xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision d90554eb1da54eb443177f39ed0e119805d34a46)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * SCSI disk target driver.
31  */
32 
33 #include <sys/scsi/scsi.h>
34 #include <sys/dkbad.h>
35 #include <sys/dklabel.h>
36 #include <sys/dkio.h>
37 #include <sys/fdio.h>
38 #include <sys/cdio.h>
39 #include <sys/mhd.h>
40 #include <sys/vtoc.h>
41 #include <sys/dktp/fdisk.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kstat.h>
45 #include <sys/vtrace.h>
46 #include <sys/note.h>
47 #include <sys/thread.h>
48 #include <sys/proc.h>
49 #include <sys/efi_partition.h>
50 #include <sys/var.h>
51 #include <sys/aio_req.h>
52 #if (defined(__fibre))
53 /* Note: is there a leadville version of the following? */
54 #include <sys/fc4/fcal_linkapp.h>
55 #endif
56 #include <sys/taskq.h>
57 #include <sys/uuid.h>
58 #include <sys/byteorder.h>
59 #include <sys/sdt.h>
60 
61 #include "sd_xbuf.h"
62 
63 #include <sys/scsi/targets/sddef.h>
64 
65 /*
66  * Loadable module info.
67  */
68 #if (defined(__fibre))
69 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
70 char _depends_on[]	= "misc/scsi drv/fcp";
71 #else
72 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
73 char _depends_on[]	= "misc/scsi";
74 #endif
75 
76 /*
77  * Define the interconnect type, to allow the driver to distinguish
78  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
79  *
80  * This is really for backward compatability. In the future, the driver
81  * should actually check the "interconnect-type" property as reported by
82  * the HBA; however at present this property is not defined by all HBAs,
83  * so we will use this #define (1) to permit the driver to run in
84  * backward-compatability mode; and (2) to print a notification message
85  * if an FC HBA does not support the "interconnect-type" property.  The
86  * behavior of the driver will be to assume parallel SCSI behaviors unless
87  * the "interconnect-type" property is defined by the HBA **AND** has a
88  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
89  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
90  * Channel behaviors (as per the old ssd).  (Note that the
91  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
92  * will result in the driver assuming parallel SCSI behaviors.)
93  *
94  * (see common/sys/scsi/impl/services.h)
95  *
96  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
97  * since some FC HBAs may already support that, and there is some code in
98  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
99  * default would confuse that code, and besides things should work fine
100  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
101  * "interconnect_type" property.
102  */
103 #if (defined(__fibre))
104 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
105 #else
106 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
107 #endif
108 
109 /*
110  * The name of the driver, established from the module name in _init.
111  */
112 static	char *sd_label			= NULL;
113 
114 /*
115  * Driver name is unfortunately prefixed on some driver.conf properties.
116  */
117 #if (defined(__fibre))
118 #define	sd_max_xfer_size		ssd_max_xfer_size
119 #define	sd_config_list			ssd_config_list
120 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
121 static	char *sd_config_list		= "ssd-config-list";
122 #else
123 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
124 static	char *sd_config_list		= "sd-config-list";
125 #endif
126 
127 /*
128  * Driver global variables
129  */
130 
131 #if (defined(__fibre))
132 /*
133  * These #defines are to avoid namespace collisions that occur because this
134  * code is currently used to compile two seperate driver modules: sd and ssd.
135  * All global variables need to be treated this way (even if declared static)
136  * in order to allow the debugger to resolve the names properly.
137  * It is anticipated that in the near future the ssd module will be obsoleted,
138  * at which time this namespace issue should go away.
139  */
140 #define	sd_state			ssd_state
141 #define	sd_io_time			ssd_io_time
142 #define	sd_failfast_enable		ssd_failfast_enable
143 #define	sd_ua_retry_count		ssd_ua_retry_count
144 #define	sd_report_pfa			ssd_report_pfa
145 #define	sd_max_throttle			ssd_max_throttle
146 #define	sd_min_throttle			ssd_min_throttle
147 #define	sd_rot_delay			ssd_rot_delay
148 
149 #define	sd_retry_on_reservation_conflict	\
150 					ssd_retry_on_reservation_conflict
151 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
152 #define	sd_resv_conflict_name		ssd_resv_conflict_name
153 
154 #define	sd_component_mask		ssd_component_mask
155 #define	sd_level_mask			ssd_level_mask
156 #define	sd_debug_un			ssd_debug_un
157 #define	sd_error_level			ssd_error_level
158 
159 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
160 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
161 
162 #define	sd_tr				ssd_tr
163 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
164 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
165 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
166 #define	sd_check_media_time		ssd_check_media_time
167 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
168 #define	sd_label_mutex			ssd_label_mutex
169 #define	sd_detach_mutex			ssd_detach_mutex
170 #define	sd_log_buf			ssd_log_buf
171 #define	sd_log_mutex			ssd_log_mutex
172 
173 #define	sd_disk_table			ssd_disk_table
174 #define	sd_disk_table_size		ssd_disk_table_size
175 #define	sd_sense_mutex			ssd_sense_mutex
176 #define	sd_cdbtab			ssd_cdbtab
177 
178 #define	sd_cb_ops			ssd_cb_ops
179 #define	sd_ops				ssd_ops
180 #define	sd_additional_codes		ssd_additional_codes
181 
182 #define	sd_minor_data			ssd_minor_data
183 #define	sd_minor_data_efi		ssd_minor_data_efi
184 
185 #define	sd_tq				ssd_tq
186 #define	sd_wmr_tq			ssd_wmr_tq
187 #define	sd_taskq_name			ssd_taskq_name
188 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
189 #define	sd_taskq_minalloc		ssd_taskq_minalloc
190 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
191 
192 #define	sd_dump_format_string		ssd_dump_format_string
193 
194 #define	sd_iostart_chain		ssd_iostart_chain
195 #define	sd_iodone_chain			ssd_iodone_chain
196 
197 #define	sd_pm_idletime			ssd_pm_idletime
198 
199 #define	sd_force_pm_supported		ssd_force_pm_supported
200 
201 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
202 
203 #endif
204 
205 
206 #ifdef	SDDEBUG
207 int	sd_force_pm_supported		= 0;
208 #endif	/* SDDEBUG */
209 
210 void *sd_state				= NULL;
211 int sd_io_time				= SD_IO_TIME;
212 int sd_failfast_enable			= 1;
213 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
214 int sd_report_pfa			= 1;
215 int sd_max_throttle			= SD_MAX_THROTTLE;
216 int sd_min_throttle			= SD_MIN_THROTTLE;
217 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
218 int sd_qfull_throttle_enable		= TRUE;
219 
220 int sd_retry_on_reservation_conflict	= 1;
221 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
222 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
223 
224 static int sd_dtype_optical_bind	= -1;
225 
226 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
227 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
228 
229 /*
230  * Global data for debug logging. To enable debug printing, sd_component_mask
231  * and sd_level_mask should be set to the desired bit patterns as outlined in
232  * sddef.h.
233  */
234 uint_t	sd_component_mask		= 0x0;
235 uint_t	sd_level_mask			= 0x0;
236 struct	sd_lun *sd_debug_un		= NULL;
237 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
238 
239 /* Note: these may go away in the future... */
240 static uint32_t	sd_xbuf_active_limit	= 512;
241 static uint32_t sd_xbuf_reserve_limit	= 16;
242 
243 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
244 
245 /*
246  * Timer value used to reset the throttle after it has been reduced
247  * (typically in response to TRAN_BUSY or STATUS_QFULL)
248  */
249 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
250 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
251 
252 /*
253  * Interval value associated with the media change scsi watch.
254  */
255 static int sd_check_media_time		= 3000000;
256 
257 /*
258  * Wait value used for in progress operations during a DDI_SUSPEND
259  */
260 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
261 
262 /*
263  * sd_label_mutex protects a static buffer used in the disk label
264  * component of the driver
265  */
266 static kmutex_t sd_label_mutex;
267 
268 /*
269  * sd_detach_mutex protects un_layer_count, un_detach_count, and
270  * un_opens_in_progress in the sd_lun structure.
271  */
272 static kmutex_t sd_detach_mutex;
273 
274 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
275 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
276 
277 /*
278  * Global buffer and mutex for debug logging
279  */
280 static char	sd_log_buf[1024];
281 static kmutex_t	sd_log_mutex;
282 
283 
284 /*
285  * "Smart" Probe Caching structs, globals, #defines, etc.
286  * For parallel scsi and non-self-identify device only.
287  */
288 
289 /*
290  * The following resources and routines are implemented to support
291  * "smart" probing, which caches the scsi_probe() results in an array,
292  * in order to help avoid long probe times.
293  */
294 struct sd_scsi_probe_cache {
295 	struct	sd_scsi_probe_cache	*next;
296 	dev_info_t	*pdip;
297 	int		cache[NTARGETS_WIDE];
298 };
299 
300 static kmutex_t	sd_scsi_probe_cache_mutex;
301 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
302 
303 /*
304  * Really we only need protection on the head of the linked list, but
305  * better safe than sorry.
306  */
307 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
308     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
309 
310 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
311     sd_scsi_probe_cache_head))
312 
313 
314 /*
315  * Vendor specific data name property declarations
316  */
317 
318 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
319 
320 static sd_tunables seagate_properties = {
321 	SEAGATE_THROTTLE_VALUE,
322 	0,
323 	0,
324 	0,
325 	0,
326 	0,
327 	0,
328 	0,
329 	0
330 };
331 
332 
333 static sd_tunables fujitsu_properties = {
334 	FUJITSU_THROTTLE_VALUE,
335 	0,
336 	0,
337 	0,
338 	0,
339 	0,
340 	0,
341 	0,
342 	0
343 };
344 
345 static sd_tunables ibm_properties = {
346 	IBM_THROTTLE_VALUE,
347 	0,
348 	0,
349 	0,
350 	0,
351 	0,
352 	0,
353 	0,
354 	0
355 };
356 
357 static sd_tunables purple_properties = {
358 	PURPLE_THROTTLE_VALUE,
359 	0,
360 	0,
361 	PURPLE_BUSY_RETRIES,
362 	PURPLE_RESET_RETRY_COUNT,
363 	PURPLE_RESERVE_RELEASE_TIME,
364 	0,
365 	0,
366 	0
367 };
368 
369 static sd_tunables sve_properties = {
370 	SVE_THROTTLE_VALUE,
371 	0,
372 	0,
373 	SVE_BUSY_RETRIES,
374 	SVE_RESET_RETRY_COUNT,
375 	SVE_RESERVE_RELEASE_TIME,
376 	SVE_MIN_THROTTLE_VALUE,
377 	SVE_DISKSORT_DISABLED_FLAG,
378 	0
379 };
380 
381 static sd_tunables maserati_properties = {
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0,
388 	0,
389 	MASERATI_DISKSORT_DISABLED_FLAG,
390 	MASERATI_LUN_RESET_ENABLED_FLAG
391 };
392 
393 static sd_tunables pirus_properties = {
394 	PIRUS_THROTTLE_VALUE,
395 	0,
396 	PIRUS_NRR_COUNT,
397 	PIRUS_BUSY_RETRIES,
398 	PIRUS_RESET_RETRY_COUNT,
399 	0,
400 	PIRUS_MIN_THROTTLE_VALUE,
401 	PIRUS_DISKSORT_DISABLED_FLAG,
402 	PIRUS_LUN_RESET_ENABLED_FLAG
403 };
404 
405 #endif
406 
407 #if (defined(__sparc) && !defined(__fibre)) || \
408 	(defined(__i386) || defined(__amd64))
409 
410 
411 static sd_tunables elite_properties = {
412 	ELITE_THROTTLE_VALUE,
413 	0,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0
421 };
422 
423 static sd_tunables st31200n_properties = {
424 	ST31200N_THROTTLE_VALUE,
425 	0,
426 	0,
427 	0,
428 	0,
429 	0,
430 	0,
431 	0,
432 	0
433 };
434 
435 #endif /* Fibre or not */
436 
437 static sd_tunables lsi_properties_scsi = {
438 	LSI_THROTTLE_VALUE,
439 	0,
440 	LSI_NOTREADY_RETRIES,
441 	0,
442 	0,
443 	0,
444 	0,
445 	0,
446 	0
447 };
448 
449 static sd_tunables symbios_properties = {
450 	SYMBIOS_THROTTLE_VALUE,
451 	0,
452 	SYMBIOS_NOTREADY_RETRIES,
453 	0,
454 	0,
455 	0,
456 	0,
457 	0,
458 	0
459 };
460 
461 static sd_tunables lsi_properties = {
462 	0,
463 	0,
464 	LSI_NOTREADY_RETRIES,
465 	0,
466 	0,
467 	0,
468 	0,
469 	0,
470 	0
471 };
472 
473 static sd_tunables lsi_oem_properties = {
474 	0,
475 	0,
476 	LSI_OEM_NOTREADY_RETRIES,
477 	0,
478 	0,
479 	0,
480 	0,
481 	0,
482 	0
483 };
484 
485 
486 
487 #if (defined(SD_PROP_TST))
488 
489 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
490 #define	SD_TST_THROTTLE_VAL	16
491 #define	SD_TST_NOTREADY_VAL	12
492 #define	SD_TST_BUSY_VAL		60
493 #define	SD_TST_RST_RETRY_VAL	36
494 #define	SD_TST_RSV_REL_TIME	60
495 
496 static sd_tunables tst_properties = {
497 	SD_TST_THROTTLE_VAL,
498 	SD_TST_CTYPE_VAL,
499 	SD_TST_NOTREADY_VAL,
500 	SD_TST_BUSY_VAL,
501 	SD_TST_RST_RETRY_VAL,
502 	SD_TST_RSV_REL_TIME,
503 	0,
504 	0,
505 	0
506 };
507 #endif
508 
509 /* This is similiar to the ANSI toupper implementation */
510 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
511 
512 /*
513  * Static Driver Configuration Table
514  *
515  * This is the table of disks which need throttle adjustment (or, perhaps
516  * something else as defined by the flags at a future time.)  device_id
517  * is a string consisting of concatenated vid (vendor), pid (product/model)
518  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
519  * the parts of the string are as defined by the sizes in the scsi_inquiry
520  * structure.  Device type is searched as far as the device_id string is
521  * defined.  Flags defines which values are to be set in the driver from the
522  * properties list.
523  *
524  * Entries below which begin and end with a "*" are a special case.
525  * These do not have a specific vendor, and the string which follows
526  * can appear anywhere in the 16 byte PID portion of the inquiry data.
527  *
528  * Entries below which begin and end with a " " (blank) are a special
529  * case. The comparison function will treat multiple consecutive blanks
530  * as equivalent to a single blank. For example, this causes a
531  * sd_disk_table entry of " NEC CDROM " to match a device's id string
532  * of  "NEC       CDROM".
533  *
534  * Note: The MD21 controller type has been obsoleted.
535  *	 ST318202F is a Legacy device
536  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
537  *	 made with an FC connection. The entries here are a legacy.
538  */
539 static sd_disk_config_t sd_disk_table[] = {
540 #if defined(__fibre) || defined(__i386) || defined(__amd64)
541 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
542 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
543 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
544 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
545 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
546 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
547 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
548 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
549 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
550 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
551 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
552 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
553 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
554 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
555 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
556 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
557 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
558 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
559 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
560 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
561 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
562 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
563 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
564 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
565 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
566 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
567 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
568 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
569 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
570 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
571 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
572 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
573 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
574 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
575 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
576 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
577 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
578 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
579 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
580 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
581 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
582 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
583 			SD_CONF_BSET_BSY_RETRY_COUNT|
584 			SD_CONF_BSET_RST_RETRIES|
585 			SD_CONF_BSET_RSV_REL_TIME,
586 		&purple_properties },
587 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
588 		SD_CONF_BSET_BSY_RETRY_COUNT|
589 		SD_CONF_BSET_RST_RETRIES|
590 		SD_CONF_BSET_RSV_REL_TIME|
591 		SD_CONF_BSET_MIN_THROTTLE|
592 		SD_CONF_BSET_DISKSORT_DISABLED,
593 		&sve_properties },
594 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
595 			SD_CONF_BSET_BSY_RETRY_COUNT|
596 			SD_CONF_BSET_RST_RETRIES|
597 			SD_CONF_BSET_RSV_REL_TIME,
598 		&purple_properties },
599 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
600 		SD_CONF_BSET_LUN_RESET_ENABLED,
601 		&maserati_properties },
602 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
603 		SD_CONF_BSET_NRR_COUNT|
604 		SD_CONF_BSET_BSY_RETRY_COUNT|
605 		SD_CONF_BSET_RST_RETRIES|
606 		SD_CONF_BSET_MIN_THROTTLE|
607 		SD_CONF_BSET_DISKSORT_DISABLED|
608 		SD_CONF_BSET_LUN_RESET_ENABLED,
609 		&pirus_properties },
610 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
611 		SD_CONF_BSET_NRR_COUNT|
612 		SD_CONF_BSET_BSY_RETRY_COUNT|
613 		SD_CONF_BSET_RST_RETRIES|
614 		SD_CONF_BSET_MIN_THROTTLE|
615 		SD_CONF_BSET_DISKSORT_DISABLED|
616 		SD_CONF_BSET_LUN_RESET_ENABLED,
617 		&pirus_properties },
618 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
619 		SD_CONF_BSET_NRR_COUNT|
620 		SD_CONF_BSET_BSY_RETRY_COUNT|
621 		SD_CONF_BSET_RST_RETRIES|
622 		SD_CONF_BSET_MIN_THROTTLE|
623 		SD_CONF_BSET_DISKSORT_DISABLED|
624 		SD_CONF_BSET_LUN_RESET_ENABLED,
625 		&pirus_properties },
626 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
627 		SD_CONF_BSET_NRR_COUNT|
628 		SD_CONF_BSET_BSY_RETRY_COUNT|
629 		SD_CONF_BSET_RST_RETRIES|
630 		SD_CONF_BSET_MIN_THROTTLE|
631 		SD_CONF_BSET_DISKSORT_DISABLED|
632 		SD_CONF_BSET_LUN_RESET_ENABLED,
633 		&pirus_properties },
634 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
635 		SD_CONF_BSET_NRR_COUNT|
636 		SD_CONF_BSET_BSY_RETRY_COUNT|
637 		SD_CONF_BSET_RST_RETRIES|
638 		SD_CONF_BSET_MIN_THROTTLE|
639 		SD_CONF_BSET_DISKSORT_DISABLED|
640 		SD_CONF_BSET_LUN_RESET_ENABLED,
641 		&pirus_properties },
642 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
643 		SD_CONF_BSET_NRR_COUNT|
644 		SD_CONF_BSET_BSY_RETRY_COUNT|
645 		SD_CONF_BSET_RST_RETRIES|
646 		SD_CONF_BSET_MIN_THROTTLE|
647 		SD_CONF_BSET_DISKSORT_DISABLED|
648 		SD_CONF_BSET_LUN_RESET_ENABLED,
649 		&pirus_properties },
650 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
653 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
654 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
655 #endif /* fibre or NON-sparc platforms */
656 #if ((defined(__sparc) && !defined(__fibre)) ||\
657 	(defined(__i386) || defined(__amd64)))
658 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
659 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
660 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
661 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
662 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
663 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
664 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
665 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
666 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
667 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
668 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
669 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
670 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
671 	    &symbios_properties },
672 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
673 	    &lsi_properties_scsi },
674 #if defined(__i386) || defined(__amd64)
675 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
676 				    | SD_CONF_BSET_READSUB_BCD
677 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
678 				    | SD_CONF_BSET_NO_READ_HEADER
679 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
680 
681 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
682 				    | SD_CONF_BSET_READSUB_BCD
683 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
684 				    | SD_CONF_BSET_NO_READ_HEADER
685 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
686 #endif /* __i386 || __amd64 */
687 #endif /* sparc NON-fibre or NON-sparc platforms */
688 
689 #if (defined(SD_PROP_TST))
690 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
691 				| SD_CONF_BSET_CTYPE
692 				| SD_CONF_BSET_NRR_COUNT
693 				| SD_CONF_BSET_FAB_DEVID
694 				| SD_CONF_BSET_NOCACHE
695 				| SD_CONF_BSET_BSY_RETRY_COUNT
696 				| SD_CONF_BSET_PLAYMSF_BCD
697 				| SD_CONF_BSET_READSUB_BCD
698 				| SD_CONF_BSET_READ_TOC_TRK_BCD
699 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
700 				| SD_CONF_BSET_NO_READ_HEADER
701 				| SD_CONF_BSET_READ_CD_XD4
702 				| SD_CONF_BSET_RST_RETRIES
703 				| SD_CONF_BSET_RSV_REL_TIME
704 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
705 #endif
706 };
707 
708 static const int sd_disk_table_size =
709 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
710 
711 
712 /*
713  * Return codes of sd_uselabel().
714  */
715 #define	SD_LABEL_IS_VALID		0
716 #define	SD_LABEL_IS_INVALID		1
717 
718 #define	SD_INTERCONNECT_PARALLEL	0
719 #define	SD_INTERCONNECT_FABRIC		1
720 #define	SD_INTERCONNECT_FIBRE		2
721 #define	SD_INTERCONNECT_SSA		3
722 #define	SD_IS_PARALLEL_SCSI(un)		\
723 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
724 
725 /*
726  * Definitions used by device id registration routines
727  */
728 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
729 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
730 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
731 #define	WD_NODE			7	/* the whole disk minor */
732 
733 static kmutex_t sd_sense_mutex = {0};
734 
735 /*
736  * Macros for updates of the driver state
737  */
738 #define	New_state(un, s)        \
739 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
740 #define	Restore_state(un)	\
741 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
742 
743 static struct sd_cdbinfo sd_cdbtab[] = {
744 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
745 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
746 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
747 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
748 };
749 
750 /*
751  * Specifies the number of seconds that must have elapsed since the last
752  * cmd. has completed for a device to be declared idle to the PM framework.
753  */
754 static int sd_pm_idletime = 1;
755 
756 /*
757  * Internal function prototypes
758  */
759 
760 #if (defined(__fibre))
761 /*
762  * These #defines are to avoid namespace collisions that occur because this
763  * code is currently used to compile two seperate driver modules: sd and ssd.
764  * All function names need to be treated this way (even if declared static)
765  * in order to allow the debugger to resolve the names properly.
766  * It is anticipated that in the near future the ssd module will be obsoleted,
767  * at which time this ugliness should go away.
768  */
769 #define	sd_log_trace			ssd_log_trace
770 #define	sd_log_info			ssd_log_info
771 #define	sd_log_err			ssd_log_err
772 #define	sdprobe				ssdprobe
773 #define	sdinfo				ssdinfo
774 #define	sd_prop_op			ssd_prop_op
775 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
776 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
777 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
778 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
779 #define	sd_spin_up_unit			ssd_spin_up_unit
780 #define	sd_enable_descr_sense		ssd_enable_descr_sense
781 #define	sd_set_mmc_caps			ssd_set_mmc_caps
782 #define	sd_read_unit_properties		ssd_read_unit_properties
783 #define	sd_process_sdconf_file		ssd_process_sdconf_file
784 #define	sd_process_sdconf_table		ssd_process_sdconf_table
785 #define	sd_sdconf_id_match		ssd_sdconf_id_match
786 #define	sd_blank_cmp			ssd_blank_cmp
787 #define	sd_chk_vers1_data		ssd_chk_vers1_data
788 #define	sd_set_vers1_properties		ssd_set_vers1_properties
789 #define	sd_validate_geometry		ssd_validate_geometry
790 
791 #if defined(_SUNOS_VTOC_16)
792 #define	sd_convert_geometry		ssd_convert_geometry
793 #endif
794 
795 #define	sd_resync_geom_caches		ssd_resync_geom_caches
796 #define	sd_read_fdisk			ssd_read_fdisk
797 #define	sd_get_physical_geometry	ssd_get_physical_geometry
798 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
799 #define	sd_update_block_info		ssd_update_block_info
800 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
801 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
802 #define	sd_validate_efi			ssd_validate_efi
803 #define	sd_use_efi			ssd_use_efi
804 #define	sd_uselabel			ssd_uselabel
805 #define	sd_build_default_label		ssd_build_default_label
806 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
807 #define	sd_inq_fill			ssd_inq_fill
808 #define	sd_register_devid		ssd_register_devid
809 #define	sd_get_devid_block		ssd_get_devid_block
810 #define	sd_get_devid			ssd_get_devid
811 #define	sd_create_devid			ssd_create_devid
812 #define	sd_write_deviceid		ssd_write_deviceid
813 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
814 #define	sd_setup_pm			ssd_setup_pm
815 #define	sd_create_pm_components		ssd_create_pm_components
816 #define	sd_ddi_suspend			ssd_ddi_suspend
817 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
818 #define	sd_ddi_resume			ssd_ddi_resume
819 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
820 #define	sdpower				ssdpower
821 #define	sdattach			ssdattach
822 #define	sddetach			ssddetach
823 #define	sd_unit_attach			ssd_unit_attach
824 #define	sd_unit_detach			ssd_unit_detach
825 #define	sd_create_minor_nodes		ssd_create_minor_nodes
826 #define	sd_create_errstats		ssd_create_errstats
827 #define	sd_set_errstats			ssd_set_errstats
828 #define	sd_set_pstats			ssd_set_pstats
829 #define	sddump				ssddump
830 #define	sd_scsi_poll			ssd_scsi_poll
831 #define	sd_send_polled_RQS		ssd_send_polled_RQS
832 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
833 #define	sd_init_event_callbacks		ssd_init_event_callbacks
834 #define	sd_event_callback		ssd_event_callback
835 #define	sd_disable_caching		ssd_disable_caching
836 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
837 #define	sd_make_device			ssd_make_device
838 #define	sdopen				ssdopen
839 #define	sdclose				ssdclose
840 #define	sd_ready_and_valid		ssd_ready_and_valid
841 #define	sdmin				ssdmin
842 #define	sdread				ssdread
843 #define	sdwrite				ssdwrite
844 #define	sdaread				ssdaread
845 #define	sdawrite			ssdawrite
846 #define	sdstrategy			ssdstrategy
847 #define	sdioctl				ssdioctl
848 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
849 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
850 #define	sd_checksum_iostart		ssd_checksum_iostart
851 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
852 #define	sd_pm_iostart			ssd_pm_iostart
853 #define	sd_core_iostart			ssd_core_iostart
854 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
855 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
856 #define	sd_checksum_iodone		ssd_checksum_iodone
857 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
858 #define	sd_pm_iodone			ssd_pm_iodone
859 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
860 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
861 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
862 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
863 #define	sd_buf_iodone			ssd_buf_iodone
864 #define	sd_uscsi_strategy		ssd_uscsi_strategy
865 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
866 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
867 #define	sd_uscsi_iodone			ssd_uscsi_iodone
868 #define	sd_xbuf_strategy		ssd_xbuf_strategy
869 #define	sd_xbuf_init			ssd_xbuf_init
870 #define	sd_pm_entry			ssd_pm_entry
871 #define	sd_pm_exit			ssd_pm_exit
872 
873 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
874 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
875 
876 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
877 #define	sdintr				ssdintr
878 #define	sd_start_cmds			ssd_start_cmds
879 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
880 #define	sd_bioclone_alloc		ssd_bioclone_alloc
881 #define	sd_bioclone_free		ssd_bioclone_free
882 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
883 #define	sd_shadow_buf_free		ssd_shadow_buf_free
884 #define	sd_print_transport_rejected_message	\
885 					ssd_print_transport_rejected_message
886 #define	sd_retry_command		ssd_retry_command
887 #define	sd_set_retry_bp			ssd_set_retry_bp
888 #define	sd_send_request_sense_command	ssd_send_request_sense_command
889 #define	sd_start_retry_command		ssd_start_retry_command
890 #define	sd_start_direct_priority_command	\
891 					ssd_start_direct_priority_command
892 #define	sd_return_failed_command	ssd_return_failed_command
893 #define	sd_return_failed_command_no_restart	\
894 					ssd_return_failed_command_no_restart
895 #define	sd_return_command		ssd_return_command
896 #define	sd_sync_with_callback		ssd_sync_with_callback
897 #define	sdrunout			ssdrunout
898 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
899 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
900 #define	sd_reduce_throttle		ssd_reduce_throttle
901 #define	sd_restore_throttle		ssd_restore_throttle
902 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
903 #define	sd_init_cdb_limits		ssd_init_cdb_limits
904 #define	sd_pkt_status_good		ssd_pkt_status_good
905 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
906 #define	sd_pkt_status_busy		ssd_pkt_status_busy
907 #define	sd_pkt_status_reservation_conflict	\
908 					ssd_pkt_status_reservation_conflict
909 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
910 #define	sd_handle_request_sense		ssd_handle_request_sense
911 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
912 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
913 #define	sd_validate_sense_data		ssd_validate_sense_data
914 #define	sd_decode_sense			ssd_decode_sense
915 #define	sd_print_sense_msg		ssd_print_sense_msg
916 #define	sd_extract_sense_info_descr	ssd_extract_sense_info_descr
917 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
918 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
919 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
920 #define	sd_sense_key_medium_or_hardware_error	\
921 					ssd_sense_key_medium_or_hardware_error
922 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
923 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
924 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
925 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
926 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
927 #define	sd_sense_key_default		ssd_sense_key_default
928 #define	sd_print_retry_msg		ssd_print_retry_msg
929 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
930 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
931 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
932 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
933 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
934 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
935 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
936 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
937 #define	sd_pkt_reason_default		ssd_pkt_reason_default
938 #define	sd_reset_target			ssd_reset_target
939 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
940 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
941 #define	sd_taskq_create			ssd_taskq_create
942 #define	sd_taskq_delete			ssd_taskq_delete
943 #define	sd_media_change_task		ssd_media_change_task
944 #define	sd_handle_mchange		ssd_handle_mchange
945 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
946 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
947 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
948 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
949 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
950 					sd_send_scsi_feature_GET_CONFIGURATION
951 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
952 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
953 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
954 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
955 					ssd_send_scsi_PERSISTENT_RESERVE_IN
956 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
957 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
958 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
959 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
960 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
961 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
962 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
963 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
964 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
965 #define	sd_alloc_rqs			ssd_alloc_rqs
966 #define	sd_free_rqs			ssd_free_rqs
967 #define	sd_dump_memory			ssd_dump_memory
968 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
969 #define	sd_get_media_info		ssd_get_media_info
970 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
971 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
972 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
973 #define	sd_dkio_get_partition		ssd_dkio_get_partition
974 #define	sd_dkio_set_partition		ssd_dkio_set_partition
975 #define	sd_dkio_partition		ssd_dkio_partition
976 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
977 #define	sd_dkio_get_efi			ssd_dkio_get_efi
978 #define	sd_build_user_vtoc		ssd_build_user_vtoc
979 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
980 #define	sd_dkio_set_efi			ssd_dkio_set_efi
981 #define	sd_build_label_vtoc		ssd_build_label_vtoc
982 #define	sd_write_label			ssd_write_label
983 #define	sd_clear_vtoc			ssd_clear_vtoc
984 #define	sd_clear_efi			ssd_clear_efi
985 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
986 #define	sd_setup_next_xfer		ssd_setup_next_xfer
987 #define	sd_dkio_get_temp		ssd_dkio_get_temp
988 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
989 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
990 #define	sd_setup_default_geometry	ssd_setup_default_geometry
991 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
992 #define	sd_check_mhd			ssd_check_mhd
993 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
994 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
995 #define	sd_sname			ssd_sname
996 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
997 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
998 #define	sd_take_ownership		ssd_take_ownership
999 #define	sd_reserve_release		ssd_reserve_release
1000 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1001 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1002 #define	sd_persistent_reservation_in_read_keys	\
1003 					ssd_persistent_reservation_in_read_keys
1004 #define	sd_persistent_reservation_in_read_resv	\
1005 					ssd_persistent_reservation_in_read_resv
1006 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1007 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1008 #define	sd_mhdioc_release		ssd_mhdioc_release
1009 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1010 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1011 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1012 #define	sr_change_blkmode		ssr_change_blkmode
1013 #define	sr_change_speed			ssr_change_speed
1014 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1015 #define	sr_pause_resume			ssr_pause_resume
1016 #define	sr_play_msf			ssr_play_msf
1017 #define	sr_play_trkind			ssr_play_trkind
1018 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1019 #define	sr_read_subchannel		ssr_read_subchannel
1020 #define	sr_read_tocentry		ssr_read_tocentry
1021 #define	sr_read_tochdr			ssr_read_tochdr
1022 #define	sr_read_cdda			ssr_read_cdda
1023 #define	sr_read_cdxa			ssr_read_cdxa
1024 #define	sr_read_mode1			ssr_read_mode1
1025 #define	sr_read_mode2			ssr_read_mode2
1026 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1027 #define	sr_sector_mode			ssr_sector_mode
1028 #define	sr_eject			ssr_eject
1029 #define	sr_ejected			ssr_ejected
1030 #define	sr_check_wp			ssr_check_wp
1031 #define	sd_check_media			ssd_check_media
1032 #define	sd_media_watch_cb		ssd_media_watch_cb
1033 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1034 #define	sr_volume_ctrl			ssr_volume_ctrl
1035 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1036 #define	sd_log_page_supported		ssd_log_page_supported
1037 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1038 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1039 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1040 #define	sd_range_lock			ssd_range_lock
1041 #define	sd_get_range			ssd_get_range
1042 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1043 #define	sd_range_unlock			ssd_range_unlock
1044 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1045 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1046 
1047 #define	sd_iostart_chain		ssd_iostart_chain
1048 #define	sd_iodone_chain			ssd_iodone_chain
1049 #define	sd_initpkt_map			ssd_initpkt_map
1050 #define	sd_destroypkt_map		ssd_destroypkt_map
1051 #define	sd_chain_type_map		ssd_chain_type_map
1052 #define	sd_chain_index_map		ssd_chain_index_map
1053 
1054 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1055 #define	sd_failfast_flushq		ssd_failfast_flushq
1056 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1057 
1058 #define	sd_is_lsi			ssd_is_lsi
1059 
1060 #endif	/* #if (defined(__fibre)) */
1061 
1062 
1063 int _init(void);
1064 int _fini(void);
1065 int _info(struct modinfo *modinfop);
1066 
1067 /*PRINTFLIKE3*/
1068 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1069 /*PRINTFLIKE3*/
1070 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1071 /*PRINTFLIKE3*/
1072 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1073 
1074 static int sdprobe(dev_info_t *devi);
1075 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1076     void **result);
1077 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1078     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1079 
1080 /*
1081  * Smart probe for parallel scsi
1082  */
1083 static void sd_scsi_probe_cache_init(void);
1084 static void sd_scsi_probe_cache_fini(void);
1085 static void sd_scsi_clear_probe_cache(void);
1086 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1087 
1088 static int	sd_spin_up_unit(struct sd_lun *un);
1089 #ifdef _LP64
1090 static void	sd_enable_descr_sense(struct sd_lun *un);
1091 #endif /* _LP64 */
1092 static void	sd_set_mmc_caps(struct sd_lun *un);
1093 
1094 static void sd_read_unit_properties(struct sd_lun *un);
1095 static int  sd_process_sdconf_file(struct sd_lun *un);
1096 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1097     int *data_list, sd_tunables *values);
1098 static void sd_process_sdconf_table(struct sd_lun *un);
1099 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1100 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1101 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1102 	int list_len, char *dataname_ptr);
1103 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1104     sd_tunables *prop_list);
1105 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1106 
1107 #if defined(_SUNOS_VTOC_16)
1108 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1109 #endif
1110 
1111 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1112 	int path_flag);
1113 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1114 	int path_flag);
1115 static void sd_get_physical_geometry(struct sd_lun *un,
1116 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1117 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1118 	int lbasize);
1119 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1120 static void sd_swap_efi_gpt(efi_gpt_t *);
1121 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1122 static int sd_validate_efi(efi_gpt_t *);
1123 static int sd_use_efi(struct sd_lun *, int);
1124 static void sd_build_default_label(struct sd_lun *un);
1125 
1126 #if defined(_FIRMWARE_NEEDS_FDISK)
1127 static int  sd_has_max_chs_vals(struct ipart *fdp);
1128 #endif
1129 static void sd_inq_fill(char *p, int l, char *s);
1130 
1131 
1132 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1133     int reservation_flag);
1134 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1135 static int  sd_get_devid(struct sd_lun *un);
1136 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1137 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1138 static int  sd_write_deviceid(struct sd_lun *un);
1139 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1140 static int  sd_check_vpd_page_support(struct sd_lun *un);
1141 
1142 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1143 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1144 
1145 static int  sd_ddi_suspend(dev_info_t *devi);
1146 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1147 static int  sd_ddi_resume(dev_info_t *devi);
1148 static int  sd_ddi_pm_resume(struct sd_lun *un);
1149 static int  sdpower(dev_info_t *devi, int component, int level);
1150 
1151 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1152 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1153 static int  sd_unit_attach(dev_info_t *devi);
1154 static int  sd_unit_detach(dev_info_t *devi);
1155 
1156 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1157 static void sd_create_errstats(struct sd_lun *un, int instance);
1158 static void sd_set_errstats(struct sd_lun *un);
1159 static void sd_set_pstats(struct sd_lun *un);
1160 
1161 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1162 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1163 static int  sd_send_polled_RQS(struct sd_lun *un);
1164 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1165 
1166 #if (defined(__fibre))
1167 /*
1168  * Event callbacks (photon)
1169  */
1170 static void sd_init_event_callbacks(struct sd_lun *un);
1171 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1172 #endif
1173 
1174 
1175 static int   sd_disable_caching(struct sd_lun *un);
1176 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1177 static dev_t sd_make_device(dev_info_t *devi);
1178 
1179 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1180 	uint64_t capacity);
1181 
1182 /*
1183  * Driver entry point functions.
1184  */
1185 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1186 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1187 static int  sd_ready_and_valid(struct sd_lun *un);
1188 
1189 static void sdmin(struct buf *bp);
1190 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1191 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1192 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1193 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1194 
1195 static int sdstrategy(struct buf *bp);
1196 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1197 
1198 /*
1199  * Function prototypes for layering functions in the iostart chain.
1200  */
1201 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1202 	struct buf *bp);
1203 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1204 	struct buf *bp);
1205 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1206 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1207 	struct buf *bp);
1208 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1209 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1210 
1211 /*
1212  * Function prototypes for layering functions in the iodone chain.
1213  */
1214 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1215 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1216 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1217 	struct buf *bp);
1218 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1219 	struct buf *bp);
1220 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1221 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1222 	struct buf *bp);
1223 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1224 
1225 /*
1226  * Prototypes for functions to support buf(9S) based IO.
1227  */
1228 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1229 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1230 static void sd_destroypkt_for_buf(struct buf *);
1231 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1232 	struct buf *bp, int flags,
1233 	int (*callback)(caddr_t), caddr_t callback_arg,
1234 	diskaddr_t lba, uint32_t blockcount);
1235 #if defined(__i386) || defined(__amd64)
1236 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1237 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1238 #endif /* defined(__i386) || defined(__amd64) */
1239 
1240 /*
1241  * Prototypes for functions to support USCSI IO.
1242  */
1243 static int sd_uscsi_strategy(struct buf *bp);
1244 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1245 static void sd_destroypkt_for_uscsi(struct buf *);
1246 
1247 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1248 	uchar_t chain_type, void *pktinfop);
1249 
1250 static int  sd_pm_entry(struct sd_lun *un);
1251 static void sd_pm_exit(struct sd_lun *un);
1252 
1253 static void sd_pm_idletimeout_handler(void *arg);
1254 
1255 /*
1256  * sd_core internal functions (used at the sd_core_io layer).
1257  */
1258 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1259 static void sdintr(struct scsi_pkt *pktp);
1260 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1261 
1262 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1263 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1264 	int path_flag);
1265 
1266 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1267 	daddr_t blkno, int (*func)(struct buf *));
1268 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1269 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1270 static void sd_bioclone_free(struct buf *bp);
1271 static void sd_shadow_buf_free(struct buf *bp);
1272 
1273 static void sd_print_transport_rejected_message(struct sd_lun *un,
1274 	struct sd_xbuf *xp, int code);
1275 
1276 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1277 	int retry_check_flag,
1278 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1279 		int c),
1280 	void *user_arg, int failure_code,  clock_t retry_delay,
1281 	void (*statp)(kstat_io_t *));
1282 
1283 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1284 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1285 
1286 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1287 	struct scsi_pkt *pktp);
1288 static void sd_start_retry_command(void *arg);
1289 static void sd_start_direct_priority_command(void *arg);
1290 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1291 	int errcode);
1292 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1293 	struct buf *bp, int errcode);
1294 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1295 static void sd_sync_with_callback(struct sd_lun *un);
1296 static int sdrunout(caddr_t arg);
1297 
1298 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1299 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1300 
1301 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1302 static void sd_restore_throttle(void *arg);
1303 
1304 static void sd_init_cdb_limits(struct sd_lun *un);
1305 
1306 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1307 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1308 
1309 /*
1310  * Error handling functions
1311  */
1312 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1313 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1314 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1315 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1316 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1317 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1318 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1319 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1320 
1321 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1322 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1323 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1324 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1325 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1326 	struct sd_xbuf *xp);
1327 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1328 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1329 
1330 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1331 	void *arg, int code);
1332 static diskaddr_t sd_extract_sense_info_descr(
1333 	struct scsi_descr_sense_hdr *sdsp);
1334 
1335 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1336 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1337 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1338 	uint8_t asc,
1339 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1340 static void sd_sense_key_not_ready(struct sd_lun *un,
1341 	uint8_t asc, uint8_t ascq,
1342 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1343 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1344 	int sense_key, uint8_t asc,
1345 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1346 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1347 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1348 static void sd_sense_key_unit_attention(struct sd_lun *un,
1349 	uint8_t asc,
1350 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1351 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1352 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1354 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1355 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1356 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1357 static void sd_sense_key_default(struct sd_lun *un,
1358 	int sense_key,
1359 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1360 
1361 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1362 	void *arg, int flag);
1363 
1364 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1365 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1366 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1367 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1368 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1369 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1370 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1371 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1372 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1373 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1374 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1375 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1376 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1377 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1378 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1379 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1380 
1381 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1382 
1383 static void sd_start_stop_unit_callback(void *arg);
1384 static void sd_start_stop_unit_task(void *arg);
1385 
1386 static void sd_taskq_create(void);
1387 static void sd_taskq_delete(void);
1388 static void sd_media_change_task(void *arg);
1389 
1390 static int sd_handle_mchange(struct sd_lun *un);
1391 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1392 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1393 	uint32_t *lbap, int path_flag);
1394 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1395 	uint32_t *lbap, int path_flag);
1396 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1397 	int path_flag);
1398 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1399 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1400 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1401 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1402 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1403 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1404 	uchar_t usr_cmd, uchar_t *usr_bufp);
1405 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1406 	struct dk_callback *dkc);
1407 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1408 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1409 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1410 	uchar_t *bufaddr, uint_t buflen);
1411 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1412 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1413 	uchar_t *bufaddr, uint_t buflen, char feature);
1414 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1415 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1416 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1417 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1418 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1419 	size_t buflen, daddr_t start_block, int path_flag);
1420 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1421 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1422 	path_flag)
1423 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1424 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1425 	path_flag)
1426 
1427 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1428 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1429 	uint16_t param_ptr, int path_flag);
1430 
1431 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1432 static void sd_free_rqs(struct sd_lun *un);
1433 
1434 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1435 	uchar_t *data, int len, int fmt);
1436 static void sd_panic_for_res_conflict(struct sd_lun *un);
1437 
1438 /*
1439  * Disk Ioctl Function Prototypes
1440  */
1441 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1442 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1443 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1444 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1445 	int geom_validated);
1446 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1447 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1448 	int geom_validated);
1449 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1450 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1451 	int geom_validated);
1452 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1453 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1454 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1455 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1456 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1457 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1458 static int sd_write_label(dev_t dev);
1459 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1460 static void sd_clear_vtoc(struct sd_lun *un);
1461 static void sd_clear_efi(struct sd_lun *un);
1462 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1463 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1464 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1465 static void sd_setup_default_geometry(struct sd_lun *un);
1466 #if defined(__i386) || defined(__amd64)
1467 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1468 #endif
1469 
1470 /*
1471  * Multi-host Ioctl Prototypes
1472  */
1473 static int sd_check_mhd(dev_t dev, int interval);
1474 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1475 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1476 static char *sd_sname(uchar_t status);
1477 static void sd_mhd_resvd_recover(void *arg);
1478 static void sd_resv_reclaim_thread();
1479 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1480 static int sd_reserve_release(dev_t dev, int cmd);
1481 static void sd_rmv_resv_reclaim_req(dev_t dev);
1482 static void sd_mhd_reset_notify_cb(caddr_t arg);
1483 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1484 	mhioc_inkeys_t *usrp, int flag);
1485 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1486 	mhioc_inresvs_t *usrp, int flag);
1487 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1488 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1489 static int sd_mhdioc_release(dev_t dev);
1490 static int sd_mhdioc_register_devid(dev_t dev);
1491 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1492 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1493 
1494 /*
1495  * SCSI removable prototypes
1496  */
1497 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1498 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1499 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1500 static int sr_pause_resume(dev_t dev, int mode);
1501 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1502 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1503 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1504 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1505 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1506 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1507 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1508 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1509 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1510 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1511 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1512 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1513 static int sr_eject(dev_t dev);
1514 static void sr_ejected(register struct sd_lun *un);
1515 static int sr_check_wp(dev_t dev);
1516 static int sd_check_media(dev_t dev, enum dkio_state state);
1517 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1518 static void sd_delayed_cv_broadcast(void *arg);
1519 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1520 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1521 
1522 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1523 
1524 /*
1525  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1526  */
1527 static void sd_check_for_writable_cd(struct sd_lun *un);
1528 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1529 static void sd_wm_cache_destructor(void *wm, void *un);
1530 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1531 	daddr_t endb, ushort_t typ);
1532 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1533 	daddr_t endb);
1534 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1535 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1536 static void sd_read_modify_write_task(void * arg);
1537 static int
1538 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1539 	struct buf **bpp);
1540 
1541 
1542 /*
1543  * Function prototypes for failfast support.
1544  */
1545 static void sd_failfast_flushq(struct sd_lun *un);
1546 static int sd_failfast_flushq_callback(struct buf *bp);
1547 
1548 /*
1549  * Function prototypes to check for lsi devices
1550  */
1551 static void sd_is_lsi(struct sd_lun *un);
1552 
1553 /*
1554  * Function prototypes for x86 support
1555  */
1556 #if defined(__i386) || defined(__amd64)
1557 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1558 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1559 #endif
1560 
1561 /*
1562  * Constants for failfast support:
1563  *
1564  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1565  * failfast processing being performed.
1566  *
1567  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1568  * failfast processing on all bufs with B_FAILFAST set.
1569  */
1570 
1571 #define	SD_FAILFAST_INACTIVE		0
1572 #define	SD_FAILFAST_ACTIVE		1
1573 
1574 /*
1575  * Bitmask to control behavior of buf(9S) flushes when a transition to
1576  * the failfast state occurs. Optional bits include:
1577  *
1578  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1579  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1580  * be flushed.
1581  *
1582  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1583  * driver, in addition to the regular wait queue. This includes the xbuf
1584  * queues. When clear, only the driver's wait queue will be flushed.
1585  */
1586 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1587 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1588 
1589 /*
1590  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1591  * to flush all queues within the driver.
1592  */
1593 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1594 
1595 
1596 /*
1597  * SD Testing Fault Injection
1598  */
1599 #ifdef SD_FAULT_INJECTION
1600 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1601 static void sd_faultinjection(struct scsi_pkt *pktp);
1602 static void sd_injection_log(char *buf, struct sd_lun *un);
1603 #endif
1604 
1605 /*
1606  * Device driver ops vector
1607  */
1608 static struct cb_ops sd_cb_ops = {
1609 	sdopen,			/* open */
1610 	sdclose,		/* close */
1611 	sdstrategy,		/* strategy */
1612 	nodev,			/* print */
1613 	sddump,			/* dump */
1614 	sdread,			/* read */
1615 	sdwrite,		/* write */
1616 	sdioctl,		/* ioctl */
1617 	nodev,			/* devmap */
1618 	nodev,			/* mmap */
1619 	nodev,			/* segmap */
1620 	nochpoll,		/* poll */
1621 	sd_prop_op,		/* cb_prop_op */
1622 	0,			/* streamtab  */
1623 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1624 	CB_REV,			/* cb_rev */
1625 	sdaread, 		/* async I/O read entry point */
1626 	sdawrite		/* async I/O write entry point */
1627 };
1628 
1629 static struct dev_ops sd_ops = {
1630 	DEVO_REV,		/* devo_rev, */
1631 	0,			/* refcnt  */
1632 	sdinfo,			/* info */
1633 	nulldev,		/* identify */
1634 	sdprobe,		/* probe */
1635 	sdattach,		/* attach */
1636 	sddetach,		/* detach */
1637 	nodev,			/* reset */
1638 	&sd_cb_ops,		/* driver operations */
1639 	NULL,			/* bus operations */
1640 	sdpower			/* power */
1641 };
1642 
1643 
1644 /*
1645  * This is the loadable module wrapper.
1646  */
1647 #include <sys/modctl.h>
1648 
1649 static struct modldrv modldrv = {
1650 	&mod_driverops,		/* Type of module. This one is a driver */
1651 	SD_MODULE_NAME,		/* Module name. */
1652 	&sd_ops			/* driver ops */
1653 };
1654 
1655 
1656 static struct modlinkage modlinkage = {
1657 	MODREV_1,
1658 	&modldrv,
1659 	NULL
1660 };
1661 
1662 
1663 static struct scsi_asq_key_strings sd_additional_codes[] = {
1664 	0x81, 0, "Logical Unit is Reserved",
1665 	0x85, 0, "Audio Address Not Valid",
1666 	0xb6, 0, "Media Load Mechanism Failed",
1667 	0xB9, 0, "Audio Play Operation Aborted",
1668 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1669 	0x53, 2, "Medium removal prevented",
1670 	0x6f, 0, "Authentication failed during key exchange",
1671 	0x6f, 1, "Key not present",
1672 	0x6f, 2, "Key not established",
1673 	0x6f, 3, "Read without proper authentication",
1674 	0x6f, 4, "Mismatched region to this logical unit",
1675 	0x6f, 5, "Region reset count error",
1676 	0xffff, 0x0, NULL
1677 };
1678 
1679 
1680 /*
1681  * Struct for passing printing information for sense data messages
1682  */
1683 struct sd_sense_info {
1684 	int	ssi_severity;
1685 	int	ssi_pfa_flag;
1686 };
1687 
1688 /*
1689  * Table of function pointers for iostart-side routines. Seperate "chains"
1690  * of layered function calls are formed by placing the function pointers
1691  * sequentially in the desired order. Functions are called according to an
1692  * incrementing table index ordering. The last function in each chain must
1693  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1694  * in the sd_iodone_chain[] array.
1695  *
1696  * Note: It may seem more natural to organize both the iostart and iodone
1697  * functions together, into an array of structures (or some similar
1698  * organization) with a common index, rather than two seperate arrays which
1699  * must be maintained in synchronization. The purpose of this division is
1700  * to achiece improved performance: individual arrays allows for more
1701  * effective cache line utilization on certain platforms.
1702  */
1703 
1704 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1705 
1706 
1707 static sd_chain_t sd_iostart_chain[] = {
1708 
1709 	/* Chain for buf IO for disk drive targets (PM enabled) */
1710 	sd_mapblockaddr_iostart,	/* Index: 0 */
1711 	sd_pm_iostart,			/* Index: 1 */
1712 	sd_core_iostart,		/* Index: 2 */
1713 
1714 	/* Chain for buf IO for disk drive targets (PM disabled) */
1715 	sd_mapblockaddr_iostart,	/* Index: 3 */
1716 	sd_core_iostart,		/* Index: 4 */
1717 
1718 	/* Chain for buf IO for removable-media targets (PM enabled) */
1719 	sd_mapblockaddr_iostart,	/* Index: 5 */
1720 	sd_mapblocksize_iostart,	/* Index: 6 */
1721 	sd_pm_iostart,			/* Index: 7 */
1722 	sd_core_iostart,		/* Index: 8 */
1723 
1724 	/* Chain for buf IO for removable-media targets (PM disabled) */
1725 	sd_mapblockaddr_iostart,	/* Index: 9 */
1726 	sd_mapblocksize_iostart,	/* Index: 10 */
1727 	sd_core_iostart,		/* Index: 11 */
1728 
1729 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1730 	sd_mapblockaddr_iostart,	/* Index: 12 */
1731 	sd_checksum_iostart,		/* Index: 13 */
1732 	sd_pm_iostart,			/* Index: 14 */
1733 	sd_core_iostart,		/* Index: 15 */
1734 
1735 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1736 	sd_mapblockaddr_iostart,	/* Index: 16 */
1737 	sd_checksum_iostart,		/* Index: 17 */
1738 	sd_core_iostart,		/* Index: 18 */
1739 
1740 	/* Chain for USCSI commands (all targets) */
1741 	sd_pm_iostart,			/* Index: 19 */
1742 	sd_core_iostart,		/* Index: 20 */
1743 
1744 	/* Chain for checksumming USCSI commands (all targets) */
1745 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1746 	sd_pm_iostart,			/* Index: 22 */
1747 	sd_core_iostart,		/* Index: 23 */
1748 
1749 	/* Chain for "direct" USCSI commands (all targets) */
1750 	sd_core_iostart,		/* Index: 24 */
1751 
1752 	/* Chain for "direct priority" USCSI commands (all targets) */
1753 	sd_core_iostart,		/* Index: 25 */
1754 };
1755 
1756 /*
1757  * Macros to locate the first function of each iostart chain in the
1758  * sd_iostart_chain[] array. These are located by the index in the array.
1759  */
1760 #define	SD_CHAIN_DISK_IOSTART			0
1761 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1762 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1763 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1764 #define	SD_CHAIN_CHKSUM_IOSTART			12
1765 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1766 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1767 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1768 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1769 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1770 
1771 
1772 /*
1773  * Table of function pointers for the iodone-side routines for the driver-
1774  * internal layering mechanism.  The calling sequence for iodone routines
1775  * uses a decrementing table index, so the last routine called in a chain
1776  * must be at the lowest array index location for that chain.  The last
1777  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1778  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1779  * of the functions in an iodone side chain must correspond to the ordering
1780  * of the iostart routines for that chain.  Note that there is no iodone
1781  * side routine that corresponds to sd_core_iostart(), so there is no
1782  * entry in the table for this.
1783  */
1784 
1785 static sd_chain_t sd_iodone_chain[] = {
1786 
1787 	/* Chain for buf IO for disk drive targets (PM enabled) */
1788 	sd_buf_iodone,			/* Index: 0 */
1789 	sd_mapblockaddr_iodone,		/* Index: 1 */
1790 	sd_pm_iodone,			/* Index: 2 */
1791 
1792 	/* Chain for buf IO for disk drive targets (PM disabled) */
1793 	sd_buf_iodone,			/* Index: 3 */
1794 	sd_mapblockaddr_iodone,		/* Index: 4 */
1795 
1796 	/* Chain for buf IO for removable-media targets (PM enabled) */
1797 	sd_buf_iodone,			/* Index: 5 */
1798 	sd_mapblockaddr_iodone,		/* Index: 6 */
1799 	sd_mapblocksize_iodone,		/* Index: 7 */
1800 	sd_pm_iodone,			/* Index: 8 */
1801 
1802 	/* Chain for buf IO for removable-media targets (PM disabled) */
1803 	sd_buf_iodone,			/* Index: 9 */
1804 	sd_mapblockaddr_iodone,		/* Index: 10 */
1805 	sd_mapblocksize_iodone,		/* Index: 11 */
1806 
1807 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1808 	sd_buf_iodone,			/* Index: 12 */
1809 	sd_mapblockaddr_iodone,		/* Index: 13 */
1810 	sd_checksum_iodone,		/* Index: 14 */
1811 	sd_pm_iodone,			/* Index: 15 */
1812 
1813 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1814 	sd_buf_iodone,			/* Index: 16 */
1815 	sd_mapblockaddr_iodone,		/* Index: 17 */
1816 	sd_checksum_iodone,		/* Index: 18 */
1817 
1818 	/* Chain for USCSI commands (non-checksum targets) */
1819 	sd_uscsi_iodone,		/* Index: 19 */
1820 	sd_pm_iodone,			/* Index: 20 */
1821 
1822 	/* Chain for USCSI commands (checksum targets) */
1823 	sd_uscsi_iodone,		/* Index: 21 */
1824 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1825 	sd_pm_iodone,			/* Index: 22 */
1826 
1827 	/* Chain for "direct" USCSI commands (all targets) */
1828 	sd_uscsi_iodone,		/* Index: 24 */
1829 
1830 	/* Chain for "direct priority" USCSI commands (all targets) */
1831 	sd_uscsi_iodone,		/* Index: 25 */
1832 };
1833 
1834 
1835 /*
1836  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1837  * each iodone-side chain. These are located by the array index, but as the
1838  * iodone side functions are called in a decrementing-index order, the
1839  * highest index number in each chain must be specified (as these correspond
1840  * to the first function in the iodone chain that will be called by the core
1841  * at IO completion time).
1842  */
1843 
1844 #define	SD_CHAIN_DISK_IODONE			2
1845 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1846 #define	SD_CHAIN_RMMEDIA_IODONE			8
1847 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1848 #define	SD_CHAIN_CHKSUM_IODONE			15
1849 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1850 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1851 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1852 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1853 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1854 
1855 
1856 
1857 
1858 /*
1859  * Array to map a layering chain index to the appropriate initpkt routine.
1860  * The redundant entries are present so that the index used for accessing
1861  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1862  * with this table as well.
1863  */
1864 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1865 
1866 static sd_initpkt_t	sd_initpkt_map[] = {
1867 
1868 	/* Chain for buf IO for disk drive targets (PM enabled) */
1869 	sd_initpkt_for_buf,		/* Index: 0 */
1870 	sd_initpkt_for_buf,		/* Index: 1 */
1871 	sd_initpkt_for_buf,		/* Index: 2 */
1872 
1873 	/* Chain for buf IO for disk drive targets (PM disabled) */
1874 	sd_initpkt_for_buf,		/* Index: 3 */
1875 	sd_initpkt_for_buf,		/* Index: 4 */
1876 
1877 	/* Chain for buf IO for removable-media targets (PM enabled) */
1878 	sd_initpkt_for_buf,		/* Index: 5 */
1879 	sd_initpkt_for_buf,		/* Index: 6 */
1880 	sd_initpkt_for_buf,		/* Index: 7 */
1881 	sd_initpkt_for_buf,		/* Index: 8 */
1882 
1883 	/* Chain for buf IO for removable-media targets (PM disabled) */
1884 	sd_initpkt_for_buf,		/* Index: 9 */
1885 	sd_initpkt_for_buf,		/* Index: 10 */
1886 	sd_initpkt_for_buf,		/* Index: 11 */
1887 
1888 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1889 	sd_initpkt_for_buf,		/* Index: 12 */
1890 	sd_initpkt_for_buf,		/* Index: 13 */
1891 	sd_initpkt_for_buf,		/* Index: 14 */
1892 	sd_initpkt_for_buf,		/* Index: 15 */
1893 
1894 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1895 	sd_initpkt_for_buf,		/* Index: 16 */
1896 	sd_initpkt_for_buf,		/* Index: 17 */
1897 	sd_initpkt_for_buf,		/* Index: 18 */
1898 
1899 	/* Chain for USCSI commands (non-checksum targets) */
1900 	sd_initpkt_for_uscsi,		/* Index: 19 */
1901 	sd_initpkt_for_uscsi,		/* Index: 20 */
1902 
1903 	/* Chain for USCSI commands (checksum targets) */
1904 	sd_initpkt_for_uscsi,		/* Index: 21 */
1905 	sd_initpkt_for_uscsi,		/* Index: 22 */
1906 	sd_initpkt_for_uscsi,		/* Index: 22 */
1907 
1908 	/* Chain for "direct" USCSI commands (all targets) */
1909 	sd_initpkt_for_uscsi,		/* Index: 24 */
1910 
1911 	/* Chain for "direct priority" USCSI commands (all targets) */
1912 	sd_initpkt_for_uscsi,		/* Index: 25 */
1913 
1914 };
1915 
1916 
1917 /*
1918  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1919  * The redundant entries are present so that the index used for accessing
1920  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1921  * with this table as well.
1922  */
1923 typedef void (*sd_destroypkt_t)(struct buf *);
1924 
1925 static sd_destroypkt_t	sd_destroypkt_map[] = {
1926 
1927 	/* Chain for buf IO for disk drive targets (PM enabled) */
1928 	sd_destroypkt_for_buf,		/* Index: 0 */
1929 	sd_destroypkt_for_buf,		/* Index: 1 */
1930 	sd_destroypkt_for_buf,		/* Index: 2 */
1931 
1932 	/* Chain for buf IO for disk drive targets (PM disabled) */
1933 	sd_destroypkt_for_buf,		/* Index: 3 */
1934 	sd_destroypkt_for_buf,		/* Index: 4 */
1935 
1936 	/* Chain for buf IO for removable-media targets (PM enabled) */
1937 	sd_destroypkt_for_buf,		/* Index: 5 */
1938 	sd_destroypkt_for_buf,		/* Index: 6 */
1939 	sd_destroypkt_for_buf,		/* Index: 7 */
1940 	sd_destroypkt_for_buf,		/* Index: 8 */
1941 
1942 	/* Chain for buf IO for removable-media targets (PM disabled) */
1943 	sd_destroypkt_for_buf,		/* Index: 9 */
1944 	sd_destroypkt_for_buf,		/* Index: 10 */
1945 	sd_destroypkt_for_buf,		/* Index: 11 */
1946 
1947 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1948 	sd_destroypkt_for_buf,		/* Index: 12 */
1949 	sd_destroypkt_for_buf,		/* Index: 13 */
1950 	sd_destroypkt_for_buf,		/* Index: 14 */
1951 	sd_destroypkt_for_buf,		/* Index: 15 */
1952 
1953 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1954 	sd_destroypkt_for_buf,		/* Index: 16 */
1955 	sd_destroypkt_for_buf,		/* Index: 17 */
1956 	sd_destroypkt_for_buf,		/* Index: 18 */
1957 
1958 	/* Chain for USCSI commands (non-checksum targets) */
1959 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1960 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1961 
1962 	/* Chain for USCSI commands (checksum targets) */
1963 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1964 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1965 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1966 
1967 	/* Chain for "direct" USCSI commands (all targets) */
1968 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1969 
1970 	/* Chain for "direct priority" USCSI commands (all targets) */
1971 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1972 
1973 };
1974 
1975 
1976 
1977 /*
1978  * Array to map a layering chain index to the appropriate chain "type".
1979  * The chain type indicates a specific property/usage of the chain.
1980  * The redundant entries are present so that the index used for accessing
1981  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1982  * with this table as well.
1983  */
1984 
1985 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1986 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1987 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1988 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1989 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1990 						/* (for error recovery) */
1991 
1992 static int sd_chain_type_map[] = {
1993 
1994 	/* Chain for buf IO for disk drive targets (PM enabled) */
1995 	SD_CHAIN_BUFIO,			/* Index: 0 */
1996 	SD_CHAIN_BUFIO,			/* Index: 1 */
1997 	SD_CHAIN_BUFIO,			/* Index: 2 */
1998 
1999 	/* Chain for buf IO for disk drive targets (PM disabled) */
2000 	SD_CHAIN_BUFIO,			/* Index: 3 */
2001 	SD_CHAIN_BUFIO,			/* Index: 4 */
2002 
2003 	/* Chain for buf IO for removable-media targets (PM enabled) */
2004 	SD_CHAIN_BUFIO,			/* Index: 5 */
2005 	SD_CHAIN_BUFIO,			/* Index: 6 */
2006 	SD_CHAIN_BUFIO,			/* Index: 7 */
2007 	SD_CHAIN_BUFIO,			/* Index: 8 */
2008 
2009 	/* Chain for buf IO for removable-media targets (PM disabled) */
2010 	SD_CHAIN_BUFIO,			/* Index: 9 */
2011 	SD_CHAIN_BUFIO,			/* Index: 10 */
2012 	SD_CHAIN_BUFIO,			/* Index: 11 */
2013 
2014 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2015 	SD_CHAIN_BUFIO,			/* Index: 12 */
2016 	SD_CHAIN_BUFIO,			/* Index: 13 */
2017 	SD_CHAIN_BUFIO,			/* Index: 14 */
2018 	SD_CHAIN_BUFIO,			/* Index: 15 */
2019 
2020 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2021 	SD_CHAIN_BUFIO,			/* Index: 16 */
2022 	SD_CHAIN_BUFIO,			/* Index: 17 */
2023 	SD_CHAIN_BUFIO,			/* Index: 18 */
2024 
2025 	/* Chain for USCSI commands (non-checksum targets) */
2026 	SD_CHAIN_USCSI,			/* Index: 19 */
2027 	SD_CHAIN_USCSI,			/* Index: 20 */
2028 
2029 	/* Chain for USCSI commands (checksum targets) */
2030 	SD_CHAIN_USCSI,			/* Index: 21 */
2031 	SD_CHAIN_USCSI,			/* Index: 22 */
2032 	SD_CHAIN_USCSI,			/* Index: 22 */
2033 
2034 	/* Chain for "direct" USCSI commands (all targets) */
2035 	SD_CHAIN_DIRECT,		/* Index: 24 */
2036 
2037 	/* Chain for "direct priority" USCSI commands (all targets) */
2038 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2039 };
2040 
2041 
2042 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2043 #define	SD_IS_BUFIO(xp)			\
2044 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2045 
2046 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2047 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2048 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2049 
2050 
2051 
2052 /*
2053  * Struct, array, and macros to map a specific chain to the appropriate
2054  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2055  *
2056  * The sd_chain_index_map[] array is used at attach time to set the various
2057  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2058  * chain to be used with the instance. This allows different instances to use
2059  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2060  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2061  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2062  * dynamically & without the use of locking; and (2) a layer may update the
2063  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2064  * to allow for deferred processing of an IO within the same chain from a
2065  * different execution context.
2066  */
2067 
2068 struct sd_chain_index {
2069 	int	sci_iostart_index;
2070 	int	sci_iodone_index;
2071 };
2072 
2073 static struct sd_chain_index	sd_chain_index_map[] = {
2074 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2075 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2076 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2077 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2078 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2079 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2080 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2081 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2082 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2083 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2084 };
2085 
2086 
2087 /*
2088  * The following are indexes into the sd_chain_index_map[] array.
2089  */
2090 
2091 /* un->un_buf_chain_type must be set to one of these */
2092 #define	SD_CHAIN_INFO_DISK		0
2093 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2094 #define	SD_CHAIN_INFO_RMMEDIA		2
2095 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2096 #define	SD_CHAIN_INFO_CHKSUM		4
2097 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2098 
2099 /* un->un_uscsi_chain_type must be set to one of these */
2100 #define	SD_CHAIN_INFO_USCSI_CMD		6
2101 /* USCSI with PM disabled is the same as DIRECT */
2102 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2103 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2104 
2105 /* un->un_direct_chain_type must be set to one of these */
2106 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2107 
2108 /* un->un_priority_chain_type must be set to one of these */
2109 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2110 
2111 /* size for devid inquiries */
2112 #define	MAX_INQUIRY_SIZE		0xF0
2113 
2114 /*
2115  * Macros used by functions to pass a given buf(9S) struct along to the
2116  * next function in the layering chain for further processing.
2117  *
2118  * In the following macros, passing more than three arguments to the called
2119  * routines causes the optimizer for the SPARC compiler to stop doing tail
2120  * call elimination which results in significant performance degradation.
2121  */
2122 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2123 	((*(sd_iostart_chain[index]))(index, un, bp))
2124 
2125 #define	SD_BEGIN_IODONE(index, un, bp)	\
2126 	((*(sd_iodone_chain[index]))(index, un, bp))
2127 
2128 #define	SD_NEXT_IOSTART(index, un, bp)				\
2129 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2130 
2131 #define	SD_NEXT_IODONE(index, un, bp)				\
2132 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2133 
2134 
2135 /*
2136  *    Function: _init
2137  *
2138  * Description: This is the driver _init(9E) entry point.
2139  *
2140  * Return Code: Returns the value from mod_install(9F) or
2141  *		ddi_soft_state_init(9F) as appropriate.
2142  *
2143  *     Context: Called when driver module loaded.
2144  */
2145 
2146 int
2147 _init(void)
2148 {
2149 	int	err;
2150 
2151 	/* establish driver name from module name */
2152 	sd_label = mod_modname(&modlinkage);
2153 
2154 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2155 		SD_MAXUNIT);
2156 
2157 	if (err != 0) {
2158 		return (err);
2159 	}
2160 
2161 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2162 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2163 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2164 
2165 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2166 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2167 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2168 
2169 	/*
2170 	 * it's ok to init here even for fibre device
2171 	 */
2172 	sd_scsi_probe_cache_init();
2173 
2174 	/*
2175 	 * Creating taskq before mod_install ensures that all callers (threads)
2176 	 * that enter the module after a successfull mod_install encounter
2177 	 * a valid taskq.
2178 	 */
2179 	sd_taskq_create();
2180 
2181 	err = mod_install(&modlinkage);
2182 	if (err != 0) {
2183 		/* delete taskq if install fails */
2184 		sd_taskq_delete();
2185 
2186 		mutex_destroy(&sd_detach_mutex);
2187 		mutex_destroy(&sd_log_mutex);
2188 		mutex_destroy(&sd_label_mutex);
2189 
2190 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2191 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2192 		cv_destroy(&sd_tr.srq_inprocess_cv);
2193 
2194 		sd_scsi_probe_cache_fini();
2195 
2196 		ddi_soft_state_fini(&sd_state);
2197 		return (err);
2198 	}
2199 
2200 	return (err);
2201 }
2202 
2203 
2204 /*
2205  *    Function: _fini
2206  *
2207  * Description: This is the driver _fini(9E) entry point.
2208  *
2209  * Return Code: Returns the value from mod_remove(9F)
2210  *
2211  *     Context: Called when driver module is unloaded.
2212  */
2213 
2214 int
2215 _fini(void)
2216 {
2217 	int err;
2218 
2219 	if ((err = mod_remove(&modlinkage)) != 0) {
2220 		return (err);
2221 	}
2222 
2223 	sd_taskq_delete();
2224 
2225 	mutex_destroy(&sd_detach_mutex);
2226 	mutex_destroy(&sd_log_mutex);
2227 	mutex_destroy(&sd_label_mutex);
2228 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2229 
2230 	sd_scsi_probe_cache_fini();
2231 
2232 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2233 	cv_destroy(&sd_tr.srq_inprocess_cv);
2234 
2235 	ddi_soft_state_fini(&sd_state);
2236 
2237 	return (err);
2238 }
2239 
2240 
2241 /*
2242  *    Function: _info
2243  *
2244  * Description: This is the driver _info(9E) entry point.
2245  *
2246  *   Arguments: modinfop - pointer to the driver modinfo structure
2247  *
2248  * Return Code: Returns the value from mod_info(9F).
2249  *
2250  *     Context: Kernel thread context
2251  */
2252 
2253 int
2254 _info(struct modinfo *modinfop)
2255 {
2256 	return (mod_info(&modlinkage, modinfop));
2257 }
2258 
2259 
2260 /*
2261  * The following routines implement the driver message logging facility.
2262  * They provide component- and level- based debug output filtering.
2263  * Output may also be restricted to messages for a single instance by
2264  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2265  * to NULL, then messages for all instances are printed.
2266  *
2267  * These routines have been cloned from each other due to the language
2268  * constraints of macros and variable argument list processing.
2269  */
2270 
2271 
2272 /*
2273  *    Function: sd_log_err
2274  *
2275  * Description: This routine is called by the SD_ERROR macro for debug
2276  *		logging of error conditions.
2277  *
2278  *   Arguments: comp - driver component being logged
2279  *		dev  - pointer to driver info structure
2280  *		fmt  - error string and format to be logged
2281  */
2282 
2283 static void
2284 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2285 {
2286 	va_list		ap;
2287 	dev_info_t	*dev;
2288 
2289 	ASSERT(un != NULL);
2290 	dev = SD_DEVINFO(un);
2291 	ASSERT(dev != NULL);
2292 
2293 	/*
2294 	 * Filter messages based on the global component and level masks.
2295 	 * Also print if un matches the value of sd_debug_un, or if
2296 	 * sd_debug_un is set to NULL.
2297 	 */
2298 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2299 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2300 		mutex_enter(&sd_log_mutex);
2301 		va_start(ap, fmt);
2302 		(void) vsprintf(sd_log_buf, fmt, ap);
2303 		va_end(ap);
2304 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2305 		mutex_exit(&sd_log_mutex);
2306 	}
2307 #ifdef SD_FAULT_INJECTION
2308 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2309 	if (un->sd_injection_mask & comp) {
2310 		mutex_enter(&sd_log_mutex);
2311 		va_start(ap, fmt);
2312 		(void) vsprintf(sd_log_buf, fmt, ap);
2313 		va_end(ap);
2314 		sd_injection_log(sd_log_buf, un);
2315 		mutex_exit(&sd_log_mutex);
2316 	}
2317 #endif
2318 }
2319 
2320 
2321 /*
2322  *    Function: sd_log_info
2323  *
2324  * Description: This routine is called by the SD_INFO macro for debug
2325  *		logging of general purpose informational conditions.
2326  *
2327  *   Arguments: comp - driver component being logged
2328  *		dev  - pointer to driver info structure
2329  *		fmt  - info string and format to be logged
2330  */
2331 
2332 static void
2333 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2334 {
2335 	va_list		ap;
2336 	dev_info_t	*dev;
2337 
2338 	ASSERT(un != NULL);
2339 	dev = SD_DEVINFO(un);
2340 	ASSERT(dev != NULL);
2341 
2342 	/*
2343 	 * Filter messages based on the global component and level masks.
2344 	 * Also print if un matches the value of sd_debug_un, or if
2345 	 * sd_debug_un is set to NULL.
2346 	 */
2347 	if ((sd_component_mask & component) &&
2348 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2349 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2350 		mutex_enter(&sd_log_mutex);
2351 		va_start(ap, fmt);
2352 		(void) vsprintf(sd_log_buf, fmt, ap);
2353 		va_end(ap);
2354 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2355 		mutex_exit(&sd_log_mutex);
2356 	}
2357 #ifdef SD_FAULT_INJECTION
2358 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2359 	if (un->sd_injection_mask & component) {
2360 		mutex_enter(&sd_log_mutex);
2361 		va_start(ap, fmt);
2362 		(void) vsprintf(sd_log_buf, fmt, ap);
2363 		va_end(ap);
2364 		sd_injection_log(sd_log_buf, un);
2365 		mutex_exit(&sd_log_mutex);
2366 	}
2367 #endif
2368 }
2369 
2370 
2371 /*
2372  *    Function: sd_log_trace
2373  *
2374  * Description: This routine is called by the SD_TRACE macro for debug
2375  *		logging of trace conditions (i.e. function entry/exit).
2376  *
2377  *   Arguments: comp - driver component being logged
2378  *		dev  - pointer to driver info structure
2379  *		fmt  - trace string and format to be logged
2380  */
2381 
2382 static void
2383 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2384 {
2385 	va_list		ap;
2386 	dev_info_t	*dev;
2387 
2388 	ASSERT(un != NULL);
2389 	dev = SD_DEVINFO(un);
2390 	ASSERT(dev != NULL);
2391 
2392 	/*
2393 	 * Filter messages based on the global component and level masks.
2394 	 * Also print if un matches the value of sd_debug_un, or if
2395 	 * sd_debug_un is set to NULL.
2396 	 */
2397 	if ((sd_component_mask & component) &&
2398 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2399 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2400 		mutex_enter(&sd_log_mutex);
2401 		va_start(ap, fmt);
2402 		(void) vsprintf(sd_log_buf, fmt, ap);
2403 		va_end(ap);
2404 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2405 		mutex_exit(&sd_log_mutex);
2406 	}
2407 #ifdef SD_FAULT_INJECTION
2408 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2409 	if (un->sd_injection_mask & component) {
2410 		mutex_enter(&sd_log_mutex);
2411 		va_start(ap, fmt);
2412 		(void) vsprintf(sd_log_buf, fmt, ap);
2413 		va_end(ap);
2414 		sd_injection_log(sd_log_buf, un);
2415 		mutex_exit(&sd_log_mutex);
2416 	}
2417 #endif
2418 }
2419 
2420 
2421 /*
2422  *    Function: sdprobe
2423  *
2424  * Description: This is the driver probe(9e) entry point function.
2425  *
2426  *   Arguments: devi - opaque device info handle
2427  *
2428  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2429  *              DDI_PROBE_FAILURE: If the probe failed.
2430  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2431  *				   but may be present in the future.
2432  */
2433 
2434 static int
2435 sdprobe(dev_info_t *devi)
2436 {
2437 	struct scsi_device	*devp;
2438 	int			rval;
2439 	int			instance;
2440 
2441 	/*
2442 	 * if it wasn't for pln, sdprobe could actually be nulldev
2443 	 * in the "__fibre" case.
2444 	 */
2445 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2446 		return (DDI_PROBE_DONTCARE);
2447 	}
2448 
2449 	devp = ddi_get_driver_private(devi);
2450 
2451 	if (devp == NULL) {
2452 		/* Ooops... nexus driver is mis-configured... */
2453 		return (DDI_PROBE_FAILURE);
2454 	}
2455 
2456 	instance = ddi_get_instance(devi);
2457 
2458 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2459 		return (DDI_PROBE_PARTIAL);
2460 	}
2461 
2462 	/*
2463 	 * Call the SCSA utility probe routine to see if we actually
2464 	 * have a target at this SCSI nexus.
2465 	 */
2466 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2467 	case SCSIPROBE_EXISTS:
2468 		switch (devp->sd_inq->inq_dtype) {
2469 		case DTYPE_DIRECT:
2470 			rval = DDI_PROBE_SUCCESS;
2471 			break;
2472 		case DTYPE_RODIRECT:
2473 			/* CDs etc. Can be removable media */
2474 			rval = DDI_PROBE_SUCCESS;
2475 			break;
2476 		case DTYPE_OPTICAL:
2477 			/*
2478 			 * Rewritable optical driver HP115AA
2479 			 * Can also be removable media
2480 			 */
2481 
2482 			/*
2483 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2484 			 * pre solaris 9 sparc sd behavior is required
2485 			 *
2486 			 * If first time through and sd_dtype_optical_bind
2487 			 * has not been set in /etc/system check properties
2488 			 */
2489 
2490 			if (sd_dtype_optical_bind  < 0) {
2491 			    sd_dtype_optical_bind = ddi_prop_get_int
2492 				(DDI_DEV_T_ANY,	devi,	0,
2493 				"optical-device-bind",	1);
2494 			}
2495 
2496 			if (sd_dtype_optical_bind == 0) {
2497 				rval = DDI_PROBE_FAILURE;
2498 			} else {
2499 				rval = DDI_PROBE_SUCCESS;
2500 			}
2501 			break;
2502 
2503 		case DTYPE_NOTPRESENT:
2504 		default:
2505 			rval = DDI_PROBE_FAILURE;
2506 			break;
2507 		}
2508 		break;
2509 	default:
2510 		rval = DDI_PROBE_PARTIAL;
2511 		break;
2512 	}
2513 
2514 	/*
2515 	 * This routine checks for resource allocation prior to freeing,
2516 	 * so it will take care of the "smart probing" case where a
2517 	 * scsi_probe() may or may not have been issued and will *not*
2518 	 * free previously-freed resources.
2519 	 */
2520 	scsi_unprobe(devp);
2521 	return (rval);
2522 }
2523 
2524 
2525 /*
2526  *    Function: sdinfo
2527  *
2528  * Description: This is the driver getinfo(9e) entry point function.
2529  * 		Given the device number, return the devinfo pointer from
2530  *		the scsi_device structure or the instance number
2531  *		associated with the dev_t.
2532  *
2533  *   Arguments: dip     - pointer to device info structure
2534  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2535  *			  DDI_INFO_DEVT2INSTANCE)
2536  *		arg     - driver dev_t
2537  *		resultp - user buffer for request response
2538  *
2539  * Return Code: DDI_SUCCESS
2540  *              DDI_FAILURE
2541  */
2542 /* ARGSUSED */
2543 static int
2544 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2545 {
2546 	struct sd_lun	*un;
2547 	dev_t		dev;
2548 	int		instance;
2549 	int		error;
2550 
2551 	switch (infocmd) {
2552 	case DDI_INFO_DEVT2DEVINFO:
2553 		dev = (dev_t)arg;
2554 		instance = SDUNIT(dev);
2555 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2556 			return (DDI_FAILURE);
2557 		}
2558 		*result = (void *) SD_DEVINFO(un);
2559 		error = DDI_SUCCESS;
2560 		break;
2561 	case DDI_INFO_DEVT2INSTANCE:
2562 		dev = (dev_t)arg;
2563 		instance = SDUNIT(dev);
2564 		*result = (void *)(uintptr_t)instance;
2565 		error = DDI_SUCCESS;
2566 		break;
2567 	default:
2568 		error = DDI_FAILURE;
2569 	}
2570 	return (error);
2571 }
2572 
2573 /*
2574  *    Function: sd_prop_op
2575  *
2576  * Description: This is the driver prop_op(9e) entry point function.
2577  *		Return the number of blocks for the partition in question
2578  *		or forward the request to the property facilities.
2579  *
2580  *   Arguments: dev       - device number
2581  *		dip       - pointer to device info structure
2582  *		prop_op   - property operator
2583  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2584  *		name      - pointer to property name
2585  *		valuep    - pointer or address of the user buffer
2586  *		lengthp   - property length
2587  *
2588  * Return Code: DDI_PROP_SUCCESS
2589  *              DDI_PROP_NOT_FOUND
2590  *              DDI_PROP_UNDEFINED
2591  *              DDI_PROP_NO_MEMORY
2592  *              DDI_PROP_BUF_TOO_SMALL
2593  */
2594 
2595 static int
2596 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2597 	char *name, caddr_t valuep, int *lengthp)
2598 {
2599 	int		instance = ddi_get_instance(dip);
2600 	struct sd_lun	*un;
2601 	uint64_t	nblocks64;
2602 
2603 	/*
2604 	 * Our dynamic properties are all device specific and size oriented.
2605 	 * Requests issued under conditions where size is valid are passed
2606 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2607 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2608 	 */
2609 	un = ddi_get_soft_state(sd_state, instance);
2610 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2611 	    (un->un_f_geometry_is_valid == FALSE)) {
2612 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2613 		    name, valuep, lengthp));
2614 	} else {
2615 		/* get nblocks value */
2616 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2617 		mutex_enter(SD_MUTEX(un));
2618 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2619 		mutex_exit(SD_MUTEX(un));
2620 
2621 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2622 		    name, valuep, lengthp, nblocks64));
2623 	}
2624 }
2625 
2626 /*
2627  * The following functions are for smart probing:
2628  * sd_scsi_probe_cache_init()
2629  * sd_scsi_probe_cache_fini()
2630  * sd_scsi_clear_probe_cache()
2631  * sd_scsi_probe_with_cache()
2632  */
2633 
2634 /*
2635  *    Function: sd_scsi_probe_cache_init
2636  *
2637  * Description: Initializes the probe response cache mutex and head pointer.
2638  *
2639  *     Context: Kernel thread context
2640  */
2641 
2642 static void
2643 sd_scsi_probe_cache_init(void)
2644 {
2645 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2646 	sd_scsi_probe_cache_head = NULL;
2647 }
2648 
2649 
2650 /*
2651  *    Function: sd_scsi_probe_cache_fini
2652  *
2653  * Description: Frees all resources associated with the probe response cache.
2654  *
2655  *     Context: Kernel thread context
2656  */
2657 
2658 static void
2659 sd_scsi_probe_cache_fini(void)
2660 {
2661 	struct sd_scsi_probe_cache *cp;
2662 	struct sd_scsi_probe_cache *ncp;
2663 
2664 	/* Clean up our smart probing linked list */
2665 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2666 		ncp = cp->next;
2667 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2668 	}
2669 	sd_scsi_probe_cache_head = NULL;
2670 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2671 }
2672 
2673 
2674 /*
2675  *    Function: sd_scsi_clear_probe_cache
2676  *
2677  * Description: This routine clears the probe response cache. This is
2678  *		done when open() returns ENXIO so that when deferred
2679  *		attach is attempted (possibly after a device has been
2680  *		turned on) we will retry the probe. Since we don't know
2681  *		which target we failed to open, we just clear the
2682  *		entire cache.
2683  *
2684  *     Context: Kernel thread context
2685  */
2686 
2687 static void
2688 sd_scsi_clear_probe_cache(void)
2689 {
2690 	struct sd_scsi_probe_cache	*cp;
2691 	int				i;
2692 
2693 	mutex_enter(&sd_scsi_probe_cache_mutex);
2694 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2695 		/*
2696 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2697 		 * force probing to be performed the next time
2698 		 * sd_scsi_probe_with_cache is called.
2699 		 */
2700 		for (i = 0; i < NTARGETS_WIDE; i++) {
2701 			cp->cache[i] = SCSIPROBE_EXISTS;
2702 		}
2703 	}
2704 	mutex_exit(&sd_scsi_probe_cache_mutex);
2705 }
2706 
2707 
2708 /*
2709  *    Function: sd_scsi_probe_with_cache
2710  *
2711  * Description: This routine implements support for a scsi device probe
2712  *		with cache. The driver maintains a cache of the target
2713  *		responses to scsi probes. If we get no response from a
2714  *		target during a probe inquiry, we remember that, and we
2715  *		avoid additional calls to scsi_probe on non-zero LUNs
2716  *		on the same target until the cache is cleared. By doing
2717  *		so we avoid the 1/4 sec selection timeout for nonzero
2718  *		LUNs. lun0 of a target is always probed.
2719  *
2720  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2721  *              waitfunc - indicates what the allocator routines should
2722  *			   do when resources are not available. This value
2723  *			   is passed on to scsi_probe() when that routine
2724  *			   is called.
2725  *
2726  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2727  *		otherwise the value returned by scsi_probe(9F).
2728  *
2729  *     Context: Kernel thread context
2730  */
2731 
2732 static int
2733 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2734 {
2735 	struct sd_scsi_probe_cache	*cp;
2736 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2737 	int		lun, tgt;
2738 
2739 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2740 	    SCSI_ADDR_PROP_LUN, 0);
2741 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2742 	    SCSI_ADDR_PROP_TARGET, -1);
2743 
2744 	/* Make sure caching enabled and target in range */
2745 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2746 		/* do it the old way (no cache) */
2747 		return (scsi_probe(devp, waitfn));
2748 	}
2749 
2750 	mutex_enter(&sd_scsi_probe_cache_mutex);
2751 
2752 	/* Find the cache for this scsi bus instance */
2753 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2754 		if (cp->pdip == pdip) {
2755 			break;
2756 		}
2757 	}
2758 
2759 	/* If we can't find a cache for this pdip, create one */
2760 	if (cp == NULL) {
2761 		int i;
2762 
2763 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2764 		    KM_SLEEP);
2765 		cp->pdip = pdip;
2766 		cp->next = sd_scsi_probe_cache_head;
2767 		sd_scsi_probe_cache_head = cp;
2768 		for (i = 0; i < NTARGETS_WIDE; i++) {
2769 			cp->cache[i] = SCSIPROBE_EXISTS;
2770 		}
2771 	}
2772 
2773 	mutex_exit(&sd_scsi_probe_cache_mutex);
2774 
2775 	/* Recompute the cache for this target if LUN zero */
2776 	if (lun == 0) {
2777 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2778 	}
2779 
2780 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2781 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2782 		return (SCSIPROBE_NORESP);
2783 	}
2784 
2785 	/* Do the actual probe; save & return the result */
2786 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2787 }
2788 
2789 
2790 /*
2791  *    Function: sd_spin_up_unit
2792  *
2793  * Description: Issues the following commands to spin-up the device:
2794  *		START STOP UNIT, and INQUIRY.
2795  *
2796  *   Arguments: un - driver soft state (unit) structure
2797  *
2798  * Return Code: 0 - success
2799  *		EIO - failure
2800  *		EACCES - reservation conflict
2801  *
2802  *     Context: Kernel thread context
2803  */
2804 
2805 static int
2806 sd_spin_up_unit(struct sd_lun *un)
2807 {
2808 	size_t	resid		= 0;
2809 	int	has_conflict	= FALSE;
2810 	uchar_t *bufaddr;
2811 
2812 	ASSERT(un != NULL);
2813 
2814 	/*
2815 	 * Send a throwaway START UNIT command.
2816 	 *
2817 	 * If we fail on this, we don't care presently what precisely
2818 	 * is wrong.  EMC's arrays will also fail this with a check
2819 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2820 	 * we don't want to fail the attach because it may become
2821 	 * "active" later.
2822 	 */
2823 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2824 	    == EACCES)
2825 		has_conflict = TRUE;
2826 
2827 	/*
2828 	 * Send another INQUIRY command to the target. This is necessary for
2829 	 * non-removable media direct access devices because their INQUIRY data
2830 	 * may not be fully qualified until they are spun up (perhaps via the
2831 	 * START command above).  Note: This seems to be needed for some
2832 	 * legacy devices only.) The INQUIRY command should succeed even if a
2833 	 * Reservation Conflict is present.
2834 	 */
2835 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2836 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2837 		kmem_free(bufaddr, SUN_INQSIZE);
2838 		return (EIO);
2839 	}
2840 
2841 	/*
2842 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2843 	 * Note that this routine does not return a failure here even if the
2844 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2845 	 */
2846 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2847 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2848 	}
2849 
2850 	kmem_free(bufaddr, SUN_INQSIZE);
2851 
2852 	/* If we hit a reservation conflict above, tell the caller. */
2853 	if (has_conflict == TRUE) {
2854 		return (EACCES);
2855 	}
2856 
2857 	return (0);
2858 }
2859 
2860 #ifdef _LP64
2861 /*
2862  *    Function: sd_enable_descr_sense
2863  *
2864  * Description: This routine attempts to select descriptor sense format
2865  *		using the Control mode page.  Devices that support 64 bit
2866  *		LBAs (for >2TB luns) should also implement descriptor
2867  *		sense data so we will call this function whenever we see
2868  *		a lun larger than 2TB.  If for some reason the device
2869  *		supports 64 bit LBAs but doesn't support descriptor sense
2870  *		presumably the mode select will fail.  Everything will
2871  *		continue to work normally except that we will not get
2872  *		complete sense data for commands that fail with an LBA
2873  *		larger than 32 bits.
2874  *
2875  *   Arguments: un - driver soft state (unit) structure
2876  *
2877  *     Context: Kernel thread context only
2878  */
2879 
2880 static void
2881 sd_enable_descr_sense(struct sd_lun *un)
2882 {
2883 	uchar_t			*header;
2884 	struct mode_control_scsi3 *ctrl_bufp;
2885 	size_t			buflen;
2886 	size_t			bd_len;
2887 
2888 	/*
2889 	 * Read MODE SENSE page 0xA, Control Mode Page
2890 	 */
2891 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
2892 	    sizeof (struct mode_control_scsi3);
2893 	header = kmem_zalloc(buflen, KM_SLEEP);
2894 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
2895 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
2896 		SD_ERROR(SD_LOG_COMMON, un,
2897 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
2898 		goto eds_exit;
2899 	}
2900 
2901 	/*
2902 	 * Determine size of Block Descriptors in order to locate
2903 	 * the mode page data. ATAPI devices return 0, SCSI devices
2904 	 * should return MODE_BLK_DESC_LENGTH.
2905 	 */
2906 	bd_len  = ((struct mode_header *)header)->bdesc_length;
2907 
2908 	ctrl_bufp = (struct mode_control_scsi3 *)
2909 	    (header + MODE_HEADER_LENGTH + bd_len);
2910 
2911 	/*
2912 	 * Clear PS bit for MODE SELECT
2913 	 */
2914 	ctrl_bufp->mode_page.ps = 0;
2915 
2916 	/*
2917 	 * Set D_SENSE to enable descriptor sense format.
2918 	 */
2919 	ctrl_bufp->d_sense = 1;
2920 
2921 	/*
2922 	 * Use MODE SELECT to commit the change to the D_SENSE bit
2923 	 */
2924 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
2925 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
2926 		SD_INFO(SD_LOG_COMMON, un,
2927 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
2928 		goto eds_exit;
2929 	}
2930 
2931 eds_exit:
2932 	kmem_free(header, buflen);
2933 }
2934 #endif /* _LP64 */
2935 
2936 
2937 /*
2938  *    Function: sd_set_mmc_caps
2939  *
2940  * Description: This routine determines if the device is MMC compliant and if
2941  *		the device supports CDDA via a mode sense of the CDVD
2942  *		capabilities mode page. Also checks if the device is a
2943  *		dvdram writable device.
2944  *
2945  *   Arguments: un - driver soft state (unit) structure
2946  *
2947  *     Context: Kernel thread context only
2948  */
2949 
2950 static void
2951 sd_set_mmc_caps(struct sd_lun *un)
2952 {
2953 	struct mode_header_grp2		*sense_mhp;
2954 	uchar_t				*sense_page;
2955 	caddr_t				buf;
2956 	int				bd_len;
2957 	int				status;
2958 	struct uscsi_cmd		com;
2959 	int				rtn;
2960 	uchar_t				*out_data_rw, *out_data_hd;
2961 	uchar_t				*rqbuf_rw, *rqbuf_hd;
2962 
2963 	ASSERT(un != NULL);
2964 
2965 	/*
2966 	 * The flags which will be set in this function are - mmc compliant,
2967 	 * dvdram writable device, cdda support. Initialize them to FALSE
2968 	 * and if a capability is detected - it will be set to TRUE.
2969 	 */
2970 	un->un_f_mmc_cap = FALSE;
2971 	un->un_f_dvdram_writable_device = FALSE;
2972 	un->un_f_cfg_cdda = FALSE;
2973 
2974 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
2975 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
2976 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
2977 
2978 	if (status != 0) {
2979 		/* command failed; just return */
2980 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2981 		return;
2982 	}
2983 	/*
2984 	 * If the mode sense request for the CDROM CAPABILITIES
2985 	 * page (0x2A) succeeds the device is assumed to be MMC.
2986 	 */
2987 	un->un_f_mmc_cap = TRUE;
2988 
2989 	/* Get to the page data */
2990 	sense_mhp = (struct mode_header_grp2 *)buf;
2991 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
2992 	    sense_mhp->bdesc_length_lo;
2993 	if (bd_len > MODE_BLK_DESC_LENGTH) {
2994 		/*
2995 		 * We did not get back the expected block descriptor
2996 		 * length so we cannot determine if the device supports
2997 		 * CDDA. However, we still indicate the device is MMC
2998 		 * according to the successful response to the page
2999 		 * 0x2A mode sense request.
3000 		 */
3001 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3002 		    "sd_set_mmc_caps: Mode Sense returned "
3003 		    "invalid block descriptor length\n");
3004 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3005 		return;
3006 	}
3007 
3008 	/* See if read CDDA is supported */
3009 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3010 	    bd_len);
3011 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3012 
3013 	/* See if writing DVD RAM is supported. */
3014 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3015 	if (un->un_f_dvdram_writable_device == TRUE) {
3016 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3017 		return;
3018 	}
3019 
3020 	/*
3021 	 * If the device presents DVD or CD capabilities in the mode
3022 	 * page, we can return here since a RRD will not have
3023 	 * these capabilities.
3024 	 */
3025 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3026 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3027 		return;
3028 	}
3029 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3030 
3031 	/*
3032 	 * If un->un_f_dvdram_writable_device is still FALSE,
3033 	 * check for a Removable Rigid Disk (RRD).  A RRD
3034 	 * device is identified by the features RANDOM_WRITABLE and
3035 	 * HARDWARE_DEFECT_MANAGEMENT.
3036 	 */
3037 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3038 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3039 
3040 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3041 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3042 	    RANDOM_WRITABLE);
3043 	if (rtn != 0) {
3044 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3045 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3046 		return;
3047 	}
3048 
3049 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3050 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3051 
3052 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3053 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3054 	    HARDWARE_DEFECT_MANAGEMENT);
3055 	if (rtn == 0) {
3056 		/*
3057 		 * We have good information, check for random writable
3058 		 * and hardware defect features.
3059 		 */
3060 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3061 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3062 			un->un_f_dvdram_writable_device = TRUE;
3063 		}
3064 	}
3065 
3066 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3067 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3068 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3069 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3070 }
3071 
3072 /*
3073  *    Function: sd_check_for_writable_cd
3074  *
3075  * Description: This routine determines if the media in the device is
3076  *		writable or not. It uses the get configuration command (0x46)
3077  *		to determine if the media is writable
3078  *
3079  *   Arguments: un - driver soft state (unit) structure
3080  *
3081  *     Context: Never called at interrupt context.
3082  */
3083 
3084 static void
3085 sd_check_for_writable_cd(struct sd_lun *un)
3086 {
3087 	struct uscsi_cmd		com;
3088 	uchar_t				*out_data;
3089 	uchar_t				*rqbuf;
3090 	int				rtn;
3091 	uchar_t				*out_data_rw, *out_data_hd;
3092 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3093 	struct mode_header_grp2		*sense_mhp;
3094 	uchar_t				*sense_page;
3095 	caddr_t				buf;
3096 	int				bd_len;
3097 	int				status;
3098 
3099 	ASSERT(un != NULL);
3100 	ASSERT(mutex_owned(SD_MUTEX(un)));
3101 
3102 	/*
3103 	 * Initialize the writable media to false, if configuration info.
3104 	 * tells us otherwise then only we will set it.
3105 	 */
3106 	un->un_f_mmc_writable_media = FALSE;
3107 	mutex_exit(SD_MUTEX(un));
3108 
3109 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3110 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3111 
3112 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3113 	    out_data, SD_PROFILE_HEADER_LEN);
3114 
3115 	mutex_enter(SD_MUTEX(un));
3116 	if (rtn == 0) {
3117 		/*
3118 		 * We have good information, check for writable DVD.
3119 		 */
3120 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3121 			un->un_f_mmc_writable_media = TRUE;
3122 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3123 			kmem_free(rqbuf, SENSE_LENGTH);
3124 			return;
3125 		}
3126 	}
3127 
3128 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3129 	kmem_free(rqbuf, SENSE_LENGTH);
3130 
3131 	/*
3132 	 * Determine if this is a RRD type device.
3133 	 */
3134 	mutex_exit(SD_MUTEX(un));
3135 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3136 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3137 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3138 	mutex_enter(SD_MUTEX(un));
3139 	if (status != 0) {
3140 		/* command failed; just return */
3141 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3142 		return;
3143 	}
3144 
3145 	/* Get to the page data */
3146 	sense_mhp = (struct mode_header_grp2 *)buf;
3147 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3148 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3149 		/*
3150 		 * We did not get back the expected block descriptor length so
3151 		 * we cannot check the mode page.
3152 		 */
3153 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3154 		    "sd_check_for_writable_cd: Mode Sense returned "
3155 		    "invalid block descriptor length\n");
3156 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3157 		return;
3158 	}
3159 
3160 	/*
3161 	 * If the device presents DVD or CD capabilities in the mode
3162 	 * page, we can return here since a RRD device will not have
3163 	 * these capabilities.
3164 	 */
3165 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3166 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3167 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3168 		return;
3169 	}
3170 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3171 
3172 	/*
3173 	 * If un->un_f_mmc_writable_media is still FALSE,
3174 	 * check for RRD type media.  A RRD device is identified
3175 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3176 	 */
3177 	mutex_exit(SD_MUTEX(un));
3178 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3179 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3180 
3181 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3182 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3183 	    RANDOM_WRITABLE);
3184 	if (rtn != 0) {
3185 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3186 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3187 		mutex_enter(SD_MUTEX(un));
3188 		return;
3189 	}
3190 
3191 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3192 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3193 
3194 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3195 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3196 	    HARDWARE_DEFECT_MANAGEMENT);
3197 	mutex_enter(SD_MUTEX(un));
3198 	if (rtn == 0) {
3199 		/*
3200 		 * We have good information, check for random writable
3201 		 * and hardware defect features as current.
3202 		 */
3203 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3204 		    (out_data_rw[10] & 0x1) &&
3205 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3206 		    (out_data_hd[10] & 0x1)) {
3207 			un->un_f_mmc_writable_media = TRUE;
3208 		}
3209 	}
3210 
3211 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3212 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3213 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3214 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3215 }
3216 
3217 /*
3218  *    Function: sd_read_unit_properties
3219  *
3220  * Description: The following implements a property lookup mechanism.
3221  *		Properties for particular disks (keyed on vendor, model
3222  *		and rev numbers) are sought in the sd.conf file via
3223  *		sd_process_sdconf_file(), and if not found there, are
3224  *		looked for in a list hardcoded in this driver via
3225  *		sd_process_sdconf_table() Once located the properties
3226  *		are used to update the driver unit structure.
3227  *
3228  *   Arguments: un - driver soft state (unit) structure
3229  */
3230 
3231 static void
3232 sd_read_unit_properties(struct sd_lun *un)
3233 {
3234 	/*
3235 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3236 	 * the "sd-config-list" property (from the sd.conf file) or if
3237 	 * there was not a match for the inquiry vid/pid. If this event
3238 	 * occurs the static driver configuration table is searched for
3239 	 * a match.
3240 	 */
3241 	ASSERT(un != NULL);
3242 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3243 		sd_process_sdconf_table(un);
3244 	}
3245 
3246 	/* check for LSI device */
3247 	sd_is_lsi(un);
3248 
3249 	/*
3250 	 * Set this in sd.conf to 0 in order to disable kstats.  The default
3251 	 * is 1, so they are enabled by default.
3252 	 */
3253 	un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
3254 	    SD_DEVINFO(un), DDI_PROP_DONTPASS, "enable-partition-kstats", 1));
3255 }
3256 
3257 
3258 /*
3259  *    Function: sd_process_sdconf_file
3260  *
3261  * Description: Use ddi_getlongprop to obtain the properties from the
3262  *		driver's config file (ie, sd.conf) and update the driver
3263  *		soft state structure accordingly.
3264  *
3265  *   Arguments: un - driver soft state (unit) structure
3266  *
3267  * Return Code: SD_SUCCESS - The properties were successfully set according
3268  *			     to the driver configuration file.
3269  *		SD_FAILURE - The driver config list was not obtained or
3270  *			     there was no vid/pid match. This indicates that
3271  *			     the static config table should be used.
3272  *
3273  * The config file has a property, "sd-config-list", which consists of
3274  * one or more duplets as follows:
3275  *
3276  *  sd-config-list=
3277  *	<duplet>,
3278  *	[<duplet>,]
3279  *	[<duplet>];
3280  *
3281  * The structure of each duplet is as follows:
3282  *
3283  *  <duplet>:= <vid+pid>,<data-property-name_list>
3284  *
3285  * The first entry of the duplet is the device ID string (the concatenated
3286  * vid & pid; not to be confused with a device_id).  This is defined in
3287  * the same way as in the sd_disk_table.
3288  *
3289  * The second part of the duplet is a string that identifies a
3290  * data-property-name-list. The data-property-name-list is defined as
3291  * follows:
3292  *
3293  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3294  *
3295  * The syntax of <data-property-name> depends on the <version> field.
3296  *
3297  * If version = SD_CONF_VERSION_1 we have the following syntax:
3298  *
3299  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3300  *
3301  * where the prop0 value will be used to set prop0 if bit0 set in the
3302  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3303  *
3304  */
3305 
3306 static int
3307 sd_process_sdconf_file(struct sd_lun *un)
3308 {
3309 	char	*config_list = NULL;
3310 	int	config_list_len;
3311 	int	len;
3312 	int	dupletlen = 0;
3313 	char	*vidptr;
3314 	int	vidlen;
3315 	char	*dnlist_ptr;
3316 	char	*dataname_ptr;
3317 	int	dnlist_len;
3318 	int	dataname_len;
3319 	int	*data_list;
3320 	int	data_list_len;
3321 	int	rval = SD_FAILURE;
3322 	int	i;
3323 
3324 	ASSERT(un != NULL);
3325 
3326 	/* Obtain the configuration list associated with the .conf file */
3327 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3328 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3329 	    != DDI_PROP_SUCCESS) {
3330 		return (SD_FAILURE);
3331 	}
3332 
3333 	/*
3334 	 * Compare vids in each duplet to the inquiry vid - if a match is
3335 	 * made, get the data value and update the soft state structure
3336 	 * accordingly.
3337 	 *
3338 	 * Note: This algorithm is complex and difficult to maintain. It should
3339 	 * be replaced with a more robust implementation.
3340 	 */
3341 	for (len = config_list_len, vidptr = config_list; len > 0;
3342 	    vidptr += dupletlen, len -= dupletlen) {
3343 		/*
3344 		 * Note: The assumption here is that each vid entry is on
3345 		 * a unique line from its associated duplet.
3346 		 */
3347 		vidlen = dupletlen = (int)strlen(vidptr);
3348 		if ((vidlen == 0) ||
3349 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3350 			dupletlen++;
3351 			continue;
3352 		}
3353 
3354 		/*
3355 		 * dnlist contains 1 or more blank separated
3356 		 * data-property-name entries
3357 		 */
3358 		dnlist_ptr = vidptr + vidlen + 1;
3359 		dnlist_len = (int)strlen(dnlist_ptr);
3360 		dupletlen += dnlist_len + 2;
3361 
3362 		/*
3363 		 * Set a pointer for the first data-property-name
3364 		 * entry in the list
3365 		 */
3366 		dataname_ptr = dnlist_ptr;
3367 		dataname_len = 0;
3368 
3369 		/*
3370 		 * Loop through all data-property-name entries in the
3371 		 * data-property-name-list setting the properties for each.
3372 		 */
3373 		while (dataname_len < dnlist_len) {
3374 			int version;
3375 
3376 			/*
3377 			 * Determine the length of the current
3378 			 * data-property-name entry by indexing until a
3379 			 * blank or NULL is encountered. When the space is
3380 			 * encountered reset it to a NULL for compliance
3381 			 * with ddi_getlongprop().
3382 			 */
3383 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3384 			    (dataname_ptr[i] != '\0')); i++) {
3385 				;
3386 			}
3387 
3388 			dataname_len += i;
3389 			/* If not null terminated, Make it so */
3390 			if (dataname_ptr[i] == ' ') {
3391 				dataname_ptr[i] = '\0';
3392 			}
3393 			dataname_len++;
3394 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3395 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3396 			    vidptr, dataname_ptr);
3397 
3398 			/* Get the data list */
3399 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3400 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3401 			    != DDI_PROP_SUCCESS) {
3402 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3403 				    "sd_process_sdconf_file: data property (%s)"
3404 				    " has no value\n", dataname_ptr);
3405 				dataname_ptr = dnlist_ptr + dataname_len;
3406 				continue;
3407 			}
3408 
3409 			version = data_list[0];
3410 
3411 			if (version == SD_CONF_VERSION_1) {
3412 				sd_tunables values;
3413 
3414 				/* Set the properties */
3415 				if (sd_chk_vers1_data(un, data_list[1],
3416 				    &data_list[2], data_list_len, dataname_ptr)
3417 				    == SD_SUCCESS) {
3418 					sd_get_tunables_from_conf(un,
3419 					    data_list[1], &data_list[2],
3420 					    &values);
3421 					sd_set_vers1_properties(un,
3422 					    data_list[1], &values);
3423 					rval = SD_SUCCESS;
3424 				} else {
3425 					rval = SD_FAILURE;
3426 				}
3427 			} else {
3428 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3429 				    "data property %s version 0x%x is invalid.",
3430 				    dataname_ptr, version);
3431 				rval = SD_FAILURE;
3432 			}
3433 			kmem_free(data_list, data_list_len);
3434 			dataname_ptr = dnlist_ptr + dataname_len;
3435 		}
3436 	}
3437 
3438 	/* free up the memory allocated by ddi_getlongprop */
3439 	if (config_list) {
3440 		kmem_free(config_list, config_list_len);
3441 	}
3442 
3443 	return (rval);
3444 }
3445 
3446 /*
3447  *    Function: sd_get_tunables_from_conf()
3448  *
3449  *
3450  *    This function reads the data list from the sd.conf file and pulls
3451  *    the values that can have numeric values as arguments and places
3452  *    the values in the apropriate sd_tunables member.
3453  *    Since the order of the data list members varies across platforms
3454  *    This function reads them from the data list in a platform specific
3455  *    order and places them into the correct sd_tunable member that is
3456  *    a consistant across all platforms.
3457  */
3458 static void
3459 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3460     sd_tunables *values)
3461 {
3462 	int i;
3463 	int mask;
3464 
3465 	bzero(values, sizeof (sd_tunables));
3466 
3467 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3468 
3469 		mask = 1 << i;
3470 		if (mask > flags) {
3471 			break;
3472 		}
3473 
3474 		switch (mask & flags) {
3475 		case 0:	/* This mask bit not set in flags */
3476 			continue;
3477 		case SD_CONF_BSET_THROTTLE:
3478 			values->sdt_throttle = data_list[i];
3479 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3480 			    "sd_get_tunables_from_conf: throttle = %d\n",
3481 			    values->sdt_throttle);
3482 			break;
3483 		case SD_CONF_BSET_CTYPE:
3484 			values->sdt_ctype = data_list[i];
3485 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3486 			    "sd_get_tunables_from_conf: ctype = %d\n",
3487 			    values->sdt_ctype);
3488 			break;
3489 		case SD_CONF_BSET_NRR_COUNT:
3490 			values->sdt_not_rdy_retries = data_list[i];
3491 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3492 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3493 			    values->sdt_not_rdy_retries);
3494 			break;
3495 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3496 			values->sdt_busy_retries = data_list[i];
3497 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3498 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3499 			    values->sdt_busy_retries);
3500 			break;
3501 		case SD_CONF_BSET_RST_RETRIES:
3502 			values->sdt_reset_retries = data_list[i];
3503 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3504 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3505 			    values->sdt_reset_retries);
3506 			break;
3507 		case SD_CONF_BSET_RSV_REL_TIME:
3508 			values->sdt_reserv_rel_time = data_list[i];
3509 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3510 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3511 			    values->sdt_reserv_rel_time);
3512 			break;
3513 		case SD_CONF_BSET_MIN_THROTTLE:
3514 			values->sdt_min_throttle = data_list[i];
3515 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3516 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3517 			    values->sdt_min_throttle);
3518 			break;
3519 		case SD_CONF_BSET_DISKSORT_DISABLED:
3520 			values->sdt_disk_sort_dis = data_list[i];
3521 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3522 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3523 			    values->sdt_disk_sort_dis);
3524 			break;
3525 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3526 			values->sdt_lun_reset_enable = data_list[i];
3527 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3528 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3529 			    "\n", values->sdt_lun_reset_enable);
3530 			break;
3531 		}
3532 	}
3533 }
3534 
3535 /*
3536  *    Function: sd_process_sdconf_table
3537  *
3538  * Description: Search the static configuration table for a match on the
3539  *		inquiry vid/pid and update the driver soft state structure
3540  *		according to the table property values for the device.
3541  *
3542  *		The form of a configuration table entry is:
3543  *		  <vid+pid>,<flags>,<property-data>
3544  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3545  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3546  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3547  *
3548  *   Arguments: un - driver soft state (unit) structure
3549  */
3550 
3551 static void
3552 sd_process_sdconf_table(struct sd_lun *un)
3553 {
3554 	char	*id = NULL;
3555 	int	table_index;
3556 	int	idlen;
3557 
3558 	ASSERT(un != NULL);
3559 	for (table_index = 0; table_index < sd_disk_table_size;
3560 	    table_index++) {
3561 		id = sd_disk_table[table_index].device_id;
3562 		idlen = strlen(id);
3563 		if (idlen == 0) {
3564 			continue;
3565 		}
3566 
3567 		/*
3568 		 * The static configuration table currently does not
3569 		 * implement version 10 properties. Additionally,
3570 		 * multiple data-property-name entries are not
3571 		 * implemented in the static configuration table.
3572 		 */
3573 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3574 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3575 			    "sd_process_sdconf_table: disk %s\n", id);
3576 			sd_set_vers1_properties(un,
3577 			    sd_disk_table[table_index].flags,
3578 			    sd_disk_table[table_index].properties);
3579 			break;
3580 		}
3581 	}
3582 }
3583 
3584 
3585 /*
3586  *    Function: sd_sdconf_id_match
3587  *
3588  * Description: This local function implements a case sensitive vid/pid
3589  *		comparison as well as the boundary cases of wild card and
3590  *		multiple blanks.
3591  *
3592  *		Note: An implicit assumption made here is that the scsi
3593  *		inquiry structure will always keep the vid, pid and
3594  *		revision strings in consecutive sequence, so they can be
3595  *		read as a single string. If this assumption is not the
3596  *		case, a separate string, to be used for the check, needs
3597  *		to be built with these strings concatenated.
3598  *
3599  *   Arguments: un - driver soft state (unit) structure
3600  *		id - table or config file vid/pid
3601  *		idlen  - length of the vid/pid (bytes)
3602  *
3603  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3604  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3605  */
3606 
3607 static int
3608 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3609 {
3610 	struct scsi_inquiry	*sd_inq;
3611 	int 			rval = SD_SUCCESS;
3612 
3613 	ASSERT(un != NULL);
3614 	sd_inq = un->un_sd->sd_inq;
3615 	ASSERT(id != NULL);
3616 
3617 	/*
3618 	 * We use the inq_vid as a pointer to a buffer containing the
3619 	 * vid and pid and use the entire vid/pid length of the table
3620 	 * entry for the comparison. This works because the inq_pid
3621 	 * data member follows inq_vid in the scsi_inquiry structure.
3622 	 */
3623 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3624 		/*
3625 		 * The user id string is compared to the inquiry vid/pid
3626 		 * using a case insensitive comparison and ignoring
3627 		 * multiple spaces.
3628 		 */
3629 		rval = sd_blank_cmp(un, id, idlen);
3630 		if (rval != SD_SUCCESS) {
3631 			/*
3632 			 * User id strings that start and end with a "*"
3633 			 * are a special case. These do not have a
3634 			 * specific vendor, and the product string can
3635 			 * appear anywhere in the 16 byte PID portion of
3636 			 * the inquiry data. This is a simple strstr()
3637 			 * type search for the user id in the inquiry data.
3638 			 */
3639 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3640 				char	*pidptr = &id[1];
3641 				int	i;
3642 				int	j;
3643 				int	pidstrlen = idlen - 2;
3644 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3645 				    pidstrlen;
3646 
3647 				if (j < 0) {
3648 					return (SD_FAILURE);
3649 				}
3650 				for (i = 0; i < j; i++) {
3651 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3652 					    pidptr, pidstrlen) == 0) {
3653 						rval = SD_SUCCESS;
3654 						break;
3655 					}
3656 				}
3657 			}
3658 		}
3659 	}
3660 	return (rval);
3661 }
3662 
3663 
3664 /*
3665  *    Function: sd_blank_cmp
3666  *
3667  * Description: If the id string starts and ends with a space, treat
3668  *		multiple consecutive spaces as equivalent to a single
3669  *		space. For example, this causes a sd_disk_table entry
3670  *		of " NEC CDROM " to match a device's id string of
3671  *		"NEC       CDROM".
3672  *
3673  *		Note: The success exit condition for this routine is if
3674  *		the pointer to the table entry is '\0' and the cnt of
3675  *		the inquiry length is zero. This will happen if the inquiry
3676  *		string returned by the device is padded with spaces to be
3677  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3678  *		SCSI spec states that the inquiry string is to be padded with
3679  *		spaces.
3680  *
3681  *   Arguments: un - driver soft state (unit) structure
3682  *		id - table or config file vid/pid
3683  *		idlen  - length of the vid/pid (bytes)
3684  *
3685  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3686  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3687  */
3688 
3689 static int
3690 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3691 {
3692 	char		*p1;
3693 	char		*p2;
3694 	int		cnt;
3695 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3696 	    sizeof (SD_INQUIRY(un)->inq_pid);
3697 
3698 	ASSERT(un != NULL);
3699 	p2 = un->un_sd->sd_inq->inq_vid;
3700 	ASSERT(id != NULL);
3701 	p1 = id;
3702 
3703 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3704 		/*
3705 		 * Note: string p1 is terminated by a NUL but string p2
3706 		 * isn't.  The end of p2 is determined by cnt.
3707 		 */
3708 		for (;;) {
3709 			/* skip over any extra blanks in both strings */
3710 			while ((*p1 != '\0') && (*p1 == ' ')) {
3711 				p1++;
3712 			}
3713 			while ((cnt != 0) && (*p2 == ' ')) {
3714 				p2++;
3715 				cnt--;
3716 			}
3717 
3718 			/* compare the two strings */
3719 			if ((cnt == 0) ||
3720 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3721 				break;
3722 			}
3723 			while ((cnt > 0) &&
3724 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3725 				p1++;
3726 				p2++;
3727 				cnt--;
3728 			}
3729 		}
3730 	}
3731 
3732 	/* return SD_SUCCESS if both strings match */
3733 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3734 }
3735 
3736 
3737 /*
3738  *    Function: sd_chk_vers1_data
3739  *
3740  * Description: Verify the version 1 device properties provided by the
3741  *		user via the configuration file
3742  *
3743  *   Arguments: un	     - driver soft state (unit) structure
3744  *		flags	     - integer mask indicating properties to be set
3745  *		prop_list    - integer list of property values
3746  *		list_len     - length of user provided data
3747  *
3748  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3749  *		SD_FAILURE - Indicates the user provided data is invalid
3750  */
3751 
3752 static int
3753 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3754     int list_len, char *dataname_ptr)
3755 {
3756 	int i;
3757 	int mask = 1;
3758 	int index = 0;
3759 
3760 	ASSERT(un != NULL);
3761 
3762 	/* Check for a NULL property name and list */
3763 	if (dataname_ptr == NULL) {
3764 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3765 		    "sd_chk_vers1_data: NULL data property name.");
3766 		return (SD_FAILURE);
3767 	}
3768 	if (prop_list == NULL) {
3769 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3770 		    "sd_chk_vers1_data: %s NULL data property list.",
3771 		    dataname_ptr);
3772 		return (SD_FAILURE);
3773 	}
3774 
3775 	/* Display a warning if undefined bits are set in the flags */
3776 	if (flags & ~SD_CONF_BIT_MASK) {
3777 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3778 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3779 		    "Properties not set.",
3780 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3781 		return (SD_FAILURE);
3782 	}
3783 
3784 	/*
3785 	 * Verify the length of the list by identifying the highest bit set
3786 	 * in the flags and validating that the property list has a length
3787 	 * up to the index of this bit.
3788 	 */
3789 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3790 		if (flags & mask) {
3791 			index++;
3792 		}
3793 		mask = 1 << i;
3794 	}
3795 	if ((list_len / sizeof (int)) < (index + 2)) {
3796 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3797 		    "sd_chk_vers1_data: "
3798 		    "Data property list %s size is incorrect. "
3799 		    "Properties not set.", dataname_ptr);
3800 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3801 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3802 		return (SD_FAILURE);
3803 	}
3804 	return (SD_SUCCESS);
3805 }
3806 
3807 
3808 /*
3809  *    Function: sd_set_vers1_properties
3810  *
3811  * Description: Set version 1 device properties based on a property list
3812  *		retrieved from the driver configuration file or static
3813  *		configuration table. Version 1 properties have the format:
3814  *
3815  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3816  *
3817  *		where the prop0 value will be used to set prop0 if bit0
3818  *		is set in the flags
3819  *
3820  *   Arguments: un	     - driver soft state (unit) structure
3821  *		flags	     - integer mask indicating properties to be set
3822  *		prop_list    - integer list of property values
3823  */
3824 
3825 static void
3826 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3827 {
3828 	ASSERT(un != NULL);
3829 
3830 	/*
3831 	 * Set the flag to indicate cache is to be disabled. An attempt
3832 	 * to disable the cache via sd_disable_caching() will be made
3833 	 * later during attach once the basic initialization is complete.
3834 	 */
3835 	if (flags & SD_CONF_BSET_NOCACHE) {
3836 		un->un_f_opt_disable_cache = TRUE;
3837 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3838 		    "sd_set_vers1_properties: caching disabled flag set\n");
3839 	}
3840 
3841 	/* CD-specific configuration parameters */
3842 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3843 		un->un_f_cfg_playmsf_bcd = TRUE;
3844 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3845 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3846 	}
3847 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3848 		un->un_f_cfg_readsub_bcd = TRUE;
3849 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3850 		    "sd_set_vers1_properties: readsub_bcd set\n");
3851 	}
3852 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
3853 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
3854 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3855 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
3856 	}
3857 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
3858 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
3859 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3860 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
3861 	}
3862 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
3863 		un->un_f_cfg_no_read_header = TRUE;
3864 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3865 			    "sd_set_vers1_properties: no_read_header set\n");
3866 	}
3867 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
3868 		un->un_f_cfg_read_cd_xd4 = TRUE;
3869 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3870 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
3871 	}
3872 
3873 	/* Support for devices which do not have valid/unique serial numbers */
3874 	if (flags & SD_CONF_BSET_FAB_DEVID) {
3875 		un->un_f_opt_fab_devid = TRUE;
3876 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3877 		    "sd_set_vers1_properties: fab_devid bit set\n");
3878 	}
3879 
3880 	/* Support for user throttle configuration */
3881 	if (flags & SD_CONF_BSET_THROTTLE) {
3882 		ASSERT(prop_list != NULL);
3883 		un->un_saved_throttle = un->un_throttle =
3884 		    prop_list->sdt_throttle;
3885 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3886 		    "sd_set_vers1_properties: throttle set to %d\n",
3887 		    prop_list->sdt_throttle);
3888 	}
3889 
3890 	/* Set the per disk retry count according to the conf file or table. */
3891 	if (flags & SD_CONF_BSET_NRR_COUNT) {
3892 		ASSERT(prop_list != NULL);
3893 		if (prop_list->sdt_not_rdy_retries) {
3894 			un->un_notready_retry_count =
3895 				prop_list->sdt_not_rdy_retries;
3896 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3897 			    "sd_set_vers1_properties: not ready retry count"
3898 			    " set to %d\n", un->un_notready_retry_count);
3899 		}
3900 	}
3901 
3902 	/* The controller type is reported for generic disk driver ioctls */
3903 	if (flags & SD_CONF_BSET_CTYPE) {
3904 		ASSERT(prop_list != NULL);
3905 		switch (prop_list->sdt_ctype) {
3906 		case CTYPE_CDROM:
3907 			un->un_ctype = prop_list->sdt_ctype;
3908 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3909 			    "sd_set_vers1_properties: ctype set to "
3910 			    "CTYPE_CDROM\n");
3911 			break;
3912 		case CTYPE_CCS:
3913 			un->un_ctype = prop_list->sdt_ctype;
3914 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3915 				"sd_set_vers1_properties: ctype set to "
3916 				"CTYPE_CCS\n");
3917 			break;
3918 		case CTYPE_ROD:		/* RW optical */
3919 			un->un_ctype = prop_list->sdt_ctype;
3920 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3921 			    "sd_set_vers1_properties: ctype set to "
3922 			    "CTYPE_ROD\n");
3923 			break;
3924 		default:
3925 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3926 			    "sd_set_vers1_properties: Could not set "
3927 			    "invalid ctype value (%d)",
3928 			    prop_list->sdt_ctype);
3929 		}
3930 	}
3931 
3932 	/* Purple failover timeout */
3933 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
3934 		ASSERT(prop_list != NULL);
3935 		un->un_busy_retry_count =
3936 			prop_list->sdt_busy_retries;
3937 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3938 		    "sd_set_vers1_properties: "
3939 		    "busy retry count set to %d\n",
3940 		    un->un_busy_retry_count);
3941 	}
3942 
3943 	/* Purple reset retry count */
3944 	if (flags & SD_CONF_BSET_RST_RETRIES) {
3945 		ASSERT(prop_list != NULL);
3946 		un->un_reset_retry_count =
3947 			prop_list->sdt_reset_retries;
3948 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3949 		    "sd_set_vers1_properties: "
3950 		    "reset retry count set to %d\n",
3951 		    un->un_reset_retry_count);
3952 	}
3953 
3954 	/* Purple reservation release timeout */
3955 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
3956 		ASSERT(prop_list != NULL);
3957 		un->un_reserve_release_time =
3958 			prop_list->sdt_reserv_rel_time;
3959 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3960 		    "sd_set_vers1_properties: "
3961 		    "reservation release timeout set to %d\n",
3962 		    un->un_reserve_release_time);
3963 	}
3964 
3965 	/*
3966 	 * Driver flag telling the driver to verify that no commands are pending
3967 	 * for a device before issuing a Test Unit Ready. This is a workaround
3968 	 * for a firmware bug in some Seagate eliteI drives.
3969 	 */
3970 	if (flags & SD_CONF_BSET_TUR_CHECK) {
3971 		un->un_f_cfg_tur_check = TRUE;
3972 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3973 		    "sd_set_vers1_properties: tur queue check set\n");
3974 	}
3975 
3976 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
3977 		un->un_min_throttle = prop_list->sdt_min_throttle;
3978 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3979 		    "sd_set_vers1_properties: min throttle set to %d\n",
3980 		    un->un_min_throttle);
3981 	}
3982 
3983 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
3984 		un->un_f_disksort_disabled =
3985 		    (prop_list->sdt_disk_sort_dis != 0) ?
3986 		    TRUE : FALSE;
3987 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3988 		    "sd_set_vers1_properties: disksort disabled "
3989 		    "flag set to %d\n",
3990 		    prop_list->sdt_disk_sort_dis);
3991 	}
3992 
3993 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
3994 		un->un_f_lun_reset_enabled =
3995 		    (prop_list->sdt_lun_reset_enable != 0) ?
3996 		    TRUE : FALSE;
3997 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3998 		    "sd_set_vers1_properties: lun reset enabled "
3999 		    "flag set to %d\n",
4000 		    prop_list->sdt_lun_reset_enable);
4001 	}
4002 
4003 	/*
4004 	 * Validate the throttle values.
4005 	 * If any of the numbers are invalid, set everything to defaults.
4006 	 */
4007 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4008 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4009 	    (un->un_min_throttle > un->un_throttle)) {
4010 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4011 		un->un_min_throttle = sd_min_throttle;
4012 	}
4013 }
4014 
4015 /*
4016  *   Function: sd_is_lsi()
4017  *
4018  *   Description: Check for lsi devices, step throught the static device
4019  *	table to match vid/pid.
4020  *
4021  *   Args: un - ptr to sd_lun
4022  *
4023  *   Notes:  When creating new LSI property, need to add the new LSI property
4024  *		to this function.
4025  */
4026 static void
4027 sd_is_lsi(struct sd_lun *un)
4028 {
4029 	char	*id = NULL;
4030 	int	table_index;
4031 	int	idlen;
4032 	void	*prop;
4033 
4034 	ASSERT(un != NULL);
4035 	for (table_index = 0; table_index < sd_disk_table_size;
4036 	    table_index++) {
4037 		id = sd_disk_table[table_index].device_id;
4038 		idlen = strlen(id);
4039 		if (idlen == 0) {
4040 			continue;
4041 		}
4042 
4043 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4044 			prop = sd_disk_table[table_index].properties;
4045 			if (prop == &lsi_properties ||
4046 			    prop == &lsi_oem_properties ||
4047 			    prop == &lsi_properties_scsi ||
4048 			    prop == &symbios_properties) {
4049 				un->un_f_cfg_is_lsi = TRUE;
4050 			}
4051 			break;
4052 		}
4053 	}
4054 }
4055 
4056 
4057 /*
4058  * The following routines support reading and interpretation of disk labels,
4059  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4060  * fdisk tables.
4061  */
4062 
4063 /*
4064  *    Function: sd_validate_geometry
4065  *
4066  * Description: Read the label from the disk (if present). Update the unit's
4067  *		geometry and vtoc information from the data in the label.
4068  *		Verify that the label is valid.
4069  *
4070  *   Arguments: un - driver soft state (unit) structure
4071  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4072  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4073  *			to use the USCSI "direct" chain and bypass the normal
4074  *			command waitq.
4075  *
4076  * Return Code: 0 - Successful completion
4077  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4078  *			  un->un_blockcount; or label on disk is corrupted
4079  *			  or unreadable.
4080  *		EACCES  - Reservation conflict at the device.
4081  *		ENOMEM  - Resource allocation error
4082  *		ENOTSUP - geometry not applicable
4083  *
4084  *     Context: Kernel thread only (can sleep).
4085  */
4086 
4087 static int
4088 sd_validate_geometry(struct sd_lun *un, int path_flag)
4089 {
4090 	static	char		labelstring[128];
4091 	static	char		buf[256];
4092 	char	*label		= NULL;
4093 	int	label_error	= 0;
4094 	int	gvalid		= un->un_f_geometry_is_valid;
4095 	int	lbasize;
4096 	uint_t	capacity;
4097 	int	count;
4098 
4099 	ASSERT(un != NULL);
4100 	ASSERT(mutex_owned(SD_MUTEX(un)));
4101 
4102 	/*
4103 	 * If the required values are not valid, then try getting them
4104 	 * once via read capacity. If that fails, then fail this call.
4105 	 * This is necessary with the new mpxio failover behavior in
4106 	 * the T300 where we can get an attach for the inactive path
4107 	 * before the active path. The inactive path fails commands with
4108 	 * sense data of 02,04,88 which happens to the read capacity
4109 	 * before mpxio has had sufficient knowledge to know if it should
4110 	 * force a fail over or not. (Which it won't do at attach anyhow).
4111 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4112 	 * un_blockcount won't be valid.
4113 	 */
4114 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4115 	    (un->un_f_blockcount_is_valid != TRUE)) {
4116 		uint64_t	cap;
4117 		uint32_t	lbasz;
4118 		int		rval;
4119 
4120 		mutex_exit(SD_MUTEX(un));
4121 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4122 		    &lbasz, SD_PATH_DIRECT);
4123 		mutex_enter(SD_MUTEX(un));
4124 		if (rval == 0) {
4125 			/*
4126 			 * The following relies on
4127 			 * sd_send_scsi_READ_CAPACITY never
4128 			 * returning 0 for capacity and/or lbasize.
4129 			 */
4130 			sd_update_block_info(un, lbasz, cap);
4131 		}
4132 
4133 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4134 		    (un->un_f_blockcount_is_valid != TRUE)) {
4135 			return (EINVAL);
4136 		}
4137 	}
4138 
4139 	/*
4140 	 * Copy the lbasize and capacity so that if they're reset while we're
4141 	 * not holding the SD_MUTEX, we will continue to use valid values
4142 	 * after the SD_MUTEX is reacquired. (4119659)
4143 	 */
4144 	lbasize  = un->un_tgt_blocksize;
4145 	capacity = un->un_blockcount;
4146 
4147 #if defined(_SUNOS_VTOC_16)
4148 	/*
4149 	 * Set up the "whole disk" fdisk partition; this should always
4150 	 * exist, regardless of whether the disk contains an fdisk table
4151 	 * or vtoc.
4152 	 */
4153 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4154 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4155 #endif
4156 
4157 	/*
4158 	 * Refresh the logical and physical geometry caches.
4159 	 * (data from MODE SENSE format/rigid disk geometry pages,
4160 	 * and scsi_ifgetcap("geometry").
4161 	 */
4162 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4163 
4164 	label_error = sd_use_efi(un, path_flag);
4165 	if (label_error == 0) {
4166 		/* found a valid EFI label */
4167 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4168 			"sd_validate_geometry: found EFI label\n");
4169 		un->un_solaris_offset = 0;
4170 		un->un_solaris_size = capacity;
4171 		return (ENOTSUP);
4172 	}
4173 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4174 		if (label_error == ESRCH) {
4175 			/*
4176 			 * they've configured a LUN over 1TB, but used
4177 			 * format.dat to restrict format's view of the
4178 			 * capacity to be under 1TB
4179 			 */
4180 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4181 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4182 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4183 "size to be < 1TB or relabel the disk with an EFI label");
4184 		} else {
4185 			/* unlabeled disk over 1TB */
4186 			return (ENOTSUP);
4187 		}
4188 	}
4189 	label_error = 0;
4190 
4191 	/*
4192 	 * at this point it is either labeled with a VTOC or it is
4193 	 * under 1TB
4194 	 */
4195 
4196 	/*
4197 	 * Only DIRECT ACCESS devices will have Sun labels.
4198 	 * CD's supposedly have a Sun label, too
4199 	 */
4200 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
4201 		struct	dk_label *dkl;
4202 		offset_t dkl1;
4203 		offset_t label_addr, real_addr;
4204 		int	rval;
4205 		size_t	buffer_size;
4206 
4207 		/*
4208 		 * Note: This will set up un->un_solaris_size and
4209 		 * un->un_solaris_offset.
4210 		 */
4211 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4212 		case SD_CMD_RESERVATION_CONFLICT:
4213 			ASSERT(mutex_owned(SD_MUTEX(un)));
4214 			return (EACCES);
4215 		case SD_CMD_FAILURE:
4216 			ASSERT(mutex_owned(SD_MUTEX(un)));
4217 			return (ENOMEM);
4218 		}
4219 
4220 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4221 			/*
4222 			 * Found fdisk table but no Solaris partition entry,
4223 			 * so don't call sd_uselabel() and don't create
4224 			 * a default label.
4225 			 */
4226 			label_error = 0;
4227 			un->un_f_geometry_is_valid = TRUE;
4228 			goto no_solaris_partition;
4229 		}
4230 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4231 
4232 		/*
4233 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4234 		 * blkno and save the index to beginning of dk_label
4235 		 */
4236 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4237 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4238 		    sizeof (struct dk_label));
4239 
4240 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4241 		    "label_addr: 0x%x allocation size: 0x%x\n",
4242 		    label_addr, buffer_size);
4243 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4244 		if (dkl == NULL) {
4245 			return (ENOMEM);
4246 		}
4247 
4248 		mutex_exit(SD_MUTEX(un));
4249 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4250 		    path_flag);
4251 		mutex_enter(SD_MUTEX(un));
4252 
4253 		switch (rval) {
4254 		case 0:
4255 			/*
4256 			 * sd_uselabel will establish that the geometry
4257 			 * is valid.
4258 			 * For sys_blocksize != tgt_blocksize, need
4259 			 * to index into the beginning of dk_label
4260 			 */
4261 			dkl1 = (daddr_t)dkl
4262 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4263 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4264 			    path_flag) != SD_LABEL_IS_VALID) {
4265 				label_error = EINVAL;
4266 			}
4267 			break;
4268 		case EACCES:
4269 			label_error = EACCES;
4270 			break;
4271 		default:
4272 			label_error = EINVAL;
4273 			break;
4274 		}
4275 
4276 		kmem_free(dkl, buffer_size);
4277 
4278 #if defined(_SUNOS_VTOC_8)
4279 		label = (char *)un->un_asciilabel;
4280 #elif defined(_SUNOS_VTOC_16)
4281 		label = (char *)un->un_vtoc.v_asciilabel;
4282 #else
4283 #error "No VTOC format defined."
4284 #endif
4285 	}
4286 
4287 	/*
4288 	 * If a valid label was not found, AND if no reservation conflict
4289 	 * was detected, then go ahead and create a default label (4069506).
4290 	 *
4291 	 * Note: currently, for VTOC_8 devices, the default label is created
4292 	 * for removables only.  For VTOC_16 devices, the default label will
4293 	 * be created for both removables and non-removables alike.
4294 	 * (see sd_build_default_label)
4295 	 */
4296 #if defined(_SUNOS_VTOC_8)
4297 	if (ISREMOVABLE(un) && (label_error != EACCES)) {
4298 #elif defined(_SUNOS_VTOC_16)
4299 	if (label_error != EACCES) {
4300 #endif
4301 		if (un->un_f_geometry_is_valid == FALSE) {
4302 			sd_build_default_label(un);
4303 		}
4304 		label_error = 0;
4305 	}
4306 
4307 no_solaris_partition:
4308 	if ((!ISREMOVABLE(un) ||
4309 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
4310 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
4311 		/*
4312 		 * Print out a message indicating who and what we are.
4313 		 * We do this only when we happen to really validate the
4314 		 * geometry. We may call sd_validate_geometry() at other
4315 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4316 		 * don't want to print the label.
4317 		 * If the geometry is valid, print the label string,
4318 		 * else print vendor and product info, if available
4319 		 */
4320 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4321 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4322 		} else {
4323 			mutex_enter(&sd_label_mutex);
4324 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4325 			    labelstring);
4326 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4327 			    &labelstring[64]);
4328 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4329 			    labelstring, &labelstring[64]);
4330 			if (un->un_f_blockcount_is_valid == TRUE) {
4331 				(void) sprintf(&buf[strlen(buf)],
4332 				    ", %llu %u byte blocks\n",
4333 				    (longlong_t)un->un_blockcount,
4334 				    un->un_tgt_blocksize);
4335 			} else {
4336 				(void) sprintf(&buf[strlen(buf)],
4337 				    ", (unknown capacity)\n");
4338 			}
4339 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4340 			mutex_exit(&sd_label_mutex);
4341 		}
4342 	}
4343 
4344 #if defined(_SUNOS_VTOC_16)
4345 	/*
4346 	 * If we have valid geometry, set up the remaining fdisk partitions.
4347 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4348 	 * we set it to an entirely bogus value.
4349 	 */
4350 	for (count = 0; count < FD_NUMPART; count++) {
4351 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4352 		un->un_map[FDISK_P1 + count].dkl_nblk =
4353 		    un->un_fmap[count].fmap_nblk;
4354 
4355 		un->un_offset[FDISK_P1 + count] =
4356 		    un->un_fmap[count].fmap_start;
4357 	}
4358 #endif
4359 
4360 	for (count = 0; count < NDKMAP; count++) {
4361 #if defined(_SUNOS_VTOC_8)
4362 		struct dk_map *lp  = &un->un_map[count];
4363 		un->un_offset[count] =
4364 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4365 #elif defined(_SUNOS_VTOC_16)
4366 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4367 
4368 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4369 #else
4370 #error "No VTOC format defined."
4371 #endif
4372 	}
4373 
4374 	return (label_error);
4375 }
4376 
4377 
4378 #if defined(_SUNOS_VTOC_16)
4379 /*
4380  * Macro: MAX_BLKS
4381  *
4382  *	This macro is used for table entries where we need to have the largest
4383  *	possible sector value for that head & SPT (sectors per track)
4384  *	combination.  Other entries for some smaller disk sizes are set by
4385  *	convention to match those used by X86 BIOS usage.
4386  */
4387 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4388 
4389 /*
4390  *    Function: sd_convert_geometry
4391  *
4392  * Description: Convert physical geometry into a dk_geom structure. In
4393  *		other words, make sure we don't wrap 16-bit values.
4394  *		e.g. converting from geom_cache to dk_geom
4395  *
4396  *     Context: Kernel thread only
4397  */
4398 static void
4399 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4400 {
4401 	int i;
4402 	static const struct chs_values {
4403 		uint_t max_cap;		/* Max Capacity for this HS. */
4404 		uint_t nhead;		/* Heads to use. */
4405 		uint_t nsect;		/* SPT to use. */
4406 	} CHS_values[] = {
4407 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4408 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4409 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4410 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4411 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4412 	};
4413 
4414 	/* Unlabeled SCSI floppy device */
4415 	if (capacity <= 0x1000) {
4416 		un_g->dkg_nhead = 2;
4417 		un_g->dkg_ncyl = 80;
4418 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4419 		return;
4420 	}
4421 
4422 	/*
4423 	 * For all devices we calculate cylinders using the
4424 	 * heads and sectors we assign based on capacity of the
4425 	 * device.  The table is designed to be compatible with the
4426 	 * way other operating systems lay out fdisk tables for X86
4427 	 * and to insure that the cylinders never exceed 65535 to
4428 	 * prevent problems with X86 ioctls that report geometry.
4429 	 * We use SPT that are multiples of 63, since other OSes that
4430 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4431 	 * we make do by using multiples of 63 SPT.
4432 	 *
4433 	 * Note than capacities greater than or equal to 1TB will simply
4434 	 * get the largest geometry from the table. This should be okay
4435 	 * since disks this large shouldn't be using CHS values anyway.
4436 	 */
4437 	for (i = 0; CHS_values[i].max_cap < capacity &&
4438 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4439 		;
4440 
4441 	un_g->dkg_nhead = CHS_values[i].nhead;
4442 	un_g->dkg_nsect = CHS_values[i].nsect;
4443 }
4444 #endif
4445 
4446 
4447 /*
4448  *    Function: sd_resync_geom_caches
4449  *
4450  * Description: (Re)initialize both geometry caches: the virtual geometry
4451  *		information is extracted from the HBA (the "geometry"
4452  *		capability), and the physical geometry cache data is
4453  *		generated by issuing MODE SENSE commands.
4454  *
4455  *   Arguments: un - driver soft state (unit) structure
4456  *		capacity - disk capacity in #blocks
4457  *		lbasize - disk block size in bytes
4458  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4459  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4460  *			to use the USCSI "direct" chain and bypass the normal
4461  *			command waitq.
4462  *
4463  *     Context: Kernel thread only (can sleep).
4464  */
4465 
4466 static void
4467 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4468 	int path_flag)
4469 {
4470 	struct 	geom_cache 	pgeom;
4471 	struct 	geom_cache	*pgeom_p = &pgeom;
4472 	int 	spc;
4473 	unsigned short nhead;
4474 	unsigned short nsect;
4475 
4476 	ASSERT(un != NULL);
4477 	ASSERT(mutex_owned(SD_MUTEX(un)));
4478 
4479 	/*
4480 	 * Ask the controller for its logical geometry.
4481 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4482 	 * then the lgeom cache will be invalid.
4483 	 */
4484 	sd_get_virtual_geometry(un, capacity, lbasize);
4485 
4486 	/*
4487 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4488 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4489 	 */
4490 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4491 		/*
4492 		 * Note: Perhaps this needs to be more adaptive? The rationale
4493 		 * is that, if there's no HBA geometry from the HBA driver, any
4494 		 * guess is good, since this is the physical geometry. If MODE
4495 		 * SENSE fails this gives a max cylinder size for non-LBA access
4496 		 */
4497 		nhead = 255;
4498 		nsect = 63;
4499 	} else {
4500 		nhead = un->un_lgeom.g_nhead;
4501 		nsect = un->un_lgeom.g_nsect;
4502 	}
4503 
4504 	if (ISCD(un)) {
4505 		pgeom_p->g_nhead = 1;
4506 		pgeom_p->g_nsect = nsect * nhead;
4507 	} else {
4508 		pgeom_p->g_nhead = nhead;
4509 		pgeom_p->g_nsect = nsect;
4510 	}
4511 
4512 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4513 	pgeom_p->g_capacity = capacity;
4514 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4515 	pgeom_p->g_acyl = 0;
4516 
4517 	/*
4518 	 * Retrieve fresh geometry data from the hardware, stash it
4519 	 * here temporarily before we rebuild the incore label.
4520 	 *
4521 	 * We want to use the MODE SENSE commands to derive the
4522 	 * physical geometry of the device, but if either command
4523 	 * fails, the logical geometry is used as the fallback for
4524 	 * disk label geometry.
4525 	 */
4526 	mutex_exit(SD_MUTEX(un));
4527 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4528 	mutex_enter(SD_MUTEX(un));
4529 
4530 	/*
4531 	 * Now update the real copy while holding the mutex. This
4532 	 * way the global copy is never in an inconsistent state.
4533 	 */
4534 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4535 
4536 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4537 	    "(cached from lgeom)\n");
4538 	SD_INFO(SD_LOG_COMMON, un,
4539 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4540 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4541 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4542 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4543 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4544 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4545 	    un->un_pgeom.g_rpm);
4546 }
4547 
4548 
4549 /*
4550  *    Function: sd_read_fdisk
4551  *
4552  * Description: utility routine to read the fdisk table.
4553  *
4554  *   Arguments: un - driver soft state (unit) structure
4555  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4556  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4557  *			to use the USCSI "direct" chain and bypass the normal
4558  *			command waitq.
4559  *
4560  * Return Code: SD_CMD_SUCCESS
4561  *		SD_CMD_FAILURE
4562  *
4563  *     Context: Kernel thread only (can sleep).
4564  */
4565 /* ARGSUSED */
4566 static int
4567 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4568 {
4569 #if defined(_NO_FDISK_PRESENT)
4570 
4571 	un->un_solaris_offset = 0;
4572 	un->un_solaris_size = capacity;
4573 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4574 	return (SD_CMD_SUCCESS);
4575 
4576 #elif defined(_FIRMWARE_NEEDS_FDISK)
4577 
4578 	struct ipart	*fdp;
4579 	struct mboot	*mbp;
4580 	struct ipart	fdisk[FD_NUMPART];
4581 	int		i;
4582 	char		sigbuf[2];
4583 	caddr_t		bufp;
4584 	int		uidx;
4585 	int		rval;
4586 	int		lba = 0;
4587 	uint_t		solaris_offset;	/* offset to solaris part. */
4588 	daddr_t		solaris_size;	/* size of solaris partition */
4589 	uint32_t	blocksize;
4590 
4591 	ASSERT(un != NULL);
4592 	ASSERT(mutex_owned(SD_MUTEX(un)));
4593 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4594 
4595 	blocksize = un->un_tgt_blocksize;
4596 
4597 	/*
4598 	 * Start off assuming no fdisk table
4599 	 */
4600 	solaris_offset = 0;
4601 	solaris_size   = capacity;
4602 
4603 	mutex_exit(SD_MUTEX(un));
4604 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4605 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4606 	mutex_enter(SD_MUTEX(un));
4607 
4608 	if (rval != 0) {
4609 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4610 		    "sd_read_fdisk: fdisk read err\n");
4611 		kmem_free(bufp, blocksize);
4612 		return (SD_CMD_FAILURE);
4613 	}
4614 
4615 	mbp = (struct mboot *)bufp;
4616 
4617 	/*
4618 	 * The fdisk table does not begin on a 4-byte boundary within the
4619 	 * master boot record, so we copy it to an aligned structure to avoid
4620 	 * alignment exceptions on some processors.
4621 	 */
4622 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4623 
4624 	/*
4625 	 * Check for lba support before verifying sig; sig might not be
4626 	 * there, say on a blank disk, but the max_chs mark may still
4627 	 * be present.
4628 	 *
4629 	 * Note: LBA support and BEFs are an x86-only concept but this
4630 	 * code should work OK on SPARC as well.
4631 	 */
4632 
4633 	/*
4634 	 * First, check for lba-access-ok on root node (or prom root node)
4635 	 * if present there, don't need to search fdisk table.
4636 	 */
4637 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4638 	    "lba-access-ok", 0) != 0) {
4639 		/* All drives do LBA; don't search fdisk table */
4640 		lba = 1;
4641 	} else {
4642 		/* Okay, look for mark in fdisk table */
4643 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4644 			/* accumulate "lba" value from all partitions */
4645 			lba = (lba || sd_has_max_chs_vals(fdp));
4646 		}
4647 	}
4648 
4649 	if (lba != 0) {
4650 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4651 
4652 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4653 		    "lba-access-ok", 0) == 0) {
4654 			/* not found; create it */
4655 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4656 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4657 			    DDI_PROP_SUCCESS) {
4658 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4659 				    "sd_read_fdisk: Can't create lba property "
4660 				    "for instance %d\n",
4661 				    ddi_get_instance(SD_DEVINFO(un)));
4662 			}
4663 		}
4664 	}
4665 
4666 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4667 
4668 	/*
4669 	 * Endian-independent signature check
4670 	 */
4671 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4672 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4673 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4674 		    "sd_read_fdisk: no fdisk\n");
4675 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4676 		rval = SD_CMD_SUCCESS;
4677 		goto done;
4678 	}
4679 
4680 #ifdef SDDEBUG
4681 	if (sd_level_mask & SD_LOGMASK_INFO) {
4682 		fdp = fdisk;
4683 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4684 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4685 		    "numsect         sysid       bootid\n");
4686 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4687 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4688 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4689 			    i, fdp->relsect, fdp->numsect,
4690 			    fdp->systid, fdp->bootid);
4691 		}
4692 	}
4693 #endif
4694 
4695 	/*
4696 	 * Try to find the unix partition
4697 	 */
4698 	uidx = -1;
4699 	solaris_offset = 0;
4700 	solaris_size   = 0;
4701 
4702 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4703 		int	relsect;
4704 		int	numsect;
4705 
4706 		if (fdp->numsect == 0) {
4707 			un->un_fmap[i].fmap_start = 0;
4708 			un->un_fmap[i].fmap_nblk  = 0;
4709 			continue;
4710 		}
4711 
4712 		/*
4713 		 * Data in the fdisk table is little-endian.
4714 		 */
4715 		relsect = LE_32(fdp->relsect);
4716 		numsect = LE_32(fdp->numsect);
4717 
4718 		un->un_fmap[i].fmap_start = relsect;
4719 		un->un_fmap[i].fmap_nblk  = numsect;
4720 
4721 		if (fdp->systid != SUNIXOS &&
4722 		    fdp->systid != SUNIXOS2 &&
4723 		    fdp->systid != EFI_PMBR) {
4724 			continue;
4725 		}
4726 
4727 		/*
4728 		 * use the last active solaris partition id found
4729 		 * (there should only be 1 active partition id)
4730 		 *
4731 		 * if there are no active solaris partition id
4732 		 * then use the first inactive solaris partition id
4733 		 */
4734 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
4735 			uidx = i;
4736 			solaris_offset = relsect;
4737 			solaris_size   = numsect;
4738 		}
4739 	}
4740 
4741 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
4742 	    un->un_solaris_offset, un->un_solaris_size);
4743 
4744 	rval = SD_CMD_SUCCESS;
4745 
4746 done:
4747 
4748 	/*
4749 	 * Clear the VTOC info, only if the Solaris partition entry
4750 	 * has moved, changed size, been deleted, or if the size of
4751 	 * the partition is too small to even fit the label sector.
4752 	 */
4753 	if ((un->un_solaris_offset != solaris_offset) ||
4754 	    (un->un_solaris_size != solaris_size) ||
4755 	    solaris_size <= DK_LABEL_LOC) {
4756 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
4757 			solaris_offset, solaris_size);
4758 		bzero(&un->un_g, sizeof (struct dk_geom));
4759 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
4760 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
4761 		un->un_f_geometry_is_valid = FALSE;
4762 	}
4763 	un->un_solaris_offset = solaris_offset;
4764 	un->un_solaris_size = solaris_size;
4765 	kmem_free(bufp, blocksize);
4766 	return (rval);
4767 
4768 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
4769 #error "fdisk table presence undetermined for this platform."
4770 #endif	/* #if defined(_NO_FDISK_PRESENT) */
4771 }
4772 
4773 
4774 /*
4775  *    Function: sd_get_physical_geometry
4776  *
4777  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4778  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4779  *		target, and use this information to initialize the physical
4780  *		geometry cache specified by pgeom_p.
4781  *
4782  *		MODE SENSE is an optional command, so failure in this case
4783  *		does not necessarily denote an error. We want to use the
4784  *		MODE SENSE commands to derive the physical geometry of the
4785  *		device, but if either command fails, the logical geometry is
4786  *		used as the fallback for disk label geometry.
4787  *
4788  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4789  *		have already been initialized for the current target and
4790  *		that the current values be passed as args so that we don't
4791  *		end up ever trying to use -1 as a valid value. This could
4792  *		happen if either value is reset while we're not holding
4793  *		the mutex.
4794  *
4795  *   Arguments: un - driver soft state (unit) structure
4796  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4797  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4798  *			to use the USCSI "direct" chain and bypass the normal
4799  *			command waitq.
4800  *
4801  *     Context: Kernel thread only (can sleep).
4802  */
4803 
4804 static void
4805 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
4806 	int capacity, int lbasize, int path_flag)
4807 {
4808 	struct	mode_format	*page3p;
4809 	struct	mode_geometry	*page4p;
4810 	struct	mode_header	*headerp;
4811 	int	sector_size;
4812 	int	nsect;
4813 	int	nhead;
4814 	int	ncyl;
4815 	int	intrlv;
4816 	int	spc;
4817 	int	modesense_capacity;
4818 	int	rpm;
4819 	int	bd_len;
4820 	int	mode_header_length;
4821 	uchar_t	*p3bufp;
4822 	uchar_t	*p4bufp;
4823 	int	cdbsize;
4824 
4825 	ASSERT(un != NULL);
4826 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
4827 
4828 	if (un->un_f_blockcount_is_valid != TRUE) {
4829 		return;
4830 	}
4831 
4832 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
4833 		return;
4834 	}
4835 
4836 	if (lbasize == 0) {
4837 		if (ISCD(un)) {
4838 			lbasize = 2048;
4839 		} else {
4840 			lbasize = un->un_sys_blocksize;
4841 		}
4842 	}
4843 	pgeom_p->g_secsize = (unsigned short)lbasize;
4844 
4845 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4846 
4847 	/*
4848 	 * Retrieve MODE SENSE page 3 - Format Device Page
4849 	 */
4850 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4851 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4852 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4853 	    != 0) {
4854 		SD_ERROR(SD_LOG_COMMON, un,
4855 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4856 		goto page3_exit;
4857 	}
4858 
4859 	/*
4860 	 * Determine size of Block Descriptors in order to locate the mode
4861 	 * page data.  ATAPI devices return 0, SCSI devices should return
4862 	 * MODE_BLK_DESC_LENGTH.
4863 	 */
4864 	headerp = (struct mode_header *)p3bufp;
4865 	if (un->un_f_cfg_is_atapi == TRUE) {
4866 		struct mode_header_grp2 *mhp =
4867 		    (struct mode_header_grp2 *)headerp;
4868 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4869 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4870 	} else {
4871 		mode_header_length = MODE_HEADER_LENGTH;
4872 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4873 	}
4874 
4875 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4876 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4877 		    "received unexpected bd_len of %d, page3\n", bd_len);
4878 		goto page3_exit;
4879 	}
4880 
4881 	page3p = (struct mode_format *)
4882 	    ((caddr_t)headerp + mode_header_length + bd_len);
4883 
4884 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4885 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4886 		    "mode sense pg3 code mismatch %d\n",
4887 		    page3p->mode_page.code);
4888 		goto page3_exit;
4889 	}
4890 
4891 	/*
4892 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4893 	 * complete successfully; otherwise, revert to the logical geometry.
4894 	 * So, we need to save everything in temporary variables.
4895 	 */
4896 	sector_size = BE_16(page3p->data_bytes_sect);
4897 
4898 	/*
4899 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4900 	 */
4901 	if (sector_size == 0) {
4902 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
4903 	} else {
4904 		sector_size &= ~(un->un_sys_blocksize - 1);
4905 	}
4906 
4907 	nsect  = BE_16(page3p->sect_track);
4908 	intrlv = BE_16(page3p->interleave);
4909 
4910 	SD_INFO(SD_LOG_COMMON, un,
4911 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4912 	SD_INFO(SD_LOG_COMMON, un,
4913 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4914 	    page3p->mode_page.code, nsect, sector_size);
4915 	SD_INFO(SD_LOG_COMMON, un,
4916 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4917 	    BE_16(page3p->track_skew),
4918 	    BE_16(page3p->cylinder_skew));
4919 
4920 
4921 	/*
4922 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4923 	 */
4924 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4925 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4926 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4927 	    != 0) {
4928 		SD_ERROR(SD_LOG_COMMON, un,
4929 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4930 		goto page4_exit;
4931 	}
4932 
4933 	/*
4934 	 * Determine size of Block Descriptors in order to locate the mode
4935 	 * page data.  ATAPI devices return 0, SCSI devices should return
4936 	 * MODE_BLK_DESC_LENGTH.
4937 	 */
4938 	headerp = (struct mode_header *)p4bufp;
4939 	if (un->un_f_cfg_is_atapi == TRUE) {
4940 		struct mode_header_grp2 *mhp =
4941 		    (struct mode_header_grp2 *)headerp;
4942 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4943 	} else {
4944 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4945 	}
4946 
4947 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4948 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4949 		    "received unexpected bd_len of %d, page4\n", bd_len);
4950 		goto page4_exit;
4951 	}
4952 
4953 	page4p = (struct mode_geometry *)
4954 	    ((caddr_t)headerp + mode_header_length + bd_len);
4955 
4956 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4957 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4958 		    "mode sense pg4 code mismatch %d\n",
4959 		    page4p->mode_page.code);
4960 		goto page4_exit;
4961 	}
4962 
4963 	/*
4964 	 * Stash the data now, after we know that both commands completed.
4965 	 */
4966 
4967 	mutex_enter(SD_MUTEX(un));
4968 
4969 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4970 	spc   = nhead * nsect;
4971 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4972 	rpm   = BE_16(page4p->rpm);
4973 
4974 	modesense_capacity = spc * ncyl;
4975 
4976 	SD_INFO(SD_LOG_COMMON, un,
4977 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4978 	SD_INFO(SD_LOG_COMMON, un,
4979 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4980 	SD_INFO(SD_LOG_COMMON, un,
4981 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4982 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4983 	    (void *)pgeom_p, capacity);
4984 
4985 	/*
4986 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4987 	 * the product of C * H * S returned by MODE SENSE >= that returned
4988 	 * by read capacity. This is an idiosyncrasy of the original x86
4989 	 * disk subsystem.
4990 	 */
4991 	if (modesense_capacity >= capacity) {
4992 		SD_INFO(SD_LOG_COMMON, un,
4993 		    "sd_get_physical_geometry: adjusting acyl; "
4994 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4995 		    (modesense_capacity - capacity + spc - 1) / spc);
4996 		if (sector_size != 0) {
4997 			/* 1243403: NEC D38x7 drives don't support sec size */
4998 			pgeom_p->g_secsize = (unsigned short)sector_size;
4999 		}
5000 		pgeom_p->g_nsect    = (unsigned short)nsect;
5001 		pgeom_p->g_nhead    = (unsigned short)nhead;
5002 		pgeom_p->g_capacity = capacity;
5003 		pgeom_p->g_acyl	    =
5004 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5005 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5006 	}
5007 
5008 	pgeom_p->g_rpm    = (unsigned short)rpm;
5009 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5010 
5011 	SD_INFO(SD_LOG_COMMON, un,
5012 	    "sd_get_physical_geometry: mode sense geometry:\n");
5013 	SD_INFO(SD_LOG_COMMON, un,
5014 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5015 	    nsect, sector_size, intrlv);
5016 	SD_INFO(SD_LOG_COMMON, un,
5017 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5018 	    nhead, ncyl, rpm, modesense_capacity);
5019 	SD_INFO(SD_LOG_COMMON, un,
5020 	    "sd_get_physical_geometry: (cached)\n");
5021 	SD_INFO(SD_LOG_COMMON, un,
5022 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5023 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5024 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5025 	SD_INFO(SD_LOG_COMMON, un,
5026 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5027 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5028 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5029 
5030 	mutex_exit(SD_MUTEX(un));
5031 
5032 page4_exit:
5033 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5034 page3_exit:
5035 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5036 }
5037 
5038 
5039 /*
5040  *    Function: sd_get_virtual_geometry
5041  *
5042  * Description: Ask the controller to tell us about the target device.
5043  *
5044  *   Arguments: un - pointer to softstate
5045  *		capacity - disk capacity in #blocks
5046  *		lbasize - disk block size in bytes
5047  *
5048  *     Context: Kernel thread only
5049  */
5050 
5051 static void
5052 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5053 {
5054 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5055 	uint_t	geombuf;
5056 	int	spc;
5057 
5058 	ASSERT(un != NULL);
5059 	ASSERT(mutex_owned(SD_MUTEX(un)));
5060 
5061 	mutex_exit(SD_MUTEX(un));
5062 
5063 	/* Set sector size, and total number of sectors */
5064 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5065 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5066 
5067 	/* Let the HBA tell us its geometry */
5068 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5069 
5070 	mutex_enter(SD_MUTEX(un));
5071 
5072 	/* A value of -1 indicates an undefined "geometry" property */
5073 	if (geombuf == (-1)) {
5074 		return;
5075 	}
5076 
5077 	/* Initialize the logical geometry cache. */
5078 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5079 	lgeom_p->g_nsect   = geombuf & 0xffff;
5080 	lgeom_p->g_secsize = un->un_sys_blocksize;
5081 
5082 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5083 
5084 	/*
5085 	 * Note: The driver originally converted the capacity value from
5086 	 * target blocks to system blocks. However, the capacity value passed
5087 	 * to this routine is already in terms of system blocks (this scaling
5088 	 * is done when the READ CAPACITY command is issued and processed).
5089 	 * This 'error' may have gone undetected because the usage of g_ncyl
5090 	 * (which is based upon g_capacity) is very limited within the driver
5091 	 */
5092 	lgeom_p->g_capacity = capacity;
5093 
5094 	/*
5095 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5096 	 * hba may return zero values if the device has been removed.
5097 	 */
5098 	if (spc == 0) {
5099 		lgeom_p->g_ncyl = 0;
5100 	} else {
5101 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5102 	}
5103 	lgeom_p->g_acyl = 0;
5104 
5105 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5106 	SD_INFO(SD_LOG_COMMON, un,
5107 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5108 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5109 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5110 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5111 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5112 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5113 }
5114 
5115 
5116 /*
5117  *    Function: sd_update_block_info
5118  *
5119  * Description: Calculate a byte count to sector count bitshift value
5120  *		from sector size.
5121  *
5122  *   Arguments: un: unit struct.
5123  *		lbasize: new target sector size
5124  *		capacity: new target capacity, ie. block count
5125  *
5126  *     Context: Kernel thread context
5127  */
5128 
5129 static void
5130 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5131 {
5132 	if (lbasize != 0) {
5133 		un->un_tgt_blocksize = lbasize;
5134 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5135 	}
5136 
5137 	if (capacity != 0) {
5138 		un->un_blockcount		= capacity;
5139 		un->un_f_blockcount_is_valid	= TRUE;
5140 	}
5141 }
5142 
5143 
5144 static void
5145 sd_swap_efi_gpt(efi_gpt_t *e)
5146 {
5147 	_NOTE(ASSUMING_PROTECTED(*e))
5148 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5149 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5150 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5151 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5152 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5153 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5154 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5155 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5156 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5157 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5158 	e->efi_gpt_NumberOfPartitionEntries =
5159 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5160 	e->efi_gpt_SizeOfPartitionEntry =
5161 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5162 	e->efi_gpt_PartitionEntryArrayCRC32 =
5163 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5164 }
5165 
5166 static void
5167 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5168 {
5169 	int i;
5170 
5171 	_NOTE(ASSUMING_PROTECTED(*p))
5172 	for (i = 0; i < nparts; i++) {
5173 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5174 		    p[i].efi_gpe_PartitionTypeGUID);
5175 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5176 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5177 		/* PartitionAttrs */
5178 	}
5179 }
5180 
5181 static int
5182 sd_validate_efi(efi_gpt_t *labp)
5183 {
5184 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5185 		return (EINVAL);
5186 	/* at least 96 bytes in this version of the spec. */
5187 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5188 	    labp->efi_gpt_HeaderSize)
5189 		return (EINVAL);
5190 	/* this should be 128 bytes */
5191 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5192 		return (EINVAL);
5193 	return (0);
5194 }
5195 
5196 static int
5197 sd_use_efi(struct sd_lun *un, int path_flag)
5198 {
5199 	int		i;
5200 	int		rval = 0;
5201 	efi_gpe_t	*partitions;
5202 	uchar_t		*buf;
5203 	uint_t		lbasize;
5204 	uint64_t	cap;
5205 	uint_t		nparts;
5206 	diskaddr_t	gpe_lba;
5207 
5208 	ASSERT(mutex_owned(SD_MUTEX(un)));
5209 	lbasize = un->un_tgt_blocksize;
5210 
5211 	mutex_exit(SD_MUTEX(un));
5212 
5213 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5214 
5215 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5216 		rval = EINVAL;
5217 		goto done_err;
5218 	}
5219 
5220 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5221 	if (rval) {
5222 		goto done_err;
5223 	}
5224 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5225 		/* not ours */
5226 		rval = ESRCH;
5227 		goto done_err;
5228 	}
5229 
5230 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5231 	if (rval) {
5232 		goto done_err;
5233 	}
5234 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5235 
5236 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5237 		/*
5238 		 * Couldn't read the primary, try the backup.  Our
5239 		 * capacity at this point could be based on CHS, so
5240 		 * check what the device reports.
5241 		 */
5242 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5243 		    path_flag);
5244 		if (rval) {
5245 			goto done_err;
5246 		}
5247 
5248 		/*
5249 		 * The MMC standard allows READ CAPACITY to be
5250 		 * inaccurate by a bounded amount (in the interest of
5251 		 * response latency).  As a result, failed READs are
5252 		 * commonplace (due to the reading of metadata and not
5253 		 * data). Depending on the per-Vendor/drive Sense data,
5254 		 * the failed READ can cause many (unnecessary) retries.
5255 		 */
5256 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5257 		    cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5258 		    path_flag)) != 0) {
5259 			goto done_err;
5260 		}
5261 
5262 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5263 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5264 			goto done_err;
5265 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5266 		    "primary label corrupt; using backup\n");
5267 	}
5268 
5269 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5270 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5271 
5272 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5273 	    path_flag);
5274 	if (rval) {
5275 		goto done_err;
5276 	}
5277 	partitions = (efi_gpe_t *)buf;
5278 
5279 	if (nparts > MAXPART) {
5280 		nparts = MAXPART;
5281 	}
5282 	sd_swap_efi_gpe(nparts, partitions);
5283 
5284 	mutex_enter(SD_MUTEX(un));
5285 
5286 	/* Fill in partition table. */
5287 	for (i = 0; i < nparts; i++) {
5288 		if (partitions->efi_gpe_StartingLBA != 0 ||
5289 		    partitions->efi_gpe_EndingLBA != 0) {
5290 			un->un_map[i].dkl_cylno =
5291 			    partitions->efi_gpe_StartingLBA;
5292 			un->un_map[i].dkl_nblk =
5293 			    partitions->efi_gpe_EndingLBA -
5294 			    partitions->efi_gpe_StartingLBA + 1;
5295 			un->un_offset[i] =
5296 			    partitions->efi_gpe_StartingLBA;
5297 		}
5298 		if (i == WD_NODE) {
5299 			/*
5300 			 * minor number 7 corresponds to the whole disk
5301 			 */
5302 			un->un_map[i].dkl_cylno = 0;
5303 			un->un_map[i].dkl_nblk = un->un_blockcount;
5304 			un->un_offset[i] = 0;
5305 		}
5306 		partitions++;
5307 	}
5308 	un->un_solaris_offset = 0;
5309 	un->un_solaris_size = cap;
5310 	un->un_f_geometry_is_valid = TRUE;
5311 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5312 	return (0);
5313 
5314 done_err:
5315 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5316 	mutex_enter(SD_MUTEX(un));
5317 	/*
5318 	 * if we didn't find something that could look like a VTOC
5319 	 * and the disk is over 1TB, we know there isn't a valid label.
5320 	 * Otherwise let sd_uselabel decide what to do.  We only
5321 	 * want to invalidate this if we're certain the label isn't
5322 	 * valid because sd_prop_op will now fail, which in turn
5323 	 * causes things like opens and stats on the partition to fail.
5324 	 */
5325 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5326 		un->un_f_geometry_is_valid = FALSE;
5327 	}
5328 	return (rval);
5329 }
5330 
5331 
5332 /*
5333  *    Function: sd_uselabel
5334  *
5335  * Description: Validate the disk label and update the relevant data (geometry,
5336  *		partition, vtoc, and capacity data) in the sd_lun struct.
5337  *		Marks the geometry of the unit as being valid.
5338  *
5339  *   Arguments: un: unit struct.
5340  *		dk_label: disk label
5341  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5342  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5343  *			to use the USCSI "direct" chain and bypass the normal
5344  *			command waitq.
5345  *
5346  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5347  *		partition, vtoc, and capacity data are good.
5348  *
5349  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5350  *		label; or computed capacity does not jibe with capacity
5351  *		reported from the READ CAPACITY command.
5352  *
5353  *     Context: Kernel thread only (can sleep).
5354  */
5355 
5356 static int
5357 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5358 {
5359 	short	*sp;
5360 	short	sum;
5361 	short	count;
5362 	int	label_error = SD_LABEL_IS_VALID;
5363 	int	i;
5364 	int	capacity;
5365 	int	part_end;
5366 	int	track_capacity;
5367 	int	err;
5368 #if defined(_SUNOS_VTOC_16)
5369 	struct	dkl_partition	*vpartp;
5370 #endif
5371 	ASSERT(un != NULL);
5372 	ASSERT(mutex_owned(SD_MUTEX(un)));
5373 
5374 	/* Validate the magic number of the label. */
5375 	if (labp->dkl_magic != DKL_MAGIC) {
5376 #if defined(__sparc)
5377 		if ((un->un_state == SD_STATE_NORMAL) &&
5378 		    !ISREMOVABLE(un)) {
5379 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5380 			    "Corrupt label; wrong magic number\n");
5381 		}
5382 #endif
5383 		return (SD_LABEL_IS_INVALID);
5384 	}
5385 
5386 	/* Validate the checksum of the label. */
5387 	sp  = (short *)labp;
5388 	sum = 0;
5389 	count = sizeof (struct dk_label) / sizeof (short);
5390 	while (count--)	 {
5391 		sum ^= *sp++;
5392 	}
5393 
5394 	if (sum != 0) {
5395 #if defined(_SUNOS_VTOC_16)
5396 		if (un->un_state == SD_STATE_NORMAL && !ISCD(un)) {
5397 #elif defined(_SUNOS_VTOC_8)
5398 		if (un->un_state == SD_STATE_NORMAL && !ISREMOVABLE(un)) {
5399 #endif
5400 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5401 			    "Corrupt label - label checksum failed\n");
5402 		}
5403 		return (SD_LABEL_IS_INVALID);
5404 	}
5405 
5406 
5407 	/*
5408 	 * Fill in geometry structure with data from label.
5409 	 */
5410 	bzero(&un->un_g, sizeof (struct dk_geom));
5411 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5412 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5413 	un->un_g.dkg_bcyl   = 0;
5414 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5415 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5416 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5417 
5418 #if defined(_SUNOS_VTOC_8)
5419 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5420 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5421 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5422 #endif
5423 #if defined(_SUNOS_VTOC_16)
5424 	un->un_dkg_skew = labp->dkl_skew;
5425 #endif
5426 
5427 #if defined(__i386) || defined(__amd64)
5428 	un->un_g.dkg_apc = labp->dkl_apc;
5429 #endif
5430 
5431 	/*
5432 	 * Currently we rely on the values in the label being accurate. If
5433 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5434 	 *
5435 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5436 	 * although this command is optional in SCSI-2.
5437 	 */
5438 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5439 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5440 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5441 
5442 	/*
5443 	 * The Read and Write reinstruct values may not be valid
5444 	 * for older disks.
5445 	 */
5446 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5447 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5448 
5449 	/* Fill in partition table. */
5450 #if defined(_SUNOS_VTOC_8)
5451 	for (i = 0; i < NDKMAP; i++) {
5452 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5453 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5454 	}
5455 #endif
5456 #if  defined(_SUNOS_VTOC_16)
5457 	vpartp		= labp->dkl_vtoc.v_part;
5458 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5459 
5460 	/* Prevent divide by zero */
5461 	if (track_capacity == 0) {
5462 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5463 		    "Corrupt label - zero nhead or nsect value\n");
5464 
5465 		return (SD_LABEL_IS_INVALID);
5466 	}
5467 
5468 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5469 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5470 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5471 	}
5472 #endif
5473 
5474 	/* Fill in VTOC Structure. */
5475 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5476 #if defined(_SUNOS_VTOC_8)
5477 	/*
5478 	 * The 8-slice vtoc does not include the ascii label; save it into
5479 	 * the device's soft state structure here.
5480 	 */
5481 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5482 #endif
5483 
5484 	/* Now look for a valid capacity. */
5485 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5486 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5487 
5488 	if (un->un_g.dkg_acyl) {
5489 #if defined(__i386) || defined(__amd64)
5490 		/* we may have > 1 alts cylinder */
5491 		capacity += (track_capacity * un->un_g.dkg_acyl);
5492 #else
5493 		capacity += track_capacity;
5494 #endif
5495 	}
5496 
5497 	/*
5498 	 * Force check here to ensure the computed capacity is valid.
5499 	 * If capacity is zero, it indicates an invalid label and
5500 	 * we should abort updating the relevant data then.
5501 	 */
5502 	if (capacity == 0) {
5503 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5504 		    "Corrupt label - no valid capacity could be retrieved\n");
5505 
5506 		return (SD_LABEL_IS_INVALID);
5507 	}
5508 
5509 	/* Mark the geometry as valid. */
5510 	un->un_f_geometry_is_valid = TRUE;
5511 
5512 	/*
5513 	 * At this point, un->un_blockcount should contain valid data from
5514 	 * the READ CAPACITY command.
5515 	 */
5516 	if (un->un_f_blockcount_is_valid != TRUE) {
5517 		/*
5518 		 * We have a situation where the target didn't give us a good
5519 		 * READ CAPACITY value, yet there appears to be a valid label.
5520 		 * In this case, we'll fake the capacity.
5521 		 */
5522 		un->un_blockcount = capacity;
5523 		un->un_f_blockcount_is_valid = TRUE;
5524 		goto done;
5525 	}
5526 
5527 
5528 	if ((capacity <= un->un_blockcount) ||
5529 	    (un->un_state != SD_STATE_NORMAL)) {
5530 #if defined(_SUNOS_VTOC_8)
5531 		/*
5532 		 * We can't let this happen on drives that are subdivided
5533 		 * into logical disks (i.e., that have an fdisk table).
5534 		 * The un_blockcount field should always hold the full media
5535 		 * size in sectors, period.  This code would overwrite
5536 		 * un_blockcount with the size of the Solaris fdisk partition.
5537 		 */
5538 		SD_ERROR(SD_LOG_COMMON, un,
5539 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5540 		    capacity, un->un_blockcount);
5541 		un->un_blockcount = capacity;
5542 		un->un_f_blockcount_is_valid = TRUE;
5543 #endif	/* defined(_SUNOS_VTOC_8) */
5544 		goto done;
5545 	}
5546 
5547 	if (ISCD(un)) {
5548 		/* For CDROMs, we trust that the data in the label is OK. */
5549 #if defined(_SUNOS_VTOC_8)
5550 		for (i = 0; i < NDKMAP; i++) {
5551 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5552 			    labp->dkl_map[i].dkl_cylno +
5553 			    labp->dkl_map[i].dkl_nblk  - 1;
5554 
5555 			if ((labp->dkl_map[i].dkl_nblk) &&
5556 			    (part_end > un->un_blockcount)) {
5557 				un->un_f_geometry_is_valid = FALSE;
5558 				break;
5559 			}
5560 		}
5561 #endif
5562 #if defined(_SUNOS_VTOC_16)
5563 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5564 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5565 			part_end = vpartp->p_start + vpartp->p_size;
5566 			if ((vpartp->p_size > 0) &&
5567 			    (part_end > un->un_blockcount)) {
5568 				un->un_f_geometry_is_valid = FALSE;
5569 				break;
5570 			}
5571 		}
5572 #endif
5573 	} else {
5574 		uint64_t t_capacity;
5575 		uint32_t t_lbasize;
5576 
5577 		mutex_exit(SD_MUTEX(un));
5578 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5579 		    path_flag);
5580 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5581 		mutex_enter(SD_MUTEX(un));
5582 
5583 		if (err == 0) {
5584 			sd_update_block_info(un, t_lbasize, t_capacity);
5585 		}
5586 
5587 		if (capacity > un->un_blockcount) {
5588 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5589 			    "Corrupt label - bad geometry\n");
5590 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5591 			    "Label says %u blocks; Drive says %llu blocks\n",
5592 			    capacity, (unsigned long long)un->un_blockcount);
5593 			un->un_f_geometry_is_valid = FALSE;
5594 			label_error = SD_LABEL_IS_INVALID;
5595 		}
5596 	}
5597 
5598 done:
5599 
5600 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5601 	SD_INFO(SD_LOG_COMMON, un,
5602 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5603 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5604 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5605 	SD_INFO(SD_LOG_COMMON, un,
5606 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5607 	    un->un_tgt_blocksize, un->un_blockcount,
5608 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5609 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5610 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5611 
5612 	ASSERT(mutex_owned(SD_MUTEX(un)));
5613 
5614 	return (label_error);
5615 }
5616 
5617 
5618 /*
5619  *    Function: sd_build_default_label
5620  *
5621  * Description: Generate a default label for those devices that do not have
5622  *		one, e.g., new media, removable cartridges, etc..
5623  *
5624  *     Context: Kernel thread only
5625  */
5626 
5627 static void
5628 sd_build_default_label(struct sd_lun *un)
5629 {
5630 #if defined(_SUNOS_VTOC_16)
5631 	uint_t	phys_spc;
5632 	uint_t	disksize;
5633 	struct	dk_geom un_g;
5634 #endif
5635 
5636 	ASSERT(un != NULL);
5637 	ASSERT(mutex_owned(SD_MUTEX(un)));
5638 
5639 #if defined(_SUNOS_VTOC_8)
5640 	/*
5641 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5642 	 * only. This may be a valid check for VTOC_16 as well.
5643 	 */
5644 	if (!ISREMOVABLE(un)) {
5645 		return;
5646 	}
5647 #endif
5648 
5649 	bzero(&un->un_g, sizeof (struct dk_geom));
5650 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5651 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5652 
5653 #if defined(_SUNOS_VTOC_8)
5654 
5655 	/*
5656 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5657 	 * But it is still necessary to set up various geometry information,
5658 	 * and we are doing this here.
5659 	 */
5660 
5661 	/*
5662 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
5663 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
5664 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
5665 	 * equal to C*H*S values.  This will cause some truncation of size due
5666 	 * to round off errors. For CD-ROMs, this truncation can have adverse
5667 	 * side effects, so returning ncyl and nhead as 1. The nsect will
5668 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
5669 	 */
5670 	if (ISCD(un)) {
5671 		/*
5672 		 * Preserve the old behavior for non-writable
5673 		 * medias. Since dkg_nsect is a ushort, it
5674 		 * will lose bits as cdroms have more than
5675 		 * 65536 sectors. So if we recalculate
5676 		 * capacity, it will become much shorter.
5677 		 * But the dkg_* information is not
5678 		 * used for CDROMs so it is OK. But for
5679 		 * Writable CDs we need this information
5680 		 * to be valid (for newfs say). So we
5681 		 * make nsect and nhead > 1 that way
5682 		 * nsect can still stay within ushort limit
5683 		 * without losing any bits.
5684 		 */
5685 		if (un->un_f_mmc_writable_media == TRUE) {
5686 			un->un_g.dkg_nhead = 64;
5687 			un->un_g.dkg_nsect = 32;
5688 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
5689 			un->un_blockcount = un->un_g.dkg_ncyl *
5690 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5691 		} else {
5692 			un->un_g.dkg_ncyl  = 1;
5693 			un->un_g.dkg_nhead = 1;
5694 			un->un_g.dkg_nsect = un->un_blockcount;
5695 		}
5696 	} else {
5697 		if (un->un_blockcount <= 0x1000) {
5698 			/* unlabeled SCSI floppy device */
5699 			un->un_g.dkg_nhead = 2;
5700 			un->un_g.dkg_ncyl = 80;
5701 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
5702 		} else if (un->un_blockcount <= 0x200000) {
5703 			un->un_g.dkg_nhead = 64;
5704 			un->un_g.dkg_nsect = 32;
5705 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
5706 		} else {
5707 			un->un_g.dkg_nhead = 255;
5708 			un->un_g.dkg_nsect = 63;
5709 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
5710 		}
5711 		un->un_blockcount =
5712 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5713 	}
5714 
5715 	un->un_g.dkg_acyl	= 0;
5716 	un->un_g.dkg_bcyl	= 0;
5717 	un->un_g.dkg_rpm	= 200;
5718 	un->un_asciilabel[0]	= '\0';
5719 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
5720 
5721 	un->un_map[0].dkl_cylno = 0;
5722 	un->un_map[0].dkl_nblk  = un->un_blockcount;
5723 	un->un_map[2].dkl_cylno = 0;
5724 	un->un_map[2].dkl_nblk  = un->un_blockcount;
5725 
5726 #elif defined(_SUNOS_VTOC_16)
5727 
5728 	if (un->un_solaris_size == 0) {
5729 		/*
5730 		 * Got fdisk table but no solaris entry therefore
5731 		 * don't create a default label
5732 		 */
5733 		un->un_f_geometry_is_valid = TRUE;
5734 		return;
5735 	}
5736 
5737 	/*
5738 	 * For CDs we continue to use the physical geometry to calculate
5739 	 * number of cylinders. All other devices must convert the
5740 	 * physical geometry (geom_cache) to values that will fit
5741 	 * in a dk_geom structure.
5742 	 */
5743 	if (ISCD(un)) {
5744 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
5745 	} else {
5746 		/* Convert physical geometry to disk geometry */
5747 		bzero(&un_g, sizeof (struct dk_geom));
5748 		sd_convert_geometry(un->un_blockcount, &un_g);
5749 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
5750 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5751 	}
5752 
5753 	ASSERT(phys_spc != 0);
5754 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
5755 	un->un_g.dkg_acyl = DK_ACYL;
5756 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
5757 	disksize = un->un_g.dkg_ncyl * phys_spc;
5758 
5759 	if (ISCD(un)) {
5760 		/*
5761 		 * CD's don't use the "heads * sectors * cyls"-type of
5762 		 * geometry, but instead use the entire capacity of the media.
5763 		 */
5764 		disksize = un->un_solaris_size;
5765 		un->un_g.dkg_nhead = 1;
5766 		un->un_g.dkg_nsect = 1;
5767 		un->un_g.dkg_rpm =
5768 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
5769 
5770 		un->un_vtoc.v_part[0].p_start = 0;
5771 		un->un_vtoc.v_part[0].p_size  = disksize;
5772 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
5773 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
5774 
5775 		un->un_map[0].dkl_cylno = 0;
5776 		un->un_map[0].dkl_nblk  = disksize;
5777 		un->un_offset[0] = 0;
5778 
5779 	} else {
5780 		/*
5781 		 * Hard disks and removable media cartridges
5782 		 */
5783 		un->un_g.dkg_rpm =
5784 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
5785 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
5786 
5787 		/* Add boot slice */
5788 		un->un_vtoc.v_part[8].p_start = 0;
5789 		un->un_vtoc.v_part[8].p_size  = phys_spc;
5790 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
5791 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
5792 
5793 		un->un_map[8].dkl_cylno = 0;
5794 		un->un_map[8].dkl_nblk  = phys_spc;
5795 		un->un_offset[8] = 0;
5796 	}
5797 
5798 	un->un_g.dkg_apc = 0;
5799 	un->un_vtoc.v_nparts = V_NUMPAR;
5800 	un->un_vtoc.v_version = V_VERSION;
5801 
5802 	/* Add backup slice */
5803 	un->un_vtoc.v_part[2].p_start = 0;
5804 	un->un_vtoc.v_part[2].p_size  = disksize;
5805 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
5806 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
5807 
5808 	un->un_map[2].dkl_cylno = 0;
5809 	un->un_map[2].dkl_nblk  = disksize;
5810 	un->un_offset[2] = 0;
5811 
5812 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
5813 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
5814 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5815 
5816 #else
5817 #error "No VTOC format defined."
5818 #endif
5819 
5820 	un->un_g.dkg_read_reinstruct  = 0;
5821 	un->un_g.dkg_write_reinstruct = 0;
5822 
5823 	un->un_g.dkg_intrlv = 1;
5824 
5825 	un->un_vtoc.v_sanity  = VTOC_SANE;
5826 
5827 	un->un_f_geometry_is_valid = TRUE;
5828 
5829 	SD_INFO(SD_LOG_COMMON, un,
5830 	    "sd_build_default_label: Default label created: "
5831 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
5832 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
5833 	    un->un_g.dkg_nsect, un->un_blockcount);
5834 }
5835 
5836 
5837 #if defined(_FIRMWARE_NEEDS_FDISK)
5838 /*
5839  * Max CHS values, as they are encoded into bytes, for 1022/254/63
5840  */
5841 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
5842 #define	LBA_MAX_CYL	(1022 & 0xFF)
5843 #define	LBA_MAX_HEAD	(254)
5844 
5845 
5846 /*
5847  *    Function: sd_has_max_chs_vals
5848  *
5849  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
5850  *
5851  *   Arguments: fdp - ptr to CHS info
5852  *
5853  * Return Code: True or false
5854  *
5855  *     Context: Any.
5856  */
5857 
5858 static int
5859 sd_has_max_chs_vals(struct ipart *fdp)
5860 {
5861 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
5862 	    (fdp->beghead == LBA_MAX_HEAD)	&&
5863 	    (fdp->begsect == LBA_MAX_SECT)	&&
5864 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
5865 	    (fdp->endhead == LBA_MAX_HEAD)	&&
5866 	    (fdp->endsect == LBA_MAX_SECT));
5867 }
5868 #endif
5869 
5870 
5871 /*
5872  *    Function: sd_inq_fill
5873  *
5874  * Description: Print a piece of inquiry data, cleaned up for non-printable
5875  *		characters and stopping at the first space character after
5876  *		the beginning of the passed string;
5877  *
5878  *   Arguments: p - source string
5879  *		l - maximum length to copy
5880  *		s - destination string
5881  *
5882  *     Context: Any.
5883  */
5884 
5885 static void
5886 sd_inq_fill(char *p, int l, char *s)
5887 {
5888 	unsigned i = 0;
5889 	char c;
5890 
5891 	while (i++ < l) {
5892 		if ((c = *p++) < ' ' || c >= 0x7F) {
5893 			c = '*';
5894 		} else if (i != 1 && c == ' ') {
5895 			break;
5896 		}
5897 		*s++ = c;
5898 	}
5899 	*s++ = 0;
5900 }
5901 
5902 
5903 /*
5904  *    Function: sd_register_devid
5905  *
5906  * Description: This routine will obtain the device id information from the
5907  *		target, obtain the serial number, and register the device
5908  *		id with the ddi framework.
5909  *
5910  *   Arguments: devi - the system's dev_info_t for the device.
5911  *		un - driver soft state (unit) structure
5912  *		reservation_flag - indicates if a reservation conflict
5913  *		occurred during attach
5914  *
5915  *     Context: Kernel Thread
5916  */
5917 static void
5918 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
5919 {
5920 	int		rval		= 0;
5921 	uchar_t		*inq80		= NULL;
5922 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5923 	size_t		inq80_resid	= 0;
5924 	uchar_t		*inq83		= NULL;
5925 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5926 	size_t		inq83_resid	= 0;
5927 
5928 	ASSERT(un != NULL);
5929 	ASSERT(mutex_owned(SD_MUTEX(un)));
5930 	ASSERT((SD_DEVINFO(un)) == devi);
5931 
5932 	/*
5933 	 * This is the case of antiquated Sun disk drives that have the
5934 	 * FAB_DEVID property set in the disk_table.  These drives
5935 	 * manage the devid's by storing them in last 2 available sectors
5936 	 * on the drive and have them fabricated by the ddi layer by calling
5937 	 * ddi_devid_init and passing the DEVID_FAB flag.
5938 	 */
5939 	if (un->un_f_opt_fab_devid == TRUE) {
5940 		/*
5941 		 * Depending on EINVAL isn't reliable, since a reserved disk
5942 		 * may result in invalid geometry, so check to make sure a
5943 		 * reservation conflict did not occur during attach.
5944 		 */
5945 		if ((sd_get_devid(un) == EINVAL) &&
5946 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5947 			/*
5948 			 * The devid is invalid AND there is no reservation
5949 			 * conflict.  Fabricate a new devid.
5950 			 */
5951 			(void) sd_create_devid(un);
5952 		}
5953 
5954 		/* Register the devid if it exists */
5955 		if (un->un_devid != NULL) {
5956 			(void) ddi_devid_register(SD_DEVINFO(un),
5957 			    un->un_devid);
5958 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5959 			    "sd_register_devid: Devid Fabricated\n");
5960 		}
5961 		return;
5962 	}
5963 
5964 	/*
5965 	 * We check the availibility of the World Wide Name (0x83) and Unit
5966 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5967 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5968 	 * 0x83 is availible, that is the best choice.  Our next choice is
5969 	 * 0x80.  If neither are availible, we munge the devid from the device
5970 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5971 	 * to fabricate a devid for non-Sun qualified disks.
5972 	 */
5973 	if (sd_check_vpd_page_support(un) == 0) {
5974 		/* collect page 80 data if available */
5975 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5976 
5977 			mutex_exit(SD_MUTEX(un));
5978 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5979 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
5980 			    0x01, 0x80, &inq80_resid);
5981 
5982 			if (rval != 0) {
5983 				kmem_free(inq80, inq80_len);
5984 				inq80 = NULL;
5985 				inq80_len = 0;
5986 			}
5987 			mutex_enter(SD_MUTEX(un));
5988 		}
5989 
5990 		/* collect page 83 data if available */
5991 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5992 
5993 			mutex_exit(SD_MUTEX(un));
5994 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5995 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
5996 			    0x01, 0x83, &inq83_resid);
5997 
5998 			if (rval != 0) {
5999 				kmem_free(inq83, inq83_len);
6000 				inq83 = NULL;
6001 				inq83_len = 0;
6002 			}
6003 			mutex_enter(SD_MUTEX(un));
6004 		}
6005 	}
6006 
6007 	/* encode best devid possible based on data available */
6008 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
6009 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
6010 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
6011 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
6012 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
6013 
6014 		/* devid successfully encoded, register devid */
6015 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
6016 
6017 	} else {
6018 		/*
6019 		 * Unable to encode a devid based on data available.
6020 		 * This is not a Sun qualified disk.  Older Sun disk
6021 		 * drives that have the SD_FAB_DEVID property
6022 		 * set in the disk_table and non Sun qualified
6023 		 * disks are treated in the same manner.  These
6024 		 * drives manage the devid's by storing them in
6025 		 * last 2 available sectors on the drive and
6026 		 * have them fabricated by the ddi layer by
6027 		 * calling ddi_devid_init and passing the
6028 		 * DEVID_FAB flag.
6029 		 * Create a fabricate devid only if there's no
6030 		 * fabricate devid existed.
6031 		 */
6032 		if (sd_get_devid(un) == EINVAL) {
6033 			(void) sd_create_devid(un);
6034 			un->un_f_opt_fab_devid = TRUE;
6035 		}
6036 
6037 		/* Register the devid if it exists */
6038 		if (un->un_devid != NULL) {
6039 			(void) ddi_devid_register(SD_DEVINFO(un),
6040 			    un->un_devid);
6041 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6042 			    "sd_register_devid: devid fabricated using "
6043 			    "ddi framework\n");
6044 		}
6045 	}
6046 
6047 	/* clean up resources */
6048 	if (inq80 != NULL) {
6049 		kmem_free(inq80, inq80_len);
6050 	}
6051 	if (inq83 != NULL) {
6052 		kmem_free(inq83, inq83_len);
6053 	}
6054 }
6055 
6056 static daddr_t
6057 sd_get_devid_block(struct sd_lun *un)
6058 {
6059 	daddr_t			spc, blk, head, cyl;
6060 
6061 	if (un->un_blockcount <= DK_MAX_BLOCKS) {
6062 		/* this geometry doesn't allow us to write a devid */
6063 		if (un->un_g.dkg_acyl < 2) {
6064 			return (-1);
6065 		}
6066 
6067 		/*
6068 		 * Subtract 2 guarantees that the next to last cylinder
6069 		 * is used
6070 		 */
6071 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6072 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6073 		head = un->un_g.dkg_nhead - 1;
6074 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6075 		    (head * un->un_g.dkg_nsect) + 1;
6076 	} else {
6077 		if (un->un_reserved != -1) {
6078 			blk = un->un_map[un->un_reserved].dkl_cylno + 1;
6079 		} else {
6080 			return (-1);
6081 		}
6082 	}
6083 	return (blk);
6084 }
6085 
6086 /*
6087  *    Function: sd_get_devid
6088  *
6089  * Description: This routine will return 0 if a valid device id has been
6090  *		obtained from the target and stored in the soft state. If a
6091  *		valid device id has not been previously read and stored, a
6092  *		read attempt will be made.
6093  *
6094  *   Arguments: un - driver soft state (unit) structure
6095  *
6096  * Return Code: 0 if we successfully get the device id
6097  *
6098  *     Context: Kernel Thread
6099  */
6100 
6101 static int
6102 sd_get_devid(struct sd_lun *un)
6103 {
6104 	struct dk_devid		*dkdevid;
6105 	ddi_devid_t		tmpid;
6106 	uint_t			*ip;
6107 	size_t			sz;
6108 	daddr_t			blk;
6109 	int			status;
6110 	int			chksum;
6111 	int			i;
6112 	size_t			buffer_size;
6113 
6114 	ASSERT(un != NULL);
6115 	ASSERT(mutex_owned(SD_MUTEX(un)));
6116 
6117 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6118 	    un);
6119 
6120 	if (un->un_devid != NULL) {
6121 		return (0);
6122 	}
6123 
6124 	blk = sd_get_devid_block(un);
6125 	if (blk < 0)
6126 		return (EINVAL);
6127 
6128 	/*
6129 	 * Read and verify device id, stored in the reserved cylinders at the
6130 	 * end of the disk. Backup label is on the odd sectors of the last
6131 	 * track of the last cylinder. Device id will be on track of the next
6132 	 * to last cylinder.
6133 	 */
6134 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6135 	mutex_exit(SD_MUTEX(un));
6136 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6137 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6138 	    SD_PATH_DIRECT);
6139 	if (status != 0) {
6140 		goto error;
6141 	}
6142 
6143 	/* Validate the revision */
6144 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6145 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6146 		status = EINVAL;
6147 		goto error;
6148 	}
6149 
6150 	/* Calculate the checksum */
6151 	chksum = 0;
6152 	ip = (uint_t *)dkdevid;
6153 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6154 	    i++) {
6155 		chksum ^= ip[i];
6156 	}
6157 
6158 	/* Compare the checksums */
6159 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6160 		status = EINVAL;
6161 		goto error;
6162 	}
6163 
6164 	/* Validate the device id */
6165 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6166 		status = EINVAL;
6167 		goto error;
6168 	}
6169 
6170 	/*
6171 	 * Store the device id in the driver soft state
6172 	 */
6173 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6174 	tmpid = kmem_alloc(sz, KM_SLEEP);
6175 
6176 	mutex_enter(SD_MUTEX(un));
6177 
6178 	un->un_devid = tmpid;
6179 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6180 
6181 	kmem_free(dkdevid, buffer_size);
6182 
6183 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6184 
6185 	return (status);
6186 error:
6187 	mutex_enter(SD_MUTEX(un));
6188 	kmem_free(dkdevid, buffer_size);
6189 	return (status);
6190 }
6191 
6192 
6193 /*
6194  *    Function: sd_create_devid
6195  *
6196  * Description: This routine will fabricate the device id and write it
6197  *		to the disk.
6198  *
6199  *   Arguments: un - driver soft state (unit) structure
6200  *
6201  * Return Code: value of the fabricated device id
6202  *
6203  *     Context: Kernel Thread
6204  */
6205 
6206 static ddi_devid_t
6207 sd_create_devid(struct sd_lun *un)
6208 {
6209 	ASSERT(un != NULL);
6210 
6211 	/* Fabricate the devid */
6212 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6213 	    == DDI_FAILURE) {
6214 		return (NULL);
6215 	}
6216 
6217 	/* Write the devid to disk */
6218 	if (sd_write_deviceid(un) != 0) {
6219 		ddi_devid_free(un->un_devid);
6220 		un->un_devid = NULL;
6221 	}
6222 
6223 	return (un->un_devid);
6224 }
6225 
6226 
6227 /*
6228  *    Function: sd_write_deviceid
6229  *
6230  * Description: This routine will write the device id to the disk
6231  *		reserved sector.
6232  *
6233  *   Arguments: un - driver soft state (unit) structure
6234  *
6235  * Return Code: EINVAL
6236  *		value returned by sd_send_scsi_cmd
6237  *
6238  *     Context: Kernel Thread
6239  */
6240 
6241 static int
6242 sd_write_deviceid(struct sd_lun *un)
6243 {
6244 	struct dk_devid		*dkdevid;
6245 	daddr_t			blk;
6246 	uint_t			*ip, chksum;
6247 	int			status;
6248 	int			i;
6249 
6250 	ASSERT(mutex_owned(SD_MUTEX(un)));
6251 
6252 	blk = sd_get_devid_block(un);
6253 	if (blk < 0)
6254 		return (-1);
6255 	mutex_exit(SD_MUTEX(un));
6256 
6257 	/* Allocate the buffer */
6258 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6259 
6260 	/* Fill in the revision */
6261 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6262 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6263 
6264 	/* Copy in the device id */
6265 	mutex_enter(SD_MUTEX(un));
6266 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6267 	    ddi_devid_sizeof(un->un_devid));
6268 	mutex_exit(SD_MUTEX(un));
6269 
6270 	/* Calculate the checksum */
6271 	chksum = 0;
6272 	ip = (uint_t *)dkdevid;
6273 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6274 	    i++) {
6275 		chksum ^= ip[i];
6276 	}
6277 
6278 	/* Fill-in checksum */
6279 	DKD_FORMCHKSUM(chksum, dkdevid);
6280 
6281 	/* Write the reserved sector */
6282 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6283 	    SD_PATH_DIRECT);
6284 
6285 	kmem_free(dkdevid, un->un_sys_blocksize);
6286 
6287 	mutex_enter(SD_MUTEX(un));
6288 	return (status);
6289 }
6290 
6291 
6292 /*
6293  *    Function: sd_check_vpd_page_support
6294  *
6295  * Description: This routine sends an inquiry command with the EVPD bit set and
6296  *		a page code of 0x00 to the device. It is used to determine which
6297  *		vital product pages are availible to find the devid. We are
6298  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6299  *		device does not support that command.
6300  *
6301  *   Arguments: un  - driver soft state (unit) structure
6302  *
6303  * Return Code: 0 - success
6304  *		1 - check condition
6305  *
6306  *     Context: This routine can sleep.
6307  */
6308 
6309 static int
6310 sd_check_vpd_page_support(struct sd_lun *un)
6311 {
6312 	uchar_t	*page_list	= NULL;
6313 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6314 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6315 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6316 	int    	rval		= 0;
6317 	int	counter;
6318 
6319 	ASSERT(un != NULL);
6320 	ASSERT(mutex_owned(SD_MUTEX(un)));
6321 
6322 	mutex_exit(SD_MUTEX(un));
6323 
6324 	/*
6325 	 * We'll set the page length to the maximum to save figuring it out
6326 	 * with an additional call.
6327 	 */
6328 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6329 
6330 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6331 	    page_code, NULL);
6332 
6333 	mutex_enter(SD_MUTEX(un));
6334 
6335 	/*
6336 	 * Now we must validate that the device accepted the command, as some
6337 	 * drives do not support it.  If the drive does support it, we will
6338 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6339 	 * not, we return -1.
6340 	 */
6341 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6342 		/* Loop to find one of the 2 pages we need */
6343 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6344 
6345 		/*
6346 		 * Pages are returned in ascending order, and 0x83 is what we
6347 		 * are hoping for.
6348 		 */
6349 		while ((page_list[counter] <= 0x83) &&
6350 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6351 		    VPD_HEAD_OFFSET))) {
6352 			/*
6353 			 * Add 3 because page_list[3] is the number of
6354 			 * pages minus 3
6355 			 */
6356 
6357 			switch (page_list[counter]) {
6358 			case 0x00:
6359 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6360 				break;
6361 			case 0x80:
6362 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6363 				break;
6364 			case 0x81:
6365 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6366 				break;
6367 			case 0x82:
6368 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6369 				break;
6370 			case 0x83:
6371 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6372 				break;
6373 			}
6374 			counter++;
6375 		}
6376 
6377 	} else {
6378 		rval = -1;
6379 
6380 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6381 		    "sd_check_vpd_page_support: This drive does not implement "
6382 		    "VPD pages.\n");
6383 	}
6384 
6385 	kmem_free(page_list, page_length);
6386 
6387 	return (rval);
6388 }
6389 
6390 
6391 /*
6392  *    Function: sd_setup_pm
6393  *
6394  * Description: Initialize Power Management on the device
6395  *
6396  *     Context: Kernel Thread
6397  */
6398 
6399 static void
6400 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6401 {
6402 	uint_t	log_page_size;
6403 	uchar_t	*log_page_data;
6404 	int	rval;
6405 
6406 	/*
6407 	 * Since we are called from attach, holding a mutex for
6408 	 * un is unnecessary. Because some of the routines called
6409 	 * from here require SD_MUTEX to not be held, assert this
6410 	 * right up front.
6411 	 */
6412 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6413 	/*
6414 	 * Since the sd device does not have the 'reg' property,
6415 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6416 	 * The following code is to tell cpr that this device
6417 	 * DOES need to be suspended and resumed.
6418 	 */
6419 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6420 	    "pm-hardware-state", "needs-suspend-resume");
6421 
6422 	/*
6423 	 * Check if HBA has set the "pm-capable" property.
6424 	 * If "pm-capable" exists and is non-zero then we can
6425 	 * power manage the device without checking the start/stop
6426 	 * cycle count log sense page.
6427 	 *
6428 	 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
6429 	 * then we should not power manage the device.
6430 	 *
6431 	 * If "pm-capable" doesn't exist then un->un_pm_capable_prop will
6432 	 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case, sd will
6433 	 * check the start/stop cycle count log sense page and power manage
6434 	 * the device if the cycle count limit has not been exceeded.
6435 	 */
6436 	un->un_pm_capable_prop =
6437 	    ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6438 		"pm-capable", SD_PM_CAPABLE_UNDEFINED);
6439 	if (un->un_pm_capable_prop != SD_PM_CAPABLE_UNDEFINED) {
6440 		/*
6441 		 * pm-capable property exists.
6442 		 *
6443 		 * Convert "TRUE" values for un_pm_capable_prop to
6444 		 * SD_PM_CAPABLE_TRUE (1) to make it easier to check later.
6445 		 * "TRUE" values are any values except SD_PM_CAPABLE_FALSE (0)
6446 		 *  and SD_PM_CAPABLE_UNDEFINED (-1)
6447 		 */
6448 		if (un->un_pm_capable_prop != SD_PM_CAPABLE_FALSE) {
6449 			un->un_pm_capable_prop = SD_PM_CAPABLE_TRUE;
6450 		}
6451 
6452 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6453 		    "sd_unit_attach: un:0x%p pm-capable "
6454 		    "property set to %d.\n", un, un->un_pm_capable_prop);
6455 	}
6456 
6457 	/*
6458 	 * This complies with the new power management framework
6459 	 * for certain desktop machines. Create the pm_components
6460 	 * property as a string array property.
6461 	 *
6462 	 * If this is a removable device or if the pm-capable property
6463 	 * is SD_PM_CAPABLE_TRUE (1) then we should create the
6464 	 * pm_components property without checking for the existance of
6465 	 * the start-stop cycle counter log page
6466 	 */
6467 	if (ISREMOVABLE(un) ||
6468 	    un->un_pm_capable_prop == SD_PM_CAPABLE_TRUE) {
6469 		/*
6470 		 * not all devices have a motor, try it first.
6471 		 * some devices may return ILLEGAL REQUEST, some
6472 		 * will hang
6473 		 */
6474 		un->un_f_start_stop_supported = TRUE;
6475 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6476 		    SD_PATH_DIRECT) != 0) {
6477 			un->un_f_start_stop_supported = FALSE;
6478 		}
6479 
6480 		/*
6481 		 * create pm properties anyways otherwise the parent can't
6482 		 * go to sleep
6483 		 */
6484 		(void) sd_create_pm_components(devi, un);
6485 		un->un_f_pm_is_enabled = TRUE;
6486 
6487 		/*
6488 		 * Need to create a zero length (Boolean) property
6489 		 * removable-media for the removable media devices.
6490 		 * Note that the return value of the property is not being
6491 		 * checked, since if unable to create the property
6492 		 * then do not want the attach to fail altogether. Consistent
6493 		 * with other property creation in attach.
6494 		 */
6495 		if (ISREMOVABLE(un)) {
6496 			(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
6497 			    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
6498 		}
6499 		return;
6500 	}
6501 
6502 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6503 
6504 #ifdef	SDDEBUG
6505 	if (sd_force_pm_supported) {
6506 		/* Force a successful result */
6507 		rval = 1;
6508 	}
6509 #endif
6510 
6511 	/*
6512 	 * If the start-stop cycle counter log page is not supported
6513 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6514 	 * then we should not create the pm_components property.
6515 	 */
6516 	if (rval == -1 || un->un_pm_capable_prop == SD_PM_CAPABLE_FALSE) {
6517 		/*
6518 		 * Error.
6519 		 * Reading log sense failed, most likely this is
6520 		 * an older drive that does not support log sense.
6521 		 * If this fails auto-pm is not supported.
6522 		 */
6523 		un->un_power_level = SD_SPINDLE_ON;
6524 		un->un_f_pm_is_enabled = FALSE;
6525 
6526 	} else if (rval == 0) {
6527 		/*
6528 		 * Page not found.
6529 		 * The start stop cycle counter is implemented as page
6530 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6531 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6532 		 */
6533 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6534 			/*
6535 			 * Page found, use this one.
6536 			 */
6537 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6538 			un->un_f_pm_is_enabled = TRUE;
6539 		} else {
6540 			/*
6541 			 * Error or page not found.
6542 			 * auto-pm is not supported for this device.
6543 			 */
6544 			un->un_power_level = SD_SPINDLE_ON;
6545 			un->un_f_pm_is_enabled = FALSE;
6546 		}
6547 	} else {
6548 		/*
6549 		 * Page found, use it.
6550 		 */
6551 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6552 		un->un_f_pm_is_enabled = TRUE;
6553 	}
6554 
6555 
6556 	if (un->un_f_pm_is_enabled == TRUE) {
6557 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6558 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6559 
6560 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6561 		    log_page_size, un->un_start_stop_cycle_page,
6562 		    0x01, 0, SD_PATH_DIRECT);
6563 #ifdef	SDDEBUG
6564 		if (sd_force_pm_supported) {
6565 			/* Force a successful result */
6566 			rval = 0;
6567 		}
6568 #endif
6569 
6570 		/*
6571 		 * If the Log sense for Page( Start/stop cycle counter page)
6572 		 * succeeds, then power managment is supported and we can
6573 		 * enable auto-pm.
6574 		 */
6575 		if (rval == 0)  {
6576 			(void) sd_create_pm_components(devi, un);
6577 		} else {
6578 			un->un_power_level = SD_SPINDLE_ON;
6579 			un->un_f_pm_is_enabled = FALSE;
6580 		}
6581 
6582 		kmem_free(log_page_data, log_page_size);
6583 	}
6584 }
6585 
6586 
6587 /*
6588  *    Function: sd_create_pm_components
6589  *
6590  * Description: Initialize PM property.
6591  *
6592  *     Context: Kernel thread context
6593  */
6594 
6595 static void
6596 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6597 {
6598 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6599 
6600 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6601 
6602 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6603 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6604 		/*
6605 		 * When components are initially created they are idle,
6606 		 * power up any non-removables.
6607 		 * Note: the return value of pm_raise_power can't be used
6608 		 * for determining if PM should be enabled for this device.
6609 		 * Even if you check the return values and remove this
6610 		 * property created above, the PM framework will not honor the
6611 		 * change after the first call to pm_raise_power. Hence,
6612 		 * removal of that property does not help if pm_raise_power
6613 		 * fails. In the case of removable media, the start/stop
6614 		 * will fail if the media is not present.
6615 		 */
6616 		if ((!ISREMOVABLE(un)) && (pm_raise_power(SD_DEVINFO(un), 0,
6617 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6618 			mutex_enter(SD_MUTEX(un));
6619 			un->un_power_level = SD_SPINDLE_ON;
6620 			mutex_enter(&un->un_pm_mutex);
6621 			/* Set to on and not busy. */
6622 			un->un_pm_count = 0;
6623 		} else {
6624 			mutex_enter(SD_MUTEX(un));
6625 			un->un_power_level = SD_SPINDLE_OFF;
6626 			mutex_enter(&un->un_pm_mutex);
6627 			/* Set to off. */
6628 			un->un_pm_count = -1;
6629 		}
6630 		mutex_exit(&un->un_pm_mutex);
6631 		mutex_exit(SD_MUTEX(un));
6632 	} else {
6633 		un->un_power_level = SD_SPINDLE_ON;
6634 		un->un_f_pm_is_enabled = FALSE;
6635 	}
6636 }
6637 
6638 
6639 /*
6640  *    Function: sd_ddi_suspend
6641  *
6642  * Description: Performs system power-down operations. This includes
6643  *		setting the drive state to indicate its suspended so
6644  *		that no new commands will be accepted. Also, wait for
6645  *		all commands that are in transport or queued to a timer
6646  *		for retry to complete. All timeout threads are cancelled.
6647  *
6648  * Return Code: DDI_FAILURE or DDI_SUCCESS
6649  *
6650  *     Context: Kernel thread context
6651  */
6652 
6653 static int
6654 sd_ddi_suspend(dev_info_t *devi)
6655 {
6656 	struct	sd_lun	*un;
6657 	clock_t		wait_cmds_complete;
6658 
6659 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6660 	if (un == NULL) {
6661 		return (DDI_FAILURE);
6662 	}
6663 
6664 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6665 
6666 	mutex_enter(SD_MUTEX(un));
6667 
6668 	/* Return success if the device is already suspended. */
6669 	if (un->un_state == SD_STATE_SUSPENDED) {
6670 		mutex_exit(SD_MUTEX(un));
6671 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6672 		    "device already suspended, exiting\n");
6673 		return (DDI_SUCCESS);
6674 	}
6675 
6676 	/* Return failure if the device is being used by HA */
6677 	if (un->un_resvd_status &
6678 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6679 		mutex_exit(SD_MUTEX(un));
6680 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6681 		    "device in use by HA, exiting\n");
6682 		return (DDI_FAILURE);
6683 	}
6684 
6685 	/*
6686 	 * Return failure if the device is in a resource wait
6687 	 * or power changing state.
6688 	 */
6689 	if ((un->un_state == SD_STATE_RWAIT) ||
6690 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6691 		mutex_exit(SD_MUTEX(un));
6692 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6693 		    "device in resource wait state, exiting\n");
6694 		return (DDI_FAILURE);
6695 	}
6696 
6697 
6698 	un->un_save_state = un->un_last_state;
6699 	New_state(un, SD_STATE_SUSPENDED);
6700 
6701 	/*
6702 	 * Wait for all commands that are in transport or queued to a timer
6703 	 * for retry to complete.
6704 	 *
6705 	 * While waiting, no new commands will be accepted or sent because of
6706 	 * the new state we set above.
6707 	 *
6708 	 * Wait till current operation has completed. If we are in the resource
6709 	 * wait state (with an intr outstanding) then we need to wait till the
6710 	 * intr completes and starts the next cmd. We want to wait for
6711 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6712 	 */
6713 	wait_cmds_complete = ddi_get_lbolt() +
6714 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6715 
6716 	while (un->un_ncmds_in_transport != 0) {
6717 		/*
6718 		 * Fail if commands do not finish in the specified time.
6719 		 */
6720 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6721 		    wait_cmds_complete) == -1) {
6722 			/*
6723 			 * Undo the state changes made above. Everything
6724 			 * must go back to it's original value.
6725 			 */
6726 			Restore_state(un);
6727 			un->un_last_state = un->un_save_state;
6728 			/* Wake up any threads that might be waiting. */
6729 			cv_broadcast(&un->un_suspend_cv);
6730 			mutex_exit(SD_MUTEX(un));
6731 			SD_ERROR(SD_LOG_IO_PM, un,
6732 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6733 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6734 			return (DDI_FAILURE);
6735 		}
6736 	}
6737 
6738 	/*
6739 	 * Cancel SCSI watch thread and timeouts, if any are active
6740 	 */
6741 
6742 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6743 		opaque_t temp_token = un->un_swr_token;
6744 		mutex_exit(SD_MUTEX(un));
6745 		scsi_watch_suspend(temp_token);
6746 		mutex_enter(SD_MUTEX(un));
6747 	}
6748 
6749 	if (un->un_reset_throttle_timeid != NULL) {
6750 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6751 		un->un_reset_throttle_timeid = NULL;
6752 		mutex_exit(SD_MUTEX(un));
6753 		(void) untimeout(temp_id);
6754 		mutex_enter(SD_MUTEX(un));
6755 	}
6756 
6757 	if (un->un_dcvb_timeid != NULL) {
6758 		timeout_id_t temp_id = un->un_dcvb_timeid;
6759 		un->un_dcvb_timeid = NULL;
6760 		mutex_exit(SD_MUTEX(un));
6761 		(void) untimeout(temp_id);
6762 		mutex_enter(SD_MUTEX(un));
6763 	}
6764 
6765 	mutex_enter(&un->un_pm_mutex);
6766 	if (un->un_pm_timeid != NULL) {
6767 		timeout_id_t temp_id = un->un_pm_timeid;
6768 		un->un_pm_timeid = NULL;
6769 		mutex_exit(&un->un_pm_mutex);
6770 		mutex_exit(SD_MUTEX(un));
6771 		(void) untimeout(temp_id);
6772 		mutex_enter(SD_MUTEX(un));
6773 	} else {
6774 		mutex_exit(&un->un_pm_mutex);
6775 	}
6776 
6777 	if (un->un_retry_timeid != NULL) {
6778 		timeout_id_t temp_id = un->un_retry_timeid;
6779 		un->un_retry_timeid = NULL;
6780 		mutex_exit(SD_MUTEX(un));
6781 		(void) untimeout(temp_id);
6782 		mutex_enter(SD_MUTEX(un));
6783 	}
6784 
6785 	if (un->un_direct_priority_timeid != NULL) {
6786 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6787 		un->un_direct_priority_timeid = NULL;
6788 		mutex_exit(SD_MUTEX(un));
6789 		(void) untimeout(temp_id);
6790 		mutex_enter(SD_MUTEX(un));
6791 	}
6792 
6793 	if (un->un_f_is_fibre == TRUE) {
6794 		/*
6795 		 * Remove callbacks for insert and remove events
6796 		 */
6797 		if (un->un_insert_event != NULL) {
6798 			mutex_exit(SD_MUTEX(un));
6799 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6800 			mutex_enter(SD_MUTEX(un));
6801 			un->un_insert_event = NULL;
6802 		}
6803 
6804 		if (un->un_remove_event != NULL) {
6805 			mutex_exit(SD_MUTEX(un));
6806 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6807 			mutex_enter(SD_MUTEX(un));
6808 			un->un_remove_event = NULL;
6809 		}
6810 	}
6811 
6812 	mutex_exit(SD_MUTEX(un));
6813 
6814 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6815 
6816 	return (DDI_SUCCESS);
6817 }
6818 
6819 
6820 /*
6821  *    Function: sd_ddi_pm_suspend
6822  *
6823  * Description: Set the drive state to low power.
6824  *		Someone else is required to actually change the drive
6825  *		power level.
6826  *
6827  *   Arguments: un - driver soft state (unit) structure
6828  *
6829  * Return Code: DDI_FAILURE or DDI_SUCCESS
6830  *
6831  *     Context: Kernel thread context
6832  */
6833 
6834 static int
6835 sd_ddi_pm_suspend(struct sd_lun *un)
6836 {
6837 	ASSERT(un != NULL);
6838 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
6839 
6840 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6841 	mutex_enter(SD_MUTEX(un));
6842 
6843 	/*
6844 	 * Exit if power management is not enabled for this device, or if
6845 	 * the device is being used by HA.
6846 	 */
6847 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6848 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6849 		mutex_exit(SD_MUTEX(un));
6850 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
6851 		return (DDI_SUCCESS);
6852 	}
6853 
6854 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
6855 	    un->un_ncmds_in_driver);
6856 
6857 	/*
6858 	 * See if the device is not busy, ie.:
6859 	 *    - we have no commands in the driver for this device
6860 	 *    - not waiting for resources
6861 	 */
6862 	if ((un->un_ncmds_in_driver == 0) &&
6863 	    (un->un_state != SD_STATE_RWAIT)) {
6864 		/*
6865 		 * The device is not busy, so it is OK to go to low power state.
6866 		 * Indicate low power, but rely on someone else to actually
6867 		 * change it.
6868 		 */
6869 		mutex_enter(&un->un_pm_mutex);
6870 		un->un_pm_count = -1;
6871 		mutex_exit(&un->un_pm_mutex);
6872 		un->un_power_level = SD_SPINDLE_OFF;
6873 	}
6874 
6875 	mutex_exit(SD_MUTEX(un));
6876 
6877 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
6878 
6879 	return (DDI_SUCCESS);
6880 }
6881 
6882 
6883 /*
6884  *    Function: sd_ddi_resume
6885  *
6886  * Description: Performs system power-up operations..
6887  *
6888  * Return Code: DDI_SUCCESS
6889  *		DDI_FAILURE
6890  *
6891  *     Context: Kernel thread context
6892  */
6893 
6894 static int
6895 sd_ddi_resume(dev_info_t *devi)
6896 {
6897 	struct	sd_lun	*un;
6898 
6899 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6900 	if (un == NULL) {
6901 		return (DDI_FAILURE);
6902 	}
6903 
6904 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6905 
6906 	mutex_enter(SD_MUTEX(un));
6907 	Restore_state(un);
6908 
6909 	/*
6910 	 * Restore the state which was saved to give the
6911 	 * the right state in un_last_state
6912 	 */
6913 	un->un_last_state = un->un_save_state;
6914 	/*
6915 	 * Note: throttle comes back at full.
6916 	 * Also note: this MUST be done before calling pm_raise_power
6917 	 * otherwise the system can get hung in biowait. The scenario where
6918 	 * this'll happen is under cpr suspend. Writing of the system
6919 	 * state goes through sddump, which writes 0 to un_throttle. If
6920 	 * writing the system state then fails, example if the partition is
6921 	 * too small, then cpr attempts a resume. If throttle isn't restored
6922 	 * from the saved value until after calling pm_raise_power then
6923 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6924 	 * in biowait.
6925 	 */
6926 	un->un_throttle = un->un_saved_throttle;
6927 
6928 	/*
6929 	 * The chance of failure is very rare as the only command done in power
6930 	 * entry point is START command when you transition from 0->1 or
6931 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6932 	 * which suspend was done. Ignore the return value as the resume should
6933 	 * not be failed. In the case of removable media the media need not be
6934 	 * inserted and hence there is a chance that raise power will fail with
6935 	 * media not present.
6936 	 */
6937 	if (!ISREMOVABLE(un)) {
6938 		mutex_exit(SD_MUTEX(un));
6939 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6940 		mutex_enter(SD_MUTEX(un));
6941 	}
6942 
6943 	/*
6944 	 * Don't broadcast to the suspend cv and therefore possibly
6945 	 * start I/O until after power has been restored.
6946 	 */
6947 	cv_broadcast(&un->un_suspend_cv);
6948 	cv_broadcast(&un->un_state_cv);
6949 
6950 	/* restart thread */
6951 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6952 		scsi_watch_resume(un->un_swr_token);
6953 	}
6954 
6955 #if (defined(__fibre))
6956 	if (un->un_f_is_fibre == TRUE) {
6957 		/*
6958 		 * Add callbacks for insert and remove events
6959 		 */
6960 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6961 			sd_init_event_callbacks(un);
6962 		}
6963 	}
6964 #endif
6965 
6966 	/*
6967 	 * Transport any pending commands to the target.
6968 	 *
6969 	 * If this is a low-activity device commands in queue will have to wait
6970 	 * until new commands come in, which may take awhile. Also, we
6971 	 * specifically don't check un_ncmds_in_transport because we know that
6972 	 * there really are no commands in progress after the unit was
6973 	 * suspended and we could have reached the throttle level, been
6974 	 * suspended, and have no new commands coming in for awhile. Highly
6975 	 * unlikely, but so is the low-activity disk scenario.
6976 	 */
6977 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6978 
6979 	sd_start_cmds(un, NULL);
6980 	mutex_exit(SD_MUTEX(un));
6981 
6982 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6983 
6984 	return (DDI_SUCCESS);
6985 }
6986 
6987 
6988 /*
6989  *    Function: sd_ddi_pm_resume
6990  *
6991  * Description: Set the drive state to powered on.
6992  *		Someone else is required to actually change the drive
6993  *		power level.
6994  *
6995  *   Arguments: un - driver soft state (unit) structure
6996  *
6997  * Return Code: DDI_SUCCESS
6998  *
6999  *     Context: Kernel thread context
7000  */
7001 
7002 static int
7003 sd_ddi_pm_resume(struct sd_lun *un)
7004 {
7005 	ASSERT(un != NULL);
7006 
7007 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7008 	mutex_enter(SD_MUTEX(un));
7009 	un->un_power_level = SD_SPINDLE_ON;
7010 
7011 	ASSERT(!mutex_owned(&un->un_pm_mutex));
7012 	mutex_enter(&un->un_pm_mutex);
7013 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
7014 		un->un_pm_count++;
7015 		ASSERT(un->un_pm_count == 0);
7016 		/*
7017 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
7018 		 * un_suspend_cv is for a system resume, not a power management
7019 		 * device resume. (4297749)
7020 		 *	 cv_broadcast(&un->un_suspend_cv);
7021 		 */
7022 	}
7023 	mutex_exit(&un->un_pm_mutex);
7024 	mutex_exit(SD_MUTEX(un));
7025 
7026 	return (DDI_SUCCESS);
7027 }
7028 
7029 
7030 /*
7031  *    Function: sd_pm_idletimeout_handler
7032  *
7033  * Description: A timer routine that's active only while a device is busy.
7034  *		The purpose is to extend slightly the pm framework's busy
7035  *		view of the device to prevent busy/idle thrashing for
7036  *		back-to-back commands. Do this by comparing the current time
7037  *		to the time at which the last command completed and when the
7038  *		difference is greater than sd_pm_idletime, call
7039  *		pm_idle_component. In addition to indicating idle to the pm
7040  *		framework, update the chain type to again use the internal pm
7041  *		layers of the driver.
7042  *
7043  *   Arguments: arg - driver soft state (unit) structure
7044  *
7045  *     Context: Executes in a timeout(9F) thread context
7046  */
7047 
7048 static void
7049 sd_pm_idletimeout_handler(void *arg)
7050 {
7051 	struct sd_lun *un = arg;
7052 
7053 	time_t	now;
7054 
7055 	mutex_enter(&sd_detach_mutex);
7056 	if (un->un_detach_count != 0) {
7057 		/* Abort if the instance is detaching */
7058 		mutex_exit(&sd_detach_mutex);
7059 		return;
7060 	}
7061 	mutex_exit(&sd_detach_mutex);
7062 
7063 	now = ddi_get_time();
7064 	/*
7065 	 * Grab both mutexes, in the proper order, since we're accessing
7066 	 * both PM and softstate variables.
7067 	 */
7068 	mutex_enter(SD_MUTEX(un));
7069 	mutex_enter(&un->un_pm_mutex);
7070 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7071 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7072 		/*
7073 		 * Update the chain types.
7074 		 * This takes affect on the next new command received.
7075 		 */
7076 		if (ISREMOVABLE(un)) {
7077 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7078 		} else {
7079 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7080 		}
7081 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7082 
7083 		SD_TRACE(SD_LOG_IO_PM, un,
7084 		    "sd_pm_idletimeout_handler: idling device\n");
7085 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7086 		un->un_pm_idle_timeid = NULL;
7087 	} else {
7088 		un->un_pm_idle_timeid =
7089 			timeout(sd_pm_idletimeout_handler, un,
7090 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7091 	}
7092 	mutex_exit(&un->un_pm_mutex);
7093 	mutex_exit(SD_MUTEX(un));
7094 }
7095 
7096 
7097 /*
7098  *    Function: sd_pm_timeout_handler
7099  *
7100  * Description: Callback to tell framework we are idle.
7101  *
7102  *     Context: timeout(9f) thread context.
7103  */
7104 
7105 static void
7106 sd_pm_timeout_handler(void *arg)
7107 {
7108 	struct sd_lun *un = arg;
7109 
7110 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7111 	mutex_enter(&un->un_pm_mutex);
7112 	un->un_pm_timeid = NULL;
7113 	mutex_exit(&un->un_pm_mutex);
7114 }
7115 
7116 
7117 /*
7118  *    Function: sdpower
7119  *
7120  * Description: PM entry point.
7121  *
7122  * Return Code: DDI_SUCCESS
7123  *		DDI_FAILURE
7124  *
7125  *     Context: Kernel thread context
7126  */
7127 
7128 static int
7129 sdpower(dev_info_t *devi, int component, int level)
7130 {
7131 	struct sd_lun	*un;
7132 	int		instance;
7133 	int		rval = DDI_SUCCESS;
7134 	uint_t		i, log_page_size, maxcycles, ncycles;
7135 	uchar_t		*log_page_data;
7136 	int		log_sense_page;
7137 	int		medium_present;
7138 	time_t		intvlp;
7139 	dev_t		dev;
7140 	struct pm_trans_data	sd_pm_tran_data;
7141 	uchar_t		save_state;
7142 	int		sval;
7143 	uchar_t		state_before_pm;
7144 	int		got_semaphore_here;
7145 
7146 	instance = ddi_get_instance(devi);
7147 
7148 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7149 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7150 	    component != 0) {
7151 		return (DDI_FAILURE);
7152 	}
7153 
7154 	dev = sd_make_device(SD_DEVINFO(un));
7155 
7156 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7157 
7158 	/*
7159 	 * Must synchronize power down with close.
7160 	 * Attempt to decrement/acquire the open/close semaphore,
7161 	 * but do NOT wait on it. If it's not greater than zero,
7162 	 * ie. it can't be decremented without waiting, then
7163 	 * someone else, either open or close, already has it
7164 	 * and the try returns 0. Use that knowledge here to determine
7165 	 * if it's OK to change the device power level.
7166 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7167 	 * here.
7168 	 */
7169 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7170 
7171 	mutex_enter(SD_MUTEX(un));
7172 
7173 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7174 	    un->un_ncmds_in_driver);
7175 
7176 	/*
7177 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7178 	 * already being processed in the driver, or if the semaphore was
7179 	 * not gotten here it indicates an open or close is being processed.
7180 	 * At the same time somebody is requesting to go low power which
7181 	 * can't happen, therefore we need to return failure.
7182 	 */
7183 	if ((level == SD_SPINDLE_OFF) &&
7184 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7185 		mutex_exit(SD_MUTEX(un));
7186 
7187 		if (got_semaphore_here != 0) {
7188 			sema_v(&un->un_semoclose);
7189 		}
7190 		SD_TRACE(SD_LOG_IO_PM, un,
7191 		    "sdpower: exit, device has queued cmds.\n");
7192 		return (DDI_FAILURE);
7193 	}
7194 
7195 	/*
7196 	 * if it is OFFLINE that means the disk is completely dead
7197 	 * in our case we have to put the disk in on or off by sending commands
7198 	 * Of course that will fail anyway so return back here.
7199 	 *
7200 	 * Power changes to a device that's OFFLINE or SUSPENDED
7201 	 * are not allowed.
7202 	 */
7203 	if ((un->un_state == SD_STATE_OFFLINE) ||
7204 	    (un->un_state == SD_STATE_SUSPENDED)) {
7205 		mutex_exit(SD_MUTEX(un));
7206 
7207 		if (got_semaphore_here != 0) {
7208 			sema_v(&un->un_semoclose);
7209 		}
7210 		SD_TRACE(SD_LOG_IO_PM, un,
7211 		    "sdpower: exit, device is off-line.\n");
7212 		return (DDI_FAILURE);
7213 	}
7214 
7215 	/*
7216 	 * Change the device's state to indicate it's power level
7217 	 * is being changed. Do this to prevent a power off in the
7218 	 * middle of commands, which is especially bad on devices
7219 	 * that are really powered off instead of just spun down.
7220 	 */
7221 	state_before_pm = un->un_state;
7222 	un->un_state = SD_STATE_PM_CHANGING;
7223 
7224 	mutex_exit(SD_MUTEX(un));
7225 
7226 	/*
7227 	 * Bypass checking the log sense information for removables
7228 	 * and devices for which the HBA set the pm-capable property.
7229 	 * If un->un_pm_capable_prop is SD_PM_CAPABLE_UNDEFINED (-1)
7230 	 * then the HBA did not create the property.
7231 	 */
7232 	if ((level == SD_SPINDLE_OFF) && (!ISREMOVABLE(un)) &&
7233 	    un->un_pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
7234 		/*
7235 		 * Get the log sense information to understand whether the
7236 		 * the powercycle counts have gone beyond the threshhold.
7237 		 */
7238 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7239 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7240 
7241 		mutex_enter(SD_MUTEX(un));
7242 		log_sense_page = un->un_start_stop_cycle_page;
7243 		mutex_exit(SD_MUTEX(un));
7244 
7245 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7246 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7247 #ifdef	SDDEBUG
7248 		if (sd_force_pm_supported) {
7249 			/* Force a successful result */
7250 			rval = 0;
7251 		}
7252 #endif
7253 		if (rval != 0) {
7254 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7255 			    "Log Sense Failed\n");
7256 			kmem_free(log_page_data, log_page_size);
7257 			/* Cannot support power management on those drives */
7258 
7259 			if (got_semaphore_here != 0) {
7260 				sema_v(&un->un_semoclose);
7261 			}
7262 			/*
7263 			 * On exit put the state back to it's original value
7264 			 * and broadcast to anyone waiting for the power
7265 			 * change completion.
7266 			 */
7267 			mutex_enter(SD_MUTEX(un));
7268 			un->un_state = state_before_pm;
7269 			cv_broadcast(&un->un_suspend_cv);
7270 			mutex_exit(SD_MUTEX(un));
7271 			SD_TRACE(SD_LOG_IO_PM, un,
7272 			    "sdpower: exit, Log Sense Failed.\n");
7273 			return (DDI_FAILURE);
7274 		}
7275 
7276 		/*
7277 		 * From the page data - Convert the essential information to
7278 		 * pm_trans_data
7279 		 */
7280 		maxcycles =
7281 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7282 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7283 
7284 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7285 
7286 		ncycles =
7287 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7288 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7289 
7290 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7291 
7292 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7293 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7294 			    log_page_data[8+i];
7295 		}
7296 
7297 		kmem_free(log_page_data, log_page_size);
7298 
7299 		/*
7300 		 * Call pm_trans_check routine to get the Ok from
7301 		 * the global policy
7302 		 */
7303 
7304 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7305 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7306 
7307 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7308 #ifdef	SDDEBUG
7309 		if (sd_force_pm_supported) {
7310 			/* Force a successful result */
7311 			rval = 1;
7312 		}
7313 #endif
7314 		switch (rval) {
7315 		case 0:
7316 			/*
7317 			 * Not Ok to Power cycle or error in parameters passed
7318 			 * Would have given the advised time to consider power
7319 			 * cycle. Based on the new intvlp parameter we are
7320 			 * supposed to pretend we are busy so that pm framework
7321 			 * will never call our power entry point. Because of
7322 			 * that install a timeout handler and wait for the
7323 			 * recommended time to elapse so that power management
7324 			 * can be effective again.
7325 			 *
7326 			 * To effect this behavior, call pm_busy_component to
7327 			 * indicate to the framework this device is busy.
7328 			 * By not adjusting un_pm_count the rest of PM in
7329 			 * the driver will function normally, and independant
7330 			 * of this but because the framework is told the device
7331 			 * is busy it won't attempt powering down until it gets
7332 			 * a matching idle. The timeout handler sends this.
7333 			 * Note: sd_pm_entry can't be called here to do this
7334 			 * because sdpower may have been called as a result
7335 			 * of a call to pm_raise_power from within sd_pm_entry.
7336 			 *
7337 			 * If a timeout handler is already active then
7338 			 * don't install another.
7339 			 */
7340 			mutex_enter(&un->un_pm_mutex);
7341 			if (un->un_pm_timeid == NULL) {
7342 				un->un_pm_timeid =
7343 				    timeout(sd_pm_timeout_handler,
7344 				    un, intvlp * drv_usectohz(1000000));
7345 				mutex_exit(&un->un_pm_mutex);
7346 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7347 			} else {
7348 				mutex_exit(&un->un_pm_mutex);
7349 			}
7350 			if (got_semaphore_here != 0) {
7351 				sema_v(&un->un_semoclose);
7352 			}
7353 			/*
7354 			 * On exit put the state back to it's original value
7355 			 * and broadcast to anyone waiting for the power
7356 			 * change completion.
7357 			 */
7358 			mutex_enter(SD_MUTEX(un));
7359 			un->un_state = state_before_pm;
7360 			cv_broadcast(&un->un_suspend_cv);
7361 			mutex_exit(SD_MUTEX(un));
7362 
7363 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7364 			    "trans check Failed, not ok to power cycle.\n");
7365 			return (DDI_FAILURE);
7366 
7367 		case -1:
7368 			if (got_semaphore_here != 0) {
7369 				sema_v(&un->un_semoclose);
7370 			}
7371 			/*
7372 			 * On exit put the state back to it's original value
7373 			 * and broadcast to anyone waiting for the power
7374 			 * change completion.
7375 			 */
7376 			mutex_enter(SD_MUTEX(un));
7377 			un->un_state = state_before_pm;
7378 			cv_broadcast(&un->un_suspend_cv);
7379 			mutex_exit(SD_MUTEX(un));
7380 			SD_TRACE(SD_LOG_IO_PM, un,
7381 			    "sdpower: exit, trans check command Failed.\n");
7382 			return (DDI_FAILURE);
7383 		}
7384 	}
7385 
7386 	if (level == SD_SPINDLE_OFF) {
7387 		/*
7388 		 * Save the last state... if the STOP FAILS we need it
7389 		 * for restoring
7390 		 */
7391 		mutex_enter(SD_MUTEX(un));
7392 		save_state = un->un_last_state;
7393 		/*
7394 		 * There must not be any cmds. getting processed
7395 		 * in the driver when we get here. Power to the
7396 		 * device is potentially going off.
7397 		 */
7398 		ASSERT(un->un_ncmds_in_driver == 0);
7399 		mutex_exit(SD_MUTEX(un));
7400 
7401 		/*
7402 		 * For now suspend the device completely before spindle is
7403 		 * turned off
7404 		 */
7405 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7406 			if (got_semaphore_here != 0) {
7407 				sema_v(&un->un_semoclose);
7408 			}
7409 			/*
7410 			 * On exit put the state back to it's original value
7411 			 * and broadcast to anyone waiting for the power
7412 			 * change completion.
7413 			 */
7414 			mutex_enter(SD_MUTEX(un));
7415 			un->un_state = state_before_pm;
7416 			cv_broadcast(&un->un_suspend_cv);
7417 			mutex_exit(SD_MUTEX(un));
7418 			SD_TRACE(SD_LOG_IO_PM, un,
7419 			    "sdpower: exit, PM suspend Failed.\n");
7420 			return (DDI_FAILURE);
7421 		}
7422 	}
7423 
7424 	/*
7425 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7426 	 * close, or strategy. Dump no long uses this routine, it uses it's
7427 	 * own code so it can be done in polled mode.
7428 	 */
7429 
7430 	medium_present = TRUE;
7431 
7432 	/*
7433 	 * When powering up, issue a TUR in case the device is at unit
7434 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7435 	 * a deadlock on un_pm_busy_cv will occur.
7436 	 */
7437 	if (level == SD_SPINDLE_ON) {
7438 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7439 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7440 	}
7441 
7442 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7443 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7444 
7445 	sval = sd_send_scsi_START_STOP_UNIT(un,
7446 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7447 	    SD_PATH_DIRECT);
7448 	/* Command failed, check for media present. */
7449 	if ((sval == ENXIO) && ISREMOVABLE(un)) {
7450 		medium_present = FALSE;
7451 	}
7452 
7453 	/*
7454 	 * The conditions of interest here are:
7455 	 *   if a spindle off with media present fails,
7456 	 *	then restore the state and return an error.
7457 	 *   else if a spindle on fails,
7458 	 *	then return an error (there's no state to restore).
7459 	 * In all other cases we setup for the new state
7460 	 * and return success.
7461 	 */
7462 	switch (level) {
7463 	case SD_SPINDLE_OFF:
7464 		if ((medium_present == TRUE) && (sval != 0)) {
7465 			/* The stop command from above failed */
7466 			rval = DDI_FAILURE;
7467 			/*
7468 			 * The stop command failed, and we have media
7469 			 * present. Put the level back by calling the
7470 			 * sd_pm_resume() and set the state back to
7471 			 * it's previous value.
7472 			 */
7473 			(void) sd_ddi_pm_resume(un);
7474 			mutex_enter(SD_MUTEX(un));
7475 			un->un_last_state = save_state;
7476 			mutex_exit(SD_MUTEX(un));
7477 			break;
7478 		}
7479 		/*
7480 		 * The stop command from above succeeded.
7481 		 */
7482 		if (ISREMOVABLE(un)) {
7483 			/*
7484 			 * Terminate watch thread in case of removable media
7485 			 * devices going into low power state. This is as per
7486 			 * the requirements of pm framework, otherwise commands
7487 			 * will be generated for the device (through watch
7488 			 * thread), even when the device is in low power state.
7489 			 */
7490 			mutex_enter(SD_MUTEX(un));
7491 			un->un_f_watcht_stopped = FALSE;
7492 			if (un->un_swr_token != NULL) {
7493 				opaque_t temp_token = un->un_swr_token;
7494 				un->un_f_watcht_stopped = TRUE;
7495 				un->un_swr_token = NULL;
7496 				mutex_exit(SD_MUTEX(un));
7497 				(void) scsi_watch_request_terminate(temp_token,
7498 				    SCSI_WATCH_TERMINATE_WAIT);
7499 			} else {
7500 				mutex_exit(SD_MUTEX(un));
7501 			}
7502 		}
7503 		break;
7504 
7505 	default:	/* The level requested is spindle on... */
7506 		/*
7507 		 * Legacy behavior: return success on a failed spinup
7508 		 * if there is no media in the drive.
7509 		 * Do this by looking at medium_present here.
7510 		 */
7511 		if ((sval != 0) && medium_present) {
7512 			/* The start command from above failed */
7513 			rval = DDI_FAILURE;
7514 			break;
7515 		}
7516 		/*
7517 		 * The start command from above succeeded
7518 		 * Resume the devices now that we have
7519 		 * started the disks
7520 		 */
7521 		(void) sd_ddi_pm_resume(un);
7522 
7523 		/*
7524 		 * Resume the watch thread since it was suspended
7525 		 * when the device went into low power mode.
7526 		 */
7527 		if (ISREMOVABLE(un)) {
7528 			mutex_enter(SD_MUTEX(un));
7529 			if (un->un_f_watcht_stopped == TRUE) {
7530 				opaque_t temp_token;
7531 
7532 				un->un_f_watcht_stopped = FALSE;
7533 				mutex_exit(SD_MUTEX(un));
7534 				temp_token = scsi_watch_request_submit(
7535 				    SD_SCSI_DEVP(un),
7536 				    sd_check_media_time,
7537 				    SENSE_LENGTH, sd_media_watch_cb,
7538 				    (caddr_t)dev);
7539 				mutex_enter(SD_MUTEX(un));
7540 				un->un_swr_token = temp_token;
7541 			}
7542 			mutex_exit(SD_MUTEX(un));
7543 		}
7544 	}
7545 	if (got_semaphore_here != 0) {
7546 		sema_v(&un->un_semoclose);
7547 	}
7548 	/*
7549 	 * On exit put the state back to it's original value
7550 	 * and broadcast to anyone waiting for the power
7551 	 * change completion.
7552 	 */
7553 	mutex_enter(SD_MUTEX(un));
7554 	un->un_state = state_before_pm;
7555 	cv_broadcast(&un->un_suspend_cv);
7556 	mutex_exit(SD_MUTEX(un));
7557 
7558 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7559 
7560 	return (rval);
7561 }
7562 
7563 
7564 
7565 /*
7566  *    Function: sdattach
7567  *
7568  * Description: Driver's attach(9e) entry point function.
7569  *
7570  *   Arguments: devi - opaque device info handle
7571  *		cmd  - attach  type
7572  *
7573  * Return Code: DDI_SUCCESS
7574  *		DDI_FAILURE
7575  *
7576  *     Context: Kernel thread context
7577  */
7578 
7579 static int
7580 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7581 {
7582 	switch (cmd) {
7583 	case DDI_ATTACH:
7584 		return (sd_unit_attach(devi));
7585 	case DDI_RESUME:
7586 		return (sd_ddi_resume(devi));
7587 	default:
7588 		break;
7589 	}
7590 	return (DDI_FAILURE);
7591 }
7592 
7593 
7594 /*
7595  *    Function: sddetach
7596  *
7597  * Description: Driver's detach(9E) entry point function.
7598  *
7599  *   Arguments: devi - opaque device info handle
7600  *		cmd  - detach  type
7601  *
7602  * Return Code: DDI_SUCCESS
7603  *		DDI_FAILURE
7604  *
7605  *     Context: Kernel thread context
7606  */
7607 
7608 static int
7609 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7610 {
7611 	switch (cmd) {
7612 	case DDI_DETACH:
7613 		return (sd_unit_detach(devi));
7614 	case DDI_SUSPEND:
7615 		return (sd_ddi_suspend(devi));
7616 	default:
7617 		break;
7618 	}
7619 	return (DDI_FAILURE);
7620 }
7621 
7622 
7623 /*
7624  *     Function: sd_sync_with_callback
7625  *
7626  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7627  *		 state while the callback routine is active.
7628  *
7629  *    Arguments: un: softstate structure for the instance
7630  *
7631  *	Context: Kernel thread context
7632  */
7633 
7634 static void
7635 sd_sync_with_callback(struct sd_lun *un)
7636 {
7637 	ASSERT(un != NULL);
7638 
7639 	mutex_enter(SD_MUTEX(un));
7640 
7641 	ASSERT(un->un_in_callback >= 0);
7642 
7643 	while (un->un_in_callback > 0) {
7644 		mutex_exit(SD_MUTEX(un));
7645 		delay(2);
7646 		mutex_enter(SD_MUTEX(un));
7647 	}
7648 
7649 	mutex_exit(SD_MUTEX(un));
7650 }
7651 
7652 /*
7653  *    Function: sd_unit_attach
7654  *
7655  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7656  *		the soft state structure for the device and performs
7657  *		all necessary structure and device initializations.
7658  *
7659  *   Arguments: devi: the system's dev_info_t for the device.
7660  *
7661  * Return Code: DDI_SUCCESS if attach is successful.
7662  *		DDI_FAILURE if any part of the attach fails.
7663  *
7664  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7665  *		Kernel thread context only.  Can sleep.
7666  */
7667 
7668 static int
7669 sd_unit_attach(dev_info_t *devi)
7670 {
7671 	struct	scsi_device	*devp;
7672 	struct	sd_lun		*un;
7673 	char			*variantp;
7674 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7675 	int	instance;
7676 	int	rval;
7677 	int	wc_enabled;
7678 	uint64_t	capacity;
7679 	uint_t		lbasize;
7680 
7681 	/*
7682 	 * Retrieve the target driver's private data area. This was set
7683 	 * up by the HBA.
7684 	 */
7685 	devp = ddi_get_driver_private(devi);
7686 
7687 	/*
7688 	 * Since we have no idea what state things were left in by the last
7689 	 * user of the device, set up some 'default' settings, ie. turn 'em
7690 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7691 	 * Do this before the scsi_probe, which sends an inquiry.
7692 	 * This is a fix for bug (4430280).
7693 	 * Of special importance is wide-xfer. The drive could have been left
7694 	 * in wide transfer mode by the last driver to communicate with it,
7695 	 * this includes us. If that's the case, and if the following is not
7696 	 * setup properly or we don't re-negotiate with the drive prior to
7697 	 * transferring data to/from the drive, it causes bus parity errors,
7698 	 * data overruns, and unexpected interrupts. This first occurred when
7699 	 * the fix for bug (4378686) was made.
7700 	 */
7701 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7702 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7703 	(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7704 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7705 
7706 	/*
7707 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7708 	 * This call will allocate and fill in the scsi_inquiry structure
7709 	 * and point the sd_inq member of the scsi_device structure to it.
7710 	 * If the attach succeeds, then this memory will not be de-allocated
7711 	 * (via scsi_unprobe()) until the instance is detached.
7712 	 */
7713 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7714 		goto probe_failed;
7715 	}
7716 
7717 	/*
7718 	 * Check the device type as specified in the inquiry data and
7719 	 * claim it if it is of a type that we support.
7720 	 */
7721 	switch (devp->sd_inq->inq_dtype) {
7722 	case DTYPE_DIRECT:
7723 		break;
7724 	case DTYPE_RODIRECT:
7725 		break;
7726 	case DTYPE_OPTICAL:
7727 		break;
7728 	case DTYPE_NOTPRESENT:
7729 	default:
7730 		/* Unsupported device type; fail the attach. */
7731 		goto probe_failed;
7732 	}
7733 
7734 	/*
7735 	 * Allocate the soft state structure for this unit.
7736 	 *
7737 	 * We rely upon this memory being set to all zeroes by
7738 	 * ddi_soft_state_zalloc().  We assume that any member of the
7739 	 * soft state structure that is not explicitly initialized by
7740 	 * this routine will have a value of zero.
7741 	 */
7742 	instance = ddi_get_instance(devp->sd_dev);
7743 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7744 		goto probe_failed;
7745 	}
7746 
7747 	/*
7748 	 * Retrieve a pointer to the newly-allocated soft state.
7749 	 *
7750 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7751 	 * was successful, unless something has gone horribly wrong and the
7752 	 * ddi's soft state internals are corrupt (in which case it is
7753 	 * probably better to halt here than just fail the attach....)
7754 	 */
7755 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7756 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7757 		    instance);
7758 		/*NOTREACHED*/
7759 	}
7760 
7761 	/*
7762 	 * Link the back ptr of the driver soft state to the scsi_device
7763 	 * struct for this lun.
7764 	 * Save a pointer to the softstate in the driver-private area of
7765 	 * the scsi_device struct.
7766 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7767 	 * we first set un->un_sd below.
7768 	 */
7769 	un->un_sd = devp;
7770 	devp->sd_private = (opaque_t)un;
7771 
7772 	/*
7773 	 * The following must be after devp is stored in the soft state struct.
7774 	 */
7775 #ifdef SDDEBUG
7776 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7777 	    "%s_unit_attach: un:0x%p instance:%d\n",
7778 	    ddi_driver_name(devi), un, instance);
7779 #endif
7780 
7781 	/*
7782 	 * Set up the device type and node type (for the minor nodes).
7783 	 * By default we assume that the device can at least support the
7784 	 * Common Command Set. Call it a CD-ROM if it reports itself
7785 	 * as a RODIRECT device.
7786 	 */
7787 	switch (devp->sd_inq->inq_dtype) {
7788 	case DTYPE_RODIRECT:
7789 		un->un_node_type = DDI_NT_CD_CHAN;
7790 		un->un_ctype	 = CTYPE_CDROM;
7791 		break;
7792 	case DTYPE_OPTICAL:
7793 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7794 		un->un_ctype	 = CTYPE_ROD;
7795 		break;
7796 	default:
7797 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7798 		un->un_ctype	 = CTYPE_CCS;
7799 		break;
7800 	}
7801 
7802 	/*
7803 	 * Try to read the interconnect type from the HBA.
7804 	 *
7805 	 * Note: This driver is currently compiled as two binaries, a parallel
7806 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7807 	 * differences are determined at compile time. In the future a single
7808 	 * binary will be provided and the inteconnect type will be used to
7809 	 * differentiate between fibre and parallel scsi behaviors. At that time
7810 	 * it will be necessary for all fibre channel HBAs to support this
7811 	 * property.
7812 	 *
7813 	 * set un_f_is_fiber to TRUE ( default fiber )
7814 	 */
7815 	un->un_f_is_fibre = TRUE;
7816 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7817 	case INTERCONNECT_SSA:
7818 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7819 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7820 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7821 		break;
7822 	case INTERCONNECT_PARALLEL:
7823 		un->un_f_is_fibre = FALSE;
7824 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7825 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7826 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7827 		break;
7828 	case INTERCONNECT_FIBRE:
7829 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7830 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7831 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7832 		break;
7833 	case INTERCONNECT_FABRIC:
7834 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7835 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7836 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7837 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7838 		break;
7839 	default:
7840 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7841 		/*
7842 		 * The HBA does not support the "interconnect-type" property
7843 		 * (or did not provide a recognized type).
7844 		 *
7845 		 * Note: This will be obsoleted when a single fibre channel
7846 		 * and parallel scsi driver is delivered. In the meantime the
7847 		 * interconnect type will be set to the platform default.If that
7848 		 * type is not parallel SCSI, it means that we should be
7849 		 * assuming "ssd" semantics. However, here this also means that
7850 		 * the FC HBA is not supporting the "interconnect-type" property
7851 		 * like we expect it to, so log this occurrence.
7852 		 */
7853 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7854 		if (!SD_IS_PARALLEL_SCSI(un)) {
7855 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7856 			    "sd_unit_attach: un:0x%p Assuming "
7857 			    "INTERCONNECT_FIBRE\n", un);
7858 		} else {
7859 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7860 			    "sd_unit_attach: un:0x%p Assuming "
7861 			    "INTERCONNECT_PARALLEL\n", un);
7862 			un->un_f_is_fibre = FALSE;
7863 		}
7864 #else
7865 		/*
7866 		 * Note: This source will be implemented when a single fibre
7867 		 * channel and parallel scsi driver is delivered. The default
7868 		 * will be to assume that if a device does not support the
7869 		 * "interconnect-type" property it is a parallel SCSI HBA and
7870 		 * we will set the interconnect type for parallel scsi.
7871 		 */
7872 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7873 		un->un_f_is_fibre = FALSE;
7874 #endif
7875 		break;
7876 	}
7877 
7878 	if (un->un_f_is_fibre == TRUE) {
7879 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7880 			SCSI_VERSION_3) {
7881 			switch (un->un_interconnect_type) {
7882 			case SD_INTERCONNECT_FIBRE:
7883 			case SD_INTERCONNECT_SSA:
7884 				un->un_node_type = DDI_NT_BLOCK_WWN;
7885 				break;
7886 			default:
7887 				break;
7888 			}
7889 		}
7890 	}
7891 
7892 	/*
7893 	 * Initialize the Request Sense command for the target
7894 	 */
7895 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7896 		goto alloc_rqs_failed;
7897 	}
7898 
7899 	/*
7900 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7901 	 * with seperate binary for sd and ssd.
7902 	 *
7903 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7904 	 * The hardcoded values will go away when Sparc uses 1 binary
7905 	 * for sd and ssd.  This hardcoded values need to match
7906 	 * SD_RETRY_COUNT in sddef.h
7907 	 * The value used is base on interconnect type.
7908 	 * fibre = 3, parallel = 5
7909 	 */
7910 #if defined(__i386) || defined(__amd64)
7911 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7912 #else
7913 	un->un_retry_count = SD_RETRY_COUNT;
7914 #endif
7915 
7916 	/*
7917 	 * Set the per disk retry count to the default number of retries
7918 	 * for disks and CDROMs. This value can be overridden by the
7919 	 * disk property list or an entry in sd.conf.
7920 	 */
7921 	un->un_notready_retry_count =
7922 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7923 			: DISK_NOT_READY_RETRY_COUNT(un);
7924 
7925 	/*
7926 	 * Set the busy retry count to the default value of un_retry_count.
7927 	 * This can be overridden by entries in sd.conf or the device
7928 	 * config table.
7929 	 */
7930 	un->un_busy_retry_count = un->un_retry_count;
7931 
7932 	/*
7933 	 * Init the reset threshold for retries.  This number determines
7934 	 * how many retries must be performed before a reset can be issued
7935 	 * (for certain error conditions). This can be overridden by entries
7936 	 * in sd.conf or the device config table.
7937 	 */
7938 	un->un_reset_retry_count = (un->un_retry_count / 2);
7939 
7940 	/*
7941 	 * Set the victim_retry_count to the default un_retry_count
7942 	 */
7943 	un->un_victim_retry_count = (2 * un->un_retry_count);
7944 
7945 	/*
7946 	 * Set the reservation release timeout to the default value of
7947 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7948 	 * device config table.
7949 	 */
7950 	un->un_reserve_release_time = 5;
7951 
7952 	/*
7953 	 * Set up the default maximum transfer size. Note that this may
7954 	 * get updated later in the attach, when setting up default wide
7955 	 * operations for disks.
7956 	 */
7957 #if defined(__i386) || defined(__amd64)
7958 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7959 #else
7960 	un->un_max_xfer_size = (uint_t)maxphys;
7961 #endif
7962 
7963 	/*
7964 	 * Get "allow bus device reset" property (defaults to "enabled" if
7965 	 * the property was not defined). This is to disable bus resets for
7966 	 * certain kinds of error recovery. Note: In the future when a run-time
7967 	 * fibre check is available the soft state flag should default to
7968 	 * enabled.
7969 	 */
7970 	if (un->un_f_is_fibre == TRUE) {
7971 		un->un_f_allow_bus_device_reset = TRUE;
7972 	} else {
7973 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7974 			"allow-bus-device-reset", 1) != 0) {
7975 			un->un_f_allow_bus_device_reset = TRUE;
7976 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7977 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
7978 				un);
7979 		} else {
7980 			un->un_f_allow_bus_device_reset = FALSE;
7981 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7982 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
7983 				un);
7984 		}
7985 	}
7986 
7987 	/*
7988 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7989 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7990 	 *
7991 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7992 	 * property. The new "variant" property with a value of "atapi" has been
7993 	 * introduced so that future 'variants' of standard SCSI behavior (like
7994 	 * atapi) could be specified by the underlying HBA drivers by supplying
7995 	 * a new value for the "variant" property, instead of having to define a
7996 	 * new property.
7997 	 */
7998 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7999 		un->un_f_cfg_is_atapi = TRUE;
8000 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8001 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
8002 	}
8003 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
8004 	    &variantp) == DDI_PROP_SUCCESS) {
8005 		if (strcmp(variantp, "atapi") == 0) {
8006 			un->un_f_cfg_is_atapi = TRUE;
8007 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8008 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
8009 		}
8010 		ddi_prop_free(variantp);
8011 	}
8012 
8013 	/*
8014 	 * Assume doorlock commands are supported. If not, the first
8015 	 * call to sd_send_scsi_DOORLOCK() will set to FALSE
8016 	 */
8017 	un->un_f_doorlock_supported = TRUE;
8018 
8019 	un->un_cmd_timeout	= SD_IO_TIME;
8020 
8021 	/* Info on current states, statuses, etc. (Updated frequently) */
8022 	un->un_state		= SD_STATE_NORMAL;
8023 	un->un_last_state	= SD_STATE_NORMAL;
8024 
8025 	/* Control & status info for command throttling */
8026 	un->un_throttle		= sd_max_throttle;
8027 	un->un_saved_throttle	= sd_max_throttle;
8028 	un->un_min_throttle	= sd_min_throttle;
8029 
8030 	if (un->un_f_is_fibre == TRUE) {
8031 		un->un_f_use_adaptive_throttle = TRUE;
8032 	} else {
8033 		un->un_f_use_adaptive_throttle = FALSE;
8034 	}
8035 
8036 	/* Removable media support. */
8037 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
8038 	un->un_mediastate		= DKIO_NONE;
8039 	un->un_specified_mediastate	= DKIO_NONE;
8040 
8041 	/* CVs for suspend/resume (PM or DR) */
8042 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
8043 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
8044 
8045 	/* Power management support. */
8046 	un->un_power_level = SD_SPINDLE_UNINIT;
8047 
8048 	/*
8049 	 * The open/close semaphore is used to serialize threads executing
8050 	 * in the driver's open & close entry point routines for a given
8051 	 * instance.
8052 	 */
8053 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8054 
8055 	/*
8056 	 * The conf file entry and softstate variable is a forceful override,
8057 	 * meaning a non-zero value must be entered to change the default.
8058 	 */
8059 	un->un_f_disksort_disabled = FALSE;
8060 
8061 	/*
8062 	 * Retrieve the properties from the static driver table or the driver
8063 	 * configuration file (.conf) for this unit and update the soft state
8064 	 * for the device as needed for the indicated properties.
8065 	 * Note: the property configuration needs to occur here as some of the
8066 	 * following routines may have dependancies on soft state flags set
8067 	 * as part of the driver property configuration.
8068 	 */
8069 	sd_read_unit_properties(un);
8070 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8071 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8072 
8073 	/*
8074 	 * By default, we mark the capacity, lbazize, and geometry
8075 	 * as invalid. Only if we successfully read a valid capacity
8076 	 * will we update the un_blockcount and un_tgt_blocksize with the
8077 	 * valid values (the geometry will be validated later).
8078 	 */
8079 	un->un_f_blockcount_is_valid	= FALSE;
8080 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8081 	un->un_f_geometry_is_valid	= FALSE;
8082 
8083 	/*
8084 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8085 	 * otherwise.
8086 	 */
8087 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8088 	un->un_blockcount = 0;
8089 
8090 	/*
8091 	 * Set up the per-instance info needed to determine the correct
8092 	 * CDBs and other info for issuing commands to the target.
8093 	 */
8094 	sd_init_cdb_limits(un);
8095 
8096 	/*
8097 	 * Set up the IO chains to use, based upon the target type.
8098 	 */
8099 	if (ISREMOVABLE(un)) {
8100 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8101 	} else {
8102 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8103 	}
8104 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8105 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8106 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8107 
8108 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8109 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8110 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8111 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8112 
8113 
8114 	if (ISCD(un)) {
8115 		un->un_additional_codes = sd_additional_codes;
8116 	} else {
8117 		un->un_additional_codes = NULL;
8118 	}
8119 
8120 	/*
8121 	 * Create the kstats here so they can be available for attach-time
8122 	 * routines that send commands to the unit (either polled or via
8123 	 * sd_send_scsi_cmd).
8124 	 *
8125 	 * Note: This is a critical sequence that needs to be maintained:
8126 	 *	1) Instantiate the kstats here, before any routines using the
8127 	 *	   iopath (i.e. sd_send_scsi_cmd).
8128 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8129 	 *	   stats (sd_set_pstats), following sd_validate_geometry(),
8130 	 *	   sd_register_devid(), and sd_disable_caching().
8131 	 */
8132 
8133 	un->un_stats = kstat_create(sd_label, instance,
8134 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8135 	if (un->un_stats != NULL) {
8136 		un->un_stats->ks_lock = SD_MUTEX(un);
8137 		kstat_install(un->un_stats);
8138 	}
8139 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8140 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8141 
8142 	sd_create_errstats(un, instance);
8143 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8144 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8145 
8146 	/*
8147 	 * The following if/else code was relocated here from below as part
8148 	 * of the fix for bug (4430280). However with the default setup added
8149 	 * on entry to this routine, it's no longer absolutely necessary for
8150 	 * this to be before the call to sd_spin_up_unit.
8151 	 */
8152 	if (SD_IS_PARALLEL_SCSI(un)) {
8153 		/*
8154 		 * If SCSI-2 tagged queueing is supported by the target
8155 		 * and by the host adapter then we will enable it.
8156 		 */
8157 		un->un_tagflags = 0;
8158 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8159 		    (devp->sd_inq->inq_cmdque) &&
8160 		    (un->un_f_arq_enabled == TRUE)) {
8161 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8162 			    1, 1) == 1) {
8163 				un->un_tagflags = FLAG_STAG;
8164 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8165 				    "sd_unit_attach: un:0x%p tag queueing "
8166 				    "enabled\n", un);
8167 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8168 			    "untagged-qing", 0) == 1) {
8169 				un->un_f_opt_queueing = TRUE;
8170 				un->un_saved_throttle = un->un_throttle =
8171 				    min(un->un_throttle, 3);
8172 			} else {
8173 				un->un_f_opt_queueing = FALSE;
8174 				un->un_saved_throttle = un->un_throttle = 1;
8175 			}
8176 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8177 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8178 			/* The Host Adapter supports internal queueing. */
8179 			un->un_f_opt_queueing = TRUE;
8180 			un->un_saved_throttle = un->un_throttle =
8181 			    min(un->un_throttle, 3);
8182 		} else {
8183 			un->un_f_opt_queueing = FALSE;
8184 			un->un_saved_throttle = un->un_throttle = 1;
8185 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8186 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8187 		}
8188 
8189 
8190 		/* Setup or tear down default wide operations for disks */
8191 
8192 		/*
8193 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8194 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8195 		 * system and be set to different values. In the future this
8196 		 * code may need to be updated when the ssd module is
8197 		 * obsoleted and removed from the system. (4299588)
8198 		 */
8199 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8200 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8201 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8202 			    1, 1) == 1) {
8203 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8204 				    "sd_unit_attach: un:0x%p Wide Transfer "
8205 				    "enabled\n", un);
8206 			}
8207 
8208 			/*
8209 			 * If tagged queuing has also been enabled, then
8210 			 * enable large xfers
8211 			 */
8212 			if (un->un_saved_throttle == sd_max_throttle) {
8213 				un->un_max_xfer_size =
8214 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8215 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8216 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8217 				    "sd_unit_attach: un:0x%p max transfer "
8218 				    "size=0x%x\n", un, un->un_max_xfer_size);
8219 			}
8220 		} else {
8221 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8222 			    0, 1) == 1) {
8223 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8224 				    "sd_unit_attach: un:0x%p "
8225 				    "Wide Transfer disabled\n", un);
8226 			}
8227 		}
8228 	} else {
8229 		un->un_tagflags = FLAG_STAG;
8230 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8231 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8232 	}
8233 
8234 	/*
8235 	 * If this target supports LUN reset, try to enable it.
8236 	 */
8237 	if (un->un_f_lun_reset_enabled) {
8238 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8239 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8240 			    "un:0x%p lun_reset capability set\n", un);
8241 		} else {
8242 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8243 			    "un:0x%p lun-reset capability not set\n", un);
8244 		}
8245 	}
8246 
8247 	/*
8248 	 * At this point in the attach, we have enough info in the
8249 	 * soft state to be able to issue commands to the target.
8250 	 *
8251 	 * All command paths used below MUST issue their commands as
8252 	 * SD_PATH_DIRECT. This is important as intermediate layers
8253 	 * are not all initialized yet (such as PM).
8254 	 */
8255 
8256 	/*
8257 	 * Send a TEST UNIT READY command to the device. This should clear
8258 	 * any outstanding UNIT ATTENTION that may be present.
8259 	 *
8260 	 * Note: Don't check for success, just track if there is a reservation,
8261 	 * this is a throw away command to clear any unit attentions.
8262 	 *
8263 	 * Note: This MUST be the first command issued to the target during
8264 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8265 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8266 	 * with attempts at spinning up a device with no media.
8267 	 */
8268 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8269 		reservation_flag = SD_TARGET_IS_RESERVED;
8270 	}
8271 
8272 	/*
8273 	 * If the device is NOT a removable media device, attempt to spin
8274 	 * it up (using the START_STOP_UNIT command) and read its capacity
8275 	 * (using the READ CAPACITY command).  Note, however, that either
8276 	 * of these could fail and in some cases we would continue with
8277 	 * the attach despite the failure (see below).
8278 	 */
8279 	if (devp->sd_inq->inq_dtype == DTYPE_DIRECT && !ISREMOVABLE(un)) {
8280 		switch (sd_spin_up_unit(un)) {
8281 		case 0:
8282 			/*
8283 			 * Spin-up was successful; now try to read the
8284 			 * capacity.  If successful then save the results
8285 			 * and mark the capacity & lbasize as valid.
8286 			 */
8287 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8288 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8289 
8290 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8291 			    &lbasize, SD_PATH_DIRECT)) {
8292 			case 0: {
8293 				if (capacity > DK_MAX_BLOCKS) {
8294 #ifdef _LP64
8295 					/*
8296 					 * Enable descriptor format sense data
8297 					 * so that we can get 64 bit sense
8298 					 * data fields.
8299 					 */
8300 					sd_enable_descr_sense(un);
8301 #else
8302 					/* 32-bit kernels can't handle this */
8303 					scsi_log(SD_DEVINFO(un),
8304 					    sd_label, CE_WARN,
8305 					    "disk has %llu blocks, which "
8306 					    "is too large for a 32-bit "
8307 					    "kernel", capacity);
8308 					goto spinup_failed;
8309 #endif
8310 				}
8311 				/*
8312 				 * The following relies on
8313 				 * sd_send_scsi_READ_CAPACITY never
8314 				 * returning 0 for capacity and/or lbasize.
8315 				 */
8316 				sd_update_block_info(un, lbasize, capacity);
8317 
8318 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8319 				    "sd_unit_attach: un:0x%p capacity = %ld "
8320 				    "blocks; lbasize= %ld.\n", un,
8321 				    un->un_blockcount, un->un_tgt_blocksize);
8322 
8323 				break;
8324 			}
8325 			case EACCES:
8326 				/*
8327 				 * Should never get here if the spin-up
8328 				 * succeeded, but code it in anyway.
8329 				 * From here, just continue with the attach...
8330 				 */
8331 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8332 				    "sd_unit_attach: un:0x%p "
8333 				    "sd_send_scsi_READ_CAPACITY "
8334 				    "returned reservation conflict\n", un);
8335 				reservation_flag = SD_TARGET_IS_RESERVED;
8336 				break;
8337 			default:
8338 				/*
8339 				 * Likewise, should never get here if the
8340 				 * spin-up succeeded. Just continue with
8341 				 * the attach...
8342 				 */
8343 				break;
8344 			}
8345 			break;
8346 		case EACCES:
8347 			/*
8348 			 * Device is reserved by another host.  In this case
8349 			 * we could not spin it up or read the capacity, but
8350 			 * we continue with the attach anyway.
8351 			 */
8352 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8353 			    "sd_unit_attach: un:0x%p spin-up reservation "
8354 			    "conflict.\n", un);
8355 			reservation_flag = SD_TARGET_IS_RESERVED;
8356 			break;
8357 		default:
8358 			/* Fail the attach if the spin-up failed. */
8359 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8360 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8361 			goto spinup_failed;
8362 		}
8363 	}
8364 
8365 	/*
8366 	 * Check to see if this is a MMC drive
8367 	 */
8368 	if (ISCD(un)) {
8369 		sd_set_mmc_caps(un);
8370 	}
8371 
8372 	/*
8373 	 * Create the minor nodes for the device.
8374 	 * Note: If we want to support fdisk on both sparc and intel, this will
8375 	 * have to separate out the notion that VTOC8 is always sparc, and
8376 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8377 	 * type will have to be determined at run-time, and the fdisk
8378 	 * partitioning will have to have been read & set up before we
8379 	 * create the minor nodes. (any other inits (such as kstats) that
8380 	 * also ought to be done before creating the minor nodes?) (Doesn't
8381 	 * setting up the minor nodes kind of imply that we're ready to
8382 	 * handle an open from userland?)
8383 	 */
8384 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8385 		goto create_minor_nodes_failed;
8386 	}
8387 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8388 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8389 
8390 	/*
8391 	 * Add a zero-length attribute to tell the world we support
8392 	 * kernel ioctls (for layered drivers)
8393 	 */
8394 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8395 	    DDI_KERNEL_IOCTL, NULL, 0);
8396 
8397 	/*
8398 	 * Add a boolean property to tell the world we support
8399 	 * the B_FAILFAST flag (for layered drivers)
8400 	 */
8401 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8402 	    "ddi-failfast-supported", NULL, 0);
8403 
8404 	/*
8405 	 * Initialize power management
8406 	 */
8407 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8408 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8409 	sd_setup_pm(un, devi);
8410 	if (un->un_f_pm_is_enabled == FALSE) {
8411 		/*
8412 		 * For performance, point to a jump table that does
8413 		 * not include pm.
8414 		 * The direct and priority chains don't change with PM.
8415 		 *
8416 		 * Note: this is currently done based on individual device
8417 		 * capabilities. When an interface for determining system
8418 		 * power enabled state becomes available, or when additional
8419 		 * layers are added to the command chain, these values will
8420 		 * have to be re-evaluated for correctness.
8421 		 */
8422 		if (ISREMOVABLE(un)) {
8423 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8424 		} else {
8425 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8426 		}
8427 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8428 	}
8429 
8430 	/*
8431 	 * This property is set to 0 by HA software to avoid retries
8432 	 * on a reserved disk. (The preferred property name is
8433 	 * "retry-on-reservation-conflict") (1189689)
8434 	 *
8435 	 * Note: The use of a global here can have unintended consequences. A
8436 	 * per instance variable is preferrable to match the capabilities of
8437 	 * different underlying hba's (4402600)
8438 	 */
8439 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8440 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8441 	    sd_retry_on_reservation_conflict);
8442 	if (sd_retry_on_reservation_conflict != 0) {
8443 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8444 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8445 		    sd_retry_on_reservation_conflict);
8446 	}
8447 
8448 	/* Set up options for QFULL handling. */
8449 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8450 	    "qfull-retries", -1)) != -1) {
8451 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8452 		    rval, 1);
8453 	}
8454 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8455 	    "qfull-retry-interval", -1)) != -1) {
8456 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8457 		    rval, 1);
8458 	}
8459 
8460 	/*
8461 	 * This just prints a message that announces the existence of the
8462 	 * device. The message is always printed in the system logfile, but
8463 	 * only appears on the console if the system is booted with the
8464 	 * -v (verbose) argument.
8465 	 */
8466 	ddi_report_dev(devi);
8467 
8468 	/*
8469 	 * The framework calls driver attach routines single-threaded
8470 	 * for a given instance.  However we still acquire SD_MUTEX here
8471 	 * because this required for calling the sd_validate_geometry()
8472 	 * and sd_register_devid() functions.
8473 	 */
8474 	mutex_enter(SD_MUTEX(un));
8475 	un->un_f_geometry_is_valid = FALSE;
8476 	un->un_mediastate = DKIO_NONE;
8477 	un->un_reserved = -1;
8478 	if (!ISREMOVABLE(un)) {
8479 		/*
8480 		 * Read and validate the device's geometry (ie, disk label)
8481 		 * A new unformatted drive will not have a valid geometry, but
8482 		 * the driver needs to successfully attach to this device so
8483 		 * the drive can be formatted via ioctls.
8484 		 */
8485 		if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8486 		    ENOTSUP)) &&
8487 		    (un->un_blockcount < DK_MAX_BLOCKS)) {
8488 			/*
8489 			 * We found a small disk with an EFI label on it;
8490 			 * we need to fix up the minor nodes accordingly.
8491 			 */
8492 			ddi_remove_minor_node(devi, "h");
8493 			ddi_remove_minor_node(devi, "h,raw");
8494 			(void) ddi_create_minor_node(devi, "wd",
8495 			    S_IFBLK,
8496 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8497 			    un->un_node_type, NULL);
8498 			(void) ddi_create_minor_node(devi, "wd,raw",
8499 			    S_IFCHR,
8500 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8501 			    un->un_node_type, NULL);
8502 		}
8503 	}
8504 
8505 	/*
8506 	 * Read and initialize the devid for the unit.
8507 	 */
8508 	ASSERT(un->un_errstats != NULL);
8509 	if (!ISREMOVABLE(un)) {
8510 		sd_register_devid(un, devi, reservation_flag);
8511 	}
8512 	mutex_exit(SD_MUTEX(un));
8513 
8514 #if (defined(__fibre))
8515 	/*
8516 	 * Register callbacks for fibre only.  You can't do this soley
8517 	 * on the basis of the devid_type because this is hba specific.
8518 	 * We need to query our hba capabilities to find out whether to
8519 	 * register or not.
8520 	 */
8521 	if (un->un_f_is_fibre) {
8522 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8523 		sd_init_event_callbacks(un);
8524 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8525 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8526 	    }
8527 	}
8528 #endif
8529 
8530 	if (un->un_f_opt_disable_cache == TRUE) {
8531 		if (sd_disable_caching(un) != 0) {
8532 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8533 			    "sd_unit_attach: un:0x%p Could not disable "
8534 			    "caching", un);
8535 			goto devid_failed;
8536 		}
8537 	}
8538 
8539 	/*
8540 	 * NOTE: Since there is currently no mechanism to
8541 	 * change the state of the Write Cache Enable mode select,
8542 	 * this code just checks the value of the WCE bit
8543 	 * at device attach time.  If a mechanism
8544 	 * is added to the driver to change WCE, un_f_write_cache_enabled
8545 	 * must be updated appropriately.
8546 	 */
8547 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
8548 	mutex_enter(SD_MUTEX(un));
8549 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8550 	mutex_exit(SD_MUTEX(un));
8551 
8552 	/*
8553 	 * Set the pstat and error stat values here, so data obtained during the
8554 	 * previous attach-time routines is available.
8555 	 *
8556 	 * Note: This is a critical sequence that needs to be maintained:
8557 	 *	1) Instantiate the kstats before any routines using the iopath
8558 	 *	   (i.e. sd_send_scsi_cmd).
8559 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8560 	 *	   stats (sd_set_pstats)here, following sd_validate_geometry(),
8561 	 *	   sd_register_devid(), and sd_disable_caching().
8562 	 */
8563 	if (!ISREMOVABLE(un) && (un->un_f_pkstats_enabled == TRUE)) {
8564 		sd_set_pstats(un);
8565 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8566 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8567 	}
8568 
8569 	sd_set_errstats(un);
8570 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8571 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8572 
8573 	/*
8574 	 * Find out what type of reservation this disk supports.
8575 	 */
8576 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
8577 	case 0:
8578 		/*
8579 		 * SCSI-3 reservations are supported.
8580 		 */
8581 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8582 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8583 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8584 		break;
8585 	case ENOTSUP:
8586 		/*
8587 		 * The PERSISTENT RESERVE IN command would not be recognized by
8588 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8589 		 */
8590 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8591 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8592 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8593 		break;
8594 	default:
8595 		/*
8596 		 * default to SCSI-3 reservations
8597 		 */
8598 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8599 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8600 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8601 		break;
8602 	}
8603 
8604 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8605 	    "sd_unit_attach: un:0x%p exit success\n", un);
8606 
8607 	return (DDI_SUCCESS);
8608 
8609 	/*
8610 	 * An error occurred during the attach; clean up & return failure.
8611 	 */
8612 
8613 devid_failed:
8614 
8615 setup_pm_failed:
8616 	ddi_remove_minor_node(devi, NULL);
8617 
8618 create_minor_nodes_failed:
8619 	/*
8620 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8621 	 */
8622 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8623 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8624 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8625 
8626 	if (un->un_f_is_fibre == FALSE) {
8627 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8628 	}
8629 
8630 spinup_failed:
8631 
8632 	mutex_enter(SD_MUTEX(un));
8633 
8634 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8635 	if (un->un_direct_priority_timeid != NULL) {
8636 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8637 		un->un_direct_priority_timeid = NULL;
8638 		mutex_exit(SD_MUTEX(un));
8639 		(void) untimeout(temp_id);
8640 		mutex_enter(SD_MUTEX(un));
8641 	}
8642 
8643 	/* Cancel any pending start/stop timeouts */
8644 	if (un->un_startstop_timeid != NULL) {
8645 		timeout_id_t temp_id = un->un_startstop_timeid;
8646 		un->un_startstop_timeid = NULL;
8647 		mutex_exit(SD_MUTEX(un));
8648 		(void) untimeout(temp_id);
8649 		mutex_enter(SD_MUTEX(un));
8650 	}
8651 
8652 	/* Cancel any pending reset-throttle timeouts */
8653 	if (un->un_reset_throttle_timeid != NULL) {
8654 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8655 		un->un_reset_throttle_timeid = NULL;
8656 		mutex_exit(SD_MUTEX(un));
8657 		(void) untimeout(temp_id);
8658 		mutex_enter(SD_MUTEX(un));
8659 	}
8660 
8661 	/* Cancel any pending retry timeouts */
8662 	if (un->un_retry_timeid != NULL) {
8663 		timeout_id_t temp_id = un->un_retry_timeid;
8664 		un->un_retry_timeid = NULL;
8665 		mutex_exit(SD_MUTEX(un));
8666 		(void) untimeout(temp_id);
8667 		mutex_enter(SD_MUTEX(un));
8668 	}
8669 
8670 	/* Cancel any pending delayed cv broadcast timeouts */
8671 	if (un->un_dcvb_timeid != NULL) {
8672 		timeout_id_t temp_id = un->un_dcvb_timeid;
8673 		un->un_dcvb_timeid = NULL;
8674 		mutex_exit(SD_MUTEX(un));
8675 		(void) untimeout(temp_id);
8676 		mutex_enter(SD_MUTEX(un));
8677 	}
8678 
8679 	mutex_exit(SD_MUTEX(un));
8680 
8681 	/* There should not be any in-progress I/O so ASSERT this check */
8682 	ASSERT(un->un_ncmds_in_transport == 0);
8683 	ASSERT(un->un_ncmds_in_driver == 0);
8684 
8685 	/* Do not free the softstate if the callback routine is active */
8686 	sd_sync_with_callback(un);
8687 
8688 	/*
8689 	 * Partition stats apparently are not used with removables. These would
8690 	 * not have been created during attach, so no need to clean them up...
8691 	 */
8692 	if (un->un_stats != NULL) {
8693 		kstat_delete(un->un_stats);
8694 		un->un_stats = NULL;
8695 	}
8696 	if (un->un_errstats != NULL) {
8697 		kstat_delete(un->un_errstats);
8698 		un->un_errstats = NULL;
8699 	}
8700 
8701 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8702 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8703 
8704 	ddi_prop_remove_all(devi);
8705 	sema_destroy(&un->un_semoclose);
8706 	cv_destroy(&un->un_state_cv);
8707 
8708 getrbuf_failed:
8709 
8710 	sd_free_rqs(un);
8711 
8712 alloc_rqs_failed:
8713 
8714 	devp->sd_private = NULL;
8715 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8716 
8717 get_softstate_failed:
8718 	/*
8719 	 * Note: the man pages are unclear as to whether or not doing a
8720 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8721 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8722 	 * ddi_get_soft_state() fails.  The implication seems to be
8723 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8724 	 */
8725 	ddi_soft_state_free(sd_state, instance);
8726 
8727 probe_failed:
8728 	scsi_unprobe(devp);
8729 #ifdef SDDEBUG
8730 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
8731 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
8732 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
8733 		    (void *)un);
8734 	}
8735 #endif
8736 	return (DDI_FAILURE);
8737 }
8738 
8739 
8740 /*
8741  *    Function: sd_unit_detach
8742  *
8743  * Description: Performs DDI_DETACH processing for sddetach().
8744  *
8745  * Return Code: DDI_SUCCESS
8746  *		DDI_FAILURE
8747  *
8748  *     Context: Kernel thread context
8749  */
8750 
8751 static int
8752 sd_unit_detach(dev_info_t *devi)
8753 {
8754 	struct scsi_device	*devp;
8755 	struct sd_lun		*un;
8756 	int			i;
8757 	dev_t			dev;
8758 	int			instance = ddi_get_instance(devi);
8759 
8760 	mutex_enter(&sd_detach_mutex);
8761 
8762 	/*
8763 	 * Fail the detach for any of the following:
8764 	 *  - Unable to get the sd_lun struct for the instance
8765 	 *  - A layered driver has an outstanding open on the instance
8766 	 *  - Another thread is already detaching this instance
8767 	 *  - Another thread is currently performing an open
8768 	 */
8769 	devp = ddi_get_driver_private(devi);
8770 	if ((devp == NULL) ||
8771 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8772 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8773 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8774 		mutex_exit(&sd_detach_mutex);
8775 		return (DDI_FAILURE);
8776 	}
8777 
8778 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8779 
8780 	/*
8781 	 * Mark this instance as currently in a detach, to inhibit any
8782 	 * opens from a layered driver.
8783 	 */
8784 	un->un_detach_count++;
8785 	mutex_exit(&sd_detach_mutex);
8786 
8787 	dev = sd_make_device(SD_DEVINFO(un));
8788 
8789 	_NOTE(COMPETING_THREADS_NOW);
8790 
8791 	mutex_enter(SD_MUTEX(un));
8792 
8793 	/*
8794 	 * Fail the detach if there are any outstanding layered
8795 	 * opens on this device.
8796 	 */
8797 	for (i = 0; i < NDKMAP; i++) {
8798 		if (un->un_ocmap.lyropen[i] != 0) {
8799 			goto err_notclosed;
8800 		}
8801 	}
8802 
8803 	/*
8804 	 * Verify there are NO outstanding commands issued to this device.
8805 	 * ie, un_ncmds_in_transport == 0.
8806 	 * It's possible to have outstanding commands through the physio
8807 	 * code path, even though everything's closed.
8808 	 */
8809 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8810 	    (un->un_direct_priority_timeid != NULL) ||
8811 	    (un->un_state == SD_STATE_RWAIT)) {
8812 		mutex_exit(SD_MUTEX(un));
8813 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8814 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8815 		goto err_stillbusy;
8816 	}
8817 
8818 	/*
8819 	 * If we have the device reserved, release the reservation.
8820 	 */
8821 	if ((un->un_resvd_status & SD_RESERVE) &&
8822 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8823 		mutex_exit(SD_MUTEX(un));
8824 		/*
8825 		 * Note: sd_reserve_release sends a command to the device
8826 		 * via the sd_ioctlcmd() path, and can sleep.
8827 		 */
8828 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8829 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8830 			    "sd_dr_detach: Cannot release reservation \n");
8831 		}
8832 	} else {
8833 		mutex_exit(SD_MUTEX(un));
8834 	}
8835 
8836 	/*
8837 	 * Untimeout any reserve recover, throttle reset, restart unit
8838 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8839 	 * from getting nulled by their callback functions.
8840 	 */
8841 	mutex_enter(SD_MUTEX(un));
8842 	if (un->un_resvd_timeid != NULL) {
8843 		timeout_id_t temp_id = un->un_resvd_timeid;
8844 		un->un_resvd_timeid = NULL;
8845 		mutex_exit(SD_MUTEX(un));
8846 		(void) untimeout(temp_id);
8847 		mutex_enter(SD_MUTEX(un));
8848 	}
8849 
8850 	if (un->un_reset_throttle_timeid != NULL) {
8851 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8852 		un->un_reset_throttle_timeid = NULL;
8853 		mutex_exit(SD_MUTEX(un));
8854 		(void) untimeout(temp_id);
8855 		mutex_enter(SD_MUTEX(un));
8856 	}
8857 
8858 	if (un->un_startstop_timeid != NULL) {
8859 		timeout_id_t temp_id = un->un_startstop_timeid;
8860 		un->un_startstop_timeid = NULL;
8861 		mutex_exit(SD_MUTEX(un));
8862 		(void) untimeout(temp_id);
8863 		mutex_enter(SD_MUTEX(un));
8864 	}
8865 
8866 	if (un->un_dcvb_timeid != NULL) {
8867 		timeout_id_t temp_id = un->un_dcvb_timeid;
8868 		un->un_dcvb_timeid = NULL;
8869 		mutex_exit(SD_MUTEX(un));
8870 		(void) untimeout(temp_id);
8871 	} else {
8872 		mutex_exit(SD_MUTEX(un));
8873 	}
8874 
8875 	/* Remove any pending reservation reclaim requests for this device */
8876 	sd_rmv_resv_reclaim_req(dev);
8877 
8878 	mutex_enter(SD_MUTEX(un));
8879 
8880 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8881 	if (un->un_direct_priority_timeid != NULL) {
8882 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8883 		un->un_direct_priority_timeid = NULL;
8884 		mutex_exit(SD_MUTEX(un));
8885 		(void) untimeout(temp_id);
8886 		mutex_enter(SD_MUTEX(un));
8887 	}
8888 
8889 	/* Cancel any active multi-host disk watch thread requests */
8890 	if (un->un_mhd_token != NULL) {
8891 		mutex_exit(SD_MUTEX(un));
8892 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8893 		if (scsi_watch_request_terminate(un->un_mhd_token,
8894 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8895 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8896 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8897 			/*
8898 			 * Note: We are returning here after having removed
8899 			 * some driver timeouts above. This is consistent with
8900 			 * the legacy implementation but perhaps the watch
8901 			 * terminate call should be made with the wait flag set.
8902 			 */
8903 			goto err_stillbusy;
8904 		}
8905 		mutex_enter(SD_MUTEX(un));
8906 		un->un_mhd_token = NULL;
8907 	}
8908 
8909 	if (un->un_swr_token != NULL) {
8910 		mutex_exit(SD_MUTEX(un));
8911 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8912 		if (scsi_watch_request_terminate(un->un_swr_token,
8913 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8914 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8915 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8916 			/*
8917 			 * Note: We are returning here after having removed
8918 			 * some driver timeouts above. This is consistent with
8919 			 * the legacy implementation but perhaps the watch
8920 			 * terminate call should be made with the wait flag set.
8921 			 */
8922 			goto err_stillbusy;
8923 		}
8924 		mutex_enter(SD_MUTEX(un));
8925 		un->un_swr_token = NULL;
8926 	}
8927 
8928 	mutex_exit(SD_MUTEX(un));
8929 
8930 	/*
8931 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8932 	 * if we have not registered one.
8933 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8934 	 */
8935 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8936 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8937 
8938 	/*
8939 	 * protect the timeout pointers from getting nulled by
8940 	 * their callback functions during the cancellation process.
8941 	 * In such a scenario untimeout can be invoked with a null value.
8942 	 */
8943 	_NOTE(NO_COMPETING_THREADS_NOW);
8944 
8945 	mutex_enter(&un->un_pm_mutex);
8946 	if (un->un_pm_idle_timeid != NULL) {
8947 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8948 		un->un_pm_idle_timeid = NULL;
8949 		mutex_exit(&un->un_pm_mutex);
8950 
8951 		/*
8952 		 * Timeout is active; cancel it.
8953 		 * Note that it'll never be active on a device
8954 		 * that does not support PM therefore we don't
8955 		 * have to check before calling pm_idle_component.
8956 		 */
8957 		(void) untimeout(temp_id);
8958 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8959 		mutex_enter(&un->un_pm_mutex);
8960 	}
8961 
8962 	/*
8963 	 * Check whether there is already a timeout scheduled for power
8964 	 * management. If yes then don't lower the power here, that's.
8965 	 * the timeout handler's job.
8966 	 */
8967 	if (un->un_pm_timeid != NULL) {
8968 		timeout_id_t temp_id = un->un_pm_timeid;
8969 		un->un_pm_timeid = NULL;
8970 		mutex_exit(&un->un_pm_mutex);
8971 		/*
8972 		 * Timeout is active; cancel it.
8973 		 * Note that it'll never be active on a device
8974 		 * that does not support PM therefore we don't
8975 		 * have to check before calling pm_idle_component.
8976 		 */
8977 		(void) untimeout(temp_id);
8978 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8979 
8980 	} else {
8981 		mutex_exit(&un->un_pm_mutex);
8982 		if ((un->un_f_pm_is_enabled == TRUE) &&
8983 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8984 		    DDI_SUCCESS)) {
8985 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8986 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8987 			/*
8988 			 * Fix for bug: 4297749, item # 13
8989 			 * The above test now includes a check to see if PM is
8990 			 * supported by this device before call
8991 			 * pm_lower_power().
8992 			 * Note, the following is not dead code. The call to
8993 			 * pm_lower_power above will generate a call back into
8994 			 * our sdpower routine which might result in a timeout
8995 			 * handler getting activated. Therefore the following
8996 			 * code is valid and necessary.
8997 			 */
8998 			mutex_enter(&un->un_pm_mutex);
8999 			if (un->un_pm_timeid != NULL) {
9000 				timeout_id_t temp_id = un->un_pm_timeid;
9001 				un->un_pm_timeid = NULL;
9002 				mutex_exit(&un->un_pm_mutex);
9003 				(void) untimeout(temp_id);
9004 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9005 			} else {
9006 				mutex_exit(&un->un_pm_mutex);
9007 			}
9008 		}
9009 	}
9010 
9011 	/*
9012 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9013 	 * Relocated here from above to be after the call to
9014 	 * pm_lower_power, which was getting errors.
9015 	 */
9016 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9017 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9018 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9019 
9020 	if (un->un_f_is_fibre == FALSE) {
9021 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9022 	}
9023 
9024 	/*
9025 	 * Remove any event callbacks, fibre only
9026 	 */
9027 	if (un->un_f_is_fibre == TRUE) {
9028 		if ((un->un_insert_event != NULL) &&
9029 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
9030 				DDI_SUCCESS)) {
9031 			/*
9032 			 * Note: We are returning here after having done
9033 			 * substantial cleanup above. This is consistent
9034 			 * with the legacy implementation but this may not
9035 			 * be the right thing to do.
9036 			 */
9037 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9038 				"sd_dr_detach: Cannot cancel insert event\n");
9039 			goto err_remove_event;
9040 		}
9041 		un->un_insert_event = NULL;
9042 
9043 		if ((un->un_remove_event != NULL) &&
9044 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9045 				DDI_SUCCESS)) {
9046 			/*
9047 			 * Note: We are returning here after having done
9048 			 * substantial cleanup above. This is consistent
9049 			 * with the legacy implementation but this may not
9050 			 * be the right thing to do.
9051 			 */
9052 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9053 				"sd_dr_detach: Cannot cancel remove event\n");
9054 			goto err_remove_event;
9055 		}
9056 		un->un_remove_event = NULL;
9057 	}
9058 
9059 	/* Do not free the softstate if the callback routine is active */
9060 	sd_sync_with_callback(un);
9061 
9062 	/*
9063 	 * Hold the detach mutex here, to make sure that no other threads ever
9064 	 * can access a (partially) freed soft state structure.
9065 	 */
9066 	mutex_enter(&sd_detach_mutex);
9067 
9068 	/*
9069 	 * Clean up the soft state struct.
9070 	 * Cleanup is done in reverse order of allocs/inits.
9071 	 * At this point there should be no competing threads anymore.
9072 	 */
9073 
9074 	/* Unregister and free device id. */
9075 	ddi_devid_unregister(devi);
9076 	if (un->un_devid) {
9077 		ddi_devid_free(un->un_devid);
9078 		un->un_devid = NULL;
9079 	}
9080 
9081 	/*
9082 	 * Destroy wmap cache if it exists.
9083 	 */
9084 	if (un->un_wm_cache != NULL) {
9085 		kmem_cache_destroy(un->un_wm_cache);
9086 		un->un_wm_cache = NULL;
9087 	}
9088 
9089 	/* Remove minor nodes */
9090 	ddi_remove_minor_node(devi, NULL);
9091 
9092 	/*
9093 	 * kstat cleanup is done in detach for all device types (4363169).
9094 	 * We do not want to fail detach if the device kstats are not deleted
9095 	 * since there is a confusion about the devo_refcnt for the device.
9096 	 * We just delete the kstats and let detach complete successfully.
9097 	 */
9098 	if (un->un_stats != NULL) {
9099 		kstat_delete(un->un_stats);
9100 		un->un_stats = NULL;
9101 	}
9102 	if (un->un_errstats != NULL) {
9103 		kstat_delete(un->un_errstats);
9104 		un->un_errstats = NULL;
9105 	}
9106 
9107 	/* Remove partition stats (not created for removables) */
9108 	if (!ISREMOVABLE(un)) {
9109 		for (i = 0; i < NSDMAP; i++) {
9110 			if (un->un_pstats[i] != NULL) {
9111 				kstat_delete(un->un_pstats[i]);
9112 				un->un_pstats[i] = NULL;
9113 			}
9114 		}
9115 	}
9116 
9117 	/* Remove xbuf registration */
9118 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9119 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9120 
9121 	/* Remove driver properties */
9122 	ddi_prop_remove_all(devi);
9123 
9124 	mutex_destroy(&un->un_pm_mutex);
9125 	cv_destroy(&un->un_pm_busy_cv);
9126 
9127 	/* Open/close semaphore */
9128 	sema_destroy(&un->un_semoclose);
9129 
9130 	/* Removable media condvar. */
9131 	cv_destroy(&un->un_state_cv);
9132 
9133 	/* Suspend/resume condvar. */
9134 	cv_destroy(&un->un_suspend_cv);
9135 	cv_destroy(&un->un_disk_busy_cv);
9136 
9137 	sd_free_rqs(un);
9138 
9139 	/* Free up soft state */
9140 	devp->sd_private = NULL;
9141 	bzero(un, sizeof (struct sd_lun));
9142 	ddi_soft_state_free(sd_state, instance);
9143 
9144 	mutex_exit(&sd_detach_mutex);
9145 
9146 	/* This frees up the INQUIRY data associated with the device. */
9147 	scsi_unprobe(devp);
9148 
9149 	return (DDI_SUCCESS);
9150 
9151 err_notclosed:
9152 	mutex_exit(SD_MUTEX(un));
9153 
9154 err_stillbusy:
9155 	_NOTE(NO_COMPETING_THREADS_NOW);
9156 
9157 err_remove_event:
9158 	mutex_enter(&sd_detach_mutex);
9159 	un->un_detach_count--;
9160 	mutex_exit(&sd_detach_mutex);
9161 
9162 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9163 	return (DDI_FAILURE);
9164 }
9165 
9166 
9167 /*
9168  * Driver minor node structure and data table
9169  */
9170 struct driver_minor_data {
9171 	char	*name;
9172 	minor_t	minor;
9173 	int	type;
9174 };
9175 
9176 static struct driver_minor_data sd_minor_data[] = {
9177 	{"a", 0, S_IFBLK},
9178 	{"b", 1, S_IFBLK},
9179 	{"c", 2, S_IFBLK},
9180 	{"d", 3, S_IFBLK},
9181 	{"e", 4, S_IFBLK},
9182 	{"f", 5, S_IFBLK},
9183 	{"g", 6, S_IFBLK},
9184 	{"h", 7, S_IFBLK},
9185 #if defined(_SUNOS_VTOC_16)
9186 	{"i", 8, S_IFBLK},
9187 	{"j", 9, S_IFBLK},
9188 	{"k", 10, S_IFBLK},
9189 	{"l", 11, S_IFBLK},
9190 	{"m", 12, S_IFBLK},
9191 	{"n", 13, S_IFBLK},
9192 	{"o", 14, S_IFBLK},
9193 	{"p", 15, S_IFBLK},
9194 #endif			/* defined(_SUNOS_VTOC_16) */
9195 #if defined(_FIRMWARE_NEEDS_FDISK)
9196 	{"q", 16, S_IFBLK},
9197 	{"r", 17, S_IFBLK},
9198 	{"s", 18, S_IFBLK},
9199 	{"t", 19, S_IFBLK},
9200 	{"u", 20, S_IFBLK},
9201 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9202 	{"a,raw", 0, S_IFCHR},
9203 	{"b,raw", 1, S_IFCHR},
9204 	{"c,raw", 2, S_IFCHR},
9205 	{"d,raw", 3, S_IFCHR},
9206 	{"e,raw", 4, S_IFCHR},
9207 	{"f,raw", 5, S_IFCHR},
9208 	{"g,raw", 6, S_IFCHR},
9209 	{"h,raw", 7, S_IFCHR},
9210 #if defined(_SUNOS_VTOC_16)
9211 	{"i,raw", 8, S_IFCHR},
9212 	{"j,raw", 9, S_IFCHR},
9213 	{"k,raw", 10, S_IFCHR},
9214 	{"l,raw", 11, S_IFCHR},
9215 	{"m,raw", 12, S_IFCHR},
9216 	{"n,raw", 13, S_IFCHR},
9217 	{"o,raw", 14, S_IFCHR},
9218 	{"p,raw", 15, S_IFCHR},
9219 #endif			/* defined(_SUNOS_VTOC_16) */
9220 #if defined(_FIRMWARE_NEEDS_FDISK)
9221 	{"q,raw", 16, S_IFCHR},
9222 	{"r,raw", 17, S_IFCHR},
9223 	{"s,raw", 18, S_IFCHR},
9224 	{"t,raw", 19, S_IFCHR},
9225 	{"u,raw", 20, S_IFCHR},
9226 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9227 	{0}
9228 };
9229 
9230 static struct driver_minor_data sd_minor_data_efi[] = {
9231 	{"a", 0, S_IFBLK},
9232 	{"b", 1, S_IFBLK},
9233 	{"c", 2, S_IFBLK},
9234 	{"d", 3, S_IFBLK},
9235 	{"e", 4, S_IFBLK},
9236 	{"f", 5, S_IFBLK},
9237 	{"g", 6, S_IFBLK},
9238 	{"wd", 7, S_IFBLK},
9239 #if defined(_FIRMWARE_NEEDS_FDISK)
9240 	{"q", 16, S_IFBLK},
9241 	{"r", 17, S_IFBLK},
9242 	{"s", 18, S_IFBLK},
9243 	{"t", 19, S_IFBLK},
9244 	{"u", 20, S_IFBLK},
9245 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9246 	{"a,raw", 0, S_IFCHR},
9247 	{"b,raw", 1, S_IFCHR},
9248 	{"c,raw", 2, S_IFCHR},
9249 	{"d,raw", 3, S_IFCHR},
9250 	{"e,raw", 4, S_IFCHR},
9251 	{"f,raw", 5, S_IFCHR},
9252 	{"g,raw", 6, S_IFCHR},
9253 	{"wd,raw", 7, S_IFCHR},
9254 #if defined(_FIRMWARE_NEEDS_FDISK)
9255 	{"q,raw", 16, S_IFCHR},
9256 	{"r,raw", 17, S_IFCHR},
9257 	{"s,raw", 18, S_IFCHR},
9258 	{"t,raw", 19, S_IFCHR},
9259 	{"u,raw", 20, S_IFCHR},
9260 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9261 	{0}
9262 };
9263 
9264 
9265 /*
9266  *    Function: sd_create_minor_nodes
9267  *
9268  * Description: Create the minor device nodes for the instance.
9269  *
9270  *   Arguments: un - driver soft state (unit) structure
9271  *		devi - pointer to device info structure
9272  *
9273  * Return Code: DDI_SUCCESS
9274  *		DDI_FAILURE
9275  *
9276  *     Context: Kernel thread context
9277  */
9278 
9279 static int
9280 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9281 {
9282 	struct driver_minor_data	*dmdp;
9283 	struct scsi_device		*devp;
9284 	int				instance;
9285 	char				name[48];
9286 
9287 	ASSERT(un != NULL);
9288 	devp = ddi_get_driver_private(devi);
9289 	instance = ddi_get_instance(devp->sd_dev);
9290 
9291 	/*
9292 	 * Create all the minor nodes for this target.
9293 	 */
9294 	if (un->un_blockcount > DK_MAX_BLOCKS)
9295 		dmdp = sd_minor_data_efi;
9296 	else
9297 		dmdp = sd_minor_data;
9298 	while (dmdp->name != NULL) {
9299 
9300 		(void) sprintf(name, "%s", dmdp->name);
9301 
9302 		if (ddi_create_minor_node(devi, name, dmdp->type,
9303 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9304 		    un->un_node_type, NULL) == DDI_FAILURE) {
9305 			/*
9306 			 * Clean up any nodes that may have been created, in
9307 			 * case this fails in the middle of the loop.
9308 			 */
9309 			ddi_remove_minor_node(devi, NULL);
9310 			return (DDI_FAILURE);
9311 		}
9312 		dmdp++;
9313 	}
9314 
9315 	return (DDI_SUCCESS);
9316 }
9317 
9318 
9319 /*
9320  *    Function: sd_create_errstats
9321  *
9322  * Description: This routine instantiates the device error stats.
9323  *
9324  *		Note: During attach the stats are instantiated first so they are
9325  *		available for attach-time routines that utilize the driver
9326  *		iopath to send commands to the device. The stats are initialized
9327  *		separately so data obtained during some attach-time routines is
9328  *		available. (4362483)
9329  *
9330  *   Arguments: un - driver soft state (unit) structure
9331  *		instance - driver instance
9332  *
9333  *     Context: Kernel thread context
9334  */
9335 
9336 static void
9337 sd_create_errstats(struct sd_lun *un, int instance)
9338 {
9339 	struct	sd_errstats	*stp;
9340 	char	kstatmodule_err[KSTAT_STRLEN];
9341 	char	kstatname[KSTAT_STRLEN];
9342 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9343 
9344 	ASSERT(un != NULL);
9345 
9346 	if (un->un_errstats != NULL) {
9347 		return;
9348 	}
9349 
9350 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9351 	    "%serr", sd_label);
9352 	(void) snprintf(kstatname, sizeof (kstatname),
9353 	    "%s%d,err", sd_label, instance);
9354 
9355 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9356 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9357 
9358 	if (un->un_errstats == NULL) {
9359 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9360 		    "sd_create_errstats: Failed kstat_create\n");
9361 		return;
9362 	}
9363 
9364 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9365 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9366 	    KSTAT_DATA_UINT32);
9367 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9368 	    KSTAT_DATA_UINT32);
9369 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9370 	    KSTAT_DATA_UINT32);
9371 	kstat_named_init(&stp->sd_vid,		"Vendor",
9372 	    KSTAT_DATA_CHAR);
9373 	kstat_named_init(&stp->sd_pid,		"Product",
9374 	    KSTAT_DATA_CHAR);
9375 	kstat_named_init(&stp->sd_revision,	"Revision",
9376 	    KSTAT_DATA_CHAR);
9377 	kstat_named_init(&stp->sd_serial,	"Serial No",
9378 	    KSTAT_DATA_CHAR);
9379 	kstat_named_init(&stp->sd_capacity,	"Size",
9380 	    KSTAT_DATA_ULONGLONG);
9381 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9382 	    KSTAT_DATA_UINT32);
9383 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9384 	    KSTAT_DATA_UINT32);
9385 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9386 	    KSTAT_DATA_UINT32);
9387 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9388 	    KSTAT_DATA_UINT32);
9389 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9390 	    KSTAT_DATA_UINT32);
9391 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9392 	    KSTAT_DATA_UINT32);
9393 
9394 	un->un_errstats->ks_private = un;
9395 	un->un_errstats->ks_update  = nulldev;
9396 
9397 	kstat_install(un->un_errstats);
9398 }
9399 
9400 
9401 /*
9402  *    Function: sd_set_errstats
9403  *
9404  * Description: This routine sets the value of the vendor id, product id,
9405  *		revision, serial number, and capacity device error stats.
9406  *
9407  *		Note: During attach the stats are instantiated first so they are
9408  *		available for attach-time routines that utilize the driver
9409  *		iopath to send commands to the device. The stats are initialized
9410  *		separately so data obtained during some attach-time routines is
9411  *		available. (4362483)
9412  *
9413  *   Arguments: un - driver soft state (unit) structure
9414  *
9415  *     Context: Kernel thread context
9416  */
9417 
9418 static void
9419 sd_set_errstats(struct sd_lun *un)
9420 {
9421 	struct	sd_errstats	*stp;
9422 
9423 	ASSERT(un != NULL);
9424 	ASSERT(un->un_errstats != NULL);
9425 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9426 	ASSERT(stp != NULL);
9427 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9428 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9429 	(void) strncpy(stp->sd_revision.value.c,
9430 	    un->un_sd->sd_inq->inq_revision, 4);
9431 
9432 	/*
9433 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9434 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9435 	 * (4376302))
9436 	 */
9437 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9438 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9439 		    sizeof (SD_INQUIRY(un)->inq_serial));
9440 	}
9441 
9442 	if (un->un_f_blockcount_is_valid != TRUE) {
9443 		/*
9444 		 * Set capacity error stat to 0 for no media. This ensures
9445 		 * a valid capacity is displayed in response to 'iostat -E'
9446 		 * when no media is present in the device.
9447 		 */
9448 		stp->sd_capacity.value.ui64 = 0;
9449 	} else {
9450 		/*
9451 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9452 		 * capacity.
9453 		 *
9454 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9455 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9456 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9457 		 */
9458 		stp->sd_capacity.value.ui64 = (uint64_t)
9459 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9460 	}
9461 }
9462 
9463 
9464 /*
9465  *    Function: sd_set_pstats
9466  *
9467  * Description: This routine instantiates and initializes the partition
9468  *              stats for each partition with more than zero blocks.
9469  *		(4363169)
9470  *
9471  *   Arguments: un - driver soft state (unit) structure
9472  *
9473  *     Context: Kernel thread context
9474  */
9475 
9476 static void
9477 sd_set_pstats(struct sd_lun *un)
9478 {
9479 	char	kstatname[KSTAT_STRLEN];
9480 	int	instance;
9481 	int	i;
9482 
9483 	ASSERT(un != NULL);
9484 
9485 	instance = ddi_get_instance(SD_DEVINFO(un));
9486 
9487 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9488 	for (i = 0; i < NSDMAP; i++) {
9489 		if ((un->un_pstats[i] == NULL) &&
9490 		    (un->un_map[i].dkl_nblk != 0)) {
9491 			(void) snprintf(kstatname, sizeof (kstatname),
9492 			    "%s%d,%s", sd_label, instance,
9493 			    sd_minor_data[i].name);
9494 			un->un_pstats[i] = kstat_create(sd_label,
9495 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9496 			    1, KSTAT_FLAG_PERSISTENT);
9497 			if (un->un_pstats[i] != NULL) {
9498 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9499 				kstat_install(un->un_pstats[i]);
9500 			}
9501 		}
9502 	}
9503 }
9504 
9505 
9506 #if (defined(__fibre))
9507 /*
9508  *    Function: sd_init_event_callbacks
9509  *
9510  * Description: This routine initializes the insertion and removal event
9511  *		callbacks. (fibre only)
9512  *
9513  *   Arguments: un - driver soft state (unit) structure
9514  *
9515  *     Context: Kernel thread context
9516  */
9517 
9518 static void
9519 sd_init_event_callbacks(struct sd_lun *un)
9520 {
9521 	ASSERT(un != NULL);
9522 
9523 	if ((un->un_insert_event == NULL) &&
9524 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9525 	    &un->un_insert_event) == DDI_SUCCESS)) {
9526 		/*
9527 		 * Add the callback for an insertion event
9528 		 */
9529 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9530 		    un->un_insert_event, sd_event_callback, (void *)un,
9531 		    &(un->un_insert_cb_id));
9532 	}
9533 
9534 	if ((un->un_remove_event == NULL) &&
9535 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9536 	    &un->un_remove_event) == DDI_SUCCESS)) {
9537 		/*
9538 		 * Add the callback for a removal event
9539 		 */
9540 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9541 		    un->un_remove_event, sd_event_callback, (void *)un,
9542 		    &(un->un_remove_cb_id));
9543 	}
9544 }
9545 
9546 
9547 /*
9548  *    Function: sd_event_callback
9549  *
9550  * Description: This routine handles insert/remove events (photon). The
9551  *		state is changed to OFFLINE which can be used to supress
9552  *		error msgs. (fibre only)
9553  *
9554  *   Arguments: un - driver soft state (unit) structure
9555  *
9556  *     Context: Callout thread context
9557  */
9558 /* ARGSUSED */
9559 static void
9560 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9561     void *bus_impldata)
9562 {
9563 	struct sd_lun *un = (struct sd_lun *)arg;
9564 
9565 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9566 	if (event == un->un_insert_event) {
9567 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9568 		mutex_enter(SD_MUTEX(un));
9569 		if (un->un_state == SD_STATE_OFFLINE) {
9570 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9571 				un->un_state = un->un_last_state;
9572 			} else {
9573 				/*
9574 				 * We have gone through SUSPEND/RESUME while
9575 				 * we were offline. Restore the last state
9576 				 */
9577 				un->un_state = un->un_save_state;
9578 			}
9579 		}
9580 		mutex_exit(SD_MUTEX(un));
9581 
9582 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9583 	} else if (event == un->un_remove_event) {
9584 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9585 		mutex_enter(SD_MUTEX(un));
9586 		/*
9587 		 * We need to handle an event callback that occurs during
9588 		 * the suspend operation, since we don't prevent it.
9589 		 */
9590 		if (un->un_state != SD_STATE_OFFLINE) {
9591 			if (un->un_state != SD_STATE_SUSPENDED) {
9592 				New_state(un, SD_STATE_OFFLINE);
9593 			} else {
9594 				un->un_last_state = SD_STATE_OFFLINE;
9595 			}
9596 		}
9597 		mutex_exit(SD_MUTEX(un));
9598 	} else {
9599 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9600 		    "!Unknown event\n");
9601 	}
9602 
9603 }
9604 #endif
9605 
9606 
9607 /*
9608  *    Function: sd_disable_caching()
9609  *
9610  * Description: This routine is the driver entry point for disabling
9611  *		read and write caching by modifying the WCE (write cache
9612  *		enable) and RCD (read cache disable) bits of mode
9613  *		page 8 (MODEPAGE_CACHING).
9614  *
9615  *   Arguments: un - driver soft state (unit) structure
9616  *
9617  * Return Code: EIO
9618  *		code returned by sd_send_scsi_MODE_SENSE and
9619  *		sd_send_scsi_MODE_SELECT
9620  *
9621  *     Context: Kernel Thread
9622  */
9623 
9624 static int
9625 sd_disable_caching(struct sd_lun *un)
9626 {
9627 	struct mode_caching	*mode_caching_page;
9628 	uchar_t			*header;
9629 	size_t			buflen;
9630 	int			hdrlen;
9631 	int			bd_len;
9632 	int			rval = 0;
9633 
9634 	ASSERT(un != NULL);
9635 
9636 	/*
9637 	 * Do a test unit ready, otherwise a mode sense may not work if this
9638 	 * is the first command sent to the device after boot.
9639 	 */
9640 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9641 
9642 	if (un->un_f_cfg_is_atapi == TRUE) {
9643 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9644 	} else {
9645 		hdrlen = MODE_HEADER_LENGTH;
9646 	}
9647 
9648 	/*
9649 	 * Allocate memory for the retrieved mode page and its headers.  Set
9650 	 * a pointer to the page itself.
9651 	 */
9652 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9653 	header = kmem_zalloc(buflen, KM_SLEEP);
9654 
9655 	/* Get the information from the device. */
9656 	if (un->un_f_cfg_is_atapi == TRUE) {
9657 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9658 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9659 	} else {
9660 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9661 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9662 	}
9663 	if (rval != 0) {
9664 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9665 		    "sd_disable_caching: Mode Sense Failed\n");
9666 		kmem_free(header, buflen);
9667 		return (rval);
9668 	}
9669 
9670 	/*
9671 	 * Determine size of Block Descriptors in order to locate
9672 	 * the mode page data. ATAPI devices return 0, SCSI devices
9673 	 * should return MODE_BLK_DESC_LENGTH.
9674 	 */
9675 	if (un->un_f_cfg_is_atapi == TRUE) {
9676 		struct mode_header_grp2	*mhp;
9677 		mhp	= (struct mode_header_grp2 *)header;
9678 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9679 	} else {
9680 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9681 	}
9682 
9683 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9684 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9685 		    "sd_disable_caching: Mode Sense returned invalid "
9686 		    "block descriptor length\n");
9687 		kmem_free(header, buflen);
9688 		return (EIO);
9689 	}
9690 
9691 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9692 
9693 	/* Check the relevant bits on successful mode sense. */
9694 	if ((mode_caching_page->wce) || !(mode_caching_page->rcd)) {
9695 		/*
9696 		 * Read or write caching is enabled.  Disable both of them.
9697 		 */
9698 		mode_caching_page->wce = 0;
9699 		mode_caching_page->rcd = 1;
9700 
9701 		/* Clear reserved bits before mode select. */
9702 		mode_caching_page->mode_page.ps = 0;
9703 
9704 		/*
9705 		 * Clear out mode header for mode select.
9706 		 * The rest of the retrieved page will be reused.
9707 		 */
9708 		bzero(header, hdrlen);
9709 
9710 		/* Change the cache page to disable all caching. */
9711 		if (un->un_f_cfg_is_atapi == TRUE) {
9712 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
9713 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9714 		} else {
9715 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
9716 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9717 		}
9718 	}
9719 
9720 	kmem_free(header, buflen);
9721 	return (rval);
9722 }
9723 
9724 
9725 /*
9726  *    Function: sd_get_write_cache_enabled()
9727  *
9728  * Description: This routine is the driver entry point for determining if
9729  *		write caching is enabled.  It examines the WCE (write cache
9730  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9731  *
9732  *   Arguments: un - driver soft state (unit) structure
9733  *   		is_enabled - pointer to int where write cache enabled state
9734  *   			is returned (non-zero -> write cache enabled)
9735  *
9736  *
9737  * Return Code: EIO
9738  *		code returned by sd_send_scsi_MODE_SENSE
9739  *
9740  *     Context: Kernel Thread
9741  *
9742  * NOTE: If ioctl is added to disable write cache, this sequence should
9743  * be followed so that no locking is required for accesses to
9744  * un->un_f_write_cache_enabled:
9745  * 	do mode select to clear wce
9746  * 	do synchronize cache to flush cache
9747  * 	set un->un_f_write_cache_enabled = FALSE
9748  *
9749  * Conversely, an ioctl to enable the write cache should be done
9750  * in this order:
9751  * 	set un->un_f_write_cache_enabled = TRUE
9752  * 	do mode select to set wce
9753  */
9754 
9755 static int
9756 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
9757 {
9758 	struct mode_caching	*mode_caching_page;
9759 	uchar_t			*header;
9760 	size_t			buflen;
9761 	int			hdrlen;
9762 	int			bd_len;
9763 	int			rval = 0;
9764 
9765 	ASSERT(un != NULL);
9766 	ASSERT(is_enabled != NULL);
9767 
9768 	/* in case of error, flag as enabled */
9769 	*is_enabled = TRUE;
9770 
9771 	/*
9772 	 * Do a test unit ready, otherwise a mode sense may not work if this
9773 	 * is the first command sent to the device after boot.
9774 	 */
9775 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9776 
9777 	if (un->un_f_cfg_is_atapi == TRUE) {
9778 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9779 	} else {
9780 		hdrlen = MODE_HEADER_LENGTH;
9781 	}
9782 
9783 	/*
9784 	 * Allocate memory for the retrieved mode page and its headers.  Set
9785 	 * a pointer to the page itself.
9786 	 */
9787 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9788 	header = kmem_zalloc(buflen, KM_SLEEP);
9789 
9790 	/* Get the information from the device. */
9791 	if (un->un_f_cfg_is_atapi == TRUE) {
9792 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9793 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9794 	} else {
9795 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9796 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9797 	}
9798 	if (rval != 0) {
9799 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9800 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9801 		kmem_free(header, buflen);
9802 		return (rval);
9803 	}
9804 
9805 	/*
9806 	 * Determine size of Block Descriptors in order to locate
9807 	 * the mode page data. ATAPI devices return 0, SCSI devices
9808 	 * should return MODE_BLK_DESC_LENGTH.
9809 	 */
9810 	if (un->un_f_cfg_is_atapi == TRUE) {
9811 		struct mode_header_grp2	*mhp;
9812 		mhp	= (struct mode_header_grp2 *)header;
9813 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9814 	} else {
9815 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9816 	}
9817 
9818 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9819 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9820 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9821 		    "block descriptor length\n");
9822 		kmem_free(header, buflen);
9823 		return (EIO);
9824 	}
9825 
9826 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9827 	*is_enabled = mode_caching_page->wce;
9828 
9829 	kmem_free(header, buflen);
9830 	return (0);
9831 }
9832 
9833 
9834 /*
9835  *    Function: sd_make_device
9836  *
9837  * Description: Utility routine to return the Solaris device number from
9838  *		the data in the device's dev_info structure.
9839  *
9840  * Return Code: The Solaris device number
9841  *
9842  *     Context: Any
9843  */
9844 
9845 static dev_t
9846 sd_make_device(dev_info_t *devi)
9847 {
9848 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9849 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9850 }
9851 
9852 
9853 /*
9854  *    Function: sd_pm_entry
9855  *
9856  * Description: Called at the start of a new command to manage power
9857  *		and busy status of a device. This includes determining whether
9858  *		the current power state of the device is sufficient for
9859  *		performing the command or whether it must be changed.
9860  *		The PM framework is notified appropriately.
9861  *		Only with a return status of DDI_SUCCESS will the
9862  *		component be busy to the framework.
9863  *
9864  *		All callers of sd_pm_entry must check the return status
9865  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9866  *		of DDI_FAILURE indicates the device failed to power up.
9867  *		In this case un_pm_count has been adjusted so the result
9868  *		on exit is still powered down, ie. count is less than 0.
9869  *		Calling sd_pm_exit with this count value hits an ASSERT.
9870  *
9871  * Return Code: DDI_SUCCESS or DDI_FAILURE
9872  *
9873  *     Context: Kernel thread context.
9874  */
9875 
9876 static int
9877 sd_pm_entry(struct sd_lun *un)
9878 {
9879 	int return_status = DDI_SUCCESS;
9880 
9881 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9882 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9883 
9884 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9885 
9886 	if (un->un_f_pm_is_enabled == FALSE) {
9887 		SD_TRACE(SD_LOG_IO_PM, un,
9888 		    "sd_pm_entry: exiting, PM not enabled\n");
9889 		return (return_status);
9890 	}
9891 
9892 	/*
9893 	 * Just increment a counter if PM is enabled. On the transition from
9894 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9895 	 * the count with each IO and mark the device as idle when the count
9896 	 * hits 0.
9897 	 *
9898 	 * If the count is less than 0 the device is powered down. If a powered
9899 	 * down device is successfully powered up then the count must be
9900 	 * incremented to reflect the power up. Note that it'll get incremented
9901 	 * a second time to become busy.
9902 	 *
9903 	 * Because the following has the potential to change the device state
9904 	 * and must release the un_pm_mutex to do so, only one thread can be
9905 	 * allowed through at a time.
9906 	 */
9907 
9908 	mutex_enter(&un->un_pm_mutex);
9909 	while (un->un_pm_busy == TRUE) {
9910 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9911 	}
9912 	un->un_pm_busy = TRUE;
9913 
9914 	if (un->un_pm_count < 1) {
9915 
9916 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9917 
9918 		/*
9919 		 * Indicate we are now busy so the framework won't attempt to
9920 		 * power down the device. This call will only fail if either
9921 		 * we passed a bad component number or the device has no
9922 		 * components. Neither of these should ever happen.
9923 		 */
9924 		mutex_exit(&un->un_pm_mutex);
9925 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9926 		ASSERT(return_status == DDI_SUCCESS);
9927 
9928 		mutex_enter(&un->un_pm_mutex);
9929 
9930 		if (un->un_pm_count < 0) {
9931 			mutex_exit(&un->un_pm_mutex);
9932 
9933 			SD_TRACE(SD_LOG_IO_PM, un,
9934 			    "sd_pm_entry: power up component\n");
9935 
9936 			/*
9937 			 * pm_raise_power will cause sdpower to be called
9938 			 * which brings the device power level to the
9939 			 * desired state, ON in this case. If successful,
9940 			 * un_pm_count and un_power_level will be updated
9941 			 * appropriately.
9942 			 */
9943 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9944 			    SD_SPINDLE_ON);
9945 
9946 			mutex_enter(&un->un_pm_mutex);
9947 
9948 			if (return_status != DDI_SUCCESS) {
9949 				/*
9950 				 * Power up failed.
9951 				 * Idle the device and adjust the count
9952 				 * so the result on exit is that we're
9953 				 * still powered down, ie. count is less than 0.
9954 				 */
9955 				SD_TRACE(SD_LOG_IO_PM, un,
9956 				    "sd_pm_entry: power up failed,"
9957 				    " idle the component\n");
9958 
9959 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9960 				un->un_pm_count--;
9961 			} else {
9962 				/*
9963 				 * Device is powered up, verify the
9964 				 * count is non-negative.
9965 				 * This is debug only.
9966 				 */
9967 				ASSERT(un->un_pm_count == 0);
9968 			}
9969 		}
9970 
9971 		if (return_status == DDI_SUCCESS) {
9972 			/*
9973 			 * For performance, now that the device has been tagged
9974 			 * as busy, and it's known to be powered up, update the
9975 			 * chain types to use jump tables that do not include
9976 			 * pm. This significantly lowers the overhead and
9977 			 * therefore improves performance.
9978 			 */
9979 
9980 			mutex_exit(&un->un_pm_mutex);
9981 			mutex_enter(SD_MUTEX(un));
9982 			SD_TRACE(SD_LOG_IO_PM, un,
9983 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9984 			    un->un_uscsi_chain_type);
9985 
9986 			if (ISREMOVABLE(un)) {
9987 				un->un_buf_chain_type =
9988 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9989 			} else {
9990 				un->un_buf_chain_type =
9991 				    SD_CHAIN_INFO_DISK_NO_PM;
9992 			}
9993 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9994 
9995 			SD_TRACE(SD_LOG_IO_PM, un,
9996 			    "             changed  uscsi_chain_type to   %d\n",
9997 			    un->un_uscsi_chain_type);
9998 			mutex_exit(SD_MUTEX(un));
9999 			mutex_enter(&un->un_pm_mutex);
10000 
10001 			if (un->un_pm_idle_timeid == NULL) {
10002 				/* 300 ms. */
10003 				un->un_pm_idle_timeid =
10004 				    timeout(sd_pm_idletimeout_handler, un,
10005 				    (drv_usectohz((clock_t)300000)));
10006 				/*
10007 				 * Include an extra call to busy which keeps the
10008 				 * device busy with-respect-to the PM layer
10009 				 * until the timer fires, at which time it'll
10010 				 * get the extra idle call.
10011 				 */
10012 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10013 			}
10014 		}
10015 	}
10016 	un->un_pm_busy = FALSE;
10017 	/* Next... */
10018 	cv_signal(&un->un_pm_busy_cv);
10019 
10020 	un->un_pm_count++;
10021 
10022 	SD_TRACE(SD_LOG_IO_PM, un,
10023 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10024 
10025 	mutex_exit(&un->un_pm_mutex);
10026 
10027 	return (return_status);
10028 }
10029 
10030 
10031 /*
10032  *    Function: sd_pm_exit
10033  *
10034  * Description: Called at the completion of a command to manage busy
10035  *		status for the device. If the device becomes idle the
10036  *		PM framework is notified.
10037  *
10038  *     Context: Kernel thread context
10039  */
10040 
10041 static void
10042 sd_pm_exit(struct sd_lun *un)
10043 {
10044 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10045 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10046 
10047 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10048 
10049 	/*
10050 	 * After attach the following flag is only read, so don't
10051 	 * take the penalty of acquiring a mutex for it.
10052 	 */
10053 	if (un->un_f_pm_is_enabled == TRUE) {
10054 
10055 		mutex_enter(&un->un_pm_mutex);
10056 		un->un_pm_count--;
10057 
10058 		SD_TRACE(SD_LOG_IO_PM, un,
10059 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10060 
10061 		ASSERT(un->un_pm_count >= 0);
10062 		if (un->un_pm_count == 0) {
10063 			mutex_exit(&un->un_pm_mutex);
10064 
10065 			SD_TRACE(SD_LOG_IO_PM, un,
10066 			    "sd_pm_exit: idle component\n");
10067 
10068 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10069 
10070 		} else {
10071 			mutex_exit(&un->un_pm_mutex);
10072 		}
10073 	}
10074 
10075 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10076 }
10077 
10078 
10079 /*
10080  *    Function: sdopen
10081  *
10082  * Description: Driver's open(9e) entry point function.
10083  *
10084  *   Arguments: dev_i   - pointer to device number
10085  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10086  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10087  *		cred_p  - user credential pointer
10088  *
10089  * Return Code: EINVAL
10090  *		ENXIO
10091  *		EIO
10092  *		EROFS
10093  *		EBUSY
10094  *
10095  *     Context: Kernel thread context
10096  */
10097 /* ARGSUSED */
10098 static int
10099 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10100 {
10101 	struct sd_lun	*un;
10102 	int		nodelay;
10103 	int		part;
10104 	uint64_t	partmask;
10105 	int		instance;
10106 	dev_t		dev;
10107 	int		rval = EIO;
10108 
10109 	/* Validate the open type */
10110 	if (otyp >= OTYPCNT) {
10111 		return (EINVAL);
10112 	}
10113 
10114 	dev = *dev_p;
10115 	instance = SDUNIT(dev);
10116 	mutex_enter(&sd_detach_mutex);
10117 
10118 	/*
10119 	 * Fail the open if there is no softstate for the instance, or
10120 	 * if another thread somewhere is trying to detach the instance.
10121 	 */
10122 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10123 	    (un->un_detach_count != 0)) {
10124 		mutex_exit(&sd_detach_mutex);
10125 		/*
10126 		 * The probe cache only needs to be cleared when open (9e) fails
10127 		 * with ENXIO (4238046).
10128 		 */
10129 		/*
10130 		 * un-conditionally clearing probe cache is ok with
10131 		 * separate sd/ssd binaries
10132 		 * x86 platform can be an issue with both parallel
10133 		 * and fibre in 1 binary
10134 		 */
10135 		sd_scsi_clear_probe_cache();
10136 		return (ENXIO);
10137 	}
10138 
10139 	/*
10140 	 * The un_layer_count is to prevent another thread in specfs from
10141 	 * trying to detach the instance, which can happen when we are
10142 	 * called from a higher-layer driver instead of thru specfs.
10143 	 * This will not be needed when DDI provides a layered driver
10144 	 * interface that allows specfs to know that an instance is in
10145 	 * use by a layered driver & should not be detached.
10146 	 *
10147 	 * Note: the semantics for layered driver opens are exactly one
10148 	 * close for every open.
10149 	 */
10150 	if (otyp == OTYP_LYR) {
10151 		un->un_layer_count++;
10152 	}
10153 
10154 	/*
10155 	 * Keep a count of the current # of opens in progress. This is because
10156 	 * some layered drivers try to call us as a regular open. This can
10157 	 * cause problems that we cannot prevent, however by keeping this count
10158 	 * we can at least keep our open and detach routines from racing against
10159 	 * each other under such conditions.
10160 	 */
10161 	un->un_opens_in_progress++;
10162 	mutex_exit(&sd_detach_mutex);
10163 
10164 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10165 	part	 = SDPART(dev);
10166 	partmask = 1 << part;
10167 
10168 	/*
10169 	 * We use a semaphore here in order to serialize
10170 	 * open and close requests on the device.
10171 	 */
10172 	sema_p(&un->un_semoclose);
10173 
10174 	mutex_enter(SD_MUTEX(un));
10175 
10176 	/*
10177 	 * All device accesses go thru sdstrategy() where we check
10178 	 * on suspend status but there could be a scsi_poll command,
10179 	 * which bypasses sdstrategy(), so we need to check pm
10180 	 * status.
10181 	 */
10182 
10183 	if (!nodelay) {
10184 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10185 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10186 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10187 		}
10188 
10189 		mutex_exit(SD_MUTEX(un));
10190 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10191 			rval = EIO;
10192 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10193 			    "sdopen: sd_pm_entry failed\n");
10194 			goto open_failed_with_pm;
10195 		}
10196 		mutex_enter(SD_MUTEX(un));
10197 	}
10198 
10199 	/* check for previous exclusive open */
10200 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10201 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10202 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10203 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10204 
10205 	if (un->un_exclopen & (partmask)) {
10206 		goto excl_open_fail;
10207 	}
10208 
10209 	if (flag & FEXCL) {
10210 		int i;
10211 		if (un->un_ocmap.lyropen[part]) {
10212 			goto excl_open_fail;
10213 		}
10214 		for (i = 0; i < (OTYPCNT - 1); i++) {
10215 			if (un->un_ocmap.regopen[i] & (partmask)) {
10216 				goto excl_open_fail;
10217 			}
10218 		}
10219 	}
10220 
10221 	/*
10222 	 * Check the write permission if this is a removable media device,
10223 	 * NDELAY has not been set, and writable permission is requested.
10224 	 *
10225 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10226 	 * attempt will fail with EIO as part of the I/O processing. This is a
10227 	 * more permissive implementation that allows the open to succeed and
10228 	 * WRITE attempts to fail when appropriate.
10229 	 */
10230 	if (ISREMOVABLE(un)) {
10231 		if ((flag & FWRITE) && (!nodelay)) {
10232 			mutex_exit(SD_MUTEX(un));
10233 			/*
10234 			 * Defer the check for write permission on writable
10235 			 * DVD drive till sdstrategy and will not fail open even
10236 			 * if FWRITE is set as the device can be writable
10237 			 * depending upon the media and the media can change
10238 			 * after the call to open().
10239 			 */
10240 			if (un->un_f_dvdram_writable_device == FALSE) {
10241 				if (ISCD(un) || sr_check_wp(dev)) {
10242 				rval = EROFS;
10243 				mutex_enter(SD_MUTEX(un));
10244 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10245 				    "write to cd or write protected media\n");
10246 				goto open_fail;
10247 				}
10248 			}
10249 			mutex_enter(SD_MUTEX(un));
10250 		}
10251 	}
10252 
10253 	/*
10254 	 * If opening in NDELAY/NONBLOCK mode, just return.
10255 	 * Check if disk is ready and has a valid geometry later.
10256 	 */
10257 	if (!nodelay) {
10258 		mutex_exit(SD_MUTEX(un));
10259 		rval = sd_ready_and_valid(un);
10260 		mutex_enter(SD_MUTEX(un));
10261 		/*
10262 		 * Fail if device is not ready or if the number of disk
10263 		 * blocks is zero or negative for non CD devices.
10264 		 */
10265 		if ((rval != SD_READY_VALID) ||
10266 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10267 			if (ISREMOVABLE(un)) {
10268 				rval = ENXIO;
10269 			} else {
10270 				rval = EIO;
10271 			}
10272 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10273 			    "device not ready or invalid disk block value\n");
10274 			goto open_fail;
10275 		}
10276 #if defined(__i386) || defined(__amd64)
10277 	} else {
10278 		uchar_t *cp;
10279 		/*
10280 		 * x86 requires special nodelay handling, so that p0 is
10281 		 * always defined and accessible.
10282 		 * Invalidate geometry only if device is not already open.
10283 		 */
10284 		cp = &un->un_ocmap.chkd[0];
10285 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10286 			if (*cp != (uchar_t)0) {
10287 			    break;
10288 			}
10289 			cp++;
10290 		}
10291 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10292 			un->un_f_geometry_is_valid = FALSE;
10293 		}
10294 
10295 #endif
10296 	}
10297 
10298 	if (otyp == OTYP_LYR) {
10299 		un->un_ocmap.lyropen[part]++;
10300 	} else {
10301 		un->un_ocmap.regopen[otyp] |= partmask;
10302 	}
10303 
10304 	/* Set up open and exclusive open flags */
10305 	if (flag & FEXCL) {
10306 		un->un_exclopen |= (partmask);
10307 	}
10308 
10309 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10310 	    "open of part %d type %d\n", part, otyp);
10311 
10312 	mutex_exit(SD_MUTEX(un));
10313 	if (!nodelay) {
10314 		sd_pm_exit(un);
10315 	}
10316 
10317 	sema_v(&un->un_semoclose);
10318 
10319 	mutex_enter(&sd_detach_mutex);
10320 	un->un_opens_in_progress--;
10321 	mutex_exit(&sd_detach_mutex);
10322 
10323 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10324 	return (DDI_SUCCESS);
10325 
10326 excl_open_fail:
10327 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10328 	rval = EBUSY;
10329 
10330 open_fail:
10331 	mutex_exit(SD_MUTEX(un));
10332 
10333 	/*
10334 	 * On a failed open we must exit the pm management.
10335 	 */
10336 	if (!nodelay) {
10337 		sd_pm_exit(un);
10338 	}
10339 open_failed_with_pm:
10340 	sema_v(&un->un_semoclose);
10341 
10342 	mutex_enter(&sd_detach_mutex);
10343 	un->un_opens_in_progress--;
10344 	if (otyp == OTYP_LYR) {
10345 		un->un_layer_count--;
10346 	}
10347 	mutex_exit(&sd_detach_mutex);
10348 
10349 	return (rval);
10350 }
10351 
10352 
10353 /*
10354  *    Function: sdclose
10355  *
10356  * Description: Driver's close(9e) entry point function.
10357  *
10358  *   Arguments: dev    - device number
10359  *		flag   - file status flag, informational only
10360  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10361  *		cred_p - user credential pointer
10362  *
10363  * Return Code: ENXIO
10364  *
10365  *     Context: Kernel thread context
10366  */
10367 /* ARGSUSED */
10368 static int
10369 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10370 {
10371 	struct sd_lun	*un;
10372 	uchar_t		*cp;
10373 	int		part;
10374 	int		nodelay;
10375 	int		rval = 0;
10376 
10377 	/* Validate the open type */
10378 	if (otyp >= OTYPCNT) {
10379 		return (ENXIO);
10380 	}
10381 
10382 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10383 		return (ENXIO);
10384 	}
10385 
10386 	part = SDPART(dev);
10387 	nodelay = flag & (FNDELAY | FNONBLOCK);
10388 
10389 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10390 	    "sdclose: close of part %d type %d\n", part, otyp);
10391 
10392 	/*
10393 	 * We use a semaphore here in order to serialize
10394 	 * open and close requests on the device.
10395 	 */
10396 	sema_p(&un->un_semoclose);
10397 
10398 	mutex_enter(SD_MUTEX(un));
10399 
10400 	/* Don't proceed if power is being changed. */
10401 	while (un->un_state == SD_STATE_PM_CHANGING) {
10402 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10403 	}
10404 
10405 	if (un->un_exclopen & (1 << part)) {
10406 		un->un_exclopen &= ~(1 << part);
10407 	}
10408 
10409 	/* Update the open partition map */
10410 	if (otyp == OTYP_LYR) {
10411 		un->un_ocmap.lyropen[part] -= 1;
10412 	} else {
10413 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10414 	}
10415 
10416 	cp = &un->un_ocmap.chkd[0];
10417 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10418 		if (*cp != NULL) {
10419 			break;
10420 		}
10421 		cp++;
10422 	}
10423 
10424 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10425 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10426 
10427 		/*
10428 		 * We avoid persistance upon the last close, and set
10429 		 * the throttle back to the maximum.
10430 		 */
10431 		un->un_throttle = un->un_saved_throttle;
10432 
10433 		if (un->un_state == SD_STATE_OFFLINE) {
10434 			if (un->un_f_is_fibre == FALSE) {
10435 				scsi_log(SD_DEVINFO(un), sd_label,
10436 					CE_WARN, "offline\n");
10437 			}
10438 			un->un_f_geometry_is_valid = FALSE;
10439 
10440 		} else {
10441 			/*
10442 			 * Flush any outstanding writes in NVRAM cache.
10443 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10444 			 * cmd, it may not work for non-Pluto devices.
10445 			 * SYNCHRONIZE CACHE is not required for removables,
10446 			 * except DVD-RAM drives.
10447 			 *
10448 			 * Also note: because SYNCHRONIZE CACHE is currently
10449 			 * the only command issued here that requires the
10450 			 * drive be powered up, only do the power up before
10451 			 * sending the Sync Cache command. If additional
10452 			 * commands are added which require a powered up
10453 			 * drive, the following sequence may have to change.
10454 			 *
10455 			 * And finally, note that parallel SCSI on SPARC
10456 			 * only issues a Sync Cache to DVD-RAM, a newly
10457 			 * supported device.
10458 			 */
10459 #if defined(__i386) || defined(__amd64)
10460 			if (!ISREMOVABLE(un) ||
10461 			    un->un_f_dvdram_writable_device == TRUE) {
10462 #else
10463 			if (un->un_f_dvdram_writable_device == TRUE) {
10464 #endif
10465 				mutex_exit(SD_MUTEX(un));
10466 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10467 					rval =
10468 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10469 					    NULL);
10470 					/* ignore error if not supported */
10471 					if (rval == ENOTSUP) {
10472 						rval = 0;
10473 					} else if (rval != 0) {
10474 						rval = EIO;
10475 					}
10476 					sd_pm_exit(un);
10477 				} else {
10478 					rval = EIO;
10479 				}
10480 				mutex_enter(SD_MUTEX(un));
10481 			}
10482 
10483 			/*
10484 			 * For removable media devices, send an ALLOW MEDIA
10485 			 * REMOVAL command, but don't get upset if it fails.
10486 			 * Also invalidate the geometry. We need to raise
10487 			 * the power of the drive before we can call
10488 			 * sd_send_scsi_DOORLOCK()
10489 			 */
10490 			if (ISREMOVABLE(un)) {
10491 				mutex_exit(SD_MUTEX(un));
10492 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10493 					rval = sd_send_scsi_DOORLOCK(un,
10494 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10495 
10496 					sd_pm_exit(un);
10497 					if (ISCD(un) && (rval != 0) &&
10498 					    (nodelay != 0)) {
10499 						rval = ENXIO;
10500 					}
10501 				} else {
10502 					rval = EIO;
10503 				}
10504 				mutex_enter(SD_MUTEX(un));
10505 
10506 				sr_ejected(un);
10507 				/*
10508 				 * Destroy the cache (if it exists) which was
10509 				 * allocated for the write maps since this is
10510 				 * the last close for this media.
10511 				 */
10512 				if (un->un_wm_cache) {
10513 					/*
10514 					 * Check if there are pending commands.
10515 					 * and if there are give a warning and
10516 					 * do not destroy the cache.
10517 					 */
10518 					if (un->un_ncmds_in_driver > 0) {
10519 						scsi_log(SD_DEVINFO(un),
10520 						    sd_label, CE_WARN,
10521 						    "Unable to clean up memory "
10522 						    "because of pending I/O\n");
10523 					} else {
10524 						kmem_cache_destroy(
10525 						    un->un_wm_cache);
10526 						un->un_wm_cache = NULL;
10527 					}
10528 				}
10529 			}
10530 		}
10531 	}
10532 
10533 	mutex_exit(SD_MUTEX(un));
10534 	sema_v(&un->un_semoclose);
10535 
10536 	if (otyp == OTYP_LYR) {
10537 		mutex_enter(&sd_detach_mutex);
10538 		/*
10539 		 * The detach routine may run when the layer count
10540 		 * drops to zero.
10541 		 */
10542 		un->un_layer_count--;
10543 		mutex_exit(&sd_detach_mutex);
10544 	}
10545 
10546 	return (rval);
10547 }
10548 
10549 
10550 /*
10551  *    Function: sd_ready_and_valid
10552  *
10553  * Description: Test if device is ready and has a valid geometry.
10554  *
10555  *   Arguments: dev - device number
10556  *		un  - driver soft state (unit) structure
10557  *
10558  * Return Code: SD_READY_VALID		ready and valid label
10559  *		SD_READY_NOT_VALID	ready, geom ops never applicable
10560  *		SD_NOT_READY_VALID	not ready, no label
10561  *
10562  *     Context: Never called at interrupt context.
10563  */
10564 
10565 static int
10566 sd_ready_and_valid(struct sd_lun *un)
10567 {
10568 	struct sd_errstats	*stp;
10569 	uint64_t		capacity;
10570 	uint_t			lbasize;
10571 	int			rval = SD_READY_VALID;
10572 	char			name_str[48];
10573 
10574 	ASSERT(un != NULL);
10575 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10576 
10577 	mutex_enter(SD_MUTEX(un));
10578 	if (ISREMOVABLE(un)) {
10579 		mutex_exit(SD_MUTEX(un));
10580 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
10581 			rval = SD_NOT_READY_VALID;
10582 			mutex_enter(SD_MUTEX(un));
10583 			goto done;
10584 		}
10585 
10586 		mutex_enter(SD_MUTEX(un));
10587 		if ((un->un_f_geometry_is_valid == FALSE) ||
10588 		    (un->un_f_blockcount_is_valid == FALSE) ||
10589 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10590 
10591 			/* capacity has to be read every open. */
10592 			mutex_exit(SD_MUTEX(un));
10593 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
10594 			    &lbasize, SD_PATH_DIRECT) != 0) {
10595 				mutex_enter(SD_MUTEX(un));
10596 				un->un_f_geometry_is_valid = FALSE;
10597 				rval = SD_NOT_READY_VALID;
10598 				goto done;
10599 			} else {
10600 				mutex_enter(SD_MUTEX(un));
10601 				sd_update_block_info(un, lbasize, capacity);
10602 			}
10603 		}
10604 
10605 		/*
10606 		 * If this is a non 512 block device, allocate space for
10607 		 * the wmap cache. This is being done here since every time
10608 		 * a media is changed this routine will be called and the
10609 		 * block size is a function of media rather than device.
10610 		 */
10611 		if (NOT_DEVBSIZE(un)) {
10612 			if (!(un->un_wm_cache)) {
10613 				(void) snprintf(name_str, sizeof (name_str),
10614 				    "%s%d_cache",
10615 				    ddi_driver_name(SD_DEVINFO(un)),
10616 				    ddi_get_instance(SD_DEVINFO(un)));
10617 				un->un_wm_cache = kmem_cache_create(
10618 				    name_str, sizeof (struct sd_w_map),
10619 				    8, sd_wm_cache_constructor,
10620 				    sd_wm_cache_destructor, NULL,
10621 				    (void *)un, NULL, 0);
10622 				if (!(un->un_wm_cache)) {
10623 					rval = ENOMEM;
10624 					goto done;
10625 				}
10626 			}
10627 		}
10628 
10629 		/*
10630 		 * Check if the media in the device is writable or not.
10631 		 */
10632 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
10633 			sd_check_for_writable_cd(un);
10634 		}
10635 
10636 	} else {
10637 		/*
10638 		 * Do a test unit ready to clear any unit attention from non-cd
10639 		 * devices.
10640 		 */
10641 		mutex_exit(SD_MUTEX(un));
10642 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10643 		mutex_enter(SD_MUTEX(un));
10644 	}
10645 
10646 
10647 	if (un->un_state == SD_STATE_NORMAL) {
10648 		/*
10649 		 * If the target is not yet ready here (defined by a TUR
10650 		 * failure), invalidate the geometry and print an 'offline'
10651 		 * message. This is a legacy message, as the state of the
10652 		 * target is not actually changed to SD_STATE_OFFLINE.
10653 		 *
10654 		 * If the TUR fails for EACCES (Reservation Conflict), it
10655 		 * means there actually is nothing wrong with the target that
10656 		 * would require invalidating the geometry, so continue in
10657 		 * that case as if the TUR was successful.
10658 		 */
10659 		int err;
10660 
10661 		mutex_exit(SD_MUTEX(un));
10662 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
10663 		mutex_enter(SD_MUTEX(un));
10664 
10665 		if ((err != 0) && (err != EACCES)) {
10666 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10667 			    "offline\n");
10668 			un->un_f_geometry_is_valid = FALSE;
10669 			rval = SD_NOT_READY_VALID;
10670 			goto done;
10671 		}
10672 	}
10673 
10674 	if (un->un_f_format_in_progress == FALSE) {
10675 		/*
10676 		 * Note: sd_validate_geometry may return TRUE, but that does
10677 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
10678 		 */
10679 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
10680 		if (rval == ENOTSUP) {
10681 			if (un->un_f_geometry_is_valid == TRUE)
10682 				rval = 0;
10683 			else {
10684 				rval = SD_READY_NOT_VALID;
10685 				goto done;
10686 			}
10687 		}
10688 		if (rval != 0) {
10689 			/*
10690 			 * We don't check the validity of geometry for
10691 			 * CDROMs. Also we assume we have a good label
10692 			 * even if sd_validate_geometry returned ENOMEM.
10693 			 */
10694 			if (!ISCD(un) && rval != ENOMEM) {
10695 				rval = SD_NOT_READY_VALID;
10696 				goto done;
10697 			}
10698 		}
10699 	}
10700 
10701 #ifdef DOESNTWORK /* on eliteII, see 1118607 */
10702 	/*
10703 	 * check to see if this disk is write protected, if it is and we have
10704 	 * not set read-only, then fail
10705 	 */
10706 	if ((flag & FWRITE) && (sr_check_wp(dev))) {
10707 		New_state(un, SD_STATE_CLOSED);
10708 		goto done;
10709 	}
10710 #endif
10711 
10712 	/*
10713 	 * If this is a removable media device, try and send
10714 	 * a PREVENT MEDIA REMOVAL command, but don't get upset
10715 	 * if it fails. For a CD, however, it is an error
10716 	 */
10717 	if (ISREMOVABLE(un)) {
10718 		mutex_exit(SD_MUTEX(un));
10719 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
10720 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
10721 			rval = SD_NOT_READY_VALID;
10722 			mutex_enter(SD_MUTEX(un));
10723 			goto done;
10724 		}
10725 		mutex_enter(SD_MUTEX(un));
10726 	}
10727 
10728 	/* The state has changed, inform the media watch routines */
10729 	un->un_mediastate = DKIO_INSERTED;
10730 	cv_broadcast(&un->un_state_cv);
10731 	rval = SD_READY_VALID;
10732 
10733 done:
10734 
10735 	/*
10736 	 * Initialize the capacity kstat value, if no media previously
10737 	 * (capacity kstat is 0) and a media has been inserted
10738 	 * (un_blockcount > 0).
10739 	 * This is a more generic way then checking for ISREMOVABLE.
10740 	 */
10741 	if (un->un_errstats != NULL) {
10742 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10743 		if ((stp->sd_capacity.value.ui64 == 0) &&
10744 		    (un->un_f_blockcount_is_valid == TRUE)) {
10745 			stp->sd_capacity.value.ui64 =
10746 			    (uint64_t)((uint64_t)un->un_blockcount *
10747 			    un->un_sys_blocksize);
10748 		}
10749 	}
10750 
10751 	mutex_exit(SD_MUTEX(un));
10752 	return (rval);
10753 }
10754 
10755 
10756 /*
10757  *    Function: sdmin
10758  *
10759  * Description: Routine to limit the size of a data transfer. Used in
10760  *		conjunction with physio(9F).
10761  *
10762  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10763  *
10764  *     Context: Kernel thread context.
10765  */
10766 
10767 static void
10768 sdmin(struct buf *bp)
10769 {
10770 	struct sd_lun	*un;
10771 	int		instance;
10772 
10773 	instance = SDUNIT(bp->b_edev);
10774 
10775 	un = ddi_get_soft_state(sd_state, instance);
10776 	ASSERT(un != NULL);
10777 
10778 	if (bp->b_bcount > un->un_max_xfer_size) {
10779 		bp->b_bcount = un->un_max_xfer_size;
10780 	}
10781 }
10782 
10783 
10784 /*
10785  *    Function: sdread
10786  *
10787  * Description: Driver's read(9e) entry point function.
10788  *
10789  *   Arguments: dev   - device number
10790  *		uio   - structure pointer describing where data is to be stored
10791  *			in user's space
10792  *		cred_p  - user credential pointer
10793  *
10794  * Return Code: ENXIO
10795  *		EIO
10796  *		EINVAL
10797  *		value returned by physio
10798  *
10799  *     Context: Kernel thread context.
10800  */
10801 /* ARGSUSED */
10802 static int
10803 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10804 {
10805 	struct sd_lun	*un = NULL;
10806 	int		secmask;
10807 	int		err;
10808 
10809 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10810 		return (ENXIO);
10811 	}
10812 
10813 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10814 
10815 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10816 		mutex_enter(SD_MUTEX(un));
10817 		/*
10818 		 * Because the call to sd_ready_and_valid will issue I/O we
10819 		 * must wait here if either the device is suspended or
10820 		 * if it's power level is changing.
10821 		 */
10822 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10823 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10824 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10825 		}
10826 		un->un_ncmds_in_driver++;
10827 		mutex_exit(SD_MUTEX(un));
10828 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10829 			mutex_enter(SD_MUTEX(un));
10830 			un->un_ncmds_in_driver--;
10831 			ASSERT(un->un_ncmds_in_driver >= 0);
10832 			mutex_exit(SD_MUTEX(un));
10833 			return (EIO);
10834 		}
10835 		mutex_enter(SD_MUTEX(un));
10836 		un->un_ncmds_in_driver--;
10837 		ASSERT(un->un_ncmds_in_driver >= 0);
10838 		mutex_exit(SD_MUTEX(un));
10839 	}
10840 
10841 	/*
10842 	 * Read requests are restricted to multiples of the system block size.
10843 	 */
10844 	secmask = un->un_sys_blocksize - 1;
10845 
10846 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10847 		SD_ERROR(SD_LOG_READ_WRITE, un,
10848 		    "sdread: file offset not modulo %d\n",
10849 		    un->un_sys_blocksize);
10850 		err = EINVAL;
10851 	} else if (uio->uio_iov->iov_len & (secmask)) {
10852 		SD_ERROR(SD_LOG_READ_WRITE, un,
10853 		    "sdread: transfer length not modulo %d\n",
10854 		    un->un_sys_blocksize);
10855 		err = EINVAL;
10856 	} else {
10857 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10858 	}
10859 	return (err);
10860 }
10861 
10862 
10863 /*
10864  *    Function: sdwrite
10865  *
10866  * Description: Driver's write(9e) entry point function.
10867  *
10868  *   Arguments: dev   - device number
10869  *		uio   - structure pointer describing where data is stored in
10870  *			user's space
10871  *		cred_p  - user credential pointer
10872  *
10873  * Return Code: ENXIO
10874  *		EIO
10875  *		EINVAL
10876  *		value returned by physio
10877  *
10878  *     Context: Kernel thread context.
10879  */
10880 /* ARGSUSED */
10881 static int
10882 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10883 {
10884 	struct sd_lun	*un = NULL;
10885 	int		secmask;
10886 	int		err;
10887 
10888 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10889 		return (ENXIO);
10890 	}
10891 
10892 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10893 
10894 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10895 		mutex_enter(SD_MUTEX(un));
10896 		/*
10897 		 * Because the call to sd_ready_and_valid will issue I/O we
10898 		 * must wait here if either the device is suspended or
10899 		 * if it's power level is changing.
10900 		 */
10901 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10902 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10903 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10904 		}
10905 		un->un_ncmds_in_driver++;
10906 		mutex_exit(SD_MUTEX(un));
10907 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10908 			mutex_enter(SD_MUTEX(un));
10909 			un->un_ncmds_in_driver--;
10910 			ASSERT(un->un_ncmds_in_driver >= 0);
10911 			mutex_exit(SD_MUTEX(un));
10912 			return (EIO);
10913 		}
10914 		mutex_enter(SD_MUTEX(un));
10915 		un->un_ncmds_in_driver--;
10916 		ASSERT(un->un_ncmds_in_driver >= 0);
10917 		mutex_exit(SD_MUTEX(un));
10918 	}
10919 
10920 	/*
10921 	 * Write requests are restricted to multiples of the system block size.
10922 	 */
10923 	secmask = un->un_sys_blocksize - 1;
10924 
10925 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10926 		SD_ERROR(SD_LOG_READ_WRITE, un,
10927 		    "sdwrite: file offset not modulo %d\n",
10928 		    un->un_sys_blocksize);
10929 		err = EINVAL;
10930 	} else if (uio->uio_iov->iov_len & (secmask)) {
10931 		SD_ERROR(SD_LOG_READ_WRITE, un,
10932 		    "sdwrite: transfer length not modulo %d\n",
10933 		    un->un_sys_blocksize);
10934 		err = EINVAL;
10935 	} else {
10936 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10937 	}
10938 	return (err);
10939 }
10940 
10941 
10942 /*
10943  *    Function: sdaread
10944  *
10945  * Description: Driver's aread(9e) entry point function.
10946  *
10947  *   Arguments: dev   - device number
10948  *		aio   - structure pointer describing where data is to be stored
10949  *		cred_p  - user credential pointer
10950  *
10951  * Return Code: ENXIO
10952  *		EIO
10953  *		EINVAL
10954  *		value returned by aphysio
10955  *
10956  *     Context: Kernel thread context.
10957  */
10958 /* ARGSUSED */
10959 static int
10960 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10961 {
10962 	struct sd_lun	*un = NULL;
10963 	struct uio	*uio = aio->aio_uio;
10964 	int		secmask;
10965 	int		err;
10966 
10967 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10968 		return (ENXIO);
10969 	}
10970 
10971 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10972 
10973 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10974 		mutex_enter(SD_MUTEX(un));
10975 		/*
10976 		 * Because the call to sd_ready_and_valid will issue I/O we
10977 		 * must wait here if either the device is suspended or
10978 		 * if it's power level is changing.
10979 		 */
10980 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10981 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10982 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10983 		}
10984 		un->un_ncmds_in_driver++;
10985 		mutex_exit(SD_MUTEX(un));
10986 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10987 			mutex_enter(SD_MUTEX(un));
10988 			un->un_ncmds_in_driver--;
10989 			ASSERT(un->un_ncmds_in_driver >= 0);
10990 			mutex_exit(SD_MUTEX(un));
10991 			return (EIO);
10992 		}
10993 		mutex_enter(SD_MUTEX(un));
10994 		un->un_ncmds_in_driver--;
10995 		ASSERT(un->un_ncmds_in_driver >= 0);
10996 		mutex_exit(SD_MUTEX(un));
10997 	}
10998 
10999 	/*
11000 	 * Read requests are restricted to multiples of the system block size.
11001 	 */
11002 	secmask = un->un_sys_blocksize - 1;
11003 
11004 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11005 		SD_ERROR(SD_LOG_READ_WRITE, un,
11006 		    "sdaread: file offset not modulo %d\n",
11007 		    un->un_sys_blocksize);
11008 		err = EINVAL;
11009 	} else if (uio->uio_iov->iov_len & (secmask)) {
11010 		SD_ERROR(SD_LOG_READ_WRITE, un,
11011 		    "sdaread: transfer length not modulo %d\n",
11012 		    un->un_sys_blocksize);
11013 		err = EINVAL;
11014 	} else {
11015 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11016 	}
11017 	return (err);
11018 }
11019 
11020 
11021 /*
11022  *    Function: sdawrite
11023  *
11024  * Description: Driver's awrite(9e) entry point function.
11025  *
11026  *   Arguments: dev   - device number
11027  *		aio   - structure pointer describing where data is stored
11028  *		cred_p  - user credential pointer
11029  *
11030  * Return Code: ENXIO
11031  *		EIO
11032  *		EINVAL
11033  *		value returned by aphysio
11034  *
11035  *     Context: Kernel thread context.
11036  */
11037 /* ARGSUSED */
11038 static int
11039 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11040 {
11041 	struct sd_lun	*un = NULL;
11042 	struct uio	*uio = aio->aio_uio;
11043 	int		secmask;
11044 	int		err;
11045 
11046 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11047 		return (ENXIO);
11048 	}
11049 
11050 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11051 
11052 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11053 		mutex_enter(SD_MUTEX(un));
11054 		/*
11055 		 * Because the call to sd_ready_and_valid will issue I/O we
11056 		 * must wait here if either the device is suspended or
11057 		 * if it's power level is changing.
11058 		 */
11059 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11060 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11061 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11062 		}
11063 		un->un_ncmds_in_driver++;
11064 		mutex_exit(SD_MUTEX(un));
11065 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11066 			mutex_enter(SD_MUTEX(un));
11067 			un->un_ncmds_in_driver--;
11068 			ASSERT(un->un_ncmds_in_driver >= 0);
11069 			mutex_exit(SD_MUTEX(un));
11070 			return (EIO);
11071 		}
11072 		mutex_enter(SD_MUTEX(un));
11073 		un->un_ncmds_in_driver--;
11074 		ASSERT(un->un_ncmds_in_driver >= 0);
11075 		mutex_exit(SD_MUTEX(un));
11076 	}
11077 
11078 	/*
11079 	 * Write requests are restricted to multiples of the system block size.
11080 	 */
11081 	secmask = un->un_sys_blocksize - 1;
11082 
11083 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11084 		SD_ERROR(SD_LOG_READ_WRITE, un,
11085 		    "sdawrite: file offset not modulo %d\n",
11086 		    un->un_sys_blocksize);
11087 		err = EINVAL;
11088 	} else if (uio->uio_iov->iov_len & (secmask)) {
11089 		SD_ERROR(SD_LOG_READ_WRITE, un,
11090 		    "sdawrite: transfer length not modulo %d\n",
11091 		    un->un_sys_blocksize);
11092 		err = EINVAL;
11093 	} else {
11094 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11095 	}
11096 	return (err);
11097 }
11098 
11099 
11100 
11101 
11102 
11103 /*
11104  * Driver IO processing follows the following sequence:
11105  *
11106  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11107  *         |                |                     ^
11108  *         v                v                     |
11109  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11110  *         |                |                     |                   |
11111  *         v                |                     |                   |
11112  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11113  *         |                |                     ^                   ^
11114  *         v                v                     |                   |
11115  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11116  *         |                |                     |                   |
11117  *     +---+                |                     +------------+      +-------+
11118  *     |                    |                                  |              |
11119  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11120  *     |                    v                                  |              |
11121  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11122  *     |                    |                                  ^              |
11123  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11124  *     |                    v                                  |              |
11125  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11126  *     |                    |                                  ^              |
11127  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11128  *     |                    v                                  |              |
11129  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11130  *     |                    |                                  ^              |
11131  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11132  *     |                    v                                  |              |
11133  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11134  *     |                    |                                  ^              |
11135  *     |                    |                                  |              |
11136  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11137  *                          |                           ^
11138  *                          v                           |
11139  *                   sd_core_iostart()                  |
11140  *                          |                           |
11141  *                          |                           +------>(*destroypkt)()
11142  *                          +-> sd_start_cmds() <-+     |           |
11143  *                          |                     |     |           v
11144  *                          |                     |     |  scsi_destroy_pkt(9F)
11145  *                          |                     |     |
11146  *                          +->(*initpkt)()       +- sdintr()
11147  *                          |  |                        |  |
11148  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11149  *                          |  +-> scsi_setup_cdb(9F)   |
11150  *                          |                           |
11151  *                          +--> scsi_transport(9F)     |
11152  *                                     |                |
11153  *                                     +----> SCSA ---->+
11154  *
11155  *
11156  * This code is based upon the following presumtions:
11157  *
11158  *   - iostart and iodone functions operate on buf(9S) structures. These
11159  *     functions perform the necessary operations on the buf(9S) and pass
11160  *     them along to the next function in the chain by using the macros
11161  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11162  *     (for iodone side functions).
11163  *
11164  *   - The iostart side functions may sleep. The iodone side functions
11165  *     are called under interrupt context and may NOT sleep. Therefore
11166  *     iodone side functions also may not call iostart side functions.
11167  *     (NOTE: iostart side functions should NOT sleep for memory, as
11168  *     this could result in deadlock.)
11169  *
11170  *   - An iostart side function may call its corresponding iodone side
11171  *     function directly (if necessary).
11172  *
11173  *   - In the event of an error, an iostart side function can return a buf(9S)
11174  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11175  *     b_error in the usual way of course).
11176  *
11177  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11178  *     requests to the iostart side functions.  The iostart side functions in
11179  *     this case would be called under the context of a taskq thread, so it's
11180  *     OK for them to block/sleep/spin in this case.
11181  *
11182  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11183  *     pass them along to the next function in the chain.  The corresponding
11184  *     iodone side functions must coalesce the "shadow" bufs and return
11185  *     the "original" buf to the next higher layer.
11186  *
11187  *   - The b_private field of the buf(9S) struct holds a pointer to
11188  *     an sd_xbuf struct, which contains information needed to
11189  *     construct the scsi_pkt for the command.
11190  *
11191  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11192  *     layer must acquire & release the SD_MUTEX(un) as needed.
11193  */
11194 
11195 
11196 /*
11197  * Create taskq for all targets in the system. This is created at
11198  * _init(9E) and destroyed at _fini(9E).
11199  *
11200  * Note: here we set the minalloc to a reasonably high number to ensure that
11201  * we will have an adequate supply of task entries available at interrupt time.
11202  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11203  * sd_create_taskq().  Since we do not want to sleep for allocations at
11204  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11205  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11206  * requests any one instant in time.
11207  */
11208 #define	SD_TASKQ_NUMTHREADS	8
11209 #define	SD_TASKQ_MINALLOC	256
11210 #define	SD_TASKQ_MAXALLOC	256
11211 
11212 static taskq_t	*sd_tq = NULL;
11213 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11214 
11215 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11216 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11217 
11218 /*
11219  * The following task queue is being created for the write part of
11220  * read-modify-write of non-512 block size devices.
11221  * Limit the number of threads to 1 for now. This number has been choosen
11222  * considering the fact that it applies only to dvd ram drives/MO drives
11223  * currently. Performance for which is not main criteria at this stage.
11224  * Note: It needs to be explored if we can use a single taskq in future
11225  */
11226 #define	SD_WMR_TASKQ_NUMTHREADS	1
11227 static taskq_t	*sd_wmr_tq = NULL;
11228 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11229 
11230 /*
11231  *    Function: sd_taskq_create
11232  *
11233  * Description: Create taskq thread(s) and preallocate task entries
11234  *
11235  * Return Code: Returns a pointer to the allocated taskq_t.
11236  *
11237  *     Context: Can sleep. Requires blockable context.
11238  *
11239  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11240  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11241  *		- taskq_create() will block for memory, also it will panic
11242  *		  if it cannot create the requested number of threads.
11243  *		- Currently taskq_create() creates threads that cannot be
11244  *		  swapped.
11245  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11246  *		  supply of taskq entries at interrupt time (ie, so that we
11247  *		  do not have to sleep for memory)
11248  */
11249 
11250 static void
11251 sd_taskq_create(void)
11252 {
11253 	char	taskq_name[TASKQ_NAMELEN];
11254 
11255 	ASSERT(sd_tq == NULL);
11256 	ASSERT(sd_wmr_tq == NULL);
11257 
11258 	(void) snprintf(taskq_name, sizeof (taskq_name),
11259 	    "%s_drv_taskq", sd_label);
11260 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11261 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11262 	    TASKQ_PREPOPULATE));
11263 
11264 	(void) snprintf(taskq_name, sizeof (taskq_name),
11265 	    "%s_rmw_taskq", sd_label);
11266 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11267 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11268 	    TASKQ_PREPOPULATE));
11269 }
11270 
11271 
11272 /*
11273  *    Function: sd_taskq_delete
11274  *
11275  * Description: Complementary cleanup routine for sd_taskq_create().
11276  *
11277  *     Context: Kernel thread context.
11278  */
11279 
11280 static void
11281 sd_taskq_delete(void)
11282 {
11283 	ASSERT(sd_tq != NULL);
11284 	ASSERT(sd_wmr_tq != NULL);
11285 	taskq_destroy(sd_tq);
11286 	taskq_destroy(sd_wmr_tq);
11287 	sd_tq = NULL;
11288 	sd_wmr_tq = NULL;
11289 }
11290 
11291 
11292 /*
11293  *    Function: sdstrategy
11294  *
11295  * Description: Driver's strategy (9E) entry point function.
11296  *
11297  *   Arguments: bp - pointer to buf(9S)
11298  *
11299  * Return Code: Always returns zero
11300  *
11301  *     Context: Kernel thread context.
11302  */
11303 
11304 static int
11305 sdstrategy(struct buf *bp)
11306 {
11307 	struct sd_lun *un;
11308 
11309 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11310 	if (un == NULL) {
11311 		bioerror(bp, EIO);
11312 		bp->b_resid = bp->b_bcount;
11313 		biodone(bp);
11314 		return (0);
11315 	}
11316 	/* As was done in the past, fail new cmds. if state is dumping. */
11317 	if (un->un_state == SD_STATE_DUMPING) {
11318 		bioerror(bp, ENXIO);
11319 		bp->b_resid = bp->b_bcount;
11320 		biodone(bp);
11321 		return (0);
11322 	}
11323 
11324 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11325 
11326 	/*
11327 	 * Commands may sneak in while we released the mutex in
11328 	 * DDI_SUSPEND, we should block new commands. However, old
11329 	 * commands that are still in the driver at this point should
11330 	 * still be allowed to drain.
11331 	 */
11332 	mutex_enter(SD_MUTEX(un));
11333 	/*
11334 	 * Must wait here if either the device is suspended or
11335 	 * if it's power level is changing.
11336 	 */
11337 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11338 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11339 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11340 	}
11341 
11342 	un->un_ncmds_in_driver++;
11343 
11344 	/*
11345 	 * atapi: Since we are running the CD for now in PIO mode we need to
11346 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11347 	 * the HBA's init_pkt routine.
11348 	 */
11349 	if (un->un_f_cfg_is_atapi == TRUE) {
11350 		mutex_exit(SD_MUTEX(un));
11351 		bp_mapin(bp);
11352 		mutex_enter(SD_MUTEX(un));
11353 	}
11354 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11355 	    un->un_ncmds_in_driver);
11356 
11357 	mutex_exit(SD_MUTEX(un));
11358 
11359 	/*
11360 	 * This will (eventually) allocate the sd_xbuf area and
11361 	 * call sd_xbuf_strategy().  We just want to return the
11362 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11363 	 * imized tail call which saves us a stack frame.
11364 	 */
11365 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11366 }
11367 
11368 
11369 /*
11370  *    Function: sd_xbuf_strategy
11371  *
11372  * Description: Function for initiating IO operations via the
11373  *		ddi_xbuf_qstrategy() mechanism.
11374  *
11375  *     Context: Kernel thread context.
11376  */
11377 
11378 static void
11379 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11380 {
11381 	struct sd_lun *un = arg;
11382 
11383 	ASSERT(bp != NULL);
11384 	ASSERT(xp != NULL);
11385 	ASSERT(un != NULL);
11386 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11387 
11388 	/*
11389 	 * Initialize the fields in the xbuf and save a pointer to the
11390 	 * xbuf in bp->b_private.
11391 	 */
11392 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11393 
11394 	/* Send the buf down the iostart chain */
11395 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11396 }
11397 
11398 
11399 /*
11400  *    Function: sd_xbuf_init
11401  *
11402  * Description: Prepare the given sd_xbuf struct for use.
11403  *
11404  *   Arguments: un - ptr to softstate
11405  *		bp - ptr to associated buf(9S)
11406  *		xp - ptr to associated sd_xbuf
11407  *		chain_type - IO chain type to use:
11408  *			SD_CHAIN_NULL
11409  *			SD_CHAIN_BUFIO
11410  *			SD_CHAIN_USCSI
11411  *			SD_CHAIN_DIRECT
11412  *			SD_CHAIN_DIRECT_PRIORITY
11413  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11414  *			initialization; may be NULL if none.
11415  *
11416  *     Context: Kernel thread context
11417  */
11418 
11419 static void
11420 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11421 	uchar_t chain_type, void *pktinfop)
11422 {
11423 	int index;
11424 
11425 	ASSERT(un != NULL);
11426 	ASSERT(bp != NULL);
11427 	ASSERT(xp != NULL);
11428 
11429 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11430 	    bp, chain_type);
11431 
11432 	xp->xb_un	= un;
11433 	xp->xb_pktp	= NULL;
11434 	xp->xb_pktinfo	= pktinfop;
11435 	xp->xb_private	= bp->b_private;
11436 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11437 
11438 	/*
11439 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11440 	 * upon the specified chain type to use.
11441 	 */
11442 	switch (chain_type) {
11443 	case SD_CHAIN_NULL:
11444 		/*
11445 		 * Fall thru to just use the values for the buf type, even
11446 		 * tho for the NULL chain these values will never be used.
11447 		 */
11448 		/* FALLTHRU */
11449 	case SD_CHAIN_BUFIO:
11450 		index = un->un_buf_chain_type;
11451 		break;
11452 	case SD_CHAIN_USCSI:
11453 		index = un->un_uscsi_chain_type;
11454 		break;
11455 	case SD_CHAIN_DIRECT:
11456 		index = un->un_direct_chain_type;
11457 		break;
11458 	case SD_CHAIN_DIRECT_PRIORITY:
11459 		index = un->un_priority_chain_type;
11460 		break;
11461 	default:
11462 		/* We're really broken if we ever get here... */
11463 		panic("sd_xbuf_init: illegal chain type!");
11464 		/*NOTREACHED*/
11465 	}
11466 
11467 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11468 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11469 
11470 	/*
11471 	 * It might be a bit easier to simply bzero the entire xbuf above,
11472 	 * but it turns out that since we init a fair number of members anyway,
11473 	 * we save a fair number cycles by doing explicit assignment of zero.
11474 	 */
11475 	xp->xb_pkt_flags	= 0;
11476 	xp->xb_dma_resid	= 0;
11477 	xp->xb_retry_count	= 0;
11478 	xp->xb_victim_retry_count = 0;
11479 	xp->xb_ua_retry_count	= 0;
11480 	xp->xb_sense_bp		= NULL;
11481 	xp->xb_sense_status	= 0;
11482 	xp->xb_sense_state	= 0;
11483 	xp->xb_sense_resid	= 0;
11484 
11485 	bp->b_private	= xp;
11486 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11487 	bp->b_resid	= 0;
11488 	bp->av_forw	= NULL;
11489 	bp->av_back	= NULL;
11490 	bioerror(bp, 0);
11491 
11492 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11493 }
11494 
11495 
11496 /*
11497  *    Function: sd_uscsi_strategy
11498  *
11499  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11500  *
11501  *   Arguments: bp - buf struct ptr
11502  *
11503  * Return Code: Always returns 0
11504  *
11505  *     Context: Kernel thread context
11506  */
11507 
11508 static int
11509 sd_uscsi_strategy(struct buf *bp)
11510 {
11511 	struct sd_lun		*un;
11512 	struct sd_uscsi_info	*uip;
11513 	struct sd_xbuf		*xp;
11514 	uchar_t			chain_type;
11515 
11516 	ASSERT(bp != NULL);
11517 
11518 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11519 	if (un == NULL) {
11520 		bioerror(bp, EIO);
11521 		bp->b_resid = bp->b_bcount;
11522 		biodone(bp);
11523 		return (0);
11524 	}
11525 
11526 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11527 
11528 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11529 
11530 	mutex_enter(SD_MUTEX(un));
11531 	/*
11532 	 * atapi: Since we are running the CD for now in PIO mode we need to
11533 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11534 	 * the HBA's init_pkt routine.
11535 	 */
11536 	if (un->un_f_cfg_is_atapi == TRUE) {
11537 		mutex_exit(SD_MUTEX(un));
11538 		bp_mapin(bp);
11539 		mutex_enter(SD_MUTEX(un));
11540 	}
11541 	un->un_ncmds_in_driver++;
11542 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11543 	    un->un_ncmds_in_driver);
11544 	mutex_exit(SD_MUTEX(un));
11545 
11546 	/*
11547 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11548 	 */
11549 	ASSERT(bp->b_private != NULL);
11550 	uip = (struct sd_uscsi_info *)bp->b_private;
11551 
11552 	switch (uip->ui_flags) {
11553 	case SD_PATH_DIRECT:
11554 		chain_type = SD_CHAIN_DIRECT;
11555 		break;
11556 	case SD_PATH_DIRECT_PRIORITY:
11557 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11558 		break;
11559 	default:
11560 		chain_type = SD_CHAIN_USCSI;
11561 		break;
11562 	}
11563 
11564 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
11565 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11566 
11567 	/* Use the index obtained within xbuf_init */
11568 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11569 
11570 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11571 
11572 	return (0);
11573 }
11574 
11575 
11576 /*
11577  * These routines perform raw i/o operations.
11578  */
11579 /*ARGSUSED*/
11580 static void
11581 sduscsimin(struct buf *bp)
11582 {
11583 	/*
11584 	 * do not break up because the CDB count would then
11585 	 * be incorrect and data underruns would result (incomplete
11586 	 * read/writes which would be retried and then failed, see
11587 	 * sdintr().
11588 	 */
11589 }
11590 
11591 
11592 
11593 /*
11594  *    Function: sd_send_scsi_cmd
11595  *
11596  * Description: Runs a USCSI command for user (when called thru sdioctl),
11597  *		or for the driver
11598  *
11599  *   Arguments: dev - the dev_t for the device
11600  *		incmd - ptr to a valid uscsi_cmd struct
11601  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
11602  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11603  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
11604  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11605  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11606  *			to use the USCSI "direct" chain and bypass the normal
11607  *			command waitq.
11608  *
11609  * Return Code: 0 -  successful completion of the given command
11610  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
11611  *		ENXIO  - soft state not found for specified dev
11612  *		EINVAL
11613  *		EFAULT - copyin/copyout error
11614  *		return code of biowait(9F) or physio(9F):
11615  *			EIO - IO error, caller may check incmd->uscsi_status
11616  *			ENXIO
11617  *			EACCES - reservation conflict
11618  *
11619  *     Context: Waits for command to complete. Can sleep.
11620  */
11621 
11622 static int
11623 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
11624 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
11625 	int path_flag)
11626 {
11627 	struct sd_uscsi_info	*uip;
11628 	struct uscsi_cmd	*uscmd;
11629 	struct sd_lun	*un;
11630 	struct buf	*bp;
11631 	int	rval;
11632 	int	flags;
11633 
11634 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11635 	if (un == NULL) {
11636 		return (ENXIO);
11637 	}
11638 
11639 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11640 
11641 #ifdef SDDEBUG
11642 	switch (dataspace) {
11643 	case UIO_USERSPACE:
11644 		SD_TRACE(SD_LOG_IO, un,
11645 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
11646 		break;
11647 	case UIO_SYSSPACE:
11648 		SD_TRACE(SD_LOG_IO, un,
11649 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
11650 		break;
11651 	default:
11652 		SD_TRACE(SD_LOG_IO, un,
11653 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
11654 		break;
11655 	}
11656 #endif
11657 
11658 	/*
11659 	 * Perform resets directly; no need to generate a command to do it.
11660 	 */
11661 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
11662 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
11663 		    RESET_ALL : RESET_TARGET;
11664 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
11665 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
11666 			/* Reset attempt was unsuccessful */
11667 			SD_TRACE(SD_LOG_IO, un,
11668 			    "sd_send_scsi_cmd: reset: failure\n");
11669 			return (EIO);
11670 		}
11671 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
11672 		return (0);
11673 	}
11674 
11675 	/* Perfunctory sanity check... */
11676 	if (incmd->uscsi_cdblen <= 0) {
11677 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11678 		    "invalid uscsi_cdblen, returning EINVAL\n");
11679 		return (EINVAL);
11680 	}
11681 
11682 	/*
11683 	 * In order to not worry about where the uscsi structure came from
11684 	 * (or where the cdb it points to came from) we're going to make
11685 	 * kmem_alloc'd copies of them here. This will also allow reference
11686 	 * to the data they contain long after this process has gone to
11687 	 * sleep and its kernel stack has been unmapped, etc.
11688 	 *
11689 	 * First get some memory for the uscsi_cmd struct and copy the
11690 	 * contents of the given uscsi_cmd struct into it.
11691 	 */
11692 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
11693 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
11694 
11695 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
11696 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
11697 
11698 	/*
11699 	 * Now get some space for the CDB, and copy the given CDB into
11700 	 * it. Use ddi_copyin() in case the data is in user space.
11701 	 */
11702 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
11703 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
11704 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
11705 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
11706 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
11707 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
11708 		return (EFAULT);
11709 	}
11710 
11711 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
11712 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
11713 
11714 	bp = getrbuf(KM_SLEEP);
11715 
11716 	/*
11717 	 * Allocate an sd_uscsi_info struct and fill it with the info
11718 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11719 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11720 	 * since we allocate the buf here in this function, we do not
11721 	 * need to preserve the prior contents of b_private.
11722 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11723 	 */
11724 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11725 	uip->ui_flags = path_flag;
11726 	uip->ui_cmdp  = uscmd;
11727 	bp->b_private = uip;
11728 
11729 	/*
11730 	 * Initialize Request Sense buffering, if requested.
11731 	 */
11732 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11733 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11734 		/*
11735 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
11736 		 * buffer, but we replace this with a kernel buffer that
11737 		 * we allocate to use with the sense data. The sense data
11738 		 * (if present) gets copied into this new buffer before the
11739 		 * command is completed.  Then we copy the sense data from
11740 		 * our allocated buf into the caller's buffer below. Note
11741 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
11742 		 * below to perform the copy back to the caller's buf.
11743 		 */
11744 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
11745 		if (rqbufspace == UIO_USERSPACE) {
11746 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
11747 			uscmd->uscsi_rqresid = SENSE_LENGTH;
11748 		} else {
11749 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
11750 			uscmd->uscsi_rqlen   = rlen;
11751 			uscmd->uscsi_rqresid = rlen;
11752 		}
11753 	} else {
11754 		uscmd->uscsi_rqbuf = NULL;
11755 		uscmd->uscsi_rqlen   = 0;
11756 		uscmd->uscsi_rqresid = 0;
11757 	}
11758 
11759 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
11760 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
11761 
11762 	if (un->un_f_is_fibre == FALSE) {
11763 		/*
11764 		 * Force asynchronous mode, if necessary.  Doing this here
11765 		 * has the unfortunate effect of running other queued
11766 		 * commands async also, but since the main purpose of this
11767 		 * capability is downloading new drive firmware, we can
11768 		 * probably live with it.
11769 		 */
11770 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
11771 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11772 				== 1) {
11773 				if (scsi_ifsetcap(SD_ADDRESS(un),
11774 					    "synchronous", 0, 1) == 1) {
11775 					SD_TRACE(SD_LOG_IO, un,
11776 					"sd_send_scsi_cmd: forced async ok\n");
11777 				} else {
11778 					SD_TRACE(SD_LOG_IO, un,
11779 					"sd_send_scsi_cmd:\
11780 					forced async failed\n");
11781 					rval = EINVAL;
11782 					goto done;
11783 				}
11784 			}
11785 		}
11786 
11787 		/*
11788 		 * Re-enable synchronous mode, if requested
11789 		 */
11790 		if (uscmd->uscsi_flags & USCSI_SYNC) {
11791 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11792 				== 0) {
11793 				int i = scsi_ifsetcap(SD_ADDRESS(un),
11794 						"synchronous", 1, 1);
11795 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11796 					"re-enabled sync %s\n",
11797 					(i == 1) ? "ok" : "failed");
11798 			}
11799 		}
11800 	}
11801 
11802 	/*
11803 	 * Commands sent with priority are intended for error recovery
11804 	 * situations, and do not have retries performed.
11805 	 */
11806 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11807 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11808 	}
11809 
11810 	/*
11811 	 * If we're going to do actual I/O, let physio do all the right things
11812 	 */
11813 	if (uscmd->uscsi_buflen != 0) {
11814 		struct iovec	aiov;
11815 		struct uio	auio;
11816 		struct uio	*uio = &auio;
11817 
11818 		bzero(&auio, sizeof (struct uio));
11819 		bzero(&aiov, sizeof (struct iovec));
11820 		aiov.iov_base = uscmd->uscsi_bufaddr;
11821 		aiov.iov_len  = uscmd->uscsi_buflen;
11822 		uio->uio_iov  = &aiov;
11823 
11824 		uio->uio_iovcnt  = 1;
11825 		uio->uio_resid   = uscmd->uscsi_buflen;
11826 		uio->uio_segflg  = dataspace;
11827 
11828 		/*
11829 		 * physio() will block here until the command completes....
11830 		 */
11831 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
11832 
11833 		rval = physio(sd_uscsi_strategy, bp, dev,
11834 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
11835 		    sduscsimin, uio);
11836 
11837 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11838 		    "returned from physio with 0x%x\n", rval);
11839 
11840 	} else {
11841 		/*
11842 		 * We have to mimic what physio would do here! Argh!
11843 		 */
11844 		bp->b_flags  = B_BUSY |
11845 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
11846 		bp->b_edev   = dev;
11847 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
11848 		bp->b_bcount = 0;
11849 		bp->b_blkno  = 0;
11850 
11851 		SD_TRACE(SD_LOG_IO, un,
11852 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
11853 
11854 		(void) sd_uscsi_strategy(bp);
11855 
11856 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
11857 
11858 		rval = biowait(bp);
11859 
11860 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11861 		    "returned from  biowait with 0x%x\n", rval);
11862 	}
11863 
11864 done:
11865 
11866 #ifdef SDDEBUG
11867 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11868 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11869 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11870 	if (uscmd->uscsi_bufaddr != NULL) {
11871 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11872 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11873 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11874 		if (dataspace == UIO_SYSSPACE) {
11875 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11876 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11877 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11878 		}
11879 	}
11880 #endif
11881 
11882 	/*
11883 	 * Get the status and residual to return to the caller.
11884 	 */
11885 	incmd->uscsi_status = uscmd->uscsi_status;
11886 	incmd->uscsi_resid  = uscmd->uscsi_resid;
11887 
11888 	/*
11889 	 * If the caller wants sense data, copy back whatever sense data
11890 	 * we may have gotten, and update the relevant rqsense info.
11891 	 */
11892 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11893 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11894 
11895 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
11896 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
11897 
11898 		/* Update the Request Sense status and resid */
11899 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
11900 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
11901 
11902 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11903 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
11904 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
11905 
11906 		/* Copy out the sense data for user processes */
11907 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
11908 			int flags =
11909 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
11910 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
11911 			    rqlen, flags) != 0) {
11912 				rval = EFAULT;
11913 			}
11914 			/*
11915 			 * Note: Can't touch incmd->uscsi_rqbuf so use
11916 			 * uscmd->uscsi_rqbuf instead. They're the same.
11917 			 */
11918 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11919 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
11920 			    incmd->uscsi_rqbuf, rqlen);
11921 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
11922 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
11923 		}
11924 	}
11925 
11926 	/*
11927 	 * Free allocated resources and return; mapout the buf in case it was
11928 	 * mapped in by a lower layer.
11929 	 */
11930 	bp_mapout(bp);
11931 	freerbuf(bp);
11932 	kmem_free(uip, sizeof (struct sd_uscsi_info));
11933 	if (uscmd->uscsi_rqbuf != NULL) {
11934 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
11935 	}
11936 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
11937 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
11938 
11939 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
11940 
11941 	return (rval);
11942 }
11943 
11944 
11945 /*
11946  *    Function: sd_buf_iodone
11947  *
11948  * Description: Frees the sd_xbuf & returns the buf to its originator.
11949  *
11950  *     Context: May be called from interrupt context.
11951  */
11952 /* ARGSUSED */
11953 static void
11954 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11955 {
11956 	struct sd_xbuf *xp;
11957 
11958 	ASSERT(un != NULL);
11959 	ASSERT(bp != NULL);
11960 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11961 
11962 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11963 
11964 	xp = SD_GET_XBUF(bp);
11965 	ASSERT(xp != NULL);
11966 
11967 	mutex_enter(SD_MUTEX(un));
11968 
11969 	/*
11970 	 * Grab time when the cmd completed.
11971 	 * This is used for determining if the system has been
11972 	 * idle long enough to make it idle to the PM framework.
11973 	 * This is for lowering the overhead, and therefore improving
11974 	 * performance per I/O operation.
11975 	 */
11976 	un->un_pm_idle_time = ddi_get_time();
11977 
11978 	un->un_ncmds_in_driver--;
11979 	ASSERT(un->un_ncmds_in_driver >= 0);
11980 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11981 	    un->un_ncmds_in_driver);
11982 
11983 	mutex_exit(SD_MUTEX(un));
11984 
11985 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
11986 	biodone(bp);				/* bp is gone after this */
11987 
11988 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11989 }
11990 
11991 
11992 /*
11993  *    Function: sd_uscsi_iodone
11994  *
11995  * Description: Frees the sd_xbuf & returns the buf to its originator.
11996  *
11997  *     Context: May be called from interrupt context.
11998  */
11999 /* ARGSUSED */
12000 static void
12001 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12002 {
12003 	struct sd_xbuf *xp;
12004 
12005 	ASSERT(un != NULL);
12006 	ASSERT(bp != NULL);
12007 
12008 	xp = SD_GET_XBUF(bp);
12009 	ASSERT(xp != NULL);
12010 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12011 
12012 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12013 
12014 	bp->b_private = xp->xb_private;
12015 
12016 	mutex_enter(SD_MUTEX(un));
12017 
12018 	/*
12019 	 * Grab time when the cmd completed.
12020 	 * This is used for determining if the system has been
12021 	 * idle long enough to make it idle to the PM framework.
12022 	 * This is for lowering the overhead, and therefore improving
12023 	 * performance per I/O operation.
12024 	 */
12025 	un->un_pm_idle_time = ddi_get_time();
12026 
12027 	un->un_ncmds_in_driver--;
12028 	ASSERT(un->un_ncmds_in_driver >= 0);
12029 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12030 	    un->un_ncmds_in_driver);
12031 
12032 	mutex_exit(SD_MUTEX(un));
12033 
12034 	kmem_free(xp, sizeof (struct sd_xbuf));
12035 	biodone(bp);
12036 
12037 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12038 }
12039 
12040 
12041 /*
12042  *    Function: sd_mapblockaddr_iostart
12043  *
12044  * Description: Verify request lies withing the partition limits for
12045  *		the indicated minor device.  Issue "overrun" buf if
12046  *		request would exceed partition range.  Converts
12047  *		partition-relative block address to absolute.
12048  *
12049  *     Context: Can sleep
12050  *
12051  *      Issues: This follows what the old code did, in terms of accessing
12052  *		some of the partition info in the unit struct without holding
12053  *		the mutext.  This is a general issue, if the partition info
12054  *		can be altered while IO is in progress... as soon as we send
12055  *		a buf, its partitioning can be invalid before it gets to the
12056  *		device.  Probably the right fix is to move partitioning out
12057  *		of the driver entirely.
12058  */
12059 
12060 static void
12061 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12062 {
12063 	daddr_t	nblocks;	/* #blocks in the given partition */
12064 	daddr_t	blocknum;	/* Block number specified by the buf */
12065 	size_t	requested_nblocks;
12066 	size_t	available_nblocks;
12067 	int	partition;
12068 	diskaddr_t	partition_offset;
12069 	struct sd_xbuf *xp;
12070 
12071 
12072 	ASSERT(un != NULL);
12073 	ASSERT(bp != NULL);
12074 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12075 
12076 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12077 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12078 
12079 	xp = SD_GET_XBUF(bp);
12080 	ASSERT(xp != NULL);
12081 
12082 	/*
12083 	 * If the geometry is not indicated as valid, attempt to access
12084 	 * the unit & verify the geometry/label. This can be the case for
12085 	 * removable-media devices, of if the device was opened in
12086 	 * NDELAY/NONBLOCK mode.
12087 	 */
12088 	if ((un->un_f_geometry_is_valid != TRUE) &&
12089 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
12090 		/*
12091 		 * For removable devices it is possible to start an I/O
12092 		 * without a media by opening the device in nodelay mode.
12093 		 * Also for writable CDs there can be many scenarios where
12094 		 * there is no geometry yet but volume manager is trying to
12095 		 * issue a read() just because it can see TOC on the CD. So
12096 		 * do not print a message for removables.
12097 		 */
12098 		if (!ISREMOVABLE(un)) {
12099 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12100 			    "i/o to invalid geometry\n");
12101 		}
12102 		bioerror(bp, EIO);
12103 		bp->b_resid = bp->b_bcount;
12104 		SD_BEGIN_IODONE(index, un, bp);
12105 		return;
12106 	}
12107 
12108 	partition = SDPART(bp->b_edev);
12109 
12110 	/* #blocks in partition */
12111 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
12112 
12113 	/* Use of a local variable potentially improves performance slightly */
12114 	partition_offset = un->un_offset[partition];
12115 
12116 	/*
12117 	 * blocknum is the starting block number of the request. At this
12118 	 * point it is still relative to the start of the minor device.
12119 	 */
12120 	blocknum = xp->xb_blkno;
12121 
12122 	/*
12123 	 * Legacy: If the starting block number is one past the last block
12124 	 * in the partition, do not set B_ERROR in the buf.
12125 	 */
12126 	if (blocknum == nblocks)  {
12127 		goto error_exit;
12128 	}
12129 
12130 	/*
12131 	 * Confirm that the first block of the request lies within the
12132 	 * partition limits. Also the requested number of bytes must be
12133 	 * a multiple of the system block size.
12134 	 */
12135 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12136 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12137 		bp->b_flags |= B_ERROR;
12138 		goto error_exit;
12139 	}
12140 
12141 	/*
12142 	 * If the requsted # blocks exceeds the available # blocks, that
12143 	 * is an overrun of the partition.
12144 	 */
12145 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12146 	available_nblocks = (size_t)(nblocks - blocknum);
12147 	ASSERT(nblocks >= blocknum);
12148 
12149 	if (requested_nblocks > available_nblocks) {
12150 		/*
12151 		 * Allocate an "overrun" buf to allow the request to proceed
12152 		 * for the amount of space available in the partition. The
12153 		 * amount not transferred will be added into the b_resid
12154 		 * when the operation is complete. The overrun buf
12155 		 * replaces the original buf here, and the original buf
12156 		 * is saved inside the overrun buf, for later use.
12157 		 */
12158 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12159 		    (offset_t)(requested_nblocks - available_nblocks));
12160 		size_t count = bp->b_bcount - resid;
12161 		/*
12162 		 * Note: count is an unsigned entity thus it'll NEVER
12163 		 * be less than 0 so ASSERT the original values are
12164 		 * correct.
12165 		 */
12166 		ASSERT(bp->b_bcount >= resid);
12167 
12168 		bp = sd_bioclone_alloc(bp, count, blocknum,
12169 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12170 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12171 		ASSERT(xp != NULL);
12172 	}
12173 
12174 	/* At this point there should be no residual for this buf. */
12175 	ASSERT(bp->b_resid == 0);
12176 
12177 	/* Convert the block number to an absolute address. */
12178 	xp->xb_blkno += partition_offset;
12179 
12180 	SD_NEXT_IOSTART(index, un, bp);
12181 
12182 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12183 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12184 
12185 	return;
12186 
12187 error_exit:
12188 	bp->b_resid = bp->b_bcount;
12189 	SD_BEGIN_IODONE(index, un, bp);
12190 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12191 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12192 }
12193 
12194 
12195 /*
12196  *    Function: sd_mapblockaddr_iodone
12197  *
12198  * Description: Completion-side processing for partition management.
12199  *
12200  *     Context: May be called under interrupt context
12201  */
12202 
12203 static void
12204 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12205 {
12206 	/* int	partition; */	/* Not used, see below. */
12207 	ASSERT(un != NULL);
12208 	ASSERT(bp != NULL);
12209 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12210 
12211 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12212 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12213 
12214 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12215 		/*
12216 		 * We have an "overrun" buf to deal with...
12217 		 */
12218 		struct sd_xbuf	*xp;
12219 		struct buf	*obp;	/* ptr to the original buf */
12220 
12221 		xp = SD_GET_XBUF(bp);
12222 		ASSERT(xp != NULL);
12223 
12224 		/* Retrieve the pointer to the original buf */
12225 		obp = (struct buf *)xp->xb_private;
12226 		ASSERT(obp != NULL);
12227 
12228 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12229 		bioerror(obp, bp->b_error);
12230 
12231 		sd_bioclone_free(bp);
12232 
12233 		/*
12234 		 * Get back the original buf.
12235 		 * Note that since the restoration of xb_blkno below
12236 		 * was removed, the sd_xbuf is not needed.
12237 		 */
12238 		bp = obp;
12239 		/*
12240 		 * xp = SD_GET_XBUF(bp);
12241 		 * ASSERT(xp != NULL);
12242 		 */
12243 	}
12244 
12245 	/*
12246 	 * Convert sd->xb_blkno back to a minor-device relative value.
12247 	 * Note: this has been commented out, as it is not needed in the
12248 	 * current implementation of the driver (ie, since this function
12249 	 * is at the top of the layering chains, so the info will be
12250 	 * discarded) and it is in the "hot" IO path.
12251 	 *
12252 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12253 	 * xp->xb_blkno -= un->un_offset[partition];
12254 	 */
12255 
12256 	SD_NEXT_IODONE(index, un, bp);
12257 
12258 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12259 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12260 }
12261 
12262 
12263 /*
12264  *    Function: sd_mapblocksize_iostart
12265  *
12266  * Description: Convert between system block size (un->un_sys_blocksize)
12267  *		and target block size (un->un_tgt_blocksize).
12268  *
12269  *     Context: Can sleep to allocate resources.
12270  *
12271  * Assumptions: A higher layer has already performed any partition validation,
12272  *		and converted the xp->xb_blkno to an absolute value relative
12273  *		to the start of the device.
12274  *
12275  *		It is also assumed that the higher layer has implemented
12276  *		an "overrun" mechanism for the case where the request would
12277  *		read/write beyond the end of a partition.  In this case we
12278  *		assume (and ASSERT) that bp->b_resid == 0.
12279  *
12280  *		Note: The implementation for this routine assumes the target
12281  *		block size remains constant between allocation and transport.
12282  */
12283 
12284 static void
12285 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12286 {
12287 	struct sd_mapblocksize_info	*bsp;
12288 	struct sd_xbuf			*xp;
12289 	offset_t first_byte;
12290 	daddr_t	start_block, end_block;
12291 	daddr_t	request_bytes;
12292 	ushort_t is_aligned = FALSE;
12293 
12294 	ASSERT(un != NULL);
12295 	ASSERT(bp != NULL);
12296 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12297 	ASSERT(bp->b_resid == 0);
12298 
12299 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12300 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12301 
12302 	/*
12303 	 * For a non-writable CD, a write request is an error
12304 	 */
12305 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12306 	    (un->un_f_mmc_writable_media == FALSE)) {
12307 		bioerror(bp, EIO);
12308 		bp->b_resid = bp->b_bcount;
12309 		SD_BEGIN_IODONE(index, un, bp);
12310 		return;
12311 	}
12312 
12313 	/*
12314 	 * We do not need a shadow buf if the device is using
12315 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12316 	 * In this case there is no layer-private data block allocated.
12317 	 */
12318 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12319 	    (bp->b_bcount == 0)) {
12320 		goto done;
12321 	}
12322 
12323 #if defined(__i386) || defined(__amd64)
12324 	/* We do not support non-block-aligned transfers for ROD devices */
12325 	ASSERT(!ISROD(un));
12326 #endif
12327 
12328 	xp = SD_GET_XBUF(bp);
12329 	ASSERT(xp != NULL);
12330 
12331 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12332 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12333 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12334 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12335 	    "request start block:0x%x\n", xp->xb_blkno);
12336 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12337 	    "request len:0x%x\n", bp->b_bcount);
12338 
12339 	/*
12340 	 * Allocate the layer-private data area for the mapblocksize layer.
12341 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12342 	 * struct to store the pointer to their layer-private data block, but
12343 	 * each layer also has the responsibility of restoring the prior
12344 	 * contents of xb_private before returning the buf/xbuf to the
12345 	 * higher layer that sent it.
12346 	 *
12347 	 * Here we save the prior contents of xp->xb_private into the
12348 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12349 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12350 	 * the layer-private area and returning the buf/xbuf to the layer
12351 	 * that sent it.
12352 	 *
12353 	 * Note that here we use kmem_zalloc for the allocation as there are
12354 	 * parts of the mapblocksize code that expect certain fields to be
12355 	 * zero unless explicitly set to a required value.
12356 	 */
12357 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12358 	bsp->mbs_oprivate = xp->xb_private;
12359 	xp->xb_private = bsp;
12360 
12361 	/*
12362 	 * This treats the data on the disk (target) as an array of bytes.
12363 	 * first_byte is the byte offset, from the beginning of the device,
12364 	 * to the location of the request. This is converted from a
12365 	 * un->un_sys_blocksize block address to a byte offset, and then back
12366 	 * to a block address based upon a un->un_tgt_blocksize block size.
12367 	 *
12368 	 * xp->xb_blkno should be absolute upon entry into this function,
12369 	 * but, but it is based upon partitions that use the "system"
12370 	 * block size. It must be adjusted to reflect the block size of
12371 	 * the target.
12372 	 *
12373 	 * Note that end_block is actually the block that follows the last
12374 	 * block of the request, but that's what is needed for the computation.
12375 	 */
12376 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12377 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12378 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12379 	    un->un_tgt_blocksize;
12380 
12381 	/* request_bytes is rounded up to a multiple of the target block size */
12382 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12383 
12384 	/*
12385 	 * See if the starting address of the request and the request
12386 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12387 	 * then we do not need to allocate a shadow buf to handle the request.
12388 	 */
12389 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12390 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12391 		is_aligned = TRUE;
12392 	}
12393 
12394 	if ((bp->b_flags & B_READ) == 0) {
12395 		/*
12396 		 * Lock the range for a write operation. An aligned request is
12397 		 * considered a simple write; otherwise the request must be a
12398 		 * read-modify-write.
12399 		 */
12400 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12401 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12402 	}
12403 
12404 	/*
12405 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12406 	 * where the READ command is generated for a read-modify-write. (The
12407 	 * write phase is deferred until after the read completes.)
12408 	 */
12409 	if (is_aligned == FALSE) {
12410 
12411 		struct sd_mapblocksize_info	*shadow_bsp;
12412 		struct sd_xbuf	*shadow_xp;
12413 		struct buf	*shadow_bp;
12414 
12415 		/*
12416 		 * Allocate the shadow buf and it associated xbuf. Note that
12417 		 * after this call the xb_blkno value in both the original
12418 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12419 		 * same: absolute relative to the start of the device, and
12420 		 * adjusted for the target block size. The b_blkno in the
12421 		 * shadow buf will also be set to this value. We should never
12422 		 * change b_blkno in the original bp however.
12423 		 *
12424 		 * Note also that the shadow buf will always need to be a
12425 		 * READ command, regardless of whether the incoming command
12426 		 * is a READ or a WRITE.
12427 		 */
12428 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12429 		    xp->xb_blkno,
12430 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12431 
12432 		shadow_xp = SD_GET_XBUF(shadow_bp);
12433 
12434 		/*
12435 		 * Allocate the layer-private data for the shadow buf.
12436 		 * (No need to preserve xb_private in the shadow xbuf.)
12437 		 */
12438 		shadow_xp->xb_private = shadow_bsp =
12439 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12440 
12441 		/*
12442 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12443 		 * to figure out where the start of the user data is (based upon
12444 		 * the system block size) in the data returned by the READ
12445 		 * command (which will be based upon the target blocksize). Note
12446 		 * that this is only really used if the request is unaligned.
12447 		 */
12448 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12449 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12450 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12451 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12452 
12453 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12454 
12455 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12456 
12457 		/* Transfer the wmap (if any) to the shadow buf */
12458 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12459 		bsp->mbs_wmp = NULL;
12460 
12461 		/*
12462 		 * The shadow buf goes on from here in place of the
12463 		 * original buf.
12464 		 */
12465 		shadow_bsp->mbs_orig_bp = bp;
12466 		bp = shadow_bp;
12467 	}
12468 
12469 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12470 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12471 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12472 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12473 	    request_bytes);
12474 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12475 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12476 
12477 done:
12478 	SD_NEXT_IOSTART(index, un, bp);
12479 
12480 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12481 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12482 }
12483 
12484 
12485 /*
12486  *    Function: sd_mapblocksize_iodone
12487  *
12488  * Description: Completion side processing for block-size mapping.
12489  *
12490  *     Context: May be called under interrupt context
12491  */
12492 
12493 static void
12494 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12495 {
12496 	struct sd_mapblocksize_info	*bsp;
12497 	struct sd_xbuf	*xp;
12498 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12499 	struct buf	*orig_bp;	/* ptr to the original buf */
12500 	offset_t	shadow_end;
12501 	offset_t	request_end;
12502 	offset_t	shadow_start;
12503 	ssize_t		copy_offset;
12504 	size_t		copy_length;
12505 	size_t		shortfall;
12506 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12507 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12508 
12509 	ASSERT(un != NULL);
12510 	ASSERT(bp != NULL);
12511 
12512 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12513 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12514 
12515 	/*
12516 	 * There is no shadow buf or layer-private data if the target is
12517 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12518 	 */
12519 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12520 	    (bp->b_bcount == 0)) {
12521 		goto exit;
12522 	}
12523 
12524 	xp = SD_GET_XBUF(bp);
12525 	ASSERT(xp != NULL);
12526 
12527 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12528 	bsp = xp->xb_private;
12529 
12530 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12531 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12532 
12533 	if (is_write) {
12534 		/*
12535 		 * For a WRITE request we must free up the block range that
12536 		 * we have locked up.  This holds regardless of whether this is
12537 		 * an aligned write request or a read-modify-write request.
12538 		 */
12539 		sd_range_unlock(un, bsp->mbs_wmp);
12540 		bsp->mbs_wmp = NULL;
12541 	}
12542 
12543 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12544 		/*
12545 		 * An aligned read or write command will have no shadow buf;
12546 		 * there is not much else to do with it.
12547 		 */
12548 		goto done;
12549 	}
12550 
12551 	orig_bp = bsp->mbs_orig_bp;
12552 	ASSERT(orig_bp != NULL);
12553 	orig_xp = SD_GET_XBUF(orig_bp);
12554 	ASSERT(orig_xp != NULL);
12555 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12556 
12557 	if (!is_write && has_wmap) {
12558 		/*
12559 		 * A READ with a wmap means this is the READ phase of a
12560 		 * read-modify-write. If an error occurred on the READ then
12561 		 * we do not proceed with the WRITE phase or copy any data.
12562 		 * Just release the write maps and return with an error.
12563 		 */
12564 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12565 			orig_bp->b_resid = orig_bp->b_bcount;
12566 			bioerror(orig_bp, bp->b_error);
12567 			sd_range_unlock(un, bsp->mbs_wmp);
12568 			goto freebuf_done;
12569 		}
12570 	}
12571 
12572 	/*
12573 	 * Here is where we set up to copy the data from the shadow buf
12574 	 * into the space associated with the original buf.
12575 	 *
12576 	 * To deal with the conversion between block sizes, these
12577 	 * computations treat the data as an array of bytes, with the
12578 	 * first byte (byte 0) corresponding to the first byte in the
12579 	 * first block on the disk.
12580 	 */
12581 
12582 	/*
12583 	 * shadow_start and shadow_len indicate the location and size of
12584 	 * the data returned with the shadow IO request.
12585 	 */
12586 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12587 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12588 
12589 	/*
12590 	 * copy_offset gives the offset (in bytes) from the start of the first
12591 	 * block of the READ request to the beginning of the data.  We retrieve
12592 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12593 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12594 	 * data to be copied (in bytes).
12595 	 */
12596 	copy_offset  = bsp->mbs_copy_offset;
12597 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12598 	copy_length  = orig_bp->b_bcount;
12599 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12600 
12601 	/*
12602 	 * Set up the resid and error fields of orig_bp as appropriate.
12603 	 */
12604 	if (shadow_end >= request_end) {
12605 		/* We got all the requested data; set resid to zero */
12606 		orig_bp->b_resid = 0;
12607 	} else {
12608 		/*
12609 		 * We failed to get enough data to fully satisfy the original
12610 		 * request. Just copy back whatever data we got and set
12611 		 * up the residual and error code as required.
12612 		 *
12613 		 * 'shortfall' is the amount by which the data received with the
12614 		 * shadow buf has "fallen short" of the requested amount.
12615 		 */
12616 		shortfall = (size_t)(request_end - shadow_end);
12617 
12618 		if (shortfall > orig_bp->b_bcount) {
12619 			/*
12620 			 * We did not get enough data to even partially
12621 			 * fulfill the original request.  The residual is
12622 			 * equal to the amount requested.
12623 			 */
12624 			orig_bp->b_resid = orig_bp->b_bcount;
12625 		} else {
12626 			/*
12627 			 * We did not get all the data that we requested
12628 			 * from the device, but we will try to return what
12629 			 * portion we did get.
12630 			 */
12631 			orig_bp->b_resid = shortfall;
12632 		}
12633 		ASSERT(copy_length >= orig_bp->b_resid);
12634 		copy_length  -= orig_bp->b_resid;
12635 	}
12636 
12637 	/* Propagate the error code from the shadow buf to the original buf */
12638 	bioerror(orig_bp, bp->b_error);
12639 
12640 	if (is_write) {
12641 		goto freebuf_done;	/* No data copying for a WRITE */
12642 	}
12643 
12644 	if (has_wmap) {
12645 		/*
12646 		 * This is a READ command from the READ phase of a
12647 		 * read-modify-write request. We have to copy the data given
12648 		 * by the user OVER the data returned by the READ command,
12649 		 * then convert the command from a READ to a WRITE and send
12650 		 * it back to the target.
12651 		 */
12652 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12653 		    copy_length);
12654 
12655 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12656 
12657 		/*
12658 		 * Dispatch the WRITE command to the taskq thread, which
12659 		 * will in turn send the command to the target. When the
12660 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12661 		 * will get called again as part of the iodone chain
12662 		 * processing for it. Note that we will still be dealing
12663 		 * with the shadow buf at that point.
12664 		 */
12665 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12666 		    KM_NOSLEEP) != 0) {
12667 			/*
12668 			 * Dispatch was successful so we are done. Return
12669 			 * without going any higher up the iodone chain. Do
12670 			 * not free up any layer-private data until after the
12671 			 * WRITE completes.
12672 			 */
12673 			return;
12674 		}
12675 
12676 		/*
12677 		 * Dispatch of the WRITE command failed; set up the error
12678 		 * condition and send this IO back up the iodone chain.
12679 		 */
12680 		bioerror(orig_bp, EIO);
12681 		orig_bp->b_resid = orig_bp->b_bcount;
12682 
12683 	} else {
12684 		/*
12685 		 * This is a regular READ request (ie, not a RMW). Copy the
12686 		 * data from the shadow buf into the original buf. The
12687 		 * copy_offset compensates for any "misalignment" between the
12688 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12689 		 * original buf (with its un->un_sys_blocksize blocks).
12690 		 */
12691 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12692 		    copy_length);
12693 	}
12694 
12695 freebuf_done:
12696 
12697 	/*
12698 	 * At this point we still have both the shadow buf AND the original
12699 	 * buf to deal with, as well as the layer-private data area in each.
12700 	 * Local variables are as follows:
12701 	 *
12702 	 * bp -- points to shadow buf
12703 	 * xp -- points to xbuf of shadow buf
12704 	 * bsp -- points to layer-private data area of shadow buf
12705 	 * orig_bp -- points to original buf
12706 	 *
12707 	 * First free the shadow buf and its associated xbuf, then free the
12708 	 * layer-private data area from the shadow buf. There is no need to
12709 	 * restore xb_private in the shadow xbuf.
12710 	 */
12711 	sd_shadow_buf_free(bp);
12712 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12713 
12714 	/*
12715 	 * Now update the local variables to point to the original buf, xbuf,
12716 	 * and layer-private area.
12717 	 */
12718 	bp = orig_bp;
12719 	xp = SD_GET_XBUF(bp);
12720 	ASSERT(xp != NULL);
12721 	ASSERT(xp == orig_xp);
12722 	bsp = xp->xb_private;
12723 	ASSERT(bsp != NULL);
12724 
12725 done:
12726 	/*
12727 	 * Restore xb_private to whatever it was set to by the next higher
12728 	 * layer in the chain, then free the layer-private data area.
12729 	 */
12730 	xp->xb_private = bsp->mbs_oprivate;
12731 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12732 
12733 exit:
12734 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12735 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12736 
12737 	SD_NEXT_IODONE(index, un, bp);
12738 }
12739 
12740 
12741 /*
12742  *    Function: sd_checksum_iostart
12743  *
12744  * Description: A stub function for a layer that's currently not used.
12745  *		For now just a placeholder.
12746  *
12747  *     Context: Kernel thread context
12748  */
12749 
12750 static void
12751 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12752 {
12753 	ASSERT(un != NULL);
12754 	ASSERT(bp != NULL);
12755 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12756 	SD_NEXT_IOSTART(index, un, bp);
12757 }
12758 
12759 
12760 /*
12761  *    Function: sd_checksum_iodone
12762  *
12763  * Description: A stub function for a layer that's currently not used.
12764  *		For now just a placeholder.
12765  *
12766  *     Context: May be called under interrupt context
12767  */
12768 
12769 static void
12770 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12771 {
12772 	ASSERT(un != NULL);
12773 	ASSERT(bp != NULL);
12774 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12775 	SD_NEXT_IODONE(index, un, bp);
12776 }
12777 
12778 
12779 /*
12780  *    Function: sd_checksum_uscsi_iostart
12781  *
12782  * Description: A stub function for a layer that's currently not used.
12783  *		For now just a placeholder.
12784  *
12785  *     Context: Kernel thread context
12786  */
12787 
12788 static void
12789 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12790 {
12791 	ASSERT(un != NULL);
12792 	ASSERT(bp != NULL);
12793 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12794 	SD_NEXT_IOSTART(index, un, bp);
12795 }
12796 
12797 
12798 /*
12799  *    Function: sd_checksum_uscsi_iodone
12800  *
12801  * Description: A stub function for a layer that's currently not used.
12802  *		For now just a placeholder.
12803  *
12804  *     Context: May be called under interrupt context
12805  */
12806 
12807 static void
12808 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12809 {
12810 	ASSERT(un != NULL);
12811 	ASSERT(bp != NULL);
12812 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12813 	SD_NEXT_IODONE(index, un, bp);
12814 }
12815 
12816 
12817 /*
12818  *    Function: sd_pm_iostart
12819  *
12820  * Description: iostart-side routine for Power mangement.
12821  *
12822  *     Context: Kernel thread context
12823  */
12824 
12825 static void
12826 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12827 {
12828 	ASSERT(un != NULL);
12829 	ASSERT(bp != NULL);
12830 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12831 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12832 
12833 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12834 
12835 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12836 		/*
12837 		 * Set up to return the failed buf back up the 'iodone'
12838 		 * side of the calling chain.
12839 		 */
12840 		bioerror(bp, EIO);
12841 		bp->b_resid = bp->b_bcount;
12842 
12843 		SD_BEGIN_IODONE(index, un, bp);
12844 
12845 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12846 		return;
12847 	}
12848 
12849 	SD_NEXT_IOSTART(index, un, bp);
12850 
12851 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12852 }
12853 
12854 
12855 /*
12856  *    Function: sd_pm_iodone
12857  *
12858  * Description: iodone-side routine for power mangement.
12859  *
12860  *     Context: may be called from interrupt context
12861  */
12862 
12863 static void
12864 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12865 {
12866 	ASSERT(un != NULL);
12867 	ASSERT(bp != NULL);
12868 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12869 
12870 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12871 
12872 	/*
12873 	 * After attach the following flag is only read, so don't
12874 	 * take the penalty of acquiring a mutex for it.
12875 	 */
12876 	if (un->un_f_pm_is_enabled == TRUE) {
12877 		sd_pm_exit(un);
12878 	}
12879 
12880 	SD_NEXT_IODONE(index, un, bp);
12881 
12882 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12883 }
12884 
12885 
12886 /*
12887  *    Function: sd_core_iostart
12888  *
12889  * Description: Primary driver function for enqueuing buf(9S) structs from
12890  *		the system and initiating IO to the target device
12891  *
12892  *     Context: Kernel thread context. Can sleep.
12893  *
12894  * Assumptions:  - The given xp->xb_blkno is absolute
12895  *		   (ie, relative to the start of the device).
12896  *		 - The IO is to be done using the native blocksize of
12897  *		   the device, as specified in un->un_tgt_blocksize.
12898  */
12899 /* ARGSUSED */
12900 static void
12901 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12902 {
12903 	struct sd_xbuf *xp;
12904 
12905 	ASSERT(un != NULL);
12906 	ASSERT(bp != NULL);
12907 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12908 	ASSERT(bp->b_resid == 0);
12909 
12910 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12911 
12912 	xp = SD_GET_XBUF(bp);
12913 	ASSERT(xp != NULL);
12914 
12915 	mutex_enter(SD_MUTEX(un));
12916 
12917 	/*
12918 	 * If we are currently in the failfast state, fail any new IO
12919 	 * that has B_FAILFAST set, then return.
12920 	 */
12921 	if ((bp->b_flags & B_FAILFAST) &&
12922 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12923 		mutex_exit(SD_MUTEX(un));
12924 		bioerror(bp, EIO);
12925 		bp->b_resid = bp->b_bcount;
12926 		SD_BEGIN_IODONE(index, un, bp);
12927 		return;
12928 	}
12929 
12930 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12931 		/*
12932 		 * Priority command -- transport it immediately.
12933 		 *
12934 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12935 		 * because all direct priority commands should be associated
12936 		 * with error recovery actions which we don't want to retry.
12937 		 */
12938 		sd_start_cmds(un, bp);
12939 	} else {
12940 		/*
12941 		 * Normal command -- add it to the wait queue, then start
12942 		 * transporting commands from the wait queue.
12943 		 */
12944 		sd_add_buf_to_waitq(un, bp);
12945 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12946 		sd_start_cmds(un, NULL);
12947 	}
12948 
12949 	mutex_exit(SD_MUTEX(un));
12950 
12951 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12952 }
12953 
12954 
12955 /*
12956  *    Function: sd_init_cdb_limits
12957  *
12958  * Description: This is to handle scsi_pkt initialization differences
12959  *		between the driver platforms.
12960  *
12961  *		Legacy behaviors:
12962  *
12963  *		If the block number or the sector count exceeds the
12964  *		capabilities of a Group 0 command, shift over to a
12965  *		Group 1 command. We don't blindly use Group 1
12966  *		commands because a) some drives (CDC Wren IVs) get a
12967  *		bit confused, and b) there is probably a fair amount
12968  *		of speed difference for a target to receive and decode
12969  *		a 10 byte command instead of a 6 byte command.
12970  *
12971  *		The xfer time difference of 6 vs 10 byte CDBs is
12972  *		still significant so this code is still worthwhile.
12973  *		10 byte CDBs are very inefficient with the fas HBA driver
12974  *		and older disks. Each CDB byte took 1 usec with some
12975  *		popular disks.
12976  *
12977  *     Context: Must be called at attach time
12978  */
12979 
12980 static void
12981 sd_init_cdb_limits(struct sd_lun *un)
12982 {
12983 	/*
12984 	 * Use CDB_GROUP1 commands for most devices except for
12985 	 * parallel SCSI fixed drives in which case we get better
12986 	 * performance using CDB_GROUP0 commands (where applicable).
12987 	 */
12988 	un->un_mincdb = SD_CDB_GROUP1;
12989 #if !defined(__fibre)
12990 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12991 	    !ISREMOVABLE(un)) {
12992 		un->un_mincdb = SD_CDB_GROUP0;
12993 	}
12994 #endif
12995 
12996 	/*
12997 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12998 	 * commands for fixed disks unless we are building for a 32 bit
12999 	 * kernel.
13000 	 */
13001 #ifdef _LP64
13002 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP4;
13003 #else
13004 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP1;
13005 #endif
13006 
13007 	/*
13008 	 * x86 systems require the PKT_DMA_PARTIAL flag
13009 	 */
13010 #if defined(__x86)
13011 	un->un_pkt_flags = PKT_DMA_PARTIAL;
13012 #else
13013 	un->un_pkt_flags = 0;
13014 #endif
13015 
13016 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13017 	    ? sizeof (struct scsi_arq_status) : 1);
13018 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13019 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13020 }
13021 
13022 
13023 /*
13024  *    Function: sd_initpkt_for_buf
13025  *
13026  * Description: Allocate and initialize for transport a scsi_pkt struct,
13027  *		based upon the info specified in the given buf struct.
13028  *
13029  *		Assumes the xb_blkno in the request is absolute (ie,
13030  *		relative to the start of the device (NOT partition!).
13031  *		Also assumes that the request is using the native block
13032  *		size of the device (as returned by the READ CAPACITY
13033  *		command).
13034  *
13035  * Return Code: SD_PKT_ALLOC_SUCCESS
13036  *		SD_PKT_ALLOC_FAILURE
13037  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13038  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13039  *
13040  *     Context: Kernel thread and may be called from software interrupt context
13041  *		as part of a sdrunout callback. This function may not block or
13042  *		call routines that block
13043  */
13044 
13045 static int
13046 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13047 {
13048 	struct sd_xbuf	*xp;
13049 	struct scsi_pkt *pktp = NULL;
13050 	struct sd_lun	*un;
13051 	size_t		blockcount;
13052 	daddr_t		startblock;
13053 	int		rval;
13054 	int		cmd_flags;
13055 
13056 	ASSERT(bp != NULL);
13057 	ASSERT(pktpp != NULL);
13058 	xp = SD_GET_XBUF(bp);
13059 	ASSERT(xp != NULL);
13060 	un = SD_GET_UN(bp);
13061 	ASSERT(un != NULL);
13062 	ASSERT(mutex_owned(SD_MUTEX(un)));
13063 	ASSERT(bp->b_resid == 0);
13064 
13065 	SD_TRACE(SD_LOG_IO_CORE, un,
13066 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13067 
13068 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13069 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13070 		/*
13071 		 * Already have a scsi_pkt -- just need DMA resources.
13072 		 * We must recompute the CDB in case the mapping returns
13073 		 * a nonzero pkt_resid.
13074 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13075 		 * that is being retried, the unmap/remap of the DMA resouces
13076 		 * will result in the entire transfer starting over again
13077 		 * from the very first block.
13078 		 */
13079 		ASSERT(xp->xb_pktp != NULL);
13080 		pktp = xp->xb_pktp;
13081 	} else {
13082 		pktp = NULL;
13083 	}
13084 #endif /* __i386 || __amd64 */
13085 
13086 	startblock = xp->xb_blkno;	/* Absolute block num. */
13087 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13088 
13089 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13090 
13091 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13092 
13093 #else
13094 
13095 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
13096 
13097 #endif
13098 
13099 	/*
13100 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13101 	 * call scsi_init_pkt, and build the CDB.
13102 	 */
13103 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13104 	    cmd_flags, sdrunout, (caddr_t)un,
13105 	    startblock, blockcount);
13106 
13107 	if (rval == 0) {
13108 		/*
13109 		 * Success.
13110 		 *
13111 		 * If partial DMA is being used and required for this transfer.
13112 		 * set it up here.
13113 		 */
13114 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13115 		    (pktp->pkt_resid != 0)) {
13116 
13117 			/*
13118 			 * Save the CDB length and pkt_resid for the
13119 			 * next xfer
13120 			 */
13121 			xp->xb_dma_resid = pktp->pkt_resid;
13122 
13123 			/* rezero resid */
13124 			pktp->pkt_resid = 0;
13125 
13126 		} else {
13127 			xp->xb_dma_resid = 0;
13128 		}
13129 
13130 		pktp->pkt_flags = un->un_tagflags;
13131 		pktp->pkt_time  = un->un_cmd_timeout;
13132 		pktp->pkt_comp  = sdintr;
13133 
13134 		pktp->pkt_private = bp;
13135 		*pktpp = pktp;
13136 
13137 		SD_TRACE(SD_LOG_IO_CORE, un,
13138 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13139 
13140 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13141 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13142 #endif
13143 
13144 		return (SD_PKT_ALLOC_SUCCESS);
13145 
13146 	}
13147 
13148 	/*
13149 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13150 	 * from sd_setup_rw_pkt.
13151 	 */
13152 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13153 
13154 	if (rval == SD_PKT_ALLOC_FAILURE) {
13155 		*pktpp = NULL;
13156 		/*
13157 		 * Set the driver state to RWAIT to indicate the driver
13158 		 * is waiting on resource allocations. The driver will not
13159 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13160 		 */
13161 		New_state(un, SD_STATE_RWAIT);
13162 
13163 		SD_ERROR(SD_LOG_IO_CORE, un,
13164 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13165 
13166 		if ((bp->b_flags & B_ERROR) != 0) {
13167 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13168 		}
13169 		return (SD_PKT_ALLOC_FAILURE);
13170 	} else {
13171 		/*
13172 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13173 		 *
13174 		 * This should never happen.  Maybe someone messed with the
13175 		 * kernel's minphys?
13176 		 */
13177 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13178 		    "Request rejected: too large for CDB: "
13179 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13180 		SD_ERROR(SD_LOG_IO_CORE, un,
13181 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13182 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13183 
13184 	}
13185 }
13186 
13187 
13188 /*
13189  *    Function: sd_destroypkt_for_buf
13190  *
13191  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13192  *
13193  *     Context: Kernel thread or interrupt context
13194  */
13195 
13196 static void
13197 sd_destroypkt_for_buf(struct buf *bp)
13198 {
13199 	ASSERT(bp != NULL);
13200 	ASSERT(SD_GET_UN(bp) != NULL);
13201 
13202 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13203 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13204 
13205 	ASSERT(SD_GET_PKTP(bp) != NULL);
13206 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13207 
13208 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13209 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13210 }
13211 
13212 /*
13213  *    Function: sd_setup_rw_pkt
13214  *
13215  * Description: Determines appropriate CDB group for the requested LBA
13216  *		and transfer length, calls scsi_init_pkt, and builds
13217  *		the CDB.  Do not use for partial DMA transfers except
13218  *		for the initial transfer since the CDB size must
13219  *		remain constant.
13220  *
13221  *     Context: Kernel thread and may be called from software interrupt
13222  *		context as part of a sdrunout callback. This function may not
13223  *		block or call routines that block
13224  */
13225 
13226 
13227 int
13228 sd_setup_rw_pkt(struct sd_lun *un,
13229     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13230     int (*callback)(caddr_t), caddr_t callback_arg,
13231     diskaddr_t lba, uint32_t blockcount)
13232 {
13233 	struct scsi_pkt *return_pktp;
13234 	union scsi_cdb *cdbp;
13235 	struct sd_cdbinfo *cp = NULL;
13236 	int i;
13237 
13238 	/*
13239 	 * See which size CDB to use, based upon the request.
13240 	 */
13241 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13242 
13243 		/*
13244 		 * Check lba and block count against sd_cdbtab limits.
13245 		 * In the partial DMA case, we have to use the same size
13246 		 * CDB for all the transfers.  Check lba + blockcount
13247 		 * against the max LBA so we know that segment of the
13248 		 * transfer can use the CDB we select.
13249 		 */
13250 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13251 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13252 
13253 			/*
13254 			 * The command will fit into the CDB type
13255 			 * specified by sd_cdbtab[i].
13256 			 */
13257 			cp = sd_cdbtab + i;
13258 
13259 			/*
13260 			 * Call scsi_init_pkt so we can fill in the
13261 			 * CDB.
13262 			 */
13263 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13264 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13265 			    flags, callback, callback_arg);
13266 
13267 			if (return_pktp != NULL) {
13268 
13269 				/*
13270 				 * Return new value of pkt
13271 				 */
13272 				*pktpp = return_pktp;
13273 
13274 				/*
13275 				 * To be safe, zero the CDB insuring there is
13276 				 * no leftover data from a previous command.
13277 				 */
13278 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13279 
13280 				/*
13281 				 * Handle partial DMA mapping
13282 				 */
13283 				if (return_pktp->pkt_resid != 0) {
13284 
13285 					/*
13286 					 * Not going to xfer as many blocks as
13287 					 * originally expected
13288 					 */
13289 					blockcount -=
13290 					    SD_BYTES2TGTBLOCKS(un,
13291 						return_pktp->pkt_resid);
13292 				}
13293 
13294 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13295 
13296 				/*
13297 				 * Set command byte based on the CDB
13298 				 * type we matched.
13299 				 */
13300 				cdbp->scc_cmd = cp->sc_grpmask |
13301 				    ((bp->b_flags & B_READ) ?
13302 					SCMD_READ : SCMD_WRITE);
13303 
13304 				SD_FILL_SCSI1_LUN(un, return_pktp);
13305 
13306 				/*
13307 				 * Fill in LBA and length
13308 				 */
13309 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13310 				    (cp->sc_grpcode == CDB_GROUP4) ||
13311 				    (cp->sc_grpcode == CDB_GROUP0) ||
13312 				    (cp->sc_grpcode == CDB_GROUP5));
13313 
13314 				if (cp->sc_grpcode == CDB_GROUP1) {
13315 					FORMG1ADDR(cdbp, lba);
13316 					FORMG1COUNT(cdbp, blockcount);
13317 					return (0);
13318 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13319 					FORMG4LONGADDR(cdbp, lba);
13320 					FORMG4COUNT(cdbp, blockcount);
13321 					return (0);
13322 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13323 					FORMG0ADDR(cdbp, lba);
13324 					FORMG0COUNT(cdbp, blockcount);
13325 					return (0);
13326 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13327 					FORMG5ADDR(cdbp, lba);
13328 					FORMG5COUNT(cdbp, blockcount);
13329 					return (0);
13330 				}
13331 
13332 				/*
13333 				 * It should be impossible to not match one
13334 				 * of the CDB types above, so we should never
13335 				 * reach this point.  Set the CDB command byte
13336 				 * to test-unit-ready to avoid writing
13337 				 * to somewhere we don't intend.
13338 				 */
13339 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13340 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13341 			} else {
13342 				/*
13343 				 * Couldn't get scsi_pkt
13344 				 */
13345 				return (SD_PKT_ALLOC_FAILURE);
13346 			}
13347 		}
13348 	}
13349 
13350 	/*
13351 	 * None of the available CDB types were suitable.  This really
13352 	 * should never happen:  on a 64 bit system we support
13353 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13354 	 * and on a 32 bit system we will refuse to bind to a device
13355 	 * larger than 2TB so addresses will never be larger than 32 bits.
13356 	 */
13357 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13358 }
13359 
13360 #if defined(__i386) || defined(__amd64)
13361 /*
13362  *    Function: sd_setup_next_rw_pkt
13363  *
13364  * Description: Setup packet for partial DMA transfers, except for the
13365  * 		initial transfer.  sd_setup_rw_pkt should be used for
13366  *		the initial transfer.
13367  *
13368  *     Context: Kernel thread and may be called from interrupt context.
13369  */
13370 
13371 int
13372 sd_setup_next_rw_pkt(struct sd_lun *un,
13373     struct scsi_pkt *pktp, struct buf *bp,
13374     diskaddr_t lba, uint32_t blockcount)
13375 {
13376 	uchar_t com;
13377 	union scsi_cdb *cdbp;
13378 	uchar_t cdb_group_id;
13379 
13380 	ASSERT(pktp != NULL);
13381 	ASSERT(pktp->pkt_cdbp != NULL);
13382 
13383 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13384 	com = cdbp->scc_cmd;
13385 	cdb_group_id = CDB_GROUPID(com);
13386 
13387 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13388 	    (cdb_group_id == CDB_GROUPID_1) ||
13389 	    (cdb_group_id == CDB_GROUPID_4) ||
13390 	    (cdb_group_id == CDB_GROUPID_5));
13391 
13392 	/*
13393 	 * Move pkt to the next portion of the xfer.
13394 	 * func is NULL_FUNC so we do not have to release
13395 	 * the disk mutex here.
13396 	 */
13397 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13398 	    NULL_FUNC, NULL) == pktp) {
13399 		/* Success.  Handle partial DMA */
13400 		if (pktp->pkt_resid != 0) {
13401 			blockcount -=
13402 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13403 		}
13404 
13405 		cdbp->scc_cmd = com;
13406 		SD_FILL_SCSI1_LUN(un, pktp);
13407 		if (cdb_group_id == CDB_GROUPID_1) {
13408 			FORMG1ADDR(cdbp, lba);
13409 			FORMG1COUNT(cdbp, blockcount);
13410 			return (0);
13411 		} else if (cdb_group_id == CDB_GROUPID_4) {
13412 			FORMG4LONGADDR(cdbp, lba);
13413 			FORMG4COUNT(cdbp, blockcount);
13414 			return (0);
13415 		} else if (cdb_group_id == CDB_GROUPID_0) {
13416 			FORMG0ADDR(cdbp, lba);
13417 			FORMG0COUNT(cdbp, blockcount);
13418 			return (0);
13419 		} else if (cdb_group_id == CDB_GROUPID_5) {
13420 			FORMG5ADDR(cdbp, lba);
13421 			FORMG5COUNT(cdbp, blockcount);
13422 			return (0);
13423 		}
13424 
13425 		/* Unreachable */
13426 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13427 	}
13428 
13429 	/*
13430 	 * Error setting up next portion of cmd transfer.
13431 	 * Something is definitely very wrong and this
13432 	 * should not happen.
13433 	 */
13434 	return (SD_PKT_ALLOC_FAILURE);
13435 }
13436 #endif /* defined(__i386) || defined(__amd64) */
13437 
13438 /*
13439  *    Function: sd_initpkt_for_uscsi
13440  *
13441  * Description: Allocate and initialize for transport a scsi_pkt struct,
13442  *		based upon the info specified in the given uscsi_cmd struct.
13443  *
13444  * Return Code: SD_PKT_ALLOC_SUCCESS
13445  *		SD_PKT_ALLOC_FAILURE
13446  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13447  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13448  *
13449  *     Context: Kernel thread and may be called from software interrupt context
13450  *		as part of a sdrunout callback. This function may not block or
13451  *		call routines that block
13452  */
13453 
13454 static int
13455 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13456 {
13457 	struct uscsi_cmd *uscmd;
13458 	struct sd_xbuf	*xp;
13459 	struct scsi_pkt	*pktp;
13460 	struct sd_lun	*un;
13461 	uint32_t	flags = 0;
13462 
13463 	ASSERT(bp != NULL);
13464 	ASSERT(pktpp != NULL);
13465 	xp = SD_GET_XBUF(bp);
13466 	ASSERT(xp != NULL);
13467 	un = SD_GET_UN(bp);
13468 	ASSERT(un != NULL);
13469 	ASSERT(mutex_owned(SD_MUTEX(un)));
13470 
13471 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13472 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13473 	ASSERT(uscmd != NULL);
13474 
13475 	SD_TRACE(SD_LOG_IO_CORE, un,
13476 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13477 
13478 	/*
13479 	 * Allocate the scsi_pkt for the command.
13480 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13481 	 *	 during scsi_init_pkt time and will continue to use the
13482 	 *	 same path as long as the same scsi_pkt is used without
13483 	 *	 intervening scsi_dma_free(). Since uscsi command does
13484 	 *	 not call scsi_dmafree() before retry failed command, it
13485 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13486 	 *	 set such that scsi_vhci can use other available path for
13487 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13488 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13489 	 */
13490 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13491 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13492 	    sizeof (struct scsi_arq_status), 0,
13493 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13494 	    sdrunout, (caddr_t)un);
13495 
13496 	if (pktp == NULL) {
13497 		*pktpp = NULL;
13498 		/*
13499 		 * Set the driver state to RWAIT to indicate the driver
13500 		 * is waiting on resource allocations. The driver will not
13501 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13502 		 */
13503 		New_state(un, SD_STATE_RWAIT);
13504 
13505 		SD_ERROR(SD_LOG_IO_CORE, un,
13506 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13507 
13508 		if ((bp->b_flags & B_ERROR) != 0) {
13509 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13510 		}
13511 		return (SD_PKT_ALLOC_FAILURE);
13512 	}
13513 
13514 	/*
13515 	 * We do not do DMA breakup for USCSI commands, so return failure
13516 	 * here if all the needed DMA resources were not allocated.
13517 	 */
13518 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13519 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13520 		scsi_destroy_pkt(pktp);
13521 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13522 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13523 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13524 	}
13525 
13526 	/* Init the cdb from the given uscsi struct */
13527 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13528 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13529 
13530 	SD_FILL_SCSI1_LUN(un, pktp);
13531 
13532 	/*
13533 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13534 	 * for listing of the supported flags.
13535 	 */
13536 
13537 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13538 		flags |= FLAG_SILENT;
13539 	}
13540 
13541 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13542 		flags |= FLAG_DIAGNOSE;
13543 	}
13544 
13545 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13546 		flags |= FLAG_ISOLATE;
13547 	}
13548 
13549 	if (un->un_f_is_fibre == FALSE) {
13550 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13551 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13552 		}
13553 	}
13554 
13555 	/*
13556 	 * Set the pkt flags here so we save time later.
13557 	 * Note: These flags are NOT in the uscsi man page!!!
13558 	 */
13559 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13560 		flags |= FLAG_HEAD;
13561 	}
13562 
13563 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13564 		flags |= FLAG_NOINTR;
13565 	}
13566 
13567 	/*
13568 	 * For tagged queueing, things get a bit complicated.
13569 	 * Check first for head of queue and last for ordered queue.
13570 	 * If neither head nor order, use the default driver tag flags.
13571 	 */
13572 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13573 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13574 			flags |= FLAG_HTAG;
13575 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13576 			flags |= FLAG_OTAG;
13577 		} else {
13578 			flags |= un->un_tagflags & FLAG_TAGMASK;
13579 		}
13580 	}
13581 
13582 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13583 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13584 	}
13585 
13586 	pktp->pkt_flags = flags;
13587 
13588 	/* Copy the caller's CDB into the pkt... */
13589 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13590 
13591 	if (uscmd->uscsi_timeout == 0) {
13592 		pktp->pkt_time = un->un_uscsi_timeout;
13593 	} else {
13594 		pktp->pkt_time = uscmd->uscsi_timeout;
13595 	}
13596 
13597 	/* need it later to identify USCSI request in sdintr */
13598 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13599 
13600 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13601 
13602 	pktp->pkt_private = bp;
13603 	pktp->pkt_comp = sdintr;
13604 	*pktpp = pktp;
13605 
13606 	SD_TRACE(SD_LOG_IO_CORE, un,
13607 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13608 
13609 	return (SD_PKT_ALLOC_SUCCESS);
13610 }
13611 
13612 
13613 /*
13614  *    Function: sd_destroypkt_for_uscsi
13615  *
13616  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13617  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13618  *		struct.
13619  *
13620  *     Context: May be called under interrupt context
13621  */
13622 
13623 static void
13624 sd_destroypkt_for_uscsi(struct buf *bp)
13625 {
13626 	struct uscsi_cmd *uscmd;
13627 	struct sd_xbuf	*xp;
13628 	struct scsi_pkt	*pktp;
13629 	struct sd_lun	*un;
13630 
13631 	ASSERT(bp != NULL);
13632 	xp = SD_GET_XBUF(bp);
13633 	ASSERT(xp != NULL);
13634 	un = SD_GET_UN(bp);
13635 	ASSERT(un != NULL);
13636 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13637 	pktp = SD_GET_PKTP(bp);
13638 	ASSERT(pktp != NULL);
13639 
13640 	SD_TRACE(SD_LOG_IO_CORE, un,
13641 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13642 
13643 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13644 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13645 	ASSERT(uscmd != NULL);
13646 
13647 	/* Save the status and the residual into the uscsi_cmd struct */
13648 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13649 	uscmd->uscsi_resid  = bp->b_resid;
13650 
13651 	/*
13652 	 * If enabled, copy any saved sense data into the area specified
13653 	 * by the uscsi command.
13654 	 */
13655 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13656 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13657 		/*
13658 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13659 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13660 		 */
13661 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13662 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13663 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
13664 	}
13665 
13666 	/* We are done with the scsi_pkt; free it now */
13667 	ASSERT(SD_GET_PKTP(bp) != NULL);
13668 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13669 
13670 	SD_TRACE(SD_LOG_IO_CORE, un,
13671 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13672 }
13673 
13674 
13675 /*
13676  *    Function: sd_bioclone_alloc
13677  *
13678  * Description: Allocate a buf(9S) and init it as per the given buf
13679  *		and the various arguments.  The associated sd_xbuf
13680  *		struct is (nearly) duplicated.  The struct buf *bp
13681  *		argument is saved in new_xp->xb_private.
13682  *
13683  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13684  *		datalen - size of data area for the shadow bp
13685  *		blkno - starting LBA
13686  *		func - function pointer for b_iodone in the shadow buf. (May
13687  *			be NULL if none.)
13688  *
13689  * Return Code: Pointer to allocates buf(9S) struct
13690  *
13691  *     Context: Can sleep.
13692  */
13693 
13694 static struct buf *
13695 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13696 	daddr_t blkno, int (*func)(struct buf *))
13697 {
13698 	struct	sd_lun	*un;
13699 	struct	sd_xbuf	*xp;
13700 	struct	sd_xbuf	*new_xp;
13701 	struct	buf	*new_bp;
13702 
13703 	ASSERT(bp != NULL);
13704 	xp = SD_GET_XBUF(bp);
13705 	ASSERT(xp != NULL);
13706 	un = SD_GET_UN(bp);
13707 	ASSERT(un != NULL);
13708 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13709 
13710 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13711 	    NULL, KM_SLEEP);
13712 
13713 	new_bp->b_lblkno	= blkno;
13714 
13715 	/*
13716 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13717 	 * original xbuf into it.
13718 	 */
13719 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13720 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13721 
13722 	/*
13723 	 * The given bp is automatically saved in the xb_private member
13724 	 * of the new xbuf.  Callers are allowed to depend on this.
13725 	 */
13726 	new_xp->xb_private = bp;
13727 
13728 	new_bp->b_private  = new_xp;
13729 
13730 	return (new_bp);
13731 }
13732 
13733 /*
13734  *    Function: sd_shadow_buf_alloc
13735  *
13736  * Description: Allocate a buf(9S) and init it as per the given buf
13737  *		and the various arguments.  The associated sd_xbuf
13738  *		struct is (nearly) duplicated.  The struct buf *bp
13739  *		argument is saved in new_xp->xb_private.
13740  *
13741  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13742  *		datalen - size of data area for the shadow bp
13743  *		bflags - B_READ or B_WRITE (pseudo flag)
13744  *		blkno - starting LBA
13745  *		func - function pointer for b_iodone in the shadow buf. (May
13746  *			be NULL if none.)
13747  *
13748  * Return Code: Pointer to allocates buf(9S) struct
13749  *
13750  *     Context: Can sleep.
13751  */
13752 
13753 static struct buf *
13754 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13755 	daddr_t blkno, int (*func)(struct buf *))
13756 {
13757 	struct	sd_lun	*un;
13758 	struct	sd_xbuf	*xp;
13759 	struct	sd_xbuf	*new_xp;
13760 	struct	buf	*new_bp;
13761 
13762 	ASSERT(bp != NULL);
13763 	xp = SD_GET_XBUF(bp);
13764 	ASSERT(xp != NULL);
13765 	un = SD_GET_UN(bp);
13766 	ASSERT(un != NULL);
13767 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13768 
13769 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13770 		bp_mapin(bp);
13771 	}
13772 
13773 	bflags &= (B_READ | B_WRITE);
13774 #if defined(__i386) || defined(__amd64)
13775 	new_bp = getrbuf(KM_SLEEP);
13776 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13777 	new_bp->b_bcount = datalen;
13778 	new_bp->b_flags	= bp->b_flags | bflags;
13779 #else
13780 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13781 	    datalen, bflags, SLEEP_FUNC, NULL);
13782 #endif
13783 	new_bp->av_forw	= NULL;
13784 	new_bp->av_back	= NULL;
13785 	new_bp->b_dev	= bp->b_dev;
13786 	new_bp->b_blkno	= blkno;
13787 	new_bp->b_iodone = func;
13788 	new_bp->b_edev	= bp->b_edev;
13789 	new_bp->b_resid	= 0;
13790 
13791 	/* We need to preserve the B_FAILFAST flag */
13792 	if (bp->b_flags & B_FAILFAST) {
13793 		new_bp->b_flags |= B_FAILFAST;
13794 	}
13795 
13796 	/*
13797 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13798 	 * original xbuf into it.
13799 	 */
13800 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13801 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13802 
13803 	/* Need later to copy data between the shadow buf & original buf! */
13804 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13805 
13806 	/*
13807 	 * The given bp is automatically saved in the xb_private member
13808 	 * of the new xbuf.  Callers are allowed to depend on this.
13809 	 */
13810 	new_xp->xb_private = bp;
13811 
13812 	new_bp->b_private  = new_xp;
13813 
13814 	return (new_bp);
13815 }
13816 
13817 /*
13818  *    Function: sd_bioclone_free
13819  *
13820  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13821  *		in the larger than partition operation.
13822  *
13823  *     Context: May be called under interrupt context
13824  */
13825 
13826 static void
13827 sd_bioclone_free(struct buf *bp)
13828 {
13829 	struct sd_xbuf	*xp;
13830 
13831 	ASSERT(bp != NULL);
13832 	xp = SD_GET_XBUF(bp);
13833 	ASSERT(xp != NULL);
13834 
13835 	/*
13836 	 * Call bp_mapout() before freeing the buf,  in case a lower
13837 	 * layer or HBA  had done a bp_mapin().  we must do this here
13838 	 * as we are the "originator" of the shadow buf.
13839 	 */
13840 	bp_mapout(bp);
13841 
13842 	/*
13843 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13844 	 * never gets confused by a stale value in this field. (Just a little
13845 	 * extra defensiveness here.)
13846 	 */
13847 	bp->b_iodone = NULL;
13848 
13849 	freerbuf(bp);
13850 
13851 	kmem_free(xp, sizeof (struct sd_xbuf));
13852 }
13853 
13854 /*
13855  *    Function: sd_shadow_buf_free
13856  *
13857  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13858  *
13859  *     Context: May be called under interrupt context
13860  */
13861 
13862 static void
13863 sd_shadow_buf_free(struct buf *bp)
13864 {
13865 	struct sd_xbuf	*xp;
13866 
13867 	ASSERT(bp != NULL);
13868 	xp = SD_GET_XBUF(bp);
13869 	ASSERT(xp != NULL);
13870 
13871 #if defined(__sparc)
13872 	/*
13873 	 * Call bp_mapout() before freeing the buf,  in case a lower
13874 	 * layer or HBA  had done a bp_mapin().  we must do this here
13875 	 * as we are the "originator" of the shadow buf.
13876 	 */
13877 	bp_mapout(bp);
13878 #endif
13879 
13880 	/*
13881 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13882 	 * never gets confused by a stale value in this field. (Just a little
13883 	 * extra defensiveness here.)
13884 	 */
13885 	bp->b_iodone = NULL;
13886 
13887 #if defined(__i386) || defined(__amd64)
13888 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13889 	freerbuf(bp);
13890 #else
13891 	scsi_free_consistent_buf(bp);
13892 #endif
13893 
13894 	kmem_free(xp, sizeof (struct sd_xbuf));
13895 }
13896 
13897 
13898 /*
13899  *    Function: sd_print_transport_rejected_message
13900  *
13901  * Description: This implements the ludicrously complex rules for printing
13902  *		a "transport rejected" message.  This is to address the
13903  *		specific problem of having a flood of this error message
13904  *		produced when a failover occurs.
13905  *
13906  *     Context: Any.
13907  */
13908 
13909 static void
13910 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13911 	int code)
13912 {
13913 	ASSERT(un != NULL);
13914 	ASSERT(mutex_owned(SD_MUTEX(un)));
13915 	ASSERT(xp != NULL);
13916 
13917 	/*
13918 	 * Print the "transport rejected" message under the following
13919 	 * conditions:
13920 	 *
13921 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13922 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13923 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13924 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13925 	 *   scsi_transport(9F) (which indicates that the target might have
13926 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13927 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13928 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13929 	 *   from scsi_transport().
13930 	 *
13931 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13932 	 * the preceeding cases in order for the message to be printed.
13933 	 */
13934 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
13935 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13936 		    (code != TRAN_FATAL_ERROR) ||
13937 		    (un->un_tran_fatal_count == 1)) {
13938 			switch (code) {
13939 			case TRAN_BADPKT:
13940 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13941 				    "transport rejected bad packet\n");
13942 				break;
13943 			case TRAN_FATAL_ERROR:
13944 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13945 				    "transport rejected fatal error\n");
13946 				break;
13947 			default:
13948 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13949 				    "transport rejected (%d)\n", code);
13950 				break;
13951 			}
13952 		}
13953 	}
13954 }
13955 
13956 
13957 /*
13958  *    Function: sd_add_buf_to_waitq
13959  *
13960  * Description: Add the given buf(9S) struct to the wait queue for the
13961  *		instance.  If sorting is enabled, then the buf is added
13962  *		to the queue via an elevator sort algorithm (a la
13963  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13964  *		If sorting is not enabled, then the buf is just added
13965  *		to the end of the wait queue.
13966  *
13967  * Return Code: void
13968  *
13969  *     Context: Does not sleep/block, therefore technically can be called
13970  *		from any context.  However if sorting is enabled then the
13971  *		execution time is indeterminate, and may take long if
13972  *		the wait queue grows large.
13973  */
13974 
13975 static void
13976 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13977 {
13978 	struct buf *ap;
13979 
13980 	ASSERT(bp != NULL);
13981 	ASSERT(un != NULL);
13982 	ASSERT(mutex_owned(SD_MUTEX(un)));
13983 
13984 	/* If the queue is empty, add the buf as the only entry & return. */
13985 	if (un->un_waitq_headp == NULL) {
13986 		ASSERT(un->un_waitq_tailp == NULL);
13987 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13988 		bp->av_forw = NULL;
13989 		return;
13990 	}
13991 
13992 	ASSERT(un->un_waitq_tailp != NULL);
13993 
13994 	/*
13995 	 * If sorting is disabled, just add the buf to the tail end of
13996 	 * the wait queue and return.
13997 	 */
13998 	if (un->un_f_disksort_disabled) {
13999 		un->un_waitq_tailp->av_forw = bp;
14000 		un->un_waitq_tailp = bp;
14001 		bp->av_forw = NULL;
14002 		return;
14003 	}
14004 
14005 	/*
14006 	 * Sort thru the list of requests currently on the wait queue
14007 	 * and add the new buf request at the appropriate position.
14008 	 *
14009 	 * The un->un_waitq_headp is an activity chain pointer on which
14010 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14011 	 * first queue holds those requests which are positioned after
14012 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14013 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14014 	 * Thus we implement a one way scan, retracting after reaching
14015 	 * the end of the drive to the first request on the second
14016 	 * queue, at which time it becomes the first queue.
14017 	 * A one-way scan is natural because of the way UNIX read-ahead
14018 	 * blocks are allocated.
14019 	 *
14020 	 * If we lie after the first request, then we must locate the
14021 	 * second request list and add ourselves to it.
14022 	 */
14023 	ap = un->un_waitq_headp;
14024 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14025 		while (ap->av_forw != NULL) {
14026 			/*
14027 			 * Look for an "inversion" in the (normally
14028 			 * ascending) block numbers. This indicates
14029 			 * the start of the second request list.
14030 			 */
14031 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14032 				/*
14033 				 * Search the second request list for the
14034 				 * first request at a larger block number.
14035 				 * We go before that; however if there is
14036 				 * no such request, we go at the end.
14037 				 */
14038 				do {
14039 					if (SD_GET_BLKNO(bp) <
14040 					    SD_GET_BLKNO(ap->av_forw)) {
14041 						goto insert;
14042 					}
14043 					ap = ap->av_forw;
14044 				} while (ap->av_forw != NULL);
14045 				goto insert;		/* after last */
14046 			}
14047 			ap = ap->av_forw;
14048 		}
14049 
14050 		/*
14051 		 * No inversions... we will go after the last, and
14052 		 * be the first request in the second request list.
14053 		 */
14054 		goto insert;
14055 	}
14056 
14057 	/*
14058 	 * Request is at/after the current request...
14059 	 * sort in the first request list.
14060 	 */
14061 	while (ap->av_forw != NULL) {
14062 		/*
14063 		 * We want to go after the current request (1) if
14064 		 * there is an inversion after it (i.e. it is the end
14065 		 * of the first request list), or (2) if the next
14066 		 * request is a larger block no. than our request.
14067 		 */
14068 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14069 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14070 			goto insert;
14071 		}
14072 		ap = ap->av_forw;
14073 	}
14074 
14075 	/*
14076 	 * Neither a second list nor a larger request, therefore
14077 	 * we go at the end of the first list (which is the same
14078 	 * as the end of the whole schebang).
14079 	 */
14080 insert:
14081 	bp->av_forw = ap->av_forw;
14082 	ap->av_forw = bp;
14083 
14084 	/*
14085 	 * If we inserted onto the tail end of the waitq, make sure the
14086 	 * tail pointer is updated.
14087 	 */
14088 	if (ap == un->un_waitq_tailp) {
14089 		un->un_waitq_tailp = bp;
14090 	}
14091 }
14092 
14093 
14094 /*
14095  *    Function: sd_start_cmds
14096  *
14097  * Description: Remove and transport cmds from the driver queues.
14098  *
14099  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14100  *
14101  *		immed_bp - ptr to a buf to be transported immediately. Only
14102  *		the immed_bp is transported; bufs on the waitq are not
14103  *		processed and the un_retry_bp is not checked.  If immed_bp is
14104  *		NULL, then normal queue processing is performed.
14105  *
14106  *     Context: May be called from kernel thread context, interrupt context,
14107  *		or runout callback context. This function may not block or
14108  *		call routines that block.
14109  */
14110 
14111 static void
14112 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14113 {
14114 	struct	sd_xbuf	*xp;
14115 	struct	buf	*bp;
14116 	void	(*statp)(kstat_io_t *);
14117 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14118 	void	(*saved_statp)(kstat_io_t *);
14119 #endif
14120 	int	rval;
14121 
14122 	ASSERT(un != NULL);
14123 	ASSERT(mutex_owned(SD_MUTEX(un)));
14124 	ASSERT(un->un_ncmds_in_transport >= 0);
14125 	ASSERT(un->un_throttle >= 0);
14126 
14127 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14128 
14129 	do {
14130 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14131 		saved_statp = NULL;
14132 #endif
14133 
14134 		/*
14135 		 * If we are syncing or dumping, fail the command to
14136 		 * avoid recursively calling back into scsi_transport().
14137 		 * The dump I/O itself uses a separate code path so this
14138 		 * only prevents non-dump I/O from being sent while dumping.
14139 		 * File system sync takes place before dumping begins.
14140 		 * During panic, filesystem I/O is allowed provided
14141 		 * un_in_callback is <= 1.  This is to prevent recursion
14142 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14143 		 * sd_start_cmds and so on.  See panic.c for more information
14144 		 * about the states the system can be in during panic.
14145 		 */
14146 		if ((un->un_state == SD_STATE_DUMPING) ||
14147 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14148 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14149 			    "sd_start_cmds: panicking\n");
14150 			goto exit;
14151 		}
14152 
14153 		if ((bp = immed_bp) != NULL) {
14154 			/*
14155 			 * We have a bp that must be transported immediately.
14156 			 * It's OK to transport the immed_bp here without doing
14157 			 * the throttle limit check because the immed_bp is
14158 			 * always used in a retry/recovery case. This means
14159 			 * that we know we are not at the throttle limit by
14160 			 * virtue of the fact that to get here we must have
14161 			 * already gotten a command back via sdintr(). This also
14162 			 * relies on (1) the command on un_retry_bp preventing
14163 			 * further commands from the waitq from being issued;
14164 			 * and (2) the code in sd_retry_command checking the
14165 			 * throttle limit before issuing a delayed or immediate
14166 			 * retry. This holds even if the throttle limit is
14167 			 * currently ratcheted down from its maximum value.
14168 			 */
14169 			statp = kstat_runq_enter;
14170 			if (bp == un->un_retry_bp) {
14171 				ASSERT((un->un_retry_statp == NULL) ||
14172 				    (un->un_retry_statp == kstat_waitq_enter) ||
14173 				    (un->un_retry_statp ==
14174 				    kstat_runq_back_to_waitq));
14175 				/*
14176 				 * If the waitq kstat was incremented when
14177 				 * sd_set_retry_bp() queued this bp for a retry,
14178 				 * then we must set up statp so that the waitq
14179 				 * count will get decremented correctly below.
14180 				 * Also we must clear un->un_retry_statp to
14181 				 * ensure that we do not act on a stale value
14182 				 * in this field.
14183 				 */
14184 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14185 				    (un->un_retry_statp ==
14186 				    kstat_runq_back_to_waitq)) {
14187 					statp = kstat_waitq_to_runq;
14188 				}
14189 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14190 				saved_statp = un->un_retry_statp;
14191 #endif
14192 				un->un_retry_statp = NULL;
14193 
14194 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14195 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14196 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14197 				    un, un->un_retry_bp, un->un_throttle,
14198 				    un->un_ncmds_in_transport);
14199 			} else {
14200 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14201 				    "processing priority bp:0x%p\n", bp);
14202 			}
14203 
14204 		} else if ((bp = un->un_waitq_headp) != NULL) {
14205 			/*
14206 			 * A command on the waitq is ready to go, but do not
14207 			 * send it if:
14208 			 *
14209 			 * (1) the throttle limit has been reached, or
14210 			 * (2) a retry is pending, or
14211 			 * (3) a START_STOP_UNIT callback pending, or
14212 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14213 			 *	command is pending.
14214 			 *
14215 			 * For all of these conditions, IO processing will
14216 			 * restart after the condition is cleared.
14217 			 */
14218 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14219 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14220 				    "sd_start_cmds: exiting, "
14221 				    "throttle limit reached!\n");
14222 				goto exit;
14223 			}
14224 			if (un->un_retry_bp != NULL) {
14225 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14226 				    "sd_start_cmds: exiting, retry pending!\n");
14227 				goto exit;
14228 			}
14229 			if (un->un_startstop_timeid != NULL) {
14230 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14231 				    "sd_start_cmds: exiting, "
14232 				    "START_STOP pending!\n");
14233 				goto exit;
14234 			}
14235 			if (un->un_direct_priority_timeid != NULL) {
14236 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14237 				    "sd_start_cmds: exiting, "
14238 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14239 				goto exit;
14240 			}
14241 
14242 			/* Dequeue the command */
14243 			un->un_waitq_headp = bp->av_forw;
14244 			if (un->un_waitq_headp == NULL) {
14245 				un->un_waitq_tailp = NULL;
14246 			}
14247 			bp->av_forw = NULL;
14248 			statp = kstat_waitq_to_runq;
14249 			SD_TRACE(SD_LOG_IO_CORE, un,
14250 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14251 
14252 		} else {
14253 			/* No work to do so bail out now */
14254 			SD_TRACE(SD_LOG_IO_CORE, un,
14255 			    "sd_start_cmds: no more work, exiting!\n");
14256 			goto exit;
14257 		}
14258 
14259 		/*
14260 		 * Reset the state to normal. This is the mechanism by which
14261 		 * the state transitions from either SD_STATE_RWAIT or
14262 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14263 		 * If state is SD_STATE_PM_CHANGING then this command is
14264 		 * part of the device power control and the state must
14265 		 * not be put back to normal. Doing so would would
14266 		 * allow new commands to proceed when they shouldn't,
14267 		 * the device may be going off.
14268 		 */
14269 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14270 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14271 			New_state(un, SD_STATE_NORMAL);
14272 		    }
14273 
14274 		xp = SD_GET_XBUF(bp);
14275 		ASSERT(xp != NULL);
14276 
14277 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14278 		/*
14279 		 * Allocate the scsi_pkt if we need one, or attach DMA
14280 		 * resources if we have a scsi_pkt that needs them. The
14281 		 * latter should only occur for commands that are being
14282 		 * retried.
14283 		 */
14284 		if ((xp->xb_pktp == NULL) ||
14285 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14286 #else
14287 		if (xp->xb_pktp == NULL) {
14288 #endif
14289 			/*
14290 			 * There is no scsi_pkt allocated for this buf. Call
14291 			 * the initpkt function to allocate & init one.
14292 			 *
14293 			 * The scsi_init_pkt runout callback functionality is
14294 			 * implemented as follows:
14295 			 *
14296 			 * 1) The initpkt function always calls
14297 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14298 			 *    callback routine.
14299 			 * 2) A successful packet allocation is initialized and
14300 			 *    the I/O is transported.
14301 			 * 3) The I/O associated with an allocation resource
14302 			 *    failure is left on its queue to be retried via
14303 			 *    runout or the next I/O.
14304 			 * 4) The I/O associated with a DMA error is removed
14305 			 *    from the queue and failed with EIO. Processing of
14306 			 *    the transport queues is also halted to be
14307 			 *    restarted via runout or the next I/O.
14308 			 * 5) The I/O associated with a CDB size or packet
14309 			 *    size error is removed from the queue and failed
14310 			 *    with EIO. Processing of the transport queues is
14311 			 *    continued.
14312 			 *
14313 			 * Note: there is no interface for canceling a runout
14314 			 * callback. To prevent the driver from detaching or
14315 			 * suspending while a runout is pending the driver
14316 			 * state is set to SD_STATE_RWAIT
14317 			 *
14318 			 * Note: using the scsi_init_pkt callback facility can
14319 			 * result in an I/O request persisting at the head of
14320 			 * the list which cannot be satisfied even after
14321 			 * multiple retries. In the future the driver may
14322 			 * implement some kind of maximum runout count before
14323 			 * failing an I/O.
14324 			 *
14325 			 * Note: the use of funcp below may seem superfluous,
14326 			 * but it helps warlock figure out the correct
14327 			 * initpkt function calls (see [s]sd.wlcmd).
14328 			 */
14329 			struct scsi_pkt	*pktp;
14330 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14331 
14332 			ASSERT(bp != un->un_rqs_bp);
14333 
14334 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14335 			switch ((*funcp)(bp, &pktp)) {
14336 			case  SD_PKT_ALLOC_SUCCESS:
14337 				xp->xb_pktp = pktp;
14338 				SD_TRACE(SD_LOG_IO_CORE, un,
14339 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14340 				    pktp);
14341 				goto got_pkt;
14342 
14343 			case SD_PKT_ALLOC_FAILURE:
14344 				/*
14345 				 * Temporary (hopefully) resource depletion.
14346 				 * Since retries and RQS commands always have a
14347 				 * scsi_pkt allocated, these cases should never
14348 				 * get here. So the only cases this needs to
14349 				 * handle is a bp from the waitq (which we put
14350 				 * back onto the waitq for sdrunout), or a bp
14351 				 * sent as an immed_bp (which we just fail).
14352 				 */
14353 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14354 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14355 
14356 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14357 
14358 				if (bp == immed_bp) {
14359 					/*
14360 					 * If SD_XB_DMA_FREED is clear, then
14361 					 * this is a failure to allocate a
14362 					 * scsi_pkt, and we must fail the
14363 					 * command.
14364 					 */
14365 					if ((xp->xb_pkt_flags &
14366 					    SD_XB_DMA_FREED) == 0) {
14367 						break;
14368 					}
14369 
14370 					/*
14371 					 * If this immediate command is NOT our
14372 					 * un_retry_bp, then we must fail it.
14373 					 */
14374 					if (bp != un->un_retry_bp) {
14375 						break;
14376 					}
14377 
14378 					/*
14379 					 * We get here if this cmd is our
14380 					 * un_retry_bp that was DMAFREED, but
14381 					 * scsi_init_pkt() failed to reallocate
14382 					 * DMA resources when we attempted to
14383 					 * retry it. This can happen when an
14384 					 * mpxio failover is in progress, but
14385 					 * we don't want to just fail the
14386 					 * command in this case.
14387 					 *
14388 					 * Use timeout(9F) to restart it after
14389 					 * a 100ms delay.  We don't want to
14390 					 * let sdrunout() restart it, because
14391 					 * sdrunout() is just supposed to start
14392 					 * commands that are sitting on the
14393 					 * wait queue.  The un_retry_bp stays
14394 					 * set until the command completes, but
14395 					 * sdrunout can be called many times
14396 					 * before that happens.  Since sdrunout
14397 					 * cannot tell if the un_retry_bp is
14398 					 * already in the transport, it could
14399 					 * end up calling scsi_transport() for
14400 					 * the un_retry_bp multiple times.
14401 					 *
14402 					 * Also: don't schedule the callback
14403 					 * if some other callback is already
14404 					 * pending.
14405 					 */
14406 					if (un->un_retry_statp == NULL) {
14407 						/*
14408 						 * restore the kstat pointer to
14409 						 * keep kstat counts coherent
14410 						 * when we do retry the command.
14411 						 */
14412 						un->un_retry_statp =
14413 						    saved_statp;
14414 					}
14415 
14416 					if ((un->un_startstop_timeid == NULL) &&
14417 					    (un->un_retry_timeid == NULL) &&
14418 					    (un->un_direct_priority_timeid ==
14419 					    NULL)) {
14420 
14421 						un->un_retry_timeid =
14422 						    timeout(
14423 						    sd_start_retry_command,
14424 						    un, SD_RESTART_TIMEOUT);
14425 					}
14426 					goto exit;
14427 				}
14428 
14429 #else
14430 				if (bp == immed_bp) {
14431 					break;	/* Just fail the command */
14432 				}
14433 #endif
14434 
14435 				/* Add the buf back to the head of the waitq */
14436 				bp->av_forw = un->un_waitq_headp;
14437 				un->un_waitq_headp = bp;
14438 				if (un->un_waitq_tailp == NULL) {
14439 					un->un_waitq_tailp = bp;
14440 				}
14441 				goto exit;
14442 
14443 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14444 				/*
14445 				 * HBA DMA resource failure. Fail the command
14446 				 * and continue processing of the queues.
14447 				 */
14448 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14449 				    "sd_start_cmds: "
14450 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14451 				break;
14452 
14453 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14454 				/*
14455 				 * Note:x86: Partial DMA mapping not supported
14456 				 * for USCSI commands, and all the needed DMA
14457 				 * resources were not allocated.
14458 				 */
14459 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14460 				    "sd_start_cmds: "
14461 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14462 				break;
14463 
14464 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14465 				/*
14466 				 * Note:x86: Request cannot fit into CDB based
14467 				 * on lba and len.
14468 				 */
14469 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14470 				    "sd_start_cmds: "
14471 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14472 				break;
14473 
14474 			default:
14475 				/* Should NEVER get here! */
14476 				panic("scsi_initpkt error");
14477 				/*NOTREACHED*/
14478 			}
14479 
14480 			/*
14481 			 * Fatal error in allocating a scsi_pkt for this buf.
14482 			 * Update kstats & return the buf with an error code.
14483 			 * We must use sd_return_failed_command_no_restart() to
14484 			 * avoid a recursive call back into sd_start_cmds().
14485 			 * However this also means that we must keep processing
14486 			 * the waitq here in order to avoid stalling.
14487 			 */
14488 			if (statp == kstat_waitq_to_runq) {
14489 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14490 			}
14491 			sd_return_failed_command_no_restart(un, bp, EIO);
14492 			if (bp == immed_bp) {
14493 				/* immed_bp is gone by now, so clear this */
14494 				immed_bp = NULL;
14495 			}
14496 			continue;
14497 		}
14498 got_pkt:
14499 		if (bp == immed_bp) {
14500 			/* goto the head of the class.... */
14501 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14502 		}
14503 
14504 		un->un_ncmds_in_transport++;
14505 		SD_UPDATE_KSTATS(un, statp, bp);
14506 
14507 		/*
14508 		 * Call scsi_transport() to send the command to the target.
14509 		 * According to SCSA architecture, we must drop the mutex here
14510 		 * before calling scsi_transport() in order to avoid deadlock.
14511 		 * Note that the scsi_pkt's completion routine can be executed
14512 		 * (from interrupt context) even before the call to
14513 		 * scsi_transport() returns.
14514 		 */
14515 		SD_TRACE(SD_LOG_IO_CORE, un,
14516 		    "sd_start_cmds: calling scsi_transport()\n");
14517 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14518 
14519 		mutex_exit(SD_MUTEX(un));
14520 		rval = scsi_transport(xp->xb_pktp);
14521 		mutex_enter(SD_MUTEX(un));
14522 
14523 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14524 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14525 
14526 		switch (rval) {
14527 		case TRAN_ACCEPT:
14528 			/* Clear this with every pkt accepted by the HBA */
14529 			un->un_tran_fatal_count = 0;
14530 			break;	/* Success; try the next cmd (if any) */
14531 
14532 		case TRAN_BUSY:
14533 			un->un_ncmds_in_transport--;
14534 			ASSERT(un->un_ncmds_in_transport >= 0);
14535 
14536 			/*
14537 			 * Don't retry request sense, the sense data
14538 			 * is lost when another request is sent.
14539 			 * Free up the rqs buf and retry
14540 			 * the original failed cmd.  Update kstat.
14541 			 */
14542 			if (bp == un->un_rqs_bp) {
14543 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14544 				bp = sd_mark_rqs_idle(un, xp);
14545 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14546 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
14547 					kstat_waitq_enter);
14548 				goto exit;
14549 			}
14550 
14551 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14552 			/*
14553 			 * Free the DMA resources for the  scsi_pkt. This will
14554 			 * allow mpxio to select another path the next time
14555 			 * we call scsi_transport() with this scsi_pkt.
14556 			 * See sdintr() for the rationalization behind this.
14557 			 */
14558 			if ((un->un_f_is_fibre == TRUE) &&
14559 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14560 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14561 				scsi_dmafree(xp->xb_pktp);
14562 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14563 			}
14564 #endif
14565 
14566 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14567 				/*
14568 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14569 				 * are for error recovery situations. These do
14570 				 * not use the normal command waitq, so if they
14571 				 * get a TRAN_BUSY we cannot put them back onto
14572 				 * the waitq for later retry. One possible
14573 				 * problem is that there could already be some
14574 				 * other command on un_retry_bp that is waiting
14575 				 * for this one to complete, so we would be
14576 				 * deadlocked if we put this command back onto
14577 				 * the waitq for later retry (since un_retry_bp
14578 				 * must complete before the driver gets back to
14579 				 * commands on the waitq).
14580 				 *
14581 				 * To avoid deadlock we must schedule a callback
14582 				 * that will restart this command after a set
14583 				 * interval.  This should keep retrying for as
14584 				 * long as the underlying transport keeps
14585 				 * returning TRAN_BUSY (just like for other
14586 				 * commands).  Use the same timeout interval as
14587 				 * for the ordinary TRAN_BUSY retry.
14588 				 */
14589 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14590 				    "sd_start_cmds: scsi_transport() returned "
14591 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14592 
14593 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14594 				un->un_direct_priority_timeid =
14595 				    timeout(sd_start_direct_priority_command,
14596 				    bp, SD_BSY_TIMEOUT / 500);
14597 
14598 				goto exit;
14599 			}
14600 
14601 			/*
14602 			 * For TRAN_BUSY, we want to reduce the throttle value,
14603 			 * unless we are retrying a command.
14604 			 */
14605 			if (bp != un->un_retry_bp) {
14606 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14607 			}
14608 
14609 			/*
14610 			 * Set up the bp to be tried again 10 ms later.
14611 			 * Note:x86: Is there a timeout value in the sd_lun
14612 			 * for this condition?
14613 			 */
14614 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
14615 				kstat_runq_back_to_waitq);
14616 			goto exit;
14617 
14618 		case TRAN_FATAL_ERROR:
14619 			un->un_tran_fatal_count++;
14620 			/* FALLTHRU */
14621 
14622 		case TRAN_BADPKT:
14623 		default:
14624 			un->un_ncmds_in_transport--;
14625 			ASSERT(un->un_ncmds_in_transport >= 0);
14626 
14627 			/*
14628 			 * If this is our REQUEST SENSE command with a
14629 			 * transport error, we must get back the pointers
14630 			 * to the original buf, and mark the REQUEST
14631 			 * SENSE command as "available".
14632 			 */
14633 			if (bp == un->un_rqs_bp) {
14634 				bp = sd_mark_rqs_idle(un, xp);
14635 				xp = SD_GET_XBUF(bp);
14636 			} else {
14637 				/*
14638 				 * Legacy behavior: do not update transport
14639 				 * error count for request sense commands.
14640 				 */
14641 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14642 			}
14643 
14644 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14645 			sd_print_transport_rejected_message(un, xp, rval);
14646 
14647 			/*
14648 			 * We must use sd_return_failed_command_no_restart() to
14649 			 * avoid a recursive call back into sd_start_cmds().
14650 			 * However this also means that we must keep processing
14651 			 * the waitq here in order to avoid stalling.
14652 			 */
14653 			sd_return_failed_command_no_restart(un, bp, EIO);
14654 
14655 			/*
14656 			 * Notify any threads waiting in sd_ddi_suspend() that
14657 			 * a command completion has occurred.
14658 			 */
14659 			if (un->un_state == SD_STATE_SUSPENDED) {
14660 				cv_broadcast(&un->un_disk_busy_cv);
14661 			}
14662 
14663 			if (bp == immed_bp) {
14664 				/* immed_bp is gone by now, so clear this */
14665 				immed_bp = NULL;
14666 			}
14667 			break;
14668 		}
14669 
14670 	} while (immed_bp == NULL);
14671 
14672 exit:
14673 	ASSERT(mutex_owned(SD_MUTEX(un)));
14674 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14675 }
14676 
14677 
14678 /*
14679  *    Function: sd_return_command
14680  *
14681  * Description: Returns a command to its originator (with or without an
14682  *		error).  Also starts commands waiting to be transported
14683  *		to the target.
14684  *
14685  *     Context: May be called from interrupt, kernel, or timeout context
14686  */
14687 
14688 static void
14689 sd_return_command(struct sd_lun *un, struct buf *bp)
14690 {
14691 	struct sd_xbuf *xp;
14692 #if defined(__i386) || defined(__amd64)
14693 	struct scsi_pkt *pktp;
14694 #endif
14695 
14696 	ASSERT(bp != NULL);
14697 	ASSERT(un != NULL);
14698 	ASSERT(mutex_owned(SD_MUTEX(un)));
14699 	ASSERT(bp != un->un_rqs_bp);
14700 	xp = SD_GET_XBUF(bp);
14701 	ASSERT(xp != NULL);
14702 
14703 #if defined(__i386) || defined(__amd64)
14704 	pktp = SD_GET_PKTP(bp);
14705 #endif
14706 
14707 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14708 
14709 #if defined(__i386) || defined(__amd64)
14710 	/*
14711 	 * Note:x86: check for the "sdrestart failed" case.
14712 	 */
14713 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14714 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14715 		(xp->xb_pktp->pkt_resid == 0)) {
14716 
14717 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14718 			/*
14719 			 * Successfully set up next portion of cmd
14720 			 * transfer, try sending it
14721 			 */
14722 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14723 			    NULL, NULL, 0, (clock_t)0, NULL);
14724 			sd_start_cmds(un, NULL);
14725 			return;	/* Note:x86: need a return here? */
14726 		}
14727 	}
14728 #endif
14729 
14730 	/*
14731 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14732 	 * can happen if upon being re-tried the failfast bp either
14733 	 * succeeded or encountered another error (possibly even a different
14734 	 * error than the one that precipitated the failfast state, but in
14735 	 * that case it would have had to exhaust retries as well). Regardless,
14736 	 * this should not occur whenever the instance is in the active
14737 	 * failfast state.
14738 	 */
14739 	if (bp == un->un_failfast_bp) {
14740 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14741 		un->un_failfast_bp = NULL;
14742 	}
14743 
14744 	/*
14745 	 * Clear the failfast state upon successful completion of ANY cmd.
14746 	 */
14747 	if (bp->b_error == 0) {
14748 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14749 	}
14750 
14751 	/*
14752 	 * This is used if the command was retried one or more times. Show that
14753 	 * we are done with it, and allow processing of the waitq to resume.
14754 	 */
14755 	if (bp == un->un_retry_bp) {
14756 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14757 		    "sd_return_command: un:0x%p: "
14758 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14759 		un->un_retry_bp = NULL;
14760 		un->un_retry_statp = NULL;
14761 	}
14762 
14763 	SD_UPDATE_RDWR_STATS(un, bp);
14764 	SD_UPDATE_PARTITION_STATS(un, bp);
14765 
14766 	switch (un->un_state) {
14767 	case SD_STATE_SUSPENDED:
14768 		/*
14769 		 * Notify any threads waiting in sd_ddi_suspend() that
14770 		 * a command completion has occurred.
14771 		 */
14772 		cv_broadcast(&un->un_disk_busy_cv);
14773 		break;
14774 	default:
14775 		sd_start_cmds(un, NULL);
14776 		break;
14777 	}
14778 
14779 	/* Return this command up the iodone chain to its originator. */
14780 	mutex_exit(SD_MUTEX(un));
14781 
14782 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14783 	xp->xb_pktp = NULL;
14784 
14785 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14786 
14787 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14788 	mutex_enter(SD_MUTEX(un));
14789 
14790 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14791 }
14792 
14793 
14794 /*
14795  *    Function: sd_return_failed_command
14796  *
14797  * Description: Command completion when an error occurred.
14798  *
14799  *     Context: May be called from interrupt context
14800  */
14801 
14802 static void
14803 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14804 {
14805 	ASSERT(bp != NULL);
14806 	ASSERT(un != NULL);
14807 	ASSERT(mutex_owned(SD_MUTEX(un)));
14808 
14809 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14810 	    "sd_return_failed_command: entry\n");
14811 
14812 	/*
14813 	 * b_resid could already be nonzero due to a partial data
14814 	 * transfer, so do not change it here.
14815 	 */
14816 	SD_BIOERROR(bp, errcode);
14817 
14818 	sd_return_command(un, bp);
14819 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14820 	    "sd_return_failed_command: exit\n");
14821 }
14822 
14823 
14824 /*
14825  *    Function: sd_return_failed_command_no_restart
14826  *
14827  * Description: Same as sd_return_failed_command, but ensures that no
14828  *		call back into sd_start_cmds will be issued.
14829  *
14830  *     Context: May be called from interrupt context
14831  */
14832 
14833 static void
14834 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14835 	int errcode)
14836 {
14837 	struct sd_xbuf *xp;
14838 
14839 	ASSERT(bp != NULL);
14840 	ASSERT(un != NULL);
14841 	ASSERT(mutex_owned(SD_MUTEX(un)));
14842 	xp = SD_GET_XBUF(bp);
14843 	ASSERT(xp != NULL);
14844 	ASSERT(errcode != 0);
14845 
14846 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14847 	    "sd_return_failed_command_no_restart: entry\n");
14848 
14849 	/*
14850 	 * b_resid could already be nonzero due to a partial data
14851 	 * transfer, so do not change it here.
14852 	 */
14853 	SD_BIOERROR(bp, errcode);
14854 
14855 	/*
14856 	 * If this is the failfast bp, clear it. This can happen if the
14857 	 * failfast bp encounterd a fatal error when we attempted to
14858 	 * re-try it (such as a scsi_transport(9F) failure).  However
14859 	 * we should NOT be in an active failfast state if the failfast
14860 	 * bp is not NULL.
14861 	 */
14862 	if (bp == un->un_failfast_bp) {
14863 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14864 		un->un_failfast_bp = NULL;
14865 	}
14866 
14867 	if (bp == un->un_retry_bp) {
14868 		/*
14869 		 * This command was retried one or more times. Show that we are
14870 		 * done with it, and allow processing of the waitq to resume.
14871 		 */
14872 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14873 		    "sd_return_failed_command_no_restart: "
14874 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14875 		un->un_retry_bp = NULL;
14876 		un->un_retry_statp = NULL;
14877 	}
14878 
14879 	SD_UPDATE_RDWR_STATS(un, bp);
14880 	SD_UPDATE_PARTITION_STATS(un, bp);
14881 
14882 	mutex_exit(SD_MUTEX(un));
14883 
14884 	if (xp->xb_pktp != NULL) {
14885 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14886 		xp->xb_pktp = NULL;
14887 	}
14888 
14889 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14890 
14891 	mutex_enter(SD_MUTEX(un));
14892 
14893 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14894 	    "sd_return_failed_command_no_restart: exit\n");
14895 }
14896 
14897 
14898 /*
14899  *    Function: sd_retry_command
14900  *
14901  * Description: queue up a command for retry, or (optionally) fail it
14902  *		if retry counts are exhausted.
14903  *
14904  *   Arguments: un - Pointer to the sd_lun struct for the target.
14905  *
14906  *		bp - Pointer to the buf for the command to be retried.
14907  *
14908  *		retry_check_flag - Flag to see which (if any) of the retry
14909  *		   counts should be decremented/checked. If the indicated
14910  *		   retry count is exhausted, then the command will not be
14911  *		   retried; it will be failed instead. This should use a
14912  *		   value equal to one of the following:
14913  *
14914  *			SD_RETRIES_NOCHECK
14915  *			SD_RESD_RETRIES_STANDARD
14916  *			SD_RETRIES_VICTIM
14917  *
14918  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14919  *		   if the check should be made to see of FLAG_ISOLATE is set
14920  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14921  *		   not retried, it is simply failed.
14922  *
14923  *		user_funcp - Ptr to function to call before dispatching the
14924  *		   command. May be NULL if no action needs to be performed.
14925  *		   (Primarily intended for printing messages.)
14926  *
14927  *		user_arg - Optional argument to be passed along to
14928  *		   the user_funcp call.
14929  *
14930  *		failure_code - errno return code to set in the bp if the
14931  *		   command is going to be failed.
14932  *
14933  *		retry_delay - Retry delay interval in (clock_t) units. May
14934  *		   be zero which indicates that the retry should be retried
14935  *		   immediately (ie, without an intervening delay).
14936  *
14937  *		statp - Ptr to kstat function to be updated if the command
14938  *		   is queued for a delayed retry. May be NULL if no kstat
14939  *		   update is desired.
14940  *
14941  *     Context: May be called from interupt context.
14942  */
14943 
14944 static void
14945 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14946 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14947 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14948 	void (*statp)(kstat_io_t *))
14949 {
14950 	struct sd_xbuf	*xp;
14951 	struct scsi_pkt	*pktp;
14952 
14953 	ASSERT(un != NULL);
14954 	ASSERT(mutex_owned(SD_MUTEX(un)));
14955 	ASSERT(bp != NULL);
14956 	xp = SD_GET_XBUF(bp);
14957 	ASSERT(xp != NULL);
14958 	pktp = SD_GET_PKTP(bp);
14959 	ASSERT(pktp != NULL);
14960 
14961 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14962 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14963 
14964 	/*
14965 	 * If we are syncing or dumping, fail the command to avoid
14966 	 * recursively calling back into scsi_transport().
14967 	 */
14968 	if (ddi_in_panic()) {
14969 		goto fail_command_no_log;
14970 	}
14971 
14972 	/*
14973 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14974 	 * log an error and fail the command.
14975 	 */
14976 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14977 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14978 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14979 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14980 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14981 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14982 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14983 		goto fail_command;
14984 	}
14985 
14986 	/*
14987 	 * If we are suspended, then put the command onto head of the
14988 	 * wait queue since we don't want to start more commands.
14989 	 */
14990 	switch (un->un_state) {
14991 	case SD_STATE_SUSPENDED:
14992 	case SD_STATE_DUMPING:
14993 		bp->av_forw = un->un_waitq_headp;
14994 		un->un_waitq_headp = bp;
14995 		if (un->un_waitq_tailp == NULL) {
14996 			un->un_waitq_tailp = bp;
14997 		}
14998 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
14999 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15000 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15001 		return;
15002 	default:
15003 		break;
15004 	}
15005 
15006 	/*
15007 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15008 	 * is set; if it is then we do not want to retry the command.
15009 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15010 	 */
15011 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15012 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15013 			goto fail_command;
15014 		}
15015 	}
15016 
15017 
15018 	/*
15019 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15020 	 * command timeout or a selection timeout has occurred. This means
15021 	 * that we were unable to establish an kind of communication with
15022 	 * the target, and subsequent retries and/or commands are likely
15023 	 * to encounter similar results and take a long time to complete.
15024 	 *
15025 	 * If this is a failfast error condition, we need to update the
15026 	 * failfast state, even if this bp does not have B_FAILFAST set.
15027 	 */
15028 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15029 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15030 			ASSERT(un->un_failfast_bp == NULL);
15031 			/*
15032 			 * If we are already in the active failfast state, and
15033 			 * another failfast error condition has been detected,
15034 			 * then fail this command if it has B_FAILFAST set.
15035 			 * If B_FAILFAST is clear, then maintain the legacy
15036 			 * behavior of retrying heroically, even tho this will
15037 			 * take a lot more time to fail the command.
15038 			 */
15039 			if (bp->b_flags & B_FAILFAST) {
15040 				goto fail_command;
15041 			}
15042 		} else {
15043 			/*
15044 			 * We're not in the active failfast state, but we
15045 			 * have a failfast error condition, so we must begin
15046 			 * transition to the next state. We do this regardless
15047 			 * of whether or not this bp has B_FAILFAST set.
15048 			 */
15049 			if (un->un_failfast_bp == NULL) {
15050 				/*
15051 				 * This is the first bp to meet a failfast
15052 				 * condition so save it on un_failfast_bp &
15053 				 * do normal retry processing. Do not enter
15054 				 * active failfast state yet. This marks
15055 				 * entry into the "failfast pending" state.
15056 				 */
15057 				un->un_failfast_bp = bp;
15058 
15059 			} else if (un->un_failfast_bp == bp) {
15060 				/*
15061 				 * This is the second time *this* bp has
15062 				 * encountered a failfast error condition,
15063 				 * so enter active failfast state & flush
15064 				 * queues as appropriate.
15065 				 */
15066 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15067 				un->un_failfast_bp = NULL;
15068 				sd_failfast_flushq(un);
15069 
15070 				/*
15071 				 * Fail this bp now if B_FAILFAST set;
15072 				 * otherwise continue with retries. (It would
15073 				 * be pretty ironic if this bp succeeded on a
15074 				 * subsequent retry after we just flushed all
15075 				 * the queues).
15076 				 */
15077 				if (bp->b_flags & B_FAILFAST) {
15078 					goto fail_command;
15079 				}
15080 
15081 #if !defined(lint) && !defined(__lint)
15082 			} else {
15083 				/*
15084 				 * If neither of the preceeding conditionals
15085 				 * was true, it means that there is some
15086 				 * *other* bp that has met an inital failfast
15087 				 * condition and is currently either being
15088 				 * retried or is waiting to be retried. In
15089 				 * that case we should perform normal retry
15090 				 * processing on *this* bp, since there is a
15091 				 * chance that the current failfast condition
15092 				 * is transient and recoverable. If that does
15093 				 * not turn out to be the case, then retries
15094 				 * will be cleared when the wait queue is
15095 				 * flushed anyway.
15096 				 */
15097 #endif
15098 			}
15099 		}
15100 	} else {
15101 		/*
15102 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15103 		 * likely were able to at least establish some level of
15104 		 * communication with the target and subsequent commands
15105 		 * and/or retries are likely to get through to the target,
15106 		 * In this case we want to be aggressive about clearing
15107 		 * the failfast state. Note that this does not affect
15108 		 * the "failfast pending" condition.
15109 		 */
15110 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15111 	}
15112 
15113 
15114 	/*
15115 	 * Check the specified retry count to see if we can still do
15116 	 * any retries with this pkt before we should fail it.
15117 	 */
15118 	switch (retry_check_flag & SD_RETRIES_MASK) {
15119 	case SD_RETRIES_VICTIM:
15120 		/*
15121 		 * Check the victim retry count. If exhausted, then fall
15122 		 * thru & check against the standard retry count.
15123 		 */
15124 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15125 			/* Increment count & proceed with the retry */
15126 			xp->xb_victim_retry_count++;
15127 			break;
15128 		}
15129 		/* Victim retries exhausted, fall back to std. retries... */
15130 		/* FALLTHRU */
15131 
15132 	case SD_RETRIES_STANDARD:
15133 		if (xp->xb_retry_count >= un->un_retry_count) {
15134 			/* Retries exhausted, fail the command */
15135 			SD_TRACE(SD_LOG_IO_CORE, un,
15136 			    "sd_retry_command: retries exhausted!\n");
15137 			/*
15138 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15139 			 * commands with nonzero pkt_resid.
15140 			 */
15141 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15142 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15143 			    (pktp->pkt_resid != 0)) {
15144 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15145 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15146 					SD_UPDATE_B_RESID(bp, pktp);
15147 				}
15148 			}
15149 			goto fail_command;
15150 		}
15151 		xp->xb_retry_count++;
15152 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15153 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15154 		break;
15155 
15156 	case SD_RETRIES_UA:
15157 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15158 			/* Retries exhausted, fail the command */
15159 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15160 			    "Unit Attention retries exhausted. "
15161 			    "Check the target.\n");
15162 			goto fail_command;
15163 		}
15164 		xp->xb_ua_retry_count++;
15165 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15166 		    "sd_retry_command: retry count:%d\n",
15167 			xp->xb_ua_retry_count);
15168 		break;
15169 
15170 	case SD_RETRIES_BUSY:
15171 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15172 			/* Retries exhausted, fail the command */
15173 			SD_TRACE(SD_LOG_IO_CORE, un,
15174 			    "sd_retry_command: retries exhausted!\n");
15175 			goto fail_command;
15176 		}
15177 		xp->xb_retry_count++;
15178 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15179 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15180 		break;
15181 
15182 	case SD_RETRIES_NOCHECK:
15183 	default:
15184 		/* No retry count to check. Just proceed with the retry */
15185 		break;
15186 	}
15187 
15188 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15189 
15190 	/*
15191 	 * If we were given a zero timeout, we must attempt to retry the
15192 	 * command immediately (ie, without a delay).
15193 	 */
15194 	if (retry_delay == 0) {
15195 		/*
15196 		 * Check some limiting conditions to see if we can actually
15197 		 * do the immediate retry.  If we cannot, then we must
15198 		 * fall back to queueing up a delayed retry.
15199 		 */
15200 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15201 			/*
15202 			 * We are at the throttle limit for the target,
15203 			 * fall back to delayed retry.
15204 			 */
15205 			retry_delay = SD_BSY_TIMEOUT;
15206 			statp = kstat_waitq_enter;
15207 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15208 			    "sd_retry_command: immed. retry hit "
15209 			    "throttle!\n");
15210 		} else {
15211 			/*
15212 			 * We're clear to proceed with the immediate retry.
15213 			 * First call the user-provided function (if any)
15214 			 */
15215 			if (user_funcp != NULL) {
15216 				(*user_funcp)(un, bp, user_arg,
15217 				    SD_IMMEDIATE_RETRY_ISSUED);
15218 			}
15219 
15220 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15221 			    "sd_retry_command: issuing immediate retry\n");
15222 
15223 			/*
15224 			 * Call sd_start_cmds() to transport the command to
15225 			 * the target.
15226 			 */
15227 			sd_start_cmds(un, bp);
15228 
15229 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15230 			    "sd_retry_command exit\n");
15231 			return;
15232 		}
15233 	}
15234 
15235 	/*
15236 	 * Set up to retry the command after a delay.
15237 	 * First call the user-provided function (if any)
15238 	 */
15239 	if (user_funcp != NULL) {
15240 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15241 	}
15242 
15243 	sd_set_retry_bp(un, bp, retry_delay, statp);
15244 
15245 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15246 	return;
15247 
15248 fail_command:
15249 
15250 	if (user_funcp != NULL) {
15251 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15252 	}
15253 
15254 fail_command_no_log:
15255 
15256 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15257 	    "sd_retry_command: returning failed command\n");
15258 
15259 	sd_return_failed_command(un, bp, failure_code);
15260 
15261 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15262 }
15263 
15264 
15265 /*
15266  *    Function: sd_set_retry_bp
15267  *
15268  * Description: Set up the given bp for retry.
15269  *
15270  *   Arguments: un - ptr to associated softstate
15271  *		bp - ptr to buf(9S) for the command
15272  *		retry_delay - time interval before issuing retry (may be 0)
15273  *		statp - optional pointer to kstat function
15274  *
15275  *     Context: May be called under interrupt context
15276  */
15277 
15278 static void
15279 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15280 	void (*statp)(kstat_io_t *))
15281 {
15282 	ASSERT(un != NULL);
15283 	ASSERT(mutex_owned(SD_MUTEX(un)));
15284 	ASSERT(bp != NULL);
15285 
15286 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15287 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15288 
15289 	/*
15290 	 * Indicate that the command is being retried. This will not allow any
15291 	 * other commands on the wait queue to be transported to the target
15292 	 * until this command has been completed (success or failure). The
15293 	 * "retry command" is not transported to the target until the given
15294 	 * time delay expires, unless the user specified a 0 retry_delay.
15295 	 *
15296 	 * Note: the timeout(9F) callback routine is what actually calls
15297 	 * sd_start_cmds() to transport the command, with the exception of a
15298 	 * zero retry_delay. The only current implementor of a zero retry delay
15299 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15300 	 */
15301 	if (un->un_retry_bp == NULL) {
15302 		ASSERT(un->un_retry_statp == NULL);
15303 		un->un_retry_bp = bp;
15304 
15305 		/*
15306 		 * If the user has not specified a delay the command should
15307 		 * be queued and no timeout should be scheduled.
15308 		 */
15309 		if (retry_delay == 0) {
15310 			/*
15311 			 * Save the kstat pointer that will be used in the
15312 			 * call to SD_UPDATE_KSTATS() below, so that
15313 			 * sd_start_cmds() can correctly decrement the waitq
15314 			 * count when it is time to transport this command.
15315 			 */
15316 			un->un_retry_statp = statp;
15317 			goto done;
15318 		}
15319 	}
15320 
15321 	if (un->un_retry_bp == bp) {
15322 		/*
15323 		 * Save the kstat pointer that will be used in the call to
15324 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15325 		 * correctly decrement the waitq count when it is time to
15326 		 * transport this command.
15327 		 */
15328 		un->un_retry_statp = statp;
15329 
15330 		/*
15331 		 * Schedule a timeout if:
15332 		 *   1) The user has specified a delay.
15333 		 *   2) There is not a START_STOP_UNIT callback pending.
15334 		 *
15335 		 * If no delay has been specified, then it is up to the caller
15336 		 * to ensure that IO processing continues without stalling.
15337 		 * Effectively, this means that the caller will issue the
15338 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15339 		 * callback does this after the START STOP UNIT command has
15340 		 * completed. In either of these cases we should not schedule
15341 		 * a timeout callback here.  Also don't schedule the timeout if
15342 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15343 		 */
15344 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15345 		    (un->un_direct_priority_timeid == NULL)) {
15346 			un->un_retry_timeid =
15347 			    timeout(sd_start_retry_command, un, retry_delay);
15348 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15349 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15350 			    " bp:0x%p un_retry_timeid:0x%p\n",
15351 			    un, bp, un->un_retry_timeid);
15352 		}
15353 	} else {
15354 		/*
15355 		 * We only get in here if there is already another command
15356 		 * waiting to be retried.  In this case, we just put the
15357 		 * given command onto the wait queue, so it can be transported
15358 		 * after the current retry command has completed.
15359 		 *
15360 		 * Also we have to make sure that if the command at the head
15361 		 * of the wait queue is the un_failfast_bp, that we do not
15362 		 * put ahead of it any other commands that are to be retried.
15363 		 */
15364 		if ((un->un_failfast_bp != NULL) &&
15365 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15366 			/*
15367 			 * Enqueue this command AFTER the first command on
15368 			 * the wait queue (which is also un_failfast_bp).
15369 			 */
15370 			bp->av_forw = un->un_waitq_headp->av_forw;
15371 			un->un_waitq_headp->av_forw = bp;
15372 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15373 				un->un_waitq_tailp = bp;
15374 			}
15375 		} else {
15376 			/* Enqueue this command at the head of the waitq. */
15377 			bp->av_forw = un->un_waitq_headp;
15378 			un->un_waitq_headp = bp;
15379 			if (un->un_waitq_tailp == NULL) {
15380 				un->un_waitq_tailp = bp;
15381 			}
15382 		}
15383 
15384 		if (statp == NULL) {
15385 			statp = kstat_waitq_enter;
15386 		}
15387 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15388 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15389 	}
15390 
15391 done:
15392 	if (statp != NULL) {
15393 		SD_UPDATE_KSTATS(un, statp, bp);
15394 	}
15395 
15396 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15397 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15398 }
15399 
15400 
15401 /*
15402  *    Function: sd_start_retry_command
15403  *
15404  * Description: Start the command that has been waiting on the target's
15405  *		retry queue.  Called from timeout(9F) context after the
15406  *		retry delay interval has expired.
15407  *
15408  *   Arguments: arg - pointer to associated softstate for the device.
15409  *
15410  *     Context: timeout(9F) thread context.  May not sleep.
15411  */
15412 
15413 static void
15414 sd_start_retry_command(void *arg)
15415 {
15416 	struct sd_lun *un = arg;
15417 
15418 	ASSERT(un != NULL);
15419 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15420 
15421 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15422 	    "sd_start_retry_command: entry\n");
15423 
15424 	mutex_enter(SD_MUTEX(un));
15425 
15426 	un->un_retry_timeid = NULL;
15427 
15428 	if (un->un_retry_bp != NULL) {
15429 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15430 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15431 		    un, un->un_retry_bp);
15432 		sd_start_cmds(un, un->un_retry_bp);
15433 	}
15434 
15435 	mutex_exit(SD_MUTEX(un));
15436 
15437 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15438 	    "sd_start_retry_command: exit\n");
15439 }
15440 
15441 
15442 /*
15443  *    Function: sd_start_direct_priority_command
15444  *
15445  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15446  *		received TRAN_BUSY when we called scsi_transport() to send it
15447  *		to the underlying HBA. This function is called from timeout(9F)
15448  *		context after the delay interval has expired.
15449  *
15450  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15451  *
15452  *     Context: timeout(9F) thread context.  May not sleep.
15453  */
15454 
15455 static void
15456 sd_start_direct_priority_command(void *arg)
15457 {
15458 	struct buf	*priority_bp = arg;
15459 	struct sd_lun	*un;
15460 
15461 	ASSERT(priority_bp != NULL);
15462 	un = SD_GET_UN(priority_bp);
15463 	ASSERT(un != NULL);
15464 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15465 
15466 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15467 	    "sd_start_direct_priority_command: entry\n");
15468 
15469 	mutex_enter(SD_MUTEX(un));
15470 	un->un_direct_priority_timeid = NULL;
15471 	sd_start_cmds(un, priority_bp);
15472 	mutex_exit(SD_MUTEX(un));
15473 
15474 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15475 	    "sd_start_direct_priority_command: exit\n");
15476 }
15477 
15478 
15479 /*
15480  *    Function: sd_send_request_sense_command
15481  *
15482  * Description: Sends a REQUEST SENSE command to the target
15483  *
15484  *     Context: May be called from interrupt context.
15485  */
15486 
15487 static void
15488 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15489 	struct scsi_pkt *pktp)
15490 {
15491 	ASSERT(bp != NULL);
15492 	ASSERT(un != NULL);
15493 	ASSERT(mutex_owned(SD_MUTEX(un)));
15494 
15495 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15496 	    "entry: buf:0x%p\n", bp);
15497 
15498 	/*
15499 	 * If we are syncing or dumping, then fail the command to avoid a
15500 	 * recursive callback into scsi_transport(). Also fail the command
15501 	 * if we are suspended (legacy behavior).
15502 	 */
15503 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15504 	    (un->un_state == SD_STATE_DUMPING)) {
15505 		sd_return_failed_command(un, bp, EIO);
15506 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15507 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15508 		return;
15509 	}
15510 
15511 	/*
15512 	 * Retry the failed command and don't issue the request sense if:
15513 	 *    1) the sense buf is busy
15514 	 *    2) we have 1 or more outstanding commands on the target
15515 	 *    (the sense data will be cleared or invalidated any way)
15516 	 *
15517 	 * Note: There could be an issue with not checking a retry limit here,
15518 	 * the problem is determining which retry limit to check.
15519 	 */
15520 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15521 		/* Don't retry if the command is flagged as non-retryable */
15522 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15523 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15524 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
15525 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15526 			    "sd_send_request_sense_command: "
15527 			    "at full throttle, retrying exit\n");
15528 		} else {
15529 			sd_return_failed_command(un, bp, EIO);
15530 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15531 			    "sd_send_request_sense_command: "
15532 			    "at full throttle, non-retryable exit\n");
15533 		}
15534 		return;
15535 	}
15536 
15537 	sd_mark_rqs_busy(un, bp);
15538 	sd_start_cmds(un, un->un_rqs_bp);
15539 
15540 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15541 	    "sd_send_request_sense_command: exit\n");
15542 }
15543 
15544 
15545 /*
15546  *    Function: sd_mark_rqs_busy
15547  *
15548  * Description: Indicate that the request sense bp for this instance is
15549  *		in use.
15550  *
15551  *     Context: May be called under interrupt context
15552  */
15553 
15554 static void
15555 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15556 {
15557 	struct sd_xbuf	*sense_xp;
15558 
15559 	ASSERT(un != NULL);
15560 	ASSERT(bp != NULL);
15561 	ASSERT(mutex_owned(SD_MUTEX(un)));
15562 	ASSERT(un->un_sense_isbusy == 0);
15563 
15564 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15565 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15566 
15567 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15568 	ASSERT(sense_xp != NULL);
15569 
15570 	SD_INFO(SD_LOG_IO, un,
15571 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15572 
15573 	ASSERT(sense_xp->xb_pktp != NULL);
15574 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15575 	    == (FLAG_SENSING | FLAG_HEAD));
15576 
15577 	un->un_sense_isbusy = 1;
15578 	un->un_rqs_bp->b_resid = 0;
15579 	sense_xp->xb_pktp->pkt_resid  = 0;
15580 	sense_xp->xb_pktp->pkt_reason = 0;
15581 
15582 	/* So we can get back the bp at interrupt time! */
15583 	sense_xp->xb_sense_bp = bp;
15584 
15585 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15586 
15587 	/*
15588 	 * Mark this buf as awaiting sense data. (This is already set in
15589 	 * the pkt_flags for the RQS packet.)
15590 	 */
15591 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15592 
15593 	sense_xp->xb_retry_count	= 0;
15594 	sense_xp->xb_victim_retry_count = 0;
15595 	sense_xp->xb_ua_retry_count	= 0;
15596 	sense_xp->xb_dma_resid  = 0;
15597 
15598 	/* Clean up the fields for auto-request sense */
15599 	sense_xp->xb_sense_status = 0;
15600 	sense_xp->xb_sense_state  = 0;
15601 	sense_xp->xb_sense_resid  = 0;
15602 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15603 
15604 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15605 }
15606 
15607 
15608 /*
15609  *    Function: sd_mark_rqs_idle
15610  *
15611  * Description: SD_MUTEX must be held continuously through this routine
15612  *		to prevent reuse of the rqs struct before the caller can
15613  *		complete it's processing.
15614  *
15615  * Return Code: Pointer to the RQS buf
15616  *
15617  *     Context: May be called under interrupt context
15618  */
15619 
15620 static struct buf *
15621 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15622 {
15623 	struct buf *bp;
15624 	ASSERT(un != NULL);
15625 	ASSERT(sense_xp != NULL);
15626 	ASSERT(mutex_owned(SD_MUTEX(un)));
15627 	ASSERT(un->un_sense_isbusy != 0);
15628 
15629 	un->un_sense_isbusy = 0;
15630 	bp = sense_xp->xb_sense_bp;
15631 	sense_xp->xb_sense_bp = NULL;
15632 
15633 	/* This pkt is no longer interested in getting sense data */
15634 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15635 
15636 	return (bp);
15637 }
15638 
15639 
15640 
15641 /*
15642  *    Function: sd_alloc_rqs
15643  *
15644  * Description: Set up the unit to receive auto request sense data
15645  *
15646  * Return Code: DDI_SUCCESS or DDI_FAILURE
15647  *
15648  *     Context: Called under attach(9E) context
15649  */
15650 
15651 static int
15652 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15653 {
15654 	struct sd_xbuf *xp;
15655 
15656 	ASSERT(un != NULL);
15657 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15658 	ASSERT(un->un_rqs_bp == NULL);
15659 	ASSERT(un->un_rqs_pktp == NULL);
15660 
15661 	/*
15662 	 * First allocate the required buf and scsi_pkt structs, then set up
15663 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15664 	 */
15665 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15666 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15667 	if (un->un_rqs_bp == NULL) {
15668 		return (DDI_FAILURE);
15669 	}
15670 
15671 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15672 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15673 
15674 	if (un->un_rqs_pktp == NULL) {
15675 		sd_free_rqs(un);
15676 		return (DDI_FAILURE);
15677 	}
15678 
15679 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15680 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15681 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
15682 
15683 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15684 
15685 	/* Set up the other needed members in the ARQ scsi_pkt. */
15686 	un->un_rqs_pktp->pkt_comp   = sdintr;
15687 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15688 	un->un_rqs_pktp->pkt_flags |=
15689 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15690 
15691 	/*
15692 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15693 	 * provide any intpkt, destroypkt routines as we take care of
15694 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15695 	 */
15696 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15697 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15698 	xp->xb_pktp = un->un_rqs_pktp;
15699 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15700 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15701 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15702 
15703 	/*
15704 	 * Save the pointer to the request sense private bp so it can
15705 	 * be retrieved in sdintr.
15706 	 */
15707 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15708 	ASSERT(un->un_rqs_bp->b_private == xp);
15709 
15710 	/*
15711 	 * See if the HBA supports auto-request sense for the specified
15712 	 * target/lun. If it does, then try to enable it (if not already
15713 	 * enabled).
15714 	 *
15715 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15716 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15717 	 * return success.  However, in both of these cases ARQ is always
15718 	 * enabled and scsi_ifgetcap will always return true. The best approach
15719 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15720 	 *
15721 	 * The 3rd case is the HBA (adp) always return enabled on
15722 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15723 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15724 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15725 	 */
15726 
15727 	if (un->un_f_is_fibre == TRUE) {
15728 		un->un_f_arq_enabled = TRUE;
15729 	} else {
15730 #if defined(__i386) || defined(__amd64)
15731 		/*
15732 		 * Circumvent the Adaptec bug, remove this code when
15733 		 * the bug is fixed
15734 		 */
15735 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15736 #endif
15737 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15738 		case 0:
15739 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15740 				"sd_alloc_rqs: HBA supports ARQ\n");
15741 			/*
15742 			 * ARQ is supported by this HBA but currently is not
15743 			 * enabled. Attempt to enable it and if successful then
15744 			 * mark this instance as ARQ enabled.
15745 			 */
15746 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15747 				== 1) {
15748 				/* Successfully enabled ARQ in the HBA */
15749 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15750 					"sd_alloc_rqs: ARQ enabled\n");
15751 				un->un_f_arq_enabled = TRUE;
15752 			} else {
15753 				/* Could not enable ARQ in the HBA */
15754 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15755 				"sd_alloc_rqs: failed ARQ enable\n");
15756 				un->un_f_arq_enabled = FALSE;
15757 			}
15758 			break;
15759 		case 1:
15760 			/*
15761 			 * ARQ is supported by this HBA and is already enabled.
15762 			 * Just mark ARQ as enabled for this instance.
15763 			 */
15764 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15765 				"sd_alloc_rqs: ARQ already enabled\n");
15766 			un->un_f_arq_enabled = TRUE;
15767 			break;
15768 		default:
15769 			/*
15770 			 * ARQ is not supported by this HBA; disable it for this
15771 			 * instance.
15772 			 */
15773 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15774 				"sd_alloc_rqs: HBA does not support ARQ\n");
15775 			un->un_f_arq_enabled = FALSE;
15776 			break;
15777 		}
15778 	}
15779 
15780 	return (DDI_SUCCESS);
15781 }
15782 
15783 
15784 /*
15785  *    Function: sd_free_rqs
15786  *
15787  * Description: Cleanup for the pre-instance RQS command.
15788  *
15789  *     Context: Kernel thread context
15790  */
15791 
15792 static void
15793 sd_free_rqs(struct sd_lun *un)
15794 {
15795 	ASSERT(un != NULL);
15796 
15797 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15798 
15799 	/*
15800 	 * If consistent memory is bound to a scsi_pkt, the pkt
15801 	 * has to be destroyed *before* freeing the consistent memory.
15802 	 * Don't change the sequence of this operations.
15803 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15804 	 * after it was freed in scsi_free_consistent_buf().
15805 	 */
15806 	if (un->un_rqs_pktp != NULL) {
15807 		scsi_destroy_pkt(un->un_rqs_pktp);
15808 		un->un_rqs_pktp = NULL;
15809 	}
15810 
15811 	if (un->un_rqs_bp != NULL) {
15812 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
15813 		scsi_free_consistent_buf(un->un_rqs_bp);
15814 		un->un_rqs_bp = NULL;
15815 	}
15816 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15817 }
15818 
15819 
15820 
15821 /*
15822  *    Function: sd_reduce_throttle
15823  *
15824  * Description: Reduces the maximun # of outstanding commands on a
15825  *		target to the current number of outstanding commands.
15826  *		Queues a tiemout(9F) callback to restore the limit
15827  *		after a specified interval has elapsed.
15828  *		Typically used when we get a TRAN_BUSY return code
15829  *		back from scsi_transport().
15830  *
15831  *   Arguments: un - ptr to the sd_lun softstate struct
15832  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15833  *
15834  *     Context: May be called from interrupt context
15835  */
15836 
15837 static void
15838 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15839 {
15840 	ASSERT(un != NULL);
15841 	ASSERT(mutex_owned(SD_MUTEX(un)));
15842 	ASSERT(un->un_ncmds_in_transport >= 0);
15843 
15844 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15845 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15846 	    un, un->un_throttle, un->un_ncmds_in_transport);
15847 
15848 	if (un->un_throttle > 1) {
15849 		if (un->un_f_use_adaptive_throttle == TRUE) {
15850 			switch (throttle_type) {
15851 			case SD_THROTTLE_TRAN_BUSY:
15852 				if (un->un_busy_throttle == 0) {
15853 					un->un_busy_throttle = un->un_throttle;
15854 				}
15855 				break;
15856 			case SD_THROTTLE_QFULL:
15857 				un->un_busy_throttle = 0;
15858 				break;
15859 			default:
15860 				ASSERT(FALSE);
15861 			}
15862 
15863 			if (un->un_ncmds_in_transport > 0) {
15864 			    un->un_throttle = un->un_ncmds_in_transport;
15865 			}
15866 
15867 		} else {
15868 			if (un->un_ncmds_in_transport == 0) {
15869 				un->un_throttle = 1;
15870 			} else {
15871 				un->un_throttle = un->un_ncmds_in_transport;
15872 			}
15873 		}
15874 	}
15875 
15876 	/* Reschedule the timeout if none is currently active */
15877 	if (un->un_reset_throttle_timeid == NULL) {
15878 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15879 		    un, SD_THROTTLE_RESET_INTERVAL);
15880 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15881 		    "sd_reduce_throttle: timeout scheduled!\n");
15882 	}
15883 
15884 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15885 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15886 }
15887 
15888 
15889 
15890 /*
15891  *    Function: sd_restore_throttle
15892  *
15893  * Description: Callback function for timeout(9F).  Resets the current
15894  *		value of un->un_throttle to its default.
15895  *
15896  *   Arguments: arg - pointer to associated softstate for the device.
15897  *
15898  *     Context: May be called from interrupt context
15899  */
15900 
15901 static void
15902 sd_restore_throttle(void *arg)
15903 {
15904 	struct sd_lun	*un = arg;
15905 
15906 	ASSERT(un != NULL);
15907 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15908 
15909 	mutex_enter(SD_MUTEX(un));
15910 
15911 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15912 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15913 
15914 	un->un_reset_throttle_timeid = NULL;
15915 
15916 	if (un->un_f_use_adaptive_throttle == TRUE) {
15917 		/*
15918 		 * If un_busy_throttle is nonzero, then it contains the
15919 		 * value that un_throttle was when we got a TRAN_BUSY back
15920 		 * from scsi_transport(). We want to revert back to this
15921 		 * value.
15922 		 *
15923 		 * In the QFULL case, the throttle limit will incrementally
15924 		 * increase until it reaches max throttle.
15925 		 */
15926 		if (un->un_busy_throttle > 0) {
15927 			un->un_throttle = un->un_busy_throttle;
15928 			un->un_busy_throttle = 0;
15929 		} else {
15930 			/*
15931 			 * increase throttle by 10% open gate slowly, schedule
15932 			 * another restore if saved throttle has not been
15933 			 * reached
15934 			 */
15935 			short throttle;
15936 			if (sd_qfull_throttle_enable) {
15937 				throttle = un->un_throttle +
15938 				    max((un->un_throttle / 10), 1);
15939 				un->un_throttle =
15940 				    (throttle < un->un_saved_throttle) ?
15941 				    throttle : un->un_saved_throttle;
15942 				if (un->un_throttle < un->un_saved_throttle) {
15943 				    un->un_reset_throttle_timeid =
15944 					timeout(sd_restore_throttle,
15945 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
15946 				}
15947 			}
15948 		}
15949 
15950 		/*
15951 		 * If un_throttle has fallen below the low-water mark, we
15952 		 * restore the maximum value here (and allow it to ratchet
15953 		 * down again if necessary).
15954 		 */
15955 		if (un->un_throttle < un->un_min_throttle) {
15956 			un->un_throttle = un->un_saved_throttle;
15957 		}
15958 	} else {
15959 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15960 		    "restoring limit from 0x%x to 0x%x\n",
15961 		    un->un_throttle, un->un_saved_throttle);
15962 		un->un_throttle = un->un_saved_throttle;
15963 	}
15964 
15965 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15966 	    "sd_restore_throttle: calling sd_start_cmds!\n");
15967 
15968 	sd_start_cmds(un, NULL);
15969 
15970 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15971 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
15972 	    un, un->un_throttle);
15973 
15974 	mutex_exit(SD_MUTEX(un));
15975 
15976 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
15977 }
15978 
15979 /*
15980  *    Function: sdrunout
15981  *
15982  * Description: Callback routine for scsi_init_pkt when a resource allocation
15983  *		fails.
15984  *
15985  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
15986  *		soft state instance.
15987  *
15988  * Return Code: The scsi_init_pkt routine allows for the callback function to
15989  *		return a 0 indicating the callback should be rescheduled or a 1
15990  *		indicating not to reschedule. This routine always returns 1
15991  *		because the driver always provides a callback function to
15992  *		scsi_init_pkt. This results in a callback always being scheduled
15993  *		(via the scsi_init_pkt callback implementation) if a resource
15994  *		failure occurs.
15995  *
15996  *     Context: This callback function may not block or call routines that block
15997  *
15998  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
15999  *		request persisting at the head of the list which cannot be
16000  *		satisfied even after multiple retries. In the future the driver
16001  *		may implement some time of maximum runout count before failing
16002  *		an I/O.
16003  */
16004 
16005 static int
16006 sdrunout(caddr_t arg)
16007 {
16008 	struct sd_lun	*un = (struct sd_lun *)arg;
16009 
16010 	ASSERT(un != NULL);
16011 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16012 
16013 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16014 
16015 	mutex_enter(SD_MUTEX(un));
16016 	sd_start_cmds(un, NULL);
16017 	mutex_exit(SD_MUTEX(un));
16018 	/*
16019 	 * This callback routine always returns 1 (i.e. do not reschedule)
16020 	 * because we always specify sdrunout as the callback handler for
16021 	 * scsi_init_pkt inside the call to sd_start_cmds.
16022 	 */
16023 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16024 	return (1);
16025 }
16026 
16027 
16028 /*
16029  *    Function: sdintr
16030  *
16031  * Description: Completion callback routine for scsi_pkt(9S) structs
16032  *		sent to the HBA driver via scsi_transport(9F).
16033  *
16034  *     Context: Interrupt context
16035  */
16036 
16037 static void
16038 sdintr(struct scsi_pkt *pktp)
16039 {
16040 	struct buf	*bp;
16041 	struct sd_xbuf	*xp;
16042 	struct sd_lun	*un;
16043 
16044 	ASSERT(pktp != NULL);
16045 	bp = (struct buf *)pktp->pkt_private;
16046 	ASSERT(bp != NULL);
16047 	xp = SD_GET_XBUF(bp);
16048 	ASSERT(xp != NULL);
16049 	ASSERT(xp->xb_pktp != NULL);
16050 	un = SD_GET_UN(bp);
16051 	ASSERT(un != NULL);
16052 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16053 
16054 #ifdef SD_FAULT_INJECTION
16055 
16056 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16057 	/* SD FaultInjection */
16058 	sd_faultinjection(pktp);
16059 
16060 #endif /* SD_FAULT_INJECTION */
16061 
16062 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16063 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16064 
16065 	mutex_enter(SD_MUTEX(un));
16066 
16067 	/* Reduce the count of the #commands currently in transport */
16068 	un->un_ncmds_in_transport--;
16069 	ASSERT(un->un_ncmds_in_transport >= 0);
16070 
16071 	/* Increment counter to indicate that the callback routine is active */
16072 	un->un_in_callback++;
16073 
16074 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16075 
16076 #ifdef	SDDEBUG
16077 	if (bp == un->un_retry_bp) {
16078 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16079 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16080 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16081 	}
16082 #endif
16083 
16084 	/*
16085 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
16086 	 */
16087 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16088 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16089 			    "Device is gone\n");
16090 		sd_return_failed_command(un, bp, EIO);
16091 		goto exit;
16092 	}
16093 
16094 	/*
16095 	 * First see if the pkt has auto-request sense data with it....
16096 	 * Look at the packet state first so we don't take a performance
16097 	 * hit looking at the arq enabled flag unless absolutely necessary.
16098 	 */
16099 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16100 	    (un->un_f_arq_enabled == TRUE)) {
16101 		/*
16102 		 * The HBA did an auto request sense for this command so check
16103 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16104 		 * driver command that should not be retried.
16105 		 */
16106 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16107 			/*
16108 			 * Save the relevant sense info into the xp for the
16109 			 * original cmd.
16110 			 */
16111 			struct scsi_arq_status *asp;
16112 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16113 			xp->xb_sense_status =
16114 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16115 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16116 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16117 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16118 			    min(sizeof (struct scsi_extended_sense),
16119 			    SENSE_LENGTH));
16120 
16121 			/* fail the command */
16122 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16123 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16124 			sd_return_failed_command(un, bp, EIO);
16125 			goto exit;
16126 		}
16127 
16128 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16129 		/*
16130 		 * We want to either retry or fail this command, so free
16131 		 * the DMA resources here.  If we retry the command then
16132 		 * the DMA resources will be reallocated in sd_start_cmds().
16133 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16134 		 * causes the *entire* transfer to start over again from the
16135 		 * beginning of the request, even for PARTIAL chunks that
16136 		 * have already transferred successfully.
16137 		 */
16138 		if ((un->un_f_is_fibre == TRUE) &&
16139 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16140 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16141 			scsi_dmafree(pktp);
16142 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16143 		}
16144 #endif
16145 
16146 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16147 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16148 
16149 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16150 		goto exit;
16151 	}
16152 
16153 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16154 	if (pktp->pkt_flags & FLAG_SENSING)  {
16155 		/* This pktp is from the unit's REQUEST_SENSE command */
16156 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16157 		    "sdintr: sd_handle_request_sense\n");
16158 		sd_handle_request_sense(un, bp, xp, pktp);
16159 		goto exit;
16160 	}
16161 
16162 	/*
16163 	 * Check to see if the command successfully completed as requested;
16164 	 * this is the most common case (and also the hot performance path).
16165 	 *
16166 	 * Requirements for successful completion are:
16167 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16168 	 * In addition:
16169 	 * - A residual of zero indicates successful completion no matter what
16170 	 *   the command is.
16171 	 * - If the residual is not zero and the command is not a read or
16172 	 *   write, then it's still defined as successful completion. In other
16173 	 *   words, if the command is a read or write the residual must be
16174 	 *   zero for successful completion.
16175 	 * - If the residual is not zero and the command is a read or
16176 	 *   write, and it's a USCSICMD, then it's still defined as
16177 	 *   successful completion.
16178 	 */
16179 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16180 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16181 
16182 		/*
16183 		 * Since this command is returned with a good status, we
16184 		 * can reset the count for Sonoma failover.
16185 		 */
16186 		un->un_sonoma_failure_count = 0;
16187 
16188 		/*
16189 		 * Return all USCSI commands on good status
16190 		 */
16191 		if (pktp->pkt_resid == 0) {
16192 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16193 			    "sdintr: returning command for resid == 0\n");
16194 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16195 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16196 			SD_UPDATE_B_RESID(bp, pktp);
16197 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16198 			    "sdintr: returning command for resid != 0\n");
16199 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16200 			SD_UPDATE_B_RESID(bp, pktp);
16201 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16202 				"sdintr: returning uscsi command\n");
16203 		} else {
16204 			goto not_successful;
16205 		}
16206 		sd_return_command(un, bp);
16207 
16208 		/*
16209 		 * Decrement counter to indicate that the callback routine
16210 		 * is done.
16211 		 */
16212 		un->un_in_callback--;
16213 		ASSERT(un->un_in_callback >= 0);
16214 		mutex_exit(SD_MUTEX(un));
16215 
16216 		return;
16217 	}
16218 
16219 not_successful:
16220 
16221 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16222 	/*
16223 	 * The following is based upon knowledge of the underlying transport
16224 	 * and its use of DMA resources.  This code should be removed when
16225 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16226 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16227 	 * and sd_start_cmds().
16228 	 *
16229 	 * Free any DMA resources associated with this command if there
16230 	 * is a chance it could be retried or enqueued for later retry.
16231 	 * If we keep the DMA binding then mpxio cannot reissue the
16232 	 * command on another path whenever a path failure occurs.
16233 	 *
16234 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16235 	 * causes the *entire* transfer to start over again from the
16236 	 * beginning of the request, even for PARTIAL chunks that
16237 	 * have already transferred successfully.
16238 	 *
16239 	 * This is only done for non-uscsi commands (and also skipped for the
16240 	 * driver's internal RQS command). Also just do this for Fibre Channel
16241 	 * devices as these are the only ones that support mpxio.
16242 	 */
16243 	if ((un->un_f_is_fibre == TRUE) &&
16244 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16245 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16246 		scsi_dmafree(pktp);
16247 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16248 	}
16249 #endif
16250 
16251 	/*
16252 	 * The command did not successfully complete as requested so check
16253 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16254 	 * driver command that should not be retried so just return. If
16255 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16256 	 */
16257 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16258 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16259 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16260 		/*
16261 		 * Issue a request sense if a check condition caused the error
16262 		 * (we handle the auto request sense case above), otherwise
16263 		 * just fail the command.
16264 		 */
16265 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16266 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16267 			sd_send_request_sense_command(un, bp, pktp);
16268 		} else {
16269 			sd_return_failed_command(un, bp, EIO);
16270 		}
16271 		goto exit;
16272 	}
16273 
16274 	/*
16275 	 * The command did not successfully complete as requested so process
16276 	 * the error, retry, and/or attempt recovery.
16277 	 */
16278 	switch (pktp->pkt_reason) {
16279 	case CMD_CMPLT:
16280 		switch (SD_GET_PKT_STATUS(pktp)) {
16281 		case STATUS_GOOD:
16282 			/*
16283 			 * The command completed successfully with a non-zero
16284 			 * residual
16285 			 */
16286 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16287 			    "sdintr: STATUS_GOOD \n");
16288 			sd_pkt_status_good(un, bp, xp, pktp);
16289 			break;
16290 
16291 		case STATUS_CHECK:
16292 		case STATUS_TERMINATED:
16293 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16294 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16295 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16296 			break;
16297 
16298 		case STATUS_BUSY:
16299 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16300 			    "sdintr: STATUS_BUSY\n");
16301 			sd_pkt_status_busy(un, bp, xp, pktp);
16302 			break;
16303 
16304 		case STATUS_RESERVATION_CONFLICT:
16305 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16306 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16307 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16308 			break;
16309 
16310 		case STATUS_QFULL:
16311 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16312 			    "sdintr: STATUS_QFULL\n");
16313 			sd_pkt_status_qfull(un, bp, xp, pktp);
16314 			break;
16315 
16316 		case STATUS_MET:
16317 		case STATUS_INTERMEDIATE:
16318 		case STATUS_SCSI2:
16319 		case STATUS_INTERMEDIATE_MET:
16320 		case STATUS_ACA_ACTIVE:
16321 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16322 			    "Unexpected SCSI status received: 0x%x\n",
16323 			    SD_GET_PKT_STATUS(pktp));
16324 			sd_return_failed_command(un, bp, EIO);
16325 			break;
16326 
16327 		default:
16328 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16329 			    "Invalid SCSI status received: 0x%x\n",
16330 			    SD_GET_PKT_STATUS(pktp));
16331 			sd_return_failed_command(un, bp, EIO);
16332 			break;
16333 
16334 		}
16335 		break;
16336 
16337 	case CMD_INCOMPLETE:
16338 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16339 		    "sdintr:  CMD_INCOMPLETE\n");
16340 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16341 		break;
16342 	case CMD_TRAN_ERR:
16343 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16344 		    "sdintr: CMD_TRAN_ERR\n");
16345 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16346 		break;
16347 	case CMD_RESET:
16348 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16349 		    "sdintr: CMD_RESET \n");
16350 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16351 		break;
16352 	case CMD_ABORTED:
16353 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16354 		    "sdintr: CMD_ABORTED \n");
16355 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16356 		break;
16357 	case CMD_TIMEOUT:
16358 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16359 		    "sdintr: CMD_TIMEOUT\n");
16360 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16361 		break;
16362 	case CMD_UNX_BUS_FREE:
16363 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16364 		    "sdintr: CMD_UNX_BUS_FREE \n");
16365 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16366 		break;
16367 	case CMD_TAG_REJECT:
16368 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16369 		    "sdintr: CMD_TAG_REJECT\n");
16370 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16371 		break;
16372 	default:
16373 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16374 		    "sdintr: default\n");
16375 		sd_pkt_reason_default(un, bp, xp, pktp);
16376 		break;
16377 	}
16378 
16379 exit:
16380 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16381 
16382 	/* Decrement counter to indicate that the callback routine is done. */
16383 	un->un_in_callback--;
16384 	ASSERT(un->un_in_callback >= 0);
16385 
16386 	/*
16387 	 * At this point, the pkt has been dispatched, ie, it is either
16388 	 * being re-tried or has been returned to its caller and should
16389 	 * not be referenced.
16390 	 */
16391 
16392 	mutex_exit(SD_MUTEX(un));
16393 }
16394 
16395 
16396 /*
16397  *    Function: sd_print_incomplete_msg
16398  *
16399  * Description: Prints the error message for a CMD_INCOMPLETE error.
16400  *
16401  *   Arguments: un - ptr to associated softstate for the device.
16402  *		bp - ptr to the buf(9S) for the command.
16403  *		arg - message string ptr
16404  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16405  *			or SD_NO_RETRY_ISSUED.
16406  *
16407  *     Context: May be called under interrupt context
16408  */
16409 
16410 static void
16411 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16412 {
16413 	struct scsi_pkt	*pktp;
16414 	char	*msgp;
16415 	char	*cmdp = arg;
16416 
16417 	ASSERT(un != NULL);
16418 	ASSERT(mutex_owned(SD_MUTEX(un)));
16419 	ASSERT(bp != NULL);
16420 	ASSERT(arg != NULL);
16421 	pktp = SD_GET_PKTP(bp);
16422 	ASSERT(pktp != NULL);
16423 
16424 	switch (code) {
16425 	case SD_DELAYED_RETRY_ISSUED:
16426 	case SD_IMMEDIATE_RETRY_ISSUED:
16427 		msgp = "retrying";
16428 		break;
16429 	case SD_NO_RETRY_ISSUED:
16430 	default:
16431 		msgp = "giving up";
16432 		break;
16433 	}
16434 
16435 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16436 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16437 		    "incomplete %s- %s\n", cmdp, msgp);
16438 	}
16439 }
16440 
16441 
16442 
16443 /*
16444  *    Function: sd_pkt_status_good
16445  *
16446  * Description: Processing for a STATUS_GOOD code in pkt_status.
16447  *
16448  *     Context: May be called under interrupt context
16449  */
16450 
16451 static void
16452 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16453 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16454 {
16455 	char	*cmdp;
16456 
16457 	ASSERT(un != NULL);
16458 	ASSERT(mutex_owned(SD_MUTEX(un)));
16459 	ASSERT(bp != NULL);
16460 	ASSERT(xp != NULL);
16461 	ASSERT(pktp != NULL);
16462 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16463 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16464 	ASSERT(pktp->pkt_resid != 0);
16465 
16466 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16467 
16468 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16469 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16470 	case SCMD_READ:
16471 		cmdp = "read";
16472 		break;
16473 	case SCMD_WRITE:
16474 		cmdp = "write";
16475 		break;
16476 	default:
16477 		SD_UPDATE_B_RESID(bp, pktp);
16478 		sd_return_command(un, bp);
16479 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16480 		return;
16481 	}
16482 
16483 	/*
16484 	 * See if we can retry the read/write, preferrably immediately.
16485 	 * If retries are exhaused, then sd_retry_command() will update
16486 	 * the b_resid count.
16487 	 */
16488 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16489 	    cmdp, EIO, (clock_t)0, NULL);
16490 
16491 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16492 }
16493 
16494 
16495 
16496 
16497 
16498 /*
16499  *    Function: sd_handle_request_sense
16500  *
16501  * Description: Processing for non-auto Request Sense command.
16502  *
16503  *   Arguments: un - ptr to associated softstate
16504  *		sense_bp - ptr to buf(9S) for the RQS command
16505  *		sense_xp - ptr to the sd_xbuf for the RQS command
16506  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16507  *
16508  *     Context: May be called under interrupt context
16509  */
16510 
16511 static void
16512 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16513 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16514 {
16515 	struct buf	*cmd_bp;	/* buf for the original command */
16516 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16517 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16518 
16519 	ASSERT(un != NULL);
16520 	ASSERT(mutex_owned(SD_MUTEX(un)));
16521 	ASSERT(sense_bp != NULL);
16522 	ASSERT(sense_xp != NULL);
16523 	ASSERT(sense_pktp != NULL);
16524 
16525 	/*
16526 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16527 	 * RQS command and not the original command.
16528 	 */
16529 	ASSERT(sense_pktp == un->un_rqs_pktp);
16530 	ASSERT(sense_bp   == un->un_rqs_bp);
16531 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16532 	    (FLAG_SENSING | FLAG_HEAD));
16533 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16534 	    FLAG_SENSING) == FLAG_SENSING);
16535 
16536 	/* These are the bp, xp, and pktp for the original command */
16537 	cmd_bp = sense_xp->xb_sense_bp;
16538 	cmd_xp = SD_GET_XBUF(cmd_bp);
16539 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16540 
16541 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16542 		/*
16543 		 * The REQUEST SENSE command failed.  Release the REQUEST
16544 		 * SENSE command for re-use, get back the bp for the original
16545 		 * command, and attempt to re-try the original command if
16546 		 * FLAG_DIAGNOSE is not set in the original packet.
16547 		 */
16548 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16549 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16550 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16551 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16552 			    NULL, NULL, EIO, (clock_t)0, NULL);
16553 			return;
16554 		}
16555 	}
16556 
16557 	/*
16558 	 * Save the relevant sense info into the xp for the original cmd.
16559 	 *
16560 	 * Note: if the request sense failed the state info will be zero
16561 	 * as set in sd_mark_rqs_busy()
16562 	 */
16563 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16564 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16565 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
16566 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
16567 
16568 	/*
16569 	 *  Free up the RQS command....
16570 	 *  NOTE:
16571 	 *	Must do this BEFORE calling sd_validate_sense_data!
16572 	 *	sd_validate_sense_data may return the original command in
16573 	 *	which case the pkt will be freed and the flags can no
16574 	 *	longer be touched.
16575 	 *	SD_MUTEX is held through this process until the command
16576 	 *	is dispatched based upon the sense data, so there are
16577 	 *	no race conditions.
16578 	 */
16579 	(void) sd_mark_rqs_idle(un, sense_xp);
16580 
16581 	/*
16582 	 * For a retryable command see if we have valid sense data, if so then
16583 	 * turn it over to sd_decode_sense() to figure out the right course of
16584 	 * action. Just fail a non-retryable command.
16585 	 */
16586 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16587 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
16588 		    SD_SENSE_DATA_IS_VALID) {
16589 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16590 		}
16591 	} else {
16592 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16593 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16594 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16595 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16596 		sd_return_failed_command(un, cmd_bp, EIO);
16597 	}
16598 }
16599 
16600 
16601 
16602 
16603 /*
16604  *    Function: sd_handle_auto_request_sense
16605  *
16606  * Description: Processing for auto-request sense information.
16607  *
16608  *   Arguments: un - ptr to associated softstate
16609  *		bp - ptr to buf(9S) for the command
16610  *		xp - ptr to the sd_xbuf for the command
16611  *		pktp - ptr to the scsi_pkt(9S) for the command
16612  *
16613  *     Context: May be called under interrupt context
16614  */
16615 
16616 static void
16617 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16618 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16619 {
16620 	struct scsi_arq_status *asp;
16621 
16622 	ASSERT(un != NULL);
16623 	ASSERT(mutex_owned(SD_MUTEX(un)));
16624 	ASSERT(bp != NULL);
16625 	ASSERT(xp != NULL);
16626 	ASSERT(pktp != NULL);
16627 	ASSERT(pktp != un->un_rqs_pktp);
16628 	ASSERT(bp   != un->un_rqs_bp);
16629 
16630 	/*
16631 	 * For auto-request sense, we get a scsi_arq_status back from
16632 	 * the HBA, with the sense data in the sts_sensedata member.
16633 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16634 	 */
16635 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16636 
16637 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16638 		/*
16639 		 * The auto REQUEST SENSE failed; see if we can re-try
16640 		 * the original command.
16641 		 */
16642 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16643 		    "auto request sense failed (reason=%s)\n",
16644 		    scsi_rname(asp->sts_rqpkt_reason));
16645 
16646 		sd_reset_target(un, pktp);
16647 
16648 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16649 		    NULL, NULL, EIO, (clock_t)0, NULL);
16650 		return;
16651 	}
16652 
16653 	/* Save the relevant sense info into the xp for the original cmd. */
16654 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16655 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16656 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16657 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16658 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
16659 
16660 	/*
16661 	 * See if we have valid sense data, if so then turn it over to
16662 	 * sd_decode_sense() to figure out the right course of action.
16663 	 */
16664 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
16665 		sd_decode_sense(un, bp, xp, pktp);
16666 	}
16667 }
16668 
16669 
16670 /*
16671  *    Function: sd_print_sense_failed_msg
16672  *
16673  * Description: Print log message when RQS has failed.
16674  *
16675  *   Arguments: un - ptr to associated softstate
16676  *		bp - ptr to buf(9S) for the command
16677  *		arg - generic message string ptr
16678  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16679  *			or SD_NO_RETRY_ISSUED
16680  *
16681  *     Context: May be called from interrupt context
16682  */
16683 
16684 static void
16685 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16686 	int code)
16687 {
16688 	char	*msgp = arg;
16689 
16690 	ASSERT(un != NULL);
16691 	ASSERT(mutex_owned(SD_MUTEX(un)));
16692 	ASSERT(bp != NULL);
16693 
16694 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16695 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16696 	}
16697 }
16698 
16699 
16700 /*
16701  *    Function: sd_validate_sense_data
16702  *
16703  * Description: Check the given sense data for validity.
16704  *		If the sense data is not valid, the command will
16705  *		be either failed or retried!
16706  *
16707  * Return Code: SD_SENSE_DATA_IS_INVALID
16708  *		SD_SENSE_DATA_IS_VALID
16709  *
16710  *     Context: May be called from interrupt context
16711  */
16712 
16713 static int
16714 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
16715 {
16716 	struct scsi_extended_sense *esp;
16717 	struct	scsi_pkt *pktp;
16718 	size_t	actual_len;
16719 	char	*msgp = NULL;
16720 
16721 	ASSERT(un != NULL);
16722 	ASSERT(mutex_owned(SD_MUTEX(un)));
16723 	ASSERT(bp != NULL);
16724 	ASSERT(bp != un->un_rqs_bp);
16725 	ASSERT(xp != NULL);
16726 
16727 	pktp = SD_GET_PKTP(bp);
16728 	ASSERT(pktp != NULL);
16729 
16730 	/*
16731 	 * Check the status of the RQS command (auto or manual).
16732 	 */
16733 	switch (xp->xb_sense_status & STATUS_MASK) {
16734 	case STATUS_GOOD:
16735 		break;
16736 
16737 	case STATUS_RESERVATION_CONFLICT:
16738 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16739 		return (SD_SENSE_DATA_IS_INVALID);
16740 
16741 	case STATUS_BUSY:
16742 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16743 		    "Busy Status on REQUEST SENSE\n");
16744 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16745 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16746 		return (SD_SENSE_DATA_IS_INVALID);
16747 
16748 	case STATUS_QFULL:
16749 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16750 		    "QFULL Status on REQUEST SENSE\n");
16751 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16752 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16753 		return (SD_SENSE_DATA_IS_INVALID);
16754 
16755 	case STATUS_CHECK:
16756 	case STATUS_TERMINATED:
16757 		msgp = "Check Condition on REQUEST SENSE\n";
16758 		goto sense_failed;
16759 
16760 	default:
16761 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16762 		goto sense_failed;
16763 	}
16764 
16765 	/*
16766 	 * See if we got the minimum required amount of sense data.
16767 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16768 	 * or less.
16769 	 */
16770 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
16771 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16772 	    (actual_len == 0)) {
16773 		msgp = "Request Sense couldn't get sense data\n";
16774 		goto sense_failed;
16775 	}
16776 
16777 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16778 		msgp = "Not enough sense information\n";
16779 		goto sense_failed;
16780 	}
16781 
16782 	/*
16783 	 * We require the extended sense data
16784 	 */
16785 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16786 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16787 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16788 			static char tmp[8];
16789 			static char buf[148];
16790 			char *p = (char *)(xp->xb_sense_data);
16791 			int i;
16792 
16793 			mutex_enter(&sd_sense_mutex);
16794 			(void) strcpy(buf, "undecodable sense information:");
16795 			for (i = 0; i < actual_len; i++) {
16796 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16797 				(void) strcpy(&buf[strlen(buf)], tmp);
16798 			}
16799 			i = strlen(buf);
16800 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16801 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16802 			mutex_exit(&sd_sense_mutex);
16803 		}
16804 		/* Note: Legacy behavior, fail the command with no retry */
16805 		sd_return_failed_command(un, bp, EIO);
16806 		return (SD_SENSE_DATA_IS_INVALID);
16807 	}
16808 
16809 	/*
16810 	 * Check that es_code is valid (es_class concatenated with es_code
16811 	 * make up the "response code" field.  es_class will always be 7, so
16812 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16813 	 * format.
16814 	 */
16815 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16816 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16817 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16818 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16819 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16820 		goto sense_failed;
16821 	}
16822 
16823 	return (SD_SENSE_DATA_IS_VALID);
16824 
16825 sense_failed:
16826 	/*
16827 	 * If the request sense failed (for whatever reason), attempt
16828 	 * to retry the original command.
16829 	 */
16830 #if defined(__i386) || defined(__amd64)
16831 	/*
16832 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16833 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16834 	 * for both SCSI/FC.
16835 	 * The SD_RETRY_DELAY value need to be adjusted here
16836 	 * when SD_RETRY_DELAY change in sddef.h
16837 	 */
16838 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16839 	    sd_print_sense_failed_msg, msgp, EIO,
16840 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16841 #else
16842 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16843 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16844 #endif
16845 
16846 	return (SD_SENSE_DATA_IS_INVALID);
16847 }
16848 
16849 
16850 
16851 /*
16852  *    Function: sd_decode_sense
16853  *
16854  * Description: Take recovery action(s) when SCSI Sense Data is received.
16855  *
16856  *     Context: Interrupt context.
16857  */
16858 
16859 static void
16860 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16861 	struct scsi_pkt *pktp)
16862 {
16863 	struct scsi_extended_sense *esp;
16864 	struct scsi_descr_sense_hdr *sdsp;
16865 	uint8_t asc, ascq, sense_key;
16866 
16867 	ASSERT(un != NULL);
16868 	ASSERT(mutex_owned(SD_MUTEX(un)));
16869 	ASSERT(bp != NULL);
16870 	ASSERT(bp != un->un_rqs_bp);
16871 	ASSERT(xp != NULL);
16872 	ASSERT(pktp != NULL);
16873 
16874 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16875 
16876 	switch (esp->es_code) {
16877 	case CODE_FMT_DESCR_CURRENT:
16878 	case CODE_FMT_DESCR_DEFERRED:
16879 		sdsp = (struct scsi_descr_sense_hdr *)xp->xb_sense_data;
16880 		sense_key = sdsp->ds_key;
16881 		asc = sdsp->ds_add_code;
16882 		ascq = sdsp->ds_qual_code;
16883 		break;
16884 	case CODE_FMT_VENDOR_SPECIFIC:
16885 	case CODE_FMT_FIXED_CURRENT:
16886 	case CODE_FMT_FIXED_DEFERRED:
16887 	default:
16888 		sense_key = esp->es_key;
16889 		asc = esp->es_add_code;
16890 		ascq = esp->es_qual_code;
16891 		break;
16892 	}
16893 
16894 	switch (sense_key) {
16895 	case KEY_NO_SENSE:
16896 		sd_sense_key_no_sense(un, bp, xp, pktp);
16897 		break;
16898 	case KEY_RECOVERABLE_ERROR:
16899 		sd_sense_key_recoverable_error(un, asc, bp, xp, pktp);
16900 		break;
16901 	case KEY_NOT_READY:
16902 		sd_sense_key_not_ready(un, asc, ascq, bp, xp, pktp);
16903 		break;
16904 	case KEY_MEDIUM_ERROR:
16905 	case KEY_HARDWARE_ERROR:
16906 		sd_sense_key_medium_or_hardware_error(un,
16907 		    sense_key, asc, bp, xp, pktp);
16908 		break;
16909 	case KEY_ILLEGAL_REQUEST:
16910 		sd_sense_key_illegal_request(un, bp, xp, pktp);
16911 		break;
16912 	case KEY_UNIT_ATTENTION:
16913 		sd_sense_key_unit_attention(un, asc, bp, xp, pktp);
16914 		break;
16915 	case KEY_WRITE_PROTECT:
16916 	case KEY_VOLUME_OVERFLOW:
16917 	case KEY_MISCOMPARE:
16918 		sd_sense_key_fail_command(un, bp, xp, pktp);
16919 		break;
16920 	case KEY_BLANK_CHECK:
16921 		sd_sense_key_blank_check(un, bp, xp, pktp);
16922 		break;
16923 	case KEY_ABORTED_COMMAND:
16924 		sd_sense_key_aborted_command(un, bp, xp, pktp);
16925 		break;
16926 	case KEY_VENDOR_UNIQUE:
16927 	case KEY_COPY_ABORTED:
16928 	case KEY_EQUAL:
16929 	case KEY_RESERVED:
16930 	default:
16931 		sd_sense_key_default(un, sense_key, bp, xp, pktp);
16932 		break;
16933 	}
16934 }
16935 
16936 
16937 /*
16938  *    Function: sd_dump_memory
16939  *
16940  * Description: Debug logging routine to print the contents of a user provided
16941  *		buffer. The output of the buffer is broken up into 256 byte
16942  *		segments due to a size constraint of the scsi_log.
16943  *		implementation.
16944  *
16945  *   Arguments: un - ptr to softstate
16946  *		comp - component mask
16947  *		title - "title" string to preceed data when printed
16948  *		data - ptr to data block to be printed
16949  *		len - size of data block to be printed
16950  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
16951  *
16952  *     Context: May be called from interrupt context
16953  */
16954 
16955 #define	SD_DUMP_MEMORY_BUF_SIZE	256
16956 
16957 static char *sd_dump_format_string[] = {
16958 		" 0x%02x",
16959 		" %c"
16960 };
16961 
16962 static void
16963 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
16964     int len, int fmt)
16965 {
16966 	int	i, j;
16967 	int	avail_count;
16968 	int	start_offset;
16969 	int	end_offset;
16970 	size_t	entry_len;
16971 	char	*bufp;
16972 	char	*local_buf;
16973 	char	*format_string;
16974 
16975 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
16976 
16977 	/*
16978 	 * In the debug version of the driver, this function is called from a
16979 	 * number of places which are NOPs in the release driver.
16980 	 * The debug driver therefore has additional methods of filtering
16981 	 * debug output.
16982 	 */
16983 #ifdef SDDEBUG
16984 	/*
16985 	 * In the debug version of the driver we can reduce the amount of debug
16986 	 * messages by setting sd_error_level to something other than
16987 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
16988 	 * sd_component_mask.
16989 	 */
16990 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
16991 	    (sd_error_level != SCSI_ERR_ALL)) {
16992 		return;
16993 	}
16994 	if (((sd_component_mask & comp) == 0) ||
16995 	    (sd_error_level != SCSI_ERR_ALL)) {
16996 		return;
16997 	}
16998 #else
16999 	if (sd_error_level != SCSI_ERR_ALL) {
17000 		return;
17001 	}
17002 #endif
17003 
17004 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17005 	bufp = local_buf;
17006 	/*
17007 	 * Available length is the length of local_buf[], minus the
17008 	 * length of the title string, minus one for the ":", minus
17009 	 * one for the newline, minus one for the NULL terminator.
17010 	 * This gives the #bytes available for holding the printed
17011 	 * values from the given data buffer.
17012 	 */
17013 	if (fmt == SD_LOG_HEX) {
17014 		format_string = sd_dump_format_string[0];
17015 	} else /* SD_LOG_CHAR */ {
17016 		format_string = sd_dump_format_string[1];
17017 	}
17018 	/*
17019 	 * Available count is the number of elements from the given
17020 	 * data buffer that we can fit into the available length.
17021 	 * This is based upon the size of the format string used.
17022 	 * Make one entry and find it's size.
17023 	 */
17024 	(void) sprintf(bufp, format_string, data[0]);
17025 	entry_len = strlen(bufp);
17026 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17027 
17028 	j = 0;
17029 	while (j < len) {
17030 		bufp = local_buf;
17031 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17032 		start_offset = j;
17033 
17034 		end_offset = start_offset + avail_count;
17035 
17036 		(void) sprintf(bufp, "%s:", title);
17037 		bufp += strlen(bufp);
17038 		for (i = start_offset; ((i < end_offset) && (j < len));
17039 		    i++, j++) {
17040 			(void) sprintf(bufp, format_string, data[i]);
17041 			bufp += entry_len;
17042 		}
17043 		(void) sprintf(bufp, "\n");
17044 
17045 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17046 	}
17047 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17048 }
17049 
17050 /*
17051  *    Function: sd_print_sense_msg
17052  *
17053  * Description: Log a message based upon the given sense data.
17054  *
17055  *   Arguments: un - ptr to associated softstate
17056  *		bp - ptr to buf(9S) for the command
17057  *		arg - ptr to associate sd_sense_info struct
17058  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17059  *			or SD_NO_RETRY_ISSUED
17060  *
17061  *     Context: May be called from interrupt context
17062  */
17063 
17064 static void
17065 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17066 {
17067 	struct sd_xbuf	*xp;
17068 	struct scsi_pkt	*pktp;
17069 	struct scsi_extended_sense *sensep;
17070 	daddr_t request_blkno;
17071 	diskaddr_t err_blkno;
17072 	int severity;
17073 	int pfa_flag;
17074 	int fixed_format = TRUE;
17075 	extern struct scsi_key_strings scsi_cmds[];
17076 
17077 	ASSERT(un != NULL);
17078 	ASSERT(mutex_owned(SD_MUTEX(un)));
17079 	ASSERT(bp != NULL);
17080 	xp = SD_GET_XBUF(bp);
17081 	ASSERT(xp != NULL);
17082 	pktp = SD_GET_PKTP(bp);
17083 	ASSERT(pktp != NULL);
17084 	ASSERT(arg != NULL);
17085 
17086 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17087 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17088 
17089 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17090 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17091 		severity = SCSI_ERR_RETRYABLE;
17092 	}
17093 
17094 	/* Use absolute block number for the request block number */
17095 	request_blkno = xp->xb_blkno;
17096 
17097 	/*
17098 	 * Now try to get the error block number from the sense data
17099 	 */
17100 	sensep = (struct scsi_extended_sense *)xp->xb_sense_data;
17101 	switch (sensep->es_code) {
17102 	case CODE_FMT_DESCR_CURRENT:
17103 	case CODE_FMT_DESCR_DEFERRED:
17104 		err_blkno =
17105 		    sd_extract_sense_info_descr(
17106 			(struct scsi_descr_sense_hdr *)sensep);
17107 		fixed_format = FALSE;
17108 		break;
17109 	case CODE_FMT_FIXED_CURRENT:
17110 	case CODE_FMT_FIXED_DEFERRED:
17111 	case CODE_FMT_VENDOR_SPECIFIC:
17112 	default:
17113 		/*
17114 		 * With the es_valid bit set, we assume that the error
17115 		 * blkno is in the sense data.  Also, if xp->xb_blkno is
17116 		 * greater than 0xffffffff then the target *should* have used
17117 		 * a descriptor sense format (or it shouldn't have set
17118 		 * the es_valid bit), and we may as well ignore the
17119 		 * 32-bit value.
17120 		 */
17121 		if ((sensep->es_valid != 0) && (xp->xb_blkno <= 0xffffffff)) {
17122 			err_blkno = (diskaddr_t)
17123 			    ((sensep->es_info_1 << 24) |
17124 			    (sensep->es_info_2 << 16) |
17125 			    (sensep->es_info_3 << 8)  |
17126 			    (sensep->es_info_4));
17127 		} else {
17128 			err_blkno = (diskaddr_t)-1;
17129 		}
17130 		break;
17131 	}
17132 
17133 	if (err_blkno == (diskaddr_t)-1) {
17134 		/*
17135 		 * Without the es_valid bit set (for fixed format) or an
17136 		 * information descriptor (for descriptor format) we cannot
17137 		 * be certain of the error blkno, so just use the
17138 		 * request_blkno.
17139 		 */
17140 		err_blkno = (diskaddr_t)request_blkno;
17141 	} else {
17142 		/*
17143 		 * We retrieved the error block number from the information
17144 		 * portion of the sense data.
17145 		 *
17146 		 * For USCSI commands we are better off using the error
17147 		 * block no. as the requested block no. (This is the best
17148 		 * we can estimate.)
17149 		 */
17150 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17151 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17152 			request_blkno = err_blkno;
17153 		}
17154 	}
17155 
17156 	/*
17157 	 * The following will log the buffer contents for the release driver
17158 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17159 	 * level is set to verbose.
17160 	 */
17161 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17162 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17163 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17164 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17165 
17166 	if (pfa_flag == FALSE) {
17167 		/* This is normally only set for USCSI */
17168 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17169 			return;
17170 		}
17171 
17172 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17173 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17174 		    (severity < sd_error_level))) {
17175 			return;
17176 		}
17177 	}
17178 
17179 	/*
17180 	 * If the data is fixed format then check for Sonoma Failover,
17181 	 * and keep a count of how many failed I/O's.  We should not have
17182 	 * to worry about Sonoma returning descriptor format sense data,
17183 	 * and asc/ascq are in a different location in descriptor format.
17184 	 */
17185 	if (fixed_format &&
17186 	    (SD_IS_LSI(un)) && (sensep->es_key == KEY_ILLEGAL_REQUEST) &&
17187 	    (sensep->es_add_code == 0x94) && (sensep->es_qual_code == 0x01)) {
17188 		un->un_sonoma_failure_count++;
17189 		if (un->un_sonoma_failure_count > 1) {
17190 			return;
17191 		}
17192 	}
17193 
17194 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17195 	    request_blkno, err_blkno, scsi_cmds, sensep,
17196 	    un->un_additional_codes, NULL);
17197 }
17198 
17199 /*
17200  *    Function: sd_extract_sense_info_descr
17201  *
17202  * Description: Retrieve "information" field from descriptor format
17203  *              sense data.  Iterates through each sense descriptor
17204  *              looking for the information descriptor and returns
17205  *              the information field from that descriptor.
17206  *
17207  *     Context: May be called from interrupt context
17208  */
17209 
17210 static diskaddr_t
17211 sd_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp)
17212 {
17213 	diskaddr_t result;
17214 	uint8_t *descr_offset;
17215 	int valid_sense_length;
17216 	struct scsi_information_sense_descr *isd;
17217 
17218 	/*
17219 	 * Initialize result to -1 indicating there is no information
17220 	 * descriptor
17221 	 */
17222 	result = (diskaddr_t)-1;
17223 
17224 	/*
17225 	 * The first descriptor will immediately follow the header
17226 	 */
17227 	descr_offset = (uint8_t *)(sdsp+1); /* Pointer arithmetic */
17228 
17229 	/*
17230 	 * Calculate the amount of valid sense data
17231 	 */
17232 	valid_sense_length =
17233 	    min((sizeof (struct scsi_descr_sense_hdr) +
17234 	    sdsp->ds_addl_sense_length),
17235 	    SENSE_LENGTH);
17236 
17237 	/*
17238 	 * Iterate through the list of descriptors, stopping when we
17239 	 * run out of sense data
17240 	 */
17241 	while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <=
17242 	    (uint8_t *)sdsp + valid_sense_length) {
17243 		/*
17244 		 * Check if this is an information descriptor.  We can
17245 		 * use the scsi_information_sense_descr structure as a
17246 		 * template sense the first two fields are always the
17247 		 * same
17248 		 */
17249 		isd = (struct scsi_information_sense_descr *)descr_offset;
17250 		if (isd->isd_descr_type == DESCR_INFORMATION) {
17251 			/*
17252 			 * Found an information descriptor.  Copy the
17253 			 * information field.  There will only be one
17254 			 * information descriptor so we can stop looking.
17255 			 */
17256 			result =
17257 			    (((diskaddr_t)isd->isd_information[0] << 56) |
17258 				((diskaddr_t)isd->isd_information[1] << 48) |
17259 				((diskaddr_t)isd->isd_information[2] << 40) |
17260 				((diskaddr_t)isd->isd_information[3] << 32) |
17261 				((diskaddr_t)isd->isd_information[4] << 24) |
17262 				((diskaddr_t)isd->isd_information[5] << 16) |
17263 				((diskaddr_t)isd->isd_information[6] << 8)  |
17264 				((diskaddr_t)isd->isd_information[7]));
17265 			break;
17266 		}
17267 
17268 		/*
17269 		 * Get pointer to the next descriptor.  The "additional
17270 		 * length" field holds the length of the descriptor except
17271 		 * for the "type" and "additional length" fields, so
17272 		 * we need to add 2 to get the total length.
17273 		 */
17274 		descr_offset += (isd->isd_addl_length + 2);
17275 	}
17276 
17277 	return (result);
17278 }
17279 
17280 /*
17281  *    Function: sd_sense_key_no_sense
17282  *
17283  * Description: Recovery action when sense data was not received.
17284  *
17285  *     Context: May be called from interrupt context
17286  */
17287 
17288 static void
17289 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17290 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17291 {
17292 	struct sd_sense_info	si;
17293 
17294 	ASSERT(un != NULL);
17295 	ASSERT(mutex_owned(SD_MUTEX(un)));
17296 	ASSERT(bp != NULL);
17297 	ASSERT(xp != NULL);
17298 	ASSERT(pktp != NULL);
17299 
17300 	si.ssi_severity = SCSI_ERR_FATAL;
17301 	si.ssi_pfa_flag = FALSE;
17302 
17303 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17304 
17305 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17306 		&si, EIO, (clock_t)0, NULL);
17307 }
17308 
17309 
17310 /*
17311  *    Function: sd_sense_key_recoverable_error
17312  *
17313  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17314  *
17315  *     Context: May be called from interrupt context
17316  */
17317 
17318 static void
17319 sd_sense_key_recoverable_error(struct sd_lun *un,
17320 	uint8_t asc,
17321 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17322 {
17323 	struct sd_sense_info	si;
17324 
17325 	ASSERT(un != NULL);
17326 	ASSERT(mutex_owned(SD_MUTEX(un)));
17327 	ASSERT(bp != NULL);
17328 	ASSERT(xp != NULL);
17329 	ASSERT(pktp != NULL);
17330 
17331 	/*
17332 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17333 	 */
17334 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17335 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17336 		si.ssi_severity = SCSI_ERR_INFO;
17337 		si.ssi_pfa_flag = TRUE;
17338 	} else {
17339 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17340 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17341 		si.ssi_severity = SCSI_ERR_RECOVERED;
17342 		si.ssi_pfa_flag = FALSE;
17343 	}
17344 
17345 	if (pktp->pkt_resid == 0) {
17346 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17347 		sd_return_command(un, bp);
17348 		return;
17349 	}
17350 
17351 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17352 	    &si, EIO, (clock_t)0, NULL);
17353 }
17354 
17355 
17356 
17357 
17358 /*
17359  *    Function: sd_sense_key_not_ready
17360  *
17361  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17362  *
17363  *     Context: May be called from interrupt context
17364  */
17365 
17366 static void
17367 sd_sense_key_not_ready(struct sd_lun *un,
17368 	uint8_t asc, uint8_t ascq,
17369 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17370 {
17371 	struct sd_sense_info	si;
17372 
17373 	ASSERT(un != NULL);
17374 	ASSERT(mutex_owned(SD_MUTEX(un)));
17375 	ASSERT(bp != NULL);
17376 	ASSERT(xp != NULL);
17377 	ASSERT(pktp != NULL);
17378 
17379 	si.ssi_severity = SCSI_ERR_FATAL;
17380 	si.ssi_pfa_flag = FALSE;
17381 
17382 	/*
17383 	 * Update error stats after first NOT READY error. Disks may have
17384 	 * been powered down and may need to be restarted.  For CDROMs,
17385 	 * report NOT READY errors only if media is present.
17386 	 */
17387 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17388 	    (xp->xb_retry_count > 0)) {
17389 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17390 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17391 	}
17392 
17393 	/*
17394 	 * Just fail if the "not ready" retry limit has been reached.
17395 	 */
17396 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17397 		/* Special check for error message printing for removables. */
17398 		if ((ISREMOVABLE(un)) && (asc == 0x04) &&
17399 		    (ascq >= 0x04)) {
17400 			si.ssi_severity = SCSI_ERR_ALL;
17401 		}
17402 		goto fail_command;
17403 	}
17404 
17405 	/*
17406 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17407 	 * what to do.
17408 	 */
17409 	switch (asc) {
17410 	case 0x04:	/* LOGICAL UNIT NOT READY */
17411 		/*
17412 		 * disk drives that don't spin up result in a very long delay
17413 		 * in format without warning messages. We will log a message
17414 		 * if the error level is set to verbose.
17415 		 */
17416 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17417 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17418 			    "logical unit not ready, resetting disk\n");
17419 		}
17420 
17421 		/*
17422 		 * There are different requirements for CDROMs and disks for
17423 		 * the number of retries.  If a CD-ROM is giving this, it is
17424 		 * probably reading TOC and is in the process of getting
17425 		 * ready, so we should keep on trying for a long time to make
17426 		 * sure that all types of media are taken in account (for
17427 		 * some media the drive takes a long time to read TOC).  For
17428 		 * disks we do not want to retry this too many times as this
17429 		 * can cause a long hang in format when the drive refuses to
17430 		 * spin up (a very common failure).
17431 		 */
17432 		switch (ascq) {
17433 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17434 			/*
17435 			 * Disk drives frequently refuse to spin up which
17436 			 * results in a very long hang in format without
17437 			 * warning messages.
17438 			 *
17439 			 * Note: This code preserves the legacy behavior of
17440 			 * comparing xb_retry_count against zero for fibre
17441 			 * channel targets instead of comparing against the
17442 			 * un_reset_retry_count value.  The reason for this
17443 			 * discrepancy has been so utterly lost beneath the
17444 			 * Sands of Time that even Indiana Jones could not
17445 			 * find it.
17446 			 */
17447 			if (un->un_f_is_fibre == TRUE) {
17448 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17449 					(xp->xb_retry_count > 0)) &&
17450 					(un->un_startstop_timeid == NULL)) {
17451 					scsi_log(SD_DEVINFO(un), sd_label,
17452 					CE_WARN, "logical unit not ready, "
17453 					"resetting disk\n");
17454 					sd_reset_target(un, pktp);
17455 				}
17456 			} else {
17457 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17458 					(xp->xb_retry_count >
17459 					un->un_reset_retry_count)) &&
17460 					(un->un_startstop_timeid == NULL)) {
17461 					scsi_log(SD_DEVINFO(un), sd_label,
17462 					CE_WARN, "logical unit not ready, "
17463 					"resetting disk\n");
17464 					sd_reset_target(un, pktp);
17465 				}
17466 			}
17467 			break;
17468 
17469 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17470 			/*
17471 			 * If the target is in the process of becoming
17472 			 * ready, just proceed with the retry. This can
17473 			 * happen with CD-ROMs that take a long time to
17474 			 * read TOC after a power cycle or reset.
17475 			 */
17476 			goto do_retry;
17477 
17478 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17479 			break;
17480 
17481 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17482 			/*
17483 			 * Retries cannot help here so just fail right away.
17484 			 */
17485 			goto fail_command;
17486 
17487 		case 0x88:
17488 			/*
17489 			 * Vendor-unique code for T3/T4: it indicates a
17490 			 * path problem in a mutipathed config, but as far as
17491 			 * the target driver is concerned it equates to a fatal
17492 			 * error, so we should just fail the command right away
17493 			 * (without printing anything to the console). If this
17494 			 * is not a T3/T4, fall thru to the default recovery
17495 			 * action.
17496 			 * T3/T4 is FC only, don't need to check is_fibre
17497 			 */
17498 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17499 				sd_return_failed_command(un, bp, EIO);
17500 				return;
17501 			}
17502 			/* FALLTHRU */
17503 
17504 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17505 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17506 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17507 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17508 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17509 		default:    /* Possible future codes in SCSI spec? */
17510 			/*
17511 			 * For removable-media devices, do not retry if
17512 			 * ASCQ > 2 as these result mostly from USCSI commands
17513 			 * on MMC devices issued to check status of an
17514 			 * operation initiated in immediate mode.  Also for
17515 			 * ASCQ >= 4 do not print console messages as these
17516 			 * mainly represent a user-initiated operation
17517 			 * instead of a system failure.
17518 			 */
17519 			if (ISREMOVABLE(un)) {
17520 				si.ssi_severity = SCSI_ERR_ALL;
17521 				goto fail_command;
17522 			}
17523 			break;
17524 		}
17525 
17526 		/*
17527 		 * As part of our recovery attempt for the NOT READY
17528 		 * condition, we issue a START STOP UNIT command. However
17529 		 * we want to wait for a short delay before attempting this
17530 		 * as there may still be more commands coming back from the
17531 		 * target with the check condition. To do this we use
17532 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17533 		 * the delay interval expires. (sd_start_stop_unit_callback()
17534 		 * dispatches sd_start_stop_unit_task(), which will issue
17535 		 * the actual START STOP UNIT command. The delay interval
17536 		 * is one-half of the delay that we will use to retry the
17537 		 * command that generated the NOT READY condition.
17538 		 *
17539 		 * Note that we could just dispatch sd_start_stop_unit_task()
17540 		 * from here and allow it to sleep for the delay interval,
17541 		 * but then we would be tying up the taskq thread
17542 		 * uncesessarily for the duration of the delay.
17543 		 *
17544 		 * Do not issue the START STOP UNIT if the current command
17545 		 * is already a START STOP UNIT.
17546 		 */
17547 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17548 			break;
17549 		}
17550 
17551 		/*
17552 		 * Do not schedule the timeout if one is already pending.
17553 		 */
17554 		if (un->un_startstop_timeid != NULL) {
17555 			SD_INFO(SD_LOG_ERROR, un,
17556 			    "sd_sense_key_not_ready: restart already issued to"
17557 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17558 			    ddi_get_instance(SD_DEVINFO(un)));
17559 			break;
17560 		}
17561 
17562 		/*
17563 		 * Schedule the START STOP UNIT command, then queue the command
17564 		 * for a retry.
17565 		 *
17566 		 * Note: A timeout is not scheduled for this retry because we
17567 		 * want the retry to be serial with the START_STOP_UNIT. The
17568 		 * retry will be started when the START_STOP_UNIT is completed
17569 		 * in sd_start_stop_unit_task.
17570 		 */
17571 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17572 		    un, SD_BSY_TIMEOUT / 2);
17573 		xp->xb_retry_count++;
17574 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17575 		return;
17576 
17577 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17578 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17579 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17580 			    "unit does not respond to selection\n");
17581 		}
17582 		break;
17583 
17584 	case 0x3A:	/* MEDIUM NOT PRESENT */
17585 		if (sd_error_level >= SCSI_ERR_FATAL) {
17586 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17587 			    "Caddy not inserted in drive\n");
17588 		}
17589 
17590 		sr_ejected(un);
17591 		un->un_mediastate = DKIO_EJECTED;
17592 		/* The state has changed, inform the media watch routines */
17593 		cv_broadcast(&un->un_state_cv);
17594 		/* Just fail if no media is present in the drive. */
17595 		goto fail_command;
17596 
17597 	default:
17598 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17599 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17600 			    "Unit not Ready. Additional sense code 0x%x\n",
17601 			    asc);
17602 		}
17603 		break;
17604 	}
17605 
17606 do_retry:
17607 
17608 	/*
17609 	 * Retry the command, as some targets may report NOT READY for
17610 	 * several seconds after being reset.
17611 	 */
17612 	xp->xb_retry_count++;
17613 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17614 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17615 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
17616 
17617 	return;
17618 
17619 fail_command:
17620 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17621 	sd_return_failed_command(un, bp, EIO);
17622 }
17623 
17624 
17625 
17626 /*
17627  *    Function: sd_sense_key_medium_or_hardware_error
17628  *
17629  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17630  *		sense key.
17631  *
17632  *     Context: May be called from interrupt context
17633  */
17634 
17635 static void
17636 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17637 	int sense_key, uint8_t asc,
17638 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17639 {
17640 	struct sd_sense_info	si;
17641 
17642 	ASSERT(un != NULL);
17643 	ASSERT(mutex_owned(SD_MUTEX(un)));
17644 	ASSERT(bp != NULL);
17645 	ASSERT(xp != NULL);
17646 	ASSERT(pktp != NULL);
17647 
17648 	si.ssi_severity = SCSI_ERR_FATAL;
17649 	si.ssi_pfa_flag = FALSE;
17650 
17651 	if (sense_key == KEY_MEDIUM_ERROR) {
17652 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17653 	}
17654 
17655 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17656 
17657 	if ((un->un_reset_retry_count != 0) &&
17658 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17659 		mutex_exit(SD_MUTEX(un));
17660 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17661 		if (un->un_f_allow_bus_device_reset == TRUE) {
17662 
17663 			boolean_t try_resetting_target = B_TRUE;
17664 
17665 			/*
17666 			 * We need to be able to handle specific ASC when we are
17667 			 * handling a KEY_HARDWARE_ERROR. In particular
17668 			 * taking the default action of resetting the target may
17669 			 * not be the appropriate way to attempt recovery.
17670 			 * Resetting a target because of a single LUN failure
17671 			 * victimizes all LUNs on that target.
17672 			 *
17673 			 * This is true for the LSI arrays, if an LSI
17674 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17675 			 * should trust it.
17676 			 */
17677 
17678 			if (sense_key == KEY_HARDWARE_ERROR) {
17679 				switch (asc) {
17680 				case 0x84:
17681 					if (SD_IS_LSI(un)) {
17682 						try_resetting_target = B_FALSE;
17683 					}
17684 					break;
17685 				default:
17686 					break;
17687 				}
17688 			}
17689 
17690 			if (try_resetting_target == B_TRUE) {
17691 				int reset_retval = 0;
17692 				if (un->un_f_lun_reset_enabled == TRUE) {
17693 					SD_TRACE(SD_LOG_IO_CORE, un,
17694 					    "sd_sense_key_medium_or_hardware_"
17695 					    "error: issuing RESET_LUN\n");
17696 					reset_retval =
17697 					    scsi_reset(SD_ADDRESS(un),
17698 					    RESET_LUN);
17699 				}
17700 				if (reset_retval == 0) {
17701 					SD_TRACE(SD_LOG_IO_CORE, un,
17702 					    "sd_sense_key_medium_or_hardware_"
17703 					    "error: issuing RESET_TARGET\n");
17704 					(void) scsi_reset(SD_ADDRESS(un),
17705 					    RESET_TARGET);
17706 				}
17707 			}
17708 		}
17709 		mutex_enter(SD_MUTEX(un));
17710 	}
17711 
17712 	/*
17713 	 * This really ought to be a fatal error, but we will retry anyway
17714 	 * as some drives report this as a spurious error.
17715 	 */
17716 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17717 	    &si, EIO, (clock_t)0, NULL);
17718 }
17719 
17720 
17721 
17722 /*
17723  *    Function: sd_sense_key_illegal_request
17724  *
17725  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17726  *
17727  *     Context: May be called from interrupt context
17728  */
17729 
17730 static void
17731 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17732 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17733 {
17734 	struct sd_sense_info	si;
17735 
17736 	ASSERT(un != NULL);
17737 	ASSERT(mutex_owned(SD_MUTEX(un)));
17738 	ASSERT(bp != NULL);
17739 	ASSERT(xp != NULL);
17740 	ASSERT(pktp != NULL);
17741 
17742 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17743 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17744 
17745 	si.ssi_severity = SCSI_ERR_INFO;
17746 	si.ssi_pfa_flag = FALSE;
17747 
17748 	/* Pointless to retry if the target thinks it's an illegal request */
17749 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17750 	sd_return_failed_command(un, bp, EIO);
17751 }
17752 
17753 
17754 
17755 
17756 /*
17757  *    Function: sd_sense_key_unit_attention
17758  *
17759  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17760  *
17761  *     Context: May be called from interrupt context
17762  */
17763 
17764 static void
17765 sd_sense_key_unit_attention(struct sd_lun *un,
17766 	uint8_t asc,
17767 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17768 {
17769 	/*
17770 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17771 	 * like Sonoma can return UNIT ATTENTION close to a minute
17772 	 * under certain conditions.
17773 	 */
17774 	int	retry_check_flag = SD_RETRIES_UA;
17775 	struct	sd_sense_info		si;
17776 
17777 	ASSERT(un != NULL);
17778 	ASSERT(mutex_owned(SD_MUTEX(un)));
17779 	ASSERT(bp != NULL);
17780 	ASSERT(xp != NULL);
17781 	ASSERT(pktp != NULL);
17782 
17783 	si.ssi_severity = SCSI_ERR_INFO;
17784 	si.ssi_pfa_flag = FALSE;
17785 
17786 
17787 	switch (asc) {
17788 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17789 		if (sd_report_pfa != 0) {
17790 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17791 			si.ssi_pfa_flag = TRUE;
17792 			retry_check_flag = SD_RETRIES_STANDARD;
17793 			goto do_retry;
17794 		}
17795 		break;
17796 
17797 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17798 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17799 			un->un_resvd_status |=
17800 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17801 		}
17802 		/* FALLTHRU */
17803 
17804 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17805 		if (!ISREMOVABLE(un)) {
17806 			break;
17807 		}
17808 
17809 		/*
17810 		 * When we get a unit attention from a removable-media device,
17811 		 * it may be in a state that will take a long time to recover
17812 		 * (e.g., from a reset).  Since we are executing in interrupt
17813 		 * context here, we cannot wait around for the device to come
17814 		 * back. So hand this command off to sd_media_change_task()
17815 		 * for deferred processing under taskq thread context. (Note
17816 		 * that the command still may be failed if a problem is
17817 		 * encountered at a later time.)
17818 		 */
17819 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17820 		    KM_NOSLEEP) == 0) {
17821 			/*
17822 			 * Cannot dispatch the request so fail the command.
17823 			 */
17824 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17825 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17826 			si.ssi_severity = SCSI_ERR_FATAL;
17827 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17828 			sd_return_failed_command(un, bp, EIO);
17829 		}
17830 		/*
17831 		 * Either the command has been successfully dispatched to a
17832 		 * task Q for retrying, or the dispatch failed. In either case
17833 		 * do NOT retry again by calling sd_retry_command. This sets up
17834 		 * two retries of the same command and when one completes and
17835 		 * frees the resources the other will access freed memory,
17836 		 * a bad thing.
17837 		 */
17838 		return;
17839 
17840 	default:
17841 		break;
17842 	}
17843 
17844 	if (!ISREMOVABLE(un)) {
17845 		/*
17846 		 * Do not update these here for removables. For removables
17847 		 * these stats are updated (1) above if we failed to dispatch
17848 		 * sd_media_change_task(), or (2) sd_media_change_task() may
17849 		 * update these later if it encounters an error.
17850 		 */
17851 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17852 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17853 	}
17854 
17855 do_retry:
17856 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17857 	    EIO, SD_UA_RETRY_DELAY, NULL);
17858 }
17859 
17860 
17861 
17862 /*
17863  *    Function: sd_sense_key_fail_command
17864  *
17865  * Description: Use to fail a command when we don't like the sense key that
17866  *		was returned.
17867  *
17868  *     Context: May be called from interrupt context
17869  */
17870 
17871 static void
17872 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17873 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17874 {
17875 	struct sd_sense_info	si;
17876 
17877 	ASSERT(un != NULL);
17878 	ASSERT(mutex_owned(SD_MUTEX(un)));
17879 	ASSERT(bp != NULL);
17880 	ASSERT(xp != NULL);
17881 	ASSERT(pktp != NULL);
17882 
17883 	si.ssi_severity = SCSI_ERR_FATAL;
17884 	si.ssi_pfa_flag = FALSE;
17885 
17886 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17887 	sd_return_failed_command(un, bp, EIO);
17888 }
17889 
17890 
17891 
17892 /*
17893  *    Function: sd_sense_key_blank_check
17894  *
17895  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17896  *		Has no monetary connotation.
17897  *
17898  *     Context: May be called from interrupt context
17899  */
17900 
17901 static void
17902 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17903 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17904 {
17905 	struct sd_sense_info	si;
17906 
17907 	ASSERT(un != NULL);
17908 	ASSERT(mutex_owned(SD_MUTEX(un)));
17909 	ASSERT(bp != NULL);
17910 	ASSERT(xp != NULL);
17911 	ASSERT(pktp != NULL);
17912 
17913 	/*
17914 	 * Blank check is not fatal for removable devices, therefore
17915 	 * it does not require a console message.
17916 	 */
17917 	si.ssi_severity = (ISREMOVABLE(un)) ? SCSI_ERR_ALL : SCSI_ERR_FATAL;
17918 	si.ssi_pfa_flag = FALSE;
17919 
17920 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17921 	sd_return_failed_command(un, bp, EIO);
17922 }
17923 
17924 
17925 
17926 
17927 /*
17928  *    Function: sd_sense_key_aborted_command
17929  *
17930  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
17931  *
17932  *     Context: May be called from interrupt context
17933  */
17934 
17935 static void
17936 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
17937 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17938 {
17939 	struct sd_sense_info	si;
17940 
17941 	ASSERT(un != NULL);
17942 	ASSERT(mutex_owned(SD_MUTEX(un)));
17943 	ASSERT(bp != NULL);
17944 	ASSERT(xp != NULL);
17945 	ASSERT(pktp != NULL);
17946 
17947 	si.ssi_severity = SCSI_ERR_FATAL;
17948 	si.ssi_pfa_flag = FALSE;
17949 
17950 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17951 
17952 	/*
17953 	 * This really ought to be a fatal error, but we will retry anyway
17954 	 * as some drives report this as a spurious error.
17955 	 */
17956 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17957 	    &si, EIO, (clock_t)0, NULL);
17958 }
17959 
17960 
17961 
17962 /*
17963  *    Function: sd_sense_key_default
17964  *
17965  * Description: Default recovery action for several SCSI sense keys (basically
17966  *		attempts a retry).
17967  *
17968  *     Context: May be called from interrupt context
17969  */
17970 
17971 static void
17972 sd_sense_key_default(struct sd_lun *un,
17973 	int sense_key,
17974 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17975 {
17976 	struct sd_sense_info	si;
17977 
17978 	ASSERT(un != NULL);
17979 	ASSERT(mutex_owned(SD_MUTEX(un)));
17980 	ASSERT(bp != NULL);
17981 	ASSERT(xp != NULL);
17982 	ASSERT(pktp != NULL);
17983 
17984 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17985 
17986 	/*
17987 	 * Undecoded sense key.	Attempt retries and hope that will fix
17988 	 * the problem.  Otherwise, we're dead.
17989 	 */
17990 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17991 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17992 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
17993 	}
17994 
17995 	si.ssi_severity = SCSI_ERR_FATAL;
17996 	si.ssi_pfa_flag = FALSE;
17997 
17998 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17999 	    &si, EIO, (clock_t)0, NULL);
18000 }
18001 
18002 
18003 
18004 /*
18005  *    Function: sd_print_retry_msg
18006  *
18007  * Description: Print a message indicating the retry action being taken.
18008  *
18009  *   Arguments: un - ptr to associated softstate
18010  *		bp - ptr to buf(9S) for the command
18011  *		arg - not used.
18012  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18013  *			or SD_NO_RETRY_ISSUED
18014  *
18015  *     Context: May be called from interrupt context
18016  */
18017 /* ARGSUSED */
18018 static void
18019 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18020 {
18021 	struct sd_xbuf	*xp;
18022 	struct scsi_pkt *pktp;
18023 	char *reasonp;
18024 	char *msgp;
18025 
18026 	ASSERT(un != NULL);
18027 	ASSERT(mutex_owned(SD_MUTEX(un)));
18028 	ASSERT(bp != NULL);
18029 	pktp = SD_GET_PKTP(bp);
18030 	ASSERT(pktp != NULL);
18031 	xp = SD_GET_XBUF(bp);
18032 	ASSERT(xp != NULL);
18033 
18034 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18035 	mutex_enter(&un->un_pm_mutex);
18036 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18037 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18038 	    (pktp->pkt_flags & FLAG_SILENT)) {
18039 		mutex_exit(&un->un_pm_mutex);
18040 		goto update_pkt_reason;
18041 	}
18042 	mutex_exit(&un->un_pm_mutex);
18043 
18044 	/*
18045 	 * Suppress messages if they are all the same pkt_reason; with
18046 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18047 	 * If we are in panic, then suppress the retry messages.
18048 	 */
18049 	switch (flag) {
18050 	case SD_NO_RETRY_ISSUED:
18051 		msgp = "giving up";
18052 		break;
18053 	case SD_IMMEDIATE_RETRY_ISSUED:
18054 	case SD_DELAYED_RETRY_ISSUED:
18055 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18056 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18057 		    (sd_error_level != SCSI_ERR_ALL))) {
18058 			return;
18059 		}
18060 		msgp = "retrying command";
18061 		break;
18062 	default:
18063 		goto update_pkt_reason;
18064 	}
18065 
18066 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18067 	    scsi_rname(pktp->pkt_reason));
18068 
18069 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18070 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18071 
18072 update_pkt_reason:
18073 	/*
18074 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18075 	 * This is to prevent multiple console messages for the same failure
18076 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18077 	 * when the command is retried successfully because there still may be
18078 	 * more commands coming back with the same value of pktp->pkt_reason.
18079 	 */
18080 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18081 		un->un_last_pkt_reason = pktp->pkt_reason;
18082 	}
18083 }
18084 
18085 
18086 /*
18087  *    Function: sd_print_cmd_incomplete_msg
18088  *
18089  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18090  *
18091  *   Arguments: un - ptr to associated softstate
18092  *		bp - ptr to buf(9S) for the command
18093  *		arg - passed to sd_print_retry_msg()
18094  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18095  *			or SD_NO_RETRY_ISSUED
18096  *
18097  *     Context: May be called from interrupt context
18098  */
18099 
18100 static void
18101 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18102 	int code)
18103 {
18104 	dev_info_t	*dip;
18105 
18106 	ASSERT(un != NULL);
18107 	ASSERT(mutex_owned(SD_MUTEX(un)));
18108 	ASSERT(bp != NULL);
18109 
18110 	switch (code) {
18111 	case SD_NO_RETRY_ISSUED:
18112 		/* Command was failed. Someone turned off this target? */
18113 		if (un->un_state != SD_STATE_OFFLINE) {
18114 			/*
18115 			 * Suppress message if we are detaching and
18116 			 * device has been disconnected
18117 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18118 			 * private interface and not part of the DDI
18119 			 */
18120 			dip = un->un_sd->sd_dev;
18121 			if (!(DEVI_IS_DETACHING(dip) &&
18122 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18123 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18124 				"disk not responding to selection\n");
18125 			}
18126 			New_state(un, SD_STATE_OFFLINE);
18127 		}
18128 		break;
18129 
18130 	case SD_DELAYED_RETRY_ISSUED:
18131 	case SD_IMMEDIATE_RETRY_ISSUED:
18132 	default:
18133 		/* Command was successfully queued for retry */
18134 		sd_print_retry_msg(un, bp, arg, code);
18135 		break;
18136 	}
18137 }
18138 
18139 
18140 /*
18141  *    Function: sd_pkt_reason_cmd_incomplete
18142  *
18143  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18144  *
18145  *     Context: May be called from interrupt context
18146  */
18147 
18148 static void
18149 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18150 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18151 {
18152 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18153 
18154 	ASSERT(un != NULL);
18155 	ASSERT(mutex_owned(SD_MUTEX(un)));
18156 	ASSERT(bp != NULL);
18157 	ASSERT(xp != NULL);
18158 	ASSERT(pktp != NULL);
18159 
18160 	/* Do not do a reset if selection did not complete */
18161 	/* Note: Should this not just check the bit? */
18162 	if (pktp->pkt_state != STATE_GOT_BUS) {
18163 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18164 		sd_reset_target(un, pktp);
18165 	}
18166 
18167 	/*
18168 	 * If the target was not successfully selected, then set
18169 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18170 	 * with the target, and further retries and/or commands are
18171 	 * likely to take a long time.
18172 	 */
18173 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18174 		flag |= SD_RETRIES_FAILFAST;
18175 	}
18176 
18177 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18178 
18179 	sd_retry_command(un, bp, flag,
18180 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18181 }
18182 
18183 
18184 
18185 /*
18186  *    Function: sd_pkt_reason_cmd_tran_err
18187  *
18188  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18189  *
18190  *     Context: May be called from interrupt context
18191  */
18192 
18193 static void
18194 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18195 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18196 {
18197 	ASSERT(un != NULL);
18198 	ASSERT(mutex_owned(SD_MUTEX(un)));
18199 	ASSERT(bp != NULL);
18200 	ASSERT(xp != NULL);
18201 	ASSERT(pktp != NULL);
18202 
18203 	/*
18204 	 * Do not reset if we got a parity error, or if
18205 	 * selection did not complete.
18206 	 */
18207 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18208 	/* Note: Should this not just check the bit for pkt_state? */
18209 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18210 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18211 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18212 		sd_reset_target(un, pktp);
18213 	}
18214 
18215 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18216 
18217 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18218 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18219 }
18220 
18221 
18222 
18223 /*
18224  *    Function: sd_pkt_reason_cmd_reset
18225  *
18226  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18227  *
18228  *     Context: May be called from interrupt context
18229  */
18230 
18231 static void
18232 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18233 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18234 {
18235 	ASSERT(un != NULL);
18236 	ASSERT(mutex_owned(SD_MUTEX(un)));
18237 	ASSERT(bp != NULL);
18238 	ASSERT(xp != NULL);
18239 	ASSERT(pktp != NULL);
18240 
18241 	/* The target may still be running the command, so try to reset. */
18242 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18243 	sd_reset_target(un, pktp);
18244 
18245 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18246 
18247 	/*
18248 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18249 	 * reset because another target on this bus caused it. The target
18250 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18251 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18252 	 */
18253 
18254 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18255 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18256 }
18257 
18258 
18259 
18260 
18261 /*
18262  *    Function: sd_pkt_reason_cmd_aborted
18263  *
18264  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18265  *
18266  *     Context: May be called from interrupt context
18267  */
18268 
18269 static void
18270 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18271 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18272 {
18273 	ASSERT(un != NULL);
18274 	ASSERT(mutex_owned(SD_MUTEX(un)));
18275 	ASSERT(bp != NULL);
18276 	ASSERT(xp != NULL);
18277 	ASSERT(pktp != NULL);
18278 
18279 	/* The target may still be running the command, so try to reset. */
18280 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18281 	sd_reset_target(un, pktp);
18282 
18283 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18284 
18285 	/*
18286 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18287 	 * aborted because another target on this bus caused it. The target
18288 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18289 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18290 	 */
18291 
18292 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18293 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18294 }
18295 
18296 
18297 
18298 /*
18299  *    Function: sd_pkt_reason_cmd_timeout
18300  *
18301  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18302  *
18303  *     Context: May be called from interrupt context
18304  */
18305 
18306 static void
18307 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18308 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18309 {
18310 	ASSERT(un != NULL);
18311 	ASSERT(mutex_owned(SD_MUTEX(un)));
18312 	ASSERT(bp != NULL);
18313 	ASSERT(xp != NULL);
18314 	ASSERT(pktp != NULL);
18315 
18316 
18317 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18318 	sd_reset_target(un, pktp);
18319 
18320 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18321 
18322 	/*
18323 	 * A command timeout indicates that we could not establish
18324 	 * communication with the target, so set SD_RETRIES_FAILFAST
18325 	 * as further retries/commands are likely to take a long time.
18326 	 */
18327 	sd_retry_command(un, bp,
18328 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18329 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18330 }
18331 
18332 
18333 
18334 /*
18335  *    Function: sd_pkt_reason_cmd_unx_bus_free
18336  *
18337  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18338  *
18339  *     Context: May be called from interrupt context
18340  */
18341 
18342 static void
18343 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18344 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18345 {
18346 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18347 
18348 	ASSERT(un != NULL);
18349 	ASSERT(mutex_owned(SD_MUTEX(un)));
18350 	ASSERT(bp != NULL);
18351 	ASSERT(xp != NULL);
18352 	ASSERT(pktp != NULL);
18353 
18354 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18355 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18356 
18357 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18358 	    sd_print_retry_msg : NULL;
18359 
18360 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18361 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18362 }
18363 
18364 
18365 /*
18366  *    Function: sd_pkt_reason_cmd_tag_reject
18367  *
18368  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18369  *
18370  *     Context: May be called from interrupt context
18371  */
18372 
18373 static void
18374 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18375 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18376 {
18377 	ASSERT(un != NULL);
18378 	ASSERT(mutex_owned(SD_MUTEX(un)));
18379 	ASSERT(bp != NULL);
18380 	ASSERT(xp != NULL);
18381 	ASSERT(pktp != NULL);
18382 
18383 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18384 	pktp->pkt_flags = 0;
18385 	un->un_tagflags = 0;
18386 	if (un->un_f_opt_queueing == TRUE) {
18387 		un->un_throttle = min(un->un_throttle, 3);
18388 	} else {
18389 		un->un_throttle = 1;
18390 	}
18391 	mutex_exit(SD_MUTEX(un));
18392 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18393 	mutex_enter(SD_MUTEX(un));
18394 
18395 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18396 
18397 	/* Legacy behavior not to check retry counts here. */
18398 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18399 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18400 }
18401 
18402 
18403 /*
18404  *    Function: sd_pkt_reason_default
18405  *
18406  * Description: Default recovery actions for SCSA pkt_reason values that
18407  *		do not have more explicit recovery actions.
18408  *
18409  *     Context: May be called from interrupt context
18410  */
18411 
18412 static void
18413 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18414 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18415 {
18416 	ASSERT(un != NULL);
18417 	ASSERT(mutex_owned(SD_MUTEX(un)));
18418 	ASSERT(bp != NULL);
18419 	ASSERT(xp != NULL);
18420 	ASSERT(pktp != NULL);
18421 
18422 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18423 	sd_reset_target(un, pktp);
18424 
18425 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18426 
18427 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18428 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18429 }
18430 
18431 
18432 
18433 /*
18434  *    Function: sd_pkt_status_check_condition
18435  *
18436  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18437  *
18438  *     Context: May be called from interrupt context
18439  */
18440 
18441 static void
18442 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18443 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18444 {
18445 	ASSERT(un != NULL);
18446 	ASSERT(mutex_owned(SD_MUTEX(un)));
18447 	ASSERT(bp != NULL);
18448 	ASSERT(xp != NULL);
18449 	ASSERT(pktp != NULL);
18450 
18451 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18452 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18453 
18454 	/*
18455 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18456 	 * command will be retried after the request sense). Otherwise, retry
18457 	 * the command. Note: we are issuing the request sense even though the
18458 	 * retry limit may have been reached for the failed command.
18459 	 */
18460 	if (un->un_f_arq_enabled == FALSE) {
18461 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18462 		    "no ARQ, sending request sense command\n");
18463 		sd_send_request_sense_command(un, bp, pktp);
18464 	} else {
18465 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18466 		    "ARQ,retrying request sense command\n");
18467 #if defined(__i386) || defined(__amd64)
18468 		/*
18469 		 * The SD_RETRY_DELAY value need to be adjusted here
18470 		 * when SD_RETRY_DELAY change in sddef.h
18471 		 */
18472 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18473 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18474 			NULL);
18475 #else
18476 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18477 		    EIO, SD_RETRY_DELAY, NULL);
18478 #endif
18479 	}
18480 
18481 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18482 }
18483 
18484 
18485 /*
18486  *    Function: sd_pkt_status_busy
18487  *
18488  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18489  *
18490  *     Context: May be called from interrupt context
18491  */
18492 
18493 static void
18494 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18495 	struct scsi_pkt *pktp)
18496 {
18497 	ASSERT(un != NULL);
18498 	ASSERT(mutex_owned(SD_MUTEX(un)));
18499 	ASSERT(bp != NULL);
18500 	ASSERT(xp != NULL);
18501 	ASSERT(pktp != NULL);
18502 
18503 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18504 	    "sd_pkt_status_busy: entry\n");
18505 
18506 	/* If retries are exhausted, just fail the command. */
18507 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18508 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18509 		    "device busy too long\n");
18510 		sd_return_failed_command(un, bp, EIO);
18511 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18512 		    "sd_pkt_status_busy: exit\n");
18513 		return;
18514 	}
18515 	xp->xb_retry_count++;
18516 
18517 	/*
18518 	 * Try to reset the target. However, we do not want to perform
18519 	 * more than one reset if the device continues to fail. The reset
18520 	 * will be performed when the retry count reaches the reset
18521 	 * threshold.  This threshold should be set such that at least
18522 	 * one retry is issued before the reset is performed.
18523 	 */
18524 	if (xp->xb_retry_count ==
18525 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18526 		int rval = 0;
18527 		mutex_exit(SD_MUTEX(un));
18528 		if (un->un_f_allow_bus_device_reset == TRUE) {
18529 			/*
18530 			 * First try to reset the LUN; if we cannot then
18531 			 * try to reset the target.
18532 			 */
18533 			if (un->un_f_lun_reset_enabled == TRUE) {
18534 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18535 				    "sd_pkt_status_busy: RESET_LUN\n");
18536 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18537 			}
18538 			if (rval == 0) {
18539 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18540 				    "sd_pkt_status_busy: RESET_TARGET\n");
18541 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18542 			}
18543 		}
18544 		if (rval == 0) {
18545 			/*
18546 			 * If the RESET_LUN and/or RESET_TARGET failed,
18547 			 * try RESET_ALL
18548 			 */
18549 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18550 			    "sd_pkt_status_busy: RESET_ALL\n");
18551 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18552 		}
18553 		mutex_enter(SD_MUTEX(un));
18554 		if (rval == 0) {
18555 			/*
18556 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18557 			 * At this point we give up & fail the command.
18558 			 */
18559 			sd_return_failed_command(un, bp, EIO);
18560 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18561 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18562 			return;
18563 		}
18564 	}
18565 
18566 	/*
18567 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18568 	 * we have already checked the retry counts above.
18569 	 */
18570 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18571 	    EIO, SD_BSY_TIMEOUT, NULL);
18572 
18573 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18574 	    "sd_pkt_status_busy: exit\n");
18575 }
18576 
18577 
18578 /*
18579  *    Function: sd_pkt_status_reservation_conflict
18580  *
18581  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18582  *		command status.
18583  *
18584  *     Context: May be called from interrupt context
18585  */
18586 
18587 static void
18588 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18589 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18590 {
18591 	ASSERT(un != NULL);
18592 	ASSERT(mutex_owned(SD_MUTEX(un)));
18593 	ASSERT(bp != NULL);
18594 	ASSERT(xp != NULL);
18595 	ASSERT(pktp != NULL);
18596 
18597 	/*
18598 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18599 	 * conflict could be due to various reasons like incorrect keys, not
18600 	 * registered or not reserved etc. So, we return EACCES to the caller.
18601 	 */
18602 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18603 		int cmd = SD_GET_PKT_OPCODE(pktp);
18604 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18605 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18606 			sd_return_failed_command(un, bp, EACCES);
18607 			return;
18608 		}
18609 	}
18610 
18611 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18612 
18613 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18614 		if (sd_failfast_enable != 0) {
18615 			/* By definition, we must panic here.... */
18616 			sd_panic_for_res_conflict(un);
18617 			/*NOTREACHED*/
18618 		}
18619 		SD_ERROR(SD_LOG_IO, un,
18620 		    "sd_handle_resv_conflict: Disk Reserved\n");
18621 		sd_return_failed_command(un, bp, EACCES);
18622 		return;
18623 	}
18624 
18625 	/*
18626 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18627 	 * property is set (default is 1). Retries will not succeed
18628 	 * on a disk reserved by another initiator. HA systems
18629 	 * may reset this via sd.conf to avoid these retries.
18630 	 *
18631 	 * Note: The legacy return code for this failure is EIO, however EACCES
18632 	 * seems more appropriate for a reservation conflict.
18633 	 */
18634 	if (sd_retry_on_reservation_conflict == 0) {
18635 		SD_ERROR(SD_LOG_IO, un,
18636 		    "sd_handle_resv_conflict: Device Reserved\n");
18637 		sd_return_failed_command(un, bp, EIO);
18638 		return;
18639 	}
18640 
18641 	/*
18642 	 * Retry the command if we can.
18643 	 *
18644 	 * Note: The legacy return code for this failure is EIO, however EACCES
18645 	 * seems more appropriate for a reservation conflict.
18646 	 */
18647 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18648 	    (clock_t)2, NULL);
18649 }
18650 
18651 
18652 
18653 /*
18654  *    Function: sd_pkt_status_qfull
18655  *
18656  * Description: Handle a QUEUE FULL condition from the target.  This can
18657  *		occur if the HBA does not handle the queue full condition.
18658  *		(Basically this means third-party HBAs as Sun HBAs will
18659  *		handle the queue full condition.)  Note that if there are
18660  *		some commands already in the transport, then the queue full
18661  *		has occurred because the queue for this nexus is actually
18662  *		full. If there are no commands in the transport, then the
18663  *		queue full is resulting from some other initiator or lun
18664  *		consuming all the resources at the target.
18665  *
18666  *     Context: May be called from interrupt context
18667  */
18668 
18669 static void
18670 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18671 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18672 {
18673 	ASSERT(un != NULL);
18674 	ASSERT(mutex_owned(SD_MUTEX(un)));
18675 	ASSERT(bp != NULL);
18676 	ASSERT(xp != NULL);
18677 	ASSERT(pktp != NULL);
18678 
18679 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18680 	    "sd_pkt_status_qfull: entry\n");
18681 
18682 	/*
18683 	 * Just lower the QFULL throttle and retry the command.  Note that
18684 	 * we do not limit the number of retries here.
18685 	 */
18686 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18687 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18688 	    SD_RESTART_TIMEOUT, NULL);
18689 
18690 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18691 	    "sd_pkt_status_qfull: exit\n");
18692 }
18693 
18694 
18695 /*
18696  *    Function: sd_reset_target
18697  *
18698  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18699  *		RESET_TARGET, or RESET_ALL.
18700  *
18701  *     Context: May be called under interrupt context.
18702  */
18703 
18704 static void
18705 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18706 {
18707 	int rval = 0;
18708 
18709 	ASSERT(un != NULL);
18710 	ASSERT(mutex_owned(SD_MUTEX(un)));
18711 	ASSERT(pktp != NULL);
18712 
18713 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18714 
18715 	/*
18716 	 * No need to reset if the transport layer has already done so.
18717 	 */
18718 	if ((pktp->pkt_statistics &
18719 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18720 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18721 		    "sd_reset_target: no reset\n");
18722 		return;
18723 	}
18724 
18725 	mutex_exit(SD_MUTEX(un));
18726 
18727 	if (un->un_f_allow_bus_device_reset == TRUE) {
18728 		if (un->un_f_lun_reset_enabled == TRUE) {
18729 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18730 			    "sd_reset_target: RESET_LUN\n");
18731 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18732 		}
18733 		if (rval == 0) {
18734 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18735 			    "sd_reset_target: RESET_TARGET\n");
18736 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18737 		}
18738 	}
18739 
18740 	if (rval == 0) {
18741 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18742 		    "sd_reset_target: RESET_ALL\n");
18743 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18744 	}
18745 
18746 	mutex_enter(SD_MUTEX(un));
18747 
18748 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18749 }
18750 
18751 
18752 /*
18753  *    Function: sd_media_change_task
18754  *
18755  * Description: Recovery action for CDROM to become available.
18756  *
18757  *     Context: Executes in a taskq() thread context
18758  */
18759 
18760 static void
18761 sd_media_change_task(void *arg)
18762 {
18763 	struct	scsi_pkt	*pktp = arg;
18764 	struct	sd_lun		*un;
18765 	struct	buf		*bp;
18766 	struct	sd_xbuf		*xp;
18767 	int	err		= 0;
18768 	int	retry_count	= 0;
18769 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18770 	struct	sd_sense_info	si;
18771 
18772 	ASSERT(pktp != NULL);
18773 	bp = (struct buf *)pktp->pkt_private;
18774 	ASSERT(bp != NULL);
18775 	xp = SD_GET_XBUF(bp);
18776 	ASSERT(xp != NULL);
18777 	un = SD_GET_UN(bp);
18778 	ASSERT(un != NULL);
18779 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18780 	ASSERT(ISREMOVABLE(un));
18781 
18782 	si.ssi_severity = SCSI_ERR_INFO;
18783 	si.ssi_pfa_flag = FALSE;
18784 
18785 	/*
18786 	 * When a reset is issued on a CDROM, it takes a long time to
18787 	 * recover. First few attempts to read capacity and other things
18788 	 * related to handling unit attention fail (with a ASC 0x4 and
18789 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18790 	 * to limit the retries in other cases of genuine failures like
18791 	 * no media in drive.
18792 	 */
18793 	while (retry_count++ < retry_limit) {
18794 		if ((err = sd_handle_mchange(un)) == 0) {
18795 			break;
18796 		}
18797 		if (err == EAGAIN) {
18798 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18799 		}
18800 		/* Sleep for 0.5 sec. & try again */
18801 		delay(drv_usectohz(500000));
18802 	}
18803 
18804 	/*
18805 	 * Dispatch (retry or fail) the original command here,
18806 	 * along with appropriate console messages....
18807 	 *
18808 	 * Must grab the mutex before calling sd_retry_command,
18809 	 * sd_print_sense_msg and sd_return_failed_command.
18810 	 */
18811 	mutex_enter(SD_MUTEX(un));
18812 	if (err != SD_CMD_SUCCESS) {
18813 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18814 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18815 		si.ssi_severity = SCSI_ERR_FATAL;
18816 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18817 		sd_return_failed_command(un, bp, EIO);
18818 	} else {
18819 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18820 		    &si, EIO, (clock_t)0, NULL);
18821 	}
18822 	mutex_exit(SD_MUTEX(un));
18823 }
18824 
18825 
18826 
18827 /*
18828  *    Function: sd_handle_mchange
18829  *
18830  * Description: Perform geometry validation & other recovery when CDROM
18831  *		has been removed from drive.
18832  *
18833  * Return Code: 0 for success
18834  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18835  *		sd_send_scsi_READ_CAPACITY()
18836  *
18837  *     Context: Executes in a taskq() thread context
18838  */
18839 
18840 static int
18841 sd_handle_mchange(struct sd_lun *un)
18842 {
18843 	uint64_t	capacity;
18844 	uint32_t	lbasize;
18845 	int		rval;
18846 
18847 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18848 	ASSERT(ISREMOVABLE(un));
18849 
18850 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
18851 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
18852 		return (rval);
18853 	}
18854 
18855 	mutex_enter(SD_MUTEX(un));
18856 	sd_update_block_info(un, lbasize, capacity);
18857 
18858 	if (un->un_errstats != NULL) {
18859 		struct	sd_errstats *stp =
18860 		    (struct sd_errstats *)un->un_errstats->ks_data;
18861 		stp->sd_capacity.value.ui64 = (uint64_t)
18862 		    ((uint64_t)un->un_blockcount *
18863 		    (uint64_t)un->un_tgt_blocksize);
18864 	}
18865 
18866 	/*
18867 	 * Note: Maybe let the strategy/partitioning chain worry about getting
18868 	 * valid geometry.
18869 	 */
18870 	un->un_f_geometry_is_valid = FALSE;
18871 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
18872 	if (un->un_f_geometry_is_valid == FALSE) {
18873 		mutex_exit(SD_MUTEX(un));
18874 		return (EIO);
18875 	}
18876 
18877 	mutex_exit(SD_MUTEX(un));
18878 
18879 	/*
18880 	 * Try to lock the door
18881 	 */
18882 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
18883 	    SD_PATH_DIRECT_PRIORITY));
18884 }
18885 
18886 
18887 /*
18888  *    Function: sd_send_scsi_DOORLOCK
18889  *
18890  * Description: Issue the scsi DOOR LOCK command
18891  *
18892  *   Arguments: un    - pointer to driver soft state (unit) structure for
18893  *			this target.
18894  *		flag  - SD_REMOVAL_ALLOW
18895  *			SD_REMOVAL_PREVENT
18896  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18897  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18898  *			to use the USCSI "direct" chain and bypass the normal
18899  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18900  *			command is issued as part of an error recovery action.
18901  *
18902  * Return Code: 0   - Success
18903  *		errno return code from sd_send_scsi_cmd()
18904  *
18905  *     Context: Can sleep.
18906  */
18907 
18908 static int
18909 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
18910 {
18911 	union scsi_cdb		cdb;
18912 	struct uscsi_cmd	ucmd_buf;
18913 	struct scsi_extended_sense	sense_buf;
18914 	int			status;
18915 
18916 	ASSERT(un != NULL);
18917 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18918 
18919 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
18920 
18921 	/* already determined doorlock is not supported, fake success */
18922 	if (un->un_f_doorlock_supported == FALSE) {
18923 		return (0);
18924 	}
18925 
18926 	bzero(&cdb, sizeof (cdb));
18927 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18928 
18929 	cdb.scc_cmd = SCMD_DOORLOCK;
18930 	cdb.cdb_opaque[4] = (uchar_t)flag;
18931 
18932 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18933 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18934 	ucmd_buf.uscsi_bufaddr	= NULL;
18935 	ucmd_buf.uscsi_buflen	= 0;
18936 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18937 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18938 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18939 	ucmd_buf.uscsi_timeout	= 15;
18940 
18941 	SD_TRACE(SD_LOG_IO, un,
18942 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
18943 
18944 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18945 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18946 
18947 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
18948 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18949 	    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
18950 		/* fake success and skip subsequent doorlock commands */
18951 		un->un_f_doorlock_supported = FALSE;
18952 		return (0);
18953 	}
18954 
18955 	return (status);
18956 }
18957 
18958 /*
18959  *    Function: sd_send_scsi_READ_CAPACITY
18960  *
18961  * Description: This routine uses the scsi READ CAPACITY command to determine
18962  *		the device capacity in number of blocks and the device native
18963  *		block size. If this function returns a failure, then the
18964  *		values in *capp and *lbap are undefined.  If the capacity
18965  *		returned is 0xffffffff then the lun is too large for a
18966  *		normal READ CAPACITY command and the results of a
18967  *		READ CAPACITY 16 will be used instead.
18968  *
18969  *   Arguments: un   - ptr to soft state struct for the target
18970  *		capp - ptr to unsigned 64-bit variable to receive the
18971  *			capacity value from the command.
18972  *		lbap - ptr to unsigned 32-bit varaible to receive the
18973  *			block size value from the command
18974  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18975  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18976  *			to use the USCSI "direct" chain and bypass the normal
18977  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18978  *			command is issued as part of an error recovery action.
18979  *
18980  * Return Code: 0   - Success
18981  *		EIO - IO error
18982  *		EACCES - Reservation conflict detected
18983  *		EAGAIN - Device is becoming ready
18984  *		errno return code from sd_send_scsi_cmd()
18985  *
18986  *     Context: Can sleep.  Blocks until command completes.
18987  */
18988 
18989 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
18990 
18991 static int
18992 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
18993 	int path_flag)
18994 {
18995 	struct	scsi_extended_sense	sense_buf;
18996 	struct	uscsi_cmd	ucmd_buf;
18997 	union	scsi_cdb	cdb;
18998 	uint32_t		*capacity_buf;
18999 	uint64_t		capacity;
19000 	uint32_t		lbasize;
19001 	int			status;
19002 
19003 	ASSERT(un != NULL);
19004 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19005 	ASSERT(capp != NULL);
19006 	ASSERT(lbap != NULL);
19007 
19008 	SD_TRACE(SD_LOG_IO, un,
19009 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19010 
19011 	/*
19012 	 * First send a READ_CAPACITY command to the target.
19013 	 * (This command is mandatory under SCSI-2.)
19014 	 *
19015 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19016 	 * Medium Indicator bit is cleared.  The address field must be
19017 	 * zero if the PMI bit is zero.
19018 	 */
19019 	bzero(&cdb, sizeof (cdb));
19020 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19021 
19022 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19023 
19024 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19025 
19026 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19027 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19028 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19029 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19030 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19031 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19032 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19033 	ucmd_buf.uscsi_timeout	= 60;
19034 
19035 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19036 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19037 
19038 	switch (status) {
19039 	case 0:
19040 		/* Return failure if we did not get valid capacity data. */
19041 		if (ucmd_buf.uscsi_resid != 0) {
19042 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19043 			return (EIO);
19044 		}
19045 
19046 		/*
19047 		 * Read capacity and block size from the READ CAPACITY 10 data.
19048 		 * This data may be adjusted later due to device specific
19049 		 * issues.
19050 		 *
19051 		 * According to the SCSI spec, the READ CAPACITY 10
19052 		 * command returns the following:
19053 		 *
19054 		 *  bytes 0-3: Maximum logical block address available.
19055 		 *		(MSB in byte:0 & LSB in byte:3)
19056 		 *
19057 		 *  bytes 4-7: Block length in bytes
19058 		 *		(MSB in byte:4 & LSB in byte:7)
19059 		 *
19060 		 */
19061 		capacity = BE_32(capacity_buf[0]);
19062 		lbasize = BE_32(capacity_buf[1]);
19063 
19064 		/*
19065 		 * Done with capacity_buf
19066 		 */
19067 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19068 
19069 		/*
19070 		 * if the reported capacity is set to all 0xf's, then
19071 		 * this disk is too large and requires SBC-2 commands.
19072 		 * Reissue the request using READ CAPACITY 16.
19073 		 */
19074 		if (capacity == 0xffffffff) {
19075 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
19076 			    &lbasize, path_flag);
19077 			if (status != 0) {
19078 				return (status);
19079 			}
19080 		}
19081 		break;	/* Success! */
19082 	case EIO:
19083 		switch (ucmd_buf.uscsi_status) {
19084 		case STATUS_RESERVATION_CONFLICT:
19085 			status = EACCES;
19086 			break;
19087 		case STATUS_CHECK:
19088 			/*
19089 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19090 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19091 			 */
19092 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19093 			    (sense_buf.es_add_code  == 0x04) &&
19094 			    (sense_buf.es_qual_code == 0x01)) {
19095 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19096 				return (EAGAIN);
19097 			}
19098 			break;
19099 		default:
19100 			break;
19101 		}
19102 		/* FALLTHRU */
19103 	default:
19104 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19105 		return (status);
19106 	}
19107 
19108 	/*
19109 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19110 	 * (2352 and 0 are common) so for these devices always force the value
19111 	 * to 2048 as required by the ATAPI specs.
19112 	 */
19113 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19114 		lbasize = 2048;
19115 	}
19116 
19117 	/*
19118 	 * Get the maximum LBA value from the READ CAPACITY data.
19119 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19120 	 * was cleared when issuing the command. This means that the LBA
19121 	 * returned from the device is the LBA of the last logical block
19122 	 * on the logical unit.  The actual logical block count will be
19123 	 * this value plus one.
19124 	 *
19125 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19126 	 * so scale the capacity value to reflect this.
19127 	 */
19128 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19129 
19130 #if defined(__i386) || defined(__amd64)
19131 	/*
19132 	 * On x86, compensate for off-by-1 error (number of sectors on
19133 	 * media)  (1175930)
19134 	 */
19135 	if (!ISREMOVABLE(un) && (lbasize == un->un_sys_blocksize)) {
19136 		capacity -= 1;
19137 	}
19138 #endif
19139 
19140 	/*
19141 	 * Copy the values from the READ CAPACITY command into the space
19142 	 * provided by the caller.
19143 	 */
19144 	*capp = capacity;
19145 	*lbap = lbasize;
19146 
19147 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19148 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19149 
19150 	/*
19151 	 * Both the lbasize and capacity from the device must be nonzero,
19152 	 * otherwise we assume that the values are not valid and return
19153 	 * failure to the caller. (4203735)
19154 	 */
19155 	if ((capacity == 0) || (lbasize == 0)) {
19156 		return (EIO);
19157 	}
19158 
19159 	return (0);
19160 }
19161 
19162 /*
19163  *    Function: sd_send_scsi_READ_CAPACITY_16
19164  *
19165  * Description: This routine uses the scsi READ CAPACITY 16 command to
19166  *		determine the device capacity in number of blocks and the
19167  *		device native block size.  If this function returns a failure,
19168  *		then the values in *capp and *lbap are undefined.
19169  *		This routine should always be called by
19170  *		sd_send_scsi_READ_CAPACITY which will appy any device
19171  *		specific adjustments to capacity and lbasize.
19172  *
19173  *   Arguments: un   - ptr to soft state struct for the target
19174  *		capp - ptr to unsigned 64-bit variable to receive the
19175  *			capacity value from the command.
19176  *		lbap - ptr to unsigned 32-bit varaible to receive the
19177  *			block size value from the command
19178  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19179  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19180  *			to use the USCSI "direct" chain and bypass the normal
19181  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19182  *			this command is issued as part of an error recovery
19183  *			action.
19184  *
19185  * Return Code: 0   - Success
19186  *		EIO - IO error
19187  *		EACCES - Reservation conflict detected
19188  *		EAGAIN - Device is becoming ready
19189  *		errno return code from sd_send_scsi_cmd()
19190  *
19191  *     Context: Can sleep.  Blocks until command completes.
19192  */
19193 
19194 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19195 
19196 static int
19197 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19198 	uint32_t *lbap, int path_flag)
19199 {
19200 	struct	scsi_extended_sense	sense_buf;
19201 	struct	uscsi_cmd	ucmd_buf;
19202 	union	scsi_cdb	cdb;
19203 	uint64_t		*capacity16_buf;
19204 	uint64_t		capacity;
19205 	uint32_t		lbasize;
19206 	int			status;
19207 
19208 	ASSERT(un != NULL);
19209 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19210 	ASSERT(capp != NULL);
19211 	ASSERT(lbap != NULL);
19212 
19213 	SD_TRACE(SD_LOG_IO, un,
19214 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19215 
19216 	/*
19217 	 * First send a READ_CAPACITY_16 command to the target.
19218 	 *
19219 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19220 	 * Medium Indicator bit is cleared.  The address field must be
19221 	 * zero if the PMI bit is zero.
19222 	 */
19223 	bzero(&cdb, sizeof (cdb));
19224 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19225 
19226 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19227 
19228 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19229 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19230 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19231 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19232 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19233 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19234 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19235 	ucmd_buf.uscsi_timeout	= 60;
19236 
19237 	/*
19238 	 * Read Capacity (16) is a Service Action In command.  One
19239 	 * command byte (0x9E) is overloaded for multiple operations,
19240 	 * with the second CDB byte specifying the desired operation
19241 	 */
19242 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19243 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19244 
19245 	/*
19246 	 * Fill in allocation length field
19247 	 */
19248 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19249 
19250 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19251 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19252 
19253 	switch (status) {
19254 	case 0:
19255 		/* Return failure if we did not get valid capacity data. */
19256 		if (ucmd_buf.uscsi_resid > 20) {
19257 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19258 			return (EIO);
19259 		}
19260 
19261 		/*
19262 		 * Read capacity and block size from the READ CAPACITY 10 data.
19263 		 * This data may be adjusted later due to device specific
19264 		 * issues.
19265 		 *
19266 		 * According to the SCSI spec, the READ CAPACITY 10
19267 		 * command returns the following:
19268 		 *
19269 		 *  bytes 0-7: Maximum logical block address available.
19270 		 *		(MSB in byte:0 & LSB in byte:7)
19271 		 *
19272 		 *  bytes 8-11: Block length in bytes
19273 		 *		(MSB in byte:8 & LSB in byte:11)
19274 		 *
19275 		 */
19276 		capacity = BE_64(capacity16_buf[0]);
19277 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19278 
19279 		/*
19280 		 * Done with capacity16_buf
19281 		 */
19282 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19283 
19284 		/*
19285 		 * if the reported capacity is set to all 0xf's, then
19286 		 * this disk is too large.  This could only happen with
19287 		 * a device that supports LBAs larger than 64 bits which
19288 		 * are not defined by any current T10 standards.
19289 		 */
19290 		if (capacity == 0xffffffffffffffff) {
19291 			return (EIO);
19292 		}
19293 		break;	/* Success! */
19294 	case EIO:
19295 		switch (ucmd_buf.uscsi_status) {
19296 		case STATUS_RESERVATION_CONFLICT:
19297 			status = EACCES;
19298 			break;
19299 		case STATUS_CHECK:
19300 			/*
19301 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19302 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19303 			 */
19304 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19305 			    (sense_buf.es_add_code  == 0x04) &&
19306 			    (sense_buf.es_qual_code == 0x01)) {
19307 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19308 				return (EAGAIN);
19309 			}
19310 			break;
19311 		default:
19312 			break;
19313 		}
19314 		/* FALLTHRU */
19315 	default:
19316 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19317 		return (status);
19318 	}
19319 
19320 	*capp = capacity;
19321 	*lbap = lbasize;
19322 
19323 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19324 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19325 
19326 	return (0);
19327 }
19328 
19329 
19330 /*
19331  *    Function: sd_send_scsi_START_STOP_UNIT
19332  *
19333  * Description: Issue a scsi START STOP UNIT command to the target.
19334  *
19335  *   Arguments: un    - pointer to driver soft state (unit) structure for
19336  *			this target.
19337  *		flag  - SD_TARGET_START
19338  *			SD_TARGET_STOP
19339  *			SD_TARGET_EJECT
19340  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19341  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19342  *			to use the USCSI "direct" chain and bypass the normal
19343  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19344  *			command is issued as part of an error recovery action.
19345  *
19346  * Return Code: 0   - Success
19347  *		EIO - IO error
19348  *		EACCES - Reservation conflict detected
19349  *		ENXIO  - Not Ready, medium not present
19350  *		errno return code from sd_send_scsi_cmd()
19351  *
19352  *     Context: Can sleep.
19353  */
19354 
19355 static int
19356 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19357 {
19358 	struct	scsi_extended_sense	sense_buf;
19359 	union scsi_cdb		cdb;
19360 	struct uscsi_cmd	ucmd_buf;
19361 	int			status;
19362 
19363 	ASSERT(un != NULL);
19364 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19365 
19366 	SD_TRACE(SD_LOG_IO, un,
19367 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19368 
19369 	if (ISREMOVABLE(un) &&
19370 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19371 	    (un->un_f_start_stop_supported != TRUE)) {
19372 		return (0);
19373 	}
19374 
19375 	bzero(&cdb, sizeof (cdb));
19376 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19377 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19378 
19379 	cdb.scc_cmd = SCMD_START_STOP;
19380 	cdb.cdb_opaque[4] = (uchar_t)flag;
19381 
19382 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19383 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19384 	ucmd_buf.uscsi_bufaddr	= NULL;
19385 	ucmd_buf.uscsi_buflen	= 0;
19386 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19387 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19388 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19389 	ucmd_buf.uscsi_timeout	= 200;
19390 
19391 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19392 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19393 
19394 	switch (status) {
19395 	case 0:
19396 		break;	/* Success! */
19397 	case EIO:
19398 		switch (ucmd_buf.uscsi_status) {
19399 		case STATUS_RESERVATION_CONFLICT:
19400 			status = EACCES;
19401 			break;
19402 		case STATUS_CHECK:
19403 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19404 				switch (sense_buf.es_key) {
19405 				case KEY_ILLEGAL_REQUEST:
19406 					status = ENOTSUP;
19407 					break;
19408 				case KEY_NOT_READY:
19409 					if (sense_buf.es_add_code == 0x3A) {
19410 						status = ENXIO;
19411 					}
19412 					break;
19413 				default:
19414 					break;
19415 				}
19416 			}
19417 			break;
19418 		default:
19419 			break;
19420 		}
19421 		break;
19422 	default:
19423 		break;
19424 	}
19425 
19426 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19427 
19428 	return (status);
19429 }
19430 
19431 
19432 /*
19433  *    Function: sd_start_stop_unit_callback
19434  *
19435  * Description: timeout(9F) callback to begin recovery process for a
19436  *		device that has spun down.
19437  *
19438  *   Arguments: arg - pointer to associated softstate struct.
19439  *
19440  *     Context: Executes in a timeout(9F) thread context
19441  */
19442 
19443 static void
19444 sd_start_stop_unit_callback(void *arg)
19445 {
19446 	struct sd_lun	*un = arg;
19447 	ASSERT(un != NULL);
19448 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19449 
19450 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19451 
19452 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19453 }
19454 
19455 
19456 /*
19457  *    Function: sd_start_stop_unit_task
19458  *
19459  * Description: Recovery procedure when a drive is spun down.
19460  *
19461  *   Arguments: arg - pointer to associated softstate struct.
19462  *
19463  *     Context: Executes in a taskq() thread context
19464  */
19465 
19466 static void
19467 sd_start_stop_unit_task(void *arg)
19468 {
19469 	struct sd_lun	*un = arg;
19470 
19471 	ASSERT(un != NULL);
19472 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19473 
19474 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19475 
19476 	/*
19477 	 * Some unformatted drives report not ready error, no need to
19478 	 * restart if format has been initiated.
19479 	 */
19480 	mutex_enter(SD_MUTEX(un));
19481 	if (un->un_f_format_in_progress == TRUE) {
19482 		mutex_exit(SD_MUTEX(un));
19483 		return;
19484 	}
19485 	mutex_exit(SD_MUTEX(un));
19486 
19487 	/*
19488 	 * When a START STOP command is issued from here, it is part of a
19489 	 * failure recovery operation and must be issued before any other
19490 	 * commands, including any pending retries. Thus it must be sent
19491 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19492 	 * succeeds or not, we will start I/O after the attempt.
19493 	 */
19494 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19495 	    SD_PATH_DIRECT_PRIORITY);
19496 
19497 	/*
19498 	 * The above call blocks until the START_STOP_UNIT command completes.
19499 	 * Now that it has completed, we must re-try the original IO that
19500 	 * received the NOT READY condition in the first place. There are
19501 	 * three possible conditions here:
19502 	 *
19503 	 *  (1) The original IO is on un_retry_bp.
19504 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19505 	 *	is NULL.
19506 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19507 	 *	points to some other, unrelated bp.
19508 	 *
19509 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19510 	 * as the argument. If un_retry_bp is NULL, this will initiate
19511 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19512 	 * then this will process the bp on un_retry_bp. That may or may not
19513 	 * be the original IO, but that does not matter: the important thing
19514 	 * is to keep the IO processing going at this point.
19515 	 *
19516 	 * Note: This is a very specific error recovery sequence associated
19517 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19518 	 * serialize the I/O with completion of the spin-up.
19519 	 */
19520 	mutex_enter(SD_MUTEX(un));
19521 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19522 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19523 	    un, un->un_retry_bp);
19524 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19525 	sd_start_cmds(un, un->un_retry_bp);
19526 	mutex_exit(SD_MUTEX(un));
19527 
19528 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19529 }
19530 
19531 
19532 /*
19533  *    Function: sd_send_scsi_INQUIRY
19534  *
19535  * Description: Issue the scsi INQUIRY command.
19536  *
19537  *   Arguments: un
19538  *		bufaddr
19539  *		buflen
19540  *		evpd
19541  *		page_code
19542  *		page_length
19543  *
19544  * Return Code: 0   - Success
19545  *		errno return code from sd_send_scsi_cmd()
19546  *
19547  *     Context: Can sleep. Does not return until command is completed.
19548  */
19549 
19550 static int
19551 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
19552 	uchar_t evpd, uchar_t page_code, size_t *residp)
19553 {
19554 	union scsi_cdb		cdb;
19555 	struct uscsi_cmd	ucmd_buf;
19556 	int			status;
19557 
19558 	ASSERT(un != NULL);
19559 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19560 	ASSERT(bufaddr != NULL);
19561 
19562 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19563 
19564 	bzero(&cdb, sizeof (cdb));
19565 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19566 	bzero(bufaddr, buflen);
19567 
19568 	cdb.scc_cmd = SCMD_INQUIRY;
19569 	cdb.cdb_opaque[1] = evpd;
19570 	cdb.cdb_opaque[2] = page_code;
19571 	FORMG0COUNT(&cdb, buflen);
19572 
19573 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19574 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19575 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19576 	ucmd_buf.uscsi_buflen	= buflen;
19577 	ucmd_buf.uscsi_rqbuf	= NULL;
19578 	ucmd_buf.uscsi_rqlen	= 0;
19579 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19580 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19581 
19582 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19583 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19584 
19585 	if ((status == 0) && (residp != NULL)) {
19586 		*residp = ucmd_buf.uscsi_resid;
19587 	}
19588 
19589 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19590 
19591 	return (status);
19592 }
19593 
19594 
19595 /*
19596  *    Function: sd_send_scsi_TEST_UNIT_READY
19597  *
19598  * Description: Issue the scsi TEST UNIT READY command.
19599  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19600  *		prevent retrying failed commands. Use this when the intent
19601  *		is either to check for device readiness, to clear a Unit
19602  *		Attention, or to clear any outstanding sense data.
19603  *		However under specific conditions the expected behavior
19604  *		is for retries to bring a device ready, so use the flag
19605  *		with caution.
19606  *
19607  *   Arguments: un
19608  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19609  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19610  *			0: dont check for media present, do retries on cmd.
19611  *
19612  * Return Code: 0   - Success
19613  *		EIO - IO error
19614  *		EACCES - Reservation conflict detected
19615  *		ENXIO  - Not Ready, medium not present
19616  *		errno return code from sd_send_scsi_cmd()
19617  *
19618  *     Context: Can sleep. Does not return until command is completed.
19619  */
19620 
19621 static int
19622 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
19623 {
19624 	struct	scsi_extended_sense	sense_buf;
19625 	union scsi_cdb		cdb;
19626 	struct uscsi_cmd	ucmd_buf;
19627 	int			status;
19628 
19629 	ASSERT(un != NULL);
19630 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19631 
19632 	SD_TRACE(SD_LOG_IO, un,
19633 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19634 
19635 	/*
19636 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19637 	 * timeouts when they receive a TUR and the queue is not empty. Check
19638 	 * the configuration flag set during attach (indicating the drive has
19639 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19640 	 * TUR. If there are
19641 	 * pending commands return success, this is a bit arbitrary but is ok
19642 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19643 	 * configurations.
19644 	 */
19645 	if (un->un_f_cfg_tur_check == TRUE) {
19646 		mutex_enter(SD_MUTEX(un));
19647 		if (un->un_ncmds_in_transport != 0) {
19648 			mutex_exit(SD_MUTEX(un));
19649 			return (0);
19650 		}
19651 		mutex_exit(SD_MUTEX(un));
19652 	}
19653 
19654 	bzero(&cdb, sizeof (cdb));
19655 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19656 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19657 
19658 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19659 
19660 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19661 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19662 	ucmd_buf.uscsi_bufaddr	= NULL;
19663 	ucmd_buf.uscsi_buflen	= 0;
19664 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19665 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19666 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19667 
19668 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19669 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19670 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19671 	}
19672 	ucmd_buf.uscsi_timeout	= 60;
19673 
19674 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19675 	    UIO_SYSSPACE, UIO_SYSSPACE,
19676 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
19677 
19678 	switch (status) {
19679 	case 0:
19680 		break;	/* Success! */
19681 	case EIO:
19682 		switch (ucmd_buf.uscsi_status) {
19683 		case STATUS_RESERVATION_CONFLICT:
19684 			status = EACCES;
19685 			break;
19686 		case STATUS_CHECK:
19687 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19688 				break;
19689 			}
19690 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19691 			    (sense_buf.es_key == KEY_NOT_READY) &&
19692 			    (sense_buf.es_add_code == 0x3A)) {
19693 				status = ENXIO;
19694 			}
19695 			break;
19696 		default:
19697 			break;
19698 		}
19699 		break;
19700 	default:
19701 		break;
19702 	}
19703 
19704 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19705 
19706 	return (status);
19707 }
19708 
19709 
19710 /*
19711  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19712  *
19713  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19714  *
19715  *   Arguments: un
19716  *
19717  * Return Code: 0   - Success
19718  *		EACCES
19719  *		ENOTSUP
19720  *		errno return code from sd_send_scsi_cmd()
19721  *
19722  *     Context: Can sleep. Does not return until command is completed.
19723  */
19724 
19725 static int
19726 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
19727 	uint16_t data_len, uchar_t *data_bufp)
19728 {
19729 	struct scsi_extended_sense	sense_buf;
19730 	union scsi_cdb		cdb;
19731 	struct uscsi_cmd	ucmd_buf;
19732 	int			status;
19733 	int			no_caller_buf = FALSE;
19734 
19735 	ASSERT(un != NULL);
19736 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19737 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19738 
19739 	SD_TRACE(SD_LOG_IO, un,
19740 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19741 
19742 	bzero(&cdb, sizeof (cdb));
19743 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19744 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19745 	if (data_bufp == NULL) {
19746 		/* Allocate a default buf if the caller did not give one */
19747 		ASSERT(data_len == 0);
19748 		data_len  = MHIOC_RESV_KEY_SIZE;
19749 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19750 		no_caller_buf = TRUE;
19751 	}
19752 
19753 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
19754 	cdb.cdb_opaque[1] = usr_cmd;
19755 	FORMG1COUNT(&cdb, data_len);
19756 
19757 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19758 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19759 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19760 	ucmd_buf.uscsi_buflen	= data_len;
19761 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19762 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19763 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19764 	ucmd_buf.uscsi_timeout	= 60;
19765 
19766 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19767 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19768 
19769 	switch (status) {
19770 	case 0:
19771 		break;	/* Success! */
19772 	case EIO:
19773 		switch (ucmd_buf.uscsi_status) {
19774 		case STATUS_RESERVATION_CONFLICT:
19775 			status = EACCES;
19776 			break;
19777 		case STATUS_CHECK:
19778 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19779 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19780 				status = ENOTSUP;
19781 			}
19782 			break;
19783 		default:
19784 			break;
19785 		}
19786 		break;
19787 	default:
19788 		break;
19789 	}
19790 
19791 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
19792 
19793 	if (no_caller_buf == TRUE) {
19794 		kmem_free(data_bufp, data_len);
19795 	}
19796 
19797 	return (status);
19798 }
19799 
19800 
19801 /*
19802  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
19803  *
19804  * Description: This routine is the driver entry point for handling CD-ROM
19805  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
19806  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
19807  *		device.
19808  *
19809  *   Arguments: un  -   Pointer to soft state struct for the target.
19810  *		usr_cmd SCSI-3 reservation facility command (one of
19811  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
19812  *			SD_SCSI3_PREEMPTANDABORT)
19813  *		usr_bufp - user provided pointer register, reserve descriptor or
19814  *			preempt and abort structure (mhioc_register_t,
19815  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
19816  *
19817  * Return Code: 0   - Success
19818  *		EACCES
19819  *		ENOTSUP
19820  *		errno return code from sd_send_scsi_cmd()
19821  *
19822  *     Context: Can sleep. Does not return until command is completed.
19823  */
19824 
19825 static int
19826 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
19827 	uchar_t	*usr_bufp)
19828 {
19829 	struct scsi_extended_sense	sense_buf;
19830 	union scsi_cdb		cdb;
19831 	struct uscsi_cmd	ucmd_buf;
19832 	int			status;
19833 	uchar_t			data_len = sizeof (sd_prout_t);
19834 	sd_prout_t		*prp;
19835 
19836 	ASSERT(un != NULL);
19837 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19838 	ASSERT(data_len == 24);	/* required by scsi spec */
19839 
19840 	SD_TRACE(SD_LOG_IO, un,
19841 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
19842 
19843 	if (usr_bufp == NULL) {
19844 		return (EINVAL);
19845 	}
19846 
19847 	bzero(&cdb, sizeof (cdb));
19848 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19849 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19850 	prp = kmem_zalloc(data_len, KM_SLEEP);
19851 
19852 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
19853 	cdb.cdb_opaque[1] = usr_cmd;
19854 	FORMG1COUNT(&cdb, data_len);
19855 
19856 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19857 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19858 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
19859 	ucmd_buf.uscsi_buflen	= data_len;
19860 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19861 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19862 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19863 	ucmd_buf.uscsi_timeout	= 60;
19864 
19865 	switch (usr_cmd) {
19866 	case SD_SCSI3_REGISTER: {
19867 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
19868 
19869 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19870 		bcopy(ptr->newkey.key, prp->service_key,
19871 		    MHIOC_RESV_KEY_SIZE);
19872 		prp->aptpl = ptr->aptpl;
19873 		break;
19874 	}
19875 	case SD_SCSI3_RESERVE:
19876 	case SD_SCSI3_RELEASE: {
19877 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
19878 
19879 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19880 		prp->scope_address = BE_32(ptr->scope_specific_addr);
19881 		cdb.cdb_opaque[2] = ptr->type;
19882 		break;
19883 	}
19884 	case SD_SCSI3_PREEMPTANDABORT: {
19885 		mhioc_preemptandabort_t *ptr =
19886 		    (mhioc_preemptandabort_t *)usr_bufp;
19887 
19888 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19889 		bcopy(ptr->victim_key.key, prp->service_key,
19890 		    MHIOC_RESV_KEY_SIZE);
19891 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
19892 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
19893 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
19894 		break;
19895 	}
19896 	case SD_SCSI3_REGISTERANDIGNOREKEY:
19897 	{
19898 		mhioc_registerandignorekey_t *ptr;
19899 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
19900 		bcopy(ptr->newkey.key,
19901 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
19902 		prp->aptpl = ptr->aptpl;
19903 		break;
19904 	}
19905 	default:
19906 		ASSERT(FALSE);
19907 		break;
19908 	}
19909 
19910 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19911 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19912 
19913 	switch (status) {
19914 	case 0:
19915 		break;	/* Success! */
19916 	case EIO:
19917 		switch (ucmd_buf.uscsi_status) {
19918 		case STATUS_RESERVATION_CONFLICT:
19919 			status = EACCES;
19920 			break;
19921 		case STATUS_CHECK:
19922 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19923 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19924 				status = ENOTSUP;
19925 			}
19926 			break;
19927 		default:
19928 			break;
19929 		}
19930 		break;
19931 	default:
19932 		break;
19933 	}
19934 
19935 	kmem_free(prp, data_len);
19936 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
19937 	return (status);
19938 }
19939 
19940 
19941 /*
19942  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
19943  *
19944  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
19945  *
19946  *   Arguments: un - pointer to the target's soft state struct
19947  *
19948  * Return Code: 0 - success
19949  *		errno-type error code
19950  *
19951  *     Context: kernel thread context only.
19952  */
19953 
19954 static int
19955 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
19956 {
19957 	struct sd_uscsi_info	*uip;
19958 	struct uscsi_cmd	*uscmd;
19959 	union scsi_cdb		*cdb;
19960 	struct buf		*bp;
19961 	int			rval = 0;
19962 
19963 	SD_TRACE(SD_LOG_IO, un,
19964 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
19965 
19966 	ASSERT(un != NULL);
19967 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19968 
19969 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
19970 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
19971 
19972 	/*
19973 	 * First get some memory for the uscsi_cmd struct and cdb
19974 	 * and initialize for SYNCHRONIZE_CACHE cmd.
19975 	 */
19976 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
19977 	uscmd->uscsi_cdblen = CDB_GROUP1;
19978 	uscmd->uscsi_cdb = (caddr_t)cdb;
19979 	uscmd->uscsi_bufaddr = NULL;
19980 	uscmd->uscsi_buflen = 0;
19981 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
19982 	uscmd->uscsi_rqlen = SENSE_LENGTH;
19983 	uscmd->uscsi_rqresid = SENSE_LENGTH;
19984 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
19985 	uscmd->uscsi_timeout = sd_io_time;
19986 
19987 	/*
19988 	 * Allocate an sd_uscsi_info struct and fill it with the info
19989 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
19990 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
19991 	 * since we allocate the buf here in this function, we do not
19992 	 * need to preserve the prior contents of b_private.
19993 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
19994 	 */
19995 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
19996 	uip->ui_flags = SD_PATH_DIRECT;
19997 	uip->ui_cmdp  = uscmd;
19998 
19999 	bp = getrbuf(KM_SLEEP);
20000 	bp->b_private = uip;
20001 
20002 	/*
20003 	 * Setup buffer to carry uscsi request.
20004 	 */
20005 	bp->b_flags  = B_BUSY;
20006 	bp->b_bcount = 0;
20007 	bp->b_blkno  = 0;
20008 
20009 	if (dkc != NULL) {
20010 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20011 		uip->ui_dkc = *dkc;
20012 	}
20013 
20014 	bp->b_edev = SD_GET_DEV(un);
20015 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20016 
20017 	(void) sd_uscsi_strategy(bp);
20018 
20019 	/*
20020 	 * If synchronous request, wait for completion
20021 	 * If async just return and let b_iodone callback
20022 	 * cleanup.
20023 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20024 	 * but it was also incremented in sd_uscsi_strategy(), so
20025 	 * we should be ok.
20026 	 */
20027 	if (dkc == NULL) {
20028 		(void) biowait(bp);
20029 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20030 	}
20031 
20032 	return (rval);
20033 }
20034 
20035 
20036 static int
20037 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20038 {
20039 	struct sd_uscsi_info *uip;
20040 	struct uscsi_cmd *uscmd;
20041 	struct scsi_extended_sense *sense_buf;
20042 	struct sd_lun *un;
20043 	int status;
20044 
20045 	uip = (struct sd_uscsi_info *)(bp->b_private);
20046 	ASSERT(uip != NULL);
20047 
20048 	uscmd = uip->ui_cmdp;
20049 	ASSERT(uscmd != NULL);
20050 
20051 	sense_buf = (struct scsi_extended_sense *)uscmd->uscsi_rqbuf;
20052 	ASSERT(sense_buf != NULL);
20053 
20054 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20055 	ASSERT(un != NULL);
20056 
20057 	status = geterror(bp);
20058 	switch (status) {
20059 	case 0:
20060 		break;	/* Success! */
20061 	case EIO:
20062 		switch (uscmd->uscsi_status) {
20063 		case STATUS_RESERVATION_CONFLICT:
20064 			/* Ignore reservation conflict */
20065 			status = 0;
20066 			goto done;
20067 
20068 		case STATUS_CHECK:
20069 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20070 			    (sense_buf->es_key == KEY_ILLEGAL_REQUEST)) {
20071 				/* Ignore Illegal Request error */
20072 				mutex_enter(SD_MUTEX(un));
20073 				un->un_f_sync_cache_unsupported = TRUE;
20074 				mutex_exit(SD_MUTEX(un));
20075 				status = ENOTSUP;
20076 				goto done;
20077 			}
20078 			break;
20079 		default:
20080 			break;
20081 		}
20082 		/* FALLTHRU */
20083 	default:
20084 		/* Ignore error if the media is not present */
20085 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
20086 			status = 0;
20087 			goto done;
20088 		}
20089 		/* If we reach this, we had an error */
20090 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20091 		    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20092 		break;
20093 	}
20094 
20095 done:
20096 	if (uip->ui_dkc.dkc_callback != NULL) {
20097 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20098 	}
20099 
20100 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20101 	freerbuf(bp);
20102 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20103 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20104 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20105 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20106 
20107 	return (status);
20108 }
20109 
20110 
20111 /*
20112  *    Function: sd_send_scsi_GET_CONFIGURATION
20113  *
20114  * Description: Issues the get configuration command to the device.
20115  *		Called from sd_check_for_writable_cd & sd_get_media_info
20116  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20117  *   Arguments: un
20118  *		ucmdbuf
20119  *		rqbuf
20120  *		rqbuflen
20121  *		bufaddr
20122  *		buflen
20123  *
20124  * Return Code: 0   - Success
20125  *		errno return code from sd_send_scsi_cmd()
20126  *
20127  *     Context: Can sleep. Does not return until command is completed.
20128  *
20129  */
20130 
20131 static int
20132 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
20133 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
20134 {
20135 	char	cdb[CDB_GROUP1];
20136 	int	status;
20137 
20138 	ASSERT(un != NULL);
20139 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20140 	ASSERT(bufaddr != NULL);
20141 	ASSERT(ucmdbuf != NULL);
20142 	ASSERT(rqbuf != NULL);
20143 
20144 	SD_TRACE(SD_LOG_IO, un,
20145 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20146 
20147 	bzero(cdb, sizeof (cdb));
20148 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20149 	bzero(rqbuf, rqbuflen);
20150 	bzero(bufaddr, buflen);
20151 
20152 	/*
20153 	 * Set up cdb field for the get configuration command.
20154 	 */
20155 	cdb[0] = SCMD_GET_CONFIGURATION;
20156 	cdb[1] = 0x02;  /* Requested Type */
20157 	cdb[8] = SD_PROFILE_HEADER_LEN;
20158 	ucmdbuf->uscsi_cdb = cdb;
20159 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20160 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20161 	ucmdbuf->uscsi_buflen = buflen;
20162 	ucmdbuf->uscsi_timeout = sd_io_time;
20163 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20164 	ucmdbuf->uscsi_rqlen = rqbuflen;
20165 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20166 
20167 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20168 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20169 
20170 	switch (status) {
20171 	case 0:
20172 		break;  /* Success! */
20173 	case EIO:
20174 		switch (ucmdbuf->uscsi_status) {
20175 		case STATUS_RESERVATION_CONFLICT:
20176 			status = EACCES;
20177 			break;
20178 		default:
20179 			break;
20180 		}
20181 		break;
20182 	default:
20183 		break;
20184 	}
20185 
20186 	if (status == 0) {
20187 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20188 		    "sd_send_scsi_GET_CONFIGURATION: data",
20189 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20190 	}
20191 
20192 	SD_TRACE(SD_LOG_IO, un,
20193 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20194 
20195 	return (status);
20196 }
20197 
20198 /*
20199  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20200  *
20201  * Description: Issues the get configuration command to the device to
20202  *              retrieve a specfic feature. Called from
20203  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20204  *   Arguments: un
20205  *              ucmdbuf
20206  *              rqbuf
20207  *              rqbuflen
20208  *              bufaddr
20209  *              buflen
20210  *		feature
20211  *
20212  * Return Code: 0   - Success
20213  *              errno return code from sd_send_scsi_cmd()
20214  *
20215  *     Context: Can sleep. Does not return until command is completed.
20216  *
20217  */
20218 static int
20219 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
20220 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20221 	uchar_t *bufaddr, uint_t buflen, char feature)
20222 {
20223 	char    cdb[CDB_GROUP1];
20224 	int	status;
20225 
20226 	ASSERT(un != NULL);
20227 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20228 	ASSERT(bufaddr != NULL);
20229 	ASSERT(ucmdbuf != NULL);
20230 	ASSERT(rqbuf != NULL);
20231 
20232 	SD_TRACE(SD_LOG_IO, un,
20233 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20234 
20235 	bzero(cdb, sizeof (cdb));
20236 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20237 	bzero(rqbuf, rqbuflen);
20238 	bzero(bufaddr, buflen);
20239 
20240 	/*
20241 	 * Set up cdb field for the get configuration command.
20242 	 */
20243 	cdb[0] = SCMD_GET_CONFIGURATION;
20244 	cdb[1] = 0x02;  /* Requested Type */
20245 	cdb[3] = feature;
20246 	cdb[8] = buflen;
20247 	ucmdbuf->uscsi_cdb = cdb;
20248 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20249 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20250 	ucmdbuf->uscsi_buflen = buflen;
20251 	ucmdbuf->uscsi_timeout = sd_io_time;
20252 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20253 	ucmdbuf->uscsi_rqlen = rqbuflen;
20254 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20255 
20256 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20257 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20258 
20259 	switch (status) {
20260 	case 0:
20261 		break;  /* Success! */
20262 	case EIO:
20263 		switch (ucmdbuf->uscsi_status) {
20264 		case STATUS_RESERVATION_CONFLICT:
20265 			status = EACCES;
20266 			break;
20267 		default:
20268 			break;
20269 		}
20270 		break;
20271 	default:
20272 		break;
20273 	}
20274 
20275 	if (status == 0) {
20276 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20277 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20278 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20279 	}
20280 
20281 	SD_TRACE(SD_LOG_IO, un,
20282 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20283 
20284 	return (status);
20285 }
20286 
20287 
20288 /*
20289  *    Function: sd_send_scsi_MODE_SENSE
20290  *
20291  * Description: Utility function for issuing a scsi MODE SENSE command.
20292  *		Note: This routine uses a consistent implementation for Group0,
20293  *		Group1, and Group2 commands across all platforms. ATAPI devices
20294  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20295  *
20296  *   Arguments: un - pointer to the softstate struct for the target.
20297  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20298  *			  CDB_GROUP[1|2] (10 byte).
20299  *		bufaddr - buffer for page data retrieved from the target.
20300  *		buflen - size of page to be retrieved.
20301  *		page_code - page code of data to be retrieved from the target.
20302  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20303  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20304  *			to use the USCSI "direct" chain and bypass the normal
20305  *			command waitq.
20306  *
20307  * Return Code: 0   - Success
20308  *		errno return code from sd_send_scsi_cmd()
20309  *
20310  *     Context: Can sleep. Does not return until command is completed.
20311  */
20312 
20313 static int
20314 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20315 	size_t buflen,  uchar_t page_code, int path_flag)
20316 {
20317 	struct	scsi_extended_sense	sense_buf;
20318 	union scsi_cdb		cdb;
20319 	struct uscsi_cmd	ucmd_buf;
20320 	int			status;
20321 
20322 	ASSERT(un != NULL);
20323 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20324 	ASSERT(bufaddr != NULL);
20325 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20326 	    (cdbsize == CDB_GROUP2));
20327 
20328 	SD_TRACE(SD_LOG_IO, un,
20329 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20330 
20331 	bzero(&cdb, sizeof (cdb));
20332 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20333 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20334 	bzero(bufaddr, buflen);
20335 
20336 	if (cdbsize == CDB_GROUP0) {
20337 		cdb.scc_cmd = SCMD_MODE_SENSE;
20338 		cdb.cdb_opaque[2] = page_code;
20339 		FORMG0COUNT(&cdb, buflen);
20340 	} else {
20341 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20342 		cdb.cdb_opaque[2] = page_code;
20343 		FORMG1COUNT(&cdb, buflen);
20344 	}
20345 
20346 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20347 
20348 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20349 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20350 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20351 	ucmd_buf.uscsi_buflen	= buflen;
20352 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20353 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20354 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20355 	ucmd_buf.uscsi_timeout	= 60;
20356 
20357 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20358 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20359 
20360 	switch (status) {
20361 	case 0:
20362 		break;	/* Success! */
20363 	case EIO:
20364 		switch (ucmd_buf.uscsi_status) {
20365 		case STATUS_RESERVATION_CONFLICT:
20366 			status = EACCES;
20367 			break;
20368 		default:
20369 			break;
20370 		}
20371 		break;
20372 	default:
20373 		break;
20374 	}
20375 
20376 	if (status == 0) {
20377 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20378 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20379 	}
20380 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20381 
20382 	return (status);
20383 }
20384 
20385 
20386 /*
20387  *    Function: sd_send_scsi_MODE_SELECT
20388  *
20389  * Description: Utility function for issuing a scsi MODE SELECT command.
20390  *		Note: This routine uses a consistent implementation for Group0,
20391  *		Group1, and Group2 commands across all platforms. ATAPI devices
20392  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20393  *
20394  *   Arguments: un - pointer to the softstate struct for the target.
20395  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20396  *			  CDB_GROUP[1|2] (10 byte).
20397  *		bufaddr - buffer for page data retrieved from the target.
20398  *		buflen - size of page to be retrieved.
20399  *		save_page - boolean to determin if SP bit should be set.
20400  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20401  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20402  *			to use the USCSI "direct" chain and bypass the normal
20403  *			command waitq.
20404  *
20405  * Return Code: 0   - Success
20406  *		errno return code from sd_send_scsi_cmd()
20407  *
20408  *     Context: Can sleep. Does not return until command is completed.
20409  */
20410 
20411 static int
20412 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20413 	size_t buflen,  uchar_t save_page, int path_flag)
20414 {
20415 	struct	scsi_extended_sense	sense_buf;
20416 	union scsi_cdb		cdb;
20417 	struct uscsi_cmd	ucmd_buf;
20418 	int			status;
20419 
20420 	ASSERT(un != NULL);
20421 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20422 	ASSERT(bufaddr != NULL);
20423 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20424 	    (cdbsize == CDB_GROUP2));
20425 
20426 	SD_TRACE(SD_LOG_IO, un,
20427 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20428 
20429 	bzero(&cdb, sizeof (cdb));
20430 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20431 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20432 
20433 	/* Set the PF bit for many third party drives */
20434 	cdb.cdb_opaque[1] = 0x10;
20435 
20436 	/* Set the savepage(SP) bit if given */
20437 	if (save_page == SD_SAVE_PAGE) {
20438 		cdb.cdb_opaque[1] |= 0x01;
20439 	}
20440 
20441 	if (cdbsize == CDB_GROUP0) {
20442 		cdb.scc_cmd = SCMD_MODE_SELECT;
20443 		FORMG0COUNT(&cdb, buflen);
20444 	} else {
20445 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20446 		FORMG1COUNT(&cdb, buflen);
20447 	}
20448 
20449 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20450 
20451 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20452 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20453 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20454 	ucmd_buf.uscsi_buflen	= buflen;
20455 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20456 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20457 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20458 	ucmd_buf.uscsi_timeout	= 60;
20459 
20460 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20461 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20462 
20463 	switch (status) {
20464 	case 0:
20465 		break;	/* Success! */
20466 	case EIO:
20467 		switch (ucmd_buf.uscsi_status) {
20468 		case STATUS_RESERVATION_CONFLICT:
20469 			status = EACCES;
20470 			break;
20471 		default:
20472 			break;
20473 		}
20474 		break;
20475 	default:
20476 		break;
20477 	}
20478 
20479 	if (status == 0) {
20480 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20481 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20482 	}
20483 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20484 
20485 	return (status);
20486 }
20487 
20488 
20489 /*
20490  *    Function: sd_send_scsi_RDWR
20491  *
20492  * Description: Issue a scsi READ or WRITE command with the given parameters.
20493  *
20494  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20495  *		cmd:	 SCMD_READ or SCMD_WRITE
20496  *		bufaddr: Address of caller's buffer to receive the RDWR data
20497  *		buflen:  Length of caller's buffer receive the RDWR data.
20498  *		start_block: Block number for the start of the RDWR operation.
20499  *			 (Assumes target-native block size.)
20500  *		residp:  Pointer to variable to receive the redisual of the
20501  *			 RDWR operation (may be NULL of no residual requested).
20502  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20503  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20504  *			to use the USCSI "direct" chain and bypass the normal
20505  *			command waitq.
20506  *
20507  * Return Code: 0   - Success
20508  *		errno return code from sd_send_scsi_cmd()
20509  *
20510  *     Context: Can sleep. Does not return until command is completed.
20511  */
20512 
20513 static int
20514 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
20515 	size_t buflen, daddr_t start_block, int path_flag)
20516 {
20517 	struct	scsi_extended_sense	sense_buf;
20518 	union scsi_cdb		cdb;
20519 	struct uscsi_cmd	ucmd_buf;
20520 	uint32_t		block_count;
20521 	int			status;
20522 	int			cdbsize;
20523 	uchar_t			flag;
20524 
20525 	ASSERT(un != NULL);
20526 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20527 	ASSERT(bufaddr != NULL);
20528 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20529 
20530 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20531 
20532 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20533 		return (EINVAL);
20534 	}
20535 
20536 	mutex_enter(SD_MUTEX(un));
20537 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20538 	mutex_exit(SD_MUTEX(un));
20539 
20540 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20541 
20542 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20543 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20544 	    bufaddr, buflen, start_block, block_count);
20545 
20546 	bzero(&cdb, sizeof (cdb));
20547 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20548 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20549 
20550 	/* Compute CDB size to use */
20551 	if (start_block > 0xffffffff)
20552 		cdbsize = CDB_GROUP4;
20553 	else if ((start_block & 0xFFE00000) ||
20554 	    (un->un_f_cfg_is_atapi == TRUE))
20555 		cdbsize = CDB_GROUP1;
20556 	else
20557 		cdbsize = CDB_GROUP0;
20558 
20559 	switch (cdbsize) {
20560 	case CDB_GROUP0:	/* 6-byte CDBs */
20561 		cdb.scc_cmd = cmd;
20562 		FORMG0ADDR(&cdb, start_block);
20563 		FORMG0COUNT(&cdb, block_count);
20564 		break;
20565 	case CDB_GROUP1:	/* 10-byte CDBs */
20566 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20567 		FORMG1ADDR(&cdb, start_block);
20568 		FORMG1COUNT(&cdb, block_count);
20569 		break;
20570 	case CDB_GROUP4:	/* 16-byte CDBs */
20571 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20572 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20573 		FORMG4COUNT(&cdb, block_count);
20574 		break;
20575 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20576 	default:
20577 		/* All others reserved */
20578 		return (EINVAL);
20579 	}
20580 
20581 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20582 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20583 
20584 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20585 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20586 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20587 	ucmd_buf.uscsi_buflen	= buflen;
20588 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20589 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20590 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20591 	ucmd_buf.uscsi_timeout	= 60;
20592 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20593 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20594 	switch (status) {
20595 	case 0:
20596 		break;	/* Success! */
20597 	case EIO:
20598 		switch (ucmd_buf.uscsi_status) {
20599 		case STATUS_RESERVATION_CONFLICT:
20600 			status = EACCES;
20601 			break;
20602 		default:
20603 			break;
20604 		}
20605 		break;
20606 	default:
20607 		break;
20608 	}
20609 
20610 	if (status == 0) {
20611 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20612 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20613 	}
20614 
20615 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20616 
20617 	return (status);
20618 }
20619 
20620 
20621 /*
20622  *    Function: sd_send_scsi_LOG_SENSE
20623  *
20624  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20625  *
20626  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20627  *
20628  * Return Code: 0   - Success
20629  *		errno return code from sd_send_scsi_cmd()
20630  *
20631  *     Context: Can sleep. Does not return until command is completed.
20632  */
20633 
20634 static int
20635 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
20636 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
20637 	int path_flag)
20638 
20639 {
20640 	struct	scsi_extended_sense	sense_buf;
20641 	union scsi_cdb		cdb;
20642 	struct uscsi_cmd	ucmd_buf;
20643 	int			status;
20644 
20645 	ASSERT(un != NULL);
20646 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20647 
20648 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
20649 
20650 	bzero(&cdb, sizeof (cdb));
20651 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20652 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20653 
20654 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
20655 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
20656 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
20657 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
20658 	FORMG1COUNT(&cdb, buflen);
20659 
20660 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20661 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20662 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20663 	ucmd_buf.uscsi_buflen	= buflen;
20664 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20665 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20666 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20667 	ucmd_buf.uscsi_timeout	= 60;
20668 
20669 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20670 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20671 
20672 	switch (status) {
20673 	case 0:
20674 		break;
20675 	case EIO:
20676 		switch (ucmd_buf.uscsi_status) {
20677 		case STATUS_RESERVATION_CONFLICT:
20678 			status = EACCES;
20679 			break;
20680 		case STATUS_CHECK:
20681 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20682 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST) &&
20683 			    (sense_buf.es_add_code == 0x24)) {
20684 				/*
20685 				 * ASC 0x24: INVALID FIELD IN CDB
20686 				 */
20687 				switch (page_code) {
20688 				case START_STOP_CYCLE_PAGE:
20689 					/*
20690 					 * The start stop cycle counter is
20691 					 * implemented as page 0x31 in earlier
20692 					 * generation disks. In new generation
20693 					 * disks the start stop cycle counter is
20694 					 * implemented as page 0xE. To properly
20695 					 * handle this case if an attempt for
20696 					 * log page 0xE is made and fails we
20697 					 * will try again using page 0x31.
20698 					 *
20699 					 * Network storage BU committed to
20700 					 * maintain the page 0x31 for this
20701 					 * purpose and will not have any other
20702 					 * page implemented with page code 0x31
20703 					 * until all disks transition to the
20704 					 * standard page.
20705 					 */
20706 					mutex_enter(SD_MUTEX(un));
20707 					un->un_start_stop_cycle_page =
20708 					    START_STOP_CYCLE_VU_PAGE;
20709 					cdb.cdb_opaque[2] =
20710 					    (char)(page_control << 6) |
20711 					    un->un_start_stop_cycle_page;
20712 					mutex_exit(SD_MUTEX(un));
20713 					status = sd_send_scsi_cmd(
20714 					    SD_GET_DEV(un), &ucmd_buf,
20715 					    UIO_SYSSPACE, UIO_SYSSPACE,
20716 					    UIO_SYSSPACE, path_flag);
20717 
20718 					break;
20719 				case TEMPERATURE_PAGE:
20720 					status = ENOTTY;
20721 					break;
20722 				default:
20723 					break;
20724 				}
20725 			}
20726 			break;
20727 		default:
20728 			break;
20729 		}
20730 		break;
20731 	default:
20732 		break;
20733 	}
20734 
20735 	if (status == 0) {
20736 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
20737 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20738 	}
20739 
20740 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
20741 
20742 	return (status);
20743 }
20744 
20745 
20746 /*
20747  *    Function: sdioctl
20748  *
20749  * Description: Driver's ioctl(9e) entry point function.
20750  *
20751  *   Arguments: dev     - device number
20752  *		cmd     - ioctl operation to be performed
20753  *		arg     - user argument, contains data to be set or reference
20754  *			  parameter for get
20755  *		flag    - bit flag, indicating open settings, 32/64 bit type
20756  *		cred_p  - user credential pointer
20757  *		rval_p  - calling process return value (OPT)
20758  *
20759  * Return Code: EINVAL
20760  *		ENOTTY
20761  *		ENXIO
20762  *		EIO
20763  *		EFAULT
20764  *		ENOTSUP
20765  *		EPERM
20766  *
20767  *     Context: Called from the device switch at normal priority.
20768  */
20769 
20770 static int
20771 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
20772 {
20773 	struct sd_lun	*un = NULL;
20774 	int		geom_validated = FALSE;
20775 	int		err = 0;
20776 	int		i = 0;
20777 	cred_t		*cr;
20778 
20779 	/*
20780 	 * All device accesses go thru sdstrategy where we check on suspend
20781 	 * status
20782 	 */
20783 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20784 		return (ENXIO);
20785 	}
20786 
20787 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20788 
20789 	/*
20790 	 * Moved this wait from sd_uscsi_strategy to here for
20791 	 * reasons of deadlock prevention. Internal driver commands,
20792 	 * specifically those to change a devices power level, result
20793 	 * in a call to sd_uscsi_strategy.
20794 	 */
20795 	mutex_enter(SD_MUTEX(un));
20796 	while ((un->un_state == SD_STATE_SUSPENDED) ||
20797 	    (un->un_state == SD_STATE_PM_CHANGING)) {
20798 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
20799 	}
20800 	/*
20801 	 * Twiddling the counter here protects commands from now
20802 	 * through to the top of sd_uscsi_strategy. Without the
20803 	 * counter inc. a power down, for example, could get in
20804 	 * after the above check for state is made and before
20805 	 * execution gets to the top of sd_uscsi_strategy.
20806 	 * That would cause problems.
20807 	 */
20808 	un->un_ncmds_in_driver++;
20809 
20810 	if ((un->un_f_geometry_is_valid == FALSE) &&
20811 	    (flag & (FNDELAY | FNONBLOCK))) {
20812 		switch (cmd) {
20813 		case CDROMPAUSE:
20814 		case CDROMRESUME:
20815 		case CDROMPLAYMSF:
20816 		case CDROMPLAYTRKIND:
20817 		case CDROMREADTOCHDR:
20818 		case CDROMREADTOCENTRY:
20819 		case CDROMSTOP:
20820 		case CDROMSTART:
20821 		case CDROMVOLCTRL:
20822 		case CDROMSUBCHNL:
20823 		case CDROMREADMODE2:
20824 		case CDROMREADMODE1:
20825 		case CDROMREADOFFSET:
20826 		case CDROMSBLKMODE:
20827 		case CDROMGBLKMODE:
20828 		case CDROMGDRVSPEED:
20829 		case CDROMSDRVSPEED:
20830 		case CDROMCDDA:
20831 		case CDROMCDXA:
20832 		case CDROMSUBCODE:
20833 			if (!ISCD(un)) {
20834 				un->un_ncmds_in_driver--;
20835 				ASSERT(un->un_ncmds_in_driver >= 0);
20836 				mutex_exit(SD_MUTEX(un));
20837 				return (ENOTTY);
20838 			}
20839 			break;
20840 		case FDEJECT:
20841 		case DKIOCEJECT:
20842 		case CDROMEJECT:
20843 			if (!ISREMOVABLE(un)) {
20844 				un->un_ncmds_in_driver--;
20845 				ASSERT(un->un_ncmds_in_driver >= 0);
20846 				mutex_exit(SD_MUTEX(un));
20847 				return (ENOTTY);
20848 			}
20849 			break;
20850 		case DKIOCSVTOC:
20851 		case DKIOCSETEFI:
20852 		case DKIOCSMBOOT:
20853 		case DKIOCFLUSHWRITECACHE:
20854 			mutex_exit(SD_MUTEX(un));
20855 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20856 			if (err != 0) {
20857 				mutex_enter(SD_MUTEX(un));
20858 				un->un_ncmds_in_driver--;
20859 				ASSERT(un->un_ncmds_in_driver >= 0);
20860 				mutex_exit(SD_MUTEX(un));
20861 				return (EIO);
20862 			}
20863 			mutex_enter(SD_MUTEX(un));
20864 			/* FALLTHROUGH */
20865 		case DKIOCREMOVABLE:
20866 		case DKIOCINFO:
20867 		case DKIOCGMEDIAINFO:
20868 		case MHIOCENFAILFAST:
20869 		case MHIOCSTATUS:
20870 		case MHIOCTKOWN:
20871 		case MHIOCRELEASE:
20872 		case MHIOCGRP_INKEYS:
20873 		case MHIOCGRP_INRESV:
20874 		case MHIOCGRP_REGISTER:
20875 		case MHIOCGRP_RESERVE:
20876 		case MHIOCGRP_PREEMPTANDABORT:
20877 		case MHIOCGRP_REGISTERANDIGNOREKEY:
20878 		case CDROMCLOSETRAY:
20879 		case USCSICMD:
20880 			goto skip_ready_valid;
20881 		default:
20882 			break;
20883 		}
20884 
20885 		mutex_exit(SD_MUTEX(un));
20886 		err = sd_ready_and_valid(un);
20887 		mutex_enter(SD_MUTEX(un));
20888 		if (err == SD_READY_NOT_VALID) {
20889 			switch (cmd) {
20890 			case DKIOCGAPART:
20891 			case DKIOCGGEOM:
20892 			case DKIOCSGEOM:
20893 			case DKIOCGVTOC:
20894 			case DKIOCSVTOC:
20895 			case DKIOCSAPART:
20896 			case DKIOCG_PHYGEOM:
20897 			case DKIOCG_VIRTGEOM:
20898 				err = ENOTSUP;
20899 				un->un_ncmds_in_driver--;
20900 				ASSERT(un->un_ncmds_in_driver >= 0);
20901 				mutex_exit(SD_MUTEX(un));
20902 				return (err);
20903 			}
20904 		}
20905 		if (err != SD_READY_VALID) {
20906 			switch (cmd) {
20907 			case DKIOCSTATE:
20908 			case CDROMGDRVSPEED:
20909 			case CDROMSDRVSPEED:
20910 			case FDEJECT:	/* for eject command */
20911 			case DKIOCEJECT:
20912 			case CDROMEJECT:
20913 			case DKIOCGETEFI:
20914 			case DKIOCSGEOM:
20915 			case DKIOCREMOVABLE:
20916 			case DKIOCSAPART:
20917 			case DKIOCSETEFI:
20918 				break;
20919 			default:
20920 				if (ISREMOVABLE(un)) {
20921 					err = ENXIO;
20922 				} else {
20923 					/* Do not map EACCES to EIO */
20924 					if (err != EACCES)
20925 						err = EIO;
20926 				}
20927 				un->un_ncmds_in_driver--;
20928 				ASSERT(un->un_ncmds_in_driver >= 0);
20929 				mutex_exit(SD_MUTEX(un));
20930 				return (err);
20931 			}
20932 		}
20933 		geom_validated = TRUE;
20934 	}
20935 	if ((un->un_f_geometry_is_valid == TRUE) &&
20936 	    (un->un_solaris_size > 0)) {
20937 		/*
20938 		 * the "geometry_is_valid" flag could be true if we
20939 		 * have an fdisk table but no Solaris partition
20940 		 */
20941 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
20942 			/* it is EFI, so return ENOTSUP for these */
20943 			switch (cmd) {
20944 			case DKIOCGAPART:
20945 			case DKIOCGGEOM:
20946 			case DKIOCGVTOC:
20947 			case DKIOCSVTOC:
20948 			case DKIOCSAPART:
20949 				err = ENOTSUP;
20950 				un->un_ncmds_in_driver--;
20951 				ASSERT(un->un_ncmds_in_driver >= 0);
20952 				mutex_exit(SD_MUTEX(un));
20953 				return (err);
20954 			}
20955 		}
20956 	}
20957 
20958 skip_ready_valid:
20959 	mutex_exit(SD_MUTEX(un));
20960 
20961 	switch (cmd) {
20962 	case DKIOCINFO:
20963 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
20964 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
20965 		break;
20966 
20967 	case DKIOCGMEDIAINFO:
20968 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
20969 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
20970 		break;
20971 
20972 	case DKIOCGGEOM:
20973 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
20974 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
20975 		    geom_validated);
20976 		break;
20977 
20978 	case DKIOCSGEOM:
20979 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
20980 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
20981 		break;
20982 
20983 	case DKIOCGAPART:
20984 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
20985 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
20986 		    geom_validated);
20987 		break;
20988 
20989 	case DKIOCSAPART:
20990 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
20991 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
20992 		break;
20993 
20994 	case DKIOCGVTOC:
20995 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
20996 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
20997 		    geom_validated);
20998 		break;
20999 
21000 	case DKIOCGETEFI:
21001 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
21002 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
21003 		break;
21004 
21005 	case DKIOCPARTITION:
21006 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
21007 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
21008 		break;
21009 
21010 	case DKIOCSVTOC:
21011 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
21012 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
21013 		break;
21014 
21015 	case DKIOCSETEFI:
21016 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
21017 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
21018 		break;
21019 
21020 	case DKIOCGMBOOT:
21021 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
21022 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
21023 		break;
21024 
21025 	case DKIOCSMBOOT:
21026 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
21027 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
21028 		break;
21029 
21030 	case DKIOCLOCK:
21031 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21032 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21033 		    SD_PATH_STANDARD);
21034 		break;
21035 
21036 	case DKIOCUNLOCK:
21037 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21038 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
21039 		    SD_PATH_STANDARD);
21040 		break;
21041 
21042 	case DKIOCSTATE: {
21043 		enum dkio_state		state;
21044 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21045 
21046 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21047 			err = EFAULT;
21048 		} else {
21049 			err = sd_check_media(dev, state);
21050 			if (err == 0) {
21051 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21052 				    sizeof (int), flag) != 0)
21053 					err = EFAULT;
21054 			}
21055 		}
21056 		break;
21057 	}
21058 
21059 	case DKIOCREMOVABLE:
21060 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21061 		if (ISREMOVABLE(un)) {
21062 			i = 1;
21063 		} else {
21064 			i = 0;
21065 		}
21066 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21067 			err = EFAULT;
21068 		} else {
21069 			err = 0;
21070 		}
21071 		break;
21072 
21073 	case DKIOCGTEMPERATURE:
21074 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21075 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21076 		break;
21077 
21078 	case MHIOCENFAILFAST:
21079 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21080 		if ((err = drv_priv(cred_p)) == 0) {
21081 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21082 		}
21083 		break;
21084 
21085 	case MHIOCTKOWN:
21086 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21087 		if ((err = drv_priv(cred_p)) == 0) {
21088 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21089 		}
21090 		break;
21091 
21092 	case MHIOCRELEASE:
21093 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21094 		if ((err = drv_priv(cred_p)) == 0) {
21095 			err = sd_mhdioc_release(dev);
21096 		}
21097 		break;
21098 
21099 	case MHIOCSTATUS:
21100 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21101 		if ((err = drv_priv(cred_p)) == 0) {
21102 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
21103 			case 0:
21104 				err = 0;
21105 				break;
21106 			case EACCES:
21107 				*rval_p = 1;
21108 				err = 0;
21109 				break;
21110 			default:
21111 				err = EIO;
21112 				break;
21113 			}
21114 		}
21115 		break;
21116 
21117 	case MHIOCQRESERVE:
21118 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21119 		if ((err = drv_priv(cred_p)) == 0) {
21120 			err = sd_reserve_release(dev, SD_RESERVE);
21121 		}
21122 		break;
21123 
21124 	case MHIOCREREGISTERDEVID:
21125 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21126 		if (drv_priv(cred_p) == EPERM) {
21127 			err = EPERM;
21128 		} else if (ISREMOVABLE(un) || ISCD(un)) {
21129 			err = ENOTTY;
21130 		} else {
21131 			err = sd_mhdioc_register_devid(dev);
21132 		}
21133 		break;
21134 
21135 	case MHIOCGRP_INKEYS:
21136 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21137 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21138 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21139 				err = ENOTSUP;
21140 			} else {
21141 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21142 				    flag);
21143 			}
21144 		}
21145 		break;
21146 
21147 	case MHIOCGRP_INRESV:
21148 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21149 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21150 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21151 				err = ENOTSUP;
21152 			} else {
21153 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21154 			}
21155 		}
21156 		break;
21157 
21158 	case MHIOCGRP_REGISTER:
21159 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21160 		if ((err = drv_priv(cred_p)) != EPERM) {
21161 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21162 				err = ENOTSUP;
21163 			} else if (arg != NULL) {
21164 				mhioc_register_t reg;
21165 				if (ddi_copyin((void *)arg, &reg,
21166 				    sizeof (mhioc_register_t), flag) != 0) {
21167 					err = EFAULT;
21168 				} else {
21169 					err =
21170 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21171 					    un, SD_SCSI3_REGISTER,
21172 					    (uchar_t *)&reg);
21173 				}
21174 			}
21175 		}
21176 		break;
21177 
21178 	case MHIOCGRP_RESERVE:
21179 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21180 		if ((err = drv_priv(cred_p)) != EPERM) {
21181 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21182 				err = ENOTSUP;
21183 			} else if (arg != NULL) {
21184 				mhioc_resv_desc_t resv_desc;
21185 				if (ddi_copyin((void *)arg, &resv_desc,
21186 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21187 					err = EFAULT;
21188 				} else {
21189 					err =
21190 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21191 					    un, SD_SCSI3_RESERVE,
21192 					    (uchar_t *)&resv_desc);
21193 				}
21194 			}
21195 		}
21196 		break;
21197 
21198 	case MHIOCGRP_PREEMPTANDABORT:
21199 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21200 		if ((err = drv_priv(cred_p)) != EPERM) {
21201 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21202 				err = ENOTSUP;
21203 			} else if (arg != NULL) {
21204 				mhioc_preemptandabort_t preempt_abort;
21205 				if (ddi_copyin((void *)arg, &preempt_abort,
21206 				    sizeof (mhioc_preemptandabort_t),
21207 				    flag) != 0) {
21208 					err = EFAULT;
21209 				} else {
21210 					err =
21211 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21212 					    un, SD_SCSI3_PREEMPTANDABORT,
21213 					    (uchar_t *)&preempt_abort);
21214 				}
21215 			}
21216 		}
21217 		break;
21218 
21219 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21220 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21221 		if ((err = drv_priv(cred_p)) != EPERM) {
21222 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21223 				err = ENOTSUP;
21224 			} else if (arg != NULL) {
21225 				mhioc_registerandignorekey_t r_and_i;
21226 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21227 				    sizeof (mhioc_registerandignorekey_t),
21228 				    flag) != 0) {
21229 					err = EFAULT;
21230 				} else {
21231 					err =
21232 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21233 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21234 					    (uchar_t *)&r_and_i);
21235 				}
21236 			}
21237 		}
21238 		break;
21239 
21240 	case USCSICMD:
21241 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21242 		cr = ddi_get_cred();
21243 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21244 			err = EPERM;
21245 		} else {
21246 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
21247 		}
21248 		break;
21249 
21250 	case CDROMPAUSE:
21251 	case CDROMRESUME:
21252 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21253 		if (!ISCD(un)) {
21254 			err = ENOTTY;
21255 		} else {
21256 			err = sr_pause_resume(dev, cmd);
21257 		}
21258 		break;
21259 
21260 	case CDROMPLAYMSF:
21261 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21262 		if (!ISCD(un)) {
21263 			err = ENOTTY;
21264 		} else {
21265 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21266 		}
21267 		break;
21268 
21269 	case CDROMPLAYTRKIND:
21270 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21271 #if defined(__i386) || defined(__amd64)
21272 		/*
21273 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21274 		 */
21275 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21276 #else
21277 		if (!ISCD(un)) {
21278 #endif
21279 			err = ENOTTY;
21280 		} else {
21281 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21282 		}
21283 		break;
21284 
21285 	case CDROMREADTOCHDR:
21286 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21287 		if (!ISCD(un)) {
21288 			err = ENOTTY;
21289 		} else {
21290 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21291 		}
21292 		break;
21293 
21294 	case CDROMREADTOCENTRY:
21295 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21296 		if (!ISCD(un)) {
21297 			err = ENOTTY;
21298 		} else {
21299 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21300 		}
21301 		break;
21302 
21303 	case CDROMSTOP:
21304 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21305 		if (!ISCD(un)) {
21306 			err = ENOTTY;
21307 		} else {
21308 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21309 			    SD_PATH_STANDARD);
21310 		}
21311 		break;
21312 
21313 	case CDROMSTART:
21314 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21315 		if (!ISCD(un)) {
21316 			err = ENOTTY;
21317 		} else {
21318 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21319 			    SD_PATH_STANDARD);
21320 		}
21321 		break;
21322 
21323 	case CDROMCLOSETRAY:
21324 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21325 		if (!ISCD(un)) {
21326 			err = ENOTTY;
21327 		} else {
21328 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21329 			    SD_PATH_STANDARD);
21330 		}
21331 		break;
21332 
21333 	case FDEJECT:	/* for eject command */
21334 	case DKIOCEJECT:
21335 	case CDROMEJECT:
21336 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21337 		if (!ISREMOVABLE(un)) {
21338 			err = ENOTTY;
21339 		} else {
21340 			err = sr_eject(dev);
21341 		}
21342 		break;
21343 
21344 	case CDROMVOLCTRL:
21345 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21346 		if (!ISCD(un)) {
21347 			err = ENOTTY;
21348 		} else {
21349 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21350 		}
21351 		break;
21352 
21353 	case CDROMSUBCHNL:
21354 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21355 		if (!ISCD(un)) {
21356 			err = ENOTTY;
21357 		} else {
21358 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21359 		}
21360 		break;
21361 
21362 	case CDROMREADMODE2:
21363 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21364 		if (!ISCD(un)) {
21365 			err = ENOTTY;
21366 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21367 			/*
21368 			 * If the drive supports READ CD, use that instead of
21369 			 * switching the LBA size via a MODE SELECT
21370 			 * Block Descriptor
21371 			 */
21372 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21373 		} else {
21374 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21375 		}
21376 		break;
21377 
21378 	case CDROMREADMODE1:
21379 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21380 		if (!ISCD(un)) {
21381 			err = ENOTTY;
21382 		} else {
21383 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21384 		}
21385 		break;
21386 
21387 	case CDROMREADOFFSET:
21388 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21389 		if (!ISCD(un)) {
21390 			err = ENOTTY;
21391 		} else {
21392 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21393 			    flag);
21394 		}
21395 		break;
21396 
21397 	case CDROMSBLKMODE:
21398 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21399 		/*
21400 		 * There is no means of changing block size in case of atapi
21401 		 * drives, thus return ENOTTY if drive type is atapi
21402 		 */
21403 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21404 			err = ENOTTY;
21405 		} else if (un->un_f_mmc_cap == TRUE) {
21406 
21407 			/*
21408 			 * MMC Devices do not support changing the
21409 			 * logical block size
21410 			 *
21411 			 * Note: EINVAL is being returned instead of ENOTTY to
21412 			 * maintain consistancy with the original mmc
21413 			 * driver update.
21414 			 */
21415 			err = EINVAL;
21416 		} else {
21417 			mutex_enter(SD_MUTEX(un));
21418 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21419 			    (un->un_ncmds_in_transport > 0)) {
21420 				mutex_exit(SD_MUTEX(un));
21421 				err = EINVAL;
21422 			} else {
21423 				mutex_exit(SD_MUTEX(un));
21424 				err = sr_change_blkmode(dev, cmd, arg, flag);
21425 			}
21426 		}
21427 		break;
21428 
21429 	case CDROMGBLKMODE:
21430 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21431 		if (!ISCD(un)) {
21432 			err = ENOTTY;
21433 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21434 		    (un->un_f_blockcount_is_valid != FALSE)) {
21435 			/*
21436 			 * Drive is an ATAPI drive so return target block
21437 			 * size for ATAPI drives since we cannot change the
21438 			 * blocksize on ATAPI drives. Used primarily to detect
21439 			 * if an ATAPI cdrom is present.
21440 			 */
21441 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21442 			    sizeof (int), flag) != 0) {
21443 				err = EFAULT;
21444 			} else {
21445 				err = 0;
21446 			}
21447 
21448 		} else {
21449 			/*
21450 			 * Drive supports changing block sizes via a Mode
21451 			 * Select.
21452 			 */
21453 			err = sr_change_blkmode(dev, cmd, arg, flag);
21454 		}
21455 		break;
21456 
21457 	case CDROMGDRVSPEED:
21458 	case CDROMSDRVSPEED:
21459 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21460 		if (!ISCD(un)) {
21461 			err = ENOTTY;
21462 		} else if (un->un_f_mmc_cap == TRUE) {
21463 			/*
21464 			 * Note: In the future the driver implementation
21465 			 * for getting and
21466 			 * setting cd speed should entail:
21467 			 * 1) If non-mmc try the Toshiba mode page
21468 			 *    (sr_change_speed)
21469 			 * 2) If mmc but no support for Real Time Streaming try
21470 			 *    the SET CD SPEED (0xBB) command
21471 			 *   (sr_atapi_change_speed)
21472 			 * 3) If mmc and support for Real Time Streaming
21473 			 *    try the GET PERFORMANCE and SET STREAMING
21474 			 *    commands (not yet implemented, 4380808)
21475 			 */
21476 			/*
21477 			 * As per recent MMC spec, CD-ROM speed is variable
21478 			 * and changes with LBA. Since there is no such
21479 			 * things as drive speed now, fail this ioctl.
21480 			 *
21481 			 * Note: EINVAL is returned for consistancy of original
21482 			 * implementation which included support for getting
21483 			 * the drive speed of mmc devices but not setting
21484 			 * the drive speed. Thus EINVAL would be returned
21485 			 * if a set request was made for an mmc device.
21486 			 * We no longer support get or set speed for
21487 			 * mmc but need to remain consistant with regard
21488 			 * to the error code returned.
21489 			 */
21490 			err = EINVAL;
21491 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21492 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21493 		} else {
21494 			err = sr_change_speed(dev, cmd, arg, flag);
21495 		}
21496 		break;
21497 
21498 	case CDROMCDDA:
21499 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21500 		if (!ISCD(un)) {
21501 			err = ENOTTY;
21502 		} else {
21503 			err = sr_read_cdda(dev, (void *)arg, flag);
21504 		}
21505 		break;
21506 
21507 	case CDROMCDXA:
21508 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21509 		if (!ISCD(un)) {
21510 			err = ENOTTY;
21511 		} else {
21512 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21513 		}
21514 		break;
21515 
21516 	case CDROMSUBCODE:
21517 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21518 		if (!ISCD(un)) {
21519 			err = ENOTTY;
21520 		} else {
21521 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21522 		}
21523 		break;
21524 
21525 	case DKIOCPARTINFO: {
21526 		/*
21527 		 * Return parameters describing the selected disk slice.
21528 		 * Note: this ioctl is for the intel platform only
21529 		 */
21530 #if defined(__i386) || defined(__amd64)
21531 		int part;
21532 
21533 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21534 		part = SDPART(dev);
21535 
21536 		/* don't check un_solaris_size for pN */
21537 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
21538 			err = EIO;
21539 		} else {
21540 			struct part_info p;
21541 
21542 			p.p_start = (daddr_t)un->un_offset[part];
21543 			p.p_length = (int)un->un_map[part].dkl_nblk;
21544 #ifdef _MULTI_DATAMODEL
21545 			switch (ddi_model_convert_from(flag & FMODELS)) {
21546 			case DDI_MODEL_ILP32:
21547 			{
21548 				struct part_info32 p32;
21549 
21550 				p32.p_start = (daddr32_t)p.p_start;
21551 				p32.p_length = p.p_length;
21552 				if (ddi_copyout(&p32, (void *)arg,
21553 				    sizeof (p32), flag))
21554 					err = EFAULT;
21555 				break;
21556 			}
21557 
21558 			case DDI_MODEL_NONE:
21559 			{
21560 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
21561 				    flag))
21562 					err = EFAULT;
21563 				break;
21564 			}
21565 			}
21566 #else /* ! _MULTI_DATAMODEL */
21567 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
21568 				err = EFAULT;
21569 #endif /* _MULTI_DATAMODEL */
21570 		}
21571 #else
21572 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21573 		err = ENOTTY;
21574 #endif
21575 		break;
21576 	}
21577 
21578 	case DKIOCG_PHYGEOM: {
21579 		/* Return the driver's notion of the media physical geometry */
21580 #if defined(__i386) || defined(__amd64)
21581 		struct dk_geom	disk_geom;
21582 		struct dk_geom	*dkgp = &disk_geom;
21583 
21584 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21585 		mutex_enter(SD_MUTEX(un));
21586 
21587 		if (un->un_g.dkg_nhead != 0 &&
21588 		    un->un_g.dkg_nsect != 0) {
21589 			/*
21590 			 * We succeeded in getting a geometry, but
21591 			 * right now it is being reported as just the
21592 			 * Solaris fdisk partition, just like for
21593 			 * DKIOCGGEOM. We need to change that to be
21594 			 * correct for the entire disk now.
21595 			 */
21596 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
21597 			dkgp->dkg_acyl = 0;
21598 			dkgp->dkg_ncyl = un->un_blockcount /
21599 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21600 		} else {
21601 			bzero(dkgp, sizeof (struct dk_geom));
21602 			/*
21603 			 * This disk does not have a Solaris VTOC
21604 			 * so we must present a physical geometry
21605 			 * that will remain consistent regardless
21606 			 * of how the disk is used. This will ensure
21607 			 * that the geometry does not change regardless
21608 			 * of the fdisk partition type (ie. EFI, FAT32,
21609 			 * Solaris, etc).
21610 			 */
21611 			if (ISCD(un)) {
21612 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
21613 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
21614 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
21615 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
21616 			} else {
21617 				/*
21618 				 * Invalid un_blockcount can generate invalid
21619 				 * dk_geom and may result in division by zero
21620 				 * system failure. Should make sure blockcount
21621 				 * is valid before using it here.
21622 				 */
21623 				if (un->un_f_blockcount_is_valid == FALSE) {
21624 					mutex_exit(SD_MUTEX(un));
21625 					err = EIO;
21626 
21627 					break;
21628 				}
21629 				sd_convert_geometry(un->un_blockcount, dkgp);
21630 				dkgp->dkg_acyl = 0;
21631 				dkgp->dkg_ncyl = un->un_blockcount /
21632 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21633 			}
21634 		}
21635 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
21636 
21637 		if (ddi_copyout(dkgp, (void *)arg,
21638 		    sizeof (struct dk_geom), flag)) {
21639 			mutex_exit(SD_MUTEX(un));
21640 			err = EFAULT;
21641 		} else {
21642 			mutex_exit(SD_MUTEX(un));
21643 			err = 0;
21644 		}
21645 #else
21646 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21647 		err = ENOTTY;
21648 #endif
21649 		break;
21650 	}
21651 
21652 	case DKIOCG_VIRTGEOM: {
21653 		/* Return the driver's notion of the media's logical geometry */
21654 #if defined(__i386) || defined(__amd64)
21655 		struct dk_geom	disk_geom;
21656 		struct dk_geom	*dkgp = &disk_geom;
21657 
21658 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21659 		mutex_enter(SD_MUTEX(un));
21660 		/*
21661 		 * If there is no HBA geometry available, or
21662 		 * if the HBA returned us something that doesn't
21663 		 * really fit into an Int 13/function 8 geometry
21664 		 * result, just fail the ioctl.  See PSARC 1998/313.
21665 		 */
21666 		if (un->un_lgeom.g_nhead == 0 ||
21667 		    un->un_lgeom.g_nsect == 0 ||
21668 		    un->un_lgeom.g_ncyl > 1024) {
21669 			mutex_exit(SD_MUTEX(un));
21670 			err = EINVAL;
21671 		} else {
21672 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
21673 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
21674 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
21675 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
21676 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
21677 
21678 			if (ddi_copyout(dkgp, (void *)arg,
21679 			    sizeof (struct dk_geom), flag)) {
21680 				mutex_exit(SD_MUTEX(un));
21681 				err = EFAULT;
21682 			} else {
21683 				mutex_exit(SD_MUTEX(un));
21684 				err = 0;
21685 			}
21686 		}
21687 #else
21688 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21689 		err = ENOTTY;
21690 #endif
21691 		break;
21692 	}
21693 #ifdef SDDEBUG
21694 /* RESET/ABORTS testing ioctls */
21695 	case DKIOCRESET: {
21696 		int	reset_level;
21697 
21698 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21699 			err = EFAULT;
21700 		} else {
21701 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21702 			    "reset_level = 0x%lx\n", reset_level);
21703 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21704 				err = 0;
21705 			} else {
21706 				err = EIO;
21707 			}
21708 		}
21709 		break;
21710 	}
21711 
21712 	case DKIOCABORT:
21713 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21714 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21715 			err = 0;
21716 		} else {
21717 			err = EIO;
21718 		}
21719 		break;
21720 #endif
21721 
21722 #ifdef SD_FAULT_INJECTION
21723 /* SDIOC FaultInjection testing ioctls */
21724 	case SDIOCSTART:
21725 	case SDIOCSTOP:
21726 	case SDIOCINSERTPKT:
21727 	case SDIOCINSERTXB:
21728 	case SDIOCINSERTUN:
21729 	case SDIOCINSERTARQ:
21730 	case SDIOCPUSH:
21731 	case SDIOCRETRIEVE:
21732 	case SDIOCRUN:
21733 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21734 		    "SDIOC detected cmd:0x%X:\n", cmd);
21735 		/* call error generator */
21736 		sd_faultinjection_ioctl(cmd, arg, un);
21737 		err = 0;
21738 		break;
21739 
21740 #endif /* SD_FAULT_INJECTION */
21741 
21742 	case DKIOCFLUSHWRITECACHE:
21743 		{
21744 			struct dk_callback *dkc = (struct dk_callback *)arg;
21745 
21746 			mutex_enter(SD_MUTEX(un));
21747 			if (un->un_f_sync_cache_unsupported ||
21748 			    ! un->un_f_write_cache_enabled) {
21749 				err = un->un_f_sync_cache_unsupported ?
21750 					ENOTSUP : 0;
21751 				mutex_exit(SD_MUTEX(un));
21752 				if ((flag & FKIOCTL) && dkc != NULL &&
21753 				    dkc->dkc_callback != NULL) {
21754 					(*dkc->dkc_callback)(dkc->dkc_cookie,
21755 					    err);
21756 					/*
21757 					 * Did callback and reported error.
21758 					 * Since we did a callback, ioctl
21759 					 * should return 0.
21760 					 */
21761 					err = 0;
21762 				}
21763 				break;
21764 			}
21765 			mutex_exit(SD_MUTEX(un));
21766 
21767 			if ((flag & FKIOCTL) && dkc != NULL &&
21768 			    dkc->dkc_callback != NULL) {
21769 				/* async SYNC CACHE request */
21770 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
21771 			} else {
21772 				/* synchronous SYNC CACHE request */
21773 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
21774 			}
21775 		}
21776 		break;
21777 
21778 	default:
21779 		err = ENOTTY;
21780 		break;
21781 	}
21782 	mutex_enter(SD_MUTEX(un));
21783 	un->un_ncmds_in_driver--;
21784 	ASSERT(un->un_ncmds_in_driver >= 0);
21785 	mutex_exit(SD_MUTEX(un));
21786 
21787 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
21788 	return (err);
21789 }
21790 
21791 
21792 /*
21793  *    Function: sd_uscsi_ioctl
21794  *
21795  * Description: This routine is the driver entry point for handling USCSI ioctl
21796  *		requests (USCSICMD).
21797  *
21798  *   Arguments: dev	- the device number
21799  *		arg	- user provided scsi command
21800  *		flag	- this argument is a pass through to ddi_copyxxx()
21801  *			  directly from the mode argument of ioctl().
21802  *
21803  * Return Code: code returned by sd_send_scsi_cmd
21804  *		ENXIO
21805  *		EFAULT
21806  *		EAGAIN
21807  */
21808 
21809 static int
21810 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
21811 {
21812 #ifdef _MULTI_DATAMODEL
21813 	/*
21814 	 * For use when a 32 bit app makes a call into a
21815 	 * 64 bit ioctl
21816 	 */
21817 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
21818 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
21819 	model_t			model;
21820 #endif /* _MULTI_DATAMODEL */
21821 	struct uscsi_cmd	*scmd = NULL;
21822 	struct sd_lun		*un = NULL;
21823 	enum uio_seg		uioseg;
21824 	char			cdb[CDB_GROUP0];
21825 	int			rval = 0;
21826 
21827 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21828 		return (ENXIO);
21829 	}
21830 
21831 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
21832 
21833 	scmd = (struct uscsi_cmd *)
21834 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21835 
21836 #ifdef _MULTI_DATAMODEL
21837 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
21838 	case DDI_MODEL_ILP32:
21839 	{
21840 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
21841 			rval = EFAULT;
21842 			goto done;
21843 		}
21844 		/*
21845 		 * Convert the ILP32 uscsi data from the
21846 		 * application to LP64 for internal use.
21847 		 */
21848 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
21849 		break;
21850 	}
21851 	case DDI_MODEL_NONE:
21852 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21853 			rval = EFAULT;
21854 			goto done;
21855 		}
21856 		break;
21857 	}
21858 #else /* ! _MULTI_DATAMODEL */
21859 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21860 		rval = EFAULT;
21861 		goto done;
21862 	}
21863 #endif /* _MULTI_DATAMODEL */
21864 
21865 	scmd->uscsi_flags &= ~USCSI_NOINTR;
21866 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
21867 	if (un->un_f_format_in_progress == TRUE) {
21868 		rval = EAGAIN;
21869 		goto done;
21870 	}
21871 
21872 	/*
21873 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
21874 	 * we will have a valid cdb[0] to test.
21875 	 */
21876 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
21877 	    (cdb[0] == SCMD_FORMAT)) {
21878 		SD_TRACE(SD_LOG_IOCTL, un,
21879 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21880 		mutex_enter(SD_MUTEX(un));
21881 		un->un_f_format_in_progress = TRUE;
21882 		mutex_exit(SD_MUTEX(un));
21883 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21884 		    SD_PATH_STANDARD);
21885 		mutex_enter(SD_MUTEX(un));
21886 		un->un_f_format_in_progress = FALSE;
21887 		mutex_exit(SD_MUTEX(un));
21888 	} else {
21889 		SD_TRACE(SD_LOG_IOCTL, un,
21890 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21891 		/*
21892 		 * It's OK to fall into here even if the ddi_copyin()
21893 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
21894 		 * does this same copyin and will return the EFAULT
21895 		 * if it fails.
21896 		 */
21897 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21898 		    SD_PATH_STANDARD);
21899 	}
21900 #ifdef _MULTI_DATAMODEL
21901 	switch (model) {
21902 	case DDI_MODEL_ILP32:
21903 		/*
21904 		 * Convert back to ILP32 before copyout to the
21905 		 * application
21906 		 */
21907 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
21908 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
21909 			if (rval != 0) {
21910 				rval = EFAULT;
21911 			}
21912 		}
21913 		break;
21914 	case DDI_MODEL_NONE:
21915 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21916 			if (rval != 0) {
21917 				rval = EFAULT;
21918 			}
21919 		}
21920 		break;
21921 	}
21922 #else /* ! _MULTI_DATAMODE */
21923 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21924 		if (rval != 0) {
21925 			rval = EFAULT;
21926 		}
21927 	}
21928 #endif /* _MULTI_DATAMODE */
21929 done:
21930 	kmem_free(scmd, sizeof (struct uscsi_cmd));
21931 
21932 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
21933 
21934 	return (rval);
21935 }
21936 
21937 
21938 /*
21939  *    Function: sd_dkio_ctrl_info
21940  *
21941  * Description: This routine is the driver entry point for handling controller
21942  *		information ioctl requests (DKIOCINFO).
21943  *
21944  *   Arguments: dev  - the device number
21945  *		arg  - pointer to user provided dk_cinfo structure
21946  *		       specifying the controller type and attributes.
21947  *		flag - this argument is a pass through to ddi_copyxxx()
21948  *		       directly from the mode argument of ioctl().
21949  *
21950  * Return Code: 0
21951  *		EFAULT
21952  *		ENXIO
21953  */
21954 
21955 static int
21956 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
21957 {
21958 	struct sd_lun	*un = NULL;
21959 	struct dk_cinfo	*info;
21960 	dev_info_t	*pdip;
21961 	int		lun, tgt;
21962 
21963 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21964 		return (ENXIO);
21965 	}
21966 
21967 	info = (struct dk_cinfo *)
21968 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
21969 
21970 	switch (un->un_ctype) {
21971 	case CTYPE_CDROM:
21972 		info->dki_ctype = DKC_CDROM;
21973 		break;
21974 	default:
21975 		info->dki_ctype = DKC_SCSI_CCS;
21976 		break;
21977 	}
21978 	pdip = ddi_get_parent(SD_DEVINFO(un));
21979 	info->dki_cnum = ddi_get_instance(pdip);
21980 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
21981 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
21982 	} else {
21983 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
21984 		    DK_DEVLEN - 1);
21985 	}
21986 
21987 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
21988 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
21989 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
21990 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
21991 
21992 	/* Unit Information */
21993 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
21994 	info->dki_slave = ((tgt << 3) | lun);
21995 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
21996 	    DK_DEVLEN - 1);
21997 	info->dki_flags = DKI_FMTVOL;
21998 	info->dki_partition = SDPART(dev);
21999 
22000 	/* Max Transfer size of this device in blocks */
22001 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22002 	info->dki_addr = 0;
22003 	info->dki_space = 0;
22004 	info->dki_prio = 0;
22005 	info->dki_vec = 0;
22006 
22007 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22008 		kmem_free(info, sizeof (struct dk_cinfo));
22009 		return (EFAULT);
22010 	} else {
22011 		kmem_free(info, sizeof (struct dk_cinfo));
22012 		return (0);
22013 	}
22014 }
22015 
22016 
22017 /*
22018  *    Function: sd_get_media_info
22019  *
22020  * Description: This routine is the driver entry point for handling ioctl
22021  *		requests for the media type or command set profile used by the
22022  *		drive to operate on the media (DKIOCGMEDIAINFO).
22023  *
22024  *   Arguments: dev	- the device number
22025  *		arg	- pointer to user provided dk_minfo structure
22026  *			  specifying the media type, logical block size and
22027  *			  drive capacity.
22028  *		flag	- this argument is a pass through to ddi_copyxxx()
22029  *			  directly from the mode argument of ioctl().
22030  *
22031  * Return Code: 0
22032  *		EACCESS
22033  *		EFAULT
22034  *		ENXIO
22035  *		EIO
22036  */
22037 
22038 static int
22039 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22040 {
22041 	struct sd_lun		*un = NULL;
22042 	struct uscsi_cmd	com;
22043 	struct scsi_inquiry	*sinq;
22044 	struct dk_minfo		media_info;
22045 	u_longlong_t		media_capacity;
22046 	uint64_t		capacity;
22047 	uint_t			lbasize;
22048 	uchar_t			*out_data;
22049 	uchar_t			*rqbuf;
22050 	int			rval = 0;
22051 	int			rtn;
22052 
22053 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22054 	    (un->un_state == SD_STATE_OFFLINE)) {
22055 		return (ENXIO);
22056 	}
22057 
22058 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22059 
22060 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22061 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22062 
22063 	/* Issue a TUR to determine if the drive is ready with media present */
22064 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
22065 	if (rval == ENXIO) {
22066 		goto done;
22067 	}
22068 
22069 	/* Now get configuration data */
22070 	if (ISCD(un)) {
22071 		media_info.dki_media_type = DK_CDROM;
22072 
22073 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22074 		if (un->un_f_mmc_cap == TRUE) {
22075 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
22076 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
22077 
22078 			if (rtn) {
22079 				/*
22080 				 * Failed for other than an illegal request
22081 				 * or command not supported
22082 				 */
22083 				if ((com.uscsi_status == STATUS_CHECK) &&
22084 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22085 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22086 					    (rqbuf[12] != 0x20)) {
22087 						rval = EIO;
22088 						goto done;
22089 					}
22090 				}
22091 			} else {
22092 				/*
22093 				 * The GET CONFIGURATION command succeeded
22094 				 * so set the media type according to the
22095 				 * returned data
22096 				 */
22097 				media_info.dki_media_type = out_data[6];
22098 				media_info.dki_media_type <<= 8;
22099 				media_info.dki_media_type |= out_data[7];
22100 			}
22101 		}
22102 	} else {
22103 		/*
22104 		 * The profile list is not available, so we attempt to identify
22105 		 * the media type based on the inquiry data
22106 		 */
22107 		sinq = un->un_sd->sd_inq;
22108 		if (sinq->inq_qual == 0) {
22109 			/* This is a direct access device */
22110 			media_info.dki_media_type = DK_FIXED_DISK;
22111 
22112 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22113 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22114 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22115 					media_info.dki_media_type = DK_ZIP;
22116 				} else if (
22117 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22118 					media_info.dki_media_type = DK_JAZ;
22119 				}
22120 			}
22121 		} else {
22122 			/* Not a CD or direct access so return unknown media */
22123 			media_info.dki_media_type = DK_UNKNOWN;
22124 		}
22125 	}
22126 
22127 	/* Now read the capacity so we can provide the lbasize and capacity */
22128 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
22129 	    SD_PATH_DIRECT)) {
22130 	case 0:
22131 		break;
22132 	case EACCES:
22133 		rval = EACCES;
22134 		goto done;
22135 	default:
22136 		rval = EIO;
22137 		goto done;
22138 	}
22139 
22140 	media_info.dki_lbsize = lbasize;
22141 	media_capacity = capacity;
22142 
22143 	/*
22144 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22145 	 * un->un_sys_blocksize chunks. So we need to convert it into
22146 	 * cap.lbasize chunks.
22147 	 */
22148 	media_capacity *= un->un_sys_blocksize;
22149 	media_capacity /= lbasize;
22150 	media_info.dki_capacity = media_capacity;
22151 
22152 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22153 		rval = EFAULT;
22154 		/* Put goto. Anybody might add some code below in future */
22155 		goto done;
22156 	}
22157 done:
22158 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22159 	kmem_free(rqbuf, SENSE_LENGTH);
22160 	return (rval);
22161 }
22162 
22163 
22164 /*
22165  *    Function: sd_dkio_get_geometry
22166  *
22167  * Description: This routine is the driver entry point for handling user
22168  *		requests to get the device geometry (DKIOCGGEOM).
22169  *
22170  *   Arguments: dev  - the device number
22171  *		arg  - pointer to user provided dk_geom structure specifying
22172  *			the controller's notion of the current geometry.
22173  *		flag - this argument is a pass through to ddi_copyxxx()
22174  *		       directly from the mode argument of ioctl().
22175  *		geom_validated - flag indicating if the device geometry has been
22176  *				 previously validated in the sdioctl routine.
22177  *
22178  * Return Code: 0
22179  *		EFAULT
22180  *		ENXIO
22181  *		EIO
22182  */
22183 
22184 static int
22185 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
22186 {
22187 	struct sd_lun	*un = NULL;
22188 	struct dk_geom	*tmp_geom = NULL;
22189 	int		rval = 0;
22190 
22191 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22192 		return (ENXIO);
22193 	}
22194 
22195 #if defined(__i386) || defined(__amd64)
22196 	if (un->un_solaris_size == 0) {
22197 		return (EIO);
22198 	}
22199 #endif
22200 	if (geom_validated == FALSE) {
22201 		/*
22202 		 * sd_validate_geometry does not spin a disk up
22203 		 * if it was spun down. We need to make sure it
22204 		 * is ready.
22205 		 */
22206 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22207 			return (rval);
22208 		}
22209 		mutex_enter(SD_MUTEX(un));
22210 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
22211 		mutex_exit(SD_MUTEX(un));
22212 	}
22213 	if (rval)
22214 		return (rval);
22215 
22216 	/*
22217 	 * Make a local copy of the soft state geometry to avoid some potential
22218 	 * race conditions associated with holding the mutex and updating the
22219 	 * write_reinstruct value
22220 	 */
22221 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22222 	mutex_enter(SD_MUTEX(un));
22223 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
22224 	mutex_exit(SD_MUTEX(un));
22225 
22226 	if (tmp_geom->dkg_write_reinstruct == 0) {
22227 		tmp_geom->dkg_write_reinstruct =
22228 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
22229 		    sd_rot_delay) / (int)60000);
22230 	}
22231 
22232 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
22233 	    flag);
22234 	if (rval != 0) {
22235 		rval = EFAULT;
22236 	}
22237 
22238 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22239 	return (rval);
22240 
22241 }
22242 
22243 
22244 /*
22245  *    Function: sd_dkio_set_geometry
22246  *
22247  * Description: This routine is the driver entry point for handling user
22248  *		requests to set the device geometry (DKIOCSGEOM). The actual
22249  *		device geometry is not updated, just the driver "notion" of it.
22250  *
22251  *   Arguments: dev  - the device number
22252  *		arg  - pointer to user provided dk_geom structure used to set
22253  *			the controller's notion of the current geometry.
22254  *		flag - this argument is a pass through to ddi_copyxxx()
22255  *		       directly from the mode argument of ioctl().
22256  *
22257  * Return Code: 0
22258  *		EFAULT
22259  *		ENXIO
22260  *		EIO
22261  */
22262 
22263 static int
22264 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
22265 {
22266 	struct sd_lun	*un = NULL;
22267 	struct dk_geom	*tmp_geom;
22268 	struct dk_map	*lp;
22269 	int		rval = 0;
22270 	int		i;
22271 
22272 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22273 		return (ENXIO);
22274 	}
22275 
22276 #if defined(__i386) || defined(__amd64)
22277 	if (un->un_solaris_size == 0) {
22278 		return (EIO);
22279 	}
22280 #endif
22281 	/*
22282 	 * We need to copy the user specified geometry into local
22283 	 * storage and then update the softstate. We don't want to hold
22284 	 * the mutex and copyin directly from the user to the soft state
22285 	 */
22286 	tmp_geom = (struct dk_geom *)
22287 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22288 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22289 	if (rval != 0) {
22290 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22291 		return (EFAULT);
22292 	}
22293 
22294 	mutex_enter(SD_MUTEX(un));
22295 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22296 	for (i = 0; i < NDKMAP; i++) {
22297 		lp  = &un->un_map[i];
22298 		un->un_offset[i] =
22299 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22300 #if defined(__i386) || defined(__amd64)
22301 		un->un_offset[i] += un->un_solaris_offset;
22302 #endif
22303 	}
22304 	un->un_f_geometry_is_valid = FALSE;
22305 	mutex_exit(SD_MUTEX(un));
22306 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22307 
22308 	return (rval);
22309 }
22310 
22311 
22312 /*
22313  *    Function: sd_dkio_get_partition
22314  *
22315  * Description: This routine is the driver entry point for handling user
22316  *		requests to get the partition table (DKIOCGAPART).
22317  *
22318  *   Arguments: dev  - the device number
22319  *		arg  - pointer to user provided dk_allmap structure specifying
22320  *			the controller's notion of the current partition table.
22321  *		flag - this argument is a pass through to ddi_copyxxx()
22322  *		       directly from the mode argument of ioctl().
22323  *		geom_validated - flag indicating if the device geometry has been
22324  *				 previously validated in the sdioctl routine.
22325  *
22326  * Return Code: 0
22327  *		EFAULT
22328  *		ENXIO
22329  *		EIO
22330  */
22331 
22332 static int
22333 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
22334 {
22335 	struct sd_lun	*un = NULL;
22336 	int		rval = 0;
22337 	int		size;
22338 
22339 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22340 		return (ENXIO);
22341 	}
22342 
22343 #if defined(__i386) || defined(__amd64)
22344 	if (un->un_solaris_size == 0) {
22345 		return (EIO);
22346 	}
22347 #endif
22348 	/*
22349 	 * Make sure the geometry is valid before getting the partition
22350 	 * information.
22351 	 */
22352 	mutex_enter(SD_MUTEX(un));
22353 	if (geom_validated == FALSE) {
22354 		/*
22355 		 * sd_validate_geometry does not spin a disk up
22356 		 * if it was spun down. We need to make sure it
22357 		 * is ready before validating the geometry.
22358 		 */
22359 		mutex_exit(SD_MUTEX(un));
22360 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22361 			return (rval);
22362 		}
22363 		mutex_enter(SD_MUTEX(un));
22364 
22365 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22366 			mutex_exit(SD_MUTEX(un));
22367 			return (rval);
22368 		}
22369 	}
22370 	mutex_exit(SD_MUTEX(un));
22371 
22372 #ifdef _MULTI_DATAMODEL
22373 	switch (ddi_model_convert_from(flag & FMODELS)) {
22374 	case DDI_MODEL_ILP32: {
22375 		struct dk_map32 dk_map32[NDKMAP];
22376 		int		i;
22377 
22378 		for (i = 0; i < NDKMAP; i++) {
22379 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
22380 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22381 		}
22382 		size = NDKMAP * sizeof (struct dk_map32);
22383 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
22384 		if (rval != 0) {
22385 			rval = EFAULT;
22386 		}
22387 		break;
22388 	}
22389 	case DDI_MODEL_NONE:
22390 		size = NDKMAP * sizeof (struct dk_map);
22391 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22392 		if (rval != 0) {
22393 			rval = EFAULT;
22394 		}
22395 		break;
22396 	}
22397 #else /* ! _MULTI_DATAMODEL */
22398 	size = NDKMAP * sizeof (struct dk_map);
22399 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22400 	if (rval != 0) {
22401 		rval = EFAULT;
22402 	}
22403 #endif /* _MULTI_DATAMODEL */
22404 	return (rval);
22405 }
22406 
22407 
22408 /*
22409  *    Function: sd_dkio_set_partition
22410  *
22411  * Description: This routine is the driver entry point for handling user
22412  *		requests to set the partition table (DKIOCSAPART). The actual
22413  *		device partition is not updated.
22414  *
22415  *   Arguments: dev  - the device number
22416  *		arg  - pointer to user provided dk_allmap structure used to set
22417  *			the controller's notion of the partition table.
22418  *		flag - this argument is a pass through to ddi_copyxxx()
22419  *		       directly from the mode argument of ioctl().
22420  *
22421  * Return Code: 0
22422  *		EINVAL
22423  *		EFAULT
22424  *		ENXIO
22425  *		EIO
22426  */
22427 
22428 static int
22429 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
22430 {
22431 	struct sd_lun	*un = NULL;
22432 	struct dk_map	dk_map[NDKMAP];
22433 	struct dk_map	*lp;
22434 	int		rval = 0;
22435 	int		size;
22436 	int		i;
22437 #if defined(_SUNOS_VTOC_16)
22438 	struct dkl_partition	*vp;
22439 #endif
22440 
22441 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22442 		return (ENXIO);
22443 	}
22444 
22445 	/*
22446 	 * Set the map for all logical partitions.  We lock
22447 	 * the priority just to make sure an interrupt doesn't
22448 	 * come in while the map is half updated.
22449 	 */
22450 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
22451 	mutex_enter(SD_MUTEX(un));
22452 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22453 		mutex_exit(SD_MUTEX(un));
22454 		return (ENOTSUP);
22455 	}
22456 	mutex_exit(SD_MUTEX(un));
22457 	if (un->un_solaris_size == 0) {
22458 		return (EIO);
22459 	}
22460 
22461 #ifdef _MULTI_DATAMODEL
22462 	switch (ddi_model_convert_from(flag & FMODELS)) {
22463 	case DDI_MODEL_ILP32: {
22464 		struct dk_map32 dk_map32[NDKMAP];
22465 
22466 		size = NDKMAP * sizeof (struct dk_map32);
22467 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
22468 		if (rval != 0) {
22469 			return (EFAULT);
22470 		}
22471 		for (i = 0; i < NDKMAP; i++) {
22472 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
22473 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
22474 		}
22475 		break;
22476 	}
22477 	case DDI_MODEL_NONE:
22478 		size = NDKMAP * sizeof (struct dk_map);
22479 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
22480 		if (rval != 0) {
22481 			return (EFAULT);
22482 		}
22483 		break;
22484 	}
22485 #else /* ! _MULTI_DATAMODEL */
22486 	size = NDKMAP * sizeof (struct dk_map);
22487 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
22488 	if (rval != 0) {
22489 		return (EFAULT);
22490 	}
22491 #endif /* _MULTI_DATAMODEL */
22492 
22493 	mutex_enter(SD_MUTEX(un));
22494 	/* Note: The size used in this bcopy is set based upon the data model */
22495 	bcopy(dk_map, un->un_map, size);
22496 #if defined(_SUNOS_VTOC_16)
22497 	vp = (struct dkl_partition *)&(un->un_vtoc);
22498 #endif	/* defined(_SUNOS_VTOC_16) */
22499 	for (i = 0; i < NDKMAP; i++) {
22500 		lp  = &un->un_map[i];
22501 		un->un_offset[i] =
22502 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22503 #if defined(_SUNOS_VTOC_16)
22504 		vp->p_start = un->un_offset[i];
22505 		vp->p_size = lp->dkl_nblk;
22506 		vp++;
22507 #endif	/* defined(_SUNOS_VTOC_16) */
22508 #if defined(__i386) || defined(__amd64)
22509 		un->un_offset[i] += un->un_solaris_offset;
22510 #endif
22511 	}
22512 	mutex_exit(SD_MUTEX(un));
22513 	return (rval);
22514 }
22515 
22516 
22517 /*
22518  *    Function: sd_dkio_get_vtoc
22519  *
22520  * Description: This routine is the driver entry point for handling user
22521  *		requests to get the current volume table of contents
22522  *		(DKIOCGVTOC).
22523  *
22524  *   Arguments: dev  - the device number
22525  *		arg  - pointer to user provided vtoc structure specifying
22526  *			the current vtoc.
22527  *		flag - this argument is a pass through to ddi_copyxxx()
22528  *		       directly from the mode argument of ioctl().
22529  *		geom_validated - flag indicating if the device geometry has been
22530  *				 previously validated in the sdioctl routine.
22531  *
22532  * Return Code: 0
22533  *		EFAULT
22534  *		ENXIO
22535  *		EIO
22536  */
22537 
22538 static int
22539 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
22540 {
22541 	struct sd_lun	*un = NULL;
22542 #if defined(_SUNOS_VTOC_8)
22543 	struct vtoc	user_vtoc;
22544 #endif	/* defined(_SUNOS_VTOC_8) */
22545 	int		rval = 0;
22546 
22547 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22548 		return (ENXIO);
22549 	}
22550 
22551 	mutex_enter(SD_MUTEX(un));
22552 	if (geom_validated == FALSE) {
22553 		/*
22554 		 * sd_validate_geometry does not spin a disk up
22555 		 * if it was spun down. We need to make sure it
22556 		 * is ready.
22557 		 */
22558 		mutex_exit(SD_MUTEX(un));
22559 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22560 			return (rval);
22561 		}
22562 		mutex_enter(SD_MUTEX(un));
22563 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22564 			mutex_exit(SD_MUTEX(un));
22565 			return (rval);
22566 		}
22567 	}
22568 
22569 #if defined(_SUNOS_VTOC_8)
22570 	sd_build_user_vtoc(un, &user_vtoc);
22571 	mutex_exit(SD_MUTEX(un));
22572 
22573 #ifdef _MULTI_DATAMODEL
22574 	switch (ddi_model_convert_from(flag & FMODELS)) {
22575 	case DDI_MODEL_ILP32: {
22576 		struct vtoc32 user_vtoc32;
22577 
22578 		vtoctovtoc32(user_vtoc, user_vtoc32);
22579 		if (ddi_copyout(&user_vtoc32, (void *)arg,
22580 		    sizeof (struct vtoc32), flag)) {
22581 			return (EFAULT);
22582 		}
22583 		break;
22584 	}
22585 
22586 	case DDI_MODEL_NONE:
22587 		if (ddi_copyout(&user_vtoc, (void *)arg,
22588 		    sizeof (struct vtoc), flag)) {
22589 			return (EFAULT);
22590 		}
22591 		break;
22592 	}
22593 #else /* ! _MULTI_DATAMODEL */
22594 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
22595 		return (EFAULT);
22596 	}
22597 #endif /* _MULTI_DATAMODEL */
22598 
22599 #elif defined(_SUNOS_VTOC_16)
22600 	mutex_exit(SD_MUTEX(un));
22601 
22602 #ifdef _MULTI_DATAMODEL
22603 	/*
22604 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
22605 	 * 32-bit to maintain compatibility with existing on-disk
22606 	 * structures.  Thus, we need to convert the structure when copying
22607 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
22608 	 * program.  If the target is a 32-bit program, then no conversion
22609 	 * is necessary.
22610 	 */
22611 	/* LINTED: logical expression always true: op "||" */
22612 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
22613 	switch (ddi_model_convert_from(flag & FMODELS)) {
22614 	case DDI_MODEL_ILP32:
22615 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
22616 		    sizeof (un->un_vtoc), flag)) {
22617 			return (EFAULT);
22618 		}
22619 		break;
22620 
22621 	case DDI_MODEL_NONE: {
22622 		struct vtoc user_vtoc;
22623 
22624 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
22625 		if (ddi_copyout(&user_vtoc, (void *)arg,
22626 		    sizeof (struct vtoc), flag)) {
22627 			return (EFAULT);
22628 		}
22629 		break;
22630 	}
22631 	}
22632 #else /* ! _MULTI_DATAMODEL */
22633 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
22634 	    flag)) {
22635 		return (EFAULT);
22636 	}
22637 #endif /* _MULTI_DATAMODEL */
22638 #else
22639 #error "No VTOC format defined."
22640 #endif
22641 
22642 	return (rval);
22643 }
22644 
22645 static int
22646 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
22647 {
22648 	struct sd_lun	*un = NULL;
22649 	dk_efi_t	user_efi;
22650 	int		rval = 0;
22651 	void		*buffer;
22652 
22653 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22654 		return (ENXIO);
22655 
22656 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22657 		return (EFAULT);
22658 
22659 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22660 
22661 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22662 	    (user_efi.dki_length > un->un_max_xfer_size))
22663 		return (EINVAL);
22664 
22665 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22666 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
22667 	    user_efi.dki_lba, SD_PATH_DIRECT);
22668 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
22669 	    user_efi.dki_length, flag) != 0)
22670 		rval = EFAULT;
22671 
22672 	kmem_free(buffer, user_efi.dki_length);
22673 	return (rval);
22674 }
22675 
22676 /*
22677  *    Function: sd_build_user_vtoc
22678  *
22679  * Description: This routine populates a pass by reference variable with the
22680  *		current volume table of contents.
22681  *
22682  *   Arguments: un - driver soft state (unit) structure
22683  *		user_vtoc - pointer to vtoc structure to be populated
22684  */
22685 
22686 static void
22687 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22688 {
22689 	struct dk_map2		*lpart;
22690 	struct dk_map		*lmap;
22691 	struct partition	*vpart;
22692 	int			nblks;
22693 	int			i;
22694 
22695 	ASSERT(mutex_owned(SD_MUTEX(un)));
22696 
22697 	/*
22698 	 * Return vtoc structure fields in the provided VTOC area, addressed
22699 	 * by *vtoc.
22700 	 */
22701 	bzero(user_vtoc, sizeof (struct vtoc));
22702 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
22703 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
22704 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
22705 	user_vtoc->v_sanity	= VTOC_SANE;
22706 	user_vtoc->v_version	= un->un_vtoc.v_version;
22707 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
22708 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
22709 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
22710 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
22711 	    sizeof (un->un_vtoc.v_reserved));
22712 	/*
22713 	 * Convert partitioning information.
22714 	 *
22715 	 * Note the conversion from starting cylinder number
22716 	 * to starting sector number.
22717 	 */
22718 	lmap = un->un_map;
22719 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
22720 	vpart = user_vtoc->v_part;
22721 
22722 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22723 
22724 	for (i = 0; i < V_NUMPAR; i++) {
22725 		vpart->p_tag	= lpart->p_tag;
22726 		vpart->p_flag	= lpart->p_flag;
22727 		vpart->p_start	= lmap->dkl_cylno * nblks;
22728 		vpart->p_size	= lmap->dkl_nblk;
22729 		lmap++;
22730 		lpart++;
22731 		vpart++;
22732 
22733 		/* (4364927) */
22734 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
22735 	}
22736 
22737 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
22738 }
22739 
22740 static int
22741 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
22742 {
22743 	struct sd_lun		*un = NULL;
22744 	struct partition64	p64;
22745 	int			rval = 0;
22746 	uint_t			nparts;
22747 	efi_gpe_t		*partitions;
22748 	efi_gpt_t		*buffer;
22749 	diskaddr_t		gpe_lba;
22750 
22751 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22752 		return (ENXIO);
22753 	}
22754 
22755 	if (ddi_copyin((const void *)arg, &p64,
22756 	    sizeof (struct partition64), flag)) {
22757 		return (EFAULT);
22758 	}
22759 
22760 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
22761 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
22762 		1, SD_PATH_DIRECT);
22763 	if (rval != 0)
22764 		goto done_error;
22765 
22766 	sd_swap_efi_gpt(buffer);
22767 
22768 	if ((rval = sd_validate_efi(buffer)) != 0)
22769 		goto done_error;
22770 
22771 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
22772 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
22773 	if (p64.p_partno > nparts) {
22774 		/* couldn't find it */
22775 		rval = ESRCH;
22776 		goto done_error;
22777 	}
22778 	/*
22779 	 * if we're dealing with a partition that's out of the normal
22780 	 * 16K block, adjust accordingly
22781 	 */
22782 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
22783 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
22784 			gpe_lba, SD_PATH_DIRECT);
22785 	if (rval) {
22786 		goto done_error;
22787 	}
22788 	partitions = (efi_gpe_t *)buffer;
22789 
22790 	sd_swap_efi_gpe(nparts, partitions);
22791 
22792 	partitions += p64.p_partno;
22793 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
22794 	    sizeof (struct uuid));
22795 	p64.p_start = partitions->efi_gpe_StartingLBA;
22796 	p64.p_size = partitions->efi_gpe_EndingLBA -
22797 			p64.p_start + 1;
22798 
22799 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
22800 		rval = EFAULT;
22801 
22802 done_error:
22803 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
22804 	return (rval);
22805 }
22806 
22807 
22808 /*
22809  *    Function: sd_dkio_set_vtoc
22810  *
22811  * Description: This routine is the driver entry point for handling user
22812  *		requests to set the current volume table of contents
22813  *		(DKIOCSVTOC).
22814  *
22815  *   Arguments: dev  - the device number
22816  *		arg  - pointer to user provided vtoc structure used to set the
22817  *			current vtoc.
22818  *		flag - this argument is a pass through to ddi_copyxxx()
22819  *		       directly from the mode argument of ioctl().
22820  *
22821  * Return Code: 0
22822  *		EFAULT
22823  *		ENXIO
22824  *		EINVAL
22825  *		ENOTSUP
22826  */
22827 
22828 static int
22829 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
22830 {
22831 	struct sd_lun	*un = NULL;
22832 	struct vtoc	user_vtoc;
22833 	int		rval = 0;
22834 
22835 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22836 		return (ENXIO);
22837 	}
22838 
22839 #if defined(__i386) || defined(__amd64)
22840 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
22841 		return (EINVAL);
22842 	}
22843 #endif
22844 
22845 #ifdef _MULTI_DATAMODEL
22846 	switch (ddi_model_convert_from(flag & FMODELS)) {
22847 	case DDI_MODEL_ILP32: {
22848 		struct vtoc32 user_vtoc32;
22849 
22850 		if (ddi_copyin((const void *)arg, &user_vtoc32,
22851 		    sizeof (struct vtoc32), flag)) {
22852 			return (EFAULT);
22853 		}
22854 		vtoc32tovtoc(user_vtoc32, user_vtoc);
22855 		break;
22856 	}
22857 
22858 	case DDI_MODEL_NONE:
22859 		if (ddi_copyin((const void *)arg, &user_vtoc,
22860 		    sizeof (struct vtoc), flag)) {
22861 			return (EFAULT);
22862 		}
22863 		break;
22864 	}
22865 #else /* ! _MULTI_DATAMODEL */
22866 	if (ddi_copyin((const void *)arg, &user_vtoc,
22867 	    sizeof (struct vtoc), flag)) {
22868 		return (EFAULT);
22869 	}
22870 #endif /* _MULTI_DATAMODEL */
22871 
22872 	mutex_enter(SD_MUTEX(un));
22873 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22874 		mutex_exit(SD_MUTEX(un));
22875 		return (ENOTSUP);
22876 	}
22877 	if (un->un_g.dkg_ncyl == 0) {
22878 		mutex_exit(SD_MUTEX(un));
22879 		return (EINVAL);
22880 	}
22881 
22882 	mutex_exit(SD_MUTEX(un));
22883 	sd_clear_efi(un);
22884 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
22885 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
22886 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
22887 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22888 	    un->un_node_type, NULL);
22889 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
22890 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22891 	    un->un_node_type, NULL);
22892 	mutex_enter(SD_MUTEX(un));
22893 
22894 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
22895 		if ((rval = sd_write_label(dev)) == 0) {
22896 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
22897 			    != 0) {
22898 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
22899 				    "sd_dkio_set_vtoc: "
22900 				    "Failed validate geometry\n");
22901 			}
22902 		}
22903 	}
22904 
22905 	/*
22906 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
22907 	 * devid anyway, what can it hurt? Also preserve the device id by
22908 	 * writing to the disk acyl for the case where a devid has been
22909 	 * fabricated.
22910 	 */
22911 	if (!ISREMOVABLE(un) && !ISCD(un) &&
22912 	    (un->un_f_opt_fab_devid == TRUE)) {
22913 		if (un->un_devid == NULL) {
22914 			sd_register_devid(un, SD_DEVINFO(un),
22915 			    SD_TARGET_IS_UNRESERVED);
22916 		} else {
22917 			/*
22918 			 * The device id for this disk has been
22919 			 * fabricated. Fabricated device id's are
22920 			 * managed by storing them in the last 2
22921 			 * available sectors on the drive. The device
22922 			 * id must be preserved by writing it back out
22923 			 * to this location.
22924 			 */
22925 			if (sd_write_deviceid(un) != 0) {
22926 				ddi_devid_free(un->un_devid);
22927 				un->un_devid = NULL;
22928 			}
22929 		}
22930 	}
22931 	mutex_exit(SD_MUTEX(un));
22932 	return (rval);
22933 }
22934 
22935 
22936 /*
22937  *    Function: sd_build_label_vtoc
22938  *
22939  * Description: This routine updates the driver soft state current volume table
22940  *		of contents based on a user specified vtoc.
22941  *
22942  *   Arguments: un - driver soft state (unit) structure
22943  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
22944  *			    to update the driver soft state.
22945  *
22946  * Return Code: 0
22947  *		EINVAL
22948  */
22949 
22950 static int
22951 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22952 {
22953 	struct dk_map		*lmap;
22954 	struct partition	*vpart;
22955 	int			nblks;
22956 #if defined(_SUNOS_VTOC_8)
22957 	int			ncyl;
22958 	struct dk_map2		*lpart;
22959 #endif	/* defined(_SUNOS_VTOC_8) */
22960 	int			i;
22961 
22962 	ASSERT(mutex_owned(SD_MUTEX(un)));
22963 
22964 	/* Sanity-check the vtoc */
22965 	if (user_vtoc->v_sanity != VTOC_SANE ||
22966 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
22967 	    user_vtoc->v_nparts != V_NUMPAR) {
22968 		return (EINVAL);
22969 	}
22970 
22971 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22972 	if (nblks == 0) {
22973 		return (EINVAL);
22974 	}
22975 
22976 #if defined(_SUNOS_VTOC_8)
22977 	vpart = user_vtoc->v_part;
22978 	for (i = 0; i < V_NUMPAR; i++) {
22979 		if ((vpart->p_start % nblks) != 0) {
22980 			return (EINVAL);
22981 		}
22982 		ncyl = vpart->p_start / nblks;
22983 		ncyl += vpart->p_size / nblks;
22984 		if ((vpart->p_size % nblks) != 0) {
22985 			ncyl++;
22986 		}
22987 		if (ncyl > (int)un->un_g.dkg_ncyl) {
22988 			return (EINVAL);
22989 		}
22990 		vpart++;
22991 	}
22992 #endif	/* defined(_SUNOS_VTOC_8) */
22993 
22994 	/* Put appropriate vtoc structure fields into the disk label */
22995 #if defined(_SUNOS_VTOC_16)
22996 	/*
22997 	 * The vtoc is always a 32bit data structure to maintain the
22998 	 * on-disk format. Convert "in place" instead of bcopying it.
22999 	 */
23000 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
23001 
23002 	/*
23003 	 * in the 16-slice vtoc, starting sectors are expressed in
23004 	 * numbers *relative* to the start of the Solaris fdisk partition.
23005 	 */
23006 	lmap = un->un_map;
23007 	vpart = user_vtoc->v_part;
23008 
23009 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
23010 		lmap->dkl_cylno = vpart->p_start / nblks;
23011 		lmap->dkl_nblk = vpart->p_size;
23012 	}
23013 
23014 #elif defined(_SUNOS_VTOC_8)
23015 
23016 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
23017 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
23018 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
23019 
23020 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
23021 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
23022 
23023 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
23024 
23025 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
23026 
23027 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
23028 	    sizeof (un->un_vtoc.v_reserved));
23029 
23030 	/*
23031 	 * Note the conversion from starting sector number
23032 	 * to starting cylinder number.
23033 	 * Return error if division results in a remainder.
23034 	 */
23035 	lmap = un->un_map;
23036 	lpart = un->un_vtoc.v_part;
23037 	vpart = user_vtoc->v_part;
23038 
23039 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
23040 		lpart->p_tag  = vpart->p_tag;
23041 		lpart->p_flag = vpart->p_flag;
23042 		lmap->dkl_cylno = vpart->p_start / nblks;
23043 		lmap->dkl_nblk = vpart->p_size;
23044 
23045 		lmap++;
23046 		lpart++;
23047 		vpart++;
23048 
23049 		/* (4387723) */
23050 #ifdef _LP64
23051 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
23052 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
23053 		} else {
23054 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23055 		}
23056 #else
23057 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23058 #endif
23059 	}
23060 
23061 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
23062 #else
23063 #error "No VTOC format defined."
23064 #endif
23065 	return (0);
23066 }
23067 
23068 /*
23069  *    Function: sd_clear_efi
23070  *
23071  * Description: This routine clears all EFI labels.
23072  *
23073  *   Arguments: un - driver soft state (unit) structure
23074  *
23075  * Return Code: void
23076  */
23077 
23078 static void
23079 sd_clear_efi(struct sd_lun *un)
23080 {
23081 	efi_gpt_t	*gpt;
23082 	uint_t		lbasize;
23083 	uint64_t	cap;
23084 	int rval;
23085 
23086 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23087 
23088 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
23089 
23090 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
23091 		goto done;
23092 	}
23093 
23094 	sd_swap_efi_gpt(gpt);
23095 	rval = sd_validate_efi(gpt);
23096 	if (rval == 0) {
23097 		/* clear primary */
23098 		bzero(gpt, sizeof (efi_gpt_t));
23099 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
23100 			SD_PATH_DIRECT))) {
23101 			SD_INFO(SD_LOG_IO_PARTITION, un,
23102 				"sd_clear_efi: clear primary label failed\n");
23103 		}
23104 	}
23105 	/* the backup */
23106 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
23107 	    SD_PATH_DIRECT);
23108 	if (rval) {
23109 		goto done;
23110 	}
23111 	/*
23112 	 * The MMC standard allows READ CAPACITY to be
23113 	 * inaccurate by a bounded amount (in the interest of
23114 	 * response latency).  As a result, failed READs are
23115 	 * commonplace (due to the reading of metadata and not
23116 	 * data). Depending on the per-Vendor/drive Sense data,
23117 	 * the failed READ can cause many (unnecessary) retries.
23118 	 */
23119 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23120 	    cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23121 	    SD_PATH_DIRECT)) != 0) {
23122 		goto done;
23123 	}
23124 	sd_swap_efi_gpt(gpt);
23125 	rval = sd_validate_efi(gpt);
23126 	if (rval == 0) {
23127 		/* clear backup */
23128 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
23129 			cap-1);
23130 		bzero(gpt, sizeof (efi_gpt_t));
23131 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23132 		    cap-1, SD_PATH_DIRECT))) {
23133 			SD_INFO(SD_LOG_IO_PARTITION, un,
23134 				"sd_clear_efi: clear backup label failed\n");
23135 		}
23136 	}
23137 
23138 done:
23139 	kmem_free(gpt, sizeof (efi_gpt_t));
23140 }
23141 
23142 /*
23143  *    Function: sd_set_vtoc
23144  *
23145  * Description: This routine writes data to the appropriate positions
23146  *
23147  *   Arguments: un - driver soft state (unit) structure
23148  *              dkl  - the data to be written
23149  *
23150  * Return: void
23151  */
23152 
23153 static int
23154 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
23155 {
23156 	void			*shadow_buf;
23157 	uint_t			label_addr;
23158 	int			sec;
23159 	int			blk;
23160 	int			head;
23161 	int			cyl;
23162 	int			rval;
23163 
23164 #if defined(__i386) || defined(__amd64)
23165 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
23166 #else
23167 	/* Write the primary label at block 0 of the solaris partition. */
23168 	label_addr = 0;
23169 #endif
23170 
23171 	if (NOT_DEVBSIZE(un)) {
23172 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
23173 		/*
23174 		 * Read the target's first block.
23175 		 */
23176 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
23177 		    un->un_tgt_blocksize, label_addr,
23178 		    SD_PATH_STANDARD)) != 0) {
23179 			goto exit;
23180 		}
23181 		/*
23182 		 * Copy the contents of the label into the shadow buffer
23183 		 * which is of the size of target block size.
23184 		 */
23185 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23186 	}
23187 
23188 	/* Write the primary label */
23189 	if (NOT_DEVBSIZE(un)) {
23190 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
23191 		    label_addr, SD_PATH_STANDARD);
23192 	} else {
23193 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23194 		    label_addr, SD_PATH_STANDARD);
23195 	}
23196 	if (rval != 0) {
23197 		return (rval);
23198 	}
23199 
23200 	/*
23201 	 * Calculate where the backup labels go.  They are always on
23202 	 * the last alternate cylinder, but some older drives put them
23203 	 * on head 2 instead of the last head.	They are always on the
23204 	 * first 5 odd sectors of the appropriate track.
23205 	 *
23206 	 * We have no choice at this point, but to believe that the
23207 	 * disk label is valid.	 Use the geometry of the disk
23208 	 * as described in the label.
23209 	 */
23210 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
23211 	head = dkl->dkl_nhead - 1;
23212 
23213 	/*
23214 	 * Write and verify the backup labels. Make sure we don't try to
23215 	 * write past the last cylinder.
23216 	 */
23217 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
23218 		blk = (daddr_t)(
23219 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
23220 		    (head * dkl->dkl_nsect) + sec);
23221 #if defined(__i386) || defined(__amd64)
23222 		blk += un->un_solaris_offset;
23223 #endif
23224 		if (NOT_DEVBSIZE(un)) {
23225 			uint64_t	tblk;
23226 			/*
23227 			 * Need to read the block first for read modify write.
23228 			 */
23229 			tblk = (uint64_t)blk;
23230 			blk = (int)((tblk * un->un_sys_blocksize) /
23231 			    un->un_tgt_blocksize);
23232 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
23233 			    un->un_tgt_blocksize, blk,
23234 			    SD_PATH_STANDARD)) != 0) {
23235 				goto exit;
23236 			}
23237 			/*
23238 			 * Modify the shadow buffer with the label.
23239 			 */
23240 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23241 			rval = sd_send_scsi_WRITE(un, shadow_buf,
23242 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
23243 		} else {
23244 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23245 			    blk, SD_PATH_STANDARD);
23246 			SD_INFO(SD_LOG_IO_PARTITION, un,
23247 			"sd_set_vtoc: wrote backup label %d\n", blk);
23248 		}
23249 		if (rval != 0) {
23250 			goto exit;
23251 		}
23252 	}
23253 exit:
23254 	if (NOT_DEVBSIZE(un)) {
23255 		kmem_free(shadow_buf, un->un_tgt_blocksize);
23256 	}
23257 	return (rval);
23258 }
23259 
23260 /*
23261  *    Function: sd_clear_vtoc
23262  *
23263  * Description: This routine clears out the VTOC labels.
23264  *
23265  *   Arguments: un - driver soft state (unit) structure
23266  *
23267  * Return: void
23268  */
23269 
23270 static void
23271 sd_clear_vtoc(struct sd_lun *un)
23272 {
23273 	struct dk_label		*dkl;
23274 
23275 	mutex_exit(SD_MUTEX(un));
23276 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23277 	mutex_enter(SD_MUTEX(un));
23278 	/*
23279 	 * sd_set_vtoc uses these fields in order to figure out
23280 	 * where to overwrite the backup labels
23281 	 */
23282 	dkl->dkl_apc    = un->un_g.dkg_apc;
23283 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
23284 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23285 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23286 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
23287 	mutex_exit(SD_MUTEX(un));
23288 	(void) sd_set_vtoc(un, dkl);
23289 	kmem_free(dkl, sizeof (struct dk_label));
23290 
23291 	mutex_enter(SD_MUTEX(un));
23292 }
23293 
23294 /*
23295  *    Function: sd_write_label
23296  *
23297  * Description: This routine will validate and write the driver soft state vtoc
23298  *		contents to the device.
23299  *
23300  *   Arguments: dev - the device number
23301  *
23302  * Return Code: the code returned by sd_send_scsi_cmd()
23303  *		0
23304  *		EINVAL
23305  *		ENXIO
23306  *		ENOMEM
23307  */
23308 
23309 static int
23310 sd_write_label(dev_t dev)
23311 {
23312 	struct sd_lun		*un;
23313 	struct dk_label		*dkl;
23314 	short			sum;
23315 	short			*sp;
23316 	int			i;
23317 	int			rval;
23318 
23319 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23320 	    (un->un_state == SD_STATE_OFFLINE)) {
23321 		return (ENXIO);
23322 	}
23323 	ASSERT(mutex_owned(SD_MUTEX(un)));
23324 	mutex_exit(SD_MUTEX(un));
23325 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23326 	mutex_enter(SD_MUTEX(un));
23327 
23328 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
23329 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
23330 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
23331 	dkl->dkl_apc	= un->un_g.dkg_apc;
23332 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
23333 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
23334 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
23335 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
23336 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
23337 
23338 #if defined(_SUNOS_VTOC_8)
23339 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
23340 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
23341 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
23342 	for (i = 0; i < NDKMAP; i++) {
23343 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
23344 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23345 	}
23346 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
23347 #elif defined(_SUNOS_VTOC_16)
23348 	dkl->dkl_skew	= un->un_dkg_skew;
23349 #else
23350 #error "No VTOC format defined."
23351 #endif
23352 
23353 	dkl->dkl_magic			= DKL_MAGIC;
23354 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
23355 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
23356 
23357 	/* Construct checksum for the new disk label */
23358 	sum = 0;
23359 	sp = (short *)dkl;
23360 	i = sizeof (struct dk_label) / sizeof (short);
23361 	while (i--) {
23362 		sum ^= *sp++;
23363 	}
23364 	dkl->dkl_cksum = sum;
23365 
23366 	mutex_exit(SD_MUTEX(un));
23367 
23368 	rval = sd_set_vtoc(un, dkl);
23369 exit:
23370 	kmem_free(dkl, sizeof (struct dk_label));
23371 	mutex_enter(SD_MUTEX(un));
23372 	return (rval);
23373 }
23374 
23375 static int
23376 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
23377 {
23378 	struct sd_lun	*un = NULL;
23379 	dk_efi_t	user_efi;
23380 	int		rval = 0;
23381 	void		*buffer;
23382 
23383 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23384 		return (ENXIO);
23385 
23386 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23387 		return (EFAULT);
23388 
23389 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23390 
23391 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23392 	    (user_efi.dki_length > un->un_max_xfer_size))
23393 		return (EINVAL);
23394 
23395 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23396 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
23397 		rval = EFAULT;
23398 	} else {
23399 		/*
23400 		 * let's clear the vtoc labels and clear the softstate
23401 		 * vtoc.
23402 		 */
23403 		mutex_enter(SD_MUTEX(un));
23404 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
23405 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23406 				"sd_dkio_set_efi: CLEAR VTOC\n");
23407 			sd_clear_vtoc(un);
23408 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23409 			mutex_exit(SD_MUTEX(un));
23410 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
23411 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
23412 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
23413 			    S_IFBLK,
23414 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23415 			    un->un_node_type, NULL);
23416 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
23417 			    S_IFCHR,
23418 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23419 			    un->un_node_type, NULL);
23420 		} else
23421 			mutex_exit(SD_MUTEX(un));
23422 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
23423 		    user_efi.dki_lba, SD_PATH_DIRECT);
23424 		if (rval == 0) {
23425 			mutex_enter(SD_MUTEX(un));
23426 			un->un_f_geometry_is_valid = FALSE;
23427 			mutex_exit(SD_MUTEX(un));
23428 		}
23429 	}
23430 	kmem_free(buffer, user_efi.dki_length);
23431 	return (rval);
23432 }
23433 
23434 /*
23435  *    Function: sd_dkio_get_mboot
23436  *
23437  * Description: This routine is the driver entry point for handling user
23438  *		requests to get the current device mboot (DKIOCGMBOOT)
23439  *
23440  *   Arguments: dev  - the device number
23441  *		arg  - pointer to user provided mboot structure specifying
23442  *			the current mboot.
23443  *		flag - this argument is a pass through to ddi_copyxxx()
23444  *		       directly from the mode argument of ioctl().
23445  *
23446  * Return Code: 0
23447  *		EINVAL
23448  *		EFAULT
23449  *		ENXIO
23450  */
23451 
23452 static int
23453 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
23454 {
23455 	struct sd_lun	*un;
23456 	struct mboot	*mboot;
23457 	int		rval;
23458 	size_t		buffer_size;
23459 
23460 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23461 	    (un->un_state == SD_STATE_OFFLINE)) {
23462 		return (ENXIO);
23463 	}
23464 
23465 #if defined(_SUNOS_VTOC_8)
23466 	if ((!ISREMOVABLE(un)) || (arg == NULL)) {
23467 #elif defined(_SUNOS_VTOC_16)
23468 	if (arg == NULL) {
23469 #endif
23470 		return (EINVAL);
23471 	}
23472 
23473 	/*
23474 	 * Read the mboot block, located at absolute block 0 on the target.
23475 	 */
23476 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
23477 
23478 	SD_TRACE(SD_LOG_IO_PARTITION, un,
23479 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
23480 
23481 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
23482 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
23483 	    SD_PATH_STANDARD)) == 0) {
23484 		if (ddi_copyout(mboot, (void *)arg,
23485 		    sizeof (struct mboot), flag) != 0) {
23486 			rval = EFAULT;
23487 		}
23488 	}
23489 	kmem_free(mboot, buffer_size);
23490 	return (rval);
23491 }
23492 
23493 
23494 /*
23495  *    Function: sd_dkio_set_mboot
23496  *
23497  * Description: This routine is the driver entry point for handling user
23498  *		requests to validate and set the device master boot
23499  *		(DKIOCSMBOOT).
23500  *
23501  *   Arguments: dev  - the device number
23502  *		arg  - pointer to user provided mboot structure used to set the
23503  *			master boot.
23504  *		flag - this argument is a pass through to ddi_copyxxx()
23505  *		       directly from the mode argument of ioctl().
23506  *
23507  * Return Code: 0
23508  *		EINVAL
23509  *		EFAULT
23510  *		ENXIO
23511  */
23512 
23513 static int
23514 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
23515 {
23516 	struct sd_lun	*un = NULL;
23517 	struct mboot	*mboot = NULL;
23518 	int		rval;
23519 	ushort_t	magic;
23520 
23521 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23522 		return (ENXIO);
23523 	}
23524 
23525 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23526 
23527 #if defined(_SUNOS_VTOC_8)
23528 	if (!ISREMOVABLE(un)) {
23529 		return (EINVAL);
23530 	}
23531 #endif
23532 
23533 	if (arg == NULL) {
23534 		return (EINVAL);
23535 	}
23536 
23537 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
23538 
23539 	if (ddi_copyin((const void *)arg, mboot,
23540 	    sizeof (struct mboot), flag) != 0) {
23541 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23542 		return (EFAULT);
23543 	}
23544 
23545 	/* Is this really a master boot record? */
23546 	magic = LE_16(mboot->signature);
23547 	if (magic != MBB_MAGIC) {
23548 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23549 		return (EINVAL);
23550 	}
23551 
23552 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
23553 	    SD_PATH_STANDARD);
23554 
23555 	mutex_enter(SD_MUTEX(un));
23556 #if defined(__i386) || defined(__amd64)
23557 	if (rval == 0) {
23558 		/*
23559 		 * mboot has been written successfully.
23560 		 * update the fdisk and vtoc tables in memory
23561 		 */
23562 		rval = sd_update_fdisk_and_vtoc(un);
23563 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
23564 			mutex_exit(SD_MUTEX(un));
23565 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23566 			return (rval);
23567 		}
23568 	}
23569 
23570 	/*
23571 	 * If the mboot write fails, write the devid anyway, what can it hurt?
23572 	 * Also preserve the device id by writing to the disk acyl for the case
23573 	 * where a devid has been fabricated.
23574 	 */
23575 	if (!ISREMOVABLE(un) && !ISCD(un) &&
23576 	    (un->un_f_opt_fab_devid == TRUE)) {
23577 		if (un->un_devid == NULL) {
23578 			sd_register_devid(un, SD_DEVINFO(un),
23579 			    SD_TARGET_IS_UNRESERVED);
23580 		} else {
23581 			/*
23582 			 * The device id for this disk has been
23583 			 * fabricated. Fabricated device id's are
23584 			 * managed by storing them in the last 2
23585 			 * available sectors on the drive. The device
23586 			 * id must be preserved by writing it back out
23587 			 * to this location.
23588 			 */
23589 			if (sd_write_deviceid(un) != 0) {
23590 				ddi_devid_free(un->un_devid);
23591 				un->un_devid = NULL;
23592 			}
23593 		}
23594 	}
23595 #else
23596 	if (rval == 0) {
23597 		/*
23598 		 * mboot has been written successfully.
23599 		 * set up the default geometry and VTOC
23600 		 */
23601 		if (un->un_blockcount <= DK_MAX_BLOCKS)
23602 			sd_setup_default_geometry(un);
23603 	}
23604 #endif
23605 	mutex_exit(SD_MUTEX(un));
23606 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23607 	return (rval);
23608 }
23609 
23610 
23611 /*
23612  *    Function: sd_setup_default_geometry
23613  *
23614  * Description: This local utility routine sets the default geometry as part of
23615  *		setting the device mboot.
23616  *
23617  *   Arguments: un - driver soft state (unit) structure
23618  *
23619  * Note: This may be redundant with sd_build_default_label.
23620  */
23621 
23622 static void
23623 sd_setup_default_geometry(struct sd_lun *un)
23624 {
23625 	/* zero out the soft state geometry and partition table. */
23626 	bzero(&un->un_g, sizeof (struct dk_geom));
23627 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23628 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
23629 	un->un_asciilabel[0] = '\0';
23630 
23631 	/*
23632 	 * For the rpm, we use the minimum for the disk.
23633 	 * For the head, cyl and number of sector per track,
23634 	 * if the capacity <= 1GB, head = 64, sect = 32.
23635 	 * else head = 255, sect 63
23636 	 * Note: the capacity should be equal to C*H*S values.
23637 	 * This will cause some truncation of size due to
23638 	 * round off errors. For CD-ROMs, this truncation can
23639 	 * have adverse side effects, so returning ncyl and
23640 	 * nhead as 1. The nsect will overflow for most of
23641 	 * CD-ROMs as nsect is of type ushort.
23642 	 */
23643 	if (ISCD(un)) {
23644 		un->un_g.dkg_ncyl = 1;
23645 		un->un_g.dkg_nhead = 1;
23646 		un->un_g.dkg_nsect = un->un_blockcount;
23647 	} else {
23648 		if (un->un_blockcount <= 0x1000) {
23649 			/* Needed for unlabeled SCSI floppies. */
23650 			un->un_g.dkg_nhead = 2;
23651 			un->un_g.dkg_ncyl = 80;
23652 			un->un_g.dkg_pcyl = 80;
23653 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
23654 		} else if (un->un_blockcount <= 0x200000) {
23655 			un->un_g.dkg_nhead = 64;
23656 			un->un_g.dkg_nsect = 32;
23657 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
23658 		} else {
23659 			un->un_g.dkg_nhead = 255;
23660 			un->un_g.dkg_nsect = 63;
23661 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
23662 		}
23663 		un->un_blockcount = un->un_g.dkg_ncyl *
23664 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
23665 	}
23666 	un->un_g.dkg_acyl = 0;
23667 	un->un_g.dkg_bcyl = 0;
23668 	un->un_g.dkg_intrlv = 1;
23669 	un->un_g.dkg_rpm = 200;
23670 	un->un_g.dkg_read_reinstruct = 0;
23671 	un->un_g.dkg_write_reinstruct = 0;
23672 	if (un->un_g.dkg_pcyl == 0) {
23673 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
23674 	}
23675 
23676 	un->un_map['a'-'a'].dkl_cylno = 0;
23677 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
23678 	un->un_map['c'-'a'].dkl_cylno = 0;
23679 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
23680 	un->un_f_geometry_is_valid = FALSE;
23681 }
23682 
23683 
23684 #if defined(__i386) || defined(__amd64)
23685 /*
23686  *    Function: sd_update_fdisk_and_vtoc
23687  *
23688  * Description: This local utility routine updates the device fdisk and vtoc
23689  *		as part of setting the device mboot.
23690  *
23691  *   Arguments: un - driver soft state (unit) structure
23692  *
23693  * Return Code: 0 for success or errno-type return code.
23694  *
23695  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
23696  *		these did exist seperately in x86 sd.c!!!
23697  */
23698 
23699 static int
23700 sd_update_fdisk_and_vtoc(struct sd_lun *un)
23701 {
23702 	static char	labelstring[128];
23703 	static char	buf[256];
23704 	char		*label = 0;
23705 	int		count;
23706 	int		label_rc = 0;
23707 	int		gvalid = un->un_f_geometry_is_valid;
23708 	int		fdisk_rval;
23709 	int		lbasize;
23710 	int		capacity;
23711 
23712 	ASSERT(mutex_owned(SD_MUTEX(un)));
23713 
23714 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
23715 		return (EINVAL);
23716 	}
23717 
23718 	if (un->un_f_blockcount_is_valid == FALSE) {
23719 		return (EINVAL);
23720 	}
23721 
23722 #if defined(_SUNOS_VTOC_16)
23723 	/*
23724 	 * Set up the "whole disk" fdisk partition; this should always
23725 	 * exist, regardless of whether the disk contains an fdisk table
23726 	 * or vtoc.
23727 	 */
23728 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
23729 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
23730 #endif	/* defined(_SUNOS_VTOC_16) */
23731 
23732 	/*
23733 	 * copy the lbasize and capacity so that if they're
23734 	 * reset while we're not holding the SD_MUTEX(un), we will
23735 	 * continue to use valid values after the SD_MUTEX(un) is
23736 	 * reacquired.
23737 	 */
23738 	lbasize  = un->un_tgt_blocksize;
23739 	capacity = un->un_blockcount;
23740 
23741 	/*
23742 	 * refresh the logical and physical geometry caches.
23743 	 * (data from mode sense format/rigid disk geometry pages,
23744 	 * and scsi_ifgetcap("geometry").
23745 	 */
23746 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
23747 
23748 	/*
23749 	 * Only DIRECT ACCESS devices will have Sun labels.
23750 	 * CD's supposedly have a Sun label, too
23751 	 */
23752 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
23753 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
23754 		    SD_PATH_DIRECT);
23755 		if (fdisk_rval == SD_CMD_FAILURE) {
23756 			ASSERT(mutex_owned(SD_MUTEX(un)));
23757 			return (EIO);
23758 		}
23759 
23760 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
23761 			ASSERT(mutex_owned(SD_MUTEX(un)));
23762 			return (EACCES);
23763 		}
23764 
23765 		if (un->un_solaris_size <= DK_LABEL_LOC) {
23766 			/*
23767 			 * Found fdisk table but no Solaris partition entry,
23768 			 * so don't call sd_uselabel() and don't create
23769 			 * a default label.
23770 			 */
23771 			label_rc = 0;
23772 			un->un_f_geometry_is_valid = TRUE;
23773 			goto no_solaris_partition;
23774 		}
23775 
23776 #if defined(_SUNOS_VTOC_8)
23777 		label = (char *)un->un_asciilabel;
23778 #elif defined(_SUNOS_VTOC_16)
23779 		label = (char *)un->un_vtoc.v_asciilabel;
23780 #else
23781 #error "No VTOC format defined."
23782 #endif
23783 	} else if (capacity < 0) {
23784 		ASSERT(mutex_owned(SD_MUTEX(un)));
23785 		return (EINVAL);
23786 	}
23787 
23788 	/*
23789 	 * For Removable media We reach here if we have found a
23790 	 * SOLARIS PARTITION.
23791 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
23792 	 * PARTITION has changed from the previous one, hence we will setup a
23793 	 * default VTOC in this case.
23794 	 */
23795 	if (un->un_f_geometry_is_valid == FALSE) {
23796 		sd_build_default_label(un);
23797 		label_rc = 0;
23798 	}
23799 
23800 no_solaris_partition:
23801 	if ((!ISREMOVABLE(un) ||
23802 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
23803 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
23804 		/*
23805 		 * Print out a message indicating who and what we are.
23806 		 * We do this only when we happen to really validate the
23807 		 * geometry. We may call sd_validate_geometry() at other
23808 		 * times, ioctl()'s like Get VTOC in which case we
23809 		 * don't want to print the label.
23810 		 * If the geometry is valid, print the label string,
23811 		 * else print vendor and product info, if available
23812 		 */
23813 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
23814 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
23815 		} else {
23816 			mutex_enter(&sd_label_mutex);
23817 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
23818 			    labelstring);
23819 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
23820 			    &labelstring[64]);
23821 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
23822 			    labelstring, &labelstring[64]);
23823 			if (un->un_f_blockcount_is_valid == TRUE) {
23824 				(void) sprintf(&buf[strlen(buf)],
23825 				    ", %" PRIu64 " %u byte blocks\n",
23826 				    un->un_blockcount,
23827 				    un->un_tgt_blocksize);
23828 			} else {
23829 				(void) sprintf(&buf[strlen(buf)],
23830 				    ", (unknown capacity)\n");
23831 			}
23832 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
23833 			mutex_exit(&sd_label_mutex);
23834 		}
23835 	}
23836 
23837 #if defined(_SUNOS_VTOC_16)
23838 	/*
23839 	 * If we have valid geometry, set up the remaining fdisk partitions.
23840 	 * Note that dkl_cylno is not used for the fdisk map entries, so
23841 	 * we set it to an entirely bogus value.
23842 	 */
23843 	for (count = 0; count < FD_NUMPART; count++) {
23844 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
23845 		un->un_map[FDISK_P1 + count].dkl_nblk =
23846 		    un->un_fmap[count].fmap_nblk;
23847 		un->un_offset[FDISK_P1 + count] =
23848 		    un->un_fmap[count].fmap_start;
23849 	}
23850 #endif
23851 
23852 	for (count = 0; count < NDKMAP; count++) {
23853 #if defined(_SUNOS_VTOC_8)
23854 		struct dk_map *lp  = &un->un_map[count];
23855 		un->un_offset[count] =
23856 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
23857 #elif defined(_SUNOS_VTOC_16)
23858 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
23859 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
23860 #else
23861 #error "No VTOC format defined."
23862 #endif
23863 	}
23864 
23865 	ASSERT(mutex_owned(SD_MUTEX(un)));
23866 	return (label_rc);
23867 }
23868 #endif
23869 
23870 
23871 /*
23872  *    Function: sd_check_media
23873  *
23874  * Description: This utility routine implements the functionality for the
23875  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23876  *		driver state changes from that specified by the user
23877  *		(inserted or ejected). For example, if the user specifies
23878  *		DKIO_EJECTED and the current media state is inserted this
23879  *		routine will immediately return DKIO_INSERTED. However, if the
23880  *		current media state is not inserted the user thread will be
23881  *		blocked until the drive state changes. If DKIO_NONE is specified
23882  *		the user thread will block until a drive state change occurs.
23883  *
23884  *   Arguments: dev  - the device number
23885  *		state  - user pointer to a dkio_state, updated with the current
23886  *			drive state at return.
23887  *
23888  * Return Code: ENXIO
23889  *		EIO
23890  *		EAGAIN
23891  *		EINTR
23892  */
23893 
23894 static int
23895 sd_check_media(dev_t dev, enum dkio_state state)
23896 {
23897 	struct sd_lun		*un = NULL;
23898 	enum dkio_state		prev_state;
23899 	opaque_t		token = NULL;
23900 	int			rval = 0;
23901 
23902 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23903 		return (ENXIO);
23904 	}
23905 
23906 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23907 
23908 	mutex_enter(SD_MUTEX(un));
23909 
23910 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23911 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23912 
23913 	prev_state = un->un_mediastate;
23914 
23915 	/* is there anything to do? */
23916 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23917 		/*
23918 		 * submit the request to the scsi_watch service;
23919 		 * scsi_media_watch_cb() does the real work
23920 		 */
23921 		mutex_exit(SD_MUTEX(un));
23922 
23923 		/*
23924 		 * This change handles the case where a scsi watch request is
23925 		 * added to a device that is powered down. To accomplish this
23926 		 * we power up the device before adding the scsi watch request,
23927 		 * since the scsi watch sends a TUR directly to the device
23928 		 * which the device cannot handle if it is powered down.
23929 		 */
23930 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23931 			mutex_enter(SD_MUTEX(un));
23932 			goto done;
23933 		}
23934 
23935 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
23936 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23937 		    (caddr_t)dev);
23938 
23939 		sd_pm_exit(un);
23940 
23941 		mutex_enter(SD_MUTEX(un));
23942 		if (token == NULL) {
23943 			rval = EAGAIN;
23944 			goto done;
23945 		}
23946 
23947 		/*
23948 		 * This is a special case IOCTL that doesn't return
23949 		 * until the media state changes. Routine sdpower
23950 		 * knows about and handles this so don't count it
23951 		 * as an active cmd in the driver, which would
23952 		 * keep the device busy to the pm framework.
23953 		 * If the count isn't decremented the device can't
23954 		 * be powered down.
23955 		 */
23956 		un->un_ncmds_in_driver--;
23957 		ASSERT(un->un_ncmds_in_driver >= 0);
23958 
23959 		/*
23960 		 * if a prior request had been made, this will be the same
23961 		 * token, as scsi_watch was designed that way.
23962 		 */
23963 		un->un_swr_token = token;
23964 		un->un_specified_mediastate = state;
23965 
23966 		/*
23967 		 * now wait for media change
23968 		 * we will not be signalled unless mediastate == state but it is
23969 		 * still better to test for this condition, since there is a
23970 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23971 		 */
23972 		SD_TRACE(SD_LOG_COMMON, un,
23973 		    "sd_check_media: waiting for media state change\n");
23974 		while (un->un_mediastate == state) {
23975 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23976 				SD_TRACE(SD_LOG_COMMON, un,
23977 				    "sd_check_media: waiting for media state "
23978 				    "was interrupted\n");
23979 				un->un_ncmds_in_driver++;
23980 				rval = EINTR;
23981 				goto done;
23982 			}
23983 			SD_TRACE(SD_LOG_COMMON, un,
23984 			    "sd_check_media: received signal, state=%x\n",
23985 			    un->un_mediastate);
23986 		}
23987 		/*
23988 		 * Inc the counter to indicate the device once again
23989 		 * has an active outstanding cmd.
23990 		 */
23991 		un->un_ncmds_in_driver++;
23992 	}
23993 
23994 	/* invalidate geometry */
23995 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23996 		sr_ejected(un);
23997 	}
23998 
23999 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
24000 		uint64_t	capacity;
24001 		uint_t		lbasize;
24002 
24003 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
24004 		mutex_exit(SD_MUTEX(un));
24005 		/*
24006 		 * Since the following routines use SD_PATH_DIRECT, we must
24007 		 * call PM directly before the upcoming disk accesses. This
24008 		 * may cause the disk to be power/spin up.
24009 		 */
24010 
24011 		if (sd_pm_entry(un) == DDI_SUCCESS) {
24012 			rval = sd_send_scsi_READ_CAPACITY(un,
24013 			    &capacity,
24014 			    &lbasize, SD_PATH_DIRECT);
24015 			if (rval != 0) {
24016 				sd_pm_exit(un);
24017 				mutex_enter(SD_MUTEX(un));
24018 				goto done;
24019 			}
24020 		} else {
24021 			rval = EIO;
24022 			mutex_enter(SD_MUTEX(un));
24023 			goto done;
24024 		}
24025 		mutex_enter(SD_MUTEX(un));
24026 
24027 		sd_update_block_info(un, lbasize, capacity);
24028 
24029 		un->un_f_geometry_is_valid	= FALSE;
24030 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
24031 
24032 		mutex_exit(SD_MUTEX(un));
24033 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
24034 		    SD_PATH_DIRECT);
24035 		sd_pm_exit(un);
24036 
24037 		mutex_enter(SD_MUTEX(un));
24038 	}
24039 done:
24040 	un->un_f_watcht_stopped = FALSE;
24041 	if (un->un_swr_token) {
24042 		/*
24043 		 * Use of this local token and the mutex ensures that we avoid
24044 		 * some race conditions associated with terminating the
24045 		 * scsi watch.
24046 		 */
24047 		token = un->un_swr_token;
24048 		un->un_swr_token = (opaque_t)NULL;
24049 		mutex_exit(SD_MUTEX(un));
24050 		(void) scsi_watch_request_terminate(token,
24051 		    SCSI_WATCH_TERMINATE_WAIT);
24052 		mutex_enter(SD_MUTEX(un));
24053 	}
24054 
24055 	/*
24056 	 * Update the capacity kstat value, if no media previously
24057 	 * (capacity kstat is 0) and a media has been inserted
24058 	 * (un_f_blockcount_is_valid == TRUE)
24059 	 * This is a more generic way then checking for ISREMOVABLE.
24060 	 */
24061 	if (un->un_errstats) {
24062 		struct sd_errstats	*stp = NULL;
24063 
24064 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
24065 		if ((stp->sd_capacity.value.ui64 == 0) &&
24066 		    (un->un_f_blockcount_is_valid == TRUE)) {
24067 			stp->sd_capacity.value.ui64 =
24068 			    (uint64_t)((uint64_t)un->un_blockcount *
24069 			    un->un_sys_blocksize);
24070 		}
24071 	}
24072 	mutex_exit(SD_MUTEX(un));
24073 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
24074 	return (rval);
24075 }
24076 
24077 
24078 /*
24079  *    Function: sd_delayed_cv_broadcast
24080  *
24081  * Description: Delayed cv_broadcast to allow for target to recover from media
24082  *		insertion.
24083  *
24084  *   Arguments: arg - driver soft state (unit) structure
24085  */
24086 
24087 static void
24088 sd_delayed_cv_broadcast(void *arg)
24089 {
24090 	struct sd_lun *un = arg;
24091 
24092 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
24093 
24094 	mutex_enter(SD_MUTEX(un));
24095 	un->un_dcvb_timeid = NULL;
24096 	cv_broadcast(&un->un_state_cv);
24097 	mutex_exit(SD_MUTEX(un));
24098 }
24099 
24100 
24101 /*
24102  *    Function: sd_media_watch_cb
24103  *
24104  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
24105  *		routine processes the TUR sense data and updates the driver
24106  *		state if a transition has occurred. The user thread
24107  *		(sd_check_media) is then signalled.
24108  *
24109  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24110  *			among multiple watches that share this callback function
24111  *		resultp - scsi watch facility result packet containing scsi
24112  *			  packet, status byte and sense data
24113  *
24114  * Return Code: 0 for success, -1 for failure
24115  */
24116 
24117 static int
24118 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24119 {
24120 	struct sd_lun			*un;
24121 	struct scsi_status		*statusp = resultp->statusp;
24122 	struct scsi_extended_sense	*sensep = resultp->sensep;
24123 	enum dkio_state			state = DKIO_NONE;
24124 	dev_t				dev = (dev_t)arg;
24125 	uchar_t				actual_sense_length;
24126 
24127 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24128 		return (-1);
24129 	}
24130 	actual_sense_length = resultp->actual_sense_length;
24131 
24132 	mutex_enter(SD_MUTEX(un));
24133 	SD_TRACE(SD_LOG_COMMON, un,
24134 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
24135 	    *((char *)statusp), (void *)sensep, actual_sense_length);
24136 
24137 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
24138 		un->un_mediastate = DKIO_DEV_GONE;
24139 		cv_broadcast(&un->un_state_cv);
24140 		mutex_exit(SD_MUTEX(un));
24141 
24142 		return (0);
24143 	}
24144 
24145 	/*
24146 	 * If there was a check condition then sensep points to valid sense data
24147 	 * If status was not a check condition but a reservation or busy status
24148 	 * then the new state is DKIO_NONE
24149 	 */
24150 	if (sensep != NULL) {
24151 		SD_INFO(SD_LOG_COMMON, un,
24152 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24153 		    sensep->es_key, sensep->es_add_code, sensep->es_qual_code);
24154 		/* This routine only uses up to 13 bytes of sense data. */
24155 		if (actual_sense_length >= 13) {
24156 			if (sensep->es_key == KEY_UNIT_ATTENTION) {
24157 				if (sensep->es_add_code == 0x28) {
24158 					state = DKIO_INSERTED;
24159 				}
24160 			} else {
24161 				/*
24162 				 * if 02/04/02  means that the host
24163 				 * should send start command. Explicitly
24164 				 * leave the media state as is
24165 				 * (inserted) as the media is inserted
24166 				 * and host has stopped device for PM
24167 				 * reasons. Upon next true read/write
24168 				 * to this media will bring the
24169 				 * device to the right state good for
24170 				 * media access.
24171 				 */
24172 				if ((sensep->es_key == KEY_NOT_READY) &&
24173 				    (sensep->es_add_code == 0x3a)) {
24174 					state = DKIO_EJECTED;
24175 				}
24176 
24177 				/*
24178 				 * If the drivge is busy with an operation
24179 				 * or long write, keep the media in an
24180 				 * inserted state.
24181 				 */
24182 
24183 				if ((sensep->es_key == KEY_NOT_READY) &&
24184 				    (sensep->es_add_code == 0x04) &&
24185 				    ((sensep->es_qual_code == 0x02) ||
24186 				    (sensep->es_qual_code == 0x07) ||
24187 				    (sensep->es_qual_code == 0x08))) {
24188 					state = DKIO_INSERTED;
24189 				}
24190 			}
24191 		}
24192 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24193 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24194 		state = DKIO_INSERTED;
24195 	}
24196 
24197 	SD_TRACE(SD_LOG_COMMON, un,
24198 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24199 	    state, un->un_specified_mediastate);
24200 
24201 	/*
24202 	 * now signal the waiting thread if this is *not* the specified state;
24203 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24204 	 * to recover
24205 	 */
24206 	if (state != un->un_specified_mediastate) {
24207 		un->un_mediastate = state;
24208 		if (state == DKIO_INSERTED) {
24209 			/*
24210 			 * delay the signal to give the drive a chance
24211 			 * to do what it apparently needs to do
24212 			 */
24213 			SD_TRACE(SD_LOG_COMMON, un,
24214 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24215 			if (un->un_dcvb_timeid == NULL) {
24216 				un->un_dcvb_timeid =
24217 				    timeout(sd_delayed_cv_broadcast, un,
24218 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24219 			}
24220 		} else {
24221 			SD_TRACE(SD_LOG_COMMON, un,
24222 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24223 			cv_broadcast(&un->un_state_cv);
24224 		}
24225 	}
24226 	mutex_exit(SD_MUTEX(un));
24227 	return (0);
24228 }
24229 
24230 
24231 /*
24232  *    Function: sd_dkio_get_temp
24233  *
24234  * Description: This routine is the driver entry point for handling ioctl
24235  *		requests to get the disk temperature.
24236  *
24237  *   Arguments: dev  - the device number
24238  *		arg  - pointer to user provided dk_temperature structure.
24239  *		flag - this argument is a pass through to ddi_copyxxx()
24240  *		       directly from the mode argument of ioctl().
24241  *
24242  * Return Code: 0
24243  *		EFAULT
24244  *		ENXIO
24245  *		EAGAIN
24246  */
24247 
24248 static int
24249 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24250 {
24251 	struct sd_lun		*un = NULL;
24252 	struct dk_temperature	*dktemp = NULL;
24253 	uchar_t			*temperature_page;
24254 	int			rval = 0;
24255 	int			path_flag = SD_PATH_STANDARD;
24256 
24257 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24258 		return (ENXIO);
24259 	}
24260 
24261 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24262 
24263 	/* copyin the disk temp argument to get the user flags */
24264 	if (ddi_copyin((void *)arg, dktemp,
24265 	    sizeof (struct dk_temperature), flag) != 0) {
24266 		rval = EFAULT;
24267 		goto done;
24268 	}
24269 
24270 	/* Initialize the temperature to invalid. */
24271 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24272 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24273 
24274 	/*
24275 	 * Note: Investigate removing the "bypass pm" semantic.
24276 	 * Can we just bypass PM always?
24277 	 */
24278 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24279 		path_flag = SD_PATH_DIRECT;
24280 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24281 		mutex_enter(&un->un_pm_mutex);
24282 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24283 			/*
24284 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24285 			 * in low power mode, we can not wake it up, Need to
24286 			 * return EAGAIN.
24287 			 */
24288 			mutex_exit(&un->un_pm_mutex);
24289 			rval = EAGAIN;
24290 			goto done;
24291 		} else {
24292 			/*
24293 			 * Indicate to PM the device is busy. This is required
24294 			 * to avoid a race - i.e. the ioctl is issuing a
24295 			 * command and the pm framework brings down the device
24296 			 * to low power mode (possible power cut-off on some
24297 			 * platforms).
24298 			 */
24299 			mutex_exit(&un->un_pm_mutex);
24300 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24301 				rval = EAGAIN;
24302 				goto done;
24303 			}
24304 		}
24305 	}
24306 
24307 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24308 
24309 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
24310 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
24311 		goto done2;
24312 	}
24313 
24314 	/*
24315 	 * For the current temperature verify that the parameter length is 0x02
24316 	 * and the parameter code is 0x00
24317 	 */
24318 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24319 	    (temperature_page[5] == 0x00)) {
24320 		if (temperature_page[9] == 0xFF) {
24321 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24322 		} else {
24323 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24324 		}
24325 	}
24326 
24327 	/*
24328 	 * For the reference temperature verify that the parameter
24329 	 * length is 0x02 and the parameter code is 0x01
24330 	 */
24331 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24332 	    (temperature_page[11] == 0x01)) {
24333 		if (temperature_page[15] == 0xFF) {
24334 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24335 		} else {
24336 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24337 		}
24338 	}
24339 
24340 	/* Do the copyout regardless of the temperature commands status. */
24341 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24342 	    flag) != 0) {
24343 		rval = EFAULT;
24344 	}
24345 
24346 done2:
24347 	if (path_flag == SD_PATH_DIRECT) {
24348 		sd_pm_exit(un);
24349 	}
24350 
24351 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24352 done:
24353 	if (dktemp != NULL) {
24354 		kmem_free(dktemp, sizeof (struct dk_temperature));
24355 	}
24356 
24357 	return (rval);
24358 }
24359 
24360 
24361 /*
24362  *    Function: sd_log_page_supported
24363  *
24364  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24365  *		supported log pages.
24366  *
24367  *   Arguments: un -
24368  *		log_page -
24369  *
24370  * Return Code: -1 - on error (log sense is optional and may not be supported).
24371  *		0  - log page not found.
24372  *  		1  - log page found.
24373  */
24374 
24375 static int
24376 sd_log_page_supported(struct sd_lun *un, int log_page)
24377 {
24378 	uchar_t *log_page_data;
24379 	int	i;
24380 	int	match = 0;
24381 	int	log_size;
24382 
24383 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24384 
24385 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
24386 	    SD_PATH_DIRECT) != 0) {
24387 		SD_ERROR(SD_LOG_COMMON, un,
24388 		    "sd_log_page_supported: failed log page retrieval\n");
24389 		kmem_free(log_page_data, 0xFF);
24390 		return (-1);
24391 	}
24392 	log_size = log_page_data[3];
24393 
24394 	/*
24395 	 * The list of supported log pages start from the fourth byte. Check
24396 	 * until we run out of log pages or a match is found.
24397 	 */
24398 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24399 		if (log_page_data[i] == log_page) {
24400 			match++;
24401 		}
24402 	}
24403 	kmem_free(log_page_data, 0xFF);
24404 	return (match);
24405 }
24406 
24407 
24408 /*
24409  *    Function: sd_mhdioc_failfast
24410  *
24411  * Description: This routine is the driver entry point for handling ioctl
24412  *		requests to enable/disable the multihost failfast option.
24413  *		(MHIOCENFAILFAST)
24414  *
24415  *   Arguments: dev	- the device number
24416  *		arg	- user specified probing interval.
24417  *		flag	- this argument is a pass through to ddi_copyxxx()
24418  *			  directly from the mode argument of ioctl().
24419  *
24420  * Return Code: 0
24421  *		EFAULT
24422  *		ENXIO
24423  */
24424 
24425 static int
24426 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24427 {
24428 	struct sd_lun	*un = NULL;
24429 	int		mh_time;
24430 	int		rval = 0;
24431 
24432 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24433 		return (ENXIO);
24434 	}
24435 
24436 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24437 		return (EFAULT);
24438 
24439 	if (mh_time) {
24440 		mutex_enter(SD_MUTEX(un));
24441 		un->un_resvd_status |= SD_FAILFAST;
24442 		mutex_exit(SD_MUTEX(un));
24443 		/*
24444 		 * If mh_time is INT_MAX, then this ioctl is being used for
24445 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24446 		 */
24447 		if (mh_time != INT_MAX) {
24448 			rval = sd_check_mhd(dev, mh_time);
24449 		}
24450 	} else {
24451 		(void) sd_check_mhd(dev, 0);
24452 		mutex_enter(SD_MUTEX(un));
24453 		un->un_resvd_status &= ~SD_FAILFAST;
24454 		mutex_exit(SD_MUTEX(un));
24455 	}
24456 	return (rval);
24457 }
24458 
24459 
24460 /*
24461  *    Function: sd_mhdioc_takeown
24462  *
24463  * Description: This routine is the driver entry point for handling ioctl
24464  *		requests to forcefully acquire exclusive access rights to the
24465  *		multihost disk (MHIOCTKOWN).
24466  *
24467  *   Arguments: dev	- the device number
24468  *		arg	- user provided structure specifying the delay
24469  *			  parameters in milliseconds
24470  *		flag	- this argument is a pass through to ddi_copyxxx()
24471  *			  directly from the mode argument of ioctl().
24472  *
24473  * Return Code: 0
24474  *		EFAULT
24475  *		ENXIO
24476  */
24477 
24478 static int
24479 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24480 {
24481 	struct sd_lun		*un = NULL;
24482 	struct mhioctkown	*tkown = NULL;
24483 	int			rval = 0;
24484 
24485 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24486 		return (ENXIO);
24487 	}
24488 
24489 	if (arg != NULL) {
24490 		tkown = (struct mhioctkown *)
24491 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24492 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24493 		if (rval != 0) {
24494 			rval = EFAULT;
24495 			goto error;
24496 		}
24497 	}
24498 
24499 	rval = sd_take_ownership(dev, tkown);
24500 	mutex_enter(SD_MUTEX(un));
24501 	if (rval == 0) {
24502 		un->un_resvd_status |= SD_RESERVE;
24503 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24504 			sd_reinstate_resv_delay =
24505 			    tkown->reinstate_resv_delay * 1000;
24506 		} else {
24507 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24508 		}
24509 		/*
24510 		 * Give the scsi_watch routine interval set by
24511 		 * the MHIOCENFAILFAST ioctl precedence here.
24512 		 */
24513 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24514 			mutex_exit(SD_MUTEX(un));
24515 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24516 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24517 			    "sd_mhdioc_takeown : %d\n",
24518 			    sd_reinstate_resv_delay);
24519 		} else {
24520 			mutex_exit(SD_MUTEX(un));
24521 		}
24522 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24523 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24524 	} else {
24525 		un->un_resvd_status &= ~SD_RESERVE;
24526 		mutex_exit(SD_MUTEX(un));
24527 	}
24528 
24529 error:
24530 	if (tkown != NULL) {
24531 		kmem_free(tkown, sizeof (struct mhioctkown));
24532 	}
24533 	return (rval);
24534 }
24535 
24536 
24537 /*
24538  *    Function: sd_mhdioc_release
24539  *
24540  * Description: This routine is the driver entry point for handling ioctl
24541  *		requests to release exclusive access rights to the multihost
24542  *		disk (MHIOCRELEASE).
24543  *
24544  *   Arguments: dev	- the device number
24545  *
24546  * Return Code: 0
24547  *		ENXIO
24548  */
24549 
24550 static int
24551 sd_mhdioc_release(dev_t dev)
24552 {
24553 	struct sd_lun		*un = NULL;
24554 	timeout_id_t		resvd_timeid_save;
24555 	int			resvd_status_save;
24556 	int			rval = 0;
24557 
24558 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24559 		return (ENXIO);
24560 	}
24561 
24562 	mutex_enter(SD_MUTEX(un));
24563 	resvd_status_save = un->un_resvd_status;
24564 	un->un_resvd_status &=
24565 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24566 	if (un->un_resvd_timeid) {
24567 		resvd_timeid_save = un->un_resvd_timeid;
24568 		un->un_resvd_timeid = NULL;
24569 		mutex_exit(SD_MUTEX(un));
24570 		(void) untimeout(resvd_timeid_save);
24571 	} else {
24572 		mutex_exit(SD_MUTEX(un));
24573 	}
24574 
24575 	/*
24576 	 * destroy any pending timeout thread that may be attempting to
24577 	 * reinstate reservation on this device.
24578 	 */
24579 	sd_rmv_resv_reclaim_req(dev);
24580 
24581 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24582 		mutex_enter(SD_MUTEX(un));
24583 		if ((un->un_mhd_token) &&
24584 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24585 			mutex_exit(SD_MUTEX(un));
24586 			(void) sd_check_mhd(dev, 0);
24587 		} else {
24588 			mutex_exit(SD_MUTEX(un));
24589 		}
24590 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24591 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24592 	} else {
24593 		/*
24594 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24595 		 */
24596 		mutex_enter(SD_MUTEX(un));
24597 		un->un_resvd_status = resvd_status_save;
24598 		mutex_exit(SD_MUTEX(un));
24599 	}
24600 	return (rval);
24601 }
24602 
24603 
24604 /*
24605  *    Function: sd_mhdioc_register_devid
24606  *
24607  * Description: This routine is the driver entry point for handling ioctl
24608  *		requests to register the device id (MHIOCREREGISTERDEVID).
24609  *
24610  *		Note: The implementation for this ioctl has been updated to
24611  *		be consistent with the original PSARC case (1999/357)
24612  *		(4375899, 4241671, 4220005)
24613  *
24614  *   Arguments: dev	- the device number
24615  *
24616  * Return Code: 0
24617  *		ENXIO
24618  */
24619 
24620 static int
24621 sd_mhdioc_register_devid(dev_t dev)
24622 {
24623 	struct sd_lun	*un = NULL;
24624 	int		rval = 0;
24625 
24626 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24627 		return (ENXIO);
24628 	}
24629 
24630 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24631 
24632 	mutex_enter(SD_MUTEX(un));
24633 
24634 	/* If a devid already exists, de-register it */
24635 	if (un->un_devid != NULL) {
24636 		ddi_devid_unregister(SD_DEVINFO(un));
24637 		/*
24638 		 * After unregister devid, needs to free devid memory
24639 		 */
24640 		ddi_devid_free(un->un_devid);
24641 		un->un_devid = NULL;
24642 	}
24643 
24644 	/* Check for reservation conflict */
24645 	mutex_exit(SD_MUTEX(un));
24646 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
24647 	mutex_enter(SD_MUTEX(un));
24648 
24649 	switch (rval) {
24650 	case 0:
24651 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24652 		break;
24653 	case EACCES:
24654 		break;
24655 	default:
24656 		rval = EIO;
24657 	}
24658 
24659 	mutex_exit(SD_MUTEX(un));
24660 	return (rval);
24661 }
24662 
24663 
24664 /*
24665  *    Function: sd_mhdioc_inkeys
24666  *
24667  * Description: This routine is the driver entry point for handling ioctl
24668  *		requests to issue the SCSI-3 Persistent In Read Keys command
24669  *		to the device (MHIOCGRP_INKEYS).
24670  *
24671  *   Arguments: dev	- the device number
24672  *		arg	- user provided in_keys structure
24673  *		flag	- this argument is a pass through to ddi_copyxxx()
24674  *			  directly from the mode argument of ioctl().
24675  *
24676  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24677  *		ENXIO
24678  *		EFAULT
24679  */
24680 
24681 static int
24682 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24683 {
24684 	struct sd_lun		*un;
24685 	mhioc_inkeys_t		inkeys;
24686 	int			rval = 0;
24687 
24688 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24689 		return (ENXIO);
24690 	}
24691 
24692 #ifdef _MULTI_DATAMODEL
24693 	switch (ddi_model_convert_from(flag & FMODELS)) {
24694 	case DDI_MODEL_ILP32: {
24695 		struct mhioc_inkeys32	inkeys32;
24696 
24697 		if (ddi_copyin(arg, &inkeys32,
24698 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24699 			return (EFAULT);
24700 		}
24701 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24702 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24703 		    &inkeys, flag)) != 0) {
24704 			return (rval);
24705 		}
24706 		inkeys32.generation = inkeys.generation;
24707 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24708 		    flag) != 0) {
24709 			return (EFAULT);
24710 		}
24711 		break;
24712 	}
24713 	case DDI_MODEL_NONE:
24714 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24715 		    flag) != 0) {
24716 			return (EFAULT);
24717 		}
24718 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24719 		    &inkeys, flag)) != 0) {
24720 			return (rval);
24721 		}
24722 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24723 		    flag) != 0) {
24724 			return (EFAULT);
24725 		}
24726 		break;
24727 	}
24728 
24729 #else /* ! _MULTI_DATAMODEL */
24730 
24731 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24732 		return (EFAULT);
24733 	}
24734 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24735 	if (rval != 0) {
24736 		return (rval);
24737 	}
24738 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24739 		return (EFAULT);
24740 	}
24741 
24742 #endif /* _MULTI_DATAMODEL */
24743 
24744 	return (rval);
24745 }
24746 
24747 
24748 /*
24749  *    Function: sd_mhdioc_inresv
24750  *
24751  * Description: This routine is the driver entry point for handling ioctl
24752  *		requests to issue the SCSI-3 Persistent In Read Reservations
24753  *		command to the device (MHIOCGRP_INKEYS).
24754  *
24755  *   Arguments: dev	- the device number
24756  *		arg	- user provided in_resv structure
24757  *		flag	- this argument is a pass through to ddi_copyxxx()
24758  *			  directly from the mode argument of ioctl().
24759  *
24760  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24761  *		ENXIO
24762  *		EFAULT
24763  */
24764 
24765 static int
24766 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24767 {
24768 	struct sd_lun		*un;
24769 	mhioc_inresvs_t		inresvs;
24770 	int			rval = 0;
24771 
24772 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24773 		return (ENXIO);
24774 	}
24775 
24776 #ifdef _MULTI_DATAMODEL
24777 
24778 	switch (ddi_model_convert_from(flag & FMODELS)) {
24779 	case DDI_MODEL_ILP32: {
24780 		struct mhioc_inresvs32	inresvs32;
24781 
24782 		if (ddi_copyin(arg, &inresvs32,
24783 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24784 			return (EFAULT);
24785 		}
24786 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24787 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24788 		    &inresvs, flag)) != 0) {
24789 			return (rval);
24790 		}
24791 		inresvs32.generation = inresvs.generation;
24792 		if (ddi_copyout(&inresvs32, arg,
24793 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24794 			return (EFAULT);
24795 		}
24796 		break;
24797 	}
24798 	case DDI_MODEL_NONE:
24799 		if (ddi_copyin(arg, &inresvs,
24800 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24801 			return (EFAULT);
24802 		}
24803 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24804 		    &inresvs, flag)) != 0) {
24805 			return (rval);
24806 		}
24807 		if (ddi_copyout(&inresvs, arg,
24808 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24809 			return (EFAULT);
24810 		}
24811 		break;
24812 	}
24813 
24814 #else /* ! _MULTI_DATAMODEL */
24815 
24816 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24817 		return (EFAULT);
24818 	}
24819 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24820 	if (rval != 0) {
24821 		return (rval);
24822 	}
24823 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24824 		return (EFAULT);
24825 	}
24826 
24827 #endif /* ! _MULTI_DATAMODEL */
24828 
24829 	return (rval);
24830 }
24831 
24832 
24833 /*
24834  * The following routines support the clustering functionality described below
24835  * and implement lost reservation reclaim functionality.
24836  *
24837  * Clustering
24838  * ----------
24839  * The clustering code uses two different, independent forms of SCSI
24840  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24841  * Persistent Group Reservations. For any particular disk, it will use either
24842  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24843  *
24844  * SCSI-2
24845  * The cluster software takes ownership of a multi-hosted disk by issuing the
24846  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24847  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
24848  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
24849  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
24850  * meaning of failfast is that if the driver (on this host) ever encounters the
24851  * scsi error return code RESERVATION_CONFLICT from the device, it should
24852  * immediately panic the host. The motivation for this ioctl is that if this
24853  * host does encounter reservation conflict, the underlying cause is that some
24854  * other host of the cluster has decided that this host is no longer in the
24855  * cluster and has seized control of the disks for itself. Since this host is no
24856  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
24857  * does two things:
24858  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24859  *      error to panic the host
24860  *      (b) it sets up a periodic timer to test whether this host still has
24861  *      "access" (in that no other host has reserved the device):  if the
24862  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24863  *      purpose of that periodic timer is to handle scenarios where the host is
24864  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24865  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24866  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24867  * the device itself.
24868  *
24869  * SCSI-3 PGR
24870  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24871  * facility is supported through the shared multihost disk ioctls
24872  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24873  * MHIOCGRP_PREEMPTANDABORT)
24874  *
24875  * Reservation Reclaim:
24876  * --------------------
24877  * To support the lost reservation reclaim operations this driver creates a
24878  * single thread to handle reinstating reservations on all devices that have
24879  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24880  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24881  * and the reservation reclaim thread loops through the requests to regain the
24882  * lost reservations.
24883  */
24884 
24885 /*
24886  *    Function: sd_check_mhd()
24887  *
24888  * Description: This function sets up and submits a scsi watch request or
24889  *		terminates an existing watch request. This routine is used in
24890  *		support of reservation reclaim.
24891  *
24892  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24893  *			 among multiple watches that share the callback function
24894  *		interval - the number of microseconds specifying the watch
24895  *			   interval for issuing TEST UNIT READY commands. If
24896  *			   set to 0 the watch should be terminated. If the
24897  *			   interval is set to 0 and if the device is required
24898  *			   to hold reservation while disabling failfast, the
24899  *			   watch is restarted with an interval of
24900  *			   reinstate_resv_delay.
24901  *
24902  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24903  *		ENXIO      - Indicates an invalid device was specified
24904  *		EAGAIN     - Unable to submit the scsi watch request
24905  */
24906 
24907 static int
24908 sd_check_mhd(dev_t dev, int interval)
24909 {
24910 	struct sd_lun	*un;
24911 	opaque_t	token;
24912 
24913 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24914 		return (ENXIO);
24915 	}
24916 
24917 	/* is this a watch termination request? */
24918 	if (interval == 0) {
24919 		mutex_enter(SD_MUTEX(un));
24920 		/* if there is an existing watch task then terminate it */
24921 		if (un->un_mhd_token) {
24922 			token = un->un_mhd_token;
24923 			un->un_mhd_token = NULL;
24924 			mutex_exit(SD_MUTEX(un));
24925 			(void) scsi_watch_request_terminate(token,
24926 			    SCSI_WATCH_TERMINATE_WAIT);
24927 			mutex_enter(SD_MUTEX(un));
24928 		} else {
24929 			mutex_exit(SD_MUTEX(un));
24930 			/*
24931 			 * Note: If we return here we don't check for the
24932 			 * failfast case. This is the original legacy
24933 			 * implementation but perhaps we should be checking
24934 			 * the failfast case.
24935 			 */
24936 			return (0);
24937 		}
24938 		/*
24939 		 * If the device is required to hold reservation while
24940 		 * disabling failfast, we need to restart the scsi_watch
24941 		 * routine with an interval of reinstate_resv_delay.
24942 		 */
24943 		if (un->un_resvd_status & SD_RESERVE) {
24944 			interval = sd_reinstate_resv_delay/1000;
24945 		} else {
24946 			/* no failfast so bail */
24947 			mutex_exit(SD_MUTEX(un));
24948 			return (0);
24949 		}
24950 		mutex_exit(SD_MUTEX(un));
24951 	}
24952 
24953 	/*
24954 	 * adjust minimum time interval to 1 second,
24955 	 * and convert from msecs to usecs
24956 	 */
24957 	if (interval > 0 && interval < 1000) {
24958 		interval = 1000;
24959 	}
24960 	interval *= 1000;
24961 
24962 	/*
24963 	 * submit the request to the scsi_watch service
24964 	 */
24965 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24966 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24967 	if (token == NULL) {
24968 		return (EAGAIN);
24969 	}
24970 
24971 	/*
24972 	 * save token for termination later on
24973 	 */
24974 	mutex_enter(SD_MUTEX(un));
24975 	un->un_mhd_token = token;
24976 	mutex_exit(SD_MUTEX(un));
24977 	return (0);
24978 }
24979 
24980 
24981 /*
24982  *    Function: sd_mhd_watch_cb()
24983  *
24984  * Description: This function is the call back function used by the scsi watch
24985  *		facility. The scsi watch facility sends the "Test Unit Ready"
24986  *		and processes the status. If applicable (i.e. a "Unit Attention"
24987  *		status and automatic "Request Sense" not used) the scsi watch
24988  *		facility will send a "Request Sense" and retrieve the sense data
24989  *		to be passed to this callback function. In either case the
24990  *		automatic "Request Sense" or the facility submitting one, this
24991  *		callback is passed the status and sense data.
24992  *
24993  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24994  *			among multiple watches that share this callback function
24995  *		resultp - scsi watch facility result packet containing scsi
24996  *			  packet, status byte and sense data
24997  *
24998  * Return Code: 0 - continue the watch task
24999  *		non-zero - terminate the watch task
25000  */
25001 
25002 static int
25003 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
25004 {
25005 	struct sd_lun			*un;
25006 	struct scsi_status		*statusp;
25007 	struct scsi_extended_sense	*sensep;
25008 	struct scsi_pkt			*pkt;
25009 	uchar_t				actual_sense_length;
25010 	dev_t  				dev = (dev_t)arg;
25011 
25012 	ASSERT(resultp != NULL);
25013 	statusp			= resultp->statusp;
25014 	sensep			= resultp->sensep;
25015 	pkt			= resultp->pkt;
25016 	actual_sense_length	= resultp->actual_sense_length;
25017 
25018 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25019 		return (ENXIO);
25020 	}
25021 
25022 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25023 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
25024 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
25025 
25026 	/* Begin processing of the status and/or sense data */
25027 	if (pkt->pkt_reason != CMD_CMPLT) {
25028 		/* Handle the incomplete packet */
25029 		sd_mhd_watch_incomplete(un, pkt);
25030 		return (0);
25031 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
25032 		if (*((unsigned char *)statusp)
25033 		    == STATUS_RESERVATION_CONFLICT) {
25034 			/*
25035 			 * Handle a reservation conflict by panicking if
25036 			 * configured for failfast or by logging the conflict
25037 			 * and updating the reservation status
25038 			 */
25039 			mutex_enter(SD_MUTEX(un));
25040 			if ((un->un_resvd_status & SD_FAILFAST) &&
25041 			    (sd_failfast_enable)) {
25042 				sd_panic_for_res_conflict(un);
25043 				/*NOTREACHED*/
25044 			}
25045 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25046 			    "sd_mhd_watch_cb: Reservation Conflict\n");
25047 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
25048 			mutex_exit(SD_MUTEX(un));
25049 		}
25050 	}
25051 
25052 	if (sensep != NULL) {
25053 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25054 			mutex_enter(SD_MUTEX(un));
25055 			if ((sensep->es_add_code == SD_SCSI_RESET_SENSE_CODE) &&
25056 			    (un->un_resvd_status & SD_RESERVE)) {
25057 				/*
25058 				 * The additional sense code indicates a power
25059 				 * on or bus device reset has occurred; update
25060 				 * the reservation status.
25061 				 */
25062 				un->un_resvd_status |=
25063 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25064 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25065 				    "sd_mhd_watch_cb: Lost Reservation\n");
25066 			}
25067 		} else {
25068 			return (0);
25069 		}
25070 	} else {
25071 		mutex_enter(SD_MUTEX(un));
25072 	}
25073 
25074 	if ((un->un_resvd_status & SD_RESERVE) &&
25075 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25076 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25077 			/*
25078 			 * A reset occurred in between the last probe and this
25079 			 * one so if a timeout is pending cancel it.
25080 			 */
25081 			if (un->un_resvd_timeid) {
25082 				timeout_id_t temp_id = un->un_resvd_timeid;
25083 				un->un_resvd_timeid = NULL;
25084 				mutex_exit(SD_MUTEX(un));
25085 				(void) untimeout(temp_id);
25086 				mutex_enter(SD_MUTEX(un));
25087 			}
25088 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25089 		}
25090 		if (un->un_resvd_timeid == 0) {
25091 			/* Schedule a timeout to handle the lost reservation */
25092 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25093 			    (void *)dev,
25094 			    drv_usectohz(sd_reinstate_resv_delay));
25095 		}
25096 	}
25097 	mutex_exit(SD_MUTEX(un));
25098 	return (0);
25099 }
25100 
25101 
25102 /*
25103  *    Function: sd_mhd_watch_incomplete()
25104  *
25105  * Description: This function is used to find out why a scsi pkt sent by the
25106  *		scsi watch facility was not completed. Under some scenarios this
25107  *		routine will return. Otherwise it will send a bus reset to see
25108  *		if the drive is still online.
25109  *
25110  *   Arguments: un  - driver soft state (unit) structure
25111  *		pkt - incomplete scsi pkt
25112  */
25113 
25114 static void
25115 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25116 {
25117 	int	be_chatty;
25118 	int	perr;
25119 
25120 	ASSERT(pkt != NULL);
25121 	ASSERT(un != NULL);
25122 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25123 	perr		= (pkt->pkt_statistics & STAT_PERR);
25124 
25125 	mutex_enter(SD_MUTEX(un));
25126 	if (un->un_state == SD_STATE_DUMPING) {
25127 		mutex_exit(SD_MUTEX(un));
25128 		return;
25129 	}
25130 
25131 	switch (pkt->pkt_reason) {
25132 	case CMD_UNX_BUS_FREE:
25133 		/*
25134 		 * If we had a parity error that caused the target to drop BSY*,
25135 		 * don't be chatty about it.
25136 		 */
25137 		if (perr && be_chatty) {
25138 			be_chatty = 0;
25139 		}
25140 		break;
25141 	case CMD_TAG_REJECT:
25142 		/*
25143 		 * The SCSI-2 spec states that a tag reject will be sent by the
25144 		 * target if tagged queuing is not supported. A tag reject may
25145 		 * also be sent during certain initialization periods or to
25146 		 * control internal resources. For the latter case the target
25147 		 * may also return Queue Full.
25148 		 *
25149 		 * If this driver receives a tag reject from a target that is
25150 		 * going through an init period or controlling internal
25151 		 * resources tagged queuing will be disabled. This is a less
25152 		 * than optimal behavior but the driver is unable to determine
25153 		 * the target state and assumes tagged queueing is not supported
25154 		 */
25155 		pkt->pkt_flags = 0;
25156 		un->un_tagflags = 0;
25157 
25158 		if (un->un_f_opt_queueing == TRUE) {
25159 			un->un_throttle = min(un->un_throttle, 3);
25160 		} else {
25161 			un->un_throttle = 1;
25162 		}
25163 		mutex_exit(SD_MUTEX(un));
25164 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25165 		mutex_enter(SD_MUTEX(un));
25166 		break;
25167 	case CMD_INCOMPLETE:
25168 		/*
25169 		 * The transport stopped with an abnormal state, fallthrough and
25170 		 * reset the target and/or bus unless selection did not complete
25171 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25172 		 * go through a target/bus reset
25173 		 */
25174 		if (pkt->pkt_state == STATE_GOT_BUS) {
25175 			break;
25176 		}
25177 		/*FALLTHROUGH*/
25178 
25179 	case CMD_TIMEOUT:
25180 	default:
25181 		/*
25182 		 * The lun may still be running the command, so a lun reset
25183 		 * should be attempted. If the lun reset fails or cannot be
25184 		 * issued, than try a target reset. Lastly try a bus reset.
25185 		 */
25186 		if ((pkt->pkt_statistics &
25187 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25188 			int reset_retval = 0;
25189 			mutex_exit(SD_MUTEX(un));
25190 			if (un->un_f_allow_bus_device_reset == TRUE) {
25191 				if (un->un_f_lun_reset_enabled == TRUE) {
25192 					reset_retval =
25193 					    scsi_reset(SD_ADDRESS(un),
25194 					    RESET_LUN);
25195 				}
25196 				if (reset_retval == 0) {
25197 					reset_retval =
25198 					    scsi_reset(SD_ADDRESS(un),
25199 					    RESET_TARGET);
25200 				}
25201 			}
25202 			if (reset_retval == 0) {
25203 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25204 			}
25205 			mutex_enter(SD_MUTEX(un));
25206 		}
25207 		break;
25208 	}
25209 
25210 	/* A device/bus reset has occurred; update the reservation status. */
25211 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25212 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25213 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25214 			un->un_resvd_status |=
25215 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25216 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25217 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25218 		}
25219 	}
25220 
25221 	/*
25222 	 * The disk has been turned off; Update the device state.
25223 	 *
25224 	 * Note: Should we be offlining the disk here?
25225 	 */
25226 	if (pkt->pkt_state == STATE_GOT_BUS) {
25227 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25228 		    "Disk not responding to selection\n");
25229 		if (un->un_state != SD_STATE_OFFLINE) {
25230 			New_state(un, SD_STATE_OFFLINE);
25231 		}
25232 	} else if (be_chatty) {
25233 		/*
25234 		 * suppress messages if they are all the same pkt reason;
25235 		 * with TQ, many (up to 256) are returned with the same
25236 		 * pkt_reason
25237 		 */
25238 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25239 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25240 			    "sd_mhd_watch_incomplete: "
25241 			    "SCSI transport failed: reason '%s'\n",
25242 			    scsi_rname(pkt->pkt_reason));
25243 		}
25244 	}
25245 	un->un_last_pkt_reason = pkt->pkt_reason;
25246 	mutex_exit(SD_MUTEX(un));
25247 }
25248 
25249 
25250 /*
25251  *    Function: sd_sname()
25252  *
25253  * Description: This is a simple little routine to return a string containing
25254  *		a printable description of command status byte for use in
25255  *		logging.
25256  *
25257  *   Arguments: status - pointer to a status byte
25258  *
25259  * Return Code: char * - string containing status description.
25260  */
25261 
25262 static char *
25263 sd_sname(uchar_t status)
25264 {
25265 	switch (status & STATUS_MASK) {
25266 	case STATUS_GOOD:
25267 		return ("good status");
25268 	case STATUS_CHECK:
25269 		return ("check condition");
25270 	case STATUS_MET:
25271 		return ("condition met");
25272 	case STATUS_BUSY:
25273 		return ("busy");
25274 	case STATUS_INTERMEDIATE:
25275 		return ("intermediate");
25276 	case STATUS_INTERMEDIATE_MET:
25277 		return ("intermediate - condition met");
25278 	case STATUS_RESERVATION_CONFLICT:
25279 		return ("reservation_conflict");
25280 	case STATUS_TERMINATED:
25281 		return ("command terminated");
25282 	case STATUS_QFULL:
25283 		return ("queue full");
25284 	default:
25285 		return ("<unknown status>");
25286 	}
25287 }
25288 
25289 
25290 /*
25291  *    Function: sd_mhd_resvd_recover()
25292  *
25293  * Description: This function adds a reservation entry to the
25294  *		sd_resv_reclaim_request list and signals the reservation
25295  *		reclaim thread that there is work pending. If the reservation
25296  *		reclaim thread has not been previously created this function
25297  *		will kick it off.
25298  *
25299  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25300  *			among multiple watches that share this callback function
25301  *
25302  *     Context: This routine is called by timeout() and is run in interrupt
25303  *		context. It must not sleep or call other functions which may
25304  *		sleep.
25305  */
25306 
25307 static void
25308 sd_mhd_resvd_recover(void *arg)
25309 {
25310 	dev_t			dev = (dev_t)arg;
25311 	struct sd_lun		*un;
25312 	struct sd_thr_request	*sd_treq = NULL;
25313 	struct sd_thr_request	*sd_cur = NULL;
25314 	struct sd_thr_request	*sd_prev = NULL;
25315 	int			already_there = 0;
25316 
25317 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25318 		return;
25319 	}
25320 
25321 	mutex_enter(SD_MUTEX(un));
25322 	un->un_resvd_timeid = NULL;
25323 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25324 		/*
25325 		 * There was a reset so don't issue the reserve, allow the
25326 		 * sd_mhd_watch_cb callback function to notice this and
25327 		 * reschedule the timeout for reservation.
25328 		 */
25329 		mutex_exit(SD_MUTEX(un));
25330 		return;
25331 	}
25332 	mutex_exit(SD_MUTEX(un));
25333 
25334 	/*
25335 	 * Add this device to the sd_resv_reclaim_request list and the
25336 	 * sd_resv_reclaim_thread should take care of the rest.
25337 	 *
25338 	 * Note: We can't sleep in this context so if the memory allocation
25339 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25340 	 * reschedule the timeout for reservation.  (4378460)
25341 	 */
25342 	sd_treq = (struct sd_thr_request *)
25343 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25344 	if (sd_treq == NULL) {
25345 		return;
25346 	}
25347 
25348 	sd_treq->sd_thr_req_next = NULL;
25349 	sd_treq->dev = dev;
25350 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25351 	if (sd_tr.srq_thr_req_head == NULL) {
25352 		sd_tr.srq_thr_req_head = sd_treq;
25353 	} else {
25354 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25355 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25356 			if (sd_cur->dev == dev) {
25357 				/*
25358 				 * already in Queue so don't log
25359 				 * another request for the device
25360 				 */
25361 				already_there = 1;
25362 				break;
25363 			}
25364 			sd_prev = sd_cur;
25365 		}
25366 		if (!already_there) {
25367 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25368 			    "logging request for %lx\n", dev);
25369 			sd_prev->sd_thr_req_next = sd_treq;
25370 		} else {
25371 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25372 		}
25373 	}
25374 
25375 	/*
25376 	 * Create a kernel thread to do the reservation reclaim and free up this
25377 	 * thread. We cannot block this thread while we go away to do the
25378 	 * reservation reclaim
25379 	 */
25380 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25381 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25382 		    sd_resv_reclaim_thread, NULL,
25383 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25384 
25385 	/* Tell the reservation reclaim thread that it has work to do */
25386 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25387 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25388 }
25389 
25390 /*
25391  *    Function: sd_resv_reclaim_thread()
25392  *
25393  * Description: This function implements the reservation reclaim operations
25394  *
25395  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25396  *		      among multiple watches that share this callback function
25397  */
25398 
25399 static void
25400 sd_resv_reclaim_thread()
25401 {
25402 	struct sd_lun		*un;
25403 	struct sd_thr_request	*sd_mhreq;
25404 
25405 	/* Wait for work */
25406 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25407 	if (sd_tr.srq_thr_req_head == NULL) {
25408 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25409 		    &sd_tr.srq_resv_reclaim_mutex);
25410 	}
25411 
25412 	/* Loop while we have work */
25413 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25414 		un = ddi_get_soft_state(sd_state,
25415 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25416 		if (un == NULL) {
25417 			/*
25418 			 * softstate structure is NULL so just
25419 			 * dequeue the request and continue
25420 			 */
25421 			sd_tr.srq_thr_req_head =
25422 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25423 			kmem_free(sd_tr.srq_thr_cur_req,
25424 			    sizeof (struct sd_thr_request));
25425 			continue;
25426 		}
25427 
25428 		/* dequeue the request */
25429 		sd_mhreq = sd_tr.srq_thr_cur_req;
25430 		sd_tr.srq_thr_req_head =
25431 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25432 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25433 
25434 		/*
25435 		 * Reclaim reservation only if SD_RESERVE is still set. There
25436 		 * may have been a call to MHIOCRELEASE before we got here.
25437 		 */
25438 		mutex_enter(SD_MUTEX(un));
25439 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25440 			/*
25441 			 * Note: The SD_LOST_RESERVE flag is cleared before
25442 			 * reclaiming the reservation. If this is done after the
25443 			 * call to sd_reserve_release a reservation loss in the
25444 			 * window between pkt completion of reserve cmd and
25445 			 * mutex_enter below may not be recognized
25446 			 */
25447 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25448 			mutex_exit(SD_MUTEX(un));
25449 
25450 			if (sd_reserve_release(sd_mhreq->dev,
25451 			    SD_RESERVE) == 0) {
25452 				mutex_enter(SD_MUTEX(un));
25453 				un->un_resvd_status |= SD_RESERVE;
25454 				mutex_exit(SD_MUTEX(un));
25455 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25456 				    "sd_resv_reclaim_thread: "
25457 				    "Reservation Recovered\n");
25458 			} else {
25459 				mutex_enter(SD_MUTEX(un));
25460 				un->un_resvd_status |= SD_LOST_RESERVE;
25461 				mutex_exit(SD_MUTEX(un));
25462 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25463 				    "sd_resv_reclaim_thread: Failed "
25464 				    "Reservation Recovery\n");
25465 			}
25466 		} else {
25467 			mutex_exit(SD_MUTEX(un));
25468 		}
25469 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25470 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25471 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25472 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25473 		/*
25474 		 * wakeup the destroy thread if anyone is waiting on
25475 		 * us to complete.
25476 		 */
25477 		cv_signal(&sd_tr.srq_inprocess_cv);
25478 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25479 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25480 	}
25481 
25482 	/*
25483 	 * cleanup the sd_tr structure now that this thread will not exist
25484 	 */
25485 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25486 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25487 	sd_tr.srq_resv_reclaim_thread = NULL;
25488 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25489 	thread_exit();
25490 }
25491 
25492 
25493 /*
25494  *    Function: sd_rmv_resv_reclaim_req()
25495  *
25496  * Description: This function removes any pending reservation reclaim requests
25497  *		for the specified device.
25498  *
25499  *   Arguments: dev - the device 'dev_t'
25500  */
25501 
25502 static void
25503 sd_rmv_resv_reclaim_req(dev_t dev)
25504 {
25505 	struct sd_thr_request *sd_mhreq;
25506 	struct sd_thr_request *sd_prev;
25507 
25508 	/* Remove a reservation reclaim request from the list */
25509 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25510 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25511 		/*
25512 		 * We are attempting to reinstate reservation for
25513 		 * this device. We wait for sd_reserve_release()
25514 		 * to return before we return.
25515 		 */
25516 		cv_wait(&sd_tr.srq_inprocess_cv,
25517 		    &sd_tr.srq_resv_reclaim_mutex);
25518 	} else {
25519 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25520 		if (sd_mhreq && sd_mhreq->dev == dev) {
25521 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25522 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25523 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25524 			return;
25525 		}
25526 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25527 			if (sd_mhreq && sd_mhreq->dev == dev) {
25528 				break;
25529 			}
25530 			sd_prev = sd_mhreq;
25531 		}
25532 		if (sd_mhreq != NULL) {
25533 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25534 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25535 		}
25536 	}
25537 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25538 }
25539 
25540 
25541 /*
25542  *    Function: sd_mhd_reset_notify_cb()
25543  *
25544  * Description: This is a call back function for scsi_reset_notify. This
25545  *		function updates the softstate reserved status and logs the
25546  *		reset. The driver scsi watch facility callback function
25547  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25548  *		will reclaim the reservation.
25549  *
25550  *   Arguments: arg  - driver soft state (unit) structure
25551  */
25552 
25553 static void
25554 sd_mhd_reset_notify_cb(caddr_t arg)
25555 {
25556 	struct sd_lun *un = (struct sd_lun *)arg;
25557 
25558 	mutex_enter(SD_MUTEX(un));
25559 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25560 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25561 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25562 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25563 	}
25564 	mutex_exit(SD_MUTEX(un));
25565 }
25566 
25567 
25568 /*
25569  *    Function: sd_take_ownership()
25570  *
25571  * Description: This routine implements an algorithm to achieve a stable
25572  *		reservation on disks which don't implement priority reserve,
25573  *		and makes sure that other host lose re-reservation attempts.
25574  *		This algorithm contains of a loop that keeps issuing the RESERVE
25575  *		for some period of time (min_ownership_delay, default 6 seconds)
25576  *		During that loop, it looks to see if there has been a bus device
25577  *		reset or bus reset (both of which cause an existing reservation
25578  *		to be lost). If the reservation is lost issue RESERVE until a
25579  *		period of min_ownership_delay with no resets has gone by, or
25580  *		until max_ownership_delay has expired. This loop ensures that
25581  *		the host really did manage to reserve the device, in spite of
25582  *		resets. The looping for min_ownership_delay (default six
25583  *		seconds) is important to early generation clustering products,
25584  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25585  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25586  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25587  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25588  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25589  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25590  *		no longer "owns" the disk and will have panicked itself.  Thus,
25591  *		the host issuing the MHIOCTKOWN is assured (with timing
25592  *		dependencies) that by the time it actually starts to use the
25593  *		disk for real work, the old owner is no longer accessing it.
25594  *
25595  *		min_ownership_delay is the minimum amount of time for which the
25596  *		disk must be reserved continuously devoid of resets before the
25597  *		MHIOCTKOWN ioctl will return success.
25598  *
25599  *		max_ownership_delay indicates the amount of time by which the
25600  *		take ownership should succeed or timeout with an error.
25601  *
25602  *   Arguments: dev - the device 'dev_t'
25603  *		*p  - struct containing timing info.
25604  *
25605  * Return Code: 0 for success or error code
25606  */
25607 
25608 static int
25609 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25610 {
25611 	struct sd_lun	*un;
25612 	int		rval;
25613 	int		err;
25614 	int		reservation_count   = 0;
25615 	int		min_ownership_delay =  6000000; /* in usec */
25616 	int		max_ownership_delay = 30000000; /* in usec */
25617 	clock_t		start_time;	/* starting time of this algorithm */
25618 	clock_t		end_time;	/* time limit for giving up */
25619 	clock_t		ownership_time;	/* time limit for stable ownership */
25620 	clock_t		current_time;
25621 	clock_t		previous_current_time;
25622 
25623 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25624 		return (ENXIO);
25625 	}
25626 
25627 	/*
25628 	 * Attempt a device reservation. A priority reservation is requested.
25629 	 */
25630 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25631 	    != SD_SUCCESS) {
25632 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25633 		    "sd_take_ownership: return(1)=%d\n", rval);
25634 		return (rval);
25635 	}
25636 
25637 	/* Update the softstate reserved status to indicate the reservation */
25638 	mutex_enter(SD_MUTEX(un));
25639 	un->un_resvd_status |= SD_RESERVE;
25640 	un->un_resvd_status &=
25641 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25642 	mutex_exit(SD_MUTEX(un));
25643 
25644 	if (p != NULL) {
25645 		if (p->min_ownership_delay != 0) {
25646 			min_ownership_delay = p->min_ownership_delay * 1000;
25647 		}
25648 		if (p->max_ownership_delay != 0) {
25649 			max_ownership_delay = p->max_ownership_delay * 1000;
25650 		}
25651 	}
25652 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25653 	    "sd_take_ownership: min, max delays: %d, %d\n",
25654 	    min_ownership_delay, max_ownership_delay);
25655 
25656 	start_time = ddi_get_lbolt();
25657 	current_time	= start_time;
25658 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25659 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25660 
25661 	while (current_time - end_time < 0) {
25662 		delay(drv_usectohz(500000));
25663 
25664 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25665 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25666 				mutex_enter(SD_MUTEX(un));
25667 				rval = (un->un_resvd_status &
25668 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25669 				mutex_exit(SD_MUTEX(un));
25670 				break;
25671 			}
25672 		}
25673 		previous_current_time = current_time;
25674 		current_time = ddi_get_lbolt();
25675 		mutex_enter(SD_MUTEX(un));
25676 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25677 			ownership_time = ddi_get_lbolt() +
25678 			    drv_usectohz(min_ownership_delay);
25679 			reservation_count = 0;
25680 		} else {
25681 			reservation_count++;
25682 		}
25683 		un->un_resvd_status |= SD_RESERVE;
25684 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25685 		mutex_exit(SD_MUTEX(un));
25686 
25687 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25688 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25689 		    "reservation=%s\n", (current_time - previous_current_time),
25690 		    reservation_count ? "ok" : "reclaimed");
25691 
25692 		if (current_time - ownership_time >= 0 &&
25693 		    reservation_count >= 4) {
25694 			rval = 0; /* Achieved a stable ownership */
25695 			break;
25696 		}
25697 		if (current_time - end_time >= 0) {
25698 			rval = EACCES; /* No ownership in max possible time */
25699 			break;
25700 		}
25701 	}
25702 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25703 	    "sd_take_ownership: return(2)=%d\n", rval);
25704 	return (rval);
25705 }
25706 
25707 
25708 /*
25709  *    Function: sd_reserve_release()
25710  *
25711  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25712  *		PRIORITY RESERVE commands based on a user specified command type
25713  *
25714  *   Arguments: dev - the device 'dev_t'
25715  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25716  *		      SD_RESERVE, SD_RELEASE
25717  *
25718  * Return Code: 0 or Error Code
25719  */
25720 
25721 static int
25722 sd_reserve_release(dev_t dev, int cmd)
25723 {
25724 	struct uscsi_cmd	*com = NULL;
25725 	struct sd_lun		*un = NULL;
25726 	char			cdb[CDB_GROUP0];
25727 	int			rval;
25728 
25729 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25730 	    (cmd == SD_PRIORITY_RESERVE));
25731 
25732 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25733 		return (ENXIO);
25734 	}
25735 
25736 	/* instantiate and initialize the command and cdb */
25737 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25738 	bzero(cdb, CDB_GROUP0);
25739 	com->uscsi_flags   = USCSI_SILENT;
25740 	com->uscsi_timeout = un->un_reserve_release_time;
25741 	com->uscsi_cdblen  = CDB_GROUP0;
25742 	com->uscsi_cdb	   = cdb;
25743 	if (cmd == SD_RELEASE) {
25744 		cdb[0] = SCMD_RELEASE;
25745 	} else {
25746 		cdb[0] = SCMD_RESERVE;
25747 	}
25748 
25749 	/* Send the command. */
25750 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25751 	    UIO_SYSSPACE, SD_PATH_STANDARD);
25752 
25753 	/*
25754 	 * "break" a reservation that is held by another host, by issuing a
25755 	 * reset if priority reserve is desired, and we could not get the
25756 	 * device.
25757 	 */
25758 	if ((cmd == SD_PRIORITY_RESERVE) &&
25759 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25760 		/*
25761 		 * First try to reset the LUN. If we cannot, then try a target
25762 		 * reset, followed by a bus reset if the target reset fails.
25763 		 */
25764 		int reset_retval = 0;
25765 		if (un->un_f_lun_reset_enabled == TRUE) {
25766 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25767 		}
25768 		if (reset_retval == 0) {
25769 			/* The LUN reset either failed or was not issued */
25770 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25771 		}
25772 		if ((reset_retval == 0) &&
25773 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25774 			rval = EIO;
25775 			kmem_free(com, sizeof (*com));
25776 			return (rval);
25777 		}
25778 
25779 		bzero(com, sizeof (struct uscsi_cmd));
25780 		com->uscsi_flags   = USCSI_SILENT;
25781 		com->uscsi_cdb	   = cdb;
25782 		com->uscsi_cdblen  = CDB_GROUP0;
25783 		com->uscsi_timeout = 5;
25784 
25785 		/*
25786 		 * Reissue the last reserve command, this time without request
25787 		 * sense.  Assume that it is just a regular reserve command.
25788 		 */
25789 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25790 		    UIO_SYSSPACE, SD_PATH_STANDARD);
25791 	}
25792 
25793 	/* Return an error if still getting a reservation conflict. */
25794 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25795 		rval = EACCES;
25796 	}
25797 
25798 	kmem_free(com, sizeof (*com));
25799 	return (rval);
25800 }
25801 
25802 
25803 #define	SD_NDUMP_RETRIES	12
25804 /*
25805  *	System Crash Dump routine
25806  */
25807 
25808 static int
25809 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25810 {
25811 	int		instance;
25812 	int		partition;
25813 	int		i;
25814 	int		err;
25815 	struct sd_lun	*un;
25816 	struct dk_map	*lp;
25817 	struct scsi_pkt *wr_pktp;
25818 	struct buf	*wr_bp;
25819 	struct buf	wr_buf;
25820 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25821 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25822 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25823 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25824 	size_t		io_start_offset;
25825 	int		doing_rmw = FALSE;
25826 	int		rval;
25827 #if defined(__i386) || defined(__amd64)
25828 	ssize_t dma_resid;
25829 	daddr_t oblkno;
25830 #endif
25831 
25832 	instance = SDUNIT(dev);
25833 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25834 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
25835 		return (ENXIO);
25836 	}
25837 
25838 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25839 
25840 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25841 
25842 	partition = SDPART(dev);
25843 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25844 
25845 	/* Validate blocks to dump at against partition size. */
25846 	lp = &un->un_map[partition];
25847 	if ((blkno + nblk) > lp->dkl_nblk) {
25848 		SD_TRACE(SD_LOG_DUMP, un,
25849 		    "sddump: dump range larger than partition: "
25850 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25851 		    blkno, nblk, lp->dkl_nblk);
25852 		return (EINVAL);
25853 	}
25854 
25855 	mutex_enter(&un->un_pm_mutex);
25856 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25857 		struct scsi_pkt *start_pktp;
25858 
25859 		mutex_exit(&un->un_pm_mutex);
25860 
25861 		/*
25862 		 * use pm framework to power on HBA 1st
25863 		 */
25864 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
25865 
25866 		/*
25867 		 * Dump no long uses sdpower to power on a device, it's
25868 		 * in-line here so it can be done in polled mode.
25869 		 */
25870 
25871 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25872 
25873 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25874 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25875 
25876 		if (start_pktp == NULL) {
25877 			/* We were not given a SCSI packet, fail. */
25878 			return (EIO);
25879 		}
25880 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25881 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25882 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25883 		start_pktp->pkt_flags = FLAG_NOINTR;
25884 
25885 		mutex_enter(SD_MUTEX(un));
25886 		SD_FILL_SCSI1_LUN(un, start_pktp);
25887 		mutex_exit(SD_MUTEX(un));
25888 		/*
25889 		 * Scsi_poll returns 0 (success) if the command completes and
25890 		 * the status block is STATUS_GOOD.
25891 		 */
25892 		if (sd_scsi_poll(un, start_pktp) != 0) {
25893 			scsi_destroy_pkt(start_pktp);
25894 			return (EIO);
25895 		}
25896 		scsi_destroy_pkt(start_pktp);
25897 		(void) sd_ddi_pm_resume(un);
25898 	} else {
25899 		mutex_exit(&un->un_pm_mutex);
25900 	}
25901 
25902 	mutex_enter(SD_MUTEX(un));
25903 	un->un_throttle = 0;
25904 
25905 	/*
25906 	 * The first time through, reset the specific target device.
25907 	 * However, when cpr calls sddump we know that sd is in a
25908 	 * a good state so no bus reset is required.
25909 	 * Clear sense data via Request Sense cmd.
25910 	 * In sddump we don't care about allow_bus_device_reset anymore
25911 	 */
25912 
25913 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25914 	    (un->un_state != SD_STATE_DUMPING)) {
25915 
25916 		New_state(un, SD_STATE_DUMPING);
25917 
25918 		if (un->un_f_is_fibre == FALSE) {
25919 			mutex_exit(SD_MUTEX(un));
25920 			/*
25921 			 * Attempt a bus reset for parallel scsi.
25922 			 *
25923 			 * Note: A bus reset is required because on some host
25924 			 * systems (i.e. E420R) a bus device reset is
25925 			 * insufficient to reset the state of the target.
25926 			 *
25927 			 * Note: Don't issue the reset for fibre-channel,
25928 			 * because this tends to hang the bus (loop) for
25929 			 * too long while everyone is logging out and in
25930 			 * and the deadman timer for dumping will fire
25931 			 * before the dump is complete.
25932 			 */
25933 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25934 				mutex_enter(SD_MUTEX(un));
25935 				Restore_state(un);
25936 				mutex_exit(SD_MUTEX(un));
25937 				return (EIO);
25938 			}
25939 
25940 			/* Delay to give the device some recovery time. */
25941 			drv_usecwait(10000);
25942 
25943 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25944 				SD_INFO(SD_LOG_DUMP, un,
25945 					"sddump: sd_send_polled_RQS failed\n");
25946 			}
25947 			mutex_enter(SD_MUTEX(un));
25948 		}
25949 	}
25950 
25951 	/*
25952 	 * Convert the partition-relative block number to a
25953 	 * disk physical block number.
25954 	 */
25955 	blkno += un->un_offset[partition];
25956 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25957 
25958 
25959 	/*
25960 	 * Check if the device has a non-512 block size.
25961 	 */
25962 	wr_bp = NULL;
25963 	if (NOT_DEVBSIZE(un)) {
25964 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25965 		tgt_byte_count = nblk * un->un_sys_blocksize;
25966 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25967 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25968 			doing_rmw = TRUE;
25969 			/*
25970 			 * Calculate the block number and number of block
25971 			 * in terms of the media block size.
25972 			 */
25973 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25974 			tgt_nblk =
25975 			    ((tgt_byte_offset + tgt_byte_count +
25976 				(un->un_tgt_blocksize - 1)) /
25977 				un->un_tgt_blocksize) - tgt_blkno;
25978 
25979 			/*
25980 			 * Invoke the routine which is going to do read part
25981 			 * of read-modify-write.
25982 			 * Note that this routine returns a pointer to
25983 			 * a valid bp in wr_bp.
25984 			 */
25985 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25986 			    &wr_bp);
25987 			if (err) {
25988 				mutex_exit(SD_MUTEX(un));
25989 				return (err);
25990 			}
25991 			/*
25992 			 * Offset is being calculated as -
25993 			 * (original block # * system block size) -
25994 			 * (new block # * target block size)
25995 			 */
25996 			io_start_offset =
25997 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25998 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25999 
26000 			ASSERT((io_start_offset >= 0) &&
26001 			    (io_start_offset < un->un_tgt_blocksize));
26002 			/*
26003 			 * Do the modify portion of read modify write.
26004 			 */
26005 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
26006 			    (size_t)nblk * un->un_sys_blocksize);
26007 		} else {
26008 			doing_rmw = FALSE;
26009 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26010 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26011 		}
26012 
26013 		/* Convert blkno and nblk to target blocks */
26014 		blkno = tgt_blkno;
26015 		nblk = tgt_nblk;
26016 	} else {
26017 		wr_bp = &wr_buf;
26018 		bzero(wr_bp, sizeof (struct buf));
26019 		wr_bp->b_flags		= B_BUSY;
26020 		wr_bp->b_un.b_addr	= addr;
26021 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26022 		wr_bp->b_resid		= 0;
26023 	}
26024 
26025 	mutex_exit(SD_MUTEX(un));
26026 
26027 	/*
26028 	 * Obtain a SCSI packet for the write command.
26029 	 * It should be safe to call the allocator here without
26030 	 * worrying about being locked for DVMA mapping because
26031 	 * the address we're passed is already a DVMA mapping
26032 	 *
26033 	 * We are also not going to worry about semaphore ownership
26034 	 * in the dump buffer. Dumping is single threaded at present.
26035 	 */
26036 
26037 	wr_pktp = NULL;
26038 
26039 #if defined(__i386) || defined(__amd64)
26040 	dma_resid = wr_bp->b_bcount;
26041 	oblkno = blkno;
26042 	while (dma_resid != 0) {
26043 #endif
26044 
26045 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26046 		wr_bp->b_flags &= ~B_ERROR;
26047 
26048 #if defined(__i386) || defined(__amd64)
26049 		blkno = oblkno +
26050 			((wr_bp->b_bcount - dma_resid) /
26051 			    un->un_tgt_blocksize);
26052 		nblk = dma_resid / un->un_tgt_blocksize;
26053 
26054 		if (wr_pktp) {
26055 			/* Partial DMA transfers after initial transfer */
26056 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26057 			    blkno, nblk);
26058 		} else {
26059 			/* Initial transfer */
26060 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26061 			    un->un_pkt_flags, NULL_FUNC, NULL,
26062 			    blkno, nblk);
26063 		}
26064 #else
26065 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26066 		    0, NULL_FUNC, NULL, blkno, nblk);
26067 #endif
26068 
26069 		if (rval == 0) {
26070 			/* We were given a SCSI packet, continue. */
26071 			break;
26072 		}
26073 
26074 		if (i == 0) {
26075 			if (wr_bp->b_flags & B_ERROR) {
26076 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26077 				    "no resources for dumping; "
26078 				    "error code: 0x%x, retrying",
26079 				    geterror(wr_bp));
26080 			} else {
26081 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26082 				    "no resources for dumping; retrying");
26083 			}
26084 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26085 			if (wr_bp->b_flags & B_ERROR) {
26086 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26087 				    "no resources for dumping; error code: "
26088 				    "0x%x, retrying\n", geterror(wr_bp));
26089 			}
26090 		} else {
26091 			if (wr_bp->b_flags & B_ERROR) {
26092 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26093 				    "no resources for dumping; "
26094 				    "error code: 0x%x, retries failed, "
26095 				    "giving up.\n", geterror(wr_bp));
26096 			} else {
26097 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26098 				    "no resources for dumping; "
26099 				    "retries failed, giving up.\n");
26100 			}
26101 			mutex_enter(SD_MUTEX(un));
26102 			Restore_state(un);
26103 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26104 				mutex_exit(SD_MUTEX(un));
26105 				scsi_free_consistent_buf(wr_bp);
26106 			} else {
26107 				mutex_exit(SD_MUTEX(un));
26108 			}
26109 			return (EIO);
26110 		}
26111 		drv_usecwait(10000);
26112 	}
26113 
26114 #if defined(__i386) || defined(__amd64)
26115 	/*
26116 	 * save the resid from PARTIAL_DMA
26117 	 */
26118 	dma_resid = wr_pktp->pkt_resid;
26119 	if (dma_resid != 0)
26120 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26121 	wr_pktp->pkt_resid = 0;
26122 #endif
26123 
26124 	/* SunBug 1222170 */
26125 	wr_pktp->pkt_flags = FLAG_NOINTR;
26126 
26127 	err = EIO;
26128 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26129 
26130 		/*
26131 		 * Scsi_poll returns 0 (success) if the command completes and
26132 		 * the status block is STATUS_GOOD.  We should only check
26133 		 * errors if this condition is not true.  Even then we should
26134 		 * send our own request sense packet only if we have a check
26135 		 * condition and auto request sense has not been performed by
26136 		 * the hba.
26137 		 */
26138 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26139 
26140 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26141 		    (wr_pktp->pkt_resid == 0)) {
26142 			err = SD_SUCCESS;
26143 			break;
26144 		}
26145 
26146 		/*
26147 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26148 		 */
26149 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26150 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26151 			    "Device is gone\n");
26152 			break;
26153 		}
26154 
26155 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26156 			SD_INFO(SD_LOG_DUMP, un,
26157 			    "sddump: write failed with CHECK, try # %d\n", i);
26158 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26159 				(void) sd_send_polled_RQS(un);
26160 			}
26161 
26162 			continue;
26163 		}
26164 
26165 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26166 			int reset_retval = 0;
26167 
26168 			SD_INFO(SD_LOG_DUMP, un,
26169 			    "sddump: write failed with BUSY, try # %d\n", i);
26170 
26171 			if (un->un_f_lun_reset_enabled == TRUE) {
26172 				reset_retval = scsi_reset(SD_ADDRESS(un),
26173 				    RESET_LUN);
26174 			}
26175 			if (reset_retval == 0) {
26176 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26177 			}
26178 			(void) sd_send_polled_RQS(un);
26179 
26180 		} else {
26181 			SD_INFO(SD_LOG_DUMP, un,
26182 			    "sddump: write failed with 0x%x, try # %d\n",
26183 			    SD_GET_PKT_STATUS(wr_pktp), i);
26184 			mutex_enter(SD_MUTEX(un));
26185 			sd_reset_target(un, wr_pktp);
26186 			mutex_exit(SD_MUTEX(un));
26187 		}
26188 
26189 		/*
26190 		 * If we are not getting anywhere with lun/target resets,
26191 		 * let's reset the bus.
26192 		 */
26193 		if (i == SD_NDUMP_RETRIES/2) {
26194 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26195 			(void) sd_send_polled_RQS(un);
26196 		}
26197 
26198 	}
26199 #if defined(__i386) || defined(__amd64)
26200 	}	/* dma_resid */
26201 #endif
26202 
26203 	scsi_destroy_pkt(wr_pktp);
26204 	mutex_enter(SD_MUTEX(un));
26205 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26206 		mutex_exit(SD_MUTEX(un));
26207 		scsi_free_consistent_buf(wr_bp);
26208 	} else {
26209 		mutex_exit(SD_MUTEX(un));
26210 	}
26211 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26212 	return (err);
26213 }
26214 
26215 /*
26216  *    Function: sd_scsi_poll()
26217  *
26218  * Description: This is a wrapper for the scsi_poll call.
26219  *
26220  *   Arguments: sd_lun - The unit structure
26221  *              scsi_pkt - The scsi packet being sent to the device.
26222  *
26223  * Return Code: 0 - Command completed successfully with good status
26224  *             -1 - Command failed.  This could indicate a check condition
26225  *                  or other status value requiring recovery action.
26226  *
26227  */
26228 
26229 static int
26230 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26231 {
26232 	int status;
26233 
26234 	ASSERT(un != NULL);
26235 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26236 	ASSERT(pktp != NULL);
26237 
26238 	status = SD_SUCCESS;
26239 
26240 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26241 		pktp->pkt_flags |= un->un_tagflags;
26242 		pktp->pkt_flags &= ~FLAG_NODISCON;
26243 	}
26244 
26245 	status = sd_ddi_scsi_poll(pktp);
26246 	/*
26247 	 * Scsi_poll returns 0 (success) if the command completes and the
26248 	 * status block is STATUS_GOOD.  We should only check errors if this
26249 	 * condition is not true.  Even then we should send our own request
26250 	 * sense packet only if we have a check condition and auto
26251 	 * request sense has not been performed by the hba.
26252 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26253 	 */
26254 	if ((status != SD_SUCCESS) &&
26255 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26256 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26257 	    (pktp->pkt_reason != CMD_DEV_GONE))
26258 		(void) sd_send_polled_RQS(un);
26259 
26260 	return (status);
26261 }
26262 
26263 /*
26264  *    Function: sd_send_polled_RQS()
26265  *
26266  * Description: This sends the request sense command to a device.
26267  *
26268  *   Arguments: sd_lun - The unit structure
26269  *
26270  * Return Code: 0 - Command completed successfully with good status
26271  *             -1 - Command failed.
26272  *
26273  */
26274 
26275 static int
26276 sd_send_polled_RQS(struct sd_lun *un)
26277 {
26278 	int	ret_val;
26279 	struct	scsi_pkt	*rqs_pktp;
26280 	struct	buf		*rqs_bp;
26281 
26282 	ASSERT(un != NULL);
26283 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26284 
26285 	ret_val = SD_SUCCESS;
26286 
26287 	rqs_pktp = un->un_rqs_pktp;
26288 	rqs_bp	 = un->un_rqs_bp;
26289 
26290 	mutex_enter(SD_MUTEX(un));
26291 
26292 	if (un->un_sense_isbusy) {
26293 		ret_val = SD_FAILURE;
26294 		mutex_exit(SD_MUTEX(un));
26295 		return (ret_val);
26296 	}
26297 
26298 	/*
26299 	 * If the request sense buffer (and packet) is not in use,
26300 	 * let's set the un_sense_isbusy and send our packet
26301 	 */
26302 	un->un_sense_isbusy 	= 1;
26303 	rqs_pktp->pkt_resid  	= 0;
26304 	rqs_pktp->pkt_reason 	= 0;
26305 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26306 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26307 
26308 	mutex_exit(SD_MUTEX(un));
26309 
26310 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26311 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26312 
26313 	/*
26314 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26315 	 * axle - it has a call into us!
26316 	 */
26317 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26318 		SD_INFO(SD_LOG_COMMON, un,
26319 		    "sd_send_polled_RQS: RQS failed\n");
26320 	}
26321 
26322 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26323 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26324 
26325 	mutex_enter(SD_MUTEX(un));
26326 	un->un_sense_isbusy = 0;
26327 	mutex_exit(SD_MUTEX(un));
26328 
26329 	return (ret_val);
26330 }
26331 
26332 /*
26333  * Defines needed for localized version of the scsi_poll routine.
26334  */
26335 #define	SD_CSEC		10000			/* usecs */
26336 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
26337 
26338 
26339 /*
26340  *    Function: sd_ddi_scsi_poll()
26341  *
26342  * Description: Localized version of the scsi_poll routine.  The purpose is to
26343  *		send a scsi_pkt to a device as a polled command.  This version
26344  *		is to ensure more robust handling of transport errors.
26345  *		Specifically this routine cures not ready, coming ready
26346  *		transition for power up and reset of sonoma's.  This can take
26347  *		up to 45 seconds for power-on and 20 seconds for reset of a
26348  * 		sonoma lun.
26349  *
26350  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26351  *
26352  * Return Code: 0 - Command completed successfully with good status
26353  *             -1 - Command failed.
26354  *
26355  */
26356 
26357 static int
26358 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26359 {
26360 	int busy_count;
26361 	int timeout;
26362 	int rval = SD_FAILURE;
26363 	int savef;
26364 	struct scsi_extended_sense *sensep;
26365 	long savet;
26366 	void (*savec)();
26367 	/*
26368 	 * The following is defined in machdep.c and is used in determining if
26369 	 * the scsi transport system will do polled I/O instead of interrupt
26370 	 * I/O when called from xx_dump().
26371 	 */
26372 	extern int do_polled_io;
26373 
26374 	/*
26375 	 * save old flags in pkt, to restore at end
26376 	 */
26377 	savef = pkt->pkt_flags;
26378 	savec = pkt->pkt_comp;
26379 	savet = pkt->pkt_time;
26380 
26381 	pkt->pkt_flags |= FLAG_NOINTR;
26382 
26383 	/*
26384 	 * XXX there is nothing in the SCSA spec that states that we should not
26385 	 * do a callback for polled cmds; however, removing this will break sd
26386 	 * and probably other target drivers
26387 	 */
26388 	pkt->pkt_comp = NULL;
26389 
26390 	/*
26391 	 * we don't like a polled command without timeout.
26392 	 * 60 seconds seems long enough.
26393 	 */
26394 	if (pkt->pkt_time == 0) {
26395 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26396 	}
26397 
26398 	/*
26399 	 * Send polled cmd.
26400 	 *
26401 	 * We do some error recovery for various errors.  Tran_busy,
26402 	 * queue full, and non-dispatched commands are retried every 10 msec.
26403 	 * as they are typically transient failures.  Busy status and Not
26404 	 * Ready are retried every second as this status takes a while to
26405 	 * change.  Unit attention is retried for pkt_time (60) times
26406 	 * with no delay.
26407 	 */
26408 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
26409 
26410 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26411 		int rc;
26412 		int poll_delay;
26413 
26414 		/*
26415 		 * Initialize pkt status variables.
26416 		 */
26417 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26418 
26419 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26420 			if (rc != TRAN_BUSY) {
26421 				/* Transport failed - give up. */
26422 				break;
26423 			} else {
26424 				/* Transport busy - try again. */
26425 				poll_delay = 1 * SD_CSEC; /* 10 msec */
26426 			}
26427 		} else {
26428 			/*
26429 			 * Transport accepted - check pkt status.
26430 			 */
26431 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26432 			if (pkt->pkt_reason == CMD_CMPLT &&
26433 			    rc == STATUS_CHECK &&
26434 			    pkt->pkt_state & STATE_ARQ_DONE) {
26435 				struct scsi_arq_status *arqstat =
26436 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26437 
26438 				sensep = &arqstat->sts_sensedata;
26439 			} else {
26440 				sensep = NULL;
26441 			}
26442 
26443 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26444 			    (rc == STATUS_GOOD)) {
26445 				/* No error - we're done */
26446 				rval = SD_SUCCESS;
26447 				break;
26448 
26449 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26450 				/* Lost connection - give up */
26451 				break;
26452 
26453 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26454 			    (pkt->pkt_state == 0)) {
26455 				/* Pkt not dispatched - try again. */
26456 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26457 
26458 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26459 			    (rc == STATUS_QFULL)) {
26460 				/* Queue full - try again. */
26461 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26462 
26463 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26464 			    (rc == STATUS_BUSY)) {
26465 				/* Busy - try again. */
26466 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26467 				busy_count += (SD_SEC_TO_CSEC - 1);
26468 
26469 			} else if ((sensep != NULL) &&
26470 			    (sensep->es_key == KEY_UNIT_ATTENTION)) {
26471 				/* Unit Attention - try again */
26472 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
26473 				continue;
26474 
26475 			} else if ((sensep != NULL) &&
26476 			    (sensep->es_key == KEY_NOT_READY) &&
26477 			    (sensep->es_add_code == 0x04) &&
26478 			    (sensep->es_qual_code == 0x01)) {
26479 				/* Not ready -> ready - try again. */
26480 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26481 				busy_count += (SD_SEC_TO_CSEC - 1);
26482 
26483 			} else {
26484 				/* BAD status - give up. */
26485 				break;
26486 			}
26487 		}
26488 
26489 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
26490 		    !do_polled_io) {
26491 			delay(drv_usectohz(poll_delay));
26492 		} else {
26493 			/* we busy wait during cpr_dump or interrupt threads */
26494 			drv_usecwait(poll_delay);
26495 		}
26496 	}
26497 
26498 	pkt->pkt_flags = savef;
26499 	pkt->pkt_comp = savec;
26500 	pkt->pkt_time = savet;
26501 	return (rval);
26502 }
26503 
26504 
26505 /*
26506  *    Function: sd_persistent_reservation_in_read_keys
26507  *
26508  * Description: This routine is the driver entry point for handling CD-ROM
26509  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26510  *		by sending the SCSI-3 PRIN commands to the device.
26511  *		Processes the read keys command response by copying the
26512  *		reservation key information into the user provided buffer.
26513  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26514  *
26515  *   Arguments: un   -  Pointer to soft state struct for the target.
26516  *		usrp -	user provided pointer to multihost Persistent In Read
26517  *			Keys structure (mhioc_inkeys_t)
26518  *		flag -	this argument is a pass through to ddi_copyxxx()
26519  *			directly from the mode argument of ioctl().
26520  *
26521  * Return Code: 0   - Success
26522  *		EACCES
26523  *		ENOTSUP
26524  *		errno return code from sd_send_scsi_cmd()
26525  *
26526  *     Context: Can sleep. Does not return until command is completed.
26527  */
26528 
26529 static int
26530 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26531     mhioc_inkeys_t *usrp, int flag)
26532 {
26533 #ifdef _MULTI_DATAMODEL
26534 	struct mhioc_key_list32	li32;
26535 #endif
26536 	sd_prin_readkeys_t	*in;
26537 	mhioc_inkeys_t		*ptr;
26538 	mhioc_key_list_t	li;
26539 	uchar_t			*data_bufp;
26540 	int 			data_len;
26541 	int			rval;
26542 	size_t			copysz;
26543 
26544 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26545 		return (EINVAL);
26546 	}
26547 	bzero(&li, sizeof (mhioc_key_list_t));
26548 
26549 	/*
26550 	 * Get the listsize from user
26551 	 */
26552 #ifdef _MULTI_DATAMODEL
26553 
26554 	switch (ddi_model_convert_from(flag & FMODELS)) {
26555 	case DDI_MODEL_ILP32:
26556 		copysz = sizeof (struct mhioc_key_list32);
26557 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26558 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26559 			    "sd_persistent_reservation_in_read_keys: "
26560 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26561 			rval = EFAULT;
26562 			goto done;
26563 		}
26564 		li.listsize = li32.listsize;
26565 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26566 		break;
26567 
26568 	case DDI_MODEL_NONE:
26569 		copysz = sizeof (mhioc_key_list_t);
26570 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26571 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26572 			    "sd_persistent_reservation_in_read_keys: "
26573 			    "failed ddi_copyin: mhioc_key_list_t\n");
26574 			rval = EFAULT;
26575 			goto done;
26576 		}
26577 		break;
26578 	}
26579 
26580 #else /* ! _MULTI_DATAMODEL */
26581 	copysz = sizeof (mhioc_key_list_t);
26582 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26583 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26584 		    "sd_persistent_reservation_in_read_keys: "
26585 		    "failed ddi_copyin: mhioc_key_list_t\n");
26586 		rval = EFAULT;
26587 		goto done;
26588 	}
26589 #endif
26590 
26591 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26592 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26593 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26594 
26595 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
26596 	    data_len, data_bufp)) != 0) {
26597 		goto done;
26598 	}
26599 	in = (sd_prin_readkeys_t *)data_bufp;
26600 	ptr->generation = BE_32(in->generation);
26601 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26602 
26603 	/*
26604 	 * Return the min(listsize, listlen) keys
26605 	 */
26606 #ifdef _MULTI_DATAMODEL
26607 
26608 	switch (ddi_model_convert_from(flag & FMODELS)) {
26609 	case DDI_MODEL_ILP32:
26610 		li32.listlen = li.listlen;
26611 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26612 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26613 			    "sd_persistent_reservation_in_read_keys: "
26614 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26615 			rval = EFAULT;
26616 			goto done;
26617 		}
26618 		break;
26619 
26620 	case DDI_MODEL_NONE:
26621 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26622 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26623 			    "sd_persistent_reservation_in_read_keys: "
26624 			    "failed ddi_copyout: mhioc_key_list_t\n");
26625 			rval = EFAULT;
26626 			goto done;
26627 		}
26628 		break;
26629 	}
26630 
26631 #else /* ! _MULTI_DATAMODEL */
26632 
26633 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26634 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26635 		    "sd_persistent_reservation_in_read_keys: "
26636 		    "failed ddi_copyout: mhioc_key_list_t\n");
26637 		rval = EFAULT;
26638 		goto done;
26639 	}
26640 
26641 #endif /* _MULTI_DATAMODEL */
26642 
26643 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26644 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26645 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26646 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26647 		    "sd_persistent_reservation_in_read_keys: "
26648 		    "failed ddi_copyout: keylist\n");
26649 		rval = EFAULT;
26650 	}
26651 done:
26652 	kmem_free(data_bufp, data_len);
26653 	return (rval);
26654 }
26655 
26656 
26657 /*
26658  *    Function: sd_persistent_reservation_in_read_resv
26659  *
26660  * Description: This routine is the driver entry point for handling CD-ROM
26661  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26662  *		by sending the SCSI-3 PRIN commands to the device.
26663  *		Process the read persistent reservations command response by
26664  *		copying the reservation information into the user provided
26665  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26666  *
26667  *   Arguments: un   -  Pointer to soft state struct for the target.
26668  *		usrp -	user provided pointer to multihost Persistent In Read
26669  *			Keys structure (mhioc_inkeys_t)
26670  *		flag -	this argument is a pass through to ddi_copyxxx()
26671  *			directly from the mode argument of ioctl().
26672  *
26673  * Return Code: 0   - Success
26674  *		EACCES
26675  *		ENOTSUP
26676  *		errno return code from sd_send_scsi_cmd()
26677  *
26678  *     Context: Can sleep. Does not return until command is completed.
26679  */
26680 
26681 static int
26682 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26683     mhioc_inresvs_t *usrp, int flag)
26684 {
26685 #ifdef _MULTI_DATAMODEL
26686 	struct mhioc_resv_desc_list32 resvlist32;
26687 #endif
26688 	sd_prin_readresv_t	*in;
26689 	mhioc_inresvs_t		*ptr;
26690 	sd_readresv_desc_t	*readresv_ptr;
26691 	mhioc_resv_desc_list_t	resvlist;
26692 	mhioc_resv_desc_t 	resvdesc;
26693 	uchar_t			*data_bufp;
26694 	int 			data_len;
26695 	int			rval;
26696 	int			i;
26697 	size_t			copysz;
26698 	mhioc_resv_desc_t	*bufp;
26699 
26700 	if ((ptr = usrp) == NULL) {
26701 		return (EINVAL);
26702 	}
26703 
26704 	/*
26705 	 * Get the listsize from user
26706 	 */
26707 #ifdef _MULTI_DATAMODEL
26708 	switch (ddi_model_convert_from(flag & FMODELS)) {
26709 	case DDI_MODEL_ILP32:
26710 		copysz = sizeof (struct mhioc_resv_desc_list32);
26711 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26712 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26713 			    "sd_persistent_reservation_in_read_resv: "
26714 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26715 			rval = EFAULT;
26716 			goto done;
26717 		}
26718 		resvlist.listsize = resvlist32.listsize;
26719 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26720 		break;
26721 
26722 	case DDI_MODEL_NONE:
26723 		copysz = sizeof (mhioc_resv_desc_list_t);
26724 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26725 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26726 			    "sd_persistent_reservation_in_read_resv: "
26727 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26728 			rval = EFAULT;
26729 			goto done;
26730 		}
26731 		break;
26732 	}
26733 #else /* ! _MULTI_DATAMODEL */
26734 	copysz = sizeof (mhioc_resv_desc_list_t);
26735 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26736 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26737 		    "sd_persistent_reservation_in_read_resv: "
26738 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26739 		rval = EFAULT;
26740 		goto done;
26741 	}
26742 #endif /* ! _MULTI_DATAMODEL */
26743 
26744 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26745 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26746 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26747 
26748 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
26749 	    data_len, data_bufp)) != 0) {
26750 		goto done;
26751 	}
26752 	in = (sd_prin_readresv_t *)data_bufp;
26753 	ptr->generation = BE_32(in->generation);
26754 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26755 
26756 	/*
26757 	 * Return the min(listsize, listlen( keys
26758 	 */
26759 #ifdef _MULTI_DATAMODEL
26760 
26761 	switch (ddi_model_convert_from(flag & FMODELS)) {
26762 	case DDI_MODEL_ILP32:
26763 		resvlist32.listlen = resvlist.listlen;
26764 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26765 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26766 			    "sd_persistent_reservation_in_read_resv: "
26767 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26768 			rval = EFAULT;
26769 			goto done;
26770 		}
26771 		break;
26772 
26773 	case DDI_MODEL_NONE:
26774 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26775 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26776 			    "sd_persistent_reservation_in_read_resv: "
26777 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26778 			rval = EFAULT;
26779 			goto done;
26780 		}
26781 		break;
26782 	}
26783 
26784 #else /* ! _MULTI_DATAMODEL */
26785 
26786 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26787 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26788 		    "sd_persistent_reservation_in_read_resv: "
26789 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26790 		rval = EFAULT;
26791 		goto done;
26792 	}
26793 
26794 #endif /* ! _MULTI_DATAMODEL */
26795 
26796 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26797 	bufp = resvlist.list;
26798 	copysz = sizeof (mhioc_resv_desc_t);
26799 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26800 	    i++, readresv_ptr++, bufp++) {
26801 
26802 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26803 		    MHIOC_RESV_KEY_SIZE);
26804 		resvdesc.type  = readresv_ptr->type;
26805 		resvdesc.scope = readresv_ptr->scope;
26806 		resvdesc.scope_specific_addr =
26807 		    BE_32(readresv_ptr->scope_specific_addr);
26808 
26809 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26810 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26811 			    "sd_persistent_reservation_in_read_resv: "
26812 			    "failed ddi_copyout: resvlist\n");
26813 			rval = EFAULT;
26814 			goto done;
26815 		}
26816 	}
26817 done:
26818 	kmem_free(data_bufp, data_len);
26819 	return (rval);
26820 }
26821 
26822 
26823 /*
26824  *    Function: sr_change_blkmode()
26825  *
26826  * Description: This routine is the driver entry point for handling CD-ROM
26827  *		block mode ioctl requests. Support for returning and changing
26828  *		the current block size in use by the device is implemented. The
26829  *		LBA size is changed via a MODE SELECT Block Descriptor.
26830  *
26831  *		This routine issues a mode sense with an allocation length of
26832  *		12 bytes for the mode page header and a single block descriptor.
26833  *
26834  *   Arguments: dev - the device 'dev_t'
26835  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26836  *		      CDROMSBLKMODE (set)
26837  *		data - current block size or requested block size
26838  *		flag - this argument is a pass through to ddi_copyxxx() directly
26839  *		       from the mode argument of ioctl().
26840  *
26841  * Return Code: the code returned by sd_send_scsi_cmd()
26842  *		EINVAL if invalid arguments are provided
26843  *		EFAULT if ddi_copyxxx() fails
26844  *		ENXIO if fail ddi_get_soft_state
26845  *		EIO if invalid mode sense block descriptor length
26846  *
26847  */
26848 
26849 static int
26850 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26851 {
26852 	struct sd_lun			*un = NULL;
26853 	struct mode_header		*sense_mhp, *select_mhp;
26854 	struct block_descriptor		*sense_desc, *select_desc;
26855 	int				current_bsize;
26856 	int				rval = EINVAL;
26857 	uchar_t				*sense = NULL;
26858 	uchar_t				*select = NULL;
26859 
26860 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26861 
26862 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26863 		return (ENXIO);
26864 	}
26865 
26866 	/*
26867 	 * The block length is changed via the Mode Select block descriptor, the
26868 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26869 	 * required as part of this routine. Therefore the mode sense allocation
26870 	 * length is specified to be the length of a mode page header and a
26871 	 * block descriptor.
26872 	 */
26873 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26874 
26875 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26876 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
26877 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26878 		    "sr_change_blkmode: Mode Sense Failed\n");
26879 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26880 		return (rval);
26881 	}
26882 
26883 	/* Check the block descriptor len to handle only 1 block descriptor */
26884 	sense_mhp = (struct mode_header *)sense;
26885 	if ((sense_mhp->bdesc_length == 0) ||
26886 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26887 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26888 		    "sr_change_blkmode: Mode Sense returned invalid block"
26889 		    " descriptor length\n");
26890 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26891 		return (EIO);
26892 	}
26893 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26894 	current_bsize = ((sense_desc->blksize_hi << 16) |
26895 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26896 
26897 	/* Process command */
26898 	switch (cmd) {
26899 	case CDROMGBLKMODE:
26900 		/* Return the block size obtained during the mode sense */
26901 		if (ddi_copyout(&current_bsize, (void *)data,
26902 		    sizeof (int), flag) != 0)
26903 			rval = EFAULT;
26904 		break;
26905 	case CDROMSBLKMODE:
26906 		/* Validate the requested block size */
26907 		switch (data) {
26908 		case CDROM_BLK_512:
26909 		case CDROM_BLK_1024:
26910 		case CDROM_BLK_2048:
26911 		case CDROM_BLK_2056:
26912 		case CDROM_BLK_2336:
26913 		case CDROM_BLK_2340:
26914 		case CDROM_BLK_2352:
26915 		case CDROM_BLK_2368:
26916 		case CDROM_BLK_2448:
26917 		case CDROM_BLK_2646:
26918 		case CDROM_BLK_2647:
26919 			break;
26920 		default:
26921 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26922 			    "sr_change_blkmode: "
26923 			    "Block Size '%ld' Not Supported\n", data);
26924 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26925 			return (EINVAL);
26926 		}
26927 
26928 		/*
26929 		 * The current block size matches the requested block size so
26930 		 * there is no need to send the mode select to change the size
26931 		 */
26932 		if (current_bsize == data) {
26933 			break;
26934 		}
26935 
26936 		/* Build the select data for the requested block size */
26937 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26938 		select_mhp = (struct mode_header *)select;
26939 		select_desc =
26940 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26941 		/*
26942 		 * The LBA size is changed via the block descriptor, so the
26943 		 * descriptor is built according to the user data
26944 		 */
26945 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26946 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26947 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26948 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26949 
26950 		/* Send the mode select for the requested block size */
26951 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26952 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26953 		    SD_PATH_STANDARD)) != 0) {
26954 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26955 			    "sr_change_blkmode: Mode Select Failed\n");
26956 			/*
26957 			 * The mode select failed for the requested block size,
26958 			 * so reset the data for the original block size and
26959 			 * send it to the target. The error is indicated by the
26960 			 * return value for the failed mode select.
26961 			 */
26962 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26963 			select_desc->blksize_mid = sense_desc->blksize_mid;
26964 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26965 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26966 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26967 			    SD_PATH_STANDARD);
26968 		} else {
26969 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26970 			mutex_enter(SD_MUTEX(un));
26971 			sd_update_block_info(un, (uint32_t)data, 0);
26972 
26973 			mutex_exit(SD_MUTEX(un));
26974 		}
26975 		break;
26976 	default:
26977 		/* should not reach here, but check anyway */
26978 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26979 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26980 		rval = EINVAL;
26981 		break;
26982 	}
26983 
26984 	if (select) {
26985 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
26986 	}
26987 	if (sense) {
26988 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26989 	}
26990 	return (rval);
26991 }
26992 
26993 
26994 /*
26995  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
26996  * implement driver support for getting and setting the CD speed. The command
26997  * set used will be based on the device type. If the device has not been
26998  * identified as MMC the Toshiba vendor specific mode page will be used. If
26999  * the device is MMC but does not support the Real Time Streaming feature
27000  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27001  * be used to read the speed.
27002  */
27003 
27004 /*
27005  *    Function: sr_change_speed()
27006  *
27007  * Description: This routine is the driver entry point for handling CD-ROM
27008  *		drive speed ioctl requests for devices supporting the Toshiba
27009  *		vendor specific drive speed mode page. Support for returning
27010  *		and changing the current drive speed in use by the device is
27011  *		implemented.
27012  *
27013  *   Arguments: dev - the device 'dev_t'
27014  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27015  *		      CDROMSDRVSPEED (set)
27016  *		data - current drive speed or requested drive speed
27017  *		flag - this argument is a pass through to ddi_copyxxx() directly
27018  *		       from the mode argument of ioctl().
27019  *
27020  * Return Code: the code returned by sd_send_scsi_cmd()
27021  *		EINVAL if invalid arguments are provided
27022  *		EFAULT if ddi_copyxxx() fails
27023  *		ENXIO if fail ddi_get_soft_state
27024  *		EIO if invalid mode sense block descriptor length
27025  */
27026 
27027 static int
27028 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27029 {
27030 	struct sd_lun			*un = NULL;
27031 	struct mode_header		*sense_mhp, *select_mhp;
27032 	struct mode_speed		*sense_page, *select_page;
27033 	int				current_speed;
27034 	int				rval = EINVAL;
27035 	int				bd_len;
27036 	uchar_t				*sense = NULL;
27037 	uchar_t				*select = NULL;
27038 
27039 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27040 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27041 		return (ENXIO);
27042 	}
27043 
27044 	/*
27045 	 * Note: The drive speed is being modified here according to a Toshiba
27046 	 * vendor specific mode page (0x31).
27047 	 */
27048 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27049 
27050 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27051 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27052 	    SD_PATH_STANDARD)) != 0) {
27053 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27054 		    "sr_change_speed: Mode Sense Failed\n");
27055 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27056 		return (rval);
27057 	}
27058 	sense_mhp  = (struct mode_header *)sense;
27059 
27060 	/* Check the block descriptor len to handle only 1 block descriptor */
27061 	bd_len = sense_mhp->bdesc_length;
27062 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27063 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27064 		    "sr_change_speed: Mode Sense returned invalid block "
27065 		    "descriptor length\n");
27066 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27067 		return (EIO);
27068 	}
27069 
27070 	sense_page = (struct mode_speed *)
27071 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27072 	current_speed = sense_page->speed;
27073 
27074 	/* Process command */
27075 	switch (cmd) {
27076 	case CDROMGDRVSPEED:
27077 		/* Return the drive speed obtained during the mode sense */
27078 		if (current_speed == 0x2) {
27079 			current_speed = CDROM_TWELVE_SPEED;
27080 		}
27081 		if (ddi_copyout(&current_speed, (void *)data,
27082 		    sizeof (int), flag) != 0) {
27083 			rval = EFAULT;
27084 		}
27085 		break;
27086 	case CDROMSDRVSPEED:
27087 		/* Validate the requested drive speed */
27088 		switch ((uchar_t)data) {
27089 		case CDROM_TWELVE_SPEED:
27090 			data = 0x2;
27091 			/*FALLTHROUGH*/
27092 		case CDROM_NORMAL_SPEED:
27093 		case CDROM_DOUBLE_SPEED:
27094 		case CDROM_QUAD_SPEED:
27095 		case CDROM_MAXIMUM_SPEED:
27096 			break;
27097 		default:
27098 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27099 			    "sr_change_speed: "
27100 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27101 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27102 			return (EINVAL);
27103 		}
27104 
27105 		/*
27106 		 * The current drive speed matches the requested drive speed so
27107 		 * there is no need to send the mode select to change the speed
27108 		 */
27109 		if (current_speed == data) {
27110 			break;
27111 		}
27112 
27113 		/* Build the select data for the requested drive speed */
27114 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27115 		select_mhp = (struct mode_header *)select;
27116 		select_mhp->bdesc_length = 0;
27117 		select_page =
27118 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27119 		select_page =
27120 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27121 		select_page->mode_page.code = CDROM_MODE_SPEED;
27122 		select_page->mode_page.length = 2;
27123 		select_page->speed = (uchar_t)data;
27124 
27125 		/* Send the mode select for the requested block size */
27126 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27127 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27128 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27129 			/*
27130 			 * The mode select failed for the requested drive speed,
27131 			 * so reset the data for the original drive speed and
27132 			 * send it to the target. The error is indicated by the
27133 			 * return value for the failed mode select.
27134 			 */
27135 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27136 			    "sr_drive_speed: Mode Select Failed\n");
27137 			select_page->speed = sense_page->speed;
27138 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27139 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27140 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27141 		}
27142 		break;
27143 	default:
27144 		/* should not reach here, but check anyway */
27145 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27146 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27147 		rval = EINVAL;
27148 		break;
27149 	}
27150 
27151 	if (select) {
27152 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27153 	}
27154 	if (sense) {
27155 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27156 	}
27157 
27158 	return (rval);
27159 }
27160 
27161 
27162 /*
27163  *    Function: sr_atapi_change_speed()
27164  *
27165  * Description: This routine is the driver entry point for handling CD-ROM
27166  *		drive speed ioctl requests for MMC devices that do not support
27167  *		the Real Time Streaming feature (0x107).
27168  *
27169  *		Note: This routine will use the SET SPEED command which may not
27170  *		be supported by all devices.
27171  *
27172  *   Arguments: dev- the device 'dev_t'
27173  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27174  *		     CDROMSDRVSPEED (set)
27175  *		data- current drive speed or requested drive speed
27176  *		flag- this argument is a pass through to ddi_copyxxx() directly
27177  *		      from the mode argument of ioctl().
27178  *
27179  * Return Code: the code returned by sd_send_scsi_cmd()
27180  *		EINVAL if invalid arguments are provided
27181  *		EFAULT if ddi_copyxxx() fails
27182  *		ENXIO if fail ddi_get_soft_state
27183  *		EIO if invalid mode sense block descriptor length
27184  */
27185 
27186 static int
27187 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27188 {
27189 	struct sd_lun			*un;
27190 	struct uscsi_cmd		*com = NULL;
27191 	struct mode_header_grp2		*sense_mhp;
27192 	uchar_t				*sense_page;
27193 	uchar_t				*sense = NULL;
27194 	char				cdb[CDB_GROUP5];
27195 	int				bd_len;
27196 	int				current_speed = 0;
27197 	int				max_speed = 0;
27198 	int				rval;
27199 
27200 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27201 
27202 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27203 		return (ENXIO);
27204 	}
27205 
27206 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27207 
27208 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
27209 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27210 	    SD_PATH_STANDARD)) != 0) {
27211 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27212 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27213 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27214 		return (rval);
27215 	}
27216 
27217 	/* Check the block descriptor len to handle only 1 block descriptor */
27218 	sense_mhp = (struct mode_header_grp2 *)sense;
27219 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27220 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27221 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27222 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27223 		    "block descriptor length\n");
27224 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27225 		return (EIO);
27226 	}
27227 
27228 	/* Calculate the current and maximum drive speeds */
27229 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27230 	current_speed = (sense_page[14] << 8) | sense_page[15];
27231 	max_speed = (sense_page[8] << 8) | sense_page[9];
27232 
27233 	/* Process the command */
27234 	switch (cmd) {
27235 	case CDROMGDRVSPEED:
27236 		current_speed /= SD_SPEED_1X;
27237 		if (ddi_copyout(&current_speed, (void *)data,
27238 		    sizeof (int), flag) != 0)
27239 			rval = EFAULT;
27240 		break;
27241 	case CDROMSDRVSPEED:
27242 		/* Convert the speed code to KB/sec */
27243 		switch ((uchar_t)data) {
27244 		case CDROM_NORMAL_SPEED:
27245 			current_speed = SD_SPEED_1X;
27246 			break;
27247 		case CDROM_DOUBLE_SPEED:
27248 			current_speed = 2 * SD_SPEED_1X;
27249 			break;
27250 		case CDROM_QUAD_SPEED:
27251 			current_speed = 4 * SD_SPEED_1X;
27252 			break;
27253 		case CDROM_TWELVE_SPEED:
27254 			current_speed = 12 * SD_SPEED_1X;
27255 			break;
27256 		case CDROM_MAXIMUM_SPEED:
27257 			current_speed = 0xffff;
27258 			break;
27259 		default:
27260 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27261 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27262 			    (uchar_t)data);
27263 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27264 			return (EINVAL);
27265 		}
27266 
27267 		/* Check the request against the drive's max speed. */
27268 		if (current_speed != 0xffff) {
27269 			if (current_speed > max_speed) {
27270 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27271 				return (EINVAL);
27272 			}
27273 		}
27274 
27275 		/*
27276 		 * Build and send the SET SPEED command
27277 		 *
27278 		 * Note: The SET SPEED (0xBB) command used in this routine is
27279 		 * obsolete per the SCSI MMC spec but still supported in the
27280 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27281 		 * therefore the command is still implemented in this routine.
27282 		 */
27283 		bzero(cdb, sizeof (cdb));
27284 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27285 		cdb[2] = (uchar_t)(current_speed >> 8);
27286 		cdb[3] = (uchar_t)current_speed;
27287 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27288 		com->uscsi_cdb	   = (caddr_t)cdb;
27289 		com->uscsi_cdblen  = CDB_GROUP5;
27290 		com->uscsi_bufaddr = NULL;
27291 		com->uscsi_buflen  = 0;
27292 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27293 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
27294 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27295 		break;
27296 	default:
27297 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27298 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27299 		rval = EINVAL;
27300 	}
27301 
27302 	if (sense) {
27303 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27304 	}
27305 	if (com) {
27306 		kmem_free(com, sizeof (*com));
27307 	}
27308 	return (rval);
27309 }
27310 
27311 
27312 /*
27313  *    Function: sr_pause_resume()
27314  *
27315  * Description: This routine is the driver entry point for handling CD-ROM
27316  *		pause/resume ioctl requests. This only affects the audio play
27317  *		operation.
27318  *
27319  *   Arguments: dev - the device 'dev_t'
27320  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27321  *		      for setting the resume bit of the cdb.
27322  *
27323  * Return Code: the code returned by sd_send_scsi_cmd()
27324  *		EINVAL if invalid mode specified
27325  *
27326  */
27327 
27328 static int
27329 sr_pause_resume(dev_t dev, int cmd)
27330 {
27331 	struct sd_lun		*un;
27332 	struct uscsi_cmd	*com;
27333 	char			cdb[CDB_GROUP1];
27334 	int			rval;
27335 
27336 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27337 		return (ENXIO);
27338 	}
27339 
27340 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27341 	bzero(cdb, CDB_GROUP1);
27342 	cdb[0] = SCMD_PAUSE_RESUME;
27343 	switch (cmd) {
27344 	case CDROMRESUME:
27345 		cdb[8] = 1;
27346 		break;
27347 	case CDROMPAUSE:
27348 		cdb[8] = 0;
27349 		break;
27350 	default:
27351 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27352 		    " Command '%x' Not Supported\n", cmd);
27353 		rval = EINVAL;
27354 		goto done;
27355 	}
27356 
27357 	com->uscsi_cdb    = cdb;
27358 	com->uscsi_cdblen = CDB_GROUP1;
27359 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27360 
27361 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27362 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27363 
27364 done:
27365 	kmem_free(com, sizeof (*com));
27366 	return (rval);
27367 }
27368 
27369 
27370 /*
27371  *    Function: sr_play_msf()
27372  *
27373  * Description: This routine is the driver entry point for handling CD-ROM
27374  *		ioctl requests to output the audio signals at the specified
27375  *		starting address and continue the audio play until the specified
27376  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27377  *		Frame (MSF) format.
27378  *
27379  *   Arguments: dev	- the device 'dev_t'
27380  *		data	- pointer to user provided audio msf structure,
27381  *		          specifying start/end addresses.
27382  *		flag	- this argument is a pass through to ddi_copyxxx()
27383  *		          directly from the mode argument of ioctl().
27384  *
27385  * Return Code: the code returned by sd_send_scsi_cmd()
27386  *		EFAULT if ddi_copyxxx() fails
27387  *		ENXIO if fail ddi_get_soft_state
27388  *		EINVAL if data pointer is NULL
27389  */
27390 
27391 static int
27392 sr_play_msf(dev_t dev, caddr_t data, int flag)
27393 {
27394 	struct sd_lun		*un;
27395 	struct uscsi_cmd	*com;
27396 	struct cdrom_msf	msf_struct;
27397 	struct cdrom_msf	*msf = &msf_struct;
27398 	char			cdb[CDB_GROUP1];
27399 	int			rval;
27400 
27401 	if (data == NULL) {
27402 		return (EINVAL);
27403 	}
27404 
27405 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27406 		return (ENXIO);
27407 	}
27408 
27409 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27410 		return (EFAULT);
27411 	}
27412 
27413 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27414 	bzero(cdb, CDB_GROUP1);
27415 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27416 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27417 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27418 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27419 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27420 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27421 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27422 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27423 	} else {
27424 		cdb[3] = msf->cdmsf_min0;
27425 		cdb[4] = msf->cdmsf_sec0;
27426 		cdb[5] = msf->cdmsf_frame0;
27427 		cdb[6] = msf->cdmsf_min1;
27428 		cdb[7] = msf->cdmsf_sec1;
27429 		cdb[8] = msf->cdmsf_frame1;
27430 	}
27431 	com->uscsi_cdb    = cdb;
27432 	com->uscsi_cdblen = CDB_GROUP1;
27433 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27434 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27435 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27436 	kmem_free(com, sizeof (*com));
27437 	return (rval);
27438 }
27439 
27440 
27441 /*
27442  *    Function: sr_play_trkind()
27443  *
27444  * Description: This routine is the driver entry point for handling CD-ROM
27445  *		ioctl requests to output the audio signals at the specified
27446  *		starting address and continue the audio play until the specified
27447  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27448  *		format.
27449  *
27450  *   Arguments: dev	- the device 'dev_t'
27451  *		data	- pointer to user provided audio track/index structure,
27452  *		          specifying start/end addresses.
27453  *		flag	- this argument is a pass through to ddi_copyxxx()
27454  *		          directly from the mode argument of ioctl().
27455  *
27456  * Return Code: the code returned by sd_send_scsi_cmd()
27457  *		EFAULT if ddi_copyxxx() fails
27458  *		ENXIO if fail ddi_get_soft_state
27459  *		EINVAL if data pointer is NULL
27460  */
27461 
27462 static int
27463 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27464 {
27465 	struct cdrom_ti		ti_struct;
27466 	struct cdrom_ti		*ti = &ti_struct;
27467 	struct uscsi_cmd	*com = NULL;
27468 	char			cdb[CDB_GROUP1];
27469 	int			rval;
27470 
27471 	if (data == NULL) {
27472 		return (EINVAL);
27473 	}
27474 
27475 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27476 		return (EFAULT);
27477 	}
27478 
27479 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27480 	bzero(cdb, CDB_GROUP1);
27481 	cdb[0] = SCMD_PLAYAUDIO_TI;
27482 	cdb[4] = ti->cdti_trk0;
27483 	cdb[5] = ti->cdti_ind0;
27484 	cdb[7] = ti->cdti_trk1;
27485 	cdb[8] = ti->cdti_ind1;
27486 	com->uscsi_cdb    = cdb;
27487 	com->uscsi_cdblen = CDB_GROUP1;
27488 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27489 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27490 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27491 	kmem_free(com, sizeof (*com));
27492 	return (rval);
27493 }
27494 
27495 
27496 /*
27497  *    Function: sr_read_all_subcodes()
27498  *
27499  * Description: This routine is the driver entry point for handling CD-ROM
27500  *		ioctl requests to return raw subcode data while the target is
27501  *		playing audio (CDROMSUBCODE).
27502  *
27503  *   Arguments: dev	- the device 'dev_t'
27504  *		data	- pointer to user provided cdrom subcode structure,
27505  *		          specifying the transfer length and address.
27506  *		flag	- this argument is a pass through to ddi_copyxxx()
27507  *		          directly from the mode argument of ioctl().
27508  *
27509  * Return Code: the code returned by sd_send_scsi_cmd()
27510  *		EFAULT if ddi_copyxxx() fails
27511  *		ENXIO if fail ddi_get_soft_state
27512  *		EINVAL if data pointer is NULL
27513  */
27514 
27515 static int
27516 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27517 {
27518 	struct sd_lun		*un = NULL;
27519 	struct uscsi_cmd	*com = NULL;
27520 	struct cdrom_subcode	*subcode = NULL;
27521 	int			rval;
27522 	size_t			buflen;
27523 	char			cdb[CDB_GROUP5];
27524 
27525 #ifdef _MULTI_DATAMODEL
27526 	/* To support ILP32 applications in an LP64 world */
27527 	struct cdrom_subcode32		cdrom_subcode32;
27528 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27529 #endif
27530 	if (data == NULL) {
27531 		return (EINVAL);
27532 	}
27533 
27534 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27535 		return (ENXIO);
27536 	}
27537 
27538 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27539 
27540 #ifdef _MULTI_DATAMODEL
27541 	switch (ddi_model_convert_from(flag & FMODELS)) {
27542 	case DDI_MODEL_ILP32:
27543 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27544 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27545 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27546 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27547 			return (EFAULT);
27548 		}
27549 		/* Convert the ILP32 uscsi data from the application to LP64 */
27550 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27551 		break;
27552 	case DDI_MODEL_NONE:
27553 		if (ddi_copyin(data, subcode,
27554 		    sizeof (struct cdrom_subcode), flag)) {
27555 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27556 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27557 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27558 			return (EFAULT);
27559 		}
27560 		break;
27561 	}
27562 #else /* ! _MULTI_DATAMODEL */
27563 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27564 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27565 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27566 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27567 		return (EFAULT);
27568 	}
27569 #endif /* _MULTI_DATAMODEL */
27570 
27571 	/*
27572 	 * Since MMC-2 expects max 3 bytes for length, check if the
27573 	 * length input is greater than 3 bytes
27574 	 */
27575 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27576 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27577 		    "sr_read_all_subcodes: "
27578 		    "cdrom transfer length too large: %d (limit %d)\n",
27579 		    subcode->cdsc_length, 0xFFFFFF);
27580 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27581 		return (EINVAL);
27582 	}
27583 
27584 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27585 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27586 	bzero(cdb, CDB_GROUP5);
27587 
27588 	if (un->un_f_mmc_cap == TRUE) {
27589 		cdb[0] = (char)SCMD_READ_CD;
27590 		cdb[2] = (char)0xff;
27591 		cdb[3] = (char)0xff;
27592 		cdb[4] = (char)0xff;
27593 		cdb[5] = (char)0xff;
27594 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27595 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27596 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27597 		cdb[10] = 1;
27598 	} else {
27599 		/*
27600 		 * Note: A vendor specific command (0xDF) is being used her to
27601 		 * request a read of all subcodes.
27602 		 */
27603 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27604 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27605 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27606 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27607 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27608 	}
27609 	com->uscsi_cdb	   = cdb;
27610 	com->uscsi_cdblen  = CDB_GROUP5;
27611 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27612 	com->uscsi_buflen  = buflen;
27613 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27614 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27615 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27616 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27617 	kmem_free(com, sizeof (*com));
27618 	return (rval);
27619 }
27620 
27621 
27622 /*
27623  *    Function: sr_read_subchannel()
27624  *
27625  * Description: This routine is the driver entry point for handling CD-ROM
27626  *		ioctl requests to return the Q sub-channel data of the CD
27627  *		current position block. (CDROMSUBCHNL) The data includes the
27628  *		track number, index number, absolute CD-ROM address (LBA or MSF
27629  *		format per the user) , track relative CD-ROM address (LBA or MSF
27630  *		format per the user), control data and audio status.
27631  *
27632  *   Arguments: dev	- the device 'dev_t'
27633  *		data	- pointer to user provided cdrom sub-channel structure
27634  *		flag	- this argument is a pass through to ddi_copyxxx()
27635  *		          directly from the mode argument of ioctl().
27636  *
27637  * Return Code: the code returned by sd_send_scsi_cmd()
27638  *		EFAULT if ddi_copyxxx() fails
27639  *		ENXIO if fail ddi_get_soft_state
27640  *		EINVAL if data pointer is NULL
27641  */
27642 
27643 static int
27644 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27645 {
27646 	struct sd_lun		*un;
27647 	struct uscsi_cmd	*com;
27648 	struct cdrom_subchnl	subchanel;
27649 	struct cdrom_subchnl	*subchnl = &subchanel;
27650 	char			cdb[CDB_GROUP1];
27651 	caddr_t			buffer;
27652 	int			rval;
27653 
27654 	if (data == NULL) {
27655 		return (EINVAL);
27656 	}
27657 
27658 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27659 	    (un->un_state == SD_STATE_OFFLINE)) {
27660 		return (ENXIO);
27661 	}
27662 
27663 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27664 		return (EFAULT);
27665 	}
27666 
27667 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27668 	bzero(cdb, CDB_GROUP1);
27669 	cdb[0] = SCMD_READ_SUBCHANNEL;
27670 	/* Set the MSF bit based on the user requested address format */
27671 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27672 	/*
27673 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27674 	 * returned
27675 	 */
27676 	cdb[2] = 0x40;
27677 	/*
27678 	 * Set byte 3 to specify the return data format. A value of 0x01
27679 	 * indicates that the CD-ROM current position should be returned.
27680 	 */
27681 	cdb[3] = 0x01;
27682 	cdb[8] = 0x10;
27683 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27684 	com->uscsi_cdb	   = cdb;
27685 	com->uscsi_cdblen  = CDB_GROUP1;
27686 	com->uscsi_bufaddr = buffer;
27687 	com->uscsi_buflen  = 16;
27688 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27689 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27690 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27691 	if (rval != 0) {
27692 		kmem_free(buffer, 16);
27693 		kmem_free(com, sizeof (*com));
27694 		return (rval);
27695 	}
27696 
27697 	/* Process the returned Q sub-channel data */
27698 	subchnl->cdsc_audiostatus = buffer[1];
27699 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27700 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27701 	subchnl->cdsc_trk	= buffer[6];
27702 	subchnl->cdsc_ind	= buffer[7];
27703 	if (subchnl->cdsc_format & CDROM_LBA) {
27704 		subchnl->cdsc_absaddr.lba =
27705 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27706 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27707 		subchnl->cdsc_reladdr.lba =
27708 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27709 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27710 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27711 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27712 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27713 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27714 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27715 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27716 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27717 	} else {
27718 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27719 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27720 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27721 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27722 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27723 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27724 	}
27725 	kmem_free(buffer, 16);
27726 	kmem_free(com, sizeof (*com));
27727 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27728 	    != 0) {
27729 		return (EFAULT);
27730 	}
27731 	return (rval);
27732 }
27733 
27734 
27735 /*
27736  *    Function: sr_read_tocentry()
27737  *
27738  * Description: This routine is the driver entry point for handling CD-ROM
27739  *		ioctl requests to read from the Table of Contents (TOC)
27740  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27741  *		fields, the starting address (LBA or MSF format per the user)
27742  *		and the data mode if the user specified track is a data track.
27743  *
27744  *		Note: The READ HEADER (0x44) command used in this routine is
27745  *		obsolete per the SCSI MMC spec but still supported in the
27746  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27747  *		therefore the command is still implemented in this routine.
27748  *
27749  *   Arguments: dev	- the device 'dev_t'
27750  *		data	- pointer to user provided toc entry structure,
27751  *			  specifying the track # and the address format
27752  *			  (LBA or MSF).
27753  *		flag	- this argument is a pass through to ddi_copyxxx()
27754  *		          directly from the mode argument of ioctl().
27755  *
27756  * Return Code: the code returned by sd_send_scsi_cmd()
27757  *		EFAULT if ddi_copyxxx() fails
27758  *		ENXIO if fail ddi_get_soft_state
27759  *		EINVAL if data pointer is NULL
27760  */
27761 
27762 static int
27763 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27764 {
27765 	struct sd_lun		*un = NULL;
27766 	struct uscsi_cmd	*com;
27767 	struct cdrom_tocentry	toc_entry;
27768 	struct cdrom_tocentry	*entry = &toc_entry;
27769 	caddr_t			buffer;
27770 	int			rval;
27771 	char			cdb[CDB_GROUP1];
27772 
27773 	if (data == NULL) {
27774 		return (EINVAL);
27775 	}
27776 
27777 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27778 	    (un->un_state == SD_STATE_OFFLINE)) {
27779 		return (ENXIO);
27780 	}
27781 
27782 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27783 		return (EFAULT);
27784 	}
27785 
27786 	/* Validate the requested track and address format */
27787 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27788 		return (EINVAL);
27789 	}
27790 
27791 	if (entry->cdte_track == 0) {
27792 		return (EINVAL);
27793 	}
27794 
27795 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27796 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27797 	bzero(cdb, CDB_GROUP1);
27798 
27799 	cdb[0] = SCMD_READ_TOC;
27800 	/* Set the MSF bit based on the user requested address format  */
27801 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27802 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27803 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27804 	} else {
27805 		cdb[6] = entry->cdte_track;
27806 	}
27807 
27808 	/*
27809 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27810 	 * (4 byte TOC response header + 8 byte track descriptor)
27811 	 */
27812 	cdb[8] = 12;
27813 	com->uscsi_cdb	   = cdb;
27814 	com->uscsi_cdblen  = CDB_GROUP1;
27815 	com->uscsi_bufaddr = buffer;
27816 	com->uscsi_buflen  = 0x0C;
27817 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27818 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27819 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27820 	if (rval != 0) {
27821 		kmem_free(buffer, 12);
27822 		kmem_free(com, sizeof (*com));
27823 		return (rval);
27824 	}
27825 
27826 	/* Process the toc entry */
27827 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27828 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27829 	if (entry->cdte_format & CDROM_LBA) {
27830 		entry->cdte_addr.lba =
27831 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27832 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27833 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27834 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27835 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27836 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27837 		/*
27838 		 * Send a READ TOC command using the LBA address format to get
27839 		 * the LBA for the track requested so it can be used in the
27840 		 * READ HEADER request
27841 		 *
27842 		 * Note: The MSF bit of the READ HEADER command specifies the
27843 		 * output format. The block address specified in that command
27844 		 * must be in LBA format.
27845 		 */
27846 		cdb[1] = 0;
27847 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27848 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27849 		if (rval != 0) {
27850 			kmem_free(buffer, 12);
27851 			kmem_free(com, sizeof (*com));
27852 			return (rval);
27853 		}
27854 	} else {
27855 		entry->cdte_addr.msf.minute	= buffer[9];
27856 		entry->cdte_addr.msf.second	= buffer[10];
27857 		entry->cdte_addr.msf.frame	= buffer[11];
27858 		/*
27859 		 * Send a READ TOC command using the LBA address format to get
27860 		 * the LBA for the track requested so it can be used in the
27861 		 * READ HEADER request
27862 		 *
27863 		 * Note: The MSF bit of the READ HEADER command specifies the
27864 		 * output format. The block address specified in that command
27865 		 * must be in LBA format.
27866 		 */
27867 		cdb[1] = 0;
27868 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27869 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27870 		if (rval != 0) {
27871 			kmem_free(buffer, 12);
27872 			kmem_free(com, sizeof (*com));
27873 			return (rval);
27874 		}
27875 	}
27876 
27877 	/*
27878 	 * Build and send the READ HEADER command to determine the data mode of
27879 	 * the user specified track.
27880 	 */
27881 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27882 	    (entry->cdte_track != CDROM_LEADOUT)) {
27883 		bzero(cdb, CDB_GROUP1);
27884 		cdb[0] = SCMD_READ_HEADER;
27885 		cdb[2] = buffer[8];
27886 		cdb[3] = buffer[9];
27887 		cdb[4] = buffer[10];
27888 		cdb[5] = buffer[11];
27889 		cdb[8] = 0x08;
27890 		com->uscsi_buflen = 0x08;
27891 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27892 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27893 		if (rval == 0) {
27894 			entry->cdte_datamode = buffer[0];
27895 		} else {
27896 			/*
27897 			 * READ HEADER command failed, since this is
27898 			 * obsoleted in one spec, its better to return
27899 			 * -1 for an invlid track so that we can still
27900 			 * recieve the rest of the TOC data.
27901 			 */
27902 			entry->cdte_datamode = (uchar_t)-1;
27903 		}
27904 	} else {
27905 		entry->cdte_datamode = (uchar_t)-1;
27906 	}
27907 
27908 	kmem_free(buffer, 12);
27909 	kmem_free(com, sizeof (*com));
27910 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27911 		return (EFAULT);
27912 
27913 	return (rval);
27914 }
27915 
27916 
27917 /*
27918  *    Function: sr_read_tochdr()
27919  *
27920  * Description: This routine is the driver entry point for handling CD-ROM
27921  * 		ioctl requests to read the Table of Contents (TOC) header
27922  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27923  *		and ending track numbers
27924  *
27925  *   Arguments: dev	- the device 'dev_t'
27926  *		data	- pointer to user provided toc header structure,
27927  *			  specifying the starting and ending track numbers.
27928  *		flag	- this argument is a pass through to ddi_copyxxx()
27929  *			  directly from the mode argument of ioctl().
27930  *
27931  * Return Code: the code returned by sd_send_scsi_cmd()
27932  *		EFAULT if ddi_copyxxx() fails
27933  *		ENXIO if fail ddi_get_soft_state
27934  *		EINVAL if data pointer is NULL
27935  */
27936 
27937 static int
27938 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27939 {
27940 	struct sd_lun		*un;
27941 	struct uscsi_cmd	*com;
27942 	struct cdrom_tochdr	toc_header;
27943 	struct cdrom_tochdr	*hdr = &toc_header;
27944 	char			cdb[CDB_GROUP1];
27945 	int			rval;
27946 	caddr_t			buffer;
27947 
27948 	if (data == NULL) {
27949 		return (EINVAL);
27950 	}
27951 
27952 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27953 	    (un->un_state == SD_STATE_OFFLINE)) {
27954 		return (ENXIO);
27955 	}
27956 
27957 	buffer = kmem_zalloc(4, KM_SLEEP);
27958 	bzero(cdb, CDB_GROUP1);
27959 	cdb[0] = SCMD_READ_TOC;
27960 	/*
27961 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27962 	 * that the TOC header should be returned
27963 	 */
27964 	cdb[6] = 0x00;
27965 	/*
27966 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27967 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27968 	 */
27969 	cdb[8] = 0x04;
27970 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27971 	com->uscsi_cdb	   = cdb;
27972 	com->uscsi_cdblen  = CDB_GROUP1;
27973 	com->uscsi_bufaddr = buffer;
27974 	com->uscsi_buflen  = 0x04;
27975 	com->uscsi_timeout = 300;
27976 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27977 
27978 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27979 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27980 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27981 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
27982 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
27983 	} else {
27984 		hdr->cdth_trk0 = buffer[2];
27985 		hdr->cdth_trk1 = buffer[3];
27986 	}
27987 	kmem_free(buffer, 4);
27988 	kmem_free(com, sizeof (*com));
27989 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
27990 		return (EFAULT);
27991 	}
27992 	return (rval);
27993 }
27994 
27995 
27996 /*
27997  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
27998  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
27999  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28000  * digital audio and extended architecture digital audio. These modes are
28001  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28002  * MMC specs.
28003  *
28004  * In addition to support for the various data formats these routines also
28005  * include support for devices that implement only the direct access READ
28006  * commands (0x08, 0x28), devices that implement the READ_CD commands
28007  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28008  * READ CDXA commands (0xD8, 0xDB)
28009  */
28010 
28011 /*
28012  *    Function: sr_read_mode1()
28013  *
28014  * Description: This routine is the driver entry point for handling CD-ROM
28015  *		ioctl read mode1 requests (CDROMREADMODE1).
28016  *
28017  *   Arguments: dev	- the device 'dev_t'
28018  *		data	- pointer to user provided cd read structure specifying
28019  *			  the lba buffer address and length.
28020  *		flag	- this argument is a pass through to ddi_copyxxx()
28021  *			  directly from the mode argument of ioctl().
28022  *
28023  * Return Code: the code returned by sd_send_scsi_cmd()
28024  *		EFAULT if ddi_copyxxx() fails
28025  *		ENXIO if fail ddi_get_soft_state
28026  *		EINVAL if data pointer is NULL
28027  */
28028 
28029 static int
28030 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28031 {
28032 	struct sd_lun		*un;
28033 	struct cdrom_read	mode1_struct;
28034 	struct cdrom_read	*mode1 = &mode1_struct;
28035 	int			rval;
28036 #ifdef _MULTI_DATAMODEL
28037 	/* To support ILP32 applications in an LP64 world */
28038 	struct cdrom_read32	cdrom_read32;
28039 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28040 #endif /* _MULTI_DATAMODEL */
28041 
28042 	if (data == NULL) {
28043 		return (EINVAL);
28044 	}
28045 
28046 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28047 	    (un->un_state == SD_STATE_OFFLINE)) {
28048 		return (ENXIO);
28049 	}
28050 
28051 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28052 	    "sd_read_mode1: entry: un:0x%p\n", un);
28053 
28054 #ifdef _MULTI_DATAMODEL
28055 	switch (ddi_model_convert_from(flag & FMODELS)) {
28056 	case DDI_MODEL_ILP32:
28057 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28058 			return (EFAULT);
28059 		}
28060 		/* Convert the ILP32 uscsi data from the application to LP64 */
28061 		cdrom_read32tocdrom_read(cdrd32, mode1);
28062 		break;
28063 	case DDI_MODEL_NONE:
28064 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28065 			return (EFAULT);
28066 		}
28067 	}
28068 #else /* ! _MULTI_DATAMODEL */
28069 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28070 		return (EFAULT);
28071 	}
28072 #endif /* _MULTI_DATAMODEL */
28073 
28074 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
28075 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28076 
28077 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28078 	    "sd_read_mode1: exit: un:0x%p\n", un);
28079 
28080 	return (rval);
28081 }
28082 
28083 
28084 /*
28085  *    Function: sr_read_cd_mode2()
28086  *
28087  * Description: This routine is the driver entry point for handling CD-ROM
28088  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28089  *		support the READ CD (0xBE) command or the 1st generation
28090  *		READ CD (0xD4) command.
28091  *
28092  *   Arguments: dev	- the device 'dev_t'
28093  *		data	- pointer to user provided cd read structure specifying
28094  *			  the lba buffer address and length.
28095  *		flag	- this argument is a pass through to ddi_copyxxx()
28096  *			  directly from the mode argument of ioctl().
28097  *
28098  * Return Code: the code returned by sd_send_scsi_cmd()
28099  *		EFAULT if ddi_copyxxx() fails
28100  *		ENXIO if fail ddi_get_soft_state
28101  *		EINVAL if data pointer is NULL
28102  */
28103 
28104 static int
28105 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28106 {
28107 	struct sd_lun		*un;
28108 	struct uscsi_cmd	*com;
28109 	struct cdrom_read	mode2_struct;
28110 	struct cdrom_read	*mode2 = &mode2_struct;
28111 	uchar_t			cdb[CDB_GROUP5];
28112 	int			nblocks;
28113 	int			rval;
28114 #ifdef _MULTI_DATAMODEL
28115 	/*  To support ILP32 applications in an LP64 world */
28116 	struct cdrom_read32	cdrom_read32;
28117 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28118 #endif /* _MULTI_DATAMODEL */
28119 
28120 	if (data == NULL) {
28121 		return (EINVAL);
28122 	}
28123 
28124 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28125 	    (un->un_state == SD_STATE_OFFLINE)) {
28126 		return (ENXIO);
28127 	}
28128 
28129 #ifdef _MULTI_DATAMODEL
28130 	switch (ddi_model_convert_from(flag & FMODELS)) {
28131 	case DDI_MODEL_ILP32:
28132 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28133 			return (EFAULT);
28134 		}
28135 		/* Convert the ILP32 uscsi data from the application to LP64 */
28136 		cdrom_read32tocdrom_read(cdrd32, mode2);
28137 		break;
28138 	case DDI_MODEL_NONE:
28139 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28140 			return (EFAULT);
28141 		}
28142 		break;
28143 	}
28144 
28145 #else /* ! _MULTI_DATAMODEL */
28146 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28147 		return (EFAULT);
28148 	}
28149 #endif /* _MULTI_DATAMODEL */
28150 
28151 	bzero(cdb, sizeof (cdb));
28152 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28153 		/* Read command supported by 1st generation atapi drives */
28154 		cdb[0] = SCMD_READ_CDD4;
28155 	} else {
28156 		/* Universal CD Access Command */
28157 		cdb[0] = SCMD_READ_CD;
28158 	}
28159 
28160 	/*
28161 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28162 	 */
28163 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28164 
28165 	/* set the start address */
28166 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28167 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28168 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28169 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28170 
28171 	/* set the transfer length */
28172 	nblocks = mode2->cdread_buflen / 2336;
28173 	cdb[6] = (uchar_t)(nblocks >> 16);
28174 	cdb[7] = (uchar_t)(nblocks >> 8);
28175 	cdb[8] = (uchar_t)nblocks;
28176 
28177 	/* set the filter bits */
28178 	cdb[9] = CDROM_READ_CD_USERDATA;
28179 
28180 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28181 	com->uscsi_cdb = (caddr_t)cdb;
28182 	com->uscsi_cdblen = sizeof (cdb);
28183 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28184 	com->uscsi_buflen = mode2->cdread_buflen;
28185 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28186 
28187 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28188 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28189 	kmem_free(com, sizeof (*com));
28190 	return (rval);
28191 }
28192 
28193 
28194 /*
28195  *    Function: sr_read_mode2()
28196  *
28197  * Description: This routine is the driver entry point for handling CD-ROM
28198  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28199  *		do not support the READ CD (0xBE) command.
28200  *
28201  *   Arguments: dev	- the device 'dev_t'
28202  *		data	- pointer to user provided cd read structure specifying
28203  *			  the lba buffer address and length.
28204  *		flag	- this argument is a pass through to ddi_copyxxx()
28205  *			  directly from the mode argument of ioctl().
28206  *
28207  * Return Code: the code returned by sd_send_scsi_cmd()
28208  *		EFAULT if ddi_copyxxx() fails
28209  *		ENXIO if fail ddi_get_soft_state
28210  *		EINVAL if data pointer is NULL
28211  *		EIO if fail to reset block size
28212  *		EAGAIN if commands are in progress in the driver
28213  */
28214 
28215 static int
28216 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28217 {
28218 	struct sd_lun		*un;
28219 	struct cdrom_read	mode2_struct;
28220 	struct cdrom_read	*mode2 = &mode2_struct;
28221 	int			rval;
28222 	uint32_t		restore_blksize;
28223 	struct uscsi_cmd	*com;
28224 	uchar_t			cdb[CDB_GROUP0];
28225 	int			nblocks;
28226 
28227 #ifdef _MULTI_DATAMODEL
28228 	/* To support ILP32 applications in an LP64 world */
28229 	struct cdrom_read32	cdrom_read32;
28230 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28231 #endif /* _MULTI_DATAMODEL */
28232 
28233 	if (data == NULL) {
28234 		return (EINVAL);
28235 	}
28236 
28237 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28238 	    (un->un_state == SD_STATE_OFFLINE)) {
28239 		return (ENXIO);
28240 	}
28241 
28242 	/*
28243 	 * Because this routine will update the device and driver block size
28244 	 * being used we want to make sure there are no commands in progress.
28245 	 * If commands are in progress the user will have to try again.
28246 	 *
28247 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28248 	 * in sdioctl to protect commands from sdioctl through to the top of
28249 	 * sd_uscsi_strategy. See sdioctl for details.
28250 	 */
28251 	mutex_enter(SD_MUTEX(un));
28252 	if (un->un_ncmds_in_driver != 1) {
28253 		mutex_exit(SD_MUTEX(un));
28254 		return (EAGAIN);
28255 	}
28256 	mutex_exit(SD_MUTEX(un));
28257 
28258 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28259 	    "sd_read_mode2: entry: un:0x%p\n", un);
28260 
28261 #ifdef _MULTI_DATAMODEL
28262 	switch (ddi_model_convert_from(flag & FMODELS)) {
28263 	case DDI_MODEL_ILP32:
28264 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28265 			return (EFAULT);
28266 		}
28267 		/* Convert the ILP32 uscsi data from the application to LP64 */
28268 		cdrom_read32tocdrom_read(cdrd32, mode2);
28269 		break;
28270 	case DDI_MODEL_NONE:
28271 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28272 			return (EFAULT);
28273 		}
28274 		break;
28275 	}
28276 #else /* ! _MULTI_DATAMODEL */
28277 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28278 		return (EFAULT);
28279 	}
28280 #endif /* _MULTI_DATAMODEL */
28281 
28282 	/* Store the current target block size for restoration later */
28283 	restore_blksize = un->un_tgt_blocksize;
28284 
28285 	/* Change the device and soft state target block size to 2336 */
28286 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28287 		rval = EIO;
28288 		goto done;
28289 	}
28290 
28291 
28292 	bzero(cdb, sizeof (cdb));
28293 
28294 	/* set READ operation */
28295 	cdb[0] = SCMD_READ;
28296 
28297 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28298 	mode2->cdread_lba >>= 2;
28299 
28300 	/* set the start address */
28301 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28302 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28303 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28304 
28305 	/* set the transfer length */
28306 	nblocks = mode2->cdread_buflen / 2336;
28307 	cdb[4] = (uchar_t)nblocks & 0xFF;
28308 
28309 	/* build command */
28310 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28311 	com->uscsi_cdb = (caddr_t)cdb;
28312 	com->uscsi_cdblen = sizeof (cdb);
28313 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28314 	com->uscsi_buflen = mode2->cdread_buflen;
28315 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28316 
28317 	/*
28318 	 * Issue SCSI command with user space address for read buffer.
28319 	 *
28320 	 * This sends the command through main channel in the driver.
28321 	 *
28322 	 * Since this is accessed via an IOCTL call, we go through the
28323 	 * standard path, so that if the device was powered down, then
28324 	 * it would be 'awakened' to handle the command.
28325 	 */
28326 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28327 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28328 
28329 	kmem_free(com, sizeof (*com));
28330 
28331 	/* Restore the device and soft state target block size */
28332 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28333 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28334 		    "can't do switch back to mode 1\n");
28335 		/*
28336 		 * If sd_send_scsi_READ succeeded we still need to report
28337 		 * an error because we failed to reset the block size
28338 		 */
28339 		if (rval == 0) {
28340 			rval = EIO;
28341 		}
28342 	}
28343 
28344 done:
28345 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28346 	    "sd_read_mode2: exit: un:0x%p\n", un);
28347 
28348 	return (rval);
28349 }
28350 
28351 
28352 /*
28353  *    Function: sr_sector_mode()
28354  *
28355  * Description: This utility function is used by sr_read_mode2 to set the target
28356  *		block size based on the user specified size. This is a legacy
28357  *		implementation based upon a vendor specific mode page
28358  *
28359  *   Arguments: dev	- the device 'dev_t'
28360  *		data	- flag indicating if block size is being set to 2336 or
28361  *			  512.
28362  *
28363  * Return Code: the code returned by sd_send_scsi_cmd()
28364  *		EFAULT if ddi_copyxxx() fails
28365  *		ENXIO if fail ddi_get_soft_state
28366  *		EINVAL if data pointer is NULL
28367  */
28368 
28369 static int
28370 sr_sector_mode(dev_t dev, uint32_t blksize)
28371 {
28372 	struct sd_lun	*un;
28373 	uchar_t		*sense;
28374 	uchar_t		*select;
28375 	int		rval;
28376 
28377 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28378 	    (un->un_state == SD_STATE_OFFLINE)) {
28379 		return (ENXIO);
28380 	}
28381 
28382 	sense = kmem_zalloc(20, KM_SLEEP);
28383 
28384 	/* Note: This is a vendor specific mode page (0x81) */
28385 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
28386 	    SD_PATH_STANDARD)) != 0) {
28387 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28388 		    "sr_sector_mode: Mode Sense failed\n");
28389 		kmem_free(sense, 20);
28390 		return (rval);
28391 	}
28392 	select = kmem_zalloc(20, KM_SLEEP);
28393 	select[3] = 0x08;
28394 	select[10] = ((blksize >> 8) & 0xff);
28395 	select[11] = (blksize & 0xff);
28396 	select[12] = 0x01;
28397 	select[13] = 0x06;
28398 	select[14] = sense[14];
28399 	select[15] = sense[15];
28400 	if (blksize == SD_MODE2_BLKSIZE) {
28401 		select[14] |= 0x01;
28402 	}
28403 
28404 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
28405 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
28406 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28407 		    "sr_sector_mode: Mode Select failed\n");
28408 	} else {
28409 		/*
28410 		 * Only update the softstate block size if we successfully
28411 		 * changed the device block mode.
28412 		 */
28413 		mutex_enter(SD_MUTEX(un));
28414 		sd_update_block_info(un, blksize, 0);
28415 		mutex_exit(SD_MUTEX(un));
28416 	}
28417 	kmem_free(sense, 20);
28418 	kmem_free(select, 20);
28419 	return (rval);
28420 }
28421 
28422 
28423 /*
28424  *    Function: sr_read_cdda()
28425  *
28426  * Description: This routine is the driver entry point for handling CD-ROM
28427  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28428  *		the target supports CDDA these requests are handled via a vendor
28429  *		specific command (0xD8) If the target does not support CDDA
28430  *		these requests are handled via the READ CD command (0xBE).
28431  *
28432  *   Arguments: dev	- the device 'dev_t'
28433  *		data	- pointer to user provided CD-DA structure specifying
28434  *			  the track starting address, transfer length, and
28435  *			  subcode options.
28436  *		flag	- this argument is a pass through to ddi_copyxxx()
28437  *			  directly from the mode argument of ioctl().
28438  *
28439  * Return Code: the code returned by sd_send_scsi_cmd()
28440  *		EFAULT if ddi_copyxxx() fails
28441  *		ENXIO if fail ddi_get_soft_state
28442  *		EINVAL if invalid arguments are provided
28443  *		ENOTTY
28444  */
28445 
28446 static int
28447 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28448 {
28449 	struct sd_lun			*un;
28450 	struct uscsi_cmd		*com;
28451 	struct cdrom_cdda		*cdda;
28452 	int				rval;
28453 	size_t				buflen;
28454 	char				cdb[CDB_GROUP5];
28455 
28456 #ifdef _MULTI_DATAMODEL
28457 	/* To support ILP32 applications in an LP64 world */
28458 	struct cdrom_cdda32	cdrom_cdda32;
28459 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28460 #endif /* _MULTI_DATAMODEL */
28461 
28462 	if (data == NULL) {
28463 		return (EINVAL);
28464 	}
28465 
28466 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28467 		return (ENXIO);
28468 	}
28469 
28470 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28471 
28472 #ifdef _MULTI_DATAMODEL
28473 	switch (ddi_model_convert_from(flag & FMODELS)) {
28474 	case DDI_MODEL_ILP32:
28475 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28476 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28477 			    "sr_read_cdda: ddi_copyin Failed\n");
28478 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28479 			return (EFAULT);
28480 		}
28481 		/* Convert the ILP32 uscsi data from the application to LP64 */
28482 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28483 		break;
28484 	case DDI_MODEL_NONE:
28485 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28486 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28487 			    "sr_read_cdda: ddi_copyin Failed\n");
28488 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28489 			return (EFAULT);
28490 		}
28491 		break;
28492 	}
28493 #else /* ! _MULTI_DATAMODEL */
28494 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28495 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28496 		    "sr_read_cdda: ddi_copyin Failed\n");
28497 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28498 		return (EFAULT);
28499 	}
28500 #endif /* _MULTI_DATAMODEL */
28501 
28502 	/*
28503 	 * Since MMC-2 expects max 3 bytes for length, check if the
28504 	 * length input is greater than 3 bytes
28505 	 */
28506 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28507 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28508 		    "cdrom transfer length too large: %d (limit %d)\n",
28509 		    cdda->cdda_length, 0xFFFFFF);
28510 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28511 		return (EINVAL);
28512 	}
28513 
28514 	switch (cdda->cdda_subcode) {
28515 	case CDROM_DA_NO_SUBCODE:
28516 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28517 		break;
28518 	case CDROM_DA_SUBQ:
28519 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28520 		break;
28521 	case CDROM_DA_ALL_SUBCODE:
28522 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28523 		break;
28524 	case CDROM_DA_SUBCODE_ONLY:
28525 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28526 		break;
28527 	default:
28528 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28529 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28530 		    cdda->cdda_subcode);
28531 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28532 		return (EINVAL);
28533 	}
28534 
28535 	/* Build and send the command */
28536 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28537 	bzero(cdb, CDB_GROUP5);
28538 
28539 	if (un->un_f_cfg_cdda == TRUE) {
28540 		cdb[0] = (char)SCMD_READ_CD;
28541 		cdb[1] = 0x04;
28542 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28543 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28544 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28545 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28546 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28547 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28548 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28549 		cdb[9] = 0x10;
28550 		switch (cdda->cdda_subcode) {
28551 		case CDROM_DA_NO_SUBCODE :
28552 			cdb[10] = 0x0;
28553 			break;
28554 		case CDROM_DA_SUBQ :
28555 			cdb[10] = 0x2;
28556 			break;
28557 		case CDROM_DA_ALL_SUBCODE :
28558 			cdb[10] = 0x1;
28559 			break;
28560 		case CDROM_DA_SUBCODE_ONLY :
28561 			/* FALLTHROUGH */
28562 		default :
28563 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28564 			kmem_free(com, sizeof (*com));
28565 			return (ENOTTY);
28566 		}
28567 	} else {
28568 		cdb[0] = (char)SCMD_READ_CDDA;
28569 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28570 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28571 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28572 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28573 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28574 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28575 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28576 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28577 		cdb[10] = cdda->cdda_subcode;
28578 	}
28579 
28580 	com->uscsi_cdb = cdb;
28581 	com->uscsi_cdblen = CDB_GROUP5;
28582 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28583 	com->uscsi_buflen = buflen;
28584 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28585 
28586 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28587 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28588 
28589 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28590 	kmem_free(com, sizeof (*com));
28591 	return (rval);
28592 }
28593 
28594 
28595 /*
28596  *    Function: sr_read_cdxa()
28597  *
28598  * Description: This routine is the driver entry point for handling CD-ROM
28599  *		ioctl requests to return CD-XA (Extended Architecture) data.
28600  *		(CDROMCDXA).
28601  *
28602  *   Arguments: dev	- the device 'dev_t'
28603  *		data	- pointer to user provided CD-XA structure specifying
28604  *			  the data starting address, transfer length, and format
28605  *		flag	- this argument is a pass through to ddi_copyxxx()
28606  *			  directly from the mode argument of ioctl().
28607  *
28608  * Return Code: the code returned by sd_send_scsi_cmd()
28609  *		EFAULT if ddi_copyxxx() fails
28610  *		ENXIO if fail ddi_get_soft_state
28611  *		EINVAL if data pointer is NULL
28612  */
28613 
28614 static int
28615 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28616 {
28617 	struct sd_lun		*un;
28618 	struct uscsi_cmd	*com;
28619 	struct cdrom_cdxa	*cdxa;
28620 	int			rval;
28621 	size_t			buflen;
28622 	char			cdb[CDB_GROUP5];
28623 	uchar_t			read_flags;
28624 
28625 #ifdef _MULTI_DATAMODEL
28626 	/* To support ILP32 applications in an LP64 world */
28627 	struct cdrom_cdxa32		cdrom_cdxa32;
28628 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28629 #endif /* _MULTI_DATAMODEL */
28630 
28631 	if (data == NULL) {
28632 		return (EINVAL);
28633 	}
28634 
28635 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28636 		return (ENXIO);
28637 	}
28638 
28639 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28640 
28641 #ifdef _MULTI_DATAMODEL
28642 	switch (ddi_model_convert_from(flag & FMODELS)) {
28643 	case DDI_MODEL_ILP32:
28644 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28645 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28646 			return (EFAULT);
28647 		}
28648 		/*
28649 		 * Convert the ILP32 uscsi data from the
28650 		 * application to LP64 for internal use.
28651 		 */
28652 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28653 		break;
28654 	case DDI_MODEL_NONE:
28655 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28656 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28657 			return (EFAULT);
28658 		}
28659 		break;
28660 	}
28661 #else /* ! _MULTI_DATAMODEL */
28662 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28663 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28664 		return (EFAULT);
28665 	}
28666 #endif /* _MULTI_DATAMODEL */
28667 
28668 	/*
28669 	 * Since MMC-2 expects max 3 bytes for length, check if the
28670 	 * length input is greater than 3 bytes
28671 	 */
28672 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28673 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28674 		    "cdrom transfer length too large: %d (limit %d)\n",
28675 		    cdxa->cdxa_length, 0xFFFFFF);
28676 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28677 		return (EINVAL);
28678 	}
28679 
28680 	switch (cdxa->cdxa_format) {
28681 	case CDROM_XA_DATA:
28682 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28683 		read_flags = 0x10;
28684 		break;
28685 	case CDROM_XA_SECTOR_DATA:
28686 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28687 		read_flags = 0xf8;
28688 		break;
28689 	case CDROM_XA_DATA_W_ERROR:
28690 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28691 		read_flags = 0xfc;
28692 		break;
28693 	default:
28694 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28695 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28696 		    cdxa->cdxa_format);
28697 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28698 		return (EINVAL);
28699 	}
28700 
28701 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28702 	bzero(cdb, CDB_GROUP5);
28703 	if (un->un_f_mmc_cap == TRUE) {
28704 		cdb[0] = (char)SCMD_READ_CD;
28705 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28706 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28707 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28708 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28709 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28710 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28711 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28712 		cdb[9] = (char)read_flags;
28713 	} else {
28714 		/*
28715 		 * Note: A vendor specific command (0xDB) is being used her to
28716 		 * request a read of all subcodes.
28717 		 */
28718 		cdb[0] = (char)SCMD_READ_CDXA;
28719 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28720 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28721 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28722 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28723 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28724 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28725 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28726 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28727 		cdb[10] = cdxa->cdxa_format;
28728 	}
28729 	com->uscsi_cdb	   = cdb;
28730 	com->uscsi_cdblen  = CDB_GROUP5;
28731 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28732 	com->uscsi_buflen  = buflen;
28733 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28734 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28735 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28736 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28737 	kmem_free(com, sizeof (*com));
28738 	return (rval);
28739 }
28740 
28741 
28742 /*
28743  *    Function: sr_eject()
28744  *
28745  * Description: This routine is the driver entry point for handling CD-ROM
28746  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28747  *
28748  *   Arguments: dev	- the device 'dev_t'
28749  *
28750  * Return Code: the code returned by sd_send_scsi_cmd()
28751  */
28752 
28753 static int
28754 sr_eject(dev_t dev)
28755 {
28756 	struct sd_lun	*un;
28757 	int		rval;
28758 
28759 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28760 	    (un->un_state == SD_STATE_OFFLINE)) {
28761 		return (ENXIO);
28762 	}
28763 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
28764 	    SD_PATH_STANDARD)) != 0) {
28765 		return (rval);
28766 	}
28767 
28768 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
28769 	    SD_PATH_STANDARD);
28770 
28771 	if (rval == 0) {
28772 		mutex_enter(SD_MUTEX(un));
28773 		sr_ejected(un);
28774 		un->un_mediastate = DKIO_EJECTED;
28775 		cv_broadcast(&un->un_state_cv);
28776 		mutex_exit(SD_MUTEX(un));
28777 	}
28778 	return (rval);
28779 }
28780 
28781 
28782 /*
28783  *    Function: sr_ejected()
28784  *
28785  * Description: This routine updates the soft state structure to invalidate the
28786  *		geometry information after the media has been ejected or a
28787  *		media eject has been detected.
28788  *
28789  *   Arguments: un - driver soft state (unit) structure
28790  */
28791 
28792 static void
28793 sr_ejected(struct sd_lun *un)
28794 {
28795 	struct sd_errstats *stp;
28796 
28797 	ASSERT(un != NULL);
28798 	ASSERT(mutex_owned(SD_MUTEX(un)));
28799 
28800 	un->un_f_blockcount_is_valid	= FALSE;
28801 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28802 	un->un_f_geometry_is_valid	= FALSE;
28803 
28804 	if (un->un_errstats != NULL) {
28805 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28806 		stp->sd_capacity.value.ui64 = 0;
28807 	}
28808 }
28809 
28810 
28811 /*
28812  *    Function: sr_check_wp()
28813  *
28814  * Description: This routine checks the write protection of a removable media
28815  *		disk via the write protect bit of the Mode Page Header device
28816  *		specific field.  This routine has been implemented to use the
28817  *		error recovery mode page for all device types.
28818  *		Note: In the future use a sd_send_scsi_MODE_SENSE() routine
28819  *
28820  *   Arguments: dev		- the device 'dev_t'
28821  *
28822  * Return Code: int indicating if the device is write protected (1) or not (0)
28823  *
28824  *     Context: Kernel thread.
28825  *
28826  */
28827 
28828 static int
28829 sr_check_wp(dev_t dev)
28830 {
28831 	struct sd_lun	*un;
28832 	uchar_t		device_specific;
28833 	uchar_t		*sense;
28834 	int		hdrlen;
28835 	int		rval;
28836 	int		retry_flag = FALSE;
28837 
28838 	/*
28839 	 * Note: The return codes for this routine should be reworked to
28840 	 * properly handle the case of a NULL softstate.
28841 	 */
28842 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28843 		return (FALSE);
28844 	}
28845 
28846 	if (un->un_f_cfg_is_atapi == TRUE) {
28847 		retry_flag = TRUE;
28848 	}
28849 
28850 retry:
28851 	if (un->un_f_cfg_is_atapi == TRUE) {
28852 		/*
28853 		 * The mode page contents are not required; set the allocation
28854 		 * length for the mode page header only
28855 		 */
28856 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28857 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28858 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
28859 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28860 		device_specific =
28861 		    ((struct mode_header_grp2 *)sense)->device_specific;
28862 	} else {
28863 		hdrlen = MODE_HEADER_LENGTH;
28864 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28865 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
28866 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28867 		device_specific =
28868 		    ((struct mode_header *)sense)->device_specific;
28869 	}
28870 
28871 	if (rval != 0) {
28872 		if ((un->un_f_cfg_is_atapi == TRUE) && (retry_flag)) {
28873 			/*
28874 			 * For an Atapi Zip drive, observed the drive
28875 			 * reporting check condition for the first attempt.
28876 			 * Sense data indicating power on or bus device/reset.
28877 			 * Hence in case of failure need to try at least once
28878 			 * for Atapi devices.
28879 			 */
28880 			retry_flag = FALSE;
28881 			kmem_free(sense, hdrlen);
28882 			goto retry;
28883 		} else {
28884 			/*
28885 			 * Write protect mode sense failed; not all disks
28886 			 * understand this query. Return FALSE assuming that
28887 			 * these devices are not writable.
28888 			 */
28889 			rval = FALSE;
28890 		}
28891 	} else {
28892 		if (device_specific & WRITE_PROTECT) {
28893 			rval = TRUE;
28894 		} else {
28895 			rval = FALSE;
28896 		}
28897 	}
28898 	kmem_free(sense, hdrlen);
28899 	return (rval);
28900 }
28901 
28902 
28903 /*
28904  *    Function: sr_volume_ctrl()
28905  *
28906  * Description: This routine is the driver entry point for handling CD-ROM
28907  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28908  *
28909  *   Arguments: dev	- the device 'dev_t'
28910  *		data	- pointer to user audio volume control structure
28911  *		flag	- this argument is a pass through to ddi_copyxxx()
28912  *			  directly from the mode argument of ioctl().
28913  *
28914  * Return Code: the code returned by sd_send_scsi_cmd()
28915  *		EFAULT if ddi_copyxxx() fails
28916  *		ENXIO if fail ddi_get_soft_state
28917  *		EINVAL if data pointer is NULL
28918  *
28919  */
28920 
28921 static int
28922 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28923 {
28924 	struct sd_lun		*un;
28925 	struct cdrom_volctrl    volume;
28926 	struct cdrom_volctrl    *vol = &volume;
28927 	uchar_t			*sense_page;
28928 	uchar_t			*select_page;
28929 	uchar_t			*sense;
28930 	uchar_t			*select;
28931 	int			sense_buflen;
28932 	int			select_buflen;
28933 	int			rval;
28934 
28935 	if (data == NULL) {
28936 		return (EINVAL);
28937 	}
28938 
28939 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28940 	    (un->un_state == SD_STATE_OFFLINE)) {
28941 		return (ENXIO);
28942 	}
28943 
28944 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
28945 		return (EFAULT);
28946 	}
28947 
28948 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28949 		struct mode_header_grp2		*sense_mhp;
28950 		struct mode_header_grp2		*select_mhp;
28951 		int				bd_len;
28952 
28953 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
28954 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
28955 		    MODEPAGE_AUDIO_CTRL_LEN;
28956 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28957 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28958 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
28959 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28960 		    SD_PATH_STANDARD)) != 0) {
28961 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28962 			    "sr_volume_ctrl: Mode Sense Failed\n");
28963 			kmem_free(sense, sense_buflen);
28964 			kmem_free(select, select_buflen);
28965 			return (rval);
28966 		}
28967 		sense_mhp = (struct mode_header_grp2 *)sense;
28968 		select_mhp = (struct mode_header_grp2 *)select;
28969 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
28970 		    sense_mhp->bdesc_length_lo;
28971 		if (bd_len > MODE_BLK_DESC_LENGTH) {
28972 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28973 			    "sr_volume_ctrl: Mode Sense returned invalid "
28974 			    "block descriptor length\n");
28975 			kmem_free(sense, sense_buflen);
28976 			kmem_free(select, select_buflen);
28977 			return (EIO);
28978 		}
28979 		sense_page = (uchar_t *)
28980 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
28981 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
28982 		select_mhp->length_msb = 0;
28983 		select_mhp->length_lsb = 0;
28984 		select_mhp->bdesc_length_hi = 0;
28985 		select_mhp->bdesc_length_lo = 0;
28986 	} else {
28987 		struct mode_header		*sense_mhp, *select_mhp;
28988 
28989 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28990 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28991 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28992 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28993 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
28994 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28995 		    SD_PATH_STANDARD)) != 0) {
28996 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28997 			    "sr_volume_ctrl: Mode Sense Failed\n");
28998 			kmem_free(sense, sense_buflen);
28999 			kmem_free(select, select_buflen);
29000 			return (rval);
29001 		}
29002 		sense_mhp  = (struct mode_header *)sense;
29003 		select_mhp = (struct mode_header *)select;
29004 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29005 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29006 			    "sr_volume_ctrl: Mode Sense returned invalid "
29007 			    "block descriptor length\n");
29008 			kmem_free(sense, sense_buflen);
29009 			kmem_free(select, select_buflen);
29010 			return (EIO);
29011 		}
29012 		sense_page = (uchar_t *)
29013 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29014 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29015 		select_mhp->length = 0;
29016 		select_mhp->bdesc_length = 0;
29017 	}
29018 	/*
29019 	 * Note: An audio control data structure could be created and overlayed
29020 	 * on the following in place of the array indexing method implemented.
29021 	 */
29022 
29023 	/* Build the select data for the user volume data */
29024 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29025 	select_page[1] = 0xE;
29026 	/* Set the immediate bit */
29027 	select_page[2] = 0x04;
29028 	/* Zero out reserved fields */
29029 	select_page[3] = 0x00;
29030 	select_page[4] = 0x00;
29031 	/* Return sense data for fields not to be modified */
29032 	select_page[5] = sense_page[5];
29033 	select_page[6] = sense_page[6];
29034 	select_page[7] = sense_page[7];
29035 	/* Set the user specified volume levels for channel 0 and 1 */
29036 	select_page[8] = 0x01;
29037 	select_page[9] = vol->channel0;
29038 	select_page[10] = 0x02;
29039 	select_page[11] = vol->channel1;
29040 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29041 	select_page[12] = sense_page[12];
29042 	select_page[13] = sense_page[13];
29043 	select_page[14] = sense_page[14];
29044 	select_page[15] = sense_page[15];
29045 
29046 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29047 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
29048 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29049 	} else {
29050 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
29051 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29052 	}
29053 
29054 	kmem_free(sense, sense_buflen);
29055 	kmem_free(select, select_buflen);
29056 	return (rval);
29057 }
29058 
29059 
29060 /*
29061  *    Function: sr_read_sony_session_offset()
29062  *
29063  * Description: This routine is the driver entry point for handling CD-ROM
29064  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29065  *		The address of the first track in the last session of a
29066  *		multi-session CD-ROM is returned
29067  *
29068  *		Note: This routine uses a vendor specific key value in the
29069  *		command control field without implementing any vendor check here
29070  *		or in the ioctl routine.
29071  *
29072  *   Arguments: dev	- the device 'dev_t'
29073  *		data	- pointer to an int to hold the requested address
29074  *		flag	- this argument is a pass through to ddi_copyxxx()
29075  *			  directly from the mode argument of ioctl().
29076  *
29077  * Return Code: the code returned by sd_send_scsi_cmd()
29078  *		EFAULT if ddi_copyxxx() fails
29079  *		ENXIO if fail ddi_get_soft_state
29080  *		EINVAL if data pointer is NULL
29081  */
29082 
29083 static int
29084 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29085 {
29086 	struct sd_lun		*un;
29087 	struct uscsi_cmd	*com;
29088 	caddr_t			buffer;
29089 	char			cdb[CDB_GROUP1];
29090 	int			session_offset = 0;
29091 	int			rval;
29092 
29093 	if (data == NULL) {
29094 		return (EINVAL);
29095 	}
29096 
29097 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29098 	    (un->un_state == SD_STATE_OFFLINE)) {
29099 		return (ENXIO);
29100 	}
29101 
29102 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29103 	bzero(cdb, CDB_GROUP1);
29104 	cdb[0] = SCMD_READ_TOC;
29105 	/*
29106 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29107 	 * (4 byte TOC response header + 8 byte response data)
29108 	 */
29109 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29110 	/* Byte 9 is the control byte. A vendor specific value is used */
29111 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29112 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29113 	com->uscsi_cdb = cdb;
29114 	com->uscsi_cdblen = CDB_GROUP1;
29115 	com->uscsi_bufaddr = buffer;
29116 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29117 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29118 
29119 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
29120 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29121 	if (rval != 0) {
29122 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29123 		kmem_free(com, sizeof (*com));
29124 		return (rval);
29125 	}
29126 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29127 		session_offset =
29128 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29129 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29130 		/*
29131 		 * Offset returned offset in current lbasize block's. Convert to
29132 		 * 2k block's to return to the user
29133 		 */
29134 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29135 			session_offset >>= 2;
29136 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29137 			session_offset >>= 1;
29138 		}
29139 	}
29140 
29141 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29142 		rval = EFAULT;
29143 	}
29144 
29145 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29146 	kmem_free(com, sizeof (*com));
29147 	return (rval);
29148 }
29149 
29150 
29151 /*
29152  *    Function: sd_wm_cache_constructor()
29153  *
29154  * Description: Cache Constructor for the wmap cache for the read/modify/write
29155  * 		devices.
29156  *
29157  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29158  *		un	- sd_lun structure for the device.
29159  *		flag	- the km flags passed to constructor
29160  *
29161  * Return Code: 0 on success.
29162  *		-1 on failure.
29163  */
29164 
29165 /*ARGSUSED*/
29166 static int
29167 sd_wm_cache_constructor(void *wm, void *un, int flags)
29168 {
29169 	bzero(wm, sizeof (struct sd_w_map));
29170 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29171 	return (0);
29172 }
29173 
29174 
29175 /*
29176  *    Function: sd_wm_cache_destructor()
29177  *
29178  * Description: Cache destructor for the wmap cache for the read/modify/write
29179  * 		devices.
29180  *
29181  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29182  *		un	- sd_lun structure for the device.
29183  */
29184 /*ARGSUSED*/
29185 static void
29186 sd_wm_cache_destructor(void *wm, void *un)
29187 {
29188 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29189 }
29190 
29191 
29192 /*
29193  *    Function: sd_range_lock()
29194  *
29195  * Description: Lock the range of blocks specified as parameter to ensure
29196  *		that read, modify write is atomic and no other i/o writes
29197  *		to the same location. The range is specified in terms
29198  *		of start and end blocks. Block numbers are the actual
29199  *		media block numbers and not system.
29200  *
29201  *   Arguments: un	- sd_lun structure for the device.
29202  *		startb - The starting block number
29203  *		endb - The end block number
29204  *		typ - type of i/o - simple/read_modify_write
29205  *
29206  * Return Code: wm  - pointer to the wmap structure.
29207  *
29208  *     Context: This routine can sleep.
29209  */
29210 
29211 static struct sd_w_map *
29212 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29213 {
29214 	struct sd_w_map *wmp = NULL;
29215 	struct sd_w_map *sl_wmp = NULL;
29216 	struct sd_w_map *tmp_wmp;
29217 	wm_state state = SD_WM_CHK_LIST;
29218 
29219 
29220 	ASSERT(un != NULL);
29221 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29222 
29223 	mutex_enter(SD_MUTEX(un));
29224 
29225 	while (state != SD_WM_DONE) {
29226 
29227 		switch (state) {
29228 		case SD_WM_CHK_LIST:
29229 			/*
29230 			 * This is the starting state. Check the wmap list
29231 			 * to see if the range is currently available.
29232 			 */
29233 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29234 				/*
29235 				 * If this is a simple write and no rmw
29236 				 * i/o is pending then try to lock the
29237 				 * range as the range should be available.
29238 				 */
29239 				state = SD_WM_LOCK_RANGE;
29240 			} else {
29241 				tmp_wmp = sd_get_range(un, startb, endb);
29242 				if (tmp_wmp != NULL) {
29243 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29244 						/*
29245 						 * Should not keep onlist wmps
29246 						 * while waiting this macro
29247 						 * will also do wmp = NULL;
29248 						 */
29249 						FREE_ONLIST_WMAP(un, wmp);
29250 					}
29251 					/*
29252 					 * sl_wmp is the wmap on which wait
29253 					 * is done, since the tmp_wmp points
29254 					 * to the inuse wmap, set sl_wmp to
29255 					 * tmp_wmp and change the state to sleep
29256 					 */
29257 					sl_wmp = tmp_wmp;
29258 					state = SD_WM_WAIT_MAP;
29259 				} else {
29260 					state = SD_WM_LOCK_RANGE;
29261 				}
29262 
29263 			}
29264 			break;
29265 
29266 		case SD_WM_LOCK_RANGE:
29267 			ASSERT(un->un_wm_cache);
29268 			/*
29269 			 * The range need to be locked, try to get a wmap.
29270 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29271 			 * if possible as we will have to release the sd mutex
29272 			 * if we have to sleep.
29273 			 */
29274 			if (wmp == NULL)
29275 				wmp = kmem_cache_alloc(un->un_wm_cache,
29276 				    KM_NOSLEEP);
29277 			if (wmp == NULL) {
29278 				mutex_exit(SD_MUTEX(un));
29279 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29280 				    (sd_lun::un_wm_cache))
29281 				wmp = kmem_cache_alloc(un->un_wm_cache,
29282 				    KM_SLEEP);
29283 				mutex_enter(SD_MUTEX(un));
29284 				/*
29285 				 * we released the mutex so recheck and go to
29286 				 * check list state.
29287 				 */
29288 				state = SD_WM_CHK_LIST;
29289 			} else {
29290 				/*
29291 				 * We exit out of state machine since we
29292 				 * have the wmap. Do the housekeeping first.
29293 				 * place the wmap on the wmap list if it is not
29294 				 * on it already and then set the state to done.
29295 				 */
29296 				wmp->wm_start = startb;
29297 				wmp->wm_end = endb;
29298 				wmp->wm_flags = typ | SD_WM_BUSY;
29299 				if (typ & SD_WTYPE_RMW) {
29300 					un->un_rmw_count++;
29301 				}
29302 				/*
29303 				 * If not already on the list then link
29304 				 */
29305 				if (!ONLIST(un, wmp)) {
29306 					wmp->wm_next = un->un_wm;
29307 					wmp->wm_prev = NULL;
29308 					if (wmp->wm_next)
29309 						wmp->wm_next->wm_prev = wmp;
29310 					un->un_wm = wmp;
29311 				}
29312 				state = SD_WM_DONE;
29313 			}
29314 			break;
29315 
29316 		case SD_WM_WAIT_MAP:
29317 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29318 			/*
29319 			 * Wait is done on sl_wmp, which is set in the
29320 			 * check_list state.
29321 			 */
29322 			sl_wmp->wm_wanted_count++;
29323 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29324 			sl_wmp->wm_wanted_count--;
29325 			if (!(sl_wmp->wm_flags & SD_WM_BUSY)) {
29326 				if (wmp != NULL)
29327 					CHK_N_FREEWMP(un, wmp);
29328 				wmp = sl_wmp;
29329 			}
29330 			sl_wmp = NULL;
29331 			/*
29332 			 * After waking up, need to recheck for availability of
29333 			 * range.
29334 			 */
29335 			state = SD_WM_CHK_LIST;
29336 			break;
29337 
29338 		default:
29339 			panic("sd_range_lock: "
29340 			    "Unknown state %d in sd_range_lock", state);
29341 			/*NOTREACHED*/
29342 		} /* switch(state) */
29343 
29344 	} /* while(state != SD_WM_DONE) */
29345 
29346 	mutex_exit(SD_MUTEX(un));
29347 
29348 	ASSERT(wmp != NULL);
29349 
29350 	return (wmp);
29351 }
29352 
29353 
29354 /*
29355  *    Function: sd_get_range()
29356  *
29357  * Description: Find if there any overlapping I/O to this one
29358  *		Returns the write-map of 1st such I/O, NULL otherwise.
29359  *
29360  *   Arguments: un	- sd_lun structure for the device.
29361  *		startb - The starting block number
29362  *		endb - The end block number
29363  *
29364  * Return Code: wm  - pointer to the wmap structure.
29365  */
29366 
29367 static struct sd_w_map *
29368 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29369 {
29370 	struct sd_w_map *wmp;
29371 
29372 	ASSERT(un != NULL);
29373 
29374 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29375 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29376 			continue;
29377 		}
29378 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29379 			break;
29380 		}
29381 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29382 			break;
29383 		}
29384 	}
29385 
29386 	return (wmp);
29387 }
29388 
29389 
29390 /*
29391  *    Function: sd_free_inlist_wmap()
29392  *
29393  * Description: Unlink and free a write map struct.
29394  *
29395  *   Arguments: un      - sd_lun structure for the device.
29396  *		wmp	- sd_w_map which needs to be unlinked.
29397  */
29398 
29399 static void
29400 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29401 {
29402 	ASSERT(un != NULL);
29403 
29404 	if (un->un_wm == wmp) {
29405 		un->un_wm = wmp->wm_next;
29406 	} else {
29407 		wmp->wm_prev->wm_next = wmp->wm_next;
29408 	}
29409 
29410 	if (wmp->wm_next) {
29411 		wmp->wm_next->wm_prev = wmp->wm_prev;
29412 	}
29413 
29414 	wmp->wm_next = wmp->wm_prev = NULL;
29415 
29416 	kmem_cache_free(un->un_wm_cache, wmp);
29417 }
29418 
29419 
29420 /*
29421  *    Function: sd_range_unlock()
29422  *
29423  * Description: Unlock the range locked by wm.
29424  *		Free write map if nobody else is waiting on it.
29425  *
29426  *   Arguments: un      - sd_lun structure for the device.
29427  *              wmp     - sd_w_map which needs to be unlinked.
29428  */
29429 
29430 static void
29431 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29432 {
29433 	ASSERT(un != NULL);
29434 	ASSERT(wm != NULL);
29435 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29436 
29437 	mutex_enter(SD_MUTEX(un));
29438 
29439 	if (wm->wm_flags & SD_WTYPE_RMW) {
29440 		un->un_rmw_count--;
29441 	}
29442 
29443 	if (wm->wm_wanted_count) {
29444 		wm->wm_flags = 0;
29445 		/*
29446 		 * Broadcast that the wmap is available now.
29447 		 */
29448 		cv_broadcast(&wm->wm_avail);
29449 	} else {
29450 		/*
29451 		 * If no one is waiting on the map, it should be free'ed.
29452 		 */
29453 		sd_free_inlist_wmap(un, wm);
29454 	}
29455 
29456 	mutex_exit(SD_MUTEX(un));
29457 }
29458 
29459 
29460 /*
29461  *    Function: sd_read_modify_write_task
29462  *
29463  * Description: Called from a taskq thread to initiate the write phase of
29464  *		a read-modify-write request.  This is used for targets where
29465  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29466  *
29467  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29468  *
29469  *     Context: Called under taskq thread context.
29470  */
29471 
29472 static void
29473 sd_read_modify_write_task(void *arg)
29474 {
29475 	struct sd_mapblocksize_info	*bsp;
29476 	struct buf	*bp;
29477 	struct sd_xbuf	*xp;
29478 	struct sd_lun	*un;
29479 
29480 	bp = arg;	/* The bp is given in arg */
29481 	ASSERT(bp != NULL);
29482 
29483 	/* Get the pointer to the layer-private data struct */
29484 	xp = SD_GET_XBUF(bp);
29485 	ASSERT(xp != NULL);
29486 	bsp = xp->xb_private;
29487 	ASSERT(bsp != NULL);
29488 
29489 	un = SD_GET_UN(bp);
29490 	ASSERT(un != NULL);
29491 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29492 
29493 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29494 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29495 
29496 	/*
29497 	 * This is the write phase of a read-modify-write request, called
29498 	 * under the context of a taskq thread in response to the completion
29499 	 * of the read portion of the rmw request completing under interrupt
29500 	 * context. The write request must be sent from here down the iostart
29501 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29502 	 * we use the layer index saved in the layer-private data area.
29503 	 */
29504 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29505 
29506 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29507 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29508 }
29509 
29510 
29511 /*
29512  *    Function: sddump_do_read_of_rmw()
29513  *
29514  * Description: This routine will be called from sddump, If sddump is called
29515  *		with an I/O which not aligned on device blocksize boundary
29516  *		then the write has to be converted to read-modify-write.
29517  *		Do the read part here in order to keep sddump simple.
29518  *		Note - That the sd_mutex is held across the call to this
29519  *		routine.
29520  *
29521  *   Arguments: un	- sd_lun
29522  *		blkno	- block number in terms of media block size.
29523  *		nblk	- number of blocks.
29524  *		bpp	- pointer to pointer to the buf structure. On return
29525  *			from this function, *bpp points to the valid buffer
29526  *			to which the write has to be done.
29527  *
29528  * Return Code: 0 for success or errno-type return code
29529  */
29530 
29531 static int
29532 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29533 	struct buf **bpp)
29534 {
29535 	int err;
29536 	int i;
29537 	int rval;
29538 	struct buf *bp;
29539 	struct scsi_pkt *pkt = NULL;
29540 	uint32_t target_blocksize;
29541 
29542 	ASSERT(un != NULL);
29543 	ASSERT(mutex_owned(SD_MUTEX(un)));
29544 
29545 	target_blocksize = un->un_tgt_blocksize;
29546 
29547 	mutex_exit(SD_MUTEX(un));
29548 
29549 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29550 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29551 	if (bp == NULL) {
29552 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29553 		    "no resources for dumping; giving up");
29554 		err = ENOMEM;
29555 		goto done;
29556 	}
29557 
29558 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29559 	    blkno, nblk);
29560 	if (rval != 0) {
29561 		scsi_free_consistent_buf(bp);
29562 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29563 		    "no resources for dumping; giving up");
29564 		err = ENOMEM;
29565 		goto done;
29566 	}
29567 
29568 	pkt->pkt_flags |= FLAG_NOINTR;
29569 
29570 	err = EIO;
29571 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29572 
29573 		/*
29574 		 * Scsi_poll returns 0 (success) if the command completes and
29575 		 * the status block is STATUS_GOOD.  We should only check
29576 		 * errors if this condition is not true.  Even then we should
29577 		 * send our own request sense packet only if we have a check
29578 		 * condition and auto request sense has not been performed by
29579 		 * the hba.
29580 		 */
29581 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29582 
29583 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29584 			err = 0;
29585 			break;
29586 		}
29587 
29588 		/*
29589 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29590 		 * no need to read RQS data.
29591 		 */
29592 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29593 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29594 			    "Device is gone\n");
29595 			break;
29596 		}
29597 
29598 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29599 			SD_INFO(SD_LOG_DUMP, un,
29600 			    "sddump: read failed with CHECK, try # %d\n", i);
29601 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29602 				(void) sd_send_polled_RQS(un);
29603 			}
29604 
29605 			continue;
29606 		}
29607 
29608 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29609 			int reset_retval = 0;
29610 
29611 			SD_INFO(SD_LOG_DUMP, un,
29612 			    "sddump: read failed with BUSY, try # %d\n", i);
29613 
29614 			if (un->un_f_lun_reset_enabled == TRUE) {
29615 				reset_retval = scsi_reset(SD_ADDRESS(un),
29616 				    RESET_LUN);
29617 			}
29618 			if (reset_retval == 0) {
29619 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29620 			}
29621 			(void) sd_send_polled_RQS(un);
29622 
29623 		} else {
29624 			SD_INFO(SD_LOG_DUMP, un,
29625 			    "sddump: read failed with 0x%x, try # %d\n",
29626 			    SD_GET_PKT_STATUS(pkt), i);
29627 			mutex_enter(SD_MUTEX(un));
29628 			sd_reset_target(un, pkt);
29629 			mutex_exit(SD_MUTEX(un));
29630 		}
29631 
29632 		/*
29633 		 * If we are not getting anywhere with lun/target resets,
29634 		 * let's reset the bus.
29635 		 */
29636 		if (i > SD_NDUMP_RETRIES/2) {
29637 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29638 			(void) sd_send_polled_RQS(un);
29639 		}
29640 
29641 	}
29642 	scsi_destroy_pkt(pkt);
29643 
29644 	if (err != 0) {
29645 		scsi_free_consistent_buf(bp);
29646 		*bpp = NULL;
29647 	} else {
29648 		*bpp = bp;
29649 	}
29650 
29651 done:
29652 	mutex_enter(SD_MUTEX(un));
29653 	return (err);
29654 }
29655 
29656 
29657 /*
29658  *    Function: sd_failfast_flushq
29659  *
29660  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29661  *		in b_flags and move them onto the failfast queue, then kick
29662  *		off a thread to return all bp's on the failfast queue to
29663  *		their owners with an error set.
29664  *
29665  *   Arguments: un - pointer to the soft state struct for the instance.
29666  *
29667  *     Context: may execute in interrupt context.
29668  */
29669 
29670 static void
29671 sd_failfast_flushq(struct sd_lun *un)
29672 {
29673 	struct buf *bp;
29674 	struct buf *next_waitq_bp;
29675 	struct buf *prev_waitq_bp = NULL;
29676 
29677 	ASSERT(un != NULL);
29678 	ASSERT(mutex_owned(SD_MUTEX(un)));
29679 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29680 	ASSERT(un->un_failfast_bp == NULL);
29681 
29682 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29683 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29684 
29685 	/*
29686 	 * Check if we should flush all bufs when entering failfast state, or
29687 	 * just those with B_FAILFAST set.
29688 	 */
29689 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29690 		/*
29691 		 * Move *all* bp's on the wait queue to the failfast flush
29692 		 * queue, including those that do NOT have B_FAILFAST set.
29693 		 */
29694 		if (un->un_failfast_headp == NULL) {
29695 			ASSERT(un->un_failfast_tailp == NULL);
29696 			un->un_failfast_headp = un->un_waitq_headp;
29697 		} else {
29698 			ASSERT(un->un_failfast_tailp != NULL);
29699 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29700 		}
29701 
29702 		un->un_failfast_tailp = un->un_waitq_tailp;
29703 
29704 		/* update kstat for each bp moved out of the waitq */
29705 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29706 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29707 		}
29708 
29709 		/* empty the waitq */
29710 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29711 
29712 	} else {
29713 		/*
29714 		 * Go thru the wait queue, pick off all entries with
29715 		 * B_FAILFAST set, and move these onto the failfast queue.
29716 		 */
29717 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29718 			/*
29719 			 * Save the pointer to the next bp on the wait queue,
29720 			 * so we get to it on the next iteration of this loop.
29721 			 */
29722 			next_waitq_bp = bp->av_forw;
29723 
29724 			/*
29725 			 * If this bp from the wait queue does NOT have
29726 			 * B_FAILFAST set, just move on to the next element
29727 			 * in the wait queue. Note, this is the only place
29728 			 * where it is correct to set prev_waitq_bp.
29729 			 */
29730 			if ((bp->b_flags & B_FAILFAST) == 0) {
29731 				prev_waitq_bp = bp;
29732 				continue;
29733 			}
29734 
29735 			/*
29736 			 * Remove the bp from the wait queue.
29737 			 */
29738 			if (bp == un->un_waitq_headp) {
29739 				/* The bp is the first element of the waitq. */
29740 				un->un_waitq_headp = next_waitq_bp;
29741 				if (un->un_waitq_headp == NULL) {
29742 					/* The wait queue is now empty */
29743 					un->un_waitq_tailp = NULL;
29744 				}
29745 			} else {
29746 				/*
29747 				 * The bp is either somewhere in the middle
29748 				 * or at the end of the wait queue.
29749 				 */
29750 				ASSERT(un->un_waitq_headp != NULL);
29751 				ASSERT(prev_waitq_bp != NULL);
29752 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29753 				    == 0);
29754 				if (bp == un->un_waitq_tailp) {
29755 					/* bp is the last entry on the waitq. */
29756 					ASSERT(next_waitq_bp == NULL);
29757 					un->un_waitq_tailp = prev_waitq_bp;
29758 				}
29759 				prev_waitq_bp->av_forw = next_waitq_bp;
29760 			}
29761 			bp->av_forw = NULL;
29762 
29763 			/*
29764 			 * update kstat since the bp is moved out of
29765 			 * the waitq
29766 			 */
29767 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29768 
29769 			/*
29770 			 * Now put the bp onto the failfast queue.
29771 			 */
29772 			if (un->un_failfast_headp == NULL) {
29773 				/* failfast queue is currently empty */
29774 				ASSERT(un->un_failfast_tailp == NULL);
29775 				un->un_failfast_headp =
29776 				    un->un_failfast_tailp = bp;
29777 			} else {
29778 				/* Add the bp to the end of the failfast q */
29779 				ASSERT(un->un_failfast_tailp != NULL);
29780 				ASSERT(un->un_failfast_tailp->b_flags &
29781 				    B_FAILFAST);
29782 				un->un_failfast_tailp->av_forw = bp;
29783 				un->un_failfast_tailp = bp;
29784 			}
29785 		}
29786 	}
29787 
29788 	/*
29789 	 * Now return all bp's on the failfast queue to their owners.
29790 	 */
29791 	while ((bp = un->un_failfast_headp) != NULL) {
29792 
29793 		un->un_failfast_headp = bp->av_forw;
29794 		if (un->un_failfast_headp == NULL) {
29795 			un->un_failfast_tailp = NULL;
29796 		}
29797 
29798 		/*
29799 		 * We want to return the bp with a failure error code, but
29800 		 * we do not want a call to sd_start_cmds() to occur here,
29801 		 * so use sd_return_failed_command_no_restart() instead of
29802 		 * sd_return_failed_command().
29803 		 */
29804 		sd_return_failed_command_no_restart(un, bp, EIO);
29805 	}
29806 
29807 	/* Flush the xbuf queues if required. */
29808 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29809 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29810 	}
29811 
29812 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29813 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29814 }
29815 
29816 
29817 /*
29818  *    Function: sd_failfast_flushq_callback
29819  *
29820  * Description: Return TRUE if the given bp meets the criteria for failfast
29821  *		flushing. Used with ddi_xbuf_flushq(9F).
29822  *
29823  *   Arguments: bp - ptr to buf struct to be examined.
29824  *
29825  *     Context: Any
29826  */
29827 
29828 static int
29829 sd_failfast_flushq_callback(struct buf *bp)
29830 {
29831 	/*
29832 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29833 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29834 	 */
29835 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29836 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29837 }
29838 
29839 
29840 
29841 #if defined(__i386) || defined(__amd64)
29842 /*
29843  * Function: sd_setup_next_xfer
29844  *
29845  * Description: Prepare next I/O operation using DMA_PARTIAL
29846  *
29847  */
29848 
29849 static int
29850 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29851     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29852 {
29853 	ssize_t	num_blks_not_xfered;
29854 	daddr_t	strt_blk_num;
29855 	ssize_t	bytes_not_xfered;
29856 	int	rval;
29857 
29858 	ASSERT(pkt->pkt_resid == 0);
29859 
29860 	/*
29861 	 * Calculate next block number and amount to be transferred.
29862 	 *
29863 	 * How much data NOT transfered to the HBA yet.
29864 	 */
29865 	bytes_not_xfered = xp->xb_dma_resid;
29866 
29867 	/*
29868 	 * figure how many blocks NOT transfered to the HBA yet.
29869 	 */
29870 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29871 
29872 	/*
29873 	 * set starting block number to the end of what WAS transfered.
29874 	 */
29875 	strt_blk_num = xp->xb_blkno +
29876 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29877 
29878 	/*
29879 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29880 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29881 	 * the disk mutex here.
29882 	 */
29883 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29884 	    strt_blk_num, num_blks_not_xfered);
29885 
29886 	if (rval == 0) {
29887 
29888 		/*
29889 		 * Success.
29890 		 *
29891 		 * Adjust things if there are still more blocks to be
29892 		 * transfered.
29893 		 */
29894 		xp->xb_dma_resid = pkt->pkt_resid;
29895 		pkt->pkt_resid = 0;
29896 
29897 		return (1);
29898 	}
29899 
29900 	/*
29901 	 * There's really only one possible return value from
29902 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29903 	 * returns NULL.
29904 	 */
29905 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29906 
29907 	bp->b_resid = bp->b_bcount;
29908 	bp->b_flags |= B_ERROR;
29909 
29910 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29911 	    "Error setting up next portion of DMA transfer\n");
29912 
29913 	return (0);
29914 }
29915 #endif
29916 
29917 /*
29918  *    Function: sd_panic_for_res_conflict
29919  *
29920  * Description: Call panic with a string formated with "Reservation Conflict"
29921  *		and a human readable identifier indicating the SD instance
29922  *		that experienced the reservation conflict.
29923  *
29924  *   Arguments: un - pointer to the soft state struct for the instance.
29925  *
29926  *     Context: may execute in interrupt context.
29927  */
29928 
29929 #define	SD_RESV_CONFLICT_FMT_LEN 40
29930 void
29931 sd_panic_for_res_conflict(struct sd_lun *un)
29932 {
29933 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
29934 	char path_str[MAXPATHLEN];
29935 
29936 	(void) snprintf(panic_str, sizeof (panic_str),
29937 	    "Reservation Conflict\nDisk: %s",
29938 	    ddi_pathname(SD_DEVINFO(un), path_str));
29939 
29940 	panic(panic_str);
29941 }
29942 
29943 /*
29944  * Note: The following sd_faultinjection_ioctl( ) routines implement
29945  * driver support for handling fault injection for error analysis
29946  * causing faults in multiple layers of the driver.
29947  *
29948  */
29949 
29950 #ifdef SD_FAULT_INJECTION
29951 static uint_t   sd_fault_injection_on = 0;
29952 
29953 /*
29954  *    Function: sd_faultinjection_ioctl()
29955  *
29956  * Description: This routine is the driver entry point for handling
29957  *              faultinjection ioctls to inject errors into the
29958  *              layer model
29959  *
29960  *   Arguments: cmd	- the ioctl cmd recieved
29961  *		arg	- the arguments from user and returns
29962  */
29963 
29964 static void
29965 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
29966 
29967 	uint_t i;
29968 	uint_t rval;
29969 
29970 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
29971 
29972 	mutex_enter(SD_MUTEX(un));
29973 
29974 	switch (cmd) {
29975 	case SDIOCRUN:
29976 		/* Allow pushed faults to be injected */
29977 		SD_INFO(SD_LOG_SDTEST, un,
29978 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
29979 
29980 		sd_fault_injection_on = 1;
29981 
29982 		SD_INFO(SD_LOG_IOERR, un,
29983 		    "sd_faultinjection_ioctl: run finished\n");
29984 		break;
29985 
29986 	case SDIOCSTART:
29987 		/* Start Injection Session */
29988 		SD_INFO(SD_LOG_SDTEST, un,
29989 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
29990 
29991 		sd_fault_injection_on = 0;
29992 		un->sd_injection_mask = 0xFFFFFFFF;
29993 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29994 			un->sd_fi_fifo_pkt[i] = NULL;
29995 			un->sd_fi_fifo_xb[i] = NULL;
29996 			un->sd_fi_fifo_un[i] = NULL;
29997 			un->sd_fi_fifo_arq[i] = NULL;
29998 		}
29999 		un->sd_fi_fifo_start = 0;
30000 		un->sd_fi_fifo_end = 0;
30001 
30002 		mutex_enter(&(un->un_fi_mutex));
30003 		un->sd_fi_log[0] = '\0';
30004 		un->sd_fi_buf_len = 0;
30005 		mutex_exit(&(un->un_fi_mutex));
30006 
30007 		SD_INFO(SD_LOG_IOERR, un,
30008 		    "sd_faultinjection_ioctl: start finished\n");
30009 		break;
30010 
30011 	case SDIOCSTOP:
30012 		/* Stop Injection Session */
30013 		SD_INFO(SD_LOG_SDTEST, un,
30014 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30015 		sd_fault_injection_on = 0;
30016 		un->sd_injection_mask = 0x0;
30017 
30018 		/* Empty stray or unuseds structs from fifo */
30019 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30020 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30021 				kmem_free(un->sd_fi_fifo_pkt[i],
30022 				    sizeof (struct sd_fi_pkt));
30023 			}
30024 			if (un->sd_fi_fifo_xb[i] != NULL) {
30025 				kmem_free(un->sd_fi_fifo_xb[i],
30026 				    sizeof (struct sd_fi_xb));
30027 			}
30028 			if (un->sd_fi_fifo_un[i] != NULL) {
30029 				kmem_free(un->sd_fi_fifo_un[i],
30030 				    sizeof (struct sd_fi_un));
30031 			}
30032 			if (un->sd_fi_fifo_arq[i] != NULL) {
30033 				kmem_free(un->sd_fi_fifo_arq[i],
30034 				    sizeof (struct sd_fi_arq));
30035 			}
30036 			un->sd_fi_fifo_pkt[i] = NULL;
30037 			un->sd_fi_fifo_un[i] = NULL;
30038 			un->sd_fi_fifo_xb[i] = NULL;
30039 			un->sd_fi_fifo_arq[i] = NULL;
30040 		}
30041 		un->sd_fi_fifo_start = 0;
30042 		un->sd_fi_fifo_end = 0;
30043 
30044 		SD_INFO(SD_LOG_IOERR, un,
30045 		    "sd_faultinjection_ioctl: stop finished\n");
30046 		break;
30047 
30048 	case SDIOCINSERTPKT:
30049 		/* Store a packet struct to be pushed onto fifo */
30050 		SD_INFO(SD_LOG_SDTEST, un,
30051 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30052 
30053 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30054 
30055 		sd_fault_injection_on = 0;
30056 
30057 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30058 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30059 			kmem_free(un->sd_fi_fifo_pkt[i],
30060 			    sizeof (struct sd_fi_pkt));
30061 		}
30062 		if (arg != NULL) {
30063 			un->sd_fi_fifo_pkt[i] =
30064 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30065 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30066 				/* Alloc failed don't store anything */
30067 				break;
30068 			}
30069 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30070 			    sizeof (struct sd_fi_pkt), 0);
30071 			if (rval == -1) {
30072 				kmem_free(un->sd_fi_fifo_pkt[i],
30073 				    sizeof (struct sd_fi_pkt));
30074 				un->sd_fi_fifo_pkt[i] = NULL;
30075 			}
30076 		} else {
30077 			SD_INFO(SD_LOG_IOERR, un,
30078 			    "sd_faultinjection_ioctl: pkt null\n");
30079 		}
30080 		break;
30081 
30082 	case SDIOCINSERTXB:
30083 		/* Store a xb struct to be pushed onto fifo */
30084 		SD_INFO(SD_LOG_SDTEST, un,
30085 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30086 
30087 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30088 
30089 		sd_fault_injection_on = 0;
30090 
30091 		if (un->sd_fi_fifo_xb[i] != NULL) {
30092 			kmem_free(un->sd_fi_fifo_xb[i],
30093 			    sizeof (struct sd_fi_xb));
30094 			un->sd_fi_fifo_xb[i] = NULL;
30095 		}
30096 		if (arg != NULL) {
30097 			un->sd_fi_fifo_xb[i] =
30098 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30099 			if (un->sd_fi_fifo_xb[i] == NULL) {
30100 				/* Alloc failed don't store anything */
30101 				break;
30102 			}
30103 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30104 			    sizeof (struct sd_fi_xb), 0);
30105 
30106 			if (rval == -1) {
30107 				kmem_free(un->sd_fi_fifo_xb[i],
30108 				    sizeof (struct sd_fi_xb));
30109 				un->sd_fi_fifo_xb[i] = NULL;
30110 			}
30111 		} else {
30112 			SD_INFO(SD_LOG_IOERR, un,
30113 			    "sd_faultinjection_ioctl: xb null\n");
30114 		}
30115 		break;
30116 
30117 	case SDIOCINSERTUN:
30118 		/* Store a un struct to be pushed onto fifo */
30119 		SD_INFO(SD_LOG_SDTEST, un,
30120 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30121 
30122 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30123 
30124 		sd_fault_injection_on = 0;
30125 
30126 		if (un->sd_fi_fifo_un[i] != NULL) {
30127 			kmem_free(un->sd_fi_fifo_un[i],
30128 			    sizeof (struct sd_fi_un));
30129 			un->sd_fi_fifo_un[i] = NULL;
30130 		}
30131 		if (arg != NULL) {
30132 			un->sd_fi_fifo_un[i] =
30133 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30134 			if (un->sd_fi_fifo_un[i] == NULL) {
30135 				/* Alloc failed don't store anything */
30136 				break;
30137 			}
30138 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30139 			    sizeof (struct sd_fi_un), 0);
30140 			if (rval == -1) {
30141 				kmem_free(un->sd_fi_fifo_un[i],
30142 				    sizeof (struct sd_fi_un));
30143 				un->sd_fi_fifo_un[i] = NULL;
30144 			}
30145 
30146 		} else {
30147 			SD_INFO(SD_LOG_IOERR, un,
30148 			    "sd_faultinjection_ioctl: un null\n");
30149 		}
30150 
30151 		break;
30152 
30153 	case SDIOCINSERTARQ:
30154 		/* Store a arq struct to be pushed onto fifo */
30155 		SD_INFO(SD_LOG_SDTEST, un,
30156 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30157 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30158 
30159 		sd_fault_injection_on = 0;
30160 
30161 		if (un->sd_fi_fifo_arq[i] != NULL) {
30162 			kmem_free(un->sd_fi_fifo_arq[i],
30163 			    sizeof (struct sd_fi_arq));
30164 			un->sd_fi_fifo_arq[i] = NULL;
30165 		}
30166 		if (arg != NULL) {
30167 			un->sd_fi_fifo_arq[i] =
30168 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30169 			if (un->sd_fi_fifo_arq[i] == NULL) {
30170 				/* Alloc failed don't store anything */
30171 				break;
30172 			}
30173 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30174 			    sizeof (struct sd_fi_arq), 0);
30175 			if (rval == -1) {
30176 				kmem_free(un->sd_fi_fifo_arq[i],
30177 				    sizeof (struct sd_fi_arq));
30178 				un->sd_fi_fifo_arq[i] = NULL;
30179 			}
30180 
30181 		} else {
30182 			SD_INFO(SD_LOG_IOERR, un,
30183 			    "sd_faultinjection_ioctl: arq null\n");
30184 		}
30185 
30186 		break;
30187 
30188 	case SDIOCPUSH:
30189 		/* Push stored xb, pkt, un, and arq onto fifo */
30190 		sd_fault_injection_on = 0;
30191 
30192 		if (arg != NULL) {
30193 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30194 			if (rval != -1 &&
30195 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30196 				un->sd_fi_fifo_end += i;
30197 			}
30198 		} else {
30199 			SD_INFO(SD_LOG_IOERR, un,
30200 			    "sd_faultinjection_ioctl: push arg null\n");
30201 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30202 				un->sd_fi_fifo_end++;
30203 			}
30204 		}
30205 		SD_INFO(SD_LOG_IOERR, un,
30206 		    "sd_faultinjection_ioctl: push to end=%d\n",
30207 		    un->sd_fi_fifo_end);
30208 		break;
30209 
30210 	case SDIOCRETRIEVE:
30211 		/* Return buffer of log from Injection session */
30212 		SD_INFO(SD_LOG_SDTEST, un,
30213 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30214 
30215 		sd_fault_injection_on = 0;
30216 
30217 		mutex_enter(&(un->un_fi_mutex));
30218 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30219 		    un->sd_fi_buf_len+1, 0);
30220 		mutex_exit(&(un->un_fi_mutex));
30221 
30222 		if (rval == -1) {
30223 			/*
30224 			 * arg is possibly invalid setting
30225 			 * it to NULL for return
30226 			 */
30227 			arg = NULL;
30228 		}
30229 		break;
30230 	}
30231 
30232 	mutex_exit(SD_MUTEX(un));
30233 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30234 			    " exit\n");
30235 }
30236 
30237 
30238 /*
30239  *    Function: sd_injection_log()
30240  *
30241  * Description: This routine adds buff to the already existing injection log
30242  *              for retrieval via faultinjection_ioctl for use in fault
30243  *              detection and recovery
30244  *
30245  *   Arguments: buf - the string to add to the log
30246  */
30247 
30248 static void
30249 sd_injection_log(char *buf, struct sd_lun *un)
30250 {
30251 	uint_t len;
30252 
30253 	ASSERT(un != NULL);
30254 	ASSERT(buf != NULL);
30255 
30256 	mutex_enter(&(un->un_fi_mutex));
30257 
30258 	len = min(strlen(buf), 255);
30259 	/* Add logged value to Injection log to be returned later */
30260 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30261 		uint_t	offset = strlen((char *)un->sd_fi_log);
30262 		char *destp = (char *)un->sd_fi_log + offset;
30263 		int i;
30264 		for (i = 0; i < len; i++) {
30265 			*destp++ = *buf++;
30266 		}
30267 		un->sd_fi_buf_len += len;
30268 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30269 	}
30270 
30271 	mutex_exit(&(un->un_fi_mutex));
30272 }
30273 
30274 
30275 /*
30276  *    Function: sd_faultinjection()
30277  *
30278  * Description: This routine takes the pkt and changes its
30279  *		content based on error injection scenerio.
30280  *
30281  *   Arguments: pktp	- packet to be changed
30282  */
30283 
30284 static void
30285 sd_faultinjection(struct scsi_pkt *pktp)
30286 {
30287 	uint_t i;
30288 	struct sd_fi_pkt *fi_pkt;
30289 	struct sd_fi_xb *fi_xb;
30290 	struct sd_fi_un *fi_un;
30291 	struct sd_fi_arq *fi_arq;
30292 	struct buf *bp;
30293 	struct sd_xbuf *xb;
30294 	struct sd_lun *un;
30295 
30296 	ASSERT(pktp != NULL);
30297 
30298 	/* pull bp xb and un from pktp */
30299 	bp = (struct buf *)pktp->pkt_private;
30300 	xb = SD_GET_XBUF(bp);
30301 	un = SD_GET_UN(bp);
30302 
30303 	ASSERT(un != NULL);
30304 
30305 	mutex_enter(SD_MUTEX(un));
30306 
30307 	SD_TRACE(SD_LOG_SDTEST, un,
30308 	    "sd_faultinjection: entry Injection from sdintr\n");
30309 
30310 	/* if injection is off return */
30311 	if (sd_fault_injection_on == 0 ||
30312 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30313 		mutex_exit(SD_MUTEX(un));
30314 		return;
30315 	}
30316 
30317 
30318 	/* take next set off fifo */
30319 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30320 
30321 	fi_pkt = un->sd_fi_fifo_pkt[i];
30322 	fi_xb = un->sd_fi_fifo_xb[i];
30323 	fi_un = un->sd_fi_fifo_un[i];
30324 	fi_arq = un->sd_fi_fifo_arq[i];
30325 
30326 
30327 	/* set variables accordingly */
30328 	/* set pkt if it was on fifo */
30329 	if (fi_pkt != NULL) {
30330 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30331 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30332 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30333 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30334 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30335 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30336 
30337 	}
30338 
30339 	/* set xb if it was on fifo */
30340 	if (fi_xb != NULL) {
30341 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30342 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30343 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30344 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30345 		    "xb_victim_retry_count");
30346 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30347 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30348 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30349 
30350 		/* copy in block data from sense */
30351 		if (fi_xb->xb_sense_data[0] != -1) {
30352 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30353 			    SENSE_LENGTH);
30354 		}
30355 
30356 		/* copy in extended sense codes */
30357 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
30358 		    "es_code");
30359 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
30360 		    "es_key");
30361 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
30362 		    "es_add_code");
30363 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
30364 		    es_qual_code, "es_qual_code");
30365 	}
30366 
30367 	/* set un if it was on fifo */
30368 	if (fi_un != NULL) {
30369 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30370 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30371 		SD_CONDSET(un, un, un_reset_retry_count,
30372 		    "un_reset_retry_count");
30373 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30374 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30375 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30376 		SD_CONDSET(un, un, un_f_geometry_is_valid,
30377 		    "un_f_geometry_is_valid");
30378 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30379 		    "un_f_allow_bus_device_reset");
30380 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30381 
30382 	}
30383 
30384 	/* copy in auto request sense if it was on fifo */
30385 	if (fi_arq != NULL) {
30386 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30387 	}
30388 
30389 	/* free structs */
30390 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30391 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30392 	}
30393 	if (un->sd_fi_fifo_xb[i] != NULL) {
30394 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30395 	}
30396 	if (un->sd_fi_fifo_un[i] != NULL) {
30397 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30398 	}
30399 	if (un->sd_fi_fifo_arq[i] != NULL) {
30400 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30401 	}
30402 
30403 	/*
30404 	 * kmem_free does not gurantee to set to NULL
30405 	 * since we uses these to determine if we set
30406 	 * values or not lets confirm they are always
30407 	 * NULL after free
30408 	 */
30409 	un->sd_fi_fifo_pkt[i] = NULL;
30410 	un->sd_fi_fifo_un[i] = NULL;
30411 	un->sd_fi_fifo_xb[i] = NULL;
30412 	un->sd_fi_fifo_arq[i] = NULL;
30413 
30414 	un->sd_fi_fifo_start++;
30415 
30416 	mutex_exit(SD_MUTEX(un));
30417 
30418 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30419 }
30420 
30421 #endif /* SD_FAULT_INJECTION */
30422