xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision bbc88f3a6c6d8e21cb05884590e32f7fb7b52e05)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * SCSI disk target driver.
31  */
32 
33 #include <sys/scsi/scsi.h>
34 #include <sys/dkbad.h>
35 #include <sys/dklabel.h>
36 #include <sys/dkio.h>
37 #include <sys/fdio.h>
38 #include <sys/cdio.h>
39 #include <sys/mhd.h>
40 #include <sys/vtoc.h>
41 #include <sys/dktp/fdisk.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kstat.h>
45 #include <sys/vtrace.h>
46 #include <sys/note.h>
47 #include <sys/thread.h>
48 #include <sys/proc.h>
49 #include <sys/efi_partition.h>
50 #include <sys/var.h>
51 #include <sys/aio_req.h>
52 #if (defined(__fibre))
53 /* Note: is there a leadville version of the following? */
54 #include <sys/fc4/fcal_linkapp.h>
55 #endif
56 #include <sys/taskq.h>
57 #include <sys/uuid.h>
58 #include <sys/byteorder.h>
59 #include <sys/sdt.h>
60 
61 #include "sd_xbuf.h"
62 
63 #include <sys/scsi/targets/sddef.h>
64 
65 
66 /*
67  * Loadable module info.
68  */
69 #if (defined(__fibre))
70 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
71 char _depends_on[]	= "misc/scsi drv/fcp";
72 #else
73 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi";
75 #endif
76 
77 /*
78  * Define the interconnect type, to allow the driver to distinguish
79  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
80  *
81  * This is really for backward compatability. In the future, the driver
82  * should actually check the "interconnect-type" property as reported by
83  * the HBA; however at present this property is not defined by all HBAs,
84  * so we will use this #define (1) to permit the driver to run in
85  * backward-compatability mode; and (2) to print a notification message
86  * if an FC HBA does not support the "interconnect-type" property.  The
87  * behavior of the driver will be to assume parallel SCSI behaviors unless
88  * the "interconnect-type" property is defined by the HBA **AND** has a
89  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
90  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
91  * Channel behaviors (as per the old ssd).  (Note that the
92  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
93  * will result in the driver assuming parallel SCSI behaviors.)
94  *
95  * (see common/sys/scsi/impl/services.h)
96  *
97  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
98  * since some FC HBAs may already support that, and there is some code in
99  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
100  * default would confuse that code, and besides things should work fine
101  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
102  * "interconnect_type" property.
103  */
104 #if (defined(__fibre))
105 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
106 #else
107 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
108 #endif
109 
110 /*
111  * The name of the driver, established from the module name in _init.
112  */
113 static	char *sd_label			= NULL;
114 
115 /*
116  * Driver name is unfortunately prefixed on some driver.conf properties.
117  */
118 #if (defined(__fibre))
119 #define	sd_max_xfer_size		ssd_max_xfer_size
120 #define	sd_config_list			ssd_config_list
121 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
122 static	char *sd_config_list		= "ssd-config-list";
123 #else
124 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
125 static	char *sd_config_list		= "sd-config-list";
126 #endif
127 
128 /*
129  * Driver global variables
130  */
131 
132 #if (defined(__fibre))
133 /*
134  * These #defines are to avoid namespace collisions that occur because this
135  * code is currently used to compile two seperate driver modules: sd and ssd.
136  * All global variables need to be treated this way (even if declared static)
137  * in order to allow the debugger to resolve the names properly.
138  * It is anticipated that in the near future the ssd module will be obsoleted,
139  * at which time this namespace issue should go away.
140  */
141 #define	sd_state			ssd_state
142 #define	sd_io_time			ssd_io_time
143 #define	sd_failfast_enable		ssd_failfast_enable
144 #define	sd_ua_retry_count		ssd_ua_retry_count
145 #define	sd_report_pfa			ssd_report_pfa
146 #define	sd_max_throttle			ssd_max_throttle
147 #define	sd_min_throttle			ssd_min_throttle
148 #define	sd_rot_delay			ssd_rot_delay
149 
150 #define	sd_retry_on_reservation_conflict	\
151 					ssd_retry_on_reservation_conflict
152 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
153 #define	sd_resv_conflict_name		ssd_resv_conflict_name
154 
155 #define	sd_component_mask		ssd_component_mask
156 #define	sd_level_mask			ssd_level_mask
157 #define	sd_debug_un			ssd_debug_un
158 #define	sd_error_level			ssd_error_level
159 
160 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
161 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
162 
163 #define	sd_tr				ssd_tr
164 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
165 #define	sd_check_media_time		ssd_check_media_time
166 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
167 #define	sd_label_mutex			ssd_label_mutex
168 #define	sd_detach_mutex			ssd_detach_mutex
169 #define	sd_log_buf			ssd_log_buf
170 #define	sd_log_mutex			ssd_log_mutex
171 
172 #define	sd_disk_table			ssd_disk_table
173 #define	sd_disk_table_size		ssd_disk_table_size
174 #define	sd_sense_mutex			ssd_sense_mutex
175 #define	sd_cdbtab			ssd_cdbtab
176 
177 #define	sd_cb_ops			ssd_cb_ops
178 #define	sd_ops				ssd_ops
179 #define	sd_additional_codes		ssd_additional_codes
180 
181 #define	sd_minor_data			ssd_minor_data
182 #define	sd_minor_data_efi		ssd_minor_data_efi
183 
184 #define	sd_tq				ssd_tq
185 #define	sd_wmr_tq			ssd_wmr_tq
186 #define	sd_taskq_name			ssd_taskq_name
187 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
188 #define	sd_taskq_minalloc		ssd_taskq_minalloc
189 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
190 
191 #define	sd_dump_format_string		ssd_dump_format_string
192 
193 #define	sd_iostart_chain		ssd_iostart_chain
194 #define	sd_iodone_chain			ssd_iodone_chain
195 
196 #define	sd_pm_idletime			ssd_pm_idletime
197 
198 #define	sd_force_pm_supported		ssd_force_pm_supported
199 
200 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
201 #endif
202 
203 
204 #ifdef	SDDEBUG
205 int	sd_force_pm_supported		= 0;
206 #endif	/* SDDEBUG */
207 
208 void *sd_state				= NULL;
209 int sd_io_time				= SD_IO_TIME;
210 int sd_failfast_enable			= 1;
211 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
212 int sd_report_pfa			= 1;
213 int sd_max_throttle			= SD_MAX_THROTTLE;
214 int sd_min_throttle			= SD_MIN_THROTTLE;
215 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
216 
217 int sd_retry_on_reservation_conflict	= 1;
218 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
219 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
220 
221 static int sd_dtype_optical_bind	= -1;
222 
223 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
224 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
225 
226 /*
227  * Global data for debug logging. To enable debug printing, sd_component_mask
228  * and sd_level_mask should be set to the desired bit patterns as outlined in
229  * sddef.h.
230  */
231 uint_t	sd_component_mask		= 0x0;
232 uint_t	sd_level_mask			= 0x0;
233 struct	sd_lun *sd_debug_un		= NULL;
234 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
235 
236 /* Note: these may go away in the future... */
237 static uint32_t	sd_xbuf_active_limit	= 512;
238 static uint32_t sd_xbuf_reserve_limit	= 16;
239 
240 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
241 
242 /*
243  * Timer value used to reset the throttle after it has been reduced
244  * (typically in response to TRAN_BUSY)
245  */
246 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
247 
248 /*
249  * Interval value associated with the media change scsi watch.
250  */
251 static int sd_check_media_time		= 3000000;
252 
253 /*
254  * Wait value used for in progress operations during a DDI_SUSPEND
255  */
256 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
257 
258 /*
259  * sd_label_mutex protects a static buffer used in the disk label
260  * component of the driver
261  */
262 static kmutex_t sd_label_mutex;
263 
264 /*
265  * sd_detach_mutex protects un_layer_count, un_detach_count, and
266  * un_opens_in_progress in the sd_lun structure.
267  */
268 static kmutex_t sd_detach_mutex;
269 
270 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
271 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
272 
273 /*
274  * Global buffer and mutex for debug logging
275  */
276 static char	sd_log_buf[1024];
277 static kmutex_t	sd_log_mutex;
278 
279 
280 /*
281  * "Smart" Probe Caching structs, globals, #defines, etc.
282  * For parallel scsi and non-self-identify device only.
283  */
284 
285 /*
286  * The following resources and routines are implemented to support
287  * "smart" probing, which caches the scsi_probe() results in an array,
288  * in order to help avoid long probe times.
289  */
290 struct sd_scsi_probe_cache {
291 	struct	sd_scsi_probe_cache	*next;
292 	dev_info_t	*pdip;
293 	int		cache[NTARGETS_WIDE];
294 };
295 
296 static kmutex_t	sd_scsi_probe_cache_mutex;
297 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
298 
299 /*
300  * Really we only need protection on the head of the linked list, but
301  * better safe than sorry.
302  */
303 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
304     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
305 
306 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
307     sd_scsi_probe_cache_head))
308 
309 
310 /*
311  * Vendor specific data name property declarations
312  */
313 
314 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
315 
316 static sd_tunables seagate_properties = {
317 	SEAGATE_THROTTLE_VALUE,
318 	0,
319 	0,
320 	0,
321 	0,
322 	0,
323 	0,
324 	0,
325 	0
326 };
327 
328 
329 static sd_tunables fujitsu_properties = {
330 	FUJITSU_THROTTLE_VALUE,
331 	0,
332 	0,
333 	0,
334 	0,
335 	0,
336 	0,
337 	0,
338 	0
339 };
340 
341 static sd_tunables ibm_properties = {
342 	IBM_THROTTLE_VALUE,
343 	0,
344 	0,
345 	0,
346 	0,
347 	0,
348 	0,
349 	0,
350 	0
351 };
352 
353 static sd_tunables purple_properties = {
354 	PURPLE_THROTTLE_VALUE,
355 	0,
356 	0,
357 	PURPLE_BUSY_RETRIES,
358 	PURPLE_RESET_RETRY_COUNT,
359 	PURPLE_RESERVE_RELEASE_TIME,
360 	0,
361 	0,
362 	0
363 };
364 
365 static sd_tunables sve_properties = {
366 	SVE_THROTTLE_VALUE,
367 	0,
368 	0,
369 	SVE_BUSY_RETRIES,
370 	SVE_RESET_RETRY_COUNT,
371 	SVE_RESERVE_RELEASE_TIME,
372 	SVE_MIN_THROTTLE_VALUE,
373 	SVE_DISKSORT_DISABLED_FLAG,
374 	0
375 };
376 
377 static sd_tunables maserati_properties = {
378 	0,
379 	0,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	MASERATI_DISKSORT_DISABLED_FLAG,
386 	MASERATI_LUN_RESET_ENABLED_FLAG
387 };
388 
389 static sd_tunables pirus_properties = {
390 	PIRUS_THROTTLE_VALUE,
391 	0,
392 	PIRUS_NRR_COUNT,
393 	PIRUS_BUSY_RETRIES,
394 	PIRUS_RESET_RETRY_COUNT,
395 	0,
396 	PIRUS_MIN_THROTTLE_VALUE,
397 	PIRUS_DISKSORT_DISABLED_FLAG,
398 	PIRUS_LUN_RESET_ENABLED_FLAG
399 };
400 
401 #endif
402 
403 #if (defined(__sparc) && !defined(__fibre)) || \
404 	(defined(__i386) || defined(__amd64))
405 
406 
407 static sd_tunables elite_properties = {
408 	ELITE_THROTTLE_VALUE,
409 	0,
410 	0,
411 	0,
412 	0,
413 	0,
414 	0,
415 	0,
416 	0
417 };
418 
419 static sd_tunables st31200n_properties = {
420 	ST31200N_THROTTLE_VALUE,
421 	0,
422 	0,
423 	0,
424 	0,
425 	0,
426 	0,
427 	0,
428 	0
429 };
430 
431 #endif /* Fibre or not */
432 
433 static sd_tunables lsi_properties_scsi = {
434 	LSI_THROTTLE_VALUE,
435 	0,
436 	LSI_NOTREADY_RETRIES,
437 	0,
438 	0,
439 	0,
440 	0,
441 	0,
442 	0
443 };
444 
445 static sd_tunables symbios_properties = {
446 	SYMBIOS_THROTTLE_VALUE,
447 	0,
448 	SYMBIOS_NOTREADY_RETRIES,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0,
454 	0
455 };
456 
457 static sd_tunables lsi_properties = {
458 	0,
459 	0,
460 	LSI_NOTREADY_RETRIES,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0,
466 	0
467 };
468 
469 static sd_tunables lsi_oem_properties = {
470 	0,
471 	0,
472 	LSI_OEM_NOTREADY_RETRIES,
473 	0,
474 	0,
475 	0,
476 	0,
477 	0,
478 	0
479 };
480 
481 
482 
483 #if (defined(SD_PROP_TST))
484 
485 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
486 #define	SD_TST_THROTTLE_VAL	16
487 #define	SD_TST_NOTREADY_VAL	12
488 #define	SD_TST_BUSY_VAL		60
489 #define	SD_TST_RST_RETRY_VAL	36
490 #define	SD_TST_RSV_REL_TIME	60
491 
492 static sd_tunables tst_properties = {
493 	SD_TST_THROTTLE_VAL,
494 	SD_TST_CTYPE_VAL,
495 	SD_TST_NOTREADY_VAL,
496 	SD_TST_BUSY_VAL,
497 	SD_TST_RST_RETRY_VAL,
498 	SD_TST_RSV_REL_TIME,
499 	0,
500 	0,
501 	0
502 };
503 #endif
504 
505 /* This is similiar to the ANSI toupper implementation */
506 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
507 
508 /*
509  * Static Driver Configuration Table
510  *
511  * This is the table of disks which need throttle adjustment (or, perhaps
512  * something else as defined by the flags at a future time.)  device_id
513  * is a string consisting of concatenated vid (vendor), pid (product/model)
514  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
515  * the parts of the string are as defined by the sizes in the scsi_inquiry
516  * structure.  Device type is searched as far as the device_id string is
517  * defined.  Flags defines which values are to be set in the driver from the
518  * properties list.
519  *
520  * Entries below which begin and end with a "*" are a special case.
521  * These do not have a specific vendor, and the string which follows
522  * can appear anywhere in the 16 byte PID portion of the inquiry data.
523  *
524  * Entries below which begin and end with a " " (blank) are a special
525  * case. The comparison function will treat multiple consecutive blanks
526  * as equivalent to a single blank. For example, this causes a
527  * sd_disk_table entry of " NEC CDROM " to match a device's id string
528  * of  "NEC       CDROM".
529  *
530  * Note: The MD21 controller type has been obsoleted.
531  *	 ST318202F is a Legacy device
532  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
533  *	 made with an FC connection. The entries here are a legacy.
534  */
535 static sd_disk_config_t sd_disk_table[] = {
536 #if defined(__fibre) || defined(__i386) || defined(__amd64)
537 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
538 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
539 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
540 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
541 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
542 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
543 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
544 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
545 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
546 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
547 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
548 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
549 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
550 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
551 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
552 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
553 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
554 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
555 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
556 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
557 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
558 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
559 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
560 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
561 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
562 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
563 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
564 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
565 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
566 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
567 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
568 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
569 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
570 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
571 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
572 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
573 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
574 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
575 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
576 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
577 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
578 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
579 			SD_CONF_BSET_BSY_RETRY_COUNT|
580 			SD_CONF_BSET_RST_RETRIES|
581 			SD_CONF_BSET_RSV_REL_TIME,
582 		&purple_properties },
583 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
584 		SD_CONF_BSET_BSY_RETRY_COUNT|
585 		SD_CONF_BSET_RST_RETRIES|
586 		SD_CONF_BSET_RSV_REL_TIME|
587 		SD_CONF_BSET_MIN_THROTTLE|
588 		SD_CONF_BSET_DISKSORT_DISABLED,
589 		&sve_properties },
590 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
591 			SD_CONF_BSET_BSY_RETRY_COUNT|
592 			SD_CONF_BSET_RST_RETRIES|
593 			SD_CONF_BSET_RSV_REL_TIME,
594 		&purple_properties },
595 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
596 		SD_CONF_BSET_LUN_RESET_ENABLED,
597 		&maserati_properties },
598 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
599 		SD_CONF_BSET_NRR_COUNT|
600 		SD_CONF_BSET_BSY_RETRY_COUNT|
601 		SD_CONF_BSET_RST_RETRIES|
602 		SD_CONF_BSET_MIN_THROTTLE|
603 		SD_CONF_BSET_DISKSORT_DISABLED|
604 		SD_CONF_BSET_LUN_RESET_ENABLED,
605 		&pirus_properties },
606 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
607 		SD_CONF_BSET_NRR_COUNT|
608 		SD_CONF_BSET_BSY_RETRY_COUNT|
609 		SD_CONF_BSET_RST_RETRIES|
610 		SD_CONF_BSET_MIN_THROTTLE|
611 		SD_CONF_BSET_DISKSORT_DISABLED|
612 		SD_CONF_BSET_LUN_RESET_ENABLED,
613 		&pirus_properties },
614 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
615 		SD_CONF_BSET_NRR_COUNT|
616 		SD_CONF_BSET_BSY_RETRY_COUNT|
617 		SD_CONF_BSET_RST_RETRIES|
618 		SD_CONF_BSET_MIN_THROTTLE|
619 		SD_CONF_BSET_DISKSORT_DISABLED|
620 		SD_CONF_BSET_LUN_RESET_ENABLED,
621 		&pirus_properties },
622 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
625 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
626 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
627 #endif /* fibre or NON-sparc platforms */
628 #if ((defined(__sparc) && !defined(__fibre)) ||\
629 	(defined(__i386) || defined(__amd64)))
630 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
631 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
632 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
633 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
634 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
635 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
636 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
637 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
638 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
639 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
640 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
641 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
642 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
643 	    &symbios_properties },
644 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
645 	    &lsi_properties_scsi },
646 #if defined(__i386) || defined(__amd64)
647 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
648 				    | SD_CONF_BSET_READSUB_BCD
649 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
650 				    | SD_CONF_BSET_NO_READ_HEADER
651 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
652 
653 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
654 				    | SD_CONF_BSET_READSUB_BCD
655 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
656 				    | SD_CONF_BSET_NO_READ_HEADER
657 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
658 #endif /* __i386 || __amd64 */
659 #endif /* sparc NON-fibre or NON-sparc platforms */
660 
661 #if (defined(SD_PROP_TST))
662 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
663 				| SD_CONF_BSET_CTYPE
664 				| SD_CONF_BSET_NRR_COUNT
665 				| SD_CONF_BSET_FAB_DEVID
666 				| SD_CONF_BSET_NOCACHE
667 				| SD_CONF_BSET_BSY_RETRY_COUNT
668 				| SD_CONF_BSET_PLAYMSF_BCD
669 				| SD_CONF_BSET_READSUB_BCD
670 				| SD_CONF_BSET_READ_TOC_TRK_BCD
671 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
672 				| SD_CONF_BSET_NO_READ_HEADER
673 				| SD_CONF_BSET_READ_CD_XD4
674 				| SD_CONF_BSET_RST_RETRIES
675 				| SD_CONF_BSET_RSV_REL_TIME
676 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
677 #endif
678 };
679 
680 static const int sd_disk_table_size =
681 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
682 
683 
684 /*
685  * Return codes of sd_uselabel().
686  */
687 #define	SD_LABEL_IS_VALID		0
688 #define	SD_LABEL_IS_INVALID		1
689 
690 #define	SD_INTERCONNECT_PARALLEL	0
691 #define	SD_INTERCONNECT_FABRIC		1
692 #define	SD_INTERCONNECT_FIBRE		2
693 #define	SD_INTERCONNECT_SSA		3
694 #define	SD_IS_PARALLEL_SCSI(un)		\
695 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
696 
697 /*
698  * Definitions used by device id registration routines
699  */
700 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
701 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
702 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
703 #define	WD_NODE			7	/* the whole disk minor */
704 
705 static kmutex_t sd_sense_mutex = {0};
706 
707 /*
708  * Macros for updates of the driver state
709  */
710 #define	New_state(un, s)        \
711 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
712 #define	Restore_state(un)	\
713 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
714 
715 static struct sd_cdbinfo sd_cdbtab[] = {
716 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
717 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
718 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
719 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
720 };
721 
722 /*
723  * Specifies the number of seconds that must have elapsed since the last
724  * cmd. has completed for a device to be declared idle to the PM framework.
725  */
726 static int sd_pm_idletime = 1;
727 
728 /*
729  * Internal function prototypes
730  */
731 
732 #if (defined(__fibre))
733 /*
734  * These #defines are to avoid namespace collisions that occur because this
735  * code is currently used to compile two seperate driver modules: sd and ssd.
736  * All function names need to be treated this way (even if declared static)
737  * in order to allow the debugger to resolve the names properly.
738  * It is anticipated that in the near future the ssd module will be obsoleted,
739  * at which time this ugliness should go away.
740  */
741 #define	sd_log_trace			ssd_log_trace
742 #define	sd_log_info			ssd_log_info
743 #define	sd_log_err			ssd_log_err
744 #define	sdprobe				ssdprobe
745 #define	sdinfo				ssdinfo
746 #define	sd_prop_op			ssd_prop_op
747 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
748 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
749 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
750 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
751 #define	sd_spin_up_unit			ssd_spin_up_unit
752 #define	sd_enable_descr_sense		ssd_enable_descr_sense
753 #define	sd_set_mmc_caps			ssd_set_mmc_caps
754 #define	sd_read_unit_properties		ssd_read_unit_properties
755 #define	sd_process_sdconf_file		ssd_process_sdconf_file
756 #define	sd_process_sdconf_table		ssd_process_sdconf_table
757 #define	sd_sdconf_id_match		ssd_sdconf_id_match
758 #define	sd_blank_cmp			ssd_blank_cmp
759 #define	sd_chk_vers1_data		ssd_chk_vers1_data
760 #define	sd_set_vers1_properties		ssd_set_vers1_properties
761 #define	sd_validate_geometry		ssd_validate_geometry
762 
763 #if defined(_SUNOS_VTOC_16)
764 #define	sd_convert_geometry		ssd_convert_geometry
765 #endif
766 
767 #define	sd_resync_geom_caches		ssd_resync_geom_caches
768 #define	sd_read_fdisk			ssd_read_fdisk
769 #define	sd_get_physical_geometry	ssd_get_physical_geometry
770 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
771 #define	sd_update_block_info		ssd_update_block_info
772 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
773 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
774 #define	sd_validate_efi			ssd_validate_efi
775 #define	sd_use_efi			ssd_use_efi
776 #define	sd_uselabel			ssd_uselabel
777 #define	sd_build_default_label		ssd_build_default_label
778 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
779 #define	sd_inq_fill			ssd_inq_fill
780 #define	sd_register_devid		ssd_register_devid
781 #define	sd_get_devid_block		ssd_get_devid_block
782 #define	sd_get_devid			ssd_get_devid
783 #define	sd_create_devid			ssd_create_devid
784 #define	sd_write_deviceid		ssd_write_deviceid
785 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
786 #define	sd_setup_pm			ssd_setup_pm
787 #define	sd_create_pm_components		ssd_create_pm_components
788 #define	sd_ddi_suspend			ssd_ddi_suspend
789 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
790 #define	sd_ddi_resume			ssd_ddi_resume
791 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
792 #define	sdpower				ssdpower
793 #define	sdattach			ssdattach
794 #define	sddetach			ssddetach
795 #define	sd_unit_attach			ssd_unit_attach
796 #define	sd_unit_detach			ssd_unit_detach
797 #define	sd_create_minor_nodes		ssd_create_minor_nodes
798 #define	sd_create_errstats		ssd_create_errstats
799 #define	sd_set_errstats			ssd_set_errstats
800 #define	sd_set_pstats			ssd_set_pstats
801 #define	sddump				ssddump
802 #define	sd_scsi_poll			ssd_scsi_poll
803 #define	sd_send_polled_RQS		ssd_send_polled_RQS
804 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
805 #define	sd_init_event_callbacks		ssd_init_event_callbacks
806 #define	sd_event_callback		ssd_event_callback
807 #define	sd_disable_caching		ssd_disable_caching
808 #define	sd_make_device			ssd_make_device
809 #define	sdopen				ssdopen
810 #define	sdclose				ssdclose
811 #define	sd_ready_and_valid		ssd_ready_and_valid
812 #define	sdmin				ssdmin
813 #define	sdread				ssdread
814 #define	sdwrite				ssdwrite
815 #define	sdaread				ssdaread
816 #define	sdawrite			ssdawrite
817 #define	sdstrategy			ssdstrategy
818 #define	sdioctl				ssdioctl
819 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
820 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
821 #define	sd_checksum_iostart		ssd_checksum_iostart
822 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
823 #define	sd_pm_iostart			ssd_pm_iostart
824 #define	sd_core_iostart			ssd_core_iostart
825 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
826 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
827 #define	sd_checksum_iodone		ssd_checksum_iodone
828 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
829 #define	sd_pm_iodone			ssd_pm_iodone
830 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
831 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
832 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
833 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
834 #define	sd_buf_iodone			ssd_buf_iodone
835 #define	sd_uscsi_strategy		ssd_uscsi_strategy
836 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
837 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
838 #define	sd_uscsi_iodone			ssd_uscsi_iodone
839 #define	sd_xbuf_strategy		ssd_xbuf_strategy
840 #define	sd_xbuf_init			ssd_xbuf_init
841 #define	sd_pm_entry			ssd_pm_entry
842 #define	sd_pm_exit			ssd_pm_exit
843 
844 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
845 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
846 
847 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
848 #define	sdintr				ssdintr
849 #define	sd_start_cmds			ssd_start_cmds
850 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
851 #define	sd_bioclone_alloc		ssd_bioclone_alloc
852 #define	sd_bioclone_free		ssd_bioclone_free
853 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
854 #define	sd_shadow_buf_free		ssd_shadow_buf_free
855 #define	sd_print_transport_rejected_message	\
856 					ssd_print_transport_rejected_message
857 #define	sd_retry_command		ssd_retry_command
858 #define	sd_set_retry_bp			ssd_set_retry_bp
859 #define	sd_send_request_sense_command	ssd_send_request_sense_command
860 #define	sd_start_retry_command		ssd_start_retry_command
861 #define	sd_start_direct_priority_command	\
862 					ssd_start_direct_priority_command
863 #define	sd_return_failed_command	ssd_return_failed_command
864 #define	sd_return_failed_command_no_restart	\
865 					ssd_return_failed_command_no_restart
866 #define	sd_return_command		ssd_return_command
867 #define	sd_sync_with_callback		ssd_sync_with_callback
868 #define	sdrunout			ssdrunout
869 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
870 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
871 #define	sd_reduce_throttle		ssd_reduce_throttle
872 #define	sd_restore_throttle		ssd_restore_throttle
873 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
874 #define	sd_init_cdb_limits		ssd_init_cdb_limits
875 #define	sd_pkt_status_good		ssd_pkt_status_good
876 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
877 #define	sd_pkt_status_busy		ssd_pkt_status_busy
878 #define	sd_pkt_status_reservation_conflict	\
879 					ssd_pkt_status_reservation_conflict
880 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
881 #define	sd_handle_request_sense		ssd_handle_request_sense
882 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
883 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
884 #define	sd_validate_sense_data		ssd_validate_sense_data
885 #define	sd_decode_sense			ssd_decode_sense
886 #define	sd_print_sense_msg		ssd_print_sense_msg
887 #define	sd_extract_sense_info_descr	ssd_extract_sense_info_descr
888 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
889 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
890 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
891 #define	sd_sense_key_medium_or_hardware_error	\
892 					ssd_sense_key_medium_or_hardware_error
893 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
894 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
895 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
896 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
897 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
898 #define	sd_sense_key_default		ssd_sense_key_default
899 #define	sd_print_retry_msg		ssd_print_retry_msg
900 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
901 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
902 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
903 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
904 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
905 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
906 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
907 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
908 #define	sd_pkt_reason_default		ssd_pkt_reason_default
909 #define	sd_reset_target			ssd_reset_target
910 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
911 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
912 #define	sd_taskq_create			ssd_taskq_create
913 #define	sd_taskq_delete			ssd_taskq_delete
914 #define	sd_media_change_task		ssd_media_change_task
915 #define	sd_handle_mchange		ssd_handle_mchange
916 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
917 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
918 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
919 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
920 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
921 					sd_send_scsi_feature_GET_CONFIGURATION
922 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
923 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
924 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
925 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
926 					ssd_send_scsi_PERSISTENT_RESERVE_IN
927 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
928 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
929 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
930 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
931 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
932 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
933 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
934 #define	sd_alloc_rqs			ssd_alloc_rqs
935 #define	sd_free_rqs			ssd_free_rqs
936 #define	sd_dump_memory			ssd_dump_memory
937 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
938 #define	sd_get_media_info		ssd_get_media_info
939 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
940 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
941 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
942 #define	sd_dkio_get_partition		ssd_dkio_get_partition
943 #define	sd_dkio_set_partition		ssd_dkio_set_partition
944 #define	sd_dkio_partition		ssd_dkio_partition
945 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
946 #define	sd_dkio_get_efi			ssd_dkio_get_efi
947 #define	sd_build_user_vtoc		ssd_build_user_vtoc
948 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
949 #define	sd_dkio_set_efi			ssd_dkio_set_efi
950 #define	sd_build_label_vtoc		ssd_build_label_vtoc
951 #define	sd_write_label			ssd_write_label
952 #define	sd_clear_vtoc			ssd_clear_vtoc
953 #define	sd_clear_efi			ssd_clear_efi
954 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
955 #define	sd_setup_next_xfer		ssd_setup_next_xfer
956 #define	sd_dkio_get_temp		ssd_dkio_get_temp
957 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
958 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
959 #define	sd_setup_default_geometry	ssd_setup_default_geometry
960 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
961 #define	sd_check_mhd			ssd_check_mhd
962 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
963 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
964 #define	sd_sname			ssd_sname
965 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
966 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
967 #define	sd_take_ownership		ssd_take_ownership
968 #define	sd_reserve_release		ssd_reserve_release
969 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
970 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
971 #define	sd_persistent_reservation_in_read_keys	\
972 					ssd_persistent_reservation_in_read_keys
973 #define	sd_persistent_reservation_in_read_resv	\
974 					ssd_persistent_reservation_in_read_resv
975 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
976 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
977 #define	sd_mhdioc_release		ssd_mhdioc_release
978 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
979 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
980 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
981 #define	sr_change_blkmode		ssr_change_blkmode
982 #define	sr_change_speed			ssr_change_speed
983 #define	sr_atapi_change_speed		ssr_atapi_change_speed
984 #define	sr_pause_resume			ssr_pause_resume
985 #define	sr_play_msf			ssr_play_msf
986 #define	sr_play_trkind			ssr_play_trkind
987 #define	sr_read_all_subcodes		ssr_read_all_subcodes
988 #define	sr_read_subchannel		ssr_read_subchannel
989 #define	sr_read_tocentry		ssr_read_tocentry
990 #define	sr_read_tochdr			ssr_read_tochdr
991 #define	sr_read_cdda			ssr_read_cdda
992 #define	sr_read_cdxa			ssr_read_cdxa
993 #define	sr_read_mode1			ssr_read_mode1
994 #define	sr_read_mode2			ssr_read_mode2
995 #define	sr_read_cd_mode2		ssr_read_cd_mode2
996 #define	sr_sector_mode			ssr_sector_mode
997 #define	sr_eject			ssr_eject
998 #define	sr_ejected			ssr_ejected
999 #define	sr_check_wp			ssr_check_wp
1000 #define	sd_check_media			ssd_check_media
1001 #define	sd_media_watch_cb		ssd_media_watch_cb
1002 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1003 #define	sr_volume_ctrl			ssr_volume_ctrl
1004 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1005 #define	sd_log_page_supported		ssd_log_page_supported
1006 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1007 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1008 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1009 #define	sd_range_lock			ssd_range_lock
1010 #define	sd_get_range			ssd_get_range
1011 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1012 #define	sd_range_unlock			ssd_range_unlock
1013 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1014 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1015 
1016 #define	sd_iostart_chain		ssd_iostart_chain
1017 #define	sd_iodone_chain			ssd_iodone_chain
1018 #define	sd_initpkt_map			ssd_initpkt_map
1019 #define	sd_destroypkt_map		ssd_destroypkt_map
1020 #define	sd_chain_type_map		ssd_chain_type_map
1021 #define	sd_chain_index_map		ssd_chain_index_map
1022 
1023 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1024 #define	sd_failfast_flushq		ssd_failfast_flushq
1025 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1026 
1027 #define	sd_is_lsi			ssd_is_lsi
1028 
1029 #endif	/* #if (defined(__fibre)) */
1030 
1031 
1032 int _init(void);
1033 int _fini(void);
1034 int _info(struct modinfo *modinfop);
1035 
1036 /*PRINTFLIKE3*/
1037 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1038 /*PRINTFLIKE3*/
1039 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1040 /*PRINTFLIKE3*/
1041 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1042 
1043 static int sdprobe(dev_info_t *devi);
1044 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1045     void **result);
1046 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1047     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1048 
1049 /*
1050  * Smart probe for parallel scsi
1051  */
1052 static void sd_scsi_probe_cache_init(void);
1053 static void sd_scsi_probe_cache_fini(void);
1054 static void sd_scsi_clear_probe_cache(void);
1055 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1056 
1057 static int	sd_spin_up_unit(struct sd_lun *un);
1058 static void	sd_enable_descr_sense(struct sd_lun *un);
1059 static void	sd_set_mmc_caps(struct sd_lun *un);
1060 
1061 static void sd_read_unit_properties(struct sd_lun *un);
1062 static int  sd_process_sdconf_file(struct sd_lun *un);
1063 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1064     int *data_list, sd_tunables *values);
1065 static void sd_process_sdconf_table(struct sd_lun *un);
1066 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1067 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1068 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1069 	int list_len, char *dataname_ptr);
1070 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1071     sd_tunables *prop_list);
1072 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1073 
1074 #if defined(_SUNOS_VTOC_16)
1075 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1076 #endif
1077 
1078 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1079 	int path_flag);
1080 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1081 	int path_flag);
1082 static void sd_get_physical_geometry(struct sd_lun *un,
1083 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1084 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1085 	int lbasize);
1086 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1087 static void sd_swap_efi_gpt(efi_gpt_t *);
1088 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1089 static int sd_validate_efi(efi_gpt_t *);
1090 static int sd_use_efi(struct sd_lun *, int);
1091 static void sd_build_default_label(struct sd_lun *un);
1092 
1093 #if defined(_FIRMWARE_NEEDS_FDISK)
1094 static int  sd_has_max_chs_vals(struct ipart *fdp);
1095 #endif
1096 static void sd_inq_fill(char *p, int l, char *s);
1097 
1098 
1099 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1100     int reservation_flag);
1101 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1102 static int  sd_get_devid(struct sd_lun *un);
1103 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1104 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1105 static int  sd_write_deviceid(struct sd_lun *un);
1106 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1107 static int  sd_check_vpd_page_support(struct sd_lun *un);
1108 
1109 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1110 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1111 
1112 static int  sd_ddi_suspend(dev_info_t *devi);
1113 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1114 static int  sd_ddi_resume(dev_info_t *devi);
1115 static int  sd_ddi_pm_resume(struct sd_lun *un);
1116 static int  sdpower(dev_info_t *devi, int component, int level);
1117 
1118 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1119 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1120 static int  sd_unit_attach(dev_info_t *devi);
1121 static int  sd_unit_detach(dev_info_t *devi);
1122 
1123 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1124 static void sd_create_errstats(struct sd_lun *un, int instance);
1125 static void sd_set_errstats(struct sd_lun *un);
1126 static void sd_set_pstats(struct sd_lun *un);
1127 
1128 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1129 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1130 static int  sd_send_polled_RQS(struct sd_lun *un);
1131 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1132 
1133 #if (defined(__fibre))
1134 /*
1135  * Event callbacks (photon)
1136  */
1137 static void sd_init_event_callbacks(struct sd_lun *un);
1138 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1139 #endif
1140 
1141 
1142 static int   sd_disable_caching(struct sd_lun *un);
1143 static dev_t sd_make_device(dev_info_t *devi);
1144 
1145 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1146 	uint64_t capacity);
1147 
1148 /*
1149  * Driver entry point functions.
1150  */
1151 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1152 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1153 static int  sd_ready_and_valid(struct sd_lun *un);
1154 
1155 static void sdmin(struct buf *bp);
1156 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1157 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1158 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1159 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1160 
1161 static int sdstrategy(struct buf *bp);
1162 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1163 
1164 /*
1165  * Function prototypes for layering functions in the iostart chain.
1166  */
1167 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1168 	struct buf *bp);
1169 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1170 	struct buf *bp);
1171 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1172 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1173 	struct buf *bp);
1174 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1175 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1176 
1177 /*
1178  * Function prototypes for layering functions in the iodone chain.
1179  */
1180 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1181 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1182 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1183 	struct buf *bp);
1184 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1185 	struct buf *bp);
1186 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1187 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1188 	struct buf *bp);
1189 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1190 
1191 /*
1192  * Prototypes for functions to support buf(9S) based IO.
1193  */
1194 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1195 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1196 static void sd_destroypkt_for_buf(struct buf *);
1197 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1198 	struct buf *bp, int flags,
1199 	int (*callback)(caddr_t), caddr_t callback_arg,
1200 	diskaddr_t lba, uint32_t blockcount);
1201 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1202 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1203 
1204 /*
1205  * Prototypes for functions to support USCSI IO.
1206  */
1207 static int sd_uscsi_strategy(struct buf *bp);
1208 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1209 static void sd_destroypkt_for_uscsi(struct buf *);
1210 
1211 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1212 	uchar_t chain_type, void *pktinfop);
1213 
1214 static int  sd_pm_entry(struct sd_lun *un);
1215 static void sd_pm_exit(struct sd_lun *un);
1216 
1217 static void sd_pm_idletimeout_handler(void *arg);
1218 
1219 /*
1220  * sd_core internal functions (used at the sd_core_io layer).
1221  */
1222 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1223 static void sdintr(struct scsi_pkt *pktp);
1224 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1225 
1226 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1227 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1228 	int path_flag);
1229 
1230 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1231 	daddr_t blkno, int (*func)(struct buf *));
1232 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1233 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1234 static void sd_bioclone_free(struct buf *bp);
1235 static void sd_shadow_buf_free(struct buf *bp);
1236 
1237 static void sd_print_transport_rejected_message(struct sd_lun *un,
1238 	struct sd_xbuf *xp, int code);
1239 
1240 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1241 	int retry_check_flag,
1242 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1243 		int c),
1244 	void *user_arg, int failure_code,  clock_t retry_delay,
1245 	void (*statp)(kstat_io_t *));
1246 
1247 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1248 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1249 
1250 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1251 	struct scsi_pkt *pktp);
1252 static void sd_start_retry_command(void *arg);
1253 static void sd_start_direct_priority_command(void *arg);
1254 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1255 	int errcode);
1256 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1257 	struct buf *bp, int errcode);
1258 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1259 static void sd_sync_with_callback(struct sd_lun *un);
1260 static int sdrunout(caddr_t arg);
1261 
1262 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1263 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1264 
1265 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1266 static void sd_restore_throttle(void *arg);
1267 
1268 static void sd_init_cdb_limits(struct sd_lun *un);
1269 
1270 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1271 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1272 
1273 /*
1274  * Error handling functions
1275  */
1276 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1277 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1278 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1279 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1280 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1281 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1282 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1283 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1284 
1285 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1286 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1287 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1288 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1289 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1290 	struct sd_xbuf *xp);
1291 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1292 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1293 
1294 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1295 	void *arg, int code);
1296 static diskaddr_t sd_extract_sense_info_descr(
1297 	struct scsi_descr_sense_hdr *sdsp);
1298 
1299 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1300 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1301 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1302 	uint8_t asc,
1303 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1304 static void sd_sense_key_not_ready(struct sd_lun *un,
1305 	uint8_t asc, uint8_t ascq,
1306 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1307 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1308 	int sense_key, uint8_t asc,
1309 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1310 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1311 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1312 static void sd_sense_key_unit_attention(struct sd_lun *un,
1313 	uint8_t asc,
1314 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1315 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1316 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1317 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1318 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1319 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1320 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1321 static void sd_sense_key_default(struct sd_lun *un,
1322 	int sense_key,
1323 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1324 
1325 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1326 	void *arg, int flag);
1327 
1328 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1329 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1330 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1331 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1332 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1333 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1334 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1335 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1336 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1339 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1340 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1341 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1342 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1343 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1344 
1345 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1346 
1347 static void sd_start_stop_unit_callback(void *arg);
1348 static void sd_start_stop_unit_task(void *arg);
1349 
1350 static void sd_taskq_create(void);
1351 static void sd_taskq_delete(void);
1352 static void sd_media_change_task(void *arg);
1353 
1354 static int sd_handle_mchange(struct sd_lun *un);
1355 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1356 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1357 	uint32_t *lbap, int path_flag);
1358 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1359 	uint32_t *lbap, int path_flag);
1360 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1361 	int path_flag);
1362 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1363 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1364 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1365 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1366 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1367 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1368 	uchar_t usr_cmd, uchar_t *usr_bufp);
1369 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un);
1370 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1371 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1372 	uchar_t *bufaddr, uint_t buflen);
1373 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1374 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1375 	uchar_t *bufaddr, uint_t buflen, char feature);
1376 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1377 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1378 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1379 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1380 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1381 	size_t buflen, daddr_t start_block, int path_flag);
1382 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1383 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1384 	path_flag)
1385 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1386 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1387 	path_flag)
1388 
1389 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1390 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1391 	uint16_t param_ptr, int path_flag);
1392 
1393 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1394 static void sd_free_rqs(struct sd_lun *un);
1395 
1396 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1397 	uchar_t *data, int len, int fmt);
1398 
1399 /*
1400  * Disk Ioctl Function Prototypes
1401  */
1402 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1403 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1404 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1405 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1406 	int geom_validated);
1407 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1408 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1409 	int geom_validated);
1410 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1411 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1412 	int geom_validated);
1413 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1414 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1415 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1416 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1417 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1418 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1419 static int sd_write_label(dev_t dev);
1420 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1421 static void sd_clear_vtoc(struct sd_lun *un);
1422 static void sd_clear_efi(struct sd_lun *un);
1423 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1424 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1425 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1426 static void sd_setup_default_geometry(struct sd_lun *un);
1427 #if defined(__i386) || defined(__amd64)
1428 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1429 #endif
1430 
1431 /*
1432  * Multi-host Ioctl Prototypes
1433  */
1434 static int sd_check_mhd(dev_t dev, int interval);
1435 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1436 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1437 static char *sd_sname(uchar_t status);
1438 static void sd_mhd_resvd_recover(void *arg);
1439 static void sd_resv_reclaim_thread();
1440 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1441 static int sd_reserve_release(dev_t dev, int cmd);
1442 static void sd_rmv_resv_reclaim_req(dev_t dev);
1443 static void sd_mhd_reset_notify_cb(caddr_t arg);
1444 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1445 	mhioc_inkeys_t *usrp, int flag);
1446 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1447 	mhioc_inresvs_t *usrp, int flag);
1448 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1449 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1450 static int sd_mhdioc_release(dev_t dev);
1451 static int sd_mhdioc_register_devid(dev_t dev);
1452 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1453 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1454 
1455 /*
1456  * SCSI removable prototypes
1457  */
1458 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1459 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1460 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1461 static int sr_pause_resume(dev_t dev, int mode);
1462 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1463 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1464 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1465 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1466 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1467 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1468 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1469 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1470 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1471 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1472 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1473 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1474 static int sr_eject(dev_t dev);
1475 static void sr_ejected(register struct sd_lun *un);
1476 static int sr_check_wp(dev_t dev);
1477 static int sd_check_media(dev_t dev, enum dkio_state state);
1478 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1479 static void sd_delayed_cv_broadcast(void *arg);
1480 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1481 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1482 
1483 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1484 
1485 /*
1486  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1487  */
1488 static void sd_check_for_writable_cd(struct sd_lun *un);
1489 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1490 static void sd_wm_cache_destructor(void *wm, void *un);
1491 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1492 	daddr_t endb, ushort_t typ);
1493 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1494 	daddr_t endb);
1495 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1496 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1497 static void sd_read_modify_write_task(void * arg);
1498 static int
1499 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1500 	struct buf **bpp);
1501 
1502 
1503 /*
1504  * Function prototypes for failfast support.
1505  */
1506 static void sd_failfast_flushq(struct sd_lun *un);
1507 static int sd_failfast_flushq_callback(struct buf *bp);
1508 
1509 /*
1510  * Function prototypes to check for lsi devices
1511  */
1512 static void sd_is_lsi(struct sd_lun *un);
1513 
1514 /*
1515  * Function prototypes for x86 support
1516  */
1517 #if defined(__i386) || defined(__amd64)
1518 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1519 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1520 #endif
1521 
1522 /*
1523  * Constants for failfast support:
1524  *
1525  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1526  * failfast processing being performed.
1527  *
1528  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1529  * failfast processing on all bufs with B_FAILFAST set.
1530  */
1531 
1532 #define	SD_FAILFAST_INACTIVE		0
1533 #define	SD_FAILFAST_ACTIVE		1
1534 
1535 /*
1536  * Bitmask to control behavior of buf(9S) flushes when a transition to
1537  * the failfast state occurs. Optional bits include:
1538  *
1539  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1540  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1541  * be flushed.
1542  *
1543  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1544  * driver, in addition to the regular wait queue. This includes the xbuf
1545  * queues. When clear, only the driver's wait queue will be flushed.
1546  */
1547 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1548 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1549 
1550 /*
1551  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1552  * to flush all queues within the driver.
1553  */
1554 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1555 
1556 
1557 /*
1558  * SD Testing Fault Injection
1559  */
1560 #ifdef SD_FAULT_INJECTION
1561 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1562 static void sd_faultinjection(struct scsi_pkt *pktp);
1563 static void sd_injection_log(char *buf, struct sd_lun *un);
1564 #endif
1565 
1566 /*
1567  * Device driver ops vector
1568  */
1569 static struct cb_ops sd_cb_ops = {
1570 	sdopen,			/* open */
1571 	sdclose,		/* close */
1572 	sdstrategy,		/* strategy */
1573 	nodev,			/* print */
1574 	sddump,			/* dump */
1575 	sdread,			/* read */
1576 	sdwrite,		/* write */
1577 	sdioctl,		/* ioctl */
1578 	nodev,			/* devmap */
1579 	nodev,			/* mmap */
1580 	nodev,			/* segmap */
1581 	nochpoll,		/* poll */
1582 	sd_prop_op,		/* cb_prop_op */
1583 	0,			/* streamtab  */
1584 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1585 	CB_REV,			/* cb_rev */
1586 	sdaread, 		/* async I/O read entry point */
1587 	sdawrite		/* async I/O write entry point */
1588 };
1589 
1590 static struct dev_ops sd_ops = {
1591 	DEVO_REV,		/* devo_rev, */
1592 	0,			/* refcnt  */
1593 	sdinfo,			/* info */
1594 	nulldev,		/* identify */
1595 	sdprobe,		/* probe */
1596 	sdattach,		/* attach */
1597 	sddetach,		/* detach */
1598 	nodev,			/* reset */
1599 	&sd_cb_ops,		/* driver operations */
1600 	NULL,			/* bus operations */
1601 	sdpower			/* power */
1602 };
1603 
1604 
1605 /*
1606  * This is the loadable module wrapper.
1607  */
1608 #include <sys/modctl.h>
1609 
1610 static struct modldrv modldrv = {
1611 	&mod_driverops,		/* Type of module. This one is a driver */
1612 	SD_MODULE_NAME,		/* Module name. */
1613 	&sd_ops			/* driver ops */
1614 };
1615 
1616 
1617 static struct modlinkage modlinkage = {
1618 	MODREV_1,
1619 	&modldrv,
1620 	NULL
1621 };
1622 
1623 
1624 static struct scsi_asq_key_strings sd_additional_codes[] = {
1625 	0x81, 0, "Logical Unit is Reserved",
1626 	0x85, 0, "Audio Address Not Valid",
1627 	0xb6, 0, "Media Load Mechanism Failed",
1628 	0xB9, 0, "Audio Play Operation Aborted",
1629 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1630 	0x53, 2, "Medium removal prevented",
1631 	0x6f, 0, "Authentication failed during key exchange",
1632 	0x6f, 1, "Key not present",
1633 	0x6f, 2, "Key not established",
1634 	0x6f, 3, "Read without proper authentication",
1635 	0x6f, 4, "Mismatched region to this logical unit",
1636 	0x6f, 5, "Region reset count error",
1637 	0xffff, 0x0, NULL
1638 };
1639 
1640 
1641 /*
1642  * Struct for passing printing information for sense data messages
1643  */
1644 struct sd_sense_info {
1645 	int	ssi_severity;
1646 	int	ssi_pfa_flag;
1647 };
1648 
1649 /*
1650  * Table of function pointers for iostart-side routines. Seperate "chains"
1651  * of layered function calls are formed by placing the function pointers
1652  * sequentially in the desired order. Functions are called according to an
1653  * incrementing table index ordering. The last function in each chain must
1654  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1655  * in the sd_iodone_chain[] array.
1656  *
1657  * Note: It may seem more natural to organize both the iostart and iodone
1658  * functions together, into an array of structures (or some similar
1659  * organization) with a common index, rather than two seperate arrays which
1660  * must be maintained in synchronization. The purpose of this division is
1661  * to achiece improved performance: individual arrays allows for more
1662  * effective cache line utilization on certain platforms.
1663  */
1664 
1665 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1666 
1667 
1668 static sd_chain_t sd_iostart_chain[] = {
1669 
1670 	/* Chain for buf IO for disk drive targets (PM enabled) */
1671 	sd_mapblockaddr_iostart,	/* Index: 0 */
1672 	sd_pm_iostart,			/* Index: 1 */
1673 	sd_core_iostart,		/* Index: 2 */
1674 
1675 	/* Chain for buf IO for disk drive targets (PM disabled) */
1676 	sd_mapblockaddr_iostart,	/* Index: 3 */
1677 	sd_core_iostart,		/* Index: 4 */
1678 
1679 	/* Chain for buf IO for removable-media targets (PM enabled) */
1680 	sd_mapblockaddr_iostart,	/* Index: 5 */
1681 	sd_mapblocksize_iostart,	/* Index: 6 */
1682 	sd_pm_iostart,			/* Index: 7 */
1683 	sd_core_iostart,		/* Index: 8 */
1684 
1685 	/* Chain for buf IO for removable-media targets (PM disabled) */
1686 	sd_mapblockaddr_iostart,	/* Index: 9 */
1687 	sd_mapblocksize_iostart,	/* Index: 10 */
1688 	sd_core_iostart,		/* Index: 11 */
1689 
1690 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1691 	sd_mapblockaddr_iostart,	/* Index: 12 */
1692 	sd_checksum_iostart,		/* Index: 13 */
1693 	sd_pm_iostart,			/* Index: 14 */
1694 	sd_core_iostart,		/* Index: 15 */
1695 
1696 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1697 	sd_mapblockaddr_iostart,	/* Index: 16 */
1698 	sd_checksum_iostart,		/* Index: 17 */
1699 	sd_core_iostart,		/* Index: 18 */
1700 
1701 	/* Chain for USCSI commands (all targets) */
1702 	sd_pm_iostart,			/* Index: 19 */
1703 	sd_core_iostart,		/* Index: 20 */
1704 
1705 	/* Chain for checksumming USCSI commands (all targets) */
1706 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1707 	sd_pm_iostart,			/* Index: 22 */
1708 	sd_core_iostart,		/* Index: 23 */
1709 
1710 	/* Chain for "direct" USCSI commands (all targets) */
1711 	sd_core_iostart,		/* Index: 24 */
1712 
1713 	/* Chain for "direct priority" USCSI commands (all targets) */
1714 	sd_core_iostart,		/* Index: 25 */
1715 };
1716 
1717 /*
1718  * Macros to locate the first function of each iostart chain in the
1719  * sd_iostart_chain[] array. These are located by the index in the array.
1720  */
1721 #define	SD_CHAIN_DISK_IOSTART			0
1722 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1723 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1724 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1725 #define	SD_CHAIN_CHKSUM_IOSTART			12
1726 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1727 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1728 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1729 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1730 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1731 
1732 
1733 /*
1734  * Table of function pointers for the iodone-side routines for the driver-
1735  * internal layering mechanism.  The calling sequence for iodone routines
1736  * uses a decrementing table index, so the last routine called in a chain
1737  * must be at the lowest array index location for that chain.  The last
1738  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1739  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1740  * of the functions in an iodone side chain must correspond to the ordering
1741  * of the iostart routines for that chain.  Note that there is no iodone
1742  * side routine that corresponds to sd_core_iostart(), so there is no
1743  * entry in the table for this.
1744  */
1745 
1746 static sd_chain_t sd_iodone_chain[] = {
1747 
1748 	/* Chain for buf IO for disk drive targets (PM enabled) */
1749 	sd_buf_iodone,			/* Index: 0 */
1750 	sd_mapblockaddr_iodone,		/* Index: 1 */
1751 	sd_pm_iodone,			/* Index: 2 */
1752 
1753 	/* Chain for buf IO for disk drive targets (PM disabled) */
1754 	sd_buf_iodone,			/* Index: 3 */
1755 	sd_mapblockaddr_iodone,		/* Index: 4 */
1756 
1757 	/* Chain for buf IO for removable-media targets (PM enabled) */
1758 	sd_buf_iodone,			/* Index: 5 */
1759 	sd_mapblockaddr_iodone,		/* Index: 6 */
1760 	sd_mapblocksize_iodone,		/* Index: 7 */
1761 	sd_pm_iodone,			/* Index: 8 */
1762 
1763 	/* Chain for buf IO for removable-media targets (PM disabled) */
1764 	sd_buf_iodone,			/* Index: 9 */
1765 	sd_mapblockaddr_iodone,		/* Index: 10 */
1766 	sd_mapblocksize_iodone,		/* Index: 11 */
1767 
1768 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1769 	sd_buf_iodone,			/* Index: 12 */
1770 	sd_mapblockaddr_iodone,		/* Index: 13 */
1771 	sd_checksum_iodone,		/* Index: 14 */
1772 	sd_pm_iodone,			/* Index: 15 */
1773 
1774 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1775 	sd_buf_iodone,			/* Index: 16 */
1776 	sd_mapblockaddr_iodone,		/* Index: 17 */
1777 	sd_checksum_iodone,		/* Index: 18 */
1778 
1779 	/* Chain for USCSI commands (non-checksum targets) */
1780 	sd_uscsi_iodone,		/* Index: 19 */
1781 	sd_pm_iodone,			/* Index: 20 */
1782 
1783 	/* Chain for USCSI commands (checksum targets) */
1784 	sd_uscsi_iodone,		/* Index: 21 */
1785 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1786 	sd_pm_iodone,			/* Index: 22 */
1787 
1788 	/* Chain for "direct" USCSI commands (all targets) */
1789 	sd_uscsi_iodone,		/* Index: 24 */
1790 
1791 	/* Chain for "direct priority" USCSI commands (all targets) */
1792 	sd_uscsi_iodone,		/* Index: 25 */
1793 };
1794 
1795 
1796 /*
1797  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1798  * each iodone-side chain. These are located by the array index, but as the
1799  * iodone side functions are called in a decrementing-index order, the
1800  * highest index number in each chain must be specified (as these correspond
1801  * to the first function in the iodone chain that will be called by the core
1802  * at IO completion time).
1803  */
1804 
1805 #define	SD_CHAIN_DISK_IODONE			2
1806 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1807 #define	SD_CHAIN_RMMEDIA_IODONE			8
1808 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1809 #define	SD_CHAIN_CHKSUM_IODONE			15
1810 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1811 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1812 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1813 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1814 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1815 
1816 
1817 
1818 
1819 /*
1820  * Array to map a layering chain index to the appropriate initpkt routine.
1821  * The redundant entries are present so that the index used for accessing
1822  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1823  * with this table as well.
1824  */
1825 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1826 
1827 static sd_initpkt_t	sd_initpkt_map[] = {
1828 
1829 	/* Chain for buf IO for disk drive targets (PM enabled) */
1830 	sd_initpkt_for_buf,		/* Index: 0 */
1831 	sd_initpkt_for_buf,		/* Index: 1 */
1832 	sd_initpkt_for_buf,		/* Index: 2 */
1833 
1834 	/* Chain for buf IO for disk drive targets (PM disabled) */
1835 	sd_initpkt_for_buf,		/* Index: 3 */
1836 	sd_initpkt_for_buf,		/* Index: 4 */
1837 
1838 	/* Chain for buf IO for removable-media targets (PM enabled) */
1839 	sd_initpkt_for_buf,		/* Index: 5 */
1840 	sd_initpkt_for_buf,		/* Index: 6 */
1841 	sd_initpkt_for_buf,		/* Index: 7 */
1842 	sd_initpkt_for_buf,		/* Index: 8 */
1843 
1844 	/* Chain for buf IO for removable-media targets (PM disabled) */
1845 	sd_initpkt_for_buf,		/* Index: 9 */
1846 	sd_initpkt_for_buf,		/* Index: 10 */
1847 	sd_initpkt_for_buf,		/* Index: 11 */
1848 
1849 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1850 	sd_initpkt_for_buf,		/* Index: 12 */
1851 	sd_initpkt_for_buf,		/* Index: 13 */
1852 	sd_initpkt_for_buf,		/* Index: 14 */
1853 	sd_initpkt_for_buf,		/* Index: 15 */
1854 
1855 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1856 	sd_initpkt_for_buf,		/* Index: 16 */
1857 	sd_initpkt_for_buf,		/* Index: 17 */
1858 	sd_initpkt_for_buf,		/* Index: 18 */
1859 
1860 	/* Chain for USCSI commands (non-checksum targets) */
1861 	sd_initpkt_for_uscsi,		/* Index: 19 */
1862 	sd_initpkt_for_uscsi,		/* Index: 20 */
1863 
1864 	/* Chain for USCSI commands (checksum targets) */
1865 	sd_initpkt_for_uscsi,		/* Index: 21 */
1866 	sd_initpkt_for_uscsi,		/* Index: 22 */
1867 	sd_initpkt_for_uscsi,		/* Index: 22 */
1868 
1869 	/* Chain for "direct" USCSI commands (all targets) */
1870 	sd_initpkt_for_uscsi,		/* Index: 24 */
1871 
1872 	/* Chain for "direct priority" USCSI commands (all targets) */
1873 	sd_initpkt_for_uscsi,		/* Index: 25 */
1874 
1875 };
1876 
1877 
1878 /*
1879  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1880  * The redundant entries are present so that the index used for accessing
1881  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1882  * with this table as well.
1883  */
1884 typedef void (*sd_destroypkt_t)(struct buf *);
1885 
1886 static sd_destroypkt_t	sd_destroypkt_map[] = {
1887 
1888 	/* Chain for buf IO for disk drive targets (PM enabled) */
1889 	sd_destroypkt_for_buf,		/* Index: 0 */
1890 	sd_destroypkt_for_buf,		/* Index: 1 */
1891 	sd_destroypkt_for_buf,		/* Index: 2 */
1892 
1893 	/* Chain for buf IO for disk drive targets (PM disabled) */
1894 	sd_destroypkt_for_buf,		/* Index: 3 */
1895 	sd_destroypkt_for_buf,		/* Index: 4 */
1896 
1897 	/* Chain for buf IO for removable-media targets (PM enabled) */
1898 	sd_destroypkt_for_buf,		/* Index: 5 */
1899 	sd_destroypkt_for_buf,		/* Index: 6 */
1900 	sd_destroypkt_for_buf,		/* Index: 7 */
1901 	sd_destroypkt_for_buf,		/* Index: 8 */
1902 
1903 	/* Chain for buf IO for removable-media targets (PM disabled) */
1904 	sd_destroypkt_for_buf,		/* Index: 9 */
1905 	sd_destroypkt_for_buf,		/* Index: 10 */
1906 	sd_destroypkt_for_buf,		/* Index: 11 */
1907 
1908 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1909 	sd_destroypkt_for_buf,		/* Index: 12 */
1910 	sd_destroypkt_for_buf,		/* Index: 13 */
1911 	sd_destroypkt_for_buf,		/* Index: 14 */
1912 	sd_destroypkt_for_buf,		/* Index: 15 */
1913 
1914 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1915 	sd_destroypkt_for_buf,		/* Index: 16 */
1916 	sd_destroypkt_for_buf,		/* Index: 17 */
1917 	sd_destroypkt_for_buf,		/* Index: 18 */
1918 
1919 	/* Chain for USCSI commands (non-checksum targets) */
1920 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1921 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1922 
1923 	/* Chain for USCSI commands (checksum targets) */
1924 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1925 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1926 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1927 
1928 	/* Chain for "direct" USCSI commands (all targets) */
1929 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1930 
1931 	/* Chain for "direct priority" USCSI commands (all targets) */
1932 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1933 
1934 };
1935 
1936 
1937 
1938 /*
1939  * Array to map a layering chain index to the appropriate chain "type".
1940  * The chain type indicates a specific property/usage of the chain.
1941  * The redundant entries are present so that the index used for accessing
1942  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1943  * with this table as well.
1944  */
1945 
1946 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1947 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1948 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1949 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1950 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1951 						/* (for error recovery) */
1952 
1953 static int sd_chain_type_map[] = {
1954 
1955 	/* Chain for buf IO for disk drive targets (PM enabled) */
1956 	SD_CHAIN_BUFIO,			/* Index: 0 */
1957 	SD_CHAIN_BUFIO,			/* Index: 1 */
1958 	SD_CHAIN_BUFIO,			/* Index: 2 */
1959 
1960 	/* Chain for buf IO for disk drive targets (PM disabled) */
1961 	SD_CHAIN_BUFIO,			/* Index: 3 */
1962 	SD_CHAIN_BUFIO,			/* Index: 4 */
1963 
1964 	/* Chain for buf IO for removable-media targets (PM enabled) */
1965 	SD_CHAIN_BUFIO,			/* Index: 5 */
1966 	SD_CHAIN_BUFIO,			/* Index: 6 */
1967 	SD_CHAIN_BUFIO,			/* Index: 7 */
1968 	SD_CHAIN_BUFIO,			/* Index: 8 */
1969 
1970 	/* Chain for buf IO for removable-media targets (PM disabled) */
1971 	SD_CHAIN_BUFIO,			/* Index: 9 */
1972 	SD_CHAIN_BUFIO,			/* Index: 10 */
1973 	SD_CHAIN_BUFIO,			/* Index: 11 */
1974 
1975 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1976 	SD_CHAIN_BUFIO,			/* Index: 12 */
1977 	SD_CHAIN_BUFIO,			/* Index: 13 */
1978 	SD_CHAIN_BUFIO,			/* Index: 14 */
1979 	SD_CHAIN_BUFIO,			/* Index: 15 */
1980 
1981 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1982 	SD_CHAIN_BUFIO,			/* Index: 16 */
1983 	SD_CHAIN_BUFIO,			/* Index: 17 */
1984 	SD_CHAIN_BUFIO,			/* Index: 18 */
1985 
1986 	/* Chain for USCSI commands (non-checksum targets) */
1987 	SD_CHAIN_USCSI,			/* Index: 19 */
1988 	SD_CHAIN_USCSI,			/* Index: 20 */
1989 
1990 	/* Chain for USCSI commands (checksum targets) */
1991 	SD_CHAIN_USCSI,			/* Index: 21 */
1992 	SD_CHAIN_USCSI,			/* Index: 22 */
1993 	SD_CHAIN_USCSI,			/* Index: 22 */
1994 
1995 	/* Chain for "direct" USCSI commands (all targets) */
1996 	SD_CHAIN_DIRECT,		/* Index: 24 */
1997 
1998 	/* Chain for "direct priority" USCSI commands (all targets) */
1999 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2000 };
2001 
2002 
2003 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2004 #define	SD_IS_BUFIO(xp)			\
2005 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2006 
2007 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2008 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2009 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2010 
2011 
2012 
2013 /*
2014  * Struct, array, and macros to map a specific chain to the appropriate
2015  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2016  *
2017  * The sd_chain_index_map[] array is used at attach time to set the various
2018  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2019  * chain to be used with the instance. This allows different instances to use
2020  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2021  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2022  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2023  * dynamically & without the use of locking; and (2) a layer may update the
2024  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2025  * to allow for deferred processing of an IO within the same chain from a
2026  * different execution context.
2027  */
2028 
2029 struct sd_chain_index {
2030 	int	sci_iostart_index;
2031 	int	sci_iodone_index;
2032 };
2033 
2034 static struct sd_chain_index	sd_chain_index_map[] = {
2035 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2036 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2037 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2038 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2039 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2040 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2041 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2042 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2043 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2044 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2045 };
2046 
2047 
2048 /*
2049  * The following are indexes into the sd_chain_index_map[] array.
2050  */
2051 
2052 /* un->un_buf_chain_type must be set to one of these */
2053 #define	SD_CHAIN_INFO_DISK		0
2054 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2055 #define	SD_CHAIN_INFO_RMMEDIA		2
2056 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2057 #define	SD_CHAIN_INFO_CHKSUM		4
2058 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2059 
2060 /* un->un_uscsi_chain_type must be set to one of these */
2061 #define	SD_CHAIN_INFO_USCSI_CMD		6
2062 /* USCSI with PM disabled is the same as DIRECT */
2063 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2064 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2065 
2066 /* un->un_direct_chain_type must be set to one of these */
2067 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2068 
2069 /* un->un_priority_chain_type must be set to one of these */
2070 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2071 
2072 /* size for devid inquiries */
2073 #define	MAX_INQUIRY_SIZE		0xF0
2074 
2075 /*
2076  * Macros used by functions to pass a given buf(9S) struct along to the
2077  * next function in the layering chain for further processing.
2078  *
2079  * In the following macros, passing more than three arguments to the called
2080  * routines causes the optimizer for the SPARC compiler to stop doing tail
2081  * call elimination which results in significant performance degradation.
2082  */
2083 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2084 	((*(sd_iostart_chain[index]))(index, un, bp))
2085 
2086 #define	SD_BEGIN_IODONE(index, un, bp)	\
2087 	((*(sd_iodone_chain[index]))(index, un, bp))
2088 
2089 #define	SD_NEXT_IOSTART(index, un, bp)				\
2090 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2091 
2092 #define	SD_NEXT_IODONE(index, un, bp)				\
2093 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2094 
2095 
2096 /*
2097  *    Function: _init
2098  *
2099  * Description: This is the driver _init(9E) entry point.
2100  *
2101  * Return Code: Returns the value from mod_install(9F) or
2102  *		ddi_soft_state_init(9F) as appropriate.
2103  *
2104  *     Context: Called when driver module loaded.
2105  */
2106 
2107 int
2108 _init(void)
2109 {
2110 	int	err;
2111 
2112 	/* establish driver name from module name */
2113 	sd_label = mod_modname(&modlinkage);
2114 
2115 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2116 		SD_MAXUNIT);
2117 
2118 	if (err != 0) {
2119 		return (err);
2120 	}
2121 
2122 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2123 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2124 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2125 
2126 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2127 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2128 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2129 
2130 	/*
2131 	 * it's ok to init here even for fibre device
2132 	 */
2133 	sd_scsi_probe_cache_init();
2134 
2135 	/*
2136 	 * Creating taskq before mod_install ensures that all callers (threads)
2137 	 * that enter the module after a successfull mod_install encounter
2138 	 * a valid taskq.
2139 	 */
2140 	sd_taskq_create();
2141 
2142 	err = mod_install(&modlinkage);
2143 	if (err != 0) {
2144 		/* delete taskq if install fails */
2145 		sd_taskq_delete();
2146 
2147 		mutex_destroy(&sd_detach_mutex);
2148 		mutex_destroy(&sd_log_mutex);
2149 		mutex_destroy(&sd_label_mutex);
2150 
2151 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2152 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2153 		cv_destroy(&sd_tr.srq_inprocess_cv);
2154 
2155 		sd_scsi_probe_cache_fini();
2156 
2157 		ddi_soft_state_fini(&sd_state);
2158 		return (err);
2159 	}
2160 
2161 	return (err);
2162 }
2163 
2164 
2165 /*
2166  *    Function: _fini
2167  *
2168  * Description: This is the driver _fini(9E) entry point.
2169  *
2170  * Return Code: Returns the value from mod_remove(9F)
2171  *
2172  *     Context: Called when driver module is unloaded.
2173  */
2174 
2175 int
2176 _fini(void)
2177 {
2178 	int err;
2179 
2180 	if ((err = mod_remove(&modlinkage)) != 0) {
2181 		return (err);
2182 	}
2183 
2184 	sd_taskq_delete();
2185 
2186 	mutex_destroy(&sd_detach_mutex);
2187 	mutex_destroy(&sd_log_mutex);
2188 	mutex_destroy(&sd_label_mutex);
2189 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2190 
2191 	sd_scsi_probe_cache_fini();
2192 
2193 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2194 	cv_destroy(&sd_tr.srq_inprocess_cv);
2195 
2196 	ddi_soft_state_fini(&sd_state);
2197 
2198 	return (err);
2199 }
2200 
2201 
2202 /*
2203  *    Function: _info
2204  *
2205  * Description: This is the driver _info(9E) entry point.
2206  *
2207  *   Arguments: modinfop - pointer to the driver modinfo structure
2208  *
2209  * Return Code: Returns the value from mod_info(9F).
2210  *
2211  *     Context: Kernel thread context
2212  */
2213 
2214 int
2215 _info(struct modinfo *modinfop)
2216 {
2217 	return (mod_info(&modlinkage, modinfop));
2218 }
2219 
2220 
2221 /*
2222  * The following routines implement the driver message logging facility.
2223  * They provide component- and level- based debug output filtering.
2224  * Output may also be restricted to messages for a single instance by
2225  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2226  * to NULL, then messages for all instances are printed.
2227  *
2228  * These routines have been cloned from each other due to the language
2229  * constraints of macros and variable argument list processing.
2230  */
2231 
2232 
2233 /*
2234  *    Function: sd_log_err
2235  *
2236  * Description: This routine is called by the SD_ERROR macro for debug
2237  *		logging of error conditions.
2238  *
2239  *   Arguments: comp - driver component being logged
2240  *		dev  - pointer to driver info structure
2241  *		fmt  - error string and format to be logged
2242  */
2243 
2244 static void
2245 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2246 {
2247 	va_list		ap;
2248 	dev_info_t	*dev;
2249 
2250 	ASSERT(un != NULL);
2251 	dev = SD_DEVINFO(un);
2252 	ASSERT(dev != NULL);
2253 
2254 	/*
2255 	 * Filter messages based on the global component and level masks.
2256 	 * Also print if un matches the value of sd_debug_un, or if
2257 	 * sd_debug_un is set to NULL.
2258 	 */
2259 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2260 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2261 		mutex_enter(&sd_log_mutex);
2262 		va_start(ap, fmt);
2263 		(void) vsprintf(sd_log_buf, fmt, ap);
2264 		va_end(ap);
2265 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2266 		mutex_exit(&sd_log_mutex);
2267 	}
2268 #ifdef SD_FAULT_INJECTION
2269 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2270 	if (un->sd_injection_mask & comp) {
2271 		mutex_enter(&sd_log_mutex);
2272 		va_start(ap, fmt);
2273 		(void) vsprintf(sd_log_buf, fmt, ap);
2274 		va_end(ap);
2275 		sd_injection_log(sd_log_buf, un);
2276 		mutex_exit(&sd_log_mutex);
2277 	}
2278 #endif
2279 }
2280 
2281 
2282 /*
2283  *    Function: sd_log_info
2284  *
2285  * Description: This routine is called by the SD_INFO macro for debug
2286  *		logging of general purpose informational conditions.
2287  *
2288  *   Arguments: comp - driver component being logged
2289  *		dev  - pointer to driver info structure
2290  *		fmt  - info string and format to be logged
2291  */
2292 
2293 static void
2294 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2295 {
2296 	va_list		ap;
2297 	dev_info_t	*dev;
2298 
2299 	ASSERT(un != NULL);
2300 	dev = SD_DEVINFO(un);
2301 	ASSERT(dev != NULL);
2302 
2303 	/*
2304 	 * Filter messages based on the global component and level masks.
2305 	 * Also print if un matches the value of sd_debug_un, or if
2306 	 * sd_debug_un is set to NULL.
2307 	 */
2308 	if ((sd_component_mask & component) &&
2309 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2310 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2311 		mutex_enter(&sd_log_mutex);
2312 		va_start(ap, fmt);
2313 		(void) vsprintf(sd_log_buf, fmt, ap);
2314 		va_end(ap);
2315 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2316 		mutex_exit(&sd_log_mutex);
2317 	}
2318 #ifdef SD_FAULT_INJECTION
2319 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2320 	if (un->sd_injection_mask & component) {
2321 		mutex_enter(&sd_log_mutex);
2322 		va_start(ap, fmt);
2323 		(void) vsprintf(sd_log_buf, fmt, ap);
2324 		va_end(ap);
2325 		sd_injection_log(sd_log_buf, un);
2326 		mutex_exit(&sd_log_mutex);
2327 	}
2328 #endif
2329 }
2330 
2331 
2332 /*
2333  *    Function: sd_log_trace
2334  *
2335  * Description: This routine is called by the SD_TRACE macro for debug
2336  *		logging of trace conditions (i.e. function entry/exit).
2337  *
2338  *   Arguments: comp - driver component being logged
2339  *		dev  - pointer to driver info structure
2340  *		fmt  - trace string and format to be logged
2341  */
2342 
2343 static void
2344 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2345 {
2346 	va_list		ap;
2347 	dev_info_t	*dev;
2348 
2349 	ASSERT(un != NULL);
2350 	dev = SD_DEVINFO(un);
2351 	ASSERT(dev != NULL);
2352 
2353 	/*
2354 	 * Filter messages based on the global component and level masks.
2355 	 * Also print if un matches the value of sd_debug_un, or if
2356 	 * sd_debug_un is set to NULL.
2357 	 */
2358 	if ((sd_component_mask & component) &&
2359 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2360 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2361 		mutex_enter(&sd_log_mutex);
2362 		va_start(ap, fmt);
2363 		(void) vsprintf(sd_log_buf, fmt, ap);
2364 		va_end(ap);
2365 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2366 		mutex_exit(&sd_log_mutex);
2367 	}
2368 #ifdef SD_FAULT_INJECTION
2369 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2370 	if (un->sd_injection_mask & component) {
2371 		mutex_enter(&sd_log_mutex);
2372 		va_start(ap, fmt);
2373 		(void) vsprintf(sd_log_buf, fmt, ap);
2374 		va_end(ap);
2375 		sd_injection_log(sd_log_buf, un);
2376 		mutex_exit(&sd_log_mutex);
2377 	}
2378 #endif
2379 }
2380 
2381 
2382 /*
2383  *    Function: sdprobe
2384  *
2385  * Description: This is the driver probe(9e) entry point function.
2386  *
2387  *   Arguments: devi - opaque device info handle
2388  *
2389  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2390  *              DDI_PROBE_FAILURE: If the probe failed.
2391  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2392  *				   but may be present in the future.
2393  */
2394 
2395 static int
2396 sdprobe(dev_info_t *devi)
2397 {
2398 	struct scsi_device	*devp;
2399 	int			rval;
2400 	int			instance;
2401 
2402 	/*
2403 	 * if it wasn't for pln, sdprobe could actually be nulldev
2404 	 * in the "__fibre" case.
2405 	 */
2406 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2407 		return (DDI_PROBE_DONTCARE);
2408 	}
2409 
2410 	devp = ddi_get_driver_private(devi);
2411 
2412 	if (devp == NULL) {
2413 		/* Ooops... nexus driver is mis-configured... */
2414 		return (DDI_PROBE_FAILURE);
2415 	}
2416 
2417 	instance = ddi_get_instance(devi);
2418 
2419 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2420 		return (DDI_PROBE_PARTIAL);
2421 	}
2422 
2423 	/*
2424 	 * Call the SCSA utility probe routine to see if we actually
2425 	 * have a target at this SCSI nexus.
2426 	 */
2427 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2428 	case SCSIPROBE_EXISTS:
2429 		switch (devp->sd_inq->inq_dtype) {
2430 		case DTYPE_DIRECT:
2431 			rval = DDI_PROBE_SUCCESS;
2432 			break;
2433 		case DTYPE_RODIRECT:
2434 			/* CDs etc. Can be removable media */
2435 			rval = DDI_PROBE_SUCCESS;
2436 			break;
2437 		case DTYPE_OPTICAL:
2438 			/*
2439 			 * Rewritable optical driver HP115AA
2440 			 * Can also be removable media
2441 			 */
2442 
2443 			/*
2444 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2445 			 * pre solaris 9 sparc sd behavior is required
2446 			 *
2447 			 * If first time through and sd_dtype_optical_bind
2448 			 * has not been set in /etc/system check properties
2449 			 */
2450 
2451 			if (sd_dtype_optical_bind  < 0) {
2452 			    sd_dtype_optical_bind = ddi_prop_get_int
2453 				(DDI_DEV_T_ANY,	devi,	0,
2454 				"optical-device-bind",	1);
2455 			}
2456 
2457 			if (sd_dtype_optical_bind == 0) {
2458 				rval = DDI_PROBE_FAILURE;
2459 			} else {
2460 				rval = DDI_PROBE_SUCCESS;
2461 			}
2462 			break;
2463 
2464 		case DTYPE_NOTPRESENT:
2465 		default:
2466 			rval = DDI_PROBE_FAILURE;
2467 			break;
2468 		}
2469 		break;
2470 	default:
2471 		rval = DDI_PROBE_PARTIAL;
2472 		break;
2473 	}
2474 
2475 	/*
2476 	 * This routine checks for resource allocation prior to freeing,
2477 	 * so it will take care of the "smart probing" case where a
2478 	 * scsi_probe() may or may not have been issued and will *not*
2479 	 * free previously-freed resources.
2480 	 */
2481 	scsi_unprobe(devp);
2482 	return (rval);
2483 }
2484 
2485 
2486 /*
2487  *    Function: sdinfo
2488  *
2489  * Description: This is the driver getinfo(9e) entry point function.
2490  * 		Given the device number, return the devinfo pointer from
2491  *		the scsi_device structure or the instance number
2492  *		associated with the dev_t.
2493  *
2494  *   Arguments: dip     - pointer to device info structure
2495  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2496  *			  DDI_INFO_DEVT2INSTANCE)
2497  *		arg     - driver dev_t
2498  *		resultp - user buffer for request response
2499  *
2500  * Return Code: DDI_SUCCESS
2501  *              DDI_FAILURE
2502  */
2503 /* ARGSUSED */
2504 static int
2505 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2506 {
2507 	struct sd_lun	*un;
2508 	dev_t		dev;
2509 	int		instance;
2510 	int		error;
2511 
2512 	switch (infocmd) {
2513 	case DDI_INFO_DEVT2DEVINFO:
2514 		dev = (dev_t)arg;
2515 		instance = SDUNIT(dev);
2516 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2517 			return (DDI_FAILURE);
2518 		}
2519 		*result = (void *) SD_DEVINFO(un);
2520 		error = DDI_SUCCESS;
2521 		break;
2522 	case DDI_INFO_DEVT2INSTANCE:
2523 		dev = (dev_t)arg;
2524 		instance = SDUNIT(dev);
2525 		*result = (void *)(uintptr_t)instance;
2526 		error = DDI_SUCCESS;
2527 		break;
2528 	default:
2529 		error = DDI_FAILURE;
2530 	}
2531 	return (error);
2532 }
2533 
2534 /*
2535  *    Function: sd_prop_op
2536  *
2537  * Description: This is the driver prop_op(9e) entry point function.
2538  *		Return the number of blocks for the partition in question
2539  *		or forward the request to the property facilities.
2540  *
2541  *   Arguments: dev       - device number
2542  *		dip       - pointer to device info structure
2543  *		prop_op   - property operator
2544  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2545  *		name      - pointer to property name
2546  *		valuep    - pointer or address of the user buffer
2547  *		lengthp   - property length
2548  *
2549  * Return Code: DDI_PROP_SUCCESS
2550  *              DDI_PROP_NOT_FOUND
2551  *              DDI_PROP_UNDEFINED
2552  *              DDI_PROP_NO_MEMORY
2553  *              DDI_PROP_BUF_TOO_SMALL
2554  */
2555 
2556 static int
2557 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2558 	char *name, caddr_t valuep, int *lengthp)
2559 {
2560 	int		instance = ddi_get_instance(dip);
2561 	struct sd_lun	*un;
2562 	uint64_t	nblocks64;
2563 
2564 	/*
2565 	 * Our dynamic properties are all device specific and size oriented.
2566 	 * Requests issued under conditions where size is valid are passed
2567 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2568 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2569 	 */
2570 	un = ddi_get_soft_state(sd_state, instance);
2571 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2572 	    (un->un_f_geometry_is_valid == FALSE)) {
2573 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2574 		    name, valuep, lengthp));
2575 	} else {
2576 		/* get nblocks value */
2577 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2578 		mutex_enter(SD_MUTEX(un));
2579 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2580 		mutex_exit(SD_MUTEX(un));
2581 
2582 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2583 		    name, valuep, lengthp, nblocks64));
2584 	}
2585 }
2586 
2587 /*
2588  * The following functions are for smart probing:
2589  * sd_scsi_probe_cache_init()
2590  * sd_scsi_probe_cache_fini()
2591  * sd_scsi_clear_probe_cache()
2592  * sd_scsi_probe_with_cache()
2593  */
2594 
2595 /*
2596  *    Function: sd_scsi_probe_cache_init
2597  *
2598  * Description: Initializes the probe response cache mutex and head pointer.
2599  *
2600  *     Context: Kernel thread context
2601  */
2602 
2603 static void
2604 sd_scsi_probe_cache_init(void)
2605 {
2606 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2607 	sd_scsi_probe_cache_head = NULL;
2608 }
2609 
2610 
2611 /*
2612  *    Function: sd_scsi_probe_cache_fini
2613  *
2614  * Description: Frees all resources associated with the probe response cache.
2615  *
2616  *     Context: Kernel thread context
2617  */
2618 
2619 static void
2620 sd_scsi_probe_cache_fini(void)
2621 {
2622 	struct sd_scsi_probe_cache *cp;
2623 	struct sd_scsi_probe_cache *ncp;
2624 
2625 	/* Clean up our smart probing linked list */
2626 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2627 		ncp = cp->next;
2628 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2629 	}
2630 	sd_scsi_probe_cache_head = NULL;
2631 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2632 }
2633 
2634 
2635 /*
2636  *    Function: sd_scsi_clear_probe_cache
2637  *
2638  * Description: This routine clears the probe response cache. This is
2639  *		done when open() returns ENXIO so that when deferred
2640  *		attach is attempted (possibly after a device has been
2641  *		turned on) we will retry the probe. Since we don't know
2642  *		which target we failed to open, we just clear the
2643  *		entire cache.
2644  *
2645  *     Context: Kernel thread context
2646  */
2647 
2648 static void
2649 sd_scsi_clear_probe_cache(void)
2650 {
2651 	struct sd_scsi_probe_cache	*cp;
2652 	int				i;
2653 
2654 	mutex_enter(&sd_scsi_probe_cache_mutex);
2655 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2656 		/*
2657 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2658 		 * force probing to be performed the next time
2659 		 * sd_scsi_probe_with_cache is called.
2660 		 */
2661 		for (i = 0; i < NTARGETS_WIDE; i++) {
2662 			cp->cache[i] = SCSIPROBE_EXISTS;
2663 		}
2664 	}
2665 	mutex_exit(&sd_scsi_probe_cache_mutex);
2666 }
2667 
2668 
2669 /*
2670  *    Function: sd_scsi_probe_with_cache
2671  *
2672  * Description: This routine implements support for a scsi device probe
2673  *		with cache. The driver maintains a cache of the target
2674  *		responses to scsi probes. If we get no response from a
2675  *		target during a probe inquiry, we remember that, and we
2676  *		avoid additional calls to scsi_probe on non-zero LUNs
2677  *		on the same target until the cache is cleared. By doing
2678  *		so we avoid the 1/4 sec selection timeout for nonzero
2679  *		LUNs. lun0 of a target is always probed.
2680  *
2681  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2682  *              waitfunc - indicates what the allocator routines should
2683  *			   do when resources are not available. This value
2684  *			   is passed on to scsi_probe() when that routine
2685  *			   is called.
2686  *
2687  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2688  *		otherwise the value returned by scsi_probe(9F).
2689  *
2690  *     Context: Kernel thread context
2691  */
2692 
2693 static int
2694 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2695 {
2696 	struct sd_scsi_probe_cache	*cp;
2697 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2698 	int		lun, tgt;
2699 
2700 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2701 	    SCSI_ADDR_PROP_LUN, 0);
2702 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2703 	    SCSI_ADDR_PROP_TARGET, -1);
2704 
2705 	/* Make sure caching enabled and target in range */
2706 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2707 		/* do it the old way (no cache) */
2708 		return (scsi_probe(devp, waitfn));
2709 	}
2710 
2711 	mutex_enter(&sd_scsi_probe_cache_mutex);
2712 
2713 	/* Find the cache for this scsi bus instance */
2714 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2715 		if (cp->pdip == pdip) {
2716 			break;
2717 		}
2718 	}
2719 
2720 	/* If we can't find a cache for this pdip, create one */
2721 	if (cp == NULL) {
2722 		int i;
2723 
2724 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2725 		    KM_SLEEP);
2726 		cp->pdip = pdip;
2727 		cp->next = sd_scsi_probe_cache_head;
2728 		sd_scsi_probe_cache_head = cp;
2729 		for (i = 0; i < NTARGETS_WIDE; i++) {
2730 			cp->cache[i] = SCSIPROBE_EXISTS;
2731 		}
2732 	}
2733 
2734 	mutex_exit(&sd_scsi_probe_cache_mutex);
2735 
2736 	/* Recompute the cache for this target if LUN zero */
2737 	if (lun == 0) {
2738 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2739 	}
2740 
2741 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2742 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2743 		return (SCSIPROBE_NORESP);
2744 	}
2745 
2746 	/* Do the actual probe; save & return the result */
2747 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2748 }
2749 
2750 
2751 /*
2752  *    Function: sd_spin_up_unit
2753  *
2754  * Description: Issues the following commands to spin-up the device:
2755  *		START STOP UNIT, and INQUIRY.
2756  *
2757  *   Arguments: un - driver soft state (unit) structure
2758  *
2759  * Return Code: 0 - success
2760  *		EIO - failure
2761  *		EACCES - reservation conflict
2762  *
2763  *     Context: Kernel thread context
2764  */
2765 
2766 static int
2767 sd_spin_up_unit(struct sd_lun *un)
2768 {
2769 	size_t	resid		= 0;
2770 	int	has_conflict	= FALSE;
2771 	uchar_t *bufaddr;
2772 
2773 	ASSERT(un != NULL);
2774 
2775 	/*
2776 	 * Send a throwaway START UNIT command.
2777 	 *
2778 	 * If we fail on this, we don't care presently what precisely
2779 	 * is wrong.  EMC's arrays will also fail this with a check
2780 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2781 	 * we don't want to fail the attach because it may become
2782 	 * "active" later.
2783 	 */
2784 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2785 	    == EACCES)
2786 		has_conflict = TRUE;
2787 
2788 	/*
2789 	 * Send another INQUIRY command to the target. This is necessary for
2790 	 * non-removable media direct access devices because their INQUIRY data
2791 	 * may not be fully qualified until they are spun up (perhaps via the
2792 	 * START command above).  Note: This seems to be needed for some
2793 	 * legacy devices only.) The INQUIRY command should succeed even if a
2794 	 * Reservation Conflict is present.
2795 	 */
2796 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2797 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2798 		kmem_free(bufaddr, SUN_INQSIZE);
2799 		return (EIO);
2800 	}
2801 
2802 	/*
2803 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2804 	 * Note that this routine does not return a failure here even if the
2805 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2806 	 */
2807 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2808 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2809 	}
2810 
2811 	kmem_free(bufaddr, SUN_INQSIZE);
2812 
2813 	/* If we hit a reservation conflict above, tell the caller. */
2814 	if (has_conflict == TRUE) {
2815 		return (EACCES);
2816 	}
2817 
2818 	return (0);
2819 }
2820 
2821 /*
2822  *    Function: sd_enable_descr_sense
2823  *
2824  * Description: This routine attempts to select descriptor sense format
2825  *		using the Control mode page.  Devices that support 64 bit
2826  *		LBAs (for >2TB luns) should also implement descriptor
2827  *		sense data so we will call this function whenever we see
2828  *		a lun larger than 2TB.  If for some reason the device
2829  *		supports 64 bit LBAs but doesn't support descriptor sense
2830  *		presumably the mode select will fail.  Everything will
2831  *		continue to work normally except that we will not get
2832  *		complete sense data for commands that fail with an LBA
2833  *		larger than 32 bits.
2834  *
2835  *   Arguments: un - driver soft state (unit) structure
2836  *
2837  *     Context: Kernel thread context only
2838  */
2839 
2840 static void
2841 sd_enable_descr_sense(struct sd_lun *un)
2842 {
2843 	uchar_t			*header;
2844 	struct mode_control_scsi3 *ctrl_bufp;
2845 	size_t			buflen;
2846 	size_t			bd_len;
2847 
2848 	/*
2849 	 * Read MODE SENSE page 0xA, Control Mode Page
2850 	 */
2851 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
2852 	    sizeof (struct mode_control_scsi3);
2853 	header = kmem_zalloc(buflen, KM_SLEEP);
2854 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
2855 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
2856 		SD_ERROR(SD_LOG_COMMON, un,
2857 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
2858 		goto eds_exit;
2859 	}
2860 
2861 	/*
2862 	 * Determine size of Block Descriptors in order to locate
2863 	 * the mode page data. ATAPI devices return 0, SCSI devices
2864 	 * should return MODE_BLK_DESC_LENGTH.
2865 	 */
2866 	bd_len  = ((struct mode_header *)header)->bdesc_length;
2867 
2868 	ctrl_bufp = (struct mode_control_scsi3 *)
2869 	    (header + MODE_HEADER_LENGTH + bd_len);
2870 
2871 	/*
2872 	 * Clear PS bit for MODE SELECT
2873 	 */
2874 	ctrl_bufp->mode_page.ps = 0;
2875 
2876 	/*
2877 	 * Set D_SENSE to enable descriptor sense format.
2878 	 */
2879 	ctrl_bufp->d_sense = 1;
2880 
2881 	/*
2882 	 * Use MODE SELECT to commit the change to the D_SENSE bit
2883 	 */
2884 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
2885 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
2886 		SD_INFO(SD_LOG_COMMON, un,
2887 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
2888 		goto eds_exit;
2889 	}
2890 
2891 eds_exit:
2892 	kmem_free(header, buflen);
2893 }
2894 
2895 
2896 /*
2897  *    Function: sd_set_mmc_caps
2898  *
2899  * Description: This routine determines if the device is MMC compliant and if
2900  *		the device supports CDDA via a mode sense of the CDVD
2901  *		capabilities mode page. Also checks if the device is a
2902  *		dvdram writable device.
2903  *
2904  *   Arguments: un - driver soft state (unit) structure
2905  *
2906  *     Context: Kernel thread context only
2907  */
2908 
2909 static void
2910 sd_set_mmc_caps(struct sd_lun *un)
2911 {
2912 	struct mode_header_grp2		*sense_mhp;
2913 	uchar_t				*sense_page;
2914 	caddr_t				buf;
2915 	int				bd_len;
2916 	int				status;
2917 	struct uscsi_cmd		com;
2918 	int				rtn;
2919 	uchar_t				*out_data_rw, *out_data_hd;
2920 	uchar_t				*rqbuf_rw, *rqbuf_hd;
2921 
2922 	ASSERT(un != NULL);
2923 
2924 	/*
2925 	 * The flags which will be set in this function are - mmc compliant,
2926 	 * dvdram writable device, cdda support. Initialize them to FALSE
2927 	 * and if a capability is detected - it will be set to TRUE.
2928 	 */
2929 	un->un_f_mmc_cap = FALSE;
2930 	un->un_f_dvdram_writable_device = FALSE;
2931 	un->un_f_cfg_cdda = FALSE;
2932 
2933 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
2934 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
2935 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
2936 
2937 	if (status != 0) {
2938 		/* command failed; just return */
2939 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2940 		return;
2941 	}
2942 	/*
2943 	 * If the mode sense request for the CDROM CAPABILITIES
2944 	 * page (0x2A) succeeds the device is assumed to be MMC.
2945 	 */
2946 	un->un_f_mmc_cap = TRUE;
2947 
2948 	/* Get to the page data */
2949 	sense_mhp = (struct mode_header_grp2 *)buf;
2950 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
2951 	    sense_mhp->bdesc_length_lo;
2952 	if (bd_len > MODE_BLK_DESC_LENGTH) {
2953 		/*
2954 		 * We did not get back the expected block descriptor
2955 		 * length so we cannot determine if the device supports
2956 		 * CDDA. However, we still indicate the device is MMC
2957 		 * according to the successful response to the page
2958 		 * 0x2A mode sense request.
2959 		 */
2960 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
2961 		    "sd_set_mmc_caps: Mode Sense returned "
2962 		    "invalid block descriptor length\n");
2963 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2964 		return;
2965 	}
2966 
2967 	/* See if read CDDA is supported */
2968 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
2969 	    bd_len);
2970 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
2971 
2972 	/* See if writing DVD RAM is supported. */
2973 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
2974 	if (un->un_f_dvdram_writable_device == TRUE) {
2975 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2976 		return;
2977 	}
2978 
2979 	/*
2980 	 * If the device presents DVD or CD capabilities in the mode
2981 	 * page, we can return here since a RRD will not have
2982 	 * these capabilities.
2983 	 */
2984 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
2985 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2986 		return;
2987 	}
2988 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2989 
2990 	/*
2991 	 * If un->un_f_dvdram_writable_device is still FALSE,
2992 	 * check for a Removable Rigid Disk (RRD).  A RRD
2993 	 * device is identified by the features RANDOM_WRITABLE and
2994 	 * HARDWARE_DEFECT_MANAGEMENT.
2995 	 */
2996 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
2997 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
2998 
2999 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3000 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3001 	    RANDOM_WRITABLE);
3002 	if (rtn != 0) {
3003 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3004 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3005 		return;
3006 	}
3007 
3008 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3009 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3010 
3011 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3012 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3013 	    HARDWARE_DEFECT_MANAGEMENT);
3014 	if (rtn == 0) {
3015 		/*
3016 		 * We have good information, check for random writable
3017 		 * and hardware defect features.
3018 		 */
3019 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3020 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3021 			un->un_f_dvdram_writable_device = TRUE;
3022 		}
3023 	}
3024 
3025 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3026 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3027 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3028 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3029 }
3030 
3031 /*
3032  *    Function: sd_check_for_writable_cd
3033  *
3034  * Description: This routine determines if the media in the device is
3035  *		writable or not. It uses the get configuration command (0x46)
3036  *		to determine if the media is writable
3037  *
3038  *   Arguments: un - driver soft state (unit) structure
3039  *
3040  *     Context: Never called at interrupt context.
3041  */
3042 
3043 static void
3044 sd_check_for_writable_cd(struct sd_lun *un)
3045 {
3046 	struct uscsi_cmd		com;
3047 	uchar_t				*out_data;
3048 	uchar_t				*rqbuf;
3049 	int				rtn;
3050 	uchar_t				*out_data_rw, *out_data_hd;
3051 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3052 	struct mode_header_grp2		*sense_mhp;
3053 	uchar_t				*sense_page;
3054 	caddr_t				buf;
3055 	int				bd_len;
3056 	int				status;
3057 
3058 	ASSERT(un != NULL);
3059 	ASSERT(mutex_owned(SD_MUTEX(un)));
3060 
3061 	/*
3062 	 * Initialize the writable media to false, if configuration info.
3063 	 * tells us otherwise then only we will set it.
3064 	 */
3065 	un->un_f_mmc_writable_media = FALSE;
3066 	mutex_exit(SD_MUTEX(un));
3067 
3068 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3069 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3070 
3071 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3072 	    out_data, SD_PROFILE_HEADER_LEN);
3073 
3074 	mutex_enter(SD_MUTEX(un));
3075 	if (rtn == 0) {
3076 		/*
3077 		 * We have good information, check for writable DVD.
3078 		 */
3079 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3080 			un->un_f_mmc_writable_media = TRUE;
3081 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3082 			kmem_free(rqbuf, SENSE_LENGTH);
3083 			return;
3084 		}
3085 	}
3086 
3087 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3088 	kmem_free(rqbuf, SENSE_LENGTH);
3089 
3090 	/*
3091 	 * Determine if this is a RRD type device.
3092 	 */
3093 	mutex_exit(SD_MUTEX(un));
3094 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3095 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3096 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3097 	mutex_enter(SD_MUTEX(un));
3098 	if (status != 0) {
3099 		/* command failed; just return */
3100 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3101 		return;
3102 	}
3103 
3104 	/* Get to the page data */
3105 	sense_mhp = (struct mode_header_grp2 *)buf;
3106 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3107 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3108 		/*
3109 		 * We did not get back the expected block descriptor length so
3110 		 * we cannot check the mode page.
3111 		 */
3112 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3113 		    "sd_check_for_writable_cd: Mode Sense returned "
3114 		    "invalid block descriptor length\n");
3115 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3116 		return;
3117 	}
3118 
3119 	/*
3120 	 * If the device presents DVD or CD capabilities in the mode
3121 	 * page, we can return here since a RRD device will not have
3122 	 * these capabilities.
3123 	 */
3124 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3125 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3126 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3127 		return;
3128 	}
3129 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3130 
3131 	/*
3132 	 * If un->un_f_mmc_writable_media is still FALSE,
3133 	 * check for RRD type media.  A RRD device is identified
3134 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3135 	 */
3136 	mutex_exit(SD_MUTEX(un));
3137 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3138 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3139 
3140 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3141 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3142 	    RANDOM_WRITABLE);
3143 	if (rtn != 0) {
3144 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3145 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3146 		mutex_enter(SD_MUTEX(un));
3147 		return;
3148 	}
3149 
3150 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3151 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3152 
3153 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3154 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3155 	    HARDWARE_DEFECT_MANAGEMENT);
3156 	mutex_enter(SD_MUTEX(un));
3157 	if (rtn == 0) {
3158 		/*
3159 		 * We have good information, check for random writable
3160 		 * and hardware defect features as current.
3161 		 */
3162 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3163 		    (out_data_rw[10] & 0x1) &&
3164 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3165 		    (out_data_hd[10] & 0x1)) {
3166 			un->un_f_mmc_writable_media = TRUE;
3167 		}
3168 	}
3169 
3170 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3171 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3172 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3173 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3174 }
3175 
3176 /*
3177  *    Function: sd_read_unit_properties
3178  *
3179  * Description: The following implements a property lookup mechanism.
3180  *		Properties for particular disks (keyed on vendor, model
3181  *		and rev numbers) are sought in the sd.conf file via
3182  *		sd_process_sdconf_file(), and if not found there, are
3183  *		looked for in a list hardcoded in this driver via
3184  *		sd_process_sdconf_table() Once located the properties
3185  *		are used to update the driver unit structure.
3186  *
3187  *   Arguments: un - driver soft state (unit) structure
3188  */
3189 
3190 static void
3191 sd_read_unit_properties(struct sd_lun *un)
3192 {
3193 	/*
3194 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3195 	 * the "sd-config-list" property (from the sd.conf file) or if
3196 	 * there was not a match for the inquiry vid/pid. If this event
3197 	 * occurs the static driver configuration table is searched for
3198 	 * a match.
3199 	 */
3200 	ASSERT(un != NULL);
3201 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3202 		sd_process_sdconf_table(un);
3203 	}
3204 
3205 	/* check for LSI device */
3206 	sd_is_lsi(un);
3207 
3208 	/*
3209 	 * Set this in sd.conf to 0 in order to disable kstats.  The default
3210 	 * is 1, so they are enabled by default.
3211 	 */
3212 	un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
3213 	    SD_DEVINFO(un), DDI_PROP_DONTPASS, "enable-partition-kstats", 1));
3214 }
3215 
3216 
3217 /*
3218  *    Function: sd_process_sdconf_file
3219  *
3220  * Description: Use ddi_getlongprop to obtain the properties from the
3221  *		driver's config file (ie, sd.conf) and update the driver
3222  *		soft state structure accordingly.
3223  *
3224  *   Arguments: un - driver soft state (unit) structure
3225  *
3226  * Return Code: SD_SUCCESS - The properties were successfully set according
3227  *			     to the driver configuration file.
3228  *		SD_FAILURE - The driver config list was not obtained or
3229  *			     there was no vid/pid match. This indicates that
3230  *			     the static config table should be used.
3231  *
3232  * The config file has a property, "sd-config-list", which consists of
3233  * one or more duplets as follows:
3234  *
3235  *  sd-config-list=
3236  *	<duplet>,
3237  *	[<duplet>,]
3238  *	[<duplet>];
3239  *
3240  * The structure of each duplet is as follows:
3241  *
3242  *  <duplet>:= <vid+pid>,<data-property-name_list>
3243  *
3244  * The first entry of the duplet is the device ID string (the concatenated
3245  * vid & pid; not to be confused with a device_id).  This is defined in
3246  * the same way as in the sd_disk_table.
3247  *
3248  * The second part of the duplet is a string that identifies a
3249  * data-property-name-list. The data-property-name-list is defined as
3250  * follows:
3251  *
3252  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3253  *
3254  * The syntax of <data-property-name> depends on the <version> field.
3255  *
3256  * If version = SD_CONF_VERSION_1 we have the following syntax:
3257  *
3258  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3259  *
3260  * where the prop0 value will be used to set prop0 if bit0 set in the
3261  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3262  *
3263  */
3264 
3265 static int
3266 sd_process_sdconf_file(struct sd_lun *un)
3267 {
3268 	char	*config_list = NULL;
3269 	int	config_list_len;
3270 	int	len;
3271 	int	dupletlen = 0;
3272 	char	*vidptr;
3273 	int	vidlen;
3274 	char	*dnlist_ptr;
3275 	char	*dataname_ptr;
3276 	int	dnlist_len;
3277 	int	dataname_len;
3278 	int	*data_list;
3279 	int	data_list_len;
3280 	int	rval = SD_FAILURE;
3281 	int	i;
3282 
3283 	ASSERT(un != NULL);
3284 
3285 	/* Obtain the configuration list associated with the .conf file */
3286 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3287 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3288 	    != DDI_PROP_SUCCESS) {
3289 		return (SD_FAILURE);
3290 	}
3291 
3292 	/*
3293 	 * Compare vids in each duplet to the inquiry vid - if a match is
3294 	 * made, get the data value and update the soft state structure
3295 	 * accordingly.
3296 	 *
3297 	 * Note: This algorithm is complex and difficult to maintain. It should
3298 	 * be replaced with a more robust implementation.
3299 	 */
3300 	for (len = config_list_len, vidptr = config_list; len > 0;
3301 	    vidptr += dupletlen, len -= dupletlen) {
3302 		/*
3303 		 * Note: The assumption here is that each vid entry is on
3304 		 * a unique line from its associated duplet.
3305 		 */
3306 		vidlen = dupletlen = (int)strlen(vidptr);
3307 		if ((vidlen == 0) ||
3308 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3309 			dupletlen++;
3310 			continue;
3311 		}
3312 
3313 		/*
3314 		 * dnlist contains 1 or more blank separated
3315 		 * data-property-name entries
3316 		 */
3317 		dnlist_ptr = vidptr + vidlen + 1;
3318 		dnlist_len = (int)strlen(dnlist_ptr);
3319 		dupletlen += dnlist_len + 2;
3320 
3321 		/*
3322 		 * Set a pointer for the first data-property-name
3323 		 * entry in the list
3324 		 */
3325 		dataname_ptr = dnlist_ptr;
3326 		dataname_len = 0;
3327 
3328 		/*
3329 		 * Loop through all data-property-name entries in the
3330 		 * data-property-name-list setting the properties for each.
3331 		 */
3332 		while (dataname_len < dnlist_len) {
3333 			int version;
3334 
3335 			/*
3336 			 * Determine the length of the current
3337 			 * data-property-name entry by indexing until a
3338 			 * blank or NULL is encountered. When the space is
3339 			 * encountered reset it to a NULL for compliance
3340 			 * with ddi_getlongprop().
3341 			 */
3342 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3343 			    (dataname_ptr[i] != '\0')); i++) {
3344 				;
3345 			}
3346 
3347 			dataname_len += i;
3348 			/* If not null terminated, Make it so */
3349 			if (dataname_ptr[i] == ' ') {
3350 				dataname_ptr[i] = '\0';
3351 			}
3352 			dataname_len++;
3353 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3354 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3355 			    vidptr, dataname_ptr);
3356 
3357 			/* Get the data list */
3358 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3359 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3360 			    != DDI_PROP_SUCCESS) {
3361 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3362 				    "sd_process_sdconf_file: data property (%s)"
3363 				    " has no value\n", dataname_ptr);
3364 				dataname_ptr = dnlist_ptr + dataname_len;
3365 				continue;
3366 			}
3367 
3368 			version = data_list[0];
3369 
3370 			if (version == SD_CONF_VERSION_1) {
3371 				sd_tunables values;
3372 
3373 				/* Set the properties */
3374 				if (sd_chk_vers1_data(un, data_list[1],
3375 				    &data_list[2], data_list_len, dataname_ptr)
3376 				    == SD_SUCCESS) {
3377 					sd_get_tunables_from_conf(un,
3378 					    data_list[1], &data_list[2],
3379 					    &values);
3380 					sd_set_vers1_properties(un,
3381 					    data_list[1], &values);
3382 					rval = SD_SUCCESS;
3383 				} else {
3384 					rval = SD_FAILURE;
3385 				}
3386 			} else {
3387 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3388 				    "data property %s version 0x%x is invalid.",
3389 				    dataname_ptr, version);
3390 				rval = SD_FAILURE;
3391 			}
3392 			kmem_free(data_list, data_list_len);
3393 			dataname_ptr = dnlist_ptr + dataname_len;
3394 		}
3395 	}
3396 
3397 	/* free up the memory allocated by ddi_getlongprop */
3398 	if (config_list) {
3399 		kmem_free(config_list, config_list_len);
3400 	}
3401 
3402 	return (rval);
3403 }
3404 
3405 /*
3406  *    Function: sd_get_tunables_from_conf()
3407  *
3408  *
3409  *    This function reads the data list from the sd.conf file and pulls
3410  *    the values that can have numeric values as arguments and places
3411  *    the values in the apropriate sd_tunables member.
3412  *    Since the order of the data list members varies across platforms
3413  *    This function reads them from the data list in a platform specific
3414  *    order and places them into the correct sd_tunable member that is
3415  *    a consistant across all platforms.
3416  */
3417 static void
3418 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3419     sd_tunables *values)
3420 {
3421 	int i;
3422 	int mask;
3423 
3424 	bzero(values, sizeof (sd_tunables));
3425 
3426 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3427 
3428 		mask = 1 << i;
3429 		if (mask > flags) {
3430 			break;
3431 		}
3432 
3433 		switch (mask & flags) {
3434 		case 0:	/* This mask bit not set in flags */
3435 			continue;
3436 		case SD_CONF_BSET_THROTTLE:
3437 			values->sdt_throttle = data_list[i];
3438 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3439 			    "sd_get_tunables_from_conf: throttle = %d\n",
3440 			    values->sdt_throttle);
3441 			break;
3442 		case SD_CONF_BSET_CTYPE:
3443 			values->sdt_ctype = data_list[i];
3444 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3445 			    "sd_get_tunables_from_conf: ctype = %d\n",
3446 			    values->sdt_ctype);
3447 			break;
3448 		case SD_CONF_BSET_NRR_COUNT:
3449 			values->sdt_not_rdy_retries = data_list[i];
3450 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3451 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3452 			    values->sdt_not_rdy_retries);
3453 			break;
3454 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3455 			values->sdt_busy_retries = data_list[i];
3456 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3457 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3458 			    values->sdt_busy_retries);
3459 			break;
3460 		case SD_CONF_BSET_RST_RETRIES:
3461 			values->sdt_reset_retries = data_list[i];
3462 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3463 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3464 			    values->sdt_reset_retries);
3465 			break;
3466 		case SD_CONF_BSET_RSV_REL_TIME:
3467 			values->sdt_reserv_rel_time = data_list[i];
3468 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3469 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3470 			    values->sdt_reserv_rel_time);
3471 			break;
3472 		case SD_CONF_BSET_MIN_THROTTLE:
3473 			values->sdt_min_throttle = data_list[i];
3474 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3475 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3476 			    values->sdt_min_throttle);
3477 			break;
3478 		case SD_CONF_BSET_DISKSORT_DISABLED:
3479 			values->sdt_disk_sort_dis = data_list[i];
3480 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3481 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3482 			    values->sdt_disk_sort_dis);
3483 			break;
3484 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3485 			values->sdt_lun_reset_enable = data_list[i];
3486 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3487 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3488 			    "\n", values->sdt_lun_reset_enable);
3489 			break;
3490 		}
3491 	}
3492 }
3493 
3494 /*
3495  *    Function: sd_process_sdconf_table
3496  *
3497  * Description: Search the static configuration table for a match on the
3498  *		inquiry vid/pid and update the driver soft state structure
3499  *		according to the table property values for the device.
3500  *
3501  *		The form of a configuration table entry is:
3502  *		  <vid+pid>,<flags>,<property-data>
3503  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3504  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3505  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3506  *
3507  *   Arguments: un - driver soft state (unit) structure
3508  */
3509 
3510 static void
3511 sd_process_sdconf_table(struct sd_lun *un)
3512 {
3513 	char	*id = NULL;
3514 	int	table_index;
3515 	int	idlen;
3516 
3517 	ASSERT(un != NULL);
3518 	for (table_index = 0; table_index < sd_disk_table_size;
3519 	    table_index++) {
3520 		id = sd_disk_table[table_index].device_id;
3521 		idlen = strlen(id);
3522 		if (idlen == 0) {
3523 			continue;
3524 		}
3525 
3526 		/*
3527 		 * The static configuration table currently does not
3528 		 * implement version 10 properties. Additionally,
3529 		 * multiple data-property-name entries are not
3530 		 * implemented in the static configuration table.
3531 		 */
3532 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3533 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3534 			    "sd_process_sdconf_table: disk %s\n", id);
3535 			sd_set_vers1_properties(un,
3536 			    sd_disk_table[table_index].flags,
3537 			    sd_disk_table[table_index].properties);
3538 			break;
3539 		}
3540 	}
3541 }
3542 
3543 
3544 /*
3545  *    Function: sd_sdconf_id_match
3546  *
3547  * Description: This local function implements a case sensitive vid/pid
3548  *		comparison as well as the boundary cases of wild card and
3549  *		multiple blanks.
3550  *
3551  *		Note: An implicit assumption made here is that the scsi
3552  *		inquiry structure will always keep the vid, pid and
3553  *		revision strings in consecutive sequence, so they can be
3554  *		read as a single string. If this assumption is not the
3555  *		case, a separate string, to be used for the check, needs
3556  *		to be built with these strings concatenated.
3557  *
3558  *   Arguments: un - driver soft state (unit) structure
3559  *		id - table or config file vid/pid
3560  *		idlen  - length of the vid/pid (bytes)
3561  *
3562  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3563  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3564  */
3565 
3566 static int
3567 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3568 {
3569 	struct scsi_inquiry	*sd_inq;
3570 	int 			rval = SD_SUCCESS;
3571 
3572 	ASSERT(un != NULL);
3573 	sd_inq = un->un_sd->sd_inq;
3574 	ASSERT(id != NULL);
3575 
3576 	/*
3577 	 * We use the inq_vid as a pointer to a buffer containing the
3578 	 * vid and pid and use the entire vid/pid length of the table
3579 	 * entry for the comparison. This works because the inq_pid
3580 	 * data member follows inq_vid in the scsi_inquiry structure.
3581 	 */
3582 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3583 		/*
3584 		 * The user id string is compared to the inquiry vid/pid
3585 		 * using a case insensitive comparison and ignoring
3586 		 * multiple spaces.
3587 		 */
3588 		rval = sd_blank_cmp(un, id, idlen);
3589 		if (rval != SD_SUCCESS) {
3590 			/*
3591 			 * User id strings that start and end with a "*"
3592 			 * are a special case. These do not have a
3593 			 * specific vendor, and the product string can
3594 			 * appear anywhere in the 16 byte PID portion of
3595 			 * the inquiry data. This is a simple strstr()
3596 			 * type search for the user id in the inquiry data.
3597 			 */
3598 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3599 				char	*pidptr = &id[1];
3600 				int	i;
3601 				int	j;
3602 				int	pidstrlen = idlen - 2;
3603 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3604 				    pidstrlen;
3605 
3606 				if (j < 0) {
3607 					return (SD_FAILURE);
3608 				}
3609 				for (i = 0; i < j; i++) {
3610 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3611 					    pidptr, pidstrlen) == 0) {
3612 						rval = SD_SUCCESS;
3613 						break;
3614 					}
3615 				}
3616 			}
3617 		}
3618 	}
3619 	return (rval);
3620 }
3621 
3622 
3623 /*
3624  *    Function: sd_blank_cmp
3625  *
3626  * Description: If the id string starts and ends with a space, treat
3627  *		multiple consecutive spaces as equivalent to a single
3628  *		space. For example, this causes a sd_disk_table entry
3629  *		of " NEC CDROM " to match a device's id string of
3630  *		"NEC       CDROM".
3631  *
3632  *		Note: The success exit condition for this routine is if
3633  *		the pointer to the table entry is '\0' and the cnt of
3634  *		the inquiry length is zero. This will happen if the inquiry
3635  *		string returned by the device is padded with spaces to be
3636  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3637  *		SCSI spec states that the inquiry string is to be padded with
3638  *		spaces.
3639  *
3640  *   Arguments: un - driver soft state (unit) structure
3641  *		id - table or config file vid/pid
3642  *		idlen  - length of the vid/pid (bytes)
3643  *
3644  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3645  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3646  */
3647 
3648 static int
3649 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3650 {
3651 	char		*p1;
3652 	char		*p2;
3653 	int		cnt;
3654 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3655 	    sizeof (SD_INQUIRY(un)->inq_pid);
3656 
3657 	ASSERT(un != NULL);
3658 	p2 = un->un_sd->sd_inq->inq_vid;
3659 	ASSERT(id != NULL);
3660 	p1 = id;
3661 
3662 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3663 		/*
3664 		 * Note: string p1 is terminated by a NUL but string p2
3665 		 * isn't.  The end of p2 is determined by cnt.
3666 		 */
3667 		for (;;) {
3668 			/* skip over any extra blanks in both strings */
3669 			while ((*p1 != '\0') && (*p1 == ' ')) {
3670 				p1++;
3671 			}
3672 			while ((cnt != 0) && (*p2 == ' ')) {
3673 				p2++;
3674 				cnt--;
3675 			}
3676 
3677 			/* compare the two strings */
3678 			if ((cnt == 0) ||
3679 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3680 				break;
3681 			}
3682 			while ((cnt > 0) &&
3683 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3684 				p1++;
3685 				p2++;
3686 				cnt--;
3687 			}
3688 		}
3689 	}
3690 
3691 	/* return SD_SUCCESS if both strings match */
3692 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3693 }
3694 
3695 
3696 /*
3697  *    Function: sd_chk_vers1_data
3698  *
3699  * Description: Verify the version 1 device properties provided by the
3700  *		user via the configuration file
3701  *
3702  *   Arguments: un	     - driver soft state (unit) structure
3703  *		flags	     - integer mask indicating properties to be set
3704  *		prop_list    - integer list of property values
3705  *		list_len     - length of user provided data
3706  *
3707  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3708  *		SD_FAILURE - Indicates the user provided data is invalid
3709  */
3710 
3711 static int
3712 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3713     int list_len, char *dataname_ptr)
3714 {
3715 	int i;
3716 	int mask = 1;
3717 	int index = 0;
3718 
3719 	ASSERT(un != NULL);
3720 
3721 	/* Check for a NULL property name and list */
3722 	if (dataname_ptr == NULL) {
3723 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3724 		    "sd_chk_vers1_data: NULL data property name.");
3725 		return (SD_FAILURE);
3726 	}
3727 	if (prop_list == NULL) {
3728 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3729 		    "sd_chk_vers1_data: %s NULL data property list.",
3730 		    dataname_ptr);
3731 		return (SD_FAILURE);
3732 	}
3733 
3734 	/* Display a warning if undefined bits are set in the flags */
3735 	if (flags & ~SD_CONF_BIT_MASK) {
3736 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3737 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3738 		    "Properties not set.",
3739 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3740 		return (SD_FAILURE);
3741 	}
3742 
3743 	/*
3744 	 * Verify the length of the list by identifying the highest bit set
3745 	 * in the flags and validating that the property list has a length
3746 	 * up to the index of this bit.
3747 	 */
3748 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3749 		if (flags & mask) {
3750 			index++;
3751 		}
3752 		mask = 1 << i;
3753 	}
3754 	if ((list_len / sizeof (int)) < (index + 2)) {
3755 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3756 		    "sd_chk_vers1_data: "
3757 		    "Data property list %s size is incorrect. "
3758 		    "Properties not set.", dataname_ptr);
3759 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3760 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3761 		return (SD_FAILURE);
3762 	}
3763 	return (SD_SUCCESS);
3764 }
3765 
3766 
3767 /*
3768  *    Function: sd_set_vers1_properties
3769  *
3770  * Description: Set version 1 device properties based on a property list
3771  *		retrieved from the driver configuration file or static
3772  *		configuration table. Version 1 properties have the format:
3773  *
3774  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3775  *
3776  *		where the prop0 value will be used to set prop0 if bit0
3777  *		is set in the flags
3778  *
3779  *   Arguments: un	     - driver soft state (unit) structure
3780  *		flags	     - integer mask indicating properties to be set
3781  *		prop_list    - integer list of property values
3782  */
3783 
3784 static void
3785 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3786 {
3787 	ASSERT(un != NULL);
3788 
3789 	/*
3790 	 * Set the flag to indicate cache is to be disabled. An attempt
3791 	 * to disable the cache via sd_disable_caching() will be made
3792 	 * later during attach once the basic initialization is complete.
3793 	 */
3794 	if (flags & SD_CONF_BSET_NOCACHE) {
3795 		un->un_f_opt_disable_cache = TRUE;
3796 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3797 		    "sd_set_vers1_properties: caching disabled flag set\n");
3798 	}
3799 
3800 	/* CD-specific configuration parameters */
3801 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3802 		un->un_f_cfg_playmsf_bcd = TRUE;
3803 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3804 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3805 	}
3806 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3807 		un->un_f_cfg_readsub_bcd = TRUE;
3808 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3809 		    "sd_set_vers1_properties: readsub_bcd set\n");
3810 	}
3811 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
3812 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
3813 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3814 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
3815 	}
3816 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
3817 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
3818 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3819 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
3820 	}
3821 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
3822 		un->un_f_cfg_no_read_header = TRUE;
3823 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3824 			    "sd_set_vers1_properties: no_read_header set\n");
3825 	}
3826 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
3827 		un->un_f_cfg_read_cd_xd4 = TRUE;
3828 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3829 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
3830 	}
3831 
3832 	/* Support for devices which do not have valid/unique serial numbers */
3833 	if (flags & SD_CONF_BSET_FAB_DEVID) {
3834 		un->un_f_opt_fab_devid = TRUE;
3835 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3836 		    "sd_set_vers1_properties: fab_devid bit set\n");
3837 	}
3838 
3839 	/* Support for user throttle configuration */
3840 	if (flags & SD_CONF_BSET_THROTTLE) {
3841 		ASSERT(prop_list != NULL);
3842 		un->un_saved_throttle = un->un_throttle =
3843 		    prop_list->sdt_throttle;
3844 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3845 		    "sd_set_vers1_properties: throttle set to %d\n",
3846 		    prop_list->sdt_throttle);
3847 	}
3848 
3849 	/* Set the per disk retry count according to the conf file or table. */
3850 	if (flags & SD_CONF_BSET_NRR_COUNT) {
3851 		ASSERT(prop_list != NULL);
3852 		if (prop_list->sdt_not_rdy_retries) {
3853 			un->un_notready_retry_count =
3854 				prop_list->sdt_not_rdy_retries;
3855 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3856 			    "sd_set_vers1_properties: not ready retry count"
3857 			    " set to %d\n", un->un_notready_retry_count);
3858 		}
3859 	}
3860 
3861 	/* The controller type is reported for generic disk driver ioctls */
3862 	if (flags & SD_CONF_BSET_CTYPE) {
3863 		ASSERT(prop_list != NULL);
3864 		switch (prop_list->sdt_ctype) {
3865 		case CTYPE_CDROM:
3866 			un->un_ctype = prop_list->sdt_ctype;
3867 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3868 			    "sd_set_vers1_properties: ctype set to "
3869 			    "CTYPE_CDROM\n");
3870 			break;
3871 		case CTYPE_CCS:
3872 			un->un_ctype = prop_list->sdt_ctype;
3873 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3874 				"sd_set_vers1_properties: ctype set to "
3875 				"CTYPE_CCS\n");
3876 			break;
3877 		case CTYPE_ROD:		/* RW optical */
3878 			un->un_ctype = prop_list->sdt_ctype;
3879 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3880 			    "sd_set_vers1_properties: ctype set to "
3881 			    "CTYPE_ROD\n");
3882 			break;
3883 		default:
3884 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3885 			    "sd_set_vers1_properties: Could not set "
3886 			    "invalid ctype value (%d)",
3887 			    prop_list->sdt_ctype);
3888 		}
3889 	}
3890 
3891 	/* Purple failover timeout */
3892 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
3893 		ASSERT(prop_list != NULL);
3894 		un->un_busy_retry_count =
3895 			prop_list->sdt_busy_retries;
3896 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3897 		    "sd_set_vers1_properties: "
3898 		    "busy retry count set to %d\n",
3899 		    un->un_busy_retry_count);
3900 	}
3901 
3902 	/* Purple reset retry count */
3903 	if (flags & SD_CONF_BSET_RST_RETRIES) {
3904 		ASSERT(prop_list != NULL);
3905 		un->un_reset_retry_count =
3906 			prop_list->sdt_reset_retries;
3907 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3908 		    "sd_set_vers1_properties: "
3909 		    "reset retry count set to %d\n",
3910 		    un->un_reset_retry_count);
3911 	}
3912 
3913 	/* Purple reservation release timeout */
3914 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
3915 		ASSERT(prop_list != NULL);
3916 		un->un_reserve_release_time =
3917 			prop_list->sdt_reserv_rel_time;
3918 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3919 		    "sd_set_vers1_properties: "
3920 		    "reservation release timeout set to %d\n",
3921 		    un->un_reserve_release_time);
3922 	}
3923 
3924 	/*
3925 	 * Driver flag telling the driver to verify that no commands are pending
3926 	 * for a device before issuing a Test Unit Ready. This is a workaround
3927 	 * for a firmware bug in some Seagate eliteI drives.
3928 	 */
3929 	if (flags & SD_CONF_BSET_TUR_CHECK) {
3930 		un->un_f_cfg_tur_check = TRUE;
3931 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3932 		    "sd_set_vers1_properties: tur queue check set\n");
3933 	}
3934 
3935 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
3936 		un->un_min_throttle = prop_list->sdt_min_throttle;
3937 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3938 		    "sd_set_vers1_properties: min throttle set to %d\n",
3939 		    un->un_min_throttle);
3940 	}
3941 
3942 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
3943 		un->un_f_disksort_disabled =
3944 		    (prop_list->sdt_disk_sort_dis != 0) ?
3945 		    TRUE : FALSE;
3946 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3947 		    "sd_set_vers1_properties: disksort disabled "
3948 		    "flag set to %d\n",
3949 		    prop_list->sdt_disk_sort_dis);
3950 	}
3951 
3952 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
3953 		un->un_f_lun_reset_enabled =
3954 		    (prop_list->sdt_lun_reset_enable != 0) ?
3955 		    TRUE : FALSE;
3956 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3957 		    "sd_set_vers1_properties: lun reset enabled "
3958 		    "flag set to %d\n",
3959 		    prop_list->sdt_lun_reset_enable);
3960 	}
3961 
3962 	/*
3963 	 * Validate the throttle values.
3964 	 * If any of the numbers are invalid, set everything to defaults.
3965 	 */
3966 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
3967 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
3968 	    (un->un_min_throttle > un->un_throttle)) {
3969 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
3970 		un->un_min_throttle = sd_min_throttle;
3971 	}
3972 }
3973 
3974 /*
3975  *   Function: sd_is_lsi()
3976  *
3977  *   Description: Check for lsi devices, step throught the static device
3978  *	table to match vid/pid.
3979  *
3980  *   Args: un - ptr to sd_lun
3981  *
3982  *   Notes:  When creating new LSI property, need to add the new LSI property
3983  *		to this function.
3984  */
3985 static void
3986 sd_is_lsi(struct sd_lun *un)
3987 {
3988 	char	*id = NULL;
3989 	int	table_index;
3990 	int	idlen;
3991 	void	*prop;
3992 
3993 	ASSERT(un != NULL);
3994 	for (table_index = 0; table_index < sd_disk_table_size;
3995 	    table_index++) {
3996 		id = sd_disk_table[table_index].device_id;
3997 		idlen = strlen(id);
3998 		if (idlen == 0) {
3999 			continue;
4000 		}
4001 
4002 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4003 			prop = sd_disk_table[table_index].properties;
4004 			if (prop == &lsi_properties ||
4005 			    prop == &lsi_oem_properties ||
4006 			    prop == &lsi_properties_scsi ||
4007 			    prop == &symbios_properties) {
4008 				un->un_f_cfg_is_lsi = TRUE;
4009 			}
4010 			break;
4011 		}
4012 	}
4013 }
4014 
4015 
4016 /*
4017  * The following routines support reading and interpretation of disk labels,
4018  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4019  * fdisk tables.
4020  */
4021 
4022 /*
4023  *    Function: sd_validate_geometry
4024  *
4025  * Description: Read the label from the disk (if present). Update the unit's
4026  *		geometry and vtoc information from the data in the label.
4027  *		Verify that the label is valid.
4028  *
4029  *   Arguments: un - driver soft state (unit) structure
4030  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4031  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4032  *			to use the USCSI "direct" chain and bypass the normal
4033  *			command waitq.
4034  *
4035  * Return Code: 0 - Successful completion
4036  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4037  *			  un->un_blockcount; or label on disk is corrupted
4038  *			  or unreadable.
4039  *		EACCES  - Reservation conflict at the device.
4040  *		ENOMEM  - Resource allocation error
4041  *		ENOTSUP - geometry not applicable
4042  *
4043  *     Context: Kernel thread only (can sleep).
4044  */
4045 
4046 static int
4047 sd_validate_geometry(struct sd_lun *un, int path_flag)
4048 {
4049 	static	char		labelstring[128];
4050 	static	char		buf[256];
4051 	char	*label		= NULL;
4052 	int	label_error	= 0;
4053 	int	gvalid		= un->un_f_geometry_is_valid;
4054 	int	lbasize;
4055 	uint_t	capacity;
4056 	int	count;
4057 
4058 	ASSERT(un != NULL);
4059 	ASSERT(mutex_owned(SD_MUTEX(un)));
4060 
4061 	/*
4062 	 * If the required values are not valid, then try getting them
4063 	 * once via read capacity. If that fails, then fail this call.
4064 	 * This is necessary with the new mpxio failover behavior in
4065 	 * the T300 where we can get an attach for the inactive path
4066 	 * before the active path. The inactive path fails commands with
4067 	 * sense data of 02,04,88 which happens to the read capacity
4068 	 * before mpxio has had sufficient knowledge to know if it should
4069 	 * force a fail over or not. (Which it won't do at attach anyhow).
4070 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4071 	 * un_blockcount won't be valid.
4072 	 */
4073 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4074 	    (un->un_f_blockcount_is_valid != TRUE)) {
4075 		uint64_t	cap;
4076 		uint32_t	lbasz;
4077 		int		rval;
4078 
4079 		mutex_exit(SD_MUTEX(un));
4080 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4081 		    &lbasz, SD_PATH_DIRECT);
4082 		mutex_enter(SD_MUTEX(un));
4083 		if (rval == 0) {
4084 			/*
4085 			 * The following relies on
4086 			 * sd_send_scsi_READ_CAPACITY never
4087 			 * returning 0 for capacity and/or lbasize.
4088 			 */
4089 			sd_update_block_info(un, lbasz, cap);
4090 		}
4091 
4092 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4093 		    (un->un_f_blockcount_is_valid != TRUE)) {
4094 			return (EINVAL);
4095 		}
4096 	}
4097 
4098 	/*
4099 	 * Copy the lbasize and capacity so that if they're reset while we're
4100 	 * not holding the SD_MUTEX, we will continue to use valid values
4101 	 * after the SD_MUTEX is reacquired. (4119659)
4102 	 */
4103 	lbasize  = un->un_tgt_blocksize;
4104 	capacity = un->un_blockcount;
4105 
4106 #if defined(_SUNOS_VTOC_16)
4107 	/*
4108 	 * Set up the "whole disk" fdisk partition; this should always
4109 	 * exist, regardless of whether the disk contains an fdisk table
4110 	 * or vtoc.
4111 	 */
4112 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4113 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4114 #endif
4115 
4116 	/*
4117 	 * Refresh the logical and physical geometry caches.
4118 	 * (data from MODE SENSE format/rigid disk geometry pages,
4119 	 * and scsi_ifgetcap("geometry").
4120 	 */
4121 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4122 
4123 	label_error = sd_use_efi(un, path_flag);
4124 	if (label_error == 0) {
4125 		/* found a valid EFI label */
4126 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4127 			"sd_validate_geometry: found EFI label\n");
4128 		un->un_solaris_offset = 0;
4129 		un->un_solaris_size = capacity;
4130 		return (ENOTSUP);
4131 	}
4132 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4133 		if (label_error == ESRCH) {
4134 			/*
4135 			 * they've configured a LUN over 1TB, but used
4136 			 * format.dat to restrict format's view of the
4137 			 * capacity to be under 1TB
4138 			 */
4139 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4140 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4141 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4142 "size to be < 1TB or relabel the disk with an EFI label");
4143 		} else {
4144 			/* unlabeled disk over 1TB */
4145 			return (ENOTSUP);
4146 		}
4147 	}
4148 	label_error = 0;
4149 
4150 	/*
4151 	 * at this point it is either labeled with a VTOC or it is
4152 	 * under 1TB
4153 	 */
4154 
4155 	/*
4156 	 * Only DIRECT ACCESS devices will have Sun labels.
4157 	 * CD's supposedly have a Sun label, too
4158 	 */
4159 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
4160 		struct	dk_label *dkl;
4161 		offset_t dkl1;
4162 		offset_t label_addr, real_addr;
4163 		int	rval;
4164 		size_t	buffer_size;
4165 
4166 		/*
4167 		 * Note: This will set up un->un_solaris_size and
4168 		 * un->un_solaris_offset.
4169 		 */
4170 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4171 		case SD_CMD_RESERVATION_CONFLICT:
4172 			ASSERT(mutex_owned(SD_MUTEX(un)));
4173 			return (EACCES);
4174 		case SD_CMD_FAILURE:
4175 			ASSERT(mutex_owned(SD_MUTEX(un)));
4176 			return (ENOMEM);
4177 		}
4178 
4179 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4180 			/*
4181 			 * Found fdisk table but no Solaris partition entry,
4182 			 * so don't call sd_uselabel() and don't create
4183 			 * a default label.
4184 			 */
4185 			label_error = 0;
4186 			un->un_f_geometry_is_valid = TRUE;
4187 			goto no_solaris_partition;
4188 		}
4189 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4190 
4191 		/*
4192 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4193 		 * blkno and save the index to beginning of dk_label
4194 		 */
4195 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4196 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4197 		    sizeof (struct dk_label));
4198 
4199 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4200 		    "label_addr: 0x%x allocation size: 0x%x\n",
4201 		    label_addr, buffer_size);
4202 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4203 		if (dkl == NULL) {
4204 			return (ENOMEM);
4205 		}
4206 
4207 		mutex_exit(SD_MUTEX(un));
4208 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4209 		    path_flag);
4210 		mutex_enter(SD_MUTEX(un));
4211 
4212 		switch (rval) {
4213 		case 0:
4214 			/*
4215 			 * sd_uselabel will establish that the geometry
4216 			 * is valid.
4217 			 * For sys_blocksize != tgt_blocksize, need
4218 			 * to index into the beginning of dk_label
4219 			 */
4220 			dkl1 = (daddr_t)dkl
4221 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4222 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4223 			    path_flag) != SD_LABEL_IS_VALID) {
4224 				label_error = EINVAL;
4225 			}
4226 			break;
4227 		case EACCES:
4228 			label_error = EACCES;
4229 			break;
4230 		default:
4231 			label_error = EINVAL;
4232 			break;
4233 		}
4234 
4235 		kmem_free(dkl, buffer_size);
4236 
4237 #if defined(_SUNOS_VTOC_8)
4238 		label = (char *)un->un_asciilabel;
4239 #elif defined(_SUNOS_VTOC_16)
4240 		label = (char *)un->un_vtoc.v_asciilabel;
4241 #else
4242 #error "No VTOC format defined."
4243 #endif
4244 	}
4245 
4246 	/*
4247 	 * If a valid label was not found, AND if no reservation conflict
4248 	 * was detected, then go ahead and create a default label (4069506).
4249 	 *
4250 	 * Note: currently, for VTOC_8 devices, the default label is created
4251 	 * for removables only.  For VTOC_16 devices, the default label will
4252 	 * be created for both removables and non-removables alike.
4253 	 * (see sd_build_default_label)
4254 	 */
4255 #if defined(_SUNOS_VTOC_8)
4256 	if (ISREMOVABLE(un) && (label_error != EACCES)) {
4257 #elif defined(_SUNOS_VTOC_16)
4258 	if (label_error != EACCES) {
4259 #endif
4260 		if (un->un_f_geometry_is_valid == FALSE) {
4261 			sd_build_default_label(un);
4262 		}
4263 		label_error = 0;
4264 	}
4265 
4266 no_solaris_partition:
4267 	if ((!ISREMOVABLE(un) ||
4268 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
4269 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
4270 		/*
4271 		 * Print out a message indicating who and what we are.
4272 		 * We do this only when we happen to really validate the
4273 		 * geometry. We may call sd_validate_geometry() at other
4274 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4275 		 * don't want to print the label.
4276 		 * If the geometry is valid, print the label string,
4277 		 * else print vendor and product info, if available
4278 		 */
4279 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4280 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4281 		} else {
4282 			mutex_enter(&sd_label_mutex);
4283 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4284 			    labelstring);
4285 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4286 			    &labelstring[64]);
4287 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4288 			    labelstring, &labelstring[64]);
4289 			if (un->un_f_blockcount_is_valid == TRUE) {
4290 				(void) sprintf(&buf[strlen(buf)],
4291 				    ", %llu %u byte blocks\n",
4292 				    (longlong_t)un->un_blockcount,
4293 				    un->un_tgt_blocksize);
4294 			} else {
4295 				(void) sprintf(&buf[strlen(buf)],
4296 				    ", (unknown capacity)\n");
4297 			}
4298 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4299 			mutex_exit(&sd_label_mutex);
4300 		}
4301 	}
4302 
4303 #if defined(_SUNOS_VTOC_16)
4304 	/*
4305 	 * If we have valid geometry, set up the remaining fdisk partitions.
4306 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4307 	 * we set it to an entirely bogus value.
4308 	 */
4309 	for (count = 0; count < FD_NUMPART; count++) {
4310 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4311 		un->un_map[FDISK_P1 + count].dkl_nblk =
4312 		    un->un_fmap[count].fmap_nblk;
4313 
4314 		un->un_offset[FDISK_P1 + count] =
4315 		    un->un_fmap[count].fmap_start;
4316 	}
4317 #endif
4318 
4319 	for (count = 0; count < NDKMAP; count++) {
4320 #if defined(_SUNOS_VTOC_8)
4321 		struct dk_map *lp  = &un->un_map[count];
4322 		un->un_offset[count] =
4323 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4324 #elif defined(_SUNOS_VTOC_16)
4325 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4326 
4327 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4328 #else
4329 #error "No VTOC format defined."
4330 #endif
4331 	}
4332 
4333 	return (label_error);
4334 }
4335 
4336 
4337 #if defined(_SUNOS_VTOC_16)
4338 /*
4339  * Macro: MAX_BLKS
4340  *
4341  *	This macro is used for table entries where we need to have the largest
4342  *	possible sector value for that head & SPT (sectors per track)
4343  *	combination.  Other entries for some smaller disk sizes are set by
4344  *	convention to match those used by X86 BIOS usage.
4345  */
4346 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4347 
4348 /*
4349  *    Function: sd_convert_geometry
4350  *
4351  * Description: Convert physical geometry into a dk_geom structure. In
4352  *		other words, make sure we don't wrap 16-bit values.
4353  *		e.g. converting from geom_cache to dk_geom
4354  *
4355  *     Context: Kernel thread only
4356  */
4357 static void
4358 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4359 {
4360 	int i;
4361 	static const struct chs_values {
4362 		uint_t max_cap;		/* Max Capacity for this HS. */
4363 		uint_t nhead;		/* Heads to use. */
4364 		uint_t nsect;		/* SPT to use. */
4365 	} CHS_values[] = {
4366 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4367 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4368 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4369 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4370 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4371 	};
4372 
4373 	/* Unlabeled SCSI floppy device */
4374 	if (capacity <= 0x1000) {
4375 		un_g->dkg_nhead = 2;
4376 		un_g->dkg_ncyl = 80;
4377 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4378 		return;
4379 	}
4380 
4381 	/*
4382 	 * For all devices we calculate cylinders using the
4383 	 * heads and sectors we assign based on capacity of the
4384 	 * device.  The table is designed to be compatible with the
4385 	 * way other operating systems lay out fdisk tables for X86
4386 	 * and to insure that the cylinders never exceed 65535 to
4387 	 * prevent problems with X86 ioctls that report geometry.
4388 	 * We use SPT that are multiples of 63, since other OSes that
4389 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4390 	 * we make do by using multiples of 63 SPT.
4391 	 *
4392 	 * Note than capacities greater than or equal to 1TB will simply
4393 	 * get the largest geometry from the table. This should be okay
4394 	 * since disks this large shouldn't be using CHS values anyway.
4395 	 */
4396 	for (i = 0; CHS_values[i].max_cap < capacity &&
4397 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4398 		;
4399 
4400 	un_g->dkg_nhead = CHS_values[i].nhead;
4401 	un_g->dkg_nsect = CHS_values[i].nsect;
4402 }
4403 #endif
4404 
4405 
4406 /*
4407  *    Function: sd_resync_geom_caches
4408  *
4409  * Description: (Re)initialize both geometry caches: the virtual geometry
4410  *		information is extracted from the HBA (the "geometry"
4411  *		capability), and the physical geometry cache data is
4412  *		generated by issuing MODE SENSE commands.
4413  *
4414  *   Arguments: un - driver soft state (unit) structure
4415  *		capacity - disk capacity in #blocks
4416  *		lbasize - disk block size in bytes
4417  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4418  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4419  *			to use the USCSI "direct" chain and bypass the normal
4420  *			command waitq.
4421  *
4422  *     Context: Kernel thread only (can sleep).
4423  */
4424 
4425 static void
4426 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4427 	int path_flag)
4428 {
4429 	struct 	geom_cache 	pgeom;
4430 	struct 	geom_cache	*pgeom_p = &pgeom;
4431 	int 	spc;
4432 	unsigned short nhead;
4433 	unsigned short nsect;
4434 
4435 	ASSERT(un != NULL);
4436 	ASSERT(mutex_owned(SD_MUTEX(un)));
4437 
4438 	/*
4439 	 * Ask the controller for its logical geometry.
4440 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4441 	 * then the lgeom cache will be invalid.
4442 	 */
4443 	sd_get_virtual_geometry(un, capacity, lbasize);
4444 
4445 	/*
4446 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4447 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4448 	 */
4449 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4450 		/*
4451 		 * Note: Perhaps this needs to be more adaptive? The rationale
4452 		 * is that, if there's no HBA geometry from the HBA driver, any
4453 		 * guess is good, since this is the physical geometry. If MODE
4454 		 * SENSE fails this gives a max cylinder size for non-LBA access
4455 		 */
4456 		nhead = 255;
4457 		nsect = 63;
4458 	} else {
4459 		nhead = un->un_lgeom.g_nhead;
4460 		nsect = un->un_lgeom.g_nsect;
4461 	}
4462 
4463 	if (ISCD(un)) {
4464 		pgeom_p->g_nhead = 1;
4465 		pgeom_p->g_nsect = nsect * nhead;
4466 	} else {
4467 		pgeom_p->g_nhead = nhead;
4468 		pgeom_p->g_nsect = nsect;
4469 	}
4470 
4471 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4472 	pgeom_p->g_capacity = capacity;
4473 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4474 	pgeom_p->g_acyl = 0;
4475 
4476 	/*
4477 	 * Retrieve fresh geometry data from the hardware, stash it
4478 	 * here temporarily before we rebuild the incore label.
4479 	 *
4480 	 * We want to use the MODE SENSE commands to derive the
4481 	 * physical geometry of the device, but if either command
4482 	 * fails, the logical geometry is used as the fallback for
4483 	 * disk label geometry.
4484 	 */
4485 	mutex_exit(SD_MUTEX(un));
4486 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4487 	mutex_enter(SD_MUTEX(un));
4488 
4489 	/*
4490 	 * Now update the real copy while holding the mutex. This
4491 	 * way the global copy is never in an inconsistent state.
4492 	 */
4493 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4494 
4495 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4496 	    "(cached from lgeom)\n");
4497 	SD_INFO(SD_LOG_COMMON, un,
4498 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4499 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4500 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4501 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4502 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4503 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4504 	    un->un_pgeom.g_rpm);
4505 }
4506 
4507 
4508 /*
4509  *    Function: sd_read_fdisk
4510  *
4511  * Description: utility routine to read the fdisk table.
4512  *
4513  *   Arguments: un - driver soft state (unit) structure
4514  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4515  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4516  *			to use the USCSI "direct" chain and bypass the normal
4517  *			command waitq.
4518  *
4519  * Return Code: SD_CMD_SUCCESS
4520  *		SD_CMD_FAILURE
4521  *
4522  *     Context: Kernel thread only (can sleep).
4523  */
4524 /* ARGSUSED */
4525 static int
4526 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4527 {
4528 #if defined(_NO_FDISK_PRESENT)
4529 
4530 	un->un_solaris_offset = 0;
4531 	un->un_solaris_size = capacity;
4532 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4533 	return (SD_CMD_SUCCESS);
4534 
4535 #elif defined(_FIRMWARE_NEEDS_FDISK)
4536 
4537 	struct ipart	*fdp;
4538 	struct mboot	*mbp;
4539 	struct ipart	fdisk[FD_NUMPART];
4540 	int		i;
4541 	char		sigbuf[2];
4542 	caddr_t		bufp;
4543 	int		uidx;
4544 	int		rval;
4545 	int		lba = 0;
4546 	uint_t		solaris_offset;	/* offset to solaris part. */
4547 	daddr_t		solaris_size;	/* size of solaris partition */
4548 	uint32_t	blocksize;
4549 
4550 	ASSERT(un != NULL);
4551 	ASSERT(mutex_owned(SD_MUTEX(un)));
4552 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4553 
4554 	blocksize = un->un_tgt_blocksize;
4555 
4556 	/*
4557 	 * Start off assuming no fdisk table
4558 	 */
4559 	solaris_offset = 0;
4560 	solaris_size   = capacity;
4561 
4562 	mutex_exit(SD_MUTEX(un));
4563 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4564 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4565 	mutex_enter(SD_MUTEX(un));
4566 
4567 	if (rval != 0) {
4568 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4569 		    "sd_read_fdisk: fdisk read err\n");
4570 		kmem_free(bufp, blocksize);
4571 		return (SD_CMD_FAILURE);
4572 	}
4573 
4574 	mbp = (struct mboot *)bufp;
4575 
4576 	/*
4577 	 * The fdisk table does not begin on a 4-byte boundary within the
4578 	 * master boot record, so we copy it to an aligned structure to avoid
4579 	 * alignment exceptions on some processors.
4580 	 */
4581 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4582 
4583 	/*
4584 	 * Check for lba support before verifying sig; sig might not be
4585 	 * there, say on a blank disk, but the max_chs mark may still
4586 	 * be present.
4587 	 *
4588 	 * Note: LBA support and BEFs are an x86-only concept but this
4589 	 * code should work OK on SPARC as well.
4590 	 */
4591 
4592 	/*
4593 	 * First, check for lba-access-ok on root node (or prom root node)
4594 	 * if present there, don't need to search fdisk table.
4595 	 */
4596 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4597 	    "lba-access-ok", 0) != 0) {
4598 		/* All drives do LBA; don't search fdisk table */
4599 		lba = 1;
4600 	} else {
4601 		/* Okay, look for mark in fdisk table */
4602 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4603 			/* accumulate "lba" value from all partitions */
4604 			lba = (lba || sd_has_max_chs_vals(fdp));
4605 		}
4606 	}
4607 
4608 	/*
4609 	 * Next, look for 'no-bef-lba-access' prop on parent.
4610 	 * Its presence means the realmode driver doesn't support
4611 	 * LBA, so the target driver shouldn't advertise it as ok.
4612 	 * This should be a temporary condition; one day all
4613 	 * BEFs should support the LBA access functions.
4614 	 */
4615 	if ((lba != 0) && (ddi_getprop(DDI_DEV_T_ANY,
4616 	    ddi_get_parent(SD_DEVINFO(un)), DDI_PROP_DONTPASS,
4617 	    "no-bef-lba-access", 0) != 0)) {
4618 		/* BEF doesn't support LBA; don't advertise it as ok */
4619 		lba = 0;
4620 	}
4621 
4622 	if (lba != 0) {
4623 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4624 
4625 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4626 		    "lba-access-ok", 0) == 0) {
4627 			/* not found; create it */
4628 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4629 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4630 			    DDI_PROP_SUCCESS) {
4631 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4632 				    "sd_read_fdisk: Can't create lba property "
4633 				    "for instance %d\n",
4634 				    ddi_get_instance(SD_DEVINFO(un)));
4635 			}
4636 		}
4637 	}
4638 
4639 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4640 
4641 	/*
4642 	 * Endian-independent signature check
4643 	 */
4644 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4645 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4646 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4647 		    "sd_read_fdisk: no fdisk\n");
4648 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4649 		rval = SD_CMD_SUCCESS;
4650 		goto done;
4651 	}
4652 
4653 #ifdef SDDEBUG
4654 	if (sd_level_mask & SD_LOGMASK_INFO) {
4655 		fdp = fdisk;
4656 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4657 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4658 		    "numsect         sysid       bootid\n");
4659 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4660 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4661 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4662 			    i, fdp->relsect, fdp->numsect,
4663 			    fdp->systid, fdp->bootid);
4664 		}
4665 	}
4666 #endif
4667 
4668 	/*
4669 	 * Try to find the unix partition
4670 	 */
4671 	uidx = -1;
4672 	solaris_offset = 0;
4673 	solaris_size   = 0;
4674 
4675 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4676 		int	relsect;
4677 		int	numsect;
4678 
4679 		if (fdp->numsect == 0) {
4680 			un->un_fmap[i].fmap_start = 0;
4681 			un->un_fmap[i].fmap_nblk  = 0;
4682 			continue;
4683 		}
4684 
4685 		/*
4686 		 * Data in the fdisk table is little-endian.
4687 		 */
4688 		relsect = LE_32(fdp->relsect);
4689 		numsect = LE_32(fdp->numsect);
4690 
4691 		un->un_fmap[i].fmap_start = relsect;
4692 		un->un_fmap[i].fmap_nblk  = numsect;
4693 
4694 		if (fdp->systid != SUNIXOS &&
4695 		    fdp->systid != SUNIXOS2 &&
4696 		    fdp->systid != EFI_PMBR) {
4697 			continue;
4698 		}
4699 
4700 		/*
4701 		 * use the last active solaris partition id found
4702 		 * (there should only be 1 active partition id)
4703 		 *
4704 		 * if there are no active solaris partition id
4705 		 * then use the first inactive solaris partition id
4706 		 */
4707 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
4708 			uidx = i;
4709 			solaris_offset = relsect;
4710 			solaris_size   = numsect;
4711 		}
4712 	}
4713 
4714 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
4715 	    un->un_solaris_offset, un->un_solaris_size);
4716 
4717 	rval = SD_CMD_SUCCESS;
4718 
4719 done:
4720 
4721 	/*
4722 	 * Clear the VTOC info, only if the Solaris partition entry
4723 	 * has moved, changed size, been deleted, or if the size of
4724 	 * the partition is too small to even fit the label sector.
4725 	 */
4726 	if ((un->un_solaris_offset != solaris_offset) ||
4727 	    (un->un_solaris_size != solaris_size) ||
4728 	    solaris_size <= DK_LABEL_LOC) {
4729 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
4730 			solaris_offset, solaris_size);
4731 		bzero(&un->un_g, sizeof (struct dk_geom));
4732 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
4733 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
4734 		un->un_f_geometry_is_valid = FALSE;
4735 	}
4736 	un->un_solaris_offset = solaris_offset;
4737 	un->un_solaris_size = solaris_size;
4738 	kmem_free(bufp, blocksize);
4739 	return (rval);
4740 
4741 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
4742 #error "fdisk table presence undetermined for this platform."
4743 #endif	/* #if defined(_NO_FDISK_PRESENT) */
4744 }
4745 
4746 
4747 /*
4748  *    Function: sd_get_physical_geometry
4749  *
4750  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4751  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4752  *		target, and use this information to initialize the physical
4753  *		geometry cache specified by pgeom_p.
4754  *
4755  *		MODE SENSE is an optional command, so failure in this case
4756  *		does not necessarily denote an error. We want to use the
4757  *		MODE SENSE commands to derive the physical geometry of the
4758  *		device, but if either command fails, the logical geometry is
4759  *		used as the fallback for disk label geometry.
4760  *
4761  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4762  *		have already been initialized for the current target and
4763  *		that the current values be passed as args so that we don't
4764  *		end up ever trying to use -1 as a valid value. This could
4765  *		happen if either value is reset while we're not holding
4766  *		the mutex.
4767  *
4768  *   Arguments: un - driver soft state (unit) structure
4769  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4770  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4771  *			to use the USCSI "direct" chain and bypass the normal
4772  *			command waitq.
4773  *
4774  *     Context: Kernel thread only (can sleep).
4775  */
4776 
4777 static void
4778 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
4779 	int capacity, int lbasize, int path_flag)
4780 {
4781 	struct	mode_format	*page3p;
4782 	struct	mode_geometry	*page4p;
4783 	struct	mode_header	*headerp;
4784 	int	sector_size;
4785 	int	nsect;
4786 	int	nhead;
4787 	int	ncyl;
4788 	int	intrlv;
4789 	int	spc;
4790 	int	modesense_capacity;
4791 	int	rpm;
4792 	int	bd_len;
4793 	int	mode_header_length;
4794 	uchar_t	*p3bufp;
4795 	uchar_t	*p4bufp;
4796 	int	cdbsize;
4797 
4798 	ASSERT(un != NULL);
4799 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
4800 
4801 	if (un->un_f_blockcount_is_valid != TRUE) {
4802 		return;
4803 	}
4804 
4805 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
4806 		return;
4807 	}
4808 
4809 	if (lbasize == 0) {
4810 		if (ISCD(un)) {
4811 			lbasize = 2048;
4812 		} else {
4813 			lbasize = un->un_sys_blocksize;
4814 		}
4815 	}
4816 	pgeom_p->g_secsize = (unsigned short)lbasize;
4817 
4818 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4819 
4820 	/*
4821 	 * Retrieve MODE SENSE page 3 - Format Device Page
4822 	 */
4823 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4824 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4825 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4826 	    != 0) {
4827 		SD_ERROR(SD_LOG_COMMON, un,
4828 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4829 		goto page3_exit;
4830 	}
4831 
4832 	/*
4833 	 * Determine size of Block Descriptors in order to locate the mode
4834 	 * page data.  ATAPI devices return 0, SCSI devices should return
4835 	 * MODE_BLK_DESC_LENGTH.
4836 	 */
4837 	headerp = (struct mode_header *)p3bufp;
4838 	if (un->un_f_cfg_is_atapi == TRUE) {
4839 		struct mode_header_grp2 *mhp =
4840 		    (struct mode_header_grp2 *)headerp;
4841 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4842 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4843 	} else {
4844 		mode_header_length = MODE_HEADER_LENGTH;
4845 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4846 	}
4847 
4848 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4849 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4850 		    "received unexpected bd_len of %d, page3\n", bd_len);
4851 		goto page3_exit;
4852 	}
4853 
4854 	page3p = (struct mode_format *)
4855 	    ((caddr_t)headerp + mode_header_length + bd_len);
4856 
4857 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4858 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4859 		    "mode sense pg3 code mismatch %d\n",
4860 		    page3p->mode_page.code);
4861 		goto page3_exit;
4862 	}
4863 
4864 	/*
4865 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4866 	 * complete successfully; otherwise, revert to the logical geometry.
4867 	 * So, we need to save everything in temporary variables.
4868 	 */
4869 	sector_size = BE_16(page3p->data_bytes_sect);
4870 
4871 	/*
4872 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4873 	 */
4874 	if (sector_size == 0) {
4875 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
4876 	} else {
4877 		sector_size &= ~(un->un_sys_blocksize - 1);
4878 	}
4879 
4880 	nsect  = BE_16(page3p->sect_track);
4881 	intrlv = BE_16(page3p->interleave);
4882 
4883 	SD_INFO(SD_LOG_COMMON, un,
4884 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4885 	SD_INFO(SD_LOG_COMMON, un,
4886 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4887 	    page3p->mode_page.code, nsect, sector_size);
4888 	SD_INFO(SD_LOG_COMMON, un,
4889 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4890 	    BE_16(page3p->track_skew),
4891 	    BE_16(page3p->cylinder_skew));
4892 
4893 
4894 	/*
4895 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4896 	 */
4897 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4898 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4899 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4900 	    != 0) {
4901 		SD_ERROR(SD_LOG_COMMON, un,
4902 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4903 		goto page4_exit;
4904 	}
4905 
4906 	/*
4907 	 * Determine size of Block Descriptors in order to locate the mode
4908 	 * page data.  ATAPI devices return 0, SCSI devices should return
4909 	 * MODE_BLK_DESC_LENGTH.
4910 	 */
4911 	headerp = (struct mode_header *)p4bufp;
4912 	if (un->un_f_cfg_is_atapi == TRUE) {
4913 		struct mode_header_grp2 *mhp =
4914 		    (struct mode_header_grp2 *)headerp;
4915 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4916 	} else {
4917 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4918 	}
4919 
4920 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4921 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4922 		    "received unexpected bd_len of %d, page4\n", bd_len);
4923 		goto page4_exit;
4924 	}
4925 
4926 	page4p = (struct mode_geometry *)
4927 	    ((caddr_t)headerp + mode_header_length + bd_len);
4928 
4929 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4930 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4931 		    "mode sense pg4 code mismatch %d\n",
4932 		    page4p->mode_page.code);
4933 		goto page4_exit;
4934 	}
4935 
4936 	/*
4937 	 * Stash the data now, after we know that both commands completed.
4938 	 */
4939 
4940 	mutex_enter(SD_MUTEX(un));
4941 
4942 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4943 	spc   = nhead * nsect;
4944 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4945 	rpm   = BE_16(page4p->rpm);
4946 
4947 	modesense_capacity = spc * ncyl;
4948 
4949 	SD_INFO(SD_LOG_COMMON, un,
4950 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4951 	SD_INFO(SD_LOG_COMMON, un,
4952 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4953 	SD_INFO(SD_LOG_COMMON, un,
4954 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4955 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4956 	    (void *)pgeom_p, capacity);
4957 
4958 	/*
4959 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4960 	 * the product of C * H * S returned by MODE SENSE >= that returned
4961 	 * by read capacity. This is an idiosyncrasy of the original x86
4962 	 * disk subsystem.
4963 	 */
4964 	if (modesense_capacity >= capacity) {
4965 		SD_INFO(SD_LOG_COMMON, un,
4966 		    "sd_get_physical_geometry: adjusting acyl; "
4967 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4968 		    (modesense_capacity - capacity + spc - 1) / spc);
4969 		if (sector_size != 0) {
4970 			/* 1243403: NEC D38x7 drives don't support sec size */
4971 			pgeom_p->g_secsize = (unsigned short)sector_size;
4972 		}
4973 		pgeom_p->g_nsect    = (unsigned short)nsect;
4974 		pgeom_p->g_nhead    = (unsigned short)nhead;
4975 		pgeom_p->g_capacity = capacity;
4976 		pgeom_p->g_acyl	    =
4977 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4978 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4979 	}
4980 
4981 	pgeom_p->g_rpm    = (unsigned short)rpm;
4982 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4983 
4984 	SD_INFO(SD_LOG_COMMON, un,
4985 	    "sd_get_physical_geometry: mode sense geometry:\n");
4986 	SD_INFO(SD_LOG_COMMON, un,
4987 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4988 	    nsect, sector_size, intrlv);
4989 	SD_INFO(SD_LOG_COMMON, un,
4990 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4991 	    nhead, ncyl, rpm, modesense_capacity);
4992 	SD_INFO(SD_LOG_COMMON, un,
4993 	    "sd_get_physical_geometry: (cached)\n");
4994 	SD_INFO(SD_LOG_COMMON, un,
4995 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4996 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
4997 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4998 	SD_INFO(SD_LOG_COMMON, un,
4999 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5000 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5001 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5002 
5003 	mutex_exit(SD_MUTEX(un));
5004 
5005 page4_exit:
5006 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5007 page3_exit:
5008 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5009 }
5010 
5011 
5012 /*
5013  *    Function: sd_get_virtual_geometry
5014  *
5015  * Description: Ask the controller to tell us about the target device.
5016  *
5017  *   Arguments: un - pointer to softstate
5018  *		capacity - disk capacity in #blocks
5019  *		lbasize - disk block size in bytes
5020  *
5021  *     Context: Kernel thread only
5022  */
5023 
5024 static void
5025 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5026 {
5027 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5028 	uint_t	geombuf;
5029 	int	spc;
5030 
5031 	ASSERT(un != NULL);
5032 	ASSERT(mutex_owned(SD_MUTEX(un)));
5033 
5034 	mutex_exit(SD_MUTEX(un));
5035 
5036 	/* Set sector size, and total number of sectors */
5037 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5038 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5039 
5040 	/* Let the HBA tell us its geometry */
5041 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5042 
5043 	mutex_enter(SD_MUTEX(un));
5044 
5045 	/* A value of -1 indicates an undefined "geometry" property */
5046 	if (geombuf == (-1)) {
5047 		return;
5048 	}
5049 
5050 	/* Initialize the logical geometry cache. */
5051 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5052 	lgeom_p->g_nsect   = geombuf & 0xffff;
5053 	lgeom_p->g_secsize = un->un_sys_blocksize;
5054 
5055 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5056 
5057 	/*
5058 	 * Note: The driver originally converted the capacity value from
5059 	 * target blocks to system blocks. However, the capacity value passed
5060 	 * to this routine is already in terms of system blocks (this scaling
5061 	 * is done when the READ CAPACITY command is issued and processed).
5062 	 * This 'error' may have gone undetected because the usage of g_ncyl
5063 	 * (which is based upon g_capacity) is very limited within the driver
5064 	 */
5065 	lgeom_p->g_capacity = capacity;
5066 
5067 	/*
5068 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5069 	 * hba may return zero values if the device has been removed.
5070 	 */
5071 	if (spc == 0) {
5072 		lgeom_p->g_ncyl = 0;
5073 	} else {
5074 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5075 	}
5076 	lgeom_p->g_acyl = 0;
5077 
5078 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5079 	SD_INFO(SD_LOG_COMMON, un,
5080 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5081 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5082 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5083 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5084 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5085 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5086 }
5087 
5088 
5089 /*
5090  *    Function: sd_update_block_info
5091  *
5092  * Description: Calculate a byte count to sector count bitshift value
5093  *		from sector size.
5094  *
5095  *   Arguments: un: unit struct.
5096  *		lbasize: new target sector size
5097  *		capacity: new target capacity, ie. block count
5098  *
5099  *     Context: Kernel thread context
5100  */
5101 
5102 static void
5103 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5104 {
5105 	if (lbasize != 0) {
5106 		un->un_tgt_blocksize = lbasize;
5107 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5108 	}
5109 
5110 	if (capacity != 0) {
5111 		un->un_blockcount		= capacity;
5112 		un->un_f_blockcount_is_valid	= TRUE;
5113 	}
5114 }
5115 
5116 
5117 static void
5118 sd_swap_efi_gpt(efi_gpt_t *e)
5119 {
5120 	_NOTE(ASSUMING_PROTECTED(*e))
5121 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5122 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5123 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5124 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5125 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5126 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5127 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5128 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5129 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5130 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5131 	e->efi_gpt_NumberOfPartitionEntries =
5132 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5133 	e->efi_gpt_SizeOfPartitionEntry =
5134 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5135 	e->efi_gpt_PartitionEntryArrayCRC32 =
5136 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5137 }
5138 
5139 static void
5140 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5141 {
5142 	int i;
5143 
5144 	_NOTE(ASSUMING_PROTECTED(*p))
5145 	for (i = 0; i < nparts; i++) {
5146 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5147 		    p[i].efi_gpe_PartitionTypeGUID);
5148 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5149 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5150 		/* PartitionAttrs */
5151 	}
5152 }
5153 
5154 static int
5155 sd_validate_efi(efi_gpt_t *labp)
5156 {
5157 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5158 		return (EINVAL);
5159 	/* at least 96 bytes in this version of the spec. */
5160 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5161 	    labp->efi_gpt_HeaderSize)
5162 		return (EINVAL);
5163 	/* this should be 128 bytes */
5164 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5165 		return (EINVAL);
5166 	return (0);
5167 }
5168 
5169 static int
5170 sd_use_efi(struct sd_lun *un, int path_flag)
5171 {
5172 	int		i;
5173 	int		rval = 0;
5174 	efi_gpe_t	*partitions;
5175 	uchar_t		*buf;
5176 	uint_t		lbasize;
5177 	uint64_t	cap;
5178 	uint_t		nparts;
5179 	diskaddr_t	gpe_lba;
5180 
5181 	ASSERT(mutex_owned(SD_MUTEX(un)));
5182 	lbasize = un->un_tgt_blocksize;
5183 
5184 	mutex_exit(SD_MUTEX(un));
5185 
5186 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5187 
5188 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5189 		rval = EINVAL;
5190 		goto done_err;
5191 	}
5192 
5193 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5194 	if (rval) {
5195 		goto done_err;
5196 	}
5197 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5198 		/* not ours */
5199 		rval = ESRCH;
5200 		goto done_err;
5201 	}
5202 
5203 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5204 	if (rval) {
5205 		goto done_err;
5206 	}
5207 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5208 
5209 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5210 		/*
5211 		 * Couldn't read the primary, try the backup.  Our
5212 		 * capacity at this point could be based on CHS, so
5213 		 * check what the device reports.
5214 		 */
5215 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5216 		    path_flag);
5217 		if (rval) {
5218 			goto done_err;
5219 		}
5220 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5221 		    cap - 1, path_flag)) != 0) {
5222 			goto done_err;
5223 		}
5224 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5225 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5226 			goto done_err;
5227 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5228 		    "primary label corrupt; using backup\n");
5229 	}
5230 
5231 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5232 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5233 
5234 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5235 	    path_flag);
5236 	if (rval) {
5237 		goto done_err;
5238 	}
5239 	partitions = (efi_gpe_t *)buf;
5240 
5241 	if (nparts > MAXPART) {
5242 		nparts = MAXPART;
5243 	}
5244 	sd_swap_efi_gpe(nparts, partitions);
5245 
5246 	mutex_enter(SD_MUTEX(un));
5247 
5248 	/* Fill in partition table. */
5249 	for (i = 0; i < nparts; i++) {
5250 		if (partitions->efi_gpe_StartingLBA != 0 ||
5251 		    partitions->efi_gpe_EndingLBA != 0) {
5252 			un->un_map[i].dkl_cylno =
5253 			    partitions->efi_gpe_StartingLBA;
5254 			un->un_map[i].dkl_nblk =
5255 			    partitions->efi_gpe_EndingLBA -
5256 			    partitions->efi_gpe_StartingLBA + 1;
5257 			un->un_offset[i] =
5258 			    partitions->efi_gpe_StartingLBA;
5259 		}
5260 		if (i == WD_NODE) {
5261 			/*
5262 			 * minor number 7 corresponds to the whole disk
5263 			 */
5264 			un->un_map[i].dkl_cylno = 0;
5265 			un->un_map[i].dkl_nblk = un->un_blockcount;
5266 			un->un_offset[i] = 0;
5267 		}
5268 		partitions++;
5269 	}
5270 	un->un_solaris_offset = 0;
5271 	un->un_solaris_size = cap;
5272 	un->un_f_geometry_is_valid = TRUE;
5273 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5274 	return (0);
5275 
5276 done_err:
5277 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5278 	mutex_enter(SD_MUTEX(un));
5279 	/*
5280 	 * if we didn't find something that could look like a VTOC
5281 	 * and the disk is over 1TB, we know there isn't a valid label.
5282 	 * Otherwise let sd_uselabel decide what to do.  We only
5283 	 * want to invalidate this if we're certain the label isn't
5284 	 * valid because sd_prop_op will now fail, which in turn
5285 	 * causes things like opens and stats on the partition to fail.
5286 	 */
5287 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5288 		un->un_f_geometry_is_valid = FALSE;
5289 	}
5290 	return (rval);
5291 }
5292 
5293 
5294 /*
5295  *    Function: sd_uselabel
5296  *
5297  * Description: Validate the disk label and update the relevant data (geometry,
5298  *		partition, vtoc, and capacity data) in the sd_lun struct.
5299  *		Marks the geometry of the unit as being valid.
5300  *
5301  *   Arguments: un: unit struct.
5302  *		dk_label: disk label
5303  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5304  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5305  *			to use the USCSI "direct" chain and bypass the normal
5306  *			command waitq.
5307  *
5308  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5309  *		partition, vtoc, and capacity data are good.
5310  *
5311  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5312  *		label; or computed capacity does not jibe with capacity
5313  *		reported from the READ CAPACITY command.
5314  *
5315  *     Context: Kernel thread only (can sleep).
5316  */
5317 
5318 static int
5319 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5320 {
5321 	short	*sp;
5322 	short	sum;
5323 	short	count;
5324 	int	label_error = SD_LABEL_IS_VALID;
5325 	int	i;
5326 	int	capacity;
5327 	int	part_end;
5328 	int	track_capacity;
5329 	int	err;
5330 #if defined(_SUNOS_VTOC_16)
5331 	struct	dkl_partition	*vpartp;
5332 #endif
5333 	ASSERT(un != NULL);
5334 	ASSERT(mutex_owned(SD_MUTEX(un)));
5335 
5336 	/* Validate the magic number of the label. */
5337 	if (labp->dkl_magic != DKL_MAGIC) {
5338 #if defined(__sparc)
5339 		if ((un->un_state == SD_STATE_NORMAL) &&
5340 		    !ISREMOVABLE(un)) {
5341 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5342 			    "Corrupt label; wrong magic number\n");
5343 		}
5344 #endif
5345 		return (SD_LABEL_IS_INVALID);
5346 	}
5347 
5348 	/* Validate the checksum of the label. */
5349 	sp  = (short *)labp;
5350 	sum = 0;
5351 	count = sizeof (struct dk_label) / sizeof (short);
5352 	while (count--)	 {
5353 		sum ^= *sp++;
5354 	}
5355 
5356 	if (sum != 0) {
5357 #if defined(_SUNOS_VTOC_16)
5358 		if (un->un_state == SD_STATE_NORMAL && !ISCD(un)) {
5359 #elif defined(_SUNOS_VTOC_8)
5360 		if (un->un_state == SD_STATE_NORMAL && !ISREMOVABLE(un)) {
5361 #endif
5362 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5363 			    "Corrupt label - label checksum failed\n");
5364 		}
5365 		return (SD_LABEL_IS_INVALID);
5366 	}
5367 
5368 
5369 	/*
5370 	 * Fill in geometry structure with data from label.
5371 	 */
5372 	bzero(&un->un_g, sizeof (struct dk_geom));
5373 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5374 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5375 	un->un_g.dkg_bcyl   = 0;
5376 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5377 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5378 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5379 
5380 #if defined(_SUNOS_VTOC_8)
5381 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5382 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5383 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5384 #endif
5385 #if defined(_SUNOS_VTOC_16)
5386 	un->un_dkg_skew = labp->dkl_skew;
5387 #endif
5388 
5389 #if defined(__i386) || defined(__amd64)
5390 	un->un_g.dkg_apc = labp->dkl_apc;
5391 #endif
5392 
5393 	/*
5394 	 * Currently we rely on the values in the label being accurate. If
5395 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5396 	 *
5397 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5398 	 * although this command is optional in SCSI-2.
5399 	 */
5400 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5401 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5402 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5403 
5404 	/*
5405 	 * The Read and Write reinstruct values may not be valid
5406 	 * for older disks.
5407 	 */
5408 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5409 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5410 
5411 	/* Fill in partition table. */
5412 #if defined(_SUNOS_VTOC_8)
5413 	for (i = 0; i < NDKMAP; i++) {
5414 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5415 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5416 	}
5417 #endif
5418 #if  defined(_SUNOS_VTOC_16)
5419 	vpartp		= labp->dkl_vtoc.v_part;
5420 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5421 
5422 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5423 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5424 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5425 	}
5426 #endif
5427 
5428 	/* Fill in VTOC Structure. */
5429 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5430 #if defined(_SUNOS_VTOC_8)
5431 	/*
5432 	 * The 8-slice vtoc does not include the ascii label; save it into
5433 	 * the device's soft state structure here.
5434 	 */
5435 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5436 #endif
5437 
5438 	/* Mark the geometry as valid. */
5439 	un->un_f_geometry_is_valid = TRUE;
5440 
5441 	/* Now look for a valid capacity. */
5442 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5443 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5444 
5445 	if (un->un_g.dkg_acyl) {
5446 #if defined(__i386) || defined(__amd64)
5447 		/* we may have > 1 alts cylinder */
5448 		capacity += (track_capacity * un->un_g.dkg_acyl);
5449 #else
5450 		capacity += track_capacity;
5451 #endif
5452 	}
5453 
5454 	/*
5455 	 * At this point, un->un_blockcount should contain valid data from
5456 	 * the READ CAPACITY command.
5457 	 */
5458 	if (un->un_f_blockcount_is_valid != TRUE) {
5459 		/*
5460 		 * We have a situation where the target didn't give us a good
5461 		 * READ CAPACITY value, yet there appears to be a valid label.
5462 		 * In this case, we'll fake the capacity.
5463 		 */
5464 		un->un_blockcount = capacity;
5465 		un->un_f_blockcount_is_valid = TRUE;
5466 		goto done;
5467 	}
5468 
5469 
5470 	if ((capacity <= un->un_blockcount) ||
5471 	    (un->un_state != SD_STATE_NORMAL)) {
5472 #if defined(_SUNOS_VTOC_8)
5473 		/*
5474 		 * We can't let this happen on drives that are subdivided
5475 		 * into logical disks (i.e., that have an fdisk table).
5476 		 * The un_blockcount field should always hold the full media
5477 		 * size in sectors, period.  This code would overwrite
5478 		 * un_blockcount with the size of the Solaris fdisk partition.
5479 		 */
5480 		SD_ERROR(SD_LOG_COMMON, un,
5481 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5482 		    capacity, un->un_blockcount);
5483 		un->un_blockcount = capacity;
5484 		un->un_f_blockcount_is_valid = TRUE;
5485 #endif	/* defined(_SUNOS_VTOC_8) */
5486 		goto done;
5487 	}
5488 
5489 	if (ISCD(un)) {
5490 		/* For CDROMs, we trust that the data in the label is OK. */
5491 #if defined(_SUNOS_VTOC_8)
5492 		for (i = 0; i < NDKMAP; i++) {
5493 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5494 			    labp->dkl_map[i].dkl_cylno +
5495 			    labp->dkl_map[i].dkl_nblk  - 1;
5496 
5497 			if ((labp->dkl_map[i].dkl_nblk) &&
5498 			    (part_end > un->un_blockcount)) {
5499 				un->un_f_geometry_is_valid = FALSE;
5500 				break;
5501 			}
5502 		}
5503 #endif
5504 #if defined(_SUNOS_VTOC_16)
5505 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5506 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5507 			part_end = vpartp->p_start + vpartp->p_size;
5508 			if ((vpartp->p_size > 0) &&
5509 			    (part_end > un->un_blockcount)) {
5510 				un->un_f_geometry_is_valid = FALSE;
5511 				break;
5512 			}
5513 		}
5514 #endif
5515 	} else {
5516 		uint64_t t_capacity;
5517 		uint32_t t_lbasize;
5518 
5519 		mutex_exit(SD_MUTEX(un));
5520 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5521 		    path_flag);
5522 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5523 		mutex_enter(SD_MUTEX(un));
5524 
5525 		if (err == 0) {
5526 			sd_update_block_info(un, t_lbasize, t_capacity);
5527 		}
5528 
5529 		if (capacity > un->un_blockcount) {
5530 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5531 			    "Corrupt label - bad geometry\n");
5532 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5533 			    "Label says %u blocks; Drive says %llu blocks\n",
5534 			    capacity, (unsigned long long)un->un_blockcount);
5535 			un->un_f_geometry_is_valid = FALSE;
5536 			label_error = SD_LABEL_IS_INVALID;
5537 		}
5538 	}
5539 
5540 done:
5541 
5542 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5543 	SD_INFO(SD_LOG_COMMON, un,
5544 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5545 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5546 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5547 	SD_INFO(SD_LOG_COMMON, un,
5548 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5549 	    un->un_tgt_blocksize, un->un_blockcount,
5550 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5551 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5552 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5553 
5554 	ASSERT(mutex_owned(SD_MUTEX(un)));
5555 
5556 	return (label_error);
5557 }
5558 
5559 
5560 /*
5561  *    Function: sd_build_default_label
5562  *
5563  * Description: Generate a default label for those devices that do not have
5564  *		one, e.g., new media, removable cartridges, etc..
5565  *
5566  *     Context: Kernel thread only
5567  */
5568 
5569 static void
5570 sd_build_default_label(struct sd_lun *un)
5571 {
5572 #if defined(_SUNOS_VTOC_16)
5573 	uint_t	phys_spc;
5574 	uint_t	disksize;
5575 	struct	dk_geom un_g;
5576 #endif
5577 
5578 	ASSERT(un != NULL);
5579 	ASSERT(mutex_owned(SD_MUTEX(un)));
5580 
5581 #if defined(_SUNOS_VTOC_8)
5582 	/*
5583 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5584 	 * only. This may be a valid check for VTOC_16 as well.
5585 	 */
5586 	if (!ISREMOVABLE(un)) {
5587 		return;
5588 	}
5589 #endif
5590 
5591 	bzero(&un->un_g, sizeof (struct dk_geom));
5592 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5593 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5594 
5595 #if defined(_SUNOS_VTOC_8)
5596 
5597 	/*
5598 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5599 	 * But it is still necessary to set up various geometry information,
5600 	 * and we are doing this here.
5601 	 */
5602 
5603 	/*
5604 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
5605 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
5606 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
5607 	 * equal to C*H*S values.  This will cause some truncation of size due
5608 	 * to round off errors. For CD-ROMs, this truncation can have adverse
5609 	 * side effects, so returning ncyl and nhead as 1. The nsect will
5610 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
5611 	 */
5612 	if (ISCD(un)) {
5613 		/*
5614 		 * Preserve the old behavior for non-writable
5615 		 * medias. Since dkg_nsect is a ushort, it
5616 		 * will lose bits as cdroms have more than
5617 		 * 65536 sectors. So if we recalculate
5618 		 * capacity, it will become much shorter.
5619 		 * But the dkg_* information is not
5620 		 * used for CDROMs so it is OK. But for
5621 		 * Writable CDs we need this information
5622 		 * to be valid (for newfs say). So we
5623 		 * make nsect and nhead > 1 that way
5624 		 * nsect can still stay within ushort limit
5625 		 * without losing any bits.
5626 		 */
5627 		if (un->un_f_mmc_writable_media == TRUE) {
5628 			un->un_g.dkg_nhead = 64;
5629 			un->un_g.dkg_nsect = 32;
5630 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
5631 			un->un_blockcount = un->un_g.dkg_ncyl *
5632 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5633 		} else {
5634 			un->un_g.dkg_ncyl  = 1;
5635 			un->un_g.dkg_nhead = 1;
5636 			un->un_g.dkg_nsect = un->un_blockcount;
5637 		}
5638 	} else {
5639 		if (un->un_blockcount <= 0x1000) {
5640 			/* unlabeled SCSI floppy device */
5641 			un->un_g.dkg_nhead = 2;
5642 			un->un_g.dkg_ncyl = 80;
5643 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
5644 		} else if (un->un_blockcount <= 0x200000) {
5645 			un->un_g.dkg_nhead = 64;
5646 			un->un_g.dkg_nsect = 32;
5647 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
5648 		} else {
5649 			un->un_g.dkg_nhead = 255;
5650 			un->un_g.dkg_nsect = 63;
5651 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
5652 		}
5653 		un->un_blockcount =
5654 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5655 	}
5656 
5657 	un->un_g.dkg_acyl	= 0;
5658 	un->un_g.dkg_bcyl	= 0;
5659 	un->un_g.dkg_rpm	= 200;
5660 	un->un_asciilabel[0]	= '\0';
5661 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
5662 
5663 	un->un_map[0].dkl_cylno = 0;
5664 	un->un_map[0].dkl_nblk  = un->un_blockcount;
5665 	un->un_map[2].dkl_cylno = 0;
5666 	un->un_map[2].dkl_nblk  = un->un_blockcount;
5667 
5668 #elif defined(_SUNOS_VTOC_16)
5669 
5670 	if (un->un_solaris_size == 0) {
5671 		/*
5672 		 * Got fdisk table but no solaris entry therefore
5673 		 * don't create a default label
5674 		 */
5675 		un->un_f_geometry_is_valid = TRUE;
5676 		return;
5677 	}
5678 
5679 	/*
5680 	 * For CDs we continue to use the physical geometry to calculate
5681 	 * number of cylinders. All other devices must convert the
5682 	 * physical geometry (geom_cache) to values that will fit
5683 	 * in a dk_geom structure.
5684 	 */
5685 	if (ISCD(un)) {
5686 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
5687 	} else {
5688 		/* Convert physical geometry to disk geometry */
5689 		bzero(&un_g, sizeof (struct dk_geom));
5690 		sd_convert_geometry(un->un_blockcount, &un_g);
5691 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
5692 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5693 	}
5694 
5695 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
5696 	un->un_g.dkg_acyl = DK_ACYL;
5697 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
5698 	disksize = un->un_g.dkg_ncyl * phys_spc;
5699 
5700 	if (ISCD(un)) {
5701 		/*
5702 		 * CD's don't use the "heads * sectors * cyls"-type of
5703 		 * geometry, but instead use the entire capacity of the media.
5704 		 */
5705 		disksize = un->un_solaris_size;
5706 		un->un_g.dkg_nhead = 1;
5707 		un->un_g.dkg_nsect = 1;
5708 		un->un_g.dkg_rpm =
5709 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
5710 
5711 		un->un_vtoc.v_part[0].p_start = 0;
5712 		un->un_vtoc.v_part[0].p_size  = disksize;
5713 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
5714 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
5715 
5716 		un->un_map[0].dkl_cylno = 0;
5717 		un->un_map[0].dkl_nblk  = disksize;
5718 		un->un_offset[0] = 0;
5719 
5720 	} else {
5721 		/*
5722 		 * Hard disks and removable media cartridges
5723 		 */
5724 		un->un_g.dkg_rpm =
5725 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
5726 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
5727 
5728 		/* Add boot slice */
5729 		un->un_vtoc.v_part[8].p_start = 0;
5730 		un->un_vtoc.v_part[8].p_size  = phys_spc;
5731 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
5732 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
5733 
5734 		un->un_map[8].dkl_cylno = 0;
5735 		un->un_map[8].dkl_nblk  = phys_spc;
5736 		un->un_offset[8] = 0;
5737 	}
5738 
5739 	un->un_g.dkg_apc = 0;
5740 	un->un_vtoc.v_nparts = V_NUMPAR;
5741 	un->un_vtoc.v_version = V_VERSION;
5742 
5743 	/* Add backup slice */
5744 	un->un_vtoc.v_part[2].p_start = 0;
5745 	un->un_vtoc.v_part[2].p_size  = disksize;
5746 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
5747 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
5748 
5749 	un->un_map[2].dkl_cylno = 0;
5750 	un->un_map[2].dkl_nblk  = disksize;
5751 	un->un_offset[2] = 0;
5752 
5753 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
5754 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
5755 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5756 
5757 #else
5758 #error "No VTOC format defined."
5759 #endif
5760 
5761 	un->un_g.dkg_read_reinstruct  = 0;
5762 	un->un_g.dkg_write_reinstruct = 0;
5763 
5764 	un->un_g.dkg_intrlv = 1;
5765 
5766 	un->un_vtoc.v_sanity  = VTOC_SANE;
5767 
5768 	un->un_f_geometry_is_valid = TRUE;
5769 
5770 	SD_INFO(SD_LOG_COMMON, un,
5771 	    "sd_build_default_label: Default label created: "
5772 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
5773 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
5774 	    un->un_g.dkg_nsect, un->un_blockcount);
5775 }
5776 
5777 
5778 #if defined(_FIRMWARE_NEEDS_FDISK)
5779 /*
5780  * Max CHS values, as they are encoded into bytes, for 1022/254/63
5781  */
5782 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
5783 #define	LBA_MAX_CYL	(1022 & 0xFF)
5784 #define	LBA_MAX_HEAD	(254)
5785 
5786 
5787 /*
5788  *    Function: sd_has_max_chs_vals
5789  *
5790  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
5791  *
5792  *   Arguments: fdp - ptr to CHS info
5793  *
5794  * Return Code: True or false
5795  *
5796  *     Context: Any.
5797  */
5798 
5799 static int
5800 sd_has_max_chs_vals(struct ipart *fdp)
5801 {
5802 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
5803 	    (fdp->beghead == LBA_MAX_HEAD)	&&
5804 	    (fdp->begsect == LBA_MAX_SECT)	&&
5805 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
5806 	    (fdp->endhead == LBA_MAX_HEAD)	&&
5807 	    (fdp->endsect == LBA_MAX_SECT));
5808 }
5809 #endif
5810 
5811 
5812 /*
5813  *    Function: sd_inq_fill
5814  *
5815  * Description: Print a piece of inquiry data, cleaned up for non-printable
5816  *		characters and stopping at the first space character after
5817  *		the beginning of the passed string;
5818  *
5819  *   Arguments: p - source string
5820  *		l - maximum length to copy
5821  *		s - destination string
5822  *
5823  *     Context: Any.
5824  */
5825 
5826 static void
5827 sd_inq_fill(char *p, int l, char *s)
5828 {
5829 	unsigned i = 0;
5830 	char c;
5831 
5832 	while (i++ < l) {
5833 		if ((c = *p++) < ' ' || c >= 0x7F) {
5834 			c = '*';
5835 		} else if (i != 1 && c == ' ') {
5836 			break;
5837 		}
5838 		*s++ = c;
5839 	}
5840 	*s++ = 0;
5841 }
5842 
5843 
5844 /*
5845  *    Function: sd_register_devid
5846  *
5847  * Description: This routine will obtain the device id information from the
5848  *		target, obtain the serial number, and register the device
5849  *		id with the ddi framework.
5850  *
5851  *   Arguments: devi - the system's dev_info_t for the device.
5852  *		un - driver soft state (unit) structure
5853  *		reservation_flag - indicates if a reservation conflict
5854  *		occurred during attach
5855  *
5856  *     Context: Kernel Thread
5857  */
5858 static void
5859 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
5860 {
5861 	int		rval		= 0;
5862 	uchar_t		*inq80		= NULL;
5863 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5864 	size_t		inq80_resid	= 0;
5865 	uchar_t		*inq83		= NULL;
5866 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5867 	size_t		inq83_resid	= 0;
5868 
5869 	ASSERT(un != NULL);
5870 	ASSERT(mutex_owned(SD_MUTEX(un)));
5871 	ASSERT((SD_DEVINFO(un)) == devi);
5872 
5873 	/*
5874 	 * This is the case of antiquated Sun disk drives that have the
5875 	 * FAB_DEVID property set in the disk_table.  These drives
5876 	 * manage the devid's by storing them in last 2 available sectors
5877 	 * on the drive and have them fabricated by the ddi layer by calling
5878 	 * ddi_devid_init and passing the DEVID_FAB flag.
5879 	 */
5880 	if (un->un_f_opt_fab_devid == TRUE) {
5881 		/*
5882 		 * Depending on EINVAL isn't reliable, since a reserved disk
5883 		 * may result in invalid geometry, so check to make sure a
5884 		 * reservation conflict did not occur during attach.
5885 		 */
5886 		if ((sd_get_devid(un) == EINVAL) &&
5887 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5888 			/*
5889 			 * The devid is invalid AND there is no reservation
5890 			 * conflict.  Fabricate a new devid.
5891 			 */
5892 			(void) sd_create_devid(un);
5893 		}
5894 
5895 		/* Register the devid if it exists */
5896 		if (un->un_devid != NULL) {
5897 			(void) ddi_devid_register(SD_DEVINFO(un),
5898 			    un->un_devid);
5899 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5900 			    "sd_register_devid: Devid Fabricated\n");
5901 		}
5902 		return;
5903 	}
5904 
5905 	/*
5906 	 * We check the availibility of the World Wide Name (0x83) and Unit
5907 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5908 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5909 	 * 0x83 is availible, that is the best choice.  Our next choice is
5910 	 * 0x80.  If neither are availible, we munge the devid from the device
5911 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5912 	 * to fabricate a devid for non-Sun qualified disks.
5913 	 */
5914 	if (sd_check_vpd_page_support(un) == 0) {
5915 		/* collect page 80 data if available */
5916 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5917 
5918 			mutex_exit(SD_MUTEX(un));
5919 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5920 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
5921 			    0x01, 0x80, &inq80_resid);
5922 
5923 			if (rval != 0) {
5924 				kmem_free(inq80, inq80_len);
5925 				inq80 = NULL;
5926 				inq80_len = 0;
5927 			}
5928 			mutex_enter(SD_MUTEX(un));
5929 		}
5930 
5931 		/* collect page 83 data if available */
5932 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5933 
5934 			mutex_exit(SD_MUTEX(un));
5935 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5936 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
5937 			    0x01, 0x83, &inq83_resid);
5938 
5939 			if (rval != 0) {
5940 				kmem_free(inq83, inq83_len);
5941 				inq83 = NULL;
5942 				inq83_len = 0;
5943 			}
5944 			mutex_enter(SD_MUTEX(un));
5945 		}
5946 	}
5947 
5948 	/* encode best devid possible based on data available */
5949 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5950 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5951 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5952 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5953 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5954 
5955 		/* devid successfully encoded, register devid */
5956 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5957 
5958 	} else {
5959 		/*
5960 		 * Unable to encode a devid based on data available.
5961 		 * This is not a Sun qualified disk.  Older Sun disk
5962 		 * drives that have the SD_FAB_DEVID property
5963 		 * set in the disk_table and non Sun qualified
5964 		 * disks are treated in the same manner.  These
5965 		 * drives manage the devid's by storing them in
5966 		 * last 2 available sectors on the drive and
5967 		 * have them fabricated by the ddi layer by
5968 		 * calling ddi_devid_init and passing the
5969 		 * DEVID_FAB flag.
5970 		 * Create a fabricate devid only if there's no
5971 		 * fabricate devid existed.
5972 		 */
5973 		if (sd_get_devid(un) == EINVAL) {
5974 			(void) sd_create_devid(un);
5975 			un->un_f_opt_fab_devid = TRUE;
5976 		}
5977 
5978 		/* Register the devid if it exists */
5979 		if (un->un_devid != NULL) {
5980 			(void) ddi_devid_register(SD_DEVINFO(un),
5981 			    un->un_devid);
5982 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5983 			    "sd_register_devid: devid fabricated using "
5984 			    "ddi framework\n");
5985 		}
5986 	}
5987 
5988 	/* clean up resources */
5989 	if (inq80 != NULL) {
5990 		kmem_free(inq80, inq80_len);
5991 	}
5992 	if (inq83 != NULL) {
5993 		kmem_free(inq83, inq83_len);
5994 	}
5995 }
5996 
5997 static daddr_t
5998 sd_get_devid_block(struct sd_lun *un)
5999 {
6000 	daddr_t			spc, blk, head, cyl;
6001 
6002 	if (un->un_blockcount <= DK_MAX_BLOCKS) {
6003 		/* this geometry doesn't allow us to write a devid */
6004 		if (un->un_g.dkg_acyl < 2) {
6005 			return (-1);
6006 		}
6007 
6008 		/*
6009 		 * Subtract 2 guarantees that the next to last cylinder
6010 		 * is used
6011 		 */
6012 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6013 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6014 		head = un->un_g.dkg_nhead - 1;
6015 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6016 		    (head * un->un_g.dkg_nsect) + 1;
6017 	} else {
6018 		if (un->un_reserved != -1) {
6019 			blk = un->un_map[un->un_reserved].dkl_cylno + 1;
6020 		} else {
6021 			return (-1);
6022 		}
6023 	}
6024 	return (blk);
6025 }
6026 
6027 /*
6028  *    Function: sd_get_devid
6029  *
6030  * Description: This routine will return 0 if a valid device id has been
6031  *		obtained from the target and stored in the soft state. If a
6032  *		valid device id has not been previously read and stored, a
6033  *		read attempt will be made.
6034  *
6035  *   Arguments: un - driver soft state (unit) structure
6036  *
6037  * Return Code: 0 if we successfully get the device id
6038  *
6039  *     Context: Kernel Thread
6040  */
6041 
6042 static int
6043 sd_get_devid(struct sd_lun *un)
6044 {
6045 	struct dk_devid		*dkdevid;
6046 	ddi_devid_t		tmpid;
6047 	uint_t			*ip;
6048 	size_t			sz;
6049 	daddr_t			blk;
6050 	int			status;
6051 	int			chksum;
6052 	int			i;
6053 	size_t			buffer_size;
6054 
6055 	ASSERT(un != NULL);
6056 	ASSERT(mutex_owned(SD_MUTEX(un)));
6057 
6058 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6059 	    un);
6060 
6061 	if (un->un_devid != NULL) {
6062 		return (0);
6063 	}
6064 
6065 	blk = sd_get_devid_block(un);
6066 	if (blk < 0)
6067 		return (EINVAL);
6068 
6069 	/*
6070 	 * Read and verify device id, stored in the reserved cylinders at the
6071 	 * end of the disk. Backup label is on the odd sectors of the last
6072 	 * track of the last cylinder. Device id will be on track of the next
6073 	 * to last cylinder.
6074 	 */
6075 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6076 	mutex_exit(SD_MUTEX(un));
6077 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6078 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6079 	    SD_PATH_DIRECT);
6080 	if (status != 0) {
6081 		goto error;
6082 	}
6083 
6084 	/* Validate the revision */
6085 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6086 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6087 		status = EINVAL;
6088 		goto error;
6089 	}
6090 
6091 	/* Calculate the checksum */
6092 	chksum = 0;
6093 	ip = (uint_t *)dkdevid;
6094 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6095 	    i++) {
6096 		chksum ^= ip[i];
6097 	}
6098 
6099 	/* Compare the checksums */
6100 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6101 		status = EINVAL;
6102 		goto error;
6103 	}
6104 
6105 	/* Validate the device id */
6106 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6107 		status = EINVAL;
6108 		goto error;
6109 	}
6110 
6111 	/*
6112 	 * Store the device id in the driver soft state
6113 	 */
6114 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6115 	tmpid = kmem_alloc(sz, KM_SLEEP);
6116 
6117 	mutex_enter(SD_MUTEX(un));
6118 
6119 	un->un_devid = tmpid;
6120 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6121 
6122 	kmem_free(dkdevid, buffer_size);
6123 
6124 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6125 
6126 	return (status);
6127 error:
6128 	mutex_enter(SD_MUTEX(un));
6129 	kmem_free(dkdevid, buffer_size);
6130 	return (status);
6131 }
6132 
6133 
6134 /*
6135  *    Function: sd_create_devid
6136  *
6137  * Description: This routine will fabricate the device id and write it
6138  *		to the disk.
6139  *
6140  *   Arguments: un - driver soft state (unit) structure
6141  *
6142  * Return Code: value of the fabricated device id
6143  *
6144  *     Context: Kernel Thread
6145  */
6146 
6147 static ddi_devid_t
6148 sd_create_devid(struct sd_lun *un)
6149 {
6150 	ASSERT(un != NULL);
6151 
6152 	/* Fabricate the devid */
6153 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6154 	    == DDI_FAILURE) {
6155 		return (NULL);
6156 	}
6157 
6158 	/* Write the devid to disk */
6159 	if (sd_write_deviceid(un) != 0) {
6160 		ddi_devid_free(un->un_devid);
6161 		un->un_devid = NULL;
6162 	}
6163 
6164 	return (un->un_devid);
6165 }
6166 
6167 
6168 /*
6169  *    Function: sd_write_deviceid
6170  *
6171  * Description: This routine will write the device id to the disk
6172  *		reserved sector.
6173  *
6174  *   Arguments: un - driver soft state (unit) structure
6175  *
6176  * Return Code: EINVAL
6177  *		value returned by sd_send_scsi_cmd
6178  *
6179  *     Context: Kernel Thread
6180  */
6181 
6182 static int
6183 sd_write_deviceid(struct sd_lun *un)
6184 {
6185 	struct dk_devid		*dkdevid;
6186 	daddr_t			blk;
6187 	uint_t			*ip, chksum;
6188 	int			status;
6189 	int			i;
6190 
6191 	ASSERT(mutex_owned(SD_MUTEX(un)));
6192 
6193 	blk = sd_get_devid_block(un);
6194 	if (blk < 0)
6195 		return (-1);
6196 	mutex_exit(SD_MUTEX(un));
6197 
6198 	/* Allocate the buffer */
6199 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6200 
6201 	/* Fill in the revision */
6202 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6203 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6204 
6205 	/* Copy in the device id */
6206 	mutex_enter(SD_MUTEX(un));
6207 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6208 	    ddi_devid_sizeof(un->un_devid));
6209 	mutex_exit(SD_MUTEX(un));
6210 
6211 	/* Calculate the checksum */
6212 	chksum = 0;
6213 	ip = (uint_t *)dkdevid;
6214 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6215 	    i++) {
6216 		chksum ^= ip[i];
6217 	}
6218 
6219 	/* Fill-in checksum */
6220 	DKD_FORMCHKSUM(chksum, dkdevid);
6221 
6222 	/* Write the reserved sector */
6223 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6224 	    SD_PATH_DIRECT);
6225 
6226 	kmem_free(dkdevid, un->un_sys_blocksize);
6227 
6228 	mutex_enter(SD_MUTEX(un));
6229 	return (status);
6230 }
6231 
6232 
6233 /*
6234  *    Function: sd_check_vpd_page_support
6235  *
6236  * Description: This routine sends an inquiry command with the EVPD bit set and
6237  *		a page code of 0x00 to the device. It is used to determine which
6238  *		vital product pages are availible to find the devid. We are
6239  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6240  *		device does not support that command.
6241  *
6242  *   Arguments: un  - driver soft state (unit) structure
6243  *
6244  * Return Code: 0 - success
6245  *		1 - check condition
6246  *
6247  *     Context: This routine can sleep.
6248  */
6249 
6250 static int
6251 sd_check_vpd_page_support(struct sd_lun *un)
6252 {
6253 	uchar_t	*page_list	= NULL;
6254 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6255 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6256 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6257 	int    	rval		= 0;
6258 	int	counter;
6259 
6260 	ASSERT(un != NULL);
6261 	ASSERT(mutex_owned(SD_MUTEX(un)));
6262 
6263 	mutex_exit(SD_MUTEX(un));
6264 
6265 	/*
6266 	 * We'll set the page length to the maximum to save figuring it out
6267 	 * with an additional call.
6268 	 */
6269 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6270 
6271 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6272 	    page_code, NULL);
6273 
6274 	mutex_enter(SD_MUTEX(un));
6275 
6276 	/*
6277 	 * Now we must validate that the device accepted the command, as some
6278 	 * drives do not support it.  If the drive does support it, we will
6279 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6280 	 * not, we return -1.
6281 	 */
6282 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6283 		/* Loop to find one of the 2 pages we need */
6284 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6285 
6286 		/*
6287 		 * Pages are returned in ascending order, and 0x83 is what we
6288 		 * are hoping for.
6289 		 */
6290 		while ((page_list[counter] <= 0x83) &&
6291 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6292 		    VPD_HEAD_OFFSET))) {
6293 			/*
6294 			 * Add 3 because page_list[3] is the number of
6295 			 * pages minus 3
6296 			 */
6297 
6298 			switch (page_list[counter]) {
6299 			case 0x00:
6300 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6301 				break;
6302 			case 0x80:
6303 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6304 				break;
6305 			case 0x81:
6306 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6307 				break;
6308 			case 0x82:
6309 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6310 				break;
6311 			case 0x83:
6312 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6313 				break;
6314 			}
6315 			counter++;
6316 		}
6317 
6318 	} else {
6319 		rval = -1;
6320 
6321 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6322 		    "sd_check_vpd_page_support: This drive does not implement "
6323 		    "VPD pages.\n");
6324 	}
6325 
6326 	kmem_free(page_list, page_length);
6327 
6328 	return (rval);
6329 }
6330 
6331 
6332 /*
6333  *    Function: sd_setup_pm
6334  *
6335  * Description: Initialize Power Management on the device
6336  *
6337  *     Context: Kernel Thread
6338  */
6339 
6340 static void
6341 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6342 {
6343 	uint_t	log_page_size;
6344 	uchar_t	*log_page_data;
6345 	int	rval;
6346 
6347 	/*
6348 	 * Since we are called from attach, holding a mutex for
6349 	 * un is unnecessary. Because some of the routines called
6350 	 * from here require SD_MUTEX to not be held, assert this
6351 	 * right up front.
6352 	 */
6353 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6354 	/*
6355 	 * Since the sd device does not have the 'reg' property,
6356 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6357 	 * The following code is to tell cpr that this device
6358 	 * DOES need to be suspended and resumed.
6359 	 */
6360 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6361 	    "pm-hardware-state", "needs-suspend-resume");
6362 
6363 	/*
6364 	 * Check if HBA has set the "pm-capable" property.
6365 	 * If "pm-capable" exists and is non-zero then we can
6366 	 * power manage the device without checking the start/stop
6367 	 * cycle count log sense page.
6368 	 *
6369 	 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
6370 	 * then we should not power manage the device.
6371 	 *
6372 	 * If "pm-capable" doesn't exist then un->un_pm_capable_prop will
6373 	 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case, sd will
6374 	 * check the start/stop cycle count log sense page and power manage
6375 	 * the device if the cycle count limit has not been exceeded.
6376 	 */
6377 	un->un_pm_capable_prop =
6378 	    ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6379 		"pm-capable", SD_PM_CAPABLE_UNDEFINED);
6380 	if (un->un_pm_capable_prop != SD_PM_CAPABLE_UNDEFINED) {
6381 		/*
6382 		 * pm-capable property exists.
6383 		 *
6384 		 * Convert "TRUE" values for un_pm_capable_prop to
6385 		 * SD_PM_CAPABLE_TRUE (1) to make it easier to check later.
6386 		 * "TRUE" values are any values except SD_PM_CAPABLE_FALSE (0)
6387 		 *  and SD_PM_CAPABLE_UNDEFINED (-1)
6388 		 */
6389 		if (un->un_pm_capable_prop != SD_PM_CAPABLE_FALSE) {
6390 			un->un_pm_capable_prop = SD_PM_CAPABLE_TRUE;
6391 		}
6392 
6393 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6394 		    "sd_unit_attach: un:0x%p pm-capable "
6395 		    "property set to %d.\n", un, un->un_pm_capable_prop);
6396 	}
6397 
6398 	/*
6399 	 * This complies with the new power management framework
6400 	 * for certain desktop machines. Create the pm_components
6401 	 * property as a string array property.
6402 	 *
6403 	 * If this is a removable device or if the pm-capable property
6404 	 * is SD_PM_CAPABLE_TRUE (1) then we should create the
6405 	 * pm_components property without checking for the existance of
6406 	 * the start-stop cycle counter log page
6407 	 */
6408 	if (ISREMOVABLE(un) ||
6409 	    un->un_pm_capable_prop == SD_PM_CAPABLE_TRUE) {
6410 		/*
6411 		 * not all devices have a motor, try it first.
6412 		 * some devices may return ILLEGAL REQUEST, some
6413 		 * will hang
6414 		 */
6415 		un->un_f_start_stop_supported = TRUE;
6416 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6417 		    SD_PATH_DIRECT) != 0) {
6418 			un->un_f_start_stop_supported = FALSE;
6419 		}
6420 
6421 		/*
6422 		 * create pm properties anyways otherwise the parent can't
6423 		 * go to sleep
6424 		 */
6425 		(void) sd_create_pm_components(devi, un);
6426 		un->un_f_pm_is_enabled = TRUE;
6427 
6428 		/*
6429 		 * Need to create a zero length (Boolean) property
6430 		 * removable-media for the removable media devices.
6431 		 * Note that the return value of the property is not being
6432 		 * checked, since if unable to create the property
6433 		 * then do not want the attach to fail altogether. Consistent
6434 		 * with other property creation in attach.
6435 		 */
6436 		if (ISREMOVABLE(un)) {
6437 			(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
6438 			    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
6439 		}
6440 		return;
6441 	}
6442 
6443 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6444 
6445 #ifdef	SDDEBUG
6446 	if (sd_force_pm_supported) {
6447 		/* Force a successful result */
6448 		rval = 1;
6449 	}
6450 #endif
6451 
6452 	/*
6453 	 * If the start-stop cycle counter log page is not supported
6454 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6455 	 * then we should not create the pm_components property.
6456 	 */
6457 	if (rval == -1 || un->un_pm_capable_prop == SD_PM_CAPABLE_FALSE) {
6458 		/*
6459 		 * Error.
6460 		 * Reading log sense failed, most likely this is
6461 		 * an older drive that does not support log sense.
6462 		 * If this fails auto-pm is not supported.
6463 		 */
6464 		un->un_power_level = SD_SPINDLE_ON;
6465 		un->un_f_pm_is_enabled = FALSE;
6466 
6467 	} else if (rval == 0) {
6468 		/*
6469 		 * Page not found.
6470 		 * The start stop cycle counter is implemented as page
6471 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6472 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6473 		 */
6474 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6475 			/*
6476 			 * Page found, use this one.
6477 			 */
6478 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6479 			un->un_f_pm_is_enabled = TRUE;
6480 		} else {
6481 			/*
6482 			 * Error or page not found.
6483 			 * auto-pm is not supported for this device.
6484 			 */
6485 			un->un_power_level = SD_SPINDLE_ON;
6486 			un->un_f_pm_is_enabled = FALSE;
6487 		}
6488 	} else {
6489 		/*
6490 		 * Page found, use it.
6491 		 */
6492 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6493 		un->un_f_pm_is_enabled = TRUE;
6494 	}
6495 
6496 
6497 	if (un->un_f_pm_is_enabled == TRUE) {
6498 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6499 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6500 
6501 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6502 		    log_page_size, un->un_start_stop_cycle_page,
6503 		    0x01, 0, SD_PATH_DIRECT);
6504 #ifdef	SDDEBUG
6505 		if (sd_force_pm_supported) {
6506 			/* Force a successful result */
6507 			rval = 0;
6508 		}
6509 #endif
6510 
6511 		/*
6512 		 * If the Log sense for Page( Start/stop cycle counter page)
6513 		 * succeeds, then power managment is supported and we can
6514 		 * enable auto-pm.
6515 		 */
6516 		if (rval == 0)  {
6517 			(void) sd_create_pm_components(devi, un);
6518 		} else {
6519 			un->un_power_level = SD_SPINDLE_ON;
6520 			un->un_f_pm_is_enabled = FALSE;
6521 		}
6522 
6523 		kmem_free(log_page_data, log_page_size);
6524 	}
6525 }
6526 
6527 
6528 /*
6529  *    Function: sd_create_pm_components
6530  *
6531  * Description: Initialize PM property.
6532  *
6533  *     Context: Kernel thread context
6534  */
6535 
6536 static void
6537 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6538 {
6539 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6540 
6541 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6542 
6543 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6544 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6545 		/*
6546 		 * When components are initially created they are idle,
6547 		 * power up any non-removables.
6548 		 * Note: the return value of pm_raise_power can't be used
6549 		 * for determining if PM should be enabled for this device.
6550 		 * Even if you check the return values and remove this
6551 		 * property created above, the PM framework will not honor the
6552 		 * change after the first call to pm_raise_power. Hence,
6553 		 * removal of that property does not help if pm_raise_power
6554 		 * fails. In the case of removable media, the start/stop
6555 		 * will fail if the media is not present.
6556 		 */
6557 		if ((!ISREMOVABLE(un)) && (pm_raise_power(SD_DEVINFO(un), 0,
6558 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6559 			mutex_enter(SD_MUTEX(un));
6560 			un->un_power_level = SD_SPINDLE_ON;
6561 			mutex_enter(&un->un_pm_mutex);
6562 			/* Set to on and not busy. */
6563 			un->un_pm_count = 0;
6564 		} else {
6565 			mutex_enter(SD_MUTEX(un));
6566 			un->un_power_level = SD_SPINDLE_OFF;
6567 			mutex_enter(&un->un_pm_mutex);
6568 			/* Set to off. */
6569 			un->un_pm_count = -1;
6570 		}
6571 		mutex_exit(&un->un_pm_mutex);
6572 		mutex_exit(SD_MUTEX(un));
6573 	} else {
6574 		un->un_power_level = SD_SPINDLE_ON;
6575 		un->un_f_pm_is_enabled = FALSE;
6576 	}
6577 }
6578 
6579 
6580 /*
6581  *    Function: sd_ddi_suspend
6582  *
6583  * Description: Performs system power-down operations. This includes
6584  *		setting the drive state to indicate its suspended so
6585  *		that no new commands will be accepted. Also, wait for
6586  *		all commands that are in transport or queued to a timer
6587  *		for retry to complete. All timeout threads are cancelled.
6588  *
6589  * Return Code: DDI_FAILURE or DDI_SUCCESS
6590  *
6591  *     Context: Kernel thread context
6592  */
6593 
6594 static int
6595 sd_ddi_suspend(dev_info_t *devi)
6596 {
6597 	struct	sd_lun	*un;
6598 	clock_t		wait_cmds_complete;
6599 
6600 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6601 	if (un == NULL) {
6602 		return (DDI_FAILURE);
6603 	}
6604 
6605 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6606 
6607 	mutex_enter(SD_MUTEX(un));
6608 
6609 	/* Return success if the device is already suspended. */
6610 	if (un->un_state == SD_STATE_SUSPENDED) {
6611 		mutex_exit(SD_MUTEX(un));
6612 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6613 		    "device already suspended, exiting\n");
6614 		return (DDI_SUCCESS);
6615 	}
6616 
6617 	/* Return failure if the device is being used by HA */
6618 	if (un->un_resvd_status &
6619 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6620 		mutex_exit(SD_MUTEX(un));
6621 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6622 		    "device in use by HA, exiting\n");
6623 		return (DDI_FAILURE);
6624 	}
6625 
6626 	/*
6627 	 * Return failure if the device is in a resource wait
6628 	 * or power changing state.
6629 	 */
6630 	if ((un->un_state == SD_STATE_RWAIT) ||
6631 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6632 		mutex_exit(SD_MUTEX(un));
6633 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6634 		    "device in resource wait state, exiting\n");
6635 		return (DDI_FAILURE);
6636 	}
6637 
6638 
6639 	un->un_save_state = un->un_last_state;
6640 	New_state(un, SD_STATE_SUSPENDED);
6641 
6642 	/*
6643 	 * Wait for all commands that are in transport or queued to a timer
6644 	 * for retry to complete.
6645 	 *
6646 	 * While waiting, no new commands will be accepted or sent because of
6647 	 * the new state we set above.
6648 	 *
6649 	 * Wait till current operation has completed. If we are in the resource
6650 	 * wait state (with an intr outstanding) then we need to wait till the
6651 	 * intr completes and starts the next cmd. We want to wait for
6652 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6653 	 */
6654 	wait_cmds_complete = ddi_get_lbolt() +
6655 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6656 
6657 	while (un->un_ncmds_in_transport != 0) {
6658 		/*
6659 		 * Fail if commands do not finish in the specified time.
6660 		 */
6661 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6662 		    wait_cmds_complete) == -1) {
6663 			/*
6664 			 * Undo the state changes made above. Everything
6665 			 * must go back to it's original value.
6666 			 */
6667 			Restore_state(un);
6668 			un->un_last_state = un->un_save_state;
6669 			/* Wake up any threads that might be waiting. */
6670 			cv_broadcast(&un->un_suspend_cv);
6671 			mutex_exit(SD_MUTEX(un));
6672 			SD_ERROR(SD_LOG_IO_PM, un,
6673 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6674 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6675 			return (DDI_FAILURE);
6676 		}
6677 	}
6678 
6679 	/*
6680 	 * Cancel SCSI watch thread and timeouts, if any are active
6681 	 */
6682 
6683 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6684 		opaque_t temp_token = un->un_swr_token;
6685 		mutex_exit(SD_MUTEX(un));
6686 		scsi_watch_suspend(temp_token);
6687 		mutex_enter(SD_MUTEX(un));
6688 	}
6689 
6690 	if (un->un_reset_throttle_timeid != NULL) {
6691 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6692 		un->un_reset_throttle_timeid = NULL;
6693 		mutex_exit(SD_MUTEX(un));
6694 		(void) untimeout(temp_id);
6695 		mutex_enter(SD_MUTEX(un));
6696 	}
6697 
6698 	if (un->un_dcvb_timeid != NULL) {
6699 		timeout_id_t temp_id = un->un_dcvb_timeid;
6700 		un->un_dcvb_timeid = NULL;
6701 		mutex_exit(SD_MUTEX(un));
6702 		(void) untimeout(temp_id);
6703 		mutex_enter(SD_MUTEX(un));
6704 	}
6705 
6706 	mutex_enter(&un->un_pm_mutex);
6707 	if (un->un_pm_timeid != NULL) {
6708 		timeout_id_t temp_id = un->un_pm_timeid;
6709 		un->un_pm_timeid = NULL;
6710 		mutex_exit(&un->un_pm_mutex);
6711 		mutex_exit(SD_MUTEX(un));
6712 		(void) untimeout(temp_id);
6713 		mutex_enter(SD_MUTEX(un));
6714 	} else {
6715 		mutex_exit(&un->un_pm_mutex);
6716 	}
6717 
6718 	if (un->un_retry_timeid != NULL) {
6719 		timeout_id_t temp_id = un->un_retry_timeid;
6720 		un->un_retry_timeid = NULL;
6721 		mutex_exit(SD_MUTEX(un));
6722 		(void) untimeout(temp_id);
6723 		mutex_enter(SD_MUTEX(un));
6724 	}
6725 
6726 	if (un->un_direct_priority_timeid != NULL) {
6727 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6728 		un->un_direct_priority_timeid = NULL;
6729 		mutex_exit(SD_MUTEX(un));
6730 		(void) untimeout(temp_id);
6731 		mutex_enter(SD_MUTEX(un));
6732 	}
6733 
6734 	if (un->un_f_is_fibre == TRUE) {
6735 		/*
6736 		 * Remove callbacks for insert and remove events
6737 		 */
6738 		if (un->un_insert_event != NULL) {
6739 			mutex_exit(SD_MUTEX(un));
6740 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6741 			mutex_enter(SD_MUTEX(un));
6742 			un->un_insert_event = NULL;
6743 		}
6744 
6745 		if (un->un_remove_event != NULL) {
6746 			mutex_exit(SD_MUTEX(un));
6747 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6748 			mutex_enter(SD_MUTEX(un));
6749 			un->un_remove_event = NULL;
6750 		}
6751 	}
6752 
6753 	mutex_exit(SD_MUTEX(un));
6754 
6755 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6756 
6757 	return (DDI_SUCCESS);
6758 }
6759 
6760 
6761 /*
6762  *    Function: sd_ddi_pm_suspend
6763  *
6764  * Description: Set the drive state to low power.
6765  *		Someone else is required to actually change the drive
6766  *		power level.
6767  *
6768  *   Arguments: un - driver soft state (unit) structure
6769  *
6770  * Return Code: DDI_FAILURE or DDI_SUCCESS
6771  *
6772  *     Context: Kernel thread context
6773  */
6774 
6775 static int
6776 sd_ddi_pm_suspend(struct sd_lun *un)
6777 {
6778 	ASSERT(un != NULL);
6779 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
6780 
6781 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6782 	mutex_enter(SD_MUTEX(un));
6783 
6784 	/*
6785 	 * Exit if power management is not enabled for this device, or if
6786 	 * the device is being used by HA.
6787 	 */
6788 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6789 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6790 		mutex_exit(SD_MUTEX(un));
6791 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
6792 		return (DDI_SUCCESS);
6793 	}
6794 
6795 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
6796 	    un->un_ncmds_in_driver);
6797 
6798 	/*
6799 	 * See if the device is not busy, ie.:
6800 	 *    - we have no commands in the driver for this device
6801 	 *    - not waiting for resources
6802 	 */
6803 	if ((un->un_ncmds_in_driver == 0) &&
6804 	    (un->un_state != SD_STATE_RWAIT)) {
6805 		/*
6806 		 * The device is not busy, so it is OK to go to low power state.
6807 		 * Indicate low power, but rely on someone else to actually
6808 		 * change it.
6809 		 */
6810 		mutex_enter(&un->un_pm_mutex);
6811 		un->un_pm_count = -1;
6812 		mutex_exit(&un->un_pm_mutex);
6813 		un->un_power_level = SD_SPINDLE_OFF;
6814 	}
6815 
6816 	mutex_exit(SD_MUTEX(un));
6817 
6818 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
6819 
6820 	return (DDI_SUCCESS);
6821 }
6822 
6823 
6824 /*
6825  *    Function: sd_ddi_resume
6826  *
6827  * Description: Performs system power-up operations..
6828  *
6829  * Return Code: DDI_SUCCESS
6830  *		DDI_FAILURE
6831  *
6832  *     Context: Kernel thread context
6833  */
6834 
6835 static int
6836 sd_ddi_resume(dev_info_t *devi)
6837 {
6838 	struct	sd_lun	*un;
6839 
6840 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6841 	if (un == NULL) {
6842 		return (DDI_FAILURE);
6843 	}
6844 
6845 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6846 
6847 	mutex_enter(SD_MUTEX(un));
6848 	Restore_state(un);
6849 
6850 	/*
6851 	 * Restore the state which was saved to give the
6852 	 * the right state in un_last_state
6853 	 */
6854 	un->un_last_state = un->un_save_state;
6855 	/*
6856 	 * Note: throttle comes back at full.
6857 	 * Also note: this MUST be done before calling pm_raise_power
6858 	 * otherwise the system can get hung in biowait. The scenario where
6859 	 * this'll happen is under cpr suspend. Writing of the system
6860 	 * state goes through sddump, which writes 0 to un_throttle. If
6861 	 * writing the system state then fails, example if the partition is
6862 	 * too small, then cpr attempts a resume. If throttle isn't restored
6863 	 * from the saved value until after calling pm_raise_power then
6864 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6865 	 * in biowait.
6866 	 */
6867 	un->un_throttle = un->un_saved_throttle;
6868 
6869 	/*
6870 	 * The chance of failure is very rare as the only command done in power
6871 	 * entry point is START command when you transition from 0->1 or
6872 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6873 	 * which suspend was done. Ignore the return value as the resume should
6874 	 * not be failed. In the case of removable media the media need not be
6875 	 * inserted and hence there is a chance that raise power will fail with
6876 	 * media not present.
6877 	 */
6878 	if (!ISREMOVABLE(un)) {
6879 		mutex_exit(SD_MUTEX(un));
6880 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6881 		mutex_enter(SD_MUTEX(un));
6882 	}
6883 
6884 	/*
6885 	 * Don't broadcast to the suspend cv and therefore possibly
6886 	 * start I/O until after power has been restored.
6887 	 */
6888 	cv_broadcast(&un->un_suspend_cv);
6889 	cv_broadcast(&un->un_state_cv);
6890 
6891 	/* restart thread */
6892 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6893 		scsi_watch_resume(un->un_swr_token);
6894 	}
6895 
6896 #if (defined(__fibre))
6897 	if (un->un_f_is_fibre == TRUE) {
6898 		/*
6899 		 * Add callbacks for insert and remove events
6900 		 */
6901 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6902 			sd_init_event_callbacks(un);
6903 		}
6904 	}
6905 #endif
6906 
6907 	/*
6908 	 * Transport any pending commands to the target.
6909 	 *
6910 	 * If this is a low-activity device commands in queue will have to wait
6911 	 * until new commands come in, which may take awhile. Also, we
6912 	 * specifically don't check un_ncmds_in_transport because we know that
6913 	 * there really are no commands in progress after the unit was
6914 	 * suspended and we could have reached the throttle level, been
6915 	 * suspended, and have no new commands coming in for awhile. Highly
6916 	 * unlikely, but so is the low-activity disk scenario.
6917 	 */
6918 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6919 
6920 	sd_start_cmds(un, NULL);
6921 	mutex_exit(SD_MUTEX(un));
6922 
6923 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6924 
6925 	return (DDI_SUCCESS);
6926 }
6927 
6928 
6929 /*
6930  *    Function: sd_ddi_pm_resume
6931  *
6932  * Description: Set the drive state to powered on.
6933  *		Someone else is required to actually change the drive
6934  *		power level.
6935  *
6936  *   Arguments: un - driver soft state (unit) structure
6937  *
6938  * Return Code: DDI_SUCCESS
6939  *
6940  *     Context: Kernel thread context
6941  */
6942 
6943 static int
6944 sd_ddi_pm_resume(struct sd_lun *un)
6945 {
6946 	ASSERT(un != NULL);
6947 
6948 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6949 	mutex_enter(SD_MUTEX(un));
6950 	un->un_power_level = SD_SPINDLE_ON;
6951 
6952 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6953 	mutex_enter(&un->un_pm_mutex);
6954 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6955 		un->un_pm_count++;
6956 		ASSERT(un->un_pm_count == 0);
6957 		/*
6958 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6959 		 * un_suspend_cv is for a system resume, not a power management
6960 		 * device resume. (4297749)
6961 		 *	 cv_broadcast(&un->un_suspend_cv);
6962 		 */
6963 	}
6964 	mutex_exit(&un->un_pm_mutex);
6965 	mutex_exit(SD_MUTEX(un));
6966 
6967 	return (DDI_SUCCESS);
6968 }
6969 
6970 
6971 /*
6972  *    Function: sd_pm_idletimeout_handler
6973  *
6974  * Description: A timer routine that's active only while a device is busy.
6975  *		The purpose is to extend slightly the pm framework's busy
6976  *		view of the device to prevent busy/idle thrashing for
6977  *		back-to-back commands. Do this by comparing the current time
6978  *		to the time at which the last command completed and when the
6979  *		difference is greater than sd_pm_idletime, call
6980  *		pm_idle_component. In addition to indicating idle to the pm
6981  *		framework, update the chain type to again use the internal pm
6982  *		layers of the driver.
6983  *
6984  *   Arguments: arg - driver soft state (unit) structure
6985  *
6986  *     Context: Executes in a timeout(9F) thread context
6987  */
6988 
6989 static void
6990 sd_pm_idletimeout_handler(void *arg)
6991 {
6992 	struct sd_lun *un = arg;
6993 
6994 	time_t	now;
6995 
6996 	mutex_enter(&sd_detach_mutex);
6997 	if (un->un_detach_count != 0) {
6998 		/* Abort if the instance is detaching */
6999 		mutex_exit(&sd_detach_mutex);
7000 		return;
7001 	}
7002 	mutex_exit(&sd_detach_mutex);
7003 
7004 	now = ddi_get_time();
7005 	/*
7006 	 * Grab both mutexes, in the proper order, since we're accessing
7007 	 * both PM and softstate variables.
7008 	 */
7009 	mutex_enter(SD_MUTEX(un));
7010 	mutex_enter(&un->un_pm_mutex);
7011 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7012 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7013 		/*
7014 		 * Update the chain types.
7015 		 * This takes affect on the next new command received.
7016 		 */
7017 		if (ISREMOVABLE(un)) {
7018 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7019 		} else {
7020 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7021 		}
7022 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7023 
7024 		SD_TRACE(SD_LOG_IO_PM, un,
7025 		    "sd_pm_idletimeout_handler: idling device\n");
7026 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7027 		un->un_pm_idle_timeid = NULL;
7028 	} else {
7029 		un->un_pm_idle_timeid =
7030 			timeout(sd_pm_idletimeout_handler, un,
7031 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7032 	}
7033 	mutex_exit(&un->un_pm_mutex);
7034 	mutex_exit(SD_MUTEX(un));
7035 }
7036 
7037 
7038 /*
7039  *    Function: sd_pm_timeout_handler
7040  *
7041  * Description: Callback to tell framework we are idle.
7042  *
7043  *     Context: timeout(9f) thread context.
7044  */
7045 
7046 static void
7047 sd_pm_timeout_handler(void *arg)
7048 {
7049 	struct sd_lun *un = arg;
7050 
7051 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7052 	mutex_enter(&un->un_pm_mutex);
7053 	un->un_pm_timeid = NULL;
7054 	mutex_exit(&un->un_pm_mutex);
7055 }
7056 
7057 
7058 /*
7059  *    Function: sdpower
7060  *
7061  * Description: PM entry point.
7062  *
7063  * Return Code: DDI_SUCCESS
7064  *		DDI_FAILURE
7065  *
7066  *     Context: Kernel thread context
7067  */
7068 
7069 static int
7070 sdpower(dev_info_t *devi, int component, int level)
7071 {
7072 	struct sd_lun	*un;
7073 	int		instance;
7074 	int		rval = DDI_SUCCESS;
7075 	uint_t		i, log_page_size, maxcycles, ncycles;
7076 	uchar_t		*log_page_data;
7077 	int		log_sense_page;
7078 	int		medium_present;
7079 	time_t		intvlp;
7080 	dev_t		dev;
7081 	struct pm_trans_data	sd_pm_tran_data;
7082 	uchar_t		save_state;
7083 	int		sval;
7084 	uchar_t		state_before_pm;
7085 	int		got_semaphore_here;
7086 
7087 	instance = ddi_get_instance(devi);
7088 
7089 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7090 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7091 	    component != 0) {
7092 		return (DDI_FAILURE);
7093 	}
7094 
7095 	dev = sd_make_device(SD_DEVINFO(un));
7096 
7097 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7098 
7099 	/*
7100 	 * Must synchronize power down with close.
7101 	 * Attempt to decrement/acquire the open/close semaphore,
7102 	 * but do NOT wait on it. If it's not greater than zero,
7103 	 * ie. it can't be decremented without waiting, then
7104 	 * someone else, either open or close, already has it
7105 	 * and the try returns 0. Use that knowledge here to determine
7106 	 * if it's OK to change the device power level.
7107 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7108 	 * here.
7109 	 */
7110 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7111 
7112 	mutex_enter(SD_MUTEX(un));
7113 
7114 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7115 	    un->un_ncmds_in_driver);
7116 
7117 	/*
7118 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7119 	 * already being processed in the driver, or if the semaphore was
7120 	 * not gotten here it indicates an open or close is being processed.
7121 	 * At the same time somebody is requesting to go low power which
7122 	 * can't happen, therefore we need to return failure.
7123 	 */
7124 	if ((level == SD_SPINDLE_OFF) &&
7125 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7126 		mutex_exit(SD_MUTEX(un));
7127 
7128 		if (got_semaphore_here != 0) {
7129 			sema_v(&un->un_semoclose);
7130 		}
7131 		SD_TRACE(SD_LOG_IO_PM, un,
7132 		    "sdpower: exit, device has queued cmds.\n");
7133 		return (DDI_FAILURE);
7134 	}
7135 
7136 	/*
7137 	 * if it is OFFLINE that means the disk is completely dead
7138 	 * in our case we have to put the disk in on or off by sending commands
7139 	 * Of course that will fail anyway so return back here.
7140 	 *
7141 	 * Power changes to a device that's OFFLINE or SUSPENDED
7142 	 * are not allowed.
7143 	 */
7144 	if ((un->un_state == SD_STATE_OFFLINE) ||
7145 	    (un->un_state == SD_STATE_SUSPENDED)) {
7146 		mutex_exit(SD_MUTEX(un));
7147 
7148 		if (got_semaphore_here != 0) {
7149 			sema_v(&un->un_semoclose);
7150 		}
7151 		SD_TRACE(SD_LOG_IO_PM, un,
7152 		    "sdpower: exit, device is off-line.\n");
7153 		return (DDI_FAILURE);
7154 	}
7155 
7156 	/*
7157 	 * Change the device's state to indicate it's power level
7158 	 * is being changed. Do this to prevent a power off in the
7159 	 * middle of commands, which is especially bad on devices
7160 	 * that are really powered off instead of just spun down.
7161 	 */
7162 	state_before_pm = un->un_state;
7163 	un->un_state = SD_STATE_PM_CHANGING;
7164 
7165 	mutex_exit(SD_MUTEX(un));
7166 
7167 	/*
7168 	 * Bypass checking the log sense information for removables
7169 	 * and devices for which the HBA set the pm-capable property.
7170 	 * If un->un_pm_capable_prop is SD_PM_CAPABLE_UNDEFINED (-1)
7171 	 * then the HBA did not create the property.
7172 	 */
7173 	if ((level == SD_SPINDLE_OFF) && (!ISREMOVABLE(un)) &&
7174 	    un->un_pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
7175 		/*
7176 		 * Get the log sense information to understand whether the
7177 		 * the powercycle counts have gone beyond the threshhold.
7178 		 */
7179 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7180 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7181 
7182 		mutex_enter(SD_MUTEX(un));
7183 		log_sense_page = un->un_start_stop_cycle_page;
7184 		mutex_exit(SD_MUTEX(un));
7185 
7186 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7187 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7188 #ifdef	SDDEBUG
7189 		if (sd_force_pm_supported) {
7190 			/* Force a successful result */
7191 			rval = 0;
7192 		}
7193 #endif
7194 		if (rval != 0) {
7195 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7196 			    "Log Sense Failed\n");
7197 			kmem_free(log_page_data, log_page_size);
7198 			/* Cannot support power management on those drives */
7199 
7200 			if (got_semaphore_here != 0) {
7201 				sema_v(&un->un_semoclose);
7202 			}
7203 			/*
7204 			 * On exit put the state back to it's original value
7205 			 * and broadcast to anyone waiting for the power
7206 			 * change completion.
7207 			 */
7208 			mutex_enter(SD_MUTEX(un));
7209 			un->un_state = state_before_pm;
7210 			cv_broadcast(&un->un_suspend_cv);
7211 			mutex_exit(SD_MUTEX(un));
7212 			SD_TRACE(SD_LOG_IO_PM, un,
7213 			    "sdpower: exit, Log Sense Failed.\n");
7214 			return (DDI_FAILURE);
7215 		}
7216 
7217 		/*
7218 		 * From the page data - Convert the essential information to
7219 		 * pm_trans_data
7220 		 */
7221 		maxcycles =
7222 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7223 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7224 
7225 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7226 
7227 		ncycles =
7228 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7229 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7230 
7231 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7232 
7233 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7234 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7235 			    log_page_data[8+i];
7236 		}
7237 
7238 		kmem_free(log_page_data, log_page_size);
7239 
7240 		/*
7241 		 * Call pm_trans_check routine to get the Ok from
7242 		 * the global policy
7243 		 */
7244 
7245 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7246 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7247 
7248 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7249 #ifdef	SDDEBUG
7250 		if (sd_force_pm_supported) {
7251 			/* Force a successful result */
7252 			rval = 1;
7253 		}
7254 #endif
7255 		switch (rval) {
7256 		case 0:
7257 			/*
7258 			 * Not Ok to Power cycle or error in parameters passed
7259 			 * Would have given the advised time to consider power
7260 			 * cycle. Based on the new intvlp parameter we are
7261 			 * supposed to pretend we are busy so that pm framework
7262 			 * will never call our power entry point. Because of
7263 			 * that install a timeout handler and wait for the
7264 			 * recommended time to elapse so that power management
7265 			 * can be effective again.
7266 			 *
7267 			 * To effect this behavior, call pm_busy_component to
7268 			 * indicate to the framework this device is busy.
7269 			 * By not adjusting un_pm_count the rest of PM in
7270 			 * the driver will function normally, and independant
7271 			 * of this but because the framework is told the device
7272 			 * is busy it won't attempt powering down until it gets
7273 			 * a matching idle. The timeout handler sends this.
7274 			 * Note: sd_pm_entry can't be called here to do this
7275 			 * because sdpower may have been called as a result
7276 			 * of a call to pm_raise_power from within sd_pm_entry.
7277 			 *
7278 			 * If a timeout handler is already active then
7279 			 * don't install another.
7280 			 */
7281 			mutex_enter(&un->un_pm_mutex);
7282 			if (un->un_pm_timeid == NULL) {
7283 				un->un_pm_timeid =
7284 				    timeout(sd_pm_timeout_handler,
7285 				    un, intvlp * drv_usectohz(1000000));
7286 				mutex_exit(&un->un_pm_mutex);
7287 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7288 			} else {
7289 				mutex_exit(&un->un_pm_mutex);
7290 			}
7291 			if (got_semaphore_here != 0) {
7292 				sema_v(&un->un_semoclose);
7293 			}
7294 			/*
7295 			 * On exit put the state back to it's original value
7296 			 * and broadcast to anyone waiting for the power
7297 			 * change completion.
7298 			 */
7299 			mutex_enter(SD_MUTEX(un));
7300 			un->un_state = state_before_pm;
7301 			cv_broadcast(&un->un_suspend_cv);
7302 			mutex_exit(SD_MUTEX(un));
7303 
7304 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7305 			    "trans check Failed, not ok to power cycle.\n");
7306 			return (DDI_FAILURE);
7307 
7308 		case -1:
7309 			if (got_semaphore_here != 0) {
7310 				sema_v(&un->un_semoclose);
7311 			}
7312 			/*
7313 			 * On exit put the state back to it's original value
7314 			 * and broadcast to anyone waiting for the power
7315 			 * change completion.
7316 			 */
7317 			mutex_enter(SD_MUTEX(un));
7318 			un->un_state = state_before_pm;
7319 			cv_broadcast(&un->un_suspend_cv);
7320 			mutex_exit(SD_MUTEX(un));
7321 			SD_TRACE(SD_LOG_IO_PM, un,
7322 			    "sdpower: exit, trans check command Failed.\n");
7323 			return (DDI_FAILURE);
7324 		}
7325 	}
7326 
7327 	if (level == SD_SPINDLE_OFF) {
7328 		/*
7329 		 * Save the last state... if the STOP FAILS we need it
7330 		 * for restoring
7331 		 */
7332 		mutex_enter(SD_MUTEX(un));
7333 		save_state = un->un_last_state;
7334 		/*
7335 		 * There must not be any cmds. getting processed
7336 		 * in the driver when we get here. Power to the
7337 		 * device is potentially going off.
7338 		 */
7339 		ASSERT(un->un_ncmds_in_driver == 0);
7340 		mutex_exit(SD_MUTEX(un));
7341 
7342 		/*
7343 		 * For now suspend the device completely before spindle is
7344 		 * turned off
7345 		 */
7346 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7347 			if (got_semaphore_here != 0) {
7348 				sema_v(&un->un_semoclose);
7349 			}
7350 			/*
7351 			 * On exit put the state back to it's original value
7352 			 * and broadcast to anyone waiting for the power
7353 			 * change completion.
7354 			 */
7355 			mutex_enter(SD_MUTEX(un));
7356 			un->un_state = state_before_pm;
7357 			cv_broadcast(&un->un_suspend_cv);
7358 			mutex_exit(SD_MUTEX(un));
7359 			SD_TRACE(SD_LOG_IO_PM, un,
7360 			    "sdpower: exit, PM suspend Failed.\n");
7361 			return (DDI_FAILURE);
7362 		}
7363 	}
7364 
7365 	/*
7366 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7367 	 * close, or strategy. Dump no long uses this routine, it uses it's
7368 	 * own code so it can be done in polled mode.
7369 	 */
7370 
7371 	medium_present = TRUE;
7372 
7373 	/*
7374 	 * When powering up, issue a TUR in case the device is at unit
7375 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7376 	 * a deadlock on un_pm_busy_cv will occur.
7377 	 */
7378 	if (level == SD_SPINDLE_ON) {
7379 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7380 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7381 	}
7382 
7383 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7384 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7385 
7386 	sval = sd_send_scsi_START_STOP_UNIT(un,
7387 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7388 	    SD_PATH_DIRECT);
7389 	/* Command failed, check for media present. */
7390 	if ((sval == ENXIO) && ISREMOVABLE(un)) {
7391 		medium_present = FALSE;
7392 	}
7393 
7394 	/*
7395 	 * The conditions of interest here are:
7396 	 *   if a spindle off with media present fails,
7397 	 *	then restore the state and return an error.
7398 	 *   else if a spindle on fails,
7399 	 *	then return an error (there's no state to restore).
7400 	 * In all other cases we setup for the new state
7401 	 * and return success.
7402 	 */
7403 	switch (level) {
7404 	case SD_SPINDLE_OFF:
7405 		if ((medium_present == TRUE) && (sval != 0)) {
7406 			/* The stop command from above failed */
7407 			rval = DDI_FAILURE;
7408 			/*
7409 			 * The stop command failed, and we have media
7410 			 * present. Put the level back by calling the
7411 			 * sd_pm_resume() and set the state back to
7412 			 * it's previous value.
7413 			 */
7414 			(void) sd_ddi_pm_resume(un);
7415 			mutex_enter(SD_MUTEX(un));
7416 			un->un_last_state = save_state;
7417 			mutex_exit(SD_MUTEX(un));
7418 			break;
7419 		}
7420 		/*
7421 		 * The stop command from above succeeded.
7422 		 */
7423 		if (ISREMOVABLE(un)) {
7424 			/*
7425 			 * Terminate watch thread in case of removable media
7426 			 * devices going into low power state. This is as per
7427 			 * the requirements of pm framework, otherwise commands
7428 			 * will be generated for the device (through watch
7429 			 * thread), even when the device is in low power state.
7430 			 */
7431 			mutex_enter(SD_MUTEX(un));
7432 			un->un_f_watcht_stopped = FALSE;
7433 			if (un->un_swr_token != NULL) {
7434 				opaque_t temp_token = un->un_swr_token;
7435 				un->un_f_watcht_stopped = TRUE;
7436 				un->un_swr_token = NULL;
7437 				mutex_exit(SD_MUTEX(un));
7438 				(void) scsi_watch_request_terminate(temp_token,
7439 				    SCSI_WATCH_TERMINATE_WAIT);
7440 			} else {
7441 				mutex_exit(SD_MUTEX(un));
7442 			}
7443 		}
7444 		break;
7445 
7446 	default:	/* The level requested is spindle on... */
7447 		/*
7448 		 * Legacy behavior: return success on a failed spinup
7449 		 * if there is no media in the drive.
7450 		 * Do this by looking at medium_present here.
7451 		 */
7452 		if ((sval != 0) && medium_present) {
7453 			/* The start command from above failed */
7454 			rval = DDI_FAILURE;
7455 			break;
7456 		}
7457 		/*
7458 		 * The start command from above succeeded
7459 		 * Resume the devices now that we have
7460 		 * started the disks
7461 		 */
7462 		(void) sd_ddi_pm_resume(un);
7463 
7464 		/*
7465 		 * Resume the watch thread since it was suspended
7466 		 * when the device went into low power mode.
7467 		 */
7468 		if (ISREMOVABLE(un)) {
7469 			mutex_enter(SD_MUTEX(un));
7470 			if (un->un_f_watcht_stopped == TRUE) {
7471 				opaque_t temp_token;
7472 
7473 				un->un_f_watcht_stopped = FALSE;
7474 				mutex_exit(SD_MUTEX(un));
7475 				temp_token = scsi_watch_request_submit(
7476 				    SD_SCSI_DEVP(un),
7477 				    sd_check_media_time,
7478 				    SENSE_LENGTH, sd_media_watch_cb,
7479 				    (caddr_t)dev);
7480 				mutex_enter(SD_MUTEX(un));
7481 				un->un_swr_token = temp_token;
7482 			}
7483 			mutex_exit(SD_MUTEX(un));
7484 		}
7485 	}
7486 	if (got_semaphore_here != 0) {
7487 		sema_v(&un->un_semoclose);
7488 	}
7489 	/*
7490 	 * On exit put the state back to it's original value
7491 	 * and broadcast to anyone waiting for the power
7492 	 * change completion.
7493 	 */
7494 	mutex_enter(SD_MUTEX(un));
7495 	un->un_state = state_before_pm;
7496 	cv_broadcast(&un->un_suspend_cv);
7497 	mutex_exit(SD_MUTEX(un));
7498 
7499 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7500 
7501 	return (rval);
7502 }
7503 
7504 
7505 
7506 /*
7507  *    Function: sdattach
7508  *
7509  * Description: Driver's attach(9e) entry point function.
7510  *
7511  *   Arguments: devi - opaque device info handle
7512  *		cmd  - attach  type
7513  *
7514  * Return Code: DDI_SUCCESS
7515  *		DDI_FAILURE
7516  *
7517  *     Context: Kernel thread context
7518  */
7519 
7520 static int
7521 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7522 {
7523 	switch (cmd) {
7524 	case DDI_ATTACH:
7525 		return (sd_unit_attach(devi));
7526 	case DDI_RESUME:
7527 		return (sd_ddi_resume(devi));
7528 	default:
7529 		break;
7530 	}
7531 	return (DDI_FAILURE);
7532 }
7533 
7534 
7535 /*
7536  *    Function: sddetach
7537  *
7538  * Description: Driver's detach(9E) entry point function.
7539  *
7540  *   Arguments: devi - opaque device info handle
7541  *		cmd  - detach  type
7542  *
7543  * Return Code: DDI_SUCCESS
7544  *		DDI_FAILURE
7545  *
7546  *     Context: Kernel thread context
7547  */
7548 
7549 static int
7550 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7551 {
7552 	switch (cmd) {
7553 	case DDI_DETACH:
7554 		return (sd_unit_detach(devi));
7555 	case DDI_SUSPEND:
7556 		return (sd_ddi_suspend(devi));
7557 	default:
7558 		break;
7559 	}
7560 	return (DDI_FAILURE);
7561 }
7562 
7563 
7564 /*
7565  *     Function: sd_sync_with_callback
7566  *
7567  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7568  *		 state while the callback routine is active.
7569  *
7570  *    Arguments: un: softstate structure for the instance
7571  *
7572  *	Context: Kernel thread context
7573  */
7574 
7575 static void
7576 sd_sync_with_callback(struct sd_lun *un)
7577 {
7578 	ASSERT(un != NULL);
7579 
7580 	mutex_enter(SD_MUTEX(un));
7581 
7582 	ASSERT(un->un_in_callback >= 0);
7583 
7584 	while (un->un_in_callback > 0) {
7585 		mutex_exit(SD_MUTEX(un));
7586 		delay(2);
7587 		mutex_enter(SD_MUTEX(un));
7588 	}
7589 
7590 	mutex_exit(SD_MUTEX(un));
7591 }
7592 
7593 /*
7594  *    Function: sd_unit_attach
7595  *
7596  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7597  *		the soft state structure for the device and performs
7598  *		all necessary structure and device initializations.
7599  *
7600  *   Arguments: devi: the system's dev_info_t for the device.
7601  *
7602  * Return Code: DDI_SUCCESS if attach is successful.
7603  *		DDI_FAILURE if any part of the attach fails.
7604  *
7605  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7606  *		Kernel thread context only.  Can sleep.
7607  */
7608 
7609 static int
7610 sd_unit_attach(dev_info_t *devi)
7611 {
7612 	struct	scsi_device	*devp;
7613 	struct	sd_lun		*un;
7614 	char			*variantp;
7615 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7616 	int	instance;
7617 	int	rval;
7618 	uint64_t	capacity;
7619 	uint_t		lbasize;
7620 
7621 	/*
7622 	 * Retrieve the target driver's private data area. This was set
7623 	 * up by the HBA.
7624 	 */
7625 	devp = ddi_get_driver_private(devi);
7626 
7627 	/*
7628 	 * Since we have no idea what state things were left in by the last
7629 	 * user of the device, set up some 'default' settings, ie. turn 'em
7630 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7631 	 * Do this before the scsi_probe, which sends an inquiry.
7632 	 * This is a fix for bug (4430280).
7633 	 * Of special importance is wide-xfer. The drive could have been left
7634 	 * in wide transfer mode by the last driver to communicate with it,
7635 	 * this includes us. If that's the case, and if the following is not
7636 	 * setup properly or we don't re-negotiate with the drive prior to
7637 	 * transferring data to/from the drive, it causes bus parity errors,
7638 	 * data overruns, and unexpected interrupts. This first occurred when
7639 	 * the fix for bug (4378686) was made.
7640 	 */
7641 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7642 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7643 	(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7644 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7645 
7646 	/*
7647 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7648 	 * This call will allocate and fill in the scsi_inquiry structure
7649 	 * and point the sd_inq member of the scsi_device structure to it.
7650 	 * If the attach succeeds, then this memory will not be de-allocated
7651 	 * (via scsi_unprobe()) until the instance is detached.
7652 	 */
7653 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7654 		goto probe_failed;
7655 	}
7656 
7657 	/*
7658 	 * Check the device type as specified in the inquiry data and
7659 	 * claim it if it is of a type that we support.
7660 	 */
7661 	switch (devp->sd_inq->inq_dtype) {
7662 	case DTYPE_DIRECT:
7663 		break;
7664 	case DTYPE_RODIRECT:
7665 		break;
7666 	case DTYPE_OPTICAL:
7667 		break;
7668 	case DTYPE_NOTPRESENT:
7669 	default:
7670 		/* Unsupported device type; fail the attach. */
7671 		goto probe_failed;
7672 	}
7673 
7674 	/*
7675 	 * Allocate the soft state structure for this unit.
7676 	 *
7677 	 * We rely upon this memory being set to all zeroes by
7678 	 * ddi_soft_state_zalloc().  We assume that any member of the
7679 	 * soft state structure that is not explicitly initialized by
7680 	 * this routine will have a value of zero.
7681 	 */
7682 	instance = ddi_get_instance(devp->sd_dev);
7683 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7684 		goto probe_failed;
7685 	}
7686 
7687 	/*
7688 	 * Retrieve a pointer to the newly-allocated soft state.
7689 	 *
7690 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7691 	 * was successful, unless something has gone horribly wrong and the
7692 	 * ddi's soft state internals are corrupt (in which case it is
7693 	 * probably better to halt here than just fail the attach....)
7694 	 */
7695 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7696 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7697 		    instance);
7698 		/*NOTREACHED*/
7699 	}
7700 
7701 	/*
7702 	 * Link the back ptr of the driver soft state to the scsi_device
7703 	 * struct for this lun.
7704 	 * Save a pointer to the softstate in the driver-private area of
7705 	 * the scsi_device struct.
7706 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7707 	 * we first set un->un_sd below.
7708 	 */
7709 	un->un_sd = devp;
7710 	devp->sd_private = (opaque_t)un;
7711 
7712 	/*
7713 	 * The following must be after devp is stored in the soft state struct.
7714 	 */
7715 #ifdef SDDEBUG
7716 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7717 	    "%s_unit_attach: un:0x%p instance:%d\n",
7718 	    ddi_driver_name(devi), un, instance);
7719 #endif
7720 
7721 	/*
7722 	 * Set up the device type and node type (for the minor nodes).
7723 	 * By default we assume that the device can at least support the
7724 	 * Common Command Set. Call it a CD-ROM if it reports itself
7725 	 * as a RODIRECT device.
7726 	 */
7727 	switch (devp->sd_inq->inq_dtype) {
7728 	case DTYPE_RODIRECT:
7729 		un->un_node_type = DDI_NT_CD_CHAN;
7730 		un->un_ctype	 = CTYPE_CDROM;
7731 		break;
7732 	case DTYPE_OPTICAL:
7733 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7734 		un->un_ctype	 = CTYPE_ROD;
7735 		break;
7736 	default:
7737 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7738 		un->un_ctype	 = CTYPE_CCS;
7739 		break;
7740 	}
7741 
7742 	/*
7743 	 * Try to read the interconnect type from the HBA.
7744 	 *
7745 	 * Note: This driver is currently compiled as two binaries, a parallel
7746 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7747 	 * differences are determined at compile time. In the future a single
7748 	 * binary will be provided and the inteconnect type will be used to
7749 	 * differentiate between fibre and parallel scsi behaviors. At that time
7750 	 * it will be necessary for all fibre channel HBAs to support this
7751 	 * property.
7752 	 *
7753 	 * set un_f_is_fiber to TRUE ( default fiber )
7754 	 */
7755 	un->un_f_is_fibre = TRUE;
7756 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7757 	case INTERCONNECT_SSA:
7758 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7759 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7760 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7761 		break;
7762 	case INTERCONNECT_PARALLEL:
7763 		un->un_f_is_fibre = FALSE;
7764 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7765 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7766 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7767 		break;
7768 	case INTERCONNECT_FIBRE:
7769 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7770 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7771 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7772 		break;
7773 	case INTERCONNECT_FABRIC:
7774 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7775 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7776 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7777 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7778 		break;
7779 	default:
7780 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7781 		/*
7782 		 * The HBA does not support the "interconnect-type" property
7783 		 * (or did not provide a recognized type).
7784 		 *
7785 		 * Note: This will be obsoleted when a single fibre channel
7786 		 * and parallel scsi driver is delivered. In the meantime the
7787 		 * interconnect type will be set to the platform default.If that
7788 		 * type is not parallel SCSI, it means that we should be
7789 		 * assuming "ssd" semantics. However, here this also means that
7790 		 * the FC HBA is not supporting the "interconnect-type" property
7791 		 * like we expect it to, so log this occurrence.
7792 		 */
7793 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7794 		if (!SD_IS_PARALLEL_SCSI(un)) {
7795 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7796 			    "sd_unit_attach: un:0x%p Assuming "
7797 			    "INTERCONNECT_FIBRE\n", un);
7798 		} else {
7799 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7800 			    "sd_unit_attach: un:0x%p Assuming "
7801 			    "INTERCONNECT_PARALLEL\n", un);
7802 			un->un_f_is_fibre = FALSE;
7803 		}
7804 #else
7805 		/*
7806 		 * Note: This source will be implemented when a single fibre
7807 		 * channel and parallel scsi driver is delivered. The default
7808 		 * will be to assume that if a device does not support the
7809 		 * "interconnect-type" property it is a parallel SCSI HBA and
7810 		 * we will set the interconnect type for parallel scsi.
7811 		 */
7812 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7813 		un->un_f_is_fibre = FALSE;
7814 #endif
7815 		break;
7816 	}
7817 
7818 	if (un->un_f_is_fibre == TRUE) {
7819 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7820 			SCSI_VERSION_3) {
7821 			switch (un->un_interconnect_type) {
7822 			case SD_INTERCONNECT_FIBRE:
7823 			case SD_INTERCONNECT_SSA:
7824 				un->un_node_type = DDI_NT_BLOCK_WWN;
7825 				break;
7826 			default:
7827 				break;
7828 			}
7829 		}
7830 	}
7831 
7832 	/*
7833 	 * Initialize the Request Sense command for the target
7834 	 */
7835 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7836 		goto alloc_rqs_failed;
7837 	}
7838 
7839 	/*
7840 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7841 	 * with seperate binary for sd and ssd.
7842 	 *
7843 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7844 	 * The hardcoded values will go away when Sparc uses 1 binary
7845 	 * for sd and ssd.  This hardcoded values need to match
7846 	 * SD_RETRY_COUNT in sddef.h
7847 	 * The value used is base on interconnect type.
7848 	 * fibre = 3, parallel = 5
7849 	 */
7850 #if defined(__i386) || defined(__amd64)
7851 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7852 #else
7853 	un->un_retry_count = SD_RETRY_COUNT;
7854 #endif
7855 
7856 	/*
7857 	 * Set the per disk retry count to the default number of retries
7858 	 * for disks and CDROMs. This value can be overridden by the
7859 	 * disk property list or an entry in sd.conf.
7860 	 */
7861 	un->un_notready_retry_count =
7862 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7863 			: DISK_NOT_READY_RETRY_COUNT(un);
7864 
7865 	/*
7866 	 * Set the busy retry count to the default value of un_retry_count.
7867 	 * This can be overridden by entries in sd.conf or the device
7868 	 * config table.
7869 	 */
7870 	un->un_busy_retry_count = un->un_retry_count;
7871 
7872 	/*
7873 	 * Init the reset threshold for retries.  This number determines
7874 	 * how many retries must be performed before a reset can be issued
7875 	 * (for certain error conditions). This can be overridden by entries
7876 	 * in sd.conf or the device config table.
7877 	 */
7878 	un->un_reset_retry_count = (un->un_retry_count / 2);
7879 
7880 	/*
7881 	 * Set the victim_retry_count to the default un_retry_count
7882 	 */
7883 	un->un_victim_retry_count = (2 * un->un_retry_count);
7884 
7885 	/*
7886 	 * Set the reservation release timeout to the default value of
7887 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7888 	 * device config table.
7889 	 */
7890 	un->un_reserve_release_time = 5;
7891 
7892 	/*
7893 	 * Set up the default maximum transfer size. Note that this may
7894 	 * get updated later in the attach, when setting up default wide
7895 	 * operations for disks.
7896 	 */
7897 #if defined(__i386) || defined(__amd64)
7898 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7899 #else
7900 	un->un_max_xfer_size = (uint_t)maxphys;
7901 #endif
7902 
7903 	/*
7904 	 * Get "allow bus device reset" property (defaults to "enabled" if
7905 	 * the property was not defined). This is to disable bus resets for
7906 	 * certain kinds of error recovery. Note: In the future when a run-time
7907 	 * fibre check is available the soft state flag should default to
7908 	 * enabled.
7909 	 */
7910 	if (un->un_f_is_fibre == TRUE) {
7911 		un->un_f_allow_bus_device_reset = TRUE;
7912 	} else {
7913 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7914 			"allow-bus-device-reset", 1) != 0) {
7915 			un->un_f_allow_bus_device_reset = TRUE;
7916 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7917 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
7918 				un);
7919 		} else {
7920 			un->un_f_allow_bus_device_reset = FALSE;
7921 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7922 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
7923 				un);
7924 		}
7925 	}
7926 
7927 	/*
7928 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7929 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7930 	 *
7931 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7932 	 * property. The new "variant" property with a value of "atapi" has been
7933 	 * introduced so that future 'variants' of standard SCSI behavior (like
7934 	 * atapi) could be specified by the underlying HBA drivers by supplying
7935 	 * a new value for the "variant" property, instead of having to define a
7936 	 * new property.
7937 	 */
7938 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7939 		un->un_f_cfg_is_atapi = TRUE;
7940 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7941 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7942 	}
7943 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7944 	    &variantp) == DDI_PROP_SUCCESS) {
7945 		if (strcmp(variantp, "atapi") == 0) {
7946 			un->un_f_cfg_is_atapi = TRUE;
7947 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7948 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7949 		}
7950 		ddi_prop_free(variantp);
7951 	}
7952 
7953 	/*
7954 	 * Assume doorlock commands are supported. If not, the first
7955 	 * call to sd_send_scsi_DOORLOCK() will set to FALSE
7956 	 */
7957 	un->un_f_doorlock_supported = TRUE;
7958 
7959 	un->un_cmd_timeout	= SD_IO_TIME;
7960 
7961 	/* Info on current states, statuses, etc. (Updated frequently) */
7962 	un->un_state		= SD_STATE_NORMAL;
7963 	un->un_last_state	= SD_STATE_NORMAL;
7964 
7965 	/* Control & status info for command throttling */
7966 	un->un_throttle		= sd_max_throttle;
7967 	un->un_saved_throttle	= sd_max_throttle;
7968 	un->un_min_throttle	= sd_min_throttle;
7969 
7970 	if (un->un_f_is_fibre == TRUE) {
7971 		un->un_f_use_adaptive_throttle = TRUE;
7972 	} else {
7973 		un->un_f_use_adaptive_throttle = FALSE;
7974 	}
7975 
7976 	/* Removable media support. */
7977 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7978 	un->un_mediastate		= DKIO_NONE;
7979 	un->un_specified_mediastate	= DKIO_NONE;
7980 
7981 	/* CVs for suspend/resume (PM or DR) */
7982 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7983 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7984 
7985 	/* Power management support. */
7986 	un->un_power_level = SD_SPINDLE_UNINIT;
7987 
7988 	/*
7989 	 * The open/close semaphore is used to serialize threads executing
7990 	 * in the driver's open & close entry point routines for a given
7991 	 * instance.
7992 	 */
7993 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7994 
7995 	/*
7996 	 * The conf file entry and softstate variable is a forceful override,
7997 	 * meaning a non-zero value must be entered to change the default.
7998 	 */
7999 	un->un_f_disksort_disabled = FALSE;
8000 
8001 	/*
8002 	 * Retrieve the properties from the static driver table or the driver
8003 	 * configuration file (.conf) for this unit and update the soft state
8004 	 * for the device as needed for the indicated properties.
8005 	 * Note: the property configuration needs to occur here as some of the
8006 	 * following routines may have dependancies on soft state flags set
8007 	 * as part of the driver property configuration.
8008 	 */
8009 	sd_read_unit_properties(un);
8010 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8011 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8012 
8013 	/*
8014 	 * By default, we mark the capacity, lbazize, and geometry
8015 	 * as invalid. Only if we successfully read a valid capacity
8016 	 * will we update the un_blockcount and un_tgt_blocksize with the
8017 	 * valid values (the geometry will be validated later).
8018 	 */
8019 	un->un_f_blockcount_is_valid	= FALSE;
8020 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8021 	un->un_f_geometry_is_valid	= FALSE;
8022 
8023 	/*
8024 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8025 	 * otherwise.
8026 	 */
8027 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8028 	un->un_blockcount = 0;
8029 
8030 	/*
8031 	 * Set up the per-instance info needed to determine the correct
8032 	 * CDBs and other info for issuing commands to the target.
8033 	 */
8034 	sd_init_cdb_limits(un);
8035 
8036 	/*
8037 	 * Set up the IO chains to use, based upon the target type.
8038 	 */
8039 	if (ISREMOVABLE(un)) {
8040 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8041 	} else {
8042 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8043 	}
8044 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8045 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8046 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8047 
8048 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8049 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8050 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8051 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8052 
8053 
8054 	if (ISCD(un)) {
8055 		un->un_additional_codes = sd_additional_codes;
8056 	} else {
8057 		un->un_additional_codes = NULL;
8058 	}
8059 
8060 	/*
8061 	 * Create the kstats here so they can be available for attach-time
8062 	 * routines that send commands to the unit (either polled or via
8063 	 * sd_send_scsi_cmd).
8064 	 *
8065 	 * Note: This is a critical sequence that needs to be maintained:
8066 	 *	1) Instantiate the kstats here, before any routines using the
8067 	 *	   iopath (i.e. sd_send_scsi_cmd).
8068 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8069 	 *	   stats (sd_set_pstats), following sd_validate_geometry(),
8070 	 *	   sd_register_devid(), and sd_disable_caching().
8071 	 */
8072 
8073 	un->un_stats = kstat_create(sd_label, instance,
8074 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8075 	if (un->un_stats != NULL) {
8076 		un->un_stats->ks_lock = SD_MUTEX(un);
8077 		kstat_install(un->un_stats);
8078 	}
8079 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8080 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8081 
8082 	sd_create_errstats(un, instance);
8083 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8084 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8085 
8086 	/*
8087 	 * The following if/else code was relocated here from below as part
8088 	 * of the fix for bug (4430280). However with the default setup added
8089 	 * on entry to this routine, it's no longer absolutely necessary for
8090 	 * this to be before the call to sd_spin_up_unit.
8091 	 */
8092 	if (SD_IS_PARALLEL_SCSI(un)) {
8093 		/*
8094 		 * If SCSI-2 tagged queueing is supported by the target
8095 		 * and by the host adapter then we will enable it.
8096 		 */
8097 		un->un_tagflags = 0;
8098 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8099 		    (devp->sd_inq->inq_cmdque) &&
8100 		    (un->un_f_arq_enabled == TRUE)) {
8101 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8102 			    1, 1) == 1) {
8103 				un->un_tagflags = FLAG_STAG;
8104 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8105 				    "sd_unit_attach: un:0x%p tag queueing "
8106 				    "enabled\n", un);
8107 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8108 			    "untagged-qing", 0) == 1) {
8109 				un->un_f_opt_queueing = TRUE;
8110 				un->un_saved_throttle = un->un_throttle =
8111 				    min(un->un_throttle, 3);
8112 			} else {
8113 				un->un_f_opt_queueing = FALSE;
8114 				un->un_saved_throttle = un->un_throttle = 1;
8115 			}
8116 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8117 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8118 			/* The Host Adapter supports internal queueing. */
8119 			un->un_f_opt_queueing = TRUE;
8120 			un->un_saved_throttle = un->un_throttle =
8121 			    min(un->un_throttle, 3);
8122 		} else {
8123 			un->un_f_opt_queueing = FALSE;
8124 			un->un_saved_throttle = un->un_throttle = 1;
8125 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8126 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8127 		}
8128 
8129 
8130 		/* Setup or tear down default wide operations for disks */
8131 
8132 		/*
8133 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8134 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8135 		 * system and be set to different values. In the future this
8136 		 * code may need to be updated when the ssd module is
8137 		 * obsoleted and removed from the system. (4299588)
8138 		 */
8139 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8140 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8141 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8142 			    1, 1) == 1) {
8143 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8144 				    "sd_unit_attach: un:0x%p Wide Transfer "
8145 				    "enabled\n", un);
8146 			}
8147 
8148 			/*
8149 			 * If tagged queuing has also been enabled, then
8150 			 * enable large xfers
8151 			 */
8152 			if (un->un_saved_throttle == sd_max_throttle) {
8153 				un->un_max_xfer_size =
8154 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8155 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8156 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8157 				    "sd_unit_attach: un:0x%p max transfer "
8158 				    "size=0x%x\n", un, un->un_max_xfer_size);
8159 			}
8160 		} else {
8161 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8162 			    0, 1) == 1) {
8163 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8164 				    "sd_unit_attach: un:0x%p "
8165 				    "Wide Transfer disabled\n", un);
8166 			}
8167 		}
8168 	} else {
8169 		un->un_tagflags = FLAG_STAG;
8170 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8171 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8172 	}
8173 
8174 	/*
8175 	 * If this target supports LUN reset, try to enable it.
8176 	 */
8177 	if (un->un_f_lun_reset_enabled) {
8178 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8179 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8180 			    "un:0x%p lun_reset capability set\n", un);
8181 		} else {
8182 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8183 			    "un:0x%p lun-reset capability not set\n", un);
8184 		}
8185 	}
8186 
8187 	/*
8188 	 * At this point in the attach, we have enough info in the
8189 	 * soft state to be able to issue commands to the target.
8190 	 *
8191 	 * All command paths used below MUST issue their commands as
8192 	 * SD_PATH_DIRECT. This is important as intermediate layers
8193 	 * are not all initialized yet (such as PM).
8194 	 */
8195 
8196 	/*
8197 	 * Send a TEST UNIT READY command to the device. This should clear
8198 	 * any outstanding UNIT ATTENTION that may be present.
8199 	 *
8200 	 * Note: Don't check for success, just track if there is a reservation,
8201 	 * this is a throw away command to clear any unit attentions.
8202 	 *
8203 	 * Note: This MUST be the first command issued to the target during
8204 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8205 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8206 	 * with attempts at spinning up a device with no media.
8207 	 */
8208 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8209 		reservation_flag = SD_TARGET_IS_RESERVED;
8210 	}
8211 
8212 	/*
8213 	 * If the device is NOT a removable media device, attempt to spin
8214 	 * it up (using the START_STOP_UNIT command) and read its capacity
8215 	 * (using the READ CAPACITY command).  Note, however, that either
8216 	 * of these could fail and in some cases we would continue with
8217 	 * the attach despite the failure (see below).
8218 	 */
8219 	if (devp->sd_inq->inq_dtype == DTYPE_DIRECT && !ISREMOVABLE(un)) {
8220 		switch (sd_spin_up_unit(un)) {
8221 		case 0:
8222 			/*
8223 			 * Spin-up was successful; now try to read the
8224 			 * capacity.  If successful then save the results
8225 			 * and mark the capacity & lbasize as valid.
8226 			 */
8227 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8228 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8229 
8230 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8231 			    &lbasize, SD_PATH_DIRECT)) {
8232 			case 0: {
8233 				if (capacity > DK_MAX_BLOCKS) {
8234 #ifdef _LP64
8235 					/*
8236 					 * Enable descriptor format sense data
8237 					 * so that we can get 64 bit sense
8238 					 * data fields.
8239 					 */
8240 					sd_enable_descr_sense(un);
8241 #else
8242 					/* 32-bit kernels can't handle this */
8243 					scsi_log(SD_DEVINFO(un),
8244 					    sd_label, CE_WARN,
8245 					    "disk has %llu blocks, which "
8246 					    "is too large for a 32-bit "
8247 					    "kernel", capacity);
8248 					goto spinup_failed;
8249 #endif
8250 				}
8251 				/*
8252 				 * The following relies on
8253 				 * sd_send_scsi_READ_CAPACITY never
8254 				 * returning 0 for capacity and/or lbasize.
8255 				 */
8256 				sd_update_block_info(un, lbasize, capacity);
8257 
8258 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8259 				    "sd_unit_attach: un:0x%p capacity = %ld "
8260 				    "blocks; lbasize= %ld.\n", un,
8261 				    un->un_blockcount, un->un_tgt_blocksize);
8262 
8263 				break;
8264 			}
8265 			case EACCES:
8266 				/*
8267 				 * Should never get here if the spin-up
8268 				 * succeeded, but code it in anyway.
8269 				 * From here, just continue with the attach...
8270 				 */
8271 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8272 				    "sd_unit_attach: un:0x%p "
8273 				    "sd_send_scsi_READ_CAPACITY "
8274 				    "returned reservation conflict\n", un);
8275 				reservation_flag = SD_TARGET_IS_RESERVED;
8276 				break;
8277 			default:
8278 				/*
8279 				 * Likewise, should never get here if the
8280 				 * spin-up succeeded. Just continue with
8281 				 * the attach...
8282 				 */
8283 				break;
8284 			}
8285 			break;
8286 		case EACCES:
8287 			/*
8288 			 * Device is reserved by another host.  In this case
8289 			 * we could not spin it up or read the capacity, but
8290 			 * we continue with the attach anyway.
8291 			 */
8292 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8293 			    "sd_unit_attach: un:0x%p spin-up reservation "
8294 			    "conflict.\n", un);
8295 			reservation_flag = SD_TARGET_IS_RESERVED;
8296 			break;
8297 		default:
8298 			/* Fail the attach if the spin-up failed. */
8299 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8300 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8301 			goto spinup_failed;
8302 		}
8303 	}
8304 
8305 	/*
8306 	 * Check to see if this is a MMC drive
8307 	 */
8308 	if (ISCD(un)) {
8309 		sd_set_mmc_caps(un);
8310 	}
8311 
8312 	/*
8313 	 * Create the minor nodes for the device.
8314 	 * Note: If we want to support fdisk on both sparc and intel, this will
8315 	 * have to separate out the notion that VTOC8 is always sparc, and
8316 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8317 	 * type will have to be determined at run-time, and the fdisk
8318 	 * partitioning will have to have been read & set up before we
8319 	 * create the minor nodes. (any other inits (such as kstats) that
8320 	 * also ought to be done before creating the minor nodes?) (Doesn't
8321 	 * setting up the minor nodes kind of imply that we're ready to
8322 	 * handle an open from userland?)
8323 	 */
8324 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8325 		goto create_minor_nodes_failed;
8326 	}
8327 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8328 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8329 
8330 	/*
8331 	 * Add a zero-length attribute to tell the world we support
8332 	 * kernel ioctls (for layered drivers)
8333 	 */
8334 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8335 	    DDI_KERNEL_IOCTL, NULL, 0);
8336 
8337 	/*
8338 	 * Add a boolean property to tell the world we support
8339 	 * the B_FAILFAST flag (for layered drivers)
8340 	 */
8341 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8342 	    "ddi-failfast-supported", NULL, 0);
8343 
8344 	/*
8345 	 * Initialize power management
8346 	 */
8347 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8348 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8349 	sd_setup_pm(un, devi);
8350 	if (un->un_f_pm_is_enabled == FALSE) {
8351 		/*
8352 		 * For performance, point to a jump table that does
8353 		 * not include pm.
8354 		 * The direct and priority chains don't change with PM.
8355 		 *
8356 		 * Note: this is currently done based on individual device
8357 		 * capabilities. When an interface for determining system
8358 		 * power enabled state becomes available, or when additional
8359 		 * layers are added to the command chain, these values will
8360 		 * have to be re-evaluated for correctness.
8361 		 */
8362 		if (ISREMOVABLE(un)) {
8363 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8364 		} else {
8365 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8366 		}
8367 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8368 	}
8369 
8370 	/*
8371 	 * This property is set to 0 by HA software to avoid retries
8372 	 * on a reserved disk. (The preferred property name is
8373 	 * "retry-on-reservation-conflict") (1189689)
8374 	 *
8375 	 * Note: The use of a global here can have unintended consequences. A
8376 	 * per instance variable is preferrable to match the capabilities of
8377 	 * different underlying hba's (4402600)
8378 	 */
8379 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8380 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8381 	    sd_retry_on_reservation_conflict);
8382 	if (sd_retry_on_reservation_conflict != 0) {
8383 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8384 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8385 		    sd_retry_on_reservation_conflict);
8386 	}
8387 
8388 	/* Set up options for QFULL handling. */
8389 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8390 	    "qfull-retries", -1)) != -1) {
8391 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8392 		    rval, 1);
8393 	}
8394 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8395 	    "qfull-retry-interval", -1)) != -1) {
8396 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8397 		    rval, 1);
8398 	}
8399 
8400 	/*
8401 	 * This just prints a message that announces the existence of the
8402 	 * device. The message is always printed in the system logfile, but
8403 	 * only appears on the console if the system is booted with the
8404 	 * -v (verbose) argument.
8405 	 */
8406 	ddi_report_dev(devi);
8407 
8408 	/*
8409 	 * The framework calls driver attach routines single-threaded
8410 	 * for a given instance.  However we still acquire SD_MUTEX here
8411 	 * because this required for calling the sd_validate_geometry()
8412 	 * and sd_register_devid() functions.
8413 	 */
8414 	mutex_enter(SD_MUTEX(un));
8415 	un->un_f_geometry_is_valid = FALSE;
8416 	un->un_mediastate = DKIO_NONE;
8417 	un->un_reserved = -1;
8418 	if (!ISREMOVABLE(un)) {
8419 		/*
8420 		 * Read and validate the device's geometry (ie, disk label)
8421 		 * A new unformatted drive will not have a valid geometry, but
8422 		 * the driver needs to successfully attach to this device so
8423 		 * the drive can be formatted via ioctls.
8424 		 */
8425 		if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8426 		    ENOTSUP)) &&
8427 		    (un->un_blockcount < DK_MAX_BLOCKS)) {
8428 			/*
8429 			 * We found a small disk with an EFI label on it;
8430 			 * we need to fix up the minor nodes accordingly.
8431 			 */
8432 			ddi_remove_minor_node(devi, "h");
8433 			ddi_remove_minor_node(devi, "h,raw");
8434 			(void) ddi_create_minor_node(devi, "wd",
8435 			    S_IFBLK,
8436 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8437 			    un->un_node_type, NULL);
8438 			(void) ddi_create_minor_node(devi, "wd,raw",
8439 			    S_IFCHR,
8440 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8441 			    un->un_node_type, NULL);
8442 		}
8443 	}
8444 
8445 	/*
8446 	 * Read and initialize the devid for the unit.
8447 	 */
8448 	ASSERT(un->un_errstats != NULL);
8449 	if (!ISREMOVABLE(un)) {
8450 		sd_register_devid(un, devi, reservation_flag);
8451 	}
8452 	mutex_exit(SD_MUTEX(un));
8453 
8454 #if (defined(__fibre))
8455 	/*
8456 	 * Register callbacks for fibre only.  You can't do this soley
8457 	 * on the basis of the devid_type because this is hba specific.
8458 	 * We need to query our hba capabilities to find out whether to
8459 	 * register or not.
8460 	 */
8461 	if (un->un_f_is_fibre) {
8462 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8463 		sd_init_event_callbacks(un);
8464 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8465 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8466 	    }
8467 	}
8468 #endif
8469 
8470 	if (un->un_f_opt_disable_cache == TRUE) {
8471 		if (sd_disable_caching(un) != 0) {
8472 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8473 			    "sd_unit_attach: un:0x%p Could not disable "
8474 			    "caching", un);
8475 			goto devid_failed;
8476 		}
8477 	}
8478 
8479 	/*
8480 	 * Set the pstat and error stat values here, so data obtained during the
8481 	 * previous attach-time routines is available.
8482 	 *
8483 	 * Note: This is a critical sequence that needs to be maintained:
8484 	 *	1) Instantiate the kstats before any routines using the iopath
8485 	 *	   (i.e. sd_send_scsi_cmd).
8486 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8487 	 *	   stats (sd_set_pstats)here, following sd_validate_geometry(),
8488 	 *	   sd_register_devid(), and sd_disable_caching().
8489 	 */
8490 	if (!ISREMOVABLE(un) && (un->un_f_pkstats_enabled == TRUE)) {
8491 		sd_set_pstats(un);
8492 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8493 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8494 	}
8495 
8496 	sd_set_errstats(un);
8497 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8498 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8499 
8500 	/*
8501 	 * Find out what type of reservation this disk supports.
8502 	 */
8503 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
8504 	case 0:
8505 		/*
8506 		 * SCSI-3 reservations are supported.
8507 		 */
8508 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8509 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8510 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8511 		break;
8512 	case ENOTSUP:
8513 		/*
8514 		 * The PERSISTENT RESERVE IN command would not be recognized by
8515 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8516 		 */
8517 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8518 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8519 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8520 		break;
8521 	default:
8522 		/*
8523 		 * default to SCSI-3 reservations
8524 		 */
8525 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8526 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8527 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8528 		break;
8529 	}
8530 
8531 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8532 	    "sd_unit_attach: un:0x%p exit success\n", un);
8533 
8534 	return (DDI_SUCCESS);
8535 
8536 	/*
8537 	 * An error occurred during the attach; clean up & return failure.
8538 	 */
8539 
8540 devid_failed:
8541 
8542 setup_pm_failed:
8543 	ddi_remove_minor_node(devi, NULL);
8544 
8545 create_minor_nodes_failed:
8546 	/*
8547 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8548 	 */
8549 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8550 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8551 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8552 
8553 	if (un->un_f_is_fibre == FALSE) {
8554 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8555 	}
8556 
8557 spinup_failed:
8558 
8559 	mutex_enter(SD_MUTEX(un));
8560 
8561 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8562 	if (un->un_direct_priority_timeid != NULL) {
8563 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8564 		un->un_direct_priority_timeid = NULL;
8565 		mutex_exit(SD_MUTEX(un));
8566 		(void) untimeout(temp_id);
8567 		mutex_enter(SD_MUTEX(un));
8568 	}
8569 
8570 	/* Cancel any pending start/stop timeouts */
8571 	if (un->un_startstop_timeid != NULL) {
8572 		timeout_id_t temp_id = un->un_startstop_timeid;
8573 		un->un_startstop_timeid = NULL;
8574 		mutex_exit(SD_MUTEX(un));
8575 		(void) untimeout(temp_id);
8576 		mutex_enter(SD_MUTEX(un));
8577 	}
8578 
8579 	mutex_exit(SD_MUTEX(un));
8580 
8581 	/* There should not be any in-progress I/O so ASSERT this check */
8582 	ASSERT(un->un_ncmds_in_transport == 0);
8583 	ASSERT(un->un_ncmds_in_driver == 0);
8584 
8585 	/* Do not free the softstate if the callback routine is active */
8586 	sd_sync_with_callback(un);
8587 
8588 	/*
8589 	 * Partition stats apparently are not used with removables. These would
8590 	 * not have been created during attach, so no need to clean them up...
8591 	 */
8592 	if (un->un_stats != NULL) {
8593 		kstat_delete(un->un_stats);
8594 		un->un_stats = NULL;
8595 	}
8596 	if (un->un_errstats != NULL) {
8597 		kstat_delete(un->un_errstats);
8598 		un->un_errstats = NULL;
8599 	}
8600 
8601 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8602 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8603 
8604 	ddi_prop_remove_all(devi);
8605 	sema_destroy(&un->un_semoclose);
8606 	cv_destroy(&un->un_state_cv);
8607 
8608 getrbuf_failed:
8609 
8610 	sd_free_rqs(un);
8611 
8612 alloc_rqs_failed:
8613 
8614 	devp->sd_private = NULL;
8615 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8616 
8617 get_softstate_failed:
8618 	/*
8619 	 * Note: the man pages are unclear as to whether or not doing a
8620 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8621 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8622 	 * ddi_get_soft_state() fails.  The implication seems to be
8623 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8624 	 */
8625 	ddi_soft_state_free(sd_state, instance);
8626 
8627 probe_failed:
8628 	scsi_unprobe(devp);
8629 #ifdef SDDEBUG
8630 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
8631 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
8632 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
8633 		    (void *)un);
8634 	}
8635 #endif
8636 	return (DDI_FAILURE);
8637 }
8638 
8639 
8640 /*
8641  *    Function: sd_unit_detach
8642  *
8643  * Description: Performs DDI_DETACH processing for sddetach().
8644  *
8645  * Return Code: DDI_SUCCESS
8646  *		DDI_FAILURE
8647  *
8648  *     Context: Kernel thread context
8649  */
8650 
8651 static int
8652 sd_unit_detach(dev_info_t *devi)
8653 {
8654 	struct scsi_device	*devp;
8655 	struct sd_lun		*un;
8656 	int			i;
8657 	dev_t			dev;
8658 #if !(defined(__i386) || defined(__amd64)) && !defined(__fibre)
8659 	int			reset_retval;
8660 #endif
8661 	int			instance = ddi_get_instance(devi);
8662 
8663 	mutex_enter(&sd_detach_mutex);
8664 
8665 	/*
8666 	 * Fail the detach for any of the following:
8667 	 *  - Unable to get the sd_lun struct for the instance
8668 	 *  - A layered driver has an outstanding open on the instance
8669 	 *  - Another thread is already detaching this instance
8670 	 *  - Another thread is currently performing an open
8671 	 */
8672 	devp = ddi_get_driver_private(devi);
8673 	if ((devp == NULL) ||
8674 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8675 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8676 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8677 		mutex_exit(&sd_detach_mutex);
8678 		return (DDI_FAILURE);
8679 	}
8680 
8681 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8682 
8683 	/*
8684 	 * Mark this instance as currently in a detach, to inhibit any
8685 	 * opens from a layered driver.
8686 	 */
8687 	un->un_detach_count++;
8688 	mutex_exit(&sd_detach_mutex);
8689 
8690 	dev = sd_make_device(SD_DEVINFO(un));
8691 
8692 	_NOTE(COMPETING_THREADS_NOW);
8693 
8694 	mutex_enter(SD_MUTEX(un));
8695 
8696 	/*
8697 	 * Fail the detach if there are any outstanding layered
8698 	 * opens on this device.
8699 	 */
8700 	for (i = 0; i < NDKMAP; i++) {
8701 		if (un->un_ocmap.lyropen[i] != 0) {
8702 			goto err_notclosed;
8703 		}
8704 	}
8705 
8706 	/*
8707 	 * Verify there are NO outstanding commands issued to this device.
8708 	 * ie, un_ncmds_in_transport == 0.
8709 	 * It's possible to have outstanding commands through the physio
8710 	 * code path, even though everything's closed.
8711 	 */
8712 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8713 	    (un->un_direct_priority_timeid != NULL) ||
8714 	    (un->un_state == SD_STATE_RWAIT)) {
8715 		mutex_exit(SD_MUTEX(un));
8716 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8717 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8718 		goto err_stillbusy;
8719 	}
8720 
8721 	/*
8722 	 * If we have the device reserved, release the reservation.
8723 	 */
8724 	if ((un->un_resvd_status & SD_RESERVE) &&
8725 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8726 		mutex_exit(SD_MUTEX(un));
8727 		/*
8728 		 * Note: sd_reserve_release sends a command to the device
8729 		 * via the sd_ioctlcmd() path, and can sleep.
8730 		 */
8731 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8732 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8733 			    "sd_dr_detach: Cannot release reservation \n");
8734 		}
8735 	} else {
8736 		mutex_exit(SD_MUTEX(un));
8737 	}
8738 
8739 	/*
8740 	 * Untimeout any reserve recover, throttle reset, restart unit
8741 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8742 	 * from getting nulled by their callback functions.
8743 	 */
8744 	mutex_enter(SD_MUTEX(un));
8745 	if (un->un_resvd_timeid != NULL) {
8746 		timeout_id_t temp_id = un->un_resvd_timeid;
8747 		un->un_resvd_timeid = NULL;
8748 		mutex_exit(SD_MUTEX(un));
8749 		(void) untimeout(temp_id);
8750 		mutex_enter(SD_MUTEX(un));
8751 	}
8752 
8753 	if (un->un_reset_throttle_timeid != NULL) {
8754 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8755 		un->un_reset_throttle_timeid = NULL;
8756 		mutex_exit(SD_MUTEX(un));
8757 		(void) untimeout(temp_id);
8758 		mutex_enter(SD_MUTEX(un));
8759 	}
8760 
8761 	if (un->un_startstop_timeid != NULL) {
8762 		timeout_id_t temp_id = un->un_startstop_timeid;
8763 		un->un_startstop_timeid = NULL;
8764 		mutex_exit(SD_MUTEX(un));
8765 		(void) untimeout(temp_id);
8766 		mutex_enter(SD_MUTEX(un));
8767 	}
8768 
8769 	if (un->un_dcvb_timeid != NULL) {
8770 		timeout_id_t temp_id = un->un_dcvb_timeid;
8771 		un->un_dcvb_timeid = NULL;
8772 		mutex_exit(SD_MUTEX(un));
8773 		(void) untimeout(temp_id);
8774 	} else {
8775 		mutex_exit(SD_MUTEX(un));
8776 	}
8777 
8778 	/* Remove any pending reservation reclaim requests for this device */
8779 	sd_rmv_resv_reclaim_req(dev);
8780 
8781 	mutex_enter(SD_MUTEX(un));
8782 
8783 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8784 	if (un->un_direct_priority_timeid != NULL) {
8785 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8786 		un->un_direct_priority_timeid = NULL;
8787 		mutex_exit(SD_MUTEX(un));
8788 		(void) untimeout(temp_id);
8789 		mutex_enter(SD_MUTEX(un));
8790 	}
8791 
8792 	/* Cancel any active multi-host disk watch thread requests */
8793 	if (un->un_mhd_token != NULL) {
8794 		mutex_exit(SD_MUTEX(un));
8795 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8796 		if (scsi_watch_request_terminate(un->un_mhd_token,
8797 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8798 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8799 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8800 			/*
8801 			 * Note: We are returning here after having removed
8802 			 * some driver timeouts above. This is consistent with
8803 			 * the legacy implementation but perhaps the watch
8804 			 * terminate call should be made with the wait flag set.
8805 			 */
8806 			goto err_stillbusy;
8807 		}
8808 		mutex_enter(SD_MUTEX(un));
8809 		un->un_mhd_token = NULL;
8810 	}
8811 
8812 	if (un->un_swr_token != NULL) {
8813 		mutex_exit(SD_MUTEX(un));
8814 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8815 		if (scsi_watch_request_terminate(un->un_swr_token,
8816 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8817 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8818 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8819 			/*
8820 			 * Note: We are returning here after having removed
8821 			 * some driver timeouts above. This is consistent with
8822 			 * the legacy implementation but perhaps the watch
8823 			 * terminate call should be made with the wait flag set.
8824 			 */
8825 			goto err_stillbusy;
8826 		}
8827 		mutex_enter(SD_MUTEX(un));
8828 		un->un_swr_token = NULL;
8829 	}
8830 
8831 	mutex_exit(SD_MUTEX(un));
8832 
8833 	/*
8834 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8835 	 * if we have not registered one.
8836 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8837 	 */
8838 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8839 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8840 
8841 
8842 
8843 #if defined(__i386) || defined(__amd64)
8844 	/*
8845 	 * Gratuitous bus resets sometimes cause an otherwise
8846 	 * okay ATA/ATAPI bus to hang. This is due the lack of
8847 	 * a clear spec of how resets should be implemented by ATA
8848 	 * disk drives.
8849 	 */
8850 #elif !defined(__fibre)		/* "#else if" does NOT work! */
8851 	/*
8852 	 * Reset target/bus.
8853 	 *
8854 	 * Note: This is a legacy workaround for Elite III dual-port drives that
8855 	 * will not come online after an aborted detach and subsequent re-attach
8856 	 * It should be removed when the Elite III FW is fixed, or the drives
8857 	 * are no longer supported.
8858 	 */
8859 	if (un->un_f_cfg_is_atapi == FALSE) {
8860 		reset_retval = 0;
8861 
8862 		/* If the device is in low power mode don't reset it */
8863 
8864 		mutex_enter(&un->un_pm_mutex);
8865 		if (!SD_DEVICE_IS_IN_LOW_POWER(un)) {
8866 			/*
8867 			 * First try a LUN reset if we can, then move on to a
8868 			 * target reset if needed; swat the bus as a last
8869 			 * resort.
8870 			 */
8871 			mutex_exit(&un->un_pm_mutex);
8872 			if (un->un_f_allow_bus_device_reset == TRUE) {
8873 				if (un->un_f_lun_reset_enabled == TRUE) {
8874 					reset_retval =
8875 					    scsi_reset(SD_ADDRESS(un),
8876 					    RESET_LUN);
8877 				}
8878 				if (reset_retval == 0) {
8879 					reset_retval =
8880 					    scsi_reset(SD_ADDRESS(un),
8881 					    RESET_TARGET);
8882 				}
8883 			}
8884 			if (reset_retval == 0) {
8885 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
8886 			}
8887 		} else {
8888 			mutex_exit(&un->un_pm_mutex);
8889 		}
8890 	}
8891 #endif
8892 
8893 	/*
8894 	 * protect the timeout pointers from getting nulled by
8895 	 * their callback functions during the cancellation process.
8896 	 * In such a scenario untimeout can be invoked with a null value.
8897 	 */
8898 	_NOTE(NO_COMPETING_THREADS_NOW);
8899 
8900 	mutex_enter(&un->un_pm_mutex);
8901 	if (un->un_pm_idle_timeid != NULL) {
8902 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8903 		un->un_pm_idle_timeid = NULL;
8904 		mutex_exit(&un->un_pm_mutex);
8905 
8906 		/*
8907 		 * Timeout is active; cancel it.
8908 		 * Note that it'll never be active on a device
8909 		 * that does not support PM therefore we don't
8910 		 * have to check before calling pm_idle_component.
8911 		 */
8912 		(void) untimeout(temp_id);
8913 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8914 		mutex_enter(&un->un_pm_mutex);
8915 	}
8916 
8917 	/*
8918 	 * Check whether there is already a timeout scheduled for power
8919 	 * management. If yes then don't lower the power here, that's.
8920 	 * the timeout handler's job.
8921 	 */
8922 	if (un->un_pm_timeid != NULL) {
8923 		timeout_id_t temp_id = un->un_pm_timeid;
8924 		un->un_pm_timeid = NULL;
8925 		mutex_exit(&un->un_pm_mutex);
8926 		/*
8927 		 * Timeout is active; cancel it.
8928 		 * Note that it'll never be active on a device
8929 		 * that does not support PM therefore we don't
8930 		 * have to check before calling pm_idle_component.
8931 		 */
8932 		(void) untimeout(temp_id);
8933 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8934 
8935 	} else {
8936 		mutex_exit(&un->un_pm_mutex);
8937 		if ((un->un_f_pm_is_enabled == TRUE) &&
8938 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8939 		    DDI_SUCCESS)) {
8940 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8941 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8942 			/*
8943 			 * Fix for bug: 4297749, item # 13
8944 			 * The above test now includes a check to see if PM is
8945 			 * supported by this device before call
8946 			 * pm_lower_power().
8947 			 * Note, the following is not dead code. The call to
8948 			 * pm_lower_power above will generate a call back into
8949 			 * our sdpower routine which might result in a timeout
8950 			 * handler getting activated. Therefore the following
8951 			 * code is valid and necessary.
8952 			 */
8953 			mutex_enter(&un->un_pm_mutex);
8954 			if (un->un_pm_timeid != NULL) {
8955 				timeout_id_t temp_id = un->un_pm_timeid;
8956 				un->un_pm_timeid = NULL;
8957 				mutex_exit(&un->un_pm_mutex);
8958 				(void) untimeout(temp_id);
8959 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8960 			} else {
8961 				mutex_exit(&un->un_pm_mutex);
8962 			}
8963 		}
8964 	}
8965 
8966 	/*
8967 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8968 	 * Relocated here from above to be after the call to
8969 	 * pm_lower_power, which was getting errors.
8970 	 */
8971 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8972 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8973 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8974 
8975 	if (un->un_f_is_fibre == FALSE) {
8976 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8977 	}
8978 
8979 	/*
8980 	 * Remove any event callbacks, fibre only
8981 	 */
8982 	if (un->un_f_is_fibre == TRUE) {
8983 		if ((un->un_insert_event != NULL) &&
8984 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
8985 				DDI_SUCCESS)) {
8986 			/*
8987 			 * Note: We are returning here after having done
8988 			 * substantial cleanup above. This is consistent
8989 			 * with the legacy implementation but this may not
8990 			 * be the right thing to do.
8991 			 */
8992 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8993 				"sd_dr_detach: Cannot cancel insert event\n");
8994 			goto err_remove_event;
8995 		}
8996 		un->un_insert_event = NULL;
8997 
8998 		if ((un->un_remove_event != NULL) &&
8999 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9000 				DDI_SUCCESS)) {
9001 			/*
9002 			 * Note: We are returning here after having done
9003 			 * substantial cleanup above. This is consistent
9004 			 * with the legacy implementation but this may not
9005 			 * be the right thing to do.
9006 			 */
9007 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9008 				"sd_dr_detach: Cannot cancel remove event\n");
9009 			goto err_remove_event;
9010 		}
9011 		un->un_remove_event = NULL;
9012 	}
9013 
9014 	/* Do not free the softstate if the callback routine is active */
9015 	sd_sync_with_callback(un);
9016 
9017 	/*
9018 	 * Hold the detach mutex here, to make sure that no other threads ever
9019 	 * can access a (partially) freed soft state structure.
9020 	 */
9021 	mutex_enter(&sd_detach_mutex);
9022 
9023 	/*
9024 	 * Clean up the soft state struct.
9025 	 * Cleanup is done in reverse order of allocs/inits.
9026 	 * At this point there should be no competing threads anymore.
9027 	 */
9028 
9029 	/* Unregister and free device id. */
9030 	ddi_devid_unregister(devi);
9031 	if (un->un_devid) {
9032 		ddi_devid_free(un->un_devid);
9033 		un->un_devid = NULL;
9034 	}
9035 
9036 	/*
9037 	 * Destroy wmap cache if it exists.
9038 	 */
9039 	if (un->un_wm_cache != NULL) {
9040 		kmem_cache_destroy(un->un_wm_cache);
9041 		un->un_wm_cache = NULL;
9042 	}
9043 
9044 	/* Remove minor nodes */
9045 	ddi_remove_minor_node(devi, NULL);
9046 
9047 	/*
9048 	 * kstat cleanup is done in detach for all device types (4363169).
9049 	 * We do not want to fail detach if the device kstats are not deleted
9050 	 * since there is a confusion about the devo_refcnt for the device.
9051 	 * We just delete the kstats and let detach complete successfully.
9052 	 */
9053 	if (un->un_stats != NULL) {
9054 		kstat_delete(un->un_stats);
9055 		un->un_stats = NULL;
9056 	}
9057 	if (un->un_errstats != NULL) {
9058 		kstat_delete(un->un_errstats);
9059 		un->un_errstats = NULL;
9060 	}
9061 
9062 	/* Remove partition stats (not created for removables) */
9063 	if (!ISREMOVABLE(un)) {
9064 		for (i = 0; i < NSDMAP; i++) {
9065 			if (un->un_pstats[i] != NULL) {
9066 				kstat_delete(un->un_pstats[i]);
9067 				un->un_pstats[i] = NULL;
9068 			}
9069 		}
9070 	}
9071 
9072 	/* Remove xbuf registration */
9073 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9074 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9075 
9076 	/* Remove driver properties */
9077 	ddi_prop_remove_all(devi);
9078 
9079 	mutex_destroy(&un->un_pm_mutex);
9080 	cv_destroy(&un->un_pm_busy_cv);
9081 
9082 	/* Open/close semaphore */
9083 	sema_destroy(&un->un_semoclose);
9084 
9085 	/* Removable media condvar. */
9086 	cv_destroy(&un->un_state_cv);
9087 
9088 	/* Suspend/resume condvar. */
9089 	cv_destroy(&un->un_suspend_cv);
9090 	cv_destroy(&un->un_disk_busy_cv);
9091 
9092 	sd_free_rqs(un);
9093 
9094 	/* Free up soft state */
9095 	devp->sd_private = NULL;
9096 	bzero(un, sizeof (struct sd_lun));
9097 	ddi_soft_state_free(sd_state, instance);
9098 
9099 	mutex_exit(&sd_detach_mutex);
9100 
9101 	/* This frees up the INQUIRY data associated with the device. */
9102 	scsi_unprobe(devp);
9103 
9104 	return (DDI_SUCCESS);
9105 
9106 err_notclosed:
9107 	mutex_exit(SD_MUTEX(un));
9108 
9109 err_stillbusy:
9110 	_NOTE(NO_COMPETING_THREADS_NOW);
9111 
9112 err_remove_event:
9113 	mutex_enter(&sd_detach_mutex);
9114 	un->un_detach_count--;
9115 	mutex_exit(&sd_detach_mutex);
9116 
9117 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9118 	return (DDI_FAILURE);
9119 }
9120 
9121 
9122 /*
9123  * Driver minor node structure and data table
9124  */
9125 struct driver_minor_data {
9126 	char	*name;
9127 	minor_t	minor;
9128 	int	type;
9129 };
9130 
9131 static struct driver_minor_data sd_minor_data[] = {
9132 	{"a", 0, S_IFBLK},
9133 	{"b", 1, S_IFBLK},
9134 	{"c", 2, S_IFBLK},
9135 	{"d", 3, S_IFBLK},
9136 	{"e", 4, S_IFBLK},
9137 	{"f", 5, S_IFBLK},
9138 	{"g", 6, S_IFBLK},
9139 	{"h", 7, S_IFBLK},
9140 #if defined(_SUNOS_VTOC_16)
9141 	{"i", 8, S_IFBLK},
9142 	{"j", 9, S_IFBLK},
9143 	{"k", 10, S_IFBLK},
9144 	{"l", 11, S_IFBLK},
9145 	{"m", 12, S_IFBLK},
9146 	{"n", 13, S_IFBLK},
9147 	{"o", 14, S_IFBLK},
9148 	{"p", 15, S_IFBLK},
9149 #endif			/* defined(_SUNOS_VTOC_16) */
9150 #if defined(_FIRMWARE_NEEDS_FDISK)
9151 	{"q", 16, S_IFBLK},
9152 	{"r", 17, S_IFBLK},
9153 	{"s", 18, S_IFBLK},
9154 	{"t", 19, S_IFBLK},
9155 	{"u", 20, S_IFBLK},
9156 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9157 	{"a,raw", 0, S_IFCHR},
9158 	{"b,raw", 1, S_IFCHR},
9159 	{"c,raw", 2, S_IFCHR},
9160 	{"d,raw", 3, S_IFCHR},
9161 	{"e,raw", 4, S_IFCHR},
9162 	{"f,raw", 5, S_IFCHR},
9163 	{"g,raw", 6, S_IFCHR},
9164 	{"h,raw", 7, S_IFCHR},
9165 #if defined(_SUNOS_VTOC_16)
9166 	{"i,raw", 8, S_IFCHR},
9167 	{"j,raw", 9, S_IFCHR},
9168 	{"k,raw", 10, S_IFCHR},
9169 	{"l,raw", 11, S_IFCHR},
9170 	{"m,raw", 12, S_IFCHR},
9171 	{"n,raw", 13, S_IFCHR},
9172 	{"o,raw", 14, S_IFCHR},
9173 	{"p,raw", 15, S_IFCHR},
9174 #endif			/* defined(_SUNOS_VTOC_16) */
9175 #if defined(_FIRMWARE_NEEDS_FDISK)
9176 	{"q,raw", 16, S_IFCHR},
9177 	{"r,raw", 17, S_IFCHR},
9178 	{"s,raw", 18, S_IFCHR},
9179 	{"t,raw", 19, S_IFCHR},
9180 	{"u,raw", 20, S_IFCHR},
9181 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9182 	{0}
9183 };
9184 
9185 static struct driver_minor_data sd_minor_data_efi[] = {
9186 	{"a", 0, S_IFBLK},
9187 	{"b", 1, S_IFBLK},
9188 	{"c", 2, S_IFBLK},
9189 	{"d", 3, S_IFBLK},
9190 	{"e", 4, S_IFBLK},
9191 	{"f", 5, S_IFBLK},
9192 	{"g", 6, S_IFBLK},
9193 	{"wd", 7, S_IFBLK},
9194 #if defined(_FIRMWARE_NEEDS_FDISK)
9195 	{"q", 16, S_IFBLK},
9196 	{"r", 17, S_IFBLK},
9197 	{"s", 18, S_IFBLK},
9198 	{"t", 19, S_IFBLK},
9199 	{"u", 20, S_IFBLK},
9200 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9201 	{"a,raw", 0, S_IFCHR},
9202 	{"b,raw", 1, S_IFCHR},
9203 	{"c,raw", 2, S_IFCHR},
9204 	{"d,raw", 3, S_IFCHR},
9205 	{"e,raw", 4, S_IFCHR},
9206 	{"f,raw", 5, S_IFCHR},
9207 	{"g,raw", 6, S_IFCHR},
9208 	{"wd,raw", 7, S_IFCHR},
9209 #if defined(_FIRMWARE_NEEDS_FDISK)
9210 	{"q,raw", 16, S_IFCHR},
9211 	{"r,raw", 17, S_IFCHR},
9212 	{"s,raw", 18, S_IFCHR},
9213 	{"t,raw", 19, S_IFCHR},
9214 	{"u,raw", 20, S_IFCHR},
9215 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9216 	{0}
9217 };
9218 
9219 
9220 /*
9221  *    Function: sd_create_minor_nodes
9222  *
9223  * Description: Create the minor device nodes for the instance.
9224  *
9225  *   Arguments: un - driver soft state (unit) structure
9226  *		devi - pointer to device info structure
9227  *
9228  * Return Code: DDI_SUCCESS
9229  *		DDI_FAILURE
9230  *
9231  *     Context: Kernel thread context
9232  */
9233 
9234 static int
9235 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9236 {
9237 	struct driver_minor_data	*dmdp;
9238 	struct scsi_device		*devp;
9239 	int				instance;
9240 	char				name[48];
9241 
9242 	ASSERT(un != NULL);
9243 	devp = ddi_get_driver_private(devi);
9244 	instance = ddi_get_instance(devp->sd_dev);
9245 
9246 	/*
9247 	 * Create all the minor nodes for this target.
9248 	 */
9249 	if (un->un_blockcount > DK_MAX_BLOCKS)
9250 		dmdp = sd_minor_data_efi;
9251 	else
9252 		dmdp = sd_minor_data;
9253 	while (dmdp->name != NULL) {
9254 
9255 		(void) sprintf(name, "%s", dmdp->name);
9256 
9257 		if (ddi_create_minor_node(devi, name, dmdp->type,
9258 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9259 		    un->un_node_type, NULL) == DDI_FAILURE) {
9260 			/*
9261 			 * Clean up any nodes that may have been created, in
9262 			 * case this fails in the middle of the loop.
9263 			 */
9264 			ddi_remove_minor_node(devi, NULL);
9265 			return (DDI_FAILURE);
9266 		}
9267 		dmdp++;
9268 	}
9269 
9270 	return (DDI_SUCCESS);
9271 }
9272 
9273 
9274 /*
9275  *    Function: sd_create_errstats
9276  *
9277  * Description: This routine instantiates the device error stats.
9278  *
9279  *		Note: During attach the stats are instantiated first so they are
9280  *		available for attach-time routines that utilize the driver
9281  *		iopath to send commands to the device. The stats are initialized
9282  *		separately so data obtained during some attach-time routines is
9283  *		available. (4362483)
9284  *
9285  *   Arguments: un - driver soft state (unit) structure
9286  *		instance - driver instance
9287  *
9288  *     Context: Kernel thread context
9289  */
9290 
9291 static void
9292 sd_create_errstats(struct sd_lun *un, int instance)
9293 {
9294 	struct	sd_errstats	*stp;
9295 	char	kstatmodule_err[KSTAT_STRLEN];
9296 	char	kstatname[KSTAT_STRLEN];
9297 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9298 
9299 	ASSERT(un != NULL);
9300 
9301 	if (un->un_errstats != NULL) {
9302 		return;
9303 	}
9304 
9305 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9306 	    "%serr", sd_label);
9307 	(void) snprintf(kstatname, sizeof (kstatname),
9308 	    "%s%d,err", sd_label, instance);
9309 
9310 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9311 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9312 
9313 	if (un->un_errstats == NULL) {
9314 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9315 		    "sd_create_errstats: Failed kstat_create\n");
9316 		return;
9317 	}
9318 
9319 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9320 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9321 	    KSTAT_DATA_UINT32);
9322 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9323 	    KSTAT_DATA_UINT32);
9324 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9325 	    KSTAT_DATA_UINT32);
9326 	kstat_named_init(&stp->sd_vid,		"Vendor",
9327 	    KSTAT_DATA_CHAR);
9328 	kstat_named_init(&stp->sd_pid,		"Product",
9329 	    KSTAT_DATA_CHAR);
9330 	kstat_named_init(&stp->sd_revision,	"Revision",
9331 	    KSTAT_DATA_CHAR);
9332 	kstat_named_init(&stp->sd_serial,	"Serial No",
9333 	    KSTAT_DATA_CHAR);
9334 	kstat_named_init(&stp->sd_capacity,	"Size",
9335 	    KSTAT_DATA_ULONGLONG);
9336 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9337 	    KSTAT_DATA_UINT32);
9338 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9339 	    KSTAT_DATA_UINT32);
9340 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9341 	    KSTAT_DATA_UINT32);
9342 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9343 	    KSTAT_DATA_UINT32);
9344 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9345 	    KSTAT_DATA_UINT32);
9346 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9347 	    KSTAT_DATA_UINT32);
9348 
9349 	un->un_errstats->ks_private = un;
9350 	un->un_errstats->ks_update  = nulldev;
9351 
9352 	kstat_install(un->un_errstats);
9353 }
9354 
9355 
9356 /*
9357  *    Function: sd_set_errstats
9358  *
9359  * Description: This routine sets the value of the vendor id, product id,
9360  *		revision, serial number, and capacity device error stats.
9361  *
9362  *		Note: During attach the stats are instantiated first so they are
9363  *		available for attach-time routines that utilize the driver
9364  *		iopath to send commands to the device. The stats are initialized
9365  *		separately so data obtained during some attach-time routines is
9366  *		available. (4362483)
9367  *
9368  *   Arguments: un - driver soft state (unit) structure
9369  *
9370  *     Context: Kernel thread context
9371  */
9372 
9373 static void
9374 sd_set_errstats(struct sd_lun *un)
9375 {
9376 	struct	sd_errstats	*stp;
9377 
9378 	ASSERT(un != NULL);
9379 	ASSERT(un->un_errstats != NULL);
9380 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9381 	ASSERT(stp != NULL);
9382 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9383 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9384 	(void) strncpy(stp->sd_revision.value.c,
9385 	    un->un_sd->sd_inq->inq_revision, 4);
9386 
9387 	/*
9388 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9389 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9390 	 * (4376302))
9391 	 */
9392 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9393 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9394 		    sizeof (SD_INQUIRY(un)->inq_serial));
9395 	}
9396 
9397 	if (un->un_f_blockcount_is_valid != TRUE) {
9398 		/*
9399 		 * Set capacity error stat to 0 for no media. This ensures
9400 		 * a valid capacity is displayed in response to 'iostat -E'
9401 		 * when no media is present in the device.
9402 		 */
9403 		stp->sd_capacity.value.ui64 = 0;
9404 	} else {
9405 		/*
9406 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9407 		 * capacity.
9408 		 *
9409 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9410 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9411 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9412 		 */
9413 		stp->sd_capacity.value.ui64 = (uint64_t)
9414 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9415 	}
9416 }
9417 
9418 
9419 /*
9420  *    Function: sd_set_pstats
9421  *
9422  * Description: This routine instantiates and initializes the partition
9423  *              stats for each partition with more than zero blocks.
9424  *		(4363169)
9425  *
9426  *   Arguments: un - driver soft state (unit) structure
9427  *
9428  *     Context: Kernel thread context
9429  */
9430 
9431 static void
9432 sd_set_pstats(struct sd_lun *un)
9433 {
9434 	char	kstatname[KSTAT_STRLEN];
9435 	int	instance;
9436 	int	i;
9437 
9438 	ASSERT(un != NULL);
9439 
9440 	instance = ddi_get_instance(SD_DEVINFO(un));
9441 
9442 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9443 	for (i = 0; i < NSDMAP; i++) {
9444 		if ((un->un_pstats[i] == NULL) &&
9445 		    (un->un_map[i].dkl_nblk != 0)) {
9446 			(void) snprintf(kstatname, sizeof (kstatname),
9447 			    "%s%d,%s", sd_label, instance,
9448 			    sd_minor_data[i].name);
9449 			un->un_pstats[i] = kstat_create(sd_label,
9450 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9451 			    1, KSTAT_FLAG_PERSISTENT);
9452 			if (un->un_pstats[i] != NULL) {
9453 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9454 				kstat_install(un->un_pstats[i]);
9455 			}
9456 		}
9457 	}
9458 }
9459 
9460 
9461 #if (defined(__fibre))
9462 /*
9463  *    Function: sd_init_event_callbacks
9464  *
9465  * Description: This routine initializes the insertion and removal event
9466  *		callbacks. (fibre only)
9467  *
9468  *   Arguments: un - driver soft state (unit) structure
9469  *
9470  *     Context: Kernel thread context
9471  */
9472 
9473 static void
9474 sd_init_event_callbacks(struct sd_lun *un)
9475 {
9476 	ASSERT(un != NULL);
9477 
9478 	if ((un->un_insert_event == NULL) &&
9479 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9480 	    &un->un_insert_event) == DDI_SUCCESS)) {
9481 		/*
9482 		 * Add the callback for an insertion event
9483 		 */
9484 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9485 		    un->un_insert_event, sd_event_callback, (void *)un,
9486 		    &(un->un_insert_cb_id));
9487 	}
9488 
9489 	if ((un->un_remove_event == NULL) &&
9490 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9491 	    &un->un_remove_event) == DDI_SUCCESS)) {
9492 		/*
9493 		 * Add the callback for a removal event
9494 		 */
9495 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9496 		    un->un_remove_event, sd_event_callback, (void *)un,
9497 		    &(un->un_remove_cb_id));
9498 	}
9499 }
9500 
9501 
9502 /*
9503  *    Function: sd_event_callback
9504  *
9505  * Description: This routine handles insert/remove events (photon). The
9506  *		state is changed to OFFLINE which can be used to supress
9507  *		error msgs. (fibre only)
9508  *
9509  *   Arguments: un - driver soft state (unit) structure
9510  *
9511  *     Context: Callout thread context
9512  */
9513 /* ARGSUSED */
9514 static void
9515 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9516     void *bus_impldata)
9517 {
9518 	struct sd_lun *un = (struct sd_lun *)arg;
9519 
9520 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9521 	if (event == un->un_insert_event) {
9522 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9523 		mutex_enter(SD_MUTEX(un));
9524 		if (un->un_state == SD_STATE_OFFLINE) {
9525 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9526 				un->un_state = un->un_last_state;
9527 			} else {
9528 				/*
9529 				 * We have gone through SUSPEND/RESUME while
9530 				 * we were offline. Restore the last state
9531 				 */
9532 				un->un_state = un->un_save_state;
9533 			}
9534 		}
9535 		mutex_exit(SD_MUTEX(un));
9536 
9537 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9538 	} else if (event == un->un_remove_event) {
9539 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9540 		mutex_enter(SD_MUTEX(un));
9541 		/*
9542 		 * We need to handle an event callback that occurs during
9543 		 * the suspend operation, since we don't prevent it.
9544 		 */
9545 		if (un->un_state != SD_STATE_OFFLINE) {
9546 			if (un->un_state != SD_STATE_SUSPENDED) {
9547 				New_state(un, SD_STATE_OFFLINE);
9548 			} else {
9549 				un->un_last_state = SD_STATE_OFFLINE;
9550 			}
9551 		}
9552 		mutex_exit(SD_MUTEX(un));
9553 	} else {
9554 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9555 		    "!Unknown event\n");
9556 	}
9557 
9558 }
9559 #endif
9560 
9561 
9562 /*
9563  *    Function: sd_disable_caching()
9564  *
9565  * Description: This routine is the driver entry point for disabling
9566  *		read and write caching by modifying the WCE (write cache
9567  *		enable) and RCD (read cache disable) bits of mode
9568  *		page 8 (MODEPAGE_CACHING).
9569  *
9570  *   Arguments: un - driver soft state (unit) structure
9571  *
9572  * Return Code: EIO
9573  *		code returned by sd_send_scsi_MODE_SENSE and
9574  *		sd_send_scsi_MODE_SELECT
9575  *
9576  *     Context: Kernel Thread
9577  */
9578 
9579 static int
9580 sd_disable_caching(struct sd_lun *un)
9581 {
9582 	struct mode_caching	*mode_caching_page;
9583 	uchar_t			*header;
9584 	size_t			buflen;
9585 	int			hdrlen;
9586 	int			bd_len;
9587 	int			rval = 0;
9588 
9589 	ASSERT(un != NULL);
9590 
9591 	/*
9592 	 * Do a test unit ready, otherwise a mode sense may not work if this
9593 	 * is the first command sent to the device after boot.
9594 	 */
9595 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9596 
9597 	if (un->un_f_cfg_is_atapi == TRUE) {
9598 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9599 	} else {
9600 		hdrlen = MODE_HEADER_LENGTH;
9601 	}
9602 
9603 	/*
9604 	 * Allocate memory for the retrieved mode page and its headers.  Set
9605 	 * a pointer to the page itself.
9606 	 */
9607 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9608 	header = kmem_zalloc(buflen, KM_SLEEP);
9609 
9610 	/* Get the information from the device. */
9611 	if (un->un_f_cfg_is_atapi == TRUE) {
9612 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9613 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9614 	} else {
9615 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9616 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9617 	}
9618 	if (rval != 0) {
9619 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9620 		    "sd_disable_caching: Mode Sense Failed\n");
9621 		kmem_free(header, buflen);
9622 		return (rval);
9623 	}
9624 
9625 	/*
9626 	 * Determine size of Block Descriptors in order to locate
9627 	 * the mode page data. ATAPI devices return 0, SCSI devices
9628 	 * should return MODE_BLK_DESC_LENGTH.
9629 	 */
9630 	if (un->un_f_cfg_is_atapi == TRUE) {
9631 		struct mode_header_grp2	*mhp;
9632 		mhp	= (struct mode_header_grp2 *)header;
9633 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9634 	} else {
9635 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9636 	}
9637 
9638 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9639 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9640 		    "sd_disable_caching: Mode Sense returned invalid "
9641 		    "block descriptor length\n");
9642 		kmem_free(header, buflen);
9643 		return (EIO);
9644 	}
9645 
9646 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9647 
9648 	/* Check the relevant bits on successful mode sense. */
9649 	if ((mode_caching_page->wce) || !(mode_caching_page->rcd)) {
9650 		/*
9651 		 * Read or write caching is enabled.  Disable both of them.
9652 		 */
9653 		mode_caching_page->wce = 0;
9654 		mode_caching_page->rcd = 1;
9655 
9656 		/* Clear reserved bits before mode select. */
9657 		mode_caching_page->mode_page.ps = 0;
9658 
9659 		/*
9660 		 * Clear out mode header for mode select.
9661 		 * The rest of the retrieved page will be reused.
9662 		 */
9663 		bzero(header, hdrlen);
9664 
9665 		/* Change the cache page to disable all caching. */
9666 		if (un->un_f_cfg_is_atapi == TRUE) {
9667 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
9668 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9669 		} else {
9670 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
9671 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9672 		}
9673 	}
9674 
9675 	kmem_free(header, buflen);
9676 	return (rval);
9677 }
9678 
9679 
9680 /*
9681  *    Function: sd_make_device
9682  *
9683  * Description: Utility routine to return the Solaris device number from
9684  *		the data in the device's dev_info structure.
9685  *
9686  * Return Code: The Solaris device number
9687  *
9688  *     Context: Any
9689  */
9690 
9691 static dev_t
9692 sd_make_device(dev_info_t *devi)
9693 {
9694 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9695 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9696 }
9697 
9698 
9699 /*
9700  *    Function: sd_pm_entry
9701  *
9702  * Description: Called at the start of a new command to manage power
9703  *		and busy status of a device. This includes determining whether
9704  *		the current power state of the device is sufficient for
9705  *		performing the command or whether it must be changed.
9706  *		The PM framework is notified appropriately.
9707  *		Only with a return status of DDI_SUCCESS will the
9708  *		component be busy to the framework.
9709  *
9710  *		All callers of sd_pm_entry must check the return status
9711  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9712  *		of DDI_FAILURE indicates the device failed to power up.
9713  *		In this case un_pm_count has been adjusted so the result
9714  *		on exit is still powered down, ie. count is less than 0.
9715  *		Calling sd_pm_exit with this count value hits an ASSERT.
9716  *
9717  * Return Code: DDI_SUCCESS or DDI_FAILURE
9718  *
9719  *     Context: Kernel thread context.
9720  */
9721 
9722 static int
9723 sd_pm_entry(struct sd_lun *un)
9724 {
9725 	int return_status = DDI_SUCCESS;
9726 
9727 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9728 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9729 
9730 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9731 
9732 	if (un->un_f_pm_is_enabled == FALSE) {
9733 		SD_TRACE(SD_LOG_IO_PM, un,
9734 		    "sd_pm_entry: exiting, PM not enabled\n");
9735 		return (return_status);
9736 	}
9737 
9738 	/*
9739 	 * Just increment a counter if PM is enabled. On the transition from
9740 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9741 	 * the count with each IO and mark the device as idle when the count
9742 	 * hits 0.
9743 	 *
9744 	 * If the count is less than 0 the device is powered down. If a powered
9745 	 * down device is successfully powered up then the count must be
9746 	 * incremented to reflect the power up. Note that it'll get incremented
9747 	 * a second time to become busy.
9748 	 *
9749 	 * Because the following has the potential to change the device state
9750 	 * and must release the un_pm_mutex to do so, only one thread can be
9751 	 * allowed through at a time.
9752 	 */
9753 
9754 	mutex_enter(&un->un_pm_mutex);
9755 	while (un->un_pm_busy == TRUE) {
9756 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9757 	}
9758 	un->un_pm_busy = TRUE;
9759 
9760 	if (un->un_pm_count < 1) {
9761 
9762 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9763 
9764 		/*
9765 		 * Indicate we are now busy so the framework won't attempt to
9766 		 * power down the device. This call will only fail if either
9767 		 * we passed a bad component number or the device has no
9768 		 * components. Neither of these should ever happen.
9769 		 */
9770 		mutex_exit(&un->un_pm_mutex);
9771 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9772 		ASSERT(return_status == DDI_SUCCESS);
9773 
9774 		mutex_enter(&un->un_pm_mutex);
9775 
9776 		if (un->un_pm_count < 0) {
9777 			mutex_exit(&un->un_pm_mutex);
9778 
9779 			SD_TRACE(SD_LOG_IO_PM, un,
9780 			    "sd_pm_entry: power up component\n");
9781 
9782 			/*
9783 			 * pm_raise_power will cause sdpower to be called
9784 			 * which brings the device power level to the
9785 			 * desired state, ON in this case. If successful,
9786 			 * un_pm_count and un_power_level will be updated
9787 			 * appropriately.
9788 			 */
9789 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9790 			    SD_SPINDLE_ON);
9791 
9792 			mutex_enter(&un->un_pm_mutex);
9793 
9794 			if (return_status != DDI_SUCCESS) {
9795 				/*
9796 				 * Power up failed.
9797 				 * Idle the device and adjust the count
9798 				 * so the result on exit is that we're
9799 				 * still powered down, ie. count is less than 0.
9800 				 */
9801 				SD_TRACE(SD_LOG_IO_PM, un,
9802 				    "sd_pm_entry: power up failed,"
9803 				    " idle the component\n");
9804 
9805 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9806 				un->un_pm_count--;
9807 			} else {
9808 				/*
9809 				 * Device is powered up, verify the
9810 				 * count is non-negative.
9811 				 * This is debug only.
9812 				 */
9813 				ASSERT(un->un_pm_count == 0);
9814 			}
9815 		}
9816 
9817 		if (return_status == DDI_SUCCESS) {
9818 			/*
9819 			 * For performance, now that the device has been tagged
9820 			 * as busy, and it's known to be powered up, update the
9821 			 * chain types to use jump tables that do not include
9822 			 * pm. This significantly lowers the overhead and
9823 			 * therefore improves performance.
9824 			 */
9825 
9826 			mutex_exit(&un->un_pm_mutex);
9827 			mutex_enter(SD_MUTEX(un));
9828 			SD_TRACE(SD_LOG_IO_PM, un,
9829 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9830 			    un->un_uscsi_chain_type);
9831 
9832 			if (ISREMOVABLE(un)) {
9833 				un->un_buf_chain_type =
9834 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9835 			} else {
9836 				un->un_buf_chain_type =
9837 				    SD_CHAIN_INFO_DISK_NO_PM;
9838 			}
9839 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9840 
9841 			SD_TRACE(SD_LOG_IO_PM, un,
9842 			    "             changed  uscsi_chain_type to   %d\n",
9843 			    un->un_uscsi_chain_type);
9844 			mutex_exit(SD_MUTEX(un));
9845 			mutex_enter(&un->un_pm_mutex);
9846 
9847 			if (un->un_pm_idle_timeid == NULL) {
9848 				/* 300 ms. */
9849 				un->un_pm_idle_timeid =
9850 				    timeout(sd_pm_idletimeout_handler, un,
9851 				    (drv_usectohz((clock_t)300000)));
9852 				/*
9853 				 * Include an extra call to busy which keeps the
9854 				 * device busy with-respect-to the PM layer
9855 				 * until the timer fires, at which time it'll
9856 				 * get the extra idle call.
9857 				 */
9858 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9859 			}
9860 		}
9861 	}
9862 	un->un_pm_busy = FALSE;
9863 	/* Next... */
9864 	cv_signal(&un->un_pm_busy_cv);
9865 
9866 	un->un_pm_count++;
9867 
9868 	SD_TRACE(SD_LOG_IO_PM, un,
9869 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9870 
9871 	mutex_exit(&un->un_pm_mutex);
9872 
9873 	return (return_status);
9874 }
9875 
9876 
9877 /*
9878  *    Function: sd_pm_exit
9879  *
9880  * Description: Called at the completion of a command to manage busy
9881  *		status for the device. If the device becomes idle the
9882  *		PM framework is notified.
9883  *
9884  *     Context: Kernel thread context
9885  */
9886 
9887 static void
9888 sd_pm_exit(struct sd_lun *un)
9889 {
9890 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9891 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9892 
9893 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9894 
9895 	/*
9896 	 * After attach the following flag is only read, so don't
9897 	 * take the penalty of acquiring a mutex for it.
9898 	 */
9899 	if (un->un_f_pm_is_enabled == TRUE) {
9900 
9901 		mutex_enter(&un->un_pm_mutex);
9902 		un->un_pm_count--;
9903 
9904 		SD_TRACE(SD_LOG_IO_PM, un,
9905 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9906 
9907 		ASSERT(un->un_pm_count >= 0);
9908 		if (un->un_pm_count == 0) {
9909 			mutex_exit(&un->un_pm_mutex);
9910 
9911 			SD_TRACE(SD_LOG_IO_PM, un,
9912 			    "sd_pm_exit: idle component\n");
9913 
9914 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9915 
9916 		} else {
9917 			mutex_exit(&un->un_pm_mutex);
9918 		}
9919 	}
9920 
9921 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9922 }
9923 
9924 
9925 /*
9926  *    Function: sdopen
9927  *
9928  * Description: Driver's open(9e) entry point function.
9929  *
9930  *   Arguments: dev_i   - pointer to device number
9931  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9932  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9933  *		cred_p  - user credential pointer
9934  *
9935  * Return Code: EINVAL
9936  *		ENXIO
9937  *		EIO
9938  *		EROFS
9939  *		EBUSY
9940  *
9941  *     Context: Kernel thread context
9942  */
9943 /* ARGSUSED */
9944 static int
9945 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9946 {
9947 	struct sd_lun	*un;
9948 	int		nodelay;
9949 	int		part;
9950 	int		partmask;
9951 	int		instance;
9952 	dev_t		dev;
9953 	int		rval = EIO;
9954 
9955 	/* Validate the open type */
9956 	if (otyp >= OTYPCNT) {
9957 		return (EINVAL);
9958 	}
9959 
9960 	dev = *dev_p;
9961 	instance = SDUNIT(dev);
9962 	mutex_enter(&sd_detach_mutex);
9963 
9964 	/*
9965 	 * Fail the open if there is no softstate for the instance, or
9966 	 * if another thread somewhere is trying to detach the instance.
9967 	 */
9968 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9969 	    (un->un_detach_count != 0)) {
9970 		mutex_exit(&sd_detach_mutex);
9971 		/*
9972 		 * The probe cache only needs to be cleared when open (9e) fails
9973 		 * with ENXIO (4238046).
9974 		 */
9975 		/*
9976 		 * un-conditionally clearing probe cache is ok with
9977 		 * separate sd/ssd binaries
9978 		 * x86 platform can be an issue with both parallel
9979 		 * and fibre in 1 binary
9980 		 */
9981 		sd_scsi_clear_probe_cache();
9982 		return (ENXIO);
9983 	}
9984 
9985 	/*
9986 	 * The un_layer_count is to prevent another thread in specfs from
9987 	 * trying to detach the instance, which can happen when we are
9988 	 * called from a higher-layer driver instead of thru specfs.
9989 	 * This will not be needed when DDI provides a layered driver
9990 	 * interface that allows specfs to know that an instance is in
9991 	 * use by a layered driver & should not be detached.
9992 	 *
9993 	 * Note: the semantics for layered driver opens are exactly one
9994 	 * close for every open.
9995 	 */
9996 	if (otyp == OTYP_LYR) {
9997 		un->un_layer_count++;
9998 	}
9999 
10000 	/*
10001 	 * Keep a count of the current # of opens in progress. This is because
10002 	 * some layered drivers try to call us as a regular open. This can
10003 	 * cause problems that we cannot prevent, however by keeping this count
10004 	 * we can at least keep our open and detach routines from racing against
10005 	 * each other under such conditions.
10006 	 */
10007 	un->un_opens_in_progress++;
10008 	mutex_exit(&sd_detach_mutex);
10009 
10010 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10011 	part	 = SDPART(dev);
10012 	partmask = 1 << part;
10013 
10014 	/*
10015 	 * We use a semaphore here in order to serialize
10016 	 * open and close requests on the device.
10017 	 */
10018 	sema_p(&un->un_semoclose);
10019 
10020 	mutex_enter(SD_MUTEX(un));
10021 
10022 	/*
10023 	 * All device accesses go thru sdstrategy() where we check
10024 	 * on suspend status but there could be a scsi_poll command,
10025 	 * which bypasses sdstrategy(), so we need to check pm
10026 	 * status.
10027 	 */
10028 
10029 	if (!nodelay) {
10030 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10031 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10032 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10033 		}
10034 
10035 		mutex_exit(SD_MUTEX(un));
10036 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10037 			rval = EIO;
10038 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10039 			    "sdopen: sd_pm_entry failed\n");
10040 			goto open_failed_with_pm;
10041 		}
10042 		mutex_enter(SD_MUTEX(un));
10043 	}
10044 
10045 	/* check for previous exclusive open */
10046 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10047 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10048 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10049 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10050 
10051 	if (un->un_exclopen & (partmask)) {
10052 		goto excl_open_fail;
10053 	}
10054 
10055 	if (flag & FEXCL) {
10056 		int i;
10057 		if (un->un_ocmap.lyropen[part]) {
10058 			goto excl_open_fail;
10059 		}
10060 		for (i = 0; i < (OTYPCNT - 1); i++) {
10061 			if (un->un_ocmap.regopen[i] & (partmask)) {
10062 				goto excl_open_fail;
10063 			}
10064 		}
10065 	}
10066 
10067 	/*
10068 	 * Check the write permission if this is a removable media device,
10069 	 * NDELAY has not been set, and writable permission is requested.
10070 	 *
10071 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10072 	 * attempt will fail with EIO as part of the I/O processing. This is a
10073 	 * more permissive implementation that allows the open to succeed and
10074 	 * WRITE attempts to fail when appropriate.
10075 	 */
10076 	if (ISREMOVABLE(un)) {
10077 		if ((flag & FWRITE) && (!nodelay)) {
10078 			mutex_exit(SD_MUTEX(un));
10079 			/*
10080 			 * Defer the check for write permission on writable
10081 			 * DVD drive till sdstrategy and will not fail open even
10082 			 * if FWRITE is set as the device can be writable
10083 			 * depending upon the media and the media can change
10084 			 * after the call to open().
10085 			 */
10086 			if (un->un_f_dvdram_writable_device == FALSE) {
10087 				if (ISCD(un) || sr_check_wp(dev)) {
10088 				rval = EROFS;
10089 				mutex_enter(SD_MUTEX(un));
10090 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10091 				    "write to cd or write protected media\n");
10092 				goto open_fail;
10093 				}
10094 			}
10095 			mutex_enter(SD_MUTEX(un));
10096 		}
10097 	}
10098 
10099 	/*
10100 	 * If opening in NDELAY/NONBLOCK mode, just return.
10101 	 * Check if disk is ready and has a valid geometry later.
10102 	 */
10103 	if (!nodelay) {
10104 		mutex_exit(SD_MUTEX(un));
10105 		rval = sd_ready_and_valid(un);
10106 		mutex_enter(SD_MUTEX(un));
10107 		/*
10108 		 * Fail if device is not ready or if the number of disk
10109 		 * blocks is zero or negative for non CD devices.
10110 		 */
10111 		if ((rval != SD_READY_VALID) ||
10112 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10113 			if (ISREMOVABLE(un)) {
10114 				rval = ENXIO;
10115 			} else {
10116 				rval = EIO;
10117 			}
10118 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10119 			    "device not ready or invalid disk block value\n");
10120 			goto open_fail;
10121 		}
10122 #if defined(__i386) || defined(__amd64)
10123 	} else {
10124 		uchar_t *cp;
10125 		/*
10126 		 * x86 requires special nodelay handling, so that p0 is
10127 		 * always defined and accessible.
10128 		 * Invalidate geometry only if device is not already open.
10129 		 */
10130 		cp = &un->un_ocmap.chkd[0];
10131 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10132 			if (*cp != (uchar_t)0) {
10133 			    break;
10134 			}
10135 			cp++;
10136 		}
10137 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10138 			un->un_f_geometry_is_valid = FALSE;
10139 		}
10140 
10141 #endif
10142 	}
10143 
10144 	if (otyp == OTYP_LYR) {
10145 		un->un_ocmap.lyropen[part]++;
10146 	} else {
10147 		un->un_ocmap.regopen[otyp] |= partmask;
10148 	}
10149 
10150 	/* Set up open and exclusive open flags */
10151 	if (flag & FEXCL) {
10152 		un->un_exclopen |= (partmask);
10153 	}
10154 
10155 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10156 	    "open of part %d type %d\n", part, otyp);
10157 
10158 	mutex_exit(SD_MUTEX(un));
10159 	if (!nodelay) {
10160 		sd_pm_exit(un);
10161 	}
10162 
10163 	sema_v(&un->un_semoclose);
10164 
10165 	mutex_enter(&sd_detach_mutex);
10166 	un->un_opens_in_progress--;
10167 	mutex_exit(&sd_detach_mutex);
10168 
10169 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10170 	return (DDI_SUCCESS);
10171 
10172 excl_open_fail:
10173 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10174 	rval = EBUSY;
10175 
10176 open_fail:
10177 	mutex_exit(SD_MUTEX(un));
10178 
10179 	/*
10180 	 * On a failed open we must exit the pm management.
10181 	 */
10182 	if (!nodelay) {
10183 		sd_pm_exit(un);
10184 	}
10185 open_failed_with_pm:
10186 	sema_v(&un->un_semoclose);
10187 
10188 	mutex_enter(&sd_detach_mutex);
10189 	un->un_opens_in_progress--;
10190 	if (otyp == OTYP_LYR) {
10191 		un->un_layer_count--;
10192 	}
10193 	mutex_exit(&sd_detach_mutex);
10194 
10195 	return (rval);
10196 }
10197 
10198 
10199 /*
10200  *    Function: sdclose
10201  *
10202  * Description: Driver's close(9e) entry point function.
10203  *
10204  *   Arguments: dev    - device number
10205  *		flag   - file status flag, informational only
10206  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10207  *		cred_p - user credential pointer
10208  *
10209  * Return Code: ENXIO
10210  *
10211  *     Context: Kernel thread context
10212  */
10213 /* ARGSUSED */
10214 static int
10215 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10216 {
10217 	struct sd_lun	*un;
10218 	uchar_t		*cp;
10219 	int		part;
10220 	int		nodelay;
10221 	int		rval = 0;
10222 
10223 	/* Validate the open type */
10224 	if (otyp >= OTYPCNT) {
10225 		return (ENXIO);
10226 	}
10227 
10228 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10229 		return (ENXIO);
10230 	}
10231 
10232 	part = SDPART(dev);
10233 	nodelay = flag & (FNDELAY | FNONBLOCK);
10234 
10235 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10236 	    "sdclose: close of part %d type %d\n", part, otyp);
10237 
10238 	/*
10239 	 * We use a semaphore here in order to serialize
10240 	 * open and close requests on the device.
10241 	 */
10242 	sema_p(&un->un_semoclose);
10243 
10244 	mutex_enter(SD_MUTEX(un));
10245 
10246 	/* Don't proceed if power is being changed. */
10247 	while (un->un_state == SD_STATE_PM_CHANGING) {
10248 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10249 	}
10250 
10251 	if (un->un_exclopen & (1 << part)) {
10252 		un->un_exclopen &= ~(1 << part);
10253 	}
10254 
10255 	/* Update the open partition map */
10256 	if (otyp == OTYP_LYR) {
10257 		un->un_ocmap.lyropen[part] -= 1;
10258 	} else {
10259 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10260 	}
10261 
10262 	cp = &un->un_ocmap.chkd[0];
10263 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10264 		if (*cp != NULL) {
10265 			break;
10266 		}
10267 		cp++;
10268 	}
10269 
10270 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10271 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10272 
10273 		/*
10274 		 * We avoid persistance upon the last close, and set
10275 		 * the throttle back to the maximum.
10276 		 */
10277 		un->un_throttle = un->un_saved_throttle;
10278 
10279 		if (un->un_state == SD_STATE_OFFLINE) {
10280 			if (un->un_f_is_fibre == FALSE) {
10281 				scsi_log(SD_DEVINFO(un), sd_label,
10282 					CE_WARN, "offline\n");
10283 			}
10284 			un->un_f_geometry_is_valid = FALSE;
10285 
10286 		} else {
10287 			/*
10288 			 * Flush any outstanding writes in NVRAM cache.
10289 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10290 			 * cmd, it may not work for non-Pluto devices.
10291 			 * SYNCHRONIZE CACHE is not required for removables,
10292 			 * except DVD-RAM drives.
10293 			 *
10294 			 * Also note: because SYNCHRONIZE CACHE is currently
10295 			 * the only command issued here that requires the
10296 			 * drive be powered up, only do the power up before
10297 			 * sending the Sync Cache command. If additional
10298 			 * commands are added which require a powered up
10299 			 * drive, the following sequence may have to change.
10300 			 *
10301 			 * And finally, note that parallel SCSI on SPARC
10302 			 * only issues a Sync Cache to DVD-RAM, a newly
10303 			 * supported device.
10304 			 */
10305 #if defined(__i386) || defined(__amd64)
10306 			if (!ISREMOVABLE(un) ||
10307 			    un->un_f_dvdram_writable_device == TRUE) {
10308 #else
10309 			if (un->un_f_dvdram_writable_device == TRUE) {
10310 #endif
10311 				mutex_exit(SD_MUTEX(un));
10312 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10313 					if (sd_send_scsi_SYNCHRONIZE_CACHE(un)
10314 					    != 0) {
10315 						rval = EIO;
10316 					}
10317 					sd_pm_exit(un);
10318 				} else {
10319 					rval = EIO;
10320 				}
10321 				mutex_enter(SD_MUTEX(un));
10322 			}
10323 
10324 			/*
10325 			 * For removable media devices, send an ALLOW MEDIA
10326 			 * REMOVAL command, but don't get upset if it fails.
10327 			 * Also invalidate the geometry. We need to raise
10328 			 * the power of the drive before we can call
10329 			 * sd_send_scsi_DOORLOCK()
10330 			 */
10331 			if (ISREMOVABLE(un)) {
10332 				mutex_exit(SD_MUTEX(un));
10333 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10334 					rval = sd_send_scsi_DOORLOCK(un,
10335 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10336 
10337 					sd_pm_exit(un);
10338 					if (ISCD(un) && (rval != 0) &&
10339 					    (nodelay != 0)) {
10340 						rval = ENXIO;
10341 					}
10342 				} else {
10343 					rval = EIO;
10344 				}
10345 				mutex_enter(SD_MUTEX(un));
10346 
10347 				sr_ejected(un);
10348 				/*
10349 				 * Destroy the cache (if it exists) which was
10350 				 * allocated for the write maps since this is
10351 				 * the last close for this media.
10352 				 */
10353 				if (un->un_wm_cache) {
10354 					/*
10355 					 * Check if there are pending commands.
10356 					 * and if there are give a warning and
10357 					 * do not destroy the cache.
10358 					 */
10359 					if (un->un_ncmds_in_driver > 0) {
10360 						scsi_log(SD_DEVINFO(un),
10361 						    sd_label, CE_WARN,
10362 						    "Unable to clean up memory "
10363 						    "because of pending I/O\n");
10364 					} else {
10365 						kmem_cache_destroy(
10366 						    un->un_wm_cache);
10367 						un->un_wm_cache = NULL;
10368 					}
10369 				}
10370 			}
10371 		}
10372 	}
10373 
10374 	mutex_exit(SD_MUTEX(un));
10375 	sema_v(&un->un_semoclose);
10376 
10377 	if (otyp == OTYP_LYR) {
10378 		mutex_enter(&sd_detach_mutex);
10379 		/*
10380 		 * The detach routine may run when the layer count
10381 		 * drops to zero.
10382 		 */
10383 		un->un_layer_count--;
10384 		mutex_exit(&sd_detach_mutex);
10385 	}
10386 
10387 	return (rval);
10388 }
10389 
10390 
10391 /*
10392  *    Function: sd_ready_and_valid
10393  *
10394  * Description: Test if device is ready and has a valid geometry.
10395  *
10396  *   Arguments: dev - device number
10397  *		un  - driver soft state (unit) structure
10398  *
10399  * Return Code: SD_READY_VALID		ready and valid label
10400  *		SD_READY_NOT_VALID	ready, geom ops never applicable
10401  *		SD_NOT_READY_VALID	not ready, no label
10402  *
10403  *     Context: Never called at interrupt context.
10404  */
10405 
10406 static int
10407 sd_ready_and_valid(struct sd_lun *un)
10408 {
10409 	struct sd_errstats	*stp;
10410 	uint64_t		capacity;
10411 	uint_t			lbasize;
10412 	int			rval = SD_READY_VALID;
10413 	char			name_str[48];
10414 
10415 	ASSERT(un != NULL);
10416 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10417 
10418 	mutex_enter(SD_MUTEX(un));
10419 	if (ISREMOVABLE(un)) {
10420 		mutex_exit(SD_MUTEX(un));
10421 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
10422 			rval = SD_NOT_READY_VALID;
10423 			mutex_enter(SD_MUTEX(un));
10424 			goto done;
10425 		}
10426 
10427 		mutex_enter(SD_MUTEX(un));
10428 		if ((un->un_f_geometry_is_valid == FALSE) ||
10429 		    (un->un_f_blockcount_is_valid == FALSE) ||
10430 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10431 
10432 			/* capacity has to be read every open. */
10433 			mutex_exit(SD_MUTEX(un));
10434 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
10435 			    &lbasize, SD_PATH_DIRECT) != 0) {
10436 				mutex_enter(SD_MUTEX(un));
10437 				un->un_f_geometry_is_valid = FALSE;
10438 				rval = SD_NOT_READY_VALID;
10439 				goto done;
10440 			} else {
10441 				mutex_enter(SD_MUTEX(un));
10442 				sd_update_block_info(un, lbasize, capacity);
10443 			}
10444 		}
10445 
10446 		/*
10447 		 * If this is a non 512 block device, allocate space for
10448 		 * the wmap cache. This is being done here since every time
10449 		 * a media is changed this routine will be called and the
10450 		 * block size is a function of media rather than device.
10451 		 */
10452 		if (NOT_DEVBSIZE(un)) {
10453 			if (!(un->un_wm_cache)) {
10454 				(void) snprintf(name_str, sizeof (name_str),
10455 				    "%s%d_cache",
10456 				    ddi_driver_name(SD_DEVINFO(un)),
10457 				    ddi_get_instance(SD_DEVINFO(un)));
10458 				un->un_wm_cache = kmem_cache_create(
10459 				    name_str, sizeof (struct sd_w_map),
10460 				    8, sd_wm_cache_constructor,
10461 				    sd_wm_cache_destructor, NULL,
10462 				    (void *)un, NULL, 0);
10463 				if (!(un->un_wm_cache)) {
10464 					rval = ENOMEM;
10465 					goto done;
10466 				}
10467 			}
10468 		}
10469 
10470 		/*
10471 		 * Check if the media in the device is writable or not.
10472 		 */
10473 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
10474 			sd_check_for_writable_cd(un);
10475 		}
10476 
10477 	} else {
10478 		/*
10479 		 * Do a test unit ready to clear any unit attention from non-cd
10480 		 * devices.
10481 		 */
10482 		mutex_exit(SD_MUTEX(un));
10483 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10484 		mutex_enter(SD_MUTEX(un));
10485 	}
10486 
10487 
10488 	if (un->un_state == SD_STATE_NORMAL) {
10489 		/*
10490 		 * If the target is not yet ready here (defined by a TUR
10491 		 * failure), invalidate the geometry and print an 'offline'
10492 		 * message. This is a legacy message, as the state of the
10493 		 * target is not actually changed to SD_STATE_OFFLINE.
10494 		 *
10495 		 * If the TUR fails for EACCES (Reservation Conflict), it
10496 		 * means there actually is nothing wrong with the target that
10497 		 * would require invalidating the geometry, so continue in
10498 		 * that case as if the TUR was successful.
10499 		 */
10500 		int err;
10501 
10502 		mutex_exit(SD_MUTEX(un));
10503 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
10504 		mutex_enter(SD_MUTEX(un));
10505 
10506 		if ((err != 0) && (err != EACCES)) {
10507 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10508 			    "offline\n");
10509 			un->un_f_geometry_is_valid = FALSE;
10510 			rval = SD_NOT_READY_VALID;
10511 			goto done;
10512 		}
10513 	}
10514 
10515 	if (un->un_f_format_in_progress == FALSE) {
10516 		/*
10517 		 * Note: sd_validate_geometry may return TRUE, but that does
10518 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
10519 		 */
10520 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
10521 		if (rval == ENOTSUP) {
10522 			if (un->un_f_geometry_is_valid == TRUE)
10523 				rval = 0;
10524 			else {
10525 				rval = SD_READY_NOT_VALID;
10526 				goto done;
10527 			}
10528 		}
10529 		if (rval != 0) {
10530 			/*
10531 			 * We don't check the validity of geometry for
10532 			 * CDROMs. Also we assume we have a good label
10533 			 * even if sd_validate_geometry returned ENOMEM.
10534 			 */
10535 			if (!ISCD(un) && rval != ENOMEM) {
10536 				rval = SD_NOT_READY_VALID;
10537 				goto done;
10538 			}
10539 		}
10540 	}
10541 
10542 #ifdef DOESNTWORK /* on eliteII, see 1118607 */
10543 	/*
10544 	 * check to see if this disk is write protected, if it is and we have
10545 	 * not set read-only, then fail
10546 	 */
10547 	if ((flag & FWRITE) && (sr_check_wp(dev))) {
10548 		New_state(un, SD_STATE_CLOSED);
10549 		goto done;
10550 	}
10551 #endif
10552 
10553 	/*
10554 	 * If this is a removable media device, try and send
10555 	 * a PREVENT MEDIA REMOVAL command, but don't get upset
10556 	 * if it fails. For a CD, however, it is an error
10557 	 */
10558 	if (ISREMOVABLE(un)) {
10559 		mutex_exit(SD_MUTEX(un));
10560 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
10561 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
10562 			rval = SD_NOT_READY_VALID;
10563 			mutex_enter(SD_MUTEX(un));
10564 			goto done;
10565 		}
10566 		mutex_enter(SD_MUTEX(un));
10567 	}
10568 
10569 	/* The state has changed, inform the media watch routines */
10570 	un->un_mediastate = DKIO_INSERTED;
10571 	cv_broadcast(&un->un_state_cv);
10572 	rval = SD_READY_VALID;
10573 
10574 done:
10575 
10576 	/*
10577 	 * Initialize the capacity kstat value, if no media previously
10578 	 * (capacity kstat is 0) and a media has been inserted
10579 	 * (un_blockcount > 0).
10580 	 * This is a more generic way then checking for ISREMOVABLE.
10581 	 */
10582 	if (un->un_errstats != NULL) {
10583 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10584 		if ((stp->sd_capacity.value.ui64 == 0) &&
10585 		    (un->un_f_blockcount_is_valid == TRUE)) {
10586 			stp->sd_capacity.value.ui64 =
10587 			    (uint64_t)((uint64_t)un->un_blockcount *
10588 			    un->un_sys_blocksize);
10589 		}
10590 	}
10591 
10592 	mutex_exit(SD_MUTEX(un));
10593 	return (rval);
10594 }
10595 
10596 
10597 /*
10598  *    Function: sdmin
10599  *
10600  * Description: Routine to limit the size of a data transfer. Used in
10601  *		conjunction with physio(9F).
10602  *
10603  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10604  *
10605  *     Context: Kernel thread context.
10606  */
10607 
10608 static void
10609 sdmin(struct buf *bp)
10610 {
10611 	struct sd_lun	*un;
10612 	int		instance;
10613 
10614 	instance = SDUNIT(bp->b_edev);
10615 
10616 	un = ddi_get_soft_state(sd_state, instance);
10617 	ASSERT(un != NULL);
10618 
10619 	if (bp->b_bcount > un->un_max_xfer_size) {
10620 		bp->b_bcount = un->un_max_xfer_size;
10621 	}
10622 }
10623 
10624 
10625 /*
10626  *    Function: sdread
10627  *
10628  * Description: Driver's read(9e) entry point function.
10629  *
10630  *   Arguments: dev   - device number
10631  *		uio   - structure pointer describing where data is to be stored
10632  *			in user's space
10633  *		cred_p  - user credential pointer
10634  *
10635  * Return Code: ENXIO
10636  *		EIO
10637  *		EINVAL
10638  *		value returned by physio
10639  *
10640  *     Context: Kernel thread context.
10641  */
10642 /* ARGSUSED */
10643 static int
10644 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10645 {
10646 	struct sd_lun	*un = NULL;
10647 	int		secmask;
10648 	int		err;
10649 
10650 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10651 		return (ENXIO);
10652 	}
10653 
10654 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10655 
10656 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10657 		mutex_enter(SD_MUTEX(un));
10658 		/*
10659 		 * Because the call to sd_ready_and_valid will issue I/O we
10660 		 * must wait here if either the device is suspended or
10661 		 * if it's power level is changing.
10662 		 */
10663 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10664 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10665 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10666 		}
10667 		un->un_ncmds_in_driver++;
10668 		mutex_exit(SD_MUTEX(un));
10669 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10670 			mutex_enter(SD_MUTEX(un));
10671 			un->un_ncmds_in_driver--;
10672 			ASSERT(un->un_ncmds_in_driver >= 0);
10673 			mutex_exit(SD_MUTEX(un));
10674 			return (EIO);
10675 		}
10676 		mutex_enter(SD_MUTEX(un));
10677 		un->un_ncmds_in_driver--;
10678 		ASSERT(un->un_ncmds_in_driver >= 0);
10679 		mutex_exit(SD_MUTEX(un));
10680 	}
10681 
10682 	/*
10683 	 * Read requests are restricted to multiples of the system block size.
10684 	 */
10685 	secmask = un->un_sys_blocksize - 1;
10686 
10687 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10688 		SD_ERROR(SD_LOG_READ_WRITE, un,
10689 		    "sdread: file offset not modulo %d\n",
10690 		    un->un_sys_blocksize);
10691 		err = EINVAL;
10692 	} else if (uio->uio_iov->iov_len & (secmask)) {
10693 		SD_ERROR(SD_LOG_READ_WRITE, un,
10694 		    "sdread: transfer length not modulo %d\n",
10695 		    un->un_sys_blocksize);
10696 		err = EINVAL;
10697 	} else {
10698 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10699 	}
10700 	return (err);
10701 }
10702 
10703 
10704 /*
10705  *    Function: sdwrite
10706  *
10707  * Description: Driver's write(9e) entry point function.
10708  *
10709  *   Arguments: dev   - device number
10710  *		uio   - structure pointer describing where data is stored in
10711  *			user's space
10712  *		cred_p  - user credential pointer
10713  *
10714  * Return Code: ENXIO
10715  *		EIO
10716  *		EINVAL
10717  *		value returned by physio
10718  *
10719  *     Context: Kernel thread context.
10720  */
10721 /* ARGSUSED */
10722 static int
10723 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10724 {
10725 	struct sd_lun	*un = NULL;
10726 	int		secmask;
10727 	int		err;
10728 
10729 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10730 		return (ENXIO);
10731 	}
10732 
10733 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10734 
10735 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10736 		mutex_enter(SD_MUTEX(un));
10737 		/*
10738 		 * Because the call to sd_ready_and_valid will issue I/O we
10739 		 * must wait here if either the device is suspended or
10740 		 * if it's power level is changing.
10741 		 */
10742 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10743 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10744 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10745 		}
10746 		un->un_ncmds_in_driver++;
10747 		mutex_exit(SD_MUTEX(un));
10748 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10749 			mutex_enter(SD_MUTEX(un));
10750 			un->un_ncmds_in_driver--;
10751 			ASSERT(un->un_ncmds_in_driver >= 0);
10752 			mutex_exit(SD_MUTEX(un));
10753 			return (EIO);
10754 		}
10755 		mutex_enter(SD_MUTEX(un));
10756 		un->un_ncmds_in_driver--;
10757 		ASSERT(un->un_ncmds_in_driver >= 0);
10758 		mutex_exit(SD_MUTEX(un));
10759 	}
10760 
10761 	/*
10762 	 * Write requests are restricted to multiples of the system block size.
10763 	 */
10764 	secmask = un->un_sys_blocksize - 1;
10765 
10766 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10767 		SD_ERROR(SD_LOG_READ_WRITE, un,
10768 		    "sdwrite: file offset not modulo %d\n",
10769 		    un->un_sys_blocksize);
10770 		err = EINVAL;
10771 	} else if (uio->uio_iov->iov_len & (secmask)) {
10772 		SD_ERROR(SD_LOG_READ_WRITE, un,
10773 		    "sdwrite: transfer length not modulo %d\n",
10774 		    un->un_sys_blocksize);
10775 		err = EINVAL;
10776 	} else {
10777 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10778 	}
10779 	return (err);
10780 }
10781 
10782 
10783 /*
10784  *    Function: sdaread
10785  *
10786  * Description: Driver's aread(9e) entry point function.
10787  *
10788  *   Arguments: dev   - device number
10789  *		aio   - structure pointer describing where data is to be stored
10790  *		cred_p  - user credential pointer
10791  *
10792  * Return Code: ENXIO
10793  *		EIO
10794  *		EINVAL
10795  *		value returned by aphysio
10796  *
10797  *     Context: Kernel thread context.
10798  */
10799 /* ARGSUSED */
10800 static int
10801 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10802 {
10803 	struct sd_lun	*un = NULL;
10804 	struct uio	*uio = aio->aio_uio;
10805 	int		secmask;
10806 	int		err;
10807 
10808 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10809 		return (ENXIO);
10810 	}
10811 
10812 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10813 
10814 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10815 		mutex_enter(SD_MUTEX(un));
10816 		/*
10817 		 * Because the call to sd_ready_and_valid will issue I/O we
10818 		 * must wait here if either the device is suspended or
10819 		 * if it's power level is changing.
10820 		 */
10821 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10822 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10823 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10824 		}
10825 		un->un_ncmds_in_driver++;
10826 		mutex_exit(SD_MUTEX(un));
10827 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10828 			mutex_enter(SD_MUTEX(un));
10829 			un->un_ncmds_in_driver--;
10830 			ASSERT(un->un_ncmds_in_driver >= 0);
10831 			mutex_exit(SD_MUTEX(un));
10832 			return (EIO);
10833 		}
10834 		mutex_enter(SD_MUTEX(un));
10835 		un->un_ncmds_in_driver--;
10836 		ASSERT(un->un_ncmds_in_driver >= 0);
10837 		mutex_exit(SD_MUTEX(un));
10838 	}
10839 
10840 	/*
10841 	 * Read requests are restricted to multiples of the system block size.
10842 	 */
10843 	secmask = un->un_sys_blocksize - 1;
10844 
10845 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10846 		SD_ERROR(SD_LOG_READ_WRITE, un,
10847 		    "sdaread: file offset not modulo %d\n",
10848 		    un->un_sys_blocksize);
10849 		err = EINVAL;
10850 	} else if (uio->uio_iov->iov_len & (secmask)) {
10851 		SD_ERROR(SD_LOG_READ_WRITE, un,
10852 		    "sdaread: transfer length not modulo %d\n",
10853 		    un->un_sys_blocksize);
10854 		err = EINVAL;
10855 	} else {
10856 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10857 	}
10858 	return (err);
10859 }
10860 
10861 
10862 /*
10863  *    Function: sdawrite
10864  *
10865  * Description: Driver's awrite(9e) entry point function.
10866  *
10867  *   Arguments: dev   - device number
10868  *		aio   - structure pointer describing where data is stored
10869  *		cred_p  - user credential pointer
10870  *
10871  * Return Code: ENXIO
10872  *		EIO
10873  *		EINVAL
10874  *		value returned by aphysio
10875  *
10876  *     Context: Kernel thread context.
10877  */
10878 /* ARGSUSED */
10879 static int
10880 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10881 {
10882 	struct sd_lun	*un = NULL;
10883 	struct uio	*uio = aio->aio_uio;
10884 	int		secmask;
10885 	int		err;
10886 
10887 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10888 		return (ENXIO);
10889 	}
10890 
10891 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10892 
10893 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10894 		mutex_enter(SD_MUTEX(un));
10895 		/*
10896 		 * Because the call to sd_ready_and_valid will issue I/O we
10897 		 * must wait here if either the device is suspended or
10898 		 * if it's power level is changing.
10899 		 */
10900 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10901 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10902 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10903 		}
10904 		un->un_ncmds_in_driver++;
10905 		mutex_exit(SD_MUTEX(un));
10906 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10907 			mutex_enter(SD_MUTEX(un));
10908 			un->un_ncmds_in_driver--;
10909 			ASSERT(un->un_ncmds_in_driver >= 0);
10910 			mutex_exit(SD_MUTEX(un));
10911 			return (EIO);
10912 		}
10913 		mutex_enter(SD_MUTEX(un));
10914 		un->un_ncmds_in_driver--;
10915 		ASSERT(un->un_ncmds_in_driver >= 0);
10916 		mutex_exit(SD_MUTEX(un));
10917 	}
10918 
10919 	/*
10920 	 * Write requests are restricted to multiples of the system block size.
10921 	 */
10922 	secmask = un->un_sys_blocksize - 1;
10923 
10924 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10925 		SD_ERROR(SD_LOG_READ_WRITE, un,
10926 		    "sdawrite: file offset not modulo %d\n",
10927 		    un->un_sys_blocksize);
10928 		err = EINVAL;
10929 	} else if (uio->uio_iov->iov_len & (secmask)) {
10930 		SD_ERROR(SD_LOG_READ_WRITE, un,
10931 		    "sdawrite: transfer length not modulo %d\n",
10932 		    un->un_sys_blocksize);
10933 		err = EINVAL;
10934 	} else {
10935 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10936 	}
10937 	return (err);
10938 }
10939 
10940 
10941 
10942 
10943 
10944 /*
10945  * Driver IO processing follows the following sequence:
10946  *
10947  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10948  *         |                |                     ^
10949  *         v                v                     |
10950  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10951  *         |                |                     |                   |
10952  *         v                |                     |                   |
10953  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10954  *         |                |                     ^                   ^
10955  *         v                v                     |                   |
10956  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10957  *         |                |                     |                   |
10958  *     +---+                |                     +------------+      +-------+
10959  *     |                    |                                  |              |
10960  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10961  *     |                    v                                  |              |
10962  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10963  *     |                    |                                  ^              |
10964  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10965  *     |                    v                                  |              |
10966  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10967  *     |                    |                                  ^              |
10968  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10969  *     |                    v                                  |              |
10970  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10971  *     |                    |                                  ^              |
10972  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10973  *     |                    v                                  |              |
10974  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10975  *     |                    |                                  ^              |
10976  *     |                    |                                  |              |
10977  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10978  *                          |                           ^
10979  *                          v                           |
10980  *                   sd_core_iostart()                  |
10981  *                          |                           |
10982  *                          |                           +------>(*destroypkt)()
10983  *                          +-> sd_start_cmds() <-+     |           |
10984  *                          |                     |     |           v
10985  *                          |                     |     |  scsi_destroy_pkt(9F)
10986  *                          |                     |     |
10987  *                          +->(*initpkt)()       +- sdintr()
10988  *                          |  |                        |  |
10989  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10990  *                          |  +-> scsi_setup_cdb(9F)   |
10991  *                          |                           |
10992  *                          +--> scsi_transport(9F)     |
10993  *                                     |                |
10994  *                                     +----> SCSA ---->+
10995  *
10996  *
10997  * This code is based upon the following presumtions:
10998  *
10999  *   - iostart and iodone functions operate on buf(9S) structures. These
11000  *     functions perform the necessary operations on the buf(9S) and pass
11001  *     them along to the next function in the chain by using the macros
11002  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11003  *     (for iodone side functions).
11004  *
11005  *   - The iostart side functions may sleep. The iodone side functions
11006  *     are called under interrupt context and may NOT sleep. Therefore
11007  *     iodone side functions also may not call iostart side functions.
11008  *     (NOTE: iostart side functions should NOT sleep for memory, as
11009  *     this could result in deadlock.)
11010  *
11011  *   - An iostart side function may call its corresponding iodone side
11012  *     function directly (if necessary).
11013  *
11014  *   - In the event of an error, an iostart side function can return a buf(9S)
11015  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11016  *     b_error in the usual way of course).
11017  *
11018  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11019  *     requests to the iostart side functions.  The iostart side functions in
11020  *     this case would be called under the context of a taskq thread, so it's
11021  *     OK for them to block/sleep/spin in this case.
11022  *
11023  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11024  *     pass them along to the next function in the chain.  The corresponding
11025  *     iodone side functions must coalesce the "shadow" bufs and return
11026  *     the "original" buf to the next higher layer.
11027  *
11028  *   - The b_private field of the buf(9S) struct holds a pointer to
11029  *     an sd_xbuf struct, which contains information needed to
11030  *     construct the scsi_pkt for the command.
11031  *
11032  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11033  *     layer must acquire & release the SD_MUTEX(un) as needed.
11034  */
11035 
11036 
11037 /*
11038  * Create taskq for all targets in the system. This is created at
11039  * _init(9E) and destroyed at _fini(9E).
11040  *
11041  * Note: here we set the minalloc to a reasonably high number to ensure that
11042  * we will have an adequate supply of task entries available at interrupt time.
11043  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11044  * sd_create_taskq().  Since we do not want to sleep for allocations at
11045  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11046  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11047  * requests any one instant in time.
11048  */
11049 #define	SD_TASKQ_NUMTHREADS	8
11050 #define	SD_TASKQ_MINALLOC	256
11051 #define	SD_TASKQ_MAXALLOC	256
11052 
11053 static taskq_t	*sd_tq = NULL;
11054 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11055 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11056 
11057 /*
11058  * The following task queue is being created for the write part of
11059  * read-modify-write of non-512 block size devices.
11060  * Limit the number of threads to 1 for now. This number has been choosen
11061  * considering the fact that it applies only to dvd ram drives/MO drives
11062  * currently. Performance for which is not main criteria at this stage.
11063  * Note: It needs to be explored if we can use a single taskq in future
11064  */
11065 #define	SD_WMR_TASKQ_NUMTHREADS	1
11066 static taskq_t	*sd_wmr_tq = NULL;
11067 
11068 /*
11069  *    Function: sd_taskq_create
11070  *
11071  * Description: Create taskq thread(s) and preallocate task entries
11072  *
11073  * Return Code: Returns a pointer to the allocated taskq_t.
11074  *
11075  *     Context: Can sleep. Requires blockable context.
11076  *
11077  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11078  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11079  *		- taskq_create() will block for memory, also it will panic
11080  *		  if it cannot create the requested number of threads.
11081  *		- Currently taskq_create() creates threads that cannot be
11082  *		  swapped.
11083  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11084  *		  supply of taskq entries at interrupt time (ie, so that we
11085  *		  do not have to sleep for memory)
11086  */
11087 
11088 static void
11089 sd_taskq_create(void)
11090 {
11091 	char	taskq_name[TASKQ_NAMELEN];
11092 
11093 	ASSERT(sd_tq == NULL);
11094 	ASSERT(sd_wmr_tq == NULL);
11095 
11096 	(void) snprintf(taskq_name, sizeof (taskq_name),
11097 	    "%s_drv_taskq", sd_label);
11098 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11099 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11100 	    TASKQ_PREPOPULATE));
11101 
11102 	(void) snprintf(taskq_name, sizeof (taskq_name),
11103 	    "%s_rmw_taskq", sd_label);
11104 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11105 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11106 	    TASKQ_PREPOPULATE));
11107 }
11108 
11109 
11110 /*
11111  *    Function: sd_taskq_delete
11112  *
11113  * Description: Complementary cleanup routine for sd_taskq_create().
11114  *
11115  *     Context: Kernel thread context.
11116  */
11117 
11118 static void
11119 sd_taskq_delete(void)
11120 {
11121 	ASSERT(sd_tq != NULL);
11122 	ASSERT(sd_wmr_tq != NULL);
11123 	taskq_destroy(sd_tq);
11124 	taskq_destroy(sd_wmr_tq);
11125 	sd_tq = NULL;
11126 	sd_wmr_tq = NULL;
11127 }
11128 
11129 
11130 /*
11131  *    Function: sdstrategy
11132  *
11133  * Description: Driver's strategy (9E) entry point function.
11134  *
11135  *   Arguments: bp - pointer to buf(9S)
11136  *
11137  * Return Code: Always returns zero
11138  *
11139  *     Context: Kernel thread context.
11140  */
11141 
11142 static int
11143 sdstrategy(struct buf *bp)
11144 {
11145 	struct sd_lun *un;
11146 
11147 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11148 	if (un == NULL) {
11149 		bioerror(bp, EIO);
11150 		bp->b_resid = bp->b_bcount;
11151 		biodone(bp);
11152 		return (0);
11153 	}
11154 	/* As was done in the past, fail new cmds. if state is dumping. */
11155 	if (un->un_state == SD_STATE_DUMPING) {
11156 		bioerror(bp, ENXIO);
11157 		bp->b_resid = bp->b_bcount;
11158 		biodone(bp);
11159 		return (0);
11160 	}
11161 
11162 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11163 
11164 	/*
11165 	 * Commands may sneak in while we released the mutex in
11166 	 * DDI_SUSPEND, we should block new commands. However, old
11167 	 * commands that are still in the driver at this point should
11168 	 * still be allowed to drain.
11169 	 */
11170 	mutex_enter(SD_MUTEX(un));
11171 	/*
11172 	 * Must wait here if either the device is suspended or
11173 	 * if it's power level is changing.
11174 	 */
11175 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11176 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11177 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11178 	}
11179 
11180 	un->un_ncmds_in_driver++;
11181 
11182 	/*
11183 	 * atapi: Since we are running the CD for now in PIO mode we need to
11184 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11185 	 * the HBA's init_pkt routine.
11186 	 */
11187 	if (un->un_f_cfg_is_atapi == TRUE) {
11188 		mutex_exit(SD_MUTEX(un));
11189 		bp_mapin(bp);
11190 		mutex_enter(SD_MUTEX(un));
11191 	}
11192 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11193 	    un->un_ncmds_in_driver);
11194 
11195 	mutex_exit(SD_MUTEX(un));
11196 
11197 	/*
11198 	 * This will (eventually) allocate the sd_xbuf area and
11199 	 * call sd_xbuf_strategy().  We just want to return the
11200 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11201 	 * imized tail call which saves us a stack frame.
11202 	 */
11203 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11204 }
11205 
11206 
11207 /*
11208  *    Function: sd_xbuf_strategy
11209  *
11210  * Description: Function for initiating IO operations via the
11211  *		ddi_xbuf_qstrategy() mechanism.
11212  *
11213  *     Context: Kernel thread context.
11214  */
11215 
11216 static void
11217 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11218 {
11219 	struct sd_lun *un = arg;
11220 
11221 	ASSERT(bp != NULL);
11222 	ASSERT(xp != NULL);
11223 	ASSERT(un != NULL);
11224 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11225 
11226 	/*
11227 	 * Initialize the fields in the xbuf and save a pointer to the
11228 	 * xbuf in bp->b_private.
11229 	 */
11230 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11231 
11232 	/* Send the buf down the iostart chain */
11233 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11234 }
11235 
11236 
11237 /*
11238  *    Function: sd_xbuf_init
11239  *
11240  * Description: Prepare the given sd_xbuf struct for use.
11241  *
11242  *   Arguments: un - ptr to softstate
11243  *		bp - ptr to associated buf(9S)
11244  *		xp - ptr to associated sd_xbuf
11245  *		chain_type - IO chain type to use:
11246  *			SD_CHAIN_NULL
11247  *			SD_CHAIN_BUFIO
11248  *			SD_CHAIN_USCSI
11249  *			SD_CHAIN_DIRECT
11250  *			SD_CHAIN_DIRECT_PRIORITY
11251  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11252  *			initialization; may be NULL if none.
11253  *
11254  *     Context: Kernel thread context
11255  */
11256 
11257 static void
11258 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11259 	uchar_t chain_type, void *pktinfop)
11260 {
11261 	int index;
11262 
11263 	ASSERT(un != NULL);
11264 	ASSERT(bp != NULL);
11265 	ASSERT(xp != NULL);
11266 
11267 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11268 	    bp, chain_type);
11269 
11270 	xp->xb_un	= un;
11271 	xp->xb_pktp	= NULL;
11272 	xp->xb_pktinfo	= pktinfop;
11273 	xp->xb_private	= bp->b_private;
11274 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11275 
11276 	/*
11277 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11278 	 * upon the specified chain type to use.
11279 	 */
11280 	switch (chain_type) {
11281 	case SD_CHAIN_NULL:
11282 		/*
11283 		 * Fall thru to just use the values for the buf type, even
11284 		 * tho for the NULL chain these values will never be used.
11285 		 */
11286 		/* FALLTHRU */
11287 	case SD_CHAIN_BUFIO:
11288 		index = un->un_buf_chain_type;
11289 		break;
11290 	case SD_CHAIN_USCSI:
11291 		index = un->un_uscsi_chain_type;
11292 		break;
11293 	case SD_CHAIN_DIRECT:
11294 		index = un->un_direct_chain_type;
11295 		break;
11296 	case SD_CHAIN_DIRECT_PRIORITY:
11297 		index = un->un_priority_chain_type;
11298 		break;
11299 	default:
11300 		/* We're really broken if we ever get here... */
11301 		panic("sd_xbuf_init: illegal chain type!");
11302 		/*NOTREACHED*/
11303 	}
11304 
11305 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11306 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11307 
11308 	/*
11309 	 * It might be a bit easier to simply bzero the entire xbuf above,
11310 	 * but it turns out that since we init a fair number of members anyway,
11311 	 * we save a fair number cycles by doing explicit assignment of zero.
11312 	 */
11313 	xp->xb_pkt_flags	= 0;
11314 	xp->xb_dma_resid	= 0;
11315 	xp->xb_retry_count	= 0;
11316 	xp->xb_victim_retry_count = 0;
11317 	xp->xb_ua_retry_count	= 0;
11318 	xp->xb_sense_bp		= NULL;
11319 	xp->xb_sense_status	= 0;
11320 	xp->xb_sense_state	= 0;
11321 	xp->xb_sense_resid	= 0;
11322 
11323 	bp->b_private	= xp;
11324 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11325 	bp->b_resid	= 0;
11326 	bp->av_forw	= NULL;
11327 	bp->av_back	= NULL;
11328 	bioerror(bp, 0);
11329 
11330 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11331 }
11332 
11333 
11334 /*
11335  *    Function: sd_uscsi_strategy
11336  *
11337  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11338  *
11339  *   Arguments: bp - buf struct ptr
11340  *
11341  * Return Code: Always returns 0
11342  *
11343  *     Context: Kernel thread context
11344  */
11345 
11346 static int
11347 sd_uscsi_strategy(struct buf *bp)
11348 {
11349 	struct sd_lun		*un;
11350 	struct sd_uscsi_info	*uip;
11351 	struct sd_xbuf		*xp;
11352 	uchar_t			chain_type;
11353 
11354 	ASSERT(bp != NULL);
11355 
11356 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11357 	if (un == NULL) {
11358 		bioerror(bp, EIO);
11359 		bp->b_resid = bp->b_bcount;
11360 		biodone(bp);
11361 		return (0);
11362 	}
11363 
11364 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11365 
11366 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11367 
11368 	mutex_enter(SD_MUTEX(un));
11369 	/*
11370 	 * atapi: Since we are running the CD for now in PIO mode we need to
11371 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11372 	 * the HBA's init_pkt routine.
11373 	 */
11374 	if (un->un_f_cfg_is_atapi == TRUE) {
11375 		mutex_exit(SD_MUTEX(un));
11376 		bp_mapin(bp);
11377 		mutex_enter(SD_MUTEX(un));
11378 	}
11379 	un->un_ncmds_in_driver++;
11380 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11381 	    un->un_ncmds_in_driver);
11382 	mutex_exit(SD_MUTEX(un));
11383 
11384 	/*
11385 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11386 	 */
11387 	ASSERT(bp->b_private != NULL);
11388 	uip = (struct sd_uscsi_info *)bp->b_private;
11389 
11390 	switch (uip->ui_flags) {
11391 	case SD_PATH_DIRECT:
11392 		chain_type = SD_CHAIN_DIRECT;
11393 		break;
11394 	case SD_PATH_DIRECT_PRIORITY:
11395 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11396 		break;
11397 	default:
11398 		chain_type = SD_CHAIN_USCSI;
11399 		break;
11400 	}
11401 
11402 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
11403 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11404 
11405 	/* Use the index obtained within xbuf_init */
11406 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11407 
11408 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11409 
11410 	return (0);
11411 }
11412 
11413 
11414 /*
11415  * These routines perform raw i/o operations.
11416  */
11417 /*ARGSUSED*/
11418 static void
11419 sduscsimin(struct buf *bp)
11420 {
11421 	/*
11422 	 * do not break up because the CDB count would then
11423 	 * be incorrect and data underruns would result (incomplete
11424 	 * read/writes which would be retried and then failed, see
11425 	 * sdintr().
11426 	 */
11427 }
11428 
11429 
11430 
11431 /*
11432  *    Function: sd_send_scsi_cmd
11433  *
11434  * Description: Runs a USCSI command for user (when called thru sdioctl),
11435  *		or for the driver
11436  *
11437  *   Arguments: dev - the dev_t for the device
11438  *		incmd - ptr to a valid uscsi_cmd struct
11439  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
11440  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11441  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
11442  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11443  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11444  *			to use the USCSI "direct" chain and bypass the normal
11445  *			command waitq.
11446  *
11447  * Return Code: 0 -  successful completion of the given command
11448  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
11449  *		ENXIO  - soft state not found for specified dev
11450  *		EINVAL
11451  *		EFAULT - copyin/copyout error
11452  *		return code of biowait(9F) or physio(9F):
11453  *			EIO - IO error, caller may check incmd->uscsi_status
11454  *			ENXIO
11455  *			EACCES - reservation conflict
11456  *
11457  *     Context: Waits for command to complete. Can sleep.
11458  */
11459 
11460 static int
11461 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
11462 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
11463 	int path_flag)
11464 {
11465 	struct sd_uscsi_info	*uip;
11466 	struct uscsi_cmd	*uscmd;
11467 	struct sd_lun	*un;
11468 	struct buf	*bp;
11469 	int	rval;
11470 	int	flags;
11471 
11472 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11473 	if (un == NULL) {
11474 		return (ENXIO);
11475 	}
11476 
11477 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11478 
11479 #ifdef SDDEBUG
11480 	switch (dataspace) {
11481 	case UIO_USERSPACE:
11482 		SD_TRACE(SD_LOG_IO, un,
11483 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
11484 		break;
11485 	case UIO_SYSSPACE:
11486 		SD_TRACE(SD_LOG_IO, un,
11487 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
11488 		break;
11489 	default:
11490 		SD_TRACE(SD_LOG_IO, un,
11491 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
11492 		break;
11493 	}
11494 #endif
11495 
11496 	/*
11497 	 * Perform resets directly; no need to generate a command to do it.
11498 	 */
11499 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
11500 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
11501 		    RESET_ALL : RESET_TARGET;
11502 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
11503 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
11504 			/* Reset attempt was unsuccessful */
11505 			SD_TRACE(SD_LOG_IO, un,
11506 			    "sd_send_scsi_cmd: reset: failure\n");
11507 			return (EIO);
11508 		}
11509 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
11510 		return (0);
11511 	}
11512 
11513 	/* Perfunctory sanity check... */
11514 	if (incmd->uscsi_cdblen <= 0) {
11515 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11516 		    "invalid uscsi_cdblen, returning EINVAL\n");
11517 		return (EINVAL);
11518 	}
11519 
11520 	/*
11521 	 * In order to not worry about where the uscsi structure came from
11522 	 * (or where the cdb it points to came from) we're going to make
11523 	 * kmem_alloc'd copies of them here. This will also allow reference
11524 	 * to the data they contain long after this process has gone to
11525 	 * sleep and its kernel stack has been unmapped, etc.
11526 	 *
11527 	 * First get some memory for the uscsi_cmd struct and copy the
11528 	 * contents of the given uscsi_cmd struct into it.
11529 	 */
11530 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
11531 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
11532 
11533 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
11534 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
11535 
11536 	/*
11537 	 * Now get some space for the CDB, and copy the given CDB into
11538 	 * it. Use ddi_copyin() in case the data is in user space.
11539 	 */
11540 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
11541 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
11542 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
11543 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
11544 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
11545 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
11546 		return (EFAULT);
11547 	}
11548 
11549 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
11550 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
11551 
11552 	bp = getrbuf(KM_SLEEP);
11553 
11554 	/*
11555 	 * Allocate an sd_uscsi_info struct and fill it with the info
11556 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11557 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11558 	 * since we allocate the buf here in this function, we do not
11559 	 * need to preserve the prior contents of b_private.
11560 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11561 	 */
11562 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11563 	uip->ui_flags = path_flag;
11564 	uip->ui_cmdp  = uscmd;
11565 	bp->b_private = uip;
11566 
11567 	/*
11568 	 * Initialize Request Sense buffering, if requested.
11569 	 */
11570 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11571 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11572 		/*
11573 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
11574 		 * buffer, but we replace this with a kernel buffer that
11575 		 * we allocate to use with the sense data. The sense data
11576 		 * (if present) gets copied into this new buffer before the
11577 		 * command is completed.  Then we copy the sense data from
11578 		 * our allocated buf into the caller's buffer below. Note
11579 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
11580 		 * below to perform the copy back to the caller's buf.
11581 		 */
11582 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
11583 		if (rqbufspace == UIO_USERSPACE) {
11584 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
11585 			uscmd->uscsi_rqresid = SENSE_LENGTH;
11586 		} else {
11587 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
11588 			uscmd->uscsi_rqlen   = rlen;
11589 			uscmd->uscsi_rqresid = rlen;
11590 		}
11591 	} else {
11592 		uscmd->uscsi_rqbuf = NULL;
11593 		uscmd->uscsi_rqlen   = 0;
11594 		uscmd->uscsi_rqresid = 0;
11595 	}
11596 
11597 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
11598 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
11599 
11600 	if (un->un_f_is_fibre == FALSE) {
11601 		/*
11602 		 * Force asynchronous mode, if necessary.  Doing this here
11603 		 * has the unfortunate effect of running other queued
11604 		 * commands async also, but since the main purpose of this
11605 		 * capability is downloading new drive firmware, we can
11606 		 * probably live with it.
11607 		 */
11608 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
11609 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11610 				== 1) {
11611 				if (scsi_ifsetcap(SD_ADDRESS(un),
11612 					    "synchronous", 0, 1) == 1) {
11613 					SD_TRACE(SD_LOG_IO, un,
11614 					"sd_send_scsi_cmd: forced async ok\n");
11615 				} else {
11616 					SD_TRACE(SD_LOG_IO, un,
11617 					"sd_send_scsi_cmd:\
11618 					forced async failed\n");
11619 					rval = EINVAL;
11620 					goto done;
11621 				}
11622 			}
11623 		}
11624 
11625 		/*
11626 		 * Re-enable synchronous mode, if requested
11627 		 */
11628 		if (uscmd->uscsi_flags & USCSI_SYNC) {
11629 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11630 				== 0) {
11631 				int i = scsi_ifsetcap(SD_ADDRESS(un),
11632 						"synchronous", 1, 1);
11633 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11634 					"re-enabled sync %s\n",
11635 					(i == 1) ? "ok" : "failed");
11636 			}
11637 		}
11638 	}
11639 
11640 	/*
11641 	 * Commands sent with priority are intended for error recovery
11642 	 * situations, and do not have retries performed.
11643 	 */
11644 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11645 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11646 	}
11647 
11648 	/*
11649 	 * If we're going to do actual I/O, let physio do all the right things
11650 	 */
11651 	if (uscmd->uscsi_buflen != 0) {
11652 		struct iovec	aiov;
11653 		struct uio	auio;
11654 		struct uio	*uio = &auio;
11655 
11656 		bzero(&auio, sizeof (struct uio));
11657 		bzero(&aiov, sizeof (struct iovec));
11658 		aiov.iov_base = uscmd->uscsi_bufaddr;
11659 		aiov.iov_len  = uscmd->uscsi_buflen;
11660 		uio->uio_iov  = &aiov;
11661 
11662 		uio->uio_iovcnt  = 1;
11663 		uio->uio_resid   = uscmd->uscsi_buflen;
11664 		uio->uio_segflg  = dataspace;
11665 
11666 		/*
11667 		 * physio() will block here until the command completes....
11668 		 */
11669 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
11670 
11671 		rval = physio(sd_uscsi_strategy, bp, dev,
11672 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
11673 		    sduscsimin, uio);
11674 
11675 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11676 		    "returned from physio with 0x%x\n", rval);
11677 
11678 	} else {
11679 		/*
11680 		 * We have to mimic what physio would do here! Argh!
11681 		 */
11682 		bp->b_flags  = B_BUSY |
11683 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
11684 		bp->b_edev   = dev;
11685 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
11686 		bp->b_bcount = 0;
11687 		bp->b_blkno  = 0;
11688 
11689 		SD_TRACE(SD_LOG_IO, un,
11690 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
11691 
11692 		(void) sd_uscsi_strategy(bp);
11693 
11694 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
11695 
11696 		rval = biowait(bp);
11697 
11698 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11699 		    "returned from  biowait with 0x%x\n", rval);
11700 	}
11701 
11702 done:
11703 
11704 #ifdef SDDEBUG
11705 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11706 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11707 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11708 	if (uscmd->uscsi_bufaddr != NULL) {
11709 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11710 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11711 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11712 		if (dataspace == UIO_SYSSPACE) {
11713 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11714 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11715 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11716 		}
11717 	}
11718 #endif
11719 
11720 	/*
11721 	 * Get the status and residual to return to the caller.
11722 	 */
11723 	incmd->uscsi_status = uscmd->uscsi_status;
11724 	incmd->uscsi_resid  = uscmd->uscsi_resid;
11725 
11726 	/*
11727 	 * If the caller wants sense data, copy back whatever sense data
11728 	 * we may have gotten, and update the relevant rqsense info.
11729 	 */
11730 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11731 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11732 
11733 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
11734 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
11735 
11736 		/* Update the Request Sense status and resid */
11737 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
11738 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
11739 
11740 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11741 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
11742 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
11743 
11744 		/* Copy out the sense data for user processes */
11745 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
11746 			int flags =
11747 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
11748 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
11749 			    rqlen, flags) != 0) {
11750 				rval = EFAULT;
11751 			}
11752 			/*
11753 			 * Note: Can't touch incmd->uscsi_rqbuf so use
11754 			 * uscmd->uscsi_rqbuf instead. They're the same.
11755 			 */
11756 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11757 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
11758 			    incmd->uscsi_rqbuf, rqlen);
11759 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
11760 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
11761 		}
11762 	}
11763 
11764 	/*
11765 	 * Free allocated resources and return; mapout the buf in case it was
11766 	 * mapped in by a lower layer.
11767 	 */
11768 	bp_mapout(bp);
11769 	freerbuf(bp);
11770 	kmem_free(uip, sizeof (struct sd_uscsi_info));
11771 	if (uscmd->uscsi_rqbuf != NULL) {
11772 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
11773 	}
11774 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
11775 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
11776 
11777 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
11778 
11779 	return (rval);
11780 }
11781 
11782 
11783 /*
11784  *    Function: sd_buf_iodone
11785  *
11786  * Description: Frees the sd_xbuf & returns the buf to its originator.
11787  *
11788  *     Context: May be called from interrupt context.
11789  */
11790 /* ARGSUSED */
11791 static void
11792 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11793 {
11794 	struct sd_xbuf *xp;
11795 
11796 	ASSERT(un != NULL);
11797 	ASSERT(bp != NULL);
11798 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11799 
11800 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11801 
11802 	xp = SD_GET_XBUF(bp);
11803 	ASSERT(xp != NULL);
11804 
11805 	mutex_enter(SD_MUTEX(un));
11806 
11807 	/*
11808 	 * Grab time when the cmd completed.
11809 	 * This is used for determining if the system has been
11810 	 * idle long enough to make it idle to the PM framework.
11811 	 * This is for lowering the overhead, and therefore improving
11812 	 * performance per I/O operation.
11813 	 */
11814 	un->un_pm_idle_time = ddi_get_time();
11815 
11816 	un->un_ncmds_in_driver--;
11817 	ASSERT(un->un_ncmds_in_driver >= 0);
11818 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11819 	    un->un_ncmds_in_driver);
11820 
11821 	mutex_exit(SD_MUTEX(un));
11822 
11823 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
11824 	biodone(bp);				/* bp is gone after this */
11825 
11826 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11827 }
11828 
11829 
11830 /*
11831  *    Function: sd_uscsi_iodone
11832  *
11833  * Description: Frees the sd_xbuf & returns the buf to its originator.
11834  *
11835  *     Context: May be called from interrupt context.
11836  */
11837 /* ARGSUSED */
11838 static void
11839 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11840 {
11841 	struct sd_xbuf *xp;
11842 
11843 	ASSERT(un != NULL);
11844 	ASSERT(bp != NULL);
11845 
11846 	xp = SD_GET_XBUF(bp);
11847 	ASSERT(xp != NULL);
11848 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11849 
11850 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11851 
11852 	mutex_enter(SD_MUTEX(un));
11853 
11854 	/*
11855 	 * Grab time when the cmd completed.
11856 	 * This is used for determining if the system has been
11857 	 * idle long enough to make it idle to the PM framework.
11858 	 * This is for lowering the overhead, and therefore improving
11859 	 * performance per I/O operation.
11860 	 */
11861 	un->un_pm_idle_time = ddi_get_time();
11862 
11863 	un->un_ncmds_in_driver--;
11864 	ASSERT(un->un_ncmds_in_driver >= 0);
11865 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
11866 	    un->un_ncmds_in_driver);
11867 
11868 	mutex_exit(SD_MUTEX(un));
11869 
11870 	kmem_free(xp, sizeof (struct sd_xbuf));
11871 	biodone(bp);
11872 
11873 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
11874 }
11875 
11876 
11877 /*
11878  *    Function: sd_mapblockaddr_iostart
11879  *
11880  * Description: Verify request lies withing the partition limits for
11881  *		the indicated minor device.  Issue "overrun" buf if
11882  *		request would exceed partition range.  Converts
11883  *		partition-relative block address to absolute.
11884  *
11885  *     Context: Can sleep
11886  *
11887  *      Issues: This follows what the old code did, in terms of accessing
11888  *		some of the partition info in the unit struct without holding
11889  *		the mutext.  This is a general issue, if the partition info
11890  *		can be altered while IO is in progress... as soon as we send
11891  *		a buf, its partitioning can be invalid before it gets to the
11892  *		device.  Probably the right fix is to move partitioning out
11893  *		of the driver entirely.
11894  */
11895 
11896 static void
11897 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
11898 {
11899 	daddr_t	nblocks;	/* #blocks in the given partition */
11900 	daddr_t	blocknum;	/* Block number specified by the buf */
11901 	size_t	requested_nblocks;
11902 	size_t	available_nblocks;
11903 	int	partition;
11904 	diskaddr_t	partition_offset;
11905 	struct sd_xbuf *xp;
11906 
11907 
11908 	ASSERT(un != NULL);
11909 	ASSERT(bp != NULL);
11910 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11911 
11912 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11913 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
11914 
11915 	xp = SD_GET_XBUF(bp);
11916 	ASSERT(xp != NULL);
11917 
11918 	/*
11919 	 * If the geometry is not indicated as valid, attempt to access
11920 	 * the unit & verify the geometry/label. This can be the case for
11921 	 * removable-media devices, of if the device was opened in
11922 	 * NDELAY/NONBLOCK mode.
11923 	 */
11924 	if ((un->un_f_geometry_is_valid != TRUE) &&
11925 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
11926 		/*
11927 		 * For removable devices it is possible to start an I/O
11928 		 * without a media by opening the device in nodelay mode.
11929 		 * Also for writable CDs there can be many scenarios where
11930 		 * there is no geometry yet but volume manager is trying to
11931 		 * issue a read() just because it can see TOC on the CD. So
11932 		 * do not print a message for removables.
11933 		 */
11934 		if (!ISREMOVABLE(un)) {
11935 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11936 			    "i/o to invalid geometry\n");
11937 		}
11938 		bioerror(bp, EIO);
11939 		bp->b_resid = bp->b_bcount;
11940 		SD_BEGIN_IODONE(index, un, bp);
11941 		return;
11942 	}
11943 
11944 	partition = SDPART(bp->b_edev);
11945 
11946 	/* #blocks in partition */
11947 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
11948 
11949 	/* Use of a local variable potentially improves performance slightly */
11950 	partition_offset = un->un_offset[partition];
11951 
11952 	/*
11953 	 * blocknum is the starting block number of the request. At this
11954 	 * point it is still relative to the start of the minor device.
11955 	 */
11956 	blocknum = xp->xb_blkno;
11957 
11958 	/*
11959 	 * Legacy: If the starting block number is one past the last block
11960 	 * in the partition, do not set B_ERROR in the buf.
11961 	 */
11962 	if (blocknum == nblocks)  {
11963 		goto error_exit;
11964 	}
11965 
11966 	/*
11967 	 * Confirm that the first block of the request lies within the
11968 	 * partition limits. Also the requested number of bytes must be
11969 	 * a multiple of the system block size.
11970 	 */
11971 	if ((blocknum < 0) || (blocknum >= nblocks) ||
11972 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
11973 		bp->b_flags |= B_ERROR;
11974 		goto error_exit;
11975 	}
11976 
11977 	/*
11978 	 * If the requsted # blocks exceeds the available # blocks, that
11979 	 * is an overrun of the partition.
11980 	 */
11981 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
11982 	available_nblocks = (size_t)(nblocks - blocknum);
11983 	ASSERT(nblocks >= blocknum);
11984 
11985 	if (requested_nblocks > available_nblocks) {
11986 		/*
11987 		 * Allocate an "overrun" buf to allow the request to proceed
11988 		 * for the amount of space available in the partition. The
11989 		 * amount not transferred will be added into the b_resid
11990 		 * when the operation is complete. The overrun buf
11991 		 * replaces the original buf here, and the original buf
11992 		 * is saved inside the overrun buf, for later use.
11993 		 */
11994 		size_t resid = SD_SYSBLOCKS2BYTES(un,
11995 		    (offset_t)(requested_nblocks - available_nblocks));
11996 		size_t count = bp->b_bcount - resid;
11997 		/*
11998 		 * Note: count is an unsigned entity thus it'll NEVER
11999 		 * be less than 0 so ASSERT the original values are
12000 		 * correct.
12001 		 */
12002 		ASSERT(bp->b_bcount >= resid);
12003 
12004 		bp = sd_bioclone_alloc(bp, count, blocknum,
12005 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12006 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12007 		ASSERT(xp != NULL);
12008 	}
12009 
12010 	/* At this point there should be no residual for this buf. */
12011 	ASSERT(bp->b_resid == 0);
12012 
12013 	/* Convert the block number to an absolute address. */
12014 	xp->xb_blkno += partition_offset;
12015 
12016 	SD_NEXT_IOSTART(index, un, bp);
12017 
12018 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12019 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12020 
12021 	return;
12022 
12023 error_exit:
12024 	bp->b_resid = bp->b_bcount;
12025 	SD_BEGIN_IODONE(index, un, bp);
12026 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12027 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12028 }
12029 
12030 
12031 /*
12032  *    Function: sd_mapblockaddr_iodone
12033  *
12034  * Description: Completion-side processing for partition management.
12035  *
12036  *     Context: May be called under interrupt context
12037  */
12038 
12039 static void
12040 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12041 {
12042 	/* int	partition; */	/* Not used, see below. */
12043 	ASSERT(un != NULL);
12044 	ASSERT(bp != NULL);
12045 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12046 
12047 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12048 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12049 
12050 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12051 		/*
12052 		 * We have an "overrun" buf to deal with...
12053 		 */
12054 		struct sd_xbuf	*xp;
12055 		struct buf	*obp;	/* ptr to the original buf */
12056 
12057 		xp = SD_GET_XBUF(bp);
12058 		ASSERT(xp != NULL);
12059 
12060 		/* Retrieve the pointer to the original buf */
12061 		obp = (struct buf *)xp->xb_private;
12062 		ASSERT(obp != NULL);
12063 
12064 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12065 		bioerror(obp, bp->b_error);
12066 
12067 		sd_bioclone_free(bp);
12068 
12069 		/*
12070 		 * Get back the original buf.
12071 		 * Note that since the restoration of xb_blkno below
12072 		 * was removed, the sd_xbuf is not needed.
12073 		 */
12074 		bp = obp;
12075 		/*
12076 		 * xp = SD_GET_XBUF(bp);
12077 		 * ASSERT(xp != NULL);
12078 		 */
12079 	}
12080 
12081 	/*
12082 	 * Convert sd->xb_blkno back to a minor-device relative value.
12083 	 * Note: this has been commented out, as it is not needed in the
12084 	 * current implementation of the driver (ie, since this function
12085 	 * is at the top of the layering chains, so the info will be
12086 	 * discarded) and it is in the "hot" IO path.
12087 	 *
12088 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12089 	 * xp->xb_blkno -= un->un_offset[partition];
12090 	 */
12091 
12092 	SD_NEXT_IODONE(index, un, bp);
12093 
12094 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12095 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12096 }
12097 
12098 
12099 /*
12100  *    Function: sd_mapblocksize_iostart
12101  *
12102  * Description: Convert between system block size (un->un_sys_blocksize)
12103  *		and target block size (un->un_tgt_blocksize).
12104  *
12105  *     Context: Can sleep to allocate resources.
12106  *
12107  * Assumptions: A higher layer has already performed any partition validation,
12108  *		and converted the xp->xb_blkno to an absolute value relative
12109  *		to the start of the device.
12110  *
12111  *		It is also assumed that the higher layer has implemented
12112  *		an "overrun" mechanism for the case where the request would
12113  *		read/write beyond the end of a partition.  In this case we
12114  *		assume (and ASSERT) that bp->b_resid == 0.
12115  *
12116  *		Note: The implementation for this routine assumes the target
12117  *		block size remains constant between allocation and transport.
12118  */
12119 
12120 static void
12121 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12122 {
12123 	struct sd_mapblocksize_info	*bsp;
12124 	struct sd_xbuf			*xp;
12125 	offset_t first_byte;
12126 	daddr_t	start_block, end_block;
12127 	daddr_t	request_bytes;
12128 	ushort_t is_aligned = FALSE;
12129 
12130 	ASSERT(un != NULL);
12131 	ASSERT(bp != NULL);
12132 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12133 	ASSERT(bp->b_resid == 0);
12134 
12135 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12136 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12137 
12138 	/*
12139 	 * For a non-writable CD, a write request is an error
12140 	 */
12141 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12142 	    (un->un_f_mmc_writable_media == FALSE)) {
12143 		bioerror(bp, EIO);
12144 		bp->b_resid = bp->b_bcount;
12145 		SD_BEGIN_IODONE(index, un, bp);
12146 		return;
12147 	}
12148 
12149 	/*
12150 	 * We do not need a shadow buf if the device is using
12151 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12152 	 * In this case there is no layer-private data block allocated.
12153 	 */
12154 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12155 	    (bp->b_bcount == 0)) {
12156 		goto done;
12157 	}
12158 
12159 #if defined(__i386) || defined(__amd64)
12160 	/* We do not support non-block-aligned transfers for ROD devices */
12161 	ASSERT(!ISROD(un));
12162 #endif
12163 
12164 	xp = SD_GET_XBUF(bp);
12165 	ASSERT(xp != NULL);
12166 
12167 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12168 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12169 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12170 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12171 	    "request start block:0x%x\n", xp->xb_blkno);
12172 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12173 	    "request len:0x%x\n", bp->b_bcount);
12174 
12175 	/*
12176 	 * Allocate the layer-private data area for the mapblocksize layer.
12177 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12178 	 * struct to store the pointer to their layer-private data block, but
12179 	 * each layer also has the responsibility of restoring the prior
12180 	 * contents of xb_private before returning the buf/xbuf to the
12181 	 * higher layer that sent it.
12182 	 *
12183 	 * Here we save the prior contents of xp->xb_private into the
12184 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12185 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12186 	 * the layer-private area and returning the buf/xbuf to the layer
12187 	 * that sent it.
12188 	 *
12189 	 * Note that here we use kmem_zalloc for the allocation as there are
12190 	 * parts of the mapblocksize code that expect certain fields to be
12191 	 * zero unless explicitly set to a required value.
12192 	 */
12193 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12194 	bsp->mbs_oprivate = xp->xb_private;
12195 	xp->xb_private = bsp;
12196 
12197 	/*
12198 	 * This treats the data on the disk (target) as an array of bytes.
12199 	 * first_byte is the byte offset, from the beginning of the device,
12200 	 * to the location of the request. This is converted from a
12201 	 * un->un_sys_blocksize block address to a byte offset, and then back
12202 	 * to a block address based upon a un->un_tgt_blocksize block size.
12203 	 *
12204 	 * xp->xb_blkno should be absolute upon entry into this function,
12205 	 * but, but it is based upon partitions that use the "system"
12206 	 * block size. It must be adjusted to reflect the block size of
12207 	 * the target.
12208 	 *
12209 	 * Note that end_block is actually the block that follows the last
12210 	 * block of the request, but that's what is needed for the computation.
12211 	 */
12212 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12213 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12214 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12215 	    un->un_tgt_blocksize;
12216 
12217 	/* request_bytes is rounded up to a multiple of the target block size */
12218 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12219 
12220 	/*
12221 	 * See if the starting address of the request and the request
12222 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12223 	 * then we do not need to allocate a shadow buf to handle the request.
12224 	 */
12225 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12226 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12227 		is_aligned = TRUE;
12228 	}
12229 
12230 	if ((bp->b_flags & B_READ) == 0) {
12231 		/*
12232 		 * Lock the range for a write operation. An aligned request is
12233 		 * considered a simple write; otherwise the request must be a
12234 		 * read-modify-write.
12235 		 */
12236 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12237 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12238 	}
12239 
12240 	/*
12241 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12242 	 * where the READ command is generated for a read-modify-write. (The
12243 	 * write phase is deferred until after the read completes.)
12244 	 */
12245 	if (is_aligned == FALSE) {
12246 
12247 		struct sd_mapblocksize_info	*shadow_bsp;
12248 		struct sd_xbuf	*shadow_xp;
12249 		struct buf	*shadow_bp;
12250 
12251 		/*
12252 		 * Allocate the shadow buf and it associated xbuf. Note that
12253 		 * after this call the xb_blkno value in both the original
12254 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12255 		 * same: absolute relative to the start of the device, and
12256 		 * adjusted for the target block size. The b_blkno in the
12257 		 * shadow buf will also be set to this value. We should never
12258 		 * change b_blkno in the original bp however.
12259 		 *
12260 		 * Note also that the shadow buf will always need to be a
12261 		 * READ command, regardless of whether the incoming command
12262 		 * is a READ or a WRITE.
12263 		 */
12264 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12265 		    xp->xb_blkno,
12266 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12267 
12268 		shadow_xp = SD_GET_XBUF(shadow_bp);
12269 
12270 		/*
12271 		 * Allocate the layer-private data for the shadow buf.
12272 		 * (No need to preserve xb_private in the shadow xbuf.)
12273 		 */
12274 		shadow_xp->xb_private = shadow_bsp =
12275 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12276 
12277 		/*
12278 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12279 		 * to figure out where the start of the user data is (based upon
12280 		 * the system block size) in the data returned by the READ
12281 		 * command (which will be based upon the target blocksize). Note
12282 		 * that this is only really used if the request is unaligned.
12283 		 */
12284 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12285 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12286 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12287 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12288 
12289 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12290 
12291 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12292 
12293 		/* Transfer the wmap (if any) to the shadow buf */
12294 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12295 		bsp->mbs_wmp = NULL;
12296 
12297 		/*
12298 		 * The shadow buf goes on from here in place of the
12299 		 * original buf.
12300 		 */
12301 		shadow_bsp->mbs_orig_bp = bp;
12302 		bp = shadow_bp;
12303 	}
12304 
12305 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12306 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12307 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12308 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12309 	    request_bytes);
12310 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12311 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12312 
12313 done:
12314 	SD_NEXT_IOSTART(index, un, bp);
12315 
12316 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12317 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12318 }
12319 
12320 
12321 /*
12322  *    Function: sd_mapblocksize_iodone
12323  *
12324  * Description: Completion side processing for block-size mapping.
12325  *
12326  *     Context: May be called under interrupt context
12327  */
12328 
12329 static void
12330 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12331 {
12332 	struct sd_mapblocksize_info	*bsp;
12333 	struct sd_xbuf	*xp;
12334 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12335 	struct buf	*orig_bp;	/* ptr to the original buf */
12336 	offset_t	shadow_end;
12337 	offset_t	request_end;
12338 	offset_t	shadow_start;
12339 	ssize_t		copy_offset;
12340 	size_t		copy_length;
12341 	size_t		shortfall;
12342 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12343 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12344 
12345 	ASSERT(un != NULL);
12346 	ASSERT(bp != NULL);
12347 
12348 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12349 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12350 
12351 	/*
12352 	 * There is no shadow buf or layer-private data if the target is
12353 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12354 	 */
12355 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12356 	    (bp->b_bcount == 0)) {
12357 		goto exit;
12358 	}
12359 
12360 	xp = SD_GET_XBUF(bp);
12361 	ASSERT(xp != NULL);
12362 
12363 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12364 	bsp = xp->xb_private;
12365 
12366 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12367 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12368 
12369 	if (is_write) {
12370 		/*
12371 		 * For a WRITE request we must free up the block range that
12372 		 * we have locked up.  This holds regardless of whether this is
12373 		 * an aligned write request or a read-modify-write request.
12374 		 */
12375 		sd_range_unlock(un, bsp->mbs_wmp);
12376 		bsp->mbs_wmp = NULL;
12377 	}
12378 
12379 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12380 		/*
12381 		 * An aligned read or write command will have no shadow buf;
12382 		 * there is not much else to do with it.
12383 		 */
12384 		goto done;
12385 	}
12386 
12387 	orig_bp = bsp->mbs_orig_bp;
12388 	ASSERT(orig_bp != NULL);
12389 	orig_xp = SD_GET_XBUF(orig_bp);
12390 	ASSERT(orig_xp != NULL);
12391 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12392 
12393 	if (!is_write && has_wmap) {
12394 		/*
12395 		 * A READ with a wmap means this is the READ phase of a
12396 		 * read-modify-write. If an error occurred on the READ then
12397 		 * we do not proceed with the WRITE phase or copy any data.
12398 		 * Just release the write maps and return with an error.
12399 		 */
12400 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12401 			orig_bp->b_resid = orig_bp->b_bcount;
12402 			bioerror(orig_bp, bp->b_error);
12403 			sd_range_unlock(un, bsp->mbs_wmp);
12404 			goto freebuf_done;
12405 		}
12406 	}
12407 
12408 	/*
12409 	 * Here is where we set up to copy the data from the shadow buf
12410 	 * into the space associated with the original buf.
12411 	 *
12412 	 * To deal with the conversion between block sizes, these
12413 	 * computations treat the data as an array of bytes, with the
12414 	 * first byte (byte 0) corresponding to the first byte in the
12415 	 * first block on the disk.
12416 	 */
12417 
12418 	/*
12419 	 * shadow_start and shadow_len indicate the location and size of
12420 	 * the data returned with the shadow IO request.
12421 	 */
12422 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12423 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12424 
12425 	/*
12426 	 * copy_offset gives the offset (in bytes) from the start of the first
12427 	 * block of the READ request to the beginning of the data.  We retrieve
12428 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12429 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12430 	 * data to be copied (in bytes).
12431 	 */
12432 	copy_offset  = bsp->mbs_copy_offset;
12433 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12434 	copy_length  = orig_bp->b_bcount;
12435 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12436 
12437 	/*
12438 	 * Set up the resid and error fields of orig_bp as appropriate.
12439 	 */
12440 	if (shadow_end >= request_end) {
12441 		/* We got all the requested data; set resid to zero */
12442 		orig_bp->b_resid = 0;
12443 	} else {
12444 		/*
12445 		 * We failed to get enough data to fully satisfy the original
12446 		 * request. Just copy back whatever data we got and set
12447 		 * up the residual and error code as required.
12448 		 *
12449 		 * 'shortfall' is the amount by which the data received with the
12450 		 * shadow buf has "fallen short" of the requested amount.
12451 		 */
12452 		shortfall = (size_t)(request_end - shadow_end);
12453 
12454 		if (shortfall > orig_bp->b_bcount) {
12455 			/*
12456 			 * We did not get enough data to even partially
12457 			 * fulfill the original request.  The residual is
12458 			 * equal to the amount requested.
12459 			 */
12460 			orig_bp->b_resid = orig_bp->b_bcount;
12461 		} else {
12462 			/*
12463 			 * We did not get all the data that we requested
12464 			 * from the device, but we will try to return what
12465 			 * portion we did get.
12466 			 */
12467 			orig_bp->b_resid = shortfall;
12468 		}
12469 		ASSERT(copy_length >= orig_bp->b_resid);
12470 		copy_length  -= orig_bp->b_resid;
12471 	}
12472 
12473 	/* Propagate the error code from the shadow buf to the original buf */
12474 	bioerror(orig_bp, bp->b_error);
12475 
12476 	if (is_write) {
12477 		goto freebuf_done;	/* No data copying for a WRITE */
12478 	}
12479 
12480 	if (has_wmap) {
12481 		/*
12482 		 * This is a READ command from the READ phase of a
12483 		 * read-modify-write request. We have to copy the data given
12484 		 * by the user OVER the data returned by the READ command,
12485 		 * then convert the command from a READ to a WRITE and send
12486 		 * it back to the target.
12487 		 */
12488 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12489 		    copy_length);
12490 
12491 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12492 
12493 		/*
12494 		 * Dispatch the WRITE command to the taskq thread, which
12495 		 * will in turn send the command to the target. When the
12496 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12497 		 * will get called again as part of the iodone chain
12498 		 * processing for it. Note that we will still be dealing
12499 		 * with the shadow buf at that point.
12500 		 */
12501 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12502 		    KM_NOSLEEP) != 0) {
12503 			/*
12504 			 * Dispatch was successful so we are done. Return
12505 			 * without going any higher up the iodone chain. Do
12506 			 * not free up any layer-private data until after the
12507 			 * WRITE completes.
12508 			 */
12509 			return;
12510 		}
12511 
12512 		/*
12513 		 * Dispatch of the WRITE command failed; set up the error
12514 		 * condition and send this IO back up the iodone chain.
12515 		 */
12516 		bioerror(orig_bp, EIO);
12517 		orig_bp->b_resid = orig_bp->b_bcount;
12518 
12519 	} else {
12520 		/*
12521 		 * This is a regular READ request (ie, not a RMW). Copy the
12522 		 * data from the shadow buf into the original buf. The
12523 		 * copy_offset compensates for any "misalignment" between the
12524 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12525 		 * original buf (with its un->un_sys_blocksize blocks).
12526 		 */
12527 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12528 		    copy_length);
12529 	}
12530 
12531 freebuf_done:
12532 
12533 	/*
12534 	 * At this point we still have both the shadow buf AND the original
12535 	 * buf to deal with, as well as the layer-private data area in each.
12536 	 * Local variables are as follows:
12537 	 *
12538 	 * bp -- points to shadow buf
12539 	 * xp -- points to xbuf of shadow buf
12540 	 * bsp -- points to layer-private data area of shadow buf
12541 	 * orig_bp -- points to original buf
12542 	 *
12543 	 * First free the shadow buf and its associated xbuf, then free the
12544 	 * layer-private data area from the shadow buf. There is no need to
12545 	 * restore xb_private in the shadow xbuf.
12546 	 */
12547 	sd_shadow_buf_free(bp);
12548 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12549 
12550 	/*
12551 	 * Now update the local variables to point to the original buf, xbuf,
12552 	 * and layer-private area.
12553 	 */
12554 	bp = orig_bp;
12555 	xp = SD_GET_XBUF(bp);
12556 	ASSERT(xp != NULL);
12557 	ASSERT(xp == orig_xp);
12558 	bsp = xp->xb_private;
12559 	ASSERT(bsp != NULL);
12560 
12561 done:
12562 	/*
12563 	 * Restore xb_private to whatever it was set to by the next higher
12564 	 * layer in the chain, then free the layer-private data area.
12565 	 */
12566 	xp->xb_private = bsp->mbs_oprivate;
12567 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12568 
12569 exit:
12570 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12571 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12572 
12573 	SD_NEXT_IODONE(index, un, bp);
12574 }
12575 
12576 
12577 /*
12578  *    Function: sd_checksum_iostart
12579  *
12580  * Description: A stub function for a layer that's currently not used.
12581  *		For now just a placeholder.
12582  *
12583  *     Context: Kernel thread context
12584  */
12585 
12586 static void
12587 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12588 {
12589 	ASSERT(un != NULL);
12590 	ASSERT(bp != NULL);
12591 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12592 	SD_NEXT_IOSTART(index, un, bp);
12593 }
12594 
12595 
12596 /*
12597  *    Function: sd_checksum_iodone
12598  *
12599  * Description: A stub function for a layer that's currently not used.
12600  *		For now just a placeholder.
12601  *
12602  *     Context: May be called under interrupt context
12603  */
12604 
12605 static void
12606 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12607 {
12608 	ASSERT(un != NULL);
12609 	ASSERT(bp != NULL);
12610 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12611 	SD_NEXT_IODONE(index, un, bp);
12612 }
12613 
12614 
12615 /*
12616  *    Function: sd_checksum_uscsi_iostart
12617  *
12618  * Description: A stub function for a layer that's currently not used.
12619  *		For now just a placeholder.
12620  *
12621  *     Context: Kernel thread context
12622  */
12623 
12624 static void
12625 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12626 {
12627 	ASSERT(un != NULL);
12628 	ASSERT(bp != NULL);
12629 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12630 	SD_NEXT_IOSTART(index, un, bp);
12631 }
12632 
12633 
12634 /*
12635  *    Function: sd_checksum_uscsi_iodone
12636  *
12637  * Description: A stub function for a layer that's currently not used.
12638  *		For now just a placeholder.
12639  *
12640  *     Context: May be called under interrupt context
12641  */
12642 
12643 static void
12644 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12645 {
12646 	ASSERT(un != NULL);
12647 	ASSERT(bp != NULL);
12648 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12649 	SD_NEXT_IODONE(index, un, bp);
12650 }
12651 
12652 
12653 /*
12654  *    Function: sd_pm_iostart
12655  *
12656  * Description: iostart-side routine for Power mangement.
12657  *
12658  *     Context: Kernel thread context
12659  */
12660 
12661 static void
12662 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12663 {
12664 	ASSERT(un != NULL);
12665 	ASSERT(bp != NULL);
12666 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12667 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12668 
12669 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12670 
12671 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12672 		/*
12673 		 * Set up to return the failed buf back up the 'iodone'
12674 		 * side of the calling chain.
12675 		 */
12676 		bioerror(bp, EIO);
12677 		bp->b_resid = bp->b_bcount;
12678 
12679 		SD_BEGIN_IODONE(index, un, bp);
12680 
12681 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12682 		return;
12683 	}
12684 
12685 	SD_NEXT_IOSTART(index, un, bp);
12686 
12687 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12688 }
12689 
12690 
12691 /*
12692  *    Function: sd_pm_iodone
12693  *
12694  * Description: iodone-side routine for power mangement.
12695  *
12696  *     Context: may be called from interrupt context
12697  */
12698 
12699 static void
12700 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12701 {
12702 	ASSERT(un != NULL);
12703 	ASSERT(bp != NULL);
12704 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12705 
12706 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12707 
12708 	/*
12709 	 * After attach the following flag is only read, so don't
12710 	 * take the penalty of acquiring a mutex for it.
12711 	 */
12712 	if (un->un_f_pm_is_enabled == TRUE) {
12713 		sd_pm_exit(un);
12714 	}
12715 
12716 	SD_NEXT_IODONE(index, un, bp);
12717 
12718 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12719 }
12720 
12721 
12722 /*
12723  *    Function: sd_core_iostart
12724  *
12725  * Description: Primary driver function for enqueuing buf(9S) structs from
12726  *		the system and initiating IO to the target device
12727  *
12728  *     Context: Kernel thread context. Can sleep.
12729  *
12730  * Assumptions:  - The given xp->xb_blkno is absolute
12731  *		   (ie, relative to the start of the device).
12732  *		 - The IO is to be done using the native blocksize of
12733  *		   the device, as specified in un->un_tgt_blocksize.
12734  */
12735 /* ARGSUSED */
12736 static void
12737 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12738 {
12739 	struct sd_xbuf *xp;
12740 
12741 	ASSERT(un != NULL);
12742 	ASSERT(bp != NULL);
12743 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12744 	ASSERT(bp->b_resid == 0);
12745 
12746 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12747 
12748 	xp = SD_GET_XBUF(bp);
12749 	ASSERT(xp != NULL);
12750 
12751 	mutex_enter(SD_MUTEX(un));
12752 
12753 	/*
12754 	 * If we are currently in the failfast state, fail any new IO
12755 	 * that has B_FAILFAST set, then return.
12756 	 */
12757 	if ((bp->b_flags & B_FAILFAST) &&
12758 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12759 		mutex_exit(SD_MUTEX(un));
12760 		bioerror(bp, EIO);
12761 		bp->b_resid = bp->b_bcount;
12762 		SD_BEGIN_IODONE(index, un, bp);
12763 		return;
12764 	}
12765 
12766 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12767 		/*
12768 		 * Priority command -- transport it immediately.
12769 		 *
12770 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12771 		 * because all direct priority commands should be associated
12772 		 * with error recovery actions which we don't want to retry.
12773 		 */
12774 		sd_start_cmds(un, bp);
12775 	} else {
12776 		/*
12777 		 * Normal command -- add it to the wait queue, then start
12778 		 * transporting commands from the wait queue.
12779 		 */
12780 		sd_add_buf_to_waitq(un, bp);
12781 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12782 		sd_start_cmds(un, NULL);
12783 	}
12784 
12785 	mutex_exit(SD_MUTEX(un));
12786 
12787 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12788 }
12789 
12790 
12791 /*
12792  *    Function: sd_init_cdb_limits
12793  *
12794  * Description: This is to handle scsi_pkt initialization differences
12795  *		between the driver platforms.
12796  *
12797  *		Legacy behaviors:
12798  *
12799  *		If the block number or the sector count exceeds the
12800  *		capabilities of a Group 0 command, shift over to a
12801  *		Group 1 command. We don't blindly use Group 1
12802  *		commands because a) some drives (CDC Wren IVs) get a
12803  *		bit confused, and b) there is probably a fair amount
12804  *		of speed difference for a target to receive and decode
12805  *		a 10 byte command instead of a 6 byte command.
12806  *
12807  *		The xfer time difference of 6 vs 10 byte CDBs is
12808  *		still significant so this code is still worthwhile.
12809  *		10 byte CDBs are very inefficient with the fas HBA driver
12810  *		and older disks. Each CDB byte took 1 usec with some
12811  *		popular disks.
12812  *
12813  *     Context: Must be called at attach time
12814  */
12815 
12816 static void
12817 sd_init_cdb_limits(struct sd_lun *un)
12818 {
12819 	/*
12820 	 * Use CDB_GROUP1 commands for most devices except for
12821 	 * parallel SCSI fixed drives in which case we get better
12822 	 * performance using CDB_GROUP0 commands (where applicable).
12823 	 */
12824 	un->un_mincdb = SD_CDB_GROUP1;
12825 #if !defined(__fibre)
12826 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12827 	    !ISREMOVABLE(un)) {
12828 		un->un_mincdb = SD_CDB_GROUP0;
12829 	}
12830 #endif
12831 
12832 	/*
12833 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12834 	 * commands for fixed disks unless we are building for a 32 bit
12835 	 * kernel.
12836 	 */
12837 #ifdef _LP64
12838 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP4;
12839 #else
12840 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP1;
12841 #endif
12842 
12843 	/*
12844 	 * x86 systems require the PKT_DMA_PARTIAL flag
12845 	 */
12846 #if defined(__x86)
12847 	un->un_pkt_flags = PKT_DMA_PARTIAL;
12848 #else
12849 	un->un_pkt_flags = 0;
12850 #endif
12851 
12852 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
12853 	    ? sizeof (struct scsi_arq_status) : 1);
12854 	un->un_cmd_timeout = (ushort_t)sd_io_time;
12855 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
12856 }
12857 
12858 
12859 /*
12860  *    Function: sd_initpkt_for_buf
12861  *
12862  * Description: Allocate and initialize for transport a scsi_pkt struct,
12863  *		based upon the info specified in the given buf struct.
12864  *
12865  *		Assumes the xb_blkno in the request is absolute (ie,
12866  *		relative to the start of the device (NOT partition!).
12867  *		Also assumes that the request is using the native block
12868  *		size of the device (as returned by the READ CAPACITY
12869  *		command).
12870  *
12871  * Return Code: SD_PKT_ALLOC_SUCCESS
12872  *		SD_PKT_ALLOC_FAILURE
12873  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12874  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12875  *
12876  *     Context: Kernel thread and may be called from software interrupt context
12877  *		as part of a sdrunout callback. This function may not block or
12878  *		call routines that block
12879  */
12880 
12881 static int
12882 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
12883 {
12884 	struct sd_xbuf	*xp;
12885 	struct scsi_pkt *pktp = NULL;
12886 	struct sd_lun	*un;
12887 	size_t		blockcount;
12888 	daddr_t		startblock;
12889 	int		rval;
12890 	int		cmd_flags;
12891 
12892 	ASSERT(bp != NULL);
12893 	ASSERT(pktpp != NULL);
12894 	xp = SD_GET_XBUF(bp);
12895 	ASSERT(xp != NULL);
12896 	un = SD_GET_UN(bp);
12897 	ASSERT(un != NULL);
12898 	ASSERT(mutex_owned(SD_MUTEX(un)));
12899 	ASSERT(bp->b_resid == 0);
12900 
12901 	SD_TRACE(SD_LOG_IO_CORE, un,
12902 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
12903 
12904 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12905 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
12906 		/*
12907 		 * Already have a scsi_pkt -- just need DMA resources.
12908 		 * We must recompute the CDB in case the mapping returns
12909 		 * a nonzero pkt_resid.
12910 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
12911 		 * that is being retried, the unmap/remap of the DMA resouces
12912 		 * will result in the entire transfer starting over again
12913 		 * from the very first block.
12914 		 */
12915 		ASSERT(xp->xb_pktp != NULL);
12916 		pktp = xp->xb_pktp;
12917 	} else {
12918 		pktp = NULL;
12919 	}
12920 #endif /* __i386 || __amd64 */
12921 
12922 	startblock = xp->xb_blkno;	/* Absolute block num. */
12923 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12924 
12925 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12926 
12927 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
12928 
12929 #else
12930 
12931 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
12932 
12933 #endif
12934 
12935 	/*
12936 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
12937 	 * call scsi_init_pkt, and build the CDB.
12938 	 */
12939 	rval = sd_setup_rw_pkt(un, &pktp, bp,
12940 	    cmd_flags, sdrunout, (caddr_t)un,
12941 	    startblock, blockcount);
12942 
12943 	if (rval == 0) {
12944 		/*
12945 		 * Success.
12946 		 *
12947 		 * If partial DMA is being used and required for this transfer.
12948 		 * set it up here.
12949 		 */
12950 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
12951 		    (pktp->pkt_resid != 0)) {
12952 
12953 			/*
12954 			 * Save the CDB length and pkt_resid for the
12955 			 * next xfer
12956 			 */
12957 			xp->xb_dma_resid = pktp->pkt_resid;
12958 
12959 			/* rezero resid */
12960 			pktp->pkt_resid = 0;
12961 
12962 		} else {
12963 			xp->xb_dma_resid = 0;
12964 		}
12965 
12966 		pktp->pkt_flags = un->un_tagflags;
12967 		pktp->pkt_time  = un->un_cmd_timeout;
12968 		pktp->pkt_comp  = sdintr;
12969 
12970 		pktp->pkt_private = bp;
12971 		*pktpp = pktp;
12972 
12973 		SD_TRACE(SD_LOG_IO_CORE, un,
12974 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
12975 
12976 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12977 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
12978 #endif
12979 
12980 		return (SD_PKT_ALLOC_SUCCESS);
12981 
12982 	}
12983 
12984 	/*
12985 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
12986 	 * from sd_setup_rw_pkt.
12987 	 */
12988 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
12989 
12990 	if (rval == SD_PKT_ALLOC_FAILURE) {
12991 		*pktpp = NULL;
12992 		/*
12993 		 * Set the driver state to RWAIT to indicate the driver
12994 		 * is waiting on resource allocations. The driver will not
12995 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12996 		 */
12997 		New_state(un, SD_STATE_RWAIT);
12998 
12999 		SD_ERROR(SD_LOG_IO_CORE, un,
13000 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13001 
13002 		if ((bp->b_flags & B_ERROR) != 0) {
13003 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13004 		}
13005 		return (SD_PKT_ALLOC_FAILURE);
13006 	} else {
13007 		/*
13008 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13009 		 *
13010 		 * This should never happen.  Maybe someone messed with the
13011 		 * kernel's minphys?
13012 		 */
13013 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13014 		    "Request rejected: too large for CDB: "
13015 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13016 		SD_ERROR(SD_LOG_IO_CORE, un,
13017 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13018 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13019 
13020 	}
13021 }
13022 
13023 
13024 /*
13025  *    Function: sd_destroypkt_for_buf
13026  *
13027  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13028  *
13029  *     Context: Kernel thread or interrupt context
13030  */
13031 
13032 static void
13033 sd_destroypkt_for_buf(struct buf *bp)
13034 {
13035 	ASSERT(bp != NULL);
13036 	ASSERT(SD_GET_UN(bp) != NULL);
13037 
13038 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13039 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13040 
13041 	ASSERT(SD_GET_PKTP(bp) != NULL);
13042 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13043 
13044 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13045 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13046 }
13047 
13048 /*
13049  *    Function: sd_setup_rw_pkt
13050  *
13051  * Description: Determines appropriate CDB group for the requested LBA
13052  *		and transfer length, calls scsi_init_pkt, and builds
13053  *		the CDB.  Do not use for partial DMA transfers except
13054  *		for the initial transfer since the CDB size must
13055  *		remain constant.
13056  *
13057  *     Context: Kernel thread and may be called from software interrupt
13058  *		context as part of a sdrunout callback. This function may not
13059  *		block or call routines that block
13060  */
13061 
13062 
13063 int
13064 sd_setup_rw_pkt(struct sd_lun *un,
13065     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13066     int (*callback)(caddr_t), caddr_t callback_arg,
13067     diskaddr_t lba, uint32_t blockcount)
13068 {
13069 	struct scsi_pkt *return_pktp;
13070 	union scsi_cdb *cdbp;
13071 	struct sd_cdbinfo *cp = NULL;
13072 	int i;
13073 
13074 	/*
13075 	 * See which size CDB to use, based upon the request.
13076 	 */
13077 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13078 
13079 		/*
13080 		 * Check lba and block count against sd_cdbtab limits.
13081 		 * In the partial DMA case, we have to use the same size
13082 		 * CDB for all the transfers.  Check lba + blockcount
13083 		 * against the max LBA so we know that segment of the
13084 		 * transfer can use the CDB we select.
13085 		 */
13086 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13087 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13088 
13089 			/*
13090 			 * The command will fit into the CDB type
13091 			 * specified by sd_cdbtab[i].
13092 			 */
13093 			cp = sd_cdbtab + i;
13094 
13095 			/*
13096 			 * Call scsi_init_pkt so we can fill in the
13097 			 * CDB.
13098 			 */
13099 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13100 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13101 			    flags, callback, callback_arg);
13102 
13103 			if (return_pktp != NULL) {
13104 
13105 				/*
13106 				 * Return new value of pkt
13107 				 */
13108 				*pktpp = return_pktp;
13109 
13110 				/*
13111 				 * To be safe, zero the CDB insuring there is
13112 				 * no leftover data from a previous command.
13113 				 */
13114 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13115 
13116 				/*
13117 				 * Handle partial DMA mapping
13118 				 */
13119 				if (return_pktp->pkt_resid != 0) {
13120 
13121 					/*
13122 					 * Not going to xfer as many blocks as
13123 					 * originally expected
13124 					 */
13125 					blockcount -=
13126 					    SD_BYTES2TGTBLOCKS(un,
13127 						return_pktp->pkt_resid);
13128 				}
13129 
13130 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13131 
13132 				/*
13133 				 * Set command byte based on the CDB
13134 				 * type we matched.
13135 				 */
13136 				cdbp->scc_cmd = cp->sc_grpmask |
13137 				    ((bp->b_flags & B_READ) ?
13138 					SCMD_READ : SCMD_WRITE);
13139 
13140 				SD_FILL_SCSI1_LUN(un, return_pktp);
13141 
13142 				/*
13143 				 * Fill in LBA and length
13144 				 */
13145 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13146 				    (cp->sc_grpcode == CDB_GROUP4) ||
13147 				    (cp->sc_grpcode == CDB_GROUP0) ||
13148 				    (cp->sc_grpcode == CDB_GROUP5));
13149 
13150 				if (cp->sc_grpcode == CDB_GROUP1) {
13151 					FORMG1ADDR(cdbp, lba);
13152 					FORMG1COUNT(cdbp, blockcount);
13153 					return (0);
13154 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13155 					FORMG4LONGADDR(cdbp, lba);
13156 					FORMG4COUNT(cdbp, blockcount);
13157 					return (0);
13158 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13159 					FORMG0ADDR(cdbp, lba);
13160 					FORMG0COUNT(cdbp, blockcount);
13161 					return (0);
13162 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13163 					FORMG5ADDR(cdbp, lba);
13164 					FORMG5COUNT(cdbp, blockcount);
13165 					return (0);
13166 				}
13167 
13168 				/*
13169 				 * It should be impossible to not match one
13170 				 * of the CDB types above, so we should never
13171 				 * reach this point.  Set the CDB command byte
13172 				 * to test-unit-ready to avoid writing
13173 				 * to somewhere we don't intend.
13174 				 */
13175 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13176 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13177 			} else {
13178 				/*
13179 				 * Couldn't get scsi_pkt
13180 				 */
13181 				return (SD_PKT_ALLOC_FAILURE);
13182 			}
13183 		}
13184 	}
13185 
13186 	/*
13187 	 * None of the available CDB types were suitable.  This really
13188 	 * should never happen:  on a 64 bit system we support
13189 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13190 	 * and on a 32 bit system we will refuse to bind to a device
13191 	 * larger than 2TB so addresses will never be larger than 32 bits.
13192 	 */
13193 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13194 }
13195 
13196 /*
13197  *    Function: sd_setup_next_rw_pkt
13198  *
13199  * Description: Setup packet for partial DMA transfers, except for the
13200  * 		initial transfer.  sd_setup_rw_pkt should be used for
13201  *		the initial transfer.
13202  *
13203  *     Context: Kernel thread and may be called from interrupt context.
13204  */
13205 
13206 int
13207 sd_setup_next_rw_pkt(struct sd_lun *un,
13208     struct scsi_pkt *pktp, struct buf *bp,
13209     diskaddr_t lba, uint32_t blockcount)
13210 {
13211 	uchar_t com;
13212 	union scsi_cdb *cdbp;
13213 	uchar_t cdb_group_id;
13214 
13215 	ASSERT(pktp != NULL);
13216 	ASSERT(pktp->pkt_cdbp != NULL);
13217 
13218 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13219 	com = cdbp->scc_cmd;
13220 	cdb_group_id = CDB_GROUPID(com);
13221 
13222 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13223 	    (cdb_group_id == CDB_GROUPID_1) ||
13224 	    (cdb_group_id == CDB_GROUPID_4) ||
13225 	    (cdb_group_id == CDB_GROUPID_5));
13226 
13227 	/*
13228 	 * Move pkt to the next portion of the xfer.
13229 	 * func is NULL_FUNC so we do not have to release
13230 	 * the disk mutex here.
13231 	 */
13232 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13233 	    NULL_FUNC, NULL) == pktp) {
13234 		/* Success.  Handle partial DMA */
13235 		if (pktp->pkt_resid != 0) {
13236 			blockcount -=
13237 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13238 		}
13239 
13240 		cdbp->scc_cmd = com;
13241 		SD_FILL_SCSI1_LUN(un, pktp);
13242 		if (cdb_group_id == CDB_GROUPID_1) {
13243 			FORMG1ADDR(cdbp, lba);
13244 			FORMG1COUNT(cdbp, blockcount);
13245 			return (0);
13246 		} else if (cdb_group_id == CDB_GROUPID_4) {
13247 			FORMG4LONGADDR(cdbp, lba);
13248 			FORMG4COUNT(cdbp, blockcount);
13249 			return (0);
13250 		} else if (cdb_group_id == CDB_GROUPID_0) {
13251 			FORMG0ADDR(cdbp, lba);
13252 			FORMG0COUNT(cdbp, blockcount);
13253 			return (0);
13254 		} else if (cdb_group_id == CDB_GROUPID_5) {
13255 			FORMG5ADDR(cdbp, lba);
13256 			FORMG5COUNT(cdbp, blockcount);
13257 			return (0);
13258 		}
13259 
13260 		/* Unreachable */
13261 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13262 	}
13263 
13264 	/*
13265 	 * Error setting up next portion of cmd transfer.
13266 	 * Something is definitely very wrong and this
13267 	 * should not happen.
13268 	 */
13269 	return (SD_PKT_ALLOC_FAILURE);
13270 }
13271 
13272 /*
13273  *    Function: sd_initpkt_for_uscsi
13274  *
13275  * Description: Allocate and initialize for transport a scsi_pkt struct,
13276  *		based upon the info specified in the given uscsi_cmd struct.
13277  *
13278  * Return Code: SD_PKT_ALLOC_SUCCESS
13279  *		SD_PKT_ALLOC_FAILURE
13280  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13281  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13282  *
13283  *     Context: Kernel thread and may be called from software interrupt context
13284  *		as part of a sdrunout callback. This function may not block or
13285  *		call routines that block
13286  */
13287 
13288 static int
13289 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13290 {
13291 	struct uscsi_cmd *uscmd;
13292 	struct sd_xbuf	*xp;
13293 	struct scsi_pkt	*pktp;
13294 	struct sd_lun	*un;
13295 	uint32_t	flags = 0;
13296 
13297 	ASSERT(bp != NULL);
13298 	ASSERT(pktpp != NULL);
13299 	xp = SD_GET_XBUF(bp);
13300 	ASSERT(xp != NULL);
13301 	un = SD_GET_UN(bp);
13302 	ASSERT(un != NULL);
13303 	ASSERT(mutex_owned(SD_MUTEX(un)));
13304 
13305 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13306 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13307 	ASSERT(uscmd != NULL);
13308 
13309 	SD_TRACE(SD_LOG_IO_CORE, un,
13310 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13311 
13312 	/* Allocate the scsi_pkt for the command. */
13313 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13314 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13315 	    sizeof (struct scsi_arq_status), 0, un->un_pkt_flags,
13316 	    sdrunout, (caddr_t)un);
13317 
13318 	if (pktp == NULL) {
13319 		*pktpp = NULL;
13320 		/*
13321 		 * Set the driver state to RWAIT to indicate the driver
13322 		 * is waiting on resource allocations. The driver will not
13323 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13324 		 */
13325 		New_state(un, SD_STATE_RWAIT);
13326 
13327 		SD_ERROR(SD_LOG_IO_CORE, un,
13328 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13329 
13330 		if ((bp->b_flags & B_ERROR) != 0) {
13331 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13332 		}
13333 		return (SD_PKT_ALLOC_FAILURE);
13334 	}
13335 
13336 	/*
13337 	 * We do not do DMA breakup for USCSI commands, so return failure
13338 	 * here if all the needed DMA resources were not allocated.
13339 	 */
13340 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13341 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13342 		scsi_destroy_pkt(pktp);
13343 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13344 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13345 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13346 	}
13347 
13348 	/* Init the cdb from the given uscsi struct */
13349 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13350 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13351 
13352 	SD_FILL_SCSI1_LUN(un, pktp);
13353 
13354 	/*
13355 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13356 	 * for listing of the supported flags.
13357 	 */
13358 
13359 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13360 		flags |= FLAG_SILENT;
13361 	}
13362 
13363 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13364 		flags |= FLAG_DIAGNOSE;
13365 	}
13366 
13367 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13368 		flags |= FLAG_ISOLATE;
13369 	}
13370 
13371 	if (un->un_f_is_fibre == FALSE) {
13372 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13373 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13374 		}
13375 	}
13376 
13377 	/*
13378 	 * Set the pkt flags here so we save time later.
13379 	 * Note: These flags are NOT in the uscsi man page!!!
13380 	 */
13381 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13382 		flags |= FLAG_HEAD;
13383 	}
13384 
13385 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13386 		flags |= FLAG_NOINTR;
13387 	}
13388 
13389 	/*
13390 	 * For tagged queueing, things get a bit complicated.
13391 	 * Check first for head of queue and last for ordered queue.
13392 	 * If neither head nor order, use the default driver tag flags.
13393 	 */
13394 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13395 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13396 			flags |= FLAG_HTAG;
13397 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13398 			flags |= FLAG_OTAG;
13399 		} else {
13400 			flags |= un->un_tagflags & FLAG_TAGMASK;
13401 		}
13402 	}
13403 
13404 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13405 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13406 	}
13407 
13408 	pktp->pkt_flags = flags;
13409 
13410 	/* Copy the caller's CDB into the pkt... */
13411 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13412 
13413 	if (uscmd->uscsi_timeout == 0) {
13414 		pktp->pkt_time = un->un_uscsi_timeout;
13415 	} else {
13416 		pktp->pkt_time = uscmd->uscsi_timeout;
13417 	}
13418 
13419 	/* need it later to identify USCSI request in sdintr */
13420 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13421 
13422 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13423 
13424 	pktp->pkt_private = bp;
13425 	pktp->pkt_comp = sdintr;
13426 	*pktpp = pktp;
13427 
13428 	SD_TRACE(SD_LOG_IO_CORE, un,
13429 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13430 
13431 	return (SD_PKT_ALLOC_SUCCESS);
13432 }
13433 
13434 
13435 /*
13436  *    Function: sd_destroypkt_for_uscsi
13437  *
13438  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13439  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13440  *		struct.
13441  *
13442  *     Context: May be called under interrupt context
13443  */
13444 
13445 static void
13446 sd_destroypkt_for_uscsi(struct buf *bp)
13447 {
13448 	struct uscsi_cmd *uscmd;
13449 	struct sd_xbuf	*xp;
13450 	struct scsi_pkt	*pktp;
13451 	struct sd_lun	*un;
13452 
13453 	ASSERT(bp != NULL);
13454 	xp = SD_GET_XBUF(bp);
13455 	ASSERT(xp != NULL);
13456 	un = SD_GET_UN(bp);
13457 	ASSERT(un != NULL);
13458 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13459 	pktp = SD_GET_PKTP(bp);
13460 	ASSERT(pktp != NULL);
13461 
13462 	SD_TRACE(SD_LOG_IO_CORE, un,
13463 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13464 
13465 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13466 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13467 	ASSERT(uscmd != NULL);
13468 
13469 	/* Save the status and the residual into the uscsi_cmd struct */
13470 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13471 	uscmd->uscsi_resid  = bp->b_resid;
13472 
13473 	/*
13474 	 * If enabled, copy any saved sense data into the area specified
13475 	 * by the uscsi command.
13476 	 */
13477 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13478 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13479 		/*
13480 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13481 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13482 		 */
13483 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13484 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13485 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
13486 	}
13487 
13488 	/* We are done with the scsi_pkt; free it now */
13489 	ASSERT(SD_GET_PKTP(bp) != NULL);
13490 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13491 
13492 	SD_TRACE(SD_LOG_IO_CORE, un,
13493 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13494 }
13495 
13496 
13497 /*
13498  *    Function: sd_bioclone_alloc
13499  *
13500  * Description: Allocate a buf(9S) and init it as per the given buf
13501  *		and the various arguments.  The associated sd_xbuf
13502  *		struct is (nearly) duplicated.  The struct buf *bp
13503  *		argument is saved in new_xp->xb_private.
13504  *
13505  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13506  *		datalen - size of data area for the shadow bp
13507  *		blkno - starting LBA
13508  *		func - function pointer for b_iodone in the shadow buf. (May
13509  *			be NULL if none.)
13510  *
13511  * Return Code: Pointer to allocates buf(9S) struct
13512  *
13513  *     Context: Can sleep.
13514  */
13515 
13516 static struct buf *
13517 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13518 	daddr_t blkno, int (*func)(struct buf *))
13519 {
13520 	struct	sd_lun	*un;
13521 	struct	sd_xbuf	*xp;
13522 	struct	sd_xbuf	*new_xp;
13523 	struct	buf	*new_bp;
13524 
13525 	ASSERT(bp != NULL);
13526 	xp = SD_GET_XBUF(bp);
13527 	ASSERT(xp != NULL);
13528 	un = SD_GET_UN(bp);
13529 	ASSERT(un != NULL);
13530 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13531 
13532 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13533 	    NULL, KM_SLEEP);
13534 
13535 	new_bp->b_lblkno	= blkno;
13536 
13537 	/*
13538 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13539 	 * original xbuf into it.
13540 	 */
13541 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13542 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13543 
13544 	/*
13545 	 * The given bp is automatically saved in the xb_private member
13546 	 * of the new xbuf.  Callers are allowed to depend on this.
13547 	 */
13548 	new_xp->xb_private = bp;
13549 
13550 	new_bp->b_private  = new_xp;
13551 
13552 	return (new_bp);
13553 }
13554 
13555 /*
13556  *    Function: sd_shadow_buf_alloc
13557  *
13558  * Description: Allocate a buf(9S) and init it as per the given buf
13559  *		and the various arguments.  The associated sd_xbuf
13560  *		struct is (nearly) duplicated.  The struct buf *bp
13561  *		argument is saved in new_xp->xb_private.
13562  *
13563  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13564  *		datalen - size of data area for the shadow bp
13565  *		bflags - B_READ or B_WRITE (pseudo flag)
13566  *		blkno - starting LBA
13567  *		func - function pointer for b_iodone in the shadow buf. (May
13568  *			be NULL if none.)
13569  *
13570  * Return Code: Pointer to allocates buf(9S) struct
13571  *
13572  *     Context: Can sleep.
13573  */
13574 
13575 static struct buf *
13576 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13577 	daddr_t blkno, int (*func)(struct buf *))
13578 {
13579 	struct	sd_lun	*un;
13580 	struct	sd_xbuf	*xp;
13581 	struct	sd_xbuf	*new_xp;
13582 	struct	buf	*new_bp;
13583 
13584 	ASSERT(bp != NULL);
13585 	xp = SD_GET_XBUF(bp);
13586 	ASSERT(xp != NULL);
13587 	un = SD_GET_UN(bp);
13588 	ASSERT(un != NULL);
13589 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13590 
13591 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13592 		bp_mapin(bp);
13593 	}
13594 
13595 	bflags &= (B_READ | B_WRITE);
13596 #if defined(__i386) || defined(__amd64)
13597 	new_bp = getrbuf(KM_SLEEP);
13598 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13599 	new_bp->b_bcount = datalen;
13600 	new_bp->b_flags	= bp->b_flags | bflags;
13601 #else
13602 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13603 	    datalen, bflags, SLEEP_FUNC, NULL);
13604 #endif
13605 	new_bp->av_forw	= NULL;
13606 	new_bp->av_back	= NULL;
13607 	new_bp->b_dev	= bp->b_dev;
13608 	new_bp->b_blkno	= blkno;
13609 	new_bp->b_iodone = func;
13610 	new_bp->b_edev	= bp->b_edev;
13611 	new_bp->b_resid	= 0;
13612 
13613 	/* We need to preserve the B_FAILFAST flag */
13614 	if (bp->b_flags & B_FAILFAST) {
13615 		new_bp->b_flags |= B_FAILFAST;
13616 	}
13617 
13618 	/*
13619 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13620 	 * original xbuf into it.
13621 	 */
13622 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13623 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13624 
13625 	/* Need later to copy data between the shadow buf & original buf! */
13626 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13627 
13628 	/*
13629 	 * The given bp is automatically saved in the xb_private member
13630 	 * of the new xbuf.  Callers are allowed to depend on this.
13631 	 */
13632 	new_xp->xb_private = bp;
13633 
13634 	new_bp->b_private  = new_xp;
13635 
13636 	return (new_bp);
13637 }
13638 
13639 /*
13640  *    Function: sd_bioclone_free
13641  *
13642  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13643  *		in the larger than partition operation.
13644  *
13645  *     Context: May be called under interrupt context
13646  */
13647 
13648 static void
13649 sd_bioclone_free(struct buf *bp)
13650 {
13651 	struct sd_xbuf	*xp;
13652 
13653 	ASSERT(bp != NULL);
13654 	xp = SD_GET_XBUF(bp);
13655 	ASSERT(xp != NULL);
13656 
13657 	/*
13658 	 * Call bp_mapout() before freeing the buf,  in case a lower
13659 	 * layer or HBA  had done a bp_mapin().  we must do this here
13660 	 * as we are the "originator" of the shadow buf.
13661 	 */
13662 	bp_mapout(bp);
13663 
13664 	/*
13665 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13666 	 * never gets confused by a stale value in this field. (Just a little
13667 	 * extra defensiveness here.)
13668 	 */
13669 	bp->b_iodone = NULL;
13670 
13671 	freerbuf(bp);
13672 
13673 	kmem_free(xp, sizeof (struct sd_xbuf));
13674 }
13675 
13676 /*
13677  *    Function: sd_shadow_buf_free
13678  *
13679  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13680  *
13681  *     Context: May be called under interrupt context
13682  */
13683 
13684 static void
13685 sd_shadow_buf_free(struct buf *bp)
13686 {
13687 	struct sd_xbuf	*xp;
13688 
13689 	ASSERT(bp != NULL);
13690 	xp = SD_GET_XBUF(bp);
13691 	ASSERT(xp != NULL);
13692 
13693 #if defined(__sparc)
13694 	/*
13695 	 * Call bp_mapout() before freeing the buf,  in case a lower
13696 	 * layer or HBA  had done a bp_mapin().  we must do this here
13697 	 * as we are the "originator" of the shadow buf.
13698 	 */
13699 	bp_mapout(bp);
13700 #endif
13701 
13702 	/*
13703 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13704 	 * never gets confused by a stale value in this field. (Just a little
13705 	 * extra defensiveness here.)
13706 	 */
13707 	bp->b_iodone = NULL;
13708 
13709 #if defined(__i386) || defined(__amd64)
13710 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13711 	freerbuf(bp);
13712 #else
13713 	scsi_free_consistent_buf(bp);
13714 #endif
13715 
13716 	kmem_free(xp, sizeof (struct sd_xbuf));
13717 }
13718 
13719 
13720 /*
13721  *    Function: sd_print_transport_rejected_message
13722  *
13723  * Description: This implements the ludicrously complex rules for printing
13724  *		a "transport rejected" message.  This is to address the
13725  *		specific problem of having a flood of this error message
13726  *		produced when a failover occurs.
13727  *
13728  *     Context: Any.
13729  */
13730 
13731 static void
13732 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13733 	int code)
13734 {
13735 	ASSERT(un != NULL);
13736 	ASSERT(mutex_owned(SD_MUTEX(un)));
13737 	ASSERT(xp != NULL);
13738 
13739 	/*
13740 	 * Print the "transport rejected" message under the following
13741 	 * conditions:
13742 	 *
13743 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13744 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13745 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13746 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13747 	 *   scsi_transport(9F) (which indicates that the target might have
13748 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13749 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13750 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13751 	 *   from scsi_transport().
13752 	 *
13753 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13754 	 * the preceeding cases in order for the message to be printed.
13755 	 */
13756 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
13757 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13758 		    (code != TRAN_FATAL_ERROR) ||
13759 		    (un->un_tran_fatal_count == 1)) {
13760 			switch (code) {
13761 			case TRAN_BADPKT:
13762 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13763 				    "transport rejected bad packet\n");
13764 				break;
13765 			case TRAN_FATAL_ERROR:
13766 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13767 				    "transport rejected fatal error\n");
13768 				break;
13769 			default:
13770 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13771 				    "transport rejected (%d)\n", code);
13772 				break;
13773 			}
13774 		}
13775 	}
13776 }
13777 
13778 
13779 /*
13780  *    Function: sd_add_buf_to_waitq
13781  *
13782  * Description: Add the given buf(9S) struct to the wait queue for the
13783  *		instance.  If sorting is enabled, then the buf is added
13784  *		to the queue via an elevator sort algorithm (a la
13785  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13786  *		If sorting is not enabled, then the buf is just added
13787  *		to the end of the wait queue.
13788  *
13789  * Return Code: void
13790  *
13791  *     Context: Does not sleep/block, therefore technically can be called
13792  *		from any context.  However if sorting is enabled then the
13793  *		execution time is indeterminate, and may take long if
13794  *		the wait queue grows large.
13795  */
13796 
13797 static void
13798 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13799 {
13800 	struct buf *ap;
13801 
13802 	ASSERT(bp != NULL);
13803 	ASSERT(un != NULL);
13804 	ASSERT(mutex_owned(SD_MUTEX(un)));
13805 
13806 	/* If the queue is empty, add the buf as the only entry & return. */
13807 	if (un->un_waitq_headp == NULL) {
13808 		ASSERT(un->un_waitq_tailp == NULL);
13809 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13810 		bp->av_forw = NULL;
13811 		return;
13812 	}
13813 
13814 	ASSERT(un->un_waitq_tailp != NULL);
13815 
13816 	/*
13817 	 * If sorting is disabled, just add the buf to the tail end of
13818 	 * the wait queue and return.
13819 	 */
13820 	if (un->un_f_disksort_disabled) {
13821 		un->un_waitq_tailp->av_forw = bp;
13822 		un->un_waitq_tailp = bp;
13823 		bp->av_forw = NULL;
13824 		return;
13825 	}
13826 
13827 	/*
13828 	 * Sort thru the list of requests currently on the wait queue
13829 	 * and add the new buf request at the appropriate position.
13830 	 *
13831 	 * The un->un_waitq_headp is an activity chain pointer on which
13832 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
13833 	 * first queue holds those requests which are positioned after
13834 	 * the current SD_GET_BLKNO() (in the first request); the second holds
13835 	 * requests which came in after their SD_GET_BLKNO() number was passed.
13836 	 * Thus we implement a one way scan, retracting after reaching
13837 	 * the end of the drive to the first request on the second
13838 	 * queue, at which time it becomes the first queue.
13839 	 * A one-way scan is natural because of the way UNIX read-ahead
13840 	 * blocks are allocated.
13841 	 *
13842 	 * If we lie after the first request, then we must locate the
13843 	 * second request list and add ourselves to it.
13844 	 */
13845 	ap = un->un_waitq_headp;
13846 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
13847 		while (ap->av_forw != NULL) {
13848 			/*
13849 			 * Look for an "inversion" in the (normally
13850 			 * ascending) block numbers. This indicates
13851 			 * the start of the second request list.
13852 			 */
13853 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
13854 				/*
13855 				 * Search the second request list for the
13856 				 * first request at a larger block number.
13857 				 * We go before that; however if there is
13858 				 * no such request, we go at the end.
13859 				 */
13860 				do {
13861 					if (SD_GET_BLKNO(bp) <
13862 					    SD_GET_BLKNO(ap->av_forw)) {
13863 						goto insert;
13864 					}
13865 					ap = ap->av_forw;
13866 				} while (ap->av_forw != NULL);
13867 				goto insert;		/* after last */
13868 			}
13869 			ap = ap->av_forw;
13870 		}
13871 
13872 		/*
13873 		 * No inversions... we will go after the last, and
13874 		 * be the first request in the second request list.
13875 		 */
13876 		goto insert;
13877 	}
13878 
13879 	/*
13880 	 * Request is at/after the current request...
13881 	 * sort in the first request list.
13882 	 */
13883 	while (ap->av_forw != NULL) {
13884 		/*
13885 		 * We want to go after the current request (1) if
13886 		 * there is an inversion after it (i.e. it is the end
13887 		 * of the first request list), or (2) if the next
13888 		 * request is a larger block no. than our request.
13889 		 */
13890 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
13891 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
13892 			goto insert;
13893 		}
13894 		ap = ap->av_forw;
13895 	}
13896 
13897 	/*
13898 	 * Neither a second list nor a larger request, therefore
13899 	 * we go at the end of the first list (which is the same
13900 	 * as the end of the whole schebang).
13901 	 */
13902 insert:
13903 	bp->av_forw = ap->av_forw;
13904 	ap->av_forw = bp;
13905 
13906 	/*
13907 	 * If we inserted onto the tail end of the waitq, make sure the
13908 	 * tail pointer is updated.
13909 	 */
13910 	if (ap == un->un_waitq_tailp) {
13911 		un->un_waitq_tailp = bp;
13912 	}
13913 }
13914 
13915 
13916 /*
13917  *    Function: sd_start_cmds
13918  *
13919  * Description: Remove and transport cmds from the driver queues.
13920  *
13921  *   Arguments: un - pointer to the unit (soft state) struct for the target.
13922  *
13923  *		immed_bp - ptr to a buf to be transported immediately. Only
13924  *		the immed_bp is transported; bufs on the waitq are not
13925  *		processed and the un_retry_bp is not checked.  If immed_bp is
13926  *		NULL, then normal queue processing is performed.
13927  *
13928  *     Context: May be called from kernel thread context, interrupt context,
13929  *		or runout callback context. This function may not block or
13930  *		call routines that block.
13931  */
13932 
13933 static void
13934 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
13935 {
13936 	struct	sd_xbuf	*xp;
13937 	struct	buf	*bp;
13938 	void	(*statp)(kstat_io_t *);
13939 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13940 	void	(*saved_statp)(kstat_io_t *);
13941 #endif
13942 	int	rval;
13943 
13944 	ASSERT(un != NULL);
13945 	ASSERT(mutex_owned(SD_MUTEX(un)));
13946 	ASSERT(un->un_ncmds_in_transport >= 0);
13947 	ASSERT(un->un_throttle >= 0);
13948 
13949 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
13950 
13951 	do {
13952 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13953 		saved_statp = NULL;
13954 #endif
13955 
13956 		/*
13957 		 * If we are syncing or dumping, fail the command to
13958 		 * avoid recursively calling back into scsi_transport().
13959 		 * See panic.c for more information about the states
13960 		 * the system can be in during panic.
13961 		 */
13962 		if ((un->un_state == SD_STATE_DUMPING) ||
13963 		    (un->un_in_callback > 1)) {
13964 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13965 			    "sd_start_cmds: panicking\n");
13966 			goto exit;
13967 		}
13968 
13969 		if ((bp = immed_bp) != NULL) {
13970 			/*
13971 			 * We have a bp that must be transported immediately.
13972 			 * It's OK to transport the immed_bp here without doing
13973 			 * the throttle limit check because the immed_bp is
13974 			 * always used in a retry/recovery case. This means
13975 			 * that we know we are not at the throttle limit by
13976 			 * virtue of the fact that to get here we must have
13977 			 * already gotten a command back via sdintr(). This also
13978 			 * relies on (1) the command on un_retry_bp preventing
13979 			 * further commands from the waitq from being issued;
13980 			 * and (2) the code in sd_retry_command checking the
13981 			 * throttle limit before issuing a delayed or immediate
13982 			 * retry. This holds even if the throttle limit is
13983 			 * currently ratcheted down from its maximum value.
13984 			 */
13985 			statp = kstat_runq_enter;
13986 			if (bp == un->un_retry_bp) {
13987 				ASSERT((un->un_retry_statp == NULL) ||
13988 				    (un->un_retry_statp == kstat_waitq_enter) ||
13989 				    (un->un_retry_statp ==
13990 				    kstat_runq_back_to_waitq));
13991 				/*
13992 				 * If the waitq kstat was incremented when
13993 				 * sd_set_retry_bp() queued this bp for a retry,
13994 				 * then we must set up statp so that the waitq
13995 				 * count will get decremented correctly below.
13996 				 * Also we must clear un->un_retry_statp to
13997 				 * ensure that we do not act on a stale value
13998 				 * in this field.
13999 				 */
14000 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14001 				    (un->un_retry_statp ==
14002 				    kstat_runq_back_to_waitq)) {
14003 					statp = kstat_waitq_to_runq;
14004 				}
14005 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14006 				saved_statp = un->un_retry_statp;
14007 #endif
14008 				un->un_retry_statp = NULL;
14009 
14010 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14011 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14012 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14013 				    un, un->un_retry_bp, un->un_throttle,
14014 				    un->un_ncmds_in_transport);
14015 			} else {
14016 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14017 				    "processing priority bp:0x%p\n", bp);
14018 			}
14019 
14020 		} else if ((bp = un->un_waitq_headp) != NULL) {
14021 			/*
14022 			 * A command on the waitq is ready to go, but do not
14023 			 * send it if:
14024 			 *
14025 			 * (1) the throttle limit has been reached, or
14026 			 * (2) a retry is pending, or
14027 			 * (3) a START_STOP_UNIT callback pending, or
14028 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14029 			 *	command is pending.
14030 			 *
14031 			 * For all of these conditions, IO processing will
14032 			 * restart after the condition is cleared.
14033 			 */
14034 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14035 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14036 				    "sd_start_cmds: exiting, "
14037 				    "throttle limit reached!\n");
14038 				goto exit;
14039 			}
14040 			if (un->un_retry_bp != NULL) {
14041 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14042 				    "sd_start_cmds: exiting, retry pending!\n");
14043 				goto exit;
14044 			}
14045 			if (un->un_startstop_timeid != NULL) {
14046 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14047 				    "sd_start_cmds: exiting, "
14048 				    "START_STOP pending!\n");
14049 				goto exit;
14050 			}
14051 			if (un->un_direct_priority_timeid != NULL) {
14052 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14053 				    "sd_start_cmds: exiting, "
14054 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14055 				goto exit;
14056 			}
14057 
14058 			/* Dequeue the command */
14059 			un->un_waitq_headp = bp->av_forw;
14060 			if (un->un_waitq_headp == NULL) {
14061 				un->un_waitq_tailp = NULL;
14062 			}
14063 			bp->av_forw = NULL;
14064 			statp = kstat_waitq_to_runq;
14065 			SD_TRACE(SD_LOG_IO_CORE, un,
14066 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14067 
14068 		} else {
14069 			/* No work to do so bail out now */
14070 			SD_TRACE(SD_LOG_IO_CORE, un,
14071 			    "sd_start_cmds: no more work, exiting!\n");
14072 			goto exit;
14073 		}
14074 
14075 		/*
14076 		 * Reset the state to normal. This is the mechanism by which
14077 		 * the state transitions from either SD_STATE_RWAIT or
14078 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14079 		 * If state is SD_STATE_PM_CHANGING then this command is
14080 		 * part of the device power control and the state must
14081 		 * not be put back to normal. Doing so would would
14082 		 * allow new commands to proceed when they shouldn't,
14083 		 * the device may be going off.
14084 		 */
14085 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14086 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14087 			New_state(un, SD_STATE_NORMAL);
14088 		    }
14089 
14090 		xp = SD_GET_XBUF(bp);
14091 		ASSERT(xp != NULL);
14092 
14093 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14094 		/*
14095 		 * Allocate the scsi_pkt if we need one, or attach DMA
14096 		 * resources if we have a scsi_pkt that needs them. The
14097 		 * latter should only occur for commands that are being
14098 		 * retried.
14099 		 */
14100 		if ((xp->xb_pktp == NULL) ||
14101 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14102 #else
14103 		if (xp->xb_pktp == NULL) {
14104 #endif
14105 			/*
14106 			 * There is no scsi_pkt allocated for this buf. Call
14107 			 * the initpkt function to allocate & init one.
14108 			 *
14109 			 * The scsi_init_pkt runout callback functionality is
14110 			 * implemented as follows:
14111 			 *
14112 			 * 1) The initpkt function always calls
14113 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14114 			 *    callback routine.
14115 			 * 2) A successful packet allocation is initialized and
14116 			 *    the I/O is transported.
14117 			 * 3) The I/O associated with an allocation resource
14118 			 *    failure is left on its queue to be retried via
14119 			 *    runout or the next I/O.
14120 			 * 4) The I/O associated with a DMA error is removed
14121 			 *    from the queue and failed with EIO. Processing of
14122 			 *    the transport queues is also halted to be
14123 			 *    restarted via runout or the next I/O.
14124 			 * 5) The I/O associated with a CDB size or packet
14125 			 *    size error is removed from the queue and failed
14126 			 *    with EIO. Processing of the transport queues is
14127 			 *    continued.
14128 			 *
14129 			 * Note: there is no interface for canceling a runout
14130 			 * callback. To prevent the driver from detaching or
14131 			 * suspending while a runout is pending the driver
14132 			 * state is set to SD_STATE_RWAIT
14133 			 *
14134 			 * Note: using the scsi_init_pkt callback facility can
14135 			 * result in an I/O request persisting at the head of
14136 			 * the list which cannot be satisfied even after
14137 			 * multiple retries. In the future the driver may
14138 			 * implement some kind of maximum runout count before
14139 			 * failing an I/O.
14140 			 *
14141 			 * Note: the use of funcp below may seem superfluous,
14142 			 * but it helps warlock figure out the correct
14143 			 * initpkt function calls (see [s]sd.wlcmd).
14144 			 */
14145 			struct scsi_pkt	*pktp;
14146 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14147 
14148 			ASSERT(bp != un->un_rqs_bp);
14149 
14150 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14151 			switch ((*funcp)(bp, &pktp)) {
14152 			case  SD_PKT_ALLOC_SUCCESS:
14153 				xp->xb_pktp = pktp;
14154 				SD_TRACE(SD_LOG_IO_CORE, un,
14155 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14156 				    pktp);
14157 				goto got_pkt;
14158 
14159 			case SD_PKT_ALLOC_FAILURE:
14160 				/*
14161 				 * Temporary (hopefully) resource depletion.
14162 				 * Since retries and RQS commands always have a
14163 				 * scsi_pkt allocated, these cases should never
14164 				 * get here. So the only cases this needs to
14165 				 * handle is a bp from the waitq (which we put
14166 				 * back onto the waitq for sdrunout), or a bp
14167 				 * sent as an immed_bp (which we just fail).
14168 				 */
14169 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14170 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14171 
14172 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14173 
14174 				if (bp == immed_bp) {
14175 					/*
14176 					 * If SD_XB_DMA_FREED is clear, then
14177 					 * this is a failure to allocate a
14178 					 * scsi_pkt, and we must fail the
14179 					 * command.
14180 					 */
14181 					if ((xp->xb_pkt_flags &
14182 					    SD_XB_DMA_FREED) == 0) {
14183 						break;
14184 					}
14185 
14186 					/*
14187 					 * If this immediate command is NOT our
14188 					 * un_retry_bp, then we must fail it.
14189 					 */
14190 					if (bp != un->un_retry_bp) {
14191 						break;
14192 					}
14193 
14194 					/*
14195 					 * We get here if this cmd is our
14196 					 * un_retry_bp that was DMAFREED, but
14197 					 * scsi_init_pkt() failed to reallocate
14198 					 * DMA resources when we attempted to
14199 					 * retry it. This can happen when an
14200 					 * mpxio failover is in progress, but
14201 					 * we don't want to just fail the
14202 					 * command in this case.
14203 					 *
14204 					 * Use timeout(9F) to restart it after
14205 					 * a 100ms delay.  We don't want to
14206 					 * let sdrunout() restart it, because
14207 					 * sdrunout() is just supposed to start
14208 					 * commands that are sitting on the
14209 					 * wait queue.  The un_retry_bp stays
14210 					 * set until the command completes, but
14211 					 * sdrunout can be called many times
14212 					 * before that happens.  Since sdrunout
14213 					 * cannot tell if the un_retry_bp is
14214 					 * already in the transport, it could
14215 					 * end up calling scsi_transport() for
14216 					 * the un_retry_bp multiple times.
14217 					 *
14218 					 * Also: don't schedule the callback
14219 					 * if some other callback is already
14220 					 * pending.
14221 					 */
14222 					if (un->un_retry_statp == NULL) {
14223 						/*
14224 						 * restore the kstat pointer to
14225 						 * keep kstat counts coherent
14226 						 * when we do retry the command.
14227 						 */
14228 						un->un_retry_statp =
14229 						    saved_statp;
14230 					}
14231 
14232 					if ((un->un_startstop_timeid == NULL) &&
14233 					    (un->un_retry_timeid == NULL) &&
14234 					    (un->un_direct_priority_timeid ==
14235 					    NULL)) {
14236 
14237 						un->un_retry_timeid =
14238 						    timeout(
14239 						    sd_start_retry_command,
14240 						    un, SD_RESTART_TIMEOUT);
14241 					}
14242 					goto exit;
14243 				}
14244 
14245 #else
14246 				if (bp == immed_bp) {
14247 					break;	/* Just fail the command */
14248 				}
14249 #endif
14250 
14251 				/* Add the buf back to the head of the waitq */
14252 				bp->av_forw = un->un_waitq_headp;
14253 				un->un_waitq_headp = bp;
14254 				if (un->un_waitq_tailp == NULL) {
14255 					un->un_waitq_tailp = bp;
14256 				}
14257 				goto exit;
14258 
14259 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14260 				/*
14261 				 * HBA DMA resource failure. Fail the command
14262 				 * and continue processing of the queues.
14263 				 */
14264 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14265 				    "sd_start_cmds: "
14266 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14267 				break;
14268 
14269 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14270 				/*
14271 				 * Note:x86: Partial DMA mapping not supported
14272 				 * for USCSI commands, and all the needed DMA
14273 				 * resources were not allocated.
14274 				 */
14275 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14276 				    "sd_start_cmds: "
14277 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14278 				break;
14279 
14280 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14281 				/*
14282 				 * Note:x86: Request cannot fit into CDB based
14283 				 * on lba and len.
14284 				 */
14285 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14286 				    "sd_start_cmds: "
14287 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14288 				break;
14289 
14290 			default:
14291 				/* Should NEVER get here! */
14292 				panic("scsi_initpkt error");
14293 				/*NOTREACHED*/
14294 			}
14295 
14296 			/*
14297 			 * Fatal error in allocating a scsi_pkt for this buf.
14298 			 * Update kstats & return the buf with an error code.
14299 			 * We must use sd_return_failed_command_no_restart() to
14300 			 * avoid a recursive call back into sd_start_cmds().
14301 			 * However this also means that we must keep processing
14302 			 * the waitq here in order to avoid stalling.
14303 			 */
14304 			if (statp == kstat_waitq_to_runq) {
14305 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14306 			}
14307 			sd_return_failed_command_no_restart(un, bp, EIO);
14308 			if (bp == immed_bp) {
14309 				/* immed_bp is gone by now, so clear this */
14310 				immed_bp = NULL;
14311 			}
14312 			continue;
14313 		}
14314 got_pkt:
14315 		if (bp == immed_bp) {
14316 			/* goto the head of the class.... */
14317 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14318 		}
14319 
14320 		un->un_ncmds_in_transport++;
14321 		SD_UPDATE_KSTATS(un, statp, bp);
14322 
14323 		/*
14324 		 * Call scsi_transport() to send the command to the target.
14325 		 * According to SCSA architecture, we must drop the mutex here
14326 		 * before calling scsi_transport() in order to avoid deadlock.
14327 		 * Note that the scsi_pkt's completion routine can be executed
14328 		 * (from interrupt context) even before the call to
14329 		 * scsi_transport() returns.
14330 		 */
14331 		SD_TRACE(SD_LOG_IO_CORE, un,
14332 		    "sd_start_cmds: calling scsi_transport()\n");
14333 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14334 
14335 		mutex_exit(SD_MUTEX(un));
14336 		rval = scsi_transport(xp->xb_pktp);
14337 		mutex_enter(SD_MUTEX(un));
14338 
14339 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14340 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14341 
14342 		switch (rval) {
14343 		case TRAN_ACCEPT:
14344 			/* Clear this with every pkt accepted by the HBA */
14345 			un->un_tran_fatal_count = 0;
14346 			break;	/* Success; try the next cmd (if any) */
14347 
14348 		case TRAN_BUSY:
14349 			un->un_ncmds_in_transport--;
14350 			ASSERT(un->un_ncmds_in_transport >= 0);
14351 
14352 			/*
14353 			 * Don't retry request sense, the sense data
14354 			 * is lost when another request is sent.
14355 			 * Free up the rqs buf and retry
14356 			 * the original failed cmd.  Update kstat.
14357 			 */
14358 			if (bp == un->un_rqs_bp) {
14359 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14360 				bp = sd_mark_rqs_idle(un, xp);
14361 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14362 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
14363 					kstat_waitq_enter);
14364 				goto exit;
14365 			}
14366 
14367 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14368 			/*
14369 			 * Free the DMA resources for the  scsi_pkt. This will
14370 			 * allow mpxio to select another path the next time
14371 			 * we call scsi_transport() with this scsi_pkt.
14372 			 * See sdintr() for the rationalization behind this.
14373 			 */
14374 			if ((un->un_f_is_fibre == TRUE) &&
14375 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14376 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14377 				scsi_dmafree(xp->xb_pktp);
14378 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14379 			}
14380 #endif
14381 
14382 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14383 				/*
14384 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14385 				 * are for error recovery situations. These do
14386 				 * not use the normal command waitq, so if they
14387 				 * get a TRAN_BUSY we cannot put them back onto
14388 				 * the waitq for later retry. One possible
14389 				 * problem is that there could already be some
14390 				 * other command on un_retry_bp that is waiting
14391 				 * for this one to complete, so we would be
14392 				 * deadlocked if we put this command back onto
14393 				 * the waitq for later retry (since un_retry_bp
14394 				 * must complete before the driver gets back to
14395 				 * commands on the waitq).
14396 				 *
14397 				 * To avoid deadlock we must schedule a callback
14398 				 * that will restart this command after a set
14399 				 * interval.  This should keep retrying for as
14400 				 * long as the underlying transport keeps
14401 				 * returning TRAN_BUSY (just like for other
14402 				 * commands).  Use the same timeout interval as
14403 				 * for the ordinary TRAN_BUSY retry.
14404 				 */
14405 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14406 				    "sd_start_cmds: scsi_transport() returned "
14407 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14408 
14409 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14410 				un->un_direct_priority_timeid =
14411 				    timeout(sd_start_direct_priority_command,
14412 				    bp, SD_BSY_TIMEOUT / 500);
14413 
14414 				goto exit;
14415 			}
14416 
14417 			/*
14418 			 * For TRAN_BUSY, we want to reduce the throttle value,
14419 			 * unless we are retrying a command.
14420 			 */
14421 			if (bp != un->un_retry_bp) {
14422 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14423 			}
14424 
14425 			/*
14426 			 * Set up the bp to be tried again 10 ms later.
14427 			 * Note:x86: Is there a timeout value in the sd_lun
14428 			 * for this condition?
14429 			 */
14430 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
14431 				kstat_runq_back_to_waitq);
14432 			goto exit;
14433 
14434 		case TRAN_FATAL_ERROR:
14435 			un->un_tran_fatal_count++;
14436 			/* FALLTHRU */
14437 
14438 		case TRAN_BADPKT:
14439 		default:
14440 			un->un_ncmds_in_transport--;
14441 			ASSERT(un->un_ncmds_in_transport >= 0);
14442 
14443 			/*
14444 			 * If this is our REQUEST SENSE command with a
14445 			 * transport error, we must get back the pointers
14446 			 * to the original buf, and mark the REQUEST
14447 			 * SENSE command as "available".
14448 			 */
14449 			if (bp == un->un_rqs_bp) {
14450 				bp = sd_mark_rqs_idle(un, xp);
14451 				xp = SD_GET_XBUF(bp);
14452 			} else {
14453 				/*
14454 				 * Legacy behavior: do not update transport
14455 				 * error count for request sense commands.
14456 				 */
14457 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14458 			}
14459 
14460 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14461 			sd_print_transport_rejected_message(un, xp, rval);
14462 
14463 			/*
14464 			 * We must use sd_return_failed_command_no_restart() to
14465 			 * avoid a recursive call back into sd_start_cmds().
14466 			 * However this also means that we must keep processing
14467 			 * the waitq here in order to avoid stalling.
14468 			 */
14469 			sd_return_failed_command_no_restart(un, bp, EIO);
14470 
14471 			/*
14472 			 * Notify any threads waiting in sd_ddi_suspend() that
14473 			 * a command completion has occurred.
14474 			 */
14475 			if (un->un_state == SD_STATE_SUSPENDED) {
14476 				cv_broadcast(&un->un_disk_busy_cv);
14477 			}
14478 
14479 			if (bp == immed_bp) {
14480 				/* immed_bp is gone by now, so clear this */
14481 				immed_bp = NULL;
14482 			}
14483 			break;
14484 		}
14485 
14486 	} while (immed_bp == NULL);
14487 
14488 exit:
14489 	ASSERT(mutex_owned(SD_MUTEX(un)));
14490 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14491 }
14492 
14493 
14494 /*
14495  *    Function: sd_return_command
14496  *
14497  * Description: Returns a command to its originator (with or without an
14498  *		error).  Also starts commands waiting to be transported
14499  *		to the target.
14500  *
14501  *     Context: May be called from interrupt, kernel, or timeout context
14502  */
14503 
14504 static void
14505 sd_return_command(struct sd_lun *un, struct buf *bp)
14506 {
14507 	struct sd_xbuf *xp;
14508 #if defined(__i386) || defined(__amd64)
14509 	struct scsi_pkt *pktp;
14510 #endif
14511 
14512 	ASSERT(bp != NULL);
14513 	ASSERT(un != NULL);
14514 	ASSERT(mutex_owned(SD_MUTEX(un)));
14515 	ASSERT(bp != un->un_rqs_bp);
14516 	xp = SD_GET_XBUF(bp);
14517 	ASSERT(xp != NULL);
14518 
14519 #if defined(__i386) || defined(__amd64)
14520 	pktp = SD_GET_PKTP(bp);
14521 #endif
14522 
14523 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14524 
14525 #if defined(__i386) || defined(__amd64)
14526 	/*
14527 	 * Note:x86: check for the "sdrestart failed" case.
14528 	 */
14529 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14530 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14531 		(xp->xb_pktp->pkt_resid == 0)) {
14532 
14533 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14534 			/*
14535 			 * Successfully set up next portion of cmd
14536 			 * transfer, try sending it
14537 			 */
14538 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14539 			    NULL, NULL, 0, (clock_t)0, NULL);
14540 			sd_start_cmds(un, NULL);
14541 			return;	/* Note:x86: need a return here? */
14542 		}
14543 	}
14544 #endif
14545 
14546 	/*
14547 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14548 	 * can happen if upon being re-tried the failfast bp either
14549 	 * succeeded or encountered another error (possibly even a different
14550 	 * error than the one that precipitated the failfast state, but in
14551 	 * that case it would have had to exhaust retries as well). Regardless,
14552 	 * this should not occur whenever the instance is in the active
14553 	 * failfast state.
14554 	 */
14555 	if (bp == un->un_failfast_bp) {
14556 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14557 		un->un_failfast_bp = NULL;
14558 	}
14559 
14560 	/*
14561 	 * Clear the failfast state upon successful completion of ANY cmd.
14562 	 */
14563 	if (bp->b_error == 0) {
14564 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14565 	}
14566 
14567 	/*
14568 	 * This is used if the command was retried one or more times. Show that
14569 	 * we are done with it, and allow processing of the waitq to resume.
14570 	 */
14571 	if (bp == un->un_retry_bp) {
14572 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14573 		    "sd_return_command: un:0x%p: "
14574 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14575 		un->un_retry_bp = NULL;
14576 		un->un_retry_statp = NULL;
14577 	}
14578 
14579 	SD_UPDATE_RDWR_STATS(un, bp);
14580 	SD_UPDATE_PARTITION_STATS(un, bp);
14581 
14582 	switch (un->un_state) {
14583 	case SD_STATE_SUSPENDED:
14584 		/*
14585 		 * Notify any threads waiting in sd_ddi_suspend() that
14586 		 * a command completion has occurred.
14587 		 */
14588 		cv_broadcast(&un->un_disk_busy_cv);
14589 		break;
14590 	default:
14591 		sd_start_cmds(un, NULL);
14592 		break;
14593 	}
14594 
14595 	/* Return this command up the iodone chain to its originator. */
14596 	mutex_exit(SD_MUTEX(un));
14597 
14598 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14599 	xp->xb_pktp = NULL;
14600 
14601 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14602 
14603 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14604 	mutex_enter(SD_MUTEX(un));
14605 
14606 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14607 }
14608 
14609 
14610 /*
14611  *    Function: sd_return_failed_command
14612  *
14613  * Description: Command completion when an error occurred.
14614  *
14615  *     Context: May be called from interrupt context
14616  */
14617 
14618 static void
14619 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14620 {
14621 	ASSERT(bp != NULL);
14622 	ASSERT(un != NULL);
14623 	ASSERT(mutex_owned(SD_MUTEX(un)));
14624 
14625 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14626 	    "sd_return_failed_command: entry\n");
14627 
14628 	/*
14629 	 * b_resid could already be nonzero due to a partial data
14630 	 * transfer, so do not change it here.
14631 	 */
14632 	SD_BIOERROR(bp, errcode);
14633 
14634 	sd_return_command(un, bp);
14635 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14636 	    "sd_return_failed_command: exit\n");
14637 }
14638 
14639 
14640 /*
14641  *    Function: sd_return_failed_command_no_restart
14642  *
14643  * Description: Same as sd_return_failed_command, but ensures that no
14644  *		call back into sd_start_cmds will be issued.
14645  *
14646  *     Context: May be called from interrupt context
14647  */
14648 
14649 static void
14650 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14651 	int errcode)
14652 {
14653 	struct sd_xbuf *xp;
14654 
14655 	ASSERT(bp != NULL);
14656 	ASSERT(un != NULL);
14657 	ASSERT(mutex_owned(SD_MUTEX(un)));
14658 	xp = SD_GET_XBUF(bp);
14659 	ASSERT(xp != NULL);
14660 	ASSERT(errcode != 0);
14661 
14662 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14663 	    "sd_return_failed_command_no_restart: entry\n");
14664 
14665 	/*
14666 	 * b_resid could already be nonzero due to a partial data
14667 	 * transfer, so do not change it here.
14668 	 */
14669 	SD_BIOERROR(bp, errcode);
14670 
14671 	/*
14672 	 * If this is the failfast bp, clear it. This can happen if the
14673 	 * failfast bp encounterd a fatal error when we attempted to
14674 	 * re-try it (such as a scsi_transport(9F) failure).  However
14675 	 * we should NOT be in an active failfast state if the failfast
14676 	 * bp is not NULL.
14677 	 */
14678 	if (bp == un->un_failfast_bp) {
14679 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14680 		un->un_failfast_bp = NULL;
14681 	}
14682 
14683 	if (bp == un->un_retry_bp) {
14684 		/*
14685 		 * This command was retried one or more times. Show that we are
14686 		 * done with it, and allow processing of the waitq to resume.
14687 		 */
14688 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14689 		    "sd_return_failed_command_no_restart: "
14690 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14691 		un->un_retry_bp = NULL;
14692 		un->un_retry_statp = NULL;
14693 	}
14694 
14695 	SD_UPDATE_RDWR_STATS(un, bp);
14696 	SD_UPDATE_PARTITION_STATS(un, bp);
14697 
14698 	mutex_exit(SD_MUTEX(un));
14699 
14700 	if (xp->xb_pktp != NULL) {
14701 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14702 		xp->xb_pktp = NULL;
14703 	}
14704 
14705 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14706 
14707 	mutex_enter(SD_MUTEX(un));
14708 
14709 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14710 	    "sd_return_failed_command_no_restart: exit\n");
14711 }
14712 
14713 
14714 /*
14715  *    Function: sd_retry_command
14716  *
14717  * Description: queue up a command for retry, or (optionally) fail it
14718  *		if retry counts are exhausted.
14719  *
14720  *   Arguments: un - Pointer to the sd_lun struct for the target.
14721  *
14722  *		bp - Pointer to the buf for the command to be retried.
14723  *
14724  *		retry_check_flag - Flag to see which (if any) of the retry
14725  *		   counts should be decremented/checked. If the indicated
14726  *		   retry count is exhausted, then the command will not be
14727  *		   retried; it will be failed instead. This should use a
14728  *		   value equal to one of the following:
14729  *
14730  *			SD_RETRIES_NOCHECK
14731  *			SD_RESD_RETRIES_STANDARD
14732  *			SD_RETRIES_VICTIM
14733  *
14734  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14735  *		   if the check should be made to see of FLAG_ISOLATE is set
14736  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14737  *		   not retried, it is simply failed.
14738  *
14739  *		user_funcp - Ptr to function to call before dispatching the
14740  *		   command. May be NULL if no action needs to be performed.
14741  *		   (Primarily intended for printing messages.)
14742  *
14743  *		user_arg - Optional argument to be passed along to
14744  *		   the user_funcp call.
14745  *
14746  *		failure_code - errno return code to set in the bp if the
14747  *		   command is going to be failed.
14748  *
14749  *		retry_delay - Retry delay interval in (clock_t) units. May
14750  *		   be zero which indicates that the retry should be retried
14751  *		   immediately (ie, without an intervening delay).
14752  *
14753  *		statp - Ptr to kstat function to be updated if the command
14754  *		   is queued for a delayed retry. May be NULL if no kstat
14755  *		   update is desired.
14756  *
14757  *     Context: May be called from interupt context.
14758  */
14759 
14760 static void
14761 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14762 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14763 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14764 	void (*statp)(kstat_io_t *))
14765 {
14766 	struct sd_xbuf	*xp;
14767 	struct scsi_pkt	*pktp;
14768 
14769 	ASSERT(un != NULL);
14770 	ASSERT(mutex_owned(SD_MUTEX(un)));
14771 	ASSERT(bp != NULL);
14772 	xp = SD_GET_XBUF(bp);
14773 	ASSERT(xp != NULL);
14774 	pktp = SD_GET_PKTP(bp);
14775 	ASSERT(pktp != NULL);
14776 
14777 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14778 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14779 
14780 	/*
14781 	 * If we are syncing or dumping, fail the command to avoid
14782 	 * recursively calling back into scsi_transport().
14783 	 */
14784 	if (ddi_in_panic()) {
14785 		goto fail_command_no_log;
14786 	}
14787 
14788 	/*
14789 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14790 	 * log an error and fail the command.
14791 	 */
14792 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14793 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14794 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14795 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14796 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14797 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14798 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14799 		goto fail_command;
14800 	}
14801 
14802 	/*
14803 	 * If we are suspended, then put the command onto head of the
14804 	 * wait queue since we don't want to start more commands.
14805 	 */
14806 	switch (un->un_state) {
14807 	case SD_STATE_SUSPENDED:
14808 	case SD_STATE_DUMPING:
14809 		bp->av_forw = un->un_waitq_headp;
14810 		un->un_waitq_headp = bp;
14811 		if (un->un_waitq_tailp == NULL) {
14812 			un->un_waitq_tailp = bp;
14813 		}
14814 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
14815 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
14816 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
14817 		return;
14818 	default:
14819 		break;
14820 	}
14821 
14822 	/*
14823 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
14824 	 * is set; if it is then we do not want to retry the command.
14825 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
14826 	 */
14827 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
14828 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
14829 			goto fail_command;
14830 		}
14831 	}
14832 
14833 
14834 	/*
14835 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
14836 	 * command timeout or a selection timeout has occurred. This means
14837 	 * that we were unable to establish an kind of communication with
14838 	 * the target, and subsequent retries and/or commands are likely
14839 	 * to encounter similar results and take a long time to complete.
14840 	 *
14841 	 * If this is a failfast error condition, we need to update the
14842 	 * failfast state, even if this bp does not have B_FAILFAST set.
14843 	 */
14844 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
14845 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
14846 			ASSERT(un->un_failfast_bp == NULL);
14847 			/*
14848 			 * If we are already in the active failfast state, and
14849 			 * another failfast error condition has been detected,
14850 			 * then fail this command if it has B_FAILFAST set.
14851 			 * If B_FAILFAST is clear, then maintain the legacy
14852 			 * behavior of retrying heroically, even tho this will
14853 			 * take a lot more time to fail the command.
14854 			 */
14855 			if (bp->b_flags & B_FAILFAST) {
14856 				goto fail_command;
14857 			}
14858 		} else {
14859 			/*
14860 			 * We're not in the active failfast state, but we
14861 			 * have a failfast error condition, so we must begin
14862 			 * transition to the next state. We do this regardless
14863 			 * of whether or not this bp has B_FAILFAST set.
14864 			 */
14865 			if (un->un_failfast_bp == NULL) {
14866 				/*
14867 				 * This is the first bp to meet a failfast
14868 				 * condition so save it on un_failfast_bp &
14869 				 * do normal retry processing. Do not enter
14870 				 * active failfast state yet. This marks
14871 				 * entry into the "failfast pending" state.
14872 				 */
14873 				un->un_failfast_bp = bp;
14874 
14875 			} else if (un->un_failfast_bp == bp) {
14876 				/*
14877 				 * This is the second time *this* bp has
14878 				 * encountered a failfast error condition,
14879 				 * so enter active failfast state & flush
14880 				 * queues as appropriate.
14881 				 */
14882 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
14883 				un->un_failfast_bp = NULL;
14884 				sd_failfast_flushq(un);
14885 
14886 				/*
14887 				 * Fail this bp now if B_FAILFAST set;
14888 				 * otherwise continue with retries. (It would
14889 				 * be pretty ironic if this bp succeeded on a
14890 				 * subsequent retry after we just flushed all
14891 				 * the queues).
14892 				 */
14893 				if (bp->b_flags & B_FAILFAST) {
14894 					goto fail_command;
14895 				}
14896 
14897 #if !defined(lint) && !defined(__lint)
14898 			} else {
14899 				/*
14900 				 * If neither of the preceeding conditionals
14901 				 * was true, it means that there is some
14902 				 * *other* bp that has met an inital failfast
14903 				 * condition and is currently either being
14904 				 * retried or is waiting to be retried. In
14905 				 * that case we should perform normal retry
14906 				 * processing on *this* bp, since there is a
14907 				 * chance that the current failfast condition
14908 				 * is transient and recoverable. If that does
14909 				 * not turn out to be the case, then retries
14910 				 * will be cleared when the wait queue is
14911 				 * flushed anyway.
14912 				 */
14913 #endif
14914 			}
14915 		}
14916 	} else {
14917 		/*
14918 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
14919 		 * likely were able to at least establish some level of
14920 		 * communication with the target and subsequent commands
14921 		 * and/or retries are likely to get through to the target,
14922 		 * In this case we want to be aggressive about clearing
14923 		 * the failfast state. Note that this does not affect
14924 		 * the "failfast pending" condition.
14925 		 */
14926 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14927 	}
14928 
14929 
14930 	/*
14931 	 * Check the specified retry count to see if we can still do
14932 	 * any retries with this pkt before we should fail it.
14933 	 */
14934 	switch (retry_check_flag & SD_RETRIES_MASK) {
14935 	case SD_RETRIES_VICTIM:
14936 		/*
14937 		 * Check the victim retry count. If exhausted, then fall
14938 		 * thru & check against the standard retry count.
14939 		 */
14940 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
14941 			/* Increment count & proceed with the retry */
14942 			xp->xb_victim_retry_count++;
14943 			break;
14944 		}
14945 		/* Victim retries exhausted, fall back to std. retries... */
14946 		/* FALLTHRU */
14947 
14948 	case SD_RETRIES_STANDARD:
14949 		if (xp->xb_retry_count >= un->un_retry_count) {
14950 			/* Retries exhausted, fail the command */
14951 			SD_TRACE(SD_LOG_IO_CORE, un,
14952 			    "sd_retry_command: retries exhausted!\n");
14953 			/*
14954 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
14955 			 * commands with nonzero pkt_resid.
14956 			 */
14957 			if ((pktp->pkt_reason == CMD_CMPLT) &&
14958 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
14959 			    (pktp->pkt_resid != 0)) {
14960 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
14961 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
14962 					SD_UPDATE_B_RESID(bp, pktp);
14963 				}
14964 			}
14965 			goto fail_command;
14966 		}
14967 		xp->xb_retry_count++;
14968 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14969 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
14970 		break;
14971 
14972 	case SD_RETRIES_UA:
14973 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
14974 			/* Retries exhausted, fail the command */
14975 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14976 			    "Unit Attention retries exhausted. "
14977 			    "Check the target.\n");
14978 			goto fail_command;
14979 		}
14980 		xp->xb_ua_retry_count++;
14981 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14982 		    "sd_retry_command: retry count:%d\n",
14983 			xp->xb_ua_retry_count);
14984 		break;
14985 
14986 	case SD_RETRIES_BUSY:
14987 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
14988 			/* Retries exhausted, fail the command */
14989 			SD_TRACE(SD_LOG_IO_CORE, un,
14990 			    "sd_retry_command: retries exhausted!\n");
14991 			goto fail_command;
14992 		}
14993 		xp->xb_retry_count++;
14994 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14995 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
14996 		break;
14997 
14998 	case SD_RETRIES_NOCHECK:
14999 	default:
15000 		/* No retry count to check. Just proceed with the retry */
15001 		break;
15002 	}
15003 
15004 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15005 
15006 	/*
15007 	 * If we were given a zero timeout, we must attempt to retry the
15008 	 * command immediately (ie, without a delay).
15009 	 */
15010 	if (retry_delay == 0) {
15011 		/*
15012 		 * Check some limiting conditions to see if we can actually
15013 		 * do the immediate retry.  If we cannot, then we must
15014 		 * fall back to queueing up a delayed retry.
15015 		 */
15016 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15017 			/*
15018 			 * We are at the throttle limit for the target,
15019 			 * fall back to delayed retry.
15020 			 */
15021 			retry_delay = SD_BSY_TIMEOUT;
15022 			statp = kstat_waitq_enter;
15023 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15024 			    "sd_retry_command: immed. retry hit throttle!\n");
15025 		} else {
15026 			/*
15027 			 * We're clear to proceed with the immediate retry.
15028 			 * First call the user-provided function (if any)
15029 			 */
15030 			if (user_funcp != NULL) {
15031 				(*user_funcp)(un, bp, user_arg,
15032 				    SD_IMMEDIATE_RETRY_ISSUED);
15033 			}
15034 
15035 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15036 			    "sd_retry_command: issuing immediate retry\n");
15037 
15038 			/*
15039 			 * Call sd_start_cmds() to transport the command to
15040 			 * the target.
15041 			 */
15042 			sd_start_cmds(un, bp);
15043 
15044 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15045 			    "sd_retry_command exit\n");
15046 			return;
15047 		}
15048 	}
15049 
15050 	/*
15051 	 * Set up to retry the command after a delay.
15052 	 * First call the user-provided function (if any)
15053 	 */
15054 	if (user_funcp != NULL) {
15055 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15056 	}
15057 
15058 	sd_set_retry_bp(un, bp, retry_delay, statp);
15059 
15060 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15061 	return;
15062 
15063 fail_command:
15064 
15065 	if (user_funcp != NULL) {
15066 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15067 	}
15068 
15069 fail_command_no_log:
15070 
15071 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15072 	    "sd_retry_command: returning failed command\n");
15073 
15074 	sd_return_failed_command(un, bp, failure_code);
15075 
15076 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15077 }
15078 
15079 
15080 /*
15081  *    Function: sd_set_retry_bp
15082  *
15083  * Description: Set up the given bp for retry.
15084  *
15085  *   Arguments: un - ptr to associated softstate
15086  *		bp - ptr to buf(9S) for the command
15087  *		retry_delay - time interval before issuing retry (may be 0)
15088  *		statp - optional pointer to kstat function
15089  *
15090  *     Context: May be called under interrupt context
15091  */
15092 
15093 static void
15094 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15095 	void (*statp)(kstat_io_t *))
15096 {
15097 	ASSERT(un != NULL);
15098 	ASSERT(mutex_owned(SD_MUTEX(un)));
15099 	ASSERT(bp != NULL);
15100 
15101 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15102 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15103 
15104 	/*
15105 	 * Indicate that the command is being retried. This will not allow any
15106 	 * other commands on the wait queue to be transported to the target
15107 	 * until this command has been completed (success or failure). The
15108 	 * "retry command" is not transported to the target until the given
15109 	 * time delay expires, unless the user specified a 0 retry_delay.
15110 	 *
15111 	 * Note: the timeout(9F) callback routine is what actually calls
15112 	 * sd_start_cmds() to transport the command, with the exception of a
15113 	 * zero retry_delay. The only current implementor of a zero retry delay
15114 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15115 	 */
15116 	if (un->un_retry_bp == NULL) {
15117 		ASSERT(un->un_retry_statp == NULL);
15118 		un->un_retry_bp = bp;
15119 
15120 		/*
15121 		 * If the user has not specified a delay the command should
15122 		 * be queued and no timeout should be scheduled.
15123 		 */
15124 		if (retry_delay == 0) {
15125 			/*
15126 			 * Save the kstat pointer that will be used in the
15127 			 * call to SD_UPDATE_KSTATS() below, so that
15128 			 * sd_start_cmds() can correctly decrement the waitq
15129 			 * count when it is time to transport this command.
15130 			 */
15131 			un->un_retry_statp = statp;
15132 			goto done;
15133 		}
15134 	}
15135 
15136 	if (un->un_retry_bp == bp) {
15137 		/*
15138 		 * Save the kstat pointer that will be used in the call to
15139 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15140 		 * correctly decrement the waitq count when it is time to
15141 		 * transport this command.
15142 		 */
15143 		un->un_retry_statp = statp;
15144 
15145 		/*
15146 		 * Schedule a timeout if:
15147 		 *   1) The user has specified a delay.
15148 		 *   2) There is not a START_STOP_UNIT callback pending.
15149 		 *
15150 		 * If no delay has been specified, then it is up to the caller
15151 		 * to ensure that IO processing continues without stalling.
15152 		 * Effectively, this means that the caller will issue the
15153 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15154 		 * callback does this after the START STOP UNIT command has
15155 		 * completed. In either of these cases we should not schedule
15156 		 * a timeout callback here.  Also don't schedule the timeout if
15157 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15158 		 */
15159 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15160 		    (un->un_direct_priority_timeid == NULL)) {
15161 			un->un_retry_timeid =
15162 			    timeout(sd_start_retry_command, un, retry_delay);
15163 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15164 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15165 			    " bp:0x%p un_retry_timeid:0x%p\n",
15166 			    un, bp, un->un_retry_timeid);
15167 		}
15168 	} else {
15169 		/*
15170 		 * We only get in here if there is already another command
15171 		 * waiting to be retried.  In this case, we just put the
15172 		 * given command onto the wait queue, so it can be transported
15173 		 * after the current retry command has completed.
15174 		 *
15175 		 * Also we have to make sure that if the command at the head
15176 		 * of the wait queue is the un_failfast_bp, that we do not
15177 		 * put ahead of it any other commands that are to be retried.
15178 		 */
15179 		if ((un->un_failfast_bp != NULL) &&
15180 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15181 			/*
15182 			 * Enqueue this command AFTER the first command on
15183 			 * the wait queue (which is also un_failfast_bp).
15184 			 */
15185 			bp->av_forw = un->un_waitq_headp->av_forw;
15186 			un->un_waitq_headp->av_forw = bp;
15187 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15188 				un->un_waitq_tailp = bp;
15189 			}
15190 		} else {
15191 			/* Enqueue this command at the head of the waitq. */
15192 			bp->av_forw = un->un_waitq_headp;
15193 			un->un_waitq_headp = bp;
15194 			if (un->un_waitq_tailp == NULL) {
15195 				un->un_waitq_tailp = bp;
15196 			}
15197 		}
15198 
15199 		if (statp == NULL) {
15200 			statp = kstat_waitq_enter;
15201 		}
15202 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15203 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15204 	}
15205 
15206 done:
15207 	if (statp != NULL) {
15208 		SD_UPDATE_KSTATS(un, statp, bp);
15209 	}
15210 
15211 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15212 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15213 }
15214 
15215 
15216 /*
15217  *    Function: sd_start_retry_command
15218  *
15219  * Description: Start the command that has been waiting on the target's
15220  *		retry queue.  Called from timeout(9F) context after the
15221  *		retry delay interval has expired.
15222  *
15223  *   Arguments: arg - pointer to associated softstate for the device.
15224  *
15225  *     Context: timeout(9F) thread context.  May not sleep.
15226  */
15227 
15228 static void
15229 sd_start_retry_command(void *arg)
15230 {
15231 	struct sd_lun *un = arg;
15232 
15233 	ASSERT(un != NULL);
15234 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15235 
15236 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15237 	    "sd_start_retry_command: entry\n");
15238 
15239 	mutex_enter(SD_MUTEX(un));
15240 
15241 	un->un_retry_timeid = NULL;
15242 
15243 	if (un->un_retry_bp != NULL) {
15244 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15245 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15246 		    un, un->un_retry_bp);
15247 		sd_start_cmds(un, un->un_retry_bp);
15248 	}
15249 
15250 	mutex_exit(SD_MUTEX(un));
15251 
15252 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15253 	    "sd_start_retry_command: exit\n");
15254 }
15255 
15256 
15257 /*
15258  *    Function: sd_start_direct_priority_command
15259  *
15260  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15261  *		received TRAN_BUSY when we called scsi_transport() to send it
15262  *		to the underlying HBA. This function is called from timeout(9F)
15263  *		context after the delay interval has expired.
15264  *
15265  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15266  *
15267  *     Context: timeout(9F) thread context.  May not sleep.
15268  */
15269 
15270 static void
15271 sd_start_direct_priority_command(void *arg)
15272 {
15273 	struct buf	*priority_bp = arg;
15274 	struct sd_lun	*un;
15275 
15276 	ASSERT(priority_bp != NULL);
15277 	un = SD_GET_UN(priority_bp);
15278 	ASSERT(un != NULL);
15279 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15280 
15281 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15282 	    "sd_start_direct_priority_command: entry\n");
15283 
15284 	mutex_enter(SD_MUTEX(un));
15285 	un->un_direct_priority_timeid = NULL;
15286 	sd_start_cmds(un, priority_bp);
15287 	mutex_exit(SD_MUTEX(un));
15288 
15289 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15290 	    "sd_start_direct_priority_command: exit\n");
15291 }
15292 
15293 
15294 /*
15295  *    Function: sd_send_request_sense_command
15296  *
15297  * Description: Sends a REQUEST SENSE command to the target
15298  *
15299  *     Context: May be called from interrupt context.
15300  */
15301 
15302 static void
15303 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15304 	struct scsi_pkt *pktp)
15305 {
15306 	ASSERT(bp != NULL);
15307 	ASSERT(un != NULL);
15308 	ASSERT(mutex_owned(SD_MUTEX(un)));
15309 
15310 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15311 	    "entry: buf:0x%p\n", bp);
15312 
15313 	/*
15314 	 * If we are syncing or dumping, then fail the command to avoid a
15315 	 * recursive callback into scsi_transport(). Also fail the command
15316 	 * if we are suspended (legacy behavior).
15317 	 */
15318 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15319 	    (un->un_state == SD_STATE_DUMPING)) {
15320 		sd_return_failed_command(un, bp, EIO);
15321 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15322 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15323 		return;
15324 	}
15325 
15326 	/*
15327 	 * Retry the failed command and don't issue the request sense if:
15328 	 *    1) the sense buf is busy
15329 	 *    2) we have 1 or more outstanding commands on the target
15330 	 *    (the sense data will be cleared or invalidated any way)
15331 	 *
15332 	 * Note: There could be an issue with not checking a retry limit here,
15333 	 * the problem is determining which retry limit to check.
15334 	 */
15335 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15336 		/* Don't retry if the command is flagged as non-retryable */
15337 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15338 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15339 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
15340 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15341 			    "sd_send_request_sense_command: "
15342 			    "at full throttle, retrying exit\n");
15343 		} else {
15344 			sd_return_failed_command(un, bp, EIO);
15345 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15346 			    "sd_send_request_sense_command: "
15347 			    "at full throttle, non-retryable exit\n");
15348 		}
15349 		return;
15350 	}
15351 
15352 	sd_mark_rqs_busy(un, bp);
15353 	sd_start_cmds(un, un->un_rqs_bp);
15354 
15355 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15356 	    "sd_send_request_sense_command: exit\n");
15357 }
15358 
15359 
15360 /*
15361  *    Function: sd_mark_rqs_busy
15362  *
15363  * Description: Indicate that the request sense bp for this instance is
15364  *		in use.
15365  *
15366  *     Context: May be called under interrupt context
15367  */
15368 
15369 static void
15370 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15371 {
15372 	struct sd_xbuf	*sense_xp;
15373 
15374 	ASSERT(un != NULL);
15375 	ASSERT(bp != NULL);
15376 	ASSERT(mutex_owned(SD_MUTEX(un)));
15377 	ASSERT(un->un_sense_isbusy == 0);
15378 
15379 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15380 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15381 
15382 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15383 	ASSERT(sense_xp != NULL);
15384 
15385 	SD_INFO(SD_LOG_IO, un,
15386 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15387 
15388 	ASSERT(sense_xp->xb_pktp != NULL);
15389 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15390 	    == (FLAG_SENSING | FLAG_HEAD));
15391 
15392 	un->un_sense_isbusy = 1;
15393 	un->un_rqs_bp->b_resid = 0;
15394 	sense_xp->xb_pktp->pkt_resid  = 0;
15395 	sense_xp->xb_pktp->pkt_reason = 0;
15396 
15397 	/* So we can get back the bp at interrupt time! */
15398 	sense_xp->xb_sense_bp = bp;
15399 
15400 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15401 
15402 	/*
15403 	 * Mark this buf as awaiting sense data. (This is already set in
15404 	 * the pkt_flags for the RQS packet.)
15405 	 */
15406 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15407 
15408 	sense_xp->xb_retry_count	= 0;
15409 	sense_xp->xb_victim_retry_count = 0;
15410 	sense_xp->xb_ua_retry_count	= 0;
15411 	sense_xp->xb_dma_resid  = 0;
15412 
15413 	/* Clean up the fields for auto-request sense */
15414 	sense_xp->xb_sense_status = 0;
15415 	sense_xp->xb_sense_state  = 0;
15416 	sense_xp->xb_sense_resid  = 0;
15417 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15418 
15419 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15420 }
15421 
15422 
15423 /*
15424  *    Function: sd_mark_rqs_idle
15425  *
15426  * Description: SD_MUTEX must be held continuously through this routine
15427  *		to prevent reuse of the rqs struct before the caller can
15428  *		complete it's processing.
15429  *
15430  * Return Code: Pointer to the RQS buf
15431  *
15432  *     Context: May be called under interrupt context
15433  */
15434 
15435 static struct buf *
15436 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15437 {
15438 	struct buf *bp;
15439 	ASSERT(un != NULL);
15440 	ASSERT(sense_xp != NULL);
15441 	ASSERT(mutex_owned(SD_MUTEX(un)));
15442 	ASSERT(un->un_sense_isbusy != 0);
15443 
15444 	un->un_sense_isbusy = 0;
15445 	bp = sense_xp->xb_sense_bp;
15446 	sense_xp->xb_sense_bp = NULL;
15447 
15448 	/* This pkt is no longer interested in getting sense data */
15449 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15450 
15451 	return (bp);
15452 }
15453 
15454 
15455 
15456 /*
15457  *    Function: sd_alloc_rqs
15458  *
15459  * Description: Set up the unit to receive auto request sense data
15460  *
15461  * Return Code: DDI_SUCCESS or DDI_FAILURE
15462  *
15463  *     Context: Called under attach(9E) context
15464  */
15465 
15466 static int
15467 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15468 {
15469 	struct sd_xbuf *xp;
15470 
15471 	ASSERT(un != NULL);
15472 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15473 	ASSERT(un->un_rqs_bp == NULL);
15474 	ASSERT(un->un_rqs_pktp == NULL);
15475 
15476 	/*
15477 	 * First allocate the required buf and scsi_pkt structs, then set up
15478 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15479 	 */
15480 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15481 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15482 	if (un->un_rqs_bp == NULL) {
15483 		return (DDI_FAILURE);
15484 	}
15485 
15486 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15487 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15488 
15489 	if (un->un_rqs_pktp == NULL) {
15490 		sd_free_rqs(un);
15491 		return (DDI_FAILURE);
15492 	}
15493 
15494 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15495 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15496 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
15497 
15498 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15499 
15500 	/* Set up the other needed members in the ARQ scsi_pkt. */
15501 	un->un_rqs_pktp->pkt_comp   = sdintr;
15502 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15503 	un->un_rqs_pktp->pkt_flags |=
15504 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15505 
15506 	/*
15507 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15508 	 * provide any intpkt, destroypkt routines as we take care of
15509 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15510 	 */
15511 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15512 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15513 	xp->xb_pktp = un->un_rqs_pktp;
15514 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15515 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15516 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15517 
15518 	/*
15519 	 * Save the pointer to the request sense private bp so it can
15520 	 * be retrieved in sdintr.
15521 	 */
15522 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15523 	ASSERT(un->un_rqs_bp->b_private == xp);
15524 
15525 	/*
15526 	 * See if the HBA supports auto-request sense for the specified
15527 	 * target/lun. If it does, then try to enable it (if not already
15528 	 * enabled).
15529 	 *
15530 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15531 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15532 	 * return success.  However, in both of these cases ARQ is always
15533 	 * enabled and scsi_ifgetcap will always return true. The best approach
15534 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15535 	 *
15536 	 * The 3rd case is the HBA (adp) always return enabled on
15537 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15538 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15539 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15540 	 */
15541 
15542 	if (un->un_f_is_fibre == TRUE) {
15543 		un->un_f_arq_enabled = TRUE;
15544 	} else {
15545 #if defined(__i386) || defined(__amd64)
15546 		/*
15547 		 * Circumvent the Adaptec bug, remove this code when
15548 		 * the bug is fixed
15549 		 */
15550 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15551 #endif
15552 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15553 		case 0:
15554 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15555 				"sd_alloc_rqs: HBA supports ARQ\n");
15556 			/*
15557 			 * ARQ is supported by this HBA but currently is not
15558 			 * enabled. Attempt to enable it and if successful then
15559 			 * mark this instance as ARQ enabled.
15560 			 */
15561 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15562 				== 1) {
15563 				/* Successfully enabled ARQ in the HBA */
15564 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15565 					"sd_alloc_rqs: ARQ enabled\n");
15566 				un->un_f_arq_enabled = TRUE;
15567 			} else {
15568 				/* Could not enable ARQ in the HBA */
15569 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15570 				"sd_alloc_rqs: failed ARQ enable\n");
15571 				un->un_f_arq_enabled = FALSE;
15572 			}
15573 			break;
15574 		case 1:
15575 			/*
15576 			 * ARQ is supported by this HBA and is already enabled.
15577 			 * Just mark ARQ as enabled for this instance.
15578 			 */
15579 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15580 				"sd_alloc_rqs: ARQ already enabled\n");
15581 			un->un_f_arq_enabled = TRUE;
15582 			break;
15583 		default:
15584 			/*
15585 			 * ARQ is not supported by this HBA; disable it for this
15586 			 * instance.
15587 			 */
15588 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15589 				"sd_alloc_rqs: HBA does not support ARQ\n");
15590 			un->un_f_arq_enabled = FALSE;
15591 			break;
15592 		}
15593 	}
15594 
15595 	return (DDI_SUCCESS);
15596 }
15597 
15598 
15599 /*
15600  *    Function: sd_free_rqs
15601  *
15602  * Description: Cleanup for the pre-instance RQS command.
15603  *
15604  *     Context: Kernel thread context
15605  */
15606 
15607 static void
15608 sd_free_rqs(struct sd_lun *un)
15609 {
15610 	ASSERT(un != NULL);
15611 
15612 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15613 
15614 	/*
15615 	 * If consistent memory is bound to a scsi_pkt, the pkt
15616 	 * has to be destroyed *before* freeing the consistent memory.
15617 	 * Don't change the sequence of this operations.
15618 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15619 	 * after it was freed in scsi_free_consistent_buf().
15620 	 */
15621 	if (un->un_rqs_pktp != NULL) {
15622 		scsi_destroy_pkt(un->un_rqs_pktp);
15623 		un->un_rqs_pktp = NULL;
15624 	}
15625 
15626 	if (un->un_rqs_bp != NULL) {
15627 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
15628 		scsi_free_consistent_buf(un->un_rqs_bp);
15629 		un->un_rqs_bp = NULL;
15630 	}
15631 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15632 }
15633 
15634 
15635 
15636 /*
15637  *    Function: sd_reduce_throttle
15638  *
15639  * Description: Reduces the maximun # of outstanding commands on a
15640  *		target to the current number of outstanding commands.
15641  *		Queues a tiemout(9F) callback to restore the limit
15642  *		after a specified interval has elapsed.
15643  *		Typically used when we get a TRAN_BUSY return code
15644  *		back from scsi_transport().
15645  *
15646  *   Arguments: un - ptr to the sd_lun softstate struct
15647  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15648  *
15649  *     Context: May be called from interrupt context
15650  */
15651 
15652 static void
15653 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15654 {
15655 	ASSERT(un != NULL);
15656 	ASSERT(mutex_owned(SD_MUTEX(un)));
15657 	ASSERT(un->un_ncmds_in_transport >= 0);
15658 
15659 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15660 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15661 	    un, un->un_throttle, un->un_ncmds_in_transport);
15662 
15663 	if (un->un_throttle > 1) {
15664 		if (un->un_f_use_adaptive_throttle == TRUE) {
15665 			switch (throttle_type) {
15666 			case SD_THROTTLE_TRAN_BUSY:
15667 				if (un->un_busy_throttle == 0) {
15668 					un->un_busy_throttle = un->un_throttle;
15669 				}
15670 				break;
15671 			case SD_THROTTLE_QFULL:
15672 				un->un_busy_throttle = 0;
15673 				break;
15674 			default:
15675 				ASSERT(FALSE);
15676 			}
15677 
15678 			if (un->un_ncmds_in_transport > 0) {
15679 				un->un_throttle = un->un_ncmds_in_transport;
15680 			}
15681 		} else {
15682 			if (un->un_ncmds_in_transport == 0) {
15683 				un->un_throttle = 1;
15684 			} else {
15685 				un->un_throttle = un->un_ncmds_in_transport;
15686 			}
15687 		}
15688 	}
15689 
15690 	/* Reschedule the timeout if none is currently active */
15691 	if (un->un_reset_throttle_timeid == NULL) {
15692 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15693 		    un, sd_reset_throttle_timeout);
15694 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15695 		    "sd_reduce_throttle: timeout scheduled!\n");
15696 	}
15697 
15698 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15699 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15700 }
15701 
15702 
15703 
15704 /*
15705  *    Function: sd_restore_throttle
15706  *
15707  * Description: Callback function for timeout(9F).  Resets the current
15708  *		value of un->un_throttle to its default.
15709  *
15710  *   Arguments: arg - pointer to associated softstate for the device.
15711  *
15712  *     Context: May be called from interrupt context
15713  */
15714 
15715 static void
15716 sd_restore_throttle(void *arg)
15717 {
15718 	struct sd_lun	*un = arg;
15719 
15720 	ASSERT(un != NULL);
15721 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15722 
15723 	mutex_enter(SD_MUTEX(un));
15724 
15725 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15726 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15727 
15728 	un->un_reset_throttle_timeid = NULL;
15729 
15730 	if (un->un_f_use_adaptive_throttle == TRUE) {
15731 		/*
15732 		 * If un_busy_throttle is nonzero, then it contains the
15733 		 * value that un_throttle was when we got a TRAN_BUSY back
15734 		 * from scsi_transport(). We want to revert back to this
15735 		 * value.
15736 		 */
15737 		if (un->un_busy_throttle > 0) {
15738 			un->un_throttle = un->un_busy_throttle;
15739 			un->un_busy_throttle = 0;
15740 		}
15741 
15742 		/*
15743 		 * If un_throttle has fallen below the low-water mark, we
15744 		 * restore the maximum value here (and allow it to ratchet
15745 		 * down again if necessary).
15746 		 */
15747 		if (un->un_throttle < un->un_min_throttle) {
15748 			un->un_throttle = un->un_saved_throttle;
15749 		}
15750 	} else {
15751 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15752 		    "restoring limit from 0x%x to 0x%x\n",
15753 		    un->un_throttle, un->un_saved_throttle);
15754 		un->un_throttle = un->un_saved_throttle;
15755 	}
15756 
15757 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15758 	    "sd_restore_throttle: calling sd_start_cmds!\n");
15759 
15760 	sd_start_cmds(un, NULL);
15761 
15762 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15763 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
15764 	    un, un->un_throttle);
15765 
15766 	mutex_exit(SD_MUTEX(un));
15767 
15768 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
15769 }
15770 
15771 /*
15772  *    Function: sdrunout
15773  *
15774  * Description: Callback routine for scsi_init_pkt when a resource allocation
15775  *		fails.
15776  *
15777  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
15778  *		soft state instance.
15779  *
15780  * Return Code: The scsi_init_pkt routine allows for the callback function to
15781  *		return a 0 indicating the callback should be rescheduled or a 1
15782  *		indicating not to reschedule. This routine always returns 1
15783  *		because the driver always provides a callback function to
15784  *		scsi_init_pkt. This results in a callback always being scheduled
15785  *		(via the scsi_init_pkt callback implementation) if a resource
15786  *		failure occurs.
15787  *
15788  *     Context: This callback function may not block or call routines that block
15789  *
15790  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
15791  *		request persisting at the head of the list which cannot be
15792  *		satisfied even after multiple retries. In the future the driver
15793  *		may implement some time of maximum runout count before failing
15794  *		an I/O.
15795  */
15796 
15797 static int
15798 sdrunout(caddr_t arg)
15799 {
15800 	struct sd_lun	*un = (struct sd_lun *)arg;
15801 
15802 	ASSERT(un != NULL);
15803 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15804 
15805 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
15806 
15807 	mutex_enter(SD_MUTEX(un));
15808 	sd_start_cmds(un, NULL);
15809 	mutex_exit(SD_MUTEX(un));
15810 	/*
15811 	 * This callback routine always returns 1 (i.e. do not reschedule)
15812 	 * because we always specify sdrunout as the callback handler for
15813 	 * scsi_init_pkt inside the call to sd_start_cmds.
15814 	 */
15815 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
15816 	return (1);
15817 }
15818 
15819 
15820 /*
15821  *    Function: sdintr
15822  *
15823  * Description: Completion callback routine for scsi_pkt(9S) structs
15824  *		sent to the HBA driver via scsi_transport(9F).
15825  *
15826  *     Context: Interrupt context
15827  */
15828 
15829 static void
15830 sdintr(struct scsi_pkt *pktp)
15831 {
15832 	struct buf	*bp;
15833 	struct sd_xbuf	*xp;
15834 	struct sd_lun	*un;
15835 
15836 	ASSERT(pktp != NULL);
15837 	bp = (struct buf *)pktp->pkt_private;
15838 	ASSERT(bp != NULL);
15839 	xp = SD_GET_XBUF(bp);
15840 	ASSERT(xp != NULL);
15841 	ASSERT(xp->xb_pktp != NULL);
15842 	un = SD_GET_UN(bp);
15843 	ASSERT(un != NULL);
15844 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15845 
15846 #ifdef SD_FAULT_INJECTION
15847 
15848 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
15849 	/* SD FaultInjection */
15850 	sd_faultinjection(pktp);
15851 
15852 #endif /* SD_FAULT_INJECTION */
15853 
15854 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
15855 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
15856 
15857 	mutex_enter(SD_MUTEX(un));
15858 
15859 	/* Reduce the count of the #commands currently in transport */
15860 	un->un_ncmds_in_transport--;
15861 	ASSERT(un->un_ncmds_in_transport >= 0);
15862 
15863 	/* Increment counter to indicate that the callback routine is active */
15864 	un->un_in_callback++;
15865 
15866 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15867 
15868 #ifdef	SDDEBUG
15869 	if (bp == un->un_retry_bp) {
15870 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
15871 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
15872 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
15873 	}
15874 #endif
15875 
15876 	/*
15877 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
15878 	 */
15879 	if (pktp->pkt_reason == CMD_DEV_GONE) {
15880 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15881 			    "Device is gone\n");
15882 		sd_return_failed_command(un, bp, EIO);
15883 		goto exit;
15884 	}
15885 
15886 	/*
15887 	 * First see if the pkt has auto-request sense data with it....
15888 	 * Look at the packet state first so we don't take a performance
15889 	 * hit looking at the arq enabled flag unless absolutely necessary.
15890 	 */
15891 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
15892 	    (un->un_f_arq_enabled == TRUE)) {
15893 		/*
15894 		 * The HBA did an auto request sense for this command so check
15895 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15896 		 * driver command that should not be retried.
15897 		 */
15898 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15899 			/*
15900 			 * Save the relevant sense info into the xp for the
15901 			 * original cmd.
15902 			 */
15903 			struct scsi_arq_status *asp;
15904 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15905 			xp->xb_sense_status =
15906 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
15907 			xp->xb_sense_state  = asp->sts_rqpkt_state;
15908 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15909 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15910 			    min(sizeof (struct scsi_extended_sense),
15911 			    SENSE_LENGTH));
15912 
15913 			/* fail the command */
15914 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15915 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
15916 			sd_return_failed_command(un, bp, EIO);
15917 			goto exit;
15918 		}
15919 
15920 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15921 		/*
15922 		 * We want to either retry or fail this command, so free
15923 		 * the DMA resources here.  If we retry the command then
15924 		 * the DMA resources will be reallocated in sd_start_cmds().
15925 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
15926 		 * causes the *entire* transfer to start over again from the
15927 		 * beginning of the request, even for PARTIAL chunks that
15928 		 * have already transferred successfully.
15929 		 */
15930 		if ((un->un_f_is_fibre == TRUE) &&
15931 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15932 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15933 			scsi_dmafree(pktp);
15934 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15935 		}
15936 #endif
15937 
15938 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15939 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
15940 
15941 		sd_handle_auto_request_sense(un, bp, xp, pktp);
15942 		goto exit;
15943 	}
15944 
15945 	/* Next see if this is the REQUEST SENSE pkt for the instance */
15946 	if (pktp->pkt_flags & FLAG_SENSING)  {
15947 		/* This pktp is from the unit's REQUEST_SENSE command */
15948 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15949 		    "sdintr: sd_handle_request_sense\n");
15950 		sd_handle_request_sense(un, bp, xp, pktp);
15951 		goto exit;
15952 	}
15953 
15954 	/*
15955 	 * Check to see if the command successfully completed as requested;
15956 	 * this is the most common case (and also the hot performance path).
15957 	 *
15958 	 * Requirements for successful completion are:
15959 	 * pkt_reason is CMD_CMPLT and packet status is status good.
15960 	 * In addition:
15961 	 * - A residual of zero indicates successful completion no matter what
15962 	 *   the command is.
15963 	 * - If the residual is not zero and the command is not a read or
15964 	 *   write, then it's still defined as successful completion. In other
15965 	 *   words, if the command is a read or write the residual must be
15966 	 *   zero for successful completion.
15967 	 * - If the residual is not zero and the command is a read or
15968 	 *   write, and it's a USCSICMD, then it's still defined as
15969 	 *   successful completion.
15970 	 */
15971 	if ((pktp->pkt_reason == CMD_CMPLT) &&
15972 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
15973 
15974 		/*
15975 		 * Since this command is returned with a good status, we
15976 		 * can reset the count for Sonoma failover.
15977 		 */
15978 		un->un_sonoma_failure_count = 0;
15979 
15980 		/*
15981 		 * Return all USCSI commands on good status
15982 		 */
15983 		if (pktp->pkt_resid == 0) {
15984 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15985 			    "sdintr: returning command for resid == 0\n");
15986 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
15987 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
15988 			SD_UPDATE_B_RESID(bp, pktp);
15989 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15990 			    "sdintr: returning command for resid != 0\n");
15991 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15992 			SD_UPDATE_B_RESID(bp, pktp);
15993 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15994 				"sdintr: returning uscsi command\n");
15995 		} else {
15996 			goto not_successful;
15997 		}
15998 		sd_return_command(un, bp);
15999 
16000 		/*
16001 		 * Decrement counter to indicate that the callback routine
16002 		 * is done.
16003 		 */
16004 		un->un_in_callback--;
16005 		ASSERT(un->un_in_callback >= 0);
16006 		mutex_exit(SD_MUTEX(un));
16007 
16008 		return;
16009 	}
16010 
16011 not_successful:
16012 
16013 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16014 	/*
16015 	 * The following is based upon knowledge of the underlying transport
16016 	 * and its use of DMA resources.  This code should be removed when
16017 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16018 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16019 	 * and sd_start_cmds().
16020 	 *
16021 	 * Free any DMA resources associated with this command if there
16022 	 * is a chance it could be retried or enqueued for later retry.
16023 	 * If we keep the DMA binding then mpxio cannot reissue the
16024 	 * command on another path whenever a path failure occurs.
16025 	 *
16026 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16027 	 * causes the *entire* transfer to start over again from the
16028 	 * beginning of the request, even for PARTIAL chunks that
16029 	 * have already transferred successfully.
16030 	 *
16031 	 * This is only done for non-uscsi commands (and also skipped for the
16032 	 * driver's internal RQS command). Also just do this for Fibre Channel
16033 	 * devices as these are the only ones that support mpxio.
16034 	 */
16035 	if ((un->un_f_is_fibre == TRUE) &&
16036 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16037 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16038 		scsi_dmafree(pktp);
16039 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16040 	}
16041 #endif
16042 
16043 	/*
16044 	 * The command did not successfully complete as requested so check
16045 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16046 	 * driver command that should not be retried so just return. If
16047 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16048 	 */
16049 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16050 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16051 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16052 		/*
16053 		 * Issue a request sense if a check condition caused the error
16054 		 * (we handle the auto request sense case above), otherwise
16055 		 * just fail the command.
16056 		 */
16057 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16058 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16059 			sd_send_request_sense_command(un, bp, pktp);
16060 		} else {
16061 			sd_return_failed_command(un, bp, EIO);
16062 		}
16063 		goto exit;
16064 	}
16065 
16066 	/*
16067 	 * The command did not successfully complete as requested so process
16068 	 * the error, retry, and/or attempt recovery.
16069 	 */
16070 	switch (pktp->pkt_reason) {
16071 	case CMD_CMPLT:
16072 		switch (SD_GET_PKT_STATUS(pktp)) {
16073 		case STATUS_GOOD:
16074 			/*
16075 			 * The command completed successfully with a non-zero
16076 			 * residual
16077 			 */
16078 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16079 			    "sdintr: STATUS_GOOD \n");
16080 			sd_pkt_status_good(un, bp, xp, pktp);
16081 			break;
16082 
16083 		case STATUS_CHECK:
16084 		case STATUS_TERMINATED:
16085 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16086 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16087 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16088 			break;
16089 
16090 		case STATUS_BUSY:
16091 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16092 			    "sdintr: STATUS_BUSY\n");
16093 			sd_pkt_status_busy(un, bp, xp, pktp);
16094 			break;
16095 
16096 		case STATUS_RESERVATION_CONFLICT:
16097 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16098 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16099 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16100 			break;
16101 
16102 		case STATUS_QFULL:
16103 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16104 			    "sdintr: STATUS_QFULL\n");
16105 			sd_pkt_status_qfull(un, bp, xp, pktp);
16106 			break;
16107 
16108 		case STATUS_MET:
16109 		case STATUS_INTERMEDIATE:
16110 		case STATUS_SCSI2:
16111 		case STATUS_INTERMEDIATE_MET:
16112 		case STATUS_ACA_ACTIVE:
16113 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16114 			    "Unexpected SCSI status received: 0x%x\n",
16115 			    SD_GET_PKT_STATUS(pktp));
16116 			sd_return_failed_command(un, bp, EIO);
16117 			break;
16118 
16119 		default:
16120 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16121 			    "Invalid SCSI status received: 0x%x\n",
16122 			    SD_GET_PKT_STATUS(pktp));
16123 			sd_return_failed_command(un, bp, EIO);
16124 			break;
16125 
16126 		}
16127 		break;
16128 
16129 	case CMD_INCOMPLETE:
16130 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16131 		    "sdintr:  CMD_INCOMPLETE\n");
16132 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16133 		break;
16134 	case CMD_TRAN_ERR:
16135 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16136 		    "sdintr: CMD_TRAN_ERR\n");
16137 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16138 		break;
16139 	case CMD_RESET:
16140 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16141 		    "sdintr: CMD_RESET \n");
16142 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16143 		break;
16144 	case CMD_ABORTED:
16145 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16146 		    "sdintr: CMD_ABORTED \n");
16147 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16148 		break;
16149 	case CMD_TIMEOUT:
16150 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16151 		    "sdintr: CMD_TIMEOUT\n");
16152 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16153 		break;
16154 	case CMD_UNX_BUS_FREE:
16155 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16156 		    "sdintr: CMD_UNX_BUS_FREE \n");
16157 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16158 		break;
16159 	case CMD_TAG_REJECT:
16160 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16161 		    "sdintr: CMD_TAG_REJECT\n");
16162 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16163 		break;
16164 	default:
16165 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16166 		    "sdintr: default\n");
16167 		sd_pkt_reason_default(un, bp, xp, pktp);
16168 		break;
16169 	}
16170 
16171 exit:
16172 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16173 
16174 	/* Decrement counter to indicate that the callback routine is done. */
16175 	un->un_in_callback--;
16176 	ASSERT(un->un_in_callback >= 0);
16177 
16178 	/*
16179 	 * At this point, the pkt has been dispatched, ie, it is either
16180 	 * being re-tried or has been returned to its caller and should
16181 	 * not be referenced.
16182 	 */
16183 
16184 	mutex_exit(SD_MUTEX(un));
16185 }
16186 
16187 
16188 /*
16189  *    Function: sd_print_incomplete_msg
16190  *
16191  * Description: Prints the error message for a CMD_INCOMPLETE error.
16192  *
16193  *   Arguments: un - ptr to associated softstate for the device.
16194  *		bp - ptr to the buf(9S) for the command.
16195  *		arg - message string ptr
16196  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16197  *			or SD_NO_RETRY_ISSUED.
16198  *
16199  *     Context: May be called under interrupt context
16200  */
16201 
16202 static void
16203 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16204 {
16205 	struct scsi_pkt	*pktp;
16206 	char	*msgp;
16207 	char	*cmdp = arg;
16208 
16209 	ASSERT(un != NULL);
16210 	ASSERT(mutex_owned(SD_MUTEX(un)));
16211 	ASSERT(bp != NULL);
16212 	ASSERT(arg != NULL);
16213 	pktp = SD_GET_PKTP(bp);
16214 	ASSERT(pktp != NULL);
16215 
16216 	switch (code) {
16217 	case SD_DELAYED_RETRY_ISSUED:
16218 	case SD_IMMEDIATE_RETRY_ISSUED:
16219 		msgp = "retrying";
16220 		break;
16221 	case SD_NO_RETRY_ISSUED:
16222 	default:
16223 		msgp = "giving up";
16224 		break;
16225 	}
16226 
16227 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16228 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16229 		    "incomplete %s- %s\n", cmdp, msgp);
16230 	}
16231 }
16232 
16233 
16234 
16235 /*
16236  *    Function: sd_pkt_status_good
16237  *
16238  * Description: Processing for a STATUS_GOOD code in pkt_status.
16239  *
16240  *     Context: May be called under interrupt context
16241  */
16242 
16243 static void
16244 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16245 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16246 {
16247 	char	*cmdp;
16248 
16249 	ASSERT(un != NULL);
16250 	ASSERT(mutex_owned(SD_MUTEX(un)));
16251 	ASSERT(bp != NULL);
16252 	ASSERT(xp != NULL);
16253 	ASSERT(pktp != NULL);
16254 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16255 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16256 	ASSERT(pktp->pkt_resid != 0);
16257 
16258 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16259 
16260 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16261 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16262 	case SCMD_READ:
16263 		cmdp = "read";
16264 		break;
16265 	case SCMD_WRITE:
16266 		cmdp = "write";
16267 		break;
16268 	default:
16269 		SD_UPDATE_B_RESID(bp, pktp);
16270 		sd_return_command(un, bp);
16271 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16272 		return;
16273 	}
16274 
16275 	/*
16276 	 * See if we can retry the read/write, preferrably immediately.
16277 	 * If retries are exhaused, then sd_retry_command() will update
16278 	 * the b_resid count.
16279 	 */
16280 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16281 	    cmdp, EIO, (clock_t)0, NULL);
16282 
16283 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16284 }
16285 
16286 
16287 
16288 
16289 
16290 /*
16291  *    Function: sd_handle_request_sense
16292  *
16293  * Description: Processing for non-auto Request Sense command.
16294  *
16295  *   Arguments: un - ptr to associated softstate
16296  *		sense_bp - ptr to buf(9S) for the RQS command
16297  *		sense_xp - ptr to the sd_xbuf for the RQS command
16298  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16299  *
16300  *     Context: May be called under interrupt context
16301  */
16302 
16303 static void
16304 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16305 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16306 {
16307 	struct buf	*cmd_bp;	/* buf for the original command */
16308 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16309 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16310 
16311 	ASSERT(un != NULL);
16312 	ASSERT(mutex_owned(SD_MUTEX(un)));
16313 	ASSERT(sense_bp != NULL);
16314 	ASSERT(sense_xp != NULL);
16315 	ASSERT(sense_pktp != NULL);
16316 
16317 	/*
16318 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16319 	 * RQS command and not the original command.
16320 	 */
16321 	ASSERT(sense_pktp == un->un_rqs_pktp);
16322 	ASSERT(sense_bp   == un->un_rqs_bp);
16323 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16324 	    (FLAG_SENSING | FLAG_HEAD));
16325 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16326 	    FLAG_SENSING) == FLAG_SENSING);
16327 
16328 	/* These are the bp, xp, and pktp for the original command */
16329 	cmd_bp = sense_xp->xb_sense_bp;
16330 	cmd_xp = SD_GET_XBUF(cmd_bp);
16331 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16332 
16333 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16334 		/*
16335 		 * The REQUEST SENSE command failed.  Release the REQUEST
16336 		 * SENSE command for re-use, get back the bp for the original
16337 		 * command, and attempt to re-try the original command if
16338 		 * FLAG_DIAGNOSE is not set in the original packet.
16339 		 */
16340 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16341 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16342 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16343 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16344 			    NULL, NULL, EIO, (clock_t)0, NULL);
16345 			return;
16346 		}
16347 	}
16348 
16349 	/*
16350 	 * Save the relevant sense info into the xp for the original cmd.
16351 	 *
16352 	 * Note: if the request sense failed the state info will be zero
16353 	 * as set in sd_mark_rqs_busy()
16354 	 */
16355 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16356 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16357 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
16358 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
16359 
16360 	/*
16361 	 *  Free up the RQS command....
16362 	 *  NOTE:
16363 	 *	Must do this BEFORE calling sd_validate_sense_data!
16364 	 *	sd_validate_sense_data may return the original command in
16365 	 *	which case the pkt will be freed and the flags can no
16366 	 *	longer be touched.
16367 	 *	SD_MUTEX is held through this process until the command
16368 	 *	is dispatched based upon the sense data, so there are
16369 	 *	no race conditions.
16370 	 */
16371 	(void) sd_mark_rqs_idle(un, sense_xp);
16372 
16373 	/*
16374 	 * For a retryable command see if we have valid sense data, if so then
16375 	 * turn it over to sd_decode_sense() to figure out the right course of
16376 	 * action. Just fail a non-retryable command.
16377 	 */
16378 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16379 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
16380 		    SD_SENSE_DATA_IS_VALID) {
16381 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16382 		}
16383 	} else {
16384 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16385 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16386 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16387 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16388 		sd_return_failed_command(un, cmd_bp, EIO);
16389 	}
16390 }
16391 
16392 
16393 
16394 
16395 /*
16396  *    Function: sd_handle_auto_request_sense
16397  *
16398  * Description: Processing for auto-request sense information.
16399  *
16400  *   Arguments: un - ptr to associated softstate
16401  *		bp - ptr to buf(9S) for the command
16402  *		xp - ptr to the sd_xbuf for the command
16403  *		pktp - ptr to the scsi_pkt(9S) for the command
16404  *
16405  *     Context: May be called under interrupt context
16406  */
16407 
16408 static void
16409 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16410 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16411 {
16412 	struct scsi_arq_status *asp;
16413 
16414 	ASSERT(un != NULL);
16415 	ASSERT(mutex_owned(SD_MUTEX(un)));
16416 	ASSERT(bp != NULL);
16417 	ASSERT(xp != NULL);
16418 	ASSERT(pktp != NULL);
16419 	ASSERT(pktp != un->un_rqs_pktp);
16420 	ASSERT(bp   != un->un_rqs_bp);
16421 
16422 	/*
16423 	 * For auto-request sense, we get a scsi_arq_status back from
16424 	 * the HBA, with the sense data in the sts_sensedata member.
16425 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16426 	 */
16427 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16428 
16429 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16430 		/*
16431 		 * The auto REQUEST SENSE failed; see if we can re-try
16432 		 * the original command.
16433 		 */
16434 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16435 		    "auto request sense failed (reason=%s)\n",
16436 		    scsi_rname(asp->sts_rqpkt_reason));
16437 
16438 		sd_reset_target(un, pktp);
16439 
16440 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16441 		    NULL, NULL, EIO, (clock_t)0, NULL);
16442 		return;
16443 	}
16444 
16445 	/* Save the relevant sense info into the xp for the original cmd. */
16446 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16447 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16448 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16449 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16450 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
16451 
16452 	/*
16453 	 * See if we have valid sense data, if so then turn it over to
16454 	 * sd_decode_sense() to figure out the right course of action.
16455 	 */
16456 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
16457 		sd_decode_sense(un, bp, xp, pktp);
16458 	}
16459 }
16460 
16461 
16462 /*
16463  *    Function: sd_print_sense_failed_msg
16464  *
16465  * Description: Print log message when RQS has failed.
16466  *
16467  *   Arguments: un - ptr to associated softstate
16468  *		bp - ptr to buf(9S) for the command
16469  *		arg - generic message string ptr
16470  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16471  *			or SD_NO_RETRY_ISSUED
16472  *
16473  *     Context: May be called from interrupt context
16474  */
16475 
16476 static void
16477 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16478 	int code)
16479 {
16480 	char	*msgp = arg;
16481 
16482 	ASSERT(un != NULL);
16483 	ASSERT(mutex_owned(SD_MUTEX(un)));
16484 	ASSERT(bp != NULL);
16485 
16486 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16487 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16488 	}
16489 }
16490 
16491 
16492 /*
16493  *    Function: sd_validate_sense_data
16494  *
16495  * Description: Check the given sense data for validity.
16496  *		If the sense data is not valid, the command will
16497  *		be either failed or retried!
16498  *
16499  * Return Code: SD_SENSE_DATA_IS_INVALID
16500  *		SD_SENSE_DATA_IS_VALID
16501  *
16502  *     Context: May be called from interrupt context
16503  */
16504 
16505 static int
16506 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
16507 {
16508 	struct scsi_extended_sense *esp;
16509 	struct	scsi_pkt *pktp;
16510 	size_t	actual_len;
16511 	char	*msgp = NULL;
16512 
16513 	ASSERT(un != NULL);
16514 	ASSERT(mutex_owned(SD_MUTEX(un)));
16515 	ASSERT(bp != NULL);
16516 	ASSERT(bp != un->un_rqs_bp);
16517 	ASSERT(xp != NULL);
16518 
16519 	pktp = SD_GET_PKTP(bp);
16520 	ASSERT(pktp != NULL);
16521 
16522 	/*
16523 	 * Check the status of the RQS command (auto or manual).
16524 	 */
16525 	switch (xp->xb_sense_status & STATUS_MASK) {
16526 	case STATUS_GOOD:
16527 		break;
16528 
16529 	case STATUS_RESERVATION_CONFLICT:
16530 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16531 		return (SD_SENSE_DATA_IS_INVALID);
16532 
16533 	case STATUS_BUSY:
16534 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16535 		    "Busy Status on REQUEST SENSE\n");
16536 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16537 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16538 		return (SD_SENSE_DATA_IS_INVALID);
16539 
16540 	case STATUS_QFULL:
16541 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16542 		    "QFULL Status on REQUEST SENSE\n");
16543 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16544 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16545 		return (SD_SENSE_DATA_IS_INVALID);
16546 
16547 	case STATUS_CHECK:
16548 	case STATUS_TERMINATED:
16549 		msgp = "Check Condition on REQUEST SENSE\n";
16550 		goto sense_failed;
16551 
16552 	default:
16553 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16554 		goto sense_failed;
16555 	}
16556 
16557 	/*
16558 	 * See if we got the minimum required amount of sense data.
16559 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16560 	 * or less.
16561 	 */
16562 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
16563 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16564 	    (actual_len == 0)) {
16565 		msgp = "Request Sense couldn't get sense data\n";
16566 		goto sense_failed;
16567 	}
16568 
16569 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16570 		msgp = "Not enough sense information\n";
16571 		goto sense_failed;
16572 	}
16573 
16574 	/*
16575 	 * We require the extended sense data
16576 	 */
16577 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16578 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16579 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16580 			static char tmp[8];
16581 			static char buf[148];
16582 			char *p = (char *)(xp->xb_sense_data);
16583 			int i;
16584 
16585 			mutex_enter(&sd_sense_mutex);
16586 			(void) strcpy(buf, "undecodable sense information:");
16587 			for (i = 0; i < actual_len; i++) {
16588 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16589 				(void) strcpy(&buf[strlen(buf)], tmp);
16590 			}
16591 			i = strlen(buf);
16592 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16593 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16594 			mutex_exit(&sd_sense_mutex);
16595 		}
16596 		/* Note: Legacy behavior, fail the command with no retry */
16597 		sd_return_failed_command(un, bp, EIO);
16598 		return (SD_SENSE_DATA_IS_INVALID);
16599 	}
16600 
16601 	/*
16602 	 * Check that es_code is valid (es_class concatenated with es_code
16603 	 * make up the "response code" field.  es_class will always be 7, so
16604 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16605 	 * format.
16606 	 */
16607 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16608 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16609 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16610 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16611 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16612 		goto sense_failed;
16613 	}
16614 
16615 	return (SD_SENSE_DATA_IS_VALID);
16616 
16617 sense_failed:
16618 	/*
16619 	 * If the request sense failed (for whatever reason), attempt
16620 	 * to retry the original command.
16621 	 */
16622 #if defined(__i386) || defined(__amd64)
16623 	/*
16624 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16625 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16626 	 * for both SCSI/FC.
16627 	 * The SD_RETRY_DELAY value need to be adjusted here
16628 	 * when SD_RETRY_DELAY change in sddef.h
16629 	 */
16630 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16631 	    sd_print_sense_failed_msg, msgp, EIO,
16632 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16633 #else
16634 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16635 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16636 #endif
16637 
16638 	return (SD_SENSE_DATA_IS_INVALID);
16639 }
16640 
16641 
16642 
16643 /*
16644  *    Function: sd_decode_sense
16645  *
16646  * Description: Take recovery action(s) when SCSI Sense Data is received.
16647  *
16648  *     Context: Interrupt context.
16649  */
16650 
16651 static void
16652 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16653 	struct scsi_pkt *pktp)
16654 {
16655 	struct scsi_extended_sense *esp;
16656 	struct scsi_descr_sense_hdr *sdsp;
16657 	uint8_t asc, ascq, sense_key;
16658 
16659 	ASSERT(un != NULL);
16660 	ASSERT(mutex_owned(SD_MUTEX(un)));
16661 	ASSERT(bp != NULL);
16662 	ASSERT(bp != un->un_rqs_bp);
16663 	ASSERT(xp != NULL);
16664 	ASSERT(pktp != NULL);
16665 
16666 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16667 
16668 	switch (esp->es_code) {
16669 	case CODE_FMT_DESCR_CURRENT:
16670 	case CODE_FMT_DESCR_DEFERRED:
16671 		sdsp = (struct scsi_descr_sense_hdr *)xp->xb_sense_data;
16672 		sense_key = sdsp->ds_key;
16673 		asc = sdsp->ds_add_code;
16674 		ascq = sdsp->ds_qual_code;
16675 		break;
16676 	case CODE_FMT_VENDOR_SPECIFIC:
16677 	case CODE_FMT_FIXED_CURRENT:
16678 	case CODE_FMT_FIXED_DEFERRED:
16679 	default:
16680 		sense_key = esp->es_key;
16681 		asc = esp->es_add_code;
16682 		ascq = esp->es_qual_code;
16683 		break;
16684 	}
16685 
16686 	switch (sense_key) {
16687 	case KEY_NO_SENSE:
16688 		sd_sense_key_no_sense(un, bp, xp, pktp);
16689 		break;
16690 	case KEY_RECOVERABLE_ERROR:
16691 		sd_sense_key_recoverable_error(un, asc, bp, xp, pktp);
16692 		break;
16693 	case KEY_NOT_READY:
16694 		sd_sense_key_not_ready(un, asc, ascq, bp, xp, pktp);
16695 		break;
16696 	case KEY_MEDIUM_ERROR:
16697 	case KEY_HARDWARE_ERROR:
16698 		sd_sense_key_medium_or_hardware_error(un,
16699 		    sense_key, asc, bp, xp, pktp);
16700 		break;
16701 	case KEY_ILLEGAL_REQUEST:
16702 		sd_sense_key_illegal_request(un, bp, xp, pktp);
16703 		break;
16704 	case KEY_UNIT_ATTENTION:
16705 		sd_sense_key_unit_attention(un, asc, bp, xp, pktp);
16706 		break;
16707 	case KEY_WRITE_PROTECT:
16708 	case KEY_VOLUME_OVERFLOW:
16709 	case KEY_MISCOMPARE:
16710 		sd_sense_key_fail_command(un, bp, xp, pktp);
16711 		break;
16712 	case KEY_BLANK_CHECK:
16713 		sd_sense_key_blank_check(un, bp, xp, pktp);
16714 		break;
16715 	case KEY_ABORTED_COMMAND:
16716 		sd_sense_key_aborted_command(un, bp, xp, pktp);
16717 		break;
16718 	case KEY_VENDOR_UNIQUE:
16719 	case KEY_COPY_ABORTED:
16720 	case KEY_EQUAL:
16721 	case KEY_RESERVED:
16722 	default:
16723 		sd_sense_key_default(un, sense_key, bp, xp, pktp);
16724 		break;
16725 	}
16726 }
16727 
16728 
16729 /*
16730  *    Function: sd_dump_memory
16731  *
16732  * Description: Debug logging routine to print the contents of a user provided
16733  *		buffer. The output of the buffer is broken up into 256 byte
16734  *		segments due to a size constraint of the scsi_log.
16735  *		implementation.
16736  *
16737  *   Arguments: un - ptr to softstate
16738  *		comp - component mask
16739  *		title - "title" string to preceed data when printed
16740  *		data - ptr to data block to be printed
16741  *		len - size of data block to be printed
16742  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
16743  *
16744  *     Context: May be called from interrupt context
16745  */
16746 
16747 #define	SD_DUMP_MEMORY_BUF_SIZE	256
16748 
16749 static char *sd_dump_format_string[] = {
16750 		" 0x%02x",
16751 		" %c"
16752 };
16753 
16754 static void
16755 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
16756     int len, int fmt)
16757 {
16758 	int	i, j;
16759 	int	avail_count;
16760 	int	start_offset;
16761 	int	end_offset;
16762 	size_t	entry_len;
16763 	char	*bufp;
16764 	char	*local_buf;
16765 	char	*format_string;
16766 
16767 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
16768 
16769 	/*
16770 	 * In the debug version of the driver, this function is called from a
16771 	 * number of places which are NOPs in the release driver.
16772 	 * The debug driver therefore has additional methods of filtering
16773 	 * debug output.
16774 	 */
16775 #ifdef SDDEBUG
16776 	/*
16777 	 * In the debug version of the driver we can reduce the amount of debug
16778 	 * messages by setting sd_error_level to something other than
16779 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
16780 	 * sd_component_mask.
16781 	 */
16782 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
16783 	    (sd_error_level != SCSI_ERR_ALL)) {
16784 		return;
16785 	}
16786 	if (((sd_component_mask & comp) == 0) ||
16787 	    (sd_error_level != SCSI_ERR_ALL)) {
16788 		return;
16789 	}
16790 #else
16791 	if (sd_error_level != SCSI_ERR_ALL) {
16792 		return;
16793 	}
16794 #endif
16795 
16796 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
16797 	bufp = local_buf;
16798 	/*
16799 	 * Available length is the length of local_buf[], minus the
16800 	 * length of the title string, minus one for the ":", minus
16801 	 * one for the newline, minus one for the NULL terminator.
16802 	 * This gives the #bytes available for holding the printed
16803 	 * values from the given data buffer.
16804 	 */
16805 	if (fmt == SD_LOG_HEX) {
16806 		format_string = sd_dump_format_string[0];
16807 	} else /* SD_LOG_CHAR */ {
16808 		format_string = sd_dump_format_string[1];
16809 	}
16810 	/*
16811 	 * Available count is the number of elements from the given
16812 	 * data buffer that we can fit into the available length.
16813 	 * This is based upon the size of the format string used.
16814 	 * Make one entry and find it's size.
16815 	 */
16816 	(void) sprintf(bufp, format_string, data[0]);
16817 	entry_len = strlen(bufp);
16818 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
16819 
16820 	j = 0;
16821 	while (j < len) {
16822 		bufp = local_buf;
16823 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
16824 		start_offset = j;
16825 
16826 		end_offset = start_offset + avail_count;
16827 
16828 		(void) sprintf(bufp, "%s:", title);
16829 		bufp += strlen(bufp);
16830 		for (i = start_offset; ((i < end_offset) && (j < len));
16831 		    i++, j++) {
16832 			(void) sprintf(bufp, format_string, data[i]);
16833 			bufp += entry_len;
16834 		}
16835 		(void) sprintf(bufp, "\n");
16836 
16837 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
16838 	}
16839 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
16840 }
16841 
16842 /*
16843  *    Function: sd_print_sense_msg
16844  *
16845  * Description: Log a message based upon the given sense data.
16846  *
16847  *   Arguments: un - ptr to associated softstate
16848  *		bp - ptr to buf(9S) for the command
16849  *		arg - ptr to associate sd_sense_info struct
16850  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16851  *			or SD_NO_RETRY_ISSUED
16852  *
16853  *     Context: May be called from interrupt context
16854  */
16855 
16856 static void
16857 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16858 {
16859 	struct sd_xbuf	*xp;
16860 	struct scsi_pkt	*pktp;
16861 	struct scsi_extended_sense *sensep;
16862 	daddr_t request_blkno;
16863 	diskaddr_t err_blkno;
16864 	int severity;
16865 	int pfa_flag;
16866 	int fixed_format = TRUE;
16867 	extern struct scsi_key_strings scsi_cmds[];
16868 
16869 	ASSERT(un != NULL);
16870 	ASSERT(mutex_owned(SD_MUTEX(un)));
16871 	ASSERT(bp != NULL);
16872 	xp = SD_GET_XBUF(bp);
16873 	ASSERT(xp != NULL);
16874 	pktp = SD_GET_PKTP(bp);
16875 	ASSERT(pktp != NULL);
16876 	ASSERT(arg != NULL);
16877 
16878 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
16879 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
16880 
16881 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
16882 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
16883 		severity = SCSI_ERR_RETRYABLE;
16884 	}
16885 
16886 	/* Use absolute block number for the request block number */
16887 	request_blkno = xp->xb_blkno;
16888 
16889 	/*
16890 	 * Now try to get the error block number from the sense data
16891 	 */
16892 	sensep = (struct scsi_extended_sense *)xp->xb_sense_data;
16893 	switch (sensep->es_code) {
16894 	case CODE_FMT_DESCR_CURRENT:
16895 	case CODE_FMT_DESCR_DEFERRED:
16896 		err_blkno =
16897 		    sd_extract_sense_info_descr(
16898 			(struct scsi_descr_sense_hdr *)sensep);
16899 		fixed_format = FALSE;
16900 		break;
16901 	case CODE_FMT_FIXED_CURRENT:
16902 	case CODE_FMT_FIXED_DEFERRED:
16903 	case CODE_FMT_VENDOR_SPECIFIC:
16904 	default:
16905 		/*
16906 		 * With the es_valid bit set, we assume that the error
16907 		 * blkno is in the sense data.  Also, if xp->xb_blkno is
16908 		 * greater than 0xffffffff then the target *should* have used
16909 		 * a descriptor sense format (or it shouldn't have set
16910 		 * the es_valid bit), and we may as well ignore the
16911 		 * 32-bit value.
16912 		 */
16913 		if ((sensep->es_valid != 0) && (xp->xb_blkno <= 0xffffffff)) {
16914 			err_blkno = (diskaddr_t)
16915 			    ((sensep->es_info_1 << 24) |
16916 			    (sensep->es_info_2 << 16) |
16917 			    (sensep->es_info_3 << 8)  |
16918 			    (sensep->es_info_4));
16919 		} else {
16920 			err_blkno = (diskaddr_t)-1;
16921 		}
16922 		break;
16923 	}
16924 
16925 	if (err_blkno == (diskaddr_t)-1) {
16926 		/*
16927 		 * Without the es_valid bit set (for fixed format) or an
16928 		 * information descriptor (for descriptor format) we cannot
16929 		 * be certain of the error blkno, so just use the
16930 		 * request_blkno.
16931 		 */
16932 		err_blkno = (diskaddr_t)request_blkno;
16933 	} else {
16934 		/*
16935 		 * We retrieved the error block number from the information
16936 		 * portion of the sense data.
16937 		 *
16938 		 * For USCSI commands we are better off using the error
16939 		 * block no. as the requested block no. (This is the best
16940 		 * we can estimate.)
16941 		 */
16942 		if ((SD_IS_BUFIO(xp) == FALSE) &&
16943 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
16944 			request_blkno = err_blkno;
16945 		}
16946 	}
16947 
16948 	/*
16949 	 * The following will log the buffer contents for the release driver
16950 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
16951 	 * level is set to verbose.
16952 	 */
16953 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
16954 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16955 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
16956 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
16957 
16958 	if (pfa_flag == FALSE) {
16959 		/* This is normally only set for USCSI */
16960 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
16961 			return;
16962 		}
16963 
16964 		if ((SD_IS_BUFIO(xp) == TRUE) &&
16965 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
16966 		    (severity < sd_error_level))) {
16967 			return;
16968 		}
16969 	}
16970 
16971 	/*
16972 	 * If the data is fixed format then check for Sonoma Failover,
16973 	 * and keep a count of how many failed I/O's.  We should not have
16974 	 * to worry about Sonoma returning descriptor format sense data,
16975 	 * and asc/ascq are in a different location in descriptor format.
16976 	 */
16977 	if (fixed_format &&
16978 	    (SD_IS_LSI(un)) && (sensep->es_key == KEY_ILLEGAL_REQUEST) &&
16979 	    (sensep->es_add_code == 0x94) && (sensep->es_qual_code == 0x01)) {
16980 		un->un_sonoma_failure_count++;
16981 		if (un->un_sonoma_failure_count > 1) {
16982 			return;
16983 		}
16984 	}
16985 
16986 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
16987 	    request_blkno, err_blkno, scsi_cmds, sensep,
16988 	    un->un_additional_codes, NULL);
16989 }
16990 
16991 /*
16992  *    Function: sd_extract_sense_info_descr
16993  *
16994  * Description: Retrieve "information" field from descriptor format
16995  *              sense data.  Iterates through each sense descriptor
16996  *              looking for the information descriptor and returns
16997  *              the information field from that descriptor.
16998  *
16999  *     Context: May be called from interrupt context
17000  */
17001 
17002 static diskaddr_t
17003 sd_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp)
17004 {
17005 	diskaddr_t result;
17006 	uint8_t *descr_offset;
17007 	int valid_sense_length;
17008 	struct scsi_information_sense_descr *isd;
17009 
17010 	/*
17011 	 * Initialize result to -1 indicating there is no information
17012 	 * descriptor
17013 	 */
17014 	result = (diskaddr_t)-1;
17015 
17016 	/*
17017 	 * The first descriptor will immediately follow the header
17018 	 */
17019 	descr_offset = (uint8_t *)(sdsp+1); /* Pointer arithmetic */
17020 
17021 	/*
17022 	 * Calculate the amount of valid sense data
17023 	 */
17024 	valid_sense_length =
17025 	    min((sizeof (struct scsi_descr_sense_hdr) +
17026 	    sdsp->ds_addl_sense_length),
17027 	    SENSE_LENGTH);
17028 
17029 	/*
17030 	 * Iterate through the list of descriptors, stopping when we
17031 	 * run out of sense data
17032 	 */
17033 	while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <=
17034 	    (uint8_t *)sdsp + valid_sense_length) {
17035 		/*
17036 		 * Check if this is an information descriptor.  We can
17037 		 * use the scsi_information_sense_descr structure as a
17038 		 * template sense the first two fields are always the
17039 		 * same
17040 		 */
17041 		isd = (struct scsi_information_sense_descr *)descr_offset;
17042 		if (isd->isd_descr_type == DESCR_INFORMATION) {
17043 			/*
17044 			 * Found an information descriptor.  Copy the
17045 			 * information field.  There will only be one
17046 			 * information descriptor so we can stop looking.
17047 			 */
17048 			result =
17049 			    (((diskaddr_t)isd->isd_information[0] << 56) |
17050 				((diskaddr_t)isd->isd_information[1] << 48) |
17051 				((diskaddr_t)isd->isd_information[2] << 40) |
17052 				((diskaddr_t)isd->isd_information[3] << 32) |
17053 				((diskaddr_t)isd->isd_information[4] << 24) |
17054 				((diskaddr_t)isd->isd_information[5] << 16) |
17055 				((diskaddr_t)isd->isd_information[6] << 8)  |
17056 				((diskaddr_t)isd->isd_information[7]));
17057 			break;
17058 		}
17059 
17060 		/*
17061 		 * Get pointer to the next descriptor.  The "additional
17062 		 * length" field holds the length of the descriptor except
17063 		 * for the "type" and "additional length" fields, so
17064 		 * we need to add 2 to get the total length.
17065 		 */
17066 		descr_offset += (isd->isd_addl_length + 2);
17067 	}
17068 
17069 	return (result);
17070 }
17071 
17072 /*
17073  *    Function: sd_sense_key_no_sense
17074  *
17075  * Description: Recovery action when sense data was not received.
17076  *
17077  *     Context: May be called from interrupt context
17078  */
17079 
17080 static void
17081 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17082 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17083 {
17084 	struct sd_sense_info	si;
17085 
17086 	ASSERT(un != NULL);
17087 	ASSERT(mutex_owned(SD_MUTEX(un)));
17088 	ASSERT(bp != NULL);
17089 	ASSERT(xp != NULL);
17090 	ASSERT(pktp != NULL);
17091 
17092 	si.ssi_severity = SCSI_ERR_FATAL;
17093 	si.ssi_pfa_flag = FALSE;
17094 
17095 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17096 
17097 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17098 		&si, EIO, (clock_t)0, NULL);
17099 }
17100 
17101 
17102 /*
17103  *    Function: sd_sense_key_recoverable_error
17104  *
17105  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17106  *
17107  *     Context: May be called from interrupt context
17108  */
17109 
17110 static void
17111 sd_sense_key_recoverable_error(struct sd_lun *un,
17112 	uint8_t asc,
17113 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17114 {
17115 	struct sd_sense_info	si;
17116 
17117 	ASSERT(un != NULL);
17118 	ASSERT(mutex_owned(SD_MUTEX(un)));
17119 	ASSERT(bp != NULL);
17120 	ASSERT(xp != NULL);
17121 	ASSERT(pktp != NULL);
17122 
17123 	/*
17124 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17125 	 */
17126 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17127 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17128 		si.ssi_severity = SCSI_ERR_INFO;
17129 		si.ssi_pfa_flag = TRUE;
17130 	} else {
17131 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17132 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17133 		si.ssi_severity = SCSI_ERR_RECOVERED;
17134 		si.ssi_pfa_flag = FALSE;
17135 	}
17136 
17137 	if (pktp->pkt_resid == 0) {
17138 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17139 		sd_return_command(un, bp);
17140 		return;
17141 	}
17142 
17143 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17144 	    &si, EIO, (clock_t)0, NULL);
17145 }
17146 
17147 
17148 
17149 
17150 /*
17151  *    Function: sd_sense_key_not_ready
17152  *
17153  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17154  *
17155  *     Context: May be called from interrupt context
17156  */
17157 
17158 static void
17159 sd_sense_key_not_ready(struct sd_lun *un,
17160 	uint8_t asc, uint8_t ascq,
17161 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17162 {
17163 	struct sd_sense_info	si;
17164 
17165 	ASSERT(un != NULL);
17166 	ASSERT(mutex_owned(SD_MUTEX(un)));
17167 	ASSERT(bp != NULL);
17168 	ASSERT(xp != NULL);
17169 	ASSERT(pktp != NULL);
17170 
17171 	si.ssi_severity = SCSI_ERR_FATAL;
17172 	si.ssi_pfa_flag = FALSE;
17173 
17174 	/*
17175 	 * Update error stats after first NOT READY error. Disks may have
17176 	 * been powered down and may need to be restarted.  For CDROMs,
17177 	 * report NOT READY errors only if media is present.
17178 	 */
17179 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17180 	    (xp->xb_retry_count > 0)) {
17181 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17182 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17183 	}
17184 
17185 	/*
17186 	 * Just fail if the "not ready" retry limit has been reached.
17187 	 */
17188 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17189 		/* Special check for error message printing for removables. */
17190 		if ((ISREMOVABLE(un)) && (asc == 0x04) &&
17191 		    (ascq >= 0x04)) {
17192 			si.ssi_severity = SCSI_ERR_ALL;
17193 		}
17194 		goto fail_command;
17195 	}
17196 
17197 	/*
17198 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17199 	 * what to do.
17200 	 */
17201 	switch (asc) {
17202 	case 0x04:	/* LOGICAL UNIT NOT READY */
17203 		/*
17204 		 * disk drives that don't spin up result in a very long delay
17205 		 * in format without warning messages. We will log a message
17206 		 * if the error level is set to verbose.
17207 		 */
17208 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17209 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17210 			    "logical unit not ready, resetting disk\n");
17211 		}
17212 
17213 		/*
17214 		 * There are different requirements for CDROMs and disks for
17215 		 * the number of retries.  If a CD-ROM is giving this, it is
17216 		 * probably reading TOC and is in the process of getting
17217 		 * ready, so we should keep on trying for a long time to make
17218 		 * sure that all types of media are taken in account (for
17219 		 * some media the drive takes a long time to read TOC).  For
17220 		 * disks we do not want to retry this too many times as this
17221 		 * can cause a long hang in format when the drive refuses to
17222 		 * spin up (a very common failure).
17223 		 */
17224 		switch (ascq) {
17225 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17226 			/*
17227 			 * Disk drives frequently refuse to spin up which
17228 			 * results in a very long hang in format without
17229 			 * warning messages.
17230 			 *
17231 			 * Note: This code preserves the legacy behavior of
17232 			 * comparing xb_retry_count against zero for fibre
17233 			 * channel targets instead of comparing against the
17234 			 * un_reset_retry_count value.  The reason for this
17235 			 * discrepancy has been so utterly lost beneath the
17236 			 * Sands of Time that even Indiana Jones could not
17237 			 * find it.
17238 			 */
17239 			if (un->un_f_is_fibre == TRUE) {
17240 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17241 					(xp->xb_retry_count > 0)) &&
17242 					(un->un_startstop_timeid == NULL)) {
17243 					scsi_log(SD_DEVINFO(un), sd_label,
17244 					CE_WARN, "logical unit not ready, "
17245 					"resetting disk\n");
17246 					sd_reset_target(un, pktp);
17247 				}
17248 			} else {
17249 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17250 					(xp->xb_retry_count >
17251 					un->un_reset_retry_count)) &&
17252 					(un->un_startstop_timeid == NULL)) {
17253 					scsi_log(SD_DEVINFO(un), sd_label,
17254 					CE_WARN, "logical unit not ready, "
17255 					"resetting disk\n");
17256 					sd_reset_target(un, pktp);
17257 				}
17258 			}
17259 			break;
17260 
17261 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17262 			/*
17263 			 * If the target is in the process of becoming
17264 			 * ready, just proceed with the retry. This can
17265 			 * happen with CD-ROMs that take a long time to
17266 			 * read TOC after a power cycle or reset.
17267 			 */
17268 			goto do_retry;
17269 
17270 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17271 			break;
17272 
17273 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17274 			/*
17275 			 * Retries cannot help here so just fail right away.
17276 			 */
17277 			goto fail_command;
17278 
17279 		case 0x88:
17280 			/*
17281 			 * Vendor-unique code for T3/T4: it indicates a
17282 			 * path problem in a mutipathed config, but as far as
17283 			 * the target driver is concerned it equates to a fatal
17284 			 * error, so we should just fail the command right away
17285 			 * (without printing anything to the console). If this
17286 			 * is not a T3/T4, fall thru to the default recovery
17287 			 * action.
17288 			 * T3/T4 is FC only, don't need to check is_fibre
17289 			 */
17290 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17291 				sd_return_failed_command(un, bp, EIO);
17292 				return;
17293 			}
17294 			/* FALLTHRU */
17295 
17296 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17297 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17298 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17299 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17300 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17301 		default:    /* Possible future codes in SCSI spec? */
17302 			/*
17303 			 * For removable-media devices, do not retry if
17304 			 * ASCQ > 2 as these result mostly from USCSI commands
17305 			 * on MMC devices issued to check status of an
17306 			 * operation initiated in immediate mode.  Also for
17307 			 * ASCQ >= 4 do not print console messages as these
17308 			 * mainly represent a user-initiated operation
17309 			 * instead of a system failure.
17310 			 */
17311 			if (ISREMOVABLE(un)) {
17312 				si.ssi_severity = SCSI_ERR_ALL;
17313 				goto fail_command;
17314 			}
17315 			break;
17316 		}
17317 
17318 		/*
17319 		 * As part of our recovery attempt for the NOT READY
17320 		 * condition, we issue a START STOP UNIT command. However
17321 		 * we want to wait for a short delay before attempting this
17322 		 * as there may still be more commands coming back from the
17323 		 * target with the check condition. To do this we use
17324 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17325 		 * the delay interval expires. (sd_start_stop_unit_callback()
17326 		 * dispatches sd_start_stop_unit_task(), which will issue
17327 		 * the actual START STOP UNIT command. The delay interval
17328 		 * is one-half of the delay that we will use to retry the
17329 		 * command that generated the NOT READY condition.
17330 		 *
17331 		 * Note that we could just dispatch sd_start_stop_unit_task()
17332 		 * from here and allow it to sleep for the delay interval,
17333 		 * but then we would be tying up the taskq thread
17334 		 * uncesessarily for the duration of the delay.
17335 		 *
17336 		 * Do not issue the START STOP UNIT if the current command
17337 		 * is already a START STOP UNIT.
17338 		 */
17339 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17340 			break;
17341 		}
17342 
17343 		/*
17344 		 * Do not schedule the timeout if one is already pending.
17345 		 */
17346 		if (un->un_startstop_timeid != NULL) {
17347 			SD_INFO(SD_LOG_ERROR, un,
17348 			    "sd_sense_key_not_ready: restart already issued to"
17349 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17350 			    ddi_get_instance(SD_DEVINFO(un)));
17351 			break;
17352 		}
17353 
17354 		/*
17355 		 * Schedule the START STOP UNIT command, then queue the command
17356 		 * for a retry.
17357 		 *
17358 		 * Note: A timeout is not scheduled for this retry because we
17359 		 * want the retry to be serial with the START_STOP_UNIT. The
17360 		 * retry will be started when the START_STOP_UNIT is completed
17361 		 * in sd_start_stop_unit_task.
17362 		 */
17363 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17364 		    un, SD_BSY_TIMEOUT / 2);
17365 		xp->xb_retry_count++;
17366 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17367 		return;
17368 
17369 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17370 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17371 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17372 			    "unit does not respond to selection\n");
17373 		}
17374 		break;
17375 
17376 	case 0x3A:	/* MEDIUM NOT PRESENT */
17377 		if (sd_error_level >= SCSI_ERR_FATAL) {
17378 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17379 			    "Caddy not inserted in drive\n");
17380 		}
17381 
17382 		sr_ejected(un);
17383 		un->un_mediastate = DKIO_EJECTED;
17384 		/* The state has changed, inform the media watch routines */
17385 		cv_broadcast(&un->un_state_cv);
17386 		/* Just fail if no media is present in the drive. */
17387 		goto fail_command;
17388 
17389 	default:
17390 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17391 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17392 			    "Unit not Ready. Additional sense code 0x%x\n",
17393 			    asc);
17394 		}
17395 		break;
17396 	}
17397 
17398 do_retry:
17399 
17400 	/*
17401 	 * Retry the command, as some targets may report NOT READY for
17402 	 * several seconds after being reset.
17403 	 */
17404 	xp->xb_retry_count++;
17405 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17406 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17407 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
17408 
17409 	return;
17410 
17411 fail_command:
17412 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17413 	sd_return_failed_command(un, bp, EIO);
17414 }
17415 
17416 
17417 
17418 /*
17419  *    Function: sd_sense_key_medium_or_hardware_error
17420  *
17421  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17422  *		sense key.
17423  *
17424  *     Context: May be called from interrupt context
17425  */
17426 
17427 static void
17428 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17429 	int sense_key, uint8_t asc,
17430 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17431 {
17432 	struct sd_sense_info	si;
17433 
17434 	ASSERT(un != NULL);
17435 	ASSERT(mutex_owned(SD_MUTEX(un)));
17436 	ASSERT(bp != NULL);
17437 	ASSERT(xp != NULL);
17438 	ASSERT(pktp != NULL);
17439 
17440 	si.ssi_severity = SCSI_ERR_FATAL;
17441 	si.ssi_pfa_flag = FALSE;
17442 
17443 	if (sense_key == KEY_MEDIUM_ERROR) {
17444 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17445 	}
17446 
17447 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17448 
17449 	if ((un->un_reset_retry_count != 0) &&
17450 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17451 		mutex_exit(SD_MUTEX(un));
17452 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17453 		if (un->un_f_allow_bus_device_reset == TRUE) {
17454 
17455 			boolean_t try_resetting_target = B_TRUE;
17456 
17457 			/*
17458 			 * We need to be able to handle specific ASC when we are
17459 			 * handling a KEY_HARDWARE_ERROR. In particular
17460 			 * taking the default action of resetting the target may
17461 			 * not be the appropriate way to attempt recovery.
17462 			 * Resetting a target because of a single LUN failure
17463 			 * victimizes all LUNs on that target.
17464 			 *
17465 			 * This is true for the LSI arrays, if an LSI
17466 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17467 			 * should trust it.
17468 			 */
17469 
17470 			if (sense_key == KEY_HARDWARE_ERROR) {
17471 				switch (asc) {
17472 				case 0x84:
17473 					if (SD_IS_LSI(un)) {
17474 						try_resetting_target = B_FALSE;
17475 					}
17476 					break;
17477 				default:
17478 					break;
17479 				}
17480 			}
17481 
17482 			if (try_resetting_target == B_TRUE) {
17483 				int reset_retval = 0;
17484 				if (un->un_f_lun_reset_enabled == TRUE) {
17485 					SD_TRACE(SD_LOG_IO_CORE, un,
17486 					    "sd_sense_key_medium_or_hardware_"
17487 					    "error: issuing RESET_LUN\n");
17488 					reset_retval =
17489 					    scsi_reset(SD_ADDRESS(un),
17490 					    RESET_LUN);
17491 				}
17492 				if (reset_retval == 0) {
17493 					SD_TRACE(SD_LOG_IO_CORE, un,
17494 					    "sd_sense_key_medium_or_hardware_"
17495 					    "error: issuing RESET_TARGET\n");
17496 					(void) scsi_reset(SD_ADDRESS(un),
17497 					    RESET_TARGET);
17498 				}
17499 			}
17500 		}
17501 		mutex_enter(SD_MUTEX(un));
17502 	}
17503 
17504 	/*
17505 	 * This really ought to be a fatal error, but we will retry anyway
17506 	 * as some drives report this as a spurious error.
17507 	 */
17508 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17509 	    &si, EIO, (clock_t)0, NULL);
17510 }
17511 
17512 
17513 
17514 /*
17515  *    Function: sd_sense_key_illegal_request
17516  *
17517  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17518  *
17519  *     Context: May be called from interrupt context
17520  */
17521 
17522 static void
17523 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17524 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17525 {
17526 	struct sd_sense_info	si;
17527 
17528 	ASSERT(un != NULL);
17529 	ASSERT(mutex_owned(SD_MUTEX(un)));
17530 	ASSERT(bp != NULL);
17531 	ASSERT(xp != NULL);
17532 	ASSERT(pktp != NULL);
17533 
17534 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17535 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17536 
17537 	si.ssi_severity = SCSI_ERR_INFO;
17538 	si.ssi_pfa_flag = FALSE;
17539 
17540 	/* Pointless to retry if the target thinks it's an illegal request */
17541 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17542 	sd_return_failed_command(un, bp, EIO);
17543 }
17544 
17545 
17546 
17547 
17548 /*
17549  *    Function: sd_sense_key_unit_attention
17550  *
17551  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17552  *
17553  *     Context: May be called from interrupt context
17554  */
17555 
17556 static void
17557 sd_sense_key_unit_attention(struct sd_lun *un,
17558 	uint8_t asc,
17559 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17560 {
17561 	/*
17562 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17563 	 * like Sonoma can return UNIT ATTENTION close to a minute
17564 	 * under certain conditions.
17565 	 */
17566 	int	retry_check_flag = SD_RETRIES_UA;
17567 	struct	sd_sense_info		si;
17568 
17569 	ASSERT(un != NULL);
17570 	ASSERT(mutex_owned(SD_MUTEX(un)));
17571 	ASSERT(bp != NULL);
17572 	ASSERT(xp != NULL);
17573 	ASSERT(pktp != NULL);
17574 
17575 	si.ssi_severity = SCSI_ERR_INFO;
17576 	si.ssi_pfa_flag = FALSE;
17577 
17578 
17579 	switch (asc) {
17580 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17581 		if (sd_report_pfa != 0) {
17582 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17583 			si.ssi_pfa_flag = TRUE;
17584 			retry_check_flag = SD_RETRIES_STANDARD;
17585 			goto do_retry;
17586 		}
17587 		break;
17588 
17589 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17590 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17591 			un->un_resvd_status |=
17592 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17593 		}
17594 		/* FALLTHRU */
17595 
17596 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17597 		if (!ISREMOVABLE(un)) {
17598 			break;
17599 		}
17600 
17601 		/*
17602 		 * When we get a unit attention from a removable-media device,
17603 		 * it may be in a state that will take a long time to recover
17604 		 * (e.g., from a reset).  Since we are executing in interrupt
17605 		 * context here, we cannot wait around for the device to come
17606 		 * back. So hand this command off to sd_media_change_task()
17607 		 * for deferred processing under taskq thread context. (Note
17608 		 * that the command still may be failed if a problem is
17609 		 * encountered at a later time.)
17610 		 */
17611 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17612 		    KM_NOSLEEP) == 0) {
17613 			/*
17614 			 * Cannot dispatch the request so fail the command.
17615 			 */
17616 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17617 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17618 			si.ssi_severity = SCSI_ERR_FATAL;
17619 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17620 			sd_return_failed_command(un, bp, EIO);
17621 		}
17622 		/*
17623 		 * Either the command has been successfully dispatched to a
17624 		 * task Q for retrying, or the dispatch failed. In either case
17625 		 * do NOT retry again by calling sd_retry_command. This sets up
17626 		 * two retries of the same command and when one completes and
17627 		 * frees the resources the other will access freed memory,
17628 		 * a bad thing.
17629 		 */
17630 		return;
17631 
17632 	default:
17633 		break;
17634 	}
17635 
17636 	if (!ISREMOVABLE(un)) {
17637 		/*
17638 		 * Do not update these here for removables. For removables
17639 		 * these stats are updated (1) above if we failed to dispatch
17640 		 * sd_media_change_task(), or (2) sd_media_change_task() may
17641 		 * update these later if it encounters an error.
17642 		 */
17643 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17644 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17645 	}
17646 
17647 do_retry:
17648 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17649 	    EIO, SD_UA_RETRY_DELAY, NULL);
17650 }
17651 
17652 
17653 
17654 /*
17655  *    Function: sd_sense_key_fail_command
17656  *
17657  * Description: Use to fail a command when we don't like the sense key that
17658  *		was returned.
17659  *
17660  *     Context: May be called from interrupt context
17661  */
17662 
17663 static void
17664 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17665 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17666 {
17667 	struct sd_sense_info	si;
17668 
17669 	ASSERT(un != NULL);
17670 	ASSERT(mutex_owned(SD_MUTEX(un)));
17671 	ASSERT(bp != NULL);
17672 	ASSERT(xp != NULL);
17673 	ASSERT(pktp != NULL);
17674 
17675 	si.ssi_severity = SCSI_ERR_FATAL;
17676 	si.ssi_pfa_flag = FALSE;
17677 
17678 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17679 	sd_return_failed_command(un, bp, EIO);
17680 }
17681 
17682 
17683 
17684 /*
17685  *    Function: sd_sense_key_blank_check
17686  *
17687  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17688  *		Has no monetary connotation.
17689  *
17690  *     Context: May be called from interrupt context
17691  */
17692 
17693 static void
17694 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17695 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17696 {
17697 	struct sd_sense_info	si;
17698 
17699 	ASSERT(un != NULL);
17700 	ASSERT(mutex_owned(SD_MUTEX(un)));
17701 	ASSERT(bp != NULL);
17702 	ASSERT(xp != NULL);
17703 	ASSERT(pktp != NULL);
17704 
17705 	/*
17706 	 * Blank check is not fatal for removable devices, therefore
17707 	 * it does not require a console message.
17708 	 */
17709 	si.ssi_severity = (ISREMOVABLE(un)) ? SCSI_ERR_ALL : SCSI_ERR_FATAL;
17710 	si.ssi_pfa_flag = FALSE;
17711 
17712 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17713 	sd_return_failed_command(un, bp, EIO);
17714 }
17715 
17716 
17717 
17718 
17719 /*
17720  *    Function: sd_sense_key_aborted_command
17721  *
17722  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
17723  *
17724  *     Context: May be called from interrupt context
17725  */
17726 
17727 static void
17728 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
17729 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17730 {
17731 	struct sd_sense_info	si;
17732 
17733 	ASSERT(un != NULL);
17734 	ASSERT(mutex_owned(SD_MUTEX(un)));
17735 	ASSERT(bp != NULL);
17736 	ASSERT(xp != NULL);
17737 	ASSERT(pktp != NULL);
17738 
17739 	si.ssi_severity = SCSI_ERR_FATAL;
17740 	si.ssi_pfa_flag = FALSE;
17741 
17742 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17743 
17744 	/*
17745 	 * This really ought to be a fatal error, but we will retry anyway
17746 	 * as some drives report this as a spurious error.
17747 	 */
17748 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17749 	    &si, EIO, (clock_t)0, NULL);
17750 }
17751 
17752 
17753 
17754 /*
17755  *    Function: sd_sense_key_default
17756  *
17757  * Description: Default recovery action for several SCSI sense keys (basically
17758  *		attempts a retry).
17759  *
17760  *     Context: May be called from interrupt context
17761  */
17762 
17763 static void
17764 sd_sense_key_default(struct sd_lun *un,
17765 	int sense_key,
17766 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17767 {
17768 	struct sd_sense_info	si;
17769 
17770 	ASSERT(un != NULL);
17771 	ASSERT(mutex_owned(SD_MUTEX(un)));
17772 	ASSERT(bp != NULL);
17773 	ASSERT(xp != NULL);
17774 	ASSERT(pktp != NULL);
17775 
17776 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17777 
17778 	/*
17779 	 * Undecoded sense key.	Attempt retries and hope that will fix
17780 	 * the problem.  Otherwise, we're dead.
17781 	 */
17782 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17783 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17784 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
17785 	}
17786 
17787 	si.ssi_severity = SCSI_ERR_FATAL;
17788 	si.ssi_pfa_flag = FALSE;
17789 
17790 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17791 	    &si, EIO, (clock_t)0, NULL);
17792 }
17793 
17794 
17795 
17796 /*
17797  *    Function: sd_print_retry_msg
17798  *
17799  * Description: Print a message indicating the retry action being taken.
17800  *
17801  *   Arguments: un - ptr to associated softstate
17802  *		bp - ptr to buf(9S) for the command
17803  *		arg - not used.
17804  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17805  *			or SD_NO_RETRY_ISSUED
17806  *
17807  *     Context: May be called from interrupt context
17808  */
17809 /* ARGSUSED */
17810 static void
17811 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
17812 {
17813 	struct sd_xbuf	*xp;
17814 	struct scsi_pkt *pktp;
17815 	char *reasonp;
17816 	char *msgp;
17817 
17818 	ASSERT(un != NULL);
17819 	ASSERT(mutex_owned(SD_MUTEX(un)));
17820 	ASSERT(bp != NULL);
17821 	pktp = SD_GET_PKTP(bp);
17822 	ASSERT(pktp != NULL);
17823 	xp = SD_GET_XBUF(bp);
17824 	ASSERT(xp != NULL);
17825 
17826 	ASSERT(!mutex_owned(&un->un_pm_mutex));
17827 	mutex_enter(&un->un_pm_mutex);
17828 	if ((un->un_state == SD_STATE_SUSPENDED) ||
17829 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
17830 	    (pktp->pkt_flags & FLAG_SILENT)) {
17831 		mutex_exit(&un->un_pm_mutex);
17832 		goto update_pkt_reason;
17833 	}
17834 	mutex_exit(&un->un_pm_mutex);
17835 
17836 	/*
17837 	 * Suppress messages if they are all the same pkt_reason; with
17838 	 * TQ, many (up to 256) are returned with the same pkt_reason.
17839 	 * If we are in panic, then suppress the retry messages.
17840 	 */
17841 	switch (flag) {
17842 	case SD_NO_RETRY_ISSUED:
17843 		msgp = "giving up";
17844 		break;
17845 	case SD_IMMEDIATE_RETRY_ISSUED:
17846 	case SD_DELAYED_RETRY_ISSUED:
17847 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
17848 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
17849 		    (sd_error_level != SCSI_ERR_ALL))) {
17850 			return;
17851 		}
17852 		msgp = "retrying command";
17853 		break;
17854 	default:
17855 		goto update_pkt_reason;
17856 	}
17857 
17858 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
17859 	    scsi_rname(pktp->pkt_reason));
17860 
17861 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17862 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
17863 
17864 update_pkt_reason:
17865 	/*
17866 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
17867 	 * This is to prevent multiple console messages for the same failure
17868 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
17869 	 * when the command is retried successfully because there still may be
17870 	 * more commands coming back with the same value of pktp->pkt_reason.
17871 	 */
17872 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
17873 		un->un_last_pkt_reason = pktp->pkt_reason;
17874 	}
17875 }
17876 
17877 
17878 /*
17879  *    Function: sd_print_cmd_incomplete_msg
17880  *
17881  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
17882  *
17883  *   Arguments: un - ptr to associated softstate
17884  *		bp - ptr to buf(9S) for the command
17885  *		arg - passed to sd_print_retry_msg()
17886  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17887  *			or SD_NO_RETRY_ISSUED
17888  *
17889  *     Context: May be called from interrupt context
17890  */
17891 
17892 static void
17893 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
17894 	int code)
17895 {
17896 	dev_info_t	*dip;
17897 
17898 	ASSERT(un != NULL);
17899 	ASSERT(mutex_owned(SD_MUTEX(un)));
17900 	ASSERT(bp != NULL);
17901 
17902 	switch (code) {
17903 	case SD_NO_RETRY_ISSUED:
17904 		/* Command was failed. Someone turned off this target? */
17905 		if (un->un_state != SD_STATE_OFFLINE) {
17906 			/*
17907 			 * Suppress message if we are detaching and
17908 			 * device has been disconnected
17909 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
17910 			 * private interface and not part of the DDI
17911 			 */
17912 			dip = un->un_sd->sd_dev;
17913 			if (!(DEVI_IS_DETACHING(dip) &&
17914 			    DEVI_IS_DEVICE_REMOVED(dip))) {
17915 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17916 				"disk not responding to selection\n");
17917 			}
17918 			New_state(un, SD_STATE_OFFLINE);
17919 		}
17920 		break;
17921 
17922 	case SD_DELAYED_RETRY_ISSUED:
17923 	case SD_IMMEDIATE_RETRY_ISSUED:
17924 	default:
17925 		/* Command was successfully queued for retry */
17926 		sd_print_retry_msg(un, bp, arg, code);
17927 		break;
17928 	}
17929 }
17930 
17931 
17932 /*
17933  *    Function: sd_pkt_reason_cmd_incomplete
17934  *
17935  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
17936  *
17937  *     Context: May be called from interrupt context
17938  */
17939 
17940 static void
17941 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
17942 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17943 {
17944 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
17945 
17946 	ASSERT(un != NULL);
17947 	ASSERT(mutex_owned(SD_MUTEX(un)));
17948 	ASSERT(bp != NULL);
17949 	ASSERT(xp != NULL);
17950 	ASSERT(pktp != NULL);
17951 
17952 	/* Do not do a reset if selection did not complete */
17953 	/* Note: Should this not just check the bit? */
17954 	if (pktp->pkt_state != STATE_GOT_BUS) {
17955 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
17956 		sd_reset_target(un, pktp);
17957 	}
17958 
17959 	/*
17960 	 * If the target was not successfully selected, then set
17961 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
17962 	 * with the target, and further retries and/or commands are
17963 	 * likely to take a long time.
17964 	 */
17965 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
17966 		flag |= SD_RETRIES_FAILFAST;
17967 	}
17968 
17969 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17970 
17971 	sd_retry_command(un, bp, flag,
17972 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17973 }
17974 
17975 
17976 
17977 /*
17978  *    Function: sd_pkt_reason_cmd_tran_err
17979  *
17980  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
17981  *
17982  *     Context: May be called from interrupt context
17983  */
17984 
17985 static void
17986 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
17987 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17988 {
17989 	ASSERT(un != NULL);
17990 	ASSERT(mutex_owned(SD_MUTEX(un)));
17991 	ASSERT(bp != NULL);
17992 	ASSERT(xp != NULL);
17993 	ASSERT(pktp != NULL);
17994 
17995 	/*
17996 	 * Do not reset if we got a parity error, or if
17997 	 * selection did not complete.
17998 	 */
17999 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18000 	/* Note: Should this not just check the bit for pkt_state? */
18001 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18002 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18003 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18004 		sd_reset_target(un, pktp);
18005 	}
18006 
18007 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18008 
18009 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18010 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18011 }
18012 
18013 
18014 
18015 /*
18016  *    Function: sd_pkt_reason_cmd_reset
18017  *
18018  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18019  *
18020  *     Context: May be called from interrupt context
18021  */
18022 
18023 static void
18024 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18025 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18026 {
18027 	ASSERT(un != NULL);
18028 	ASSERT(mutex_owned(SD_MUTEX(un)));
18029 	ASSERT(bp != NULL);
18030 	ASSERT(xp != NULL);
18031 	ASSERT(pktp != NULL);
18032 
18033 	/* The target may still be running the command, so try to reset. */
18034 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18035 	sd_reset_target(un, pktp);
18036 
18037 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18038 
18039 	/*
18040 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18041 	 * reset because another target on this bus caused it. The target
18042 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18043 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18044 	 */
18045 
18046 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18047 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18048 }
18049 
18050 
18051 
18052 
18053 /*
18054  *    Function: sd_pkt_reason_cmd_aborted
18055  *
18056  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18057  *
18058  *     Context: May be called from interrupt context
18059  */
18060 
18061 static void
18062 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18063 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18064 {
18065 	ASSERT(un != NULL);
18066 	ASSERT(mutex_owned(SD_MUTEX(un)));
18067 	ASSERT(bp != NULL);
18068 	ASSERT(xp != NULL);
18069 	ASSERT(pktp != NULL);
18070 
18071 	/* The target may still be running the command, so try to reset. */
18072 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18073 	sd_reset_target(un, pktp);
18074 
18075 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18076 
18077 	/*
18078 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18079 	 * aborted because another target on this bus caused it. The target
18080 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18081 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18082 	 */
18083 
18084 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18085 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18086 }
18087 
18088 
18089 
18090 /*
18091  *    Function: sd_pkt_reason_cmd_timeout
18092  *
18093  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18094  *
18095  *     Context: May be called from interrupt context
18096  */
18097 
18098 static void
18099 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18100 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18101 {
18102 	ASSERT(un != NULL);
18103 	ASSERT(mutex_owned(SD_MUTEX(un)));
18104 	ASSERT(bp != NULL);
18105 	ASSERT(xp != NULL);
18106 	ASSERT(pktp != NULL);
18107 
18108 
18109 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18110 	sd_reset_target(un, pktp);
18111 
18112 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18113 
18114 	/*
18115 	 * A command timeout indicates that we could not establish
18116 	 * communication with the target, so set SD_RETRIES_FAILFAST
18117 	 * as further retries/commands are likely to take a long time.
18118 	 */
18119 	sd_retry_command(un, bp,
18120 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18121 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18122 }
18123 
18124 
18125 
18126 /*
18127  *    Function: sd_pkt_reason_cmd_unx_bus_free
18128  *
18129  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18130  *
18131  *     Context: May be called from interrupt context
18132  */
18133 
18134 static void
18135 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18136 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18137 {
18138 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18139 
18140 	ASSERT(un != NULL);
18141 	ASSERT(mutex_owned(SD_MUTEX(un)));
18142 	ASSERT(bp != NULL);
18143 	ASSERT(xp != NULL);
18144 	ASSERT(pktp != NULL);
18145 
18146 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18147 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18148 
18149 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18150 	    sd_print_retry_msg : NULL;
18151 
18152 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18153 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18154 }
18155 
18156 
18157 /*
18158  *    Function: sd_pkt_reason_cmd_tag_reject
18159  *
18160  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18161  *
18162  *     Context: May be called from interrupt context
18163  */
18164 
18165 static void
18166 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18167 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18168 {
18169 	ASSERT(un != NULL);
18170 	ASSERT(mutex_owned(SD_MUTEX(un)));
18171 	ASSERT(bp != NULL);
18172 	ASSERT(xp != NULL);
18173 	ASSERT(pktp != NULL);
18174 
18175 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18176 	pktp->pkt_flags = 0;
18177 	un->un_tagflags = 0;
18178 	if (un->un_f_opt_queueing == TRUE) {
18179 		un->un_throttle = min(un->un_throttle, 3);
18180 	} else {
18181 		un->un_throttle = 1;
18182 	}
18183 	mutex_exit(SD_MUTEX(un));
18184 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18185 	mutex_enter(SD_MUTEX(un));
18186 
18187 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18188 
18189 	/* Legacy behavior not to check retry counts here. */
18190 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18191 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18192 }
18193 
18194 
18195 /*
18196  *    Function: sd_pkt_reason_default
18197  *
18198  * Description: Default recovery actions for SCSA pkt_reason values that
18199  *		do not have more explicit recovery actions.
18200  *
18201  *     Context: May be called from interrupt context
18202  */
18203 
18204 static void
18205 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18206 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18207 {
18208 	ASSERT(un != NULL);
18209 	ASSERT(mutex_owned(SD_MUTEX(un)));
18210 	ASSERT(bp != NULL);
18211 	ASSERT(xp != NULL);
18212 	ASSERT(pktp != NULL);
18213 
18214 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18215 	sd_reset_target(un, pktp);
18216 
18217 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18218 
18219 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18220 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18221 }
18222 
18223 
18224 
18225 /*
18226  *    Function: sd_pkt_status_check_condition
18227  *
18228  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18229  *
18230  *     Context: May be called from interrupt context
18231  */
18232 
18233 static void
18234 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18235 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18236 {
18237 	ASSERT(un != NULL);
18238 	ASSERT(mutex_owned(SD_MUTEX(un)));
18239 	ASSERT(bp != NULL);
18240 	ASSERT(xp != NULL);
18241 	ASSERT(pktp != NULL);
18242 
18243 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18244 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18245 
18246 	/*
18247 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18248 	 * command will be retried after the request sense). Otherwise, retry
18249 	 * the command. Note: we are issuing the request sense even though the
18250 	 * retry limit may have been reached for the failed command.
18251 	 */
18252 	if (un->un_f_arq_enabled == FALSE) {
18253 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18254 		    "no ARQ, sending request sense command\n");
18255 		sd_send_request_sense_command(un, bp, pktp);
18256 	} else {
18257 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18258 		    "ARQ,retrying request sense command\n");
18259 #if defined(__i386) || defined(__amd64)
18260 		/*
18261 		 * The SD_RETRY_DELAY value need to be adjusted here
18262 		 * when SD_RETRY_DELAY change in sddef.h
18263 		 */
18264 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 0,
18265 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18266 			NULL);
18267 #else
18268 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18269 		    0, SD_RETRY_DELAY, NULL);
18270 #endif
18271 	}
18272 
18273 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18274 }
18275 
18276 
18277 /*
18278  *    Function: sd_pkt_status_busy
18279  *
18280  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18281  *
18282  *     Context: May be called from interrupt context
18283  */
18284 
18285 static void
18286 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18287 	struct scsi_pkt *pktp)
18288 {
18289 	ASSERT(un != NULL);
18290 	ASSERT(mutex_owned(SD_MUTEX(un)));
18291 	ASSERT(bp != NULL);
18292 	ASSERT(xp != NULL);
18293 	ASSERT(pktp != NULL);
18294 
18295 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18296 	    "sd_pkt_status_busy: entry\n");
18297 
18298 	/* If retries are exhausted, just fail the command. */
18299 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18300 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18301 		    "device busy too long\n");
18302 		sd_return_failed_command(un, bp, EIO);
18303 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18304 		    "sd_pkt_status_busy: exit\n");
18305 		return;
18306 	}
18307 	xp->xb_retry_count++;
18308 
18309 	/*
18310 	 * Try to reset the target. However, we do not want to perform
18311 	 * more than one reset if the device continues to fail. The reset
18312 	 * will be performed when the retry count reaches the reset
18313 	 * threshold.  This threshold should be set such that at least
18314 	 * one retry is issued before the reset is performed.
18315 	 */
18316 	if (xp->xb_retry_count ==
18317 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18318 		int rval = 0;
18319 		mutex_exit(SD_MUTEX(un));
18320 		if (un->un_f_allow_bus_device_reset == TRUE) {
18321 			/*
18322 			 * First try to reset the LUN; if we cannot then
18323 			 * try to reset the target.
18324 			 */
18325 			if (un->un_f_lun_reset_enabled == TRUE) {
18326 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18327 				    "sd_pkt_status_busy: RESET_LUN\n");
18328 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18329 			}
18330 			if (rval == 0) {
18331 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18332 				    "sd_pkt_status_busy: RESET_TARGET\n");
18333 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18334 			}
18335 		}
18336 		if (rval == 0) {
18337 			/*
18338 			 * If the RESET_LUN and/or RESET_TARGET failed,
18339 			 * try RESET_ALL
18340 			 */
18341 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18342 			    "sd_pkt_status_busy: RESET_ALL\n");
18343 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18344 		}
18345 		mutex_enter(SD_MUTEX(un));
18346 		if (rval == 0) {
18347 			/*
18348 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18349 			 * At this point we give up & fail the command.
18350 			 */
18351 			sd_return_failed_command(un, bp, EIO);
18352 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18353 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18354 			return;
18355 		}
18356 	}
18357 
18358 	/*
18359 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18360 	 * we have already checked the retry counts above.
18361 	 */
18362 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18363 	    EIO, SD_BSY_TIMEOUT, NULL);
18364 
18365 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18366 	    "sd_pkt_status_busy: exit\n");
18367 }
18368 
18369 
18370 /*
18371  *    Function: sd_pkt_status_reservation_conflict
18372  *
18373  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18374  *		command status.
18375  *
18376  *     Context: May be called from interrupt context
18377  */
18378 
18379 static void
18380 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18381 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18382 {
18383 	ASSERT(un != NULL);
18384 	ASSERT(mutex_owned(SD_MUTEX(un)));
18385 	ASSERT(bp != NULL);
18386 	ASSERT(xp != NULL);
18387 	ASSERT(pktp != NULL);
18388 
18389 	/*
18390 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18391 	 * conflict could be due to various reasons like incorrect keys, not
18392 	 * registered or not reserved etc. So, we return EACCES to the caller.
18393 	 */
18394 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18395 		int cmd = SD_GET_PKT_OPCODE(pktp);
18396 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18397 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18398 			sd_return_failed_command(un, bp, EACCES);
18399 			return;
18400 		}
18401 	}
18402 
18403 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18404 
18405 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18406 		if (sd_failfast_enable != 0) {
18407 			/* By definition, we must panic here.... */
18408 			panic("Reservation Conflict");
18409 			/*NOTREACHED*/
18410 		}
18411 		SD_ERROR(SD_LOG_IO, un,
18412 		    "sd_handle_resv_conflict: Disk Reserved\n");
18413 		sd_return_failed_command(un, bp, EACCES);
18414 		return;
18415 	}
18416 
18417 	/*
18418 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18419 	 * property is set (default is 1). Retries will not succeed
18420 	 * on a disk reserved by another initiator. HA systems
18421 	 * may reset this via sd.conf to avoid these retries.
18422 	 *
18423 	 * Note: The legacy return code for this failure is EIO, however EACCES
18424 	 * seems more appropriate for a reservation conflict.
18425 	 */
18426 	if (sd_retry_on_reservation_conflict == 0) {
18427 		SD_ERROR(SD_LOG_IO, un,
18428 		    "sd_handle_resv_conflict: Device Reserved\n");
18429 		sd_return_failed_command(un, bp, EIO);
18430 		return;
18431 	}
18432 
18433 	/*
18434 	 * Retry the command if we can.
18435 	 *
18436 	 * Note: The legacy return code for this failure is EIO, however EACCES
18437 	 * seems more appropriate for a reservation conflict.
18438 	 */
18439 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18440 	    (clock_t)2, NULL);
18441 }
18442 
18443 
18444 
18445 /*
18446  *    Function: sd_pkt_status_qfull
18447  *
18448  * Description: Handle a QUEUE FULL condition from the target.  This can
18449  *		occur if the HBA does not handle the queue full condition.
18450  *		(Basically this means third-party HBAs as Sun HBAs will
18451  *		handle the queue full condition.)  Note that if there are
18452  *		some commands already in the transport, then the queue full
18453  *		has occurred because the queue for this nexus is actually
18454  *		full. If there are no commands in the transport, then the
18455  *		queue full is resulting from some other initiator or lun
18456  *		consuming all the resources at the target.
18457  *
18458  *     Context: May be called from interrupt context
18459  */
18460 
18461 static void
18462 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18463 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18464 {
18465 	ASSERT(un != NULL);
18466 	ASSERT(mutex_owned(SD_MUTEX(un)));
18467 	ASSERT(bp != NULL);
18468 	ASSERT(xp != NULL);
18469 	ASSERT(pktp != NULL);
18470 
18471 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18472 	    "sd_pkt_status_qfull: entry\n");
18473 
18474 	/*
18475 	 * Just lower the QFULL throttle and retry the command.  Note that
18476 	 * we do not limit the number of retries here.
18477 	 */
18478 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18479 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18480 	    SD_RESTART_TIMEOUT, NULL);
18481 
18482 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18483 	    "sd_pkt_status_qfull: exit\n");
18484 }
18485 
18486 
18487 /*
18488  *    Function: sd_reset_target
18489  *
18490  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18491  *		RESET_TARGET, or RESET_ALL.
18492  *
18493  *     Context: May be called under interrupt context.
18494  */
18495 
18496 static void
18497 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18498 {
18499 	int rval = 0;
18500 
18501 	ASSERT(un != NULL);
18502 	ASSERT(mutex_owned(SD_MUTEX(un)));
18503 	ASSERT(pktp != NULL);
18504 
18505 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18506 
18507 	/*
18508 	 * No need to reset if the transport layer has already done so.
18509 	 */
18510 	if ((pktp->pkt_statistics &
18511 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18512 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18513 		    "sd_reset_target: no reset\n");
18514 		return;
18515 	}
18516 
18517 	mutex_exit(SD_MUTEX(un));
18518 
18519 	if (un->un_f_allow_bus_device_reset == TRUE) {
18520 		if (un->un_f_lun_reset_enabled == TRUE) {
18521 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18522 			    "sd_reset_target: RESET_LUN\n");
18523 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18524 		}
18525 		if (rval == 0) {
18526 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18527 			    "sd_reset_target: RESET_TARGET\n");
18528 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18529 		}
18530 	}
18531 
18532 	if (rval == 0) {
18533 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18534 		    "sd_reset_target: RESET_ALL\n");
18535 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18536 	}
18537 
18538 	mutex_enter(SD_MUTEX(un));
18539 
18540 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18541 }
18542 
18543 
18544 /*
18545  *    Function: sd_media_change_task
18546  *
18547  * Description: Recovery action for CDROM to become available.
18548  *
18549  *     Context: Executes in a taskq() thread context
18550  */
18551 
18552 static void
18553 sd_media_change_task(void *arg)
18554 {
18555 	struct	scsi_pkt	*pktp = arg;
18556 	struct	sd_lun		*un;
18557 	struct	buf		*bp;
18558 	struct	sd_xbuf		*xp;
18559 	int	err		= 0;
18560 	int	retry_count	= 0;
18561 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18562 	struct	sd_sense_info	si;
18563 
18564 	ASSERT(pktp != NULL);
18565 	bp = (struct buf *)pktp->pkt_private;
18566 	ASSERT(bp != NULL);
18567 	xp = SD_GET_XBUF(bp);
18568 	ASSERT(xp != NULL);
18569 	un = SD_GET_UN(bp);
18570 	ASSERT(un != NULL);
18571 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18572 	ASSERT(ISREMOVABLE(un));
18573 
18574 	si.ssi_severity = SCSI_ERR_INFO;
18575 	si.ssi_pfa_flag = FALSE;
18576 
18577 	/*
18578 	 * When a reset is issued on a CDROM, it takes a long time to
18579 	 * recover. First few attempts to read capacity and other things
18580 	 * related to handling unit attention fail (with a ASC 0x4 and
18581 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18582 	 * to limit the retries in other cases of genuine failures like
18583 	 * no media in drive.
18584 	 */
18585 	while (retry_count++ < retry_limit) {
18586 		if ((err = sd_handle_mchange(un)) == 0) {
18587 			break;
18588 		}
18589 		if (err == EAGAIN) {
18590 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18591 		}
18592 		/* Sleep for 0.5 sec. & try again */
18593 		delay(drv_usectohz(500000));
18594 	}
18595 
18596 	/*
18597 	 * Dispatch (retry or fail) the original command here,
18598 	 * along with appropriate console messages....
18599 	 *
18600 	 * Must grab the mutex before calling sd_retry_command,
18601 	 * sd_print_sense_msg and sd_return_failed_command.
18602 	 */
18603 	mutex_enter(SD_MUTEX(un));
18604 	if (err != SD_CMD_SUCCESS) {
18605 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18606 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18607 		si.ssi_severity = SCSI_ERR_FATAL;
18608 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18609 		sd_return_failed_command(un, bp, EIO);
18610 	} else {
18611 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18612 		    &si, EIO, (clock_t)0, NULL);
18613 	}
18614 	mutex_exit(SD_MUTEX(un));
18615 }
18616 
18617 
18618 
18619 /*
18620  *    Function: sd_handle_mchange
18621  *
18622  * Description: Perform geometry validation & other recovery when CDROM
18623  *		has been removed from drive.
18624  *
18625  * Return Code: 0 for success
18626  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18627  *		sd_send_scsi_READ_CAPACITY()
18628  *
18629  *     Context: Executes in a taskq() thread context
18630  */
18631 
18632 static int
18633 sd_handle_mchange(struct sd_lun *un)
18634 {
18635 	uint64_t	capacity;
18636 	uint32_t	lbasize;
18637 	int		rval;
18638 
18639 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18640 	ASSERT(ISREMOVABLE(un));
18641 
18642 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
18643 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
18644 		return (rval);
18645 	}
18646 
18647 	mutex_enter(SD_MUTEX(un));
18648 	sd_update_block_info(un, lbasize, capacity);
18649 
18650 	if (un->un_errstats != NULL) {
18651 		struct	sd_errstats *stp =
18652 		    (struct sd_errstats *)un->un_errstats->ks_data;
18653 		stp->sd_capacity.value.ui64 = (uint64_t)
18654 		    ((uint64_t)un->un_blockcount *
18655 		    (uint64_t)un->un_tgt_blocksize);
18656 	}
18657 
18658 	/*
18659 	 * Note: Maybe let the strategy/partitioning chain worry about getting
18660 	 * valid geometry.
18661 	 */
18662 	un->un_f_geometry_is_valid = FALSE;
18663 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
18664 	if (un->un_f_geometry_is_valid == FALSE) {
18665 		mutex_exit(SD_MUTEX(un));
18666 		return (EIO);
18667 	}
18668 
18669 	mutex_exit(SD_MUTEX(un));
18670 
18671 	/*
18672 	 * Try to lock the door
18673 	 */
18674 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
18675 	    SD_PATH_DIRECT_PRIORITY));
18676 }
18677 
18678 
18679 /*
18680  *    Function: sd_send_scsi_DOORLOCK
18681  *
18682  * Description: Issue the scsi DOOR LOCK command
18683  *
18684  *   Arguments: un    - pointer to driver soft state (unit) structure for
18685  *			this target.
18686  *		flag  - SD_REMOVAL_ALLOW
18687  *			SD_REMOVAL_PREVENT
18688  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18689  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18690  *			to use the USCSI "direct" chain and bypass the normal
18691  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18692  *			command is issued as part of an error recovery action.
18693  *
18694  * Return Code: 0   - Success
18695  *		errno return code from sd_send_scsi_cmd()
18696  *
18697  *     Context: Can sleep.
18698  */
18699 
18700 static int
18701 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
18702 {
18703 	union scsi_cdb		cdb;
18704 	struct uscsi_cmd	ucmd_buf;
18705 	struct scsi_extended_sense	sense_buf;
18706 	int			status;
18707 
18708 	ASSERT(un != NULL);
18709 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18710 
18711 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
18712 
18713 	/* already determined doorlock is not supported, fake success */
18714 	if (un->un_f_doorlock_supported == FALSE) {
18715 		return (0);
18716 	}
18717 
18718 	bzero(&cdb, sizeof (cdb));
18719 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18720 
18721 	cdb.scc_cmd = SCMD_DOORLOCK;
18722 	cdb.cdb_opaque[4] = (uchar_t)flag;
18723 
18724 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18725 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18726 	ucmd_buf.uscsi_bufaddr	= NULL;
18727 	ucmd_buf.uscsi_buflen	= 0;
18728 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18729 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18730 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18731 	ucmd_buf.uscsi_timeout	= 15;
18732 
18733 	SD_TRACE(SD_LOG_IO, un,
18734 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
18735 
18736 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18737 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18738 
18739 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
18740 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18741 	    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
18742 		/* fake success and skip subsequent doorlock commands */
18743 		un->un_f_doorlock_supported = FALSE;
18744 		return (0);
18745 	}
18746 
18747 	return (status);
18748 }
18749 
18750 
18751 /*
18752  *    Function: sd_send_scsi_READ_CAPACITY
18753  *
18754  * Description: This routine uses the scsi READ CAPACITY command to determine
18755  *		the device capacity in number of blocks and the device native
18756  *		block size. If this function returns a failure, then the
18757  *		values in *capp and *lbap are undefined.  If the capacity
18758  *		returned is 0xffffffff then the lun is too large for a
18759  *		normal READ CAPACITY command and the results of a
18760  *		READ CAPACITY 16 will be used instead.
18761  *
18762  *   Arguments: un   - ptr to soft state struct for the target
18763  *		capp - ptr to unsigned 64-bit variable to receive the
18764  *			capacity value from the command.
18765  *		lbap - ptr to unsigned 32-bit varaible to receive the
18766  *			block size value from the command
18767  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18768  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18769  *			to use the USCSI "direct" chain and bypass the normal
18770  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18771  *			command is issued as part of an error recovery action.
18772  *
18773  * Return Code: 0   - Success
18774  *		EIO - IO error
18775  *		EACCES - Reservation conflict detected
18776  *		EAGAIN - Device is becoming ready
18777  *		errno return code from sd_send_scsi_cmd()
18778  *
18779  *     Context: Can sleep.  Blocks until command completes.
18780  */
18781 
18782 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
18783 
18784 static int
18785 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
18786 	int path_flag)
18787 {
18788 	struct	scsi_extended_sense	sense_buf;
18789 	struct	uscsi_cmd	ucmd_buf;
18790 	union	scsi_cdb	cdb;
18791 	uint32_t		*capacity_buf;
18792 	uint64_t		capacity;
18793 	uint32_t		lbasize;
18794 	int			status;
18795 
18796 	ASSERT(un != NULL);
18797 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18798 	ASSERT(capp != NULL);
18799 	ASSERT(lbap != NULL);
18800 
18801 	SD_TRACE(SD_LOG_IO, un,
18802 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18803 
18804 	/*
18805 	 * First send a READ_CAPACITY command to the target.
18806 	 * (This command is mandatory under SCSI-2.)
18807 	 *
18808 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
18809 	 * Medium Indicator bit is cleared.  The address field must be
18810 	 * zero if the PMI bit is zero.
18811 	 */
18812 	bzero(&cdb, sizeof (cdb));
18813 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18814 
18815 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
18816 
18817 	cdb.scc_cmd = SCMD_READ_CAPACITY;
18818 
18819 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18820 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18821 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
18822 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
18823 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18824 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18825 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18826 	ucmd_buf.uscsi_timeout	= 60;
18827 
18828 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18829 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18830 
18831 	switch (status) {
18832 	case 0:
18833 		/* Return failure if we did not get valid capacity data. */
18834 		if (ucmd_buf.uscsi_resid != 0) {
18835 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18836 			return (EIO);
18837 		}
18838 
18839 		/*
18840 		 * Read capacity and block size from the READ CAPACITY 10 data.
18841 		 * This data may be adjusted later due to device specific
18842 		 * issues.
18843 		 *
18844 		 * According to the SCSI spec, the READ CAPACITY 10
18845 		 * command returns the following:
18846 		 *
18847 		 *  bytes 0-3: Maximum logical block address available.
18848 		 *		(MSB in byte:0 & LSB in byte:3)
18849 		 *
18850 		 *  bytes 4-7: Block length in bytes
18851 		 *		(MSB in byte:4 & LSB in byte:7)
18852 		 *
18853 		 */
18854 		capacity = BE_32(capacity_buf[0]);
18855 		lbasize = BE_32(capacity_buf[1]);
18856 
18857 		/*
18858 		 * Done with capacity_buf
18859 		 */
18860 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18861 
18862 		/*
18863 		 * if the reported capacity is set to all 0xf's, then
18864 		 * this disk is too large and requires SBC-2 commands.
18865 		 * Reissue the request using READ CAPACITY 16.
18866 		 */
18867 		if (capacity == 0xffffffff) {
18868 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
18869 			    &lbasize, path_flag);
18870 			if (status != 0) {
18871 				return (status);
18872 			}
18873 		}
18874 		break;	/* Success! */
18875 	case EIO:
18876 		switch (ucmd_buf.uscsi_status) {
18877 		case STATUS_RESERVATION_CONFLICT:
18878 			status = EACCES;
18879 			break;
18880 		case STATUS_CHECK:
18881 			/*
18882 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18883 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18884 			 */
18885 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18886 			    (sense_buf.es_add_code  == 0x04) &&
18887 			    (sense_buf.es_qual_code == 0x01)) {
18888 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18889 				return (EAGAIN);
18890 			}
18891 			break;
18892 		default:
18893 			break;
18894 		}
18895 		/* FALLTHRU */
18896 	default:
18897 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18898 		return (status);
18899 	}
18900 
18901 	/*
18902 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
18903 	 * (2352 and 0 are common) so for these devices always force the value
18904 	 * to 2048 as required by the ATAPI specs.
18905 	 */
18906 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
18907 		lbasize = 2048;
18908 	}
18909 
18910 	/*
18911 	 * Get the maximum LBA value from the READ CAPACITY data.
18912 	 * Here we assume that the Partial Medium Indicator (PMI) bit
18913 	 * was cleared when issuing the command. This means that the LBA
18914 	 * returned from the device is the LBA of the last logical block
18915 	 * on the logical unit.  The actual logical block count will be
18916 	 * this value plus one.
18917 	 *
18918 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
18919 	 * so scale the capacity value to reflect this.
18920 	 */
18921 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
18922 
18923 #if defined(__i386) || defined(__amd64)
18924 	/*
18925 	 * On x86, compensate for off-by-1 error (number of sectors on
18926 	 * media)  (1175930)
18927 	 */
18928 	if (!ISREMOVABLE(un) && (lbasize == un->un_sys_blocksize)) {
18929 		capacity -= 1;
18930 	}
18931 #endif
18932 
18933 	/*
18934 	 * Copy the values from the READ CAPACITY command into the space
18935 	 * provided by the caller.
18936 	 */
18937 	*capp = capacity;
18938 	*lbap = lbasize;
18939 
18940 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
18941 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18942 
18943 	/*
18944 	 * Both the lbasize and capacity from the device must be nonzero,
18945 	 * otherwise we assume that the values are not valid and return
18946 	 * failure to the caller. (4203735)
18947 	 */
18948 	if ((capacity == 0) || (lbasize == 0)) {
18949 		return (EIO);
18950 	}
18951 
18952 	return (0);
18953 }
18954 
18955 /*
18956  *    Function: sd_send_scsi_READ_CAPACITY_16
18957  *
18958  * Description: This routine uses the scsi READ CAPACITY 16 command to
18959  *		determine the device capacity in number of blocks and the
18960  *		device native block size.  If this function returns a failure,
18961  *		then the values in *capp and *lbap are undefined.
18962  *		This routine should always be called by
18963  *		sd_send_scsi_READ_CAPACITY which will appy any device
18964  *		specific adjustments to capacity and lbasize.
18965  *
18966  *   Arguments: un   - ptr to soft state struct for the target
18967  *		capp - ptr to unsigned 64-bit variable to receive the
18968  *			capacity value from the command.
18969  *		lbap - ptr to unsigned 32-bit varaible to receive the
18970  *			block size value from the command
18971  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18972  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18973  *			to use the USCSI "direct" chain and bypass the normal
18974  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
18975  *			this command is issued as part of an error recovery
18976  *			action.
18977  *
18978  * Return Code: 0   - Success
18979  *		EIO - IO error
18980  *		EACCES - Reservation conflict detected
18981  *		EAGAIN - Device is becoming ready
18982  *		errno return code from sd_send_scsi_cmd()
18983  *
18984  *     Context: Can sleep.  Blocks until command completes.
18985  */
18986 
18987 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
18988 
18989 static int
18990 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
18991 	uint32_t *lbap, int path_flag)
18992 {
18993 	struct	scsi_extended_sense	sense_buf;
18994 	struct	uscsi_cmd	ucmd_buf;
18995 	union	scsi_cdb	cdb;
18996 	uint64_t		*capacity16_buf;
18997 	uint64_t		capacity;
18998 	uint32_t		lbasize;
18999 	int			status;
19000 
19001 	ASSERT(un != NULL);
19002 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19003 	ASSERT(capp != NULL);
19004 	ASSERT(lbap != NULL);
19005 
19006 	SD_TRACE(SD_LOG_IO, un,
19007 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19008 
19009 	/*
19010 	 * First send a READ_CAPACITY_16 command to the target.
19011 	 *
19012 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19013 	 * Medium Indicator bit is cleared.  The address field must be
19014 	 * zero if the PMI bit is zero.
19015 	 */
19016 	bzero(&cdb, sizeof (cdb));
19017 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19018 
19019 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19020 
19021 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19022 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19023 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19024 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19025 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19026 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19027 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19028 	ucmd_buf.uscsi_timeout	= 60;
19029 
19030 	/*
19031 	 * Read Capacity (16) is a Service Action In command.  One
19032 	 * command byte (0x9E) is overloaded for multiple operations,
19033 	 * with the second CDB byte specifying the desired operation
19034 	 */
19035 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19036 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19037 
19038 	/*
19039 	 * Fill in allocation length field
19040 	 */
19041 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19042 
19043 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19044 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19045 
19046 	switch (status) {
19047 	case 0:
19048 		/* Return failure if we did not get valid capacity data. */
19049 		if (ucmd_buf.uscsi_resid > 20) {
19050 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19051 			return (EIO);
19052 		}
19053 
19054 		/*
19055 		 * Read capacity and block size from the READ CAPACITY 10 data.
19056 		 * This data may be adjusted later due to device specific
19057 		 * issues.
19058 		 *
19059 		 * According to the SCSI spec, the READ CAPACITY 10
19060 		 * command returns the following:
19061 		 *
19062 		 *  bytes 0-7: Maximum logical block address available.
19063 		 *		(MSB in byte:0 & LSB in byte:7)
19064 		 *
19065 		 *  bytes 8-11: Block length in bytes
19066 		 *		(MSB in byte:8 & LSB in byte:11)
19067 		 *
19068 		 */
19069 		capacity = BE_64(capacity16_buf[0]);
19070 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19071 
19072 		/*
19073 		 * Done with capacity16_buf
19074 		 */
19075 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19076 
19077 		/*
19078 		 * if the reported capacity is set to all 0xf's, then
19079 		 * this disk is too large.  This could only happen with
19080 		 * a device that supports LBAs larger than 64 bits which
19081 		 * are not defined by any current T10 standards.
19082 		 */
19083 		if (capacity == 0xffffffffffffffff) {
19084 			return (EIO);
19085 		}
19086 		break;	/* Success! */
19087 	case EIO:
19088 		switch (ucmd_buf.uscsi_status) {
19089 		case STATUS_RESERVATION_CONFLICT:
19090 			status = EACCES;
19091 			break;
19092 		case STATUS_CHECK:
19093 			/*
19094 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19095 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19096 			 */
19097 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19098 			    (sense_buf.es_add_code  == 0x04) &&
19099 			    (sense_buf.es_qual_code == 0x01)) {
19100 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19101 				return (EAGAIN);
19102 			}
19103 			break;
19104 		default:
19105 			break;
19106 		}
19107 		/* FALLTHRU */
19108 	default:
19109 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19110 		return (status);
19111 	}
19112 
19113 	*capp = capacity;
19114 	*lbap = lbasize;
19115 
19116 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19117 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19118 
19119 	return (0);
19120 }
19121 
19122 
19123 /*
19124  *    Function: sd_send_scsi_START_STOP_UNIT
19125  *
19126  * Description: Issue a scsi START STOP UNIT command to the target.
19127  *
19128  *   Arguments: un    - pointer to driver soft state (unit) structure for
19129  *			this target.
19130  *		flag  - SD_TARGET_START
19131  *			SD_TARGET_STOP
19132  *			SD_TARGET_EJECT
19133  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19134  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19135  *			to use the USCSI "direct" chain and bypass the normal
19136  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19137  *			command is issued as part of an error recovery action.
19138  *
19139  * Return Code: 0   - Success
19140  *		EIO - IO error
19141  *		EACCES - Reservation conflict detected
19142  *		ENXIO  - Not Ready, medium not present
19143  *		errno return code from sd_send_scsi_cmd()
19144  *
19145  *     Context: Can sleep.
19146  */
19147 
19148 static int
19149 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19150 {
19151 	struct	scsi_extended_sense	sense_buf;
19152 	union scsi_cdb		cdb;
19153 	struct uscsi_cmd	ucmd_buf;
19154 	int			status;
19155 
19156 	ASSERT(un != NULL);
19157 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19158 
19159 	SD_TRACE(SD_LOG_IO, un,
19160 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19161 
19162 	if (ISREMOVABLE(un) &&
19163 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19164 	    (un->un_f_start_stop_supported != TRUE)) {
19165 		return (0);
19166 	}
19167 
19168 	bzero(&cdb, sizeof (cdb));
19169 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19170 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19171 
19172 	cdb.scc_cmd = SCMD_START_STOP;
19173 	cdb.cdb_opaque[4] = (uchar_t)flag;
19174 
19175 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19176 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19177 	ucmd_buf.uscsi_bufaddr	= NULL;
19178 	ucmd_buf.uscsi_buflen	= 0;
19179 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19180 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19181 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19182 	ucmd_buf.uscsi_timeout	= 200;
19183 
19184 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19185 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19186 
19187 	switch (status) {
19188 	case 0:
19189 		break;	/* Success! */
19190 	case EIO:
19191 		switch (ucmd_buf.uscsi_status) {
19192 		case STATUS_RESERVATION_CONFLICT:
19193 			status = EACCES;
19194 			break;
19195 		case STATUS_CHECK:
19196 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19197 				switch (sense_buf.es_key) {
19198 				case KEY_ILLEGAL_REQUEST:
19199 					status = ENOTSUP;
19200 					break;
19201 				case KEY_NOT_READY:
19202 					if (sense_buf.es_add_code == 0x3A) {
19203 						status = ENXIO;
19204 					}
19205 					break;
19206 				default:
19207 					break;
19208 				}
19209 			}
19210 			break;
19211 		default:
19212 			break;
19213 		}
19214 		break;
19215 	default:
19216 		break;
19217 	}
19218 
19219 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19220 
19221 	return (status);
19222 }
19223 
19224 
19225 /*
19226  *    Function: sd_start_stop_unit_callback
19227  *
19228  * Description: timeout(9F) callback to begin recovery process for a
19229  *		device that has spun down.
19230  *
19231  *   Arguments: arg - pointer to associated softstate struct.
19232  *
19233  *     Context: Executes in a timeout(9F) thread context
19234  */
19235 
19236 static void
19237 sd_start_stop_unit_callback(void *arg)
19238 {
19239 	struct sd_lun	*un = arg;
19240 	ASSERT(un != NULL);
19241 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19242 
19243 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19244 
19245 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19246 }
19247 
19248 
19249 /*
19250  *    Function: sd_start_stop_unit_task
19251  *
19252  * Description: Recovery procedure when a drive is spun down.
19253  *
19254  *   Arguments: arg - pointer to associated softstate struct.
19255  *
19256  *     Context: Executes in a taskq() thread context
19257  */
19258 
19259 static void
19260 sd_start_stop_unit_task(void *arg)
19261 {
19262 	struct sd_lun	*un = arg;
19263 
19264 	ASSERT(un != NULL);
19265 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19266 
19267 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19268 
19269 	/*
19270 	 * Some unformatted drives report not ready error, no need to
19271 	 * restart if format has been initiated.
19272 	 */
19273 	mutex_enter(SD_MUTEX(un));
19274 	if (un->un_f_format_in_progress == TRUE) {
19275 		mutex_exit(SD_MUTEX(un));
19276 		return;
19277 	}
19278 	mutex_exit(SD_MUTEX(un));
19279 
19280 	/*
19281 	 * When a START STOP command is issued from here, it is part of a
19282 	 * failure recovery operation and must be issued before any other
19283 	 * commands, including any pending retries. Thus it must be sent
19284 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19285 	 * succeeds or not, we will start I/O after the attempt.
19286 	 */
19287 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19288 	    SD_PATH_DIRECT_PRIORITY);
19289 
19290 	/*
19291 	 * The above call blocks until the START_STOP_UNIT command completes.
19292 	 * Now that it has completed, we must re-try the original IO that
19293 	 * received the NOT READY condition in the first place. There are
19294 	 * three possible conditions here:
19295 	 *
19296 	 *  (1) The original IO is on un_retry_bp.
19297 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19298 	 *	is NULL.
19299 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19300 	 *	points to some other, unrelated bp.
19301 	 *
19302 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19303 	 * as the argument. If un_retry_bp is NULL, this will initiate
19304 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19305 	 * then this will process the bp on un_retry_bp. That may or may not
19306 	 * be the original IO, but that does not matter: the important thing
19307 	 * is to keep the IO processing going at this point.
19308 	 *
19309 	 * Note: This is a very specific error recovery sequence associated
19310 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19311 	 * serialize the I/O with completion of the spin-up.
19312 	 */
19313 	mutex_enter(SD_MUTEX(un));
19314 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19315 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19316 	    un, un->un_retry_bp);
19317 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19318 	sd_start_cmds(un, un->un_retry_bp);
19319 	mutex_exit(SD_MUTEX(un));
19320 
19321 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19322 }
19323 
19324 
19325 /*
19326  *    Function: sd_send_scsi_INQUIRY
19327  *
19328  * Description: Issue the scsi INQUIRY command.
19329  *
19330  *   Arguments: un
19331  *		bufaddr
19332  *		buflen
19333  *		evpd
19334  *		page_code
19335  *		page_length
19336  *
19337  * Return Code: 0   - Success
19338  *		errno return code from sd_send_scsi_cmd()
19339  *
19340  *     Context: Can sleep. Does not return until command is completed.
19341  */
19342 
19343 static int
19344 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
19345 	uchar_t evpd, uchar_t page_code, size_t *residp)
19346 {
19347 	union scsi_cdb		cdb;
19348 	struct uscsi_cmd	ucmd_buf;
19349 	int			status;
19350 
19351 	ASSERT(un != NULL);
19352 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19353 	ASSERT(bufaddr != NULL);
19354 
19355 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19356 
19357 	bzero(&cdb, sizeof (cdb));
19358 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19359 	bzero(bufaddr, buflen);
19360 
19361 	cdb.scc_cmd = SCMD_INQUIRY;
19362 	cdb.cdb_opaque[1] = evpd;
19363 	cdb.cdb_opaque[2] = page_code;
19364 	FORMG0COUNT(&cdb, buflen);
19365 
19366 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19367 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19368 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19369 	ucmd_buf.uscsi_buflen	= buflen;
19370 	ucmd_buf.uscsi_rqbuf	= NULL;
19371 	ucmd_buf.uscsi_rqlen	= 0;
19372 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19373 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19374 
19375 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19376 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19377 
19378 	if ((status == 0) && (residp != NULL)) {
19379 		*residp = ucmd_buf.uscsi_resid;
19380 	}
19381 
19382 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19383 
19384 	return (status);
19385 }
19386 
19387 
19388 /*
19389  *    Function: sd_send_scsi_TEST_UNIT_READY
19390  *
19391  * Description: Issue the scsi TEST UNIT READY command.
19392  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19393  *		prevent retrying failed commands. Use this when the intent
19394  *		is either to check for device readiness, to clear a Unit
19395  *		Attention, or to clear any outstanding sense data.
19396  *		However under specific conditions the expected behavior
19397  *		is for retries to bring a device ready, so use the flag
19398  *		with caution.
19399  *
19400  *   Arguments: un
19401  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19402  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19403  *			0: dont check for media present, do retries on cmd.
19404  *
19405  * Return Code: 0   - Success
19406  *		EIO - IO error
19407  *		EACCES - Reservation conflict detected
19408  *		ENXIO  - Not Ready, medium not present
19409  *		errno return code from sd_send_scsi_cmd()
19410  *
19411  *     Context: Can sleep. Does not return until command is completed.
19412  */
19413 
19414 static int
19415 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
19416 {
19417 	struct	scsi_extended_sense	sense_buf;
19418 	union scsi_cdb		cdb;
19419 	struct uscsi_cmd	ucmd_buf;
19420 	int			status;
19421 
19422 	ASSERT(un != NULL);
19423 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19424 
19425 	SD_TRACE(SD_LOG_IO, un,
19426 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19427 
19428 	/*
19429 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19430 	 * timeouts when they receive a TUR and the queue is not empty. Check
19431 	 * the configuration flag set during attach (indicating the drive has
19432 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19433 	 * TUR. If there are
19434 	 * pending commands return success, this is a bit arbitrary but is ok
19435 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19436 	 * configurations.
19437 	 */
19438 	if (un->un_f_cfg_tur_check == TRUE) {
19439 		mutex_enter(SD_MUTEX(un));
19440 		if (un->un_ncmds_in_transport != 0) {
19441 			mutex_exit(SD_MUTEX(un));
19442 			return (0);
19443 		}
19444 		mutex_exit(SD_MUTEX(un));
19445 	}
19446 
19447 	bzero(&cdb, sizeof (cdb));
19448 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19449 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19450 
19451 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19452 
19453 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19454 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19455 	ucmd_buf.uscsi_bufaddr	= NULL;
19456 	ucmd_buf.uscsi_buflen	= 0;
19457 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19458 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19459 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19460 
19461 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19462 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19463 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19464 	}
19465 	ucmd_buf.uscsi_timeout	= 60;
19466 
19467 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19468 	    UIO_SYSSPACE, UIO_SYSSPACE,
19469 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
19470 
19471 	switch (status) {
19472 	case 0:
19473 		break;	/* Success! */
19474 	case EIO:
19475 		switch (ucmd_buf.uscsi_status) {
19476 		case STATUS_RESERVATION_CONFLICT:
19477 			status = EACCES;
19478 			break;
19479 		case STATUS_CHECK:
19480 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19481 				break;
19482 			}
19483 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19484 			    (sense_buf.es_key == KEY_NOT_READY) &&
19485 			    (sense_buf.es_add_code == 0x3A)) {
19486 				status = ENXIO;
19487 			}
19488 			break;
19489 		default:
19490 			break;
19491 		}
19492 		break;
19493 	default:
19494 		break;
19495 	}
19496 
19497 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19498 
19499 	return (status);
19500 }
19501 
19502 
19503 /*
19504  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19505  *
19506  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19507  *
19508  *   Arguments: un
19509  *
19510  * Return Code: 0   - Success
19511  *		EACCES
19512  *		ENOTSUP
19513  *		errno return code from sd_send_scsi_cmd()
19514  *
19515  *     Context: Can sleep. Does not return until command is completed.
19516  */
19517 
19518 static int
19519 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
19520 	uint16_t data_len, uchar_t *data_bufp)
19521 {
19522 	struct scsi_extended_sense	sense_buf;
19523 	union scsi_cdb		cdb;
19524 	struct uscsi_cmd	ucmd_buf;
19525 	int			status;
19526 	int			no_caller_buf = FALSE;
19527 
19528 	ASSERT(un != NULL);
19529 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19530 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19531 
19532 	SD_TRACE(SD_LOG_IO, un,
19533 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19534 
19535 	bzero(&cdb, sizeof (cdb));
19536 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19537 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19538 	if (data_bufp == NULL) {
19539 		/* Allocate a default buf if the caller did not give one */
19540 		ASSERT(data_len == 0);
19541 		data_len  = MHIOC_RESV_KEY_SIZE;
19542 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19543 		no_caller_buf = TRUE;
19544 	}
19545 
19546 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
19547 	cdb.cdb_opaque[1] = usr_cmd;
19548 	FORMG1COUNT(&cdb, data_len);
19549 
19550 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19551 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19552 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19553 	ucmd_buf.uscsi_buflen	= data_len;
19554 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19555 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19556 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19557 	ucmd_buf.uscsi_timeout	= 60;
19558 
19559 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19560 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19561 
19562 	switch (status) {
19563 	case 0:
19564 		break;	/* Success! */
19565 	case EIO:
19566 		switch (ucmd_buf.uscsi_status) {
19567 		case STATUS_RESERVATION_CONFLICT:
19568 			status = EACCES;
19569 			break;
19570 		case STATUS_CHECK:
19571 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19572 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19573 				status = ENOTSUP;
19574 			}
19575 			break;
19576 		default:
19577 			break;
19578 		}
19579 		break;
19580 	default:
19581 		break;
19582 	}
19583 
19584 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
19585 
19586 	if (no_caller_buf == TRUE) {
19587 		kmem_free(data_bufp, data_len);
19588 	}
19589 
19590 	return (status);
19591 }
19592 
19593 
19594 /*
19595  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
19596  *
19597  * Description: This routine is the driver entry point for handling CD-ROM
19598  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
19599  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
19600  *		device.
19601  *
19602  *   Arguments: un  -   Pointer to soft state struct for the target.
19603  *		usr_cmd SCSI-3 reservation facility command (one of
19604  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
19605  *			SD_SCSI3_PREEMPTANDABORT)
19606  *		usr_bufp - user provided pointer register, reserve descriptor or
19607  *			preempt and abort structure (mhioc_register_t,
19608  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
19609  *
19610  * Return Code: 0   - Success
19611  *		EACCES
19612  *		ENOTSUP
19613  *		errno return code from sd_send_scsi_cmd()
19614  *
19615  *     Context: Can sleep. Does not return until command is completed.
19616  */
19617 
19618 static int
19619 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
19620 	uchar_t	*usr_bufp)
19621 {
19622 	struct scsi_extended_sense	sense_buf;
19623 	union scsi_cdb		cdb;
19624 	struct uscsi_cmd	ucmd_buf;
19625 	int			status;
19626 	uchar_t			data_len = sizeof (sd_prout_t);
19627 	sd_prout_t		*prp;
19628 
19629 	ASSERT(un != NULL);
19630 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19631 	ASSERT(data_len == 24);	/* required by scsi spec */
19632 
19633 	SD_TRACE(SD_LOG_IO, un,
19634 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
19635 
19636 	if (usr_bufp == NULL) {
19637 		return (EINVAL);
19638 	}
19639 
19640 	bzero(&cdb, sizeof (cdb));
19641 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19642 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19643 	prp = kmem_zalloc(data_len, KM_SLEEP);
19644 
19645 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
19646 	cdb.cdb_opaque[1] = usr_cmd;
19647 	FORMG1COUNT(&cdb, data_len);
19648 
19649 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19650 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19651 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
19652 	ucmd_buf.uscsi_buflen	= data_len;
19653 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19654 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19655 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19656 	ucmd_buf.uscsi_timeout	= 60;
19657 
19658 	switch (usr_cmd) {
19659 	case SD_SCSI3_REGISTER: {
19660 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
19661 
19662 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19663 		bcopy(ptr->newkey.key, prp->service_key,
19664 		    MHIOC_RESV_KEY_SIZE);
19665 		prp->aptpl = ptr->aptpl;
19666 		break;
19667 	}
19668 	case SD_SCSI3_RESERVE:
19669 	case SD_SCSI3_RELEASE: {
19670 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
19671 
19672 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19673 		prp->scope_address = BE_32(ptr->scope_specific_addr);
19674 		cdb.cdb_opaque[2] = ptr->type;
19675 		break;
19676 	}
19677 	case SD_SCSI3_PREEMPTANDABORT: {
19678 		mhioc_preemptandabort_t *ptr =
19679 		    (mhioc_preemptandabort_t *)usr_bufp;
19680 
19681 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19682 		bcopy(ptr->victim_key.key, prp->service_key,
19683 		    MHIOC_RESV_KEY_SIZE);
19684 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
19685 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
19686 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
19687 		break;
19688 	}
19689 	case SD_SCSI3_REGISTERANDIGNOREKEY:
19690 	{
19691 		mhioc_registerandignorekey_t *ptr;
19692 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
19693 		bcopy(ptr->newkey.key,
19694 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
19695 		prp->aptpl = ptr->aptpl;
19696 		break;
19697 	}
19698 	default:
19699 		ASSERT(FALSE);
19700 		break;
19701 	}
19702 
19703 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19704 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19705 
19706 	switch (status) {
19707 	case 0:
19708 		break;	/* Success! */
19709 	case EIO:
19710 		switch (ucmd_buf.uscsi_status) {
19711 		case STATUS_RESERVATION_CONFLICT:
19712 			status = EACCES;
19713 			break;
19714 		case STATUS_CHECK:
19715 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19716 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19717 				status = ENOTSUP;
19718 			}
19719 			break;
19720 		default:
19721 			break;
19722 		}
19723 		break;
19724 	default:
19725 		break;
19726 	}
19727 
19728 	kmem_free(prp, data_len);
19729 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
19730 	return (status);
19731 }
19732 
19733 
19734 /*
19735  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
19736  *
19737  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
19738  *
19739  *   Arguments: un - pointer to the target's soft state struct
19740  *
19741  * Return Code: 0 - success
19742  *		errno-type error code
19743  *
19744  *     Context: kernel thread context only.
19745  */
19746 
19747 static int
19748 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un)
19749 {
19750 	struct	scsi_extended_sense	sense_buf;
19751 	union scsi_cdb		cdb;
19752 	struct uscsi_cmd	ucmd_buf;
19753 	int			status;
19754 
19755 	ASSERT(un != NULL);
19756 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19757 
19758 	SD_TRACE(SD_LOG_IO, un,
19759 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
19760 
19761 	bzero(&cdb, sizeof (cdb));
19762 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19763 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19764 
19765 	cdb.scc_cmd = SCMD_SYNCHRONIZE_CACHE;
19766 
19767 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19768 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19769 	ucmd_buf.uscsi_bufaddr	= NULL;
19770 	ucmd_buf.uscsi_buflen	= 0;
19771 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19772 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19773 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19774 	ucmd_buf.uscsi_timeout	= 240;
19775 
19776 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19777 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19778 
19779 	switch (status) {
19780 	case 0:
19781 		break;	/* Success! */
19782 	case EIO:
19783 		switch (ucmd_buf.uscsi_status) {
19784 		case STATUS_RESERVATION_CONFLICT:
19785 			/* Ignore reservation conflict */
19786 			status = 0;
19787 			goto done;
19788 
19789 		case STATUS_CHECK:
19790 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19791 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19792 				/* Ignore Illegal Request error */
19793 				status = 0;
19794 				goto done;
19795 			}
19796 			break;
19797 		default:
19798 			break;
19799 		}
19800 		/* FALLTHRU */
19801 	default:
19802 		/* Ignore error if the media is not present. */
19803 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
19804 			status = 0;
19805 			goto done;
19806 		}
19807 		/* If we reach this, we had an error */
19808 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19809 		    "SYNCHRONIZE CACHE command failed (%d)\n", status);
19810 		break;
19811 	}
19812 
19813 done:
19814 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: exit\n");
19815 
19816 	return (status);
19817 }
19818 
19819 
19820 /*
19821  *    Function: sd_send_scsi_GET_CONFIGURATION
19822  *
19823  * Description: Issues the get configuration command to the device.
19824  *		Called from sd_check_for_writable_cd & sd_get_media_info
19825  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
19826  *   Arguments: un
19827  *		ucmdbuf
19828  *		rqbuf
19829  *		rqbuflen
19830  *		bufaddr
19831  *		buflen
19832  *
19833  * Return Code: 0   - Success
19834  *		errno return code from sd_send_scsi_cmd()
19835  *
19836  *     Context: Can sleep. Does not return until command is completed.
19837  *
19838  */
19839 
19840 static int
19841 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
19842 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
19843 {
19844 	char	cdb[CDB_GROUP1];
19845 	int	status;
19846 
19847 	ASSERT(un != NULL);
19848 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19849 	ASSERT(bufaddr != NULL);
19850 	ASSERT(ucmdbuf != NULL);
19851 	ASSERT(rqbuf != NULL);
19852 
19853 	SD_TRACE(SD_LOG_IO, un,
19854 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
19855 
19856 	bzero(cdb, sizeof (cdb));
19857 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19858 	bzero(rqbuf, rqbuflen);
19859 	bzero(bufaddr, buflen);
19860 
19861 	/*
19862 	 * Set up cdb field for the get configuration command.
19863 	 */
19864 	cdb[0] = SCMD_GET_CONFIGURATION;
19865 	cdb[1] = 0x02;  /* Requested Type */
19866 	cdb[8] = SD_PROFILE_HEADER_LEN;
19867 	ucmdbuf->uscsi_cdb = cdb;
19868 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19869 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19870 	ucmdbuf->uscsi_buflen = buflen;
19871 	ucmdbuf->uscsi_timeout = sd_io_time;
19872 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19873 	ucmdbuf->uscsi_rqlen = rqbuflen;
19874 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19875 
19876 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
19877 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19878 
19879 	switch (status) {
19880 	case 0:
19881 		break;  /* Success! */
19882 	case EIO:
19883 		switch (ucmdbuf->uscsi_status) {
19884 		case STATUS_RESERVATION_CONFLICT:
19885 			status = EACCES;
19886 			break;
19887 		default:
19888 			break;
19889 		}
19890 		break;
19891 	default:
19892 		break;
19893 	}
19894 
19895 	if (status == 0) {
19896 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19897 		    "sd_send_scsi_GET_CONFIGURATION: data",
19898 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19899 	}
19900 
19901 	SD_TRACE(SD_LOG_IO, un,
19902 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19903 
19904 	return (status);
19905 }
19906 
19907 /*
19908  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19909  *
19910  * Description: Issues the get configuration command to the device to
19911  *              retrieve a specfic feature. Called from
19912  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19913  *   Arguments: un
19914  *              ucmdbuf
19915  *              rqbuf
19916  *              rqbuflen
19917  *              bufaddr
19918  *              buflen
19919  *		feature
19920  *
19921  * Return Code: 0   - Success
19922  *              errno return code from sd_send_scsi_cmd()
19923  *
19924  *     Context: Can sleep. Does not return until command is completed.
19925  *
19926  */
19927 static int
19928 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
19929 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
19930 	uchar_t *bufaddr, uint_t buflen, char feature)
19931 {
19932 	char    cdb[CDB_GROUP1];
19933 	int	status;
19934 
19935 	ASSERT(un != NULL);
19936 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19937 	ASSERT(bufaddr != NULL);
19938 	ASSERT(ucmdbuf != NULL);
19939 	ASSERT(rqbuf != NULL);
19940 
19941 	SD_TRACE(SD_LOG_IO, un,
19942 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
19943 
19944 	bzero(cdb, sizeof (cdb));
19945 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19946 	bzero(rqbuf, rqbuflen);
19947 	bzero(bufaddr, buflen);
19948 
19949 	/*
19950 	 * Set up cdb field for the get configuration command.
19951 	 */
19952 	cdb[0] = SCMD_GET_CONFIGURATION;
19953 	cdb[1] = 0x02;  /* Requested Type */
19954 	cdb[3] = feature;
19955 	cdb[8] = buflen;
19956 	ucmdbuf->uscsi_cdb = cdb;
19957 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19958 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19959 	ucmdbuf->uscsi_buflen = buflen;
19960 	ucmdbuf->uscsi_timeout = sd_io_time;
19961 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19962 	ucmdbuf->uscsi_rqlen = rqbuflen;
19963 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19964 
19965 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
19966 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19967 
19968 	switch (status) {
19969 	case 0:
19970 		break;  /* Success! */
19971 	case EIO:
19972 		switch (ucmdbuf->uscsi_status) {
19973 		case STATUS_RESERVATION_CONFLICT:
19974 			status = EACCES;
19975 			break;
19976 		default:
19977 			break;
19978 		}
19979 		break;
19980 	default:
19981 		break;
19982 	}
19983 
19984 	if (status == 0) {
19985 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19986 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
19987 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19988 	}
19989 
19990 	SD_TRACE(SD_LOG_IO, un,
19991 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
19992 
19993 	return (status);
19994 }
19995 
19996 
19997 /*
19998  *    Function: sd_send_scsi_MODE_SENSE
19999  *
20000  * Description: Utility function for issuing a scsi MODE SENSE command.
20001  *		Note: This routine uses a consistent implementation for Group0,
20002  *		Group1, and Group2 commands across all platforms. ATAPI devices
20003  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20004  *
20005  *   Arguments: un - pointer to the softstate struct for the target.
20006  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20007  *			  CDB_GROUP[1|2] (10 byte).
20008  *		bufaddr - buffer for page data retrieved from the target.
20009  *		buflen - size of page to be retrieved.
20010  *		page_code - page code of data to be retrieved from the target.
20011  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20012  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20013  *			to use the USCSI "direct" chain and bypass the normal
20014  *			command waitq.
20015  *
20016  * Return Code: 0   - Success
20017  *		errno return code from sd_send_scsi_cmd()
20018  *
20019  *     Context: Can sleep. Does not return until command is completed.
20020  */
20021 
20022 static int
20023 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20024 	size_t buflen,  uchar_t page_code, int path_flag)
20025 {
20026 	struct	scsi_extended_sense	sense_buf;
20027 	union scsi_cdb		cdb;
20028 	struct uscsi_cmd	ucmd_buf;
20029 	int			status;
20030 
20031 	ASSERT(un != NULL);
20032 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20033 	ASSERT(bufaddr != NULL);
20034 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20035 	    (cdbsize == CDB_GROUP2));
20036 
20037 	SD_TRACE(SD_LOG_IO, un,
20038 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20039 
20040 	bzero(&cdb, sizeof (cdb));
20041 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20042 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20043 	bzero(bufaddr, buflen);
20044 
20045 	if (cdbsize == CDB_GROUP0) {
20046 		cdb.scc_cmd = SCMD_MODE_SENSE;
20047 		cdb.cdb_opaque[2] = page_code;
20048 		FORMG0COUNT(&cdb, buflen);
20049 	} else {
20050 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20051 		cdb.cdb_opaque[2] = page_code;
20052 		FORMG1COUNT(&cdb, buflen);
20053 	}
20054 
20055 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20056 
20057 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20058 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20059 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20060 	ucmd_buf.uscsi_buflen	= buflen;
20061 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20062 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20063 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20064 	ucmd_buf.uscsi_timeout	= 60;
20065 
20066 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20067 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20068 
20069 	switch (status) {
20070 	case 0:
20071 		break;	/* Success! */
20072 	case EIO:
20073 		switch (ucmd_buf.uscsi_status) {
20074 		case STATUS_RESERVATION_CONFLICT:
20075 			status = EACCES;
20076 			break;
20077 		default:
20078 			break;
20079 		}
20080 		break;
20081 	default:
20082 		break;
20083 	}
20084 
20085 	if (status == 0) {
20086 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20087 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20088 	}
20089 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20090 
20091 	return (status);
20092 }
20093 
20094 
20095 /*
20096  *    Function: sd_send_scsi_MODE_SELECT
20097  *
20098  * Description: Utility function for issuing a scsi MODE SELECT command.
20099  *		Note: This routine uses a consistent implementation for Group0,
20100  *		Group1, and Group2 commands across all platforms. ATAPI devices
20101  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20102  *
20103  *   Arguments: un - pointer to the softstate struct for the target.
20104  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20105  *			  CDB_GROUP[1|2] (10 byte).
20106  *		bufaddr - buffer for page data retrieved from the target.
20107  *		buflen - size of page to be retrieved.
20108  *		save_page - boolean to determin if SP bit should be set.
20109  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20110  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20111  *			to use the USCSI "direct" chain and bypass the normal
20112  *			command waitq.
20113  *
20114  * Return Code: 0   - Success
20115  *		errno return code from sd_send_scsi_cmd()
20116  *
20117  *     Context: Can sleep. Does not return until command is completed.
20118  */
20119 
20120 static int
20121 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20122 	size_t buflen,  uchar_t save_page, int path_flag)
20123 {
20124 	struct	scsi_extended_sense	sense_buf;
20125 	union scsi_cdb		cdb;
20126 	struct uscsi_cmd	ucmd_buf;
20127 	int			status;
20128 
20129 	ASSERT(un != NULL);
20130 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20131 	ASSERT(bufaddr != NULL);
20132 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20133 	    (cdbsize == CDB_GROUP2));
20134 
20135 	SD_TRACE(SD_LOG_IO, un,
20136 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20137 
20138 	bzero(&cdb, sizeof (cdb));
20139 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20140 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20141 
20142 	/* Set the PF bit for many third party drives */
20143 	cdb.cdb_opaque[1] = 0x10;
20144 
20145 	/* Set the savepage(SP) bit if given */
20146 	if (save_page == SD_SAVE_PAGE) {
20147 		cdb.cdb_opaque[1] |= 0x01;
20148 	}
20149 
20150 	if (cdbsize == CDB_GROUP0) {
20151 		cdb.scc_cmd = SCMD_MODE_SELECT;
20152 		FORMG0COUNT(&cdb, buflen);
20153 	} else {
20154 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20155 		FORMG1COUNT(&cdb, buflen);
20156 	}
20157 
20158 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20159 
20160 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20161 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20162 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20163 	ucmd_buf.uscsi_buflen	= buflen;
20164 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20165 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20166 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20167 	ucmd_buf.uscsi_timeout	= 60;
20168 
20169 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20170 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20171 
20172 	switch (status) {
20173 	case 0:
20174 		break;	/* Success! */
20175 	case EIO:
20176 		switch (ucmd_buf.uscsi_status) {
20177 		case STATUS_RESERVATION_CONFLICT:
20178 			status = EACCES;
20179 			break;
20180 		default:
20181 			break;
20182 		}
20183 		break;
20184 	default:
20185 		break;
20186 	}
20187 
20188 	if (status == 0) {
20189 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20190 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20191 	}
20192 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20193 
20194 	return (status);
20195 }
20196 
20197 
20198 /*
20199  *    Function: sd_send_scsi_RDWR
20200  *
20201  * Description: Issue a scsi READ or WRITE command with the given parameters.
20202  *
20203  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20204  *		cmd:	 SCMD_READ or SCMD_WRITE
20205  *		bufaddr: Address of caller's buffer to receive the RDWR data
20206  *		buflen:  Length of caller's buffer receive the RDWR data.
20207  *		start_block: Block number for the start of the RDWR operation.
20208  *			 (Assumes target-native block size.)
20209  *		residp:  Pointer to variable to receive the redisual of the
20210  *			 RDWR operation (may be NULL of no residual requested).
20211  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20212  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20213  *			to use the USCSI "direct" chain and bypass the normal
20214  *			command waitq.
20215  *
20216  * Return Code: 0   - Success
20217  *		errno return code from sd_send_scsi_cmd()
20218  *
20219  *     Context: Can sleep. Does not return until command is completed.
20220  */
20221 
20222 static int
20223 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
20224 	size_t buflen, daddr_t start_block, int path_flag)
20225 {
20226 	struct	scsi_extended_sense	sense_buf;
20227 	union scsi_cdb		cdb;
20228 	struct uscsi_cmd	ucmd_buf;
20229 	uint32_t		block_count;
20230 	int			status;
20231 	int			cdbsize;
20232 	uchar_t			flag;
20233 
20234 	ASSERT(un != NULL);
20235 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20236 	ASSERT(bufaddr != NULL);
20237 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20238 
20239 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20240 
20241 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20242 		return (EINVAL);
20243 	}
20244 
20245 	mutex_enter(SD_MUTEX(un));
20246 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20247 	mutex_exit(SD_MUTEX(un));
20248 
20249 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20250 
20251 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20252 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20253 	    bufaddr, buflen, start_block, block_count);
20254 
20255 	bzero(&cdb, sizeof (cdb));
20256 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20257 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20258 
20259 	/* Compute CDB size to use */
20260 	if (start_block > 0xffffffff)
20261 		cdbsize = CDB_GROUP4;
20262 	else if ((start_block & 0xFFE00000) ||
20263 	    (un->un_f_cfg_is_atapi == TRUE))
20264 		cdbsize = CDB_GROUP1;
20265 	else
20266 		cdbsize = CDB_GROUP0;
20267 
20268 	switch (cdbsize) {
20269 	case CDB_GROUP0:	/* 6-byte CDBs */
20270 		cdb.scc_cmd = cmd;
20271 		FORMG0ADDR(&cdb, start_block);
20272 		FORMG0COUNT(&cdb, block_count);
20273 		break;
20274 	case CDB_GROUP1:	/* 10-byte CDBs */
20275 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20276 		FORMG1ADDR(&cdb, start_block);
20277 		FORMG1COUNT(&cdb, block_count);
20278 		break;
20279 	case CDB_GROUP4:	/* 16-byte CDBs */
20280 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20281 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20282 		FORMG4COUNT(&cdb, block_count);
20283 		break;
20284 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20285 	default:
20286 		/* All others reserved */
20287 		return (EINVAL);
20288 	}
20289 
20290 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20291 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20292 
20293 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20294 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20295 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20296 	ucmd_buf.uscsi_buflen	= buflen;
20297 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20298 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20299 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20300 	ucmd_buf.uscsi_timeout	= 60;
20301 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20302 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20303 	switch (status) {
20304 	case 0:
20305 		break;	/* Success! */
20306 	case EIO:
20307 		switch (ucmd_buf.uscsi_status) {
20308 		case STATUS_RESERVATION_CONFLICT:
20309 			status = EACCES;
20310 			break;
20311 		default:
20312 			break;
20313 		}
20314 		break;
20315 	default:
20316 		break;
20317 	}
20318 
20319 	if (status == 0) {
20320 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20321 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20322 	}
20323 
20324 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20325 
20326 	return (status);
20327 }
20328 
20329 
20330 /*
20331  *    Function: sd_send_scsi_LOG_SENSE
20332  *
20333  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20334  *
20335  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20336  *
20337  * Return Code: 0   - Success
20338  *		errno return code from sd_send_scsi_cmd()
20339  *
20340  *     Context: Can sleep. Does not return until command is completed.
20341  */
20342 
20343 static int
20344 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
20345 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
20346 	int path_flag)
20347 
20348 {
20349 	struct	scsi_extended_sense	sense_buf;
20350 	union scsi_cdb		cdb;
20351 	struct uscsi_cmd	ucmd_buf;
20352 	int			status;
20353 
20354 	ASSERT(un != NULL);
20355 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20356 
20357 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
20358 
20359 	bzero(&cdb, sizeof (cdb));
20360 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20361 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20362 
20363 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
20364 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
20365 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
20366 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
20367 	FORMG1COUNT(&cdb, buflen);
20368 
20369 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20370 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20371 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20372 	ucmd_buf.uscsi_buflen	= buflen;
20373 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20374 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20375 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20376 	ucmd_buf.uscsi_timeout	= 60;
20377 
20378 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20379 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20380 
20381 	switch (status) {
20382 	case 0:
20383 		break;
20384 	case EIO:
20385 		switch (ucmd_buf.uscsi_status) {
20386 		case STATUS_RESERVATION_CONFLICT:
20387 			status = EACCES;
20388 			break;
20389 		case STATUS_CHECK:
20390 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20391 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST) &&
20392 			    (sense_buf.es_add_code == 0x24)) {
20393 				/*
20394 				 * ASC 0x24: INVALID FIELD IN CDB
20395 				 */
20396 				switch (page_code) {
20397 				case START_STOP_CYCLE_PAGE:
20398 					/*
20399 					 * The start stop cycle counter is
20400 					 * implemented as page 0x31 in earlier
20401 					 * generation disks. In new generation
20402 					 * disks the start stop cycle counter is
20403 					 * implemented as page 0xE. To properly
20404 					 * handle this case if an attempt for
20405 					 * log page 0xE is made and fails we
20406 					 * will try again using page 0x31.
20407 					 *
20408 					 * Network storage BU committed to
20409 					 * maintain the page 0x31 for this
20410 					 * purpose and will not have any other
20411 					 * page implemented with page code 0x31
20412 					 * until all disks transition to the
20413 					 * standard page.
20414 					 */
20415 					mutex_enter(SD_MUTEX(un));
20416 					un->un_start_stop_cycle_page =
20417 					    START_STOP_CYCLE_VU_PAGE;
20418 					cdb.cdb_opaque[2] =
20419 					    (char)(page_control << 6) |
20420 					    un->un_start_stop_cycle_page;
20421 					mutex_exit(SD_MUTEX(un));
20422 					status = sd_send_scsi_cmd(
20423 					    SD_GET_DEV(un), &ucmd_buf,
20424 					    UIO_SYSSPACE, UIO_SYSSPACE,
20425 					    UIO_SYSSPACE, path_flag);
20426 
20427 					break;
20428 				case TEMPERATURE_PAGE:
20429 					status = ENOTTY;
20430 					break;
20431 				default:
20432 					break;
20433 				}
20434 			}
20435 			break;
20436 		default:
20437 			break;
20438 		}
20439 		break;
20440 	default:
20441 		break;
20442 	}
20443 
20444 	if (status == 0) {
20445 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
20446 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20447 	}
20448 
20449 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
20450 
20451 	return (status);
20452 }
20453 
20454 
20455 /*
20456  *    Function: sdioctl
20457  *
20458  * Description: Driver's ioctl(9e) entry point function.
20459  *
20460  *   Arguments: dev     - device number
20461  *		cmd     - ioctl operation to be performed
20462  *		arg     - user argument, contains data to be set or reference
20463  *			  parameter for get
20464  *		flag    - bit flag, indicating open settings, 32/64 bit type
20465  *		cred_p  - user credential pointer
20466  *		rval_p  - calling process return value (OPT)
20467  *
20468  * Return Code: EINVAL
20469  *		ENOTTY
20470  *		ENXIO
20471  *		EIO
20472  *		EFAULT
20473  *		ENOTSUP
20474  *		EPERM
20475  *
20476  *     Context: Called from the device switch at normal priority.
20477  */
20478 
20479 static int
20480 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
20481 {
20482 	struct sd_lun	*un = NULL;
20483 	int		geom_validated = FALSE;
20484 	int		err = 0;
20485 	int		i = 0;
20486 	cred_t		*cr;
20487 
20488 	/*
20489 	 * All device accesses go thru sdstrategy where we check on suspend
20490 	 * status
20491 	 */
20492 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20493 		return (ENXIO);
20494 	}
20495 
20496 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20497 
20498 	/*
20499 	 * Moved this wait from sd_uscsi_strategy to here for
20500 	 * reasons of deadlock prevention. Internal driver commands,
20501 	 * specifically those to change a devices power level, result
20502 	 * in a call to sd_uscsi_strategy.
20503 	 */
20504 	mutex_enter(SD_MUTEX(un));
20505 	while ((un->un_state == SD_STATE_SUSPENDED) ||
20506 	    (un->un_state == SD_STATE_PM_CHANGING)) {
20507 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
20508 	}
20509 	/*
20510 	 * Twiddling the counter here protects commands from now
20511 	 * through to the top of sd_uscsi_strategy. Without the
20512 	 * counter inc. a power down, for example, could get in
20513 	 * after the above check for state is made and before
20514 	 * execution gets to the top of sd_uscsi_strategy.
20515 	 * That would cause problems.
20516 	 */
20517 	un->un_ncmds_in_driver++;
20518 
20519 	if ((un->un_f_geometry_is_valid == FALSE) &&
20520 	    (flag & (FNDELAY | FNONBLOCK))) {
20521 		switch (cmd) {
20522 		case CDROMPAUSE:
20523 		case CDROMRESUME:
20524 		case CDROMPLAYMSF:
20525 		case CDROMPLAYTRKIND:
20526 		case CDROMREADTOCHDR:
20527 		case CDROMREADTOCENTRY:
20528 		case CDROMSTOP:
20529 		case CDROMSTART:
20530 		case CDROMVOLCTRL:
20531 		case CDROMSUBCHNL:
20532 		case CDROMREADMODE2:
20533 		case CDROMREADMODE1:
20534 		case CDROMREADOFFSET:
20535 		case CDROMSBLKMODE:
20536 		case CDROMGBLKMODE:
20537 		case CDROMGDRVSPEED:
20538 		case CDROMSDRVSPEED:
20539 		case CDROMCDDA:
20540 		case CDROMCDXA:
20541 		case CDROMSUBCODE:
20542 			if (!ISCD(un)) {
20543 				un->un_ncmds_in_driver--;
20544 				ASSERT(un->un_ncmds_in_driver >= 0);
20545 				mutex_exit(SD_MUTEX(un));
20546 				return (ENOTTY);
20547 			}
20548 			break;
20549 		case FDEJECT:
20550 		case DKIOCEJECT:
20551 		case CDROMEJECT:
20552 			if (!ISREMOVABLE(un)) {
20553 				un->un_ncmds_in_driver--;
20554 				ASSERT(un->un_ncmds_in_driver >= 0);
20555 				mutex_exit(SD_MUTEX(un));
20556 				return (ENOTTY);
20557 			}
20558 			break;
20559 		case DKIOCSVTOC:
20560 		case DKIOCSETEFI:
20561 		case DKIOCSMBOOT:
20562 			mutex_exit(SD_MUTEX(un));
20563 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20564 			if (err != 0) {
20565 				mutex_enter(SD_MUTEX(un));
20566 				un->un_ncmds_in_driver--;
20567 				ASSERT(un->un_ncmds_in_driver >= 0);
20568 				mutex_exit(SD_MUTEX(un));
20569 				return (EIO);
20570 			}
20571 			mutex_enter(SD_MUTEX(un));
20572 			/* FALLTHROUGH */
20573 		case DKIOCREMOVABLE:
20574 		case DKIOCINFO:
20575 		case DKIOCGMEDIAINFO:
20576 		case MHIOCENFAILFAST:
20577 		case MHIOCSTATUS:
20578 		case MHIOCTKOWN:
20579 		case MHIOCRELEASE:
20580 		case MHIOCGRP_INKEYS:
20581 		case MHIOCGRP_INRESV:
20582 		case MHIOCGRP_REGISTER:
20583 		case MHIOCGRP_RESERVE:
20584 		case MHIOCGRP_PREEMPTANDABORT:
20585 		case MHIOCGRP_REGISTERANDIGNOREKEY:
20586 		case CDROMCLOSETRAY:
20587 		case USCSICMD:
20588 			goto skip_ready_valid;
20589 		default:
20590 			break;
20591 		}
20592 
20593 		mutex_exit(SD_MUTEX(un));
20594 		err = sd_ready_and_valid(un);
20595 		mutex_enter(SD_MUTEX(un));
20596 		if (err == SD_READY_NOT_VALID) {
20597 			switch (cmd) {
20598 			case DKIOCGAPART:
20599 			case DKIOCGGEOM:
20600 			case DKIOCSGEOM:
20601 			case DKIOCGVTOC:
20602 			case DKIOCSVTOC:
20603 			case DKIOCSAPART:
20604 			case DKIOCG_PHYGEOM:
20605 			case DKIOCG_VIRTGEOM:
20606 				err = ENOTSUP;
20607 				un->un_ncmds_in_driver--;
20608 				ASSERT(un->un_ncmds_in_driver >= 0);
20609 				mutex_exit(SD_MUTEX(un));
20610 				return (err);
20611 			}
20612 		}
20613 		if (err != SD_READY_VALID) {
20614 			switch (cmd) {
20615 			case DKIOCSTATE:
20616 			case CDROMGDRVSPEED:
20617 			case CDROMSDRVSPEED:
20618 			case FDEJECT:	/* for eject command */
20619 			case DKIOCEJECT:
20620 			case CDROMEJECT:
20621 			case DKIOCGETEFI:
20622 			case DKIOCSGEOM:
20623 			case DKIOCREMOVABLE:
20624 			case DKIOCSAPART:
20625 			case DKIOCSETEFI:
20626 				break;
20627 			default:
20628 				if (ISREMOVABLE(un)) {
20629 					err = ENXIO;
20630 				} else {
20631 					/* Do not map EACCES to EIO */
20632 					if (err != EACCES)
20633 						err = EIO;
20634 				}
20635 				un->un_ncmds_in_driver--;
20636 				ASSERT(un->un_ncmds_in_driver >= 0);
20637 				mutex_exit(SD_MUTEX(un));
20638 				return (err);
20639 			}
20640 		}
20641 		geom_validated = TRUE;
20642 	}
20643 	if ((un->un_f_geometry_is_valid == TRUE) &&
20644 	    (un->un_solaris_size > 0)) {
20645 		/*
20646 		 * the "geometry_is_valid" flag could be true if we
20647 		 * have an fdisk table but no Solaris partition
20648 		 */
20649 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
20650 			/* it is EFI, so return ENOTSUP for these */
20651 			switch (cmd) {
20652 			case DKIOCGAPART:
20653 			case DKIOCGGEOM:
20654 			case DKIOCGVTOC:
20655 			case DKIOCSVTOC:
20656 			case DKIOCSAPART:
20657 				err = ENOTSUP;
20658 				un->un_ncmds_in_driver--;
20659 				ASSERT(un->un_ncmds_in_driver >= 0);
20660 				mutex_exit(SD_MUTEX(un));
20661 				return (err);
20662 			}
20663 		}
20664 	}
20665 
20666 skip_ready_valid:
20667 	mutex_exit(SD_MUTEX(un));
20668 
20669 	switch (cmd) {
20670 	case DKIOCINFO:
20671 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
20672 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
20673 		break;
20674 
20675 	case DKIOCGMEDIAINFO:
20676 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
20677 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
20678 		break;
20679 
20680 	case DKIOCGGEOM:
20681 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
20682 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
20683 		    geom_validated);
20684 		break;
20685 
20686 	case DKIOCSGEOM:
20687 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
20688 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
20689 		break;
20690 
20691 	case DKIOCGAPART:
20692 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
20693 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
20694 		    geom_validated);
20695 		break;
20696 
20697 	case DKIOCSAPART:
20698 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
20699 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
20700 		break;
20701 
20702 	case DKIOCGVTOC:
20703 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
20704 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
20705 		    geom_validated);
20706 		break;
20707 
20708 	case DKIOCGETEFI:
20709 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
20710 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
20711 		break;
20712 
20713 	case DKIOCPARTITION:
20714 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
20715 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
20716 		break;
20717 
20718 	case DKIOCSVTOC:
20719 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
20720 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
20721 		break;
20722 
20723 	case DKIOCSETEFI:
20724 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
20725 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
20726 		break;
20727 
20728 	case DKIOCGMBOOT:
20729 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
20730 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
20731 		break;
20732 
20733 	case DKIOCSMBOOT:
20734 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
20735 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
20736 		break;
20737 
20738 	case DKIOCLOCK:
20739 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
20740 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20741 		    SD_PATH_STANDARD);
20742 		break;
20743 
20744 	case DKIOCUNLOCK:
20745 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
20746 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
20747 		    SD_PATH_STANDARD);
20748 		break;
20749 
20750 	case DKIOCSTATE: {
20751 		enum dkio_state		state;
20752 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
20753 
20754 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
20755 			err = EFAULT;
20756 		} else {
20757 			err = sd_check_media(dev, state);
20758 			if (err == 0) {
20759 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
20760 				    sizeof (int), flag) != 0)
20761 					err = EFAULT;
20762 			}
20763 		}
20764 		break;
20765 	}
20766 
20767 	case DKIOCREMOVABLE:
20768 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
20769 		if (ISREMOVABLE(un)) {
20770 			i = 1;
20771 		} else {
20772 			i = 0;
20773 		}
20774 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20775 			err = EFAULT;
20776 		} else {
20777 			err = 0;
20778 		}
20779 		break;
20780 
20781 	case DKIOCGTEMPERATURE:
20782 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
20783 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
20784 		break;
20785 
20786 	case MHIOCENFAILFAST:
20787 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
20788 		if ((err = drv_priv(cred_p)) == 0) {
20789 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
20790 		}
20791 		break;
20792 
20793 	case MHIOCTKOWN:
20794 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
20795 		if ((err = drv_priv(cred_p)) == 0) {
20796 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
20797 		}
20798 		break;
20799 
20800 	case MHIOCRELEASE:
20801 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
20802 		if ((err = drv_priv(cred_p)) == 0) {
20803 			err = sd_mhdioc_release(dev);
20804 		}
20805 		break;
20806 
20807 	case MHIOCSTATUS:
20808 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
20809 		if ((err = drv_priv(cred_p)) == 0) {
20810 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
20811 			case 0:
20812 				err = 0;
20813 				break;
20814 			case EACCES:
20815 				*rval_p = 1;
20816 				err = 0;
20817 				break;
20818 			default:
20819 				err = EIO;
20820 				break;
20821 			}
20822 		}
20823 		break;
20824 
20825 	case MHIOCQRESERVE:
20826 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
20827 		if ((err = drv_priv(cred_p)) == 0) {
20828 			err = sd_reserve_release(dev, SD_RESERVE);
20829 		}
20830 		break;
20831 
20832 	case MHIOCREREGISTERDEVID:
20833 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
20834 		if (drv_priv(cred_p) == EPERM) {
20835 			err = EPERM;
20836 		} else if (ISREMOVABLE(un) || ISCD(un)) {
20837 			err = ENOTTY;
20838 		} else {
20839 			err = sd_mhdioc_register_devid(dev);
20840 		}
20841 		break;
20842 
20843 	case MHIOCGRP_INKEYS:
20844 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
20845 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20846 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20847 				err = ENOTSUP;
20848 			} else {
20849 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
20850 				    flag);
20851 			}
20852 		}
20853 		break;
20854 
20855 	case MHIOCGRP_INRESV:
20856 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20857 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20858 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20859 				err = ENOTSUP;
20860 			} else {
20861 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20862 			}
20863 		}
20864 		break;
20865 
20866 	case MHIOCGRP_REGISTER:
20867 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20868 		if ((err = drv_priv(cred_p)) != EPERM) {
20869 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20870 				err = ENOTSUP;
20871 			} else if (arg != NULL) {
20872 				mhioc_register_t reg;
20873 				if (ddi_copyin((void *)arg, &reg,
20874 				    sizeof (mhioc_register_t), flag) != 0) {
20875 					err = EFAULT;
20876 				} else {
20877 					err =
20878 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20879 					    un, SD_SCSI3_REGISTER,
20880 					    (uchar_t *)&reg);
20881 				}
20882 			}
20883 		}
20884 		break;
20885 
20886 	case MHIOCGRP_RESERVE:
20887 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20888 		if ((err = drv_priv(cred_p)) != EPERM) {
20889 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20890 				err = ENOTSUP;
20891 			} else if (arg != NULL) {
20892 				mhioc_resv_desc_t resv_desc;
20893 				if (ddi_copyin((void *)arg, &resv_desc,
20894 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20895 					err = EFAULT;
20896 				} else {
20897 					err =
20898 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20899 					    un, SD_SCSI3_RESERVE,
20900 					    (uchar_t *)&resv_desc);
20901 				}
20902 			}
20903 		}
20904 		break;
20905 
20906 	case MHIOCGRP_PREEMPTANDABORT:
20907 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20908 		if ((err = drv_priv(cred_p)) != EPERM) {
20909 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20910 				err = ENOTSUP;
20911 			} else if (arg != NULL) {
20912 				mhioc_preemptandabort_t preempt_abort;
20913 				if (ddi_copyin((void *)arg, &preempt_abort,
20914 				    sizeof (mhioc_preemptandabort_t),
20915 				    flag) != 0) {
20916 					err = EFAULT;
20917 				} else {
20918 					err =
20919 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20920 					    un, SD_SCSI3_PREEMPTANDABORT,
20921 					    (uchar_t *)&preempt_abort);
20922 				}
20923 			}
20924 		}
20925 		break;
20926 
20927 	case MHIOCGRP_REGISTERANDIGNOREKEY:
20928 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20929 		if ((err = drv_priv(cred_p)) != EPERM) {
20930 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20931 				err = ENOTSUP;
20932 			} else if (arg != NULL) {
20933 				mhioc_registerandignorekey_t r_and_i;
20934 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
20935 				    sizeof (mhioc_registerandignorekey_t),
20936 				    flag) != 0) {
20937 					err = EFAULT;
20938 				} else {
20939 					err =
20940 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20941 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
20942 					    (uchar_t *)&r_and_i);
20943 				}
20944 			}
20945 		}
20946 		break;
20947 
20948 	case USCSICMD:
20949 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
20950 		cr = ddi_get_cred();
20951 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
20952 			err = EPERM;
20953 		} else {
20954 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
20955 		}
20956 		break;
20957 
20958 	case CDROMPAUSE:
20959 	case CDROMRESUME:
20960 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
20961 		if (!ISCD(un)) {
20962 			err = ENOTTY;
20963 		} else {
20964 			err = sr_pause_resume(dev, cmd);
20965 		}
20966 		break;
20967 
20968 	case CDROMPLAYMSF:
20969 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
20970 		if (!ISCD(un)) {
20971 			err = ENOTTY;
20972 		} else {
20973 			err = sr_play_msf(dev, (caddr_t)arg, flag);
20974 		}
20975 		break;
20976 
20977 	case CDROMPLAYTRKIND:
20978 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
20979 #if defined(__i386) || defined(__amd64)
20980 		/*
20981 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
20982 		 */
20983 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20984 #else
20985 		if (!ISCD(un)) {
20986 #endif
20987 			err = ENOTTY;
20988 		} else {
20989 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
20990 		}
20991 		break;
20992 
20993 	case CDROMREADTOCHDR:
20994 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
20995 		if (!ISCD(un)) {
20996 			err = ENOTTY;
20997 		} else {
20998 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
20999 		}
21000 		break;
21001 
21002 	case CDROMREADTOCENTRY:
21003 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21004 		if (!ISCD(un)) {
21005 			err = ENOTTY;
21006 		} else {
21007 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21008 		}
21009 		break;
21010 
21011 	case CDROMSTOP:
21012 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21013 		if (!ISCD(un)) {
21014 			err = ENOTTY;
21015 		} else {
21016 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21017 			    SD_PATH_STANDARD);
21018 		}
21019 		break;
21020 
21021 	case CDROMSTART:
21022 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21023 		if (!ISCD(un)) {
21024 			err = ENOTTY;
21025 		} else {
21026 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21027 			    SD_PATH_STANDARD);
21028 		}
21029 		break;
21030 
21031 	case CDROMCLOSETRAY:
21032 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21033 		if (!ISCD(un)) {
21034 			err = ENOTTY;
21035 		} else {
21036 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21037 			    SD_PATH_STANDARD);
21038 		}
21039 		break;
21040 
21041 	case FDEJECT:	/* for eject command */
21042 	case DKIOCEJECT:
21043 	case CDROMEJECT:
21044 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21045 		if (!ISREMOVABLE(un)) {
21046 			err = ENOTTY;
21047 		} else {
21048 			err = sr_eject(dev);
21049 		}
21050 		break;
21051 
21052 	case CDROMVOLCTRL:
21053 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21054 		if (!ISCD(un)) {
21055 			err = ENOTTY;
21056 		} else {
21057 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21058 		}
21059 		break;
21060 
21061 	case CDROMSUBCHNL:
21062 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21063 		if (!ISCD(un)) {
21064 			err = ENOTTY;
21065 		} else {
21066 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21067 		}
21068 		break;
21069 
21070 	case CDROMREADMODE2:
21071 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21072 		if (!ISCD(un)) {
21073 			err = ENOTTY;
21074 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21075 			/*
21076 			 * If the drive supports READ CD, use that instead of
21077 			 * switching the LBA size via a MODE SELECT
21078 			 * Block Descriptor
21079 			 */
21080 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21081 		} else {
21082 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21083 		}
21084 		break;
21085 
21086 	case CDROMREADMODE1:
21087 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21088 		if (!ISCD(un)) {
21089 			err = ENOTTY;
21090 		} else {
21091 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21092 		}
21093 		break;
21094 
21095 	case CDROMREADOFFSET:
21096 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21097 		if (!ISCD(un)) {
21098 			err = ENOTTY;
21099 		} else {
21100 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21101 			    flag);
21102 		}
21103 		break;
21104 
21105 	case CDROMSBLKMODE:
21106 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21107 		/*
21108 		 * There is no means of changing block size in case of atapi
21109 		 * drives, thus return ENOTTY if drive type is atapi
21110 		 */
21111 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21112 			err = ENOTTY;
21113 		} else if (un->un_f_mmc_cap == TRUE) {
21114 
21115 			/*
21116 			 * MMC Devices do not support changing the
21117 			 * logical block size
21118 			 *
21119 			 * Note: EINVAL is being returned instead of ENOTTY to
21120 			 * maintain consistancy with the original mmc
21121 			 * driver update.
21122 			 */
21123 			err = EINVAL;
21124 		} else {
21125 			mutex_enter(SD_MUTEX(un));
21126 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21127 			    (un->un_ncmds_in_transport > 0)) {
21128 				mutex_exit(SD_MUTEX(un));
21129 				err = EINVAL;
21130 			} else {
21131 				mutex_exit(SD_MUTEX(un));
21132 				err = sr_change_blkmode(dev, cmd, arg, flag);
21133 			}
21134 		}
21135 		break;
21136 
21137 	case CDROMGBLKMODE:
21138 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21139 		if (!ISCD(un)) {
21140 			err = ENOTTY;
21141 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21142 		    (un->un_f_blockcount_is_valid != FALSE)) {
21143 			/*
21144 			 * Drive is an ATAPI drive so return target block
21145 			 * size for ATAPI drives since we cannot change the
21146 			 * blocksize on ATAPI drives. Used primarily to detect
21147 			 * if an ATAPI cdrom is present.
21148 			 */
21149 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21150 			    sizeof (int), flag) != 0) {
21151 				err = EFAULT;
21152 			} else {
21153 				err = 0;
21154 			}
21155 
21156 		} else {
21157 			/*
21158 			 * Drive supports changing block sizes via a Mode
21159 			 * Select.
21160 			 */
21161 			err = sr_change_blkmode(dev, cmd, arg, flag);
21162 		}
21163 		break;
21164 
21165 	case CDROMGDRVSPEED:
21166 	case CDROMSDRVSPEED:
21167 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21168 		if (!ISCD(un)) {
21169 			err = ENOTTY;
21170 		} else if (un->un_f_mmc_cap == TRUE) {
21171 			/*
21172 			 * Note: In the future the driver implementation
21173 			 * for getting and
21174 			 * setting cd speed should entail:
21175 			 * 1) If non-mmc try the Toshiba mode page
21176 			 *    (sr_change_speed)
21177 			 * 2) If mmc but no support for Real Time Streaming try
21178 			 *    the SET CD SPEED (0xBB) command
21179 			 *   (sr_atapi_change_speed)
21180 			 * 3) If mmc and support for Real Time Streaming
21181 			 *    try the GET PERFORMANCE and SET STREAMING
21182 			 *    commands (not yet implemented, 4380808)
21183 			 */
21184 			/*
21185 			 * As per recent MMC spec, CD-ROM speed is variable
21186 			 * and changes with LBA. Since there is no such
21187 			 * things as drive speed now, fail this ioctl.
21188 			 *
21189 			 * Note: EINVAL is returned for consistancy of original
21190 			 * implementation which included support for getting
21191 			 * the drive speed of mmc devices but not setting
21192 			 * the drive speed. Thus EINVAL would be returned
21193 			 * if a set request was made for an mmc device.
21194 			 * We no longer support get or set speed for
21195 			 * mmc but need to remain consistant with regard
21196 			 * to the error code returned.
21197 			 */
21198 			err = EINVAL;
21199 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21200 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21201 		} else {
21202 			err = sr_change_speed(dev, cmd, arg, flag);
21203 		}
21204 		break;
21205 
21206 	case CDROMCDDA:
21207 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21208 		if (!ISCD(un)) {
21209 			err = ENOTTY;
21210 		} else {
21211 			err = sr_read_cdda(dev, (void *)arg, flag);
21212 		}
21213 		break;
21214 
21215 	case CDROMCDXA:
21216 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21217 		if (!ISCD(un)) {
21218 			err = ENOTTY;
21219 		} else {
21220 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21221 		}
21222 		break;
21223 
21224 	case CDROMSUBCODE:
21225 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21226 		if (!ISCD(un)) {
21227 			err = ENOTTY;
21228 		} else {
21229 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21230 		}
21231 		break;
21232 
21233 	case DKIOCPARTINFO: {
21234 		/*
21235 		 * Return parameters describing the selected disk slice.
21236 		 * Note: this ioctl is for the intel platform only
21237 		 */
21238 #if defined(__i386) || defined(__amd64)
21239 		int part;
21240 
21241 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21242 		part = SDPART(dev);
21243 
21244 		/* don't check un_solaris_size for pN */
21245 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
21246 			err = EIO;
21247 		} else {
21248 			struct part_info p;
21249 
21250 			p.p_start = (daddr_t)un->un_offset[part];
21251 			p.p_length = (int)un->un_map[part].dkl_nblk;
21252 #ifdef _MULTI_DATAMODEL
21253 			switch (ddi_model_convert_from(flag & FMODELS)) {
21254 			case DDI_MODEL_ILP32:
21255 			{
21256 				struct part_info32 p32;
21257 
21258 				p32.p_start = (daddr32_t)p.p_start;
21259 				p32.p_length = p.p_length;
21260 				if (ddi_copyout(&p32, (void *)arg,
21261 				    sizeof (p32), flag))
21262 					err = EFAULT;
21263 				break;
21264 			}
21265 
21266 			case DDI_MODEL_NONE:
21267 			{
21268 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
21269 				    flag))
21270 					err = EFAULT;
21271 				break;
21272 			}
21273 			}
21274 #else /* ! _MULTI_DATAMODEL */
21275 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
21276 				err = EFAULT;
21277 #endif /* _MULTI_DATAMODEL */
21278 		}
21279 #else
21280 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21281 		err = ENOTTY;
21282 #endif
21283 		break;
21284 	}
21285 
21286 	case DKIOCG_PHYGEOM: {
21287 		/* Return the driver's notion of the media physical geometry */
21288 #if defined(__i386) || defined(__amd64)
21289 		struct dk_geom	disk_geom;
21290 		struct dk_geom	*dkgp = &disk_geom;
21291 
21292 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21293 		mutex_enter(SD_MUTEX(un));
21294 
21295 		if (un->un_g.dkg_nhead != 0 &&
21296 		    un->un_g.dkg_nsect != 0) {
21297 			/*
21298 			 * We succeeded in getting a geometry, but
21299 			 * right now it is being reported as just the
21300 			 * Solaris fdisk partition, just like for
21301 			 * DKIOCGGEOM. We need to change that to be
21302 			 * correct for the entire disk now.
21303 			 */
21304 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
21305 			dkgp->dkg_acyl = 0;
21306 			dkgp->dkg_ncyl = un->un_blockcount /
21307 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21308 		} else {
21309 			bzero(dkgp, sizeof (struct dk_geom));
21310 			/*
21311 			 * This disk does not have a Solaris VTOC
21312 			 * so we must present a physical geometry
21313 			 * that will remain consistent regardless
21314 			 * of how the disk is used. This will ensure
21315 			 * that the geometry does not change regardless
21316 			 * of the fdisk partition type (ie. EFI, FAT32,
21317 			 * Solaris, etc).
21318 			 */
21319 			if (ISCD(un)) {
21320 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
21321 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
21322 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
21323 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
21324 			} else {
21325 				sd_convert_geometry(un->un_blockcount, dkgp);
21326 				dkgp->dkg_acyl = 0;
21327 				dkgp->dkg_ncyl = un->un_blockcount /
21328 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21329 			}
21330 		}
21331 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
21332 
21333 		if (ddi_copyout(dkgp, (void *)arg,
21334 		    sizeof (struct dk_geom), flag)) {
21335 			mutex_exit(SD_MUTEX(un));
21336 			err = EFAULT;
21337 		} else {
21338 			mutex_exit(SD_MUTEX(un));
21339 			err = 0;
21340 		}
21341 #else
21342 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21343 		err = ENOTTY;
21344 #endif
21345 		break;
21346 	}
21347 
21348 	case DKIOCG_VIRTGEOM: {
21349 		/* Return the driver's notion of the media's logical geometry */
21350 #if defined(__i386) || defined(__amd64)
21351 		struct dk_geom	disk_geom;
21352 		struct dk_geom	*dkgp = &disk_geom;
21353 
21354 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21355 		mutex_enter(SD_MUTEX(un));
21356 		/*
21357 		 * If there is no HBA geometry available, or
21358 		 * if the HBA returned us something that doesn't
21359 		 * really fit into an Int 13/function 8 geometry
21360 		 * result, just fail the ioctl.  See PSARC 1998/313.
21361 		 */
21362 		if (un->un_lgeom.g_nhead == 0 ||
21363 		    un->un_lgeom.g_nsect == 0 ||
21364 		    un->un_lgeom.g_ncyl > 1024) {
21365 			mutex_exit(SD_MUTEX(un));
21366 			err = EINVAL;
21367 		} else {
21368 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
21369 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
21370 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
21371 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
21372 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
21373 
21374 			if (ddi_copyout(dkgp, (void *)arg,
21375 			    sizeof (struct dk_geom), flag)) {
21376 				mutex_exit(SD_MUTEX(un));
21377 				err = EFAULT;
21378 			} else {
21379 				mutex_exit(SD_MUTEX(un));
21380 				err = 0;
21381 			}
21382 		}
21383 #else
21384 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21385 		err = ENOTTY;
21386 #endif
21387 		break;
21388 	}
21389 #ifdef SDDEBUG
21390 /* RESET/ABORTS testing ioctls */
21391 	case DKIOCRESET: {
21392 		int	reset_level;
21393 
21394 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21395 			err = EFAULT;
21396 		} else {
21397 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21398 			    "reset_level = 0x%lx\n", reset_level);
21399 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21400 				err = 0;
21401 			} else {
21402 				err = EIO;
21403 			}
21404 		}
21405 		break;
21406 	}
21407 
21408 	case DKIOCABORT:
21409 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21410 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21411 			err = 0;
21412 		} else {
21413 			err = EIO;
21414 		}
21415 		break;
21416 #endif
21417 
21418 #ifdef SD_FAULT_INJECTION
21419 /* SDIOC FaultInjection testing ioctls */
21420 	case SDIOCSTART:
21421 	case SDIOCSTOP:
21422 	case SDIOCINSERTPKT:
21423 	case SDIOCINSERTXB:
21424 	case SDIOCINSERTUN:
21425 	case SDIOCINSERTARQ:
21426 	case SDIOCPUSH:
21427 	case SDIOCRETRIEVE:
21428 	case SDIOCRUN:
21429 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21430 		    "SDIOC detected cmd:0x%X:\n", cmd);
21431 		/* call error generator */
21432 		sd_faultinjection_ioctl(cmd, arg, un);
21433 		err = 0;
21434 		break;
21435 
21436 #endif /* SD_FAULT_INJECTION */
21437 
21438 	default:
21439 		err = ENOTTY;
21440 		break;
21441 	}
21442 	mutex_enter(SD_MUTEX(un));
21443 	un->un_ncmds_in_driver--;
21444 	ASSERT(un->un_ncmds_in_driver >= 0);
21445 	mutex_exit(SD_MUTEX(un));
21446 
21447 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
21448 	return (err);
21449 }
21450 
21451 
21452 /*
21453  *    Function: sd_uscsi_ioctl
21454  *
21455  * Description: This routine is the driver entry point for handling USCSI ioctl
21456  *		requests (USCSICMD).
21457  *
21458  *   Arguments: dev	- the device number
21459  *		arg	- user provided scsi command
21460  *		flag	- this argument is a pass through to ddi_copyxxx()
21461  *			  directly from the mode argument of ioctl().
21462  *
21463  * Return Code: code returned by sd_send_scsi_cmd
21464  *		ENXIO
21465  *		EFAULT
21466  *		EAGAIN
21467  */
21468 
21469 static int
21470 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
21471 {
21472 #ifdef _MULTI_DATAMODEL
21473 	/*
21474 	 * For use when a 32 bit app makes a call into a
21475 	 * 64 bit ioctl
21476 	 */
21477 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
21478 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
21479 	model_t			model;
21480 #endif /* _MULTI_DATAMODEL */
21481 	struct uscsi_cmd	*scmd = NULL;
21482 	struct sd_lun		*un = NULL;
21483 	enum uio_seg		uioseg;
21484 	char			cdb[CDB_GROUP0];
21485 	int			rval = 0;
21486 
21487 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21488 		return (ENXIO);
21489 	}
21490 
21491 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
21492 
21493 	scmd = (struct uscsi_cmd *)
21494 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21495 
21496 #ifdef _MULTI_DATAMODEL
21497 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
21498 	case DDI_MODEL_ILP32:
21499 	{
21500 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
21501 			rval = EFAULT;
21502 			goto done;
21503 		}
21504 		/*
21505 		 * Convert the ILP32 uscsi data from the
21506 		 * application to LP64 for internal use.
21507 		 */
21508 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
21509 		break;
21510 	}
21511 	case DDI_MODEL_NONE:
21512 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21513 			rval = EFAULT;
21514 			goto done;
21515 		}
21516 		break;
21517 	}
21518 #else /* ! _MULTI_DATAMODEL */
21519 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21520 		rval = EFAULT;
21521 		goto done;
21522 	}
21523 #endif /* _MULTI_DATAMODEL */
21524 
21525 	scmd->uscsi_flags &= ~USCSI_NOINTR;
21526 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
21527 	if (un->un_f_format_in_progress == TRUE) {
21528 		rval = EAGAIN;
21529 		goto done;
21530 	}
21531 
21532 	/*
21533 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
21534 	 * we will have a valid cdb[0] to test.
21535 	 */
21536 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
21537 	    (cdb[0] == SCMD_FORMAT)) {
21538 		SD_TRACE(SD_LOG_IOCTL, un,
21539 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21540 		mutex_enter(SD_MUTEX(un));
21541 		un->un_f_format_in_progress = TRUE;
21542 		mutex_exit(SD_MUTEX(un));
21543 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21544 		    SD_PATH_STANDARD);
21545 		mutex_enter(SD_MUTEX(un));
21546 		un->un_f_format_in_progress = FALSE;
21547 		mutex_exit(SD_MUTEX(un));
21548 	} else {
21549 		SD_TRACE(SD_LOG_IOCTL, un,
21550 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21551 		/*
21552 		 * It's OK to fall into here even if the ddi_copyin()
21553 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
21554 		 * does this same copyin and will return the EFAULT
21555 		 * if it fails.
21556 		 */
21557 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21558 		    SD_PATH_STANDARD);
21559 	}
21560 #ifdef _MULTI_DATAMODEL
21561 	switch (model) {
21562 	case DDI_MODEL_ILP32:
21563 		/*
21564 		 * Convert back to ILP32 before copyout to the
21565 		 * application
21566 		 */
21567 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
21568 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
21569 			if (rval != 0) {
21570 				rval = EFAULT;
21571 			}
21572 		}
21573 		break;
21574 	case DDI_MODEL_NONE:
21575 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21576 			if (rval != 0) {
21577 				rval = EFAULT;
21578 			}
21579 		}
21580 		break;
21581 	}
21582 #else /* ! _MULTI_DATAMODE */
21583 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21584 		if (rval != 0) {
21585 			rval = EFAULT;
21586 		}
21587 	}
21588 #endif /* _MULTI_DATAMODE */
21589 done:
21590 	kmem_free(scmd, sizeof (struct uscsi_cmd));
21591 
21592 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
21593 
21594 	return (rval);
21595 }
21596 
21597 
21598 /*
21599  *    Function: sd_dkio_ctrl_info
21600  *
21601  * Description: This routine is the driver entry point for handling controller
21602  *		information ioctl requests (DKIOCINFO).
21603  *
21604  *   Arguments: dev  - the device number
21605  *		arg  - pointer to user provided dk_cinfo structure
21606  *		       specifying the controller type and attributes.
21607  *		flag - this argument is a pass through to ddi_copyxxx()
21608  *		       directly from the mode argument of ioctl().
21609  *
21610  * Return Code: 0
21611  *		EFAULT
21612  *		ENXIO
21613  */
21614 
21615 static int
21616 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
21617 {
21618 	struct sd_lun	*un = NULL;
21619 	struct dk_cinfo	*info;
21620 	dev_info_t	*pdip;
21621 	int		lun, tgt;
21622 
21623 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21624 		return (ENXIO);
21625 	}
21626 
21627 	info = (struct dk_cinfo *)
21628 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
21629 
21630 	switch (un->un_ctype) {
21631 	case CTYPE_CDROM:
21632 		info->dki_ctype = DKC_CDROM;
21633 		break;
21634 	default:
21635 		info->dki_ctype = DKC_SCSI_CCS;
21636 		break;
21637 	}
21638 	pdip = ddi_get_parent(SD_DEVINFO(un));
21639 	info->dki_cnum = ddi_get_instance(pdip);
21640 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
21641 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
21642 	} else {
21643 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
21644 		    DK_DEVLEN - 1);
21645 	}
21646 
21647 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
21648 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
21649 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
21650 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
21651 
21652 	/* Unit Information */
21653 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
21654 	info->dki_slave = ((tgt << 3) | lun);
21655 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
21656 	    DK_DEVLEN - 1);
21657 	info->dki_flags = DKI_FMTVOL;
21658 	info->dki_partition = SDPART(dev);
21659 
21660 	/* Max Transfer size of this device in blocks */
21661 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
21662 	info->dki_addr = 0;
21663 	info->dki_space = 0;
21664 	info->dki_prio = 0;
21665 	info->dki_vec = 0;
21666 
21667 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
21668 		kmem_free(info, sizeof (struct dk_cinfo));
21669 		return (EFAULT);
21670 	} else {
21671 		kmem_free(info, sizeof (struct dk_cinfo));
21672 		return (0);
21673 	}
21674 }
21675 
21676 
21677 /*
21678  *    Function: sd_get_media_info
21679  *
21680  * Description: This routine is the driver entry point for handling ioctl
21681  *		requests for the media type or command set profile used by the
21682  *		drive to operate on the media (DKIOCGMEDIAINFO).
21683  *
21684  *   Arguments: dev	- the device number
21685  *		arg	- pointer to user provided dk_minfo structure
21686  *			  specifying the media type, logical block size and
21687  *			  drive capacity.
21688  *		flag	- this argument is a pass through to ddi_copyxxx()
21689  *			  directly from the mode argument of ioctl().
21690  *
21691  * Return Code: 0
21692  *		EACCESS
21693  *		EFAULT
21694  *		ENXIO
21695  *		EIO
21696  */
21697 
21698 static int
21699 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
21700 {
21701 	struct sd_lun		*un = NULL;
21702 	struct uscsi_cmd	com;
21703 	struct scsi_inquiry	*sinq;
21704 	struct dk_minfo		media_info;
21705 	u_longlong_t		media_capacity;
21706 	uint64_t		capacity;
21707 	uint_t			lbasize;
21708 	uchar_t			*out_data;
21709 	uchar_t			*rqbuf;
21710 	int			rval = 0;
21711 	int			rtn;
21712 
21713 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
21714 	    (un->un_state == SD_STATE_OFFLINE)) {
21715 		return (ENXIO);
21716 	}
21717 
21718 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
21719 
21720 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
21721 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21722 
21723 	/* Issue a TUR to determine if the drive is ready with media present */
21724 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
21725 	if (rval == ENXIO) {
21726 		goto done;
21727 	}
21728 
21729 	/* Now get configuration data */
21730 	if (ISCD(un)) {
21731 		media_info.dki_media_type = DK_CDROM;
21732 
21733 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
21734 		if (un->un_f_mmc_cap == TRUE) {
21735 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
21736 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
21737 
21738 			if (rtn) {
21739 				/*
21740 				 * Failed for other than an illegal request
21741 				 * or command not supported
21742 				 */
21743 				if ((com.uscsi_status == STATUS_CHECK) &&
21744 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
21745 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
21746 					    (rqbuf[12] != 0x20)) {
21747 						rval = EIO;
21748 						goto done;
21749 					}
21750 				}
21751 			} else {
21752 				/*
21753 				 * The GET CONFIGURATION command succeeded
21754 				 * so set the media type according to the
21755 				 * returned data
21756 				 */
21757 				media_info.dki_media_type = out_data[6];
21758 				media_info.dki_media_type <<= 8;
21759 				media_info.dki_media_type |= out_data[7];
21760 			}
21761 		}
21762 	} else {
21763 		/*
21764 		 * The profile list is not available, so we attempt to identify
21765 		 * the media type based on the inquiry data
21766 		 */
21767 		sinq = un->un_sd->sd_inq;
21768 		if (sinq->inq_qual == 0) {
21769 			/* This is a direct access device */
21770 			media_info.dki_media_type = DK_FIXED_DISK;
21771 
21772 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
21773 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
21774 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
21775 					media_info.dki_media_type = DK_ZIP;
21776 				} else if (
21777 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
21778 					media_info.dki_media_type = DK_JAZ;
21779 				}
21780 			}
21781 		} else {
21782 			/* Not a CD or direct access so return unknown media */
21783 			media_info.dki_media_type = DK_UNKNOWN;
21784 		}
21785 	}
21786 
21787 	/* Now read the capacity so we can provide the lbasize and capacity */
21788 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
21789 	    SD_PATH_DIRECT)) {
21790 	case 0:
21791 		break;
21792 	case EACCES:
21793 		rval = EACCES;
21794 		goto done;
21795 	default:
21796 		rval = EIO;
21797 		goto done;
21798 	}
21799 
21800 	media_info.dki_lbsize = lbasize;
21801 	media_capacity = capacity;
21802 
21803 	/*
21804 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
21805 	 * un->un_sys_blocksize chunks. So we need to convert it into
21806 	 * cap.lbasize chunks.
21807 	 */
21808 	media_capacity *= un->un_sys_blocksize;
21809 	media_capacity /= lbasize;
21810 	media_info.dki_capacity = media_capacity;
21811 
21812 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
21813 		rval = EFAULT;
21814 		/* Put goto. Anybody might add some code below in future */
21815 		goto done;
21816 	}
21817 done:
21818 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
21819 	kmem_free(rqbuf, SENSE_LENGTH);
21820 	return (rval);
21821 }
21822 
21823 
21824 /*
21825  *    Function: sd_dkio_get_geometry
21826  *
21827  * Description: This routine is the driver entry point for handling user
21828  *		requests to get the device geometry (DKIOCGGEOM).
21829  *
21830  *   Arguments: dev  - the device number
21831  *		arg  - pointer to user provided dk_geom structure specifying
21832  *			the controller's notion of the current geometry.
21833  *		flag - this argument is a pass through to ddi_copyxxx()
21834  *		       directly from the mode argument of ioctl().
21835  *		geom_validated - flag indicating if the device geometry has been
21836  *				 previously validated in the sdioctl routine.
21837  *
21838  * Return Code: 0
21839  *		EFAULT
21840  *		ENXIO
21841  *		EIO
21842  */
21843 
21844 static int
21845 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
21846 {
21847 	struct sd_lun	*un = NULL;
21848 	struct dk_geom	*tmp_geom = NULL;
21849 	int		rval = 0;
21850 
21851 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21852 		return (ENXIO);
21853 	}
21854 
21855 #if defined(__i386) || defined(__amd64)
21856 	if (un->un_solaris_size == 0) {
21857 		return (EIO);
21858 	}
21859 #endif
21860 	if (geom_validated == FALSE) {
21861 		/*
21862 		 * sd_validate_geometry does not spin a disk up
21863 		 * if it was spun down. We need to make sure it
21864 		 * is ready.
21865 		 */
21866 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
21867 			return (rval);
21868 		}
21869 		mutex_enter(SD_MUTEX(un));
21870 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
21871 		mutex_exit(SD_MUTEX(un));
21872 	}
21873 	if (rval)
21874 		return (rval);
21875 
21876 	/*
21877 	 * Make a local copy of the soft state geometry to avoid some potential
21878 	 * race conditions associated with holding the mutex and updating the
21879 	 * write_reinstruct value
21880 	 */
21881 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
21882 	mutex_enter(SD_MUTEX(un));
21883 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
21884 	mutex_exit(SD_MUTEX(un));
21885 
21886 	if (tmp_geom->dkg_write_reinstruct == 0) {
21887 		tmp_geom->dkg_write_reinstruct =
21888 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
21889 		    sd_rot_delay) / (int)60000);
21890 	}
21891 
21892 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
21893 	    flag);
21894 	if (rval != 0) {
21895 		rval = EFAULT;
21896 	}
21897 
21898 	kmem_free(tmp_geom, sizeof (struct dk_geom));
21899 	return (rval);
21900 
21901 }
21902 
21903 
21904 /*
21905  *    Function: sd_dkio_set_geometry
21906  *
21907  * Description: This routine is the driver entry point for handling user
21908  *		requests to set the device geometry (DKIOCSGEOM). The actual
21909  *		device geometry is not updated, just the driver "notion" of it.
21910  *
21911  *   Arguments: dev  - the device number
21912  *		arg  - pointer to user provided dk_geom structure used to set
21913  *			the controller's notion of the current geometry.
21914  *		flag - this argument is a pass through to ddi_copyxxx()
21915  *		       directly from the mode argument of ioctl().
21916  *
21917  * Return Code: 0
21918  *		EFAULT
21919  *		ENXIO
21920  *		EIO
21921  */
21922 
21923 static int
21924 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
21925 {
21926 	struct sd_lun	*un = NULL;
21927 	struct dk_geom	*tmp_geom;
21928 	struct dk_map	*lp;
21929 	int		rval = 0;
21930 	int		i;
21931 
21932 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21933 		return (ENXIO);
21934 	}
21935 
21936 #if defined(__i386) || defined(__amd64)
21937 	if (un->un_solaris_size == 0) {
21938 		return (EIO);
21939 	}
21940 #endif
21941 	/*
21942 	 * We need to copy the user specified geometry into local
21943 	 * storage and then update the softstate. We don't want to hold
21944 	 * the mutex and copyin directly from the user to the soft state
21945 	 */
21946 	tmp_geom = (struct dk_geom *)
21947 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
21948 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
21949 	if (rval != 0) {
21950 		kmem_free(tmp_geom, sizeof (struct dk_geom));
21951 		return (EFAULT);
21952 	}
21953 
21954 	mutex_enter(SD_MUTEX(un));
21955 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
21956 	for (i = 0; i < NDKMAP; i++) {
21957 		lp  = &un->un_map[i];
21958 		un->un_offset[i] =
21959 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
21960 #if defined(__i386) || defined(__amd64)
21961 		un->un_offset[i] += un->un_solaris_offset;
21962 #endif
21963 	}
21964 	un->un_f_geometry_is_valid = FALSE;
21965 	mutex_exit(SD_MUTEX(un));
21966 	kmem_free(tmp_geom, sizeof (struct dk_geom));
21967 
21968 	return (rval);
21969 }
21970 
21971 
21972 /*
21973  *    Function: sd_dkio_get_partition
21974  *
21975  * Description: This routine is the driver entry point for handling user
21976  *		requests to get the partition table (DKIOCGAPART).
21977  *
21978  *   Arguments: dev  - the device number
21979  *		arg  - pointer to user provided dk_allmap structure specifying
21980  *			the controller's notion of the current partition table.
21981  *		flag - this argument is a pass through to ddi_copyxxx()
21982  *		       directly from the mode argument of ioctl().
21983  *		geom_validated - flag indicating if the device geometry has been
21984  *				 previously validated in the sdioctl routine.
21985  *
21986  * Return Code: 0
21987  *		EFAULT
21988  *		ENXIO
21989  *		EIO
21990  */
21991 
21992 static int
21993 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
21994 {
21995 	struct sd_lun	*un = NULL;
21996 	int		rval = 0;
21997 	int		size;
21998 
21999 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22000 		return (ENXIO);
22001 	}
22002 
22003 #if defined(__i386) || defined(__amd64)
22004 	if (un->un_solaris_size == 0) {
22005 		return (EIO);
22006 	}
22007 #endif
22008 	/*
22009 	 * Make sure the geometry is valid before getting the partition
22010 	 * information.
22011 	 */
22012 	mutex_enter(SD_MUTEX(un));
22013 	if (geom_validated == FALSE) {
22014 		/*
22015 		 * sd_validate_geometry does not spin a disk up
22016 		 * if it was spun down. We need to make sure it
22017 		 * is ready before validating the geometry.
22018 		 */
22019 		mutex_exit(SD_MUTEX(un));
22020 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22021 			return (rval);
22022 		}
22023 		mutex_enter(SD_MUTEX(un));
22024 
22025 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22026 			mutex_exit(SD_MUTEX(un));
22027 			return (rval);
22028 		}
22029 	}
22030 	mutex_exit(SD_MUTEX(un));
22031 
22032 #ifdef _MULTI_DATAMODEL
22033 	switch (ddi_model_convert_from(flag & FMODELS)) {
22034 	case DDI_MODEL_ILP32: {
22035 		struct dk_map32 dk_map32[NDKMAP];
22036 		int		i;
22037 
22038 		for (i = 0; i < NDKMAP; i++) {
22039 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
22040 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22041 		}
22042 		size = NDKMAP * sizeof (struct dk_map32);
22043 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
22044 		if (rval != 0) {
22045 			rval = EFAULT;
22046 		}
22047 		break;
22048 	}
22049 	case DDI_MODEL_NONE:
22050 		size = NDKMAP * sizeof (struct dk_map);
22051 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22052 		if (rval != 0) {
22053 			rval = EFAULT;
22054 		}
22055 		break;
22056 	}
22057 #else /* ! _MULTI_DATAMODEL */
22058 	size = NDKMAP * sizeof (struct dk_map);
22059 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22060 	if (rval != 0) {
22061 		rval = EFAULT;
22062 	}
22063 #endif /* _MULTI_DATAMODEL */
22064 	return (rval);
22065 }
22066 
22067 
22068 /*
22069  *    Function: sd_dkio_set_partition
22070  *
22071  * Description: This routine is the driver entry point for handling user
22072  *		requests to set the partition table (DKIOCSAPART). The actual
22073  *		device partition is not updated.
22074  *
22075  *   Arguments: dev  - the device number
22076  *		arg  - pointer to user provided dk_allmap structure used to set
22077  *			the controller's notion of the partition table.
22078  *		flag - this argument is a pass through to ddi_copyxxx()
22079  *		       directly from the mode argument of ioctl().
22080  *
22081  * Return Code: 0
22082  *		EINVAL
22083  *		EFAULT
22084  *		ENXIO
22085  *		EIO
22086  */
22087 
22088 static int
22089 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
22090 {
22091 	struct sd_lun	*un = NULL;
22092 	struct dk_map	dk_map[NDKMAP];
22093 	struct dk_map	*lp;
22094 	int		rval = 0;
22095 	int		size;
22096 	int		i;
22097 #if defined(_SUNOS_VTOC_16)
22098 	struct dkl_partition	*vp;
22099 #endif
22100 
22101 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22102 		return (ENXIO);
22103 	}
22104 
22105 	/*
22106 	 * Set the map for all logical partitions.  We lock
22107 	 * the priority just to make sure an interrupt doesn't
22108 	 * come in while the map is half updated.
22109 	 */
22110 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
22111 	mutex_enter(SD_MUTEX(un));
22112 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22113 		mutex_exit(SD_MUTEX(un));
22114 		return (ENOTSUP);
22115 	}
22116 	mutex_exit(SD_MUTEX(un));
22117 	if (un->un_solaris_size == 0) {
22118 		return (EIO);
22119 	}
22120 
22121 #ifdef _MULTI_DATAMODEL
22122 	switch (ddi_model_convert_from(flag & FMODELS)) {
22123 	case DDI_MODEL_ILP32: {
22124 		struct dk_map32 dk_map32[NDKMAP];
22125 
22126 		size = NDKMAP * sizeof (struct dk_map32);
22127 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
22128 		if (rval != 0) {
22129 			return (EFAULT);
22130 		}
22131 		for (i = 0; i < NDKMAP; i++) {
22132 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
22133 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
22134 		}
22135 		break;
22136 	}
22137 	case DDI_MODEL_NONE:
22138 		size = NDKMAP * sizeof (struct dk_map);
22139 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
22140 		if (rval != 0) {
22141 			return (EFAULT);
22142 		}
22143 		break;
22144 	}
22145 #else /* ! _MULTI_DATAMODEL */
22146 	size = NDKMAP * sizeof (struct dk_map);
22147 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
22148 	if (rval != 0) {
22149 		return (EFAULT);
22150 	}
22151 #endif /* _MULTI_DATAMODEL */
22152 
22153 	mutex_enter(SD_MUTEX(un));
22154 	/* Note: The size used in this bcopy is set based upon the data model */
22155 	bcopy(dk_map, un->un_map, size);
22156 #if defined(_SUNOS_VTOC_16)
22157 	vp = (struct dkl_partition *)&(un->un_vtoc);
22158 #endif	/* defined(_SUNOS_VTOC_16) */
22159 	for (i = 0; i < NDKMAP; i++) {
22160 		lp  = &un->un_map[i];
22161 		un->un_offset[i] =
22162 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22163 #if defined(_SUNOS_VTOC_16)
22164 		vp->p_start = un->un_offset[i];
22165 		vp->p_size = lp->dkl_nblk;
22166 		vp++;
22167 #endif	/* defined(_SUNOS_VTOC_16) */
22168 #if defined(__i386) || defined(__amd64)
22169 		un->un_offset[i] += un->un_solaris_offset;
22170 #endif
22171 	}
22172 	mutex_exit(SD_MUTEX(un));
22173 	return (rval);
22174 }
22175 
22176 
22177 /*
22178  *    Function: sd_dkio_get_vtoc
22179  *
22180  * Description: This routine is the driver entry point for handling user
22181  *		requests to get the current volume table of contents
22182  *		(DKIOCGVTOC).
22183  *
22184  *   Arguments: dev  - the device number
22185  *		arg  - pointer to user provided vtoc structure specifying
22186  *			the current vtoc.
22187  *		flag - this argument is a pass through to ddi_copyxxx()
22188  *		       directly from the mode argument of ioctl().
22189  *		geom_validated - flag indicating if the device geometry has been
22190  *				 previously validated in the sdioctl routine.
22191  *
22192  * Return Code: 0
22193  *		EFAULT
22194  *		ENXIO
22195  *		EIO
22196  */
22197 
22198 static int
22199 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
22200 {
22201 	struct sd_lun	*un = NULL;
22202 #if defined(_SUNOS_VTOC_8)
22203 	struct vtoc	user_vtoc;
22204 #endif	/* defined(_SUNOS_VTOC_8) */
22205 	int		rval = 0;
22206 
22207 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22208 		return (ENXIO);
22209 	}
22210 
22211 	mutex_enter(SD_MUTEX(un));
22212 	if (geom_validated == FALSE) {
22213 		/*
22214 		 * sd_validate_geometry does not spin a disk up
22215 		 * if it was spun down. We need to make sure it
22216 		 * is ready.
22217 		 */
22218 		mutex_exit(SD_MUTEX(un));
22219 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22220 			return (rval);
22221 		}
22222 		mutex_enter(SD_MUTEX(un));
22223 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22224 			mutex_exit(SD_MUTEX(un));
22225 			return (rval);
22226 		}
22227 	}
22228 
22229 #if defined(_SUNOS_VTOC_8)
22230 	sd_build_user_vtoc(un, &user_vtoc);
22231 	mutex_exit(SD_MUTEX(un));
22232 
22233 #ifdef _MULTI_DATAMODEL
22234 	switch (ddi_model_convert_from(flag & FMODELS)) {
22235 	case DDI_MODEL_ILP32: {
22236 		struct vtoc32 user_vtoc32;
22237 
22238 		vtoctovtoc32(user_vtoc, user_vtoc32);
22239 		if (ddi_copyout(&user_vtoc32, (void *)arg,
22240 		    sizeof (struct vtoc32), flag)) {
22241 			return (EFAULT);
22242 		}
22243 		break;
22244 	}
22245 
22246 	case DDI_MODEL_NONE:
22247 		if (ddi_copyout(&user_vtoc, (void *)arg,
22248 		    sizeof (struct vtoc), flag)) {
22249 			return (EFAULT);
22250 		}
22251 		break;
22252 	}
22253 #else /* ! _MULTI_DATAMODEL */
22254 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
22255 		return (EFAULT);
22256 	}
22257 #endif /* _MULTI_DATAMODEL */
22258 
22259 #elif defined(_SUNOS_VTOC_16)
22260 	mutex_exit(SD_MUTEX(un));
22261 
22262 #ifdef _MULTI_DATAMODEL
22263 	/*
22264 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
22265 	 * 32-bit to maintain compatibility with existing on-disk
22266 	 * structures.  Thus, we need to convert the structure when copying
22267 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
22268 	 * program.  If the target is a 32-bit program, then no conversion
22269 	 * is necessary.
22270 	 */
22271 	/* LINTED: logical expression always true: op "||" */
22272 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
22273 	switch (ddi_model_convert_from(flag & FMODELS)) {
22274 	case DDI_MODEL_ILP32:
22275 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
22276 		    sizeof (un->un_vtoc), flag)) {
22277 			return (EFAULT);
22278 		}
22279 		break;
22280 
22281 	case DDI_MODEL_NONE: {
22282 		struct vtoc user_vtoc;
22283 
22284 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
22285 		if (ddi_copyout(&user_vtoc, (void *)arg,
22286 		    sizeof (struct vtoc), flag)) {
22287 			return (EFAULT);
22288 		}
22289 		break;
22290 	}
22291 	}
22292 #else /* ! _MULTI_DATAMODEL */
22293 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
22294 	    flag)) {
22295 		return (EFAULT);
22296 	}
22297 #endif /* _MULTI_DATAMODEL */
22298 #else
22299 #error "No VTOC format defined."
22300 #endif
22301 
22302 	return (rval);
22303 }
22304 
22305 static int
22306 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
22307 {
22308 	struct sd_lun	*un = NULL;
22309 	dk_efi_t	user_efi;
22310 	int		rval = 0;
22311 	void		*buffer;
22312 
22313 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22314 		return (ENXIO);
22315 
22316 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22317 		return (EFAULT);
22318 
22319 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22320 
22321 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22322 	    (user_efi.dki_length > un->un_max_xfer_size))
22323 		return (EINVAL);
22324 
22325 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22326 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
22327 	    user_efi.dki_lba, SD_PATH_DIRECT);
22328 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
22329 	    user_efi.dki_length, flag) != 0)
22330 		rval = EFAULT;
22331 
22332 	kmem_free(buffer, user_efi.dki_length);
22333 	return (rval);
22334 }
22335 
22336 /*
22337  *    Function: sd_build_user_vtoc
22338  *
22339  * Description: This routine populates a pass by reference variable with the
22340  *		current volume table of contents.
22341  *
22342  *   Arguments: un - driver soft state (unit) structure
22343  *		user_vtoc - pointer to vtoc structure to be populated
22344  */
22345 
22346 static void
22347 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22348 {
22349 	struct dk_map2		*lpart;
22350 	struct dk_map		*lmap;
22351 	struct partition	*vpart;
22352 	int			nblks;
22353 	int			i;
22354 
22355 	ASSERT(mutex_owned(SD_MUTEX(un)));
22356 
22357 	/*
22358 	 * Return vtoc structure fields in the provided VTOC area, addressed
22359 	 * by *vtoc.
22360 	 */
22361 	bzero(user_vtoc, sizeof (struct vtoc));
22362 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
22363 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
22364 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
22365 	user_vtoc->v_sanity	= VTOC_SANE;
22366 	user_vtoc->v_version	= un->un_vtoc.v_version;
22367 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
22368 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
22369 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
22370 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
22371 	    sizeof (un->un_vtoc.v_reserved));
22372 	/*
22373 	 * Convert partitioning information.
22374 	 *
22375 	 * Note the conversion from starting cylinder number
22376 	 * to starting sector number.
22377 	 */
22378 	lmap = un->un_map;
22379 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
22380 	vpart = user_vtoc->v_part;
22381 
22382 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22383 
22384 	for (i = 0; i < V_NUMPAR; i++) {
22385 		vpart->p_tag	= lpart->p_tag;
22386 		vpart->p_flag	= lpart->p_flag;
22387 		vpart->p_start	= lmap->dkl_cylno * nblks;
22388 		vpart->p_size	= lmap->dkl_nblk;
22389 		lmap++;
22390 		lpart++;
22391 		vpart++;
22392 
22393 		/* (4364927) */
22394 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
22395 	}
22396 
22397 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
22398 }
22399 
22400 static int
22401 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
22402 {
22403 	struct sd_lun		*un = NULL;
22404 	struct partition64	p64;
22405 	int			rval = 0;
22406 	uint_t			nparts;
22407 	efi_gpe_t		*partitions;
22408 	efi_gpt_t		*buffer;
22409 	diskaddr_t		gpe_lba;
22410 
22411 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22412 		return (ENXIO);
22413 	}
22414 
22415 	if (ddi_copyin((const void *)arg, &p64,
22416 	    sizeof (struct partition64), flag)) {
22417 		return (EFAULT);
22418 	}
22419 
22420 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
22421 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
22422 		1, SD_PATH_DIRECT);
22423 	if (rval != 0)
22424 		goto done_error;
22425 
22426 	sd_swap_efi_gpt(buffer);
22427 
22428 	if ((rval = sd_validate_efi(buffer)) != 0)
22429 		goto done_error;
22430 
22431 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
22432 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
22433 	if (p64.p_partno > nparts) {
22434 		/* couldn't find it */
22435 		rval = ESRCH;
22436 		goto done_error;
22437 	}
22438 	/*
22439 	 * if we're dealing with a partition that's out of the normal
22440 	 * 16K block, adjust accordingly
22441 	 */
22442 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
22443 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
22444 			gpe_lba, SD_PATH_DIRECT);
22445 	if (rval) {
22446 		goto done_error;
22447 	}
22448 	partitions = (efi_gpe_t *)buffer;
22449 
22450 	sd_swap_efi_gpe(nparts, partitions);
22451 
22452 	partitions += p64.p_partno;
22453 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
22454 	    sizeof (struct uuid));
22455 	p64.p_start = partitions->efi_gpe_StartingLBA;
22456 	p64.p_size = partitions->efi_gpe_EndingLBA -
22457 			p64.p_start + 1;
22458 
22459 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
22460 		rval = EFAULT;
22461 
22462 done_error:
22463 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
22464 	return (rval);
22465 }
22466 
22467 
22468 /*
22469  *    Function: sd_dkio_set_vtoc
22470  *
22471  * Description: This routine is the driver entry point for handling user
22472  *		requests to set the current volume table of contents
22473  *		(DKIOCSVTOC).
22474  *
22475  *   Arguments: dev  - the device number
22476  *		arg  - pointer to user provided vtoc structure used to set the
22477  *			current vtoc.
22478  *		flag - this argument is a pass through to ddi_copyxxx()
22479  *		       directly from the mode argument of ioctl().
22480  *
22481  * Return Code: 0
22482  *		EFAULT
22483  *		ENXIO
22484  *		EINVAL
22485  *		ENOTSUP
22486  */
22487 
22488 static int
22489 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
22490 {
22491 	struct sd_lun	*un = NULL;
22492 	struct vtoc	user_vtoc;
22493 	int		rval = 0;
22494 
22495 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22496 		return (ENXIO);
22497 	}
22498 
22499 #if defined(__i386) || defined(__amd64)
22500 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
22501 		return (EINVAL);
22502 	}
22503 #endif
22504 
22505 #ifdef _MULTI_DATAMODEL
22506 	switch (ddi_model_convert_from(flag & FMODELS)) {
22507 	case DDI_MODEL_ILP32: {
22508 		struct vtoc32 user_vtoc32;
22509 
22510 		if (ddi_copyin((const void *)arg, &user_vtoc32,
22511 		    sizeof (struct vtoc32), flag)) {
22512 			return (EFAULT);
22513 		}
22514 		vtoc32tovtoc(user_vtoc32, user_vtoc);
22515 		break;
22516 	}
22517 
22518 	case DDI_MODEL_NONE:
22519 		if (ddi_copyin((const void *)arg, &user_vtoc,
22520 		    sizeof (struct vtoc), flag)) {
22521 			return (EFAULT);
22522 		}
22523 		break;
22524 	}
22525 #else /* ! _MULTI_DATAMODEL */
22526 	if (ddi_copyin((const void *)arg, &user_vtoc,
22527 	    sizeof (struct vtoc), flag)) {
22528 		return (EFAULT);
22529 	}
22530 #endif /* _MULTI_DATAMODEL */
22531 
22532 	mutex_enter(SD_MUTEX(un));
22533 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22534 		mutex_exit(SD_MUTEX(un));
22535 		return (ENOTSUP);
22536 	}
22537 	if (un->un_g.dkg_ncyl == 0) {
22538 		mutex_exit(SD_MUTEX(un));
22539 		return (EINVAL);
22540 	}
22541 
22542 	mutex_exit(SD_MUTEX(un));
22543 	sd_clear_efi(un);
22544 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
22545 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
22546 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
22547 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22548 	    un->un_node_type, NULL);
22549 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
22550 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22551 	    un->un_node_type, NULL);
22552 	mutex_enter(SD_MUTEX(un));
22553 
22554 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
22555 		if ((rval = sd_write_label(dev)) == 0) {
22556 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
22557 			    != 0) {
22558 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
22559 				    "sd_dkio_set_vtoc: "
22560 				    "Failed validate geometry\n");
22561 			}
22562 		}
22563 	}
22564 
22565 	/*
22566 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
22567 	 * devid anyway, what can it hurt? Also preserve the device id by
22568 	 * writing to the disk acyl for the case where a devid has been
22569 	 * fabricated.
22570 	 */
22571 	if (!ISREMOVABLE(un) && !ISCD(un) &&
22572 	    (un->un_f_opt_fab_devid == TRUE)) {
22573 		if (un->un_devid == NULL) {
22574 			sd_register_devid(un, SD_DEVINFO(un),
22575 			    SD_TARGET_IS_UNRESERVED);
22576 		} else {
22577 			/*
22578 			 * The device id for this disk has been
22579 			 * fabricated. Fabricated device id's are
22580 			 * managed by storing them in the last 2
22581 			 * available sectors on the drive. The device
22582 			 * id must be preserved by writing it back out
22583 			 * to this location.
22584 			 */
22585 			if (sd_write_deviceid(un) != 0) {
22586 				ddi_devid_free(un->un_devid);
22587 				un->un_devid = NULL;
22588 			}
22589 		}
22590 	}
22591 	mutex_exit(SD_MUTEX(un));
22592 	return (rval);
22593 }
22594 
22595 
22596 /*
22597  *    Function: sd_build_label_vtoc
22598  *
22599  * Description: This routine updates the driver soft state current volume table
22600  *		of contents based on a user specified vtoc.
22601  *
22602  *   Arguments: un - driver soft state (unit) structure
22603  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
22604  *			    to update the driver soft state.
22605  *
22606  * Return Code: 0
22607  *		EINVAL
22608  */
22609 
22610 static int
22611 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22612 {
22613 	struct dk_map		*lmap;
22614 	struct partition	*vpart;
22615 	int			nblks;
22616 #if defined(_SUNOS_VTOC_8)
22617 	int			ncyl;
22618 	struct dk_map2		*lpart;
22619 #endif	/* defined(_SUNOS_VTOC_8) */
22620 	int			i;
22621 
22622 	ASSERT(mutex_owned(SD_MUTEX(un)));
22623 
22624 	/* Sanity-check the vtoc */
22625 	if (user_vtoc->v_sanity != VTOC_SANE ||
22626 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
22627 	    user_vtoc->v_nparts != V_NUMPAR) {
22628 		return (EINVAL);
22629 	}
22630 
22631 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22632 	if (nblks == 0) {
22633 		return (EINVAL);
22634 	}
22635 
22636 #if defined(_SUNOS_VTOC_8)
22637 	vpart = user_vtoc->v_part;
22638 	for (i = 0; i < V_NUMPAR; i++) {
22639 		if ((vpart->p_start % nblks) != 0) {
22640 			return (EINVAL);
22641 		}
22642 		ncyl = vpart->p_start / nblks;
22643 		ncyl += vpart->p_size / nblks;
22644 		if ((vpart->p_size % nblks) != 0) {
22645 			ncyl++;
22646 		}
22647 		if (ncyl > (int)un->un_g.dkg_ncyl) {
22648 			return (EINVAL);
22649 		}
22650 		vpart++;
22651 	}
22652 #endif	/* defined(_SUNOS_VTOC_8) */
22653 
22654 	/* Put appropriate vtoc structure fields into the disk label */
22655 #if defined(_SUNOS_VTOC_16)
22656 	/*
22657 	 * The vtoc is always a 32bit data structure to maintain the
22658 	 * on-disk format. Convert "in place" instead of bcopying it.
22659 	 */
22660 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
22661 
22662 	/*
22663 	 * in the 16-slice vtoc, starting sectors are expressed in
22664 	 * numbers *relative* to the start of the Solaris fdisk partition.
22665 	 */
22666 	lmap = un->un_map;
22667 	vpart = user_vtoc->v_part;
22668 
22669 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
22670 		lmap->dkl_cylno = vpart->p_start / nblks;
22671 		lmap->dkl_nblk = vpart->p_size;
22672 	}
22673 
22674 #elif defined(_SUNOS_VTOC_8)
22675 
22676 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
22677 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
22678 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
22679 
22680 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
22681 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
22682 
22683 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
22684 
22685 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
22686 
22687 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
22688 	    sizeof (un->un_vtoc.v_reserved));
22689 
22690 	/*
22691 	 * Note the conversion from starting sector number
22692 	 * to starting cylinder number.
22693 	 * Return error if division results in a remainder.
22694 	 */
22695 	lmap = un->un_map;
22696 	lpart = un->un_vtoc.v_part;
22697 	vpart = user_vtoc->v_part;
22698 
22699 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
22700 		lpart->p_tag  = vpart->p_tag;
22701 		lpart->p_flag = vpart->p_flag;
22702 		lmap->dkl_cylno = vpart->p_start / nblks;
22703 		lmap->dkl_nblk = vpart->p_size;
22704 
22705 		lmap++;
22706 		lpart++;
22707 		vpart++;
22708 
22709 		/* (4387723) */
22710 #ifdef _LP64
22711 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
22712 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
22713 		} else {
22714 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
22715 		}
22716 #else
22717 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
22718 #endif
22719 	}
22720 
22721 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
22722 #else
22723 #error "No VTOC format defined."
22724 #endif
22725 	return (0);
22726 }
22727 
22728 /*
22729  *    Function: sd_clear_efi
22730  *
22731  * Description: This routine clears all EFI labels.
22732  *
22733  *   Arguments: un - driver soft state (unit) structure
22734  *
22735  * Return Code: void
22736  */
22737 
22738 static void
22739 sd_clear_efi(struct sd_lun *un)
22740 {
22741 	efi_gpt_t	*gpt;
22742 	uint_t		lbasize;
22743 	uint64_t	cap;
22744 	int rval;
22745 
22746 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22747 
22748 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
22749 
22750 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
22751 		goto done;
22752 	}
22753 
22754 	sd_swap_efi_gpt(gpt);
22755 	rval = sd_validate_efi(gpt);
22756 	if (rval == 0) {
22757 		/* clear primary */
22758 		bzero(gpt, sizeof (efi_gpt_t));
22759 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
22760 			SD_PATH_DIRECT))) {
22761 			SD_INFO(SD_LOG_IO_PARTITION, un,
22762 				"sd_clear_efi: clear primary label failed\n");
22763 		}
22764 	}
22765 	/* the backup */
22766 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
22767 	    SD_PATH_DIRECT);
22768 	if (rval) {
22769 		goto done;
22770 	}
22771 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
22772 	    cap - 1, SD_PATH_DIRECT)) != 0) {
22773 		goto done;
22774 	}
22775 	sd_swap_efi_gpt(gpt);
22776 	rval = sd_validate_efi(gpt);
22777 	if (rval == 0) {
22778 		/* clear backup */
22779 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
22780 			cap-1);
22781 		bzero(gpt, sizeof (efi_gpt_t));
22782 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
22783 		    cap-1, SD_PATH_DIRECT))) {
22784 			SD_INFO(SD_LOG_IO_PARTITION, un,
22785 				"sd_clear_efi: clear backup label failed\n");
22786 		}
22787 	}
22788 
22789 done:
22790 	kmem_free(gpt, sizeof (efi_gpt_t));
22791 }
22792 
22793 /*
22794  *    Function: sd_set_vtoc
22795  *
22796  * Description: This routine writes data to the appropriate positions
22797  *
22798  *   Arguments: un - driver soft state (unit) structure
22799  *              dkl  - the data to be written
22800  *
22801  * Return: void
22802  */
22803 
22804 static int
22805 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
22806 {
22807 	void			*shadow_buf;
22808 	uint_t			label_addr;
22809 	int			sec;
22810 	int			blk;
22811 	int			head;
22812 	int			cyl;
22813 	int			rval;
22814 
22815 #if defined(__i386) || defined(__amd64)
22816 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
22817 #else
22818 	/* Write the primary label at block 0 of the solaris partition. */
22819 	label_addr = 0;
22820 #endif
22821 
22822 	if (NOT_DEVBSIZE(un)) {
22823 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
22824 		/*
22825 		 * Read the target's first block.
22826 		 */
22827 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
22828 		    un->un_tgt_blocksize, label_addr,
22829 		    SD_PATH_STANDARD)) != 0) {
22830 			goto exit;
22831 		}
22832 		/*
22833 		 * Copy the contents of the label into the shadow buffer
22834 		 * which is of the size of target block size.
22835 		 */
22836 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
22837 	}
22838 
22839 	/* Write the primary label */
22840 	if (NOT_DEVBSIZE(un)) {
22841 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
22842 		    label_addr, SD_PATH_STANDARD);
22843 	} else {
22844 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
22845 		    label_addr, SD_PATH_STANDARD);
22846 	}
22847 	if (rval != 0) {
22848 		return (rval);
22849 	}
22850 
22851 	/*
22852 	 * Calculate where the backup labels go.  They are always on
22853 	 * the last alternate cylinder, but some older drives put them
22854 	 * on head 2 instead of the last head.	They are always on the
22855 	 * first 5 odd sectors of the appropriate track.
22856 	 *
22857 	 * We have no choice at this point, but to believe that the
22858 	 * disk label is valid.	 Use the geometry of the disk
22859 	 * as described in the label.
22860 	 */
22861 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
22862 	head = dkl->dkl_nhead - 1;
22863 
22864 	/*
22865 	 * Write and verify the backup labels. Make sure we don't try to
22866 	 * write past the last cylinder.
22867 	 */
22868 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
22869 		blk = (daddr_t)(
22870 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
22871 		    (head * dkl->dkl_nsect) + sec);
22872 #if defined(__i386) || defined(__amd64)
22873 		blk += un->un_solaris_offset;
22874 #endif
22875 		if (NOT_DEVBSIZE(un)) {
22876 			uint64_t	tblk;
22877 			/*
22878 			 * Need to read the block first for read modify write.
22879 			 */
22880 			tblk = (uint64_t)blk;
22881 			blk = (int)((tblk * un->un_sys_blocksize) /
22882 			    un->un_tgt_blocksize);
22883 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
22884 			    un->un_tgt_blocksize, blk,
22885 			    SD_PATH_STANDARD)) != 0) {
22886 				goto exit;
22887 			}
22888 			/*
22889 			 * Modify the shadow buffer with the label.
22890 			 */
22891 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
22892 			rval = sd_send_scsi_WRITE(un, shadow_buf,
22893 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
22894 		} else {
22895 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
22896 			    blk, SD_PATH_STANDARD);
22897 			SD_INFO(SD_LOG_IO_PARTITION, un,
22898 			"sd_set_vtoc: wrote backup label %d\n", blk);
22899 		}
22900 		if (rval != 0) {
22901 			goto exit;
22902 		}
22903 	}
22904 exit:
22905 	if (NOT_DEVBSIZE(un)) {
22906 		kmem_free(shadow_buf, un->un_tgt_blocksize);
22907 	}
22908 	return (rval);
22909 }
22910 
22911 /*
22912  *    Function: sd_clear_vtoc
22913  *
22914  * Description: This routine clears out the VTOC labels.
22915  *
22916  *   Arguments: un - driver soft state (unit) structure
22917  *
22918  * Return: void
22919  */
22920 
22921 static void
22922 sd_clear_vtoc(struct sd_lun *un)
22923 {
22924 	struct dk_label		*dkl;
22925 
22926 	mutex_exit(SD_MUTEX(un));
22927 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
22928 	mutex_enter(SD_MUTEX(un));
22929 	/*
22930 	 * sd_set_vtoc uses these fields in order to figure out
22931 	 * where to overwrite the backup labels
22932 	 */
22933 	dkl->dkl_apc    = un->un_g.dkg_apc;
22934 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
22935 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
22936 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
22937 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
22938 	mutex_exit(SD_MUTEX(un));
22939 	(void) sd_set_vtoc(un, dkl);
22940 	kmem_free(dkl, sizeof (struct dk_label));
22941 
22942 	mutex_enter(SD_MUTEX(un));
22943 }
22944 
22945 /*
22946  *    Function: sd_write_label
22947  *
22948  * Description: This routine will validate and write the driver soft state vtoc
22949  *		contents to the device.
22950  *
22951  *   Arguments: dev - the device number
22952  *
22953  * Return Code: the code returned by sd_send_scsi_cmd()
22954  *		0
22955  *		EINVAL
22956  *		ENXIO
22957  *		ENOMEM
22958  */
22959 
22960 static int
22961 sd_write_label(dev_t dev)
22962 {
22963 	struct sd_lun		*un;
22964 	struct dk_label		*dkl;
22965 	short			sum;
22966 	short			*sp;
22967 	int			i;
22968 	int			rval;
22969 
22970 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
22971 	    (un->un_state == SD_STATE_OFFLINE)) {
22972 		return (ENXIO);
22973 	}
22974 	ASSERT(mutex_owned(SD_MUTEX(un)));
22975 	mutex_exit(SD_MUTEX(un));
22976 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
22977 	mutex_enter(SD_MUTEX(un));
22978 
22979 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
22980 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
22981 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
22982 	dkl->dkl_apc	= un->un_g.dkg_apc;
22983 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
22984 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
22985 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
22986 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
22987 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
22988 
22989 #if defined(_SUNOS_VTOC_8)
22990 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
22991 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
22992 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
22993 	for (i = 0; i < NDKMAP; i++) {
22994 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
22995 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22996 	}
22997 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
22998 #elif defined(_SUNOS_VTOC_16)
22999 	dkl->dkl_skew	= un->un_dkg_skew;
23000 #else
23001 #error "No VTOC format defined."
23002 #endif
23003 
23004 	dkl->dkl_magic			= DKL_MAGIC;
23005 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
23006 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
23007 
23008 	/* Construct checksum for the new disk label */
23009 	sum = 0;
23010 	sp = (short *)dkl;
23011 	i = sizeof (struct dk_label) / sizeof (short);
23012 	while (i--) {
23013 		sum ^= *sp++;
23014 	}
23015 	dkl->dkl_cksum = sum;
23016 
23017 	mutex_exit(SD_MUTEX(un));
23018 
23019 	rval = sd_set_vtoc(un, dkl);
23020 exit:
23021 	kmem_free(dkl, sizeof (struct dk_label));
23022 	mutex_enter(SD_MUTEX(un));
23023 	return (rval);
23024 }
23025 
23026 static int
23027 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
23028 {
23029 	struct sd_lun	*un = NULL;
23030 	dk_efi_t	user_efi;
23031 	int		rval = 0;
23032 	void		*buffer;
23033 
23034 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23035 		return (ENXIO);
23036 
23037 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23038 		return (EFAULT);
23039 
23040 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23041 
23042 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23043 	    (user_efi.dki_length > un->un_max_xfer_size))
23044 		return (EINVAL);
23045 
23046 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23047 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
23048 		rval = EFAULT;
23049 	} else {
23050 		/*
23051 		 * let's clear the vtoc labels and clear the softstate
23052 		 * vtoc.
23053 		 */
23054 		mutex_enter(SD_MUTEX(un));
23055 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
23056 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23057 				"sd_dkio_set_efi: CLEAR VTOC\n");
23058 			sd_clear_vtoc(un);
23059 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23060 			mutex_exit(SD_MUTEX(un));
23061 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
23062 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
23063 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
23064 			    S_IFBLK,
23065 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23066 			    un->un_node_type, NULL);
23067 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
23068 			    S_IFCHR,
23069 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23070 			    un->un_node_type, NULL);
23071 		} else
23072 			mutex_exit(SD_MUTEX(un));
23073 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
23074 		    user_efi.dki_lba, SD_PATH_DIRECT);
23075 		if (rval == 0) {
23076 			mutex_enter(SD_MUTEX(un));
23077 			un->un_f_geometry_is_valid = FALSE;
23078 			mutex_exit(SD_MUTEX(un));
23079 		}
23080 	}
23081 	kmem_free(buffer, user_efi.dki_length);
23082 	return (rval);
23083 }
23084 
23085 /*
23086  *    Function: sd_dkio_get_mboot
23087  *
23088  * Description: This routine is the driver entry point for handling user
23089  *		requests to get the current device mboot (DKIOCGMBOOT)
23090  *
23091  *   Arguments: dev  - the device number
23092  *		arg  - pointer to user provided mboot structure specifying
23093  *			the current mboot.
23094  *		flag - this argument is a pass through to ddi_copyxxx()
23095  *		       directly from the mode argument of ioctl().
23096  *
23097  * Return Code: 0
23098  *		EINVAL
23099  *		EFAULT
23100  *		ENXIO
23101  */
23102 
23103 static int
23104 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
23105 {
23106 	struct sd_lun	*un;
23107 	struct mboot	*mboot;
23108 	int		rval;
23109 	size_t		buffer_size;
23110 
23111 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23112 	    (un->un_state == SD_STATE_OFFLINE)) {
23113 		return (ENXIO);
23114 	}
23115 
23116 #if defined(_SUNOS_VTOC_8)
23117 	if ((!ISREMOVABLE(un)) || (arg == NULL)) {
23118 #elif defined(_SUNOS_VTOC_16)
23119 	if (arg == NULL) {
23120 #endif
23121 		return (EINVAL);
23122 	}
23123 
23124 	/*
23125 	 * Read the mboot block, located at absolute block 0 on the target.
23126 	 */
23127 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
23128 
23129 	SD_TRACE(SD_LOG_IO_PARTITION, un,
23130 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
23131 
23132 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
23133 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
23134 	    SD_PATH_STANDARD)) == 0) {
23135 		if (ddi_copyout(mboot, (void *)arg,
23136 		    sizeof (struct mboot), flag) != 0) {
23137 			rval = EFAULT;
23138 		}
23139 	}
23140 	kmem_free(mboot, buffer_size);
23141 	return (rval);
23142 }
23143 
23144 
23145 /*
23146  *    Function: sd_dkio_set_mboot
23147  *
23148  * Description: This routine is the driver entry point for handling user
23149  *		requests to validate and set the device master boot
23150  *		(DKIOCSMBOOT).
23151  *
23152  *   Arguments: dev  - the device number
23153  *		arg  - pointer to user provided mboot structure used to set the
23154  *			master boot.
23155  *		flag - this argument is a pass through to ddi_copyxxx()
23156  *		       directly from the mode argument of ioctl().
23157  *
23158  * Return Code: 0
23159  *		EINVAL
23160  *		EFAULT
23161  *		ENXIO
23162  */
23163 
23164 static int
23165 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
23166 {
23167 	struct sd_lun	*un = NULL;
23168 	struct mboot	*mboot = NULL;
23169 	int		rval;
23170 	ushort_t	magic;
23171 
23172 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23173 		return (ENXIO);
23174 	}
23175 
23176 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23177 
23178 #if defined(_SUNOS_VTOC_8)
23179 	if (!ISREMOVABLE(un)) {
23180 		return (EINVAL);
23181 	}
23182 #endif
23183 
23184 	if (arg == NULL) {
23185 		return (EINVAL);
23186 	}
23187 
23188 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
23189 
23190 	if (ddi_copyin((const void *)arg, mboot,
23191 	    sizeof (struct mboot), flag) != 0) {
23192 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23193 		return (EFAULT);
23194 	}
23195 
23196 	/* Is this really a master boot record? */
23197 	magic = LE_16(mboot->signature);
23198 	if (magic != MBB_MAGIC) {
23199 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23200 		return (EINVAL);
23201 	}
23202 
23203 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
23204 	    SD_PATH_STANDARD);
23205 
23206 	mutex_enter(SD_MUTEX(un));
23207 #if defined(__i386) || defined(__amd64)
23208 	if (rval == 0) {
23209 		/*
23210 		 * mboot has been written successfully.
23211 		 * update the fdisk and vtoc tables in memory
23212 		 */
23213 		rval = sd_update_fdisk_and_vtoc(un);
23214 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
23215 			mutex_exit(SD_MUTEX(un));
23216 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23217 			return (rval);
23218 		}
23219 	}
23220 
23221 	/*
23222 	 * If the mboot write fails, write the devid anyway, what can it hurt?
23223 	 * Also preserve the device id by writing to the disk acyl for the case
23224 	 * where a devid has been fabricated.
23225 	 */
23226 	if (!ISREMOVABLE(un) && !ISCD(un) &&
23227 	    (un->un_f_opt_fab_devid == TRUE)) {
23228 		if (un->un_devid == NULL) {
23229 			sd_register_devid(un, SD_DEVINFO(un),
23230 			    SD_TARGET_IS_UNRESERVED);
23231 		} else {
23232 			/*
23233 			 * The device id for this disk has been
23234 			 * fabricated. Fabricated device id's are
23235 			 * managed by storing them in the last 2
23236 			 * available sectors on the drive. The device
23237 			 * id must be preserved by writing it back out
23238 			 * to this location.
23239 			 */
23240 			if (sd_write_deviceid(un) != 0) {
23241 				ddi_devid_free(un->un_devid);
23242 				un->un_devid = NULL;
23243 			}
23244 		}
23245 	}
23246 #else
23247 	if (rval == 0) {
23248 		/*
23249 		 * mboot has been written successfully.
23250 		 * set up the default geometry and VTOC
23251 		 */
23252 		if (un->un_blockcount <= DK_MAX_BLOCKS)
23253 			sd_setup_default_geometry(un);
23254 	}
23255 #endif
23256 	mutex_exit(SD_MUTEX(un));
23257 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23258 	return (rval);
23259 }
23260 
23261 
23262 /*
23263  *    Function: sd_setup_default_geometry
23264  *
23265  * Description: This local utility routine sets the default geometry as part of
23266  *		setting the device mboot.
23267  *
23268  *   Arguments: un - driver soft state (unit) structure
23269  *
23270  * Note: This may be redundant with sd_build_default_label.
23271  */
23272 
23273 static void
23274 sd_setup_default_geometry(struct sd_lun *un)
23275 {
23276 	/* zero out the soft state geometry and partition table. */
23277 	bzero(&un->un_g, sizeof (struct dk_geom));
23278 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23279 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
23280 	un->un_asciilabel[0] = '\0';
23281 
23282 	/*
23283 	 * For the rpm, we use the minimum for the disk.
23284 	 * For the head, cyl and number of sector per track,
23285 	 * if the capacity <= 1GB, head = 64, sect = 32.
23286 	 * else head = 255, sect 63
23287 	 * Note: the capacity should be equal to C*H*S values.
23288 	 * This will cause some truncation of size due to
23289 	 * round off errors. For CD-ROMs, this truncation can
23290 	 * have adverse side effects, so returning ncyl and
23291 	 * nhead as 1. The nsect will overflow for most of
23292 	 * CD-ROMs as nsect is of type ushort.
23293 	 */
23294 	if (ISCD(un)) {
23295 		un->un_g.dkg_ncyl = 1;
23296 		un->un_g.dkg_nhead = 1;
23297 		un->un_g.dkg_nsect = un->un_blockcount;
23298 	} else {
23299 		if (un->un_blockcount <= 0x1000) {
23300 			/* Needed for unlabeled SCSI floppies. */
23301 			un->un_g.dkg_nhead = 2;
23302 			un->un_g.dkg_ncyl = 80;
23303 			un->un_g.dkg_pcyl = 80;
23304 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
23305 		} else if (un->un_blockcount <= 0x200000) {
23306 			un->un_g.dkg_nhead = 64;
23307 			un->un_g.dkg_nsect = 32;
23308 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
23309 		} else {
23310 			un->un_g.dkg_nhead = 255;
23311 			un->un_g.dkg_nsect = 63;
23312 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
23313 		}
23314 		un->un_blockcount = un->un_g.dkg_ncyl *
23315 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
23316 	}
23317 	un->un_g.dkg_acyl = 0;
23318 	un->un_g.dkg_bcyl = 0;
23319 	un->un_g.dkg_intrlv = 1;
23320 	un->un_g.dkg_rpm = 200;
23321 	un->un_g.dkg_read_reinstruct = 0;
23322 	un->un_g.dkg_write_reinstruct = 0;
23323 	if (un->un_g.dkg_pcyl == 0) {
23324 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
23325 	}
23326 
23327 	un->un_map['a'-'a'].dkl_cylno = 0;
23328 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
23329 	un->un_map['c'-'a'].dkl_cylno = 0;
23330 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
23331 	un->un_f_geometry_is_valid = FALSE;
23332 }
23333 
23334 
23335 #if defined(__i386) || defined(__amd64)
23336 /*
23337  *    Function: sd_update_fdisk_and_vtoc
23338  *
23339  * Description: This local utility routine updates the device fdisk and vtoc
23340  *		as part of setting the device mboot.
23341  *
23342  *   Arguments: un - driver soft state (unit) structure
23343  *
23344  * Return Code: 0 for success or errno-type return code.
23345  *
23346  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
23347  *		these did exist seperately in x86 sd.c!!!
23348  */
23349 
23350 static int
23351 sd_update_fdisk_and_vtoc(struct sd_lun *un)
23352 {
23353 	static char	labelstring[128];
23354 	static char	buf[256];
23355 	char		*label = 0;
23356 	int		count;
23357 	int		label_rc = 0;
23358 	int		gvalid = un->un_f_geometry_is_valid;
23359 	int		fdisk_rval;
23360 	int		lbasize;
23361 	int		capacity;
23362 
23363 	ASSERT(mutex_owned(SD_MUTEX(un)));
23364 
23365 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
23366 		return (EINVAL);
23367 	}
23368 
23369 	if (un->un_f_blockcount_is_valid == FALSE) {
23370 		return (EINVAL);
23371 	}
23372 
23373 #if defined(_SUNOS_VTOC_16)
23374 	/*
23375 	 * Set up the "whole disk" fdisk partition; this should always
23376 	 * exist, regardless of whether the disk contains an fdisk table
23377 	 * or vtoc.
23378 	 */
23379 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
23380 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
23381 #endif	/* defined(_SUNOS_VTOC_16) */
23382 
23383 	/*
23384 	 * copy the lbasize and capacity so that if they're
23385 	 * reset while we're not holding the SD_MUTEX(un), we will
23386 	 * continue to use valid values after the SD_MUTEX(un) is
23387 	 * reacquired.
23388 	 */
23389 	lbasize  = un->un_tgt_blocksize;
23390 	capacity = un->un_blockcount;
23391 
23392 	/*
23393 	 * refresh the logical and physical geometry caches.
23394 	 * (data from mode sense format/rigid disk geometry pages,
23395 	 * and scsi_ifgetcap("geometry").
23396 	 */
23397 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
23398 
23399 	/*
23400 	 * Only DIRECT ACCESS devices will have Sun labels.
23401 	 * CD's supposedly have a Sun label, too
23402 	 */
23403 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
23404 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
23405 		    SD_PATH_DIRECT);
23406 		if (fdisk_rval == SD_CMD_FAILURE) {
23407 			ASSERT(mutex_owned(SD_MUTEX(un)));
23408 			return (EIO);
23409 		}
23410 
23411 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
23412 			ASSERT(mutex_owned(SD_MUTEX(un)));
23413 			return (EACCES);
23414 		}
23415 
23416 		if (un->un_solaris_size <= DK_LABEL_LOC) {
23417 			/*
23418 			 * Found fdisk table but no Solaris partition entry,
23419 			 * so don't call sd_uselabel() and don't create
23420 			 * a default label.
23421 			 */
23422 			label_rc = 0;
23423 			un->un_f_geometry_is_valid = TRUE;
23424 			goto no_solaris_partition;
23425 		}
23426 
23427 #if defined(_SUNOS_VTOC_8)
23428 		label = (char *)un->un_asciilabel;
23429 #elif defined(_SUNOS_VTOC_16)
23430 		label = (char *)un->un_vtoc.v_asciilabel;
23431 #else
23432 #error "No VTOC format defined."
23433 #endif
23434 	} else if (capacity < 0) {
23435 		ASSERT(mutex_owned(SD_MUTEX(un)));
23436 		return (EINVAL);
23437 	}
23438 
23439 	/*
23440 	 * For Removable media We reach here if we have found a
23441 	 * SOLARIS PARTITION.
23442 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
23443 	 * PARTITION has changed from the previous one, hence we will setup a
23444 	 * default VTOC in this case.
23445 	 */
23446 	if (un->un_f_geometry_is_valid == FALSE) {
23447 		sd_build_default_label(un);
23448 		label_rc = 0;
23449 	}
23450 
23451 no_solaris_partition:
23452 	if ((!ISREMOVABLE(un) ||
23453 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
23454 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
23455 		/*
23456 		 * Print out a message indicating who and what we are.
23457 		 * We do this only when we happen to really validate the
23458 		 * geometry. We may call sd_validate_geometry() at other
23459 		 * times, ioctl()'s like Get VTOC in which case we
23460 		 * don't want to print the label.
23461 		 * If the geometry is valid, print the label string,
23462 		 * else print vendor and product info, if available
23463 		 */
23464 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
23465 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
23466 		} else {
23467 			mutex_enter(&sd_label_mutex);
23468 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
23469 			    labelstring);
23470 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
23471 			    &labelstring[64]);
23472 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
23473 			    labelstring, &labelstring[64]);
23474 			if (un->un_f_blockcount_is_valid == TRUE) {
23475 				(void) sprintf(&buf[strlen(buf)],
23476 				    ", %" PRIu64 " %u byte blocks\n",
23477 				    un->un_blockcount,
23478 				    un->un_tgt_blocksize);
23479 			} else {
23480 				(void) sprintf(&buf[strlen(buf)],
23481 				    ", (unknown capacity)\n");
23482 			}
23483 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
23484 			mutex_exit(&sd_label_mutex);
23485 		}
23486 	}
23487 
23488 #if defined(_SUNOS_VTOC_16)
23489 	/*
23490 	 * If we have valid geometry, set up the remaining fdisk partitions.
23491 	 * Note that dkl_cylno is not used for the fdisk map entries, so
23492 	 * we set it to an entirely bogus value.
23493 	 */
23494 	for (count = 0; count < FD_NUMPART; count++) {
23495 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
23496 		un->un_map[FDISK_P1 + count].dkl_nblk =
23497 		    un->un_fmap[count].fmap_nblk;
23498 		un->un_offset[FDISK_P1 + count] =
23499 		    un->un_fmap[count].fmap_start;
23500 	}
23501 #endif
23502 
23503 	for (count = 0; count < NDKMAP; count++) {
23504 #if defined(_SUNOS_VTOC_8)
23505 		struct dk_map *lp  = &un->un_map[count];
23506 		un->un_offset[count] =
23507 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
23508 #elif defined(_SUNOS_VTOC_16)
23509 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
23510 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
23511 #else
23512 #error "No VTOC format defined."
23513 #endif
23514 	}
23515 
23516 	ASSERT(mutex_owned(SD_MUTEX(un)));
23517 	return (label_rc);
23518 }
23519 #endif
23520 
23521 
23522 /*
23523  *    Function: sd_check_media
23524  *
23525  * Description: This utility routine implements the functionality for the
23526  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23527  *		driver state changes from that specified by the user
23528  *		(inserted or ejected). For example, if the user specifies
23529  *		DKIO_EJECTED and the current media state is inserted this
23530  *		routine will immediately return DKIO_INSERTED. However, if the
23531  *		current media state is not inserted the user thread will be
23532  *		blocked until the drive state changes. If DKIO_NONE is specified
23533  *		the user thread will block until a drive state change occurs.
23534  *
23535  *   Arguments: dev  - the device number
23536  *		state  - user pointer to a dkio_state, updated with the current
23537  *			drive state at return.
23538  *
23539  * Return Code: ENXIO
23540  *		EIO
23541  *		EAGAIN
23542  *		EINTR
23543  */
23544 
23545 static int
23546 sd_check_media(dev_t dev, enum dkio_state state)
23547 {
23548 	struct sd_lun		*un = NULL;
23549 	enum dkio_state		prev_state;
23550 	opaque_t		token = NULL;
23551 	int			rval = 0;
23552 
23553 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23554 		return (ENXIO);
23555 	}
23556 
23557 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23558 
23559 	mutex_enter(SD_MUTEX(un));
23560 
23561 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23562 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23563 
23564 	prev_state = un->un_mediastate;
23565 
23566 	/* is there anything to do? */
23567 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23568 		/*
23569 		 * submit the request to the scsi_watch service;
23570 		 * scsi_media_watch_cb() does the real work
23571 		 */
23572 		mutex_exit(SD_MUTEX(un));
23573 
23574 		/*
23575 		 * This change handles the case where a scsi watch request is
23576 		 * added to a device that is powered down. To accomplish this
23577 		 * we power up the device before adding the scsi watch request,
23578 		 * since the scsi watch sends a TUR directly to the device
23579 		 * which the device cannot handle if it is powered down.
23580 		 */
23581 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23582 			mutex_enter(SD_MUTEX(un));
23583 			goto done;
23584 		}
23585 
23586 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
23587 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23588 		    (caddr_t)dev);
23589 
23590 		sd_pm_exit(un);
23591 
23592 		mutex_enter(SD_MUTEX(un));
23593 		if (token == NULL) {
23594 			rval = EAGAIN;
23595 			goto done;
23596 		}
23597 
23598 		/*
23599 		 * This is a special case IOCTL that doesn't return
23600 		 * until the media state changes. Routine sdpower
23601 		 * knows about and handles this so don't count it
23602 		 * as an active cmd in the driver, which would
23603 		 * keep the device busy to the pm framework.
23604 		 * If the count isn't decremented the device can't
23605 		 * be powered down.
23606 		 */
23607 		un->un_ncmds_in_driver--;
23608 		ASSERT(un->un_ncmds_in_driver >= 0);
23609 
23610 		/*
23611 		 * if a prior request had been made, this will be the same
23612 		 * token, as scsi_watch was designed that way.
23613 		 */
23614 		un->un_swr_token = token;
23615 		un->un_specified_mediastate = state;
23616 
23617 		/*
23618 		 * now wait for media change
23619 		 * we will not be signalled unless mediastate == state but it is
23620 		 * still better to test for this condition, since there is a
23621 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23622 		 */
23623 		SD_TRACE(SD_LOG_COMMON, un,
23624 		    "sd_check_media: waiting for media state change\n");
23625 		while (un->un_mediastate == state) {
23626 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23627 				SD_TRACE(SD_LOG_COMMON, un,
23628 				    "sd_check_media: waiting for media state "
23629 				    "was interrupted\n");
23630 				un->un_ncmds_in_driver++;
23631 				rval = EINTR;
23632 				goto done;
23633 			}
23634 			SD_TRACE(SD_LOG_COMMON, un,
23635 			    "sd_check_media: received signal, state=%x\n",
23636 			    un->un_mediastate);
23637 		}
23638 		/*
23639 		 * Inc the counter to indicate the device once again
23640 		 * has an active outstanding cmd.
23641 		 */
23642 		un->un_ncmds_in_driver++;
23643 	}
23644 
23645 	/* invalidate geometry */
23646 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23647 		sr_ejected(un);
23648 	}
23649 
23650 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23651 		uint64_t	capacity;
23652 		uint_t		lbasize;
23653 
23654 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23655 		mutex_exit(SD_MUTEX(un));
23656 		/*
23657 		 * Since the following routines use SD_PATH_DIRECT, we must
23658 		 * call PM directly before the upcoming disk accesses. This
23659 		 * may cause the disk to be power/spin up.
23660 		 */
23661 
23662 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23663 			rval = sd_send_scsi_READ_CAPACITY(un,
23664 			    &capacity,
23665 			    &lbasize, SD_PATH_DIRECT);
23666 			if (rval != 0) {
23667 				sd_pm_exit(un);
23668 				mutex_enter(SD_MUTEX(un));
23669 				goto done;
23670 			}
23671 		} else {
23672 			rval = EIO;
23673 			mutex_enter(SD_MUTEX(un));
23674 			goto done;
23675 		}
23676 		mutex_enter(SD_MUTEX(un));
23677 
23678 		sd_update_block_info(un, lbasize, capacity);
23679 
23680 		un->un_f_geometry_is_valid	= FALSE;
23681 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
23682 
23683 		mutex_exit(SD_MUTEX(un));
23684 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
23685 		    SD_PATH_DIRECT);
23686 		sd_pm_exit(un);
23687 
23688 		mutex_enter(SD_MUTEX(un));
23689 	}
23690 done:
23691 	un->un_f_watcht_stopped = FALSE;
23692 	if (un->un_swr_token) {
23693 		/*
23694 		 * Use of this local token and the mutex ensures that we avoid
23695 		 * some race conditions associated with terminating the
23696 		 * scsi watch.
23697 		 */
23698 		token = un->un_swr_token;
23699 		un->un_swr_token = (opaque_t)NULL;
23700 		mutex_exit(SD_MUTEX(un));
23701 		(void) scsi_watch_request_terminate(token,
23702 		    SCSI_WATCH_TERMINATE_WAIT);
23703 		mutex_enter(SD_MUTEX(un));
23704 	}
23705 
23706 	/*
23707 	 * Update the capacity kstat value, if no media previously
23708 	 * (capacity kstat is 0) and a media has been inserted
23709 	 * (un_f_blockcount_is_valid == TRUE)
23710 	 * This is a more generic way then checking for ISREMOVABLE.
23711 	 */
23712 	if (un->un_errstats) {
23713 		struct sd_errstats	*stp = NULL;
23714 
23715 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23716 		if ((stp->sd_capacity.value.ui64 == 0) &&
23717 		    (un->un_f_blockcount_is_valid == TRUE)) {
23718 			stp->sd_capacity.value.ui64 =
23719 			    (uint64_t)((uint64_t)un->un_blockcount *
23720 			    un->un_sys_blocksize);
23721 		}
23722 	}
23723 	mutex_exit(SD_MUTEX(un));
23724 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23725 	return (rval);
23726 }
23727 
23728 
23729 /*
23730  *    Function: sd_delayed_cv_broadcast
23731  *
23732  * Description: Delayed cv_broadcast to allow for target to recover from media
23733  *		insertion.
23734  *
23735  *   Arguments: arg - driver soft state (unit) structure
23736  */
23737 
23738 static void
23739 sd_delayed_cv_broadcast(void *arg)
23740 {
23741 	struct sd_lun *un = arg;
23742 
23743 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23744 
23745 	mutex_enter(SD_MUTEX(un));
23746 	un->un_dcvb_timeid = NULL;
23747 	cv_broadcast(&un->un_state_cv);
23748 	mutex_exit(SD_MUTEX(un));
23749 }
23750 
23751 
23752 /*
23753  *    Function: sd_media_watch_cb
23754  *
23755  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23756  *		routine processes the TUR sense data and updates the driver
23757  *		state if a transition has occurred. The user thread
23758  *		(sd_check_media) is then signalled.
23759  *
23760  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23761  *			among multiple watches that share this callback function
23762  *		resultp - scsi watch facility result packet containing scsi
23763  *			  packet, status byte and sense data
23764  *
23765  * Return Code: 0 for success, -1 for failure
23766  */
23767 
23768 static int
23769 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23770 {
23771 	struct sd_lun			*un;
23772 	struct scsi_status		*statusp = resultp->statusp;
23773 	struct scsi_extended_sense	*sensep = resultp->sensep;
23774 	enum dkio_state			state = DKIO_NONE;
23775 	dev_t				dev = (dev_t)arg;
23776 	uchar_t				actual_sense_length;
23777 
23778 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23779 		return (-1);
23780 	}
23781 	actual_sense_length = resultp->actual_sense_length;
23782 
23783 	mutex_enter(SD_MUTEX(un));
23784 	SD_TRACE(SD_LOG_COMMON, un,
23785 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23786 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23787 
23788 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23789 		un->un_mediastate = DKIO_DEV_GONE;
23790 		printf("sd_media_watch_cb: dev gone\n");
23791 		cv_broadcast(&un->un_state_cv);
23792 		mutex_exit(SD_MUTEX(un));
23793 
23794 		return (0);
23795 	}
23796 
23797 	/*
23798 	 * If there was a check condition then sensep points to valid sense data
23799 	 * If status was not a check condition but a reservation or busy status
23800 	 * then the new state is DKIO_NONE
23801 	 */
23802 	if (sensep != NULL) {
23803 		SD_INFO(SD_LOG_COMMON, un,
23804 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
23805 		    sensep->es_key, sensep->es_add_code, sensep->es_qual_code);
23806 		/* This routine only uses up to 13 bytes of sense data. */
23807 		if (actual_sense_length >= 13) {
23808 			if (sensep->es_key == KEY_UNIT_ATTENTION) {
23809 				if (sensep->es_add_code == 0x28) {
23810 					state = DKIO_INSERTED;
23811 				}
23812 			} else {
23813 				/*
23814 				 * if 02/04/02  means that the host
23815 				 * should send start command. Explicitly
23816 				 * leave the media state as is
23817 				 * (inserted) as the media is inserted
23818 				 * and host has stopped device for PM
23819 				 * reasons. Upon next true read/write
23820 				 * to this media will bring the
23821 				 * device to the right state good for
23822 				 * media access.
23823 				 */
23824 				if ((sensep->es_key == KEY_NOT_READY) &&
23825 				    (sensep->es_add_code == 0x3a)) {
23826 					state = DKIO_EJECTED;
23827 				}
23828 
23829 				/*
23830 				 * If the drivge is busy with an operation
23831 				 * or long write, keep the media in an
23832 				 * inserted state.
23833 				 */
23834 
23835 				if ((sensep->es_key == KEY_NOT_READY) &&
23836 				    (sensep->es_add_code == 0x04) &&
23837 				    ((sensep->es_qual_code == 0x02) ||
23838 				    (sensep->es_qual_code == 0x07) ||
23839 				    (sensep->es_qual_code == 0x08))) {
23840 					state = DKIO_INSERTED;
23841 				}
23842 			}
23843 		}
23844 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
23845 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
23846 		state = DKIO_INSERTED;
23847 	}
23848 
23849 	SD_TRACE(SD_LOG_COMMON, un,
23850 	    "sd_media_watch_cb: state=%x, specified=%x\n",
23851 	    state, un->un_specified_mediastate);
23852 
23853 	/*
23854 	 * now signal the waiting thread if this is *not* the specified state;
23855 	 * delay the signal if the state is DKIO_INSERTED to allow the target
23856 	 * to recover
23857 	 */
23858 	if (state != un->un_specified_mediastate) {
23859 		un->un_mediastate = state;
23860 		if (state == DKIO_INSERTED) {
23861 			/*
23862 			 * delay the signal to give the drive a chance
23863 			 * to do what it apparently needs to do
23864 			 */
23865 			SD_TRACE(SD_LOG_COMMON, un,
23866 			    "sd_media_watch_cb: delayed cv_broadcast\n");
23867 			if (un->un_dcvb_timeid == NULL) {
23868 				un->un_dcvb_timeid =
23869 				    timeout(sd_delayed_cv_broadcast, un,
23870 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
23871 			}
23872 		} else {
23873 			SD_TRACE(SD_LOG_COMMON, un,
23874 			    "sd_media_watch_cb: immediate cv_broadcast\n");
23875 			cv_broadcast(&un->un_state_cv);
23876 		}
23877 	}
23878 	mutex_exit(SD_MUTEX(un));
23879 	return (0);
23880 }
23881 
23882 
23883 /*
23884  *    Function: sd_dkio_get_temp
23885  *
23886  * Description: This routine is the driver entry point for handling ioctl
23887  *		requests to get the disk temperature.
23888  *
23889  *   Arguments: dev  - the device number
23890  *		arg  - pointer to user provided dk_temperature structure.
23891  *		flag - this argument is a pass through to ddi_copyxxx()
23892  *		       directly from the mode argument of ioctl().
23893  *
23894  * Return Code: 0
23895  *		EFAULT
23896  *		ENXIO
23897  *		EAGAIN
23898  */
23899 
23900 static int
23901 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
23902 {
23903 	struct sd_lun		*un = NULL;
23904 	struct dk_temperature	*dktemp = NULL;
23905 	uchar_t			*temperature_page;
23906 	int			rval = 0;
23907 	int			path_flag = SD_PATH_STANDARD;
23908 
23909 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23910 		return (ENXIO);
23911 	}
23912 
23913 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
23914 
23915 	/* copyin the disk temp argument to get the user flags */
23916 	if (ddi_copyin((void *)arg, dktemp,
23917 	    sizeof (struct dk_temperature), flag) != 0) {
23918 		rval = EFAULT;
23919 		goto done;
23920 	}
23921 
23922 	/* Initialize the temperature to invalid. */
23923 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23924 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23925 
23926 	/*
23927 	 * Note: Investigate removing the "bypass pm" semantic.
23928 	 * Can we just bypass PM always?
23929 	 */
23930 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
23931 		path_flag = SD_PATH_DIRECT;
23932 		ASSERT(!mutex_owned(&un->un_pm_mutex));
23933 		mutex_enter(&un->un_pm_mutex);
23934 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23935 			/*
23936 			 * If DKT_BYPASS_PM is set, and the drive happens to be
23937 			 * in low power mode, we can not wake it up, Need to
23938 			 * return EAGAIN.
23939 			 */
23940 			mutex_exit(&un->un_pm_mutex);
23941 			rval = EAGAIN;
23942 			goto done;
23943 		} else {
23944 			/*
23945 			 * Indicate to PM the device is busy. This is required
23946 			 * to avoid a race - i.e. the ioctl is issuing a
23947 			 * command and the pm framework brings down the device
23948 			 * to low power mode (possible power cut-off on some
23949 			 * platforms).
23950 			 */
23951 			mutex_exit(&un->un_pm_mutex);
23952 			if (sd_pm_entry(un) != DDI_SUCCESS) {
23953 				rval = EAGAIN;
23954 				goto done;
23955 			}
23956 		}
23957 	}
23958 
23959 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
23960 
23961 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
23962 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
23963 		goto done2;
23964 	}
23965 
23966 	/*
23967 	 * For the current temperature verify that the parameter length is 0x02
23968 	 * and the parameter code is 0x00
23969 	 */
23970 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
23971 	    (temperature_page[5] == 0x00)) {
23972 		if (temperature_page[9] == 0xFF) {
23973 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23974 		} else {
23975 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
23976 		}
23977 	}
23978 
23979 	/*
23980 	 * For the reference temperature verify that the parameter
23981 	 * length is 0x02 and the parameter code is 0x01
23982 	 */
23983 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
23984 	    (temperature_page[11] == 0x01)) {
23985 		if (temperature_page[15] == 0xFF) {
23986 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23987 		} else {
23988 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
23989 		}
23990 	}
23991 
23992 	/* Do the copyout regardless of the temperature commands status. */
23993 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
23994 	    flag) != 0) {
23995 		rval = EFAULT;
23996 	}
23997 
23998 done2:
23999 	if (path_flag == SD_PATH_DIRECT) {
24000 		sd_pm_exit(un);
24001 	}
24002 
24003 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24004 done:
24005 	if (dktemp != NULL) {
24006 		kmem_free(dktemp, sizeof (struct dk_temperature));
24007 	}
24008 
24009 	return (rval);
24010 }
24011 
24012 
24013 /*
24014  *    Function: sd_log_page_supported
24015  *
24016  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24017  *		supported log pages.
24018  *
24019  *   Arguments: un -
24020  *		log_page -
24021  *
24022  * Return Code: -1 - on error (log sense is optional and may not be supported).
24023  *		0  - log page not found.
24024  *  		1  - log page found.
24025  */
24026 
24027 static int
24028 sd_log_page_supported(struct sd_lun *un, int log_page)
24029 {
24030 	uchar_t *log_page_data;
24031 	int	i;
24032 	int	match = 0;
24033 	int	log_size;
24034 
24035 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24036 
24037 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
24038 	    SD_PATH_DIRECT) != 0) {
24039 		SD_ERROR(SD_LOG_COMMON, un,
24040 		    "sd_log_page_supported: failed log page retrieval\n");
24041 		kmem_free(log_page_data, 0xFF);
24042 		return (-1);
24043 	}
24044 	log_size = log_page_data[3];
24045 
24046 	/*
24047 	 * The list of supported log pages start from the fourth byte. Check
24048 	 * until we run out of log pages or a match is found.
24049 	 */
24050 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24051 		if (log_page_data[i] == log_page) {
24052 			match++;
24053 		}
24054 	}
24055 	kmem_free(log_page_data, 0xFF);
24056 	return (match);
24057 }
24058 
24059 
24060 /*
24061  *    Function: sd_mhdioc_failfast
24062  *
24063  * Description: This routine is the driver entry point for handling ioctl
24064  *		requests to enable/disable the multihost failfast option.
24065  *		(MHIOCENFAILFAST)
24066  *
24067  *   Arguments: dev	- the device number
24068  *		arg	- user specified probing interval.
24069  *		flag	- this argument is a pass through to ddi_copyxxx()
24070  *			  directly from the mode argument of ioctl().
24071  *
24072  * Return Code: 0
24073  *		EFAULT
24074  *		ENXIO
24075  */
24076 
24077 static int
24078 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24079 {
24080 	struct sd_lun	*un = NULL;
24081 	int		mh_time;
24082 	int		rval = 0;
24083 
24084 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24085 		return (ENXIO);
24086 	}
24087 
24088 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24089 		return (EFAULT);
24090 
24091 	if (mh_time) {
24092 		mutex_enter(SD_MUTEX(un));
24093 		un->un_resvd_status |= SD_FAILFAST;
24094 		mutex_exit(SD_MUTEX(un));
24095 		/*
24096 		 * If mh_time is INT_MAX, then this ioctl is being used for
24097 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24098 		 */
24099 		if (mh_time != INT_MAX) {
24100 			rval = sd_check_mhd(dev, mh_time);
24101 		}
24102 	} else {
24103 		(void) sd_check_mhd(dev, 0);
24104 		mutex_enter(SD_MUTEX(un));
24105 		un->un_resvd_status &= ~SD_FAILFAST;
24106 		mutex_exit(SD_MUTEX(un));
24107 	}
24108 	return (rval);
24109 }
24110 
24111 
24112 /*
24113  *    Function: sd_mhdioc_takeown
24114  *
24115  * Description: This routine is the driver entry point for handling ioctl
24116  *		requests to forcefully acquire exclusive access rights to the
24117  *		multihost disk (MHIOCTKOWN).
24118  *
24119  *   Arguments: dev	- the device number
24120  *		arg	- user provided structure specifying the delay
24121  *			  parameters in milliseconds
24122  *		flag	- this argument is a pass through to ddi_copyxxx()
24123  *			  directly from the mode argument of ioctl().
24124  *
24125  * Return Code: 0
24126  *		EFAULT
24127  *		ENXIO
24128  */
24129 
24130 static int
24131 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24132 {
24133 	struct sd_lun		*un = NULL;
24134 	struct mhioctkown	*tkown = NULL;
24135 	int			rval = 0;
24136 
24137 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24138 		return (ENXIO);
24139 	}
24140 
24141 	if (arg != NULL) {
24142 		tkown = (struct mhioctkown *)
24143 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24144 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24145 		if (rval != 0) {
24146 			rval = EFAULT;
24147 			goto error;
24148 		}
24149 	}
24150 
24151 	rval = sd_take_ownership(dev, tkown);
24152 	mutex_enter(SD_MUTEX(un));
24153 	if (rval == 0) {
24154 		un->un_resvd_status |= SD_RESERVE;
24155 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24156 			sd_reinstate_resv_delay =
24157 			    tkown->reinstate_resv_delay * 1000;
24158 		} else {
24159 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24160 		}
24161 		/*
24162 		 * Give the scsi_watch routine interval set by
24163 		 * the MHIOCENFAILFAST ioctl precedence here.
24164 		 */
24165 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24166 			mutex_exit(SD_MUTEX(un));
24167 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24168 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24169 			    "sd_mhdioc_takeown : %d\n",
24170 			    sd_reinstate_resv_delay);
24171 		} else {
24172 			mutex_exit(SD_MUTEX(un));
24173 		}
24174 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24175 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24176 	} else {
24177 		un->un_resvd_status &= ~SD_RESERVE;
24178 		mutex_exit(SD_MUTEX(un));
24179 	}
24180 
24181 error:
24182 	if (tkown != NULL) {
24183 		kmem_free(tkown, sizeof (struct mhioctkown));
24184 	}
24185 	return (rval);
24186 }
24187 
24188 
24189 /*
24190  *    Function: sd_mhdioc_release
24191  *
24192  * Description: This routine is the driver entry point for handling ioctl
24193  *		requests to release exclusive access rights to the multihost
24194  *		disk (MHIOCRELEASE).
24195  *
24196  *   Arguments: dev	- the device number
24197  *
24198  * Return Code: 0
24199  *		ENXIO
24200  */
24201 
24202 static int
24203 sd_mhdioc_release(dev_t dev)
24204 {
24205 	struct sd_lun		*un = NULL;
24206 	timeout_id_t		resvd_timeid_save;
24207 	int			resvd_status_save;
24208 	int			rval = 0;
24209 
24210 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24211 		return (ENXIO);
24212 	}
24213 
24214 	mutex_enter(SD_MUTEX(un));
24215 	resvd_status_save = un->un_resvd_status;
24216 	un->un_resvd_status &=
24217 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24218 	if (un->un_resvd_timeid) {
24219 		resvd_timeid_save = un->un_resvd_timeid;
24220 		un->un_resvd_timeid = NULL;
24221 		mutex_exit(SD_MUTEX(un));
24222 		(void) untimeout(resvd_timeid_save);
24223 	} else {
24224 		mutex_exit(SD_MUTEX(un));
24225 	}
24226 
24227 	/*
24228 	 * destroy any pending timeout thread that may be attempting to
24229 	 * reinstate reservation on this device.
24230 	 */
24231 	sd_rmv_resv_reclaim_req(dev);
24232 
24233 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24234 		mutex_enter(SD_MUTEX(un));
24235 		if ((un->un_mhd_token) &&
24236 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24237 			mutex_exit(SD_MUTEX(un));
24238 			(void) sd_check_mhd(dev, 0);
24239 		} else {
24240 			mutex_exit(SD_MUTEX(un));
24241 		}
24242 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24243 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24244 	} else {
24245 		/*
24246 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24247 		 */
24248 		mutex_enter(SD_MUTEX(un));
24249 		un->un_resvd_status = resvd_status_save;
24250 		mutex_exit(SD_MUTEX(un));
24251 	}
24252 	return (rval);
24253 }
24254 
24255 
24256 /*
24257  *    Function: sd_mhdioc_register_devid
24258  *
24259  * Description: This routine is the driver entry point for handling ioctl
24260  *		requests to register the device id (MHIOCREREGISTERDEVID).
24261  *
24262  *		Note: The implementation for this ioctl has been updated to
24263  *		be consistent with the original PSARC case (1999/357)
24264  *		(4375899, 4241671, 4220005)
24265  *
24266  *   Arguments: dev	- the device number
24267  *
24268  * Return Code: 0
24269  *		ENXIO
24270  */
24271 
24272 static int
24273 sd_mhdioc_register_devid(dev_t dev)
24274 {
24275 	struct sd_lun	*un = NULL;
24276 	int		rval = 0;
24277 
24278 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24279 		return (ENXIO);
24280 	}
24281 
24282 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24283 
24284 	mutex_enter(SD_MUTEX(un));
24285 
24286 	/* If a devid already exists, de-register it */
24287 	if (un->un_devid != NULL) {
24288 		ddi_devid_unregister(SD_DEVINFO(un));
24289 		/*
24290 		 * After unregister devid, needs to free devid memory
24291 		 */
24292 		ddi_devid_free(un->un_devid);
24293 		un->un_devid = NULL;
24294 	}
24295 
24296 	/* Check for reservation conflict */
24297 	mutex_exit(SD_MUTEX(un));
24298 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
24299 	mutex_enter(SD_MUTEX(un));
24300 
24301 	switch (rval) {
24302 	case 0:
24303 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24304 		break;
24305 	case EACCES:
24306 		break;
24307 	default:
24308 		rval = EIO;
24309 	}
24310 
24311 	mutex_exit(SD_MUTEX(un));
24312 	return (rval);
24313 }
24314 
24315 
24316 /*
24317  *    Function: sd_mhdioc_inkeys
24318  *
24319  * Description: This routine is the driver entry point for handling ioctl
24320  *		requests to issue the SCSI-3 Persistent In Read Keys command
24321  *		to the device (MHIOCGRP_INKEYS).
24322  *
24323  *   Arguments: dev	- the device number
24324  *		arg	- user provided in_keys structure
24325  *		flag	- this argument is a pass through to ddi_copyxxx()
24326  *			  directly from the mode argument of ioctl().
24327  *
24328  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24329  *		ENXIO
24330  *		EFAULT
24331  */
24332 
24333 static int
24334 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24335 {
24336 	struct sd_lun		*un;
24337 	mhioc_inkeys_t		inkeys;
24338 	int			rval = 0;
24339 
24340 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24341 		return (ENXIO);
24342 	}
24343 
24344 #ifdef _MULTI_DATAMODEL
24345 	switch (ddi_model_convert_from(flag & FMODELS)) {
24346 	case DDI_MODEL_ILP32: {
24347 		struct mhioc_inkeys32	inkeys32;
24348 
24349 		if (ddi_copyin(arg, &inkeys32,
24350 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24351 			return (EFAULT);
24352 		}
24353 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24354 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24355 		    &inkeys, flag)) != 0) {
24356 			return (rval);
24357 		}
24358 		inkeys32.generation = inkeys.generation;
24359 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24360 		    flag) != 0) {
24361 			return (EFAULT);
24362 		}
24363 		break;
24364 	}
24365 	case DDI_MODEL_NONE:
24366 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24367 		    flag) != 0) {
24368 			return (EFAULT);
24369 		}
24370 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24371 		    &inkeys, flag)) != 0) {
24372 			return (rval);
24373 		}
24374 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24375 		    flag) != 0) {
24376 			return (EFAULT);
24377 		}
24378 		break;
24379 	}
24380 
24381 #else /* ! _MULTI_DATAMODEL */
24382 
24383 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24384 		return (EFAULT);
24385 	}
24386 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24387 	if (rval != 0) {
24388 		return (rval);
24389 	}
24390 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24391 		return (EFAULT);
24392 	}
24393 
24394 #endif /* _MULTI_DATAMODEL */
24395 
24396 	return (rval);
24397 }
24398 
24399 
24400 /*
24401  *    Function: sd_mhdioc_inresv
24402  *
24403  * Description: This routine is the driver entry point for handling ioctl
24404  *		requests to issue the SCSI-3 Persistent In Read Reservations
24405  *		command to the device (MHIOCGRP_INKEYS).
24406  *
24407  *   Arguments: dev	- the device number
24408  *		arg	- user provided in_resv structure
24409  *		flag	- this argument is a pass through to ddi_copyxxx()
24410  *			  directly from the mode argument of ioctl().
24411  *
24412  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24413  *		ENXIO
24414  *		EFAULT
24415  */
24416 
24417 static int
24418 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24419 {
24420 	struct sd_lun		*un;
24421 	mhioc_inresvs_t		inresvs;
24422 	int			rval = 0;
24423 
24424 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24425 		return (ENXIO);
24426 	}
24427 
24428 #ifdef _MULTI_DATAMODEL
24429 
24430 	switch (ddi_model_convert_from(flag & FMODELS)) {
24431 	case DDI_MODEL_ILP32: {
24432 		struct mhioc_inresvs32	inresvs32;
24433 
24434 		if (ddi_copyin(arg, &inresvs32,
24435 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24436 			return (EFAULT);
24437 		}
24438 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24439 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24440 		    &inresvs, flag)) != 0) {
24441 			return (rval);
24442 		}
24443 		inresvs32.generation = inresvs.generation;
24444 		if (ddi_copyout(&inresvs32, arg,
24445 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24446 			return (EFAULT);
24447 		}
24448 		break;
24449 	}
24450 	case DDI_MODEL_NONE:
24451 		if (ddi_copyin(arg, &inresvs,
24452 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24453 			return (EFAULT);
24454 		}
24455 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24456 		    &inresvs, flag)) != 0) {
24457 			return (rval);
24458 		}
24459 		if (ddi_copyout(&inresvs, arg,
24460 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24461 			return (EFAULT);
24462 		}
24463 		break;
24464 	}
24465 
24466 #else /* ! _MULTI_DATAMODEL */
24467 
24468 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24469 		return (EFAULT);
24470 	}
24471 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24472 	if (rval != 0) {
24473 		return (rval);
24474 	}
24475 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24476 		return (EFAULT);
24477 	}
24478 
24479 #endif /* ! _MULTI_DATAMODEL */
24480 
24481 	return (rval);
24482 }
24483 
24484 
24485 /*
24486  * The following routines support the clustering functionality described below
24487  * and implement lost reservation reclaim functionality.
24488  *
24489  * Clustering
24490  * ----------
24491  * The clustering code uses two different, independent forms of SCSI
24492  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24493  * Persistent Group Reservations. For any particular disk, it will use either
24494  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24495  *
24496  * SCSI-2
24497  * The cluster software takes ownership of a multi-hosted disk by issuing the
24498  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24499  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
24500  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
24501  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
24502  * meaning of failfast is that if the driver (on this host) ever encounters the
24503  * scsi error return code RESERVATION_CONFLICT from the device, it should
24504  * immediately panic the host. The motivation for this ioctl is that if this
24505  * host does encounter reservation conflict, the underlying cause is that some
24506  * other host of the cluster has decided that this host is no longer in the
24507  * cluster and has seized control of the disks for itself. Since this host is no
24508  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
24509  * does two things:
24510  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24511  *      error to panic the host
24512  *      (b) it sets up a periodic timer to test whether this host still has
24513  *      "access" (in that no other host has reserved the device):  if the
24514  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24515  *      purpose of that periodic timer is to handle scenarios where the host is
24516  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24517  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24518  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24519  * the device itself.
24520  *
24521  * SCSI-3 PGR
24522  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24523  * facility is supported through the shared multihost disk ioctls
24524  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24525  * MHIOCGRP_PREEMPTANDABORT)
24526  *
24527  * Reservation Reclaim:
24528  * --------------------
24529  * To support the lost reservation reclaim operations this driver creates a
24530  * single thread to handle reinstating reservations on all devices that have
24531  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24532  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24533  * and the reservation reclaim thread loops through the requests to regain the
24534  * lost reservations.
24535  */
24536 
24537 /*
24538  *    Function: sd_check_mhd()
24539  *
24540  * Description: This function sets up and submits a scsi watch request or
24541  *		terminates an existing watch request. This routine is used in
24542  *		support of reservation reclaim.
24543  *
24544  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24545  *			 among multiple watches that share the callback function
24546  *		interval - the number of microseconds specifying the watch
24547  *			   interval for issuing TEST UNIT READY commands. If
24548  *			   set to 0 the watch should be terminated. If the
24549  *			   interval is set to 0 and if the device is required
24550  *			   to hold reservation while disabling failfast, the
24551  *			   watch is restarted with an interval of
24552  *			   reinstate_resv_delay.
24553  *
24554  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24555  *		ENXIO      - Indicates an invalid device was specified
24556  *		EAGAIN     - Unable to submit the scsi watch request
24557  */
24558 
24559 static int
24560 sd_check_mhd(dev_t dev, int interval)
24561 {
24562 	struct sd_lun	*un;
24563 	opaque_t	token;
24564 
24565 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24566 		return (ENXIO);
24567 	}
24568 
24569 	/* is this a watch termination request? */
24570 	if (interval == 0) {
24571 		mutex_enter(SD_MUTEX(un));
24572 		/* if there is an existing watch task then terminate it */
24573 		if (un->un_mhd_token) {
24574 			token = un->un_mhd_token;
24575 			un->un_mhd_token = NULL;
24576 			mutex_exit(SD_MUTEX(un));
24577 			(void) scsi_watch_request_terminate(token,
24578 			    SCSI_WATCH_TERMINATE_WAIT);
24579 			mutex_enter(SD_MUTEX(un));
24580 		} else {
24581 			mutex_exit(SD_MUTEX(un));
24582 			/*
24583 			 * Note: If we return here we don't check for the
24584 			 * failfast case. This is the original legacy
24585 			 * implementation but perhaps we should be checking
24586 			 * the failfast case.
24587 			 */
24588 			return (0);
24589 		}
24590 		/*
24591 		 * If the device is required to hold reservation while
24592 		 * disabling failfast, we need to restart the scsi_watch
24593 		 * routine with an interval of reinstate_resv_delay.
24594 		 */
24595 		if (un->un_resvd_status & SD_RESERVE) {
24596 			interval = sd_reinstate_resv_delay/1000;
24597 		} else {
24598 			/* no failfast so bail */
24599 			mutex_exit(SD_MUTEX(un));
24600 			return (0);
24601 		}
24602 		mutex_exit(SD_MUTEX(un));
24603 	}
24604 
24605 	/*
24606 	 * adjust minimum time interval to 1 second,
24607 	 * and convert from msecs to usecs
24608 	 */
24609 	if (interval > 0 && interval < 1000) {
24610 		interval = 1000;
24611 	}
24612 	interval *= 1000;
24613 
24614 	/*
24615 	 * submit the request to the scsi_watch service
24616 	 */
24617 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24618 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24619 	if (token == NULL) {
24620 		return (EAGAIN);
24621 	}
24622 
24623 	/*
24624 	 * save token for termination later on
24625 	 */
24626 	mutex_enter(SD_MUTEX(un));
24627 	un->un_mhd_token = token;
24628 	mutex_exit(SD_MUTEX(un));
24629 	return (0);
24630 }
24631 
24632 
24633 /*
24634  *    Function: sd_mhd_watch_cb()
24635  *
24636  * Description: This function is the call back function used by the scsi watch
24637  *		facility. The scsi watch facility sends the "Test Unit Ready"
24638  *		and processes the status. If applicable (i.e. a "Unit Attention"
24639  *		status and automatic "Request Sense" not used) the scsi watch
24640  *		facility will send a "Request Sense" and retrieve the sense data
24641  *		to be passed to this callback function. In either case the
24642  *		automatic "Request Sense" or the facility submitting one, this
24643  *		callback is passed the status and sense data.
24644  *
24645  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24646  *			among multiple watches that share this callback function
24647  *		resultp - scsi watch facility result packet containing scsi
24648  *			  packet, status byte and sense data
24649  *
24650  * Return Code: 0 - continue the watch task
24651  *		non-zero - terminate the watch task
24652  */
24653 
24654 static int
24655 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24656 {
24657 	struct sd_lun			*un;
24658 	struct scsi_status		*statusp;
24659 	struct scsi_extended_sense	*sensep;
24660 	struct scsi_pkt			*pkt;
24661 	uchar_t				actual_sense_length;
24662 	dev_t  				dev = (dev_t)arg;
24663 
24664 	ASSERT(resultp != NULL);
24665 	statusp			= resultp->statusp;
24666 	sensep			= resultp->sensep;
24667 	pkt			= resultp->pkt;
24668 	actual_sense_length	= resultp->actual_sense_length;
24669 
24670 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24671 		return (ENXIO);
24672 	}
24673 
24674 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24675 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24676 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24677 
24678 	/* Begin processing of the status and/or sense data */
24679 	if (pkt->pkt_reason != CMD_CMPLT) {
24680 		/* Handle the incomplete packet */
24681 		sd_mhd_watch_incomplete(un, pkt);
24682 		return (0);
24683 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24684 		if (*((unsigned char *)statusp)
24685 		    == STATUS_RESERVATION_CONFLICT) {
24686 			/*
24687 			 * Handle a reservation conflict by panicking if
24688 			 * configured for failfast or by logging the conflict
24689 			 * and updating the reservation status
24690 			 */
24691 			mutex_enter(SD_MUTEX(un));
24692 			if ((un->un_resvd_status & SD_FAILFAST) &&
24693 			    (sd_failfast_enable)) {
24694 				panic("Reservation Conflict");
24695 				/*NOTREACHED*/
24696 			}
24697 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24698 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24699 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24700 			mutex_exit(SD_MUTEX(un));
24701 		}
24702 	}
24703 
24704 	if (sensep != NULL) {
24705 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24706 			mutex_enter(SD_MUTEX(un));
24707 			if ((sensep->es_add_code == SD_SCSI_RESET_SENSE_CODE) &&
24708 			    (un->un_resvd_status & SD_RESERVE)) {
24709 				/*
24710 				 * The additional sense code indicates a power
24711 				 * on or bus device reset has occurred; update
24712 				 * the reservation status.
24713 				 */
24714 				un->un_resvd_status |=
24715 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24716 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24717 				    "sd_mhd_watch_cb: Lost Reservation\n");
24718 			}
24719 		} else {
24720 			return (0);
24721 		}
24722 	} else {
24723 		mutex_enter(SD_MUTEX(un));
24724 	}
24725 
24726 	if ((un->un_resvd_status & SD_RESERVE) &&
24727 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
24728 		if (un->un_resvd_status & SD_WANT_RESERVE) {
24729 			/*
24730 			 * A reset occurred in between the last probe and this
24731 			 * one so if a timeout is pending cancel it.
24732 			 */
24733 			if (un->un_resvd_timeid) {
24734 				timeout_id_t temp_id = un->un_resvd_timeid;
24735 				un->un_resvd_timeid = NULL;
24736 				mutex_exit(SD_MUTEX(un));
24737 				(void) untimeout(temp_id);
24738 				mutex_enter(SD_MUTEX(un));
24739 			}
24740 			un->un_resvd_status &= ~SD_WANT_RESERVE;
24741 		}
24742 		if (un->un_resvd_timeid == 0) {
24743 			/* Schedule a timeout to handle the lost reservation */
24744 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
24745 			    (void *)dev,
24746 			    drv_usectohz(sd_reinstate_resv_delay));
24747 		}
24748 	}
24749 	mutex_exit(SD_MUTEX(un));
24750 	return (0);
24751 }
24752 
24753 
24754 /*
24755  *    Function: sd_mhd_watch_incomplete()
24756  *
24757  * Description: This function is used to find out why a scsi pkt sent by the
24758  *		scsi watch facility was not completed. Under some scenarios this
24759  *		routine will return. Otherwise it will send a bus reset to see
24760  *		if the drive is still online.
24761  *
24762  *   Arguments: un  - driver soft state (unit) structure
24763  *		pkt - incomplete scsi pkt
24764  */
24765 
24766 static void
24767 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
24768 {
24769 	int	be_chatty;
24770 	int	perr;
24771 
24772 	ASSERT(pkt != NULL);
24773 	ASSERT(un != NULL);
24774 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
24775 	perr		= (pkt->pkt_statistics & STAT_PERR);
24776 
24777 	mutex_enter(SD_MUTEX(un));
24778 	if (un->un_state == SD_STATE_DUMPING) {
24779 		mutex_exit(SD_MUTEX(un));
24780 		return;
24781 	}
24782 
24783 	switch (pkt->pkt_reason) {
24784 	case CMD_UNX_BUS_FREE:
24785 		/*
24786 		 * If we had a parity error that caused the target to drop BSY*,
24787 		 * don't be chatty about it.
24788 		 */
24789 		if (perr && be_chatty) {
24790 			be_chatty = 0;
24791 		}
24792 		break;
24793 	case CMD_TAG_REJECT:
24794 		/*
24795 		 * The SCSI-2 spec states that a tag reject will be sent by the
24796 		 * target if tagged queuing is not supported. A tag reject may
24797 		 * also be sent during certain initialization periods or to
24798 		 * control internal resources. For the latter case the target
24799 		 * may also return Queue Full.
24800 		 *
24801 		 * If this driver receives a tag reject from a target that is
24802 		 * going through an init period or controlling internal
24803 		 * resources tagged queuing will be disabled. This is a less
24804 		 * than optimal behavior but the driver is unable to determine
24805 		 * the target state and assumes tagged queueing is not supported
24806 		 */
24807 		pkt->pkt_flags = 0;
24808 		un->un_tagflags = 0;
24809 
24810 		if (un->un_f_opt_queueing == TRUE) {
24811 			un->un_throttle = min(un->un_throttle, 3);
24812 		} else {
24813 			un->un_throttle = 1;
24814 		}
24815 		mutex_exit(SD_MUTEX(un));
24816 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
24817 		mutex_enter(SD_MUTEX(un));
24818 		break;
24819 	case CMD_INCOMPLETE:
24820 		/*
24821 		 * The transport stopped with an abnormal state, fallthrough and
24822 		 * reset the target and/or bus unless selection did not complete
24823 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
24824 		 * go through a target/bus reset
24825 		 */
24826 		if (pkt->pkt_state == STATE_GOT_BUS) {
24827 			break;
24828 		}
24829 		/*FALLTHROUGH*/
24830 
24831 	case CMD_TIMEOUT:
24832 	default:
24833 		/*
24834 		 * The lun may still be running the command, so a lun reset
24835 		 * should be attempted. If the lun reset fails or cannot be
24836 		 * issued, than try a target reset. Lastly try a bus reset.
24837 		 */
24838 		if ((pkt->pkt_statistics &
24839 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
24840 			int reset_retval = 0;
24841 			mutex_exit(SD_MUTEX(un));
24842 			if (un->un_f_allow_bus_device_reset == TRUE) {
24843 				if (un->un_f_lun_reset_enabled == TRUE) {
24844 					reset_retval =
24845 					    scsi_reset(SD_ADDRESS(un),
24846 					    RESET_LUN);
24847 				}
24848 				if (reset_retval == 0) {
24849 					reset_retval =
24850 					    scsi_reset(SD_ADDRESS(un),
24851 					    RESET_TARGET);
24852 				}
24853 			}
24854 			if (reset_retval == 0) {
24855 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24856 			}
24857 			mutex_enter(SD_MUTEX(un));
24858 		}
24859 		break;
24860 	}
24861 
24862 	/* A device/bus reset has occurred; update the reservation status. */
24863 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
24864 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
24865 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24866 			un->un_resvd_status |=
24867 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24868 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24869 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
24870 		}
24871 	}
24872 
24873 	/*
24874 	 * The disk has been turned off; Update the device state.
24875 	 *
24876 	 * Note: Should we be offlining the disk here?
24877 	 */
24878 	if (pkt->pkt_state == STATE_GOT_BUS) {
24879 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
24880 		    "Disk not responding to selection\n");
24881 		if (un->un_state != SD_STATE_OFFLINE) {
24882 			New_state(un, SD_STATE_OFFLINE);
24883 		}
24884 	} else if (be_chatty) {
24885 		/*
24886 		 * suppress messages if they are all the same pkt reason;
24887 		 * with TQ, many (up to 256) are returned with the same
24888 		 * pkt_reason
24889 		 */
24890 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
24891 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24892 			    "sd_mhd_watch_incomplete: "
24893 			    "SCSI transport failed: reason '%s'\n",
24894 			    scsi_rname(pkt->pkt_reason));
24895 		}
24896 	}
24897 	un->un_last_pkt_reason = pkt->pkt_reason;
24898 	mutex_exit(SD_MUTEX(un));
24899 }
24900 
24901 
24902 /*
24903  *    Function: sd_sname()
24904  *
24905  * Description: This is a simple little routine to return a string containing
24906  *		a printable description of command status byte for use in
24907  *		logging.
24908  *
24909  *   Arguments: status - pointer to a status byte
24910  *
24911  * Return Code: char * - string containing status description.
24912  */
24913 
24914 static char *
24915 sd_sname(uchar_t status)
24916 {
24917 	switch (status & STATUS_MASK) {
24918 	case STATUS_GOOD:
24919 		return ("good status");
24920 	case STATUS_CHECK:
24921 		return ("check condition");
24922 	case STATUS_MET:
24923 		return ("condition met");
24924 	case STATUS_BUSY:
24925 		return ("busy");
24926 	case STATUS_INTERMEDIATE:
24927 		return ("intermediate");
24928 	case STATUS_INTERMEDIATE_MET:
24929 		return ("intermediate - condition met");
24930 	case STATUS_RESERVATION_CONFLICT:
24931 		return ("reservation_conflict");
24932 	case STATUS_TERMINATED:
24933 		return ("command terminated");
24934 	case STATUS_QFULL:
24935 		return ("queue full");
24936 	default:
24937 		return ("<unknown status>");
24938 	}
24939 }
24940 
24941 
24942 /*
24943  *    Function: sd_mhd_resvd_recover()
24944  *
24945  * Description: This function adds a reservation entry to the
24946  *		sd_resv_reclaim_request list and signals the reservation
24947  *		reclaim thread that there is work pending. If the reservation
24948  *		reclaim thread has not been previously created this function
24949  *		will kick it off.
24950  *
24951  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24952  *			among multiple watches that share this callback function
24953  *
24954  *     Context: This routine is called by timeout() and is run in interrupt
24955  *		context. It must not sleep or call other functions which may
24956  *		sleep.
24957  */
24958 
24959 static void
24960 sd_mhd_resvd_recover(void *arg)
24961 {
24962 	dev_t			dev = (dev_t)arg;
24963 	struct sd_lun		*un;
24964 	struct sd_thr_request	*sd_treq = NULL;
24965 	struct sd_thr_request	*sd_cur = NULL;
24966 	struct sd_thr_request	*sd_prev = NULL;
24967 	int			already_there = 0;
24968 
24969 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24970 		return;
24971 	}
24972 
24973 	mutex_enter(SD_MUTEX(un));
24974 	un->un_resvd_timeid = NULL;
24975 	if (un->un_resvd_status & SD_WANT_RESERVE) {
24976 		/*
24977 		 * There was a reset so don't issue the reserve, allow the
24978 		 * sd_mhd_watch_cb callback function to notice this and
24979 		 * reschedule the timeout for reservation.
24980 		 */
24981 		mutex_exit(SD_MUTEX(un));
24982 		return;
24983 	}
24984 	mutex_exit(SD_MUTEX(un));
24985 
24986 	/*
24987 	 * Add this device to the sd_resv_reclaim_request list and the
24988 	 * sd_resv_reclaim_thread should take care of the rest.
24989 	 *
24990 	 * Note: We can't sleep in this context so if the memory allocation
24991 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
24992 	 * reschedule the timeout for reservation.  (4378460)
24993 	 */
24994 	sd_treq = (struct sd_thr_request *)
24995 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
24996 	if (sd_treq == NULL) {
24997 		return;
24998 	}
24999 
25000 	sd_treq->sd_thr_req_next = NULL;
25001 	sd_treq->dev = dev;
25002 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25003 	if (sd_tr.srq_thr_req_head == NULL) {
25004 		sd_tr.srq_thr_req_head = sd_treq;
25005 	} else {
25006 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25007 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25008 			if (sd_cur->dev == dev) {
25009 				/*
25010 				 * already in Queue so don't log
25011 				 * another request for the device
25012 				 */
25013 				already_there = 1;
25014 				break;
25015 			}
25016 			sd_prev = sd_cur;
25017 		}
25018 		if (!already_there) {
25019 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25020 			    "logging request for %lx\n", dev);
25021 			sd_prev->sd_thr_req_next = sd_treq;
25022 		} else {
25023 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25024 		}
25025 	}
25026 
25027 	/*
25028 	 * Create a kernel thread to do the reservation reclaim and free up this
25029 	 * thread. We cannot block this thread while we go away to do the
25030 	 * reservation reclaim
25031 	 */
25032 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25033 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25034 		    sd_resv_reclaim_thread, NULL,
25035 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25036 
25037 	/* Tell the reservation reclaim thread that it has work to do */
25038 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25039 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25040 }
25041 
25042 /*
25043  *    Function: sd_resv_reclaim_thread()
25044  *
25045  * Description: This function implements the reservation reclaim operations
25046  *
25047  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25048  *		      among multiple watches that share this callback function
25049  */
25050 
25051 static void
25052 sd_resv_reclaim_thread()
25053 {
25054 	struct sd_lun		*un;
25055 	struct sd_thr_request	*sd_mhreq;
25056 
25057 	/* Wait for work */
25058 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25059 	if (sd_tr.srq_thr_req_head == NULL) {
25060 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25061 		    &sd_tr.srq_resv_reclaim_mutex);
25062 	}
25063 
25064 	/* Loop while we have work */
25065 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25066 		un = ddi_get_soft_state(sd_state,
25067 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25068 		if (un == NULL) {
25069 			/*
25070 			 * softstate structure is NULL so just
25071 			 * dequeue the request and continue
25072 			 */
25073 			sd_tr.srq_thr_req_head =
25074 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25075 			kmem_free(sd_tr.srq_thr_cur_req,
25076 			    sizeof (struct sd_thr_request));
25077 			continue;
25078 		}
25079 
25080 		/* dequeue the request */
25081 		sd_mhreq = sd_tr.srq_thr_cur_req;
25082 		sd_tr.srq_thr_req_head =
25083 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25084 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25085 
25086 		/*
25087 		 * Reclaim reservation only if SD_RESERVE is still set. There
25088 		 * may have been a call to MHIOCRELEASE before we got here.
25089 		 */
25090 		mutex_enter(SD_MUTEX(un));
25091 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25092 			/*
25093 			 * Note: The SD_LOST_RESERVE flag is cleared before
25094 			 * reclaiming the reservation. If this is done after the
25095 			 * call to sd_reserve_release a reservation loss in the
25096 			 * window between pkt completion of reserve cmd and
25097 			 * mutex_enter below may not be recognized
25098 			 */
25099 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25100 			mutex_exit(SD_MUTEX(un));
25101 
25102 			if (sd_reserve_release(sd_mhreq->dev,
25103 			    SD_RESERVE) == 0) {
25104 				mutex_enter(SD_MUTEX(un));
25105 				un->un_resvd_status |= SD_RESERVE;
25106 				mutex_exit(SD_MUTEX(un));
25107 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25108 				    "sd_resv_reclaim_thread: "
25109 				    "Reservation Recovered\n");
25110 			} else {
25111 				mutex_enter(SD_MUTEX(un));
25112 				un->un_resvd_status |= SD_LOST_RESERVE;
25113 				mutex_exit(SD_MUTEX(un));
25114 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25115 				    "sd_resv_reclaim_thread: Failed "
25116 				    "Reservation Recovery\n");
25117 			}
25118 		} else {
25119 			mutex_exit(SD_MUTEX(un));
25120 		}
25121 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25122 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25123 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25124 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25125 		/*
25126 		 * wakeup the destroy thread if anyone is waiting on
25127 		 * us to complete.
25128 		 */
25129 		cv_signal(&sd_tr.srq_inprocess_cv);
25130 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25131 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25132 	}
25133 
25134 	/*
25135 	 * cleanup the sd_tr structure now that this thread will not exist
25136 	 */
25137 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25138 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25139 	sd_tr.srq_resv_reclaim_thread = NULL;
25140 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25141 	thread_exit();
25142 }
25143 
25144 
25145 /*
25146  *    Function: sd_rmv_resv_reclaim_req()
25147  *
25148  * Description: This function removes any pending reservation reclaim requests
25149  *		for the specified device.
25150  *
25151  *   Arguments: dev - the device 'dev_t'
25152  */
25153 
25154 static void
25155 sd_rmv_resv_reclaim_req(dev_t dev)
25156 {
25157 	struct sd_thr_request *sd_mhreq;
25158 	struct sd_thr_request *sd_prev;
25159 
25160 	/* Remove a reservation reclaim request from the list */
25161 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25162 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25163 		/*
25164 		 * We are attempting to reinstate reservation for
25165 		 * this device. We wait for sd_reserve_release()
25166 		 * to return before we return.
25167 		 */
25168 		cv_wait(&sd_tr.srq_inprocess_cv,
25169 		    &sd_tr.srq_resv_reclaim_mutex);
25170 	} else {
25171 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25172 		if (sd_mhreq && sd_mhreq->dev == dev) {
25173 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25174 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25175 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25176 			return;
25177 		}
25178 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25179 			if (sd_mhreq && sd_mhreq->dev == dev) {
25180 				break;
25181 			}
25182 			sd_prev = sd_mhreq;
25183 		}
25184 		if (sd_mhreq != NULL) {
25185 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25186 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25187 		}
25188 	}
25189 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25190 }
25191 
25192 
25193 /*
25194  *    Function: sd_mhd_reset_notify_cb()
25195  *
25196  * Description: This is a call back function for scsi_reset_notify. This
25197  *		function updates the softstate reserved status and logs the
25198  *		reset. The driver scsi watch facility callback function
25199  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25200  *		will reclaim the reservation.
25201  *
25202  *   Arguments: arg  - driver soft state (unit) structure
25203  */
25204 
25205 static void
25206 sd_mhd_reset_notify_cb(caddr_t arg)
25207 {
25208 	struct sd_lun *un = (struct sd_lun *)arg;
25209 
25210 	mutex_enter(SD_MUTEX(un));
25211 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25212 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25213 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25214 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25215 	}
25216 	mutex_exit(SD_MUTEX(un));
25217 }
25218 
25219 
25220 /*
25221  *    Function: sd_take_ownership()
25222  *
25223  * Description: This routine implements an algorithm to achieve a stable
25224  *		reservation on disks which don't implement priority reserve,
25225  *		and makes sure that other host lose re-reservation attempts.
25226  *		This algorithm contains of a loop that keeps issuing the RESERVE
25227  *		for some period of time (min_ownership_delay, default 6 seconds)
25228  *		During that loop, it looks to see if there has been a bus device
25229  *		reset or bus reset (both of which cause an existing reservation
25230  *		to be lost). If the reservation is lost issue RESERVE until a
25231  *		period of min_ownership_delay with no resets has gone by, or
25232  *		until max_ownership_delay has expired. This loop ensures that
25233  *		the host really did manage to reserve the device, in spite of
25234  *		resets. The looping for min_ownership_delay (default six
25235  *		seconds) is important to early generation clustering products,
25236  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25237  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25238  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25239  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25240  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25241  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25242  *		no longer "owns" the disk and will have panicked itself.  Thus,
25243  *		the host issuing the MHIOCTKOWN is assured (with timing
25244  *		dependencies) that by the time it actually starts to use the
25245  *		disk for real work, the old owner is no longer accessing it.
25246  *
25247  *		min_ownership_delay is the minimum amount of time for which the
25248  *		disk must be reserved continuously devoid of resets before the
25249  *		MHIOCTKOWN ioctl will return success.
25250  *
25251  *		max_ownership_delay indicates the amount of time by which the
25252  *		take ownership should succeed or timeout with an error.
25253  *
25254  *   Arguments: dev - the device 'dev_t'
25255  *		*p  - struct containing timing info.
25256  *
25257  * Return Code: 0 for success or error code
25258  */
25259 
25260 static int
25261 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25262 {
25263 	struct sd_lun	*un;
25264 	int		rval;
25265 	int		err;
25266 	int		reservation_count   = 0;
25267 	int		min_ownership_delay =  6000000; /* in usec */
25268 	int		max_ownership_delay = 30000000; /* in usec */
25269 	clock_t		start_time;	/* starting time of this algorithm */
25270 	clock_t		end_time;	/* time limit for giving up */
25271 	clock_t		ownership_time;	/* time limit for stable ownership */
25272 	clock_t		current_time;
25273 	clock_t		previous_current_time;
25274 
25275 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25276 		return (ENXIO);
25277 	}
25278 
25279 	/*
25280 	 * Attempt a device reservation. A priority reservation is requested.
25281 	 */
25282 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25283 	    != SD_SUCCESS) {
25284 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25285 		    "sd_take_ownership: return(1)=%d\n", rval);
25286 		return (rval);
25287 	}
25288 
25289 	/* Update the softstate reserved status to indicate the reservation */
25290 	mutex_enter(SD_MUTEX(un));
25291 	un->un_resvd_status |= SD_RESERVE;
25292 	un->un_resvd_status &=
25293 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25294 	mutex_exit(SD_MUTEX(un));
25295 
25296 	if (p != NULL) {
25297 		if (p->min_ownership_delay != 0) {
25298 			min_ownership_delay = p->min_ownership_delay * 1000;
25299 		}
25300 		if (p->max_ownership_delay != 0) {
25301 			max_ownership_delay = p->max_ownership_delay * 1000;
25302 		}
25303 	}
25304 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25305 	    "sd_take_ownership: min, max delays: %d, %d\n",
25306 	    min_ownership_delay, max_ownership_delay);
25307 
25308 	start_time = ddi_get_lbolt();
25309 	current_time	= start_time;
25310 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25311 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25312 
25313 	while (current_time - end_time < 0) {
25314 		delay(drv_usectohz(500000));
25315 
25316 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25317 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25318 				mutex_enter(SD_MUTEX(un));
25319 				rval = (un->un_resvd_status &
25320 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25321 				mutex_exit(SD_MUTEX(un));
25322 				break;
25323 			}
25324 		}
25325 		previous_current_time = current_time;
25326 		current_time = ddi_get_lbolt();
25327 		mutex_enter(SD_MUTEX(un));
25328 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25329 			ownership_time = ddi_get_lbolt() +
25330 			    drv_usectohz(min_ownership_delay);
25331 			reservation_count = 0;
25332 		} else {
25333 			reservation_count++;
25334 		}
25335 		un->un_resvd_status |= SD_RESERVE;
25336 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25337 		mutex_exit(SD_MUTEX(un));
25338 
25339 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25340 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25341 		    "reservation=%s\n", (current_time - previous_current_time),
25342 		    reservation_count ? "ok" : "reclaimed");
25343 
25344 		if (current_time - ownership_time >= 0 &&
25345 		    reservation_count >= 4) {
25346 			rval = 0; /* Achieved a stable ownership */
25347 			break;
25348 		}
25349 		if (current_time - end_time >= 0) {
25350 			rval = EACCES; /* No ownership in max possible time */
25351 			break;
25352 		}
25353 	}
25354 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25355 	    "sd_take_ownership: return(2)=%d\n", rval);
25356 	return (rval);
25357 }
25358 
25359 
25360 /*
25361  *    Function: sd_reserve_release()
25362  *
25363  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25364  *		PRIORITY RESERVE commands based on a user specified command type
25365  *
25366  *   Arguments: dev - the device 'dev_t'
25367  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25368  *		      SD_RESERVE, SD_RELEASE
25369  *
25370  * Return Code: 0 or Error Code
25371  */
25372 
25373 static int
25374 sd_reserve_release(dev_t dev, int cmd)
25375 {
25376 	struct uscsi_cmd	*com = NULL;
25377 	struct sd_lun		*un = NULL;
25378 	char			cdb[CDB_GROUP0];
25379 	int			rval;
25380 
25381 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25382 	    (cmd == SD_PRIORITY_RESERVE));
25383 
25384 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25385 		return (ENXIO);
25386 	}
25387 
25388 	/* instantiate and initialize the command and cdb */
25389 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25390 	bzero(cdb, CDB_GROUP0);
25391 	com->uscsi_flags   = USCSI_SILENT;
25392 	com->uscsi_timeout = un->un_reserve_release_time;
25393 	com->uscsi_cdblen  = CDB_GROUP0;
25394 	com->uscsi_cdb	   = cdb;
25395 	if (cmd == SD_RELEASE) {
25396 		cdb[0] = SCMD_RELEASE;
25397 	} else {
25398 		cdb[0] = SCMD_RESERVE;
25399 	}
25400 
25401 	/* Send the command. */
25402 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25403 	    UIO_SYSSPACE, SD_PATH_STANDARD);
25404 
25405 	/*
25406 	 * "break" a reservation that is held by another host, by issuing a
25407 	 * reset if priority reserve is desired, and we could not get the
25408 	 * device.
25409 	 */
25410 	if ((cmd == SD_PRIORITY_RESERVE) &&
25411 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25412 		/*
25413 		 * First try to reset the LUN. If we cannot, then try a target
25414 		 * reset, followed by a bus reset if the target reset fails.
25415 		 */
25416 		int reset_retval = 0;
25417 		if (un->un_f_lun_reset_enabled == TRUE) {
25418 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25419 		}
25420 		if (reset_retval == 0) {
25421 			/* The LUN reset either failed or was not issued */
25422 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25423 		}
25424 		if ((reset_retval == 0) &&
25425 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25426 			rval = EIO;
25427 			kmem_free(com, sizeof (*com));
25428 			return (rval);
25429 		}
25430 
25431 		bzero(com, sizeof (struct uscsi_cmd));
25432 		com->uscsi_flags   = USCSI_SILENT;
25433 		com->uscsi_cdb	   = cdb;
25434 		com->uscsi_cdblen  = CDB_GROUP0;
25435 		com->uscsi_timeout = 5;
25436 
25437 		/*
25438 		 * Reissue the last reserve command, this time without request
25439 		 * sense.  Assume that it is just a regular reserve command.
25440 		 */
25441 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25442 		    UIO_SYSSPACE, SD_PATH_STANDARD);
25443 	}
25444 
25445 	/* Return an error if still getting a reservation conflict. */
25446 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25447 		rval = EACCES;
25448 	}
25449 
25450 	kmem_free(com, sizeof (*com));
25451 	return (rval);
25452 }
25453 
25454 
25455 #define	SD_NDUMP_RETRIES	12
25456 /*
25457  *	System Crash Dump routine
25458  */
25459 
25460 static int
25461 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25462 {
25463 	int		instance;
25464 	int		partition;
25465 	int		i;
25466 	int		err;
25467 	struct sd_lun	*un;
25468 	struct dk_map	*lp;
25469 	struct scsi_pkt *wr_pktp;
25470 	struct buf	*wr_bp;
25471 	struct buf	wr_buf;
25472 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25473 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25474 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25475 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25476 	size_t		io_start_offset;
25477 	int		doing_rmw = FALSE;
25478 	int		rval;
25479 #if defined(__i386) || defined(__amd64)
25480 	ssize_t dma_resid;
25481 	daddr_t oblkno;
25482 #endif
25483 
25484 	instance = SDUNIT(dev);
25485 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25486 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
25487 		return (ENXIO);
25488 	}
25489 
25490 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25491 
25492 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25493 
25494 	partition = SDPART(dev);
25495 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25496 
25497 	/* Validate blocks to dump at against partition size. */
25498 	lp = &un->un_map[partition];
25499 	if ((blkno + nblk) > lp->dkl_nblk) {
25500 		SD_TRACE(SD_LOG_DUMP, un,
25501 		    "sddump: dump range larger than partition: "
25502 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25503 		    blkno, nblk, lp->dkl_nblk);
25504 		return (EINVAL);
25505 	}
25506 
25507 	mutex_enter(&un->un_pm_mutex);
25508 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25509 		struct scsi_pkt *start_pktp;
25510 
25511 		mutex_exit(&un->un_pm_mutex);
25512 
25513 		/*
25514 		 * use pm framework to power on HBA 1st
25515 		 */
25516 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
25517 
25518 		/*
25519 		 * Dump no long uses sdpower to power on a device, it's
25520 		 * in-line here so it can be done in polled mode.
25521 		 */
25522 
25523 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25524 
25525 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25526 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25527 
25528 		if (start_pktp == NULL) {
25529 			/* We were not given a SCSI packet, fail. */
25530 			return (EIO);
25531 		}
25532 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25533 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25534 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25535 		start_pktp->pkt_flags = FLAG_NOINTR;
25536 
25537 		mutex_enter(SD_MUTEX(un));
25538 		SD_FILL_SCSI1_LUN(un, start_pktp);
25539 		mutex_exit(SD_MUTEX(un));
25540 		/*
25541 		 * Scsi_poll returns 0 (success) if the command completes and
25542 		 * the status block is STATUS_GOOD.
25543 		 */
25544 		if (sd_scsi_poll(un, start_pktp) != 0) {
25545 			scsi_destroy_pkt(start_pktp);
25546 			return (EIO);
25547 		}
25548 		scsi_destroy_pkt(start_pktp);
25549 		(void) sd_ddi_pm_resume(un);
25550 	} else {
25551 		mutex_exit(&un->un_pm_mutex);
25552 	}
25553 
25554 	mutex_enter(SD_MUTEX(un));
25555 	un->un_throttle = 0;
25556 
25557 	/*
25558 	 * The first time through, reset the specific target device.
25559 	 * However, when cpr calls sddump we know that sd is in a
25560 	 * a good state so no bus reset is required.
25561 	 * Clear sense data via Request Sense cmd.
25562 	 * In sddump we don't care about allow_bus_device_reset anymore
25563 	 */
25564 
25565 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25566 	    (un->un_state != SD_STATE_DUMPING)) {
25567 
25568 		New_state(un, SD_STATE_DUMPING);
25569 
25570 		if (un->un_f_is_fibre == FALSE) {
25571 			mutex_exit(SD_MUTEX(un));
25572 			/*
25573 			 * Attempt a bus reset for parallel scsi.
25574 			 *
25575 			 * Note: A bus reset is required because on some host
25576 			 * systems (i.e. E420R) a bus device reset is
25577 			 * insufficient to reset the state of the target.
25578 			 *
25579 			 * Note: Don't issue the reset for fibre-channel,
25580 			 * because this tends to hang the bus (loop) for
25581 			 * too long while everyone is logging out and in
25582 			 * and the deadman timer for dumping will fire
25583 			 * before the dump is complete.
25584 			 */
25585 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25586 				mutex_enter(SD_MUTEX(un));
25587 				Restore_state(un);
25588 				mutex_exit(SD_MUTEX(un));
25589 				return (EIO);
25590 			}
25591 
25592 			/* Delay to give the device some recovery time. */
25593 			drv_usecwait(10000);
25594 
25595 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25596 				SD_INFO(SD_LOG_DUMP, un,
25597 					"sddump: sd_send_polled_RQS failed\n");
25598 			}
25599 			mutex_enter(SD_MUTEX(un));
25600 		}
25601 	}
25602 
25603 	/*
25604 	 * Convert the partition-relative block number to a
25605 	 * disk physical block number.
25606 	 */
25607 	blkno += un->un_offset[partition];
25608 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25609 
25610 
25611 	/*
25612 	 * Check if the device has a non-512 block size.
25613 	 */
25614 	wr_bp = NULL;
25615 	if (NOT_DEVBSIZE(un)) {
25616 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25617 		tgt_byte_count = nblk * un->un_sys_blocksize;
25618 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25619 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25620 			doing_rmw = TRUE;
25621 			/*
25622 			 * Calculate the block number and number of block
25623 			 * in terms of the media block size.
25624 			 */
25625 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25626 			tgt_nblk =
25627 			    ((tgt_byte_offset + tgt_byte_count +
25628 				(un->un_tgt_blocksize - 1)) /
25629 				un->un_tgt_blocksize) - tgt_blkno;
25630 
25631 			/*
25632 			 * Invoke the routine which is going to do read part
25633 			 * of read-modify-write.
25634 			 * Note that this routine returns a pointer to
25635 			 * a valid bp in wr_bp.
25636 			 */
25637 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25638 			    &wr_bp);
25639 			if (err) {
25640 				mutex_exit(SD_MUTEX(un));
25641 				return (err);
25642 			}
25643 			/*
25644 			 * Offset is being calculated as -
25645 			 * (original block # * system block size) -
25646 			 * (new block # * target block size)
25647 			 */
25648 			io_start_offset =
25649 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25650 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25651 
25652 			ASSERT((io_start_offset >= 0) &&
25653 			    (io_start_offset < un->un_tgt_blocksize));
25654 			/*
25655 			 * Do the modify portion of read modify write.
25656 			 */
25657 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25658 			    (size_t)nblk * un->un_sys_blocksize);
25659 		} else {
25660 			doing_rmw = FALSE;
25661 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25662 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25663 		}
25664 
25665 		/* Convert blkno and nblk to target blocks */
25666 		blkno = tgt_blkno;
25667 		nblk = tgt_nblk;
25668 	} else {
25669 		wr_bp = &wr_buf;
25670 		bzero(wr_bp, sizeof (struct buf));
25671 		wr_bp->b_flags		= B_BUSY;
25672 		wr_bp->b_un.b_addr	= addr;
25673 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25674 		wr_bp->b_resid		= 0;
25675 	}
25676 
25677 	mutex_exit(SD_MUTEX(un));
25678 
25679 	/*
25680 	 * Obtain a SCSI packet for the write command.
25681 	 * It should be safe to call the allocator here without
25682 	 * worrying about being locked for DVMA mapping because
25683 	 * the address we're passed is already a DVMA mapping
25684 	 *
25685 	 * We are also not going to worry about semaphore ownership
25686 	 * in the dump buffer. Dumping is single threaded at present.
25687 	 */
25688 
25689 	wr_pktp = NULL;
25690 
25691 #if defined(__i386) || defined(__amd64)
25692 	dma_resid = wr_bp->b_bcount;
25693 	oblkno = blkno;
25694 	while (dma_resid != 0) {
25695 #endif
25696 
25697 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25698 		wr_bp->b_flags &= ~B_ERROR;
25699 
25700 #if defined(__i386) || defined(__amd64)
25701 		blkno = oblkno +
25702 			((wr_bp->b_bcount - dma_resid) /
25703 			    un->un_tgt_blocksize);
25704 		nblk = dma_resid / un->un_tgt_blocksize;
25705 
25706 		if (wr_pktp) {
25707 			/* Partial DMA transfers after initial transfer */
25708 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
25709 			    blkno, nblk);
25710 		} else {
25711 			/* Initial transfer */
25712 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25713 			    un->un_pkt_flags, NULL_FUNC, NULL,
25714 			    blkno, nblk);
25715 		}
25716 #else
25717 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25718 		    0, NULL_FUNC, NULL, blkno, nblk);
25719 #endif
25720 
25721 		if (rval == 0) {
25722 			/* We were given a SCSI packet, continue. */
25723 			break;
25724 		}
25725 
25726 		if (i == 0) {
25727 			if (wr_bp->b_flags & B_ERROR) {
25728 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25729 				    "no resources for dumping; "
25730 				    "error code: 0x%x, retrying",
25731 				    geterror(wr_bp));
25732 			} else {
25733 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25734 				    "no resources for dumping; retrying");
25735 			}
25736 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
25737 			if (wr_bp->b_flags & B_ERROR) {
25738 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25739 				    "no resources for dumping; error code: "
25740 				    "0x%x, retrying\n", geterror(wr_bp));
25741 			}
25742 		} else {
25743 			if (wr_bp->b_flags & B_ERROR) {
25744 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25745 				    "no resources for dumping; "
25746 				    "error code: 0x%x, retries failed, "
25747 				    "giving up.\n", geterror(wr_bp));
25748 			} else {
25749 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25750 				    "no resources for dumping; "
25751 				    "retries failed, giving up.\n");
25752 			}
25753 			mutex_enter(SD_MUTEX(un));
25754 			Restore_state(un);
25755 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
25756 				mutex_exit(SD_MUTEX(un));
25757 				scsi_free_consistent_buf(wr_bp);
25758 			} else {
25759 				mutex_exit(SD_MUTEX(un));
25760 			}
25761 			return (EIO);
25762 		}
25763 		drv_usecwait(10000);
25764 	}
25765 
25766 #if defined(__i386) || defined(__amd64)
25767 	/*
25768 	 * save the resid from PARTIAL_DMA
25769 	 */
25770 	dma_resid = wr_pktp->pkt_resid;
25771 	if (dma_resid != 0)
25772 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
25773 	wr_pktp->pkt_resid = 0;
25774 #endif
25775 
25776 	/* SunBug 1222170 */
25777 	wr_pktp->pkt_flags = FLAG_NOINTR;
25778 
25779 	err = EIO;
25780 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25781 
25782 		/*
25783 		 * Scsi_poll returns 0 (success) if the command completes and
25784 		 * the status block is STATUS_GOOD.  We should only check
25785 		 * errors if this condition is not true.  Even then we should
25786 		 * send our own request sense packet only if we have a check
25787 		 * condition and auto request sense has not been performed by
25788 		 * the hba.
25789 		 */
25790 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
25791 
25792 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
25793 		    (wr_pktp->pkt_resid == 0)) {
25794 			err = SD_SUCCESS;
25795 			break;
25796 		}
25797 
25798 		/*
25799 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
25800 		 */
25801 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
25802 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25803 			    "Device is gone\n");
25804 			break;
25805 		}
25806 
25807 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
25808 			SD_INFO(SD_LOG_DUMP, un,
25809 			    "sddump: write failed with CHECK, try # %d\n", i);
25810 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
25811 				(void) sd_send_polled_RQS(un);
25812 			}
25813 
25814 			continue;
25815 		}
25816 
25817 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
25818 			int reset_retval = 0;
25819 
25820 			SD_INFO(SD_LOG_DUMP, un,
25821 			    "sddump: write failed with BUSY, try # %d\n", i);
25822 
25823 			if (un->un_f_lun_reset_enabled == TRUE) {
25824 				reset_retval = scsi_reset(SD_ADDRESS(un),
25825 				    RESET_LUN);
25826 			}
25827 			if (reset_retval == 0) {
25828 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25829 			}
25830 			(void) sd_send_polled_RQS(un);
25831 
25832 		} else {
25833 			SD_INFO(SD_LOG_DUMP, un,
25834 			    "sddump: write failed with 0x%x, try # %d\n",
25835 			    SD_GET_PKT_STATUS(wr_pktp), i);
25836 			mutex_enter(SD_MUTEX(un));
25837 			sd_reset_target(un, wr_pktp);
25838 			mutex_exit(SD_MUTEX(un));
25839 		}
25840 
25841 		/*
25842 		 * If we are not getting anywhere with lun/target resets,
25843 		 * let's reset the bus.
25844 		 */
25845 		if (i == SD_NDUMP_RETRIES/2) {
25846 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25847 			(void) sd_send_polled_RQS(un);
25848 		}
25849 
25850 	}
25851 #if defined(__i386) || defined(__amd64)
25852 	}	/* dma_resid */
25853 #endif
25854 
25855 	scsi_destroy_pkt(wr_pktp);
25856 	mutex_enter(SD_MUTEX(un));
25857 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
25858 		mutex_exit(SD_MUTEX(un));
25859 		scsi_free_consistent_buf(wr_bp);
25860 	} else {
25861 		mutex_exit(SD_MUTEX(un));
25862 	}
25863 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
25864 	return (err);
25865 }
25866 
25867 /*
25868  *    Function: sd_scsi_poll()
25869  *
25870  * Description: This is a wrapper for the scsi_poll call.
25871  *
25872  *   Arguments: sd_lun - The unit structure
25873  *              scsi_pkt - The scsi packet being sent to the device.
25874  *
25875  * Return Code: 0 - Command completed successfully with good status
25876  *             -1 - Command failed.  This could indicate a check condition
25877  *                  or other status value requiring recovery action.
25878  *
25879  */
25880 
25881 static int
25882 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
25883 {
25884 	int status;
25885 
25886 	ASSERT(un != NULL);
25887 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25888 	ASSERT(pktp != NULL);
25889 
25890 	status = SD_SUCCESS;
25891 
25892 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
25893 		pktp->pkt_flags |= un->un_tagflags;
25894 		pktp->pkt_flags &= ~FLAG_NODISCON;
25895 	}
25896 
25897 	status = sd_ddi_scsi_poll(pktp);
25898 	/*
25899 	 * Scsi_poll returns 0 (success) if the command completes and the
25900 	 * status block is STATUS_GOOD.  We should only check errors if this
25901 	 * condition is not true.  Even then we should send our own request
25902 	 * sense packet only if we have a check condition and auto
25903 	 * request sense has not been performed by the hba.
25904 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
25905 	 */
25906 	if ((status != SD_SUCCESS) &&
25907 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
25908 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
25909 	    (pktp->pkt_reason != CMD_DEV_GONE))
25910 		(void) sd_send_polled_RQS(un);
25911 
25912 	return (status);
25913 }
25914 
25915 /*
25916  *    Function: sd_send_polled_RQS()
25917  *
25918  * Description: This sends the request sense command to a device.
25919  *
25920  *   Arguments: sd_lun - The unit structure
25921  *
25922  * Return Code: 0 - Command completed successfully with good status
25923  *             -1 - Command failed.
25924  *
25925  */
25926 
25927 static int
25928 sd_send_polled_RQS(struct sd_lun *un)
25929 {
25930 	int	ret_val;
25931 	struct	scsi_pkt	*rqs_pktp;
25932 	struct	buf		*rqs_bp;
25933 
25934 	ASSERT(un != NULL);
25935 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25936 
25937 	ret_val = SD_SUCCESS;
25938 
25939 	rqs_pktp = un->un_rqs_pktp;
25940 	rqs_bp	 = un->un_rqs_bp;
25941 
25942 	mutex_enter(SD_MUTEX(un));
25943 
25944 	if (un->un_sense_isbusy) {
25945 		ret_val = SD_FAILURE;
25946 		mutex_exit(SD_MUTEX(un));
25947 		return (ret_val);
25948 	}
25949 
25950 	/*
25951 	 * If the request sense buffer (and packet) is not in use,
25952 	 * let's set the un_sense_isbusy and send our packet
25953 	 */
25954 	un->un_sense_isbusy 	= 1;
25955 	rqs_pktp->pkt_resid  	= 0;
25956 	rqs_pktp->pkt_reason 	= 0;
25957 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
25958 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
25959 
25960 	mutex_exit(SD_MUTEX(un));
25961 
25962 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
25963 	    " 0x%p\n", rqs_bp->b_un.b_addr);
25964 
25965 	/*
25966 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
25967 	 * axle - it has a call into us!
25968 	 */
25969 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
25970 		SD_INFO(SD_LOG_COMMON, un,
25971 		    "sd_send_polled_RQS: RQS failed\n");
25972 	}
25973 
25974 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
25975 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
25976 
25977 	mutex_enter(SD_MUTEX(un));
25978 	un->un_sense_isbusy = 0;
25979 	mutex_exit(SD_MUTEX(un));
25980 
25981 	return (ret_val);
25982 }
25983 
25984 /*
25985  * Defines needed for localized version of the scsi_poll routine.
25986  */
25987 #define	SD_CSEC		10000			/* usecs */
25988 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
25989 
25990 
25991 /*
25992  *    Function: sd_ddi_scsi_poll()
25993  *
25994  * Description: Localized version of the scsi_poll routine.  The purpose is to
25995  *		send a scsi_pkt to a device as a polled command.  This version
25996  *		is to ensure more robust handling of transport errors.
25997  *		Specifically this routine cures not ready, coming ready
25998  *		transition for power up and reset of sonoma's.  This can take
25999  *		up to 45 seconds for power-on and 20 seconds for reset of a
26000  * 		sonoma lun.
26001  *
26002  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26003  *
26004  * Return Code: 0 - Command completed successfully with good status
26005  *             -1 - Command failed.
26006  *
26007  */
26008 
26009 static int
26010 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26011 {
26012 	int busy_count;
26013 	int timeout;
26014 	int rval = SD_FAILURE;
26015 	int savef;
26016 	struct scsi_extended_sense *sensep;
26017 	long savet;
26018 	void (*savec)();
26019 	/*
26020 	 * The following is defined in machdep.c and is used in determining if
26021 	 * the scsi transport system will do polled I/O instead of interrupt
26022 	 * I/O when called from xx_dump().
26023 	 */
26024 	extern int do_polled_io;
26025 
26026 	/*
26027 	 * save old flags in pkt, to restore at end
26028 	 */
26029 	savef = pkt->pkt_flags;
26030 	savec = pkt->pkt_comp;
26031 	savet = pkt->pkt_time;
26032 
26033 	pkt->pkt_flags |= FLAG_NOINTR;
26034 
26035 	/*
26036 	 * XXX there is nothing in the SCSA spec that states that we should not
26037 	 * do a callback for polled cmds; however, removing this will break sd
26038 	 * and probably other target drivers
26039 	 */
26040 	pkt->pkt_comp = NULL;
26041 
26042 	/*
26043 	 * we don't like a polled command without timeout.
26044 	 * 60 seconds seems long enough.
26045 	 */
26046 	if (pkt->pkt_time == 0) {
26047 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26048 	}
26049 
26050 	/*
26051 	 * Send polled cmd.
26052 	 *
26053 	 * We do some error recovery for various errors.  Tran_busy,
26054 	 * queue full, and non-dispatched commands are retried every 10 msec.
26055 	 * as they are typically transient failures.  Busy status and Not
26056 	 * Ready are retried every second as this status takes a while to
26057 	 * change.  Unit attention is retried for pkt_time (60) times
26058 	 * with no delay.
26059 	 */
26060 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
26061 
26062 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26063 		int rc;
26064 		int poll_delay;
26065 
26066 		/*
26067 		 * Initialize pkt status variables.
26068 		 */
26069 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26070 
26071 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26072 			if (rc != TRAN_BUSY) {
26073 				/* Transport failed - give up. */
26074 				break;
26075 			} else {
26076 				/* Transport busy - try again. */
26077 				poll_delay = 1 * SD_CSEC; /* 10 msec */
26078 			}
26079 		} else {
26080 			/*
26081 			 * Transport accepted - check pkt status.
26082 			 */
26083 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26084 			if (pkt->pkt_reason == CMD_CMPLT &&
26085 			    rc == STATUS_CHECK &&
26086 			    pkt->pkt_state & STATE_ARQ_DONE) {
26087 				struct scsi_arq_status *arqstat =
26088 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26089 
26090 				sensep = &arqstat->sts_sensedata;
26091 			} else {
26092 				sensep = NULL;
26093 			}
26094 
26095 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26096 			    (rc == STATUS_GOOD)) {
26097 				/* No error - we're done */
26098 				rval = SD_SUCCESS;
26099 				break;
26100 
26101 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26102 				/* Lost connection - give up */
26103 				break;
26104 
26105 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26106 			    (pkt->pkt_state == 0)) {
26107 				/* Pkt not dispatched - try again. */
26108 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26109 
26110 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26111 			    (rc == STATUS_QFULL)) {
26112 				/* Queue full - try again. */
26113 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26114 
26115 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26116 			    (rc == STATUS_BUSY)) {
26117 				/* Busy - try again. */
26118 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26119 				busy_count += (SD_SEC_TO_CSEC - 1);
26120 
26121 			} else if ((sensep != NULL) &&
26122 			    (sensep->es_key == KEY_UNIT_ATTENTION)) {
26123 				/* Unit Attention - try again */
26124 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
26125 				continue;
26126 
26127 			} else if ((sensep != NULL) &&
26128 			    (sensep->es_key == KEY_NOT_READY) &&
26129 			    (sensep->es_add_code == 0x04) &&
26130 			    (sensep->es_qual_code == 0x01)) {
26131 				/* Not ready -> ready - try again. */
26132 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26133 				busy_count += (SD_SEC_TO_CSEC - 1);
26134 
26135 			} else {
26136 				/* BAD status - give up. */
26137 				break;
26138 			}
26139 		}
26140 
26141 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
26142 		    !do_polled_io) {
26143 			delay(drv_usectohz(poll_delay));
26144 		} else {
26145 			/* we busy wait during cpr_dump or interrupt threads */
26146 			drv_usecwait(poll_delay);
26147 		}
26148 	}
26149 
26150 	pkt->pkt_flags = savef;
26151 	pkt->pkt_comp = savec;
26152 	pkt->pkt_time = savet;
26153 	return (rval);
26154 }
26155 
26156 
26157 /*
26158  *    Function: sd_persistent_reservation_in_read_keys
26159  *
26160  * Description: This routine is the driver entry point for handling CD-ROM
26161  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26162  *		by sending the SCSI-3 PRIN commands to the device.
26163  *		Processes the read keys command response by copying the
26164  *		reservation key information into the user provided buffer.
26165  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26166  *
26167  *   Arguments: un   -  Pointer to soft state struct for the target.
26168  *		usrp -	user provided pointer to multihost Persistent In Read
26169  *			Keys structure (mhioc_inkeys_t)
26170  *		flag -	this argument is a pass through to ddi_copyxxx()
26171  *			directly from the mode argument of ioctl().
26172  *
26173  * Return Code: 0   - Success
26174  *		EACCES
26175  *		ENOTSUP
26176  *		errno return code from sd_send_scsi_cmd()
26177  *
26178  *     Context: Can sleep. Does not return until command is completed.
26179  */
26180 
26181 static int
26182 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26183     mhioc_inkeys_t *usrp, int flag)
26184 {
26185 #ifdef _MULTI_DATAMODEL
26186 	struct mhioc_key_list32	li32;
26187 #endif
26188 	sd_prin_readkeys_t	*in;
26189 	mhioc_inkeys_t		*ptr;
26190 	mhioc_key_list_t	li;
26191 	uchar_t			*data_bufp;
26192 	int 			data_len;
26193 	int			rval;
26194 	size_t			copysz;
26195 
26196 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26197 		return (EINVAL);
26198 	}
26199 	bzero(&li, sizeof (mhioc_key_list_t));
26200 
26201 	/*
26202 	 * Get the listsize from user
26203 	 */
26204 #ifdef _MULTI_DATAMODEL
26205 
26206 	switch (ddi_model_convert_from(flag & FMODELS)) {
26207 	case DDI_MODEL_ILP32:
26208 		copysz = sizeof (struct mhioc_key_list32);
26209 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26210 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26211 			    "sd_persistent_reservation_in_read_keys: "
26212 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26213 			rval = EFAULT;
26214 			goto done;
26215 		}
26216 		li.listsize = li32.listsize;
26217 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26218 		break;
26219 
26220 	case DDI_MODEL_NONE:
26221 		copysz = sizeof (mhioc_key_list_t);
26222 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26223 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26224 			    "sd_persistent_reservation_in_read_keys: "
26225 			    "failed ddi_copyin: mhioc_key_list_t\n");
26226 			rval = EFAULT;
26227 			goto done;
26228 		}
26229 		break;
26230 	}
26231 
26232 #else /* ! _MULTI_DATAMODEL */
26233 	copysz = sizeof (mhioc_key_list_t);
26234 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26235 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26236 		    "sd_persistent_reservation_in_read_keys: "
26237 		    "failed ddi_copyin: mhioc_key_list_t\n");
26238 		rval = EFAULT;
26239 		goto done;
26240 	}
26241 #endif
26242 
26243 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26244 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26245 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26246 
26247 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
26248 	    data_len, data_bufp)) != 0) {
26249 		goto done;
26250 	}
26251 	in = (sd_prin_readkeys_t *)data_bufp;
26252 	ptr->generation = BE_32(in->generation);
26253 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26254 
26255 	/*
26256 	 * Return the min(listsize, listlen) keys
26257 	 */
26258 #ifdef _MULTI_DATAMODEL
26259 
26260 	switch (ddi_model_convert_from(flag & FMODELS)) {
26261 	case DDI_MODEL_ILP32:
26262 		li32.listlen = li.listlen;
26263 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26264 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26265 			    "sd_persistent_reservation_in_read_keys: "
26266 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26267 			rval = EFAULT;
26268 			goto done;
26269 		}
26270 		break;
26271 
26272 	case DDI_MODEL_NONE:
26273 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26274 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26275 			    "sd_persistent_reservation_in_read_keys: "
26276 			    "failed ddi_copyout: mhioc_key_list_t\n");
26277 			rval = EFAULT;
26278 			goto done;
26279 		}
26280 		break;
26281 	}
26282 
26283 #else /* ! _MULTI_DATAMODEL */
26284 
26285 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26286 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26287 		    "sd_persistent_reservation_in_read_keys: "
26288 		    "failed ddi_copyout: mhioc_key_list_t\n");
26289 		rval = EFAULT;
26290 		goto done;
26291 	}
26292 
26293 #endif /* _MULTI_DATAMODEL */
26294 
26295 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26296 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26297 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26298 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26299 		    "sd_persistent_reservation_in_read_keys: "
26300 		    "failed ddi_copyout: keylist\n");
26301 		rval = EFAULT;
26302 	}
26303 done:
26304 	kmem_free(data_bufp, data_len);
26305 	return (rval);
26306 }
26307 
26308 
26309 /*
26310  *    Function: sd_persistent_reservation_in_read_resv
26311  *
26312  * Description: This routine is the driver entry point for handling CD-ROM
26313  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26314  *		by sending the SCSI-3 PRIN commands to the device.
26315  *		Process the read persistent reservations command response by
26316  *		copying the reservation information into the user provided
26317  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26318  *
26319  *   Arguments: un   -  Pointer to soft state struct for the target.
26320  *		usrp -	user provided pointer to multihost Persistent In Read
26321  *			Keys structure (mhioc_inkeys_t)
26322  *		flag -	this argument is a pass through to ddi_copyxxx()
26323  *			directly from the mode argument of ioctl().
26324  *
26325  * Return Code: 0   - Success
26326  *		EACCES
26327  *		ENOTSUP
26328  *		errno return code from sd_send_scsi_cmd()
26329  *
26330  *     Context: Can sleep. Does not return until command is completed.
26331  */
26332 
26333 static int
26334 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26335     mhioc_inresvs_t *usrp, int flag)
26336 {
26337 #ifdef _MULTI_DATAMODEL
26338 	struct mhioc_resv_desc_list32 resvlist32;
26339 #endif
26340 	sd_prin_readresv_t	*in;
26341 	mhioc_inresvs_t		*ptr;
26342 	sd_readresv_desc_t	*readresv_ptr;
26343 	mhioc_resv_desc_list_t	resvlist;
26344 	mhioc_resv_desc_t 	resvdesc;
26345 	uchar_t			*data_bufp;
26346 	int 			data_len;
26347 	int			rval;
26348 	int			i;
26349 	size_t			copysz;
26350 	mhioc_resv_desc_t	*bufp;
26351 
26352 	if ((ptr = usrp) == NULL) {
26353 		return (EINVAL);
26354 	}
26355 
26356 	/*
26357 	 * Get the listsize from user
26358 	 */
26359 #ifdef _MULTI_DATAMODEL
26360 	switch (ddi_model_convert_from(flag & FMODELS)) {
26361 	case DDI_MODEL_ILP32:
26362 		copysz = sizeof (struct mhioc_resv_desc_list32);
26363 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26364 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26365 			    "sd_persistent_reservation_in_read_resv: "
26366 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26367 			rval = EFAULT;
26368 			goto done;
26369 		}
26370 		resvlist.listsize = resvlist32.listsize;
26371 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26372 		break;
26373 
26374 	case DDI_MODEL_NONE:
26375 		copysz = sizeof (mhioc_resv_desc_list_t);
26376 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26377 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26378 			    "sd_persistent_reservation_in_read_resv: "
26379 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26380 			rval = EFAULT;
26381 			goto done;
26382 		}
26383 		break;
26384 	}
26385 #else /* ! _MULTI_DATAMODEL */
26386 	copysz = sizeof (mhioc_resv_desc_list_t);
26387 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26388 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26389 		    "sd_persistent_reservation_in_read_resv: "
26390 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26391 		rval = EFAULT;
26392 		goto done;
26393 	}
26394 #endif /* ! _MULTI_DATAMODEL */
26395 
26396 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26397 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26398 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26399 
26400 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
26401 	    data_len, data_bufp)) != 0) {
26402 		goto done;
26403 	}
26404 	in = (sd_prin_readresv_t *)data_bufp;
26405 	ptr->generation = BE_32(in->generation);
26406 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26407 
26408 	/*
26409 	 * Return the min(listsize, listlen( keys
26410 	 */
26411 #ifdef _MULTI_DATAMODEL
26412 
26413 	switch (ddi_model_convert_from(flag & FMODELS)) {
26414 	case DDI_MODEL_ILP32:
26415 		resvlist32.listlen = resvlist.listlen;
26416 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26417 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26418 			    "sd_persistent_reservation_in_read_resv: "
26419 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26420 			rval = EFAULT;
26421 			goto done;
26422 		}
26423 		break;
26424 
26425 	case DDI_MODEL_NONE:
26426 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26427 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26428 			    "sd_persistent_reservation_in_read_resv: "
26429 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26430 			rval = EFAULT;
26431 			goto done;
26432 		}
26433 		break;
26434 	}
26435 
26436 #else /* ! _MULTI_DATAMODEL */
26437 
26438 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26439 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26440 		    "sd_persistent_reservation_in_read_resv: "
26441 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26442 		rval = EFAULT;
26443 		goto done;
26444 	}
26445 
26446 #endif /* ! _MULTI_DATAMODEL */
26447 
26448 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26449 	bufp = resvlist.list;
26450 	copysz = sizeof (mhioc_resv_desc_t);
26451 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26452 	    i++, readresv_ptr++, bufp++) {
26453 
26454 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26455 		    MHIOC_RESV_KEY_SIZE);
26456 		resvdesc.type  = readresv_ptr->type;
26457 		resvdesc.scope = readresv_ptr->scope;
26458 		resvdesc.scope_specific_addr =
26459 		    BE_32(readresv_ptr->scope_specific_addr);
26460 
26461 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26462 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26463 			    "sd_persistent_reservation_in_read_resv: "
26464 			    "failed ddi_copyout: resvlist\n");
26465 			rval = EFAULT;
26466 			goto done;
26467 		}
26468 	}
26469 done:
26470 	kmem_free(data_bufp, data_len);
26471 	return (rval);
26472 }
26473 
26474 
26475 /*
26476  *    Function: sr_change_blkmode()
26477  *
26478  * Description: This routine is the driver entry point for handling CD-ROM
26479  *		block mode ioctl requests. Support for returning and changing
26480  *		the current block size in use by the device is implemented. The
26481  *		LBA size is changed via a MODE SELECT Block Descriptor.
26482  *
26483  *		This routine issues a mode sense with an allocation length of
26484  *		12 bytes for the mode page header and a single block descriptor.
26485  *
26486  *   Arguments: dev - the device 'dev_t'
26487  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26488  *		      CDROMSBLKMODE (set)
26489  *		data - current block size or requested block size
26490  *		flag - this argument is a pass through to ddi_copyxxx() directly
26491  *		       from the mode argument of ioctl().
26492  *
26493  * Return Code: the code returned by sd_send_scsi_cmd()
26494  *		EINVAL if invalid arguments are provided
26495  *		EFAULT if ddi_copyxxx() fails
26496  *		ENXIO if fail ddi_get_soft_state
26497  *		EIO if invalid mode sense block descriptor length
26498  *
26499  */
26500 
26501 static int
26502 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26503 {
26504 	struct sd_lun			*un = NULL;
26505 	struct mode_header		*sense_mhp, *select_mhp;
26506 	struct block_descriptor		*sense_desc, *select_desc;
26507 	int				current_bsize;
26508 	int				rval = EINVAL;
26509 	uchar_t				*sense = NULL;
26510 	uchar_t				*select = NULL;
26511 
26512 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26513 
26514 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26515 		return (ENXIO);
26516 	}
26517 
26518 	/*
26519 	 * The block length is changed via the Mode Select block descriptor, the
26520 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26521 	 * required as part of this routine. Therefore the mode sense allocation
26522 	 * length is specified to be the length of a mode page header and a
26523 	 * block descriptor.
26524 	 */
26525 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26526 
26527 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26528 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
26529 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26530 		    "sr_change_blkmode: Mode Sense Failed\n");
26531 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26532 		return (rval);
26533 	}
26534 
26535 	/* Check the block descriptor len to handle only 1 block descriptor */
26536 	sense_mhp = (struct mode_header *)sense;
26537 	if ((sense_mhp->bdesc_length == 0) ||
26538 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26539 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26540 		    "sr_change_blkmode: Mode Sense returned invalid block"
26541 		    " descriptor length\n");
26542 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26543 		return (EIO);
26544 	}
26545 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26546 	current_bsize = ((sense_desc->blksize_hi << 16) |
26547 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26548 
26549 	/* Process command */
26550 	switch (cmd) {
26551 	case CDROMGBLKMODE:
26552 		/* Return the block size obtained during the mode sense */
26553 		if (ddi_copyout(&current_bsize, (void *)data,
26554 		    sizeof (int), flag) != 0)
26555 			rval = EFAULT;
26556 		break;
26557 	case CDROMSBLKMODE:
26558 		/* Validate the requested block size */
26559 		switch (data) {
26560 		case CDROM_BLK_512:
26561 		case CDROM_BLK_1024:
26562 		case CDROM_BLK_2048:
26563 		case CDROM_BLK_2056:
26564 		case CDROM_BLK_2336:
26565 		case CDROM_BLK_2340:
26566 		case CDROM_BLK_2352:
26567 		case CDROM_BLK_2368:
26568 		case CDROM_BLK_2448:
26569 		case CDROM_BLK_2646:
26570 		case CDROM_BLK_2647:
26571 			break;
26572 		default:
26573 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26574 			    "sr_change_blkmode: "
26575 			    "Block Size '%ld' Not Supported\n", data);
26576 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26577 			return (EINVAL);
26578 		}
26579 
26580 		/*
26581 		 * The current block size matches the requested block size so
26582 		 * there is no need to send the mode select to change the size
26583 		 */
26584 		if (current_bsize == data) {
26585 			break;
26586 		}
26587 
26588 		/* Build the select data for the requested block size */
26589 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26590 		select_mhp = (struct mode_header *)select;
26591 		select_desc =
26592 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26593 		/*
26594 		 * The LBA size is changed via the block descriptor, so the
26595 		 * descriptor is built according to the user data
26596 		 */
26597 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26598 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26599 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26600 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26601 
26602 		/* Send the mode select for the requested block size */
26603 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26604 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26605 		    SD_PATH_STANDARD)) != 0) {
26606 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26607 			    "sr_change_blkmode: Mode Select Failed\n");
26608 			/*
26609 			 * The mode select failed for the requested block size,
26610 			 * so reset the data for the original block size and
26611 			 * send it to the target. The error is indicated by the
26612 			 * return value for the failed mode select.
26613 			 */
26614 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26615 			select_desc->blksize_mid = sense_desc->blksize_mid;
26616 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26617 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26618 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26619 			    SD_PATH_STANDARD);
26620 		} else {
26621 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26622 			mutex_enter(SD_MUTEX(un));
26623 			sd_update_block_info(un, (uint32_t)data, 0);
26624 
26625 			mutex_exit(SD_MUTEX(un));
26626 		}
26627 		break;
26628 	default:
26629 		/* should not reach here, but check anyway */
26630 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26631 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26632 		rval = EINVAL;
26633 		break;
26634 	}
26635 
26636 	if (select) {
26637 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
26638 	}
26639 	if (sense) {
26640 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26641 	}
26642 	return (rval);
26643 }
26644 
26645 
26646 /*
26647  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
26648  * implement driver support for getting and setting the CD speed. The command
26649  * set used will be based on the device type. If the device has not been
26650  * identified as MMC the Toshiba vendor specific mode page will be used. If
26651  * the device is MMC but does not support the Real Time Streaming feature
26652  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
26653  * be used to read the speed.
26654  */
26655 
26656 /*
26657  *    Function: sr_change_speed()
26658  *
26659  * Description: This routine is the driver entry point for handling CD-ROM
26660  *		drive speed ioctl requests for devices supporting the Toshiba
26661  *		vendor specific drive speed mode page. Support for returning
26662  *		and changing the current drive speed in use by the device is
26663  *		implemented.
26664  *
26665  *   Arguments: dev - the device 'dev_t'
26666  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
26667  *		      CDROMSDRVSPEED (set)
26668  *		data - current drive speed or requested drive speed
26669  *		flag - this argument is a pass through to ddi_copyxxx() directly
26670  *		       from the mode argument of ioctl().
26671  *
26672  * Return Code: the code returned by sd_send_scsi_cmd()
26673  *		EINVAL if invalid arguments are provided
26674  *		EFAULT if ddi_copyxxx() fails
26675  *		ENXIO if fail ddi_get_soft_state
26676  *		EIO if invalid mode sense block descriptor length
26677  */
26678 
26679 static int
26680 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26681 {
26682 	struct sd_lun			*un = NULL;
26683 	struct mode_header		*sense_mhp, *select_mhp;
26684 	struct mode_speed		*sense_page, *select_page;
26685 	int				current_speed;
26686 	int				rval = EINVAL;
26687 	int				bd_len;
26688 	uchar_t				*sense = NULL;
26689 	uchar_t				*select = NULL;
26690 
26691 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26692 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26693 		return (ENXIO);
26694 	}
26695 
26696 	/*
26697 	 * Note: The drive speed is being modified here according to a Toshiba
26698 	 * vendor specific mode page (0x31).
26699 	 */
26700 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26701 
26702 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26703 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
26704 	    SD_PATH_STANDARD)) != 0) {
26705 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26706 		    "sr_change_speed: Mode Sense Failed\n");
26707 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26708 		return (rval);
26709 	}
26710 	sense_mhp  = (struct mode_header *)sense;
26711 
26712 	/* Check the block descriptor len to handle only 1 block descriptor */
26713 	bd_len = sense_mhp->bdesc_length;
26714 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26715 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26716 		    "sr_change_speed: Mode Sense returned invalid block "
26717 		    "descriptor length\n");
26718 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26719 		return (EIO);
26720 	}
26721 
26722 	sense_page = (struct mode_speed *)
26723 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26724 	current_speed = sense_page->speed;
26725 
26726 	/* Process command */
26727 	switch (cmd) {
26728 	case CDROMGDRVSPEED:
26729 		/* Return the drive speed obtained during the mode sense */
26730 		if (current_speed == 0x2) {
26731 			current_speed = CDROM_TWELVE_SPEED;
26732 		}
26733 		if (ddi_copyout(&current_speed, (void *)data,
26734 		    sizeof (int), flag) != 0) {
26735 			rval = EFAULT;
26736 		}
26737 		break;
26738 	case CDROMSDRVSPEED:
26739 		/* Validate the requested drive speed */
26740 		switch ((uchar_t)data) {
26741 		case CDROM_TWELVE_SPEED:
26742 			data = 0x2;
26743 			/*FALLTHROUGH*/
26744 		case CDROM_NORMAL_SPEED:
26745 		case CDROM_DOUBLE_SPEED:
26746 		case CDROM_QUAD_SPEED:
26747 		case CDROM_MAXIMUM_SPEED:
26748 			break;
26749 		default:
26750 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26751 			    "sr_change_speed: "
26752 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
26753 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26754 			return (EINVAL);
26755 		}
26756 
26757 		/*
26758 		 * The current drive speed matches the requested drive speed so
26759 		 * there is no need to send the mode select to change the speed
26760 		 */
26761 		if (current_speed == data) {
26762 			break;
26763 		}
26764 
26765 		/* Build the select data for the requested drive speed */
26766 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26767 		select_mhp = (struct mode_header *)select;
26768 		select_mhp->bdesc_length = 0;
26769 		select_page =
26770 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26771 		select_page =
26772 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26773 		select_page->mode_page.code = CDROM_MODE_SPEED;
26774 		select_page->mode_page.length = 2;
26775 		select_page->speed = (uchar_t)data;
26776 
26777 		/* Send the mode select for the requested block size */
26778 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26779 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26780 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
26781 			/*
26782 			 * The mode select failed for the requested drive speed,
26783 			 * so reset the data for the original drive speed and
26784 			 * send it to the target. The error is indicated by the
26785 			 * return value for the failed mode select.
26786 			 */
26787 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26788 			    "sr_drive_speed: Mode Select Failed\n");
26789 			select_page->speed = sense_page->speed;
26790 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26791 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26792 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26793 		}
26794 		break;
26795 	default:
26796 		/* should not reach here, but check anyway */
26797 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26798 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
26799 		rval = EINVAL;
26800 		break;
26801 	}
26802 
26803 	if (select) {
26804 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
26805 	}
26806 	if (sense) {
26807 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26808 	}
26809 
26810 	return (rval);
26811 }
26812 
26813 
26814 /*
26815  *    Function: sr_atapi_change_speed()
26816  *
26817  * Description: This routine is the driver entry point for handling CD-ROM
26818  *		drive speed ioctl requests for MMC devices that do not support
26819  *		the Real Time Streaming feature (0x107).
26820  *
26821  *		Note: This routine will use the SET SPEED command which may not
26822  *		be supported by all devices.
26823  *
26824  *   Arguments: dev- the device 'dev_t'
26825  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
26826  *		     CDROMSDRVSPEED (set)
26827  *		data- current drive speed or requested drive speed
26828  *		flag- this argument is a pass through to ddi_copyxxx() directly
26829  *		      from the mode argument of ioctl().
26830  *
26831  * Return Code: the code returned by sd_send_scsi_cmd()
26832  *		EINVAL if invalid arguments are provided
26833  *		EFAULT if ddi_copyxxx() fails
26834  *		ENXIO if fail ddi_get_soft_state
26835  *		EIO if invalid mode sense block descriptor length
26836  */
26837 
26838 static int
26839 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26840 {
26841 	struct sd_lun			*un;
26842 	struct uscsi_cmd		*com = NULL;
26843 	struct mode_header_grp2		*sense_mhp;
26844 	uchar_t				*sense_page;
26845 	uchar_t				*sense = NULL;
26846 	char				cdb[CDB_GROUP5];
26847 	int				bd_len;
26848 	int				current_speed = 0;
26849 	int				max_speed = 0;
26850 	int				rval;
26851 
26852 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26853 
26854 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26855 		return (ENXIO);
26856 	}
26857 
26858 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
26859 
26860 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
26861 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
26862 	    SD_PATH_STANDARD)) != 0) {
26863 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26864 		    "sr_atapi_change_speed: Mode Sense Failed\n");
26865 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26866 		return (rval);
26867 	}
26868 
26869 	/* Check the block descriptor len to handle only 1 block descriptor */
26870 	sense_mhp = (struct mode_header_grp2 *)sense;
26871 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
26872 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26873 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26874 		    "sr_atapi_change_speed: Mode Sense returned invalid "
26875 		    "block descriptor length\n");
26876 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26877 		return (EIO);
26878 	}
26879 
26880 	/* Calculate the current and maximum drive speeds */
26881 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26882 	current_speed = (sense_page[14] << 8) | sense_page[15];
26883 	max_speed = (sense_page[8] << 8) | sense_page[9];
26884 
26885 	/* Process the command */
26886 	switch (cmd) {
26887 	case CDROMGDRVSPEED:
26888 		current_speed /= SD_SPEED_1X;
26889 		if (ddi_copyout(&current_speed, (void *)data,
26890 		    sizeof (int), flag) != 0)
26891 			rval = EFAULT;
26892 		break;
26893 	case CDROMSDRVSPEED:
26894 		/* Convert the speed code to KB/sec */
26895 		switch ((uchar_t)data) {
26896 		case CDROM_NORMAL_SPEED:
26897 			current_speed = SD_SPEED_1X;
26898 			break;
26899 		case CDROM_DOUBLE_SPEED:
26900 			current_speed = 2 * SD_SPEED_1X;
26901 			break;
26902 		case CDROM_QUAD_SPEED:
26903 			current_speed = 4 * SD_SPEED_1X;
26904 			break;
26905 		case CDROM_TWELVE_SPEED:
26906 			current_speed = 12 * SD_SPEED_1X;
26907 			break;
26908 		case CDROM_MAXIMUM_SPEED:
26909 			current_speed = 0xffff;
26910 			break;
26911 		default:
26912 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26913 			    "sr_atapi_change_speed: invalid drive speed %d\n",
26914 			    (uchar_t)data);
26915 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26916 			return (EINVAL);
26917 		}
26918 
26919 		/* Check the request against the drive's max speed. */
26920 		if (current_speed != 0xffff) {
26921 			if (current_speed > max_speed) {
26922 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26923 				return (EINVAL);
26924 			}
26925 		}
26926 
26927 		/*
26928 		 * Build and send the SET SPEED command
26929 		 *
26930 		 * Note: The SET SPEED (0xBB) command used in this routine is
26931 		 * obsolete per the SCSI MMC spec but still supported in the
26932 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26933 		 * therefore the command is still implemented in this routine.
26934 		 */
26935 		bzero(cdb, sizeof (cdb));
26936 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
26937 		cdb[2] = (uchar_t)(current_speed >> 8);
26938 		cdb[3] = (uchar_t)current_speed;
26939 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26940 		com->uscsi_cdb	   = (caddr_t)cdb;
26941 		com->uscsi_cdblen  = CDB_GROUP5;
26942 		com->uscsi_bufaddr = NULL;
26943 		com->uscsi_buflen  = 0;
26944 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
26945 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
26946 		    UIO_SYSSPACE, SD_PATH_STANDARD);
26947 		break;
26948 	default:
26949 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26950 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
26951 		rval = EINVAL;
26952 	}
26953 
26954 	if (sense) {
26955 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26956 	}
26957 	if (com) {
26958 		kmem_free(com, sizeof (*com));
26959 	}
26960 	return (rval);
26961 }
26962 
26963 
26964 /*
26965  *    Function: sr_pause_resume()
26966  *
26967  * Description: This routine is the driver entry point for handling CD-ROM
26968  *		pause/resume ioctl requests. This only affects the audio play
26969  *		operation.
26970  *
26971  *   Arguments: dev - the device 'dev_t'
26972  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
26973  *		      for setting the resume bit of the cdb.
26974  *
26975  * Return Code: the code returned by sd_send_scsi_cmd()
26976  *		EINVAL if invalid mode specified
26977  *
26978  */
26979 
26980 static int
26981 sr_pause_resume(dev_t dev, int cmd)
26982 {
26983 	struct sd_lun		*un;
26984 	struct uscsi_cmd	*com;
26985 	char			cdb[CDB_GROUP1];
26986 	int			rval;
26987 
26988 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26989 		return (ENXIO);
26990 	}
26991 
26992 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26993 	bzero(cdb, CDB_GROUP1);
26994 	cdb[0] = SCMD_PAUSE_RESUME;
26995 	switch (cmd) {
26996 	case CDROMRESUME:
26997 		cdb[8] = 1;
26998 		break;
26999 	case CDROMPAUSE:
27000 		cdb[8] = 0;
27001 		break;
27002 	default:
27003 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27004 		    " Command '%x' Not Supported\n", cmd);
27005 		rval = EINVAL;
27006 		goto done;
27007 	}
27008 
27009 	com->uscsi_cdb    = cdb;
27010 	com->uscsi_cdblen = CDB_GROUP1;
27011 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27012 
27013 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27014 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27015 
27016 done:
27017 	kmem_free(com, sizeof (*com));
27018 	return (rval);
27019 }
27020 
27021 
27022 /*
27023  *    Function: sr_play_msf()
27024  *
27025  * Description: This routine is the driver entry point for handling CD-ROM
27026  *		ioctl requests to output the audio signals at the specified
27027  *		starting address and continue the audio play until the specified
27028  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27029  *		Frame (MSF) format.
27030  *
27031  *   Arguments: dev	- the device 'dev_t'
27032  *		data	- pointer to user provided audio msf structure,
27033  *		          specifying start/end addresses.
27034  *		flag	- this argument is a pass through to ddi_copyxxx()
27035  *		          directly from the mode argument of ioctl().
27036  *
27037  * Return Code: the code returned by sd_send_scsi_cmd()
27038  *		EFAULT if ddi_copyxxx() fails
27039  *		ENXIO if fail ddi_get_soft_state
27040  *		EINVAL if data pointer is NULL
27041  */
27042 
27043 static int
27044 sr_play_msf(dev_t dev, caddr_t data, int flag)
27045 {
27046 	struct sd_lun		*un;
27047 	struct uscsi_cmd	*com;
27048 	struct cdrom_msf	msf_struct;
27049 	struct cdrom_msf	*msf = &msf_struct;
27050 	char			cdb[CDB_GROUP1];
27051 	int			rval;
27052 
27053 	if (data == NULL) {
27054 		return (EINVAL);
27055 	}
27056 
27057 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27058 		return (ENXIO);
27059 	}
27060 
27061 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27062 		return (EFAULT);
27063 	}
27064 
27065 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27066 	bzero(cdb, CDB_GROUP1);
27067 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27068 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27069 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27070 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27071 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27072 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27073 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27074 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27075 	} else {
27076 		cdb[3] = msf->cdmsf_min0;
27077 		cdb[4] = msf->cdmsf_sec0;
27078 		cdb[5] = msf->cdmsf_frame0;
27079 		cdb[6] = msf->cdmsf_min1;
27080 		cdb[7] = msf->cdmsf_sec1;
27081 		cdb[8] = msf->cdmsf_frame1;
27082 	}
27083 	com->uscsi_cdb    = cdb;
27084 	com->uscsi_cdblen = CDB_GROUP1;
27085 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27086 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27087 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27088 	kmem_free(com, sizeof (*com));
27089 	return (rval);
27090 }
27091 
27092 
27093 /*
27094  *    Function: sr_play_trkind()
27095  *
27096  * Description: This routine is the driver entry point for handling CD-ROM
27097  *		ioctl requests to output the audio signals at the specified
27098  *		starting address and continue the audio play until the specified
27099  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27100  *		format.
27101  *
27102  *   Arguments: dev	- the device 'dev_t'
27103  *		data	- pointer to user provided audio track/index structure,
27104  *		          specifying start/end addresses.
27105  *		flag	- this argument is a pass through to ddi_copyxxx()
27106  *		          directly from the mode argument of ioctl().
27107  *
27108  * Return Code: the code returned by sd_send_scsi_cmd()
27109  *		EFAULT if ddi_copyxxx() fails
27110  *		ENXIO if fail ddi_get_soft_state
27111  *		EINVAL if data pointer is NULL
27112  */
27113 
27114 static int
27115 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27116 {
27117 	struct cdrom_ti		ti_struct;
27118 	struct cdrom_ti		*ti = &ti_struct;
27119 	struct uscsi_cmd	*com = NULL;
27120 	char			cdb[CDB_GROUP1];
27121 	int			rval;
27122 
27123 	if (data == NULL) {
27124 		return (EINVAL);
27125 	}
27126 
27127 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27128 		return (EFAULT);
27129 	}
27130 
27131 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27132 	bzero(cdb, CDB_GROUP1);
27133 	cdb[0] = SCMD_PLAYAUDIO_TI;
27134 	cdb[4] = ti->cdti_trk0;
27135 	cdb[5] = ti->cdti_ind0;
27136 	cdb[7] = ti->cdti_trk1;
27137 	cdb[8] = ti->cdti_ind1;
27138 	com->uscsi_cdb    = cdb;
27139 	com->uscsi_cdblen = CDB_GROUP1;
27140 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27141 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27142 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27143 	kmem_free(com, sizeof (*com));
27144 	return (rval);
27145 }
27146 
27147 
27148 /*
27149  *    Function: sr_read_all_subcodes()
27150  *
27151  * Description: This routine is the driver entry point for handling CD-ROM
27152  *		ioctl requests to return raw subcode data while the target is
27153  *		playing audio (CDROMSUBCODE).
27154  *
27155  *   Arguments: dev	- the device 'dev_t'
27156  *		data	- pointer to user provided cdrom subcode structure,
27157  *		          specifying the transfer length and address.
27158  *		flag	- this argument is a pass through to ddi_copyxxx()
27159  *		          directly from the mode argument of ioctl().
27160  *
27161  * Return Code: the code returned by sd_send_scsi_cmd()
27162  *		EFAULT if ddi_copyxxx() fails
27163  *		ENXIO if fail ddi_get_soft_state
27164  *		EINVAL if data pointer is NULL
27165  */
27166 
27167 static int
27168 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27169 {
27170 	struct sd_lun		*un = NULL;
27171 	struct uscsi_cmd	*com = NULL;
27172 	struct cdrom_subcode	*subcode = NULL;
27173 	int			rval;
27174 	size_t			buflen;
27175 	char			cdb[CDB_GROUP5];
27176 
27177 #ifdef _MULTI_DATAMODEL
27178 	/* To support ILP32 applications in an LP64 world */
27179 	struct cdrom_subcode32		cdrom_subcode32;
27180 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27181 #endif
27182 	if (data == NULL) {
27183 		return (EINVAL);
27184 	}
27185 
27186 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27187 		return (ENXIO);
27188 	}
27189 
27190 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27191 
27192 #ifdef _MULTI_DATAMODEL
27193 	switch (ddi_model_convert_from(flag & FMODELS)) {
27194 	case DDI_MODEL_ILP32:
27195 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27196 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27197 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27198 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27199 			return (EFAULT);
27200 		}
27201 		/* Convert the ILP32 uscsi data from the application to LP64 */
27202 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27203 		break;
27204 	case DDI_MODEL_NONE:
27205 		if (ddi_copyin(data, subcode,
27206 		    sizeof (struct cdrom_subcode), flag)) {
27207 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27208 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27209 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27210 			return (EFAULT);
27211 		}
27212 		break;
27213 	}
27214 #else /* ! _MULTI_DATAMODEL */
27215 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27216 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27217 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27218 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27219 		return (EFAULT);
27220 	}
27221 #endif /* _MULTI_DATAMODEL */
27222 
27223 	/*
27224 	 * Since MMC-2 expects max 3 bytes for length, check if the
27225 	 * length input is greater than 3 bytes
27226 	 */
27227 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27228 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27229 		    "sr_read_all_subcodes: "
27230 		    "cdrom transfer length too large: %d (limit %d)\n",
27231 		    subcode->cdsc_length, 0xFFFFFF);
27232 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27233 		return (EINVAL);
27234 	}
27235 
27236 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27237 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27238 	bzero(cdb, CDB_GROUP5);
27239 
27240 	if (un->un_f_mmc_cap == TRUE) {
27241 		cdb[0] = (char)SCMD_READ_CD;
27242 		cdb[2] = (char)0xff;
27243 		cdb[3] = (char)0xff;
27244 		cdb[4] = (char)0xff;
27245 		cdb[5] = (char)0xff;
27246 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27247 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27248 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27249 		cdb[10] = 1;
27250 	} else {
27251 		/*
27252 		 * Note: A vendor specific command (0xDF) is being used her to
27253 		 * request a read of all subcodes.
27254 		 */
27255 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27256 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27257 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27258 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27259 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27260 	}
27261 	com->uscsi_cdb	   = cdb;
27262 	com->uscsi_cdblen  = CDB_GROUP5;
27263 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27264 	com->uscsi_buflen  = buflen;
27265 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27266 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27267 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27268 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27269 	kmem_free(com, sizeof (*com));
27270 	return (rval);
27271 }
27272 
27273 
27274 /*
27275  *    Function: sr_read_subchannel()
27276  *
27277  * Description: This routine is the driver entry point for handling CD-ROM
27278  *		ioctl requests to return the Q sub-channel data of the CD
27279  *		current position block. (CDROMSUBCHNL) The data includes the
27280  *		track number, index number, absolute CD-ROM address (LBA or MSF
27281  *		format per the user) , track relative CD-ROM address (LBA or MSF
27282  *		format per the user), control data and audio status.
27283  *
27284  *   Arguments: dev	- the device 'dev_t'
27285  *		data	- pointer to user provided cdrom sub-channel structure
27286  *		flag	- this argument is a pass through to ddi_copyxxx()
27287  *		          directly from the mode argument of ioctl().
27288  *
27289  * Return Code: the code returned by sd_send_scsi_cmd()
27290  *		EFAULT if ddi_copyxxx() fails
27291  *		ENXIO if fail ddi_get_soft_state
27292  *		EINVAL if data pointer is NULL
27293  */
27294 
27295 static int
27296 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27297 {
27298 	struct sd_lun		*un;
27299 	struct uscsi_cmd	*com;
27300 	struct cdrom_subchnl	subchanel;
27301 	struct cdrom_subchnl	*subchnl = &subchanel;
27302 	char			cdb[CDB_GROUP1];
27303 	caddr_t			buffer;
27304 	int			rval;
27305 
27306 	if (data == NULL) {
27307 		return (EINVAL);
27308 	}
27309 
27310 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27311 	    (un->un_state == SD_STATE_OFFLINE)) {
27312 		return (ENXIO);
27313 	}
27314 
27315 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27316 		return (EFAULT);
27317 	}
27318 
27319 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27320 	bzero(cdb, CDB_GROUP1);
27321 	cdb[0] = SCMD_READ_SUBCHANNEL;
27322 	/* Set the MSF bit based on the user requested address format */
27323 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27324 	/*
27325 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27326 	 * returned
27327 	 */
27328 	cdb[2] = 0x40;
27329 	/*
27330 	 * Set byte 3 to specify the return data format. A value of 0x01
27331 	 * indicates that the CD-ROM current position should be returned.
27332 	 */
27333 	cdb[3] = 0x01;
27334 	cdb[8] = 0x10;
27335 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27336 	com->uscsi_cdb	   = cdb;
27337 	com->uscsi_cdblen  = CDB_GROUP1;
27338 	com->uscsi_bufaddr = buffer;
27339 	com->uscsi_buflen  = 16;
27340 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27341 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27342 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27343 	if (rval != 0) {
27344 		kmem_free(buffer, 16);
27345 		kmem_free(com, sizeof (*com));
27346 		return (rval);
27347 	}
27348 
27349 	/* Process the returned Q sub-channel data */
27350 	subchnl->cdsc_audiostatus = buffer[1];
27351 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27352 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27353 	subchnl->cdsc_trk	= buffer[6];
27354 	subchnl->cdsc_ind	= buffer[7];
27355 	if (subchnl->cdsc_format & CDROM_LBA) {
27356 		subchnl->cdsc_absaddr.lba =
27357 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27358 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27359 		subchnl->cdsc_reladdr.lba =
27360 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27361 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27362 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27363 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27364 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27365 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27366 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27367 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27368 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27369 	} else {
27370 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27371 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27372 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27373 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27374 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27375 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27376 	}
27377 	kmem_free(buffer, 16);
27378 	kmem_free(com, sizeof (*com));
27379 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27380 	    != 0) {
27381 		return (EFAULT);
27382 	}
27383 	return (rval);
27384 }
27385 
27386 
27387 /*
27388  *    Function: sr_read_tocentry()
27389  *
27390  * Description: This routine is the driver entry point for handling CD-ROM
27391  *		ioctl requests to read from the Table of Contents (TOC)
27392  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27393  *		fields, the starting address (LBA or MSF format per the user)
27394  *		and the data mode if the user specified track is a data track.
27395  *
27396  *		Note: The READ HEADER (0x44) command used in this routine is
27397  *		obsolete per the SCSI MMC spec but still supported in the
27398  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27399  *		therefore the command is still implemented in this routine.
27400  *
27401  *   Arguments: dev	- the device 'dev_t'
27402  *		data	- pointer to user provided toc entry structure,
27403  *			  specifying the track # and the address format
27404  *			  (LBA or MSF).
27405  *		flag	- this argument is a pass through to ddi_copyxxx()
27406  *		          directly from the mode argument of ioctl().
27407  *
27408  * Return Code: the code returned by sd_send_scsi_cmd()
27409  *		EFAULT if ddi_copyxxx() fails
27410  *		ENXIO if fail ddi_get_soft_state
27411  *		EINVAL if data pointer is NULL
27412  */
27413 
27414 static int
27415 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27416 {
27417 	struct sd_lun		*un = NULL;
27418 	struct uscsi_cmd	*com;
27419 	struct cdrom_tocentry	toc_entry;
27420 	struct cdrom_tocentry	*entry = &toc_entry;
27421 	caddr_t			buffer;
27422 	int			rval;
27423 	char			cdb[CDB_GROUP1];
27424 
27425 	if (data == NULL) {
27426 		return (EINVAL);
27427 	}
27428 
27429 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27430 	    (un->un_state == SD_STATE_OFFLINE)) {
27431 		return (ENXIO);
27432 	}
27433 
27434 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27435 		return (EFAULT);
27436 	}
27437 
27438 	/* Validate the requested track and address format */
27439 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27440 		return (EINVAL);
27441 	}
27442 
27443 	if (entry->cdte_track == 0) {
27444 		return (EINVAL);
27445 	}
27446 
27447 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27448 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27449 	bzero(cdb, CDB_GROUP1);
27450 
27451 	cdb[0] = SCMD_READ_TOC;
27452 	/* Set the MSF bit based on the user requested address format  */
27453 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27454 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27455 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27456 	} else {
27457 		cdb[6] = entry->cdte_track;
27458 	}
27459 
27460 	/*
27461 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27462 	 * (4 byte TOC response header + 8 byte track descriptor)
27463 	 */
27464 	cdb[8] = 12;
27465 	com->uscsi_cdb	   = cdb;
27466 	com->uscsi_cdblen  = CDB_GROUP1;
27467 	com->uscsi_bufaddr = buffer;
27468 	com->uscsi_buflen  = 0x0C;
27469 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27470 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27471 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27472 	if (rval != 0) {
27473 		kmem_free(buffer, 12);
27474 		kmem_free(com, sizeof (*com));
27475 		return (rval);
27476 	}
27477 
27478 	/* Process the toc entry */
27479 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27480 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27481 	if (entry->cdte_format & CDROM_LBA) {
27482 		entry->cdte_addr.lba =
27483 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27484 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27485 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27486 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27487 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27488 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27489 		/*
27490 		 * Send a READ TOC command using the LBA address format to get
27491 		 * the LBA for the track requested so it can be used in the
27492 		 * READ HEADER request
27493 		 *
27494 		 * Note: The MSF bit of the READ HEADER command specifies the
27495 		 * output format. The block address specified in that command
27496 		 * must be in LBA format.
27497 		 */
27498 		cdb[1] = 0;
27499 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27500 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27501 		if (rval != 0) {
27502 			kmem_free(buffer, 12);
27503 			kmem_free(com, sizeof (*com));
27504 			return (rval);
27505 		}
27506 	} else {
27507 		entry->cdte_addr.msf.minute	= buffer[9];
27508 		entry->cdte_addr.msf.second	= buffer[10];
27509 		entry->cdte_addr.msf.frame	= buffer[11];
27510 		/*
27511 		 * Send a READ TOC command using the LBA address format to get
27512 		 * the LBA for the track requested so it can be used in the
27513 		 * READ HEADER request
27514 		 *
27515 		 * Note: The MSF bit of the READ HEADER command specifies the
27516 		 * output format. The block address specified in that command
27517 		 * must be in LBA format.
27518 		 */
27519 		cdb[1] = 0;
27520 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27521 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27522 		if (rval != 0) {
27523 			kmem_free(buffer, 12);
27524 			kmem_free(com, sizeof (*com));
27525 			return (rval);
27526 		}
27527 	}
27528 
27529 	/*
27530 	 * Build and send the READ HEADER command to determine the data mode of
27531 	 * the user specified track.
27532 	 */
27533 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27534 	    (entry->cdte_track != CDROM_LEADOUT)) {
27535 		bzero(cdb, CDB_GROUP1);
27536 		cdb[0] = SCMD_READ_HEADER;
27537 		cdb[2] = buffer[8];
27538 		cdb[3] = buffer[9];
27539 		cdb[4] = buffer[10];
27540 		cdb[5] = buffer[11];
27541 		cdb[8] = 0x08;
27542 		com->uscsi_buflen = 0x08;
27543 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27544 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27545 		if (rval == 0) {
27546 			entry->cdte_datamode = buffer[0];
27547 		} else {
27548 			/*
27549 			 * READ HEADER command failed, since this is
27550 			 * obsoleted in one spec, its better to return
27551 			 * -1 for an invlid track so that we can still
27552 			 * recieve the rest of the TOC data.
27553 			 */
27554 			entry->cdte_datamode = (uchar_t)-1;
27555 		}
27556 	} else {
27557 		entry->cdte_datamode = (uchar_t)-1;
27558 	}
27559 
27560 	kmem_free(buffer, 12);
27561 	kmem_free(com, sizeof (*com));
27562 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27563 		return (EFAULT);
27564 
27565 	return (rval);
27566 }
27567 
27568 
27569 /*
27570  *    Function: sr_read_tochdr()
27571  *
27572  * Description: This routine is the driver entry point for handling CD-ROM
27573  * 		ioctl requests to read the Table of Contents (TOC) header
27574  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27575  *		and ending track numbers
27576  *
27577  *   Arguments: dev	- the device 'dev_t'
27578  *		data	- pointer to user provided toc header structure,
27579  *			  specifying the starting and ending track numbers.
27580  *		flag	- this argument is a pass through to ddi_copyxxx()
27581  *			  directly from the mode argument of ioctl().
27582  *
27583  * Return Code: the code returned by sd_send_scsi_cmd()
27584  *		EFAULT if ddi_copyxxx() fails
27585  *		ENXIO if fail ddi_get_soft_state
27586  *		EINVAL if data pointer is NULL
27587  */
27588 
27589 static int
27590 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27591 {
27592 	struct sd_lun		*un;
27593 	struct uscsi_cmd	*com;
27594 	struct cdrom_tochdr	toc_header;
27595 	struct cdrom_tochdr	*hdr = &toc_header;
27596 	char			cdb[CDB_GROUP1];
27597 	int			rval;
27598 	caddr_t			buffer;
27599 
27600 	if (data == NULL) {
27601 		return (EINVAL);
27602 	}
27603 
27604 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27605 	    (un->un_state == SD_STATE_OFFLINE)) {
27606 		return (ENXIO);
27607 	}
27608 
27609 	buffer = kmem_zalloc(4, KM_SLEEP);
27610 	bzero(cdb, CDB_GROUP1);
27611 	cdb[0] = SCMD_READ_TOC;
27612 	/*
27613 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27614 	 * that the TOC header should be returned
27615 	 */
27616 	cdb[6] = 0x00;
27617 	/*
27618 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27619 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27620 	 */
27621 	cdb[8] = 0x04;
27622 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27623 	com->uscsi_cdb	   = cdb;
27624 	com->uscsi_cdblen  = CDB_GROUP1;
27625 	com->uscsi_bufaddr = buffer;
27626 	com->uscsi_buflen  = 0x04;
27627 	com->uscsi_timeout = 300;
27628 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27629 
27630 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27631 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27632 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27633 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
27634 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
27635 	} else {
27636 		hdr->cdth_trk0 = buffer[2];
27637 		hdr->cdth_trk1 = buffer[3];
27638 	}
27639 	kmem_free(buffer, 4);
27640 	kmem_free(com, sizeof (*com));
27641 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
27642 		return (EFAULT);
27643 	}
27644 	return (rval);
27645 }
27646 
27647 
27648 /*
27649  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
27650  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
27651  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
27652  * digital audio and extended architecture digital audio. These modes are
27653  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
27654  * MMC specs.
27655  *
27656  * In addition to support for the various data formats these routines also
27657  * include support for devices that implement only the direct access READ
27658  * commands (0x08, 0x28), devices that implement the READ_CD commands
27659  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
27660  * READ CDXA commands (0xD8, 0xDB)
27661  */
27662 
27663 /*
27664  *    Function: sr_read_mode1()
27665  *
27666  * Description: This routine is the driver entry point for handling CD-ROM
27667  *		ioctl read mode1 requests (CDROMREADMODE1).
27668  *
27669  *   Arguments: dev	- the device 'dev_t'
27670  *		data	- pointer to user provided cd read structure specifying
27671  *			  the lba buffer address and length.
27672  *		flag	- this argument is a pass through to ddi_copyxxx()
27673  *			  directly from the mode argument of ioctl().
27674  *
27675  * Return Code: the code returned by sd_send_scsi_cmd()
27676  *		EFAULT if ddi_copyxxx() fails
27677  *		ENXIO if fail ddi_get_soft_state
27678  *		EINVAL if data pointer is NULL
27679  */
27680 
27681 static int
27682 sr_read_mode1(dev_t dev, caddr_t data, int flag)
27683 {
27684 	struct sd_lun		*un;
27685 	struct cdrom_read	mode1_struct;
27686 	struct cdrom_read	*mode1 = &mode1_struct;
27687 	int			rval;
27688 #ifdef _MULTI_DATAMODEL
27689 	/* To support ILP32 applications in an LP64 world */
27690 	struct cdrom_read32	cdrom_read32;
27691 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27692 #endif /* _MULTI_DATAMODEL */
27693 
27694 	if (data == NULL) {
27695 		return (EINVAL);
27696 	}
27697 
27698 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27699 	    (un->un_state == SD_STATE_OFFLINE)) {
27700 		return (ENXIO);
27701 	}
27702 
27703 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27704 	    "sd_read_mode1: entry: un:0x%p\n", un);
27705 
27706 #ifdef _MULTI_DATAMODEL
27707 	switch (ddi_model_convert_from(flag & FMODELS)) {
27708 	case DDI_MODEL_ILP32:
27709 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27710 			return (EFAULT);
27711 		}
27712 		/* Convert the ILP32 uscsi data from the application to LP64 */
27713 		cdrom_read32tocdrom_read(cdrd32, mode1);
27714 		break;
27715 	case DDI_MODEL_NONE:
27716 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27717 			return (EFAULT);
27718 		}
27719 	}
27720 #else /* ! _MULTI_DATAMODEL */
27721 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27722 		return (EFAULT);
27723 	}
27724 #endif /* _MULTI_DATAMODEL */
27725 
27726 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
27727 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
27728 
27729 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27730 	    "sd_read_mode1: exit: un:0x%p\n", un);
27731 
27732 	return (rval);
27733 }
27734 
27735 
27736 /*
27737  *    Function: sr_read_cd_mode2()
27738  *
27739  * Description: This routine is the driver entry point for handling CD-ROM
27740  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27741  *		support the READ CD (0xBE) command or the 1st generation
27742  *		READ CD (0xD4) command.
27743  *
27744  *   Arguments: dev	- the device 'dev_t'
27745  *		data	- pointer to user provided cd read structure specifying
27746  *			  the lba buffer address and length.
27747  *		flag	- this argument is a pass through to ddi_copyxxx()
27748  *			  directly from the mode argument of ioctl().
27749  *
27750  * Return Code: the code returned by sd_send_scsi_cmd()
27751  *		EFAULT if ddi_copyxxx() fails
27752  *		ENXIO if fail ddi_get_soft_state
27753  *		EINVAL if data pointer is NULL
27754  */
27755 
27756 static int
27757 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
27758 {
27759 	struct sd_lun		*un;
27760 	struct uscsi_cmd	*com;
27761 	struct cdrom_read	mode2_struct;
27762 	struct cdrom_read	*mode2 = &mode2_struct;
27763 	uchar_t			cdb[CDB_GROUP5];
27764 	int			nblocks;
27765 	int			rval;
27766 #ifdef _MULTI_DATAMODEL
27767 	/*  To support ILP32 applications in an LP64 world */
27768 	struct cdrom_read32	cdrom_read32;
27769 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27770 #endif /* _MULTI_DATAMODEL */
27771 
27772 	if (data == NULL) {
27773 		return (EINVAL);
27774 	}
27775 
27776 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27777 	    (un->un_state == SD_STATE_OFFLINE)) {
27778 		return (ENXIO);
27779 	}
27780 
27781 #ifdef _MULTI_DATAMODEL
27782 	switch (ddi_model_convert_from(flag & FMODELS)) {
27783 	case DDI_MODEL_ILP32:
27784 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27785 			return (EFAULT);
27786 		}
27787 		/* Convert the ILP32 uscsi data from the application to LP64 */
27788 		cdrom_read32tocdrom_read(cdrd32, mode2);
27789 		break;
27790 	case DDI_MODEL_NONE:
27791 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27792 			return (EFAULT);
27793 		}
27794 		break;
27795 	}
27796 
27797 #else /* ! _MULTI_DATAMODEL */
27798 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27799 		return (EFAULT);
27800 	}
27801 #endif /* _MULTI_DATAMODEL */
27802 
27803 	bzero(cdb, sizeof (cdb));
27804 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
27805 		/* Read command supported by 1st generation atapi drives */
27806 		cdb[0] = SCMD_READ_CDD4;
27807 	} else {
27808 		/* Universal CD Access Command */
27809 		cdb[0] = SCMD_READ_CD;
27810 	}
27811 
27812 	/*
27813 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
27814 	 */
27815 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
27816 
27817 	/* set the start address */
27818 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
27819 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
27820 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27821 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
27822 
27823 	/* set the transfer length */
27824 	nblocks = mode2->cdread_buflen / 2336;
27825 	cdb[6] = (uchar_t)(nblocks >> 16);
27826 	cdb[7] = (uchar_t)(nblocks >> 8);
27827 	cdb[8] = (uchar_t)nblocks;
27828 
27829 	/* set the filter bits */
27830 	cdb[9] = CDROM_READ_CD_USERDATA;
27831 
27832 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27833 	com->uscsi_cdb = (caddr_t)cdb;
27834 	com->uscsi_cdblen = sizeof (cdb);
27835 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27836 	com->uscsi_buflen = mode2->cdread_buflen;
27837 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27838 
27839 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27840 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27841 	kmem_free(com, sizeof (*com));
27842 	return (rval);
27843 }
27844 
27845 
27846 /*
27847  *    Function: sr_read_mode2()
27848  *
27849  * Description: This routine is the driver entry point for handling CD-ROM
27850  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27851  *		do not support the READ CD (0xBE) command.
27852  *
27853  *   Arguments: dev	- the device 'dev_t'
27854  *		data	- pointer to user provided cd read structure specifying
27855  *			  the lba buffer address and length.
27856  *		flag	- this argument is a pass through to ddi_copyxxx()
27857  *			  directly from the mode argument of ioctl().
27858  *
27859  * Return Code: the code returned by sd_send_scsi_cmd()
27860  *		EFAULT if ddi_copyxxx() fails
27861  *		ENXIO if fail ddi_get_soft_state
27862  *		EINVAL if data pointer is NULL
27863  *		EIO if fail to reset block size
27864  *		EAGAIN if commands are in progress in the driver
27865  */
27866 
27867 static int
27868 sr_read_mode2(dev_t dev, caddr_t data, int flag)
27869 {
27870 	struct sd_lun		*un;
27871 	struct cdrom_read	mode2_struct;
27872 	struct cdrom_read	*mode2 = &mode2_struct;
27873 	int			rval;
27874 	uint32_t		restore_blksize;
27875 	struct uscsi_cmd	*com;
27876 	uchar_t			cdb[CDB_GROUP0];
27877 	int			nblocks;
27878 
27879 #ifdef _MULTI_DATAMODEL
27880 	/* To support ILP32 applications in an LP64 world */
27881 	struct cdrom_read32	cdrom_read32;
27882 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27883 #endif /* _MULTI_DATAMODEL */
27884 
27885 	if (data == NULL) {
27886 		return (EINVAL);
27887 	}
27888 
27889 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27890 	    (un->un_state == SD_STATE_OFFLINE)) {
27891 		return (ENXIO);
27892 	}
27893 
27894 	/*
27895 	 * Because this routine will update the device and driver block size
27896 	 * being used we want to make sure there are no commands in progress.
27897 	 * If commands are in progress the user will have to try again.
27898 	 *
27899 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
27900 	 * in sdioctl to protect commands from sdioctl through to the top of
27901 	 * sd_uscsi_strategy. See sdioctl for details.
27902 	 */
27903 	mutex_enter(SD_MUTEX(un));
27904 	if (un->un_ncmds_in_driver != 1) {
27905 		mutex_exit(SD_MUTEX(un));
27906 		return (EAGAIN);
27907 	}
27908 	mutex_exit(SD_MUTEX(un));
27909 
27910 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27911 	    "sd_read_mode2: entry: un:0x%p\n", un);
27912 
27913 #ifdef _MULTI_DATAMODEL
27914 	switch (ddi_model_convert_from(flag & FMODELS)) {
27915 	case DDI_MODEL_ILP32:
27916 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27917 			return (EFAULT);
27918 		}
27919 		/* Convert the ILP32 uscsi data from the application to LP64 */
27920 		cdrom_read32tocdrom_read(cdrd32, mode2);
27921 		break;
27922 	case DDI_MODEL_NONE:
27923 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27924 			return (EFAULT);
27925 		}
27926 		break;
27927 	}
27928 #else /* ! _MULTI_DATAMODEL */
27929 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
27930 		return (EFAULT);
27931 	}
27932 #endif /* _MULTI_DATAMODEL */
27933 
27934 	/* Store the current target block size for restoration later */
27935 	restore_blksize = un->un_tgt_blocksize;
27936 
27937 	/* Change the device and soft state target block size to 2336 */
27938 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
27939 		rval = EIO;
27940 		goto done;
27941 	}
27942 
27943 
27944 	bzero(cdb, sizeof (cdb));
27945 
27946 	/* set READ operation */
27947 	cdb[0] = SCMD_READ;
27948 
27949 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
27950 	mode2->cdread_lba >>= 2;
27951 
27952 	/* set the start address */
27953 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
27954 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27955 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
27956 
27957 	/* set the transfer length */
27958 	nblocks = mode2->cdread_buflen / 2336;
27959 	cdb[4] = (uchar_t)nblocks & 0xFF;
27960 
27961 	/* build command */
27962 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27963 	com->uscsi_cdb = (caddr_t)cdb;
27964 	com->uscsi_cdblen = sizeof (cdb);
27965 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27966 	com->uscsi_buflen = mode2->cdread_buflen;
27967 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27968 
27969 	/*
27970 	 * Issue SCSI command with user space address for read buffer.
27971 	 *
27972 	 * This sends the command through main channel in the driver.
27973 	 *
27974 	 * Since this is accessed via an IOCTL call, we go through the
27975 	 * standard path, so that if the device was powered down, then
27976 	 * it would be 'awakened' to handle the command.
27977 	 */
27978 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27979 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27980 
27981 	kmem_free(com, sizeof (*com));
27982 
27983 	/* Restore the device and soft state target block size */
27984 	if (sr_sector_mode(dev, restore_blksize) != 0) {
27985 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27986 		    "can't do switch back to mode 1\n");
27987 		/*
27988 		 * If sd_send_scsi_READ succeeded we still need to report
27989 		 * an error because we failed to reset the block size
27990 		 */
27991 		if (rval == 0) {
27992 			rval = EIO;
27993 		}
27994 	}
27995 
27996 done:
27997 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27998 	    "sd_read_mode2: exit: un:0x%p\n", un);
27999 
28000 	return (rval);
28001 }
28002 
28003 
28004 /*
28005  *    Function: sr_sector_mode()
28006  *
28007  * Description: This utility function is used by sr_read_mode2 to set the target
28008  *		block size based on the user specified size. This is a legacy
28009  *		implementation based upon a vendor specific mode page
28010  *
28011  *   Arguments: dev	- the device 'dev_t'
28012  *		data	- flag indicating if block size is being set to 2336 or
28013  *			  512.
28014  *
28015  * Return Code: the code returned by sd_send_scsi_cmd()
28016  *		EFAULT if ddi_copyxxx() fails
28017  *		ENXIO if fail ddi_get_soft_state
28018  *		EINVAL if data pointer is NULL
28019  */
28020 
28021 static int
28022 sr_sector_mode(dev_t dev, uint32_t blksize)
28023 {
28024 	struct sd_lun	*un;
28025 	uchar_t		*sense;
28026 	uchar_t		*select;
28027 	int		rval;
28028 
28029 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28030 	    (un->un_state == SD_STATE_OFFLINE)) {
28031 		return (ENXIO);
28032 	}
28033 
28034 	sense = kmem_zalloc(20, KM_SLEEP);
28035 
28036 	/* Note: This is a vendor specific mode page (0x81) */
28037 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
28038 	    SD_PATH_STANDARD)) != 0) {
28039 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28040 		    "sr_sector_mode: Mode Sense failed\n");
28041 		kmem_free(sense, 20);
28042 		return (rval);
28043 	}
28044 	select = kmem_zalloc(20, KM_SLEEP);
28045 	select[3] = 0x08;
28046 	select[10] = ((blksize >> 8) & 0xff);
28047 	select[11] = (blksize & 0xff);
28048 	select[12] = 0x01;
28049 	select[13] = 0x06;
28050 	select[14] = sense[14];
28051 	select[15] = sense[15];
28052 	if (blksize == SD_MODE2_BLKSIZE) {
28053 		select[14] |= 0x01;
28054 	}
28055 
28056 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
28057 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
28058 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28059 		    "sr_sector_mode: Mode Select failed\n");
28060 	} else {
28061 		/*
28062 		 * Only update the softstate block size if we successfully
28063 		 * changed the device block mode.
28064 		 */
28065 		mutex_enter(SD_MUTEX(un));
28066 		sd_update_block_info(un, blksize, 0);
28067 		mutex_exit(SD_MUTEX(un));
28068 	}
28069 	kmem_free(sense, 20);
28070 	kmem_free(select, 20);
28071 	return (rval);
28072 }
28073 
28074 
28075 /*
28076  *    Function: sr_read_cdda()
28077  *
28078  * Description: This routine is the driver entry point for handling CD-ROM
28079  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28080  *		the target supports CDDA these requests are handled via a vendor
28081  *		specific command (0xD8) If the target does not support CDDA
28082  *		these requests are handled via the READ CD command (0xBE).
28083  *
28084  *   Arguments: dev	- the device 'dev_t'
28085  *		data	- pointer to user provided CD-DA structure specifying
28086  *			  the track starting address, transfer length, and
28087  *			  subcode options.
28088  *		flag	- this argument is a pass through to ddi_copyxxx()
28089  *			  directly from the mode argument of ioctl().
28090  *
28091  * Return Code: the code returned by sd_send_scsi_cmd()
28092  *		EFAULT if ddi_copyxxx() fails
28093  *		ENXIO if fail ddi_get_soft_state
28094  *		EINVAL if invalid arguments are provided
28095  *		ENOTTY
28096  */
28097 
28098 static int
28099 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28100 {
28101 	struct sd_lun			*un;
28102 	struct uscsi_cmd		*com;
28103 	struct cdrom_cdda		*cdda;
28104 	int				rval;
28105 	size_t				buflen;
28106 	char				cdb[CDB_GROUP5];
28107 
28108 #ifdef _MULTI_DATAMODEL
28109 	/* To support ILP32 applications in an LP64 world */
28110 	struct cdrom_cdda32	cdrom_cdda32;
28111 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28112 #endif /* _MULTI_DATAMODEL */
28113 
28114 	if (data == NULL) {
28115 		return (EINVAL);
28116 	}
28117 
28118 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28119 		return (ENXIO);
28120 	}
28121 
28122 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28123 
28124 #ifdef _MULTI_DATAMODEL
28125 	switch (ddi_model_convert_from(flag & FMODELS)) {
28126 	case DDI_MODEL_ILP32:
28127 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28128 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28129 			    "sr_read_cdda: ddi_copyin Failed\n");
28130 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28131 			return (EFAULT);
28132 		}
28133 		/* Convert the ILP32 uscsi data from the application to LP64 */
28134 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28135 		break;
28136 	case DDI_MODEL_NONE:
28137 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28138 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28139 			    "sr_read_cdda: ddi_copyin Failed\n");
28140 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28141 			return (EFAULT);
28142 		}
28143 		break;
28144 	}
28145 #else /* ! _MULTI_DATAMODEL */
28146 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28147 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28148 		    "sr_read_cdda: ddi_copyin Failed\n");
28149 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28150 		return (EFAULT);
28151 	}
28152 #endif /* _MULTI_DATAMODEL */
28153 
28154 	/*
28155 	 * Since MMC-2 expects max 3 bytes for length, check if the
28156 	 * length input is greater than 3 bytes
28157 	 */
28158 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28159 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28160 		    "cdrom transfer length too large: %d (limit %d)\n",
28161 		    cdda->cdda_length, 0xFFFFFF);
28162 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28163 		return (EINVAL);
28164 	}
28165 
28166 	switch (cdda->cdda_subcode) {
28167 	case CDROM_DA_NO_SUBCODE:
28168 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28169 		break;
28170 	case CDROM_DA_SUBQ:
28171 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28172 		break;
28173 	case CDROM_DA_ALL_SUBCODE:
28174 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28175 		break;
28176 	case CDROM_DA_SUBCODE_ONLY:
28177 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28178 		break;
28179 	default:
28180 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28181 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28182 		    cdda->cdda_subcode);
28183 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28184 		return (EINVAL);
28185 	}
28186 
28187 	/* Build and send the command */
28188 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28189 	bzero(cdb, CDB_GROUP5);
28190 
28191 	if (un->un_f_cfg_cdda == TRUE) {
28192 		cdb[0] = (char)SCMD_READ_CD;
28193 		cdb[1] = 0x04;
28194 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28195 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28196 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28197 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28198 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28199 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28200 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28201 		cdb[9] = 0x10;
28202 		switch (cdda->cdda_subcode) {
28203 		case CDROM_DA_NO_SUBCODE :
28204 			cdb[10] = 0x0;
28205 			break;
28206 		case CDROM_DA_SUBQ :
28207 			cdb[10] = 0x2;
28208 			break;
28209 		case CDROM_DA_ALL_SUBCODE :
28210 			cdb[10] = 0x1;
28211 			break;
28212 		case CDROM_DA_SUBCODE_ONLY :
28213 			/* FALLTHROUGH */
28214 		default :
28215 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28216 			kmem_free(com, sizeof (*com));
28217 			return (ENOTTY);
28218 		}
28219 	} else {
28220 		cdb[0] = (char)SCMD_READ_CDDA;
28221 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28222 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28223 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28224 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28225 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28226 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28227 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28228 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28229 		cdb[10] = cdda->cdda_subcode;
28230 	}
28231 
28232 	com->uscsi_cdb = cdb;
28233 	com->uscsi_cdblen = CDB_GROUP5;
28234 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28235 	com->uscsi_buflen = buflen;
28236 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28237 
28238 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28239 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28240 
28241 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28242 	kmem_free(com, sizeof (*com));
28243 	return (rval);
28244 }
28245 
28246 
28247 /*
28248  *    Function: sr_read_cdxa()
28249  *
28250  * Description: This routine is the driver entry point for handling CD-ROM
28251  *		ioctl requests to return CD-XA (Extended Architecture) data.
28252  *		(CDROMCDXA).
28253  *
28254  *   Arguments: dev	- the device 'dev_t'
28255  *		data	- pointer to user provided CD-XA structure specifying
28256  *			  the data starting address, transfer length, and format
28257  *		flag	- this argument is a pass through to ddi_copyxxx()
28258  *			  directly from the mode argument of ioctl().
28259  *
28260  * Return Code: the code returned by sd_send_scsi_cmd()
28261  *		EFAULT if ddi_copyxxx() fails
28262  *		ENXIO if fail ddi_get_soft_state
28263  *		EINVAL if data pointer is NULL
28264  */
28265 
28266 static int
28267 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28268 {
28269 	struct sd_lun		*un;
28270 	struct uscsi_cmd	*com;
28271 	struct cdrom_cdxa	*cdxa;
28272 	int			rval;
28273 	size_t			buflen;
28274 	char			cdb[CDB_GROUP5];
28275 	uchar_t			read_flags;
28276 
28277 #ifdef _MULTI_DATAMODEL
28278 	/* To support ILP32 applications in an LP64 world */
28279 	struct cdrom_cdxa32		cdrom_cdxa32;
28280 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28281 #endif /* _MULTI_DATAMODEL */
28282 
28283 	if (data == NULL) {
28284 		return (EINVAL);
28285 	}
28286 
28287 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28288 		return (ENXIO);
28289 	}
28290 
28291 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28292 
28293 #ifdef _MULTI_DATAMODEL
28294 	switch (ddi_model_convert_from(flag & FMODELS)) {
28295 	case DDI_MODEL_ILP32:
28296 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28297 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28298 			return (EFAULT);
28299 		}
28300 		/*
28301 		 * Convert the ILP32 uscsi data from the
28302 		 * application to LP64 for internal use.
28303 		 */
28304 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28305 		break;
28306 	case DDI_MODEL_NONE:
28307 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28308 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28309 			return (EFAULT);
28310 		}
28311 		break;
28312 	}
28313 #else /* ! _MULTI_DATAMODEL */
28314 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28315 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28316 		return (EFAULT);
28317 	}
28318 #endif /* _MULTI_DATAMODEL */
28319 
28320 	/*
28321 	 * Since MMC-2 expects max 3 bytes for length, check if the
28322 	 * length input is greater than 3 bytes
28323 	 */
28324 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28325 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28326 		    "cdrom transfer length too large: %d (limit %d)\n",
28327 		    cdxa->cdxa_length, 0xFFFFFF);
28328 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28329 		return (EINVAL);
28330 	}
28331 
28332 	switch (cdxa->cdxa_format) {
28333 	case CDROM_XA_DATA:
28334 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28335 		read_flags = 0x10;
28336 		break;
28337 	case CDROM_XA_SECTOR_DATA:
28338 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28339 		read_flags = 0xf8;
28340 		break;
28341 	case CDROM_XA_DATA_W_ERROR:
28342 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28343 		read_flags = 0xfc;
28344 		break;
28345 	default:
28346 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28347 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28348 		    cdxa->cdxa_format);
28349 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28350 		return (EINVAL);
28351 	}
28352 
28353 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28354 	bzero(cdb, CDB_GROUP5);
28355 	if (un->un_f_mmc_cap == TRUE) {
28356 		cdb[0] = (char)SCMD_READ_CD;
28357 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28358 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28359 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28360 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28361 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28362 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28363 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28364 		cdb[9] = (char)read_flags;
28365 	} else {
28366 		/*
28367 		 * Note: A vendor specific command (0xDB) is being used her to
28368 		 * request a read of all subcodes.
28369 		 */
28370 		cdb[0] = (char)SCMD_READ_CDXA;
28371 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28372 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28373 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28374 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28375 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28376 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28377 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28378 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28379 		cdb[10] = cdxa->cdxa_format;
28380 	}
28381 	com->uscsi_cdb	   = cdb;
28382 	com->uscsi_cdblen  = CDB_GROUP5;
28383 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28384 	com->uscsi_buflen  = buflen;
28385 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28386 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28387 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28388 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28389 	kmem_free(com, sizeof (*com));
28390 	return (rval);
28391 }
28392 
28393 
28394 /*
28395  *    Function: sr_eject()
28396  *
28397  * Description: This routine is the driver entry point for handling CD-ROM
28398  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28399  *
28400  *   Arguments: dev	- the device 'dev_t'
28401  *
28402  * Return Code: the code returned by sd_send_scsi_cmd()
28403  */
28404 
28405 static int
28406 sr_eject(dev_t dev)
28407 {
28408 	struct sd_lun	*un;
28409 	int		rval;
28410 
28411 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28412 	    (un->un_state == SD_STATE_OFFLINE)) {
28413 		return (ENXIO);
28414 	}
28415 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
28416 	    SD_PATH_STANDARD)) != 0) {
28417 		return (rval);
28418 	}
28419 
28420 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
28421 	    SD_PATH_STANDARD);
28422 
28423 	if (rval == 0) {
28424 		mutex_enter(SD_MUTEX(un));
28425 		sr_ejected(un);
28426 		un->un_mediastate = DKIO_EJECTED;
28427 		cv_broadcast(&un->un_state_cv);
28428 		mutex_exit(SD_MUTEX(un));
28429 	}
28430 	return (rval);
28431 }
28432 
28433 
28434 /*
28435  *    Function: sr_ejected()
28436  *
28437  * Description: This routine updates the soft state structure to invalidate the
28438  *		geometry information after the media has been ejected or a
28439  *		media eject has been detected.
28440  *
28441  *   Arguments: un - driver soft state (unit) structure
28442  */
28443 
28444 static void
28445 sr_ejected(struct sd_lun *un)
28446 {
28447 	struct sd_errstats *stp;
28448 
28449 	ASSERT(un != NULL);
28450 	ASSERT(mutex_owned(SD_MUTEX(un)));
28451 
28452 	un->un_f_blockcount_is_valid	= FALSE;
28453 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28454 	un->un_f_geometry_is_valid	= FALSE;
28455 
28456 	if (un->un_errstats != NULL) {
28457 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28458 		stp->sd_capacity.value.ui64 = 0;
28459 	}
28460 }
28461 
28462 
28463 /*
28464  *    Function: sr_check_wp()
28465  *
28466  * Description: This routine checks the write protection of a removable media
28467  *		disk via the write protect bit of the Mode Page Header device
28468  *		specific field.  This routine has been implemented to use the
28469  *		error recovery mode page for all device types.
28470  *		Note: In the future use a sd_send_scsi_MODE_SENSE() routine
28471  *
28472  *   Arguments: dev		- the device 'dev_t'
28473  *
28474  * Return Code: int indicating if the device is write protected (1) or not (0)
28475  *
28476  *     Context: Kernel thread.
28477  *
28478  */
28479 
28480 static int
28481 sr_check_wp(dev_t dev)
28482 {
28483 	struct sd_lun	*un;
28484 	uchar_t		device_specific;
28485 	uchar_t		*sense;
28486 	int		hdrlen;
28487 	int		rval;
28488 	int		retry_flag = FALSE;
28489 
28490 	/*
28491 	 * Note: The return codes for this routine should be reworked to
28492 	 * properly handle the case of a NULL softstate.
28493 	 */
28494 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28495 		return (FALSE);
28496 	}
28497 
28498 	if (un->un_f_cfg_is_atapi == TRUE) {
28499 		retry_flag = TRUE;
28500 	}
28501 
28502 retry:
28503 	if (un->un_f_cfg_is_atapi == TRUE) {
28504 		/*
28505 		 * The mode page contents are not required; set the allocation
28506 		 * length for the mode page header only
28507 		 */
28508 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28509 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28510 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
28511 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28512 		device_specific =
28513 		    ((struct mode_header_grp2 *)sense)->device_specific;
28514 	} else {
28515 		hdrlen = MODE_HEADER_LENGTH;
28516 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28517 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
28518 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28519 		device_specific =
28520 		    ((struct mode_header *)sense)->device_specific;
28521 	}
28522 
28523 	if (rval != 0) {
28524 		if ((un->un_f_cfg_is_atapi == TRUE) && (retry_flag)) {
28525 			/*
28526 			 * For an Atapi Zip drive, observed the drive
28527 			 * reporting check condition for the first attempt.
28528 			 * Sense data indicating power on or bus device/reset.
28529 			 * Hence in case of failure need to try at least once
28530 			 * for Atapi devices.
28531 			 */
28532 			retry_flag = FALSE;
28533 			kmem_free(sense, hdrlen);
28534 			goto retry;
28535 		} else {
28536 			/*
28537 			 * Write protect mode sense failed; not all disks
28538 			 * understand this query. Return FALSE assuming that
28539 			 * these devices are not writable.
28540 			 */
28541 			rval = FALSE;
28542 		}
28543 	} else {
28544 		if (device_specific & WRITE_PROTECT) {
28545 			rval = TRUE;
28546 		} else {
28547 			rval = FALSE;
28548 		}
28549 	}
28550 	kmem_free(sense, hdrlen);
28551 	return (rval);
28552 }
28553 
28554 
28555 /*
28556  *    Function: sr_volume_ctrl()
28557  *
28558  * Description: This routine is the driver entry point for handling CD-ROM
28559  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28560  *
28561  *   Arguments: dev	- the device 'dev_t'
28562  *		data	- pointer to user audio volume control structure
28563  *		flag	- this argument is a pass through to ddi_copyxxx()
28564  *			  directly from the mode argument of ioctl().
28565  *
28566  * Return Code: the code returned by sd_send_scsi_cmd()
28567  *		EFAULT if ddi_copyxxx() fails
28568  *		ENXIO if fail ddi_get_soft_state
28569  *		EINVAL if data pointer is NULL
28570  *
28571  */
28572 
28573 static int
28574 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28575 {
28576 	struct sd_lun		*un;
28577 	struct cdrom_volctrl    volume;
28578 	struct cdrom_volctrl    *vol = &volume;
28579 	uchar_t			*sense_page;
28580 	uchar_t			*select_page;
28581 	uchar_t			*sense;
28582 	uchar_t			*select;
28583 	int			sense_buflen;
28584 	int			select_buflen;
28585 	int			rval;
28586 
28587 	if (data == NULL) {
28588 		return (EINVAL);
28589 	}
28590 
28591 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28592 	    (un->un_state == SD_STATE_OFFLINE)) {
28593 		return (ENXIO);
28594 	}
28595 
28596 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
28597 		return (EFAULT);
28598 	}
28599 
28600 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28601 		struct mode_header_grp2		*sense_mhp;
28602 		struct mode_header_grp2		*select_mhp;
28603 		int				bd_len;
28604 
28605 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
28606 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
28607 		    MODEPAGE_AUDIO_CTRL_LEN;
28608 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28609 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28610 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
28611 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28612 		    SD_PATH_STANDARD)) != 0) {
28613 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28614 			    "sr_volume_ctrl: Mode Sense Failed\n");
28615 			kmem_free(sense, sense_buflen);
28616 			kmem_free(select, select_buflen);
28617 			return (rval);
28618 		}
28619 		sense_mhp = (struct mode_header_grp2 *)sense;
28620 		select_mhp = (struct mode_header_grp2 *)select;
28621 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
28622 		    sense_mhp->bdesc_length_lo;
28623 		if (bd_len > MODE_BLK_DESC_LENGTH) {
28624 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28625 			    "sr_volume_ctrl: Mode Sense returned invalid "
28626 			    "block descriptor length\n");
28627 			kmem_free(sense, sense_buflen);
28628 			kmem_free(select, select_buflen);
28629 			return (EIO);
28630 		}
28631 		sense_page = (uchar_t *)
28632 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
28633 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
28634 		select_mhp->length_msb = 0;
28635 		select_mhp->length_lsb = 0;
28636 		select_mhp->bdesc_length_hi = 0;
28637 		select_mhp->bdesc_length_lo = 0;
28638 	} else {
28639 		struct mode_header		*sense_mhp, *select_mhp;
28640 
28641 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28642 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28643 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28644 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28645 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
28646 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28647 		    SD_PATH_STANDARD)) != 0) {
28648 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28649 			    "sr_volume_ctrl: Mode Sense Failed\n");
28650 			kmem_free(sense, sense_buflen);
28651 			kmem_free(select, select_buflen);
28652 			return (rval);
28653 		}
28654 		sense_mhp  = (struct mode_header *)sense;
28655 		select_mhp = (struct mode_header *)select;
28656 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
28657 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28658 			    "sr_volume_ctrl: Mode Sense returned invalid "
28659 			    "block descriptor length\n");
28660 			kmem_free(sense, sense_buflen);
28661 			kmem_free(select, select_buflen);
28662 			return (EIO);
28663 		}
28664 		sense_page = (uchar_t *)
28665 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
28666 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
28667 		select_mhp->length = 0;
28668 		select_mhp->bdesc_length = 0;
28669 	}
28670 	/*
28671 	 * Note: An audio control data structure could be created and overlayed
28672 	 * on the following in place of the array indexing method implemented.
28673 	 */
28674 
28675 	/* Build the select data for the user volume data */
28676 	select_page[0] = MODEPAGE_AUDIO_CTRL;
28677 	select_page[1] = 0xE;
28678 	/* Set the immediate bit */
28679 	select_page[2] = 0x04;
28680 	/* Zero out reserved fields */
28681 	select_page[3] = 0x00;
28682 	select_page[4] = 0x00;
28683 	/* Return sense data for fields not to be modified */
28684 	select_page[5] = sense_page[5];
28685 	select_page[6] = sense_page[6];
28686 	select_page[7] = sense_page[7];
28687 	/* Set the user specified volume levels for channel 0 and 1 */
28688 	select_page[8] = 0x01;
28689 	select_page[9] = vol->channel0;
28690 	select_page[10] = 0x02;
28691 	select_page[11] = vol->channel1;
28692 	/* Channel 2 and 3 are currently unsupported so return the sense data */
28693 	select_page[12] = sense_page[12];
28694 	select_page[13] = sense_page[13];
28695 	select_page[14] = sense_page[14];
28696 	select_page[15] = sense_page[15];
28697 
28698 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28699 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
28700 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28701 	} else {
28702 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
28703 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28704 	}
28705 
28706 	kmem_free(sense, sense_buflen);
28707 	kmem_free(select, select_buflen);
28708 	return (rval);
28709 }
28710 
28711 
28712 /*
28713  *    Function: sr_read_sony_session_offset()
28714  *
28715  * Description: This routine is the driver entry point for handling CD-ROM
28716  *		ioctl requests for session offset information. (CDROMREADOFFSET)
28717  *		The address of the first track in the last session of a
28718  *		multi-session CD-ROM is returned
28719  *
28720  *		Note: This routine uses a vendor specific key value in the
28721  *		command control field without implementing any vendor check here
28722  *		or in the ioctl routine.
28723  *
28724  *   Arguments: dev	- the device 'dev_t'
28725  *		data	- pointer to an int to hold the requested address
28726  *		flag	- this argument is a pass through to ddi_copyxxx()
28727  *			  directly from the mode argument of ioctl().
28728  *
28729  * Return Code: the code returned by sd_send_scsi_cmd()
28730  *		EFAULT if ddi_copyxxx() fails
28731  *		ENXIO if fail ddi_get_soft_state
28732  *		EINVAL if data pointer is NULL
28733  */
28734 
28735 static int
28736 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
28737 {
28738 	struct sd_lun		*un;
28739 	struct uscsi_cmd	*com;
28740 	caddr_t			buffer;
28741 	char			cdb[CDB_GROUP1];
28742 	int			session_offset = 0;
28743 	int			rval;
28744 
28745 	if (data == NULL) {
28746 		return (EINVAL);
28747 	}
28748 
28749 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28750 	    (un->un_state == SD_STATE_OFFLINE)) {
28751 		return (ENXIO);
28752 	}
28753 
28754 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
28755 	bzero(cdb, CDB_GROUP1);
28756 	cdb[0] = SCMD_READ_TOC;
28757 	/*
28758 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28759 	 * (4 byte TOC response header + 8 byte response data)
28760 	 */
28761 	cdb[8] = SONY_SESSION_OFFSET_LEN;
28762 	/* Byte 9 is the control byte. A vendor specific value is used */
28763 	cdb[9] = SONY_SESSION_OFFSET_KEY;
28764 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28765 	com->uscsi_cdb = cdb;
28766 	com->uscsi_cdblen = CDB_GROUP1;
28767 	com->uscsi_bufaddr = buffer;
28768 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
28769 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28770 
28771 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28772 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28773 	if (rval != 0) {
28774 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28775 		kmem_free(com, sizeof (*com));
28776 		return (rval);
28777 	}
28778 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
28779 		session_offset =
28780 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28781 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28782 		/*
28783 		 * Offset returned offset in current lbasize block's. Convert to
28784 		 * 2k block's to return to the user
28785 		 */
28786 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
28787 			session_offset >>= 2;
28788 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
28789 			session_offset >>= 1;
28790 		}
28791 	}
28792 
28793 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
28794 		rval = EFAULT;
28795 	}
28796 
28797 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28798 	kmem_free(com, sizeof (*com));
28799 	return (rval);
28800 }
28801 
28802 
28803 /*
28804  *    Function: sd_wm_cache_constructor()
28805  *
28806  * Description: Cache Constructor for the wmap cache for the read/modify/write
28807  * 		devices.
28808  *
28809  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28810  *		un	- sd_lun structure for the device.
28811  *		flag	- the km flags passed to constructor
28812  *
28813  * Return Code: 0 on success.
28814  *		-1 on failure.
28815  */
28816 
28817 /*ARGSUSED*/
28818 static int
28819 sd_wm_cache_constructor(void *wm, void *un, int flags)
28820 {
28821 	bzero(wm, sizeof (struct sd_w_map));
28822 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
28823 	return (0);
28824 }
28825 
28826 
28827 /*
28828  *    Function: sd_wm_cache_destructor()
28829  *
28830  * Description: Cache destructor for the wmap cache for the read/modify/write
28831  * 		devices.
28832  *
28833  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28834  *		un	- sd_lun structure for the device.
28835  */
28836 /*ARGSUSED*/
28837 static void
28838 sd_wm_cache_destructor(void *wm, void *un)
28839 {
28840 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
28841 }
28842 
28843 
28844 /*
28845  *    Function: sd_range_lock()
28846  *
28847  * Description: Lock the range of blocks specified as parameter to ensure
28848  *		that read, modify write is atomic and no other i/o writes
28849  *		to the same location. The range is specified in terms
28850  *		of start and end blocks. Block numbers are the actual
28851  *		media block numbers and not system.
28852  *
28853  *   Arguments: un	- sd_lun structure for the device.
28854  *		startb - The starting block number
28855  *		endb - The end block number
28856  *		typ - type of i/o - simple/read_modify_write
28857  *
28858  * Return Code: wm  - pointer to the wmap structure.
28859  *
28860  *     Context: This routine can sleep.
28861  */
28862 
28863 static struct sd_w_map *
28864 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
28865 {
28866 	struct sd_w_map *wmp = NULL;
28867 	struct sd_w_map *sl_wmp = NULL;
28868 	struct sd_w_map *tmp_wmp;
28869 	wm_state state = SD_WM_CHK_LIST;
28870 
28871 
28872 	ASSERT(un != NULL);
28873 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28874 
28875 	mutex_enter(SD_MUTEX(un));
28876 
28877 	while (state != SD_WM_DONE) {
28878 
28879 		switch (state) {
28880 		case SD_WM_CHK_LIST:
28881 			/*
28882 			 * This is the starting state. Check the wmap list
28883 			 * to see if the range is currently available.
28884 			 */
28885 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28886 				/*
28887 				 * If this is a simple write and no rmw
28888 				 * i/o is pending then try to lock the
28889 				 * range as the range should be available.
28890 				 */
28891 				state = SD_WM_LOCK_RANGE;
28892 			} else {
28893 				tmp_wmp = sd_get_range(un, startb, endb);
28894 				if (tmp_wmp != NULL) {
28895 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28896 						/*
28897 						 * Should not keep onlist wmps
28898 						 * while waiting this macro
28899 						 * will also do wmp = NULL;
28900 						 */
28901 						FREE_ONLIST_WMAP(un, wmp);
28902 					}
28903 					/*
28904 					 * sl_wmp is the wmap on which wait
28905 					 * is done, since the tmp_wmp points
28906 					 * to the inuse wmap, set sl_wmp to
28907 					 * tmp_wmp and change the state to sleep
28908 					 */
28909 					sl_wmp = tmp_wmp;
28910 					state = SD_WM_WAIT_MAP;
28911 				} else {
28912 					state = SD_WM_LOCK_RANGE;
28913 				}
28914 
28915 			}
28916 			break;
28917 
28918 		case SD_WM_LOCK_RANGE:
28919 			ASSERT(un->un_wm_cache);
28920 			/*
28921 			 * The range need to be locked, try to get a wmap.
28922 			 * First attempt it with NO_SLEEP, want to avoid a sleep
28923 			 * if possible as we will have to release the sd mutex
28924 			 * if we have to sleep.
28925 			 */
28926 			if (wmp == NULL)
28927 				wmp = kmem_cache_alloc(un->un_wm_cache,
28928 				    KM_NOSLEEP);
28929 			if (wmp == NULL) {
28930 				mutex_exit(SD_MUTEX(un));
28931 				_NOTE(DATA_READABLE_WITHOUT_LOCK
28932 				    (sd_lun::un_wm_cache))
28933 				wmp = kmem_cache_alloc(un->un_wm_cache,
28934 				    KM_SLEEP);
28935 				mutex_enter(SD_MUTEX(un));
28936 				/*
28937 				 * we released the mutex so recheck and go to
28938 				 * check list state.
28939 				 */
28940 				state = SD_WM_CHK_LIST;
28941 			} else {
28942 				/*
28943 				 * We exit out of state machine since we
28944 				 * have the wmap. Do the housekeeping first.
28945 				 * place the wmap on the wmap list if it is not
28946 				 * on it already and then set the state to done.
28947 				 */
28948 				wmp->wm_start = startb;
28949 				wmp->wm_end = endb;
28950 				wmp->wm_flags = typ | SD_WM_BUSY;
28951 				if (typ & SD_WTYPE_RMW) {
28952 					un->un_rmw_count++;
28953 				}
28954 				/*
28955 				 * If not already on the list then link
28956 				 */
28957 				if (!ONLIST(un, wmp)) {
28958 					wmp->wm_next = un->un_wm;
28959 					wmp->wm_prev = NULL;
28960 					if (wmp->wm_next)
28961 						wmp->wm_next->wm_prev = wmp;
28962 					un->un_wm = wmp;
28963 				}
28964 				state = SD_WM_DONE;
28965 			}
28966 			break;
28967 
28968 		case SD_WM_WAIT_MAP:
28969 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
28970 			/*
28971 			 * Wait is done on sl_wmp, which is set in the
28972 			 * check_list state.
28973 			 */
28974 			sl_wmp->wm_wanted_count++;
28975 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
28976 			sl_wmp->wm_wanted_count--;
28977 			if (!(sl_wmp->wm_flags & SD_WM_BUSY)) {
28978 				if (wmp != NULL)
28979 					CHK_N_FREEWMP(un, wmp);
28980 				wmp = sl_wmp;
28981 			}
28982 			sl_wmp = NULL;
28983 			/*
28984 			 * After waking up, need to recheck for availability of
28985 			 * range.
28986 			 */
28987 			state = SD_WM_CHK_LIST;
28988 			break;
28989 
28990 		default:
28991 			panic("sd_range_lock: "
28992 			    "Unknown state %d in sd_range_lock", state);
28993 			/*NOTREACHED*/
28994 		} /* switch(state) */
28995 
28996 	} /* while(state != SD_WM_DONE) */
28997 
28998 	mutex_exit(SD_MUTEX(un));
28999 
29000 	ASSERT(wmp != NULL);
29001 
29002 	return (wmp);
29003 }
29004 
29005 
29006 /*
29007  *    Function: sd_get_range()
29008  *
29009  * Description: Find if there any overlapping I/O to this one
29010  *		Returns the write-map of 1st such I/O, NULL otherwise.
29011  *
29012  *   Arguments: un	- sd_lun structure for the device.
29013  *		startb - The starting block number
29014  *		endb - The end block number
29015  *
29016  * Return Code: wm  - pointer to the wmap structure.
29017  */
29018 
29019 static struct sd_w_map *
29020 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29021 {
29022 	struct sd_w_map *wmp;
29023 
29024 	ASSERT(un != NULL);
29025 
29026 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29027 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29028 			continue;
29029 		}
29030 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29031 			break;
29032 		}
29033 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29034 			break;
29035 		}
29036 	}
29037 
29038 	return (wmp);
29039 }
29040 
29041 
29042 /*
29043  *    Function: sd_free_inlist_wmap()
29044  *
29045  * Description: Unlink and free a write map struct.
29046  *
29047  *   Arguments: un      - sd_lun structure for the device.
29048  *		wmp	- sd_w_map which needs to be unlinked.
29049  */
29050 
29051 static void
29052 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29053 {
29054 	ASSERT(un != NULL);
29055 
29056 	if (un->un_wm == wmp) {
29057 		un->un_wm = wmp->wm_next;
29058 	} else {
29059 		wmp->wm_prev->wm_next = wmp->wm_next;
29060 	}
29061 
29062 	if (wmp->wm_next) {
29063 		wmp->wm_next->wm_prev = wmp->wm_prev;
29064 	}
29065 
29066 	wmp->wm_next = wmp->wm_prev = NULL;
29067 
29068 	kmem_cache_free(un->un_wm_cache, wmp);
29069 }
29070 
29071 
29072 /*
29073  *    Function: sd_range_unlock()
29074  *
29075  * Description: Unlock the range locked by wm.
29076  *		Free write map if nobody else is waiting on it.
29077  *
29078  *   Arguments: un      - sd_lun structure for the device.
29079  *              wmp     - sd_w_map which needs to be unlinked.
29080  */
29081 
29082 static void
29083 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29084 {
29085 	ASSERT(un != NULL);
29086 	ASSERT(wm != NULL);
29087 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29088 
29089 	mutex_enter(SD_MUTEX(un));
29090 
29091 	if (wm->wm_flags & SD_WTYPE_RMW) {
29092 		un->un_rmw_count--;
29093 	}
29094 
29095 	if (wm->wm_wanted_count) {
29096 		wm->wm_flags = 0;
29097 		/*
29098 		 * Broadcast that the wmap is available now.
29099 		 */
29100 		cv_broadcast(&wm->wm_avail);
29101 	} else {
29102 		/*
29103 		 * If no one is waiting on the map, it should be free'ed.
29104 		 */
29105 		sd_free_inlist_wmap(un, wm);
29106 	}
29107 
29108 	mutex_exit(SD_MUTEX(un));
29109 }
29110 
29111 
29112 /*
29113  *    Function: sd_read_modify_write_task
29114  *
29115  * Description: Called from a taskq thread to initiate the write phase of
29116  *		a read-modify-write request.  This is used for targets where
29117  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29118  *
29119  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29120  *
29121  *     Context: Called under taskq thread context.
29122  */
29123 
29124 static void
29125 sd_read_modify_write_task(void *arg)
29126 {
29127 	struct sd_mapblocksize_info	*bsp;
29128 	struct buf	*bp;
29129 	struct sd_xbuf	*xp;
29130 	struct sd_lun	*un;
29131 
29132 	bp = arg;	/* The bp is given in arg */
29133 	ASSERT(bp != NULL);
29134 
29135 	/* Get the pointer to the layer-private data struct */
29136 	xp = SD_GET_XBUF(bp);
29137 	ASSERT(xp != NULL);
29138 	bsp = xp->xb_private;
29139 	ASSERT(bsp != NULL);
29140 
29141 	un = SD_GET_UN(bp);
29142 	ASSERT(un != NULL);
29143 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29144 
29145 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29146 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29147 
29148 	/*
29149 	 * This is the write phase of a read-modify-write request, called
29150 	 * under the context of a taskq thread in response to the completion
29151 	 * of the read portion of the rmw request completing under interrupt
29152 	 * context. The write request must be sent from here down the iostart
29153 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29154 	 * we use the layer index saved in the layer-private data area.
29155 	 */
29156 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29157 
29158 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29159 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29160 }
29161 
29162 
29163 /*
29164  *    Function: sddump_do_read_of_rmw()
29165  *
29166  * Description: This routine will be called from sddump, If sddump is called
29167  *		with an I/O which not aligned on device blocksize boundary
29168  *		then the write has to be converted to read-modify-write.
29169  *		Do the read part here in order to keep sddump simple.
29170  *		Note - That the sd_mutex is held across the call to this
29171  *		routine.
29172  *
29173  *   Arguments: un	- sd_lun
29174  *		blkno	- block number in terms of media block size.
29175  *		nblk	- number of blocks.
29176  *		bpp	- pointer to pointer to the buf structure. On return
29177  *			from this function, *bpp points to the valid buffer
29178  *			to which the write has to be done.
29179  *
29180  * Return Code: 0 for success or errno-type return code
29181  */
29182 
29183 static int
29184 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29185 	struct buf **bpp)
29186 {
29187 	int err;
29188 	int i;
29189 	int rval;
29190 	struct buf *bp;
29191 	struct scsi_pkt *pkt = NULL;
29192 	uint32_t target_blocksize;
29193 
29194 	ASSERT(un != NULL);
29195 	ASSERT(mutex_owned(SD_MUTEX(un)));
29196 
29197 	target_blocksize = un->un_tgt_blocksize;
29198 
29199 	mutex_exit(SD_MUTEX(un));
29200 
29201 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29202 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29203 	if (bp == NULL) {
29204 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29205 		    "no resources for dumping; giving up");
29206 		err = ENOMEM;
29207 		goto done;
29208 	}
29209 
29210 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29211 	    blkno, nblk);
29212 	if (rval != 0) {
29213 		scsi_free_consistent_buf(bp);
29214 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29215 		    "no resources for dumping; giving up");
29216 		err = ENOMEM;
29217 		goto done;
29218 	}
29219 
29220 	pkt->pkt_flags |= FLAG_NOINTR;
29221 
29222 	err = EIO;
29223 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29224 
29225 		/*
29226 		 * Scsi_poll returns 0 (success) if the command completes and
29227 		 * the status block is STATUS_GOOD.  We should only check
29228 		 * errors if this condition is not true.  Even then we should
29229 		 * send our own request sense packet only if we have a check
29230 		 * condition and auto request sense has not been performed by
29231 		 * the hba.
29232 		 */
29233 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29234 
29235 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29236 			err = 0;
29237 			break;
29238 		}
29239 
29240 		/*
29241 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29242 		 * no need to read RQS data.
29243 		 */
29244 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29245 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29246 			    "Device is gone\n");
29247 			break;
29248 		}
29249 
29250 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29251 			SD_INFO(SD_LOG_DUMP, un,
29252 			    "sddump: read failed with CHECK, try # %d\n", i);
29253 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29254 				(void) sd_send_polled_RQS(un);
29255 			}
29256 
29257 			continue;
29258 		}
29259 
29260 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29261 			int reset_retval = 0;
29262 
29263 			SD_INFO(SD_LOG_DUMP, un,
29264 			    "sddump: read failed with BUSY, try # %d\n", i);
29265 
29266 			if (un->un_f_lun_reset_enabled == TRUE) {
29267 				reset_retval = scsi_reset(SD_ADDRESS(un),
29268 				    RESET_LUN);
29269 			}
29270 			if (reset_retval == 0) {
29271 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29272 			}
29273 			(void) sd_send_polled_RQS(un);
29274 
29275 		} else {
29276 			SD_INFO(SD_LOG_DUMP, un,
29277 			    "sddump: read failed with 0x%x, try # %d\n",
29278 			    SD_GET_PKT_STATUS(pkt), i);
29279 			mutex_enter(SD_MUTEX(un));
29280 			sd_reset_target(un, pkt);
29281 			mutex_exit(SD_MUTEX(un));
29282 		}
29283 
29284 		/*
29285 		 * If we are not getting anywhere with lun/target resets,
29286 		 * let's reset the bus.
29287 		 */
29288 		if (i > SD_NDUMP_RETRIES/2) {
29289 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29290 			(void) sd_send_polled_RQS(un);
29291 		}
29292 
29293 	}
29294 	scsi_destroy_pkt(pkt);
29295 
29296 	if (err != 0) {
29297 		scsi_free_consistent_buf(bp);
29298 		*bpp = NULL;
29299 	} else {
29300 		*bpp = bp;
29301 	}
29302 
29303 done:
29304 	mutex_enter(SD_MUTEX(un));
29305 	return (err);
29306 }
29307 
29308 
29309 /*
29310  *    Function: sd_failfast_flushq
29311  *
29312  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29313  *		in b_flags and move them onto the failfast queue, then kick
29314  *		off a thread to return all bp's on the failfast queue to
29315  *		their owners with an error set.
29316  *
29317  *   Arguments: un - pointer to the soft state struct for the instance.
29318  *
29319  *     Context: may execute in interrupt context.
29320  */
29321 
29322 static void
29323 sd_failfast_flushq(struct sd_lun *un)
29324 {
29325 	struct buf *bp;
29326 	struct buf *next_waitq_bp;
29327 	struct buf *prev_waitq_bp = NULL;
29328 
29329 	ASSERT(un != NULL);
29330 	ASSERT(mutex_owned(SD_MUTEX(un)));
29331 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29332 	ASSERT(un->un_failfast_bp == NULL);
29333 
29334 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29335 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29336 
29337 	/*
29338 	 * Check if we should flush all bufs when entering failfast state, or
29339 	 * just those with B_FAILFAST set.
29340 	 */
29341 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29342 		/*
29343 		 * Move *all* bp's on the wait queue to the failfast flush
29344 		 * queue, including those that do NOT have B_FAILFAST set.
29345 		 */
29346 		if (un->un_failfast_headp == NULL) {
29347 			ASSERT(un->un_failfast_tailp == NULL);
29348 			un->un_failfast_headp = un->un_waitq_headp;
29349 		} else {
29350 			ASSERT(un->un_failfast_tailp != NULL);
29351 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29352 		}
29353 
29354 		un->un_failfast_tailp = un->un_waitq_tailp;
29355 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29356 
29357 	} else {
29358 		/*
29359 		 * Go thru the wait queue, pick off all entries with
29360 		 * B_FAILFAST set, and move these onto the failfast queue.
29361 		 */
29362 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29363 			/*
29364 			 * Save the pointer to the next bp on the wait queue,
29365 			 * so we get to it on the next iteration of this loop.
29366 			 */
29367 			next_waitq_bp = bp->av_forw;
29368 
29369 			/*
29370 			 * If this bp from the wait queue does NOT have
29371 			 * B_FAILFAST set, just move on to the next element
29372 			 * in the wait queue. Note, this is the only place
29373 			 * where it is correct to set prev_waitq_bp.
29374 			 */
29375 			if ((bp->b_flags & B_FAILFAST) == 0) {
29376 				prev_waitq_bp = bp;
29377 				continue;
29378 			}
29379 
29380 			/*
29381 			 * Remove the bp from the wait queue.
29382 			 */
29383 			if (bp == un->un_waitq_headp) {
29384 				/* The bp is the first element of the waitq. */
29385 				un->un_waitq_headp = next_waitq_bp;
29386 				if (un->un_waitq_headp == NULL) {
29387 					/* The wait queue is now empty */
29388 					un->un_waitq_tailp = NULL;
29389 				}
29390 			} else {
29391 				/*
29392 				 * The bp is either somewhere in the middle
29393 				 * or at the end of the wait queue.
29394 				 */
29395 				ASSERT(un->un_waitq_headp != NULL);
29396 				ASSERT(prev_waitq_bp != NULL);
29397 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29398 				    == 0);
29399 				if (bp == un->un_waitq_tailp) {
29400 					/* bp is the last entry on the waitq. */
29401 					ASSERT(next_waitq_bp == NULL);
29402 					un->un_waitq_tailp = prev_waitq_bp;
29403 				}
29404 				prev_waitq_bp->av_forw = next_waitq_bp;
29405 			}
29406 			bp->av_forw = NULL;
29407 
29408 			/*
29409 			 * Now put the bp onto the failfast queue.
29410 			 */
29411 			if (un->un_failfast_headp == NULL) {
29412 				/* failfast queue is currently empty */
29413 				ASSERT(un->un_failfast_tailp == NULL);
29414 				un->un_failfast_headp =
29415 				    un->un_failfast_tailp = bp;
29416 			} else {
29417 				/* Add the bp to the end of the failfast q */
29418 				ASSERT(un->un_failfast_tailp != NULL);
29419 				ASSERT(un->un_failfast_tailp->b_flags &
29420 				    B_FAILFAST);
29421 				un->un_failfast_tailp->av_forw = bp;
29422 				un->un_failfast_tailp = bp;
29423 			}
29424 		}
29425 	}
29426 
29427 	/*
29428 	 * Now return all bp's on the failfast queue to their owners.
29429 	 */
29430 	while ((bp = un->un_failfast_headp) != NULL) {
29431 
29432 		un->un_failfast_headp = bp->av_forw;
29433 		if (un->un_failfast_headp == NULL) {
29434 			un->un_failfast_tailp = NULL;
29435 		}
29436 
29437 		/*
29438 		 * We want to return the bp with a failure error code, but
29439 		 * we do not want a call to sd_start_cmds() to occur here,
29440 		 * so use sd_return_failed_command_no_restart() instead of
29441 		 * sd_return_failed_command().
29442 		 */
29443 		sd_return_failed_command_no_restart(un, bp, EIO);
29444 	}
29445 
29446 	/* Flush the xbuf queues if required. */
29447 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29448 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29449 	}
29450 
29451 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29452 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29453 }
29454 
29455 
29456 /*
29457  *    Function: sd_failfast_flushq_callback
29458  *
29459  * Description: Return TRUE if the given bp meets the criteria for failfast
29460  *		flushing. Used with ddi_xbuf_flushq(9F).
29461  *
29462  *   Arguments: bp - ptr to buf struct to be examined.
29463  *
29464  *     Context: Any
29465  */
29466 
29467 static int
29468 sd_failfast_flushq_callback(struct buf *bp)
29469 {
29470 	/*
29471 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29472 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29473 	 */
29474 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29475 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29476 }
29477 
29478 
29479 
29480 #if defined(__i386) || defined(__amd64)
29481 /*
29482  * Function: sd_setup_next_xfer
29483  *
29484  * Description: Prepare next I/O operation using DMA_PARTIAL
29485  *
29486  */
29487 
29488 static int
29489 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29490     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29491 {
29492 	ssize_t	num_blks_not_xfered;
29493 	daddr_t	strt_blk_num;
29494 	ssize_t	bytes_not_xfered;
29495 	int	rval;
29496 
29497 	ASSERT(pkt->pkt_resid == 0);
29498 
29499 	/*
29500 	 * Calculate next block number and amount to be transferred.
29501 	 *
29502 	 * How much data NOT transfered to the HBA yet.
29503 	 */
29504 	bytes_not_xfered = xp->xb_dma_resid;
29505 
29506 	/*
29507 	 * figure how many blocks NOT transfered to the HBA yet.
29508 	 */
29509 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29510 
29511 	/*
29512 	 * set starting block number to the end of what WAS transfered.
29513 	 */
29514 	strt_blk_num = xp->xb_blkno +
29515 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29516 
29517 	/*
29518 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29519 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29520 	 * the disk mutex here.
29521 	 */
29522 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29523 	    strt_blk_num, num_blks_not_xfered);
29524 
29525 	if (rval == 0) {
29526 
29527 		/*
29528 		 * Success.
29529 		 *
29530 		 * Adjust things if there are still more blocks to be
29531 		 * transfered.
29532 		 */
29533 		xp->xb_dma_resid = pkt->pkt_resid;
29534 		pkt->pkt_resid = 0;
29535 
29536 		return (1);
29537 	}
29538 
29539 	/*
29540 	 * There's really only one possible return value from
29541 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29542 	 * returns NULL.
29543 	 */
29544 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29545 
29546 	bp->b_resid = bp->b_bcount;
29547 	bp->b_flags |= B_ERROR;
29548 
29549 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29550 	    "Error setting up next portion of DMA transfer\n");
29551 
29552 	return (0);
29553 }
29554 #endif
29555 
29556 /*
29557  * Note: The following sd_faultinjection_ioctl( ) routines implement
29558  * driver support for handling fault injection for error analysis
29559  * causing faults in multiple layers of the driver.
29560  *
29561  */
29562 
29563 #ifdef SD_FAULT_INJECTION
29564 static uint_t   sd_fault_injection_on = 0;
29565 
29566 /*
29567  *    Function: sd_faultinjection_ioctl()
29568  *
29569  * Description: This routine is the driver entry point for handling
29570  *              faultinjection ioctls to inject errors into the
29571  *              layer model
29572  *
29573  *   Arguments: cmd	- the ioctl cmd recieved
29574  *		arg	- the arguments from user and returns
29575  */
29576 
29577 static void
29578 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
29579 
29580 	uint_t i;
29581 	uint_t rval;
29582 
29583 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
29584 
29585 	mutex_enter(SD_MUTEX(un));
29586 
29587 	switch (cmd) {
29588 	case SDIOCRUN:
29589 		/* Allow pushed faults to be injected */
29590 		SD_INFO(SD_LOG_SDTEST, un,
29591 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
29592 
29593 		sd_fault_injection_on = 1;
29594 
29595 		SD_INFO(SD_LOG_IOERR, un,
29596 		    "sd_faultinjection_ioctl: run finished\n");
29597 		break;
29598 
29599 	case SDIOCSTART:
29600 		/* Start Injection Session */
29601 		SD_INFO(SD_LOG_SDTEST, un,
29602 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
29603 
29604 		sd_fault_injection_on = 0;
29605 		un->sd_injection_mask = 0xFFFFFFFF;
29606 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29607 			un->sd_fi_fifo_pkt[i] = NULL;
29608 			un->sd_fi_fifo_xb[i] = NULL;
29609 			un->sd_fi_fifo_un[i] = NULL;
29610 			un->sd_fi_fifo_arq[i] = NULL;
29611 		}
29612 		un->sd_fi_fifo_start = 0;
29613 		un->sd_fi_fifo_end = 0;
29614 
29615 		mutex_enter(&(un->un_fi_mutex));
29616 		un->sd_fi_log[0] = '\0';
29617 		un->sd_fi_buf_len = 0;
29618 		mutex_exit(&(un->un_fi_mutex));
29619 
29620 		SD_INFO(SD_LOG_IOERR, un,
29621 		    "sd_faultinjection_ioctl: start finished\n");
29622 		break;
29623 
29624 	case SDIOCSTOP:
29625 		/* Stop Injection Session */
29626 		SD_INFO(SD_LOG_SDTEST, un,
29627 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
29628 		sd_fault_injection_on = 0;
29629 		un->sd_injection_mask = 0x0;
29630 
29631 		/* Empty stray or unuseds structs from fifo */
29632 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29633 			if (un->sd_fi_fifo_pkt[i] != NULL) {
29634 				kmem_free(un->sd_fi_fifo_pkt[i],
29635 				    sizeof (struct sd_fi_pkt));
29636 			}
29637 			if (un->sd_fi_fifo_xb[i] != NULL) {
29638 				kmem_free(un->sd_fi_fifo_xb[i],
29639 				    sizeof (struct sd_fi_xb));
29640 			}
29641 			if (un->sd_fi_fifo_un[i] != NULL) {
29642 				kmem_free(un->sd_fi_fifo_un[i],
29643 				    sizeof (struct sd_fi_un));
29644 			}
29645 			if (un->sd_fi_fifo_arq[i] != NULL) {
29646 				kmem_free(un->sd_fi_fifo_arq[i],
29647 				    sizeof (struct sd_fi_arq));
29648 			}
29649 			un->sd_fi_fifo_pkt[i] = NULL;
29650 			un->sd_fi_fifo_un[i] = NULL;
29651 			un->sd_fi_fifo_xb[i] = NULL;
29652 			un->sd_fi_fifo_arq[i] = NULL;
29653 		}
29654 		un->sd_fi_fifo_start = 0;
29655 		un->sd_fi_fifo_end = 0;
29656 
29657 		SD_INFO(SD_LOG_IOERR, un,
29658 		    "sd_faultinjection_ioctl: stop finished\n");
29659 		break;
29660 
29661 	case SDIOCINSERTPKT:
29662 		/* Store a packet struct to be pushed onto fifo */
29663 		SD_INFO(SD_LOG_SDTEST, un,
29664 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
29665 
29666 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29667 
29668 		sd_fault_injection_on = 0;
29669 
29670 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
29671 		if (un->sd_fi_fifo_pkt[i] != NULL) {
29672 			kmem_free(un->sd_fi_fifo_pkt[i],
29673 			    sizeof (struct sd_fi_pkt));
29674 		}
29675 		if (arg != NULL) {
29676 			un->sd_fi_fifo_pkt[i] =
29677 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
29678 			if (un->sd_fi_fifo_pkt[i] == NULL) {
29679 				/* Alloc failed don't store anything */
29680 				break;
29681 			}
29682 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
29683 			    sizeof (struct sd_fi_pkt), 0);
29684 			if (rval == -1) {
29685 				kmem_free(un->sd_fi_fifo_pkt[i],
29686 				    sizeof (struct sd_fi_pkt));
29687 				un->sd_fi_fifo_pkt[i] = NULL;
29688 			}
29689 		} else {
29690 			SD_INFO(SD_LOG_IOERR, un,
29691 			    "sd_faultinjection_ioctl: pkt null\n");
29692 		}
29693 		break;
29694 
29695 	case SDIOCINSERTXB:
29696 		/* Store a xb struct to be pushed onto fifo */
29697 		SD_INFO(SD_LOG_SDTEST, un,
29698 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
29699 
29700 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29701 
29702 		sd_fault_injection_on = 0;
29703 
29704 		if (un->sd_fi_fifo_xb[i] != NULL) {
29705 			kmem_free(un->sd_fi_fifo_xb[i],
29706 			    sizeof (struct sd_fi_xb));
29707 			un->sd_fi_fifo_xb[i] = NULL;
29708 		}
29709 		if (arg != NULL) {
29710 			un->sd_fi_fifo_xb[i] =
29711 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
29712 			if (un->sd_fi_fifo_xb[i] == NULL) {
29713 				/* Alloc failed don't store anything */
29714 				break;
29715 			}
29716 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
29717 			    sizeof (struct sd_fi_xb), 0);
29718 
29719 			if (rval == -1) {
29720 				kmem_free(un->sd_fi_fifo_xb[i],
29721 				    sizeof (struct sd_fi_xb));
29722 				un->sd_fi_fifo_xb[i] = NULL;
29723 			}
29724 		} else {
29725 			SD_INFO(SD_LOG_IOERR, un,
29726 			    "sd_faultinjection_ioctl: xb null\n");
29727 		}
29728 		break;
29729 
29730 	case SDIOCINSERTUN:
29731 		/* Store a un struct to be pushed onto fifo */
29732 		SD_INFO(SD_LOG_SDTEST, un,
29733 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
29734 
29735 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29736 
29737 		sd_fault_injection_on = 0;
29738 
29739 		if (un->sd_fi_fifo_un[i] != NULL) {
29740 			kmem_free(un->sd_fi_fifo_un[i],
29741 			    sizeof (struct sd_fi_un));
29742 			un->sd_fi_fifo_un[i] = NULL;
29743 		}
29744 		if (arg != NULL) {
29745 			un->sd_fi_fifo_un[i] =
29746 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
29747 			if (un->sd_fi_fifo_un[i] == NULL) {
29748 				/* Alloc failed don't store anything */
29749 				break;
29750 			}
29751 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
29752 			    sizeof (struct sd_fi_un), 0);
29753 			if (rval == -1) {
29754 				kmem_free(un->sd_fi_fifo_un[i],
29755 				    sizeof (struct sd_fi_un));
29756 				un->sd_fi_fifo_un[i] = NULL;
29757 			}
29758 
29759 		} else {
29760 			SD_INFO(SD_LOG_IOERR, un,
29761 			    "sd_faultinjection_ioctl: un null\n");
29762 		}
29763 
29764 		break;
29765 
29766 	case SDIOCINSERTARQ:
29767 		/* Store a arq struct to be pushed onto fifo */
29768 		SD_INFO(SD_LOG_SDTEST, un,
29769 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
29770 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29771 
29772 		sd_fault_injection_on = 0;
29773 
29774 		if (un->sd_fi_fifo_arq[i] != NULL) {
29775 			kmem_free(un->sd_fi_fifo_arq[i],
29776 			    sizeof (struct sd_fi_arq));
29777 			un->sd_fi_fifo_arq[i] = NULL;
29778 		}
29779 		if (arg != NULL) {
29780 			un->sd_fi_fifo_arq[i] =
29781 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
29782 			if (un->sd_fi_fifo_arq[i] == NULL) {
29783 				/* Alloc failed don't store anything */
29784 				break;
29785 			}
29786 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
29787 			    sizeof (struct sd_fi_arq), 0);
29788 			if (rval == -1) {
29789 				kmem_free(un->sd_fi_fifo_arq[i],
29790 				    sizeof (struct sd_fi_arq));
29791 				un->sd_fi_fifo_arq[i] = NULL;
29792 			}
29793 
29794 		} else {
29795 			SD_INFO(SD_LOG_IOERR, un,
29796 			    "sd_faultinjection_ioctl: arq null\n");
29797 		}
29798 
29799 		break;
29800 
29801 	case SDIOCPUSH:
29802 		/* Push stored xb, pkt, un, and arq onto fifo */
29803 		sd_fault_injection_on = 0;
29804 
29805 		if (arg != NULL) {
29806 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
29807 			if (rval != -1 &&
29808 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29809 				un->sd_fi_fifo_end += i;
29810 			}
29811 		} else {
29812 			SD_INFO(SD_LOG_IOERR, un,
29813 			    "sd_faultinjection_ioctl: push arg null\n");
29814 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29815 				un->sd_fi_fifo_end++;
29816 			}
29817 		}
29818 		SD_INFO(SD_LOG_IOERR, un,
29819 		    "sd_faultinjection_ioctl: push to end=%d\n",
29820 		    un->sd_fi_fifo_end);
29821 		break;
29822 
29823 	case SDIOCRETRIEVE:
29824 		/* Return buffer of log from Injection session */
29825 		SD_INFO(SD_LOG_SDTEST, un,
29826 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
29827 
29828 		sd_fault_injection_on = 0;
29829 
29830 		mutex_enter(&(un->un_fi_mutex));
29831 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
29832 		    un->sd_fi_buf_len+1, 0);
29833 		mutex_exit(&(un->un_fi_mutex));
29834 
29835 		if (rval == -1) {
29836 			/*
29837 			 * arg is possibly invalid setting
29838 			 * it to NULL for return
29839 			 */
29840 			arg = NULL;
29841 		}
29842 		break;
29843 	}
29844 
29845 	mutex_exit(SD_MUTEX(un));
29846 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29847 			    " exit\n");
29848 }
29849 
29850 
29851 /*
29852  *    Function: sd_injection_log()
29853  *
29854  * Description: This routine adds buff to the already existing injection log
29855  *              for retrieval via faultinjection_ioctl for use in fault
29856  *              detection and recovery
29857  *
29858  *   Arguments: buf - the string to add to the log
29859  */
29860 
29861 static void
29862 sd_injection_log(char *buf, struct sd_lun *un)
29863 {
29864 	uint_t len;
29865 
29866 	ASSERT(un != NULL);
29867 	ASSERT(buf != NULL);
29868 
29869 	mutex_enter(&(un->un_fi_mutex));
29870 
29871 	len = min(strlen(buf), 255);
29872 	/* Add logged value to Injection log to be returned later */
29873 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
29874 		uint_t	offset = strlen((char *)un->sd_fi_log);
29875 		char *destp = (char *)un->sd_fi_log + offset;
29876 		int i;
29877 		for (i = 0; i < len; i++) {
29878 			*destp++ = *buf++;
29879 		}
29880 		un->sd_fi_buf_len += len;
29881 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
29882 	}
29883 
29884 	mutex_exit(&(un->un_fi_mutex));
29885 }
29886 
29887 
29888 /*
29889  *    Function: sd_faultinjection()
29890  *
29891  * Description: This routine takes the pkt and changes its
29892  *		content based on error injection scenerio.
29893  *
29894  *   Arguments: pktp	- packet to be changed
29895  */
29896 
29897 static void
29898 sd_faultinjection(struct scsi_pkt *pktp)
29899 {
29900 	uint_t i;
29901 	struct sd_fi_pkt *fi_pkt;
29902 	struct sd_fi_xb *fi_xb;
29903 	struct sd_fi_un *fi_un;
29904 	struct sd_fi_arq *fi_arq;
29905 	struct buf *bp;
29906 	struct sd_xbuf *xb;
29907 	struct sd_lun *un;
29908 
29909 	ASSERT(pktp != NULL);
29910 
29911 	/* pull bp xb and un from pktp */
29912 	bp = (struct buf *)pktp->pkt_private;
29913 	xb = SD_GET_XBUF(bp);
29914 	un = SD_GET_UN(bp);
29915 
29916 	ASSERT(un != NULL);
29917 
29918 	mutex_enter(SD_MUTEX(un));
29919 
29920 	SD_TRACE(SD_LOG_SDTEST, un,
29921 	    "sd_faultinjection: entry Injection from sdintr\n");
29922 
29923 	/* if injection is off return */
29924 	if (sd_fault_injection_on == 0 ||
29925 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
29926 		mutex_exit(SD_MUTEX(un));
29927 		return;
29928 	}
29929 
29930 
29931 	/* take next set off fifo */
29932 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
29933 
29934 	fi_pkt = un->sd_fi_fifo_pkt[i];
29935 	fi_xb = un->sd_fi_fifo_xb[i];
29936 	fi_un = un->sd_fi_fifo_un[i];
29937 	fi_arq = un->sd_fi_fifo_arq[i];
29938 
29939 
29940 	/* set variables accordingly */
29941 	/* set pkt if it was on fifo */
29942 	if (fi_pkt != NULL) {
29943 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
29944 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
29945 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
29946 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
29947 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
29948 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
29949 
29950 	}
29951 
29952 	/* set xb if it was on fifo */
29953 	if (fi_xb != NULL) {
29954 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
29955 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
29956 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
29957 		SD_CONDSET(xb, xb, xb_victim_retry_count,
29958 		    "xb_victim_retry_count");
29959 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
29960 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
29961 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
29962 
29963 		/* copy in block data from sense */
29964 		if (fi_xb->xb_sense_data[0] != -1) {
29965 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
29966 			    SENSE_LENGTH);
29967 		}
29968 
29969 		/* copy in extended sense codes */
29970 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
29971 		    "es_code");
29972 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
29973 		    "es_key");
29974 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
29975 		    "es_add_code");
29976 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
29977 		    es_qual_code, "es_qual_code");
29978 	}
29979 
29980 	/* set un if it was on fifo */
29981 	if (fi_un != NULL) {
29982 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
29983 		SD_CONDSET(un, un, un_ctype, "un_ctype");
29984 		SD_CONDSET(un, un, un_reset_retry_count,
29985 		    "un_reset_retry_count");
29986 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
29987 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
29988 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
29989 		SD_CONDSET(un, un, un_f_geometry_is_valid,
29990 		    "un_f_geometry_is_valid");
29991 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
29992 		    "un_f_allow_bus_device_reset");
29993 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
29994 
29995 	}
29996 
29997 	/* copy in auto request sense if it was on fifo */
29998 	if (fi_arq != NULL) {
29999 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30000 	}
30001 
30002 	/* free structs */
30003 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30004 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30005 	}
30006 	if (un->sd_fi_fifo_xb[i] != NULL) {
30007 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30008 	}
30009 	if (un->sd_fi_fifo_un[i] != NULL) {
30010 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30011 	}
30012 	if (un->sd_fi_fifo_arq[i] != NULL) {
30013 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30014 	}
30015 
30016 	/*
30017 	 * kmem_free does not gurantee to set to NULL
30018 	 * since we uses these to determine if we set
30019 	 * values or not lets confirm they are always
30020 	 * NULL after free
30021 	 */
30022 	un->sd_fi_fifo_pkt[i] = NULL;
30023 	un->sd_fi_fifo_un[i] = NULL;
30024 	un->sd_fi_fifo_xb[i] = NULL;
30025 	un->sd_fi_fifo_arq[i] = NULL;
30026 
30027 	un->sd_fi_fifo_start++;
30028 
30029 	mutex_exit(SD_MUTEX(un));
30030 
30031 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30032 }
30033 
30034 #endif /* SD_FAULT_INJECTION */
30035