command(un, bp, EIO);
15839 				return;
15840 			}
15841 			/* FALLTHRU */
15842 
15843 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
15844 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
15845 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
15846 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
15847 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
15848 		default:    /* Possible future codes in SCSI spec? */
15849 			/*
15850 			 * For removable-media devices, do not retry if
15851 			 * ASCQ > 2 as these result mostly from USCSI commands
15852 			 * on MMC devices issued to check status of an
15853 			 * operation initiated in immediate mode.  Also for
15854 			 * ASCQ >= 4 do not print console messages as these
15855 			 * mainly represent a user-initiated operation
15856 			 * instead of a system failure.
15857 			 */
15858 			if (un->un_f_has_removable_media) {
15859 				si.ssi_severity = SCSI_ERR_ALL;
15860 				goto fail_command;
15861 			}
15862 			break;
15863 		}
15864 
15865 		/*
15866 		 * As part of our recovery attempt for the NOT READY
15867 		 * condition, we issue a START STOP UNIT command. However
15868 		 * we want to wait for a short delay before attempting this
15869 		 * as there may still be more commands coming back from the
15870 		 * target with the check condition. To do this we use
15871 		 * timeout(9F) to call sd_start_stop_unit_callback() after
15872 		 * the delay interval expires. (sd_start_stop_unit_callback()
15873 		 * dispatches sd_start_stop_unit_task(), which will issue
15874 		 * the actual START STOP UNIT command. The delay interval
15875 		 * is one-half of the delay that we will use to retry the
15876 		 * command that generated the NOT READY condition.
15877 		 *
15878 		 * Note that we could just dispatch sd_start_stop_unit_task()
15879 		 * from here and allow it to sleep for the delay interval,
15880 		 * but then we would be tying up the taskq thread
15881 		 * uncesessarily for the duration of the delay.
15882 		 *
15883 		 * Do not issue the START STOP UNIT if the current command
15884 		 * is already a START STOP UNIT.
15885 		 */
15886 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
15887 			break;
15888 		}
15889 
15890 		/*
15891 		 * Do not schedule the timeout if one is already pending.
15892 		 */
15893 		if (un->un_startstop_timeid != NULL) {
15894 			SD_INFO(SD_LOG_ERROR, un,
15895 			    "sd_sense_key_not_ready: restart already issued to"
15896 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
15897 			    ddi_get_instance(SD_DEVINFO(un)));
15898 			break;
15899 		}
15900 
15901 		/*
15902 		 * Schedule the START STOP UNIT command, then queue the command
15903 		 * for a retry.
15904 		 *
15905 		 * Note: A timeout is not scheduled for this retry because we
15906 		 * want the retry to be serial with the START_STOP_UNIT. The
15907 		 * retry will be started when the START_STOP_UNIT is completed
15908 		 * in sd_start_stop_unit_task.
15909 		 */
15910 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
15911 		    un, SD_BSY_TIMEOUT / 2);
15912 		xp->xb_retry_count++;
15913 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
15914 		return;
15915 
15916 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
15917 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
15918 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15919 			    "unit does not respond to selection\n");
15920 		}
15921 		break;
15922 
15923 	case 0x3A:	/* MEDIUM NOT PRESENT */
15924 		if (sd_error_level >= SCSI_ERR_FATAL) {
15925 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15926 			    "Caddy not inserted in drive\n");
15927 		}
15928 
15929 		sr_ejected(un);
15930 		un->un_mediastate = DKIO_EJECTED;
15931 		/* The state has changed, inform the media watch routines */
15932 		cv_broadcast(&un->un_state_cv);
15933 		/* Just fail if no media is present in the drive. */
15934 		goto fail_command;
15935 
15936 	default:
15937 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
15938 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15939 			    "Unit not Ready. Additional sense code 0x%x\n",
15940 			    asc);
15941 		}
15942 		break;
15943 	}
15944 
15945 do_retry:
15946 
15947 	/*
15948 	 * Retry the command, as some targets may report NOT READY for
15949 	 * several seconds after being reset.
15950 	 */
15951 	xp->xb_retry_count++;
15952 	si.ssi_severity = SCSI_ERR_RETRYABLE;
15953 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
15954 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
15955 
15956 	return;
15957 
15958 fail_command:
15959 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
15960 	sd_return_failed_command(un, bp, EIO);
15961 }
15962 
15963 
15964 
15965 /*
15966  *    Function: sd_sense_key_medium_or_hardware_error
15967  *
15968  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
15969  *		sense key.
15970  *
15971  *     Context: May be called from interrupt context
15972  */
15973 
15974 static void
15975 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
15976 	uint8_t *sense_datap,
15977 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15978 {
15979 	struct sd_sense_info	si;
15980 	uint8_t sense_key = scsi_sense_key(sense_datap);
15981 	uint8_t asc = scsi_sense_asc(sense_datap);
15982 
15983 	ASSERT(un != NULL);
15984 	ASSERT(mutex_owned(SD_MUTEX(un)));
15985 	ASSERT(bp != NULL);
15986 	ASSERT(xp != NULL);
15987 	ASSERT(pktp != NULL);
15988 
15989 	si.ssi_severity = SCSI_ERR_FATAL;
15990 	si.ssi_pfa_flag = FALSE;
15991 
15992 	if (sense_key == KEY_MEDIUM_ERROR) {
15993 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
15994 	}
15995 
15996 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15997 
15998 	if ((un->un_reset_retry_count != 0) &&
15999 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16000 		mutex_exit(SD_MUTEX(un));
16001 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16002 		if (un->un_f_allow_bus_device_reset == TRUE) {
16003 
16004 			boolean_t try_resetting_target = B_TRUE;
16005 
16006 			/*
16007 			 * We need to be able to handle specific ASC when we are
16008 			 * handling a KEY_HARDWARE_ERROR. In particular
16009 			 * taking the default action of resetting the target may
16010 			 * not be the appropriate way to attempt recovery.
16011 			 * Resetting a target because of a single LUN failure
16012 			 * victimizes all LUNs on that target.
16013 			 *
16014 			 * This is true for the LSI arrays, if an LSI
16015 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16016 			 * should trust it.
16017 			 */
16018 
16019 			if (sense_key == KEY_HARDWARE_ERROR) {
16020 				switch (asc) {
16021 				case 0x84:
16022 					if (SD_IS_LSI(un)) {
16023 						try_resetting_target = B_FALSE;
16024 					}
16025 					break;
16026 				default:
16027 					break;
16028 				}
16029 			}
16030 
16031 			if (try_resetting_target == B_TRUE) {
16032 				int reset_retval = 0;
16033 				if (un->un_f_lun_reset_enabled == TRUE) {
16034 					SD_TRACE(SD_LOG_IO_CORE, un,
16035 					    "sd_sense_key_medium_or_hardware_"
16036 					    "error: issuing RESET_LUN\n");
16037 					reset_retval =
16038 					    scsi_reset(SD_ADDRESS(un),
16039 					    RESET_LUN);
16040 				}
16041 				if (reset_retval == 0) {
16042 					SD_TRACE(SD_LOG_IO_CORE, un,
16043 					    "sd_sense_key_medium_or_hardware_"
16044 					    "error: issuing RESET_TARGET\n");
16045 					(void) scsi_reset(SD_ADDRESS(un),
16046 					    RESET_TARGET);
16047 				}
16048 			}
16049 		}
16050 		mutex_enter(SD_MUTEX(un));
16051 	}
16052 
16053 	/*
16054 	 * This really ought to be a fatal error, but we will retry anyway
16055 	 * as some drives report this as a spurious error.
16056 	 */
16057 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16058 	    &si, EIO, (clock_t)0, NULL);
16059 }
16060 
16061 
16062 
16063 /*
16064  *    Function: sd_sense_key_illegal_request
16065  *
16066  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16067  *
16068  *     Context: May be called from interrupt context
16069  */
16070 
16071 static void
16072 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16073 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16074 {
16075 	struct sd_sense_info	si;
16076 
16077 	ASSERT(un != NULL);
16078 	ASSERT(mutex_owned(SD_MUTEX(un)));
16079 	ASSERT(bp != NULL);
16080 	ASSERT(xp != NULL);
16081 	ASSERT(pktp != NULL);
16082 
16083 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16084 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16085 
16086 	si.ssi_severity = SCSI_ERR_INFO;
16087 	si.ssi_pfa_flag = FALSE;
16088 
16089 	/* Pointless to retry if the target thinks it's an illegal request */
16090 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16091 	sd_return_failed_command(un, bp, EIO);
16092 }
16093 
16094 
16095 
16096 
16097 /*
16098  *    Function: sd_sense_key_unit_attention
16099  *
16100  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16101  *
16102  *     Context: May be called from interrupt context
16103  */
16104 
16105 static void
16106 sd_sense_key_unit_attention(struct sd_lun *un,
16107 	uint8_t *sense_datap,
16108 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16109 {
16110 	/*
16111 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16112 	 * like Sonoma can return UNIT ATTENTION close to a minute
16113 	 * under certain conditions.
16114 	 */
16115 	int	retry_check_flag = SD_RETRIES_UA;
16116 	boolean_t	kstat_updated = B_FALSE;
16117 	struct	sd_sense_info		si;
16118 	uint8_t asc = scsi_sense_asc(sense_datap);
16119 
16120 	ASSERT(un != NULL);
16121 	ASSERT(mutex_owned(SD_MUTEX(un)));
16122 	ASSERT(bp != NULL);
16123 	ASSERT(xp != NULL);
16124 	ASSERT(pktp != NULL);
16125 
16126 	si.ssi_severity = SCSI_ERR_INFO;
16127 	si.ssi_pfa_flag = FALSE;
16128 
16129 
16130 	switch (asc) {
16131 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16132 		if (sd_report_pfa != 0) {
16133 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16134 			si.ssi_pfa_flag = TRUE;
16135 			retry_check_flag = SD_RETRIES_STANDARD;
16136 			goto do_retry;
16137 		}
16138 
16139 		break;
16140 
16141 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16142 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16143 			un->un_resvd_status |=
16144 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16145 		}
16146 #ifdef _LP64
16147 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16148 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16149 			    un, KM_NOSLEEP) == 0) {
16150 				/*
16151 				 * If we can't dispatch the task we'll just
16152 				 * live without descriptor sense.  We can
16153 				 * try again on the next "unit attention"
16154 				 */
16155 				SD_ERROR(SD_LOG_ERROR, un,
16156 				    "sd_sense_key_unit_attention: "
16157 				    "Could not dispatch "
16158 				    "sd_reenable_dsense_task\n");
16159 			}
16160 		}
16161 #endif /* _LP64 */
16162 		/* FALLTHRU */
16163 
16164 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16165 		if (!un->un_f_has_removable_media) {
16166 			break;
16167 		}
16168 
16169 		/*
16170 		 * When we get a unit attention from a removable-media device,
16171 		 * it may be in a state that will take a long time to recover
16172 		 * (e.g., from a reset).  Since we are executing in interrupt
16173 		 * context here, we cannot wait around for the device to come
16174 		 * back. So hand this command off to sd_media_change_task()
16175 		 * for deferred processing under taskq thread context. (Note
16176 		 * that the command still may be failed if a problem is
16177 		 * encountered at a later time.)
16178 		 */
16179 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16180 		    KM_NOSLEEP) == 0) {
16181 			/*
16182 			 * Cannot dispatch the request so fail the command.
16183 			 */
16184 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16185 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16186 			si.ssi_severity = SCSI_ERR_FATAL;
16187 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16188 			sd_return_failed_command(un, bp, EIO);
16189 		}
16190 
16191 		/*
16192 		 * If failed to dispatch sd_media_change_task(), we already
16193 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16194 		 * we should update kstat later if it encounters an error. So,
16195 		 * we update kstat_updated flag here.
16196 		 */
16197 		kstat_updated = B_TRUE;
16198 
16199 		/*
16200 		 * Either the command has been successfully dispatched to a
16201 		 * task Q for retrying, or the dispatch failed. In either case
16202 		 * do NOT retry again by calling sd_retry_command. This sets up
16203 		 * two retries of the same command and when one completes and
16204 		 * frees the resources the other will access freed memory,
16205 		 * a bad thing.
16206 		 */
16207 		return;
16208 
16209 	default:
16210 		break;
16211 	}
16212 
16213 	/*
16214 	 * Update kstat if we haven't done that.
16215 	 */
16216 	if (!kstat_updated) {
16217 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16218 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16219 	}
16220 
16221 do_retry:
16222 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16223 	    EIO, SD_UA_RETRY_DELAY, NULL);
16224 }
16225 
16226 
16227 
16228 /*
16229  *    Function: sd_sense_key_fail_command
16230  *
16231  * Description: Use to fail a command when we don't like the sense key that
16232  *		was returned.
16233  *
16234  *     Context: May be called from interrupt context
16235  */
16236 
16237 static void
16238 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16239 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16240 {
16241 	struct sd_sense_info	si;
16242 
16243 	ASSERT(un != NULL);
16244 	ASSERT(mutex_owned(SD_MUTEX(un)));
16245 	ASSERT(bp != NULL);
16246 	ASSERT(xp != NULL);
16247 	ASSERT(pktp != NULL);
16248 
16249 	si.ssi_severity = SCSI_ERR_FATAL;
16250 	si.ssi_pfa_flag = FALSE;
16251 
16252 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16253 	sd_return_failed_command(un, bp, EIO);
16254 }
16255 
16256 
16257 
16258 /*
16259  *    Function: sd_sense_key_blank_check
16260  *
16261  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16262  *		Has no monetary connotation.
16263  *
16264  *     Context: May be called from interrupt context
16265  */
16266 
16267 static void
16268 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16269 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16270 {
16271 	struct sd_sense_info	si;
16272 
16273 	ASSERT(un != NULL);
16274 	ASSERT(mutex_owned(SD_MUTEX(un)));
16275 	ASSERT(bp != NULL);
16276 	ASSERT(xp != NULL);
16277 	ASSERT(pktp != NULL);
16278 
16279 	/*
16280 	 * Blank check is not fatal for removable devices, therefore
16281 	 * it does not require a console message.
16282 	 */
16283 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16284 	    SCSI_ERR_FATAL;
16285 	si.ssi_pfa_flag = FALSE;
16286 
16287 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16288 	sd_return_failed_command(un, bp, EIO);
16289 }
16290 
16291 
16292 
16293 
16294 /*
16295  *    Function: sd_sense_key_aborted_command
16296  *
16297  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16298  *
16299  *     Context: May be called from interrupt context
16300  */
16301 
16302 static void
16303 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16304 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16305 {
16306 	struct sd_sense_info	si;
16307 
16308 	ASSERT(un != NULL);
16309 	ASSERT(mutex_owned(SD_MUTEX(un)));
16310 	ASSERT(bp != NULL);
16311 	ASSERT(xp != NULL);
16312 	ASSERT(pktp != NULL);
16313 
16314 	si.ssi_severity = SCSI_ERR_FATAL;
16315 	si.ssi_pfa_flag = FALSE;
16316 
16317 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16318 
16319 	/*
16320 	 * This really ought to be a fatal error, but we will retry anyway
16321 	 * as some drives report this as a spurious error.
16322 	 */
16323 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16324 	    &si, EIO, (clock_t)0, NULL);
16325 }
16326 
16327 
16328 
16329 /*
16330  *    Function: sd_sense_key_default
16331  *
16332  * Description: Default recovery action for several SCSI sense keys (basically
16333  *		attempts a retry).
16334  *
16335  *     Context: May be called from interrupt context
16336  */
16337 
16338 static void
16339 sd_sense_key_default(struct sd_lun *un,
16340 	uint8_t *sense_datap,
16341 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16342 {
16343 	struct sd_sense_info	si;
16344 	uint8_t sense_key = scsi_sense_key(sense_datap);
16345 
16346 	ASSERT(un != NULL);
16347 	ASSERT(mutex_owned(SD_MUTEX(un)));
16348 	ASSERT(bp != NULL);
16349 	ASSERT(xp != NULL);
16350 	ASSERT(pktp != NULL);
16351 
16352 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16353 
16354 	/*
16355 	 * Undecoded sense key.	Attempt retries and hope that will fix
16356 	 * the problem.  Otherwise, we're dead.
16357 	 */
16358 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16359 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16360 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16361 	}
16362 
16363 	si.ssi_severity = SCSI_ERR_FATAL;
16364 	si.ssi_pfa_flag = FALSE;
16365 
16366 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16367 	    &si, EIO, (clock_t)0, NULL);
16368 }
16369 
16370 
16371 
16372 /*
16373  *    Function: sd_print_retry_msg
16374  *
16375  * Description: Print a message indicating the retry action being taken.
16376  *
16377  *   Arguments: un - ptr to associated softstate
16378  *		bp - ptr to buf(9S) for the command
16379  *		arg - not used.
16380  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16381  *			or SD_NO_RETRY_ISSUED
16382  *
16383  *     Context: May be called from interrupt context
16384  */
16385 /* ARGSUSED */
16386 static void
16387 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16388 {
16389 	struct sd_xbuf	*xp;
16390 	struct scsi_pkt *pktp;
16391 	char *reasonp;
16392 	char *msgp;
16393 
16394 	ASSERT(un != NULL);
16395 	ASSERT(mutex_owned(SD_MUTEX(un)));
16396 	ASSERT(bp != NULL);
16397 	pktp = SD_GET_PKTP(bp);
16398 	ASSERT(pktp != NULL);
16399 	xp = SD_GET_XBUF(bp);
16400 	ASSERT(xp != NULL);
16401 
16402 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16403 	mutex_enter(&un->un_pm_mutex);
16404 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16405 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16406 	    (pktp->pkt_flags & FLAG_SILENT)) {
16407 		mutex_exit(&un->un_pm_mutex);
16408 		goto update_pkt_reason;
16409 	}
16410 	mutex_exit(&un->un_pm_mutex);
16411 
16412 	/*
16413 	 * Suppress messages if they are all the same pkt_reason; with
16414 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16415 	 * If we are in panic, then suppress the retry messages.
16416 	 */
16417 	switch (flag) {
16418 	case SD_NO_RETRY_ISSUED:
16419 		msgp = "giving up";
16420 		break;
16421 	case SD_IMMEDIATE_RETRY_ISSUED:
16422 	case SD_DELAYED_RETRY_ISSUED:
16423 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16424 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16425 		    (sd_error_level != SCSI_ERR_ALL))) {
16426 			return;
16427 		}
16428 		msgp = "retrying command";
16429 		break;
16430 	default:
16431 		goto update_pkt_reason;
16432 	}
16433 
16434 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16435 	    scsi_rname(pktp->pkt_reason));
16436 
16437 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16438 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16439 
16440 update_pkt_reason:
16441 	/*
16442 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16443 	 * This is to prevent multiple console messages for the same failure
16444 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16445 	 * when the command is retried successfully because there still may be
16446 	 * more commands coming back with the same value of pktp->pkt_reason.
16447 	 */
16448 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16449 		un->un_last_pkt_reason = pktp->pkt_reason;
16450 	}
16451 }
16452 
16453 
16454 /*
16455  *    Function: sd_print_cmd_incomplete_msg
16456  *
16457  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16458  *
16459  *   Arguments: un - ptr to associated softstate
16460  *		bp - ptr to buf(9S) for the command
16461  *		arg - passed to sd_print_retry_msg()
16462  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16463  *			or SD_NO_RETRY_ISSUED
16464  *
16465  *     Context: May be called from interrupt context
16466  */
16467 
16468 static void
16469 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16470 	int code)
16471 {
16472 	dev_info_t	*dip;
16473 
16474 	ASSERT(un != NULL);
16475 	ASSERT(mutex_owned(SD_MUTEX(un)));
16476 	ASSERT(bp != NULL);
16477 
16478 	switch (code) {
16479 	case SD_NO_RETRY_ISSUED:
16480 		/* Command was failed. Someone turned off this target? */
16481 		if (un->un_state != SD_STATE_OFFLINE) {
16482 			/*
16483 			 * Suppress message if we are detaching and
16484 			 * device has been disconnected
16485 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16486 			 * private interface and not part of the DDI
16487 			 */
16488 			dip = un->un_sd->sd_dev;
16489 			if (!(DEVI_IS_DETACHING(dip) &&
16490 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16491 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16492 				"disk not responding to selection\n");
16493 			}
16494 			New_state(un, SD_STATE_OFFLINE);
16495 		}
16496 		break;
16497 
16498 	case SD_DELAYED_RETRY_ISSUED:
16499 	case SD_IMMEDIATE_RETRY_ISSUED:
16500 	default:
16501 		/* Command was successfully queued for retry */
16502 		sd_print_retry_msg(un, bp, arg, code);
16503 		break;
16504 	}
16505 }
16506 
16507 
16508 /*
16509  *    Function: sd_pkt_reason_cmd_incomplete
16510  *
16511  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16512  *
16513  *     Context: May be called from interrupt context
16514  */
16515 
16516 static void
16517 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16518 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16519 {
16520 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16521 
16522 	ASSERT(un != NULL);
16523 	ASSERT(mutex_owned(SD_MUTEX(un)));
16524 	ASSERT(bp != NULL);
16525 	ASSERT(xp != NULL);
16526 	ASSERT(pktp != NULL);
16527 
16528 	/* Do not do a reset if selection did not complete */
16529 	/* Note: Should this not just check the bit? */
16530 	if (pktp->pkt_state != STATE_GOT_BUS) {
16531 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16532 		sd_reset_target(un, pktp);
16533 	}
16534 
16535 	/*
16536 	 * If the target was not successfully selected, then set
16537 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16538 	 * with the target, and further retries and/or commands are
16539 	 * likely to take a long time.
16540 	 */
16541 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16542 		flag |= SD_RETRIES_FAILFAST;
16543 	}
16544 
16545 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16546 
16547 	sd_retry_command(un, bp, flag,
16548 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16549 }
16550 
16551 
16552 
16553 /*
16554  *    Function: sd_pkt_reason_cmd_tran_err
16555  *
16556  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16557  *
16558  *     Context: May be called from interrupt context
16559  */
16560 
16561 static void
16562 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
16563 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16564 {
16565 	ASSERT(un != NULL);
16566 	ASSERT(mutex_owned(SD_MUTEX(un)));
16567 	ASSERT(bp != NULL);
16568 	ASSERT(xp != NULL);
16569 	ASSERT(pktp != NULL);
16570 
16571 	/*
16572 	 * Do not reset if we got a parity error, or if
16573 	 * selection did not complete.
16574 	 */
16575 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16576 	/* Note: Should this not just check the bit for pkt_state? */
16577 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
16578 	    (pktp->pkt_state != STATE_GOT_BUS)) {
16579 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16580 		sd_reset_target(un, pktp);
16581 	}
16582 
16583 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16584 
16585 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16586 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16587 }
16588 
16589 
16590 
16591 /*
16592  *    Function: sd_pkt_reason_cmd_reset
16593  *
16594  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
16595  *
16596  *     Context: May be called from interrupt context
16597  */
16598 
16599 static void
16600 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
16601 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16602 {
16603 	ASSERT(un != NULL);
16604 	ASSERT(mutex_owned(SD_MUTEX(un)));
16605 	ASSERT(bp != NULL);
16606 	ASSERT(xp != NULL);
16607 	ASSERT(pktp != NULL);
16608 
16609 	/* The target may still be running the command, so try to reset. */
16610 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16611 	sd_reset_target(un, pktp);
16612 
16613 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16614 
16615 	/*
16616 	 * If pkt_reason is CMD_RESET chances are that this pkt got
16617 	 * reset because another target on this bus caused it. The target
16618 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16619 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16620 	 */
16621 
16622 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16623 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16624 }
16625 
16626 
16627 
16628 
16629 /*
16630  *    Function: sd_pkt_reason_cmd_aborted
16631  *
16632  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
16633  *
16634  *     Context: May be called from interrupt context
16635  */
16636 
16637 static void
16638 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
16639 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16640 {
16641 	ASSERT(un != NULL);
16642 	ASSERT(mutex_owned(SD_MUTEX(un)));
16643 	ASSERT(bp != NULL);
16644 	ASSERT(xp != NULL);
16645 	ASSERT(pktp != NULL);
16646 
16647 	/* The target may still be running the command, so try to reset. */
16648 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16649 	sd_reset_target(un, pktp);
16650 
16651 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16652 
16653 	/*
16654 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
16655 	 * aborted because another target on this bus caused it. The target
16656 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16657 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16658 	 */
16659 
16660 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16661 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16662 }
16663 
16664 
16665 
16666 /*
16667  *    Function: sd_pkt_reason_cmd_timeout
16668  *
16669  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
16670  *
16671  *     Context: May be called from interrupt context
16672  */
16673 
16674 static void
16675 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
16676 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16677 {
16678 	ASSERT(un != NULL);
16679 	ASSERT(mutex_owned(SD_MUTEX(un)));
16680 	ASSERT(bp != NULL);
16681 	ASSERT(xp != NULL);
16682 	ASSERT(pktp != NULL);
16683 
16684 
16685 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16686 	sd_reset_target(un, pktp);
16687 
16688 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16689 
16690 	/*
16691 	 * A command timeout indicates that we could not establish
16692 	 * communication with the target, so set SD_RETRIES_FAILFAST
16693 	 * as further retries/commands are likely to take a long time.
16694 	 */
16695 	sd_retry_command(un, bp,
16696 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
16697 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16698 }
16699 
16700 
16701 
16702 /*
16703  *    Function: sd_pkt_reason_cmd_unx_bus_free
16704  *
16705  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
16706  *
16707  *     Context: May be called from interrupt context
16708  */
16709 
16710 static void
16711 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
16712 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16713 {
16714 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
16715 
16716 	ASSERT(un != NULL);
16717 	ASSERT(mutex_owned(SD_MUTEX(un)));
16718 	ASSERT(bp != NULL);
16719 	ASSERT(xp != NULL);
16720 	ASSERT(pktp != NULL);
16721 
16722 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16723 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16724 
16725 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
16726 	    sd_print_retry_msg : NULL;
16727 
16728 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16729 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16730 }
16731 
16732 
16733 /*
16734  *    Function: sd_pkt_reason_cmd_tag_reject
16735  *
16736  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
16737  *
16738  *     Context: May be called from interrupt context
16739  */
16740 
16741 static void
16742 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
16743 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16744 {
16745 	ASSERT(un != NULL);
16746 	ASSERT(mutex_owned(SD_MUTEX(un)));
16747 	ASSERT(bp != NULL);
16748 	ASSERT(xp != NULL);
16749 	ASSERT(pktp != NULL);
16750 
16751 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16752 	pktp->pkt_flags = 0;
16753 	un->un_tagflags = 0;
16754 	if (un->un_f_opt_queueing == TRUE) {
16755 		un->un_throttle = min(un->un_throttle, 3);
16756 	} else {
16757 		un->un_throttle = 1;
16758 	}
16759 	mutex_exit(SD_MUTEX(un));
16760 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
16761 	mutex_enter(SD_MUTEX(un));
16762 
16763 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16764 
16765 	/* Legacy behavior not to check retry counts here. */
16766 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
16767 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16768 }
16769 
16770 
16771 /*
16772  *    Function: sd_pkt_reason_default
16773  *
16774  * Description: Default recovery actions for SCSA pkt_reason values that
16775  *		do not have more explicit recovery actions.
16776  *
16777  *     Context: May be called from interrupt context
16778  */
16779 
16780 static void
16781 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
16782 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16783 {
16784 	ASSERT(un != NULL);
16785 	ASSERT(mutex_owned(SD_MUTEX(un)));
16786 	ASSERT(bp != NULL);
16787 	ASSERT(xp != NULL);
16788 	ASSERT(pktp != NULL);
16789 
16790 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16791 	sd_reset_target(un, pktp);
16792 
16793 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16794 
16795 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16796 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16797 }
16798 
16799 
16800 
16801 /*
16802  *    Function: sd_pkt_status_check_condition
16803  *
16804  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
16805  *
16806  *     Context: May be called from interrupt context
16807  */
16808 
16809 static void
16810 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
16811 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16812 {
16813 	ASSERT(un != NULL);
16814 	ASSERT(mutex_owned(SD_MUTEX(un)));
16815 	ASSERT(bp != NULL);
16816 	ASSERT(xp != NULL);
16817 	ASSERT(pktp != NULL);
16818 
16819 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
16820 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
16821 
16822 	/*
16823 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
16824 	 * command will be retried after the request sense). Otherwise, retry
16825 	 * the command. Note: we are issuing the request sense even though the
16826 	 * retry limit may have been reached for the failed command.
16827 	 */
16828 	if (un->un_f_arq_enabled == FALSE) {
16829 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
16830 		    "no ARQ, sending request sense command\n");
16831 		sd_send_request_sense_command(un, bp, pktp);
16832 	} else {
16833 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
16834 		    "ARQ,retrying request sense command\n");
16835 #if defined(__i386) || defined(__amd64)
16836 		/*
16837 		 * The SD_RETRY_DELAY value need to be adjusted here
16838 		 * when SD_RETRY_DELAY change in sddef.h
16839 		 */
16840 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
16841 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
16842 			NULL);
16843 #else
16844 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
16845 		    EIO, SD_RETRY_DELAY, NULL);
16846 #endif
16847 	}
16848 
16849 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
16850 }
16851 
16852 
16853 /*
16854  *    Function: sd_pkt_status_busy
16855  *
16856  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
16857  *
16858  *     Context: May be called from interrupt context
16859  */
16860 
16861 static void
16862 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16863 	struct scsi_pkt *pktp)
16864 {
16865 	ASSERT(un != NULL);
16866 	ASSERT(mutex_owned(SD_MUTEX(un)));
16867 	ASSERT(bp != NULL);
16868 	ASSERT(xp != NULL);
16869 	ASSERT(pktp != NULL);
16870 
16871 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16872 	    "sd_pkt_status_busy: entry\n");
16873 
16874 	/* If retries are exhausted, just fail the command. */
16875 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
16876 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16877 		    "device busy too long\n");
16878 		sd_return_failed_command(un, bp, EIO);
16879 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16880 		    "sd_pkt_status_busy: exit\n");
16881 		return;
16882 	}
16883 	xp->xb_retry_count++;
16884 
16885 	/*
16886 	 * Try to reset the target. However, we do not want to perform
16887 	 * more than one reset if the device continues to fail. The reset
16888 	 * will be performed when the retry count reaches the reset
16889 	 * threshold.  This threshold should be set such that at least
16890 	 * one retry is issued before the reset is performed.
16891 	 */
16892 	if (xp->xb_retry_count ==
16893 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
16894 		int rval = 0;
16895 		mutex_exit(SD_MUTEX(un));
16896 		if (un->un_f_allow_bus_device_reset == TRUE) {
16897 			/*
16898 			 * First try to reset the LUN; if we cannot then
16899 			 * try to reset the target.
16900 			 */
16901 			if (un->un_f_lun_reset_enabled == TRUE) {
16902 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16903 				    "sd_pkt_status_busy: RESET_LUN\n");
16904 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
16905 			}
16906 			if (rval == 0) {
16907 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16908 				    "sd_pkt_status_busy: RESET_TARGET\n");
16909 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
16910 			}
16911 		}
16912 		if (rval == 0) {
16913 			/*
16914 			 * If the RESET_LUN and/or RESET_TARGET failed,
16915 			 * try RESET_ALL
16916 			 */
16917 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16918 			    "sd_pkt_status_busy: RESET_ALL\n");
16919 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
16920 		}
16921 		mutex_enter(SD_MUTEX(un));
16922 		if (rval == 0) {
16923 			/*
16924 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
16925 			 * At this point we give up & fail the command.
16926 			 */
16927 			sd_return_failed_command(un, bp, EIO);
16928 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16929 			    "sd_pkt_status_busy: exit (failed cmd)\n");
16930 			return;
16931 		}
16932 	}
16933 
16934 	/*
16935 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
16936 	 * we have already checked the retry counts above.
16937 	 */
16938 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
16939 	    EIO, SD_BSY_TIMEOUT, NULL);
16940 
16941 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16942 	    "sd_pkt_status_busy: exit\n");
16943 }
16944 
16945 
16946 /*
16947  *    Function: sd_pkt_status_reservation_conflict
16948  *
16949  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
16950  *		command status.
16951  *
16952  *     Context: May be called from interrupt context
16953  */
16954 
16955 static void
16956 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
16957 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16958 {
16959 	ASSERT(un != NULL);
16960 	ASSERT(mutex_owned(SD_MUTEX(un)));
16961 	ASSERT(bp != NULL);
16962 	ASSERT(xp != NULL);
16963 	ASSERT(pktp != NULL);
16964 
16965 	/*
16966 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
16967 	 * conflict could be due to various reasons like incorrect keys, not
16968 	 * registered or not reserved etc. So, we return EACCES to the caller.
16969 	 */
16970 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
16971 		int cmd = SD_GET_PKT_OPCODE(pktp);
16972 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
16973 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
16974 			sd_return_failed_command(un, bp, EACCES);
16975 			return;
16976 		}
16977 	}
16978 
16979 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
16980 
16981 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
16982 		if (sd_failfast_enable != 0) {
16983 			/* By definition, we must panic here.... */
16984 			sd_panic_for_res_conflict(un);
16985 			/*NOTREACHED*/
16986 		}
16987 		SD_ERROR(SD_LOG_IO, un,
16988 		    "sd_handle_resv_conflict: Disk Reserved\n");
16989 		sd_return_failed_command(un, bp, EACCES);
16990 		return;
16991 	}
16992 
16993 	/*
16994 	 * 1147670: retry only if sd_retry_on_reservation_conflict
16995 	 * property is set (default is 1). Retries will not succeed
16996 	 * on a disk reserved by another initiator. HA systems
16997 	 * may reset this via sd.conf to avoid these retries.
16998 	 *
16999 	 * Note: The legacy return code for this failure is EIO, however EACCES
17000 	 * seems more appropriate for a reservation conflict.
17001 	 */
17002 	if (sd_retry_on_reservation_conflict == 0) {
17003 		SD_ERROR(SD_LOG_IO, un,
17004 		    "sd_handle_resv_conflict: Device Reserved\n");
17005 		sd_return_failed_command(un, bp, EIO);
17006 		return;
17007 	}
17008 
17009 	/*
17010 	 * Retry the command if we can.
17011 	 *
17012 	 * Note: The legacy return code for this failure is EIO, however EACCES
17013 	 * seems more appropriate for a reservation conflict.
17014 	 */
17015 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17016 	    (clock_t)2, NULL);
17017 }
17018 
17019 
17020 
17021 /*
17022  *    Function: sd_pkt_status_qfull
17023  *
17024  * Description: Handle a QUEUE FULL condition from the target.  This can
17025  *		occur if the HBA does not handle the queue full condition.
17026  *		(Basically this means third-party HBAs as Sun HBAs will
17027  *		handle the queue full condition.)  Note that if there are
17028  *		some commands already in the transport, then the queue full
17029  *		has occurred because the queue for this nexus is actually
17030  *		full. If there are no commands in the transport, then the
17031  *		queue full is resulting from some other initiator or lun
17032  *		consuming all the resources at the target.
17033  *
17034  *     Context: May be called from interrupt context
17035  */
17036 
17037 static void
17038 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17039 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17040 {
17041 	ASSERT(un != NULL);
17042 	ASSERT(mutex_owned(SD_MUTEX(un)));
17043 	ASSERT(bp != NULL);
17044 	ASSERT(xp != NULL);
17045 	ASSERT(pktp != NULL);
17046 
17047 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17048 	    "sd_pkt_status_qfull: entry\n");
17049 
17050 	/*
17051 	 * Just lower the QFULL throttle and retry the command.  Note that
17052 	 * we do not limit the number of retries here.
17053 	 */
17054 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17055 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17056 	    SD_RESTART_TIMEOUT, NULL);
17057 
17058 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17059 	    "sd_pkt_status_qfull: exit\n");
17060 }
17061 
17062 
17063 /*
17064  *    Function: sd_reset_target
17065  *
17066  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17067  *		RESET_TARGET, or RESET_ALL.
17068  *
17069  *     Context: May be called under interrupt context.
17070  */
17071 
17072 static void
17073 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17074 {
17075 	int rval = 0;
17076 
17077 	ASSERT(un != NULL);
17078 	ASSERT(mutex_owned(SD_MUTEX(un)));
17079 	ASSERT(pktp != NULL);
17080 
17081 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17082 
17083 	/*
17084 	 * No need to reset if the transport layer has already done so.
17085 	 */
17086 	if ((pktp->pkt_statistics &
17087 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17088 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17089 		    "sd_reset_target: no reset\n");
17090 		return;
17091 	}
17092 
17093 	mutex_exit(SD_MUTEX(un));
17094 
17095 	if (un->un_f_allow_bus_device_reset == TRUE) {
17096 		if (un->un_f_lun_reset_enabled == TRUE) {
17097 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17098 			    "sd_reset_target: RESET_LUN\n");
17099 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17100 		}
17101 		if (rval == 0) {
17102 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17103 			    "sd_reset_target: RESET_TARGET\n");
17104 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17105 		}
17106 	}
17107 
17108 	if (rval == 0) {
17109 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17110 		    "sd_reset_target: RESET_ALL\n");
17111 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17112 	}
17113 
17114 	mutex_enter(SD_MUTEX(un));
17115 
17116 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17117 }
17118 
17119 
17120 /*
17121  *    Function: sd_media_change_task
17122  *
17123  * Description: Recovery action for CDROM to become available.
17124  *
17125  *     Context: Executes in a taskq() thread context
17126  */
17127 
17128 static void
17129 sd_media_change_task(void *arg)
17130 {
17131 	struct	scsi_pkt	*pktp = arg;
17132 	struct	sd_lun		*un;
17133 	struct	buf		*bp;
17134 	struct	sd_xbuf		*xp;
17135 	int	err		= 0;
17136 	int	retry_count	= 0;
17137 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17138 	struct	sd_sense_info	si;
17139 
17140 	ASSERT(pktp != NULL);
17141 	bp = (struct buf *)pktp->pkt_private;
17142 	ASSERT(bp != NULL);
17143 	xp = SD_GET_XBUF(bp);
17144 	ASSERT(xp != NULL);
17145 	un = SD_GET_UN(bp);
17146 	ASSERT(un != NULL);
17147 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17148 	ASSERT(un->un_f_monitor_media_state);
17149 
17150 	si.ssi_severity = SCSI_ERR_INFO;
17151 	si.ssi_pfa_flag = FALSE;
17152 
17153 	/*
17154 	 * When a reset is issued on a CDROM, it takes a long time to
17155 	 * recover. First few attempts to read capacity and other things
17156 	 * related to handling unit attention fail (with a ASC 0x4 and
17157 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17158 	 * to limit the retries in other cases of genuine failures like
17159 	 * no media in drive.
17160 	 */
17161 	while (retry_count++ < retry_limit) {
17162 		if ((err = sd_handle_mchange(un)) == 0) {
17163 			break;
17164 		}
17165 		if (err == EAGAIN) {
17166 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17167 		}
17168 		/* Sleep for 0.5 sec. & try again */
17169 		delay(drv_usectohz(500000));
17170 	}
17171 
17172 	/*
17173 	 * Dispatch (retry or fail) the original command here,
17174 	 * along with appropriate console messages....
17175 	 *
17176 	 * Must grab the mutex before calling sd_retry_command,
17177 	 * sd_print_sense_msg and sd_return_failed_command.
17178 	 */
17179 	mutex_enter(SD_MUTEX(un));
17180 	if (err != SD_CMD_SUCCESS) {
17181 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17182 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17183 		si.ssi_severity = SCSI_ERR_FATAL;
17184 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17185 		sd_return_failed_command(un, bp, EIO);
17186 	} else {
17187 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17188 		    &si, EIO, (clock_t)0, NULL);
17189 	}
17190 	mutex_exit(SD_MUTEX(un));
17191 }
17192 
17193 
17194 
17195 /*
17196  *    Function: sd_handle_mchange
17197  *
17198  * Description: Perform geometry validation & other recovery when CDROM
17199  *		has been removed from drive.
17200  *
17201  * Return Code: 0 for success
17202  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17203  *		sd_send_scsi_READ_CAPACITY()
17204  *
17205  *     Context: Executes in a taskq() thread context
17206  */
17207 
17208 static int
17209 sd_handle_mchange(struct sd_lun *un)
17210 {
17211 	uint64_t	capacity;
17212 	uint32_t	lbasize;
17213 	int		rval;
17214 
17215 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17216 	ASSERT(un->un_f_monitor_media_state);
17217 
17218 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17219 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17220 		return (rval);
17221 	}
17222 
17223 	mutex_enter(SD_MUTEX(un));
17224 	sd_update_block_info(un, lbasize, capacity);
17225 
17226 	if (un->un_errstats != NULL) {
17227 		struct	sd_errstats *stp =
17228 		    (struct sd_errstats *)un->un_errstats->ks_data;
17229 		stp->sd_capacity.value.ui64 = (uint64_t)
17230 		    ((uint64_t)un->un_blockcount *
17231 		    (uint64_t)un->un_tgt_blocksize);
17232 	}
17233 
17234 
17235 	/*
17236 	 * Check if the media in the device is writable or not
17237 	 */
17238 	sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17239 
17240 	/*
17241 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17242 	 * valid geometry.
17243 	 */
17244 	mutex_exit(SD_MUTEX(un));
17245 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17246 
17247 
17248 	if (cmlb_validate(un->un_cmlbhandle, 0,
17249 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17250 		return (EIO);
17251 	} else {
17252 		if (un->un_f_pkstats_enabled) {
17253 			sd_set_pstats(un);
17254 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17255 			    "sd_handle_mchange: un:0x%p pstats created and "
17256 			    "set\n", un);
17257 		}
17258 	}
17259 
17260 
17261 	/*
17262 	 * Try to lock the door
17263 	 */
17264 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17265 	    SD_PATH_DIRECT_PRIORITY));
17266 }
17267 
17268 
17269 /*
17270  *    Function: sd_send_scsi_DOORLOCK
17271  *
17272  * Description: Issue the scsi DOOR LOCK command
17273  *
17274  *   Arguments: un    - pointer to driver soft state (unit) structure for
17275  *			this target.
17276  *		flag  - SD_REMOVAL_ALLOW
17277  *			SD_REMOVAL_PREVENT
17278  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17279  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17280  *			to use the USCSI "direct" chain and bypass the normal
17281  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17282  *			command is issued as part of an error recovery action.
17283  *
17284  * Return Code: 0   - Success
17285  *		errno return code from sd_send_scsi_cmd()
17286  *
17287  *     Context: Can sleep.
17288  */
17289 
17290 static int
17291 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17292 {
17293 	union scsi_cdb		cdb;
17294 	struct uscsi_cmd	ucmd_buf;
17295 	struct scsi_extended_sense	sense_buf;
17296 	int			status;
17297 
17298 	ASSERT(un != NULL);
17299 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17300 
17301 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17302 
17303 	/* already determined doorlock is not supported, fake success */
17304 	if (un->un_f_doorlock_supported == FALSE) {
17305 		return (0);
17306 	}
17307 
17308 	/*
17309 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17310 	 * ignore the command so we can complete the eject
17311 	 * operation.
17312 	 */
17313 	if (flag == SD_REMOVAL_PREVENT) {
17314 		mutex_enter(SD_MUTEX(un));
17315 		if (un->un_f_ejecting == TRUE) {
17316 			mutex_exit(SD_MUTEX(un));
17317 			return (EAGAIN);
17318 		}
17319 		mutex_exit(SD_MUTEX(un));
17320 	}
17321 
17322 	bzero(&cdb, sizeof (cdb));
17323 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17324 
17325 	cdb.scc_cmd = SCMD_DOORLOCK;
17326 	cdb.cdb_opaque[4] = (uchar_t)flag;
17327 
17328 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17329 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17330 	ucmd_buf.uscsi_bufaddr	= NULL;
17331 	ucmd_buf.uscsi_buflen	= 0;
17332 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17333 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17334 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17335 	ucmd_buf.uscsi_timeout	= 15;
17336 
17337 	SD_TRACE(SD_LOG_IO, un,
17338 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17339 
17340 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17341 	    UIO_SYSSPACE, path_flag);
17342 
17343 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17344 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17345 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17346 		/* fake success and skip subsequent doorlock commands */
17347 		un->un_f_doorlock_supported = FALSE;
17348 		return (0);
17349 	}
17350 
17351 	return (status);
17352 }
17353 
17354 /*
17355  *    Function: sd_send_scsi_READ_CAPACITY
17356  *
17357  * Description: This routine uses the scsi READ CAPACITY command to determine
17358  *		the device capacity in number of blocks and the device native
17359  *		block size. If this function returns a failure, then the
17360  *		values in *capp and *lbap are undefined.  If the capacity
17361  *		returned is 0xffffffff then the lun is too large for a
17362  *		normal READ CAPACITY command and the results of a
17363  *		READ CAPACITY 16 will be used instead.
17364  *
17365  *   Arguments: un   - ptr to soft state struct for the target
17366  *		capp - ptr to unsigned 64-bit variable to receive the
17367  *			capacity value from the command.
17368  *		lbap - ptr to unsigned 32-bit varaible to receive the
17369  *			block size value from the command
17370  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17371  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17372  *			to use the USCSI "direct" chain and bypass the normal
17373  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17374  *			command is issued as part of an error recovery action.
17375  *
17376  * Return Code: 0   - Success
17377  *		EIO - IO error
17378  *		EACCES - Reservation conflict detected
17379  *		EAGAIN - Device is becoming ready
17380  *		errno return code from sd_send_scsi_cmd()
17381  *
17382  *     Context: Can sleep.  Blocks until command completes.
17383  */
17384 
17385 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17386 
17387 static int
17388 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17389 	int path_flag)
17390 {
17391 	struct	scsi_extended_sense	sense_buf;
17392 	struct	uscsi_cmd	ucmd_buf;
17393 	union	scsi_cdb	cdb;
17394 	uint32_t		*capacity_buf;
17395 	uint64_t		capacity;
17396 	uint32_t		lbasize;
17397 	int			status;
17398 
17399 	ASSERT(un != NULL);
17400 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17401 	ASSERT(capp != NULL);
17402 	ASSERT(lbap != NULL);
17403 
17404 	SD_TRACE(SD_LOG_IO, un,
17405 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17406 
17407 	/*
17408 	 * First send a READ_CAPACITY command to the target.
17409 	 * (This command is mandatory under SCSI-2.)
17410 	 *
17411 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17412 	 * Medium Indicator bit is cleared.  The address field must be
17413 	 * zero if the PMI bit is zero.
17414 	 */
17415 	bzero(&cdb, sizeof (cdb));
17416 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17417 
17418 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17419 
17420 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17421 
17422 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17423 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17424 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17425 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17426 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17427 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17428 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17429 	ucmd_buf.uscsi_timeout	= 60;
17430 
17431 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17432 	    UIO_SYSSPACE, path_flag);
17433 
17434 	switch (status) {
17435 	case 0:
17436 		/* Return failure if we did not get valid capacity data. */
17437 		if (ucmd_buf.uscsi_resid != 0) {
17438 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17439 			return (EIO);
17440 		}
17441 
17442 		/*
17443 		 * Read capacity and block size from the READ CAPACITY 10 data.
17444 		 * This data may be adjusted later due to device specific
17445 		 * issues.
17446 		 *
17447 		 * According to the SCSI spec, the READ CAPACITY 10
17448 		 * command returns the following:
17449 		 *
17450 		 *  bytes 0-3: Maximum logical block address available.
17451 		 *		(MSB in byte:0 & LSB in byte:3)
17452 		 *
17453 		 *  bytes 4-7: Block length in bytes
17454 		 *		(MSB in byte:4 & LSB in byte:7)
17455 		 *
17456 		 */
17457 		capacity = BE_32(capacity_buf[0]);
17458 		lbasize = BE_32(capacity_buf[1]);
17459 
17460 		/*
17461 		 * Done with capacity_buf
17462 		 */
17463 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17464 
17465 		/*
17466 		 * if the reported capacity is set to all 0xf's, then
17467 		 * this disk is too large and requires SBC-2 commands.
17468 		 * Reissue the request using READ CAPACITY 16.
17469 		 */
17470 		if (capacity == 0xffffffff) {
17471 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
17472 			    &lbasize, path_flag);
17473 			if (status != 0) {
17474 				return (status);
17475 			}
17476 		}
17477 		break;	/* Success! */
17478 	case EIO:
17479 		switch (ucmd_buf.uscsi_status) {
17480 		case STATUS_RESERVATION_CONFLICT:
17481 			status = EACCES;
17482 			break;
17483 		case STATUS_CHECK:
17484 			/*
17485 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17486 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17487 			 */
17488 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17489 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17490 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17491 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17492 				return (EAGAIN);
17493 			}
17494 			break;
17495 		default:
17496 			break;
17497 		}
17498 		/* FALLTHRU */
17499 	default:
17500 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17501 		return (status);
17502 	}
17503 
17504 	/*
17505 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
17506 	 * (2352 and 0 are common) so for these devices always force the value
17507 	 * to 2048 as required by the ATAPI specs.
17508 	 */
17509 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
17510 		lbasize = 2048;
17511 	}
17512 
17513 	/*
17514 	 * Get the maximum LBA value from the READ CAPACITY data.
17515 	 * Here we assume that the Partial Medium Indicator (PMI) bit
17516 	 * was cleared when issuing the command. This means that the LBA
17517 	 * returned from the device is the LBA of the last logical block
17518 	 * on the logical unit.  The actual logical block count will be
17519 	 * this value plus one.
17520 	 *
17521 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
17522 	 * so scale the capacity value to reflect this.
17523 	 */
17524 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
17525 
17526 	/*
17527 	 * Copy the values from the READ CAPACITY command into the space
17528 	 * provided by the caller.
17529 	 */
17530 	*capp = capacity;
17531 	*lbap = lbasize;
17532 
17533 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
17534 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17535 
17536 	/*
17537 	 * Both the lbasize and capacity from the device must be nonzero,
17538 	 * otherwise we assume that the values are not valid and return
17539 	 * failure to the caller. (4203735)
17540 	 */
17541 	if ((capacity == 0) || (lbasize == 0)) {
17542 		return (EIO);
17543 	}
17544 
17545 	return (0);
17546 }
17547 
17548 /*
17549  *    Function: sd_send_scsi_READ_CAPACITY_16
17550  *
17551  * Description: This routine uses the scsi READ CAPACITY 16 command to
17552  *		determine the device capacity in number of blocks and the
17553  *		device native block size.  If this function returns a failure,
17554  *		then the values in *capp and *lbap are undefined.
17555  *		This routine should always be called by
17556  *		sd_send_scsi_READ_CAPACITY which will appy any device
17557  *		specific adjustments to capacity and lbasize.
17558  *
17559  *   Arguments: un   - ptr to soft state struct for the target
17560  *		capp - ptr to unsigned 64-bit variable to receive the
17561  *			capacity value from the command.
17562  *		lbap - ptr to unsigned 32-bit varaible to receive the
17563  *			block size value from the command
17564  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17565  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17566  *			to use the USCSI "direct" chain and bypass the normal
17567  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
17568  *			this command is issued as part of an error recovery
17569  *			action.
17570  *
17571  * Return Code: 0   - Success
17572  *		EIO - IO error
17573  *		EACCES - Reservation conflict detected
17574  *		EAGAIN - Device is becoming ready
17575  *		errno return code from sd_send_scsi_cmd()
17576  *
17577  *     Context: Can sleep.  Blocks until command completes.
17578  */
17579 
17580 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
17581 
17582 static int
17583 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
17584 	uint32_t *lbap, int path_flag)
17585 {
17586 	struct	scsi_extended_sense	sense_buf;
17587 	struct	uscsi_cmd	ucmd_buf;
17588 	union	scsi_cdb	cdb;
17589 	uint64_t		*capacity16_buf;
17590 	uint64_t		capacity;
17591 	uint32_t		lbasize;
17592 	int			status;
17593 
17594 	ASSERT(un != NULL);
17595 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17596 	ASSERT(capp != NULL);
17597 	ASSERT(lbap != NULL);
17598 
17599 	SD_TRACE(SD_LOG_IO, un,
17600 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17601 
17602 	/*
17603 	 * First send a READ_CAPACITY_16 command to the target.
17604 	 *
17605 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
17606 	 * Medium Indicator bit is cleared.  The address field must be
17607 	 * zero if the PMI bit is zero.
17608 	 */
17609 	bzero(&cdb, sizeof (cdb));
17610 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17611 
17612 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
17613 
17614 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17615 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
17616 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
17617 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
17618 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17619 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17620 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17621 	ucmd_buf.uscsi_timeout	= 60;
17622 
17623 	/*
17624 	 * Read Capacity (16) is a Service Action In command.  One
17625 	 * command byte (0x9E) is overloaded for multiple operations,
17626 	 * with the second CDB byte specifying the desired operation
17627 	 */
17628 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
17629 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
17630 
17631 	/*
17632 	 * Fill in allocation length field
17633 	 */
17634 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
17635 
17636 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17637 	    UIO_SYSSPACE, path_flag);
17638 
17639 	switch (status) {
17640 	case 0:
17641 		/* Return failure if we did not get valid capacity data. */
17642 		if (ucmd_buf.uscsi_resid > 20) {
17643 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17644 			return (EIO);
17645 		}
17646 
17647 		/*
17648 		 * Read capacity and block size from the READ CAPACITY 10 data.
17649 		 * This data may be adjusted later due to device specific
17650 		 * issues.
17651 		 *
17652 		 * According to the SCSI spec, the READ CAPACITY 10
17653 		 * command returns the following:
17654 		 *
17655 		 *  bytes 0-7: Maximum logical block address available.
17656 		 *		(MSB in byte:0 & LSB in byte:7)
17657 		 *
17658 		 *  bytes 8-11: Block length in bytes
17659 		 *		(MSB in byte:8 & LSB in byte:11)
17660 		 *
17661 		 */
17662 		capacity = BE_64(capacity16_buf[0]);
17663 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
17664 
17665 		/*
17666 		 * Done with capacity16_buf
17667 		 */
17668 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17669 
17670 		/*
17671 		 * if the reported capacity is set to all 0xf's, then
17672 		 * this disk is too large.  This could only happen with
17673 		 * a device that supports LBAs larger than 64 bits which
17674 		 * are not defined by any current T10 standards.
17675 		 */
17676 		if (capacity == 0xffffffffffffffff) {
17677 			return (EIO);
17678 		}
17679 		break;	/* Success! */
17680 	case EIO:
17681 		switch (ucmd_buf.uscsi_status) {
17682 		case STATUS_RESERVATION_CONFLICT:
17683 			status = EACCES;
17684 			break;
17685 		case STATUS_CHECK:
17686 			/*
17687 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17688 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17689 			 */
17690 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17691 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17692 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17693 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17694 				return (EAGAIN);
17695 			}
17696 			break;
17697 		default:
17698 			break;
17699 		}
17700 		/* FALLTHRU */
17701 	default:
17702 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17703 		return (status);
17704 	}
17705 
17706 	*capp = capacity;
17707 	*lbap = lbasize;
17708 
17709 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
17710 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17711 
17712 	return (0);
17713 }
17714 
17715 
17716 /*
17717  *    Function: sd_send_scsi_START_STOP_UNIT
17718  *
17719  * Description: Issue a scsi START STOP UNIT command to the target.
17720  *
17721  *   Arguments: un    - pointer to driver soft state (unit) structure for
17722  *			this target.
17723  *		flag  - SD_TARGET_START
17724  *			SD_TARGET_STOP
17725  *			SD_TARGET_EJECT
17726  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17727  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17728  *			to use the USCSI "direct" chain and bypass the normal
17729  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17730  *			command is issued as part of an error recovery action.
17731  *
17732  * Return Code: 0   - Success
17733  *		EIO - IO error
17734  *		EACCES - Reservation conflict detected
17735  *		ENXIO  - Not Ready, medium not present
17736  *		errno return code from sd_send_scsi_cmd()
17737  *
17738  *     Context: Can sleep.
17739  */
17740 
17741 static int
17742 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
17743 {
17744 	struct	scsi_extended_sense	sense_buf;
17745 	union scsi_cdb		cdb;
17746 	struct uscsi_cmd	ucmd_buf;
17747 	int			status;
17748 
17749 	ASSERT(un != NULL);
17750 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17751 
17752 	SD_TRACE(SD_LOG_IO, un,
17753 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
17754 
17755 	if (un->un_f_check_start_stop &&
17756 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
17757 	    (un->un_f_start_stop_supported != TRUE)) {
17758 		return (0);
17759 	}
17760 
17761 	/*
17762 	 * If we are performing an eject operation and
17763 	 * we receive any command other than SD_TARGET_EJECT
17764 	 * we should immediately return.
17765 	 */
17766 	if (flag != SD_TARGET_EJECT) {
17767 		mutex_enter(SD_MUTEX(un));
17768 		if (un->un_f_ejecting == TRUE) {
17769 			mutex_exit(SD_MUTEX(un));
17770 			return (EAGAIN);
17771 		}
17772 		mutex_exit(SD_MUTEX(un));
17773 	}
17774 
17775 	bzero(&cdb, sizeof (cdb));
17776 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17777 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
17778 
17779 	cdb.scc_cmd = SCMD_START_STOP;
17780 	cdb.cdb_opaque[4] = (uchar_t)flag;
17781 
17782 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17783 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17784 	ucmd_buf.uscsi_bufaddr	= NULL;
17785 	ucmd_buf.uscsi_buflen	= 0;
17786 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17787 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
17788 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17789 	ucmd_buf.uscsi_timeout	= 200;
17790 
17791 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17792 	    UIO_SYSSPACE, path_flag);
17793 
17794 	switch (status) {
17795 	case 0:
17796 		break;	/* Success! */
17797 	case EIO:
17798 		switch (ucmd_buf.uscsi_status) {
17799 		case STATUS_RESERVATION_CONFLICT:
17800 			status = EACCES;
17801 			break;
17802 		case STATUS_CHECK:
17803 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
17804 				switch (scsi_sense_key(
17805 						(uint8_t *)&sense_buf)) {
17806 				case KEY_ILLEGAL_REQUEST:
17807 					status = ENOTSUP;
17808 					break;
17809 				case KEY_NOT_READY:
17810 					if (scsi_sense_asc(
17811 						    (uint8_t *)&sense_buf)
17812 					    == 0x3A) {
17813 						status = ENXIO;
17814 					}
17815 					break;
17816 				default:
17817 					break;
17818 				}
17819 			}
17820 			break;
17821 		default:
17822 			break;
17823 		}
17824 		break;
17825 	default:
17826 		break;
17827 	}
17828 
17829 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
17830 
17831 	return (status);
17832 }
17833 
17834 
17835 /*
17836  *    Function: sd_start_stop_unit_callback
17837  *
17838  * Description: timeout(9F) callback to begin recovery process for a
17839  *		device that has spun down.
17840  *
17841  *   Arguments: arg - pointer to associated softstate struct.
17842  *
17843  *     Context: Executes in a timeout(9F) thread context
17844  */
17845 
17846 static void
17847 sd_start_stop_unit_callback(void *arg)
17848 {
17849 	struct sd_lun	*un = arg;
17850 	ASSERT(un != NULL);
17851 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17852 
17853 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
17854 
17855 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
17856 }
17857 
17858 
17859 /*
17860  *    Function: sd_start_stop_unit_task
17861  *
17862  * Description: Recovery procedure when a drive is spun down.
17863  *
17864  *   Arguments: arg - pointer to associated softstate struct.
17865  *
17866  *     Context: Executes in a taskq() thread context
17867  */
17868 
17869 static void
17870 sd_start_stop_unit_task(void *arg)
17871 {
17872 	struct sd_lun	*un = arg;
17873 
17874 	ASSERT(un != NULL);
17875 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17876 
17877 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
17878 
17879 	/*
17880 	 * Some unformatted drives report not ready error, no need to
17881 	 * restart if format has been initiated.
17882 	 */
17883 	mutex_enter(SD_MUTEX(un));
17884 	if (un->un_f_format_in_progress == TRUE) {
17885 		mutex_exit(SD_MUTEX(un));
17886 		return;
17887 	}
17888 	mutex_exit(SD_MUTEX(un));
17889 
17890 	/*
17891 	 * When a START STOP command is issued from here, it is part of a
17892 	 * failure recovery operation and must be issued before any other
17893 	 * commands, including any pending retries. Thus it must be sent
17894 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
17895 	 * succeeds or not, we will start I/O after the attempt.
17896 	 */
17897 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
17898 	    SD_PATH_DIRECT_PRIORITY);
17899 
17900 	/*
17901 	 * The above call blocks until the START_STOP_UNIT command completes.
17902 	 * Now that it has completed, we must re-try the original IO that
17903 	 * received the NOT READY condition in the first place. There are
17904 	 * three possible conditions here:
17905 	 *
17906 	 *  (1) The original IO is on un_retry_bp.
17907 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
17908 	 *	is NULL.
17909 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
17910 	 *	points to some other, unrelated bp.
17911 	 *
17912 	 * For each case, we must call sd_start_cmds() with un_retry_bp
17913 	 * as the argument. If un_retry_bp is NULL, this will initiate
17914 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
17915 	 * then this will process the bp on un_retry_bp. That may or may not
17916 	 * be the original IO, but that does not matter: the important thing
17917 	 * is to keep the IO processing going at this point.
17918 	 *
17919 	 * Note: This is a very specific error recovery sequence associated
17920 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
17921 	 * serialize the I/O with completion of the spin-up.
17922 	 */
17923 	mutex_enter(SD_MUTEX(un));
17924 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17925 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
17926 	    un, un->un_retry_bp);
17927 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
17928 	sd_start_cmds(un, un->un_retry_bp);
17929 	mutex_exit(SD_MUTEX(un));
17930 
17931 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
17932 }
17933 
17934 
17935 /*
17936  *    Function: sd_send_scsi_INQUIRY
17937  *
17938  * Description: Issue the scsi INQUIRY command.
17939  *
17940  *   Arguments: un
17941  *		bufaddr
17942  *		buflen
17943  *		evpd
17944  *		page_code
17945  *		page_length
17946  *
17947  * Return Code: 0   - Success
17948  *		errno return code from sd_send_scsi_cmd()
17949  *
17950  *     Context: Can sleep. Does not return until command is completed.
17951  */
17952 
17953 static int
17954 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
17955 	uchar_t evpd, uchar_t page_code, size_t *residp)
17956 {
17957 	union scsi_cdb		cdb;
17958 	struct uscsi_cmd	ucmd_buf;
17959 	int			status;
17960 
17961 	ASSERT(un != NULL);
17962 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17963 	ASSERT(bufaddr != NULL);
17964 
17965 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
17966 
17967 	bzero(&cdb, sizeof (cdb));
17968 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17969 	bzero(bufaddr, buflen);
17970 
17971 	cdb.scc_cmd = SCMD_INQUIRY;
17972 	cdb.cdb_opaque[1] = evpd;
17973 	cdb.cdb_opaque[2] = page_code;
17974 	FORMG0COUNT(&cdb, buflen);
17975 
17976 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17977 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17978 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
17979 	ucmd_buf.uscsi_buflen	= buflen;
17980 	ucmd_buf.uscsi_rqbuf	= NULL;
17981 	ucmd_buf.uscsi_rqlen	= 0;
17982 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
17983 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
17984 
17985 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17986 	    UIO_SYSSPACE, SD_PATH_DIRECT);
17987 
17988 	if ((status == 0) && (residp != NULL)) {
17989 		*residp = ucmd_buf.uscsi_resid;
17990 	}
17991 
17992 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
17993 
17994 	return (status);
17995 }
17996 
17997 
17998 /*
17999  *    Function: sd_send_scsi_TEST_UNIT_READY
18000  *
18001  * Description: Issue the scsi TEST UNIT READY command.
18002  *		This routine can be told to set the flag USCSI_DIAGNOSE to
18003  *		prevent retrying failed commands. Use this when the intent
18004  *		is either to check for device readiness, to clear a Unit
18005  *		Attention, or to clear any outstanding sense data.
18006  *		However under specific conditions the expected behavior
18007  *		is for retries to bring a device ready, so use the flag
18008  *		with caution.
18009  *
18010  *   Arguments: un
18011  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18012  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18013  *			0: dont check for media present, do retries on cmd.
18014  *
18015  * Return Code: 0   - Success
18016  *		EIO - IO error
18017  *		EACCES - Reservation conflict detected
18018  *		ENXIO  - Not Ready, medium not present
18019  *		errno return code from sd_send_scsi_cmd()
18020  *
18021  *     Context: Can sleep. Does not return until command is completed.
18022  */
18023 
18024 static int
18025 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18026 {
18027 	struct	scsi_extended_sense	sense_buf;
18028 	union scsi_cdb		cdb;
18029 	struct uscsi_cmd	ucmd_buf;
18030 	int			status;
18031 
18032 	ASSERT(un != NULL);
18033 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18034 
18035 	SD_TRACE(SD_LOG_IO, un,
18036 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18037 
18038 	/*
18039 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18040 	 * timeouts when they receive a TUR and the queue is not empty. Check
18041 	 * the configuration flag set during attach (indicating the drive has
18042 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18043 	 * TUR. If there are
18044 	 * pending commands return success, this is a bit arbitrary but is ok
18045 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18046 	 * configurations.
18047 	 */
18048 	if (un->un_f_cfg_tur_check == TRUE) {
18049 		mutex_enter(SD_MUTEX(un));
18050 		if (un->un_ncmds_in_transport != 0) {
18051 			mutex_exit(SD_MUTEX(un));
18052 			return (0);
18053 		}
18054 		mutex_exit(SD_MUTEX(un));
18055 	}
18056 
18057 	bzero(&cdb, sizeof (cdb));
18058 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18059 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18060 
18061 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18062 
18063 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18064 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18065 	ucmd_buf.uscsi_bufaddr	= NULL;
18066 	ucmd_buf.uscsi_buflen	= 0;
18067 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18068 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18069 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18070 
18071 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18072 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18073 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18074 	}
18075 	ucmd_buf.uscsi_timeout	= 60;
18076 
18077 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18078 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18079 	    SD_PATH_STANDARD));
18080 
18081 	switch (status) {
18082 	case 0:
18083 		break;	/* Success! */
18084 	case EIO:
18085 		switch (ucmd_buf.uscsi_status) {
18086 		case STATUS_RESERVATION_CONFLICT:
18087 			status = EACCES;
18088 			break;
18089 		case STATUS_CHECK:
18090 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18091 				break;
18092 			}
18093 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18094 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18095 				KEY_NOT_READY) &&
18096 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18097 				status = ENXIO;
18098 			}
18099 			break;
18100 		default:
18101 			break;
18102 		}
18103 		break;
18104 	default:
18105 		break;
18106 	}
18107 
18108 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18109 
18110 	return (status);
18111 }
18112 
18113 
18114 /*
18115  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18116  *
18117  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18118  *
18119  *   Arguments: un
18120  *
18121  * Return Code: 0   - Success
18122  *		EACCES
18123  *		ENOTSUP
18124  *		errno return code from sd_send_scsi_cmd()
18125  *
18126  *     Context: Can sleep. Does not return until command is completed.
18127  */
18128 
18129 static int
18130 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18131 	uint16_t data_len, uchar_t *data_bufp)
18132 {
18133 	struct scsi_extended_sense	sense_buf;
18134 	union scsi_cdb		cdb;
18135 	struct uscsi_cmd	ucmd_buf;
18136 	int			status;
18137 	int			no_caller_buf = FALSE;
18138 
18139 	ASSERT(un != NULL);
18140 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18141 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18142 
18143 	SD_TRACE(SD_LOG_IO, un,
18144 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18145 
18146 	bzero(&cdb, sizeof (cdb));
18147 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18148 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18149 	if (data_bufp == NULL) {
18150 		/* Allocate a default buf if the caller did not give one */
18151 		ASSERT(data_len == 0);
18152 		data_len  = MHIOC_RESV_KEY_SIZE;
18153 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18154 		no_caller_buf = TRUE;
18155 	}
18156 
18157 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18158 	cdb.cdb_opaque[1] = usr_cmd;
18159 	FORMG1COUNT(&cdb, data_len);
18160 
18161 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18162 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18163 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18164 	ucmd_buf.uscsi_buflen	= data_len;
18165 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18166 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18167 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18168 	ucmd_buf.uscsi_timeout	= 60;
18169 
18170 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18171 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18172 
18173 	switch (status) {
18174 	case 0:
18175 		break;	/* Success! */
18176 	case EIO:
18177 		switch (ucmd_buf.uscsi_status) {
18178 		case STATUS_RESERVATION_CONFLICT:
18179 			status = EACCES;
18180 			break;
18181 		case STATUS_CHECK:
18182 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18183 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18184 				KEY_ILLEGAL_REQUEST)) {
18185 				status = ENOTSUP;
18186 			}
18187 			break;
18188 		default:
18189 			break;
18190 		}
18191 		break;
18192 	default:
18193 		break;
18194 	}
18195 
18196 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18197 
18198 	if (no_caller_buf == TRUE) {
18199 		kmem_free(data_bufp, data_len);
18200 	}
18201 
18202 	return (status);
18203 }
18204 
18205 
18206 /*
18207  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18208  *
18209  * Description: This routine is the driver entry point for handling CD-ROM
18210  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18211  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18212  *		device.
18213  *
18214  *   Arguments: un  -   Pointer to soft state struct for the target.
18215  *		usr_cmd SCSI-3 reservation facility command (one of
18216  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18217  *			SD_SCSI3_PREEMPTANDABORT)
18218  *		usr_bufp - user provided pointer register, reserve descriptor or
18219  *			preempt and abort structure (mhioc_register_t,
18220  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18221  *
18222  * Return Code: 0   - Success
18223  *		EACCES
18224  *		ENOTSUP
18225  *		errno return code from sd_send_scsi_cmd()
18226  *
18227  *     Context: Can sleep. Does not return until command is completed.
18228  */
18229 
18230 static int
18231 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18232 	uchar_t	*usr_bufp)
18233 {
18234 	struct scsi_extended_sense	sense_buf;
18235 	union scsi_cdb		cdb;
18236 	struct uscsi_cmd	ucmd_buf;
18237 	int			status;
18238 	uchar_t			data_len = sizeof (sd_prout_t);
18239 	sd_prout_t		*prp;
18240 
18241 	ASSERT(un != NULL);
18242 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18243 	ASSERT(data_len == 24);	/* required by scsi spec */
18244 
18245 	SD_TRACE(SD_LOG_IO, un,
18246 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18247 
18248 	if (usr_bufp == NULL) {
18249 		return (EINVAL);
18250 	}
18251 
18252 	bzero(&cdb, sizeof (cdb));
18253 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18254 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18255 	prp = kmem_zalloc(data_len, KM_SLEEP);
18256 
18257 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18258 	cdb.cdb_opaque[1] = usr_cmd;
18259 	FORMG1COUNT(&cdb, data_len);
18260 
18261 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18262 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18263 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18264 	ucmd_buf.uscsi_buflen	= data_len;
18265 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18266 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18267 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18268 	ucmd_buf.uscsi_timeout	= 60;
18269 
18270 	switch (usr_cmd) {
18271 	case SD_SCSI3_REGISTER: {
18272 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18273 
18274 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18275 		bcopy(ptr->newkey.key, prp->service_key,
18276 		    MHIOC_RESV_KEY_SIZE);
18277 		prp->aptpl = ptr->aptpl;
18278 		break;
18279 	}
18280 	case SD_SCSI3_RESERVE:
18281 	case SD_SCSI3_RELEASE: {
18282 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18283 
18284 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18285 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18286 		cdb.cdb_opaque[2] = ptr->type;
18287 		break;
18288 	}
18289 	case SD_SCSI3_PREEMPTANDABORT: {
18290 		mhioc_preemptandabort_t *ptr =
18291 		    (mhioc_preemptandabort_t *)usr_bufp;
18292 
18293 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18294 		bcopy(ptr->victim_key.key, prp->service_key,
18295 		    MHIOC_RESV_KEY_SIZE);
18296 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18297 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18298 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18299 		break;
18300 	}
18301 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18302 	{
18303 		mhioc_registerandignorekey_t *ptr;
18304 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18305 		bcopy(ptr->newkey.key,
18306 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18307 		prp->aptpl = ptr->aptpl;
18308 		break;
18309 	}
18310 	default:
18311 		ASSERT(FALSE);
18312 		break;
18313 	}
18314 
18315 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18316 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18317 
18318 	switch (status) {
18319 	case 0:
18320 		break;	/* Success! */
18321 	case EIO:
18322 		switch (ucmd_buf.uscsi_status) {
18323 		case STATUS_RESERVATION_CONFLICT:
18324 			status = EACCES;
18325 			break;
18326 		case STATUS_CHECK:
18327 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18328 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18329 				KEY_ILLEGAL_REQUEST)) {
18330 				status = ENOTSUP;
18331 			}
18332 			break;
18333 		default:
18334 			break;
18335 		}
18336 		break;
18337 	default:
18338 		break;
18339 	}
18340 
18341 	kmem_free(prp, data_len);
18342 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18343 	return (status);
18344 }
18345 
18346 
18347 /*
18348  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18349  *
18350  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18351  *
18352  *   Arguments: un - pointer to the target's soft state struct
18353  *
18354  * Return Code: 0 - success
18355  *		errno-type error code
18356  *
18357  *     Context: kernel thread context only.
18358  */
18359 
18360 static int
18361 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18362 {
18363 	struct sd_uscsi_info	*uip;
18364 	struct uscsi_cmd	*uscmd;
18365 	union scsi_cdb		*cdb;
18366 	struct buf		*bp;
18367 	int			rval = 0;
18368 
18369 	SD_TRACE(SD_LOG_IO, un,
18370 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18371 
18372 	ASSERT(un != NULL);
18373 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18374 
18375 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18376 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18377 
18378 	/*
18379 	 * First get some memory for the uscsi_cmd struct and cdb
18380 	 * and initialize for SYNCHRONIZE_CACHE cmd.
18381 	 */
18382 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
18383 	uscmd->uscsi_cdblen = CDB_GROUP1;
18384 	uscmd->uscsi_cdb = (caddr_t)cdb;
18385 	uscmd->uscsi_bufaddr = NULL;
18386 	uscmd->uscsi_buflen = 0;
18387 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
18388 	uscmd->uscsi_rqlen = SENSE_LENGTH;
18389 	uscmd->uscsi_rqresid = SENSE_LENGTH;
18390 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
18391 	uscmd->uscsi_timeout = sd_io_time;
18392 
18393 	/*
18394 	 * Allocate an sd_uscsi_info struct and fill it with the info
18395 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
18396 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
18397 	 * since we allocate the buf here in this function, we do not
18398 	 * need to preserve the prior contents of b_private.
18399 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
18400 	 */
18401 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
18402 	uip->ui_flags = SD_PATH_DIRECT;
18403 	uip->ui_cmdp  = uscmd;
18404 
18405 	bp = getrbuf(KM_SLEEP);
18406 	bp->b_private = uip;
18407 
18408 	/*
18409 	 * Setup buffer to carry uscsi request.
18410 	 */
18411 	bp->b_flags  = B_BUSY;
18412 	bp->b_bcount = 0;
18413 	bp->b_blkno  = 0;
18414 
18415 	if (dkc != NULL) {
18416 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
18417 		uip->ui_dkc = *dkc;
18418 	}
18419 
18420 	bp->b_edev = SD_GET_DEV(un);
18421 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
18422 
18423 	(void) sd_uscsi_strategy(bp);
18424 
18425 	/*
18426 	 * If synchronous request, wait for completion
18427 	 * If async just return and let b_iodone callback
18428 	 * cleanup.
18429 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
18430 	 * but it was also incremented in sd_uscsi_strategy(), so
18431 	 * we should be ok.
18432 	 */
18433 	if (dkc == NULL) {
18434 		(void) biowait(bp);
18435 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
18436 	}
18437 
18438 	return (rval);
18439 }
18440 
18441 
18442 static int
18443 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
18444 {
18445 	struct sd_uscsi_info *uip;
18446 	struct uscsi_cmd *uscmd;
18447 	uint8_t *sense_buf;
18448 	struct sd_lun *un;
18449 	int status;
18450 
18451 	uip = (struct sd_uscsi_info *)(bp->b_private);
18452 	ASSERT(uip != NULL);
18453 
18454 	uscmd = uip->ui_cmdp;
18455 	ASSERT(uscmd != NULL);
18456 
18457 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
18458 	ASSERT(sense_buf != NULL);
18459 
18460 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
18461 	ASSERT(un != NULL);
18462 
18463 	status = geterror(bp);
18464 	switch (status) {
18465 	case 0:
18466 		break;	/* Success! */
18467 	case EIO:
18468 		switch (uscmd->uscsi_status) {
18469 		case STATUS_RESERVATION_CONFLICT:
18470 			/* Ignore reservation conflict */
18471 			status = 0;
18472 			goto done;
18473 
18474 		case STATUS_CHECK:
18475 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
18476 			    (scsi_sense_key(sense_buf) ==
18477 				KEY_ILLEGAL_REQUEST)) {
18478 				/* Ignore Illegal Request error */
18479 				mutex_enter(SD_MUTEX(un));
18480 				un->un_f_sync_cache_supported = FALSE;
18481 				mutex_exit(SD_MUTEX(un));
18482 				status = ENOTSUP;
18483 				goto done;
18484 			}
18485 			break;
18486 		default:
18487 			break;
18488 		}
18489 		/* FALLTHRU */
18490 	default:
18491 		/*
18492 		 * Don't log an error message if this device
18493 		 * has removable media.
18494 		 */
18495 		if (!un->un_f_has_removable_media) {
18496 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18497 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
18498 		}
18499 		break;
18500 	}
18501 
18502 done:
18503 	if (uip->ui_dkc.dkc_callback != NULL) {
18504 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
18505 	}
18506 
18507 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
18508 	freerbuf(bp);
18509 	kmem_free(uip, sizeof (struct sd_uscsi_info));
18510 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
18511 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
18512 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
18513 
18514 	return (status);
18515 }
18516 
18517 
18518 /*
18519  *    Function: sd_send_scsi_GET_CONFIGURATION
18520  *
18521  * Description: Issues the get configuration command to the device.
18522  *		Called from sd_check_for_writable_cd & sd_get_media_info
18523  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
18524  *   Arguments: un
18525  *		ucmdbuf
18526  *		rqbuf
18527  *		rqbuflen
18528  *		bufaddr
18529  *		buflen
18530  *		path_flag
18531  *
18532  * Return Code: 0   - Success
18533  *		errno return code from sd_send_scsi_cmd()
18534  *
18535  *     Context: Can sleep. Does not return until command is completed.
18536  *
18537  */
18538 
18539 static int
18540 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
18541 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
18542 	int path_flag)
18543 {
18544 	char	cdb[CDB_GROUP1];
18545 	int	status;
18546 
18547 	ASSERT(un != NULL);
18548 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18549 	ASSERT(bufaddr != NULL);
18550 	ASSERT(ucmdbuf != NULL);
18551 	ASSERT(rqbuf != NULL);
18552 
18553 	SD_TRACE(SD_LOG_IO, un,
18554 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
18555 
18556 	bzero(cdb, sizeof (cdb));
18557 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18558 	bzero(rqbuf, rqbuflen);
18559 	bzero(bufaddr, buflen);
18560 
18561 	/*
18562 	 * Set up cdb field for the get configuration command.
18563 	 */
18564 	cdb[0] = SCMD_GET_CONFIGURATION;
18565 	cdb[1] = 0x02;  /* Requested Type */
18566 	cdb[8] = SD_PROFILE_HEADER_LEN;
18567 	ucmdbuf->uscsi_cdb = cdb;
18568 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18569 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18570 	ucmdbuf->uscsi_buflen = buflen;
18571 	ucmdbuf->uscsi_timeout = sd_io_time;
18572 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18573 	ucmdbuf->uscsi_rqlen = rqbuflen;
18574 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18575 
18576 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18577 	    UIO_SYSSPACE, path_flag);
18578 
18579 	switch (status) {
18580 	case 0:
18581 		break;  /* Success! */
18582 	case EIO:
18583 		switch (ucmdbuf->uscsi_status) {
18584 		case STATUS_RESERVATION_CONFLICT:
18585 			status = EACCES;
18586 			break;
18587 		default:
18588 			break;
18589 		}
18590 		break;
18591 	default:
18592 		break;
18593 	}
18594 
18595 	if (status == 0) {
18596 		SD_DUMP_MEMORY(un, SD_LOG_IO,
18597 		    "sd_send_scsi_GET_CONFIGURATION: data",
18598 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
18599 	}
18600 
18601 	SD_TRACE(SD_LOG_IO, un,
18602 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
18603 
18604 	return (status);
18605 }
18606 
18607 /*
18608  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
18609  *
18610  * Description: Issues the get configuration command to the device to
18611  *              retrieve a specfic feature. Called from
18612  *		sd_check_for_writable_cd & sd_set_mmc_caps.
18613  *   Arguments: un
18614  *              ucmdbuf
18615  *              rqbuf
18616  *              rqbuflen
18617  *              bufaddr
18618  *              buflen
18619  *		feature
18620  *
18621  * Return Code: 0   - Success
18622  *              errno return code from sd_send_scsi_cmd()
18623  *
18624  *     Context: Can sleep. Does not return until command is completed.
18625  *
18626  */
18627 static int
18628 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
18629 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
18630 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
18631 {
18632 	char    cdb[CDB_GROUP1];
18633 	int	status;
18634 
18635 	ASSERT(un != NULL);
18636 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18637 	ASSERT(bufaddr != NULL);
18638 	ASSERT(ucmdbuf != NULL);
18639 	ASSERT(rqbuf != NULL);
18640 
18641 	SD_TRACE(SD_LOG_IO, un,
18642 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
18643 
18644 	bzero(cdb, sizeof (cdb));
18645 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18646 	bzero(rqbuf, rqbuflen);
18647 	bzero(bufaddr, buflen);
18648 
18649 	/*
18650 	 * Set up cdb field for the get configuration command.
18651 	 */
18652 	cdb[0] = SCMD_GET_CONFIGURATION;
18653 	cdb[1] = 0x02;  /* Requested Type */
18654 	cdb[3] = feature;
18655 	cdb[8] = buflen;
18656 	ucmdbuf->uscsi_cdb = cdb;
18657 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18658 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18659 	ucmdbuf->uscsi_buflen = buflen;
18660 	ucmdbuf->uscsi_timeout = sd_io_time;
18661 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18662 	ucmdbuf->uscsi_rqlen = rqbuflen;
18663 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18664 
18665 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18666 	    UIO_SYSSPACE, path_flag);
18667 
18668 	switch (status) {
18669 	case 0:
18670 		break;  /* Success! */
18671 	case EIO:
18672 		switch (ucmdbuf->uscsi_status) {
18673 		case STATUS_RESERVATION_CONFLICT:
18674 			status = EACCES;
18675 			break;
18676 		default:
18677 			break;
18678 		}
18679 		break;
18680 	default:
18681 		break;
18682 	}
18683 
18684 	if (status == 0) {
18685 		SD_DUMP_MEMORY(un, SD_LOG_IO,
18686 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
18687 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
18688 	}
18689 
18690 	SD_TRACE(SD_LOG_IO, un,
18691 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
18692 
18693 	return (status);
18694 }
18695 
18696 
18697 /*
18698  *    Function: sd_send_scsi_MODE_SENSE
18699  *
18700  * Description: Utility function for issuing a scsi MODE SENSE command.
18701  *		Note: This routine uses a consistent implementation for Group0,
18702  *		Group1, and Group2 commands across all platforms. ATAPI devices
18703  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
18704  *
18705  *   Arguments: un - pointer to the softstate struct for the target.
18706  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
18707  *			  CDB_GROUP[1|2] (10 byte).
18708  *		bufaddr - buffer for page data retrieved from the target.
18709  *		buflen - size of page to be retrieved.
18710  *		page_code - page code of data to be retrieved from the target.
18711  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18712  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18713  *			to use the USCSI "direct" chain and bypass the normal
18714  *			command waitq.
18715  *
18716  * Return Code: 0   - Success
18717  *		errno return code from sd_send_scsi_cmd()
18718  *
18719  *     Context: Can sleep. Does not return until command is completed.
18720  */
18721 
18722 static int
18723 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
18724 	size_t buflen,  uchar_t page_code, int path_flag)
18725 {
18726 	struct	scsi_extended_sense	sense_buf;
18727 	union scsi_cdb		cdb;
18728 	struct uscsi_cmd	ucmd_buf;
18729 	int			status;
18730 	int			headlen;
18731 
18732 	ASSERT(un != NULL);
18733 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18734 	ASSERT(bufaddr != NULL);
18735 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
18736 	    (cdbsize == CDB_GROUP2));
18737 
18738 	SD_TRACE(SD_LOG_IO, un,
18739 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
18740 
18741 	bzero(&cdb, sizeof (cdb));
18742 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18743 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18744 	bzero(bufaddr, buflen);
18745 
18746 	if (cdbsize == CDB_GROUP0) {
18747 		cdb.scc_cmd = SCMD_MODE_SENSE;
18748 		cdb.cdb_opaque[2] = page_code;
18749 		FORMG0COUNT(&cdb, buflen);
18750 		headlen = MODE_HEADER_LENGTH;
18751 	} else {
18752 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
18753 		cdb.cdb_opaque[2] = page_code;
18754 		FORMG1COUNT(&cdb, buflen);
18755 		headlen = MODE_HEADER_LENGTH_GRP2;
18756 	}
18757 
18758 	ASSERT(headlen <= buflen);
18759 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
18760 
18761 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18762 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
18763 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18764 	ucmd_buf.uscsi_buflen	= buflen;
18765 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18766 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18767 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18768 	ucmd_buf.uscsi_timeout	= 60;
18769 
18770 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18771 	    UIO_SYSSPACE, path_flag);
18772 
18773 	switch (status) {
18774 	case 0:
18775 		/*
18776 		 * sr_check_wp() uses 0x3f page code and check the header of
18777 		 * mode page to determine if target device is write-protected.
18778 		 * But some USB devices return 0 bytes for 0x3f page code. For
18779 		 * this case, make sure that mode page header is returned at
18780 		 * least.
18781 		 */
18782 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
18783 			status = EIO;
18784 		break;	/* Success! */
18785 	case EIO:
18786 		switch (ucmd_buf.uscsi_status) {
18787 		case STATUS_RESERVATION_CONFLICT:
18788 			status = EACCES;
18789 			break;
18790 		default:
18791 			break;
18792 		}
18793 		break;
18794 	default:
18795 		break;
18796 	}
18797 
18798 	if (status == 0) {
18799 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
18800 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
18801 	}
18802 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
18803 
18804 	return (status);
18805 }
18806 
18807 
18808 /*
18809  *    Function: sd_send_scsi_MODE_SELECT
18810  *
18811  * Description: Utility function for issuing a scsi MODE SELECT command.
18812  *		Note: This routine uses a consistent implementation for Group0,
18813  *		Group1, and Group2 commands across all platforms. ATAPI devices
18814  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
18815  *
18816  *   Arguments: un - pointer to the softstate struct for the target.
18817  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
18818  *			  CDB_GROUP[1|2] (10 byte).
18819  *		bufaddr - buffer for page data retrieved from the target.
18820  *		buflen - size of page to be retrieved.
18821  *		save_page - boolean to determin if SP bit should be set.
18822  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18823  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18824  *			to use the USCSI "direct" chain and bypass the normal
18825  *			command waitq.
18826  *
18827  * Return Code: 0   - Success
18828  *		errno return code from sd_send_scsi_cmd()
18829  *
18830  *     Context: Can sleep. Does not return until command is completed.
18831  */
18832 
18833 static int
18834 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
18835 	size_t buflen,  uchar_t save_page, int path_flag)
18836 {
18837 	struct	scsi_extended_sense	sense_buf;
18838 	union scsi_cdb		cdb;
18839 	struct uscsi_cmd	ucmd_buf;
18840 	int			status;
18841 
18842 	ASSERT(un != NULL);
18843 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18844 	ASSERT(bufaddr != NULL);
18845 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
18846 	    (cdbsize == CDB_GROUP2));
18847 
18848 	SD_TRACE(SD_LOG_IO, un,
18849 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
18850 
18851 	bzero(&cdb, sizeof (cdb));
18852 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18853 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18854 
18855 	/* Set the PF bit for many third party drives */
18856 	cdb.cdb_opaque[1] = 0x10;
18857 
18858 	/* Set the savepage(SP) bit if given */
18859 	if (save_page == SD_SAVE_PAGE) {
18860 		cdb.cdb_opaque[1] |= 0x01;
18861 	}
18862 
18863 	if (cdbsize == CDB_GROUP0) {
18864 		cdb.scc_cmd = SCMD_MODE_SELECT;
18865 		FORMG0COUNT(&cdb, buflen);
18866 	} else {
18867 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
18868 		FORMG1COUNT(&cdb, buflen);
18869 	}
18870 
18871 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
18872 
18873 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18874 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
18875 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18876 	ucmd_buf.uscsi_buflen	= buflen;
18877 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18878 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18879 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18880 	ucmd_buf.uscsi_timeout	= 60;
18881 
18882 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18883 	    UIO_SYSSPACE, path_flag);
18884 
18885 	switch (status) {
18886 	case 0:
18887 		break;	/* Success! */
18888 	case EIO:
18889 		switch (ucmd_buf.uscsi_status) {
18890 		case STATUS_RESERVATION_CONFLICT:
18891 			status = EACCES;
18892 			break;
18893 		default:
18894 			break;
18895 		}
18896 		break;
18897 	default:
18898 		break;
18899 	}
18900 
18901 	if (status == 0) {
18902 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
18903 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
18904 	}
18905 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
18906 
18907 	return (status);
18908 }
18909 
18910 
18911 /*
18912  *    Function: sd_send_scsi_RDWR
18913  *
18914  * Description: Issue a scsi READ or WRITE command with the given parameters.
18915  *
18916  *   Arguments: un:      Pointer to the sd_lun struct for the target.
18917  *		cmd:	 SCMD_READ or SCMD_WRITE
18918  *		bufaddr: Address of caller's buffer to receive the RDWR data
18919  *		buflen:  Length of caller's buffer receive the RDWR data.
18920  *		start_block: Block number for the start of the RDWR operation.
18921  *			 (Assumes target-native block size.)
18922  *		residp:  Pointer to variable to receive the redisual of the
18923  *			 RDWR operation (may be NULL of no residual requested).
18924  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18925  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18926  *			to use the USCSI "direct" chain and bypass the normal
18927  *			command waitq.
18928  *
18929  * Return Code: 0   - Success
18930  *		errno return code from sd_send_scsi_cmd()
18931  *
18932  *     Context: Can sleep. Does not return until command is completed.
18933  */
18934 
18935 static int
18936 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
18937 	size_t buflen, daddr_t start_block, int path_flag)
18938 {
18939 	struct	scsi_extended_sense	sense_buf;
18940 	union scsi_cdb		cdb;
18941 	struct uscsi_cmd	ucmd_buf;
18942 	uint32_t		block_count;
18943 	int			status;
18944 	int			cdbsize;
18945 	uchar_t			flag;
18946 
18947 	ASSERT(un != NULL);
18948 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18949 	ASSERT(bufaddr != NULL);
18950 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
18951 
18952 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
18953 
18954 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
18955 		return (EINVAL);
18956 	}
18957 
18958 	mutex_enter(SD_MUTEX(un));
18959 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
18960 	mutex_exit(SD_MUTEX(un));
18961 
18962 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
18963 
18964 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
18965 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
18966 	    bufaddr, buflen, start_block, block_count);
18967 
18968 	bzero(&cdb, sizeof (cdb));
18969 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18970 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18971 
18972 	/* Compute CDB size to use */
18973 	if (start_block > 0xffffffff)
18974 		cdbsize = CDB_GROUP4;
18975 	else if ((start_block & 0xFFE00000) ||
18976 	    (un->un_f_cfg_is_atapi == TRUE))
18977 		cdbsize = CDB_GROUP1;
18978 	else
18979 		cdbsize = CDB_GROUP0;
18980 
18981 	switch (cdbsize) {
18982 	case CDB_GROUP0:	/* 6-byte CDBs */
18983 		cdb.scc_cmd = cmd;
18984 		FORMG0ADDR(&cdb, start_block);
18985 		FORMG0COUNT(&cdb, block_count);
18986 		break;
18987 	case CDB_GROUP1:	/* 10-byte CDBs */
18988 		cdb.scc_cmd = cmd | SCMD_GROUP1;
18989 		FORMG1ADDR(&cdb, start_block);
18990 		FORMG1COUNT(&cdb, block_count);
18991 		break;
18992 	case CDB_GROUP4:	/* 16-byte CDBs */
18993 		cdb.scc_cmd = cmd | SCMD_GROUP4;
18994 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
18995 		FORMG4COUNT(&cdb, block_count);
18996 		break;
18997 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
18998 	default:
18999 		/* All others reserved */
19000 		return (EINVAL);
19001 	}
19002 
19003 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19004 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19005 
19006 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19007 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19008 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19009 	ucmd_buf.uscsi_buflen	= buflen;
19010 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19011 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19012 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19013 	ucmd_buf.uscsi_timeout	= 60;
19014 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19015 	    UIO_SYSSPACE, path_flag);
19016 	switch (status) {
19017 	case 0:
19018 		break;	/* Success! */
19019 	case EIO:
19020 		switch (ucmd_buf.uscsi_status) {
19021 		case STATUS_RESERVATION_CONFLICT:
19022 			status = EACCES;
19023 			break;
19024 		default:
19025 			break;
19026 		}
19027 		break;
19028 	default:
19029 		break;
19030 	}
19031 
19032 	if (status == 0) {
19033 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19034 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19035 	}
19036 
19037 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19038 
19039 	return (status);
19040 }
19041 
19042 
19043 /*
19044  *    Function: sd_send_scsi_LOG_SENSE
19045  *
19046  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19047  *
19048  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19049  *
19050  * Return Code: 0   - Success
19051  *		errno return code from sd_send_scsi_cmd()
19052  *
19053  *     Context: Can sleep. Does not return until command is completed.
19054  */
19055 
19056 static int
19057 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19058 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19059 	int path_flag)
19060 
19061 {
19062 	struct	scsi_extended_sense	sense_buf;
19063 	union scsi_cdb		cdb;
19064 	struct uscsi_cmd	ucmd_buf;
19065 	int			status;
19066 
19067 	ASSERT(un != NULL);
19068 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19069 
19070 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19071 
19072 	bzero(&cdb, sizeof (cdb));
19073 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19074 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19075 
19076 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19077 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19078 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19079 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19080 	FORMG1COUNT(&cdb, buflen);
19081 
19082 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19083 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19084 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19085 	ucmd_buf.uscsi_buflen	= buflen;
19086 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19087 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19088 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19089 	ucmd_buf.uscsi_timeout	= 60;
19090 
19091 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19092 	    UIO_SYSSPACE, path_flag);
19093 
19094 	switch (status) {
19095 	case 0:
19096 		break;
19097 	case EIO:
19098 		switch (ucmd_buf.uscsi_status) {
19099 		case STATUS_RESERVATION_CONFLICT:
19100 			status = EACCES;
19101 			break;
19102 		case STATUS_CHECK:
19103 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19104 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19105 				KEY_ILLEGAL_REQUEST) &&
19106 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19107 				/*
19108 				 * ASC 0x24: INVALID FIELD IN CDB
19109 				 */
19110 				switch (page_code) {
19111 				case START_STOP_CYCLE_PAGE:
19112 					/*
19113 					 * The start stop cycle counter is
19114 					 * implemented as page 0x31 in earlier
19115 					 * generation disks. In new generation
19116 					 * disks the start stop cycle counter is
19117 					 * implemented as page 0xE. To properly
19118 					 * handle this case if an attempt for
19119 					 * log page 0xE is made and fails we
19120 					 * will try again using page 0x31.
19121 					 *
19122 					 * Network storage BU committed to
19123 					 * maintain the page 0x31 for this
19124 					 * purpose and will not have any other
19125 					 * page implemented with page code 0x31
19126 					 * until all disks transition to the
19127 					 * standard page.
19128 					 */
19129 					mutex_enter(SD_MUTEX(un));
19130 					un->un_start_stop_cycle_page =
19131 					    START_STOP_CYCLE_VU_PAGE;
19132 					cdb.cdb_opaque[2] =
19133 					    (char)(page_control << 6) |
19134 					    un->un_start_stop_cycle_page;
19135 					mutex_exit(SD_MUTEX(un));
19136 					status = sd_send_scsi_cmd(
19137 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19138 					    UIO_SYSSPACE, path_flag);
19139 
19140 					break;
19141 				case TEMPERATURE_PAGE:
19142 					status = ENOTTY;
19143 					break;
19144 				default:
19145 					break;
19146 				}
19147 			}
19148 			break;
19149 		default:
19150 			break;
19151 		}
19152 		break;
19153 	default:
19154 		break;
19155 	}
19156 
19157 	if (status == 0) {
19158 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19159 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19160 	}
19161 
19162 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19163 
19164 	return (status);
19165 }
19166 
19167 
19168 /*
19169  *    Function: sdioctl
19170  *
19171  * Description: Driver's ioctl(9e) entry point function.
19172  *
19173  *   Arguments: dev     - device number
19174  *		cmd     - ioctl operation to be performed
19175  *		arg     - user argument, contains data to be set or reference
19176  *			  parameter for get
19177  *		flag    - bit flag, indicating open settings, 32/64 bit type
19178  *		cred_p  - user credential pointer
19179  *		rval_p  - calling process return value (OPT)
19180  *
19181  * Return Code: EINVAL
19182  *		ENOTTY
19183  *		ENXIO
19184  *		EIO
19185  *		EFAULT
19186  *		ENOTSUP
19187  *		EPERM
19188  *
19189  *     Context: Called from the device switch at normal priority.
19190  */
19191 
19192 static int
19193 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19194 {
19195 	struct sd_lun	*un = NULL;
19196 	int		err = 0;
19197 	int		i = 0;
19198 	cred_t		*cr;
19199 	int		tmprval = EINVAL;
19200 	int 		is_valid;
19201 
19202 	/*
19203 	 * All device accesses go thru sdstrategy where we check on suspend
19204 	 * status
19205 	 */
19206 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19207 		return (ENXIO);
19208 	}
19209 
19210 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19211 
19212 
19213 	is_valid = SD_IS_VALID_LABEL(un);
19214 
19215 	/*
19216 	 * Moved this wait from sd_uscsi_strategy to here for
19217 	 * reasons of deadlock prevention. Internal driver commands,
19218 	 * specifically those to change a devices power level, result
19219 	 * in a call to sd_uscsi_strategy.
19220 	 */
19221 	mutex_enter(SD_MUTEX(un));
19222 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19223 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19224 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19225 	}
19226 	/*
19227 	 * Twiddling the counter here protects commands from now
19228 	 * through to the top of sd_uscsi_strategy. Without the
19229 	 * counter inc. a power down, for example, could get in
19230 	 * after the above check for state is made and before
19231 	 * execution gets to the top of sd_uscsi_strategy.
19232 	 * That would cause problems.
19233 	 */
19234 	un->un_ncmds_in_driver++;
19235 
19236 	if (!is_valid &&
19237 	    (flag & (FNDELAY | FNONBLOCK))) {
19238 		switch (cmd) {
19239 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19240 		case DKIOCGVTOC:
19241 		case DKIOCGAPART:
19242 		case DKIOCPARTINFO:
19243 		case DKIOCSGEOM:
19244 		case DKIOCSAPART:
19245 		case DKIOCGETEFI:
19246 		case DKIOCPARTITION:
19247 		case DKIOCSVTOC:
19248 		case DKIOCSETEFI:
19249 		case DKIOCGMBOOT:
19250 		case DKIOCSMBOOT:
19251 		case DKIOCG_PHYGEOM:
19252 		case DKIOCG_VIRTGEOM:
19253 			/* let cmlb handle it */
19254 			goto skip_ready_valid;
19255 
19256 		case CDROMPAUSE:
19257 		case CDROMRESUME:
19258 		case CDROMPLAYMSF:
19259 		case CDROMPLAYTRKIND:
19260 		case CDROMREADTOCHDR:
19261 		case CDROMREADTOCENTRY:
19262 		case CDROMSTOP:
19263 		case CDROMSTART:
19264 		case CDROMVOLCTRL:
19265 		case CDROMSUBCHNL:
19266 		case CDROMREADMODE2:
19267 		case CDROMREADMODE1:
19268 		case CDROMREADOFFSET:
19269 		case CDROMSBLKMODE:
19270 		case CDROMGBLKMODE:
19271 		case CDROMGDRVSPEED:
19272 		case CDROMSDRVSPEED:
19273 		case CDROMCDDA:
19274 		case CDROMCDXA:
19275 		case CDROMSUBCODE:
19276 			if (!ISCD(un)) {
19277 				un->un_ncmds_in_driver--;
19278 				ASSERT(un->un_ncmds_in_driver >= 0);
19279 				mutex_exit(SD_MUTEX(un));
19280 				return (ENOTTY);
19281 			}
19282 			break;
19283 		case FDEJECT:
19284 		case DKIOCEJECT:
19285 		case CDROMEJECT:
19286 			if (!un->un_f_eject_media_supported) {
19287 				un->un_ncmds_in_driver--;
19288 				ASSERT(un->un_ncmds_in_driver >= 0);
19289 				mutex_exit(SD_MUTEX(un));
19290 				return (ENOTTY);
19291 			}
19292 			break;
19293 		case DKIOCFLUSHWRITECACHE:
19294 			mutex_exit(SD_MUTEX(un));
19295 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19296 			if (err != 0) {
19297 				mutex_enter(SD_MUTEX(un));
19298 				un->un_ncmds_in_driver--;
19299 				ASSERT(un->un_ncmds_in_driver >= 0);
19300 				mutex_exit(SD_MUTEX(un));
19301 				return (EIO);
19302 			}
19303 			mutex_enter(SD_MUTEX(un));
19304 			/* FALLTHROUGH */
19305 		case DKIOCREMOVABLE:
19306 		case DKIOCHOTPLUGGABLE:
19307 		case DKIOCINFO:
19308 		case DKIOCGMEDIAINFO:
19309 		case MHIOCENFAILFAST:
19310 		case MHIOCSTATUS:
19311 		case MHIOCTKOWN:
19312 		case MHIOCRELEASE:
19313 		case MHIOCGRP_INKEYS:
19314 		case MHIOCGRP_INRESV:
19315 		case MHIOCGRP_REGISTER:
19316 		case MHIOCGRP_RESERVE:
19317 		case MHIOCGRP_PREEMPTANDABORT:
19318 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19319 		case CDROMCLOSETRAY:
19320 		case USCSICMD:
19321 			goto skip_ready_valid;
19322 		default:
19323 			break;
19324 		}
19325 
19326 		mutex_exit(SD_MUTEX(un));
19327 		err = sd_ready_and_valid(un);
19328 		mutex_enter(SD_MUTEX(un));
19329 
19330 		if (err != SD_READY_VALID) {
19331 			switch (cmd) {
19332 			case DKIOCSTATE:
19333 			case CDROMGDRVSPEED:
19334 			case CDROMSDRVSPEED:
19335 			case FDEJECT:	/* for eject command */
19336 			case DKIOCEJECT:
19337 			case CDROMEJECT:
19338 			case DKIOCREMOVABLE:
19339 			case DKIOCHOTPLUGGABLE:
19340 				break;
19341 			default:
19342 				if (un->un_f_has_removable_media) {
19343 					err = ENXIO;
19344 				} else {
19345 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19346 					if (err == SD_RESERVED_BY_OTHERS) {
19347 						err = EACCES;
19348 					} else {
19349 						err = EIO;
19350 					}
19351 				}
19352 				un->un_ncmds_in_driver--;
19353 				ASSERT(un->un_ncmds_in_driver >= 0);
19354 				mutex_exit(SD_MUTEX(un));
19355 				return (err);
19356 			}
19357 		}
19358 	}
19359 
19360 skip_ready_valid:
19361 	mutex_exit(SD_MUTEX(un));
19362 
19363 	switch (cmd) {
19364 	case DKIOCINFO:
19365 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
19366 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
19367 		break;
19368 
19369 	case DKIOCGMEDIAINFO:
19370 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
19371 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
19372 		break;
19373 
19374 	case DKIOCGGEOM:
19375 	case DKIOCGVTOC:
19376 	case DKIOCGAPART:
19377 	case DKIOCPARTINFO:
19378 	case DKIOCSGEOM:
19379 	case DKIOCSAPART:
19380 	case DKIOCGETEFI:
19381 	case DKIOCPARTITION:
19382 	case DKIOCSVTOC:
19383 	case DKIOCSETEFI:
19384 	case DKIOCGMBOOT:
19385 	case DKIOCSMBOOT:
19386 	case DKIOCG_PHYGEOM:
19387 	case DKIOCG_VIRTGEOM:
19388 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
19389 
19390 		/* TUR should spin up */
19391 
19392 		if (un->un_f_has_removable_media)
19393 			err = sd_send_scsi_TEST_UNIT_READY(un,
19394 			    SD_CHECK_FOR_MEDIA);
19395 		else
19396 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19397 
19398 		if (err != 0)
19399 			break;
19400 
19401 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
19402 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
19403 
19404 		if ((err == 0) &&
19405 		    ((cmd == DKIOCSETEFI) ||
19406 		    (un->un_f_pkstats_enabled) &&
19407 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
19408 
19409 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
19410 			    (void *)SD_PATH_DIRECT);
19411 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
19412 				sd_set_pstats(un);
19413 				SD_TRACE(SD_LOG_IO_PARTITION, un,
19414 				    "sd_ioctl: un:0x%p pstats created and "
19415 				    "set\n", un);
19416 			}
19417 		}
19418 
19419 		if ((cmd == DKIOCSVTOC) ||
19420 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
19421 
19422 			mutex_enter(SD_MUTEX(un));
19423 			if (un->un_f_devid_supported &&
19424 			    (un->un_f_opt_fab_devid == TRUE)) {
19425 				if (un->un_devid == NULL) {
19426 					sd_register_devid(un, SD_DEVINFO(un),
19427 					    SD_TARGET_IS_UNRESERVED);
19428 				} else {
19429 					/*
19430 					 * The device id for this disk
19431 					 * has been fabricated. The
19432 					 * device id must be preserved
19433 					 * by writing it back out to
19434 					 * disk.
19435 					 */
19436 					if (sd_write_deviceid(un) != 0) {
19437 						ddi_devid_free(un->un_devid);
19438 						un->un_devid = NULL;
19439 					}
19440 				}
19441 			}
19442 			mutex_exit(SD_MUTEX(un));
19443 		}
19444 
19445 		break;
19446 
19447 	case DKIOCLOCK:
19448 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
19449 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19450 		    SD_PATH_STANDARD);
19451 		break;
19452 
19453 	case DKIOCUNLOCK:
19454 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
19455 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
19456 		    SD_PATH_STANDARD);
19457 		break;
19458 
19459 	case DKIOCSTATE: {
19460 		enum dkio_state		state;
19461 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
19462 
19463 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
19464 			err = EFAULT;
19465 		} else {
19466 			err = sd_check_media(dev, state);
19467 			if (err == 0) {
19468 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
19469 				    sizeof (int), flag) != 0)
19470 					err = EFAULT;
19471 			}
19472 		}
19473 		break;
19474 	}
19475 
19476 	case DKIOCREMOVABLE:
19477 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
19478 		i = un->un_f_has_removable_media ? 1 : 0;
19479 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19480 			err = EFAULT;
19481 		} else {
19482 			err = 0;
19483 		}
19484 		break;
19485 
19486 	case DKIOCHOTPLUGGABLE:
19487 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
19488 		i = un->un_f_is_hotpluggable ? 1 : 0;
19489 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19490 			err = EFAULT;
19491 		} else {
19492 			err = 0;
19493 		}
19494 		break;
19495 
19496 	case DKIOCGTEMPERATURE:
19497 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
19498 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
19499 		break;
19500 
19501 	case MHIOCENFAILFAST:
19502 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
19503 		if ((err = drv_priv(cred_p)) == 0) {
19504 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
19505 		}
19506 		break;
19507 
19508 	case MHIOCTKOWN:
19509 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
19510 		if ((err = drv_priv(cred_p)) == 0) {
19511 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
19512 		}
19513 		break;
19514 
19515 	case MHIOCRELEASE:
19516 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
19517 		if ((err = drv_priv(cred_p)) == 0) {
19518 			err = sd_mhdioc_release(dev);
19519 		}
19520 		break;
19521 
19522 	case MHIOCSTATUS:
19523 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
19524 		if ((err = drv_priv(cred_p)) == 0) {
19525 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
19526 			case 0:
19527 				err = 0;
19528 				break;
19529 			case EACCES:
19530 				*rval_p = 1;
19531 				err = 0;
19532 				break;
19533 			default:
19534 				err = EIO;
19535 				break;
19536 			}
19537 		}
19538 		break;
19539 
19540 	case MHIOCQRESERVE:
19541 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
19542 		if ((err = drv_priv(cred_p)) == 0) {
19543 			err = sd_reserve_release(dev, SD_RESERVE);
19544 		}
19545 		break;
19546 
19547 	case MHIOCREREGISTERDEVID:
19548 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
19549 		if (drv_priv(cred_p) == EPERM) {
19550 			err = EPERM;
19551 		} else if (!un->un_f_devid_supported) {
19552 			err = ENOTTY;
19553 		} else {
19554 			err = sd_mhdioc_register_devid(dev);
19555 		}
19556 		break;
19557 
19558 	case MHIOCGRP_INKEYS:
19559 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
19560 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19561 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19562 				err = ENOTSUP;
19563 			} else {
19564 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
19565 				    flag);
19566 			}
19567 		}
19568 		break;
19569 
19570 	case MHIOCGRP_INRESV:
19571 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
19572 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19573 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19574 				err = ENOTSUP;
19575 			} else {
19576 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
19577 			}
19578 		}
19579 		break;
19580 
19581 	case MHIOCGRP_REGISTER:
19582 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
19583 		if ((err = drv_priv(cred_p)) != EPERM) {
19584 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19585 				err = ENOTSUP;
19586 			} else if (arg != NULL) {
19587 				mhioc_register_t reg;
19588 				if (ddi_copyin((void *)arg, &reg,
19589 				    sizeof (mhioc_register_t), flag) != 0) {
19590 					err = EFAULT;
19591 				} else {
19592 					err =
19593 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19594 					    un, SD_SCSI3_REGISTER,
19595 					    (uchar_t *)&reg);
19596 				}
19597 			}
19598 		}
19599 		break;
19600 
19601 	case MHIOCGRP_RESERVE:
19602 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
19603 		if ((err = drv_priv(cred_p)) != EPERM) {
19604 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19605 				err = ENOTSUP;
19606 			} else if (arg != NULL) {
19607 				mhioc_resv_desc_t resv_desc;
19608 				if (ddi_copyin((void *)arg, &resv_desc,
19609 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
19610 					err = EFAULT;
19611 				} else {
19612 					err =
19613 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19614 					    un, SD_SCSI3_RESERVE,
19615 					    (uchar_t *)&resv_desc);
19616 				}
19617 			}
19618 		}
19619 		break;
19620 
19621 	case MHIOCGRP_PREEMPTANDABORT:
19622 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
19623 		if ((err = drv_priv(cred_p)) != EPERM) {
19624 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19625 				err = ENOTSUP;
19626 			} else if (arg != NULL) {
19627 				mhioc_preemptandabort_t preempt_abort;
19628 				if (ddi_copyin((void *)arg, &preempt_abort,
19629 				    sizeof (mhioc_preemptandabort_t),
19630 				    flag) != 0) {
19631 					err = EFAULT;
19632 				} else {
19633 					err =
19634 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19635 					    un, SD_SCSI3_PREEMPTANDABORT,
19636 					    (uchar_t *)&preempt_abort);
19637 				}
19638 			}
19639 		}
19640 		break;
19641 
19642 	case MHIOCGRP_REGISTERANDIGNOREKEY:
19643 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
19644 		if ((err = drv_priv(cred_p)) != EPERM) {
19645 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19646 				err = ENOTSUP;
19647 			} else if (arg != NULL) {
19648 				mhioc_registerandignorekey_t r_and_i;
19649 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
19650 				    sizeof (mhioc_registerandignorekey_t),
19651 				    flag) != 0) {
19652 					err = EFAULT;
19653 				} else {
19654 					err =
19655 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19656 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
19657 					    (uchar_t *)&r_and_i);
19658 				}
19659 			}
19660 		}
19661 		break;
19662 
19663 	case USCSICMD:
19664 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
19665 		cr = ddi_get_cred();
19666 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
19667 			err = EPERM;
19668 		} else {
19669 			enum uio_seg	uioseg;
19670 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
19671 			    UIO_USERSPACE;
19672 			if (un->un_f_format_in_progress == TRUE) {
19673 				err = EAGAIN;
19674 				break;
19675 			}
19676 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
19677 			    flag, uioseg, SD_PATH_STANDARD);
19678 		}
19679 		break;
19680 
19681 	case CDROMPAUSE:
19682 	case CDROMRESUME:
19683 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
19684 		if (!ISCD(un)) {
19685 			err = ENOTTY;
19686 		} else {
19687 			err = sr_pause_resume(dev, cmd);
19688 		}
19689 		break;
19690 
19691 	case CDROMPLAYMSF:
19692 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
19693 		if (!ISCD(un)) {
19694 			err = ENOTTY;
19695 		} else {
19696 			err = sr_play_msf(dev, (caddr_t)arg, flag);
19697 		}
19698 		break;
19699 
19700 	case CDROMPLAYTRKIND:
19701 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
19702 #if defined(__i386) || defined(__amd64)
19703 		/*
19704 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
19705 		 */
19706 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
19707 #else
19708 		if (!ISCD(un)) {
19709 #endif
19710 			err = ENOTTY;
19711 		} else {
19712 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
19713 		}
19714 		break;
19715 
19716 	case CDROMREADTOCHDR:
19717 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
19718 		if (!ISCD(un)) {
19719 			err = ENOTTY;
19720 		} else {
19721 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
19722 		}
19723 		break;
19724 
19725 	case CDROMREADTOCENTRY:
19726 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
19727 		if (!ISCD(un)) {
19728 			err = ENOTTY;
19729 		} else {
19730 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
19731 		}
19732 		break;
19733 
19734 	case CDROMSTOP:
19735 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
19736 		if (!ISCD(un)) {
19737 			err = ENOTTY;
19738 		} else {
19739 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
19740 			    SD_PATH_STANDARD);
19741 		}
19742 		break;
19743 
19744 	case CDROMSTART:
19745 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
19746 		if (!ISCD(un)) {
19747 			err = ENOTTY;
19748 		} else {
19749 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19750 			    SD_PATH_STANDARD);
19751 		}
19752 		break;
19753 
19754 	case CDROMCLOSETRAY:
19755 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
19756 		if (!ISCD(un)) {
19757 			err = ENOTTY;
19758 		} else {
19759 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
19760 			    SD_PATH_STANDARD);
19761 		}
19762 		break;
19763 
19764 	case FDEJECT:	/* for eject command */
19765 	case DKIOCEJECT:
19766 	case CDROMEJECT:
19767 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
19768 		if (!un->un_f_eject_media_supported) {
19769 			err = ENOTTY;
19770 		} else {
19771 			err = sr_eject(dev);
19772 		}
19773 		break;
19774 
19775 	case CDROMVOLCTRL:
19776 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
19777 		if (!ISCD(un)) {
19778 			err = ENOTTY;
19779 		} else {
19780 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
19781 		}
19782 		break;
19783 
19784 	case CDROMSUBCHNL:
19785 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
19786 		if (!ISCD(un)) {
19787 			err = ENOTTY;
19788 		} else {
19789 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
19790 		}
19791 		break;
19792 
19793 	case CDROMREADMODE2:
19794 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
19795 		if (!ISCD(un)) {
19796 			err = ENOTTY;
19797 		} else if (un->un_f_cfg_is_atapi == TRUE) {
19798 			/*
19799 			 * If the drive supports READ CD, use that instead of
19800 			 * switching the LBA size via a MODE SELECT
19801 			 * Block Descriptor
19802 			 */
19803 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
19804 		} else {
19805 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
19806 		}
19807 		break;
19808 
19809 	case CDROMREADMODE1:
19810 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
19811 		if (!ISCD(un)) {
19812 			err = ENOTTY;
19813 		} else {
19814 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
19815 		}
19816 		break;
19817 
19818 	case CDROMREADOFFSET:
19819 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
19820 		if (!ISCD(un)) {
19821 			err = ENOTTY;
19822 		} else {
19823 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
19824 			    flag);
19825 		}
19826 		break;
19827 
19828 	case CDROMSBLKMODE:
19829 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
19830 		/*
19831 		 * There is no means of changing block size in case of atapi
19832 		 * drives, thus return ENOTTY if drive type is atapi
19833 		 */
19834 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
19835 			err = ENOTTY;
19836 		} else if (un->un_f_mmc_cap == TRUE) {
19837 
19838 			/*
19839 			 * MMC Devices do not support changing the
19840 			 * logical block size
19841 			 *
19842 			 * Note: EINVAL is being returned instead of ENOTTY to
19843 			 * maintain consistancy with the original mmc
19844 			 * driver update.
19845 			 */
19846 			err = EINVAL;
19847 		} else {
19848 			mutex_enter(SD_MUTEX(un));
19849 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
19850 			    (un->un_ncmds_in_transport > 0)) {
19851 				mutex_exit(SD_MUTEX(un));
19852 				err = EINVAL;
19853 			} else {
19854 				mutex_exit(SD_MUTEX(un));
19855 				err = sr_change_blkmode(dev, cmd, arg, flag);
19856 			}
19857 		}
19858 		break;
19859 
19860 	case CDROMGBLKMODE:
19861 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
19862 		if (!ISCD(un)) {
19863 			err = ENOTTY;
19864 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
19865 		    (un->un_f_blockcount_is_valid != FALSE)) {
19866 			/*
19867 			 * Drive is an ATAPI drive so return target block
19868 			 * size for ATAPI drives since we cannot change the
19869 			 * blocksize on ATAPI drives. Used primarily to detect
19870 			 * if an ATAPI cdrom is present.
19871 			 */
19872 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
19873 			    sizeof (int), flag) != 0) {
19874 				err = EFAULT;
19875 			} else {
19876 				err = 0;
19877 			}
19878 
19879 		} else {
19880 			/*
19881 			 * Drive supports changing block sizes via a Mode
19882 			 * Select.
19883 			 */
19884 			err = sr_change_blkmode(dev, cmd, arg, flag);
19885 		}
19886 		break;
19887 
19888 	case CDROMGDRVSPEED:
19889 	case CDROMSDRVSPEED:
19890 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
19891 		if (!ISCD(un)) {
19892 			err = ENOTTY;
19893 		} else if (un->un_f_mmc_cap == TRUE) {
19894 			/*
19895 			 * Note: In the future the driver implementation
19896 			 * for getting and
19897 			 * setting cd speed should entail:
19898 			 * 1) If non-mmc try the Toshiba mode page
19899 			 *    (sr_change_speed)
19900 			 * 2) If mmc but no support for Real Time Streaming try
19901 			 *    the SET CD SPEED (0xBB) command
19902 			 *   (sr_atapi_change_speed)
19903 			 * 3) If mmc and support for Real Time Streaming
19904 			 *    try the GET PERFORMANCE and SET STREAMING
19905 			 *    commands (not yet implemented, 4380808)
19906 			 */
19907 			/*
19908 			 * As per recent MMC spec, CD-ROM speed is variable
19909 			 * and changes with LBA. Since there is no such
19910 			 * things as drive speed now, fail this ioctl.
19911 			 *
19912 			 * Note: EINVAL is returned for consistancy of original
19913 			 * implementation which included support for getting
19914 			 * the drive speed of mmc devices but not setting
19915 			 * the drive speed. Thus EINVAL would be returned
19916 			 * if a set request was made for an mmc device.
19917 			 * We no longer support get or set speed for
19918 			 * mmc but need to remain consistant with regard
19919 			 * to the error code returned.
19920 			 */
19921 			err = EINVAL;
19922 		} else if (un->un_f_cfg_is_atapi == TRUE) {
19923 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
19924 		} else {
19925 			err = sr_change_speed(dev, cmd, arg, flag);
19926 		}
19927 		break;
19928 
19929 	case CDROMCDDA:
19930 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
19931 		if (!ISCD(un)) {
19932 			err = ENOTTY;
19933 		} else {
19934 			err = sr_read_cdda(dev, (void *)arg, flag);
19935 		}
19936 		break;
19937 
19938 	case CDROMCDXA:
19939 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
19940 		if (!ISCD(un)) {
19941 			err = ENOTTY;
19942 		} else {
19943 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
19944 		}
19945 		break;
19946 
19947 	case CDROMSUBCODE:
19948 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
19949 		if (!ISCD(un)) {
19950 			err = ENOTTY;
19951 		} else {
19952 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
19953 		}
19954 		break;
19955 
19956 
19957 #ifdef SDDEBUG
19958 /* RESET/ABORTS testing ioctls */
19959 	case DKIOCRESET: {
19960 		int	reset_level;
19961 
19962 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
19963 			err = EFAULT;
19964 		} else {
19965 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
19966 			    "reset_level = 0x%lx\n", reset_level);
19967 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
19968 				err = 0;
19969 			} else {
19970 				err = EIO;
19971 			}
19972 		}
19973 		break;
19974 	}
19975 
19976 	case DKIOCABORT:
19977 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
19978 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
19979 			err = 0;
19980 		} else {
19981 			err = EIO;
19982 		}
19983 		break;
19984 #endif
19985 
19986 #ifdef SD_FAULT_INJECTION
19987 /* SDIOC FaultInjection testing ioctls */
19988 	case SDIOCSTART:
19989 	case SDIOCSTOP:
19990 	case SDIOCINSERTPKT:
19991 	case SDIOCINSERTXB:
19992 	case SDIOCINSERTUN:
19993 	case SDIOCINSERTARQ:
19994 	case SDIOCPUSH:
19995 	case SDIOCRETRIEVE:
19996 	case SDIOCRUN:
19997 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
19998 		    "SDIOC detected cmd:0x%X:\n", cmd);
19999 		/* call error generator */
20000 		sd_faultinjection_ioctl(cmd, arg, un);
20001 		err = 0;
20002 		break;
20003 
20004 #endif /* SD_FAULT_INJECTION */
20005 
20006 	case DKIOCFLUSHWRITECACHE:
20007 		{
20008 			struct dk_callback *dkc = (struct dk_callback *)arg;
20009 
20010 			mutex_enter(SD_MUTEX(un));
20011 			if (!un->un_f_sync_cache_supported ||
20012 			    !un->un_f_write_cache_enabled) {
20013 				err = un->un_f_sync_cache_supported ?
20014 					0 : ENOTSUP;
20015 				mutex_exit(SD_MUTEX(un));
20016 				if ((flag & FKIOCTL) && dkc != NULL &&
20017 				    dkc->dkc_callback != NULL) {
20018 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20019 					    err);
20020 					/*
20021 					 * Did callback and reported error.
20022 					 * Since we did a callback, ioctl
20023 					 * should return 0.
20024 					 */
20025 					err = 0;
20026 				}
20027 				break;
20028 			}
20029 			mutex_exit(SD_MUTEX(un));
20030 
20031 			if ((flag & FKIOCTL) && dkc != NULL &&
20032 			    dkc->dkc_callback != NULL) {
20033 				/* async SYNC CACHE request */
20034 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20035 			} else {
20036 				/* synchronous SYNC CACHE request */
20037 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20038 			}
20039 		}
20040 		break;
20041 
20042 	case DKIOCGETWCE: {
20043 
20044 		int wce;
20045 
20046 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20047 			break;
20048 		}
20049 
20050 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20051 			err = EFAULT;
20052 		}
20053 		break;
20054 	}
20055 
20056 	case DKIOCSETWCE: {
20057 
20058 		int wce, sync_supported;
20059 
20060 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20061 			err = EFAULT;
20062 			break;
20063 		}
20064 
20065 		/*
20066 		 * Synchronize multiple threads trying to enable
20067 		 * or disable the cache via the un_f_wcc_cv
20068 		 * condition variable.
20069 		 */
20070 		mutex_enter(SD_MUTEX(un));
20071 
20072 		/*
20073 		 * Don't allow the cache to be enabled if the
20074 		 * config file has it disabled.
20075 		 */
20076 		if (un->un_f_opt_disable_cache && wce) {
20077 			mutex_exit(SD_MUTEX(un));
20078 			err = EINVAL;
20079 			break;
20080 		}
20081 
20082 		/*
20083 		 * Wait for write cache change in progress
20084 		 * bit to be clear before proceeding.
20085 		 */
20086 		while (un->un_f_wcc_inprog)
20087 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20088 
20089 		un->un_f_wcc_inprog = 1;
20090 
20091 		if (un->un_f_write_cache_enabled && wce == 0) {
20092 			/*
20093 			 * Disable the write cache.  Don't clear
20094 			 * un_f_write_cache_enabled until after
20095 			 * the mode select and flush are complete.
20096 			 */
20097 			sync_supported = un->un_f_sync_cache_supported;
20098 			mutex_exit(SD_MUTEX(un));
20099 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20100 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
20101 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20102 			}
20103 
20104 			mutex_enter(SD_MUTEX(un));
20105 			if (err == 0) {
20106 				un->un_f_write_cache_enabled = 0;
20107 			}
20108 
20109 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20110 			/*
20111 			 * Set un_f_write_cache_enabled first, so there is
20112 			 * no window where the cache is enabled, but the
20113 			 * bit says it isn't.
20114 			 */
20115 			un->un_f_write_cache_enabled = 1;
20116 			mutex_exit(SD_MUTEX(un));
20117 
20118 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20119 				SD_CACHE_ENABLE);
20120 
20121 			mutex_enter(SD_MUTEX(un));
20122 
20123 			if (err) {
20124 				un->un_f_write_cache_enabled = 0;
20125 			}
20126 		}
20127 
20128 		un->un_f_wcc_inprog = 0;
20129 		cv_broadcast(&un->un_wcc_cv);
20130 		mutex_exit(SD_MUTEX(un));
20131 		break;
20132 	}
20133 
20134 	default:
20135 		err = ENOTTY;
20136 		break;
20137 	}
20138 	mutex_enter(SD_MUTEX(un));
20139 	un->un_ncmds_in_driver--;
20140 	ASSERT(un->un_ncmds_in_driver >= 0);
20141 	mutex_exit(SD_MUTEX(un));
20142 
20143 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20144 	return (err);
20145 }
20146 
20147 
20148 /*
20149  *    Function: sd_dkio_ctrl_info
20150  *
20151  * Description: This routine is the driver entry point for handling controller
20152  *		information ioctl requests (DKIOCINFO).
20153  *
20154  *   Arguments: dev  - the device number
20155  *		arg  - pointer to user provided dk_cinfo structure
20156  *		       specifying the controller type and attributes.
20157  *		flag - this argument is a pass through to ddi_copyxxx()
20158  *		       directly from the mode argument of ioctl().
20159  *
20160  * Return Code: 0
20161  *		EFAULT
20162  *		ENXIO
20163  */
20164 
20165 static int
20166 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20167 {
20168 	struct sd_lun	*un = NULL;
20169 	struct dk_cinfo	*info;
20170 	dev_info_t	*pdip;
20171 	int		lun, tgt;
20172 
20173 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20174 		return (ENXIO);
20175 	}
20176 
20177 	info = (struct dk_cinfo *)
20178 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20179 
20180 	switch (un->un_ctype) {
20181 	case CTYPE_CDROM:
20182 		info->dki_ctype = DKC_CDROM;
20183 		break;
20184 	default:
20185 		info->dki_ctype = DKC_SCSI_CCS;
20186 		break;
20187 	}
20188 	pdip = ddi_get_parent(SD_DEVINFO(un));
20189 	info->dki_cnum = ddi_get_instance(pdip);
20190 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20191 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20192 	} else {
20193 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20194 		    DK_DEVLEN - 1);
20195 	}
20196 
20197 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20198 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20199 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20200 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20201 
20202 	/* Unit Information */
20203 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20204 	info->dki_slave = ((tgt << 3) | lun);
20205 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20206 	    DK_DEVLEN - 1);
20207 	info->dki_flags = DKI_FMTVOL;
20208 	info->dki_partition = SDPART(dev);
20209 
20210 	/* Max Transfer size of this device in blocks */
20211 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20212 	info->dki_addr = 0;
20213 	info->dki_space = 0;
20214 	info->dki_prio = 0;
20215 	info->dki_vec = 0;
20216 
20217 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20218 		kmem_free(info, sizeof (struct dk_cinfo));
20219 		return (EFAULT);
20220 	} else {
20221 		kmem_free(info, sizeof (struct dk_cinfo));
20222 		return (0);
20223 	}
20224 }
20225 
20226 
20227 /*
20228  *    Function: sd_get_media_info
20229  *
20230  * Description: This routine is the driver entry point for handling ioctl
20231  *		requests for the media type or command set profile used by the
20232  *		drive to operate on the media (DKIOCGMEDIAINFO).
20233  *
20234  *   Arguments: dev	- the device number
20235  *		arg	- pointer to user provided dk_minfo structure
20236  *			  specifying the media type, logical block size and
20237  *			  drive capacity.
20238  *		flag	- this argument is a pass through to ddi_copyxxx()
20239  *			  directly from the mode argument of ioctl().
20240  *
20241  * Return Code: 0
20242  *		EACCESS
20243  *		EFAULT
20244  *		ENXIO
20245  *		EIO
20246  */
20247 
20248 static int
20249 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20250 {
20251 	struct sd_lun		*un = NULL;
20252 	struct uscsi_cmd	com;
20253 	struct scsi_inquiry	*sinq;
20254 	struct dk_minfo		media_info;
20255 	u_longlong_t		media_capacity;
20256 	uint64_t		capacity;
20257 	uint_t			lbasize;
20258 	uchar_t			*out_data;
20259 	uchar_t			*rqbuf;
20260 	int			rval = 0;
20261 	int			rtn;
20262 
20263 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20264 	    (un->un_state == SD_STATE_OFFLINE)) {
20265 		return (ENXIO);
20266 	}
20267 
20268 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20269 
20270 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20271 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20272 
20273 	/* Issue a TUR to determine if the drive is ready with media present */
20274 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20275 	if (rval == ENXIO) {
20276 		goto done;
20277 	}
20278 
20279 	/* Now get configuration data */
20280 	if (ISCD(un)) {
20281 		media_info.dki_media_type = DK_CDROM;
20282 
20283 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20284 		if (un->un_f_mmc_cap == TRUE) {
20285 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20286 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20287 				SD_PATH_STANDARD);
20288 
20289 			if (rtn) {
20290 				/*
20291 				 * Failed for other than an illegal request
20292 				 * or command not supported
20293 				 */
20294 				if ((com.uscsi_status == STATUS_CHECK) &&
20295 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20296 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20297 					    (rqbuf[12] != 0x20)) {
20298 						rval = EIO;
20299 						goto done;
20300 					}
20301 				}
20302 			} else {
20303 				/*
20304 				 * The GET CONFIGURATION command succeeded
20305 				 * so set the media type according to the
20306 				 * returned data
20307 				 */
20308 				media_info.dki_media_type = out_data[6];
20309 				media_info.dki_media_type <<= 8;
20310 				media_info.dki_media_type |= out_data[7];
20311 			}
20312 		}
20313 	} else {
20314 		/*
20315 		 * The profile list is not available, so we attempt to identify
20316 		 * the media type based on the inquiry data
20317 		 */
20318 		sinq = un->un_sd->sd_inq;
20319 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20320 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20321 			/* This is a direct access device  or optical disk */
20322 			media_info.dki_media_type = DK_FIXED_DISK;
20323 
20324 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20325 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20326 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20327 					media_info.dki_media_type = DK_ZIP;
20328 				} else if (
20329 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20330 					media_info.dki_media_type = DK_JAZ;
20331 				}
20332 			}
20333 		} else {
20334 			/*
20335 			 * Not a CD, direct access or optical disk so return
20336 			 * unknown media
20337 			 */
20338 			media_info.dki_media_type = DK_UNKNOWN;
20339 		}
20340 	}
20341 
20342 	/* Now read the capacity so we can provide the lbasize and capacity */
20343 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
20344 	    SD_PATH_DIRECT)) {
20345 	case 0:
20346 		break;
20347 	case EACCES:
20348 		rval = EACCES;
20349 		goto done;
20350 	default:
20351 		rval = EIO;
20352 		goto done;
20353 	}
20354 
20355 	media_info.dki_lbsize = lbasize;
20356 	media_capacity = capacity;
20357 
20358 	/*
20359 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
20360 	 * un->un_sys_blocksize chunks. So we need to convert it into
20361 	 * cap.lbasize chunks.
20362 	 */
20363 	media_capacity *= un->un_sys_blocksize;
20364 	media_capacity /= lbasize;
20365 	media_info.dki_capacity = media_capacity;
20366 
20367 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
20368 		rval = EFAULT;
20369 		/* Put goto. Anybody might add some code below in future */
20370 		goto done;
20371 	}
20372 done:
20373 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
20374 	kmem_free(rqbuf, SENSE_LENGTH);
20375 	return (rval);
20376 }
20377 
20378 
20379 /*
20380  *    Function: sd_check_media
20381  *
20382  * Description: This utility routine implements the functionality for the
20383  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
20384  *		driver state changes from that specified by the user
20385  *		(inserted or ejected). For example, if the user specifies
20386  *		DKIO_EJECTED and the current media state is inserted this
20387  *		routine will immediately return DKIO_INSERTED. However, if the
20388  *		current media state is not inserted the user thread will be
20389  *		blocked until the drive state changes. If DKIO_NONE is specified
20390  *		the user thread will block until a drive state change occurs.
20391  *
20392  *   Arguments: dev  - the device number
20393  *		state  - user pointer to a dkio_state, updated with the current
20394  *			drive state at return.
20395  *
20396  * Return Code: ENXIO
20397  *		EIO
20398  *		EAGAIN
20399  *		EINTR
20400  */
20401 
20402 static int
20403 sd_check_media(dev_t dev, enum dkio_state state)
20404 {
20405 	struct sd_lun		*un = NULL;
20406 	enum dkio_state		prev_state;
20407 	opaque_t		token = NULL;
20408 	int			rval = 0;
20409 
20410 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20411 		return (ENXIO);
20412 	}
20413 
20414 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
20415 
20416 	mutex_enter(SD_MUTEX(un));
20417 
20418 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
20419 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
20420 
20421 	prev_state = un->un_mediastate;
20422 
20423 	/* is there anything to do? */
20424 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
20425 		/*
20426 		 * submit the request to the scsi_watch service;
20427 		 * scsi_media_watch_cb() does the real work
20428 		 */
20429 		mutex_exit(SD_MUTEX(un));
20430 
20431 		/*
20432 		 * This change handles the case where a scsi watch request is
20433 		 * added to a device that is powered down. To accomplish this
20434 		 * we power up the device before adding the scsi watch request,
20435 		 * since the scsi watch sends a TUR directly to the device
20436 		 * which the device cannot handle if it is powered down.
20437 		 */
20438 		if (sd_pm_entry(un) != DDI_SUCCESS) {
20439 			mutex_enter(SD_MUTEX(un));
20440 			goto done;
20441 		}
20442 
20443 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
20444 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
20445 		    (caddr_t)dev);
20446 
20447 		sd_pm_exit(un);
20448 
20449 		mutex_enter(SD_MUTEX(un));
20450 		if (token == NULL) {
20451 			rval = EAGAIN;
20452 			goto done;
20453 		}
20454 
20455 		/*
20456 		 * This is a special case IOCTL that doesn't return
20457 		 * until the media state changes. Routine sdpower
20458 		 * knows about and handles this so don't count it
20459 		 * as an active cmd in the driver, which would
20460 		 * keep the device busy to the pm framework.
20461 		 * If the count isn't decremented the device can't
20462 		 * be powered down.
20463 		 */
20464 		un->un_ncmds_in_driver--;
20465 		ASSERT(un->un_ncmds_in_driver >= 0);
20466 
20467 		/*
20468 		 * if a prior request had been made, this will be the same
20469 		 * token, as scsi_watch was designed that way.
20470 		 */
20471 		un->un_swr_token = token;
20472 		un->un_specified_mediastate = state;
20473 
20474 		/*
20475 		 * now wait for media change
20476 		 * we will not be signalled unless mediastate == state but it is
20477 		 * still better to test for this condition, since there is a
20478 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
20479 		 */
20480 		SD_TRACE(SD_LOG_COMMON, un,
20481 		    "sd_check_media: waiting for media state change\n");
20482 		while (un->un_mediastate == state) {
20483 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
20484 				SD_TRACE(SD_LOG_COMMON, un,
20485 				    "sd_check_media: waiting for media state "
20486 				    "was interrupted\n");
20487 				un->un_ncmds_in_driver++;
20488 				rval = EINTR;
20489 				goto done;
20490 			}
20491 			SD_TRACE(SD_LOG_COMMON, un,
20492 			    "sd_check_media: received signal, state=%x\n",
20493 			    un->un_mediastate);
20494 		}
20495 		/*
20496 		 * Inc the counter to indicate the device once again
20497 		 * has an active outstanding cmd.
20498 		 */
20499 		un->un_ncmds_in_driver++;
20500 	}
20501 
20502 	/* invalidate geometry */
20503 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
20504 		sr_ejected(un);
20505 	}
20506 
20507 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
20508 		uint64_t	capacity;
20509 		uint_t		lbasize;
20510 
20511 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
20512 		mutex_exit(SD_MUTEX(un));
20513 		/*
20514 		 * Since the following routines use SD_PATH_DIRECT, we must
20515 		 * call PM directly before the upcoming disk accesses. This
20516 		 * may cause the disk to be power/spin up.
20517 		 */
20518 
20519 		if (sd_pm_entry(un) == DDI_SUCCESS) {
20520 			rval = sd_send_scsi_READ_CAPACITY(un,
20521 			    &capacity,
20522 			    &lbasize, SD_PATH_DIRECT);
20523 			if (rval != 0) {
20524 				sd_pm_exit(un);
20525 				mutex_enter(SD_MUTEX(un));
20526 				goto done;
20527 			}
20528 		} else {
20529 			rval = EIO;
20530 			mutex_enter(SD_MUTEX(un));
20531 			goto done;
20532 		}
20533 		mutex_enter(SD_MUTEX(un));
20534 
20535 		sd_update_block_info(un, lbasize, capacity);
20536 
20537 		/*
20538 		 *  Check if the media in the device is writable or not
20539 		 */
20540 		sd_check_for_writable_cd(un, SD_PATH_DIRECT);
20541 
20542 		mutex_exit(SD_MUTEX(un));
20543 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
20544 		if ((cmlb_validate(un->un_cmlbhandle, 0,
20545 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
20546 			sd_set_pstats(un);
20547 			SD_TRACE(SD_LOG_IO_PARTITION, un,
20548 			    "sd_check_media: un:0x%p pstats created and "
20549 			    "set\n", un);
20550 		}
20551 
20552 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20553 		    SD_PATH_DIRECT);
20554 		sd_pm_exit(un);
20555 
20556 		mutex_enter(SD_MUTEX(un));
20557 	}
20558 done:
20559 	un->un_f_watcht_stopped = FALSE;
20560 	if (un->un_swr_token) {
20561 		/*
20562 		 * Use of this local token and the mutex ensures that we avoid
20563 		 * some race conditions associated with terminating the
20564 		 * scsi watch.
20565 		 */
20566 		token = un->un_swr_token;
20567 		un->un_swr_token = (opaque_t)NULL;
20568 		mutex_exit(SD_MUTEX(un));
20569 		(void) scsi_watch_request_terminate(token,
20570 		    SCSI_WATCH_TERMINATE_WAIT);
20571 		mutex_enter(SD_MUTEX(un));
20572 	}
20573 
20574 	/*
20575 	 * Update the capacity kstat value, if no media previously
20576 	 * (capacity kstat is 0) and a media has been inserted
20577 	 * (un_f_blockcount_is_valid == TRUE)
20578 	 */
20579 	if (un->un_errstats) {
20580 		struct sd_errstats	*stp = NULL;
20581 
20582 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
20583 		if ((stp->sd_capacity.value.ui64 == 0) &&
20584 		    (un->un_f_blockcount_is_valid == TRUE)) {
20585 			stp->sd_capacity.value.ui64 =
20586 			    (uint64_t)((uint64_t)un->un_blockcount *
20587 			    un->un_sys_blocksize);
20588 		}
20589 	}
20590 	mutex_exit(SD_MUTEX(un));
20591 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
20592 	return (rval);
20593 }
20594 
20595 
20596 /*
20597  *    Function: sd_delayed_cv_broadcast
20598  *
20599  * Description: Delayed cv_broadcast to allow for target to recover from media
20600  *		insertion.
20601  *
20602  *   Arguments: arg - driver soft state (unit) structure
20603  */
20604 
20605 static void
20606 sd_delayed_cv_broadcast(void *arg)
20607 {
20608 	struct sd_lun *un = arg;
20609 
20610 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
20611 
20612 	mutex_enter(SD_MUTEX(un));
20613 	un->un_dcvb_timeid = NULL;
20614 	cv_broadcast(&un->un_state_cv);
20615 	mutex_exit(SD_MUTEX(un));
20616 }
20617 
20618 
20619 /*
20620  *    Function: sd_media_watch_cb
20621  *
20622  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
20623  *		routine processes the TUR sense data and updates the driver
20624  *		state if a transition has occurred. The user thread
20625  *		(sd_check_media) is then signalled.
20626  *
20627  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
20628  *			among multiple watches that share this callback function
20629  *		resultp - scsi watch facility result packet containing scsi
20630  *			  packet, status byte and sense data
20631  *
20632  * Return Code: 0 for success, -1 for failure
20633  */
20634 
20635 static int
20636 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
20637 {
20638 	struct sd_lun			*un;
20639 	struct scsi_status		*statusp = resultp->statusp;
20640 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
20641 	enum dkio_state			state = DKIO_NONE;
20642 	dev_t				dev = (dev_t)arg;
20643 	uchar_t				actual_sense_length;
20644 	uint8_t				skey, asc, ascq;
20645 
20646 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20647 		return (-1);
20648 	}
20649 	actual_sense_length = resultp->actual_sense_length;
20650 
20651 	mutex_enter(SD_MUTEX(un));
20652 	SD_TRACE(SD_LOG_COMMON, un,
20653 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
20654 	    *((char *)statusp), (void *)sensep, actual_sense_length);
20655 
20656 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
20657 		un->un_mediastate = DKIO_DEV_GONE;
20658 		cv_broadcast(&un->un_state_cv);
20659 		mutex_exit(SD_MUTEX(un));
20660 
20661 		return (0);
20662 	}
20663 
20664 	/*
20665 	 * If there was a check condition then sensep points to valid sense data
20666 	 * If status was not a check condition but a reservation or busy status
20667 	 * then the new state is DKIO_NONE
20668 	 */
20669 	if (sensep != NULL) {
20670 		skey = scsi_sense_key(sensep);
20671 		asc = scsi_sense_asc(sensep);
20672 		ascq = scsi_sense_ascq(sensep);
20673 
20674 		SD_INFO(SD_LOG_COMMON, un,
20675 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
20676 		    skey, asc, ascq);
20677 		/* This routine only uses up to 13 bytes of sense data. */
20678 		if (actual_sense_length >= 13) {
20679 			if (skey == KEY_UNIT_ATTENTION) {
20680 				if (asc == 0x28) {
20681 					state = DKIO_INSERTED;
20682 				}
20683 			} else {
20684 				/*
20685 				 * if 02/04/02  means that the host
20686 				 * should send start command. Explicitly
20687 				 * leave the media state as is
20688 				 * (inserted) as the media is inserted
20689 				 * and host has stopped device for PM
20690 				 * reasons. Upon next true read/write
20691 				 * to this media will bring the
20692 				 * device to the right state good for
20693 				 * media access.
20694 				 */
20695 				if ((skey == KEY_NOT_READY) &&
20696 				    (asc == 0x3a)) {
20697 					state = DKIO_EJECTED;
20698 				}
20699 
20700 				/*
20701 				 * If the drivge is busy with an operation
20702 				 * or long write, keep the media in an
20703 				 * inserted state.
20704 				 */
20705 
20706 				if ((skey == KEY_NOT_READY) &&
20707 				    (asc == 0x04) &&
20708 				    ((ascq == 0x02) ||
20709 				    (ascq == 0x07) ||
20710 				    (ascq == 0x08))) {
20711 					state = DKIO_INSERTED;
20712 				}
20713 			}
20714 		}
20715 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
20716 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
20717 		state = DKIO_INSERTED;
20718 	}
20719 
20720 	SD_TRACE(SD_LOG_COMMON, un,
20721 	    "sd_media_watch_cb: state=%x, specified=%x\n",
20722 	    state, un->un_specified_mediastate);
20723 
20724 	/*
20725 	 * now signal the waiting thread if this is *not* the specified state;
20726 	 * delay the signal if the state is DKIO_INSERTED to allow the target
20727 	 * to recover
20728 	 */
20729 	if (state != un->un_specified_mediastate) {
20730 		un->un_mediastate = state;
20731 		if (state == DKIO_INSERTED) {
20732 			/*
20733 			 * delay the signal to give the drive a chance
20734 			 * to do what it apparently needs to do
20735 			 */
20736 			SD_TRACE(SD_LOG_COMMON, un,
20737 			    "sd_media_watch_cb: delayed cv_broadcast\n");
20738 			if (un->un_dcvb_timeid == NULL) {
20739 				un->un_dcvb_timeid =
20740 				    timeout(sd_delayed_cv_broadcast, un,
20741 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
20742 			}
20743 		} else {
20744 			SD_TRACE(SD_LOG_COMMON, un,
20745 			    "sd_media_watch_cb: immediate cv_broadcast\n");
20746 			cv_broadcast(&un->un_state_cv);
20747 		}
20748 	}
20749 	mutex_exit(SD_MUTEX(un));
20750 	return (0);
20751 }
20752 
20753 
20754 /*
20755  *    Function: sd_dkio_get_temp
20756  *
20757  * Description: This routine is the driver entry point for handling ioctl
20758  *		requests to get the disk temperature.
20759  *
20760  *   Arguments: dev  - the device number
20761  *		arg  - pointer to user provided dk_temperature structure.
20762  *		flag - this argument is a pass through to ddi_copyxxx()
20763  *		       directly from the mode argument of ioctl().
20764  *
20765  * Return Code: 0
20766  *		EFAULT
20767  *		ENXIO
20768  *		EAGAIN
20769  */
20770 
20771 static int
20772 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
20773 {
20774 	struct sd_lun		*un = NULL;
20775 	struct dk_temperature	*dktemp = NULL;
20776 	uchar_t			*temperature_page;
20777 	int			rval = 0;
20778 	int			path_flag = SD_PATH_STANDARD;
20779 
20780 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20781 		return (ENXIO);
20782 	}
20783 
20784 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
20785 
20786 	/* copyin the disk temp argument to get the user flags */
20787 	if (ddi_copyin((void *)arg, dktemp,
20788 	    sizeof (struct dk_temperature), flag) != 0) {
20789 		rval = EFAULT;
20790 		goto done;
20791 	}
20792 
20793 	/* Initialize the temperature to invalid. */
20794 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
20795 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
20796 
20797 	/*
20798 	 * Note: Investigate removing the "bypass pm" semantic.
20799 	 * Can we just bypass PM always?
20800 	 */
20801 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
20802 		path_flag = SD_PATH_DIRECT;
20803 		ASSERT(!mutex_owned(&un->un_pm_mutex));
20804 		mutex_enter(&un->un_pm_mutex);
20805 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
20806 			/*
20807 			 * If DKT_BYPASS_PM is set, and the drive happens to be
20808 			 * in low power mode, we can not wake it up, Need to
20809 			 * return EAGAIN.
20810 			 */
20811 			mutex_exit(&un->un_pm_mutex);
20812 			rval = EAGAIN;
20813 			goto done;
20814 		} else {
20815 			/*
20816 			 * Indicate to PM the device is busy. This is required
20817 			 * to avoid a race - i.e. the ioctl is issuing a
20818 			 * command and the pm framework brings down the device
20819 			 * to low power mode (possible power cut-off on some
20820 			 * platforms).
20821 			 */
20822 			mutex_exit(&un->un_pm_mutex);
20823 			if (sd_pm_entry(un) != DDI_SUCCESS) {
20824 				rval = EAGAIN;
20825 				goto done;
20826 			}
20827 		}
20828 	}
20829 
20830 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
20831 
20832 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
20833 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
20834 		goto done2;
20835 	}
20836 
20837 	/*
20838 	 * For the current temperature verify that the parameter length is 0x02
20839 	 * and the parameter code is 0x00
20840 	 */
20841 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
20842 	    (temperature_page[5] == 0x00)) {
20843 		if (temperature_page[9] == 0xFF) {
20844 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
20845 		} else {
20846 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
20847 		}
20848 	}
20849 
20850 	/*
20851 	 * For the reference temperature verify that the parameter
20852 	 * length is 0x02 and the parameter code is 0x01
20853 	 */
20854 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
20855 	    (temperature_page[11] == 0x01)) {
20856 		if (temperature_page[15] == 0xFF) {
20857 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
20858 		} else {
20859 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
20860 		}
20861 	}
20862 
20863 	/* Do the copyout regardless of the temperature commands status. */
20864 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
20865 	    flag) != 0) {
20866 		rval = EFAULT;
20867 	}
20868 
20869 done2:
20870 	if (path_flag == SD_PATH_DIRECT) {
20871 		sd_pm_exit(un);
20872 	}
20873 
20874 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
20875 done:
20876 	if (dktemp != NULL) {
20877 		kmem_free(dktemp, sizeof (struct dk_temperature));
20878 	}
20879 
20880 	return (rval);
20881 }
20882 
20883 
20884 /*
20885  *    Function: sd_log_page_supported
20886  *
20887  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
20888  *		supported log pages.
20889  *
20890  *   Arguments: un -
20891  *		log_page -
20892  *
20893  * Return Code: -1 - on error (log sense is optional and may not be supported).
20894  *		0  - log page not found.
20895  *  		1  - log page found.
20896  */
20897 
20898 static int
20899 sd_log_page_supported(struct sd_lun *un, int log_page)
20900 {
20901 	uchar_t *log_page_data;
20902 	int	i;
20903 	int	match = 0;
20904 	int	log_size;
20905 
20906 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
20907 
20908 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
20909 	    SD_PATH_DIRECT) != 0) {
20910 		SD_ERROR(SD_LOG_COMMON, un,
20911 		    "sd_log_page_supported: failed log page retrieval\n");
20912 		kmem_free(log_page_data, 0xFF);
20913 		return (-1);
20914 	}
20915 	log_size = log_page_data[3];
20916 
20917 	/*
20918 	 * The list of supported log pages start from the fourth byte. Check
20919 	 * until we run out of log pages or a match is found.
20920 	 */
20921 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
20922 		if (log_page_data[i] == log_page) {
20923 			match++;
20924 		}
20925 	}
20926 	kmem_free(log_page_data, 0xFF);
20927 	return (match);
20928 }
20929 
20930 
20931 /*
20932  *    Function: sd_mhdioc_failfast
20933  *
20934  * Description: This routine is the driver entry point for handling ioctl
20935  *		requests to enable/disable the multihost failfast option.
20936  *		(MHIOCENFAILFAST)
20937  *
20938  *   Arguments: dev	- the device number
20939  *		arg	- user specified probing interval.
20940  *		flag	- this argument is a pass through to ddi_copyxxx()
20941  *			  directly from the mode argument of ioctl().
20942  *
20943  * Return Code: 0
20944  *		EFAULT
20945  *		ENXIO
20946  */
20947 
20948 static int
20949 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
20950 {
20951 	struct sd_lun	*un = NULL;
20952 	int		mh_time;
20953 	int		rval = 0;
20954 
20955 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20956 		return (ENXIO);
20957 	}
20958 
20959 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
20960 		return (EFAULT);
20961 
20962 	if (mh_time) {
20963 		mutex_enter(SD_MUTEX(un));
20964 		un->un_resvd_status |= SD_FAILFAST;
20965 		mutex_exit(SD_MUTEX(un));
20966 		/*
20967 		 * If mh_time is INT_MAX, then this ioctl is being used for
20968 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
20969 		 */
20970 		if (mh_time != INT_MAX) {
20971 			rval = sd_check_mhd(dev, mh_time);
20972 		}
20973 	} else {
20974 		(void) sd_check_mhd(dev, 0);
20975 		mutex_enter(SD_MUTEX(un));
20976 		un->un_resvd_status &= ~SD_FAILFAST;
20977 		mutex_exit(SD_MUTEX(un));
20978 	}
20979 	return (rval);
20980 }
20981 
20982 
20983 /*
20984  *    Function: sd_mhdioc_takeown
20985  *
20986  * Description: This routine is the driver entry point for handling ioctl
20987  *		requests to forcefully acquire exclusive access rights to the
20988  *		multihost disk (MHIOCTKOWN).
20989  *
20990  *   Arguments: dev	- the device number
20991  *		arg	- user provided structure specifying the delay
20992  *			  parameters in milliseconds
20993  *		flag	- this argument is a pass through to ddi_copyxxx()
20994  *			  directly from the mode argument of ioctl().
20995  *
20996  * Return Code: 0
20997  *		EFAULT
20998  *		ENXIO
20999  */
21000 
21001 static int
21002 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21003 {
21004 	struct sd_lun		*un = NULL;
21005 	struct mhioctkown	*tkown = NULL;
21006 	int			rval = 0;
21007 
21008 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21009 		return (ENXIO);
21010 	}
21011 
21012 	if (arg != NULL) {
21013 		tkown = (struct mhioctkown *)
21014 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21015 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21016 		if (rval != 0) {
21017 			rval = EFAULT;
21018 			goto error;
21019 		}
21020 	}
21021 
21022 	rval = sd_take_ownership(dev, tkown);
21023 	mutex_enter(SD_MUTEX(un));
21024 	if (rval == 0) {
21025 		un->un_resvd_status |= SD_RESERVE;
21026 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21027 			sd_reinstate_resv_delay =
21028 			    tkown->reinstate_resv_delay * 1000;
21029 		} else {
21030 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21031 		}
21032 		/*
21033 		 * Give the scsi_watch routine interval set by
21034 		 * the MHIOCENFAILFAST ioctl precedence here.
21035 		 */
21036 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21037 			mutex_exit(SD_MUTEX(un));
21038 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21039 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21040 			    "sd_mhdioc_takeown : %d\n",
21041 			    sd_reinstate_resv_delay);
21042 		} else {
21043 			mutex_exit(SD_MUTEX(un));
21044 		}
21045 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21046 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21047 	} else {
21048 		un->un_resvd_status &= ~SD_RESERVE;
21049 		mutex_exit(SD_MUTEX(un));
21050 	}
21051 
21052 error:
21053 	if (tkown != NULL) {
21054 		kmem_free(tkown, sizeof (struct mhioctkown));
21055 	}
21056 	return (rval);
21057 }
21058 
21059 
21060 /*
21061  *    Function: sd_mhdioc_release
21062  *
21063  * Description: This routine is the driver entry point for handling ioctl
21064  *		requests to release exclusive access rights to the multihost
21065  *		disk (MHIOCRELEASE).
21066  *
21067  *   Arguments: dev	- the device number
21068  *
21069  * Return Code: 0
21070  *		ENXIO
21071  */
21072 
21073 static int
21074 sd_mhdioc_release(dev_t dev)
21075 {
21076 	struct sd_lun		*un = NULL;
21077 	timeout_id_t		resvd_timeid_save;
21078 	int			resvd_status_save;
21079 	int			rval = 0;
21080 
21081 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21082 		return (ENXIO);
21083 	}
21084 
21085 	mutex_enter(SD_MUTEX(un));
21086 	resvd_status_save = un->un_resvd_status;
21087 	un->un_resvd_status &=
21088 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21089 	if (un->un_resvd_timeid) {
21090 		resvd_timeid_save = un->un_resvd_timeid;
21091 		un->un_resvd_timeid = NULL;
21092 		mutex_exit(SD_MUTEX(un));
21093 		(void) untimeout(resvd_timeid_save);
21094 	} else {
21095 		mutex_exit(SD_MUTEX(un));
21096 	}
21097 
21098 	/*
21099 	 * destroy any pending timeout thread that may be attempting to
21100 	 * reinstate reservation on this device.
21101 	 */
21102 	sd_rmv_resv_reclaim_req(dev);
21103 
21104 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21105 		mutex_enter(SD_MUTEX(un));
21106 		if ((un->un_mhd_token) &&
21107 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21108 			mutex_exit(SD_MUTEX(un));
21109 			(void) sd_check_mhd(dev, 0);
21110 		} else {
21111 			mutex_exit(SD_MUTEX(un));
21112 		}
21113 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21114 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21115 	} else {
21116 		/*
21117 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21118 		 */
21119 		mutex_enter(SD_MUTEX(un));
21120 		un->un_resvd_status = resvd_status_save;
21121 		mutex_exit(SD_MUTEX(un));
21122 	}
21123 	return (rval);
21124 }
21125 
21126 
21127 /*
21128  *    Function: sd_mhdioc_register_devid
21129  *
21130  * Description: This routine is the driver entry point for handling ioctl
21131  *		requests to register the device id (MHIOCREREGISTERDEVID).
21132  *
21133  *		Note: The implementation for this ioctl has been updated to
21134  *		be consistent with the original PSARC case (1999/357)
21135  *		(4375899, 4241671, 4220005)
21136  *
21137  *   Arguments: dev	- the device number
21138  *
21139  * Return Code: 0
21140  *		ENXIO
21141  */
21142 
21143 static int
21144 sd_mhdioc_register_devid(dev_t dev)
21145 {
21146 	struct sd_lun	*un = NULL;
21147 	int		rval = 0;
21148 
21149 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21150 		return (ENXIO);
21151 	}
21152 
21153 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21154 
21155 	mutex_enter(SD_MUTEX(un));
21156 
21157 	/* If a devid already exists, de-register it */
21158 	if (un->un_devid != NULL) {
21159 		ddi_devid_unregister(SD_DEVINFO(un));
21160 		/*
21161 		 * After unregister devid, needs to free devid memory
21162 		 */
21163 		ddi_devid_free(un->un_devid);
21164 		un->un_devid = NULL;
21165 	}
21166 
21167 	/* Check for reservation conflict */
21168 	mutex_exit(SD_MUTEX(un));
21169 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21170 	mutex_enter(SD_MUTEX(un));
21171 
21172 	switch (rval) {
21173 	case 0:
21174 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21175 		break;
21176 	case EACCES:
21177 		break;
21178 	default:
21179 		rval = EIO;
21180 	}
21181 
21182 	mutex_exit(SD_MUTEX(un));
21183 	return (rval);
21184 }
21185 
21186 
21187 /*
21188  *    Function: sd_mhdioc_inkeys
21189  *
21190  * Description: This routine is the driver entry point for handling ioctl
21191  *		requests to issue the SCSI-3 Persistent In Read Keys command
21192  *		to the device (MHIOCGRP_INKEYS).
21193  *
21194  *   Arguments: dev	- the device number
21195  *		arg	- user provided in_keys structure
21196  *		flag	- this argument is a pass through to ddi_copyxxx()
21197  *			  directly from the mode argument of ioctl().
21198  *
21199  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21200  *		ENXIO
21201  *		EFAULT
21202  */
21203 
21204 static int
21205 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21206 {
21207 	struct sd_lun		*un;
21208 	mhioc_inkeys_t		inkeys;
21209 	int			rval = 0;
21210 
21211 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21212 		return (ENXIO);
21213 	}
21214 
21215 #ifdef _MULTI_DATAMODEL
21216 	switch (ddi_model_convert_from(flag & FMODELS)) {
21217 	case DDI_MODEL_ILP32: {
21218 		struct mhioc_inkeys32	inkeys32;
21219 
21220 		if (ddi_copyin(arg, &inkeys32,
21221 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21222 			return (EFAULT);
21223 		}
21224 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21225 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21226 		    &inkeys, flag)) != 0) {
21227 			return (rval);
21228 		}
21229 		inkeys32.generation = inkeys.generation;
21230 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21231 		    flag) != 0) {
21232 			return (EFAULT);
21233 		}
21234 		break;
21235 	}
21236 	case DDI_MODEL_NONE:
21237 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21238 		    flag) != 0) {
21239 			return (EFAULT);
21240 		}
21241 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21242 		    &inkeys, flag)) != 0) {
21243 			return (rval);
21244 		}
21245 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21246 		    flag) != 0) {
21247 			return (EFAULT);
21248 		}
21249 		break;
21250 	}
21251 
21252 #else /* ! _MULTI_DATAMODEL */
21253 
21254 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21255 		return (EFAULT);
21256 	}
21257 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21258 	if (rval != 0) {
21259 		return (rval);
21260 	}
21261 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21262 		return (EFAULT);
21263 	}
21264 
21265 #endif /* _MULTI_DATAMODEL */
21266 
21267 	return (rval);
21268 }
21269 
21270 
21271 /*
21272  *    Function: sd_mhdioc_inresv
21273  *
21274  * Description: This routine is the driver entry point for handling ioctl
21275  *		requests to issue the SCSI-3 Persistent In Read Reservations
21276  *		command to the device (MHIOCGRP_INKEYS).
21277  *
21278  *   Arguments: dev	- the device number
21279  *		arg	- user provided in_resv structure
21280  *		flag	- this argument is a pass through to ddi_copyxxx()
21281  *			  directly from the mode argument of ioctl().
21282  *
21283  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21284  *		ENXIO
21285  *		EFAULT
21286  */
21287 
21288 static int
21289 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21290 {
21291 	struct sd_lun		*un;
21292 	mhioc_inresvs_t		inresvs;
21293 	int			rval = 0;
21294 
21295 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21296 		return (ENXIO);
21297 	}
21298 
21299 #ifdef _MULTI_DATAMODEL
21300 
21301 	switch (ddi_model_convert_from(flag & FMODELS)) {
21302 	case DDI_MODEL_ILP32: {
21303 		struct mhioc_inresvs32	inresvs32;
21304 
21305 		if (ddi_copyin(arg, &inresvs32,
21306 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21307 			return (EFAULT);
21308 		}
21309 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21310 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21311 		    &inresvs, flag)) != 0) {
21312 			return (rval);
21313 		}
21314 		inresvs32.generation = inresvs.generation;
21315 		if (ddi_copyout(&inresvs32, arg,
21316 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21317 			return (EFAULT);
21318 		}
21319 		break;
21320 	}
21321 	case DDI_MODEL_NONE:
21322 		if (ddi_copyin(arg, &inresvs,
21323 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21324 			return (EFAULT);
21325 		}
21326 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21327 		    &inresvs, flag)) != 0) {
21328 			return (rval);
21329 		}
21330 		if (ddi_copyout(&inresvs, arg,
21331 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21332 			return (EFAULT);
21333 		}
21334 		break;
21335 	}
21336 
21337 #else /* ! _MULTI_DATAMODEL */
21338 
21339 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
21340 		return (EFAULT);
21341 	}
21342 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
21343 	if (rval != 0) {
21344 		return (rval);
21345 	}
21346 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
21347 		return (EFAULT);
21348 	}
21349 
21350 #endif /* ! _MULTI_DATAMODEL */
21351 
21352 	return (rval);
21353 }
21354 
21355 
21356 /*
21357  * The following routines support the clustering functionality described below
21358  * and implement lost reservation reclaim functionality.
21359  *
21360  * Clustering
21361  * ----------
21362  * The clustering code uses two different, independent forms of SCSI
21363  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
21364  * Persistent Group Reservations. For any particular disk, it will use either
21365  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
21366  *
21367  * SCSI-2
21368  * The cluster software takes ownership of a multi-hosted disk by issuing the
21369  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
21370  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
21371  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
21372  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
21373  * meaning of failfast is that if the driver (on this host) ever encounters the
21374  * scsi error return code RESERVATION_CONFLICT from the device, it should
21375  * immediately panic the host. The motivation for this ioctl is that if this
21376  * host does encounter reservation conflict, the underlying cause is that some
21377  * other host of the cluster has decided that this host is no longer in the
21378  * cluster and has seized control of the disks for itself. Since this host is no
21379  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
21380  * does two things:
21381  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
21382  *      error to panic the host
21383  *      (b) it sets up a periodic timer to test whether this host still has
21384  *      "access" (in that no other host has reserved the device):  if the
21385  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
21386  *      purpose of that periodic timer is to handle scenarios where the host is
21387  *      otherwise temporarily quiescent, temporarily doing no real i/o.
21388  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
21389  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
21390  * the device itself.
21391  *
21392  * SCSI-3 PGR
21393  * A direct semantic implementation of the SCSI-3 Persistent Reservation
21394  * facility is supported through the shared multihost disk ioctls
21395  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
21396  * MHIOCGRP_PREEMPTANDABORT)
21397  *
21398  * Reservation Reclaim:
21399  * --------------------
21400  * To support the lost reservation reclaim operations this driver creates a
21401  * single thread to handle reinstating reservations on all devices that have
21402  * lost reservations sd_resv_reclaim_requests are logged for all devices that
21403  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
21404  * and the reservation reclaim thread loops through the requests to regain the
21405  * lost reservations.
21406  */
21407 
21408 /*
21409  *    Function: sd_check_mhd()
21410  *
21411  * Description: This function sets up and submits a scsi watch request or
21412  *		terminates an existing watch request. This routine is used in
21413  *		support of reservation reclaim.
21414  *
21415  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
21416  *			 among multiple watches that share the callback function
21417  *		interval - the number of microseconds specifying the watch
21418  *			   interval for issuing TEST UNIT READY commands. If
21419  *			   set to 0 the watch should be terminated. If the
21420  *			   interval is set to 0 and if the device is required
21421  *			   to hold reservation while disabling failfast, the
21422  *			   watch is restarted with an interval of
21423  *			   reinstate_resv_delay.
21424  *
21425  * Return Code: 0	   - Successful submit/terminate of scsi watch request
21426  *		ENXIO      - Indicates an invalid device was specified
21427  *		EAGAIN     - Unable to submit the scsi watch request
21428  */
21429 
21430 static int
21431 sd_check_mhd(dev_t dev, int interval)
21432 {
21433 	struct sd_lun	*un;
21434 	opaque_t	token;
21435 
21436 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21437 		return (ENXIO);
21438 	}
21439 
21440 	/* is this a watch termination request? */
21441 	if (interval == 0) {
21442 		mutex_enter(SD_MUTEX(un));
21443 		/* if there is an existing watch task then terminate it */
21444 		if (un->un_mhd_token) {
21445 			token = un->un_mhd_token;
21446 			un->un_mhd_token = NULL;
21447 			mutex_exit(SD_MUTEX(un));
21448 			(void) scsi_watch_request_terminate(token,
21449 			    SCSI_WATCH_TERMINATE_WAIT);
21450 			mutex_enter(SD_MUTEX(un));
21451 		} else {
21452 			mutex_exit(SD_MUTEX(un));
21453 			/*
21454 			 * Note: If we return here we don't check for the
21455 			 * failfast case. This is the original legacy
21456 			 * implementation but perhaps we should be checking
21457 			 * the failfast case.
21458 			 */
21459 			return (0);
21460 		}
21461 		/*
21462 		 * If the device is required to hold reservation while
21463 		 * disabling failfast, we need to restart the scsi_watch
21464 		 * routine with an interval of reinstate_resv_delay.
21465 		 */
21466 		if (un->un_resvd_status & SD_RESERVE) {
21467 			interval = sd_reinstate_resv_delay/1000;
21468 		} else {
21469 			/* no failfast so bail */
21470 			mutex_exit(SD_MUTEX(un));
21471 			return (0);
21472 		}
21473 		mutex_exit(SD_MUTEX(un));
21474 	}
21475 
21476 	/*
21477 	 * adjust minimum time interval to 1 second,
21478 	 * and convert from msecs to usecs
21479 	 */
21480 	if (interval > 0 && interval < 1000) {
21481 		interval = 1000;
21482 	}
21483 	interval *= 1000;
21484 
21485 	/*
21486 	 * submit the request to the scsi_watch service
21487 	 */
21488 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
21489 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
21490 	if (token == NULL) {
21491 		return (EAGAIN);
21492 	}
21493 
21494 	/*
21495 	 * save token for termination later on
21496 	 */
21497 	mutex_enter(SD_MUTEX(un));
21498 	un->un_mhd_token = token;
21499 	mutex_exit(SD_MUTEX(un));
21500 	return (0);
21501 }
21502 
21503 
21504 /*
21505  *    Function: sd_mhd_watch_cb()
21506  *
21507  * Description: This function is the call back function used by the scsi watch
21508  *		facility. The scsi watch facility sends the "Test Unit Ready"
21509  *		and processes the status. If applicable (i.e. a "Unit Attention"
21510  *		status and automatic "Request Sense" not used) the scsi watch
21511  *		facility will send a "Request Sense" and retrieve the sense data
21512  *		to be passed to this callback function. In either case the
21513  *		automatic "Request Sense" or the facility submitting one, this
21514  *		callback is passed the status and sense data.
21515  *
21516  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21517  *			among multiple watches that share this callback function
21518  *		resultp - scsi watch facility result packet containing scsi
21519  *			  packet, status byte and sense data
21520  *
21521  * Return Code: 0 - continue the watch task
21522  *		non-zero - terminate the watch task
21523  */
21524 
21525 static int
21526 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21527 {
21528 	struct sd_lun			*un;
21529 	struct scsi_status		*statusp;
21530 	uint8_t				*sensep;
21531 	struct scsi_pkt			*pkt;
21532 	uchar_t				actual_sense_length;
21533 	dev_t  				dev = (dev_t)arg;
21534 
21535 	ASSERT(resultp != NULL);
21536 	statusp			= resultp->statusp;
21537 	sensep			= (uint8_t *)resultp->sensep;
21538 	pkt			= resultp->pkt;
21539 	actual_sense_length	= resultp->actual_sense_length;
21540 
21541 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21542 		return (ENXIO);
21543 	}
21544 
21545 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
21546 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
21547 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
21548 
21549 	/* Begin processing of the status and/or sense data */
21550 	if (pkt->pkt_reason != CMD_CMPLT) {
21551 		/* Handle the incomplete packet */
21552 		sd_mhd_watch_incomplete(un, pkt);
21553 		return (0);
21554 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
21555 		if (*((unsigned char *)statusp)
21556 		    == STATUS_RESERVATION_CONFLICT) {
21557 			/*
21558 			 * Handle a reservation conflict by panicking if
21559 			 * configured for failfast or by logging the conflict
21560 			 * and updating the reservation status
21561 			 */
21562 			mutex_enter(SD_MUTEX(un));
21563 			if ((un->un_resvd_status & SD_FAILFAST) &&
21564 			    (sd_failfast_enable)) {
21565 				sd_panic_for_res_conflict(un);
21566 				/*NOTREACHED*/
21567 			}
21568 			SD_INFO(SD_LOG_IOCTL_MHD, un,
21569 			    "sd_mhd_watch_cb: Reservation Conflict\n");
21570 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
21571 			mutex_exit(SD_MUTEX(un));
21572 		}
21573 	}
21574 
21575 	if (sensep != NULL) {
21576 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
21577 			mutex_enter(SD_MUTEX(un));
21578 			if ((scsi_sense_asc(sensep) ==
21579 			    SD_SCSI_RESET_SENSE_CODE) &&
21580 			    (un->un_resvd_status & SD_RESERVE)) {
21581 				/*
21582 				 * The additional sense code indicates a power
21583 				 * on or bus device reset has occurred; update
21584 				 * the reservation status.
21585 				 */
21586 				un->un_resvd_status |=
21587 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
21588 				SD_INFO(SD_LOG_IOCTL_MHD, un,
21589 				    "sd_mhd_watch_cb: Lost Reservation\n");
21590 			}
21591 		} else {
21592 			return (0);
21593 		}
21594 	} else {
21595 		mutex_enter(SD_MUTEX(un));
21596 	}
21597 
21598 	if ((un->un_resvd_status & SD_RESERVE) &&
21599 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
21600 		if (un->un_resvd_status & SD_WANT_RESERVE) {
21601 			/*
21602 			 * A reset occurred in between the last probe and this
21603 			 * one so if a timeout is pending cancel it.
21604 			 */
21605 			if (un->un_resvd_timeid) {
21606 				timeout_id_t temp_id = un->un_resvd_timeid;
21607 				un->un_resvd_timeid = NULL;
21608 				mutex_exit(SD_MUTEX(un));
21609 				(void) untimeout(temp_id);
21610 				mutex_enter(SD_MUTEX(un));
21611 			}
21612 			un->un_resvd_status &= ~SD_WANT_RESERVE;
21613 		}
21614 		if (un->un_resvd_timeid == 0) {
21615 			/* Schedule a timeout to handle the lost reservation */
21616 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
21617 			    (void *)dev,
21618 			    drv_usectohz(sd_reinstate_resv_delay));
21619 		}
21620 	}
21621 	mutex_exit(SD_MUTEX(un));
21622 	return (0);
21623 }
21624 
21625 
21626 /*
21627  *    Function: sd_mhd_watch_incomplete()
21628  *
21629  * Description: This function is used to find out why a scsi pkt sent by the
21630  *		scsi watch facility was not completed. Under some scenarios this
21631  *		routine will return. Otherwise it will send a bus reset to see
21632  *		if the drive is still online.
21633  *
21634  *   Arguments: un  - driver soft state (unit) structure
21635  *		pkt - incomplete scsi pkt
21636  */
21637 
21638 static void
21639 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
21640 {
21641 	int	be_chatty;
21642 	int	perr;
21643 
21644 	ASSERT(pkt != NULL);
21645 	ASSERT(un != NULL);
21646 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
21647 	perr		= (pkt->pkt_statistics & STAT_PERR);
21648 
21649 	mutex_enter(SD_MUTEX(un));
21650 	if (un->un_state == SD_STATE_DUMPING) {
21651 		mutex_exit(SD_MUTEX(un));
21652 		return;
21653 	}
21654 
21655 	switch (pkt->pkt_reason) {
21656 	case CMD_UNX_BUS_FREE:
21657 		/*
21658 		 * If we had a parity error that caused the target to drop BSY*,
21659 		 * don't be chatty about it.
21660 		 */
21661 		if (perr && be_chatty) {
21662 			be_chatty = 0;
21663 		}
21664 		break;
21665 	case CMD_TAG_REJECT:
21666 		/*
21667 		 * The SCSI-2 spec states that a tag reject will be sent by the
21668 		 * target if tagged queuing is not supported. A tag reject may
21669 		 * also be sent during certain initialization periods or to
21670 		 * control internal resources. For the latter case the target
21671 		 * may also return Queue Full.
21672 		 *
21673 		 * If this driver receives a tag reject from a target that is
21674 		 * going through an init period or controlling internal
21675 		 * resources tagged queuing will be disabled. This is a less
21676 		 * than optimal behavior but the driver is unable to determine
21677 		 * the target state and assumes tagged queueing is not supported
21678 		 */
21679 		pkt->pkt_flags = 0;
21680 		un->un_tagflags = 0;
21681 
21682 		if (un->un_f_opt_queueing == TRUE) {
21683 			un->un_throttle = min(un->un_throttle, 3);
21684 		} else {
21685 			un->un_throttle = 1;
21686 		}
21687 		mutex_exit(SD_MUTEX(un));
21688 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
21689 		mutex_enter(SD_MUTEX(un));
21690 		break;
21691 	case CMD_INCOMPLETE:
21692 		/*
21693 		 * The transport stopped with an abnormal state, fallthrough and
21694 		 * reset the target and/or bus unless selection did not complete
21695 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
21696 		 * go through a target/bus reset
21697 		 */
21698 		if (pkt->pkt_state == STATE_GOT_BUS) {
21699 			break;
21700 		}
21701 		/*FALLTHROUGH*/
21702 
21703 	case CMD_TIMEOUT:
21704 	default:
21705 		/*
21706 		 * The lun may still be running the command, so a lun reset
21707 		 * should be attempted. If the lun reset fails or cannot be
21708 		 * issued, than try a target reset. Lastly try a bus reset.
21709 		 */
21710 		if ((pkt->pkt_statistics &
21711 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
21712 			int reset_retval = 0;
21713 			mutex_exit(SD_MUTEX(un));
21714 			if (un->un_f_allow_bus_device_reset == TRUE) {
21715 				if (un->un_f_lun_reset_enabled == TRUE) {
21716 					reset_retval =
21717 					    scsi_reset(SD_ADDRESS(un),
21718 					    RESET_LUN);
21719 				}
21720 				if (reset_retval == 0) {
21721 					reset_retval =
21722 					    scsi_reset(SD_ADDRESS(un),
21723 					    RESET_TARGET);
21724 				}
21725 			}
21726 			if (reset_retval == 0) {
21727 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
21728 			}
21729 			mutex_enter(SD_MUTEX(un));
21730 		}
21731 		break;
21732 	}
21733 
21734 	/* A device/bus reset has occurred; update the reservation status. */
21735 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
21736 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
21737 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
21738 			un->un_resvd_status |=
21739 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
21740 			SD_INFO(SD_LOG_IOCTL_MHD, un,
21741 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
21742 		}
21743 	}
21744 
21745 	/*
21746 	 * The disk has been turned off; Update the device state.
21747 	 *
21748 	 * Note: Should we be offlining the disk here?
21749 	 */
21750 	if (pkt->pkt_state == STATE_GOT_BUS) {
21751 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
21752 		    "Disk not responding to selection\n");
21753 		if (un->un_state != SD_STATE_OFFLINE) {
21754 			New_state(un, SD_STATE_OFFLINE);
21755 		}
21756 	} else if (be_chatty) {
21757 		/*
21758 		 * suppress messages if they are all the same pkt reason;
21759 		 * with TQ, many (up to 256) are returned with the same
21760 		 * pkt_reason
21761 		 */
21762 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
21763 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
21764 			    "sd_mhd_watch_incomplete: "
21765 			    "SCSI transport failed: reason '%s'\n",
21766 			    scsi_rname(pkt->pkt_reason));
21767 		}
21768 	}
21769 	un->un_last_pkt_reason = pkt->pkt_reason;
21770 	mutex_exit(SD_MUTEX(un));
21771 }
21772 
21773 
21774 /*
21775  *    Function: sd_sname()
21776  *
21777  * Description: This is a simple little routine to return a string containing
21778  *		a printable description of command status byte for use in
21779  *		logging.
21780  *
21781  *   Arguments: status - pointer to a status byte
21782  *
21783  * Return Code: char * - string containing status description.
21784  */
21785 
21786 static char *
21787 sd_sname(uchar_t status)
21788 {
21789 	switch (status & STATUS_MASK) {
21790 	case STATUS_GOOD:
21791 		return ("good status");
21792 	case STATUS_CHECK:
21793 		return ("check condition");
21794 	case STATUS_MET:
21795 		return ("condition met");
21796 	case STATUS_BUSY:
21797 		return ("busy");
21798 	case STATUS_INTERMEDIATE:
21799 		return ("intermediate");
21800 	case STATUS_INTERMEDIATE_MET:
21801 		return ("intermediate - condition met");
21802 	case STATUS_RESERVATION_CONFLICT:
21803 		return ("reservation_conflict");
21804 	case STATUS_TERMINATED:
21805 		return ("command terminated");
21806 	case STATUS_QFULL:
21807 		return ("queue full");
21808 	default:
21809 		return ("<unknown status>");
21810 	}
21811 }
21812 
21813 
21814 /*
21815  *    Function: sd_mhd_resvd_recover()
21816  *
21817  * Description: This function adds a reservation entry to the
21818  *		sd_resv_reclaim_request list and signals the reservation
21819  *		reclaim thread that there is work pending. If the reservation
21820  *		reclaim thread has not been previously created this function
21821  *		will kick it off.
21822  *
21823  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21824  *			among multiple watches that share this callback function
21825  *
21826  *     Context: This routine is called by timeout() and is run in interrupt
21827  *		context. It must not sleep or call other functions which may
21828  *		sleep.
21829  */
21830 
21831 static void
21832 sd_mhd_resvd_recover(void *arg)
21833 {
21834 	dev_t			dev = (dev_t)arg;
21835 	struct sd_lun		*un;
21836 	struct sd_thr_request	*sd_treq = NULL;
21837 	struct sd_thr_request	*sd_cur = NULL;
21838 	struct sd_thr_request	*sd_prev = NULL;
21839 	int			already_there = 0;
21840 
21841 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21842 		return;
21843 	}
21844 
21845 	mutex_enter(SD_MUTEX(un));
21846 	un->un_resvd_timeid = NULL;
21847 	if (un->un_resvd_status & SD_WANT_RESERVE) {
21848 		/*
21849 		 * There was a reset so don't issue the reserve, allow the
21850 		 * sd_mhd_watch_cb callback function to notice this and
21851 		 * reschedule the timeout for reservation.
21852 		 */
21853 		mutex_exit(SD_MUTEX(un));
21854 		return;
21855 	}
21856 	mutex_exit(SD_MUTEX(un));
21857 
21858 	/*
21859 	 * Add this device to the sd_resv_reclaim_request list and the
21860 	 * sd_resv_reclaim_thread should take care of the rest.
21861 	 *
21862 	 * Note: We can't sleep in this context so if the memory allocation
21863 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
21864 	 * reschedule the timeout for reservation.  (4378460)
21865 	 */
21866 	sd_treq = (struct sd_thr_request *)
21867 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
21868 	if (sd_treq == NULL) {
21869 		return;
21870 	}
21871 
21872 	sd_treq->sd_thr_req_next = NULL;
21873 	sd_treq->dev = dev;
21874 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
21875 	if (sd_tr.srq_thr_req_head == NULL) {
21876 		sd_tr.srq_thr_req_head = sd_treq;
21877 	} else {
21878 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
21879 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
21880 			if (sd_cur->dev == dev) {
21881 				/*
21882 				 * already in Queue so don't log
21883 				 * another request for the device
21884 				 */
21885 				already_there = 1;
21886 				break;
21887 			}
21888 			sd_prev = sd_cur;
21889 		}
21890 		if (!already_there) {
21891 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
21892 			    "logging request for %lx\n", dev);
21893 			sd_prev->sd_thr_req_next = sd_treq;
21894 		} else {
21895 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
21896 		}
21897 	}
21898 
21899 	/*
21900 	 * Create a kernel thread to do the reservation reclaim and free up this
21901 	 * thread. We cannot block this thread while we go away to do the
21902 	 * reservation reclaim
21903 	 */
21904 	if (sd_tr.srq_resv_reclaim_thread == NULL)
21905 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
21906 		    sd_resv_reclaim_thread, NULL,
21907 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
21908 
21909 	/* Tell the reservation reclaim thread that it has work to do */
21910 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
21911 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
21912 }
21913 
21914 /*
21915  *    Function: sd_resv_reclaim_thread()
21916  *
21917  * Description: This function implements the reservation reclaim operations
21918  *
21919  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
21920  *		      among multiple watches that share this callback function
21921  */
21922 
21923 static void
21924 sd_resv_reclaim_thread()
21925 {
21926 	struct sd_lun		*un;
21927 	struct sd_thr_request	*sd_mhreq;
21928 
21929 	/* Wait for work */
21930 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
21931 	if (sd_tr.srq_thr_req_head == NULL) {
21932 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
21933 		    &sd_tr.srq_resv_reclaim_mutex);
21934 	}
21935 
21936 	/* Loop while we have work */
21937 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
21938 		un = ddi_get_soft_state(sd_state,
21939 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
21940 		if (un == NULL) {
21941 			/*
21942 			 * softstate structure is NULL so just
21943 			 * dequeue the request and continue
21944 			 */
21945 			sd_tr.srq_thr_req_head =
21946 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
21947 			kmem_free(sd_tr.srq_thr_cur_req,
21948 			    sizeof (struct sd_thr_request));
21949 			continue;
21950 		}
21951 
21952 		/* dequeue the request */
21953 		sd_mhreq = sd_tr.srq_thr_cur_req;
21954 		sd_tr.srq_thr_req_head =
21955 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
21956 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
21957 
21958 		/*
21959 		 * Reclaim reservation only if SD_RESERVE is still set. There
21960 		 * may have been a call to MHIOCRELEASE before we got here.
21961 		 */
21962 		mutex_enter(SD_MUTEX(un));
21963 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
21964 			/*
21965 			 * Note: The SD_LOST_RESERVE flag is cleared before
21966 			 * reclaiming the reservation. If this is done after the
21967 			 * call to sd_reserve_release a reservation loss in the
21968 			 * window between pkt completion of reserve cmd and
21969 			 * mutex_enter below may not be recognized
21970 			 */
21971 			un->un_resvd_status &= ~SD_LOST_RESERVE;
21972 			mutex_exit(SD_MUTEX(un));
21973 
21974 			if (sd_reserve_release(sd_mhreq->dev,
21975 			    SD_RESERVE) == 0) {
21976 				mutex_enter(SD_MUTEX(un));
21977 				un->un_resvd_status |= SD_RESERVE;
21978 				mutex_exit(SD_MUTEX(un));
21979 				SD_INFO(SD_LOG_IOCTL_MHD, un,
21980 				    "sd_resv_reclaim_thread: "
21981 				    "Reservation Recovered\n");
21982 			} else {
21983 				mutex_enter(SD_MUTEX(un));
21984 				un->un_resvd_status |= SD_LOST_RESERVE;
21985 				mutex_exit(SD_MUTEX(un));
21986 				SD_INFO(SD_LOG_IOCTL_MHD, un,
21987 				    "sd_resv_reclaim_thread: Failed "
21988 				    "Reservation Recovery\n");
21989 			}
21990 		} else {
21991 			mutex_exit(SD_MUTEX(un));
21992 		}
21993 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
21994 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
21995 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
21996 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
21997 		/*
21998 		 * wakeup the destroy thread if anyone is waiting on
21999 		 * us to complete.
22000 		 */
22001 		cv_signal(&sd_tr.srq_inprocess_cv);
22002 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22003 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22004 	}
22005 
22006 	/*
22007 	 * cleanup the sd_tr structure now that this thread will not exist
22008 	 */
22009 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22010 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22011 	sd_tr.srq_resv_reclaim_thread = NULL;
22012 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22013 	thread_exit();
22014 }
22015 
22016 
22017 /*
22018  *    Function: sd_rmv_resv_reclaim_req()
22019  *
22020  * Description: This function removes any pending reservation reclaim requests
22021  *		for the specified device.
22022  *
22023  *   Arguments: dev - the device 'dev_t'
22024  */
22025 
22026 static void
22027 sd_rmv_resv_reclaim_req(dev_t dev)
22028 {
22029 	struct sd_thr_request *sd_mhreq;
22030 	struct sd_thr_request *sd_prev;
22031 
22032 	/* Remove a reservation reclaim request from the list */
22033 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22034 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22035 		/*
22036 		 * We are attempting to reinstate reservation for
22037 		 * this device. We wait for sd_reserve_release()
22038 		 * to return before we return.
22039 		 */
22040 		cv_wait(&sd_tr.srq_inprocess_cv,
22041 		    &sd_tr.srq_resv_reclaim_mutex);
22042 	} else {
22043 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22044 		if (sd_mhreq && sd_mhreq->dev == dev) {
22045 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22046 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22047 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22048 			return;
22049 		}
22050 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22051 			if (sd_mhreq && sd_mhreq->dev == dev) {
22052 				break;
22053 			}
22054 			sd_prev = sd_mhreq;
22055 		}
22056 		if (sd_mhreq != NULL) {
22057 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22058 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22059 		}
22060 	}
22061 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22062 }
22063 
22064 
22065 /*
22066  *    Function: sd_mhd_reset_notify_cb()
22067  *
22068  * Description: This is a call back function for scsi_reset_notify. This
22069  *		function updates the softstate reserved status and logs the
22070  *		reset. The driver scsi watch facility callback function
22071  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22072  *		will reclaim the reservation.
22073  *
22074  *   Arguments: arg  - driver soft state (unit) structure
22075  */
22076 
22077 static void
22078 sd_mhd_reset_notify_cb(caddr_t arg)
22079 {
22080 	struct sd_lun *un = (struct sd_lun *)arg;
22081 
22082 	mutex_enter(SD_MUTEX(un));
22083 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22084 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22085 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22086 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22087 	}
22088 	mutex_exit(SD_MUTEX(un));
22089 }
22090 
22091 
22092 /*
22093  *    Function: sd_take_ownership()
22094  *
22095  * Description: This routine implements an algorithm to achieve a stable
22096  *		reservation on disks which don't implement priority reserve,
22097  *		and makes sure that other host lose re-reservation attempts.
22098  *		This algorithm contains of a loop that keeps issuing the RESERVE
22099  *		for some period of time (min_ownership_delay, default 6 seconds)
22100  *		During that loop, it looks to see if there has been a bus device
22101  *		reset or bus reset (both of which cause an existing reservation
22102  *		to be lost). If the reservation is lost issue RESERVE until a
22103  *		period of min_ownership_delay with no resets has gone by, or
22104  *		until max_ownership_delay has expired. This loop ensures that
22105  *		the host really did manage to reserve the device, in spite of
22106  *		resets. The looping for min_ownership_delay (default six
22107  *		seconds) is important to early generation clustering products,
22108  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22109  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22110  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22111  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22112  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22113  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22114  *		no longer "owns" the disk and will have panicked itself.  Thus,
22115  *		the host issuing the MHIOCTKOWN is assured (with timing
22116  *		dependencies) that by the time it actually starts to use the
22117  *		disk for real work, the old owner is no longer accessing it.
22118  *
22119  *		min_ownership_delay is the minimum amount of time for which the
22120  *		disk must be reserved continuously devoid of resets before the
22121  *		MHIOCTKOWN ioctl will return success.
22122  *
22123  *		max_ownership_delay indicates the amount of time by which the
22124  *		take ownership should succeed or timeout with an error.
22125  *
22126  *   Arguments: dev - the device 'dev_t'
22127  *		*p  - struct containing timing info.
22128  *
22129  * Return Code: 0 for success or error code
22130  */
22131 
22132 static int
22133 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22134 {
22135 	struct sd_lun	*un;
22136 	int		rval;
22137 	int		err;
22138 	int		reservation_count   = 0;
22139 	int		min_ownership_delay =  6000000; /* in usec */
22140 	int		max_ownership_delay = 30000000; /* in usec */
22141 	clock_t		start_time;	/* starting time of this algorithm */
22142 	clock_t		end_time;	/* time limit for giving up */
22143 	clock_t		ownership_time;	/* time limit for stable ownership */
22144 	clock_t		current_time;
22145 	clock_t		previous_current_time;
22146 
22147 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22148 		return (ENXIO);
22149 	}
22150 
22151 	/*
22152 	 * Attempt a device reservation. A priority reservation is requested.
22153 	 */
22154 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22155 	    != SD_SUCCESS) {
22156 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22157 		    "sd_take_ownership: return(1)=%d\n", rval);
22158 		return (rval);
22159 	}
22160 
22161 	/* Update the softstate reserved status to indicate the reservation */
22162 	mutex_enter(SD_MUTEX(un));
22163 	un->un_resvd_status |= SD_RESERVE;
22164 	un->un_resvd_status &=
22165 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22166 	mutex_exit(SD_MUTEX(un));
22167 
22168 	if (p != NULL) {
22169 		if (p->min_ownership_delay != 0) {
22170 			min_ownership_delay = p->min_ownership_delay * 1000;
22171 		}
22172 		if (p->max_ownership_delay != 0) {
22173 			max_ownership_delay = p->max_ownership_delay * 1000;
22174 		}
22175 	}
22176 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22177 	    "sd_take_ownership: min, max delays: %d, %d\n",
22178 	    min_ownership_delay, max_ownership_delay);
22179 
22180 	start_time = ddi_get_lbolt();
22181 	current_time	= start_time;
22182 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22183 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22184 
22185 	while (current_time - end_time < 0) {
22186 		delay(drv_usectohz(500000));
22187 
22188 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22189 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22190 				mutex_enter(SD_MUTEX(un));
22191 				rval = (un->un_resvd_status &
22192 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22193 				mutex_exit(SD_MUTEX(un));
22194 				break;
22195 			}
22196 		}
22197 		previous_current_time = current_time;
22198 		current_time = ddi_get_lbolt();
22199 		mutex_enter(SD_MUTEX(un));
22200 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22201 			ownership_time = ddi_get_lbolt() +
22202 			    drv_usectohz(min_ownership_delay);
22203 			reservation_count = 0;
22204 		} else {
22205 			reservation_count++;
22206 		}
22207 		un->un_resvd_status |= SD_RESERVE;
22208 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22209 		mutex_exit(SD_MUTEX(un));
22210 
22211 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22212 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22213 		    "reservation=%s\n", (current_time - previous_current_time),
22214 		    reservation_count ? "ok" : "reclaimed");
22215 
22216 		if (current_time - ownership_time >= 0 &&
22217 		    reservation_count >= 4) {
22218 			rval = 0; /* Achieved a stable ownership */
22219 			break;
22220 		}
22221 		if (current_time - end_time >= 0) {
22222 			rval = EACCES; /* No ownership in max possible time */
22223 			break;
22224 		}
22225 	}
22226 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22227 	    "sd_take_ownership: return(2)=%d\n", rval);
22228 	return (rval);
22229 }
22230 
22231 
22232 /*
22233  *    Function: sd_reserve_release()
22234  *
22235  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22236  *		PRIORITY RESERVE commands based on a user specified command type
22237  *
22238  *   Arguments: dev - the device 'dev_t'
22239  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22240  *		      SD_RESERVE, SD_RELEASE
22241  *
22242  * Return Code: 0 or Error Code
22243  */
22244 
22245 static int
22246 sd_reserve_release(dev_t dev, int cmd)
22247 {
22248 	struct uscsi_cmd	*com = NULL;
22249 	struct sd_lun		*un = NULL;
22250 	char			cdb[CDB_GROUP0];
22251 	int			rval;
22252 
22253 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22254 	    (cmd == SD_PRIORITY_RESERVE));
22255 
22256 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22257 		return (ENXIO);
22258 	}
22259 
22260 	/* instantiate and initialize the command and cdb */
22261 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22262 	bzero(cdb, CDB_GROUP0);
22263 	com->uscsi_flags   = USCSI_SILENT;
22264 	com->uscsi_timeout = un->un_reserve_release_time;
22265 	com->uscsi_cdblen  = CDB_GROUP0;
22266 	com->uscsi_cdb	   = cdb;
22267 	if (cmd == SD_RELEASE) {
22268 		cdb[0] = SCMD_RELEASE;
22269 	} else {
22270 		cdb[0] = SCMD_RESERVE;
22271 	}
22272 
22273 	/* Send the command. */
22274 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22275 	    SD_PATH_STANDARD);
22276 
22277 	/*
22278 	 * "break" a reservation that is held by another host, by issuing a
22279 	 * reset if priority reserve is desired, and we could not get the
22280 	 * device.
22281 	 */
22282 	if ((cmd == SD_PRIORITY_RESERVE) &&
22283 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22284 		/*
22285 		 * First try to reset the LUN. If we cannot, then try a target
22286 		 * reset, followed by a bus reset if the target reset fails.
22287 		 */
22288 		int reset_retval = 0;
22289 		if (un->un_f_lun_reset_enabled == TRUE) {
22290 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22291 		}
22292 		if (reset_retval == 0) {
22293 			/* The LUN reset either failed or was not issued */
22294 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22295 		}
22296 		if ((reset_retval == 0) &&
22297 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22298 			rval = EIO;
22299 			kmem_free(com, sizeof (*com));
22300 			return (rval);
22301 		}
22302 
22303 		bzero(com, sizeof (struct uscsi_cmd));
22304 		com->uscsi_flags   = USCSI_SILENT;
22305 		com->uscsi_cdb	   = cdb;
22306 		com->uscsi_cdblen  = CDB_GROUP0;
22307 		com->uscsi_timeout = 5;
22308 
22309 		/*
22310 		 * Reissue the last reserve command, this time without request
22311 		 * sense.  Assume that it is just a regular reserve command.
22312 		 */
22313 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22314 		    SD_PATH_STANDARD);
22315 	}
22316 
22317 	/* Return an error if still getting a reservation conflict. */
22318 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22319 		rval = EACCES;
22320 	}
22321 
22322 	kmem_free(com, sizeof (*com));
22323 	return (rval);
22324 }
22325 
22326 
22327 #define	SD_NDUMP_RETRIES	12
22328 /*
22329  *	System Crash Dump routine
22330  */
22331 
22332 static int
22333 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
22334 {
22335 	int		instance;
22336 	int		partition;
22337 	int		i;
22338 	int		err;
22339 	struct sd_lun	*un;
22340 	struct scsi_pkt *wr_pktp;
22341 	struct buf	*wr_bp;
22342 	struct buf	wr_buf;
22343 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
22344 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
22345 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
22346 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
22347 	size_t		io_start_offset;
22348 	int		doing_rmw = FALSE;
22349 	int		rval;
22350 #if defined(__i386) || defined(__amd64)
22351 	ssize_t dma_resid;
22352 	daddr_t oblkno;
22353 #endif
22354 	diskaddr_t	nblks = 0;
22355 	diskaddr_t	start_block;
22356 
22357 	instance = SDUNIT(dev);
22358 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
22359 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
22360 		return (ENXIO);
22361 	}
22362 
22363 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
22364 
22365 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
22366 
22367 	partition = SDPART(dev);
22368 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
22369 
22370 	/* Validate blocks to dump at against partition size. */
22371 
22372 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
22373 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
22374 
22375 	if ((blkno + nblk) > nblks) {
22376 		SD_TRACE(SD_LOG_DUMP, un,
22377 		    "sddump: dump range larger than partition: "
22378 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
22379 		    blkno, nblk, nblks);
22380 		return (EINVAL);
22381 	}
22382 
22383 	mutex_enter(&un->un_pm_mutex);
22384 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22385 		struct scsi_pkt *start_pktp;
22386 
22387 		mutex_exit(&un->un_pm_mutex);
22388 
22389 		/*
22390 		 * use pm framework to power on HBA 1st
22391 		 */
22392 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
22393 
22394 		/*
22395 		 * Dump no long uses sdpower to power on a device, it's
22396 		 * in-line here so it can be done in polled mode.
22397 		 */
22398 
22399 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
22400 
22401 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
22402 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
22403 
22404 		if (start_pktp == NULL) {
22405 			/* We were not given a SCSI packet, fail. */
22406 			return (EIO);
22407 		}
22408 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
22409 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
22410 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
22411 		start_pktp->pkt_flags = FLAG_NOINTR;
22412 
22413 		mutex_enter(SD_MUTEX(un));
22414 		SD_FILL_SCSI1_LUN(un, start_pktp);
22415 		mutex_exit(SD_MUTEX(un));
22416 		/*
22417 		 * Scsi_poll returns 0 (success) if the command completes and
22418 		 * the status block is STATUS_GOOD.
22419 		 */
22420 		if (sd_scsi_poll(un, start_pktp) != 0) {
22421 			scsi_destroy_pkt(start_pktp);
22422 			return (EIO);
22423 		}
22424 		scsi_destroy_pkt(start_pktp);
22425 		(void) sd_ddi_pm_resume(un);
22426 	} else {
22427 		mutex_exit(&un->un_pm_mutex);
22428 	}
22429 
22430 	mutex_enter(SD_MUTEX(un));
22431 	un->un_throttle = 0;
22432 
22433 	/*
22434 	 * The first time through, reset the specific target device.
22435 	 * However, when cpr calls sddump we know that sd is in a
22436 	 * a good state so no bus reset is required.
22437 	 * Clear sense data via Request Sense cmd.
22438 	 * In sddump we don't care about allow_bus_device_reset anymore
22439 	 */
22440 
22441 	if ((un->un_state != SD_STATE_SUSPENDED) &&
22442 	    (un->un_state != SD_STATE_DUMPING)) {
22443 
22444 		New_state(un, SD_STATE_DUMPING);
22445 
22446 		if (un->un_f_is_fibre == FALSE) {
22447 			mutex_exit(SD_MUTEX(un));
22448 			/*
22449 			 * Attempt a bus reset for parallel scsi.
22450 			 *
22451 			 * Note: A bus reset is required because on some host
22452 			 * systems (i.e. E420R) a bus device reset is
22453 			 * insufficient to reset the state of the target.
22454 			 *
22455 			 * Note: Don't issue the reset for fibre-channel,
22456 			 * because this tends to hang the bus (loop) for
22457 			 * too long while everyone is logging out and in
22458 			 * and the deadman timer for dumping will fire
22459 			 * before the dump is complete.
22460 			 */
22461 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
22462 				mutex_enter(SD_MUTEX(un));
22463 				Restore_state(un);
22464 				mutex_exit(SD_MUTEX(un));
22465 				return (EIO);
22466 			}
22467 
22468 			/* Delay to give the device some recovery time. */
22469 			drv_usecwait(10000);
22470 
22471 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
22472 				SD_INFO(SD_LOG_DUMP, un,
22473 					"sddump: sd_send_polled_RQS failed\n");
22474 			}
22475 			mutex_enter(SD_MUTEX(un));
22476 		}
22477 	}
22478 
22479 	/*
22480 	 * Convert the partition-relative block number to a
22481 	 * disk physical block number.
22482 	 */
22483 	blkno += start_block;
22484 
22485 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
22486 
22487 
22488 	/*
22489 	 * Check if the device has a non-512 block size.
22490 	 */
22491 	wr_bp = NULL;
22492 	if (NOT_DEVBSIZE(un)) {
22493 		tgt_byte_offset = blkno * un->un_sys_blocksize;
22494 		tgt_byte_count = nblk * un->un_sys_blocksize;
22495 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
22496 		    (tgt_byte_count % un->un_tgt_blocksize)) {
22497 			doing_rmw = TRUE;
22498 			/*
22499 			 * Calculate the block number and number of block
22500 			 * in terms of the media block size.
22501 			 */
22502 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22503 			tgt_nblk =
22504 			    ((tgt_byte_offset + tgt_byte_count +
22505 				(un->un_tgt_blocksize - 1)) /
22506 				un->un_tgt_blocksize) - tgt_blkno;
22507 
22508 			/*
22509 			 * Invoke the routine which is going to do read part
22510 			 * of read-modify-write.
22511 			 * Note that this routine returns a pointer to
22512 			 * a valid bp in wr_bp.
22513 			 */
22514 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
22515 			    &wr_bp);
22516 			if (err) {
22517 				mutex_exit(SD_MUTEX(un));
22518 				return (err);
22519 			}
22520 			/*
22521 			 * Offset is being calculated as -
22522 			 * (original block # * system block size) -
22523 			 * (new block # * target block size)
22524 			 */
22525 			io_start_offset =
22526 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
22527 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
22528 
22529 			ASSERT((io_start_offset >= 0) &&
22530 			    (io_start_offset < un->un_tgt_blocksize));
22531 			/*
22532 			 * Do the modify portion of read modify write.
22533 			 */
22534 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
22535 			    (size_t)nblk * un->un_sys_blocksize);
22536 		} else {
22537 			doing_rmw = FALSE;
22538 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22539 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
22540 		}
22541 
22542 		/* Convert blkno and nblk to target blocks */
22543 		blkno = tgt_blkno;
22544 		nblk = tgt_nblk;
22545 	} else {
22546 		wr_bp = &wr_buf;
22547 		bzero(wr_bp, sizeof (struct buf));
22548 		wr_bp->b_flags		= B_BUSY;
22549 		wr_bp->b_un.b_addr	= addr;
22550 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
22551 		wr_bp->b_resid		= 0;
22552 	}
22553 
22554 	mutex_exit(SD_MUTEX(un));
22555 
22556 	/*
22557 	 * Obtain a SCSI packet for the write command.
22558 	 * It should be safe to call the allocator here without
22559 	 * worrying about being locked for DVMA mapping because
22560 	 * the address we're passed is already a DVMA mapping
22561 	 *
22562 	 * We are also not going to worry about semaphore ownership
22563 	 * in the dump buffer. Dumping is single threaded at present.
22564 	 */
22565 
22566 	wr_pktp = NULL;
22567 
22568 #if defined(__i386) || defined(__amd64)
22569 	dma_resid = wr_bp->b_bcount;
22570 	oblkno = blkno;
22571 	while (dma_resid != 0) {
22572 #endif
22573 
22574 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
22575 		wr_bp->b_flags &= ~B_ERROR;
22576 
22577 #if defined(__i386) || defined(__amd64)
22578 		blkno = oblkno +
22579 			((wr_bp->b_bcount - dma_resid) /
22580 			    un->un_tgt_blocksize);
22581 		nblk = dma_resid / un->un_tgt_blocksize;
22582 
22583 		if (wr_pktp) {
22584 			/* Partial DMA transfers after initial transfer */
22585 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
22586 			    blkno, nblk);
22587 		} else {
22588 			/* Initial transfer */
22589 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22590 			    un->un_pkt_flags, NULL_FUNC, NULL,
22591 			    blkno, nblk);
22592 		}
22593 #else
22594 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22595 		    0, NULL_FUNC, NULL, blkno, nblk);
22596 #endif
22597 
22598 		if (rval == 0) {
22599 			/* We were given a SCSI packet, continue. */
22600 			break;
22601 		}
22602 
22603 		if (i == 0) {
22604 			if (wr_bp->b_flags & B_ERROR) {
22605 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22606 				    "no resources for dumping; "
22607 				    "error code: 0x%x, retrying",
22608 				    geterror(wr_bp));
22609 			} else {
22610 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22611 				    "no resources for dumping; retrying");
22612 			}
22613 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
22614 			if (wr_bp->b_flags & B_ERROR) {
22615 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22616 				    "no resources for dumping; error code: "
22617 				    "0x%x, retrying\n", geterror(wr_bp));
22618 			}
22619 		} else {
22620 			if (wr_bp->b_flags & B_ERROR) {
22621 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22622 				    "no resources for dumping; "
22623 				    "error code: 0x%x, retries failed, "
22624 				    "giving up.\n", geterror(wr_bp));
22625 			} else {
22626 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22627 				    "no resources for dumping; "
22628 				    "retries failed, giving up.\n");
22629 			}
22630 			mutex_enter(SD_MUTEX(un));
22631 			Restore_state(un);
22632 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
22633 				mutex_exit(SD_MUTEX(un));
22634 				scsi_free_consistent_buf(wr_bp);
22635 			} else {
22636 				mutex_exit(SD_MUTEX(un));
22637 			}
22638 			return (EIO);
22639 		}
22640 		drv_usecwait(10000);
22641 	}
22642 
22643 #if defined(__i386) || defined(__amd64)
22644 	/*
22645 	 * save the resid from PARTIAL_DMA
22646 	 */
22647 	dma_resid = wr_pktp->pkt_resid;
22648 	if (dma_resid != 0)
22649 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
22650 	wr_pktp->pkt_resid = 0;
22651 #endif
22652 
22653 	/* SunBug 1222170 */
22654 	wr_pktp->pkt_flags = FLAG_NOINTR;
22655 
22656 	err = EIO;
22657 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
22658 
22659 		/*
22660 		 * Scsi_poll returns 0 (success) if the command completes and
22661 		 * the status block is STATUS_GOOD.  We should only check
22662 		 * errors if this condition is not true.  Even then we should
22663 		 * send our own request sense packet only if we have a check
22664 		 * condition and auto request sense has not been performed by
22665 		 * the hba.
22666 		 */
22667 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
22668 
22669 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
22670 		    (wr_pktp->pkt_resid == 0)) {
22671 			err = SD_SUCCESS;
22672 			break;
22673 		}
22674 
22675 		/*
22676 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
22677 		 */
22678 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
22679 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22680 			    "Device is gone\n");
22681 			break;
22682 		}
22683 
22684 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
22685 			SD_INFO(SD_LOG_DUMP, un,
22686 			    "sddump: write failed with CHECK, try # %d\n", i);
22687 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
22688 				(void) sd_send_polled_RQS(un);
22689 			}
22690 
22691 			continue;
22692 		}
22693 
22694 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
22695 			int reset_retval = 0;
22696 
22697 			SD_INFO(SD_LOG_DUMP, un,
22698 			    "sddump: write failed with BUSY, try # %d\n", i);
22699 
22700 			if (un->un_f_lun_reset_enabled == TRUE) {
22701 				reset_retval = scsi_reset(SD_ADDRESS(un),
22702 				    RESET_LUN);
22703 			}
22704 			if (reset_retval == 0) {
22705 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22706 			}
22707 			(void) sd_send_polled_RQS(un);
22708 
22709 		} else {
22710 			SD_INFO(SD_LOG_DUMP, un,
22711 			    "sddump: write failed with 0x%x, try # %d\n",
22712 			    SD_GET_PKT_STATUS(wr_pktp), i);
22713 			mutex_enter(SD_MUTEX(un));
22714 			sd_reset_target(un, wr_pktp);
22715 			mutex_exit(SD_MUTEX(un));
22716 		}
22717 
22718 		/*
22719 		 * If we are not getting anywhere with lun/target resets,
22720 		 * let's reset the bus.
22721 		 */
22722 		if (i == SD_NDUMP_RETRIES/2) {
22723 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22724 			(void) sd_send_polled_RQS(un);
22725 		}
22726 
22727 	}
22728 #if defined(__i386) || defined(__amd64)
22729 	}	/* dma_resid */
22730 #endif
22731 
22732 	scsi_destroy_pkt(wr_pktp);
22733 	mutex_enter(SD_MUTEX(un));
22734 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
22735 		mutex_exit(SD_MUTEX(un));
22736 		scsi_free_consistent_buf(wr_bp);
22737 	} else {
22738 		mutex_exit(SD_MUTEX(un));
22739 	}
22740 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
22741 	return (err);
22742 }
22743 
22744 /*
22745  *    Function: sd_scsi_poll()
22746  *
22747  * Description: This is a wrapper for the scsi_poll call.
22748  *
22749  *   Arguments: sd_lun - The unit structure
22750  *              scsi_pkt - The scsi packet being sent to the device.
22751  *
22752  * Return Code: 0 - Command completed successfully with good status
22753  *             -1 - Command failed.  This could indicate a check condition
22754  *                  or other status value requiring recovery action.
22755  *
22756  */
22757 
22758 static int
22759 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
22760 {
22761 	int status;
22762 
22763 	ASSERT(un != NULL);
22764 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22765 	ASSERT(pktp != NULL);
22766 
22767 	status = SD_SUCCESS;
22768 
22769 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
22770 		pktp->pkt_flags |= un->un_tagflags;
22771 		pktp->pkt_flags &= ~FLAG_NODISCON;
22772 	}
22773 
22774 	status = sd_ddi_scsi_poll(pktp);
22775 	/*
22776 	 * Scsi_poll returns 0 (success) if the command completes and the
22777 	 * status block is STATUS_GOOD.  We should only check errors if this
22778 	 * condition is not true.  Even then we should send our own request
22779 	 * sense packet only if we have a check condition and auto
22780 	 * request sense has not been performed by the hba.
22781 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
22782 	 */
22783 	if ((status != SD_SUCCESS) &&
22784 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
22785 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
22786 	    (pktp->pkt_reason != CMD_DEV_GONE))
22787 		(void) sd_send_polled_RQS(un);
22788 
22789 	return (status);
22790 }
22791 
22792 /*
22793  *    Function: sd_send_polled_RQS()
22794  *
22795  * Description: This sends the request sense command to a device.
22796  *
22797  *   Arguments: sd_lun - The unit structure
22798  *
22799  * Return Code: 0 - Command completed successfully with good status
22800  *             -1 - Command failed.
22801  *
22802  */
22803 
22804 static int
22805 sd_send_polled_RQS(struct sd_lun *un)
22806 {
22807 	int	ret_val;
22808 	struct	scsi_pkt	*rqs_pktp;
22809 	struct	buf		*rqs_bp;
22810 
22811 	ASSERT(un != NULL);
22812 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22813 
22814 	ret_val = SD_SUCCESS;
22815 
22816 	rqs_pktp = un->un_rqs_pktp;
22817 	rqs_bp	 = un->un_rqs_bp;
22818 
22819 	mutex_enter(SD_MUTEX(un));
22820 
22821 	if (un->un_sense_isbusy) {
22822 		ret_val = SD_FAILURE;
22823 		mutex_exit(SD_MUTEX(un));
22824 		return (ret_val);
22825 	}
22826 
22827 	/*
22828 	 * If the request sense buffer (and packet) is not in use,
22829 	 * let's set the un_sense_isbusy and send our packet
22830 	 */
22831 	un->un_sense_isbusy 	= 1;
22832 	rqs_pktp->pkt_resid  	= 0;
22833 	rqs_pktp->pkt_reason 	= 0;
22834 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
22835 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
22836 
22837 	mutex_exit(SD_MUTEX(un));
22838 
22839 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
22840 	    " 0x%p\n", rqs_bp->b_un.b_addr);
22841 
22842 	/*
22843 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
22844 	 * axle - it has a call into us!
22845 	 */
22846 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
22847 		SD_INFO(SD_LOG_COMMON, un,
22848 		    "sd_send_polled_RQS: RQS failed\n");
22849 	}
22850 
22851 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
22852 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
22853 
22854 	mutex_enter(SD_MUTEX(un));
22855 	un->un_sense_isbusy = 0;
22856 	mutex_exit(SD_MUTEX(un));
22857 
22858 	return (ret_val);
22859 }
22860 
22861 /*
22862  * Defines needed for localized version of the scsi_poll routine.
22863  */
22864 #define	SD_CSEC		10000			/* usecs */
22865 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
22866 
22867 
22868 /*
22869  *    Function: sd_ddi_scsi_poll()
22870  *
22871  * Description: Localized version of the scsi_poll routine.  The purpose is to
22872  *		send a scsi_pkt to a device as a polled command.  This version
22873  *		is to ensure more robust handling of transport errors.
22874  *		Specifically this routine cures not ready, coming ready
22875  *		transition for power up and reset of sonoma's.  This can take
22876  *		up to 45 seconds for power-on and 20 seconds for reset of a
22877  * 		sonoma lun.
22878  *
22879  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
22880  *
22881  * Return Code: 0 - Command completed successfully with good status
22882  *             -1 - Command failed.
22883  *
22884  */
22885 
22886 static int
22887 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
22888 {
22889 	int busy_count;
22890 	int timeout;
22891 	int rval = SD_FAILURE;
22892 	int savef;
22893 	uint8_t *sensep;
22894 	long savet;
22895 	void (*savec)();
22896 	/*
22897 	 * The following is defined in machdep.c and is used in determining if
22898 	 * the scsi transport system will do polled I/O instead of interrupt
22899 	 * I/O when called from xx_dump().
22900 	 */
22901 	extern int do_polled_io;
22902 
22903 	/*
22904 	 * save old flags in pkt, to restore at end
22905 	 */
22906 	savef = pkt->pkt_flags;
22907 	savec = pkt->pkt_comp;
22908 	savet = pkt->pkt_time;
22909 
22910 	pkt->pkt_flags |= FLAG_NOINTR;
22911 
22912 	/*
22913 	 * XXX there is nothing in the SCSA spec that states that we should not
22914 	 * do a callback for polled cmds; however, removing this will break sd
22915 	 * and probably other target drivers
22916 	 */
22917 	pkt->pkt_comp = NULL;
22918 
22919 	/*
22920 	 * we don't like a polled command without timeout.
22921 	 * 60 seconds seems long enough.
22922 	 */
22923 	if (pkt->pkt_time == 0) {
22924 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
22925 	}
22926 
22927 	/*
22928 	 * Send polled cmd.
22929 	 *
22930 	 * We do some error recovery for various errors.  Tran_busy,
22931 	 * queue full, and non-dispatched commands are retried every 10 msec.
22932 	 * as they are typically transient failures.  Busy status and Not
22933 	 * Ready are retried every second as this status takes a while to
22934 	 * change.  Unit attention is retried for pkt_time (60) times
22935 	 * with no delay.
22936 	 */
22937 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
22938 
22939 	for (busy_count = 0; busy_count < timeout; busy_count++) {
22940 		int rc;
22941 		int poll_delay;
22942 
22943 		/*
22944 		 * Initialize pkt status variables.
22945 		 */
22946 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
22947 
22948 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
22949 			if (rc != TRAN_BUSY) {
22950 				/* Transport failed - give up. */
22951 				break;
22952 			} else {
22953 				/* Transport busy - try again. */
22954 				poll_delay = 1 * SD_CSEC; /* 10 msec */
22955 			}
22956 		} else {
22957 			/*
22958 			 * Transport accepted - check pkt status.
22959 			 */
22960 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
22961 			if (pkt->pkt_reason == CMD_CMPLT &&
22962 			    rc == STATUS_CHECK &&
22963 			    pkt->pkt_state & STATE_ARQ_DONE) {
22964 				struct scsi_arq_status *arqstat =
22965 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
22966 
22967 				sensep = (uint8_t *)&arqstat->sts_sensedata;
22968 			} else {
22969 				sensep = NULL;
22970 			}
22971 
22972 			if ((pkt->pkt_reason == CMD_CMPLT) &&
22973 			    (rc == STATUS_GOOD)) {
22974 				/* No error - we're done */
22975 				rval = SD_SUCCESS;
22976 				break;
22977 
22978 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
22979 				/* Lost connection - give up */
22980 				break;
22981 
22982 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
22983 			    (pkt->pkt_state == 0)) {
22984 				/* Pkt not dispatched - try again. */
22985 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
22986 
22987 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
22988 			    (rc == STATUS_QFULL)) {
22989 				/* Queue full - try again. */
22990 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
22991 
22992 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
22993 			    (rc == STATUS_BUSY)) {
22994 				/* Busy - try again. */
22995 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
22996 				busy_count += (SD_SEC_TO_CSEC - 1);
22997 
22998 			} else if ((sensep != NULL) &&
22999 			    (scsi_sense_key(sensep) ==
23000 				KEY_UNIT_ATTENTION)) {
23001 				/* Unit Attention - try again */
23002 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
23003 				continue;
23004 
23005 			} else if ((sensep != NULL) &&
23006 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23007 			    (scsi_sense_asc(sensep) == 0x04) &&
23008 			    (scsi_sense_ascq(sensep) == 0x01)) {
23009 				/* Not ready -> ready - try again. */
23010 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23011 				busy_count += (SD_SEC_TO_CSEC - 1);
23012 
23013 			} else {
23014 				/* BAD status - give up. */
23015 				break;
23016 			}
23017 		}
23018 
23019 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
23020 		    !do_polled_io) {
23021 			delay(drv_usectohz(poll_delay));
23022 		} else {
23023 			/* we busy wait during cpr_dump or interrupt threads */
23024 			drv_usecwait(poll_delay);
23025 		}
23026 	}
23027 
23028 	pkt->pkt_flags = savef;
23029 	pkt->pkt_comp = savec;
23030 	pkt->pkt_time = savet;
23031 	return (rval);
23032 }
23033 
23034 
23035 /*
23036  *    Function: sd_persistent_reservation_in_read_keys
23037  *
23038  * Description: This routine is the driver entry point for handling CD-ROM
23039  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23040  *		by sending the SCSI-3 PRIN commands to the device.
23041  *		Processes the read keys command response by copying the
23042  *		reservation key information into the user provided buffer.
23043  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23044  *
23045  *   Arguments: un   -  Pointer to soft state struct for the target.
23046  *		usrp -	user provided pointer to multihost Persistent In Read
23047  *			Keys structure (mhioc_inkeys_t)
23048  *		flag -	this argument is a pass through to ddi_copyxxx()
23049  *			directly from the mode argument of ioctl().
23050  *
23051  * Return Code: 0   - Success
23052  *		EACCES
23053  *		ENOTSUP
23054  *		errno return code from sd_send_scsi_cmd()
23055  *
23056  *     Context: Can sleep. Does not return until command is completed.
23057  */
23058 
23059 static int
23060 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23061     mhioc_inkeys_t *usrp, int flag)
23062 {
23063 #ifdef _MULTI_DATAMODEL
23064 	struct mhioc_key_list32	li32;
23065 #endif
23066 	sd_prin_readkeys_t	*in;
23067 	mhioc_inkeys_t		*ptr;
23068 	mhioc_key_list_t	li;
23069 	uchar_t			*data_bufp;
23070 	int 			data_len;
23071 	int			rval;
23072 	size_t			copysz;
23073 
23074 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23075 		return (EINVAL);
23076 	}
23077 	bzero(&li, sizeof (mhioc_key_list_t));
23078 
23079 	/*
23080 	 * Get the listsize from user
23081 	 */
23082 #ifdef _MULTI_DATAMODEL
23083 
23084 	switch (ddi_model_convert_from(flag & FMODELS)) {
23085 	case DDI_MODEL_ILP32:
23086 		copysz = sizeof (struct mhioc_key_list32);
23087 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23088 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23089 			    "sd_persistent_reservation_in_read_keys: "
23090 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23091 			rval = EFAULT;
23092 			goto done;
23093 		}
23094 		li.listsize = li32.listsize;
23095 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23096 		break;
23097 
23098 	case DDI_MODEL_NONE:
23099 		copysz = sizeof (mhioc_key_list_t);
23100 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23101 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23102 			    "sd_persistent_reservation_in_read_keys: "
23103 			    "failed ddi_copyin: mhioc_key_list_t\n");
23104 			rval = EFAULT;
23105 			goto done;
23106 		}
23107 		break;
23108 	}
23109 
23110 #else /* ! _MULTI_DATAMODEL */
23111 	copysz = sizeof (mhioc_key_list_t);
23112 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23113 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23114 		    "sd_persistent_reservation_in_read_keys: "
23115 		    "failed ddi_copyin: mhioc_key_list_t\n");
23116 		rval = EFAULT;
23117 		goto done;
23118 	}
23119 #endif
23120 
23121 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23122 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23123 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23124 
23125 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23126 	    data_len, data_bufp)) != 0) {
23127 		goto done;
23128 	}
23129 	in = (sd_prin_readkeys_t *)data_bufp;
23130 	ptr->generation = BE_32(in->generation);
23131 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23132 
23133 	/*
23134 	 * Return the min(listsize, listlen) keys
23135 	 */
23136 #ifdef _MULTI_DATAMODEL
23137 
23138 	switch (ddi_model_convert_from(flag & FMODELS)) {
23139 	case DDI_MODEL_ILP32:
23140 		li32.listlen = li.listlen;
23141 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23142 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23143 			    "sd_persistent_reservation_in_read_keys: "
23144 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23145 			rval = EFAULT;
23146 			goto done;
23147 		}
23148 		break;
23149 
23150 	case DDI_MODEL_NONE:
23151 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23152 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23153 			    "sd_persistent_reservation_in_read_keys: "
23154 			    "failed ddi_copyout: mhioc_key_list_t\n");
23155 			rval = EFAULT;
23156 			goto done;
23157 		}
23158 		break;
23159 	}
23160 
23161 #else /* ! _MULTI_DATAMODEL */
23162 
23163 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23164 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23165 		    "sd_persistent_reservation_in_read_keys: "
23166 		    "failed ddi_copyout: mhioc_key_list_t\n");
23167 		rval = EFAULT;
23168 		goto done;
23169 	}
23170 
23171 #endif /* _MULTI_DATAMODEL */
23172 
23173 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23174 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23175 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23176 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23177 		    "sd_persistent_reservation_in_read_keys: "
23178 		    "failed ddi_copyout: keylist\n");
23179 		rval = EFAULT;
23180 	}
23181 done:
23182 	kmem_free(data_bufp, data_len);
23183 	return (rval);
23184 }
23185 
23186 
23187 /*
23188  *    Function: sd_persistent_reservation_in_read_resv
23189  *
23190  * Description: This routine is the driver entry point for handling CD-ROM
23191  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23192  *		by sending the SCSI-3 PRIN commands to the device.
23193  *		Process the read persistent reservations command response by
23194  *		copying the reservation information into the user provided
23195  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23196  *
23197  *   Arguments: un   -  Pointer to soft state struct for the target.
23198  *		usrp -	user provided pointer to multihost Persistent In Read
23199  *			Keys structure (mhioc_inkeys_t)
23200  *		flag -	this argument is a pass through to ddi_copyxxx()
23201  *			directly from the mode argument of ioctl().
23202  *
23203  * Return Code: 0   - Success
23204  *		EACCES
23205  *		ENOTSUP
23206  *		errno return code from sd_send_scsi_cmd()
23207  *
23208  *     Context: Can sleep. Does not return until command is completed.
23209  */
23210 
23211 static int
23212 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23213     mhioc_inresvs_t *usrp, int flag)
23214 {
23215 #ifdef _MULTI_DATAMODEL
23216 	struct mhioc_resv_desc_list32 resvlist32;
23217 #endif
23218 	sd_prin_readresv_t	*in;
23219 	mhioc_inresvs_t		*ptr;
23220 	sd_readresv_desc_t	*readresv_ptr;
23221 	mhioc_resv_desc_list_t	resvlist;
23222 	mhioc_resv_desc_t 	resvdesc;
23223 	uchar_t			*data_bufp;
23224 	int 			data_len;
23225 	int			rval;
23226 	int			i;
23227 	size_t			copysz;
23228 	mhioc_resv_desc_t	*bufp;
23229 
23230 	if ((ptr = usrp) == NULL) {
23231 		return (EINVAL);
23232 	}
23233 
23234 	/*
23235 	 * Get the listsize from user
23236 	 */
23237 #ifdef _MULTI_DATAMODEL
23238 	switch (ddi_model_convert_from(flag & FMODELS)) {
23239 	case DDI_MODEL_ILP32:
23240 		copysz = sizeof (struct mhioc_resv_desc_list32);
23241 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23242 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23243 			    "sd_persistent_reservation_in_read_resv: "
23244 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23245 			rval = EFAULT;
23246 			goto done;
23247 		}
23248 		resvlist.listsize = resvlist32.listsize;
23249 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23250 		break;
23251 
23252 	case DDI_MODEL_NONE:
23253 		copysz = sizeof (mhioc_resv_desc_list_t);
23254 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23255 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23256 			    "sd_persistent_reservation_in_read_resv: "
23257 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23258 			rval = EFAULT;
23259 			goto done;
23260 		}
23261 		break;
23262 	}
23263 #else /* ! _MULTI_DATAMODEL */
23264 	copysz = sizeof (mhioc_resv_desc_list_t);
23265 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23266 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23267 		    "sd_persistent_reservation_in_read_resv: "
23268 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23269 		rval = EFAULT;
23270 		goto done;
23271 	}
23272 #endif /* ! _MULTI_DATAMODEL */
23273 
23274 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23275 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23276 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23277 
23278 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23279 	    data_len, data_bufp)) != 0) {
23280 		goto done;
23281 	}
23282 	in = (sd_prin_readresv_t *)data_bufp;
23283 	ptr->generation = BE_32(in->generation);
23284 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23285 
23286 	/*
23287 	 * Return the min(listsize, listlen( keys
23288 	 */
23289 #ifdef _MULTI_DATAMODEL
23290 
23291 	switch (ddi_model_convert_from(flag & FMODELS)) {
23292 	case DDI_MODEL_ILP32:
23293 		resvlist32.listlen = resvlist.listlen;
23294 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23295 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23296 			    "sd_persistent_reservation_in_read_resv: "
23297 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23298 			rval = EFAULT;
23299 			goto done;
23300 		}
23301 		break;
23302 
23303 	case DDI_MODEL_NONE:
23304 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23305 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23306 			    "sd_persistent_reservation_in_read_resv: "
23307 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23308 			rval = EFAULT;
23309 			goto done;
23310 		}
23311 		break;
23312 	}
23313 
23314 #else /* ! _MULTI_DATAMODEL */
23315 
23316 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23317 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23318 		    "sd_persistent_reservation_in_read_resv: "
23319 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23320 		rval = EFAULT;
23321 		goto done;
23322 	}
23323 
23324 #endif /* ! _MULTI_DATAMODEL */
23325 
23326 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
23327 	bufp = resvlist.list;
23328 	copysz = sizeof (mhioc_resv_desc_t);
23329 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
23330 	    i++, readresv_ptr++, bufp++) {
23331 
23332 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
23333 		    MHIOC_RESV_KEY_SIZE);
23334 		resvdesc.type  = readresv_ptr->type;
23335 		resvdesc.scope = readresv_ptr->scope;
23336 		resvdesc.scope_specific_addr =
23337 		    BE_32(readresv_ptr->scope_specific_addr);
23338 
23339 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
23340 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23341 			    "sd_persistent_reservation_in_read_resv: "
23342 			    "failed ddi_copyout: resvlist\n");
23343 			rval = EFAULT;
23344 			goto done;
23345 		}
23346 	}
23347 done:
23348 	kmem_free(data_bufp, data_len);
23349 	return (rval);
23350 }
23351 
23352 
23353 /*
23354  *    Function: sr_change_blkmode()
23355  *
23356  * Description: This routine is the driver entry point for handling CD-ROM
23357  *		block mode ioctl requests. Support for returning and changing
23358  *		the current block size in use by the device is implemented. The
23359  *		LBA size is changed via a MODE SELECT Block Descriptor.
23360  *
23361  *		This routine issues a mode sense with an allocation length of
23362  *		12 bytes for the mode page header and a single block descriptor.
23363  *
23364  *   Arguments: dev - the device 'dev_t'
23365  *		cmd - the request type; one of CDROMGBLKMODE (get) or
23366  *		      CDROMSBLKMODE (set)
23367  *		data - current block size or requested block size
23368  *		flag - this argument is a pass through to ddi_copyxxx() directly
23369  *		       from the mode argument of ioctl().
23370  *
23371  * Return Code: the code returned by sd_send_scsi_cmd()
23372  *		EINVAL if invalid arguments are provided
23373  *		EFAULT if ddi_copyxxx() fails
23374  *		ENXIO if fail ddi_get_soft_state
23375  *		EIO if invalid mode sense block descriptor length
23376  *
23377  */
23378 
23379 static int
23380 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
23381 {
23382 	struct sd_lun			*un = NULL;
23383 	struct mode_header		*sense_mhp, *select_mhp;
23384 	struct block_descriptor		*sense_desc, *select_desc;
23385 	int				current_bsize;
23386 	int				rval = EINVAL;
23387 	uchar_t				*sense = NULL;
23388 	uchar_t				*select = NULL;
23389 
23390 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
23391 
23392 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23393 		return (ENXIO);
23394 	}
23395 
23396 	/*
23397 	 * The block length is changed via the Mode Select block descriptor, the
23398 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
23399 	 * required as part of this routine. Therefore the mode sense allocation
23400 	 * length is specified to be the length of a mode page header and a
23401 	 * block descriptor.
23402 	 */
23403 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23404 
23405 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23406 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
23407 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23408 		    "sr_change_blkmode: Mode Sense Failed\n");
23409 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23410 		return (rval);
23411 	}
23412 
23413 	/* Check the block descriptor len to handle only 1 block descriptor */
23414 	sense_mhp = (struct mode_header *)sense;
23415 	if ((sense_mhp->bdesc_length == 0) ||
23416 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
23417 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23418 		    "sr_change_blkmode: Mode Sense returned invalid block"
23419 		    " descriptor length\n");
23420 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23421 		return (EIO);
23422 	}
23423 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
23424 	current_bsize = ((sense_desc->blksize_hi << 16) |
23425 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
23426 
23427 	/* Process command */
23428 	switch (cmd) {
23429 	case CDROMGBLKMODE:
23430 		/* Return the block size obtained during the mode sense */
23431 		if (ddi_copyout(&current_bsize, (void *)data,
23432 		    sizeof (int), flag) != 0)
23433 			rval = EFAULT;
23434 		break;
23435 	case CDROMSBLKMODE:
23436 		/* Validate the requested block size */
23437 		switch (data) {
23438 		case CDROM_BLK_512:
23439 		case CDROM_BLK_1024:
23440 		case CDROM_BLK_2048:
23441 		case CDROM_BLK_2056:
23442 		case CDROM_BLK_2336:
23443 		case CDROM_BLK_2340:
23444 		case CDROM_BLK_2352:
23445 		case CDROM_BLK_2368:
23446 		case CDROM_BLK_2448:
23447 		case CDROM_BLK_2646:
23448 		case CDROM_BLK_2647:
23449 			break;
23450 		default:
23451 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23452 			    "sr_change_blkmode: "
23453 			    "Block Size '%ld' Not Supported\n", data);
23454 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23455 			return (EINVAL);
23456 		}
23457 
23458 		/*
23459 		 * The current block size matches the requested block size so
23460 		 * there is no need to send the mode select to change the size
23461 		 */
23462 		if (current_bsize == data) {
23463 			break;
23464 		}
23465 
23466 		/* Build the select data for the requested block size */
23467 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23468 		select_mhp = (struct mode_header *)select;
23469 		select_desc =
23470 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
23471 		/*
23472 		 * The LBA size is changed via the block descriptor, so the
23473 		 * descriptor is built according to the user data
23474 		 */
23475 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
23476 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
23477 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
23478 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
23479 
23480 		/* Send the mode select for the requested block size */
23481 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23482 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23483 		    SD_PATH_STANDARD)) != 0) {
23484 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23485 			    "sr_change_blkmode: Mode Select Failed\n");
23486 			/*
23487 			 * The mode select failed for the requested block size,
23488 			 * so reset the data for the original block size and
23489 			 * send it to the target. The error is indicated by the
23490 			 * return value for the failed mode select.
23491 			 */
23492 			select_desc->blksize_hi  = sense_desc->blksize_hi;
23493 			select_desc->blksize_mid = sense_desc->blksize_mid;
23494 			select_desc->blksize_lo  = sense_desc->blksize_lo;
23495 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23496 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23497 			    SD_PATH_STANDARD);
23498 		} else {
23499 			ASSERT(!mutex_owned(SD_MUTEX(un)));
23500 			mutex_enter(SD_MUTEX(un));
23501 			sd_update_block_info(un, (uint32_t)data, 0);
23502 			mutex_exit(SD_MUTEX(un));
23503 		}
23504 		break;
23505 	default:
23506 		/* should not reach here, but check anyway */
23507 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23508 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
23509 		rval = EINVAL;
23510 		break;
23511 	}
23512 
23513 	if (select) {
23514 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
23515 	}
23516 	if (sense) {
23517 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23518 	}
23519 	return (rval);
23520 }
23521 
23522 
23523 /*
23524  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
23525  * implement driver support for getting and setting the CD speed. The command
23526  * set used will be based on the device type. If the device has not been
23527  * identified as MMC the Toshiba vendor specific mode page will be used. If
23528  * the device is MMC but does not support the Real Time Streaming feature
23529  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
23530  * be used to read the speed.
23531  */
23532 
23533 /*
23534  *    Function: sr_change_speed()
23535  *
23536  * Description: This routine is the driver entry point for handling CD-ROM
23537  *		drive speed ioctl requests for devices supporting the Toshiba
23538  *		vendor specific drive speed mode page. Support for returning
23539  *		and changing the current drive speed in use by the device is
23540  *		implemented.
23541  *
23542  *   Arguments: dev - the device 'dev_t'
23543  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
23544  *		      CDROMSDRVSPEED (set)
23545  *		data - current drive speed or requested drive speed
23546  *		flag - this argument is a pass through to ddi_copyxxx() directly
23547  *		       from the mode argument of ioctl().
23548  *
23549  * Return Code: the code returned by sd_send_scsi_cmd()
23550  *		EINVAL if invalid arguments are provided
23551  *		EFAULT if ddi_copyxxx() fails
23552  *		ENXIO if fail ddi_get_soft_state
23553  *		EIO if invalid mode sense block descriptor length
23554  */
23555 
23556 static int
23557 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
23558 {
23559 	struct sd_lun			*un = NULL;
23560 	struct mode_header		*sense_mhp, *select_mhp;
23561 	struct mode_speed		*sense_page, *select_page;
23562 	int				current_speed;
23563 	int				rval = EINVAL;
23564 	int				bd_len;
23565 	uchar_t				*sense = NULL;
23566 	uchar_t				*select = NULL;
23567 
23568 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
23569 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23570 		return (ENXIO);
23571 	}
23572 
23573 	/*
23574 	 * Note: The drive speed is being modified here according to a Toshiba
23575 	 * vendor specific mode page (0x31).
23576 	 */
23577 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
23578 
23579 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23580 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
23581 	    SD_PATH_STANDARD)) != 0) {
23582 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23583 		    "sr_change_speed: Mode Sense Failed\n");
23584 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23585 		return (rval);
23586 	}
23587 	sense_mhp  = (struct mode_header *)sense;
23588 
23589 	/* Check the block descriptor len to handle only 1 block descriptor */
23590 	bd_len = sense_mhp->bdesc_length;
23591 	if (bd_len > MODE_BLK_DESC_LENGTH) {
23592 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23593 		    "sr_change_speed: Mode Sense returned invalid block "
23594 		    "descriptor length\n");
23595 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23596 		return (EIO);
23597 	}
23598 
23599 	sense_page = (struct mode_speed *)
23600 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
23601 	current_speed = sense_page->speed;
23602 
23603 	/* Process command */
23604 	switch (cmd) {
23605 	case CDROMGDRVSPEED:
23606 		/* Return the drive speed obtained during the mode sense */
23607 		if (current_speed == 0x2) {
23608 			current_speed = CDROM_TWELVE_SPEED;
23609 		}
23610 		if (ddi_copyout(&current_speed, (void *)data,
23611 		    sizeof (int), flag) != 0) {
23612 			rval = EFAULT;
23613 		}
23614 		break;
23615 	case CDROMSDRVSPEED:
23616 		/* Validate the requested drive speed */
23617 		switch ((uchar_t)data) {
23618 		case CDROM_TWELVE_SPEED:
23619 			data = 0x2;
23620 			/*FALLTHROUGH*/
23621 		case CDROM_NORMAL_SPEED:
23622 		case CDROM_DOUBLE_SPEED:
23623 		case CDROM_QUAD_SPEED:
23624 		case CDROM_MAXIMUM_SPEED:
23625 			break;
23626 		default:
23627 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23628 			    "sr_change_speed: "
23629 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
23630 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23631 			return (EINVAL);
23632 		}
23633 
23634 		/*
23635 		 * The current drive speed matches the requested drive speed so
23636 		 * there is no need to send the mode select to change the speed
23637 		 */
23638 		if (current_speed == data) {
23639 			break;
23640 		}
23641 
23642 		/* Build the select data for the requested drive speed */
23643 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
23644 		select_mhp = (struct mode_header *)select;
23645 		select_mhp->bdesc_length = 0;
23646 		select_page =
23647 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
23648 		select_page =
23649 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
23650 		select_page->mode_page.code = CDROM_MODE_SPEED;
23651 		select_page->mode_page.length = 2;
23652 		select_page->speed = (uchar_t)data;
23653 
23654 		/* Send the mode select for the requested block size */
23655 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
23656 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
23657 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
23658 			/*
23659 			 * The mode select failed for the requested drive speed,
23660 			 * so reset the data for the original drive speed and
23661 			 * send it to the target. The error is indicated by the
23662 			 * return value for the failed mode select.
23663 			 */
23664 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23665 			    "sr_drive_speed: Mode Select Failed\n");
23666 			select_page->speed = sense_page->speed;
23667 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
23668 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
23669 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
23670 		}
23671 		break;
23672 	default:
23673 		/* should not reach here, but check anyway */
23674 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23675 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
23676 		rval = EINVAL;
23677 		break;
23678 	}
23679 
23680 	if (select) {
23681 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
23682 	}
23683 	if (sense) {
23684 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23685 	}
23686 
23687 	return (rval);
23688 }
23689 
23690 
23691 /*
23692  *    Function: sr_atapi_change_speed()
23693  *
23694  * Description: This routine is the driver entry point for handling CD-ROM
23695  *		drive speed ioctl requests for MMC devices that do not support
23696  *		the Real Time Streaming feature (0x107).
23697  *
23698  *		Note: This routine will use the SET SPEED command which may not
23699  *		be supported by all devices.
23700  *
23701  *   Arguments: dev- the device 'dev_t'
23702  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
23703  *		     CDROMSDRVSPEED (set)
23704  *		data- current drive speed or requested drive speed
23705  *		flag- this argument is a pass through to ddi_copyxxx() directly
23706  *		      from the mode argument of ioctl().
23707  *
23708  * Return Code: the code returned by sd_send_scsi_cmd()
23709  *		EINVAL if invalid arguments are provided
23710  *		EFAULT if ddi_copyxxx() fails
23711  *		ENXIO if fail ddi_get_soft_state
23712  *		EIO if invalid mode sense block descriptor length
23713  */
23714 
23715 static int
23716 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
23717 {
23718 	struct sd_lun			*un;
23719 	struct uscsi_cmd		*com = NULL;
23720 	struct mode_header_grp2		*sense_mhp;
23721 	uchar_t				*sense_page;
23722 	uchar_t				*sense = NULL;
23723 	char				cdb[CDB_GROUP5];
23724 	int				bd_len;
23725 	int				current_speed = 0;
23726 	int				max_speed = 0;
23727 	int				rval;
23728 
23729 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
23730 
23731 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23732 		return (ENXIO);
23733 	}
23734 
23735 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
23736 
23737 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
23738 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
23739 	    SD_PATH_STANDARD)) != 0) {
23740 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23741 		    "sr_atapi_change_speed: Mode Sense Failed\n");
23742 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23743 		return (rval);
23744 	}
23745 
23746 	/* Check the block descriptor len to handle only 1 block descriptor */
23747 	sense_mhp = (struct mode_header_grp2 *)sense;
23748 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
23749 	if (bd_len > MODE_BLK_DESC_LENGTH) {
23750 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23751 		    "sr_atapi_change_speed: Mode Sense returned invalid "
23752 		    "block descriptor length\n");
23753 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23754 		return (EIO);
23755 	}
23756 
23757 	/* Calculate the current and maximum drive speeds */
23758 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
23759 	current_speed = (sense_page[14] << 8) | sense_page[15];
23760 	max_speed = (sense_page[8] << 8) | sense_page[9];
23761 
23762 	/* Process the command */
23763 	switch (cmd) {
23764 	case CDROMGDRVSPEED:
23765 		current_speed /= SD_SPEED_1X;
23766 		if (ddi_copyout(&current_speed, (void *)data,
23767 		    sizeof (int), flag) != 0)
23768 			rval = EFAULT;
23769 		break;
23770 	case CDROMSDRVSPEED:
23771 		/* Convert the speed code to KB/sec */
23772 		switch ((uchar_t)data) {
23773 		case CDROM_NORMAL_SPEED:
23774 			current_speed = SD_SPEED_1X;
23775 			break;
23776 		case CDROM_DOUBLE_SPEED:
23777 			current_speed = 2 * SD_SPEED_1X;
23778 			break;
23779 		case CDROM_QUAD_SPEED:
23780 			current_speed = 4 * SD_SPEED_1X;
23781 			break;
23782 		case CDROM_TWELVE_SPEED:
23783 			current_speed = 12 * SD_SPEED_1X;
23784 			break;
23785 		case CDROM_MAXIMUM_SPEED:
23786 			current_speed = 0xffff;
23787 			break;
23788 		default:
23789 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23790 			    "sr_atapi_change_speed: invalid drive speed %d\n",
23791 			    (uchar_t)data);
23792 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23793 			return (EINVAL);
23794 		}
23795 
23796 		/* Check the request against the drive's max speed. */
23797 		if (current_speed != 0xffff) {
23798 			if (current_speed > max_speed) {
23799 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23800 				return (EINVAL);
23801 			}
23802 		}
23803 
23804 		/*
23805 		 * Build and send the SET SPEED command
23806 		 *
23807 		 * Note: The SET SPEED (0xBB) command used in this routine is
23808 		 * obsolete per the SCSI MMC spec but still supported in the
23809 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
23810 		 * therefore the command is still implemented in this routine.
23811 		 */
23812 		bzero(cdb, sizeof (cdb));
23813 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
23814 		cdb[2] = (uchar_t)(current_speed >> 8);
23815 		cdb[3] = (uchar_t)current_speed;
23816 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23817 		com->uscsi_cdb	   = (caddr_t)cdb;
23818 		com->uscsi_cdblen  = CDB_GROUP5;
23819 		com->uscsi_bufaddr = NULL;
23820 		com->uscsi_buflen  = 0;
23821 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
23822 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
23823 		break;
23824 	default:
23825 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23826 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
23827 		rval = EINVAL;
23828 	}
23829 
23830 	if (sense) {
23831 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23832 	}
23833 	if (com) {
23834 		kmem_free(com, sizeof (*com));
23835 	}
23836 	return (rval);
23837 }
23838 
23839 
23840 /*
23841  *    Function: sr_pause_resume()
23842  *
23843  * Description: This routine is the driver entry point for handling CD-ROM
23844  *		pause/resume ioctl requests. This only affects the audio play
23845  *		operation.
23846  *
23847  *   Arguments: dev - the device 'dev_t'
23848  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
23849  *		      for setting the resume bit of the cdb.
23850  *
23851  * Return Code: the code returned by sd_send_scsi_cmd()
23852  *		EINVAL if invalid mode specified
23853  *
23854  */
23855 
23856 static int
23857 sr_pause_resume(dev_t dev, int cmd)
23858 {
23859 	struct sd_lun		*un;
23860 	struct uscsi_cmd	*com;
23861 	char			cdb[CDB_GROUP1];
23862 	int			rval;
23863 
23864 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23865 		return (ENXIO);
23866 	}
23867 
23868 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23869 	bzero(cdb, CDB_GROUP1);
23870 	cdb[0] = SCMD_PAUSE_RESUME;
23871 	switch (cmd) {
23872 	case CDROMRESUME:
23873 		cdb[8] = 1;
23874 		break;
23875 	case CDROMPAUSE:
23876 		cdb[8] = 0;
23877 		break;
23878 	default:
23879 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
23880 		    " Command '%x' Not Supported\n", cmd);
23881 		rval = EINVAL;
23882 		goto done;
23883 	}
23884 
23885 	com->uscsi_cdb    = cdb;
23886 	com->uscsi_cdblen = CDB_GROUP1;
23887 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
23888 
23889 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
23890 	    SD_PATH_STANDARD);
23891 
23892 done:
23893 	kmem_free(com, sizeof (*com));
23894 	return (rval);
23895 }
23896 
23897 
23898 /*
23899  *    Function: sr_play_msf()
23900  *
23901  * Description: This routine is the driver entry point for handling CD-ROM
23902  *		ioctl requests to output the audio signals at the specified
23903  *		starting address and continue the audio play until the specified
23904  *		ending address (CDROMPLAYMSF) The address is in Minute Second
23905  *		Frame (MSF) format.
23906  *
23907  *   Arguments: dev	- the device 'dev_t'
23908  *		data	- pointer to user provided audio msf structure,
23909  *		          specifying start/end addresses.
23910  *		flag	- this argument is a pass through to ddi_copyxxx()
23911  *		          directly from the mode argument of ioctl().
23912  *
23913  * Return Code: the code returned by sd_send_scsi_cmd()
23914  *		EFAULT if ddi_copyxxx() fails
23915  *		ENXIO if fail ddi_get_soft_state
23916  *		EINVAL if data pointer is NULL
23917  */
23918 
23919 static int
23920 sr_play_msf(dev_t dev, caddr_t data, int flag)
23921 {
23922 	struct sd_lun		*un;
23923 	struct uscsi_cmd	*com;
23924 	struct cdrom_msf	msf_struct;
23925 	struct cdrom_msf	*msf = &msf_struct;
23926 	char			cdb[CDB_GROUP1];
23927 	int			rval;
23928 
23929 	if (data == NULL) {
23930 		return (EINVAL);
23931 	}
23932 
23933 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23934 		return (ENXIO);
23935 	}
23936 
23937 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
23938 		return (EFAULT);
23939 	}
23940 
23941 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23942 	bzero(cdb, CDB_GROUP1);
23943 	cdb[0] = SCMD_PLAYAUDIO_MSF;
23944 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
23945 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
23946 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
23947 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
23948 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
23949 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
23950 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
23951 	} else {
23952 		cdb[3] = msf->cdmsf_min0;
23953 		cdb[4] = msf->cdmsf_sec0;
23954 		cdb[5] = msf->cdmsf_frame0;
23955 		cdb[6] = msf->cdmsf_min1;
23956 		cdb[7] = msf->cdmsf_sec1;
23957 		cdb[8] = msf->cdmsf_frame1;
23958 	}
23959 	com->uscsi_cdb    = cdb;
23960 	com->uscsi_cdblen = CDB_GROUP1;
23961 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
23962 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
23963 	    SD_PATH_STANDARD);
23964 	kmem_free(com, sizeof (*com));
23965 	return (rval);
23966 }
23967 
23968 
23969 /*
23970  *    Function: sr_play_trkind()
23971  *
23972  * Description: This routine is the driver entry point for handling CD-ROM
23973  *		ioctl requests to output the audio signals at the specified
23974  *		starting address and continue the audio play until the specified
23975  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
23976  *		format.
23977  *
23978  *   Arguments: dev	- the device 'dev_t'
23979  *		data	- pointer to user provided audio track/index structure,
23980  *		          specifying start/end addresses.
23981  *		flag	- this argument is a pass through to ddi_copyxxx()
23982  *		          directly from the mode argument of ioctl().
23983  *
23984  * Return Code: the code returned by sd_send_scsi_cmd()
23985  *		EFAULT if ddi_copyxxx() fails
23986  *		ENXIO if fail ddi_get_soft_state
23987  *		EINVAL if data pointer is NULL
23988  */
23989 
23990 static int
23991 sr_play_trkind(dev_t dev, caddr_t data, int flag)
23992 {
23993 	struct cdrom_ti		ti_struct;
23994 	struct cdrom_ti		*ti = &ti_struct;
23995 	struct uscsi_cmd	*com = NULL;
23996 	char			cdb[CDB_GROUP1];
23997 	int			rval;
23998 
23999 	if (data == NULL) {
24000 		return (EINVAL);
24001 	}
24002 
24003 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24004 		return (EFAULT);
24005 	}
24006 
24007 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24008 	bzero(cdb, CDB_GROUP1);
24009 	cdb[0] = SCMD_PLAYAUDIO_TI;
24010 	cdb[4] = ti->cdti_trk0;
24011 	cdb[5] = ti->cdti_ind0;
24012 	cdb[7] = ti->cdti_trk1;
24013 	cdb[8] = ti->cdti_ind1;
24014 	com->uscsi_cdb    = cdb;
24015 	com->uscsi_cdblen = CDB_GROUP1;
24016 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24017 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24018 	    SD_PATH_STANDARD);
24019 	kmem_free(com, sizeof (*com));
24020 	return (rval);
24021 }
24022 
24023 
24024 /*
24025  *    Function: sr_read_all_subcodes()
24026  *
24027  * Description: This routine is the driver entry point for handling CD-ROM
24028  *		ioctl requests to return raw subcode data while the target is
24029  *		playing audio (CDROMSUBCODE).
24030  *
24031  *   Arguments: dev	- the device 'dev_t'
24032  *		data	- pointer to user provided cdrom subcode structure,
24033  *		          specifying the transfer length and address.
24034  *		flag	- this argument is a pass through to ddi_copyxxx()
24035  *		          directly from the mode argument of ioctl().
24036  *
24037  * Return Code: the code returned by sd_send_scsi_cmd()
24038  *		EFAULT if ddi_copyxxx() fails
24039  *		ENXIO if fail ddi_get_soft_state
24040  *		EINVAL if data pointer is NULL
24041  */
24042 
24043 static int
24044 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24045 {
24046 	struct sd_lun		*un = NULL;
24047 	struct uscsi_cmd	*com = NULL;
24048 	struct cdrom_subcode	*subcode = NULL;
24049 	int			rval;
24050 	size_t			buflen;
24051 	char			cdb[CDB_GROUP5];
24052 
24053 #ifdef _MULTI_DATAMODEL
24054 	/* To support ILP32 applications in an LP64 world */
24055 	struct cdrom_subcode32		cdrom_subcode32;
24056 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24057 #endif
24058 	if (data == NULL) {
24059 		return (EINVAL);
24060 	}
24061 
24062 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24063 		return (ENXIO);
24064 	}
24065 
24066 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24067 
24068 #ifdef _MULTI_DATAMODEL
24069 	switch (ddi_model_convert_from(flag & FMODELS)) {
24070 	case DDI_MODEL_ILP32:
24071 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24072 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24073 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24074 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24075 			return (EFAULT);
24076 		}
24077 		/* Convert the ILP32 uscsi data from the application to LP64 */
24078 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24079 		break;
24080 	case DDI_MODEL_NONE:
24081 		if (ddi_copyin(data, subcode,
24082 		    sizeof (struct cdrom_subcode), flag)) {
24083 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24084 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24085 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24086 			return (EFAULT);
24087 		}
24088 		break;
24089 	}
24090 #else /* ! _MULTI_DATAMODEL */
24091 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24092 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24093 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24094 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24095 		return (EFAULT);
24096 	}
24097 #endif /* _MULTI_DATAMODEL */
24098 
24099 	/*
24100 	 * Since MMC-2 expects max 3 bytes for length, check if the
24101 	 * length input is greater than 3 bytes
24102 	 */
24103 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24104 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24105 		    "sr_read_all_subcodes: "
24106 		    "cdrom transfer length too large: %d (limit %d)\n",
24107 		    subcode->cdsc_length, 0xFFFFFF);
24108 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24109 		return (EINVAL);
24110 	}
24111 
24112 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24113 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24114 	bzero(cdb, CDB_GROUP5);
24115 
24116 	if (un->un_f_mmc_cap == TRUE) {
24117 		cdb[0] = (char)SCMD_READ_CD;
24118 		cdb[2] = (char)0xff;
24119 		cdb[3] = (char)0xff;
24120 		cdb[4] = (char)0xff;
24121 		cdb[5] = (char)0xff;
24122 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24123 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24124 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24125 		cdb[10] = 1;
24126 	} else {
24127 		/*
24128 		 * Note: A vendor specific command (0xDF) is being used her to
24129 		 * request a read of all subcodes.
24130 		 */
24131 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24132 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24133 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24134 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24135 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24136 	}
24137 	com->uscsi_cdb	   = cdb;
24138 	com->uscsi_cdblen  = CDB_GROUP5;
24139 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24140 	com->uscsi_buflen  = buflen;
24141 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24142 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24143 	    SD_PATH_STANDARD);
24144 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24145 	kmem_free(com, sizeof (*com));
24146 	return (rval);
24147 }
24148 
24149 
24150 /*
24151  *    Function: sr_read_subchannel()
24152  *
24153  * Description: This routine is the driver entry point for handling CD-ROM
24154  *		ioctl requests to return the Q sub-channel data of the CD
24155  *		current position block. (CDROMSUBCHNL) The data includes the
24156  *		track number, index number, absolute CD-ROM address (LBA or MSF
24157  *		format per the user) , track relative CD-ROM address (LBA or MSF
24158  *		format per the user), control data and audio status.
24159  *
24160  *   Arguments: dev	- the device 'dev_t'
24161  *		data	- pointer to user provided cdrom sub-channel structure
24162  *		flag	- this argument is a pass through to ddi_copyxxx()
24163  *		          directly from the mode argument of ioctl().
24164  *
24165  * Return Code: the code returned by sd_send_scsi_cmd()
24166  *		EFAULT if ddi_copyxxx() fails
24167  *		ENXIO if fail ddi_get_soft_state
24168  *		EINVAL if data pointer is NULL
24169  */
24170 
24171 static int
24172 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24173 {
24174 	struct sd_lun		*un;
24175 	struct uscsi_cmd	*com;
24176 	struct cdrom_subchnl	subchanel;
24177 	struct cdrom_subchnl	*subchnl = &subchanel;
24178 	char			cdb[CDB_GROUP1];
24179 	caddr_t			buffer;
24180 	int			rval;
24181 
24182 	if (data == NULL) {
24183 		return (EINVAL);
24184 	}
24185 
24186 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24187 	    (un->un_state == SD_STATE_OFFLINE)) {
24188 		return (ENXIO);
24189 	}
24190 
24191 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24192 		return (EFAULT);
24193 	}
24194 
24195 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24196 	bzero(cdb, CDB_GROUP1);
24197 	cdb[0] = SCMD_READ_SUBCHANNEL;
24198 	/* Set the MSF bit based on the user requested address format */
24199 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24200 	/*
24201 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24202 	 * returned
24203 	 */
24204 	cdb[2] = 0x40;
24205 	/*
24206 	 * Set byte 3 to specify the return data format. A value of 0x01
24207 	 * indicates that the CD-ROM current position should be returned.
24208 	 */
24209 	cdb[3] = 0x01;
24210 	cdb[8] = 0x10;
24211 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24212 	com->uscsi_cdb	   = cdb;
24213 	com->uscsi_cdblen  = CDB_GROUP1;
24214 	com->uscsi_bufaddr = buffer;
24215 	com->uscsi_buflen  = 16;
24216 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24217 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24218 	    SD_PATH_STANDARD);
24219 	if (rval != 0) {
24220 		kmem_free(buffer, 16);
24221 		kmem_free(com, sizeof (*com));
24222 		return (rval);
24223 	}
24224 
24225 	/* Process the returned Q sub-channel data */
24226 	subchnl->cdsc_audiostatus = buffer[1];
24227 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24228 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24229 	subchnl->cdsc_trk	= buffer[6];
24230 	subchnl->cdsc_ind	= buffer[7];
24231 	if (subchnl->cdsc_format & CDROM_LBA) {
24232 		subchnl->cdsc_absaddr.lba =
24233 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24234 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24235 		subchnl->cdsc_reladdr.lba =
24236 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24237 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24238 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24239 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24240 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24241 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24242 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24243 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24244 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24245 	} else {
24246 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24247 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24248 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24249 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24250 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24251 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24252 	}
24253 	kmem_free(buffer, 16);
24254 	kmem_free(com, sizeof (*com));
24255 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24256 	    != 0) {
24257 		return (EFAULT);
24258 	}
24259 	return (rval);
24260 }
24261 
24262 
24263 /*
24264  *    Function: sr_read_tocentry()
24265  *
24266  * Description: This routine is the driver entry point for handling CD-ROM
24267  *		ioctl requests to read from the Table of Contents (TOC)
24268  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24269  *		fields, the starting address (LBA or MSF format per the user)
24270  *		and the data mode if the user specified track is a data track.
24271  *
24272  *		Note: The READ HEADER (0x44) command used in this routine is
24273  *		obsolete per the SCSI MMC spec but still supported in the
24274  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24275  *		therefore the command is still implemented in this routine.
24276  *
24277  *   Arguments: dev	- the device 'dev_t'
24278  *		data	- pointer to user provided toc entry structure,
24279  *			  specifying the track # and the address format
24280  *			  (LBA or MSF).
24281  *		flag	- this argument is a pass through to ddi_copyxxx()
24282  *		          directly from the mode argument of ioctl().
24283  *
24284  * Return Code: the code returned by sd_send_scsi_cmd()
24285  *		EFAULT if ddi_copyxxx() fails
24286  *		ENXIO if fail ddi_get_soft_state
24287  *		EINVAL if data pointer is NULL
24288  */
24289 
24290 static int
24291 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24292 {
24293 	struct sd_lun		*un = NULL;
24294 	struct uscsi_cmd	*com;
24295 	struct cdrom_tocentry	toc_entry;
24296 	struct cdrom_tocentry	*entry = &toc_entry;
24297 	caddr_t			buffer;
24298 	int			rval;
24299 	char			cdb[CDB_GROUP1];
24300 
24301 	if (data == NULL) {
24302 		return (EINVAL);
24303 	}
24304 
24305 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24306 	    (un->un_state == SD_STATE_OFFLINE)) {
24307 		return (ENXIO);
24308 	}
24309 
24310 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
24311 		return (EFAULT);
24312 	}
24313 
24314 	/* Validate the requested track and address format */
24315 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
24316 		return (EINVAL);
24317 	}
24318 
24319 	if (entry->cdte_track == 0) {
24320 		return (EINVAL);
24321 	}
24322 
24323 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
24324 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24325 	bzero(cdb, CDB_GROUP1);
24326 
24327 	cdb[0] = SCMD_READ_TOC;
24328 	/* Set the MSF bit based on the user requested address format  */
24329 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
24330 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24331 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
24332 	} else {
24333 		cdb[6] = entry->cdte_track;
24334 	}
24335 
24336 	/*
24337 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
24338 	 * (4 byte TOC response header + 8 byte track descriptor)
24339 	 */
24340 	cdb[8] = 12;
24341 	com->uscsi_cdb	   = cdb;
24342 	com->uscsi_cdblen  = CDB_GROUP1;
24343 	com->uscsi_bufaddr = buffer;
24344 	com->uscsi_buflen  = 0x0C;
24345 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
24346 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24347 	    SD_PATH_STANDARD);
24348 	if (rval != 0) {
24349 		kmem_free(buffer, 12);
24350 		kmem_free(com, sizeof (*com));
24351 		return (rval);
24352 	}
24353 
24354 	/* Process the toc entry */
24355 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
24356 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
24357 	if (entry->cdte_format & CDROM_LBA) {
24358 		entry->cdte_addr.lba =
24359 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24360 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24361 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
24362 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
24363 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
24364 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
24365 		/*
24366 		 * Send a READ TOC command using the LBA address format to get
24367 		 * the LBA for the track requested so it can be used in the
24368 		 * READ HEADER request
24369 		 *
24370 		 * Note: The MSF bit of the READ HEADER command specifies the
24371 		 * output format. The block address specified in that command
24372 		 * must be in LBA format.
24373 		 */
24374 		cdb[1] = 0;
24375 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24376 		    SD_PATH_STANDARD);
24377 		if (rval != 0) {
24378 			kmem_free(buffer, 12);
24379 			kmem_free(com, sizeof (*com));
24380 			return (rval);
24381 		}
24382 	} else {
24383 		entry->cdte_addr.msf.minute	= buffer[9];
24384 		entry->cdte_addr.msf.second	= buffer[10];
24385 		entry->cdte_addr.msf.frame	= buffer[11];
24386 		/*
24387 		 * Send a READ TOC command using the LBA address format to get
24388 		 * the LBA for the track requested so it can be used in the
24389 		 * READ HEADER request
24390 		 *
24391 		 * Note: The MSF bit of the READ HEADER command specifies the
24392 		 * output format. The block address specified in that command
24393 		 * must be in LBA format.
24394 		 */
24395 		cdb[1] = 0;
24396 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24397 		    SD_PATH_STANDARD);
24398 		if (rval != 0) {
24399 			kmem_free(buffer, 12);
24400 			kmem_free(com, sizeof (*com));
24401 			return (rval);
24402 		}
24403 	}
24404 
24405 	/*
24406 	 * Build and send the READ HEADER command to determine the data mode of
24407 	 * the user specified track.
24408 	 */
24409 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
24410 	    (entry->cdte_track != CDROM_LEADOUT)) {
24411 		bzero(cdb, CDB_GROUP1);
24412 		cdb[0] = SCMD_READ_HEADER;
24413 		cdb[2] = buffer[8];
24414 		cdb[3] = buffer[9];
24415 		cdb[4] = buffer[10];
24416 		cdb[5] = buffer[11];
24417 		cdb[8] = 0x08;
24418 		com->uscsi_buflen = 0x08;
24419 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24420 		    SD_PATH_STANDARD);
24421 		if (rval == 0) {
24422 			entry->cdte_datamode = buffer[0];
24423 		} else {
24424 			/*
24425 			 * READ HEADER command failed, since this is
24426 			 * obsoleted in one spec, its better to return
24427 			 * -1 for an invlid track so that we can still
24428 			 * recieve the rest of the TOC data.
24429 			 */
24430 			entry->cdte_datamode = (uchar_t)-1;
24431 		}
24432 	} else {
24433 		entry->cdte_datamode = (uchar_t)-1;
24434 	}
24435 
24436 	kmem_free(buffer, 12);
24437 	kmem_free(com, sizeof (*com));
24438 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
24439 		return (EFAULT);
24440 
24441 	return (rval);
24442 }
24443 
24444 
24445 /*
24446  *    Function: sr_read_tochdr()
24447  *
24448  * Description: This routine is the driver entry point for handling CD-ROM
24449  * 		ioctl requests to read the Table of Contents (TOC) header
24450  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
24451  *		and ending track numbers
24452  *
24453  *   Arguments: dev	- the device 'dev_t'
24454  *		data	- pointer to user provided toc header structure,
24455  *			  specifying the starting and ending track numbers.
24456  *		flag	- this argument is a pass through to ddi_copyxxx()
24457  *			  directly from the mode argument of ioctl().
24458  *
24459  * Return Code: the code returned by sd_send_scsi_cmd()
24460  *		EFAULT if ddi_copyxxx() fails
24461  *		ENXIO if fail ddi_get_soft_state
24462  *		EINVAL if data pointer is NULL
24463  */
24464 
24465 static int
24466 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
24467 {
24468 	struct sd_lun		*un;
24469 	struct uscsi_cmd	*com;
24470 	struct cdrom_tochdr	toc_header;
24471 	struct cdrom_tochdr	*hdr = &toc_header;
24472 	char			cdb[CDB_GROUP1];
24473 	int			rval;
24474 	caddr_t			buffer;
24475 
24476 	if (data == NULL) {
24477 		return (EINVAL);
24478 	}
24479 
24480 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24481 	    (un->un_state == SD_STATE_OFFLINE)) {
24482 		return (ENXIO);
24483 	}
24484 
24485 	buffer = kmem_zalloc(4, KM_SLEEP);
24486 	bzero(cdb, CDB_GROUP1);
24487 	cdb[0] = SCMD_READ_TOC;
24488 	/*
24489 	 * Specifying a track number of 0x00 in the READ TOC command indicates
24490 	 * that the TOC header should be returned
24491 	 */
24492 	cdb[6] = 0x00;
24493 	/*
24494 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
24495 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
24496 	 */
24497 	cdb[8] = 0x04;
24498 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24499 	com->uscsi_cdb	   = cdb;
24500 	com->uscsi_cdblen  = CDB_GROUP1;
24501 	com->uscsi_bufaddr = buffer;
24502 	com->uscsi_buflen  = 0x04;
24503 	com->uscsi_timeout = 300;
24504 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24505 
24506 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24507 	    SD_PATH_STANDARD);
24508 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24509 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
24510 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
24511 	} else {
24512 		hdr->cdth_trk0 = buffer[2];
24513 		hdr->cdth_trk1 = buffer[3];
24514 	}
24515 	kmem_free(buffer, 4);
24516 	kmem_free(com, sizeof (*com));
24517 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
24518 		return (EFAULT);
24519 	}
24520 	return (rval);
24521 }
24522 
24523 
24524 /*
24525  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
24526  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
24527  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
24528  * digital audio and extended architecture digital audio. These modes are
24529  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
24530  * MMC specs.
24531  *
24532  * In addition to support for the various data formats these routines also
24533  * include support for devices that implement only the direct access READ
24534  * commands (0x08, 0x28), devices that implement the READ_CD commands
24535  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
24536  * READ CDXA commands (0xD8, 0xDB)
24537  */
24538 
24539 /*
24540  *    Function: sr_read_mode1()
24541  *
24542  * Description: This routine is the driver entry point for handling CD-ROM
24543  *		ioctl read mode1 requests (CDROMREADMODE1).
24544  *
24545  *   Arguments: dev	- the device 'dev_t'
24546  *		data	- pointer to user provided cd read structure specifying
24547  *			  the lba buffer address and length.
24548  *		flag	- this argument is a pass through to ddi_copyxxx()
24549  *			  directly from the mode argument of ioctl().
24550  *
24551  * Return Code: the code returned by sd_send_scsi_cmd()
24552  *		EFAULT if ddi_copyxxx() fails
24553  *		ENXIO if fail ddi_get_soft_state
24554  *		EINVAL if data pointer is NULL
24555  */
24556 
24557 static int
24558 sr_read_mode1(dev_t dev, caddr_t data, int flag)
24559 {
24560 	struct sd_lun		*un;
24561 	struct cdrom_read	mode1_struct;
24562 	struct cdrom_read	*mode1 = &mode1_struct;
24563 	int			rval;
24564 #ifdef _MULTI_DATAMODEL
24565 	/* To support ILP32 applications in an LP64 world */
24566 	struct cdrom_read32	cdrom_read32;
24567 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24568 #endif /* _MULTI_DATAMODEL */
24569 
24570 	if (data == NULL) {
24571 		return (EINVAL);
24572 	}
24573 
24574 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24575 	    (un->un_state == SD_STATE_OFFLINE)) {
24576 		return (ENXIO);
24577 	}
24578 
24579 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24580 	    "sd_read_mode1: entry: un:0x%p\n", un);
24581 
24582 #ifdef _MULTI_DATAMODEL
24583 	switch (ddi_model_convert_from(flag & FMODELS)) {
24584 	case DDI_MODEL_ILP32:
24585 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24586 			return (EFAULT);
24587 		}
24588 		/* Convert the ILP32 uscsi data from the application to LP64 */
24589 		cdrom_read32tocdrom_read(cdrd32, mode1);
24590 		break;
24591 	case DDI_MODEL_NONE:
24592 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24593 			return (EFAULT);
24594 		}
24595 	}
24596 #else /* ! _MULTI_DATAMODEL */
24597 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24598 		return (EFAULT);
24599 	}
24600 #endif /* _MULTI_DATAMODEL */
24601 
24602 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
24603 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
24604 
24605 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24606 	    "sd_read_mode1: exit: un:0x%p\n", un);
24607 
24608 	return (rval);
24609 }
24610 
24611 
24612 /*
24613  *    Function: sr_read_cd_mode2()
24614  *
24615  * Description: This routine is the driver entry point for handling CD-ROM
24616  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
24617  *		support the READ CD (0xBE) command or the 1st generation
24618  *		READ CD (0xD4) command.
24619  *
24620  *   Arguments: dev	- the device 'dev_t'
24621  *		data	- pointer to user provided cd read structure specifying
24622  *			  the lba buffer address and length.
24623  *		flag	- this argument is a pass through to ddi_copyxxx()
24624  *			  directly from the mode argument of ioctl().
24625  *
24626  * Return Code: the code returned by sd_send_scsi_cmd()
24627  *		EFAULT if ddi_copyxxx() fails
24628  *		ENXIO if fail ddi_get_soft_state
24629  *		EINVAL if data pointer is NULL
24630  */
24631 
24632 static int
24633 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
24634 {
24635 	struct sd_lun		*un;
24636 	struct uscsi_cmd	*com;
24637 	struct cdrom_read	mode2_struct;
24638 	struct cdrom_read	*mode2 = &mode2_struct;
24639 	uchar_t			cdb[CDB_GROUP5];
24640 	int			nblocks;
24641 	int			rval;
24642 #ifdef _MULTI_DATAMODEL
24643 	/*  To support ILP32 applications in an LP64 world */
24644 	struct cdrom_read32	cdrom_read32;
24645 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24646 #endif /* _MULTI_DATAMODEL */
24647 
24648 	if (data == NULL) {
24649 		return (EINVAL);
24650 	}
24651 
24652 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24653 	    (un->un_state == SD_STATE_OFFLINE)) {
24654 		return (ENXIO);
24655 	}
24656 
24657 #ifdef _MULTI_DATAMODEL
24658 	switch (ddi_model_convert_from(flag & FMODELS)) {
24659 	case DDI_MODEL_ILP32:
24660 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24661 			return (EFAULT);
24662 		}
24663 		/* Convert the ILP32 uscsi data from the application to LP64 */
24664 		cdrom_read32tocdrom_read(cdrd32, mode2);
24665 		break;
24666 	case DDI_MODEL_NONE:
24667 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24668 			return (EFAULT);
24669 		}
24670 		break;
24671 	}
24672 
24673 #else /* ! _MULTI_DATAMODEL */
24674 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24675 		return (EFAULT);
24676 	}
24677 #endif /* _MULTI_DATAMODEL */
24678 
24679 	bzero(cdb, sizeof (cdb));
24680 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
24681 		/* Read command supported by 1st generation atapi drives */
24682 		cdb[0] = SCMD_READ_CDD4;
24683 	} else {
24684 		/* Universal CD Access Command */
24685 		cdb[0] = SCMD_READ_CD;
24686 	}
24687 
24688 	/*
24689 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
24690 	 */
24691 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
24692 
24693 	/* set the start address */
24694 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
24695 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
24696 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
24697 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
24698 
24699 	/* set the transfer length */
24700 	nblocks = mode2->cdread_buflen / 2336;
24701 	cdb[6] = (uchar_t)(nblocks >> 16);
24702 	cdb[7] = (uchar_t)(nblocks >> 8);
24703 	cdb[8] = (uchar_t)nblocks;
24704 
24705 	/* set the filter bits */
24706 	cdb[9] = CDROM_READ_CD_USERDATA;
24707 
24708 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24709 	com->uscsi_cdb = (caddr_t)cdb;
24710 	com->uscsi_cdblen = sizeof (cdb);
24711 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
24712 	com->uscsi_buflen = mode2->cdread_buflen;
24713 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24714 
24715 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24716 	    SD_PATH_STANDARD);
24717 	kmem_free(com, sizeof (*com));
24718 	return (rval);
24719 }
24720 
24721 
24722 /*
24723  *    Function: sr_read_mode2()
24724  *
24725  * Description: This routine is the driver entry point for handling CD-ROM
24726  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
24727  *		do not support the READ CD (0xBE) command.
24728  *
24729  *   Arguments: dev	- the device 'dev_t'
24730  *		data	- pointer to user provided cd read structure specifying
24731  *			  the lba buffer address and length.
24732  *		flag	- this argument is a pass through to ddi_copyxxx()
24733  *			  directly from the mode argument of ioctl().
24734  *
24735  * Return Code: the code returned by sd_send_scsi_cmd()
24736  *		EFAULT if ddi_copyxxx() fails
24737  *		ENXIO if fail ddi_get_soft_state
24738  *		EINVAL if data pointer is NULL
24739  *		EIO if fail to reset block size
24740  *		EAGAIN if commands are in progress in the driver
24741  */
24742 
24743 static int
24744 sr_read_mode2(dev_t dev, caddr_t data, int flag)
24745 {
24746 	struct sd_lun		*un;
24747 	struct cdrom_read	mode2_struct;
24748 	struct cdrom_read	*mode2 = &mode2_struct;
24749 	int			rval;
24750 	uint32_t		restore_blksize;
24751 	struct uscsi_cmd	*com;
24752 	uchar_t			cdb[CDB_GROUP0];
24753 	int			nblocks;
24754 
24755 #ifdef _MULTI_DATAMODEL
24756 	/* To support ILP32 applications in an LP64 world */
24757 	struct cdrom_read32	cdrom_read32;
24758 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24759 #endif /* _MULTI_DATAMODEL */
24760 
24761 	if (data == NULL) {
24762 		return (EINVAL);
24763 	}
24764 
24765 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24766 	    (un->un_state == SD_STATE_OFFLINE)) {
24767 		return (ENXIO);
24768 	}
24769 
24770 	/*
24771 	 * Because this routine will update the device and driver block size
24772 	 * being used we want to make sure there are no commands in progress.
24773 	 * If commands are in progress the user will have to try again.
24774 	 *
24775 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
24776 	 * in sdioctl to protect commands from sdioctl through to the top of
24777 	 * sd_uscsi_strategy. See sdioctl for details.
24778 	 */
24779 	mutex_enter(SD_MUTEX(un));
24780 	if (un->un_ncmds_in_driver != 1) {
24781 		mutex_exit(SD_MUTEX(un));
24782 		return (EAGAIN);
24783 	}
24784 	mutex_exit(SD_MUTEX(un));
24785 
24786 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24787 	    "sd_read_mode2: entry: un:0x%p\n", un);
24788 
24789 #ifdef _MULTI_DATAMODEL
24790 	switch (ddi_model_convert_from(flag & FMODELS)) {
24791 	case DDI_MODEL_ILP32:
24792 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24793 			return (EFAULT);
24794 		}
24795 		/* Convert the ILP32 uscsi data from the application to LP64 */
24796 		cdrom_read32tocdrom_read(cdrd32, mode2);
24797 		break;
24798 	case DDI_MODEL_NONE:
24799 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24800 			return (EFAULT);
24801 		}
24802 		break;
24803 	}
24804 #else /* ! _MULTI_DATAMODEL */
24805 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
24806 		return (EFAULT);
24807 	}
24808 #endif /* _MULTI_DATAMODEL */
24809 
24810 	/* Store the current target block size for restoration later */
24811 	restore_blksize = un->un_tgt_blocksize;
24812 
24813 	/* Change the device and soft state target block size to 2336 */
24814 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
24815 		rval = EIO;
24816 		goto done;
24817 	}
24818 
24819 
24820 	bzero(cdb, sizeof (cdb));
24821 
24822 	/* set READ operation */
24823 	cdb[0] = SCMD_READ;
24824 
24825 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
24826 	mode2->cdread_lba >>= 2;
24827 
24828 	/* set the start address */
24829 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
24830 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
24831 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
24832 
24833 	/* set the transfer length */
24834 	nblocks = mode2->cdread_buflen / 2336;
24835 	cdb[4] = (uchar_t)nblocks & 0xFF;
24836 
24837 	/* build command */
24838 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24839 	com->uscsi_cdb = (caddr_t)cdb;
24840 	com->uscsi_cdblen = sizeof (cdb);
24841 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
24842 	com->uscsi_buflen = mode2->cdread_buflen;
24843 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24844 
24845 	/*
24846 	 * Issue SCSI command with user space address for read buffer.
24847 	 *
24848 	 * This sends the command through main channel in the driver.
24849 	 *
24850 	 * Since this is accessed via an IOCTL call, we go through the
24851 	 * standard path, so that if the device was powered down, then
24852 	 * it would be 'awakened' to handle the command.
24853 	 */
24854 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24855 	    SD_PATH_STANDARD);
24856 
24857 	kmem_free(com, sizeof (*com));
24858 
24859 	/* Restore the device and soft state target block size */
24860 	if (sr_sector_mode(dev, restore_blksize) != 0) {
24861 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24862 		    "can't do switch back to mode 1\n");
24863 		/*
24864 		 * If sd_send_scsi_READ succeeded we still need to report
24865 		 * an error because we failed to reset the block size
24866 		 */
24867 		if (rval == 0) {
24868 			rval = EIO;
24869 		}
24870 	}
24871 
24872 done:
24873 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24874 	    "sd_read_mode2: exit: un:0x%p\n", un);
24875 
24876 	return (rval);
24877 }
24878 
24879 
24880 /*
24881  *    Function: sr_sector_mode()
24882  *
24883  * Description: This utility function is used by sr_read_mode2 to set the target
24884  *		block size based on the user specified size. This is a legacy
24885  *		implementation based upon a vendor specific mode page
24886  *
24887  *   Arguments: dev	- the device 'dev_t'
24888  *		data	- flag indicating if block size is being set to 2336 or
24889  *			  512.
24890  *
24891  * Return Code: the code returned by sd_send_scsi_cmd()
24892  *		EFAULT if ddi_copyxxx() fails
24893  *		ENXIO if fail ddi_get_soft_state
24894  *		EINVAL if data pointer is NULL
24895  */
24896 
24897 static int
24898 sr_sector_mode(dev_t dev, uint32_t blksize)
24899 {
24900 	struct sd_lun	*un;
24901 	uchar_t		*sense;
24902 	uchar_t		*select;
24903 	int		rval;
24904 
24905 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24906 	    (un->un_state == SD_STATE_OFFLINE)) {
24907 		return (ENXIO);
24908 	}
24909 
24910 	sense = kmem_zalloc(20, KM_SLEEP);
24911 
24912 	/* Note: This is a vendor specific mode page (0x81) */
24913 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
24914 	    SD_PATH_STANDARD)) != 0) {
24915 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
24916 		    "sr_sector_mode: Mode Sense failed\n");
24917 		kmem_free(sense, 20);
24918 		return (rval);
24919 	}
24920 	select = kmem_zalloc(20, KM_SLEEP);
24921 	select[3] = 0x08;
24922 	select[10] = ((blksize >> 8) & 0xff);
24923 	select[11] = (blksize & 0xff);
24924 	select[12] = 0x01;
24925 	select[13] = 0x06;
24926 	select[14] = sense[14];
24927 	select[15] = sense[15];
24928 	if (blksize == SD_MODE2_BLKSIZE) {
24929 		select[14] |= 0x01;
24930 	}
24931 
24932 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
24933 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
24934 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
24935 		    "sr_sector_mode: Mode Select failed\n");
24936 	} else {
24937 		/*
24938 		 * Only update the softstate block size if we successfully
24939 		 * changed the device block mode.
24940 		 */
24941 		mutex_enter(SD_MUTEX(un));
24942 		sd_update_block_info(un, blksize, 0);
24943 		mutex_exit(SD_MUTEX(un));
24944 	}
24945 	kmem_free(sense, 20);
24946 	kmem_free(select, 20);
24947 	return (rval);
24948 }
24949 
24950 
24951 /*
24952  *    Function: sr_read_cdda()
24953  *
24954  * Description: This routine is the driver entry point for handling CD-ROM
24955  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
24956  *		the target supports CDDA these requests are handled via a vendor
24957  *		specific command (0xD8) If the target does not support CDDA
24958  *		these requests are handled via the READ CD command (0xBE).
24959  *
24960  *   Arguments: dev	- the device 'dev_t'
24961  *		data	- pointer to user provided CD-DA structure specifying
24962  *			  the track starting address, transfer length, and
24963  *			  subcode options.
24964  *		flag	- this argument is a pass through to ddi_copyxxx()
24965  *			  directly from the mode argument of ioctl().
24966  *
24967  * Return Code: the code returned by sd_send_scsi_cmd()
24968  *		EFAULT if ddi_copyxxx() fails
24969  *		ENXIO if fail ddi_get_soft_state
24970  *		EINVAL if invalid arguments are provided
24971  *		ENOTTY
24972  */
24973 
24974 static int
24975 sr_read_cdda(dev_t dev, caddr_t data, int flag)
24976 {
24977 	struct sd_lun			*un;
24978 	struct uscsi_cmd		*com;
24979 	struct cdrom_cdda		*cdda;
24980 	int				rval;
24981 	size_t				buflen;
24982 	char				cdb[CDB_GROUP5];
24983 
24984 #ifdef _MULTI_DATAMODEL
24985 	/* To support ILP32 applications in an LP64 world */
24986 	struct cdrom_cdda32	cdrom_cdda32;
24987 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
24988 #endif /* _MULTI_DATAMODEL */
24989 
24990 	if (data == NULL) {
24991 		return (EINVAL);
24992 	}
24993 
24994 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24995 		return (ENXIO);
24996 	}
24997 
24998 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
24999 
25000 #ifdef _MULTI_DATAMODEL
25001 	switch (ddi_model_convert_from(flag & FMODELS)) {
25002 	case DDI_MODEL_ILP32:
25003 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25004 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25005 			    "sr_read_cdda: ddi_copyin Failed\n");
25006 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25007 			return (EFAULT);
25008 		}
25009 		/* Convert the ILP32 uscsi data from the application to LP64 */
25010 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25011 		break;
25012 	case DDI_MODEL_NONE:
25013 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25014 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25015 			    "sr_read_cdda: ddi_copyin Failed\n");
25016 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25017 			return (EFAULT);
25018 		}
25019 		break;
25020 	}
25021 #else /* ! _MULTI_DATAMODEL */
25022 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25023 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25024 		    "sr_read_cdda: ddi_copyin Failed\n");
25025 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25026 		return (EFAULT);
25027 	}
25028 #endif /* _MULTI_DATAMODEL */
25029 
25030 	/*
25031 	 * Since MMC-2 expects max 3 bytes for length, check if the
25032 	 * length input is greater than 3 bytes
25033 	 */
25034 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25035 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25036 		    "cdrom transfer length too large: %d (limit %d)\n",
25037 		    cdda->cdda_length, 0xFFFFFF);
25038 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25039 		return (EINVAL);
25040 	}
25041 
25042 	switch (cdda->cdda_subcode) {
25043 	case CDROM_DA_NO_SUBCODE:
25044 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25045 		break;
25046 	case CDROM_DA_SUBQ:
25047 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25048 		break;
25049 	case CDROM_DA_ALL_SUBCODE:
25050 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25051 		break;
25052 	case CDROM_DA_SUBCODE_ONLY:
25053 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25054 		break;
25055 	default:
25056 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25057 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25058 		    cdda->cdda_subcode);
25059 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25060 		return (EINVAL);
25061 	}
25062 
25063 	/* Build and send the command */
25064 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25065 	bzero(cdb, CDB_GROUP5);
25066 
25067 	if (un->un_f_cfg_cdda == TRUE) {
25068 		cdb[0] = (char)SCMD_READ_CD;
25069 		cdb[1] = 0x04;
25070 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25071 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25072 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25073 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25074 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25075 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25076 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25077 		cdb[9] = 0x10;
25078 		switch (cdda->cdda_subcode) {
25079 		case CDROM_DA_NO_SUBCODE :
25080 			cdb[10] = 0x0;
25081 			break;
25082 		case CDROM_DA_SUBQ :
25083 			cdb[10] = 0x2;
25084 			break;
25085 		case CDROM_DA_ALL_SUBCODE :
25086 			cdb[10] = 0x1;
25087 			break;
25088 		case CDROM_DA_SUBCODE_ONLY :
25089 			/* FALLTHROUGH */
25090 		default :
25091 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25092 			kmem_free(com, sizeof (*com));
25093 			return (ENOTTY);
25094 		}
25095 	} else {
25096 		cdb[0] = (char)SCMD_READ_CDDA;
25097 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25098 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25099 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25100 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25101 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25102 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25103 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25104 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25105 		cdb[10] = cdda->cdda_subcode;
25106 	}
25107 
25108 	com->uscsi_cdb = cdb;
25109 	com->uscsi_cdblen = CDB_GROUP5;
25110 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25111 	com->uscsi_buflen = buflen;
25112 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25113 
25114 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25115 	    SD_PATH_STANDARD);
25116 
25117 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25118 	kmem_free(com, sizeof (*com));
25119 	return (rval);
25120 }
25121 
25122 
25123 /*
25124  *    Function: sr_read_cdxa()
25125  *
25126  * Description: This routine is the driver entry point for handling CD-ROM
25127  *		ioctl requests to return CD-XA (Extended Architecture) data.
25128  *		(CDROMCDXA).
25129  *
25130  *   Arguments: dev	- the device 'dev_t'
25131  *		data	- pointer to user provided CD-XA structure specifying
25132  *			  the data starting address, transfer length, and format
25133  *		flag	- this argument is a pass through to ddi_copyxxx()
25134  *			  directly from the mode argument of ioctl().
25135  *
25136  * Return Code: the code returned by sd_send_scsi_cmd()
25137  *		EFAULT if ddi_copyxxx() fails
25138  *		ENXIO if fail ddi_get_soft_state
25139  *		EINVAL if data pointer is NULL
25140  */
25141 
25142 static int
25143 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25144 {
25145 	struct sd_lun		*un;
25146 	struct uscsi_cmd	*com;
25147 	struct cdrom_cdxa	*cdxa;
25148 	int			rval;
25149 	size_t			buflen;
25150 	char			cdb[CDB_GROUP5];
25151 	uchar_t			read_flags;
25152 
25153 #ifdef _MULTI_DATAMODEL
25154 	/* To support ILP32 applications in an LP64 world */
25155 	struct cdrom_cdxa32		cdrom_cdxa32;
25156 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25157 #endif /* _MULTI_DATAMODEL */
25158 
25159 	if (data == NULL) {
25160 		return (EINVAL);
25161 	}
25162 
25163 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25164 		return (ENXIO);
25165 	}
25166 
25167 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25168 
25169 #ifdef _MULTI_DATAMODEL
25170 	switch (ddi_model_convert_from(flag & FMODELS)) {
25171 	case DDI_MODEL_ILP32:
25172 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25173 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25174 			return (EFAULT);
25175 		}
25176 		/*
25177 		 * Convert the ILP32 uscsi data from the
25178 		 * application to LP64 for internal use.
25179 		 */
25180 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25181 		break;
25182 	case DDI_MODEL_NONE:
25183 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25184 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25185 			return (EFAULT);
25186 		}
25187 		break;
25188 	}
25189 #else /* ! _MULTI_DATAMODEL */
25190 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25191 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25192 		return (EFAULT);
25193 	}
25194 #endif /* _MULTI_DATAMODEL */
25195 
25196 	/*
25197 	 * Since MMC-2 expects max 3 bytes for length, check if the
25198 	 * length input is greater than 3 bytes
25199 	 */
25200 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25201 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25202 		    "cdrom transfer length too large: %d (limit %d)\n",
25203 		    cdxa->cdxa_length, 0xFFFFFF);
25204 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25205 		return (EINVAL);
25206 	}
25207 
25208 	switch (cdxa->cdxa_format) {
25209 	case CDROM_XA_DATA:
25210 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25211 		read_flags = 0x10;
25212 		break;
25213 	case CDROM_XA_SECTOR_DATA:
25214 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25215 		read_flags = 0xf8;
25216 		break;
25217 	case CDROM_XA_DATA_W_ERROR:
25218 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25219 		read_flags = 0xfc;
25220 		break;
25221 	default:
25222 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25223 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25224 		    cdxa->cdxa_format);
25225 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25226 		return (EINVAL);
25227 	}
25228 
25229 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25230 	bzero(cdb, CDB_GROUP5);
25231 	if (un->un_f_mmc_cap == TRUE) {
25232 		cdb[0] = (char)SCMD_READ_CD;
25233 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25234 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25235 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25236 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25237 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25238 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25239 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25240 		cdb[9] = (char)read_flags;
25241 	} else {
25242 		/*
25243 		 * Note: A vendor specific command (0xDB) is being used her to
25244 		 * request a read of all subcodes.
25245 		 */
25246 		cdb[0] = (char)SCMD_READ_CDXA;
25247 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25248 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25249 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25250 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25251 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25252 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25253 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25254 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25255 		cdb[10] = cdxa->cdxa_format;
25256 	}
25257 	com->uscsi_cdb	   = cdb;
25258 	com->uscsi_cdblen  = CDB_GROUP5;
25259 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25260 	com->uscsi_buflen  = buflen;
25261 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25262 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25263 	    SD_PATH_STANDARD);
25264 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25265 	kmem_free(com, sizeof (*com));
25266 	return (rval);
25267 }
25268 
25269 
25270 /*
25271  *    Function: sr_eject()
25272  *
25273  * Description: This routine is the driver entry point for handling CD-ROM
25274  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25275  *
25276  *   Arguments: dev	- the device 'dev_t'
25277  *
25278  * Return Code: the code returned by sd_send_scsi_cmd()
25279  */
25280 
25281 static int
25282 sr_eject(dev_t dev)
25283 {
25284 	struct sd_lun	*un;
25285 	int		rval;
25286 
25287 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25288 	    (un->un_state == SD_STATE_OFFLINE)) {
25289 		return (ENXIO);
25290 	}
25291 
25292 	/*
25293 	 * To prevent race conditions with the eject
25294 	 * command, keep track of an eject command as
25295 	 * it progresses. If we are already handling
25296 	 * an eject command in the driver for the given
25297 	 * unit and another request to eject is received
25298 	 * immediately return EAGAIN so we don't lose
25299 	 * the command if the current eject command fails.
25300 	 */
25301 	mutex_enter(SD_MUTEX(un));
25302 	if (un->un_f_ejecting == TRUE) {
25303 		mutex_exit(SD_MUTEX(un));
25304 		return (EAGAIN);
25305 	}
25306 	un->un_f_ejecting = TRUE;
25307 	mutex_exit(SD_MUTEX(un));
25308 
25309 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
25310 	    SD_PATH_STANDARD)) != 0) {
25311 		mutex_enter(SD_MUTEX(un));
25312 		un->un_f_ejecting = FALSE;
25313 		mutex_exit(SD_MUTEX(un));
25314 		return (rval);
25315 	}
25316 
25317 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
25318 	    SD_PATH_STANDARD);
25319 
25320 	if (rval == 0) {
25321 		mutex_enter(SD_MUTEX(un));
25322 		sr_ejected(un);
25323 		un->un_mediastate = DKIO_EJECTED;
25324 		un->un_f_ejecting = FALSE;
25325 		cv_broadcast(&un->un_state_cv);
25326 		mutex_exit(SD_MUTEX(un));
25327 	} else {
25328 		mutex_enter(SD_MUTEX(un));
25329 		un->un_f_ejecting = FALSE;
25330 		mutex_exit(SD_MUTEX(un));
25331 	}
25332 	return (rval);
25333 }
25334 
25335 
25336 /*
25337  *    Function: sr_ejected()
25338  *
25339  * Description: This routine updates the soft state structure to invalidate the
25340  *		geometry information after the media has been ejected or a
25341  *		media eject has been detected.
25342  *
25343  *   Arguments: un - driver soft state (unit) structure
25344  */
25345 
25346 static void
25347 sr_ejected(struct sd_lun *un)
25348 {
25349 	struct sd_errstats *stp;
25350 
25351 	ASSERT(un != NULL);
25352 	ASSERT(mutex_owned(SD_MUTEX(un)));
25353 
25354 	un->un_f_blockcount_is_valid	= FALSE;
25355 	un->un_f_tgt_blocksize_is_valid	= FALSE;
25356 	mutex_exit(SD_MUTEX(un));
25357 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
25358 	mutex_enter(SD_MUTEX(un));
25359 
25360 	if (un->un_errstats != NULL) {
25361 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
25362 		stp->sd_capacity.value.ui64 = 0;
25363 	}
25364 }
25365 
25366 
25367 /*
25368  *    Function: sr_check_wp()
25369  *
25370  * Description: This routine checks the write protection of a removable
25371  *      media disk and hotpluggable devices via the write protect bit of
25372  *      the Mode Page Header device specific field. Some devices choke
25373  *      on unsupported mode page. In order to workaround this issue,
25374  *      this routine has been implemented to use 0x3f mode page(request
25375  *      for all pages) for all device types.
25376  *
25377  *   Arguments: dev		- the device 'dev_t'
25378  *
25379  * Return Code: int indicating if the device is write protected (1) or not (0)
25380  *
25381  *     Context: Kernel thread.
25382  *
25383  */
25384 
25385 static int
25386 sr_check_wp(dev_t dev)
25387 {
25388 	struct sd_lun	*un;
25389 	uchar_t		device_specific;
25390 	uchar_t		*sense;
25391 	int		hdrlen;
25392 	int		rval = FALSE;
25393 
25394 	/*
25395 	 * Note: The return codes for this routine should be reworked to
25396 	 * properly handle the case of a NULL softstate.
25397 	 */
25398 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25399 		return (FALSE);
25400 	}
25401 
25402 	if (un->un_f_cfg_is_atapi == TRUE) {
25403 		/*
25404 		 * The mode page contents are not required; set the allocation
25405 		 * length for the mode page header only
25406 		 */
25407 		hdrlen = MODE_HEADER_LENGTH_GRP2;
25408 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25409 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
25410 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25411 			goto err_exit;
25412 		device_specific =
25413 		    ((struct mode_header_grp2 *)sense)->device_specific;
25414 	} else {
25415 		hdrlen = MODE_HEADER_LENGTH;
25416 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25417 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
25418 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25419 			goto err_exit;
25420 		device_specific =
25421 		    ((struct mode_header *)sense)->device_specific;
25422 	}
25423 
25424 	/*
25425 	 * Write protect mode sense failed; not all disks
25426 	 * understand this query. Return FALSE assuming that
25427 	 * these devices are not writable.
25428 	 */
25429 	if (device_specific & WRITE_PROTECT) {
25430 		rval = TRUE;
25431 	}
25432 
25433 err_exit:
25434 	kmem_free(sense, hdrlen);
25435 	return (rval);
25436 }
25437 
25438 /*
25439  *    Function: sr_volume_ctrl()
25440  *
25441  * Description: This routine is the driver entry point for handling CD-ROM
25442  *		audio output volume ioctl requests. (CDROMVOLCTRL)
25443  *
25444  *   Arguments: dev	- the device 'dev_t'
25445  *		data	- pointer to user audio volume control structure
25446  *		flag	- this argument is a pass through to ddi_copyxxx()
25447  *			  directly from the mode argument of ioctl().
25448  *
25449  * Return Code: the code returned by sd_send_scsi_cmd()
25450  *		EFAULT if ddi_copyxxx() fails
25451  *		ENXIO if fail ddi_get_soft_state
25452  *		EINVAL if data pointer is NULL
25453  *
25454  */
25455 
25456 static int
25457 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
25458 {
25459 	struct sd_lun		*un;
25460 	struct cdrom_volctrl    volume;
25461 	struct cdrom_volctrl    *vol = &volume;
25462 	uchar_t			*sense_page;
25463 	uchar_t			*select_page;
25464 	uchar_t			*sense;
25465 	uchar_t			*select;
25466 	int			sense_buflen;
25467 	int			select_buflen;
25468 	int			rval;
25469 
25470 	if (data == NULL) {
25471 		return (EINVAL);
25472 	}
25473 
25474 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25475 	    (un->un_state == SD_STATE_OFFLINE)) {
25476 		return (ENXIO);
25477 	}
25478 
25479 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
25480 		return (EFAULT);
25481 	}
25482 
25483 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25484 		struct mode_header_grp2		*sense_mhp;
25485 		struct mode_header_grp2		*select_mhp;
25486 		int				bd_len;
25487 
25488 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
25489 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
25490 		    MODEPAGE_AUDIO_CTRL_LEN;
25491 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25492 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25493 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
25494 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25495 		    SD_PATH_STANDARD)) != 0) {
25496 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25497 			    "sr_volume_ctrl: Mode Sense Failed\n");
25498 			kmem_free(sense, sense_buflen);
25499 			kmem_free(select, select_buflen);
25500 			return (rval);
25501 		}
25502 		sense_mhp = (struct mode_header_grp2 *)sense;
25503 		select_mhp = (struct mode_header_grp2 *)select;
25504 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
25505 		    sense_mhp->bdesc_length_lo;
25506 		if (bd_len > MODE_BLK_DESC_LENGTH) {
25507 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25508 			    "sr_volume_ctrl: Mode Sense returned invalid "
25509 			    "block descriptor length\n");
25510 			kmem_free(sense, sense_buflen);
25511 			kmem_free(select, select_buflen);
25512 			return (EIO);
25513 		}
25514 		sense_page = (uchar_t *)
25515 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
25516 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
25517 		select_mhp->length_msb = 0;
25518 		select_mhp->length_lsb = 0;
25519 		select_mhp->bdesc_length_hi = 0;
25520 		select_mhp->bdesc_length_lo = 0;
25521 	} else {
25522 		struct mode_header		*sense_mhp, *select_mhp;
25523 
25524 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25525 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25526 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25527 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25528 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
25529 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25530 		    SD_PATH_STANDARD)) != 0) {
25531 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25532 			    "sr_volume_ctrl: Mode Sense Failed\n");
25533 			kmem_free(sense, sense_buflen);
25534 			kmem_free(select, select_buflen);
25535 			return (rval);
25536 		}
25537 		sense_mhp  = (struct mode_header *)sense;
25538 		select_mhp = (struct mode_header *)select;
25539 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
25540 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25541 			    "sr_volume_ctrl: Mode Sense returned invalid "
25542 			    "block descriptor length\n");
25543 			kmem_free(sense, sense_buflen);
25544 			kmem_free(select, select_buflen);
25545 			return (EIO);
25546 		}
25547 		sense_page = (uchar_t *)
25548 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25549 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
25550 		select_mhp->length = 0;
25551 		select_mhp->bdesc_length = 0;
25552 	}
25553 	/*
25554 	 * Note: An audio control data structure could be created and overlayed
25555 	 * on the following in place of the array indexing method implemented.
25556 	 */
25557 
25558 	/* Build the select data for the user volume data */
25559 	select_page[0] = MODEPAGE_AUDIO_CTRL;
25560 	select_page[1] = 0xE;
25561 	/* Set the immediate bit */
25562 	select_page[2] = 0x04;
25563 	/* Zero out reserved fields */
25564 	select_page[3] = 0x00;
25565 	select_page[4] = 0x00;
25566 	/* Return sense data for fields not to be modified */
25567 	select_page[5] = sense_page[5];
25568 	select_page[6] = sense_page[6];
25569 	select_page[7] = sense_page[7];
25570 	/* Set the user specified volume levels for channel 0 and 1 */
25571 	select_page[8] = 0x01;
25572 	select_page[9] = vol->channel0;
25573 	select_page[10] = 0x02;
25574 	select_page[11] = vol->channel1;
25575 	/* Channel 2 and 3 are currently unsupported so return the sense data */
25576 	select_page[12] = sense_page[12];
25577 	select_page[13] = sense_page[13];
25578 	select_page[14] = sense_page[14];
25579 	select_page[15] = sense_page[15];
25580 
25581 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25582 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
25583 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25584 	} else {
25585 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
25586 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25587 	}
25588 
25589 	kmem_free(sense, sense_buflen);
25590 	kmem_free(select, select_buflen);
25591 	return (rval);
25592 }
25593 
25594 
25595 /*
25596  *    Function: sr_read_sony_session_offset()
25597  *
25598  * Description: This routine is the driver entry point for handling CD-ROM
25599  *		ioctl requests for session offset information. (CDROMREADOFFSET)
25600  *		The address of the first track in the last session of a
25601  *		multi-session CD-ROM is returned
25602  *
25603  *		Note: This routine uses a vendor specific key value in the
25604  *		command control field without implementing any vendor check here
25605  *		or in the ioctl routine.
25606  *
25607  *   Arguments: dev	- the device 'dev_t'
25608  *		data	- pointer to an int to hold the requested address
25609  *		flag	- this argument is a pass through to ddi_copyxxx()
25610  *			  directly from the mode argument of ioctl().
25611  *
25612  * Return Code: the code returned by sd_send_scsi_cmd()
25613  *		EFAULT if ddi_copyxxx() fails
25614  *		ENXIO if fail ddi_get_soft_state
25615  *		EINVAL if data pointer is NULL
25616  */
25617 
25618 static int
25619 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
25620 {
25621 	struct sd_lun		*un;
25622 	struct uscsi_cmd	*com;
25623 	caddr_t			buffer;
25624 	char			cdb[CDB_GROUP1];
25625 	int			session_offset = 0;
25626 	int			rval;
25627 
25628 	if (data == NULL) {
25629 		return (EINVAL);
25630 	}
25631 
25632 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25633 	    (un->un_state == SD_STATE_OFFLINE)) {
25634 		return (ENXIO);
25635 	}
25636 
25637 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
25638 	bzero(cdb, CDB_GROUP1);
25639 	cdb[0] = SCMD_READ_TOC;
25640 	/*
25641 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
25642 	 * (4 byte TOC response header + 8 byte response data)
25643 	 */
25644 	cdb[8] = SONY_SESSION_OFFSET_LEN;
25645 	/* Byte 9 is the control byte. A vendor specific value is used */
25646 	cdb[9] = SONY_SESSION_OFFSET_KEY;
25647 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25648 	com->uscsi_cdb = cdb;
25649 	com->uscsi_cdblen = CDB_GROUP1;
25650 	com->uscsi_bufaddr = buffer;
25651 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
25652 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25653 
25654 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25655 	    SD_PATH_STANDARD);
25656 	if (rval != 0) {
25657 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
25658 		kmem_free(com, sizeof (*com));
25659 		return (rval);
25660 	}
25661 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
25662 		session_offset =
25663 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
25664 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
25665 		/*
25666 		 * Offset returned offset in current lbasize block's. Convert to
25667 		 * 2k block's to return to the user
25668 		 */
25669 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
25670 			session_offset >>= 2;
25671 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
25672 			session_offset >>= 1;
25673 		}
25674 	}
25675 
25676 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
25677 		rval = EFAULT;
25678 	}
25679 
25680 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
25681 	kmem_free(com, sizeof (*com));
25682 	return (rval);
25683 }
25684 
25685 
25686 /*
25687  *    Function: sd_wm_cache_constructor()
25688  *
25689  * Description: Cache Constructor for the wmap cache for the read/modify/write
25690  * 		devices.
25691  *
25692  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
25693  *		un	- sd_lun structure for the device.
25694  *		flag	- the km flags passed to constructor
25695  *
25696  * Return Code: 0 on success.
25697  *		-1 on failure.
25698  */
25699 
25700 /*ARGSUSED*/
25701 static int
25702 sd_wm_cache_constructor(void *wm, void *un, int flags)
25703 {
25704 	bzero(wm, sizeof (struct sd_w_map));
25705 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
25706 	return (0);
25707 }
25708 
25709 
25710 /*
25711  *    Function: sd_wm_cache_destructor()
25712  *
25713  * Description: Cache destructor for the wmap cache for the read/modify/write
25714  * 		devices.
25715  *
25716  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
25717  *		un	- sd_lun structure for the device.
25718  */
25719 /*ARGSUSED*/
25720 static void
25721 sd_wm_cache_destructor(void *wm, void *un)
25722 {
25723 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
25724 }
25725 
25726 
25727 /*
25728  *    Function: sd_range_lock()
25729  *
25730  * Description: Lock the range of blocks specified as parameter to ensure
25731  *		that read, modify write is atomic and no other i/o writes
25732  *		to the same location. The range is specified in terms
25733  *		of start and end blocks. Block numbers are the actual
25734  *		media block numbers and not system.
25735  *
25736  *   Arguments: un	- sd_lun structure for the device.
25737  *		startb - The starting block number
25738  *		endb - The end block number
25739  *		typ - type of i/o - simple/read_modify_write
25740  *
25741  * Return Code: wm  - pointer to the wmap structure.
25742  *
25743  *     Context: This routine can sleep.
25744  */
25745 
25746 static struct sd_w_map *
25747 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
25748 {
25749 	struct sd_w_map *wmp = NULL;
25750 	struct sd_w_map *sl_wmp = NULL;
25751 	struct sd_w_map *tmp_wmp;
25752 	wm_state state = SD_WM_CHK_LIST;
25753 
25754 
25755 	ASSERT(un != NULL);
25756 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25757 
25758 	mutex_enter(SD_MUTEX(un));
25759 
25760 	while (state != SD_WM_DONE) {
25761 
25762 		switch (state) {
25763 		case SD_WM_CHK_LIST:
25764 			/*
25765 			 * This is the starting state. Check the wmap list
25766 			 * to see if the range is currently available.
25767 			 */
25768 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
25769 				/*
25770 				 * If this is a simple write and no rmw
25771 				 * i/o is pending then try to lock the
25772 				 * range as the range should be available.
25773 				 */
25774 				state = SD_WM_LOCK_RANGE;
25775 			} else {
25776 				tmp_wmp = sd_get_range(un, startb, endb);
25777 				if (tmp_wmp != NULL) {
25778 					if ((wmp != NULL) && ONLIST(un, wmp)) {
25779 						/*
25780 						 * Should not keep onlist wmps
25781 						 * while waiting this macro
25782 						 * will also do wmp = NULL;
25783 						 */
25784 						FREE_ONLIST_WMAP(un, wmp);
25785 					}
25786 					/*
25787 					 * sl_wmp is the wmap on which wait
25788 					 * is done, since the tmp_wmp points
25789 					 * to the inuse wmap, set sl_wmp to
25790 					 * tmp_wmp and change the state to sleep
25791 					 */
25792 					sl_wmp = tmp_wmp;
25793 					state = SD_WM_WAIT_MAP;
25794 				} else {
25795 					state = SD_WM_LOCK_RANGE;
25796 				}
25797 
25798 			}
25799 			break;
25800 
25801 		case SD_WM_LOCK_RANGE:
25802 			ASSERT(un->un_wm_cache);
25803 			/*
25804 			 * The range need to be locked, try to get a wmap.
25805 			 * First attempt it with NO_SLEEP, want to avoid a sleep
25806 			 * if possible as we will have to release the sd mutex
25807 			 * if we have to sleep.
25808 			 */
25809 			if (wmp == NULL)
25810 				wmp = kmem_cache_alloc(un->un_wm_cache,
25811 				    KM_NOSLEEP);
25812 			if (wmp == NULL) {
25813 				mutex_exit(SD_MUTEX(un));
25814 				_NOTE(DATA_READABLE_WITHOUT_LOCK
25815 				    (sd_lun::un_wm_cache))
25816 				wmp = kmem_cache_alloc(un->un_wm_cache,
25817 				    KM_SLEEP);
25818 				mutex_enter(SD_MUTEX(un));
25819 				/*
25820 				 * we released the mutex so recheck and go to
25821 				 * check list state.
25822 				 */
25823 				state = SD_WM_CHK_LIST;
25824 			} else {
25825 				/*
25826 				 * We exit out of state machine since we
25827 				 * have the wmap. Do the housekeeping first.
25828 				 * place the wmap on the wmap list if it is not
25829 				 * on it already and then set the state to done.
25830 				 */
25831 				wmp->wm_start = startb;
25832 				wmp->wm_end = endb;
25833 				wmp->wm_flags = typ | SD_WM_BUSY;
25834 				if (typ & SD_WTYPE_RMW) {
25835 					un->un_rmw_count++;
25836 				}
25837 				/*
25838 				 * If not already on the list then link
25839 				 */
25840 				if (!ONLIST(un, wmp)) {
25841 					wmp->wm_next = un->un_wm;
25842 					wmp->wm_prev = NULL;
25843 					if (wmp->wm_next)
25844 						wmp->wm_next->wm_prev = wmp;
25845 					un->un_wm = wmp;
25846 				}
25847 				state = SD_WM_DONE;
25848 			}
25849 			break;
25850 
25851 		case SD_WM_WAIT_MAP:
25852 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
25853 			/*
25854 			 * Wait is done on sl_wmp, which is set in the
25855 			 * check_list state.
25856 			 */
25857 			sl_wmp->wm_wanted_count++;
25858 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
25859 			sl_wmp->wm_wanted_count--;
25860 			/*
25861 			 * We can reuse the memory from the completed sl_wmp
25862 			 * lock range for our new lock, but only if noone is
25863 			 * waiting for it.
25864 			 */
25865 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
25866 			if (sl_wmp->wm_wanted_count == 0) {
25867 				if (wmp != NULL)
25868 					CHK_N_FREEWMP(un, wmp);
25869 				wmp = sl_wmp;
25870 			}
25871 			sl_wmp = NULL;
25872 			/*
25873 			 * After waking up, need to recheck for availability of
25874 			 * range.
25875 			 */
25876 			state = SD_WM_CHK_LIST;
25877 			break;
25878 
25879 		default:
25880 			panic("sd_range_lock: "
25881 			    "Unknown state %d in sd_range_lock", state);
25882 			/*NOTREACHED*/
25883 		} /* switch(state) */
25884 
25885 	} /* while(state != SD_WM_DONE) */
25886 
25887 	mutex_exit(SD_MUTEX(un));
25888 
25889 	ASSERT(wmp != NULL);
25890 
25891 	return (wmp);
25892 }
25893 
25894 
25895 /*
25896  *    Function: sd_get_range()
25897  *
25898  * Description: Find if there any overlapping I/O to this one
25899  *		Returns the write-map of 1st such I/O, NULL otherwise.
25900  *
25901  *   Arguments: un	- sd_lun structure for the device.
25902  *		startb - The starting block number
25903  *		endb - The end block number
25904  *
25905  * Return Code: wm  - pointer to the wmap structure.
25906  */
25907 
25908 static struct sd_w_map *
25909 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
25910 {
25911 	struct sd_w_map *wmp;
25912 
25913 	ASSERT(un != NULL);
25914 
25915 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
25916 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
25917 			continue;
25918 		}
25919 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
25920 			break;
25921 		}
25922 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
25923 			break;
25924 		}
25925 	}
25926 
25927 	return (wmp);
25928 }
25929 
25930 
25931 /*
25932  *    Function: sd_free_inlist_wmap()
25933  *
25934  * Description: Unlink and free a write map struct.
25935  *
25936  *   Arguments: un      - sd_lun structure for the device.
25937  *		wmp	- sd_w_map which needs to be unlinked.
25938  */
25939 
25940 static void
25941 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
25942 {
25943 	ASSERT(un != NULL);
25944 
25945 	if (un->un_wm == wmp) {
25946 		un->un_wm = wmp->wm_next;
25947 	} else {
25948 		wmp->wm_prev->wm_next = wmp->wm_next;
25949 	}
25950 
25951 	if (wmp->wm_next) {
25952 		wmp->wm_next->wm_prev = wmp->wm_prev;
25953 	}
25954 
25955 	wmp->wm_next = wmp->wm_prev = NULL;
25956 
25957 	kmem_cache_free(un->un_wm_cache, wmp);
25958 }
25959 
25960 
25961 /*
25962  *    Function: sd_range_unlock()
25963  *
25964  * Description: Unlock the range locked by wm.
25965  *		Free write map if nobody else is waiting on it.
25966  *
25967  *   Arguments: un      - sd_lun structure for the device.
25968  *              wmp     - sd_w_map which needs to be unlinked.
25969  */
25970 
25971 static void
25972 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
25973 {
25974 	ASSERT(un != NULL);
25975 	ASSERT(wm != NULL);
25976 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25977 
25978 	mutex_enter(SD_MUTEX(un));
25979 
25980 	if (wm->wm_flags & SD_WTYPE_RMW) {
25981 		un->un_rmw_count--;
25982 	}
25983 
25984 	if (wm->wm_wanted_count) {
25985 		wm->wm_flags = 0;
25986 		/*
25987 		 * Broadcast that the wmap is available now.
25988 		 */
25989 		cv_broadcast(&wm->wm_avail);
25990 	} else {
25991 		/*
25992 		 * If no one is waiting on the map, it should be free'ed.
25993 		 */
25994 		sd_free_inlist_wmap(un, wm);
25995 	}
25996 
25997 	mutex_exit(SD_MUTEX(un));
25998 }
25999 
26000 
26001 /*
26002  *    Function: sd_read_modify_write_task
26003  *
26004  * Description: Called from a taskq thread to initiate the write phase of
26005  *		a read-modify-write request.  This is used for targets where
26006  *		un->un_sys_blocksize != un->un_tgt_blocksize.
26007  *
26008  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26009  *
26010  *     Context: Called under taskq thread context.
26011  */
26012 
26013 static void
26014 sd_read_modify_write_task(void *arg)
26015 {
26016 	struct sd_mapblocksize_info	*bsp;
26017 	struct buf	*bp;
26018 	struct sd_xbuf	*xp;
26019 	struct sd_lun	*un;
26020 
26021 	bp = arg;	/* The bp is given in arg */
26022 	ASSERT(bp != NULL);
26023 
26024 	/* Get the pointer to the layer-private data struct */
26025 	xp = SD_GET_XBUF(bp);
26026 	ASSERT(xp != NULL);
26027 	bsp = xp->xb_private;
26028 	ASSERT(bsp != NULL);
26029 
26030 	un = SD_GET_UN(bp);
26031 	ASSERT(un != NULL);
26032 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26033 
26034 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26035 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26036 
26037 	/*
26038 	 * This is the write phase of a read-modify-write request, called
26039 	 * under the context of a taskq thread in response to the completion
26040 	 * of the read portion of the rmw request completing under interrupt
26041 	 * context. The write request must be sent from here down the iostart
26042 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26043 	 * we use the layer index saved in the layer-private data area.
26044 	 */
26045 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26046 
26047 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26048 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26049 }
26050 
26051 
26052 /*
26053  *    Function: sddump_do_read_of_rmw()
26054  *
26055  * Description: This routine will be called from sddump, If sddump is called
26056  *		with an I/O which not aligned on device blocksize boundary
26057  *		then the write has to be converted to read-modify-write.
26058  *		Do the read part here in order to keep sddump simple.
26059  *		Note - That the sd_mutex is held across the call to this
26060  *		routine.
26061  *
26062  *   Arguments: un	- sd_lun
26063  *		blkno	- block number in terms of media block size.
26064  *		nblk	- number of blocks.
26065  *		bpp	- pointer to pointer to the buf structure. On return
26066  *			from this function, *bpp points to the valid buffer
26067  *			to which the write has to be done.
26068  *
26069  * Return Code: 0 for success or errno-type return code
26070  */
26071 
26072 static int
26073 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26074 	struct buf **bpp)
26075 {
26076 	int err;
26077 	int i;
26078 	int rval;
26079 	struct buf *bp;
26080 	struct scsi_pkt *pkt = NULL;
26081 	uint32_t target_blocksize;
26082 
26083 	ASSERT(un != NULL);
26084 	ASSERT(mutex_owned(SD_MUTEX(un)));
26085 
26086 	target_blocksize = un->un_tgt_blocksize;
26087 
26088 	mutex_exit(SD_MUTEX(un));
26089 
26090 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26091 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26092 	if (bp == NULL) {
26093 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26094 		    "no resources for dumping; giving up");
26095 		err = ENOMEM;
26096 		goto done;
26097 	}
26098 
26099 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26100 	    blkno, nblk);
26101 	if (rval != 0) {
26102 		scsi_free_consistent_buf(bp);
26103 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26104 		    "no resources for dumping; giving up");
26105 		err = ENOMEM;
26106 		goto done;
26107 	}
26108 
26109 	pkt->pkt_flags |= FLAG_NOINTR;
26110 
26111 	err = EIO;
26112 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26113 
26114 		/*
26115 		 * Scsi_poll returns 0 (success) if the command completes and
26116 		 * the status block is STATUS_GOOD.  We should only check
26117 		 * errors if this condition is not true.  Even then we should
26118 		 * send our own request sense packet only if we have a check
26119 		 * condition and auto request sense has not been performed by
26120 		 * the hba.
26121 		 */
26122 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26123 
26124 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26125 			err = 0;
26126 			break;
26127 		}
26128 
26129 		/*
26130 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26131 		 * no need to read RQS data.
26132 		 */
26133 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26134 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26135 			    "Device is gone\n");
26136 			break;
26137 		}
26138 
26139 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26140 			SD_INFO(SD_LOG_DUMP, un,
26141 			    "sddump: read failed with CHECK, try # %d\n", i);
26142 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26143 				(void) sd_send_polled_RQS(un);
26144 			}
26145 
26146 			continue;
26147 		}
26148 
26149 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26150 			int reset_retval = 0;
26151 
26152 			SD_INFO(SD_LOG_DUMP, un,
26153 			    "sddump: read failed with BUSY, try # %d\n", i);
26154 
26155 			if (un->un_f_lun_reset_enabled == TRUE) {
26156 				reset_retval = scsi_reset(SD_ADDRESS(un),
26157 				    RESET_LUN);
26158 			}
26159 			if (reset_retval == 0) {
26160 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26161 			}
26162 			(void) sd_send_polled_RQS(un);
26163 
26164 		} else {
26165 			SD_INFO(SD_LOG_DUMP, un,
26166 			    "sddump: read failed with 0x%x, try # %d\n",
26167 			    SD_GET_PKT_STATUS(pkt), i);
26168 			mutex_enter(SD_MUTEX(un));
26169 			sd_reset_target(un, pkt);
26170 			mutex_exit(SD_MUTEX(un));
26171 		}
26172 
26173 		/*
26174 		 * If we are not getting anywhere with lun/target resets,
26175 		 * let's reset the bus.
26176 		 */
26177 		if (i > SD_NDUMP_RETRIES/2) {
26178 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26179 			(void) sd_send_polled_RQS(un);
26180 		}
26181 
26182 	}
26183 	scsi_destroy_pkt(pkt);
26184 
26185 	if (err != 0) {
26186 		scsi_free_consistent_buf(bp);
26187 		*bpp = NULL;
26188 	} else {
26189 		*bpp = bp;
26190 	}
26191 
26192 done:
26193 	mutex_enter(SD_MUTEX(un));
26194 	return (err);
26195 }
26196 
26197 
26198 /*
26199  *    Function: sd_failfast_flushq
26200  *
26201  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26202  *		in b_flags and move them onto the failfast queue, then kick
26203  *		off a thread to return all bp's on the failfast queue to
26204  *		their owners with an error set.
26205  *
26206  *   Arguments: un - pointer to the soft state struct for the instance.
26207  *
26208  *     Context: may execute in interrupt context.
26209  */
26210 
26211 static void
26212 sd_failfast_flushq(struct sd_lun *un)
26213 {
26214 	struct buf *bp;
26215 	struct buf *next_waitq_bp;
26216 	struct buf *prev_waitq_bp = NULL;
26217 
26218 	ASSERT(un != NULL);
26219 	ASSERT(mutex_owned(SD_MUTEX(un)));
26220 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26221 	ASSERT(un->un_failfast_bp == NULL);
26222 
26223 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26224 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26225 
26226 	/*
26227 	 * Check if we should flush all bufs when entering failfast state, or
26228 	 * just those with B_FAILFAST set.
26229 	 */
26230 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26231 		/*
26232 		 * Move *all* bp's on the wait queue to the failfast flush
26233 		 * queue, including those that do NOT have B_FAILFAST set.
26234 		 */
26235 		if (un->un_failfast_headp == NULL) {
26236 			ASSERT(un->un_failfast_tailp == NULL);
26237 			un->un_failfast_headp = un->un_waitq_headp;
26238 		} else {
26239 			ASSERT(un->un_failfast_tailp != NULL);
26240 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26241 		}
26242 
26243 		un->un_failfast_tailp = un->un_waitq_tailp;
26244 
26245 		/* update kstat for each bp moved out of the waitq */
26246 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26247 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26248 		}
26249 
26250 		/* empty the waitq */
26251 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26252 
26253 	} else {
26254 		/*
26255 		 * Go thru the wait queue, pick off all entries with
26256 		 * B_FAILFAST set, and move these onto the failfast queue.
26257 		 */
26258 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26259 			/*
26260 			 * Save the pointer to the next bp on the wait queue,
26261 			 * so we get to it on the next iteration of this loop.
26262 			 */
26263 			next_waitq_bp = bp->av_forw;
26264 
26265 			/*
26266 			 * If this bp from the wait queue does NOT have
26267 			 * B_FAILFAST set, just move on to the next element
26268 			 * in the wait queue. Note, this is the only place
26269 			 * where it is correct to set prev_waitq_bp.
26270 			 */
26271 			if ((bp->b_flags & B_FAILFAST) == 0) {
26272 				prev_waitq_bp = bp;
26273 				continue;
26274 			}
26275 
26276 			/*
26277 			 * Remove the bp from the wait queue.
26278 			 */
26279 			if (bp == un->un_waitq_headp) {
26280 				/* The bp is the first element of the waitq. */
26281 				un->un_waitq_headp = next_waitq_bp;
26282 				if (un->un_waitq_headp == NULL) {
26283 					/* The wait queue is now empty */
26284 					un->un_waitq_tailp = NULL;
26285 				}
26286 			} else {
26287 				/*
26288 				 * The bp is either somewhere in the middle
26289 				 * or at the end of the wait queue.
26290 				 */
26291 				ASSERT(un->un_waitq_headp != NULL);
26292 				ASSERT(prev_waitq_bp != NULL);
26293 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
26294 				    == 0);
26295 				if (bp == un->un_waitq_tailp) {
26296 					/* bp is the last entry on the waitq. */
26297 					ASSERT(next_waitq_bp == NULL);
26298 					un->un_waitq_tailp = prev_waitq_bp;
26299 				}
26300 				prev_waitq_bp->av_forw = next_waitq_bp;
26301 			}
26302 			bp->av_forw = NULL;
26303 
26304 			/*
26305 			 * update kstat since the bp is moved out of
26306 			 * the waitq
26307 			 */
26308 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26309 
26310 			/*
26311 			 * Now put the bp onto the failfast queue.
26312 			 */
26313 			if (un->un_failfast_headp == NULL) {
26314 				/* failfast queue is currently empty */
26315 				ASSERT(un->un_failfast_tailp == NULL);
26316 				un->un_failfast_headp =
26317 				    un->un_failfast_tailp = bp;
26318 			} else {
26319 				/* Add the bp to the end of the failfast q */
26320 				ASSERT(un->un_failfast_tailp != NULL);
26321 				ASSERT(un->un_failfast_tailp->b_flags &
26322 				    B_FAILFAST);
26323 				un->un_failfast_tailp->av_forw = bp;
26324 				un->un_failfast_tailp = bp;
26325 			}
26326 		}
26327 	}
26328 
26329 	/*
26330 	 * Now return all bp's on the failfast queue to their owners.
26331 	 */
26332 	while ((bp = un->un_failfast_headp) != NULL) {
26333 
26334 		un->un_failfast_headp = bp->av_forw;
26335 		if (un->un_failfast_headp == NULL) {
26336 			un->un_failfast_tailp = NULL;
26337 		}
26338 
26339 		/*
26340 		 * We want to return the bp with a failure error code, but
26341 		 * we do not want a call to sd_start_cmds() to occur here,
26342 		 * so use sd_return_failed_command_no_restart() instead of
26343 		 * sd_return_failed_command().
26344 		 */
26345 		sd_return_failed_command_no_restart(un, bp, EIO);
26346 	}
26347 
26348 	/* Flush the xbuf queues if required. */
26349 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
26350 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
26351 	}
26352 
26353 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26354 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
26355 }
26356 
26357 
26358 /*
26359  *    Function: sd_failfast_flushq_callback
26360  *
26361  * Description: Return TRUE if the given bp meets the criteria for failfast
26362  *		flushing. Used with ddi_xbuf_flushq(9F).
26363  *
26364  *   Arguments: bp - ptr to buf struct to be examined.
26365  *
26366  *     Context: Any
26367  */
26368 
26369 static int
26370 sd_failfast_flushq_callback(struct buf *bp)
26371 {
26372 	/*
26373 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
26374 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
26375 	 */
26376 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
26377 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
26378 }
26379 
26380 
26381 
26382 #if defined(__i386) || defined(__amd64)
26383 /*
26384  * Function: sd_setup_next_xfer
26385  *
26386  * Description: Prepare next I/O operation using DMA_PARTIAL
26387  *
26388  */
26389 
26390 static int
26391 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
26392     struct scsi_pkt *pkt, struct sd_xbuf *xp)
26393 {
26394 	ssize_t	num_blks_not_xfered;
26395 	daddr_t	strt_blk_num;
26396 	ssize_t	bytes_not_xfered;
26397 	int	rval;
26398 
26399 	ASSERT(pkt->pkt_resid == 0);
26400 
26401 	/*
26402 	 * Calculate next block number and amount to be transferred.
26403 	 *
26404 	 * How much data NOT transfered to the HBA yet.
26405 	 */
26406 	bytes_not_xfered = xp->xb_dma_resid;
26407 
26408 	/*
26409 	 * figure how many blocks NOT transfered to the HBA yet.
26410 	 */
26411 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
26412 
26413 	/*
26414 	 * set starting block number to the end of what WAS transfered.
26415 	 */
26416 	strt_blk_num = xp->xb_blkno +
26417 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
26418 
26419 	/*
26420 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
26421 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
26422 	 * the disk mutex here.
26423 	 */
26424 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
26425 	    strt_blk_num, num_blks_not_xfered);
26426 
26427 	if (rval == 0) {
26428 
26429 		/*
26430 		 * Success.
26431 		 *
26432 		 * Adjust things if there are still more blocks to be
26433 		 * transfered.
26434 		 */
26435 		xp->xb_dma_resid = pkt->pkt_resid;
26436 		pkt->pkt_resid = 0;
26437 
26438 		return (1);
26439 	}
26440 
26441 	/*
26442 	 * There's really only one possible return value from
26443 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
26444 	 * returns NULL.
26445 	 */
26446 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
26447 
26448 	bp->b_resid = bp->b_bcount;
26449 	bp->b_flags |= B_ERROR;
26450 
26451 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26452 	    "Error setting up next portion of DMA transfer\n");
26453 
26454 	return (0);
26455 }
26456 #endif
26457 
26458 /*
26459  *    Function: sd_panic_for_res_conflict
26460  *
26461  * Description: Call panic with a string formated with "Reservation Conflict"
26462  *		and a human readable identifier indicating the SD instance
26463  *		that experienced the reservation conflict.
26464  *
26465  *   Arguments: un - pointer to the soft state struct for the instance.
26466  *
26467  *     Context: may execute in interrupt context.
26468  */
26469 
26470 #define	SD_RESV_CONFLICT_FMT_LEN 40
26471 void
26472 sd_panic_for_res_conflict(struct sd_lun *un)
26473 {
26474 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
26475 	char path_str[MAXPATHLEN];
26476 
26477 	(void) snprintf(panic_str, sizeof (panic_str),
26478 	    "Reservation Conflict\nDisk: %s",
26479 	    ddi_pathname(SD_DEVINFO(un), path_str));
26480 
26481 	panic(panic_str);
26482 }
26483 
26484 /*
26485  * Note: The following sd_faultinjection_ioctl( ) routines implement
26486  * driver support for handling fault injection for error analysis
26487  * causing faults in multiple layers of the driver.
26488  *
26489  */
26490 
26491 #ifdef SD_FAULT_INJECTION
26492 static uint_t   sd_fault_injection_on = 0;
26493 
26494 /*
26495  *    Function: sd_faultinjection_ioctl()
26496  *
26497  * Description: This routine is the driver entry point for handling
26498  *              faultinjection ioctls to inject errors into the
26499  *              layer model
26500  *
26501  *   Arguments: cmd	- the ioctl cmd recieved
26502  *		arg	- the arguments from user and returns
26503  */
26504 
26505 static void
26506 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
26507 
26508 	uint_t i;
26509 	uint_t rval;
26510 
26511 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
26512 
26513 	mutex_enter(SD_MUTEX(un));
26514 
26515 	switch (cmd) {
26516 	case SDIOCRUN:
26517 		/* Allow pushed faults to be injected */
26518 		SD_INFO(SD_LOG_SDTEST, un,
26519 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
26520 
26521 		sd_fault_injection_on = 1;
26522 
26523 		SD_INFO(SD_LOG_IOERR, un,
26524 		    "sd_faultinjection_ioctl: run finished\n");
26525 		break;
26526 
26527 	case SDIOCSTART:
26528 		/* Start Injection Session */
26529 		SD_INFO(SD_LOG_SDTEST, un,
26530 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
26531 
26532 		sd_fault_injection_on = 0;
26533 		un->sd_injection_mask = 0xFFFFFFFF;
26534 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26535 			un->sd_fi_fifo_pkt[i] = NULL;
26536 			un->sd_fi_fifo_xb[i] = NULL;
26537 			un->sd_fi_fifo_un[i] = NULL;
26538 			un->sd_fi_fifo_arq[i] = NULL;
26539 		}
26540 		un->sd_fi_fifo_start = 0;
26541 		un->sd_fi_fifo_end = 0;
26542 
26543 		mutex_enter(&(un->un_fi_mutex));
26544 		un->sd_fi_log[0] = '\0';
26545 		un->sd_fi_buf_len = 0;
26546 		mutex_exit(&(un->un_fi_mutex));
26547 
26548 		SD_INFO(SD_LOG_IOERR, un,
26549 		    "sd_faultinjection_ioctl: start finished\n");
26550 		break;
26551 
26552 	case SDIOCSTOP:
26553 		/* Stop Injection Session */
26554 		SD_INFO(SD_LOG_SDTEST, un,
26555 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
26556 		sd_fault_injection_on = 0;
26557 		un->sd_injection_mask = 0x0;
26558 
26559 		/* Empty stray or unuseds structs from fifo */
26560 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26561 			if (un->sd_fi_fifo_pkt[i] != NULL) {
26562 				kmem_free(un->sd_fi_fifo_pkt[i],
26563 				    sizeof (struct sd_fi_pkt));
26564 			}
26565 			if (un->sd_fi_fifo_xb[i] != NULL) {
26566 				kmem_free(un->sd_fi_fifo_xb[i],
26567 				    sizeof (struct sd_fi_xb));
26568 			}
26569 			if (un->sd_fi_fifo_un[i] != NULL) {
26570 				kmem_free(un->sd_fi_fifo_un[i],
26571 				    sizeof (struct sd_fi_un));
26572 			}
26573 			if (un->sd_fi_fifo_arq[i] != NULL) {
26574 				kmem_free(un->sd_fi_fifo_arq[i],
26575 				    sizeof (struct sd_fi_arq));
26576 			}
26577 			un->sd_fi_fifo_pkt[i] = NULL;
26578 			un->sd_fi_fifo_un[i] = NULL;
26579 			un->sd_fi_fifo_xb[i] = NULL;
26580 			un->sd_fi_fifo_arq[i] = NULL;
26581 		}
26582 		un->sd_fi_fifo_start = 0;
26583 		un->sd_fi_fifo_end = 0;
26584 
26585 		SD_INFO(SD_LOG_IOERR, un,
26586 		    "sd_faultinjection_ioctl: stop finished\n");
26587 		break;
26588 
26589 	case SDIOCINSERTPKT:
26590 		/* Store a packet struct to be pushed onto fifo */
26591 		SD_INFO(SD_LOG_SDTEST, un,
26592 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
26593 
26594 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26595 
26596 		sd_fault_injection_on = 0;
26597 
26598 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
26599 		if (un->sd_fi_fifo_pkt[i] != NULL) {
26600 			kmem_free(un->sd_fi_fifo_pkt[i],
26601 			    sizeof (struct sd_fi_pkt));
26602 		}
26603 		if (arg != NULL) {
26604 			un->sd_fi_fifo_pkt[i] =
26605 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
26606 			if (un->sd_fi_fifo_pkt[i] == NULL) {
26607 				/* Alloc failed don't store anything */
26608 				break;
26609 			}
26610 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
26611 			    sizeof (struct sd_fi_pkt), 0);
26612 			if (rval == -1) {
26613 				kmem_free(un->sd_fi_fifo_pkt[i],
26614 				    sizeof (struct sd_fi_pkt));
26615 				un->sd_fi_fifo_pkt[i] = NULL;
26616 			}
26617 		} else {
26618 			SD_INFO(SD_LOG_IOERR, un,
26619 			    "sd_faultinjection_ioctl: pkt null\n");
26620 		}
26621 		break;
26622 
26623 	case SDIOCINSERTXB:
26624 		/* Store a xb struct to be pushed onto fifo */
26625 		SD_INFO(SD_LOG_SDTEST, un,
26626 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
26627 
26628 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26629 
26630 		sd_fault_injection_on = 0;
26631 
26632 		if (un->sd_fi_fifo_xb[i] != NULL) {
26633 			kmem_free(un->sd_fi_fifo_xb[i],
26634 			    sizeof (struct sd_fi_xb));
26635 			un->sd_fi_fifo_xb[i] = NULL;
26636 		}
26637 		if (arg != NULL) {
26638 			un->sd_fi_fifo_xb[i] =
26639 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
26640 			if (un->sd_fi_fifo_xb[i] == NULL) {
26641 				/* Alloc failed don't store anything */
26642 				break;
26643 			}
26644 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
26645 			    sizeof (struct sd_fi_xb), 0);
26646 
26647 			if (rval == -1) {
26648 				kmem_free(un->sd_fi_fifo_xb[i],
26649 				    sizeof (struct sd_fi_xb));
26650 				un->sd_fi_fifo_xb[i] = NULL;
26651 			}
26652 		} else {
26653 			SD_INFO(SD_LOG_IOERR, un,
26654 			    "sd_faultinjection_ioctl: xb null\n");
26655 		}
26656 		break;
26657 
26658 	case SDIOCINSERTUN:
26659 		/* Store a un struct to be pushed onto fifo */
26660 		SD_INFO(SD_LOG_SDTEST, un,
26661 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
26662 
26663 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26664 
26665 		sd_fault_injection_on = 0;
26666 
26667 		if (un->sd_fi_fifo_un[i] != NULL) {
26668 			kmem_free(un->sd_fi_fifo_un[i],
26669 			    sizeof (struct sd_fi_un));
26670 			un->sd_fi_fifo_un[i] = NULL;
26671 		}
26672 		if (arg != NULL) {
26673 			un->sd_fi_fifo_un[i] =
26674 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
26675 			if (un->sd_fi_fifo_un[i] == NULL) {
26676 				/* Alloc failed don't store anything */
26677 				break;
26678 			}
26679 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
26680 			    sizeof (struct sd_fi_un), 0);
26681 			if (rval == -1) {
26682 				kmem_free(un->sd_fi_fifo_un[i],
26683 				    sizeof (struct sd_fi_un));
26684 				un->sd_fi_fifo_un[i] = NULL;
26685 			}
26686 
26687 		} else {
26688 			SD_INFO(SD_LOG_IOERR, un,
26689 			    "sd_faultinjection_ioctl: un null\n");
26690 		}
26691 
26692 		break;
26693 
26694 	case SDIOCINSERTARQ:
26695 		/* Store a arq struct to be pushed onto fifo */
26696 		SD_INFO(SD_LOG_SDTEST, un,
26697 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
26698 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26699 
26700 		sd_fault_injection_on = 0;
26701 
26702 		if (un->sd_fi_fifo_arq[i] != NULL) {
26703 			kmem_free(un->sd_fi_fifo_arq[i],
26704 			    sizeof (struct sd_fi_arq));
26705 			un->sd_fi_fifo_arq[i] = NULL;
26706 		}
26707 		if (arg != NULL) {
26708 			un->sd_fi_fifo_arq[i] =
26709 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
26710 			if (un->sd_fi_fifo_arq[i] == NULL) {
26711 				/* Alloc failed don't store anything */
26712 				break;
26713 			}
26714 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
26715 			    sizeof (struct sd_fi_arq), 0);
26716 			if (rval == -1) {
26717 				kmem_free(un->sd_fi_fifo_arq[i],
26718 				    sizeof (struct sd_fi_arq));
26719 				un->sd_fi_fifo_arq[i] = NULL;
26720 			}
26721 
26722 		} else {
26723 			SD_INFO(SD_LOG_IOERR, un,
26724 			    "sd_faultinjection_ioctl: arq null\n");
26725 		}
26726 
26727 		break;
26728 
26729 	case SDIOCPUSH:
26730 		/* Push stored xb, pkt, un, and arq onto fifo */
26731 		sd_fault_injection_on = 0;
26732 
26733 		if (arg != NULL) {
26734 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
26735 			if (rval != -1 &&
26736 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
26737 				un->sd_fi_fifo_end += i;
26738 			}
26739 		} else {
26740 			SD_INFO(SD_LOG_IOERR, un,
26741 			    "sd_faultinjection_ioctl: push arg null\n");
26742 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
26743 				un->sd_fi_fifo_end++;
26744 			}
26745 		}
26746 		SD_INFO(SD_LOG_IOERR, un,
26747 		    "sd_faultinjection_ioctl: push to end=%d\n",
26748 		    un->sd_fi_fifo_end);
26749 		break;
26750 
26751 	case SDIOCRETRIEVE:
26752 		/* Return buffer of log from Injection session */
26753 		SD_INFO(SD_LOG_SDTEST, un,
26754 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
26755 
26756 		sd_fault_injection_on = 0;
26757 
26758 		mutex_enter(&(un->un_fi_mutex));
26759 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
26760 		    un->sd_fi_buf_len+1, 0);
26761 		mutex_exit(&(un->un_fi_mutex));
26762 
26763 		if (rval == -1) {
26764 			/*
26765 			 * arg is possibly invalid setting
26766 			 * it to NULL for return
26767 			 */
26768 			arg = NULL;
26769 		}
26770 		break;
26771 	}
26772 
26773 	mutex_exit(SD_MUTEX(un));
26774 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
26775 			    " exit\n");
26776 }
26777 
26778 
26779 /*
26780  *    Function: sd_injection_log()
26781  *
26782  * Description: This routine adds buff to the already existing injection log
26783  *              for retrieval via faultinjection_ioctl for use in fault
26784  *              detection and recovery
26785  *
26786  *   Arguments: buf - the string to add to the log
26787  */
26788 
26789 static void
26790 sd_injection_log(char *buf, struct sd_lun *un)
26791 {
26792 	uint_t len;
26793 
26794 	ASSERT(un != NULL);
26795 	ASSERT(buf != NULL);
26796 
26797 	mutex_enter(&(un->un_fi_mutex));
26798 
26799 	len = min(strlen(buf), 255);
26800 	/* Add logged value to Injection log to be returned later */
26801 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
26802 		uint_t	offset = strlen((char *)un->sd_fi_log);
26803 		char *destp = (char *)un->sd_fi_log + offset;
26804 		int i;
26805 		for (i = 0; i < len; i++) {
26806 			*destp++ = *buf++;
26807 		}
26808 		un->sd_fi_buf_len += len;
26809 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
26810 	}
26811 
26812 	mutex_exit(&(un->un_fi_mutex));
26813 }
26814 
26815 
26816 /*
26817  *    Function: sd_faultinjection()
26818  *
26819  * Description: This routine takes the pkt and changes its
26820  *		content based on error injection scenerio.
26821  *
26822  *   Arguments: pktp	- packet to be changed
26823  */
26824 
26825 static void
26826 sd_faultinjection(struct scsi_pkt *pktp)
26827 {
26828 	uint_t i;
26829 	struct sd_fi_pkt *fi_pkt;
26830 	struct sd_fi_xb *fi_xb;
26831 	struct sd_fi_un *fi_un;
26832 	struct sd_fi_arq *fi_arq;
26833 	struct buf *bp;
26834 	struct sd_xbuf *xb;
26835 	struct sd_lun *un;
26836 
26837 	ASSERT(pktp != NULL);
26838 
26839 	/* pull bp xb and un from pktp */
26840 	bp = (struct buf *)pktp->pkt_private;
26841 	xb = SD_GET_XBUF(bp);
26842 	un = SD_GET_UN(bp);
26843 
26844 	ASSERT(un != NULL);
26845 
26846 	mutex_enter(SD_MUTEX(un));
26847 
26848 	SD_TRACE(SD_LOG_SDTEST, un,
26849 	    "sd_faultinjection: entry Injection from sdintr\n");
26850 
26851 	/* if injection is off return */
26852 	if (sd_fault_injection_on == 0 ||
26853 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
26854 		mutex_exit(SD_MUTEX(un));
26855 		return;
26856 	}
26857 
26858 
26859 	/* take next set off fifo */
26860 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
26861 
26862 	fi_pkt = un->sd_fi_fifo_pkt[i];
26863 	fi_xb = un->sd_fi_fifo_xb[i];
26864 	fi_un = un->sd_fi_fifo_un[i];
26865 	fi_arq = un->sd_fi_fifo_arq[i];
26866 
26867 
26868 	/* set variables accordingly */
26869 	/* set pkt if it was on fifo */
26870 	if (fi_pkt != NULL) {
26871 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
26872 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
26873 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
26874 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
26875 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
26876 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
26877 
26878 	}
26879 
26880 	/* set xb if it was on fifo */
26881 	if (fi_xb != NULL) {
26882 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
26883 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
26884 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
26885 		SD_CONDSET(xb, xb, xb_victim_retry_count,
26886 		    "xb_victim_retry_count");
26887 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
26888 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
26889 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
26890 
26891 		/* copy in block data from sense */
26892 		if (fi_xb->xb_sense_data[0] != -1) {
26893 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
26894 			    SENSE_LENGTH);
26895 		}
26896 
26897 		/* copy in extended sense codes */
26898 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
26899 		    "es_code");
26900 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
26901 		    "es_key");
26902 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
26903 		    "es_add_code");
26904 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
26905 		    es_qual_code, "es_qual_code");
26906 	}
26907 
26908 	/* set un if it was on fifo */
26909 	if (fi_un != NULL) {
26910 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
26911 		SD_CONDSET(un, un, un_ctype, "un_ctype");
26912 		SD_CONDSET(un, un, un_reset_retry_count,
26913 		    "un_reset_retry_count");
26914 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
26915 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
26916 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
26917 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
26918 		    "un_f_allow_bus_device_reset");
26919 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
26920 
26921 	}
26922 
26923 	/* copy in auto request sense if it was on fifo */
26924 	if (fi_arq != NULL) {
26925 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
26926 	}
26927 
26928 	/* free structs */
26929 	if (un->sd_fi_fifo_pkt[i] != NULL) {
26930 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
26931 	}
26932 	if (un->sd_fi_fifo_xb[i] != NULL) {
26933 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
26934 	}
26935 	if (un->sd_fi_fifo_un[i] != NULL) {
26936 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
26937 	}
26938 	if (un->sd_fi_fifo_arq[i] != NULL) {
26939 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
26940 	}
26941 
26942 	/*
26943 	 * kmem_free does not gurantee to set to NULL
26944 	 * since we uses these to determine if we set
26945 	 * values or not lets confirm they are always
26946 	 * NULL after free
26947 	 */
26948 	un->sd_fi_fifo_pkt[i] = NULL;
26949 	un->sd_fi_fifo_un[i] = NULL;
26950 	un->sd_fi_fifo_xb[i] = NULL;
26951 	un->sd_fi_fifo_arq[i] = NULL;
26952 
26953 	un->sd_fi_fifo_start++;
26954 
26955 	mutex_exit(SD_MUTEX(un));
26956 
26957 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
26958 }
26959 
26960 #endif /* SD_FAULT_INJECTION */
26961 
26962 /*
26963  * This routine is invoked in sd_unit_attach(). Before calling it, the
26964  * properties in conf file should be processed already, and "hotpluggable"
26965  * property was processed also.
26966  *
26967  * The sd driver distinguishes 3 different type of devices: removable media,
26968  * non-removable media, and hotpluggable. Below the differences are defined:
26969  *
26970  * 1. Device ID
26971  *
26972  *     The device ID of a device is used to identify this device. Refer to
26973  *     ddi_devid_register(9F).
26974  *
26975  *     For a non-removable media disk device which can provide 0x80 or 0x83
26976  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
26977  *     device ID is created to identify this device. For other non-removable
26978  *     media devices, a default device ID is created only if this device has
26979  *     at least 2 alter cylinders. Otherwise, this device has no devid.
26980  *
26981  *     -------------------------------------------------------
26982  *     removable media   hotpluggable  | Can Have Device ID
26983  *     -------------------------------------------------------
26984  *         false             false     |     Yes
26985  *         false             true      |     Yes
26986  *         true                x       |     No
26987  *     ------------------------------------------------------
26988  *
26989  *
26990  * 2. SCSI group 4 commands
26991  *
26992  *     In SCSI specs, only some commands in group 4 command set can use
26993  *     8-byte addresses that can be used to access >2TB storage spaces.
26994  *     Other commands have no such capability. Without supporting group4,
26995  *     it is impossible to make full use of storage spaces of a disk with
26996  *     capacity larger than 2TB.
26997  *
26998  *     -----------------------------------------------
26999  *     removable media   hotpluggable   LP64  |  Group
27000  *     -----------------------------------------------
27001  *           false          false       false |   1
27002  *           false          false       true  |   4
27003  *           false          true        false |   1
27004  *           false          true        true  |   4
27005  *           true             x           x   |   5
27006  *     -----------------------------------------------
27007  *
27008  *
27009  * 3. Check for VTOC Label
27010  *
27011  *     If a direct-access disk has no EFI label, sd will check if it has a
27012  *     valid VTOC label. Now, sd also does that check for removable media
27013  *     and hotpluggable devices.
27014  *
27015  *     --------------------------------------------------------------
27016  *     Direct-Access   removable media    hotpluggable |  Check Label
27017  *     -------------------------------------------------------------
27018  *         false          false           false        |   No
27019  *         false          false           true         |   No
27020  *         false          true            false        |   Yes
27021  *         false          true            true         |   Yes
27022  *         true            x                x          |   Yes
27023  *     --------------------------------------------------------------
27024  *
27025  *
27026  * 4. Building default VTOC label
27027  *
27028  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27029  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27030  *     create default VTOC for them. Currently sd creates default VTOC label
27031  *     for all devices on x86 platform (VTOC_16), but only for removable
27032  *     media devices on SPARC (VTOC_8).
27033  *
27034  *     -----------------------------------------------------------
27035  *       removable media hotpluggable platform   |   Default Label
27036  *     -----------------------------------------------------------
27037  *             false          false    sparc     |     No
27038  *             false          true      x86      |     Yes
27039  *             false          true     sparc     |     Yes
27040  *             true             x        x       |     Yes
27041  *     ----------------------------------------------------------
27042  *
27043  *
27044  * 5. Supported blocksizes of target devices
27045  *
27046  *     Sd supports non-512-byte blocksize for removable media devices only.
27047  *     For other devices, only 512-byte blocksize is supported. This may be
27048  *     changed in near future because some RAID devices require non-512-byte
27049  *     blocksize
27050  *
27051  *     -----------------------------------------------------------
27052  *     removable media    hotpluggable    | non-512-byte blocksize
27053  *     -----------------------------------------------------------
27054  *           false          false         |   No
27055  *           false          true          |   No
27056  *           true             x           |   Yes
27057  *     -----------------------------------------------------------
27058  *
27059  *
27060  * 6. Automatic mount & unmount
27061  *
27062  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27063  *     if a device is removable media device. It return 1 for removable media
27064  *     devices, and 0 for others.
27065  *
27066  *     The automatic mounting subsystem should distinguish between the types
27067  *     of devices and apply automounting policies to each.
27068  *
27069  *
27070  * 7. fdisk partition management
27071  *
27072  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27073  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27074  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27075  *     fdisk partitions on both x86 and SPARC platform.
27076  *
27077  *     -----------------------------------------------------------
27078  *       platform   removable media  USB/1394  |  fdisk supported
27079  *     -----------------------------------------------------------
27080  *        x86         X               X        |       true
27081  *     ------------------------------------------------------------
27082  *        sparc       X               X        |       false
27083  *     ------------------------------------------------------------
27084  *
27085  *
27086  * 8. MBOOT/MBR
27087  *
27088  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27089  *     read/write mboot for removable media devices on sparc platform.
27090  *
27091  *     -----------------------------------------------------------
27092  *       platform   removable media  USB/1394  |  mboot supported
27093  *     -----------------------------------------------------------
27094  *        x86         X               X        |       true
27095  *     ------------------------------------------------------------
27096  *        sparc      false           false     |       false
27097  *        sparc      false           true      |       true
27098  *        sparc      true            false     |       true
27099  *        sparc      true            true      |       true
27100  *     ------------------------------------------------------------
27101  *
27102  *
27103  * 9.  error handling during opening device
27104  *
27105  *     If failed to open a disk device, an errno is returned. For some kinds
27106  *     of errors, different errno is returned depending on if this device is
27107  *     a removable media device. This brings USB/1394 hard disks in line with
27108  *     expected hard disk behavior. It is not expected that this breaks any
27109  *     application.
27110  *
27111  *     ------------------------------------------------------
27112  *       removable media    hotpluggable   |  errno
27113  *     ------------------------------------------------------
27114  *             false          false        |   EIO
27115  *             false          true         |   EIO
27116  *             true             x          |   ENXIO
27117  *     ------------------------------------------------------
27118  *
27119  *
27120  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27121  *
27122  *     These IOCTLs are applicable only to removable media devices.
27123  *
27124  *     -----------------------------------------------------------
27125  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27126  *     -----------------------------------------------------------
27127  *             false          false        |     No
27128  *             false          true         |     No
27129  *             true            x           |     Yes
27130  *     -----------------------------------------------------------
27131  *
27132  *
27133  * 12. Kstats for partitions
27134  *
27135  *     sd creates partition kstat for non-removable media devices. USB and
27136  *     Firewire hard disks now have partition kstats
27137  *
27138  *      ------------------------------------------------------
27139  *       removable media    hotplugable    |   kstat
27140  *      ------------------------------------------------------
27141  *             false          false        |    Yes
27142  *             false          true         |    Yes
27143  *             true             x          |    No
27144  *       ------------------------------------------------------
27145  *
27146  *
27147  * 13. Removable media & hotpluggable properties
27148  *
27149  *     Sd driver creates a "removable-media" property for removable media
27150  *     devices. Parent nexus drivers create a "hotpluggable" property if
27151  *     it supports hotplugging.
27152  *
27153  *     ---------------------------------------------------------------------
27154  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27155  *     ---------------------------------------------------------------------
27156  *       false            false       |    No                   No
27157  *       false            true        |    No                   Yes
27158  *       true             false       |    Yes                  No
27159  *       true             true        |    Yes                  Yes
27160  *     ---------------------------------------------------------------------
27161  *
27162  *
27163  * 14. Power Management
27164  *
27165  *     sd only power manages removable media devices or devices that support
27166  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27167  *
27168  *     A parent nexus that supports hotplugging can also set "pm-capable"
27169  *     if the disk can be power managed.
27170  *
27171  *     ------------------------------------------------------------
27172  *       removable media hotpluggable pm-capable  |   power manage
27173  *     ------------------------------------------------------------
27174  *             false          false     false     |     No
27175  *             false          false     true      |     Yes
27176  *             false          true      false     |     No
27177  *             false          true      true      |     Yes
27178  *             true             x        x        |     Yes
27179  *     ------------------------------------------------------------
27180  *
27181  *      USB and firewire hard disks can now be power managed independently
27182  *      of the framebuffer
27183  *
27184  *
27185  * 15. Support for USB disks with capacity larger than 1TB
27186  *
27187  *     Currently, sd doesn't permit a fixed disk device with capacity
27188  *     larger than 1TB to be used in a 32-bit operating system environment.
27189  *     However, sd doesn't do that for removable media devices. Instead, it
27190  *     assumes that removable media devices cannot have a capacity larger
27191  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27192  *     supported, which can cause some unexpected results.
27193  *
27194  *     ---------------------------------------------------------------------
27195  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27196  *     ---------------------------------------------------------------------
27197  *             false          false  |   true         |     no
27198  *             false          true   |   true         |     no
27199  *             true           false  |   true         |     Yes
27200  *             true           true   |   true         |     Yes
27201  *     ---------------------------------------------------------------------
27202  *
27203  *
27204  * 16. Check write-protection at open time
27205  *
27206  *     When a removable media device is being opened for writing without NDELAY
27207  *     flag, sd will check if this device is writable. If attempting to open
27208  *     without NDELAY flag a write-protected device, this operation will abort.
27209  *
27210  *     ------------------------------------------------------------
27211  *       removable media    USB/1394   |   WP Check
27212  *     ------------------------------------------------------------
27213  *             false          false    |     No
27214  *             false          true     |     No
27215  *             true           false    |     Yes
27216  *             true           true     |     Yes
27217  *     ------------------------------------------------------------
27218  *
27219  *
27220  * 17. syslog when corrupted VTOC is encountered
27221  *
27222  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27223  *      for fixed SCSI disks.
27224  *     ------------------------------------------------------------
27225  *       removable media    USB/1394   |   print syslog
27226  *     ------------------------------------------------------------
27227  *             false          false    |     Yes
27228  *             false          true     |     No
27229  *             true           false    |     No
27230  *             true           true     |     No
27231  *     ------------------------------------------------------------
27232  */
27233 static void
27234 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27235 {
27236 	int	pm_capable_prop;
27237 
27238 	ASSERT(un->un_sd);
27239 	ASSERT(un->un_sd->sd_inq);
27240 
27241 	/*
27242 	 * Enable SYNC CACHE support for all devices.
27243 	 */
27244 	un->un_f_sync_cache_supported = TRUE;
27245 
27246 	if (un->un_sd->sd_inq->inq_rmb) {
27247 		/*
27248 		 * The media of this device is removable. And for this kind
27249 		 * of devices, it is possible to change medium after opening
27250 		 * devices. Thus we should support this operation.
27251 		 */
27252 		un->un_f_has_removable_media = TRUE;
27253 
27254 		/*
27255 		 * support non-512-byte blocksize of removable media devices
27256 		 */
27257 		un->un_f_non_devbsize_supported = TRUE;
27258 
27259 		/*
27260 		 * Assume that all removable media devices support DOOR_LOCK
27261 		 */
27262 		un->un_f_doorlock_supported = TRUE;
27263 
27264 		/*
27265 		 * For a removable media device, it is possible to be opened
27266 		 * with NDELAY flag when there is no media in drive, in this
27267 		 * case we don't care if device is writable. But if without
27268 		 * NDELAY flag, we need to check if media is write-protected.
27269 		 */
27270 		un->un_f_chk_wp_open = TRUE;
27271 
27272 		/*
27273 		 * need to start a SCSI watch thread to monitor media state,
27274 		 * when media is being inserted or ejected, notify syseventd.
27275 		 */
27276 		un->un_f_monitor_media_state = TRUE;
27277 
27278 		/*
27279 		 * Some devices don't support START_STOP_UNIT command.
27280 		 * Therefore, we'd better check if a device supports it
27281 		 * before sending it.
27282 		 */
27283 		un->un_f_check_start_stop = TRUE;
27284 
27285 		/*
27286 		 * support eject media ioctl:
27287 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27288 		 */
27289 		un->un_f_eject_media_supported = TRUE;
27290 
27291 		/*
27292 		 * Because many removable-media devices don't support
27293 		 * LOG_SENSE, we couldn't use this command to check if
27294 		 * a removable media device support power-management.
27295 		 * We assume that they support power-management via
27296 		 * START_STOP_UNIT command and can be spun up and down
27297 		 * without limitations.
27298 		 */
27299 		un->un_f_pm_supported = TRUE;
27300 
27301 		/*
27302 		 * Need to create a zero length (Boolean) property
27303 		 * removable-media for the removable media devices.
27304 		 * Note that the return value of the property is not being
27305 		 * checked, since if unable to create the property
27306 		 * then do not want the attach to fail altogether. Consistent
27307 		 * with other property creation in attach.
27308 		 */
27309 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
27310 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
27311 
27312 	} else {
27313 		/*
27314 		 * create device ID for device
27315 		 */
27316 		un->un_f_devid_supported = TRUE;
27317 
27318 		/*
27319 		 * Spin up non-removable-media devices once it is attached
27320 		 */
27321 		un->un_f_attach_spinup = TRUE;
27322 
27323 		/*
27324 		 * According to SCSI specification, Sense data has two kinds of
27325 		 * format: fixed format, and descriptor format. At present, we
27326 		 * don't support descriptor format sense data for removable
27327 		 * media.
27328 		 */
27329 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
27330 			un->un_f_descr_format_supported = TRUE;
27331 		}
27332 
27333 		/*
27334 		 * kstats are created only for non-removable media devices.
27335 		 *
27336 		 * Set this in sd.conf to 0 in order to disable kstats.  The
27337 		 * default is 1, so they are enabled by default.
27338 		 */
27339 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
27340 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
27341 			"enable-partition-kstats", 1));
27342 
27343 		/*
27344 		 * Check if HBA has set the "pm-capable" property.
27345 		 * If "pm-capable" exists and is non-zero then we can
27346 		 * power manage the device without checking the start/stop
27347 		 * cycle count log sense page.
27348 		 *
27349 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
27350 		 * then we should not power manage the device.
27351 		 *
27352 		 * If "pm-capable" doesn't exist then pm_capable_prop will
27353 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
27354 		 * sd will check the start/stop cycle count log sense page
27355 		 * and power manage the device if the cycle count limit has
27356 		 * not been exceeded.
27357 		 */
27358 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
27359 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
27360 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
27361 			un->un_f_log_sense_supported = TRUE;
27362 		} else {
27363 			/*
27364 			 * pm-capable property exists.
27365 			 *
27366 			 * Convert "TRUE" values for pm_capable_prop to
27367 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
27368 			 * later. "TRUE" values are any values except
27369 			 * SD_PM_CAPABLE_FALSE (0) and
27370 			 * SD_PM_CAPABLE_UNDEFINED (-1)
27371 			 */
27372 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
27373 				un->un_f_log_sense_supported = FALSE;
27374 			} else {
27375 				un->un_f_pm_supported = TRUE;
27376 			}
27377 
27378 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
27379 			    "sd_unit_attach: un:0x%p pm-capable "
27380 			    "property set to %d.\n", un, un->un_f_pm_supported);
27381 		}
27382 	}
27383 
27384 	if (un->un_f_is_hotpluggable) {
27385 
27386 		/*
27387 		 * Have to watch hotpluggable devices as well, since
27388 		 * that's the only way for userland applications to
27389 		 * detect hot removal while device is busy/mounted.
27390 		 */
27391 		un->un_f_monitor_media_state = TRUE;
27392 
27393 		un->un_f_check_start_stop = TRUE;
27394 
27395 	}
27396 }
27397 
27398 /*
27399  * sd_tg_rdwr:
27400  * Provides rdwr access for cmlb via sd_tgops. The start_block is
27401  * in sys block size, req_length in bytes.
27402  *
27403  */
27404 static int
27405 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
27406     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
27407 {
27408 	struct sd_lun *un;
27409 	int path_flag = (int)(uintptr_t)tg_cookie;
27410 	char *dkl = NULL;
27411 	diskaddr_t real_addr = start_block;
27412 	diskaddr_t first_byte, end_block;
27413 
27414 	size_t	buffer_size = reqlength;
27415 	int rval;
27416 	diskaddr_t	cap;
27417 	uint32_t	lbasize;
27418 
27419 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27420 	if (un == NULL)
27421 		return (ENXIO);
27422 
27423 	if (cmd != TG_READ && cmd != TG_WRITE)
27424 		return (EINVAL);
27425 
27426 	mutex_enter(SD_MUTEX(un));
27427 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
27428 		mutex_exit(SD_MUTEX(un));
27429 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27430 		    &lbasize, path_flag);
27431 		if (rval != 0)
27432 			return (rval);
27433 		mutex_enter(SD_MUTEX(un));
27434 		sd_update_block_info(un, lbasize, cap);
27435 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
27436 			mutex_exit(SD_MUTEX(un));
27437 			return (EIO);
27438 		}
27439 	}
27440 
27441 	if (NOT_DEVBSIZE(un)) {
27442 		/*
27443 		 * sys_blocksize != tgt_blocksize, need to re-adjust
27444 		 * blkno and save the index to beginning of dk_label
27445 		 */
27446 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
27447 		real_addr = first_byte / un->un_tgt_blocksize;
27448 
27449 		end_block = (first_byte + reqlength +
27450 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
27451 
27452 		/* round up buffer size to multiple of target block size */
27453 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
27454 
27455 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
27456 		    "label_addr: 0x%x allocation size: 0x%x\n",
27457 		    real_addr, buffer_size);
27458 
27459 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
27460 		    (reqlength % un->un_tgt_blocksize) != 0)
27461 			/* the request is not aligned */
27462 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
27463 	}
27464 
27465 	/*
27466 	 * The MMC standard allows READ CAPACITY to be
27467 	 * inaccurate by a bounded amount (in the interest of
27468 	 * response latency).  As a result, failed READs are
27469 	 * commonplace (due to the reading of metadata and not
27470 	 * data). Depending on the per-Vendor/drive Sense data,
27471 	 * the failed READ can cause many (unnecessary) retries.
27472 	 */
27473 
27474 	if (ISCD(un) && (cmd == TG_READ) &&
27475 	    (un->un_f_blockcount_is_valid == TRUE) &&
27476 	    ((start_block == (un->un_blockcount - 1))||
27477 	    (start_block == (un->un_blockcount - 2)))) {
27478 			path_flag = SD_PATH_DIRECT_PRIORITY;
27479 	}
27480 
27481 	mutex_exit(SD_MUTEX(un));
27482 	if (cmd == TG_READ) {
27483 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
27484 		    buffer_size, real_addr, path_flag);
27485 		if (dkl != NULL)
27486 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
27487 			    real_addr), bufaddr, reqlength);
27488 	} else {
27489 		if (dkl) {
27490 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
27491 			    real_addr, path_flag);
27492 			if (rval) {
27493 				kmem_free(dkl, buffer_size);
27494 				return (rval);
27495 			}
27496 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
27497 			    real_addr), reqlength);
27498 		}
27499 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
27500 		    buffer_size, real_addr, path_flag);
27501 	}
27502 
27503 	if (dkl != NULL)
27504 		kmem_free(dkl, buffer_size);
27505 
27506 	return (rval);
27507 }
27508 
27509 
27510 static int
27511 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
27512 {
27513 
27514 	struct sd_lun *un;
27515 	diskaddr_t	cap;
27516 	uint32_t	lbasize;
27517 	int		path_flag = (int)(uintptr_t)tg_cookie;
27518 	int		ret = 0;
27519 
27520 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27521 	if (un == NULL)
27522 		return (ENXIO);
27523 
27524 	switch (cmd) {
27525 	case TG_GETPHYGEOM:
27526 	case TG_GETVIRTGEOM:
27527 	case TG_GETCAPACITY:
27528 	case  TG_GETBLOCKSIZE:
27529 		mutex_enter(SD_MUTEX(un));
27530 
27531 		if ((un->un_f_blockcount_is_valid == TRUE) &&
27532 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
27533 			cap = un->un_blockcount;
27534 			lbasize = un->un_tgt_blocksize;
27535 			mutex_exit(SD_MUTEX(un));
27536 		} else {
27537 			mutex_exit(SD_MUTEX(un));
27538 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27539 			    &lbasize, path_flag);
27540 			if (ret != 0)
27541 				return (ret);
27542 			mutex_enter(SD_MUTEX(un));
27543 			sd_update_block_info(un, lbasize, cap);
27544 			if ((un->un_f_blockcount_is_valid == FALSE) ||
27545 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
27546 				mutex_exit(SD_MUTEX(un));
27547 				return (EIO);
27548 			}
27549 			mutex_exit(SD_MUTEX(un));
27550 		}
27551 
27552 		if (cmd == TG_GETCAPACITY) {
27553 			*(diskaddr_t *)arg = cap;
27554 			return (0);
27555 		}
27556 
27557 		if (cmd == TG_GETBLOCKSIZE) {
27558 			*(uint32_t *)arg = lbasize;
27559 			return (0);
27560 		}
27561 
27562 		if (cmd == TG_GETPHYGEOM)
27563 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
27564 			    cap, lbasize, path_flag);
27565 		else
27566 			/* TG_GETVIRTGEOM */
27567 			ret = sd_get_virtual_geometry(un,
27568 			    (cmlb_geom_t *)arg, cap, lbasize);
27569 
27570 		return (ret);
27571 
27572 	case TG_GETATTR:
27573 		mutex_enter(SD_MUTEX(un));
27574 		((tg_attribute_t *)arg)->media_is_writable =
27575 		    un->un_f_mmc_writable_media;
27576 		mutex_exit(SD_MUTEX(un));
27577 		return (0);
27578 	default:
27579 		return (ENOTTY);
27580 
27581 	}
27582 
27583 }
27584