xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision ca9327a6de44d69ddab3668cc1e143ce781387a3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 
68 
69 /*
70  * Loadable module info.
71  */
72 #if (defined(__fibre))
73 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
75 #else
76 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
77 char _depends_on[]	= "misc/scsi misc/cmlb";
78 #endif
79 
80 /*
81  * Define the interconnect type, to allow the driver to distinguish
82  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
83  *
84  * This is really for backward compatibility. In the future, the driver
85  * should actually check the "interconnect-type" property as reported by
86  * the HBA; however at present this property is not defined by all HBAs,
87  * so we will use this #define (1) to permit the driver to run in
88  * backward-compatibility mode; and (2) to print a notification message
89  * if an FC HBA does not support the "interconnect-type" property.  The
90  * behavior of the driver will be to assume parallel SCSI behaviors unless
91  * the "interconnect-type" property is defined by the HBA **AND** has a
92  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
93  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
94  * Channel behaviors (as per the old ssd).  (Note that the
95  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
96  * will result in the driver assuming parallel SCSI behaviors.)
97  *
98  * (see common/sys/scsi/impl/services.h)
99  *
100  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
101  * since some FC HBAs may already support that, and there is some code in
102  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
103  * default would confuse that code, and besides things should work fine
104  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
105  * "interconnect_type" property.
106  *
107  */
108 #if (defined(__fibre))
109 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
110 #else
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
112 #endif
113 
114 /*
115  * The name of the driver, established from the module name in _init.
116  */
117 static	char *sd_label			= NULL;
118 
119 /*
120  * Driver name is unfortunately prefixed on some driver.conf properties.
121  */
122 #if (defined(__fibre))
123 #define	sd_max_xfer_size		ssd_max_xfer_size
124 #define	sd_config_list			ssd_config_list
125 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
126 static	char *sd_config_list		= "ssd-config-list";
127 #else
128 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
129 static	char *sd_config_list		= "sd-config-list";
130 #endif
131 
132 /*
133  * Driver global variables
134  */
135 
136 #if (defined(__fibre))
137 /*
138  * These #defines are to avoid namespace collisions that occur because this
139  * code is currently used to compile two separate driver modules: sd and ssd.
140  * All global variables need to be treated this way (even if declared static)
141  * in order to allow the debugger to resolve the names properly.
142  * It is anticipated that in the near future the ssd module will be obsoleted,
143  * at which time this namespace issue should go away.
144  */
145 #define	sd_state			ssd_state
146 #define	sd_io_time			ssd_io_time
147 #define	sd_failfast_enable		ssd_failfast_enable
148 #define	sd_ua_retry_count		ssd_ua_retry_count
149 #define	sd_report_pfa			ssd_report_pfa
150 #define	sd_max_throttle			ssd_max_throttle
151 #define	sd_min_throttle			ssd_min_throttle
152 #define	sd_rot_delay			ssd_rot_delay
153 
154 #define	sd_retry_on_reservation_conflict	\
155 					ssd_retry_on_reservation_conflict
156 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
157 #define	sd_resv_conflict_name		ssd_resv_conflict_name
158 
159 #define	sd_component_mask		ssd_component_mask
160 #define	sd_level_mask			ssd_level_mask
161 #define	sd_debug_un			ssd_debug_un
162 #define	sd_error_level			ssd_error_level
163 
164 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
165 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
166 
167 #define	sd_tr				ssd_tr
168 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
169 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
170 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
171 #define	sd_check_media_time		ssd_check_media_time
172 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
173 #define	sd_label_mutex			ssd_label_mutex
174 #define	sd_detach_mutex			ssd_detach_mutex
175 #define	sd_log_buf			ssd_log_buf
176 #define	sd_log_mutex			ssd_log_mutex
177 
178 #define	sd_disk_table			ssd_disk_table
179 #define	sd_disk_table_size		ssd_disk_table_size
180 #define	sd_sense_mutex			ssd_sense_mutex
181 #define	sd_cdbtab			ssd_cdbtab
182 
183 #define	sd_cb_ops			ssd_cb_ops
184 #define	sd_ops				ssd_ops
185 #define	sd_additional_codes		ssd_additional_codes
186 #define	sd_tgops			ssd_tgops
187 
188 #define	sd_minor_data			ssd_minor_data
189 #define	sd_minor_data_efi		ssd_minor_data_efi
190 
191 #define	sd_tq				ssd_tq
192 #define	sd_wmr_tq			ssd_wmr_tq
193 #define	sd_taskq_name			ssd_taskq_name
194 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
195 #define	sd_taskq_minalloc		ssd_taskq_minalloc
196 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
197 
198 #define	sd_dump_format_string		ssd_dump_format_string
199 
200 #define	sd_iostart_chain		ssd_iostart_chain
201 #define	sd_iodone_chain			ssd_iodone_chain
202 
203 #define	sd_pm_idletime			ssd_pm_idletime
204 
205 #define	sd_force_pm_supported		ssd_force_pm_supported
206 
207 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
208 
209 #endif
210 
211 
212 #ifdef	SDDEBUG
213 int	sd_force_pm_supported		= 0;
214 #endif	/* SDDEBUG */
215 
216 void *sd_state				= NULL;
217 int sd_io_time				= SD_IO_TIME;
218 int sd_failfast_enable			= 1;
219 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
220 int sd_report_pfa			= 1;
221 int sd_max_throttle			= SD_MAX_THROTTLE;
222 int sd_min_throttle			= SD_MIN_THROTTLE;
223 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
224 int sd_qfull_throttle_enable		= TRUE;
225 
226 int sd_retry_on_reservation_conflict	= 1;
227 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
228 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
229 
230 static int sd_dtype_optical_bind	= -1;
231 
232 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
233 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
234 
235 /*
236  * Global data for debug logging. To enable debug printing, sd_component_mask
237  * and sd_level_mask should be set to the desired bit patterns as outlined in
238  * sddef.h.
239  */
240 uint_t	sd_component_mask		= 0x0;
241 uint_t	sd_level_mask			= 0x0;
242 struct	sd_lun *sd_debug_un		= NULL;
243 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
244 
245 /* Note: these may go away in the future... */
246 static uint32_t	sd_xbuf_active_limit	= 512;
247 static uint32_t sd_xbuf_reserve_limit	= 16;
248 
249 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
250 
251 /*
252  * Timer value used to reset the throttle after it has been reduced
253  * (typically in response to TRAN_BUSY or STATUS_QFULL)
254  */
255 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
256 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
257 
258 /*
259  * Interval value associated with the media change scsi watch.
260  */
261 static int sd_check_media_time		= 3000000;
262 
263 /*
264  * Wait value used for in progress operations during a DDI_SUSPEND
265  */
266 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
267 
268 /*
269  * sd_label_mutex protects a static buffer used in the disk label
270  * component of the driver
271  */
272 static kmutex_t sd_label_mutex;
273 
274 /*
275  * sd_detach_mutex protects un_layer_count, un_detach_count, and
276  * un_opens_in_progress in the sd_lun structure.
277  */
278 static kmutex_t sd_detach_mutex;
279 
280 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
281 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
282 
283 /*
284  * Global buffer and mutex for debug logging
285  */
286 static char	sd_log_buf[1024];
287 static kmutex_t	sd_log_mutex;
288 
289 /*
290  * Structs and globals for recording attached lun information.
291  * This maintains a chain. Each node in the chain represents a SCSI controller.
292  * The structure records the number of luns attached to each target connected
293  * with the controller.
294  * For parallel scsi device only.
295  */
296 struct sd_scsi_hba_tgt_lun {
297 	struct sd_scsi_hba_tgt_lun	*next;
298 	dev_info_t			*pdip;
299 	int				nlun[NTARGETS_WIDE];
300 };
301 
302 /*
303  * Flag to indicate the lun is attached or detached
304  */
305 #define	SD_SCSI_LUN_ATTACH	0
306 #define	SD_SCSI_LUN_DETACH	1
307 
308 static kmutex_t	sd_scsi_target_lun_mutex;
309 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
312     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
313 
314 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
315     sd_scsi_target_lun_head))
316 
317 /*
318  * "Smart" Probe Caching structs, globals, #defines, etc.
319  * For parallel scsi and non-self-identify device only.
320  */
321 
322 /*
323  * The following resources and routines are implemented to support
324  * "smart" probing, which caches the scsi_probe() results in an array,
325  * in order to help avoid long probe times.
326  */
327 struct sd_scsi_probe_cache {
328 	struct	sd_scsi_probe_cache	*next;
329 	dev_info_t	*pdip;
330 	int		cache[NTARGETS_WIDE];
331 };
332 
333 static kmutex_t	sd_scsi_probe_cache_mutex;
334 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
335 
336 /*
337  * Really we only need protection on the head of the linked list, but
338  * better safe than sorry.
339  */
340 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
341     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
342 
343 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
344     sd_scsi_probe_cache_head))
345 
346 
347 /*
348  * Vendor specific data name property declarations
349  */
350 
351 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
352 
353 static sd_tunables seagate_properties = {
354 	SEAGATE_THROTTLE_VALUE,
355 	0,
356 	0,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0
363 };
364 
365 
366 static sd_tunables fujitsu_properties = {
367 	FUJITSU_THROTTLE_VALUE,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0
376 };
377 
378 static sd_tunables ibm_properties = {
379 	IBM_THROTTLE_VALUE,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0
388 };
389 
390 static sd_tunables purple_properties = {
391 	PURPLE_THROTTLE_VALUE,
392 	0,
393 	0,
394 	PURPLE_BUSY_RETRIES,
395 	PURPLE_RESET_RETRY_COUNT,
396 	PURPLE_RESERVE_RELEASE_TIME,
397 	0,
398 	0,
399 	0
400 };
401 
402 static sd_tunables sve_properties = {
403 	SVE_THROTTLE_VALUE,
404 	0,
405 	0,
406 	SVE_BUSY_RETRIES,
407 	SVE_RESET_RETRY_COUNT,
408 	SVE_RESERVE_RELEASE_TIME,
409 	SVE_MIN_THROTTLE_VALUE,
410 	SVE_DISKSORT_DISABLED_FLAG,
411 	0
412 };
413 
414 static sd_tunables maserati_properties = {
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	MASERATI_DISKSORT_DISABLED_FLAG,
423 	MASERATI_LUN_RESET_ENABLED_FLAG
424 };
425 
426 static sd_tunables pirus_properties = {
427 	PIRUS_THROTTLE_VALUE,
428 	0,
429 	PIRUS_NRR_COUNT,
430 	PIRUS_BUSY_RETRIES,
431 	PIRUS_RESET_RETRY_COUNT,
432 	0,
433 	PIRUS_MIN_THROTTLE_VALUE,
434 	PIRUS_DISKSORT_DISABLED_FLAG,
435 	PIRUS_LUN_RESET_ENABLED_FLAG
436 };
437 
438 #endif
439 
440 #if (defined(__sparc) && !defined(__fibre)) || \
441 	(defined(__i386) || defined(__amd64))
442 
443 
444 static sd_tunables elite_properties = {
445 	ELITE_THROTTLE_VALUE,
446 	0,
447 	0,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0
454 };
455 
456 static sd_tunables st31200n_properties = {
457 	ST31200N_THROTTLE_VALUE,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0
466 };
467 
468 #endif /* Fibre or not */
469 
470 static sd_tunables lsi_properties_scsi = {
471 	LSI_THROTTLE_VALUE,
472 	0,
473 	LSI_NOTREADY_RETRIES,
474 	0,
475 	0,
476 	0,
477 	0,
478 	0,
479 	0
480 };
481 
482 static sd_tunables symbios_properties = {
483 	SYMBIOS_THROTTLE_VALUE,
484 	0,
485 	SYMBIOS_NOTREADY_RETRIES,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0
492 };
493 
494 static sd_tunables lsi_properties = {
495 	0,
496 	0,
497 	LSI_NOTREADY_RETRIES,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0,
503 	0
504 };
505 
506 static sd_tunables lsi_oem_properties = {
507 	0,
508 	0,
509 	LSI_OEM_NOTREADY_RETRIES,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0,
515 	0,
516 	1
517 };
518 
519 
520 
521 #if (defined(SD_PROP_TST))
522 
523 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
524 #define	SD_TST_THROTTLE_VAL	16
525 #define	SD_TST_NOTREADY_VAL	12
526 #define	SD_TST_BUSY_VAL		60
527 #define	SD_TST_RST_RETRY_VAL	36
528 #define	SD_TST_RSV_REL_TIME	60
529 
530 static sd_tunables tst_properties = {
531 	SD_TST_THROTTLE_VAL,
532 	SD_TST_CTYPE_VAL,
533 	SD_TST_NOTREADY_VAL,
534 	SD_TST_BUSY_VAL,
535 	SD_TST_RST_RETRY_VAL,
536 	SD_TST_RSV_REL_TIME,
537 	0,
538 	0,
539 	0
540 };
541 #endif
542 
543 /* This is similar to the ANSI toupper implementation */
544 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
545 
546 /*
547  * Static Driver Configuration Table
548  *
549  * This is the table of disks which need throttle adjustment (or, perhaps
550  * something else as defined by the flags at a future time.)  device_id
551  * is a string consisting of concatenated vid (vendor), pid (product/model)
552  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
553  * the parts of the string are as defined by the sizes in the scsi_inquiry
554  * structure.  Device type is searched as far as the device_id string is
555  * defined.  Flags defines which values are to be set in the driver from the
556  * properties list.
557  *
558  * Entries below which begin and end with a "*" are a special case.
559  * These do not have a specific vendor, and the string which follows
560  * can appear anywhere in the 16 byte PID portion of the inquiry data.
561  *
562  * Entries below which begin and end with a " " (blank) are a special
563  * case. The comparison function will treat multiple consecutive blanks
564  * as equivalent to a single blank. For example, this causes a
565  * sd_disk_table entry of " NEC CDROM " to match a device's id string
566  * of  "NEC       CDROM".
567  *
568  * Note: The MD21 controller type has been obsoleted.
569  *	 ST318202F is a Legacy device
570  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
571  *	 made with an FC connection. The entries here are a legacy.
572  */
573 static sd_disk_config_t sd_disk_table[] = {
574 #if defined(__fibre) || defined(__i386) || defined(__amd64)
575 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
576 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
577 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
590 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
591 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
598 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
599 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
600 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
602 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
603 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
604 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
623 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
624 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
625 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
626 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
627 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
628 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
629 			SD_CONF_BSET_BSY_RETRY_COUNT|
630 			SD_CONF_BSET_RST_RETRIES|
631 			SD_CONF_BSET_RSV_REL_TIME,
632 		&purple_properties },
633 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
634 		SD_CONF_BSET_BSY_RETRY_COUNT|
635 		SD_CONF_BSET_RST_RETRIES|
636 		SD_CONF_BSET_RSV_REL_TIME|
637 		SD_CONF_BSET_MIN_THROTTLE|
638 		SD_CONF_BSET_DISKSORT_DISABLED,
639 		&sve_properties },
640 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
641 			SD_CONF_BSET_BSY_RETRY_COUNT|
642 			SD_CONF_BSET_RST_RETRIES|
643 			SD_CONF_BSET_RSV_REL_TIME,
644 		&purple_properties },
645 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
646 		SD_CONF_BSET_LUN_RESET_ENABLED,
647 		&maserati_properties },
648 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
649 		SD_CONF_BSET_NRR_COUNT|
650 		SD_CONF_BSET_BSY_RETRY_COUNT|
651 		SD_CONF_BSET_RST_RETRIES|
652 		SD_CONF_BSET_MIN_THROTTLE|
653 		SD_CONF_BSET_DISKSORT_DISABLED|
654 		SD_CONF_BSET_LUN_RESET_ENABLED,
655 		&pirus_properties },
656 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
657 		SD_CONF_BSET_NRR_COUNT|
658 		SD_CONF_BSET_BSY_RETRY_COUNT|
659 		SD_CONF_BSET_RST_RETRIES|
660 		SD_CONF_BSET_MIN_THROTTLE|
661 		SD_CONF_BSET_DISKSORT_DISABLED|
662 		SD_CONF_BSET_LUN_RESET_ENABLED,
663 		&pirus_properties },
664 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
665 		SD_CONF_BSET_NRR_COUNT|
666 		SD_CONF_BSET_BSY_RETRY_COUNT|
667 		SD_CONF_BSET_RST_RETRIES|
668 		SD_CONF_BSET_MIN_THROTTLE|
669 		SD_CONF_BSET_DISKSORT_DISABLED|
670 		SD_CONF_BSET_LUN_RESET_ENABLED,
671 		&pirus_properties },
672 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
673 		SD_CONF_BSET_NRR_COUNT|
674 		SD_CONF_BSET_BSY_RETRY_COUNT|
675 		SD_CONF_BSET_RST_RETRIES|
676 		SD_CONF_BSET_MIN_THROTTLE|
677 		SD_CONF_BSET_DISKSORT_DISABLED|
678 		SD_CONF_BSET_LUN_RESET_ENABLED,
679 		&pirus_properties },
680 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
681 		SD_CONF_BSET_NRR_COUNT|
682 		SD_CONF_BSET_BSY_RETRY_COUNT|
683 		SD_CONF_BSET_RST_RETRIES|
684 		SD_CONF_BSET_MIN_THROTTLE|
685 		SD_CONF_BSET_DISKSORT_DISABLED|
686 		SD_CONF_BSET_LUN_RESET_ENABLED,
687 		&pirus_properties },
688 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
689 		SD_CONF_BSET_NRR_COUNT|
690 		SD_CONF_BSET_BSY_RETRY_COUNT|
691 		SD_CONF_BSET_RST_RETRIES|
692 		SD_CONF_BSET_MIN_THROTTLE|
693 		SD_CONF_BSET_DISKSORT_DISABLED|
694 		SD_CONF_BSET_LUN_RESET_ENABLED,
695 		&pirus_properties },
696 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
697 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
698 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
699 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
700 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
701 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
702 #endif /* fibre or NON-sparc platforms */
703 #if ((defined(__sparc) && !defined(__fibre)) ||\
704 	(defined(__i386) || defined(__amd64)))
705 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
706 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
707 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
708 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
709 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
710 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
711 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
712 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
713 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
714 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
715 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
716 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
717 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
718 	    &symbios_properties },
719 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
720 	    &lsi_properties_scsi },
721 #if defined(__i386) || defined(__amd64)
722 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
723 				    | SD_CONF_BSET_READSUB_BCD
724 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
725 				    | SD_CONF_BSET_NO_READ_HEADER
726 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
727 
728 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
729 				    | SD_CONF_BSET_READSUB_BCD
730 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
731 				    | SD_CONF_BSET_NO_READ_HEADER
732 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
733 #endif /* __i386 || __amd64 */
734 #endif /* sparc NON-fibre or NON-sparc platforms */
735 
736 #if (defined(SD_PROP_TST))
737 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
738 				| SD_CONF_BSET_CTYPE
739 				| SD_CONF_BSET_NRR_COUNT
740 				| SD_CONF_BSET_FAB_DEVID
741 				| SD_CONF_BSET_NOCACHE
742 				| SD_CONF_BSET_BSY_RETRY_COUNT
743 				| SD_CONF_BSET_PLAYMSF_BCD
744 				| SD_CONF_BSET_READSUB_BCD
745 				| SD_CONF_BSET_READ_TOC_TRK_BCD
746 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
747 				| SD_CONF_BSET_NO_READ_HEADER
748 				| SD_CONF_BSET_READ_CD_XD4
749 				| SD_CONF_BSET_RST_RETRIES
750 				| SD_CONF_BSET_RSV_REL_TIME
751 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
752 #endif
753 };
754 
755 static const int sd_disk_table_size =
756 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
757 
758 
759 
760 #define	SD_INTERCONNECT_PARALLEL	0
761 #define	SD_INTERCONNECT_FABRIC		1
762 #define	SD_INTERCONNECT_FIBRE		2
763 #define	SD_INTERCONNECT_SSA		3
764 #define	SD_INTERCONNECT_SATA		4
765 #define	SD_IS_PARALLEL_SCSI(un)		\
766 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
767 #define	SD_IS_SERIAL(un)		\
768 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
769 
770 /*
771  * Definitions used by device id registration routines
772  */
773 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
774 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
775 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
776 
777 static kmutex_t sd_sense_mutex = {0};
778 
779 /*
780  * Macros for updates of the driver state
781  */
782 #define	New_state(un, s)        \
783 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
784 #define	Restore_state(un)	\
785 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
786 
787 static struct sd_cdbinfo sd_cdbtab[] = {
788 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
789 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
790 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
791 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
792 };
793 
794 /*
795  * Specifies the number of seconds that must have elapsed since the last
796  * cmd. has completed for a device to be declared idle to the PM framework.
797  */
798 static int sd_pm_idletime = 1;
799 
800 /*
801  * Internal function prototypes
802  */
803 
804 #if (defined(__fibre))
805 /*
806  * These #defines are to avoid namespace collisions that occur because this
807  * code is currently used to compile two separate driver modules: sd and ssd.
808  * All function names need to be treated this way (even if declared static)
809  * in order to allow the debugger to resolve the names properly.
810  * It is anticipated that in the near future the ssd module will be obsoleted,
811  * at which time this ugliness should go away.
812  */
813 #define	sd_log_trace			ssd_log_trace
814 #define	sd_log_info			ssd_log_info
815 #define	sd_log_err			ssd_log_err
816 #define	sdprobe				ssdprobe
817 #define	sdinfo				ssdinfo
818 #define	sd_prop_op			ssd_prop_op
819 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
820 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
821 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
822 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
823 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
824 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
825 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
826 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
827 #define	sd_spin_up_unit			ssd_spin_up_unit
828 #define	sd_enable_descr_sense		ssd_enable_descr_sense
829 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
830 #define	sd_set_mmc_caps			ssd_set_mmc_caps
831 #define	sd_read_unit_properties		ssd_read_unit_properties
832 #define	sd_process_sdconf_file		ssd_process_sdconf_file
833 #define	sd_process_sdconf_table		ssd_process_sdconf_table
834 #define	sd_sdconf_id_match		ssd_sdconf_id_match
835 #define	sd_blank_cmp			ssd_blank_cmp
836 #define	sd_chk_vers1_data		ssd_chk_vers1_data
837 #define	sd_set_vers1_properties		ssd_set_vers1_properties
838 
839 #define	sd_get_physical_geometry	ssd_get_physical_geometry
840 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
841 #define	sd_update_block_info		ssd_update_block_info
842 #define	sd_register_devid		ssd_register_devid
843 #define	sd_get_devid			ssd_get_devid
844 #define	sd_create_devid			ssd_create_devid
845 #define	sd_write_deviceid		ssd_write_deviceid
846 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
847 #define	sd_setup_pm			ssd_setup_pm
848 #define	sd_create_pm_components		ssd_create_pm_components
849 #define	sd_ddi_suspend			ssd_ddi_suspend
850 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
851 #define	sd_ddi_resume			ssd_ddi_resume
852 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
853 #define	sdpower				ssdpower
854 #define	sdattach			ssdattach
855 #define	sddetach			ssddetach
856 #define	sd_unit_attach			ssd_unit_attach
857 #define	sd_unit_detach			ssd_unit_detach
858 #define	sd_set_unit_attributes		ssd_set_unit_attributes
859 #define	sd_create_errstats		ssd_create_errstats
860 #define	sd_set_errstats			ssd_set_errstats
861 #define	sd_set_pstats			ssd_set_pstats
862 #define	sddump				ssddump
863 #define	sd_scsi_poll			ssd_scsi_poll
864 #define	sd_send_polled_RQS		ssd_send_polled_RQS
865 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
866 #define	sd_init_event_callbacks		ssd_init_event_callbacks
867 #define	sd_event_callback		ssd_event_callback
868 #define	sd_cache_control		ssd_cache_control
869 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
870 #define	sd_get_nv_sup			ssd_get_nv_sup
871 #define	sd_make_device			ssd_make_device
872 #define	sdopen				ssdopen
873 #define	sdclose				ssdclose
874 #define	sd_ready_and_valid		ssd_ready_and_valid
875 #define	sdmin				ssdmin
876 #define	sdread				ssdread
877 #define	sdwrite				ssdwrite
878 #define	sdaread				ssdaread
879 #define	sdawrite			ssdawrite
880 #define	sdstrategy			ssdstrategy
881 #define	sdioctl				ssdioctl
882 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
883 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
884 #define	sd_checksum_iostart		ssd_checksum_iostart
885 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
886 #define	sd_pm_iostart			ssd_pm_iostart
887 #define	sd_core_iostart			ssd_core_iostart
888 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
889 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
890 #define	sd_checksum_iodone		ssd_checksum_iodone
891 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
892 #define	sd_pm_iodone			ssd_pm_iodone
893 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
894 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
895 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
896 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
897 #define	sd_buf_iodone			ssd_buf_iodone
898 #define	sd_uscsi_strategy		ssd_uscsi_strategy
899 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
900 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
901 #define	sd_uscsi_iodone			ssd_uscsi_iodone
902 #define	sd_xbuf_strategy		ssd_xbuf_strategy
903 #define	sd_xbuf_init			ssd_xbuf_init
904 #define	sd_pm_entry			ssd_pm_entry
905 #define	sd_pm_exit			ssd_pm_exit
906 
907 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
908 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
909 
910 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
911 #define	sdintr				ssdintr
912 #define	sd_start_cmds			ssd_start_cmds
913 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
914 #define	sd_bioclone_alloc		ssd_bioclone_alloc
915 #define	sd_bioclone_free		ssd_bioclone_free
916 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
917 #define	sd_shadow_buf_free		ssd_shadow_buf_free
918 #define	sd_print_transport_rejected_message	\
919 					ssd_print_transport_rejected_message
920 #define	sd_retry_command		ssd_retry_command
921 #define	sd_set_retry_bp			ssd_set_retry_bp
922 #define	sd_send_request_sense_command	ssd_send_request_sense_command
923 #define	sd_start_retry_command		ssd_start_retry_command
924 #define	sd_start_direct_priority_command	\
925 					ssd_start_direct_priority_command
926 #define	sd_return_failed_command	ssd_return_failed_command
927 #define	sd_return_failed_command_no_restart	\
928 					ssd_return_failed_command_no_restart
929 #define	sd_return_command		ssd_return_command
930 #define	sd_sync_with_callback		ssd_sync_with_callback
931 #define	sdrunout			ssdrunout
932 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
933 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
934 #define	sd_reduce_throttle		ssd_reduce_throttle
935 #define	sd_restore_throttle		ssd_restore_throttle
936 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
937 #define	sd_init_cdb_limits		ssd_init_cdb_limits
938 #define	sd_pkt_status_good		ssd_pkt_status_good
939 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
940 #define	sd_pkt_status_busy		ssd_pkt_status_busy
941 #define	sd_pkt_status_reservation_conflict	\
942 					ssd_pkt_status_reservation_conflict
943 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
944 #define	sd_handle_request_sense		ssd_handle_request_sense
945 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
946 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
947 #define	sd_validate_sense_data		ssd_validate_sense_data
948 #define	sd_decode_sense			ssd_decode_sense
949 #define	sd_print_sense_msg		ssd_print_sense_msg
950 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
951 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
952 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
953 #define	sd_sense_key_medium_or_hardware_error	\
954 					ssd_sense_key_medium_or_hardware_error
955 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
956 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
957 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
958 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
959 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
960 #define	sd_sense_key_default		ssd_sense_key_default
961 #define	sd_print_retry_msg		ssd_print_retry_msg
962 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
963 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
964 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
965 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
966 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
967 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
968 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
969 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
970 #define	sd_pkt_reason_default		ssd_pkt_reason_default
971 #define	sd_reset_target			ssd_reset_target
972 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
973 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
974 #define	sd_taskq_create			ssd_taskq_create
975 #define	sd_taskq_delete			ssd_taskq_delete
976 #define	sd_media_change_task		ssd_media_change_task
977 #define	sd_handle_mchange		ssd_handle_mchange
978 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
979 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
980 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
981 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
982 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
983 					sd_send_scsi_feature_GET_CONFIGURATION
984 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
985 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
986 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
987 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
988 					ssd_send_scsi_PERSISTENT_RESERVE_IN
989 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
990 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
991 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
992 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
993 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
994 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
995 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
996 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
997 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
998 #define	sd_alloc_rqs			ssd_alloc_rqs
999 #define	sd_free_rqs			ssd_free_rqs
1000 #define	sd_dump_memory			ssd_dump_memory
1001 #define	sd_get_media_info		ssd_get_media_info
1002 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1003 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1004 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1005 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1006 #define	sd_check_mhd			ssd_check_mhd
1007 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1008 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1009 #define	sd_sname			ssd_sname
1010 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1011 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1012 #define	sd_take_ownership		ssd_take_ownership
1013 #define	sd_reserve_release		ssd_reserve_release
1014 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1015 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1016 #define	sd_persistent_reservation_in_read_keys	\
1017 					ssd_persistent_reservation_in_read_keys
1018 #define	sd_persistent_reservation_in_read_resv	\
1019 					ssd_persistent_reservation_in_read_resv
1020 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1021 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1022 #define	sd_mhdioc_release		ssd_mhdioc_release
1023 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1024 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1025 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1026 #define	sr_change_blkmode		ssr_change_blkmode
1027 #define	sr_change_speed			ssr_change_speed
1028 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1029 #define	sr_pause_resume			ssr_pause_resume
1030 #define	sr_play_msf			ssr_play_msf
1031 #define	sr_play_trkind			ssr_play_trkind
1032 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1033 #define	sr_read_subchannel		ssr_read_subchannel
1034 #define	sr_read_tocentry		ssr_read_tocentry
1035 #define	sr_read_tochdr			ssr_read_tochdr
1036 #define	sr_read_cdda			ssr_read_cdda
1037 #define	sr_read_cdxa			ssr_read_cdxa
1038 #define	sr_read_mode1			ssr_read_mode1
1039 #define	sr_read_mode2			ssr_read_mode2
1040 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1041 #define	sr_sector_mode			ssr_sector_mode
1042 #define	sr_eject			ssr_eject
1043 #define	sr_ejected			ssr_ejected
1044 #define	sr_check_wp			ssr_check_wp
1045 #define	sd_check_media			ssd_check_media
1046 #define	sd_media_watch_cb		ssd_media_watch_cb
1047 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1048 #define	sr_volume_ctrl			ssr_volume_ctrl
1049 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1050 #define	sd_log_page_supported		ssd_log_page_supported
1051 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1052 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1053 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1054 #define	sd_range_lock			ssd_range_lock
1055 #define	sd_get_range			ssd_get_range
1056 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1057 #define	sd_range_unlock			ssd_range_unlock
1058 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1059 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1060 
1061 #define	sd_iostart_chain		ssd_iostart_chain
1062 #define	sd_iodone_chain			ssd_iodone_chain
1063 #define	sd_initpkt_map			ssd_initpkt_map
1064 #define	sd_destroypkt_map		ssd_destroypkt_map
1065 #define	sd_chain_type_map		ssd_chain_type_map
1066 #define	sd_chain_index_map		ssd_chain_index_map
1067 
1068 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1069 #define	sd_failfast_flushq		ssd_failfast_flushq
1070 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1071 
1072 #define	sd_is_lsi			ssd_is_lsi
1073 #define	sd_tg_rdwr			ssd_tg_rdwr
1074 #define	sd_tg_getinfo			ssd_tg_getinfo
1075 
1076 #endif	/* #if (defined(__fibre)) */
1077 
1078 
1079 int _init(void);
1080 int _fini(void);
1081 int _info(struct modinfo *modinfop);
1082 
1083 /*PRINTFLIKE3*/
1084 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1085 /*PRINTFLIKE3*/
1086 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1087 /*PRINTFLIKE3*/
1088 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1089 
1090 static int sdprobe(dev_info_t *devi);
1091 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1092     void **result);
1093 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1094     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1095 
1096 /*
1097  * Smart probe for parallel scsi
1098  */
1099 static void sd_scsi_probe_cache_init(void);
1100 static void sd_scsi_probe_cache_fini(void);
1101 static void sd_scsi_clear_probe_cache(void);
1102 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1103 
1104 /*
1105  * Attached luns on target for parallel scsi
1106  */
1107 static void sd_scsi_target_lun_init(void);
1108 static void sd_scsi_target_lun_fini(void);
1109 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1110 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1111 
1112 static int	sd_spin_up_unit(struct sd_lun *un);
1113 #ifdef _LP64
1114 static void	sd_enable_descr_sense(struct sd_lun *un);
1115 static void	sd_reenable_dsense_task(void *arg);
1116 #endif /* _LP64 */
1117 
1118 static void	sd_set_mmc_caps(struct sd_lun *un);
1119 
1120 static void sd_read_unit_properties(struct sd_lun *un);
1121 static int  sd_process_sdconf_file(struct sd_lun *un);
1122 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1123     int *data_list, sd_tunables *values);
1124 static void sd_process_sdconf_table(struct sd_lun *un);
1125 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1126 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1127 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1128 	int list_len, char *dataname_ptr);
1129 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1130     sd_tunables *prop_list);
1131 
1132 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1133     int reservation_flag);
1134 static int  sd_get_devid(struct sd_lun *un);
1135 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1136 static int  sd_write_deviceid(struct sd_lun *un);
1137 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1138 static int  sd_check_vpd_page_support(struct sd_lun *un);
1139 
1140 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1141 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1142 
1143 static int  sd_ddi_suspend(dev_info_t *devi);
1144 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1145 static int  sd_ddi_resume(dev_info_t *devi);
1146 static int  sd_ddi_pm_resume(struct sd_lun *un);
1147 static int  sdpower(dev_info_t *devi, int component, int level);
1148 
1149 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1150 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1151 static int  sd_unit_attach(dev_info_t *devi);
1152 static int  sd_unit_detach(dev_info_t *devi);
1153 
1154 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1155 static void sd_create_errstats(struct sd_lun *un, int instance);
1156 static void sd_set_errstats(struct sd_lun *un);
1157 static void sd_set_pstats(struct sd_lun *un);
1158 
1159 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1160 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1161 static int  sd_send_polled_RQS(struct sd_lun *un);
1162 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1163 
1164 #if (defined(__fibre))
1165 /*
1166  * Event callbacks (photon)
1167  */
1168 static void sd_init_event_callbacks(struct sd_lun *un);
1169 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1170 #endif
1171 
1172 /*
1173  * Defines for sd_cache_control
1174  */
1175 
1176 #define	SD_CACHE_ENABLE		1
1177 #define	SD_CACHE_DISABLE	0
1178 #define	SD_CACHE_NOCHANGE	-1
1179 
1180 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1181 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1182 static void  sd_get_nv_sup(struct sd_lun *un);
1183 static dev_t sd_make_device(dev_info_t *devi);
1184 
1185 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1186 	uint64_t capacity);
1187 
1188 /*
1189  * Driver entry point functions.
1190  */
1191 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1192 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1193 static int  sd_ready_and_valid(struct sd_lun *un);
1194 
1195 static void sdmin(struct buf *bp);
1196 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1197 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1198 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1199 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1200 
1201 static int sdstrategy(struct buf *bp);
1202 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1203 
1204 /*
1205  * Function prototypes for layering functions in the iostart chain.
1206  */
1207 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1208 	struct buf *bp);
1209 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1210 	struct buf *bp);
1211 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1212 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1213 	struct buf *bp);
1214 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1215 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1216 
1217 /*
1218  * Function prototypes for layering functions in the iodone chain.
1219  */
1220 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1221 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1222 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1223 	struct buf *bp);
1224 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1225 	struct buf *bp);
1226 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1227 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1228 	struct buf *bp);
1229 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1230 
1231 /*
1232  * Prototypes for functions to support buf(9S) based IO.
1233  */
1234 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1235 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1236 static void sd_destroypkt_for_buf(struct buf *);
1237 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1238 	struct buf *bp, int flags,
1239 	int (*callback)(caddr_t), caddr_t callback_arg,
1240 	diskaddr_t lba, uint32_t blockcount);
1241 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1242 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1243 
1244 /*
1245  * Prototypes for functions to support USCSI IO.
1246  */
1247 static int sd_uscsi_strategy(struct buf *bp);
1248 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1249 static void sd_destroypkt_for_uscsi(struct buf *);
1250 
1251 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1252 	uchar_t chain_type, void *pktinfop);
1253 
1254 static int  sd_pm_entry(struct sd_lun *un);
1255 static void sd_pm_exit(struct sd_lun *un);
1256 
1257 static void sd_pm_idletimeout_handler(void *arg);
1258 
1259 /*
1260  * sd_core internal functions (used at the sd_core_io layer).
1261  */
1262 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1263 static void sdintr(struct scsi_pkt *pktp);
1264 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1265 
1266 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1267 	enum uio_seg dataspace, int path_flag);
1268 
1269 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1270 	daddr_t blkno, int (*func)(struct buf *));
1271 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1272 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1273 static void sd_bioclone_free(struct buf *bp);
1274 static void sd_shadow_buf_free(struct buf *bp);
1275 
1276 static void sd_print_transport_rejected_message(struct sd_lun *un,
1277 	struct sd_xbuf *xp, int code);
1278 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1279     void *arg, int code);
1280 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1281     void *arg, int code);
1282 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1283     void *arg, int code);
1284 
1285 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1286 	int retry_check_flag,
1287 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1288 		int c),
1289 	void *user_arg, int failure_code,  clock_t retry_delay,
1290 	void (*statp)(kstat_io_t *));
1291 
1292 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1293 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1294 
1295 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1296 	struct scsi_pkt *pktp);
1297 static void sd_start_retry_command(void *arg);
1298 static void sd_start_direct_priority_command(void *arg);
1299 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1300 	int errcode);
1301 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1302 	struct buf *bp, int errcode);
1303 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1304 static void sd_sync_with_callback(struct sd_lun *un);
1305 static int sdrunout(caddr_t arg);
1306 
1307 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1308 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1309 
1310 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1311 static void sd_restore_throttle(void *arg);
1312 
1313 static void sd_init_cdb_limits(struct sd_lun *un);
1314 
1315 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1316 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1317 
1318 /*
1319  * Error handling functions
1320  */
1321 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1322 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1323 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1324 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1325 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1326 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1327 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1328 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1329 
1330 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1331 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1332 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1333 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1334 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1335 	struct sd_xbuf *xp, size_t actual_len);
1336 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 
1339 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1340 	void *arg, int code);
1341 
1342 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1343 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1344 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1345 	uint8_t *sense_datap,
1346 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1347 static void sd_sense_key_not_ready(struct sd_lun *un,
1348 	uint8_t *sense_datap,
1349 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1350 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1351 	uint8_t *sense_datap,
1352 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1354 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1355 static void sd_sense_key_unit_attention(struct sd_lun *un,
1356 	uint8_t *sense_datap,
1357 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1358 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1359 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1360 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1361 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1362 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1363 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1364 static void sd_sense_key_default(struct sd_lun *un,
1365 	uint8_t *sense_datap,
1366 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1367 
1368 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1369 	void *arg, int flag);
1370 
1371 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1372 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1373 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1374 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1375 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1376 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1377 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1378 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1379 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1380 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1381 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1382 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1383 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1384 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1385 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1386 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1387 
1388 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1389 
1390 static void sd_start_stop_unit_callback(void *arg);
1391 static void sd_start_stop_unit_task(void *arg);
1392 
1393 static void sd_taskq_create(void);
1394 static void sd_taskq_delete(void);
1395 static void sd_media_change_task(void *arg);
1396 
1397 static int sd_handle_mchange(struct sd_lun *un);
1398 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1399 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1400 	uint32_t *lbap, int path_flag);
1401 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1402 	uint32_t *lbap, int path_flag);
1403 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1404 	int path_flag);
1405 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1406 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1407 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1408 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1409 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1410 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1411 	uchar_t usr_cmd, uchar_t *usr_bufp);
1412 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1413 	struct dk_callback *dkc);
1414 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1415 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1416 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1417 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1418 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1419 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1420 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1421 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1422 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1423 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1424 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1425 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1426 	size_t buflen, daddr_t start_block, int path_flag);
1427 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1428 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1429 	path_flag)
1430 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1431 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1432 	path_flag)
1433 
1434 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1435 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1436 	uint16_t param_ptr, int path_flag);
1437 
1438 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1439 static void sd_free_rqs(struct sd_lun *un);
1440 
1441 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1442 	uchar_t *data, int len, int fmt);
1443 static void sd_panic_for_res_conflict(struct sd_lun *un);
1444 
1445 /*
1446  * Disk Ioctl Function Prototypes
1447  */
1448 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1449 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1450 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1451 
1452 /*
1453  * Multi-host Ioctl Prototypes
1454  */
1455 static int sd_check_mhd(dev_t dev, int interval);
1456 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1457 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1458 static char *sd_sname(uchar_t status);
1459 static void sd_mhd_resvd_recover(void *arg);
1460 static void sd_resv_reclaim_thread();
1461 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1462 static int sd_reserve_release(dev_t dev, int cmd);
1463 static void sd_rmv_resv_reclaim_req(dev_t dev);
1464 static void sd_mhd_reset_notify_cb(caddr_t arg);
1465 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1466 	mhioc_inkeys_t *usrp, int flag);
1467 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1468 	mhioc_inresvs_t *usrp, int flag);
1469 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1470 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1471 static int sd_mhdioc_release(dev_t dev);
1472 static int sd_mhdioc_register_devid(dev_t dev);
1473 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1474 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1475 
1476 /*
1477  * SCSI removable prototypes
1478  */
1479 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1480 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1481 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1482 static int sr_pause_resume(dev_t dev, int mode);
1483 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1484 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1485 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1486 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1487 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1488 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1489 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1490 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1491 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1492 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1493 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1494 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1495 static int sr_eject(dev_t dev);
1496 static void sr_ejected(register struct sd_lun *un);
1497 static int sr_check_wp(dev_t dev);
1498 static int sd_check_media(dev_t dev, enum dkio_state state);
1499 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1500 static void sd_delayed_cv_broadcast(void *arg);
1501 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1502 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1503 
1504 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1505 
1506 /*
1507  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1508  */
1509 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1510 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1511 static void sd_wm_cache_destructor(void *wm, void *un);
1512 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1513 	daddr_t endb, ushort_t typ);
1514 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1515 	daddr_t endb);
1516 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1517 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1518 static void sd_read_modify_write_task(void * arg);
1519 static int
1520 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1521 	struct buf **bpp);
1522 
1523 
1524 /*
1525  * Function prototypes for failfast support.
1526  */
1527 static void sd_failfast_flushq(struct sd_lun *un);
1528 static int sd_failfast_flushq_callback(struct buf *bp);
1529 
1530 /*
1531  * Function prototypes to check for lsi devices
1532  */
1533 static void sd_is_lsi(struct sd_lun *un);
1534 
1535 /*
1536  * Function prototypes for partial DMA support
1537  */
1538 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1539 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1540 
1541 
1542 /* Function prototypes for cmlb */
1543 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1544     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1545 
1546 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1547 
1548 /*
1549  * Constants for failfast support:
1550  *
1551  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1552  * failfast processing being performed.
1553  *
1554  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1555  * failfast processing on all bufs with B_FAILFAST set.
1556  */
1557 
1558 #define	SD_FAILFAST_INACTIVE		0
1559 #define	SD_FAILFAST_ACTIVE		1
1560 
1561 /*
1562  * Bitmask to control behavior of buf(9S) flushes when a transition to
1563  * the failfast state occurs. Optional bits include:
1564  *
1565  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1566  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1567  * be flushed.
1568  *
1569  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1570  * driver, in addition to the regular wait queue. This includes the xbuf
1571  * queues. When clear, only the driver's wait queue will be flushed.
1572  */
1573 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1574 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1575 
1576 /*
1577  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1578  * to flush all queues within the driver.
1579  */
1580 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1581 
1582 
1583 /*
1584  * SD Testing Fault Injection
1585  */
1586 #ifdef SD_FAULT_INJECTION
1587 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1588 static void sd_faultinjection(struct scsi_pkt *pktp);
1589 static void sd_injection_log(char *buf, struct sd_lun *un);
1590 #endif
1591 
1592 /*
1593  * Device driver ops vector
1594  */
1595 static struct cb_ops sd_cb_ops = {
1596 	sdopen,			/* open */
1597 	sdclose,		/* close */
1598 	sdstrategy,		/* strategy */
1599 	nodev,			/* print */
1600 	sddump,			/* dump */
1601 	sdread,			/* read */
1602 	sdwrite,		/* write */
1603 	sdioctl,		/* ioctl */
1604 	nodev,			/* devmap */
1605 	nodev,			/* mmap */
1606 	nodev,			/* segmap */
1607 	nochpoll,		/* poll */
1608 	sd_prop_op,		/* cb_prop_op */
1609 	0,			/* streamtab  */
1610 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1611 	CB_REV,			/* cb_rev */
1612 	sdaread, 		/* async I/O read entry point */
1613 	sdawrite		/* async I/O write entry point */
1614 };
1615 
1616 static struct dev_ops sd_ops = {
1617 	DEVO_REV,		/* devo_rev, */
1618 	0,			/* refcnt  */
1619 	sdinfo,			/* info */
1620 	nulldev,		/* identify */
1621 	sdprobe,		/* probe */
1622 	sdattach,		/* attach */
1623 	sddetach,		/* detach */
1624 	nodev,			/* reset */
1625 	&sd_cb_ops,		/* driver operations */
1626 	NULL,			/* bus operations */
1627 	sdpower			/* power */
1628 };
1629 
1630 
1631 /*
1632  * This is the loadable module wrapper.
1633  */
1634 #include <sys/modctl.h>
1635 
1636 static struct modldrv modldrv = {
1637 	&mod_driverops,		/* Type of module. This one is a driver */
1638 	SD_MODULE_NAME,		/* Module name. */
1639 	&sd_ops			/* driver ops */
1640 };
1641 
1642 
1643 static struct modlinkage modlinkage = {
1644 	MODREV_1,
1645 	&modldrv,
1646 	NULL
1647 };
1648 
1649 static cmlb_tg_ops_t sd_tgops = {
1650 	TG_DK_OPS_VERSION_1,
1651 	sd_tg_rdwr,
1652 	sd_tg_getinfo
1653 	};
1654 
1655 static struct scsi_asq_key_strings sd_additional_codes[] = {
1656 	0x81, 0, "Logical Unit is Reserved",
1657 	0x85, 0, "Audio Address Not Valid",
1658 	0xb6, 0, "Media Load Mechanism Failed",
1659 	0xB9, 0, "Audio Play Operation Aborted",
1660 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1661 	0x53, 2, "Medium removal prevented",
1662 	0x6f, 0, "Authentication failed during key exchange",
1663 	0x6f, 1, "Key not present",
1664 	0x6f, 2, "Key not established",
1665 	0x6f, 3, "Read without proper authentication",
1666 	0x6f, 4, "Mismatched region to this logical unit",
1667 	0x6f, 5, "Region reset count error",
1668 	0xffff, 0x0, NULL
1669 };
1670 
1671 
1672 /*
1673  * Struct for passing printing information for sense data messages
1674  */
1675 struct sd_sense_info {
1676 	int	ssi_severity;
1677 	int	ssi_pfa_flag;
1678 };
1679 
1680 /*
1681  * Table of function pointers for iostart-side routines. Separate "chains"
1682  * of layered function calls are formed by placing the function pointers
1683  * sequentially in the desired order. Functions are called according to an
1684  * incrementing table index ordering. The last function in each chain must
1685  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1686  * in the sd_iodone_chain[] array.
1687  *
1688  * Note: It may seem more natural to organize both the iostart and iodone
1689  * functions together, into an array of structures (or some similar
1690  * organization) with a common index, rather than two separate arrays which
1691  * must be maintained in synchronization. The purpose of this division is
1692  * to achieve improved performance: individual arrays allows for more
1693  * effective cache line utilization on certain platforms.
1694  */
1695 
1696 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1697 
1698 
1699 static sd_chain_t sd_iostart_chain[] = {
1700 
1701 	/* Chain for buf IO for disk drive targets (PM enabled) */
1702 	sd_mapblockaddr_iostart,	/* Index: 0 */
1703 	sd_pm_iostart,			/* Index: 1 */
1704 	sd_core_iostart,		/* Index: 2 */
1705 
1706 	/* Chain for buf IO for disk drive targets (PM disabled) */
1707 	sd_mapblockaddr_iostart,	/* Index: 3 */
1708 	sd_core_iostart,		/* Index: 4 */
1709 
1710 	/* Chain for buf IO for removable-media targets (PM enabled) */
1711 	sd_mapblockaddr_iostart,	/* Index: 5 */
1712 	sd_mapblocksize_iostart,	/* Index: 6 */
1713 	sd_pm_iostart,			/* Index: 7 */
1714 	sd_core_iostart,		/* Index: 8 */
1715 
1716 	/* Chain for buf IO for removable-media targets (PM disabled) */
1717 	sd_mapblockaddr_iostart,	/* Index: 9 */
1718 	sd_mapblocksize_iostart,	/* Index: 10 */
1719 	sd_core_iostart,		/* Index: 11 */
1720 
1721 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1722 	sd_mapblockaddr_iostart,	/* Index: 12 */
1723 	sd_checksum_iostart,		/* Index: 13 */
1724 	sd_pm_iostart,			/* Index: 14 */
1725 	sd_core_iostart,		/* Index: 15 */
1726 
1727 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1728 	sd_mapblockaddr_iostart,	/* Index: 16 */
1729 	sd_checksum_iostart,		/* Index: 17 */
1730 	sd_core_iostart,		/* Index: 18 */
1731 
1732 	/* Chain for USCSI commands (all targets) */
1733 	sd_pm_iostart,			/* Index: 19 */
1734 	sd_core_iostart,		/* Index: 20 */
1735 
1736 	/* Chain for checksumming USCSI commands (all targets) */
1737 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1738 	sd_pm_iostart,			/* Index: 22 */
1739 	sd_core_iostart,		/* Index: 23 */
1740 
1741 	/* Chain for "direct" USCSI commands (all targets) */
1742 	sd_core_iostart,		/* Index: 24 */
1743 
1744 	/* Chain for "direct priority" USCSI commands (all targets) */
1745 	sd_core_iostart,		/* Index: 25 */
1746 };
1747 
1748 /*
1749  * Macros to locate the first function of each iostart chain in the
1750  * sd_iostart_chain[] array. These are located by the index in the array.
1751  */
1752 #define	SD_CHAIN_DISK_IOSTART			0
1753 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1754 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1755 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1756 #define	SD_CHAIN_CHKSUM_IOSTART			12
1757 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1758 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1759 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1760 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1761 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1762 
1763 
1764 /*
1765  * Table of function pointers for the iodone-side routines for the driver-
1766  * internal layering mechanism.  The calling sequence for iodone routines
1767  * uses a decrementing table index, so the last routine called in a chain
1768  * must be at the lowest array index location for that chain.  The last
1769  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1770  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1771  * of the functions in an iodone side chain must correspond to the ordering
1772  * of the iostart routines for that chain.  Note that there is no iodone
1773  * side routine that corresponds to sd_core_iostart(), so there is no
1774  * entry in the table for this.
1775  */
1776 
1777 static sd_chain_t sd_iodone_chain[] = {
1778 
1779 	/* Chain for buf IO for disk drive targets (PM enabled) */
1780 	sd_buf_iodone,			/* Index: 0 */
1781 	sd_mapblockaddr_iodone,		/* Index: 1 */
1782 	sd_pm_iodone,			/* Index: 2 */
1783 
1784 	/* Chain for buf IO for disk drive targets (PM disabled) */
1785 	sd_buf_iodone,			/* Index: 3 */
1786 	sd_mapblockaddr_iodone,		/* Index: 4 */
1787 
1788 	/* Chain for buf IO for removable-media targets (PM enabled) */
1789 	sd_buf_iodone,			/* Index: 5 */
1790 	sd_mapblockaddr_iodone,		/* Index: 6 */
1791 	sd_mapblocksize_iodone,		/* Index: 7 */
1792 	sd_pm_iodone,			/* Index: 8 */
1793 
1794 	/* Chain for buf IO for removable-media targets (PM disabled) */
1795 	sd_buf_iodone,			/* Index: 9 */
1796 	sd_mapblockaddr_iodone,		/* Index: 10 */
1797 	sd_mapblocksize_iodone,		/* Index: 11 */
1798 
1799 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1800 	sd_buf_iodone,			/* Index: 12 */
1801 	sd_mapblockaddr_iodone,		/* Index: 13 */
1802 	sd_checksum_iodone,		/* Index: 14 */
1803 	sd_pm_iodone,			/* Index: 15 */
1804 
1805 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1806 	sd_buf_iodone,			/* Index: 16 */
1807 	sd_mapblockaddr_iodone,		/* Index: 17 */
1808 	sd_checksum_iodone,		/* Index: 18 */
1809 
1810 	/* Chain for USCSI commands (non-checksum targets) */
1811 	sd_uscsi_iodone,		/* Index: 19 */
1812 	sd_pm_iodone,			/* Index: 20 */
1813 
1814 	/* Chain for USCSI commands (checksum targets) */
1815 	sd_uscsi_iodone,		/* Index: 21 */
1816 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1817 	sd_pm_iodone,			/* Index: 22 */
1818 
1819 	/* Chain for "direct" USCSI commands (all targets) */
1820 	sd_uscsi_iodone,		/* Index: 24 */
1821 
1822 	/* Chain for "direct priority" USCSI commands (all targets) */
1823 	sd_uscsi_iodone,		/* Index: 25 */
1824 };
1825 
1826 
1827 /*
1828  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1829  * each iodone-side chain. These are located by the array index, but as the
1830  * iodone side functions are called in a decrementing-index order, the
1831  * highest index number in each chain must be specified (as these correspond
1832  * to the first function in the iodone chain that will be called by the core
1833  * at IO completion time).
1834  */
1835 
1836 #define	SD_CHAIN_DISK_IODONE			2
1837 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1838 #define	SD_CHAIN_RMMEDIA_IODONE			8
1839 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1840 #define	SD_CHAIN_CHKSUM_IODONE			15
1841 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1842 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1843 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1844 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1845 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1846 
1847 
1848 
1849 
1850 /*
1851  * Array to map a layering chain index to the appropriate initpkt routine.
1852  * The redundant entries are present so that the index used for accessing
1853  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1854  * with this table as well.
1855  */
1856 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1857 
1858 static sd_initpkt_t	sd_initpkt_map[] = {
1859 
1860 	/* Chain for buf IO for disk drive targets (PM enabled) */
1861 	sd_initpkt_for_buf,		/* Index: 0 */
1862 	sd_initpkt_for_buf,		/* Index: 1 */
1863 	sd_initpkt_for_buf,		/* Index: 2 */
1864 
1865 	/* Chain for buf IO for disk drive targets (PM disabled) */
1866 	sd_initpkt_for_buf,		/* Index: 3 */
1867 	sd_initpkt_for_buf,		/* Index: 4 */
1868 
1869 	/* Chain for buf IO for removable-media targets (PM enabled) */
1870 	sd_initpkt_for_buf,		/* Index: 5 */
1871 	sd_initpkt_for_buf,		/* Index: 6 */
1872 	sd_initpkt_for_buf,		/* Index: 7 */
1873 	sd_initpkt_for_buf,		/* Index: 8 */
1874 
1875 	/* Chain for buf IO for removable-media targets (PM disabled) */
1876 	sd_initpkt_for_buf,		/* Index: 9 */
1877 	sd_initpkt_for_buf,		/* Index: 10 */
1878 	sd_initpkt_for_buf,		/* Index: 11 */
1879 
1880 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1881 	sd_initpkt_for_buf,		/* Index: 12 */
1882 	sd_initpkt_for_buf,		/* Index: 13 */
1883 	sd_initpkt_for_buf,		/* Index: 14 */
1884 	sd_initpkt_for_buf,		/* Index: 15 */
1885 
1886 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1887 	sd_initpkt_for_buf,		/* Index: 16 */
1888 	sd_initpkt_for_buf,		/* Index: 17 */
1889 	sd_initpkt_for_buf,		/* Index: 18 */
1890 
1891 	/* Chain for USCSI commands (non-checksum targets) */
1892 	sd_initpkt_for_uscsi,		/* Index: 19 */
1893 	sd_initpkt_for_uscsi,		/* Index: 20 */
1894 
1895 	/* Chain for USCSI commands (checksum targets) */
1896 	sd_initpkt_for_uscsi,		/* Index: 21 */
1897 	sd_initpkt_for_uscsi,		/* Index: 22 */
1898 	sd_initpkt_for_uscsi,		/* Index: 22 */
1899 
1900 	/* Chain for "direct" USCSI commands (all targets) */
1901 	sd_initpkt_for_uscsi,		/* Index: 24 */
1902 
1903 	/* Chain for "direct priority" USCSI commands (all targets) */
1904 	sd_initpkt_for_uscsi,		/* Index: 25 */
1905 
1906 };
1907 
1908 
1909 /*
1910  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1911  * The redundant entries are present so that the index used for accessing
1912  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1913  * with this table as well.
1914  */
1915 typedef void (*sd_destroypkt_t)(struct buf *);
1916 
1917 static sd_destroypkt_t	sd_destroypkt_map[] = {
1918 
1919 	/* Chain for buf IO for disk drive targets (PM enabled) */
1920 	sd_destroypkt_for_buf,		/* Index: 0 */
1921 	sd_destroypkt_for_buf,		/* Index: 1 */
1922 	sd_destroypkt_for_buf,		/* Index: 2 */
1923 
1924 	/* Chain for buf IO for disk drive targets (PM disabled) */
1925 	sd_destroypkt_for_buf,		/* Index: 3 */
1926 	sd_destroypkt_for_buf,		/* Index: 4 */
1927 
1928 	/* Chain for buf IO for removable-media targets (PM enabled) */
1929 	sd_destroypkt_for_buf,		/* Index: 5 */
1930 	sd_destroypkt_for_buf,		/* Index: 6 */
1931 	sd_destroypkt_for_buf,		/* Index: 7 */
1932 	sd_destroypkt_for_buf,		/* Index: 8 */
1933 
1934 	/* Chain for buf IO for removable-media targets (PM disabled) */
1935 	sd_destroypkt_for_buf,		/* Index: 9 */
1936 	sd_destroypkt_for_buf,		/* Index: 10 */
1937 	sd_destroypkt_for_buf,		/* Index: 11 */
1938 
1939 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1940 	sd_destroypkt_for_buf,		/* Index: 12 */
1941 	sd_destroypkt_for_buf,		/* Index: 13 */
1942 	sd_destroypkt_for_buf,		/* Index: 14 */
1943 	sd_destroypkt_for_buf,		/* Index: 15 */
1944 
1945 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1946 	sd_destroypkt_for_buf,		/* Index: 16 */
1947 	sd_destroypkt_for_buf,		/* Index: 17 */
1948 	sd_destroypkt_for_buf,		/* Index: 18 */
1949 
1950 	/* Chain for USCSI commands (non-checksum targets) */
1951 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1952 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1953 
1954 	/* Chain for USCSI commands (checksum targets) */
1955 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1956 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1957 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1958 
1959 	/* Chain for "direct" USCSI commands (all targets) */
1960 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1961 
1962 	/* Chain for "direct priority" USCSI commands (all targets) */
1963 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1964 
1965 };
1966 
1967 
1968 
1969 /*
1970  * Array to map a layering chain index to the appropriate chain "type".
1971  * The chain type indicates a specific property/usage of the chain.
1972  * The redundant entries are present so that the index used for accessing
1973  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1974  * with this table as well.
1975  */
1976 
1977 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1978 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1979 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1980 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1981 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1982 						/* (for error recovery) */
1983 
1984 static int sd_chain_type_map[] = {
1985 
1986 	/* Chain for buf IO for disk drive targets (PM enabled) */
1987 	SD_CHAIN_BUFIO,			/* Index: 0 */
1988 	SD_CHAIN_BUFIO,			/* Index: 1 */
1989 	SD_CHAIN_BUFIO,			/* Index: 2 */
1990 
1991 	/* Chain for buf IO for disk drive targets (PM disabled) */
1992 	SD_CHAIN_BUFIO,			/* Index: 3 */
1993 	SD_CHAIN_BUFIO,			/* Index: 4 */
1994 
1995 	/* Chain for buf IO for removable-media targets (PM enabled) */
1996 	SD_CHAIN_BUFIO,			/* Index: 5 */
1997 	SD_CHAIN_BUFIO,			/* Index: 6 */
1998 	SD_CHAIN_BUFIO,			/* Index: 7 */
1999 	SD_CHAIN_BUFIO,			/* Index: 8 */
2000 
2001 	/* Chain for buf IO for removable-media targets (PM disabled) */
2002 	SD_CHAIN_BUFIO,			/* Index: 9 */
2003 	SD_CHAIN_BUFIO,			/* Index: 10 */
2004 	SD_CHAIN_BUFIO,			/* Index: 11 */
2005 
2006 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2007 	SD_CHAIN_BUFIO,			/* Index: 12 */
2008 	SD_CHAIN_BUFIO,			/* Index: 13 */
2009 	SD_CHAIN_BUFIO,			/* Index: 14 */
2010 	SD_CHAIN_BUFIO,			/* Index: 15 */
2011 
2012 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2013 	SD_CHAIN_BUFIO,			/* Index: 16 */
2014 	SD_CHAIN_BUFIO,			/* Index: 17 */
2015 	SD_CHAIN_BUFIO,			/* Index: 18 */
2016 
2017 	/* Chain for USCSI commands (non-checksum targets) */
2018 	SD_CHAIN_USCSI,			/* Index: 19 */
2019 	SD_CHAIN_USCSI,			/* Index: 20 */
2020 
2021 	/* Chain for USCSI commands (checksum targets) */
2022 	SD_CHAIN_USCSI,			/* Index: 21 */
2023 	SD_CHAIN_USCSI,			/* Index: 22 */
2024 	SD_CHAIN_USCSI,			/* Index: 22 */
2025 
2026 	/* Chain for "direct" USCSI commands (all targets) */
2027 	SD_CHAIN_DIRECT,		/* Index: 24 */
2028 
2029 	/* Chain for "direct priority" USCSI commands (all targets) */
2030 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2031 };
2032 
2033 
2034 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2035 #define	SD_IS_BUFIO(xp)			\
2036 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2037 
2038 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2039 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2040 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2041 
2042 
2043 
2044 /*
2045  * Struct, array, and macros to map a specific chain to the appropriate
2046  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2047  *
2048  * The sd_chain_index_map[] array is used at attach time to set the various
2049  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2050  * chain to be used with the instance. This allows different instances to use
2051  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2052  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2053  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2054  * dynamically & without the use of locking; and (2) a layer may update the
2055  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2056  * to allow for deferred processing of an IO within the same chain from a
2057  * different execution context.
2058  */
2059 
2060 struct sd_chain_index {
2061 	int	sci_iostart_index;
2062 	int	sci_iodone_index;
2063 };
2064 
2065 static struct sd_chain_index	sd_chain_index_map[] = {
2066 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2067 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2068 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2069 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2070 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2071 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2072 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2073 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2074 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2075 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2076 };
2077 
2078 
2079 /*
2080  * The following are indexes into the sd_chain_index_map[] array.
2081  */
2082 
2083 /* un->un_buf_chain_type must be set to one of these */
2084 #define	SD_CHAIN_INFO_DISK		0
2085 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2086 #define	SD_CHAIN_INFO_RMMEDIA		2
2087 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2088 #define	SD_CHAIN_INFO_CHKSUM		4
2089 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2090 
2091 /* un->un_uscsi_chain_type must be set to one of these */
2092 #define	SD_CHAIN_INFO_USCSI_CMD		6
2093 /* USCSI with PM disabled is the same as DIRECT */
2094 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2095 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2096 
2097 /* un->un_direct_chain_type must be set to one of these */
2098 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2099 
2100 /* un->un_priority_chain_type must be set to one of these */
2101 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2102 
2103 /* size for devid inquiries */
2104 #define	MAX_INQUIRY_SIZE		0xF0
2105 
2106 /*
2107  * Macros used by functions to pass a given buf(9S) struct along to the
2108  * next function in the layering chain for further processing.
2109  *
2110  * In the following macros, passing more than three arguments to the called
2111  * routines causes the optimizer for the SPARC compiler to stop doing tail
2112  * call elimination which results in significant performance degradation.
2113  */
2114 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2115 	((*(sd_iostart_chain[index]))(index, un, bp))
2116 
2117 #define	SD_BEGIN_IODONE(index, un, bp)	\
2118 	((*(sd_iodone_chain[index]))(index, un, bp))
2119 
2120 #define	SD_NEXT_IOSTART(index, un, bp)				\
2121 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2122 
2123 #define	SD_NEXT_IODONE(index, un, bp)				\
2124 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2125 
2126 /*
2127  *    Function: _init
2128  *
2129  * Description: This is the driver _init(9E) entry point.
2130  *
2131  * Return Code: Returns the value from mod_install(9F) or
2132  *		ddi_soft_state_init(9F) as appropriate.
2133  *
2134  *     Context: Called when driver module loaded.
2135  */
2136 
2137 int
2138 _init(void)
2139 {
2140 	int	err;
2141 
2142 	/* establish driver name from module name */
2143 	sd_label = mod_modname(&modlinkage);
2144 
2145 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2146 	    SD_MAXUNIT);
2147 
2148 	if (err != 0) {
2149 		return (err);
2150 	}
2151 
2152 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2153 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2154 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2155 
2156 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2157 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2158 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2159 
2160 	/*
2161 	 * it's ok to init here even for fibre device
2162 	 */
2163 	sd_scsi_probe_cache_init();
2164 
2165 	sd_scsi_target_lun_init();
2166 
2167 	/*
2168 	 * Creating taskq before mod_install ensures that all callers (threads)
2169 	 * that enter the module after a successfull mod_install encounter
2170 	 * a valid taskq.
2171 	 */
2172 	sd_taskq_create();
2173 
2174 	err = mod_install(&modlinkage);
2175 	if (err != 0) {
2176 		/* delete taskq if install fails */
2177 		sd_taskq_delete();
2178 
2179 		mutex_destroy(&sd_detach_mutex);
2180 		mutex_destroy(&sd_log_mutex);
2181 		mutex_destroy(&sd_label_mutex);
2182 
2183 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2184 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2185 		cv_destroy(&sd_tr.srq_inprocess_cv);
2186 
2187 		sd_scsi_probe_cache_fini();
2188 
2189 		sd_scsi_target_lun_fini();
2190 
2191 		ddi_soft_state_fini(&sd_state);
2192 		return (err);
2193 	}
2194 
2195 	return (err);
2196 }
2197 
2198 
2199 /*
2200  *    Function: _fini
2201  *
2202  * Description: This is the driver _fini(9E) entry point.
2203  *
2204  * Return Code: Returns the value from mod_remove(9F)
2205  *
2206  *     Context: Called when driver module is unloaded.
2207  */
2208 
2209 int
2210 _fini(void)
2211 {
2212 	int err;
2213 
2214 	if ((err = mod_remove(&modlinkage)) != 0) {
2215 		return (err);
2216 	}
2217 
2218 	sd_taskq_delete();
2219 
2220 	mutex_destroy(&sd_detach_mutex);
2221 	mutex_destroy(&sd_log_mutex);
2222 	mutex_destroy(&sd_label_mutex);
2223 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2224 
2225 	sd_scsi_probe_cache_fini();
2226 
2227 	sd_scsi_target_lun_fini();
2228 
2229 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2230 	cv_destroy(&sd_tr.srq_inprocess_cv);
2231 
2232 	ddi_soft_state_fini(&sd_state);
2233 
2234 	return (err);
2235 }
2236 
2237 
2238 /*
2239  *    Function: _info
2240  *
2241  * Description: This is the driver _info(9E) entry point.
2242  *
2243  *   Arguments: modinfop - pointer to the driver modinfo structure
2244  *
2245  * Return Code: Returns the value from mod_info(9F).
2246  *
2247  *     Context: Kernel thread context
2248  */
2249 
2250 int
2251 _info(struct modinfo *modinfop)
2252 {
2253 	return (mod_info(&modlinkage, modinfop));
2254 }
2255 
2256 
2257 /*
2258  * The following routines implement the driver message logging facility.
2259  * They provide component- and level- based debug output filtering.
2260  * Output may also be restricted to messages for a single instance by
2261  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2262  * to NULL, then messages for all instances are printed.
2263  *
2264  * These routines have been cloned from each other due to the language
2265  * constraints of macros and variable argument list processing.
2266  */
2267 
2268 
2269 /*
2270  *    Function: sd_log_err
2271  *
2272  * Description: This routine is called by the SD_ERROR macro for debug
2273  *		logging of error conditions.
2274  *
2275  *   Arguments: comp - driver component being logged
2276  *		dev  - pointer to driver info structure
2277  *		fmt  - error string and format to be logged
2278  */
2279 
2280 static void
2281 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2282 {
2283 	va_list		ap;
2284 	dev_info_t	*dev;
2285 
2286 	ASSERT(un != NULL);
2287 	dev = SD_DEVINFO(un);
2288 	ASSERT(dev != NULL);
2289 
2290 	/*
2291 	 * Filter messages based on the global component and level masks.
2292 	 * Also print if un matches the value of sd_debug_un, or if
2293 	 * sd_debug_un is set to NULL.
2294 	 */
2295 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2296 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2297 		mutex_enter(&sd_log_mutex);
2298 		va_start(ap, fmt);
2299 		(void) vsprintf(sd_log_buf, fmt, ap);
2300 		va_end(ap);
2301 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2302 		mutex_exit(&sd_log_mutex);
2303 	}
2304 #ifdef SD_FAULT_INJECTION
2305 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2306 	if (un->sd_injection_mask & comp) {
2307 		mutex_enter(&sd_log_mutex);
2308 		va_start(ap, fmt);
2309 		(void) vsprintf(sd_log_buf, fmt, ap);
2310 		va_end(ap);
2311 		sd_injection_log(sd_log_buf, un);
2312 		mutex_exit(&sd_log_mutex);
2313 	}
2314 #endif
2315 }
2316 
2317 
2318 /*
2319  *    Function: sd_log_info
2320  *
2321  * Description: This routine is called by the SD_INFO macro for debug
2322  *		logging of general purpose informational conditions.
2323  *
2324  *   Arguments: comp - driver component being logged
2325  *		dev  - pointer to driver info structure
2326  *		fmt  - info string and format to be logged
2327  */
2328 
2329 static void
2330 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2331 {
2332 	va_list		ap;
2333 	dev_info_t	*dev;
2334 
2335 	ASSERT(un != NULL);
2336 	dev = SD_DEVINFO(un);
2337 	ASSERT(dev != NULL);
2338 
2339 	/*
2340 	 * Filter messages based on the global component and level masks.
2341 	 * Also print if un matches the value of sd_debug_un, or if
2342 	 * sd_debug_un is set to NULL.
2343 	 */
2344 	if ((sd_component_mask & component) &&
2345 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2346 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2347 		mutex_enter(&sd_log_mutex);
2348 		va_start(ap, fmt);
2349 		(void) vsprintf(sd_log_buf, fmt, ap);
2350 		va_end(ap);
2351 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2352 		mutex_exit(&sd_log_mutex);
2353 	}
2354 #ifdef SD_FAULT_INJECTION
2355 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2356 	if (un->sd_injection_mask & component) {
2357 		mutex_enter(&sd_log_mutex);
2358 		va_start(ap, fmt);
2359 		(void) vsprintf(sd_log_buf, fmt, ap);
2360 		va_end(ap);
2361 		sd_injection_log(sd_log_buf, un);
2362 		mutex_exit(&sd_log_mutex);
2363 	}
2364 #endif
2365 }
2366 
2367 
2368 /*
2369  *    Function: sd_log_trace
2370  *
2371  * Description: This routine is called by the SD_TRACE macro for debug
2372  *		logging of trace conditions (i.e. function entry/exit).
2373  *
2374  *   Arguments: comp - driver component being logged
2375  *		dev  - pointer to driver info structure
2376  *		fmt  - trace string and format to be logged
2377  */
2378 
2379 static void
2380 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2381 {
2382 	va_list		ap;
2383 	dev_info_t	*dev;
2384 
2385 	ASSERT(un != NULL);
2386 	dev = SD_DEVINFO(un);
2387 	ASSERT(dev != NULL);
2388 
2389 	/*
2390 	 * Filter messages based on the global component and level masks.
2391 	 * Also print if un matches the value of sd_debug_un, or if
2392 	 * sd_debug_un is set to NULL.
2393 	 */
2394 	if ((sd_component_mask & component) &&
2395 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2396 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2397 		mutex_enter(&sd_log_mutex);
2398 		va_start(ap, fmt);
2399 		(void) vsprintf(sd_log_buf, fmt, ap);
2400 		va_end(ap);
2401 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2402 		mutex_exit(&sd_log_mutex);
2403 	}
2404 #ifdef SD_FAULT_INJECTION
2405 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2406 	if (un->sd_injection_mask & component) {
2407 		mutex_enter(&sd_log_mutex);
2408 		va_start(ap, fmt);
2409 		(void) vsprintf(sd_log_buf, fmt, ap);
2410 		va_end(ap);
2411 		sd_injection_log(sd_log_buf, un);
2412 		mutex_exit(&sd_log_mutex);
2413 	}
2414 #endif
2415 }
2416 
2417 
2418 /*
2419  *    Function: sdprobe
2420  *
2421  * Description: This is the driver probe(9e) entry point function.
2422  *
2423  *   Arguments: devi - opaque device info handle
2424  *
2425  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2426  *              DDI_PROBE_FAILURE: If the probe failed.
2427  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2428  *				   but may be present in the future.
2429  */
2430 
2431 static int
2432 sdprobe(dev_info_t *devi)
2433 {
2434 	struct scsi_device	*devp;
2435 	int			rval;
2436 	int			instance;
2437 
2438 	/*
2439 	 * if it wasn't for pln, sdprobe could actually be nulldev
2440 	 * in the "__fibre" case.
2441 	 */
2442 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2443 		return (DDI_PROBE_DONTCARE);
2444 	}
2445 
2446 	devp = ddi_get_driver_private(devi);
2447 
2448 	if (devp == NULL) {
2449 		/* Ooops... nexus driver is mis-configured... */
2450 		return (DDI_PROBE_FAILURE);
2451 	}
2452 
2453 	instance = ddi_get_instance(devi);
2454 
2455 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2456 		return (DDI_PROBE_PARTIAL);
2457 	}
2458 
2459 	/*
2460 	 * Call the SCSA utility probe routine to see if we actually
2461 	 * have a target at this SCSI nexus.
2462 	 */
2463 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2464 	case SCSIPROBE_EXISTS:
2465 		switch (devp->sd_inq->inq_dtype) {
2466 		case DTYPE_DIRECT:
2467 			rval = DDI_PROBE_SUCCESS;
2468 			break;
2469 		case DTYPE_RODIRECT:
2470 			/* CDs etc. Can be removable media */
2471 			rval = DDI_PROBE_SUCCESS;
2472 			break;
2473 		case DTYPE_OPTICAL:
2474 			/*
2475 			 * Rewritable optical driver HP115AA
2476 			 * Can also be removable media
2477 			 */
2478 
2479 			/*
2480 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2481 			 * pre solaris 9 sparc sd behavior is required
2482 			 *
2483 			 * If first time through and sd_dtype_optical_bind
2484 			 * has not been set in /etc/system check properties
2485 			 */
2486 
2487 			if (sd_dtype_optical_bind  < 0) {
2488 				sd_dtype_optical_bind = ddi_prop_get_int
2489 				    (DDI_DEV_T_ANY, devi, 0,
2490 				    "optical-device-bind", 1);
2491 			}
2492 
2493 			if (sd_dtype_optical_bind == 0) {
2494 				rval = DDI_PROBE_FAILURE;
2495 			} else {
2496 				rval = DDI_PROBE_SUCCESS;
2497 			}
2498 			break;
2499 
2500 		case DTYPE_NOTPRESENT:
2501 		default:
2502 			rval = DDI_PROBE_FAILURE;
2503 			break;
2504 		}
2505 		break;
2506 	default:
2507 		rval = DDI_PROBE_PARTIAL;
2508 		break;
2509 	}
2510 
2511 	/*
2512 	 * This routine checks for resource allocation prior to freeing,
2513 	 * so it will take care of the "smart probing" case where a
2514 	 * scsi_probe() may or may not have been issued and will *not*
2515 	 * free previously-freed resources.
2516 	 */
2517 	scsi_unprobe(devp);
2518 	return (rval);
2519 }
2520 
2521 
2522 /*
2523  *    Function: sdinfo
2524  *
2525  * Description: This is the driver getinfo(9e) entry point function.
2526  * 		Given the device number, return the devinfo pointer from
2527  *		the scsi_device structure or the instance number
2528  *		associated with the dev_t.
2529  *
2530  *   Arguments: dip     - pointer to device info structure
2531  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2532  *			  DDI_INFO_DEVT2INSTANCE)
2533  *		arg     - driver dev_t
2534  *		resultp - user buffer for request response
2535  *
2536  * Return Code: DDI_SUCCESS
2537  *              DDI_FAILURE
2538  */
2539 /* ARGSUSED */
2540 static int
2541 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2542 {
2543 	struct sd_lun	*un;
2544 	dev_t		dev;
2545 	int		instance;
2546 	int		error;
2547 
2548 	switch (infocmd) {
2549 	case DDI_INFO_DEVT2DEVINFO:
2550 		dev = (dev_t)arg;
2551 		instance = SDUNIT(dev);
2552 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2553 			return (DDI_FAILURE);
2554 		}
2555 		*result = (void *) SD_DEVINFO(un);
2556 		error = DDI_SUCCESS;
2557 		break;
2558 	case DDI_INFO_DEVT2INSTANCE:
2559 		dev = (dev_t)arg;
2560 		instance = SDUNIT(dev);
2561 		*result = (void *)(uintptr_t)instance;
2562 		error = DDI_SUCCESS;
2563 		break;
2564 	default:
2565 		error = DDI_FAILURE;
2566 	}
2567 	return (error);
2568 }
2569 
2570 /*
2571  *    Function: sd_prop_op
2572  *
2573  * Description: This is the driver prop_op(9e) entry point function.
2574  *		Return the number of blocks for the partition in question
2575  *		or forward the request to the property facilities.
2576  *
2577  *   Arguments: dev       - device number
2578  *		dip       - pointer to device info structure
2579  *		prop_op   - property operator
2580  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2581  *		name      - pointer to property name
2582  *		valuep    - pointer or address of the user buffer
2583  *		lengthp   - property length
2584  *
2585  * Return Code: DDI_PROP_SUCCESS
2586  *              DDI_PROP_NOT_FOUND
2587  *              DDI_PROP_UNDEFINED
2588  *              DDI_PROP_NO_MEMORY
2589  *              DDI_PROP_BUF_TOO_SMALL
2590  */
2591 
2592 static int
2593 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2594 	char *name, caddr_t valuep, int *lengthp)
2595 {
2596 	int		instance = ddi_get_instance(dip);
2597 	struct sd_lun	*un;
2598 	uint64_t	nblocks64;
2599 	uint_t		dblk;
2600 
2601 	/*
2602 	 * Our dynamic properties are all device specific and size oriented.
2603 	 * Requests issued under conditions where size is valid are passed
2604 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2605 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2606 	 */
2607 	un = ddi_get_soft_state(sd_state, instance);
2608 	if ((dev == DDI_DEV_T_ANY) || (un == NULL)) {
2609 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2610 		    name, valuep, lengthp));
2611 	} else if (!SD_IS_VALID_LABEL(un)) {
2612 		return (ddi_prop_op(dev, dip, prop_op, mod_flags, name,
2613 		    valuep, lengthp));
2614 	}
2615 
2616 	/* get nblocks value */
2617 	ASSERT(!mutex_owned(SD_MUTEX(un)));
2618 
2619 	(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2620 	    (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
2621 
2622 	/* report size in target size blocks */
2623 	dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
2624 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
2625 	    name, valuep, lengthp, nblocks64 / dblk, un->un_tgt_blocksize));
2626 }
2627 
2628 /*
2629  * The following functions are for smart probing:
2630  * sd_scsi_probe_cache_init()
2631  * sd_scsi_probe_cache_fini()
2632  * sd_scsi_clear_probe_cache()
2633  * sd_scsi_probe_with_cache()
2634  */
2635 
2636 /*
2637  *    Function: sd_scsi_probe_cache_init
2638  *
2639  * Description: Initializes the probe response cache mutex and head pointer.
2640  *
2641  *     Context: Kernel thread context
2642  */
2643 
2644 static void
2645 sd_scsi_probe_cache_init(void)
2646 {
2647 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2648 	sd_scsi_probe_cache_head = NULL;
2649 }
2650 
2651 
2652 /*
2653  *    Function: sd_scsi_probe_cache_fini
2654  *
2655  * Description: Frees all resources associated with the probe response cache.
2656  *
2657  *     Context: Kernel thread context
2658  */
2659 
2660 static void
2661 sd_scsi_probe_cache_fini(void)
2662 {
2663 	struct sd_scsi_probe_cache *cp;
2664 	struct sd_scsi_probe_cache *ncp;
2665 
2666 	/* Clean up our smart probing linked list */
2667 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2668 		ncp = cp->next;
2669 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2670 	}
2671 	sd_scsi_probe_cache_head = NULL;
2672 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2673 }
2674 
2675 
2676 /*
2677  *    Function: sd_scsi_clear_probe_cache
2678  *
2679  * Description: This routine clears the probe response cache. This is
2680  *		done when open() returns ENXIO so that when deferred
2681  *		attach is attempted (possibly after a device has been
2682  *		turned on) we will retry the probe. Since we don't know
2683  *		which target we failed to open, we just clear the
2684  *		entire cache.
2685  *
2686  *     Context: Kernel thread context
2687  */
2688 
2689 static void
2690 sd_scsi_clear_probe_cache(void)
2691 {
2692 	struct sd_scsi_probe_cache	*cp;
2693 	int				i;
2694 
2695 	mutex_enter(&sd_scsi_probe_cache_mutex);
2696 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2697 		/*
2698 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2699 		 * force probing to be performed the next time
2700 		 * sd_scsi_probe_with_cache is called.
2701 		 */
2702 		for (i = 0; i < NTARGETS_WIDE; i++) {
2703 			cp->cache[i] = SCSIPROBE_EXISTS;
2704 		}
2705 	}
2706 	mutex_exit(&sd_scsi_probe_cache_mutex);
2707 }
2708 
2709 
2710 /*
2711  *    Function: sd_scsi_probe_with_cache
2712  *
2713  * Description: This routine implements support for a scsi device probe
2714  *		with cache. The driver maintains a cache of the target
2715  *		responses to scsi probes. If we get no response from a
2716  *		target during a probe inquiry, we remember that, and we
2717  *		avoid additional calls to scsi_probe on non-zero LUNs
2718  *		on the same target until the cache is cleared. By doing
2719  *		so we avoid the 1/4 sec selection timeout for nonzero
2720  *		LUNs. lun0 of a target is always probed.
2721  *
2722  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2723  *              waitfunc - indicates what the allocator routines should
2724  *			   do when resources are not available. This value
2725  *			   is passed on to scsi_probe() when that routine
2726  *			   is called.
2727  *
2728  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2729  *		otherwise the value returned by scsi_probe(9F).
2730  *
2731  *     Context: Kernel thread context
2732  */
2733 
2734 static int
2735 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2736 {
2737 	struct sd_scsi_probe_cache	*cp;
2738 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2739 	int		lun, tgt;
2740 
2741 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2742 	    SCSI_ADDR_PROP_LUN, 0);
2743 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2744 	    SCSI_ADDR_PROP_TARGET, -1);
2745 
2746 	/* Make sure caching enabled and target in range */
2747 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2748 		/* do it the old way (no cache) */
2749 		return (scsi_probe(devp, waitfn));
2750 	}
2751 
2752 	mutex_enter(&sd_scsi_probe_cache_mutex);
2753 
2754 	/* Find the cache for this scsi bus instance */
2755 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2756 		if (cp->pdip == pdip) {
2757 			break;
2758 		}
2759 	}
2760 
2761 	/* If we can't find a cache for this pdip, create one */
2762 	if (cp == NULL) {
2763 		int i;
2764 
2765 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2766 		    KM_SLEEP);
2767 		cp->pdip = pdip;
2768 		cp->next = sd_scsi_probe_cache_head;
2769 		sd_scsi_probe_cache_head = cp;
2770 		for (i = 0; i < NTARGETS_WIDE; i++) {
2771 			cp->cache[i] = SCSIPROBE_EXISTS;
2772 		}
2773 	}
2774 
2775 	mutex_exit(&sd_scsi_probe_cache_mutex);
2776 
2777 	/* Recompute the cache for this target if LUN zero */
2778 	if (lun == 0) {
2779 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2780 	}
2781 
2782 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2783 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2784 		return (SCSIPROBE_NORESP);
2785 	}
2786 
2787 	/* Do the actual probe; save & return the result */
2788 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2789 }
2790 
2791 
2792 /*
2793  *    Function: sd_scsi_target_lun_init
2794  *
2795  * Description: Initializes the attached lun chain mutex and head pointer.
2796  *
2797  *     Context: Kernel thread context
2798  */
2799 
2800 static void
2801 sd_scsi_target_lun_init(void)
2802 {
2803 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2804 	sd_scsi_target_lun_head = NULL;
2805 }
2806 
2807 
2808 /*
2809  *    Function: sd_scsi_target_lun_fini
2810  *
2811  * Description: Frees all resources associated with the attached lun
2812  *              chain
2813  *
2814  *     Context: Kernel thread context
2815  */
2816 
2817 static void
2818 sd_scsi_target_lun_fini(void)
2819 {
2820 	struct sd_scsi_hba_tgt_lun	*cp;
2821 	struct sd_scsi_hba_tgt_lun	*ncp;
2822 
2823 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2824 		ncp = cp->next;
2825 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2826 	}
2827 	sd_scsi_target_lun_head = NULL;
2828 	mutex_destroy(&sd_scsi_target_lun_mutex);
2829 }
2830 
2831 
2832 /*
2833  *    Function: sd_scsi_get_target_lun_count
2834  *
2835  * Description: This routine will check in the attached lun chain to see
2836  * 		how many luns are attached on the required SCSI controller
2837  * 		and target. Currently, some capabilities like tagged queue
2838  *		are supported per target based by HBA. So all luns in a
2839  *		target have the same capabilities. Based on this assumption,
2840  * 		sd should only set these capabilities once per target. This
2841  *		function is called when sd needs to decide how many luns
2842  *		already attached on a target.
2843  *
2844  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2845  *			  controller device.
2846  *              target	- The target ID on the controller's SCSI bus.
2847  *
2848  * Return Code: The number of luns attached on the required target and
2849  *		controller.
2850  *		-1 if target ID is not in parallel SCSI scope or the given
2851  * 		dip is not in the chain.
2852  *
2853  *     Context: Kernel thread context
2854  */
2855 
2856 static int
2857 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2858 {
2859 	struct sd_scsi_hba_tgt_lun	*cp;
2860 
2861 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2862 		return (-1);
2863 	}
2864 
2865 	mutex_enter(&sd_scsi_target_lun_mutex);
2866 
2867 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2868 		if (cp->pdip == dip) {
2869 			break;
2870 		}
2871 	}
2872 
2873 	mutex_exit(&sd_scsi_target_lun_mutex);
2874 
2875 	if (cp == NULL) {
2876 		return (-1);
2877 	}
2878 
2879 	return (cp->nlun[target]);
2880 }
2881 
2882 
2883 /*
2884  *    Function: sd_scsi_update_lun_on_target
2885  *
2886  * Description: This routine is used to update the attached lun chain when a
2887  *		lun is attached or detached on a target.
2888  *
2889  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2890  *                        controller device.
2891  *              target  - The target ID on the controller's SCSI bus.
2892  *		flag	- Indicate the lun is attached or detached.
2893  *
2894  *     Context: Kernel thread context
2895  */
2896 
2897 static void
2898 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2899 {
2900 	struct sd_scsi_hba_tgt_lun	*cp;
2901 
2902 	mutex_enter(&sd_scsi_target_lun_mutex);
2903 
2904 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2905 		if (cp->pdip == dip) {
2906 			break;
2907 		}
2908 	}
2909 
2910 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2911 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2912 		    KM_SLEEP);
2913 		cp->pdip = dip;
2914 		cp->next = sd_scsi_target_lun_head;
2915 		sd_scsi_target_lun_head = cp;
2916 	}
2917 
2918 	mutex_exit(&sd_scsi_target_lun_mutex);
2919 
2920 	if (cp != NULL) {
2921 		if (flag == SD_SCSI_LUN_ATTACH) {
2922 			cp->nlun[target] ++;
2923 		} else {
2924 			cp->nlun[target] --;
2925 		}
2926 	}
2927 }
2928 
2929 
2930 /*
2931  *    Function: sd_spin_up_unit
2932  *
2933  * Description: Issues the following commands to spin-up the device:
2934  *		START STOP UNIT, and INQUIRY.
2935  *
2936  *   Arguments: un - driver soft state (unit) structure
2937  *
2938  * Return Code: 0 - success
2939  *		EIO - failure
2940  *		EACCES - reservation conflict
2941  *
2942  *     Context: Kernel thread context
2943  */
2944 
2945 static int
2946 sd_spin_up_unit(struct sd_lun *un)
2947 {
2948 	size_t	resid		= 0;
2949 	int	has_conflict	= FALSE;
2950 	uchar_t *bufaddr;
2951 
2952 	ASSERT(un != NULL);
2953 
2954 	/*
2955 	 * Send a throwaway START UNIT command.
2956 	 *
2957 	 * If we fail on this, we don't care presently what precisely
2958 	 * is wrong.  EMC's arrays will also fail this with a check
2959 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2960 	 * we don't want to fail the attach because it may become
2961 	 * "active" later.
2962 	 */
2963 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2964 	    == EACCES)
2965 		has_conflict = TRUE;
2966 
2967 	/*
2968 	 * Send another INQUIRY command to the target. This is necessary for
2969 	 * non-removable media direct access devices because their INQUIRY data
2970 	 * may not be fully qualified until they are spun up (perhaps via the
2971 	 * START command above).  Note: This seems to be needed for some
2972 	 * legacy devices only.) The INQUIRY command should succeed even if a
2973 	 * Reservation Conflict is present.
2974 	 */
2975 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2976 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2977 		kmem_free(bufaddr, SUN_INQSIZE);
2978 		return (EIO);
2979 	}
2980 
2981 	/*
2982 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2983 	 * Note that this routine does not return a failure here even if the
2984 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2985 	 */
2986 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2987 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2988 	}
2989 
2990 	kmem_free(bufaddr, SUN_INQSIZE);
2991 
2992 	/* If we hit a reservation conflict above, tell the caller. */
2993 	if (has_conflict == TRUE) {
2994 		return (EACCES);
2995 	}
2996 
2997 	return (0);
2998 }
2999 
3000 #ifdef _LP64
3001 /*
3002  *    Function: sd_enable_descr_sense
3003  *
3004  * Description: This routine attempts to select descriptor sense format
3005  *		using the Control mode page.  Devices that support 64 bit
3006  *		LBAs (for >2TB luns) should also implement descriptor
3007  *		sense data so we will call this function whenever we see
3008  *		a lun larger than 2TB.  If for some reason the device
3009  *		supports 64 bit LBAs but doesn't support descriptor sense
3010  *		presumably the mode select will fail.  Everything will
3011  *		continue to work normally except that we will not get
3012  *		complete sense data for commands that fail with an LBA
3013  *		larger than 32 bits.
3014  *
3015  *   Arguments: un - driver soft state (unit) structure
3016  *
3017  *     Context: Kernel thread context only
3018  */
3019 
3020 static void
3021 sd_enable_descr_sense(struct sd_lun *un)
3022 {
3023 	uchar_t			*header;
3024 	struct mode_control_scsi3 *ctrl_bufp;
3025 	size_t			buflen;
3026 	size_t			bd_len;
3027 
3028 	/*
3029 	 * Read MODE SENSE page 0xA, Control Mode Page
3030 	 */
3031 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3032 	    sizeof (struct mode_control_scsi3);
3033 	header = kmem_zalloc(buflen, KM_SLEEP);
3034 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3035 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3036 		SD_ERROR(SD_LOG_COMMON, un,
3037 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3038 		goto eds_exit;
3039 	}
3040 
3041 	/*
3042 	 * Determine size of Block Descriptors in order to locate
3043 	 * the mode page data. ATAPI devices return 0, SCSI devices
3044 	 * should return MODE_BLK_DESC_LENGTH.
3045 	 */
3046 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3047 
3048 	/* Clear the mode data length field for MODE SELECT */
3049 	((struct mode_header *)header)->length = 0;
3050 
3051 	ctrl_bufp = (struct mode_control_scsi3 *)
3052 	    (header + MODE_HEADER_LENGTH + bd_len);
3053 
3054 	/*
3055 	 * If the page length is smaller than the expected value,
3056 	 * the target device doesn't support D_SENSE. Bail out here.
3057 	 */
3058 	if (ctrl_bufp->mode_page.length <
3059 	    sizeof (struct mode_control_scsi3) - 2) {
3060 		SD_ERROR(SD_LOG_COMMON, un,
3061 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3062 		goto eds_exit;
3063 	}
3064 
3065 	/*
3066 	 * Clear PS bit for MODE SELECT
3067 	 */
3068 	ctrl_bufp->mode_page.ps = 0;
3069 
3070 	/*
3071 	 * Set D_SENSE to enable descriptor sense format.
3072 	 */
3073 	ctrl_bufp->d_sense = 1;
3074 
3075 	/*
3076 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3077 	 */
3078 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3079 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3080 		SD_INFO(SD_LOG_COMMON, un,
3081 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3082 		goto eds_exit;
3083 	}
3084 
3085 eds_exit:
3086 	kmem_free(header, buflen);
3087 }
3088 
3089 /*
3090  *    Function: sd_reenable_dsense_task
3091  *
3092  * Description: Re-enable descriptor sense after device or bus reset
3093  *
3094  *     Context: Executes in a taskq() thread context
3095  */
3096 static void
3097 sd_reenable_dsense_task(void *arg)
3098 {
3099 	struct	sd_lun	*un = arg;
3100 
3101 	ASSERT(un != NULL);
3102 	sd_enable_descr_sense(un);
3103 }
3104 #endif /* _LP64 */
3105 
3106 /*
3107  *    Function: sd_set_mmc_caps
3108  *
3109  * Description: This routine determines if the device is MMC compliant and if
3110  *		the device supports CDDA via a mode sense of the CDVD
3111  *		capabilities mode page. Also checks if the device is a
3112  *		dvdram writable device.
3113  *
3114  *   Arguments: un - driver soft state (unit) structure
3115  *
3116  *     Context: Kernel thread context only
3117  */
3118 
3119 static void
3120 sd_set_mmc_caps(struct sd_lun *un)
3121 {
3122 	struct mode_header_grp2		*sense_mhp;
3123 	uchar_t				*sense_page;
3124 	caddr_t				buf;
3125 	int				bd_len;
3126 	int				status;
3127 	struct uscsi_cmd		com;
3128 	int				rtn;
3129 	uchar_t				*out_data_rw, *out_data_hd;
3130 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3131 
3132 	ASSERT(un != NULL);
3133 
3134 	/*
3135 	 * The flags which will be set in this function are - mmc compliant,
3136 	 * dvdram writable device, cdda support. Initialize them to FALSE
3137 	 * and if a capability is detected - it will be set to TRUE.
3138 	 */
3139 	un->un_f_mmc_cap = FALSE;
3140 	un->un_f_dvdram_writable_device = FALSE;
3141 	un->un_f_cfg_cdda = FALSE;
3142 
3143 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3144 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3145 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3146 
3147 	if (status != 0) {
3148 		/* command failed; just return */
3149 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3150 		return;
3151 	}
3152 	/*
3153 	 * If the mode sense request for the CDROM CAPABILITIES
3154 	 * page (0x2A) succeeds the device is assumed to be MMC.
3155 	 */
3156 	un->un_f_mmc_cap = TRUE;
3157 
3158 	/* Get to the page data */
3159 	sense_mhp = (struct mode_header_grp2 *)buf;
3160 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3161 	    sense_mhp->bdesc_length_lo;
3162 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3163 		/*
3164 		 * We did not get back the expected block descriptor
3165 		 * length so we cannot determine if the device supports
3166 		 * CDDA. However, we still indicate the device is MMC
3167 		 * according to the successful response to the page
3168 		 * 0x2A mode sense request.
3169 		 */
3170 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3171 		    "sd_set_mmc_caps: Mode Sense returned "
3172 		    "invalid block descriptor length\n");
3173 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3174 		return;
3175 	}
3176 
3177 	/* See if read CDDA is supported */
3178 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3179 	    bd_len);
3180 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3181 
3182 	/* See if writing DVD RAM is supported. */
3183 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3184 	if (un->un_f_dvdram_writable_device == TRUE) {
3185 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3186 		return;
3187 	}
3188 
3189 	/*
3190 	 * If the device presents DVD or CD capabilities in the mode
3191 	 * page, we can return here since a RRD will not have
3192 	 * these capabilities.
3193 	 */
3194 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3195 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3196 		return;
3197 	}
3198 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3199 
3200 	/*
3201 	 * If un->un_f_dvdram_writable_device is still FALSE,
3202 	 * check for a Removable Rigid Disk (RRD).  A RRD
3203 	 * device is identified by the features RANDOM_WRITABLE and
3204 	 * HARDWARE_DEFECT_MANAGEMENT.
3205 	 */
3206 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3207 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3208 
3209 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3210 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3211 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3212 	if (rtn != 0) {
3213 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3214 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3215 		return;
3216 	}
3217 
3218 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3219 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3220 
3221 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3222 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3223 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3224 	if (rtn == 0) {
3225 		/*
3226 		 * We have good information, check for random writable
3227 		 * and hardware defect features.
3228 		 */
3229 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3230 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3231 			un->un_f_dvdram_writable_device = TRUE;
3232 		}
3233 	}
3234 
3235 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3236 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3237 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3238 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3239 }
3240 
3241 /*
3242  *    Function: sd_check_for_writable_cd
3243  *
3244  * Description: This routine determines if the media in the device is
3245  *		writable or not. It uses the get configuration command (0x46)
3246  *		to determine if the media is writable
3247  *
3248  *   Arguments: un - driver soft state (unit) structure
3249  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3250  *                           chain and the normal command waitq, or
3251  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3252  *                           "direct" chain and bypass the normal command
3253  *                           waitq.
3254  *
3255  *     Context: Never called at interrupt context.
3256  */
3257 
3258 static void
3259 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3260 {
3261 	struct uscsi_cmd		com;
3262 	uchar_t				*out_data;
3263 	uchar_t				*rqbuf;
3264 	int				rtn;
3265 	uchar_t				*out_data_rw, *out_data_hd;
3266 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3267 	struct mode_header_grp2		*sense_mhp;
3268 	uchar_t				*sense_page;
3269 	caddr_t				buf;
3270 	int				bd_len;
3271 	int				status;
3272 
3273 	ASSERT(un != NULL);
3274 	ASSERT(mutex_owned(SD_MUTEX(un)));
3275 
3276 	/*
3277 	 * Initialize the writable media to false, if configuration info.
3278 	 * tells us otherwise then only we will set it.
3279 	 */
3280 	un->un_f_mmc_writable_media = FALSE;
3281 	mutex_exit(SD_MUTEX(un));
3282 
3283 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3284 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3285 
3286 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3287 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3288 
3289 	mutex_enter(SD_MUTEX(un));
3290 	if (rtn == 0) {
3291 		/*
3292 		 * We have good information, check for writable DVD.
3293 		 */
3294 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3295 			un->un_f_mmc_writable_media = TRUE;
3296 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3297 			kmem_free(rqbuf, SENSE_LENGTH);
3298 			return;
3299 		}
3300 	}
3301 
3302 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3303 	kmem_free(rqbuf, SENSE_LENGTH);
3304 
3305 	/*
3306 	 * Determine if this is a RRD type device.
3307 	 */
3308 	mutex_exit(SD_MUTEX(un));
3309 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3310 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3311 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3312 	mutex_enter(SD_MUTEX(un));
3313 	if (status != 0) {
3314 		/* command failed; just return */
3315 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3316 		return;
3317 	}
3318 
3319 	/* Get to the page data */
3320 	sense_mhp = (struct mode_header_grp2 *)buf;
3321 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3322 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3323 		/*
3324 		 * We did not get back the expected block descriptor length so
3325 		 * we cannot check the mode page.
3326 		 */
3327 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3328 		    "sd_check_for_writable_cd: Mode Sense returned "
3329 		    "invalid block descriptor length\n");
3330 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3331 		return;
3332 	}
3333 
3334 	/*
3335 	 * If the device presents DVD or CD capabilities in the mode
3336 	 * page, we can return here since a RRD device will not have
3337 	 * these capabilities.
3338 	 */
3339 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3340 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3341 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3342 		return;
3343 	}
3344 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3345 
3346 	/*
3347 	 * If un->un_f_mmc_writable_media is still FALSE,
3348 	 * check for RRD type media.  A RRD device is identified
3349 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3350 	 */
3351 	mutex_exit(SD_MUTEX(un));
3352 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3353 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3354 
3355 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3356 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3357 	    RANDOM_WRITABLE, path_flag);
3358 	if (rtn != 0) {
3359 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3360 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3361 		mutex_enter(SD_MUTEX(un));
3362 		return;
3363 	}
3364 
3365 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3366 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3367 
3368 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3369 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3370 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3371 	mutex_enter(SD_MUTEX(un));
3372 	if (rtn == 0) {
3373 		/*
3374 		 * We have good information, check for random writable
3375 		 * and hardware defect features as current.
3376 		 */
3377 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3378 		    (out_data_rw[10] & 0x1) &&
3379 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3380 		    (out_data_hd[10] & 0x1)) {
3381 			un->un_f_mmc_writable_media = TRUE;
3382 		}
3383 	}
3384 
3385 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3386 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3387 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3388 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3389 }
3390 
3391 /*
3392  *    Function: sd_read_unit_properties
3393  *
3394  * Description: The following implements a property lookup mechanism.
3395  *		Properties for particular disks (keyed on vendor, model
3396  *		and rev numbers) are sought in the sd.conf file via
3397  *		sd_process_sdconf_file(), and if not found there, are
3398  *		looked for in a list hardcoded in this driver via
3399  *		sd_process_sdconf_table() Once located the properties
3400  *		are used to update the driver unit structure.
3401  *
3402  *   Arguments: un - driver soft state (unit) structure
3403  */
3404 
3405 static void
3406 sd_read_unit_properties(struct sd_lun *un)
3407 {
3408 	/*
3409 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3410 	 * the "sd-config-list" property (from the sd.conf file) or if
3411 	 * there was not a match for the inquiry vid/pid. If this event
3412 	 * occurs the static driver configuration table is searched for
3413 	 * a match.
3414 	 */
3415 	ASSERT(un != NULL);
3416 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3417 		sd_process_sdconf_table(un);
3418 	}
3419 
3420 	/* check for LSI device */
3421 	sd_is_lsi(un);
3422 
3423 
3424 }
3425 
3426 
3427 /*
3428  *    Function: sd_process_sdconf_file
3429  *
3430  * Description: Use ddi_getlongprop to obtain the properties from the
3431  *		driver's config file (ie, sd.conf) and update the driver
3432  *		soft state structure accordingly.
3433  *
3434  *   Arguments: un - driver soft state (unit) structure
3435  *
3436  * Return Code: SD_SUCCESS - The properties were successfully set according
3437  *			     to the driver configuration file.
3438  *		SD_FAILURE - The driver config list was not obtained or
3439  *			     there was no vid/pid match. This indicates that
3440  *			     the static config table should be used.
3441  *
3442  * The config file has a property, "sd-config-list", which consists of
3443  * one or more duplets as follows:
3444  *
3445  *  sd-config-list=
3446  *	<duplet>,
3447  *	[<duplet>,]
3448  *	[<duplet>];
3449  *
3450  * The structure of each duplet is as follows:
3451  *
3452  *  <duplet>:= <vid+pid>,<data-property-name_list>
3453  *
3454  * The first entry of the duplet is the device ID string (the concatenated
3455  * vid & pid; not to be confused with a device_id).  This is defined in
3456  * the same way as in the sd_disk_table.
3457  *
3458  * The second part of the duplet is a string that identifies a
3459  * data-property-name-list. The data-property-name-list is defined as
3460  * follows:
3461  *
3462  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3463  *
3464  * The syntax of <data-property-name> depends on the <version> field.
3465  *
3466  * If version = SD_CONF_VERSION_1 we have the following syntax:
3467  *
3468  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3469  *
3470  * where the prop0 value will be used to set prop0 if bit0 set in the
3471  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3472  *
3473  */
3474 
3475 static int
3476 sd_process_sdconf_file(struct sd_lun *un)
3477 {
3478 	char	*config_list = NULL;
3479 	int	config_list_len;
3480 	int	len;
3481 	int	dupletlen = 0;
3482 	char	*vidptr;
3483 	int	vidlen;
3484 	char	*dnlist_ptr;
3485 	char	*dataname_ptr;
3486 	int	dnlist_len;
3487 	int	dataname_len;
3488 	int	*data_list;
3489 	int	data_list_len;
3490 	int	rval = SD_FAILURE;
3491 	int	i;
3492 
3493 	ASSERT(un != NULL);
3494 
3495 	/* Obtain the configuration list associated with the .conf file */
3496 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3497 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3498 	    != DDI_PROP_SUCCESS) {
3499 		return (SD_FAILURE);
3500 	}
3501 
3502 	/*
3503 	 * Compare vids in each duplet to the inquiry vid - if a match is
3504 	 * made, get the data value and update the soft state structure
3505 	 * accordingly.
3506 	 *
3507 	 * Note: This algorithm is complex and difficult to maintain. It should
3508 	 * be replaced with a more robust implementation.
3509 	 */
3510 	for (len = config_list_len, vidptr = config_list; len > 0;
3511 	    vidptr += dupletlen, len -= dupletlen) {
3512 		/*
3513 		 * Note: The assumption here is that each vid entry is on
3514 		 * a unique line from its associated duplet.
3515 		 */
3516 		vidlen = dupletlen = (int)strlen(vidptr);
3517 		if ((vidlen == 0) ||
3518 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3519 			dupletlen++;
3520 			continue;
3521 		}
3522 
3523 		/*
3524 		 * dnlist contains 1 or more blank separated
3525 		 * data-property-name entries
3526 		 */
3527 		dnlist_ptr = vidptr + vidlen + 1;
3528 		dnlist_len = (int)strlen(dnlist_ptr);
3529 		dupletlen += dnlist_len + 2;
3530 
3531 		/*
3532 		 * Set a pointer for the first data-property-name
3533 		 * entry in the list
3534 		 */
3535 		dataname_ptr = dnlist_ptr;
3536 		dataname_len = 0;
3537 
3538 		/*
3539 		 * Loop through all data-property-name entries in the
3540 		 * data-property-name-list setting the properties for each.
3541 		 */
3542 		while (dataname_len < dnlist_len) {
3543 			int version;
3544 
3545 			/*
3546 			 * Determine the length of the current
3547 			 * data-property-name entry by indexing until a
3548 			 * blank or NULL is encountered. When the space is
3549 			 * encountered reset it to a NULL for compliance
3550 			 * with ddi_getlongprop().
3551 			 */
3552 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3553 			    (dataname_ptr[i] != '\0')); i++) {
3554 				;
3555 			}
3556 
3557 			dataname_len += i;
3558 			/* If not null terminated, Make it so */
3559 			if (dataname_ptr[i] == ' ') {
3560 				dataname_ptr[i] = '\0';
3561 			}
3562 			dataname_len++;
3563 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3564 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3565 			    vidptr, dataname_ptr);
3566 
3567 			/* Get the data list */
3568 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3569 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3570 			    != DDI_PROP_SUCCESS) {
3571 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3572 				    "sd_process_sdconf_file: data property (%s)"
3573 				    " has no value\n", dataname_ptr);
3574 				dataname_ptr = dnlist_ptr + dataname_len;
3575 				continue;
3576 			}
3577 
3578 			version = data_list[0];
3579 
3580 			if (version == SD_CONF_VERSION_1) {
3581 				sd_tunables values;
3582 
3583 				/* Set the properties */
3584 				if (sd_chk_vers1_data(un, data_list[1],
3585 				    &data_list[2], data_list_len, dataname_ptr)
3586 				    == SD_SUCCESS) {
3587 					sd_get_tunables_from_conf(un,
3588 					    data_list[1], &data_list[2],
3589 					    &values);
3590 					sd_set_vers1_properties(un,
3591 					    data_list[1], &values);
3592 					rval = SD_SUCCESS;
3593 				} else {
3594 					rval = SD_FAILURE;
3595 				}
3596 			} else {
3597 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3598 				    "data property %s version 0x%x is invalid.",
3599 				    dataname_ptr, version);
3600 				rval = SD_FAILURE;
3601 			}
3602 			kmem_free(data_list, data_list_len);
3603 			dataname_ptr = dnlist_ptr + dataname_len;
3604 		}
3605 	}
3606 
3607 	/* free up the memory allocated by ddi_getlongprop */
3608 	if (config_list) {
3609 		kmem_free(config_list, config_list_len);
3610 	}
3611 
3612 	return (rval);
3613 }
3614 
3615 /*
3616  *    Function: sd_get_tunables_from_conf()
3617  *
3618  *
3619  *    This function reads the data list from the sd.conf file and pulls
3620  *    the values that can have numeric values as arguments and places
3621  *    the values in the appropriate sd_tunables member.
3622  *    Since the order of the data list members varies across platforms
3623  *    This function reads them from the data list in a platform specific
3624  *    order and places them into the correct sd_tunable member that is
3625  *    consistent across all platforms.
3626  */
3627 static void
3628 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3629     sd_tunables *values)
3630 {
3631 	int i;
3632 	int mask;
3633 
3634 	bzero(values, sizeof (sd_tunables));
3635 
3636 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3637 
3638 		mask = 1 << i;
3639 		if (mask > flags) {
3640 			break;
3641 		}
3642 
3643 		switch (mask & flags) {
3644 		case 0:	/* This mask bit not set in flags */
3645 			continue;
3646 		case SD_CONF_BSET_THROTTLE:
3647 			values->sdt_throttle = data_list[i];
3648 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3649 			    "sd_get_tunables_from_conf: throttle = %d\n",
3650 			    values->sdt_throttle);
3651 			break;
3652 		case SD_CONF_BSET_CTYPE:
3653 			values->sdt_ctype = data_list[i];
3654 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3655 			    "sd_get_tunables_from_conf: ctype = %d\n",
3656 			    values->sdt_ctype);
3657 			break;
3658 		case SD_CONF_BSET_NRR_COUNT:
3659 			values->sdt_not_rdy_retries = data_list[i];
3660 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3661 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3662 			    values->sdt_not_rdy_retries);
3663 			break;
3664 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3665 			values->sdt_busy_retries = data_list[i];
3666 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3667 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3668 			    values->sdt_busy_retries);
3669 			break;
3670 		case SD_CONF_BSET_RST_RETRIES:
3671 			values->sdt_reset_retries = data_list[i];
3672 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3673 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3674 			    values->sdt_reset_retries);
3675 			break;
3676 		case SD_CONF_BSET_RSV_REL_TIME:
3677 			values->sdt_reserv_rel_time = data_list[i];
3678 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3679 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3680 			    values->sdt_reserv_rel_time);
3681 			break;
3682 		case SD_CONF_BSET_MIN_THROTTLE:
3683 			values->sdt_min_throttle = data_list[i];
3684 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3685 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3686 			    values->sdt_min_throttle);
3687 			break;
3688 		case SD_CONF_BSET_DISKSORT_DISABLED:
3689 			values->sdt_disk_sort_dis = data_list[i];
3690 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3691 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3692 			    values->sdt_disk_sort_dis);
3693 			break;
3694 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3695 			values->sdt_lun_reset_enable = data_list[i];
3696 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3697 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3698 			    "\n", values->sdt_lun_reset_enable);
3699 			break;
3700 		case SD_CONF_BSET_CACHE_IS_NV:
3701 			values->sdt_suppress_cache_flush = data_list[i];
3702 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3703 			    "sd_get_tunables_from_conf: \
3704 			    suppress_cache_flush = %d"
3705 			    "\n", values->sdt_suppress_cache_flush);
3706 			break;
3707 		}
3708 	}
3709 }
3710 
3711 /*
3712  *    Function: sd_process_sdconf_table
3713  *
3714  * Description: Search the static configuration table for a match on the
3715  *		inquiry vid/pid and update the driver soft state structure
3716  *		according to the table property values for the device.
3717  *
3718  *		The form of a configuration table entry is:
3719  *		  <vid+pid>,<flags>,<property-data>
3720  *		  "SEAGATE ST42400N",1,0x40000,
3721  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
3722  *
3723  *   Arguments: un - driver soft state (unit) structure
3724  */
3725 
3726 static void
3727 sd_process_sdconf_table(struct sd_lun *un)
3728 {
3729 	char	*id = NULL;
3730 	int	table_index;
3731 	int	idlen;
3732 
3733 	ASSERT(un != NULL);
3734 	for (table_index = 0; table_index < sd_disk_table_size;
3735 	    table_index++) {
3736 		id = sd_disk_table[table_index].device_id;
3737 		idlen = strlen(id);
3738 		if (idlen == 0) {
3739 			continue;
3740 		}
3741 
3742 		/*
3743 		 * The static configuration table currently does not
3744 		 * implement version 10 properties. Additionally,
3745 		 * multiple data-property-name entries are not
3746 		 * implemented in the static configuration table.
3747 		 */
3748 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3749 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3750 			    "sd_process_sdconf_table: disk %s\n", id);
3751 			sd_set_vers1_properties(un,
3752 			    sd_disk_table[table_index].flags,
3753 			    sd_disk_table[table_index].properties);
3754 			break;
3755 		}
3756 	}
3757 }
3758 
3759 
3760 /*
3761  *    Function: sd_sdconf_id_match
3762  *
3763  * Description: This local function implements a case sensitive vid/pid
3764  *		comparison as well as the boundary cases of wild card and
3765  *		multiple blanks.
3766  *
3767  *		Note: An implicit assumption made here is that the scsi
3768  *		inquiry structure will always keep the vid, pid and
3769  *		revision strings in consecutive sequence, so they can be
3770  *		read as a single string. If this assumption is not the
3771  *		case, a separate string, to be used for the check, needs
3772  *		to be built with these strings concatenated.
3773  *
3774  *   Arguments: un - driver soft state (unit) structure
3775  *		id - table or config file vid/pid
3776  *		idlen  - length of the vid/pid (bytes)
3777  *
3778  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3779  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3780  */
3781 
3782 static int
3783 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3784 {
3785 	struct scsi_inquiry	*sd_inq;
3786 	int 			rval = SD_SUCCESS;
3787 
3788 	ASSERT(un != NULL);
3789 	sd_inq = un->un_sd->sd_inq;
3790 	ASSERT(id != NULL);
3791 
3792 	/*
3793 	 * We use the inq_vid as a pointer to a buffer containing the
3794 	 * vid and pid and use the entire vid/pid length of the table
3795 	 * entry for the comparison. This works because the inq_pid
3796 	 * data member follows inq_vid in the scsi_inquiry structure.
3797 	 */
3798 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3799 		/*
3800 		 * The user id string is compared to the inquiry vid/pid
3801 		 * using a case insensitive comparison and ignoring
3802 		 * multiple spaces.
3803 		 */
3804 		rval = sd_blank_cmp(un, id, idlen);
3805 		if (rval != SD_SUCCESS) {
3806 			/*
3807 			 * User id strings that start and end with a "*"
3808 			 * are a special case. These do not have a
3809 			 * specific vendor, and the product string can
3810 			 * appear anywhere in the 16 byte PID portion of
3811 			 * the inquiry data. This is a simple strstr()
3812 			 * type search for the user id in the inquiry data.
3813 			 */
3814 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3815 				char	*pidptr = &id[1];
3816 				int	i;
3817 				int	j;
3818 				int	pidstrlen = idlen - 2;
3819 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3820 				    pidstrlen;
3821 
3822 				if (j < 0) {
3823 					return (SD_FAILURE);
3824 				}
3825 				for (i = 0; i < j; i++) {
3826 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3827 					    pidptr, pidstrlen) == 0) {
3828 						rval = SD_SUCCESS;
3829 						break;
3830 					}
3831 				}
3832 			}
3833 		}
3834 	}
3835 	return (rval);
3836 }
3837 
3838 
3839 /*
3840  *    Function: sd_blank_cmp
3841  *
3842  * Description: If the id string starts and ends with a space, treat
3843  *		multiple consecutive spaces as equivalent to a single
3844  *		space. For example, this causes a sd_disk_table entry
3845  *		of " NEC CDROM " to match a device's id string of
3846  *		"NEC       CDROM".
3847  *
3848  *		Note: The success exit condition for this routine is if
3849  *		the pointer to the table entry is '\0' and the cnt of
3850  *		the inquiry length is zero. This will happen if the inquiry
3851  *		string returned by the device is padded with spaces to be
3852  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3853  *		SCSI spec states that the inquiry string is to be padded with
3854  *		spaces.
3855  *
3856  *   Arguments: un - driver soft state (unit) structure
3857  *		id - table or config file vid/pid
3858  *		idlen  - length of the vid/pid (bytes)
3859  *
3860  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3861  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3862  */
3863 
3864 static int
3865 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3866 {
3867 	char		*p1;
3868 	char		*p2;
3869 	int		cnt;
3870 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3871 	    sizeof (SD_INQUIRY(un)->inq_pid);
3872 
3873 	ASSERT(un != NULL);
3874 	p2 = un->un_sd->sd_inq->inq_vid;
3875 	ASSERT(id != NULL);
3876 	p1 = id;
3877 
3878 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3879 		/*
3880 		 * Note: string p1 is terminated by a NUL but string p2
3881 		 * isn't.  The end of p2 is determined by cnt.
3882 		 */
3883 		for (;;) {
3884 			/* skip over any extra blanks in both strings */
3885 			while ((*p1 != '\0') && (*p1 == ' ')) {
3886 				p1++;
3887 			}
3888 			while ((cnt != 0) && (*p2 == ' ')) {
3889 				p2++;
3890 				cnt--;
3891 			}
3892 
3893 			/* compare the two strings */
3894 			if ((cnt == 0) ||
3895 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3896 				break;
3897 			}
3898 			while ((cnt > 0) &&
3899 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3900 				p1++;
3901 				p2++;
3902 				cnt--;
3903 			}
3904 		}
3905 	}
3906 
3907 	/* return SD_SUCCESS if both strings match */
3908 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3909 }
3910 
3911 
3912 /*
3913  *    Function: sd_chk_vers1_data
3914  *
3915  * Description: Verify the version 1 device properties provided by the
3916  *		user via the configuration file
3917  *
3918  *   Arguments: un	     - driver soft state (unit) structure
3919  *		flags	     - integer mask indicating properties to be set
3920  *		prop_list    - integer list of property values
3921  *		list_len     - length of user provided data
3922  *
3923  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3924  *		SD_FAILURE - Indicates the user provided data is invalid
3925  */
3926 
3927 static int
3928 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3929     int list_len, char *dataname_ptr)
3930 {
3931 	int i;
3932 	int mask = 1;
3933 	int index = 0;
3934 
3935 	ASSERT(un != NULL);
3936 
3937 	/* Check for a NULL property name and list */
3938 	if (dataname_ptr == NULL) {
3939 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3940 		    "sd_chk_vers1_data: NULL data property name.");
3941 		return (SD_FAILURE);
3942 	}
3943 	if (prop_list == NULL) {
3944 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3945 		    "sd_chk_vers1_data: %s NULL data property list.",
3946 		    dataname_ptr);
3947 		return (SD_FAILURE);
3948 	}
3949 
3950 	/* Display a warning if undefined bits are set in the flags */
3951 	if (flags & ~SD_CONF_BIT_MASK) {
3952 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3953 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3954 		    "Properties not set.",
3955 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3956 		return (SD_FAILURE);
3957 	}
3958 
3959 	/*
3960 	 * Verify the length of the list by identifying the highest bit set
3961 	 * in the flags and validating that the property list has a length
3962 	 * up to the index of this bit.
3963 	 */
3964 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3965 		if (flags & mask) {
3966 			index++;
3967 		}
3968 		mask = 1 << i;
3969 	}
3970 	if ((list_len / sizeof (int)) < (index + 2)) {
3971 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3972 		    "sd_chk_vers1_data: "
3973 		    "Data property list %s size is incorrect. "
3974 		    "Properties not set.", dataname_ptr);
3975 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3976 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3977 		return (SD_FAILURE);
3978 	}
3979 	return (SD_SUCCESS);
3980 }
3981 
3982 
3983 /*
3984  *    Function: sd_set_vers1_properties
3985  *
3986  * Description: Set version 1 device properties based on a property list
3987  *		retrieved from the driver configuration file or static
3988  *		configuration table. Version 1 properties have the format:
3989  *
3990  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3991  *
3992  *		where the prop0 value will be used to set prop0 if bit0
3993  *		is set in the flags
3994  *
3995  *   Arguments: un	     - driver soft state (unit) structure
3996  *		flags	     - integer mask indicating properties to be set
3997  *		prop_list    - integer list of property values
3998  */
3999 
4000 static void
4001 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4002 {
4003 	ASSERT(un != NULL);
4004 
4005 	/*
4006 	 * Set the flag to indicate cache is to be disabled. An attempt
4007 	 * to disable the cache via sd_cache_control() will be made
4008 	 * later during attach once the basic initialization is complete.
4009 	 */
4010 	if (flags & SD_CONF_BSET_NOCACHE) {
4011 		un->un_f_opt_disable_cache = TRUE;
4012 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4013 		    "sd_set_vers1_properties: caching disabled flag set\n");
4014 	}
4015 
4016 	/* CD-specific configuration parameters */
4017 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4018 		un->un_f_cfg_playmsf_bcd = TRUE;
4019 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4020 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4021 	}
4022 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4023 		un->un_f_cfg_readsub_bcd = TRUE;
4024 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4025 		    "sd_set_vers1_properties: readsub_bcd set\n");
4026 	}
4027 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4028 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4029 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4030 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4031 	}
4032 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4033 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4034 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4035 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4036 	}
4037 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4038 		un->un_f_cfg_no_read_header = TRUE;
4039 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4040 		    "sd_set_vers1_properties: no_read_header set\n");
4041 	}
4042 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4043 		un->un_f_cfg_read_cd_xd4 = TRUE;
4044 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4045 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4046 	}
4047 
4048 	/* Support for devices which do not have valid/unique serial numbers */
4049 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4050 		un->un_f_opt_fab_devid = TRUE;
4051 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4052 		    "sd_set_vers1_properties: fab_devid bit set\n");
4053 	}
4054 
4055 	/* Support for user throttle configuration */
4056 	if (flags & SD_CONF_BSET_THROTTLE) {
4057 		ASSERT(prop_list != NULL);
4058 		un->un_saved_throttle = un->un_throttle =
4059 		    prop_list->sdt_throttle;
4060 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4061 		    "sd_set_vers1_properties: throttle set to %d\n",
4062 		    prop_list->sdt_throttle);
4063 	}
4064 
4065 	/* Set the per disk retry count according to the conf file or table. */
4066 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4067 		ASSERT(prop_list != NULL);
4068 		if (prop_list->sdt_not_rdy_retries) {
4069 			un->un_notready_retry_count =
4070 			    prop_list->sdt_not_rdy_retries;
4071 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4072 			    "sd_set_vers1_properties: not ready retry count"
4073 			    " set to %d\n", un->un_notready_retry_count);
4074 		}
4075 	}
4076 
4077 	/* The controller type is reported for generic disk driver ioctls */
4078 	if (flags & SD_CONF_BSET_CTYPE) {
4079 		ASSERT(prop_list != NULL);
4080 		switch (prop_list->sdt_ctype) {
4081 		case CTYPE_CDROM:
4082 			un->un_ctype = prop_list->sdt_ctype;
4083 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4084 			    "sd_set_vers1_properties: ctype set to "
4085 			    "CTYPE_CDROM\n");
4086 			break;
4087 		case CTYPE_CCS:
4088 			un->un_ctype = prop_list->sdt_ctype;
4089 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4090 			    "sd_set_vers1_properties: ctype set to "
4091 			    "CTYPE_CCS\n");
4092 			break;
4093 		case CTYPE_ROD:		/* RW optical */
4094 			un->un_ctype = prop_list->sdt_ctype;
4095 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4096 			    "sd_set_vers1_properties: ctype set to "
4097 			    "CTYPE_ROD\n");
4098 			break;
4099 		default:
4100 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4101 			    "sd_set_vers1_properties: Could not set "
4102 			    "invalid ctype value (%d)",
4103 			    prop_list->sdt_ctype);
4104 		}
4105 	}
4106 
4107 	/* Purple failover timeout */
4108 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4109 		ASSERT(prop_list != NULL);
4110 		un->un_busy_retry_count =
4111 		    prop_list->sdt_busy_retries;
4112 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4113 		    "sd_set_vers1_properties: "
4114 		    "busy retry count set to %d\n",
4115 		    un->un_busy_retry_count);
4116 	}
4117 
4118 	/* Purple reset retry count */
4119 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4120 		ASSERT(prop_list != NULL);
4121 		un->un_reset_retry_count =
4122 		    prop_list->sdt_reset_retries;
4123 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4124 		    "sd_set_vers1_properties: "
4125 		    "reset retry count set to %d\n",
4126 		    un->un_reset_retry_count);
4127 	}
4128 
4129 	/* Purple reservation release timeout */
4130 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4131 		ASSERT(prop_list != NULL);
4132 		un->un_reserve_release_time =
4133 		    prop_list->sdt_reserv_rel_time;
4134 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4135 		    "sd_set_vers1_properties: "
4136 		    "reservation release timeout set to %d\n",
4137 		    un->un_reserve_release_time);
4138 	}
4139 
4140 	/*
4141 	 * Driver flag telling the driver to verify that no commands are pending
4142 	 * for a device before issuing a Test Unit Ready. This is a workaround
4143 	 * for a firmware bug in some Seagate eliteI drives.
4144 	 */
4145 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4146 		un->un_f_cfg_tur_check = TRUE;
4147 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4148 		    "sd_set_vers1_properties: tur queue check set\n");
4149 	}
4150 
4151 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4152 		un->un_min_throttle = prop_list->sdt_min_throttle;
4153 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4154 		    "sd_set_vers1_properties: min throttle set to %d\n",
4155 		    un->un_min_throttle);
4156 	}
4157 
4158 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4159 		un->un_f_disksort_disabled =
4160 		    (prop_list->sdt_disk_sort_dis != 0) ?
4161 		    TRUE : FALSE;
4162 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4163 		    "sd_set_vers1_properties: disksort disabled "
4164 		    "flag set to %d\n",
4165 		    prop_list->sdt_disk_sort_dis);
4166 	}
4167 
4168 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4169 		un->un_f_lun_reset_enabled =
4170 		    (prop_list->sdt_lun_reset_enable != 0) ?
4171 		    TRUE : FALSE;
4172 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4173 		    "sd_set_vers1_properties: lun reset enabled "
4174 		    "flag set to %d\n",
4175 		    prop_list->sdt_lun_reset_enable);
4176 	}
4177 
4178 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4179 		un->un_f_suppress_cache_flush =
4180 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4181 		    TRUE : FALSE;
4182 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4183 		    "sd_set_vers1_properties: suppress_cache_flush "
4184 		    "flag set to %d\n",
4185 		    prop_list->sdt_suppress_cache_flush);
4186 	}
4187 
4188 	/*
4189 	 * Validate the throttle values.
4190 	 * If any of the numbers are invalid, set everything to defaults.
4191 	 */
4192 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4193 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4194 	    (un->un_min_throttle > un->un_throttle)) {
4195 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4196 		un->un_min_throttle = sd_min_throttle;
4197 	}
4198 }
4199 
4200 /*
4201  *   Function: sd_is_lsi()
4202  *
4203  *   Description: Check for lsi devices, step through the static device
4204  *	table to match vid/pid.
4205  *
4206  *   Args: un - ptr to sd_lun
4207  *
4208  *   Notes:  When creating new LSI property, need to add the new LSI property
4209  *		to this function.
4210  */
4211 static void
4212 sd_is_lsi(struct sd_lun *un)
4213 {
4214 	char	*id = NULL;
4215 	int	table_index;
4216 	int	idlen;
4217 	void	*prop;
4218 
4219 	ASSERT(un != NULL);
4220 	for (table_index = 0; table_index < sd_disk_table_size;
4221 	    table_index++) {
4222 		id = sd_disk_table[table_index].device_id;
4223 		idlen = strlen(id);
4224 		if (idlen == 0) {
4225 			continue;
4226 		}
4227 
4228 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4229 			prop = sd_disk_table[table_index].properties;
4230 			if (prop == &lsi_properties ||
4231 			    prop == &lsi_oem_properties ||
4232 			    prop == &lsi_properties_scsi ||
4233 			    prop == &symbios_properties) {
4234 				un->un_f_cfg_is_lsi = TRUE;
4235 			}
4236 			break;
4237 		}
4238 	}
4239 }
4240 
4241 /*
4242  *    Function: sd_get_physical_geometry
4243  *
4244  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4245  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4246  *		target, and use this information to initialize the physical
4247  *		geometry cache specified by pgeom_p.
4248  *
4249  *		MODE SENSE is an optional command, so failure in this case
4250  *		does not necessarily denote an error. We want to use the
4251  *		MODE SENSE commands to derive the physical geometry of the
4252  *		device, but if either command fails, the logical geometry is
4253  *		used as the fallback for disk label geometry in cmlb.
4254  *
4255  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4256  *		have already been initialized for the current target and
4257  *		that the current values be passed as args so that we don't
4258  *		end up ever trying to use -1 as a valid value. This could
4259  *		happen if either value is reset while we're not holding
4260  *		the mutex.
4261  *
4262  *   Arguments: un - driver soft state (unit) structure
4263  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4264  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4265  *			to use the USCSI "direct" chain and bypass the normal
4266  *			command waitq.
4267  *
4268  *     Context: Kernel thread only (can sleep).
4269  */
4270 
4271 static int
4272 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4273 	diskaddr_t capacity, int lbasize, int path_flag)
4274 {
4275 	struct	mode_format	*page3p;
4276 	struct	mode_geometry	*page4p;
4277 	struct	mode_header	*headerp;
4278 	int	sector_size;
4279 	int	nsect;
4280 	int	nhead;
4281 	int	ncyl;
4282 	int	intrlv;
4283 	int	spc;
4284 	diskaddr_t	modesense_capacity;
4285 	int	rpm;
4286 	int	bd_len;
4287 	int	mode_header_length;
4288 	uchar_t	*p3bufp;
4289 	uchar_t	*p4bufp;
4290 	int	cdbsize;
4291 	int 	ret = EIO;
4292 
4293 	ASSERT(un != NULL);
4294 
4295 	if (lbasize == 0) {
4296 		if (ISCD(un)) {
4297 			lbasize = 2048;
4298 		} else {
4299 			lbasize = un->un_sys_blocksize;
4300 		}
4301 	}
4302 	pgeom_p->g_secsize = (unsigned short)lbasize;
4303 
4304 	/*
4305 	 * If the unit is a cd/dvd drive MODE SENSE page three
4306 	 * and MODE SENSE page four are reserved (see SBC spec
4307 	 * and MMC spec). To prevent soft errors just return
4308 	 * using the default LBA size.
4309 	 */
4310 	if (ISCD(un))
4311 		return (ret);
4312 
4313 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4314 
4315 	/*
4316 	 * Retrieve MODE SENSE page 3 - Format Device Page
4317 	 */
4318 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4319 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4320 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4321 	    != 0) {
4322 		SD_ERROR(SD_LOG_COMMON, un,
4323 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4324 		goto page3_exit;
4325 	}
4326 
4327 	/*
4328 	 * Determine size of Block Descriptors in order to locate the mode
4329 	 * page data.  ATAPI devices return 0, SCSI devices should return
4330 	 * MODE_BLK_DESC_LENGTH.
4331 	 */
4332 	headerp = (struct mode_header *)p3bufp;
4333 	if (un->un_f_cfg_is_atapi == TRUE) {
4334 		struct mode_header_grp2 *mhp =
4335 		    (struct mode_header_grp2 *)headerp;
4336 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4337 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4338 	} else {
4339 		mode_header_length = MODE_HEADER_LENGTH;
4340 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4341 	}
4342 
4343 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4344 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4345 		    "received unexpected bd_len of %d, page3\n", bd_len);
4346 		goto page3_exit;
4347 	}
4348 
4349 	page3p = (struct mode_format *)
4350 	    ((caddr_t)headerp + mode_header_length + bd_len);
4351 
4352 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4353 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4354 		    "mode sense pg3 code mismatch %d\n",
4355 		    page3p->mode_page.code);
4356 		goto page3_exit;
4357 	}
4358 
4359 	/*
4360 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4361 	 * complete successfully; otherwise, revert to the logical geometry.
4362 	 * So, we need to save everything in temporary variables.
4363 	 */
4364 	sector_size = BE_16(page3p->data_bytes_sect);
4365 
4366 	/*
4367 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4368 	 */
4369 	if (sector_size == 0) {
4370 		sector_size = un->un_sys_blocksize;
4371 	} else {
4372 		sector_size &= ~(un->un_sys_blocksize - 1);
4373 	}
4374 
4375 	nsect  = BE_16(page3p->sect_track);
4376 	intrlv = BE_16(page3p->interleave);
4377 
4378 	SD_INFO(SD_LOG_COMMON, un,
4379 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4380 	SD_INFO(SD_LOG_COMMON, un,
4381 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4382 	    page3p->mode_page.code, nsect, sector_size);
4383 	SD_INFO(SD_LOG_COMMON, un,
4384 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4385 	    BE_16(page3p->track_skew),
4386 	    BE_16(page3p->cylinder_skew));
4387 
4388 
4389 	/*
4390 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4391 	 */
4392 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4393 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4394 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4395 	    != 0) {
4396 		SD_ERROR(SD_LOG_COMMON, un,
4397 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4398 		goto page4_exit;
4399 	}
4400 
4401 	/*
4402 	 * Determine size of Block Descriptors in order to locate the mode
4403 	 * page data.  ATAPI devices return 0, SCSI devices should return
4404 	 * MODE_BLK_DESC_LENGTH.
4405 	 */
4406 	headerp = (struct mode_header *)p4bufp;
4407 	if (un->un_f_cfg_is_atapi == TRUE) {
4408 		struct mode_header_grp2 *mhp =
4409 		    (struct mode_header_grp2 *)headerp;
4410 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4411 	} else {
4412 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4413 	}
4414 
4415 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4416 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4417 		    "received unexpected bd_len of %d, page4\n", bd_len);
4418 		goto page4_exit;
4419 	}
4420 
4421 	page4p = (struct mode_geometry *)
4422 	    ((caddr_t)headerp + mode_header_length + bd_len);
4423 
4424 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4425 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4426 		    "mode sense pg4 code mismatch %d\n",
4427 		    page4p->mode_page.code);
4428 		goto page4_exit;
4429 	}
4430 
4431 	/*
4432 	 * Stash the data now, after we know that both commands completed.
4433 	 */
4434 
4435 
4436 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4437 	spc   = nhead * nsect;
4438 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4439 	rpm   = BE_16(page4p->rpm);
4440 
4441 	modesense_capacity = spc * ncyl;
4442 
4443 	SD_INFO(SD_LOG_COMMON, un,
4444 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4445 	SD_INFO(SD_LOG_COMMON, un,
4446 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4447 	SD_INFO(SD_LOG_COMMON, un,
4448 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4449 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4450 	    (void *)pgeom_p, capacity);
4451 
4452 	/*
4453 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4454 	 * the product of C * H * S returned by MODE SENSE >= that returned
4455 	 * by read capacity. This is an idiosyncrasy of the original x86
4456 	 * disk subsystem.
4457 	 */
4458 	if (modesense_capacity >= capacity) {
4459 		SD_INFO(SD_LOG_COMMON, un,
4460 		    "sd_get_physical_geometry: adjusting acyl; "
4461 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4462 		    (modesense_capacity - capacity + spc - 1) / spc);
4463 		if (sector_size != 0) {
4464 			/* 1243403: NEC D38x7 drives don't support sec size */
4465 			pgeom_p->g_secsize = (unsigned short)sector_size;
4466 		}
4467 		pgeom_p->g_nsect    = (unsigned short)nsect;
4468 		pgeom_p->g_nhead    = (unsigned short)nhead;
4469 		pgeom_p->g_capacity = capacity;
4470 		pgeom_p->g_acyl	    =
4471 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4472 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4473 	}
4474 
4475 	pgeom_p->g_rpm    = (unsigned short)rpm;
4476 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4477 	ret = 0;
4478 
4479 	SD_INFO(SD_LOG_COMMON, un,
4480 	    "sd_get_physical_geometry: mode sense geometry:\n");
4481 	SD_INFO(SD_LOG_COMMON, un,
4482 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4483 	    nsect, sector_size, intrlv);
4484 	SD_INFO(SD_LOG_COMMON, un,
4485 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4486 	    nhead, ncyl, rpm, modesense_capacity);
4487 	SD_INFO(SD_LOG_COMMON, un,
4488 	    "sd_get_physical_geometry: (cached)\n");
4489 	SD_INFO(SD_LOG_COMMON, un,
4490 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4491 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4492 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4493 	SD_INFO(SD_LOG_COMMON, un,
4494 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4495 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4496 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4497 
4498 page4_exit:
4499 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4500 page3_exit:
4501 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4502 
4503 	return (ret);
4504 }
4505 
4506 /*
4507  *    Function: sd_get_virtual_geometry
4508  *
4509  * Description: Ask the controller to tell us about the target device.
4510  *
4511  *   Arguments: un - pointer to softstate
4512  *		capacity - disk capacity in #blocks
4513  *		lbasize - disk block size in bytes
4514  *
4515  *     Context: Kernel thread only
4516  */
4517 
4518 static int
4519 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4520     diskaddr_t capacity, int lbasize)
4521 {
4522 	uint_t	geombuf;
4523 	int	spc;
4524 
4525 	ASSERT(un != NULL);
4526 
4527 	/* Set sector size, and total number of sectors */
4528 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4529 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4530 
4531 	/* Let the HBA tell us its geometry */
4532 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4533 
4534 	/* A value of -1 indicates an undefined "geometry" property */
4535 	if (geombuf == (-1)) {
4536 		return (EINVAL);
4537 	}
4538 
4539 	/* Initialize the logical geometry cache. */
4540 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4541 	lgeom_p->g_nsect   = geombuf & 0xffff;
4542 	lgeom_p->g_secsize = un->un_sys_blocksize;
4543 
4544 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4545 
4546 	/*
4547 	 * Note: The driver originally converted the capacity value from
4548 	 * target blocks to system blocks. However, the capacity value passed
4549 	 * to this routine is already in terms of system blocks (this scaling
4550 	 * is done when the READ CAPACITY command is issued and processed).
4551 	 * This 'error' may have gone undetected because the usage of g_ncyl
4552 	 * (which is based upon g_capacity) is very limited within the driver
4553 	 */
4554 	lgeom_p->g_capacity = capacity;
4555 
4556 	/*
4557 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4558 	 * hba may return zero values if the device has been removed.
4559 	 */
4560 	if (spc == 0) {
4561 		lgeom_p->g_ncyl = 0;
4562 	} else {
4563 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4564 	}
4565 	lgeom_p->g_acyl = 0;
4566 
4567 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4568 	return (0);
4569 
4570 }
4571 /*
4572  *    Function: sd_update_block_info
4573  *
4574  * Description: Calculate a byte count to sector count bitshift value
4575  *		from sector size.
4576  *
4577  *   Arguments: un: unit struct.
4578  *		lbasize: new target sector size
4579  *		capacity: new target capacity, ie. block count
4580  *
4581  *     Context: Kernel thread context
4582  */
4583 
4584 static void
4585 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4586 {
4587 	uint_t		dblk;
4588 
4589 	if (lbasize != 0) {
4590 		un->un_tgt_blocksize = lbasize;
4591 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4592 	}
4593 
4594 	if (capacity != 0) {
4595 		un->un_blockcount		= capacity;
4596 		un->un_f_blockcount_is_valid	= TRUE;
4597 	}
4598 
4599 	/*
4600 	 * Update device capacity properties.
4601 	 *
4602 	 *   'device-nblocks'	number of blocks in target's units
4603 	 *   'device-blksize'	data bearing size of target's block
4604 	 *
4605 	 * NOTE: math is complicated by the fact that un_tgt_blocksize may
4606 	 * not be a power of two for checksumming disks with 520/528 byte
4607 	 * sectors.
4608 	 */
4609 	if (un->un_f_tgt_blocksize_is_valid &&
4610 	    un->un_f_blockcount_is_valid &&
4611 	    un->un_sys_blocksize) {
4612 		dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
4613 		(void) ddi_prop_update_int64(DDI_DEV_T_NONE, SD_DEVINFO(un),
4614 		    "device-nblocks", un->un_blockcount / dblk);
4615 		/*
4616 		 * To save memory, only define "device-blksize" when its
4617 		 * value is differnet than the default DEV_BSIZE value.
4618 		 */
4619 		if ((un->un_sys_blocksize * dblk) != DEV_BSIZE)
4620 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
4621 			    SD_DEVINFO(un), "device-blksize",
4622 			    un->un_sys_blocksize * dblk);
4623 	}
4624 }
4625 
4626 
4627 /*
4628  *    Function: sd_register_devid
4629  *
4630  * Description: This routine will obtain the device id information from the
4631  *		target, obtain the serial number, and register the device
4632  *		id with the ddi framework.
4633  *
4634  *   Arguments: devi - the system's dev_info_t for the device.
4635  *		un - driver soft state (unit) structure
4636  *		reservation_flag - indicates if a reservation conflict
4637  *		occurred during attach
4638  *
4639  *     Context: Kernel Thread
4640  */
4641 static void
4642 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4643 {
4644 	int		rval		= 0;
4645 	uchar_t		*inq80		= NULL;
4646 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4647 	size_t		inq80_resid	= 0;
4648 	uchar_t		*inq83		= NULL;
4649 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4650 	size_t		inq83_resid	= 0;
4651 	int		dlen, len;
4652 	char		*sn;
4653 
4654 	ASSERT(un != NULL);
4655 	ASSERT(mutex_owned(SD_MUTEX(un)));
4656 	ASSERT((SD_DEVINFO(un)) == devi);
4657 
4658 	/*
4659 	 * If transport has already registered a devid for this target
4660 	 * then that takes precedence over the driver's determination
4661 	 * of the devid.
4662 	 */
4663 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
4664 		ASSERT(un->un_devid);
4665 		return; /* use devid registered by the transport */
4666 	}
4667 
4668 	/*
4669 	 * This is the case of antiquated Sun disk drives that have the
4670 	 * FAB_DEVID property set in the disk_table.  These drives
4671 	 * manage the devid's by storing them in last 2 available sectors
4672 	 * on the drive and have them fabricated by the ddi layer by calling
4673 	 * ddi_devid_init and passing the DEVID_FAB flag.
4674 	 */
4675 	if (un->un_f_opt_fab_devid == TRUE) {
4676 		/*
4677 		 * Depending on EINVAL isn't reliable, since a reserved disk
4678 		 * may result in invalid geometry, so check to make sure a
4679 		 * reservation conflict did not occur during attach.
4680 		 */
4681 		if ((sd_get_devid(un) == EINVAL) &&
4682 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4683 			/*
4684 			 * The devid is invalid AND there is no reservation
4685 			 * conflict.  Fabricate a new devid.
4686 			 */
4687 			(void) sd_create_devid(un);
4688 		}
4689 
4690 		/* Register the devid if it exists */
4691 		if (un->un_devid != NULL) {
4692 			(void) ddi_devid_register(SD_DEVINFO(un),
4693 			    un->un_devid);
4694 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4695 			    "sd_register_devid: Devid Fabricated\n");
4696 		}
4697 		return;
4698 	}
4699 
4700 	/*
4701 	 * We check the availibility of the World Wide Name (0x83) and Unit
4702 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4703 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4704 	 * 0x83 is availible, that is the best choice.  Our next choice is
4705 	 * 0x80.  If neither are availible, we munge the devid from the device
4706 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4707 	 * to fabricate a devid for non-Sun qualified disks.
4708 	 */
4709 	if (sd_check_vpd_page_support(un) == 0) {
4710 		/* collect page 80 data if available */
4711 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4712 
4713 			mutex_exit(SD_MUTEX(un));
4714 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4715 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4716 			    0x01, 0x80, &inq80_resid);
4717 
4718 			if (rval != 0) {
4719 				kmem_free(inq80, inq80_len);
4720 				inq80 = NULL;
4721 				inq80_len = 0;
4722 			} else if (ddi_prop_exists(
4723 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
4724 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
4725 			    INQUIRY_SERIAL_NO) == 0) {
4726 				/*
4727 				 * If we don't already have a serial number
4728 				 * property, do quick verify of data returned
4729 				 * and define property.
4730 				 */
4731 				dlen = inq80_len - inq80_resid;
4732 				len = (size_t)inq80[3];
4733 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
4734 					/*
4735 					 * Ensure sn termination, skip leading
4736 					 * blanks, and create property
4737 					 * 'inquiry-serial-no'.
4738 					 */
4739 					sn = (char *)&inq80[4];
4740 					sn[len] = 0;
4741 					while (*sn && (*sn == ' '))
4742 						sn++;
4743 					if (*sn) {
4744 						(void) ddi_prop_update_string(
4745 						    DDI_DEV_T_NONE,
4746 						    SD_DEVINFO(un),
4747 						    INQUIRY_SERIAL_NO, sn);
4748 					}
4749 				}
4750 			}
4751 			mutex_enter(SD_MUTEX(un));
4752 		}
4753 
4754 		/* collect page 83 data if available */
4755 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4756 			mutex_exit(SD_MUTEX(un));
4757 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4758 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4759 			    0x01, 0x83, &inq83_resid);
4760 
4761 			if (rval != 0) {
4762 				kmem_free(inq83, inq83_len);
4763 				inq83 = NULL;
4764 				inq83_len = 0;
4765 			}
4766 			mutex_enter(SD_MUTEX(un));
4767 		}
4768 	}
4769 
4770 	/* encode best devid possible based on data available */
4771 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4772 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4773 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4774 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4775 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4776 
4777 		/* devid successfully encoded, register devid */
4778 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4779 
4780 	} else {
4781 		/*
4782 		 * Unable to encode a devid based on data available.
4783 		 * This is not a Sun qualified disk.  Older Sun disk
4784 		 * drives that have the SD_FAB_DEVID property
4785 		 * set in the disk_table and non Sun qualified
4786 		 * disks are treated in the same manner.  These
4787 		 * drives manage the devid's by storing them in
4788 		 * last 2 available sectors on the drive and
4789 		 * have them fabricated by the ddi layer by
4790 		 * calling ddi_devid_init and passing the
4791 		 * DEVID_FAB flag.
4792 		 * Create a fabricate devid only if there's no
4793 		 * fabricate devid existed.
4794 		 */
4795 		if (sd_get_devid(un) == EINVAL) {
4796 			(void) sd_create_devid(un);
4797 		}
4798 		un->un_f_opt_fab_devid = TRUE;
4799 
4800 		/* Register the devid if it exists */
4801 		if (un->un_devid != NULL) {
4802 			(void) ddi_devid_register(SD_DEVINFO(un),
4803 			    un->un_devid);
4804 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4805 			    "sd_register_devid: devid fabricated using "
4806 			    "ddi framework\n");
4807 		}
4808 	}
4809 
4810 	/* clean up resources */
4811 	if (inq80 != NULL) {
4812 		kmem_free(inq80, inq80_len);
4813 	}
4814 	if (inq83 != NULL) {
4815 		kmem_free(inq83, inq83_len);
4816 	}
4817 }
4818 
4819 
4820 
4821 /*
4822  *    Function: sd_get_devid
4823  *
4824  * Description: This routine will return 0 if a valid device id has been
4825  *		obtained from the target and stored in the soft state. If a
4826  *		valid device id has not been previously read and stored, a
4827  *		read attempt will be made.
4828  *
4829  *   Arguments: un - driver soft state (unit) structure
4830  *
4831  * Return Code: 0 if we successfully get the device id
4832  *
4833  *     Context: Kernel Thread
4834  */
4835 
4836 static int
4837 sd_get_devid(struct sd_lun *un)
4838 {
4839 	struct dk_devid		*dkdevid;
4840 	ddi_devid_t		tmpid;
4841 	uint_t			*ip;
4842 	size_t			sz;
4843 	diskaddr_t		blk;
4844 	int			status;
4845 	int			chksum;
4846 	int			i;
4847 	size_t			buffer_size;
4848 
4849 	ASSERT(un != NULL);
4850 	ASSERT(mutex_owned(SD_MUTEX(un)));
4851 
4852 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4853 	    un);
4854 
4855 	if (un->un_devid != NULL) {
4856 		return (0);
4857 	}
4858 
4859 	mutex_exit(SD_MUTEX(un));
4860 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4861 	    (void *)SD_PATH_DIRECT) != 0) {
4862 		mutex_enter(SD_MUTEX(un));
4863 		return (EINVAL);
4864 	}
4865 
4866 	/*
4867 	 * Read and verify device id, stored in the reserved cylinders at the
4868 	 * end of the disk. Backup label is on the odd sectors of the last
4869 	 * track of the last cylinder. Device id will be on track of the next
4870 	 * to last cylinder.
4871 	 */
4872 	mutex_enter(SD_MUTEX(un));
4873 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4874 	mutex_exit(SD_MUTEX(un));
4875 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4876 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4877 	    SD_PATH_DIRECT);
4878 	if (status != 0) {
4879 		goto error;
4880 	}
4881 
4882 	/* Validate the revision */
4883 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4884 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4885 		status = EINVAL;
4886 		goto error;
4887 	}
4888 
4889 	/* Calculate the checksum */
4890 	chksum = 0;
4891 	ip = (uint_t *)dkdevid;
4892 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4893 	    i++) {
4894 		chksum ^= ip[i];
4895 	}
4896 
4897 	/* Compare the checksums */
4898 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4899 		status = EINVAL;
4900 		goto error;
4901 	}
4902 
4903 	/* Validate the device id */
4904 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4905 		status = EINVAL;
4906 		goto error;
4907 	}
4908 
4909 	/*
4910 	 * Store the device id in the driver soft state
4911 	 */
4912 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4913 	tmpid = kmem_alloc(sz, KM_SLEEP);
4914 
4915 	mutex_enter(SD_MUTEX(un));
4916 
4917 	un->un_devid = tmpid;
4918 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4919 
4920 	kmem_free(dkdevid, buffer_size);
4921 
4922 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4923 
4924 	return (status);
4925 error:
4926 	mutex_enter(SD_MUTEX(un));
4927 	kmem_free(dkdevid, buffer_size);
4928 	return (status);
4929 }
4930 
4931 
4932 /*
4933  *    Function: sd_create_devid
4934  *
4935  * Description: This routine will fabricate the device id and write it
4936  *		to the disk.
4937  *
4938  *   Arguments: un - driver soft state (unit) structure
4939  *
4940  * Return Code: value of the fabricated device id
4941  *
4942  *     Context: Kernel Thread
4943  */
4944 
4945 static ddi_devid_t
4946 sd_create_devid(struct sd_lun *un)
4947 {
4948 	ASSERT(un != NULL);
4949 
4950 	/* Fabricate the devid */
4951 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4952 	    == DDI_FAILURE) {
4953 		return (NULL);
4954 	}
4955 
4956 	/* Write the devid to disk */
4957 	if (sd_write_deviceid(un) != 0) {
4958 		ddi_devid_free(un->un_devid);
4959 		un->un_devid = NULL;
4960 	}
4961 
4962 	return (un->un_devid);
4963 }
4964 
4965 
4966 /*
4967  *    Function: sd_write_deviceid
4968  *
4969  * Description: This routine will write the device id to the disk
4970  *		reserved sector.
4971  *
4972  *   Arguments: un - driver soft state (unit) structure
4973  *
4974  * Return Code: EINVAL
4975  *		value returned by sd_send_scsi_cmd
4976  *
4977  *     Context: Kernel Thread
4978  */
4979 
4980 static int
4981 sd_write_deviceid(struct sd_lun *un)
4982 {
4983 	struct dk_devid		*dkdevid;
4984 	diskaddr_t		blk;
4985 	uint_t			*ip, chksum;
4986 	int			status;
4987 	int			i;
4988 
4989 	ASSERT(mutex_owned(SD_MUTEX(un)));
4990 
4991 	mutex_exit(SD_MUTEX(un));
4992 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4993 	    (void *)SD_PATH_DIRECT) != 0) {
4994 		mutex_enter(SD_MUTEX(un));
4995 		return (-1);
4996 	}
4997 
4998 
4999 	/* Allocate the buffer */
5000 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5001 
5002 	/* Fill in the revision */
5003 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5004 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5005 
5006 	/* Copy in the device id */
5007 	mutex_enter(SD_MUTEX(un));
5008 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5009 	    ddi_devid_sizeof(un->un_devid));
5010 	mutex_exit(SD_MUTEX(un));
5011 
5012 	/* Calculate the checksum */
5013 	chksum = 0;
5014 	ip = (uint_t *)dkdevid;
5015 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5016 	    i++) {
5017 		chksum ^= ip[i];
5018 	}
5019 
5020 	/* Fill-in checksum */
5021 	DKD_FORMCHKSUM(chksum, dkdevid);
5022 
5023 	/* Write the reserved sector */
5024 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
5025 	    SD_PATH_DIRECT);
5026 
5027 	kmem_free(dkdevid, un->un_sys_blocksize);
5028 
5029 	mutex_enter(SD_MUTEX(un));
5030 	return (status);
5031 }
5032 
5033 
5034 /*
5035  *    Function: sd_check_vpd_page_support
5036  *
5037  * Description: This routine sends an inquiry command with the EVPD bit set and
5038  *		a page code of 0x00 to the device. It is used to determine which
5039  *		vital product pages are availible to find the devid. We are
5040  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5041  *		device does not support that command.
5042  *
5043  *   Arguments: un  - driver soft state (unit) structure
5044  *
5045  * Return Code: 0 - success
5046  *		1 - check condition
5047  *
5048  *     Context: This routine can sleep.
5049  */
5050 
5051 static int
5052 sd_check_vpd_page_support(struct sd_lun *un)
5053 {
5054 	uchar_t	*page_list	= NULL;
5055 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5056 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5057 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5058 	int    	rval		= 0;
5059 	int	counter;
5060 
5061 	ASSERT(un != NULL);
5062 	ASSERT(mutex_owned(SD_MUTEX(un)));
5063 
5064 	mutex_exit(SD_MUTEX(un));
5065 
5066 	/*
5067 	 * We'll set the page length to the maximum to save figuring it out
5068 	 * with an additional call.
5069 	 */
5070 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5071 
5072 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
5073 	    page_code, NULL);
5074 
5075 	mutex_enter(SD_MUTEX(un));
5076 
5077 	/*
5078 	 * Now we must validate that the device accepted the command, as some
5079 	 * drives do not support it.  If the drive does support it, we will
5080 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5081 	 * not, we return -1.
5082 	 */
5083 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5084 		/* Loop to find one of the 2 pages we need */
5085 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5086 
5087 		/*
5088 		 * Pages are returned in ascending order, and 0x83 is what we
5089 		 * are hoping for.
5090 		 */
5091 		while ((page_list[counter] <= 0x86) &&
5092 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5093 		    VPD_HEAD_OFFSET))) {
5094 			/*
5095 			 * Add 3 because page_list[3] is the number of
5096 			 * pages minus 3
5097 			 */
5098 
5099 			switch (page_list[counter]) {
5100 			case 0x00:
5101 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5102 				break;
5103 			case 0x80:
5104 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5105 				break;
5106 			case 0x81:
5107 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5108 				break;
5109 			case 0x82:
5110 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5111 				break;
5112 			case 0x83:
5113 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5114 				break;
5115 			case 0x86:
5116 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5117 				break;
5118 			}
5119 			counter++;
5120 		}
5121 
5122 	} else {
5123 		rval = -1;
5124 
5125 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5126 		    "sd_check_vpd_page_support: This drive does not implement "
5127 		    "VPD pages.\n");
5128 	}
5129 
5130 	kmem_free(page_list, page_length);
5131 
5132 	return (rval);
5133 }
5134 
5135 
5136 /*
5137  *    Function: sd_setup_pm
5138  *
5139  * Description: Initialize Power Management on the device
5140  *
5141  *     Context: Kernel Thread
5142  */
5143 
5144 static void
5145 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5146 {
5147 	uint_t	log_page_size;
5148 	uchar_t	*log_page_data;
5149 	int	rval;
5150 
5151 	/*
5152 	 * Since we are called from attach, holding a mutex for
5153 	 * un is unnecessary. Because some of the routines called
5154 	 * from here require SD_MUTEX to not be held, assert this
5155 	 * right up front.
5156 	 */
5157 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5158 	/*
5159 	 * Since the sd device does not have the 'reg' property,
5160 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5161 	 * The following code is to tell cpr that this device
5162 	 * DOES need to be suspended and resumed.
5163 	 */
5164 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5165 	    "pm-hardware-state", "needs-suspend-resume");
5166 
5167 	/*
5168 	 * This complies with the new power management framework
5169 	 * for certain desktop machines. Create the pm_components
5170 	 * property as a string array property.
5171 	 */
5172 	if (un->un_f_pm_supported) {
5173 		/*
5174 		 * not all devices have a motor, try it first.
5175 		 * some devices may return ILLEGAL REQUEST, some
5176 		 * will hang
5177 		 * The following START_STOP_UNIT is used to check if target
5178 		 * device has a motor.
5179 		 */
5180 		un->un_f_start_stop_supported = TRUE;
5181 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5182 		    SD_PATH_DIRECT) != 0) {
5183 			un->un_f_start_stop_supported = FALSE;
5184 		}
5185 
5186 		/*
5187 		 * create pm properties anyways otherwise the parent can't
5188 		 * go to sleep
5189 		 */
5190 		(void) sd_create_pm_components(devi, un);
5191 		un->un_f_pm_is_enabled = TRUE;
5192 		return;
5193 	}
5194 
5195 	if (!un->un_f_log_sense_supported) {
5196 		un->un_power_level = SD_SPINDLE_ON;
5197 		un->un_f_pm_is_enabled = FALSE;
5198 		return;
5199 	}
5200 
5201 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5202 
5203 #ifdef	SDDEBUG
5204 	if (sd_force_pm_supported) {
5205 		/* Force a successful result */
5206 		rval = 1;
5207 	}
5208 #endif
5209 
5210 	/*
5211 	 * If the start-stop cycle counter log page is not supported
5212 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5213 	 * then we should not create the pm_components property.
5214 	 */
5215 	if (rval == -1) {
5216 		/*
5217 		 * Error.
5218 		 * Reading log sense failed, most likely this is
5219 		 * an older drive that does not support log sense.
5220 		 * If this fails auto-pm is not supported.
5221 		 */
5222 		un->un_power_level = SD_SPINDLE_ON;
5223 		un->un_f_pm_is_enabled = FALSE;
5224 
5225 	} else if (rval == 0) {
5226 		/*
5227 		 * Page not found.
5228 		 * The start stop cycle counter is implemented as page
5229 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5230 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5231 		 */
5232 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5233 			/*
5234 			 * Page found, use this one.
5235 			 */
5236 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5237 			un->un_f_pm_is_enabled = TRUE;
5238 		} else {
5239 			/*
5240 			 * Error or page not found.
5241 			 * auto-pm is not supported for this device.
5242 			 */
5243 			un->un_power_level = SD_SPINDLE_ON;
5244 			un->un_f_pm_is_enabled = FALSE;
5245 		}
5246 	} else {
5247 		/*
5248 		 * Page found, use it.
5249 		 */
5250 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5251 		un->un_f_pm_is_enabled = TRUE;
5252 	}
5253 
5254 
5255 	if (un->un_f_pm_is_enabled == TRUE) {
5256 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5257 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5258 
5259 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5260 		    log_page_size, un->un_start_stop_cycle_page,
5261 		    0x01, 0, SD_PATH_DIRECT);
5262 #ifdef	SDDEBUG
5263 		if (sd_force_pm_supported) {
5264 			/* Force a successful result */
5265 			rval = 0;
5266 		}
5267 #endif
5268 
5269 		/*
5270 		 * If the Log sense for Page( Start/stop cycle counter page)
5271 		 * succeeds, then power managment is supported and we can
5272 		 * enable auto-pm.
5273 		 */
5274 		if (rval == 0)  {
5275 			(void) sd_create_pm_components(devi, un);
5276 		} else {
5277 			un->un_power_level = SD_SPINDLE_ON;
5278 			un->un_f_pm_is_enabled = FALSE;
5279 		}
5280 
5281 		kmem_free(log_page_data, log_page_size);
5282 	}
5283 }
5284 
5285 
5286 /*
5287  *    Function: sd_create_pm_components
5288  *
5289  * Description: Initialize PM property.
5290  *
5291  *     Context: Kernel thread context
5292  */
5293 
5294 static void
5295 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5296 {
5297 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5298 
5299 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5300 
5301 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5302 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5303 		/*
5304 		 * When components are initially created they are idle,
5305 		 * power up any non-removables.
5306 		 * Note: the return value of pm_raise_power can't be used
5307 		 * for determining if PM should be enabled for this device.
5308 		 * Even if you check the return values and remove this
5309 		 * property created above, the PM framework will not honor the
5310 		 * change after the first call to pm_raise_power. Hence,
5311 		 * removal of that property does not help if pm_raise_power
5312 		 * fails. In the case of removable media, the start/stop
5313 		 * will fail if the media is not present.
5314 		 */
5315 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5316 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5317 			mutex_enter(SD_MUTEX(un));
5318 			un->un_power_level = SD_SPINDLE_ON;
5319 			mutex_enter(&un->un_pm_mutex);
5320 			/* Set to on and not busy. */
5321 			un->un_pm_count = 0;
5322 		} else {
5323 			mutex_enter(SD_MUTEX(un));
5324 			un->un_power_level = SD_SPINDLE_OFF;
5325 			mutex_enter(&un->un_pm_mutex);
5326 			/* Set to off. */
5327 			un->un_pm_count = -1;
5328 		}
5329 		mutex_exit(&un->un_pm_mutex);
5330 		mutex_exit(SD_MUTEX(un));
5331 	} else {
5332 		un->un_power_level = SD_SPINDLE_ON;
5333 		un->un_f_pm_is_enabled = FALSE;
5334 	}
5335 }
5336 
5337 
5338 /*
5339  *    Function: sd_ddi_suspend
5340  *
5341  * Description: Performs system power-down operations. This includes
5342  *		setting the drive state to indicate its suspended so
5343  *		that no new commands will be accepted. Also, wait for
5344  *		all commands that are in transport or queued to a timer
5345  *		for retry to complete. All timeout threads are cancelled.
5346  *
5347  * Return Code: DDI_FAILURE or DDI_SUCCESS
5348  *
5349  *     Context: Kernel thread context
5350  */
5351 
5352 static int
5353 sd_ddi_suspend(dev_info_t *devi)
5354 {
5355 	struct	sd_lun	*un;
5356 	clock_t		wait_cmds_complete;
5357 
5358 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5359 	if (un == NULL) {
5360 		return (DDI_FAILURE);
5361 	}
5362 
5363 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5364 
5365 	mutex_enter(SD_MUTEX(un));
5366 
5367 	/* Return success if the device is already suspended. */
5368 	if (un->un_state == SD_STATE_SUSPENDED) {
5369 		mutex_exit(SD_MUTEX(un));
5370 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5371 		    "device already suspended, exiting\n");
5372 		return (DDI_SUCCESS);
5373 	}
5374 
5375 	/* Return failure if the device is being used by HA */
5376 	if (un->un_resvd_status &
5377 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5378 		mutex_exit(SD_MUTEX(un));
5379 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5380 		    "device in use by HA, exiting\n");
5381 		return (DDI_FAILURE);
5382 	}
5383 
5384 	/*
5385 	 * Return failure if the device is in a resource wait
5386 	 * or power changing state.
5387 	 */
5388 	if ((un->un_state == SD_STATE_RWAIT) ||
5389 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5390 		mutex_exit(SD_MUTEX(un));
5391 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5392 		    "device in resource wait state, exiting\n");
5393 		return (DDI_FAILURE);
5394 	}
5395 
5396 
5397 	un->un_save_state = un->un_last_state;
5398 	New_state(un, SD_STATE_SUSPENDED);
5399 
5400 	/*
5401 	 * Wait for all commands that are in transport or queued to a timer
5402 	 * for retry to complete.
5403 	 *
5404 	 * While waiting, no new commands will be accepted or sent because of
5405 	 * the new state we set above.
5406 	 *
5407 	 * Wait till current operation has completed. If we are in the resource
5408 	 * wait state (with an intr outstanding) then we need to wait till the
5409 	 * intr completes and starts the next cmd. We want to wait for
5410 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5411 	 */
5412 	wait_cmds_complete = ddi_get_lbolt() +
5413 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5414 
5415 	while (un->un_ncmds_in_transport != 0) {
5416 		/*
5417 		 * Fail if commands do not finish in the specified time.
5418 		 */
5419 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5420 		    wait_cmds_complete) == -1) {
5421 			/*
5422 			 * Undo the state changes made above. Everything
5423 			 * must go back to it's original value.
5424 			 */
5425 			Restore_state(un);
5426 			un->un_last_state = un->un_save_state;
5427 			/* Wake up any threads that might be waiting. */
5428 			cv_broadcast(&un->un_suspend_cv);
5429 			mutex_exit(SD_MUTEX(un));
5430 			SD_ERROR(SD_LOG_IO_PM, un,
5431 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5432 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5433 			return (DDI_FAILURE);
5434 		}
5435 	}
5436 
5437 	/*
5438 	 * Cancel SCSI watch thread and timeouts, if any are active
5439 	 */
5440 
5441 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5442 		opaque_t temp_token = un->un_swr_token;
5443 		mutex_exit(SD_MUTEX(un));
5444 		scsi_watch_suspend(temp_token);
5445 		mutex_enter(SD_MUTEX(un));
5446 	}
5447 
5448 	if (un->un_reset_throttle_timeid != NULL) {
5449 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5450 		un->un_reset_throttle_timeid = NULL;
5451 		mutex_exit(SD_MUTEX(un));
5452 		(void) untimeout(temp_id);
5453 		mutex_enter(SD_MUTEX(un));
5454 	}
5455 
5456 	if (un->un_dcvb_timeid != NULL) {
5457 		timeout_id_t temp_id = un->un_dcvb_timeid;
5458 		un->un_dcvb_timeid = NULL;
5459 		mutex_exit(SD_MUTEX(un));
5460 		(void) untimeout(temp_id);
5461 		mutex_enter(SD_MUTEX(un));
5462 	}
5463 
5464 	mutex_enter(&un->un_pm_mutex);
5465 	if (un->un_pm_timeid != NULL) {
5466 		timeout_id_t temp_id = un->un_pm_timeid;
5467 		un->un_pm_timeid = NULL;
5468 		mutex_exit(&un->un_pm_mutex);
5469 		mutex_exit(SD_MUTEX(un));
5470 		(void) untimeout(temp_id);
5471 		mutex_enter(SD_MUTEX(un));
5472 	} else {
5473 		mutex_exit(&un->un_pm_mutex);
5474 	}
5475 
5476 	if (un->un_retry_timeid != NULL) {
5477 		timeout_id_t temp_id = un->un_retry_timeid;
5478 		un->un_retry_timeid = NULL;
5479 		mutex_exit(SD_MUTEX(un));
5480 		(void) untimeout(temp_id);
5481 		mutex_enter(SD_MUTEX(un));
5482 
5483 		if (un->un_retry_bp != NULL) {
5484 			un->un_retry_bp->av_forw = un->un_waitq_headp;
5485 			un->un_waitq_headp = un->un_retry_bp;
5486 			if (un->un_waitq_tailp == NULL) {
5487 				un->un_waitq_tailp = un->un_retry_bp;
5488 			}
5489 			un->un_retry_bp = NULL;
5490 			un->un_retry_statp = NULL;
5491 		}
5492 	}
5493 
5494 	if (un->un_direct_priority_timeid != NULL) {
5495 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5496 		un->un_direct_priority_timeid = NULL;
5497 		mutex_exit(SD_MUTEX(un));
5498 		(void) untimeout(temp_id);
5499 		mutex_enter(SD_MUTEX(un));
5500 	}
5501 
5502 	if (un->un_f_is_fibre == TRUE) {
5503 		/*
5504 		 * Remove callbacks for insert and remove events
5505 		 */
5506 		if (un->un_insert_event != NULL) {
5507 			mutex_exit(SD_MUTEX(un));
5508 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5509 			mutex_enter(SD_MUTEX(un));
5510 			un->un_insert_event = NULL;
5511 		}
5512 
5513 		if (un->un_remove_event != NULL) {
5514 			mutex_exit(SD_MUTEX(un));
5515 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5516 			mutex_enter(SD_MUTEX(un));
5517 			un->un_remove_event = NULL;
5518 		}
5519 	}
5520 
5521 	mutex_exit(SD_MUTEX(un));
5522 
5523 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5524 
5525 	return (DDI_SUCCESS);
5526 }
5527 
5528 
5529 /*
5530  *    Function: sd_ddi_pm_suspend
5531  *
5532  * Description: Set the drive state to low power.
5533  *		Someone else is required to actually change the drive
5534  *		power level.
5535  *
5536  *   Arguments: un - driver soft state (unit) structure
5537  *
5538  * Return Code: DDI_FAILURE or DDI_SUCCESS
5539  *
5540  *     Context: Kernel thread context
5541  */
5542 
5543 static int
5544 sd_ddi_pm_suspend(struct sd_lun *un)
5545 {
5546 	ASSERT(un != NULL);
5547 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5548 
5549 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5550 	mutex_enter(SD_MUTEX(un));
5551 
5552 	/*
5553 	 * Exit if power management is not enabled for this device, or if
5554 	 * the device is being used by HA.
5555 	 */
5556 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5557 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5558 		mutex_exit(SD_MUTEX(un));
5559 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5560 		return (DDI_SUCCESS);
5561 	}
5562 
5563 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5564 	    un->un_ncmds_in_driver);
5565 
5566 	/*
5567 	 * See if the device is not busy, ie.:
5568 	 *    - we have no commands in the driver for this device
5569 	 *    - not waiting for resources
5570 	 */
5571 	if ((un->un_ncmds_in_driver == 0) &&
5572 	    (un->un_state != SD_STATE_RWAIT)) {
5573 		/*
5574 		 * The device is not busy, so it is OK to go to low power state.
5575 		 * Indicate low power, but rely on someone else to actually
5576 		 * change it.
5577 		 */
5578 		mutex_enter(&un->un_pm_mutex);
5579 		un->un_pm_count = -1;
5580 		mutex_exit(&un->un_pm_mutex);
5581 		un->un_power_level = SD_SPINDLE_OFF;
5582 	}
5583 
5584 	mutex_exit(SD_MUTEX(un));
5585 
5586 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5587 
5588 	return (DDI_SUCCESS);
5589 }
5590 
5591 
5592 /*
5593  *    Function: sd_ddi_resume
5594  *
5595  * Description: Performs system power-up operations..
5596  *
5597  * Return Code: DDI_SUCCESS
5598  *		DDI_FAILURE
5599  *
5600  *     Context: Kernel thread context
5601  */
5602 
5603 static int
5604 sd_ddi_resume(dev_info_t *devi)
5605 {
5606 	struct	sd_lun	*un;
5607 
5608 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5609 	if (un == NULL) {
5610 		return (DDI_FAILURE);
5611 	}
5612 
5613 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5614 
5615 	mutex_enter(SD_MUTEX(un));
5616 	Restore_state(un);
5617 
5618 	/*
5619 	 * Restore the state which was saved to give the
5620 	 * the right state in un_last_state
5621 	 */
5622 	un->un_last_state = un->un_save_state;
5623 	/*
5624 	 * Note: throttle comes back at full.
5625 	 * Also note: this MUST be done before calling pm_raise_power
5626 	 * otherwise the system can get hung in biowait. The scenario where
5627 	 * this'll happen is under cpr suspend. Writing of the system
5628 	 * state goes through sddump, which writes 0 to un_throttle. If
5629 	 * writing the system state then fails, example if the partition is
5630 	 * too small, then cpr attempts a resume. If throttle isn't restored
5631 	 * from the saved value until after calling pm_raise_power then
5632 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5633 	 * in biowait.
5634 	 */
5635 	un->un_throttle = un->un_saved_throttle;
5636 
5637 	/*
5638 	 * The chance of failure is very rare as the only command done in power
5639 	 * entry point is START command when you transition from 0->1 or
5640 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5641 	 * which suspend was done. Ignore the return value as the resume should
5642 	 * not be failed. In the case of removable media the media need not be
5643 	 * inserted and hence there is a chance that raise power will fail with
5644 	 * media not present.
5645 	 */
5646 	if (un->un_f_attach_spinup) {
5647 		mutex_exit(SD_MUTEX(un));
5648 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5649 		mutex_enter(SD_MUTEX(un));
5650 	}
5651 
5652 	/*
5653 	 * Don't broadcast to the suspend cv and therefore possibly
5654 	 * start I/O until after power has been restored.
5655 	 */
5656 	cv_broadcast(&un->un_suspend_cv);
5657 	cv_broadcast(&un->un_state_cv);
5658 
5659 	/* restart thread */
5660 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5661 		scsi_watch_resume(un->un_swr_token);
5662 	}
5663 
5664 #if (defined(__fibre))
5665 	if (un->un_f_is_fibre == TRUE) {
5666 		/*
5667 		 * Add callbacks for insert and remove events
5668 		 */
5669 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5670 			sd_init_event_callbacks(un);
5671 		}
5672 	}
5673 #endif
5674 
5675 	/*
5676 	 * Transport any pending commands to the target.
5677 	 *
5678 	 * If this is a low-activity device commands in queue will have to wait
5679 	 * until new commands come in, which may take awhile. Also, we
5680 	 * specifically don't check un_ncmds_in_transport because we know that
5681 	 * there really are no commands in progress after the unit was
5682 	 * suspended and we could have reached the throttle level, been
5683 	 * suspended, and have no new commands coming in for awhile. Highly
5684 	 * unlikely, but so is the low-activity disk scenario.
5685 	 */
5686 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5687 
5688 	sd_start_cmds(un, NULL);
5689 	mutex_exit(SD_MUTEX(un));
5690 
5691 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5692 
5693 	return (DDI_SUCCESS);
5694 }
5695 
5696 
5697 /*
5698  *    Function: sd_ddi_pm_resume
5699  *
5700  * Description: Set the drive state to powered on.
5701  *		Someone else is required to actually change the drive
5702  *		power level.
5703  *
5704  *   Arguments: un - driver soft state (unit) structure
5705  *
5706  * Return Code: DDI_SUCCESS
5707  *
5708  *     Context: Kernel thread context
5709  */
5710 
5711 static int
5712 sd_ddi_pm_resume(struct sd_lun *un)
5713 {
5714 	ASSERT(un != NULL);
5715 
5716 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5717 	mutex_enter(SD_MUTEX(un));
5718 	un->un_power_level = SD_SPINDLE_ON;
5719 
5720 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5721 	mutex_enter(&un->un_pm_mutex);
5722 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5723 		un->un_pm_count++;
5724 		ASSERT(un->un_pm_count == 0);
5725 		/*
5726 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5727 		 * un_suspend_cv is for a system resume, not a power management
5728 		 * device resume. (4297749)
5729 		 *	 cv_broadcast(&un->un_suspend_cv);
5730 		 */
5731 	}
5732 	mutex_exit(&un->un_pm_mutex);
5733 	mutex_exit(SD_MUTEX(un));
5734 
5735 	return (DDI_SUCCESS);
5736 }
5737 
5738 
5739 /*
5740  *    Function: sd_pm_idletimeout_handler
5741  *
5742  * Description: A timer routine that's active only while a device is busy.
5743  *		The purpose is to extend slightly the pm framework's busy
5744  *		view of the device to prevent busy/idle thrashing for
5745  *		back-to-back commands. Do this by comparing the current time
5746  *		to the time at which the last command completed and when the
5747  *		difference is greater than sd_pm_idletime, call
5748  *		pm_idle_component. In addition to indicating idle to the pm
5749  *		framework, update the chain type to again use the internal pm
5750  *		layers of the driver.
5751  *
5752  *   Arguments: arg - driver soft state (unit) structure
5753  *
5754  *     Context: Executes in a timeout(9F) thread context
5755  */
5756 
5757 static void
5758 sd_pm_idletimeout_handler(void *arg)
5759 {
5760 	struct sd_lun *un = arg;
5761 
5762 	time_t	now;
5763 
5764 	mutex_enter(&sd_detach_mutex);
5765 	if (un->un_detach_count != 0) {
5766 		/* Abort if the instance is detaching */
5767 		mutex_exit(&sd_detach_mutex);
5768 		return;
5769 	}
5770 	mutex_exit(&sd_detach_mutex);
5771 
5772 	now = ddi_get_time();
5773 	/*
5774 	 * Grab both mutexes, in the proper order, since we're accessing
5775 	 * both PM and softstate variables.
5776 	 */
5777 	mutex_enter(SD_MUTEX(un));
5778 	mutex_enter(&un->un_pm_mutex);
5779 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5780 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5781 		/*
5782 		 * Update the chain types.
5783 		 * This takes affect on the next new command received.
5784 		 */
5785 		if (un->un_f_non_devbsize_supported) {
5786 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5787 		} else {
5788 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5789 		}
5790 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5791 
5792 		SD_TRACE(SD_LOG_IO_PM, un,
5793 		    "sd_pm_idletimeout_handler: idling device\n");
5794 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5795 		un->un_pm_idle_timeid = NULL;
5796 	} else {
5797 		un->un_pm_idle_timeid =
5798 		    timeout(sd_pm_idletimeout_handler, un,
5799 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
5800 	}
5801 	mutex_exit(&un->un_pm_mutex);
5802 	mutex_exit(SD_MUTEX(un));
5803 }
5804 
5805 
5806 /*
5807  *    Function: sd_pm_timeout_handler
5808  *
5809  * Description: Callback to tell framework we are idle.
5810  *
5811  *     Context: timeout(9f) thread context.
5812  */
5813 
5814 static void
5815 sd_pm_timeout_handler(void *arg)
5816 {
5817 	struct sd_lun *un = arg;
5818 
5819 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5820 	mutex_enter(&un->un_pm_mutex);
5821 	un->un_pm_timeid = NULL;
5822 	mutex_exit(&un->un_pm_mutex);
5823 }
5824 
5825 
5826 /*
5827  *    Function: sdpower
5828  *
5829  * Description: PM entry point.
5830  *
5831  * Return Code: DDI_SUCCESS
5832  *		DDI_FAILURE
5833  *
5834  *     Context: Kernel thread context
5835  */
5836 
5837 static int
5838 sdpower(dev_info_t *devi, int component, int level)
5839 {
5840 	struct sd_lun	*un;
5841 	int		instance;
5842 	int		rval = DDI_SUCCESS;
5843 	uint_t		i, log_page_size, maxcycles, ncycles;
5844 	uchar_t		*log_page_data;
5845 	int		log_sense_page;
5846 	int		medium_present;
5847 	time_t		intvlp;
5848 	dev_t		dev;
5849 	struct pm_trans_data	sd_pm_tran_data;
5850 	uchar_t		save_state;
5851 	int		sval;
5852 	uchar_t		state_before_pm;
5853 	int		got_semaphore_here;
5854 
5855 	instance = ddi_get_instance(devi);
5856 
5857 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5858 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5859 	    component != 0) {
5860 		return (DDI_FAILURE);
5861 	}
5862 
5863 	dev = sd_make_device(SD_DEVINFO(un));
5864 
5865 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5866 
5867 	/*
5868 	 * Must synchronize power down with close.
5869 	 * Attempt to decrement/acquire the open/close semaphore,
5870 	 * but do NOT wait on it. If it's not greater than zero,
5871 	 * ie. it can't be decremented without waiting, then
5872 	 * someone else, either open or close, already has it
5873 	 * and the try returns 0. Use that knowledge here to determine
5874 	 * if it's OK to change the device power level.
5875 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5876 	 * here.
5877 	 */
5878 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5879 
5880 	mutex_enter(SD_MUTEX(un));
5881 
5882 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5883 	    un->un_ncmds_in_driver);
5884 
5885 	/*
5886 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5887 	 * already being processed in the driver, or if the semaphore was
5888 	 * not gotten here it indicates an open or close is being processed.
5889 	 * At the same time somebody is requesting to go low power which
5890 	 * can't happen, therefore we need to return failure.
5891 	 */
5892 	if ((level == SD_SPINDLE_OFF) &&
5893 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5894 		mutex_exit(SD_MUTEX(un));
5895 
5896 		if (got_semaphore_here != 0) {
5897 			sema_v(&un->un_semoclose);
5898 		}
5899 		SD_TRACE(SD_LOG_IO_PM, un,
5900 		    "sdpower: exit, device has queued cmds.\n");
5901 		return (DDI_FAILURE);
5902 	}
5903 
5904 	/*
5905 	 * if it is OFFLINE that means the disk is completely dead
5906 	 * in our case we have to put the disk in on or off by sending commands
5907 	 * Of course that will fail anyway so return back here.
5908 	 *
5909 	 * Power changes to a device that's OFFLINE or SUSPENDED
5910 	 * are not allowed.
5911 	 */
5912 	if ((un->un_state == SD_STATE_OFFLINE) ||
5913 	    (un->un_state == SD_STATE_SUSPENDED)) {
5914 		mutex_exit(SD_MUTEX(un));
5915 
5916 		if (got_semaphore_here != 0) {
5917 			sema_v(&un->un_semoclose);
5918 		}
5919 		SD_TRACE(SD_LOG_IO_PM, un,
5920 		    "sdpower: exit, device is off-line.\n");
5921 		return (DDI_FAILURE);
5922 	}
5923 
5924 	/*
5925 	 * Change the device's state to indicate it's power level
5926 	 * is being changed. Do this to prevent a power off in the
5927 	 * middle of commands, which is especially bad on devices
5928 	 * that are really powered off instead of just spun down.
5929 	 */
5930 	state_before_pm = un->un_state;
5931 	un->un_state = SD_STATE_PM_CHANGING;
5932 
5933 	mutex_exit(SD_MUTEX(un));
5934 
5935 	/*
5936 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5937 	 * bypass the following checking, otherwise, check the log
5938 	 * sense information for this device
5939 	 */
5940 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5941 		/*
5942 		 * Get the log sense information to understand whether the
5943 		 * the powercycle counts have gone beyond the threshhold.
5944 		 */
5945 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5946 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5947 
5948 		mutex_enter(SD_MUTEX(un));
5949 		log_sense_page = un->un_start_stop_cycle_page;
5950 		mutex_exit(SD_MUTEX(un));
5951 
5952 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5953 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5954 #ifdef	SDDEBUG
5955 		if (sd_force_pm_supported) {
5956 			/* Force a successful result */
5957 			rval = 0;
5958 		}
5959 #endif
5960 		if (rval != 0) {
5961 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5962 			    "Log Sense Failed\n");
5963 			kmem_free(log_page_data, log_page_size);
5964 			/* Cannot support power management on those drives */
5965 
5966 			if (got_semaphore_here != 0) {
5967 				sema_v(&un->un_semoclose);
5968 			}
5969 			/*
5970 			 * On exit put the state back to it's original value
5971 			 * and broadcast to anyone waiting for the power
5972 			 * change completion.
5973 			 */
5974 			mutex_enter(SD_MUTEX(un));
5975 			un->un_state = state_before_pm;
5976 			cv_broadcast(&un->un_suspend_cv);
5977 			mutex_exit(SD_MUTEX(un));
5978 			SD_TRACE(SD_LOG_IO_PM, un,
5979 			    "sdpower: exit, Log Sense Failed.\n");
5980 			return (DDI_FAILURE);
5981 		}
5982 
5983 		/*
5984 		 * From the page data - Convert the essential information to
5985 		 * pm_trans_data
5986 		 */
5987 		maxcycles =
5988 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5989 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5990 
5991 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5992 
5993 		ncycles =
5994 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
5995 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
5996 
5997 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
5998 
5999 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6000 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6001 			    log_page_data[8+i];
6002 		}
6003 
6004 		kmem_free(log_page_data, log_page_size);
6005 
6006 		/*
6007 		 * Call pm_trans_check routine to get the Ok from
6008 		 * the global policy
6009 		 */
6010 
6011 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6012 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6013 
6014 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6015 #ifdef	SDDEBUG
6016 		if (sd_force_pm_supported) {
6017 			/* Force a successful result */
6018 			rval = 1;
6019 		}
6020 #endif
6021 		switch (rval) {
6022 		case 0:
6023 			/*
6024 			 * Not Ok to Power cycle or error in parameters passed
6025 			 * Would have given the advised time to consider power
6026 			 * cycle. Based on the new intvlp parameter we are
6027 			 * supposed to pretend we are busy so that pm framework
6028 			 * will never call our power entry point. Because of
6029 			 * that install a timeout handler and wait for the
6030 			 * recommended time to elapse so that power management
6031 			 * can be effective again.
6032 			 *
6033 			 * To effect this behavior, call pm_busy_component to
6034 			 * indicate to the framework this device is busy.
6035 			 * By not adjusting un_pm_count the rest of PM in
6036 			 * the driver will function normally, and independant
6037 			 * of this but because the framework is told the device
6038 			 * is busy it won't attempt powering down until it gets
6039 			 * a matching idle. The timeout handler sends this.
6040 			 * Note: sd_pm_entry can't be called here to do this
6041 			 * because sdpower may have been called as a result
6042 			 * of a call to pm_raise_power from within sd_pm_entry.
6043 			 *
6044 			 * If a timeout handler is already active then
6045 			 * don't install another.
6046 			 */
6047 			mutex_enter(&un->un_pm_mutex);
6048 			if (un->un_pm_timeid == NULL) {
6049 				un->un_pm_timeid =
6050 				    timeout(sd_pm_timeout_handler,
6051 				    un, intvlp * drv_usectohz(1000000));
6052 				mutex_exit(&un->un_pm_mutex);
6053 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6054 			} else {
6055 				mutex_exit(&un->un_pm_mutex);
6056 			}
6057 			if (got_semaphore_here != 0) {
6058 				sema_v(&un->un_semoclose);
6059 			}
6060 			/*
6061 			 * On exit put the state back to it's original value
6062 			 * and broadcast to anyone waiting for the power
6063 			 * change completion.
6064 			 */
6065 			mutex_enter(SD_MUTEX(un));
6066 			un->un_state = state_before_pm;
6067 			cv_broadcast(&un->un_suspend_cv);
6068 			mutex_exit(SD_MUTEX(un));
6069 
6070 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6071 			    "trans check Failed, not ok to power cycle.\n");
6072 			return (DDI_FAILURE);
6073 
6074 		case -1:
6075 			if (got_semaphore_here != 0) {
6076 				sema_v(&un->un_semoclose);
6077 			}
6078 			/*
6079 			 * On exit put the state back to it's original value
6080 			 * and broadcast to anyone waiting for the power
6081 			 * change completion.
6082 			 */
6083 			mutex_enter(SD_MUTEX(un));
6084 			un->un_state = state_before_pm;
6085 			cv_broadcast(&un->un_suspend_cv);
6086 			mutex_exit(SD_MUTEX(un));
6087 			SD_TRACE(SD_LOG_IO_PM, un,
6088 			    "sdpower: exit, trans check command Failed.\n");
6089 			return (DDI_FAILURE);
6090 		}
6091 	}
6092 
6093 	if (level == SD_SPINDLE_OFF) {
6094 		/*
6095 		 * Save the last state... if the STOP FAILS we need it
6096 		 * for restoring
6097 		 */
6098 		mutex_enter(SD_MUTEX(un));
6099 		save_state = un->un_last_state;
6100 		/*
6101 		 * There must not be any cmds. getting processed
6102 		 * in the driver when we get here. Power to the
6103 		 * device is potentially going off.
6104 		 */
6105 		ASSERT(un->un_ncmds_in_driver == 0);
6106 		mutex_exit(SD_MUTEX(un));
6107 
6108 		/*
6109 		 * For now suspend the device completely before spindle is
6110 		 * turned off
6111 		 */
6112 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6113 			if (got_semaphore_here != 0) {
6114 				sema_v(&un->un_semoclose);
6115 			}
6116 			/*
6117 			 * On exit put the state back to it's original value
6118 			 * and broadcast to anyone waiting for the power
6119 			 * change completion.
6120 			 */
6121 			mutex_enter(SD_MUTEX(un));
6122 			un->un_state = state_before_pm;
6123 			cv_broadcast(&un->un_suspend_cv);
6124 			mutex_exit(SD_MUTEX(un));
6125 			SD_TRACE(SD_LOG_IO_PM, un,
6126 			    "sdpower: exit, PM suspend Failed.\n");
6127 			return (DDI_FAILURE);
6128 		}
6129 	}
6130 
6131 	/*
6132 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6133 	 * close, or strategy. Dump no long uses this routine, it uses it's
6134 	 * own code so it can be done in polled mode.
6135 	 */
6136 
6137 	medium_present = TRUE;
6138 
6139 	/*
6140 	 * When powering up, issue a TUR in case the device is at unit
6141 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6142 	 * a deadlock on un_pm_busy_cv will occur.
6143 	 */
6144 	if (level == SD_SPINDLE_ON) {
6145 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6146 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6147 	}
6148 
6149 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6150 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6151 
6152 	sval = sd_send_scsi_START_STOP_UNIT(un,
6153 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6154 	    SD_PATH_DIRECT);
6155 	/* Command failed, check for media present. */
6156 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6157 		medium_present = FALSE;
6158 	}
6159 
6160 	/*
6161 	 * The conditions of interest here are:
6162 	 *   if a spindle off with media present fails,
6163 	 *	then restore the state and return an error.
6164 	 *   else if a spindle on fails,
6165 	 *	then return an error (there's no state to restore).
6166 	 * In all other cases we setup for the new state
6167 	 * and return success.
6168 	 */
6169 	switch (level) {
6170 	case SD_SPINDLE_OFF:
6171 		if ((medium_present == TRUE) && (sval != 0)) {
6172 			/* The stop command from above failed */
6173 			rval = DDI_FAILURE;
6174 			/*
6175 			 * The stop command failed, and we have media
6176 			 * present. Put the level back by calling the
6177 			 * sd_pm_resume() and set the state back to
6178 			 * it's previous value.
6179 			 */
6180 			(void) sd_ddi_pm_resume(un);
6181 			mutex_enter(SD_MUTEX(un));
6182 			un->un_last_state = save_state;
6183 			mutex_exit(SD_MUTEX(un));
6184 			break;
6185 		}
6186 		/*
6187 		 * The stop command from above succeeded.
6188 		 */
6189 		if (un->un_f_monitor_media_state) {
6190 			/*
6191 			 * Terminate watch thread in case of removable media
6192 			 * devices going into low power state. This is as per
6193 			 * the requirements of pm framework, otherwise commands
6194 			 * will be generated for the device (through watch
6195 			 * thread), even when the device is in low power state.
6196 			 */
6197 			mutex_enter(SD_MUTEX(un));
6198 			un->un_f_watcht_stopped = FALSE;
6199 			if (un->un_swr_token != NULL) {
6200 				opaque_t temp_token = un->un_swr_token;
6201 				un->un_f_watcht_stopped = TRUE;
6202 				un->un_swr_token = NULL;
6203 				mutex_exit(SD_MUTEX(un));
6204 				(void) scsi_watch_request_terminate(temp_token,
6205 				    SCSI_WATCH_TERMINATE_WAIT);
6206 			} else {
6207 				mutex_exit(SD_MUTEX(un));
6208 			}
6209 		}
6210 		break;
6211 
6212 	default:	/* The level requested is spindle on... */
6213 		/*
6214 		 * Legacy behavior: return success on a failed spinup
6215 		 * if there is no media in the drive.
6216 		 * Do this by looking at medium_present here.
6217 		 */
6218 		if ((sval != 0) && medium_present) {
6219 			/* The start command from above failed */
6220 			rval = DDI_FAILURE;
6221 			break;
6222 		}
6223 		/*
6224 		 * The start command from above succeeded
6225 		 * Resume the devices now that we have
6226 		 * started the disks
6227 		 */
6228 		(void) sd_ddi_pm_resume(un);
6229 
6230 		/*
6231 		 * Resume the watch thread since it was suspended
6232 		 * when the device went into low power mode.
6233 		 */
6234 		if (un->un_f_monitor_media_state) {
6235 			mutex_enter(SD_MUTEX(un));
6236 			if (un->un_f_watcht_stopped == TRUE) {
6237 				opaque_t temp_token;
6238 
6239 				un->un_f_watcht_stopped = FALSE;
6240 				mutex_exit(SD_MUTEX(un));
6241 				temp_token = scsi_watch_request_submit(
6242 				    SD_SCSI_DEVP(un),
6243 				    sd_check_media_time,
6244 				    SENSE_LENGTH, sd_media_watch_cb,
6245 				    (caddr_t)dev);
6246 				mutex_enter(SD_MUTEX(un));
6247 				un->un_swr_token = temp_token;
6248 			}
6249 			mutex_exit(SD_MUTEX(un));
6250 		}
6251 	}
6252 	if (got_semaphore_here != 0) {
6253 		sema_v(&un->un_semoclose);
6254 	}
6255 	/*
6256 	 * On exit put the state back to it's original value
6257 	 * and broadcast to anyone waiting for the power
6258 	 * change completion.
6259 	 */
6260 	mutex_enter(SD_MUTEX(un));
6261 	un->un_state = state_before_pm;
6262 	cv_broadcast(&un->un_suspend_cv);
6263 	mutex_exit(SD_MUTEX(un));
6264 
6265 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6266 
6267 	return (rval);
6268 }
6269 
6270 
6271 
6272 /*
6273  *    Function: sdattach
6274  *
6275  * Description: Driver's attach(9e) entry point function.
6276  *
6277  *   Arguments: devi - opaque device info handle
6278  *		cmd  - attach  type
6279  *
6280  * Return Code: DDI_SUCCESS
6281  *		DDI_FAILURE
6282  *
6283  *     Context: Kernel thread context
6284  */
6285 
6286 static int
6287 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6288 {
6289 	switch (cmd) {
6290 	case DDI_ATTACH:
6291 		return (sd_unit_attach(devi));
6292 	case DDI_RESUME:
6293 		return (sd_ddi_resume(devi));
6294 	default:
6295 		break;
6296 	}
6297 	return (DDI_FAILURE);
6298 }
6299 
6300 
6301 /*
6302  *    Function: sddetach
6303  *
6304  * Description: Driver's detach(9E) entry point function.
6305  *
6306  *   Arguments: devi - opaque device info handle
6307  *		cmd  - detach  type
6308  *
6309  * Return Code: DDI_SUCCESS
6310  *		DDI_FAILURE
6311  *
6312  *     Context: Kernel thread context
6313  */
6314 
6315 static int
6316 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6317 {
6318 	switch (cmd) {
6319 	case DDI_DETACH:
6320 		return (sd_unit_detach(devi));
6321 	case DDI_SUSPEND:
6322 		return (sd_ddi_suspend(devi));
6323 	default:
6324 		break;
6325 	}
6326 	return (DDI_FAILURE);
6327 }
6328 
6329 
6330 /*
6331  *     Function: sd_sync_with_callback
6332  *
6333  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6334  *		 state while the callback routine is active.
6335  *
6336  *    Arguments: un: softstate structure for the instance
6337  *
6338  *	Context: Kernel thread context
6339  */
6340 
6341 static void
6342 sd_sync_with_callback(struct sd_lun *un)
6343 {
6344 	ASSERT(un != NULL);
6345 
6346 	mutex_enter(SD_MUTEX(un));
6347 
6348 	ASSERT(un->un_in_callback >= 0);
6349 
6350 	while (un->un_in_callback > 0) {
6351 		mutex_exit(SD_MUTEX(un));
6352 		delay(2);
6353 		mutex_enter(SD_MUTEX(un));
6354 	}
6355 
6356 	mutex_exit(SD_MUTEX(un));
6357 }
6358 
6359 /*
6360  *    Function: sd_unit_attach
6361  *
6362  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6363  *		the soft state structure for the device and performs
6364  *		all necessary structure and device initializations.
6365  *
6366  *   Arguments: devi: the system's dev_info_t for the device.
6367  *
6368  * Return Code: DDI_SUCCESS if attach is successful.
6369  *		DDI_FAILURE if any part of the attach fails.
6370  *
6371  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6372  *		Kernel thread context only.  Can sleep.
6373  */
6374 
6375 static int
6376 sd_unit_attach(dev_info_t *devi)
6377 {
6378 	struct	scsi_device	*devp;
6379 	struct	sd_lun		*un;
6380 	char			*variantp;
6381 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6382 	int	instance;
6383 	int	rval;
6384 	int	wc_enabled;
6385 	int	tgt;
6386 	uint64_t	capacity;
6387 	uint_t		lbasize = 0;
6388 	dev_info_t	*pdip = ddi_get_parent(devi);
6389 	int		offbyone = 0;
6390 	int		geom_label_valid = 0;
6391 #if defined(__sparc)
6392 	int		max_xfer_size;
6393 #endif
6394 
6395 	/*
6396 	 * Retrieve the target driver's private data area. This was set
6397 	 * up by the HBA.
6398 	 */
6399 	devp = ddi_get_driver_private(devi);
6400 
6401 	/*
6402 	 * Retrieve the target ID of the device.
6403 	 */
6404 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6405 	    SCSI_ADDR_PROP_TARGET, -1);
6406 
6407 	/*
6408 	 * Since we have no idea what state things were left in by the last
6409 	 * user of the device, set up some 'default' settings, ie. turn 'em
6410 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6411 	 * Do this before the scsi_probe, which sends an inquiry.
6412 	 * This is a fix for bug (4430280).
6413 	 * Of special importance is wide-xfer. The drive could have been left
6414 	 * in wide transfer mode by the last driver to communicate with it,
6415 	 * this includes us. If that's the case, and if the following is not
6416 	 * setup properly or we don't re-negotiate with the drive prior to
6417 	 * transferring data to/from the drive, it causes bus parity errors,
6418 	 * data overruns, and unexpected interrupts. This first occurred when
6419 	 * the fix for bug (4378686) was made.
6420 	 */
6421 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6422 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6423 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6424 
6425 	/*
6426 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6427 	 * on a target. Setting it per lun instance actually sets the
6428 	 * capability of this target, which affects those luns already
6429 	 * attached on the same target. So during attach, we can only disable
6430 	 * this capability only when no other lun has been attached on this
6431 	 * target. By doing this, we assume a target has the same tagged-qing
6432 	 * capability for every lun. The condition can be removed when HBA
6433 	 * is changed to support per lun based tagged-qing capability.
6434 	 */
6435 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6436 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6437 	}
6438 
6439 	/*
6440 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6441 	 * This call will allocate and fill in the scsi_inquiry structure
6442 	 * and point the sd_inq member of the scsi_device structure to it.
6443 	 * If the attach succeeds, then this memory will not be de-allocated
6444 	 * (via scsi_unprobe()) until the instance is detached.
6445 	 */
6446 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6447 		goto probe_failed;
6448 	}
6449 
6450 	/*
6451 	 * Check the device type as specified in the inquiry data and
6452 	 * claim it if it is of a type that we support.
6453 	 */
6454 	switch (devp->sd_inq->inq_dtype) {
6455 	case DTYPE_DIRECT:
6456 		break;
6457 	case DTYPE_RODIRECT:
6458 		break;
6459 	case DTYPE_OPTICAL:
6460 		break;
6461 	case DTYPE_NOTPRESENT:
6462 	default:
6463 		/* Unsupported device type; fail the attach. */
6464 		goto probe_failed;
6465 	}
6466 
6467 	/*
6468 	 * Allocate the soft state structure for this unit.
6469 	 *
6470 	 * We rely upon this memory being set to all zeroes by
6471 	 * ddi_soft_state_zalloc().  We assume that any member of the
6472 	 * soft state structure that is not explicitly initialized by
6473 	 * this routine will have a value of zero.
6474 	 */
6475 	instance = ddi_get_instance(devp->sd_dev);
6476 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6477 		goto probe_failed;
6478 	}
6479 
6480 	/*
6481 	 * Retrieve a pointer to the newly-allocated soft state.
6482 	 *
6483 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6484 	 * was successful, unless something has gone horribly wrong and the
6485 	 * ddi's soft state internals are corrupt (in which case it is
6486 	 * probably better to halt here than just fail the attach....)
6487 	 */
6488 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6489 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6490 		    instance);
6491 		/*NOTREACHED*/
6492 	}
6493 
6494 	/*
6495 	 * Link the back ptr of the driver soft state to the scsi_device
6496 	 * struct for this lun.
6497 	 * Save a pointer to the softstate in the driver-private area of
6498 	 * the scsi_device struct.
6499 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6500 	 * we first set un->un_sd below.
6501 	 */
6502 	un->un_sd = devp;
6503 	devp->sd_private = (opaque_t)un;
6504 
6505 	/*
6506 	 * The following must be after devp is stored in the soft state struct.
6507 	 */
6508 #ifdef SDDEBUG
6509 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6510 	    "%s_unit_attach: un:0x%p instance:%d\n",
6511 	    ddi_driver_name(devi), un, instance);
6512 #endif
6513 
6514 	/*
6515 	 * Set up the device type and node type (for the minor nodes).
6516 	 * By default we assume that the device can at least support the
6517 	 * Common Command Set. Call it a CD-ROM if it reports itself
6518 	 * as a RODIRECT device.
6519 	 */
6520 	switch (devp->sd_inq->inq_dtype) {
6521 	case DTYPE_RODIRECT:
6522 		un->un_node_type = DDI_NT_CD_CHAN;
6523 		un->un_ctype	 = CTYPE_CDROM;
6524 		break;
6525 	case DTYPE_OPTICAL:
6526 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6527 		un->un_ctype	 = CTYPE_ROD;
6528 		break;
6529 	default:
6530 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6531 		un->un_ctype	 = CTYPE_CCS;
6532 		break;
6533 	}
6534 
6535 	/*
6536 	 * Try to read the interconnect type from the HBA.
6537 	 *
6538 	 * Note: This driver is currently compiled as two binaries, a parallel
6539 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6540 	 * differences are determined at compile time. In the future a single
6541 	 * binary will be provided and the inteconnect type will be used to
6542 	 * differentiate between fibre and parallel scsi behaviors. At that time
6543 	 * it will be necessary for all fibre channel HBAs to support this
6544 	 * property.
6545 	 *
6546 	 * set un_f_is_fiber to TRUE ( default fiber )
6547 	 */
6548 	un->un_f_is_fibre = TRUE;
6549 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6550 	case INTERCONNECT_SSA:
6551 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6552 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6553 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6554 		break;
6555 	case INTERCONNECT_PARALLEL:
6556 		un->un_f_is_fibre = FALSE;
6557 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6558 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6559 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6560 		break;
6561 	case INTERCONNECT_SATA:
6562 		un->un_f_is_fibre = FALSE;
6563 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6564 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6565 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6566 		break;
6567 	case INTERCONNECT_FIBRE:
6568 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6569 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6570 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6571 		break;
6572 	case INTERCONNECT_FABRIC:
6573 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6574 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6575 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6576 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6577 		break;
6578 	default:
6579 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6580 		/*
6581 		 * The HBA does not support the "interconnect-type" property
6582 		 * (or did not provide a recognized type).
6583 		 *
6584 		 * Note: This will be obsoleted when a single fibre channel
6585 		 * and parallel scsi driver is delivered. In the meantime the
6586 		 * interconnect type will be set to the platform default.If that
6587 		 * type is not parallel SCSI, it means that we should be
6588 		 * assuming "ssd" semantics. However, here this also means that
6589 		 * the FC HBA is not supporting the "interconnect-type" property
6590 		 * like we expect it to, so log this occurrence.
6591 		 */
6592 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6593 		if (!SD_IS_PARALLEL_SCSI(un)) {
6594 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6595 			    "sd_unit_attach: un:0x%p Assuming "
6596 			    "INTERCONNECT_FIBRE\n", un);
6597 		} else {
6598 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6599 			    "sd_unit_attach: un:0x%p Assuming "
6600 			    "INTERCONNECT_PARALLEL\n", un);
6601 			un->un_f_is_fibre = FALSE;
6602 		}
6603 #else
6604 		/*
6605 		 * Note: This source will be implemented when a single fibre
6606 		 * channel and parallel scsi driver is delivered. The default
6607 		 * will be to assume that if a device does not support the
6608 		 * "interconnect-type" property it is a parallel SCSI HBA and
6609 		 * we will set the interconnect type for parallel scsi.
6610 		 */
6611 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6612 		un->un_f_is_fibre = FALSE;
6613 #endif
6614 		break;
6615 	}
6616 
6617 	if (un->un_f_is_fibre == TRUE) {
6618 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6619 		    SCSI_VERSION_3) {
6620 			switch (un->un_interconnect_type) {
6621 			case SD_INTERCONNECT_FIBRE:
6622 			case SD_INTERCONNECT_SSA:
6623 				un->un_node_type = DDI_NT_BLOCK_WWN;
6624 				break;
6625 			default:
6626 				break;
6627 			}
6628 		}
6629 	}
6630 
6631 	/*
6632 	 * Initialize the Request Sense command for the target
6633 	 */
6634 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6635 		goto alloc_rqs_failed;
6636 	}
6637 
6638 	/*
6639 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6640 	 * with separate binary for sd and ssd.
6641 	 *
6642 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6643 	 * The hardcoded values will go away when Sparc uses 1 binary
6644 	 * for sd and ssd.  This hardcoded values need to match
6645 	 * SD_RETRY_COUNT in sddef.h
6646 	 * The value used is base on interconnect type.
6647 	 * fibre = 3, parallel = 5
6648 	 */
6649 #if defined(__i386) || defined(__amd64)
6650 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6651 #else
6652 	un->un_retry_count = SD_RETRY_COUNT;
6653 #endif
6654 
6655 	/*
6656 	 * Set the per disk retry count to the default number of retries
6657 	 * for disks and CDROMs. This value can be overridden by the
6658 	 * disk property list or an entry in sd.conf.
6659 	 */
6660 	un->un_notready_retry_count =
6661 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6662 	    : DISK_NOT_READY_RETRY_COUNT(un);
6663 
6664 	/*
6665 	 * Set the busy retry count to the default value of un_retry_count.
6666 	 * This can be overridden by entries in sd.conf or the device
6667 	 * config table.
6668 	 */
6669 	un->un_busy_retry_count = un->un_retry_count;
6670 
6671 	/*
6672 	 * Init the reset threshold for retries.  This number determines
6673 	 * how many retries must be performed before a reset can be issued
6674 	 * (for certain error conditions). This can be overridden by entries
6675 	 * in sd.conf or the device config table.
6676 	 */
6677 	un->un_reset_retry_count = (un->un_retry_count / 2);
6678 
6679 	/*
6680 	 * Set the victim_retry_count to the default un_retry_count
6681 	 */
6682 	un->un_victim_retry_count = (2 * un->un_retry_count);
6683 
6684 	/*
6685 	 * Set the reservation release timeout to the default value of
6686 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6687 	 * device config table.
6688 	 */
6689 	un->un_reserve_release_time = 5;
6690 
6691 	/*
6692 	 * Set up the default maximum transfer size. Note that this may
6693 	 * get updated later in the attach, when setting up default wide
6694 	 * operations for disks.
6695 	 */
6696 #if defined(__i386) || defined(__amd64)
6697 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6698 	un->un_partial_dma_supported = 1;
6699 #else
6700 	un->un_max_xfer_size = (uint_t)maxphys;
6701 #endif
6702 
6703 	/*
6704 	 * Get "allow bus device reset" property (defaults to "enabled" if
6705 	 * the property was not defined). This is to disable bus resets for
6706 	 * certain kinds of error recovery. Note: In the future when a run-time
6707 	 * fibre check is available the soft state flag should default to
6708 	 * enabled.
6709 	 */
6710 	if (un->un_f_is_fibre == TRUE) {
6711 		un->un_f_allow_bus_device_reset = TRUE;
6712 	} else {
6713 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6714 		    "allow-bus-device-reset", 1) != 0) {
6715 			un->un_f_allow_bus_device_reset = TRUE;
6716 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6717 			    "sd_unit_attach: un:0x%p Bus device reset "
6718 			    "enabled\n", un);
6719 		} else {
6720 			un->un_f_allow_bus_device_reset = FALSE;
6721 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6722 			    "sd_unit_attach: un:0x%p Bus device reset "
6723 			    "disabled\n", un);
6724 		}
6725 	}
6726 
6727 	/*
6728 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6729 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6730 	 *
6731 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6732 	 * property. The new "variant" property with a value of "atapi" has been
6733 	 * introduced so that future 'variants' of standard SCSI behavior (like
6734 	 * atapi) could be specified by the underlying HBA drivers by supplying
6735 	 * a new value for the "variant" property, instead of having to define a
6736 	 * new property.
6737 	 */
6738 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6739 		un->un_f_cfg_is_atapi = TRUE;
6740 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6741 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6742 	}
6743 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6744 	    &variantp) == DDI_PROP_SUCCESS) {
6745 		if (strcmp(variantp, "atapi") == 0) {
6746 			un->un_f_cfg_is_atapi = TRUE;
6747 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6748 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6749 		}
6750 		ddi_prop_free(variantp);
6751 	}
6752 
6753 	un->un_cmd_timeout	= SD_IO_TIME;
6754 
6755 	/* Info on current states, statuses, etc. (Updated frequently) */
6756 	un->un_state		= SD_STATE_NORMAL;
6757 	un->un_last_state	= SD_STATE_NORMAL;
6758 
6759 	/* Control & status info for command throttling */
6760 	un->un_throttle		= sd_max_throttle;
6761 	un->un_saved_throttle	= sd_max_throttle;
6762 	un->un_min_throttle	= sd_min_throttle;
6763 
6764 	if (un->un_f_is_fibre == TRUE) {
6765 		un->un_f_use_adaptive_throttle = TRUE;
6766 	} else {
6767 		un->un_f_use_adaptive_throttle = FALSE;
6768 	}
6769 
6770 	/* Removable media support. */
6771 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6772 	un->un_mediastate		= DKIO_NONE;
6773 	un->un_specified_mediastate	= DKIO_NONE;
6774 
6775 	/* CVs for suspend/resume (PM or DR) */
6776 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6777 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6778 
6779 	/* Power management support. */
6780 	un->un_power_level = SD_SPINDLE_UNINIT;
6781 
6782 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6783 	un->un_f_wcc_inprog = 0;
6784 
6785 	/*
6786 	 * The open/close semaphore is used to serialize threads executing
6787 	 * in the driver's open & close entry point routines for a given
6788 	 * instance.
6789 	 */
6790 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6791 
6792 	/*
6793 	 * The conf file entry and softstate variable is a forceful override,
6794 	 * meaning a non-zero value must be entered to change the default.
6795 	 */
6796 	un->un_f_disksort_disabled = FALSE;
6797 
6798 	/*
6799 	 * Retrieve the properties from the static driver table or the driver
6800 	 * configuration file (.conf) for this unit and update the soft state
6801 	 * for the device as needed for the indicated properties.
6802 	 * Note: the property configuration needs to occur here as some of the
6803 	 * following routines may have dependancies on soft state flags set
6804 	 * as part of the driver property configuration.
6805 	 */
6806 	sd_read_unit_properties(un);
6807 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6808 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6809 
6810 	/*
6811 	 * Only if a device has "hotpluggable" property, it is
6812 	 * treated as hotpluggable device. Otherwise, it is
6813 	 * regarded as non-hotpluggable one.
6814 	 */
6815 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6816 	    -1) != -1) {
6817 		un->un_f_is_hotpluggable = TRUE;
6818 	}
6819 
6820 	/*
6821 	 * set unit's attributes(flags) according to "hotpluggable" and
6822 	 * RMB bit in INQUIRY data.
6823 	 */
6824 	sd_set_unit_attributes(un, devi);
6825 
6826 	/*
6827 	 * By default, we mark the capacity, lbasize, and geometry
6828 	 * as invalid. Only if we successfully read a valid capacity
6829 	 * will we update the un_blockcount and un_tgt_blocksize with the
6830 	 * valid values (the geometry will be validated later).
6831 	 */
6832 	un->un_f_blockcount_is_valid	= FALSE;
6833 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6834 
6835 	/*
6836 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6837 	 * otherwise.
6838 	 */
6839 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6840 	un->un_blockcount = 0;
6841 
6842 	/*
6843 	 * Set up the per-instance info needed to determine the correct
6844 	 * CDBs and other info for issuing commands to the target.
6845 	 */
6846 	sd_init_cdb_limits(un);
6847 
6848 	/*
6849 	 * Set up the IO chains to use, based upon the target type.
6850 	 */
6851 	if (un->un_f_non_devbsize_supported) {
6852 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6853 	} else {
6854 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6855 	}
6856 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6857 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6858 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6859 
6860 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6861 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6862 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6863 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6864 
6865 
6866 	if (ISCD(un)) {
6867 		un->un_additional_codes = sd_additional_codes;
6868 	} else {
6869 		un->un_additional_codes = NULL;
6870 	}
6871 
6872 	/*
6873 	 * Create the kstats here so they can be available for attach-time
6874 	 * routines that send commands to the unit (either polled or via
6875 	 * sd_send_scsi_cmd).
6876 	 *
6877 	 * Note: This is a critical sequence that needs to be maintained:
6878 	 *	1) Instantiate the kstats here, before any routines using the
6879 	 *	   iopath (i.e. sd_send_scsi_cmd).
6880 	 *	2) Instantiate and initialize the partition stats
6881 	 *	   (sd_set_pstats).
6882 	 *	3) Initialize the error stats (sd_set_errstats), following
6883 	 *	   sd_validate_geometry(),sd_register_devid(),
6884 	 *	   and sd_cache_control().
6885 	 */
6886 
6887 	un->un_stats = kstat_create(sd_label, instance,
6888 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6889 	if (un->un_stats != NULL) {
6890 		un->un_stats->ks_lock = SD_MUTEX(un);
6891 		kstat_install(un->un_stats);
6892 	}
6893 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6894 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6895 
6896 	sd_create_errstats(un, instance);
6897 	if (un->un_errstats == NULL) {
6898 		goto create_errstats_failed;
6899 	}
6900 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6901 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6902 
6903 	/*
6904 	 * The following if/else code was relocated here from below as part
6905 	 * of the fix for bug (4430280). However with the default setup added
6906 	 * on entry to this routine, it's no longer absolutely necessary for
6907 	 * this to be before the call to sd_spin_up_unit.
6908 	 */
6909 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6910 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
6911 		    (devp->sd_inq->inq_ansi == 5)) &&
6912 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
6913 
6914 		/*
6915 		 * If tagged queueing is supported by the target
6916 		 * and by the host adapter then we will enable it
6917 		 */
6918 		un->un_tagflags = 0;
6919 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
6920 		    (un->un_f_arq_enabled == TRUE)) {
6921 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6922 			    1, 1) == 1) {
6923 				un->un_tagflags = FLAG_STAG;
6924 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6925 				    "sd_unit_attach: un:0x%p tag queueing "
6926 				    "enabled\n", un);
6927 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6928 			    "untagged-qing", 0) == 1) {
6929 				un->un_f_opt_queueing = TRUE;
6930 				un->un_saved_throttle = un->un_throttle =
6931 				    min(un->un_throttle, 3);
6932 			} else {
6933 				un->un_f_opt_queueing = FALSE;
6934 				un->un_saved_throttle = un->un_throttle = 1;
6935 			}
6936 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6937 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6938 			/* The Host Adapter supports internal queueing. */
6939 			un->un_f_opt_queueing = TRUE;
6940 			un->un_saved_throttle = un->un_throttle =
6941 			    min(un->un_throttle, 3);
6942 		} else {
6943 			un->un_f_opt_queueing = FALSE;
6944 			un->un_saved_throttle = un->un_throttle = 1;
6945 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6946 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6947 		}
6948 
6949 		/*
6950 		 * Enable large transfers for SATA/SAS drives
6951 		 */
6952 		if (SD_IS_SERIAL(un)) {
6953 			un->un_max_xfer_size =
6954 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6955 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6956 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6957 			    "sd_unit_attach: un:0x%p max transfer "
6958 			    "size=0x%x\n", un, un->un_max_xfer_size);
6959 
6960 		}
6961 
6962 		/* Setup or tear down default wide operations for disks */
6963 
6964 		/*
6965 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6966 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6967 		 * system and be set to different values. In the future this
6968 		 * code may need to be updated when the ssd module is
6969 		 * obsoleted and removed from the system. (4299588)
6970 		 */
6971 		if (SD_IS_PARALLEL_SCSI(un) &&
6972 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6973 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6974 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6975 			    1, 1) == 1) {
6976 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6977 				    "sd_unit_attach: un:0x%p Wide Transfer "
6978 				    "enabled\n", un);
6979 			}
6980 
6981 			/*
6982 			 * If tagged queuing has also been enabled, then
6983 			 * enable large xfers
6984 			 */
6985 			if (un->un_saved_throttle == sd_max_throttle) {
6986 				un->un_max_xfer_size =
6987 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6988 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6989 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6990 				    "sd_unit_attach: un:0x%p max transfer "
6991 				    "size=0x%x\n", un, un->un_max_xfer_size);
6992 			}
6993 		} else {
6994 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6995 			    0, 1) == 1) {
6996 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6997 				    "sd_unit_attach: un:0x%p "
6998 				    "Wide Transfer disabled\n", un);
6999 			}
7000 		}
7001 	} else {
7002 		un->un_tagflags = FLAG_STAG;
7003 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7004 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7005 	}
7006 
7007 	/*
7008 	 * If this target supports LUN reset, try to enable it.
7009 	 */
7010 	if (un->un_f_lun_reset_enabled) {
7011 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7012 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7013 			    "un:0x%p lun_reset capability set\n", un);
7014 		} else {
7015 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7016 			    "un:0x%p lun-reset capability not set\n", un);
7017 		}
7018 	}
7019 
7020 	/*
7021 	 * Adjust the maximum transfer size. This is to fix
7022 	 * the problem of partial DMA support on SPARC. Some
7023 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7024 	 * size, which requires partial DMA support on SPARC.
7025 	 * In the future the SPARC pci nexus driver may solve
7026 	 * the problem instead of this fix.
7027 	 */
7028 #if defined(__sparc)
7029 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7030 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7031 		un->un_max_xfer_size = max_xfer_size;
7032 		un->un_partial_dma_supported = 1;
7033 	}
7034 #endif
7035 
7036 	/*
7037 	 * Set PKT_DMA_PARTIAL flag.
7038 	 */
7039 	if (un->un_partial_dma_supported == 1) {
7040 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7041 	} else {
7042 		un->un_pkt_flags = 0;
7043 	}
7044 
7045 	/*
7046 	 * At this point in the attach, we have enough info in the
7047 	 * soft state to be able to issue commands to the target.
7048 	 *
7049 	 * All command paths used below MUST issue their commands as
7050 	 * SD_PATH_DIRECT. This is important as intermediate layers
7051 	 * are not all initialized yet (such as PM).
7052 	 */
7053 
7054 	/*
7055 	 * Send a TEST UNIT READY command to the device. This should clear
7056 	 * any outstanding UNIT ATTENTION that may be present.
7057 	 *
7058 	 * Note: Don't check for success, just track if there is a reservation,
7059 	 * this is a throw away command to clear any unit attentions.
7060 	 *
7061 	 * Note: This MUST be the first command issued to the target during
7062 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7063 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7064 	 * with attempts at spinning up a device with no media.
7065 	 */
7066 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
7067 		reservation_flag = SD_TARGET_IS_RESERVED;
7068 	}
7069 
7070 	/*
7071 	 * If the device is NOT a removable media device, attempt to spin
7072 	 * it up (using the START_STOP_UNIT command) and read its capacity
7073 	 * (using the READ CAPACITY command).  Note, however, that either
7074 	 * of these could fail and in some cases we would continue with
7075 	 * the attach despite the failure (see below).
7076 	 */
7077 	if (un->un_f_descr_format_supported) {
7078 		switch (sd_spin_up_unit(un)) {
7079 		case 0:
7080 			/*
7081 			 * Spin-up was successful; now try to read the
7082 			 * capacity.  If successful then save the results
7083 			 * and mark the capacity & lbasize as valid.
7084 			 */
7085 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7086 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7087 
7088 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
7089 			    &lbasize, SD_PATH_DIRECT)) {
7090 			case 0: {
7091 				if (capacity > DK_MAX_BLOCKS) {
7092 #ifdef _LP64
7093 					if (capacity + 1 >
7094 					    SD_GROUP1_MAX_ADDRESS) {
7095 						/*
7096 						 * Enable descriptor format
7097 						 * sense data so that we can
7098 						 * get 64 bit sense data
7099 						 * fields.
7100 						 */
7101 						sd_enable_descr_sense(un);
7102 					}
7103 #else
7104 					/* 32-bit kernels can't handle this */
7105 					scsi_log(SD_DEVINFO(un),
7106 					    sd_label, CE_WARN,
7107 					    "disk has %llu blocks, which "
7108 					    "is too large for a 32-bit "
7109 					    "kernel", capacity);
7110 
7111 #if defined(__i386) || defined(__amd64)
7112 					/*
7113 					 * 1TB disk was treated as (1T - 512)B
7114 					 * in the past, so that it might have
7115 					 * valid VTOC and solaris partitions,
7116 					 * we have to allow it to continue to
7117 					 * work.
7118 					 */
7119 					if (capacity -1 > DK_MAX_BLOCKS)
7120 #endif
7121 					goto spinup_failed;
7122 #endif
7123 				}
7124 
7125 				/*
7126 				 * Here it's not necessary to check the case:
7127 				 * the capacity of the device is bigger than
7128 				 * what the max hba cdb can support. Because
7129 				 * sd_send_scsi_READ_CAPACITY will retrieve
7130 				 * the capacity by sending USCSI command, which
7131 				 * is constrained by the max hba cdb. Actually,
7132 				 * sd_send_scsi_READ_CAPACITY will return
7133 				 * EINVAL when using bigger cdb than required
7134 				 * cdb length. Will handle this case in
7135 				 * "case EINVAL".
7136 				 */
7137 
7138 				/*
7139 				 * The following relies on
7140 				 * sd_send_scsi_READ_CAPACITY never
7141 				 * returning 0 for capacity and/or lbasize.
7142 				 */
7143 				sd_update_block_info(un, lbasize, capacity);
7144 
7145 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7146 				    "sd_unit_attach: un:0x%p capacity = %ld "
7147 				    "blocks; lbasize= %ld.\n", un,
7148 				    un->un_blockcount, un->un_tgt_blocksize);
7149 
7150 				break;
7151 			}
7152 			case EINVAL:
7153 				/*
7154 				 * In the case where the max-cdb-length property
7155 				 * is smaller than the required CDB length for
7156 				 * a SCSI device, a target driver can fail to
7157 				 * attach to that device.
7158 				 */
7159 				scsi_log(SD_DEVINFO(un),
7160 				    sd_label, CE_WARN,
7161 				    "disk capacity is too large "
7162 				    "for current cdb length");
7163 				goto spinup_failed;
7164 			case EACCES:
7165 				/*
7166 				 * Should never get here if the spin-up
7167 				 * succeeded, but code it in anyway.
7168 				 * From here, just continue with the attach...
7169 				 */
7170 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7171 				    "sd_unit_attach: un:0x%p "
7172 				    "sd_send_scsi_READ_CAPACITY "
7173 				    "returned reservation conflict\n", un);
7174 				reservation_flag = SD_TARGET_IS_RESERVED;
7175 				break;
7176 			default:
7177 				/*
7178 				 * Likewise, should never get here if the
7179 				 * spin-up succeeded. Just continue with
7180 				 * the attach...
7181 				 */
7182 				break;
7183 			}
7184 			break;
7185 		case EACCES:
7186 			/*
7187 			 * Device is reserved by another host.  In this case
7188 			 * we could not spin it up or read the capacity, but
7189 			 * we continue with the attach anyway.
7190 			 */
7191 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7192 			    "sd_unit_attach: un:0x%p spin-up reservation "
7193 			    "conflict.\n", un);
7194 			reservation_flag = SD_TARGET_IS_RESERVED;
7195 			break;
7196 		default:
7197 			/* Fail the attach if the spin-up failed. */
7198 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7199 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7200 			goto spinup_failed;
7201 		}
7202 	}
7203 
7204 	/*
7205 	 * Check to see if this is a MMC drive
7206 	 */
7207 	if (ISCD(un)) {
7208 		sd_set_mmc_caps(un);
7209 	}
7210 
7211 
7212 	/*
7213 	 * Add a zero-length attribute to tell the world we support
7214 	 * kernel ioctls (for layered drivers)
7215 	 */
7216 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7217 	    DDI_KERNEL_IOCTL, NULL, 0);
7218 
7219 	/*
7220 	 * Add a boolean property to tell the world we support
7221 	 * the B_FAILFAST flag (for layered drivers)
7222 	 */
7223 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7224 	    "ddi-failfast-supported", NULL, 0);
7225 
7226 	/*
7227 	 * Initialize power management
7228 	 */
7229 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7230 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7231 	sd_setup_pm(un, devi);
7232 	if (un->un_f_pm_is_enabled == FALSE) {
7233 		/*
7234 		 * For performance, point to a jump table that does
7235 		 * not include pm.
7236 		 * The direct and priority chains don't change with PM.
7237 		 *
7238 		 * Note: this is currently done based on individual device
7239 		 * capabilities. When an interface for determining system
7240 		 * power enabled state becomes available, or when additional
7241 		 * layers are added to the command chain, these values will
7242 		 * have to be re-evaluated for correctness.
7243 		 */
7244 		if (un->un_f_non_devbsize_supported) {
7245 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7246 		} else {
7247 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7248 		}
7249 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7250 	}
7251 
7252 	/*
7253 	 * This property is set to 0 by HA software to avoid retries
7254 	 * on a reserved disk. (The preferred property name is
7255 	 * "retry-on-reservation-conflict") (1189689)
7256 	 *
7257 	 * Note: The use of a global here can have unintended consequences. A
7258 	 * per instance variable is preferrable to match the capabilities of
7259 	 * different underlying hba's (4402600)
7260 	 */
7261 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7262 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7263 	    sd_retry_on_reservation_conflict);
7264 	if (sd_retry_on_reservation_conflict != 0) {
7265 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7266 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7267 		    sd_retry_on_reservation_conflict);
7268 	}
7269 
7270 	/* Set up options for QFULL handling. */
7271 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7272 	    "qfull-retries", -1)) != -1) {
7273 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7274 		    rval, 1);
7275 	}
7276 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7277 	    "qfull-retry-interval", -1)) != -1) {
7278 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7279 		    rval, 1);
7280 	}
7281 
7282 	/*
7283 	 * This just prints a message that announces the existence of the
7284 	 * device. The message is always printed in the system logfile, but
7285 	 * only appears on the console if the system is booted with the
7286 	 * -v (verbose) argument.
7287 	 */
7288 	ddi_report_dev(devi);
7289 
7290 	un->un_mediastate = DKIO_NONE;
7291 
7292 	cmlb_alloc_handle(&un->un_cmlbhandle);
7293 
7294 #if defined(__i386) || defined(__amd64)
7295 	/*
7296 	 * On x86, compensate for off-by-1 legacy error
7297 	 */
7298 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7299 	    (lbasize == un->un_sys_blocksize))
7300 		offbyone = CMLB_OFF_BY_ONE;
7301 #endif
7302 
7303 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7304 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7305 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7306 	    (void *)SD_PATH_DIRECT) != 0) {
7307 		goto cmlb_attach_failed;
7308 	}
7309 
7310 
7311 	/*
7312 	 * Read and validate the device's geometry (ie, disk label)
7313 	 * A new unformatted drive will not have a valid geometry, but
7314 	 * the driver needs to successfully attach to this device so
7315 	 * the drive can be formatted via ioctls.
7316 	 */
7317 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7318 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7319 
7320 	mutex_enter(SD_MUTEX(un));
7321 
7322 	/*
7323 	 * Read and initialize the devid for the unit.
7324 	 */
7325 	if (un->un_f_devid_supported) {
7326 		sd_register_devid(un, devi, reservation_flag);
7327 	}
7328 	mutex_exit(SD_MUTEX(un));
7329 
7330 #if (defined(__fibre))
7331 	/*
7332 	 * Register callbacks for fibre only.  You can't do this soley
7333 	 * on the basis of the devid_type because this is hba specific.
7334 	 * We need to query our hba capabilities to find out whether to
7335 	 * register or not.
7336 	 */
7337 	if (un->un_f_is_fibre) {
7338 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7339 			sd_init_event_callbacks(un);
7340 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7341 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7342 			    un);
7343 		}
7344 	}
7345 #endif
7346 
7347 	if (un->un_f_opt_disable_cache == TRUE) {
7348 		/*
7349 		 * Disable both read cache and write cache.  This is
7350 		 * the historic behavior of the keywords in the config file.
7351 		 */
7352 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7353 		    0) {
7354 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7355 			    "sd_unit_attach: un:0x%p Could not disable "
7356 			    "caching", un);
7357 			goto devid_failed;
7358 		}
7359 	}
7360 
7361 	/*
7362 	 * Check the value of the WCE bit now and
7363 	 * set un_f_write_cache_enabled accordingly.
7364 	 */
7365 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7366 	mutex_enter(SD_MUTEX(un));
7367 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7368 	mutex_exit(SD_MUTEX(un));
7369 
7370 	/*
7371 	 * Check the value of the NV_SUP bit and set
7372 	 * un_f_suppress_cache_flush accordingly.
7373 	 */
7374 	sd_get_nv_sup(un);
7375 
7376 	/*
7377 	 * Find out what type of reservation this disk supports.
7378 	 */
7379 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7380 	case 0:
7381 		/*
7382 		 * SCSI-3 reservations are supported.
7383 		 */
7384 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7385 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7386 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7387 		break;
7388 	case ENOTSUP:
7389 		/*
7390 		 * The PERSISTENT RESERVE IN command would not be recognized by
7391 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7392 		 */
7393 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7394 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7395 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7396 		break;
7397 	default:
7398 		/*
7399 		 * default to SCSI-3 reservations
7400 		 */
7401 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7402 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7403 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7404 		break;
7405 	}
7406 
7407 	/*
7408 	 * Set the pstat and error stat values here, so data obtained during the
7409 	 * previous attach-time routines is available.
7410 	 *
7411 	 * Note: This is a critical sequence that needs to be maintained:
7412 	 *	1) Instantiate the kstats before any routines using the iopath
7413 	 *	   (i.e. sd_send_scsi_cmd).
7414 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7415 	 *	   stats (sd_set_pstats)here, following
7416 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7417 	 *	   sd_cache_control().
7418 	 */
7419 
7420 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7421 		sd_set_pstats(un);
7422 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7423 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7424 	}
7425 
7426 	sd_set_errstats(un);
7427 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7428 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7429 
7430 
7431 	/*
7432 	 * After successfully attaching an instance, we record the information
7433 	 * of how many luns have been attached on the relative target and
7434 	 * controller for parallel SCSI. This information is used when sd tries
7435 	 * to set the tagged queuing capability in HBA.
7436 	 */
7437 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7438 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7439 	}
7440 
7441 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7442 	    "sd_unit_attach: un:0x%p exit success\n", un);
7443 
7444 	return (DDI_SUCCESS);
7445 
7446 	/*
7447 	 * An error occurred during the attach; clean up & return failure.
7448 	 */
7449 
7450 devid_failed:
7451 
7452 setup_pm_failed:
7453 	ddi_remove_minor_node(devi, NULL);
7454 
7455 cmlb_attach_failed:
7456 	/*
7457 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7458 	 */
7459 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7460 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7461 
7462 	/*
7463 	 * Refer to the comments of setting tagged-qing in the beginning of
7464 	 * sd_unit_attach. We can only disable tagged queuing when there is
7465 	 * no lun attached on the target.
7466 	 */
7467 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7468 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7469 	}
7470 
7471 	if (un->un_f_is_fibre == FALSE) {
7472 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7473 	}
7474 
7475 spinup_failed:
7476 
7477 	mutex_enter(SD_MUTEX(un));
7478 
7479 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7480 	if (un->un_direct_priority_timeid != NULL) {
7481 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7482 		un->un_direct_priority_timeid = NULL;
7483 		mutex_exit(SD_MUTEX(un));
7484 		(void) untimeout(temp_id);
7485 		mutex_enter(SD_MUTEX(un));
7486 	}
7487 
7488 	/* Cancel any pending start/stop timeouts */
7489 	if (un->un_startstop_timeid != NULL) {
7490 		timeout_id_t temp_id = un->un_startstop_timeid;
7491 		un->un_startstop_timeid = NULL;
7492 		mutex_exit(SD_MUTEX(un));
7493 		(void) untimeout(temp_id);
7494 		mutex_enter(SD_MUTEX(un));
7495 	}
7496 
7497 	/* Cancel any pending reset-throttle timeouts */
7498 	if (un->un_reset_throttle_timeid != NULL) {
7499 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7500 		un->un_reset_throttle_timeid = NULL;
7501 		mutex_exit(SD_MUTEX(un));
7502 		(void) untimeout(temp_id);
7503 		mutex_enter(SD_MUTEX(un));
7504 	}
7505 
7506 	/* Cancel any pending retry timeouts */
7507 	if (un->un_retry_timeid != NULL) {
7508 		timeout_id_t temp_id = un->un_retry_timeid;
7509 		un->un_retry_timeid = NULL;
7510 		mutex_exit(SD_MUTEX(un));
7511 		(void) untimeout(temp_id);
7512 		mutex_enter(SD_MUTEX(un));
7513 	}
7514 
7515 	/* Cancel any pending delayed cv broadcast timeouts */
7516 	if (un->un_dcvb_timeid != NULL) {
7517 		timeout_id_t temp_id = un->un_dcvb_timeid;
7518 		un->un_dcvb_timeid = NULL;
7519 		mutex_exit(SD_MUTEX(un));
7520 		(void) untimeout(temp_id);
7521 		mutex_enter(SD_MUTEX(un));
7522 	}
7523 
7524 	mutex_exit(SD_MUTEX(un));
7525 
7526 	/* There should not be any in-progress I/O so ASSERT this check */
7527 	ASSERT(un->un_ncmds_in_transport == 0);
7528 	ASSERT(un->un_ncmds_in_driver == 0);
7529 
7530 	/* Do not free the softstate if the callback routine is active */
7531 	sd_sync_with_callback(un);
7532 
7533 	/*
7534 	 * Partition stats apparently are not used with removables. These would
7535 	 * not have been created during attach, so no need to clean them up...
7536 	 */
7537 	if (un->un_errstats != NULL) {
7538 		kstat_delete(un->un_errstats);
7539 		un->un_errstats = NULL;
7540 	}
7541 
7542 create_errstats_failed:
7543 
7544 	if (un->un_stats != NULL) {
7545 		kstat_delete(un->un_stats);
7546 		un->un_stats = NULL;
7547 	}
7548 
7549 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7550 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7551 
7552 	ddi_prop_remove_all(devi);
7553 	sema_destroy(&un->un_semoclose);
7554 	cv_destroy(&un->un_state_cv);
7555 
7556 getrbuf_failed:
7557 
7558 	sd_free_rqs(un);
7559 
7560 alloc_rqs_failed:
7561 
7562 	devp->sd_private = NULL;
7563 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7564 
7565 get_softstate_failed:
7566 	/*
7567 	 * Note: the man pages are unclear as to whether or not doing a
7568 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7569 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7570 	 * ddi_get_soft_state() fails.  The implication seems to be
7571 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7572 	 */
7573 	ddi_soft_state_free(sd_state, instance);
7574 
7575 probe_failed:
7576 	scsi_unprobe(devp);
7577 
7578 	return (DDI_FAILURE);
7579 }
7580 
7581 
7582 /*
7583  *    Function: sd_unit_detach
7584  *
7585  * Description: Performs DDI_DETACH processing for sddetach().
7586  *
7587  * Return Code: DDI_SUCCESS
7588  *		DDI_FAILURE
7589  *
7590  *     Context: Kernel thread context
7591  */
7592 
7593 static int
7594 sd_unit_detach(dev_info_t *devi)
7595 {
7596 	struct scsi_device	*devp;
7597 	struct sd_lun		*un;
7598 	int			i;
7599 	int			tgt;
7600 	dev_t			dev;
7601 	dev_info_t		*pdip = ddi_get_parent(devi);
7602 	int			instance = ddi_get_instance(devi);
7603 
7604 	mutex_enter(&sd_detach_mutex);
7605 
7606 	/*
7607 	 * Fail the detach for any of the following:
7608 	 *  - Unable to get the sd_lun struct for the instance
7609 	 *  - A layered driver has an outstanding open on the instance
7610 	 *  - Another thread is already detaching this instance
7611 	 *  - Another thread is currently performing an open
7612 	 */
7613 	devp = ddi_get_driver_private(devi);
7614 	if ((devp == NULL) ||
7615 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7616 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7617 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7618 		mutex_exit(&sd_detach_mutex);
7619 		return (DDI_FAILURE);
7620 	}
7621 
7622 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7623 
7624 	/*
7625 	 * Mark this instance as currently in a detach, to inhibit any
7626 	 * opens from a layered driver.
7627 	 */
7628 	un->un_detach_count++;
7629 	mutex_exit(&sd_detach_mutex);
7630 
7631 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7632 	    SCSI_ADDR_PROP_TARGET, -1);
7633 
7634 	dev = sd_make_device(SD_DEVINFO(un));
7635 
7636 #ifndef lint
7637 	_NOTE(COMPETING_THREADS_NOW);
7638 #endif
7639 
7640 	mutex_enter(SD_MUTEX(un));
7641 
7642 	/*
7643 	 * Fail the detach if there are any outstanding layered
7644 	 * opens on this device.
7645 	 */
7646 	for (i = 0; i < NDKMAP; i++) {
7647 		if (un->un_ocmap.lyropen[i] != 0) {
7648 			goto err_notclosed;
7649 		}
7650 	}
7651 
7652 	/*
7653 	 * Verify there are NO outstanding commands issued to this device.
7654 	 * ie, un_ncmds_in_transport == 0.
7655 	 * It's possible to have outstanding commands through the physio
7656 	 * code path, even though everything's closed.
7657 	 */
7658 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7659 	    (un->un_direct_priority_timeid != NULL) ||
7660 	    (un->un_state == SD_STATE_RWAIT)) {
7661 		mutex_exit(SD_MUTEX(un));
7662 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7663 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7664 		goto err_stillbusy;
7665 	}
7666 
7667 	/*
7668 	 * If we have the device reserved, release the reservation.
7669 	 */
7670 	if ((un->un_resvd_status & SD_RESERVE) &&
7671 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7672 		mutex_exit(SD_MUTEX(un));
7673 		/*
7674 		 * Note: sd_reserve_release sends a command to the device
7675 		 * via the sd_ioctlcmd() path, and can sleep.
7676 		 */
7677 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7678 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7679 			    "sd_dr_detach: Cannot release reservation \n");
7680 		}
7681 	} else {
7682 		mutex_exit(SD_MUTEX(un));
7683 	}
7684 
7685 	/*
7686 	 * Untimeout any reserve recover, throttle reset, restart unit
7687 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7688 	 * from getting nulled by their callback functions.
7689 	 */
7690 	mutex_enter(SD_MUTEX(un));
7691 	if (un->un_resvd_timeid != NULL) {
7692 		timeout_id_t temp_id = un->un_resvd_timeid;
7693 		un->un_resvd_timeid = NULL;
7694 		mutex_exit(SD_MUTEX(un));
7695 		(void) untimeout(temp_id);
7696 		mutex_enter(SD_MUTEX(un));
7697 	}
7698 
7699 	if (un->un_reset_throttle_timeid != NULL) {
7700 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7701 		un->un_reset_throttle_timeid = NULL;
7702 		mutex_exit(SD_MUTEX(un));
7703 		(void) untimeout(temp_id);
7704 		mutex_enter(SD_MUTEX(un));
7705 	}
7706 
7707 	if (un->un_startstop_timeid != NULL) {
7708 		timeout_id_t temp_id = un->un_startstop_timeid;
7709 		un->un_startstop_timeid = NULL;
7710 		mutex_exit(SD_MUTEX(un));
7711 		(void) untimeout(temp_id);
7712 		mutex_enter(SD_MUTEX(un));
7713 	}
7714 
7715 	if (un->un_dcvb_timeid != NULL) {
7716 		timeout_id_t temp_id = un->un_dcvb_timeid;
7717 		un->un_dcvb_timeid = NULL;
7718 		mutex_exit(SD_MUTEX(un));
7719 		(void) untimeout(temp_id);
7720 	} else {
7721 		mutex_exit(SD_MUTEX(un));
7722 	}
7723 
7724 	/* Remove any pending reservation reclaim requests for this device */
7725 	sd_rmv_resv_reclaim_req(dev);
7726 
7727 	mutex_enter(SD_MUTEX(un));
7728 
7729 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7730 	if (un->un_direct_priority_timeid != NULL) {
7731 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7732 		un->un_direct_priority_timeid = NULL;
7733 		mutex_exit(SD_MUTEX(un));
7734 		(void) untimeout(temp_id);
7735 		mutex_enter(SD_MUTEX(un));
7736 	}
7737 
7738 	/* Cancel any active multi-host disk watch thread requests */
7739 	if (un->un_mhd_token != NULL) {
7740 		mutex_exit(SD_MUTEX(un));
7741 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7742 		if (scsi_watch_request_terminate(un->un_mhd_token,
7743 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7744 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7745 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7746 			/*
7747 			 * Note: We are returning here after having removed
7748 			 * some driver timeouts above. This is consistent with
7749 			 * the legacy implementation but perhaps the watch
7750 			 * terminate call should be made with the wait flag set.
7751 			 */
7752 			goto err_stillbusy;
7753 		}
7754 		mutex_enter(SD_MUTEX(un));
7755 		un->un_mhd_token = NULL;
7756 	}
7757 
7758 	if (un->un_swr_token != NULL) {
7759 		mutex_exit(SD_MUTEX(un));
7760 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7761 		if (scsi_watch_request_terminate(un->un_swr_token,
7762 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7763 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7764 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7765 			/*
7766 			 * Note: We are returning here after having removed
7767 			 * some driver timeouts above. This is consistent with
7768 			 * the legacy implementation but perhaps the watch
7769 			 * terminate call should be made with the wait flag set.
7770 			 */
7771 			goto err_stillbusy;
7772 		}
7773 		mutex_enter(SD_MUTEX(un));
7774 		un->un_swr_token = NULL;
7775 	}
7776 
7777 	mutex_exit(SD_MUTEX(un));
7778 
7779 	/*
7780 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7781 	 * if we have not registered one.
7782 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7783 	 */
7784 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7785 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7786 
7787 	/*
7788 	 * protect the timeout pointers from getting nulled by
7789 	 * their callback functions during the cancellation process.
7790 	 * In such a scenario untimeout can be invoked with a null value.
7791 	 */
7792 	_NOTE(NO_COMPETING_THREADS_NOW);
7793 
7794 	mutex_enter(&un->un_pm_mutex);
7795 	if (un->un_pm_idle_timeid != NULL) {
7796 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7797 		un->un_pm_idle_timeid = NULL;
7798 		mutex_exit(&un->un_pm_mutex);
7799 
7800 		/*
7801 		 * Timeout is active; cancel it.
7802 		 * Note that it'll never be active on a device
7803 		 * that does not support PM therefore we don't
7804 		 * have to check before calling pm_idle_component.
7805 		 */
7806 		(void) untimeout(temp_id);
7807 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7808 		mutex_enter(&un->un_pm_mutex);
7809 	}
7810 
7811 	/*
7812 	 * Check whether there is already a timeout scheduled for power
7813 	 * management. If yes then don't lower the power here, that's.
7814 	 * the timeout handler's job.
7815 	 */
7816 	if (un->un_pm_timeid != NULL) {
7817 		timeout_id_t temp_id = un->un_pm_timeid;
7818 		un->un_pm_timeid = NULL;
7819 		mutex_exit(&un->un_pm_mutex);
7820 		/*
7821 		 * Timeout is active; cancel it.
7822 		 * Note that it'll never be active on a device
7823 		 * that does not support PM therefore we don't
7824 		 * have to check before calling pm_idle_component.
7825 		 */
7826 		(void) untimeout(temp_id);
7827 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7828 
7829 	} else {
7830 		mutex_exit(&un->un_pm_mutex);
7831 		if ((un->un_f_pm_is_enabled == TRUE) &&
7832 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7833 		    DDI_SUCCESS)) {
7834 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7835 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7836 			/*
7837 			 * Fix for bug: 4297749, item # 13
7838 			 * The above test now includes a check to see if PM is
7839 			 * supported by this device before call
7840 			 * pm_lower_power().
7841 			 * Note, the following is not dead code. The call to
7842 			 * pm_lower_power above will generate a call back into
7843 			 * our sdpower routine which might result in a timeout
7844 			 * handler getting activated. Therefore the following
7845 			 * code is valid and necessary.
7846 			 */
7847 			mutex_enter(&un->un_pm_mutex);
7848 			if (un->un_pm_timeid != NULL) {
7849 				timeout_id_t temp_id = un->un_pm_timeid;
7850 				un->un_pm_timeid = NULL;
7851 				mutex_exit(&un->un_pm_mutex);
7852 				(void) untimeout(temp_id);
7853 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7854 			} else {
7855 				mutex_exit(&un->un_pm_mutex);
7856 			}
7857 		}
7858 	}
7859 
7860 	/*
7861 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7862 	 * Relocated here from above to be after the call to
7863 	 * pm_lower_power, which was getting errors.
7864 	 */
7865 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7866 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7867 
7868 	/*
7869 	 * Currently, tagged queuing is supported per target based by HBA.
7870 	 * Setting this per lun instance actually sets the capability of this
7871 	 * target in HBA, which affects those luns already attached on the
7872 	 * same target. So during detach, we can only disable this capability
7873 	 * only when this is the only lun left on this target. By doing
7874 	 * this, we assume a target has the same tagged queuing capability
7875 	 * for every lun. The condition can be removed when HBA is changed to
7876 	 * support per lun based tagged queuing capability.
7877 	 */
7878 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7879 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7880 	}
7881 
7882 	if (un->un_f_is_fibre == FALSE) {
7883 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7884 	}
7885 
7886 	/*
7887 	 * Remove any event callbacks, fibre only
7888 	 */
7889 	if (un->un_f_is_fibre == TRUE) {
7890 		if ((un->un_insert_event != NULL) &&
7891 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
7892 		    DDI_SUCCESS)) {
7893 			/*
7894 			 * Note: We are returning here after having done
7895 			 * substantial cleanup above. This is consistent
7896 			 * with the legacy implementation but this may not
7897 			 * be the right thing to do.
7898 			 */
7899 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7900 			    "sd_dr_detach: Cannot cancel insert event\n");
7901 			goto err_remove_event;
7902 		}
7903 		un->un_insert_event = NULL;
7904 
7905 		if ((un->un_remove_event != NULL) &&
7906 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
7907 		    DDI_SUCCESS)) {
7908 			/*
7909 			 * Note: We are returning here after having done
7910 			 * substantial cleanup above. This is consistent
7911 			 * with the legacy implementation but this may not
7912 			 * be the right thing to do.
7913 			 */
7914 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7915 			    "sd_dr_detach: Cannot cancel remove event\n");
7916 			goto err_remove_event;
7917 		}
7918 		un->un_remove_event = NULL;
7919 	}
7920 
7921 	/* Do not free the softstate if the callback routine is active */
7922 	sd_sync_with_callback(un);
7923 
7924 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7925 	cmlb_free_handle(&un->un_cmlbhandle);
7926 
7927 	/*
7928 	 * Hold the detach mutex here, to make sure that no other threads ever
7929 	 * can access a (partially) freed soft state structure.
7930 	 */
7931 	mutex_enter(&sd_detach_mutex);
7932 
7933 	/*
7934 	 * Clean up the soft state struct.
7935 	 * Cleanup is done in reverse order of allocs/inits.
7936 	 * At this point there should be no competing threads anymore.
7937 	 */
7938 
7939 	/* Unregister and free device id. */
7940 	ddi_devid_unregister(devi);
7941 	if (un->un_devid) {
7942 		ddi_devid_free(un->un_devid);
7943 		un->un_devid = NULL;
7944 	}
7945 
7946 	/*
7947 	 * Destroy wmap cache if it exists.
7948 	 */
7949 	if (un->un_wm_cache != NULL) {
7950 		kmem_cache_destroy(un->un_wm_cache);
7951 		un->un_wm_cache = NULL;
7952 	}
7953 
7954 	/*
7955 	 * kstat cleanup is done in detach for all device types (4363169).
7956 	 * We do not want to fail detach if the device kstats are not deleted
7957 	 * since there is a confusion about the devo_refcnt for the device.
7958 	 * We just delete the kstats and let detach complete successfully.
7959 	 */
7960 	if (un->un_stats != NULL) {
7961 		kstat_delete(un->un_stats);
7962 		un->un_stats = NULL;
7963 	}
7964 	if (un->un_errstats != NULL) {
7965 		kstat_delete(un->un_errstats);
7966 		un->un_errstats = NULL;
7967 	}
7968 
7969 	/* Remove partition stats */
7970 	if (un->un_f_pkstats_enabled) {
7971 		for (i = 0; i < NSDMAP; i++) {
7972 			if (un->un_pstats[i] != NULL) {
7973 				kstat_delete(un->un_pstats[i]);
7974 				un->un_pstats[i] = NULL;
7975 			}
7976 		}
7977 	}
7978 
7979 	/* Remove xbuf registration */
7980 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7981 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7982 
7983 	/* Remove driver properties */
7984 	ddi_prop_remove_all(devi);
7985 
7986 	mutex_destroy(&un->un_pm_mutex);
7987 	cv_destroy(&un->un_pm_busy_cv);
7988 
7989 	cv_destroy(&un->un_wcc_cv);
7990 
7991 	/* Open/close semaphore */
7992 	sema_destroy(&un->un_semoclose);
7993 
7994 	/* Removable media condvar. */
7995 	cv_destroy(&un->un_state_cv);
7996 
7997 	/* Suspend/resume condvar. */
7998 	cv_destroy(&un->un_suspend_cv);
7999 	cv_destroy(&un->un_disk_busy_cv);
8000 
8001 	sd_free_rqs(un);
8002 
8003 	/* Free up soft state */
8004 	devp->sd_private = NULL;
8005 
8006 	bzero(un, sizeof (struct sd_lun));
8007 	ddi_soft_state_free(sd_state, instance);
8008 
8009 	mutex_exit(&sd_detach_mutex);
8010 
8011 	/* This frees up the INQUIRY data associated with the device. */
8012 	scsi_unprobe(devp);
8013 
8014 	/*
8015 	 * After successfully detaching an instance, we update the information
8016 	 * of how many luns have been attached in the relative target and
8017 	 * controller for parallel SCSI. This information is used when sd tries
8018 	 * to set the tagged queuing capability in HBA.
8019 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8020 	 * check if the device is parallel SCSI. However, we don't need to
8021 	 * check here because we've already checked during attach. No device
8022 	 * that is not parallel SCSI is in the chain.
8023 	 */
8024 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8025 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8026 	}
8027 
8028 	return (DDI_SUCCESS);
8029 
8030 err_notclosed:
8031 	mutex_exit(SD_MUTEX(un));
8032 
8033 err_stillbusy:
8034 	_NOTE(NO_COMPETING_THREADS_NOW);
8035 
8036 err_remove_event:
8037 	mutex_enter(&sd_detach_mutex);
8038 	un->un_detach_count--;
8039 	mutex_exit(&sd_detach_mutex);
8040 
8041 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8042 	return (DDI_FAILURE);
8043 }
8044 
8045 
8046 /*
8047  *    Function: sd_create_errstats
8048  *
8049  * Description: This routine instantiates the device error stats.
8050  *
8051  *		Note: During attach the stats are instantiated first so they are
8052  *		available for attach-time routines that utilize the driver
8053  *		iopath to send commands to the device. The stats are initialized
8054  *		separately so data obtained during some attach-time routines is
8055  *		available. (4362483)
8056  *
8057  *   Arguments: un - driver soft state (unit) structure
8058  *		instance - driver instance
8059  *
8060  *     Context: Kernel thread context
8061  */
8062 
8063 static void
8064 sd_create_errstats(struct sd_lun *un, int instance)
8065 {
8066 	struct	sd_errstats	*stp;
8067 	char	kstatmodule_err[KSTAT_STRLEN];
8068 	char	kstatname[KSTAT_STRLEN];
8069 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8070 
8071 	ASSERT(un != NULL);
8072 
8073 	if (un->un_errstats != NULL) {
8074 		return;
8075 	}
8076 
8077 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8078 	    "%serr", sd_label);
8079 	(void) snprintf(kstatname, sizeof (kstatname),
8080 	    "%s%d,err", sd_label, instance);
8081 
8082 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8083 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8084 
8085 	if (un->un_errstats == NULL) {
8086 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8087 		    "sd_create_errstats: Failed kstat_create\n");
8088 		return;
8089 	}
8090 
8091 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8092 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8093 	    KSTAT_DATA_UINT32);
8094 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8095 	    KSTAT_DATA_UINT32);
8096 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8097 	    KSTAT_DATA_UINT32);
8098 	kstat_named_init(&stp->sd_vid,		"Vendor",
8099 	    KSTAT_DATA_CHAR);
8100 	kstat_named_init(&stp->sd_pid,		"Product",
8101 	    KSTAT_DATA_CHAR);
8102 	kstat_named_init(&stp->sd_revision,	"Revision",
8103 	    KSTAT_DATA_CHAR);
8104 	kstat_named_init(&stp->sd_serial,	"Serial No",
8105 	    KSTAT_DATA_CHAR);
8106 	kstat_named_init(&stp->sd_capacity,	"Size",
8107 	    KSTAT_DATA_ULONGLONG);
8108 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8109 	    KSTAT_DATA_UINT32);
8110 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8111 	    KSTAT_DATA_UINT32);
8112 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8113 	    KSTAT_DATA_UINT32);
8114 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8115 	    KSTAT_DATA_UINT32);
8116 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8117 	    KSTAT_DATA_UINT32);
8118 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8119 	    KSTAT_DATA_UINT32);
8120 
8121 	un->un_errstats->ks_private = un;
8122 	un->un_errstats->ks_update  = nulldev;
8123 
8124 	kstat_install(un->un_errstats);
8125 }
8126 
8127 
8128 /*
8129  *    Function: sd_set_errstats
8130  *
8131  * Description: This routine sets the value of the vendor id, product id,
8132  *		revision, serial number, and capacity device error stats.
8133  *
8134  *		Note: During attach the stats are instantiated first so they are
8135  *		available for attach-time routines that utilize the driver
8136  *		iopath to send commands to the device. The stats are initialized
8137  *		separately so data obtained during some attach-time routines is
8138  *		available. (4362483)
8139  *
8140  *   Arguments: un - driver soft state (unit) structure
8141  *
8142  *     Context: Kernel thread context
8143  */
8144 
8145 static void
8146 sd_set_errstats(struct sd_lun *un)
8147 {
8148 	struct	sd_errstats	*stp;
8149 
8150 	ASSERT(un != NULL);
8151 	ASSERT(un->un_errstats != NULL);
8152 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8153 	ASSERT(stp != NULL);
8154 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8155 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8156 	(void) strncpy(stp->sd_revision.value.c,
8157 	    un->un_sd->sd_inq->inq_revision, 4);
8158 
8159 	/*
8160 	 * All the errstats are persistent across detach/attach,
8161 	 * so reset all the errstats here in case of the hot
8162 	 * replacement of disk drives, except for not changed
8163 	 * Sun qualified drives.
8164 	 */
8165 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8166 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8167 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8168 		stp->sd_softerrs.value.ui32 = 0;
8169 		stp->sd_harderrs.value.ui32 = 0;
8170 		stp->sd_transerrs.value.ui32 = 0;
8171 		stp->sd_rq_media_err.value.ui32 = 0;
8172 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8173 		stp->sd_rq_nodev_err.value.ui32 = 0;
8174 		stp->sd_rq_recov_err.value.ui32 = 0;
8175 		stp->sd_rq_illrq_err.value.ui32 = 0;
8176 		stp->sd_rq_pfa_err.value.ui32 = 0;
8177 	}
8178 
8179 	/*
8180 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8181 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8182 	 * (4376302))
8183 	 */
8184 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8185 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8186 		    sizeof (SD_INQUIRY(un)->inq_serial));
8187 	}
8188 
8189 	if (un->un_f_blockcount_is_valid != TRUE) {
8190 		/*
8191 		 * Set capacity error stat to 0 for no media. This ensures
8192 		 * a valid capacity is displayed in response to 'iostat -E'
8193 		 * when no media is present in the device.
8194 		 */
8195 		stp->sd_capacity.value.ui64 = 0;
8196 	} else {
8197 		/*
8198 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8199 		 * capacity.
8200 		 *
8201 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8202 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8203 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8204 		 */
8205 		stp->sd_capacity.value.ui64 = (uint64_t)
8206 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8207 	}
8208 }
8209 
8210 
8211 /*
8212  *    Function: sd_set_pstats
8213  *
8214  * Description: This routine instantiates and initializes the partition
8215  *              stats for each partition with more than zero blocks.
8216  *		(4363169)
8217  *
8218  *   Arguments: un - driver soft state (unit) structure
8219  *
8220  *     Context: Kernel thread context
8221  */
8222 
8223 static void
8224 sd_set_pstats(struct sd_lun *un)
8225 {
8226 	char	kstatname[KSTAT_STRLEN];
8227 	int	instance;
8228 	int	i;
8229 	diskaddr_t	nblks = 0;
8230 	char	*partname = NULL;
8231 
8232 	ASSERT(un != NULL);
8233 
8234 	instance = ddi_get_instance(SD_DEVINFO(un));
8235 
8236 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8237 	for (i = 0; i < NSDMAP; i++) {
8238 
8239 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8240 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8241 			continue;
8242 		mutex_enter(SD_MUTEX(un));
8243 
8244 		if ((un->un_pstats[i] == NULL) &&
8245 		    (nblks != 0)) {
8246 
8247 			(void) snprintf(kstatname, sizeof (kstatname),
8248 			    "%s%d,%s", sd_label, instance,
8249 			    partname);
8250 
8251 			un->un_pstats[i] = kstat_create(sd_label,
8252 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8253 			    1, KSTAT_FLAG_PERSISTENT);
8254 			if (un->un_pstats[i] != NULL) {
8255 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8256 				kstat_install(un->un_pstats[i]);
8257 			}
8258 		}
8259 		mutex_exit(SD_MUTEX(un));
8260 	}
8261 }
8262 
8263 
8264 #if (defined(__fibre))
8265 /*
8266  *    Function: sd_init_event_callbacks
8267  *
8268  * Description: This routine initializes the insertion and removal event
8269  *		callbacks. (fibre only)
8270  *
8271  *   Arguments: un - driver soft state (unit) structure
8272  *
8273  *     Context: Kernel thread context
8274  */
8275 
8276 static void
8277 sd_init_event_callbacks(struct sd_lun *un)
8278 {
8279 	ASSERT(un != NULL);
8280 
8281 	if ((un->un_insert_event == NULL) &&
8282 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8283 	    &un->un_insert_event) == DDI_SUCCESS)) {
8284 		/*
8285 		 * Add the callback for an insertion event
8286 		 */
8287 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8288 		    un->un_insert_event, sd_event_callback, (void *)un,
8289 		    &(un->un_insert_cb_id));
8290 	}
8291 
8292 	if ((un->un_remove_event == NULL) &&
8293 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8294 	    &un->un_remove_event) == DDI_SUCCESS)) {
8295 		/*
8296 		 * Add the callback for a removal event
8297 		 */
8298 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8299 		    un->un_remove_event, sd_event_callback, (void *)un,
8300 		    &(un->un_remove_cb_id));
8301 	}
8302 }
8303 
8304 
8305 /*
8306  *    Function: sd_event_callback
8307  *
8308  * Description: This routine handles insert/remove events (photon). The
8309  *		state is changed to OFFLINE which can be used to supress
8310  *		error msgs. (fibre only)
8311  *
8312  *   Arguments: un - driver soft state (unit) structure
8313  *
8314  *     Context: Callout thread context
8315  */
8316 /* ARGSUSED */
8317 static void
8318 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8319     void *bus_impldata)
8320 {
8321 	struct sd_lun *un = (struct sd_lun *)arg;
8322 
8323 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8324 	if (event == un->un_insert_event) {
8325 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8326 		mutex_enter(SD_MUTEX(un));
8327 		if (un->un_state == SD_STATE_OFFLINE) {
8328 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8329 				un->un_state = un->un_last_state;
8330 			} else {
8331 				/*
8332 				 * We have gone through SUSPEND/RESUME while
8333 				 * we were offline. Restore the last state
8334 				 */
8335 				un->un_state = un->un_save_state;
8336 			}
8337 		}
8338 		mutex_exit(SD_MUTEX(un));
8339 
8340 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8341 	} else if (event == un->un_remove_event) {
8342 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8343 		mutex_enter(SD_MUTEX(un));
8344 		/*
8345 		 * We need to handle an event callback that occurs during
8346 		 * the suspend operation, since we don't prevent it.
8347 		 */
8348 		if (un->un_state != SD_STATE_OFFLINE) {
8349 			if (un->un_state != SD_STATE_SUSPENDED) {
8350 				New_state(un, SD_STATE_OFFLINE);
8351 			} else {
8352 				un->un_last_state = SD_STATE_OFFLINE;
8353 			}
8354 		}
8355 		mutex_exit(SD_MUTEX(un));
8356 	} else {
8357 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8358 		    "!Unknown event\n");
8359 	}
8360 
8361 }
8362 #endif
8363 
8364 /*
8365  *    Function: sd_cache_control()
8366  *
8367  * Description: This routine is the driver entry point for setting
8368  *		read and write caching by modifying the WCE (write cache
8369  *		enable) and RCD (read cache disable) bits of mode
8370  *		page 8 (MODEPAGE_CACHING).
8371  *
8372  *   Arguments: un - driver soft state (unit) structure
8373  *		rcd_flag - flag for controlling the read cache
8374  *		wce_flag - flag for controlling the write cache
8375  *
8376  * Return Code: EIO
8377  *		code returned by sd_send_scsi_MODE_SENSE and
8378  *		sd_send_scsi_MODE_SELECT
8379  *
8380  *     Context: Kernel Thread
8381  */
8382 
8383 static int
8384 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8385 {
8386 	struct mode_caching	*mode_caching_page;
8387 	uchar_t			*header;
8388 	size_t			buflen;
8389 	int			hdrlen;
8390 	int			bd_len;
8391 	int			rval = 0;
8392 	struct mode_header_grp2	*mhp;
8393 
8394 	ASSERT(un != NULL);
8395 
8396 	/*
8397 	 * Do a test unit ready, otherwise a mode sense may not work if this
8398 	 * is the first command sent to the device after boot.
8399 	 */
8400 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8401 
8402 	if (un->un_f_cfg_is_atapi == TRUE) {
8403 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8404 	} else {
8405 		hdrlen = MODE_HEADER_LENGTH;
8406 	}
8407 
8408 	/*
8409 	 * Allocate memory for the retrieved mode page and its headers.  Set
8410 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8411 	 * we get all of the mode sense data otherwise, the mode select
8412 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8413 	 */
8414 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8415 	    sizeof (struct mode_cache_scsi3);
8416 
8417 	header = kmem_zalloc(buflen, KM_SLEEP);
8418 
8419 	/* Get the information from the device. */
8420 	if (un->un_f_cfg_is_atapi == TRUE) {
8421 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8422 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8423 	} else {
8424 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8425 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8426 	}
8427 	if (rval != 0) {
8428 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8429 		    "sd_cache_control: Mode Sense Failed\n");
8430 		kmem_free(header, buflen);
8431 		return (rval);
8432 	}
8433 
8434 	/*
8435 	 * Determine size of Block Descriptors in order to locate
8436 	 * the mode page data. ATAPI devices return 0, SCSI devices
8437 	 * should return MODE_BLK_DESC_LENGTH.
8438 	 */
8439 	if (un->un_f_cfg_is_atapi == TRUE) {
8440 		mhp	= (struct mode_header_grp2 *)header;
8441 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8442 	} else {
8443 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8444 	}
8445 
8446 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8447 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8448 		    "sd_cache_control: Mode Sense returned invalid "
8449 		    "block descriptor length\n");
8450 		kmem_free(header, buflen);
8451 		return (EIO);
8452 	}
8453 
8454 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8455 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8456 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8457 		    " caching page code mismatch %d\n",
8458 		    mode_caching_page->mode_page.code);
8459 		kmem_free(header, buflen);
8460 		return (EIO);
8461 	}
8462 
8463 	/* Check the relevant bits on successful mode sense. */
8464 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8465 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8466 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8467 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8468 
8469 		size_t sbuflen;
8470 		uchar_t save_pg;
8471 
8472 		/*
8473 		 * Construct select buffer length based on the
8474 		 * length of the sense data returned.
8475 		 */
8476 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8477 		    sizeof (struct mode_page) +
8478 		    (int)mode_caching_page->mode_page.length;
8479 
8480 		/*
8481 		 * Set the caching bits as requested.
8482 		 */
8483 		if (rcd_flag == SD_CACHE_ENABLE)
8484 			mode_caching_page->rcd = 0;
8485 		else if (rcd_flag == SD_CACHE_DISABLE)
8486 			mode_caching_page->rcd = 1;
8487 
8488 		if (wce_flag == SD_CACHE_ENABLE)
8489 			mode_caching_page->wce = 1;
8490 		else if (wce_flag == SD_CACHE_DISABLE)
8491 			mode_caching_page->wce = 0;
8492 
8493 		/*
8494 		 * Save the page if the mode sense says the
8495 		 * drive supports it.
8496 		 */
8497 		save_pg = mode_caching_page->mode_page.ps ?
8498 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8499 
8500 		/* Clear reserved bits before mode select. */
8501 		mode_caching_page->mode_page.ps = 0;
8502 
8503 		/*
8504 		 * Clear out mode header for mode select.
8505 		 * The rest of the retrieved page will be reused.
8506 		 */
8507 		bzero(header, hdrlen);
8508 
8509 		if (un->un_f_cfg_is_atapi == TRUE) {
8510 			mhp = (struct mode_header_grp2 *)header;
8511 			mhp->bdesc_length_hi = bd_len >> 8;
8512 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8513 		} else {
8514 			((struct mode_header *)header)->bdesc_length = bd_len;
8515 		}
8516 
8517 		/* Issue mode select to change the cache settings */
8518 		if (un->un_f_cfg_is_atapi == TRUE) {
8519 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8520 			    sbuflen, save_pg, SD_PATH_DIRECT);
8521 		} else {
8522 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8523 			    sbuflen, save_pg, SD_PATH_DIRECT);
8524 		}
8525 	}
8526 
8527 	kmem_free(header, buflen);
8528 	return (rval);
8529 }
8530 
8531 
8532 /*
8533  *    Function: sd_get_write_cache_enabled()
8534  *
8535  * Description: This routine is the driver entry point for determining if
8536  *		write caching is enabled.  It examines the WCE (write cache
8537  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8538  *
8539  *   Arguments: un - driver soft state (unit) structure
8540  *		is_enabled - pointer to int where write cache enabled state
8541  *		is returned (non-zero -> write cache enabled)
8542  *
8543  *
8544  * Return Code: EIO
8545  *		code returned by sd_send_scsi_MODE_SENSE
8546  *
8547  *     Context: Kernel Thread
8548  *
8549  * NOTE: If ioctl is added to disable write cache, this sequence should
8550  * be followed so that no locking is required for accesses to
8551  * un->un_f_write_cache_enabled:
8552  * 	do mode select to clear wce
8553  * 	do synchronize cache to flush cache
8554  * 	set un->un_f_write_cache_enabled = FALSE
8555  *
8556  * Conversely, an ioctl to enable the write cache should be done
8557  * in this order:
8558  * 	set un->un_f_write_cache_enabled = TRUE
8559  * 	do mode select to set wce
8560  */
8561 
8562 static int
8563 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8564 {
8565 	struct mode_caching	*mode_caching_page;
8566 	uchar_t			*header;
8567 	size_t			buflen;
8568 	int			hdrlen;
8569 	int			bd_len;
8570 	int			rval = 0;
8571 
8572 	ASSERT(un != NULL);
8573 	ASSERT(is_enabled != NULL);
8574 
8575 	/* in case of error, flag as enabled */
8576 	*is_enabled = TRUE;
8577 
8578 	/*
8579 	 * Do a test unit ready, otherwise a mode sense may not work if this
8580 	 * is the first command sent to the device after boot.
8581 	 */
8582 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8583 
8584 	if (un->un_f_cfg_is_atapi == TRUE) {
8585 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8586 	} else {
8587 		hdrlen = MODE_HEADER_LENGTH;
8588 	}
8589 
8590 	/*
8591 	 * Allocate memory for the retrieved mode page and its headers.  Set
8592 	 * a pointer to the page itself.
8593 	 */
8594 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8595 	header = kmem_zalloc(buflen, KM_SLEEP);
8596 
8597 	/* Get the information from the device. */
8598 	if (un->un_f_cfg_is_atapi == TRUE) {
8599 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8600 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8601 	} else {
8602 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8603 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8604 	}
8605 	if (rval != 0) {
8606 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8607 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8608 		kmem_free(header, buflen);
8609 		return (rval);
8610 	}
8611 
8612 	/*
8613 	 * Determine size of Block Descriptors in order to locate
8614 	 * the mode page data. ATAPI devices return 0, SCSI devices
8615 	 * should return MODE_BLK_DESC_LENGTH.
8616 	 */
8617 	if (un->un_f_cfg_is_atapi == TRUE) {
8618 		struct mode_header_grp2	*mhp;
8619 		mhp	= (struct mode_header_grp2 *)header;
8620 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8621 	} else {
8622 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8623 	}
8624 
8625 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8626 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8627 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8628 		    "block descriptor length\n");
8629 		kmem_free(header, buflen);
8630 		return (EIO);
8631 	}
8632 
8633 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8634 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8635 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8636 		    " caching page code mismatch %d\n",
8637 		    mode_caching_page->mode_page.code);
8638 		kmem_free(header, buflen);
8639 		return (EIO);
8640 	}
8641 	*is_enabled = mode_caching_page->wce;
8642 
8643 	kmem_free(header, buflen);
8644 	return (0);
8645 }
8646 
8647 /*
8648  *    Function: sd_get_nv_sup()
8649  *
8650  * Description: This routine is the driver entry point for
8651  * determining whether non-volatile cache is supported. This
8652  * determination process works as follows:
8653  *
8654  * 1. sd first queries sd.conf on whether
8655  * suppress_cache_flush bit is set for this device.
8656  *
8657  * 2. if not there, then queries the internal disk table.
8658  *
8659  * 3. if either sd.conf or internal disk table specifies
8660  * cache flush be suppressed, we don't bother checking
8661  * NV_SUP bit.
8662  *
8663  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
8664  * the optional INQUIRY VPD page 0x86. If the device
8665  * supports VPD page 0x86, sd examines the NV_SUP
8666  * (non-volatile cache support) bit in the INQUIRY VPD page
8667  * 0x86:
8668  *   o If NV_SUP bit is set, sd assumes the device has a
8669  *   non-volatile cache and set the
8670  *   un_f_sync_nv_supported to TRUE.
8671  *   o Otherwise cache is not non-volatile,
8672  *   un_f_sync_nv_supported is set to FALSE.
8673  *
8674  * Arguments: un - driver soft state (unit) structure
8675  *
8676  * Return Code:
8677  *
8678  *     Context: Kernel Thread
8679  */
8680 
8681 static void
8682 sd_get_nv_sup(struct sd_lun *un)
8683 {
8684 	int		rval		= 0;
8685 	uchar_t		*inq86		= NULL;
8686 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
8687 	size_t		inq86_resid	= 0;
8688 	struct		dk_callback *dkc;
8689 
8690 	ASSERT(un != NULL);
8691 
8692 	mutex_enter(SD_MUTEX(un));
8693 
8694 	/*
8695 	 * Be conservative on the device's support of
8696 	 * SYNC_NV bit: un_f_sync_nv_supported is
8697 	 * initialized to be false.
8698 	 */
8699 	un->un_f_sync_nv_supported = FALSE;
8700 
8701 	/*
8702 	 * If either sd.conf or internal disk table
8703 	 * specifies cache flush be suppressed, then
8704 	 * we don't bother checking NV_SUP bit.
8705 	 */
8706 	if (un->un_f_suppress_cache_flush == TRUE) {
8707 		mutex_exit(SD_MUTEX(un));
8708 		return;
8709 	}
8710 
8711 	if (sd_check_vpd_page_support(un) == 0 &&
8712 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
8713 		mutex_exit(SD_MUTEX(un));
8714 		/* collect page 86 data if available */
8715 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
8716 		rval = sd_send_scsi_INQUIRY(un, inq86, inq86_len,
8717 		    0x01, 0x86, &inq86_resid);
8718 
8719 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
8720 			SD_TRACE(SD_LOG_COMMON, un,
8721 			    "sd_get_nv_sup: \
8722 			    successfully get VPD page: %x \
8723 			    PAGE LENGTH: %x BYTE 6: %x\n",
8724 			    inq86[1], inq86[3], inq86[6]);
8725 
8726 			mutex_enter(SD_MUTEX(un));
8727 			/*
8728 			 * check the value of NV_SUP bit: only if the device
8729 			 * reports NV_SUP bit to be 1, the
8730 			 * un_f_sync_nv_supported bit will be set to true.
8731 			 */
8732 			if (inq86[6] & SD_VPD_NV_SUP) {
8733 				un->un_f_sync_nv_supported = TRUE;
8734 			}
8735 			mutex_exit(SD_MUTEX(un));
8736 		}
8737 		kmem_free(inq86, inq86_len);
8738 	} else {
8739 		mutex_exit(SD_MUTEX(un));
8740 	}
8741 
8742 	/*
8743 	 * Send a SYNC CACHE command to check whether
8744 	 * SYNC_NV bit is supported. This command should have
8745 	 * un_f_sync_nv_supported set to correct value.
8746 	 */
8747 	mutex_enter(SD_MUTEX(un));
8748 	if (un->un_f_sync_nv_supported) {
8749 		mutex_exit(SD_MUTEX(un));
8750 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
8751 		dkc->dkc_flag = FLUSH_VOLATILE;
8752 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
8753 
8754 		/*
8755 		 * Send a TEST UNIT READY command to the device. This should
8756 		 * clear any outstanding UNIT ATTENTION that may be present.
8757 		 */
8758 		(void) sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR);
8759 
8760 		kmem_free(dkc, sizeof (struct dk_callback));
8761 	} else {
8762 		mutex_exit(SD_MUTEX(un));
8763 	}
8764 
8765 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
8766 	    un_f_suppress_cache_flush is set to %d\n",
8767 	    un->un_f_suppress_cache_flush);
8768 }
8769 
8770 /*
8771  *    Function: sd_make_device
8772  *
8773  * Description: Utility routine to return the Solaris device number from
8774  *		the data in the device's dev_info structure.
8775  *
8776  * Return Code: The Solaris device number
8777  *
8778  *     Context: Any
8779  */
8780 
8781 static dev_t
8782 sd_make_device(dev_info_t *devi)
8783 {
8784 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8785 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8786 }
8787 
8788 
8789 /*
8790  *    Function: sd_pm_entry
8791  *
8792  * Description: Called at the start of a new command to manage power
8793  *		and busy status of a device. This includes determining whether
8794  *		the current power state of the device is sufficient for
8795  *		performing the command or whether it must be changed.
8796  *		The PM framework is notified appropriately.
8797  *		Only with a return status of DDI_SUCCESS will the
8798  *		component be busy to the framework.
8799  *
8800  *		All callers of sd_pm_entry must check the return status
8801  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8802  *		of DDI_FAILURE indicates the device failed to power up.
8803  *		In this case un_pm_count has been adjusted so the result
8804  *		on exit is still powered down, ie. count is less than 0.
8805  *		Calling sd_pm_exit with this count value hits an ASSERT.
8806  *
8807  * Return Code: DDI_SUCCESS or DDI_FAILURE
8808  *
8809  *     Context: Kernel thread context.
8810  */
8811 
8812 static int
8813 sd_pm_entry(struct sd_lun *un)
8814 {
8815 	int return_status = DDI_SUCCESS;
8816 
8817 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8818 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8819 
8820 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8821 
8822 	if (un->un_f_pm_is_enabled == FALSE) {
8823 		SD_TRACE(SD_LOG_IO_PM, un,
8824 		    "sd_pm_entry: exiting, PM not enabled\n");
8825 		return (return_status);
8826 	}
8827 
8828 	/*
8829 	 * Just increment a counter if PM is enabled. On the transition from
8830 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8831 	 * the count with each IO and mark the device as idle when the count
8832 	 * hits 0.
8833 	 *
8834 	 * If the count is less than 0 the device is powered down. If a powered
8835 	 * down device is successfully powered up then the count must be
8836 	 * incremented to reflect the power up. Note that it'll get incremented
8837 	 * a second time to become busy.
8838 	 *
8839 	 * Because the following has the potential to change the device state
8840 	 * and must release the un_pm_mutex to do so, only one thread can be
8841 	 * allowed through at a time.
8842 	 */
8843 
8844 	mutex_enter(&un->un_pm_mutex);
8845 	while (un->un_pm_busy == TRUE) {
8846 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8847 	}
8848 	un->un_pm_busy = TRUE;
8849 
8850 	if (un->un_pm_count < 1) {
8851 
8852 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8853 
8854 		/*
8855 		 * Indicate we are now busy so the framework won't attempt to
8856 		 * power down the device. This call will only fail if either
8857 		 * we passed a bad component number or the device has no
8858 		 * components. Neither of these should ever happen.
8859 		 */
8860 		mutex_exit(&un->un_pm_mutex);
8861 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8862 		ASSERT(return_status == DDI_SUCCESS);
8863 
8864 		mutex_enter(&un->un_pm_mutex);
8865 
8866 		if (un->un_pm_count < 0) {
8867 			mutex_exit(&un->un_pm_mutex);
8868 
8869 			SD_TRACE(SD_LOG_IO_PM, un,
8870 			    "sd_pm_entry: power up component\n");
8871 
8872 			/*
8873 			 * pm_raise_power will cause sdpower to be called
8874 			 * which brings the device power level to the
8875 			 * desired state, ON in this case. If successful,
8876 			 * un_pm_count and un_power_level will be updated
8877 			 * appropriately.
8878 			 */
8879 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8880 			    SD_SPINDLE_ON);
8881 
8882 			mutex_enter(&un->un_pm_mutex);
8883 
8884 			if (return_status != DDI_SUCCESS) {
8885 				/*
8886 				 * Power up failed.
8887 				 * Idle the device and adjust the count
8888 				 * so the result on exit is that we're
8889 				 * still powered down, ie. count is less than 0.
8890 				 */
8891 				SD_TRACE(SD_LOG_IO_PM, un,
8892 				    "sd_pm_entry: power up failed,"
8893 				    " idle the component\n");
8894 
8895 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8896 				un->un_pm_count--;
8897 			} else {
8898 				/*
8899 				 * Device is powered up, verify the
8900 				 * count is non-negative.
8901 				 * This is debug only.
8902 				 */
8903 				ASSERT(un->un_pm_count == 0);
8904 			}
8905 		}
8906 
8907 		if (return_status == DDI_SUCCESS) {
8908 			/*
8909 			 * For performance, now that the device has been tagged
8910 			 * as busy, and it's known to be powered up, update the
8911 			 * chain types to use jump tables that do not include
8912 			 * pm. This significantly lowers the overhead and
8913 			 * therefore improves performance.
8914 			 */
8915 
8916 			mutex_exit(&un->un_pm_mutex);
8917 			mutex_enter(SD_MUTEX(un));
8918 			SD_TRACE(SD_LOG_IO_PM, un,
8919 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8920 			    un->un_uscsi_chain_type);
8921 
8922 			if (un->un_f_non_devbsize_supported) {
8923 				un->un_buf_chain_type =
8924 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8925 			} else {
8926 				un->un_buf_chain_type =
8927 				    SD_CHAIN_INFO_DISK_NO_PM;
8928 			}
8929 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8930 
8931 			SD_TRACE(SD_LOG_IO_PM, un,
8932 			    "             changed  uscsi_chain_type to   %d\n",
8933 			    un->un_uscsi_chain_type);
8934 			mutex_exit(SD_MUTEX(un));
8935 			mutex_enter(&un->un_pm_mutex);
8936 
8937 			if (un->un_pm_idle_timeid == NULL) {
8938 				/* 300 ms. */
8939 				un->un_pm_idle_timeid =
8940 				    timeout(sd_pm_idletimeout_handler, un,
8941 				    (drv_usectohz((clock_t)300000)));
8942 				/*
8943 				 * Include an extra call to busy which keeps the
8944 				 * device busy with-respect-to the PM layer
8945 				 * until the timer fires, at which time it'll
8946 				 * get the extra idle call.
8947 				 */
8948 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8949 			}
8950 		}
8951 	}
8952 	un->un_pm_busy = FALSE;
8953 	/* Next... */
8954 	cv_signal(&un->un_pm_busy_cv);
8955 
8956 	un->un_pm_count++;
8957 
8958 	SD_TRACE(SD_LOG_IO_PM, un,
8959 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8960 
8961 	mutex_exit(&un->un_pm_mutex);
8962 
8963 	return (return_status);
8964 }
8965 
8966 
8967 /*
8968  *    Function: sd_pm_exit
8969  *
8970  * Description: Called at the completion of a command to manage busy
8971  *		status for the device. If the device becomes idle the
8972  *		PM framework is notified.
8973  *
8974  *     Context: Kernel thread context
8975  */
8976 
8977 static void
8978 sd_pm_exit(struct sd_lun *un)
8979 {
8980 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8981 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8982 
8983 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8984 
8985 	/*
8986 	 * After attach the following flag is only read, so don't
8987 	 * take the penalty of acquiring a mutex for it.
8988 	 */
8989 	if (un->un_f_pm_is_enabled == TRUE) {
8990 
8991 		mutex_enter(&un->un_pm_mutex);
8992 		un->un_pm_count--;
8993 
8994 		SD_TRACE(SD_LOG_IO_PM, un,
8995 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
8996 
8997 		ASSERT(un->un_pm_count >= 0);
8998 		if (un->un_pm_count == 0) {
8999 			mutex_exit(&un->un_pm_mutex);
9000 
9001 			SD_TRACE(SD_LOG_IO_PM, un,
9002 			    "sd_pm_exit: idle component\n");
9003 
9004 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9005 
9006 		} else {
9007 			mutex_exit(&un->un_pm_mutex);
9008 		}
9009 	}
9010 
9011 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9012 }
9013 
9014 
9015 /*
9016  *    Function: sdopen
9017  *
9018  * Description: Driver's open(9e) entry point function.
9019  *
9020  *   Arguments: dev_i   - pointer to device number
9021  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9022  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9023  *		cred_p  - user credential pointer
9024  *
9025  * Return Code: EINVAL
9026  *		ENXIO
9027  *		EIO
9028  *		EROFS
9029  *		EBUSY
9030  *
9031  *     Context: Kernel thread context
9032  */
9033 /* ARGSUSED */
9034 static int
9035 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9036 {
9037 	struct sd_lun	*un;
9038 	int		nodelay;
9039 	int		part;
9040 	uint64_t	partmask;
9041 	int		instance;
9042 	dev_t		dev;
9043 	int		rval = EIO;
9044 	diskaddr_t	nblks = 0;
9045 
9046 	/* Validate the open type */
9047 	if (otyp >= OTYPCNT) {
9048 		return (EINVAL);
9049 	}
9050 
9051 	dev = *dev_p;
9052 	instance = SDUNIT(dev);
9053 	mutex_enter(&sd_detach_mutex);
9054 
9055 	/*
9056 	 * Fail the open if there is no softstate for the instance, or
9057 	 * if another thread somewhere is trying to detach the instance.
9058 	 */
9059 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9060 	    (un->un_detach_count != 0)) {
9061 		mutex_exit(&sd_detach_mutex);
9062 		/*
9063 		 * The probe cache only needs to be cleared when open (9e) fails
9064 		 * with ENXIO (4238046).
9065 		 */
9066 		/*
9067 		 * un-conditionally clearing probe cache is ok with
9068 		 * separate sd/ssd binaries
9069 		 * x86 platform can be an issue with both parallel
9070 		 * and fibre in 1 binary
9071 		 */
9072 		sd_scsi_clear_probe_cache();
9073 		return (ENXIO);
9074 	}
9075 
9076 	/*
9077 	 * The un_layer_count is to prevent another thread in specfs from
9078 	 * trying to detach the instance, which can happen when we are
9079 	 * called from a higher-layer driver instead of thru specfs.
9080 	 * This will not be needed when DDI provides a layered driver
9081 	 * interface that allows specfs to know that an instance is in
9082 	 * use by a layered driver & should not be detached.
9083 	 *
9084 	 * Note: the semantics for layered driver opens are exactly one
9085 	 * close for every open.
9086 	 */
9087 	if (otyp == OTYP_LYR) {
9088 		un->un_layer_count++;
9089 	}
9090 
9091 	/*
9092 	 * Keep a count of the current # of opens in progress. This is because
9093 	 * some layered drivers try to call us as a regular open. This can
9094 	 * cause problems that we cannot prevent, however by keeping this count
9095 	 * we can at least keep our open and detach routines from racing against
9096 	 * each other under such conditions.
9097 	 */
9098 	un->un_opens_in_progress++;
9099 	mutex_exit(&sd_detach_mutex);
9100 
9101 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9102 	part	 = SDPART(dev);
9103 	partmask = 1 << part;
9104 
9105 	/*
9106 	 * We use a semaphore here in order to serialize
9107 	 * open and close requests on the device.
9108 	 */
9109 	sema_p(&un->un_semoclose);
9110 
9111 	mutex_enter(SD_MUTEX(un));
9112 
9113 	/*
9114 	 * All device accesses go thru sdstrategy() where we check
9115 	 * on suspend status but there could be a scsi_poll command,
9116 	 * which bypasses sdstrategy(), so we need to check pm
9117 	 * status.
9118 	 */
9119 
9120 	if (!nodelay) {
9121 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9122 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9123 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9124 		}
9125 
9126 		mutex_exit(SD_MUTEX(un));
9127 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9128 			rval = EIO;
9129 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9130 			    "sdopen: sd_pm_entry failed\n");
9131 			goto open_failed_with_pm;
9132 		}
9133 		mutex_enter(SD_MUTEX(un));
9134 	}
9135 
9136 	/* check for previous exclusive open */
9137 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9138 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9139 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9140 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9141 
9142 	if (un->un_exclopen & (partmask)) {
9143 		goto excl_open_fail;
9144 	}
9145 
9146 	if (flag & FEXCL) {
9147 		int i;
9148 		if (un->un_ocmap.lyropen[part]) {
9149 			goto excl_open_fail;
9150 		}
9151 		for (i = 0; i < (OTYPCNT - 1); i++) {
9152 			if (un->un_ocmap.regopen[i] & (partmask)) {
9153 				goto excl_open_fail;
9154 			}
9155 		}
9156 	}
9157 
9158 	/*
9159 	 * Check the write permission if this is a removable media device,
9160 	 * NDELAY has not been set, and writable permission is requested.
9161 	 *
9162 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9163 	 * attempt will fail with EIO as part of the I/O processing. This is a
9164 	 * more permissive implementation that allows the open to succeed and
9165 	 * WRITE attempts to fail when appropriate.
9166 	 */
9167 	if (un->un_f_chk_wp_open) {
9168 		if ((flag & FWRITE) && (!nodelay)) {
9169 			mutex_exit(SD_MUTEX(un));
9170 			/*
9171 			 * Defer the check for write permission on writable
9172 			 * DVD drive till sdstrategy and will not fail open even
9173 			 * if FWRITE is set as the device can be writable
9174 			 * depending upon the media and the media can change
9175 			 * after the call to open().
9176 			 */
9177 			if (un->un_f_dvdram_writable_device == FALSE) {
9178 				if (ISCD(un) || sr_check_wp(dev)) {
9179 				rval = EROFS;
9180 				mutex_enter(SD_MUTEX(un));
9181 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9182 				    "write to cd or write protected media\n");
9183 				goto open_fail;
9184 				}
9185 			}
9186 			mutex_enter(SD_MUTEX(un));
9187 		}
9188 	}
9189 
9190 	/*
9191 	 * If opening in NDELAY/NONBLOCK mode, just return.
9192 	 * Check if disk is ready and has a valid geometry later.
9193 	 */
9194 	if (!nodelay) {
9195 		mutex_exit(SD_MUTEX(un));
9196 		rval = sd_ready_and_valid(un);
9197 		mutex_enter(SD_MUTEX(un));
9198 		/*
9199 		 * Fail if device is not ready or if the number of disk
9200 		 * blocks is zero or negative for non CD devices.
9201 		 */
9202 
9203 		nblks = 0;
9204 
9205 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9206 			/* if cmlb_partinfo fails, nblks remains 0 */
9207 			mutex_exit(SD_MUTEX(un));
9208 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9209 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9210 			mutex_enter(SD_MUTEX(un));
9211 		}
9212 
9213 		if ((rval != SD_READY_VALID) ||
9214 		    (!ISCD(un) && nblks <= 0)) {
9215 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9216 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9217 			    "device not ready or invalid disk block value\n");
9218 			goto open_fail;
9219 		}
9220 #if defined(__i386) || defined(__amd64)
9221 	} else {
9222 		uchar_t *cp;
9223 		/*
9224 		 * x86 requires special nodelay handling, so that p0 is
9225 		 * always defined and accessible.
9226 		 * Invalidate geometry only if device is not already open.
9227 		 */
9228 		cp = &un->un_ocmap.chkd[0];
9229 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9230 			if (*cp != (uchar_t)0) {
9231 				break;
9232 			}
9233 			cp++;
9234 		}
9235 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9236 			mutex_exit(SD_MUTEX(un));
9237 			cmlb_invalidate(un->un_cmlbhandle,
9238 			    (void *)SD_PATH_DIRECT);
9239 			mutex_enter(SD_MUTEX(un));
9240 		}
9241 
9242 #endif
9243 	}
9244 
9245 	if (otyp == OTYP_LYR) {
9246 		un->un_ocmap.lyropen[part]++;
9247 	} else {
9248 		un->un_ocmap.regopen[otyp] |= partmask;
9249 	}
9250 
9251 	/* Set up open and exclusive open flags */
9252 	if (flag & FEXCL) {
9253 		un->un_exclopen |= (partmask);
9254 	}
9255 
9256 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9257 	    "open of part %d type %d\n", part, otyp);
9258 
9259 	mutex_exit(SD_MUTEX(un));
9260 	if (!nodelay) {
9261 		sd_pm_exit(un);
9262 	}
9263 
9264 	sema_v(&un->un_semoclose);
9265 
9266 	mutex_enter(&sd_detach_mutex);
9267 	un->un_opens_in_progress--;
9268 	mutex_exit(&sd_detach_mutex);
9269 
9270 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9271 	return (DDI_SUCCESS);
9272 
9273 excl_open_fail:
9274 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9275 	rval = EBUSY;
9276 
9277 open_fail:
9278 	mutex_exit(SD_MUTEX(un));
9279 
9280 	/*
9281 	 * On a failed open we must exit the pm management.
9282 	 */
9283 	if (!nodelay) {
9284 		sd_pm_exit(un);
9285 	}
9286 open_failed_with_pm:
9287 	sema_v(&un->un_semoclose);
9288 
9289 	mutex_enter(&sd_detach_mutex);
9290 	un->un_opens_in_progress--;
9291 	if (otyp == OTYP_LYR) {
9292 		un->un_layer_count--;
9293 	}
9294 	mutex_exit(&sd_detach_mutex);
9295 
9296 	return (rval);
9297 }
9298 
9299 
9300 /*
9301  *    Function: sdclose
9302  *
9303  * Description: Driver's close(9e) entry point function.
9304  *
9305  *   Arguments: dev    - device number
9306  *		flag   - file status flag, informational only
9307  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9308  *		cred_p - user credential pointer
9309  *
9310  * Return Code: ENXIO
9311  *
9312  *     Context: Kernel thread context
9313  */
9314 /* ARGSUSED */
9315 static int
9316 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9317 {
9318 	struct sd_lun	*un;
9319 	uchar_t		*cp;
9320 	int		part;
9321 	int		nodelay;
9322 	int		rval = 0;
9323 
9324 	/* Validate the open type */
9325 	if (otyp >= OTYPCNT) {
9326 		return (ENXIO);
9327 	}
9328 
9329 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9330 		return (ENXIO);
9331 	}
9332 
9333 	part = SDPART(dev);
9334 	nodelay = flag & (FNDELAY | FNONBLOCK);
9335 
9336 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9337 	    "sdclose: close of part %d type %d\n", part, otyp);
9338 
9339 	/*
9340 	 * We use a semaphore here in order to serialize
9341 	 * open and close requests on the device.
9342 	 */
9343 	sema_p(&un->un_semoclose);
9344 
9345 	mutex_enter(SD_MUTEX(un));
9346 
9347 	/* Don't proceed if power is being changed. */
9348 	while (un->un_state == SD_STATE_PM_CHANGING) {
9349 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9350 	}
9351 
9352 	if (un->un_exclopen & (1 << part)) {
9353 		un->un_exclopen &= ~(1 << part);
9354 	}
9355 
9356 	/* Update the open partition map */
9357 	if (otyp == OTYP_LYR) {
9358 		un->un_ocmap.lyropen[part] -= 1;
9359 	} else {
9360 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9361 	}
9362 
9363 	cp = &un->un_ocmap.chkd[0];
9364 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9365 		if (*cp != NULL) {
9366 			break;
9367 		}
9368 		cp++;
9369 	}
9370 
9371 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9372 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9373 
9374 		/*
9375 		 * We avoid persistance upon the last close, and set
9376 		 * the throttle back to the maximum.
9377 		 */
9378 		un->un_throttle = un->un_saved_throttle;
9379 
9380 		if (un->un_state == SD_STATE_OFFLINE) {
9381 			if (un->un_f_is_fibre == FALSE) {
9382 				scsi_log(SD_DEVINFO(un), sd_label,
9383 				    CE_WARN, "offline\n");
9384 			}
9385 			mutex_exit(SD_MUTEX(un));
9386 			cmlb_invalidate(un->un_cmlbhandle,
9387 			    (void *)SD_PATH_DIRECT);
9388 			mutex_enter(SD_MUTEX(un));
9389 
9390 		} else {
9391 			/*
9392 			 * Flush any outstanding writes in NVRAM cache.
9393 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9394 			 * cmd, it may not work for non-Pluto devices.
9395 			 * SYNCHRONIZE CACHE is not required for removables,
9396 			 * except DVD-RAM drives.
9397 			 *
9398 			 * Also note: because SYNCHRONIZE CACHE is currently
9399 			 * the only command issued here that requires the
9400 			 * drive be powered up, only do the power up before
9401 			 * sending the Sync Cache command. If additional
9402 			 * commands are added which require a powered up
9403 			 * drive, the following sequence may have to change.
9404 			 *
9405 			 * And finally, note that parallel SCSI on SPARC
9406 			 * only issues a Sync Cache to DVD-RAM, a newly
9407 			 * supported device.
9408 			 */
9409 #if defined(__i386) || defined(__amd64)
9410 			if (un->un_f_sync_cache_supported ||
9411 			    un->un_f_dvdram_writable_device == TRUE) {
9412 #else
9413 			if (un->un_f_dvdram_writable_device == TRUE) {
9414 #endif
9415 				mutex_exit(SD_MUTEX(un));
9416 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9417 					rval =
9418 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9419 					    NULL);
9420 					/* ignore error if not supported */
9421 					if (rval == ENOTSUP) {
9422 						rval = 0;
9423 					} else if (rval != 0) {
9424 						rval = EIO;
9425 					}
9426 					sd_pm_exit(un);
9427 				} else {
9428 					rval = EIO;
9429 				}
9430 				mutex_enter(SD_MUTEX(un));
9431 			}
9432 
9433 			/*
9434 			 * For devices which supports DOOR_LOCK, send an ALLOW
9435 			 * MEDIA REMOVAL command, but don't get upset if it
9436 			 * fails. We need to raise the power of the drive before
9437 			 * we can call sd_send_scsi_DOORLOCK()
9438 			 */
9439 			if (un->un_f_doorlock_supported) {
9440 				mutex_exit(SD_MUTEX(un));
9441 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9442 					rval = sd_send_scsi_DOORLOCK(un,
9443 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9444 
9445 					sd_pm_exit(un);
9446 					if (ISCD(un) && (rval != 0) &&
9447 					    (nodelay != 0)) {
9448 						rval = ENXIO;
9449 					}
9450 				} else {
9451 					rval = EIO;
9452 				}
9453 				mutex_enter(SD_MUTEX(un));
9454 			}
9455 
9456 			/*
9457 			 * If a device has removable media, invalidate all
9458 			 * parameters related to media, such as geometry,
9459 			 * blocksize, and blockcount.
9460 			 */
9461 			if (un->un_f_has_removable_media) {
9462 				sr_ejected(un);
9463 			}
9464 
9465 			/*
9466 			 * Destroy the cache (if it exists) which was
9467 			 * allocated for the write maps since this is
9468 			 * the last close for this media.
9469 			 */
9470 			if (un->un_wm_cache) {
9471 				/*
9472 				 * Check if there are pending commands.
9473 				 * and if there are give a warning and
9474 				 * do not destroy the cache.
9475 				 */
9476 				if (un->un_ncmds_in_driver > 0) {
9477 					scsi_log(SD_DEVINFO(un),
9478 					    sd_label, CE_WARN,
9479 					    "Unable to clean up memory "
9480 					    "because of pending I/O\n");
9481 				} else {
9482 					kmem_cache_destroy(
9483 					    un->un_wm_cache);
9484 					un->un_wm_cache = NULL;
9485 				}
9486 			}
9487 		}
9488 	}
9489 
9490 	mutex_exit(SD_MUTEX(un));
9491 	sema_v(&un->un_semoclose);
9492 
9493 	if (otyp == OTYP_LYR) {
9494 		mutex_enter(&sd_detach_mutex);
9495 		/*
9496 		 * The detach routine may run when the layer count
9497 		 * drops to zero.
9498 		 */
9499 		un->un_layer_count--;
9500 		mutex_exit(&sd_detach_mutex);
9501 	}
9502 
9503 	return (rval);
9504 }
9505 
9506 
9507 /*
9508  *    Function: sd_ready_and_valid
9509  *
9510  * Description: Test if device is ready and has a valid geometry.
9511  *
9512  *   Arguments: dev - device number
9513  *		un  - driver soft state (unit) structure
9514  *
9515  * Return Code: SD_READY_VALID		ready and valid label
9516  *		SD_NOT_READY_VALID	not ready, no label
9517  *		SD_RESERVED_BY_OTHERS	reservation conflict
9518  *
9519  *     Context: Never called at interrupt context.
9520  */
9521 
9522 static int
9523 sd_ready_and_valid(struct sd_lun *un)
9524 {
9525 	struct sd_errstats	*stp;
9526 	uint64_t		capacity;
9527 	uint_t			lbasize;
9528 	int			rval = SD_READY_VALID;
9529 	char			name_str[48];
9530 	int			is_valid;
9531 
9532 	ASSERT(un != NULL);
9533 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9534 
9535 	mutex_enter(SD_MUTEX(un));
9536 	/*
9537 	 * If a device has removable media, we must check if media is
9538 	 * ready when checking if this device is ready and valid.
9539 	 */
9540 	if (un->un_f_has_removable_media) {
9541 		mutex_exit(SD_MUTEX(un));
9542 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9543 			rval = SD_NOT_READY_VALID;
9544 			mutex_enter(SD_MUTEX(un));
9545 			goto done;
9546 		}
9547 
9548 		is_valid = SD_IS_VALID_LABEL(un);
9549 		mutex_enter(SD_MUTEX(un));
9550 		if (!is_valid ||
9551 		    (un->un_f_blockcount_is_valid == FALSE) ||
9552 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9553 
9554 			/* capacity has to be read every open. */
9555 			mutex_exit(SD_MUTEX(un));
9556 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9557 			    &lbasize, SD_PATH_DIRECT) != 0) {
9558 				cmlb_invalidate(un->un_cmlbhandle,
9559 				    (void *)SD_PATH_DIRECT);
9560 				mutex_enter(SD_MUTEX(un));
9561 				rval = SD_NOT_READY_VALID;
9562 				goto done;
9563 			} else {
9564 				mutex_enter(SD_MUTEX(un));
9565 				sd_update_block_info(un, lbasize, capacity);
9566 			}
9567 		}
9568 
9569 		/*
9570 		 * Check if the media in the device is writable or not.
9571 		 */
9572 		if (!is_valid && ISCD(un)) {
9573 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9574 		}
9575 
9576 	} else {
9577 		/*
9578 		 * Do a test unit ready to clear any unit attention from non-cd
9579 		 * devices.
9580 		 */
9581 		mutex_exit(SD_MUTEX(un));
9582 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9583 		mutex_enter(SD_MUTEX(un));
9584 	}
9585 
9586 
9587 	/*
9588 	 * If this is a non 512 block device, allocate space for
9589 	 * the wmap cache. This is being done here since every time
9590 	 * a media is changed this routine will be called and the
9591 	 * block size is a function of media rather than device.
9592 	 */
9593 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9594 		if (!(un->un_wm_cache)) {
9595 			(void) snprintf(name_str, sizeof (name_str),
9596 			    "%s%d_cache",
9597 			    ddi_driver_name(SD_DEVINFO(un)),
9598 			    ddi_get_instance(SD_DEVINFO(un)));
9599 			un->un_wm_cache = kmem_cache_create(
9600 			    name_str, sizeof (struct sd_w_map),
9601 			    8, sd_wm_cache_constructor,
9602 			    sd_wm_cache_destructor, NULL,
9603 			    (void *)un, NULL, 0);
9604 			if (!(un->un_wm_cache)) {
9605 					rval = ENOMEM;
9606 					goto done;
9607 			}
9608 		}
9609 	}
9610 
9611 	if (un->un_state == SD_STATE_NORMAL) {
9612 		/*
9613 		 * If the target is not yet ready here (defined by a TUR
9614 		 * failure), invalidate the geometry and print an 'offline'
9615 		 * message. This is a legacy message, as the state of the
9616 		 * target is not actually changed to SD_STATE_OFFLINE.
9617 		 *
9618 		 * If the TUR fails for EACCES (Reservation Conflict),
9619 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9620 		 * reservation conflict. If the TUR fails for other
9621 		 * reasons, SD_NOT_READY_VALID will be returned.
9622 		 */
9623 		int err;
9624 
9625 		mutex_exit(SD_MUTEX(un));
9626 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9627 		mutex_enter(SD_MUTEX(un));
9628 
9629 		if (err != 0) {
9630 			mutex_exit(SD_MUTEX(un));
9631 			cmlb_invalidate(un->un_cmlbhandle,
9632 			    (void *)SD_PATH_DIRECT);
9633 			mutex_enter(SD_MUTEX(un));
9634 			if (err == EACCES) {
9635 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9636 				    "reservation conflict\n");
9637 				rval = SD_RESERVED_BY_OTHERS;
9638 			} else {
9639 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9640 				    "drive offline\n");
9641 				rval = SD_NOT_READY_VALID;
9642 			}
9643 			goto done;
9644 		}
9645 	}
9646 
9647 	if (un->un_f_format_in_progress == FALSE) {
9648 		mutex_exit(SD_MUTEX(un));
9649 		if (cmlb_validate(un->un_cmlbhandle, 0,
9650 		    (void *)SD_PATH_DIRECT) != 0) {
9651 			rval = SD_NOT_READY_VALID;
9652 			mutex_enter(SD_MUTEX(un));
9653 			goto done;
9654 		}
9655 		if (un->un_f_pkstats_enabled) {
9656 			sd_set_pstats(un);
9657 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9658 			    "sd_ready_and_valid: un:0x%p pstats created and "
9659 			    "set\n", un);
9660 		}
9661 		mutex_enter(SD_MUTEX(un));
9662 	}
9663 
9664 	/*
9665 	 * If this device supports DOOR_LOCK command, try and send
9666 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9667 	 * if it fails. For a CD, however, it is an error
9668 	 */
9669 	if (un->un_f_doorlock_supported) {
9670 		mutex_exit(SD_MUTEX(un));
9671 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9672 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9673 			rval = SD_NOT_READY_VALID;
9674 			mutex_enter(SD_MUTEX(un));
9675 			goto done;
9676 		}
9677 		mutex_enter(SD_MUTEX(un));
9678 	}
9679 
9680 	/* The state has changed, inform the media watch routines */
9681 	un->un_mediastate = DKIO_INSERTED;
9682 	cv_broadcast(&un->un_state_cv);
9683 	rval = SD_READY_VALID;
9684 
9685 done:
9686 
9687 	/*
9688 	 * Initialize the capacity kstat value, if no media previously
9689 	 * (capacity kstat is 0) and a media has been inserted
9690 	 * (un_blockcount > 0).
9691 	 */
9692 	if (un->un_errstats != NULL) {
9693 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9694 		if ((stp->sd_capacity.value.ui64 == 0) &&
9695 		    (un->un_f_blockcount_is_valid == TRUE)) {
9696 			stp->sd_capacity.value.ui64 =
9697 			    (uint64_t)((uint64_t)un->un_blockcount *
9698 			    un->un_sys_blocksize);
9699 		}
9700 	}
9701 
9702 	mutex_exit(SD_MUTEX(un));
9703 	return (rval);
9704 }
9705 
9706 
9707 /*
9708  *    Function: sdmin
9709  *
9710  * Description: Routine to limit the size of a data transfer. Used in
9711  *		conjunction with physio(9F).
9712  *
9713  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9714  *
9715  *     Context: Kernel thread context.
9716  */
9717 
9718 static void
9719 sdmin(struct buf *bp)
9720 {
9721 	struct sd_lun	*un;
9722 	int		instance;
9723 
9724 	instance = SDUNIT(bp->b_edev);
9725 
9726 	un = ddi_get_soft_state(sd_state, instance);
9727 	ASSERT(un != NULL);
9728 
9729 	if (bp->b_bcount > un->un_max_xfer_size) {
9730 		bp->b_bcount = un->un_max_xfer_size;
9731 	}
9732 }
9733 
9734 
9735 /*
9736  *    Function: sdread
9737  *
9738  * Description: Driver's read(9e) entry point function.
9739  *
9740  *   Arguments: dev   - device number
9741  *		uio   - structure pointer describing where data is to be stored
9742  *			in user's space
9743  *		cred_p  - user credential pointer
9744  *
9745  * Return Code: ENXIO
9746  *		EIO
9747  *		EINVAL
9748  *		value returned by physio
9749  *
9750  *     Context: Kernel thread context.
9751  */
9752 /* ARGSUSED */
9753 static int
9754 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9755 {
9756 	struct sd_lun	*un = NULL;
9757 	int		secmask;
9758 	int		err;
9759 
9760 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9761 		return (ENXIO);
9762 	}
9763 
9764 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9765 
9766 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9767 		mutex_enter(SD_MUTEX(un));
9768 		/*
9769 		 * Because the call to sd_ready_and_valid will issue I/O we
9770 		 * must wait here if either the device is suspended or
9771 		 * if it's power level is changing.
9772 		 */
9773 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9774 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9775 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9776 		}
9777 		un->un_ncmds_in_driver++;
9778 		mutex_exit(SD_MUTEX(un));
9779 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9780 			mutex_enter(SD_MUTEX(un));
9781 			un->un_ncmds_in_driver--;
9782 			ASSERT(un->un_ncmds_in_driver >= 0);
9783 			mutex_exit(SD_MUTEX(un));
9784 			return (EIO);
9785 		}
9786 		mutex_enter(SD_MUTEX(un));
9787 		un->un_ncmds_in_driver--;
9788 		ASSERT(un->un_ncmds_in_driver >= 0);
9789 		mutex_exit(SD_MUTEX(un));
9790 	}
9791 
9792 	/*
9793 	 * Read requests are restricted to multiples of the system block size.
9794 	 */
9795 	secmask = un->un_sys_blocksize - 1;
9796 
9797 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9798 		SD_ERROR(SD_LOG_READ_WRITE, un,
9799 		    "sdread: file offset not modulo %d\n",
9800 		    un->un_sys_blocksize);
9801 		err = EINVAL;
9802 	} else if (uio->uio_iov->iov_len & (secmask)) {
9803 		SD_ERROR(SD_LOG_READ_WRITE, un,
9804 		    "sdread: transfer length not modulo %d\n",
9805 		    un->un_sys_blocksize);
9806 		err = EINVAL;
9807 	} else {
9808 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9809 	}
9810 	return (err);
9811 }
9812 
9813 
9814 /*
9815  *    Function: sdwrite
9816  *
9817  * Description: Driver's write(9e) entry point function.
9818  *
9819  *   Arguments: dev   - device number
9820  *		uio   - structure pointer describing where data is stored in
9821  *			user's space
9822  *		cred_p  - user credential pointer
9823  *
9824  * Return Code: ENXIO
9825  *		EIO
9826  *		EINVAL
9827  *		value returned by physio
9828  *
9829  *     Context: Kernel thread context.
9830  */
9831 /* ARGSUSED */
9832 static int
9833 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9834 {
9835 	struct sd_lun	*un = NULL;
9836 	int		secmask;
9837 	int		err;
9838 
9839 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9840 		return (ENXIO);
9841 	}
9842 
9843 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9844 
9845 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9846 		mutex_enter(SD_MUTEX(un));
9847 		/*
9848 		 * Because the call to sd_ready_and_valid will issue I/O we
9849 		 * must wait here if either the device is suspended or
9850 		 * if it's power level is changing.
9851 		 */
9852 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9853 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9854 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9855 		}
9856 		un->un_ncmds_in_driver++;
9857 		mutex_exit(SD_MUTEX(un));
9858 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9859 			mutex_enter(SD_MUTEX(un));
9860 			un->un_ncmds_in_driver--;
9861 			ASSERT(un->un_ncmds_in_driver >= 0);
9862 			mutex_exit(SD_MUTEX(un));
9863 			return (EIO);
9864 		}
9865 		mutex_enter(SD_MUTEX(un));
9866 		un->un_ncmds_in_driver--;
9867 		ASSERT(un->un_ncmds_in_driver >= 0);
9868 		mutex_exit(SD_MUTEX(un));
9869 	}
9870 
9871 	/*
9872 	 * Write requests are restricted to multiples of the system block size.
9873 	 */
9874 	secmask = un->un_sys_blocksize - 1;
9875 
9876 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9877 		SD_ERROR(SD_LOG_READ_WRITE, un,
9878 		    "sdwrite: file offset not modulo %d\n",
9879 		    un->un_sys_blocksize);
9880 		err = EINVAL;
9881 	} else if (uio->uio_iov->iov_len & (secmask)) {
9882 		SD_ERROR(SD_LOG_READ_WRITE, un,
9883 		    "sdwrite: transfer length not modulo %d\n",
9884 		    un->un_sys_blocksize);
9885 		err = EINVAL;
9886 	} else {
9887 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9888 	}
9889 	return (err);
9890 }
9891 
9892 
9893 /*
9894  *    Function: sdaread
9895  *
9896  * Description: Driver's aread(9e) entry point function.
9897  *
9898  *   Arguments: dev   - device number
9899  *		aio   - structure pointer describing where data is to be stored
9900  *		cred_p  - user credential pointer
9901  *
9902  * Return Code: ENXIO
9903  *		EIO
9904  *		EINVAL
9905  *		value returned by aphysio
9906  *
9907  *     Context: Kernel thread context.
9908  */
9909 /* ARGSUSED */
9910 static int
9911 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9912 {
9913 	struct sd_lun	*un = NULL;
9914 	struct uio	*uio = aio->aio_uio;
9915 	int		secmask;
9916 	int		err;
9917 
9918 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9919 		return (ENXIO);
9920 	}
9921 
9922 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9923 
9924 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9925 		mutex_enter(SD_MUTEX(un));
9926 		/*
9927 		 * Because the call to sd_ready_and_valid will issue I/O we
9928 		 * must wait here if either the device is suspended or
9929 		 * if it's power level is changing.
9930 		 */
9931 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9932 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9933 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9934 		}
9935 		un->un_ncmds_in_driver++;
9936 		mutex_exit(SD_MUTEX(un));
9937 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9938 			mutex_enter(SD_MUTEX(un));
9939 			un->un_ncmds_in_driver--;
9940 			ASSERT(un->un_ncmds_in_driver >= 0);
9941 			mutex_exit(SD_MUTEX(un));
9942 			return (EIO);
9943 		}
9944 		mutex_enter(SD_MUTEX(un));
9945 		un->un_ncmds_in_driver--;
9946 		ASSERT(un->un_ncmds_in_driver >= 0);
9947 		mutex_exit(SD_MUTEX(un));
9948 	}
9949 
9950 	/*
9951 	 * Read requests are restricted to multiples of the system block size.
9952 	 */
9953 	secmask = un->un_sys_blocksize - 1;
9954 
9955 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9956 		SD_ERROR(SD_LOG_READ_WRITE, un,
9957 		    "sdaread: file offset not modulo %d\n",
9958 		    un->un_sys_blocksize);
9959 		err = EINVAL;
9960 	} else if (uio->uio_iov->iov_len & (secmask)) {
9961 		SD_ERROR(SD_LOG_READ_WRITE, un,
9962 		    "sdaread: transfer length not modulo %d\n",
9963 		    un->un_sys_blocksize);
9964 		err = EINVAL;
9965 	} else {
9966 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9967 	}
9968 	return (err);
9969 }
9970 
9971 
9972 /*
9973  *    Function: sdawrite
9974  *
9975  * Description: Driver's awrite(9e) entry point function.
9976  *
9977  *   Arguments: dev   - device number
9978  *		aio   - structure pointer describing where data is stored
9979  *		cred_p  - user credential pointer
9980  *
9981  * Return Code: ENXIO
9982  *		EIO
9983  *		EINVAL
9984  *		value returned by aphysio
9985  *
9986  *     Context: Kernel thread context.
9987  */
9988 /* ARGSUSED */
9989 static int
9990 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9991 {
9992 	struct sd_lun	*un = NULL;
9993 	struct uio	*uio = aio->aio_uio;
9994 	int		secmask;
9995 	int		err;
9996 
9997 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9998 		return (ENXIO);
9999 	}
10000 
10001 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10002 
10003 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10004 		mutex_enter(SD_MUTEX(un));
10005 		/*
10006 		 * Because the call to sd_ready_and_valid will issue I/O we
10007 		 * must wait here if either the device is suspended or
10008 		 * if it's power level is changing.
10009 		 */
10010 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10011 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10012 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10013 		}
10014 		un->un_ncmds_in_driver++;
10015 		mutex_exit(SD_MUTEX(un));
10016 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10017 			mutex_enter(SD_MUTEX(un));
10018 			un->un_ncmds_in_driver--;
10019 			ASSERT(un->un_ncmds_in_driver >= 0);
10020 			mutex_exit(SD_MUTEX(un));
10021 			return (EIO);
10022 		}
10023 		mutex_enter(SD_MUTEX(un));
10024 		un->un_ncmds_in_driver--;
10025 		ASSERT(un->un_ncmds_in_driver >= 0);
10026 		mutex_exit(SD_MUTEX(un));
10027 	}
10028 
10029 	/*
10030 	 * Write requests are restricted to multiples of the system block size.
10031 	 */
10032 	secmask = un->un_sys_blocksize - 1;
10033 
10034 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10035 		SD_ERROR(SD_LOG_READ_WRITE, un,
10036 		    "sdawrite: file offset not modulo %d\n",
10037 		    un->un_sys_blocksize);
10038 		err = EINVAL;
10039 	} else if (uio->uio_iov->iov_len & (secmask)) {
10040 		SD_ERROR(SD_LOG_READ_WRITE, un,
10041 		    "sdawrite: transfer length not modulo %d\n",
10042 		    un->un_sys_blocksize);
10043 		err = EINVAL;
10044 	} else {
10045 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10046 	}
10047 	return (err);
10048 }
10049 
10050 
10051 
10052 
10053 
10054 /*
10055  * Driver IO processing follows the following sequence:
10056  *
10057  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10058  *         |                |                     ^
10059  *         v                v                     |
10060  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10061  *         |                |                     |                   |
10062  *         v                |                     |                   |
10063  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10064  *         |                |                     ^                   ^
10065  *         v                v                     |                   |
10066  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10067  *         |                |                     |                   |
10068  *     +---+                |                     +------------+      +-------+
10069  *     |                    |                                  |              |
10070  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10071  *     |                    v                                  |              |
10072  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10073  *     |                    |                                  ^              |
10074  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10075  *     |                    v                                  |              |
10076  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10077  *     |                    |                                  ^              |
10078  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10079  *     |                    v                                  |              |
10080  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10081  *     |                    |                                  ^              |
10082  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10083  *     |                    v                                  |              |
10084  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10085  *     |                    |                                  ^              |
10086  *     |                    |                                  |              |
10087  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10088  *                          |                           ^
10089  *                          v                           |
10090  *                   sd_core_iostart()                  |
10091  *                          |                           |
10092  *                          |                           +------>(*destroypkt)()
10093  *                          +-> sd_start_cmds() <-+     |           |
10094  *                          |                     |     |           v
10095  *                          |                     |     |  scsi_destroy_pkt(9F)
10096  *                          |                     |     |
10097  *                          +->(*initpkt)()       +- sdintr()
10098  *                          |  |                        |  |
10099  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10100  *                          |  +-> scsi_setup_cdb(9F)   |
10101  *                          |                           |
10102  *                          +--> scsi_transport(9F)     |
10103  *                                     |                |
10104  *                                     +----> SCSA ---->+
10105  *
10106  *
10107  * This code is based upon the following presumptions:
10108  *
10109  *   - iostart and iodone functions operate on buf(9S) structures. These
10110  *     functions perform the necessary operations on the buf(9S) and pass
10111  *     them along to the next function in the chain by using the macros
10112  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10113  *     (for iodone side functions).
10114  *
10115  *   - The iostart side functions may sleep. The iodone side functions
10116  *     are called under interrupt context and may NOT sleep. Therefore
10117  *     iodone side functions also may not call iostart side functions.
10118  *     (NOTE: iostart side functions should NOT sleep for memory, as
10119  *     this could result in deadlock.)
10120  *
10121  *   - An iostart side function may call its corresponding iodone side
10122  *     function directly (if necessary).
10123  *
10124  *   - In the event of an error, an iostart side function can return a buf(9S)
10125  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10126  *     b_error in the usual way of course).
10127  *
10128  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10129  *     requests to the iostart side functions.  The iostart side functions in
10130  *     this case would be called under the context of a taskq thread, so it's
10131  *     OK for them to block/sleep/spin in this case.
10132  *
10133  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10134  *     pass them along to the next function in the chain.  The corresponding
10135  *     iodone side functions must coalesce the "shadow" bufs and return
10136  *     the "original" buf to the next higher layer.
10137  *
10138  *   - The b_private field of the buf(9S) struct holds a pointer to
10139  *     an sd_xbuf struct, which contains information needed to
10140  *     construct the scsi_pkt for the command.
10141  *
10142  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10143  *     layer must acquire & release the SD_MUTEX(un) as needed.
10144  */
10145 
10146 
10147 /*
10148  * Create taskq for all targets in the system. This is created at
10149  * _init(9E) and destroyed at _fini(9E).
10150  *
10151  * Note: here we set the minalloc to a reasonably high number to ensure that
10152  * we will have an adequate supply of task entries available at interrupt time.
10153  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10154  * sd_create_taskq().  Since we do not want to sleep for allocations at
10155  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10156  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10157  * requests any one instant in time.
10158  */
10159 #define	SD_TASKQ_NUMTHREADS	8
10160 #define	SD_TASKQ_MINALLOC	256
10161 #define	SD_TASKQ_MAXALLOC	256
10162 
10163 static taskq_t	*sd_tq = NULL;
10164 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10165 
10166 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10167 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10168 
10169 /*
10170  * The following task queue is being created for the write part of
10171  * read-modify-write of non-512 block size devices.
10172  * Limit the number of threads to 1 for now. This number has been chosen
10173  * considering the fact that it applies only to dvd ram drives/MO drives
10174  * currently. Performance for which is not main criteria at this stage.
10175  * Note: It needs to be explored if we can use a single taskq in future
10176  */
10177 #define	SD_WMR_TASKQ_NUMTHREADS	1
10178 static taskq_t	*sd_wmr_tq = NULL;
10179 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10180 
10181 /*
10182  *    Function: sd_taskq_create
10183  *
10184  * Description: Create taskq thread(s) and preallocate task entries
10185  *
10186  * Return Code: Returns a pointer to the allocated taskq_t.
10187  *
10188  *     Context: Can sleep. Requires blockable context.
10189  *
10190  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10191  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10192  *		- taskq_create() will block for memory, also it will panic
10193  *		  if it cannot create the requested number of threads.
10194  *		- Currently taskq_create() creates threads that cannot be
10195  *		  swapped.
10196  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10197  *		  supply of taskq entries at interrupt time (ie, so that we
10198  *		  do not have to sleep for memory)
10199  */
10200 
10201 static void
10202 sd_taskq_create(void)
10203 {
10204 	char	taskq_name[TASKQ_NAMELEN];
10205 
10206 	ASSERT(sd_tq == NULL);
10207 	ASSERT(sd_wmr_tq == NULL);
10208 
10209 	(void) snprintf(taskq_name, sizeof (taskq_name),
10210 	    "%s_drv_taskq", sd_label);
10211 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10212 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10213 	    TASKQ_PREPOPULATE));
10214 
10215 	(void) snprintf(taskq_name, sizeof (taskq_name),
10216 	    "%s_rmw_taskq", sd_label);
10217 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10218 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10219 	    TASKQ_PREPOPULATE));
10220 }
10221 
10222 
10223 /*
10224  *    Function: sd_taskq_delete
10225  *
10226  * Description: Complementary cleanup routine for sd_taskq_create().
10227  *
10228  *     Context: Kernel thread context.
10229  */
10230 
10231 static void
10232 sd_taskq_delete(void)
10233 {
10234 	ASSERT(sd_tq != NULL);
10235 	ASSERT(sd_wmr_tq != NULL);
10236 	taskq_destroy(sd_tq);
10237 	taskq_destroy(sd_wmr_tq);
10238 	sd_tq = NULL;
10239 	sd_wmr_tq = NULL;
10240 }
10241 
10242 
10243 /*
10244  *    Function: sdstrategy
10245  *
10246  * Description: Driver's strategy (9E) entry point function.
10247  *
10248  *   Arguments: bp - pointer to buf(9S)
10249  *
10250  * Return Code: Always returns zero
10251  *
10252  *     Context: Kernel thread context.
10253  */
10254 
10255 static int
10256 sdstrategy(struct buf *bp)
10257 {
10258 	struct sd_lun *un;
10259 
10260 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10261 	if (un == NULL) {
10262 		bioerror(bp, EIO);
10263 		bp->b_resid = bp->b_bcount;
10264 		biodone(bp);
10265 		return (0);
10266 	}
10267 	/* As was done in the past, fail new cmds. if state is dumping. */
10268 	if (un->un_state == SD_STATE_DUMPING) {
10269 		bioerror(bp, ENXIO);
10270 		bp->b_resid = bp->b_bcount;
10271 		biodone(bp);
10272 		return (0);
10273 	}
10274 
10275 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10276 
10277 	/*
10278 	 * Commands may sneak in while we released the mutex in
10279 	 * DDI_SUSPEND, we should block new commands. However, old
10280 	 * commands that are still in the driver at this point should
10281 	 * still be allowed to drain.
10282 	 */
10283 	mutex_enter(SD_MUTEX(un));
10284 	/*
10285 	 * Must wait here if either the device is suspended or
10286 	 * if it's power level is changing.
10287 	 */
10288 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10289 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10290 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10291 	}
10292 
10293 	un->un_ncmds_in_driver++;
10294 
10295 	/*
10296 	 * atapi: Since we are running the CD for now in PIO mode we need to
10297 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10298 	 * the HBA's init_pkt routine.
10299 	 */
10300 	if (un->un_f_cfg_is_atapi == TRUE) {
10301 		mutex_exit(SD_MUTEX(un));
10302 		bp_mapin(bp);
10303 		mutex_enter(SD_MUTEX(un));
10304 	}
10305 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10306 	    un->un_ncmds_in_driver);
10307 
10308 	mutex_exit(SD_MUTEX(un));
10309 
10310 	/*
10311 	 * This will (eventually) allocate the sd_xbuf area and
10312 	 * call sd_xbuf_strategy().  We just want to return the
10313 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10314 	 * imized tail call which saves us a stack frame.
10315 	 */
10316 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10317 }
10318 
10319 
10320 /*
10321  *    Function: sd_xbuf_strategy
10322  *
10323  * Description: Function for initiating IO operations via the
10324  *		ddi_xbuf_qstrategy() mechanism.
10325  *
10326  *     Context: Kernel thread context.
10327  */
10328 
10329 static void
10330 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10331 {
10332 	struct sd_lun *un = arg;
10333 
10334 	ASSERT(bp != NULL);
10335 	ASSERT(xp != NULL);
10336 	ASSERT(un != NULL);
10337 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10338 
10339 	/*
10340 	 * Initialize the fields in the xbuf and save a pointer to the
10341 	 * xbuf in bp->b_private.
10342 	 */
10343 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10344 
10345 	/* Send the buf down the iostart chain */
10346 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10347 }
10348 
10349 
10350 /*
10351  *    Function: sd_xbuf_init
10352  *
10353  * Description: Prepare the given sd_xbuf struct for use.
10354  *
10355  *   Arguments: un - ptr to softstate
10356  *		bp - ptr to associated buf(9S)
10357  *		xp - ptr to associated sd_xbuf
10358  *		chain_type - IO chain type to use:
10359  *			SD_CHAIN_NULL
10360  *			SD_CHAIN_BUFIO
10361  *			SD_CHAIN_USCSI
10362  *			SD_CHAIN_DIRECT
10363  *			SD_CHAIN_DIRECT_PRIORITY
10364  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10365  *			initialization; may be NULL if none.
10366  *
10367  *     Context: Kernel thread context
10368  */
10369 
10370 static void
10371 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10372 	uchar_t chain_type, void *pktinfop)
10373 {
10374 	int index;
10375 
10376 	ASSERT(un != NULL);
10377 	ASSERT(bp != NULL);
10378 	ASSERT(xp != NULL);
10379 
10380 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10381 	    bp, chain_type);
10382 
10383 	xp->xb_un	= un;
10384 	xp->xb_pktp	= NULL;
10385 	xp->xb_pktinfo	= pktinfop;
10386 	xp->xb_private	= bp->b_private;
10387 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10388 
10389 	/*
10390 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10391 	 * upon the specified chain type to use.
10392 	 */
10393 	switch (chain_type) {
10394 	case SD_CHAIN_NULL:
10395 		/*
10396 		 * Fall thru to just use the values for the buf type, even
10397 		 * tho for the NULL chain these values will never be used.
10398 		 */
10399 		/* FALLTHRU */
10400 	case SD_CHAIN_BUFIO:
10401 		index = un->un_buf_chain_type;
10402 		break;
10403 	case SD_CHAIN_USCSI:
10404 		index = un->un_uscsi_chain_type;
10405 		break;
10406 	case SD_CHAIN_DIRECT:
10407 		index = un->un_direct_chain_type;
10408 		break;
10409 	case SD_CHAIN_DIRECT_PRIORITY:
10410 		index = un->un_priority_chain_type;
10411 		break;
10412 	default:
10413 		/* We're really broken if we ever get here... */
10414 		panic("sd_xbuf_init: illegal chain type!");
10415 		/*NOTREACHED*/
10416 	}
10417 
10418 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10419 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10420 
10421 	/*
10422 	 * It might be a bit easier to simply bzero the entire xbuf above,
10423 	 * but it turns out that since we init a fair number of members anyway,
10424 	 * we save a fair number cycles by doing explicit assignment of zero.
10425 	 */
10426 	xp->xb_pkt_flags	= 0;
10427 	xp->xb_dma_resid	= 0;
10428 	xp->xb_retry_count	= 0;
10429 	xp->xb_victim_retry_count = 0;
10430 	xp->xb_ua_retry_count	= 0;
10431 	xp->xb_nr_retry_count	= 0;
10432 	xp->xb_sense_bp		= NULL;
10433 	xp->xb_sense_status	= 0;
10434 	xp->xb_sense_state	= 0;
10435 	xp->xb_sense_resid	= 0;
10436 
10437 	bp->b_private	= xp;
10438 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10439 	bp->b_resid	= 0;
10440 	bp->av_forw	= NULL;
10441 	bp->av_back	= NULL;
10442 	bioerror(bp, 0);
10443 
10444 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10445 }
10446 
10447 
10448 /*
10449  *    Function: sd_uscsi_strategy
10450  *
10451  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10452  *
10453  *   Arguments: bp - buf struct ptr
10454  *
10455  * Return Code: Always returns 0
10456  *
10457  *     Context: Kernel thread context
10458  */
10459 
10460 static int
10461 sd_uscsi_strategy(struct buf *bp)
10462 {
10463 	struct sd_lun		*un;
10464 	struct sd_uscsi_info	*uip;
10465 	struct sd_xbuf		*xp;
10466 	uchar_t			chain_type;
10467 
10468 	ASSERT(bp != NULL);
10469 
10470 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10471 	if (un == NULL) {
10472 		bioerror(bp, EIO);
10473 		bp->b_resid = bp->b_bcount;
10474 		biodone(bp);
10475 		return (0);
10476 	}
10477 
10478 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10479 
10480 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10481 
10482 	mutex_enter(SD_MUTEX(un));
10483 	/*
10484 	 * atapi: Since we are running the CD for now in PIO mode we need to
10485 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10486 	 * the HBA's init_pkt routine.
10487 	 */
10488 	if (un->un_f_cfg_is_atapi == TRUE) {
10489 		mutex_exit(SD_MUTEX(un));
10490 		bp_mapin(bp);
10491 		mutex_enter(SD_MUTEX(un));
10492 	}
10493 	un->un_ncmds_in_driver++;
10494 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10495 	    un->un_ncmds_in_driver);
10496 	mutex_exit(SD_MUTEX(un));
10497 
10498 	/*
10499 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10500 	 */
10501 	ASSERT(bp->b_private != NULL);
10502 	uip = (struct sd_uscsi_info *)bp->b_private;
10503 
10504 	switch (uip->ui_flags) {
10505 	case SD_PATH_DIRECT:
10506 		chain_type = SD_CHAIN_DIRECT;
10507 		break;
10508 	case SD_PATH_DIRECT_PRIORITY:
10509 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10510 		break;
10511 	default:
10512 		chain_type = SD_CHAIN_USCSI;
10513 		break;
10514 	}
10515 
10516 	/*
10517 	 * We may allocate extra buf for external USCSI commands. If the
10518 	 * application asks for bigger than 20-byte sense data via USCSI,
10519 	 * SCSA layer will allocate 252 bytes sense buf for that command.
10520 	 */
10521 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
10522 	    SENSE_LENGTH) {
10523 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
10524 		    MAX_SENSE_LENGTH, KM_SLEEP);
10525 	} else {
10526 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
10527 	}
10528 
10529 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10530 
10531 	/* Use the index obtained within xbuf_init */
10532 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10533 
10534 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10535 
10536 	return (0);
10537 }
10538 
10539 /*
10540  *    Function: sd_send_scsi_cmd
10541  *
10542  * Description: Runs a USCSI command for user (when called thru sdioctl),
10543  *		or for the driver
10544  *
10545  *   Arguments: dev - the dev_t for the device
10546  *		incmd - ptr to a valid uscsi_cmd struct
10547  *		flag - bit flag, indicating open settings, 32/64 bit type
10548  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10549  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10550  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10551  *			to use the USCSI "direct" chain and bypass the normal
10552  *			command waitq.
10553  *
10554  * Return Code: 0 -  successful completion of the given command
10555  *		EIO - scsi_uscsi_handle_command() failed
10556  *		ENXIO  - soft state not found for specified dev
10557  *		EINVAL
10558  *		EFAULT - copyin/copyout error
10559  *		return code of scsi_uscsi_handle_command():
10560  *			EIO
10561  *			ENXIO
10562  *			EACCES
10563  *
10564  *     Context: Waits for command to complete. Can sleep.
10565  */
10566 
10567 static int
10568 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10569 	enum uio_seg dataspace, int path_flag)
10570 {
10571 	struct sd_uscsi_info	*uip;
10572 	struct uscsi_cmd	*uscmd;
10573 	struct sd_lun	*un;
10574 	int	format = 0;
10575 	int	rval;
10576 
10577 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10578 	if (un == NULL) {
10579 		return (ENXIO);
10580 	}
10581 
10582 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10583 
10584 #ifdef SDDEBUG
10585 	switch (dataspace) {
10586 	case UIO_USERSPACE:
10587 		SD_TRACE(SD_LOG_IO, un,
10588 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10589 		break;
10590 	case UIO_SYSSPACE:
10591 		SD_TRACE(SD_LOG_IO, un,
10592 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10593 		break;
10594 	default:
10595 		SD_TRACE(SD_LOG_IO, un,
10596 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10597 		break;
10598 	}
10599 #endif
10600 
10601 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10602 	    SD_ADDRESS(un), &uscmd);
10603 	if (rval != 0) {
10604 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10605 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10606 		return (rval);
10607 	}
10608 
10609 	if ((uscmd->uscsi_cdb != NULL) &&
10610 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10611 		mutex_enter(SD_MUTEX(un));
10612 		un->un_f_format_in_progress = TRUE;
10613 		mutex_exit(SD_MUTEX(un));
10614 		format = 1;
10615 	}
10616 
10617 	/*
10618 	 * Allocate an sd_uscsi_info struct and fill it with the info
10619 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10620 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10621 	 * since we allocate the buf here in this function, we do not
10622 	 * need to preserve the prior contents of b_private.
10623 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10624 	 */
10625 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10626 	uip->ui_flags = path_flag;
10627 	uip->ui_cmdp = uscmd;
10628 
10629 	/*
10630 	 * Commands sent with priority are intended for error recovery
10631 	 * situations, and do not have retries performed.
10632 	 */
10633 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10634 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10635 	}
10636 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10637 
10638 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10639 	    sd_uscsi_strategy, NULL, uip);
10640 
10641 #ifdef SDDEBUG
10642 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10643 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10644 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10645 	if (uscmd->uscsi_bufaddr != NULL) {
10646 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10647 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10648 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10649 		if (dataspace == UIO_SYSSPACE) {
10650 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10651 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10652 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10653 		}
10654 	}
10655 #endif
10656 
10657 	if (format == 1) {
10658 		mutex_enter(SD_MUTEX(un));
10659 		un->un_f_format_in_progress = FALSE;
10660 		mutex_exit(SD_MUTEX(un));
10661 	}
10662 
10663 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10664 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10665 
10666 	return (rval);
10667 }
10668 
10669 
10670 /*
10671  *    Function: sd_buf_iodone
10672  *
10673  * Description: Frees the sd_xbuf & returns the buf to its originator.
10674  *
10675  *     Context: May be called from interrupt context.
10676  */
10677 /* ARGSUSED */
10678 static void
10679 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10680 {
10681 	struct sd_xbuf *xp;
10682 
10683 	ASSERT(un != NULL);
10684 	ASSERT(bp != NULL);
10685 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10686 
10687 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10688 
10689 	xp = SD_GET_XBUF(bp);
10690 	ASSERT(xp != NULL);
10691 
10692 	mutex_enter(SD_MUTEX(un));
10693 
10694 	/*
10695 	 * Grab time when the cmd completed.
10696 	 * This is used for determining if the system has been
10697 	 * idle long enough to make it idle to the PM framework.
10698 	 * This is for lowering the overhead, and therefore improving
10699 	 * performance per I/O operation.
10700 	 */
10701 	un->un_pm_idle_time = ddi_get_time();
10702 
10703 	un->un_ncmds_in_driver--;
10704 	ASSERT(un->un_ncmds_in_driver >= 0);
10705 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10706 	    un->un_ncmds_in_driver);
10707 
10708 	mutex_exit(SD_MUTEX(un));
10709 
10710 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10711 	biodone(bp);				/* bp is gone after this */
10712 
10713 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10714 }
10715 
10716 
10717 /*
10718  *    Function: sd_uscsi_iodone
10719  *
10720  * Description: Frees the sd_xbuf & returns the buf to its originator.
10721  *
10722  *     Context: May be called from interrupt context.
10723  */
10724 /* ARGSUSED */
10725 static void
10726 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10727 {
10728 	struct sd_xbuf *xp;
10729 
10730 	ASSERT(un != NULL);
10731 	ASSERT(bp != NULL);
10732 
10733 	xp = SD_GET_XBUF(bp);
10734 	ASSERT(xp != NULL);
10735 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10736 
10737 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10738 
10739 	bp->b_private = xp->xb_private;
10740 
10741 	mutex_enter(SD_MUTEX(un));
10742 
10743 	/*
10744 	 * Grab time when the cmd completed.
10745 	 * This is used for determining if the system has been
10746 	 * idle long enough to make it idle to the PM framework.
10747 	 * This is for lowering the overhead, and therefore improving
10748 	 * performance per I/O operation.
10749 	 */
10750 	un->un_pm_idle_time = ddi_get_time();
10751 
10752 	un->un_ncmds_in_driver--;
10753 	ASSERT(un->un_ncmds_in_driver >= 0);
10754 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10755 	    un->un_ncmds_in_driver);
10756 
10757 	mutex_exit(SD_MUTEX(un));
10758 
10759 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
10760 	    SENSE_LENGTH) {
10761 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
10762 		    MAX_SENSE_LENGTH);
10763 	} else {
10764 		kmem_free(xp, sizeof (struct sd_xbuf));
10765 	}
10766 
10767 	biodone(bp);
10768 
10769 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10770 }
10771 
10772 
10773 /*
10774  *    Function: sd_mapblockaddr_iostart
10775  *
10776  * Description: Verify request lies within the partition limits for
10777  *		the indicated minor device.  Issue "overrun" buf if
10778  *		request would exceed partition range.  Converts
10779  *		partition-relative block address to absolute.
10780  *
10781  *     Context: Can sleep
10782  *
10783  *      Issues: This follows what the old code did, in terms of accessing
10784  *		some of the partition info in the unit struct without holding
10785  *		the mutext.  This is a general issue, if the partition info
10786  *		can be altered while IO is in progress... as soon as we send
10787  *		a buf, its partitioning can be invalid before it gets to the
10788  *		device.  Probably the right fix is to move partitioning out
10789  *		of the driver entirely.
10790  */
10791 
10792 static void
10793 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10794 {
10795 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10796 	daddr_t	blocknum;	/* Block number specified by the buf */
10797 	size_t	requested_nblocks;
10798 	size_t	available_nblocks;
10799 	int	partition;
10800 	diskaddr_t	partition_offset;
10801 	struct sd_xbuf *xp;
10802 
10803 
10804 	ASSERT(un != NULL);
10805 	ASSERT(bp != NULL);
10806 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10807 
10808 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10809 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10810 
10811 	xp = SD_GET_XBUF(bp);
10812 	ASSERT(xp != NULL);
10813 
10814 	/*
10815 	 * If the geometry is not indicated as valid, attempt to access
10816 	 * the unit & verify the geometry/label. This can be the case for
10817 	 * removable-media devices, of if the device was opened in
10818 	 * NDELAY/NONBLOCK mode.
10819 	 */
10820 	if (!SD_IS_VALID_LABEL(un) &&
10821 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10822 		/*
10823 		 * For removable devices it is possible to start an I/O
10824 		 * without a media by opening the device in nodelay mode.
10825 		 * Also for writable CDs there can be many scenarios where
10826 		 * there is no geometry yet but volume manager is trying to
10827 		 * issue a read() just because it can see TOC on the CD. So
10828 		 * do not print a message for removables.
10829 		 */
10830 		if (!un->un_f_has_removable_media) {
10831 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10832 			    "i/o to invalid geometry\n");
10833 		}
10834 		bioerror(bp, EIO);
10835 		bp->b_resid = bp->b_bcount;
10836 		SD_BEGIN_IODONE(index, un, bp);
10837 		return;
10838 	}
10839 
10840 	partition = SDPART(bp->b_edev);
10841 
10842 	nblocks = 0;
10843 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10844 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10845 
10846 	/*
10847 	 * blocknum is the starting block number of the request. At this
10848 	 * point it is still relative to the start of the minor device.
10849 	 */
10850 	blocknum = xp->xb_blkno;
10851 
10852 	/*
10853 	 * Legacy: If the starting block number is one past the last block
10854 	 * in the partition, do not set B_ERROR in the buf.
10855 	 */
10856 	if (blocknum == nblocks)  {
10857 		goto error_exit;
10858 	}
10859 
10860 	/*
10861 	 * Confirm that the first block of the request lies within the
10862 	 * partition limits. Also the requested number of bytes must be
10863 	 * a multiple of the system block size.
10864 	 */
10865 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10866 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10867 		bp->b_flags |= B_ERROR;
10868 		goto error_exit;
10869 	}
10870 
10871 	/*
10872 	 * If the requsted # blocks exceeds the available # blocks, that
10873 	 * is an overrun of the partition.
10874 	 */
10875 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10876 	available_nblocks = (size_t)(nblocks - blocknum);
10877 	ASSERT(nblocks >= blocknum);
10878 
10879 	if (requested_nblocks > available_nblocks) {
10880 		/*
10881 		 * Allocate an "overrun" buf to allow the request to proceed
10882 		 * for the amount of space available in the partition. The
10883 		 * amount not transferred will be added into the b_resid
10884 		 * when the operation is complete. The overrun buf
10885 		 * replaces the original buf here, and the original buf
10886 		 * is saved inside the overrun buf, for later use.
10887 		 */
10888 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10889 		    (offset_t)(requested_nblocks - available_nblocks));
10890 		size_t count = bp->b_bcount - resid;
10891 		/*
10892 		 * Note: count is an unsigned entity thus it'll NEVER
10893 		 * be less than 0 so ASSERT the original values are
10894 		 * correct.
10895 		 */
10896 		ASSERT(bp->b_bcount >= resid);
10897 
10898 		bp = sd_bioclone_alloc(bp, count, blocknum,
10899 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
10900 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10901 		ASSERT(xp != NULL);
10902 	}
10903 
10904 	/* At this point there should be no residual for this buf. */
10905 	ASSERT(bp->b_resid == 0);
10906 
10907 	/* Convert the block number to an absolute address. */
10908 	xp->xb_blkno += partition_offset;
10909 
10910 	SD_NEXT_IOSTART(index, un, bp);
10911 
10912 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10913 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10914 
10915 	return;
10916 
10917 error_exit:
10918 	bp->b_resid = bp->b_bcount;
10919 	SD_BEGIN_IODONE(index, un, bp);
10920 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10921 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10922 }
10923 
10924 
10925 /*
10926  *    Function: sd_mapblockaddr_iodone
10927  *
10928  * Description: Completion-side processing for partition management.
10929  *
10930  *     Context: May be called under interrupt context
10931  */
10932 
10933 static void
10934 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10935 {
10936 	/* int	partition; */	/* Not used, see below. */
10937 	ASSERT(un != NULL);
10938 	ASSERT(bp != NULL);
10939 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10940 
10941 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10942 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10943 
10944 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10945 		/*
10946 		 * We have an "overrun" buf to deal with...
10947 		 */
10948 		struct sd_xbuf	*xp;
10949 		struct buf	*obp;	/* ptr to the original buf */
10950 
10951 		xp = SD_GET_XBUF(bp);
10952 		ASSERT(xp != NULL);
10953 
10954 		/* Retrieve the pointer to the original buf */
10955 		obp = (struct buf *)xp->xb_private;
10956 		ASSERT(obp != NULL);
10957 
10958 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10959 		bioerror(obp, bp->b_error);
10960 
10961 		sd_bioclone_free(bp);
10962 
10963 		/*
10964 		 * Get back the original buf.
10965 		 * Note that since the restoration of xb_blkno below
10966 		 * was removed, the sd_xbuf is not needed.
10967 		 */
10968 		bp = obp;
10969 		/*
10970 		 * xp = SD_GET_XBUF(bp);
10971 		 * ASSERT(xp != NULL);
10972 		 */
10973 	}
10974 
10975 	/*
10976 	 * Convert sd->xb_blkno back to a minor-device relative value.
10977 	 * Note: this has been commented out, as it is not needed in the
10978 	 * current implementation of the driver (ie, since this function
10979 	 * is at the top of the layering chains, so the info will be
10980 	 * discarded) and it is in the "hot" IO path.
10981 	 *
10982 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
10983 	 * xp->xb_blkno -= un->un_offset[partition];
10984 	 */
10985 
10986 	SD_NEXT_IODONE(index, un, bp);
10987 
10988 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10989 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
10990 }
10991 
10992 
10993 /*
10994  *    Function: sd_mapblocksize_iostart
10995  *
10996  * Description: Convert between system block size (un->un_sys_blocksize)
10997  *		and target block size (un->un_tgt_blocksize).
10998  *
10999  *     Context: Can sleep to allocate resources.
11000  *
11001  * Assumptions: A higher layer has already performed any partition validation,
11002  *		and converted the xp->xb_blkno to an absolute value relative
11003  *		to the start of the device.
11004  *
11005  *		It is also assumed that the higher layer has implemented
11006  *		an "overrun" mechanism for the case where the request would
11007  *		read/write beyond the end of a partition.  In this case we
11008  *		assume (and ASSERT) that bp->b_resid == 0.
11009  *
11010  *		Note: The implementation for this routine assumes the target
11011  *		block size remains constant between allocation and transport.
11012  */
11013 
11014 static void
11015 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
11016 {
11017 	struct sd_mapblocksize_info	*bsp;
11018 	struct sd_xbuf			*xp;
11019 	offset_t first_byte;
11020 	daddr_t	start_block, end_block;
11021 	daddr_t	request_bytes;
11022 	ushort_t is_aligned = FALSE;
11023 
11024 	ASSERT(un != NULL);
11025 	ASSERT(bp != NULL);
11026 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11027 	ASSERT(bp->b_resid == 0);
11028 
11029 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11030 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
11031 
11032 	/*
11033 	 * For a non-writable CD, a write request is an error
11034 	 */
11035 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
11036 	    (un->un_f_mmc_writable_media == FALSE)) {
11037 		bioerror(bp, EIO);
11038 		bp->b_resid = bp->b_bcount;
11039 		SD_BEGIN_IODONE(index, un, bp);
11040 		return;
11041 	}
11042 
11043 	/*
11044 	 * We do not need a shadow buf if the device is using
11045 	 * un->un_sys_blocksize as its block size or if bcount == 0.
11046 	 * In this case there is no layer-private data block allocated.
11047 	 */
11048 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11049 	    (bp->b_bcount == 0)) {
11050 		goto done;
11051 	}
11052 
11053 #if defined(__i386) || defined(__amd64)
11054 	/* We do not support non-block-aligned transfers for ROD devices */
11055 	ASSERT(!ISROD(un));
11056 #endif
11057 
11058 	xp = SD_GET_XBUF(bp);
11059 	ASSERT(xp != NULL);
11060 
11061 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11062 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
11063 	    un->un_tgt_blocksize, un->un_sys_blocksize);
11064 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11065 	    "request start block:0x%x\n", xp->xb_blkno);
11066 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11067 	    "request len:0x%x\n", bp->b_bcount);
11068 
11069 	/*
11070 	 * Allocate the layer-private data area for the mapblocksize layer.
11071 	 * Layers are allowed to use the xp_private member of the sd_xbuf
11072 	 * struct to store the pointer to their layer-private data block, but
11073 	 * each layer also has the responsibility of restoring the prior
11074 	 * contents of xb_private before returning the buf/xbuf to the
11075 	 * higher layer that sent it.
11076 	 *
11077 	 * Here we save the prior contents of xp->xb_private into the
11078 	 * bsp->mbs_oprivate field of our layer-private data area. This value
11079 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
11080 	 * the layer-private area and returning the buf/xbuf to the layer
11081 	 * that sent it.
11082 	 *
11083 	 * Note that here we use kmem_zalloc for the allocation as there are
11084 	 * parts of the mapblocksize code that expect certain fields to be
11085 	 * zero unless explicitly set to a required value.
11086 	 */
11087 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11088 	bsp->mbs_oprivate = xp->xb_private;
11089 	xp->xb_private = bsp;
11090 
11091 	/*
11092 	 * This treats the data on the disk (target) as an array of bytes.
11093 	 * first_byte is the byte offset, from the beginning of the device,
11094 	 * to the location of the request. This is converted from a
11095 	 * un->un_sys_blocksize block address to a byte offset, and then back
11096 	 * to a block address based upon a un->un_tgt_blocksize block size.
11097 	 *
11098 	 * xp->xb_blkno should be absolute upon entry into this function,
11099 	 * but, but it is based upon partitions that use the "system"
11100 	 * block size. It must be adjusted to reflect the block size of
11101 	 * the target.
11102 	 *
11103 	 * Note that end_block is actually the block that follows the last
11104 	 * block of the request, but that's what is needed for the computation.
11105 	 */
11106 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11107 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
11108 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
11109 	    un->un_tgt_blocksize;
11110 
11111 	/* request_bytes is rounded up to a multiple of the target block size */
11112 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
11113 
11114 	/*
11115 	 * See if the starting address of the request and the request
11116 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
11117 	 * then we do not need to allocate a shadow buf to handle the request.
11118 	 */
11119 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
11120 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
11121 		is_aligned = TRUE;
11122 	}
11123 
11124 	if ((bp->b_flags & B_READ) == 0) {
11125 		/*
11126 		 * Lock the range for a write operation. An aligned request is
11127 		 * considered a simple write; otherwise the request must be a
11128 		 * read-modify-write.
11129 		 */
11130 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
11131 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
11132 	}
11133 
11134 	/*
11135 	 * Alloc a shadow buf if the request is not aligned. Also, this is
11136 	 * where the READ command is generated for a read-modify-write. (The
11137 	 * write phase is deferred until after the read completes.)
11138 	 */
11139 	if (is_aligned == FALSE) {
11140 
11141 		struct sd_mapblocksize_info	*shadow_bsp;
11142 		struct sd_xbuf	*shadow_xp;
11143 		struct buf	*shadow_bp;
11144 
11145 		/*
11146 		 * Allocate the shadow buf and it associated xbuf. Note that
11147 		 * after this call the xb_blkno value in both the original
11148 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
11149 		 * same: absolute relative to the start of the device, and
11150 		 * adjusted for the target block size. The b_blkno in the
11151 		 * shadow buf will also be set to this value. We should never
11152 		 * change b_blkno in the original bp however.
11153 		 *
11154 		 * Note also that the shadow buf will always need to be a
11155 		 * READ command, regardless of whether the incoming command
11156 		 * is a READ or a WRITE.
11157 		 */
11158 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
11159 		    xp->xb_blkno,
11160 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
11161 
11162 		shadow_xp = SD_GET_XBUF(shadow_bp);
11163 
11164 		/*
11165 		 * Allocate the layer-private data for the shadow buf.
11166 		 * (No need to preserve xb_private in the shadow xbuf.)
11167 		 */
11168 		shadow_xp->xb_private = shadow_bsp =
11169 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11170 
11171 		/*
11172 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
11173 		 * to figure out where the start of the user data is (based upon
11174 		 * the system block size) in the data returned by the READ
11175 		 * command (which will be based upon the target blocksize). Note
11176 		 * that this is only really used if the request is unaligned.
11177 		 */
11178 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
11179 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
11180 		ASSERT((bsp->mbs_copy_offset >= 0) &&
11181 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
11182 
11183 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
11184 
11185 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
11186 
11187 		/* Transfer the wmap (if any) to the shadow buf */
11188 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
11189 		bsp->mbs_wmp = NULL;
11190 
11191 		/*
11192 		 * The shadow buf goes on from here in place of the
11193 		 * original buf.
11194 		 */
11195 		shadow_bsp->mbs_orig_bp = bp;
11196 		bp = shadow_bp;
11197 	}
11198 
11199 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11200 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
11201 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11202 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
11203 	    request_bytes);
11204 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11205 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
11206 
11207 done:
11208 	SD_NEXT_IOSTART(index, un, bp);
11209 
11210 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11211 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
11212 }
11213 
11214 
11215 /*
11216  *    Function: sd_mapblocksize_iodone
11217  *
11218  * Description: Completion side processing for block-size mapping.
11219  *
11220  *     Context: May be called under interrupt context
11221  */
11222 
11223 static void
11224 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
11225 {
11226 	struct sd_mapblocksize_info	*bsp;
11227 	struct sd_xbuf	*xp;
11228 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
11229 	struct buf	*orig_bp;	/* ptr to the original buf */
11230 	offset_t	shadow_end;
11231 	offset_t	request_end;
11232 	offset_t	shadow_start;
11233 	ssize_t		copy_offset;
11234 	size_t		copy_length;
11235 	size_t		shortfall;
11236 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
11237 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
11238 
11239 	ASSERT(un != NULL);
11240 	ASSERT(bp != NULL);
11241 
11242 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11243 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
11244 
11245 	/*
11246 	 * There is no shadow buf or layer-private data if the target is
11247 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
11248 	 */
11249 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11250 	    (bp->b_bcount == 0)) {
11251 		goto exit;
11252 	}
11253 
11254 	xp = SD_GET_XBUF(bp);
11255 	ASSERT(xp != NULL);
11256 
11257 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
11258 	bsp = xp->xb_private;
11259 
11260 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
11261 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
11262 
11263 	if (is_write) {
11264 		/*
11265 		 * For a WRITE request we must free up the block range that
11266 		 * we have locked up.  This holds regardless of whether this is
11267 		 * an aligned write request or a read-modify-write request.
11268 		 */
11269 		sd_range_unlock(un, bsp->mbs_wmp);
11270 		bsp->mbs_wmp = NULL;
11271 	}
11272 
11273 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
11274 		/*
11275 		 * An aligned read or write command will have no shadow buf;
11276 		 * there is not much else to do with it.
11277 		 */
11278 		goto done;
11279 	}
11280 
11281 	orig_bp = bsp->mbs_orig_bp;
11282 	ASSERT(orig_bp != NULL);
11283 	orig_xp = SD_GET_XBUF(orig_bp);
11284 	ASSERT(orig_xp != NULL);
11285 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11286 
11287 	if (!is_write && has_wmap) {
11288 		/*
11289 		 * A READ with a wmap means this is the READ phase of a
11290 		 * read-modify-write. If an error occurred on the READ then
11291 		 * we do not proceed with the WRITE phase or copy any data.
11292 		 * Just release the write maps and return with an error.
11293 		 */
11294 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
11295 			orig_bp->b_resid = orig_bp->b_bcount;
11296 			bioerror(orig_bp, bp->b_error);
11297 			sd_range_unlock(un, bsp->mbs_wmp);
11298 			goto freebuf_done;
11299 		}
11300 	}
11301 
11302 	/*
11303 	 * Here is where we set up to copy the data from the shadow buf
11304 	 * into the space associated with the original buf.
11305 	 *
11306 	 * To deal with the conversion between block sizes, these
11307 	 * computations treat the data as an array of bytes, with the
11308 	 * first byte (byte 0) corresponding to the first byte in the
11309 	 * first block on the disk.
11310 	 */
11311 
11312 	/*
11313 	 * shadow_start and shadow_len indicate the location and size of
11314 	 * the data returned with the shadow IO request.
11315 	 */
11316 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11317 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11318 
11319 	/*
11320 	 * copy_offset gives the offset (in bytes) from the start of the first
11321 	 * block of the READ request to the beginning of the data.  We retrieve
11322 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11323 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11324 	 * data to be copied (in bytes).
11325 	 */
11326 	copy_offset  = bsp->mbs_copy_offset;
11327 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11328 	copy_length  = orig_bp->b_bcount;
11329 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11330 
11331 	/*
11332 	 * Set up the resid and error fields of orig_bp as appropriate.
11333 	 */
11334 	if (shadow_end >= request_end) {
11335 		/* We got all the requested data; set resid to zero */
11336 		orig_bp->b_resid = 0;
11337 	} else {
11338 		/*
11339 		 * We failed to get enough data to fully satisfy the original
11340 		 * request. Just copy back whatever data we got and set
11341 		 * up the residual and error code as required.
11342 		 *
11343 		 * 'shortfall' is the amount by which the data received with the
11344 		 * shadow buf has "fallen short" of the requested amount.
11345 		 */
11346 		shortfall = (size_t)(request_end - shadow_end);
11347 
11348 		if (shortfall > orig_bp->b_bcount) {
11349 			/*
11350 			 * We did not get enough data to even partially
11351 			 * fulfill the original request.  The residual is
11352 			 * equal to the amount requested.
11353 			 */
11354 			orig_bp->b_resid = orig_bp->b_bcount;
11355 		} else {
11356 			/*
11357 			 * We did not get all the data that we requested
11358 			 * from the device, but we will try to return what
11359 			 * portion we did get.
11360 			 */
11361 			orig_bp->b_resid = shortfall;
11362 		}
11363 		ASSERT(copy_length >= orig_bp->b_resid);
11364 		copy_length  -= orig_bp->b_resid;
11365 	}
11366 
11367 	/* Propagate the error code from the shadow buf to the original buf */
11368 	bioerror(orig_bp, bp->b_error);
11369 
11370 	if (is_write) {
11371 		goto freebuf_done;	/* No data copying for a WRITE */
11372 	}
11373 
11374 	if (has_wmap) {
11375 		/*
11376 		 * This is a READ command from the READ phase of a
11377 		 * read-modify-write request. We have to copy the data given
11378 		 * by the user OVER the data returned by the READ command,
11379 		 * then convert the command from a READ to a WRITE and send
11380 		 * it back to the target.
11381 		 */
11382 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11383 		    copy_length);
11384 
11385 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11386 
11387 		/*
11388 		 * Dispatch the WRITE command to the taskq thread, which
11389 		 * will in turn send the command to the target. When the
11390 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11391 		 * will get called again as part of the iodone chain
11392 		 * processing for it. Note that we will still be dealing
11393 		 * with the shadow buf at that point.
11394 		 */
11395 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11396 		    KM_NOSLEEP) != 0) {
11397 			/*
11398 			 * Dispatch was successful so we are done. Return
11399 			 * without going any higher up the iodone chain. Do
11400 			 * not free up any layer-private data until after the
11401 			 * WRITE completes.
11402 			 */
11403 			return;
11404 		}
11405 
11406 		/*
11407 		 * Dispatch of the WRITE command failed; set up the error
11408 		 * condition and send this IO back up the iodone chain.
11409 		 */
11410 		bioerror(orig_bp, EIO);
11411 		orig_bp->b_resid = orig_bp->b_bcount;
11412 
11413 	} else {
11414 		/*
11415 		 * This is a regular READ request (ie, not a RMW). Copy the
11416 		 * data from the shadow buf into the original buf. The
11417 		 * copy_offset compensates for any "misalignment" between the
11418 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11419 		 * original buf (with its un->un_sys_blocksize blocks).
11420 		 */
11421 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11422 		    copy_length);
11423 	}
11424 
11425 freebuf_done:
11426 
11427 	/*
11428 	 * At this point we still have both the shadow buf AND the original
11429 	 * buf to deal with, as well as the layer-private data area in each.
11430 	 * Local variables are as follows:
11431 	 *
11432 	 * bp -- points to shadow buf
11433 	 * xp -- points to xbuf of shadow buf
11434 	 * bsp -- points to layer-private data area of shadow buf
11435 	 * orig_bp -- points to original buf
11436 	 *
11437 	 * First free the shadow buf and its associated xbuf, then free the
11438 	 * layer-private data area from the shadow buf. There is no need to
11439 	 * restore xb_private in the shadow xbuf.
11440 	 */
11441 	sd_shadow_buf_free(bp);
11442 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11443 
11444 	/*
11445 	 * Now update the local variables to point to the original buf, xbuf,
11446 	 * and layer-private area.
11447 	 */
11448 	bp = orig_bp;
11449 	xp = SD_GET_XBUF(bp);
11450 	ASSERT(xp != NULL);
11451 	ASSERT(xp == orig_xp);
11452 	bsp = xp->xb_private;
11453 	ASSERT(bsp != NULL);
11454 
11455 done:
11456 	/*
11457 	 * Restore xb_private to whatever it was set to by the next higher
11458 	 * layer in the chain, then free the layer-private data area.
11459 	 */
11460 	xp->xb_private = bsp->mbs_oprivate;
11461 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11462 
11463 exit:
11464 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11465 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11466 
11467 	SD_NEXT_IODONE(index, un, bp);
11468 }
11469 
11470 
11471 /*
11472  *    Function: sd_checksum_iostart
11473  *
11474  * Description: A stub function for a layer that's currently not used.
11475  *		For now just a placeholder.
11476  *
11477  *     Context: Kernel thread context
11478  */
11479 
11480 static void
11481 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11482 {
11483 	ASSERT(un != NULL);
11484 	ASSERT(bp != NULL);
11485 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11486 	SD_NEXT_IOSTART(index, un, bp);
11487 }
11488 
11489 
11490 /*
11491  *    Function: sd_checksum_iodone
11492  *
11493  * Description: A stub function for a layer that's currently not used.
11494  *		For now just a placeholder.
11495  *
11496  *     Context: May be called under interrupt context
11497  */
11498 
11499 static void
11500 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11501 {
11502 	ASSERT(un != NULL);
11503 	ASSERT(bp != NULL);
11504 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11505 	SD_NEXT_IODONE(index, un, bp);
11506 }
11507 
11508 
11509 /*
11510  *    Function: sd_checksum_uscsi_iostart
11511  *
11512  * Description: A stub function for a layer that's currently not used.
11513  *		For now just a placeholder.
11514  *
11515  *     Context: Kernel thread context
11516  */
11517 
11518 static void
11519 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11520 {
11521 	ASSERT(un != NULL);
11522 	ASSERT(bp != NULL);
11523 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11524 	SD_NEXT_IOSTART(index, un, bp);
11525 }
11526 
11527 
11528 /*
11529  *    Function: sd_checksum_uscsi_iodone
11530  *
11531  * Description: A stub function for a layer that's currently not used.
11532  *		For now just a placeholder.
11533  *
11534  *     Context: May be called under interrupt context
11535  */
11536 
11537 static void
11538 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11539 {
11540 	ASSERT(un != NULL);
11541 	ASSERT(bp != NULL);
11542 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11543 	SD_NEXT_IODONE(index, un, bp);
11544 }
11545 
11546 
11547 /*
11548  *    Function: sd_pm_iostart
11549  *
11550  * Description: iostart-side routine for Power mangement.
11551  *
11552  *     Context: Kernel thread context
11553  */
11554 
11555 static void
11556 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11557 {
11558 	ASSERT(un != NULL);
11559 	ASSERT(bp != NULL);
11560 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11561 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11562 
11563 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11564 
11565 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11566 		/*
11567 		 * Set up to return the failed buf back up the 'iodone'
11568 		 * side of the calling chain.
11569 		 */
11570 		bioerror(bp, EIO);
11571 		bp->b_resid = bp->b_bcount;
11572 
11573 		SD_BEGIN_IODONE(index, un, bp);
11574 
11575 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11576 		return;
11577 	}
11578 
11579 	SD_NEXT_IOSTART(index, un, bp);
11580 
11581 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11582 }
11583 
11584 
11585 /*
11586  *    Function: sd_pm_iodone
11587  *
11588  * Description: iodone-side routine for power mangement.
11589  *
11590  *     Context: may be called from interrupt context
11591  */
11592 
11593 static void
11594 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11595 {
11596 	ASSERT(un != NULL);
11597 	ASSERT(bp != NULL);
11598 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11599 
11600 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11601 
11602 	/*
11603 	 * After attach the following flag is only read, so don't
11604 	 * take the penalty of acquiring a mutex for it.
11605 	 */
11606 	if (un->un_f_pm_is_enabled == TRUE) {
11607 		sd_pm_exit(un);
11608 	}
11609 
11610 	SD_NEXT_IODONE(index, un, bp);
11611 
11612 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11613 }
11614 
11615 
11616 /*
11617  *    Function: sd_core_iostart
11618  *
11619  * Description: Primary driver function for enqueuing buf(9S) structs from
11620  *		the system and initiating IO to the target device
11621  *
11622  *     Context: Kernel thread context. Can sleep.
11623  *
11624  * Assumptions:  - The given xp->xb_blkno is absolute
11625  *		   (ie, relative to the start of the device).
11626  *		 - The IO is to be done using the native blocksize of
11627  *		   the device, as specified in un->un_tgt_blocksize.
11628  */
11629 /* ARGSUSED */
11630 static void
11631 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11632 {
11633 	struct sd_xbuf *xp;
11634 
11635 	ASSERT(un != NULL);
11636 	ASSERT(bp != NULL);
11637 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11638 	ASSERT(bp->b_resid == 0);
11639 
11640 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11641 
11642 	xp = SD_GET_XBUF(bp);
11643 	ASSERT(xp != NULL);
11644 
11645 	mutex_enter(SD_MUTEX(un));
11646 
11647 	/*
11648 	 * If we are currently in the failfast state, fail any new IO
11649 	 * that has B_FAILFAST set, then return.
11650 	 */
11651 	if ((bp->b_flags & B_FAILFAST) &&
11652 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11653 		mutex_exit(SD_MUTEX(un));
11654 		bioerror(bp, EIO);
11655 		bp->b_resid = bp->b_bcount;
11656 		SD_BEGIN_IODONE(index, un, bp);
11657 		return;
11658 	}
11659 
11660 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11661 		/*
11662 		 * Priority command -- transport it immediately.
11663 		 *
11664 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11665 		 * because all direct priority commands should be associated
11666 		 * with error recovery actions which we don't want to retry.
11667 		 */
11668 		sd_start_cmds(un, bp);
11669 	} else {
11670 		/*
11671 		 * Normal command -- add it to the wait queue, then start
11672 		 * transporting commands from the wait queue.
11673 		 */
11674 		sd_add_buf_to_waitq(un, bp);
11675 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11676 		sd_start_cmds(un, NULL);
11677 	}
11678 
11679 	mutex_exit(SD_MUTEX(un));
11680 
11681 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11682 }
11683 
11684 
11685 /*
11686  *    Function: sd_init_cdb_limits
11687  *
11688  * Description: This is to handle scsi_pkt initialization differences
11689  *		between the driver platforms.
11690  *
11691  *		Legacy behaviors:
11692  *
11693  *		If the block number or the sector count exceeds the
11694  *		capabilities of a Group 0 command, shift over to a
11695  *		Group 1 command. We don't blindly use Group 1
11696  *		commands because a) some drives (CDC Wren IVs) get a
11697  *		bit confused, and b) there is probably a fair amount
11698  *		of speed difference for a target to receive and decode
11699  *		a 10 byte command instead of a 6 byte command.
11700  *
11701  *		The xfer time difference of 6 vs 10 byte CDBs is
11702  *		still significant so this code is still worthwhile.
11703  *		10 byte CDBs are very inefficient with the fas HBA driver
11704  *		and older disks. Each CDB byte took 1 usec with some
11705  *		popular disks.
11706  *
11707  *     Context: Must be called at attach time
11708  */
11709 
11710 static void
11711 sd_init_cdb_limits(struct sd_lun *un)
11712 {
11713 	int hba_cdb_limit;
11714 
11715 	/*
11716 	 * Use CDB_GROUP1 commands for most devices except for
11717 	 * parallel SCSI fixed drives in which case we get better
11718 	 * performance using CDB_GROUP0 commands (where applicable).
11719 	 */
11720 	un->un_mincdb = SD_CDB_GROUP1;
11721 #if !defined(__fibre)
11722 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11723 	    !un->un_f_has_removable_media) {
11724 		un->un_mincdb = SD_CDB_GROUP0;
11725 	}
11726 #endif
11727 
11728 	/*
11729 	 * Try to read the max-cdb-length supported by HBA.
11730 	 */
11731 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11732 	if (0 >= un->un_max_hba_cdb) {
11733 		un->un_max_hba_cdb = CDB_GROUP4;
11734 		hba_cdb_limit = SD_CDB_GROUP4;
11735 	} else if (0 < un->un_max_hba_cdb &&
11736 	    un->un_max_hba_cdb < CDB_GROUP1) {
11737 		hba_cdb_limit = SD_CDB_GROUP0;
11738 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11739 	    un->un_max_hba_cdb < CDB_GROUP5) {
11740 		hba_cdb_limit = SD_CDB_GROUP1;
11741 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11742 	    un->un_max_hba_cdb < CDB_GROUP4) {
11743 		hba_cdb_limit = SD_CDB_GROUP5;
11744 	} else {
11745 		hba_cdb_limit = SD_CDB_GROUP4;
11746 	}
11747 
11748 	/*
11749 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11750 	 * commands for fixed disks unless we are building for a 32 bit
11751 	 * kernel.
11752 	 */
11753 #ifdef _LP64
11754 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11755 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11756 #else
11757 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11758 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11759 #endif
11760 
11761 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11762 	    ? sizeof (struct scsi_arq_status) : 1);
11763 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11764 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11765 }
11766 
11767 
11768 /*
11769  *    Function: sd_initpkt_for_buf
11770  *
11771  * Description: Allocate and initialize for transport a scsi_pkt struct,
11772  *		based upon the info specified in the given buf struct.
11773  *
11774  *		Assumes the xb_blkno in the request is absolute (ie,
11775  *		relative to the start of the device (NOT partition!).
11776  *		Also assumes that the request is using the native block
11777  *		size of the device (as returned by the READ CAPACITY
11778  *		command).
11779  *
11780  * Return Code: SD_PKT_ALLOC_SUCCESS
11781  *		SD_PKT_ALLOC_FAILURE
11782  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11783  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11784  *
11785  *     Context: Kernel thread and may be called from software interrupt context
11786  *		as part of a sdrunout callback. This function may not block or
11787  *		call routines that block
11788  */
11789 
11790 static int
11791 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11792 {
11793 	struct sd_xbuf	*xp;
11794 	struct scsi_pkt *pktp = NULL;
11795 	struct sd_lun	*un;
11796 	size_t		blockcount;
11797 	daddr_t		startblock;
11798 	int		rval;
11799 	int		cmd_flags;
11800 
11801 	ASSERT(bp != NULL);
11802 	ASSERT(pktpp != NULL);
11803 	xp = SD_GET_XBUF(bp);
11804 	ASSERT(xp != NULL);
11805 	un = SD_GET_UN(bp);
11806 	ASSERT(un != NULL);
11807 	ASSERT(mutex_owned(SD_MUTEX(un)));
11808 	ASSERT(bp->b_resid == 0);
11809 
11810 	SD_TRACE(SD_LOG_IO_CORE, un,
11811 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11812 
11813 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11814 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11815 		/*
11816 		 * Already have a scsi_pkt -- just need DMA resources.
11817 		 * We must recompute the CDB in case the mapping returns
11818 		 * a nonzero pkt_resid.
11819 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11820 		 * that is being retried, the unmap/remap of the DMA resouces
11821 		 * will result in the entire transfer starting over again
11822 		 * from the very first block.
11823 		 */
11824 		ASSERT(xp->xb_pktp != NULL);
11825 		pktp = xp->xb_pktp;
11826 	} else {
11827 		pktp = NULL;
11828 	}
11829 #endif /* __i386 || __amd64 */
11830 
11831 	startblock = xp->xb_blkno;	/* Absolute block num. */
11832 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11833 
11834 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11835 
11836 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11837 
11838 #else
11839 
11840 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11841 
11842 #endif
11843 
11844 	/*
11845 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11846 	 * call scsi_init_pkt, and build the CDB.
11847 	 */
11848 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11849 	    cmd_flags, sdrunout, (caddr_t)un,
11850 	    startblock, blockcount);
11851 
11852 	if (rval == 0) {
11853 		/*
11854 		 * Success.
11855 		 *
11856 		 * If partial DMA is being used and required for this transfer.
11857 		 * set it up here.
11858 		 */
11859 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11860 		    (pktp->pkt_resid != 0)) {
11861 
11862 			/*
11863 			 * Save the CDB length and pkt_resid for the
11864 			 * next xfer
11865 			 */
11866 			xp->xb_dma_resid = pktp->pkt_resid;
11867 
11868 			/* rezero resid */
11869 			pktp->pkt_resid = 0;
11870 
11871 		} else {
11872 			xp->xb_dma_resid = 0;
11873 		}
11874 
11875 		pktp->pkt_flags = un->un_tagflags;
11876 		pktp->pkt_time  = un->un_cmd_timeout;
11877 		pktp->pkt_comp  = sdintr;
11878 
11879 		pktp->pkt_private = bp;
11880 		*pktpp = pktp;
11881 
11882 		SD_TRACE(SD_LOG_IO_CORE, un,
11883 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11884 
11885 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11886 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11887 #endif
11888 
11889 		return (SD_PKT_ALLOC_SUCCESS);
11890 
11891 	}
11892 
11893 	/*
11894 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11895 	 * from sd_setup_rw_pkt.
11896 	 */
11897 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11898 
11899 	if (rval == SD_PKT_ALLOC_FAILURE) {
11900 		*pktpp = NULL;
11901 		/*
11902 		 * Set the driver state to RWAIT to indicate the driver
11903 		 * is waiting on resource allocations. The driver will not
11904 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11905 		 */
11906 		New_state(un, SD_STATE_RWAIT);
11907 
11908 		SD_ERROR(SD_LOG_IO_CORE, un,
11909 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11910 
11911 		if ((bp->b_flags & B_ERROR) != 0) {
11912 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11913 		}
11914 		return (SD_PKT_ALLOC_FAILURE);
11915 	} else {
11916 		/*
11917 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11918 		 *
11919 		 * This should never happen.  Maybe someone messed with the
11920 		 * kernel's minphys?
11921 		 */
11922 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11923 		    "Request rejected: too large for CDB: "
11924 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11925 		SD_ERROR(SD_LOG_IO_CORE, un,
11926 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11927 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11928 
11929 	}
11930 }
11931 
11932 
11933 /*
11934  *    Function: sd_destroypkt_for_buf
11935  *
11936  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11937  *
11938  *     Context: Kernel thread or interrupt context
11939  */
11940 
11941 static void
11942 sd_destroypkt_for_buf(struct buf *bp)
11943 {
11944 	ASSERT(bp != NULL);
11945 	ASSERT(SD_GET_UN(bp) != NULL);
11946 
11947 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11948 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11949 
11950 	ASSERT(SD_GET_PKTP(bp) != NULL);
11951 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11952 
11953 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11954 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11955 }
11956 
11957 /*
11958  *    Function: sd_setup_rw_pkt
11959  *
11960  * Description: Determines appropriate CDB group for the requested LBA
11961  *		and transfer length, calls scsi_init_pkt, and builds
11962  *		the CDB.  Do not use for partial DMA transfers except
11963  *		for the initial transfer since the CDB size must
11964  *		remain constant.
11965  *
11966  *     Context: Kernel thread and may be called from software interrupt
11967  *		context as part of a sdrunout callback. This function may not
11968  *		block or call routines that block
11969  */
11970 
11971 
11972 int
11973 sd_setup_rw_pkt(struct sd_lun *un,
11974     struct scsi_pkt **pktpp, struct buf *bp, int flags,
11975     int (*callback)(caddr_t), caddr_t callback_arg,
11976     diskaddr_t lba, uint32_t blockcount)
11977 {
11978 	struct scsi_pkt *return_pktp;
11979 	union scsi_cdb *cdbp;
11980 	struct sd_cdbinfo *cp = NULL;
11981 	int i;
11982 
11983 	/*
11984 	 * See which size CDB to use, based upon the request.
11985 	 */
11986 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
11987 
11988 		/*
11989 		 * Check lba and block count against sd_cdbtab limits.
11990 		 * In the partial DMA case, we have to use the same size
11991 		 * CDB for all the transfers.  Check lba + blockcount
11992 		 * against the max LBA so we know that segment of the
11993 		 * transfer can use the CDB we select.
11994 		 */
11995 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
11996 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
11997 
11998 			/*
11999 			 * The command will fit into the CDB type
12000 			 * specified by sd_cdbtab[i].
12001 			 */
12002 			cp = sd_cdbtab + i;
12003 
12004 			/*
12005 			 * Call scsi_init_pkt so we can fill in the
12006 			 * CDB.
12007 			 */
12008 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
12009 			    bp, cp->sc_grpcode, un->un_status_len, 0,
12010 			    flags, callback, callback_arg);
12011 
12012 			if (return_pktp != NULL) {
12013 
12014 				/*
12015 				 * Return new value of pkt
12016 				 */
12017 				*pktpp = return_pktp;
12018 
12019 				/*
12020 				 * To be safe, zero the CDB insuring there is
12021 				 * no leftover data from a previous command.
12022 				 */
12023 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
12024 
12025 				/*
12026 				 * Handle partial DMA mapping
12027 				 */
12028 				if (return_pktp->pkt_resid != 0) {
12029 
12030 					/*
12031 					 * Not going to xfer as many blocks as
12032 					 * originally expected
12033 					 */
12034 					blockcount -=
12035 					    SD_BYTES2TGTBLOCKS(un,
12036 					    return_pktp->pkt_resid);
12037 				}
12038 
12039 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
12040 
12041 				/*
12042 				 * Set command byte based on the CDB
12043 				 * type we matched.
12044 				 */
12045 				cdbp->scc_cmd = cp->sc_grpmask |
12046 				    ((bp->b_flags & B_READ) ?
12047 				    SCMD_READ : SCMD_WRITE);
12048 
12049 				SD_FILL_SCSI1_LUN(un, return_pktp);
12050 
12051 				/*
12052 				 * Fill in LBA and length
12053 				 */
12054 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
12055 				    (cp->sc_grpcode == CDB_GROUP4) ||
12056 				    (cp->sc_grpcode == CDB_GROUP0) ||
12057 				    (cp->sc_grpcode == CDB_GROUP5));
12058 
12059 				if (cp->sc_grpcode == CDB_GROUP1) {
12060 					FORMG1ADDR(cdbp, lba);
12061 					FORMG1COUNT(cdbp, blockcount);
12062 					return (0);
12063 				} else if (cp->sc_grpcode == CDB_GROUP4) {
12064 					FORMG4LONGADDR(cdbp, lba);
12065 					FORMG4COUNT(cdbp, blockcount);
12066 					return (0);
12067 				} else if (cp->sc_grpcode == CDB_GROUP0) {
12068 					FORMG0ADDR(cdbp, lba);
12069 					FORMG0COUNT(cdbp, blockcount);
12070 					return (0);
12071 				} else if (cp->sc_grpcode == CDB_GROUP5) {
12072 					FORMG5ADDR(cdbp, lba);
12073 					FORMG5COUNT(cdbp, blockcount);
12074 					return (0);
12075 				}
12076 
12077 				/*
12078 				 * It should be impossible to not match one
12079 				 * of the CDB types above, so we should never
12080 				 * reach this point.  Set the CDB command byte
12081 				 * to test-unit-ready to avoid writing
12082 				 * to somewhere we don't intend.
12083 				 */
12084 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
12085 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12086 			} else {
12087 				/*
12088 				 * Couldn't get scsi_pkt
12089 				 */
12090 				return (SD_PKT_ALLOC_FAILURE);
12091 			}
12092 		}
12093 	}
12094 
12095 	/*
12096 	 * None of the available CDB types were suitable.  This really
12097 	 * should never happen:  on a 64 bit system we support
12098 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
12099 	 * and on a 32 bit system we will refuse to bind to a device
12100 	 * larger than 2TB so addresses will never be larger than 32 bits.
12101 	 */
12102 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12103 }
12104 
12105 /*
12106  *    Function: sd_setup_next_rw_pkt
12107  *
12108  * Description: Setup packet for partial DMA transfers, except for the
12109  * 		initial transfer.  sd_setup_rw_pkt should be used for
12110  *		the initial transfer.
12111  *
12112  *     Context: Kernel thread and may be called from interrupt context.
12113  */
12114 
12115 int
12116 sd_setup_next_rw_pkt(struct sd_lun *un,
12117     struct scsi_pkt *pktp, struct buf *bp,
12118     diskaddr_t lba, uint32_t blockcount)
12119 {
12120 	uchar_t com;
12121 	union scsi_cdb *cdbp;
12122 	uchar_t cdb_group_id;
12123 
12124 	ASSERT(pktp != NULL);
12125 	ASSERT(pktp->pkt_cdbp != NULL);
12126 
12127 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
12128 	com = cdbp->scc_cmd;
12129 	cdb_group_id = CDB_GROUPID(com);
12130 
12131 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
12132 	    (cdb_group_id == CDB_GROUPID_1) ||
12133 	    (cdb_group_id == CDB_GROUPID_4) ||
12134 	    (cdb_group_id == CDB_GROUPID_5));
12135 
12136 	/*
12137 	 * Move pkt to the next portion of the xfer.
12138 	 * func is NULL_FUNC so we do not have to release
12139 	 * the disk mutex here.
12140 	 */
12141 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
12142 	    NULL_FUNC, NULL) == pktp) {
12143 		/* Success.  Handle partial DMA */
12144 		if (pktp->pkt_resid != 0) {
12145 			blockcount -=
12146 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
12147 		}
12148 
12149 		cdbp->scc_cmd = com;
12150 		SD_FILL_SCSI1_LUN(un, pktp);
12151 		if (cdb_group_id == CDB_GROUPID_1) {
12152 			FORMG1ADDR(cdbp, lba);
12153 			FORMG1COUNT(cdbp, blockcount);
12154 			return (0);
12155 		} else if (cdb_group_id == CDB_GROUPID_4) {
12156 			FORMG4LONGADDR(cdbp, lba);
12157 			FORMG4COUNT(cdbp, blockcount);
12158 			return (0);
12159 		} else if (cdb_group_id == CDB_GROUPID_0) {
12160 			FORMG0ADDR(cdbp, lba);
12161 			FORMG0COUNT(cdbp, blockcount);
12162 			return (0);
12163 		} else if (cdb_group_id == CDB_GROUPID_5) {
12164 			FORMG5ADDR(cdbp, lba);
12165 			FORMG5COUNT(cdbp, blockcount);
12166 			return (0);
12167 		}
12168 
12169 		/* Unreachable */
12170 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12171 	}
12172 
12173 	/*
12174 	 * Error setting up next portion of cmd transfer.
12175 	 * Something is definitely very wrong and this
12176 	 * should not happen.
12177 	 */
12178 	return (SD_PKT_ALLOC_FAILURE);
12179 }
12180 
12181 /*
12182  *    Function: sd_initpkt_for_uscsi
12183  *
12184  * Description: Allocate and initialize for transport a scsi_pkt struct,
12185  *		based upon the info specified in the given uscsi_cmd struct.
12186  *
12187  * Return Code: SD_PKT_ALLOC_SUCCESS
12188  *		SD_PKT_ALLOC_FAILURE
12189  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12190  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12191  *
12192  *     Context: Kernel thread and may be called from software interrupt context
12193  *		as part of a sdrunout callback. This function may not block or
12194  *		call routines that block
12195  */
12196 
12197 static int
12198 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
12199 {
12200 	struct uscsi_cmd *uscmd;
12201 	struct sd_xbuf	*xp;
12202 	struct scsi_pkt	*pktp;
12203 	struct sd_lun	*un;
12204 	uint32_t	flags = 0;
12205 
12206 	ASSERT(bp != NULL);
12207 	ASSERT(pktpp != NULL);
12208 	xp = SD_GET_XBUF(bp);
12209 	ASSERT(xp != NULL);
12210 	un = SD_GET_UN(bp);
12211 	ASSERT(un != NULL);
12212 	ASSERT(mutex_owned(SD_MUTEX(un)));
12213 
12214 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12215 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12216 	ASSERT(uscmd != NULL);
12217 
12218 	SD_TRACE(SD_LOG_IO_CORE, un,
12219 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
12220 
12221 	/*
12222 	 * Allocate the scsi_pkt for the command.
12223 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
12224 	 *	 during scsi_init_pkt time and will continue to use the
12225 	 *	 same path as long as the same scsi_pkt is used without
12226 	 *	 intervening scsi_dma_free(). Since uscsi command does
12227 	 *	 not call scsi_dmafree() before retry failed command, it
12228 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
12229 	 *	 set such that scsi_vhci can use other available path for
12230 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
12231 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
12232 	 */
12233 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12234 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12235 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12236 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
12237 		    - sizeof (struct scsi_extended_sense)), 0,
12238 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
12239 		    sdrunout, (caddr_t)un);
12240 	} else {
12241 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12242 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12243 		    sizeof (struct scsi_arq_status), 0,
12244 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
12245 		    sdrunout, (caddr_t)un);
12246 	}
12247 
12248 	if (pktp == NULL) {
12249 		*pktpp = NULL;
12250 		/*
12251 		 * Set the driver state to RWAIT to indicate the driver
12252 		 * is waiting on resource allocations. The driver will not
12253 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12254 		 */
12255 		New_state(un, SD_STATE_RWAIT);
12256 
12257 		SD_ERROR(SD_LOG_IO_CORE, un,
12258 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
12259 
12260 		if ((bp->b_flags & B_ERROR) != 0) {
12261 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12262 		}
12263 		return (SD_PKT_ALLOC_FAILURE);
12264 	}
12265 
12266 	/*
12267 	 * We do not do DMA breakup for USCSI commands, so return failure
12268 	 * here if all the needed DMA resources were not allocated.
12269 	 */
12270 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
12271 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
12272 		scsi_destroy_pkt(pktp);
12273 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
12274 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
12275 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
12276 	}
12277 
12278 	/* Init the cdb from the given uscsi struct */
12279 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
12280 	    uscmd->uscsi_cdb[0], 0, 0, 0);
12281 
12282 	SD_FILL_SCSI1_LUN(un, pktp);
12283 
12284 	/*
12285 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
12286 	 * for listing of the supported flags.
12287 	 */
12288 
12289 	if (uscmd->uscsi_flags & USCSI_SILENT) {
12290 		flags |= FLAG_SILENT;
12291 	}
12292 
12293 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
12294 		flags |= FLAG_DIAGNOSE;
12295 	}
12296 
12297 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12298 		flags |= FLAG_ISOLATE;
12299 	}
12300 
12301 	if (un->un_f_is_fibre == FALSE) {
12302 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12303 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12304 		}
12305 	}
12306 
12307 	/*
12308 	 * Set the pkt flags here so we save time later.
12309 	 * Note: These flags are NOT in the uscsi man page!!!
12310 	 */
12311 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12312 		flags |= FLAG_HEAD;
12313 	}
12314 
12315 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12316 		flags |= FLAG_NOINTR;
12317 	}
12318 
12319 	/*
12320 	 * For tagged queueing, things get a bit complicated.
12321 	 * Check first for head of queue and last for ordered queue.
12322 	 * If neither head nor order, use the default driver tag flags.
12323 	 */
12324 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12325 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12326 			flags |= FLAG_HTAG;
12327 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12328 			flags |= FLAG_OTAG;
12329 		} else {
12330 			flags |= un->un_tagflags & FLAG_TAGMASK;
12331 		}
12332 	}
12333 
12334 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12335 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12336 	}
12337 
12338 	pktp->pkt_flags = flags;
12339 
12340 	/* Copy the caller's CDB into the pkt... */
12341 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12342 
12343 	if (uscmd->uscsi_timeout == 0) {
12344 		pktp->pkt_time = un->un_uscsi_timeout;
12345 	} else {
12346 		pktp->pkt_time = uscmd->uscsi_timeout;
12347 	}
12348 
12349 	/* need it later to identify USCSI request in sdintr */
12350 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12351 
12352 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12353 
12354 	pktp->pkt_private = bp;
12355 	pktp->pkt_comp = sdintr;
12356 	*pktpp = pktp;
12357 
12358 	SD_TRACE(SD_LOG_IO_CORE, un,
12359 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12360 
12361 	return (SD_PKT_ALLOC_SUCCESS);
12362 }
12363 
12364 
12365 /*
12366  *    Function: sd_destroypkt_for_uscsi
12367  *
12368  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12369  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12370  *		struct.
12371  *
12372  *     Context: May be called under interrupt context
12373  */
12374 
12375 static void
12376 sd_destroypkt_for_uscsi(struct buf *bp)
12377 {
12378 	struct uscsi_cmd *uscmd;
12379 	struct sd_xbuf	*xp;
12380 	struct scsi_pkt	*pktp;
12381 	struct sd_lun	*un;
12382 
12383 	ASSERT(bp != NULL);
12384 	xp = SD_GET_XBUF(bp);
12385 	ASSERT(xp != NULL);
12386 	un = SD_GET_UN(bp);
12387 	ASSERT(un != NULL);
12388 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12389 	pktp = SD_GET_PKTP(bp);
12390 	ASSERT(pktp != NULL);
12391 
12392 	SD_TRACE(SD_LOG_IO_CORE, un,
12393 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12394 
12395 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12396 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12397 	ASSERT(uscmd != NULL);
12398 
12399 	/* Save the status and the residual into the uscsi_cmd struct */
12400 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12401 	uscmd->uscsi_resid  = bp->b_resid;
12402 
12403 	/*
12404 	 * If enabled, copy any saved sense data into the area specified
12405 	 * by the uscsi command.
12406 	 */
12407 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12408 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12409 		/*
12410 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12411 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12412 		 */
12413 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12414 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12415 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12416 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12417 			    MAX_SENSE_LENGTH);
12418 		} else {
12419 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12420 			    SENSE_LENGTH);
12421 		}
12422 	}
12423 
12424 	/* We are done with the scsi_pkt; free it now */
12425 	ASSERT(SD_GET_PKTP(bp) != NULL);
12426 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12427 
12428 	SD_TRACE(SD_LOG_IO_CORE, un,
12429 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12430 }
12431 
12432 
12433 /*
12434  *    Function: sd_bioclone_alloc
12435  *
12436  * Description: Allocate a buf(9S) and init it as per the given buf
12437  *		and the various arguments.  The associated sd_xbuf
12438  *		struct is (nearly) duplicated.  The struct buf *bp
12439  *		argument is saved in new_xp->xb_private.
12440  *
12441  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12442  *		datalen - size of data area for the shadow bp
12443  *		blkno - starting LBA
12444  *		func - function pointer for b_iodone in the shadow buf. (May
12445  *			be NULL if none.)
12446  *
12447  * Return Code: Pointer to allocates buf(9S) struct
12448  *
12449  *     Context: Can sleep.
12450  */
12451 
12452 static struct buf *
12453 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12454 	daddr_t blkno, int (*func)(struct buf *))
12455 {
12456 	struct	sd_lun	*un;
12457 	struct	sd_xbuf	*xp;
12458 	struct	sd_xbuf	*new_xp;
12459 	struct	buf	*new_bp;
12460 
12461 	ASSERT(bp != NULL);
12462 	xp = SD_GET_XBUF(bp);
12463 	ASSERT(xp != NULL);
12464 	un = SD_GET_UN(bp);
12465 	ASSERT(un != NULL);
12466 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12467 
12468 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12469 	    NULL, KM_SLEEP);
12470 
12471 	new_bp->b_lblkno	= blkno;
12472 
12473 	/*
12474 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12475 	 * original xbuf into it.
12476 	 */
12477 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12478 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12479 
12480 	/*
12481 	 * The given bp is automatically saved in the xb_private member
12482 	 * of the new xbuf.  Callers are allowed to depend on this.
12483 	 */
12484 	new_xp->xb_private = bp;
12485 
12486 	new_bp->b_private  = new_xp;
12487 
12488 	return (new_bp);
12489 }
12490 
12491 /*
12492  *    Function: sd_shadow_buf_alloc
12493  *
12494  * Description: Allocate a buf(9S) and init it as per the given buf
12495  *		and the various arguments.  The associated sd_xbuf
12496  *		struct is (nearly) duplicated.  The struct buf *bp
12497  *		argument is saved in new_xp->xb_private.
12498  *
12499  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12500  *		datalen - size of data area for the shadow bp
12501  *		bflags - B_READ or B_WRITE (pseudo flag)
12502  *		blkno - starting LBA
12503  *		func - function pointer for b_iodone in the shadow buf. (May
12504  *			be NULL if none.)
12505  *
12506  * Return Code: Pointer to allocates buf(9S) struct
12507  *
12508  *     Context: Can sleep.
12509  */
12510 
12511 static struct buf *
12512 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12513 	daddr_t blkno, int (*func)(struct buf *))
12514 {
12515 	struct	sd_lun	*un;
12516 	struct	sd_xbuf	*xp;
12517 	struct	sd_xbuf	*new_xp;
12518 	struct	buf	*new_bp;
12519 
12520 	ASSERT(bp != NULL);
12521 	xp = SD_GET_XBUF(bp);
12522 	ASSERT(xp != NULL);
12523 	un = SD_GET_UN(bp);
12524 	ASSERT(un != NULL);
12525 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12526 
12527 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12528 		bp_mapin(bp);
12529 	}
12530 
12531 	bflags &= (B_READ | B_WRITE);
12532 #if defined(__i386) || defined(__amd64)
12533 	new_bp = getrbuf(KM_SLEEP);
12534 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12535 	new_bp->b_bcount = datalen;
12536 	new_bp->b_flags = bflags |
12537 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12538 #else
12539 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12540 	    datalen, bflags, SLEEP_FUNC, NULL);
12541 #endif
12542 	new_bp->av_forw	= NULL;
12543 	new_bp->av_back	= NULL;
12544 	new_bp->b_dev	= bp->b_dev;
12545 	new_bp->b_blkno	= blkno;
12546 	new_bp->b_iodone = func;
12547 	new_bp->b_edev	= bp->b_edev;
12548 	new_bp->b_resid	= 0;
12549 
12550 	/* We need to preserve the B_FAILFAST flag */
12551 	if (bp->b_flags & B_FAILFAST) {
12552 		new_bp->b_flags |= B_FAILFAST;
12553 	}
12554 
12555 	/*
12556 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12557 	 * original xbuf into it.
12558 	 */
12559 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12560 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12561 
12562 	/* Need later to copy data between the shadow buf & original buf! */
12563 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12564 
12565 	/*
12566 	 * The given bp is automatically saved in the xb_private member
12567 	 * of the new xbuf.  Callers are allowed to depend on this.
12568 	 */
12569 	new_xp->xb_private = bp;
12570 
12571 	new_bp->b_private  = new_xp;
12572 
12573 	return (new_bp);
12574 }
12575 
12576 /*
12577  *    Function: sd_bioclone_free
12578  *
12579  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12580  *		in the larger than partition operation.
12581  *
12582  *     Context: May be called under interrupt context
12583  */
12584 
12585 static void
12586 sd_bioclone_free(struct buf *bp)
12587 {
12588 	struct sd_xbuf	*xp;
12589 
12590 	ASSERT(bp != NULL);
12591 	xp = SD_GET_XBUF(bp);
12592 	ASSERT(xp != NULL);
12593 
12594 	/*
12595 	 * Call bp_mapout() before freeing the buf,  in case a lower
12596 	 * layer or HBA  had done a bp_mapin().  we must do this here
12597 	 * as we are the "originator" of the shadow buf.
12598 	 */
12599 	bp_mapout(bp);
12600 
12601 	/*
12602 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12603 	 * never gets confused by a stale value in this field. (Just a little
12604 	 * extra defensiveness here.)
12605 	 */
12606 	bp->b_iodone = NULL;
12607 
12608 	freerbuf(bp);
12609 
12610 	kmem_free(xp, sizeof (struct sd_xbuf));
12611 }
12612 
12613 /*
12614  *    Function: sd_shadow_buf_free
12615  *
12616  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12617  *
12618  *     Context: May be called under interrupt context
12619  */
12620 
12621 static void
12622 sd_shadow_buf_free(struct buf *bp)
12623 {
12624 	struct sd_xbuf	*xp;
12625 
12626 	ASSERT(bp != NULL);
12627 	xp = SD_GET_XBUF(bp);
12628 	ASSERT(xp != NULL);
12629 
12630 #if defined(__sparc)
12631 	/*
12632 	 * Call bp_mapout() before freeing the buf,  in case a lower
12633 	 * layer or HBA  had done a bp_mapin().  we must do this here
12634 	 * as we are the "originator" of the shadow buf.
12635 	 */
12636 	bp_mapout(bp);
12637 #endif
12638 
12639 	/*
12640 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12641 	 * never gets confused by a stale value in this field. (Just a little
12642 	 * extra defensiveness here.)
12643 	 */
12644 	bp->b_iodone = NULL;
12645 
12646 #if defined(__i386) || defined(__amd64)
12647 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12648 	freerbuf(bp);
12649 #else
12650 	scsi_free_consistent_buf(bp);
12651 #endif
12652 
12653 	kmem_free(xp, sizeof (struct sd_xbuf));
12654 }
12655 
12656 
12657 /*
12658  *    Function: sd_print_transport_rejected_message
12659  *
12660  * Description: This implements the ludicrously complex rules for printing
12661  *		a "transport rejected" message.  This is to address the
12662  *		specific problem of having a flood of this error message
12663  *		produced when a failover occurs.
12664  *
12665  *     Context: Any.
12666  */
12667 
12668 static void
12669 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12670 	int code)
12671 {
12672 	ASSERT(un != NULL);
12673 	ASSERT(mutex_owned(SD_MUTEX(un)));
12674 	ASSERT(xp != NULL);
12675 
12676 	/*
12677 	 * Print the "transport rejected" message under the following
12678 	 * conditions:
12679 	 *
12680 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12681 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12682 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12683 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12684 	 *   scsi_transport(9F) (which indicates that the target might have
12685 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12686 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12687 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12688 	 *   from scsi_transport().
12689 	 *
12690 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12691 	 * the preceeding cases in order for the message to be printed.
12692 	 */
12693 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12694 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12695 		    (code != TRAN_FATAL_ERROR) ||
12696 		    (un->un_tran_fatal_count == 1)) {
12697 			switch (code) {
12698 			case TRAN_BADPKT:
12699 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12700 				    "transport rejected bad packet\n");
12701 				break;
12702 			case TRAN_FATAL_ERROR:
12703 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12704 				    "transport rejected fatal error\n");
12705 				break;
12706 			default:
12707 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12708 				    "transport rejected (%d)\n", code);
12709 				break;
12710 			}
12711 		}
12712 	}
12713 }
12714 
12715 
12716 /*
12717  *    Function: sd_add_buf_to_waitq
12718  *
12719  * Description: Add the given buf(9S) struct to the wait queue for the
12720  *		instance.  If sorting is enabled, then the buf is added
12721  *		to the queue via an elevator sort algorithm (a la
12722  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12723  *		If sorting is not enabled, then the buf is just added
12724  *		to the end of the wait queue.
12725  *
12726  * Return Code: void
12727  *
12728  *     Context: Does not sleep/block, therefore technically can be called
12729  *		from any context.  However if sorting is enabled then the
12730  *		execution time is indeterminate, and may take long if
12731  *		the wait queue grows large.
12732  */
12733 
12734 static void
12735 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12736 {
12737 	struct buf *ap;
12738 
12739 	ASSERT(bp != NULL);
12740 	ASSERT(un != NULL);
12741 	ASSERT(mutex_owned(SD_MUTEX(un)));
12742 
12743 	/* If the queue is empty, add the buf as the only entry & return. */
12744 	if (un->un_waitq_headp == NULL) {
12745 		ASSERT(un->un_waitq_tailp == NULL);
12746 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12747 		bp->av_forw = NULL;
12748 		return;
12749 	}
12750 
12751 	ASSERT(un->un_waitq_tailp != NULL);
12752 
12753 	/*
12754 	 * If sorting is disabled, just add the buf to the tail end of
12755 	 * the wait queue and return.
12756 	 */
12757 	if (un->un_f_disksort_disabled) {
12758 		un->un_waitq_tailp->av_forw = bp;
12759 		un->un_waitq_tailp = bp;
12760 		bp->av_forw = NULL;
12761 		return;
12762 	}
12763 
12764 	/*
12765 	 * Sort thru the list of requests currently on the wait queue
12766 	 * and add the new buf request at the appropriate position.
12767 	 *
12768 	 * The un->un_waitq_headp is an activity chain pointer on which
12769 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12770 	 * first queue holds those requests which are positioned after
12771 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12772 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12773 	 * Thus we implement a one way scan, retracting after reaching
12774 	 * the end of the drive to the first request on the second
12775 	 * queue, at which time it becomes the first queue.
12776 	 * A one-way scan is natural because of the way UNIX read-ahead
12777 	 * blocks are allocated.
12778 	 *
12779 	 * If we lie after the first request, then we must locate the
12780 	 * second request list and add ourselves to it.
12781 	 */
12782 	ap = un->un_waitq_headp;
12783 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12784 		while (ap->av_forw != NULL) {
12785 			/*
12786 			 * Look for an "inversion" in the (normally
12787 			 * ascending) block numbers. This indicates
12788 			 * the start of the second request list.
12789 			 */
12790 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12791 				/*
12792 				 * Search the second request list for the
12793 				 * first request at a larger block number.
12794 				 * We go before that; however if there is
12795 				 * no such request, we go at the end.
12796 				 */
12797 				do {
12798 					if (SD_GET_BLKNO(bp) <
12799 					    SD_GET_BLKNO(ap->av_forw)) {
12800 						goto insert;
12801 					}
12802 					ap = ap->av_forw;
12803 				} while (ap->av_forw != NULL);
12804 				goto insert;		/* after last */
12805 			}
12806 			ap = ap->av_forw;
12807 		}
12808 
12809 		/*
12810 		 * No inversions... we will go after the last, and
12811 		 * be the first request in the second request list.
12812 		 */
12813 		goto insert;
12814 	}
12815 
12816 	/*
12817 	 * Request is at/after the current request...
12818 	 * sort in the first request list.
12819 	 */
12820 	while (ap->av_forw != NULL) {
12821 		/*
12822 		 * We want to go after the current request (1) if
12823 		 * there is an inversion after it (i.e. it is the end
12824 		 * of the first request list), or (2) if the next
12825 		 * request is a larger block no. than our request.
12826 		 */
12827 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12828 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12829 			goto insert;
12830 		}
12831 		ap = ap->av_forw;
12832 	}
12833 
12834 	/*
12835 	 * Neither a second list nor a larger request, therefore
12836 	 * we go at the end of the first list (which is the same
12837 	 * as the end of the whole schebang).
12838 	 */
12839 insert:
12840 	bp->av_forw = ap->av_forw;
12841 	ap->av_forw = bp;
12842 
12843 	/*
12844 	 * If we inserted onto the tail end of the waitq, make sure the
12845 	 * tail pointer is updated.
12846 	 */
12847 	if (ap == un->un_waitq_tailp) {
12848 		un->un_waitq_tailp = bp;
12849 	}
12850 }
12851 
12852 
12853 /*
12854  *    Function: sd_start_cmds
12855  *
12856  * Description: Remove and transport cmds from the driver queues.
12857  *
12858  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12859  *
12860  *		immed_bp - ptr to a buf to be transported immediately. Only
12861  *		the immed_bp is transported; bufs on the waitq are not
12862  *		processed and the un_retry_bp is not checked.  If immed_bp is
12863  *		NULL, then normal queue processing is performed.
12864  *
12865  *     Context: May be called from kernel thread context, interrupt context,
12866  *		or runout callback context. This function may not block or
12867  *		call routines that block.
12868  */
12869 
12870 static void
12871 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12872 {
12873 	struct	sd_xbuf	*xp;
12874 	struct	buf	*bp;
12875 	void	(*statp)(kstat_io_t *);
12876 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12877 	void	(*saved_statp)(kstat_io_t *);
12878 #endif
12879 	int	rval;
12880 
12881 	ASSERT(un != NULL);
12882 	ASSERT(mutex_owned(SD_MUTEX(un)));
12883 	ASSERT(un->un_ncmds_in_transport >= 0);
12884 	ASSERT(un->un_throttle >= 0);
12885 
12886 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12887 
12888 	do {
12889 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12890 		saved_statp = NULL;
12891 #endif
12892 
12893 		/*
12894 		 * If we are syncing or dumping, fail the command to
12895 		 * avoid recursively calling back into scsi_transport().
12896 		 * The dump I/O itself uses a separate code path so this
12897 		 * only prevents non-dump I/O from being sent while dumping.
12898 		 * File system sync takes place before dumping begins.
12899 		 * During panic, filesystem I/O is allowed provided
12900 		 * un_in_callback is <= 1.  This is to prevent recursion
12901 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12902 		 * sd_start_cmds and so on.  See panic.c for more information
12903 		 * about the states the system can be in during panic.
12904 		 */
12905 		if ((un->un_state == SD_STATE_DUMPING) ||
12906 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12907 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12908 			    "sd_start_cmds: panicking\n");
12909 			goto exit;
12910 		}
12911 
12912 		if ((bp = immed_bp) != NULL) {
12913 			/*
12914 			 * We have a bp that must be transported immediately.
12915 			 * It's OK to transport the immed_bp here without doing
12916 			 * the throttle limit check because the immed_bp is
12917 			 * always used in a retry/recovery case. This means
12918 			 * that we know we are not at the throttle limit by
12919 			 * virtue of the fact that to get here we must have
12920 			 * already gotten a command back via sdintr(). This also
12921 			 * relies on (1) the command on un_retry_bp preventing
12922 			 * further commands from the waitq from being issued;
12923 			 * and (2) the code in sd_retry_command checking the
12924 			 * throttle limit before issuing a delayed or immediate
12925 			 * retry. This holds even if the throttle limit is
12926 			 * currently ratcheted down from its maximum value.
12927 			 */
12928 			statp = kstat_runq_enter;
12929 			if (bp == un->un_retry_bp) {
12930 				ASSERT((un->un_retry_statp == NULL) ||
12931 				    (un->un_retry_statp == kstat_waitq_enter) ||
12932 				    (un->un_retry_statp ==
12933 				    kstat_runq_back_to_waitq));
12934 				/*
12935 				 * If the waitq kstat was incremented when
12936 				 * sd_set_retry_bp() queued this bp for a retry,
12937 				 * then we must set up statp so that the waitq
12938 				 * count will get decremented correctly below.
12939 				 * Also we must clear un->un_retry_statp to
12940 				 * ensure that we do not act on a stale value
12941 				 * in this field.
12942 				 */
12943 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12944 				    (un->un_retry_statp ==
12945 				    kstat_runq_back_to_waitq)) {
12946 					statp = kstat_waitq_to_runq;
12947 				}
12948 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12949 				saved_statp = un->un_retry_statp;
12950 #endif
12951 				un->un_retry_statp = NULL;
12952 
12953 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12954 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12955 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12956 				    un, un->un_retry_bp, un->un_throttle,
12957 				    un->un_ncmds_in_transport);
12958 			} else {
12959 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12960 				    "processing priority bp:0x%p\n", bp);
12961 			}
12962 
12963 		} else if ((bp = un->un_waitq_headp) != NULL) {
12964 			/*
12965 			 * A command on the waitq is ready to go, but do not
12966 			 * send it if:
12967 			 *
12968 			 * (1) the throttle limit has been reached, or
12969 			 * (2) a retry is pending, or
12970 			 * (3) a START_STOP_UNIT callback pending, or
12971 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
12972 			 *	command is pending.
12973 			 *
12974 			 * For all of these conditions, IO processing will
12975 			 * restart after the condition is cleared.
12976 			 */
12977 			if (un->un_ncmds_in_transport >= un->un_throttle) {
12978 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12979 				    "sd_start_cmds: exiting, "
12980 				    "throttle limit reached!\n");
12981 				goto exit;
12982 			}
12983 			if (un->un_retry_bp != NULL) {
12984 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12985 				    "sd_start_cmds: exiting, retry pending!\n");
12986 				goto exit;
12987 			}
12988 			if (un->un_startstop_timeid != NULL) {
12989 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12990 				    "sd_start_cmds: exiting, "
12991 				    "START_STOP pending!\n");
12992 				goto exit;
12993 			}
12994 			if (un->un_direct_priority_timeid != NULL) {
12995 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12996 				    "sd_start_cmds: exiting, "
12997 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
12998 				goto exit;
12999 			}
13000 
13001 			/* Dequeue the command */
13002 			un->un_waitq_headp = bp->av_forw;
13003 			if (un->un_waitq_headp == NULL) {
13004 				un->un_waitq_tailp = NULL;
13005 			}
13006 			bp->av_forw = NULL;
13007 			statp = kstat_waitq_to_runq;
13008 			SD_TRACE(SD_LOG_IO_CORE, un,
13009 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
13010 
13011 		} else {
13012 			/* No work to do so bail out now */
13013 			SD_TRACE(SD_LOG_IO_CORE, un,
13014 			    "sd_start_cmds: no more work, exiting!\n");
13015 			goto exit;
13016 		}
13017 
13018 		/*
13019 		 * Reset the state to normal. This is the mechanism by which
13020 		 * the state transitions from either SD_STATE_RWAIT or
13021 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
13022 		 * If state is SD_STATE_PM_CHANGING then this command is
13023 		 * part of the device power control and the state must
13024 		 * not be put back to normal. Doing so would would
13025 		 * allow new commands to proceed when they shouldn't,
13026 		 * the device may be going off.
13027 		 */
13028 		if ((un->un_state != SD_STATE_SUSPENDED) &&
13029 		    (un->un_state != SD_STATE_PM_CHANGING)) {
13030 			New_state(un, SD_STATE_NORMAL);
13031 		}
13032 
13033 		xp = SD_GET_XBUF(bp);
13034 		ASSERT(xp != NULL);
13035 
13036 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13037 		/*
13038 		 * Allocate the scsi_pkt if we need one, or attach DMA
13039 		 * resources if we have a scsi_pkt that needs them. The
13040 		 * latter should only occur for commands that are being
13041 		 * retried.
13042 		 */
13043 		if ((xp->xb_pktp == NULL) ||
13044 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
13045 #else
13046 		if (xp->xb_pktp == NULL) {
13047 #endif
13048 			/*
13049 			 * There is no scsi_pkt allocated for this buf. Call
13050 			 * the initpkt function to allocate & init one.
13051 			 *
13052 			 * The scsi_init_pkt runout callback functionality is
13053 			 * implemented as follows:
13054 			 *
13055 			 * 1) The initpkt function always calls
13056 			 *    scsi_init_pkt(9F) with sdrunout specified as the
13057 			 *    callback routine.
13058 			 * 2) A successful packet allocation is initialized and
13059 			 *    the I/O is transported.
13060 			 * 3) The I/O associated with an allocation resource
13061 			 *    failure is left on its queue to be retried via
13062 			 *    runout or the next I/O.
13063 			 * 4) The I/O associated with a DMA error is removed
13064 			 *    from the queue and failed with EIO. Processing of
13065 			 *    the transport queues is also halted to be
13066 			 *    restarted via runout or the next I/O.
13067 			 * 5) The I/O associated with a CDB size or packet
13068 			 *    size error is removed from the queue and failed
13069 			 *    with EIO. Processing of the transport queues is
13070 			 *    continued.
13071 			 *
13072 			 * Note: there is no interface for canceling a runout
13073 			 * callback. To prevent the driver from detaching or
13074 			 * suspending while a runout is pending the driver
13075 			 * state is set to SD_STATE_RWAIT
13076 			 *
13077 			 * Note: using the scsi_init_pkt callback facility can
13078 			 * result in an I/O request persisting at the head of
13079 			 * the list which cannot be satisfied even after
13080 			 * multiple retries. In the future the driver may
13081 			 * implement some kind of maximum runout count before
13082 			 * failing an I/O.
13083 			 *
13084 			 * Note: the use of funcp below may seem superfluous,
13085 			 * but it helps warlock figure out the correct
13086 			 * initpkt function calls (see [s]sd.wlcmd).
13087 			 */
13088 			struct scsi_pkt	*pktp;
13089 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
13090 
13091 			ASSERT(bp != un->un_rqs_bp);
13092 
13093 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
13094 			switch ((*funcp)(bp, &pktp)) {
13095 			case  SD_PKT_ALLOC_SUCCESS:
13096 				xp->xb_pktp = pktp;
13097 				SD_TRACE(SD_LOG_IO_CORE, un,
13098 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
13099 				    pktp);
13100 				goto got_pkt;
13101 
13102 			case SD_PKT_ALLOC_FAILURE:
13103 				/*
13104 				 * Temporary (hopefully) resource depletion.
13105 				 * Since retries and RQS commands always have a
13106 				 * scsi_pkt allocated, these cases should never
13107 				 * get here. So the only cases this needs to
13108 				 * handle is a bp from the waitq (which we put
13109 				 * back onto the waitq for sdrunout), or a bp
13110 				 * sent as an immed_bp (which we just fail).
13111 				 */
13112 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13113 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
13114 
13115 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13116 
13117 				if (bp == immed_bp) {
13118 					/*
13119 					 * If SD_XB_DMA_FREED is clear, then
13120 					 * this is a failure to allocate a
13121 					 * scsi_pkt, and we must fail the
13122 					 * command.
13123 					 */
13124 					if ((xp->xb_pkt_flags &
13125 					    SD_XB_DMA_FREED) == 0) {
13126 						break;
13127 					}
13128 
13129 					/*
13130 					 * If this immediate command is NOT our
13131 					 * un_retry_bp, then we must fail it.
13132 					 */
13133 					if (bp != un->un_retry_bp) {
13134 						break;
13135 					}
13136 
13137 					/*
13138 					 * We get here if this cmd is our
13139 					 * un_retry_bp that was DMAFREED, but
13140 					 * scsi_init_pkt() failed to reallocate
13141 					 * DMA resources when we attempted to
13142 					 * retry it. This can happen when an
13143 					 * mpxio failover is in progress, but
13144 					 * we don't want to just fail the
13145 					 * command in this case.
13146 					 *
13147 					 * Use timeout(9F) to restart it after
13148 					 * a 100ms delay.  We don't want to
13149 					 * let sdrunout() restart it, because
13150 					 * sdrunout() is just supposed to start
13151 					 * commands that are sitting on the
13152 					 * wait queue.  The un_retry_bp stays
13153 					 * set until the command completes, but
13154 					 * sdrunout can be called many times
13155 					 * before that happens.  Since sdrunout
13156 					 * cannot tell if the un_retry_bp is
13157 					 * already in the transport, it could
13158 					 * end up calling scsi_transport() for
13159 					 * the un_retry_bp multiple times.
13160 					 *
13161 					 * Also: don't schedule the callback
13162 					 * if some other callback is already
13163 					 * pending.
13164 					 */
13165 					if (un->un_retry_statp == NULL) {
13166 						/*
13167 						 * restore the kstat pointer to
13168 						 * keep kstat counts coherent
13169 						 * when we do retry the command.
13170 						 */
13171 						un->un_retry_statp =
13172 						    saved_statp;
13173 					}
13174 
13175 					if ((un->un_startstop_timeid == NULL) &&
13176 					    (un->un_retry_timeid == NULL) &&
13177 					    (un->un_direct_priority_timeid ==
13178 					    NULL)) {
13179 
13180 						un->un_retry_timeid =
13181 						    timeout(
13182 						    sd_start_retry_command,
13183 						    un, SD_RESTART_TIMEOUT);
13184 					}
13185 					goto exit;
13186 				}
13187 
13188 #else
13189 				if (bp == immed_bp) {
13190 					break;	/* Just fail the command */
13191 				}
13192 #endif
13193 
13194 				/* Add the buf back to the head of the waitq */
13195 				bp->av_forw = un->un_waitq_headp;
13196 				un->un_waitq_headp = bp;
13197 				if (un->un_waitq_tailp == NULL) {
13198 					un->un_waitq_tailp = bp;
13199 				}
13200 				goto exit;
13201 
13202 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
13203 				/*
13204 				 * HBA DMA resource failure. Fail the command
13205 				 * and continue processing of the queues.
13206 				 */
13207 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13208 				    "sd_start_cmds: "
13209 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
13210 				break;
13211 
13212 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
13213 				/*
13214 				 * Note:x86: Partial DMA mapping not supported
13215 				 * for USCSI commands, and all the needed DMA
13216 				 * resources were not allocated.
13217 				 */
13218 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13219 				    "sd_start_cmds: "
13220 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
13221 				break;
13222 
13223 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
13224 				/*
13225 				 * Note:x86: Request cannot fit into CDB based
13226 				 * on lba and len.
13227 				 */
13228 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13229 				    "sd_start_cmds: "
13230 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
13231 				break;
13232 
13233 			default:
13234 				/* Should NEVER get here! */
13235 				panic("scsi_initpkt error");
13236 				/*NOTREACHED*/
13237 			}
13238 
13239 			/*
13240 			 * Fatal error in allocating a scsi_pkt for this buf.
13241 			 * Update kstats & return the buf with an error code.
13242 			 * We must use sd_return_failed_command_no_restart() to
13243 			 * avoid a recursive call back into sd_start_cmds().
13244 			 * However this also means that we must keep processing
13245 			 * the waitq here in order to avoid stalling.
13246 			 */
13247 			if (statp == kstat_waitq_to_runq) {
13248 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
13249 			}
13250 			sd_return_failed_command_no_restart(un, bp, EIO);
13251 			if (bp == immed_bp) {
13252 				/* immed_bp is gone by now, so clear this */
13253 				immed_bp = NULL;
13254 			}
13255 			continue;
13256 		}
13257 got_pkt:
13258 		if (bp == immed_bp) {
13259 			/* goto the head of the class.... */
13260 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13261 		}
13262 
13263 		un->un_ncmds_in_transport++;
13264 		SD_UPDATE_KSTATS(un, statp, bp);
13265 
13266 		/*
13267 		 * Call scsi_transport() to send the command to the target.
13268 		 * According to SCSA architecture, we must drop the mutex here
13269 		 * before calling scsi_transport() in order to avoid deadlock.
13270 		 * Note that the scsi_pkt's completion routine can be executed
13271 		 * (from interrupt context) even before the call to
13272 		 * scsi_transport() returns.
13273 		 */
13274 		SD_TRACE(SD_LOG_IO_CORE, un,
13275 		    "sd_start_cmds: calling scsi_transport()\n");
13276 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
13277 
13278 		mutex_exit(SD_MUTEX(un));
13279 		rval = scsi_transport(xp->xb_pktp);
13280 		mutex_enter(SD_MUTEX(un));
13281 
13282 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13283 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
13284 
13285 		switch (rval) {
13286 		case TRAN_ACCEPT:
13287 			/* Clear this with every pkt accepted by the HBA */
13288 			un->un_tran_fatal_count = 0;
13289 			break;	/* Success; try the next cmd (if any) */
13290 
13291 		case TRAN_BUSY:
13292 			un->un_ncmds_in_transport--;
13293 			ASSERT(un->un_ncmds_in_transport >= 0);
13294 
13295 			/*
13296 			 * Don't retry request sense, the sense data
13297 			 * is lost when another request is sent.
13298 			 * Free up the rqs buf and retry
13299 			 * the original failed cmd.  Update kstat.
13300 			 */
13301 			if (bp == un->un_rqs_bp) {
13302 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13303 				bp = sd_mark_rqs_idle(un, xp);
13304 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13305 				    NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13306 				    kstat_waitq_enter);
13307 				goto exit;
13308 			}
13309 
13310 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13311 			/*
13312 			 * Free the DMA resources for the  scsi_pkt. This will
13313 			 * allow mpxio to select another path the next time
13314 			 * we call scsi_transport() with this scsi_pkt.
13315 			 * See sdintr() for the rationalization behind this.
13316 			 */
13317 			if ((un->un_f_is_fibre == TRUE) &&
13318 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13319 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13320 				scsi_dmafree(xp->xb_pktp);
13321 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13322 			}
13323 #endif
13324 
13325 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13326 				/*
13327 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13328 				 * are for error recovery situations. These do
13329 				 * not use the normal command waitq, so if they
13330 				 * get a TRAN_BUSY we cannot put them back onto
13331 				 * the waitq for later retry. One possible
13332 				 * problem is that there could already be some
13333 				 * other command on un_retry_bp that is waiting
13334 				 * for this one to complete, so we would be
13335 				 * deadlocked if we put this command back onto
13336 				 * the waitq for later retry (since un_retry_bp
13337 				 * must complete before the driver gets back to
13338 				 * commands on the waitq).
13339 				 *
13340 				 * To avoid deadlock we must schedule a callback
13341 				 * that will restart this command after a set
13342 				 * interval.  This should keep retrying for as
13343 				 * long as the underlying transport keeps
13344 				 * returning TRAN_BUSY (just like for other
13345 				 * commands).  Use the same timeout interval as
13346 				 * for the ordinary TRAN_BUSY retry.
13347 				 */
13348 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13349 				    "sd_start_cmds: scsi_transport() returned "
13350 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13351 
13352 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13353 				un->un_direct_priority_timeid =
13354 				    timeout(sd_start_direct_priority_command,
13355 				    bp, SD_BSY_TIMEOUT / 500);
13356 
13357 				goto exit;
13358 			}
13359 
13360 			/*
13361 			 * For TRAN_BUSY, we want to reduce the throttle value,
13362 			 * unless we are retrying a command.
13363 			 */
13364 			if (bp != un->un_retry_bp) {
13365 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13366 			}
13367 
13368 			/*
13369 			 * Set up the bp to be tried again 10 ms later.
13370 			 * Note:x86: Is there a timeout value in the sd_lun
13371 			 * for this condition?
13372 			 */
13373 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13374 			    kstat_runq_back_to_waitq);
13375 			goto exit;
13376 
13377 		case TRAN_FATAL_ERROR:
13378 			un->un_tran_fatal_count++;
13379 			/* FALLTHRU */
13380 
13381 		case TRAN_BADPKT:
13382 		default:
13383 			un->un_ncmds_in_transport--;
13384 			ASSERT(un->un_ncmds_in_transport >= 0);
13385 
13386 			/*
13387 			 * If this is our REQUEST SENSE command with a
13388 			 * transport error, we must get back the pointers
13389 			 * to the original buf, and mark the REQUEST
13390 			 * SENSE command as "available".
13391 			 */
13392 			if (bp == un->un_rqs_bp) {
13393 				bp = sd_mark_rqs_idle(un, xp);
13394 				xp = SD_GET_XBUF(bp);
13395 			} else {
13396 				/*
13397 				 * Legacy behavior: do not update transport
13398 				 * error count for request sense commands.
13399 				 */
13400 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13401 			}
13402 
13403 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13404 			sd_print_transport_rejected_message(un, xp, rval);
13405 
13406 			/*
13407 			 * We must use sd_return_failed_command_no_restart() to
13408 			 * avoid a recursive call back into sd_start_cmds().
13409 			 * However this also means that we must keep processing
13410 			 * the waitq here in order to avoid stalling.
13411 			 */
13412 			sd_return_failed_command_no_restart(un, bp, EIO);
13413 
13414 			/*
13415 			 * Notify any threads waiting in sd_ddi_suspend() that
13416 			 * a command completion has occurred.
13417 			 */
13418 			if (un->un_state == SD_STATE_SUSPENDED) {
13419 				cv_broadcast(&un->un_disk_busy_cv);
13420 			}
13421 
13422 			if (bp == immed_bp) {
13423 				/* immed_bp is gone by now, so clear this */
13424 				immed_bp = NULL;
13425 			}
13426 			break;
13427 		}
13428 
13429 	} while (immed_bp == NULL);
13430 
13431 exit:
13432 	ASSERT(mutex_owned(SD_MUTEX(un)));
13433 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13434 }
13435 
13436 
13437 /*
13438  *    Function: sd_return_command
13439  *
13440  * Description: Returns a command to its originator (with or without an
13441  *		error).  Also starts commands waiting to be transported
13442  *		to the target.
13443  *
13444  *     Context: May be called from interrupt, kernel, or timeout context
13445  */
13446 
13447 static void
13448 sd_return_command(struct sd_lun *un, struct buf *bp)
13449 {
13450 	struct sd_xbuf *xp;
13451 	struct scsi_pkt *pktp;
13452 
13453 	ASSERT(bp != NULL);
13454 	ASSERT(un != NULL);
13455 	ASSERT(mutex_owned(SD_MUTEX(un)));
13456 	ASSERT(bp != un->un_rqs_bp);
13457 	xp = SD_GET_XBUF(bp);
13458 	ASSERT(xp != NULL);
13459 
13460 	pktp = SD_GET_PKTP(bp);
13461 
13462 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13463 
13464 	/*
13465 	 * Note: check for the "sdrestart failed" case.
13466 	 */
13467 	if ((un->un_partial_dma_supported == 1) &&
13468 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13469 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13470 	    (xp->xb_pktp->pkt_resid == 0)) {
13471 
13472 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13473 			/*
13474 			 * Successfully set up next portion of cmd
13475 			 * transfer, try sending it
13476 			 */
13477 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13478 			    NULL, NULL, 0, (clock_t)0, NULL);
13479 			sd_start_cmds(un, NULL);
13480 			return;	/* Note:x86: need a return here? */
13481 		}
13482 	}
13483 
13484 	/*
13485 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13486 	 * can happen if upon being re-tried the failfast bp either
13487 	 * succeeded or encountered another error (possibly even a different
13488 	 * error than the one that precipitated the failfast state, but in
13489 	 * that case it would have had to exhaust retries as well). Regardless,
13490 	 * this should not occur whenever the instance is in the active
13491 	 * failfast state.
13492 	 */
13493 	if (bp == un->un_failfast_bp) {
13494 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13495 		un->un_failfast_bp = NULL;
13496 	}
13497 
13498 	/*
13499 	 * Clear the failfast state upon successful completion of ANY cmd.
13500 	 */
13501 	if (bp->b_error == 0) {
13502 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13503 	}
13504 
13505 	/*
13506 	 * This is used if the command was retried one or more times. Show that
13507 	 * we are done with it, and allow processing of the waitq to resume.
13508 	 */
13509 	if (bp == un->un_retry_bp) {
13510 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13511 		    "sd_return_command: un:0x%p: "
13512 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13513 		un->un_retry_bp = NULL;
13514 		un->un_retry_statp = NULL;
13515 	}
13516 
13517 	SD_UPDATE_RDWR_STATS(un, bp);
13518 	SD_UPDATE_PARTITION_STATS(un, bp);
13519 
13520 	switch (un->un_state) {
13521 	case SD_STATE_SUSPENDED:
13522 		/*
13523 		 * Notify any threads waiting in sd_ddi_suspend() that
13524 		 * a command completion has occurred.
13525 		 */
13526 		cv_broadcast(&un->un_disk_busy_cv);
13527 		break;
13528 	default:
13529 		sd_start_cmds(un, NULL);
13530 		break;
13531 	}
13532 
13533 	/* Return this command up the iodone chain to its originator. */
13534 	mutex_exit(SD_MUTEX(un));
13535 
13536 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13537 	xp->xb_pktp = NULL;
13538 
13539 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13540 
13541 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13542 	mutex_enter(SD_MUTEX(un));
13543 
13544 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13545 }
13546 
13547 
13548 /*
13549  *    Function: sd_return_failed_command
13550  *
13551  * Description: Command completion when an error occurred.
13552  *
13553  *     Context: May be called from interrupt context
13554  */
13555 
13556 static void
13557 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13558 {
13559 	ASSERT(bp != NULL);
13560 	ASSERT(un != NULL);
13561 	ASSERT(mutex_owned(SD_MUTEX(un)));
13562 
13563 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13564 	    "sd_return_failed_command: entry\n");
13565 
13566 	/*
13567 	 * b_resid could already be nonzero due to a partial data
13568 	 * transfer, so do not change it here.
13569 	 */
13570 	SD_BIOERROR(bp, errcode);
13571 
13572 	sd_return_command(un, bp);
13573 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13574 	    "sd_return_failed_command: exit\n");
13575 }
13576 
13577 
13578 /*
13579  *    Function: sd_return_failed_command_no_restart
13580  *
13581  * Description: Same as sd_return_failed_command, but ensures that no
13582  *		call back into sd_start_cmds will be issued.
13583  *
13584  *     Context: May be called from interrupt context
13585  */
13586 
13587 static void
13588 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13589 	int errcode)
13590 {
13591 	struct sd_xbuf *xp;
13592 
13593 	ASSERT(bp != NULL);
13594 	ASSERT(un != NULL);
13595 	ASSERT(mutex_owned(SD_MUTEX(un)));
13596 	xp = SD_GET_XBUF(bp);
13597 	ASSERT(xp != NULL);
13598 	ASSERT(errcode != 0);
13599 
13600 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13601 	    "sd_return_failed_command_no_restart: entry\n");
13602 
13603 	/*
13604 	 * b_resid could already be nonzero due to a partial data
13605 	 * transfer, so do not change it here.
13606 	 */
13607 	SD_BIOERROR(bp, errcode);
13608 
13609 	/*
13610 	 * If this is the failfast bp, clear it. This can happen if the
13611 	 * failfast bp encounterd a fatal error when we attempted to
13612 	 * re-try it (such as a scsi_transport(9F) failure).  However
13613 	 * we should NOT be in an active failfast state if the failfast
13614 	 * bp is not NULL.
13615 	 */
13616 	if (bp == un->un_failfast_bp) {
13617 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13618 		un->un_failfast_bp = NULL;
13619 	}
13620 
13621 	if (bp == un->un_retry_bp) {
13622 		/*
13623 		 * This command was retried one or more times. Show that we are
13624 		 * done with it, and allow processing of the waitq to resume.
13625 		 */
13626 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13627 		    "sd_return_failed_command_no_restart: "
13628 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13629 		un->un_retry_bp = NULL;
13630 		un->un_retry_statp = NULL;
13631 	}
13632 
13633 	SD_UPDATE_RDWR_STATS(un, bp);
13634 	SD_UPDATE_PARTITION_STATS(un, bp);
13635 
13636 	mutex_exit(SD_MUTEX(un));
13637 
13638 	if (xp->xb_pktp != NULL) {
13639 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13640 		xp->xb_pktp = NULL;
13641 	}
13642 
13643 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13644 
13645 	mutex_enter(SD_MUTEX(un));
13646 
13647 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13648 	    "sd_return_failed_command_no_restart: exit\n");
13649 }
13650 
13651 
13652 /*
13653  *    Function: sd_retry_command
13654  *
13655  * Description: queue up a command for retry, or (optionally) fail it
13656  *		if retry counts are exhausted.
13657  *
13658  *   Arguments: un - Pointer to the sd_lun struct for the target.
13659  *
13660  *		bp - Pointer to the buf for the command to be retried.
13661  *
13662  *		retry_check_flag - Flag to see which (if any) of the retry
13663  *		   counts should be decremented/checked. If the indicated
13664  *		   retry count is exhausted, then the command will not be
13665  *		   retried; it will be failed instead. This should use a
13666  *		   value equal to one of the following:
13667  *
13668  *			SD_RETRIES_NOCHECK
13669  *			SD_RESD_RETRIES_STANDARD
13670  *			SD_RETRIES_VICTIM
13671  *
13672  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13673  *		   if the check should be made to see of FLAG_ISOLATE is set
13674  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13675  *		   not retried, it is simply failed.
13676  *
13677  *		user_funcp - Ptr to function to call before dispatching the
13678  *		   command. May be NULL if no action needs to be performed.
13679  *		   (Primarily intended for printing messages.)
13680  *
13681  *		user_arg - Optional argument to be passed along to
13682  *		   the user_funcp call.
13683  *
13684  *		failure_code - errno return code to set in the bp if the
13685  *		   command is going to be failed.
13686  *
13687  *		retry_delay - Retry delay interval in (clock_t) units. May
13688  *		   be zero which indicates that the retry should be retried
13689  *		   immediately (ie, without an intervening delay).
13690  *
13691  *		statp - Ptr to kstat function to be updated if the command
13692  *		   is queued for a delayed retry. May be NULL if no kstat
13693  *		   update is desired.
13694  *
13695  *     Context: May be called from interrupt context.
13696  */
13697 
13698 static void
13699 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13700 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13701 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13702 	void (*statp)(kstat_io_t *))
13703 {
13704 	struct sd_xbuf	*xp;
13705 	struct scsi_pkt	*pktp;
13706 
13707 	ASSERT(un != NULL);
13708 	ASSERT(mutex_owned(SD_MUTEX(un)));
13709 	ASSERT(bp != NULL);
13710 	xp = SD_GET_XBUF(bp);
13711 	ASSERT(xp != NULL);
13712 	pktp = SD_GET_PKTP(bp);
13713 	ASSERT(pktp != NULL);
13714 
13715 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13716 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13717 
13718 	/*
13719 	 * If we are syncing or dumping, fail the command to avoid
13720 	 * recursively calling back into scsi_transport().
13721 	 */
13722 	if (ddi_in_panic()) {
13723 		goto fail_command_no_log;
13724 	}
13725 
13726 	/*
13727 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13728 	 * log an error and fail the command.
13729 	 */
13730 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13731 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13732 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13733 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13734 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13735 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13736 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13737 		goto fail_command;
13738 	}
13739 
13740 	/*
13741 	 * If we are suspended, then put the command onto head of the
13742 	 * wait queue since we don't want to start more commands, and
13743 	 * clear the un_retry_bp. Next time when we are resumed, will
13744 	 * handle the command in the wait queue.
13745 	 */
13746 	switch (un->un_state) {
13747 	case SD_STATE_SUSPENDED:
13748 	case SD_STATE_DUMPING:
13749 		bp->av_forw = un->un_waitq_headp;
13750 		un->un_waitq_headp = bp;
13751 		if (un->un_waitq_tailp == NULL) {
13752 			un->un_waitq_tailp = bp;
13753 		}
13754 		if (bp == un->un_retry_bp) {
13755 			un->un_retry_bp = NULL;
13756 			un->un_retry_statp = NULL;
13757 		}
13758 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13759 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13760 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13761 		return;
13762 	default:
13763 		break;
13764 	}
13765 
13766 	/*
13767 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13768 	 * is set; if it is then we do not want to retry the command.
13769 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13770 	 */
13771 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13772 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13773 			goto fail_command;
13774 		}
13775 	}
13776 
13777 
13778 	/*
13779 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13780 	 * command timeout or a selection timeout has occurred. This means
13781 	 * that we were unable to establish an kind of communication with
13782 	 * the target, and subsequent retries and/or commands are likely
13783 	 * to encounter similar results and take a long time to complete.
13784 	 *
13785 	 * If this is a failfast error condition, we need to update the
13786 	 * failfast state, even if this bp does not have B_FAILFAST set.
13787 	 */
13788 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13789 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13790 			ASSERT(un->un_failfast_bp == NULL);
13791 			/*
13792 			 * If we are already in the active failfast state, and
13793 			 * another failfast error condition has been detected,
13794 			 * then fail this command if it has B_FAILFAST set.
13795 			 * If B_FAILFAST is clear, then maintain the legacy
13796 			 * behavior of retrying heroically, even tho this will
13797 			 * take a lot more time to fail the command.
13798 			 */
13799 			if (bp->b_flags & B_FAILFAST) {
13800 				goto fail_command;
13801 			}
13802 		} else {
13803 			/*
13804 			 * We're not in the active failfast state, but we
13805 			 * have a failfast error condition, so we must begin
13806 			 * transition to the next state. We do this regardless
13807 			 * of whether or not this bp has B_FAILFAST set.
13808 			 */
13809 			if (un->un_failfast_bp == NULL) {
13810 				/*
13811 				 * This is the first bp to meet a failfast
13812 				 * condition so save it on un_failfast_bp &
13813 				 * do normal retry processing. Do not enter
13814 				 * active failfast state yet. This marks
13815 				 * entry into the "failfast pending" state.
13816 				 */
13817 				un->un_failfast_bp = bp;
13818 
13819 			} else if (un->un_failfast_bp == bp) {
13820 				/*
13821 				 * This is the second time *this* bp has
13822 				 * encountered a failfast error condition,
13823 				 * so enter active failfast state & flush
13824 				 * queues as appropriate.
13825 				 */
13826 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13827 				un->un_failfast_bp = NULL;
13828 				sd_failfast_flushq(un);
13829 
13830 				/*
13831 				 * Fail this bp now if B_FAILFAST set;
13832 				 * otherwise continue with retries. (It would
13833 				 * be pretty ironic if this bp succeeded on a
13834 				 * subsequent retry after we just flushed all
13835 				 * the queues).
13836 				 */
13837 				if (bp->b_flags & B_FAILFAST) {
13838 					goto fail_command;
13839 				}
13840 
13841 #if !defined(lint) && !defined(__lint)
13842 			} else {
13843 				/*
13844 				 * If neither of the preceeding conditionals
13845 				 * was true, it means that there is some
13846 				 * *other* bp that has met an inital failfast
13847 				 * condition and is currently either being
13848 				 * retried or is waiting to be retried. In
13849 				 * that case we should perform normal retry
13850 				 * processing on *this* bp, since there is a
13851 				 * chance that the current failfast condition
13852 				 * is transient and recoverable. If that does
13853 				 * not turn out to be the case, then retries
13854 				 * will be cleared when the wait queue is
13855 				 * flushed anyway.
13856 				 */
13857 #endif
13858 			}
13859 		}
13860 	} else {
13861 		/*
13862 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13863 		 * likely were able to at least establish some level of
13864 		 * communication with the target and subsequent commands
13865 		 * and/or retries are likely to get through to the target,
13866 		 * In this case we want to be aggressive about clearing
13867 		 * the failfast state. Note that this does not affect
13868 		 * the "failfast pending" condition.
13869 		 */
13870 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13871 	}
13872 
13873 
13874 	/*
13875 	 * Check the specified retry count to see if we can still do
13876 	 * any retries with this pkt before we should fail it.
13877 	 */
13878 	switch (retry_check_flag & SD_RETRIES_MASK) {
13879 	case SD_RETRIES_VICTIM:
13880 		/*
13881 		 * Check the victim retry count. If exhausted, then fall
13882 		 * thru & check against the standard retry count.
13883 		 */
13884 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13885 			/* Increment count & proceed with the retry */
13886 			xp->xb_victim_retry_count++;
13887 			break;
13888 		}
13889 		/* Victim retries exhausted, fall back to std. retries... */
13890 		/* FALLTHRU */
13891 
13892 	case SD_RETRIES_STANDARD:
13893 		if (xp->xb_retry_count >= un->un_retry_count) {
13894 			/* Retries exhausted, fail the command */
13895 			SD_TRACE(SD_LOG_IO_CORE, un,
13896 			    "sd_retry_command: retries exhausted!\n");
13897 			/*
13898 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13899 			 * commands with nonzero pkt_resid.
13900 			 */
13901 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13902 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13903 			    (pktp->pkt_resid != 0)) {
13904 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13905 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13906 					SD_UPDATE_B_RESID(bp, pktp);
13907 				}
13908 			}
13909 			goto fail_command;
13910 		}
13911 		xp->xb_retry_count++;
13912 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13913 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13914 		break;
13915 
13916 	case SD_RETRIES_UA:
13917 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13918 			/* Retries exhausted, fail the command */
13919 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13920 			    "Unit Attention retries exhausted. "
13921 			    "Check the target.\n");
13922 			goto fail_command;
13923 		}
13924 		xp->xb_ua_retry_count++;
13925 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13926 		    "sd_retry_command: retry count:%d\n",
13927 		    xp->xb_ua_retry_count);
13928 		break;
13929 
13930 	case SD_RETRIES_BUSY:
13931 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13932 			/* Retries exhausted, fail the command */
13933 			SD_TRACE(SD_LOG_IO_CORE, un,
13934 			    "sd_retry_command: retries exhausted!\n");
13935 			goto fail_command;
13936 		}
13937 		xp->xb_retry_count++;
13938 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13939 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13940 		break;
13941 
13942 	case SD_RETRIES_NOCHECK:
13943 	default:
13944 		/* No retry count to check. Just proceed with the retry */
13945 		break;
13946 	}
13947 
13948 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13949 
13950 	/*
13951 	 * If we were given a zero timeout, we must attempt to retry the
13952 	 * command immediately (ie, without a delay).
13953 	 */
13954 	if (retry_delay == 0) {
13955 		/*
13956 		 * Check some limiting conditions to see if we can actually
13957 		 * do the immediate retry.  If we cannot, then we must
13958 		 * fall back to queueing up a delayed retry.
13959 		 */
13960 		if (un->un_ncmds_in_transport >= un->un_throttle) {
13961 			/*
13962 			 * We are at the throttle limit for the target,
13963 			 * fall back to delayed retry.
13964 			 */
13965 			retry_delay = SD_BSY_TIMEOUT;
13966 			statp = kstat_waitq_enter;
13967 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13968 			    "sd_retry_command: immed. retry hit "
13969 			    "throttle!\n");
13970 		} else {
13971 			/*
13972 			 * We're clear to proceed with the immediate retry.
13973 			 * First call the user-provided function (if any)
13974 			 */
13975 			if (user_funcp != NULL) {
13976 				(*user_funcp)(un, bp, user_arg,
13977 				    SD_IMMEDIATE_RETRY_ISSUED);
13978 #ifdef __lock_lint
13979 				sd_print_incomplete_msg(un, bp, user_arg,
13980 				    SD_IMMEDIATE_RETRY_ISSUED);
13981 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
13982 				    SD_IMMEDIATE_RETRY_ISSUED);
13983 				sd_print_sense_failed_msg(un, bp, user_arg,
13984 				    SD_IMMEDIATE_RETRY_ISSUED);
13985 #endif
13986 			}
13987 
13988 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13989 			    "sd_retry_command: issuing immediate retry\n");
13990 
13991 			/*
13992 			 * Call sd_start_cmds() to transport the command to
13993 			 * the target.
13994 			 */
13995 			sd_start_cmds(un, bp);
13996 
13997 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13998 			    "sd_retry_command exit\n");
13999 			return;
14000 		}
14001 	}
14002 
14003 	/*
14004 	 * Set up to retry the command after a delay.
14005 	 * First call the user-provided function (if any)
14006 	 */
14007 	if (user_funcp != NULL) {
14008 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
14009 	}
14010 
14011 	sd_set_retry_bp(un, bp, retry_delay, statp);
14012 
14013 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14014 	return;
14015 
14016 fail_command:
14017 
14018 	if (user_funcp != NULL) {
14019 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
14020 	}
14021 
14022 fail_command_no_log:
14023 
14024 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14025 	    "sd_retry_command: returning failed command\n");
14026 
14027 	sd_return_failed_command(un, bp, failure_code);
14028 
14029 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14030 }
14031 
14032 
14033 /*
14034  *    Function: sd_set_retry_bp
14035  *
14036  * Description: Set up the given bp for retry.
14037  *
14038  *   Arguments: un - ptr to associated softstate
14039  *		bp - ptr to buf(9S) for the command
14040  *		retry_delay - time interval before issuing retry (may be 0)
14041  *		statp - optional pointer to kstat function
14042  *
14043  *     Context: May be called under interrupt context
14044  */
14045 
14046 static void
14047 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
14048 	void (*statp)(kstat_io_t *))
14049 {
14050 	ASSERT(un != NULL);
14051 	ASSERT(mutex_owned(SD_MUTEX(un)));
14052 	ASSERT(bp != NULL);
14053 
14054 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14055 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
14056 
14057 	/*
14058 	 * Indicate that the command is being retried. This will not allow any
14059 	 * other commands on the wait queue to be transported to the target
14060 	 * until this command has been completed (success or failure). The
14061 	 * "retry command" is not transported to the target until the given
14062 	 * time delay expires, unless the user specified a 0 retry_delay.
14063 	 *
14064 	 * Note: the timeout(9F) callback routine is what actually calls
14065 	 * sd_start_cmds() to transport the command, with the exception of a
14066 	 * zero retry_delay. The only current implementor of a zero retry delay
14067 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
14068 	 */
14069 	if (un->un_retry_bp == NULL) {
14070 		ASSERT(un->un_retry_statp == NULL);
14071 		un->un_retry_bp = bp;
14072 
14073 		/*
14074 		 * If the user has not specified a delay the command should
14075 		 * be queued and no timeout should be scheduled.
14076 		 */
14077 		if (retry_delay == 0) {
14078 			/*
14079 			 * Save the kstat pointer that will be used in the
14080 			 * call to SD_UPDATE_KSTATS() below, so that
14081 			 * sd_start_cmds() can correctly decrement the waitq
14082 			 * count when it is time to transport this command.
14083 			 */
14084 			un->un_retry_statp = statp;
14085 			goto done;
14086 		}
14087 	}
14088 
14089 	if (un->un_retry_bp == bp) {
14090 		/*
14091 		 * Save the kstat pointer that will be used in the call to
14092 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
14093 		 * correctly decrement the waitq count when it is time to
14094 		 * transport this command.
14095 		 */
14096 		un->un_retry_statp = statp;
14097 
14098 		/*
14099 		 * Schedule a timeout if:
14100 		 *   1) The user has specified a delay.
14101 		 *   2) There is not a START_STOP_UNIT callback pending.
14102 		 *
14103 		 * If no delay has been specified, then it is up to the caller
14104 		 * to ensure that IO processing continues without stalling.
14105 		 * Effectively, this means that the caller will issue the
14106 		 * required call to sd_start_cmds(). The START_STOP_UNIT
14107 		 * callback does this after the START STOP UNIT command has
14108 		 * completed. In either of these cases we should not schedule
14109 		 * a timeout callback here.  Also don't schedule the timeout if
14110 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
14111 		 */
14112 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
14113 		    (un->un_direct_priority_timeid == NULL)) {
14114 			un->un_retry_timeid =
14115 			    timeout(sd_start_retry_command, un, retry_delay);
14116 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14117 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
14118 			    " bp:0x%p un_retry_timeid:0x%p\n",
14119 			    un, bp, un->un_retry_timeid);
14120 		}
14121 	} else {
14122 		/*
14123 		 * We only get in here if there is already another command
14124 		 * waiting to be retried.  In this case, we just put the
14125 		 * given command onto the wait queue, so it can be transported
14126 		 * after the current retry command has completed.
14127 		 *
14128 		 * Also we have to make sure that if the command at the head
14129 		 * of the wait queue is the un_failfast_bp, that we do not
14130 		 * put ahead of it any other commands that are to be retried.
14131 		 */
14132 		if ((un->un_failfast_bp != NULL) &&
14133 		    (un->un_failfast_bp == un->un_waitq_headp)) {
14134 			/*
14135 			 * Enqueue this command AFTER the first command on
14136 			 * the wait queue (which is also un_failfast_bp).
14137 			 */
14138 			bp->av_forw = un->un_waitq_headp->av_forw;
14139 			un->un_waitq_headp->av_forw = bp;
14140 			if (un->un_waitq_headp == un->un_waitq_tailp) {
14141 				un->un_waitq_tailp = bp;
14142 			}
14143 		} else {
14144 			/* Enqueue this command at the head of the waitq. */
14145 			bp->av_forw = un->un_waitq_headp;
14146 			un->un_waitq_headp = bp;
14147 			if (un->un_waitq_tailp == NULL) {
14148 				un->un_waitq_tailp = bp;
14149 			}
14150 		}
14151 
14152 		if (statp == NULL) {
14153 			statp = kstat_waitq_enter;
14154 		}
14155 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14156 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
14157 	}
14158 
14159 done:
14160 	if (statp != NULL) {
14161 		SD_UPDATE_KSTATS(un, statp, bp);
14162 	}
14163 
14164 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14165 	    "sd_set_retry_bp: exit un:0x%p\n", un);
14166 }
14167 
14168 
14169 /*
14170  *    Function: sd_start_retry_command
14171  *
14172  * Description: Start the command that has been waiting on the target's
14173  *		retry queue.  Called from timeout(9F) context after the
14174  *		retry delay interval has expired.
14175  *
14176  *   Arguments: arg - pointer to associated softstate for the device.
14177  *
14178  *     Context: timeout(9F) thread context.  May not sleep.
14179  */
14180 
14181 static void
14182 sd_start_retry_command(void *arg)
14183 {
14184 	struct sd_lun *un = arg;
14185 
14186 	ASSERT(un != NULL);
14187 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14188 
14189 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14190 	    "sd_start_retry_command: entry\n");
14191 
14192 	mutex_enter(SD_MUTEX(un));
14193 
14194 	un->un_retry_timeid = NULL;
14195 
14196 	if (un->un_retry_bp != NULL) {
14197 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14198 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
14199 		    un, un->un_retry_bp);
14200 		sd_start_cmds(un, un->un_retry_bp);
14201 	}
14202 
14203 	mutex_exit(SD_MUTEX(un));
14204 
14205 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14206 	    "sd_start_retry_command: exit\n");
14207 }
14208 
14209 
14210 /*
14211  *    Function: sd_start_direct_priority_command
14212  *
14213  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
14214  *		received TRAN_BUSY when we called scsi_transport() to send it
14215  *		to the underlying HBA. This function is called from timeout(9F)
14216  *		context after the delay interval has expired.
14217  *
14218  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
14219  *
14220  *     Context: timeout(9F) thread context.  May not sleep.
14221  */
14222 
14223 static void
14224 sd_start_direct_priority_command(void *arg)
14225 {
14226 	struct buf	*priority_bp = arg;
14227 	struct sd_lun	*un;
14228 
14229 	ASSERT(priority_bp != NULL);
14230 	un = SD_GET_UN(priority_bp);
14231 	ASSERT(un != NULL);
14232 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14233 
14234 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14235 	    "sd_start_direct_priority_command: entry\n");
14236 
14237 	mutex_enter(SD_MUTEX(un));
14238 	un->un_direct_priority_timeid = NULL;
14239 	sd_start_cmds(un, priority_bp);
14240 	mutex_exit(SD_MUTEX(un));
14241 
14242 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14243 	    "sd_start_direct_priority_command: exit\n");
14244 }
14245 
14246 
14247 /*
14248  *    Function: sd_send_request_sense_command
14249  *
14250  * Description: Sends a REQUEST SENSE command to the target
14251  *
14252  *     Context: May be called from interrupt context.
14253  */
14254 
14255 static void
14256 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
14257 	struct scsi_pkt *pktp)
14258 {
14259 	ASSERT(bp != NULL);
14260 	ASSERT(un != NULL);
14261 	ASSERT(mutex_owned(SD_MUTEX(un)));
14262 
14263 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
14264 	    "entry: buf:0x%p\n", bp);
14265 
14266 	/*
14267 	 * If we are syncing or dumping, then fail the command to avoid a
14268 	 * recursive callback into scsi_transport(). Also fail the command
14269 	 * if we are suspended (legacy behavior).
14270 	 */
14271 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
14272 	    (un->un_state == SD_STATE_DUMPING)) {
14273 		sd_return_failed_command(un, bp, EIO);
14274 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14275 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
14276 		return;
14277 	}
14278 
14279 	/*
14280 	 * Retry the failed command and don't issue the request sense if:
14281 	 *    1) the sense buf is busy
14282 	 *    2) we have 1 or more outstanding commands on the target
14283 	 *    (the sense data will be cleared or invalidated any way)
14284 	 *
14285 	 * Note: There could be an issue with not checking a retry limit here,
14286 	 * the problem is determining which retry limit to check.
14287 	 */
14288 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
14289 		/* Don't retry if the command is flagged as non-retryable */
14290 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
14291 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14292 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
14293 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14294 			    "sd_send_request_sense_command: "
14295 			    "at full throttle, retrying exit\n");
14296 		} else {
14297 			sd_return_failed_command(un, bp, EIO);
14298 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14299 			    "sd_send_request_sense_command: "
14300 			    "at full throttle, non-retryable exit\n");
14301 		}
14302 		return;
14303 	}
14304 
14305 	sd_mark_rqs_busy(un, bp);
14306 	sd_start_cmds(un, un->un_rqs_bp);
14307 
14308 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14309 	    "sd_send_request_sense_command: exit\n");
14310 }
14311 
14312 
14313 /*
14314  *    Function: sd_mark_rqs_busy
14315  *
14316  * Description: Indicate that the request sense bp for this instance is
14317  *		in use.
14318  *
14319  *     Context: May be called under interrupt context
14320  */
14321 
14322 static void
14323 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14324 {
14325 	struct sd_xbuf	*sense_xp;
14326 
14327 	ASSERT(un != NULL);
14328 	ASSERT(bp != NULL);
14329 	ASSERT(mutex_owned(SD_MUTEX(un)));
14330 	ASSERT(un->un_sense_isbusy == 0);
14331 
14332 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14333 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14334 
14335 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14336 	ASSERT(sense_xp != NULL);
14337 
14338 	SD_INFO(SD_LOG_IO, un,
14339 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14340 
14341 	ASSERT(sense_xp->xb_pktp != NULL);
14342 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14343 	    == (FLAG_SENSING | FLAG_HEAD));
14344 
14345 	un->un_sense_isbusy = 1;
14346 	un->un_rqs_bp->b_resid = 0;
14347 	sense_xp->xb_pktp->pkt_resid  = 0;
14348 	sense_xp->xb_pktp->pkt_reason = 0;
14349 
14350 	/* So we can get back the bp at interrupt time! */
14351 	sense_xp->xb_sense_bp = bp;
14352 
14353 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14354 
14355 	/*
14356 	 * Mark this buf as awaiting sense data. (This is already set in
14357 	 * the pkt_flags for the RQS packet.)
14358 	 */
14359 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14360 
14361 	sense_xp->xb_retry_count	= 0;
14362 	sense_xp->xb_victim_retry_count = 0;
14363 	sense_xp->xb_ua_retry_count	= 0;
14364 	sense_xp->xb_nr_retry_count 	= 0;
14365 	sense_xp->xb_dma_resid  = 0;
14366 
14367 	/* Clean up the fields for auto-request sense */
14368 	sense_xp->xb_sense_status = 0;
14369 	sense_xp->xb_sense_state  = 0;
14370 	sense_xp->xb_sense_resid  = 0;
14371 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14372 
14373 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14374 }
14375 
14376 
14377 /*
14378  *    Function: sd_mark_rqs_idle
14379  *
14380  * Description: SD_MUTEX must be held continuously through this routine
14381  *		to prevent reuse of the rqs struct before the caller can
14382  *		complete it's processing.
14383  *
14384  * Return Code: Pointer to the RQS buf
14385  *
14386  *     Context: May be called under interrupt context
14387  */
14388 
14389 static struct buf *
14390 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14391 {
14392 	struct buf *bp;
14393 	ASSERT(un != NULL);
14394 	ASSERT(sense_xp != NULL);
14395 	ASSERT(mutex_owned(SD_MUTEX(un)));
14396 	ASSERT(un->un_sense_isbusy != 0);
14397 
14398 	un->un_sense_isbusy = 0;
14399 	bp = sense_xp->xb_sense_bp;
14400 	sense_xp->xb_sense_bp = NULL;
14401 
14402 	/* This pkt is no longer interested in getting sense data */
14403 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14404 
14405 	return (bp);
14406 }
14407 
14408 
14409 
14410 /*
14411  *    Function: sd_alloc_rqs
14412  *
14413  * Description: Set up the unit to receive auto request sense data
14414  *
14415  * Return Code: DDI_SUCCESS or DDI_FAILURE
14416  *
14417  *     Context: Called under attach(9E) context
14418  */
14419 
14420 static int
14421 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14422 {
14423 	struct sd_xbuf *xp;
14424 
14425 	ASSERT(un != NULL);
14426 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14427 	ASSERT(un->un_rqs_bp == NULL);
14428 	ASSERT(un->un_rqs_pktp == NULL);
14429 
14430 	/*
14431 	 * First allocate the required buf and scsi_pkt structs, then set up
14432 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14433 	 */
14434 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14435 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14436 	if (un->un_rqs_bp == NULL) {
14437 		return (DDI_FAILURE);
14438 	}
14439 
14440 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14441 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14442 
14443 	if (un->un_rqs_pktp == NULL) {
14444 		sd_free_rqs(un);
14445 		return (DDI_FAILURE);
14446 	}
14447 
14448 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14449 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14450 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
14451 
14452 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14453 
14454 	/* Set up the other needed members in the ARQ scsi_pkt. */
14455 	un->un_rqs_pktp->pkt_comp   = sdintr;
14456 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14457 	un->un_rqs_pktp->pkt_flags |=
14458 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14459 
14460 	/*
14461 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14462 	 * provide any intpkt, destroypkt routines as we take care of
14463 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14464 	 */
14465 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14466 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14467 	xp->xb_pktp = un->un_rqs_pktp;
14468 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14469 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14470 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14471 
14472 	/*
14473 	 * Save the pointer to the request sense private bp so it can
14474 	 * be retrieved in sdintr.
14475 	 */
14476 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14477 	ASSERT(un->un_rqs_bp->b_private == xp);
14478 
14479 	/*
14480 	 * See if the HBA supports auto-request sense for the specified
14481 	 * target/lun. If it does, then try to enable it (if not already
14482 	 * enabled).
14483 	 *
14484 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14485 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14486 	 * return success.  However, in both of these cases ARQ is always
14487 	 * enabled and scsi_ifgetcap will always return true. The best approach
14488 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14489 	 *
14490 	 * The 3rd case is the HBA (adp) always return enabled on
14491 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14492 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14493 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14494 	 */
14495 
14496 	if (un->un_f_is_fibre == TRUE) {
14497 		un->un_f_arq_enabled = TRUE;
14498 	} else {
14499 #if defined(__i386) || defined(__amd64)
14500 		/*
14501 		 * Circumvent the Adaptec bug, remove this code when
14502 		 * the bug is fixed
14503 		 */
14504 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14505 #endif
14506 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14507 		case 0:
14508 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14509 			    "sd_alloc_rqs: HBA supports ARQ\n");
14510 			/*
14511 			 * ARQ is supported by this HBA but currently is not
14512 			 * enabled. Attempt to enable it and if successful then
14513 			 * mark this instance as ARQ enabled.
14514 			 */
14515 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14516 			    == 1) {
14517 				/* Successfully enabled ARQ in the HBA */
14518 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14519 				    "sd_alloc_rqs: ARQ enabled\n");
14520 				un->un_f_arq_enabled = TRUE;
14521 			} else {
14522 				/* Could not enable ARQ in the HBA */
14523 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14524 				    "sd_alloc_rqs: failed ARQ enable\n");
14525 				un->un_f_arq_enabled = FALSE;
14526 			}
14527 			break;
14528 		case 1:
14529 			/*
14530 			 * ARQ is supported by this HBA and is already enabled.
14531 			 * Just mark ARQ as enabled for this instance.
14532 			 */
14533 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14534 			    "sd_alloc_rqs: ARQ already enabled\n");
14535 			un->un_f_arq_enabled = TRUE;
14536 			break;
14537 		default:
14538 			/*
14539 			 * ARQ is not supported by this HBA; disable it for this
14540 			 * instance.
14541 			 */
14542 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14543 			    "sd_alloc_rqs: HBA does not support ARQ\n");
14544 			un->un_f_arq_enabled = FALSE;
14545 			break;
14546 		}
14547 	}
14548 
14549 	return (DDI_SUCCESS);
14550 }
14551 
14552 
14553 /*
14554  *    Function: sd_free_rqs
14555  *
14556  * Description: Cleanup for the pre-instance RQS command.
14557  *
14558  *     Context: Kernel thread context
14559  */
14560 
14561 static void
14562 sd_free_rqs(struct sd_lun *un)
14563 {
14564 	ASSERT(un != NULL);
14565 
14566 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14567 
14568 	/*
14569 	 * If consistent memory is bound to a scsi_pkt, the pkt
14570 	 * has to be destroyed *before* freeing the consistent memory.
14571 	 * Don't change the sequence of this operations.
14572 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14573 	 * after it was freed in scsi_free_consistent_buf().
14574 	 */
14575 	if (un->un_rqs_pktp != NULL) {
14576 		scsi_destroy_pkt(un->un_rqs_pktp);
14577 		un->un_rqs_pktp = NULL;
14578 	}
14579 
14580 	if (un->un_rqs_bp != NULL) {
14581 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
14582 		if (xp != NULL) {
14583 			kmem_free(xp, sizeof (struct sd_xbuf));
14584 		}
14585 		scsi_free_consistent_buf(un->un_rqs_bp);
14586 		un->un_rqs_bp = NULL;
14587 	}
14588 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14589 }
14590 
14591 
14592 
14593 /*
14594  *    Function: sd_reduce_throttle
14595  *
14596  * Description: Reduces the maximum # of outstanding commands on a
14597  *		target to the current number of outstanding commands.
14598  *		Queues a tiemout(9F) callback to restore the limit
14599  *		after a specified interval has elapsed.
14600  *		Typically used when we get a TRAN_BUSY return code
14601  *		back from scsi_transport().
14602  *
14603  *   Arguments: un - ptr to the sd_lun softstate struct
14604  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14605  *
14606  *     Context: May be called from interrupt context
14607  */
14608 
14609 static void
14610 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14611 {
14612 	ASSERT(un != NULL);
14613 	ASSERT(mutex_owned(SD_MUTEX(un)));
14614 	ASSERT(un->un_ncmds_in_transport >= 0);
14615 
14616 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14617 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14618 	    un, un->un_throttle, un->un_ncmds_in_transport);
14619 
14620 	if (un->un_throttle > 1) {
14621 		if (un->un_f_use_adaptive_throttle == TRUE) {
14622 			switch (throttle_type) {
14623 			case SD_THROTTLE_TRAN_BUSY:
14624 				if (un->un_busy_throttle == 0) {
14625 					un->un_busy_throttle = un->un_throttle;
14626 				}
14627 				break;
14628 			case SD_THROTTLE_QFULL:
14629 				un->un_busy_throttle = 0;
14630 				break;
14631 			default:
14632 				ASSERT(FALSE);
14633 			}
14634 
14635 			if (un->un_ncmds_in_transport > 0) {
14636 				un->un_throttle = un->un_ncmds_in_transport;
14637 			}
14638 
14639 		} else {
14640 			if (un->un_ncmds_in_transport == 0) {
14641 				un->un_throttle = 1;
14642 			} else {
14643 				un->un_throttle = un->un_ncmds_in_transport;
14644 			}
14645 		}
14646 	}
14647 
14648 	/* Reschedule the timeout if none is currently active */
14649 	if (un->un_reset_throttle_timeid == NULL) {
14650 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14651 		    un, SD_THROTTLE_RESET_INTERVAL);
14652 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14653 		    "sd_reduce_throttle: timeout scheduled!\n");
14654 	}
14655 
14656 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14657 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14658 }
14659 
14660 
14661 
14662 /*
14663  *    Function: sd_restore_throttle
14664  *
14665  * Description: Callback function for timeout(9F).  Resets the current
14666  *		value of un->un_throttle to its default.
14667  *
14668  *   Arguments: arg - pointer to associated softstate for the device.
14669  *
14670  *     Context: May be called from interrupt context
14671  */
14672 
14673 static void
14674 sd_restore_throttle(void *arg)
14675 {
14676 	struct sd_lun	*un = arg;
14677 
14678 	ASSERT(un != NULL);
14679 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14680 
14681 	mutex_enter(SD_MUTEX(un));
14682 
14683 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14684 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14685 
14686 	un->un_reset_throttle_timeid = NULL;
14687 
14688 	if (un->un_f_use_adaptive_throttle == TRUE) {
14689 		/*
14690 		 * If un_busy_throttle is nonzero, then it contains the
14691 		 * value that un_throttle was when we got a TRAN_BUSY back
14692 		 * from scsi_transport(). We want to revert back to this
14693 		 * value.
14694 		 *
14695 		 * In the QFULL case, the throttle limit will incrementally
14696 		 * increase until it reaches max throttle.
14697 		 */
14698 		if (un->un_busy_throttle > 0) {
14699 			un->un_throttle = un->un_busy_throttle;
14700 			un->un_busy_throttle = 0;
14701 		} else {
14702 			/*
14703 			 * increase throttle by 10% open gate slowly, schedule
14704 			 * another restore if saved throttle has not been
14705 			 * reached
14706 			 */
14707 			short throttle;
14708 			if (sd_qfull_throttle_enable) {
14709 				throttle = un->un_throttle +
14710 				    max((un->un_throttle / 10), 1);
14711 				un->un_throttle =
14712 				    (throttle < un->un_saved_throttle) ?
14713 				    throttle : un->un_saved_throttle;
14714 				if (un->un_throttle < un->un_saved_throttle) {
14715 					un->un_reset_throttle_timeid =
14716 					    timeout(sd_restore_throttle,
14717 					    un,
14718 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
14719 				}
14720 			}
14721 		}
14722 
14723 		/*
14724 		 * If un_throttle has fallen below the low-water mark, we
14725 		 * restore the maximum value here (and allow it to ratchet
14726 		 * down again if necessary).
14727 		 */
14728 		if (un->un_throttle < un->un_min_throttle) {
14729 			un->un_throttle = un->un_saved_throttle;
14730 		}
14731 	} else {
14732 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14733 		    "restoring limit from 0x%x to 0x%x\n",
14734 		    un->un_throttle, un->un_saved_throttle);
14735 		un->un_throttle = un->un_saved_throttle;
14736 	}
14737 
14738 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14739 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14740 
14741 	sd_start_cmds(un, NULL);
14742 
14743 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14744 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14745 	    un, un->un_throttle);
14746 
14747 	mutex_exit(SD_MUTEX(un));
14748 
14749 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14750 }
14751 
14752 /*
14753  *    Function: sdrunout
14754  *
14755  * Description: Callback routine for scsi_init_pkt when a resource allocation
14756  *		fails.
14757  *
14758  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14759  *		soft state instance.
14760  *
14761  * Return Code: The scsi_init_pkt routine allows for the callback function to
14762  *		return a 0 indicating the callback should be rescheduled or a 1
14763  *		indicating not to reschedule. This routine always returns 1
14764  *		because the driver always provides a callback function to
14765  *		scsi_init_pkt. This results in a callback always being scheduled
14766  *		(via the scsi_init_pkt callback implementation) if a resource
14767  *		failure occurs.
14768  *
14769  *     Context: This callback function may not block or call routines that block
14770  *
14771  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14772  *		request persisting at the head of the list which cannot be
14773  *		satisfied even after multiple retries. In the future the driver
14774  *		may implement some time of maximum runout count before failing
14775  *		an I/O.
14776  */
14777 
14778 static int
14779 sdrunout(caddr_t arg)
14780 {
14781 	struct sd_lun	*un = (struct sd_lun *)arg;
14782 
14783 	ASSERT(un != NULL);
14784 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14785 
14786 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14787 
14788 	mutex_enter(SD_MUTEX(un));
14789 	sd_start_cmds(un, NULL);
14790 	mutex_exit(SD_MUTEX(un));
14791 	/*
14792 	 * This callback routine always returns 1 (i.e. do not reschedule)
14793 	 * because we always specify sdrunout as the callback handler for
14794 	 * scsi_init_pkt inside the call to sd_start_cmds.
14795 	 */
14796 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14797 	return (1);
14798 }
14799 
14800 
14801 /*
14802  *    Function: sdintr
14803  *
14804  * Description: Completion callback routine for scsi_pkt(9S) structs
14805  *		sent to the HBA driver via scsi_transport(9F).
14806  *
14807  *     Context: Interrupt context
14808  */
14809 
14810 static void
14811 sdintr(struct scsi_pkt *pktp)
14812 {
14813 	struct buf	*bp;
14814 	struct sd_xbuf	*xp;
14815 	struct sd_lun	*un;
14816 	size_t		actual_len;
14817 
14818 	ASSERT(pktp != NULL);
14819 	bp = (struct buf *)pktp->pkt_private;
14820 	ASSERT(bp != NULL);
14821 	xp = SD_GET_XBUF(bp);
14822 	ASSERT(xp != NULL);
14823 	ASSERT(xp->xb_pktp != NULL);
14824 	un = SD_GET_UN(bp);
14825 	ASSERT(un != NULL);
14826 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14827 
14828 #ifdef SD_FAULT_INJECTION
14829 
14830 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14831 	/* SD FaultInjection */
14832 	sd_faultinjection(pktp);
14833 
14834 #endif /* SD_FAULT_INJECTION */
14835 
14836 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14837 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14838 
14839 	mutex_enter(SD_MUTEX(un));
14840 
14841 	/* Reduce the count of the #commands currently in transport */
14842 	un->un_ncmds_in_transport--;
14843 	ASSERT(un->un_ncmds_in_transport >= 0);
14844 
14845 	/* Increment counter to indicate that the callback routine is active */
14846 	un->un_in_callback++;
14847 
14848 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14849 
14850 #ifdef	SDDEBUG
14851 	if (bp == un->un_retry_bp) {
14852 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14853 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14854 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14855 	}
14856 #endif
14857 
14858 	/*
14859 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
14860 	 * state if needed.
14861 	 */
14862 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14863 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14864 		    "Command failed to complete...Device is gone\n");
14865 		if (un->un_mediastate != DKIO_DEV_GONE) {
14866 			un->un_mediastate = DKIO_DEV_GONE;
14867 			cv_broadcast(&un->un_state_cv);
14868 		}
14869 		sd_return_failed_command(un, bp, EIO);
14870 		goto exit;
14871 	}
14872 
14873 	if (pktp->pkt_state & STATE_XARQ_DONE) {
14874 		SD_TRACE(SD_LOG_COMMON, un,
14875 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
14876 	}
14877 
14878 	/*
14879 	 * First see if the pkt has auto-request sense data with it....
14880 	 * Look at the packet state first so we don't take a performance
14881 	 * hit looking at the arq enabled flag unless absolutely necessary.
14882 	 */
14883 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14884 	    (un->un_f_arq_enabled == TRUE)) {
14885 		/*
14886 		 * The HBA did an auto request sense for this command so check
14887 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14888 		 * driver command that should not be retried.
14889 		 */
14890 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14891 			/*
14892 			 * Save the relevant sense info into the xp for the
14893 			 * original cmd.
14894 			 */
14895 			struct scsi_arq_status *asp;
14896 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14897 			xp->xb_sense_status =
14898 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14899 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14900 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14901 			if (pktp->pkt_state & STATE_XARQ_DONE) {
14902 				actual_len = MAX_SENSE_LENGTH -
14903 				    xp->xb_sense_resid;
14904 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14905 				    MAX_SENSE_LENGTH);
14906 			} else {
14907 				if (xp->xb_sense_resid > SENSE_LENGTH) {
14908 					actual_len = MAX_SENSE_LENGTH -
14909 					    xp->xb_sense_resid;
14910 				} else {
14911 					actual_len = SENSE_LENGTH -
14912 					    xp->xb_sense_resid;
14913 				}
14914 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14915 					if ((((struct uscsi_cmd *)
14916 					    (xp->xb_pktinfo))->uscsi_rqlen) >
14917 					    actual_len) {
14918 						xp->xb_sense_resid =
14919 						    (((struct uscsi_cmd *)
14920 						    (xp->xb_pktinfo))->
14921 						    uscsi_rqlen) - actual_len;
14922 					} else {
14923 						xp->xb_sense_resid = 0;
14924 					}
14925 				}
14926 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14927 				    SENSE_LENGTH);
14928 			}
14929 
14930 			/* fail the command */
14931 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14932 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14933 			sd_return_failed_command(un, bp, EIO);
14934 			goto exit;
14935 		}
14936 
14937 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14938 		/*
14939 		 * We want to either retry or fail this command, so free
14940 		 * the DMA resources here.  If we retry the command then
14941 		 * the DMA resources will be reallocated in sd_start_cmds().
14942 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14943 		 * causes the *entire* transfer to start over again from the
14944 		 * beginning of the request, even for PARTIAL chunks that
14945 		 * have already transferred successfully.
14946 		 */
14947 		if ((un->un_f_is_fibre == TRUE) &&
14948 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14949 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14950 			scsi_dmafree(pktp);
14951 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14952 		}
14953 #endif
14954 
14955 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14956 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14957 
14958 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14959 		goto exit;
14960 	}
14961 
14962 	/* Next see if this is the REQUEST SENSE pkt for the instance */
14963 	if (pktp->pkt_flags & FLAG_SENSING)  {
14964 		/* This pktp is from the unit's REQUEST_SENSE command */
14965 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14966 		    "sdintr: sd_handle_request_sense\n");
14967 		sd_handle_request_sense(un, bp, xp, pktp);
14968 		goto exit;
14969 	}
14970 
14971 	/*
14972 	 * Check to see if the command successfully completed as requested;
14973 	 * this is the most common case (and also the hot performance path).
14974 	 *
14975 	 * Requirements for successful completion are:
14976 	 * pkt_reason is CMD_CMPLT and packet status is status good.
14977 	 * In addition:
14978 	 * - A residual of zero indicates successful completion no matter what
14979 	 *   the command is.
14980 	 * - If the residual is not zero and the command is not a read or
14981 	 *   write, then it's still defined as successful completion. In other
14982 	 *   words, if the command is a read or write the residual must be
14983 	 *   zero for successful completion.
14984 	 * - If the residual is not zero and the command is a read or
14985 	 *   write, and it's a USCSICMD, then it's still defined as
14986 	 *   successful completion.
14987 	 */
14988 	if ((pktp->pkt_reason == CMD_CMPLT) &&
14989 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
14990 
14991 		/*
14992 		 * Since this command is returned with a good status, we
14993 		 * can reset the count for Sonoma failover.
14994 		 */
14995 		un->un_sonoma_failure_count = 0;
14996 
14997 		/*
14998 		 * Return all USCSI commands on good status
14999 		 */
15000 		if (pktp->pkt_resid == 0) {
15001 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15002 			    "sdintr: returning command for resid == 0\n");
15003 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
15004 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
15005 			SD_UPDATE_B_RESID(bp, pktp);
15006 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15007 			    "sdintr: returning command for resid != 0\n");
15008 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15009 			SD_UPDATE_B_RESID(bp, pktp);
15010 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15011 			    "sdintr: returning uscsi command\n");
15012 		} else {
15013 			goto not_successful;
15014 		}
15015 		sd_return_command(un, bp);
15016 
15017 		/*
15018 		 * Decrement counter to indicate that the callback routine
15019 		 * is done.
15020 		 */
15021 		un->un_in_callback--;
15022 		ASSERT(un->un_in_callback >= 0);
15023 		mutex_exit(SD_MUTEX(un));
15024 
15025 		return;
15026 	}
15027 
15028 not_successful:
15029 
15030 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15031 	/*
15032 	 * The following is based upon knowledge of the underlying transport
15033 	 * and its use of DMA resources.  This code should be removed when
15034 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
15035 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
15036 	 * and sd_start_cmds().
15037 	 *
15038 	 * Free any DMA resources associated with this command if there
15039 	 * is a chance it could be retried or enqueued for later retry.
15040 	 * If we keep the DMA binding then mpxio cannot reissue the
15041 	 * command on another path whenever a path failure occurs.
15042 	 *
15043 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
15044 	 * causes the *entire* transfer to start over again from the
15045 	 * beginning of the request, even for PARTIAL chunks that
15046 	 * have already transferred successfully.
15047 	 *
15048 	 * This is only done for non-uscsi commands (and also skipped for the
15049 	 * driver's internal RQS command). Also just do this for Fibre Channel
15050 	 * devices as these are the only ones that support mpxio.
15051 	 */
15052 	if ((un->un_f_is_fibre == TRUE) &&
15053 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15054 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15055 		scsi_dmafree(pktp);
15056 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15057 	}
15058 #endif
15059 
15060 	/*
15061 	 * The command did not successfully complete as requested so check
15062 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15063 	 * driver command that should not be retried so just return. If
15064 	 * FLAG_DIAGNOSE is not set the error will be processed below.
15065 	 */
15066 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15067 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15068 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
15069 		/*
15070 		 * Issue a request sense if a check condition caused the error
15071 		 * (we handle the auto request sense case above), otherwise
15072 		 * just fail the command.
15073 		 */
15074 		if ((pktp->pkt_reason == CMD_CMPLT) &&
15075 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
15076 			sd_send_request_sense_command(un, bp, pktp);
15077 		} else {
15078 			sd_return_failed_command(un, bp, EIO);
15079 		}
15080 		goto exit;
15081 	}
15082 
15083 	/*
15084 	 * The command did not successfully complete as requested so process
15085 	 * the error, retry, and/or attempt recovery.
15086 	 */
15087 	switch (pktp->pkt_reason) {
15088 	case CMD_CMPLT:
15089 		switch (SD_GET_PKT_STATUS(pktp)) {
15090 		case STATUS_GOOD:
15091 			/*
15092 			 * The command completed successfully with a non-zero
15093 			 * residual
15094 			 */
15095 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15096 			    "sdintr: STATUS_GOOD \n");
15097 			sd_pkt_status_good(un, bp, xp, pktp);
15098 			break;
15099 
15100 		case STATUS_CHECK:
15101 		case STATUS_TERMINATED:
15102 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15103 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
15104 			sd_pkt_status_check_condition(un, bp, xp, pktp);
15105 			break;
15106 
15107 		case STATUS_BUSY:
15108 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15109 			    "sdintr: STATUS_BUSY\n");
15110 			sd_pkt_status_busy(un, bp, xp, pktp);
15111 			break;
15112 
15113 		case STATUS_RESERVATION_CONFLICT:
15114 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15115 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
15116 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15117 			break;
15118 
15119 		case STATUS_QFULL:
15120 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15121 			    "sdintr: STATUS_QFULL\n");
15122 			sd_pkt_status_qfull(un, bp, xp, pktp);
15123 			break;
15124 
15125 		case STATUS_MET:
15126 		case STATUS_INTERMEDIATE:
15127 		case STATUS_SCSI2:
15128 		case STATUS_INTERMEDIATE_MET:
15129 		case STATUS_ACA_ACTIVE:
15130 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15131 			    "Unexpected SCSI status received: 0x%x\n",
15132 			    SD_GET_PKT_STATUS(pktp));
15133 			sd_return_failed_command(un, bp, EIO);
15134 			break;
15135 
15136 		default:
15137 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15138 			    "Invalid SCSI status received: 0x%x\n",
15139 			    SD_GET_PKT_STATUS(pktp));
15140 			sd_return_failed_command(un, bp, EIO);
15141 			break;
15142 
15143 		}
15144 		break;
15145 
15146 	case CMD_INCOMPLETE:
15147 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15148 		    "sdintr:  CMD_INCOMPLETE\n");
15149 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
15150 		break;
15151 	case CMD_TRAN_ERR:
15152 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15153 		    "sdintr: CMD_TRAN_ERR\n");
15154 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
15155 		break;
15156 	case CMD_RESET:
15157 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15158 		    "sdintr: CMD_RESET \n");
15159 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
15160 		break;
15161 	case CMD_ABORTED:
15162 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15163 		    "sdintr: CMD_ABORTED \n");
15164 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
15165 		break;
15166 	case CMD_TIMEOUT:
15167 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15168 		    "sdintr: CMD_TIMEOUT\n");
15169 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
15170 		break;
15171 	case CMD_UNX_BUS_FREE:
15172 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15173 		    "sdintr: CMD_UNX_BUS_FREE \n");
15174 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
15175 		break;
15176 	case CMD_TAG_REJECT:
15177 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15178 		    "sdintr: CMD_TAG_REJECT\n");
15179 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
15180 		break;
15181 	default:
15182 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15183 		    "sdintr: default\n");
15184 		sd_pkt_reason_default(un, bp, xp, pktp);
15185 		break;
15186 	}
15187 
15188 exit:
15189 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
15190 
15191 	/* Decrement counter to indicate that the callback routine is done. */
15192 	un->un_in_callback--;
15193 	ASSERT(un->un_in_callback >= 0);
15194 
15195 	/*
15196 	 * At this point, the pkt has been dispatched, ie, it is either
15197 	 * being re-tried or has been returned to its caller and should
15198 	 * not be referenced.
15199 	 */
15200 
15201 	mutex_exit(SD_MUTEX(un));
15202 }
15203 
15204 
15205 /*
15206  *    Function: sd_print_incomplete_msg
15207  *
15208  * Description: Prints the error message for a CMD_INCOMPLETE error.
15209  *
15210  *   Arguments: un - ptr to associated softstate for the device.
15211  *		bp - ptr to the buf(9S) for the command.
15212  *		arg - message string ptr
15213  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
15214  *			or SD_NO_RETRY_ISSUED.
15215  *
15216  *     Context: May be called under interrupt context
15217  */
15218 
15219 static void
15220 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15221 {
15222 	struct scsi_pkt	*pktp;
15223 	char	*msgp;
15224 	char	*cmdp = arg;
15225 
15226 	ASSERT(un != NULL);
15227 	ASSERT(mutex_owned(SD_MUTEX(un)));
15228 	ASSERT(bp != NULL);
15229 	ASSERT(arg != NULL);
15230 	pktp = SD_GET_PKTP(bp);
15231 	ASSERT(pktp != NULL);
15232 
15233 	switch (code) {
15234 	case SD_DELAYED_RETRY_ISSUED:
15235 	case SD_IMMEDIATE_RETRY_ISSUED:
15236 		msgp = "retrying";
15237 		break;
15238 	case SD_NO_RETRY_ISSUED:
15239 	default:
15240 		msgp = "giving up";
15241 		break;
15242 	}
15243 
15244 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15245 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15246 		    "incomplete %s- %s\n", cmdp, msgp);
15247 	}
15248 }
15249 
15250 
15251 
15252 /*
15253  *    Function: sd_pkt_status_good
15254  *
15255  * Description: Processing for a STATUS_GOOD code in pkt_status.
15256  *
15257  *     Context: May be called under interrupt context
15258  */
15259 
15260 static void
15261 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
15262 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15263 {
15264 	char	*cmdp;
15265 
15266 	ASSERT(un != NULL);
15267 	ASSERT(mutex_owned(SD_MUTEX(un)));
15268 	ASSERT(bp != NULL);
15269 	ASSERT(xp != NULL);
15270 	ASSERT(pktp != NULL);
15271 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
15272 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
15273 	ASSERT(pktp->pkt_resid != 0);
15274 
15275 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
15276 
15277 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15278 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
15279 	case SCMD_READ:
15280 		cmdp = "read";
15281 		break;
15282 	case SCMD_WRITE:
15283 		cmdp = "write";
15284 		break;
15285 	default:
15286 		SD_UPDATE_B_RESID(bp, pktp);
15287 		sd_return_command(un, bp);
15288 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15289 		return;
15290 	}
15291 
15292 	/*
15293 	 * See if we can retry the read/write, preferrably immediately.
15294 	 * If retries are exhaused, then sd_retry_command() will update
15295 	 * the b_resid count.
15296 	 */
15297 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
15298 	    cmdp, EIO, (clock_t)0, NULL);
15299 
15300 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15301 }
15302 
15303 
15304 
15305 
15306 
15307 /*
15308  *    Function: sd_handle_request_sense
15309  *
15310  * Description: Processing for non-auto Request Sense command.
15311  *
15312  *   Arguments: un - ptr to associated softstate
15313  *		sense_bp - ptr to buf(9S) for the RQS command
15314  *		sense_xp - ptr to the sd_xbuf for the RQS command
15315  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
15316  *
15317  *     Context: May be called under interrupt context
15318  */
15319 
15320 static void
15321 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
15322 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
15323 {
15324 	struct buf	*cmd_bp;	/* buf for the original command */
15325 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
15326 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
15327 	size_t		actual_len;	/* actual sense data length */
15328 
15329 	ASSERT(un != NULL);
15330 	ASSERT(mutex_owned(SD_MUTEX(un)));
15331 	ASSERT(sense_bp != NULL);
15332 	ASSERT(sense_xp != NULL);
15333 	ASSERT(sense_pktp != NULL);
15334 
15335 	/*
15336 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
15337 	 * RQS command and not the original command.
15338 	 */
15339 	ASSERT(sense_pktp == un->un_rqs_pktp);
15340 	ASSERT(sense_bp   == un->un_rqs_bp);
15341 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
15342 	    (FLAG_SENSING | FLAG_HEAD));
15343 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
15344 	    FLAG_SENSING) == FLAG_SENSING);
15345 
15346 	/* These are the bp, xp, and pktp for the original command */
15347 	cmd_bp = sense_xp->xb_sense_bp;
15348 	cmd_xp = SD_GET_XBUF(cmd_bp);
15349 	cmd_pktp = SD_GET_PKTP(cmd_bp);
15350 
15351 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15352 		/*
15353 		 * The REQUEST SENSE command failed.  Release the REQUEST
15354 		 * SENSE command for re-use, get back the bp for the original
15355 		 * command, and attempt to re-try the original command if
15356 		 * FLAG_DIAGNOSE is not set in the original packet.
15357 		 */
15358 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15359 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15360 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15361 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15362 			    NULL, NULL, EIO, (clock_t)0, NULL);
15363 			return;
15364 		}
15365 	}
15366 
15367 	/*
15368 	 * Save the relevant sense info into the xp for the original cmd.
15369 	 *
15370 	 * Note: if the request sense failed the state info will be zero
15371 	 * as set in sd_mark_rqs_busy()
15372 	 */
15373 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15374 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15375 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
15376 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
15377 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
15378 	    SENSE_LENGTH)) {
15379 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15380 		    MAX_SENSE_LENGTH);
15381 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
15382 	} else {
15383 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15384 		    SENSE_LENGTH);
15385 		if (actual_len < SENSE_LENGTH) {
15386 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
15387 		} else {
15388 			cmd_xp->xb_sense_resid = 0;
15389 		}
15390 	}
15391 
15392 	/*
15393 	 *  Free up the RQS command....
15394 	 *  NOTE:
15395 	 *	Must do this BEFORE calling sd_validate_sense_data!
15396 	 *	sd_validate_sense_data may return the original command in
15397 	 *	which case the pkt will be freed and the flags can no
15398 	 *	longer be touched.
15399 	 *	SD_MUTEX is held through this process until the command
15400 	 *	is dispatched based upon the sense data, so there are
15401 	 *	no race conditions.
15402 	 */
15403 	(void) sd_mark_rqs_idle(un, sense_xp);
15404 
15405 	/*
15406 	 * For a retryable command see if we have valid sense data, if so then
15407 	 * turn it over to sd_decode_sense() to figure out the right course of
15408 	 * action. Just fail a non-retryable command.
15409 	 */
15410 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15411 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
15412 		    SD_SENSE_DATA_IS_VALID) {
15413 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15414 		}
15415 	} else {
15416 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15417 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15418 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15419 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15420 		sd_return_failed_command(un, cmd_bp, EIO);
15421 	}
15422 }
15423 
15424 
15425 
15426 
15427 /*
15428  *    Function: sd_handle_auto_request_sense
15429  *
15430  * Description: Processing for auto-request sense information.
15431  *
15432  *   Arguments: un - ptr to associated softstate
15433  *		bp - ptr to buf(9S) for the command
15434  *		xp - ptr to the sd_xbuf for the command
15435  *		pktp - ptr to the scsi_pkt(9S) for the command
15436  *
15437  *     Context: May be called under interrupt context
15438  */
15439 
15440 static void
15441 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15442 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15443 {
15444 	struct scsi_arq_status *asp;
15445 	size_t actual_len;
15446 
15447 	ASSERT(un != NULL);
15448 	ASSERT(mutex_owned(SD_MUTEX(un)));
15449 	ASSERT(bp != NULL);
15450 	ASSERT(xp != NULL);
15451 	ASSERT(pktp != NULL);
15452 	ASSERT(pktp != un->un_rqs_pktp);
15453 	ASSERT(bp   != un->un_rqs_bp);
15454 
15455 	/*
15456 	 * For auto-request sense, we get a scsi_arq_status back from
15457 	 * the HBA, with the sense data in the sts_sensedata member.
15458 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15459 	 */
15460 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15461 
15462 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15463 		/*
15464 		 * The auto REQUEST SENSE failed; see if we can re-try
15465 		 * the original command.
15466 		 */
15467 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15468 		    "auto request sense failed (reason=%s)\n",
15469 		    scsi_rname(asp->sts_rqpkt_reason));
15470 
15471 		sd_reset_target(un, pktp);
15472 
15473 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15474 		    NULL, NULL, EIO, (clock_t)0, NULL);
15475 		return;
15476 	}
15477 
15478 	/* Save the relevant sense info into the xp for the original cmd. */
15479 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15480 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15481 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15482 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
15483 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15484 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15485 		    MAX_SENSE_LENGTH);
15486 	} else {
15487 		if (xp->xb_sense_resid > SENSE_LENGTH) {
15488 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15489 		} else {
15490 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
15491 		}
15492 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15493 			if ((((struct uscsi_cmd *)
15494 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
15495 				xp->xb_sense_resid = (((struct uscsi_cmd *)
15496 				    (xp->xb_pktinfo))->uscsi_rqlen) -
15497 				    actual_len;
15498 			} else {
15499 				xp->xb_sense_resid = 0;
15500 			}
15501 		}
15502 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
15503 	}
15504 
15505 	/*
15506 	 * See if we have valid sense data, if so then turn it over to
15507 	 * sd_decode_sense() to figure out the right course of action.
15508 	 */
15509 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
15510 	    SD_SENSE_DATA_IS_VALID) {
15511 		sd_decode_sense(un, bp, xp, pktp);
15512 	}
15513 }
15514 
15515 
15516 /*
15517  *    Function: sd_print_sense_failed_msg
15518  *
15519  * Description: Print log message when RQS has failed.
15520  *
15521  *   Arguments: un - ptr to associated softstate
15522  *		bp - ptr to buf(9S) for the command
15523  *		arg - generic message string ptr
15524  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15525  *			or SD_NO_RETRY_ISSUED
15526  *
15527  *     Context: May be called from interrupt context
15528  */
15529 
15530 static void
15531 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15532 	int code)
15533 {
15534 	char	*msgp = arg;
15535 
15536 	ASSERT(un != NULL);
15537 	ASSERT(mutex_owned(SD_MUTEX(un)));
15538 	ASSERT(bp != NULL);
15539 
15540 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15541 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15542 	}
15543 }
15544 
15545 
15546 /*
15547  *    Function: sd_validate_sense_data
15548  *
15549  * Description: Check the given sense data for validity.
15550  *		If the sense data is not valid, the command will
15551  *		be either failed or retried!
15552  *
15553  * Return Code: SD_SENSE_DATA_IS_INVALID
15554  *		SD_SENSE_DATA_IS_VALID
15555  *
15556  *     Context: May be called from interrupt context
15557  */
15558 
15559 static int
15560 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15561 	size_t actual_len)
15562 {
15563 	struct scsi_extended_sense *esp;
15564 	struct	scsi_pkt *pktp;
15565 	char	*msgp = NULL;
15566 
15567 	ASSERT(un != NULL);
15568 	ASSERT(mutex_owned(SD_MUTEX(un)));
15569 	ASSERT(bp != NULL);
15570 	ASSERT(bp != un->un_rqs_bp);
15571 	ASSERT(xp != NULL);
15572 
15573 	pktp = SD_GET_PKTP(bp);
15574 	ASSERT(pktp != NULL);
15575 
15576 	/*
15577 	 * Check the status of the RQS command (auto or manual).
15578 	 */
15579 	switch (xp->xb_sense_status & STATUS_MASK) {
15580 	case STATUS_GOOD:
15581 		break;
15582 
15583 	case STATUS_RESERVATION_CONFLICT:
15584 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15585 		return (SD_SENSE_DATA_IS_INVALID);
15586 
15587 	case STATUS_BUSY:
15588 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15589 		    "Busy Status on REQUEST SENSE\n");
15590 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15591 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15592 		return (SD_SENSE_DATA_IS_INVALID);
15593 
15594 	case STATUS_QFULL:
15595 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15596 		    "QFULL Status on REQUEST SENSE\n");
15597 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15598 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15599 		return (SD_SENSE_DATA_IS_INVALID);
15600 
15601 	case STATUS_CHECK:
15602 	case STATUS_TERMINATED:
15603 		msgp = "Check Condition on REQUEST SENSE\n";
15604 		goto sense_failed;
15605 
15606 	default:
15607 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15608 		goto sense_failed;
15609 	}
15610 
15611 	/*
15612 	 * See if we got the minimum required amount of sense data.
15613 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15614 	 * or less.
15615 	 */
15616 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15617 	    (actual_len == 0)) {
15618 		msgp = "Request Sense couldn't get sense data\n";
15619 		goto sense_failed;
15620 	}
15621 
15622 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15623 		msgp = "Not enough sense information\n";
15624 		goto sense_failed;
15625 	}
15626 
15627 	/*
15628 	 * We require the extended sense data
15629 	 */
15630 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15631 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15632 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15633 			static char tmp[8];
15634 			static char buf[148];
15635 			char *p = (char *)(xp->xb_sense_data);
15636 			int i;
15637 
15638 			mutex_enter(&sd_sense_mutex);
15639 			(void) strcpy(buf, "undecodable sense information:");
15640 			for (i = 0; i < actual_len; i++) {
15641 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15642 				(void) strcpy(&buf[strlen(buf)], tmp);
15643 			}
15644 			i = strlen(buf);
15645 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15646 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15647 			mutex_exit(&sd_sense_mutex);
15648 		}
15649 		/* Note: Legacy behavior, fail the command with no retry */
15650 		sd_return_failed_command(un, bp, EIO);
15651 		return (SD_SENSE_DATA_IS_INVALID);
15652 	}
15653 
15654 	/*
15655 	 * Check that es_code is valid (es_class concatenated with es_code
15656 	 * make up the "response code" field.  es_class will always be 7, so
15657 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15658 	 * format.
15659 	 */
15660 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15661 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15662 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15663 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15664 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15665 		goto sense_failed;
15666 	}
15667 
15668 	return (SD_SENSE_DATA_IS_VALID);
15669 
15670 sense_failed:
15671 	/*
15672 	 * If the request sense failed (for whatever reason), attempt
15673 	 * to retry the original command.
15674 	 */
15675 #if defined(__i386) || defined(__amd64)
15676 	/*
15677 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15678 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15679 	 * for both SCSI/FC.
15680 	 * The SD_RETRY_DELAY value need to be adjusted here
15681 	 * when SD_RETRY_DELAY change in sddef.h
15682 	 */
15683 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15684 	    sd_print_sense_failed_msg, msgp, EIO,
15685 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15686 #else
15687 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15688 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15689 #endif
15690 
15691 	return (SD_SENSE_DATA_IS_INVALID);
15692 }
15693 
15694 
15695 
15696 /*
15697  *    Function: sd_decode_sense
15698  *
15699  * Description: Take recovery action(s) when SCSI Sense Data is received.
15700  *
15701  *     Context: Interrupt context.
15702  */
15703 
15704 static void
15705 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15706 	struct scsi_pkt *pktp)
15707 {
15708 	uint8_t sense_key;
15709 
15710 	ASSERT(un != NULL);
15711 	ASSERT(mutex_owned(SD_MUTEX(un)));
15712 	ASSERT(bp != NULL);
15713 	ASSERT(bp != un->un_rqs_bp);
15714 	ASSERT(xp != NULL);
15715 	ASSERT(pktp != NULL);
15716 
15717 	sense_key = scsi_sense_key(xp->xb_sense_data);
15718 
15719 	switch (sense_key) {
15720 	case KEY_NO_SENSE:
15721 		sd_sense_key_no_sense(un, bp, xp, pktp);
15722 		break;
15723 	case KEY_RECOVERABLE_ERROR:
15724 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15725 		    bp, xp, pktp);
15726 		break;
15727 	case KEY_NOT_READY:
15728 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15729 		    bp, xp, pktp);
15730 		break;
15731 	case KEY_MEDIUM_ERROR:
15732 	case KEY_HARDWARE_ERROR:
15733 		sd_sense_key_medium_or_hardware_error(un,
15734 		    xp->xb_sense_data, bp, xp, pktp);
15735 		break;
15736 	case KEY_ILLEGAL_REQUEST:
15737 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15738 		break;
15739 	case KEY_UNIT_ATTENTION:
15740 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15741 		    bp, xp, pktp);
15742 		break;
15743 	case KEY_WRITE_PROTECT:
15744 	case KEY_VOLUME_OVERFLOW:
15745 	case KEY_MISCOMPARE:
15746 		sd_sense_key_fail_command(un, bp, xp, pktp);
15747 		break;
15748 	case KEY_BLANK_CHECK:
15749 		sd_sense_key_blank_check(un, bp, xp, pktp);
15750 		break;
15751 	case KEY_ABORTED_COMMAND:
15752 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15753 		break;
15754 	case KEY_VENDOR_UNIQUE:
15755 	case KEY_COPY_ABORTED:
15756 	case KEY_EQUAL:
15757 	case KEY_RESERVED:
15758 	default:
15759 		sd_sense_key_default(un, xp->xb_sense_data,
15760 		    bp, xp, pktp);
15761 		break;
15762 	}
15763 }
15764 
15765 
15766 /*
15767  *    Function: sd_dump_memory
15768  *
15769  * Description: Debug logging routine to print the contents of a user provided
15770  *		buffer. The output of the buffer is broken up into 256 byte
15771  *		segments due to a size constraint of the scsi_log.
15772  *		implementation.
15773  *
15774  *   Arguments: un - ptr to softstate
15775  *		comp - component mask
15776  *		title - "title" string to preceed data when printed
15777  *		data - ptr to data block to be printed
15778  *		len - size of data block to be printed
15779  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15780  *
15781  *     Context: May be called from interrupt context
15782  */
15783 
15784 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15785 
15786 static char *sd_dump_format_string[] = {
15787 		" 0x%02x",
15788 		" %c"
15789 };
15790 
15791 static void
15792 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15793     int len, int fmt)
15794 {
15795 	int	i, j;
15796 	int	avail_count;
15797 	int	start_offset;
15798 	int	end_offset;
15799 	size_t	entry_len;
15800 	char	*bufp;
15801 	char	*local_buf;
15802 	char	*format_string;
15803 
15804 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15805 
15806 	/*
15807 	 * In the debug version of the driver, this function is called from a
15808 	 * number of places which are NOPs in the release driver.
15809 	 * The debug driver therefore has additional methods of filtering
15810 	 * debug output.
15811 	 */
15812 #ifdef SDDEBUG
15813 	/*
15814 	 * In the debug version of the driver we can reduce the amount of debug
15815 	 * messages by setting sd_error_level to something other than
15816 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15817 	 * sd_component_mask.
15818 	 */
15819 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15820 	    (sd_error_level != SCSI_ERR_ALL)) {
15821 		return;
15822 	}
15823 	if (((sd_component_mask & comp) == 0) ||
15824 	    (sd_error_level != SCSI_ERR_ALL)) {
15825 		return;
15826 	}
15827 #else
15828 	if (sd_error_level != SCSI_ERR_ALL) {
15829 		return;
15830 	}
15831 #endif
15832 
15833 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15834 	bufp = local_buf;
15835 	/*
15836 	 * Available length is the length of local_buf[], minus the
15837 	 * length of the title string, minus one for the ":", minus
15838 	 * one for the newline, minus one for the NULL terminator.
15839 	 * This gives the #bytes available for holding the printed
15840 	 * values from the given data buffer.
15841 	 */
15842 	if (fmt == SD_LOG_HEX) {
15843 		format_string = sd_dump_format_string[0];
15844 	} else /* SD_LOG_CHAR */ {
15845 		format_string = sd_dump_format_string[1];
15846 	}
15847 	/*
15848 	 * Available count is the number of elements from the given
15849 	 * data buffer that we can fit into the available length.
15850 	 * This is based upon the size of the format string used.
15851 	 * Make one entry and find it's size.
15852 	 */
15853 	(void) sprintf(bufp, format_string, data[0]);
15854 	entry_len = strlen(bufp);
15855 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15856 
15857 	j = 0;
15858 	while (j < len) {
15859 		bufp = local_buf;
15860 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15861 		start_offset = j;
15862 
15863 		end_offset = start_offset + avail_count;
15864 
15865 		(void) sprintf(bufp, "%s:", title);
15866 		bufp += strlen(bufp);
15867 		for (i = start_offset; ((i < end_offset) && (j < len));
15868 		    i++, j++) {
15869 			(void) sprintf(bufp, format_string, data[i]);
15870 			bufp += entry_len;
15871 		}
15872 		(void) sprintf(bufp, "\n");
15873 
15874 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15875 	}
15876 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15877 }
15878 
15879 /*
15880  *    Function: sd_print_sense_msg
15881  *
15882  * Description: Log a message based upon the given sense data.
15883  *
15884  *   Arguments: un - ptr to associated softstate
15885  *		bp - ptr to buf(9S) for the command
15886  *		arg - ptr to associate sd_sense_info struct
15887  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15888  *			or SD_NO_RETRY_ISSUED
15889  *
15890  *     Context: May be called from interrupt context
15891  */
15892 
15893 static void
15894 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15895 {
15896 	struct sd_xbuf	*xp;
15897 	struct scsi_pkt	*pktp;
15898 	uint8_t *sensep;
15899 	daddr_t request_blkno;
15900 	diskaddr_t err_blkno;
15901 	int severity;
15902 	int pfa_flag;
15903 	extern struct scsi_key_strings scsi_cmds[];
15904 
15905 	ASSERT(un != NULL);
15906 	ASSERT(mutex_owned(SD_MUTEX(un)));
15907 	ASSERT(bp != NULL);
15908 	xp = SD_GET_XBUF(bp);
15909 	ASSERT(xp != NULL);
15910 	pktp = SD_GET_PKTP(bp);
15911 	ASSERT(pktp != NULL);
15912 	ASSERT(arg != NULL);
15913 
15914 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15915 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15916 
15917 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15918 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15919 		severity = SCSI_ERR_RETRYABLE;
15920 	}
15921 
15922 	/* Use absolute block number for the request block number */
15923 	request_blkno = xp->xb_blkno;
15924 
15925 	/*
15926 	 * Now try to get the error block number from the sense data
15927 	 */
15928 	sensep = xp->xb_sense_data;
15929 
15930 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15931 	    (uint64_t *)&err_blkno)) {
15932 		/*
15933 		 * We retrieved the error block number from the information
15934 		 * portion of the sense data.
15935 		 *
15936 		 * For USCSI commands we are better off using the error
15937 		 * block no. as the requested block no. (This is the best
15938 		 * we can estimate.)
15939 		 */
15940 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15941 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15942 			request_blkno = err_blkno;
15943 		}
15944 	} else {
15945 		/*
15946 		 * Without the es_valid bit set (for fixed format) or an
15947 		 * information descriptor (for descriptor format) we cannot
15948 		 * be certain of the error blkno, so just use the
15949 		 * request_blkno.
15950 		 */
15951 		err_blkno = (diskaddr_t)request_blkno;
15952 	}
15953 
15954 	/*
15955 	 * The following will log the buffer contents for the release driver
15956 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15957 	 * level is set to verbose.
15958 	 */
15959 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15960 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15961 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15962 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
15963 
15964 	if (pfa_flag == FALSE) {
15965 		/* This is normally only set for USCSI */
15966 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
15967 			return;
15968 		}
15969 
15970 		if ((SD_IS_BUFIO(xp) == TRUE) &&
15971 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
15972 		    (severity < sd_error_level))) {
15973 			return;
15974 		}
15975 	}
15976 
15977 	/*
15978 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
15979 	 */
15980 	if ((SD_IS_LSI(un)) &&
15981 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
15982 	    (scsi_sense_asc(sensep) == 0x94) &&
15983 	    (scsi_sense_ascq(sensep) == 0x01)) {
15984 		un->un_sonoma_failure_count++;
15985 		if (un->un_sonoma_failure_count > 1) {
15986 			return;
15987 		}
15988 	}
15989 
15990 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
15991 	    request_blkno, err_blkno, scsi_cmds,
15992 	    (struct scsi_extended_sense *)sensep,
15993 	    un->un_additional_codes, NULL);
15994 }
15995 
15996 /*
15997  *    Function: sd_sense_key_no_sense
15998  *
15999  * Description: Recovery action when sense data was not received.
16000  *
16001  *     Context: May be called from interrupt context
16002  */
16003 
16004 static void
16005 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
16006 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16007 {
16008 	struct sd_sense_info	si;
16009 
16010 	ASSERT(un != NULL);
16011 	ASSERT(mutex_owned(SD_MUTEX(un)));
16012 	ASSERT(bp != NULL);
16013 	ASSERT(xp != NULL);
16014 	ASSERT(pktp != NULL);
16015 
16016 	si.ssi_severity = SCSI_ERR_FATAL;
16017 	si.ssi_pfa_flag = FALSE;
16018 
16019 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16020 
16021 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16022 	    &si, EIO, (clock_t)0, NULL);
16023 }
16024 
16025 
16026 /*
16027  *    Function: sd_sense_key_recoverable_error
16028  *
16029  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
16030  *
16031  *     Context: May be called from interrupt context
16032  */
16033 
16034 static void
16035 sd_sense_key_recoverable_error(struct sd_lun *un,
16036 	uint8_t *sense_datap,
16037 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16038 {
16039 	struct sd_sense_info	si;
16040 	uint8_t asc = scsi_sense_asc(sense_datap);
16041 
16042 	ASSERT(un != NULL);
16043 	ASSERT(mutex_owned(SD_MUTEX(un)));
16044 	ASSERT(bp != NULL);
16045 	ASSERT(xp != NULL);
16046 	ASSERT(pktp != NULL);
16047 
16048 	/*
16049 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
16050 	 */
16051 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
16052 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16053 		si.ssi_severity = SCSI_ERR_INFO;
16054 		si.ssi_pfa_flag = TRUE;
16055 	} else {
16056 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
16057 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
16058 		si.ssi_severity = SCSI_ERR_RECOVERED;
16059 		si.ssi_pfa_flag = FALSE;
16060 	}
16061 
16062 	if (pktp->pkt_resid == 0) {
16063 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16064 		sd_return_command(un, bp);
16065 		return;
16066 	}
16067 
16068 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16069 	    &si, EIO, (clock_t)0, NULL);
16070 }
16071 
16072 
16073 
16074 
16075 /*
16076  *    Function: sd_sense_key_not_ready
16077  *
16078  * Description: Recovery actions for a SCSI "Not Ready" sense key.
16079  *
16080  *     Context: May be called from interrupt context
16081  */
16082 
16083 static void
16084 sd_sense_key_not_ready(struct sd_lun *un,
16085 	uint8_t *sense_datap,
16086 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16087 {
16088 	struct sd_sense_info	si;
16089 	uint8_t asc = scsi_sense_asc(sense_datap);
16090 	uint8_t ascq = scsi_sense_ascq(sense_datap);
16091 
16092 	ASSERT(un != NULL);
16093 	ASSERT(mutex_owned(SD_MUTEX(un)));
16094 	ASSERT(bp != NULL);
16095 	ASSERT(xp != NULL);
16096 	ASSERT(pktp != NULL);
16097 
16098 	si.ssi_severity = SCSI_ERR_FATAL;
16099 	si.ssi_pfa_flag = FALSE;
16100 
16101 	/*
16102 	 * Update error stats after first NOT READY error. Disks may have
16103 	 * been powered down and may need to be restarted.  For CDROMs,
16104 	 * report NOT READY errors only if media is present.
16105 	 */
16106 	if ((ISCD(un) && (asc == 0x3A)) ||
16107 	    (xp->xb_nr_retry_count > 0)) {
16108 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16109 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
16110 	}
16111 
16112 	/*
16113 	 * Just fail if the "not ready" retry limit has been reached.
16114 	 */
16115 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
16116 		/* Special check for error message printing for removables. */
16117 		if (un->un_f_has_removable_media && (asc == 0x04) &&
16118 		    (ascq >= 0x04)) {
16119 			si.ssi_severity = SCSI_ERR_ALL;
16120 		}
16121 		goto fail_command;
16122 	}
16123 
16124 	/*
16125 	 * Check the ASC and ASCQ in the sense data as needed, to determine
16126 	 * what to do.
16127 	 */
16128 	switch (asc) {
16129 	case 0x04:	/* LOGICAL UNIT NOT READY */
16130 		/*
16131 		 * disk drives that don't spin up result in a very long delay
16132 		 * in format without warning messages. We will log a message
16133 		 * if the error level is set to verbose.
16134 		 */
16135 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16136 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16137 			    "logical unit not ready, resetting disk\n");
16138 		}
16139 
16140 		/*
16141 		 * There are different requirements for CDROMs and disks for
16142 		 * the number of retries.  If a CD-ROM is giving this, it is
16143 		 * probably reading TOC and is in the process of getting
16144 		 * ready, so we should keep on trying for a long time to make
16145 		 * sure that all types of media are taken in account (for
16146 		 * some media the drive takes a long time to read TOC).  For
16147 		 * disks we do not want to retry this too many times as this
16148 		 * can cause a long hang in format when the drive refuses to
16149 		 * spin up (a very common failure).
16150 		 */
16151 		switch (ascq) {
16152 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
16153 			/*
16154 			 * Disk drives frequently refuse to spin up which
16155 			 * results in a very long hang in format without
16156 			 * warning messages.
16157 			 *
16158 			 * Note: This code preserves the legacy behavior of
16159 			 * comparing xb_nr_retry_count against zero for fibre
16160 			 * channel targets instead of comparing against the
16161 			 * un_reset_retry_count value.  The reason for this
16162 			 * discrepancy has been so utterly lost beneath the
16163 			 * Sands of Time that even Indiana Jones could not
16164 			 * find it.
16165 			 */
16166 			if (un->un_f_is_fibre == TRUE) {
16167 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16168 				    (xp->xb_nr_retry_count > 0)) &&
16169 				    (un->un_startstop_timeid == NULL)) {
16170 					scsi_log(SD_DEVINFO(un), sd_label,
16171 					    CE_WARN, "logical unit not ready, "
16172 					    "resetting disk\n");
16173 					sd_reset_target(un, pktp);
16174 				}
16175 			} else {
16176 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16177 				    (xp->xb_nr_retry_count >
16178 				    un->un_reset_retry_count)) &&
16179 				    (un->un_startstop_timeid == NULL)) {
16180 					scsi_log(SD_DEVINFO(un), sd_label,
16181 					    CE_WARN, "logical unit not ready, "
16182 					    "resetting disk\n");
16183 					sd_reset_target(un, pktp);
16184 				}
16185 			}
16186 			break;
16187 
16188 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
16189 			/*
16190 			 * If the target is in the process of becoming
16191 			 * ready, just proceed with the retry. This can
16192 			 * happen with CD-ROMs that take a long time to
16193 			 * read TOC after a power cycle or reset.
16194 			 */
16195 			goto do_retry;
16196 
16197 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
16198 			break;
16199 
16200 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
16201 			/*
16202 			 * Retries cannot help here so just fail right away.
16203 			 */
16204 			goto fail_command;
16205 
16206 		case 0x88:
16207 			/*
16208 			 * Vendor-unique code for T3/T4: it indicates a
16209 			 * path problem in a mutipathed config, but as far as
16210 			 * the target driver is concerned it equates to a fatal
16211 			 * error, so we should just fail the command right away
16212 			 * (without printing anything to the console). If this
16213 			 * is not a T3/T4, fall thru to the default recovery
16214 			 * action.
16215 			 * T3/T4 is FC only, don't need to check is_fibre
16216 			 */
16217 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
16218 				sd_return_failed_command(un, bp, EIO);
16219 				return;
16220 			}
16221 			/* FALLTHRU */
16222 
16223 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
16224 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
16225 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
16226 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
16227 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
16228 		default:    /* Possible future codes in SCSI spec? */
16229 			/*
16230 			 * For removable-media devices, do not retry if
16231 			 * ASCQ > 2 as these result mostly from USCSI commands
16232 			 * on MMC devices issued to check status of an
16233 			 * operation initiated in immediate mode.  Also for
16234 			 * ASCQ >= 4 do not print console messages as these
16235 			 * mainly represent a user-initiated operation
16236 			 * instead of a system failure.
16237 			 */
16238 			if (un->un_f_has_removable_media) {
16239 				si.ssi_severity = SCSI_ERR_ALL;
16240 				goto fail_command;
16241 			}
16242 			break;
16243 		}
16244 
16245 		/*
16246 		 * As part of our recovery attempt for the NOT READY
16247 		 * condition, we issue a START STOP UNIT command. However
16248 		 * we want to wait for a short delay before attempting this
16249 		 * as there may still be more commands coming back from the
16250 		 * target with the check condition. To do this we use
16251 		 * timeout(9F) to call sd_start_stop_unit_callback() after
16252 		 * the delay interval expires. (sd_start_stop_unit_callback()
16253 		 * dispatches sd_start_stop_unit_task(), which will issue
16254 		 * the actual START STOP UNIT command. The delay interval
16255 		 * is one-half of the delay that we will use to retry the
16256 		 * command that generated the NOT READY condition.
16257 		 *
16258 		 * Note that we could just dispatch sd_start_stop_unit_task()
16259 		 * from here and allow it to sleep for the delay interval,
16260 		 * but then we would be tying up the taskq thread
16261 		 * uncesessarily for the duration of the delay.
16262 		 *
16263 		 * Do not issue the START STOP UNIT if the current command
16264 		 * is already a START STOP UNIT.
16265 		 */
16266 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
16267 			break;
16268 		}
16269 
16270 		/*
16271 		 * Do not schedule the timeout if one is already pending.
16272 		 */
16273 		if (un->un_startstop_timeid != NULL) {
16274 			SD_INFO(SD_LOG_ERROR, un,
16275 			    "sd_sense_key_not_ready: restart already issued to"
16276 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
16277 			    ddi_get_instance(SD_DEVINFO(un)));
16278 			break;
16279 		}
16280 
16281 		/*
16282 		 * Schedule the START STOP UNIT command, then queue the command
16283 		 * for a retry.
16284 		 *
16285 		 * Note: A timeout is not scheduled for this retry because we
16286 		 * want the retry to be serial with the START_STOP_UNIT. The
16287 		 * retry will be started when the START_STOP_UNIT is completed
16288 		 * in sd_start_stop_unit_task.
16289 		 */
16290 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
16291 		    un, SD_BSY_TIMEOUT / 2);
16292 		xp->xb_nr_retry_count++;
16293 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
16294 		return;
16295 
16296 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
16297 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16298 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16299 			    "unit does not respond to selection\n");
16300 		}
16301 		break;
16302 
16303 	case 0x3A:	/* MEDIUM NOT PRESENT */
16304 		if (sd_error_level >= SCSI_ERR_FATAL) {
16305 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16306 			    "Caddy not inserted in drive\n");
16307 		}
16308 
16309 		sr_ejected(un);
16310 		un->un_mediastate = DKIO_EJECTED;
16311 		/* The state has changed, inform the media watch routines */
16312 		cv_broadcast(&un->un_state_cv);
16313 		/* Just fail if no media is present in the drive. */
16314 		goto fail_command;
16315 
16316 	default:
16317 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16318 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
16319 			    "Unit not Ready. Additional sense code 0x%x\n",
16320 			    asc);
16321 		}
16322 		break;
16323 	}
16324 
16325 do_retry:
16326 
16327 	/*
16328 	 * Retry the command, as some targets may report NOT READY for
16329 	 * several seconds after being reset.
16330 	 */
16331 	xp->xb_nr_retry_count++;
16332 	si.ssi_severity = SCSI_ERR_RETRYABLE;
16333 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
16334 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
16335 
16336 	return;
16337 
16338 fail_command:
16339 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16340 	sd_return_failed_command(un, bp, EIO);
16341 }
16342 
16343 
16344 
16345 /*
16346  *    Function: sd_sense_key_medium_or_hardware_error
16347  *
16348  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
16349  *		sense key.
16350  *
16351  *     Context: May be called from interrupt context
16352  */
16353 
16354 static void
16355 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
16356 	uint8_t *sense_datap,
16357 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16358 {
16359 	struct sd_sense_info	si;
16360 	uint8_t sense_key = scsi_sense_key(sense_datap);
16361 	uint8_t asc = scsi_sense_asc(sense_datap);
16362 
16363 	ASSERT(un != NULL);
16364 	ASSERT(mutex_owned(SD_MUTEX(un)));
16365 	ASSERT(bp != NULL);
16366 	ASSERT(xp != NULL);
16367 	ASSERT(pktp != NULL);
16368 
16369 	si.ssi_severity = SCSI_ERR_FATAL;
16370 	si.ssi_pfa_flag = FALSE;
16371 
16372 	if (sense_key == KEY_MEDIUM_ERROR) {
16373 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
16374 	}
16375 
16376 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16377 
16378 	if ((un->un_reset_retry_count != 0) &&
16379 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16380 		mutex_exit(SD_MUTEX(un));
16381 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16382 		if (un->un_f_allow_bus_device_reset == TRUE) {
16383 
16384 			boolean_t try_resetting_target = B_TRUE;
16385 
16386 			/*
16387 			 * We need to be able to handle specific ASC when we are
16388 			 * handling a KEY_HARDWARE_ERROR. In particular
16389 			 * taking the default action of resetting the target may
16390 			 * not be the appropriate way to attempt recovery.
16391 			 * Resetting a target because of a single LUN failure
16392 			 * victimizes all LUNs on that target.
16393 			 *
16394 			 * This is true for the LSI arrays, if an LSI
16395 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16396 			 * should trust it.
16397 			 */
16398 
16399 			if (sense_key == KEY_HARDWARE_ERROR) {
16400 				switch (asc) {
16401 				case 0x84:
16402 					if (SD_IS_LSI(un)) {
16403 						try_resetting_target = B_FALSE;
16404 					}
16405 					break;
16406 				default:
16407 					break;
16408 				}
16409 			}
16410 
16411 			if (try_resetting_target == B_TRUE) {
16412 				int reset_retval = 0;
16413 				if (un->un_f_lun_reset_enabled == TRUE) {
16414 					SD_TRACE(SD_LOG_IO_CORE, un,
16415 					    "sd_sense_key_medium_or_hardware_"
16416 					    "error: issuing RESET_LUN\n");
16417 					reset_retval =
16418 					    scsi_reset(SD_ADDRESS(un),
16419 					    RESET_LUN);
16420 				}
16421 				if (reset_retval == 0) {
16422 					SD_TRACE(SD_LOG_IO_CORE, un,
16423 					    "sd_sense_key_medium_or_hardware_"
16424 					    "error: issuing RESET_TARGET\n");
16425 					(void) scsi_reset(SD_ADDRESS(un),
16426 					    RESET_TARGET);
16427 				}
16428 			}
16429 		}
16430 		mutex_enter(SD_MUTEX(un));
16431 	}
16432 
16433 	/*
16434 	 * This really ought to be a fatal error, but we will retry anyway
16435 	 * as some drives report this as a spurious error.
16436 	 */
16437 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16438 	    &si, EIO, (clock_t)0, NULL);
16439 }
16440 
16441 
16442 
16443 /*
16444  *    Function: sd_sense_key_illegal_request
16445  *
16446  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16447  *
16448  *     Context: May be called from interrupt context
16449  */
16450 
16451 static void
16452 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16453 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16454 {
16455 	struct sd_sense_info	si;
16456 
16457 	ASSERT(un != NULL);
16458 	ASSERT(mutex_owned(SD_MUTEX(un)));
16459 	ASSERT(bp != NULL);
16460 	ASSERT(xp != NULL);
16461 	ASSERT(pktp != NULL);
16462 
16463 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16464 
16465 	si.ssi_severity = SCSI_ERR_INFO;
16466 	si.ssi_pfa_flag = FALSE;
16467 
16468 	/* Pointless to retry if the target thinks it's an illegal request */
16469 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16470 	sd_return_failed_command(un, bp, EIO);
16471 }
16472 
16473 
16474 
16475 
16476 /*
16477  *    Function: sd_sense_key_unit_attention
16478  *
16479  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16480  *
16481  *     Context: May be called from interrupt context
16482  */
16483 
16484 static void
16485 sd_sense_key_unit_attention(struct sd_lun *un,
16486 	uint8_t *sense_datap,
16487 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16488 {
16489 	/*
16490 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16491 	 * like Sonoma can return UNIT ATTENTION close to a minute
16492 	 * under certain conditions.
16493 	 */
16494 	int	retry_check_flag = SD_RETRIES_UA;
16495 	boolean_t	kstat_updated = B_FALSE;
16496 	struct	sd_sense_info		si;
16497 	uint8_t asc = scsi_sense_asc(sense_datap);
16498 
16499 	ASSERT(un != NULL);
16500 	ASSERT(mutex_owned(SD_MUTEX(un)));
16501 	ASSERT(bp != NULL);
16502 	ASSERT(xp != NULL);
16503 	ASSERT(pktp != NULL);
16504 
16505 	si.ssi_severity = SCSI_ERR_INFO;
16506 	si.ssi_pfa_flag = FALSE;
16507 
16508 
16509 	switch (asc) {
16510 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16511 		if (sd_report_pfa != 0) {
16512 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16513 			si.ssi_pfa_flag = TRUE;
16514 			retry_check_flag = SD_RETRIES_STANDARD;
16515 			goto do_retry;
16516 		}
16517 
16518 		break;
16519 
16520 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16521 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16522 			un->un_resvd_status |=
16523 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16524 		}
16525 #ifdef _LP64
16526 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16527 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16528 			    un, KM_NOSLEEP) == 0) {
16529 				/*
16530 				 * If we can't dispatch the task we'll just
16531 				 * live without descriptor sense.  We can
16532 				 * try again on the next "unit attention"
16533 				 */
16534 				SD_ERROR(SD_LOG_ERROR, un,
16535 				    "sd_sense_key_unit_attention: "
16536 				    "Could not dispatch "
16537 				    "sd_reenable_dsense_task\n");
16538 			}
16539 		}
16540 #endif /* _LP64 */
16541 		/* FALLTHRU */
16542 
16543 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16544 		if (!un->un_f_has_removable_media) {
16545 			break;
16546 		}
16547 
16548 		/*
16549 		 * When we get a unit attention from a removable-media device,
16550 		 * it may be in a state that will take a long time to recover
16551 		 * (e.g., from a reset).  Since we are executing in interrupt
16552 		 * context here, we cannot wait around for the device to come
16553 		 * back. So hand this command off to sd_media_change_task()
16554 		 * for deferred processing under taskq thread context. (Note
16555 		 * that the command still may be failed if a problem is
16556 		 * encountered at a later time.)
16557 		 */
16558 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16559 		    KM_NOSLEEP) == 0) {
16560 			/*
16561 			 * Cannot dispatch the request so fail the command.
16562 			 */
16563 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16564 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16565 			si.ssi_severity = SCSI_ERR_FATAL;
16566 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16567 			sd_return_failed_command(un, bp, EIO);
16568 		}
16569 
16570 		/*
16571 		 * If failed to dispatch sd_media_change_task(), we already
16572 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16573 		 * we should update kstat later if it encounters an error. So,
16574 		 * we update kstat_updated flag here.
16575 		 */
16576 		kstat_updated = B_TRUE;
16577 
16578 		/*
16579 		 * Either the command has been successfully dispatched to a
16580 		 * task Q for retrying, or the dispatch failed. In either case
16581 		 * do NOT retry again by calling sd_retry_command. This sets up
16582 		 * two retries of the same command and when one completes and
16583 		 * frees the resources the other will access freed memory,
16584 		 * a bad thing.
16585 		 */
16586 		return;
16587 
16588 	default:
16589 		break;
16590 	}
16591 
16592 	/*
16593 	 * Update kstat if we haven't done that.
16594 	 */
16595 	if (!kstat_updated) {
16596 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16597 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16598 	}
16599 
16600 do_retry:
16601 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16602 	    EIO, SD_UA_RETRY_DELAY, NULL);
16603 }
16604 
16605 
16606 
16607 /*
16608  *    Function: sd_sense_key_fail_command
16609  *
16610  * Description: Use to fail a command when we don't like the sense key that
16611  *		was returned.
16612  *
16613  *     Context: May be called from interrupt context
16614  */
16615 
16616 static void
16617 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16618 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16619 {
16620 	struct sd_sense_info	si;
16621 
16622 	ASSERT(un != NULL);
16623 	ASSERT(mutex_owned(SD_MUTEX(un)));
16624 	ASSERT(bp != NULL);
16625 	ASSERT(xp != NULL);
16626 	ASSERT(pktp != NULL);
16627 
16628 	si.ssi_severity = SCSI_ERR_FATAL;
16629 	si.ssi_pfa_flag = FALSE;
16630 
16631 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16632 	sd_return_failed_command(un, bp, EIO);
16633 }
16634 
16635 
16636 
16637 /*
16638  *    Function: sd_sense_key_blank_check
16639  *
16640  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16641  *		Has no monetary connotation.
16642  *
16643  *     Context: May be called from interrupt context
16644  */
16645 
16646 static void
16647 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16648 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16649 {
16650 	struct sd_sense_info	si;
16651 
16652 	ASSERT(un != NULL);
16653 	ASSERT(mutex_owned(SD_MUTEX(un)));
16654 	ASSERT(bp != NULL);
16655 	ASSERT(xp != NULL);
16656 	ASSERT(pktp != NULL);
16657 
16658 	/*
16659 	 * Blank check is not fatal for removable devices, therefore
16660 	 * it does not require a console message.
16661 	 */
16662 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16663 	    SCSI_ERR_FATAL;
16664 	si.ssi_pfa_flag = FALSE;
16665 
16666 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16667 	sd_return_failed_command(un, bp, EIO);
16668 }
16669 
16670 
16671 
16672 
16673 /*
16674  *    Function: sd_sense_key_aborted_command
16675  *
16676  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16677  *
16678  *     Context: May be called from interrupt context
16679  */
16680 
16681 static void
16682 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16683 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16684 {
16685 	struct sd_sense_info	si;
16686 
16687 	ASSERT(un != NULL);
16688 	ASSERT(mutex_owned(SD_MUTEX(un)));
16689 	ASSERT(bp != NULL);
16690 	ASSERT(xp != NULL);
16691 	ASSERT(pktp != NULL);
16692 
16693 	si.ssi_severity = SCSI_ERR_FATAL;
16694 	si.ssi_pfa_flag = FALSE;
16695 
16696 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16697 
16698 	/*
16699 	 * This really ought to be a fatal error, but we will retry anyway
16700 	 * as some drives report this as a spurious error.
16701 	 */
16702 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16703 	    &si, EIO, drv_usectohz(100000), NULL);
16704 }
16705 
16706 
16707 
16708 /*
16709  *    Function: sd_sense_key_default
16710  *
16711  * Description: Default recovery action for several SCSI sense keys (basically
16712  *		attempts a retry).
16713  *
16714  *     Context: May be called from interrupt context
16715  */
16716 
16717 static void
16718 sd_sense_key_default(struct sd_lun *un,
16719 	uint8_t *sense_datap,
16720 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16721 {
16722 	struct sd_sense_info	si;
16723 	uint8_t sense_key = scsi_sense_key(sense_datap);
16724 
16725 	ASSERT(un != NULL);
16726 	ASSERT(mutex_owned(SD_MUTEX(un)));
16727 	ASSERT(bp != NULL);
16728 	ASSERT(xp != NULL);
16729 	ASSERT(pktp != NULL);
16730 
16731 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16732 
16733 	/*
16734 	 * Undecoded sense key.	Attempt retries and hope that will fix
16735 	 * the problem.  Otherwise, we're dead.
16736 	 */
16737 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16738 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16739 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16740 	}
16741 
16742 	si.ssi_severity = SCSI_ERR_FATAL;
16743 	si.ssi_pfa_flag = FALSE;
16744 
16745 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16746 	    &si, EIO, (clock_t)0, NULL);
16747 }
16748 
16749 
16750 
16751 /*
16752  *    Function: sd_print_retry_msg
16753  *
16754  * Description: Print a message indicating the retry action being taken.
16755  *
16756  *   Arguments: un - ptr to associated softstate
16757  *		bp - ptr to buf(9S) for the command
16758  *		arg - not used.
16759  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16760  *			or SD_NO_RETRY_ISSUED
16761  *
16762  *     Context: May be called from interrupt context
16763  */
16764 /* ARGSUSED */
16765 static void
16766 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16767 {
16768 	struct sd_xbuf	*xp;
16769 	struct scsi_pkt *pktp;
16770 	char *reasonp;
16771 	char *msgp;
16772 
16773 	ASSERT(un != NULL);
16774 	ASSERT(mutex_owned(SD_MUTEX(un)));
16775 	ASSERT(bp != NULL);
16776 	pktp = SD_GET_PKTP(bp);
16777 	ASSERT(pktp != NULL);
16778 	xp = SD_GET_XBUF(bp);
16779 	ASSERT(xp != NULL);
16780 
16781 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16782 	mutex_enter(&un->un_pm_mutex);
16783 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16784 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16785 	    (pktp->pkt_flags & FLAG_SILENT)) {
16786 		mutex_exit(&un->un_pm_mutex);
16787 		goto update_pkt_reason;
16788 	}
16789 	mutex_exit(&un->un_pm_mutex);
16790 
16791 	/*
16792 	 * Suppress messages if they are all the same pkt_reason; with
16793 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16794 	 * If we are in panic, then suppress the retry messages.
16795 	 */
16796 	switch (flag) {
16797 	case SD_NO_RETRY_ISSUED:
16798 		msgp = "giving up";
16799 		break;
16800 	case SD_IMMEDIATE_RETRY_ISSUED:
16801 	case SD_DELAYED_RETRY_ISSUED:
16802 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16803 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16804 		    (sd_error_level != SCSI_ERR_ALL))) {
16805 			return;
16806 		}
16807 		msgp = "retrying command";
16808 		break;
16809 	default:
16810 		goto update_pkt_reason;
16811 	}
16812 
16813 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16814 	    scsi_rname(pktp->pkt_reason));
16815 
16816 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16817 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16818 
16819 update_pkt_reason:
16820 	/*
16821 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16822 	 * This is to prevent multiple console messages for the same failure
16823 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16824 	 * when the command is retried successfully because there still may be
16825 	 * more commands coming back with the same value of pktp->pkt_reason.
16826 	 */
16827 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16828 		un->un_last_pkt_reason = pktp->pkt_reason;
16829 	}
16830 }
16831 
16832 
16833 /*
16834  *    Function: sd_print_cmd_incomplete_msg
16835  *
16836  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16837  *
16838  *   Arguments: un - ptr to associated softstate
16839  *		bp - ptr to buf(9S) for the command
16840  *		arg - passed to sd_print_retry_msg()
16841  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16842  *			or SD_NO_RETRY_ISSUED
16843  *
16844  *     Context: May be called from interrupt context
16845  */
16846 
16847 static void
16848 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16849 	int code)
16850 {
16851 	dev_info_t	*dip;
16852 
16853 	ASSERT(un != NULL);
16854 	ASSERT(mutex_owned(SD_MUTEX(un)));
16855 	ASSERT(bp != NULL);
16856 
16857 	switch (code) {
16858 	case SD_NO_RETRY_ISSUED:
16859 		/* Command was failed. Someone turned off this target? */
16860 		if (un->un_state != SD_STATE_OFFLINE) {
16861 			/*
16862 			 * Suppress message if we are detaching and
16863 			 * device has been disconnected
16864 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16865 			 * private interface and not part of the DDI
16866 			 */
16867 			dip = un->un_sd->sd_dev;
16868 			if (!(DEVI_IS_DETACHING(dip) &&
16869 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16870 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16871 				"disk not responding to selection\n");
16872 			}
16873 			New_state(un, SD_STATE_OFFLINE);
16874 		}
16875 		break;
16876 
16877 	case SD_DELAYED_RETRY_ISSUED:
16878 	case SD_IMMEDIATE_RETRY_ISSUED:
16879 	default:
16880 		/* Command was successfully queued for retry */
16881 		sd_print_retry_msg(un, bp, arg, code);
16882 		break;
16883 	}
16884 }
16885 
16886 
16887 /*
16888  *    Function: sd_pkt_reason_cmd_incomplete
16889  *
16890  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16891  *
16892  *     Context: May be called from interrupt context
16893  */
16894 
16895 static void
16896 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16897 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16898 {
16899 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16900 
16901 	ASSERT(un != NULL);
16902 	ASSERT(mutex_owned(SD_MUTEX(un)));
16903 	ASSERT(bp != NULL);
16904 	ASSERT(xp != NULL);
16905 	ASSERT(pktp != NULL);
16906 
16907 	/* Do not do a reset if selection did not complete */
16908 	/* Note: Should this not just check the bit? */
16909 	if (pktp->pkt_state != STATE_GOT_BUS) {
16910 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16911 		sd_reset_target(un, pktp);
16912 	}
16913 
16914 	/*
16915 	 * If the target was not successfully selected, then set
16916 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16917 	 * with the target, and further retries and/or commands are
16918 	 * likely to take a long time.
16919 	 */
16920 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16921 		flag |= SD_RETRIES_FAILFAST;
16922 	}
16923 
16924 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16925 
16926 	sd_retry_command(un, bp, flag,
16927 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16928 }
16929 
16930 
16931 
16932 /*
16933  *    Function: sd_pkt_reason_cmd_tran_err
16934  *
16935  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16936  *
16937  *     Context: May be called from interrupt context
16938  */
16939 
16940 static void
16941 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
16942 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16943 {
16944 	ASSERT(un != NULL);
16945 	ASSERT(mutex_owned(SD_MUTEX(un)));
16946 	ASSERT(bp != NULL);
16947 	ASSERT(xp != NULL);
16948 	ASSERT(pktp != NULL);
16949 
16950 	/*
16951 	 * Do not reset if we got a parity error, or if
16952 	 * selection did not complete.
16953 	 */
16954 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16955 	/* Note: Should this not just check the bit for pkt_state? */
16956 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
16957 	    (pktp->pkt_state != STATE_GOT_BUS)) {
16958 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16959 		sd_reset_target(un, pktp);
16960 	}
16961 
16962 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16963 
16964 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16965 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16966 }
16967 
16968 
16969 
16970 /*
16971  *    Function: sd_pkt_reason_cmd_reset
16972  *
16973  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
16974  *
16975  *     Context: May be called from interrupt context
16976  */
16977 
16978 static void
16979 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
16980 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16981 {
16982 	ASSERT(un != NULL);
16983 	ASSERT(mutex_owned(SD_MUTEX(un)));
16984 	ASSERT(bp != NULL);
16985 	ASSERT(xp != NULL);
16986 	ASSERT(pktp != NULL);
16987 
16988 	/* The target may still be running the command, so try to reset. */
16989 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16990 	sd_reset_target(un, pktp);
16991 
16992 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16993 
16994 	/*
16995 	 * If pkt_reason is CMD_RESET chances are that this pkt got
16996 	 * reset because another target on this bus caused it. The target
16997 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16998 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16999 	 */
17000 
17001 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17002 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17003 }
17004 
17005 
17006 
17007 
17008 /*
17009  *    Function: sd_pkt_reason_cmd_aborted
17010  *
17011  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
17012  *
17013  *     Context: May be called from interrupt context
17014  */
17015 
17016 static void
17017 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
17018 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17019 {
17020 	ASSERT(un != NULL);
17021 	ASSERT(mutex_owned(SD_MUTEX(un)));
17022 	ASSERT(bp != NULL);
17023 	ASSERT(xp != NULL);
17024 	ASSERT(pktp != NULL);
17025 
17026 	/* The target may still be running the command, so try to reset. */
17027 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17028 	sd_reset_target(un, pktp);
17029 
17030 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17031 
17032 	/*
17033 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
17034 	 * aborted because another target on this bus caused it. The target
17035 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17036 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17037 	 */
17038 
17039 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17040 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17041 }
17042 
17043 
17044 
17045 /*
17046  *    Function: sd_pkt_reason_cmd_timeout
17047  *
17048  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
17049  *
17050  *     Context: May be called from interrupt context
17051  */
17052 
17053 static void
17054 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
17055 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17056 {
17057 	ASSERT(un != NULL);
17058 	ASSERT(mutex_owned(SD_MUTEX(un)));
17059 	ASSERT(bp != NULL);
17060 	ASSERT(xp != NULL);
17061 	ASSERT(pktp != NULL);
17062 
17063 
17064 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17065 	sd_reset_target(un, pktp);
17066 
17067 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17068 
17069 	/*
17070 	 * A command timeout indicates that we could not establish
17071 	 * communication with the target, so set SD_RETRIES_FAILFAST
17072 	 * as further retries/commands are likely to take a long time.
17073 	 */
17074 	sd_retry_command(un, bp,
17075 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
17076 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17077 }
17078 
17079 
17080 
17081 /*
17082  *    Function: sd_pkt_reason_cmd_unx_bus_free
17083  *
17084  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
17085  *
17086  *     Context: May be called from interrupt context
17087  */
17088 
17089 static void
17090 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
17091 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17092 {
17093 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
17094 
17095 	ASSERT(un != NULL);
17096 	ASSERT(mutex_owned(SD_MUTEX(un)));
17097 	ASSERT(bp != NULL);
17098 	ASSERT(xp != NULL);
17099 	ASSERT(pktp != NULL);
17100 
17101 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17102 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17103 
17104 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
17105 	    sd_print_retry_msg : NULL;
17106 
17107 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17108 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17109 }
17110 
17111 
17112 /*
17113  *    Function: sd_pkt_reason_cmd_tag_reject
17114  *
17115  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
17116  *
17117  *     Context: May be called from interrupt context
17118  */
17119 
17120 static void
17121 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
17122 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17123 {
17124 	ASSERT(un != NULL);
17125 	ASSERT(mutex_owned(SD_MUTEX(un)));
17126 	ASSERT(bp != NULL);
17127 	ASSERT(xp != NULL);
17128 	ASSERT(pktp != NULL);
17129 
17130 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17131 	pktp->pkt_flags = 0;
17132 	un->un_tagflags = 0;
17133 	if (un->un_f_opt_queueing == TRUE) {
17134 		un->un_throttle = min(un->un_throttle, 3);
17135 	} else {
17136 		un->un_throttle = 1;
17137 	}
17138 	mutex_exit(SD_MUTEX(un));
17139 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
17140 	mutex_enter(SD_MUTEX(un));
17141 
17142 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17143 
17144 	/* Legacy behavior not to check retry counts here. */
17145 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
17146 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17147 }
17148 
17149 
17150 /*
17151  *    Function: sd_pkt_reason_default
17152  *
17153  * Description: Default recovery actions for SCSA pkt_reason values that
17154  *		do not have more explicit recovery actions.
17155  *
17156  *     Context: May be called from interrupt context
17157  */
17158 
17159 static void
17160 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
17161 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17162 {
17163 	ASSERT(un != NULL);
17164 	ASSERT(mutex_owned(SD_MUTEX(un)));
17165 	ASSERT(bp != NULL);
17166 	ASSERT(xp != NULL);
17167 	ASSERT(pktp != NULL);
17168 
17169 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17170 	sd_reset_target(un, pktp);
17171 
17172 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17173 
17174 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17175 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17176 }
17177 
17178 
17179 
17180 /*
17181  *    Function: sd_pkt_status_check_condition
17182  *
17183  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
17184  *
17185  *     Context: May be called from interrupt context
17186  */
17187 
17188 static void
17189 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
17190 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17191 {
17192 	ASSERT(un != NULL);
17193 	ASSERT(mutex_owned(SD_MUTEX(un)));
17194 	ASSERT(bp != NULL);
17195 	ASSERT(xp != NULL);
17196 	ASSERT(pktp != NULL);
17197 
17198 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
17199 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
17200 
17201 	/*
17202 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
17203 	 * command will be retried after the request sense). Otherwise, retry
17204 	 * the command. Note: we are issuing the request sense even though the
17205 	 * retry limit may have been reached for the failed command.
17206 	 */
17207 	if (un->un_f_arq_enabled == FALSE) {
17208 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17209 		    "no ARQ, sending request sense command\n");
17210 		sd_send_request_sense_command(un, bp, pktp);
17211 	} else {
17212 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17213 		    "ARQ,retrying request sense command\n");
17214 #if defined(__i386) || defined(__amd64)
17215 		/*
17216 		 * The SD_RETRY_DELAY value need to be adjusted here
17217 		 * when SD_RETRY_DELAY change in sddef.h
17218 		 */
17219 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17220 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
17221 		    NULL);
17222 #else
17223 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
17224 		    EIO, SD_RETRY_DELAY, NULL);
17225 #endif
17226 	}
17227 
17228 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
17229 }
17230 
17231 
17232 /*
17233  *    Function: sd_pkt_status_busy
17234  *
17235  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
17236  *
17237  *     Context: May be called from interrupt context
17238  */
17239 
17240 static void
17241 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17242 	struct scsi_pkt *pktp)
17243 {
17244 	ASSERT(un != NULL);
17245 	ASSERT(mutex_owned(SD_MUTEX(un)));
17246 	ASSERT(bp != NULL);
17247 	ASSERT(xp != NULL);
17248 	ASSERT(pktp != NULL);
17249 
17250 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17251 	    "sd_pkt_status_busy: entry\n");
17252 
17253 	/* If retries are exhausted, just fail the command. */
17254 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
17255 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17256 		    "device busy too long\n");
17257 		sd_return_failed_command(un, bp, EIO);
17258 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17259 		    "sd_pkt_status_busy: exit\n");
17260 		return;
17261 	}
17262 	xp->xb_retry_count++;
17263 
17264 	/*
17265 	 * Try to reset the target. However, we do not want to perform
17266 	 * more than one reset if the device continues to fail. The reset
17267 	 * will be performed when the retry count reaches the reset
17268 	 * threshold.  This threshold should be set such that at least
17269 	 * one retry is issued before the reset is performed.
17270 	 */
17271 	if (xp->xb_retry_count ==
17272 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
17273 		int rval = 0;
17274 		mutex_exit(SD_MUTEX(un));
17275 		if (un->un_f_allow_bus_device_reset == TRUE) {
17276 			/*
17277 			 * First try to reset the LUN; if we cannot then
17278 			 * try to reset the target.
17279 			 */
17280 			if (un->un_f_lun_reset_enabled == TRUE) {
17281 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17282 				    "sd_pkt_status_busy: RESET_LUN\n");
17283 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17284 			}
17285 			if (rval == 0) {
17286 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17287 				    "sd_pkt_status_busy: RESET_TARGET\n");
17288 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17289 			}
17290 		}
17291 		if (rval == 0) {
17292 			/*
17293 			 * If the RESET_LUN and/or RESET_TARGET failed,
17294 			 * try RESET_ALL
17295 			 */
17296 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17297 			    "sd_pkt_status_busy: RESET_ALL\n");
17298 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
17299 		}
17300 		mutex_enter(SD_MUTEX(un));
17301 		if (rval == 0) {
17302 			/*
17303 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
17304 			 * At this point we give up & fail the command.
17305 			 */
17306 			sd_return_failed_command(un, bp, EIO);
17307 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17308 			    "sd_pkt_status_busy: exit (failed cmd)\n");
17309 			return;
17310 		}
17311 	}
17312 
17313 	/*
17314 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
17315 	 * we have already checked the retry counts above.
17316 	 */
17317 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
17318 	    EIO, SD_BSY_TIMEOUT, NULL);
17319 
17320 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17321 	    "sd_pkt_status_busy: exit\n");
17322 }
17323 
17324 
17325 /*
17326  *    Function: sd_pkt_status_reservation_conflict
17327  *
17328  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
17329  *		command status.
17330  *
17331  *     Context: May be called from interrupt context
17332  */
17333 
17334 static void
17335 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
17336 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17337 {
17338 	ASSERT(un != NULL);
17339 	ASSERT(mutex_owned(SD_MUTEX(un)));
17340 	ASSERT(bp != NULL);
17341 	ASSERT(xp != NULL);
17342 	ASSERT(pktp != NULL);
17343 
17344 	/*
17345 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
17346 	 * conflict could be due to various reasons like incorrect keys, not
17347 	 * registered or not reserved etc. So, we return EACCES to the caller.
17348 	 */
17349 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
17350 		int cmd = SD_GET_PKT_OPCODE(pktp);
17351 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
17352 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
17353 			sd_return_failed_command(un, bp, EACCES);
17354 			return;
17355 		}
17356 	}
17357 
17358 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
17359 
17360 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
17361 		if (sd_failfast_enable != 0) {
17362 			/* By definition, we must panic here.... */
17363 			sd_panic_for_res_conflict(un);
17364 			/*NOTREACHED*/
17365 		}
17366 		SD_ERROR(SD_LOG_IO, un,
17367 		    "sd_handle_resv_conflict: Disk Reserved\n");
17368 		sd_return_failed_command(un, bp, EACCES);
17369 		return;
17370 	}
17371 
17372 	/*
17373 	 * 1147670: retry only if sd_retry_on_reservation_conflict
17374 	 * property is set (default is 1). Retries will not succeed
17375 	 * on a disk reserved by another initiator. HA systems
17376 	 * may reset this via sd.conf to avoid these retries.
17377 	 *
17378 	 * Note: The legacy return code for this failure is EIO, however EACCES
17379 	 * seems more appropriate for a reservation conflict.
17380 	 */
17381 	if (sd_retry_on_reservation_conflict == 0) {
17382 		SD_ERROR(SD_LOG_IO, un,
17383 		    "sd_handle_resv_conflict: Device Reserved\n");
17384 		sd_return_failed_command(un, bp, EIO);
17385 		return;
17386 	}
17387 
17388 	/*
17389 	 * Retry the command if we can.
17390 	 *
17391 	 * Note: The legacy return code for this failure is EIO, however EACCES
17392 	 * seems more appropriate for a reservation conflict.
17393 	 */
17394 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17395 	    (clock_t)2, NULL);
17396 }
17397 
17398 
17399 
17400 /*
17401  *    Function: sd_pkt_status_qfull
17402  *
17403  * Description: Handle a QUEUE FULL condition from the target.  This can
17404  *		occur if the HBA does not handle the queue full condition.
17405  *		(Basically this means third-party HBAs as Sun HBAs will
17406  *		handle the queue full condition.)  Note that if there are
17407  *		some commands already in the transport, then the queue full
17408  *		has occurred because the queue for this nexus is actually
17409  *		full. If there are no commands in the transport, then the
17410  *		queue full is resulting from some other initiator or lun
17411  *		consuming all the resources at the target.
17412  *
17413  *     Context: May be called from interrupt context
17414  */
17415 
17416 static void
17417 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17418 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17419 {
17420 	ASSERT(un != NULL);
17421 	ASSERT(mutex_owned(SD_MUTEX(un)));
17422 	ASSERT(bp != NULL);
17423 	ASSERT(xp != NULL);
17424 	ASSERT(pktp != NULL);
17425 
17426 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17427 	    "sd_pkt_status_qfull: entry\n");
17428 
17429 	/*
17430 	 * Just lower the QFULL throttle and retry the command.  Note that
17431 	 * we do not limit the number of retries here.
17432 	 */
17433 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17434 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17435 	    SD_RESTART_TIMEOUT, NULL);
17436 
17437 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17438 	    "sd_pkt_status_qfull: exit\n");
17439 }
17440 
17441 
17442 /*
17443  *    Function: sd_reset_target
17444  *
17445  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17446  *		RESET_TARGET, or RESET_ALL.
17447  *
17448  *     Context: May be called under interrupt context.
17449  */
17450 
17451 static void
17452 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17453 {
17454 	int rval = 0;
17455 
17456 	ASSERT(un != NULL);
17457 	ASSERT(mutex_owned(SD_MUTEX(un)));
17458 	ASSERT(pktp != NULL);
17459 
17460 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17461 
17462 	/*
17463 	 * No need to reset if the transport layer has already done so.
17464 	 */
17465 	if ((pktp->pkt_statistics &
17466 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17467 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17468 		    "sd_reset_target: no reset\n");
17469 		return;
17470 	}
17471 
17472 	mutex_exit(SD_MUTEX(un));
17473 
17474 	if (un->un_f_allow_bus_device_reset == TRUE) {
17475 		if (un->un_f_lun_reset_enabled == TRUE) {
17476 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17477 			    "sd_reset_target: RESET_LUN\n");
17478 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17479 		}
17480 		if (rval == 0) {
17481 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17482 			    "sd_reset_target: RESET_TARGET\n");
17483 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17484 		}
17485 	}
17486 
17487 	if (rval == 0) {
17488 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17489 		    "sd_reset_target: RESET_ALL\n");
17490 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17491 	}
17492 
17493 	mutex_enter(SD_MUTEX(un));
17494 
17495 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17496 }
17497 
17498 
17499 /*
17500  *    Function: sd_media_change_task
17501  *
17502  * Description: Recovery action for CDROM to become available.
17503  *
17504  *     Context: Executes in a taskq() thread context
17505  */
17506 
17507 static void
17508 sd_media_change_task(void *arg)
17509 {
17510 	struct	scsi_pkt	*pktp = arg;
17511 	struct	sd_lun		*un;
17512 	struct	buf		*bp;
17513 	struct	sd_xbuf		*xp;
17514 	int	err		= 0;
17515 	int	retry_count	= 0;
17516 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17517 	struct	sd_sense_info	si;
17518 
17519 	ASSERT(pktp != NULL);
17520 	bp = (struct buf *)pktp->pkt_private;
17521 	ASSERT(bp != NULL);
17522 	xp = SD_GET_XBUF(bp);
17523 	ASSERT(xp != NULL);
17524 	un = SD_GET_UN(bp);
17525 	ASSERT(un != NULL);
17526 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17527 	ASSERT(un->un_f_monitor_media_state);
17528 
17529 	si.ssi_severity = SCSI_ERR_INFO;
17530 	si.ssi_pfa_flag = FALSE;
17531 
17532 	/*
17533 	 * When a reset is issued on a CDROM, it takes a long time to
17534 	 * recover. First few attempts to read capacity and other things
17535 	 * related to handling unit attention fail (with a ASC 0x4 and
17536 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17537 	 * to limit the retries in other cases of genuine failures like
17538 	 * no media in drive.
17539 	 */
17540 	while (retry_count++ < retry_limit) {
17541 		if ((err = sd_handle_mchange(un)) == 0) {
17542 			break;
17543 		}
17544 		if (err == EAGAIN) {
17545 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17546 		}
17547 		/* Sleep for 0.5 sec. & try again */
17548 		delay(drv_usectohz(500000));
17549 	}
17550 
17551 	/*
17552 	 * Dispatch (retry or fail) the original command here,
17553 	 * along with appropriate console messages....
17554 	 *
17555 	 * Must grab the mutex before calling sd_retry_command,
17556 	 * sd_print_sense_msg and sd_return_failed_command.
17557 	 */
17558 	mutex_enter(SD_MUTEX(un));
17559 	if (err != SD_CMD_SUCCESS) {
17560 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17561 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17562 		si.ssi_severity = SCSI_ERR_FATAL;
17563 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17564 		sd_return_failed_command(un, bp, EIO);
17565 	} else {
17566 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17567 		    &si, EIO, (clock_t)0, NULL);
17568 	}
17569 	mutex_exit(SD_MUTEX(un));
17570 }
17571 
17572 
17573 
17574 /*
17575  *    Function: sd_handle_mchange
17576  *
17577  * Description: Perform geometry validation & other recovery when CDROM
17578  *		has been removed from drive.
17579  *
17580  * Return Code: 0 for success
17581  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17582  *		sd_send_scsi_READ_CAPACITY()
17583  *
17584  *     Context: Executes in a taskq() thread context
17585  */
17586 
17587 static int
17588 sd_handle_mchange(struct sd_lun *un)
17589 {
17590 	uint64_t	capacity;
17591 	uint32_t	lbasize;
17592 	int		rval;
17593 
17594 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17595 	ASSERT(un->un_f_monitor_media_state);
17596 
17597 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17598 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17599 		return (rval);
17600 	}
17601 
17602 	mutex_enter(SD_MUTEX(un));
17603 	sd_update_block_info(un, lbasize, capacity);
17604 
17605 	if (un->un_errstats != NULL) {
17606 		struct	sd_errstats *stp =
17607 		    (struct sd_errstats *)un->un_errstats->ks_data;
17608 		stp->sd_capacity.value.ui64 = (uint64_t)
17609 		    ((uint64_t)un->un_blockcount *
17610 		    (uint64_t)un->un_tgt_blocksize);
17611 	}
17612 
17613 
17614 	/*
17615 	 * Check if the media in the device is writable or not
17616 	 */
17617 	if (ISCD(un))
17618 		sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17619 
17620 	/*
17621 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17622 	 * valid geometry.
17623 	 */
17624 	mutex_exit(SD_MUTEX(un));
17625 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17626 
17627 
17628 	if (cmlb_validate(un->un_cmlbhandle, 0,
17629 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17630 		return (EIO);
17631 	} else {
17632 		if (un->un_f_pkstats_enabled) {
17633 			sd_set_pstats(un);
17634 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17635 			    "sd_handle_mchange: un:0x%p pstats created and "
17636 			    "set\n", un);
17637 		}
17638 	}
17639 
17640 
17641 	/*
17642 	 * Try to lock the door
17643 	 */
17644 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17645 	    SD_PATH_DIRECT_PRIORITY));
17646 }
17647 
17648 
17649 /*
17650  *    Function: sd_send_scsi_DOORLOCK
17651  *
17652  * Description: Issue the scsi DOOR LOCK command
17653  *
17654  *   Arguments: un    - pointer to driver soft state (unit) structure for
17655  *			this target.
17656  *		flag  - SD_REMOVAL_ALLOW
17657  *			SD_REMOVAL_PREVENT
17658  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17659  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17660  *			to use the USCSI "direct" chain and bypass the normal
17661  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17662  *			command is issued as part of an error recovery action.
17663  *
17664  * Return Code: 0   - Success
17665  *		errno return code from sd_send_scsi_cmd()
17666  *
17667  *     Context: Can sleep.
17668  */
17669 
17670 static int
17671 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17672 {
17673 	union scsi_cdb		cdb;
17674 	struct uscsi_cmd	ucmd_buf;
17675 	struct scsi_extended_sense	sense_buf;
17676 	int			status;
17677 
17678 	ASSERT(un != NULL);
17679 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17680 
17681 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17682 
17683 	/* already determined doorlock is not supported, fake success */
17684 	if (un->un_f_doorlock_supported == FALSE) {
17685 		return (0);
17686 	}
17687 
17688 	/*
17689 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17690 	 * ignore the command so we can complete the eject
17691 	 * operation.
17692 	 */
17693 	if (flag == SD_REMOVAL_PREVENT) {
17694 		mutex_enter(SD_MUTEX(un));
17695 		if (un->un_f_ejecting == TRUE) {
17696 			mutex_exit(SD_MUTEX(un));
17697 			return (EAGAIN);
17698 		}
17699 		mutex_exit(SD_MUTEX(un));
17700 	}
17701 
17702 	bzero(&cdb, sizeof (cdb));
17703 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17704 
17705 	cdb.scc_cmd = SCMD_DOORLOCK;
17706 	cdb.cdb_opaque[4] = (uchar_t)flag;
17707 
17708 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17709 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17710 	ucmd_buf.uscsi_bufaddr	= NULL;
17711 	ucmd_buf.uscsi_buflen	= 0;
17712 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17713 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17714 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17715 	ucmd_buf.uscsi_timeout	= 15;
17716 
17717 	SD_TRACE(SD_LOG_IO, un,
17718 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17719 
17720 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17721 	    UIO_SYSSPACE, path_flag);
17722 
17723 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17724 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17725 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17726 		/* fake success and skip subsequent doorlock commands */
17727 		un->un_f_doorlock_supported = FALSE;
17728 		return (0);
17729 	}
17730 
17731 	return (status);
17732 }
17733 
17734 /*
17735  *    Function: sd_send_scsi_READ_CAPACITY
17736  *
17737  * Description: This routine uses the scsi READ CAPACITY command to determine
17738  *		the device capacity in number of blocks and the device native
17739  *		block size. If this function returns a failure, then the
17740  *		values in *capp and *lbap are undefined.  If the capacity
17741  *		returned is 0xffffffff then the lun is too large for a
17742  *		normal READ CAPACITY command and the results of a
17743  *		READ CAPACITY 16 will be used instead.
17744  *
17745  *   Arguments: un   - ptr to soft state struct for the target
17746  *		capp - ptr to unsigned 64-bit variable to receive the
17747  *			capacity value from the command.
17748  *		lbap - ptr to unsigned 32-bit varaible to receive the
17749  *			block size value from the command
17750  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17751  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17752  *			to use the USCSI "direct" chain and bypass the normal
17753  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17754  *			command is issued as part of an error recovery action.
17755  *
17756  * Return Code: 0   - Success
17757  *		EIO - IO error
17758  *		EACCES - Reservation conflict detected
17759  *		EAGAIN - Device is becoming ready
17760  *		errno return code from sd_send_scsi_cmd()
17761  *
17762  *     Context: Can sleep.  Blocks until command completes.
17763  */
17764 
17765 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17766 
17767 static int
17768 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17769 	int path_flag)
17770 {
17771 	struct	scsi_extended_sense	sense_buf;
17772 	struct	uscsi_cmd	ucmd_buf;
17773 	union	scsi_cdb	cdb;
17774 	uint32_t		*capacity_buf;
17775 	uint64_t		capacity;
17776 	uint32_t		lbasize;
17777 	int			status;
17778 
17779 	ASSERT(un != NULL);
17780 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17781 	ASSERT(capp != NULL);
17782 	ASSERT(lbap != NULL);
17783 
17784 	SD_TRACE(SD_LOG_IO, un,
17785 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17786 
17787 	/*
17788 	 * First send a READ_CAPACITY command to the target.
17789 	 * (This command is mandatory under SCSI-2.)
17790 	 *
17791 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17792 	 * Medium Indicator bit is cleared.  The address field must be
17793 	 * zero if the PMI bit is zero.
17794 	 */
17795 	bzero(&cdb, sizeof (cdb));
17796 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17797 
17798 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17799 
17800 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17801 
17802 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17803 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17804 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17805 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17806 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17807 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17808 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17809 	ucmd_buf.uscsi_timeout	= 60;
17810 
17811 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17812 	    UIO_SYSSPACE, path_flag);
17813 
17814 	switch (status) {
17815 	case 0:
17816 		/* Return failure if we did not get valid capacity data. */
17817 		if (ucmd_buf.uscsi_resid != 0) {
17818 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17819 			return (EIO);
17820 		}
17821 
17822 		/*
17823 		 * Read capacity and block size from the READ CAPACITY 10 data.
17824 		 * This data may be adjusted later due to device specific
17825 		 * issues.
17826 		 *
17827 		 * According to the SCSI spec, the READ CAPACITY 10
17828 		 * command returns the following:
17829 		 *
17830 		 *  bytes 0-3: Maximum logical block address available.
17831 		 *		(MSB in byte:0 & LSB in byte:3)
17832 		 *
17833 		 *  bytes 4-7: Block length in bytes
17834 		 *		(MSB in byte:4 & LSB in byte:7)
17835 		 *
17836 		 */
17837 		capacity = BE_32(capacity_buf[0]);
17838 		lbasize = BE_32(capacity_buf[1]);
17839 
17840 		/*
17841 		 * Done with capacity_buf
17842 		 */
17843 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17844 
17845 		/*
17846 		 * if the reported capacity is set to all 0xf's, then
17847 		 * this disk is too large and requires SBC-2 commands.
17848 		 * Reissue the request using READ CAPACITY 16.
17849 		 */
17850 		if (capacity == 0xffffffff) {
17851 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
17852 			    &lbasize, path_flag);
17853 			if (status != 0) {
17854 				return (status);
17855 			}
17856 		}
17857 		break;	/* Success! */
17858 	case EIO:
17859 		switch (ucmd_buf.uscsi_status) {
17860 		case STATUS_RESERVATION_CONFLICT:
17861 			status = EACCES;
17862 			break;
17863 		case STATUS_CHECK:
17864 			/*
17865 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17866 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17867 			 */
17868 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17869 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17870 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17871 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17872 				return (EAGAIN);
17873 			}
17874 			break;
17875 		default:
17876 			break;
17877 		}
17878 		/* FALLTHRU */
17879 	default:
17880 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17881 		return (status);
17882 	}
17883 
17884 	/*
17885 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
17886 	 * (2352 and 0 are common) so for these devices always force the value
17887 	 * to 2048 as required by the ATAPI specs.
17888 	 */
17889 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
17890 		lbasize = 2048;
17891 	}
17892 
17893 	/*
17894 	 * Get the maximum LBA value from the READ CAPACITY data.
17895 	 * Here we assume that the Partial Medium Indicator (PMI) bit
17896 	 * was cleared when issuing the command. This means that the LBA
17897 	 * returned from the device is the LBA of the last logical block
17898 	 * on the logical unit.  The actual logical block count will be
17899 	 * this value plus one.
17900 	 *
17901 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
17902 	 * so scale the capacity value to reflect this.
17903 	 */
17904 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
17905 
17906 	/*
17907 	 * Copy the values from the READ CAPACITY command into the space
17908 	 * provided by the caller.
17909 	 */
17910 	*capp = capacity;
17911 	*lbap = lbasize;
17912 
17913 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
17914 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17915 
17916 	/*
17917 	 * Both the lbasize and capacity from the device must be nonzero,
17918 	 * otherwise we assume that the values are not valid and return
17919 	 * failure to the caller. (4203735)
17920 	 */
17921 	if ((capacity == 0) || (lbasize == 0)) {
17922 		return (EIO);
17923 	}
17924 
17925 	return (0);
17926 }
17927 
17928 /*
17929  *    Function: sd_send_scsi_READ_CAPACITY_16
17930  *
17931  * Description: This routine uses the scsi READ CAPACITY 16 command to
17932  *		determine the device capacity in number of blocks and the
17933  *		device native block size.  If this function returns a failure,
17934  *		then the values in *capp and *lbap are undefined.
17935  *		This routine should always be called by
17936  *		sd_send_scsi_READ_CAPACITY which will appy any device
17937  *		specific adjustments to capacity and lbasize.
17938  *
17939  *   Arguments: un   - ptr to soft state struct for the target
17940  *		capp - ptr to unsigned 64-bit variable to receive the
17941  *			capacity value from the command.
17942  *		lbap - ptr to unsigned 32-bit varaible to receive the
17943  *			block size value from the command
17944  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17945  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17946  *			to use the USCSI "direct" chain and bypass the normal
17947  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
17948  *			this command is issued as part of an error recovery
17949  *			action.
17950  *
17951  * Return Code: 0   - Success
17952  *		EIO - IO error
17953  *		EACCES - Reservation conflict detected
17954  *		EAGAIN - Device is becoming ready
17955  *		errno return code from sd_send_scsi_cmd()
17956  *
17957  *     Context: Can sleep.  Blocks until command completes.
17958  */
17959 
17960 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
17961 
17962 static int
17963 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
17964 	uint32_t *lbap, int path_flag)
17965 {
17966 	struct	scsi_extended_sense	sense_buf;
17967 	struct	uscsi_cmd	ucmd_buf;
17968 	union	scsi_cdb	cdb;
17969 	uint64_t		*capacity16_buf;
17970 	uint64_t		capacity;
17971 	uint32_t		lbasize;
17972 	int			status;
17973 
17974 	ASSERT(un != NULL);
17975 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17976 	ASSERT(capp != NULL);
17977 	ASSERT(lbap != NULL);
17978 
17979 	SD_TRACE(SD_LOG_IO, un,
17980 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17981 
17982 	/*
17983 	 * First send a READ_CAPACITY_16 command to the target.
17984 	 *
17985 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
17986 	 * Medium Indicator bit is cleared.  The address field must be
17987 	 * zero if the PMI bit is zero.
17988 	 */
17989 	bzero(&cdb, sizeof (cdb));
17990 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17991 
17992 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
17993 
17994 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17995 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
17996 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
17997 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
17998 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17999 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18000 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18001 	ucmd_buf.uscsi_timeout	= 60;
18002 
18003 	/*
18004 	 * Read Capacity (16) is a Service Action In command.  One
18005 	 * command byte (0x9E) is overloaded for multiple operations,
18006 	 * with the second CDB byte specifying the desired operation
18007 	 */
18008 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
18009 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
18010 
18011 	/*
18012 	 * Fill in allocation length field
18013 	 */
18014 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
18015 
18016 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18017 	    UIO_SYSSPACE, path_flag);
18018 
18019 	switch (status) {
18020 	case 0:
18021 		/* Return failure if we did not get valid capacity data. */
18022 		if (ucmd_buf.uscsi_resid > 20) {
18023 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18024 			return (EIO);
18025 		}
18026 
18027 		/*
18028 		 * Read capacity and block size from the READ CAPACITY 10 data.
18029 		 * This data may be adjusted later due to device specific
18030 		 * issues.
18031 		 *
18032 		 * According to the SCSI spec, the READ CAPACITY 10
18033 		 * command returns the following:
18034 		 *
18035 		 *  bytes 0-7: Maximum logical block address available.
18036 		 *		(MSB in byte:0 & LSB in byte:7)
18037 		 *
18038 		 *  bytes 8-11: Block length in bytes
18039 		 *		(MSB in byte:8 & LSB in byte:11)
18040 		 *
18041 		 */
18042 		capacity = BE_64(capacity16_buf[0]);
18043 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
18044 
18045 		/*
18046 		 * Done with capacity16_buf
18047 		 */
18048 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18049 
18050 		/*
18051 		 * if the reported capacity is set to all 0xf's, then
18052 		 * this disk is too large.  This could only happen with
18053 		 * a device that supports LBAs larger than 64 bits which
18054 		 * are not defined by any current T10 standards.
18055 		 */
18056 		if (capacity == 0xffffffffffffffff) {
18057 			return (EIO);
18058 		}
18059 		break;	/* Success! */
18060 	case EIO:
18061 		switch (ucmd_buf.uscsi_status) {
18062 		case STATUS_RESERVATION_CONFLICT:
18063 			status = EACCES;
18064 			break;
18065 		case STATUS_CHECK:
18066 			/*
18067 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18068 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18069 			 */
18070 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18071 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
18072 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
18073 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18074 				return (EAGAIN);
18075 			}
18076 			break;
18077 		default:
18078 			break;
18079 		}
18080 		/* FALLTHRU */
18081 	default:
18082 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18083 		return (status);
18084 	}
18085 
18086 	*capp = capacity;
18087 	*lbap = lbasize;
18088 
18089 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
18090 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18091 
18092 	return (0);
18093 }
18094 
18095 
18096 /*
18097  *    Function: sd_send_scsi_START_STOP_UNIT
18098  *
18099  * Description: Issue a scsi START STOP UNIT command to the target.
18100  *
18101  *   Arguments: un    - pointer to driver soft state (unit) structure for
18102  *			this target.
18103  *		flag  - SD_TARGET_START
18104  *			SD_TARGET_STOP
18105  *			SD_TARGET_EJECT
18106  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18107  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18108  *			to use the USCSI "direct" chain and bypass the normal
18109  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18110  *			command is issued as part of an error recovery action.
18111  *
18112  * Return Code: 0   - Success
18113  *		EIO - IO error
18114  *		EACCES - Reservation conflict detected
18115  *		ENXIO  - Not Ready, medium not present
18116  *		errno return code from sd_send_scsi_cmd()
18117  *
18118  *     Context: Can sleep.
18119  */
18120 
18121 static int
18122 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
18123 {
18124 	struct	scsi_extended_sense	sense_buf;
18125 	union scsi_cdb		cdb;
18126 	struct uscsi_cmd	ucmd_buf;
18127 	int			status;
18128 
18129 	ASSERT(un != NULL);
18130 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18131 
18132 	SD_TRACE(SD_LOG_IO, un,
18133 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
18134 
18135 	if (un->un_f_check_start_stop &&
18136 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
18137 	    (un->un_f_start_stop_supported != TRUE)) {
18138 		return (0);
18139 	}
18140 
18141 	/*
18142 	 * If we are performing an eject operation and
18143 	 * we receive any command other than SD_TARGET_EJECT
18144 	 * we should immediately return.
18145 	 */
18146 	if (flag != SD_TARGET_EJECT) {
18147 		mutex_enter(SD_MUTEX(un));
18148 		if (un->un_f_ejecting == TRUE) {
18149 			mutex_exit(SD_MUTEX(un));
18150 			return (EAGAIN);
18151 		}
18152 		mutex_exit(SD_MUTEX(un));
18153 	}
18154 
18155 	bzero(&cdb, sizeof (cdb));
18156 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18157 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18158 
18159 	cdb.scc_cmd = SCMD_START_STOP;
18160 	cdb.cdb_opaque[4] = (uchar_t)flag;
18161 
18162 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18163 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18164 	ucmd_buf.uscsi_bufaddr	= NULL;
18165 	ucmd_buf.uscsi_buflen	= 0;
18166 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18167 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18168 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18169 	ucmd_buf.uscsi_timeout	= 200;
18170 
18171 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18172 	    UIO_SYSSPACE, path_flag);
18173 
18174 	switch (status) {
18175 	case 0:
18176 		break;	/* Success! */
18177 	case EIO:
18178 		switch (ucmd_buf.uscsi_status) {
18179 		case STATUS_RESERVATION_CONFLICT:
18180 			status = EACCES;
18181 			break;
18182 		case STATUS_CHECK:
18183 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
18184 				switch (scsi_sense_key(
18185 				    (uint8_t *)&sense_buf)) {
18186 				case KEY_ILLEGAL_REQUEST:
18187 					status = ENOTSUP;
18188 					break;
18189 				case KEY_NOT_READY:
18190 					if (scsi_sense_asc(
18191 					    (uint8_t *)&sense_buf)
18192 					    == 0x3A) {
18193 						status = ENXIO;
18194 					}
18195 					break;
18196 				default:
18197 					break;
18198 				}
18199 			}
18200 			break;
18201 		default:
18202 			break;
18203 		}
18204 		break;
18205 	default:
18206 		break;
18207 	}
18208 
18209 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
18210 
18211 	return (status);
18212 }
18213 
18214 
18215 /*
18216  *    Function: sd_start_stop_unit_callback
18217  *
18218  * Description: timeout(9F) callback to begin recovery process for a
18219  *		device that has spun down.
18220  *
18221  *   Arguments: arg - pointer to associated softstate struct.
18222  *
18223  *     Context: Executes in a timeout(9F) thread context
18224  */
18225 
18226 static void
18227 sd_start_stop_unit_callback(void *arg)
18228 {
18229 	struct sd_lun	*un = arg;
18230 	ASSERT(un != NULL);
18231 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18232 
18233 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
18234 
18235 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
18236 }
18237 
18238 
18239 /*
18240  *    Function: sd_start_stop_unit_task
18241  *
18242  * Description: Recovery procedure when a drive is spun down.
18243  *
18244  *   Arguments: arg - pointer to associated softstate struct.
18245  *
18246  *     Context: Executes in a taskq() thread context
18247  */
18248 
18249 static void
18250 sd_start_stop_unit_task(void *arg)
18251 {
18252 	struct sd_lun	*un = arg;
18253 
18254 	ASSERT(un != NULL);
18255 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18256 
18257 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
18258 
18259 	/*
18260 	 * Some unformatted drives report not ready error, no need to
18261 	 * restart if format has been initiated.
18262 	 */
18263 	mutex_enter(SD_MUTEX(un));
18264 	if (un->un_f_format_in_progress == TRUE) {
18265 		mutex_exit(SD_MUTEX(un));
18266 		return;
18267 	}
18268 	mutex_exit(SD_MUTEX(un));
18269 
18270 	/*
18271 	 * When a START STOP command is issued from here, it is part of a
18272 	 * failure recovery operation and must be issued before any other
18273 	 * commands, including any pending retries. Thus it must be sent
18274 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
18275 	 * succeeds or not, we will start I/O after the attempt.
18276 	 */
18277 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
18278 	    SD_PATH_DIRECT_PRIORITY);
18279 
18280 	/*
18281 	 * The above call blocks until the START_STOP_UNIT command completes.
18282 	 * Now that it has completed, we must re-try the original IO that
18283 	 * received the NOT READY condition in the first place. There are
18284 	 * three possible conditions here:
18285 	 *
18286 	 *  (1) The original IO is on un_retry_bp.
18287 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
18288 	 *	is NULL.
18289 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
18290 	 *	points to some other, unrelated bp.
18291 	 *
18292 	 * For each case, we must call sd_start_cmds() with un_retry_bp
18293 	 * as the argument. If un_retry_bp is NULL, this will initiate
18294 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
18295 	 * then this will process the bp on un_retry_bp. That may or may not
18296 	 * be the original IO, but that does not matter: the important thing
18297 	 * is to keep the IO processing going at this point.
18298 	 *
18299 	 * Note: This is a very specific error recovery sequence associated
18300 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
18301 	 * serialize the I/O with completion of the spin-up.
18302 	 */
18303 	mutex_enter(SD_MUTEX(un));
18304 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18305 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
18306 	    un, un->un_retry_bp);
18307 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
18308 	sd_start_cmds(un, un->un_retry_bp);
18309 	mutex_exit(SD_MUTEX(un));
18310 
18311 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
18312 }
18313 
18314 
18315 /*
18316  *    Function: sd_send_scsi_INQUIRY
18317  *
18318  * Description: Issue the scsi INQUIRY command.
18319  *
18320  *   Arguments: un
18321  *		bufaddr
18322  *		buflen
18323  *		evpd
18324  *		page_code
18325  *		page_length
18326  *
18327  * Return Code: 0   - Success
18328  *		errno return code from sd_send_scsi_cmd()
18329  *
18330  *     Context: Can sleep. Does not return until command is completed.
18331  */
18332 
18333 static int
18334 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
18335 	uchar_t evpd, uchar_t page_code, size_t *residp)
18336 {
18337 	union scsi_cdb		cdb;
18338 	struct uscsi_cmd	ucmd_buf;
18339 	int			status;
18340 
18341 	ASSERT(un != NULL);
18342 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18343 	ASSERT(bufaddr != NULL);
18344 
18345 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
18346 
18347 	bzero(&cdb, sizeof (cdb));
18348 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18349 	bzero(bufaddr, buflen);
18350 
18351 	cdb.scc_cmd = SCMD_INQUIRY;
18352 	cdb.cdb_opaque[1] = evpd;
18353 	cdb.cdb_opaque[2] = page_code;
18354 	FORMG0COUNT(&cdb, buflen);
18355 
18356 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18357 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18358 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18359 	ucmd_buf.uscsi_buflen	= buflen;
18360 	ucmd_buf.uscsi_rqbuf	= NULL;
18361 	ucmd_buf.uscsi_rqlen	= 0;
18362 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
18363 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
18364 
18365 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18366 	    UIO_SYSSPACE, SD_PATH_DIRECT);
18367 
18368 	if ((status == 0) && (residp != NULL)) {
18369 		*residp = ucmd_buf.uscsi_resid;
18370 	}
18371 
18372 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
18373 
18374 	return (status);
18375 }
18376 
18377 
18378 /*
18379  *    Function: sd_send_scsi_TEST_UNIT_READY
18380  *
18381  * Description: Issue the scsi TEST UNIT READY command.
18382  *		This routine can be told to set the flag USCSI_DIAGNOSE to
18383  *		prevent retrying failed commands. Use this when the intent
18384  *		is either to check for device readiness, to clear a Unit
18385  *		Attention, or to clear any outstanding sense data.
18386  *		However under specific conditions the expected behavior
18387  *		is for retries to bring a device ready, so use the flag
18388  *		with caution.
18389  *
18390  *   Arguments: un
18391  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18392  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18393  *			0: dont check for media present, do retries on cmd.
18394  *
18395  * Return Code: 0   - Success
18396  *		EIO - IO error
18397  *		EACCES - Reservation conflict detected
18398  *		ENXIO  - Not Ready, medium not present
18399  *		errno return code from sd_send_scsi_cmd()
18400  *
18401  *     Context: Can sleep. Does not return until command is completed.
18402  */
18403 
18404 static int
18405 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18406 {
18407 	struct	scsi_extended_sense	sense_buf;
18408 	union scsi_cdb		cdb;
18409 	struct uscsi_cmd	ucmd_buf;
18410 	int			status;
18411 
18412 	ASSERT(un != NULL);
18413 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18414 
18415 	SD_TRACE(SD_LOG_IO, un,
18416 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18417 
18418 	/*
18419 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18420 	 * timeouts when they receive a TUR and the queue is not empty. Check
18421 	 * the configuration flag set during attach (indicating the drive has
18422 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18423 	 * TUR. If there are
18424 	 * pending commands return success, this is a bit arbitrary but is ok
18425 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18426 	 * configurations.
18427 	 */
18428 	if (un->un_f_cfg_tur_check == TRUE) {
18429 		mutex_enter(SD_MUTEX(un));
18430 		if (un->un_ncmds_in_transport != 0) {
18431 			mutex_exit(SD_MUTEX(un));
18432 			return (0);
18433 		}
18434 		mutex_exit(SD_MUTEX(un));
18435 	}
18436 
18437 	bzero(&cdb, sizeof (cdb));
18438 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18439 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18440 
18441 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18442 
18443 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18444 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18445 	ucmd_buf.uscsi_bufaddr	= NULL;
18446 	ucmd_buf.uscsi_buflen	= 0;
18447 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18448 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18449 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18450 
18451 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18452 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18453 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18454 	}
18455 	ucmd_buf.uscsi_timeout	= 60;
18456 
18457 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18458 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18459 	    SD_PATH_STANDARD));
18460 
18461 	switch (status) {
18462 	case 0:
18463 		break;	/* Success! */
18464 	case EIO:
18465 		switch (ucmd_buf.uscsi_status) {
18466 		case STATUS_RESERVATION_CONFLICT:
18467 			status = EACCES;
18468 			break;
18469 		case STATUS_CHECK:
18470 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18471 				break;
18472 			}
18473 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18474 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18475 			    KEY_NOT_READY) &&
18476 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18477 				status = ENXIO;
18478 			}
18479 			break;
18480 		default:
18481 			break;
18482 		}
18483 		break;
18484 	default:
18485 		break;
18486 	}
18487 
18488 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18489 
18490 	return (status);
18491 }
18492 
18493 
18494 /*
18495  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18496  *
18497  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18498  *
18499  *   Arguments: un
18500  *
18501  * Return Code: 0   - Success
18502  *		EACCES
18503  *		ENOTSUP
18504  *		errno return code from sd_send_scsi_cmd()
18505  *
18506  *     Context: Can sleep. Does not return until command is completed.
18507  */
18508 
18509 static int
18510 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18511 	uint16_t data_len, uchar_t *data_bufp)
18512 {
18513 	struct scsi_extended_sense	sense_buf;
18514 	union scsi_cdb		cdb;
18515 	struct uscsi_cmd	ucmd_buf;
18516 	int			status;
18517 	int			no_caller_buf = FALSE;
18518 
18519 	ASSERT(un != NULL);
18520 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18521 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18522 
18523 	SD_TRACE(SD_LOG_IO, un,
18524 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18525 
18526 	bzero(&cdb, sizeof (cdb));
18527 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18528 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18529 	if (data_bufp == NULL) {
18530 		/* Allocate a default buf if the caller did not give one */
18531 		ASSERT(data_len == 0);
18532 		data_len  = MHIOC_RESV_KEY_SIZE;
18533 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18534 		no_caller_buf = TRUE;
18535 	}
18536 
18537 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18538 	cdb.cdb_opaque[1] = usr_cmd;
18539 	FORMG1COUNT(&cdb, data_len);
18540 
18541 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18542 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18543 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18544 	ucmd_buf.uscsi_buflen	= data_len;
18545 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18546 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18547 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18548 	ucmd_buf.uscsi_timeout	= 60;
18549 
18550 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18551 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18552 
18553 	switch (status) {
18554 	case 0:
18555 		break;	/* Success! */
18556 	case EIO:
18557 		switch (ucmd_buf.uscsi_status) {
18558 		case STATUS_RESERVATION_CONFLICT:
18559 			status = EACCES;
18560 			break;
18561 		case STATUS_CHECK:
18562 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18563 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18564 			    KEY_ILLEGAL_REQUEST)) {
18565 				status = ENOTSUP;
18566 			}
18567 			break;
18568 		default:
18569 			break;
18570 		}
18571 		break;
18572 	default:
18573 		break;
18574 	}
18575 
18576 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18577 
18578 	if (no_caller_buf == TRUE) {
18579 		kmem_free(data_bufp, data_len);
18580 	}
18581 
18582 	return (status);
18583 }
18584 
18585 
18586 /*
18587  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18588  *
18589  * Description: This routine is the driver entry point for handling CD-ROM
18590  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18591  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18592  *		device.
18593  *
18594  *   Arguments: un  -   Pointer to soft state struct for the target.
18595  *		usr_cmd SCSI-3 reservation facility command (one of
18596  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18597  *			SD_SCSI3_PREEMPTANDABORT)
18598  *		usr_bufp - user provided pointer register, reserve descriptor or
18599  *			preempt and abort structure (mhioc_register_t,
18600  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18601  *
18602  * Return Code: 0   - Success
18603  *		EACCES
18604  *		ENOTSUP
18605  *		errno return code from sd_send_scsi_cmd()
18606  *
18607  *     Context: Can sleep. Does not return until command is completed.
18608  */
18609 
18610 static int
18611 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18612 	uchar_t	*usr_bufp)
18613 {
18614 	struct scsi_extended_sense	sense_buf;
18615 	union scsi_cdb		cdb;
18616 	struct uscsi_cmd	ucmd_buf;
18617 	int			status;
18618 	uchar_t			data_len = sizeof (sd_prout_t);
18619 	sd_prout_t		*prp;
18620 
18621 	ASSERT(un != NULL);
18622 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18623 	ASSERT(data_len == 24);	/* required by scsi spec */
18624 
18625 	SD_TRACE(SD_LOG_IO, un,
18626 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18627 
18628 	if (usr_bufp == NULL) {
18629 		return (EINVAL);
18630 	}
18631 
18632 	bzero(&cdb, sizeof (cdb));
18633 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18634 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18635 	prp = kmem_zalloc(data_len, KM_SLEEP);
18636 
18637 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18638 	cdb.cdb_opaque[1] = usr_cmd;
18639 	FORMG1COUNT(&cdb, data_len);
18640 
18641 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18642 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18643 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18644 	ucmd_buf.uscsi_buflen	= data_len;
18645 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18646 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18647 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18648 	ucmd_buf.uscsi_timeout	= 60;
18649 
18650 	switch (usr_cmd) {
18651 	case SD_SCSI3_REGISTER: {
18652 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18653 
18654 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18655 		bcopy(ptr->newkey.key, prp->service_key,
18656 		    MHIOC_RESV_KEY_SIZE);
18657 		prp->aptpl = ptr->aptpl;
18658 		break;
18659 	}
18660 	case SD_SCSI3_RESERVE:
18661 	case SD_SCSI3_RELEASE: {
18662 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18663 
18664 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18665 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18666 		cdb.cdb_opaque[2] = ptr->type;
18667 		break;
18668 	}
18669 	case SD_SCSI3_PREEMPTANDABORT: {
18670 		mhioc_preemptandabort_t *ptr =
18671 		    (mhioc_preemptandabort_t *)usr_bufp;
18672 
18673 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18674 		bcopy(ptr->victim_key.key, prp->service_key,
18675 		    MHIOC_RESV_KEY_SIZE);
18676 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18677 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18678 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18679 		break;
18680 	}
18681 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18682 	{
18683 		mhioc_registerandignorekey_t *ptr;
18684 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18685 		bcopy(ptr->newkey.key,
18686 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18687 		prp->aptpl = ptr->aptpl;
18688 		break;
18689 	}
18690 	default:
18691 		ASSERT(FALSE);
18692 		break;
18693 	}
18694 
18695 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18696 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18697 
18698 	switch (status) {
18699 	case 0:
18700 		break;	/* Success! */
18701 	case EIO:
18702 		switch (ucmd_buf.uscsi_status) {
18703 		case STATUS_RESERVATION_CONFLICT:
18704 			status = EACCES;
18705 			break;
18706 		case STATUS_CHECK:
18707 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18708 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18709 			    KEY_ILLEGAL_REQUEST)) {
18710 				status = ENOTSUP;
18711 			}
18712 			break;
18713 		default:
18714 			break;
18715 		}
18716 		break;
18717 	default:
18718 		break;
18719 	}
18720 
18721 	kmem_free(prp, data_len);
18722 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18723 	return (status);
18724 }
18725 
18726 
18727 /*
18728  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18729  *
18730  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18731  *
18732  *   Arguments: un - pointer to the target's soft state struct
18733  *              dkc - pointer to the callback structure
18734  *
18735  * Return Code: 0 - success
18736  *		errno-type error code
18737  *
18738  *     Context: kernel thread context only.
18739  *
18740  *  _______________________________________________________________
18741  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
18742  * |FLUSH_VOLATILE|              | operation                       |
18743  * |______________|______________|_________________________________|
18744  * | 0            | NULL         | Synchronous flush on both       |
18745  * |              |              | volatile and non-volatile cache |
18746  * |______________|______________|_________________________________|
18747  * | 1            | NULL         | Synchronous flush on volatile   |
18748  * |              |              | cache; disk drivers may suppress|
18749  * |              |              | flush if disk table indicates   |
18750  * |              |              | non-volatile cache              |
18751  * |______________|______________|_________________________________|
18752  * | 0            | !NULL        | Asynchronous flush on both      |
18753  * |              |              | volatile and non-volatile cache;|
18754  * |______________|______________|_________________________________|
18755  * | 1            | !NULL        | Asynchronous flush on volatile  |
18756  * |              |              | cache; disk drivers may suppress|
18757  * |              |              | flush if disk table indicates   |
18758  * |              |              | non-volatile cache              |
18759  * |______________|______________|_________________________________|
18760  *
18761  */
18762 
18763 static int
18764 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18765 {
18766 	struct sd_uscsi_info	*uip;
18767 	struct uscsi_cmd	*uscmd;
18768 	union scsi_cdb		*cdb;
18769 	struct buf		*bp;
18770 	int			rval = 0;
18771 	int			is_async;
18772 
18773 	SD_TRACE(SD_LOG_IO, un,
18774 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18775 
18776 	ASSERT(un != NULL);
18777 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18778 
18779 	if (dkc == NULL || dkc->dkc_callback == NULL) {
18780 		is_async = FALSE;
18781 	} else {
18782 		is_async = TRUE;
18783 	}
18784 
18785 	mutex_enter(SD_MUTEX(un));
18786 	/* check whether cache flush should be suppressed */
18787 	if (un->un_f_suppress_cache_flush == TRUE) {
18788 		mutex_exit(SD_MUTEX(un));
18789 		/*
18790 		 * suppress the cache flush if the device is told to do
18791 		 * so by sd.conf or disk table
18792 		 */
18793 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
18794 		    skip the cache flush since suppress_cache_flush is %d!\n",
18795 		    un->un_f_suppress_cache_flush);
18796 
18797 		if (is_async == TRUE) {
18798 			/* invoke callback for asynchronous flush */
18799 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
18800 		}
18801 		return (rval);
18802 	}
18803 	mutex_exit(SD_MUTEX(un));
18804 
18805 	/*
18806 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
18807 	 * set properly
18808 	 */
18809 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18810 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18811 
18812 	mutex_enter(SD_MUTEX(un));
18813 	if (dkc != NULL && un->un_f_sync_nv_supported &&
18814 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
18815 		/*
18816 		 * if the device supports SYNC_NV bit, turn on
18817 		 * the SYNC_NV bit to only flush volatile cache
18818 		 */
18819 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
18820 	}
18821 	mutex_exit(SD_MUTEX(un));
18822 
18823 	/*
18824 	 * First get some memory for the uscsi_cmd struct and cdb
18825 	 * and initialize for SYNCHRONIZE_CACHE cmd.
18826 	 */
18827 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
18828 	uscmd->uscsi_cdblen = CDB_GROUP1;
18829 	uscmd->uscsi_cdb = (caddr_t)cdb;
18830 	uscmd->uscsi_bufaddr = NULL;
18831 	uscmd->uscsi_buflen = 0;
18832 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
18833 	uscmd->uscsi_rqlen = SENSE_LENGTH;
18834 	uscmd->uscsi_rqresid = SENSE_LENGTH;
18835 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
18836 	uscmd->uscsi_timeout = sd_io_time;
18837 
18838 	/*
18839 	 * Allocate an sd_uscsi_info struct and fill it with the info
18840 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
18841 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
18842 	 * since we allocate the buf here in this function, we do not
18843 	 * need to preserve the prior contents of b_private.
18844 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
18845 	 */
18846 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
18847 	uip->ui_flags = SD_PATH_DIRECT;
18848 	uip->ui_cmdp  = uscmd;
18849 
18850 	bp = getrbuf(KM_SLEEP);
18851 	bp->b_private = uip;
18852 
18853 	/*
18854 	 * Setup buffer to carry uscsi request.
18855 	 */
18856 	bp->b_flags  = B_BUSY;
18857 	bp->b_bcount = 0;
18858 	bp->b_blkno  = 0;
18859 
18860 	if (is_async == TRUE) {
18861 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
18862 		uip->ui_dkc = *dkc;
18863 	}
18864 
18865 	bp->b_edev = SD_GET_DEV(un);
18866 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
18867 
18868 	(void) sd_uscsi_strategy(bp);
18869 
18870 	/*
18871 	 * If synchronous request, wait for completion
18872 	 * If async just return and let b_iodone callback
18873 	 * cleanup.
18874 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
18875 	 * but it was also incremented in sd_uscsi_strategy(), so
18876 	 * we should be ok.
18877 	 */
18878 	if (is_async == FALSE) {
18879 		(void) biowait(bp);
18880 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
18881 	}
18882 
18883 	return (rval);
18884 }
18885 
18886 
18887 static int
18888 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
18889 {
18890 	struct sd_uscsi_info *uip;
18891 	struct uscsi_cmd *uscmd;
18892 	uint8_t *sense_buf;
18893 	struct sd_lun *un;
18894 	int status;
18895 	union scsi_cdb *cdb;
18896 
18897 	uip = (struct sd_uscsi_info *)(bp->b_private);
18898 	ASSERT(uip != NULL);
18899 
18900 	uscmd = uip->ui_cmdp;
18901 	ASSERT(uscmd != NULL);
18902 
18903 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
18904 	ASSERT(sense_buf != NULL);
18905 
18906 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
18907 	ASSERT(un != NULL);
18908 
18909 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
18910 
18911 	status = geterror(bp);
18912 	switch (status) {
18913 	case 0:
18914 		break;	/* Success! */
18915 	case EIO:
18916 		switch (uscmd->uscsi_status) {
18917 		case STATUS_RESERVATION_CONFLICT:
18918 			/* Ignore reservation conflict */
18919 			status = 0;
18920 			goto done;
18921 
18922 		case STATUS_CHECK:
18923 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
18924 			    (scsi_sense_key(sense_buf) ==
18925 			    KEY_ILLEGAL_REQUEST)) {
18926 				/* Ignore Illegal Request error */
18927 				if (cdb->cdb_un.tag|SD_SYNC_NV_BIT) {
18928 					mutex_enter(SD_MUTEX(un));
18929 					un->un_f_sync_nv_supported = FALSE;
18930 					mutex_exit(SD_MUTEX(un));
18931 					status = 0;
18932 					SD_TRACE(SD_LOG_IO, un,
18933 					    "un_f_sync_nv_supported \
18934 					    is set to false.\n");
18935 					goto done;
18936 				}
18937 
18938 				mutex_enter(SD_MUTEX(un));
18939 				un->un_f_sync_cache_supported = FALSE;
18940 				mutex_exit(SD_MUTEX(un));
18941 				SD_TRACE(SD_LOG_IO, un,
18942 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
18943 				    un_f_sync_cache_supported set to false \
18944 				    with asc = %x, ascq = %x\n",
18945 				    scsi_sense_asc(sense_buf),
18946 				    scsi_sense_ascq(sense_buf));
18947 				status = ENOTSUP;
18948 				goto done;
18949 			}
18950 			break;
18951 		default:
18952 			break;
18953 		}
18954 		/* FALLTHRU */
18955 	default:
18956 		/*
18957 		 * Don't log an error message if this device
18958 		 * has removable media.
18959 		 */
18960 		if (!un->un_f_has_removable_media) {
18961 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18962 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
18963 		}
18964 		break;
18965 	}
18966 
18967 done:
18968 	if (uip->ui_dkc.dkc_callback != NULL) {
18969 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
18970 	}
18971 
18972 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
18973 	freerbuf(bp);
18974 	kmem_free(uip, sizeof (struct sd_uscsi_info));
18975 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
18976 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
18977 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
18978 
18979 	return (status);
18980 }
18981 
18982 
18983 /*
18984  *    Function: sd_send_scsi_GET_CONFIGURATION
18985  *
18986  * Description: Issues the get configuration command to the device.
18987  *		Called from sd_check_for_writable_cd & sd_get_media_info
18988  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
18989  *   Arguments: un
18990  *		ucmdbuf
18991  *		rqbuf
18992  *		rqbuflen
18993  *		bufaddr
18994  *		buflen
18995  *		path_flag
18996  *
18997  * Return Code: 0   - Success
18998  *		errno return code from sd_send_scsi_cmd()
18999  *
19000  *     Context: Can sleep. Does not return until command is completed.
19001  *
19002  */
19003 
19004 static int
19005 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
19006 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
19007 	int path_flag)
19008 {
19009 	char	cdb[CDB_GROUP1];
19010 	int	status;
19011 
19012 	ASSERT(un != NULL);
19013 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19014 	ASSERT(bufaddr != NULL);
19015 	ASSERT(ucmdbuf != NULL);
19016 	ASSERT(rqbuf != NULL);
19017 
19018 	SD_TRACE(SD_LOG_IO, un,
19019 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
19020 
19021 	bzero(cdb, sizeof (cdb));
19022 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19023 	bzero(rqbuf, rqbuflen);
19024 	bzero(bufaddr, buflen);
19025 
19026 	/*
19027 	 * Set up cdb field for the get configuration command.
19028 	 */
19029 	cdb[0] = SCMD_GET_CONFIGURATION;
19030 	cdb[1] = 0x02;  /* Requested Type */
19031 	cdb[8] = SD_PROFILE_HEADER_LEN;
19032 	ucmdbuf->uscsi_cdb = cdb;
19033 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19034 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19035 	ucmdbuf->uscsi_buflen = buflen;
19036 	ucmdbuf->uscsi_timeout = sd_io_time;
19037 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19038 	ucmdbuf->uscsi_rqlen = rqbuflen;
19039 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19040 
19041 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19042 	    UIO_SYSSPACE, path_flag);
19043 
19044 	switch (status) {
19045 	case 0:
19046 		break;  /* Success! */
19047 	case EIO:
19048 		switch (ucmdbuf->uscsi_status) {
19049 		case STATUS_RESERVATION_CONFLICT:
19050 			status = EACCES;
19051 			break;
19052 		default:
19053 			break;
19054 		}
19055 		break;
19056 	default:
19057 		break;
19058 	}
19059 
19060 	if (status == 0) {
19061 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19062 		    "sd_send_scsi_GET_CONFIGURATION: data",
19063 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19064 	}
19065 
19066 	SD_TRACE(SD_LOG_IO, un,
19067 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19068 
19069 	return (status);
19070 }
19071 
19072 /*
19073  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19074  *
19075  * Description: Issues the get configuration command to the device to
19076  *              retrieve a specific feature. Called from
19077  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19078  *   Arguments: un
19079  *              ucmdbuf
19080  *              rqbuf
19081  *              rqbuflen
19082  *              bufaddr
19083  *              buflen
19084  *		feature
19085  *
19086  * Return Code: 0   - Success
19087  *              errno return code from sd_send_scsi_cmd()
19088  *
19089  *     Context: Can sleep. Does not return until command is completed.
19090  *
19091  */
19092 static int
19093 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
19094 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
19095 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
19096 {
19097 	char    cdb[CDB_GROUP1];
19098 	int	status;
19099 
19100 	ASSERT(un != NULL);
19101 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19102 	ASSERT(bufaddr != NULL);
19103 	ASSERT(ucmdbuf != NULL);
19104 	ASSERT(rqbuf != NULL);
19105 
19106 	SD_TRACE(SD_LOG_IO, un,
19107 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
19108 
19109 	bzero(cdb, sizeof (cdb));
19110 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19111 	bzero(rqbuf, rqbuflen);
19112 	bzero(bufaddr, buflen);
19113 
19114 	/*
19115 	 * Set up cdb field for the get configuration command.
19116 	 */
19117 	cdb[0] = SCMD_GET_CONFIGURATION;
19118 	cdb[1] = 0x02;  /* Requested Type */
19119 	cdb[3] = feature;
19120 	cdb[8] = buflen;
19121 	ucmdbuf->uscsi_cdb = cdb;
19122 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19123 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19124 	ucmdbuf->uscsi_buflen = buflen;
19125 	ucmdbuf->uscsi_timeout = sd_io_time;
19126 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19127 	ucmdbuf->uscsi_rqlen = rqbuflen;
19128 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19129 
19130 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19131 	    UIO_SYSSPACE, path_flag);
19132 
19133 	switch (status) {
19134 	case 0:
19135 		break;  /* Success! */
19136 	case EIO:
19137 		switch (ucmdbuf->uscsi_status) {
19138 		case STATUS_RESERVATION_CONFLICT:
19139 			status = EACCES;
19140 			break;
19141 		default:
19142 			break;
19143 		}
19144 		break;
19145 	default:
19146 		break;
19147 	}
19148 
19149 	if (status == 0) {
19150 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19151 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
19152 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19153 	}
19154 
19155 	SD_TRACE(SD_LOG_IO, un,
19156 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
19157 
19158 	return (status);
19159 }
19160 
19161 
19162 /*
19163  *    Function: sd_send_scsi_MODE_SENSE
19164  *
19165  * Description: Utility function for issuing a scsi MODE SENSE command.
19166  *		Note: This routine uses a consistent implementation for Group0,
19167  *		Group1, and Group2 commands across all platforms. ATAPI devices
19168  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19169  *
19170  *   Arguments: un - pointer to the softstate struct for the target.
19171  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19172  *			  CDB_GROUP[1|2] (10 byte).
19173  *		bufaddr - buffer for page data retrieved from the target.
19174  *		buflen - size of page to be retrieved.
19175  *		page_code - page code of data to be retrieved from the target.
19176  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19177  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19178  *			to use the USCSI "direct" chain and bypass the normal
19179  *			command waitq.
19180  *
19181  * Return Code: 0   - Success
19182  *		errno return code from sd_send_scsi_cmd()
19183  *
19184  *     Context: Can sleep. Does not return until command is completed.
19185  */
19186 
19187 static int
19188 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19189 	size_t buflen,  uchar_t page_code, int path_flag)
19190 {
19191 	struct	scsi_extended_sense	sense_buf;
19192 	union scsi_cdb		cdb;
19193 	struct uscsi_cmd	ucmd_buf;
19194 	int			status;
19195 	int			headlen;
19196 
19197 	ASSERT(un != NULL);
19198 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19199 	ASSERT(bufaddr != NULL);
19200 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19201 	    (cdbsize == CDB_GROUP2));
19202 
19203 	SD_TRACE(SD_LOG_IO, un,
19204 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
19205 
19206 	bzero(&cdb, sizeof (cdb));
19207 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19208 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19209 	bzero(bufaddr, buflen);
19210 
19211 	if (cdbsize == CDB_GROUP0) {
19212 		cdb.scc_cmd = SCMD_MODE_SENSE;
19213 		cdb.cdb_opaque[2] = page_code;
19214 		FORMG0COUNT(&cdb, buflen);
19215 		headlen = MODE_HEADER_LENGTH;
19216 	} else {
19217 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
19218 		cdb.cdb_opaque[2] = page_code;
19219 		FORMG1COUNT(&cdb, buflen);
19220 		headlen = MODE_HEADER_LENGTH_GRP2;
19221 	}
19222 
19223 	ASSERT(headlen <= buflen);
19224 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19225 
19226 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19227 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19228 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19229 	ucmd_buf.uscsi_buflen	= buflen;
19230 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19231 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19232 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19233 	ucmd_buf.uscsi_timeout	= 60;
19234 
19235 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19236 	    UIO_SYSSPACE, path_flag);
19237 
19238 	switch (status) {
19239 	case 0:
19240 		/*
19241 		 * sr_check_wp() uses 0x3f page code and check the header of
19242 		 * mode page to determine if target device is write-protected.
19243 		 * But some USB devices return 0 bytes for 0x3f page code. For
19244 		 * this case, make sure that mode page header is returned at
19245 		 * least.
19246 		 */
19247 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
19248 			status = EIO;
19249 		break;	/* Success! */
19250 	case EIO:
19251 		switch (ucmd_buf.uscsi_status) {
19252 		case STATUS_RESERVATION_CONFLICT:
19253 			status = EACCES;
19254 			break;
19255 		default:
19256 			break;
19257 		}
19258 		break;
19259 	default:
19260 		break;
19261 	}
19262 
19263 	if (status == 0) {
19264 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
19265 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19266 	}
19267 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
19268 
19269 	return (status);
19270 }
19271 
19272 
19273 /*
19274  *    Function: sd_send_scsi_MODE_SELECT
19275  *
19276  * Description: Utility function for issuing a scsi MODE SELECT command.
19277  *		Note: This routine uses a consistent implementation for Group0,
19278  *		Group1, and Group2 commands across all platforms. ATAPI devices
19279  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19280  *
19281  *   Arguments: un - pointer to the softstate struct for the target.
19282  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19283  *			  CDB_GROUP[1|2] (10 byte).
19284  *		bufaddr - buffer for page data retrieved from the target.
19285  *		buflen - size of page to be retrieved.
19286  *		save_page - boolean to determin if SP bit should be set.
19287  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19288  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19289  *			to use the USCSI "direct" chain and bypass the normal
19290  *			command waitq.
19291  *
19292  * Return Code: 0   - Success
19293  *		errno return code from sd_send_scsi_cmd()
19294  *
19295  *     Context: Can sleep. Does not return until command is completed.
19296  */
19297 
19298 static int
19299 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19300 	size_t buflen,  uchar_t save_page, int path_flag)
19301 {
19302 	struct	scsi_extended_sense	sense_buf;
19303 	union scsi_cdb		cdb;
19304 	struct uscsi_cmd	ucmd_buf;
19305 	int			status;
19306 
19307 	ASSERT(un != NULL);
19308 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19309 	ASSERT(bufaddr != NULL);
19310 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19311 	    (cdbsize == CDB_GROUP2));
19312 
19313 	SD_TRACE(SD_LOG_IO, un,
19314 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
19315 
19316 	bzero(&cdb, sizeof (cdb));
19317 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19318 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19319 
19320 	/* Set the PF bit for many third party drives */
19321 	cdb.cdb_opaque[1] = 0x10;
19322 
19323 	/* Set the savepage(SP) bit if given */
19324 	if (save_page == SD_SAVE_PAGE) {
19325 		cdb.cdb_opaque[1] |= 0x01;
19326 	}
19327 
19328 	if (cdbsize == CDB_GROUP0) {
19329 		cdb.scc_cmd = SCMD_MODE_SELECT;
19330 		FORMG0COUNT(&cdb, buflen);
19331 	} else {
19332 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
19333 		FORMG1COUNT(&cdb, buflen);
19334 	}
19335 
19336 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19337 
19338 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19339 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19340 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19341 	ucmd_buf.uscsi_buflen	= buflen;
19342 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19343 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19344 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19345 	ucmd_buf.uscsi_timeout	= 60;
19346 
19347 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19348 	    UIO_SYSSPACE, path_flag);
19349 
19350 	switch (status) {
19351 	case 0:
19352 		break;	/* Success! */
19353 	case EIO:
19354 		switch (ucmd_buf.uscsi_status) {
19355 		case STATUS_RESERVATION_CONFLICT:
19356 			status = EACCES;
19357 			break;
19358 		default:
19359 			break;
19360 		}
19361 		break;
19362 	default:
19363 		break;
19364 	}
19365 
19366 	if (status == 0) {
19367 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
19368 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19369 	}
19370 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
19371 
19372 	return (status);
19373 }
19374 
19375 
19376 /*
19377  *    Function: sd_send_scsi_RDWR
19378  *
19379  * Description: Issue a scsi READ or WRITE command with the given parameters.
19380  *
19381  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19382  *		cmd:	 SCMD_READ or SCMD_WRITE
19383  *		bufaddr: Address of caller's buffer to receive the RDWR data
19384  *		buflen:  Length of caller's buffer receive the RDWR data.
19385  *		start_block: Block number for the start of the RDWR operation.
19386  *			 (Assumes target-native block size.)
19387  *		residp:  Pointer to variable to receive the redisual of the
19388  *			 RDWR operation (may be NULL of no residual requested).
19389  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19390  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19391  *			to use the USCSI "direct" chain and bypass the normal
19392  *			command waitq.
19393  *
19394  * Return Code: 0   - Success
19395  *		errno return code from sd_send_scsi_cmd()
19396  *
19397  *     Context: Can sleep. Does not return until command is completed.
19398  */
19399 
19400 static int
19401 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
19402 	size_t buflen, daddr_t start_block, int path_flag)
19403 {
19404 	struct	scsi_extended_sense	sense_buf;
19405 	union scsi_cdb		cdb;
19406 	struct uscsi_cmd	ucmd_buf;
19407 	uint32_t		block_count;
19408 	int			status;
19409 	int			cdbsize;
19410 	uchar_t			flag;
19411 
19412 	ASSERT(un != NULL);
19413 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19414 	ASSERT(bufaddr != NULL);
19415 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
19416 
19417 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
19418 
19419 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
19420 		return (EINVAL);
19421 	}
19422 
19423 	mutex_enter(SD_MUTEX(un));
19424 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
19425 	mutex_exit(SD_MUTEX(un));
19426 
19427 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
19428 
19429 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
19430 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
19431 	    bufaddr, buflen, start_block, block_count);
19432 
19433 	bzero(&cdb, sizeof (cdb));
19434 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19435 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19436 
19437 	/* Compute CDB size to use */
19438 	if (start_block > 0xffffffff)
19439 		cdbsize = CDB_GROUP4;
19440 	else if ((start_block & 0xFFE00000) ||
19441 	    (un->un_f_cfg_is_atapi == TRUE))
19442 		cdbsize = CDB_GROUP1;
19443 	else
19444 		cdbsize = CDB_GROUP0;
19445 
19446 	switch (cdbsize) {
19447 	case CDB_GROUP0:	/* 6-byte CDBs */
19448 		cdb.scc_cmd = cmd;
19449 		FORMG0ADDR(&cdb, start_block);
19450 		FORMG0COUNT(&cdb, block_count);
19451 		break;
19452 	case CDB_GROUP1:	/* 10-byte CDBs */
19453 		cdb.scc_cmd = cmd | SCMD_GROUP1;
19454 		FORMG1ADDR(&cdb, start_block);
19455 		FORMG1COUNT(&cdb, block_count);
19456 		break;
19457 	case CDB_GROUP4:	/* 16-byte CDBs */
19458 		cdb.scc_cmd = cmd | SCMD_GROUP4;
19459 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
19460 		FORMG4COUNT(&cdb, block_count);
19461 		break;
19462 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
19463 	default:
19464 		/* All others reserved */
19465 		return (EINVAL);
19466 	}
19467 
19468 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19469 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19470 
19471 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19472 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19473 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19474 	ucmd_buf.uscsi_buflen	= buflen;
19475 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19476 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19477 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19478 	ucmd_buf.uscsi_timeout	= 60;
19479 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19480 	    UIO_SYSSPACE, path_flag);
19481 	switch (status) {
19482 	case 0:
19483 		break;	/* Success! */
19484 	case EIO:
19485 		switch (ucmd_buf.uscsi_status) {
19486 		case STATUS_RESERVATION_CONFLICT:
19487 			status = EACCES;
19488 			break;
19489 		default:
19490 			break;
19491 		}
19492 		break;
19493 	default:
19494 		break;
19495 	}
19496 
19497 	if (status == 0) {
19498 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19499 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19500 	}
19501 
19502 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19503 
19504 	return (status);
19505 }
19506 
19507 
19508 /*
19509  *    Function: sd_send_scsi_LOG_SENSE
19510  *
19511  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19512  *
19513  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19514  *
19515  * Return Code: 0   - Success
19516  *		errno return code from sd_send_scsi_cmd()
19517  *
19518  *     Context: Can sleep. Does not return until command is completed.
19519  */
19520 
19521 static int
19522 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19523 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19524 	int path_flag)
19525 
19526 {
19527 	struct	scsi_extended_sense	sense_buf;
19528 	union scsi_cdb		cdb;
19529 	struct uscsi_cmd	ucmd_buf;
19530 	int			status;
19531 
19532 	ASSERT(un != NULL);
19533 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19534 
19535 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19536 
19537 	bzero(&cdb, sizeof (cdb));
19538 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19539 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19540 
19541 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19542 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19543 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19544 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19545 	FORMG1COUNT(&cdb, buflen);
19546 
19547 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19548 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19549 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19550 	ucmd_buf.uscsi_buflen	= buflen;
19551 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19552 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19553 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19554 	ucmd_buf.uscsi_timeout	= 60;
19555 
19556 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19557 	    UIO_SYSSPACE, path_flag);
19558 
19559 	switch (status) {
19560 	case 0:
19561 		break;
19562 	case EIO:
19563 		switch (ucmd_buf.uscsi_status) {
19564 		case STATUS_RESERVATION_CONFLICT:
19565 			status = EACCES;
19566 			break;
19567 		case STATUS_CHECK:
19568 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19569 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19570 				KEY_ILLEGAL_REQUEST) &&
19571 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19572 				/*
19573 				 * ASC 0x24: INVALID FIELD IN CDB
19574 				 */
19575 				switch (page_code) {
19576 				case START_STOP_CYCLE_PAGE:
19577 					/*
19578 					 * The start stop cycle counter is
19579 					 * implemented as page 0x31 in earlier
19580 					 * generation disks. In new generation
19581 					 * disks the start stop cycle counter is
19582 					 * implemented as page 0xE. To properly
19583 					 * handle this case if an attempt for
19584 					 * log page 0xE is made and fails we
19585 					 * will try again using page 0x31.
19586 					 *
19587 					 * Network storage BU committed to
19588 					 * maintain the page 0x31 for this
19589 					 * purpose and will not have any other
19590 					 * page implemented with page code 0x31
19591 					 * until all disks transition to the
19592 					 * standard page.
19593 					 */
19594 					mutex_enter(SD_MUTEX(un));
19595 					un->un_start_stop_cycle_page =
19596 					    START_STOP_CYCLE_VU_PAGE;
19597 					cdb.cdb_opaque[2] =
19598 					    (char)(page_control << 6) |
19599 					    un->un_start_stop_cycle_page;
19600 					mutex_exit(SD_MUTEX(un));
19601 					status = sd_send_scsi_cmd(
19602 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19603 					    UIO_SYSSPACE, path_flag);
19604 
19605 					break;
19606 				case TEMPERATURE_PAGE:
19607 					status = ENOTTY;
19608 					break;
19609 				default:
19610 					break;
19611 				}
19612 			}
19613 			break;
19614 		default:
19615 			break;
19616 		}
19617 		break;
19618 	default:
19619 		break;
19620 	}
19621 
19622 	if (status == 0) {
19623 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19624 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19625 	}
19626 
19627 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19628 
19629 	return (status);
19630 }
19631 
19632 
19633 /*
19634  *    Function: sdioctl
19635  *
19636  * Description: Driver's ioctl(9e) entry point function.
19637  *
19638  *   Arguments: dev     - device number
19639  *		cmd     - ioctl operation to be performed
19640  *		arg     - user argument, contains data to be set or reference
19641  *			  parameter for get
19642  *		flag    - bit flag, indicating open settings, 32/64 bit type
19643  *		cred_p  - user credential pointer
19644  *		rval_p  - calling process return value (OPT)
19645  *
19646  * Return Code: EINVAL
19647  *		ENOTTY
19648  *		ENXIO
19649  *		EIO
19650  *		EFAULT
19651  *		ENOTSUP
19652  *		EPERM
19653  *
19654  *     Context: Called from the device switch at normal priority.
19655  */
19656 
19657 static int
19658 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19659 {
19660 	struct sd_lun	*un = NULL;
19661 	int		err = 0;
19662 	int		i = 0;
19663 	cred_t		*cr;
19664 	int		tmprval = EINVAL;
19665 	int 		is_valid;
19666 
19667 	/*
19668 	 * All device accesses go thru sdstrategy where we check on suspend
19669 	 * status
19670 	 */
19671 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19672 		return (ENXIO);
19673 	}
19674 
19675 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19676 
19677 
19678 	is_valid = SD_IS_VALID_LABEL(un);
19679 
19680 	/*
19681 	 * Moved this wait from sd_uscsi_strategy to here for
19682 	 * reasons of deadlock prevention. Internal driver commands,
19683 	 * specifically those to change a devices power level, result
19684 	 * in a call to sd_uscsi_strategy.
19685 	 */
19686 	mutex_enter(SD_MUTEX(un));
19687 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19688 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19689 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19690 	}
19691 	/*
19692 	 * Twiddling the counter here protects commands from now
19693 	 * through to the top of sd_uscsi_strategy. Without the
19694 	 * counter inc. a power down, for example, could get in
19695 	 * after the above check for state is made and before
19696 	 * execution gets to the top of sd_uscsi_strategy.
19697 	 * That would cause problems.
19698 	 */
19699 	un->un_ncmds_in_driver++;
19700 
19701 	if (!is_valid &&
19702 	    (flag & (FNDELAY | FNONBLOCK))) {
19703 		switch (cmd) {
19704 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19705 		case DKIOCGVTOC:
19706 		case DKIOCGAPART:
19707 		case DKIOCPARTINFO:
19708 		case DKIOCSGEOM:
19709 		case DKIOCSAPART:
19710 		case DKIOCGETEFI:
19711 		case DKIOCPARTITION:
19712 		case DKIOCSVTOC:
19713 		case DKIOCSETEFI:
19714 		case DKIOCGMBOOT:
19715 		case DKIOCSMBOOT:
19716 		case DKIOCG_PHYGEOM:
19717 		case DKIOCG_VIRTGEOM:
19718 			/* let cmlb handle it */
19719 			goto skip_ready_valid;
19720 
19721 		case CDROMPAUSE:
19722 		case CDROMRESUME:
19723 		case CDROMPLAYMSF:
19724 		case CDROMPLAYTRKIND:
19725 		case CDROMREADTOCHDR:
19726 		case CDROMREADTOCENTRY:
19727 		case CDROMSTOP:
19728 		case CDROMSTART:
19729 		case CDROMVOLCTRL:
19730 		case CDROMSUBCHNL:
19731 		case CDROMREADMODE2:
19732 		case CDROMREADMODE1:
19733 		case CDROMREADOFFSET:
19734 		case CDROMSBLKMODE:
19735 		case CDROMGBLKMODE:
19736 		case CDROMGDRVSPEED:
19737 		case CDROMSDRVSPEED:
19738 		case CDROMCDDA:
19739 		case CDROMCDXA:
19740 		case CDROMSUBCODE:
19741 			if (!ISCD(un)) {
19742 				un->un_ncmds_in_driver--;
19743 				ASSERT(un->un_ncmds_in_driver >= 0);
19744 				mutex_exit(SD_MUTEX(un));
19745 				return (ENOTTY);
19746 			}
19747 			break;
19748 		case FDEJECT:
19749 		case DKIOCEJECT:
19750 		case CDROMEJECT:
19751 			if (!un->un_f_eject_media_supported) {
19752 				un->un_ncmds_in_driver--;
19753 				ASSERT(un->un_ncmds_in_driver >= 0);
19754 				mutex_exit(SD_MUTEX(un));
19755 				return (ENOTTY);
19756 			}
19757 			break;
19758 		case DKIOCFLUSHWRITECACHE:
19759 			mutex_exit(SD_MUTEX(un));
19760 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19761 			if (err != 0) {
19762 				mutex_enter(SD_MUTEX(un));
19763 				un->un_ncmds_in_driver--;
19764 				ASSERT(un->un_ncmds_in_driver >= 0);
19765 				mutex_exit(SD_MUTEX(un));
19766 				return (EIO);
19767 			}
19768 			mutex_enter(SD_MUTEX(un));
19769 			/* FALLTHROUGH */
19770 		case DKIOCREMOVABLE:
19771 		case DKIOCHOTPLUGGABLE:
19772 		case DKIOCINFO:
19773 		case DKIOCGMEDIAINFO:
19774 		case MHIOCENFAILFAST:
19775 		case MHIOCSTATUS:
19776 		case MHIOCTKOWN:
19777 		case MHIOCRELEASE:
19778 		case MHIOCGRP_INKEYS:
19779 		case MHIOCGRP_INRESV:
19780 		case MHIOCGRP_REGISTER:
19781 		case MHIOCGRP_RESERVE:
19782 		case MHIOCGRP_PREEMPTANDABORT:
19783 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19784 		case CDROMCLOSETRAY:
19785 		case USCSICMD:
19786 			goto skip_ready_valid;
19787 		default:
19788 			break;
19789 		}
19790 
19791 		mutex_exit(SD_MUTEX(un));
19792 		err = sd_ready_and_valid(un);
19793 		mutex_enter(SD_MUTEX(un));
19794 
19795 		if (err != SD_READY_VALID) {
19796 			switch (cmd) {
19797 			case DKIOCSTATE:
19798 			case CDROMGDRVSPEED:
19799 			case CDROMSDRVSPEED:
19800 			case FDEJECT:	/* for eject command */
19801 			case DKIOCEJECT:
19802 			case CDROMEJECT:
19803 			case DKIOCREMOVABLE:
19804 			case DKIOCHOTPLUGGABLE:
19805 				break;
19806 			default:
19807 				if (un->un_f_has_removable_media) {
19808 					err = ENXIO;
19809 				} else {
19810 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19811 					if (err == SD_RESERVED_BY_OTHERS) {
19812 						err = EACCES;
19813 					} else {
19814 						err = EIO;
19815 					}
19816 				}
19817 				un->un_ncmds_in_driver--;
19818 				ASSERT(un->un_ncmds_in_driver >= 0);
19819 				mutex_exit(SD_MUTEX(un));
19820 				return (err);
19821 			}
19822 		}
19823 	}
19824 
19825 skip_ready_valid:
19826 	mutex_exit(SD_MUTEX(un));
19827 
19828 	switch (cmd) {
19829 	case DKIOCINFO:
19830 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
19831 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
19832 		break;
19833 
19834 	case DKIOCGMEDIAINFO:
19835 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
19836 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
19837 		break;
19838 
19839 	case DKIOCGGEOM:
19840 	case DKIOCGVTOC:
19841 	case DKIOCGAPART:
19842 	case DKIOCPARTINFO:
19843 	case DKIOCSGEOM:
19844 	case DKIOCSAPART:
19845 	case DKIOCGETEFI:
19846 	case DKIOCPARTITION:
19847 	case DKIOCSVTOC:
19848 	case DKIOCSETEFI:
19849 	case DKIOCGMBOOT:
19850 	case DKIOCSMBOOT:
19851 	case DKIOCG_PHYGEOM:
19852 	case DKIOCG_VIRTGEOM:
19853 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
19854 
19855 		/* TUR should spin up */
19856 
19857 		if (un->un_f_has_removable_media)
19858 			err = sd_send_scsi_TEST_UNIT_READY(un,
19859 			    SD_CHECK_FOR_MEDIA);
19860 		else
19861 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19862 
19863 		if (err != 0)
19864 			break;
19865 
19866 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
19867 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
19868 
19869 		if ((err == 0) &&
19870 		    ((cmd == DKIOCSETEFI) ||
19871 		    (un->un_f_pkstats_enabled) &&
19872 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
19873 
19874 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
19875 			    (void *)SD_PATH_DIRECT);
19876 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
19877 				sd_set_pstats(un);
19878 				SD_TRACE(SD_LOG_IO_PARTITION, un,
19879 				    "sd_ioctl: un:0x%p pstats created and "
19880 				    "set\n", un);
19881 			}
19882 		}
19883 
19884 		if ((cmd == DKIOCSVTOC) ||
19885 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
19886 
19887 			mutex_enter(SD_MUTEX(un));
19888 			if (un->un_f_devid_supported &&
19889 			    (un->un_f_opt_fab_devid == TRUE)) {
19890 				if (un->un_devid == NULL) {
19891 					sd_register_devid(un, SD_DEVINFO(un),
19892 					    SD_TARGET_IS_UNRESERVED);
19893 				} else {
19894 					/*
19895 					 * The device id for this disk
19896 					 * has been fabricated. The
19897 					 * device id must be preserved
19898 					 * by writing it back out to
19899 					 * disk.
19900 					 */
19901 					if (sd_write_deviceid(un) != 0) {
19902 						ddi_devid_free(un->un_devid);
19903 						un->un_devid = NULL;
19904 					}
19905 				}
19906 			}
19907 			mutex_exit(SD_MUTEX(un));
19908 		}
19909 
19910 		break;
19911 
19912 	case DKIOCLOCK:
19913 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
19914 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19915 		    SD_PATH_STANDARD);
19916 		break;
19917 
19918 	case DKIOCUNLOCK:
19919 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
19920 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
19921 		    SD_PATH_STANDARD);
19922 		break;
19923 
19924 	case DKIOCSTATE: {
19925 		enum dkio_state		state;
19926 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
19927 
19928 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
19929 			err = EFAULT;
19930 		} else {
19931 			err = sd_check_media(dev, state);
19932 			if (err == 0) {
19933 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
19934 				    sizeof (int), flag) != 0)
19935 					err = EFAULT;
19936 			}
19937 		}
19938 		break;
19939 	}
19940 
19941 	case DKIOCREMOVABLE:
19942 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
19943 		i = un->un_f_has_removable_media ? 1 : 0;
19944 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19945 			err = EFAULT;
19946 		} else {
19947 			err = 0;
19948 		}
19949 		break;
19950 
19951 	case DKIOCHOTPLUGGABLE:
19952 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
19953 		i = un->un_f_is_hotpluggable ? 1 : 0;
19954 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19955 			err = EFAULT;
19956 		} else {
19957 			err = 0;
19958 		}
19959 		break;
19960 
19961 	case DKIOCGTEMPERATURE:
19962 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
19963 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
19964 		break;
19965 
19966 	case MHIOCENFAILFAST:
19967 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
19968 		if ((err = drv_priv(cred_p)) == 0) {
19969 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
19970 		}
19971 		break;
19972 
19973 	case MHIOCTKOWN:
19974 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
19975 		if ((err = drv_priv(cred_p)) == 0) {
19976 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
19977 		}
19978 		break;
19979 
19980 	case MHIOCRELEASE:
19981 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
19982 		if ((err = drv_priv(cred_p)) == 0) {
19983 			err = sd_mhdioc_release(dev);
19984 		}
19985 		break;
19986 
19987 	case MHIOCSTATUS:
19988 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
19989 		if ((err = drv_priv(cred_p)) == 0) {
19990 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
19991 			case 0:
19992 				err = 0;
19993 				break;
19994 			case EACCES:
19995 				*rval_p = 1;
19996 				err = 0;
19997 				break;
19998 			default:
19999 				err = EIO;
20000 				break;
20001 			}
20002 		}
20003 		break;
20004 
20005 	case MHIOCQRESERVE:
20006 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
20007 		if ((err = drv_priv(cred_p)) == 0) {
20008 			err = sd_reserve_release(dev, SD_RESERVE);
20009 		}
20010 		break;
20011 
20012 	case MHIOCREREGISTERDEVID:
20013 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
20014 		if (drv_priv(cred_p) == EPERM) {
20015 			err = EPERM;
20016 		} else if (!un->un_f_devid_supported) {
20017 			err = ENOTTY;
20018 		} else {
20019 			err = sd_mhdioc_register_devid(dev);
20020 		}
20021 		break;
20022 
20023 	case MHIOCGRP_INKEYS:
20024 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
20025 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20026 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20027 				err = ENOTSUP;
20028 			} else {
20029 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
20030 				    flag);
20031 			}
20032 		}
20033 		break;
20034 
20035 	case MHIOCGRP_INRESV:
20036 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20037 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20038 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20039 				err = ENOTSUP;
20040 			} else {
20041 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20042 			}
20043 		}
20044 		break;
20045 
20046 	case MHIOCGRP_REGISTER:
20047 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20048 		if ((err = drv_priv(cred_p)) != EPERM) {
20049 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20050 				err = ENOTSUP;
20051 			} else if (arg != NULL) {
20052 				mhioc_register_t reg;
20053 				if (ddi_copyin((void *)arg, &reg,
20054 				    sizeof (mhioc_register_t), flag) != 0) {
20055 					err = EFAULT;
20056 				} else {
20057 					err =
20058 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20059 					    un, SD_SCSI3_REGISTER,
20060 					    (uchar_t *)&reg);
20061 				}
20062 			}
20063 		}
20064 		break;
20065 
20066 	case MHIOCGRP_RESERVE:
20067 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20068 		if ((err = drv_priv(cred_p)) != EPERM) {
20069 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20070 				err = ENOTSUP;
20071 			} else if (arg != NULL) {
20072 				mhioc_resv_desc_t resv_desc;
20073 				if (ddi_copyin((void *)arg, &resv_desc,
20074 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20075 					err = EFAULT;
20076 				} else {
20077 					err =
20078 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20079 					    un, SD_SCSI3_RESERVE,
20080 					    (uchar_t *)&resv_desc);
20081 				}
20082 			}
20083 		}
20084 		break;
20085 
20086 	case MHIOCGRP_PREEMPTANDABORT:
20087 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20088 		if ((err = drv_priv(cred_p)) != EPERM) {
20089 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20090 				err = ENOTSUP;
20091 			} else if (arg != NULL) {
20092 				mhioc_preemptandabort_t preempt_abort;
20093 				if (ddi_copyin((void *)arg, &preempt_abort,
20094 				    sizeof (mhioc_preemptandabort_t),
20095 				    flag) != 0) {
20096 					err = EFAULT;
20097 				} else {
20098 					err =
20099 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20100 					    un, SD_SCSI3_PREEMPTANDABORT,
20101 					    (uchar_t *)&preempt_abort);
20102 				}
20103 			}
20104 		}
20105 		break;
20106 
20107 	case MHIOCGRP_REGISTERANDIGNOREKEY:
20108 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
20109 		if ((err = drv_priv(cred_p)) != EPERM) {
20110 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20111 				err = ENOTSUP;
20112 			} else if (arg != NULL) {
20113 				mhioc_registerandignorekey_t r_and_i;
20114 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
20115 				    sizeof (mhioc_registerandignorekey_t),
20116 				    flag) != 0) {
20117 					err = EFAULT;
20118 				} else {
20119 					err =
20120 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20121 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
20122 					    (uchar_t *)&r_and_i);
20123 				}
20124 			}
20125 		}
20126 		break;
20127 
20128 	case USCSICMD:
20129 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
20130 		cr = ddi_get_cred();
20131 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
20132 			err = EPERM;
20133 		} else {
20134 			enum uio_seg	uioseg;
20135 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
20136 			    UIO_USERSPACE;
20137 			if (un->un_f_format_in_progress == TRUE) {
20138 				err = EAGAIN;
20139 				break;
20140 			}
20141 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
20142 			    flag, uioseg, SD_PATH_STANDARD);
20143 		}
20144 		break;
20145 
20146 	case CDROMPAUSE:
20147 	case CDROMRESUME:
20148 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
20149 		if (!ISCD(un)) {
20150 			err = ENOTTY;
20151 		} else {
20152 			err = sr_pause_resume(dev, cmd);
20153 		}
20154 		break;
20155 
20156 	case CDROMPLAYMSF:
20157 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
20158 		if (!ISCD(un)) {
20159 			err = ENOTTY;
20160 		} else {
20161 			err = sr_play_msf(dev, (caddr_t)arg, flag);
20162 		}
20163 		break;
20164 
20165 	case CDROMPLAYTRKIND:
20166 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
20167 #if defined(__i386) || defined(__amd64)
20168 		/*
20169 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
20170 		 */
20171 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20172 #else
20173 		if (!ISCD(un)) {
20174 #endif
20175 			err = ENOTTY;
20176 		} else {
20177 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
20178 		}
20179 		break;
20180 
20181 	case CDROMREADTOCHDR:
20182 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
20183 		if (!ISCD(un)) {
20184 			err = ENOTTY;
20185 		} else {
20186 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
20187 		}
20188 		break;
20189 
20190 	case CDROMREADTOCENTRY:
20191 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
20192 		if (!ISCD(un)) {
20193 			err = ENOTTY;
20194 		} else {
20195 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
20196 		}
20197 		break;
20198 
20199 	case CDROMSTOP:
20200 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
20201 		if (!ISCD(un)) {
20202 			err = ENOTTY;
20203 		} else {
20204 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
20205 			    SD_PATH_STANDARD);
20206 		}
20207 		break;
20208 
20209 	case CDROMSTART:
20210 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
20211 		if (!ISCD(un)) {
20212 			err = ENOTTY;
20213 		} else {
20214 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20215 			    SD_PATH_STANDARD);
20216 		}
20217 		break;
20218 
20219 	case CDROMCLOSETRAY:
20220 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
20221 		if (!ISCD(un)) {
20222 			err = ENOTTY;
20223 		} else {
20224 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
20225 			    SD_PATH_STANDARD);
20226 		}
20227 		break;
20228 
20229 	case FDEJECT:	/* for eject command */
20230 	case DKIOCEJECT:
20231 	case CDROMEJECT:
20232 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
20233 		if (!un->un_f_eject_media_supported) {
20234 			err = ENOTTY;
20235 		} else {
20236 			err = sr_eject(dev);
20237 		}
20238 		break;
20239 
20240 	case CDROMVOLCTRL:
20241 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
20242 		if (!ISCD(un)) {
20243 			err = ENOTTY;
20244 		} else {
20245 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
20246 		}
20247 		break;
20248 
20249 	case CDROMSUBCHNL:
20250 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
20251 		if (!ISCD(un)) {
20252 			err = ENOTTY;
20253 		} else {
20254 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
20255 		}
20256 		break;
20257 
20258 	case CDROMREADMODE2:
20259 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
20260 		if (!ISCD(un)) {
20261 			err = ENOTTY;
20262 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20263 			/*
20264 			 * If the drive supports READ CD, use that instead of
20265 			 * switching the LBA size via a MODE SELECT
20266 			 * Block Descriptor
20267 			 */
20268 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
20269 		} else {
20270 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
20271 		}
20272 		break;
20273 
20274 	case CDROMREADMODE1:
20275 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
20276 		if (!ISCD(un)) {
20277 			err = ENOTTY;
20278 		} else {
20279 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
20280 		}
20281 		break;
20282 
20283 	case CDROMREADOFFSET:
20284 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
20285 		if (!ISCD(un)) {
20286 			err = ENOTTY;
20287 		} else {
20288 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
20289 			    flag);
20290 		}
20291 		break;
20292 
20293 	case CDROMSBLKMODE:
20294 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
20295 		/*
20296 		 * There is no means of changing block size in case of atapi
20297 		 * drives, thus return ENOTTY if drive type is atapi
20298 		 */
20299 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20300 			err = ENOTTY;
20301 		} else if (un->un_f_mmc_cap == TRUE) {
20302 
20303 			/*
20304 			 * MMC Devices do not support changing the
20305 			 * logical block size
20306 			 *
20307 			 * Note: EINVAL is being returned instead of ENOTTY to
20308 			 * maintain consistancy with the original mmc
20309 			 * driver update.
20310 			 */
20311 			err = EINVAL;
20312 		} else {
20313 			mutex_enter(SD_MUTEX(un));
20314 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
20315 			    (un->un_ncmds_in_transport > 0)) {
20316 				mutex_exit(SD_MUTEX(un));
20317 				err = EINVAL;
20318 			} else {
20319 				mutex_exit(SD_MUTEX(un));
20320 				err = sr_change_blkmode(dev, cmd, arg, flag);
20321 			}
20322 		}
20323 		break;
20324 
20325 	case CDROMGBLKMODE:
20326 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
20327 		if (!ISCD(un)) {
20328 			err = ENOTTY;
20329 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
20330 		    (un->un_f_blockcount_is_valid != FALSE)) {
20331 			/*
20332 			 * Drive is an ATAPI drive so return target block
20333 			 * size for ATAPI drives since we cannot change the
20334 			 * blocksize on ATAPI drives. Used primarily to detect
20335 			 * if an ATAPI cdrom is present.
20336 			 */
20337 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
20338 			    sizeof (int), flag) != 0) {
20339 				err = EFAULT;
20340 			} else {
20341 				err = 0;
20342 			}
20343 
20344 		} else {
20345 			/*
20346 			 * Drive supports changing block sizes via a Mode
20347 			 * Select.
20348 			 */
20349 			err = sr_change_blkmode(dev, cmd, arg, flag);
20350 		}
20351 		break;
20352 
20353 	case CDROMGDRVSPEED:
20354 	case CDROMSDRVSPEED:
20355 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
20356 		if (!ISCD(un)) {
20357 			err = ENOTTY;
20358 		} else if (un->un_f_mmc_cap == TRUE) {
20359 			/*
20360 			 * Note: In the future the driver implementation
20361 			 * for getting and
20362 			 * setting cd speed should entail:
20363 			 * 1) If non-mmc try the Toshiba mode page
20364 			 *    (sr_change_speed)
20365 			 * 2) If mmc but no support for Real Time Streaming try
20366 			 *    the SET CD SPEED (0xBB) command
20367 			 *   (sr_atapi_change_speed)
20368 			 * 3) If mmc and support for Real Time Streaming
20369 			 *    try the GET PERFORMANCE and SET STREAMING
20370 			 *    commands (not yet implemented, 4380808)
20371 			 */
20372 			/*
20373 			 * As per recent MMC spec, CD-ROM speed is variable
20374 			 * and changes with LBA. Since there is no such
20375 			 * things as drive speed now, fail this ioctl.
20376 			 *
20377 			 * Note: EINVAL is returned for consistancy of original
20378 			 * implementation which included support for getting
20379 			 * the drive speed of mmc devices but not setting
20380 			 * the drive speed. Thus EINVAL would be returned
20381 			 * if a set request was made for an mmc device.
20382 			 * We no longer support get or set speed for
20383 			 * mmc but need to remain consistent with regard
20384 			 * to the error code returned.
20385 			 */
20386 			err = EINVAL;
20387 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20388 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
20389 		} else {
20390 			err = sr_change_speed(dev, cmd, arg, flag);
20391 		}
20392 		break;
20393 
20394 	case CDROMCDDA:
20395 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
20396 		if (!ISCD(un)) {
20397 			err = ENOTTY;
20398 		} else {
20399 			err = sr_read_cdda(dev, (void *)arg, flag);
20400 		}
20401 		break;
20402 
20403 	case CDROMCDXA:
20404 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
20405 		if (!ISCD(un)) {
20406 			err = ENOTTY;
20407 		} else {
20408 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
20409 		}
20410 		break;
20411 
20412 	case CDROMSUBCODE:
20413 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
20414 		if (!ISCD(un)) {
20415 			err = ENOTTY;
20416 		} else {
20417 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
20418 		}
20419 		break;
20420 
20421 
20422 #ifdef SDDEBUG
20423 /* RESET/ABORTS testing ioctls */
20424 	case DKIOCRESET: {
20425 		int	reset_level;
20426 
20427 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
20428 			err = EFAULT;
20429 		} else {
20430 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
20431 			    "reset_level = 0x%lx\n", reset_level);
20432 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
20433 				err = 0;
20434 			} else {
20435 				err = EIO;
20436 			}
20437 		}
20438 		break;
20439 	}
20440 
20441 	case DKIOCABORT:
20442 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
20443 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
20444 			err = 0;
20445 		} else {
20446 			err = EIO;
20447 		}
20448 		break;
20449 #endif
20450 
20451 #ifdef SD_FAULT_INJECTION
20452 /* SDIOC FaultInjection testing ioctls */
20453 	case SDIOCSTART:
20454 	case SDIOCSTOP:
20455 	case SDIOCINSERTPKT:
20456 	case SDIOCINSERTXB:
20457 	case SDIOCINSERTUN:
20458 	case SDIOCINSERTARQ:
20459 	case SDIOCPUSH:
20460 	case SDIOCRETRIEVE:
20461 	case SDIOCRUN:
20462 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
20463 		    "SDIOC detected cmd:0x%X:\n", cmd);
20464 		/* call error generator */
20465 		sd_faultinjection_ioctl(cmd, arg, un);
20466 		err = 0;
20467 		break;
20468 
20469 #endif /* SD_FAULT_INJECTION */
20470 
20471 	case DKIOCFLUSHWRITECACHE:
20472 		{
20473 			struct dk_callback *dkc = (struct dk_callback *)arg;
20474 
20475 			mutex_enter(SD_MUTEX(un));
20476 			if (!un->un_f_sync_cache_supported ||
20477 			    !un->un_f_write_cache_enabled) {
20478 				err = un->un_f_sync_cache_supported ?
20479 				    0 : ENOTSUP;
20480 				mutex_exit(SD_MUTEX(un));
20481 				if ((flag & FKIOCTL) && dkc != NULL &&
20482 				    dkc->dkc_callback != NULL) {
20483 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20484 					    err);
20485 					/*
20486 					 * Did callback and reported error.
20487 					 * Since we did a callback, ioctl
20488 					 * should return 0.
20489 					 */
20490 					err = 0;
20491 				}
20492 				break;
20493 			}
20494 			mutex_exit(SD_MUTEX(un));
20495 
20496 			if ((flag & FKIOCTL) && dkc != NULL &&
20497 			    dkc->dkc_callback != NULL) {
20498 				/* async SYNC CACHE request */
20499 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20500 			} else {
20501 				/* synchronous SYNC CACHE request */
20502 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20503 			}
20504 		}
20505 		break;
20506 
20507 	case DKIOCGETWCE: {
20508 
20509 		int wce;
20510 
20511 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20512 			break;
20513 		}
20514 
20515 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20516 			err = EFAULT;
20517 		}
20518 		break;
20519 	}
20520 
20521 	case DKIOCSETWCE: {
20522 
20523 		int wce, sync_supported;
20524 
20525 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20526 			err = EFAULT;
20527 			break;
20528 		}
20529 
20530 		/*
20531 		 * Synchronize multiple threads trying to enable
20532 		 * or disable the cache via the un_f_wcc_cv
20533 		 * condition variable.
20534 		 */
20535 		mutex_enter(SD_MUTEX(un));
20536 
20537 		/*
20538 		 * Don't allow the cache to be enabled if the
20539 		 * config file has it disabled.
20540 		 */
20541 		if (un->un_f_opt_disable_cache && wce) {
20542 			mutex_exit(SD_MUTEX(un));
20543 			err = EINVAL;
20544 			break;
20545 		}
20546 
20547 		/*
20548 		 * Wait for write cache change in progress
20549 		 * bit to be clear before proceeding.
20550 		 */
20551 		while (un->un_f_wcc_inprog)
20552 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20553 
20554 		un->un_f_wcc_inprog = 1;
20555 
20556 		if (un->un_f_write_cache_enabled && wce == 0) {
20557 			/*
20558 			 * Disable the write cache.  Don't clear
20559 			 * un_f_write_cache_enabled until after
20560 			 * the mode select and flush are complete.
20561 			 */
20562 			sync_supported = un->un_f_sync_cache_supported;
20563 
20564 			/*
20565 			 * If cache flush is suppressed, we assume that the
20566 			 * controller firmware will take care of managing the
20567 			 * write cache for us: no need to explicitly
20568 			 * disable it.
20569 			 */
20570 			if (!un->un_f_suppress_cache_flush) {
20571 				mutex_exit(SD_MUTEX(un));
20572 				if ((err = sd_cache_control(un,
20573 				    SD_CACHE_NOCHANGE,
20574 				    SD_CACHE_DISABLE)) == 0 &&
20575 				    sync_supported) {
20576 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
20577 					    NULL);
20578 				}
20579 			} else {
20580 				mutex_exit(SD_MUTEX(un));
20581 			}
20582 
20583 			mutex_enter(SD_MUTEX(un));
20584 			if (err == 0) {
20585 				un->un_f_write_cache_enabled = 0;
20586 			}
20587 
20588 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20589 			/*
20590 			 * Set un_f_write_cache_enabled first, so there is
20591 			 * no window where the cache is enabled, but the
20592 			 * bit says it isn't.
20593 			 */
20594 			un->un_f_write_cache_enabled = 1;
20595 
20596 			/*
20597 			 * If cache flush is suppressed, we assume that the
20598 			 * controller firmware will take care of managing the
20599 			 * write cache for us: no need to explicitly
20600 			 * enable it.
20601 			 */
20602 			if (!un->un_f_suppress_cache_flush) {
20603 				mutex_exit(SD_MUTEX(un));
20604 				err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20605 				    SD_CACHE_ENABLE);
20606 			} else {
20607 				mutex_exit(SD_MUTEX(un));
20608 			}
20609 
20610 			mutex_enter(SD_MUTEX(un));
20611 
20612 			if (err) {
20613 				un->un_f_write_cache_enabled = 0;
20614 			}
20615 		}
20616 
20617 		un->un_f_wcc_inprog = 0;
20618 		cv_broadcast(&un->un_wcc_cv);
20619 		mutex_exit(SD_MUTEX(un));
20620 		break;
20621 	}
20622 
20623 	default:
20624 		err = ENOTTY;
20625 		break;
20626 	}
20627 	mutex_enter(SD_MUTEX(un));
20628 	un->un_ncmds_in_driver--;
20629 	ASSERT(un->un_ncmds_in_driver >= 0);
20630 	mutex_exit(SD_MUTEX(un));
20631 
20632 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20633 	return (err);
20634 }
20635 
20636 
20637 /*
20638  *    Function: sd_dkio_ctrl_info
20639  *
20640  * Description: This routine is the driver entry point for handling controller
20641  *		information ioctl requests (DKIOCINFO).
20642  *
20643  *   Arguments: dev  - the device number
20644  *		arg  - pointer to user provided dk_cinfo structure
20645  *		       specifying the controller type and attributes.
20646  *		flag - this argument is a pass through to ddi_copyxxx()
20647  *		       directly from the mode argument of ioctl().
20648  *
20649  * Return Code: 0
20650  *		EFAULT
20651  *		ENXIO
20652  */
20653 
20654 static int
20655 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20656 {
20657 	struct sd_lun	*un = NULL;
20658 	struct dk_cinfo	*info;
20659 	dev_info_t	*pdip;
20660 	int		lun, tgt;
20661 
20662 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20663 		return (ENXIO);
20664 	}
20665 
20666 	info = (struct dk_cinfo *)
20667 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20668 
20669 	switch (un->un_ctype) {
20670 	case CTYPE_CDROM:
20671 		info->dki_ctype = DKC_CDROM;
20672 		break;
20673 	default:
20674 		info->dki_ctype = DKC_SCSI_CCS;
20675 		break;
20676 	}
20677 	pdip = ddi_get_parent(SD_DEVINFO(un));
20678 	info->dki_cnum = ddi_get_instance(pdip);
20679 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20680 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20681 	} else {
20682 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20683 		    DK_DEVLEN - 1);
20684 	}
20685 
20686 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20687 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20688 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20689 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20690 
20691 	/* Unit Information */
20692 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20693 	info->dki_slave = ((tgt << 3) | lun);
20694 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20695 	    DK_DEVLEN - 1);
20696 	info->dki_flags = DKI_FMTVOL;
20697 	info->dki_partition = SDPART(dev);
20698 
20699 	/* Max Transfer size of this device in blocks */
20700 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20701 	info->dki_addr = 0;
20702 	info->dki_space = 0;
20703 	info->dki_prio = 0;
20704 	info->dki_vec = 0;
20705 
20706 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20707 		kmem_free(info, sizeof (struct dk_cinfo));
20708 		return (EFAULT);
20709 	} else {
20710 		kmem_free(info, sizeof (struct dk_cinfo));
20711 		return (0);
20712 	}
20713 }
20714 
20715 
20716 /*
20717  *    Function: sd_get_media_info
20718  *
20719  * Description: This routine is the driver entry point for handling ioctl
20720  *		requests for the media type or command set profile used by the
20721  *		drive to operate on the media (DKIOCGMEDIAINFO).
20722  *
20723  *   Arguments: dev	- the device number
20724  *		arg	- pointer to user provided dk_minfo structure
20725  *			  specifying the media type, logical block size and
20726  *			  drive capacity.
20727  *		flag	- this argument is a pass through to ddi_copyxxx()
20728  *			  directly from the mode argument of ioctl().
20729  *
20730  * Return Code: 0
20731  *		EACCESS
20732  *		EFAULT
20733  *		ENXIO
20734  *		EIO
20735  */
20736 
20737 static int
20738 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20739 {
20740 	struct sd_lun		*un = NULL;
20741 	struct uscsi_cmd	com;
20742 	struct scsi_inquiry	*sinq;
20743 	struct dk_minfo		media_info;
20744 	u_longlong_t		media_capacity;
20745 	uint64_t		capacity;
20746 	uint_t			lbasize;
20747 	uchar_t			*out_data;
20748 	uchar_t			*rqbuf;
20749 	int			rval = 0;
20750 	int			rtn;
20751 
20752 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20753 	    (un->un_state == SD_STATE_OFFLINE)) {
20754 		return (ENXIO);
20755 	}
20756 
20757 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20758 
20759 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20760 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20761 
20762 	/* Issue a TUR to determine if the drive is ready with media present */
20763 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20764 	if (rval == ENXIO) {
20765 		goto done;
20766 	}
20767 
20768 	/* Now get configuration data */
20769 	if (ISCD(un)) {
20770 		media_info.dki_media_type = DK_CDROM;
20771 
20772 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20773 		if (un->un_f_mmc_cap == TRUE) {
20774 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20775 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20776 			    SD_PATH_STANDARD);
20777 
20778 			if (rtn) {
20779 				/*
20780 				 * Failed for other than an illegal request
20781 				 * or command not supported
20782 				 */
20783 				if ((com.uscsi_status == STATUS_CHECK) &&
20784 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20785 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20786 					    (rqbuf[12] != 0x20)) {
20787 						rval = EIO;
20788 						goto done;
20789 					}
20790 				}
20791 			} else {
20792 				/*
20793 				 * The GET CONFIGURATION command succeeded
20794 				 * so set the media type according to the
20795 				 * returned data
20796 				 */
20797 				media_info.dki_media_type = out_data[6];
20798 				media_info.dki_media_type <<= 8;
20799 				media_info.dki_media_type |= out_data[7];
20800 			}
20801 		}
20802 	} else {
20803 		/*
20804 		 * The profile list is not available, so we attempt to identify
20805 		 * the media type based on the inquiry data
20806 		 */
20807 		sinq = un->un_sd->sd_inq;
20808 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20809 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20810 			/* This is a direct access device  or optical disk */
20811 			media_info.dki_media_type = DK_FIXED_DISK;
20812 
20813 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20814 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20815 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20816 					media_info.dki_media_type = DK_ZIP;
20817 				} else if (
20818 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20819 					media_info.dki_media_type = DK_JAZ;
20820 				}
20821 			}
20822 		} else {
20823 			/*
20824 			 * Not a CD, direct access or optical disk so return
20825 			 * unknown media
20826 			 */
20827 			media_info.dki_media_type = DK_UNKNOWN;
20828 		}
20829 	}
20830 
20831 	/* Now read the capacity so we can provide the lbasize and capacity */
20832 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
20833 	    SD_PATH_DIRECT)) {
20834 	case 0:
20835 		break;
20836 	case EACCES:
20837 		rval = EACCES;
20838 		goto done;
20839 	default:
20840 		rval = EIO;
20841 		goto done;
20842 	}
20843 
20844 	media_info.dki_lbsize = lbasize;
20845 	media_capacity = capacity;
20846 
20847 	/*
20848 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
20849 	 * un->un_sys_blocksize chunks. So we need to convert it into
20850 	 * cap.lbasize chunks.
20851 	 */
20852 	media_capacity *= un->un_sys_blocksize;
20853 	media_capacity /= lbasize;
20854 	media_info.dki_capacity = media_capacity;
20855 
20856 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
20857 		rval = EFAULT;
20858 		/* Put goto. Anybody might add some code below in future */
20859 		goto done;
20860 	}
20861 done:
20862 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
20863 	kmem_free(rqbuf, SENSE_LENGTH);
20864 	return (rval);
20865 }
20866 
20867 
20868 /*
20869  *    Function: sd_check_media
20870  *
20871  * Description: This utility routine implements the functionality for the
20872  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
20873  *		driver state changes from that specified by the user
20874  *		(inserted or ejected). For example, if the user specifies
20875  *		DKIO_EJECTED and the current media state is inserted this
20876  *		routine will immediately return DKIO_INSERTED. However, if the
20877  *		current media state is not inserted the user thread will be
20878  *		blocked until the drive state changes. If DKIO_NONE is specified
20879  *		the user thread will block until a drive state change occurs.
20880  *
20881  *   Arguments: dev  - the device number
20882  *		state  - user pointer to a dkio_state, updated with the current
20883  *			drive state at return.
20884  *
20885  * Return Code: ENXIO
20886  *		EIO
20887  *		EAGAIN
20888  *		EINTR
20889  */
20890 
20891 static int
20892 sd_check_media(dev_t dev, enum dkio_state state)
20893 {
20894 	struct sd_lun		*un = NULL;
20895 	enum dkio_state		prev_state;
20896 	opaque_t		token = NULL;
20897 	int			rval = 0;
20898 
20899 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20900 		return (ENXIO);
20901 	}
20902 
20903 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
20904 
20905 	mutex_enter(SD_MUTEX(un));
20906 
20907 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
20908 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
20909 
20910 	prev_state = un->un_mediastate;
20911 
20912 	/* is there anything to do? */
20913 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
20914 		/*
20915 		 * submit the request to the scsi_watch service;
20916 		 * scsi_media_watch_cb() does the real work
20917 		 */
20918 		mutex_exit(SD_MUTEX(un));
20919 
20920 		/*
20921 		 * This change handles the case where a scsi watch request is
20922 		 * added to a device that is powered down. To accomplish this
20923 		 * we power up the device before adding the scsi watch request,
20924 		 * since the scsi watch sends a TUR directly to the device
20925 		 * which the device cannot handle if it is powered down.
20926 		 */
20927 		if (sd_pm_entry(un) != DDI_SUCCESS) {
20928 			mutex_enter(SD_MUTEX(un));
20929 			goto done;
20930 		}
20931 
20932 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
20933 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
20934 		    (caddr_t)dev);
20935 
20936 		sd_pm_exit(un);
20937 
20938 		mutex_enter(SD_MUTEX(un));
20939 		if (token == NULL) {
20940 			rval = EAGAIN;
20941 			goto done;
20942 		}
20943 
20944 		/*
20945 		 * This is a special case IOCTL that doesn't return
20946 		 * until the media state changes. Routine sdpower
20947 		 * knows about and handles this so don't count it
20948 		 * as an active cmd in the driver, which would
20949 		 * keep the device busy to the pm framework.
20950 		 * If the count isn't decremented the device can't
20951 		 * be powered down.
20952 		 */
20953 		un->un_ncmds_in_driver--;
20954 		ASSERT(un->un_ncmds_in_driver >= 0);
20955 
20956 		/*
20957 		 * if a prior request had been made, this will be the same
20958 		 * token, as scsi_watch was designed that way.
20959 		 */
20960 		un->un_swr_token = token;
20961 		un->un_specified_mediastate = state;
20962 
20963 		/*
20964 		 * now wait for media change
20965 		 * we will not be signalled unless mediastate == state but it is
20966 		 * still better to test for this condition, since there is a
20967 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
20968 		 */
20969 		SD_TRACE(SD_LOG_COMMON, un,
20970 		    "sd_check_media: waiting for media state change\n");
20971 		while (un->un_mediastate == state) {
20972 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
20973 				SD_TRACE(SD_LOG_COMMON, un,
20974 				    "sd_check_media: waiting for media state "
20975 				    "was interrupted\n");
20976 				un->un_ncmds_in_driver++;
20977 				rval = EINTR;
20978 				goto done;
20979 			}
20980 			SD_TRACE(SD_LOG_COMMON, un,
20981 			    "sd_check_media: received signal, state=%x\n",
20982 			    un->un_mediastate);
20983 		}
20984 		/*
20985 		 * Inc the counter to indicate the device once again
20986 		 * has an active outstanding cmd.
20987 		 */
20988 		un->un_ncmds_in_driver++;
20989 	}
20990 
20991 	/* invalidate geometry */
20992 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
20993 		sr_ejected(un);
20994 	}
20995 
20996 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
20997 		uint64_t	capacity;
20998 		uint_t		lbasize;
20999 
21000 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
21001 		mutex_exit(SD_MUTEX(un));
21002 		/*
21003 		 * Since the following routines use SD_PATH_DIRECT, we must
21004 		 * call PM directly before the upcoming disk accesses. This
21005 		 * may cause the disk to be power/spin up.
21006 		 */
21007 
21008 		if (sd_pm_entry(un) == DDI_SUCCESS) {
21009 			rval = sd_send_scsi_READ_CAPACITY(un,
21010 			    &capacity,
21011 			    &lbasize, SD_PATH_DIRECT);
21012 			if (rval != 0) {
21013 				sd_pm_exit(un);
21014 				mutex_enter(SD_MUTEX(un));
21015 				goto done;
21016 			}
21017 		} else {
21018 			rval = EIO;
21019 			mutex_enter(SD_MUTEX(un));
21020 			goto done;
21021 		}
21022 		mutex_enter(SD_MUTEX(un));
21023 
21024 		sd_update_block_info(un, lbasize, capacity);
21025 
21026 		/*
21027 		 *  Check if the media in the device is writable or not
21028 		 */
21029 		if (ISCD(un))
21030 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
21031 
21032 		mutex_exit(SD_MUTEX(un));
21033 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
21034 		if ((cmlb_validate(un->un_cmlbhandle, 0,
21035 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
21036 			sd_set_pstats(un);
21037 			SD_TRACE(SD_LOG_IO_PARTITION, un,
21038 			    "sd_check_media: un:0x%p pstats created and "
21039 			    "set\n", un);
21040 		}
21041 
21042 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21043 		    SD_PATH_DIRECT);
21044 		sd_pm_exit(un);
21045 
21046 		mutex_enter(SD_MUTEX(un));
21047 	}
21048 done:
21049 	un->un_f_watcht_stopped = FALSE;
21050 	if (un->un_swr_token) {
21051 		/*
21052 		 * Use of this local token and the mutex ensures that we avoid
21053 		 * some race conditions associated with terminating the
21054 		 * scsi watch.
21055 		 */
21056 		token = un->un_swr_token;
21057 		un->un_swr_token = (opaque_t)NULL;
21058 		mutex_exit(SD_MUTEX(un));
21059 		(void) scsi_watch_request_terminate(token,
21060 		    SCSI_WATCH_TERMINATE_WAIT);
21061 		mutex_enter(SD_MUTEX(un));
21062 	}
21063 
21064 	/*
21065 	 * Update the capacity kstat value, if no media previously
21066 	 * (capacity kstat is 0) and a media has been inserted
21067 	 * (un_f_blockcount_is_valid == TRUE)
21068 	 */
21069 	if (un->un_errstats) {
21070 		struct sd_errstats	*stp = NULL;
21071 
21072 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
21073 		if ((stp->sd_capacity.value.ui64 == 0) &&
21074 		    (un->un_f_blockcount_is_valid == TRUE)) {
21075 			stp->sd_capacity.value.ui64 =
21076 			    (uint64_t)((uint64_t)un->un_blockcount *
21077 			    un->un_sys_blocksize);
21078 		}
21079 	}
21080 	mutex_exit(SD_MUTEX(un));
21081 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
21082 	return (rval);
21083 }
21084 
21085 
21086 /*
21087  *    Function: sd_delayed_cv_broadcast
21088  *
21089  * Description: Delayed cv_broadcast to allow for target to recover from media
21090  *		insertion.
21091  *
21092  *   Arguments: arg - driver soft state (unit) structure
21093  */
21094 
21095 static void
21096 sd_delayed_cv_broadcast(void *arg)
21097 {
21098 	struct sd_lun *un = arg;
21099 
21100 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
21101 
21102 	mutex_enter(SD_MUTEX(un));
21103 	un->un_dcvb_timeid = NULL;
21104 	cv_broadcast(&un->un_state_cv);
21105 	mutex_exit(SD_MUTEX(un));
21106 }
21107 
21108 
21109 /*
21110  *    Function: sd_media_watch_cb
21111  *
21112  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
21113  *		routine processes the TUR sense data and updates the driver
21114  *		state if a transition has occurred. The user thread
21115  *		(sd_check_media) is then signalled.
21116  *
21117  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21118  *			among multiple watches that share this callback function
21119  *		resultp - scsi watch facility result packet containing scsi
21120  *			  packet, status byte and sense data
21121  *
21122  * Return Code: 0 for success, -1 for failure
21123  */
21124 
21125 static int
21126 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21127 {
21128 	struct sd_lun			*un;
21129 	struct scsi_status		*statusp = resultp->statusp;
21130 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
21131 	enum dkio_state			state = DKIO_NONE;
21132 	dev_t				dev = (dev_t)arg;
21133 	uchar_t				actual_sense_length;
21134 	uint8_t				skey, asc, ascq;
21135 
21136 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21137 		return (-1);
21138 	}
21139 	actual_sense_length = resultp->actual_sense_length;
21140 
21141 	mutex_enter(SD_MUTEX(un));
21142 	SD_TRACE(SD_LOG_COMMON, un,
21143 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
21144 	    *((char *)statusp), (void *)sensep, actual_sense_length);
21145 
21146 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
21147 		un->un_mediastate = DKIO_DEV_GONE;
21148 		cv_broadcast(&un->un_state_cv);
21149 		mutex_exit(SD_MUTEX(un));
21150 
21151 		return (0);
21152 	}
21153 
21154 	/*
21155 	 * If there was a check condition then sensep points to valid sense data
21156 	 * If status was not a check condition but a reservation or busy status
21157 	 * then the new state is DKIO_NONE
21158 	 */
21159 	if (sensep != NULL) {
21160 		skey = scsi_sense_key(sensep);
21161 		asc = scsi_sense_asc(sensep);
21162 		ascq = scsi_sense_ascq(sensep);
21163 
21164 		SD_INFO(SD_LOG_COMMON, un,
21165 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
21166 		    skey, asc, ascq);
21167 		/* This routine only uses up to 13 bytes of sense data. */
21168 		if (actual_sense_length >= 13) {
21169 			if (skey == KEY_UNIT_ATTENTION) {
21170 				if (asc == 0x28) {
21171 					state = DKIO_INSERTED;
21172 				}
21173 			} else if (skey == KEY_NOT_READY) {
21174 				/*
21175 				 * if 02/04/02  means that the host
21176 				 * should send start command. Explicitly
21177 				 * leave the media state as is
21178 				 * (inserted) as the media is inserted
21179 				 * and host has stopped device for PM
21180 				 * reasons. Upon next true read/write
21181 				 * to this media will bring the
21182 				 * device to the right state good for
21183 				 * media access.
21184 				 */
21185 				if (asc == 0x3a) {
21186 					state = DKIO_EJECTED;
21187 				} else {
21188 					/*
21189 					 * If the drive is busy with an
21190 					 * operation or long write, keep the
21191 					 * media in an inserted state.
21192 					 */
21193 
21194 					if ((asc == 0x04) &&
21195 					    ((ascq == 0x02) ||
21196 					    (ascq == 0x07) ||
21197 					    (ascq == 0x08))) {
21198 						state = DKIO_INSERTED;
21199 					}
21200 				}
21201 			} else if (skey == KEY_NO_SENSE) {
21202 				if ((asc == 0x00) && (ascq == 0x00)) {
21203 					/*
21204 					 * Sense Data 00/00/00 does not provide
21205 					 * any information about the state of
21206 					 * the media. Ignore it.
21207 					 */
21208 					mutex_exit(SD_MUTEX(un));
21209 					return (0);
21210 				}
21211 			}
21212 		}
21213 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
21214 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
21215 		state = DKIO_INSERTED;
21216 	}
21217 
21218 	SD_TRACE(SD_LOG_COMMON, un,
21219 	    "sd_media_watch_cb: state=%x, specified=%x\n",
21220 	    state, un->un_specified_mediastate);
21221 
21222 	/*
21223 	 * now signal the waiting thread if this is *not* the specified state;
21224 	 * delay the signal if the state is DKIO_INSERTED to allow the target
21225 	 * to recover
21226 	 */
21227 	if (state != un->un_specified_mediastate) {
21228 		un->un_mediastate = state;
21229 		if (state == DKIO_INSERTED) {
21230 			/*
21231 			 * delay the signal to give the drive a chance
21232 			 * to do what it apparently needs to do
21233 			 */
21234 			SD_TRACE(SD_LOG_COMMON, un,
21235 			    "sd_media_watch_cb: delayed cv_broadcast\n");
21236 			if (un->un_dcvb_timeid == NULL) {
21237 				un->un_dcvb_timeid =
21238 				    timeout(sd_delayed_cv_broadcast, un,
21239 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
21240 			}
21241 		} else {
21242 			SD_TRACE(SD_LOG_COMMON, un,
21243 			    "sd_media_watch_cb: immediate cv_broadcast\n");
21244 			cv_broadcast(&un->un_state_cv);
21245 		}
21246 	}
21247 	mutex_exit(SD_MUTEX(un));
21248 	return (0);
21249 }
21250 
21251 
21252 /*
21253  *    Function: sd_dkio_get_temp
21254  *
21255  * Description: This routine is the driver entry point for handling ioctl
21256  *		requests to get the disk temperature.
21257  *
21258  *   Arguments: dev  - the device number
21259  *		arg  - pointer to user provided dk_temperature structure.
21260  *		flag - this argument is a pass through to ddi_copyxxx()
21261  *		       directly from the mode argument of ioctl().
21262  *
21263  * Return Code: 0
21264  *		EFAULT
21265  *		ENXIO
21266  *		EAGAIN
21267  */
21268 
21269 static int
21270 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
21271 {
21272 	struct sd_lun		*un = NULL;
21273 	struct dk_temperature	*dktemp = NULL;
21274 	uchar_t			*temperature_page;
21275 	int			rval = 0;
21276 	int			path_flag = SD_PATH_STANDARD;
21277 
21278 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21279 		return (ENXIO);
21280 	}
21281 
21282 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
21283 
21284 	/* copyin the disk temp argument to get the user flags */
21285 	if (ddi_copyin((void *)arg, dktemp,
21286 	    sizeof (struct dk_temperature), flag) != 0) {
21287 		rval = EFAULT;
21288 		goto done;
21289 	}
21290 
21291 	/* Initialize the temperature to invalid. */
21292 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21293 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21294 
21295 	/*
21296 	 * Note: Investigate removing the "bypass pm" semantic.
21297 	 * Can we just bypass PM always?
21298 	 */
21299 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
21300 		path_flag = SD_PATH_DIRECT;
21301 		ASSERT(!mutex_owned(&un->un_pm_mutex));
21302 		mutex_enter(&un->un_pm_mutex);
21303 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
21304 			/*
21305 			 * If DKT_BYPASS_PM is set, and the drive happens to be
21306 			 * in low power mode, we can not wake it up, Need to
21307 			 * return EAGAIN.
21308 			 */
21309 			mutex_exit(&un->un_pm_mutex);
21310 			rval = EAGAIN;
21311 			goto done;
21312 		} else {
21313 			/*
21314 			 * Indicate to PM the device is busy. This is required
21315 			 * to avoid a race - i.e. the ioctl is issuing a
21316 			 * command and the pm framework brings down the device
21317 			 * to low power mode (possible power cut-off on some
21318 			 * platforms).
21319 			 */
21320 			mutex_exit(&un->un_pm_mutex);
21321 			if (sd_pm_entry(un) != DDI_SUCCESS) {
21322 				rval = EAGAIN;
21323 				goto done;
21324 			}
21325 		}
21326 	}
21327 
21328 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
21329 
21330 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
21331 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
21332 		goto done2;
21333 	}
21334 
21335 	/*
21336 	 * For the current temperature verify that the parameter length is 0x02
21337 	 * and the parameter code is 0x00
21338 	 */
21339 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
21340 	    (temperature_page[5] == 0x00)) {
21341 		if (temperature_page[9] == 0xFF) {
21342 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21343 		} else {
21344 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
21345 		}
21346 	}
21347 
21348 	/*
21349 	 * For the reference temperature verify that the parameter
21350 	 * length is 0x02 and the parameter code is 0x01
21351 	 */
21352 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
21353 	    (temperature_page[11] == 0x01)) {
21354 		if (temperature_page[15] == 0xFF) {
21355 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21356 		} else {
21357 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
21358 		}
21359 	}
21360 
21361 	/* Do the copyout regardless of the temperature commands status. */
21362 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
21363 	    flag) != 0) {
21364 		rval = EFAULT;
21365 	}
21366 
21367 done2:
21368 	if (path_flag == SD_PATH_DIRECT) {
21369 		sd_pm_exit(un);
21370 	}
21371 
21372 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
21373 done:
21374 	if (dktemp != NULL) {
21375 		kmem_free(dktemp, sizeof (struct dk_temperature));
21376 	}
21377 
21378 	return (rval);
21379 }
21380 
21381 
21382 /*
21383  *    Function: sd_log_page_supported
21384  *
21385  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
21386  *		supported log pages.
21387  *
21388  *   Arguments: un -
21389  *		log_page -
21390  *
21391  * Return Code: -1 - on error (log sense is optional and may not be supported).
21392  *		0  - log page not found.
21393  *  		1  - log page found.
21394  */
21395 
21396 static int
21397 sd_log_page_supported(struct sd_lun *un, int log_page)
21398 {
21399 	uchar_t *log_page_data;
21400 	int	i;
21401 	int	match = 0;
21402 	int	log_size;
21403 
21404 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
21405 
21406 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
21407 	    SD_PATH_DIRECT) != 0) {
21408 		SD_ERROR(SD_LOG_COMMON, un,
21409 		    "sd_log_page_supported: failed log page retrieval\n");
21410 		kmem_free(log_page_data, 0xFF);
21411 		return (-1);
21412 	}
21413 	log_size = log_page_data[3];
21414 
21415 	/*
21416 	 * The list of supported log pages start from the fourth byte. Check
21417 	 * until we run out of log pages or a match is found.
21418 	 */
21419 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
21420 		if (log_page_data[i] == log_page) {
21421 			match++;
21422 		}
21423 	}
21424 	kmem_free(log_page_data, 0xFF);
21425 	return (match);
21426 }
21427 
21428 
21429 /*
21430  *    Function: sd_mhdioc_failfast
21431  *
21432  * Description: This routine is the driver entry point for handling ioctl
21433  *		requests to enable/disable the multihost failfast option.
21434  *		(MHIOCENFAILFAST)
21435  *
21436  *   Arguments: dev	- the device number
21437  *		arg	- user specified probing interval.
21438  *		flag	- this argument is a pass through to ddi_copyxxx()
21439  *			  directly from the mode argument of ioctl().
21440  *
21441  * Return Code: 0
21442  *		EFAULT
21443  *		ENXIO
21444  */
21445 
21446 static int
21447 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
21448 {
21449 	struct sd_lun	*un = NULL;
21450 	int		mh_time;
21451 	int		rval = 0;
21452 
21453 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21454 		return (ENXIO);
21455 	}
21456 
21457 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
21458 		return (EFAULT);
21459 
21460 	if (mh_time) {
21461 		mutex_enter(SD_MUTEX(un));
21462 		un->un_resvd_status |= SD_FAILFAST;
21463 		mutex_exit(SD_MUTEX(un));
21464 		/*
21465 		 * If mh_time is INT_MAX, then this ioctl is being used for
21466 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
21467 		 */
21468 		if (mh_time != INT_MAX) {
21469 			rval = sd_check_mhd(dev, mh_time);
21470 		}
21471 	} else {
21472 		(void) sd_check_mhd(dev, 0);
21473 		mutex_enter(SD_MUTEX(un));
21474 		un->un_resvd_status &= ~SD_FAILFAST;
21475 		mutex_exit(SD_MUTEX(un));
21476 	}
21477 	return (rval);
21478 }
21479 
21480 
21481 /*
21482  *    Function: sd_mhdioc_takeown
21483  *
21484  * Description: This routine is the driver entry point for handling ioctl
21485  *		requests to forcefully acquire exclusive access rights to the
21486  *		multihost disk (MHIOCTKOWN).
21487  *
21488  *   Arguments: dev	- the device number
21489  *		arg	- user provided structure specifying the delay
21490  *			  parameters in milliseconds
21491  *		flag	- this argument is a pass through to ddi_copyxxx()
21492  *			  directly from the mode argument of ioctl().
21493  *
21494  * Return Code: 0
21495  *		EFAULT
21496  *		ENXIO
21497  */
21498 
21499 static int
21500 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21501 {
21502 	struct sd_lun		*un = NULL;
21503 	struct mhioctkown	*tkown = NULL;
21504 	int			rval = 0;
21505 
21506 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21507 		return (ENXIO);
21508 	}
21509 
21510 	if (arg != NULL) {
21511 		tkown = (struct mhioctkown *)
21512 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21513 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21514 		if (rval != 0) {
21515 			rval = EFAULT;
21516 			goto error;
21517 		}
21518 	}
21519 
21520 	rval = sd_take_ownership(dev, tkown);
21521 	mutex_enter(SD_MUTEX(un));
21522 	if (rval == 0) {
21523 		un->un_resvd_status |= SD_RESERVE;
21524 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21525 			sd_reinstate_resv_delay =
21526 			    tkown->reinstate_resv_delay * 1000;
21527 		} else {
21528 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21529 		}
21530 		/*
21531 		 * Give the scsi_watch routine interval set by
21532 		 * the MHIOCENFAILFAST ioctl precedence here.
21533 		 */
21534 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21535 			mutex_exit(SD_MUTEX(un));
21536 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21537 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21538 			    "sd_mhdioc_takeown : %d\n",
21539 			    sd_reinstate_resv_delay);
21540 		} else {
21541 			mutex_exit(SD_MUTEX(un));
21542 		}
21543 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21544 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21545 	} else {
21546 		un->un_resvd_status &= ~SD_RESERVE;
21547 		mutex_exit(SD_MUTEX(un));
21548 	}
21549 
21550 error:
21551 	if (tkown != NULL) {
21552 		kmem_free(tkown, sizeof (struct mhioctkown));
21553 	}
21554 	return (rval);
21555 }
21556 
21557 
21558 /*
21559  *    Function: sd_mhdioc_release
21560  *
21561  * Description: This routine is the driver entry point for handling ioctl
21562  *		requests to release exclusive access rights to the multihost
21563  *		disk (MHIOCRELEASE).
21564  *
21565  *   Arguments: dev	- the device number
21566  *
21567  * Return Code: 0
21568  *		ENXIO
21569  */
21570 
21571 static int
21572 sd_mhdioc_release(dev_t dev)
21573 {
21574 	struct sd_lun		*un = NULL;
21575 	timeout_id_t		resvd_timeid_save;
21576 	int			resvd_status_save;
21577 	int			rval = 0;
21578 
21579 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21580 		return (ENXIO);
21581 	}
21582 
21583 	mutex_enter(SD_MUTEX(un));
21584 	resvd_status_save = un->un_resvd_status;
21585 	un->un_resvd_status &=
21586 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21587 	if (un->un_resvd_timeid) {
21588 		resvd_timeid_save = un->un_resvd_timeid;
21589 		un->un_resvd_timeid = NULL;
21590 		mutex_exit(SD_MUTEX(un));
21591 		(void) untimeout(resvd_timeid_save);
21592 	} else {
21593 		mutex_exit(SD_MUTEX(un));
21594 	}
21595 
21596 	/*
21597 	 * destroy any pending timeout thread that may be attempting to
21598 	 * reinstate reservation on this device.
21599 	 */
21600 	sd_rmv_resv_reclaim_req(dev);
21601 
21602 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21603 		mutex_enter(SD_MUTEX(un));
21604 		if ((un->un_mhd_token) &&
21605 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21606 			mutex_exit(SD_MUTEX(un));
21607 			(void) sd_check_mhd(dev, 0);
21608 		} else {
21609 			mutex_exit(SD_MUTEX(un));
21610 		}
21611 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21612 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21613 	} else {
21614 		/*
21615 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21616 		 */
21617 		mutex_enter(SD_MUTEX(un));
21618 		un->un_resvd_status = resvd_status_save;
21619 		mutex_exit(SD_MUTEX(un));
21620 	}
21621 	return (rval);
21622 }
21623 
21624 
21625 /*
21626  *    Function: sd_mhdioc_register_devid
21627  *
21628  * Description: This routine is the driver entry point for handling ioctl
21629  *		requests to register the device id (MHIOCREREGISTERDEVID).
21630  *
21631  *		Note: The implementation for this ioctl has been updated to
21632  *		be consistent with the original PSARC case (1999/357)
21633  *		(4375899, 4241671, 4220005)
21634  *
21635  *   Arguments: dev	- the device number
21636  *
21637  * Return Code: 0
21638  *		ENXIO
21639  */
21640 
21641 static int
21642 sd_mhdioc_register_devid(dev_t dev)
21643 {
21644 	struct sd_lun	*un = NULL;
21645 	int		rval = 0;
21646 
21647 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21648 		return (ENXIO);
21649 	}
21650 
21651 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21652 
21653 	mutex_enter(SD_MUTEX(un));
21654 
21655 	/* If a devid already exists, de-register it */
21656 	if (un->un_devid != NULL) {
21657 		ddi_devid_unregister(SD_DEVINFO(un));
21658 		/*
21659 		 * After unregister devid, needs to free devid memory
21660 		 */
21661 		ddi_devid_free(un->un_devid);
21662 		un->un_devid = NULL;
21663 	}
21664 
21665 	/* Check for reservation conflict */
21666 	mutex_exit(SD_MUTEX(un));
21667 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21668 	mutex_enter(SD_MUTEX(un));
21669 
21670 	switch (rval) {
21671 	case 0:
21672 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21673 		break;
21674 	case EACCES:
21675 		break;
21676 	default:
21677 		rval = EIO;
21678 	}
21679 
21680 	mutex_exit(SD_MUTEX(un));
21681 	return (rval);
21682 }
21683 
21684 
21685 /*
21686  *    Function: sd_mhdioc_inkeys
21687  *
21688  * Description: This routine is the driver entry point for handling ioctl
21689  *		requests to issue the SCSI-3 Persistent In Read Keys command
21690  *		to the device (MHIOCGRP_INKEYS).
21691  *
21692  *   Arguments: dev	- the device number
21693  *		arg	- user provided in_keys structure
21694  *		flag	- this argument is a pass through to ddi_copyxxx()
21695  *			  directly from the mode argument of ioctl().
21696  *
21697  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21698  *		ENXIO
21699  *		EFAULT
21700  */
21701 
21702 static int
21703 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21704 {
21705 	struct sd_lun		*un;
21706 	mhioc_inkeys_t		inkeys;
21707 	int			rval = 0;
21708 
21709 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21710 		return (ENXIO);
21711 	}
21712 
21713 #ifdef _MULTI_DATAMODEL
21714 	switch (ddi_model_convert_from(flag & FMODELS)) {
21715 	case DDI_MODEL_ILP32: {
21716 		struct mhioc_inkeys32	inkeys32;
21717 
21718 		if (ddi_copyin(arg, &inkeys32,
21719 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21720 			return (EFAULT);
21721 		}
21722 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21723 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21724 		    &inkeys, flag)) != 0) {
21725 			return (rval);
21726 		}
21727 		inkeys32.generation = inkeys.generation;
21728 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21729 		    flag) != 0) {
21730 			return (EFAULT);
21731 		}
21732 		break;
21733 	}
21734 	case DDI_MODEL_NONE:
21735 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21736 		    flag) != 0) {
21737 			return (EFAULT);
21738 		}
21739 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21740 		    &inkeys, flag)) != 0) {
21741 			return (rval);
21742 		}
21743 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21744 		    flag) != 0) {
21745 			return (EFAULT);
21746 		}
21747 		break;
21748 	}
21749 
21750 #else /* ! _MULTI_DATAMODEL */
21751 
21752 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21753 		return (EFAULT);
21754 	}
21755 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21756 	if (rval != 0) {
21757 		return (rval);
21758 	}
21759 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21760 		return (EFAULT);
21761 	}
21762 
21763 #endif /* _MULTI_DATAMODEL */
21764 
21765 	return (rval);
21766 }
21767 
21768 
21769 /*
21770  *    Function: sd_mhdioc_inresv
21771  *
21772  * Description: This routine is the driver entry point for handling ioctl
21773  *		requests to issue the SCSI-3 Persistent In Read Reservations
21774  *		command to the device (MHIOCGRP_INKEYS).
21775  *
21776  *   Arguments: dev	- the device number
21777  *		arg	- user provided in_resv structure
21778  *		flag	- this argument is a pass through to ddi_copyxxx()
21779  *			  directly from the mode argument of ioctl().
21780  *
21781  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21782  *		ENXIO
21783  *		EFAULT
21784  */
21785 
21786 static int
21787 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21788 {
21789 	struct sd_lun		*un;
21790 	mhioc_inresvs_t		inresvs;
21791 	int			rval = 0;
21792 
21793 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21794 		return (ENXIO);
21795 	}
21796 
21797 #ifdef _MULTI_DATAMODEL
21798 
21799 	switch (ddi_model_convert_from(flag & FMODELS)) {
21800 	case DDI_MODEL_ILP32: {
21801 		struct mhioc_inresvs32	inresvs32;
21802 
21803 		if (ddi_copyin(arg, &inresvs32,
21804 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21805 			return (EFAULT);
21806 		}
21807 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21808 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21809 		    &inresvs, flag)) != 0) {
21810 			return (rval);
21811 		}
21812 		inresvs32.generation = inresvs.generation;
21813 		if (ddi_copyout(&inresvs32, arg,
21814 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21815 			return (EFAULT);
21816 		}
21817 		break;
21818 	}
21819 	case DDI_MODEL_NONE:
21820 		if (ddi_copyin(arg, &inresvs,
21821 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21822 			return (EFAULT);
21823 		}
21824 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21825 		    &inresvs, flag)) != 0) {
21826 			return (rval);
21827 		}
21828 		if (ddi_copyout(&inresvs, arg,
21829 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21830 			return (EFAULT);
21831 		}
21832 		break;
21833 	}
21834 
21835 #else /* ! _MULTI_DATAMODEL */
21836 
21837 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
21838 		return (EFAULT);
21839 	}
21840 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
21841 	if (rval != 0) {
21842 		return (rval);
21843 	}
21844 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
21845 		return (EFAULT);
21846 	}
21847 
21848 #endif /* ! _MULTI_DATAMODEL */
21849 
21850 	return (rval);
21851 }
21852 
21853 
21854 /*
21855  * The following routines support the clustering functionality described below
21856  * and implement lost reservation reclaim functionality.
21857  *
21858  * Clustering
21859  * ----------
21860  * The clustering code uses two different, independent forms of SCSI
21861  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
21862  * Persistent Group Reservations. For any particular disk, it will use either
21863  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
21864  *
21865  * SCSI-2
21866  * The cluster software takes ownership of a multi-hosted disk by issuing the
21867  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
21868  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
21869  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
21870  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
21871  * driver. The meaning of failfast is that if the driver (on this host) ever
21872  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
21873  * it should immediately panic the host. The motivation for this ioctl is that
21874  * if this host does encounter reservation conflict, the underlying cause is
21875  * that some other host of the cluster has decided that this host is no longer
21876  * in the cluster and has seized control of the disks for itself. Since this
21877  * host is no longer in the cluster, it ought to panic itself. The
21878  * MHIOCENFAILFAST ioctl does two things:
21879  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
21880  *      error to panic the host
21881  *      (b) it sets up a periodic timer to test whether this host still has
21882  *      "access" (in that no other host has reserved the device):  if the
21883  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
21884  *      purpose of that periodic timer is to handle scenarios where the host is
21885  *      otherwise temporarily quiescent, temporarily doing no real i/o.
21886  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
21887  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
21888  * the device itself.
21889  *
21890  * SCSI-3 PGR
21891  * A direct semantic implementation of the SCSI-3 Persistent Reservation
21892  * facility is supported through the shared multihost disk ioctls
21893  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
21894  * MHIOCGRP_PREEMPTANDABORT)
21895  *
21896  * Reservation Reclaim:
21897  * --------------------
21898  * To support the lost reservation reclaim operations this driver creates a
21899  * single thread to handle reinstating reservations on all devices that have
21900  * lost reservations sd_resv_reclaim_requests are logged for all devices that
21901  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
21902  * and the reservation reclaim thread loops through the requests to regain the
21903  * lost reservations.
21904  */
21905 
21906 /*
21907  *    Function: sd_check_mhd()
21908  *
21909  * Description: This function sets up and submits a scsi watch request or
21910  *		terminates an existing watch request. This routine is used in
21911  *		support of reservation reclaim.
21912  *
21913  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
21914  *			 among multiple watches that share the callback function
21915  *		interval - the number of microseconds specifying the watch
21916  *			   interval for issuing TEST UNIT READY commands. If
21917  *			   set to 0 the watch should be terminated. If the
21918  *			   interval is set to 0 and if the device is required
21919  *			   to hold reservation while disabling failfast, the
21920  *			   watch is restarted with an interval of
21921  *			   reinstate_resv_delay.
21922  *
21923  * Return Code: 0	   - Successful submit/terminate of scsi watch request
21924  *		ENXIO      - Indicates an invalid device was specified
21925  *		EAGAIN     - Unable to submit the scsi watch request
21926  */
21927 
21928 static int
21929 sd_check_mhd(dev_t dev, int interval)
21930 {
21931 	struct sd_lun	*un;
21932 	opaque_t	token;
21933 
21934 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21935 		return (ENXIO);
21936 	}
21937 
21938 	/* is this a watch termination request? */
21939 	if (interval == 0) {
21940 		mutex_enter(SD_MUTEX(un));
21941 		/* if there is an existing watch task then terminate it */
21942 		if (un->un_mhd_token) {
21943 			token = un->un_mhd_token;
21944 			un->un_mhd_token = NULL;
21945 			mutex_exit(SD_MUTEX(un));
21946 			(void) scsi_watch_request_terminate(token,
21947 			    SCSI_WATCH_TERMINATE_WAIT);
21948 			mutex_enter(SD_MUTEX(un));
21949 		} else {
21950 			mutex_exit(SD_MUTEX(un));
21951 			/*
21952 			 * Note: If we return here we don't check for the
21953 			 * failfast case. This is the original legacy
21954 			 * implementation but perhaps we should be checking
21955 			 * the failfast case.
21956 			 */
21957 			return (0);
21958 		}
21959 		/*
21960 		 * If the device is required to hold reservation while
21961 		 * disabling failfast, we need to restart the scsi_watch
21962 		 * routine with an interval of reinstate_resv_delay.
21963 		 */
21964 		if (un->un_resvd_status & SD_RESERVE) {
21965 			interval = sd_reinstate_resv_delay/1000;
21966 		} else {
21967 			/* no failfast so bail */
21968 			mutex_exit(SD_MUTEX(un));
21969 			return (0);
21970 		}
21971 		mutex_exit(SD_MUTEX(un));
21972 	}
21973 
21974 	/*
21975 	 * adjust minimum time interval to 1 second,
21976 	 * and convert from msecs to usecs
21977 	 */
21978 	if (interval > 0 && interval < 1000) {
21979 		interval = 1000;
21980 	}
21981 	interval *= 1000;
21982 
21983 	/*
21984 	 * submit the request to the scsi_watch service
21985 	 */
21986 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
21987 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
21988 	if (token == NULL) {
21989 		return (EAGAIN);
21990 	}
21991 
21992 	/*
21993 	 * save token for termination later on
21994 	 */
21995 	mutex_enter(SD_MUTEX(un));
21996 	un->un_mhd_token = token;
21997 	mutex_exit(SD_MUTEX(un));
21998 	return (0);
21999 }
22000 
22001 
22002 /*
22003  *    Function: sd_mhd_watch_cb()
22004  *
22005  * Description: This function is the call back function used by the scsi watch
22006  *		facility. The scsi watch facility sends the "Test Unit Ready"
22007  *		and processes the status. If applicable (i.e. a "Unit Attention"
22008  *		status and automatic "Request Sense" not used) the scsi watch
22009  *		facility will send a "Request Sense" and retrieve the sense data
22010  *		to be passed to this callback function. In either case the
22011  *		automatic "Request Sense" or the facility submitting one, this
22012  *		callback is passed the status and sense data.
22013  *
22014  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22015  *			among multiple watches that share this callback function
22016  *		resultp - scsi watch facility result packet containing scsi
22017  *			  packet, status byte and sense data
22018  *
22019  * Return Code: 0 - continue the watch task
22020  *		non-zero - terminate the watch task
22021  */
22022 
22023 static int
22024 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
22025 {
22026 	struct sd_lun			*un;
22027 	struct scsi_status		*statusp;
22028 	uint8_t				*sensep;
22029 	struct scsi_pkt			*pkt;
22030 	uchar_t				actual_sense_length;
22031 	dev_t  				dev = (dev_t)arg;
22032 
22033 	ASSERT(resultp != NULL);
22034 	statusp			= resultp->statusp;
22035 	sensep			= (uint8_t *)resultp->sensep;
22036 	pkt			= resultp->pkt;
22037 	actual_sense_length	= resultp->actual_sense_length;
22038 
22039 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22040 		return (ENXIO);
22041 	}
22042 
22043 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22044 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
22045 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
22046 
22047 	/* Begin processing of the status and/or sense data */
22048 	if (pkt->pkt_reason != CMD_CMPLT) {
22049 		/* Handle the incomplete packet */
22050 		sd_mhd_watch_incomplete(un, pkt);
22051 		return (0);
22052 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
22053 		if (*((unsigned char *)statusp)
22054 		    == STATUS_RESERVATION_CONFLICT) {
22055 			/*
22056 			 * Handle a reservation conflict by panicking if
22057 			 * configured for failfast or by logging the conflict
22058 			 * and updating the reservation status
22059 			 */
22060 			mutex_enter(SD_MUTEX(un));
22061 			if ((un->un_resvd_status & SD_FAILFAST) &&
22062 			    (sd_failfast_enable)) {
22063 				sd_panic_for_res_conflict(un);
22064 				/*NOTREACHED*/
22065 			}
22066 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22067 			    "sd_mhd_watch_cb: Reservation Conflict\n");
22068 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
22069 			mutex_exit(SD_MUTEX(un));
22070 		}
22071 	}
22072 
22073 	if (sensep != NULL) {
22074 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
22075 			mutex_enter(SD_MUTEX(un));
22076 			if ((scsi_sense_asc(sensep) ==
22077 			    SD_SCSI_RESET_SENSE_CODE) &&
22078 			    (un->un_resvd_status & SD_RESERVE)) {
22079 				/*
22080 				 * The additional sense code indicates a power
22081 				 * on or bus device reset has occurred; update
22082 				 * the reservation status.
22083 				 */
22084 				un->un_resvd_status |=
22085 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22086 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22087 				    "sd_mhd_watch_cb: Lost Reservation\n");
22088 			}
22089 		} else {
22090 			return (0);
22091 		}
22092 	} else {
22093 		mutex_enter(SD_MUTEX(un));
22094 	}
22095 
22096 	if ((un->un_resvd_status & SD_RESERVE) &&
22097 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
22098 		if (un->un_resvd_status & SD_WANT_RESERVE) {
22099 			/*
22100 			 * A reset occurred in between the last probe and this
22101 			 * one so if a timeout is pending cancel it.
22102 			 */
22103 			if (un->un_resvd_timeid) {
22104 				timeout_id_t temp_id = un->un_resvd_timeid;
22105 				un->un_resvd_timeid = NULL;
22106 				mutex_exit(SD_MUTEX(un));
22107 				(void) untimeout(temp_id);
22108 				mutex_enter(SD_MUTEX(un));
22109 			}
22110 			un->un_resvd_status &= ~SD_WANT_RESERVE;
22111 		}
22112 		if (un->un_resvd_timeid == 0) {
22113 			/* Schedule a timeout to handle the lost reservation */
22114 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
22115 			    (void *)dev,
22116 			    drv_usectohz(sd_reinstate_resv_delay));
22117 		}
22118 	}
22119 	mutex_exit(SD_MUTEX(un));
22120 	return (0);
22121 }
22122 
22123 
22124 /*
22125  *    Function: sd_mhd_watch_incomplete()
22126  *
22127  * Description: This function is used to find out why a scsi pkt sent by the
22128  *		scsi watch facility was not completed. Under some scenarios this
22129  *		routine will return. Otherwise it will send a bus reset to see
22130  *		if the drive is still online.
22131  *
22132  *   Arguments: un  - driver soft state (unit) structure
22133  *		pkt - incomplete scsi pkt
22134  */
22135 
22136 static void
22137 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
22138 {
22139 	int	be_chatty;
22140 	int	perr;
22141 
22142 	ASSERT(pkt != NULL);
22143 	ASSERT(un != NULL);
22144 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
22145 	perr		= (pkt->pkt_statistics & STAT_PERR);
22146 
22147 	mutex_enter(SD_MUTEX(un));
22148 	if (un->un_state == SD_STATE_DUMPING) {
22149 		mutex_exit(SD_MUTEX(un));
22150 		return;
22151 	}
22152 
22153 	switch (pkt->pkt_reason) {
22154 	case CMD_UNX_BUS_FREE:
22155 		/*
22156 		 * If we had a parity error that caused the target to drop BSY*,
22157 		 * don't be chatty about it.
22158 		 */
22159 		if (perr && be_chatty) {
22160 			be_chatty = 0;
22161 		}
22162 		break;
22163 	case CMD_TAG_REJECT:
22164 		/*
22165 		 * The SCSI-2 spec states that a tag reject will be sent by the
22166 		 * target if tagged queuing is not supported. A tag reject may
22167 		 * also be sent during certain initialization periods or to
22168 		 * control internal resources. For the latter case the target
22169 		 * may also return Queue Full.
22170 		 *
22171 		 * If this driver receives a tag reject from a target that is
22172 		 * going through an init period or controlling internal
22173 		 * resources tagged queuing will be disabled. This is a less
22174 		 * than optimal behavior but the driver is unable to determine
22175 		 * the target state and assumes tagged queueing is not supported
22176 		 */
22177 		pkt->pkt_flags = 0;
22178 		un->un_tagflags = 0;
22179 
22180 		if (un->un_f_opt_queueing == TRUE) {
22181 			un->un_throttle = min(un->un_throttle, 3);
22182 		} else {
22183 			un->un_throttle = 1;
22184 		}
22185 		mutex_exit(SD_MUTEX(un));
22186 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
22187 		mutex_enter(SD_MUTEX(un));
22188 		break;
22189 	case CMD_INCOMPLETE:
22190 		/*
22191 		 * The transport stopped with an abnormal state, fallthrough and
22192 		 * reset the target and/or bus unless selection did not complete
22193 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
22194 		 * go through a target/bus reset
22195 		 */
22196 		if (pkt->pkt_state == STATE_GOT_BUS) {
22197 			break;
22198 		}
22199 		/*FALLTHROUGH*/
22200 
22201 	case CMD_TIMEOUT:
22202 	default:
22203 		/*
22204 		 * The lun may still be running the command, so a lun reset
22205 		 * should be attempted. If the lun reset fails or cannot be
22206 		 * issued, than try a target reset. Lastly try a bus reset.
22207 		 */
22208 		if ((pkt->pkt_statistics &
22209 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
22210 			int reset_retval = 0;
22211 			mutex_exit(SD_MUTEX(un));
22212 			if (un->un_f_allow_bus_device_reset == TRUE) {
22213 				if (un->un_f_lun_reset_enabled == TRUE) {
22214 					reset_retval =
22215 					    scsi_reset(SD_ADDRESS(un),
22216 					    RESET_LUN);
22217 				}
22218 				if (reset_retval == 0) {
22219 					reset_retval =
22220 					    scsi_reset(SD_ADDRESS(un),
22221 					    RESET_TARGET);
22222 				}
22223 			}
22224 			if (reset_retval == 0) {
22225 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22226 			}
22227 			mutex_enter(SD_MUTEX(un));
22228 		}
22229 		break;
22230 	}
22231 
22232 	/* A device/bus reset has occurred; update the reservation status. */
22233 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
22234 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
22235 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22236 			un->un_resvd_status |=
22237 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22238 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22239 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
22240 		}
22241 	}
22242 
22243 	/*
22244 	 * The disk has been turned off; Update the device state.
22245 	 *
22246 	 * Note: Should we be offlining the disk here?
22247 	 */
22248 	if (pkt->pkt_state == STATE_GOT_BUS) {
22249 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
22250 		    "Disk not responding to selection\n");
22251 		if (un->un_state != SD_STATE_OFFLINE) {
22252 			New_state(un, SD_STATE_OFFLINE);
22253 		}
22254 	} else if (be_chatty) {
22255 		/*
22256 		 * suppress messages if they are all the same pkt reason;
22257 		 * with TQ, many (up to 256) are returned with the same
22258 		 * pkt_reason
22259 		 */
22260 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
22261 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
22262 			    "sd_mhd_watch_incomplete: "
22263 			    "SCSI transport failed: reason '%s'\n",
22264 			    scsi_rname(pkt->pkt_reason));
22265 		}
22266 	}
22267 	un->un_last_pkt_reason = pkt->pkt_reason;
22268 	mutex_exit(SD_MUTEX(un));
22269 }
22270 
22271 
22272 /*
22273  *    Function: sd_sname()
22274  *
22275  * Description: This is a simple little routine to return a string containing
22276  *		a printable description of command status byte for use in
22277  *		logging.
22278  *
22279  *   Arguments: status - pointer to a status byte
22280  *
22281  * Return Code: char * - string containing status description.
22282  */
22283 
22284 static char *
22285 sd_sname(uchar_t status)
22286 {
22287 	switch (status & STATUS_MASK) {
22288 	case STATUS_GOOD:
22289 		return ("good status");
22290 	case STATUS_CHECK:
22291 		return ("check condition");
22292 	case STATUS_MET:
22293 		return ("condition met");
22294 	case STATUS_BUSY:
22295 		return ("busy");
22296 	case STATUS_INTERMEDIATE:
22297 		return ("intermediate");
22298 	case STATUS_INTERMEDIATE_MET:
22299 		return ("intermediate - condition met");
22300 	case STATUS_RESERVATION_CONFLICT:
22301 		return ("reservation_conflict");
22302 	case STATUS_TERMINATED:
22303 		return ("command terminated");
22304 	case STATUS_QFULL:
22305 		return ("queue full");
22306 	default:
22307 		return ("<unknown status>");
22308 	}
22309 }
22310 
22311 
22312 /*
22313  *    Function: sd_mhd_resvd_recover()
22314  *
22315  * Description: This function adds a reservation entry to the
22316  *		sd_resv_reclaim_request list and signals the reservation
22317  *		reclaim thread that there is work pending. If the reservation
22318  *		reclaim thread has not been previously created this function
22319  *		will kick it off.
22320  *
22321  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22322  *			among multiple watches that share this callback function
22323  *
22324  *     Context: This routine is called by timeout() and is run in interrupt
22325  *		context. It must not sleep or call other functions which may
22326  *		sleep.
22327  */
22328 
22329 static void
22330 sd_mhd_resvd_recover(void *arg)
22331 {
22332 	dev_t			dev = (dev_t)arg;
22333 	struct sd_lun		*un;
22334 	struct sd_thr_request	*sd_treq = NULL;
22335 	struct sd_thr_request	*sd_cur = NULL;
22336 	struct sd_thr_request	*sd_prev = NULL;
22337 	int			already_there = 0;
22338 
22339 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22340 		return;
22341 	}
22342 
22343 	mutex_enter(SD_MUTEX(un));
22344 	un->un_resvd_timeid = NULL;
22345 	if (un->un_resvd_status & SD_WANT_RESERVE) {
22346 		/*
22347 		 * There was a reset so don't issue the reserve, allow the
22348 		 * sd_mhd_watch_cb callback function to notice this and
22349 		 * reschedule the timeout for reservation.
22350 		 */
22351 		mutex_exit(SD_MUTEX(un));
22352 		return;
22353 	}
22354 	mutex_exit(SD_MUTEX(un));
22355 
22356 	/*
22357 	 * Add this device to the sd_resv_reclaim_request list and the
22358 	 * sd_resv_reclaim_thread should take care of the rest.
22359 	 *
22360 	 * Note: We can't sleep in this context so if the memory allocation
22361 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
22362 	 * reschedule the timeout for reservation.  (4378460)
22363 	 */
22364 	sd_treq = (struct sd_thr_request *)
22365 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
22366 	if (sd_treq == NULL) {
22367 		return;
22368 	}
22369 
22370 	sd_treq->sd_thr_req_next = NULL;
22371 	sd_treq->dev = dev;
22372 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22373 	if (sd_tr.srq_thr_req_head == NULL) {
22374 		sd_tr.srq_thr_req_head = sd_treq;
22375 	} else {
22376 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
22377 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
22378 			if (sd_cur->dev == dev) {
22379 				/*
22380 				 * already in Queue so don't log
22381 				 * another request for the device
22382 				 */
22383 				already_there = 1;
22384 				break;
22385 			}
22386 			sd_prev = sd_cur;
22387 		}
22388 		if (!already_there) {
22389 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
22390 			    "logging request for %lx\n", dev);
22391 			sd_prev->sd_thr_req_next = sd_treq;
22392 		} else {
22393 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
22394 		}
22395 	}
22396 
22397 	/*
22398 	 * Create a kernel thread to do the reservation reclaim and free up this
22399 	 * thread. We cannot block this thread while we go away to do the
22400 	 * reservation reclaim
22401 	 */
22402 	if (sd_tr.srq_resv_reclaim_thread == NULL)
22403 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
22404 		    sd_resv_reclaim_thread, NULL,
22405 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
22406 
22407 	/* Tell the reservation reclaim thread that it has work to do */
22408 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
22409 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22410 }
22411 
22412 /*
22413  *    Function: sd_resv_reclaim_thread()
22414  *
22415  * Description: This function implements the reservation reclaim operations
22416  *
22417  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
22418  *		      among multiple watches that share this callback function
22419  */
22420 
22421 static void
22422 sd_resv_reclaim_thread()
22423 {
22424 	struct sd_lun		*un;
22425 	struct sd_thr_request	*sd_mhreq;
22426 
22427 	/* Wait for work */
22428 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22429 	if (sd_tr.srq_thr_req_head == NULL) {
22430 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
22431 		    &sd_tr.srq_resv_reclaim_mutex);
22432 	}
22433 
22434 	/* Loop while we have work */
22435 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
22436 		un = ddi_get_soft_state(sd_state,
22437 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
22438 		if (un == NULL) {
22439 			/*
22440 			 * softstate structure is NULL so just
22441 			 * dequeue the request and continue
22442 			 */
22443 			sd_tr.srq_thr_req_head =
22444 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22445 			kmem_free(sd_tr.srq_thr_cur_req,
22446 			    sizeof (struct sd_thr_request));
22447 			continue;
22448 		}
22449 
22450 		/* dequeue the request */
22451 		sd_mhreq = sd_tr.srq_thr_cur_req;
22452 		sd_tr.srq_thr_req_head =
22453 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22454 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22455 
22456 		/*
22457 		 * Reclaim reservation only if SD_RESERVE is still set. There
22458 		 * may have been a call to MHIOCRELEASE before we got here.
22459 		 */
22460 		mutex_enter(SD_MUTEX(un));
22461 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22462 			/*
22463 			 * Note: The SD_LOST_RESERVE flag is cleared before
22464 			 * reclaiming the reservation. If this is done after the
22465 			 * call to sd_reserve_release a reservation loss in the
22466 			 * window between pkt completion of reserve cmd and
22467 			 * mutex_enter below may not be recognized
22468 			 */
22469 			un->un_resvd_status &= ~SD_LOST_RESERVE;
22470 			mutex_exit(SD_MUTEX(un));
22471 
22472 			if (sd_reserve_release(sd_mhreq->dev,
22473 			    SD_RESERVE) == 0) {
22474 				mutex_enter(SD_MUTEX(un));
22475 				un->un_resvd_status |= SD_RESERVE;
22476 				mutex_exit(SD_MUTEX(un));
22477 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22478 				    "sd_resv_reclaim_thread: "
22479 				    "Reservation Recovered\n");
22480 			} else {
22481 				mutex_enter(SD_MUTEX(un));
22482 				un->un_resvd_status |= SD_LOST_RESERVE;
22483 				mutex_exit(SD_MUTEX(un));
22484 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22485 				    "sd_resv_reclaim_thread: Failed "
22486 				    "Reservation Recovery\n");
22487 			}
22488 		} else {
22489 			mutex_exit(SD_MUTEX(un));
22490 		}
22491 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22492 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
22493 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22494 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
22495 		/*
22496 		 * wakeup the destroy thread if anyone is waiting on
22497 		 * us to complete.
22498 		 */
22499 		cv_signal(&sd_tr.srq_inprocess_cv);
22500 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22501 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22502 	}
22503 
22504 	/*
22505 	 * cleanup the sd_tr structure now that this thread will not exist
22506 	 */
22507 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22508 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22509 	sd_tr.srq_resv_reclaim_thread = NULL;
22510 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22511 	thread_exit();
22512 }
22513 
22514 
22515 /*
22516  *    Function: sd_rmv_resv_reclaim_req()
22517  *
22518  * Description: This function removes any pending reservation reclaim requests
22519  *		for the specified device.
22520  *
22521  *   Arguments: dev - the device 'dev_t'
22522  */
22523 
22524 static void
22525 sd_rmv_resv_reclaim_req(dev_t dev)
22526 {
22527 	struct sd_thr_request *sd_mhreq;
22528 	struct sd_thr_request *sd_prev;
22529 
22530 	/* Remove a reservation reclaim request from the list */
22531 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22532 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22533 		/*
22534 		 * We are attempting to reinstate reservation for
22535 		 * this device. We wait for sd_reserve_release()
22536 		 * to return before we return.
22537 		 */
22538 		cv_wait(&sd_tr.srq_inprocess_cv,
22539 		    &sd_tr.srq_resv_reclaim_mutex);
22540 	} else {
22541 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22542 		if (sd_mhreq && sd_mhreq->dev == dev) {
22543 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22544 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22545 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22546 			return;
22547 		}
22548 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22549 			if (sd_mhreq && sd_mhreq->dev == dev) {
22550 				break;
22551 			}
22552 			sd_prev = sd_mhreq;
22553 		}
22554 		if (sd_mhreq != NULL) {
22555 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22556 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22557 		}
22558 	}
22559 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22560 }
22561 
22562 
22563 /*
22564  *    Function: sd_mhd_reset_notify_cb()
22565  *
22566  * Description: This is a call back function for scsi_reset_notify. This
22567  *		function updates the softstate reserved status and logs the
22568  *		reset. The driver scsi watch facility callback function
22569  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22570  *		will reclaim the reservation.
22571  *
22572  *   Arguments: arg  - driver soft state (unit) structure
22573  */
22574 
22575 static void
22576 sd_mhd_reset_notify_cb(caddr_t arg)
22577 {
22578 	struct sd_lun *un = (struct sd_lun *)arg;
22579 
22580 	mutex_enter(SD_MUTEX(un));
22581 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22582 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22583 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22584 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22585 	}
22586 	mutex_exit(SD_MUTEX(un));
22587 }
22588 
22589 
22590 /*
22591  *    Function: sd_take_ownership()
22592  *
22593  * Description: This routine implements an algorithm to achieve a stable
22594  *		reservation on disks which don't implement priority reserve,
22595  *		and makes sure that other host lose re-reservation attempts.
22596  *		This algorithm contains of a loop that keeps issuing the RESERVE
22597  *		for some period of time (min_ownership_delay, default 6 seconds)
22598  *		During that loop, it looks to see if there has been a bus device
22599  *		reset or bus reset (both of which cause an existing reservation
22600  *		to be lost). If the reservation is lost issue RESERVE until a
22601  *		period of min_ownership_delay with no resets has gone by, or
22602  *		until max_ownership_delay has expired. This loop ensures that
22603  *		the host really did manage to reserve the device, in spite of
22604  *		resets. The looping for min_ownership_delay (default six
22605  *		seconds) is important to early generation clustering products,
22606  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22607  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22608  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22609  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22610  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22611  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22612  *		no longer "owns" the disk and will have panicked itself.  Thus,
22613  *		the host issuing the MHIOCTKOWN is assured (with timing
22614  *		dependencies) that by the time it actually starts to use the
22615  *		disk for real work, the old owner is no longer accessing it.
22616  *
22617  *		min_ownership_delay is the minimum amount of time for which the
22618  *		disk must be reserved continuously devoid of resets before the
22619  *		MHIOCTKOWN ioctl will return success.
22620  *
22621  *		max_ownership_delay indicates the amount of time by which the
22622  *		take ownership should succeed or timeout with an error.
22623  *
22624  *   Arguments: dev - the device 'dev_t'
22625  *		*p  - struct containing timing info.
22626  *
22627  * Return Code: 0 for success or error code
22628  */
22629 
22630 static int
22631 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22632 {
22633 	struct sd_lun	*un;
22634 	int		rval;
22635 	int		err;
22636 	int		reservation_count   = 0;
22637 	int		min_ownership_delay =  6000000; /* in usec */
22638 	int		max_ownership_delay = 30000000; /* in usec */
22639 	clock_t		start_time;	/* starting time of this algorithm */
22640 	clock_t		end_time;	/* time limit for giving up */
22641 	clock_t		ownership_time;	/* time limit for stable ownership */
22642 	clock_t		current_time;
22643 	clock_t		previous_current_time;
22644 
22645 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22646 		return (ENXIO);
22647 	}
22648 
22649 	/*
22650 	 * Attempt a device reservation. A priority reservation is requested.
22651 	 */
22652 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22653 	    != SD_SUCCESS) {
22654 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22655 		    "sd_take_ownership: return(1)=%d\n", rval);
22656 		return (rval);
22657 	}
22658 
22659 	/* Update the softstate reserved status to indicate the reservation */
22660 	mutex_enter(SD_MUTEX(un));
22661 	un->un_resvd_status |= SD_RESERVE;
22662 	un->un_resvd_status &=
22663 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22664 	mutex_exit(SD_MUTEX(un));
22665 
22666 	if (p != NULL) {
22667 		if (p->min_ownership_delay != 0) {
22668 			min_ownership_delay = p->min_ownership_delay * 1000;
22669 		}
22670 		if (p->max_ownership_delay != 0) {
22671 			max_ownership_delay = p->max_ownership_delay * 1000;
22672 		}
22673 	}
22674 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22675 	    "sd_take_ownership: min, max delays: %d, %d\n",
22676 	    min_ownership_delay, max_ownership_delay);
22677 
22678 	start_time = ddi_get_lbolt();
22679 	current_time	= start_time;
22680 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22681 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22682 
22683 	while (current_time - end_time < 0) {
22684 		delay(drv_usectohz(500000));
22685 
22686 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22687 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22688 				mutex_enter(SD_MUTEX(un));
22689 				rval = (un->un_resvd_status &
22690 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22691 				mutex_exit(SD_MUTEX(un));
22692 				break;
22693 			}
22694 		}
22695 		previous_current_time = current_time;
22696 		current_time = ddi_get_lbolt();
22697 		mutex_enter(SD_MUTEX(un));
22698 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22699 			ownership_time = ddi_get_lbolt() +
22700 			    drv_usectohz(min_ownership_delay);
22701 			reservation_count = 0;
22702 		} else {
22703 			reservation_count++;
22704 		}
22705 		un->un_resvd_status |= SD_RESERVE;
22706 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22707 		mutex_exit(SD_MUTEX(un));
22708 
22709 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22710 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22711 		    "reservation=%s\n", (current_time - previous_current_time),
22712 		    reservation_count ? "ok" : "reclaimed");
22713 
22714 		if (current_time - ownership_time >= 0 &&
22715 		    reservation_count >= 4) {
22716 			rval = 0; /* Achieved a stable ownership */
22717 			break;
22718 		}
22719 		if (current_time - end_time >= 0) {
22720 			rval = EACCES; /* No ownership in max possible time */
22721 			break;
22722 		}
22723 	}
22724 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22725 	    "sd_take_ownership: return(2)=%d\n", rval);
22726 	return (rval);
22727 }
22728 
22729 
22730 /*
22731  *    Function: sd_reserve_release()
22732  *
22733  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22734  *		PRIORITY RESERVE commands based on a user specified command type
22735  *
22736  *   Arguments: dev - the device 'dev_t'
22737  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22738  *		      SD_RESERVE, SD_RELEASE
22739  *
22740  * Return Code: 0 or Error Code
22741  */
22742 
22743 static int
22744 sd_reserve_release(dev_t dev, int cmd)
22745 {
22746 	struct uscsi_cmd	*com = NULL;
22747 	struct sd_lun		*un = NULL;
22748 	char			cdb[CDB_GROUP0];
22749 	int			rval;
22750 
22751 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22752 	    (cmd == SD_PRIORITY_RESERVE));
22753 
22754 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22755 		return (ENXIO);
22756 	}
22757 
22758 	/* instantiate and initialize the command and cdb */
22759 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22760 	bzero(cdb, CDB_GROUP0);
22761 	com->uscsi_flags   = USCSI_SILENT;
22762 	com->uscsi_timeout = un->un_reserve_release_time;
22763 	com->uscsi_cdblen  = CDB_GROUP0;
22764 	com->uscsi_cdb	   = cdb;
22765 	if (cmd == SD_RELEASE) {
22766 		cdb[0] = SCMD_RELEASE;
22767 	} else {
22768 		cdb[0] = SCMD_RESERVE;
22769 	}
22770 
22771 	/* Send the command. */
22772 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22773 	    SD_PATH_STANDARD);
22774 
22775 	/*
22776 	 * "break" a reservation that is held by another host, by issuing a
22777 	 * reset if priority reserve is desired, and we could not get the
22778 	 * device.
22779 	 */
22780 	if ((cmd == SD_PRIORITY_RESERVE) &&
22781 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22782 		/*
22783 		 * First try to reset the LUN. If we cannot, then try a target
22784 		 * reset, followed by a bus reset if the target reset fails.
22785 		 */
22786 		int reset_retval = 0;
22787 		if (un->un_f_lun_reset_enabled == TRUE) {
22788 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22789 		}
22790 		if (reset_retval == 0) {
22791 			/* The LUN reset either failed or was not issued */
22792 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22793 		}
22794 		if ((reset_retval == 0) &&
22795 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22796 			rval = EIO;
22797 			kmem_free(com, sizeof (*com));
22798 			return (rval);
22799 		}
22800 
22801 		bzero(com, sizeof (struct uscsi_cmd));
22802 		com->uscsi_flags   = USCSI_SILENT;
22803 		com->uscsi_cdb	   = cdb;
22804 		com->uscsi_cdblen  = CDB_GROUP0;
22805 		com->uscsi_timeout = 5;
22806 
22807 		/*
22808 		 * Reissue the last reserve command, this time without request
22809 		 * sense.  Assume that it is just a regular reserve command.
22810 		 */
22811 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22812 		    SD_PATH_STANDARD);
22813 	}
22814 
22815 	/* Return an error if still getting a reservation conflict. */
22816 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22817 		rval = EACCES;
22818 	}
22819 
22820 	kmem_free(com, sizeof (*com));
22821 	return (rval);
22822 }
22823 
22824 
22825 #define	SD_NDUMP_RETRIES	12
22826 /*
22827  *	System Crash Dump routine
22828  */
22829 
22830 static int
22831 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
22832 {
22833 	int		instance;
22834 	int		partition;
22835 	int		i;
22836 	int		err;
22837 	struct sd_lun	*un;
22838 	struct scsi_pkt *wr_pktp;
22839 	struct buf	*wr_bp;
22840 	struct buf	wr_buf;
22841 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
22842 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
22843 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
22844 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
22845 	size_t		io_start_offset;
22846 	int		doing_rmw = FALSE;
22847 	int		rval;
22848 	ssize_t		dma_resid;
22849 	daddr_t		oblkno;
22850 	diskaddr_t	nblks = 0;
22851 	diskaddr_t	start_block;
22852 
22853 	instance = SDUNIT(dev);
22854 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
22855 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
22856 		return (ENXIO);
22857 	}
22858 
22859 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
22860 
22861 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
22862 
22863 	partition = SDPART(dev);
22864 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
22865 
22866 	/* Validate blocks to dump at against partition size. */
22867 
22868 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
22869 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
22870 
22871 	if ((blkno + nblk) > nblks) {
22872 		SD_TRACE(SD_LOG_DUMP, un,
22873 		    "sddump: dump range larger than partition: "
22874 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
22875 		    blkno, nblk, nblks);
22876 		return (EINVAL);
22877 	}
22878 
22879 	mutex_enter(&un->un_pm_mutex);
22880 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22881 		struct scsi_pkt *start_pktp;
22882 
22883 		mutex_exit(&un->un_pm_mutex);
22884 
22885 		/*
22886 		 * use pm framework to power on HBA 1st
22887 		 */
22888 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
22889 
22890 		/*
22891 		 * Dump no long uses sdpower to power on a device, it's
22892 		 * in-line here so it can be done in polled mode.
22893 		 */
22894 
22895 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
22896 
22897 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
22898 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
22899 
22900 		if (start_pktp == NULL) {
22901 			/* We were not given a SCSI packet, fail. */
22902 			return (EIO);
22903 		}
22904 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
22905 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
22906 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
22907 		start_pktp->pkt_flags = FLAG_NOINTR;
22908 
22909 		mutex_enter(SD_MUTEX(un));
22910 		SD_FILL_SCSI1_LUN(un, start_pktp);
22911 		mutex_exit(SD_MUTEX(un));
22912 		/*
22913 		 * Scsi_poll returns 0 (success) if the command completes and
22914 		 * the status block is STATUS_GOOD.
22915 		 */
22916 		if (sd_scsi_poll(un, start_pktp) != 0) {
22917 			scsi_destroy_pkt(start_pktp);
22918 			return (EIO);
22919 		}
22920 		scsi_destroy_pkt(start_pktp);
22921 		(void) sd_ddi_pm_resume(un);
22922 	} else {
22923 		mutex_exit(&un->un_pm_mutex);
22924 	}
22925 
22926 	mutex_enter(SD_MUTEX(un));
22927 	un->un_throttle = 0;
22928 
22929 	/*
22930 	 * The first time through, reset the specific target device.
22931 	 * However, when cpr calls sddump we know that sd is in a
22932 	 * a good state so no bus reset is required.
22933 	 * Clear sense data via Request Sense cmd.
22934 	 * In sddump we don't care about allow_bus_device_reset anymore
22935 	 */
22936 
22937 	if ((un->un_state != SD_STATE_SUSPENDED) &&
22938 	    (un->un_state != SD_STATE_DUMPING)) {
22939 
22940 		New_state(un, SD_STATE_DUMPING);
22941 
22942 		if (un->un_f_is_fibre == FALSE) {
22943 			mutex_exit(SD_MUTEX(un));
22944 			/*
22945 			 * Attempt a bus reset for parallel scsi.
22946 			 *
22947 			 * Note: A bus reset is required because on some host
22948 			 * systems (i.e. E420R) a bus device reset is
22949 			 * insufficient to reset the state of the target.
22950 			 *
22951 			 * Note: Don't issue the reset for fibre-channel,
22952 			 * because this tends to hang the bus (loop) for
22953 			 * too long while everyone is logging out and in
22954 			 * and the deadman timer for dumping will fire
22955 			 * before the dump is complete.
22956 			 */
22957 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
22958 				mutex_enter(SD_MUTEX(un));
22959 				Restore_state(un);
22960 				mutex_exit(SD_MUTEX(un));
22961 				return (EIO);
22962 			}
22963 
22964 			/* Delay to give the device some recovery time. */
22965 			drv_usecwait(10000);
22966 
22967 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
22968 				SD_INFO(SD_LOG_DUMP, un,
22969 				    "sddump: sd_send_polled_RQS failed\n");
22970 			}
22971 			mutex_enter(SD_MUTEX(un));
22972 		}
22973 	}
22974 
22975 	/*
22976 	 * Convert the partition-relative block number to a
22977 	 * disk physical block number.
22978 	 */
22979 	blkno += start_block;
22980 
22981 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
22982 
22983 
22984 	/*
22985 	 * Check if the device has a non-512 block size.
22986 	 */
22987 	wr_bp = NULL;
22988 	if (NOT_DEVBSIZE(un)) {
22989 		tgt_byte_offset = blkno * un->un_sys_blocksize;
22990 		tgt_byte_count = nblk * un->un_sys_blocksize;
22991 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
22992 		    (tgt_byte_count % un->un_tgt_blocksize)) {
22993 			doing_rmw = TRUE;
22994 			/*
22995 			 * Calculate the block number and number of block
22996 			 * in terms of the media block size.
22997 			 */
22998 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22999 			tgt_nblk =
23000 			    ((tgt_byte_offset + tgt_byte_count +
23001 			    (un->un_tgt_blocksize - 1)) /
23002 			    un->un_tgt_blocksize) - tgt_blkno;
23003 
23004 			/*
23005 			 * Invoke the routine which is going to do read part
23006 			 * of read-modify-write.
23007 			 * Note that this routine returns a pointer to
23008 			 * a valid bp in wr_bp.
23009 			 */
23010 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
23011 			    &wr_bp);
23012 			if (err) {
23013 				mutex_exit(SD_MUTEX(un));
23014 				return (err);
23015 			}
23016 			/*
23017 			 * Offset is being calculated as -
23018 			 * (original block # * system block size) -
23019 			 * (new block # * target block size)
23020 			 */
23021 			io_start_offset =
23022 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
23023 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
23024 
23025 			ASSERT((io_start_offset >= 0) &&
23026 			    (io_start_offset < un->un_tgt_blocksize));
23027 			/*
23028 			 * Do the modify portion of read modify write.
23029 			 */
23030 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
23031 			    (size_t)nblk * un->un_sys_blocksize);
23032 		} else {
23033 			doing_rmw = FALSE;
23034 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
23035 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
23036 		}
23037 
23038 		/* Convert blkno and nblk to target blocks */
23039 		blkno = tgt_blkno;
23040 		nblk = tgt_nblk;
23041 	} else {
23042 		wr_bp = &wr_buf;
23043 		bzero(wr_bp, sizeof (struct buf));
23044 		wr_bp->b_flags		= B_BUSY;
23045 		wr_bp->b_un.b_addr	= addr;
23046 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
23047 		wr_bp->b_resid		= 0;
23048 	}
23049 
23050 	mutex_exit(SD_MUTEX(un));
23051 
23052 	/*
23053 	 * Obtain a SCSI packet for the write command.
23054 	 * It should be safe to call the allocator here without
23055 	 * worrying about being locked for DVMA mapping because
23056 	 * the address we're passed is already a DVMA mapping
23057 	 *
23058 	 * We are also not going to worry about semaphore ownership
23059 	 * in the dump buffer. Dumping is single threaded at present.
23060 	 */
23061 
23062 	wr_pktp = NULL;
23063 
23064 	dma_resid = wr_bp->b_bcount;
23065 	oblkno = blkno;
23066 
23067 	while (dma_resid != 0) {
23068 
23069 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23070 		wr_bp->b_flags &= ~B_ERROR;
23071 
23072 		if (un->un_partial_dma_supported == 1) {
23073 			blkno = oblkno +
23074 			    ((wr_bp->b_bcount - dma_resid) /
23075 			    un->un_tgt_blocksize);
23076 			nblk = dma_resid / un->un_tgt_blocksize;
23077 
23078 			if (wr_pktp) {
23079 				/*
23080 				 * Partial DMA transfers after initial transfer
23081 				 */
23082 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
23083 				    blkno, nblk);
23084 			} else {
23085 				/* Initial transfer */
23086 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23087 				    un->un_pkt_flags, NULL_FUNC, NULL,
23088 				    blkno, nblk);
23089 			}
23090 		} else {
23091 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23092 			    0, NULL_FUNC, NULL, blkno, nblk);
23093 		}
23094 
23095 		if (rval == 0) {
23096 			/* We were given a SCSI packet, continue. */
23097 			break;
23098 		}
23099 
23100 		if (i == 0) {
23101 			if (wr_bp->b_flags & B_ERROR) {
23102 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23103 				    "no resources for dumping; "
23104 				    "error code: 0x%x, retrying",
23105 				    geterror(wr_bp));
23106 			} else {
23107 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23108 				    "no resources for dumping; retrying");
23109 			}
23110 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
23111 			if (wr_bp->b_flags & B_ERROR) {
23112 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23113 				    "no resources for dumping; error code: "
23114 				    "0x%x, retrying\n", geterror(wr_bp));
23115 			}
23116 		} else {
23117 			if (wr_bp->b_flags & B_ERROR) {
23118 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23119 				    "no resources for dumping; "
23120 				    "error code: 0x%x, retries failed, "
23121 				    "giving up.\n", geterror(wr_bp));
23122 			} else {
23123 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23124 				    "no resources for dumping; "
23125 				    "retries failed, giving up.\n");
23126 			}
23127 			mutex_enter(SD_MUTEX(un));
23128 			Restore_state(un);
23129 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
23130 				mutex_exit(SD_MUTEX(un));
23131 				scsi_free_consistent_buf(wr_bp);
23132 			} else {
23133 				mutex_exit(SD_MUTEX(un));
23134 			}
23135 			return (EIO);
23136 		}
23137 		drv_usecwait(10000);
23138 	}
23139 
23140 	if (un->un_partial_dma_supported == 1) {
23141 		/*
23142 		 * save the resid from PARTIAL_DMA
23143 		 */
23144 		dma_resid = wr_pktp->pkt_resid;
23145 		if (dma_resid != 0)
23146 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
23147 		wr_pktp->pkt_resid = 0;
23148 	} else {
23149 		dma_resid = 0;
23150 	}
23151 
23152 	/* SunBug 1222170 */
23153 	wr_pktp->pkt_flags = FLAG_NOINTR;
23154 
23155 	err = EIO;
23156 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23157 
23158 		/*
23159 		 * Scsi_poll returns 0 (success) if the command completes and
23160 		 * the status block is STATUS_GOOD.  We should only check
23161 		 * errors if this condition is not true.  Even then we should
23162 		 * send our own request sense packet only if we have a check
23163 		 * condition and auto request sense has not been performed by
23164 		 * the hba.
23165 		 */
23166 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
23167 
23168 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
23169 		    (wr_pktp->pkt_resid == 0)) {
23170 			err = SD_SUCCESS;
23171 			break;
23172 		}
23173 
23174 		/*
23175 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
23176 		 */
23177 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
23178 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23179 			    "Error while dumping state...Device is gone\n");
23180 			break;
23181 		}
23182 
23183 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
23184 			SD_INFO(SD_LOG_DUMP, un,
23185 			    "sddump: write failed with CHECK, try # %d\n", i);
23186 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
23187 				(void) sd_send_polled_RQS(un);
23188 			}
23189 
23190 			continue;
23191 		}
23192 
23193 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
23194 			int reset_retval = 0;
23195 
23196 			SD_INFO(SD_LOG_DUMP, un,
23197 			    "sddump: write failed with BUSY, try # %d\n", i);
23198 
23199 			if (un->un_f_lun_reset_enabled == TRUE) {
23200 				reset_retval = scsi_reset(SD_ADDRESS(un),
23201 				    RESET_LUN);
23202 			}
23203 			if (reset_retval == 0) {
23204 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
23205 			}
23206 			(void) sd_send_polled_RQS(un);
23207 
23208 		} else {
23209 			SD_INFO(SD_LOG_DUMP, un,
23210 			    "sddump: write failed with 0x%x, try # %d\n",
23211 			    SD_GET_PKT_STATUS(wr_pktp), i);
23212 			mutex_enter(SD_MUTEX(un));
23213 			sd_reset_target(un, wr_pktp);
23214 			mutex_exit(SD_MUTEX(un));
23215 		}
23216 
23217 		/*
23218 		 * If we are not getting anywhere with lun/target resets,
23219 		 * let's reset the bus.
23220 		 */
23221 		if (i == SD_NDUMP_RETRIES/2) {
23222 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23223 			(void) sd_send_polled_RQS(un);
23224 		}
23225 	}
23226 	}
23227 
23228 	scsi_destroy_pkt(wr_pktp);
23229 	mutex_enter(SD_MUTEX(un));
23230 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
23231 		mutex_exit(SD_MUTEX(un));
23232 		scsi_free_consistent_buf(wr_bp);
23233 	} else {
23234 		mutex_exit(SD_MUTEX(un));
23235 	}
23236 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
23237 	return (err);
23238 }
23239 
23240 /*
23241  *    Function: sd_scsi_poll()
23242  *
23243  * Description: This is a wrapper for the scsi_poll call.
23244  *
23245  *   Arguments: sd_lun - The unit structure
23246  *              scsi_pkt - The scsi packet being sent to the device.
23247  *
23248  * Return Code: 0 - Command completed successfully with good status
23249  *             -1 - Command failed.  This could indicate a check condition
23250  *                  or other status value requiring recovery action.
23251  *
23252  * NOTE: This code is only called off sddump().
23253  */
23254 
23255 static int
23256 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
23257 {
23258 	int status;
23259 
23260 	ASSERT(un != NULL);
23261 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23262 	ASSERT(pktp != NULL);
23263 
23264 	status = SD_SUCCESS;
23265 
23266 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
23267 		pktp->pkt_flags |= un->un_tagflags;
23268 		pktp->pkt_flags &= ~FLAG_NODISCON;
23269 	}
23270 
23271 	status = sd_ddi_scsi_poll(pktp);
23272 	/*
23273 	 * Scsi_poll returns 0 (success) if the command completes and the
23274 	 * status block is STATUS_GOOD.  We should only check errors if this
23275 	 * condition is not true.  Even then we should send our own request
23276 	 * sense packet only if we have a check condition and auto
23277 	 * request sense has not been performed by the hba.
23278 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
23279 	 */
23280 	if ((status != SD_SUCCESS) &&
23281 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
23282 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
23283 	    (pktp->pkt_reason != CMD_DEV_GONE))
23284 		(void) sd_send_polled_RQS(un);
23285 
23286 	return (status);
23287 }
23288 
23289 /*
23290  *    Function: sd_send_polled_RQS()
23291  *
23292  * Description: This sends the request sense command to a device.
23293  *
23294  *   Arguments: sd_lun - The unit structure
23295  *
23296  * Return Code: 0 - Command completed successfully with good status
23297  *             -1 - Command failed.
23298  *
23299  */
23300 
23301 static int
23302 sd_send_polled_RQS(struct sd_lun *un)
23303 {
23304 	int	ret_val;
23305 	struct	scsi_pkt	*rqs_pktp;
23306 	struct	buf		*rqs_bp;
23307 
23308 	ASSERT(un != NULL);
23309 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23310 
23311 	ret_val = SD_SUCCESS;
23312 
23313 	rqs_pktp = un->un_rqs_pktp;
23314 	rqs_bp	 = un->un_rqs_bp;
23315 
23316 	mutex_enter(SD_MUTEX(un));
23317 
23318 	if (un->un_sense_isbusy) {
23319 		ret_val = SD_FAILURE;
23320 		mutex_exit(SD_MUTEX(un));
23321 		return (ret_val);
23322 	}
23323 
23324 	/*
23325 	 * If the request sense buffer (and packet) is not in use,
23326 	 * let's set the un_sense_isbusy and send our packet
23327 	 */
23328 	un->un_sense_isbusy 	= 1;
23329 	rqs_pktp->pkt_resid  	= 0;
23330 	rqs_pktp->pkt_reason 	= 0;
23331 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
23332 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
23333 
23334 	mutex_exit(SD_MUTEX(un));
23335 
23336 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
23337 	    " 0x%p\n", rqs_bp->b_un.b_addr);
23338 
23339 	/*
23340 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
23341 	 * axle - it has a call into us!
23342 	 */
23343 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
23344 		SD_INFO(SD_LOG_COMMON, un,
23345 		    "sd_send_polled_RQS: RQS failed\n");
23346 	}
23347 
23348 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
23349 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
23350 
23351 	mutex_enter(SD_MUTEX(un));
23352 	un->un_sense_isbusy = 0;
23353 	mutex_exit(SD_MUTEX(un));
23354 
23355 	return (ret_val);
23356 }
23357 
23358 /*
23359  * Defines needed for localized version of the scsi_poll routine.
23360  */
23361 #define	CSEC		10000			/* usecs */
23362 #define	SEC_TO_CSEC	(1000000/CSEC)
23363 
23364 /*
23365  *    Function: sd_ddi_scsi_poll()
23366  *
23367  * Description: Localized version of the scsi_poll routine.  The purpose is to
23368  *		send a scsi_pkt to a device as a polled command.  This version
23369  *		is to ensure more robust handling of transport errors.
23370  *		Specifically this routine cures not ready, coming ready
23371  *		transition for power up and reset of sonoma's.  This can take
23372  *		up to 45 seconds for power-on and 20 seconds for reset of a
23373  * 		sonoma lun.
23374  *
23375  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
23376  *
23377  * Return Code: 0 - Command completed successfully with good status
23378  *             -1 - Command failed.
23379  *
23380  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
23381  * be fixed (removing this code), we need to determine how to handle the
23382  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
23383  *
23384  * NOTE: This code is only called off sddump().
23385  */
23386 static int
23387 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
23388 {
23389 	int			rval = -1;
23390 	int			savef;
23391 	long			savet;
23392 	void			(*savec)();
23393 	int			timeout;
23394 	int			busy_count;
23395 	int			poll_delay;
23396 	int			rc;
23397 	uint8_t			*sensep;
23398 	struct scsi_arq_status	*arqstat;
23399 	extern int		do_polled_io;
23400 
23401 	ASSERT(pkt->pkt_scbp);
23402 
23403 	/*
23404 	 * save old flags..
23405 	 */
23406 	savef = pkt->pkt_flags;
23407 	savec = pkt->pkt_comp;
23408 	savet = pkt->pkt_time;
23409 
23410 	pkt->pkt_flags |= FLAG_NOINTR;
23411 
23412 	/*
23413 	 * XXX there is nothing in the SCSA spec that states that we should not
23414 	 * do a callback for polled cmds; however, removing this will break sd
23415 	 * and probably other target drivers
23416 	 */
23417 	pkt->pkt_comp = NULL;
23418 
23419 	/*
23420 	 * we don't like a polled command without timeout.
23421 	 * 60 seconds seems long enough.
23422 	 */
23423 	if (pkt->pkt_time == 0)
23424 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
23425 
23426 	/*
23427 	 * Send polled cmd.
23428 	 *
23429 	 * We do some error recovery for various errors.  Tran_busy,
23430 	 * queue full, and non-dispatched commands are retried every 10 msec.
23431 	 * as they are typically transient failures.  Busy status and Not
23432 	 * Ready are retried every second as this status takes a while to
23433 	 * change.
23434 	 */
23435 	timeout = pkt->pkt_time * SEC_TO_CSEC;
23436 
23437 	for (busy_count = 0; busy_count < timeout; busy_count++) {
23438 		/*
23439 		 * Initialize pkt status variables.
23440 		 */
23441 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
23442 
23443 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
23444 			if (rc != TRAN_BUSY) {
23445 				/* Transport failed - give up. */
23446 				break;
23447 			} else {
23448 				/* Transport busy - try again. */
23449 				poll_delay = 1 * CSEC;		/* 10 msec. */
23450 			}
23451 		} else {
23452 			/*
23453 			 * Transport accepted - check pkt status.
23454 			 */
23455 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
23456 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23457 			    (rc == STATUS_CHECK) &&
23458 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
23459 				arqstat =
23460 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
23461 				sensep = (uint8_t *)&arqstat->sts_sensedata;
23462 			} else {
23463 				sensep = NULL;
23464 			}
23465 
23466 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23467 			    (rc == STATUS_GOOD)) {
23468 				/* No error - we're done */
23469 				rval = 0;
23470 				break;
23471 
23472 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
23473 				/* Lost connection - give up */
23474 				break;
23475 
23476 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
23477 			    (pkt->pkt_state == 0)) {
23478 				/* Pkt not dispatched - try again. */
23479 				poll_delay = 1 * CSEC;		/* 10 msec. */
23480 
23481 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23482 			    (rc == STATUS_QFULL)) {
23483 				/* Queue full - try again. */
23484 				poll_delay = 1 * CSEC;		/* 10 msec. */
23485 
23486 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23487 			    (rc == STATUS_BUSY)) {
23488 				/* Busy - try again. */
23489 				poll_delay = 100 * CSEC;	/* 1 sec. */
23490 				busy_count += (SEC_TO_CSEC - 1);
23491 
23492 			} else if ((sensep != NULL) &&
23493 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
23494 				/*
23495 				 * Unit Attention - try again.
23496 				 * Pretend it took 1 sec.
23497 				 * NOTE: 'continue' avoids poll_delay
23498 				 */
23499 				busy_count += (SEC_TO_CSEC - 1);
23500 				continue;
23501 
23502 			} else if ((sensep != NULL) &&
23503 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23504 			    (scsi_sense_asc(sensep) == 0x04) &&
23505 			    (scsi_sense_ascq(sensep) == 0x01)) {
23506 				/*
23507 				 * Not ready -> ready - try again.
23508 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
23509 				 * ...same as STATUS_BUSY
23510 				 */
23511 				poll_delay = 100 * CSEC;	/* 1 sec. */
23512 				busy_count += (SEC_TO_CSEC - 1);
23513 
23514 			} else {
23515 				/* BAD status - give up. */
23516 				break;
23517 			}
23518 		}
23519 
23520 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
23521 		    !do_polled_io) {
23522 			delay(drv_usectohz(poll_delay));
23523 		} else {
23524 			/* we busy wait during cpr_dump or interrupt threads */
23525 			drv_usecwait(poll_delay);
23526 		}
23527 	}
23528 
23529 	pkt->pkt_flags = savef;
23530 	pkt->pkt_comp = savec;
23531 	pkt->pkt_time = savet;
23532 
23533 	/* return on error */
23534 	if (rval)
23535 		return (rval);
23536 
23537 	/*
23538 	 * This is not a performance critical code path.
23539 	 *
23540 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
23541 	 * issues associated with looking at DMA memory prior to
23542 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
23543 	 */
23544 	scsi_sync_pkt(pkt);
23545 	return (0);
23546 }
23547 
23548 
23549 
23550 /*
23551  *    Function: sd_persistent_reservation_in_read_keys
23552  *
23553  * Description: This routine is the driver entry point for handling CD-ROM
23554  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23555  *		by sending the SCSI-3 PRIN commands to the device.
23556  *		Processes the read keys command response by copying the
23557  *		reservation key information into the user provided buffer.
23558  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23559  *
23560  *   Arguments: un   -  Pointer to soft state struct for the target.
23561  *		usrp -	user provided pointer to multihost Persistent In Read
23562  *			Keys structure (mhioc_inkeys_t)
23563  *		flag -	this argument is a pass through to ddi_copyxxx()
23564  *			directly from the mode argument of ioctl().
23565  *
23566  * Return Code: 0   - Success
23567  *		EACCES
23568  *		ENOTSUP
23569  *		errno return code from sd_send_scsi_cmd()
23570  *
23571  *     Context: Can sleep. Does not return until command is completed.
23572  */
23573 
23574 static int
23575 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23576     mhioc_inkeys_t *usrp, int flag)
23577 {
23578 #ifdef _MULTI_DATAMODEL
23579 	struct mhioc_key_list32	li32;
23580 #endif
23581 	sd_prin_readkeys_t	*in;
23582 	mhioc_inkeys_t		*ptr;
23583 	mhioc_key_list_t	li;
23584 	uchar_t			*data_bufp;
23585 	int 			data_len;
23586 	int			rval;
23587 	size_t			copysz;
23588 
23589 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23590 		return (EINVAL);
23591 	}
23592 	bzero(&li, sizeof (mhioc_key_list_t));
23593 
23594 	/*
23595 	 * Get the listsize from user
23596 	 */
23597 #ifdef _MULTI_DATAMODEL
23598 
23599 	switch (ddi_model_convert_from(flag & FMODELS)) {
23600 	case DDI_MODEL_ILP32:
23601 		copysz = sizeof (struct mhioc_key_list32);
23602 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23603 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23604 			    "sd_persistent_reservation_in_read_keys: "
23605 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23606 			rval = EFAULT;
23607 			goto done;
23608 		}
23609 		li.listsize = li32.listsize;
23610 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23611 		break;
23612 
23613 	case DDI_MODEL_NONE:
23614 		copysz = sizeof (mhioc_key_list_t);
23615 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23616 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23617 			    "sd_persistent_reservation_in_read_keys: "
23618 			    "failed ddi_copyin: mhioc_key_list_t\n");
23619 			rval = EFAULT;
23620 			goto done;
23621 		}
23622 		break;
23623 	}
23624 
23625 #else /* ! _MULTI_DATAMODEL */
23626 	copysz = sizeof (mhioc_key_list_t);
23627 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23628 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23629 		    "sd_persistent_reservation_in_read_keys: "
23630 		    "failed ddi_copyin: mhioc_key_list_t\n");
23631 		rval = EFAULT;
23632 		goto done;
23633 	}
23634 #endif
23635 
23636 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23637 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23638 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23639 
23640 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23641 	    data_len, data_bufp)) != 0) {
23642 		goto done;
23643 	}
23644 	in = (sd_prin_readkeys_t *)data_bufp;
23645 	ptr->generation = BE_32(in->generation);
23646 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23647 
23648 	/*
23649 	 * Return the min(listsize, listlen) keys
23650 	 */
23651 #ifdef _MULTI_DATAMODEL
23652 
23653 	switch (ddi_model_convert_from(flag & FMODELS)) {
23654 	case DDI_MODEL_ILP32:
23655 		li32.listlen = li.listlen;
23656 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23657 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23658 			    "sd_persistent_reservation_in_read_keys: "
23659 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23660 			rval = EFAULT;
23661 			goto done;
23662 		}
23663 		break;
23664 
23665 	case DDI_MODEL_NONE:
23666 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23667 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23668 			    "sd_persistent_reservation_in_read_keys: "
23669 			    "failed ddi_copyout: mhioc_key_list_t\n");
23670 			rval = EFAULT;
23671 			goto done;
23672 		}
23673 		break;
23674 	}
23675 
23676 #else /* ! _MULTI_DATAMODEL */
23677 
23678 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23679 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23680 		    "sd_persistent_reservation_in_read_keys: "
23681 		    "failed ddi_copyout: mhioc_key_list_t\n");
23682 		rval = EFAULT;
23683 		goto done;
23684 	}
23685 
23686 #endif /* _MULTI_DATAMODEL */
23687 
23688 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23689 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23690 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23691 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23692 		    "sd_persistent_reservation_in_read_keys: "
23693 		    "failed ddi_copyout: keylist\n");
23694 		rval = EFAULT;
23695 	}
23696 done:
23697 	kmem_free(data_bufp, data_len);
23698 	return (rval);
23699 }
23700 
23701 
23702 /*
23703  *    Function: sd_persistent_reservation_in_read_resv
23704  *
23705  * Description: This routine is the driver entry point for handling CD-ROM
23706  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23707  *		by sending the SCSI-3 PRIN commands to the device.
23708  *		Process the read persistent reservations command response by
23709  *		copying the reservation information into the user provided
23710  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23711  *
23712  *   Arguments: un   -  Pointer to soft state struct for the target.
23713  *		usrp -	user provided pointer to multihost Persistent In Read
23714  *			Keys structure (mhioc_inkeys_t)
23715  *		flag -	this argument is a pass through to ddi_copyxxx()
23716  *			directly from the mode argument of ioctl().
23717  *
23718  * Return Code: 0   - Success
23719  *		EACCES
23720  *		ENOTSUP
23721  *		errno return code from sd_send_scsi_cmd()
23722  *
23723  *     Context: Can sleep. Does not return until command is completed.
23724  */
23725 
23726 static int
23727 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23728     mhioc_inresvs_t *usrp, int flag)
23729 {
23730 #ifdef _MULTI_DATAMODEL
23731 	struct mhioc_resv_desc_list32 resvlist32;
23732 #endif
23733 	sd_prin_readresv_t	*in;
23734 	mhioc_inresvs_t		*ptr;
23735 	sd_readresv_desc_t	*readresv_ptr;
23736 	mhioc_resv_desc_list_t	resvlist;
23737 	mhioc_resv_desc_t 	resvdesc;
23738 	uchar_t			*data_bufp;
23739 	int 			data_len;
23740 	int			rval;
23741 	int			i;
23742 	size_t			copysz;
23743 	mhioc_resv_desc_t	*bufp;
23744 
23745 	if ((ptr = usrp) == NULL) {
23746 		return (EINVAL);
23747 	}
23748 
23749 	/*
23750 	 * Get the listsize from user
23751 	 */
23752 #ifdef _MULTI_DATAMODEL
23753 	switch (ddi_model_convert_from(flag & FMODELS)) {
23754 	case DDI_MODEL_ILP32:
23755 		copysz = sizeof (struct mhioc_resv_desc_list32);
23756 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23757 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23758 			    "sd_persistent_reservation_in_read_resv: "
23759 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23760 			rval = EFAULT;
23761 			goto done;
23762 		}
23763 		resvlist.listsize = resvlist32.listsize;
23764 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23765 		break;
23766 
23767 	case DDI_MODEL_NONE:
23768 		copysz = sizeof (mhioc_resv_desc_list_t);
23769 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23770 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23771 			    "sd_persistent_reservation_in_read_resv: "
23772 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23773 			rval = EFAULT;
23774 			goto done;
23775 		}
23776 		break;
23777 	}
23778 #else /* ! _MULTI_DATAMODEL */
23779 	copysz = sizeof (mhioc_resv_desc_list_t);
23780 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23781 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23782 		    "sd_persistent_reservation_in_read_resv: "
23783 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23784 		rval = EFAULT;
23785 		goto done;
23786 	}
23787 #endif /* ! _MULTI_DATAMODEL */
23788 
23789 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23790 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23791 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23792 
23793 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23794 	    data_len, data_bufp)) != 0) {
23795 		goto done;
23796 	}
23797 	in = (sd_prin_readresv_t *)data_bufp;
23798 	ptr->generation = BE_32(in->generation);
23799 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23800 
23801 	/*
23802 	 * Return the min(listsize, listlen( keys
23803 	 */
23804 #ifdef _MULTI_DATAMODEL
23805 
23806 	switch (ddi_model_convert_from(flag & FMODELS)) {
23807 	case DDI_MODEL_ILP32:
23808 		resvlist32.listlen = resvlist.listlen;
23809 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23810 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23811 			    "sd_persistent_reservation_in_read_resv: "
23812 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23813 			rval = EFAULT;
23814 			goto done;
23815 		}
23816 		break;
23817 
23818 	case DDI_MODEL_NONE:
23819 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23820 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23821 			    "sd_persistent_reservation_in_read_resv: "
23822 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23823 			rval = EFAULT;
23824 			goto done;
23825 		}
23826 		break;
23827 	}
23828 
23829 #else /* ! _MULTI_DATAMODEL */
23830 
23831 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23832 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23833 		    "sd_persistent_reservation_in_read_resv: "
23834 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23835 		rval = EFAULT;
23836 		goto done;
23837 	}
23838 
23839 #endif /* ! _MULTI_DATAMODEL */
23840 
23841 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
23842 	bufp = resvlist.list;
23843 	copysz = sizeof (mhioc_resv_desc_t);
23844 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
23845 	    i++, readresv_ptr++, bufp++) {
23846 
23847 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
23848 		    MHIOC_RESV_KEY_SIZE);
23849 		resvdesc.type  = readresv_ptr->type;
23850 		resvdesc.scope = readresv_ptr->scope;
23851 		resvdesc.scope_specific_addr =
23852 		    BE_32(readresv_ptr->scope_specific_addr);
23853 
23854 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
23855 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23856 			    "sd_persistent_reservation_in_read_resv: "
23857 			    "failed ddi_copyout: resvlist\n");
23858 			rval = EFAULT;
23859 			goto done;
23860 		}
23861 	}
23862 done:
23863 	kmem_free(data_bufp, data_len);
23864 	return (rval);
23865 }
23866 
23867 
23868 /*
23869  *    Function: sr_change_blkmode()
23870  *
23871  * Description: This routine is the driver entry point for handling CD-ROM
23872  *		block mode ioctl requests. Support for returning and changing
23873  *		the current block size in use by the device is implemented. The
23874  *		LBA size is changed via a MODE SELECT Block Descriptor.
23875  *
23876  *		This routine issues a mode sense with an allocation length of
23877  *		12 bytes for the mode page header and a single block descriptor.
23878  *
23879  *   Arguments: dev - the device 'dev_t'
23880  *		cmd - the request type; one of CDROMGBLKMODE (get) or
23881  *		      CDROMSBLKMODE (set)
23882  *		data - current block size or requested block size
23883  *		flag - this argument is a pass through to ddi_copyxxx() directly
23884  *		       from the mode argument of ioctl().
23885  *
23886  * Return Code: the code returned by sd_send_scsi_cmd()
23887  *		EINVAL if invalid arguments are provided
23888  *		EFAULT if ddi_copyxxx() fails
23889  *		ENXIO if fail ddi_get_soft_state
23890  *		EIO if invalid mode sense block descriptor length
23891  *
23892  */
23893 
23894 static int
23895 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
23896 {
23897 	struct sd_lun			*un = NULL;
23898 	struct mode_header		*sense_mhp, *select_mhp;
23899 	struct block_descriptor		*sense_desc, *select_desc;
23900 	int				current_bsize;
23901 	int				rval = EINVAL;
23902 	uchar_t				*sense = NULL;
23903 	uchar_t				*select = NULL;
23904 
23905 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
23906 
23907 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23908 		return (ENXIO);
23909 	}
23910 
23911 	/*
23912 	 * The block length is changed via the Mode Select block descriptor, the
23913 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
23914 	 * required as part of this routine. Therefore the mode sense allocation
23915 	 * length is specified to be the length of a mode page header and a
23916 	 * block descriptor.
23917 	 */
23918 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23919 
23920 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23921 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
23922 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23923 		    "sr_change_blkmode: Mode Sense Failed\n");
23924 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23925 		return (rval);
23926 	}
23927 
23928 	/* Check the block descriptor len to handle only 1 block descriptor */
23929 	sense_mhp = (struct mode_header *)sense;
23930 	if ((sense_mhp->bdesc_length == 0) ||
23931 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
23932 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23933 		    "sr_change_blkmode: Mode Sense returned invalid block"
23934 		    " descriptor length\n");
23935 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23936 		return (EIO);
23937 	}
23938 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
23939 	current_bsize = ((sense_desc->blksize_hi << 16) |
23940 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
23941 
23942 	/* Process command */
23943 	switch (cmd) {
23944 	case CDROMGBLKMODE:
23945 		/* Return the block size obtained during the mode sense */
23946 		if (ddi_copyout(&current_bsize, (void *)data,
23947 		    sizeof (int), flag) != 0)
23948 			rval = EFAULT;
23949 		break;
23950 	case CDROMSBLKMODE:
23951 		/* Validate the requested block size */
23952 		switch (data) {
23953 		case CDROM_BLK_512:
23954 		case CDROM_BLK_1024:
23955 		case CDROM_BLK_2048:
23956 		case CDROM_BLK_2056:
23957 		case CDROM_BLK_2336:
23958 		case CDROM_BLK_2340:
23959 		case CDROM_BLK_2352:
23960 		case CDROM_BLK_2368:
23961 		case CDROM_BLK_2448:
23962 		case CDROM_BLK_2646:
23963 		case CDROM_BLK_2647:
23964 			break;
23965 		default:
23966 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23967 			    "sr_change_blkmode: "
23968 			    "Block Size '%ld' Not Supported\n", data);
23969 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23970 			return (EINVAL);
23971 		}
23972 
23973 		/*
23974 		 * The current block size matches the requested block size so
23975 		 * there is no need to send the mode select to change the size
23976 		 */
23977 		if (current_bsize == data) {
23978 			break;
23979 		}
23980 
23981 		/* Build the select data for the requested block size */
23982 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23983 		select_mhp = (struct mode_header *)select;
23984 		select_desc =
23985 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
23986 		/*
23987 		 * The LBA size is changed via the block descriptor, so the
23988 		 * descriptor is built according to the user data
23989 		 */
23990 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
23991 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
23992 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
23993 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
23994 
23995 		/* Send the mode select for the requested block size */
23996 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23997 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23998 		    SD_PATH_STANDARD)) != 0) {
23999 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24000 			    "sr_change_blkmode: Mode Select Failed\n");
24001 			/*
24002 			 * The mode select failed for the requested block size,
24003 			 * so reset the data for the original block size and
24004 			 * send it to the target. The error is indicated by the
24005 			 * return value for the failed mode select.
24006 			 */
24007 			select_desc->blksize_hi  = sense_desc->blksize_hi;
24008 			select_desc->blksize_mid = sense_desc->blksize_mid;
24009 			select_desc->blksize_lo  = sense_desc->blksize_lo;
24010 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
24011 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
24012 			    SD_PATH_STANDARD);
24013 		} else {
24014 			ASSERT(!mutex_owned(SD_MUTEX(un)));
24015 			mutex_enter(SD_MUTEX(un));
24016 			sd_update_block_info(un, (uint32_t)data, 0);
24017 			mutex_exit(SD_MUTEX(un));
24018 		}
24019 		break;
24020 	default:
24021 		/* should not reach here, but check anyway */
24022 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24023 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
24024 		rval = EINVAL;
24025 		break;
24026 	}
24027 
24028 	if (select) {
24029 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
24030 	}
24031 	if (sense) {
24032 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24033 	}
24034 	return (rval);
24035 }
24036 
24037 
24038 /*
24039  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
24040  * implement driver support for getting and setting the CD speed. The command
24041  * set used will be based on the device type. If the device has not been
24042  * identified as MMC the Toshiba vendor specific mode page will be used. If
24043  * the device is MMC but does not support the Real Time Streaming feature
24044  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
24045  * be used to read the speed.
24046  */
24047 
24048 /*
24049  *    Function: sr_change_speed()
24050  *
24051  * Description: This routine is the driver entry point for handling CD-ROM
24052  *		drive speed ioctl requests for devices supporting the Toshiba
24053  *		vendor specific drive speed mode page. Support for returning
24054  *		and changing the current drive speed in use by the device is
24055  *		implemented.
24056  *
24057  *   Arguments: dev - the device 'dev_t'
24058  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
24059  *		      CDROMSDRVSPEED (set)
24060  *		data - current drive speed or requested drive speed
24061  *		flag - this argument is a pass through to ddi_copyxxx() directly
24062  *		       from the mode argument of ioctl().
24063  *
24064  * Return Code: the code returned by sd_send_scsi_cmd()
24065  *		EINVAL if invalid arguments are provided
24066  *		EFAULT if ddi_copyxxx() fails
24067  *		ENXIO if fail ddi_get_soft_state
24068  *		EIO if invalid mode sense block descriptor length
24069  */
24070 
24071 static int
24072 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24073 {
24074 	struct sd_lun			*un = NULL;
24075 	struct mode_header		*sense_mhp, *select_mhp;
24076 	struct mode_speed		*sense_page, *select_page;
24077 	int				current_speed;
24078 	int				rval = EINVAL;
24079 	int				bd_len;
24080 	uchar_t				*sense = NULL;
24081 	uchar_t				*select = NULL;
24082 
24083 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24084 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24085 		return (ENXIO);
24086 	}
24087 
24088 	/*
24089 	 * Note: The drive speed is being modified here according to a Toshiba
24090 	 * vendor specific mode page (0x31).
24091 	 */
24092 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24093 
24094 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
24095 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
24096 	    SD_PATH_STANDARD)) != 0) {
24097 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24098 		    "sr_change_speed: Mode Sense Failed\n");
24099 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24100 		return (rval);
24101 	}
24102 	sense_mhp  = (struct mode_header *)sense;
24103 
24104 	/* Check the block descriptor len to handle only 1 block descriptor */
24105 	bd_len = sense_mhp->bdesc_length;
24106 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24107 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24108 		    "sr_change_speed: Mode Sense returned invalid block "
24109 		    "descriptor length\n");
24110 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24111 		return (EIO);
24112 	}
24113 
24114 	sense_page = (struct mode_speed *)
24115 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
24116 	current_speed = sense_page->speed;
24117 
24118 	/* Process command */
24119 	switch (cmd) {
24120 	case CDROMGDRVSPEED:
24121 		/* Return the drive speed obtained during the mode sense */
24122 		if (current_speed == 0x2) {
24123 			current_speed = CDROM_TWELVE_SPEED;
24124 		}
24125 		if (ddi_copyout(&current_speed, (void *)data,
24126 		    sizeof (int), flag) != 0) {
24127 			rval = EFAULT;
24128 		}
24129 		break;
24130 	case CDROMSDRVSPEED:
24131 		/* Validate the requested drive speed */
24132 		switch ((uchar_t)data) {
24133 		case CDROM_TWELVE_SPEED:
24134 			data = 0x2;
24135 			/*FALLTHROUGH*/
24136 		case CDROM_NORMAL_SPEED:
24137 		case CDROM_DOUBLE_SPEED:
24138 		case CDROM_QUAD_SPEED:
24139 		case CDROM_MAXIMUM_SPEED:
24140 			break;
24141 		default:
24142 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24143 			    "sr_change_speed: "
24144 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
24145 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24146 			return (EINVAL);
24147 		}
24148 
24149 		/*
24150 		 * The current drive speed matches the requested drive speed so
24151 		 * there is no need to send the mode select to change the speed
24152 		 */
24153 		if (current_speed == data) {
24154 			break;
24155 		}
24156 
24157 		/* Build the select data for the requested drive speed */
24158 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24159 		select_mhp = (struct mode_header *)select;
24160 		select_mhp->bdesc_length = 0;
24161 		select_page =
24162 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24163 		select_page =
24164 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24165 		select_page->mode_page.code = CDROM_MODE_SPEED;
24166 		select_page->mode_page.length = 2;
24167 		select_page->speed = (uchar_t)data;
24168 
24169 		/* Send the mode select for the requested block size */
24170 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24171 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24172 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
24173 			/*
24174 			 * The mode select failed for the requested drive speed,
24175 			 * so reset the data for the original drive speed and
24176 			 * send it to the target. The error is indicated by the
24177 			 * return value for the failed mode select.
24178 			 */
24179 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24180 			    "sr_drive_speed: Mode Select Failed\n");
24181 			select_page->speed = sense_page->speed;
24182 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24183 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24184 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
24185 		}
24186 		break;
24187 	default:
24188 		/* should not reach here, but check anyway */
24189 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24190 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
24191 		rval = EINVAL;
24192 		break;
24193 	}
24194 
24195 	if (select) {
24196 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
24197 	}
24198 	if (sense) {
24199 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24200 	}
24201 
24202 	return (rval);
24203 }
24204 
24205 
24206 /*
24207  *    Function: sr_atapi_change_speed()
24208  *
24209  * Description: This routine is the driver entry point for handling CD-ROM
24210  *		drive speed ioctl requests for MMC devices that do not support
24211  *		the Real Time Streaming feature (0x107).
24212  *
24213  *		Note: This routine will use the SET SPEED command which may not
24214  *		be supported by all devices.
24215  *
24216  *   Arguments: dev- the device 'dev_t'
24217  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
24218  *		     CDROMSDRVSPEED (set)
24219  *		data- current drive speed or requested drive speed
24220  *		flag- this argument is a pass through to ddi_copyxxx() directly
24221  *		      from the mode argument of ioctl().
24222  *
24223  * Return Code: the code returned by sd_send_scsi_cmd()
24224  *		EINVAL if invalid arguments are provided
24225  *		EFAULT if ddi_copyxxx() fails
24226  *		ENXIO if fail ddi_get_soft_state
24227  *		EIO if invalid mode sense block descriptor length
24228  */
24229 
24230 static int
24231 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24232 {
24233 	struct sd_lun			*un;
24234 	struct uscsi_cmd		*com = NULL;
24235 	struct mode_header_grp2		*sense_mhp;
24236 	uchar_t				*sense_page;
24237 	uchar_t				*sense = NULL;
24238 	char				cdb[CDB_GROUP5];
24239 	int				bd_len;
24240 	int				current_speed = 0;
24241 	int				max_speed = 0;
24242 	int				rval;
24243 
24244 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24245 
24246 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24247 		return (ENXIO);
24248 	}
24249 
24250 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
24251 
24252 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
24253 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
24254 	    SD_PATH_STANDARD)) != 0) {
24255 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24256 		    "sr_atapi_change_speed: Mode Sense Failed\n");
24257 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24258 		return (rval);
24259 	}
24260 
24261 	/* Check the block descriptor len to handle only 1 block descriptor */
24262 	sense_mhp = (struct mode_header_grp2 *)sense;
24263 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
24264 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24265 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24266 		    "sr_atapi_change_speed: Mode Sense returned invalid "
24267 		    "block descriptor length\n");
24268 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24269 		return (EIO);
24270 	}
24271 
24272 	/* Calculate the current and maximum drive speeds */
24273 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
24274 	current_speed = (sense_page[14] << 8) | sense_page[15];
24275 	max_speed = (sense_page[8] << 8) | sense_page[9];
24276 
24277 	/* Process the command */
24278 	switch (cmd) {
24279 	case CDROMGDRVSPEED:
24280 		current_speed /= SD_SPEED_1X;
24281 		if (ddi_copyout(&current_speed, (void *)data,
24282 		    sizeof (int), flag) != 0)
24283 			rval = EFAULT;
24284 		break;
24285 	case CDROMSDRVSPEED:
24286 		/* Convert the speed code to KB/sec */
24287 		switch ((uchar_t)data) {
24288 		case CDROM_NORMAL_SPEED:
24289 			current_speed = SD_SPEED_1X;
24290 			break;
24291 		case CDROM_DOUBLE_SPEED:
24292 			current_speed = 2 * SD_SPEED_1X;
24293 			break;
24294 		case CDROM_QUAD_SPEED:
24295 			current_speed = 4 * SD_SPEED_1X;
24296 			break;
24297 		case CDROM_TWELVE_SPEED:
24298 			current_speed = 12 * SD_SPEED_1X;
24299 			break;
24300 		case CDROM_MAXIMUM_SPEED:
24301 			current_speed = 0xffff;
24302 			break;
24303 		default:
24304 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24305 			    "sr_atapi_change_speed: invalid drive speed %d\n",
24306 			    (uchar_t)data);
24307 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24308 			return (EINVAL);
24309 		}
24310 
24311 		/* Check the request against the drive's max speed. */
24312 		if (current_speed != 0xffff) {
24313 			if (current_speed > max_speed) {
24314 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24315 				return (EINVAL);
24316 			}
24317 		}
24318 
24319 		/*
24320 		 * Build and send the SET SPEED command
24321 		 *
24322 		 * Note: The SET SPEED (0xBB) command used in this routine is
24323 		 * obsolete per the SCSI MMC spec but still supported in the
24324 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24325 		 * therefore the command is still implemented in this routine.
24326 		 */
24327 		bzero(cdb, sizeof (cdb));
24328 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
24329 		cdb[2] = (uchar_t)(current_speed >> 8);
24330 		cdb[3] = (uchar_t)current_speed;
24331 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24332 		com->uscsi_cdb	   = (caddr_t)cdb;
24333 		com->uscsi_cdblen  = CDB_GROUP5;
24334 		com->uscsi_bufaddr = NULL;
24335 		com->uscsi_buflen  = 0;
24336 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
24337 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
24338 		break;
24339 	default:
24340 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24341 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
24342 		rval = EINVAL;
24343 	}
24344 
24345 	if (sense) {
24346 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24347 	}
24348 	if (com) {
24349 		kmem_free(com, sizeof (*com));
24350 	}
24351 	return (rval);
24352 }
24353 
24354 
24355 /*
24356  *    Function: sr_pause_resume()
24357  *
24358  * Description: This routine is the driver entry point for handling CD-ROM
24359  *		pause/resume ioctl requests. This only affects the audio play
24360  *		operation.
24361  *
24362  *   Arguments: dev - the device 'dev_t'
24363  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
24364  *		      for setting the resume bit of the cdb.
24365  *
24366  * Return Code: the code returned by sd_send_scsi_cmd()
24367  *		EINVAL if invalid mode specified
24368  *
24369  */
24370 
24371 static int
24372 sr_pause_resume(dev_t dev, int cmd)
24373 {
24374 	struct sd_lun		*un;
24375 	struct uscsi_cmd	*com;
24376 	char			cdb[CDB_GROUP1];
24377 	int			rval;
24378 
24379 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24380 		return (ENXIO);
24381 	}
24382 
24383 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24384 	bzero(cdb, CDB_GROUP1);
24385 	cdb[0] = SCMD_PAUSE_RESUME;
24386 	switch (cmd) {
24387 	case CDROMRESUME:
24388 		cdb[8] = 1;
24389 		break;
24390 	case CDROMPAUSE:
24391 		cdb[8] = 0;
24392 		break;
24393 	default:
24394 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
24395 		    " Command '%x' Not Supported\n", cmd);
24396 		rval = EINVAL;
24397 		goto done;
24398 	}
24399 
24400 	com->uscsi_cdb    = cdb;
24401 	com->uscsi_cdblen = CDB_GROUP1;
24402 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24403 
24404 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24405 	    SD_PATH_STANDARD);
24406 
24407 done:
24408 	kmem_free(com, sizeof (*com));
24409 	return (rval);
24410 }
24411 
24412 
24413 /*
24414  *    Function: sr_play_msf()
24415  *
24416  * Description: This routine is the driver entry point for handling CD-ROM
24417  *		ioctl requests to output the audio signals at the specified
24418  *		starting address and continue the audio play until the specified
24419  *		ending address (CDROMPLAYMSF) The address is in Minute Second
24420  *		Frame (MSF) format.
24421  *
24422  *   Arguments: dev	- the device 'dev_t'
24423  *		data	- pointer to user provided audio msf structure,
24424  *		          specifying start/end addresses.
24425  *		flag	- this argument is a pass through to ddi_copyxxx()
24426  *		          directly from the mode argument of ioctl().
24427  *
24428  * Return Code: the code returned by sd_send_scsi_cmd()
24429  *		EFAULT if ddi_copyxxx() fails
24430  *		ENXIO if fail ddi_get_soft_state
24431  *		EINVAL if data pointer is NULL
24432  */
24433 
24434 static int
24435 sr_play_msf(dev_t dev, caddr_t data, int flag)
24436 {
24437 	struct sd_lun		*un;
24438 	struct uscsi_cmd	*com;
24439 	struct cdrom_msf	msf_struct;
24440 	struct cdrom_msf	*msf = &msf_struct;
24441 	char			cdb[CDB_GROUP1];
24442 	int			rval;
24443 
24444 	if (data == NULL) {
24445 		return (EINVAL);
24446 	}
24447 
24448 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24449 		return (ENXIO);
24450 	}
24451 
24452 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
24453 		return (EFAULT);
24454 	}
24455 
24456 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24457 	bzero(cdb, CDB_GROUP1);
24458 	cdb[0] = SCMD_PLAYAUDIO_MSF;
24459 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
24460 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
24461 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
24462 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
24463 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
24464 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
24465 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
24466 	} else {
24467 		cdb[3] = msf->cdmsf_min0;
24468 		cdb[4] = msf->cdmsf_sec0;
24469 		cdb[5] = msf->cdmsf_frame0;
24470 		cdb[6] = msf->cdmsf_min1;
24471 		cdb[7] = msf->cdmsf_sec1;
24472 		cdb[8] = msf->cdmsf_frame1;
24473 	}
24474 	com->uscsi_cdb    = cdb;
24475 	com->uscsi_cdblen = CDB_GROUP1;
24476 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24477 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24478 	    SD_PATH_STANDARD);
24479 	kmem_free(com, sizeof (*com));
24480 	return (rval);
24481 }
24482 
24483 
24484 /*
24485  *    Function: sr_play_trkind()
24486  *
24487  * Description: This routine is the driver entry point for handling CD-ROM
24488  *		ioctl requests to output the audio signals at the specified
24489  *		starting address and continue the audio play until the specified
24490  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
24491  *		format.
24492  *
24493  *   Arguments: dev	- the device 'dev_t'
24494  *		data	- pointer to user provided audio track/index structure,
24495  *		          specifying start/end addresses.
24496  *		flag	- this argument is a pass through to ddi_copyxxx()
24497  *		          directly from the mode argument of ioctl().
24498  *
24499  * Return Code: the code returned by sd_send_scsi_cmd()
24500  *		EFAULT if ddi_copyxxx() fails
24501  *		ENXIO if fail ddi_get_soft_state
24502  *		EINVAL if data pointer is NULL
24503  */
24504 
24505 static int
24506 sr_play_trkind(dev_t dev, caddr_t data, int flag)
24507 {
24508 	struct cdrom_ti		ti_struct;
24509 	struct cdrom_ti		*ti = &ti_struct;
24510 	struct uscsi_cmd	*com = NULL;
24511 	char			cdb[CDB_GROUP1];
24512 	int			rval;
24513 
24514 	if (data == NULL) {
24515 		return (EINVAL);
24516 	}
24517 
24518 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24519 		return (EFAULT);
24520 	}
24521 
24522 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24523 	bzero(cdb, CDB_GROUP1);
24524 	cdb[0] = SCMD_PLAYAUDIO_TI;
24525 	cdb[4] = ti->cdti_trk0;
24526 	cdb[5] = ti->cdti_ind0;
24527 	cdb[7] = ti->cdti_trk1;
24528 	cdb[8] = ti->cdti_ind1;
24529 	com->uscsi_cdb    = cdb;
24530 	com->uscsi_cdblen = CDB_GROUP1;
24531 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24532 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24533 	    SD_PATH_STANDARD);
24534 	kmem_free(com, sizeof (*com));
24535 	return (rval);
24536 }
24537 
24538 
24539 /*
24540  *    Function: sr_read_all_subcodes()
24541  *
24542  * Description: This routine is the driver entry point for handling CD-ROM
24543  *		ioctl requests to return raw subcode data while the target is
24544  *		playing audio (CDROMSUBCODE).
24545  *
24546  *   Arguments: dev	- the device 'dev_t'
24547  *		data	- pointer to user provided cdrom subcode structure,
24548  *		          specifying the transfer length and address.
24549  *		flag	- this argument is a pass through to ddi_copyxxx()
24550  *		          directly from the mode argument of ioctl().
24551  *
24552  * Return Code: the code returned by sd_send_scsi_cmd()
24553  *		EFAULT if ddi_copyxxx() fails
24554  *		ENXIO if fail ddi_get_soft_state
24555  *		EINVAL if data pointer is NULL
24556  */
24557 
24558 static int
24559 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24560 {
24561 	struct sd_lun		*un = NULL;
24562 	struct uscsi_cmd	*com = NULL;
24563 	struct cdrom_subcode	*subcode = NULL;
24564 	int			rval;
24565 	size_t			buflen;
24566 	char			cdb[CDB_GROUP5];
24567 
24568 #ifdef _MULTI_DATAMODEL
24569 	/* To support ILP32 applications in an LP64 world */
24570 	struct cdrom_subcode32		cdrom_subcode32;
24571 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24572 #endif
24573 	if (data == NULL) {
24574 		return (EINVAL);
24575 	}
24576 
24577 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24578 		return (ENXIO);
24579 	}
24580 
24581 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24582 
24583 #ifdef _MULTI_DATAMODEL
24584 	switch (ddi_model_convert_from(flag & FMODELS)) {
24585 	case DDI_MODEL_ILP32:
24586 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24587 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24588 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24589 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24590 			return (EFAULT);
24591 		}
24592 		/* Convert the ILP32 uscsi data from the application to LP64 */
24593 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24594 		break;
24595 	case DDI_MODEL_NONE:
24596 		if (ddi_copyin(data, subcode,
24597 		    sizeof (struct cdrom_subcode), flag)) {
24598 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24599 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24600 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24601 			return (EFAULT);
24602 		}
24603 		break;
24604 	}
24605 #else /* ! _MULTI_DATAMODEL */
24606 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24607 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24608 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24609 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24610 		return (EFAULT);
24611 	}
24612 #endif /* _MULTI_DATAMODEL */
24613 
24614 	/*
24615 	 * Since MMC-2 expects max 3 bytes for length, check if the
24616 	 * length input is greater than 3 bytes
24617 	 */
24618 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24619 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24620 		    "sr_read_all_subcodes: "
24621 		    "cdrom transfer length too large: %d (limit %d)\n",
24622 		    subcode->cdsc_length, 0xFFFFFF);
24623 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24624 		return (EINVAL);
24625 	}
24626 
24627 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24628 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24629 	bzero(cdb, CDB_GROUP5);
24630 
24631 	if (un->un_f_mmc_cap == TRUE) {
24632 		cdb[0] = (char)SCMD_READ_CD;
24633 		cdb[2] = (char)0xff;
24634 		cdb[3] = (char)0xff;
24635 		cdb[4] = (char)0xff;
24636 		cdb[5] = (char)0xff;
24637 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24638 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24639 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24640 		cdb[10] = 1;
24641 	} else {
24642 		/*
24643 		 * Note: A vendor specific command (0xDF) is being used her to
24644 		 * request a read of all subcodes.
24645 		 */
24646 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24647 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24648 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24649 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24650 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24651 	}
24652 	com->uscsi_cdb	   = cdb;
24653 	com->uscsi_cdblen  = CDB_GROUP5;
24654 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24655 	com->uscsi_buflen  = buflen;
24656 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24657 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24658 	    SD_PATH_STANDARD);
24659 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24660 	kmem_free(com, sizeof (*com));
24661 	return (rval);
24662 }
24663 
24664 
24665 /*
24666  *    Function: sr_read_subchannel()
24667  *
24668  * Description: This routine is the driver entry point for handling CD-ROM
24669  *		ioctl requests to return the Q sub-channel data of the CD
24670  *		current position block. (CDROMSUBCHNL) The data includes the
24671  *		track number, index number, absolute CD-ROM address (LBA or MSF
24672  *		format per the user) , track relative CD-ROM address (LBA or MSF
24673  *		format per the user), control data and audio status.
24674  *
24675  *   Arguments: dev	- the device 'dev_t'
24676  *		data	- pointer to user provided cdrom sub-channel structure
24677  *		flag	- this argument is a pass through to ddi_copyxxx()
24678  *		          directly from the mode argument of ioctl().
24679  *
24680  * Return Code: the code returned by sd_send_scsi_cmd()
24681  *		EFAULT if ddi_copyxxx() fails
24682  *		ENXIO if fail ddi_get_soft_state
24683  *		EINVAL if data pointer is NULL
24684  */
24685 
24686 static int
24687 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24688 {
24689 	struct sd_lun		*un;
24690 	struct uscsi_cmd	*com;
24691 	struct cdrom_subchnl	subchanel;
24692 	struct cdrom_subchnl	*subchnl = &subchanel;
24693 	char			cdb[CDB_GROUP1];
24694 	caddr_t			buffer;
24695 	int			rval;
24696 
24697 	if (data == NULL) {
24698 		return (EINVAL);
24699 	}
24700 
24701 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24702 	    (un->un_state == SD_STATE_OFFLINE)) {
24703 		return (ENXIO);
24704 	}
24705 
24706 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24707 		return (EFAULT);
24708 	}
24709 
24710 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24711 	bzero(cdb, CDB_GROUP1);
24712 	cdb[0] = SCMD_READ_SUBCHANNEL;
24713 	/* Set the MSF bit based on the user requested address format */
24714 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24715 	/*
24716 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24717 	 * returned
24718 	 */
24719 	cdb[2] = 0x40;
24720 	/*
24721 	 * Set byte 3 to specify the return data format. A value of 0x01
24722 	 * indicates that the CD-ROM current position should be returned.
24723 	 */
24724 	cdb[3] = 0x01;
24725 	cdb[8] = 0x10;
24726 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24727 	com->uscsi_cdb	   = cdb;
24728 	com->uscsi_cdblen  = CDB_GROUP1;
24729 	com->uscsi_bufaddr = buffer;
24730 	com->uscsi_buflen  = 16;
24731 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24732 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24733 	    SD_PATH_STANDARD);
24734 	if (rval != 0) {
24735 		kmem_free(buffer, 16);
24736 		kmem_free(com, sizeof (*com));
24737 		return (rval);
24738 	}
24739 
24740 	/* Process the returned Q sub-channel data */
24741 	subchnl->cdsc_audiostatus = buffer[1];
24742 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24743 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24744 	subchnl->cdsc_trk	= buffer[6];
24745 	subchnl->cdsc_ind	= buffer[7];
24746 	if (subchnl->cdsc_format & CDROM_LBA) {
24747 		subchnl->cdsc_absaddr.lba =
24748 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24749 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24750 		subchnl->cdsc_reladdr.lba =
24751 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24752 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24753 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24754 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24755 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24756 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24757 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24758 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24759 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24760 	} else {
24761 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24762 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24763 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24764 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24765 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24766 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24767 	}
24768 	kmem_free(buffer, 16);
24769 	kmem_free(com, sizeof (*com));
24770 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24771 	    != 0) {
24772 		return (EFAULT);
24773 	}
24774 	return (rval);
24775 }
24776 
24777 
24778 /*
24779  *    Function: sr_read_tocentry()
24780  *
24781  * Description: This routine is the driver entry point for handling CD-ROM
24782  *		ioctl requests to read from the Table of Contents (TOC)
24783  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24784  *		fields, the starting address (LBA or MSF format per the user)
24785  *		and the data mode if the user specified track is a data track.
24786  *
24787  *		Note: The READ HEADER (0x44) command used in this routine is
24788  *		obsolete per the SCSI MMC spec but still supported in the
24789  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24790  *		therefore the command is still implemented in this routine.
24791  *
24792  *   Arguments: dev	- the device 'dev_t'
24793  *		data	- pointer to user provided toc entry structure,
24794  *			  specifying the track # and the address format
24795  *			  (LBA or MSF).
24796  *		flag	- this argument is a pass through to ddi_copyxxx()
24797  *		          directly from the mode argument of ioctl().
24798  *
24799  * Return Code: the code returned by sd_send_scsi_cmd()
24800  *		EFAULT if ddi_copyxxx() fails
24801  *		ENXIO if fail ddi_get_soft_state
24802  *		EINVAL if data pointer is NULL
24803  */
24804 
24805 static int
24806 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24807 {
24808 	struct sd_lun		*un = NULL;
24809 	struct uscsi_cmd	*com;
24810 	struct cdrom_tocentry	toc_entry;
24811 	struct cdrom_tocentry	*entry = &toc_entry;
24812 	caddr_t			buffer;
24813 	int			rval;
24814 	char			cdb[CDB_GROUP1];
24815 
24816 	if (data == NULL) {
24817 		return (EINVAL);
24818 	}
24819 
24820 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24821 	    (un->un_state == SD_STATE_OFFLINE)) {
24822 		return (ENXIO);
24823 	}
24824 
24825 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
24826 		return (EFAULT);
24827 	}
24828 
24829 	/* Validate the requested track and address format */
24830 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
24831 		return (EINVAL);
24832 	}
24833 
24834 	if (entry->cdte_track == 0) {
24835 		return (EINVAL);
24836 	}
24837 
24838 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
24839 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24840 	bzero(cdb, CDB_GROUP1);
24841 
24842 	cdb[0] = SCMD_READ_TOC;
24843 	/* Set the MSF bit based on the user requested address format  */
24844 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
24845 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24846 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
24847 	} else {
24848 		cdb[6] = entry->cdte_track;
24849 	}
24850 
24851 	/*
24852 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
24853 	 * (4 byte TOC response header + 8 byte track descriptor)
24854 	 */
24855 	cdb[8] = 12;
24856 	com->uscsi_cdb	   = cdb;
24857 	com->uscsi_cdblen  = CDB_GROUP1;
24858 	com->uscsi_bufaddr = buffer;
24859 	com->uscsi_buflen  = 0x0C;
24860 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
24861 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24862 	    SD_PATH_STANDARD);
24863 	if (rval != 0) {
24864 		kmem_free(buffer, 12);
24865 		kmem_free(com, sizeof (*com));
24866 		return (rval);
24867 	}
24868 
24869 	/* Process the toc entry */
24870 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
24871 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
24872 	if (entry->cdte_format & CDROM_LBA) {
24873 		entry->cdte_addr.lba =
24874 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24875 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24876 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
24877 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
24878 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
24879 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
24880 		/*
24881 		 * Send a READ TOC command using the LBA address format to get
24882 		 * the LBA for the track requested so it can be used in the
24883 		 * READ HEADER request
24884 		 *
24885 		 * Note: The MSF bit of the READ HEADER command specifies the
24886 		 * output format. The block address specified in that command
24887 		 * must be in LBA format.
24888 		 */
24889 		cdb[1] = 0;
24890 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24891 		    SD_PATH_STANDARD);
24892 		if (rval != 0) {
24893 			kmem_free(buffer, 12);
24894 			kmem_free(com, sizeof (*com));
24895 			return (rval);
24896 		}
24897 	} else {
24898 		entry->cdte_addr.msf.minute	= buffer[9];
24899 		entry->cdte_addr.msf.second	= buffer[10];
24900 		entry->cdte_addr.msf.frame	= buffer[11];
24901 		/*
24902 		 * Send a READ TOC command using the LBA address format to get
24903 		 * the LBA for the track requested so it can be used in the
24904 		 * READ HEADER request
24905 		 *
24906 		 * Note: The MSF bit of the READ HEADER command specifies the
24907 		 * output format. The block address specified in that command
24908 		 * must be in LBA format.
24909 		 */
24910 		cdb[1] = 0;
24911 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24912 		    SD_PATH_STANDARD);
24913 		if (rval != 0) {
24914 			kmem_free(buffer, 12);
24915 			kmem_free(com, sizeof (*com));
24916 			return (rval);
24917 		}
24918 	}
24919 
24920 	/*
24921 	 * Build and send the READ HEADER command to determine the data mode of
24922 	 * the user specified track.
24923 	 */
24924 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
24925 	    (entry->cdte_track != CDROM_LEADOUT)) {
24926 		bzero(cdb, CDB_GROUP1);
24927 		cdb[0] = SCMD_READ_HEADER;
24928 		cdb[2] = buffer[8];
24929 		cdb[3] = buffer[9];
24930 		cdb[4] = buffer[10];
24931 		cdb[5] = buffer[11];
24932 		cdb[8] = 0x08;
24933 		com->uscsi_buflen = 0x08;
24934 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24935 		    SD_PATH_STANDARD);
24936 		if (rval == 0) {
24937 			entry->cdte_datamode = buffer[0];
24938 		} else {
24939 			/*
24940 			 * READ HEADER command failed, since this is
24941 			 * obsoleted in one spec, its better to return
24942 			 * -1 for an invlid track so that we can still
24943 			 * receive the rest of the TOC data.
24944 			 */
24945 			entry->cdte_datamode = (uchar_t)-1;
24946 		}
24947 	} else {
24948 		entry->cdte_datamode = (uchar_t)-1;
24949 	}
24950 
24951 	kmem_free(buffer, 12);
24952 	kmem_free(com, sizeof (*com));
24953 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
24954 		return (EFAULT);
24955 
24956 	return (rval);
24957 }
24958 
24959 
24960 /*
24961  *    Function: sr_read_tochdr()
24962  *
24963  * Description: This routine is the driver entry point for handling CD-ROM
24964  * 		ioctl requests to read the Table of Contents (TOC) header
24965  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
24966  *		and ending track numbers
24967  *
24968  *   Arguments: dev	- the device 'dev_t'
24969  *		data	- pointer to user provided toc header structure,
24970  *			  specifying the starting and ending track numbers.
24971  *		flag	- this argument is a pass through to ddi_copyxxx()
24972  *			  directly from the mode argument of ioctl().
24973  *
24974  * Return Code: the code returned by sd_send_scsi_cmd()
24975  *		EFAULT if ddi_copyxxx() fails
24976  *		ENXIO if fail ddi_get_soft_state
24977  *		EINVAL if data pointer is NULL
24978  */
24979 
24980 static int
24981 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
24982 {
24983 	struct sd_lun		*un;
24984 	struct uscsi_cmd	*com;
24985 	struct cdrom_tochdr	toc_header;
24986 	struct cdrom_tochdr	*hdr = &toc_header;
24987 	char			cdb[CDB_GROUP1];
24988 	int			rval;
24989 	caddr_t			buffer;
24990 
24991 	if (data == NULL) {
24992 		return (EINVAL);
24993 	}
24994 
24995 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24996 	    (un->un_state == SD_STATE_OFFLINE)) {
24997 		return (ENXIO);
24998 	}
24999 
25000 	buffer = kmem_zalloc(4, KM_SLEEP);
25001 	bzero(cdb, CDB_GROUP1);
25002 	cdb[0] = SCMD_READ_TOC;
25003 	/*
25004 	 * Specifying a track number of 0x00 in the READ TOC command indicates
25005 	 * that the TOC header should be returned
25006 	 */
25007 	cdb[6] = 0x00;
25008 	/*
25009 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
25010 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
25011 	 */
25012 	cdb[8] = 0x04;
25013 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25014 	com->uscsi_cdb	   = cdb;
25015 	com->uscsi_cdblen  = CDB_GROUP1;
25016 	com->uscsi_bufaddr = buffer;
25017 	com->uscsi_buflen  = 0x04;
25018 	com->uscsi_timeout = 300;
25019 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25020 
25021 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25022 	    SD_PATH_STANDARD);
25023 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
25024 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
25025 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
25026 	} else {
25027 		hdr->cdth_trk0 = buffer[2];
25028 		hdr->cdth_trk1 = buffer[3];
25029 	}
25030 	kmem_free(buffer, 4);
25031 	kmem_free(com, sizeof (*com));
25032 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
25033 		return (EFAULT);
25034 	}
25035 	return (rval);
25036 }
25037 
25038 
25039 /*
25040  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
25041  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
25042  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
25043  * digital audio and extended architecture digital audio. These modes are
25044  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
25045  * MMC specs.
25046  *
25047  * In addition to support for the various data formats these routines also
25048  * include support for devices that implement only the direct access READ
25049  * commands (0x08, 0x28), devices that implement the READ_CD commands
25050  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
25051  * READ CDXA commands (0xD8, 0xDB)
25052  */
25053 
25054 /*
25055  *    Function: sr_read_mode1()
25056  *
25057  * Description: This routine is the driver entry point for handling CD-ROM
25058  *		ioctl read mode1 requests (CDROMREADMODE1).
25059  *
25060  *   Arguments: dev	- the device 'dev_t'
25061  *		data	- pointer to user provided cd read structure specifying
25062  *			  the lba buffer address and length.
25063  *		flag	- this argument is a pass through to ddi_copyxxx()
25064  *			  directly from the mode argument of ioctl().
25065  *
25066  * Return Code: the code returned by sd_send_scsi_cmd()
25067  *		EFAULT if ddi_copyxxx() fails
25068  *		ENXIO if fail ddi_get_soft_state
25069  *		EINVAL if data pointer is NULL
25070  */
25071 
25072 static int
25073 sr_read_mode1(dev_t dev, caddr_t data, int flag)
25074 {
25075 	struct sd_lun		*un;
25076 	struct cdrom_read	mode1_struct;
25077 	struct cdrom_read	*mode1 = &mode1_struct;
25078 	int			rval;
25079 #ifdef _MULTI_DATAMODEL
25080 	/* To support ILP32 applications in an LP64 world */
25081 	struct cdrom_read32	cdrom_read32;
25082 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25083 #endif /* _MULTI_DATAMODEL */
25084 
25085 	if (data == NULL) {
25086 		return (EINVAL);
25087 	}
25088 
25089 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25090 	    (un->un_state == SD_STATE_OFFLINE)) {
25091 		return (ENXIO);
25092 	}
25093 
25094 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25095 	    "sd_read_mode1: entry: un:0x%p\n", un);
25096 
25097 #ifdef _MULTI_DATAMODEL
25098 	switch (ddi_model_convert_from(flag & FMODELS)) {
25099 	case DDI_MODEL_ILP32:
25100 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25101 			return (EFAULT);
25102 		}
25103 		/* Convert the ILP32 uscsi data from the application to LP64 */
25104 		cdrom_read32tocdrom_read(cdrd32, mode1);
25105 		break;
25106 	case DDI_MODEL_NONE:
25107 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25108 			return (EFAULT);
25109 		}
25110 	}
25111 #else /* ! _MULTI_DATAMODEL */
25112 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25113 		return (EFAULT);
25114 	}
25115 #endif /* _MULTI_DATAMODEL */
25116 
25117 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
25118 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
25119 
25120 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25121 	    "sd_read_mode1: exit: un:0x%p\n", un);
25122 
25123 	return (rval);
25124 }
25125 
25126 
25127 /*
25128  *    Function: sr_read_cd_mode2()
25129  *
25130  * Description: This routine is the driver entry point for handling CD-ROM
25131  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25132  *		support the READ CD (0xBE) command or the 1st generation
25133  *		READ CD (0xD4) command.
25134  *
25135  *   Arguments: dev	- the device 'dev_t'
25136  *		data	- pointer to user provided cd read structure specifying
25137  *			  the lba buffer address and length.
25138  *		flag	- this argument is a pass through to ddi_copyxxx()
25139  *			  directly from the mode argument of ioctl().
25140  *
25141  * Return Code: the code returned by sd_send_scsi_cmd()
25142  *		EFAULT if ddi_copyxxx() fails
25143  *		ENXIO if fail ddi_get_soft_state
25144  *		EINVAL if data pointer is NULL
25145  */
25146 
25147 static int
25148 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
25149 {
25150 	struct sd_lun		*un;
25151 	struct uscsi_cmd	*com;
25152 	struct cdrom_read	mode2_struct;
25153 	struct cdrom_read	*mode2 = &mode2_struct;
25154 	uchar_t			cdb[CDB_GROUP5];
25155 	int			nblocks;
25156 	int			rval;
25157 #ifdef _MULTI_DATAMODEL
25158 	/*  To support ILP32 applications in an LP64 world */
25159 	struct cdrom_read32	cdrom_read32;
25160 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25161 #endif /* _MULTI_DATAMODEL */
25162 
25163 	if (data == NULL) {
25164 		return (EINVAL);
25165 	}
25166 
25167 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25168 	    (un->un_state == SD_STATE_OFFLINE)) {
25169 		return (ENXIO);
25170 	}
25171 
25172 #ifdef _MULTI_DATAMODEL
25173 	switch (ddi_model_convert_from(flag & FMODELS)) {
25174 	case DDI_MODEL_ILP32:
25175 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25176 			return (EFAULT);
25177 		}
25178 		/* Convert the ILP32 uscsi data from the application to LP64 */
25179 		cdrom_read32tocdrom_read(cdrd32, mode2);
25180 		break;
25181 	case DDI_MODEL_NONE:
25182 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25183 			return (EFAULT);
25184 		}
25185 		break;
25186 	}
25187 
25188 #else /* ! _MULTI_DATAMODEL */
25189 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25190 		return (EFAULT);
25191 	}
25192 #endif /* _MULTI_DATAMODEL */
25193 
25194 	bzero(cdb, sizeof (cdb));
25195 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
25196 		/* Read command supported by 1st generation atapi drives */
25197 		cdb[0] = SCMD_READ_CDD4;
25198 	} else {
25199 		/* Universal CD Access Command */
25200 		cdb[0] = SCMD_READ_CD;
25201 	}
25202 
25203 	/*
25204 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
25205 	 */
25206 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
25207 
25208 	/* set the start address */
25209 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
25210 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
25211 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25212 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
25213 
25214 	/* set the transfer length */
25215 	nblocks = mode2->cdread_buflen / 2336;
25216 	cdb[6] = (uchar_t)(nblocks >> 16);
25217 	cdb[7] = (uchar_t)(nblocks >> 8);
25218 	cdb[8] = (uchar_t)nblocks;
25219 
25220 	/* set the filter bits */
25221 	cdb[9] = CDROM_READ_CD_USERDATA;
25222 
25223 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25224 	com->uscsi_cdb = (caddr_t)cdb;
25225 	com->uscsi_cdblen = sizeof (cdb);
25226 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25227 	com->uscsi_buflen = mode2->cdread_buflen;
25228 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25229 
25230 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25231 	    SD_PATH_STANDARD);
25232 	kmem_free(com, sizeof (*com));
25233 	return (rval);
25234 }
25235 
25236 
25237 /*
25238  *    Function: sr_read_mode2()
25239  *
25240  * Description: This routine is the driver entry point for handling CD-ROM
25241  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25242  *		do not support the READ CD (0xBE) command.
25243  *
25244  *   Arguments: dev	- the device 'dev_t'
25245  *		data	- pointer to user provided cd read structure specifying
25246  *			  the lba buffer address and length.
25247  *		flag	- this argument is a pass through to ddi_copyxxx()
25248  *			  directly from the mode argument of ioctl().
25249  *
25250  * Return Code: the code returned by sd_send_scsi_cmd()
25251  *		EFAULT if ddi_copyxxx() fails
25252  *		ENXIO if fail ddi_get_soft_state
25253  *		EINVAL if data pointer is NULL
25254  *		EIO if fail to reset block size
25255  *		EAGAIN if commands are in progress in the driver
25256  */
25257 
25258 static int
25259 sr_read_mode2(dev_t dev, caddr_t data, int flag)
25260 {
25261 	struct sd_lun		*un;
25262 	struct cdrom_read	mode2_struct;
25263 	struct cdrom_read	*mode2 = &mode2_struct;
25264 	int			rval;
25265 	uint32_t		restore_blksize;
25266 	struct uscsi_cmd	*com;
25267 	uchar_t			cdb[CDB_GROUP0];
25268 	int			nblocks;
25269 
25270 #ifdef _MULTI_DATAMODEL
25271 	/* To support ILP32 applications in an LP64 world */
25272 	struct cdrom_read32	cdrom_read32;
25273 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25274 #endif /* _MULTI_DATAMODEL */
25275 
25276 	if (data == NULL) {
25277 		return (EINVAL);
25278 	}
25279 
25280 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25281 	    (un->un_state == SD_STATE_OFFLINE)) {
25282 		return (ENXIO);
25283 	}
25284 
25285 	/*
25286 	 * Because this routine will update the device and driver block size
25287 	 * being used we want to make sure there are no commands in progress.
25288 	 * If commands are in progress the user will have to try again.
25289 	 *
25290 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
25291 	 * in sdioctl to protect commands from sdioctl through to the top of
25292 	 * sd_uscsi_strategy. See sdioctl for details.
25293 	 */
25294 	mutex_enter(SD_MUTEX(un));
25295 	if (un->un_ncmds_in_driver != 1) {
25296 		mutex_exit(SD_MUTEX(un));
25297 		return (EAGAIN);
25298 	}
25299 	mutex_exit(SD_MUTEX(un));
25300 
25301 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25302 	    "sd_read_mode2: entry: un:0x%p\n", un);
25303 
25304 #ifdef _MULTI_DATAMODEL
25305 	switch (ddi_model_convert_from(flag & FMODELS)) {
25306 	case DDI_MODEL_ILP32:
25307 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25308 			return (EFAULT);
25309 		}
25310 		/* Convert the ILP32 uscsi data from the application to LP64 */
25311 		cdrom_read32tocdrom_read(cdrd32, mode2);
25312 		break;
25313 	case DDI_MODEL_NONE:
25314 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25315 			return (EFAULT);
25316 		}
25317 		break;
25318 	}
25319 #else /* ! _MULTI_DATAMODEL */
25320 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
25321 		return (EFAULT);
25322 	}
25323 #endif /* _MULTI_DATAMODEL */
25324 
25325 	/* Store the current target block size for restoration later */
25326 	restore_blksize = un->un_tgt_blocksize;
25327 
25328 	/* Change the device and soft state target block size to 2336 */
25329 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
25330 		rval = EIO;
25331 		goto done;
25332 	}
25333 
25334 
25335 	bzero(cdb, sizeof (cdb));
25336 
25337 	/* set READ operation */
25338 	cdb[0] = SCMD_READ;
25339 
25340 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
25341 	mode2->cdread_lba >>= 2;
25342 
25343 	/* set the start address */
25344 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
25345 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25346 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
25347 
25348 	/* set the transfer length */
25349 	nblocks = mode2->cdread_buflen / 2336;
25350 	cdb[4] = (uchar_t)nblocks & 0xFF;
25351 
25352 	/* build command */
25353 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25354 	com->uscsi_cdb = (caddr_t)cdb;
25355 	com->uscsi_cdblen = sizeof (cdb);
25356 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25357 	com->uscsi_buflen = mode2->cdread_buflen;
25358 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25359 
25360 	/*
25361 	 * Issue SCSI command with user space address for read buffer.
25362 	 *
25363 	 * This sends the command through main channel in the driver.
25364 	 *
25365 	 * Since this is accessed via an IOCTL call, we go through the
25366 	 * standard path, so that if the device was powered down, then
25367 	 * it would be 'awakened' to handle the command.
25368 	 */
25369 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25370 	    SD_PATH_STANDARD);
25371 
25372 	kmem_free(com, sizeof (*com));
25373 
25374 	/* Restore the device and soft state target block size */
25375 	if (sr_sector_mode(dev, restore_blksize) != 0) {
25376 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25377 		    "can't do switch back to mode 1\n");
25378 		/*
25379 		 * If sd_send_scsi_READ succeeded we still need to report
25380 		 * an error because we failed to reset the block size
25381 		 */
25382 		if (rval == 0) {
25383 			rval = EIO;
25384 		}
25385 	}
25386 
25387 done:
25388 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25389 	    "sd_read_mode2: exit: un:0x%p\n", un);
25390 
25391 	return (rval);
25392 }
25393 
25394 
25395 /*
25396  *    Function: sr_sector_mode()
25397  *
25398  * Description: This utility function is used by sr_read_mode2 to set the target
25399  *		block size based on the user specified size. This is a legacy
25400  *		implementation based upon a vendor specific mode page
25401  *
25402  *   Arguments: dev	- the device 'dev_t'
25403  *		data	- flag indicating if block size is being set to 2336 or
25404  *			  512.
25405  *
25406  * Return Code: the code returned by sd_send_scsi_cmd()
25407  *		EFAULT if ddi_copyxxx() fails
25408  *		ENXIO if fail ddi_get_soft_state
25409  *		EINVAL if data pointer is NULL
25410  */
25411 
25412 static int
25413 sr_sector_mode(dev_t dev, uint32_t blksize)
25414 {
25415 	struct sd_lun	*un;
25416 	uchar_t		*sense;
25417 	uchar_t		*select;
25418 	int		rval;
25419 
25420 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25421 	    (un->un_state == SD_STATE_OFFLINE)) {
25422 		return (ENXIO);
25423 	}
25424 
25425 	sense = kmem_zalloc(20, KM_SLEEP);
25426 
25427 	/* Note: This is a vendor specific mode page (0x81) */
25428 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
25429 	    SD_PATH_STANDARD)) != 0) {
25430 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25431 		    "sr_sector_mode: Mode Sense failed\n");
25432 		kmem_free(sense, 20);
25433 		return (rval);
25434 	}
25435 	select = kmem_zalloc(20, KM_SLEEP);
25436 	select[3] = 0x08;
25437 	select[10] = ((blksize >> 8) & 0xff);
25438 	select[11] = (blksize & 0xff);
25439 	select[12] = 0x01;
25440 	select[13] = 0x06;
25441 	select[14] = sense[14];
25442 	select[15] = sense[15];
25443 	if (blksize == SD_MODE2_BLKSIZE) {
25444 		select[14] |= 0x01;
25445 	}
25446 
25447 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
25448 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
25449 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25450 		    "sr_sector_mode: Mode Select failed\n");
25451 	} else {
25452 		/*
25453 		 * Only update the softstate block size if we successfully
25454 		 * changed the device block mode.
25455 		 */
25456 		mutex_enter(SD_MUTEX(un));
25457 		sd_update_block_info(un, blksize, 0);
25458 		mutex_exit(SD_MUTEX(un));
25459 	}
25460 	kmem_free(sense, 20);
25461 	kmem_free(select, 20);
25462 	return (rval);
25463 }
25464 
25465 
25466 /*
25467  *    Function: sr_read_cdda()
25468  *
25469  * Description: This routine is the driver entry point for handling CD-ROM
25470  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
25471  *		the target supports CDDA these requests are handled via a vendor
25472  *		specific command (0xD8) If the target does not support CDDA
25473  *		these requests are handled via the READ CD command (0xBE).
25474  *
25475  *   Arguments: dev	- the device 'dev_t'
25476  *		data	- pointer to user provided CD-DA structure specifying
25477  *			  the track starting address, transfer length, and
25478  *			  subcode options.
25479  *		flag	- this argument is a pass through to ddi_copyxxx()
25480  *			  directly from the mode argument of ioctl().
25481  *
25482  * Return Code: the code returned by sd_send_scsi_cmd()
25483  *		EFAULT if ddi_copyxxx() fails
25484  *		ENXIO if fail ddi_get_soft_state
25485  *		EINVAL if invalid arguments are provided
25486  *		ENOTTY
25487  */
25488 
25489 static int
25490 sr_read_cdda(dev_t dev, caddr_t data, int flag)
25491 {
25492 	struct sd_lun			*un;
25493 	struct uscsi_cmd		*com;
25494 	struct cdrom_cdda		*cdda;
25495 	int				rval;
25496 	size_t				buflen;
25497 	char				cdb[CDB_GROUP5];
25498 
25499 #ifdef _MULTI_DATAMODEL
25500 	/* To support ILP32 applications in an LP64 world */
25501 	struct cdrom_cdda32	cdrom_cdda32;
25502 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
25503 #endif /* _MULTI_DATAMODEL */
25504 
25505 	if (data == NULL) {
25506 		return (EINVAL);
25507 	}
25508 
25509 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25510 		return (ENXIO);
25511 	}
25512 
25513 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
25514 
25515 #ifdef _MULTI_DATAMODEL
25516 	switch (ddi_model_convert_from(flag & FMODELS)) {
25517 	case DDI_MODEL_ILP32:
25518 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25519 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25520 			    "sr_read_cdda: ddi_copyin Failed\n");
25521 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25522 			return (EFAULT);
25523 		}
25524 		/* Convert the ILP32 uscsi data from the application to LP64 */
25525 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25526 		break;
25527 	case DDI_MODEL_NONE:
25528 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25529 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25530 			    "sr_read_cdda: ddi_copyin Failed\n");
25531 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25532 			return (EFAULT);
25533 		}
25534 		break;
25535 	}
25536 #else /* ! _MULTI_DATAMODEL */
25537 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25538 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25539 		    "sr_read_cdda: ddi_copyin Failed\n");
25540 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25541 		return (EFAULT);
25542 	}
25543 #endif /* _MULTI_DATAMODEL */
25544 
25545 	/*
25546 	 * Since MMC-2 expects max 3 bytes for length, check if the
25547 	 * length input is greater than 3 bytes
25548 	 */
25549 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25550 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25551 		    "cdrom transfer length too large: %d (limit %d)\n",
25552 		    cdda->cdda_length, 0xFFFFFF);
25553 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25554 		return (EINVAL);
25555 	}
25556 
25557 	switch (cdda->cdda_subcode) {
25558 	case CDROM_DA_NO_SUBCODE:
25559 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25560 		break;
25561 	case CDROM_DA_SUBQ:
25562 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25563 		break;
25564 	case CDROM_DA_ALL_SUBCODE:
25565 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25566 		break;
25567 	case CDROM_DA_SUBCODE_ONLY:
25568 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25569 		break;
25570 	default:
25571 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25572 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25573 		    cdda->cdda_subcode);
25574 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25575 		return (EINVAL);
25576 	}
25577 
25578 	/* Build and send the command */
25579 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25580 	bzero(cdb, CDB_GROUP5);
25581 
25582 	if (un->un_f_cfg_cdda == TRUE) {
25583 		cdb[0] = (char)SCMD_READ_CD;
25584 		cdb[1] = 0x04;
25585 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25586 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25587 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25588 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25589 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25590 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25591 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25592 		cdb[9] = 0x10;
25593 		switch (cdda->cdda_subcode) {
25594 		case CDROM_DA_NO_SUBCODE :
25595 			cdb[10] = 0x0;
25596 			break;
25597 		case CDROM_DA_SUBQ :
25598 			cdb[10] = 0x2;
25599 			break;
25600 		case CDROM_DA_ALL_SUBCODE :
25601 			cdb[10] = 0x1;
25602 			break;
25603 		case CDROM_DA_SUBCODE_ONLY :
25604 			/* FALLTHROUGH */
25605 		default :
25606 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25607 			kmem_free(com, sizeof (*com));
25608 			return (ENOTTY);
25609 		}
25610 	} else {
25611 		cdb[0] = (char)SCMD_READ_CDDA;
25612 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25613 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25614 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25615 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25616 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25617 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25618 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25619 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25620 		cdb[10] = cdda->cdda_subcode;
25621 	}
25622 
25623 	com->uscsi_cdb = cdb;
25624 	com->uscsi_cdblen = CDB_GROUP5;
25625 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25626 	com->uscsi_buflen = buflen;
25627 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25628 
25629 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25630 	    SD_PATH_STANDARD);
25631 
25632 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25633 	kmem_free(com, sizeof (*com));
25634 	return (rval);
25635 }
25636 
25637 
25638 /*
25639  *    Function: sr_read_cdxa()
25640  *
25641  * Description: This routine is the driver entry point for handling CD-ROM
25642  *		ioctl requests to return CD-XA (Extended Architecture) data.
25643  *		(CDROMCDXA).
25644  *
25645  *   Arguments: dev	- the device 'dev_t'
25646  *		data	- pointer to user provided CD-XA structure specifying
25647  *			  the data starting address, transfer length, and format
25648  *		flag	- this argument is a pass through to ddi_copyxxx()
25649  *			  directly from the mode argument of ioctl().
25650  *
25651  * Return Code: the code returned by sd_send_scsi_cmd()
25652  *		EFAULT if ddi_copyxxx() fails
25653  *		ENXIO if fail ddi_get_soft_state
25654  *		EINVAL if data pointer is NULL
25655  */
25656 
25657 static int
25658 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25659 {
25660 	struct sd_lun		*un;
25661 	struct uscsi_cmd	*com;
25662 	struct cdrom_cdxa	*cdxa;
25663 	int			rval;
25664 	size_t			buflen;
25665 	char			cdb[CDB_GROUP5];
25666 	uchar_t			read_flags;
25667 
25668 #ifdef _MULTI_DATAMODEL
25669 	/* To support ILP32 applications in an LP64 world */
25670 	struct cdrom_cdxa32		cdrom_cdxa32;
25671 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25672 #endif /* _MULTI_DATAMODEL */
25673 
25674 	if (data == NULL) {
25675 		return (EINVAL);
25676 	}
25677 
25678 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25679 		return (ENXIO);
25680 	}
25681 
25682 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25683 
25684 #ifdef _MULTI_DATAMODEL
25685 	switch (ddi_model_convert_from(flag & FMODELS)) {
25686 	case DDI_MODEL_ILP32:
25687 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25688 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25689 			return (EFAULT);
25690 		}
25691 		/*
25692 		 * Convert the ILP32 uscsi data from the
25693 		 * application to LP64 for internal use.
25694 		 */
25695 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25696 		break;
25697 	case DDI_MODEL_NONE:
25698 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25699 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25700 			return (EFAULT);
25701 		}
25702 		break;
25703 	}
25704 #else /* ! _MULTI_DATAMODEL */
25705 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25706 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25707 		return (EFAULT);
25708 	}
25709 #endif /* _MULTI_DATAMODEL */
25710 
25711 	/*
25712 	 * Since MMC-2 expects max 3 bytes for length, check if the
25713 	 * length input is greater than 3 bytes
25714 	 */
25715 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25716 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25717 		    "cdrom transfer length too large: %d (limit %d)\n",
25718 		    cdxa->cdxa_length, 0xFFFFFF);
25719 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25720 		return (EINVAL);
25721 	}
25722 
25723 	switch (cdxa->cdxa_format) {
25724 	case CDROM_XA_DATA:
25725 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25726 		read_flags = 0x10;
25727 		break;
25728 	case CDROM_XA_SECTOR_DATA:
25729 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25730 		read_flags = 0xf8;
25731 		break;
25732 	case CDROM_XA_DATA_W_ERROR:
25733 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25734 		read_flags = 0xfc;
25735 		break;
25736 	default:
25737 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25738 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25739 		    cdxa->cdxa_format);
25740 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25741 		return (EINVAL);
25742 	}
25743 
25744 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25745 	bzero(cdb, CDB_GROUP5);
25746 	if (un->un_f_mmc_cap == TRUE) {
25747 		cdb[0] = (char)SCMD_READ_CD;
25748 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25749 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25750 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25751 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25752 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25753 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25754 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25755 		cdb[9] = (char)read_flags;
25756 	} else {
25757 		/*
25758 		 * Note: A vendor specific command (0xDB) is being used her to
25759 		 * request a read of all subcodes.
25760 		 */
25761 		cdb[0] = (char)SCMD_READ_CDXA;
25762 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25763 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25764 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25765 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25766 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25767 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25768 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25769 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25770 		cdb[10] = cdxa->cdxa_format;
25771 	}
25772 	com->uscsi_cdb	   = cdb;
25773 	com->uscsi_cdblen  = CDB_GROUP5;
25774 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25775 	com->uscsi_buflen  = buflen;
25776 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25777 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25778 	    SD_PATH_STANDARD);
25779 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25780 	kmem_free(com, sizeof (*com));
25781 	return (rval);
25782 }
25783 
25784 
25785 /*
25786  *    Function: sr_eject()
25787  *
25788  * Description: This routine is the driver entry point for handling CD-ROM
25789  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25790  *
25791  *   Arguments: dev	- the device 'dev_t'
25792  *
25793  * Return Code: the code returned by sd_send_scsi_cmd()
25794  */
25795 
25796 static int
25797 sr_eject(dev_t dev)
25798 {
25799 	struct sd_lun	*un;
25800 	int		rval;
25801 
25802 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25803 	    (un->un_state == SD_STATE_OFFLINE)) {
25804 		return (ENXIO);
25805 	}
25806 
25807 	/*
25808 	 * To prevent race conditions with the eject
25809 	 * command, keep track of an eject command as
25810 	 * it progresses. If we are already handling
25811 	 * an eject command in the driver for the given
25812 	 * unit and another request to eject is received
25813 	 * immediately return EAGAIN so we don't lose
25814 	 * the command if the current eject command fails.
25815 	 */
25816 	mutex_enter(SD_MUTEX(un));
25817 	if (un->un_f_ejecting == TRUE) {
25818 		mutex_exit(SD_MUTEX(un));
25819 		return (EAGAIN);
25820 	}
25821 	un->un_f_ejecting = TRUE;
25822 	mutex_exit(SD_MUTEX(un));
25823 
25824 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
25825 	    SD_PATH_STANDARD)) != 0) {
25826 		mutex_enter(SD_MUTEX(un));
25827 		un->un_f_ejecting = FALSE;
25828 		mutex_exit(SD_MUTEX(un));
25829 		return (rval);
25830 	}
25831 
25832 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
25833 	    SD_PATH_STANDARD);
25834 
25835 	if (rval == 0) {
25836 		mutex_enter(SD_MUTEX(un));
25837 		sr_ejected(un);
25838 		un->un_mediastate = DKIO_EJECTED;
25839 		un->un_f_ejecting = FALSE;
25840 		cv_broadcast(&un->un_state_cv);
25841 		mutex_exit(SD_MUTEX(un));
25842 	} else {
25843 		mutex_enter(SD_MUTEX(un));
25844 		un->un_f_ejecting = FALSE;
25845 		mutex_exit(SD_MUTEX(un));
25846 	}
25847 	return (rval);
25848 }
25849 
25850 
25851 /*
25852  *    Function: sr_ejected()
25853  *
25854  * Description: This routine updates the soft state structure to invalidate the
25855  *		geometry information after the media has been ejected or a
25856  *		media eject has been detected.
25857  *
25858  *   Arguments: un - driver soft state (unit) structure
25859  */
25860 
25861 static void
25862 sr_ejected(struct sd_lun *un)
25863 {
25864 	struct sd_errstats *stp;
25865 
25866 	ASSERT(un != NULL);
25867 	ASSERT(mutex_owned(SD_MUTEX(un)));
25868 
25869 	un->un_f_blockcount_is_valid	= FALSE;
25870 	un->un_f_tgt_blocksize_is_valid	= FALSE;
25871 	mutex_exit(SD_MUTEX(un));
25872 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
25873 	mutex_enter(SD_MUTEX(un));
25874 
25875 	if (un->un_errstats != NULL) {
25876 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
25877 		stp->sd_capacity.value.ui64 = 0;
25878 	}
25879 
25880 	/* remove "capacity-of-device" properties */
25881 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25882 	    "device-nblocks");
25883 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25884 	    "device-blksize");
25885 }
25886 
25887 
25888 /*
25889  *    Function: sr_check_wp()
25890  *
25891  * Description: This routine checks the write protection of a removable
25892  *      media disk and hotpluggable devices via the write protect bit of
25893  *      the Mode Page Header device specific field. Some devices choke
25894  *      on unsupported mode page. In order to workaround this issue,
25895  *      this routine has been implemented to use 0x3f mode page(request
25896  *      for all pages) for all device types.
25897  *
25898  *   Arguments: dev		- the device 'dev_t'
25899  *
25900  * Return Code: int indicating if the device is write protected (1) or not (0)
25901  *
25902  *     Context: Kernel thread.
25903  *
25904  */
25905 
25906 static int
25907 sr_check_wp(dev_t dev)
25908 {
25909 	struct sd_lun	*un;
25910 	uchar_t		device_specific;
25911 	uchar_t		*sense;
25912 	int		hdrlen;
25913 	int		rval = FALSE;
25914 
25915 	/*
25916 	 * Note: The return codes for this routine should be reworked to
25917 	 * properly handle the case of a NULL softstate.
25918 	 */
25919 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25920 		return (FALSE);
25921 	}
25922 
25923 	if (un->un_f_cfg_is_atapi == TRUE) {
25924 		/*
25925 		 * The mode page contents are not required; set the allocation
25926 		 * length for the mode page header only
25927 		 */
25928 		hdrlen = MODE_HEADER_LENGTH_GRP2;
25929 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25930 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
25931 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25932 			goto err_exit;
25933 		device_specific =
25934 		    ((struct mode_header_grp2 *)sense)->device_specific;
25935 	} else {
25936 		hdrlen = MODE_HEADER_LENGTH;
25937 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25938 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
25939 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25940 			goto err_exit;
25941 		device_specific =
25942 		    ((struct mode_header *)sense)->device_specific;
25943 	}
25944 
25945 	/*
25946 	 * Write protect mode sense failed; not all disks
25947 	 * understand this query. Return FALSE assuming that
25948 	 * these devices are not writable.
25949 	 */
25950 	if (device_specific & WRITE_PROTECT) {
25951 		rval = TRUE;
25952 	}
25953 
25954 err_exit:
25955 	kmem_free(sense, hdrlen);
25956 	return (rval);
25957 }
25958 
25959 /*
25960  *    Function: sr_volume_ctrl()
25961  *
25962  * Description: This routine is the driver entry point for handling CD-ROM
25963  *		audio output volume ioctl requests. (CDROMVOLCTRL)
25964  *
25965  *   Arguments: dev	- the device 'dev_t'
25966  *		data	- pointer to user audio volume control structure
25967  *		flag	- this argument is a pass through to ddi_copyxxx()
25968  *			  directly from the mode argument of ioctl().
25969  *
25970  * Return Code: the code returned by sd_send_scsi_cmd()
25971  *		EFAULT if ddi_copyxxx() fails
25972  *		ENXIO if fail ddi_get_soft_state
25973  *		EINVAL if data pointer is NULL
25974  *
25975  */
25976 
25977 static int
25978 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
25979 {
25980 	struct sd_lun		*un;
25981 	struct cdrom_volctrl    volume;
25982 	struct cdrom_volctrl    *vol = &volume;
25983 	uchar_t			*sense_page;
25984 	uchar_t			*select_page;
25985 	uchar_t			*sense;
25986 	uchar_t			*select;
25987 	int			sense_buflen;
25988 	int			select_buflen;
25989 	int			rval;
25990 
25991 	if (data == NULL) {
25992 		return (EINVAL);
25993 	}
25994 
25995 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25996 	    (un->un_state == SD_STATE_OFFLINE)) {
25997 		return (ENXIO);
25998 	}
25999 
26000 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
26001 		return (EFAULT);
26002 	}
26003 
26004 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26005 		struct mode_header_grp2		*sense_mhp;
26006 		struct mode_header_grp2		*select_mhp;
26007 		int				bd_len;
26008 
26009 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
26010 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
26011 		    MODEPAGE_AUDIO_CTRL_LEN;
26012 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
26013 		select = kmem_zalloc(select_buflen, KM_SLEEP);
26014 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
26015 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
26016 		    SD_PATH_STANDARD)) != 0) {
26017 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
26018 			    "sr_volume_ctrl: Mode Sense Failed\n");
26019 			kmem_free(sense, sense_buflen);
26020 			kmem_free(select, select_buflen);
26021 			return (rval);
26022 		}
26023 		sense_mhp = (struct mode_header_grp2 *)sense;
26024 		select_mhp = (struct mode_header_grp2 *)select;
26025 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
26026 		    sense_mhp->bdesc_length_lo;
26027 		if (bd_len > MODE_BLK_DESC_LENGTH) {
26028 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26029 			    "sr_volume_ctrl: Mode Sense returned invalid "
26030 			    "block descriptor length\n");
26031 			kmem_free(sense, sense_buflen);
26032 			kmem_free(select, select_buflen);
26033 			return (EIO);
26034 		}
26035 		sense_page = (uchar_t *)
26036 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26037 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
26038 		select_mhp->length_msb = 0;
26039 		select_mhp->length_lsb = 0;
26040 		select_mhp->bdesc_length_hi = 0;
26041 		select_mhp->bdesc_length_lo = 0;
26042 	} else {
26043 		struct mode_header		*sense_mhp, *select_mhp;
26044 
26045 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26046 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26047 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
26048 		select = kmem_zalloc(select_buflen, KM_SLEEP);
26049 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26050 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
26051 		    SD_PATH_STANDARD)) != 0) {
26052 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26053 			    "sr_volume_ctrl: Mode Sense Failed\n");
26054 			kmem_free(sense, sense_buflen);
26055 			kmem_free(select, select_buflen);
26056 			return (rval);
26057 		}
26058 		sense_mhp  = (struct mode_header *)sense;
26059 		select_mhp = (struct mode_header *)select;
26060 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
26061 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26062 			    "sr_volume_ctrl: Mode Sense returned invalid "
26063 			    "block descriptor length\n");
26064 			kmem_free(sense, sense_buflen);
26065 			kmem_free(select, select_buflen);
26066 			return (EIO);
26067 		}
26068 		sense_page = (uchar_t *)
26069 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26070 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
26071 		select_mhp->length = 0;
26072 		select_mhp->bdesc_length = 0;
26073 	}
26074 	/*
26075 	 * Note: An audio control data structure could be created and overlayed
26076 	 * on the following in place of the array indexing method implemented.
26077 	 */
26078 
26079 	/* Build the select data for the user volume data */
26080 	select_page[0] = MODEPAGE_AUDIO_CTRL;
26081 	select_page[1] = 0xE;
26082 	/* Set the immediate bit */
26083 	select_page[2] = 0x04;
26084 	/* Zero out reserved fields */
26085 	select_page[3] = 0x00;
26086 	select_page[4] = 0x00;
26087 	/* Return sense data for fields not to be modified */
26088 	select_page[5] = sense_page[5];
26089 	select_page[6] = sense_page[6];
26090 	select_page[7] = sense_page[7];
26091 	/* Set the user specified volume levels for channel 0 and 1 */
26092 	select_page[8] = 0x01;
26093 	select_page[9] = vol->channel0;
26094 	select_page[10] = 0x02;
26095 	select_page[11] = vol->channel1;
26096 	/* Channel 2 and 3 are currently unsupported so return the sense data */
26097 	select_page[12] = sense_page[12];
26098 	select_page[13] = sense_page[13];
26099 	select_page[14] = sense_page[14];
26100 	select_page[15] = sense_page[15];
26101 
26102 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26103 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
26104 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26105 	} else {
26106 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26107 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26108 	}
26109 
26110 	kmem_free(sense, sense_buflen);
26111 	kmem_free(select, select_buflen);
26112 	return (rval);
26113 }
26114 
26115 
26116 /*
26117  *    Function: sr_read_sony_session_offset()
26118  *
26119  * Description: This routine is the driver entry point for handling CD-ROM
26120  *		ioctl requests for session offset information. (CDROMREADOFFSET)
26121  *		The address of the first track in the last session of a
26122  *		multi-session CD-ROM is returned
26123  *
26124  *		Note: This routine uses a vendor specific key value in the
26125  *		command control field without implementing any vendor check here
26126  *		or in the ioctl routine.
26127  *
26128  *   Arguments: dev	- the device 'dev_t'
26129  *		data	- pointer to an int to hold the requested address
26130  *		flag	- this argument is a pass through to ddi_copyxxx()
26131  *			  directly from the mode argument of ioctl().
26132  *
26133  * Return Code: the code returned by sd_send_scsi_cmd()
26134  *		EFAULT if ddi_copyxxx() fails
26135  *		ENXIO if fail ddi_get_soft_state
26136  *		EINVAL if data pointer is NULL
26137  */
26138 
26139 static int
26140 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
26141 {
26142 	struct sd_lun		*un;
26143 	struct uscsi_cmd	*com;
26144 	caddr_t			buffer;
26145 	char			cdb[CDB_GROUP1];
26146 	int			session_offset = 0;
26147 	int			rval;
26148 
26149 	if (data == NULL) {
26150 		return (EINVAL);
26151 	}
26152 
26153 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26154 	    (un->un_state == SD_STATE_OFFLINE)) {
26155 		return (ENXIO);
26156 	}
26157 
26158 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
26159 	bzero(cdb, CDB_GROUP1);
26160 	cdb[0] = SCMD_READ_TOC;
26161 	/*
26162 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26163 	 * (4 byte TOC response header + 8 byte response data)
26164 	 */
26165 	cdb[8] = SONY_SESSION_OFFSET_LEN;
26166 	/* Byte 9 is the control byte. A vendor specific value is used */
26167 	cdb[9] = SONY_SESSION_OFFSET_KEY;
26168 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26169 	com->uscsi_cdb = cdb;
26170 	com->uscsi_cdblen = CDB_GROUP1;
26171 	com->uscsi_bufaddr = buffer;
26172 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
26173 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26174 
26175 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26176 	    SD_PATH_STANDARD);
26177 	if (rval != 0) {
26178 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26179 		kmem_free(com, sizeof (*com));
26180 		return (rval);
26181 	}
26182 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
26183 		session_offset =
26184 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26185 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26186 		/*
26187 		 * Offset returned offset in current lbasize block's. Convert to
26188 		 * 2k block's to return to the user
26189 		 */
26190 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
26191 			session_offset >>= 2;
26192 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
26193 			session_offset >>= 1;
26194 		}
26195 	}
26196 
26197 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
26198 		rval = EFAULT;
26199 	}
26200 
26201 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26202 	kmem_free(com, sizeof (*com));
26203 	return (rval);
26204 }
26205 
26206 
26207 /*
26208  *    Function: sd_wm_cache_constructor()
26209  *
26210  * Description: Cache Constructor for the wmap cache for the read/modify/write
26211  * 		devices.
26212  *
26213  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26214  *		un	- sd_lun structure for the device.
26215  *		flag	- the km flags passed to constructor
26216  *
26217  * Return Code: 0 on success.
26218  *		-1 on failure.
26219  */
26220 
26221 /*ARGSUSED*/
26222 static int
26223 sd_wm_cache_constructor(void *wm, void *un, int flags)
26224 {
26225 	bzero(wm, sizeof (struct sd_w_map));
26226 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
26227 	return (0);
26228 }
26229 
26230 
26231 /*
26232  *    Function: sd_wm_cache_destructor()
26233  *
26234  * Description: Cache destructor for the wmap cache for the read/modify/write
26235  * 		devices.
26236  *
26237  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26238  *		un	- sd_lun structure for the device.
26239  */
26240 /*ARGSUSED*/
26241 static void
26242 sd_wm_cache_destructor(void *wm, void *un)
26243 {
26244 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
26245 }
26246 
26247 
26248 /*
26249  *    Function: sd_range_lock()
26250  *
26251  * Description: Lock the range of blocks specified as parameter to ensure
26252  *		that read, modify write is atomic and no other i/o writes
26253  *		to the same location. The range is specified in terms
26254  *		of start and end blocks. Block numbers are the actual
26255  *		media block numbers and not system.
26256  *
26257  *   Arguments: un	- sd_lun structure for the device.
26258  *		startb - The starting block number
26259  *		endb - The end block number
26260  *		typ - type of i/o - simple/read_modify_write
26261  *
26262  * Return Code: wm  - pointer to the wmap structure.
26263  *
26264  *     Context: This routine can sleep.
26265  */
26266 
26267 static struct sd_w_map *
26268 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
26269 {
26270 	struct sd_w_map *wmp = NULL;
26271 	struct sd_w_map *sl_wmp = NULL;
26272 	struct sd_w_map *tmp_wmp;
26273 	wm_state state = SD_WM_CHK_LIST;
26274 
26275 
26276 	ASSERT(un != NULL);
26277 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26278 
26279 	mutex_enter(SD_MUTEX(un));
26280 
26281 	while (state != SD_WM_DONE) {
26282 
26283 		switch (state) {
26284 		case SD_WM_CHK_LIST:
26285 			/*
26286 			 * This is the starting state. Check the wmap list
26287 			 * to see if the range is currently available.
26288 			 */
26289 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
26290 				/*
26291 				 * If this is a simple write and no rmw
26292 				 * i/o is pending then try to lock the
26293 				 * range as the range should be available.
26294 				 */
26295 				state = SD_WM_LOCK_RANGE;
26296 			} else {
26297 				tmp_wmp = sd_get_range(un, startb, endb);
26298 				if (tmp_wmp != NULL) {
26299 					if ((wmp != NULL) && ONLIST(un, wmp)) {
26300 						/*
26301 						 * Should not keep onlist wmps
26302 						 * while waiting this macro
26303 						 * will also do wmp = NULL;
26304 						 */
26305 						FREE_ONLIST_WMAP(un, wmp);
26306 					}
26307 					/*
26308 					 * sl_wmp is the wmap on which wait
26309 					 * is done, since the tmp_wmp points
26310 					 * to the inuse wmap, set sl_wmp to
26311 					 * tmp_wmp and change the state to sleep
26312 					 */
26313 					sl_wmp = tmp_wmp;
26314 					state = SD_WM_WAIT_MAP;
26315 				} else {
26316 					state = SD_WM_LOCK_RANGE;
26317 				}
26318 
26319 			}
26320 			break;
26321 
26322 		case SD_WM_LOCK_RANGE:
26323 			ASSERT(un->un_wm_cache);
26324 			/*
26325 			 * The range need to be locked, try to get a wmap.
26326 			 * First attempt it with NO_SLEEP, want to avoid a sleep
26327 			 * if possible as we will have to release the sd mutex
26328 			 * if we have to sleep.
26329 			 */
26330 			if (wmp == NULL)
26331 				wmp = kmem_cache_alloc(un->un_wm_cache,
26332 				    KM_NOSLEEP);
26333 			if (wmp == NULL) {
26334 				mutex_exit(SD_MUTEX(un));
26335 				_NOTE(DATA_READABLE_WITHOUT_LOCK
26336 				    (sd_lun::un_wm_cache))
26337 				wmp = kmem_cache_alloc(un->un_wm_cache,
26338 				    KM_SLEEP);
26339 				mutex_enter(SD_MUTEX(un));
26340 				/*
26341 				 * we released the mutex so recheck and go to
26342 				 * check list state.
26343 				 */
26344 				state = SD_WM_CHK_LIST;
26345 			} else {
26346 				/*
26347 				 * We exit out of state machine since we
26348 				 * have the wmap. Do the housekeeping first.
26349 				 * place the wmap on the wmap list if it is not
26350 				 * on it already and then set the state to done.
26351 				 */
26352 				wmp->wm_start = startb;
26353 				wmp->wm_end = endb;
26354 				wmp->wm_flags = typ | SD_WM_BUSY;
26355 				if (typ & SD_WTYPE_RMW) {
26356 					un->un_rmw_count++;
26357 				}
26358 				/*
26359 				 * If not already on the list then link
26360 				 */
26361 				if (!ONLIST(un, wmp)) {
26362 					wmp->wm_next = un->un_wm;
26363 					wmp->wm_prev = NULL;
26364 					if (wmp->wm_next)
26365 						wmp->wm_next->wm_prev = wmp;
26366 					un->un_wm = wmp;
26367 				}
26368 				state = SD_WM_DONE;
26369 			}
26370 			break;
26371 
26372 		case SD_WM_WAIT_MAP:
26373 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
26374 			/*
26375 			 * Wait is done on sl_wmp, which is set in the
26376 			 * check_list state.
26377 			 */
26378 			sl_wmp->wm_wanted_count++;
26379 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
26380 			sl_wmp->wm_wanted_count--;
26381 			/*
26382 			 * We can reuse the memory from the completed sl_wmp
26383 			 * lock range for our new lock, but only if noone is
26384 			 * waiting for it.
26385 			 */
26386 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
26387 			if (sl_wmp->wm_wanted_count == 0) {
26388 				if (wmp != NULL)
26389 					CHK_N_FREEWMP(un, wmp);
26390 				wmp = sl_wmp;
26391 			}
26392 			sl_wmp = NULL;
26393 			/*
26394 			 * After waking up, need to recheck for availability of
26395 			 * range.
26396 			 */
26397 			state = SD_WM_CHK_LIST;
26398 			break;
26399 
26400 		default:
26401 			panic("sd_range_lock: "
26402 			    "Unknown state %d in sd_range_lock", state);
26403 			/*NOTREACHED*/
26404 		} /* switch(state) */
26405 
26406 	} /* while(state != SD_WM_DONE) */
26407 
26408 	mutex_exit(SD_MUTEX(un));
26409 
26410 	ASSERT(wmp != NULL);
26411 
26412 	return (wmp);
26413 }
26414 
26415 
26416 /*
26417  *    Function: sd_get_range()
26418  *
26419  * Description: Find if there any overlapping I/O to this one
26420  *		Returns the write-map of 1st such I/O, NULL otherwise.
26421  *
26422  *   Arguments: un	- sd_lun structure for the device.
26423  *		startb - The starting block number
26424  *		endb - The end block number
26425  *
26426  * Return Code: wm  - pointer to the wmap structure.
26427  */
26428 
26429 static struct sd_w_map *
26430 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
26431 {
26432 	struct sd_w_map *wmp;
26433 
26434 	ASSERT(un != NULL);
26435 
26436 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
26437 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
26438 			continue;
26439 		}
26440 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
26441 			break;
26442 		}
26443 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
26444 			break;
26445 		}
26446 	}
26447 
26448 	return (wmp);
26449 }
26450 
26451 
26452 /*
26453  *    Function: sd_free_inlist_wmap()
26454  *
26455  * Description: Unlink and free a write map struct.
26456  *
26457  *   Arguments: un      - sd_lun structure for the device.
26458  *		wmp	- sd_w_map which needs to be unlinked.
26459  */
26460 
26461 static void
26462 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
26463 {
26464 	ASSERT(un != NULL);
26465 
26466 	if (un->un_wm == wmp) {
26467 		un->un_wm = wmp->wm_next;
26468 	} else {
26469 		wmp->wm_prev->wm_next = wmp->wm_next;
26470 	}
26471 
26472 	if (wmp->wm_next) {
26473 		wmp->wm_next->wm_prev = wmp->wm_prev;
26474 	}
26475 
26476 	wmp->wm_next = wmp->wm_prev = NULL;
26477 
26478 	kmem_cache_free(un->un_wm_cache, wmp);
26479 }
26480 
26481 
26482 /*
26483  *    Function: sd_range_unlock()
26484  *
26485  * Description: Unlock the range locked by wm.
26486  *		Free write map if nobody else is waiting on it.
26487  *
26488  *   Arguments: un      - sd_lun structure for the device.
26489  *              wmp     - sd_w_map which needs to be unlinked.
26490  */
26491 
26492 static void
26493 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
26494 {
26495 	ASSERT(un != NULL);
26496 	ASSERT(wm != NULL);
26497 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26498 
26499 	mutex_enter(SD_MUTEX(un));
26500 
26501 	if (wm->wm_flags & SD_WTYPE_RMW) {
26502 		un->un_rmw_count--;
26503 	}
26504 
26505 	if (wm->wm_wanted_count) {
26506 		wm->wm_flags = 0;
26507 		/*
26508 		 * Broadcast that the wmap is available now.
26509 		 */
26510 		cv_broadcast(&wm->wm_avail);
26511 	} else {
26512 		/*
26513 		 * If no one is waiting on the map, it should be free'ed.
26514 		 */
26515 		sd_free_inlist_wmap(un, wm);
26516 	}
26517 
26518 	mutex_exit(SD_MUTEX(un));
26519 }
26520 
26521 
26522 /*
26523  *    Function: sd_read_modify_write_task
26524  *
26525  * Description: Called from a taskq thread to initiate the write phase of
26526  *		a read-modify-write request.  This is used for targets where
26527  *		un->un_sys_blocksize != un->un_tgt_blocksize.
26528  *
26529  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26530  *
26531  *     Context: Called under taskq thread context.
26532  */
26533 
26534 static void
26535 sd_read_modify_write_task(void *arg)
26536 {
26537 	struct sd_mapblocksize_info	*bsp;
26538 	struct buf	*bp;
26539 	struct sd_xbuf	*xp;
26540 	struct sd_lun	*un;
26541 
26542 	bp = arg;	/* The bp is given in arg */
26543 	ASSERT(bp != NULL);
26544 
26545 	/* Get the pointer to the layer-private data struct */
26546 	xp = SD_GET_XBUF(bp);
26547 	ASSERT(xp != NULL);
26548 	bsp = xp->xb_private;
26549 	ASSERT(bsp != NULL);
26550 
26551 	un = SD_GET_UN(bp);
26552 	ASSERT(un != NULL);
26553 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26554 
26555 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26556 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26557 
26558 	/*
26559 	 * This is the write phase of a read-modify-write request, called
26560 	 * under the context of a taskq thread in response to the completion
26561 	 * of the read portion of the rmw request completing under interrupt
26562 	 * context. The write request must be sent from here down the iostart
26563 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26564 	 * we use the layer index saved in the layer-private data area.
26565 	 */
26566 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26567 
26568 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26569 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26570 }
26571 
26572 
26573 /*
26574  *    Function: sddump_do_read_of_rmw()
26575  *
26576  * Description: This routine will be called from sddump, If sddump is called
26577  *		with an I/O which not aligned on device blocksize boundary
26578  *		then the write has to be converted to read-modify-write.
26579  *		Do the read part here in order to keep sddump simple.
26580  *		Note - That the sd_mutex is held across the call to this
26581  *		routine.
26582  *
26583  *   Arguments: un	- sd_lun
26584  *		blkno	- block number in terms of media block size.
26585  *		nblk	- number of blocks.
26586  *		bpp	- pointer to pointer to the buf structure. On return
26587  *			from this function, *bpp points to the valid buffer
26588  *			to which the write has to be done.
26589  *
26590  * Return Code: 0 for success or errno-type return code
26591  */
26592 
26593 static int
26594 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26595 	struct buf **bpp)
26596 {
26597 	int err;
26598 	int i;
26599 	int rval;
26600 	struct buf *bp;
26601 	struct scsi_pkt *pkt = NULL;
26602 	uint32_t target_blocksize;
26603 
26604 	ASSERT(un != NULL);
26605 	ASSERT(mutex_owned(SD_MUTEX(un)));
26606 
26607 	target_blocksize = un->un_tgt_blocksize;
26608 
26609 	mutex_exit(SD_MUTEX(un));
26610 
26611 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26612 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26613 	if (bp == NULL) {
26614 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26615 		    "no resources for dumping; giving up");
26616 		err = ENOMEM;
26617 		goto done;
26618 	}
26619 
26620 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26621 	    blkno, nblk);
26622 	if (rval != 0) {
26623 		scsi_free_consistent_buf(bp);
26624 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26625 		    "no resources for dumping; giving up");
26626 		err = ENOMEM;
26627 		goto done;
26628 	}
26629 
26630 	pkt->pkt_flags |= FLAG_NOINTR;
26631 
26632 	err = EIO;
26633 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26634 
26635 		/*
26636 		 * Scsi_poll returns 0 (success) if the command completes and
26637 		 * the status block is STATUS_GOOD.  We should only check
26638 		 * errors if this condition is not true.  Even then we should
26639 		 * send our own request sense packet only if we have a check
26640 		 * condition and auto request sense has not been performed by
26641 		 * the hba.
26642 		 */
26643 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26644 
26645 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26646 			err = 0;
26647 			break;
26648 		}
26649 
26650 		/*
26651 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26652 		 * no need to read RQS data.
26653 		 */
26654 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26655 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26656 			    "Error while dumping state with rmw..."
26657 			    "Device is gone\n");
26658 			break;
26659 		}
26660 
26661 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26662 			SD_INFO(SD_LOG_DUMP, un,
26663 			    "sddump: read failed with CHECK, try # %d\n", i);
26664 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26665 				(void) sd_send_polled_RQS(un);
26666 			}
26667 
26668 			continue;
26669 		}
26670 
26671 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26672 			int reset_retval = 0;
26673 
26674 			SD_INFO(SD_LOG_DUMP, un,
26675 			    "sddump: read failed with BUSY, try # %d\n", i);
26676 
26677 			if (un->un_f_lun_reset_enabled == TRUE) {
26678 				reset_retval = scsi_reset(SD_ADDRESS(un),
26679 				    RESET_LUN);
26680 			}
26681 			if (reset_retval == 0) {
26682 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26683 			}
26684 			(void) sd_send_polled_RQS(un);
26685 
26686 		} else {
26687 			SD_INFO(SD_LOG_DUMP, un,
26688 			    "sddump: read failed with 0x%x, try # %d\n",
26689 			    SD_GET_PKT_STATUS(pkt), i);
26690 			mutex_enter(SD_MUTEX(un));
26691 			sd_reset_target(un, pkt);
26692 			mutex_exit(SD_MUTEX(un));
26693 		}
26694 
26695 		/*
26696 		 * If we are not getting anywhere with lun/target resets,
26697 		 * let's reset the bus.
26698 		 */
26699 		if (i > SD_NDUMP_RETRIES/2) {
26700 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26701 			(void) sd_send_polled_RQS(un);
26702 		}
26703 
26704 	}
26705 	scsi_destroy_pkt(pkt);
26706 
26707 	if (err != 0) {
26708 		scsi_free_consistent_buf(bp);
26709 		*bpp = NULL;
26710 	} else {
26711 		*bpp = bp;
26712 	}
26713 
26714 done:
26715 	mutex_enter(SD_MUTEX(un));
26716 	return (err);
26717 }
26718 
26719 
26720 /*
26721  *    Function: sd_failfast_flushq
26722  *
26723  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26724  *		in b_flags and move them onto the failfast queue, then kick
26725  *		off a thread to return all bp's on the failfast queue to
26726  *		their owners with an error set.
26727  *
26728  *   Arguments: un - pointer to the soft state struct for the instance.
26729  *
26730  *     Context: may execute in interrupt context.
26731  */
26732 
26733 static void
26734 sd_failfast_flushq(struct sd_lun *un)
26735 {
26736 	struct buf *bp;
26737 	struct buf *next_waitq_bp;
26738 	struct buf *prev_waitq_bp = NULL;
26739 
26740 	ASSERT(un != NULL);
26741 	ASSERT(mutex_owned(SD_MUTEX(un)));
26742 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26743 	ASSERT(un->un_failfast_bp == NULL);
26744 
26745 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26746 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26747 
26748 	/*
26749 	 * Check if we should flush all bufs when entering failfast state, or
26750 	 * just those with B_FAILFAST set.
26751 	 */
26752 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26753 		/*
26754 		 * Move *all* bp's on the wait queue to the failfast flush
26755 		 * queue, including those that do NOT have B_FAILFAST set.
26756 		 */
26757 		if (un->un_failfast_headp == NULL) {
26758 			ASSERT(un->un_failfast_tailp == NULL);
26759 			un->un_failfast_headp = un->un_waitq_headp;
26760 		} else {
26761 			ASSERT(un->un_failfast_tailp != NULL);
26762 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26763 		}
26764 
26765 		un->un_failfast_tailp = un->un_waitq_tailp;
26766 
26767 		/* update kstat for each bp moved out of the waitq */
26768 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26769 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26770 		}
26771 
26772 		/* empty the waitq */
26773 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26774 
26775 	} else {
26776 		/*
26777 		 * Go thru the wait queue, pick off all entries with
26778 		 * B_FAILFAST set, and move these onto the failfast queue.
26779 		 */
26780 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26781 			/*
26782 			 * Save the pointer to the next bp on the wait queue,
26783 			 * so we get to it on the next iteration of this loop.
26784 			 */
26785 			next_waitq_bp = bp->av_forw;
26786 
26787 			/*
26788 			 * If this bp from the wait queue does NOT have
26789 			 * B_FAILFAST set, just move on to the next element
26790 			 * in the wait queue. Note, this is the only place
26791 			 * where it is correct to set prev_waitq_bp.
26792 			 */
26793 			if ((bp->b_flags & B_FAILFAST) == 0) {
26794 				prev_waitq_bp = bp;
26795 				continue;
26796 			}
26797 
26798 			/*
26799 			 * Remove the bp from the wait queue.
26800 			 */
26801 			if (bp == un->un_waitq_headp) {
26802 				/* The bp is the first element of the waitq. */
26803 				un->un_waitq_headp = next_waitq_bp;
26804 				if (un->un_waitq_headp == NULL) {
26805 					/* The wait queue is now empty */
26806 					un->un_waitq_tailp = NULL;
26807 				}
26808 			} else {
26809 				/*
26810 				 * The bp is either somewhere in the middle
26811 				 * or at the end of the wait queue.
26812 				 */
26813 				ASSERT(un->un_waitq_headp != NULL);
26814 				ASSERT(prev_waitq_bp != NULL);
26815 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
26816 				    == 0);
26817 				if (bp == un->un_waitq_tailp) {
26818 					/* bp is the last entry on the waitq. */
26819 					ASSERT(next_waitq_bp == NULL);
26820 					un->un_waitq_tailp = prev_waitq_bp;
26821 				}
26822 				prev_waitq_bp->av_forw = next_waitq_bp;
26823 			}
26824 			bp->av_forw = NULL;
26825 
26826 			/*
26827 			 * update kstat since the bp is moved out of
26828 			 * the waitq
26829 			 */
26830 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26831 
26832 			/*
26833 			 * Now put the bp onto the failfast queue.
26834 			 */
26835 			if (un->un_failfast_headp == NULL) {
26836 				/* failfast queue is currently empty */
26837 				ASSERT(un->un_failfast_tailp == NULL);
26838 				un->un_failfast_headp =
26839 				    un->un_failfast_tailp = bp;
26840 			} else {
26841 				/* Add the bp to the end of the failfast q */
26842 				ASSERT(un->un_failfast_tailp != NULL);
26843 				ASSERT(un->un_failfast_tailp->b_flags &
26844 				    B_FAILFAST);
26845 				un->un_failfast_tailp->av_forw = bp;
26846 				un->un_failfast_tailp = bp;
26847 			}
26848 		}
26849 	}
26850 
26851 	/*
26852 	 * Now return all bp's on the failfast queue to their owners.
26853 	 */
26854 	while ((bp = un->un_failfast_headp) != NULL) {
26855 
26856 		un->un_failfast_headp = bp->av_forw;
26857 		if (un->un_failfast_headp == NULL) {
26858 			un->un_failfast_tailp = NULL;
26859 		}
26860 
26861 		/*
26862 		 * We want to return the bp with a failure error code, but
26863 		 * we do not want a call to sd_start_cmds() to occur here,
26864 		 * so use sd_return_failed_command_no_restart() instead of
26865 		 * sd_return_failed_command().
26866 		 */
26867 		sd_return_failed_command_no_restart(un, bp, EIO);
26868 	}
26869 
26870 	/* Flush the xbuf queues if required. */
26871 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
26872 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
26873 	}
26874 
26875 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26876 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
26877 }
26878 
26879 
26880 /*
26881  *    Function: sd_failfast_flushq_callback
26882  *
26883  * Description: Return TRUE if the given bp meets the criteria for failfast
26884  *		flushing. Used with ddi_xbuf_flushq(9F).
26885  *
26886  *   Arguments: bp - ptr to buf struct to be examined.
26887  *
26888  *     Context: Any
26889  */
26890 
26891 static int
26892 sd_failfast_flushq_callback(struct buf *bp)
26893 {
26894 	/*
26895 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
26896 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
26897 	 */
26898 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
26899 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
26900 }
26901 
26902 
26903 
26904 /*
26905  * Function: sd_setup_next_xfer
26906  *
26907  * Description: Prepare next I/O operation using DMA_PARTIAL
26908  *
26909  */
26910 
26911 static int
26912 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
26913     struct scsi_pkt *pkt, struct sd_xbuf *xp)
26914 {
26915 	ssize_t	num_blks_not_xfered;
26916 	daddr_t	strt_blk_num;
26917 	ssize_t	bytes_not_xfered;
26918 	int	rval;
26919 
26920 	ASSERT(pkt->pkt_resid == 0);
26921 
26922 	/*
26923 	 * Calculate next block number and amount to be transferred.
26924 	 *
26925 	 * How much data NOT transfered to the HBA yet.
26926 	 */
26927 	bytes_not_xfered = xp->xb_dma_resid;
26928 
26929 	/*
26930 	 * figure how many blocks NOT transfered to the HBA yet.
26931 	 */
26932 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
26933 
26934 	/*
26935 	 * set starting block number to the end of what WAS transfered.
26936 	 */
26937 	strt_blk_num = xp->xb_blkno +
26938 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
26939 
26940 	/*
26941 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
26942 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
26943 	 * the disk mutex here.
26944 	 */
26945 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
26946 	    strt_blk_num, num_blks_not_xfered);
26947 
26948 	if (rval == 0) {
26949 
26950 		/*
26951 		 * Success.
26952 		 *
26953 		 * Adjust things if there are still more blocks to be
26954 		 * transfered.
26955 		 */
26956 		xp->xb_dma_resid = pkt->pkt_resid;
26957 		pkt->pkt_resid = 0;
26958 
26959 		return (1);
26960 	}
26961 
26962 	/*
26963 	 * There's really only one possible return value from
26964 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
26965 	 * returns NULL.
26966 	 */
26967 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
26968 
26969 	bp->b_resid = bp->b_bcount;
26970 	bp->b_flags |= B_ERROR;
26971 
26972 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26973 	    "Error setting up next portion of DMA transfer\n");
26974 
26975 	return (0);
26976 }
26977 
26978 /*
26979  *    Function: sd_panic_for_res_conflict
26980  *
26981  * Description: Call panic with a string formatted with "Reservation Conflict"
26982  *		and a human readable identifier indicating the SD instance
26983  *		that experienced the reservation conflict.
26984  *
26985  *   Arguments: un - pointer to the soft state struct for the instance.
26986  *
26987  *     Context: may execute in interrupt context.
26988  */
26989 
26990 #define	SD_RESV_CONFLICT_FMT_LEN 40
26991 void
26992 sd_panic_for_res_conflict(struct sd_lun *un)
26993 {
26994 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
26995 	char path_str[MAXPATHLEN];
26996 
26997 	(void) snprintf(panic_str, sizeof (panic_str),
26998 	    "Reservation Conflict\nDisk: %s",
26999 	    ddi_pathname(SD_DEVINFO(un), path_str));
27000 
27001 	panic(panic_str);
27002 }
27003 
27004 /*
27005  * Note: The following sd_faultinjection_ioctl( ) routines implement
27006  * driver support for handling fault injection for error analysis
27007  * causing faults in multiple layers of the driver.
27008  *
27009  */
27010 
27011 #ifdef SD_FAULT_INJECTION
27012 static uint_t   sd_fault_injection_on = 0;
27013 
27014 /*
27015  *    Function: sd_faultinjection_ioctl()
27016  *
27017  * Description: This routine is the driver entry point for handling
27018  *              faultinjection ioctls to inject errors into the
27019  *              layer model
27020  *
27021  *   Arguments: cmd	- the ioctl cmd received
27022  *		arg	- the arguments from user and returns
27023  */
27024 
27025 static void
27026 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
27027 
27028 	uint_t i;
27029 	uint_t rval;
27030 
27031 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
27032 
27033 	mutex_enter(SD_MUTEX(un));
27034 
27035 	switch (cmd) {
27036 	case SDIOCRUN:
27037 		/* Allow pushed faults to be injected */
27038 		SD_INFO(SD_LOG_SDTEST, un,
27039 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
27040 
27041 		sd_fault_injection_on = 1;
27042 
27043 		SD_INFO(SD_LOG_IOERR, un,
27044 		    "sd_faultinjection_ioctl: run finished\n");
27045 		break;
27046 
27047 	case SDIOCSTART:
27048 		/* Start Injection Session */
27049 		SD_INFO(SD_LOG_SDTEST, un,
27050 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
27051 
27052 		sd_fault_injection_on = 0;
27053 		un->sd_injection_mask = 0xFFFFFFFF;
27054 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27055 			un->sd_fi_fifo_pkt[i] = NULL;
27056 			un->sd_fi_fifo_xb[i] = NULL;
27057 			un->sd_fi_fifo_un[i] = NULL;
27058 			un->sd_fi_fifo_arq[i] = NULL;
27059 		}
27060 		un->sd_fi_fifo_start = 0;
27061 		un->sd_fi_fifo_end = 0;
27062 
27063 		mutex_enter(&(un->un_fi_mutex));
27064 		un->sd_fi_log[0] = '\0';
27065 		un->sd_fi_buf_len = 0;
27066 		mutex_exit(&(un->un_fi_mutex));
27067 
27068 		SD_INFO(SD_LOG_IOERR, un,
27069 		    "sd_faultinjection_ioctl: start finished\n");
27070 		break;
27071 
27072 	case SDIOCSTOP:
27073 		/* Stop Injection Session */
27074 		SD_INFO(SD_LOG_SDTEST, un,
27075 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
27076 		sd_fault_injection_on = 0;
27077 		un->sd_injection_mask = 0x0;
27078 
27079 		/* Empty stray or unuseds structs from fifo */
27080 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27081 			if (un->sd_fi_fifo_pkt[i] != NULL) {
27082 				kmem_free(un->sd_fi_fifo_pkt[i],
27083 				    sizeof (struct sd_fi_pkt));
27084 			}
27085 			if (un->sd_fi_fifo_xb[i] != NULL) {
27086 				kmem_free(un->sd_fi_fifo_xb[i],
27087 				    sizeof (struct sd_fi_xb));
27088 			}
27089 			if (un->sd_fi_fifo_un[i] != NULL) {
27090 				kmem_free(un->sd_fi_fifo_un[i],
27091 				    sizeof (struct sd_fi_un));
27092 			}
27093 			if (un->sd_fi_fifo_arq[i] != NULL) {
27094 				kmem_free(un->sd_fi_fifo_arq[i],
27095 				    sizeof (struct sd_fi_arq));
27096 			}
27097 			un->sd_fi_fifo_pkt[i] = NULL;
27098 			un->sd_fi_fifo_un[i] = NULL;
27099 			un->sd_fi_fifo_xb[i] = NULL;
27100 			un->sd_fi_fifo_arq[i] = NULL;
27101 		}
27102 		un->sd_fi_fifo_start = 0;
27103 		un->sd_fi_fifo_end = 0;
27104 
27105 		SD_INFO(SD_LOG_IOERR, un,
27106 		    "sd_faultinjection_ioctl: stop finished\n");
27107 		break;
27108 
27109 	case SDIOCINSERTPKT:
27110 		/* Store a packet struct to be pushed onto fifo */
27111 		SD_INFO(SD_LOG_SDTEST, un,
27112 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
27113 
27114 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27115 
27116 		sd_fault_injection_on = 0;
27117 
27118 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
27119 		if (un->sd_fi_fifo_pkt[i] != NULL) {
27120 			kmem_free(un->sd_fi_fifo_pkt[i],
27121 			    sizeof (struct sd_fi_pkt));
27122 		}
27123 		if (arg != NULL) {
27124 			un->sd_fi_fifo_pkt[i] =
27125 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
27126 			if (un->sd_fi_fifo_pkt[i] == NULL) {
27127 				/* Alloc failed don't store anything */
27128 				break;
27129 			}
27130 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
27131 			    sizeof (struct sd_fi_pkt), 0);
27132 			if (rval == -1) {
27133 				kmem_free(un->sd_fi_fifo_pkt[i],
27134 				    sizeof (struct sd_fi_pkt));
27135 				un->sd_fi_fifo_pkt[i] = NULL;
27136 			}
27137 		} else {
27138 			SD_INFO(SD_LOG_IOERR, un,
27139 			    "sd_faultinjection_ioctl: pkt null\n");
27140 		}
27141 		break;
27142 
27143 	case SDIOCINSERTXB:
27144 		/* Store a xb struct to be pushed onto fifo */
27145 		SD_INFO(SD_LOG_SDTEST, un,
27146 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
27147 
27148 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27149 
27150 		sd_fault_injection_on = 0;
27151 
27152 		if (un->sd_fi_fifo_xb[i] != NULL) {
27153 			kmem_free(un->sd_fi_fifo_xb[i],
27154 			    sizeof (struct sd_fi_xb));
27155 			un->sd_fi_fifo_xb[i] = NULL;
27156 		}
27157 		if (arg != NULL) {
27158 			un->sd_fi_fifo_xb[i] =
27159 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
27160 			if (un->sd_fi_fifo_xb[i] == NULL) {
27161 				/* Alloc failed don't store anything */
27162 				break;
27163 			}
27164 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
27165 			    sizeof (struct sd_fi_xb), 0);
27166 
27167 			if (rval == -1) {
27168 				kmem_free(un->sd_fi_fifo_xb[i],
27169 				    sizeof (struct sd_fi_xb));
27170 				un->sd_fi_fifo_xb[i] = NULL;
27171 			}
27172 		} else {
27173 			SD_INFO(SD_LOG_IOERR, un,
27174 			    "sd_faultinjection_ioctl: xb null\n");
27175 		}
27176 		break;
27177 
27178 	case SDIOCINSERTUN:
27179 		/* Store a un struct to be pushed onto fifo */
27180 		SD_INFO(SD_LOG_SDTEST, un,
27181 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
27182 
27183 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27184 
27185 		sd_fault_injection_on = 0;
27186 
27187 		if (un->sd_fi_fifo_un[i] != NULL) {
27188 			kmem_free(un->sd_fi_fifo_un[i],
27189 			    sizeof (struct sd_fi_un));
27190 			un->sd_fi_fifo_un[i] = NULL;
27191 		}
27192 		if (arg != NULL) {
27193 			un->sd_fi_fifo_un[i] =
27194 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
27195 			if (un->sd_fi_fifo_un[i] == NULL) {
27196 				/* Alloc failed don't store anything */
27197 				break;
27198 			}
27199 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
27200 			    sizeof (struct sd_fi_un), 0);
27201 			if (rval == -1) {
27202 				kmem_free(un->sd_fi_fifo_un[i],
27203 				    sizeof (struct sd_fi_un));
27204 				un->sd_fi_fifo_un[i] = NULL;
27205 			}
27206 
27207 		} else {
27208 			SD_INFO(SD_LOG_IOERR, un,
27209 			    "sd_faultinjection_ioctl: un null\n");
27210 		}
27211 
27212 		break;
27213 
27214 	case SDIOCINSERTARQ:
27215 		/* Store a arq struct to be pushed onto fifo */
27216 		SD_INFO(SD_LOG_SDTEST, un,
27217 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
27218 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27219 
27220 		sd_fault_injection_on = 0;
27221 
27222 		if (un->sd_fi_fifo_arq[i] != NULL) {
27223 			kmem_free(un->sd_fi_fifo_arq[i],
27224 			    sizeof (struct sd_fi_arq));
27225 			un->sd_fi_fifo_arq[i] = NULL;
27226 		}
27227 		if (arg != NULL) {
27228 			un->sd_fi_fifo_arq[i] =
27229 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
27230 			if (un->sd_fi_fifo_arq[i] == NULL) {
27231 				/* Alloc failed don't store anything */
27232 				break;
27233 			}
27234 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
27235 			    sizeof (struct sd_fi_arq), 0);
27236 			if (rval == -1) {
27237 				kmem_free(un->sd_fi_fifo_arq[i],
27238 				    sizeof (struct sd_fi_arq));
27239 				un->sd_fi_fifo_arq[i] = NULL;
27240 			}
27241 
27242 		} else {
27243 			SD_INFO(SD_LOG_IOERR, un,
27244 			    "sd_faultinjection_ioctl: arq null\n");
27245 		}
27246 
27247 		break;
27248 
27249 	case SDIOCPUSH:
27250 		/* Push stored xb, pkt, un, and arq onto fifo */
27251 		sd_fault_injection_on = 0;
27252 
27253 		if (arg != NULL) {
27254 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
27255 			if (rval != -1 &&
27256 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27257 				un->sd_fi_fifo_end += i;
27258 			}
27259 		} else {
27260 			SD_INFO(SD_LOG_IOERR, un,
27261 			    "sd_faultinjection_ioctl: push arg null\n");
27262 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27263 				un->sd_fi_fifo_end++;
27264 			}
27265 		}
27266 		SD_INFO(SD_LOG_IOERR, un,
27267 		    "sd_faultinjection_ioctl: push to end=%d\n",
27268 		    un->sd_fi_fifo_end);
27269 		break;
27270 
27271 	case SDIOCRETRIEVE:
27272 		/* Return buffer of log from Injection session */
27273 		SD_INFO(SD_LOG_SDTEST, un,
27274 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
27275 
27276 		sd_fault_injection_on = 0;
27277 
27278 		mutex_enter(&(un->un_fi_mutex));
27279 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
27280 		    un->sd_fi_buf_len+1, 0);
27281 		mutex_exit(&(un->un_fi_mutex));
27282 
27283 		if (rval == -1) {
27284 			/*
27285 			 * arg is possibly invalid setting
27286 			 * it to NULL for return
27287 			 */
27288 			arg = NULL;
27289 		}
27290 		break;
27291 	}
27292 
27293 	mutex_exit(SD_MUTEX(un));
27294 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
27295 			    " exit\n");
27296 }
27297 
27298 
27299 /*
27300  *    Function: sd_injection_log()
27301  *
27302  * Description: This routine adds buff to the already existing injection log
27303  *              for retrieval via faultinjection_ioctl for use in fault
27304  *              detection and recovery
27305  *
27306  *   Arguments: buf - the string to add to the log
27307  */
27308 
27309 static void
27310 sd_injection_log(char *buf, struct sd_lun *un)
27311 {
27312 	uint_t len;
27313 
27314 	ASSERT(un != NULL);
27315 	ASSERT(buf != NULL);
27316 
27317 	mutex_enter(&(un->un_fi_mutex));
27318 
27319 	len = min(strlen(buf), 255);
27320 	/* Add logged value to Injection log to be returned later */
27321 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
27322 		uint_t	offset = strlen((char *)un->sd_fi_log);
27323 		char *destp = (char *)un->sd_fi_log + offset;
27324 		int i;
27325 		for (i = 0; i < len; i++) {
27326 			*destp++ = *buf++;
27327 		}
27328 		un->sd_fi_buf_len += len;
27329 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
27330 	}
27331 
27332 	mutex_exit(&(un->un_fi_mutex));
27333 }
27334 
27335 
27336 /*
27337  *    Function: sd_faultinjection()
27338  *
27339  * Description: This routine takes the pkt and changes its
27340  *		content based on error injection scenerio.
27341  *
27342  *   Arguments: pktp	- packet to be changed
27343  */
27344 
27345 static void
27346 sd_faultinjection(struct scsi_pkt *pktp)
27347 {
27348 	uint_t i;
27349 	struct sd_fi_pkt *fi_pkt;
27350 	struct sd_fi_xb *fi_xb;
27351 	struct sd_fi_un *fi_un;
27352 	struct sd_fi_arq *fi_arq;
27353 	struct buf *bp;
27354 	struct sd_xbuf *xb;
27355 	struct sd_lun *un;
27356 
27357 	ASSERT(pktp != NULL);
27358 
27359 	/* pull bp xb and un from pktp */
27360 	bp = (struct buf *)pktp->pkt_private;
27361 	xb = SD_GET_XBUF(bp);
27362 	un = SD_GET_UN(bp);
27363 
27364 	ASSERT(un != NULL);
27365 
27366 	mutex_enter(SD_MUTEX(un));
27367 
27368 	SD_TRACE(SD_LOG_SDTEST, un,
27369 	    "sd_faultinjection: entry Injection from sdintr\n");
27370 
27371 	/* if injection is off return */
27372 	if (sd_fault_injection_on == 0 ||
27373 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
27374 		mutex_exit(SD_MUTEX(un));
27375 		return;
27376 	}
27377 
27378 
27379 	/* take next set off fifo */
27380 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
27381 
27382 	fi_pkt = un->sd_fi_fifo_pkt[i];
27383 	fi_xb = un->sd_fi_fifo_xb[i];
27384 	fi_un = un->sd_fi_fifo_un[i];
27385 	fi_arq = un->sd_fi_fifo_arq[i];
27386 
27387 
27388 	/* set variables accordingly */
27389 	/* set pkt if it was on fifo */
27390 	if (fi_pkt != NULL) {
27391 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
27392 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
27393 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
27394 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
27395 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
27396 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
27397 
27398 	}
27399 
27400 	/* set xb if it was on fifo */
27401 	if (fi_xb != NULL) {
27402 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
27403 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
27404 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
27405 		SD_CONDSET(xb, xb, xb_victim_retry_count,
27406 		    "xb_victim_retry_count");
27407 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
27408 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
27409 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
27410 
27411 		/* copy in block data from sense */
27412 		if (fi_xb->xb_sense_data[0] != -1) {
27413 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
27414 			    SENSE_LENGTH);
27415 		}
27416 
27417 		/* copy in extended sense codes */
27418 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
27419 		    "es_code");
27420 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
27421 		    "es_key");
27422 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
27423 		    "es_add_code");
27424 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
27425 		    es_qual_code, "es_qual_code");
27426 	}
27427 
27428 	/* set un if it was on fifo */
27429 	if (fi_un != NULL) {
27430 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
27431 		SD_CONDSET(un, un, un_ctype, "un_ctype");
27432 		SD_CONDSET(un, un, un_reset_retry_count,
27433 		    "un_reset_retry_count");
27434 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
27435 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
27436 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
27437 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
27438 		    "un_f_allow_bus_device_reset");
27439 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
27440 
27441 	}
27442 
27443 	/* copy in auto request sense if it was on fifo */
27444 	if (fi_arq != NULL) {
27445 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
27446 	}
27447 
27448 	/* free structs */
27449 	if (un->sd_fi_fifo_pkt[i] != NULL) {
27450 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
27451 	}
27452 	if (un->sd_fi_fifo_xb[i] != NULL) {
27453 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
27454 	}
27455 	if (un->sd_fi_fifo_un[i] != NULL) {
27456 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
27457 	}
27458 	if (un->sd_fi_fifo_arq[i] != NULL) {
27459 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
27460 	}
27461 
27462 	/*
27463 	 * kmem_free does not gurantee to set to NULL
27464 	 * since we uses these to determine if we set
27465 	 * values or not lets confirm they are always
27466 	 * NULL after free
27467 	 */
27468 	un->sd_fi_fifo_pkt[i] = NULL;
27469 	un->sd_fi_fifo_un[i] = NULL;
27470 	un->sd_fi_fifo_xb[i] = NULL;
27471 	un->sd_fi_fifo_arq[i] = NULL;
27472 
27473 	un->sd_fi_fifo_start++;
27474 
27475 	mutex_exit(SD_MUTEX(un));
27476 
27477 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
27478 }
27479 
27480 #endif /* SD_FAULT_INJECTION */
27481 
27482 /*
27483  * This routine is invoked in sd_unit_attach(). Before calling it, the
27484  * properties in conf file should be processed already, and "hotpluggable"
27485  * property was processed also.
27486  *
27487  * The sd driver distinguishes 3 different type of devices: removable media,
27488  * non-removable media, and hotpluggable. Below the differences are defined:
27489  *
27490  * 1. Device ID
27491  *
27492  *     The device ID of a device is used to identify this device. Refer to
27493  *     ddi_devid_register(9F).
27494  *
27495  *     For a non-removable media disk device which can provide 0x80 or 0x83
27496  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
27497  *     device ID is created to identify this device. For other non-removable
27498  *     media devices, a default device ID is created only if this device has
27499  *     at least 2 alter cylinders. Otherwise, this device has no devid.
27500  *
27501  *     -------------------------------------------------------
27502  *     removable media   hotpluggable  | Can Have Device ID
27503  *     -------------------------------------------------------
27504  *         false             false     |     Yes
27505  *         false             true      |     Yes
27506  *         true                x       |     No
27507  *     ------------------------------------------------------
27508  *
27509  *
27510  * 2. SCSI group 4 commands
27511  *
27512  *     In SCSI specs, only some commands in group 4 command set can use
27513  *     8-byte addresses that can be used to access >2TB storage spaces.
27514  *     Other commands have no such capability. Without supporting group4,
27515  *     it is impossible to make full use of storage spaces of a disk with
27516  *     capacity larger than 2TB.
27517  *
27518  *     -----------------------------------------------
27519  *     removable media   hotpluggable   LP64  |  Group
27520  *     -----------------------------------------------
27521  *           false          false       false |   1
27522  *           false          false       true  |   4
27523  *           false          true        false |   1
27524  *           false          true        true  |   4
27525  *           true             x           x   |   5
27526  *     -----------------------------------------------
27527  *
27528  *
27529  * 3. Check for VTOC Label
27530  *
27531  *     If a direct-access disk has no EFI label, sd will check if it has a
27532  *     valid VTOC label. Now, sd also does that check for removable media
27533  *     and hotpluggable devices.
27534  *
27535  *     --------------------------------------------------------------
27536  *     Direct-Access   removable media    hotpluggable |  Check Label
27537  *     -------------------------------------------------------------
27538  *         false          false           false        |   No
27539  *         false          false           true         |   No
27540  *         false          true            false        |   Yes
27541  *         false          true            true         |   Yes
27542  *         true            x                x          |   Yes
27543  *     --------------------------------------------------------------
27544  *
27545  *
27546  * 4. Building default VTOC label
27547  *
27548  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27549  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27550  *     create default VTOC for them. Currently sd creates default VTOC label
27551  *     for all devices on x86 platform (VTOC_16), but only for removable
27552  *     media devices on SPARC (VTOC_8).
27553  *
27554  *     -----------------------------------------------------------
27555  *       removable media hotpluggable platform   |   Default Label
27556  *     -----------------------------------------------------------
27557  *             false          false    sparc     |     No
27558  *             false          true      x86      |     Yes
27559  *             false          true     sparc     |     Yes
27560  *             true             x        x       |     Yes
27561  *     ----------------------------------------------------------
27562  *
27563  *
27564  * 5. Supported blocksizes of target devices
27565  *
27566  *     Sd supports non-512-byte blocksize for removable media devices only.
27567  *     For other devices, only 512-byte blocksize is supported. This may be
27568  *     changed in near future because some RAID devices require non-512-byte
27569  *     blocksize
27570  *
27571  *     -----------------------------------------------------------
27572  *     removable media    hotpluggable    | non-512-byte blocksize
27573  *     -----------------------------------------------------------
27574  *           false          false         |   No
27575  *           false          true          |   No
27576  *           true             x           |   Yes
27577  *     -----------------------------------------------------------
27578  *
27579  *
27580  * 6. Automatic mount & unmount
27581  *
27582  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27583  *     if a device is removable media device. It return 1 for removable media
27584  *     devices, and 0 for others.
27585  *
27586  *     The automatic mounting subsystem should distinguish between the types
27587  *     of devices and apply automounting policies to each.
27588  *
27589  *
27590  * 7. fdisk partition management
27591  *
27592  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27593  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27594  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27595  *     fdisk partitions on both x86 and SPARC platform.
27596  *
27597  *     -----------------------------------------------------------
27598  *       platform   removable media  USB/1394  |  fdisk supported
27599  *     -----------------------------------------------------------
27600  *        x86         X               X        |       true
27601  *     ------------------------------------------------------------
27602  *        sparc       X               X        |       false
27603  *     ------------------------------------------------------------
27604  *
27605  *
27606  * 8. MBOOT/MBR
27607  *
27608  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27609  *     read/write mboot for removable media devices on sparc platform.
27610  *
27611  *     -----------------------------------------------------------
27612  *       platform   removable media  USB/1394  |  mboot supported
27613  *     -----------------------------------------------------------
27614  *        x86         X               X        |       true
27615  *     ------------------------------------------------------------
27616  *        sparc      false           false     |       false
27617  *        sparc      false           true      |       true
27618  *        sparc      true            false     |       true
27619  *        sparc      true            true      |       true
27620  *     ------------------------------------------------------------
27621  *
27622  *
27623  * 9.  error handling during opening device
27624  *
27625  *     If failed to open a disk device, an errno is returned. For some kinds
27626  *     of errors, different errno is returned depending on if this device is
27627  *     a removable media device. This brings USB/1394 hard disks in line with
27628  *     expected hard disk behavior. It is not expected that this breaks any
27629  *     application.
27630  *
27631  *     ------------------------------------------------------
27632  *       removable media    hotpluggable   |  errno
27633  *     ------------------------------------------------------
27634  *             false          false        |   EIO
27635  *             false          true         |   EIO
27636  *             true             x          |   ENXIO
27637  *     ------------------------------------------------------
27638  *
27639  *
27640  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27641  *
27642  *     These IOCTLs are applicable only to removable media devices.
27643  *
27644  *     -----------------------------------------------------------
27645  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27646  *     -----------------------------------------------------------
27647  *             false          false        |     No
27648  *             false          true         |     No
27649  *             true            x           |     Yes
27650  *     -----------------------------------------------------------
27651  *
27652  *
27653  * 12. Kstats for partitions
27654  *
27655  *     sd creates partition kstat for non-removable media devices. USB and
27656  *     Firewire hard disks now have partition kstats
27657  *
27658  *      ------------------------------------------------------
27659  *       removable media    hotpluggable   |   kstat
27660  *      ------------------------------------------------------
27661  *             false          false        |    Yes
27662  *             false          true         |    Yes
27663  *             true             x          |    No
27664  *       ------------------------------------------------------
27665  *
27666  *
27667  * 13. Removable media & hotpluggable properties
27668  *
27669  *     Sd driver creates a "removable-media" property for removable media
27670  *     devices. Parent nexus drivers create a "hotpluggable" property if
27671  *     it supports hotplugging.
27672  *
27673  *     ---------------------------------------------------------------------
27674  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27675  *     ---------------------------------------------------------------------
27676  *       false            false       |    No                   No
27677  *       false            true        |    No                   Yes
27678  *       true             false       |    Yes                  No
27679  *       true             true        |    Yes                  Yes
27680  *     ---------------------------------------------------------------------
27681  *
27682  *
27683  * 14. Power Management
27684  *
27685  *     sd only power manages removable media devices or devices that support
27686  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27687  *
27688  *     A parent nexus that supports hotplugging can also set "pm-capable"
27689  *     if the disk can be power managed.
27690  *
27691  *     ------------------------------------------------------------
27692  *       removable media hotpluggable pm-capable  |   power manage
27693  *     ------------------------------------------------------------
27694  *             false          false     false     |     No
27695  *             false          false     true      |     Yes
27696  *             false          true      false     |     No
27697  *             false          true      true      |     Yes
27698  *             true             x        x        |     Yes
27699  *     ------------------------------------------------------------
27700  *
27701  *      USB and firewire hard disks can now be power managed independently
27702  *      of the framebuffer
27703  *
27704  *
27705  * 15. Support for USB disks with capacity larger than 1TB
27706  *
27707  *     Currently, sd doesn't permit a fixed disk device with capacity
27708  *     larger than 1TB to be used in a 32-bit operating system environment.
27709  *     However, sd doesn't do that for removable media devices. Instead, it
27710  *     assumes that removable media devices cannot have a capacity larger
27711  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27712  *     supported, which can cause some unexpected results.
27713  *
27714  *     ---------------------------------------------------------------------
27715  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27716  *     ---------------------------------------------------------------------
27717  *             false          false  |   true         |     no
27718  *             false          true   |   true         |     no
27719  *             true           false  |   true         |     Yes
27720  *             true           true   |   true         |     Yes
27721  *     ---------------------------------------------------------------------
27722  *
27723  *
27724  * 16. Check write-protection at open time
27725  *
27726  *     When a removable media device is being opened for writing without NDELAY
27727  *     flag, sd will check if this device is writable. If attempting to open
27728  *     without NDELAY flag a write-protected device, this operation will abort.
27729  *
27730  *     ------------------------------------------------------------
27731  *       removable media    USB/1394   |   WP Check
27732  *     ------------------------------------------------------------
27733  *             false          false    |     No
27734  *             false          true     |     No
27735  *             true           false    |     Yes
27736  *             true           true     |     Yes
27737  *     ------------------------------------------------------------
27738  *
27739  *
27740  * 17. syslog when corrupted VTOC is encountered
27741  *
27742  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27743  *      for fixed SCSI disks.
27744  *     ------------------------------------------------------------
27745  *       removable media    USB/1394   |   print syslog
27746  *     ------------------------------------------------------------
27747  *             false          false    |     Yes
27748  *             false          true     |     No
27749  *             true           false    |     No
27750  *             true           true     |     No
27751  *     ------------------------------------------------------------
27752  */
27753 static void
27754 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27755 {
27756 	int	pm_capable_prop;
27757 
27758 	ASSERT(un->un_sd);
27759 	ASSERT(un->un_sd->sd_inq);
27760 
27761 	/*
27762 	 * Enable SYNC CACHE support for all devices.
27763 	 */
27764 	un->un_f_sync_cache_supported = TRUE;
27765 
27766 	if (un->un_sd->sd_inq->inq_rmb) {
27767 		/*
27768 		 * The media of this device is removable. And for this kind
27769 		 * of devices, it is possible to change medium after opening
27770 		 * devices. Thus we should support this operation.
27771 		 */
27772 		un->un_f_has_removable_media = TRUE;
27773 
27774 		/*
27775 		 * support non-512-byte blocksize of removable media devices
27776 		 */
27777 		un->un_f_non_devbsize_supported = TRUE;
27778 
27779 		/*
27780 		 * Assume that all removable media devices support DOOR_LOCK
27781 		 */
27782 		un->un_f_doorlock_supported = TRUE;
27783 
27784 		/*
27785 		 * For a removable media device, it is possible to be opened
27786 		 * with NDELAY flag when there is no media in drive, in this
27787 		 * case we don't care if device is writable. But if without
27788 		 * NDELAY flag, we need to check if media is write-protected.
27789 		 */
27790 		un->un_f_chk_wp_open = TRUE;
27791 
27792 		/*
27793 		 * need to start a SCSI watch thread to monitor media state,
27794 		 * when media is being inserted or ejected, notify syseventd.
27795 		 */
27796 		un->un_f_monitor_media_state = TRUE;
27797 
27798 		/*
27799 		 * Some devices don't support START_STOP_UNIT command.
27800 		 * Therefore, we'd better check if a device supports it
27801 		 * before sending it.
27802 		 */
27803 		un->un_f_check_start_stop = TRUE;
27804 
27805 		/*
27806 		 * support eject media ioctl:
27807 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27808 		 */
27809 		un->un_f_eject_media_supported = TRUE;
27810 
27811 		/*
27812 		 * Because many removable-media devices don't support
27813 		 * LOG_SENSE, we couldn't use this command to check if
27814 		 * a removable media device support power-management.
27815 		 * We assume that they support power-management via
27816 		 * START_STOP_UNIT command and can be spun up and down
27817 		 * without limitations.
27818 		 */
27819 		un->un_f_pm_supported = TRUE;
27820 
27821 		/*
27822 		 * Need to create a zero length (Boolean) property
27823 		 * removable-media for the removable media devices.
27824 		 * Note that the return value of the property is not being
27825 		 * checked, since if unable to create the property
27826 		 * then do not want the attach to fail altogether. Consistent
27827 		 * with other property creation in attach.
27828 		 */
27829 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
27830 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
27831 
27832 	} else {
27833 		/*
27834 		 * create device ID for device
27835 		 */
27836 		un->un_f_devid_supported = TRUE;
27837 
27838 		/*
27839 		 * Spin up non-removable-media devices once it is attached
27840 		 */
27841 		un->un_f_attach_spinup = TRUE;
27842 
27843 		/*
27844 		 * According to SCSI specification, Sense data has two kinds of
27845 		 * format: fixed format, and descriptor format. At present, we
27846 		 * don't support descriptor format sense data for removable
27847 		 * media.
27848 		 */
27849 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
27850 			un->un_f_descr_format_supported = TRUE;
27851 		}
27852 
27853 		/*
27854 		 * kstats are created only for non-removable media devices.
27855 		 *
27856 		 * Set this in sd.conf to 0 in order to disable kstats.  The
27857 		 * default is 1, so they are enabled by default.
27858 		 */
27859 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
27860 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
27861 		    "enable-partition-kstats", 1));
27862 
27863 		/*
27864 		 * Check if HBA has set the "pm-capable" property.
27865 		 * If "pm-capable" exists and is non-zero then we can
27866 		 * power manage the device without checking the start/stop
27867 		 * cycle count log sense page.
27868 		 *
27869 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
27870 		 * then we should not power manage the device.
27871 		 *
27872 		 * If "pm-capable" doesn't exist then pm_capable_prop will
27873 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
27874 		 * sd will check the start/stop cycle count log sense page
27875 		 * and power manage the device if the cycle count limit has
27876 		 * not been exceeded.
27877 		 */
27878 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
27879 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
27880 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
27881 			un->un_f_log_sense_supported = TRUE;
27882 		} else {
27883 			/*
27884 			 * pm-capable property exists.
27885 			 *
27886 			 * Convert "TRUE" values for pm_capable_prop to
27887 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
27888 			 * later. "TRUE" values are any values except
27889 			 * SD_PM_CAPABLE_FALSE (0) and
27890 			 * SD_PM_CAPABLE_UNDEFINED (-1)
27891 			 */
27892 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
27893 				un->un_f_log_sense_supported = FALSE;
27894 			} else {
27895 				un->un_f_pm_supported = TRUE;
27896 			}
27897 
27898 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
27899 			    "sd_unit_attach: un:0x%p pm-capable "
27900 			    "property set to %d.\n", un, un->un_f_pm_supported);
27901 		}
27902 	}
27903 
27904 	if (un->un_f_is_hotpluggable) {
27905 
27906 		/*
27907 		 * Have to watch hotpluggable devices as well, since
27908 		 * that's the only way for userland applications to
27909 		 * detect hot removal while device is busy/mounted.
27910 		 */
27911 		un->un_f_monitor_media_state = TRUE;
27912 
27913 		un->un_f_check_start_stop = TRUE;
27914 
27915 	}
27916 }
27917 
27918 /*
27919  * sd_tg_rdwr:
27920  * Provides rdwr access for cmlb via sd_tgops. The start_block is
27921  * in sys block size, req_length in bytes.
27922  *
27923  */
27924 static int
27925 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
27926     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
27927 {
27928 	struct sd_lun *un;
27929 	int path_flag = (int)(uintptr_t)tg_cookie;
27930 	char *dkl = NULL;
27931 	diskaddr_t real_addr = start_block;
27932 	diskaddr_t first_byte, end_block;
27933 
27934 	size_t	buffer_size = reqlength;
27935 	int rval;
27936 	diskaddr_t	cap;
27937 	uint32_t	lbasize;
27938 
27939 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27940 	if (un == NULL)
27941 		return (ENXIO);
27942 
27943 	if (cmd != TG_READ && cmd != TG_WRITE)
27944 		return (EINVAL);
27945 
27946 	mutex_enter(SD_MUTEX(un));
27947 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
27948 		mutex_exit(SD_MUTEX(un));
27949 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27950 		    &lbasize, path_flag);
27951 		if (rval != 0)
27952 			return (rval);
27953 		mutex_enter(SD_MUTEX(un));
27954 		sd_update_block_info(un, lbasize, cap);
27955 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
27956 			mutex_exit(SD_MUTEX(un));
27957 			return (EIO);
27958 		}
27959 	}
27960 
27961 	if (NOT_DEVBSIZE(un)) {
27962 		/*
27963 		 * sys_blocksize != tgt_blocksize, need to re-adjust
27964 		 * blkno and save the index to beginning of dk_label
27965 		 */
27966 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
27967 		real_addr = first_byte / un->un_tgt_blocksize;
27968 
27969 		end_block = (first_byte + reqlength +
27970 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
27971 
27972 		/* round up buffer size to multiple of target block size */
27973 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
27974 
27975 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
27976 		    "label_addr: 0x%x allocation size: 0x%x\n",
27977 		    real_addr, buffer_size);
27978 
27979 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
27980 		    (reqlength % un->un_tgt_blocksize) != 0)
27981 			/* the request is not aligned */
27982 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
27983 	}
27984 
27985 	/*
27986 	 * The MMC standard allows READ CAPACITY to be
27987 	 * inaccurate by a bounded amount (in the interest of
27988 	 * response latency).  As a result, failed READs are
27989 	 * commonplace (due to the reading of metadata and not
27990 	 * data). Depending on the per-Vendor/drive Sense data,
27991 	 * the failed READ can cause many (unnecessary) retries.
27992 	 */
27993 
27994 	if (ISCD(un) && (cmd == TG_READ) &&
27995 	    (un->un_f_blockcount_is_valid == TRUE) &&
27996 	    ((start_block == (un->un_blockcount - 1))||
27997 	    (start_block == (un->un_blockcount - 2)))) {
27998 			path_flag = SD_PATH_DIRECT_PRIORITY;
27999 	}
28000 
28001 	mutex_exit(SD_MUTEX(un));
28002 	if (cmd == TG_READ) {
28003 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
28004 		    buffer_size, real_addr, path_flag);
28005 		if (dkl != NULL)
28006 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
28007 			    real_addr), bufaddr, reqlength);
28008 	} else {
28009 		if (dkl) {
28010 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
28011 			    real_addr, path_flag);
28012 			if (rval) {
28013 				kmem_free(dkl, buffer_size);
28014 				return (rval);
28015 			}
28016 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
28017 			    real_addr), reqlength);
28018 		}
28019 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
28020 		    buffer_size, real_addr, path_flag);
28021 	}
28022 
28023 	if (dkl != NULL)
28024 		kmem_free(dkl, buffer_size);
28025 
28026 	return (rval);
28027 }
28028 
28029 
28030 static int
28031 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
28032 {
28033 
28034 	struct sd_lun *un;
28035 	diskaddr_t	cap;
28036 	uint32_t	lbasize;
28037 	int		path_flag = (int)(uintptr_t)tg_cookie;
28038 	int		ret = 0;
28039 
28040 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
28041 	if (un == NULL)
28042 		return (ENXIO);
28043 
28044 	switch (cmd) {
28045 	case TG_GETPHYGEOM:
28046 	case TG_GETVIRTGEOM:
28047 	case TG_GETCAPACITY:
28048 	case  TG_GETBLOCKSIZE:
28049 		mutex_enter(SD_MUTEX(un));
28050 
28051 		if ((un->un_f_blockcount_is_valid == TRUE) &&
28052 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
28053 			cap = un->un_blockcount;
28054 			lbasize = un->un_tgt_blocksize;
28055 			mutex_exit(SD_MUTEX(un));
28056 		} else {
28057 			mutex_exit(SD_MUTEX(un));
28058 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
28059 			    &lbasize, path_flag);
28060 			if (ret != 0)
28061 				return (ret);
28062 			mutex_enter(SD_MUTEX(un));
28063 			sd_update_block_info(un, lbasize, cap);
28064 			if ((un->un_f_blockcount_is_valid == FALSE) ||
28065 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
28066 				mutex_exit(SD_MUTEX(un));
28067 				return (EIO);
28068 			}
28069 			mutex_exit(SD_MUTEX(un));
28070 		}
28071 
28072 		if (cmd == TG_GETCAPACITY) {
28073 			*(diskaddr_t *)arg = cap;
28074 			return (0);
28075 		}
28076 
28077 		if (cmd == TG_GETBLOCKSIZE) {
28078 			*(uint32_t *)arg = lbasize;
28079 			return (0);
28080 		}
28081 
28082 		if (cmd == TG_GETPHYGEOM)
28083 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
28084 			    cap, lbasize, path_flag);
28085 		else
28086 			/* TG_GETVIRTGEOM */
28087 			ret = sd_get_virtual_geometry(un,
28088 			    (cmlb_geom_t *)arg, cap, lbasize);
28089 
28090 		return (ret);
28091 
28092 	case TG_GETATTR:
28093 		mutex_enter(SD_MUTEX(un));
28094 		((tg_attribute_t *)arg)->media_is_writable =
28095 		    un->un_f_mmc_writable_media;
28096 		mutex_exit(SD_MUTEX(un));
28097 		return (0);
28098 	default:
28099 		return (ENOTTY);
28100 
28101 	}
28102 
28103 }
28104