xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision b1d7ec75953cd517f5b7c3d9cb427ff8ec5d7d07)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * SCSI disk target driver.
28  */
29 #include <sys/scsi/scsi.h>
30 #include <sys/dkbad.h>
31 #include <sys/dklabel.h>
32 #include <sys/dkio.h>
33 #include <sys/fdio.h>
34 #include <sys/cdio.h>
35 #include <sys/mhd.h>
36 #include <sys/vtoc.h>
37 #include <sys/dktp/fdisk.h>
38 #include <sys/kstat.h>
39 #include <sys/vtrace.h>
40 #include <sys/note.h>
41 #include <sys/thread.h>
42 #include <sys/proc.h>
43 #include <sys/efi_partition.h>
44 #include <sys/var.h>
45 #include <sys/aio_req.h>
46 
47 #ifdef __lock_lint
48 #define	_LP64
49 #define	__amd64
50 #endif
51 
52 #if (defined(__fibre))
53 /* Note: is there a leadville version of the following? */
54 #include <sys/fc4/fcal_linkapp.h>
55 #endif
56 #include <sys/taskq.h>
57 #include <sys/uuid.h>
58 #include <sys/byteorder.h>
59 #include <sys/sdt.h>
60 
61 #include "sd_xbuf.h"
62 
63 #include <sys/scsi/targets/sddef.h>
64 #include <sys/cmlb.h>
65 #include <sys/sysevent/eventdefs.h>
66 #include <sys/sysevent/dev.h>
67 
68 #include <sys/fm/protocol.h>
69 
70 /*
71  * Loadable module info.
72  */
73 #if (defined(__fibre))
74 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
75 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
76 #else /* !__fibre */
77 #define	SD_MODULE_NAME	"SCSI Disk Driver"
78 char _depends_on[]	= "misc/scsi misc/cmlb";
79 #endif /* !__fibre */
80 
81 /*
82  * Define the interconnect type, to allow the driver to distinguish
83  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
84  *
85  * This is really for backward compatibility. In the future, the driver
86  * should actually check the "interconnect-type" property as reported by
87  * the HBA; however at present this property is not defined by all HBAs,
88  * so we will use this #define (1) to permit the driver to run in
89  * backward-compatibility mode; and (2) to print a notification message
90  * if an FC HBA does not support the "interconnect-type" property.  The
91  * behavior of the driver will be to assume parallel SCSI behaviors unless
92  * the "interconnect-type" property is defined by the HBA **AND** has a
93  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
94  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
95  * Channel behaviors (as per the old ssd).  (Note that the
96  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
97  * will result in the driver assuming parallel SCSI behaviors.)
98  *
99  * (see common/sys/scsi/impl/services.h)
100  *
101  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
102  * since some FC HBAs may already support that, and there is some code in
103  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
104  * default would confuse that code, and besides things should work fine
105  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
106  * "interconnect_type" property.
107  *
108  */
109 #if (defined(__fibre))
110 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
111 #else
112 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
113 #endif
114 
115 /*
116  * The name of the driver, established from the module name in _init.
117  */
118 static	char *sd_label			= NULL;
119 
120 /*
121  * Driver name is unfortunately prefixed on some driver.conf properties.
122  */
123 #if (defined(__fibre))
124 #define	sd_max_xfer_size		ssd_max_xfer_size
125 #define	sd_config_list			ssd_config_list
126 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
127 static	char *sd_config_list		= "ssd-config-list";
128 #else
129 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
130 static	char *sd_config_list		= "sd-config-list";
131 #endif
132 
133 /*
134  * Driver global variables
135  */
136 
137 #if (defined(__fibre))
138 /*
139  * These #defines are to avoid namespace collisions that occur because this
140  * code is currently used to compile two separate driver modules: sd and ssd.
141  * All global variables need to be treated this way (even if declared static)
142  * in order to allow the debugger to resolve the names properly.
143  * It is anticipated that in the near future the ssd module will be obsoleted,
144  * at which time this namespace issue should go away.
145  */
146 #define	sd_state			ssd_state
147 #define	sd_io_time			ssd_io_time
148 #define	sd_failfast_enable		ssd_failfast_enable
149 #define	sd_ua_retry_count		ssd_ua_retry_count
150 #define	sd_report_pfa			ssd_report_pfa
151 #define	sd_max_throttle			ssd_max_throttle
152 #define	sd_min_throttle			ssd_min_throttle
153 #define	sd_rot_delay			ssd_rot_delay
154 
155 #define	sd_retry_on_reservation_conflict	\
156 					ssd_retry_on_reservation_conflict
157 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
158 #define	sd_resv_conflict_name		ssd_resv_conflict_name
159 
160 #define	sd_component_mask		ssd_component_mask
161 #define	sd_level_mask			ssd_level_mask
162 #define	sd_debug_un			ssd_debug_un
163 #define	sd_error_level			ssd_error_level
164 
165 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
166 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
167 
168 #define	sd_tr				ssd_tr
169 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
170 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
171 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
172 #define	sd_check_media_time		ssd_check_media_time
173 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
174 #define	sd_label_mutex			ssd_label_mutex
175 #define	sd_detach_mutex			ssd_detach_mutex
176 #define	sd_log_buf			ssd_log_buf
177 #define	sd_log_mutex			ssd_log_mutex
178 
179 #define	sd_disk_table			ssd_disk_table
180 #define	sd_disk_table_size		ssd_disk_table_size
181 #define	sd_sense_mutex			ssd_sense_mutex
182 #define	sd_cdbtab			ssd_cdbtab
183 
184 #define	sd_cb_ops			ssd_cb_ops
185 #define	sd_ops				ssd_ops
186 #define	sd_additional_codes		ssd_additional_codes
187 #define	sd_tgops			ssd_tgops
188 
189 #define	sd_minor_data			ssd_minor_data
190 #define	sd_minor_data_efi		ssd_minor_data_efi
191 
192 #define	sd_tq				ssd_tq
193 #define	sd_wmr_tq			ssd_wmr_tq
194 #define	sd_taskq_name			ssd_taskq_name
195 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
196 #define	sd_taskq_minalloc		ssd_taskq_minalloc
197 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
198 
199 #define	sd_dump_format_string		ssd_dump_format_string
200 
201 #define	sd_iostart_chain		ssd_iostart_chain
202 #define	sd_iodone_chain			ssd_iodone_chain
203 
204 #define	sd_pm_idletime			ssd_pm_idletime
205 
206 #define	sd_force_pm_supported		ssd_force_pm_supported
207 
208 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
209 
210 #define	sd_ssc_init			ssd_ssc_init
211 #define	sd_ssc_send			ssd_ssc_send
212 #define	sd_ssc_fini			ssd_ssc_fini
213 #define	sd_ssc_assessment		ssd_ssc_assessment
214 #define	sd_ssc_post			ssd_ssc_post
215 #define	sd_ssc_print			ssd_ssc_print
216 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
217 #define	sd_ssc_set_info			ssd_ssc_set_info
218 #define	sd_ssc_extract_info		ssd_ssc_extract_info
219 
220 #endif
221 
222 #ifdef	SDDEBUG
223 int	sd_force_pm_supported		= 0;
224 #endif	/* SDDEBUG */
225 
226 void *sd_state				= NULL;
227 int sd_io_time				= SD_IO_TIME;
228 int sd_failfast_enable			= 1;
229 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
230 int sd_report_pfa			= 1;
231 int sd_max_throttle			= SD_MAX_THROTTLE;
232 int sd_min_throttle			= SD_MIN_THROTTLE;
233 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
234 int sd_qfull_throttle_enable		= TRUE;
235 
236 int sd_retry_on_reservation_conflict	= 1;
237 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
238 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
239 
240 static int sd_dtype_optical_bind	= -1;
241 
242 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
243 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
244 
245 /*
246  * Global data for debug logging. To enable debug printing, sd_component_mask
247  * and sd_level_mask should be set to the desired bit patterns as outlined in
248  * sddef.h.
249  */
250 uint_t	sd_component_mask		= 0x0;
251 uint_t	sd_level_mask			= 0x0;
252 struct	sd_lun *sd_debug_un		= NULL;
253 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
254 
255 /* Note: these may go away in the future... */
256 static uint32_t	sd_xbuf_active_limit	= 512;
257 static uint32_t sd_xbuf_reserve_limit	= 16;
258 
259 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
260 
261 /*
262  * Timer value used to reset the throttle after it has been reduced
263  * (typically in response to TRAN_BUSY or STATUS_QFULL)
264  */
265 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
266 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
267 
268 /*
269  * Interval value associated with the media change scsi watch.
270  */
271 static int sd_check_media_time		= 3000000;
272 
273 /*
274  * Wait value used for in progress operations during a DDI_SUSPEND
275  */
276 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
277 
278 /*
279  * sd_label_mutex protects a static buffer used in the disk label
280  * component of the driver
281  */
282 static kmutex_t sd_label_mutex;
283 
284 /*
285  * sd_detach_mutex protects un_layer_count, un_detach_count, and
286  * un_opens_in_progress in the sd_lun structure.
287  */
288 static kmutex_t sd_detach_mutex;
289 
290 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
291 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
292 
293 /*
294  * Global buffer and mutex for debug logging
295  */
296 static char	sd_log_buf[1024];
297 static kmutex_t	sd_log_mutex;
298 
299 /*
300  * Structs and globals for recording attached lun information.
301  * This maintains a chain. Each node in the chain represents a SCSI controller.
302  * The structure records the number of luns attached to each target connected
303  * with the controller.
304  * For parallel scsi device only.
305  */
306 struct sd_scsi_hba_tgt_lun {
307 	struct sd_scsi_hba_tgt_lun	*next;
308 	dev_info_t			*pdip;
309 	int				nlun[NTARGETS_WIDE];
310 };
311 
312 /*
313  * Flag to indicate the lun is attached or detached
314  */
315 #define	SD_SCSI_LUN_ATTACH	0
316 #define	SD_SCSI_LUN_DETACH	1
317 
318 static kmutex_t	sd_scsi_target_lun_mutex;
319 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
320 
321 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
322     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
323 
324 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
325     sd_scsi_target_lun_head))
326 
327 /*
328  * "Smart" Probe Caching structs, globals, #defines, etc.
329  * For parallel scsi and non-self-identify device only.
330  */
331 
332 /*
333  * The following resources and routines are implemented to support
334  * "smart" probing, which caches the scsi_probe() results in an array,
335  * in order to help avoid long probe times.
336  */
337 struct sd_scsi_probe_cache {
338 	struct	sd_scsi_probe_cache	*next;
339 	dev_info_t	*pdip;
340 	int		cache[NTARGETS_WIDE];
341 };
342 
343 static kmutex_t	sd_scsi_probe_cache_mutex;
344 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
345 
346 /*
347  * Really we only need protection on the head of the linked list, but
348  * better safe than sorry.
349  */
350 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
351     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
352 
353 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
354     sd_scsi_probe_cache_head))
355 
356 /*
357  * Power attribute table
358  */
359 static sd_power_attr_ss sd_pwr_ss = {
360 	{ "NAME=spindle-motor", "0=off", "1=on", NULL },
361 	{0, 100},
362 	{30, 0},
363 	{20000, 0}
364 };
365 
366 static sd_power_attr_pc sd_pwr_pc = {
367 	{ "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle",
368 		"3=active", NULL },
369 	{0, 0, 0, 100},
370 	{90, 90, 20, 0},
371 	{15000, 15000, 1000, 0}
372 };
373 
374 /*
375  * Power level to power condition
376  */
377 static int sd_pl2pc[] = {
378 	SD_TARGET_START_VALID,
379 	SD_TARGET_STANDBY,
380 	SD_TARGET_IDLE,
381 	SD_TARGET_ACTIVE
382 };
383 
384 /*
385  * Vendor specific data name property declarations
386  */
387 
388 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
389 
390 static sd_tunables seagate_properties = {
391 	SEAGATE_THROTTLE_VALUE,
392 	0,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0,
398 	0,
399 	0
400 };
401 
402 
403 static sd_tunables fujitsu_properties = {
404 	FUJITSU_THROTTLE_VALUE,
405 	0,
406 	0,
407 	0,
408 	0,
409 	0,
410 	0,
411 	0,
412 	0
413 };
414 
415 static sd_tunables ibm_properties = {
416 	IBM_THROTTLE_VALUE,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	0,
423 	0,
424 	0
425 };
426 
427 static sd_tunables purple_properties = {
428 	PURPLE_THROTTLE_VALUE,
429 	0,
430 	0,
431 	PURPLE_BUSY_RETRIES,
432 	PURPLE_RESET_RETRY_COUNT,
433 	PURPLE_RESERVE_RELEASE_TIME,
434 	0,
435 	0,
436 	0
437 };
438 
439 static sd_tunables sve_properties = {
440 	SVE_THROTTLE_VALUE,
441 	0,
442 	0,
443 	SVE_BUSY_RETRIES,
444 	SVE_RESET_RETRY_COUNT,
445 	SVE_RESERVE_RELEASE_TIME,
446 	SVE_MIN_THROTTLE_VALUE,
447 	SVE_DISKSORT_DISABLED_FLAG,
448 	0
449 };
450 
451 static sd_tunables maserati_properties = {
452 	0,
453 	0,
454 	0,
455 	0,
456 	0,
457 	0,
458 	0,
459 	MASERATI_DISKSORT_DISABLED_FLAG,
460 	MASERATI_LUN_RESET_ENABLED_FLAG
461 };
462 
463 static sd_tunables pirus_properties = {
464 	PIRUS_THROTTLE_VALUE,
465 	0,
466 	PIRUS_NRR_COUNT,
467 	PIRUS_BUSY_RETRIES,
468 	PIRUS_RESET_RETRY_COUNT,
469 	0,
470 	PIRUS_MIN_THROTTLE_VALUE,
471 	PIRUS_DISKSORT_DISABLED_FLAG,
472 	PIRUS_LUN_RESET_ENABLED_FLAG
473 };
474 
475 #endif
476 
477 #if (defined(__sparc) && !defined(__fibre)) || \
478 	(defined(__i386) || defined(__amd64))
479 
480 
481 static sd_tunables elite_properties = {
482 	ELITE_THROTTLE_VALUE,
483 	0,
484 	0,
485 	0,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0
491 };
492 
493 static sd_tunables st31200n_properties = {
494 	ST31200N_THROTTLE_VALUE,
495 	0,
496 	0,
497 	0,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0
503 };
504 
505 #endif /* Fibre or not */
506 
507 static sd_tunables lsi_properties_scsi = {
508 	LSI_THROTTLE_VALUE,
509 	0,
510 	LSI_NOTREADY_RETRIES,
511 	0,
512 	0,
513 	0,
514 	0,
515 	0,
516 	0
517 };
518 
519 static sd_tunables symbios_properties = {
520 	SYMBIOS_THROTTLE_VALUE,
521 	0,
522 	SYMBIOS_NOTREADY_RETRIES,
523 	0,
524 	0,
525 	0,
526 	0,
527 	0,
528 	0
529 };
530 
531 static sd_tunables lsi_properties = {
532 	0,
533 	0,
534 	LSI_NOTREADY_RETRIES,
535 	0,
536 	0,
537 	0,
538 	0,
539 	0,
540 	0
541 };
542 
543 static sd_tunables lsi_oem_properties = {
544 	0,
545 	0,
546 	LSI_OEM_NOTREADY_RETRIES,
547 	0,
548 	0,
549 	0,
550 	0,
551 	0,
552 	0,
553 	1
554 };
555 
556 
557 
558 #if (defined(SD_PROP_TST))
559 
560 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
561 #define	SD_TST_THROTTLE_VAL	16
562 #define	SD_TST_NOTREADY_VAL	12
563 #define	SD_TST_BUSY_VAL		60
564 #define	SD_TST_RST_RETRY_VAL	36
565 #define	SD_TST_RSV_REL_TIME	60
566 
567 static sd_tunables tst_properties = {
568 	SD_TST_THROTTLE_VAL,
569 	SD_TST_CTYPE_VAL,
570 	SD_TST_NOTREADY_VAL,
571 	SD_TST_BUSY_VAL,
572 	SD_TST_RST_RETRY_VAL,
573 	SD_TST_RSV_REL_TIME,
574 	0,
575 	0,
576 	0
577 };
578 #endif
579 
580 /* This is similar to the ANSI toupper implementation */
581 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
582 
583 /*
584  * Static Driver Configuration Table
585  *
586  * This is the table of disks which need throttle adjustment (or, perhaps
587  * something else as defined by the flags at a future time.)  device_id
588  * is a string consisting of concatenated vid (vendor), pid (product/model)
589  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
590  * the parts of the string are as defined by the sizes in the scsi_inquiry
591  * structure.  Device type is searched as far as the device_id string is
592  * defined.  Flags defines which values are to be set in the driver from the
593  * properties list.
594  *
595  * Entries below which begin and end with a "*" are a special case.
596  * These do not have a specific vendor, and the string which follows
597  * can appear anywhere in the 16 byte PID portion of the inquiry data.
598  *
599  * Entries below which begin and end with a " " (blank) are a special
600  * case. The comparison function will treat multiple consecutive blanks
601  * as equivalent to a single blank. For example, this causes a
602  * sd_disk_table entry of " NEC CDROM " to match a device's id string
603  * of  "NEC       CDROM".
604  *
605  * Note: The MD21 controller type has been obsoleted.
606  *	 ST318202F is a Legacy device
607  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
608  *	 made with an FC connection. The entries here are a legacy.
609  */
610 static sd_disk_config_t sd_disk_table[] = {
611 #if defined(__fibre) || defined(__i386) || defined(__amd64)
612 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
613 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
614 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
615 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
616 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
617 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
618 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
622 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
623 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
624 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
625 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
626 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
627 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
628 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
629 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
630 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
631 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
632 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
633 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
634 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
635 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
636 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
637 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
638 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
639 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
640 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
641 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
642 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
643 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
644 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
645 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
653 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
654 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
655 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
656 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
657 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
658 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
659 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
660 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
661 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
662 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
663 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
664 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
665 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
666 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
667 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
668 			SD_CONF_BSET_BSY_RETRY_COUNT|
669 			SD_CONF_BSET_RST_RETRIES|
670 			SD_CONF_BSET_RSV_REL_TIME,
671 		&purple_properties },
672 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
673 		SD_CONF_BSET_BSY_RETRY_COUNT|
674 		SD_CONF_BSET_RST_RETRIES|
675 		SD_CONF_BSET_RSV_REL_TIME|
676 		SD_CONF_BSET_MIN_THROTTLE|
677 		SD_CONF_BSET_DISKSORT_DISABLED,
678 		&sve_properties },
679 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
680 			SD_CONF_BSET_BSY_RETRY_COUNT|
681 			SD_CONF_BSET_RST_RETRIES|
682 			SD_CONF_BSET_RSV_REL_TIME,
683 		&purple_properties },
684 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
685 		SD_CONF_BSET_LUN_RESET_ENABLED,
686 		&maserati_properties },
687 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
688 		SD_CONF_BSET_NRR_COUNT|
689 		SD_CONF_BSET_BSY_RETRY_COUNT|
690 		SD_CONF_BSET_RST_RETRIES|
691 		SD_CONF_BSET_MIN_THROTTLE|
692 		SD_CONF_BSET_DISKSORT_DISABLED|
693 		SD_CONF_BSET_LUN_RESET_ENABLED,
694 		&pirus_properties },
695 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
696 		SD_CONF_BSET_NRR_COUNT|
697 		SD_CONF_BSET_BSY_RETRY_COUNT|
698 		SD_CONF_BSET_RST_RETRIES|
699 		SD_CONF_BSET_MIN_THROTTLE|
700 		SD_CONF_BSET_DISKSORT_DISABLED|
701 		SD_CONF_BSET_LUN_RESET_ENABLED,
702 		&pirus_properties },
703 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
704 		SD_CONF_BSET_NRR_COUNT|
705 		SD_CONF_BSET_BSY_RETRY_COUNT|
706 		SD_CONF_BSET_RST_RETRIES|
707 		SD_CONF_BSET_MIN_THROTTLE|
708 		SD_CONF_BSET_DISKSORT_DISABLED|
709 		SD_CONF_BSET_LUN_RESET_ENABLED,
710 		&pirus_properties },
711 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
712 		SD_CONF_BSET_NRR_COUNT|
713 		SD_CONF_BSET_BSY_RETRY_COUNT|
714 		SD_CONF_BSET_RST_RETRIES|
715 		SD_CONF_BSET_MIN_THROTTLE|
716 		SD_CONF_BSET_DISKSORT_DISABLED|
717 		SD_CONF_BSET_LUN_RESET_ENABLED,
718 		&pirus_properties },
719 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
720 		SD_CONF_BSET_NRR_COUNT|
721 		SD_CONF_BSET_BSY_RETRY_COUNT|
722 		SD_CONF_BSET_RST_RETRIES|
723 		SD_CONF_BSET_MIN_THROTTLE|
724 		SD_CONF_BSET_DISKSORT_DISABLED|
725 		SD_CONF_BSET_LUN_RESET_ENABLED,
726 		&pirus_properties },
727 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
728 		SD_CONF_BSET_NRR_COUNT|
729 		SD_CONF_BSET_BSY_RETRY_COUNT|
730 		SD_CONF_BSET_RST_RETRIES|
731 		SD_CONF_BSET_MIN_THROTTLE|
732 		SD_CONF_BSET_DISKSORT_DISABLED|
733 		SD_CONF_BSET_LUN_RESET_ENABLED,
734 		&pirus_properties },
735 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
736 	{ "SUN     SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
737 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
738 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
739 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
740 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
741 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
742 #endif /* fibre or NON-sparc platforms */
743 #if ((defined(__sparc) && !defined(__fibre)) ||\
744 	(defined(__i386) || defined(__amd64)))
745 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
746 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
747 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
748 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
749 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
750 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
751 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
752 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
753 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
754 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
755 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
756 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
757 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
758 	    &symbios_properties },
759 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
760 	    &lsi_properties_scsi },
761 #if defined(__i386) || defined(__amd64)
762 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
763 				    | SD_CONF_BSET_READSUB_BCD
764 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
765 				    | SD_CONF_BSET_NO_READ_HEADER
766 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
767 
768 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
769 				    | SD_CONF_BSET_READSUB_BCD
770 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
771 				    | SD_CONF_BSET_NO_READ_HEADER
772 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
773 #endif /* __i386 || __amd64 */
774 #endif /* sparc NON-fibre or NON-sparc platforms */
775 
776 #if (defined(SD_PROP_TST))
777 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
778 				| SD_CONF_BSET_CTYPE
779 				| SD_CONF_BSET_NRR_COUNT
780 				| SD_CONF_BSET_FAB_DEVID
781 				| SD_CONF_BSET_NOCACHE
782 				| SD_CONF_BSET_BSY_RETRY_COUNT
783 				| SD_CONF_BSET_PLAYMSF_BCD
784 				| SD_CONF_BSET_READSUB_BCD
785 				| SD_CONF_BSET_READ_TOC_TRK_BCD
786 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
787 				| SD_CONF_BSET_NO_READ_HEADER
788 				| SD_CONF_BSET_READ_CD_XD4
789 				| SD_CONF_BSET_RST_RETRIES
790 				| SD_CONF_BSET_RSV_REL_TIME
791 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
792 #endif
793 };
794 
795 static const int sd_disk_table_size =
796 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
797 
798 /*
799  * Emulation mode disk drive VID/PID table
800  */
801 static char sd_flash_dev_table[][25] = {
802 	"ATA     MARVELL SD88SA02",
803 	"MARVELL SD88SA02",
804 	"TOSHIBA THNSNV05",
805 };
806 
807 static const int sd_flash_dev_table_size =
808 	sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]);
809 
810 #define	SD_INTERCONNECT_PARALLEL	0
811 #define	SD_INTERCONNECT_FABRIC		1
812 #define	SD_INTERCONNECT_FIBRE		2
813 #define	SD_INTERCONNECT_SSA		3
814 #define	SD_INTERCONNECT_SATA		4
815 #define	SD_INTERCONNECT_SAS		5
816 
817 #define	SD_IS_PARALLEL_SCSI(un)		\
818 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
819 #define	SD_IS_SERIAL(un)		\
820 	(((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\
821 	((un)->un_interconnect_type == SD_INTERCONNECT_SAS))
822 
823 /*
824  * Definitions used by device id registration routines
825  */
826 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
827 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
828 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
829 
830 static kmutex_t sd_sense_mutex = {0};
831 
832 /*
833  * Macros for updates of the driver state
834  */
835 #define	New_state(un, s)        \
836 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
837 #define	Restore_state(un)	\
838 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
839 
840 static struct sd_cdbinfo sd_cdbtab[] = {
841 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
842 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
843 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
844 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
845 };
846 
847 /*
848  * Specifies the number of seconds that must have elapsed since the last
849  * cmd. has completed for a device to be declared idle to the PM framework.
850  */
851 static int sd_pm_idletime = 1;
852 
853 /*
854  * Internal function prototypes
855  */
856 
857 #if (defined(__fibre))
858 /*
859  * These #defines are to avoid namespace collisions that occur because this
860  * code is currently used to compile two separate driver modules: sd and ssd.
861  * All function names need to be treated this way (even if declared static)
862  * in order to allow the debugger to resolve the names properly.
863  * It is anticipated that in the near future the ssd module will be obsoleted,
864  * at which time this ugliness should go away.
865  */
866 #define	sd_log_trace			ssd_log_trace
867 #define	sd_log_info			ssd_log_info
868 #define	sd_log_err			ssd_log_err
869 #define	sdprobe				ssdprobe
870 #define	sdinfo				ssdinfo
871 #define	sd_prop_op			ssd_prop_op
872 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
873 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
874 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
875 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
876 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
877 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
878 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
879 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
880 #define	sd_spin_up_unit			ssd_spin_up_unit
881 #define	sd_enable_descr_sense		ssd_enable_descr_sense
882 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
883 #define	sd_set_mmc_caps			ssd_set_mmc_caps
884 #define	sd_read_unit_properties		ssd_read_unit_properties
885 #define	sd_process_sdconf_file		ssd_process_sdconf_file
886 #define	sd_process_sdconf_table		ssd_process_sdconf_table
887 #define	sd_sdconf_id_match		ssd_sdconf_id_match
888 #define	sd_blank_cmp			ssd_blank_cmp
889 #define	sd_chk_vers1_data		ssd_chk_vers1_data
890 #define	sd_set_vers1_properties		ssd_set_vers1_properties
891 #define	sd_check_solid_state		ssd_check_solid_state
892 #define	sd_check_emulation_mode		ssd_check_emulation_mode
893 
894 #define	sd_get_physical_geometry	ssd_get_physical_geometry
895 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
896 #define	sd_update_block_info		ssd_update_block_info
897 #define	sd_register_devid		ssd_register_devid
898 #define	sd_get_devid			ssd_get_devid
899 #define	sd_create_devid			ssd_create_devid
900 #define	sd_write_deviceid		ssd_write_deviceid
901 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
902 #define	sd_setup_pm			ssd_setup_pm
903 #define	sd_create_pm_components		ssd_create_pm_components
904 #define	sd_ddi_suspend			ssd_ddi_suspend
905 #define	sd_ddi_resume			ssd_ddi_resume
906 #define	sd_pm_state_change		ssd_pm_state_change
907 #define	sdpower				ssdpower
908 #define	sdattach			ssdattach
909 #define	sddetach			ssddetach
910 #define	sd_unit_attach			ssd_unit_attach
911 #define	sd_unit_detach			ssd_unit_detach
912 #define	sd_set_unit_attributes		ssd_set_unit_attributes
913 #define	sd_create_errstats		ssd_create_errstats
914 #define	sd_set_errstats			ssd_set_errstats
915 #define	sd_set_pstats			ssd_set_pstats
916 #define	sddump				ssddump
917 #define	sd_scsi_poll			ssd_scsi_poll
918 #define	sd_send_polled_RQS		ssd_send_polled_RQS
919 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
920 #define	sd_init_event_callbacks		ssd_init_event_callbacks
921 #define	sd_event_callback		ssd_event_callback
922 #define	sd_cache_control		ssd_cache_control
923 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
924 #define	sd_get_nv_sup			ssd_get_nv_sup
925 #define	sd_make_device			ssd_make_device
926 #define	sdopen				ssdopen
927 #define	sdclose				ssdclose
928 #define	sd_ready_and_valid		ssd_ready_and_valid
929 #define	sdmin				ssdmin
930 #define	sdread				ssdread
931 #define	sdwrite				ssdwrite
932 #define	sdaread				ssdaread
933 #define	sdawrite			ssdawrite
934 #define	sdstrategy			ssdstrategy
935 #define	sdioctl				ssdioctl
936 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
937 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
938 #define	sd_checksum_iostart		ssd_checksum_iostart
939 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
940 #define	sd_pm_iostart			ssd_pm_iostart
941 #define	sd_core_iostart			ssd_core_iostart
942 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
943 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
944 #define	sd_checksum_iodone		ssd_checksum_iodone
945 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
946 #define	sd_pm_iodone			ssd_pm_iodone
947 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
948 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
949 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
950 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
951 #define	sd_buf_iodone			ssd_buf_iodone
952 #define	sd_uscsi_strategy		ssd_uscsi_strategy
953 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
954 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
955 #define	sd_uscsi_iodone			ssd_uscsi_iodone
956 #define	sd_xbuf_strategy		ssd_xbuf_strategy
957 #define	sd_xbuf_init			ssd_xbuf_init
958 #define	sd_pm_entry			ssd_pm_entry
959 #define	sd_pm_exit			ssd_pm_exit
960 
961 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
962 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
963 
964 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
965 #define	sdintr				ssdintr
966 #define	sd_start_cmds			ssd_start_cmds
967 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
968 #define	sd_bioclone_alloc		ssd_bioclone_alloc
969 #define	sd_bioclone_free		ssd_bioclone_free
970 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
971 #define	sd_shadow_buf_free		ssd_shadow_buf_free
972 #define	sd_print_transport_rejected_message	\
973 					ssd_print_transport_rejected_message
974 #define	sd_retry_command		ssd_retry_command
975 #define	sd_set_retry_bp			ssd_set_retry_bp
976 #define	sd_send_request_sense_command	ssd_send_request_sense_command
977 #define	sd_start_retry_command		ssd_start_retry_command
978 #define	sd_start_direct_priority_command	\
979 					ssd_start_direct_priority_command
980 #define	sd_return_failed_command	ssd_return_failed_command
981 #define	sd_return_failed_command_no_restart	\
982 					ssd_return_failed_command_no_restart
983 #define	sd_return_command		ssd_return_command
984 #define	sd_sync_with_callback		ssd_sync_with_callback
985 #define	sdrunout			ssdrunout
986 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
987 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
988 #define	sd_reduce_throttle		ssd_reduce_throttle
989 #define	sd_restore_throttle		ssd_restore_throttle
990 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
991 #define	sd_init_cdb_limits		ssd_init_cdb_limits
992 #define	sd_pkt_status_good		ssd_pkt_status_good
993 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
994 #define	sd_pkt_status_busy		ssd_pkt_status_busy
995 #define	sd_pkt_status_reservation_conflict	\
996 					ssd_pkt_status_reservation_conflict
997 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
998 #define	sd_handle_request_sense		ssd_handle_request_sense
999 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
1000 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
1001 #define	sd_validate_sense_data		ssd_validate_sense_data
1002 #define	sd_decode_sense			ssd_decode_sense
1003 #define	sd_print_sense_msg		ssd_print_sense_msg
1004 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
1005 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
1006 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
1007 #define	sd_sense_key_medium_or_hardware_error	\
1008 					ssd_sense_key_medium_or_hardware_error
1009 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
1010 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1011 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1012 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1013 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1014 #define	sd_sense_key_default		ssd_sense_key_default
1015 #define	sd_print_retry_msg		ssd_print_retry_msg
1016 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1017 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1018 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1019 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1020 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1021 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1022 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1023 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1024 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1025 #define	sd_reset_target			ssd_reset_target
1026 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1027 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1028 #define	sd_taskq_create			ssd_taskq_create
1029 #define	sd_taskq_delete			ssd_taskq_delete
1030 #define	sd_target_change_task		ssd_target_change_task
1031 #define	sd_log_dev_status_event		ssd_log_dev_status_event
1032 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
1033 #define	sd_log_eject_request_event	ssd_log_eject_request_event
1034 #define	sd_media_change_task		ssd_media_change_task
1035 #define	sd_handle_mchange		ssd_handle_mchange
1036 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1037 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1038 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1039 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1040 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1041 					sd_send_scsi_feature_GET_CONFIGURATION
1042 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1043 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1044 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1045 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1046 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1047 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1048 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1049 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1050 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1051 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1052 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1053 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1054 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1055 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1056 #define	sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION	\
1057 				ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
1058 #define	sd_gesn_media_data_valid	ssd_gesn_media_data_valid
1059 #define	sd_alloc_rqs			ssd_alloc_rqs
1060 #define	sd_free_rqs			ssd_free_rqs
1061 #define	sd_dump_memory			ssd_dump_memory
1062 #define	sd_get_media_info_com		ssd_get_media_info_com
1063 #define	sd_get_media_info		ssd_get_media_info
1064 #define	sd_get_media_info_ext		ssd_get_media_info_ext
1065 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1066 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1067 #define	sd_strtok_r			ssd_strtok_r
1068 #define	sd_set_properties		ssd_set_properties
1069 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1070 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1071 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1072 #define	sd_check_mhd			ssd_check_mhd
1073 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1074 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1075 #define	sd_sname			ssd_sname
1076 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1077 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1078 #define	sd_take_ownership		ssd_take_ownership
1079 #define	sd_reserve_release		ssd_reserve_release
1080 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1081 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1082 #define	sd_persistent_reservation_in_read_keys	\
1083 					ssd_persistent_reservation_in_read_keys
1084 #define	sd_persistent_reservation_in_read_resv	\
1085 					ssd_persistent_reservation_in_read_resv
1086 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1087 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1088 #define	sd_mhdioc_release		ssd_mhdioc_release
1089 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1090 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1091 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1092 #define	sr_change_blkmode		ssr_change_blkmode
1093 #define	sr_change_speed			ssr_change_speed
1094 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1095 #define	sr_pause_resume			ssr_pause_resume
1096 #define	sr_play_msf			ssr_play_msf
1097 #define	sr_play_trkind			ssr_play_trkind
1098 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1099 #define	sr_read_subchannel		ssr_read_subchannel
1100 #define	sr_read_tocentry		ssr_read_tocentry
1101 #define	sr_read_tochdr			ssr_read_tochdr
1102 #define	sr_read_cdda			ssr_read_cdda
1103 #define	sr_read_cdxa			ssr_read_cdxa
1104 #define	sr_read_mode1			ssr_read_mode1
1105 #define	sr_read_mode2			ssr_read_mode2
1106 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1107 #define	sr_sector_mode			ssr_sector_mode
1108 #define	sr_eject			ssr_eject
1109 #define	sr_ejected			ssr_ejected
1110 #define	sr_check_wp			ssr_check_wp
1111 #define	sd_watch_request_submit		ssd_watch_request_submit
1112 #define	sd_check_media			ssd_check_media
1113 #define	sd_media_watch_cb		ssd_media_watch_cb
1114 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1115 #define	sr_volume_ctrl			ssr_volume_ctrl
1116 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1117 #define	sd_log_page_supported		ssd_log_page_supported
1118 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1119 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1120 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1121 #define	sd_range_lock			ssd_range_lock
1122 #define	sd_get_range			ssd_get_range
1123 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1124 #define	sd_range_unlock			ssd_range_unlock
1125 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1126 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1127 
1128 #define	sd_iostart_chain		ssd_iostart_chain
1129 #define	sd_iodone_chain			ssd_iodone_chain
1130 #define	sd_initpkt_map			ssd_initpkt_map
1131 #define	sd_destroypkt_map		ssd_destroypkt_map
1132 #define	sd_chain_type_map		ssd_chain_type_map
1133 #define	sd_chain_index_map		ssd_chain_index_map
1134 
1135 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1136 #define	sd_failfast_flushq		ssd_failfast_flushq
1137 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1138 
1139 #define	sd_is_lsi			ssd_is_lsi
1140 #define	sd_tg_rdwr			ssd_tg_rdwr
1141 #define	sd_tg_getinfo			ssd_tg_getinfo
1142 #define	sd_rmw_msg_print_handler	ssd_rmw_msg_print_handler
1143 
1144 #endif	/* #if (defined(__fibre)) */
1145 
1146 
1147 int _init(void);
1148 int _fini(void);
1149 int _info(struct modinfo *modinfop);
1150 
1151 /*PRINTFLIKE3*/
1152 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1153 /*PRINTFLIKE3*/
1154 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1155 /*PRINTFLIKE3*/
1156 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1157 
1158 static int sdprobe(dev_info_t *devi);
1159 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1160     void **result);
1161 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1162     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1163 
1164 /*
1165  * Smart probe for parallel scsi
1166  */
1167 static void sd_scsi_probe_cache_init(void);
1168 static void sd_scsi_probe_cache_fini(void);
1169 static void sd_scsi_clear_probe_cache(void);
1170 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1171 
1172 /*
1173  * Attached luns on target for parallel scsi
1174  */
1175 static void sd_scsi_target_lun_init(void);
1176 static void sd_scsi_target_lun_fini(void);
1177 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1178 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1179 
1180 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1181 
1182 /*
1183  * Using sd_ssc_init to establish sd_ssc_t struct
1184  * Using sd_ssc_send to send uscsi internal command
1185  * Using sd_ssc_fini to free sd_ssc_t struct
1186  */
1187 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1188 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1189     int flag, enum uio_seg dataspace, int path_flag);
1190 static void sd_ssc_fini(sd_ssc_t *ssc);
1191 
1192 /*
1193  * Using sd_ssc_assessment to set correct type-of-assessment
1194  * Using sd_ssc_post to post ereport & system log
1195  *       sd_ssc_post will call sd_ssc_print to print system log
1196  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1197  */
1198 static void sd_ssc_assessment(sd_ssc_t *ssc,
1199     enum sd_type_assessment tp_assess);
1200 
1201 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1202 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1203 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1204     enum sd_driver_assessment drv_assess);
1205 
1206 /*
1207  * Using sd_ssc_set_info to mark an un-decodable-data error.
1208  * Using sd_ssc_extract_info to transfer information from internal
1209  *       data structures to sd_ssc_t.
1210  */
1211 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1212     const char *fmt, ...);
1213 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1214     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1215 
1216 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1217     enum uio_seg dataspace, int path_flag);
1218 
1219 #ifdef _LP64
1220 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1221 static void	sd_reenable_dsense_task(void *arg);
1222 #endif /* _LP64 */
1223 
1224 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1225 
1226 static void sd_read_unit_properties(struct sd_lun *un);
1227 static int  sd_process_sdconf_file(struct sd_lun *un);
1228 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1229 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1230 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1231 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1232     int *data_list, sd_tunables *values);
1233 static void sd_process_sdconf_table(struct sd_lun *un);
1234 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1235 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1236 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1237 	int list_len, char *dataname_ptr);
1238 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1239     sd_tunables *prop_list);
1240 
1241 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1242     int reservation_flag);
1243 static int  sd_get_devid(sd_ssc_t *ssc);
1244 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1245 static int  sd_write_deviceid(sd_ssc_t *ssc);
1246 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1247 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1248 
1249 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1250 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1251 
1252 static int  sd_ddi_suspend(dev_info_t *devi);
1253 static int  sd_ddi_resume(dev_info_t *devi);
1254 static int  sd_pm_state_change(struct sd_lun *un, int level, int flag);
1255 static int  sdpower(dev_info_t *devi, int component, int level);
1256 
1257 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1258 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1259 static int  sd_unit_attach(dev_info_t *devi);
1260 static int  sd_unit_detach(dev_info_t *devi);
1261 
1262 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1263 static void sd_create_errstats(struct sd_lun *un, int instance);
1264 static void sd_set_errstats(struct sd_lun *un);
1265 static void sd_set_pstats(struct sd_lun *un);
1266 
1267 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1268 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1269 static int  sd_send_polled_RQS(struct sd_lun *un);
1270 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1271 
1272 #if (defined(__fibre))
1273 /*
1274  * Event callbacks (photon)
1275  */
1276 static void sd_init_event_callbacks(struct sd_lun *un);
1277 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1278 #endif
1279 
1280 /*
1281  * Defines for sd_cache_control
1282  */
1283 
1284 #define	SD_CACHE_ENABLE		1
1285 #define	SD_CACHE_DISABLE	0
1286 #define	SD_CACHE_NOCHANGE	-1
1287 
1288 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1289 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1290 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1291 static dev_t sd_make_device(dev_info_t *devi);
1292 static void  sd_check_solid_state(sd_ssc_t *ssc);
1293 static void  sd_check_emulation_mode(sd_ssc_t *ssc);
1294 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1295 	uint64_t capacity);
1296 
1297 /*
1298  * Driver entry point functions.
1299  */
1300 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1301 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1302 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1303 
1304 static void sdmin(struct buf *bp);
1305 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1306 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1307 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1308 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1309 
1310 static int sdstrategy(struct buf *bp);
1311 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1312 
1313 /*
1314  * Function prototypes for layering functions in the iostart chain.
1315  */
1316 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1317 	struct buf *bp);
1318 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1319 	struct buf *bp);
1320 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1321 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1322 	struct buf *bp);
1323 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1324 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1325 
1326 /*
1327  * Function prototypes for layering functions in the iodone chain.
1328  */
1329 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1330 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1331 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1332 	struct buf *bp);
1333 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1334 	struct buf *bp);
1335 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1336 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1337 	struct buf *bp);
1338 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1339 
1340 /*
1341  * Prototypes for functions to support buf(9S) based IO.
1342  */
1343 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1344 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1345 static void sd_destroypkt_for_buf(struct buf *);
1346 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1347 	struct buf *bp, int flags,
1348 	int (*callback)(caddr_t), caddr_t callback_arg,
1349 	diskaddr_t lba, uint32_t blockcount);
1350 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1351 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1352 
1353 /*
1354  * Prototypes for functions to support USCSI IO.
1355  */
1356 static int sd_uscsi_strategy(struct buf *bp);
1357 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1358 static void sd_destroypkt_for_uscsi(struct buf *);
1359 
1360 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1361 	uchar_t chain_type, void *pktinfop);
1362 
1363 static int  sd_pm_entry(struct sd_lun *un);
1364 static void sd_pm_exit(struct sd_lun *un);
1365 
1366 static void sd_pm_idletimeout_handler(void *arg);
1367 
1368 /*
1369  * sd_core internal functions (used at the sd_core_io layer).
1370  */
1371 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1372 static void sdintr(struct scsi_pkt *pktp);
1373 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1374 
1375 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1376 	enum uio_seg dataspace, int path_flag);
1377 
1378 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1379 	daddr_t blkno, int (*func)(struct buf *));
1380 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1381 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1382 static void sd_bioclone_free(struct buf *bp);
1383 static void sd_shadow_buf_free(struct buf *bp);
1384 
1385 static void sd_print_transport_rejected_message(struct sd_lun *un,
1386 	struct sd_xbuf *xp, int code);
1387 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1388     void *arg, int code);
1389 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1390     void *arg, int code);
1391 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1392     void *arg, int code);
1393 
1394 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1395 	int retry_check_flag,
1396 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1397 		int c),
1398 	void *user_arg, int failure_code,  clock_t retry_delay,
1399 	void (*statp)(kstat_io_t *));
1400 
1401 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1402 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1403 
1404 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1405 	struct scsi_pkt *pktp);
1406 static void sd_start_retry_command(void *arg);
1407 static void sd_start_direct_priority_command(void *arg);
1408 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1409 	int errcode);
1410 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1411 	struct buf *bp, int errcode);
1412 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1413 static void sd_sync_with_callback(struct sd_lun *un);
1414 static int sdrunout(caddr_t arg);
1415 
1416 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1417 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1418 
1419 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1420 static void sd_restore_throttle(void *arg);
1421 
1422 static void sd_init_cdb_limits(struct sd_lun *un);
1423 
1424 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1425 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1426 
1427 /*
1428  * Error handling functions
1429  */
1430 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1433 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1434 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1435 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1436 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 
1439 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1440 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1441 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1442 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1443 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1444 	struct sd_xbuf *xp, size_t actual_len);
1445 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1446 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1447 
1448 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1449 	void *arg, int code);
1450 
1451 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1452 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1453 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1454 	uint8_t *sense_datap,
1455 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1456 static void sd_sense_key_not_ready(struct sd_lun *un,
1457 	uint8_t *sense_datap,
1458 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1459 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1460 	uint8_t *sense_datap,
1461 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1462 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1463 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1464 static void sd_sense_key_unit_attention(struct sd_lun *un,
1465 	uint8_t *sense_datap,
1466 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1467 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1468 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1469 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1470 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1471 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1472 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1473 static void sd_sense_key_default(struct sd_lun *un,
1474 	uint8_t *sense_datap,
1475 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1476 
1477 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1478 	void *arg, int flag);
1479 
1480 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1481 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1482 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1483 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1484 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1485 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1486 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1487 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1488 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1489 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1490 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1491 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1492 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1493 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1494 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1495 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1496 
1497 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1498 
1499 static void sd_start_stop_unit_callback(void *arg);
1500 static void sd_start_stop_unit_task(void *arg);
1501 
1502 static void sd_taskq_create(void);
1503 static void sd_taskq_delete(void);
1504 static void sd_target_change_task(void *arg);
1505 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag);
1506 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1507 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag);
1508 static void sd_media_change_task(void *arg);
1509 
1510 static int sd_handle_mchange(struct sd_lun *un);
1511 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1512 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1513 	uint32_t *lbap, int path_flag);
1514 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1515 	uint32_t *lbap, uint32_t *psp, int path_flag);
1516 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag,
1517 	int flag, int path_flag);
1518 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1519 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1520 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1521 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1522 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1523 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1524 	uchar_t usr_cmd, uchar_t *usr_bufp);
1525 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1526 	struct dk_callback *dkc);
1527 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1528 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1529 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1530 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1531 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1532 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1533 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1534 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1535 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1536 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1537 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1538 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1539 	size_t buflen, daddr_t start_block, int path_flag);
1540 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1541 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1542 	path_flag)
1543 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1544 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1545 	path_flag)
1546 
1547 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1548 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1549 	uint16_t param_ptr, int path_flag);
1550 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc,
1551 	uchar_t *bufaddr, size_t buflen, uchar_t class_req);
1552 static boolean_t sd_gesn_media_data_valid(uchar_t *data);
1553 
1554 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1555 static void sd_free_rqs(struct sd_lun *un);
1556 
1557 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1558 	uchar_t *data, int len, int fmt);
1559 static void sd_panic_for_res_conflict(struct sd_lun *un);
1560 
1561 /*
1562  * Disk Ioctl Function Prototypes
1563  */
1564 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1565 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag);
1566 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1567 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1568 
1569 /*
1570  * Multi-host Ioctl Prototypes
1571  */
1572 static int sd_check_mhd(dev_t dev, int interval);
1573 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1574 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1575 static char *sd_sname(uchar_t status);
1576 static void sd_mhd_resvd_recover(void *arg);
1577 static void sd_resv_reclaim_thread();
1578 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1579 static int sd_reserve_release(dev_t dev, int cmd);
1580 static void sd_rmv_resv_reclaim_req(dev_t dev);
1581 static void sd_mhd_reset_notify_cb(caddr_t arg);
1582 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1583 	mhioc_inkeys_t *usrp, int flag);
1584 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1585 	mhioc_inresvs_t *usrp, int flag);
1586 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1587 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1588 static int sd_mhdioc_release(dev_t dev);
1589 static int sd_mhdioc_register_devid(dev_t dev);
1590 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1591 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1592 
1593 /*
1594  * SCSI removable prototypes
1595  */
1596 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1597 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1598 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1599 static int sr_pause_resume(dev_t dev, int mode);
1600 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1601 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1602 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1603 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1604 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1605 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1606 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1607 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1608 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1609 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1611 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1612 static int sr_eject(dev_t dev);
1613 static void sr_ejected(register struct sd_lun *un);
1614 static int sr_check_wp(dev_t dev);
1615 static opaque_t sd_watch_request_submit(struct sd_lun *un);
1616 static int sd_check_media(dev_t dev, enum dkio_state state);
1617 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1618 static void sd_delayed_cv_broadcast(void *arg);
1619 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1620 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1621 
1622 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1623 
1624 /*
1625  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1626  */
1627 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1628 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1629 static void sd_wm_cache_destructor(void *wm, void *un);
1630 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1631 	daddr_t endb, ushort_t typ);
1632 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1633 	daddr_t endb);
1634 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1635 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1636 static void sd_read_modify_write_task(void * arg);
1637 static int
1638 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1639 	struct buf **bpp);
1640 
1641 
1642 /*
1643  * Function prototypes for failfast support.
1644  */
1645 static void sd_failfast_flushq(struct sd_lun *un);
1646 static int sd_failfast_flushq_callback(struct buf *bp);
1647 
1648 /*
1649  * Function prototypes to check for lsi devices
1650  */
1651 static void sd_is_lsi(struct sd_lun *un);
1652 
1653 /*
1654  * Function prototypes for partial DMA support
1655  */
1656 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1657 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1658 
1659 
1660 /* Function prototypes for cmlb */
1661 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1662     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1663 
1664 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1665 
1666 /*
1667  * For printing RMW warning message timely
1668  */
1669 static void sd_rmw_msg_print_handler(void *arg);
1670 
1671 /*
1672  * Constants for failfast support:
1673  *
1674  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1675  * failfast processing being performed.
1676  *
1677  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1678  * failfast processing on all bufs with B_FAILFAST set.
1679  */
1680 
1681 #define	SD_FAILFAST_INACTIVE		0
1682 #define	SD_FAILFAST_ACTIVE		1
1683 
1684 /*
1685  * Bitmask to control behavior of buf(9S) flushes when a transition to
1686  * the failfast state occurs. Optional bits include:
1687  *
1688  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1689  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1690  * be flushed.
1691  *
1692  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1693  * driver, in addition to the regular wait queue. This includes the xbuf
1694  * queues. When clear, only the driver's wait queue will be flushed.
1695  */
1696 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1697 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1698 
1699 /*
1700  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1701  * to flush all queues within the driver.
1702  */
1703 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1704 
1705 
1706 /*
1707  * SD Testing Fault Injection
1708  */
1709 #ifdef SD_FAULT_INJECTION
1710 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1711 static void sd_faultinjection(struct scsi_pkt *pktp);
1712 static void sd_injection_log(char *buf, struct sd_lun *un);
1713 #endif
1714 
1715 /*
1716  * Device driver ops vector
1717  */
1718 static struct cb_ops sd_cb_ops = {
1719 	sdopen,			/* open */
1720 	sdclose,		/* close */
1721 	sdstrategy,		/* strategy */
1722 	nodev,			/* print */
1723 	sddump,			/* dump */
1724 	sdread,			/* read */
1725 	sdwrite,		/* write */
1726 	sdioctl,		/* ioctl */
1727 	nodev,			/* devmap */
1728 	nodev,			/* mmap */
1729 	nodev,			/* segmap */
1730 	nochpoll,		/* poll */
1731 	sd_prop_op,		/* cb_prop_op */
1732 	0,			/* streamtab  */
1733 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1734 	CB_REV,			/* cb_rev */
1735 	sdaread, 		/* async I/O read entry point */
1736 	sdawrite		/* async I/O write entry point */
1737 };
1738 
1739 struct dev_ops sd_ops = {
1740 	DEVO_REV,		/* devo_rev, */
1741 	0,			/* refcnt  */
1742 	sdinfo,			/* info */
1743 	nulldev,		/* identify */
1744 	sdprobe,		/* probe */
1745 	sdattach,		/* attach */
1746 	sddetach,		/* detach */
1747 	nodev,			/* reset */
1748 	&sd_cb_ops,		/* driver operations */
1749 	NULL,			/* bus operations */
1750 	sdpower,		/* power */
1751 	ddi_quiesce_not_needed,		/* quiesce */
1752 };
1753 
1754 /*
1755  * This is the loadable module wrapper.
1756  */
1757 #include <sys/modctl.h>
1758 
1759 #ifndef XPV_HVM_DRIVER
1760 static struct modldrv modldrv = {
1761 	&mod_driverops,		/* Type of module. This one is a driver */
1762 	SD_MODULE_NAME,		/* Module name. */
1763 	&sd_ops			/* driver ops */
1764 };
1765 
1766 static struct modlinkage modlinkage = {
1767 	MODREV_1, &modldrv, NULL
1768 };
1769 
1770 #else /* XPV_HVM_DRIVER */
1771 static struct modlmisc modlmisc = {
1772 	&mod_miscops,		/* Type of module. This one is a misc */
1773 	"HVM " SD_MODULE_NAME,		/* Module name. */
1774 };
1775 
1776 static struct modlinkage modlinkage = {
1777 	MODREV_1, &modlmisc, NULL
1778 };
1779 
1780 #endif /* XPV_HVM_DRIVER */
1781 
1782 static cmlb_tg_ops_t sd_tgops = {
1783 	TG_DK_OPS_VERSION_1,
1784 	sd_tg_rdwr,
1785 	sd_tg_getinfo
1786 };
1787 
1788 static struct scsi_asq_key_strings sd_additional_codes[] = {
1789 	0x81, 0, "Logical Unit is Reserved",
1790 	0x85, 0, "Audio Address Not Valid",
1791 	0xb6, 0, "Media Load Mechanism Failed",
1792 	0xB9, 0, "Audio Play Operation Aborted",
1793 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1794 	0x53, 2, "Medium removal prevented",
1795 	0x6f, 0, "Authentication failed during key exchange",
1796 	0x6f, 1, "Key not present",
1797 	0x6f, 2, "Key not established",
1798 	0x6f, 3, "Read without proper authentication",
1799 	0x6f, 4, "Mismatched region to this logical unit",
1800 	0x6f, 5, "Region reset count error",
1801 	0xffff, 0x0, NULL
1802 };
1803 
1804 
1805 /*
1806  * Struct for passing printing information for sense data messages
1807  */
1808 struct sd_sense_info {
1809 	int	ssi_severity;
1810 	int	ssi_pfa_flag;
1811 };
1812 
1813 /*
1814  * Table of function pointers for iostart-side routines. Separate "chains"
1815  * of layered function calls are formed by placing the function pointers
1816  * sequentially in the desired order. Functions are called according to an
1817  * incrementing table index ordering. The last function in each chain must
1818  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1819  * in the sd_iodone_chain[] array.
1820  *
1821  * Note: It may seem more natural to organize both the iostart and iodone
1822  * functions together, into an array of structures (or some similar
1823  * organization) with a common index, rather than two separate arrays which
1824  * must be maintained in synchronization. The purpose of this division is
1825  * to achieve improved performance: individual arrays allows for more
1826  * effective cache line utilization on certain platforms.
1827  */
1828 
1829 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1830 
1831 
1832 static sd_chain_t sd_iostart_chain[] = {
1833 
1834 	/* Chain for buf IO for disk drive targets (PM enabled) */
1835 	sd_mapblockaddr_iostart,	/* Index: 0 */
1836 	sd_pm_iostart,			/* Index: 1 */
1837 	sd_core_iostart,		/* Index: 2 */
1838 
1839 	/* Chain for buf IO for disk drive targets (PM disabled) */
1840 	sd_mapblockaddr_iostart,	/* Index: 3 */
1841 	sd_core_iostart,		/* Index: 4 */
1842 
1843 	/*
1844 	 * Chain for buf IO for removable-media or large sector size
1845 	 * disk drive targets with RMW needed (PM enabled)
1846 	 */
1847 	sd_mapblockaddr_iostart,	/* Index: 5 */
1848 	sd_mapblocksize_iostart,	/* Index: 6 */
1849 	sd_pm_iostart,			/* Index: 7 */
1850 	sd_core_iostart,		/* Index: 8 */
1851 
1852 	/*
1853 	 * Chain for buf IO for removable-media or large sector size
1854 	 * disk drive targets with RMW needed (PM disabled)
1855 	 */
1856 	sd_mapblockaddr_iostart,	/* Index: 9 */
1857 	sd_mapblocksize_iostart,	/* Index: 10 */
1858 	sd_core_iostart,		/* Index: 11 */
1859 
1860 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1861 	sd_mapblockaddr_iostart,	/* Index: 12 */
1862 	sd_checksum_iostart,		/* Index: 13 */
1863 	sd_pm_iostart,			/* Index: 14 */
1864 	sd_core_iostart,		/* Index: 15 */
1865 
1866 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1867 	sd_mapblockaddr_iostart,	/* Index: 16 */
1868 	sd_checksum_iostart,		/* Index: 17 */
1869 	sd_core_iostart,		/* Index: 18 */
1870 
1871 	/* Chain for USCSI commands (all targets) */
1872 	sd_pm_iostart,			/* Index: 19 */
1873 	sd_core_iostart,		/* Index: 20 */
1874 
1875 	/* Chain for checksumming USCSI commands (all targets) */
1876 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1877 	sd_pm_iostart,			/* Index: 22 */
1878 	sd_core_iostart,		/* Index: 23 */
1879 
1880 	/* Chain for "direct" USCSI commands (all targets) */
1881 	sd_core_iostart,		/* Index: 24 */
1882 
1883 	/* Chain for "direct priority" USCSI commands (all targets) */
1884 	sd_core_iostart,		/* Index: 25 */
1885 
1886 	/*
1887 	 * Chain for buf IO for large sector size disk drive targets
1888 	 * with RMW needed with checksumming (PM enabled)
1889 	 */
1890 	sd_mapblockaddr_iostart,	/* Index: 26 */
1891 	sd_mapblocksize_iostart,	/* Index: 27 */
1892 	sd_checksum_iostart,		/* Index: 28 */
1893 	sd_pm_iostart,			/* Index: 29 */
1894 	sd_core_iostart,		/* Index: 30 */
1895 
1896 	/*
1897 	 * Chain for buf IO for large sector size disk drive targets
1898 	 * with RMW needed with checksumming (PM disabled)
1899 	 */
1900 	sd_mapblockaddr_iostart,	/* Index: 31 */
1901 	sd_mapblocksize_iostart,	/* Index: 32 */
1902 	sd_checksum_iostart,		/* Index: 33 */
1903 	sd_core_iostart,		/* Index: 34 */
1904 
1905 };
1906 
1907 /*
1908  * Macros to locate the first function of each iostart chain in the
1909  * sd_iostart_chain[] array. These are located by the index in the array.
1910  */
1911 #define	SD_CHAIN_DISK_IOSTART			0
1912 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1913 #define	SD_CHAIN_MSS_DISK_IOSTART		5
1914 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1915 #define	SD_CHAIN_MSS_DISK_IOSTART_NO_PM		9
1916 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1917 #define	SD_CHAIN_CHKSUM_IOSTART			12
1918 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1919 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1920 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1921 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1922 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1923 #define	SD_CHAIN_MSS_CHKSUM_IOSTART		26
1924 #define	SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM	31
1925 
1926 
1927 /*
1928  * Table of function pointers for the iodone-side routines for the driver-
1929  * internal layering mechanism.  The calling sequence for iodone routines
1930  * uses a decrementing table index, so the last routine called in a chain
1931  * must be at the lowest array index location for that chain.  The last
1932  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1933  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1934  * of the functions in an iodone side chain must correspond to the ordering
1935  * of the iostart routines for that chain.  Note that there is no iodone
1936  * side routine that corresponds to sd_core_iostart(), so there is no
1937  * entry in the table for this.
1938  */
1939 
1940 static sd_chain_t sd_iodone_chain[] = {
1941 
1942 	/* Chain for buf IO for disk drive targets (PM enabled) */
1943 	sd_buf_iodone,			/* Index: 0 */
1944 	sd_mapblockaddr_iodone,		/* Index: 1 */
1945 	sd_pm_iodone,			/* Index: 2 */
1946 
1947 	/* Chain for buf IO for disk drive targets (PM disabled) */
1948 	sd_buf_iodone,			/* Index: 3 */
1949 	sd_mapblockaddr_iodone,		/* Index: 4 */
1950 
1951 	/*
1952 	 * Chain for buf IO for removable-media or large sector size
1953 	 * disk drive targets with RMW needed (PM enabled)
1954 	 */
1955 	sd_buf_iodone,			/* Index: 5 */
1956 	sd_mapblockaddr_iodone,		/* Index: 6 */
1957 	sd_mapblocksize_iodone,		/* Index: 7 */
1958 	sd_pm_iodone,			/* Index: 8 */
1959 
1960 	/*
1961 	 * Chain for buf IO for removable-media or large sector size
1962 	 * disk drive targets with RMW needed (PM disabled)
1963 	 */
1964 	sd_buf_iodone,			/* Index: 9 */
1965 	sd_mapblockaddr_iodone,		/* Index: 10 */
1966 	sd_mapblocksize_iodone,		/* Index: 11 */
1967 
1968 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1969 	sd_buf_iodone,			/* Index: 12 */
1970 	sd_mapblockaddr_iodone,		/* Index: 13 */
1971 	sd_checksum_iodone,		/* Index: 14 */
1972 	sd_pm_iodone,			/* Index: 15 */
1973 
1974 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1975 	sd_buf_iodone,			/* Index: 16 */
1976 	sd_mapblockaddr_iodone,		/* Index: 17 */
1977 	sd_checksum_iodone,		/* Index: 18 */
1978 
1979 	/* Chain for USCSI commands (non-checksum targets) */
1980 	sd_uscsi_iodone,		/* Index: 19 */
1981 	sd_pm_iodone,			/* Index: 20 */
1982 
1983 	/* Chain for USCSI commands (checksum targets) */
1984 	sd_uscsi_iodone,		/* Index: 21 */
1985 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1986 	sd_pm_iodone,			/* Index: 22 */
1987 
1988 	/* Chain for "direct" USCSI commands (all targets) */
1989 	sd_uscsi_iodone,		/* Index: 24 */
1990 
1991 	/* Chain for "direct priority" USCSI commands (all targets) */
1992 	sd_uscsi_iodone,		/* Index: 25 */
1993 
1994 	/*
1995 	 * Chain for buf IO for large sector size disk drive targets
1996 	 * with checksumming (PM enabled)
1997 	 */
1998 	sd_buf_iodone,			/* Index: 26 */
1999 	sd_mapblockaddr_iodone,		/* Index: 27 */
2000 	sd_mapblocksize_iodone,		/* Index: 28 */
2001 	sd_checksum_iodone,		/* Index: 29 */
2002 	sd_pm_iodone,			/* Index: 30 */
2003 
2004 	/*
2005 	 * Chain for buf IO for large sector size disk drive targets
2006 	 * with checksumming (PM disabled)
2007 	 */
2008 	sd_buf_iodone,			/* Index: 31 */
2009 	sd_mapblockaddr_iodone,		/* Index: 32 */
2010 	sd_mapblocksize_iodone,		/* Index: 33 */
2011 	sd_checksum_iodone,		/* Index: 34 */
2012 };
2013 
2014 
2015 /*
2016  * Macros to locate the "first" function in the sd_iodone_chain[] array for
2017  * each iodone-side chain. These are located by the array index, but as the
2018  * iodone side functions are called in a decrementing-index order, the
2019  * highest index number in each chain must be specified (as these correspond
2020  * to the first function in the iodone chain that will be called by the core
2021  * at IO completion time).
2022  */
2023 
2024 #define	SD_CHAIN_DISK_IODONE			2
2025 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
2026 #define	SD_CHAIN_RMMEDIA_IODONE			8
2027 #define	SD_CHAIN_MSS_DISK_IODONE		8
2028 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
2029 #define	SD_CHAIN_MSS_DISK_IODONE_NO_PM		11
2030 #define	SD_CHAIN_CHKSUM_IODONE			15
2031 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
2032 #define	SD_CHAIN_USCSI_CMD_IODONE		20
2033 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
2034 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
2035 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
2036 #define	SD_CHAIN_MSS_CHKSUM_IODONE		30
2037 #define	SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM	34
2038 
2039 
2040 
2041 /*
2042  * Array to map a layering chain index to the appropriate initpkt routine.
2043  * The redundant entries are present so that the index used for accessing
2044  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2045  * with this table as well.
2046  */
2047 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
2048 
2049 static sd_initpkt_t	sd_initpkt_map[] = {
2050 
2051 	/* Chain for buf IO for disk drive targets (PM enabled) */
2052 	sd_initpkt_for_buf,		/* Index: 0 */
2053 	sd_initpkt_for_buf,		/* Index: 1 */
2054 	sd_initpkt_for_buf,		/* Index: 2 */
2055 
2056 	/* Chain for buf IO for disk drive targets (PM disabled) */
2057 	sd_initpkt_for_buf,		/* Index: 3 */
2058 	sd_initpkt_for_buf,		/* Index: 4 */
2059 
2060 	/*
2061 	 * Chain for buf IO for removable-media or large sector size
2062 	 * disk drive targets (PM enabled)
2063 	 */
2064 	sd_initpkt_for_buf,		/* Index: 5 */
2065 	sd_initpkt_for_buf,		/* Index: 6 */
2066 	sd_initpkt_for_buf,		/* Index: 7 */
2067 	sd_initpkt_for_buf,		/* Index: 8 */
2068 
2069 	/*
2070 	 * Chain for buf IO for removable-media or large sector size
2071 	 * disk drive targets (PM disabled)
2072 	 */
2073 	sd_initpkt_for_buf,		/* Index: 9 */
2074 	sd_initpkt_for_buf,		/* Index: 10 */
2075 	sd_initpkt_for_buf,		/* Index: 11 */
2076 
2077 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2078 	sd_initpkt_for_buf,		/* Index: 12 */
2079 	sd_initpkt_for_buf,		/* Index: 13 */
2080 	sd_initpkt_for_buf,		/* Index: 14 */
2081 	sd_initpkt_for_buf,		/* Index: 15 */
2082 
2083 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2084 	sd_initpkt_for_buf,		/* Index: 16 */
2085 	sd_initpkt_for_buf,		/* Index: 17 */
2086 	sd_initpkt_for_buf,		/* Index: 18 */
2087 
2088 	/* Chain for USCSI commands (non-checksum targets) */
2089 	sd_initpkt_for_uscsi,		/* Index: 19 */
2090 	sd_initpkt_for_uscsi,		/* Index: 20 */
2091 
2092 	/* Chain for USCSI commands (checksum targets) */
2093 	sd_initpkt_for_uscsi,		/* Index: 21 */
2094 	sd_initpkt_for_uscsi,		/* Index: 22 */
2095 	sd_initpkt_for_uscsi,		/* Index: 22 */
2096 
2097 	/* Chain for "direct" USCSI commands (all targets) */
2098 	sd_initpkt_for_uscsi,		/* Index: 24 */
2099 
2100 	/* Chain for "direct priority" USCSI commands (all targets) */
2101 	sd_initpkt_for_uscsi,		/* Index: 25 */
2102 
2103 	/*
2104 	 * Chain for buf IO for large sector size disk drive targets
2105 	 * with checksumming (PM enabled)
2106 	 */
2107 	sd_initpkt_for_buf,		/* Index: 26 */
2108 	sd_initpkt_for_buf,		/* Index: 27 */
2109 	sd_initpkt_for_buf,		/* Index: 28 */
2110 	sd_initpkt_for_buf,		/* Index: 29 */
2111 	sd_initpkt_for_buf,		/* Index: 30 */
2112 
2113 	/*
2114 	 * Chain for buf IO for large sector size disk drive targets
2115 	 * with checksumming (PM disabled)
2116 	 */
2117 	sd_initpkt_for_buf,		/* Index: 31 */
2118 	sd_initpkt_for_buf,		/* Index: 32 */
2119 	sd_initpkt_for_buf,		/* Index: 33 */
2120 	sd_initpkt_for_buf,		/* Index: 34 */
2121 };
2122 
2123 
2124 /*
2125  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2126  * The redundant entries are present so that the index used for accessing
2127  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2128  * with this table as well.
2129  */
2130 typedef void (*sd_destroypkt_t)(struct buf *);
2131 
2132 static sd_destroypkt_t	sd_destroypkt_map[] = {
2133 
2134 	/* Chain for buf IO for disk drive targets (PM enabled) */
2135 	sd_destroypkt_for_buf,		/* Index: 0 */
2136 	sd_destroypkt_for_buf,		/* Index: 1 */
2137 	sd_destroypkt_for_buf,		/* Index: 2 */
2138 
2139 	/* Chain for buf IO for disk drive targets (PM disabled) */
2140 	sd_destroypkt_for_buf,		/* Index: 3 */
2141 	sd_destroypkt_for_buf,		/* Index: 4 */
2142 
2143 	/*
2144 	 * Chain for buf IO for removable-media or large sector size
2145 	 * disk drive targets (PM enabled)
2146 	 */
2147 	sd_destroypkt_for_buf,		/* Index: 5 */
2148 	sd_destroypkt_for_buf,		/* Index: 6 */
2149 	sd_destroypkt_for_buf,		/* Index: 7 */
2150 	sd_destroypkt_for_buf,		/* Index: 8 */
2151 
2152 	/*
2153 	 * Chain for buf IO for removable-media or large sector size
2154 	 * disk drive targets (PM disabled)
2155 	 */
2156 	sd_destroypkt_for_buf,		/* Index: 9 */
2157 	sd_destroypkt_for_buf,		/* Index: 10 */
2158 	sd_destroypkt_for_buf,		/* Index: 11 */
2159 
2160 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2161 	sd_destroypkt_for_buf,		/* Index: 12 */
2162 	sd_destroypkt_for_buf,		/* Index: 13 */
2163 	sd_destroypkt_for_buf,		/* Index: 14 */
2164 	sd_destroypkt_for_buf,		/* Index: 15 */
2165 
2166 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2167 	sd_destroypkt_for_buf,		/* Index: 16 */
2168 	sd_destroypkt_for_buf,		/* Index: 17 */
2169 	sd_destroypkt_for_buf,		/* Index: 18 */
2170 
2171 	/* Chain for USCSI commands (non-checksum targets) */
2172 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2173 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2174 
2175 	/* Chain for USCSI commands (checksum targets) */
2176 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2177 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2178 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2179 
2180 	/* Chain for "direct" USCSI commands (all targets) */
2181 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2182 
2183 	/* Chain for "direct priority" USCSI commands (all targets) */
2184 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2185 
2186 	/*
2187 	 * Chain for buf IO for large sector size disk drive targets
2188 	 * with checksumming (PM disabled)
2189 	 */
2190 	sd_destroypkt_for_buf,		/* Index: 26 */
2191 	sd_destroypkt_for_buf,		/* Index: 27 */
2192 	sd_destroypkt_for_buf,		/* Index: 28 */
2193 	sd_destroypkt_for_buf,		/* Index: 29 */
2194 	sd_destroypkt_for_buf,		/* Index: 30 */
2195 
2196 	/*
2197 	 * Chain for buf IO for large sector size disk drive targets
2198 	 * with checksumming (PM enabled)
2199 	 */
2200 	sd_destroypkt_for_buf,		/* Index: 31 */
2201 	sd_destroypkt_for_buf,		/* Index: 32 */
2202 	sd_destroypkt_for_buf,		/* Index: 33 */
2203 	sd_destroypkt_for_buf,		/* Index: 34 */
2204 };
2205 
2206 
2207 
2208 /*
2209  * Array to map a layering chain index to the appropriate chain "type".
2210  * The chain type indicates a specific property/usage of the chain.
2211  * The redundant entries are present so that the index used for accessing
2212  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2213  * with this table as well.
2214  */
2215 
2216 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2217 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2218 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2219 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2220 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2221 						/* (for error recovery) */
2222 
2223 static int sd_chain_type_map[] = {
2224 
2225 	/* Chain for buf IO for disk drive targets (PM enabled) */
2226 	SD_CHAIN_BUFIO,			/* Index: 0 */
2227 	SD_CHAIN_BUFIO,			/* Index: 1 */
2228 	SD_CHAIN_BUFIO,			/* Index: 2 */
2229 
2230 	/* Chain for buf IO for disk drive targets (PM disabled) */
2231 	SD_CHAIN_BUFIO,			/* Index: 3 */
2232 	SD_CHAIN_BUFIO,			/* Index: 4 */
2233 
2234 	/*
2235 	 * Chain for buf IO for removable-media or large sector size
2236 	 * disk drive targets (PM enabled)
2237 	 */
2238 	SD_CHAIN_BUFIO,			/* Index: 5 */
2239 	SD_CHAIN_BUFIO,			/* Index: 6 */
2240 	SD_CHAIN_BUFIO,			/* Index: 7 */
2241 	SD_CHAIN_BUFIO,			/* Index: 8 */
2242 
2243 	/*
2244 	 * Chain for buf IO for removable-media or large sector size
2245 	 * disk drive targets (PM disabled)
2246 	 */
2247 	SD_CHAIN_BUFIO,			/* Index: 9 */
2248 	SD_CHAIN_BUFIO,			/* Index: 10 */
2249 	SD_CHAIN_BUFIO,			/* Index: 11 */
2250 
2251 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2252 	SD_CHAIN_BUFIO,			/* Index: 12 */
2253 	SD_CHAIN_BUFIO,			/* Index: 13 */
2254 	SD_CHAIN_BUFIO,			/* Index: 14 */
2255 	SD_CHAIN_BUFIO,			/* Index: 15 */
2256 
2257 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2258 	SD_CHAIN_BUFIO,			/* Index: 16 */
2259 	SD_CHAIN_BUFIO,			/* Index: 17 */
2260 	SD_CHAIN_BUFIO,			/* Index: 18 */
2261 
2262 	/* Chain for USCSI commands (non-checksum targets) */
2263 	SD_CHAIN_USCSI,			/* Index: 19 */
2264 	SD_CHAIN_USCSI,			/* Index: 20 */
2265 
2266 	/* Chain for USCSI commands (checksum targets) */
2267 	SD_CHAIN_USCSI,			/* Index: 21 */
2268 	SD_CHAIN_USCSI,			/* Index: 22 */
2269 	SD_CHAIN_USCSI,			/* Index: 23 */
2270 
2271 	/* Chain for "direct" USCSI commands (all targets) */
2272 	SD_CHAIN_DIRECT,		/* Index: 24 */
2273 
2274 	/* Chain for "direct priority" USCSI commands (all targets) */
2275 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2276 
2277 	/*
2278 	 * Chain for buf IO for large sector size disk drive targets
2279 	 * with checksumming (PM enabled)
2280 	 */
2281 	SD_CHAIN_BUFIO,			/* Index: 26 */
2282 	SD_CHAIN_BUFIO,			/* Index: 27 */
2283 	SD_CHAIN_BUFIO,			/* Index: 28 */
2284 	SD_CHAIN_BUFIO,			/* Index: 29 */
2285 	SD_CHAIN_BUFIO,			/* Index: 30 */
2286 
2287 	/*
2288 	 * Chain for buf IO for large sector size disk drive targets
2289 	 * with checksumming (PM disabled)
2290 	 */
2291 	SD_CHAIN_BUFIO,			/* Index: 31 */
2292 	SD_CHAIN_BUFIO,			/* Index: 32 */
2293 	SD_CHAIN_BUFIO,			/* Index: 33 */
2294 	SD_CHAIN_BUFIO,			/* Index: 34 */
2295 };
2296 
2297 
2298 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2299 #define	SD_IS_BUFIO(xp)			\
2300 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2301 
2302 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2303 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2304 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2305 
2306 
2307 
2308 /*
2309  * Struct, array, and macros to map a specific chain to the appropriate
2310  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2311  *
2312  * The sd_chain_index_map[] array is used at attach time to set the various
2313  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2314  * chain to be used with the instance. This allows different instances to use
2315  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2316  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2317  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2318  * dynamically & without the use of locking; and (2) a layer may update the
2319  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2320  * to allow for deferred processing of an IO within the same chain from a
2321  * different execution context.
2322  */
2323 
2324 struct sd_chain_index {
2325 	int	sci_iostart_index;
2326 	int	sci_iodone_index;
2327 };
2328 
2329 static struct sd_chain_index	sd_chain_index_map[] = {
2330 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2331 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2332 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2333 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2334 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2335 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2336 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2337 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2338 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2339 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2340 	{ SD_CHAIN_MSS_CHKSUM_IOSTART,		SD_CHAIN_MSS_CHKSUM_IODONE },
2341 	{ SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM },
2342 
2343 };
2344 
2345 
2346 /*
2347  * The following are indexes into the sd_chain_index_map[] array.
2348  */
2349 
2350 /* un->un_buf_chain_type must be set to one of these */
2351 #define	SD_CHAIN_INFO_DISK		0
2352 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2353 #define	SD_CHAIN_INFO_RMMEDIA		2
2354 #define	SD_CHAIN_INFO_MSS_DISK		2
2355 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2356 #define	SD_CHAIN_INFO_MSS_DSK_NO_PM	3
2357 #define	SD_CHAIN_INFO_CHKSUM		4
2358 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2359 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM	10
2360 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM	11
2361 
2362 /* un->un_uscsi_chain_type must be set to one of these */
2363 #define	SD_CHAIN_INFO_USCSI_CMD		6
2364 /* USCSI with PM disabled is the same as DIRECT */
2365 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2366 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2367 
2368 /* un->un_direct_chain_type must be set to one of these */
2369 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2370 
2371 /* un->un_priority_chain_type must be set to one of these */
2372 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2373 
2374 /* size for devid inquiries */
2375 #define	MAX_INQUIRY_SIZE		0xF0
2376 
2377 /*
2378  * Macros used by functions to pass a given buf(9S) struct along to the
2379  * next function in the layering chain for further processing.
2380  *
2381  * In the following macros, passing more than three arguments to the called
2382  * routines causes the optimizer for the SPARC compiler to stop doing tail
2383  * call elimination which results in significant performance degradation.
2384  */
2385 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2386 	((*(sd_iostart_chain[index]))(index, un, bp))
2387 
2388 #define	SD_BEGIN_IODONE(index, un, bp)	\
2389 	((*(sd_iodone_chain[index]))(index, un, bp))
2390 
2391 #define	SD_NEXT_IOSTART(index, un, bp)				\
2392 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2393 
2394 #define	SD_NEXT_IODONE(index, un, bp)				\
2395 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2396 
2397 /*
2398  *    Function: _init
2399  *
2400  * Description: This is the driver _init(9E) entry point.
2401  *
2402  * Return Code: Returns the value from mod_install(9F) or
2403  *		ddi_soft_state_init(9F) as appropriate.
2404  *
2405  *     Context: Called when driver module loaded.
2406  */
2407 
2408 int
2409 _init(void)
2410 {
2411 	int	err;
2412 
2413 	/* establish driver name from module name */
2414 	sd_label = (char *)mod_modname(&modlinkage);
2415 
2416 #ifndef XPV_HVM_DRIVER
2417 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2418 	    SD_MAXUNIT);
2419 	if (err != 0) {
2420 		return (err);
2421 	}
2422 
2423 #else /* XPV_HVM_DRIVER */
2424 	/* Remove the leading "hvm_" from the module name */
2425 	ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0);
2426 	sd_label += strlen("hvm_");
2427 
2428 #endif /* XPV_HVM_DRIVER */
2429 
2430 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2431 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2432 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2433 
2434 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2435 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2436 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2437 
2438 	/*
2439 	 * it's ok to init here even for fibre device
2440 	 */
2441 	sd_scsi_probe_cache_init();
2442 
2443 	sd_scsi_target_lun_init();
2444 
2445 	/*
2446 	 * Creating taskq before mod_install ensures that all callers (threads)
2447 	 * that enter the module after a successful mod_install encounter
2448 	 * a valid taskq.
2449 	 */
2450 	sd_taskq_create();
2451 
2452 	err = mod_install(&modlinkage);
2453 	if (err != 0) {
2454 		/* delete taskq if install fails */
2455 		sd_taskq_delete();
2456 
2457 		mutex_destroy(&sd_detach_mutex);
2458 		mutex_destroy(&sd_log_mutex);
2459 		mutex_destroy(&sd_label_mutex);
2460 
2461 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2462 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2463 		cv_destroy(&sd_tr.srq_inprocess_cv);
2464 
2465 		sd_scsi_probe_cache_fini();
2466 
2467 		sd_scsi_target_lun_fini();
2468 
2469 #ifndef XPV_HVM_DRIVER
2470 		ddi_soft_state_fini(&sd_state);
2471 #endif /* !XPV_HVM_DRIVER */
2472 		return (err);
2473 	}
2474 
2475 	return (err);
2476 }
2477 
2478 
2479 /*
2480  *    Function: _fini
2481  *
2482  * Description: This is the driver _fini(9E) entry point.
2483  *
2484  * Return Code: Returns the value from mod_remove(9F)
2485  *
2486  *     Context: Called when driver module is unloaded.
2487  */
2488 
2489 int
2490 _fini(void)
2491 {
2492 	int err;
2493 
2494 	if ((err = mod_remove(&modlinkage)) != 0) {
2495 		return (err);
2496 	}
2497 
2498 	sd_taskq_delete();
2499 
2500 	mutex_destroy(&sd_detach_mutex);
2501 	mutex_destroy(&sd_log_mutex);
2502 	mutex_destroy(&sd_label_mutex);
2503 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2504 
2505 	sd_scsi_probe_cache_fini();
2506 
2507 	sd_scsi_target_lun_fini();
2508 
2509 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2510 	cv_destroy(&sd_tr.srq_inprocess_cv);
2511 
2512 #ifndef XPV_HVM_DRIVER
2513 	ddi_soft_state_fini(&sd_state);
2514 #endif /* !XPV_HVM_DRIVER */
2515 
2516 	return (err);
2517 }
2518 
2519 
2520 /*
2521  *    Function: _info
2522  *
2523  * Description: This is the driver _info(9E) entry point.
2524  *
2525  *   Arguments: modinfop - pointer to the driver modinfo structure
2526  *
2527  * Return Code: Returns the value from mod_info(9F).
2528  *
2529  *     Context: Kernel thread context
2530  */
2531 
2532 int
2533 _info(struct modinfo *modinfop)
2534 {
2535 	return (mod_info(&modlinkage, modinfop));
2536 }
2537 
2538 
2539 /*
2540  * The following routines implement the driver message logging facility.
2541  * They provide component- and level- based debug output filtering.
2542  * Output may also be restricted to messages for a single instance by
2543  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2544  * to NULL, then messages for all instances are printed.
2545  *
2546  * These routines have been cloned from each other due to the language
2547  * constraints of macros and variable argument list processing.
2548  */
2549 
2550 
2551 /*
2552  *    Function: sd_log_err
2553  *
2554  * Description: This routine is called by the SD_ERROR macro for debug
2555  *		logging of error conditions.
2556  *
2557  *   Arguments: comp - driver component being logged
2558  *		dev  - pointer to driver info structure
2559  *		fmt  - error string and format to be logged
2560  */
2561 
2562 static void
2563 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2564 {
2565 	va_list		ap;
2566 	dev_info_t	*dev;
2567 
2568 	ASSERT(un != NULL);
2569 	dev = SD_DEVINFO(un);
2570 	ASSERT(dev != NULL);
2571 
2572 	/*
2573 	 * Filter messages based on the global component and level masks.
2574 	 * Also print if un matches the value of sd_debug_un, or if
2575 	 * sd_debug_un is set to NULL.
2576 	 */
2577 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2578 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2579 		mutex_enter(&sd_log_mutex);
2580 		va_start(ap, fmt);
2581 		(void) vsprintf(sd_log_buf, fmt, ap);
2582 		va_end(ap);
2583 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2584 		mutex_exit(&sd_log_mutex);
2585 	}
2586 #ifdef SD_FAULT_INJECTION
2587 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2588 	if (un->sd_injection_mask & comp) {
2589 		mutex_enter(&sd_log_mutex);
2590 		va_start(ap, fmt);
2591 		(void) vsprintf(sd_log_buf, fmt, ap);
2592 		va_end(ap);
2593 		sd_injection_log(sd_log_buf, un);
2594 		mutex_exit(&sd_log_mutex);
2595 	}
2596 #endif
2597 }
2598 
2599 
2600 /*
2601  *    Function: sd_log_info
2602  *
2603  * Description: This routine is called by the SD_INFO macro for debug
2604  *		logging of general purpose informational conditions.
2605  *
2606  *   Arguments: comp - driver component being logged
2607  *		dev  - pointer to driver info structure
2608  *		fmt  - info string and format to be logged
2609  */
2610 
2611 static void
2612 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2613 {
2614 	va_list		ap;
2615 	dev_info_t	*dev;
2616 
2617 	ASSERT(un != NULL);
2618 	dev = SD_DEVINFO(un);
2619 	ASSERT(dev != NULL);
2620 
2621 	/*
2622 	 * Filter messages based on the global component and level masks.
2623 	 * Also print if un matches the value of sd_debug_un, or if
2624 	 * sd_debug_un is set to NULL.
2625 	 */
2626 	if ((sd_component_mask & component) &&
2627 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2628 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2629 		mutex_enter(&sd_log_mutex);
2630 		va_start(ap, fmt);
2631 		(void) vsprintf(sd_log_buf, fmt, ap);
2632 		va_end(ap);
2633 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2634 		mutex_exit(&sd_log_mutex);
2635 	}
2636 #ifdef SD_FAULT_INJECTION
2637 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2638 	if (un->sd_injection_mask & component) {
2639 		mutex_enter(&sd_log_mutex);
2640 		va_start(ap, fmt);
2641 		(void) vsprintf(sd_log_buf, fmt, ap);
2642 		va_end(ap);
2643 		sd_injection_log(sd_log_buf, un);
2644 		mutex_exit(&sd_log_mutex);
2645 	}
2646 #endif
2647 }
2648 
2649 
2650 /*
2651  *    Function: sd_log_trace
2652  *
2653  * Description: This routine is called by the SD_TRACE macro for debug
2654  *		logging of trace conditions (i.e. function entry/exit).
2655  *
2656  *   Arguments: comp - driver component being logged
2657  *		dev  - pointer to driver info structure
2658  *		fmt  - trace string and format to be logged
2659  */
2660 
2661 static void
2662 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2663 {
2664 	va_list		ap;
2665 	dev_info_t	*dev;
2666 
2667 	ASSERT(un != NULL);
2668 	dev = SD_DEVINFO(un);
2669 	ASSERT(dev != NULL);
2670 
2671 	/*
2672 	 * Filter messages based on the global component and level masks.
2673 	 * Also print if un matches the value of sd_debug_un, or if
2674 	 * sd_debug_un is set to NULL.
2675 	 */
2676 	if ((sd_component_mask & component) &&
2677 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2678 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2679 		mutex_enter(&sd_log_mutex);
2680 		va_start(ap, fmt);
2681 		(void) vsprintf(sd_log_buf, fmt, ap);
2682 		va_end(ap);
2683 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2684 		mutex_exit(&sd_log_mutex);
2685 	}
2686 #ifdef SD_FAULT_INJECTION
2687 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2688 	if (un->sd_injection_mask & component) {
2689 		mutex_enter(&sd_log_mutex);
2690 		va_start(ap, fmt);
2691 		(void) vsprintf(sd_log_buf, fmt, ap);
2692 		va_end(ap);
2693 		sd_injection_log(sd_log_buf, un);
2694 		mutex_exit(&sd_log_mutex);
2695 	}
2696 #endif
2697 }
2698 
2699 
2700 /*
2701  *    Function: sdprobe
2702  *
2703  * Description: This is the driver probe(9e) entry point function.
2704  *
2705  *   Arguments: devi - opaque device info handle
2706  *
2707  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2708  *              DDI_PROBE_FAILURE: If the probe failed.
2709  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2710  *				   but may be present in the future.
2711  */
2712 
2713 static int
2714 sdprobe(dev_info_t *devi)
2715 {
2716 	struct scsi_device	*devp;
2717 	int			rval;
2718 #ifndef XPV_HVM_DRIVER
2719 	int			instance = ddi_get_instance(devi);
2720 #endif /* !XPV_HVM_DRIVER */
2721 
2722 	/*
2723 	 * if it wasn't for pln, sdprobe could actually be nulldev
2724 	 * in the "__fibre" case.
2725 	 */
2726 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2727 		return (DDI_PROBE_DONTCARE);
2728 	}
2729 
2730 	devp = ddi_get_driver_private(devi);
2731 
2732 	if (devp == NULL) {
2733 		/* Ooops... nexus driver is mis-configured... */
2734 		return (DDI_PROBE_FAILURE);
2735 	}
2736 
2737 #ifndef XPV_HVM_DRIVER
2738 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2739 		return (DDI_PROBE_PARTIAL);
2740 	}
2741 #endif /* !XPV_HVM_DRIVER */
2742 
2743 	/*
2744 	 * Call the SCSA utility probe routine to see if we actually
2745 	 * have a target at this SCSI nexus.
2746 	 */
2747 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2748 	case SCSIPROBE_EXISTS:
2749 		switch (devp->sd_inq->inq_dtype) {
2750 		case DTYPE_DIRECT:
2751 			rval = DDI_PROBE_SUCCESS;
2752 			break;
2753 		case DTYPE_RODIRECT:
2754 			/* CDs etc. Can be removable media */
2755 			rval = DDI_PROBE_SUCCESS;
2756 			break;
2757 		case DTYPE_OPTICAL:
2758 			/*
2759 			 * Rewritable optical driver HP115AA
2760 			 * Can also be removable media
2761 			 */
2762 
2763 			/*
2764 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2765 			 * pre solaris 9 sparc sd behavior is required
2766 			 *
2767 			 * If first time through and sd_dtype_optical_bind
2768 			 * has not been set in /etc/system check properties
2769 			 */
2770 
2771 			if (sd_dtype_optical_bind  < 0) {
2772 				sd_dtype_optical_bind = ddi_prop_get_int
2773 				    (DDI_DEV_T_ANY, devi, 0,
2774 				    "optical-device-bind", 1);
2775 			}
2776 
2777 			if (sd_dtype_optical_bind == 0) {
2778 				rval = DDI_PROBE_FAILURE;
2779 			} else {
2780 				rval = DDI_PROBE_SUCCESS;
2781 			}
2782 			break;
2783 
2784 		case DTYPE_NOTPRESENT:
2785 		default:
2786 			rval = DDI_PROBE_FAILURE;
2787 			break;
2788 		}
2789 		break;
2790 	default:
2791 		rval = DDI_PROBE_PARTIAL;
2792 		break;
2793 	}
2794 
2795 	/*
2796 	 * This routine checks for resource allocation prior to freeing,
2797 	 * so it will take care of the "smart probing" case where a
2798 	 * scsi_probe() may or may not have been issued and will *not*
2799 	 * free previously-freed resources.
2800 	 */
2801 	scsi_unprobe(devp);
2802 	return (rval);
2803 }
2804 
2805 
2806 /*
2807  *    Function: sdinfo
2808  *
2809  * Description: This is the driver getinfo(9e) entry point function.
2810  * 		Given the device number, return the devinfo pointer from
2811  *		the scsi_device structure or the instance number
2812  *		associated with the dev_t.
2813  *
2814  *   Arguments: dip     - pointer to device info structure
2815  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2816  *			  DDI_INFO_DEVT2INSTANCE)
2817  *		arg     - driver dev_t
2818  *		resultp - user buffer for request response
2819  *
2820  * Return Code: DDI_SUCCESS
2821  *              DDI_FAILURE
2822  */
2823 /* ARGSUSED */
2824 static int
2825 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2826 {
2827 	struct sd_lun	*un;
2828 	dev_t		dev;
2829 	int		instance;
2830 	int		error;
2831 
2832 	switch (infocmd) {
2833 	case DDI_INFO_DEVT2DEVINFO:
2834 		dev = (dev_t)arg;
2835 		instance = SDUNIT(dev);
2836 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2837 			return (DDI_FAILURE);
2838 		}
2839 		*result = (void *) SD_DEVINFO(un);
2840 		error = DDI_SUCCESS;
2841 		break;
2842 	case DDI_INFO_DEVT2INSTANCE:
2843 		dev = (dev_t)arg;
2844 		instance = SDUNIT(dev);
2845 		*result = (void *)(uintptr_t)instance;
2846 		error = DDI_SUCCESS;
2847 		break;
2848 	default:
2849 		error = DDI_FAILURE;
2850 	}
2851 	return (error);
2852 }
2853 
2854 /*
2855  *    Function: sd_prop_op
2856  *
2857  * Description: This is the driver prop_op(9e) entry point function.
2858  *		Return the number of blocks for the partition in question
2859  *		or forward the request to the property facilities.
2860  *
2861  *   Arguments: dev       - device number
2862  *		dip       - pointer to device info structure
2863  *		prop_op   - property operator
2864  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2865  *		name      - pointer to property name
2866  *		valuep    - pointer or address of the user buffer
2867  *		lengthp   - property length
2868  *
2869  * Return Code: DDI_PROP_SUCCESS
2870  *              DDI_PROP_NOT_FOUND
2871  *              DDI_PROP_UNDEFINED
2872  *              DDI_PROP_NO_MEMORY
2873  *              DDI_PROP_BUF_TOO_SMALL
2874  */
2875 
2876 static int
2877 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2878 	char *name, caddr_t valuep, int *lengthp)
2879 {
2880 	struct sd_lun	*un;
2881 
2882 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2883 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2884 		    name, valuep, lengthp));
2885 
2886 	return (cmlb_prop_op(un->un_cmlbhandle,
2887 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2888 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2889 }
2890 
2891 /*
2892  * The following functions are for smart probing:
2893  * sd_scsi_probe_cache_init()
2894  * sd_scsi_probe_cache_fini()
2895  * sd_scsi_clear_probe_cache()
2896  * sd_scsi_probe_with_cache()
2897  */
2898 
2899 /*
2900  *    Function: sd_scsi_probe_cache_init
2901  *
2902  * Description: Initializes the probe response cache mutex and head pointer.
2903  *
2904  *     Context: Kernel thread context
2905  */
2906 
2907 static void
2908 sd_scsi_probe_cache_init(void)
2909 {
2910 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2911 	sd_scsi_probe_cache_head = NULL;
2912 }
2913 
2914 
2915 /*
2916  *    Function: sd_scsi_probe_cache_fini
2917  *
2918  * Description: Frees all resources associated with the probe response cache.
2919  *
2920  *     Context: Kernel thread context
2921  */
2922 
2923 static void
2924 sd_scsi_probe_cache_fini(void)
2925 {
2926 	struct sd_scsi_probe_cache *cp;
2927 	struct sd_scsi_probe_cache *ncp;
2928 
2929 	/* Clean up our smart probing linked list */
2930 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2931 		ncp = cp->next;
2932 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2933 	}
2934 	sd_scsi_probe_cache_head = NULL;
2935 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2936 }
2937 
2938 
2939 /*
2940  *    Function: sd_scsi_clear_probe_cache
2941  *
2942  * Description: This routine clears the probe response cache. This is
2943  *		done when open() returns ENXIO so that when deferred
2944  *		attach is attempted (possibly after a device has been
2945  *		turned on) we will retry the probe. Since we don't know
2946  *		which target we failed to open, we just clear the
2947  *		entire cache.
2948  *
2949  *     Context: Kernel thread context
2950  */
2951 
2952 static void
2953 sd_scsi_clear_probe_cache(void)
2954 {
2955 	struct sd_scsi_probe_cache	*cp;
2956 	int				i;
2957 
2958 	mutex_enter(&sd_scsi_probe_cache_mutex);
2959 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2960 		/*
2961 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2962 		 * force probing to be performed the next time
2963 		 * sd_scsi_probe_with_cache is called.
2964 		 */
2965 		for (i = 0; i < NTARGETS_WIDE; i++) {
2966 			cp->cache[i] = SCSIPROBE_EXISTS;
2967 		}
2968 	}
2969 	mutex_exit(&sd_scsi_probe_cache_mutex);
2970 }
2971 
2972 
2973 /*
2974  *    Function: sd_scsi_probe_with_cache
2975  *
2976  * Description: This routine implements support for a scsi device probe
2977  *		with cache. The driver maintains a cache of the target
2978  *		responses to scsi probes. If we get no response from a
2979  *		target during a probe inquiry, we remember that, and we
2980  *		avoid additional calls to scsi_probe on non-zero LUNs
2981  *		on the same target until the cache is cleared. By doing
2982  *		so we avoid the 1/4 sec selection timeout for nonzero
2983  *		LUNs. lun0 of a target is always probed.
2984  *
2985  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2986  *              waitfunc - indicates what the allocator routines should
2987  *			   do when resources are not available. This value
2988  *			   is passed on to scsi_probe() when that routine
2989  *			   is called.
2990  *
2991  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2992  *		otherwise the value returned by scsi_probe(9F).
2993  *
2994  *     Context: Kernel thread context
2995  */
2996 
2997 static int
2998 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2999 {
3000 	struct sd_scsi_probe_cache	*cp;
3001 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
3002 	int		lun, tgt;
3003 
3004 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3005 	    SCSI_ADDR_PROP_LUN, 0);
3006 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3007 	    SCSI_ADDR_PROP_TARGET, -1);
3008 
3009 	/* Make sure caching enabled and target in range */
3010 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
3011 		/* do it the old way (no cache) */
3012 		return (scsi_probe(devp, waitfn));
3013 	}
3014 
3015 	mutex_enter(&sd_scsi_probe_cache_mutex);
3016 
3017 	/* Find the cache for this scsi bus instance */
3018 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
3019 		if (cp->pdip == pdip) {
3020 			break;
3021 		}
3022 	}
3023 
3024 	/* If we can't find a cache for this pdip, create one */
3025 	if (cp == NULL) {
3026 		int i;
3027 
3028 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
3029 		    KM_SLEEP);
3030 		cp->pdip = pdip;
3031 		cp->next = sd_scsi_probe_cache_head;
3032 		sd_scsi_probe_cache_head = cp;
3033 		for (i = 0; i < NTARGETS_WIDE; i++) {
3034 			cp->cache[i] = SCSIPROBE_EXISTS;
3035 		}
3036 	}
3037 
3038 	mutex_exit(&sd_scsi_probe_cache_mutex);
3039 
3040 	/* Recompute the cache for this target if LUN zero */
3041 	if (lun == 0) {
3042 		cp->cache[tgt] = SCSIPROBE_EXISTS;
3043 	}
3044 
3045 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
3046 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
3047 		return (SCSIPROBE_NORESP);
3048 	}
3049 
3050 	/* Do the actual probe; save & return the result */
3051 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
3052 }
3053 
3054 
3055 /*
3056  *    Function: sd_scsi_target_lun_init
3057  *
3058  * Description: Initializes the attached lun chain mutex and head pointer.
3059  *
3060  *     Context: Kernel thread context
3061  */
3062 
3063 static void
3064 sd_scsi_target_lun_init(void)
3065 {
3066 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
3067 	sd_scsi_target_lun_head = NULL;
3068 }
3069 
3070 
3071 /*
3072  *    Function: sd_scsi_target_lun_fini
3073  *
3074  * Description: Frees all resources associated with the attached lun
3075  *              chain
3076  *
3077  *     Context: Kernel thread context
3078  */
3079 
3080 static void
3081 sd_scsi_target_lun_fini(void)
3082 {
3083 	struct sd_scsi_hba_tgt_lun	*cp;
3084 	struct sd_scsi_hba_tgt_lun	*ncp;
3085 
3086 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
3087 		ncp = cp->next;
3088 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
3089 	}
3090 	sd_scsi_target_lun_head = NULL;
3091 	mutex_destroy(&sd_scsi_target_lun_mutex);
3092 }
3093 
3094 
3095 /*
3096  *    Function: sd_scsi_get_target_lun_count
3097  *
3098  * Description: This routine will check in the attached lun chain to see
3099  * 		how many luns are attached on the required SCSI controller
3100  * 		and target. Currently, some capabilities like tagged queue
3101  *		are supported per target based by HBA. So all luns in a
3102  *		target have the same capabilities. Based on this assumption,
3103  * 		sd should only set these capabilities once per target. This
3104  *		function is called when sd needs to decide how many luns
3105  *		already attached on a target.
3106  *
3107  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
3108  *			  controller device.
3109  *              target	- The target ID on the controller's SCSI bus.
3110  *
3111  * Return Code: The number of luns attached on the required target and
3112  *		controller.
3113  *		-1 if target ID is not in parallel SCSI scope or the given
3114  * 		dip is not in the chain.
3115  *
3116  *     Context: Kernel thread context
3117  */
3118 
3119 static int
3120 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
3121 {
3122 	struct sd_scsi_hba_tgt_lun	*cp;
3123 
3124 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
3125 		return (-1);
3126 	}
3127 
3128 	mutex_enter(&sd_scsi_target_lun_mutex);
3129 
3130 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3131 		if (cp->pdip == dip) {
3132 			break;
3133 		}
3134 	}
3135 
3136 	mutex_exit(&sd_scsi_target_lun_mutex);
3137 
3138 	if (cp == NULL) {
3139 		return (-1);
3140 	}
3141 
3142 	return (cp->nlun[target]);
3143 }
3144 
3145 
3146 /*
3147  *    Function: sd_scsi_update_lun_on_target
3148  *
3149  * Description: This routine is used to update the attached lun chain when a
3150  *		lun is attached or detached on a target.
3151  *
3152  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
3153  *                        controller device.
3154  *              target  - The target ID on the controller's SCSI bus.
3155  *		flag	- Indicate the lun is attached or detached.
3156  *
3157  *     Context: Kernel thread context
3158  */
3159 
3160 static void
3161 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3162 {
3163 	struct sd_scsi_hba_tgt_lun	*cp;
3164 
3165 	mutex_enter(&sd_scsi_target_lun_mutex);
3166 
3167 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3168 		if (cp->pdip == dip) {
3169 			break;
3170 		}
3171 	}
3172 
3173 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3174 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3175 		    KM_SLEEP);
3176 		cp->pdip = dip;
3177 		cp->next = sd_scsi_target_lun_head;
3178 		sd_scsi_target_lun_head = cp;
3179 	}
3180 
3181 	mutex_exit(&sd_scsi_target_lun_mutex);
3182 
3183 	if (cp != NULL) {
3184 		if (flag == SD_SCSI_LUN_ATTACH) {
3185 			cp->nlun[target] ++;
3186 		} else {
3187 			cp->nlun[target] --;
3188 		}
3189 	}
3190 }
3191 
3192 
3193 /*
3194  *    Function: sd_spin_up_unit
3195  *
3196  * Description: Issues the following commands to spin-up the device:
3197  *		START STOP UNIT, and INQUIRY.
3198  *
3199  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3200  *                      structure for this target.
3201  *
3202  * Return Code: 0 - success
3203  *		EIO - failure
3204  *		EACCES - reservation conflict
3205  *
3206  *     Context: Kernel thread context
3207  */
3208 
3209 static int
3210 sd_spin_up_unit(sd_ssc_t *ssc)
3211 {
3212 	size_t	resid		= 0;
3213 	int	has_conflict	= FALSE;
3214 	uchar_t *bufaddr;
3215 	int 	status;
3216 	struct sd_lun	*un;
3217 
3218 	ASSERT(ssc != NULL);
3219 	un = ssc->ssc_un;
3220 	ASSERT(un != NULL);
3221 
3222 	/*
3223 	 * Send a throwaway START UNIT command.
3224 	 *
3225 	 * If we fail on this, we don't care presently what precisely
3226 	 * is wrong.  EMC's arrays will also fail this with a check
3227 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3228 	 * we don't want to fail the attach because it may become
3229 	 * "active" later.
3230 	 * We don't know if power condition is supported or not at
3231 	 * this stage, use START STOP bit.
3232 	 */
3233 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
3234 	    SD_TARGET_START, SD_PATH_DIRECT);
3235 
3236 	if (status != 0) {
3237 		if (status == EACCES)
3238 			has_conflict = TRUE;
3239 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3240 	}
3241 
3242 	/*
3243 	 * Send another INQUIRY command to the target. This is necessary for
3244 	 * non-removable media direct access devices because their INQUIRY data
3245 	 * may not be fully qualified until they are spun up (perhaps via the
3246 	 * START command above).  Note: This seems to be needed for some
3247 	 * legacy devices only.) The INQUIRY command should succeed even if a
3248 	 * Reservation Conflict is present.
3249 	 */
3250 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3251 
3252 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3253 	    != 0) {
3254 		kmem_free(bufaddr, SUN_INQSIZE);
3255 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3256 		return (EIO);
3257 	}
3258 
3259 	/*
3260 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3261 	 * Note that this routine does not return a failure here even if the
3262 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3263 	 */
3264 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3265 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3266 	}
3267 
3268 	kmem_free(bufaddr, SUN_INQSIZE);
3269 
3270 	/* If we hit a reservation conflict above, tell the caller. */
3271 	if (has_conflict == TRUE) {
3272 		return (EACCES);
3273 	}
3274 
3275 	return (0);
3276 }
3277 
3278 #ifdef _LP64
3279 /*
3280  *    Function: sd_enable_descr_sense
3281  *
3282  * Description: This routine attempts to select descriptor sense format
3283  *		using the Control mode page.  Devices that support 64 bit
3284  *		LBAs (for >2TB luns) should also implement descriptor
3285  *		sense data so we will call this function whenever we see
3286  *		a lun larger than 2TB.  If for some reason the device
3287  *		supports 64 bit LBAs but doesn't support descriptor sense
3288  *		presumably the mode select will fail.  Everything will
3289  *		continue to work normally except that we will not get
3290  *		complete sense data for commands that fail with an LBA
3291  *		larger than 32 bits.
3292  *
3293  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3294  *                      structure for this target.
3295  *
3296  *     Context: Kernel thread context only
3297  */
3298 
3299 static void
3300 sd_enable_descr_sense(sd_ssc_t *ssc)
3301 {
3302 	uchar_t			*header;
3303 	struct mode_control_scsi3 *ctrl_bufp;
3304 	size_t			buflen;
3305 	size_t			bd_len;
3306 	int			status;
3307 	struct sd_lun		*un;
3308 
3309 	ASSERT(ssc != NULL);
3310 	un = ssc->ssc_un;
3311 	ASSERT(un != NULL);
3312 
3313 	/*
3314 	 * Read MODE SENSE page 0xA, Control Mode Page
3315 	 */
3316 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3317 	    sizeof (struct mode_control_scsi3);
3318 	header = kmem_zalloc(buflen, KM_SLEEP);
3319 
3320 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3321 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3322 
3323 	if (status != 0) {
3324 		SD_ERROR(SD_LOG_COMMON, un,
3325 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3326 		goto eds_exit;
3327 	}
3328 
3329 	/*
3330 	 * Determine size of Block Descriptors in order to locate
3331 	 * the mode page data. ATAPI devices return 0, SCSI devices
3332 	 * should return MODE_BLK_DESC_LENGTH.
3333 	 */
3334 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3335 
3336 	/* Clear the mode data length field for MODE SELECT */
3337 	((struct mode_header *)header)->length = 0;
3338 
3339 	ctrl_bufp = (struct mode_control_scsi3 *)
3340 	    (header + MODE_HEADER_LENGTH + bd_len);
3341 
3342 	/*
3343 	 * If the page length is smaller than the expected value,
3344 	 * the target device doesn't support D_SENSE. Bail out here.
3345 	 */
3346 	if (ctrl_bufp->mode_page.length <
3347 	    sizeof (struct mode_control_scsi3) - 2) {
3348 		SD_ERROR(SD_LOG_COMMON, un,
3349 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3350 		goto eds_exit;
3351 	}
3352 
3353 	/*
3354 	 * Clear PS bit for MODE SELECT
3355 	 */
3356 	ctrl_bufp->mode_page.ps = 0;
3357 
3358 	/*
3359 	 * Set D_SENSE to enable descriptor sense format.
3360 	 */
3361 	ctrl_bufp->d_sense = 1;
3362 
3363 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3364 
3365 	/*
3366 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3367 	 */
3368 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3369 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3370 
3371 	if (status != 0) {
3372 		SD_INFO(SD_LOG_COMMON, un,
3373 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3374 	} else {
3375 		kmem_free(header, buflen);
3376 		return;
3377 	}
3378 
3379 eds_exit:
3380 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3381 	kmem_free(header, buflen);
3382 }
3383 
3384 /*
3385  *    Function: sd_reenable_dsense_task
3386  *
3387  * Description: Re-enable descriptor sense after device or bus reset
3388  *
3389  *     Context: Executes in a taskq() thread context
3390  */
3391 static void
3392 sd_reenable_dsense_task(void *arg)
3393 {
3394 	struct	sd_lun	*un = arg;
3395 	sd_ssc_t	*ssc;
3396 
3397 	ASSERT(un != NULL);
3398 
3399 	ssc = sd_ssc_init(un);
3400 	sd_enable_descr_sense(ssc);
3401 	sd_ssc_fini(ssc);
3402 }
3403 #endif /* _LP64 */
3404 
3405 /*
3406  *    Function: sd_set_mmc_caps
3407  *
3408  * Description: This routine determines if the device is MMC compliant and if
3409  *		the device supports CDDA via a mode sense of the CDVD
3410  *		capabilities mode page. Also checks if the device is a
3411  *		dvdram writable device.
3412  *
3413  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3414  *                      structure for this target.
3415  *
3416  *     Context: Kernel thread context only
3417  */
3418 
3419 static void
3420 sd_set_mmc_caps(sd_ssc_t *ssc)
3421 {
3422 	struct mode_header_grp2		*sense_mhp;
3423 	uchar_t				*sense_page;
3424 	caddr_t				buf;
3425 	int				bd_len;
3426 	int				status;
3427 	struct uscsi_cmd		com;
3428 	int				rtn;
3429 	uchar_t				*out_data_rw, *out_data_hd;
3430 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3431 	uchar_t				*out_data_gesn;
3432 	int				gesn_len;
3433 	struct sd_lun			*un;
3434 
3435 	ASSERT(ssc != NULL);
3436 	un = ssc->ssc_un;
3437 	ASSERT(un != NULL);
3438 
3439 	/*
3440 	 * The flags which will be set in this function are - mmc compliant,
3441 	 * dvdram writable device, cdda support. Initialize them to FALSE
3442 	 * and if a capability is detected - it will be set to TRUE.
3443 	 */
3444 	un->un_f_mmc_cap = FALSE;
3445 	un->un_f_dvdram_writable_device = FALSE;
3446 	un->un_f_cfg_cdda = FALSE;
3447 
3448 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3449 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3450 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3451 
3452 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3453 
3454 	if (status != 0) {
3455 		/* command failed; just return */
3456 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3457 		return;
3458 	}
3459 	/*
3460 	 * If the mode sense request for the CDROM CAPABILITIES
3461 	 * page (0x2A) succeeds the device is assumed to be MMC.
3462 	 */
3463 	un->un_f_mmc_cap = TRUE;
3464 
3465 	/* See if GET STATUS EVENT NOTIFICATION is supported */
3466 	if (un->un_f_mmc_gesn_polling) {
3467 		gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN;
3468 		out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP);
3469 
3470 		rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc,
3471 		    out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS);
3472 
3473 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3474 
3475 		if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) {
3476 			un->un_f_mmc_gesn_polling = FALSE;
3477 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3478 			    "sd_set_mmc_caps: gesn not supported "
3479 			    "%d %x %x %x %x\n", rtn,
3480 			    out_data_gesn[0], out_data_gesn[1],
3481 			    out_data_gesn[2], out_data_gesn[3]);
3482 		}
3483 
3484 		kmem_free(out_data_gesn, gesn_len);
3485 	}
3486 
3487 	/* Get to the page data */
3488 	sense_mhp = (struct mode_header_grp2 *)buf;
3489 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3490 	    sense_mhp->bdesc_length_lo;
3491 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3492 		/*
3493 		 * We did not get back the expected block descriptor
3494 		 * length so we cannot determine if the device supports
3495 		 * CDDA. However, we still indicate the device is MMC
3496 		 * according to the successful response to the page
3497 		 * 0x2A mode sense request.
3498 		 */
3499 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3500 		    "sd_set_mmc_caps: Mode Sense returned "
3501 		    "invalid block descriptor length\n");
3502 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3503 		return;
3504 	}
3505 
3506 	/* See if read CDDA is supported */
3507 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3508 	    bd_len);
3509 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3510 
3511 	/* See if writing DVD RAM is supported. */
3512 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3513 	if (un->un_f_dvdram_writable_device == TRUE) {
3514 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3515 		return;
3516 	}
3517 
3518 	/*
3519 	 * If the device presents DVD or CD capabilities in the mode
3520 	 * page, we can return here since a RRD will not have
3521 	 * these capabilities.
3522 	 */
3523 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3524 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3525 		return;
3526 	}
3527 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3528 
3529 	/*
3530 	 * If un->un_f_dvdram_writable_device is still FALSE,
3531 	 * check for a Removable Rigid Disk (RRD).  A RRD
3532 	 * device is identified by the features RANDOM_WRITABLE and
3533 	 * HARDWARE_DEFECT_MANAGEMENT.
3534 	 */
3535 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3536 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3537 
3538 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3539 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3540 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3541 
3542 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3543 
3544 	if (rtn != 0) {
3545 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3546 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3547 		return;
3548 	}
3549 
3550 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3551 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3552 
3553 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3554 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3555 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3556 
3557 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3558 
3559 	if (rtn == 0) {
3560 		/*
3561 		 * We have good information, check for random writable
3562 		 * and hardware defect features.
3563 		 */
3564 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3565 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3566 			un->un_f_dvdram_writable_device = TRUE;
3567 		}
3568 	}
3569 
3570 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3571 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3572 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3573 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3574 }
3575 
3576 /*
3577  *    Function: sd_check_for_writable_cd
3578  *
3579  * Description: This routine determines if the media in the device is
3580  *		writable or not. It uses the get configuration command (0x46)
3581  *		to determine if the media is writable
3582  *
3583  *   Arguments: un - driver soft state (unit) structure
3584  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3585  *                           chain and the normal command waitq, or
3586  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3587  *                           "direct" chain and bypass the normal command
3588  *                           waitq.
3589  *
3590  *     Context: Never called at interrupt context.
3591  */
3592 
3593 static void
3594 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3595 {
3596 	struct uscsi_cmd		com;
3597 	uchar_t				*out_data;
3598 	uchar_t				*rqbuf;
3599 	int				rtn;
3600 	uchar_t				*out_data_rw, *out_data_hd;
3601 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3602 	struct mode_header_grp2		*sense_mhp;
3603 	uchar_t				*sense_page;
3604 	caddr_t				buf;
3605 	int				bd_len;
3606 	int				status;
3607 	struct sd_lun			*un;
3608 
3609 	ASSERT(ssc != NULL);
3610 	un = ssc->ssc_un;
3611 	ASSERT(un != NULL);
3612 	ASSERT(mutex_owned(SD_MUTEX(un)));
3613 
3614 	/*
3615 	 * Initialize the writable media to false, if configuration info.
3616 	 * tells us otherwise then only we will set it.
3617 	 */
3618 	un->un_f_mmc_writable_media = FALSE;
3619 	mutex_exit(SD_MUTEX(un));
3620 
3621 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3622 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3623 
3624 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3625 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3626 
3627 	if (rtn != 0)
3628 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3629 
3630 	mutex_enter(SD_MUTEX(un));
3631 	if (rtn == 0) {
3632 		/*
3633 		 * We have good information, check for writable DVD.
3634 		 */
3635 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3636 			un->un_f_mmc_writable_media = TRUE;
3637 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3638 			kmem_free(rqbuf, SENSE_LENGTH);
3639 			return;
3640 		}
3641 	}
3642 
3643 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3644 	kmem_free(rqbuf, SENSE_LENGTH);
3645 
3646 	/*
3647 	 * Determine if this is a RRD type device.
3648 	 */
3649 	mutex_exit(SD_MUTEX(un));
3650 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3651 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3652 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3653 
3654 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3655 
3656 	mutex_enter(SD_MUTEX(un));
3657 	if (status != 0) {
3658 		/* command failed; just return */
3659 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3660 		return;
3661 	}
3662 
3663 	/* Get to the page data */
3664 	sense_mhp = (struct mode_header_grp2 *)buf;
3665 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3666 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3667 		/*
3668 		 * We did not get back the expected block descriptor length so
3669 		 * we cannot check the mode page.
3670 		 */
3671 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3672 		    "sd_check_for_writable_cd: Mode Sense returned "
3673 		    "invalid block descriptor length\n");
3674 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3675 		return;
3676 	}
3677 
3678 	/*
3679 	 * If the device presents DVD or CD capabilities in the mode
3680 	 * page, we can return here since a RRD device will not have
3681 	 * these capabilities.
3682 	 */
3683 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3684 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3685 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3686 		return;
3687 	}
3688 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3689 
3690 	/*
3691 	 * If un->un_f_mmc_writable_media is still FALSE,
3692 	 * check for RRD type media.  A RRD device is identified
3693 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3694 	 */
3695 	mutex_exit(SD_MUTEX(un));
3696 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3697 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3698 
3699 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3700 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3701 	    RANDOM_WRITABLE, path_flag);
3702 
3703 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3704 	if (rtn != 0) {
3705 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3706 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3707 		mutex_enter(SD_MUTEX(un));
3708 		return;
3709 	}
3710 
3711 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3712 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3713 
3714 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3715 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3716 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3717 
3718 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3719 	mutex_enter(SD_MUTEX(un));
3720 	if (rtn == 0) {
3721 		/*
3722 		 * We have good information, check for random writable
3723 		 * and hardware defect features as current.
3724 		 */
3725 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3726 		    (out_data_rw[10] & 0x1) &&
3727 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3728 		    (out_data_hd[10] & 0x1)) {
3729 			un->un_f_mmc_writable_media = TRUE;
3730 		}
3731 	}
3732 
3733 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3734 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3735 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3736 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3737 }
3738 
3739 /*
3740  *    Function: sd_read_unit_properties
3741  *
3742  * Description: The following implements a property lookup mechanism.
3743  *		Properties for particular disks (keyed on vendor, model
3744  *		and rev numbers) are sought in the sd.conf file via
3745  *		sd_process_sdconf_file(), and if not found there, are
3746  *		looked for in a list hardcoded in this driver via
3747  *		sd_process_sdconf_table() Once located the properties
3748  *		are used to update the driver unit structure.
3749  *
3750  *   Arguments: un - driver soft state (unit) structure
3751  */
3752 
3753 static void
3754 sd_read_unit_properties(struct sd_lun *un)
3755 {
3756 	/*
3757 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3758 	 * the "sd-config-list" property (from the sd.conf file) or if
3759 	 * there was not a match for the inquiry vid/pid. If this event
3760 	 * occurs the static driver configuration table is searched for
3761 	 * a match.
3762 	 */
3763 	ASSERT(un != NULL);
3764 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3765 		sd_process_sdconf_table(un);
3766 	}
3767 
3768 	/* check for LSI device */
3769 	sd_is_lsi(un);
3770 
3771 
3772 }
3773 
3774 
3775 /*
3776  *    Function: sd_process_sdconf_file
3777  *
3778  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3779  *		driver's config file (ie, sd.conf) and update the driver
3780  *		soft state structure accordingly.
3781  *
3782  *   Arguments: un - driver soft state (unit) structure
3783  *
3784  * Return Code: SD_SUCCESS - The properties were successfully set according
3785  *			     to the driver configuration file.
3786  *		SD_FAILURE - The driver config list was not obtained or
3787  *			     there was no vid/pid match. This indicates that
3788  *			     the static config table should be used.
3789  *
3790  * The config file has a property, "sd-config-list". Currently we support
3791  * two kinds of formats. For both formats, the value of this property
3792  * is a list of duplets:
3793  *
3794  *  sd-config-list=
3795  *	<duplet>,
3796  *	[,<duplet>]*;
3797  *
3798  * For the improved format, where
3799  *
3800  *     <duplet>:= "<vid+pid>","<tunable-list>"
3801  *
3802  * and
3803  *
3804  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3805  *     <tunable> =        <name> : <value>
3806  *
3807  * The <vid+pid> is the string that is returned by the target device on a
3808  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3809  * to apply to all target devices with the specified <vid+pid>.
3810  *
3811  * Each <tunable> is a "<name> : <value>" pair.
3812  *
3813  * For the old format, the structure of each duplet is as follows:
3814  *
3815  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3816  *
3817  * The first entry of the duplet is the device ID string (the concatenated
3818  * vid & pid; not to be confused with a device_id).  This is defined in
3819  * the same way as in the sd_disk_table.
3820  *
3821  * The second part of the duplet is a string that identifies a
3822  * data-property-name-list. The data-property-name-list is defined as
3823  * follows:
3824  *
3825  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3826  *
3827  * The syntax of <data-property-name> depends on the <version> field.
3828  *
3829  * If version = SD_CONF_VERSION_1 we have the following syntax:
3830  *
3831  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3832  *
3833  * where the prop0 value will be used to set prop0 if bit0 set in the
3834  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3835  *
3836  */
3837 
3838 static int
3839 sd_process_sdconf_file(struct sd_lun *un)
3840 {
3841 	char	**config_list = NULL;
3842 	uint_t	nelements;
3843 	char	*vidptr;
3844 	int	vidlen;
3845 	char	*dnlist_ptr;
3846 	char	*dataname_ptr;
3847 	char	*dataname_lasts;
3848 	int	*data_list = NULL;
3849 	uint_t	data_list_len;
3850 	int	rval = SD_FAILURE;
3851 	int	i;
3852 
3853 	ASSERT(un != NULL);
3854 
3855 	/* Obtain the configuration list associated with the .conf file */
3856 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3857 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3858 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3859 		return (SD_FAILURE);
3860 	}
3861 
3862 	/*
3863 	 * Compare vids in each duplet to the inquiry vid - if a match is
3864 	 * made, get the data value and update the soft state structure
3865 	 * accordingly.
3866 	 *
3867 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3868 	 * otherwise.
3869 	 */
3870 	if (nelements & 1) {
3871 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3872 		    "sd-config-list should show as pairs of strings.\n");
3873 		if (config_list)
3874 			ddi_prop_free(config_list);
3875 		return (SD_FAILURE);
3876 	}
3877 
3878 	for (i = 0; i < nelements; i += 2) {
3879 		/*
3880 		 * Note: The assumption here is that each vid entry is on
3881 		 * a unique line from its associated duplet.
3882 		 */
3883 		vidptr = config_list[i];
3884 		vidlen = (int)strlen(vidptr);
3885 		if ((vidlen == 0) ||
3886 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3887 			continue;
3888 		}
3889 
3890 		/*
3891 		 * dnlist contains 1 or more blank separated
3892 		 * data-property-name entries
3893 		 */
3894 		dnlist_ptr = config_list[i + 1];
3895 
3896 		if (strchr(dnlist_ptr, ':') != NULL) {
3897 			/*
3898 			 * Decode the improved format sd-config-list.
3899 			 */
3900 			sd_nvpair_str_decode(un, dnlist_ptr);
3901 		} else {
3902 			/*
3903 			 * The old format sd-config-list, loop through all
3904 			 * data-property-name entries in the
3905 			 * data-property-name-list
3906 			 * setting the properties for each.
3907 			 */
3908 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3909 			    &dataname_lasts); dataname_ptr != NULL;
3910 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3911 			    &dataname_lasts)) {
3912 				int version;
3913 
3914 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3915 				    "sd_process_sdconf_file: disk:%s, "
3916 				    "data:%s\n", vidptr, dataname_ptr);
3917 
3918 				/* Get the data list */
3919 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3920 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3921 				    &data_list_len) != DDI_PROP_SUCCESS) {
3922 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3923 					    "sd_process_sdconf_file: data "
3924 					    "property (%s) has no value\n",
3925 					    dataname_ptr);
3926 					continue;
3927 				}
3928 
3929 				version = data_list[0];
3930 
3931 				if (version == SD_CONF_VERSION_1) {
3932 					sd_tunables values;
3933 
3934 					/* Set the properties */
3935 					if (sd_chk_vers1_data(un, data_list[1],
3936 					    &data_list[2], data_list_len,
3937 					    dataname_ptr) == SD_SUCCESS) {
3938 						sd_get_tunables_from_conf(un,
3939 						    data_list[1], &data_list[2],
3940 						    &values);
3941 						sd_set_vers1_properties(un,
3942 						    data_list[1], &values);
3943 						rval = SD_SUCCESS;
3944 					} else {
3945 						rval = SD_FAILURE;
3946 					}
3947 				} else {
3948 					scsi_log(SD_DEVINFO(un), sd_label,
3949 					    CE_WARN, "data property %s version "
3950 					    "0x%x is invalid.",
3951 					    dataname_ptr, version);
3952 					rval = SD_FAILURE;
3953 				}
3954 				if (data_list)
3955 					ddi_prop_free(data_list);
3956 			}
3957 		}
3958 	}
3959 
3960 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3961 	if (config_list) {
3962 		ddi_prop_free(config_list);
3963 	}
3964 
3965 	return (rval);
3966 }
3967 
3968 /*
3969  *    Function: sd_nvpair_str_decode()
3970  *
3971  * Description: Parse the improved format sd-config-list to get
3972  *    each entry of tunable, which includes a name-value pair.
3973  *    Then call sd_set_properties() to set the property.
3974  *
3975  *   Arguments: un - driver soft state (unit) structure
3976  *    nvpair_str - the tunable list
3977  */
3978 static void
3979 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3980 {
3981 	char	*nv, *name, *value, *token;
3982 	char	*nv_lasts, *v_lasts, *x_lasts;
3983 
3984 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3985 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3986 		token = sd_strtok_r(nv, ":", &v_lasts);
3987 		name  = sd_strtok_r(token, " \t", &x_lasts);
3988 		token = sd_strtok_r(NULL, ":", &v_lasts);
3989 		value = sd_strtok_r(token, " \t", &x_lasts);
3990 		if (name == NULL || value == NULL) {
3991 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3992 			    "sd_nvpair_str_decode: "
3993 			    "name or value is not valid!\n");
3994 		} else {
3995 			sd_set_properties(un, name, value);
3996 		}
3997 	}
3998 }
3999 
4000 /*
4001  *    Function: sd_strtok_r()
4002  *
4003  * Description: This function uses strpbrk and strspn to break
4004  *    string into tokens on sequentially subsequent calls. Return
4005  *    NULL when no non-separator characters remain. The first
4006  *    argument is NULL for subsequent calls.
4007  */
4008 static char *
4009 sd_strtok_r(char *string, const char *sepset, char **lasts)
4010 {
4011 	char	*q, *r;
4012 
4013 	/* First or subsequent call */
4014 	if (string == NULL)
4015 		string = *lasts;
4016 
4017 	if (string == NULL)
4018 		return (NULL);
4019 
4020 	/* Skip leading separators */
4021 	q = string + strspn(string, sepset);
4022 
4023 	if (*q == '\0')
4024 		return (NULL);
4025 
4026 	if ((r = strpbrk(q, sepset)) == NULL)
4027 		*lasts = NULL;
4028 	else {
4029 		*r = '\0';
4030 		*lasts = r + 1;
4031 	}
4032 	return (q);
4033 }
4034 
4035 /*
4036  *    Function: sd_set_properties()
4037  *
4038  * Description: Set device properties based on the improved
4039  *    format sd-config-list.
4040  *
4041  *   Arguments: un - driver soft state (unit) structure
4042  *    name  - supported tunable name
4043  *    value - tunable value
4044  */
4045 static void
4046 sd_set_properties(struct sd_lun *un, char *name, char *value)
4047 {
4048 	char	*endptr = NULL;
4049 	long	val = 0;
4050 
4051 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
4052 		if (strcasecmp(value, "true") == 0) {
4053 			un->un_f_suppress_cache_flush = TRUE;
4054 		} else if (strcasecmp(value, "false") == 0) {
4055 			un->un_f_suppress_cache_flush = FALSE;
4056 		} else {
4057 			goto value_invalid;
4058 		}
4059 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4060 		    "suppress_cache_flush flag set to %d\n",
4061 		    un->un_f_suppress_cache_flush);
4062 		return;
4063 	}
4064 
4065 	if (strcasecmp(name, "controller-type") == 0) {
4066 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4067 			un->un_ctype = val;
4068 		} else {
4069 			goto value_invalid;
4070 		}
4071 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4072 		    "ctype set to %d\n", un->un_ctype);
4073 		return;
4074 	}
4075 
4076 	if (strcasecmp(name, "delay-busy") == 0) {
4077 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4078 			un->un_busy_timeout = drv_usectohz(val / 1000);
4079 		} else {
4080 			goto value_invalid;
4081 		}
4082 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4083 		    "busy_timeout set to %d\n", un->un_busy_timeout);
4084 		return;
4085 	}
4086 
4087 	if (strcasecmp(name, "disksort") == 0) {
4088 		if (strcasecmp(value, "true") == 0) {
4089 			un->un_f_disksort_disabled = FALSE;
4090 		} else if (strcasecmp(value, "false") == 0) {
4091 			un->un_f_disksort_disabled = TRUE;
4092 		} else {
4093 			goto value_invalid;
4094 		}
4095 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4096 		    "disksort disabled flag set to %d\n",
4097 		    un->un_f_disksort_disabled);
4098 		return;
4099 	}
4100 
4101 	if (strcasecmp(name, "power-condition") == 0) {
4102 		if (strcasecmp(value, "true") == 0) {
4103 			un->un_f_power_condition_disabled = FALSE;
4104 		} else if (strcasecmp(value, "false") == 0) {
4105 			un->un_f_power_condition_disabled = TRUE;
4106 		} else {
4107 			goto value_invalid;
4108 		}
4109 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4110 		    "power condition disabled flag set to %d\n",
4111 		    un->un_f_power_condition_disabled);
4112 		return;
4113 	}
4114 
4115 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
4116 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4117 			un->un_reserve_release_time = val;
4118 		} else {
4119 			goto value_invalid;
4120 		}
4121 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4122 		    "reservation release timeout set to %d\n",
4123 		    un->un_reserve_release_time);
4124 		return;
4125 	}
4126 
4127 	if (strcasecmp(name, "reset-lun") == 0) {
4128 		if (strcasecmp(value, "true") == 0) {
4129 			un->un_f_lun_reset_enabled = TRUE;
4130 		} else if (strcasecmp(value, "false") == 0) {
4131 			un->un_f_lun_reset_enabled = FALSE;
4132 		} else {
4133 			goto value_invalid;
4134 		}
4135 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4136 		    "lun reset enabled flag set to %d\n",
4137 		    un->un_f_lun_reset_enabled);
4138 		return;
4139 	}
4140 
4141 	if (strcasecmp(name, "retries-busy") == 0) {
4142 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4143 			un->un_busy_retry_count = val;
4144 		} else {
4145 			goto value_invalid;
4146 		}
4147 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4148 		    "busy retry count set to %d\n", un->un_busy_retry_count);
4149 		return;
4150 	}
4151 
4152 	if (strcasecmp(name, "retries-timeout") == 0) {
4153 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4154 			un->un_retry_count = val;
4155 		} else {
4156 			goto value_invalid;
4157 		}
4158 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4159 		    "timeout retry count set to %d\n", un->un_retry_count);
4160 		return;
4161 	}
4162 
4163 	if (strcasecmp(name, "retries-notready") == 0) {
4164 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4165 			un->un_notready_retry_count = val;
4166 		} else {
4167 			goto value_invalid;
4168 		}
4169 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4170 		    "notready retry count set to %d\n",
4171 		    un->un_notready_retry_count);
4172 		return;
4173 	}
4174 
4175 	if (strcasecmp(name, "retries-reset") == 0) {
4176 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4177 			un->un_reset_retry_count = val;
4178 		} else {
4179 			goto value_invalid;
4180 		}
4181 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4182 		    "reset retry count set to %d\n",
4183 		    un->un_reset_retry_count);
4184 		return;
4185 	}
4186 
4187 	if (strcasecmp(name, "throttle-max") == 0) {
4188 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4189 			un->un_saved_throttle = un->un_throttle = val;
4190 		} else {
4191 			goto value_invalid;
4192 		}
4193 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4194 		    "throttle set to %d\n", un->un_throttle);
4195 	}
4196 
4197 	if (strcasecmp(name, "throttle-min") == 0) {
4198 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4199 			un->un_min_throttle = val;
4200 		} else {
4201 			goto value_invalid;
4202 		}
4203 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4204 		    "min throttle set to %d\n", un->un_min_throttle);
4205 	}
4206 
4207 	if (strcasecmp(name, "rmw-type") == 0) {
4208 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4209 			un->un_f_rmw_type = val;
4210 		} else {
4211 			goto value_invalid;
4212 		}
4213 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4214 		    "RMW type set to %d\n", un->un_f_rmw_type);
4215 	}
4216 
4217 	/*
4218 	 * Validate the throttle values.
4219 	 * If any of the numbers are invalid, set everything to defaults.
4220 	 */
4221 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4222 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4223 	    (un->un_min_throttle > un->un_throttle)) {
4224 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4225 		un->un_min_throttle = sd_min_throttle;
4226 	}
4227 
4228 	if (strcasecmp(name, "mmc-gesn-polling") == 0) {
4229 		if (strcasecmp(value, "true") == 0) {
4230 			un->un_f_mmc_gesn_polling = TRUE;
4231 		} else if (strcasecmp(value, "false") == 0) {
4232 			un->un_f_mmc_gesn_polling = FALSE;
4233 		} else {
4234 			goto value_invalid;
4235 		}
4236 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4237 		    "mmc-gesn-polling set to %d\n",
4238 		    un->un_f_mmc_gesn_polling);
4239 	}
4240 
4241 	return;
4242 
4243 value_invalid:
4244 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4245 	    "value of prop %s is invalid\n", name);
4246 }
4247 
4248 /*
4249  *    Function: sd_get_tunables_from_conf()
4250  *
4251  *
4252  *    This function reads the data list from the sd.conf file and pulls
4253  *    the values that can have numeric values as arguments and places
4254  *    the values in the appropriate sd_tunables member.
4255  *    Since the order of the data list members varies across platforms
4256  *    This function reads them from the data list in a platform specific
4257  *    order and places them into the correct sd_tunable member that is
4258  *    consistent across all platforms.
4259  */
4260 static void
4261 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
4262     sd_tunables *values)
4263 {
4264 	int i;
4265 	int mask;
4266 
4267 	bzero(values, sizeof (sd_tunables));
4268 
4269 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4270 
4271 		mask = 1 << i;
4272 		if (mask > flags) {
4273 			break;
4274 		}
4275 
4276 		switch (mask & flags) {
4277 		case 0:	/* This mask bit not set in flags */
4278 			continue;
4279 		case SD_CONF_BSET_THROTTLE:
4280 			values->sdt_throttle = data_list[i];
4281 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4282 			    "sd_get_tunables_from_conf: throttle = %d\n",
4283 			    values->sdt_throttle);
4284 			break;
4285 		case SD_CONF_BSET_CTYPE:
4286 			values->sdt_ctype = data_list[i];
4287 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4288 			    "sd_get_tunables_from_conf: ctype = %d\n",
4289 			    values->sdt_ctype);
4290 			break;
4291 		case SD_CONF_BSET_NRR_COUNT:
4292 			values->sdt_not_rdy_retries = data_list[i];
4293 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4294 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4295 			    values->sdt_not_rdy_retries);
4296 			break;
4297 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4298 			values->sdt_busy_retries = data_list[i];
4299 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4300 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4301 			    values->sdt_busy_retries);
4302 			break;
4303 		case SD_CONF_BSET_RST_RETRIES:
4304 			values->sdt_reset_retries = data_list[i];
4305 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4306 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4307 			    values->sdt_reset_retries);
4308 			break;
4309 		case SD_CONF_BSET_RSV_REL_TIME:
4310 			values->sdt_reserv_rel_time = data_list[i];
4311 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4312 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4313 			    values->sdt_reserv_rel_time);
4314 			break;
4315 		case SD_CONF_BSET_MIN_THROTTLE:
4316 			values->sdt_min_throttle = data_list[i];
4317 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4318 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4319 			    values->sdt_min_throttle);
4320 			break;
4321 		case SD_CONF_BSET_DISKSORT_DISABLED:
4322 			values->sdt_disk_sort_dis = data_list[i];
4323 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4324 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4325 			    values->sdt_disk_sort_dis);
4326 			break;
4327 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4328 			values->sdt_lun_reset_enable = data_list[i];
4329 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4330 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4331 			    "\n", values->sdt_lun_reset_enable);
4332 			break;
4333 		case SD_CONF_BSET_CACHE_IS_NV:
4334 			values->sdt_suppress_cache_flush = data_list[i];
4335 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4336 			    "sd_get_tunables_from_conf: \
4337 			    suppress_cache_flush = %d"
4338 			    "\n", values->sdt_suppress_cache_flush);
4339 			break;
4340 		case SD_CONF_BSET_PC_DISABLED:
4341 			values->sdt_disk_sort_dis = data_list[i];
4342 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4343 			    "sd_get_tunables_from_conf: power_condition_dis = "
4344 			    "%d\n", values->sdt_power_condition_dis);
4345 			break;
4346 		}
4347 	}
4348 }
4349 
4350 /*
4351  *    Function: sd_process_sdconf_table
4352  *
4353  * Description: Search the static configuration table for a match on the
4354  *		inquiry vid/pid and update the driver soft state structure
4355  *		according to the table property values for the device.
4356  *
4357  *		The form of a configuration table entry is:
4358  *		  <vid+pid>,<flags>,<property-data>
4359  *		  "SEAGATE ST42400N",1,0x40000,
4360  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4361  *
4362  *   Arguments: un - driver soft state (unit) structure
4363  */
4364 
4365 static void
4366 sd_process_sdconf_table(struct sd_lun *un)
4367 {
4368 	char	*id = NULL;
4369 	int	table_index;
4370 	int	idlen;
4371 
4372 	ASSERT(un != NULL);
4373 	for (table_index = 0; table_index < sd_disk_table_size;
4374 	    table_index++) {
4375 		id = sd_disk_table[table_index].device_id;
4376 		idlen = strlen(id);
4377 		if (idlen == 0) {
4378 			continue;
4379 		}
4380 
4381 		/*
4382 		 * The static configuration table currently does not
4383 		 * implement version 10 properties. Additionally,
4384 		 * multiple data-property-name entries are not
4385 		 * implemented in the static configuration table.
4386 		 */
4387 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4388 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4389 			    "sd_process_sdconf_table: disk %s\n", id);
4390 			sd_set_vers1_properties(un,
4391 			    sd_disk_table[table_index].flags,
4392 			    sd_disk_table[table_index].properties);
4393 			break;
4394 		}
4395 	}
4396 }
4397 
4398 
4399 /*
4400  *    Function: sd_sdconf_id_match
4401  *
4402  * Description: This local function implements a case sensitive vid/pid
4403  *		comparison as well as the boundary cases of wild card and
4404  *		multiple blanks.
4405  *
4406  *		Note: An implicit assumption made here is that the scsi
4407  *		inquiry structure will always keep the vid, pid and
4408  *		revision strings in consecutive sequence, so they can be
4409  *		read as a single string. If this assumption is not the
4410  *		case, a separate string, to be used for the check, needs
4411  *		to be built with these strings concatenated.
4412  *
4413  *   Arguments: un - driver soft state (unit) structure
4414  *		id - table or config file vid/pid
4415  *		idlen  - length of the vid/pid (bytes)
4416  *
4417  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4418  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4419  */
4420 
4421 static int
4422 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4423 {
4424 	struct scsi_inquiry	*sd_inq;
4425 	int 			rval = SD_SUCCESS;
4426 
4427 	ASSERT(un != NULL);
4428 	sd_inq = un->un_sd->sd_inq;
4429 	ASSERT(id != NULL);
4430 
4431 	/*
4432 	 * We use the inq_vid as a pointer to a buffer containing the
4433 	 * vid and pid and use the entire vid/pid length of the table
4434 	 * entry for the comparison. This works because the inq_pid
4435 	 * data member follows inq_vid in the scsi_inquiry structure.
4436 	 */
4437 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4438 		/*
4439 		 * The user id string is compared to the inquiry vid/pid
4440 		 * using a case insensitive comparison and ignoring
4441 		 * multiple spaces.
4442 		 */
4443 		rval = sd_blank_cmp(un, id, idlen);
4444 		if (rval != SD_SUCCESS) {
4445 			/*
4446 			 * User id strings that start and end with a "*"
4447 			 * are a special case. These do not have a
4448 			 * specific vendor, and the product string can
4449 			 * appear anywhere in the 16 byte PID portion of
4450 			 * the inquiry data. This is a simple strstr()
4451 			 * type search for the user id in the inquiry data.
4452 			 */
4453 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4454 				char	*pidptr = &id[1];
4455 				int	i;
4456 				int	j;
4457 				int	pidstrlen = idlen - 2;
4458 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4459 				    pidstrlen;
4460 
4461 				if (j < 0) {
4462 					return (SD_FAILURE);
4463 				}
4464 				for (i = 0; i < j; i++) {
4465 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4466 					    pidptr, pidstrlen) == 0) {
4467 						rval = SD_SUCCESS;
4468 						break;
4469 					}
4470 				}
4471 			}
4472 		}
4473 	}
4474 	return (rval);
4475 }
4476 
4477 
4478 /*
4479  *    Function: sd_blank_cmp
4480  *
4481  * Description: If the id string starts and ends with a space, treat
4482  *		multiple consecutive spaces as equivalent to a single
4483  *		space. For example, this causes a sd_disk_table entry
4484  *		of " NEC CDROM " to match a device's id string of
4485  *		"NEC       CDROM".
4486  *
4487  *		Note: The success exit condition for this routine is if
4488  *		the pointer to the table entry is '\0' and the cnt of
4489  *		the inquiry length is zero. This will happen if the inquiry
4490  *		string returned by the device is padded with spaces to be
4491  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4492  *		SCSI spec states that the inquiry string is to be padded with
4493  *		spaces.
4494  *
4495  *   Arguments: un - driver soft state (unit) structure
4496  *		id - table or config file vid/pid
4497  *		idlen  - length of the vid/pid (bytes)
4498  *
4499  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4500  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4501  */
4502 
4503 static int
4504 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4505 {
4506 	char		*p1;
4507 	char		*p2;
4508 	int		cnt;
4509 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4510 	    sizeof (SD_INQUIRY(un)->inq_pid);
4511 
4512 	ASSERT(un != NULL);
4513 	p2 = un->un_sd->sd_inq->inq_vid;
4514 	ASSERT(id != NULL);
4515 	p1 = id;
4516 
4517 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4518 		/*
4519 		 * Note: string p1 is terminated by a NUL but string p2
4520 		 * isn't.  The end of p2 is determined by cnt.
4521 		 */
4522 		for (;;) {
4523 			/* skip over any extra blanks in both strings */
4524 			while ((*p1 != '\0') && (*p1 == ' ')) {
4525 				p1++;
4526 			}
4527 			while ((cnt != 0) && (*p2 == ' ')) {
4528 				p2++;
4529 				cnt--;
4530 			}
4531 
4532 			/* compare the two strings */
4533 			if ((cnt == 0) ||
4534 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4535 				break;
4536 			}
4537 			while ((cnt > 0) &&
4538 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4539 				p1++;
4540 				p2++;
4541 				cnt--;
4542 			}
4543 		}
4544 	}
4545 
4546 	/* return SD_SUCCESS if both strings match */
4547 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4548 }
4549 
4550 
4551 /*
4552  *    Function: sd_chk_vers1_data
4553  *
4554  * Description: Verify the version 1 device properties provided by the
4555  *		user via the configuration file
4556  *
4557  *   Arguments: un	     - driver soft state (unit) structure
4558  *		flags	     - integer mask indicating properties to be set
4559  *		prop_list    - integer list of property values
4560  *		list_len     - number of the elements
4561  *
4562  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4563  *		SD_FAILURE - Indicates the user provided data is invalid
4564  */
4565 
4566 static int
4567 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4568     int list_len, char *dataname_ptr)
4569 {
4570 	int i;
4571 	int mask = 1;
4572 	int index = 0;
4573 
4574 	ASSERT(un != NULL);
4575 
4576 	/* Check for a NULL property name and list */
4577 	if (dataname_ptr == NULL) {
4578 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4579 		    "sd_chk_vers1_data: NULL data property name.");
4580 		return (SD_FAILURE);
4581 	}
4582 	if (prop_list == NULL) {
4583 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4584 		    "sd_chk_vers1_data: %s NULL data property list.",
4585 		    dataname_ptr);
4586 		return (SD_FAILURE);
4587 	}
4588 
4589 	/* Display a warning if undefined bits are set in the flags */
4590 	if (flags & ~SD_CONF_BIT_MASK) {
4591 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4592 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4593 		    "Properties not set.",
4594 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4595 		return (SD_FAILURE);
4596 	}
4597 
4598 	/*
4599 	 * Verify the length of the list by identifying the highest bit set
4600 	 * in the flags and validating that the property list has a length
4601 	 * up to the index of this bit.
4602 	 */
4603 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4604 		if (flags & mask) {
4605 			index++;
4606 		}
4607 		mask = 1 << i;
4608 	}
4609 	if (list_len < (index + 2)) {
4610 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4611 		    "sd_chk_vers1_data: "
4612 		    "Data property list %s size is incorrect. "
4613 		    "Properties not set.", dataname_ptr);
4614 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4615 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4616 		return (SD_FAILURE);
4617 	}
4618 	return (SD_SUCCESS);
4619 }
4620 
4621 
4622 /*
4623  *    Function: sd_set_vers1_properties
4624  *
4625  * Description: Set version 1 device properties based on a property list
4626  *		retrieved from the driver configuration file or static
4627  *		configuration table. Version 1 properties have the format:
4628  *
4629  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4630  *
4631  *		where the prop0 value will be used to set prop0 if bit0
4632  *		is set in the flags
4633  *
4634  *   Arguments: un	     - driver soft state (unit) structure
4635  *		flags	     - integer mask indicating properties to be set
4636  *		prop_list    - integer list of property values
4637  */
4638 
4639 static void
4640 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4641 {
4642 	ASSERT(un != NULL);
4643 
4644 	/*
4645 	 * Set the flag to indicate cache is to be disabled. An attempt
4646 	 * to disable the cache via sd_cache_control() will be made
4647 	 * later during attach once the basic initialization is complete.
4648 	 */
4649 	if (flags & SD_CONF_BSET_NOCACHE) {
4650 		un->un_f_opt_disable_cache = TRUE;
4651 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4652 		    "sd_set_vers1_properties: caching disabled flag set\n");
4653 	}
4654 
4655 	/* CD-specific configuration parameters */
4656 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4657 		un->un_f_cfg_playmsf_bcd = TRUE;
4658 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4659 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4660 	}
4661 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4662 		un->un_f_cfg_readsub_bcd = TRUE;
4663 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4664 		    "sd_set_vers1_properties: readsub_bcd set\n");
4665 	}
4666 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4667 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4668 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4669 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4670 	}
4671 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4672 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4673 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4674 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4675 	}
4676 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4677 		un->un_f_cfg_no_read_header = TRUE;
4678 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4679 		    "sd_set_vers1_properties: no_read_header set\n");
4680 	}
4681 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4682 		un->un_f_cfg_read_cd_xd4 = TRUE;
4683 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4684 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4685 	}
4686 
4687 	/* Support for devices which do not have valid/unique serial numbers */
4688 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4689 		un->un_f_opt_fab_devid = TRUE;
4690 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4691 		    "sd_set_vers1_properties: fab_devid bit set\n");
4692 	}
4693 
4694 	/* Support for user throttle configuration */
4695 	if (flags & SD_CONF_BSET_THROTTLE) {
4696 		ASSERT(prop_list != NULL);
4697 		un->un_saved_throttle = un->un_throttle =
4698 		    prop_list->sdt_throttle;
4699 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4700 		    "sd_set_vers1_properties: throttle set to %d\n",
4701 		    prop_list->sdt_throttle);
4702 	}
4703 
4704 	/* Set the per disk retry count according to the conf file or table. */
4705 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4706 		ASSERT(prop_list != NULL);
4707 		if (prop_list->sdt_not_rdy_retries) {
4708 			un->un_notready_retry_count =
4709 			    prop_list->sdt_not_rdy_retries;
4710 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4711 			    "sd_set_vers1_properties: not ready retry count"
4712 			    " set to %d\n", un->un_notready_retry_count);
4713 		}
4714 	}
4715 
4716 	/* The controller type is reported for generic disk driver ioctls */
4717 	if (flags & SD_CONF_BSET_CTYPE) {
4718 		ASSERT(prop_list != NULL);
4719 		switch (prop_list->sdt_ctype) {
4720 		case CTYPE_CDROM:
4721 			un->un_ctype = prop_list->sdt_ctype;
4722 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4723 			    "sd_set_vers1_properties: ctype set to "
4724 			    "CTYPE_CDROM\n");
4725 			break;
4726 		case CTYPE_CCS:
4727 			un->un_ctype = prop_list->sdt_ctype;
4728 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4729 			    "sd_set_vers1_properties: ctype set to "
4730 			    "CTYPE_CCS\n");
4731 			break;
4732 		case CTYPE_ROD:		/* RW optical */
4733 			un->un_ctype = prop_list->sdt_ctype;
4734 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4735 			    "sd_set_vers1_properties: ctype set to "
4736 			    "CTYPE_ROD\n");
4737 			break;
4738 		default:
4739 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4740 			    "sd_set_vers1_properties: Could not set "
4741 			    "invalid ctype value (%d)",
4742 			    prop_list->sdt_ctype);
4743 		}
4744 	}
4745 
4746 	/* Purple failover timeout */
4747 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4748 		ASSERT(prop_list != NULL);
4749 		un->un_busy_retry_count =
4750 		    prop_list->sdt_busy_retries;
4751 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4752 		    "sd_set_vers1_properties: "
4753 		    "busy retry count set to %d\n",
4754 		    un->un_busy_retry_count);
4755 	}
4756 
4757 	/* Purple reset retry count */
4758 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4759 		ASSERT(prop_list != NULL);
4760 		un->un_reset_retry_count =
4761 		    prop_list->sdt_reset_retries;
4762 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4763 		    "sd_set_vers1_properties: "
4764 		    "reset retry count set to %d\n",
4765 		    un->un_reset_retry_count);
4766 	}
4767 
4768 	/* Purple reservation release timeout */
4769 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4770 		ASSERT(prop_list != NULL);
4771 		un->un_reserve_release_time =
4772 		    prop_list->sdt_reserv_rel_time;
4773 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4774 		    "sd_set_vers1_properties: "
4775 		    "reservation release timeout set to %d\n",
4776 		    un->un_reserve_release_time);
4777 	}
4778 
4779 	/*
4780 	 * Driver flag telling the driver to verify that no commands are pending
4781 	 * for a device before issuing a Test Unit Ready. This is a workaround
4782 	 * for a firmware bug in some Seagate eliteI drives.
4783 	 */
4784 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4785 		un->un_f_cfg_tur_check = TRUE;
4786 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4787 		    "sd_set_vers1_properties: tur queue check set\n");
4788 	}
4789 
4790 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4791 		un->un_min_throttle = prop_list->sdt_min_throttle;
4792 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4793 		    "sd_set_vers1_properties: min throttle set to %d\n",
4794 		    un->un_min_throttle);
4795 	}
4796 
4797 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4798 		un->un_f_disksort_disabled =
4799 		    (prop_list->sdt_disk_sort_dis != 0) ?
4800 		    TRUE : FALSE;
4801 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4802 		    "sd_set_vers1_properties: disksort disabled "
4803 		    "flag set to %d\n",
4804 		    prop_list->sdt_disk_sort_dis);
4805 	}
4806 
4807 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4808 		un->un_f_lun_reset_enabled =
4809 		    (prop_list->sdt_lun_reset_enable != 0) ?
4810 		    TRUE : FALSE;
4811 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4812 		    "sd_set_vers1_properties: lun reset enabled "
4813 		    "flag set to %d\n",
4814 		    prop_list->sdt_lun_reset_enable);
4815 	}
4816 
4817 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4818 		un->un_f_suppress_cache_flush =
4819 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4820 		    TRUE : FALSE;
4821 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4822 		    "sd_set_vers1_properties: suppress_cache_flush "
4823 		    "flag set to %d\n",
4824 		    prop_list->sdt_suppress_cache_flush);
4825 	}
4826 
4827 	if (flags & SD_CONF_BSET_PC_DISABLED) {
4828 		un->un_f_power_condition_disabled =
4829 		    (prop_list->sdt_power_condition_dis != 0) ?
4830 		    TRUE : FALSE;
4831 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4832 		    "sd_set_vers1_properties: power_condition_disabled "
4833 		    "flag set to %d\n",
4834 		    prop_list->sdt_power_condition_dis);
4835 	}
4836 
4837 	/*
4838 	 * Validate the throttle values.
4839 	 * If any of the numbers are invalid, set everything to defaults.
4840 	 */
4841 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4842 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4843 	    (un->un_min_throttle > un->un_throttle)) {
4844 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4845 		un->un_min_throttle = sd_min_throttle;
4846 	}
4847 }
4848 
4849 /*
4850  *   Function: sd_is_lsi()
4851  *
4852  *   Description: Check for lsi devices, step through the static device
4853  *	table to match vid/pid.
4854  *
4855  *   Args: un - ptr to sd_lun
4856  *
4857  *   Notes:  When creating new LSI property, need to add the new LSI property
4858  *		to this function.
4859  */
4860 static void
4861 sd_is_lsi(struct sd_lun *un)
4862 {
4863 	char	*id = NULL;
4864 	int	table_index;
4865 	int	idlen;
4866 	void	*prop;
4867 
4868 	ASSERT(un != NULL);
4869 	for (table_index = 0; table_index < sd_disk_table_size;
4870 	    table_index++) {
4871 		id = sd_disk_table[table_index].device_id;
4872 		idlen = strlen(id);
4873 		if (idlen == 0) {
4874 			continue;
4875 		}
4876 
4877 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4878 			prop = sd_disk_table[table_index].properties;
4879 			if (prop == &lsi_properties ||
4880 			    prop == &lsi_oem_properties ||
4881 			    prop == &lsi_properties_scsi ||
4882 			    prop == &symbios_properties) {
4883 				un->un_f_cfg_is_lsi = TRUE;
4884 			}
4885 			break;
4886 		}
4887 	}
4888 }
4889 
4890 /*
4891  *    Function: sd_get_physical_geometry
4892  *
4893  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4894  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4895  *		target, and use this information to initialize the physical
4896  *		geometry cache specified by pgeom_p.
4897  *
4898  *		MODE SENSE is an optional command, so failure in this case
4899  *		does not necessarily denote an error. We want to use the
4900  *		MODE SENSE commands to derive the physical geometry of the
4901  *		device, but if either command fails, the logical geometry is
4902  *		used as the fallback for disk label geometry in cmlb.
4903  *
4904  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4905  *		have already been initialized for the current target and
4906  *		that the current values be passed as args so that we don't
4907  *		end up ever trying to use -1 as a valid value. This could
4908  *		happen if either value is reset while we're not holding
4909  *		the mutex.
4910  *
4911  *   Arguments: un - driver soft state (unit) structure
4912  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4913  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4914  *			to use the USCSI "direct" chain and bypass the normal
4915  *			command waitq.
4916  *
4917  *     Context: Kernel thread only (can sleep).
4918  */
4919 
4920 static int
4921 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4922 	diskaddr_t capacity, int lbasize, int path_flag)
4923 {
4924 	struct	mode_format	*page3p;
4925 	struct	mode_geometry	*page4p;
4926 	struct	mode_header	*headerp;
4927 	int	sector_size;
4928 	int	nsect;
4929 	int	nhead;
4930 	int	ncyl;
4931 	int	intrlv;
4932 	int	spc;
4933 	diskaddr_t	modesense_capacity;
4934 	int	rpm;
4935 	int	bd_len;
4936 	int	mode_header_length;
4937 	uchar_t	*p3bufp;
4938 	uchar_t	*p4bufp;
4939 	int	cdbsize;
4940 	int 	ret = EIO;
4941 	sd_ssc_t *ssc;
4942 	int	status;
4943 
4944 	ASSERT(un != NULL);
4945 
4946 	if (lbasize == 0) {
4947 		if (ISCD(un)) {
4948 			lbasize = 2048;
4949 		} else {
4950 			lbasize = un->un_sys_blocksize;
4951 		}
4952 	}
4953 	pgeom_p->g_secsize = (unsigned short)lbasize;
4954 
4955 	/*
4956 	 * If the unit is a cd/dvd drive MODE SENSE page three
4957 	 * and MODE SENSE page four are reserved (see SBC spec
4958 	 * and MMC spec). To prevent soft errors just return
4959 	 * using the default LBA size.
4960 	 */
4961 	if (ISCD(un))
4962 		return (ret);
4963 
4964 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4965 
4966 	/*
4967 	 * Retrieve MODE SENSE page 3 - Format Device Page
4968 	 */
4969 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4970 	ssc = sd_ssc_init(un);
4971 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4972 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4973 	if (status != 0) {
4974 		SD_ERROR(SD_LOG_COMMON, un,
4975 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4976 		goto page3_exit;
4977 	}
4978 
4979 	/*
4980 	 * Determine size of Block Descriptors in order to locate the mode
4981 	 * page data.  ATAPI devices return 0, SCSI devices should return
4982 	 * MODE_BLK_DESC_LENGTH.
4983 	 */
4984 	headerp = (struct mode_header *)p3bufp;
4985 	if (un->un_f_cfg_is_atapi == TRUE) {
4986 		struct mode_header_grp2 *mhp =
4987 		    (struct mode_header_grp2 *)headerp;
4988 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4989 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4990 	} else {
4991 		mode_header_length = MODE_HEADER_LENGTH;
4992 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4993 	}
4994 
4995 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4996 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4997 		    "sd_get_physical_geometry: received unexpected bd_len "
4998 		    "of %d, page3\n", bd_len);
4999 		status = EIO;
5000 		goto page3_exit;
5001 	}
5002 
5003 	page3p = (struct mode_format *)
5004 	    ((caddr_t)headerp + mode_header_length + bd_len);
5005 
5006 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5007 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5008 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
5009 		    "%d\n", page3p->mode_page.code);
5010 		status = EIO;
5011 		goto page3_exit;
5012 	}
5013 
5014 	/*
5015 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5016 	 * complete successfully; otherwise, revert to the logical geometry.
5017 	 * So, we need to save everything in temporary variables.
5018 	 */
5019 	sector_size = BE_16(page3p->data_bytes_sect);
5020 
5021 	/*
5022 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5023 	 */
5024 	if (sector_size == 0) {
5025 		sector_size = un->un_sys_blocksize;
5026 	} else {
5027 		sector_size &= ~(un->un_sys_blocksize - 1);
5028 	}
5029 
5030 	nsect  = BE_16(page3p->sect_track);
5031 	intrlv = BE_16(page3p->interleave);
5032 
5033 	SD_INFO(SD_LOG_COMMON, un,
5034 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5035 	SD_INFO(SD_LOG_COMMON, un,
5036 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5037 	    page3p->mode_page.code, nsect, sector_size);
5038 	SD_INFO(SD_LOG_COMMON, un,
5039 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5040 	    BE_16(page3p->track_skew),
5041 	    BE_16(page3p->cylinder_skew));
5042 
5043 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5044 
5045 	/*
5046 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5047 	 */
5048 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5049 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
5050 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
5051 	if (status != 0) {
5052 		SD_ERROR(SD_LOG_COMMON, un,
5053 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5054 		goto page4_exit;
5055 	}
5056 
5057 	/*
5058 	 * Determine size of Block Descriptors in order to locate the mode
5059 	 * page data.  ATAPI devices return 0, SCSI devices should return
5060 	 * MODE_BLK_DESC_LENGTH.
5061 	 */
5062 	headerp = (struct mode_header *)p4bufp;
5063 	if (un->un_f_cfg_is_atapi == TRUE) {
5064 		struct mode_header_grp2 *mhp =
5065 		    (struct mode_header_grp2 *)headerp;
5066 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5067 	} else {
5068 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5069 	}
5070 
5071 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5072 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5073 		    "sd_get_physical_geometry: received unexpected bd_len of "
5074 		    "%d, page4\n", bd_len);
5075 		status = EIO;
5076 		goto page4_exit;
5077 	}
5078 
5079 	page4p = (struct mode_geometry *)
5080 	    ((caddr_t)headerp + mode_header_length + bd_len);
5081 
5082 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5083 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5084 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
5085 		    "%d\n", page4p->mode_page.code);
5086 		status = EIO;
5087 		goto page4_exit;
5088 	}
5089 
5090 	/*
5091 	 * Stash the data now, after we know that both commands completed.
5092 	 */
5093 
5094 
5095 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5096 	spc   = nhead * nsect;
5097 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5098 	rpm   = BE_16(page4p->rpm);
5099 
5100 	modesense_capacity = spc * ncyl;
5101 
5102 	SD_INFO(SD_LOG_COMMON, un,
5103 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5104 	SD_INFO(SD_LOG_COMMON, un,
5105 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5106 	SD_INFO(SD_LOG_COMMON, un,
5107 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5108 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5109 	    (void *)pgeom_p, capacity);
5110 
5111 	/*
5112 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5113 	 * the product of C * H * S returned by MODE SENSE >= that returned
5114 	 * by read capacity. This is an idiosyncrasy of the original x86
5115 	 * disk subsystem.
5116 	 */
5117 	if (modesense_capacity >= capacity) {
5118 		SD_INFO(SD_LOG_COMMON, un,
5119 		    "sd_get_physical_geometry: adjusting acyl; "
5120 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5121 		    (modesense_capacity - capacity + spc - 1) / spc);
5122 		if (sector_size != 0) {
5123 			/* 1243403: NEC D38x7 drives don't support sec size */
5124 			pgeom_p->g_secsize = (unsigned short)sector_size;
5125 		}
5126 		pgeom_p->g_nsect    = (unsigned short)nsect;
5127 		pgeom_p->g_nhead    = (unsigned short)nhead;
5128 		pgeom_p->g_capacity = capacity;
5129 		pgeom_p->g_acyl	    =
5130 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5131 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5132 	}
5133 
5134 	pgeom_p->g_rpm    = (unsigned short)rpm;
5135 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5136 	ret = 0;
5137 
5138 	SD_INFO(SD_LOG_COMMON, un,
5139 	    "sd_get_physical_geometry: mode sense geometry:\n");
5140 	SD_INFO(SD_LOG_COMMON, un,
5141 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5142 	    nsect, sector_size, intrlv);
5143 	SD_INFO(SD_LOG_COMMON, un,
5144 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5145 	    nhead, ncyl, rpm, modesense_capacity);
5146 	SD_INFO(SD_LOG_COMMON, un,
5147 	    "sd_get_physical_geometry: (cached)\n");
5148 	SD_INFO(SD_LOG_COMMON, un,
5149 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5150 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
5151 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
5152 	SD_INFO(SD_LOG_COMMON, un,
5153 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5154 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
5155 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
5156 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5157 
5158 page4_exit:
5159 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5160 
5161 page3_exit:
5162 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5163 
5164 	if (status != 0) {
5165 		if (status == EIO) {
5166 			/*
5167 			 * Some disks do not support mode sense(6), we
5168 			 * should ignore this kind of error(sense key is
5169 			 * 0x5 - illegal request).
5170 			 */
5171 			uint8_t *sensep;
5172 			int senlen;
5173 
5174 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
5175 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
5176 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
5177 
5178 			if (senlen > 0 &&
5179 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
5180 				sd_ssc_assessment(ssc,
5181 				    SD_FMT_IGNORE_COMPROMISE);
5182 			} else {
5183 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
5184 			}
5185 		} else {
5186 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5187 		}
5188 	}
5189 	sd_ssc_fini(ssc);
5190 	return (ret);
5191 }
5192 
5193 /*
5194  *    Function: sd_get_virtual_geometry
5195  *
5196  * Description: Ask the controller to tell us about the target device.
5197  *
5198  *   Arguments: un - pointer to softstate
5199  *		capacity - disk capacity in #blocks
5200  *		lbasize - disk block size in bytes
5201  *
5202  *     Context: Kernel thread only
5203  */
5204 
5205 static int
5206 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
5207     diskaddr_t capacity, int lbasize)
5208 {
5209 	uint_t	geombuf;
5210 	int	spc;
5211 
5212 	ASSERT(un != NULL);
5213 
5214 	/* Set sector size, and total number of sectors */
5215 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5216 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5217 
5218 	/* Let the HBA tell us its geometry */
5219 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5220 
5221 	/* A value of -1 indicates an undefined "geometry" property */
5222 	if (geombuf == (-1)) {
5223 		return (EINVAL);
5224 	}
5225 
5226 	/* Initialize the logical geometry cache. */
5227 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5228 	lgeom_p->g_nsect   = geombuf & 0xffff;
5229 	lgeom_p->g_secsize = un->un_sys_blocksize;
5230 
5231 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5232 
5233 	/*
5234 	 * Note: The driver originally converted the capacity value from
5235 	 * target blocks to system blocks. However, the capacity value passed
5236 	 * to this routine is already in terms of system blocks (this scaling
5237 	 * is done when the READ CAPACITY command is issued and processed).
5238 	 * This 'error' may have gone undetected because the usage of g_ncyl
5239 	 * (which is based upon g_capacity) is very limited within the driver
5240 	 */
5241 	lgeom_p->g_capacity = capacity;
5242 
5243 	/*
5244 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5245 	 * hba may return zero values if the device has been removed.
5246 	 */
5247 	if (spc == 0) {
5248 		lgeom_p->g_ncyl = 0;
5249 	} else {
5250 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5251 	}
5252 	lgeom_p->g_acyl = 0;
5253 
5254 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5255 	return (0);
5256 
5257 }
5258 /*
5259  *    Function: sd_update_block_info
5260  *
5261  * Description: Calculate a byte count to sector count bitshift value
5262  *		from sector size.
5263  *
5264  *   Arguments: un: unit struct.
5265  *		lbasize: new target sector size
5266  *		capacity: new target capacity, ie. block count
5267  *
5268  *     Context: Kernel thread context
5269  */
5270 
5271 static void
5272 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5273 {
5274 	if (lbasize != 0) {
5275 		un->un_tgt_blocksize = lbasize;
5276 		un->un_f_tgt_blocksize_is_valid = TRUE;
5277 		if (!un->un_f_has_removable_media) {
5278 			un->un_sys_blocksize = lbasize;
5279 		}
5280 	}
5281 
5282 	if (capacity != 0) {
5283 		un->un_blockcount		= capacity;
5284 		un->un_f_blockcount_is_valid	= TRUE;
5285 	}
5286 }
5287 
5288 
5289 /*
5290  *    Function: sd_register_devid
5291  *
5292  * Description: This routine will obtain the device id information from the
5293  *		target, obtain the serial number, and register the device
5294  *		id with the ddi framework.
5295  *
5296  *   Arguments: devi - the system's dev_info_t for the device.
5297  *		un - driver soft state (unit) structure
5298  *		reservation_flag - indicates if a reservation conflict
5299  *		occurred during attach
5300  *
5301  *     Context: Kernel Thread
5302  */
5303 static void
5304 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5305 {
5306 	int		rval		= 0;
5307 	uchar_t		*inq80		= NULL;
5308 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5309 	size_t		inq80_resid	= 0;
5310 	uchar_t		*inq83		= NULL;
5311 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5312 	size_t		inq83_resid	= 0;
5313 	int		dlen, len;
5314 	char		*sn;
5315 	struct sd_lun	*un;
5316 
5317 	ASSERT(ssc != NULL);
5318 	un = ssc->ssc_un;
5319 	ASSERT(un != NULL);
5320 	ASSERT(mutex_owned(SD_MUTEX(un)));
5321 	ASSERT((SD_DEVINFO(un)) == devi);
5322 
5323 
5324 	/*
5325 	 * We check the availability of the World Wide Name (0x83) and Unit
5326 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5327 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5328 	 * 0x83 is available, that is the best choice.  Our next choice is
5329 	 * 0x80.  If neither are available, we munge the devid from the device
5330 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5331 	 * to fabricate a devid for non-Sun qualified disks.
5332 	 */
5333 	if (sd_check_vpd_page_support(ssc) == 0) {
5334 		/* collect page 80 data if available */
5335 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5336 
5337 			mutex_exit(SD_MUTEX(un));
5338 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5339 
5340 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5341 			    0x01, 0x80, &inq80_resid);
5342 
5343 			if (rval != 0) {
5344 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5345 				kmem_free(inq80, inq80_len);
5346 				inq80 = NULL;
5347 				inq80_len = 0;
5348 			} else if (ddi_prop_exists(
5349 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5350 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5351 			    INQUIRY_SERIAL_NO) == 0) {
5352 				/*
5353 				 * If we don't already have a serial number
5354 				 * property, do quick verify of data returned
5355 				 * and define property.
5356 				 */
5357 				dlen = inq80_len - inq80_resid;
5358 				len = (size_t)inq80[3];
5359 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5360 					/*
5361 					 * Ensure sn termination, skip leading
5362 					 * blanks, and create property
5363 					 * 'inquiry-serial-no'.
5364 					 */
5365 					sn = (char *)&inq80[4];
5366 					sn[len] = 0;
5367 					while (*sn && (*sn == ' '))
5368 						sn++;
5369 					if (*sn) {
5370 						(void) ddi_prop_update_string(
5371 						    DDI_DEV_T_NONE,
5372 						    SD_DEVINFO(un),
5373 						    INQUIRY_SERIAL_NO, sn);
5374 					}
5375 				}
5376 			}
5377 			mutex_enter(SD_MUTEX(un));
5378 		}
5379 
5380 		/* collect page 83 data if available */
5381 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5382 			mutex_exit(SD_MUTEX(un));
5383 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5384 
5385 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5386 			    0x01, 0x83, &inq83_resid);
5387 
5388 			if (rval != 0) {
5389 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5390 				kmem_free(inq83, inq83_len);
5391 				inq83 = NULL;
5392 				inq83_len = 0;
5393 			}
5394 			mutex_enter(SD_MUTEX(un));
5395 		}
5396 	}
5397 
5398 	/*
5399 	 * If transport has already registered a devid for this target
5400 	 * then that takes precedence over the driver's determination
5401 	 * of the devid.
5402 	 *
5403 	 * NOTE: The reason this check is done here instead of at the beginning
5404 	 * of the function is to allow the code above to create the
5405 	 * 'inquiry-serial-no' property.
5406 	 */
5407 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5408 		ASSERT(un->un_devid);
5409 		un->un_f_devid_transport_defined = TRUE;
5410 		goto cleanup; /* use devid registered by the transport */
5411 	}
5412 
5413 	/*
5414 	 * This is the case of antiquated Sun disk drives that have the
5415 	 * FAB_DEVID property set in the disk_table.  These drives
5416 	 * manage the devid's by storing them in last 2 available sectors
5417 	 * on the drive and have them fabricated by the ddi layer by calling
5418 	 * ddi_devid_init and passing the DEVID_FAB flag.
5419 	 */
5420 	if (un->un_f_opt_fab_devid == TRUE) {
5421 		/*
5422 		 * Depending on EINVAL isn't reliable, since a reserved disk
5423 		 * may result in invalid geometry, so check to make sure a
5424 		 * reservation conflict did not occur during attach.
5425 		 */
5426 		if ((sd_get_devid(ssc) == EINVAL) &&
5427 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5428 			/*
5429 			 * The devid is invalid AND there is no reservation
5430 			 * conflict.  Fabricate a new devid.
5431 			 */
5432 			(void) sd_create_devid(ssc);
5433 		}
5434 
5435 		/* Register the devid if it exists */
5436 		if (un->un_devid != NULL) {
5437 			(void) ddi_devid_register(SD_DEVINFO(un),
5438 			    un->un_devid);
5439 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5440 			    "sd_register_devid: Devid Fabricated\n");
5441 		}
5442 		goto cleanup;
5443 	}
5444 
5445 	/* encode best devid possible based on data available */
5446 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5447 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5448 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5449 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5450 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5451 
5452 		/* devid successfully encoded, register devid */
5453 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5454 
5455 	} else {
5456 		/*
5457 		 * Unable to encode a devid based on data available.
5458 		 * This is not a Sun qualified disk.  Older Sun disk
5459 		 * drives that have the SD_FAB_DEVID property
5460 		 * set in the disk_table and non Sun qualified
5461 		 * disks are treated in the same manner.  These
5462 		 * drives manage the devid's by storing them in
5463 		 * last 2 available sectors on the drive and
5464 		 * have them fabricated by the ddi layer by
5465 		 * calling ddi_devid_init and passing the
5466 		 * DEVID_FAB flag.
5467 		 * Create a fabricate devid only if there's no
5468 		 * fabricate devid existed.
5469 		 */
5470 		if (sd_get_devid(ssc) == EINVAL) {
5471 			(void) sd_create_devid(ssc);
5472 		}
5473 		un->un_f_opt_fab_devid = TRUE;
5474 
5475 		/* Register the devid if it exists */
5476 		if (un->un_devid != NULL) {
5477 			(void) ddi_devid_register(SD_DEVINFO(un),
5478 			    un->un_devid);
5479 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5480 			    "sd_register_devid: devid fabricated using "
5481 			    "ddi framework\n");
5482 		}
5483 	}
5484 
5485 cleanup:
5486 	/* clean up resources */
5487 	if (inq80 != NULL) {
5488 		kmem_free(inq80, inq80_len);
5489 	}
5490 	if (inq83 != NULL) {
5491 		kmem_free(inq83, inq83_len);
5492 	}
5493 }
5494 
5495 
5496 
5497 /*
5498  *    Function: sd_get_devid
5499  *
5500  * Description: This routine will return 0 if a valid device id has been
5501  *		obtained from the target and stored in the soft state. If a
5502  *		valid device id has not been previously read and stored, a
5503  *		read attempt will be made.
5504  *
5505  *   Arguments: un - driver soft state (unit) structure
5506  *
5507  * Return Code: 0 if we successfully get the device id
5508  *
5509  *     Context: Kernel Thread
5510  */
5511 
5512 static int
5513 sd_get_devid(sd_ssc_t *ssc)
5514 {
5515 	struct dk_devid		*dkdevid;
5516 	ddi_devid_t		tmpid;
5517 	uint_t			*ip;
5518 	size_t			sz;
5519 	diskaddr_t		blk;
5520 	int			status;
5521 	int			chksum;
5522 	int			i;
5523 	size_t			buffer_size;
5524 	struct sd_lun		*un;
5525 
5526 	ASSERT(ssc != NULL);
5527 	un = ssc->ssc_un;
5528 	ASSERT(un != NULL);
5529 	ASSERT(mutex_owned(SD_MUTEX(un)));
5530 
5531 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5532 	    un);
5533 
5534 	if (un->un_devid != NULL) {
5535 		return (0);
5536 	}
5537 
5538 	mutex_exit(SD_MUTEX(un));
5539 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5540 	    (void *)SD_PATH_DIRECT) != 0) {
5541 		mutex_enter(SD_MUTEX(un));
5542 		return (EINVAL);
5543 	}
5544 
5545 	/*
5546 	 * Read and verify device id, stored in the reserved cylinders at the
5547 	 * end of the disk. Backup label is on the odd sectors of the last
5548 	 * track of the last cylinder. Device id will be on track of the next
5549 	 * to last cylinder.
5550 	 */
5551 	mutex_enter(SD_MUTEX(un));
5552 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5553 	mutex_exit(SD_MUTEX(un));
5554 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5555 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5556 	    SD_PATH_DIRECT);
5557 
5558 	if (status != 0) {
5559 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5560 		goto error;
5561 	}
5562 
5563 	/* Validate the revision */
5564 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5565 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5566 		status = EINVAL;
5567 		goto error;
5568 	}
5569 
5570 	/* Calculate the checksum */
5571 	chksum = 0;
5572 	ip = (uint_t *)dkdevid;
5573 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5574 	    i++) {
5575 		chksum ^= ip[i];
5576 	}
5577 
5578 	/* Compare the checksums */
5579 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5580 		status = EINVAL;
5581 		goto error;
5582 	}
5583 
5584 	/* Validate the device id */
5585 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5586 		status = EINVAL;
5587 		goto error;
5588 	}
5589 
5590 	/*
5591 	 * Store the device id in the driver soft state
5592 	 */
5593 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5594 	tmpid = kmem_alloc(sz, KM_SLEEP);
5595 
5596 	mutex_enter(SD_MUTEX(un));
5597 
5598 	un->un_devid = tmpid;
5599 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5600 
5601 	kmem_free(dkdevid, buffer_size);
5602 
5603 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5604 
5605 	return (status);
5606 error:
5607 	mutex_enter(SD_MUTEX(un));
5608 	kmem_free(dkdevid, buffer_size);
5609 	return (status);
5610 }
5611 
5612 
5613 /*
5614  *    Function: sd_create_devid
5615  *
5616  * Description: This routine will fabricate the device id and write it
5617  *		to the disk.
5618  *
5619  *   Arguments: un - driver soft state (unit) structure
5620  *
5621  * Return Code: value of the fabricated device id
5622  *
5623  *     Context: Kernel Thread
5624  */
5625 
5626 static ddi_devid_t
5627 sd_create_devid(sd_ssc_t *ssc)
5628 {
5629 	struct sd_lun	*un;
5630 
5631 	ASSERT(ssc != NULL);
5632 	un = ssc->ssc_un;
5633 	ASSERT(un != NULL);
5634 
5635 	/* Fabricate the devid */
5636 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5637 	    == DDI_FAILURE) {
5638 		return (NULL);
5639 	}
5640 
5641 	/* Write the devid to disk */
5642 	if (sd_write_deviceid(ssc) != 0) {
5643 		ddi_devid_free(un->un_devid);
5644 		un->un_devid = NULL;
5645 	}
5646 
5647 	return (un->un_devid);
5648 }
5649 
5650 
5651 /*
5652  *    Function: sd_write_deviceid
5653  *
5654  * Description: This routine will write the device id to the disk
5655  *		reserved sector.
5656  *
5657  *   Arguments: un - driver soft state (unit) structure
5658  *
5659  * Return Code: EINVAL
5660  *		value returned by sd_send_scsi_cmd
5661  *
5662  *     Context: Kernel Thread
5663  */
5664 
5665 static int
5666 sd_write_deviceid(sd_ssc_t *ssc)
5667 {
5668 	struct dk_devid		*dkdevid;
5669 	uchar_t			*buf;
5670 	diskaddr_t		blk;
5671 	uint_t			*ip, chksum;
5672 	int			status;
5673 	int			i;
5674 	struct sd_lun		*un;
5675 
5676 	ASSERT(ssc != NULL);
5677 	un = ssc->ssc_un;
5678 	ASSERT(un != NULL);
5679 	ASSERT(mutex_owned(SD_MUTEX(un)));
5680 
5681 	mutex_exit(SD_MUTEX(un));
5682 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5683 	    (void *)SD_PATH_DIRECT) != 0) {
5684 		mutex_enter(SD_MUTEX(un));
5685 		return (-1);
5686 	}
5687 
5688 
5689 	/* Allocate the buffer */
5690 	buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5691 	dkdevid = (struct dk_devid *)buf;
5692 
5693 	/* Fill in the revision */
5694 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5695 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5696 
5697 	/* Copy in the device id */
5698 	mutex_enter(SD_MUTEX(un));
5699 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5700 	    ddi_devid_sizeof(un->un_devid));
5701 	mutex_exit(SD_MUTEX(un));
5702 
5703 	/* Calculate the checksum */
5704 	chksum = 0;
5705 	ip = (uint_t *)dkdevid;
5706 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5707 	    i++) {
5708 		chksum ^= ip[i];
5709 	}
5710 
5711 	/* Fill-in checksum */
5712 	DKD_FORMCHKSUM(chksum, dkdevid);
5713 
5714 	/* Write the reserved sector */
5715 	status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk,
5716 	    SD_PATH_DIRECT);
5717 	if (status != 0)
5718 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5719 
5720 	kmem_free(buf, un->un_sys_blocksize);
5721 
5722 	mutex_enter(SD_MUTEX(un));
5723 	return (status);
5724 }
5725 
5726 
5727 /*
5728  *    Function: sd_check_vpd_page_support
5729  *
5730  * Description: This routine sends an inquiry command with the EVPD bit set and
5731  *		a page code of 0x00 to the device. It is used to determine which
5732  *		vital product pages are available to find the devid. We are
5733  *		looking for pages 0x83 0x80 or 0xB1.  If we return a negative 1,
5734  *		the device does not support that command.
5735  *
5736  *   Arguments: un  - driver soft state (unit) structure
5737  *
5738  * Return Code: 0 - success
5739  *		1 - check condition
5740  *
5741  *     Context: This routine can sleep.
5742  */
5743 
5744 static int
5745 sd_check_vpd_page_support(sd_ssc_t *ssc)
5746 {
5747 	uchar_t	*page_list	= NULL;
5748 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5749 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5750 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5751 	int    	rval		= 0;
5752 	int	counter;
5753 	struct sd_lun		*un;
5754 
5755 	ASSERT(ssc != NULL);
5756 	un = ssc->ssc_un;
5757 	ASSERT(un != NULL);
5758 	ASSERT(mutex_owned(SD_MUTEX(un)));
5759 
5760 	mutex_exit(SD_MUTEX(un));
5761 
5762 	/*
5763 	 * We'll set the page length to the maximum to save figuring it out
5764 	 * with an additional call.
5765 	 */
5766 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5767 
5768 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5769 	    page_code, NULL);
5770 
5771 	if (rval != 0)
5772 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5773 
5774 	mutex_enter(SD_MUTEX(un));
5775 
5776 	/*
5777 	 * Now we must validate that the device accepted the command, as some
5778 	 * drives do not support it.  If the drive does support it, we will
5779 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5780 	 * not, we return -1.
5781 	 */
5782 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5783 		/* Loop to find one of the 2 pages we need */
5784 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5785 
5786 		/*
5787 		 * Pages are returned in ascending order, and 0x83 is what we
5788 		 * are hoping for.
5789 		 */
5790 		while ((page_list[counter] <= 0xB1) &&
5791 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5792 		    VPD_HEAD_OFFSET))) {
5793 			/*
5794 			 * Add 3 because page_list[3] is the number of
5795 			 * pages minus 3
5796 			 */
5797 
5798 			switch (page_list[counter]) {
5799 			case 0x00:
5800 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5801 				break;
5802 			case 0x80:
5803 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5804 				break;
5805 			case 0x81:
5806 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5807 				break;
5808 			case 0x82:
5809 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5810 				break;
5811 			case 0x83:
5812 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5813 				break;
5814 			case 0x86:
5815 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5816 				break;
5817 			case 0xB1:
5818 				un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG;
5819 				break;
5820 			}
5821 			counter++;
5822 		}
5823 
5824 	} else {
5825 		rval = -1;
5826 
5827 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5828 		    "sd_check_vpd_page_support: This drive does not implement "
5829 		    "VPD pages.\n");
5830 	}
5831 
5832 	kmem_free(page_list, page_length);
5833 
5834 	return (rval);
5835 }
5836 
5837 
5838 /*
5839  *    Function: sd_setup_pm
5840  *
5841  * Description: Initialize Power Management on the device
5842  *
5843  *     Context: Kernel Thread
5844  */
5845 
5846 static void
5847 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5848 {
5849 	uint_t		log_page_size;
5850 	uchar_t		*log_page_data;
5851 	int		rval = 0;
5852 	struct sd_lun	*un;
5853 
5854 	ASSERT(ssc != NULL);
5855 	un = ssc->ssc_un;
5856 	ASSERT(un != NULL);
5857 
5858 	/*
5859 	 * Since we are called from attach, holding a mutex for
5860 	 * un is unnecessary. Because some of the routines called
5861 	 * from here require SD_MUTEX to not be held, assert this
5862 	 * right up front.
5863 	 */
5864 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5865 	/*
5866 	 * Since the sd device does not have the 'reg' property,
5867 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5868 	 * The following code is to tell cpr that this device
5869 	 * DOES need to be suspended and resumed.
5870 	 */
5871 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5872 	    "pm-hardware-state", "needs-suspend-resume");
5873 
5874 	/*
5875 	 * This complies with the new power management framework
5876 	 * for certain desktop machines. Create the pm_components
5877 	 * property as a string array property.
5878 	 * If un_f_pm_supported is TRUE, that means the disk
5879 	 * attached HBA has set the "pm-capable" property and
5880 	 * the value of this property is bigger than 0.
5881 	 */
5882 	if (un->un_f_pm_supported) {
5883 		/*
5884 		 * not all devices have a motor, try it first.
5885 		 * some devices may return ILLEGAL REQUEST, some
5886 		 * will hang
5887 		 * The following START_STOP_UNIT is used to check if target
5888 		 * device has a motor.
5889 		 */
5890 		un->un_f_start_stop_supported = TRUE;
5891 
5892 		if (un->un_f_power_condition_supported) {
5893 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5894 			    SD_POWER_CONDITION, SD_TARGET_ACTIVE,
5895 			    SD_PATH_DIRECT);
5896 			if (rval != 0) {
5897 				un->un_f_power_condition_supported = FALSE;
5898 			}
5899 		}
5900 		if (!un->un_f_power_condition_supported) {
5901 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5902 			    SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT);
5903 		}
5904 		if (rval != 0) {
5905 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5906 			un->un_f_start_stop_supported = FALSE;
5907 		}
5908 
5909 		/*
5910 		 * create pm properties anyways otherwise the parent can't
5911 		 * go to sleep
5912 		 */
5913 		un->un_f_pm_is_enabled = TRUE;
5914 		(void) sd_create_pm_components(devi, un);
5915 
5916 		/*
5917 		 * If it claims that log sense is supported, check it out.
5918 		 */
5919 		if (un->un_f_log_sense_supported) {
5920 			rval = sd_log_page_supported(ssc,
5921 			    START_STOP_CYCLE_PAGE);
5922 			if (rval == 1) {
5923 				/* Page found, use it. */
5924 				un->un_start_stop_cycle_page =
5925 				    START_STOP_CYCLE_PAGE;
5926 			} else {
5927 				/*
5928 				 * Page not found or log sense is not
5929 				 * supported.
5930 				 * Notice we do not check the old style
5931 				 * START_STOP_CYCLE_VU_PAGE because this
5932 				 * code path does not apply to old disks.
5933 				 */
5934 				un->un_f_log_sense_supported = FALSE;
5935 				un->un_f_pm_log_sense_smart = FALSE;
5936 			}
5937 		}
5938 
5939 		return;
5940 	}
5941 
5942 	/*
5943 	 * For the disk whose attached HBA has not set the "pm-capable"
5944 	 * property, check if it supports the power management.
5945 	 */
5946 	if (!un->un_f_log_sense_supported) {
5947 		un->un_power_level = SD_SPINDLE_ON;
5948 		un->un_f_pm_is_enabled = FALSE;
5949 		return;
5950 	}
5951 
5952 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5953 
5954 #ifdef	SDDEBUG
5955 	if (sd_force_pm_supported) {
5956 		/* Force a successful result */
5957 		rval = 1;
5958 	}
5959 #endif
5960 
5961 	/*
5962 	 * If the start-stop cycle counter log page is not supported
5963 	 * or if the pm-capable property is set to be false (0),
5964 	 * then we should not create the pm_components property.
5965 	 */
5966 	if (rval == -1) {
5967 		/*
5968 		 * Error.
5969 		 * Reading log sense failed, most likely this is
5970 		 * an older drive that does not support log sense.
5971 		 * If this fails auto-pm is not supported.
5972 		 */
5973 		un->un_power_level = SD_SPINDLE_ON;
5974 		un->un_f_pm_is_enabled = FALSE;
5975 
5976 	} else if (rval == 0) {
5977 		/*
5978 		 * Page not found.
5979 		 * The start stop cycle counter is implemented as page
5980 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5981 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5982 		 */
5983 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
5984 			/*
5985 			 * Page found, use this one.
5986 			 */
5987 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5988 			un->un_f_pm_is_enabled = TRUE;
5989 		} else {
5990 			/*
5991 			 * Error or page not found.
5992 			 * auto-pm is not supported for this device.
5993 			 */
5994 			un->un_power_level = SD_SPINDLE_ON;
5995 			un->un_f_pm_is_enabled = FALSE;
5996 		}
5997 	} else {
5998 		/*
5999 		 * Page found, use it.
6000 		 */
6001 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6002 		un->un_f_pm_is_enabled = TRUE;
6003 	}
6004 
6005 
6006 	if (un->un_f_pm_is_enabled == TRUE) {
6007 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6008 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6009 
6010 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6011 		    log_page_size, un->un_start_stop_cycle_page,
6012 		    0x01, 0, SD_PATH_DIRECT);
6013 
6014 		if (rval != 0) {
6015 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6016 		}
6017 
6018 #ifdef	SDDEBUG
6019 		if (sd_force_pm_supported) {
6020 			/* Force a successful result */
6021 			rval = 0;
6022 		}
6023 #endif
6024 
6025 		/*
6026 		 * If the Log sense for Page( Start/stop cycle counter page)
6027 		 * succeeds, then power management is supported and we can
6028 		 * enable auto-pm.
6029 		 */
6030 		if (rval == 0)  {
6031 			(void) sd_create_pm_components(devi, un);
6032 		} else {
6033 			un->un_power_level = SD_SPINDLE_ON;
6034 			un->un_f_pm_is_enabled = FALSE;
6035 		}
6036 
6037 		kmem_free(log_page_data, log_page_size);
6038 	}
6039 }
6040 
6041 
6042 /*
6043  *    Function: sd_create_pm_components
6044  *
6045  * Description: Initialize PM property.
6046  *
6047  *     Context: Kernel thread context
6048  */
6049 
6050 static void
6051 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6052 {
6053 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6054 
6055 	if (un->un_f_power_condition_supported) {
6056 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6057 		    "pm-components", sd_pwr_pc.pm_comp, 5)
6058 		    != DDI_PROP_SUCCESS) {
6059 			un->un_power_level = SD_SPINDLE_ACTIVE;
6060 			un->un_f_pm_is_enabled = FALSE;
6061 			return;
6062 		}
6063 	} else {
6064 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6065 		    "pm-components", sd_pwr_ss.pm_comp, 3)
6066 		    != DDI_PROP_SUCCESS) {
6067 			un->un_power_level = SD_SPINDLE_ON;
6068 			un->un_f_pm_is_enabled = FALSE;
6069 			return;
6070 		}
6071 	}
6072 	/*
6073 	 * When components are initially created they are idle,
6074 	 * power up any non-removables.
6075 	 * Note: the return value of pm_raise_power can't be used
6076 	 * for determining if PM should be enabled for this device.
6077 	 * Even if you check the return values and remove this
6078 	 * property created above, the PM framework will not honor the
6079 	 * change after the first call to pm_raise_power. Hence,
6080 	 * removal of that property does not help if pm_raise_power
6081 	 * fails. In the case of removable media, the start/stop
6082 	 * will fail if the media is not present.
6083 	 */
6084 	if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6085 	    SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) {
6086 		mutex_enter(SD_MUTEX(un));
6087 		un->un_power_level = SD_PM_STATE_ACTIVE(un);
6088 		mutex_enter(&un->un_pm_mutex);
6089 		/* Set to on and not busy. */
6090 		un->un_pm_count = 0;
6091 	} else {
6092 		mutex_enter(SD_MUTEX(un));
6093 		un->un_power_level = SD_PM_STATE_STOPPED(un);
6094 		mutex_enter(&un->un_pm_mutex);
6095 		/* Set to off. */
6096 		un->un_pm_count = -1;
6097 	}
6098 	mutex_exit(&un->un_pm_mutex);
6099 	mutex_exit(SD_MUTEX(un));
6100 }
6101 
6102 
6103 /*
6104  *    Function: sd_ddi_suspend
6105  *
6106  * Description: Performs system power-down operations. This includes
6107  *		setting the drive state to indicate its suspended so
6108  *		that no new commands will be accepted. Also, wait for
6109  *		all commands that are in transport or queued to a timer
6110  *		for retry to complete. All timeout threads are cancelled.
6111  *
6112  * Return Code: DDI_FAILURE or DDI_SUCCESS
6113  *
6114  *     Context: Kernel thread context
6115  */
6116 
6117 static int
6118 sd_ddi_suspend(dev_info_t *devi)
6119 {
6120 	struct	sd_lun	*un;
6121 	clock_t		wait_cmds_complete;
6122 
6123 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6124 	if (un == NULL) {
6125 		return (DDI_FAILURE);
6126 	}
6127 
6128 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6129 
6130 	mutex_enter(SD_MUTEX(un));
6131 
6132 	/* Return success if the device is already suspended. */
6133 	if (un->un_state == SD_STATE_SUSPENDED) {
6134 		mutex_exit(SD_MUTEX(un));
6135 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6136 		    "device already suspended, exiting\n");
6137 		return (DDI_SUCCESS);
6138 	}
6139 
6140 	/* Return failure if the device is being used by HA */
6141 	if (un->un_resvd_status &
6142 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6143 		mutex_exit(SD_MUTEX(un));
6144 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6145 		    "device in use by HA, exiting\n");
6146 		return (DDI_FAILURE);
6147 	}
6148 
6149 	/*
6150 	 * Return failure if the device is in a resource wait
6151 	 * or power changing state.
6152 	 */
6153 	if ((un->un_state == SD_STATE_RWAIT) ||
6154 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6155 		mutex_exit(SD_MUTEX(un));
6156 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6157 		    "device in resource wait state, exiting\n");
6158 		return (DDI_FAILURE);
6159 	}
6160 
6161 
6162 	un->un_save_state = un->un_last_state;
6163 	New_state(un, SD_STATE_SUSPENDED);
6164 
6165 	/*
6166 	 * Wait for all commands that are in transport or queued to a timer
6167 	 * for retry to complete.
6168 	 *
6169 	 * While waiting, no new commands will be accepted or sent because of
6170 	 * the new state we set above.
6171 	 *
6172 	 * Wait till current operation has completed. If we are in the resource
6173 	 * wait state (with an intr outstanding) then we need to wait till the
6174 	 * intr completes and starts the next cmd. We want to wait for
6175 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6176 	 */
6177 	wait_cmds_complete = ddi_get_lbolt() +
6178 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6179 
6180 	while (un->un_ncmds_in_transport != 0) {
6181 		/*
6182 		 * Fail if commands do not finish in the specified time.
6183 		 */
6184 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6185 		    wait_cmds_complete) == -1) {
6186 			/*
6187 			 * Undo the state changes made above. Everything
6188 			 * must go back to it's original value.
6189 			 */
6190 			Restore_state(un);
6191 			un->un_last_state = un->un_save_state;
6192 			/* Wake up any threads that might be waiting. */
6193 			cv_broadcast(&un->un_suspend_cv);
6194 			mutex_exit(SD_MUTEX(un));
6195 			SD_ERROR(SD_LOG_IO_PM, un,
6196 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6197 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6198 			return (DDI_FAILURE);
6199 		}
6200 	}
6201 
6202 	/*
6203 	 * Cancel SCSI watch thread and timeouts, if any are active
6204 	 */
6205 
6206 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6207 		opaque_t temp_token = un->un_swr_token;
6208 		mutex_exit(SD_MUTEX(un));
6209 		scsi_watch_suspend(temp_token);
6210 		mutex_enter(SD_MUTEX(un));
6211 	}
6212 
6213 	if (un->un_reset_throttle_timeid != NULL) {
6214 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6215 		un->un_reset_throttle_timeid = NULL;
6216 		mutex_exit(SD_MUTEX(un));
6217 		(void) untimeout(temp_id);
6218 		mutex_enter(SD_MUTEX(un));
6219 	}
6220 
6221 	if (un->un_dcvb_timeid != NULL) {
6222 		timeout_id_t temp_id = un->un_dcvb_timeid;
6223 		un->un_dcvb_timeid = NULL;
6224 		mutex_exit(SD_MUTEX(un));
6225 		(void) untimeout(temp_id);
6226 		mutex_enter(SD_MUTEX(un));
6227 	}
6228 
6229 	mutex_enter(&un->un_pm_mutex);
6230 	if (un->un_pm_timeid != NULL) {
6231 		timeout_id_t temp_id = un->un_pm_timeid;
6232 		un->un_pm_timeid = NULL;
6233 		mutex_exit(&un->un_pm_mutex);
6234 		mutex_exit(SD_MUTEX(un));
6235 		(void) untimeout(temp_id);
6236 		mutex_enter(SD_MUTEX(un));
6237 	} else {
6238 		mutex_exit(&un->un_pm_mutex);
6239 	}
6240 
6241 	if (un->un_rmw_msg_timeid != NULL) {
6242 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
6243 		un->un_rmw_msg_timeid = NULL;
6244 		mutex_exit(SD_MUTEX(un));
6245 		(void) untimeout(temp_id);
6246 		mutex_enter(SD_MUTEX(un));
6247 	}
6248 
6249 	if (un->un_retry_timeid != NULL) {
6250 		timeout_id_t temp_id = un->un_retry_timeid;
6251 		un->un_retry_timeid = NULL;
6252 		mutex_exit(SD_MUTEX(un));
6253 		(void) untimeout(temp_id);
6254 		mutex_enter(SD_MUTEX(un));
6255 
6256 		if (un->un_retry_bp != NULL) {
6257 			un->un_retry_bp->av_forw = un->un_waitq_headp;
6258 			un->un_waitq_headp = un->un_retry_bp;
6259 			if (un->un_waitq_tailp == NULL) {
6260 				un->un_waitq_tailp = un->un_retry_bp;
6261 			}
6262 			un->un_retry_bp = NULL;
6263 			un->un_retry_statp = NULL;
6264 		}
6265 	}
6266 
6267 	if (un->un_direct_priority_timeid != NULL) {
6268 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6269 		un->un_direct_priority_timeid = NULL;
6270 		mutex_exit(SD_MUTEX(un));
6271 		(void) untimeout(temp_id);
6272 		mutex_enter(SD_MUTEX(un));
6273 	}
6274 
6275 	if (un->un_f_is_fibre == TRUE) {
6276 		/*
6277 		 * Remove callbacks for insert and remove events
6278 		 */
6279 		if (un->un_insert_event != NULL) {
6280 			mutex_exit(SD_MUTEX(un));
6281 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6282 			mutex_enter(SD_MUTEX(un));
6283 			un->un_insert_event = NULL;
6284 		}
6285 
6286 		if (un->un_remove_event != NULL) {
6287 			mutex_exit(SD_MUTEX(un));
6288 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6289 			mutex_enter(SD_MUTEX(un));
6290 			un->un_remove_event = NULL;
6291 		}
6292 	}
6293 
6294 	mutex_exit(SD_MUTEX(un));
6295 
6296 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6297 
6298 	return (DDI_SUCCESS);
6299 }
6300 
6301 
6302 /*
6303  *    Function: sd_ddi_resume
6304  *
6305  * Description: Performs system power-up operations..
6306  *
6307  * Return Code: DDI_SUCCESS
6308  *		DDI_FAILURE
6309  *
6310  *     Context: Kernel thread context
6311  */
6312 
6313 static int
6314 sd_ddi_resume(dev_info_t *devi)
6315 {
6316 	struct	sd_lun	*un;
6317 
6318 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6319 	if (un == NULL) {
6320 		return (DDI_FAILURE);
6321 	}
6322 
6323 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6324 
6325 	mutex_enter(SD_MUTEX(un));
6326 	Restore_state(un);
6327 
6328 	/*
6329 	 * Restore the state which was saved to give the
6330 	 * the right state in un_last_state
6331 	 */
6332 	un->un_last_state = un->un_save_state;
6333 	/*
6334 	 * Note: throttle comes back at full.
6335 	 * Also note: this MUST be done before calling pm_raise_power
6336 	 * otherwise the system can get hung in biowait. The scenario where
6337 	 * this'll happen is under cpr suspend. Writing of the system
6338 	 * state goes through sddump, which writes 0 to un_throttle. If
6339 	 * writing the system state then fails, example if the partition is
6340 	 * too small, then cpr attempts a resume. If throttle isn't restored
6341 	 * from the saved value until after calling pm_raise_power then
6342 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6343 	 * in biowait.
6344 	 */
6345 	un->un_throttle = un->un_saved_throttle;
6346 
6347 	/*
6348 	 * The chance of failure is very rare as the only command done in power
6349 	 * entry point is START command when you transition from 0->1 or
6350 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6351 	 * which suspend was done. Ignore the return value as the resume should
6352 	 * not be failed. In the case of removable media the media need not be
6353 	 * inserted and hence there is a chance that raise power will fail with
6354 	 * media not present.
6355 	 */
6356 	if (un->un_f_attach_spinup) {
6357 		mutex_exit(SD_MUTEX(un));
6358 		(void) pm_raise_power(SD_DEVINFO(un), 0,
6359 		    SD_PM_STATE_ACTIVE(un));
6360 		mutex_enter(SD_MUTEX(un));
6361 	}
6362 
6363 	/*
6364 	 * Don't broadcast to the suspend cv and therefore possibly
6365 	 * start I/O until after power has been restored.
6366 	 */
6367 	cv_broadcast(&un->un_suspend_cv);
6368 	cv_broadcast(&un->un_state_cv);
6369 
6370 	/* restart thread */
6371 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6372 		scsi_watch_resume(un->un_swr_token);
6373 	}
6374 
6375 #if (defined(__fibre))
6376 	if (un->un_f_is_fibre == TRUE) {
6377 		/*
6378 		 * Add callbacks for insert and remove events
6379 		 */
6380 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6381 			sd_init_event_callbacks(un);
6382 		}
6383 	}
6384 #endif
6385 
6386 	/*
6387 	 * Transport any pending commands to the target.
6388 	 *
6389 	 * If this is a low-activity device commands in queue will have to wait
6390 	 * until new commands come in, which may take awhile. Also, we
6391 	 * specifically don't check un_ncmds_in_transport because we know that
6392 	 * there really are no commands in progress after the unit was
6393 	 * suspended and we could have reached the throttle level, been
6394 	 * suspended, and have no new commands coming in for awhile. Highly
6395 	 * unlikely, but so is the low-activity disk scenario.
6396 	 */
6397 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6398 
6399 	sd_start_cmds(un, NULL);
6400 	mutex_exit(SD_MUTEX(un));
6401 
6402 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6403 
6404 	return (DDI_SUCCESS);
6405 }
6406 
6407 
6408 /*
6409  *    Function: sd_pm_state_change
6410  *
6411  * Description: Change the driver power state.
6412  * 		Someone else is required to actually change the driver
6413  * 		power level.
6414  *
6415  *   Arguments: un - driver soft state (unit) structure
6416  *              level - the power level that is changed to
6417  *              flag - to decide how to change the power state
6418  *
6419  * Return Code: DDI_SUCCESS
6420  *
6421  *     Context: Kernel thread context
6422  */
6423 static int
6424 sd_pm_state_change(struct sd_lun *un, int level, int flag)
6425 {
6426 	ASSERT(un != NULL);
6427 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n");
6428 
6429 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6430 	mutex_enter(SD_MUTEX(un));
6431 
6432 	if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) {
6433 		un->un_power_level = level;
6434 		ASSERT(!mutex_owned(&un->un_pm_mutex));
6435 		mutex_enter(&un->un_pm_mutex);
6436 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6437 			un->un_pm_count++;
6438 			ASSERT(un->un_pm_count == 0);
6439 		}
6440 		mutex_exit(&un->un_pm_mutex);
6441 	} else {
6442 		/*
6443 		 * Exit if power management is not enabled for this device,
6444 		 * or if the device is being used by HA.
6445 		 */
6446 		if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6447 		    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6448 			mutex_exit(SD_MUTEX(un));
6449 			SD_TRACE(SD_LOG_POWER, un,
6450 			    "sd_pm_state_change: exiting\n");
6451 			return (DDI_FAILURE);
6452 		}
6453 
6454 		SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: "
6455 		    "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver);
6456 
6457 		/*
6458 		 * See if the device is not busy, ie.:
6459 		 *    - we have no commands in the driver for this device
6460 		 *    - not waiting for resources
6461 		 */
6462 		if ((un->un_ncmds_in_driver == 0) &&
6463 		    (un->un_state != SD_STATE_RWAIT)) {
6464 			/*
6465 			 * The device is not busy, so it is OK to go to low
6466 			 * power state. Indicate low power, but rely on someone
6467 			 * else to actually change it.
6468 			 */
6469 			mutex_enter(&un->un_pm_mutex);
6470 			un->un_pm_count = -1;
6471 			mutex_exit(&un->un_pm_mutex);
6472 			un->un_power_level = level;
6473 		}
6474 	}
6475 
6476 	mutex_exit(SD_MUTEX(un));
6477 
6478 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n");
6479 
6480 	return (DDI_SUCCESS);
6481 }
6482 
6483 
6484 /*
6485  *    Function: sd_pm_idletimeout_handler
6486  *
6487  * Description: A timer routine that's active only while a device is busy.
6488  *		The purpose is to extend slightly the pm framework's busy
6489  *		view of the device to prevent busy/idle thrashing for
6490  *		back-to-back commands. Do this by comparing the current time
6491  *		to the time at which the last command completed and when the
6492  *		difference is greater than sd_pm_idletime, call
6493  *		pm_idle_component. In addition to indicating idle to the pm
6494  *		framework, update the chain type to again use the internal pm
6495  *		layers of the driver.
6496  *
6497  *   Arguments: arg - driver soft state (unit) structure
6498  *
6499  *     Context: Executes in a timeout(9F) thread context
6500  */
6501 
6502 static void
6503 sd_pm_idletimeout_handler(void *arg)
6504 {
6505 	struct sd_lun *un = arg;
6506 
6507 	time_t	now;
6508 
6509 	mutex_enter(&sd_detach_mutex);
6510 	if (un->un_detach_count != 0) {
6511 		/* Abort if the instance is detaching */
6512 		mutex_exit(&sd_detach_mutex);
6513 		return;
6514 	}
6515 	mutex_exit(&sd_detach_mutex);
6516 
6517 	now = ddi_get_time();
6518 	/*
6519 	 * Grab both mutexes, in the proper order, since we're accessing
6520 	 * both PM and softstate variables.
6521 	 */
6522 	mutex_enter(SD_MUTEX(un));
6523 	mutex_enter(&un->un_pm_mutex);
6524 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6525 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6526 		/*
6527 		 * Update the chain types.
6528 		 * This takes affect on the next new command received.
6529 		 */
6530 		if (un->un_f_non_devbsize_supported) {
6531 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6532 		} else {
6533 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6534 		}
6535 		un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD;
6536 
6537 		SD_TRACE(SD_LOG_IO_PM, un,
6538 		    "sd_pm_idletimeout_handler: idling device\n");
6539 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6540 		un->un_pm_idle_timeid = NULL;
6541 	} else {
6542 		un->un_pm_idle_timeid =
6543 		    timeout(sd_pm_idletimeout_handler, un,
6544 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6545 	}
6546 	mutex_exit(&un->un_pm_mutex);
6547 	mutex_exit(SD_MUTEX(un));
6548 }
6549 
6550 
6551 /*
6552  *    Function: sd_pm_timeout_handler
6553  *
6554  * Description: Callback to tell framework we are idle.
6555  *
6556  *     Context: timeout(9f) thread context.
6557  */
6558 
6559 static void
6560 sd_pm_timeout_handler(void *arg)
6561 {
6562 	struct sd_lun *un = arg;
6563 
6564 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6565 	mutex_enter(&un->un_pm_mutex);
6566 	un->un_pm_timeid = NULL;
6567 	mutex_exit(&un->un_pm_mutex);
6568 }
6569 
6570 
6571 /*
6572  *    Function: sdpower
6573  *
6574  * Description: PM entry point.
6575  *
6576  * Return Code: DDI_SUCCESS
6577  *		DDI_FAILURE
6578  *
6579  *     Context: Kernel thread context
6580  */
6581 
6582 static int
6583 sdpower(dev_info_t *devi, int component, int level)
6584 {
6585 	struct sd_lun	*un;
6586 	int		instance;
6587 	int		rval = DDI_SUCCESS;
6588 	uint_t		i, log_page_size, maxcycles, ncycles;
6589 	uchar_t		*log_page_data;
6590 	int		log_sense_page;
6591 	int		medium_present;
6592 	time_t		intvlp;
6593 	struct pm_trans_data	sd_pm_tran_data;
6594 	uchar_t		save_state;
6595 	int		sval;
6596 	uchar_t		state_before_pm;
6597 	int		got_semaphore_here;
6598 	sd_ssc_t	*ssc;
6599 	int	last_power_level;
6600 
6601 	instance = ddi_get_instance(devi);
6602 
6603 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6604 	    !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) {
6605 		return (DDI_FAILURE);
6606 	}
6607 
6608 	ssc = sd_ssc_init(un);
6609 
6610 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6611 
6612 	/*
6613 	 * Must synchronize power down with close.
6614 	 * Attempt to decrement/acquire the open/close semaphore,
6615 	 * but do NOT wait on it. If it's not greater than zero,
6616 	 * ie. it can't be decremented without waiting, then
6617 	 * someone else, either open or close, already has it
6618 	 * and the try returns 0. Use that knowledge here to determine
6619 	 * if it's OK to change the device power level.
6620 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6621 	 * here.
6622 	 */
6623 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6624 
6625 	mutex_enter(SD_MUTEX(un));
6626 
6627 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6628 	    un->un_ncmds_in_driver);
6629 
6630 	/*
6631 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6632 	 * already being processed in the driver, or if the semaphore was
6633 	 * not gotten here it indicates an open or close is being processed.
6634 	 * At the same time somebody is requesting to go to a lower power
6635 	 * that can't perform I/O, which can't happen, therefore we need to
6636 	 * return failure.
6637 	 */
6638 	if ((!SD_PM_IS_IO_CAPABLE(un, level)) &&
6639 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6640 		mutex_exit(SD_MUTEX(un));
6641 
6642 		if (got_semaphore_here != 0) {
6643 			sema_v(&un->un_semoclose);
6644 		}
6645 		SD_TRACE(SD_LOG_IO_PM, un,
6646 		    "sdpower: exit, device has queued cmds.\n");
6647 
6648 		goto sdpower_failed;
6649 	}
6650 
6651 	/*
6652 	 * if it is OFFLINE that means the disk is completely dead
6653 	 * in our case we have to put the disk in on or off by sending commands
6654 	 * Of course that will fail anyway so return back here.
6655 	 *
6656 	 * Power changes to a device that's OFFLINE or SUSPENDED
6657 	 * are not allowed.
6658 	 */
6659 	if ((un->un_state == SD_STATE_OFFLINE) ||
6660 	    (un->un_state == SD_STATE_SUSPENDED)) {
6661 		mutex_exit(SD_MUTEX(un));
6662 
6663 		if (got_semaphore_here != 0) {
6664 			sema_v(&un->un_semoclose);
6665 		}
6666 		SD_TRACE(SD_LOG_IO_PM, un,
6667 		    "sdpower: exit, device is off-line.\n");
6668 
6669 		goto sdpower_failed;
6670 	}
6671 
6672 	/*
6673 	 * Change the device's state to indicate it's power level
6674 	 * is being changed. Do this to prevent a power off in the
6675 	 * middle of commands, which is especially bad on devices
6676 	 * that are really powered off instead of just spun down.
6677 	 */
6678 	state_before_pm = un->un_state;
6679 	un->un_state = SD_STATE_PM_CHANGING;
6680 
6681 	mutex_exit(SD_MUTEX(un));
6682 
6683 	/*
6684 	 * If log sense command is not supported, bypass the
6685 	 * following checking, otherwise, check the log sense
6686 	 * information for this device.
6687 	 */
6688 	if (SD_PM_STOP_MOTOR_NEEDED(un, level) &&
6689 	    un->un_f_log_sense_supported) {
6690 		/*
6691 		 * Get the log sense information to understand whether the
6692 		 * the powercycle counts have gone beyond the threshhold.
6693 		 */
6694 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6695 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6696 
6697 		mutex_enter(SD_MUTEX(un));
6698 		log_sense_page = un->un_start_stop_cycle_page;
6699 		mutex_exit(SD_MUTEX(un));
6700 
6701 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6702 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6703 
6704 		if (rval != 0) {
6705 			if (rval == EIO)
6706 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6707 			else
6708 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6709 		}
6710 
6711 #ifdef	SDDEBUG
6712 		if (sd_force_pm_supported) {
6713 			/* Force a successful result */
6714 			rval = 0;
6715 		}
6716 #endif
6717 		if (rval != 0) {
6718 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6719 			    "Log Sense Failed\n");
6720 
6721 			kmem_free(log_page_data, log_page_size);
6722 			/* Cannot support power management on those drives */
6723 
6724 			if (got_semaphore_here != 0) {
6725 				sema_v(&un->un_semoclose);
6726 			}
6727 			/*
6728 			 * On exit put the state back to it's original value
6729 			 * and broadcast to anyone waiting for the power
6730 			 * change completion.
6731 			 */
6732 			mutex_enter(SD_MUTEX(un));
6733 			un->un_state = state_before_pm;
6734 			cv_broadcast(&un->un_suspend_cv);
6735 			mutex_exit(SD_MUTEX(un));
6736 			SD_TRACE(SD_LOG_IO_PM, un,
6737 			    "sdpower: exit, Log Sense Failed.\n");
6738 
6739 			goto sdpower_failed;
6740 		}
6741 
6742 		/*
6743 		 * From the page data - Convert the essential information to
6744 		 * pm_trans_data
6745 		 */
6746 		maxcycles =
6747 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6748 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6749 
6750 		ncycles =
6751 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6752 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6753 
6754 		if (un->un_f_pm_log_sense_smart) {
6755 			sd_pm_tran_data.un.smart_count.allowed = maxcycles;
6756 			sd_pm_tran_data.un.smart_count.consumed = ncycles;
6757 			sd_pm_tran_data.un.smart_count.flag = 0;
6758 			sd_pm_tran_data.format = DC_SMART_FORMAT;
6759 		} else {
6760 			sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6761 			sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6762 			for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6763 				sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6764 				    log_page_data[8+i];
6765 			}
6766 			sd_pm_tran_data.un.scsi_cycles.flag = 0;
6767 			sd_pm_tran_data.format = DC_SCSI_FORMAT;
6768 		}
6769 
6770 		kmem_free(log_page_data, log_page_size);
6771 
6772 		/*
6773 		 * Call pm_trans_check routine to get the Ok from
6774 		 * the global policy
6775 		 */
6776 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6777 #ifdef	SDDEBUG
6778 		if (sd_force_pm_supported) {
6779 			/* Force a successful result */
6780 			rval = 1;
6781 		}
6782 #endif
6783 		switch (rval) {
6784 		case 0:
6785 			/*
6786 			 * Not Ok to Power cycle or error in parameters passed
6787 			 * Would have given the advised time to consider power
6788 			 * cycle. Based on the new intvlp parameter we are
6789 			 * supposed to pretend we are busy so that pm framework
6790 			 * will never call our power entry point. Because of
6791 			 * that install a timeout handler and wait for the
6792 			 * recommended time to elapse so that power management
6793 			 * can be effective again.
6794 			 *
6795 			 * To effect this behavior, call pm_busy_component to
6796 			 * indicate to the framework this device is busy.
6797 			 * By not adjusting un_pm_count the rest of PM in
6798 			 * the driver will function normally, and independent
6799 			 * of this but because the framework is told the device
6800 			 * is busy it won't attempt powering down until it gets
6801 			 * a matching idle. The timeout handler sends this.
6802 			 * Note: sd_pm_entry can't be called here to do this
6803 			 * because sdpower may have been called as a result
6804 			 * of a call to pm_raise_power from within sd_pm_entry.
6805 			 *
6806 			 * If a timeout handler is already active then
6807 			 * don't install another.
6808 			 */
6809 			mutex_enter(&un->un_pm_mutex);
6810 			if (un->un_pm_timeid == NULL) {
6811 				un->un_pm_timeid =
6812 				    timeout(sd_pm_timeout_handler,
6813 				    un, intvlp * drv_usectohz(1000000));
6814 				mutex_exit(&un->un_pm_mutex);
6815 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6816 			} else {
6817 				mutex_exit(&un->un_pm_mutex);
6818 			}
6819 			if (got_semaphore_here != 0) {
6820 				sema_v(&un->un_semoclose);
6821 			}
6822 			/*
6823 			 * On exit put the state back to it's original value
6824 			 * and broadcast to anyone waiting for the power
6825 			 * change completion.
6826 			 */
6827 			mutex_enter(SD_MUTEX(un));
6828 			un->un_state = state_before_pm;
6829 			cv_broadcast(&un->un_suspend_cv);
6830 			mutex_exit(SD_MUTEX(un));
6831 
6832 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6833 			    "trans check Failed, not ok to power cycle.\n");
6834 
6835 			goto sdpower_failed;
6836 		case -1:
6837 			if (got_semaphore_here != 0) {
6838 				sema_v(&un->un_semoclose);
6839 			}
6840 			/*
6841 			 * On exit put the state back to it's original value
6842 			 * and broadcast to anyone waiting for the power
6843 			 * change completion.
6844 			 */
6845 			mutex_enter(SD_MUTEX(un));
6846 			un->un_state = state_before_pm;
6847 			cv_broadcast(&un->un_suspend_cv);
6848 			mutex_exit(SD_MUTEX(un));
6849 			SD_TRACE(SD_LOG_IO_PM, un,
6850 			    "sdpower: exit, trans check command Failed.\n");
6851 
6852 			goto sdpower_failed;
6853 		}
6854 	}
6855 
6856 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6857 		/*
6858 		 * Save the last state... if the STOP FAILS we need it
6859 		 * for restoring
6860 		 */
6861 		mutex_enter(SD_MUTEX(un));
6862 		save_state = un->un_last_state;
6863 		last_power_level = un->un_power_level;
6864 		/*
6865 		 * There must not be any cmds. getting processed
6866 		 * in the driver when we get here. Power to the
6867 		 * device is potentially going off.
6868 		 */
6869 		ASSERT(un->un_ncmds_in_driver == 0);
6870 		mutex_exit(SD_MUTEX(un));
6871 
6872 		/*
6873 		 * For now PM suspend the device completely before spindle is
6874 		 * turned off
6875 		 */
6876 		if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE))
6877 		    == DDI_FAILURE) {
6878 			if (got_semaphore_here != 0) {
6879 				sema_v(&un->un_semoclose);
6880 			}
6881 			/*
6882 			 * On exit put the state back to it's original value
6883 			 * and broadcast to anyone waiting for the power
6884 			 * change completion.
6885 			 */
6886 			mutex_enter(SD_MUTEX(un));
6887 			un->un_state = state_before_pm;
6888 			un->un_power_level = last_power_level;
6889 			cv_broadcast(&un->un_suspend_cv);
6890 			mutex_exit(SD_MUTEX(un));
6891 			SD_TRACE(SD_LOG_IO_PM, un,
6892 			    "sdpower: exit, PM suspend Failed.\n");
6893 
6894 			goto sdpower_failed;
6895 		}
6896 	}
6897 
6898 	/*
6899 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6900 	 * close, or strategy. Dump no long uses this routine, it uses it's
6901 	 * own code so it can be done in polled mode.
6902 	 */
6903 
6904 	medium_present = TRUE;
6905 
6906 	/*
6907 	 * When powering up, issue a TUR in case the device is at unit
6908 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6909 	 * a deadlock on un_pm_busy_cv will occur.
6910 	 */
6911 	if (SD_PM_IS_IO_CAPABLE(un, level)) {
6912 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6913 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6914 		if (sval != 0)
6915 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6916 	}
6917 
6918 	if (un->un_f_power_condition_supported) {
6919 		char *pm_condition_name[] = {"STOPPED", "STANDBY",
6920 		    "IDLE", "ACTIVE"};
6921 		SD_TRACE(SD_LOG_IO_PM, un,
6922 		    "sdpower: sending \'%s\' power condition",
6923 		    pm_condition_name[level]);
6924 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
6925 		    sd_pl2pc[level], SD_PATH_DIRECT);
6926 	} else {
6927 		SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6928 		    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6929 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
6930 		    ((level == SD_SPINDLE_ON) ? SD_TARGET_START :
6931 		    SD_TARGET_STOP), SD_PATH_DIRECT);
6932 	}
6933 	if (sval != 0) {
6934 		if (sval == EIO)
6935 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6936 		else
6937 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6938 	}
6939 
6940 	/* Command failed, check for media present. */
6941 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6942 		medium_present = FALSE;
6943 	}
6944 
6945 	/*
6946 	 * The conditions of interest here are:
6947 	 *   if a spindle off with media present fails,
6948 	 *	then restore the state and return an error.
6949 	 *   else if a spindle on fails,
6950 	 *	then return an error (there's no state to restore).
6951 	 * In all other cases we setup for the new state
6952 	 * and return success.
6953 	 */
6954 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6955 		if ((medium_present == TRUE) && (sval != 0)) {
6956 			/* The stop command from above failed */
6957 			rval = DDI_FAILURE;
6958 			/*
6959 			 * The stop command failed, and we have media
6960 			 * present. Put the level back by calling the
6961 			 * sd_pm_resume() and set the state back to
6962 			 * it's previous value.
6963 			 */
6964 			(void) sd_pm_state_change(un, last_power_level,
6965 			    SD_PM_STATE_ROLLBACK);
6966 			mutex_enter(SD_MUTEX(un));
6967 			un->un_last_state = save_state;
6968 			mutex_exit(SD_MUTEX(un));
6969 		} else if (un->un_f_monitor_media_state) {
6970 			/*
6971 			 * The stop command from above succeeded.
6972 			 * Terminate watch thread in case of removable media
6973 			 * devices going into low power state. This is as per
6974 			 * the requirements of pm framework, otherwise commands
6975 			 * will be generated for the device (through watch
6976 			 * thread), even when the device is in low power state.
6977 			 */
6978 			mutex_enter(SD_MUTEX(un));
6979 			un->un_f_watcht_stopped = FALSE;
6980 			if (un->un_swr_token != NULL) {
6981 				opaque_t temp_token = un->un_swr_token;
6982 				un->un_f_watcht_stopped = TRUE;
6983 				un->un_swr_token = NULL;
6984 				mutex_exit(SD_MUTEX(un));
6985 				(void) scsi_watch_request_terminate(temp_token,
6986 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
6987 			} else {
6988 				mutex_exit(SD_MUTEX(un));
6989 			}
6990 		}
6991 	} else {
6992 		/*
6993 		 * The level requested is I/O capable.
6994 		 * Legacy behavior: return success on a failed spinup
6995 		 * if there is no media in the drive.
6996 		 * Do this by looking at medium_present here.
6997 		 */
6998 		if ((sval != 0) && medium_present) {
6999 			/* The start command from above failed */
7000 			rval = DDI_FAILURE;
7001 		} else {
7002 			/*
7003 			 * The start command from above succeeded
7004 			 * PM resume the devices now that we have
7005 			 * started the disks
7006 			 */
7007 			(void) sd_pm_state_change(un, level,
7008 			    SD_PM_STATE_CHANGE);
7009 
7010 			/*
7011 			 * Resume the watch thread since it was suspended
7012 			 * when the device went into low power mode.
7013 			 */
7014 			if (un->un_f_monitor_media_state) {
7015 				mutex_enter(SD_MUTEX(un));
7016 				if (un->un_f_watcht_stopped == TRUE) {
7017 					opaque_t temp_token;
7018 
7019 					un->un_f_watcht_stopped = FALSE;
7020 					mutex_exit(SD_MUTEX(un));
7021 					temp_token =
7022 					    sd_watch_request_submit(un);
7023 					mutex_enter(SD_MUTEX(un));
7024 					un->un_swr_token = temp_token;
7025 				}
7026 				mutex_exit(SD_MUTEX(un));
7027 			}
7028 		}
7029 	}
7030 
7031 	if (got_semaphore_here != 0) {
7032 		sema_v(&un->un_semoclose);
7033 	}
7034 	/*
7035 	 * On exit put the state back to it's original value
7036 	 * and broadcast to anyone waiting for the power
7037 	 * change completion.
7038 	 */
7039 	mutex_enter(SD_MUTEX(un));
7040 	un->un_state = state_before_pm;
7041 	cv_broadcast(&un->un_suspend_cv);
7042 	mutex_exit(SD_MUTEX(un));
7043 
7044 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7045 
7046 	sd_ssc_fini(ssc);
7047 	return (rval);
7048 
7049 sdpower_failed:
7050 
7051 	sd_ssc_fini(ssc);
7052 	return (DDI_FAILURE);
7053 }
7054 
7055 
7056 
7057 /*
7058  *    Function: sdattach
7059  *
7060  * Description: Driver's attach(9e) entry point function.
7061  *
7062  *   Arguments: devi - opaque device info handle
7063  *		cmd  - attach  type
7064  *
7065  * Return Code: DDI_SUCCESS
7066  *		DDI_FAILURE
7067  *
7068  *     Context: Kernel thread context
7069  */
7070 
7071 static int
7072 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7073 {
7074 	switch (cmd) {
7075 	case DDI_ATTACH:
7076 		return (sd_unit_attach(devi));
7077 	case DDI_RESUME:
7078 		return (sd_ddi_resume(devi));
7079 	default:
7080 		break;
7081 	}
7082 	return (DDI_FAILURE);
7083 }
7084 
7085 
7086 /*
7087  *    Function: sddetach
7088  *
7089  * Description: Driver's detach(9E) entry point function.
7090  *
7091  *   Arguments: devi - opaque device info handle
7092  *		cmd  - detach  type
7093  *
7094  * Return Code: DDI_SUCCESS
7095  *		DDI_FAILURE
7096  *
7097  *     Context: Kernel thread context
7098  */
7099 
7100 static int
7101 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7102 {
7103 	switch (cmd) {
7104 	case DDI_DETACH:
7105 		return (sd_unit_detach(devi));
7106 	case DDI_SUSPEND:
7107 		return (sd_ddi_suspend(devi));
7108 	default:
7109 		break;
7110 	}
7111 	return (DDI_FAILURE);
7112 }
7113 
7114 
7115 /*
7116  *     Function: sd_sync_with_callback
7117  *
7118  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7119  *		 state while the callback routine is active.
7120  *
7121  *    Arguments: un: softstate structure for the instance
7122  *
7123  *	Context: Kernel thread context
7124  */
7125 
7126 static void
7127 sd_sync_with_callback(struct sd_lun *un)
7128 {
7129 	ASSERT(un != NULL);
7130 
7131 	mutex_enter(SD_MUTEX(un));
7132 
7133 	ASSERT(un->un_in_callback >= 0);
7134 
7135 	while (un->un_in_callback > 0) {
7136 		mutex_exit(SD_MUTEX(un));
7137 		delay(2);
7138 		mutex_enter(SD_MUTEX(un));
7139 	}
7140 
7141 	mutex_exit(SD_MUTEX(un));
7142 }
7143 
7144 /*
7145  *    Function: sd_unit_attach
7146  *
7147  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7148  *		the soft state structure for the device and performs
7149  *		all necessary structure and device initializations.
7150  *
7151  *   Arguments: devi: the system's dev_info_t for the device.
7152  *
7153  * Return Code: DDI_SUCCESS if attach is successful.
7154  *		DDI_FAILURE if any part of the attach fails.
7155  *
7156  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7157  *		Kernel thread context only.  Can sleep.
7158  */
7159 
7160 static int
7161 sd_unit_attach(dev_info_t *devi)
7162 {
7163 	struct	scsi_device	*devp;
7164 	struct	sd_lun		*un;
7165 	char			*variantp;
7166 	char			name_str[48];
7167 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7168 	int	instance;
7169 	int	rval;
7170 	int	wc_enabled;
7171 	int	tgt;
7172 	uint64_t	capacity;
7173 	uint_t		lbasize = 0;
7174 	dev_info_t	*pdip = ddi_get_parent(devi);
7175 	int		offbyone = 0;
7176 	int		geom_label_valid = 0;
7177 	sd_ssc_t	*ssc;
7178 	int		status;
7179 	struct sd_fm_internal	*sfip = NULL;
7180 	int		max_xfer_size;
7181 
7182 	/*
7183 	 * Retrieve the target driver's private data area. This was set
7184 	 * up by the HBA.
7185 	 */
7186 	devp = ddi_get_driver_private(devi);
7187 
7188 	/*
7189 	 * Retrieve the target ID of the device.
7190 	 */
7191 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7192 	    SCSI_ADDR_PROP_TARGET, -1);
7193 
7194 	/*
7195 	 * Since we have no idea what state things were left in by the last
7196 	 * user of the device, set up some 'default' settings, ie. turn 'em
7197 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7198 	 * Do this before the scsi_probe, which sends an inquiry.
7199 	 * This is a fix for bug (4430280).
7200 	 * Of special importance is wide-xfer. The drive could have been left
7201 	 * in wide transfer mode by the last driver to communicate with it,
7202 	 * this includes us. If that's the case, and if the following is not
7203 	 * setup properly or we don't re-negotiate with the drive prior to
7204 	 * transferring data to/from the drive, it causes bus parity errors,
7205 	 * data overruns, and unexpected interrupts. This first occurred when
7206 	 * the fix for bug (4378686) was made.
7207 	 */
7208 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7209 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7210 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7211 
7212 	/*
7213 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
7214 	 * on a target. Setting it per lun instance actually sets the
7215 	 * capability of this target, which affects those luns already
7216 	 * attached on the same target. So during attach, we can only disable
7217 	 * this capability only when no other lun has been attached on this
7218 	 * target. By doing this, we assume a target has the same tagged-qing
7219 	 * capability for every lun. The condition can be removed when HBA
7220 	 * is changed to support per lun based tagged-qing capability.
7221 	 */
7222 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7223 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7224 	}
7225 
7226 	/*
7227 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7228 	 * This call will allocate and fill in the scsi_inquiry structure
7229 	 * and point the sd_inq member of the scsi_device structure to it.
7230 	 * If the attach succeeds, then this memory will not be de-allocated
7231 	 * (via scsi_unprobe()) until the instance is detached.
7232 	 */
7233 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7234 		goto probe_failed;
7235 	}
7236 
7237 	/*
7238 	 * Check the device type as specified in the inquiry data and
7239 	 * claim it if it is of a type that we support.
7240 	 */
7241 	switch (devp->sd_inq->inq_dtype) {
7242 	case DTYPE_DIRECT:
7243 		break;
7244 	case DTYPE_RODIRECT:
7245 		break;
7246 	case DTYPE_OPTICAL:
7247 		break;
7248 	case DTYPE_NOTPRESENT:
7249 	default:
7250 		/* Unsupported device type; fail the attach. */
7251 		goto probe_failed;
7252 	}
7253 
7254 	/*
7255 	 * Allocate the soft state structure for this unit.
7256 	 *
7257 	 * We rely upon this memory being set to all zeroes by
7258 	 * ddi_soft_state_zalloc().  We assume that any member of the
7259 	 * soft state structure that is not explicitly initialized by
7260 	 * this routine will have a value of zero.
7261 	 */
7262 	instance = ddi_get_instance(devp->sd_dev);
7263 #ifndef XPV_HVM_DRIVER
7264 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7265 		goto probe_failed;
7266 	}
7267 #endif /* !XPV_HVM_DRIVER */
7268 
7269 	/*
7270 	 * Retrieve a pointer to the newly-allocated soft state.
7271 	 *
7272 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7273 	 * was successful, unless something has gone horribly wrong and the
7274 	 * ddi's soft state internals are corrupt (in which case it is
7275 	 * probably better to halt here than just fail the attach....)
7276 	 */
7277 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7278 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7279 		    instance);
7280 		/*NOTREACHED*/
7281 	}
7282 
7283 	/*
7284 	 * Link the back ptr of the driver soft state to the scsi_device
7285 	 * struct for this lun.
7286 	 * Save a pointer to the softstate in the driver-private area of
7287 	 * the scsi_device struct.
7288 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7289 	 * we first set un->un_sd below.
7290 	 */
7291 	un->un_sd = devp;
7292 	devp->sd_private = (opaque_t)un;
7293 
7294 	/*
7295 	 * The following must be after devp is stored in the soft state struct.
7296 	 */
7297 #ifdef SDDEBUG
7298 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7299 	    "%s_unit_attach: un:0x%p instance:%d\n",
7300 	    ddi_driver_name(devi), un, instance);
7301 #endif
7302 
7303 	/*
7304 	 * Set up the device type and node type (for the minor nodes).
7305 	 * By default we assume that the device can at least support the
7306 	 * Common Command Set. Call it a CD-ROM if it reports itself
7307 	 * as a RODIRECT device.
7308 	 */
7309 	switch (devp->sd_inq->inq_dtype) {
7310 	case DTYPE_RODIRECT:
7311 		un->un_node_type = DDI_NT_CD_CHAN;
7312 		un->un_ctype	 = CTYPE_CDROM;
7313 		break;
7314 	case DTYPE_OPTICAL:
7315 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7316 		un->un_ctype	 = CTYPE_ROD;
7317 		break;
7318 	default:
7319 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7320 		un->un_ctype	 = CTYPE_CCS;
7321 		break;
7322 	}
7323 
7324 	/*
7325 	 * Try to read the interconnect type from the HBA.
7326 	 *
7327 	 * Note: This driver is currently compiled as two binaries, a parallel
7328 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7329 	 * differences are determined at compile time. In the future a single
7330 	 * binary will be provided and the interconnect type will be used to
7331 	 * differentiate between fibre and parallel scsi behaviors. At that time
7332 	 * it will be necessary for all fibre channel HBAs to support this
7333 	 * property.
7334 	 *
7335 	 * set un_f_is_fiber to TRUE ( default fiber )
7336 	 */
7337 	un->un_f_is_fibre = TRUE;
7338 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7339 	case INTERCONNECT_SSA:
7340 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7341 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7342 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7343 		break;
7344 	case INTERCONNECT_PARALLEL:
7345 		un->un_f_is_fibre = FALSE;
7346 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7347 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7348 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7349 		break;
7350 	case INTERCONNECT_SAS:
7351 		un->un_f_is_fibre = FALSE;
7352 		un->un_interconnect_type = SD_INTERCONNECT_SAS;
7353 		un->un_node_type = DDI_NT_BLOCK_SAS;
7354 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7355 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un);
7356 		break;
7357 	case INTERCONNECT_SATA:
7358 		un->un_f_is_fibre = FALSE;
7359 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7360 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7361 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7362 		break;
7363 	case INTERCONNECT_FIBRE:
7364 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7365 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7366 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7367 		break;
7368 	case INTERCONNECT_FABRIC:
7369 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7370 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7371 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7372 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7373 		break;
7374 	default:
7375 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7376 		/*
7377 		 * The HBA does not support the "interconnect-type" property
7378 		 * (or did not provide a recognized type).
7379 		 *
7380 		 * Note: This will be obsoleted when a single fibre channel
7381 		 * and parallel scsi driver is delivered. In the meantime the
7382 		 * interconnect type will be set to the platform default.If that
7383 		 * type is not parallel SCSI, it means that we should be
7384 		 * assuming "ssd" semantics. However, here this also means that
7385 		 * the FC HBA is not supporting the "interconnect-type" property
7386 		 * like we expect it to, so log this occurrence.
7387 		 */
7388 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7389 		if (!SD_IS_PARALLEL_SCSI(un)) {
7390 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7391 			    "sd_unit_attach: un:0x%p Assuming "
7392 			    "INTERCONNECT_FIBRE\n", un);
7393 		} else {
7394 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7395 			    "sd_unit_attach: un:0x%p Assuming "
7396 			    "INTERCONNECT_PARALLEL\n", un);
7397 			un->un_f_is_fibre = FALSE;
7398 		}
7399 #else
7400 		/*
7401 		 * Note: This source will be implemented when a single fibre
7402 		 * channel and parallel scsi driver is delivered. The default
7403 		 * will be to assume that if a device does not support the
7404 		 * "interconnect-type" property it is a parallel SCSI HBA and
7405 		 * we will set the interconnect type for parallel scsi.
7406 		 */
7407 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7408 		un->un_f_is_fibre = FALSE;
7409 #endif
7410 		break;
7411 	}
7412 
7413 	if (un->un_f_is_fibre == TRUE) {
7414 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7415 		    SCSI_VERSION_3) {
7416 			switch (un->un_interconnect_type) {
7417 			case SD_INTERCONNECT_FIBRE:
7418 			case SD_INTERCONNECT_SSA:
7419 				un->un_node_type = DDI_NT_BLOCK_WWN;
7420 				break;
7421 			default:
7422 				break;
7423 			}
7424 		}
7425 	}
7426 
7427 	/*
7428 	 * Initialize the Request Sense command for the target
7429 	 */
7430 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7431 		goto alloc_rqs_failed;
7432 	}
7433 
7434 	/*
7435 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7436 	 * with separate binary for sd and ssd.
7437 	 *
7438 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7439 	 * The hardcoded values will go away when Sparc uses 1 binary
7440 	 * for sd and ssd.  This hardcoded values need to match
7441 	 * SD_RETRY_COUNT in sddef.h
7442 	 * The value used is base on interconnect type.
7443 	 * fibre = 3, parallel = 5
7444 	 */
7445 #if defined(__i386) || defined(__amd64)
7446 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7447 #else
7448 	un->un_retry_count = SD_RETRY_COUNT;
7449 #endif
7450 
7451 	/*
7452 	 * Set the per disk retry count to the default number of retries
7453 	 * for disks and CDROMs. This value can be overridden by the
7454 	 * disk property list or an entry in sd.conf.
7455 	 */
7456 	un->un_notready_retry_count =
7457 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7458 	    : DISK_NOT_READY_RETRY_COUNT(un);
7459 
7460 	/*
7461 	 * Set the busy retry count to the default value of un_retry_count.
7462 	 * This can be overridden by entries in sd.conf or the device
7463 	 * config table.
7464 	 */
7465 	un->un_busy_retry_count = un->un_retry_count;
7466 
7467 	/*
7468 	 * Init the reset threshold for retries.  This number determines
7469 	 * how many retries must be performed before a reset can be issued
7470 	 * (for certain error conditions). This can be overridden by entries
7471 	 * in sd.conf or the device config table.
7472 	 */
7473 	un->un_reset_retry_count = (un->un_retry_count / 2);
7474 
7475 	/*
7476 	 * Set the victim_retry_count to the default un_retry_count
7477 	 */
7478 	un->un_victim_retry_count = (2 * un->un_retry_count);
7479 
7480 	/*
7481 	 * Set the reservation release timeout to the default value of
7482 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7483 	 * device config table.
7484 	 */
7485 	un->un_reserve_release_time = 5;
7486 
7487 	/*
7488 	 * Set up the default maximum transfer size. Note that this may
7489 	 * get updated later in the attach, when setting up default wide
7490 	 * operations for disks.
7491 	 */
7492 #if defined(__i386) || defined(__amd64)
7493 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7494 	un->un_partial_dma_supported = 1;
7495 #else
7496 	un->un_max_xfer_size = (uint_t)maxphys;
7497 #endif
7498 
7499 	/*
7500 	 * Get "allow bus device reset" property (defaults to "enabled" if
7501 	 * the property was not defined). This is to disable bus resets for
7502 	 * certain kinds of error recovery. Note: In the future when a run-time
7503 	 * fibre check is available the soft state flag should default to
7504 	 * enabled.
7505 	 */
7506 	if (un->un_f_is_fibre == TRUE) {
7507 		un->un_f_allow_bus_device_reset = TRUE;
7508 	} else {
7509 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7510 		    "allow-bus-device-reset", 1) != 0) {
7511 			un->un_f_allow_bus_device_reset = TRUE;
7512 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7513 			    "sd_unit_attach: un:0x%p Bus device reset "
7514 			    "enabled\n", un);
7515 		} else {
7516 			un->un_f_allow_bus_device_reset = FALSE;
7517 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7518 			    "sd_unit_attach: un:0x%p Bus device reset "
7519 			    "disabled\n", un);
7520 		}
7521 	}
7522 
7523 	/*
7524 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7525 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7526 	 *
7527 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7528 	 * property. The new "variant" property with a value of "atapi" has been
7529 	 * introduced so that future 'variants' of standard SCSI behavior (like
7530 	 * atapi) could be specified by the underlying HBA drivers by supplying
7531 	 * a new value for the "variant" property, instead of having to define a
7532 	 * new property.
7533 	 */
7534 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7535 		un->un_f_cfg_is_atapi = TRUE;
7536 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7537 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7538 	}
7539 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7540 	    &variantp) == DDI_PROP_SUCCESS) {
7541 		if (strcmp(variantp, "atapi") == 0) {
7542 			un->un_f_cfg_is_atapi = TRUE;
7543 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7544 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7545 		}
7546 		ddi_prop_free(variantp);
7547 	}
7548 
7549 	un->un_cmd_timeout	= SD_IO_TIME;
7550 
7551 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7552 
7553 	/* Info on current states, statuses, etc. (Updated frequently) */
7554 	un->un_state		= SD_STATE_NORMAL;
7555 	un->un_last_state	= SD_STATE_NORMAL;
7556 
7557 	/* Control & status info for command throttling */
7558 	un->un_throttle		= sd_max_throttle;
7559 	un->un_saved_throttle	= sd_max_throttle;
7560 	un->un_min_throttle	= sd_min_throttle;
7561 
7562 	if (un->un_f_is_fibre == TRUE) {
7563 		un->un_f_use_adaptive_throttle = TRUE;
7564 	} else {
7565 		un->un_f_use_adaptive_throttle = FALSE;
7566 	}
7567 
7568 	/* Removable media support. */
7569 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7570 	un->un_mediastate		= DKIO_NONE;
7571 	un->un_specified_mediastate	= DKIO_NONE;
7572 
7573 	/* CVs for suspend/resume (PM or DR) */
7574 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7575 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7576 
7577 	/* Power management support. */
7578 	un->un_power_level = SD_SPINDLE_UNINIT;
7579 
7580 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7581 	un->un_f_wcc_inprog = 0;
7582 
7583 	/*
7584 	 * The open/close semaphore is used to serialize threads executing
7585 	 * in the driver's open & close entry point routines for a given
7586 	 * instance.
7587 	 */
7588 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7589 
7590 	/*
7591 	 * The conf file entry and softstate variable is a forceful override,
7592 	 * meaning a non-zero value must be entered to change the default.
7593 	 */
7594 	un->un_f_disksort_disabled = FALSE;
7595 	un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT;
7596 	un->un_f_enable_rmw = FALSE;
7597 
7598 	/*
7599 	 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but
7600 	 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property.
7601 	 */
7602 	un->un_f_mmc_gesn_polling = TRUE;
7603 
7604 	/*
7605 	 * Retrieve the properties from the static driver table or the driver
7606 	 * configuration file (.conf) for this unit and update the soft state
7607 	 * for the device as needed for the indicated properties.
7608 	 * Note: the property configuration needs to occur here as some of the
7609 	 * following routines may have dependencies on soft state flags set
7610 	 * as part of the driver property configuration.
7611 	 */
7612 	sd_read_unit_properties(un);
7613 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7614 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7615 
7616 	/*
7617 	 * Only if a device has "hotpluggable" property, it is
7618 	 * treated as hotpluggable device. Otherwise, it is
7619 	 * regarded as non-hotpluggable one.
7620 	 */
7621 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7622 	    -1) != -1) {
7623 		un->un_f_is_hotpluggable = TRUE;
7624 	}
7625 
7626 	/*
7627 	 * set unit's attributes(flags) according to "hotpluggable" and
7628 	 * RMB bit in INQUIRY data.
7629 	 */
7630 	sd_set_unit_attributes(un, devi);
7631 
7632 	/*
7633 	 * By default, we mark the capacity, lbasize, and geometry
7634 	 * as invalid. Only if we successfully read a valid capacity
7635 	 * will we update the un_blockcount and un_tgt_blocksize with the
7636 	 * valid values (the geometry will be validated later).
7637 	 */
7638 	un->un_f_blockcount_is_valid	= FALSE;
7639 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7640 
7641 	/*
7642 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7643 	 * otherwise.
7644 	 */
7645 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7646 	un->un_blockcount = 0;
7647 
7648 	/*
7649 	 * physical sector size default to DEV_BSIZE currently.
7650 	 */
7651 	un->un_phy_blocksize = DEV_BSIZE;
7652 
7653 	/*
7654 	 * Set up the per-instance info needed to determine the correct
7655 	 * CDBs and other info for issuing commands to the target.
7656 	 */
7657 	sd_init_cdb_limits(un);
7658 
7659 	/*
7660 	 * Set up the IO chains to use, based upon the target type.
7661 	 */
7662 	if (un->un_f_non_devbsize_supported) {
7663 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7664 	} else {
7665 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7666 	}
7667 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7668 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7669 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7670 
7671 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7672 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7673 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7674 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7675 
7676 
7677 	if (ISCD(un)) {
7678 		un->un_additional_codes = sd_additional_codes;
7679 	} else {
7680 		un->un_additional_codes = NULL;
7681 	}
7682 
7683 	/*
7684 	 * Create the kstats here so they can be available for attach-time
7685 	 * routines that send commands to the unit (either polled or via
7686 	 * sd_send_scsi_cmd).
7687 	 *
7688 	 * Note: This is a critical sequence that needs to be maintained:
7689 	 *	1) Instantiate the kstats here, before any routines using the
7690 	 *	   iopath (i.e. sd_send_scsi_cmd).
7691 	 *	2) Instantiate and initialize the partition stats
7692 	 *	   (sd_set_pstats).
7693 	 *	3) Initialize the error stats (sd_set_errstats), following
7694 	 *	   sd_validate_geometry(),sd_register_devid(),
7695 	 *	   and sd_cache_control().
7696 	 */
7697 
7698 	un->un_stats = kstat_create(sd_label, instance,
7699 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7700 	if (un->un_stats != NULL) {
7701 		un->un_stats->ks_lock = SD_MUTEX(un);
7702 		kstat_install(un->un_stats);
7703 	}
7704 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7705 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7706 
7707 	sd_create_errstats(un, instance);
7708 	if (un->un_errstats == NULL) {
7709 		goto create_errstats_failed;
7710 	}
7711 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7712 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7713 
7714 	/*
7715 	 * The following if/else code was relocated here from below as part
7716 	 * of the fix for bug (4430280). However with the default setup added
7717 	 * on entry to this routine, it's no longer absolutely necessary for
7718 	 * this to be before the call to sd_spin_up_unit.
7719 	 */
7720 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7721 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7722 		    (devp->sd_inq->inq_ansi == 5)) &&
7723 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7724 
7725 		/*
7726 		 * If tagged queueing is supported by the target
7727 		 * and by the host adapter then we will enable it
7728 		 */
7729 		un->un_tagflags = 0;
7730 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7731 		    (un->un_f_arq_enabled == TRUE)) {
7732 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7733 			    1, 1) == 1) {
7734 				un->un_tagflags = FLAG_STAG;
7735 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7736 				    "sd_unit_attach: un:0x%p tag queueing "
7737 				    "enabled\n", un);
7738 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7739 			    "untagged-qing", 0) == 1) {
7740 				un->un_f_opt_queueing = TRUE;
7741 				un->un_saved_throttle = un->un_throttle =
7742 				    min(un->un_throttle, 3);
7743 			} else {
7744 				un->un_f_opt_queueing = FALSE;
7745 				un->un_saved_throttle = un->un_throttle = 1;
7746 			}
7747 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7748 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7749 			/* The Host Adapter supports internal queueing. */
7750 			un->un_f_opt_queueing = TRUE;
7751 			un->un_saved_throttle = un->un_throttle =
7752 			    min(un->un_throttle, 3);
7753 		} else {
7754 			un->un_f_opt_queueing = FALSE;
7755 			un->un_saved_throttle = un->un_throttle = 1;
7756 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7757 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7758 		}
7759 
7760 		/*
7761 		 * Enable large transfers for SATA/SAS drives
7762 		 */
7763 		if (SD_IS_SERIAL(un)) {
7764 			un->un_max_xfer_size =
7765 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7766 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7767 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7768 			    "sd_unit_attach: un:0x%p max transfer "
7769 			    "size=0x%x\n", un, un->un_max_xfer_size);
7770 
7771 		}
7772 
7773 		/* Setup or tear down default wide operations for disks */
7774 
7775 		/*
7776 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7777 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7778 		 * system and be set to different values. In the future this
7779 		 * code may need to be updated when the ssd module is
7780 		 * obsoleted and removed from the system. (4299588)
7781 		 */
7782 		if (SD_IS_PARALLEL_SCSI(un) &&
7783 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7784 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7785 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7786 			    1, 1) == 1) {
7787 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7788 				    "sd_unit_attach: un:0x%p Wide Transfer "
7789 				    "enabled\n", un);
7790 			}
7791 
7792 			/*
7793 			 * If tagged queuing has also been enabled, then
7794 			 * enable large xfers
7795 			 */
7796 			if (un->un_saved_throttle == sd_max_throttle) {
7797 				un->un_max_xfer_size =
7798 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7799 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7800 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7801 				    "sd_unit_attach: un:0x%p max transfer "
7802 				    "size=0x%x\n", un, un->un_max_xfer_size);
7803 			}
7804 		} else {
7805 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7806 			    0, 1) == 1) {
7807 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7808 				    "sd_unit_attach: un:0x%p "
7809 				    "Wide Transfer disabled\n", un);
7810 			}
7811 		}
7812 	} else {
7813 		un->un_tagflags = FLAG_STAG;
7814 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7815 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7816 	}
7817 
7818 	/*
7819 	 * If this target supports LUN reset, try to enable it.
7820 	 */
7821 	if (un->un_f_lun_reset_enabled) {
7822 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7823 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7824 			    "un:0x%p lun_reset capability set\n", un);
7825 		} else {
7826 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7827 			    "un:0x%p lun-reset capability not set\n", un);
7828 		}
7829 	}
7830 
7831 	/*
7832 	 * Adjust the maximum transfer size. This is to fix
7833 	 * the problem of partial DMA support on SPARC. Some
7834 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7835 	 * size, which requires partial DMA support on SPARC.
7836 	 * In the future the SPARC pci nexus driver may solve
7837 	 * the problem instead of this fix.
7838 	 */
7839 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7840 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7841 		/* We need DMA partial even on sparc to ensure sddump() works */
7842 		un->un_max_xfer_size = max_xfer_size;
7843 		if (un->un_partial_dma_supported == 0)
7844 			un->un_partial_dma_supported = 1;
7845 	}
7846 	if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7847 	    DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7848 		if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7849 		    un->un_max_xfer_size) == 1) {
7850 			un->un_buf_breakup_supported = 1;
7851 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7852 			    "un:0x%p Buf breakup enabled\n", un);
7853 		}
7854 	}
7855 
7856 	/*
7857 	 * Set PKT_DMA_PARTIAL flag.
7858 	 */
7859 	if (un->un_partial_dma_supported == 1) {
7860 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7861 	} else {
7862 		un->un_pkt_flags = 0;
7863 	}
7864 
7865 	/* Initialize sd_ssc_t for internal uscsi commands */
7866 	ssc = sd_ssc_init(un);
7867 	scsi_fm_init(devp);
7868 
7869 	/*
7870 	 * Allocate memory for SCSI FMA stuffs.
7871 	 */
7872 	un->un_fm_private =
7873 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7874 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7875 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7876 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7877 	sfip->fm_ssc.ssc_un = un;
7878 
7879 	if (ISCD(un) ||
7880 	    un->un_f_has_removable_media ||
7881 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7882 		/*
7883 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7884 		 * Their log are unchanged.
7885 		 */
7886 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7887 	} else {
7888 		/*
7889 		 * If enter here, it should be non-CDROM and FM-capable
7890 		 * device, and it will not keep the old scsi_log as before
7891 		 * in /var/adm/messages. However, the property
7892 		 * "fm-scsi-log" will control whether the FM telemetry will
7893 		 * be logged in /var/adm/messages.
7894 		 */
7895 		int fm_scsi_log;
7896 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7897 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7898 
7899 		if (fm_scsi_log)
7900 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7901 		else
7902 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7903 	}
7904 
7905 	/*
7906 	 * At this point in the attach, we have enough info in the
7907 	 * soft state to be able to issue commands to the target.
7908 	 *
7909 	 * All command paths used below MUST issue their commands as
7910 	 * SD_PATH_DIRECT. This is important as intermediate layers
7911 	 * are not all initialized yet (such as PM).
7912 	 */
7913 
7914 	/*
7915 	 * Send a TEST UNIT READY command to the device. This should clear
7916 	 * any outstanding UNIT ATTENTION that may be present.
7917 	 *
7918 	 * Note: Don't check for success, just track if there is a reservation,
7919 	 * this is a throw away command to clear any unit attentions.
7920 	 *
7921 	 * Note: This MUST be the first command issued to the target during
7922 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7923 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7924 	 * with attempts at spinning up a device with no media.
7925 	 */
7926 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7927 	if (status != 0) {
7928 		if (status == EACCES)
7929 			reservation_flag = SD_TARGET_IS_RESERVED;
7930 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7931 	}
7932 
7933 	/*
7934 	 * If the device is NOT a removable media device, attempt to spin
7935 	 * it up (using the START_STOP_UNIT command) and read its capacity
7936 	 * (using the READ CAPACITY command).  Note, however, that either
7937 	 * of these could fail and in some cases we would continue with
7938 	 * the attach despite the failure (see below).
7939 	 */
7940 	if (un->un_f_descr_format_supported) {
7941 
7942 		switch (sd_spin_up_unit(ssc)) {
7943 		case 0:
7944 			/*
7945 			 * Spin-up was successful; now try to read the
7946 			 * capacity.  If successful then save the results
7947 			 * and mark the capacity & lbasize as valid.
7948 			 */
7949 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7950 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7951 
7952 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7953 			    &lbasize, SD_PATH_DIRECT);
7954 
7955 			switch (status) {
7956 			case 0: {
7957 				if (capacity > DK_MAX_BLOCKS) {
7958 #ifdef _LP64
7959 					if ((capacity + 1) >
7960 					    SD_GROUP1_MAX_ADDRESS) {
7961 						/*
7962 						 * Enable descriptor format
7963 						 * sense data so that we can
7964 						 * get 64 bit sense data
7965 						 * fields.
7966 						 */
7967 						sd_enable_descr_sense(ssc);
7968 					}
7969 #else
7970 					/* 32-bit kernels can't handle this */
7971 					scsi_log(SD_DEVINFO(un),
7972 					    sd_label, CE_WARN,
7973 					    "disk has %llu blocks, which "
7974 					    "is too large for a 32-bit "
7975 					    "kernel", capacity);
7976 
7977 #if defined(__i386) || defined(__amd64)
7978 					/*
7979 					 * 1TB disk was treated as (1T - 512)B
7980 					 * in the past, so that it might have
7981 					 * valid VTOC and solaris partitions,
7982 					 * we have to allow it to continue to
7983 					 * work.
7984 					 */
7985 					if (capacity -1 > DK_MAX_BLOCKS)
7986 #endif
7987 					goto spinup_failed;
7988 #endif
7989 				}
7990 
7991 				/*
7992 				 * Here it's not necessary to check the case:
7993 				 * the capacity of the device is bigger than
7994 				 * what the max hba cdb can support. Because
7995 				 * sd_send_scsi_READ_CAPACITY will retrieve
7996 				 * the capacity by sending USCSI command, which
7997 				 * is constrained by the max hba cdb. Actually,
7998 				 * sd_send_scsi_READ_CAPACITY will return
7999 				 * EINVAL when using bigger cdb than required
8000 				 * cdb length. Will handle this case in
8001 				 * "case EINVAL".
8002 				 */
8003 
8004 				/*
8005 				 * The following relies on
8006 				 * sd_send_scsi_READ_CAPACITY never
8007 				 * returning 0 for capacity and/or lbasize.
8008 				 */
8009 				sd_update_block_info(un, lbasize, capacity);
8010 
8011 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8012 				    "sd_unit_attach: un:0x%p capacity = %ld "
8013 				    "blocks; lbasize= %ld.\n", un,
8014 				    un->un_blockcount, un->un_tgt_blocksize);
8015 
8016 				break;
8017 			}
8018 			case EINVAL:
8019 				/*
8020 				 * In the case where the max-cdb-length property
8021 				 * is smaller than the required CDB length for
8022 				 * a SCSI device, a target driver can fail to
8023 				 * attach to that device.
8024 				 */
8025 				scsi_log(SD_DEVINFO(un),
8026 				    sd_label, CE_WARN,
8027 				    "disk capacity is too large "
8028 				    "for current cdb length");
8029 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8030 
8031 				goto spinup_failed;
8032 			case EACCES:
8033 				/*
8034 				 * Should never get here if the spin-up
8035 				 * succeeded, but code it in anyway.
8036 				 * From here, just continue with the attach...
8037 				 */
8038 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8039 				    "sd_unit_attach: un:0x%p "
8040 				    "sd_send_scsi_READ_CAPACITY "
8041 				    "returned reservation conflict\n", un);
8042 				reservation_flag = SD_TARGET_IS_RESERVED;
8043 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8044 				break;
8045 			default:
8046 				/*
8047 				 * Likewise, should never get here if the
8048 				 * spin-up succeeded. Just continue with
8049 				 * the attach...
8050 				 */
8051 				if (status == EIO)
8052 					sd_ssc_assessment(ssc,
8053 					    SD_FMT_STATUS_CHECK);
8054 				else
8055 					sd_ssc_assessment(ssc,
8056 					    SD_FMT_IGNORE);
8057 				break;
8058 			}
8059 			break;
8060 		case EACCES:
8061 			/*
8062 			 * Device is reserved by another host.  In this case
8063 			 * we could not spin it up or read the capacity, but
8064 			 * we continue with the attach anyway.
8065 			 */
8066 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8067 			    "sd_unit_attach: un:0x%p spin-up reservation "
8068 			    "conflict.\n", un);
8069 			reservation_flag = SD_TARGET_IS_RESERVED;
8070 			break;
8071 		default:
8072 			/* Fail the attach if the spin-up failed. */
8073 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8074 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8075 			goto spinup_failed;
8076 		}
8077 
8078 	}
8079 
8080 	/*
8081 	 * Check to see if this is a MMC drive
8082 	 */
8083 	if (ISCD(un)) {
8084 		sd_set_mmc_caps(ssc);
8085 	}
8086 
8087 	/*
8088 	 * Add a zero-length attribute to tell the world we support
8089 	 * kernel ioctls (for layered drivers)
8090 	 */
8091 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8092 	    DDI_KERNEL_IOCTL, NULL, 0);
8093 
8094 	/*
8095 	 * Add a boolean property to tell the world we support
8096 	 * the B_FAILFAST flag (for layered drivers)
8097 	 */
8098 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8099 	    "ddi-failfast-supported", NULL, 0);
8100 
8101 	/*
8102 	 * Initialize power management
8103 	 */
8104 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8105 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8106 	sd_setup_pm(ssc, devi);
8107 	if (un->un_f_pm_is_enabled == FALSE) {
8108 		/*
8109 		 * For performance, point to a jump table that does
8110 		 * not include pm.
8111 		 * The direct and priority chains don't change with PM.
8112 		 *
8113 		 * Note: this is currently done based on individual device
8114 		 * capabilities. When an interface for determining system
8115 		 * power enabled state becomes available, or when additional
8116 		 * layers are added to the command chain, these values will
8117 		 * have to be re-evaluated for correctness.
8118 		 */
8119 		if (un->un_f_non_devbsize_supported) {
8120 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8121 		} else {
8122 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8123 		}
8124 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8125 	}
8126 
8127 	/*
8128 	 * This property is set to 0 by HA software to avoid retries
8129 	 * on a reserved disk. (The preferred property name is
8130 	 * "retry-on-reservation-conflict") (1189689)
8131 	 *
8132 	 * Note: The use of a global here can have unintended consequences. A
8133 	 * per instance variable is preferable to match the capabilities of
8134 	 * different underlying hba's (4402600)
8135 	 */
8136 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8137 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8138 	    sd_retry_on_reservation_conflict);
8139 	if (sd_retry_on_reservation_conflict != 0) {
8140 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8141 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8142 		    sd_retry_on_reservation_conflict);
8143 	}
8144 
8145 	/* Set up options for QFULL handling. */
8146 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8147 	    "qfull-retries", -1)) != -1) {
8148 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8149 		    rval, 1);
8150 	}
8151 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8152 	    "qfull-retry-interval", -1)) != -1) {
8153 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8154 		    rval, 1);
8155 	}
8156 
8157 	/*
8158 	 * This just prints a message that announces the existence of the
8159 	 * device. The message is always printed in the system logfile, but
8160 	 * only appears on the console if the system is booted with the
8161 	 * -v (verbose) argument.
8162 	 */
8163 	ddi_report_dev(devi);
8164 
8165 	un->un_mediastate = DKIO_NONE;
8166 
8167 	/*
8168 	 * Check if this is a SSD(Solid State Drive).
8169 	 */
8170 	sd_check_solid_state(ssc);
8171 
8172 	/*
8173 	 * Check whether the drive is in emulation mode.
8174 	 */
8175 	sd_check_emulation_mode(ssc);
8176 
8177 	cmlb_alloc_handle(&un->un_cmlbhandle);
8178 
8179 #if defined(__i386) || defined(__amd64)
8180 	/*
8181 	 * On x86, compensate for off-by-1 legacy error
8182 	 */
8183 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
8184 	    (lbasize == un->un_sys_blocksize))
8185 		offbyone = CMLB_OFF_BY_ONE;
8186 #endif
8187 
8188 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
8189 	    VOID2BOOLEAN(un->un_f_has_removable_media != 0),
8190 	    VOID2BOOLEAN(un->un_f_is_hotpluggable != 0),
8191 	    un->un_node_type, offbyone, un->un_cmlbhandle,
8192 	    (void *)SD_PATH_DIRECT) != 0) {
8193 		goto cmlb_attach_failed;
8194 	}
8195 
8196 
8197 	/*
8198 	 * Read and validate the device's geometry (ie, disk label)
8199 	 * A new unformatted drive will not have a valid geometry, but
8200 	 * the driver needs to successfully attach to this device so
8201 	 * the drive can be formatted via ioctls.
8202 	 */
8203 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
8204 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
8205 
8206 	mutex_enter(SD_MUTEX(un));
8207 
8208 	/*
8209 	 * Read and initialize the devid for the unit.
8210 	 */
8211 	if (un->un_f_devid_supported) {
8212 		sd_register_devid(ssc, devi, reservation_flag);
8213 	}
8214 	mutex_exit(SD_MUTEX(un));
8215 
8216 #if (defined(__fibre))
8217 	/*
8218 	 * Register callbacks for fibre only.  You can't do this solely
8219 	 * on the basis of the devid_type because this is hba specific.
8220 	 * We need to query our hba capabilities to find out whether to
8221 	 * register or not.
8222 	 */
8223 	if (un->un_f_is_fibre) {
8224 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8225 			sd_init_event_callbacks(un);
8226 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8227 			    "sd_unit_attach: un:0x%p event callbacks inserted",
8228 			    un);
8229 		}
8230 	}
8231 #endif
8232 
8233 	if (un->un_f_opt_disable_cache == TRUE) {
8234 		/*
8235 		 * Disable both read cache and write cache.  This is
8236 		 * the historic behavior of the keywords in the config file.
8237 		 */
8238 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8239 		    0) {
8240 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8241 			    "sd_unit_attach: un:0x%p Could not disable "
8242 			    "caching", un);
8243 			goto devid_failed;
8244 		}
8245 	}
8246 
8247 	/*
8248 	 * Check the value of the WCE bit now and
8249 	 * set un_f_write_cache_enabled accordingly.
8250 	 */
8251 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
8252 	mutex_enter(SD_MUTEX(un));
8253 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8254 	mutex_exit(SD_MUTEX(un));
8255 
8256 	if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR &&
8257 	    un->un_tgt_blocksize != DEV_BSIZE) ||
8258 	    un->un_f_enable_rmw) {
8259 		if (!(un->un_wm_cache)) {
8260 			(void) snprintf(name_str, sizeof (name_str),
8261 			    "%s%d_cache",
8262 			    ddi_driver_name(SD_DEVINFO(un)),
8263 			    ddi_get_instance(SD_DEVINFO(un)));
8264 			un->un_wm_cache = kmem_cache_create(
8265 			    name_str, sizeof (struct sd_w_map),
8266 			    8, sd_wm_cache_constructor,
8267 			    sd_wm_cache_destructor, NULL,
8268 			    (void *)un, NULL, 0);
8269 			if (!(un->un_wm_cache)) {
8270 				goto wm_cache_failed;
8271 			}
8272 		}
8273 	}
8274 
8275 	/*
8276 	 * Check the value of the NV_SUP bit and set
8277 	 * un_f_suppress_cache_flush accordingly.
8278 	 */
8279 	sd_get_nv_sup(ssc);
8280 
8281 	/*
8282 	 * Find out what type of reservation this disk supports.
8283 	 */
8284 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
8285 
8286 	switch (status) {
8287 	case 0:
8288 		/*
8289 		 * SCSI-3 reservations are supported.
8290 		 */
8291 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8292 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8293 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8294 		break;
8295 	case ENOTSUP:
8296 		/*
8297 		 * The PERSISTENT RESERVE IN command would not be recognized by
8298 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8299 		 */
8300 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8301 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8302 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8303 
8304 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8305 		break;
8306 	default:
8307 		/*
8308 		 * default to SCSI-3 reservations
8309 		 */
8310 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8311 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8312 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8313 
8314 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8315 		break;
8316 	}
8317 
8318 	/*
8319 	 * Set the pstat and error stat values here, so data obtained during the
8320 	 * previous attach-time routines is available.
8321 	 *
8322 	 * Note: This is a critical sequence that needs to be maintained:
8323 	 *	1) Instantiate the kstats before any routines using the iopath
8324 	 *	   (i.e. sd_send_scsi_cmd).
8325 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8326 	 *	   stats (sd_set_pstats)here, following
8327 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
8328 	 *	   sd_cache_control().
8329 	 */
8330 
8331 	if (un->un_f_pkstats_enabled && geom_label_valid) {
8332 		sd_set_pstats(un);
8333 		SD_TRACE(SD_LOG_IO_PARTITION, un,
8334 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8335 	}
8336 
8337 	sd_set_errstats(un);
8338 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8339 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8340 
8341 
8342 	/*
8343 	 * After successfully attaching an instance, we record the information
8344 	 * of how many luns have been attached on the relative target and
8345 	 * controller for parallel SCSI. This information is used when sd tries
8346 	 * to set the tagged queuing capability in HBA.
8347 	 */
8348 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8349 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
8350 	}
8351 
8352 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8353 	    "sd_unit_attach: un:0x%p exit success\n", un);
8354 
8355 	/* Uninitialize sd_ssc_t pointer */
8356 	sd_ssc_fini(ssc);
8357 
8358 	return (DDI_SUCCESS);
8359 
8360 	/*
8361 	 * An error occurred during the attach; clean up & return failure.
8362 	 */
8363 wm_cache_failed:
8364 devid_failed:
8365 
8366 setup_pm_failed:
8367 	ddi_remove_minor_node(devi, NULL);
8368 
8369 cmlb_attach_failed:
8370 	/*
8371 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8372 	 */
8373 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8374 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8375 
8376 	/*
8377 	 * Refer to the comments of setting tagged-qing in the beginning of
8378 	 * sd_unit_attach. We can only disable tagged queuing when there is
8379 	 * no lun attached on the target.
8380 	 */
8381 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8382 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8383 	}
8384 
8385 	if (un->un_f_is_fibre == FALSE) {
8386 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8387 	}
8388 
8389 spinup_failed:
8390 
8391 	/* Uninitialize sd_ssc_t pointer */
8392 	sd_ssc_fini(ssc);
8393 
8394 	mutex_enter(SD_MUTEX(un));
8395 
8396 	/* Deallocate SCSI FMA memory spaces */
8397 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8398 
8399 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8400 	if (un->un_direct_priority_timeid != NULL) {
8401 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8402 		un->un_direct_priority_timeid = NULL;
8403 		mutex_exit(SD_MUTEX(un));
8404 		(void) untimeout(temp_id);
8405 		mutex_enter(SD_MUTEX(un));
8406 	}
8407 
8408 	/* Cancel any pending start/stop timeouts */
8409 	if (un->un_startstop_timeid != NULL) {
8410 		timeout_id_t temp_id = un->un_startstop_timeid;
8411 		un->un_startstop_timeid = NULL;
8412 		mutex_exit(SD_MUTEX(un));
8413 		(void) untimeout(temp_id);
8414 		mutex_enter(SD_MUTEX(un));
8415 	}
8416 
8417 	/* Cancel any pending reset-throttle timeouts */
8418 	if (un->un_reset_throttle_timeid != NULL) {
8419 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8420 		un->un_reset_throttle_timeid = NULL;
8421 		mutex_exit(SD_MUTEX(un));
8422 		(void) untimeout(temp_id);
8423 		mutex_enter(SD_MUTEX(un));
8424 	}
8425 
8426 	/* Cancel rmw warning message timeouts */
8427 	if (un->un_rmw_msg_timeid != NULL) {
8428 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8429 		un->un_rmw_msg_timeid = NULL;
8430 		mutex_exit(SD_MUTEX(un));
8431 		(void) untimeout(temp_id);
8432 		mutex_enter(SD_MUTEX(un));
8433 	}
8434 
8435 	/* Cancel any pending retry timeouts */
8436 	if (un->un_retry_timeid != NULL) {
8437 		timeout_id_t temp_id = un->un_retry_timeid;
8438 		un->un_retry_timeid = NULL;
8439 		mutex_exit(SD_MUTEX(un));
8440 		(void) untimeout(temp_id);
8441 		mutex_enter(SD_MUTEX(un));
8442 	}
8443 
8444 	/* Cancel any pending delayed cv broadcast timeouts */
8445 	if (un->un_dcvb_timeid != NULL) {
8446 		timeout_id_t temp_id = un->un_dcvb_timeid;
8447 		un->un_dcvb_timeid = NULL;
8448 		mutex_exit(SD_MUTEX(un));
8449 		(void) untimeout(temp_id);
8450 		mutex_enter(SD_MUTEX(un));
8451 	}
8452 
8453 	mutex_exit(SD_MUTEX(un));
8454 
8455 	/* There should not be any in-progress I/O so ASSERT this check */
8456 	ASSERT(un->un_ncmds_in_transport == 0);
8457 	ASSERT(un->un_ncmds_in_driver == 0);
8458 
8459 	/* Do not free the softstate if the callback routine is active */
8460 	sd_sync_with_callback(un);
8461 
8462 	/*
8463 	 * Partition stats apparently are not used with removables. These would
8464 	 * not have been created during attach, so no need to clean them up...
8465 	 */
8466 	if (un->un_errstats != NULL) {
8467 		kstat_delete(un->un_errstats);
8468 		un->un_errstats = NULL;
8469 	}
8470 
8471 create_errstats_failed:
8472 
8473 	if (un->un_stats != NULL) {
8474 		kstat_delete(un->un_stats);
8475 		un->un_stats = NULL;
8476 	}
8477 
8478 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8479 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8480 
8481 	ddi_prop_remove_all(devi);
8482 	sema_destroy(&un->un_semoclose);
8483 	cv_destroy(&un->un_state_cv);
8484 
8485 getrbuf_failed:
8486 
8487 	sd_free_rqs(un);
8488 
8489 alloc_rqs_failed:
8490 
8491 	devp->sd_private = NULL;
8492 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8493 
8494 get_softstate_failed:
8495 	/*
8496 	 * Note: the man pages are unclear as to whether or not doing a
8497 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8498 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8499 	 * ddi_get_soft_state() fails.  The implication seems to be
8500 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8501 	 */
8502 #ifndef XPV_HVM_DRIVER
8503 	ddi_soft_state_free(sd_state, instance);
8504 #endif /* !XPV_HVM_DRIVER */
8505 
8506 probe_failed:
8507 	scsi_unprobe(devp);
8508 
8509 	return (DDI_FAILURE);
8510 }
8511 
8512 
8513 /*
8514  *    Function: sd_unit_detach
8515  *
8516  * Description: Performs DDI_DETACH processing for sddetach().
8517  *
8518  * Return Code: DDI_SUCCESS
8519  *		DDI_FAILURE
8520  *
8521  *     Context: Kernel thread context
8522  */
8523 
8524 static int
8525 sd_unit_detach(dev_info_t *devi)
8526 {
8527 	struct scsi_device	*devp;
8528 	struct sd_lun		*un;
8529 	int			i;
8530 	int			tgt;
8531 	dev_t			dev;
8532 	dev_info_t		*pdip = ddi_get_parent(devi);
8533 #ifndef XPV_HVM_DRIVER
8534 	int			instance = ddi_get_instance(devi);
8535 #endif /* !XPV_HVM_DRIVER */
8536 
8537 	mutex_enter(&sd_detach_mutex);
8538 
8539 	/*
8540 	 * Fail the detach for any of the following:
8541 	 *  - Unable to get the sd_lun struct for the instance
8542 	 *  - A layered driver has an outstanding open on the instance
8543 	 *  - Another thread is already detaching this instance
8544 	 *  - Another thread is currently performing an open
8545 	 */
8546 	devp = ddi_get_driver_private(devi);
8547 	if ((devp == NULL) ||
8548 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8549 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8550 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8551 		mutex_exit(&sd_detach_mutex);
8552 		return (DDI_FAILURE);
8553 	}
8554 
8555 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8556 
8557 	/*
8558 	 * Mark this instance as currently in a detach, to inhibit any
8559 	 * opens from a layered driver.
8560 	 */
8561 	un->un_detach_count++;
8562 	mutex_exit(&sd_detach_mutex);
8563 
8564 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8565 	    SCSI_ADDR_PROP_TARGET, -1);
8566 
8567 	dev = sd_make_device(SD_DEVINFO(un));
8568 
8569 #ifndef lint
8570 	_NOTE(COMPETING_THREADS_NOW);
8571 #endif
8572 
8573 	mutex_enter(SD_MUTEX(un));
8574 
8575 	/*
8576 	 * Fail the detach if there are any outstanding layered
8577 	 * opens on this device.
8578 	 */
8579 	for (i = 0; i < NDKMAP; i++) {
8580 		if (un->un_ocmap.lyropen[i] != 0) {
8581 			goto err_notclosed;
8582 		}
8583 	}
8584 
8585 	/*
8586 	 * Verify there are NO outstanding commands issued to this device.
8587 	 * ie, un_ncmds_in_transport == 0.
8588 	 * It's possible to have outstanding commands through the physio
8589 	 * code path, even though everything's closed.
8590 	 */
8591 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8592 	    (un->un_direct_priority_timeid != NULL) ||
8593 	    (un->un_state == SD_STATE_RWAIT)) {
8594 		mutex_exit(SD_MUTEX(un));
8595 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8596 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8597 		goto err_stillbusy;
8598 	}
8599 
8600 	/*
8601 	 * If we have the device reserved, release the reservation.
8602 	 */
8603 	if ((un->un_resvd_status & SD_RESERVE) &&
8604 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8605 		mutex_exit(SD_MUTEX(un));
8606 		/*
8607 		 * Note: sd_reserve_release sends a command to the device
8608 		 * via the sd_ioctlcmd() path, and can sleep.
8609 		 */
8610 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8611 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8612 			    "sd_dr_detach: Cannot release reservation \n");
8613 		}
8614 	} else {
8615 		mutex_exit(SD_MUTEX(un));
8616 	}
8617 
8618 	/*
8619 	 * Untimeout any reserve recover, throttle reset, restart unit
8620 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8621 	 * from getting nulled by their callback functions.
8622 	 */
8623 	mutex_enter(SD_MUTEX(un));
8624 	if (un->un_resvd_timeid != NULL) {
8625 		timeout_id_t temp_id = un->un_resvd_timeid;
8626 		un->un_resvd_timeid = NULL;
8627 		mutex_exit(SD_MUTEX(un));
8628 		(void) untimeout(temp_id);
8629 		mutex_enter(SD_MUTEX(un));
8630 	}
8631 
8632 	if (un->un_reset_throttle_timeid != NULL) {
8633 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8634 		un->un_reset_throttle_timeid = NULL;
8635 		mutex_exit(SD_MUTEX(un));
8636 		(void) untimeout(temp_id);
8637 		mutex_enter(SD_MUTEX(un));
8638 	}
8639 
8640 	if (un->un_startstop_timeid != NULL) {
8641 		timeout_id_t temp_id = un->un_startstop_timeid;
8642 		un->un_startstop_timeid = NULL;
8643 		mutex_exit(SD_MUTEX(un));
8644 		(void) untimeout(temp_id);
8645 		mutex_enter(SD_MUTEX(un));
8646 	}
8647 
8648 	if (un->un_rmw_msg_timeid != NULL) {
8649 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8650 		un->un_rmw_msg_timeid = NULL;
8651 		mutex_exit(SD_MUTEX(un));
8652 		(void) untimeout(temp_id);
8653 		mutex_enter(SD_MUTEX(un));
8654 	}
8655 
8656 	if (un->un_dcvb_timeid != NULL) {
8657 		timeout_id_t temp_id = un->un_dcvb_timeid;
8658 		un->un_dcvb_timeid = NULL;
8659 		mutex_exit(SD_MUTEX(un));
8660 		(void) untimeout(temp_id);
8661 	} else {
8662 		mutex_exit(SD_MUTEX(un));
8663 	}
8664 
8665 	/* Remove any pending reservation reclaim requests for this device */
8666 	sd_rmv_resv_reclaim_req(dev);
8667 
8668 	mutex_enter(SD_MUTEX(un));
8669 
8670 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8671 	if (un->un_direct_priority_timeid != NULL) {
8672 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8673 		un->un_direct_priority_timeid = NULL;
8674 		mutex_exit(SD_MUTEX(un));
8675 		(void) untimeout(temp_id);
8676 		mutex_enter(SD_MUTEX(un));
8677 	}
8678 
8679 	/* Cancel any active multi-host disk watch thread requests */
8680 	if (un->un_mhd_token != NULL) {
8681 		mutex_exit(SD_MUTEX(un));
8682 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8683 		if (scsi_watch_request_terminate(un->un_mhd_token,
8684 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8685 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8686 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8687 			/*
8688 			 * Note: We are returning here after having removed
8689 			 * some driver timeouts above. This is consistent with
8690 			 * the legacy implementation but perhaps the watch
8691 			 * terminate call should be made with the wait flag set.
8692 			 */
8693 			goto err_stillbusy;
8694 		}
8695 		mutex_enter(SD_MUTEX(un));
8696 		un->un_mhd_token = NULL;
8697 	}
8698 
8699 	if (un->un_swr_token != NULL) {
8700 		mutex_exit(SD_MUTEX(un));
8701 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8702 		if (scsi_watch_request_terminate(un->un_swr_token,
8703 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8704 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8705 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8706 			/*
8707 			 * Note: We are returning here after having removed
8708 			 * some driver timeouts above. This is consistent with
8709 			 * the legacy implementation but perhaps the watch
8710 			 * terminate call should be made with the wait flag set.
8711 			 */
8712 			goto err_stillbusy;
8713 		}
8714 		mutex_enter(SD_MUTEX(un));
8715 		un->un_swr_token = NULL;
8716 	}
8717 
8718 	mutex_exit(SD_MUTEX(un));
8719 
8720 	/*
8721 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8722 	 * if we have not registered one.
8723 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8724 	 */
8725 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8726 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8727 
8728 	/*
8729 	 * protect the timeout pointers from getting nulled by
8730 	 * their callback functions during the cancellation process.
8731 	 * In such a scenario untimeout can be invoked with a null value.
8732 	 */
8733 	_NOTE(NO_COMPETING_THREADS_NOW);
8734 
8735 	mutex_enter(&un->un_pm_mutex);
8736 	if (un->un_pm_idle_timeid != NULL) {
8737 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8738 		un->un_pm_idle_timeid = NULL;
8739 		mutex_exit(&un->un_pm_mutex);
8740 
8741 		/*
8742 		 * Timeout is active; cancel it.
8743 		 * Note that it'll never be active on a device
8744 		 * that does not support PM therefore we don't
8745 		 * have to check before calling pm_idle_component.
8746 		 */
8747 		(void) untimeout(temp_id);
8748 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8749 		mutex_enter(&un->un_pm_mutex);
8750 	}
8751 
8752 	/*
8753 	 * Check whether there is already a timeout scheduled for power
8754 	 * management. If yes then don't lower the power here, that's.
8755 	 * the timeout handler's job.
8756 	 */
8757 	if (un->un_pm_timeid != NULL) {
8758 		timeout_id_t temp_id = un->un_pm_timeid;
8759 		un->un_pm_timeid = NULL;
8760 		mutex_exit(&un->un_pm_mutex);
8761 		/*
8762 		 * Timeout is active; cancel it.
8763 		 * Note that it'll never be active on a device
8764 		 * that does not support PM therefore we don't
8765 		 * have to check before calling pm_idle_component.
8766 		 */
8767 		(void) untimeout(temp_id);
8768 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8769 
8770 	} else {
8771 		mutex_exit(&un->un_pm_mutex);
8772 		if ((un->un_f_pm_is_enabled == TRUE) &&
8773 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un))
8774 		    != DDI_SUCCESS)) {
8775 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8776 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8777 			/*
8778 			 * Fix for bug: 4297749, item # 13
8779 			 * The above test now includes a check to see if PM is
8780 			 * supported by this device before call
8781 			 * pm_lower_power().
8782 			 * Note, the following is not dead code. The call to
8783 			 * pm_lower_power above will generate a call back into
8784 			 * our sdpower routine which might result in a timeout
8785 			 * handler getting activated. Therefore the following
8786 			 * code is valid and necessary.
8787 			 */
8788 			mutex_enter(&un->un_pm_mutex);
8789 			if (un->un_pm_timeid != NULL) {
8790 				timeout_id_t temp_id = un->un_pm_timeid;
8791 				un->un_pm_timeid = NULL;
8792 				mutex_exit(&un->un_pm_mutex);
8793 				(void) untimeout(temp_id);
8794 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8795 			} else {
8796 				mutex_exit(&un->un_pm_mutex);
8797 			}
8798 		}
8799 	}
8800 
8801 	/*
8802 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8803 	 * Relocated here from above to be after the call to
8804 	 * pm_lower_power, which was getting errors.
8805 	 */
8806 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8807 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8808 
8809 	/*
8810 	 * Currently, tagged queuing is supported per target based by HBA.
8811 	 * Setting this per lun instance actually sets the capability of this
8812 	 * target in HBA, which affects those luns already attached on the
8813 	 * same target. So during detach, we can only disable this capability
8814 	 * only when this is the only lun left on this target. By doing
8815 	 * this, we assume a target has the same tagged queuing capability
8816 	 * for every lun. The condition can be removed when HBA is changed to
8817 	 * support per lun based tagged queuing capability.
8818 	 */
8819 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8820 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8821 	}
8822 
8823 	if (un->un_f_is_fibre == FALSE) {
8824 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8825 	}
8826 
8827 	/*
8828 	 * Remove any event callbacks, fibre only
8829 	 */
8830 	if (un->un_f_is_fibre == TRUE) {
8831 		if ((un->un_insert_event != NULL) &&
8832 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8833 		    DDI_SUCCESS)) {
8834 			/*
8835 			 * Note: We are returning here after having done
8836 			 * substantial cleanup above. This is consistent
8837 			 * with the legacy implementation but this may not
8838 			 * be the right thing to do.
8839 			 */
8840 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8841 			    "sd_dr_detach: Cannot cancel insert event\n");
8842 			goto err_remove_event;
8843 		}
8844 		un->un_insert_event = NULL;
8845 
8846 		if ((un->un_remove_event != NULL) &&
8847 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8848 		    DDI_SUCCESS)) {
8849 			/*
8850 			 * Note: We are returning here after having done
8851 			 * substantial cleanup above. This is consistent
8852 			 * with the legacy implementation but this may not
8853 			 * be the right thing to do.
8854 			 */
8855 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8856 			    "sd_dr_detach: Cannot cancel remove event\n");
8857 			goto err_remove_event;
8858 		}
8859 		un->un_remove_event = NULL;
8860 	}
8861 
8862 	/* Do not free the softstate if the callback routine is active */
8863 	sd_sync_with_callback(un);
8864 
8865 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8866 	cmlb_free_handle(&un->un_cmlbhandle);
8867 
8868 	/*
8869 	 * Hold the detach mutex here, to make sure that no other threads ever
8870 	 * can access a (partially) freed soft state structure.
8871 	 */
8872 	mutex_enter(&sd_detach_mutex);
8873 
8874 	/*
8875 	 * Clean up the soft state struct.
8876 	 * Cleanup is done in reverse order of allocs/inits.
8877 	 * At this point there should be no competing threads anymore.
8878 	 */
8879 
8880 	scsi_fm_fini(devp);
8881 
8882 	/*
8883 	 * Deallocate memory for SCSI FMA.
8884 	 */
8885 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8886 
8887 	/*
8888 	 * Unregister and free device id if it was not registered
8889 	 * by the transport.
8890 	 */
8891 	if (un->un_f_devid_transport_defined == FALSE)
8892 		ddi_devid_unregister(devi);
8893 
8894 	/*
8895 	 * free the devid structure if allocated before (by ddi_devid_init()
8896 	 * or ddi_devid_get()).
8897 	 */
8898 	if (un->un_devid) {
8899 		ddi_devid_free(un->un_devid);
8900 		un->un_devid = NULL;
8901 	}
8902 
8903 	/*
8904 	 * Destroy wmap cache if it exists.
8905 	 */
8906 	if (un->un_wm_cache != NULL) {
8907 		kmem_cache_destroy(un->un_wm_cache);
8908 		un->un_wm_cache = NULL;
8909 	}
8910 
8911 	/*
8912 	 * kstat cleanup is done in detach for all device types (4363169).
8913 	 * We do not want to fail detach if the device kstats are not deleted
8914 	 * since there is a confusion about the devo_refcnt for the device.
8915 	 * We just delete the kstats and let detach complete successfully.
8916 	 */
8917 	if (un->un_stats != NULL) {
8918 		kstat_delete(un->un_stats);
8919 		un->un_stats = NULL;
8920 	}
8921 	if (un->un_errstats != NULL) {
8922 		kstat_delete(un->un_errstats);
8923 		un->un_errstats = NULL;
8924 	}
8925 
8926 	/* Remove partition stats */
8927 	if (un->un_f_pkstats_enabled) {
8928 		for (i = 0; i < NSDMAP; i++) {
8929 			if (un->un_pstats[i] != NULL) {
8930 				kstat_delete(un->un_pstats[i]);
8931 				un->un_pstats[i] = NULL;
8932 			}
8933 		}
8934 	}
8935 
8936 	/* Remove xbuf registration */
8937 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8938 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8939 
8940 	/* Remove driver properties */
8941 	ddi_prop_remove_all(devi);
8942 
8943 	mutex_destroy(&un->un_pm_mutex);
8944 	cv_destroy(&un->un_pm_busy_cv);
8945 
8946 	cv_destroy(&un->un_wcc_cv);
8947 
8948 	/* Open/close semaphore */
8949 	sema_destroy(&un->un_semoclose);
8950 
8951 	/* Removable media condvar. */
8952 	cv_destroy(&un->un_state_cv);
8953 
8954 	/* Suspend/resume condvar. */
8955 	cv_destroy(&un->un_suspend_cv);
8956 	cv_destroy(&un->un_disk_busy_cv);
8957 
8958 	sd_free_rqs(un);
8959 
8960 	/* Free up soft state */
8961 	devp->sd_private = NULL;
8962 
8963 	bzero(un, sizeof (struct sd_lun));
8964 #ifndef XPV_HVM_DRIVER
8965 	ddi_soft_state_free(sd_state, instance);
8966 #endif /* !XPV_HVM_DRIVER */
8967 
8968 	mutex_exit(&sd_detach_mutex);
8969 
8970 	/* This frees up the INQUIRY data associated with the device. */
8971 	scsi_unprobe(devp);
8972 
8973 	/*
8974 	 * After successfully detaching an instance, we update the information
8975 	 * of how many luns have been attached in the relative target and
8976 	 * controller for parallel SCSI. This information is used when sd tries
8977 	 * to set the tagged queuing capability in HBA.
8978 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8979 	 * check if the device is parallel SCSI. However, we don't need to
8980 	 * check here because we've already checked during attach. No device
8981 	 * that is not parallel SCSI is in the chain.
8982 	 */
8983 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8984 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8985 	}
8986 
8987 	return (DDI_SUCCESS);
8988 
8989 err_notclosed:
8990 	mutex_exit(SD_MUTEX(un));
8991 
8992 err_stillbusy:
8993 	_NOTE(NO_COMPETING_THREADS_NOW);
8994 
8995 err_remove_event:
8996 	mutex_enter(&sd_detach_mutex);
8997 	un->un_detach_count--;
8998 	mutex_exit(&sd_detach_mutex);
8999 
9000 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9001 	return (DDI_FAILURE);
9002 }
9003 
9004 
9005 /*
9006  *    Function: sd_create_errstats
9007  *
9008  * Description: This routine instantiates the device error stats.
9009  *
9010  *		Note: During attach the stats are instantiated first so they are
9011  *		available for attach-time routines that utilize the driver
9012  *		iopath to send commands to the device. The stats are initialized
9013  *		separately so data obtained during some attach-time routines is
9014  *		available. (4362483)
9015  *
9016  *   Arguments: un - driver soft state (unit) structure
9017  *		instance - driver instance
9018  *
9019  *     Context: Kernel thread context
9020  */
9021 
9022 static void
9023 sd_create_errstats(struct sd_lun *un, int instance)
9024 {
9025 	struct	sd_errstats	*stp;
9026 	char	kstatmodule_err[KSTAT_STRLEN];
9027 	char	kstatname[KSTAT_STRLEN];
9028 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9029 
9030 	ASSERT(un != NULL);
9031 
9032 	if (un->un_errstats != NULL) {
9033 		return;
9034 	}
9035 
9036 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9037 	    "%serr", sd_label);
9038 	(void) snprintf(kstatname, sizeof (kstatname),
9039 	    "%s%d,err", sd_label, instance);
9040 
9041 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9042 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9043 
9044 	if (un->un_errstats == NULL) {
9045 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9046 		    "sd_create_errstats: Failed kstat_create\n");
9047 		return;
9048 	}
9049 
9050 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9051 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9052 	    KSTAT_DATA_UINT32);
9053 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9054 	    KSTAT_DATA_UINT32);
9055 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9056 	    KSTAT_DATA_UINT32);
9057 	kstat_named_init(&stp->sd_vid,		"Vendor",
9058 	    KSTAT_DATA_CHAR);
9059 	kstat_named_init(&stp->sd_pid,		"Product",
9060 	    KSTAT_DATA_CHAR);
9061 	kstat_named_init(&stp->sd_revision,	"Revision",
9062 	    KSTAT_DATA_CHAR);
9063 	kstat_named_init(&stp->sd_serial,	"Serial No",
9064 	    KSTAT_DATA_CHAR);
9065 	kstat_named_init(&stp->sd_capacity,	"Size",
9066 	    KSTAT_DATA_ULONGLONG);
9067 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9068 	    KSTAT_DATA_UINT32);
9069 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9070 	    KSTAT_DATA_UINT32);
9071 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9072 	    KSTAT_DATA_UINT32);
9073 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9074 	    KSTAT_DATA_UINT32);
9075 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9076 	    KSTAT_DATA_UINT32);
9077 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9078 	    KSTAT_DATA_UINT32);
9079 
9080 	un->un_errstats->ks_private = un;
9081 	un->un_errstats->ks_update  = nulldev;
9082 
9083 	kstat_install(un->un_errstats);
9084 }
9085 
9086 
9087 /*
9088  *    Function: sd_set_errstats
9089  *
9090  * Description: This routine sets the value of the vendor id, product id,
9091  *		revision, serial number, and capacity device error stats.
9092  *
9093  *		Note: During attach the stats are instantiated first so they are
9094  *		available for attach-time routines that utilize the driver
9095  *		iopath to send commands to the device. The stats are initialized
9096  *		separately so data obtained during some attach-time routines is
9097  *		available. (4362483)
9098  *
9099  *   Arguments: un - driver soft state (unit) structure
9100  *
9101  *     Context: Kernel thread context
9102  */
9103 
9104 static void
9105 sd_set_errstats(struct sd_lun *un)
9106 {
9107 	struct	sd_errstats	*stp;
9108 
9109 	ASSERT(un != NULL);
9110 	ASSERT(un->un_errstats != NULL);
9111 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9112 	ASSERT(stp != NULL);
9113 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9114 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9115 	(void) strncpy(stp->sd_revision.value.c,
9116 	    un->un_sd->sd_inq->inq_revision, 4);
9117 
9118 	/*
9119 	 * All the errstats are persistent across detach/attach,
9120 	 * so reset all the errstats here in case of the hot
9121 	 * replacement of disk drives, except for not changed
9122 	 * Sun qualified drives.
9123 	 */
9124 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9125 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9126 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9127 		stp->sd_softerrs.value.ui32 = 0;
9128 		stp->sd_harderrs.value.ui32 = 0;
9129 		stp->sd_transerrs.value.ui32 = 0;
9130 		stp->sd_rq_media_err.value.ui32 = 0;
9131 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9132 		stp->sd_rq_nodev_err.value.ui32 = 0;
9133 		stp->sd_rq_recov_err.value.ui32 = 0;
9134 		stp->sd_rq_illrq_err.value.ui32 = 0;
9135 		stp->sd_rq_pfa_err.value.ui32 = 0;
9136 	}
9137 
9138 	/*
9139 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9140 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9141 	 * (4376302))
9142 	 */
9143 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9144 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9145 		    sizeof (SD_INQUIRY(un)->inq_serial));
9146 	}
9147 
9148 	if (un->un_f_blockcount_is_valid != TRUE) {
9149 		/*
9150 		 * Set capacity error stat to 0 for no media. This ensures
9151 		 * a valid capacity is displayed in response to 'iostat -E'
9152 		 * when no media is present in the device.
9153 		 */
9154 		stp->sd_capacity.value.ui64 = 0;
9155 	} else {
9156 		/*
9157 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9158 		 * capacity.
9159 		 *
9160 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9161 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9162 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9163 		 */
9164 		stp->sd_capacity.value.ui64 = (uint64_t)
9165 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9166 	}
9167 }
9168 
9169 
9170 /*
9171  *    Function: sd_set_pstats
9172  *
9173  * Description: This routine instantiates and initializes the partition
9174  *              stats for each partition with more than zero blocks.
9175  *		(4363169)
9176  *
9177  *   Arguments: un - driver soft state (unit) structure
9178  *
9179  *     Context: Kernel thread context
9180  */
9181 
9182 static void
9183 sd_set_pstats(struct sd_lun *un)
9184 {
9185 	char	kstatname[KSTAT_STRLEN];
9186 	int	instance;
9187 	int	i;
9188 	diskaddr_t	nblks = 0;
9189 	char	*partname = NULL;
9190 
9191 	ASSERT(un != NULL);
9192 
9193 	instance = ddi_get_instance(SD_DEVINFO(un));
9194 
9195 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9196 	for (i = 0; i < NSDMAP; i++) {
9197 
9198 		if (cmlb_partinfo(un->un_cmlbhandle, i,
9199 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
9200 			continue;
9201 		mutex_enter(SD_MUTEX(un));
9202 
9203 		if ((un->un_pstats[i] == NULL) &&
9204 		    (nblks != 0)) {
9205 
9206 			(void) snprintf(kstatname, sizeof (kstatname),
9207 			    "%s%d,%s", sd_label, instance,
9208 			    partname);
9209 
9210 			un->un_pstats[i] = kstat_create(sd_label,
9211 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9212 			    1, KSTAT_FLAG_PERSISTENT);
9213 			if (un->un_pstats[i] != NULL) {
9214 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9215 				kstat_install(un->un_pstats[i]);
9216 			}
9217 		}
9218 		mutex_exit(SD_MUTEX(un));
9219 	}
9220 }
9221 
9222 
9223 #if (defined(__fibre))
9224 /*
9225  *    Function: sd_init_event_callbacks
9226  *
9227  * Description: This routine initializes the insertion and removal event
9228  *		callbacks. (fibre only)
9229  *
9230  *   Arguments: un - driver soft state (unit) structure
9231  *
9232  *     Context: Kernel thread context
9233  */
9234 
9235 static void
9236 sd_init_event_callbacks(struct sd_lun *un)
9237 {
9238 	ASSERT(un != NULL);
9239 
9240 	if ((un->un_insert_event == NULL) &&
9241 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9242 	    &un->un_insert_event) == DDI_SUCCESS)) {
9243 		/*
9244 		 * Add the callback for an insertion event
9245 		 */
9246 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9247 		    un->un_insert_event, sd_event_callback, (void *)un,
9248 		    &(un->un_insert_cb_id));
9249 	}
9250 
9251 	if ((un->un_remove_event == NULL) &&
9252 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9253 	    &un->un_remove_event) == DDI_SUCCESS)) {
9254 		/*
9255 		 * Add the callback for a removal event
9256 		 */
9257 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9258 		    un->un_remove_event, sd_event_callback, (void *)un,
9259 		    &(un->un_remove_cb_id));
9260 	}
9261 }
9262 
9263 
9264 /*
9265  *    Function: sd_event_callback
9266  *
9267  * Description: This routine handles insert/remove events (photon). The
9268  *		state is changed to OFFLINE which can be used to supress
9269  *		error msgs. (fibre only)
9270  *
9271  *   Arguments: un - driver soft state (unit) structure
9272  *
9273  *     Context: Callout thread context
9274  */
9275 /* ARGSUSED */
9276 static void
9277 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9278     void *bus_impldata)
9279 {
9280 	struct sd_lun *un = (struct sd_lun *)arg;
9281 
9282 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9283 	if (event == un->un_insert_event) {
9284 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9285 		mutex_enter(SD_MUTEX(un));
9286 		if (un->un_state == SD_STATE_OFFLINE) {
9287 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9288 				un->un_state = un->un_last_state;
9289 			} else {
9290 				/*
9291 				 * We have gone through SUSPEND/RESUME while
9292 				 * we were offline. Restore the last state
9293 				 */
9294 				un->un_state = un->un_save_state;
9295 			}
9296 		}
9297 		mutex_exit(SD_MUTEX(un));
9298 
9299 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9300 	} else if (event == un->un_remove_event) {
9301 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9302 		mutex_enter(SD_MUTEX(un));
9303 		/*
9304 		 * We need to handle an event callback that occurs during
9305 		 * the suspend operation, since we don't prevent it.
9306 		 */
9307 		if (un->un_state != SD_STATE_OFFLINE) {
9308 			if (un->un_state != SD_STATE_SUSPENDED) {
9309 				New_state(un, SD_STATE_OFFLINE);
9310 			} else {
9311 				un->un_last_state = SD_STATE_OFFLINE;
9312 			}
9313 		}
9314 		mutex_exit(SD_MUTEX(un));
9315 	} else {
9316 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9317 		    "!Unknown event\n");
9318 	}
9319 
9320 }
9321 #endif
9322 
9323 /*
9324  *    Function: sd_cache_control()
9325  *
9326  * Description: This routine is the driver entry point for setting
9327  *		read and write caching by modifying the WCE (write cache
9328  *		enable) and RCD (read cache disable) bits of mode
9329  *		page 8 (MODEPAGE_CACHING).
9330  *
9331  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9332  *                      structure for this target.
9333  *		rcd_flag - flag for controlling the read cache
9334  *		wce_flag - flag for controlling the write cache
9335  *
9336  * Return Code: EIO
9337  *		code returned by sd_send_scsi_MODE_SENSE and
9338  *		sd_send_scsi_MODE_SELECT
9339  *
9340  *     Context: Kernel Thread
9341  */
9342 
9343 static int
9344 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
9345 {
9346 	struct mode_caching	*mode_caching_page;
9347 	uchar_t			*header;
9348 	size_t			buflen;
9349 	int			hdrlen;
9350 	int			bd_len;
9351 	int			rval = 0;
9352 	struct mode_header_grp2	*mhp;
9353 	struct sd_lun		*un;
9354 	int			status;
9355 
9356 	ASSERT(ssc != NULL);
9357 	un = ssc->ssc_un;
9358 	ASSERT(un != NULL);
9359 
9360 	/*
9361 	 * Do a test unit ready, otherwise a mode sense may not work if this
9362 	 * is the first command sent to the device after boot.
9363 	 */
9364 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9365 	if (status != 0)
9366 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9367 
9368 	if (un->un_f_cfg_is_atapi == TRUE) {
9369 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9370 	} else {
9371 		hdrlen = MODE_HEADER_LENGTH;
9372 	}
9373 
9374 	/*
9375 	 * Allocate memory for the retrieved mode page and its headers.  Set
9376 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9377 	 * we get all of the mode sense data otherwise, the mode select
9378 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9379 	 */
9380 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9381 	    sizeof (struct mode_cache_scsi3);
9382 
9383 	header = kmem_zalloc(buflen, KM_SLEEP);
9384 
9385 	/* Get the information from the device. */
9386 	if (un->un_f_cfg_is_atapi == TRUE) {
9387 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9388 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9389 	} else {
9390 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9391 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9392 	}
9393 
9394 	if (rval != 0) {
9395 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9396 		    "sd_cache_control: Mode Sense Failed\n");
9397 		goto mode_sense_failed;
9398 	}
9399 
9400 	/*
9401 	 * Determine size of Block Descriptors in order to locate
9402 	 * the mode page data. ATAPI devices return 0, SCSI devices
9403 	 * should return MODE_BLK_DESC_LENGTH.
9404 	 */
9405 	if (un->un_f_cfg_is_atapi == TRUE) {
9406 		mhp	= (struct mode_header_grp2 *)header;
9407 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9408 	} else {
9409 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9410 	}
9411 
9412 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9413 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9414 		    "sd_cache_control: Mode Sense returned invalid block "
9415 		    "descriptor length\n");
9416 		rval = EIO;
9417 		goto mode_sense_failed;
9418 	}
9419 
9420 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9421 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9422 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9423 		    "sd_cache_control: Mode Sense caching page code mismatch "
9424 		    "%d\n", mode_caching_page->mode_page.code);
9425 		rval = EIO;
9426 		goto mode_sense_failed;
9427 	}
9428 
9429 	/* Check the relevant bits on successful mode sense. */
9430 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9431 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9432 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9433 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9434 
9435 		size_t sbuflen;
9436 		uchar_t save_pg;
9437 
9438 		/*
9439 		 * Construct select buffer length based on the
9440 		 * length of the sense data returned.
9441 		 */
9442 		sbuflen =  hdrlen + bd_len +
9443 		    sizeof (struct mode_page) +
9444 		    (int)mode_caching_page->mode_page.length;
9445 
9446 		/*
9447 		 * Set the caching bits as requested.
9448 		 */
9449 		if (rcd_flag == SD_CACHE_ENABLE)
9450 			mode_caching_page->rcd = 0;
9451 		else if (rcd_flag == SD_CACHE_DISABLE)
9452 			mode_caching_page->rcd = 1;
9453 
9454 		if (wce_flag == SD_CACHE_ENABLE)
9455 			mode_caching_page->wce = 1;
9456 		else if (wce_flag == SD_CACHE_DISABLE)
9457 			mode_caching_page->wce = 0;
9458 
9459 		/*
9460 		 * Save the page if the mode sense says the
9461 		 * drive supports it.
9462 		 */
9463 		save_pg = mode_caching_page->mode_page.ps ?
9464 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9465 
9466 		/* Clear reserved bits before mode select. */
9467 		mode_caching_page->mode_page.ps = 0;
9468 
9469 		/*
9470 		 * Clear out mode header for mode select.
9471 		 * The rest of the retrieved page will be reused.
9472 		 */
9473 		bzero(header, hdrlen);
9474 
9475 		if (un->un_f_cfg_is_atapi == TRUE) {
9476 			mhp = (struct mode_header_grp2 *)header;
9477 			mhp->bdesc_length_hi = bd_len >> 8;
9478 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9479 		} else {
9480 			((struct mode_header *)header)->bdesc_length = bd_len;
9481 		}
9482 
9483 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9484 
9485 		/* Issue mode select to change the cache settings */
9486 		if (un->un_f_cfg_is_atapi == TRUE) {
9487 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9488 			    sbuflen, save_pg, SD_PATH_DIRECT);
9489 		} else {
9490 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9491 			    sbuflen, save_pg, SD_PATH_DIRECT);
9492 		}
9493 
9494 	}
9495 
9496 
9497 mode_sense_failed:
9498 
9499 	kmem_free(header, buflen);
9500 
9501 	if (rval != 0) {
9502 		if (rval == EIO)
9503 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9504 		else
9505 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9506 	}
9507 	return (rval);
9508 }
9509 
9510 
9511 /*
9512  *    Function: sd_get_write_cache_enabled()
9513  *
9514  * Description: This routine is the driver entry point for determining if
9515  *		write caching is enabled.  It examines the WCE (write cache
9516  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9517  *
9518  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9519  *                      structure for this target.
9520  *		is_enabled - pointer to int where write cache enabled state
9521  *		is returned (non-zero -> write cache enabled)
9522  *
9523  *
9524  * Return Code: EIO
9525  *		code returned by sd_send_scsi_MODE_SENSE
9526  *
9527  *     Context: Kernel Thread
9528  *
9529  * NOTE: If ioctl is added to disable write cache, this sequence should
9530  * be followed so that no locking is required for accesses to
9531  * un->un_f_write_cache_enabled:
9532  * 	do mode select to clear wce
9533  * 	do synchronize cache to flush cache
9534  * 	set un->un_f_write_cache_enabled = FALSE
9535  *
9536  * Conversely, an ioctl to enable the write cache should be done
9537  * in this order:
9538  * 	set un->un_f_write_cache_enabled = TRUE
9539  * 	do mode select to set wce
9540  */
9541 
9542 static int
9543 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9544 {
9545 	struct mode_caching	*mode_caching_page;
9546 	uchar_t			*header;
9547 	size_t			buflen;
9548 	int			hdrlen;
9549 	int			bd_len;
9550 	int			rval = 0;
9551 	struct sd_lun		*un;
9552 	int			status;
9553 
9554 	ASSERT(ssc != NULL);
9555 	un = ssc->ssc_un;
9556 	ASSERT(un != NULL);
9557 	ASSERT(is_enabled != NULL);
9558 
9559 	/* in case of error, flag as enabled */
9560 	*is_enabled = TRUE;
9561 
9562 	/*
9563 	 * Do a test unit ready, otherwise a mode sense may not work if this
9564 	 * is the first command sent to the device after boot.
9565 	 */
9566 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9567 
9568 	if (status != 0)
9569 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9570 
9571 	if (un->un_f_cfg_is_atapi == TRUE) {
9572 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9573 	} else {
9574 		hdrlen = MODE_HEADER_LENGTH;
9575 	}
9576 
9577 	/*
9578 	 * Allocate memory for the retrieved mode page and its headers.  Set
9579 	 * a pointer to the page itself.
9580 	 */
9581 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9582 	header = kmem_zalloc(buflen, KM_SLEEP);
9583 
9584 	/* Get the information from the device. */
9585 	if (un->un_f_cfg_is_atapi == TRUE) {
9586 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9587 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9588 	} else {
9589 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9590 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9591 	}
9592 
9593 	if (rval != 0) {
9594 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9595 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9596 		goto mode_sense_failed;
9597 	}
9598 
9599 	/*
9600 	 * Determine size of Block Descriptors in order to locate
9601 	 * the mode page data. ATAPI devices return 0, SCSI devices
9602 	 * should return MODE_BLK_DESC_LENGTH.
9603 	 */
9604 	if (un->un_f_cfg_is_atapi == TRUE) {
9605 		struct mode_header_grp2	*mhp;
9606 		mhp	= (struct mode_header_grp2 *)header;
9607 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9608 	} else {
9609 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9610 	}
9611 
9612 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9613 		/* FMA should make upset complain here */
9614 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9615 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9616 		    "block descriptor length\n");
9617 		rval = EIO;
9618 		goto mode_sense_failed;
9619 	}
9620 
9621 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9622 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9623 		/* FMA could make upset complain here */
9624 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9625 		    "sd_get_write_cache_enabled: Mode Sense caching page "
9626 		    "code mismatch %d\n", mode_caching_page->mode_page.code);
9627 		rval = EIO;
9628 		goto mode_sense_failed;
9629 	}
9630 	*is_enabled = mode_caching_page->wce;
9631 
9632 mode_sense_failed:
9633 	if (rval == 0) {
9634 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9635 	} else if (rval == EIO) {
9636 		/*
9637 		 * Some disks do not support mode sense(6), we
9638 		 * should ignore this kind of error(sense key is
9639 		 * 0x5 - illegal request).
9640 		 */
9641 		uint8_t *sensep;
9642 		int senlen;
9643 
9644 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9645 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9646 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9647 
9648 		if (senlen > 0 &&
9649 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9650 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9651 		} else {
9652 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9653 		}
9654 	} else {
9655 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9656 	}
9657 	kmem_free(header, buflen);
9658 	return (rval);
9659 }
9660 
9661 /*
9662  *    Function: sd_get_nv_sup()
9663  *
9664  * Description: This routine is the driver entry point for
9665  * determining whether non-volatile cache is supported. This
9666  * determination process works as follows:
9667  *
9668  * 1. sd first queries sd.conf on whether
9669  * suppress_cache_flush bit is set for this device.
9670  *
9671  * 2. if not there, then queries the internal disk table.
9672  *
9673  * 3. if either sd.conf or internal disk table specifies
9674  * cache flush be suppressed, we don't bother checking
9675  * NV_SUP bit.
9676  *
9677  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9678  * the optional INQUIRY VPD page 0x86. If the device
9679  * supports VPD page 0x86, sd examines the NV_SUP
9680  * (non-volatile cache support) bit in the INQUIRY VPD page
9681  * 0x86:
9682  *   o If NV_SUP bit is set, sd assumes the device has a
9683  *   non-volatile cache and set the
9684  *   un_f_sync_nv_supported to TRUE.
9685  *   o Otherwise cache is not non-volatile,
9686  *   un_f_sync_nv_supported is set to FALSE.
9687  *
9688  * Arguments: un - driver soft state (unit) structure
9689  *
9690  * Return Code:
9691  *
9692  *     Context: Kernel Thread
9693  */
9694 
9695 static void
9696 sd_get_nv_sup(sd_ssc_t *ssc)
9697 {
9698 	int		rval		= 0;
9699 	uchar_t		*inq86		= NULL;
9700 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9701 	size_t		inq86_resid	= 0;
9702 	struct		dk_callback *dkc;
9703 	struct sd_lun	*un;
9704 
9705 	ASSERT(ssc != NULL);
9706 	un = ssc->ssc_un;
9707 	ASSERT(un != NULL);
9708 
9709 	mutex_enter(SD_MUTEX(un));
9710 
9711 	/*
9712 	 * Be conservative on the device's support of
9713 	 * SYNC_NV bit: un_f_sync_nv_supported is
9714 	 * initialized to be false.
9715 	 */
9716 	un->un_f_sync_nv_supported = FALSE;
9717 
9718 	/*
9719 	 * If either sd.conf or internal disk table
9720 	 * specifies cache flush be suppressed, then
9721 	 * we don't bother checking NV_SUP bit.
9722 	 */
9723 	if (un->un_f_suppress_cache_flush == TRUE) {
9724 		mutex_exit(SD_MUTEX(un));
9725 		return;
9726 	}
9727 
9728 	if (sd_check_vpd_page_support(ssc) == 0 &&
9729 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9730 		mutex_exit(SD_MUTEX(un));
9731 		/* collect page 86 data if available */
9732 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9733 
9734 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9735 		    0x01, 0x86, &inq86_resid);
9736 
9737 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9738 			SD_TRACE(SD_LOG_COMMON, un,
9739 			    "sd_get_nv_sup: \
9740 			    successfully get VPD page: %x \
9741 			    PAGE LENGTH: %x BYTE 6: %x\n",
9742 			    inq86[1], inq86[3], inq86[6]);
9743 
9744 			mutex_enter(SD_MUTEX(un));
9745 			/*
9746 			 * check the value of NV_SUP bit: only if the device
9747 			 * reports NV_SUP bit to be 1, the
9748 			 * un_f_sync_nv_supported bit will be set to true.
9749 			 */
9750 			if (inq86[6] & SD_VPD_NV_SUP) {
9751 				un->un_f_sync_nv_supported = TRUE;
9752 			}
9753 			mutex_exit(SD_MUTEX(un));
9754 		} else if (rval != 0) {
9755 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9756 		}
9757 
9758 		kmem_free(inq86, inq86_len);
9759 	} else {
9760 		mutex_exit(SD_MUTEX(un));
9761 	}
9762 
9763 	/*
9764 	 * Send a SYNC CACHE command to check whether
9765 	 * SYNC_NV bit is supported. This command should have
9766 	 * un_f_sync_nv_supported set to correct value.
9767 	 */
9768 	mutex_enter(SD_MUTEX(un));
9769 	if (un->un_f_sync_nv_supported) {
9770 		mutex_exit(SD_MUTEX(un));
9771 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9772 		dkc->dkc_flag = FLUSH_VOLATILE;
9773 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9774 
9775 		/*
9776 		 * Send a TEST UNIT READY command to the device. This should
9777 		 * clear any outstanding UNIT ATTENTION that may be present.
9778 		 */
9779 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9780 		if (rval != 0)
9781 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9782 
9783 		kmem_free(dkc, sizeof (struct dk_callback));
9784 	} else {
9785 		mutex_exit(SD_MUTEX(un));
9786 	}
9787 
9788 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9789 	    un_f_suppress_cache_flush is set to %d\n",
9790 	    un->un_f_suppress_cache_flush);
9791 }
9792 
9793 /*
9794  *    Function: sd_make_device
9795  *
9796  * Description: Utility routine to return the Solaris device number from
9797  *		the data in the device's dev_info structure.
9798  *
9799  * Return Code: The Solaris device number
9800  *
9801  *     Context: Any
9802  */
9803 
9804 static dev_t
9805 sd_make_device(dev_info_t *devi)
9806 {
9807 	return (makedevice(ddi_driver_major(devi),
9808 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9809 }
9810 
9811 
9812 /*
9813  *    Function: sd_pm_entry
9814  *
9815  * Description: Called at the start of a new command to manage power
9816  *		and busy status of a device. This includes determining whether
9817  *		the current power state of the device is sufficient for
9818  *		performing the command or whether it must be changed.
9819  *		The PM framework is notified appropriately.
9820  *		Only with a return status of DDI_SUCCESS will the
9821  *		component be busy to the framework.
9822  *
9823  *		All callers of sd_pm_entry must check the return status
9824  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9825  *		of DDI_FAILURE indicates the device failed to power up.
9826  *		In this case un_pm_count has been adjusted so the result
9827  *		on exit is still powered down, ie. count is less than 0.
9828  *		Calling sd_pm_exit with this count value hits an ASSERT.
9829  *
9830  * Return Code: DDI_SUCCESS or DDI_FAILURE
9831  *
9832  *     Context: Kernel thread context.
9833  */
9834 
9835 static int
9836 sd_pm_entry(struct sd_lun *un)
9837 {
9838 	int return_status = DDI_SUCCESS;
9839 
9840 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9841 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9842 
9843 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9844 
9845 	if (un->un_f_pm_is_enabled == FALSE) {
9846 		SD_TRACE(SD_LOG_IO_PM, un,
9847 		    "sd_pm_entry: exiting, PM not enabled\n");
9848 		return (return_status);
9849 	}
9850 
9851 	/*
9852 	 * Just increment a counter if PM is enabled. On the transition from
9853 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9854 	 * the count with each IO and mark the device as idle when the count
9855 	 * hits 0.
9856 	 *
9857 	 * If the count is less than 0 the device is powered down. If a powered
9858 	 * down device is successfully powered up then the count must be
9859 	 * incremented to reflect the power up. Note that it'll get incremented
9860 	 * a second time to become busy.
9861 	 *
9862 	 * Because the following has the potential to change the device state
9863 	 * and must release the un_pm_mutex to do so, only one thread can be
9864 	 * allowed through at a time.
9865 	 */
9866 
9867 	mutex_enter(&un->un_pm_mutex);
9868 	while (un->un_pm_busy == TRUE) {
9869 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9870 	}
9871 	un->un_pm_busy = TRUE;
9872 
9873 	if (un->un_pm_count < 1) {
9874 
9875 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9876 
9877 		/*
9878 		 * Indicate we are now busy so the framework won't attempt to
9879 		 * power down the device. This call will only fail if either
9880 		 * we passed a bad component number or the device has no
9881 		 * components. Neither of these should ever happen.
9882 		 */
9883 		mutex_exit(&un->un_pm_mutex);
9884 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9885 		ASSERT(return_status == DDI_SUCCESS);
9886 
9887 		mutex_enter(&un->un_pm_mutex);
9888 
9889 		if (un->un_pm_count < 0) {
9890 			mutex_exit(&un->un_pm_mutex);
9891 
9892 			SD_TRACE(SD_LOG_IO_PM, un,
9893 			    "sd_pm_entry: power up component\n");
9894 
9895 			/*
9896 			 * pm_raise_power will cause sdpower to be called
9897 			 * which brings the device power level to the
9898 			 * desired state, If successful, un_pm_count and
9899 			 * un_power_level will be updated appropriately.
9900 			 */
9901 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9902 			    SD_PM_STATE_ACTIVE(un));
9903 
9904 			mutex_enter(&un->un_pm_mutex);
9905 
9906 			if (return_status != DDI_SUCCESS) {
9907 				/*
9908 				 * Power up failed.
9909 				 * Idle the device and adjust the count
9910 				 * so the result on exit is that we're
9911 				 * still powered down, ie. count is less than 0.
9912 				 */
9913 				SD_TRACE(SD_LOG_IO_PM, un,
9914 				    "sd_pm_entry: power up failed,"
9915 				    " idle the component\n");
9916 
9917 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9918 				un->un_pm_count--;
9919 			} else {
9920 				/*
9921 				 * Device is powered up, verify the
9922 				 * count is non-negative.
9923 				 * This is debug only.
9924 				 */
9925 				ASSERT(un->un_pm_count == 0);
9926 			}
9927 		}
9928 
9929 		if (return_status == DDI_SUCCESS) {
9930 			/*
9931 			 * For performance, now that the device has been tagged
9932 			 * as busy, and it's known to be powered up, update the
9933 			 * chain types to use jump tables that do not include
9934 			 * pm. This significantly lowers the overhead and
9935 			 * therefore improves performance.
9936 			 */
9937 
9938 			mutex_exit(&un->un_pm_mutex);
9939 			mutex_enter(SD_MUTEX(un));
9940 			SD_TRACE(SD_LOG_IO_PM, un,
9941 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9942 			    un->un_uscsi_chain_type);
9943 
9944 			if (un->un_f_non_devbsize_supported) {
9945 				un->un_buf_chain_type =
9946 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9947 			} else {
9948 				un->un_buf_chain_type =
9949 				    SD_CHAIN_INFO_DISK_NO_PM;
9950 			}
9951 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9952 
9953 			SD_TRACE(SD_LOG_IO_PM, un,
9954 			    "             changed  uscsi_chain_type to   %d\n",
9955 			    un->un_uscsi_chain_type);
9956 			mutex_exit(SD_MUTEX(un));
9957 			mutex_enter(&un->un_pm_mutex);
9958 
9959 			if (un->un_pm_idle_timeid == NULL) {
9960 				/* 300 ms. */
9961 				un->un_pm_idle_timeid =
9962 				    timeout(sd_pm_idletimeout_handler, un,
9963 				    (drv_usectohz((clock_t)300000)));
9964 				/*
9965 				 * Include an extra call to busy which keeps the
9966 				 * device busy with-respect-to the PM layer
9967 				 * until the timer fires, at which time it'll
9968 				 * get the extra idle call.
9969 				 */
9970 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9971 			}
9972 		}
9973 	}
9974 	un->un_pm_busy = FALSE;
9975 	/* Next... */
9976 	cv_signal(&un->un_pm_busy_cv);
9977 
9978 	un->un_pm_count++;
9979 
9980 	SD_TRACE(SD_LOG_IO_PM, un,
9981 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9982 
9983 	mutex_exit(&un->un_pm_mutex);
9984 
9985 	return (return_status);
9986 }
9987 
9988 
9989 /*
9990  *    Function: sd_pm_exit
9991  *
9992  * Description: Called at the completion of a command to manage busy
9993  *		status for the device. If the device becomes idle the
9994  *		PM framework is notified.
9995  *
9996  *     Context: Kernel thread context
9997  */
9998 
9999 static void
10000 sd_pm_exit(struct sd_lun *un)
10001 {
10002 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10003 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10004 
10005 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10006 
10007 	/*
10008 	 * After attach the following flag is only read, so don't
10009 	 * take the penalty of acquiring a mutex for it.
10010 	 */
10011 	if (un->un_f_pm_is_enabled == TRUE) {
10012 
10013 		mutex_enter(&un->un_pm_mutex);
10014 		un->un_pm_count--;
10015 
10016 		SD_TRACE(SD_LOG_IO_PM, un,
10017 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10018 
10019 		ASSERT(un->un_pm_count >= 0);
10020 		if (un->un_pm_count == 0) {
10021 			mutex_exit(&un->un_pm_mutex);
10022 
10023 			SD_TRACE(SD_LOG_IO_PM, un,
10024 			    "sd_pm_exit: idle component\n");
10025 
10026 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10027 
10028 		} else {
10029 			mutex_exit(&un->un_pm_mutex);
10030 		}
10031 	}
10032 
10033 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10034 }
10035 
10036 
10037 /*
10038  *    Function: sdopen
10039  *
10040  * Description: Driver's open(9e) entry point function.
10041  *
10042  *   Arguments: dev_i   - pointer to device number
10043  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10044  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10045  *		cred_p  - user credential pointer
10046  *
10047  * Return Code: EINVAL
10048  *		ENXIO
10049  *		EIO
10050  *		EROFS
10051  *		EBUSY
10052  *
10053  *     Context: Kernel thread context
10054  */
10055 /* ARGSUSED */
10056 static int
10057 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10058 {
10059 	struct sd_lun	*un;
10060 	int		nodelay;
10061 	int		part;
10062 	uint64_t	partmask;
10063 	int		instance;
10064 	dev_t		dev;
10065 	int		rval = EIO;
10066 	diskaddr_t	nblks = 0;
10067 	diskaddr_t	label_cap;
10068 
10069 	/* Validate the open type */
10070 	if (otyp >= OTYPCNT) {
10071 		return (EINVAL);
10072 	}
10073 
10074 	dev = *dev_p;
10075 	instance = SDUNIT(dev);
10076 	mutex_enter(&sd_detach_mutex);
10077 
10078 	/*
10079 	 * Fail the open if there is no softstate for the instance, or
10080 	 * if another thread somewhere is trying to detach the instance.
10081 	 */
10082 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10083 	    (un->un_detach_count != 0)) {
10084 		mutex_exit(&sd_detach_mutex);
10085 		/*
10086 		 * The probe cache only needs to be cleared when open (9e) fails
10087 		 * with ENXIO (4238046).
10088 		 */
10089 		/*
10090 		 * un-conditionally clearing probe cache is ok with
10091 		 * separate sd/ssd binaries
10092 		 * x86 platform can be an issue with both parallel
10093 		 * and fibre in 1 binary
10094 		 */
10095 		sd_scsi_clear_probe_cache();
10096 		return (ENXIO);
10097 	}
10098 
10099 	/*
10100 	 * The un_layer_count is to prevent another thread in specfs from
10101 	 * trying to detach the instance, which can happen when we are
10102 	 * called from a higher-layer driver instead of thru specfs.
10103 	 * This will not be needed when DDI provides a layered driver
10104 	 * interface that allows specfs to know that an instance is in
10105 	 * use by a layered driver & should not be detached.
10106 	 *
10107 	 * Note: the semantics for layered driver opens are exactly one
10108 	 * close for every open.
10109 	 */
10110 	if (otyp == OTYP_LYR) {
10111 		un->un_layer_count++;
10112 	}
10113 
10114 	/*
10115 	 * Keep a count of the current # of opens in progress. This is because
10116 	 * some layered drivers try to call us as a regular open. This can
10117 	 * cause problems that we cannot prevent, however by keeping this count
10118 	 * we can at least keep our open and detach routines from racing against
10119 	 * each other under such conditions.
10120 	 */
10121 	un->un_opens_in_progress++;
10122 	mutex_exit(&sd_detach_mutex);
10123 
10124 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10125 	part	 = SDPART(dev);
10126 	partmask = 1 << part;
10127 
10128 	/*
10129 	 * We use a semaphore here in order to serialize
10130 	 * open and close requests on the device.
10131 	 */
10132 	sema_p(&un->un_semoclose);
10133 
10134 	mutex_enter(SD_MUTEX(un));
10135 
10136 	/*
10137 	 * All device accesses go thru sdstrategy() where we check
10138 	 * on suspend status but there could be a scsi_poll command,
10139 	 * which bypasses sdstrategy(), so we need to check pm
10140 	 * status.
10141 	 */
10142 
10143 	if (!nodelay) {
10144 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10145 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10146 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10147 		}
10148 
10149 		mutex_exit(SD_MUTEX(un));
10150 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10151 			rval = EIO;
10152 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10153 			    "sdopen: sd_pm_entry failed\n");
10154 			goto open_failed_with_pm;
10155 		}
10156 		mutex_enter(SD_MUTEX(un));
10157 	}
10158 
10159 	/* check for previous exclusive open */
10160 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10161 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10162 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10163 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10164 
10165 	if (un->un_exclopen & (partmask)) {
10166 		goto excl_open_fail;
10167 	}
10168 
10169 	if (flag & FEXCL) {
10170 		int i;
10171 		if (un->un_ocmap.lyropen[part]) {
10172 			goto excl_open_fail;
10173 		}
10174 		for (i = 0; i < (OTYPCNT - 1); i++) {
10175 			if (un->un_ocmap.regopen[i] & (partmask)) {
10176 				goto excl_open_fail;
10177 			}
10178 		}
10179 	}
10180 
10181 	/*
10182 	 * Check the write permission if this is a removable media device,
10183 	 * NDELAY has not been set, and writable permission is requested.
10184 	 *
10185 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10186 	 * attempt will fail with EIO as part of the I/O processing. This is a
10187 	 * more permissive implementation that allows the open to succeed and
10188 	 * WRITE attempts to fail when appropriate.
10189 	 */
10190 	if (un->un_f_chk_wp_open) {
10191 		if ((flag & FWRITE) && (!nodelay)) {
10192 			mutex_exit(SD_MUTEX(un));
10193 			/*
10194 			 * Defer the check for write permission on writable
10195 			 * DVD drive till sdstrategy and will not fail open even
10196 			 * if FWRITE is set as the device can be writable
10197 			 * depending upon the media and the media can change
10198 			 * after the call to open().
10199 			 */
10200 			if (un->un_f_dvdram_writable_device == FALSE) {
10201 				if (ISCD(un) || sr_check_wp(dev)) {
10202 				rval = EROFS;
10203 				mutex_enter(SD_MUTEX(un));
10204 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10205 				    "write to cd or write protected media\n");
10206 				goto open_fail;
10207 				}
10208 			}
10209 			mutex_enter(SD_MUTEX(un));
10210 		}
10211 	}
10212 
10213 	/*
10214 	 * If opening in NDELAY/NONBLOCK mode, just return.
10215 	 * Check if disk is ready and has a valid geometry later.
10216 	 */
10217 	if (!nodelay) {
10218 		sd_ssc_t	*ssc;
10219 
10220 		mutex_exit(SD_MUTEX(un));
10221 		ssc = sd_ssc_init(un);
10222 		rval = sd_ready_and_valid(ssc, part);
10223 		sd_ssc_fini(ssc);
10224 		mutex_enter(SD_MUTEX(un));
10225 		/*
10226 		 * Fail if device is not ready or if the number of disk
10227 		 * blocks is zero or negative for non CD devices.
10228 		 */
10229 
10230 		nblks = 0;
10231 
10232 		if (rval == SD_READY_VALID && (!ISCD(un))) {
10233 			/* if cmlb_partinfo fails, nblks remains 0 */
10234 			mutex_exit(SD_MUTEX(un));
10235 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
10236 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
10237 			mutex_enter(SD_MUTEX(un));
10238 		}
10239 
10240 		if ((rval != SD_READY_VALID) ||
10241 		    (!ISCD(un) && nblks <= 0)) {
10242 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10243 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10244 			    "device not ready or invalid disk block value\n");
10245 			goto open_fail;
10246 		}
10247 #if defined(__i386) || defined(__amd64)
10248 	} else {
10249 		uchar_t *cp;
10250 		/*
10251 		 * x86 requires special nodelay handling, so that p0 is
10252 		 * always defined and accessible.
10253 		 * Invalidate geometry only if device is not already open.
10254 		 */
10255 		cp = &un->un_ocmap.chkd[0];
10256 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10257 			if (*cp != (uchar_t)0) {
10258 				break;
10259 			}
10260 			cp++;
10261 		}
10262 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10263 			mutex_exit(SD_MUTEX(un));
10264 			cmlb_invalidate(un->un_cmlbhandle,
10265 			    (void *)SD_PATH_DIRECT);
10266 			mutex_enter(SD_MUTEX(un));
10267 		}
10268 
10269 #endif
10270 	}
10271 
10272 	if (otyp == OTYP_LYR) {
10273 		un->un_ocmap.lyropen[part]++;
10274 	} else {
10275 		un->un_ocmap.regopen[otyp] |= partmask;
10276 	}
10277 
10278 	/* Set up open and exclusive open flags */
10279 	if (flag & FEXCL) {
10280 		un->un_exclopen |= (partmask);
10281 	}
10282 
10283 	/*
10284 	 * If the lun is EFI labeled and lun capacity is greater than the
10285 	 * capacity contained in the label, log a sys-event to notify the
10286 	 * interested module.
10287 	 * To avoid an infinite loop of logging sys-event, we only log the
10288 	 * event when the lun is not opened in NDELAY mode. The event handler
10289 	 * should open the lun in NDELAY mode.
10290 	 */
10291 	if (!nodelay) {
10292 		mutex_exit(SD_MUTEX(un));
10293 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
10294 		    (void*)SD_PATH_DIRECT) == 0) {
10295 			mutex_enter(SD_MUTEX(un));
10296 			if (un->un_f_blockcount_is_valid &&
10297 			    un->un_blockcount > label_cap &&
10298 			    un->un_f_expnevent == B_FALSE) {
10299 				un->un_f_expnevent = B_TRUE;
10300 				mutex_exit(SD_MUTEX(un));
10301 				sd_log_lun_expansion_event(un,
10302 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
10303 				mutex_enter(SD_MUTEX(un));
10304 			}
10305 		} else {
10306 			mutex_enter(SD_MUTEX(un));
10307 		}
10308 	}
10309 
10310 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10311 	    "open of part %d type %d\n", part, otyp);
10312 
10313 	mutex_exit(SD_MUTEX(un));
10314 	if (!nodelay) {
10315 		sd_pm_exit(un);
10316 	}
10317 
10318 	sema_v(&un->un_semoclose);
10319 
10320 	mutex_enter(&sd_detach_mutex);
10321 	un->un_opens_in_progress--;
10322 	mutex_exit(&sd_detach_mutex);
10323 
10324 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10325 	return (DDI_SUCCESS);
10326 
10327 excl_open_fail:
10328 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10329 	rval = EBUSY;
10330 
10331 open_fail:
10332 	mutex_exit(SD_MUTEX(un));
10333 
10334 	/*
10335 	 * On a failed open we must exit the pm management.
10336 	 */
10337 	if (!nodelay) {
10338 		sd_pm_exit(un);
10339 	}
10340 open_failed_with_pm:
10341 	sema_v(&un->un_semoclose);
10342 
10343 	mutex_enter(&sd_detach_mutex);
10344 	un->un_opens_in_progress--;
10345 	if (otyp == OTYP_LYR) {
10346 		un->un_layer_count--;
10347 	}
10348 	mutex_exit(&sd_detach_mutex);
10349 
10350 	return (rval);
10351 }
10352 
10353 
10354 /*
10355  *    Function: sdclose
10356  *
10357  * Description: Driver's close(9e) entry point function.
10358  *
10359  *   Arguments: dev    - device number
10360  *		flag   - file status flag, informational only
10361  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10362  *		cred_p - user credential pointer
10363  *
10364  * Return Code: ENXIO
10365  *
10366  *     Context: Kernel thread context
10367  */
10368 /* ARGSUSED */
10369 static int
10370 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10371 {
10372 	struct sd_lun	*un;
10373 	uchar_t		*cp;
10374 	int		part;
10375 	int		nodelay;
10376 	int		rval = 0;
10377 
10378 	/* Validate the open type */
10379 	if (otyp >= OTYPCNT) {
10380 		return (ENXIO);
10381 	}
10382 
10383 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10384 		return (ENXIO);
10385 	}
10386 
10387 	part = SDPART(dev);
10388 	nodelay = flag & (FNDELAY | FNONBLOCK);
10389 
10390 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10391 	    "sdclose: close of part %d type %d\n", part, otyp);
10392 
10393 	/*
10394 	 * We use a semaphore here in order to serialize
10395 	 * open and close requests on the device.
10396 	 */
10397 	sema_p(&un->un_semoclose);
10398 
10399 	mutex_enter(SD_MUTEX(un));
10400 
10401 	/* Don't proceed if power is being changed. */
10402 	while (un->un_state == SD_STATE_PM_CHANGING) {
10403 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10404 	}
10405 
10406 	if (un->un_exclopen & (1 << part)) {
10407 		un->un_exclopen &= ~(1 << part);
10408 	}
10409 
10410 	/* Update the open partition map */
10411 	if (otyp == OTYP_LYR) {
10412 		un->un_ocmap.lyropen[part] -= 1;
10413 	} else {
10414 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10415 	}
10416 
10417 	cp = &un->un_ocmap.chkd[0];
10418 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10419 		if (*cp != NULL) {
10420 			break;
10421 		}
10422 		cp++;
10423 	}
10424 
10425 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10426 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10427 
10428 		/*
10429 		 * We avoid persistance upon the last close, and set
10430 		 * the throttle back to the maximum.
10431 		 */
10432 		un->un_throttle = un->un_saved_throttle;
10433 
10434 		if (un->un_state == SD_STATE_OFFLINE) {
10435 			if (un->un_f_is_fibre == FALSE) {
10436 				scsi_log(SD_DEVINFO(un), sd_label,
10437 				    CE_WARN, "offline\n");
10438 			}
10439 			mutex_exit(SD_MUTEX(un));
10440 			cmlb_invalidate(un->un_cmlbhandle,
10441 			    (void *)SD_PATH_DIRECT);
10442 			mutex_enter(SD_MUTEX(un));
10443 
10444 		} else {
10445 			/*
10446 			 * Flush any outstanding writes in NVRAM cache.
10447 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10448 			 * cmd, it may not work for non-Pluto devices.
10449 			 * SYNCHRONIZE CACHE is not required for removables,
10450 			 * except DVD-RAM drives.
10451 			 *
10452 			 * Also note: because SYNCHRONIZE CACHE is currently
10453 			 * the only command issued here that requires the
10454 			 * drive be powered up, only do the power up before
10455 			 * sending the Sync Cache command. If additional
10456 			 * commands are added which require a powered up
10457 			 * drive, the following sequence may have to change.
10458 			 *
10459 			 * And finally, note that parallel SCSI on SPARC
10460 			 * only issues a Sync Cache to DVD-RAM, a newly
10461 			 * supported device.
10462 			 */
10463 #if defined(__i386) || defined(__amd64)
10464 			if ((un->un_f_sync_cache_supported &&
10465 			    un->un_f_sync_cache_required) ||
10466 			    un->un_f_dvdram_writable_device == TRUE) {
10467 #else
10468 			if (un->un_f_dvdram_writable_device == TRUE) {
10469 #endif
10470 				mutex_exit(SD_MUTEX(un));
10471 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10472 					rval =
10473 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10474 					    NULL);
10475 					/* ignore error if not supported */
10476 					if (rval == ENOTSUP) {
10477 						rval = 0;
10478 					} else if (rval != 0) {
10479 						rval = EIO;
10480 					}
10481 					sd_pm_exit(un);
10482 				} else {
10483 					rval = EIO;
10484 				}
10485 				mutex_enter(SD_MUTEX(un));
10486 			}
10487 
10488 			/*
10489 			 * For devices which supports DOOR_LOCK, send an ALLOW
10490 			 * MEDIA REMOVAL command, but don't get upset if it
10491 			 * fails. We need to raise the power of the drive before
10492 			 * we can call sd_send_scsi_DOORLOCK()
10493 			 */
10494 			if (un->un_f_doorlock_supported) {
10495 				mutex_exit(SD_MUTEX(un));
10496 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10497 					sd_ssc_t	*ssc;
10498 
10499 					ssc = sd_ssc_init(un);
10500 					rval = sd_send_scsi_DOORLOCK(ssc,
10501 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10502 					if (rval != 0)
10503 						sd_ssc_assessment(ssc,
10504 						    SD_FMT_IGNORE);
10505 					sd_ssc_fini(ssc);
10506 
10507 					sd_pm_exit(un);
10508 					if (ISCD(un) && (rval != 0) &&
10509 					    (nodelay != 0)) {
10510 						rval = ENXIO;
10511 					}
10512 				} else {
10513 					rval = EIO;
10514 				}
10515 				mutex_enter(SD_MUTEX(un));
10516 			}
10517 
10518 			/*
10519 			 * If a device has removable media, invalidate all
10520 			 * parameters related to media, such as geometry,
10521 			 * blocksize, and blockcount.
10522 			 */
10523 			if (un->un_f_has_removable_media) {
10524 				sr_ejected(un);
10525 			}
10526 
10527 			/*
10528 			 * Destroy the cache (if it exists) which was
10529 			 * allocated for the write maps since this is
10530 			 * the last close for this media.
10531 			 */
10532 			if (un->un_wm_cache) {
10533 				/*
10534 				 * Check if there are pending commands.
10535 				 * and if there are give a warning and
10536 				 * do not destroy the cache.
10537 				 */
10538 				if (un->un_ncmds_in_driver > 0) {
10539 					scsi_log(SD_DEVINFO(un),
10540 					    sd_label, CE_WARN,
10541 					    "Unable to clean up memory "
10542 					    "because of pending I/O\n");
10543 				} else {
10544 					kmem_cache_destroy(
10545 					    un->un_wm_cache);
10546 					un->un_wm_cache = NULL;
10547 				}
10548 			}
10549 		}
10550 	}
10551 
10552 	mutex_exit(SD_MUTEX(un));
10553 	sema_v(&un->un_semoclose);
10554 
10555 	if (otyp == OTYP_LYR) {
10556 		mutex_enter(&sd_detach_mutex);
10557 		/*
10558 		 * The detach routine may run when the layer count
10559 		 * drops to zero.
10560 		 */
10561 		un->un_layer_count--;
10562 		mutex_exit(&sd_detach_mutex);
10563 	}
10564 
10565 	return (rval);
10566 }
10567 
10568 
10569 /*
10570  *    Function: sd_ready_and_valid
10571  *
10572  * Description: Test if device is ready and has a valid geometry.
10573  *
10574  *   Arguments: ssc - sd_ssc_t will contain un
10575  *		un  - driver soft state (unit) structure
10576  *
10577  * Return Code: SD_READY_VALID		ready and valid label
10578  *		SD_NOT_READY_VALID	not ready, no label
10579  *		SD_RESERVED_BY_OTHERS	reservation conflict
10580  *
10581  *     Context: Never called at interrupt context.
10582  */
10583 
10584 static int
10585 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10586 {
10587 	struct sd_errstats	*stp;
10588 	uint64_t		capacity;
10589 	uint_t			lbasize;
10590 	int			rval = SD_READY_VALID;
10591 	char			name_str[48];
10592 	boolean_t		is_valid;
10593 	struct sd_lun		*un;
10594 	int			status;
10595 
10596 	ASSERT(ssc != NULL);
10597 	un = ssc->ssc_un;
10598 	ASSERT(un != NULL);
10599 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10600 
10601 	mutex_enter(SD_MUTEX(un));
10602 	/*
10603 	 * If a device has removable media, we must check if media is
10604 	 * ready when checking if this device is ready and valid.
10605 	 */
10606 	if (un->un_f_has_removable_media) {
10607 		mutex_exit(SD_MUTEX(un));
10608 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10609 
10610 		if (status != 0) {
10611 			rval = SD_NOT_READY_VALID;
10612 			mutex_enter(SD_MUTEX(un));
10613 
10614 			/* Ignore all failed status for removalbe media */
10615 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10616 
10617 			goto done;
10618 		}
10619 
10620 		is_valid = SD_IS_VALID_LABEL(un);
10621 		mutex_enter(SD_MUTEX(un));
10622 		if (!is_valid ||
10623 		    (un->un_f_blockcount_is_valid == FALSE) ||
10624 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10625 
10626 			/* capacity has to be read every open. */
10627 			mutex_exit(SD_MUTEX(un));
10628 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10629 			    &lbasize, SD_PATH_DIRECT);
10630 
10631 			if (status != 0) {
10632 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10633 
10634 				cmlb_invalidate(un->un_cmlbhandle,
10635 				    (void *)SD_PATH_DIRECT);
10636 				mutex_enter(SD_MUTEX(un));
10637 				rval = SD_NOT_READY_VALID;
10638 
10639 				goto done;
10640 			} else {
10641 				mutex_enter(SD_MUTEX(un));
10642 				sd_update_block_info(un, lbasize, capacity);
10643 			}
10644 		}
10645 
10646 		/*
10647 		 * Check if the media in the device is writable or not.
10648 		 */
10649 		if (!is_valid && ISCD(un)) {
10650 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10651 		}
10652 
10653 	} else {
10654 		/*
10655 		 * Do a test unit ready to clear any unit attention from non-cd
10656 		 * devices.
10657 		 */
10658 		mutex_exit(SD_MUTEX(un));
10659 
10660 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10661 		if (status != 0) {
10662 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10663 		}
10664 
10665 		mutex_enter(SD_MUTEX(un));
10666 	}
10667 
10668 
10669 	/*
10670 	 * If this is a non 512 block device, allocate space for
10671 	 * the wmap cache. This is being done here since every time
10672 	 * a media is changed this routine will be called and the
10673 	 * block size is a function of media rather than device.
10674 	 */
10675 	if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR ||
10676 	    un->un_f_non_devbsize_supported) &&
10677 	    un->un_tgt_blocksize != DEV_BSIZE) ||
10678 	    un->un_f_enable_rmw) {
10679 		if (!(un->un_wm_cache)) {
10680 			(void) snprintf(name_str, sizeof (name_str),
10681 			    "%s%d_cache",
10682 			    ddi_driver_name(SD_DEVINFO(un)),
10683 			    ddi_get_instance(SD_DEVINFO(un)));
10684 			un->un_wm_cache = kmem_cache_create(
10685 			    name_str, sizeof (struct sd_w_map),
10686 			    8, sd_wm_cache_constructor,
10687 			    sd_wm_cache_destructor, NULL,
10688 			    (void *)un, NULL, 0);
10689 			if (!(un->un_wm_cache)) {
10690 				rval = ENOMEM;
10691 				goto done;
10692 			}
10693 		}
10694 	}
10695 
10696 	if (un->un_state == SD_STATE_NORMAL) {
10697 		/*
10698 		 * If the target is not yet ready here (defined by a TUR
10699 		 * failure), invalidate the geometry and print an 'offline'
10700 		 * message. This is a legacy message, as the state of the
10701 		 * target is not actually changed to SD_STATE_OFFLINE.
10702 		 *
10703 		 * If the TUR fails for EACCES (Reservation Conflict),
10704 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10705 		 * reservation conflict. If the TUR fails for other
10706 		 * reasons, SD_NOT_READY_VALID will be returned.
10707 		 */
10708 		int err;
10709 
10710 		mutex_exit(SD_MUTEX(un));
10711 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10712 		mutex_enter(SD_MUTEX(un));
10713 
10714 		if (err != 0) {
10715 			mutex_exit(SD_MUTEX(un));
10716 			cmlb_invalidate(un->un_cmlbhandle,
10717 			    (void *)SD_PATH_DIRECT);
10718 			mutex_enter(SD_MUTEX(un));
10719 			if (err == EACCES) {
10720 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10721 				    "reservation conflict\n");
10722 				rval = SD_RESERVED_BY_OTHERS;
10723 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10724 			} else {
10725 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10726 				    "drive offline\n");
10727 				rval = SD_NOT_READY_VALID;
10728 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10729 			}
10730 			goto done;
10731 		}
10732 	}
10733 
10734 	if (un->un_f_format_in_progress == FALSE) {
10735 		mutex_exit(SD_MUTEX(un));
10736 
10737 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10738 		    (void *)SD_PATH_DIRECT);
10739 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10740 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10741 			rval = SD_NOT_READY_VALID;
10742 			mutex_enter(SD_MUTEX(un));
10743 
10744 			goto done;
10745 		}
10746 		if (un->un_f_pkstats_enabled) {
10747 			sd_set_pstats(un);
10748 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10749 			    "sd_ready_and_valid: un:0x%p pstats created and "
10750 			    "set\n", un);
10751 		}
10752 		mutex_enter(SD_MUTEX(un));
10753 	}
10754 
10755 	/*
10756 	 * If this device supports DOOR_LOCK command, try and send
10757 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10758 	 * if it fails. For a CD, however, it is an error
10759 	 */
10760 	if (un->un_f_doorlock_supported) {
10761 		mutex_exit(SD_MUTEX(un));
10762 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10763 		    SD_PATH_DIRECT);
10764 
10765 		if ((status != 0) && ISCD(un)) {
10766 			rval = SD_NOT_READY_VALID;
10767 			mutex_enter(SD_MUTEX(un));
10768 
10769 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10770 
10771 			goto done;
10772 		} else if (status != 0)
10773 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10774 		mutex_enter(SD_MUTEX(un));
10775 	}
10776 
10777 	/* The state has changed, inform the media watch routines */
10778 	un->un_mediastate = DKIO_INSERTED;
10779 	cv_broadcast(&un->un_state_cv);
10780 	rval = SD_READY_VALID;
10781 
10782 done:
10783 
10784 	/*
10785 	 * Initialize the capacity kstat value, if no media previously
10786 	 * (capacity kstat is 0) and a media has been inserted
10787 	 * (un_blockcount > 0).
10788 	 */
10789 	if (un->un_errstats != NULL) {
10790 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10791 		if ((stp->sd_capacity.value.ui64 == 0) &&
10792 		    (un->un_f_blockcount_is_valid == TRUE)) {
10793 			stp->sd_capacity.value.ui64 =
10794 			    (uint64_t)((uint64_t)un->un_blockcount *
10795 			    un->un_sys_blocksize);
10796 		}
10797 	}
10798 
10799 	mutex_exit(SD_MUTEX(un));
10800 	return (rval);
10801 }
10802 
10803 
10804 /*
10805  *    Function: sdmin
10806  *
10807  * Description: Routine to limit the size of a data transfer. Used in
10808  *		conjunction with physio(9F).
10809  *
10810  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10811  *
10812  *     Context: Kernel thread context.
10813  */
10814 
10815 static void
10816 sdmin(struct buf *bp)
10817 {
10818 	struct sd_lun	*un;
10819 	int		instance;
10820 
10821 	instance = SDUNIT(bp->b_edev);
10822 
10823 	un = ddi_get_soft_state(sd_state, instance);
10824 	ASSERT(un != NULL);
10825 
10826 	/*
10827 	 * We depend on buf breakup to restrict
10828 	 * IO size if it is enabled.
10829 	 */
10830 	if (un->un_buf_breakup_supported) {
10831 		return;
10832 	}
10833 
10834 	if (bp->b_bcount > un->un_max_xfer_size) {
10835 		bp->b_bcount = un->un_max_xfer_size;
10836 	}
10837 }
10838 
10839 
10840 /*
10841  *    Function: sdread
10842  *
10843  * Description: Driver's read(9e) entry point function.
10844  *
10845  *   Arguments: dev   - device number
10846  *		uio   - structure pointer describing where data is to be stored
10847  *			in user's space
10848  *		cred_p  - user credential pointer
10849  *
10850  * Return Code: ENXIO
10851  *		EIO
10852  *		EINVAL
10853  *		value returned by physio
10854  *
10855  *     Context: Kernel thread context.
10856  */
10857 /* ARGSUSED */
10858 static int
10859 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10860 {
10861 	struct sd_lun	*un = NULL;
10862 	int		secmask;
10863 	int		err = 0;
10864 	sd_ssc_t	*ssc;
10865 
10866 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10867 		return (ENXIO);
10868 	}
10869 
10870 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10871 
10872 
10873 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10874 		mutex_enter(SD_MUTEX(un));
10875 		/*
10876 		 * Because the call to sd_ready_and_valid will issue I/O we
10877 		 * must wait here if either the device is suspended or
10878 		 * if it's power level is changing.
10879 		 */
10880 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10881 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10882 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10883 		}
10884 		un->un_ncmds_in_driver++;
10885 		mutex_exit(SD_MUTEX(un));
10886 
10887 		/* Initialize sd_ssc_t for internal uscsi commands */
10888 		ssc = sd_ssc_init(un);
10889 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10890 			err = EIO;
10891 		} else {
10892 			err = 0;
10893 		}
10894 		sd_ssc_fini(ssc);
10895 
10896 		mutex_enter(SD_MUTEX(un));
10897 		un->un_ncmds_in_driver--;
10898 		ASSERT(un->un_ncmds_in_driver >= 0);
10899 		mutex_exit(SD_MUTEX(un));
10900 		if (err != 0)
10901 			return (err);
10902 	}
10903 
10904 	/*
10905 	 * Read requests are restricted to multiples of the system block size.
10906 	 */
10907 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
10908 	    !un->un_f_enable_rmw)
10909 		secmask = un->un_tgt_blocksize - 1;
10910 	else
10911 		secmask = DEV_BSIZE - 1;
10912 
10913 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10914 		SD_ERROR(SD_LOG_READ_WRITE, un,
10915 		    "sdread: file offset not modulo %d\n",
10916 		    secmask + 1);
10917 		err = EINVAL;
10918 	} else if (uio->uio_iov->iov_len & (secmask)) {
10919 		SD_ERROR(SD_LOG_READ_WRITE, un,
10920 		    "sdread: transfer length not modulo %d\n",
10921 		    secmask + 1);
10922 		err = EINVAL;
10923 	} else {
10924 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10925 	}
10926 
10927 	return (err);
10928 }
10929 
10930 
10931 /*
10932  *    Function: sdwrite
10933  *
10934  * Description: Driver's write(9e) entry point function.
10935  *
10936  *   Arguments: dev   - device number
10937  *		uio   - structure pointer describing where data is stored in
10938  *			user's space
10939  *		cred_p  - user credential pointer
10940  *
10941  * Return Code: ENXIO
10942  *		EIO
10943  *		EINVAL
10944  *		value returned by physio
10945  *
10946  *     Context: Kernel thread context.
10947  */
10948 /* ARGSUSED */
10949 static int
10950 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10951 {
10952 	struct sd_lun	*un = NULL;
10953 	int		secmask;
10954 	int		err = 0;
10955 	sd_ssc_t	*ssc;
10956 
10957 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10958 		return (ENXIO);
10959 	}
10960 
10961 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10962 
10963 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10964 		mutex_enter(SD_MUTEX(un));
10965 		/*
10966 		 * Because the call to sd_ready_and_valid will issue I/O we
10967 		 * must wait here if either the device is suspended or
10968 		 * if it's power level is changing.
10969 		 */
10970 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10971 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10972 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10973 		}
10974 		un->un_ncmds_in_driver++;
10975 		mutex_exit(SD_MUTEX(un));
10976 
10977 		/* Initialize sd_ssc_t for internal uscsi commands */
10978 		ssc = sd_ssc_init(un);
10979 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10980 			err = EIO;
10981 		} else {
10982 			err = 0;
10983 		}
10984 		sd_ssc_fini(ssc);
10985 
10986 		mutex_enter(SD_MUTEX(un));
10987 		un->un_ncmds_in_driver--;
10988 		ASSERT(un->un_ncmds_in_driver >= 0);
10989 		mutex_exit(SD_MUTEX(un));
10990 		if (err != 0)
10991 			return (err);
10992 	}
10993 
10994 	/*
10995 	 * Write requests are restricted to multiples of the system block size.
10996 	 */
10997 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
10998 	    !un->un_f_enable_rmw)
10999 		secmask = un->un_tgt_blocksize - 1;
11000 	else
11001 		secmask = DEV_BSIZE - 1;
11002 
11003 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11004 		SD_ERROR(SD_LOG_READ_WRITE, un,
11005 		    "sdwrite: file offset not modulo %d\n",
11006 		    secmask + 1);
11007 		err = EINVAL;
11008 	} else if (uio->uio_iov->iov_len & (secmask)) {
11009 		SD_ERROR(SD_LOG_READ_WRITE, un,
11010 		    "sdwrite: transfer length not modulo %d\n",
11011 		    secmask + 1);
11012 		err = EINVAL;
11013 	} else {
11014 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11015 	}
11016 
11017 	return (err);
11018 }
11019 
11020 
11021 /*
11022  *    Function: sdaread
11023  *
11024  * Description: Driver's aread(9e) entry point function.
11025  *
11026  *   Arguments: dev   - device number
11027  *		aio   - structure pointer describing where data is to be stored
11028  *		cred_p  - user credential pointer
11029  *
11030  * Return Code: ENXIO
11031  *		EIO
11032  *		EINVAL
11033  *		value returned by aphysio
11034  *
11035  *     Context: Kernel thread context.
11036  */
11037 /* ARGSUSED */
11038 static int
11039 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11040 {
11041 	struct sd_lun	*un = NULL;
11042 	struct uio	*uio = aio->aio_uio;
11043 	int		secmask;
11044 	int		err = 0;
11045 	sd_ssc_t	*ssc;
11046 
11047 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11048 		return (ENXIO);
11049 	}
11050 
11051 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11052 
11053 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11054 		mutex_enter(SD_MUTEX(un));
11055 		/*
11056 		 * Because the call to sd_ready_and_valid will issue I/O we
11057 		 * must wait here if either the device is suspended or
11058 		 * if it's power level is changing.
11059 		 */
11060 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11061 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11062 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11063 		}
11064 		un->un_ncmds_in_driver++;
11065 		mutex_exit(SD_MUTEX(un));
11066 
11067 		/* Initialize sd_ssc_t for internal uscsi commands */
11068 		ssc = sd_ssc_init(un);
11069 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11070 			err = EIO;
11071 		} else {
11072 			err = 0;
11073 		}
11074 		sd_ssc_fini(ssc);
11075 
11076 		mutex_enter(SD_MUTEX(un));
11077 		un->un_ncmds_in_driver--;
11078 		ASSERT(un->un_ncmds_in_driver >= 0);
11079 		mutex_exit(SD_MUTEX(un));
11080 		if (err != 0)
11081 			return (err);
11082 	}
11083 
11084 	/*
11085 	 * Read requests are restricted to multiples of the system block size.
11086 	 */
11087 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11088 	    !un->un_f_enable_rmw)
11089 		secmask = un->un_tgt_blocksize - 1;
11090 	else
11091 		secmask = DEV_BSIZE - 1;
11092 
11093 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11094 		SD_ERROR(SD_LOG_READ_WRITE, un,
11095 		    "sdaread: file offset not modulo %d\n",
11096 		    secmask + 1);
11097 		err = EINVAL;
11098 	} else if (uio->uio_iov->iov_len & (secmask)) {
11099 		SD_ERROR(SD_LOG_READ_WRITE, un,
11100 		    "sdaread: transfer length not modulo %d\n",
11101 		    secmask + 1);
11102 		err = EINVAL;
11103 	} else {
11104 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11105 	}
11106 
11107 	return (err);
11108 }
11109 
11110 
11111 /*
11112  *    Function: sdawrite
11113  *
11114  * Description: Driver's awrite(9e) entry point function.
11115  *
11116  *   Arguments: dev   - device number
11117  *		aio   - structure pointer describing where data is stored
11118  *		cred_p  - user credential pointer
11119  *
11120  * Return Code: ENXIO
11121  *		EIO
11122  *		EINVAL
11123  *		value returned by aphysio
11124  *
11125  *     Context: Kernel thread context.
11126  */
11127 /* ARGSUSED */
11128 static int
11129 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11130 {
11131 	struct sd_lun	*un = NULL;
11132 	struct uio	*uio = aio->aio_uio;
11133 	int		secmask;
11134 	int		err = 0;
11135 	sd_ssc_t	*ssc;
11136 
11137 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11138 		return (ENXIO);
11139 	}
11140 
11141 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11142 
11143 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11144 		mutex_enter(SD_MUTEX(un));
11145 		/*
11146 		 * Because the call to sd_ready_and_valid will issue I/O we
11147 		 * must wait here if either the device is suspended or
11148 		 * if it's power level is changing.
11149 		 */
11150 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11151 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11152 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11153 		}
11154 		un->un_ncmds_in_driver++;
11155 		mutex_exit(SD_MUTEX(un));
11156 
11157 		/* Initialize sd_ssc_t for internal uscsi commands */
11158 		ssc = sd_ssc_init(un);
11159 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11160 			err = EIO;
11161 		} else {
11162 			err = 0;
11163 		}
11164 		sd_ssc_fini(ssc);
11165 
11166 		mutex_enter(SD_MUTEX(un));
11167 		un->un_ncmds_in_driver--;
11168 		ASSERT(un->un_ncmds_in_driver >= 0);
11169 		mutex_exit(SD_MUTEX(un));
11170 		if (err != 0)
11171 			return (err);
11172 	}
11173 
11174 	/*
11175 	 * Write requests are restricted to multiples of the system block size.
11176 	 */
11177 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11178 	    !un->un_f_enable_rmw)
11179 		secmask = un->un_tgt_blocksize - 1;
11180 	else
11181 		secmask = DEV_BSIZE - 1;
11182 
11183 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11184 		SD_ERROR(SD_LOG_READ_WRITE, un,
11185 		    "sdawrite: file offset not modulo %d\n",
11186 		    secmask + 1);
11187 		err = EINVAL;
11188 	} else if (uio->uio_iov->iov_len & (secmask)) {
11189 		SD_ERROR(SD_LOG_READ_WRITE, un,
11190 		    "sdawrite: transfer length not modulo %d\n",
11191 		    secmask + 1);
11192 		err = EINVAL;
11193 	} else {
11194 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11195 	}
11196 
11197 	return (err);
11198 }
11199 
11200 
11201 
11202 
11203 
11204 /*
11205  * Driver IO processing follows the following sequence:
11206  *
11207  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11208  *         |                |                     ^
11209  *         v                v                     |
11210  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11211  *         |                |                     |                   |
11212  *         v                |                     |                   |
11213  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11214  *         |                |                     ^                   ^
11215  *         v                v                     |                   |
11216  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11217  *         |                |                     |                   |
11218  *     +---+                |                     +------------+      +-------+
11219  *     |                    |                                  |              |
11220  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11221  *     |                    v                                  |              |
11222  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11223  *     |                    |                                  ^              |
11224  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11225  *     |                    v                                  |              |
11226  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11227  *     |                    |                                  ^              |
11228  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11229  *     |                    v                                  |              |
11230  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11231  *     |                    |                                  ^              |
11232  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11233  *     |                    v                                  |              |
11234  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11235  *     |                    |                                  ^              |
11236  *     |                    |                                  |              |
11237  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11238  *                          |                           ^
11239  *                          v                           |
11240  *                   sd_core_iostart()                  |
11241  *                          |                           |
11242  *                          |                           +------>(*destroypkt)()
11243  *                          +-> sd_start_cmds() <-+     |           |
11244  *                          |                     |     |           v
11245  *                          |                     |     |  scsi_destroy_pkt(9F)
11246  *                          |                     |     |
11247  *                          +->(*initpkt)()       +- sdintr()
11248  *                          |  |                        |  |
11249  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11250  *                          |  +-> scsi_setup_cdb(9F)   |
11251  *                          |                           |
11252  *                          +--> scsi_transport(9F)     |
11253  *                                     |                |
11254  *                                     +----> SCSA ---->+
11255  *
11256  *
11257  * This code is based upon the following presumptions:
11258  *
11259  *   - iostart and iodone functions operate on buf(9S) structures. These
11260  *     functions perform the necessary operations on the buf(9S) and pass
11261  *     them along to the next function in the chain by using the macros
11262  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11263  *     (for iodone side functions).
11264  *
11265  *   - The iostart side functions may sleep. The iodone side functions
11266  *     are called under interrupt context and may NOT sleep. Therefore
11267  *     iodone side functions also may not call iostart side functions.
11268  *     (NOTE: iostart side functions should NOT sleep for memory, as
11269  *     this could result in deadlock.)
11270  *
11271  *   - An iostart side function may call its corresponding iodone side
11272  *     function directly (if necessary).
11273  *
11274  *   - In the event of an error, an iostart side function can return a buf(9S)
11275  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11276  *     b_error in the usual way of course).
11277  *
11278  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11279  *     requests to the iostart side functions.  The iostart side functions in
11280  *     this case would be called under the context of a taskq thread, so it's
11281  *     OK for them to block/sleep/spin in this case.
11282  *
11283  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11284  *     pass them along to the next function in the chain.  The corresponding
11285  *     iodone side functions must coalesce the "shadow" bufs and return
11286  *     the "original" buf to the next higher layer.
11287  *
11288  *   - The b_private field of the buf(9S) struct holds a pointer to
11289  *     an sd_xbuf struct, which contains information needed to
11290  *     construct the scsi_pkt for the command.
11291  *
11292  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11293  *     layer must acquire & release the SD_MUTEX(un) as needed.
11294  */
11295 
11296 
11297 /*
11298  * Create taskq for all targets in the system. This is created at
11299  * _init(9E) and destroyed at _fini(9E).
11300  *
11301  * Note: here we set the minalloc to a reasonably high number to ensure that
11302  * we will have an adequate supply of task entries available at interrupt time.
11303  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11304  * sd_create_taskq().  Since we do not want to sleep for allocations at
11305  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11306  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11307  * requests any one instant in time.
11308  */
11309 #define	SD_TASKQ_NUMTHREADS	8
11310 #define	SD_TASKQ_MINALLOC	256
11311 #define	SD_TASKQ_MAXALLOC	256
11312 
11313 static taskq_t	*sd_tq = NULL;
11314 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11315 
11316 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11317 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11318 
11319 /*
11320  * The following task queue is being created for the write part of
11321  * read-modify-write of non-512 block size devices.
11322  * Limit the number of threads to 1 for now. This number has been chosen
11323  * considering the fact that it applies only to dvd ram drives/MO drives
11324  * currently. Performance for which is not main criteria at this stage.
11325  * Note: It needs to be explored if we can use a single taskq in future
11326  */
11327 #define	SD_WMR_TASKQ_NUMTHREADS	1
11328 static taskq_t	*sd_wmr_tq = NULL;
11329 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11330 
11331 /*
11332  *    Function: sd_taskq_create
11333  *
11334  * Description: Create taskq thread(s) and preallocate task entries
11335  *
11336  * Return Code: Returns a pointer to the allocated taskq_t.
11337  *
11338  *     Context: Can sleep. Requires blockable context.
11339  *
11340  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11341  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11342  *		- taskq_create() will block for memory, also it will panic
11343  *		  if it cannot create the requested number of threads.
11344  *		- Currently taskq_create() creates threads that cannot be
11345  *		  swapped.
11346  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11347  *		  supply of taskq entries at interrupt time (ie, so that we
11348  *		  do not have to sleep for memory)
11349  */
11350 
11351 static void
11352 sd_taskq_create(void)
11353 {
11354 	char	taskq_name[TASKQ_NAMELEN];
11355 
11356 	ASSERT(sd_tq == NULL);
11357 	ASSERT(sd_wmr_tq == NULL);
11358 
11359 	(void) snprintf(taskq_name, sizeof (taskq_name),
11360 	    "%s_drv_taskq", sd_label);
11361 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11362 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11363 	    TASKQ_PREPOPULATE));
11364 
11365 	(void) snprintf(taskq_name, sizeof (taskq_name),
11366 	    "%s_rmw_taskq", sd_label);
11367 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11368 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11369 	    TASKQ_PREPOPULATE));
11370 }
11371 
11372 
11373 /*
11374  *    Function: sd_taskq_delete
11375  *
11376  * Description: Complementary cleanup routine for sd_taskq_create().
11377  *
11378  *     Context: Kernel thread context.
11379  */
11380 
11381 static void
11382 sd_taskq_delete(void)
11383 {
11384 	ASSERT(sd_tq != NULL);
11385 	ASSERT(sd_wmr_tq != NULL);
11386 	taskq_destroy(sd_tq);
11387 	taskq_destroy(sd_wmr_tq);
11388 	sd_tq = NULL;
11389 	sd_wmr_tq = NULL;
11390 }
11391 
11392 
11393 /*
11394  *    Function: sdstrategy
11395  *
11396  * Description: Driver's strategy (9E) entry point function.
11397  *
11398  *   Arguments: bp - pointer to buf(9S)
11399  *
11400  * Return Code: Always returns zero
11401  *
11402  *     Context: Kernel thread context.
11403  */
11404 
11405 static int
11406 sdstrategy(struct buf *bp)
11407 {
11408 	struct sd_lun *un;
11409 
11410 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11411 	if (un == NULL) {
11412 		bioerror(bp, EIO);
11413 		bp->b_resid = bp->b_bcount;
11414 		biodone(bp);
11415 		return (0);
11416 	}
11417 
11418 	/* As was done in the past, fail new cmds. if state is dumping. */
11419 	if (un->un_state == SD_STATE_DUMPING) {
11420 		bioerror(bp, ENXIO);
11421 		bp->b_resid = bp->b_bcount;
11422 		biodone(bp);
11423 		return (0);
11424 	}
11425 
11426 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11427 
11428 	/*
11429 	 * Commands may sneak in while we released the mutex in
11430 	 * DDI_SUSPEND, we should block new commands. However, old
11431 	 * commands that are still in the driver at this point should
11432 	 * still be allowed to drain.
11433 	 */
11434 	mutex_enter(SD_MUTEX(un));
11435 	/*
11436 	 * Must wait here if either the device is suspended or
11437 	 * if it's power level is changing.
11438 	 */
11439 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11440 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11441 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11442 	}
11443 
11444 	un->un_ncmds_in_driver++;
11445 
11446 	/*
11447 	 * atapi: Since we are running the CD for now in PIO mode we need to
11448 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11449 	 * the HBA's init_pkt routine.
11450 	 */
11451 	if (un->un_f_cfg_is_atapi == TRUE) {
11452 		mutex_exit(SD_MUTEX(un));
11453 		bp_mapin(bp);
11454 		mutex_enter(SD_MUTEX(un));
11455 	}
11456 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11457 	    un->un_ncmds_in_driver);
11458 
11459 	if (bp->b_flags & B_WRITE)
11460 		un->un_f_sync_cache_required = TRUE;
11461 
11462 	mutex_exit(SD_MUTEX(un));
11463 
11464 	/*
11465 	 * This will (eventually) allocate the sd_xbuf area and
11466 	 * call sd_xbuf_strategy().  We just want to return the
11467 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11468 	 * imized tail call which saves us a stack frame.
11469 	 */
11470 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11471 }
11472 
11473 
11474 /*
11475  *    Function: sd_xbuf_strategy
11476  *
11477  * Description: Function for initiating IO operations via the
11478  *		ddi_xbuf_qstrategy() mechanism.
11479  *
11480  *     Context: Kernel thread context.
11481  */
11482 
11483 static void
11484 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11485 {
11486 	struct sd_lun *un = arg;
11487 
11488 	ASSERT(bp != NULL);
11489 	ASSERT(xp != NULL);
11490 	ASSERT(un != NULL);
11491 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11492 
11493 	/*
11494 	 * Initialize the fields in the xbuf and save a pointer to the
11495 	 * xbuf in bp->b_private.
11496 	 */
11497 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11498 
11499 	/* Send the buf down the iostart chain */
11500 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11501 }
11502 
11503 
11504 /*
11505  *    Function: sd_xbuf_init
11506  *
11507  * Description: Prepare the given sd_xbuf struct for use.
11508  *
11509  *   Arguments: un - ptr to softstate
11510  *		bp - ptr to associated buf(9S)
11511  *		xp - ptr to associated sd_xbuf
11512  *		chain_type - IO chain type to use:
11513  *			SD_CHAIN_NULL
11514  *			SD_CHAIN_BUFIO
11515  *			SD_CHAIN_USCSI
11516  *			SD_CHAIN_DIRECT
11517  *			SD_CHAIN_DIRECT_PRIORITY
11518  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11519  *			initialization; may be NULL if none.
11520  *
11521  *     Context: Kernel thread context
11522  */
11523 
11524 static void
11525 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11526 	uchar_t chain_type, void *pktinfop)
11527 {
11528 	int index;
11529 
11530 	ASSERT(un != NULL);
11531 	ASSERT(bp != NULL);
11532 	ASSERT(xp != NULL);
11533 
11534 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11535 	    bp, chain_type);
11536 
11537 	xp->xb_un	= un;
11538 	xp->xb_pktp	= NULL;
11539 	xp->xb_pktinfo	= pktinfop;
11540 	xp->xb_private	= bp->b_private;
11541 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11542 
11543 	/*
11544 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11545 	 * upon the specified chain type to use.
11546 	 */
11547 	switch (chain_type) {
11548 	case SD_CHAIN_NULL:
11549 		/*
11550 		 * Fall thru to just use the values for the buf type, even
11551 		 * tho for the NULL chain these values will never be used.
11552 		 */
11553 		/* FALLTHRU */
11554 	case SD_CHAIN_BUFIO:
11555 		index = un->un_buf_chain_type;
11556 		if ((!un->un_f_has_removable_media) &&
11557 		    (un->un_tgt_blocksize != 0) &&
11558 		    (un->un_tgt_blocksize != DEV_BSIZE ||
11559 		    un->un_f_enable_rmw)) {
11560 			int secmask = 0, blknomask = 0;
11561 			if (un->un_f_enable_rmw) {
11562 				blknomask =
11563 				    (un->un_phy_blocksize / DEV_BSIZE) - 1;
11564 				secmask = un->un_phy_blocksize - 1;
11565 			} else {
11566 				blknomask =
11567 				    (un->un_tgt_blocksize / DEV_BSIZE) - 1;
11568 				secmask = un->un_tgt_blocksize - 1;
11569 			}
11570 
11571 			if ((bp->b_lblkno & (blknomask)) ||
11572 			    (bp->b_bcount & (secmask))) {
11573 				if ((un->un_f_rmw_type !=
11574 				    SD_RMW_TYPE_RETURN_ERROR) ||
11575 				    un->un_f_enable_rmw) {
11576 					if (un->un_f_pm_is_enabled == FALSE)
11577 						index =
11578 						    SD_CHAIN_INFO_MSS_DSK_NO_PM;
11579 					else
11580 						index =
11581 						    SD_CHAIN_INFO_MSS_DISK;
11582 				}
11583 			}
11584 		}
11585 		break;
11586 	case SD_CHAIN_USCSI:
11587 		index = un->un_uscsi_chain_type;
11588 		break;
11589 	case SD_CHAIN_DIRECT:
11590 		index = un->un_direct_chain_type;
11591 		break;
11592 	case SD_CHAIN_DIRECT_PRIORITY:
11593 		index = un->un_priority_chain_type;
11594 		break;
11595 	default:
11596 		/* We're really broken if we ever get here... */
11597 		panic("sd_xbuf_init: illegal chain type!");
11598 		/*NOTREACHED*/
11599 	}
11600 
11601 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11602 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11603 
11604 	/*
11605 	 * It might be a bit easier to simply bzero the entire xbuf above,
11606 	 * but it turns out that since we init a fair number of members anyway,
11607 	 * we save a fair number cycles by doing explicit assignment of zero.
11608 	 */
11609 	xp->xb_pkt_flags	= 0;
11610 	xp->xb_dma_resid	= 0;
11611 	xp->xb_retry_count	= 0;
11612 	xp->xb_victim_retry_count = 0;
11613 	xp->xb_ua_retry_count	= 0;
11614 	xp->xb_nr_retry_count	= 0;
11615 	xp->xb_sense_bp		= NULL;
11616 	xp->xb_sense_status	= 0;
11617 	xp->xb_sense_state	= 0;
11618 	xp->xb_sense_resid	= 0;
11619 	xp->xb_ena		= 0;
11620 
11621 	bp->b_private	= xp;
11622 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11623 	bp->b_resid	= 0;
11624 	bp->av_forw	= NULL;
11625 	bp->av_back	= NULL;
11626 	bioerror(bp, 0);
11627 
11628 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11629 }
11630 
11631 
11632 /*
11633  *    Function: sd_uscsi_strategy
11634  *
11635  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11636  *
11637  *   Arguments: bp - buf struct ptr
11638  *
11639  * Return Code: Always returns 0
11640  *
11641  *     Context: Kernel thread context
11642  */
11643 
11644 static int
11645 sd_uscsi_strategy(struct buf *bp)
11646 {
11647 	struct sd_lun		*un;
11648 	struct sd_uscsi_info	*uip;
11649 	struct sd_xbuf		*xp;
11650 	uchar_t			chain_type;
11651 	uchar_t			cmd;
11652 
11653 	ASSERT(bp != NULL);
11654 
11655 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11656 	if (un == NULL) {
11657 		bioerror(bp, EIO);
11658 		bp->b_resid = bp->b_bcount;
11659 		biodone(bp);
11660 		return (0);
11661 	}
11662 
11663 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11664 
11665 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11666 
11667 	/*
11668 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11669 	 */
11670 	ASSERT(bp->b_private != NULL);
11671 	uip = (struct sd_uscsi_info *)bp->b_private;
11672 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11673 
11674 	mutex_enter(SD_MUTEX(un));
11675 	/*
11676 	 * atapi: Since we are running the CD for now in PIO mode we need to
11677 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11678 	 * the HBA's init_pkt routine.
11679 	 */
11680 	if (un->un_f_cfg_is_atapi == TRUE) {
11681 		mutex_exit(SD_MUTEX(un));
11682 		bp_mapin(bp);
11683 		mutex_enter(SD_MUTEX(un));
11684 	}
11685 	un->un_ncmds_in_driver++;
11686 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11687 	    un->un_ncmds_in_driver);
11688 
11689 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11690 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11691 		un->un_f_sync_cache_required = TRUE;
11692 
11693 	mutex_exit(SD_MUTEX(un));
11694 
11695 	switch (uip->ui_flags) {
11696 	case SD_PATH_DIRECT:
11697 		chain_type = SD_CHAIN_DIRECT;
11698 		break;
11699 	case SD_PATH_DIRECT_PRIORITY:
11700 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11701 		break;
11702 	default:
11703 		chain_type = SD_CHAIN_USCSI;
11704 		break;
11705 	}
11706 
11707 	/*
11708 	 * We may allocate extra buf for external USCSI commands. If the
11709 	 * application asks for bigger than 20-byte sense data via USCSI,
11710 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11711 	 */
11712 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11713 	    SENSE_LENGTH) {
11714 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11715 		    MAX_SENSE_LENGTH, KM_SLEEP);
11716 	} else {
11717 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11718 	}
11719 
11720 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11721 
11722 	/* Use the index obtained within xbuf_init */
11723 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11724 
11725 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11726 
11727 	return (0);
11728 }
11729 
11730 /*
11731  *    Function: sd_send_scsi_cmd
11732  *
11733  * Description: Runs a USCSI command for user (when called thru sdioctl),
11734  *		or for the driver
11735  *
11736  *   Arguments: dev - the dev_t for the device
11737  *		incmd - ptr to a valid uscsi_cmd struct
11738  *		flag - bit flag, indicating open settings, 32/64 bit type
11739  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11740  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11741  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11742  *			to use the USCSI "direct" chain and bypass the normal
11743  *			command waitq.
11744  *
11745  * Return Code: 0 -  successful completion of the given command
11746  *		EIO - scsi_uscsi_handle_command() failed
11747  *		ENXIO  - soft state not found for specified dev
11748  *		EINVAL
11749  *		EFAULT - copyin/copyout error
11750  *		return code of scsi_uscsi_handle_command():
11751  *			EIO
11752  *			ENXIO
11753  *			EACCES
11754  *
11755  *     Context: Waits for command to complete. Can sleep.
11756  */
11757 
11758 static int
11759 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11760 	enum uio_seg dataspace, int path_flag)
11761 {
11762 	struct sd_lun	*un;
11763 	sd_ssc_t	*ssc;
11764 	int		rval;
11765 
11766 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11767 	if (un == NULL) {
11768 		return (ENXIO);
11769 	}
11770 
11771 	/*
11772 	 * Using sd_ssc_send to handle uscsi cmd
11773 	 */
11774 	ssc = sd_ssc_init(un);
11775 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11776 	sd_ssc_fini(ssc);
11777 
11778 	return (rval);
11779 }
11780 
11781 /*
11782  *    Function: sd_ssc_init
11783  *
11784  * Description: Uscsi end-user call this function to initialize necessary
11785  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11786  *
11787  *              The return value of sd_send_scsi_cmd will be treated as a
11788  *              fault in various conditions. Even it is not Zero, some
11789  *              callers may ignore the return value. That is to say, we can
11790  *              not make an accurate assessment in sdintr, since if a
11791  *              command is failed in sdintr it does not mean the caller of
11792  *              sd_send_scsi_cmd will treat it as a real failure.
11793  *
11794  *              To avoid printing too many error logs for a failed uscsi
11795  *              packet that the caller may not treat it as a failure, the
11796  *              sd will keep silent for handling all uscsi commands.
11797  *
11798  *              During detach->attach and attach-open, for some types of
11799  *              problems, the driver should be providing information about
11800  *              the problem encountered. Device use USCSI_SILENT, which
11801  *              suppresses all driver information. The result is that no
11802  *              information about the problem is available. Being
11803  *              completely silent during this time is inappropriate. The
11804  *              driver needs a more selective filter than USCSI_SILENT, so
11805  *              that information related to faults is provided.
11806  *
11807  *              To make the accurate accessment, the caller  of
11808  *              sd_send_scsi_USCSI_CMD should take the ownership and
11809  *              get necessary information to print error messages.
11810  *
11811  *              If we want to print necessary info of uscsi command, we need to
11812  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11813  *              assessment. We use sd_ssc_init to alloc necessary
11814  *              structs for sending an uscsi command and we are also
11815  *              responsible for free the memory by calling
11816  *              sd_ssc_fini.
11817  *
11818  *              The calling secquences will look like:
11819  *              sd_ssc_init->
11820  *
11821  *                  ...
11822  *
11823  *                  sd_send_scsi_USCSI_CMD->
11824  *                      sd_ssc_send-> - - - sdintr
11825  *                  ...
11826  *
11827  *                  if we think the return value should be treated as a
11828  *                  failure, we make the accessment here and print out
11829  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11830  *
11831  *                  ...
11832  *
11833  *              sd_ssc_fini
11834  *
11835  *
11836  *   Arguments: un - pointer to driver soft state (unit) structure for this
11837  *                   target.
11838  *
11839  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11840  *                         uscsi_cmd and sd_uscsi_info.
11841  *                  NULL - if can not alloc memory for sd_ssc_t struct
11842  *
11843  *     Context: Kernel Thread.
11844  */
11845 static sd_ssc_t *
11846 sd_ssc_init(struct sd_lun *un)
11847 {
11848 	sd_ssc_t		*ssc;
11849 	struct uscsi_cmd	*ucmdp;
11850 	struct sd_uscsi_info	*uip;
11851 
11852 	ASSERT(un != NULL);
11853 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11854 
11855 	/*
11856 	 * Allocate sd_ssc_t structure
11857 	 */
11858 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11859 
11860 	/*
11861 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11862 	 */
11863 	ucmdp = scsi_uscsi_alloc();
11864 
11865 	/*
11866 	 * Allocate sd_uscsi_info structure
11867 	 */
11868 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11869 
11870 	ssc->ssc_uscsi_cmd = ucmdp;
11871 	ssc->ssc_uscsi_info = uip;
11872 	ssc->ssc_un = un;
11873 
11874 	return (ssc);
11875 }
11876 
11877 /*
11878  * Function: sd_ssc_fini
11879  *
11880  * Description: To free sd_ssc_t and it's hanging off
11881  *
11882  * Arguments: ssc - struct pointer of sd_ssc_t.
11883  */
11884 static void
11885 sd_ssc_fini(sd_ssc_t *ssc)
11886 {
11887 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11888 
11889 	if (ssc->ssc_uscsi_info != NULL) {
11890 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11891 		ssc->ssc_uscsi_info = NULL;
11892 	}
11893 
11894 	kmem_free(ssc, sizeof (sd_ssc_t));
11895 	ssc = NULL;
11896 }
11897 
11898 /*
11899  * Function: sd_ssc_send
11900  *
11901  * Description: Runs a USCSI command for user when called through sdioctl,
11902  *              or for the driver.
11903  *
11904  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11905  *                    sd_uscsi_info in.
11906  *		incmd - ptr to a valid uscsi_cmd struct
11907  *		flag - bit flag, indicating open settings, 32/64 bit type
11908  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11909  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11910  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11911  *			to use the USCSI "direct" chain and bypass the normal
11912  *			command waitq.
11913  *
11914  * Return Code: 0 -  successful completion of the given command
11915  *		EIO - scsi_uscsi_handle_command() failed
11916  *		ENXIO  - soft state not found for specified dev
11917  *		ECANCELED - command cancelled due to low power
11918  *		EINVAL
11919  *		EFAULT - copyin/copyout error
11920  *		return code of scsi_uscsi_handle_command():
11921  *			EIO
11922  *			ENXIO
11923  *			EACCES
11924  *
11925  *     Context: Kernel Thread;
11926  *              Waits for command to complete. Can sleep.
11927  */
11928 static int
11929 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11930 	enum uio_seg dataspace, int path_flag)
11931 {
11932 	struct sd_uscsi_info	*uip;
11933 	struct uscsi_cmd	*uscmd;
11934 	struct sd_lun		*un;
11935 	dev_t			dev;
11936 
11937 	int	format = 0;
11938 	int	rval;
11939 
11940 	ASSERT(ssc != NULL);
11941 	un = ssc->ssc_un;
11942 	ASSERT(un != NULL);
11943 	uscmd = ssc->ssc_uscsi_cmd;
11944 	ASSERT(uscmd != NULL);
11945 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11946 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11947 		/*
11948 		 * If enter here, it indicates that the previous uscsi
11949 		 * command has not been processed by sd_ssc_assessment.
11950 		 * This is violating our rules of FMA telemetry processing.
11951 		 * We should print out this message and the last undisposed
11952 		 * uscsi command.
11953 		 */
11954 		if (uscmd->uscsi_cdb != NULL) {
11955 			SD_INFO(SD_LOG_SDTEST, un,
11956 			    "sd_ssc_send is missing the alternative "
11957 			    "sd_ssc_assessment when running command 0x%x.\n",
11958 			    uscmd->uscsi_cdb[0]);
11959 		}
11960 		/*
11961 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
11962 		 * the initial status.
11963 		 */
11964 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11965 	}
11966 
11967 	/*
11968 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
11969 	 * followed to avoid missing FMA telemetries.
11970 	 */
11971 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
11972 
11973 	/*
11974 	 * if USCSI_PMFAILFAST is set and un is in low power, fail the
11975 	 * command immediately.
11976 	 */
11977 	mutex_enter(SD_MUTEX(un));
11978 	mutex_enter(&un->un_pm_mutex);
11979 	if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) &&
11980 	    SD_DEVICE_IS_IN_LOW_POWER(un)) {
11981 		SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:"
11982 		    "un:0x%p is in low power\n", un);
11983 		mutex_exit(&un->un_pm_mutex);
11984 		mutex_exit(SD_MUTEX(un));
11985 		return (ECANCELED);
11986 	}
11987 	mutex_exit(&un->un_pm_mutex);
11988 	mutex_exit(SD_MUTEX(un));
11989 
11990 #ifdef SDDEBUG
11991 	switch (dataspace) {
11992 	case UIO_USERSPACE:
11993 		SD_TRACE(SD_LOG_IO, un,
11994 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
11995 		break;
11996 	case UIO_SYSSPACE:
11997 		SD_TRACE(SD_LOG_IO, un,
11998 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
11999 		break;
12000 	default:
12001 		SD_TRACE(SD_LOG_IO, un,
12002 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
12003 		break;
12004 	}
12005 #endif
12006 
12007 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
12008 	    SD_ADDRESS(un), &uscmd);
12009 	if (rval != 0) {
12010 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
12011 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
12012 		return (rval);
12013 	}
12014 
12015 	if ((uscmd->uscsi_cdb != NULL) &&
12016 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
12017 		mutex_enter(SD_MUTEX(un));
12018 		un->un_f_format_in_progress = TRUE;
12019 		mutex_exit(SD_MUTEX(un));
12020 		format = 1;
12021 	}
12022 
12023 	/*
12024 	 * Allocate an sd_uscsi_info struct and fill it with the info
12025 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12026 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12027 	 * since we allocate the buf here in this function, we do not
12028 	 * need to preserve the prior contents of b_private.
12029 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12030 	 */
12031 	uip = ssc->ssc_uscsi_info;
12032 	uip->ui_flags = path_flag;
12033 	uip->ui_cmdp = uscmd;
12034 
12035 	/*
12036 	 * Commands sent with priority are intended for error recovery
12037 	 * situations, and do not have retries performed.
12038 	 */
12039 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12040 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12041 	}
12042 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
12043 
12044 	dev = SD_GET_DEV(un);
12045 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
12046 	    sd_uscsi_strategy, NULL, uip);
12047 
12048 	/*
12049 	 * mark ssc_flags right after handle_cmd to make sure
12050 	 * the uscsi has been sent
12051 	 */
12052 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
12053 
12054 #ifdef SDDEBUG
12055 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12056 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12057 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12058 	if (uscmd->uscsi_bufaddr != NULL) {
12059 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12060 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12061 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12062 		if (dataspace == UIO_SYSSPACE) {
12063 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12064 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12065 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12066 		}
12067 	}
12068 #endif
12069 
12070 	if (format == 1) {
12071 		mutex_enter(SD_MUTEX(un));
12072 		un->un_f_format_in_progress = FALSE;
12073 		mutex_exit(SD_MUTEX(un));
12074 	}
12075 
12076 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
12077 
12078 	return (rval);
12079 }
12080 
12081 /*
12082  *     Function: sd_ssc_print
12083  *
12084  * Description: Print information available to the console.
12085  *
12086  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12087  *                    sd_uscsi_info in.
12088  *            sd_severity - log level.
12089  *     Context: Kernel thread or interrupt context.
12090  */
12091 static void
12092 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
12093 {
12094 	struct uscsi_cmd	*ucmdp;
12095 	struct scsi_device	*devp;
12096 	dev_info_t 		*devinfo;
12097 	uchar_t			*sensep;
12098 	int			senlen;
12099 	union scsi_cdb		*cdbp;
12100 	uchar_t			com;
12101 	extern struct scsi_key_strings scsi_cmds[];
12102 
12103 	ASSERT(ssc != NULL);
12104 	ASSERT(ssc->ssc_un != NULL);
12105 
12106 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
12107 		return;
12108 	ucmdp = ssc->ssc_uscsi_cmd;
12109 	devp = SD_SCSI_DEVP(ssc->ssc_un);
12110 	devinfo = SD_DEVINFO(ssc->ssc_un);
12111 	ASSERT(ucmdp != NULL);
12112 	ASSERT(devp != NULL);
12113 	ASSERT(devinfo != NULL);
12114 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
12115 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
12116 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
12117 
12118 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
12119 	if (cdbp == NULL)
12120 		return;
12121 	/* We don't print log if no sense data available. */
12122 	if (senlen == 0)
12123 		sensep = NULL;
12124 	com = cdbp->scc_cmd;
12125 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
12126 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
12127 }
12128 
12129 /*
12130  *     Function: sd_ssc_assessment
12131  *
12132  * Description: We use this function to make an assessment at the point
12133  *              where SD driver may encounter a potential error.
12134  *
12135  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12136  *                  sd_uscsi_info in.
12137  *            tp_assess - a hint of strategy for ereport posting.
12138  *            Possible values of tp_assess include:
12139  *                SD_FMT_IGNORE - we don't post any ereport because we're
12140  *                sure that it is ok to ignore the underlying problems.
12141  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
12142  *                but it might be not correct to ignore the underlying hardware
12143  *                error.
12144  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
12145  *                payload driver-assessment of value "fail" or
12146  *                "fatal"(depending on what information we have here). This
12147  *                assessment value is usually set when SD driver think there
12148  *                is a potential error occurred(Typically, when return value
12149  *                of the SCSI command is EIO).
12150  *                SD_FMT_STANDARD - we will post an ereport with the payload
12151  *                driver-assessment of value "info". This assessment value is
12152  *                set when the SCSI command returned successfully and with
12153  *                sense data sent back.
12154  *
12155  *     Context: Kernel thread.
12156  */
12157 static void
12158 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
12159 {
12160 	int senlen = 0;
12161 	struct uscsi_cmd *ucmdp = NULL;
12162 	struct sd_lun *un;
12163 
12164 	ASSERT(ssc != NULL);
12165 	un = ssc->ssc_un;
12166 	ASSERT(un != NULL);
12167 	ucmdp = ssc->ssc_uscsi_cmd;
12168 	ASSERT(ucmdp != NULL);
12169 
12170 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
12171 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
12172 	} else {
12173 		/*
12174 		 * If enter here, it indicates that we have a wrong
12175 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
12176 		 * both of which should be called in a pair in case of
12177 		 * loss of FMA telemetries.
12178 		 */
12179 		if (ucmdp->uscsi_cdb != NULL) {
12180 			SD_INFO(SD_LOG_SDTEST, un,
12181 			    "sd_ssc_assessment is missing the "
12182 			    "alternative sd_ssc_send when running 0x%x, "
12183 			    "or there are superfluous sd_ssc_assessment for "
12184 			    "the same sd_ssc_send.\n",
12185 			    ucmdp->uscsi_cdb[0]);
12186 		}
12187 		/*
12188 		 * Set the ssc_flags to the initial value to avoid passing
12189 		 * down dirty flags to the following sd_ssc_send function.
12190 		 */
12191 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12192 		return;
12193 	}
12194 
12195 	/*
12196 	 * Only handle an issued command which is waiting for assessment.
12197 	 * A command which is not issued will not have
12198 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
12199 	 */
12200 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
12201 		sd_ssc_print(ssc, SCSI_ERR_INFO);
12202 		return;
12203 	} else {
12204 		/*
12205 		 * For an issued command, we should clear this flag in
12206 		 * order to make the sd_ssc_t structure be used off
12207 		 * multiple uscsi commands.
12208 		 */
12209 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
12210 	}
12211 
12212 	/*
12213 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
12214 	 * commands here. And we should clear the ssc_flags before return.
12215 	 */
12216 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
12217 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12218 		return;
12219 	}
12220 
12221 	switch (tp_assess) {
12222 	case SD_FMT_IGNORE:
12223 	case SD_FMT_IGNORE_COMPROMISE:
12224 		break;
12225 	case SD_FMT_STATUS_CHECK:
12226 		/*
12227 		 * For a failed command(including the succeeded command
12228 		 * with invalid data sent back).
12229 		 */
12230 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
12231 		break;
12232 	case SD_FMT_STANDARD:
12233 		/*
12234 		 * Always for the succeeded commands probably with sense
12235 		 * data sent back.
12236 		 * Limitation:
12237 		 *	We can only handle a succeeded command with sense
12238 		 *	data sent back when auto-request-sense is enabled.
12239 		 */
12240 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
12241 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
12242 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
12243 		    (un->un_f_arq_enabled == TRUE) &&
12244 		    senlen > 0 &&
12245 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
12246 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
12247 		}
12248 		break;
12249 	default:
12250 		/*
12251 		 * Should not have other type of assessment.
12252 		 */
12253 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
12254 		    "sd_ssc_assessment got wrong "
12255 		    "sd_type_assessment %d.\n", tp_assess);
12256 		break;
12257 	}
12258 	/*
12259 	 * Clear up the ssc_flags before return.
12260 	 */
12261 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12262 }
12263 
12264 /*
12265  *    Function: sd_ssc_post
12266  *
12267  * Description: 1. read the driver property to get fm-scsi-log flag.
12268  *              2. print log if fm_log_capable is non-zero.
12269  *              3. call sd_ssc_ereport_post to post ereport if possible.
12270  *
12271  *    Context: May be called from kernel thread or interrupt context.
12272  */
12273 static void
12274 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
12275 {
12276 	struct sd_lun	*un;
12277 	int		sd_severity;
12278 
12279 	ASSERT(ssc != NULL);
12280 	un = ssc->ssc_un;
12281 	ASSERT(un != NULL);
12282 
12283 	/*
12284 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
12285 	 * by directly called from sdintr context.
12286 	 * We don't handle a non-disk drive(CD-ROM, removable media).
12287 	 * Clear the ssc_flags before return in case we've set
12288 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
12289 	 * driver.
12290 	 */
12291 	if (ISCD(un) || un->un_f_has_removable_media) {
12292 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12293 		return;
12294 	}
12295 
12296 	switch (sd_assess) {
12297 		case SD_FM_DRV_FATAL:
12298 			sd_severity = SCSI_ERR_FATAL;
12299 			break;
12300 		case SD_FM_DRV_RECOVERY:
12301 			sd_severity = SCSI_ERR_RECOVERED;
12302 			break;
12303 		case SD_FM_DRV_RETRY:
12304 			sd_severity = SCSI_ERR_RETRYABLE;
12305 			break;
12306 		case SD_FM_DRV_NOTICE:
12307 			sd_severity = SCSI_ERR_INFO;
12308 			break;
12309 		default:
12310 			sd_severity = SCSI_ERR_UNKNOWN;
12311 	}
12312 	/* print log */
12313 	sd_ssc_print(ssc, sd_severity);
12314 
12315 	/* always post ereport */
12316 	sd_ssc_ereport_post(ssc, sd_assess);
12317 }
12318 
12319 /*
12320  *    Function: sd_ssc_set_info
12321  *
12322  * Description: Mark ssc_flags and set ssc_info which would be the
12323  *              payload of uderr ereport. This function will cause
12324  *              sd_ssc_ereport_post to post uderr ereport only.
12325  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
12326  *              the function will also call SD_ERROR or scsi_log for a
12327  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
12328  *
12329  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12330  *                  sd_uscsi_info in.
12331  *            ssc_flags - indicate the sub-category of a uderr.
12332  *            comp - this argument is meaningful only when
12333  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
12334  *                   values include:
12335  *                   > 0, SD_ERROR is used with comp as the driver logging
12336  *                   component;
12337  *                   = 0, scsi-log is used to log error telemetries;
12338  *                   < 0, no log available for this telemetry.
12339  *
12340  *    Context: Kernel thread or interrupt context
12341  */
12342 static void
12343 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
12344 {
12345 	va_list	ap;
12346 
12347 	ASSERT(ssc != NULL);
12348 	ASSERT(ssc->ssc_un != NULL);
12349 
12350 	ssc->ssc_flags |= ssc_flags;
12351 	va_start(ap, fmt);
12352 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
12353 	va_end(ap);
12354 
12355 	/*
12356 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
12357 	 * with invalid data sent back. For non-uscsi command, the
12358 	 * following code will be bypassed.
12359 	 */
12360 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
12361 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
12362 			/*
12363 			 * If the error belong to certain component and we
12364 			 * do not want it to show up on the console, we
12365 			 * will use SD_ERROR, otherwise scsi_log is
12366 			 * preferred.
12367 			 */
12368 			if (comp > 0) {
12369 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
12370 			} else if (comp == 0) {
12371 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
12372 				    CE_WARN, ssc->ssc_info);
12373 			}
12374 		}
12375 	}
12376 }
12377 
12378 /*
12379  *    Function: sd_buf_iodone
12380  *
12381  * Description: Frees the sd_xbuf & returns the buf to its originator.
12382  *
12383  *     Context: May be called from interrupt context.
12384  */
12385 /* ARGSUSED */
12386 static void
12387 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12388 {
12389 	struct sd_xbuf *xp;
12390 
12391 	ASSERT(un != NULL);
12392 	ASSERT(bp != NULL);
12393 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12394 
12395 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12396 
12397 	xp = SD_GET_XBUF(bp);
12398 	ASSERT(xp != NULL);
12399 
12400 	/* xbuf is gone after this */
12401 	if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
12402 		mutex_enter(SD_MUTEX(un));
12403 
12404 		/*
12405 		 * Grab time when the cmd completed.
12406 		 * This is used for determining if the system has been
12407 		 * idle long enough to make it idle to the PM framework.
12408 		 * This is for lowering the overhead, and therefore improving
12409 		 * performance per I/O operation.
12410 		 */
12411 		un->un_pm_idle_time = ddi_get_time();
12412 
12413 		un->un_ncmds_in_driver--;
12414 		ASSERT(un->un_ncmds_in_driver >= 0);
12415 		SD_INFO(SD_LOG_IO, un,
12416 		    "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12417 		    un->un_ncmds_in_driver);
12418 
12419 		mutex_exit(SD_MUTEX(un));
12420 	}
12421 
12422 	biodone(bp);				/* bp is gone after this */
12423 
12424 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12425 }
12426 
12427 
12428 /*
12429  *    Function: sd_uscsi_iodone
12430  *
12431  * Description: Frees the sd_xbuf & returns the buf to its originator.
12432  *
12433  *     Context: May be called from interrupt context.
12434  */
12435 /* ARGSUSED */
12436 static void
12437 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12438 {
12439 	struct sd_xbuf *xp;
12440 
12441 	ASSERT(un != NULL);
12442 	ASSERT(bp != NULL);
12443 
12444 	xp = SD_GET_XBUF(bp);
12445 	ASSERT(xp != NULL);
12446 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12447 
12448 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12449 
12450 	bp->b_private = xp->xb_private;
12451 
12452 	mutex_enter(SD_MUTEX(un));
12453 
12454 	/*
12455 	 * Grab time when the cmd completed.
12456 	 * This is used for determining if the system has been
12457 	 * idle long enough to make it idle to the PM framework.
12458 	 * This is for lowering the overhead, and therefore improving
12459 	 * performance per I/O operation.
12460 	 */
12461 	un->un_pm_idle_time = ddi_get_time();
12462 
12463 	un->un_ncmds_in_driver--;
12464 	ASSERT(un->un_ncmds_in_driver >= 0);
12465 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12466 	    un->un_ncmds_in_driver);
12467 
12468 	mutex_exit(SD_MUTEX(un));
12469 
12470 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
12471 	    SENSE_LENGTH) {
12472 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
12473 		    MAX_SENSE_LENGTH);
12474 	} else {
12475 		kmem_free(xp, sizeof (struct sd_xbuf));
12476 	}
12477 
12478 	biodone(bp);
12479 
12480 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12481 }
12482 
12483 
12484 /*
12485  *    Function: sd_mapblockaddr_iostart
12486  *
12487  * Description: Verify request lies within the partition limits for
12488  *		the indicated minor device.  Issue "overrun" buf if
12489  *		request would exceed partition range.  Converts
12490  *		partition-relative block address to absolute.
12491  *
12492  *              Upon exit of this function:
12493  *              1.I/O is aligned
12494  *                 xp->xb_blkno represents the absolute sector address
12495  *              2.I/O is misaligned
12496  *                 xp->xb_blkno represents the absolute logical block address
12497  *                 based on DEV_BSIZE. The logical block address will be
12498  *                 converted to physical sector address in sd_mapblocksize_\
12499  *                 iostart.
12500  *              3.I/O is misaligned but is aligned in "overrun" buf
12501  *                 xp->xb_blkno represents the absolute logical block address
12502  *                 based on DEV_BSIZE. The logical block address will be
12503  *                 converted to physical sector address in sd_mapblocksize_\
12504  *                 iostart. But no RMW will be issued in this case.
12505  *
12506  *     Context: Can sleep
12507  *
12508  *      Issues: This follows what the old code did, in terms of accessing
12509  *		some of the partition info in the unit struct without holding
12510  *		the mutext.  This is a general issue, if the partition info
12511  *		can be altered while IO is in progress... as soon as we send
12512  *		a buf, its partitioning can be invalid before it gets to the
12513  *		device.  Probably the right fix is to move partitioning out
12514  *		of the driver entirely.
12515  */
12516 
12517 static void
12518 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12519 {
12520 	diskaddr_t	nblocks;	/* #blocks in the given partition */
12521 	daddr_t	blocknum;	/* Block number specified by the buf */
12522 	size_t	requested_nblocks;
12523 	size_t	available_nblocks;
12524 	int	partition;
12525 	diskaddr_t	partition_offset;
12526 	struct sd_xbuf *xp;
12527 	int secmask = 0, blknomask = 0;
12528 	ushort_t is_aligned = TRUE;
12529 
12530 	ASSERT(un != NULL);
12531 	ASSERT(bp != NULL);
12532 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12533 
12534 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12535 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12536 
12537 	xp = SD_GET_XBUF(bp);
12538 	ASSERT(xp != NULL);
12539 
12540 	/*
12541 	 * If the geometry is not indicated as valid, attempt to access
12542 	 * the unit & verify the geometry/label. This can be the case for
12543 	 * removable-media devices, of if the device was opened in
12544 	 * NDELAY/NONBLOCK mode.
12545 	 */
12546 	partition = SDPART(bp->b_edev);
12547 
12548 	if (!SD_IS_VALID_LABEL(un)) {
12549 		sd_ssc_t *ssc;
12550 		/*
12551 		 * Initialize sd_ssc_t for internal uscsi commands
12552 		 * In case of potential porformance issue, we need
12553 		 * to alloc memory only if there is invalid label
12554 		 */
12555 		ssc = sd_ssc_init(un);
12556 
12557 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12558 			/*
12559 			 * For removable devices it is possible to start an
12560 			 * I/O without a media by opening the device in nodelay
12561 			 * mode. Also for writable CDs there can be many
12562 			 * scenarios where there is no geometry yet but volume
12563 			 * manager is trying to issue a read() just because
12564 			 * it can see TOC on the CD. So do not print a message
12565 			 * for removables.
12566 			 */
12567 			if (!un->un_f_has_removable_media) {
12568 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12569 				    "i/o to invalid geometry\n");
12570 			}
12571 			bioerror(bp, EIO);
12572 			bp->b_resid = bp->b_bcount;
12573 			SD_BEGIN_IODONE(index, un, bp);
12574 
12575 			sd_ssc_fini(ssc);
12576 			return;
12577 		}
12578 		sd_ssc_fini(ssc);
12579 	}
12580 
12581 	nblocks = 0;
12582 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12583 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12584 
12585 	if (un->un_f_enable_rmw) {
12586 		blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1;
12587 		secmask = un->un_phy_blocksize - 1;
12588 	} else {
12589 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
12590 		secmask = un->un_tgt_blocksize - 1;
12591 	}
12592 
12593 	if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) {
12594 		is_aligned = FALSE;
12595 	}
12596 
12597 	if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) {
12598 		/*
12599 		 * If I/O is aligned, no need to involve RMW(Read Modify Write)
12600 		 * Convert the logical block number to target's physical sector
12601 		 * number.
12602 		 */
12603 		if (is_aligned) {
12604 			xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno);
12605 		} else {
12606 			switch (un->un_f_rmw_type) {
12607 			case SD_RMW_TYPE_RETURN_ERROR:
12608 				if (un->un_f_enable_rmw)
12609 					break;
12610 				else {
12611 					bp->b_flags |= B_ERROR;
12612 					goto error_exit;
12613 				}
12614 
12615 			case SD_RMW_TYPE_DEFAULT:
12616 				mutex_enter(SD_MUTEX(un));
12617 				if (!un->un_f_enable_rmw &&
12618 				    un->un_rmw_msg_timeid == NULL) {
12619 					scsi_log(SD_DEVINFO(un), sd_label,
12620 					    CE_WARN, "I/O request is not "
12621 					    "aligned with %d disk sector size. "
12622 					    "It is handled through Read Modify "
12623 					    "Write but the performance is "
12624 					    "very low.\n",
12625 					    un->un_tgt_blocksize);
12626 					un->un_rmw_msg_timeid =
12627 					    timeout(sd_rmw_msg_print_handler,
12628 					    un, SD_RMW_MSG_PRINT_TIMEOUT);
12629 				} else {
12630 					un->un_rmw_incre_count ++;
12631 				}
12632 				mutex_exit(SD_MUTEX(un));
12633 				break;
12634 
12635 			case SD_RMW_TYPE_NO_WARNING:
12636 			default:
12637 				break;
12638 			}
12639 
12640 			nblocks = SD_TGT2SYSBLOCK(un, nblocks);
12641 			partition_offset = SD_TGT2SYSBLOCK(un,
12642 			    partition_offset);
12643 		}
12644 	}
12645 
12646 	/*
12647 	 * blocknum is the starting block number of the request. At this
12648 	 * point it is still relative to the start of the minor device.
12649 	 */
12650 	blocknum = xp->xb_blkno;
12651 
12652 	/*
12653 	 * Legacy: If the starting block number is one past the last block
12654 	 * in the partition, do not set B_ERROR in the buf.
12655 	 */
12656 	if (blocknum == nblocks)  {
12657 		goto error_exit;
12658 	}
12659 
12660 	/*
12661 	 * Confirm that the first block of the request lies within the
12662 	 * partition limits. Also the requested number of bytes must be
12663 	 * a multiple of the system block size.
12664 	 */
12665 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12666 	    ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) {
12667 		bp->b_flags |= B_ERROR;
12668 		goto error_exit;
12669 	}
12670 
12671 	/*
12672 	 * If the requsted # blocks exceeds the available # blocks, that
12673 	 * is an overrun of the partition.
12674 	 */
12675 	if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12676 		requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12677 	} else {
12678 		requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount);
12679 	}
12680 
12681 	available_nblocks = (size_t)(nblocks - blocknum);
12682 	ASSERT(nblocks >= blocknum);
12683 
12684 	if (requested_nblocks > available_nblocks) {
12685 		size_t resid;
12686 
12687 		/*
12688 		 * Allocate an "overrun" buf to allow the request to proceed
12689 		 * for the amount of space available in the partition. The
12690 		 * amount not transferred will be added into the b_resid
12691 		 * when the operation is complete. The overrun buf
12692 		 * replaces the original buf here, and the original buf
12693 		 * is saved inside the overrun buf, for later use.
12694 		 */
12695 		if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12696 			resid = SD_TGTBLOCKS2BYTES(un,
12697 			    (offset_t)(requested_nblocks - available_nblocks));
12698 		} else {
12699 			resid = SD_SYSBLOCKS2BYTES(
12700 			    (offset_t)(requested_nblocks - available_nblocks));
12701 		}
12702 
12703 		size_t count = bp->b_bcount - resid;
12704 		/*
12705 		 * Note: count is an unsigned entity thus it'll NEVER
12706 		 * be less than 0 so ASSERT the original values are
12707 		 * correct.
12708 		 */
12709 		ASSERT(bp->b_bcount >= resid);
12710 
12711 		bp = sd_bioclone_alloc(bp, count, blocknum,
12712 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12713 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12714 		ASSERT(xp != NULL);
12715 	}
12716 
12717 	/* At this point there should be no residual for this buf. */
12718 	ASSERT(bp->b_resid == 0);
12719 
12720 	/* Convert the block number to an absolute address. */
12721 	xp->xb_blkno += partition_offset;
12722 
12723 	SD_NEXT_IOSTART(index, un, bp);
12724 
12725 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12726 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12727 
12728 	return;
12729 
12730 error_exit:
12731 	bp->b_resid = bp->b_bcount;
12732 	SD_BEGIN_IODONE(index, un, bp);
12733 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12734 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12735 }
12736 
12737 
12738 /*
12739  *    Function: sd_mapblockaddr_iodone
12740  *
12741  * Description: Completion-side processing for partition management.
12742  *
12743  *     Context: May be called under interrupt context
12744  */
12745 
12746 static void
12747 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12748 {
12749 	/* int	partition; */	/* Not used, see below. */
12750 	ASSERT(un != NULL);
12751 	ASSERT(bp != NULL);
12752 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12753 
12754 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12755 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12756 
12757 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12758 		/*
12759 		 * We have an "overrun" buf to deal with...
12760 		 */
12761 		struct sd_xbuf	*xp;
12762 		struct buf	*obp;	/* ptr to the original buf */
12763 
12764 		xp = SD_GET_XBUF(bp);
12765 		ASSERT(xp != NULL);
12766 
12767 		/* Retrieve the pointer to the original buf */
12768 		obp = (struct buf *)xp->xb_private;
12769 		ASSERT(obp != NULL);
12770 
12771 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12772 		bioerror(obp, bp->b_error);
12773 
12774 		sd_bioclone_free(bp);
12775 
12776 		/*
12777 		 * Get back the original buf.
12778 		 * Note that since the restoration of xb_blkno below
12779 		 * was removed, the sd_xbuf is not needed.
12780 		 */
12781 		bp = obp;
12782 		/*
12783 		 * xp = SD_GET_XBUF(bp);
12784 		 * ASSERT(xp != NULL);
12785 		 */
12786 	}
12787 
12788 	/*
12789 	 * Convert sd->xb_blkno back to a minor-device relative value.
12790 	 * Note: this has been commented out, as it is not needed in the
12791 	 * current implementation of the driver (ie, since this function
12792 	 * is at the top of the layering chains, so the info will be
12793 	 * discarded) and it is in the "hot" IO path.
12794 	 *
12795 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12796 	 * xp->xb_blkno -= un->un_offset[partition];
12797 	 */
12798 
12799 	SD_NEXT_IODONE(index, un, bp);
12800 
12801 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12802 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12803 }
12804 
12805 
12806 /*
12807  *    Function: sd_mapblocksize_iostart
12808  *
12809  * Description: Convert between system block size (un->un_sys_blocksize)
12810  *		and target block size (un->un_tgt_blocksize).
12811  *
12812  *     Context: Can sleep to allocate resources.
12813  *
12814  * Assumptions: A higher layer has already performed any partition validation,
12815  *		and converted the xp->xb_blkno to an absolute value relative
12816  *		to the start of the device.
12817  *
12818  *		It is also assumed that the higher layer has implemented
12819  *		an "overrun" mechanism for the case where the request would
12820  *		read/write beyond the end of a partition.  In this case we
12821  *		assume (and ASSERT) that bp->b_resid == 0.
12822  *
12823  *		Note: The implementation for this routine assumes the target
12824  *		block size remains constant between allocation and transport.
12825  */
12826 
12827 static void
12828 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12829 {
12830 	struct sd_mapblocksize_info	*bsp;
12831 	struct sd_xbuf			*xp;
12832 	offset_t first_byte;
12833 	daddr_t	start_block, end_block;
12834 	daddr_t	request_bytes;
12835 	ushort_t is_aligned = FALSE;
12836 
12837 	ASSERT(un != NULL);
12838 	ASSERT(bp != NULL);
12839 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12840 	ASSERT(bp->b_resid == 0);
12841 
12842 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12843 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12844 
12845 	/*
12846 	 * For a non-writable CD, a write request is an error
12847 	 */
12848 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12849 	    (un->un_f_mmc_writable_media == FALSE)) {
12850 		bioerror(bp, EIO);
12851 		bp->b_resid = bp->b_bcount;
12852 		SD_BEGIN_IODONE(index, un, bp);
12853 		return;
12854 	}
12855 
12856 	/*
12857 	 * We do not need a shadow buf if the device is using
12858 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12859 	 * In this case there is no layer-private data block allocated.
12860 	 */
12861 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
12862 	    (bp->b_bcount == 0)) {
12863 		goto done;
12864 	}
12865 
12866 #if defined(__i386) || defined(__amd64)
12867 	/* We do not support non-block-aligned transfers for ROD devices */
12868 	ASSERT(!ISROD(un));
12869 #endif
12870 
12871 	xp = SD_GET_XBUF(bp);
12872 	ASSERT(xp != NULL);
12873 
12874 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12875 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12876 	    un->un_tgt_blocksize, DEV_BSIZE);
12877 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12878 	    "request start block:0x%x\n", xp->xb_blkno);
12879 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12880 	    "request len:0x%x\n", bp->b_bcount);
12881 
12882 	/*
12883 	 * Allocate the layer-private data area for the mapblocksize layer.
12884 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12885 	 * struct to store the pointer to their layer-private data block, but
12886 	 * each layer also has the responsibility of restoring the prior
12887 	 * contents of xb_private before returning the buf/xbuf to the
12888 	 * higher layer that sent it.
12889 	 *
12890 	 * Here we save the prior contents of xp->xb_private into the
12891 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12892 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12893 	 * the layer-private area and returning the buf/xbuf to the layer
12894 	 * that sent it.
12895 	 *
12896 	 * Note that here we use kmem_zalloc for the allocation as there are
12897 	 * parts of the mapblocksize code that expect certain fields to be
12898 	 * zero unless explicitly set to a required value.
12899 	 */
12900 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12901 	bsp->mbs_oprivate = xp->xb_private;
12902 	xp->xb_private = bsp;
12903 
12904 	/*
12905 	 * This treats the data on the disk (target) as an array of bytes.
12906 	 * first_byte is the byte offset, from the beginning of the device,
12907 	 * to the location of the request. This is converted from a
12908 	 * un->un_sys_blocksize block address to a byte offset, and then back
12909 	 * to a block address based upon a un->un_tgt_blocksize block size.
12910 	 *
12911 	 * xp->xb_blkno should be absolute upon entry into this function,
12912 	 * but, but it is based upon partitions that use the "system"
12913 	 * block size. It must be adjusted to reflect the block size of
12914 	 * the target.
12915 	 *
12916 	 * Note that end_block is actually the block that follows the last
12917 	 * block of the request, but that's what is needed for the computation.
12918 	 */
12919 	first_byte  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
12920 	if (un->un_f_enable_rmw) {
12921 		start_block = xp->xb_blkno =
12922 		    (first_byte / un->un_phy_blocksize) *
12923 		    (un->un_phy_blocksize / DEV_BSIZE);
12924 		end_block   = ((first_byte + bp->b_bcount +
12925 		    un->un_phy_blocksize - 1) / un->un_phy_blocksize) *
12926 		    (un->un_phy_blocksize / DEV_BSIZE);
12927 	} else {
12928 		start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12929 		end_block   = (first_byte + bp->b_bcount +
12930 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
12931 	}
12932 
12933 	/* request_bytes is rounded up to a multiple of the target block size */
12934 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12935 
12936 	/*
12937 	 * See if the starting address of the request and the request
12938 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12939 	 * then we do not need to allocate a shadow buf to handle the request.
12940 	 */
12941 	if (un->un_f_enable_rmw) {
12942 		if (((first_byte % un->un_phy_blocksize) == 0) &&
12943 		    ((bp->b_bcount % un->un_phy_blocksize) == 0)) {
12944 			is_aligned = TRUE;
12945 		}
12946 	} else {
12947 		if (((first_byte % un->un_tgt_blocksize) == 0) &&
12948 		    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12949 			is_aligned = TRUE;
12950 		}
12951 	}
12952 
12953 	if ((bp->b_flags & B_READ) == 0) {
12954 		/*
12955 		 * Lock the range for a write operation. An aligned request is
12956 		 * considered a simple write; otherwise the request must be a
12957 		 * read-modify-write.
12958 		 */
12959 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12960 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12961 	}
12962 
12963 	/*
12964 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12965 	 * where the READ command is generated for a read-modify-write. (The
12966 	 * write phase is deferred until after the read completes.)
12967 	 */
12968 	if (is_aligned == FALSE) {
12969 
12970 		struct sd_mapblocksize_info	*shadow_bsp;
12971 		struct sd_xbuf	*shadow_xp;
12972 		struct buf	*shadow_bp;
12973 
12974 		/*
12975 		 * Allocate the shadow buf and it associated xbuf. Note that
12976 		 * after this call the xb_blkno value in both the original
12977 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12978 		 * same: absolute relative to the start of the device, and
12979 		 * adjusted for the target block size. The b_blkno in the
12980 		 * shadow buf will also be set to this value. We should never
12981 		 * change b_blkno in the original bp however.
12982 		 *
12983 		 * Note also that the shadow buf will always need to be a
12984 		 * READ command, regardless of whether the incoming command
12985 		 * is a READ or a WRITE.
12986 		 */
12987 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12988 		    xp->xb_blkno,
12989 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12990 
12991 		shadow_xp = SD_GET_XBUF(shadow_bp);
12992 
12993 		/*
12994 		 * Allocate the layer-private data for the shadow buf.
12995 		 * (No need to preserve xb_private in the shadow xbuf.)
12996 		 */
12997 		shadow_xp->xb_private = shadow_bsp =
12998 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12999 
13000 		/*
13001 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13002 		 * to figure out where the start of the user data is (based upon
13003 		 * the system block size) in the data returned by the READ
13004 		 * command (which will be based upon the target blocksize). Note
13005 		 * that this is only really used if the request is unaligned.
13006 		 */
13007 		if (un->un_f_enable_rmw) {
13008 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13009 			    ((offset_t)xp->xb_blkno * un->un_sys_blocksize));
13010 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13011 			    (bsp->mbs_copy_offset < un->un_phy_blocksize));
13012 		} else {
13013 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13014 			    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13015 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13016 			    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13017 		}
13018 
13019 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13020 
13021 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13022 
13023 		/* Transfer the wmap (if any) to the shadow buf */
13024 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13025 		bsp->mbs_wmp = NULL;
13026 
13027 		/*
13028 		 * The shadow buf goes on from here in place of the
13029 		 * original buf.
13030 		 */
13031 		shadow_bsp->mbs_orig_bp = bp;
13032 		bp = shadow_bp;
13033 	}
13034 
13035 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13036 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13037 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13038 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13039 	    request_bytes);
13040 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13041 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13042 
13043 done:
13044 	SD_NEXT_IOSTART(index, un, bp);
13045 
13046 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13047 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13048 }
13049 
13050 
13051 /*
13052  *    Function: sd_mapblocksize_iodone
13053  *
13054  * Description: Completion side processing for block-size mapping.
13055  *
13056  *     Context: May be called under interrupt context
13057  */
13058 
13059 static void
13060 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13061 {
13062 	struct sd_mapblocksize_info	*bsp;
13063 	struct sd_xbuf	*xp;
13064 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13065 	struct buf	*orig_bp;	/* ptr to the original buf */
13066 	offset_t	shadow_end;
13067 	offset_t	request_end;
13068 	offset_t	shadow_start;
13069 	ssize_t		copy_offset;
13070 	size_t		copy_length;
13071 	size_t		shortfall;
13072 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13073 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13074 
13075 	ASSERT(un != NULL);
13076 	ASSERT(bp != NULL);
13077 
13078 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13079 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13080 
13081 	/*
13082 	 * There is no shadow buf or layer-private data if the target is
13083 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13084 	 */
13085 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
13086 	    (bp->b_bcount == 0)) {
13087 		goto exit;
13088 	}
13089 
13090 	xp = SD_GET_XBUF(bp);
13091 	ASSERT(xp != NULL);
13092 
13093 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13094 	bsp = xp->xb_private;
13095 
13096 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13097 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13098 
13099 	if (is_write) {
13100 		/*
13101 		 * For a WRITE request we must free up the block range that
13102 		 * we have locked up.  This holds regardless of whether this is
13103 		 * an aligned write request or a read-modify-write request.
13104 		 */
13105 		sd_range_unlock(un, bsp->mbs_wmp);
13106 		bsp->mbs_wmp = NULL;
13107 	}
13108 
13109 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13110 		/*
13111 		 * An aligned read or write command will have no shadow buf;
13112 		 * there is not much else to do with it.
13113 		 */
13114 		goto done;
13115 	}
13116 
13117 	orig_bp = bsp->mbs_orig_bp;
13118 	ASSERT(orig_bp != NULL);
13119 	orig_xp = SD_GET_XBUF(orig_bp);
13120 	ASSERT(orig_xp != NULL);
13121 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13122 
13123 	if (!is_write && has_wmap) {
13124 		/*
13125 		 * A READ with a wmap means this is the READ phase of a
13126 		 * read-modify-write. If an error occurred on the READ then
13127 		 * we do not proceed with the WRITE phase or copy any data.
13128 		 * Just release the write maps and return with an error.
13129 		 */
13130 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13131 			orig_bp->b_resid = orig_bp->b_bcount;
13132 			bioerror(orig_bp, bp->b_error);
13133 			sd_range_unlock(un, bsp->mbs_wmp);
13134 			goto freebuf_done;
13135 		}
13136 	}
13137 
13138 	/*
13139 	 * Here is where we set up to copy the data from the shadow buf
13140 	 * into the space associated with the original buf.
13141 	 *
13142 	 * To deal with the conversion between block sizes, these
13143 	 * computations treat the data as an array of bytes, with the
13144 	 * first byte (byte 0) corresponding to the first byte in the
13145 	 * first block on the disk.
13146 	 */
13147 
13148 	/*
13149 	 * shadow_start and shadow_len indicate the location and size of
13150 	 * the data returned with the shadow IO request.
13151 	 */
13152 	if (un->un_f_enable_rmw) {
13153 		shadow_start  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
13154 	} else {
13155 		shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13156 	}
13157 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13158 
13159 	/*
13160 	 * copy_offset gives the offset (in bytes) from the start of the first
13161 	 * block of the READ request to the beginning of the data.  We retrieve
13162 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13163 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13164 	 * data to be copied (in bytes).
13165 	 */
13166 	copy_offset  = bsp->mbs_copy_offset;
13167 	if (un->un_f_enable_rmw) {
13168 		ASSERT((copy_offset >= 0) &&
13169 		    (copy_offset < un->un_phy_blocksize));
13170 	} else {
13171 		ASSERT((copy_offset >= 0) &&
13172 		    (copy_offset < un->un_tgt_blocksize));
13173 	}
13174 
13175 	copy_length  = orig_bp->b_bcount;
13176 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13177 
13178 	/*
13179 	 * Set up the resid and error fields of orig_bp as appropriate.
13180 	 */
13181 	if (shadow_end >= request_end) {
13182 		/* We got all the requested data; set resid to zero */
13183 		orig_bp->b_resid = 0;
13184 	} else {
13185 		/*
13186 		 * We failed to get enough data to fully satisfy the original
13187 		 * request. Just copy back whatever data we got and set
13188 		 * up the residual and error code as required.
13189 		 *
13190 		 * 'shortfall' is the amount by which the data received with the
13191 		 * shadow buf has "fallen short" of the requested amount.
13192 		 */
13193 		shortfall = (size_t)(request_end - shadow_end);
13194 
13195 		if (shortfall > orig_bp->b_bcount) {
13196 			/*
13197 			 * We did not get enough data to even partially
13198 			 * fulfill the original request.  The residual is
13199 			 * equal to the amount requested.
13200 			 */
13201 			orig_bp->b_resid = orig_bp->b_bcount;
13202 		} else {
13203 			/*
13204 			 * We did not get all the data that we requested
13205 			 * from the device, but we will try to return what
13206 			 * portion we did get.
13207 			 */
13208 			orig_bp->b_resid = shortfall;
13209 		}
13210 		ASSERT(copy_length >= orig_bp->b_resid);
13211 		copy_length  -= orig_bp->b_resid;
13212 	}
13213 
13214 	/* Propagate the error code from the shadow buf to the original buf */
13215 	bioerror(orig_bp, bp->b_error);
13216 
13217 	if (is_write) {
13218 		goto freebuf_done;	/* No data copying for a WRITE */
13219 	}
13220 
13221 	if (has_wmap) {
13222 		/*
13223 		 * This is a READ command from the READ phase of a
13224 		 * read-modify-write request. We have to copy the data given
13225 		 * by the user OVER the data returned by the READ command,
13226 		 * then convert the command from a READ to a WRITE and send
13227 		 * it back to the target.
13228 		 */
13229 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13230 		    copy_length);
13231 
13232 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13233 
13234 		/*
13235 		 * Dispatch the WRITE command to the taskq thread, which
13236 		 * will in turn send the command to the target. When the
13237 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13238 		 * will get called again as part of the iodone chain
13239 		 * processing for it. Note that we will still be dealing
13240 		 * with the shadow buf at that point.
13241 		 */
13242 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13243 		    KM_NOSLEEP) != 0) {
13244 			/*
13245 			 * Dispatch was successful so we are done. Return
13246 			 * without going any higher up the iodone chain. Do
13247 			 * not free up any layer-private data until after the
13248 			 * WRITE completes.
13249 			 */
13250 			return;
13251 		}
13252 
13253 		/*
13254 		 * Dispatch of the WRITE command failed; set up the error
13255 		 * condition and send this IO back up the iodone chain.
13256 		 */
13257 		bioerror(orig_bp, EIO);
13258 		orig_bp->b_resid = orig_bp->b_bcount;
13259 
13260 	} else {
13261 		/*
13262 		 * This is a regular READ request (ie, not a RMW). Copy the
13263 		 * data from the shadow buf into the original buf. The
13264 		 * copy_offset compensates for any "misalignment" between the
13265 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13266 		 * original buf (with its un->un_sys_blocksize blocks).
13267 		 */
13268 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13269 		    copy_length);
13270 	}
13271 
13272 freebuf_done:
13273 
13274 	/*
13275 	 * At this point we still have both the shadow buf AND the original
13276 	 * buf to deal with, as well as the layer-private data area in each.
13277 	 * Local variables are as follows:
13278 	 *
13279 	 * bp -- points to shadow buf
13280 	 * xp -- points to xbuf of shadow buf
13281 	 * bsp -- points to layer-private data area of shadow buf
13282 	 * orig_bp -- points to original buf
13283 	 *
13284 	 * First free the shadow buf and its associated xbuf, then free the
13285 	 * layer-private data area from the shadow buf. There is no need to
13286 	 * restore xb_private in the shadow xbuf.
13287 	 */
13288 	sd_shadow_buf_free(bp);
13289 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13290 
13291 	/*
13292 	 * Now update the local variables to point to the original buf, xbuf,
13293 	 * and layer-private area.
13294 	 */
13295 	bp = orig_bp;
13296 	xp = SD_GET_XBUF(bp);
13297 	ASSERT(xp != NULL);
13298 	ASSERT(xp == orig_xp);
13299 	bsp = xp->xb_private;
13300 	ASSERT(bsp != NULL);
13301 
13302 done:
13303 	/*
13304 	 * Restore xb_private to whatever it was set to by the next higher
13305 	 * layer in the chain, then free the layer-private data area.
13306 	 */
13307 	xp->xb_private = bsp->mbs_oprivate;
13308 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13309 
13310 exit:
13311 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13312 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13313 
13314 	SD_NEXT_IODONE(index, un, bp);
13315 }
13316 
13317 
13318 /*
13319  *    Function: sd_checksum_iostart
13320  *
13321  * Description: A stub function for a layer that's currently not used.
13322  *		For now just a placeholder.
13323  *
13324  *     Context: Kernel thread context
13325  */
13326 
13327 static void
13328 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13329 {
13330 	ASSERT(un != NULL);
13331 	ASSERT(bp != NULL);
13332 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13333 	SD_NEXT_IOSTART(index, un, bp);
13334 }
13335 
13336 
13337 /*
13338  *    Function: sd_checksum_iodone
13339  *
13340  * Description: A stub function for a layer that's currently not used.
13341  *		For now just a placeholder.
13342  *
13343  *     Context: May be called under interrupt context
13344  */
13345 
13346 static void
13347 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13348 {
13349 	ASSERT(un != NULL);
13350 	ASSERT(bp != NULL);
13351 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13352 	SD_NEXT_IODONE(index, un, bp);
13353 }
13354 
13355 
13356 /*
13357  *    Function: sd_checksum_uscsi_iostart
13358  *
13359  * Description: A stub function for a layer that's currently not used.
13360  *		For now just a placeholder.
13361  *
13362  *     Context: Kernel thread context
13363  */
13364 
13365 static void
13366 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13367 {
13368 	ASSERT(un != NULL);
13369 	ASSERT(bp != NULL);
13370 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13371 	SD_NEXT_IOSTART(index, un, bp);
13372 }
13373 
13374 
13375 /*
13376  *    Function: sd_checksum_uscsi_iodone
13377  *
13378  * Description: A stub function for a layer that's currently not used.
13379  *		For now just a placeholder.
13380  *
13381  *     Context: May be called under interrupt context
13382  */
13383 
13384 static void
13385 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13386 {
13387 	ASSERT(un != NULL);
13388 	ASSERT(bp != NULL);
13389 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13390 	SD_NEXT_IODONE(index, un, bp);
13391 }
13392 
13393 
13394 /*
13395  *    Function: sd_pm_iostart
13396  *
13397  * Description: iostart-side routine for Power mangement.
13398  *
13399  *     Context: Kernel thread context
13400  */
13401 
13402 static void
13403 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13404 {
13405 	ASSERT(un != NULL);
13406 	ASSERT(bp != NULL);
13407 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13408 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13409 
13410 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13411 
13412 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13413 		/*
13414 		 * Set up to return the failed buf back up the 'iodone'
13415 		 * side of the calling chain.
13416 		 */
13417 		bioerror(bp, EIO);
13418 		bp->b_resid = bp->b_bcount;
13419 
13420 		SD_BEGIN_IODONE(index, un, bp);
13421 
13422 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13423 		return;
13424 	}
13425 
13426 	SD_NEXT_IOSTART(index, un, bp);
13427 
13428 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13429 }
13430 
13431 
13432 /*
13433  *    Function: sd_pm_iodone
13434  *
13435  * Description: iodone-side routine for power mangement.
13436  *
13437  *     Context: may be called from interrupt context
13438  */
13439 
13440 static void
13441 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13442 {
13443 	ASSERT(un != NULL);
13444 	ASSERT(bp != NULL);
13445 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13446 
13447 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13448 
13449 	/*
13450 	 * After attach the following flag is only read, so don't
13451 	 * take the penalty of acquiring a mutex for it.
13452 	 */
13453 	if (un->un_f_pm_is_enabled == TRUE) {
13454 		sd_pm_exit(un);
13455 	}
13456 
13457 	SD_NEXT_IODONE(index, un, bp);
13458 
13459 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13460 }
13461 
13462 
13463 /*
13464  *    Function: sd_core_iostart
13465  *
13466  * Description: Primary driver function for enqueuing buf(9S) structs from
13467  *		the system and initiating IO to the target device
13468  *
13469  *     Context: Kernel thread context. Can sleep.
13470  *
13471  * Assumptions:  - The given xp->xb_blkno is absolute
13472  *		   (ie, relative to the start of the device).
13473  *		 - The IO is to be done using the native blocksize of
13474  *		   the device, as specified in un->un_tgt_blocksize.
13475  */
13476 /* ARGSUSED */
13477 static void
13478 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13479 {
13480 	struct sd_xbuf *xp;
13481 
13482 	ASSERT(un != NULL);
13483 	ASSERT(bp != NULL);
13484 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13485 	ASSERT(bp->b_resid == 0);
13486 
13487 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13488 
13489 	xp = SD_GET_XBUF(bp);
13490 	ASSERT(xp != NULL);
13491 
13492 	mutex_enter(SD_MUTEX(un));
13493 
13494 	/*
13495 	 * If we are currently in the failfast state, fail any new IO
13496 	 * that has B_FAILFAST set, then return.
13497 	 */
13498 	if ((bp->b_flags & B_FAILFAST) &&
13499 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13500 		mutex_exit(SD_MUTEX(un));
13501 		bioerror(bp, EIO);
13502 		bp->b_resid = bp->b_bcount;
13503 		SD_BEGIN_IODONE(index, un, bp);
13504 		return;
13505 	}
13506 
13507 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13508 		/*
13509 		 * Priority command -- transport it immediately.
13510 		 *
13511 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13512 		 * because all direct priority commands should be associated
13513 		 * with error recovery actions which we don't want to retry.
13514 		 */
13515 		sd_start_cmds(un, bp);
13516 	} else {
13517 		/*
13518 		 * Normal command -- add it to the wait queue, then start
13519 		 * transporting commands from the wait queue.
13520 		 */
13521 		sd_add_buf_to_waitq(un, bp);
13522 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13523 		sd_start_cmds(un, NULL);
13524 	}
13525 
13526 	mutex_exit(SD_MUTEX(un));
13527 
13528 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13529 }
13530 
13531 
13532 /*
13533  *    Function: sd_init_cdb_limits
13534  *
13535  * Description: This is to handle scsi_pkt initialization differences
13536  *		between the driver platforms.
13537  *
13538  *		Legacy behaviors:
13539  *
13540  *		If the block number or the sector count exceeds the
13541  *		capabilities of a Group 0 command, shift over to a
13542  *		Group 1 command. We don't blindly use Group 1
13543  *		commands because a) some drives (CDC Wren IVs) get a
13544  *		bit confused, and b) there is probably a fair amount
13545  *		of speed difference for a target to receive and decode
13546  *		a 10 byte command instead of a 6 byte command.
13547  *
13548  *		The xfer time difference of 6 vs 10 byte CDBs is
13549  *		still significant so this code is still worthwhile.
13550  *		10 byte CDBs are very inefficient with the fas HBA driver
13551  *		and older disks. Each CDB byte took 1 usec with some
13552  *		popular disks.
13553  *
13554  *     Context: Must be called at attach time
13555  */
13556 
13557 static void
13558 sd_init_cdb_limits(struct sd_lun *un)
13559 {
13560 	int hba_cdb_limit;
13561 
13562 	/*
13563 	 * Use CDB_GROUP1 commands for most devices except for
13564 	 * parallel SCSI fixed drives in which case we get better
13565 	 * performance using CDB_GROUP0 commands (where applicable).
13566 	 */
13567 	un->un_mincdb = SD_CDB_GROUP1;
13568 #if !defined(__fibre)
13569 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13570 	    !un->un_f_has_removable_media) {
13571 		un->un_mincdb = SD_CDB_GROUP0;
13572 	}
13573 #endif
13574 
13575 	/*
13576 	 * Try to read the max-cdb-length supported by HBA.
13577 	 */
13578 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13579 	if (0 >= un->un_max_hba_cdb) {
13580 		un->un_max_hba_cdb = CDB_GROUP4;
13581 		hba_cdb_limit = SD_CDB_GROUP4;
13582 	} else if (0 < un->un_max_hba_cdb &&
13583 	    un->un_max_hba_cdb < CDB_GROUP1) {
13584 		hba_cdb_limit = SD_CDB_GROUP0;
13585 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13586 	    un->un_max_hba_cdb < CDB_GROUP5) {
13587 		hba_cdb_limit = SD_CDB_GROUP1;
13588 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13589 	    un->un_max_hba_cdb < CDB_GROUP4) {
13590 		hba_cdb_limit = SD_CDB_GROUP5;
13591 	} else {
13592 		hba_cdb_limit = SD_CDB_GROUP4;
13593 	}
13594 
13595 	/*
13596 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13597 	 * commands for fixed disks unless we are building for a 32 bit
13598 	 * kernel.
13599 	 */
13600 #ifdef _LP64
13601 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13602 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13603 #else
13604 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13605 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13606 #endif
13607 
13608 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13609 	    ? sizeof (struct scsi_arq_status) : 1);
13610 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13611 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13612 }
13613 
13614 
13615 /*
13616  *    Function: sd_initpkt_for_buf
13617  *
13618  * Description: Allocate and initialize for transport a scsi_pkt struct,
13619  *		based upon the info specified in the given buf struct.
13620  *
13621  *		Assumes the xb_blkno in the request is absolute (ie,
13622  *		relative to the start of the device (NOT partition!).
13623  *		Also assumes that the request is using the native block
13624  *		size of the device (as returned by the READ CAPACITY
13625  *		command).
13626  *
13627  * Return Code: SD_PKT_ALLOC_SUCCESS
13628  *		SD_PKT_ALLOC_FAILURE
13629  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13630  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13631  *
13632  *     Context: Kernel thread and may be called from software interrupt context
13633  *		as part of a sdrunout callback. This function may not block or
13634  *		call routines that block
13635  */
13636 
13637 static int
13638 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13639 {
13640 	struct sd_xbuf	*xp;
13641 	struct scsi_pkt *pktp = NULL;
13642 	struct sd_lun	*un;
13643 	size_t		blockcount;
13644 	daddr_t		startblock;
13645 	int		rval;
13646 	int		cmd_flags;
13647 
13648 	ASSERT(bp != NULL);
13649 	ASSERT(pktpp != NULL);
13650 	xp = SD_GET_XBUF(bp);
13651 	ASSERT(xp != NULL);
13652 	un = SD_GET_UN(bp);
13653 	ASSERT(un != NULL);
13654 	ASSERT(mutex_owned(SD_MUTEX(un)));
13655 	ASSERT(bp->b_resid == 0);
13656 
13657 	SD_TRACE(SD_LOG_IO_CORE, un,
13658 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13659 
13660 	mutex_exit(SD_MUTEX(un));
13661 
13662 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13663 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13664 		/*
13665 		 * Already have a scsi_pkt -- just need DMA resources.
13666 		 * We must recompute the CDB in case the mapping returns
13667 		 * a nonzero pkt_resid.
13668 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13669 		 * that is being retried, the unmap/remap of the DMA resouces
13670 		 * will result in the entire transfer starting over again
13671 		 * from the very first block.
13672 		 */
13673 		ASSERT(xp->xb_pktp != NULL);
13674 		pktp = xp->xb_pktp;
13675 	} else {
13676 		pktp = NULL;
13677 	}
13678 #endif /* __i386 || __amd64 */
13679 
13680 	startblock = xp->xb_blkno;	/* Absolute block num. */
13681 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13682 
13683 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13684 
13685 	/*
13686 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13687 	 * call scsi_init_pkt, and build the CDB.
13688 	 */
13689 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13690 	    cmd_flags, sdrunout, (caddr_t)un,
13691 	    startblock, blockcount);
13692 
13693 	if (rval == 0) {
13694 		/*
13695 		 * Success.
13696 		 *
13697 		 * If partial DMA is being used and required for this transfer.
13698 		 * set it up here.
13699 		 */
13700 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13701 		    (pktp->pkt_resid != 0)) {
13702 
13703 			/*
13704 			 * Save the CDB length and pkt_resid for the
13705 			 * next xfer
13706 			 */
13707 			xp->xb_dma_resid = pktp->pkt_resid;
13708 
13709 			/* rezero resid */
13710 			pktp->pkt_resid = 0;
13711 
13712 		} else {
13713 			xp->xb_dma_resid = 0;
13714 		}
13715 
13716 		pktp->pkt_flags = un->un_tagflags;
13717 		pktp->pkt_time  = un->un_cmd_timeout;
13718 		pktp->pkt_comp  = sdintr;
13719 
13720 		pktp->pkt_private = bp;
13721 		*pktpp = pktp;
13722 
13723 		SD_TRACE(SD_LOG_IO_CORE, un,
13724 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13725 
13726 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13727 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13728 #endif
13729 
13730 		mutex_enter(SD_MUTEX(un));
13731 		return (SD_PKT_ALLOC_SUCCESS);
13732 
13733 	}
13734 
13735 	/*
13736 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13737 	 * from sd_setup_rw_pkt.
13738 	 */
13739 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13740 
13741 	if (rval == SD_PKT_ALLOC_FAILURE) {
13742 		*pktpp = NULL;
13743 		/*
13744 		 * Set the driver state to RWAIT to indicate the driver
13745 		 * is waiting on resource allocations. The driver will not
13746 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13747 		 */
13748 		mutex_enter(SD_MUTEX(un));
13749 		New_state(un, SD_STATE_RWAIT);
13750 
13751 		SD_ERROR(SD_LOG_IO_CORE, un,
13752 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13753 
13754 		if ((bp->b_flags & B_ERROR) != 0) {
13755 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13756 		}
13757 		return (SD_PKT_ALLOC_FAILURE);
13758 	} else {
13759 		/*
13760 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13761 		 *
13762 		 * This should never happen.  Maybe someone messed with the
13763 		 * kernel's minphys?
13764 		 */
13765 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13766 		    "Request rejected: too large for CDB: "
13767 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13768 		SD_ERROR(SD_LOG_IO_CORE, un,
13769 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13770 		mutex_enter(SD_MUTEX(un));
13771 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13772 
13773 	}
13774 }
13775 
13776 
13777 /*
13778  *    Function: sd_destroypkt_for_buf
13779  *
13780  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13781  *
13782  *     Context: Kernel thread or interrupt context
13783  */
13784 
13785 static void
13786 sd_destroypkt_for_buf(struct buf *bp)
13787 {
13788 	ASSERT(bp != NULL);
13789 	ASSERT(SD_GET_UN(bp) != NULL);
13790 
13791 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13792 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13793 
13794 	ASSERT(SD_GET_PKTP(bp) != NULL);
13795 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13796 
13797 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13798 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13799 }
13800 
13801 /*
13802  *    Function: sd_setup_rw_pkt
13803  *
13804  * Description: Determines appropriate CDB group for the requested LBA
13805  *		and transfer length, calls scsi_init_pkt, and builds
13806  *		the CDB.  Do not use for partial DMA transfers except
13807  *		for the initial transfer since the CDB size must
13808  *		remain constant.
13809  *
13810  *     Context: Kernel thread and may be called from software interrupt
13811  *		context as part of a sdrunout callback. This function may not
13812  *		block or call routines that block
13813  */
13814 
13815 
13816 int
13817 sd_setup_rw_pkt(struct sd_lun *un,
13818     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13819     int (*callback)(caddr_t), caddr_t callback_arg,
13820     diskaddr_t lba, uint32_t blockcount)
13821 {
13822 	struct scsi_pkt *return_pktp;
13823 	union scsi_cdb *cdbp;
13824 	struct sd_cdbinfo *cp = NULL;
13825 	int i;
13826 
13827 	/*
13828 	 * See which size CDB to use, based upon the request.
13829 	 */
13830 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13831 
13832 		/*
13833 		 * Check lba and block count against sd_cdbtab limits.
13834 		 * In the partial DMA case, we have to use the same size
13835 		 * CDB for all the transfers.  Check lba + blockcount
13836 		 * against the max LBA so we know that segment of the
13837 		 * transfer can use the CDB we select.
13838 		 */
13839 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13840 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13841 
13842 			/*
13843 			 * The command will fit into the CDB type
13844 			 * specified by sd_cdbtab[i].
13845 			 */
13846 			cp = sd_cdbtab + i;
13847 
13848 			/*
13849 			 * Call scsi_init_pkt so we can fill in the
13850 			 * CDB.
13851 			 */
13852 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13853 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13854 			    flags, callback, callback_arg);
13855 
13856 			if (return_pktp != NULL) {
13857 
13858 				/*
13859 				 * Return new value of pkt
13860 				 */
13861 				*pktpp = return_pktp;
13862 
13863 				/*
13864 				 * To be safe, zero the CDB insuring there is
13865 				 * no leftover data from a previous command.
13866 				 */
13867 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13868 
13869 				/*
13870 				 * Handle partial DMA mapping
13871 				 */
13872 				if (return_pktp->pkt_resid != 0) {
13873 
13874 					/*
13875 					 * Not going to xfer as many blocks as
13876 					 * originally expected
13877 					 */
13878 					blockcount -=
13879 					    SD_BYTES2TGTBLOCKS(un,
13880 					    return_pktp->pkt_resid);
13881 				}
13882 
13883 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13884 
13885 				/*
13886 				 * Set command byte based on the CDB
13887 				 * type we matched.
13888 				 */
13889 				cdbp->scc_cmd = cp->sc_grpmask |
13890 				    ((bp->b_flags & B_READ) ?
13891 				    SCMD_READ : SCMD_WRITE);
13892 
13893 				SD_FILL_SCSI1_LUN(un, return_pktp);
13894 
13895 				/*
13896 				 * Fill in LBA and length
13897 				 */
13898 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13899 				    (cp->sc_grpcode == CDB_GROUP4) ||
13900 				    (cp->sc_grpcode == CDB_GROUP0) ||
13901 				    (cp->sc_grpcode == CDB_GROUP5));
13902 
13903 				if (cp->sc_grpcode == CDB_GROUP1) {
13904 					FORMG1ADDR(cdbp, lba);
13905 					FORMG1COUNT(cdbp, blockcount);
13906 					return (0);
13907 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13908 					FORMG4LONGADDR(cdbp, lba);
13909 					FORMG4COUNT(cdbp, blockcount);
13910 					return (0);
13911 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13912 					FORMG0ADDR(cdbp, lba);
13913 					FORMG0COUNT(cdbp, blockcount);
13914 					return (0);
13915 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13916 					FORMG5ADDR(cdbp, lba);
13917 					FORMG5COUNT(cdbp, blockcount);
13918 					return (0);
13919 				}
13920 
13921 				/*
13922 				 * It should be impossible to not match one
13923 				 * of the CDB types above, so we should never
13924 				 * reach this point.  Set the CDB command byte
13925 				 * to test-unit-ready to avoid writing
13926 				 * to somewhere we don't intend.
13927 				 */
13928 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13929 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13930 			} else {
13931 				/*
13932 				 * Couldn't get scsi_pkt
13933 				 */
13934 				return (SD_PKT_ALLOC_FAILURE);
13935 			}
13936 		}
13937 	}
13938 
13939 	/*
13940 	 * None of the available CDB types were suitable.  This really
13941 	 * should never happen:  on a 64 bit system we support
13942 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13943 	 * and on a 32 bit system we will refuse to bind to a device
13944 	 * larger than 2TB so addresses will never be larger than 32 bits.
13945 	 */
13946 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13947 }
13948 
13949 /*
13950  *    Function: sd_setup_next_rw_pkt
13951  *
13952  * Description: Setup packet for partial DMA transfers, except for the
13953  * 		initial transfer.  sd_setup_rw_pkt should be used for
13954  *		the initial transfer.
13955  *
13956  *     Context: Kernel thread and may be called from interrupt context.
13957  */
13958 
13959 int
13960 sd_setup_next_rw_pkt(struct sd_lun *un,
13961     struct scsi_pkt *pktp, struct buf *bp,
13962     diskaddr_t lba, uint32_t blockcount)
13963 {
13964 	uchar_t com;
13965 	union scsi_cdb *cdbp;
13966 	uchar_t cdb_group_id;
13967 
13968 	ASSERT(pktp != NULL);
13969 	ASSERT(pktp->pkt_cdbp != NULL);
13970 
13971 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13972 	com = cdbp->scc_cmd;
13973 	cdb_group_id = CDB_GROUPID(com);
13974 
13975 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13976 	    (cdb_group_id == CDB_GROUPID_1) ||
13977 	    (cdb_group_id == CDB_GROUPID_4) ||
13978 	    (cdb_group_id == CDB_GROUPID_5));
13979 
13980 	/*
13981 	 * Move pkt to the next portion of the xfer.
13982 	 * func is NULL_FUNC so we do not have to release
13983 	 * the disk mutex here.
13984 	 */
13985 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13986 	    NULL_FUNC, NULL) == pktp) {
13987 		/* Success.  Handle partial DMA */
13988 		if (pktp->pkt_resid != 0) {
13989 			blockcount -=
13990 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13991 		}
13992 
13993 		cdbp->scc_cmd = com;
13994 		SD_FILL_SCSI1_LUN(un, pktp);
13995 		if (cdb_group_id == CDB_GROUPID_1) {
13996 			FORMG1ADDR(cdbp, lba);
13997 			FORMG1COUNT(cdbp, blockcount);
13998 			return (0);
13999 		} else if (cdb_group_id == CDB_GROUPID_4) {
14000 			FORMG4LONGADDR(cdbp, lba);
14001 			FORMG4COUNT(cdbp, blockcount);
14002 			return (0);
14003 		} else if (cdb_group_id == CDB_GROUPID_0) {
14004 			FORMG0ADDR(cdbp, lba);
14005 			FORMG0COUNT(cdbp, blockcount);
14006 			return (0);
14007 		} else if (cdb_group_id == CDB_GROUPID_5) {
14008 			FORMG5ADDR(cdbp, lba);
14009 			FORMG5COUNT(cdbp, blockcount);
14010 			return (0);
14011 		}
14012 
14013 		/* Unreachable */
14014 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14015 	}
14016 
14017 	/*
14018 	 * Error setting up next portion of cmd transfer.
14019 	 * Something is definitely very wrong and this
14020 	 * should not happen.
14021 	 */
14022 	return (SD_PKT_ALLOC_FAILURE);
14023 }
14024 
14025 /*
14026  *    Function: sd_initpkt_for_uscsi
14027  *
14028  * Description: Allocate and initialize for transport a scsi_pkt struct,
14029  *		based upon the info specified in the given uscsi_cmd struct.
14030  *
14031  * Return Code: SD_PKT_ALLOC_SUCCESS
14032  *		SD_PKT_ALLOC_FAILURE
14033  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14034  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14035  *
14036  *     Context: Kernel thread and may be called from software interrupt context
14037  *		as part of a sdrunout callback. This function may not block or
14038  *		call routines that block
14039  */
14040 
14041 static int
14042 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14043 {
14044 	struct uscsi_cmd *uscmd;
14045 	struct sd_xbuf	*xp;
14046 	struct scsi_pkt	*pktp;
14047 	struct sd_lun	*un;
14048 	uint32_t	flags = 0;
14049 
14050 	ASSERT(bp != NULL);
14051 	ASSERT(pktpp != NULL);
14052 	xp = SD_GET_XBUF(bp);
14053 	ASSERT(xp != NULL);
14054 	un = SD_GET_UN(bp);
14055 	ASSERT(un != NULL);
14056 	ASSERT(mutex_owned(SD_MUTEX(un)));
14057 
14058 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14059 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14060 	ASSERT(uscmd != NULL);
14061 
14062 	SD_TRACE(SD_LOG_IO_CORE, un,
14063 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14064 
14065 	/*
14066 	 * Allocate the scsi_pkt for the command.
14067 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14068 	 *	 during scsi_init_pkt time and will continue to use the
14069 	 *	 same path as long as the same scsi_pkt is used without
14070 	 *	 intervening scsi_dma_free(). Since uscsi command does
14071 	 *	 not call scsi_dmafree() before retry failed command, it
14072 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14073 	 *	 set such that scsi_vhci can use other available path for
14074 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14075 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14076 	 */
14077 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14078 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14079 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14080 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
14081 		    - sizeof (struct scsi_extended_sense)), 0,
14082 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
14083 		    sdrunout, (caddr_t)un);
14084 	} else {
14085 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14086 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14087 		    sizeof (struct scsi_arq_status), 0,
14088 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14089 		    sdrunout, (caddr_t)un);
14090 	}
14091 
14092 	if (pktp == NULL) {
14093 		*pktpp = NULL;
14094 		/*
14095 		 * Set the driver state to RWAIT to indicate the driver
14096 		 * is waiting on resource allocations. The driver will not
14097 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14098 		 */
14099 		New_state(un, SD_STATE_RWAIT);
14100 
14101 		SD_ERROR(SD_LOG_IO_CORE, un,
14102 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14103 
14104 		if ((bp->b_flags & B_ERROR) != 0) {
14105 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14106 		}
14107 		return (SD_PKT_ALLOC_FAILURE);
14108 	}
14109 
14110 	/*
14111 	 * We do not do DMA breakup for USCSI commands, so return failure
14112 	 * here if all the needed DMA resources were not allocated.
14113 	 */
14114 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14115 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14116 		scsi_destroy_pkt(pktp);
14117 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14118 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14119 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14120 	}
14121 
14122 	/* Init the cdb from the given uscsi struct */
14123 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14124 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14125 
14126 	SD_FILL_SCSI1_LUN(un, pktp);
14127 
14128 	/*
14129 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14130 	 * for listing of the supported flags.
14131 	 */
14132 
14133 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14134 		flags |= FLAG_SILENT;
14135 	}
14136 
14137 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14138 		flags |= FLAG_DIAGNOSE;
14139 	}
14140 
14141 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14142 		flags |= FLAG_ISOLATE;
14143 	}
14144 
14145 	if (un->un_f_is_fibre == FALSE) {
14146 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14147 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14148 		}
14149 	}
14150 
14151 	/*
14152 	 * Set the pkt flags here so we save time later.
14153 	 * Note: These flags are NOT in the uscsi man page!!!
14154 	 */
14155 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14156 		flags |= FLAG_HEAD;
14157 	}
14158 
14159 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14160 		flags |= FLAG_NOINTR;
14161 	}
14162 
14163 	/*
14164 	 * For tagged queueing, things get a bit complicated.
14165 	 * Check first for head of queue and last for ordered queue.
14166 	 * If neither head nor order, use the default driver tag flags.
14167 	 */
14168 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14169 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14170 			flags |= FLAG_HTAG;
14171 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14172 			flags |= FLAG_OTAG;
14173 		} else {
14174 			flags |= un->un_tagflags & FLAG_TAGMASK;
14175 		}
14176 	}
14177 
14178 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14179 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14180 	}
14181 
14182 	pktp->pkt_flags = flags;
14183 
14184 	/* Transfer uscsi information to scsi_pkt */
14185 	(void) scsi_uscsi_pktinit(uscmd, pktp);
14186 
14187 	/* Copy the caller's CDB into the pkt... */
14188 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14189 
14190 	if (uscmd->uscsi_timeout == 0) {
14191 		pktp->pkt_time = un->un_uscsi_timeout;
14192 	} else {
14193 		pktp->pkt_time = uscmd->uscsi_timeout;
14194 	}
14195 
14196 	/* need it later to identify USCSI request in sdintr */
14197 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14198 
14199 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14200 
14201 	pktp->pkt_private = bp;
14202 	pktp->pkt_comp = sdintr;
14203 	*pktpp = pktp;
14204 
14205 	SD_TRACE(SD_LOG_IO_CORE, un,
14206 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14207 
14208 	return (SD_PKT_ALLOC_SUCCESS);
14209 }
14210 
14211 
14212 /*
14213  *    Function: sd_destroypkt_for_uscsi
14214  *
14215  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14216  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14217  *		struct.
14218  *
14219  *     Context: May be called under interrupt context
14220  */
14221 
14222 static void
14223 sd_destroypkt_for_uscsi(struct buf *bp)
14224 {
14225 	struct uscsi_cmd *uscmd;
14226 	struct sd_xbuf	*xp;
14227 	struct scsi_pkt	*pktp;
14228 	struct sd_lun	*un;
14229 	struct sd_uscsi_info *suip;
14230 
14231 	ASSERT(bp != NULL);
14232 	xp = SD_GET_XBUF(bp);
14233 	ASSERT(xp != NULL);
14234 	un = SD_GET_UN(bp);
14235 	ASSERT(un != NULL);
14236 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14237 	pktp = SD_GET_PKTP(bp);
14238 	ASSERT(pktp != NULL);
14239 
14240 	SD_TRACE(SD_LOG_IO_CORE, un,
14241 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14242 
14243 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14244 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14245 	ASSERT(uscmd != NULL);
14246 
14247 	/* Save the status and the residual into the uscsi_cmd struct */
14248 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14249 	uscmd->uscsi_resid  = bp->b_resid;
14250 
14251 	/* Transfer scsi_pkt information to uscsi */
14252 	(void) scsi_uscsi_pktfini(pktp, uscmd);
14253 
14254 	/*
14255 	 * If enabled, copy any saved sense data into the area specified
14256 	 * by the uscsi command.
14257 	 */
14258 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14259 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14260 		/*
14261 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14262 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14263 		 */
14264 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14265 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14266 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14267 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14268 			    MAX_SENSE_LENGTH);
14269 		} else {
14270 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14271 			    SENSE_LENGTH);
14272 		}
14273 	}
14274 	/*
14275 	 * The following assignments are for SCSI FMA.
14276 	 */
14277 	ASSERT(xp->xb_private != NULL);
14278 	suip = (struct sd_uscsi_info *)xp->xb_private;
14279 	suip->ui_pkt_reason = pktp->pkt_reason;
14280 	suip->ui_pkt_state = pktp->pkt_state;
14281 	suip->ui_pkt_statistics = pktp->pkt_statistics;
14282 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
14283 
14284 	/* We are done with the scsi_pkt; free it now */
14285 	ASSERT(SD_GET_PKTP(bp) != NULL);
14286 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14287 
14288 	SD_TRACE(SD_LOG_IO_CORE, un,
14289 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14290 }
14291 
14292 
14293 /*
14294  *    Function: sd_bioclone_alloc
14295  *
14296  * Description: Allocate a buf(9S) and init it as per the given buf
14297  *		and the various arguments.  The associated sd_xbuf
14298  *		struct is (nearly) duplicated.  The struct buf *bp
14299  *		argument is saved in new_xp->xb_private.
14300  *
14301  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14302  *		datalen - size of data area for the shadow bp
14303  *		blkno - starting LBA
14304  *		func - function pointer for b_iodone in the shadow buf. (May
14305  *			be NULL if none.)
14306  *
14307  * Return Code: Pointer to allocates buf(9S) struct
14308  *
14309  *     Context: Can sleep.
14310  */
14311 
14312 static struct buf *
14313 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14314 	daddr_t blkno, int (*func)(struct buf *))
14315 {
14316 	struct	sd_lun	*un;
14317 	struct	sd_xbuf	*xp;
14318 	struct	sd_xbuf	*new_xp;
14319 	struct	buf	*new_bp;
14320 
14321 	ASSERT(bp != NULL);
14322 	xp = SD_GET_XBUF(bp);
14323 	ASSERT(xp != NULL);
14324 	un = SD_GET_UN(bp);
14325 	ASSERT(un != NULL);
14326 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14327 
14328 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14329 	    NULL, KM_SLEEP);
14330 
14331 	new_bp->b_lblkno	= blkno;
14332 
14333 	/*
14334 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14335 	 * original xbuf into it.
14336 	 */
14337 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14338 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14339 
14340 	/*
14341 	 * The given bp is automatically saved in the xb_private member
14342 	 * of the new xbuf.  Callers are allowed to depend on this.
14343 	 */
14344 	new_xp->xb_private = bp;
14345 
14346 	new_bp->b_private  = new_xp;
14347 
14348 	return (new_bp);
14349 }
14350 
14351 /*
14352  *    Function: sd_shadow_buf_alloc
14353  *
14354  * Description: Allocate a buf(9S) and init it as per the given buf
14355  *		and the various arguments.  The associated sd_xbuf
14356  *		struct is (nearly) duplicated.  The struct buf *bp
14357  *		argument is saved in new_xp->xb_private.
14358  *
14359  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14360  *		datalen - size of data area for the shadow bp
14361  *		bflags - B_READ or B_WRITE (pseudo flag)
14362  *		blkno - starting LBA
14363  *		func - function pointer for b_iodone in the shadow buf. (May
14364  *			be NULL if none.)
14365  *
14366  * Return Code: Pointer to allocates buf(9S) struct
14367  *
14368  *     Context: Can sleep.
14369  */
14370 
14371 static struct buf *
14372 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14373 	daddr_t blkno, int (*func)(struct buf *))
14374 {
14375 	struct	sd_lun	*un;
14376 	struct	sd_xbuf	*xp;
14377 	struct	sd_xbuf	*new_xp;
14378 	struct	buf	*new_bp;
14379 
14380 	ASSERT(bp != NULL);
14381 	xp = SD_GET_XBUF(bp);
14382 	ASSERT(xp != NULL);
14383 	un = SD_GET_UN(bp);
14384 	ASSERT(un != NULL);
14385 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14386 
14387 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14388 		bp_mapin(bp);
14389 	}
14390 
14391 	bflags &= (B_READ | B_WRITE);
14392 #if defined(__i386) || defined(__amd64)
14393 	new_bp = getrbuf(KM_SLEEP);
14394 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14395 	new_bp->b_bcount = datalen;
14396 	new_bp->b_flags = bflags |
14397 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14398 #else
14399 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14400 	    datalen, bflags, SLEEP_FUNC, NULL);
14401 #endif
14402 	new_bp->av_forw	= NULL;
14403 	new_bp->av_back	= NULL;
14404 	new_bp->b_dev	= bp->b_dev;
14405 	new_bp->b_blkno	= blkno;
14406 	new_bp->b_iodone = func;
14407 	new_bp->b_edev	= bp->b_edev;
14408 	new_bp->b_resid	= 0;
14409 
14410 	/* We need to preserve the B_FAILFAST flag */
14411 	if (bp->b_flags & B_FAILFAST) {
14412 		new_bp->b_flags |= B_FAILFAST;
14413 	}
14414 
14415 	/*
14416 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14417 	 * original xbuf into it.
14418 	 */
14419 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14420 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14421 
14422 	/* Need later to copy data between the shadow buf & original buf! */
14423 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14424 
14425 	/*
14426 	 * The given bp is automatically saved in the xb_private member
14427 	 * of the new xbuf.  Callers are allowed to depend on this.
14428 	 */
14429 	new_xp->xb_private = bp;
14430 
14431 	new_bp->b_private  = new_xp;
14432 
14433 	return (new_bp);
14434 }
14435 
14436 /*
14437  *    Function: sd_bioclone_free
14438  *
14439  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14440  *		in the larger than partition operation.
14441  *
14442  *     Context: May be called under interrupt context
14443  */
14444 
14445 static void
14446 sd_bioclone_free(struct buf *bp)
14447 {
14448 	struct sd_xbuf	*xp;
14449 
14450 	ASSERT(bp != NULL);
14451 	xp = SD_GET_XBUF(bp);
14452 	ASSERT(xp != NULL);
14453 
14454 	/*
14455 	 * Call bp_mapout() before freeing the buf,  in case a lower
14456 	 * layer or HBA  had done a bp_mapin().  we must do this here
14457 	 * as we are the "originator" of the shadow buf.
14458 	 */
14459 	bp_mapout(bp);
14460 
14461 	/*
14462 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14463 	 * never gets confused by a stale value in this field. (Just a little
14464 	 * extra defensiveness here.)
14465 	 */
14466 	bp->b_iodone = NULL;
14467 
14468 	freerbuf(bp);
14469 
14470 	kmem_free(xp, sizeof (struct sd_xbuf));
14471 }
14472 
14473 /*
14474  *    Function: sd_shadow_buf_free
14475  *
14476  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14477  *
14478  *     Context: May be called under interrupt context
14479  */
14480 
14481 static void
14482 sd_shadow_buf_free(struct buf *bp)
14483 {
14484 	struct sd_xbuf	*xp;
14485 
14486 	ASSERT(bp != NULL);
14487 	xp = SD_GET_XBUF(bp);
14488 	ASSERT(xp != NULL);
14489 
14490 #if defined(__sparc)
14491 	/*
14492 	 * Call bp_mapout() before freeing the buf,  in case a lower
14493 	 * layer or HBA  had done a bp_mapin().  we must do this here
14494 	 * as we are the "originator" of the shadow buf.
14495 	 */
14496 	bp_mapout(bp);
14497 #endif
14498 
14499 	/*
14500 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14501 	 * never gets confused by a stale value in this field. (Just a little
14502 	 * extra defensiveness here.)
14503 	 */
14504 	bp->b_iodone = NULL;
14505 
14506 #if defined(__i386) || defined(__amd64)
14507 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14508 	freerbuf(bp);
14509 #else
14510 	scsi_free_consistent_buf(bp);
14511 #endif
14512 
14513 	kmem_free(xp, sizeof (struct sd_xbuf));
14514 }
14515 
14516 
14517 /*
14518  *    Function: sd_print_transport_rejected_message
14519  *
14520  * Description: This implements the ludicrously complex rules for printing
14521  *		a "transport rejected" message.  This is to address the
14522  *		specific problem of having a flood of this error message
14523  *		produced when a failover occurs.
14524  *
14525  *     Context: Any.
14526  */
14527 
14528 static void
14529 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14530 	int code)
14531 {
14532 	ASSERT(un != NULL);
14533 	ASSERT(mutex_owned(SD_MUTEX(un)));
14534 	ASSERT(xp != NULL);
14535 
14536 	/*
14537 	 * Print the "transport rejected" message under the following
14538 	 * conditions:
14539 	 *
14540 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14541 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14542 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14543 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14544 	 *   scsi_transport(9F) (which indicates that the target might have
14545 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14546 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14547 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14548 	 *   from scsi_transport().
14549 	 *
14550 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14551 	 * the preceeding cases in order for the message to be printed.
14552 	 */
14553 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
14554 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
14555 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14556 		    (code != TRAN_FATAL_ERROR) ||
14557 		    (un->un_tran_fatal_count == 1)) {
14558 			switch (code) {
14559 			case TRAN_BADPKT:
14560 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14561 				    "transport rejected bad packet\n");
14562 				break;
14563 			case TRAN_FATAL_ERROR:
14564 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14565 				    "transport rejected fatal error\n");
14566 				break;
14567 			default:
14568 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14569 				    "transport rejected (%d)\n", code);
14570 				break;
14571 			}
14572 		}
14573 	}
14574 }
14575 
14576 
14577 /*
14578  *    Function: sd_add_buf_to_waitq
14579  *
14580  * Description: Add the given buf(9S) struct to the wait queue for the
14581  *		instance.  If sorting is enabled, then the buf is added
14582  *		to the queue via an elevator sort algorithm (a la
14583  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14584  *		If sorting is not enabled, then the buf is just added
14585  *		to the end of the wait queue.
14586  *
14587  * Return Code: void
14588  *
14589  *     Context: Does not sleep/block, therefore technically can be called
14590  *		from any context.  However if sorting is enabled then the
14591  *		execution time is indeterminate, and may take long if
14592  *		the wait queue grows large.
14593  */
14594 
14595 static void
14596 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14597 {
14598 	struct buf *ap;
14599 
14600 	ASSERT(bp != NULL);
14601 	ASSERT(un != NULL);
14602 	ASSERT(mutex_owned(SD_MUTEX(un)));
14603 
14604 	/* If the queue is empty, add the buf as the only entry & return. */
14605 	if (un->un_waitq_headp == NULL) {
14606 		ASSERT(un->un_waitq_tailp == NULL);
14607 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14608 		bp->av_forw = NULL;
14609 		return;
14610 	}
14611 
14612 	ASSERT(un->un_waitq_tailp != NULL);
14613 
14614 	/*
14615 	 * If sorting is disabled, just add the buf to the tail end of
14616 	 * the wait queue and return.
14617 	 */
14618 	if (un->un_f_disksort_disabled || un->un_f_enable_rmw) {
14619 		un->un_waitq_tailp->av_forw = bp;
14620 		un->un_waitq_tailp = bp;
14621 		bp->av_forw = NULL;
14622 		return;
14623 	}
14624 
14625 	/*
14626 	 * Sort thru the list of requests currently on the wait queue
14627 	 * and add the new buf request at the appropriate position.
14628 	 *
14629 	 * The un->un_waitq_headp is an activity chain pointer on which
14630 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14631 	 * first queue holds those requests which are positioned after
14632 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14633 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14634 	 * Thus we implement a one way scan, retracting after reaching
14635 	 * the end of the drive to the first request on the second
14636 	 * queue, at which time it becomes the first queue.
14637 	 * A one-way scan is natural because of the way UNIX read-ahead
14638 	 * blocks are allocated.
14639 	 *
14640 	 * If we lie after the first request, then we must locate the
14641 	 * second request list and add ourselves to it.
14642 	 */
14643 	ap = un->un_waitq_headp;
14644 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14645 		while (ap->av_forw != NULL) {
14646 			/*
14647 			 * Look for an "inversion" in the (normally
14648 			 * ascending) block numbers. This indicates
14649 			 * the start of the second request list.
14650 			 */
14651 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14652 				/*
14653 				 * Search the second request list for the
14654 				 * first request at a larger block number.
14655 				 * We go before that; however if there is
14656 				 * no such request, we go at the end.
14657 				 */
14658 				do {
14659 					if (SD_GET_BLKNO(bp) <
14660 					    SD_GET_BLKNO(ap->av_forw)) {
14661 						goto insert;
14662 					}
14663 					ap = ap->av_forw;
14664 				} while (ap->av_forw != NULL);
14665 				goto insert;		/* after last */
14666 			}
14667 			ap = ap->av_forw;
14668 		}
14669 
14670 		/*
14671 		 * No inversions... we will go after the last, and
14672 		 * be the first request in the second request list.
14673 		 */
14674 		goto insert;
14675 	}
14676 
14677 	/*
14678 	 * Request is at/after the current request...
14679 	 * sort in the first request list.
14680 	 */
14681 	while (ap->av_forw != NULL) {
14682 		/*
14683 		 * We want to go after the current request (1) if
14684 		 * there is an inversion after it (i.e. it is the end
14685 		 * of the first request list), or (2) if the next
14686 		 * request is a larger block no. than our request.
14687 		 */
14688 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14689 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14690 			goto insert;
14691 		}
14692 		ap = ap->av_forw;
14693 	}
14694 
14695 	/*
14696 	 * Neither a second list nor a larger request, therefore
14697 	 * we go at the end of the first list (which is the same
14698 	 * as the end of the whole schebang).
14699 	 */
14700 insert:
14701 	bp->av_forw = ap->av_forw;
14702 	ap->av_forw = bp;
14703 
14704 	/*
14705 	 * If we inserted onto the tail end of the waitq, make sure the
14706 	 * tail pointer is updated.
14707 	 */
14708 	if (ap == un->un_waitq_tailp) {
14709 		un->un_waitq_tailp = bp;
14710 	}
14711 }
14712 
14713 
14714 /*
14715  *    Function: sd_start_cmds
14716  *
14717  * Description: Remove and transport cmds from the driver queues.
14718  *
14719  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14720  *
14721  *		immed_bp - ptr to a buf to be transported immediately. Only
14722  *		the immed_bp is transported; bufs on the waitq are not
14723  *		processed and the un_retry_bp is not checked.  If immed_bp is
14724  *		NULL, then normal queue processing is performed.
14725  *
14726  *     Context: May be called from kernel thread context, interrupt context,
14727  *		or runout callback context. This function may not block or
14728  *		call routines that block.
14729  */
14730 
14731 static void
14732 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14733 {
14734 	struct	sd_xbuf	*xp;
14735 	struct	buf	*bp;
14736 	void	(*statp)(kstat_io_t *);
14737 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14738 	void	(*saved_statp)(kstat_io_t *);
14739 #endif
14740 	int	rval;
14741 	struct sd_fm_internal *sfip = NULL;
14742 
14743 	ASSERT(un != NULL);
14744 	ASSERT(mutex_owned(SD_MUTEX(un)));
14745 	ASSERT(un->un_ncmds_in_transport >= 0);
14746 	ASSERT(un->un_throttle >= 0);
14747 
14748 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14749 
14750 	do {
14751 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14752 		saved_statp = NULL;
14753 #endif
14754 
14755 		/*
14756 		 * If we are syncing or dumping, fail the command to
14757 		 * avoid recursively calling back into scsi_transport().
14758 		 * The dump I/O itself uses a separate code path so this
14759 		 * only prevents non-dump I/O from being sent while dumping.
14760 		 * File system sync takes place before dumping begins.
14761 		 * During panic, filesystem I/O is allowed provided
14762 		 * un_in_callback is <= 1.  This is to prevent recursion
14763 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14764 		 * sd_start_cmds and so on.  See panic.c for more information
14765 		 * about the states the system can be in during panic.
14766 		 */
14767 		if ((un->un_state == SD_STATE_DUMPING) ||
14768 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14769 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14770 			    "sd_start_cmds: panicking\n");
14771 			goto exit;
14772 		}
14773 
14774 		if ((bp = immed_bp) != NULL) {
14775 			/*
14776 			 * We have a bp that must be transported immediately.
14777 			 * It's OK to transport the immed_bp here without doing
14778 			 * the throttle limit check because the immed_bp is
14779 			 * always used in a retry/recovery case. This means
14780 			 * that we know we are not at the throttle limit by
14781 			 * virtue of the fact that to get here we must have
14782 			 * already gotten a command back via sdintr(). This also
14783 			 * relies on (1) the command on un_retry_bp preventing
14784 			 * further commands from the waitq from being issued;
14785 			 * and (2) the code in sd_retry_command checking the
14786 			 * throttle limit before issuing a delayed or immediate
14787 			 * retry. This holds even if the throttle limit is
14788 			 * currently ratcheted down from its maximum value.
14789 			 */
14790 			statp = kstat_runq_enter;
14791 			if (bp == un->un_retry_bp) {
14792 				ASSERT((un->un_retry_statp == NULL) ||
14793 				    (un->un_retry_statp == kstat_waitq_enter) ||
14794 				    (un->un_retry_statp ==
14795 				    kstat_runq_back_to_waitq));
14796 				/*
14797 				 * If the waitq kstat was incremented when
14798 				 * sd_set_retry_bp() queued this bp for a retry,
14799 				 * then we must set up statp so that the waitq
14800 				 * count will get decremented correctly below.
14801 				 * Also we must clear un->un_retry_statp to
14802 				 * ensure that we do not act on a stale value
14803 				 * in this field.
14804 				 */
14805 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14806 				    (un->un_retry_statp ==
14807 				    kstat_runq_back_to_waitq)) {
14808 					statp = kstat_waitq_to_runq;
14809 				}
14810 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14811 				saved_statp = un->un_retry_statp;
14812 #endif
14813 				un->un_retry_statp = NULL;
14814 
14815 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14816 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14817 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14818 				    un, un->un_retry_bp, un->un_throttle,
14819 				    un->un_ncmds_in_transport);
14820 			} else {
14821 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14822 				    "processing priority bp:0x%p\n", bp);
14823 			}
14824 
14825 		} else if ((bp = un->un_waitq_headp) != NULL) {
14826 			/*
14827 			 * A command on the waitq is ready to go, but do not
14828 			 * send it if:
14829 			 *
14830 			 * (1) the throttle limit has been reached, or
14831 			 * (2) a retry is pending, or
14832 			 * (3) a START_STOP_UNIT callback pending, or
14833 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14834 			 *	command is pending.
14835 			 *
14836 			 * For all of these conditions, IO processing will
14837 			 * restart after the condition is cleared.
14838 			 */
14839 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14840 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14841 				    "sd_start_cmds: exiting, "
14842 				    "throttle limit reached!\n");
14843 				goto exit;
14844 			}
14845 			if (un->un_retry_bp != NULL) {
14846 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14847 				    "sd_start_cmds: exiting, retry pending!\n");
14848 				goto exit;
14849 			}
14850 			if (un->un_startstop_timeid != NULL) {
14851 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14852 				    "sd_start_cmds: exiting, "
14853 				    "START_STOP pending!\n");
14854 				goto exit;
14855 			}
14856 			if (un->un_direct_priority_timeid != NULL) {
14857 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14858 				    "sd_start_cmds: exiting, "
14859 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14860 				goto exit;
14861 			}
14862 
14863 			/* Dequeue the command */
14864 			un->un_waitq_headp = bp->av_forw;
14865 			if (un->un_waitq_headp == NULL) {
14866 				un->un_waitq_tailp = NULL;
14867 			}
14868 			bp->av_forw = NULL;
14869 			statp = kstat_waitq_to_runq;
14870 			SD_TRACE(SD_LOG_IO_CORE, un,
14871 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14872 
14873 		} else {
14874 			/* No work to do so bail out now */
14875 			SD_TRACE(SD_LOG_IO_CORE, un,
14876 			    "sd_start_cmds: no more work, exiting!\n");
14877 			goto exit;
14878 		}
14879 
14880 		/*
14881 		 * Reset the state to normal. This is the mechanism by which
14882 		 * the state transitions from either SD_STATE_RWAIT or
14883 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14884 		 * If state is SD_STATE_PM_CHANGING then this command is
14885 		 * part of the device power control and the state must
14886 		 * not be put back to normal. Doing so would would
14887 		 * allow new commands to proceed when they shouldn't,
14888 		 * the device may be going off.
14889 		 */
14890 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14891 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14892 			New_state(un, SD_STATE_NORMAL);
14893 		}
14894 
14895 		xp = SD_GET_XBUF(bp);
14896 		ASSERT(xp != NULL);
14897 
14898 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14899 		/*
14900 		 * Allocate the scsi_pkt if we need one, or attach DMA
14901 		 * resources if we have a scsi_pkt that needs them. The
14902 		 * latter should only occur for commands that are being
14903 		 * retried.
14904 		 */
14905 		if ((xp->xb_pktp == NULL) ||
14906 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14907 #else
14908 		if (xp->xb_pktp == NULL) {
14909 #endif
14910 			/*
14911 			 * There is no scsi_pkt allocated for this buf. Call
14912 			 * the initpkt function to allocate & init one.
14913 			 *
14914 			 * The scsi_init_pkt runout callback functionality is
14915 			 * implemented as follows:
14916 			 *
14917 			 * 1) The initpkt function always calls
14918 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14919 			 *    callback routine.
14920 			 * 2) A successful packet allocation is initialized and
14921 			 *    the I/O is transported.
14922 			 * 3) The I/O associated with an allocation resource
14923 			 *    failure is left on its queue to be retried via
14924 			 *    runout or the next I/O.
14925 			 * 4) The I/O associated with a DMA error is removed
14926 			 *    from the queue and failed with EIO. Processing of
14927 			 *    the transport queues is also halted to be
14928 			 *    restarted via runout or the next I/O.
14929 			 * 5) The I/O associated with a CDB size or packet
14930 			 *    size error is removed from the queue and failed
14931 			 *    with EIO. Processing of the transport queues is
14932 			 *    continued.
14933 			 *
14934 			 * Note: there is no interface for canceling a runout
14935 			 * callback. To prevent the driver from detaching or
14936 			 * suspending while a runout is pending the driver
14937 			 * state is set to SD_STATE_RWAIT
14938 			 *
14939 			 * Note: using the scsi_init_pkt callback facility can
14940 			 * result in an I/O request persisting at the head of
14941 			 * the list which cannot be satisfied even after
14942 			 * multiple retries. In the future the driver may
14943 			 * implement some kind of maximum runout count before
14944 			 * failing an I/O.
14945 			 *
14946 			 * Note: the use of funcp below may seem superfluous,
14947 			 * but it helps warlock figure out the correct
14948 			 * initpkt function calls (see [s]sd.wlcmd).
14949 			 */
14950 			struct scsi_pkt	*pktp;
14951 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14952 
14953 			ASSERT(bp != un->un_rqs_bp);
14954 
14955 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14956 			switch ((*funcp)(bp, &pktp)) {
14957 			case  SD_PKT_ALLOC_SUCCESS:
14958 				xp->xb_pktp = pktp;
14959 				SD_TRACE(SD_LOG_IO_CORE, un,
14960 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14961 				    pktp);
14962 				goto got_pkt;
14963 
14964 			case SD_PKT_ALLOC_FAILURE:
14965 				/*
14966 				 * Temporary (hopefully) resource depletion.
14967 				 * Since retries and RQS commands always have a
14968 				 * scsi_pkt allocated, these cases should never
14969 				 * get here. So the only cases this needs to
14970 				 * handle is a bp from the waitq (which we put
14971 				 * back onto the waitq for sdrunout), or a bp
14972 				 * sent as an immed_bp (which we just fail).
14973 				 */
14974 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14975 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14976 
14977 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14978 
14979 				if (bp == immed_bp) {
14980 					/*
14981 					 * If SD_XB_DMA_FREED is clear, then
14982 					 * this is a failure to allocate a
14983 					 * scsi_pkt, and we must fail the
14984 					 * command.
14985 					 */
14986 					if ((xp->xb_pkt_flags &
14987 					    SD_XB_DMA_FREED) == 0) {
14988 						break;
14989 					}
14990 
14991 					/*
14992 					 * If this immediate command is NOT our
14993 					 * un_retry_bp, then we must fail it.
14994 					 */
14995 					if (bp != un->un_retry_bp) {
14996 						break;
14997 					}
14998 
14999 					/*
15000 					 * We get here if this cmd is our
15001 					 * un_retry_bp that was DMAFREED, but
15002 					 * scsi_init_pkt() failed to reallocate
15003 					 * DMA resources when we attempted to
15004 					 * retry it. This can happen when an
15005 					 * mpxio failover is in progress, but
15006 					 * we don't want to just fail the
15007 					 * command in this case.
15008 					 *
15009 					 * Use timeout(9F) to restart it after
15010 					 * a 100ms delay.  We don't want to
15011 					 * let sdrunout() restart it, because
15012 					 * sdrunout() is just supposed to start
15013 					 * commands that are sitting on the
15014 					 * wait queue.  The un_retry_bp stays
15015 					 * set until the command completes, but
15016 					 * sdrunout can be called many times
15017 					 * before that happens.  Since sdrunout
15018 					 * cannot tell if the un_retry_bp is
15019 					 * already in the transport, it could
15020 					 * end up calling scsi_transport() for
15021 					 * the un_retry_bp multiple times.
15022 					 *
15023 					 * Also: don't schedule the callback
15024 					 * if some other callback is already
15025 					 * pending.
15026 					 */
15027 					if (un->un_retry_statp == NULL) {
15028 						/*
15029 						 * restore the kstat pointer to
15030 						 * keep kstat counts coherent
15031 						 * when we do retry the command.
15032 						 */
15033 						un->un_retry_statp =
15034 						    saved_statp;
15035 					}
15036 
15037 					if ((un->un_startstop_timeid == NULL) &&
15038 					    (un->un_retry_timeid == NULL) &&
15039 					    (un->un_direct_priority_timeid ==
15040 					    NULL)) {
15041 
15042 						un->un_retry_timeid =
15043 						    timeout(
15044 						    sd_start_retry_command,
15045 						    un, SD_RESTART_TIMEOUT);
15046 					}
15047 					goto exit;
15048 				}
15049 
15050 #else
15051 				if (bp == immed_bp) {
15052 					break;	/* Just fail the command */
15053 				}
15054 #endif
15055 
15056 				/* Add the buf back to the head of the waitq */
15057 				bp->av_forw = un->un_waitq_headp;
15058 				un->un_waitq_headp = bp;
15059 				if (un->un_waitq_tailp == NULL) {
15060 					un->un_waitq_tailp = bp;
15061 				}
15062 				goto exit;
15063 
15064 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15065 				/*
15066 				 * HBA DMA resource failure. Fail the command
15067 				 * and continue processing of the queues.
15068 				 */
15069 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15070 				    "sd_start_cmds: "
15071 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15072 				break;
15073 
15074 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15075 				/*
15076 				 * Note:x86: Partial DMA mapping not supported
15077 				 * for USCSI commands, and all the needed DMA
15078 				 * resources were not allocated.
15079 				 */
15080 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15081 				    "sd_start_cmds: "
15082 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15083 				break;
15084 
15085 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15086 				/*
15087 				 * Note:x86: Request cannot fit into CDB based
15088 				 * on lba and len.
15089 				 */
15090 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15091 				    "sd_start_cmds: "
15092 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15093 				break;
15094 
15095 			default:
15096 				/* Should NEVER get here! */
15097 				panic("scsi_initpkt error");
15098 				/*NOTREACHED*/
15099 			}
15100 
15101 			/*
15102 			 * Fatal error in allocating a scsi_pkt for this buf.
15103 			 * Update kstats & return the buf with an error code.
15104 			 * We must use sd_return_failed_command_no_restart() to
15105 			 * avoid a recursive call back into sd_start_cmds().
15106 			 * However this also means that we must keep processing
15107 			 * the waitq here in order to avoid stalling.
15108 			 */
15109 			if (statp == kstat_waitq_to_runq) {
15110 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15111 			}
15112 			sd_return_failed_command_no_restart(un, bp, EIO);
15113 			if (bp == immed_bp) {
15114 				/* immed_bp is gone by now, so clear this */
15115 				immed_bp = NULL;
15116 			}
15117 			continue;
15118 		}
15119 got_pkt:
15120 		if (bp == immed_bp) {
15121 			/* goto the head of the class.... */
15122 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15123 		}
15124 
15125 		un->un_ncmds_in_transport++;
15126 		SD_UPDATE_KSTATS(un, statp, bp);
15127 
15128 		/*
15129 		 * Call scsi_transport() to send the command to the target.
15130 		 * According to SCSA architecture, we must drop the mutex here
15131 		 * before calling scsi_transport() in order to avoid deadlock.
15132 		 * Note that the scsi_pkt's completion routine can be executed
15133 		 * (from interrupt context) even before the call to
15134 		 * scsi_transport() returns.
15135 		 */
15136 		SD_TRACE(SD_LOG_IO_CORE, un,
15137 		    "sd_start_cmds: calling scsi_transport()\n");
15138 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15139 
15140 		mutex_exit(SD_MUTEX(un));
15141 		rval = scsi_transport(xp->xb_pktp);
15142 		mutex_enter(SD_MUTEX(un));
15143 
15144 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15145 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15146 
15147 		switch (rval) {
15148 		case TRAN_ACCEPT:
15149 			/* Clear this with every pkt accepted by the HBA */
15150 			un->un_tran_fatal_count = 0;
15151 			break;	/* Success; try the next cmd (if any) */
15152 
15153 		case TRAN_BUSY:
15154 			un->un_ncmds_in_transport--;
15155 			ASSERT(un->un_ncmds_in_transport >= 0);
15156 
15157 			/*
15158 			 * Don't retry request sense, the sense data
15159 			 * is lost when another request is sent.
15160 			 * Free up the rqs buf and retry
15161 			 * the original failed cmd.  Update kstat.
15162 			 */
15163 			if (bp == un->un_rqs_bp) {
15164 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15165 				bp = sd_mark_rqs_idle(un, xp);
15166 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15167 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
15168 				    kstat_waitq_enter);
15169 				goto exit;
15170 			}
15171 
15172 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15173 			/*
15174 			 * Free the DMA resources for the  scsi_pkt. This will
15175 			 * allow mpxio to select another path the next time
15176 			 * we call scsi_transport() with this scsi_pkt.
15177 			 * See sdintr() for the rationalization behind this.
15178 			 */
15179 			if ((un->un_f_is_fibre == TRUE) &&
15180 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15181 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15182 				scsi_dmafree(xp->xb_pktp);
15183 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15184 			}
15185 #endif
15186 
15187 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15188 				/*
15189 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15190 				 * are for error recovery situations. These do
15191 				 * not use the normal command waitq, so if they
15192 				 * get a TRAN_BUSY we cannot put them back onto
15193 				 * the waitq for later retry. One possible
15194 				 * problem is that there could already be some
15195 				 * other command on un_retry_bp that is waiting
15196 				 * for this one to complete, so we would be
15197 				 * deadlocked if we put this command back onto
15198 				 * the waitq for later retry (since un_retry_bp
15199 				 * must complete before the driver gets back to
15200 				 * commands on the waitq).
15201 				 *
15202 				 * To avoid deadlock we must schedule a callback
15203 				 * that will restart this command after a set
15204 				 * interval.  This should keep retrying for as
15205 				 * long as the underlying transport keeps
15206 				 * returning TRAN_BUSY (just like for other
15207 				 * commands).  Use the same timeout interval as
15208 				 * for the ordinary TRAN_BUSY retry.
15209 				 */
15210 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15211 				    "sd_start_cmds: scsi_transport() returned "
15212 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15213 
15214 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15215 				un->un_direct_priority_timeid =
15216 				    timeout(sd_start_direct_priority_command,
15217 				    bp, un->un_busy_timeout / 500);
15218 
15219 				goto exit;
15220 			}
15221 
15222 			/*
15223 			 * For TRAN_BUSY, we want to reduce the throttle value,
15224 			 * unless we are retrying a command.
15225 			 */
15226 			if (bp != un->un_retry_bp) {
15227 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15228 			}
15229 
15230 			/*
15231 			 * Set up the bp to be tried again 10 ms later.
15232 			 * Note:x86: Is there a timeout value in the sd_lun
15233 			 * for this condition?
15234 			 */
15235 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
15236 			    kstat_runq_back_to_waitq);
15237 			goto exit;
15238 
15239 		case TRAN_FATAL_ERROR:
15240 			un->un_tran_fatal_count++;
15241 			/* FALLTHRU */
15242 
15243 		case TRAN_BADPKT:
15244 		default:
15245 			un->un_ncmds_in_transport--;
15246 			ASSERT(un->un_ncmds_in_transport >= 0);
15247 
15248 			/*
15249 			 * If this is our REQUEST SENSE command with a
15250 			 * transport error, we must get back the pointers
15251 			 * to the original buf, and mark the REQUEST
15252 			 * SENSE command as "available".
15253 			 */
15254 			if (bp == un->un_rqs_bp) {
15255 				bp = sd_mark_rqs_idle(un, xp);
15256 				xp = SD_GET_XBUF(bp);
15257 			} else {
15258 				/*
15259 				 * Legacy behavior: do not update transport
15260 				 * error count for request sense commands.
15261 				 */
15262 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15263 			}
15264 
15265 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15266 			sd_print_transport_rejected_message(un, xp, rval);
15267 
15268 			/*
15269 			 * This command will be terminated by SD driver due
15270 			 * to a fatal transport error. We should post
15271 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
15272 			 * of "fail" for any command to indicate this
15273 			 * situation.
15274 			 */
15275 			if (xp->xb_ena > 0) {
15276 				ASSERT(un->un_fm_private != NULL);
15277 				sfip = un->un_fm_private;
15278 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
15279 				sd_ssc_extract_info(&sfip->fm_ssc, un,
15280 				    xp->xb_pktp, bp, xp);
15281 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15282 			}
15283 
15284 			/*
15285 			 * We must use sd_return_failed_command_no_restart() to
15286 			 * avoid a recursive call back into sd_start_cmds().
15287 			 * However this also means that we must keep processing
15288 			 * the waitq here in order to avoid stalling.
15289 			 */
15290 			sd_return_failed_command_no_restart(un, bp, EIO);
15291 
15292 			/*
15293 			 * Notify any threads waiting in sd_ddi_suspend() that
15294 			 * a command completion has occurred.
15295 			 */
15296 			if (un->un_state == SD_STATE_SUSPENDED) {
15297 				cv_broadcast(&un->un_disk_busy_cv);
15298 			}
15299 
15300 			if (bp == immed_bp) {
15301 				/* immed_bp is gone by now, so clear this */
15302 				immed_bp = NULL;
15303 			}
15304 			break;
15305 		}
15306 
15307 	} while (immed_bp == NULL);
15308 
15309 exit:
15310 	ASSERT(mutex_owned(SD_MUTEX(un)));
15311 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15312 }
15313 
15314 
15315 /*
15316  *    Function: sd_return_command
15317  *
15318  * Description: Returns a command to its originator (with or without an
15319  *		error).  Also starts commands waiting to be transported
15320  *		to the target.
15321  *
15322  *     Context: May be called from interrupt, kernel, or timeout context
15323  */
15324 
15325 static void
15326 sd_return_command(struct sd_lun *un, struct buf *bp)
15327 {
15328 	struct sd_xbuf *xp;
15329 	struct scsi_pkt *pktp;
15330 	struct sd_fm_internal *sfip;
15331 
15332 	ASSERT(bp != NULL);
15333 	ASSERT(un != NULL);
15334 	ASSERT(mutex_owned(SD_MUTEX(un)));
15335 	ASSERT(bp != un->un_rqs_bp);
15336 	xp = SD_GET_XBUF(bp);
15337 	ASSERT(xp != NULL);
15338 
15339 	pktp = SD_GET_PKTP(bp);
15340 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15341 	ASSERT(sfip != NULL);
15342 
15343 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15344 
15345 	/*
15346 	 * Note: check for the "sdrestart failed" case.
15347 	 */
15348 	if ((un->un_partial_dma_supported == 1) &&
15349 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15350 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15351 	    (xp->xb_pktp->pkt_resid == 0)) {
15352 
15353 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15354 			/*
15355 			 * Successfully set up next portion of cmd
15356 			 * transfer, try sending it
15357 			 */
15358 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15359 			    NULL, NULL, 0, (clock_t)0, NULL);
15360 			sd_start_cmds(un, NULL);
15361 			return;	/* Note:x86: need a return here? */
15362 		}
15363 	}
15364 
15365 	/*
15366 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15367 	 * can happen if upon being re-tried the failfast bp either
15368 	 * succeeded or encountered another error (possibly even a different
15369 	 * error than the one that precipitated the failfast state, but in
15370 	 * that case it would have had to exhaust retries as well). Regardless,
15371 	 * this should not occur whenever the instance is in the active
15372 	 * failfast state.
15373 	 */
15374 	if (bp == un->un_failfast_bp) {
15375 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15376 		un->un_failfast_bp = NULL;
15377 	}
15378 
15379 	/*
15380 	 * Clear the failfast state upon successful completion of ANY cmd.
15381 	 */
15382 	if (bp->b_error == 0) {
15383 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15384 		/*
15385 		 * If this is a successful command, but used to be retried,
15386 		 * we will take it as a recovered command and post an
15387 		 * ereport with driver-assessment of "recovered".
15388 		 */
15389 		if (xp->xb_ena > 0) {
15390 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15391 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
15392 		}
15393 	} else {
15394 		/*
15395 		 * If this is a failed non-USCSI command we will post an
15396 		 * ereport with driver-assessment set accordingly("fail" or
15397 		 * "fatal").
15398 		 */
15399 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15400 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15401 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15402 		}
15403 	}
15404 
15405 	/*
15406 	 * This is used if the command was retried one or more times. Show that
15407 	 * we are done with it, and allow processing of the waitq to resume.
15408 	 */
15409 	if (bp == un->un_retry_bp) {
15410 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15411 		    "sd_return_command: un:0x%p: "
15412 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15413 		un->un_retry_bp = NULL;
15414 		un->un_retry_statp = NULL;
15415 	}
15416 
15417 	SD_UPDATE_RDWR_STATS(un, bp);
15418 	SD_UPDATE_PARTITION_STATS(un, bp);
15419 
15420 	switch (un->un_state) {
15421 	case SD_STATE_SUSPENDED:
15422 		/*
15423 		 * Notify any threads waiting in sd_ddi_suspend() that
15424 		 * a command completion has occurred.
15425 		 */
15426 		cv_broadcast(&un->un_disk_busy_cv);
15427 		break;
15428 	default:
15429 		sd_start_cmds(un, NULL);
15430 		break;
15431 	}
15432 
15433 	/* Return this command up the iodone chain to its originator. */
15434 	mutex_exit(SD_MUTEX(un));
15435 
15436 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15437 	xp->xb_pktp = NULL;
15438 
15439 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15440 
15441 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15442 	mutex_enter(SD_MUTEX(un));
15443 
15444 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15445 }
15446 
15447 
15448 /*
15449  *    Function: sd_return_failed_command
15450  *
15451  * Description: Command completion when an error occurred.
15452  *
15453  *     Context: May be called from interrupt context
15454  */
15455 
15456 static void
15457 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15458 {
15459 	ASSERT(bp != NULL);
15460 	ASSERT(un != NULL);
15461 	ASSERT(mutex_owned(SD_MUTEX(un)));
15462 
15463 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15464 	    "sd_return_failed_command: entry\n");
15465 
15466 	/*
15467 	 * b_resid could already be nonzero due to a partial data
15468 	 * transfer, so do not change it here.
15469 	 */
15470 	SD_BIOERROR(bp, errcode);
15471 
15472 	sd_return_command(un, bp);
15473 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15474 	    "sd_return_failed_command: exit\n");
15475 }
15476 
15477 
15478 /*
15479  *    Function: sd_return_failed_command_no_restart
15480  *
15481  * Description: Same as sd_return_failed_command, but ensures that no
15482  *		call back into sd_start_cmds will be issued.
15483  *
15484  *     Context: May be called from interrupt context
15485  */
15486 
15487 static void
15488 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15489 	int errcode)
15490 {
15491 	struct sd_xbuf *xp;
15492 
15493 	ASSERT(bp != NULL);
15494 	ASSERT(un != NULL);
15495 	ASSERT(mutex_owned(SD_MUTEX(un)));
15496 	xp = SD_GET_XBUF(bp);
15497 	ASSERT(xp != NULL);
15498 	ASSERT(errcode != 0);
15499 
15500 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15501 	    "sd_return_failed_command_no_restart: entry\n");
15502 
15503 	/*
15504 	 * b_resid could already be nonzero due to a partial data
15505 	 * transfer, so do not change it here.
15506 	 */
15507 	SD_BIOERROR(bp, errcode);
15508 
15509 	/*
15510 	 * If this is the failfast bp, clear it. This can happen if the
15511 	 * failfast bp encounterd a fatal error when we attempted to
15512 	 * re-try it (such as a scsi_transport(9F) failure).  However
15513 	 * we should NOT be in an active failfast state if the failfast
15514 	 * bp is not NULL.
15515 	 */
15516 	if (bp == un->un_failfast_bp) {
15517 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15518 		un->un_failfast_bp = NULL;
15519 	}
15520 
15521 	if (bp == un->un_retry_bp) {
15522 		/*
15523 		 * This command was retried one or more times. Show that we are
15524 		 * done with it, and allow processing of the waitq to resume.
15525 		 */
15526 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15527 		    "sd_return_failed_command_no_restart: "
15528 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15529 		un->un_retry_bp = NULL;
15530 		un->un_retry_statp = NULL;
15531 	}
15532 
15533 	SD_UPDATE_RDWR_STATS(un, bp);
15534 	SD_UPDATE_PARTITION_STATS(un, bp);
15535 
15536 	mutex_exit(SD_MUTEX(un));
15537 
15538 	if (xp->xb_pktp != NULL) {
15539 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15540 		xp->xb_pktp = NULL;
15541 	}
15542 
15543 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15544 
15545 	mutex_enter(SD_MUTEX(un));
15546 
15547 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15548 	    "sd_return_failed_command_no_restart: exit\n");
15549 }
15550 
15551 
15552 /*
15553  *    Function: sd_retry_command
15554  *
15555  * Description: queue up a command for retry, or (optionally) fail it
15556  *		if retry counts are exhausted.
15557  *
15558  *   Arguments: un - Pointer to the sd_lun struct for the target.
15559  *
15560  *		bp - Pointer to the buf for the command to be retried.
15561  *
15562  *		retry_check_flag - Flag to see which (if any) of the retry
15563  *		   counts should be decremented/checked. If the indicated
15564  *		   retry count is exhausted, then the command will not be
15565  *		   retried; it will be failed instead. This should use a
15566  *		   value equal to one of the following:
15567  *
15568  *			SD_RETRIES_NOCHECK
15569  *			SD_RESD_RETRIES_STANDARD
15570  *			SD_RETRIES_VICTIM
15571  *
15572  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15573  *		   if the check should be made to see of FLAG_ISOLATE is set
15574  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15575  *		   not retried, it is simply failed.
15576  *
15577  *		user_funcp - Ptr to function to call before dispatching the
15578  *		   command. May be NULL if no action needs to be performed.
15579  *		   (Primarily intended for printing messages.)
15580  *
15581  *		user_arg - Optional argument to be passed along to
15582  *		   the user_funcp call.
15583  *
15584  *		failure_code - errno return code to set in the bp if the
15585  *		   command is going to be failed.
15586  *
15587  *		retry_delay - Retry delay interval in (clock_t) units. May
15588  *		   be zero which indicates that the retry should be retried
15589  *		   immediately (ie, without an intervening delay).
15590  *
15591  *		statp - Ptr to kstat function to be updated if the command
15592  *		   is queued for a delayed retry. May be NULL if no kstat
15593  *		   update is desired.
15594  *
15595  *     Context: May be called from interrupt context.
15596  */
15597 
15598 static void
15599 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15600 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15601 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15602 	void (*statp)(kstat_io_t *))
15603 {
15604 	struct sd_xbuf	*xp;
15605 	struct scsi_pkt	*pktp;
15606 	struct sd_fm_internal *sfip;
15607 
15608 	ASSERT(un != NULL);
15609 	ASSERT(mutex_owned(SD_MUTEX(un)));
15610 	ASSERT(bp != NULL);
15611 	xp = SD_GET_XBUF(bp);
15612 	ASSERT(xp != NULL);
15613 	pktp = SD_GET_PKTP(bp);
15614 	ASSERT(pktp != NULL);
15615 
15616 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15617 	ASSERT(sfip != NULL);
15618 
15619 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15620 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15621 
15622 	/*
15623 	 * If we are syncing or dumping, fail the command to avoid
15624 	 * recursively calling back into scsi_transport().
15625 	 */
15626 	if (ddi_in_panic()) {
15627 		goto fail_command_no_log;
15628 	}
15629 
15630 	/*
15631 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15632 	 * log an error and fail the command.
15633 	 */
15634 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15635 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15636 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15637 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15638 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15639 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15640 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15641 		goto fail_command;
15642 	}
15643 
15644 	/*
15645 	 * If we are suspended, then put the command onto head of the
15646 	 * wait queue since we don't want to start more commands, and
15647 	 * clear the un_retry_bp. Next time when we are resumed, will
15648 	 * handle the command in the wait queue.
15649 	 */
15650 	switch (un->un_state) {
15651 	case SD_STATE_SUSPENDED:
15652 	case SD_STATE_DUMPING:
15653 		bp->av_forw = un->un_waitq_headp;
15654 		un->un_waitq_headp = bp;
15655 		if (un->un_waitq_tailp == NULL) {
15656 			un->un_waitq_tailp = bp;
15657 		}
15658 		if (bp == un->un_retry_bp) {
15659 			un->un_retry_bp = NULL;
15660 			un->un_retry_statp = NULL;
15661 		}
15662 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15663 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15664 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15665 		return;
15666 	default:
15667 		break;
15668 	}
15669 
15670 	/*
15671 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15672 	 * is set; if it is then we do not want to retry the command.
15673 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15674 	 */
15675 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15676 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15677 			goto fail_command;
15678 		}
15679 	}
15680 
15681 
15682 	/*
15683 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15684 	 * command timeout or a selection timeout has occurred. This means
15685 	 * that we were unable to establish an kind of communication with
15686 	 * the target, and subsequent retries and/or commands are likely
15687 	 * to encounter similar results and take a long time to complete.
15688 	 *
15689 	 * If this is a failfast error condition, we need to update the
15690 	 * failfast state, even if this bp does not have B_FAILFAST set.
15691 	 */
15692 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15693 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15694 			ASSERT(un->un_failfast_bp == NULL);
15695 			/*
15696 			 * If we are already in the active failfast state, and
15697 			 * another failfast error condition has been detected,
15698 			 * then fail this command if it has B_FAILFAST set.
15699 			 * If B_FAILFAST is clear, then maintain the legacy
15700 			 * behavior of retrying heroically, even tho this will
15701 			 * take a lot more time to fail the command.
15702 			 */
15703 			if (bp->b_flags & B_FAILFAST) {
15704 				goto fail_command;
15705 			}
15706 		} else {
15707 			/*
15708 			 * We're not in the active failfast state, but we
15709 			 * have a failfast error condition, so we must begin
15710 			 * transition to the next state. We do this regardless
15711 			 * of whether or not this bp has B_FAILFAST set.
15712 			 */
15713 			if (un->un_failfast_bp == NULL) {
15714 				/*
15715 				 * This is the first bp to meet a failfast
15716 				 * condition so save it on un_failfast_bp &
15717 				 * do normal retry processing. Do not enter
15718 				 * active failfast state yet. This marks
15719 				 * entry into the "failfast pending" state.
15720 				 */
15721 				un->un_failfast_bp = bp;
15722 
15723 			} else if (un->un_failfast_bp == bp) {
15724 				/*
15725 				 * This is the second time *this* bp has
15726 				 * encountered a failfast error condition,
15727 				 * so enter active failfast state & flush
15728 				 * queues as appropriate.
15729 				 */
15730 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15731 				un->un_failfast_bp = NULL;
15732 				sd_failfast_flushq(un);
15733 
15734 				/*
15735 				 * Fail this bp now if B_FAILFAST set;
15736 				 * otherwise continue with retries. (It would
15737 				 * be pretty ironic if this bp succeeded on a
15738 				 * subsequent retry after we just flushed all
15739 				 * the queues).
15740 				 */
15741 				if (bp->b_flags & B_FAILFAST) {
15742 					goto fail_command;
15743 				}
15744 
15745 #if !defined(lint) && !defined(__lint)
15746 			} else {
15747 				/*
15748 				 * If neither of the preceeding conditionals
15749 				 * was true, it means that there is some
15750 				 * *other* bp that has met an inital failfast
15751 				 * condition and is currently either being
15752 				 * retried or is waiting to be retried. In
15753 				 * that case we should perform normal retry
15754 				 * processing on *this* bp, since there is a
15755 				 * chance that the current failfast condition
15756 				 * is transient and recoverable. If that does
15757 				 * not turn out to be the case, then retries
15758 				 * will be cleared when the wait queue is
15759 				 * flushed anyway.
15760 				 */
15761 #endif
15762 			}
15763 		}
15764 	} else {
15765 		/*
15766 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15767 		 * likely were able to at least establish some level of
15768 		 * communication with the target and subsequent commands
15769 		 * and/or retries are likely to get through to the target,
15770 		 * In this case we want to be aggressive about clearing
15771 		 * the failfast state. Note that this does not affect
15772 		 * the "failfast pending" condition.
15773 		 */
15774 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15775 	}
15776 
15777 
15778 	/*
15779 	 * Check the specified retry count to see if we can still do
15780 	 * any retries with this pkt before we should fail it.
15781 	 */
15782 	switch (retry_check_flag & SD_RETRIES_MASK) {
15783 	case SD_RETRIES_VICTIM:
15784 		/*
15785 		 * Check the victim retry count. If exhausted, then fall
15786 		 * thru & check against the standard retry count.
15787 		 */
15788 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15789 			/* Increment count & proceed with the retry */
15790 			xp->xb_victim_retry_count++;
15791 			break;
15792 		}
15793 		/* Victim retries exhausted, fall back to std. retries... */
15794 		/* FALLTHRU */
15795 
15796 	case SD_RETRIES_STANDARD:
15797 		if (xp->xb_retry_count >= un->un_retry_count) {
15798 			/* Retries exhausted, fail the command */
15799 			SD_TRACE(SD_LOG_IO_CORE, un,
15800 			    "sd_retry_command: retries exhausted!\n");
15801 			/*
15802 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15803 			 * commands with nonzero pkt_resid.
15804 			 */
15805 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15806 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15807 			    (pktp->pkt_resid != 0)) {
15808 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15809 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15810 					SD_UPDATE_B_RESID(bp, pktp);
15811 				}
15812 			}
15813 			goto fail_command;
15814 		}
15815 		xp->xb_retry_count++;
15816 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15817 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15818 		break;
15819 
15820 	case SD_RETRIES_UA:
15821 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15822 			/* Retries exhausted, fail the command */
15823 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15824 			    "Unit Attention retries exhausted. "
15825 			    "Check the target.\n");
15826 			goto fail_command;
15827 		}
15828 		xp->xb_ua_retry_count++;
15829 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15830 		    "sd_retry_command: retry count:%d\n",
15831 		    xp->xb_ua_retry_count);
15832 		break;
15833 
15834 	case SD_RETRIES_BUSY:
15835 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15836 			/* Retries exhausted, fail the command */
15837 			SD_TRACE(SD_LOG_IO_CORE, un,
15838 			    "sd_retry_command: retries exhausted!\n");
15839 			goto fail_command;
15840 		}
15841 		xp->xb_retry_count++;
15842 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15843 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15844 		break;
15845 
15846 	case SD_RETRIES_NOCHECK:
15847 	default:
15848 		/* No retry count to check. Just proceed with the retry */
15849 		break;
15850 	}
15851 
15852 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15853 
15854 	/*
15855 	 * If this is a non-USCSI command being retried
15856 	 * during execution last time, we should post an ereport with
15857 	 * driver-assessment of the value "retry".
15858 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15859 	 * hardware errors, we bypass ereport posting.
15860 	 */
15861 	if (failure_code != 0) {
15862 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15863 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15864 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15865 		}
15866 	}
15867 
15868 	/*
15869 	 * If we were given a zero timeout, we must attempt to retry the
15870 	 * command immediately (ie, without a delay).
15871 	 */
15872 	if (retry_delay == 0) {
15873 		/*
15874 		 * Check some limiting conditions to see if we can actually
15875 		 * do the immediate retry.  If we cannot, then we must
15876 		 * fall back to queueing up a delayed retry.
15877 		 */
15878 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15879 			/*
15880 			 * We are at the throttle limit for the target,
15881 			 * fall back to delayed retry.
15882 			 */
15883 			retry_delay = un->un_busy_timeout;
15884 			statp = kstat_waitq_enter;
15885 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15886 			    "sd_retry_command: immed. retry hit "
15887 			    "throttle!\n");
15888 		} else {
15889 			/*
15890 			 * We're clear to proceed with the immediate retry.
15891 			 * First call the user-provided function (if any)
15892 			 */
15893 			if (user_funcp != NULL) {
15894 				(*user_funcp)(un, bp, user_arg,
15895 				    SD_IMMEDIATE_RETRY_ISSUED);
15896 #ifdef __lock_lint
15897 				sd_print_incomplete_msg(un, bp, user_arg,
15898 				    SD_IMMEDIATE_RETRY_ISSUED);
15899 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15900 				    SD_IMMEDIATE_RETRY_ISSUED);
15901 				sd_print_sense_failed_msg(un, bp, user_arg,
15902 				    SD_IMMEDIATE_RETRY_ISSUED);
15903 #endif
15904 			}
15905 
15906 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15907 			    "sd_retry_command: issuing immediate retry\n");
15908 
15909 			/*
15910 			 * Call sd_start_cmds() to transport the command to
15911 			 * the target.
15912 			 */
15913 			sd_start_cmds(un, bp);
15914 
15915 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15916 			    "sd_retry_command exit\n");
15917 			return;
15918 		}
15919 	}
15920 
15921 	/*
15922 	 * Set up to retry the command after a delay.
15923 	 * First call the user-provided function (if any)
15924 	 */
15925 	if (user_funcp != NULL) {
15926 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15927 	}
15928 
15929 	sd_set_retry_bp(un, bp, retry_delay, statp);
15930 
15931 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15932 	return;
15933 
15934 fail_command:
15935 
15936 	if (user_funcp != NULL) {
15937 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15938 	}
15939 
15940 fail_command_no_log:
15941 
15942 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15943 	    "sd_retry_command: returning failed command\n");
15944 
15945 	sd_return_failed_command(un, bp, failure_code);
15946 
15947 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15948 }
15949 
15950 
15951 /*
15952  *    Function: sd_set_retry_bp
15953  *
15954  * Description: Set up the given bp for retry.
15955  *
15956  *   Arguments: un - ptr to associated softstate
15957  *		bp - ptr to buf(9S) for the command
15958  *		retry_delay - time interval before issuing retry (may be 0)
15959  *		statp - optional pointer to kstat function
15960  *
15961  *     Context: May be called under interrupt context
15962  */
15963 
15964 static void
15965 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15966 	void (*statp)(kstat_io_t *))
15967 {
15968 	ASSERT(un != NULL);
15969 	ASSERT(mutex_owned(SD_MUTEX(un)));
15970 	ASSERT(bp != NULL);
15971 
15972 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15973 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15974 
15975 	/*
15976 	 * Indicate that the command is being retried. This will not allow any
15977 	 * other commands on the wait queue to be transported to the target
15978 	 * until this command has been completed (success or failure). The
15979 	 * "retry command" is not transported to the target until the given
15980 	 * time delay expires, unless the user specified a 0 retry_delay.
15981 	 *
15982 	 * Note: the timeout(9F) callback routine is what actually calls
15983 	 * sd_start_cmds() to transport the command, with the exception of a
15984 	 * zero retry_delay. The only current implementor of a zero retry delay
15985 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15986 	 */
15987 	if (un->un_retry_bp == NULL) {
15988 		ASSERT(un->un_retry_statp == NULL);
15989 		un->un_retry_bp = bp;
15990 
15991 		/*
15992 		 * If the user has not specified a delay the command should
15993 		 * be queued and no timeout should be scheduled.
15994 		 */
15995 		if (retry_delay == 0) {
15996 			/*
15997 			 * Save the kstat pointer that will be used in the
15998 			 * call to SD_UPDATE_KSTATS() below, so that
15999 			 * sd_start_cmds() can correctly decrement the waitq
16000 			 * count when it is time to transport this command.
16001 			 */
16002 			un->un_retry_statp = statp;
16003 			goto done;
16004 		}
16005 	}
16006 
16007 	if (un->un_retry_bp == bp) {
16008 		/*
16009 		 * Save the kstat pointer that will be used in the call to
16010 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
16011 		 * correctly decrement the waitq count when it is time to
16012 		 * transport this command.
16013 		 */
16014 		un->un_retry_statp = statp;
16015 
16016 		/*
16017 		 * Schedule a timeout if:
16018 		 *   1) The user has specified a delay.
16019 		 *   2) There is not a START_STOP_UNIT callback pending.
16020 		 *
16021 		 * If no delay has been specified, then it is up to the caller
16022 		 * to ensure that IO processing continues without stalling.
16023 		 * Effectively, this means that the caller will issue the
16024 		 * required call to sd_start_cmds(). The START_STOP_UNIT
16025 		 * callback does this after the START STOP UNIT command has
16026 		 * completed. In either of these cases we should not schedule
16027 		 * a timeout callback here.  Also don't schedule the timeout if
16028 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
16029 		 */
16030 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
16031 		    (un->un_direct_priority_timeid == NULL)) {
16032 			un->un_retry_timeid =
16033 			    timeout(sd_start_retry_command, un, retry_delay);
16034 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16035 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
16036 			    " bp:0x%p un_retry_timeid:0x%p\n",
16037 			    un, bp, un->un_retry_timeid);
16038 		}
16039 	} else {
16040 		/*
16041 		 * We only get in here if there is already another command
16042 		 * waiting to be retried.  In this case, we just put the
16043 		 * given command onto the wait queue, so it can be transported
16044 		 * after the current retry command has completed.
16045 		 *
16046 		 * Also we have to make sure that if the command at the head
16047 		 * of the wait queue is the un_failfast_bp, that we do not
16048 		 * put ahead of it any other commands that are to be retried.
16049 		 */
16050 		if ((un->un_failfast_bp != NULL) &&
16051 		    (un->un_failfast_bp == un->un_waitq_headp)) {
16052 			/*
16053 			 * Enqueue this command AFTER the first command on
16054 			 * the wait queue (which is also un_failfast_bp).
16055 			 */
16056 			bp->av_forw = un->un_waitq_headp->av_forw;
16057 			un->un_waitq_headp->av_forw = bp;
16058 			if (un->un_waitq_headp == un->un_waitq_tailp) {
16059 				un->un_waitq_tailp = bp;
16060 			}
16061 		} else {
16062 			/* Enqueue this command at the head of the waitq. */
16063 			bp->av_forw = un->un_waitq_headp;
16064 			un->un_waitq_headp = bp;
16065 			if (un->un_waitq_tailp == NULL) {
16066 				un->un_waitq_tailp = bp;
16067 			}
16068 		}
16069 
16070 		if (statp == NULL) {
16071 			statp = kstat_waitq_enter;
16072 		}
16073 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16074 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
16075 	}
16076 
16077 done:
16078 	if (statp != NULL) {
16079 		SD_UPDATE_KSTATS(un, statp, bp);
16080 	}
16081 
16082 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16083 	    "sd_set_retry_bp: exit un:0x%p\n", un);
16084 }
16085 
16086 
16087 /*
16088  *    Function: sd_start_retry_command
16089  *
16090  * Description: Start the command that has been waiting on the target's
16091  *		retry queue.  Called from timeout(9F) context after the
16092  *		retry delay interval has expired.
16093  *
16094  *   Arguments: arg - pointer to associated softstate for the device.
16095  *
16096  *     Context: timeout(9F) thread context.  May not sleep.
16097  */
16098 
16099 static void
16100 sd_start_retry_command(void *arg)
16101 {
16102 	struct sd_lun *un = arg;
16103 
16104 	ASSERT(un != NULL);
16105 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16106 
16107 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16108 	    "sd_start_retry_command: entry\n");
16109 
16110 	mutex_enter(SD_MUTEX(un));
16111 
16112 	un->un_retry_timeid = NULL;
16113 
16114 	if (un->un_retry_bp != NULL) {
16115 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16116 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16117 		    un, un->un_retry_bp);
16118 		sd_start_cmds(un, un->un_retry_bp);
16119 	}
16120 
16121 	mutex_exit(SD_MUTEX(un));
16122 
16123 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16124 	    "sd_start_retry_command: exit\n");
16125 }
16126 
16127 /*
16128  *    Function: sd_rmw_msg_print_handler
16129  *
16130  * Description: If RMW mode is enabled and warning message is triggered
16131  *              print I/O count during a fixed interval.
16132  *
16133  *   Arguments: arg - pointer to associated softstate for the device.
16134  *
16135  *     Context: timeout(9F) thread context. May not sleep.
16136  */
16137 static void
16138 sd_rmw_msg_print_handler(void *arg)
16139 {
16140 	struct sd_lun *un = arg;
16141 
16142 	ASSERT(un != NULL);
16143 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16144 
16145 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16146 	    "sd_rmw_msg_print_handler: entry\n");
16147 
16148 	mutex_enter(SD_MUTEX(un));
16149 
16150 	if (un->un_rmw_incre_count > 0) {
16151 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16152 		    "%"PRIu64" I/O requests are not aligned with %d disk "
16153 		    "sector size in %ld seconds. They are handled through "
16154 		    "Read Modify Write but the performance is very low!\n",
16155 		    un->un_rmw_incre_count, un->un_tgt_blocksize,
16156 		    drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000);
16157 		un->un_rmw_incre_count = 0;
16158 		un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler,
16159 		    un, SD_RMW_MSG_PRINT_TIMEOUT);
16160 	} else {
16161 		un->un_rmw_msg_timeid = NULL;
16162 	}
16163 
16164 	mutex_exit(SD_MUTEX(un));
16165 
16166 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16167 	    "sd_rmw_msg_print_handler: exit\n");
16168 }
16169 
16170 /*
16171  *    Function: sd_start_direct_priority_command
16172  *
16173  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16174  *		received TRAN_BUSY when we called scsi_transport() to send it
16175  *		to the underlying HBA. This function is called from timeout(9F)
16176  *		context after the delay interval has expired.
16177  *
16178  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16179  *
16180  *     Context: timeout(9F) thread context.  May not sleep.
16181  */
16182 
16183 static void
16184 sd_start_direct_priority_command(void *arg)
16185 {
16186 	struct buf	*priority_bp = arg;
16187 	struct sd_lun	*un;
16188 
16189 	ASSERT(priority_bp != NULL);
16190 	un = SD_GET_UN(priority_bp);
16191 	ASSERT(un != NULL);
16192 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16193 
16194 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16195 	    "sd_start_direct_priority_command: entry\n");
16196 
16197 	mutex_enter(SD_MUTEX(un));
16198 	un->un_direct_priority_timeid = NULL;
16199 	sd_start_cmds(un, priority_bp);
16200 	mutex_exit(SD_MUTEX(un));
16201 
16202 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16203 	    "sd_start_direct_priority_command: exit\n");
16204 }
16205 
16206 
16207 /*
16208  *    Function: sd_send_request_sense_command
16209  *
16210  * Description: Sends a REQUEST SENSE command to the target
16211  *
16212  *     Context: May be called from interrupt context.
16213  */
16214 
16215 static void
16216 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16217 	struct scsi_pkt *pktp)
16218 {
16219 	ASSERT(bp != NULL);
16220 	ASSERT(un != NULL);
16221 	ASSERT(mutex_owned(SD_MUTEX(un)));
16222 
16223 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16224 	    "entry: buf:0x%p\n", bp);
16225 
16226 	/*
16227 	 * If we are syncing or dumping, then fail the command to avoid a
16228 	 * recursive callback into scsi_transport(). Also fail the command
16229 	 * if we are suspended (legacy behavior).
16230 	 */
16231 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16232 	    (un->un_state == SD_STATE_DUMPING)) {
16233 		sd_return_failed_command(un, bp, EIO);
16234 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16235 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16236 		return;
16237 	}
16238 
16239 	/*
16240 	 * Retry the failed command and don't issue the request sense if:
16241 	 *    1) the sense buf is busy
16242 	 *    2) we have 1 or more outstanding commands on the target
16243 	 *    (the sense data will be cleared or invalidated any way)
16244 	 *
16245 	 * Note: There could be an issue with not checking a retry limit here,
16246 	 * the problem is determining which retry limit to check.
16247 	 */
16248 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16249 		/* Don't retry if the command is flagged as non-retryable */
16250 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16251 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16252 			    NULL, NULL, 0, un->un_busy_timeout,
16253 			    kstat_waitq_enter);
16254 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16255 			    "sd_send_request_sense_command: "
16256 			    "at full throttle, retrying exit\n");
16257 		} else {
16258 			sd_return_failed_command(un, bp, EIO);
16259 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16260 			    "sd_send_request_sense_command: "
16261 			    "at full throttle, non-retryable exit\n");
16262 		}
16263 		return;
16264 	}
16265 
16266 	sd_mark_rqs_busy(un, bp);
16267 	sd_start_cmds(un, un->un_rqs_bp);
16268 
16269 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16270 	    "sd_send_request_sense_command: exit\n");
16271 }
16272 
16273 
16274 /*
16275  *    Function: sd_mark_rqs_busy
16276  *
16277  * Description: Indicate that the request sense bp for this instance is
16278  *		in use.
16279  *
16280  *     Context: May be called under interrupt context
16281  */
16282 
16283 static void
16284 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16285 {
16286 	struct sd_xbuf	*sense_xp;
16287 
16288 	ASSERT(un != NULL);
16289 	ASSERT(bp != NULL);
16290 	ASSERT(mutex_owned(SD_MUTEX(un)));
16291 	ASSERT(un->un_sense_isbusy == 0);
16292 
16293 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16294 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16295 
16296 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16297 	ASSERT(sense_xp != NULL);
16298 
16299 	SD_INFO(SD_LOG_IO, un,
16300 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16301 
16302 	ASSERT(sense_xp->xb_pktp != NULL);
16303 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16304 	    == (FLAG_SENSING | FLAG_HEAD));
16305 
16306 	un->un_sense_isbusy = 1;
16307 	un->un_rqs_bp->b_resid = 0;
16308 	sense_xp->xb_pktp->pkt_resid  = 0;
16309 	sense_xp->xb_pktp->pkt_reason = 0;
16310 
16311 	/* So we can get back the bp at interrupt time! */
16312 	sense_xp->xb_sense_bp = bp;
16313 
16314 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16315 
16316 	/*
16317 	 * Mark this buf as awaiting sense data. (This is already set in
16318 	 * the pkt_flags for the RQS packet.)
16319 	 */
16320 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16321 
16322 	/* Request sense down same path */
16323 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
16324 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
16325 		sense_xp->xb_pktp->pkt_path_instance =
16326 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
16327 
16328 	sense_xp->xb_retry_count	= 0;
16329 	sense_xp->xb_victim_retry_count = 0;
16330 	sense_xp->xb_ua_retry_count	= 0;
16331 	sense_xp->xb_nr_retry_count 	= 0;
16332 	sense_xp->xb_dma_resid  = 0;
16333 
16334 	/* Clean up the fields for auto-request sense */
16335 	sense_xp->xb_sense_status = 0;
16336 	sense_xp->xb_sense_state  = 0;
16337 	sense_xp->xb_sense_resid  = 0;
16338 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16339 
16340 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16341 }
16342 
16343 
16344 /*
16345  *    Function: sd_mark_rqs_idle
16346  *
16347  * Description: SD_MUTEX must be held continuously through this routine
16348  *		to prevent reuse of the rqs struct before the caller can
16349  *		complete it's processing.
16350  *
16351  * Return Code: Pointer to the RQS buf
16352  *
16353  *     Context: May be called under interrupt context
16354  */
16355 
16356 static struct buf *
16357 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16358 {
16359 	struct buf *bp;
16360 	ASSERT(un != NULL);
16361 	ASSERT(sense_xp != NULL);
16362 	ASSERT(mutex_owned(SD_MUTEX(un)));
16363 	ASSERT(un->un_sense_isbusy != 0);
16364 
16365 	un->un_sense_isbusy = 0;
16366 	bp = sense_xp->xb_sense_bp;
16367 	sense_xp->xb_sense_bp = NULL;
16368 
16369 	/* This pkt is no longer interested in getting sense data */
16370 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16371 
16372 	return (bp);
16373 }
16374 
16375 
16376 
16377 /*
16378  *    Function: sd_alloc_rqs
16379  *
16380  * Description: Set up the unit to receive auto request sense data
16381  *
16382  * Return Code: DDI_SUCCESS or DDI_FAILURE
16383  *
16384  *     Context: Called under attach(9E) context
16385  */
16386 
16387 static int
16388 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16389 {
16390 	struct sd_xbuf *xp;
16391 
16392 	ASSERT(un != NULL);
16393 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16394 	ASSERT(un->un_rqs_bp == NULL);
16395 	ASSERT(un->un_rqs_pktp == NULL);
16396 
16397 	/*
16398 	 * First allocate the required buf and scsi_pkt structs, then set up
16399 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16400 	 */
16401 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16402 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16403 	if (un->un_rqs_bp == NULL) {
16404 		return (DDI_FAILURE);
16405 	}
16406 
16407 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16408 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16409 
16410 	if (un->un_rqs_pktp == NULL) {
16411 		sd_free_rqs(un);
16412 		return (DDI_FAILURE);
16413 	}
16414 
16415 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16416 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16417 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
16418 
16419 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16420 
16421 	/* Set up the other needed members in the ARQ scsi_pkt. */
16422 	un->un_rqs_pktp->pkt_comp   = sdintr;
16423 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16424 	un->un_rqs_pktp->pkt_flags |=
16425 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16426 
16427 	/*
16428 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16429 	 * provide any intpkt, destroypkt routines as we take care of
16430 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16431 	 */
16432 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16433 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16434 	xp->xb_pktp = un->un_rqs_pktp;
16435 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16436 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16437 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16438 
16439 	/*
16440 	 * Save the pointer to the request sense private bp so it can
16441 	 * be retrieved in sdintr.
16442 	 */
16443 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16444 	ASSERT(un->un_rqs_bp->b_private == xp);
16445 
16446 	/*
16447 	 * See if the HBA supports auto-request sense for the specified
16448 	 * target/lun. If it does, then try to enable it (if not already
16449 	 * enabled).
16450 	 *
16451 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16452 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16453 	 * return success.  However, in both of these cases ARQ is always
16454 	 * enabled and scsi_ifgetcap will always return true. The best approach
16455 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16456 	 *
16457 	 * The 3rd case is the HBA (adp) always return enabled on
16458 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16459 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16460 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16461 	 */
16462 
16463 	if (un->un_f_is_fibre == TRUE) {
16464 		un->un_f_arq_enabled = TRUE;
16465 	} else {
16466 #if defined(__i386) || defined(__amd64)
16467 		/*
16468 		 * Circumvent the Adaptec bug, remove this code when
16469 		 * the bug is fixed
16470 		 */
16471 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16472 #endif
16473 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16474 		case 0:
16475 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16476 			    "sd_alloc_rqs: HBA supports ARQ\n");
16477 			/*
16478 			 * ARQ is supported by this HBA but currently is not
16479 			 * enabled. Attempt to enable it and if successful then
16480 			 * mark this instance as ARQ enabled.
16481 			 */
16482 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16483 			    == 1) {
16484 				/* Successfully enabled ARQ in the HBA */
16485 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16486 				    "sd_alloc_rqs: ARQ enabled\n");
16487 				un->un_f_arq_enabled = TRUE;
16488 			} else {
16489 				/* Could not enable ARQ in the HBA */
16490 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16491 				    "sd_alloc_rqs: failed ARQ enable\n");
16492 				un->un_f_arq_enabled = FALSE;
16493 			}
16494 			break;
16495 		case 1:
16496 			/*
16497 			 * ARQ is supported by this HBA and is already enabled.
16498 			 * Just mark ARQ as enabled for this instance.
16499 			 */
16500 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16501 			    "sd_alloc_rqs: ARQ already enabled\n");
16502 			un->un_f_arq_enabled = TRUE;
16503 			break;
16504 		default:
16505 			/*
16506 			 * ARQ is not supported by this HBA; disable it for this
16507 			 * instance.
16508 			 */
16509 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16510 			    "sd_alloc_rqs: HBA does not support ARQ\n");
16511 			un->un_f_arq_enabled = FALSE;
16512 			break;
16513 		}
16514 	}
16515 
16516 	return (DDI_SUCCESS);
16517 }
16518 
16519 
16520 /*
16521  *    Function: sd_free_rqs
16522  *
16523  * Description: Cleanup for the pre-instance RQS command.
16524  *
16525  *     Context: Kernel thread context
16526  */
16527 
16528 static void
16529 sd_free_rqs(struct sd_lun *un)
16530 {
16531 	ASSERT(un != NULL);
16532 
16533 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16534 
16535 	/*
16536 	 * If consistent memory is bound to a scsi_pkt, the pkt
16537 	 * has to be destroyed *before* freeing the consistent memory.
16538 	 * Don't change the sequence of this operations.
16539 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16540 	 * after it was freed in scsi_free_consistent_buf().
16541 	 */
16542 	if (un->un_rqs_pktp != NULL) {
16543 		scsi_destroy_pkt(un->un_rqs_pktp);
16544 		un->un_rqs_pktp = NULL;
16545 	}
16546 
16547 	if (un->un_rqs_bp != NULL) {
16548 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
16549 		if (xp != NULL) {
16550 			kmem_free(xp, sizeof (struct sd_xbuf));
16551 		}
16552 		scsi_free_consistent_buf(un->un_rqs_bp);
16553 		un->un_rqs_bp = NULL;
16554 	}
16555 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16556 }
16557 
16558 
16559 
16560 /*
16561  *    Function: sd_reduce_throttle
16562  *
16563  * Description: Reduces the maximum # of outstanding commands on a
16564  *		target to the current number of outstanding commands.
16565  *		Queues a tiemout(9F) callback to restore the limit
16566  *		after a specified interval has elapsed.
16567  *		Typically used when we get a TRAN_BUSY return code
16568  *		back from scsi_transport().
16569  *
16570  *   Arguments: un - ptr to the sd_lun softstate struct
16571  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16572  *
16573  *     Context: May be called from interrupt context
16574  */
16575 
16576 static void
16577 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16578 {
16579 	ASSERT(un != NULL);
16580 	ASSERT(mutex_owned(SD_MUTEX(un)));
16581 	ASSERT(un->un_ncmds_in_transport >= 0);
16582 
16583 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16584 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16585 	    un, un->un_throttle, un->un_ncmds_in_transport);
16586 
16587 	if (un->un_throttle > 1) {
16588 		if (un->un_f_use_adaptive_throttle == TRUE) {
16589 			switch (throttle_type) {
16590 			case SD_THROTTLE_TRAN_BUSY:
16591 				if (un->un_busy_throttle == 0) {
16592 					un->un_busy_throttle = un->un_throttle;
16593 				}
16594 				break;
16595 			case SD_THROTTLE_QFULL:
16596 				un->un_busy_throttle = 0;
16597 				break;
16598 			default:
16599 				ASSERT(FALSE);
16600 			}
16601 
16602 			if (un->un_ncmds_in_transport > 0) {
16603 				un->un_throttle = un->un_ncmds_in_transport;
16604 			}
16605 
16606 		} else {
16607 			if (un->un_ncmds_in_transport == 0) {
16608 				un->un_throttle = 1;
16609 			} else {
16610 				un->un_throttle = un->un_ncmds_in_transport;
16611 			}
16612 		}
16613 	}
16614 
16615 	/* Reschedule the timeout if none is currently active */
16616 	if (un->un_reset_throttle_timeid == NULL) {
16617 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16618 		    un, SD_THROTTLE_RESET_INTERVAL);
16619 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16620 		    "sd_reduce_throttle: timeout scheduled!\n");
16621 	}
16622 
16623 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16624 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16625 }
16626 
16627 
16628 
16629 /*
16630  *    Function: sd_restore_throttle
16631  *
16632  * Description: Callback function for timeout(9F).  Resets the current
16633  *		value of un->un_throttle to its default.
16634  *
16635  *   Arguments: arg - pointer to associated softstate for the device.
16636  *
16637  *     Context: May be called from interrupt context
16638  */
16639 
16640 static void
16641 sd_restore_throttle(void *arg)
16642 {
16643 	struct sd_lun	*un = arg;
16644 
16645 	ASSERT(un != NULL);
16646 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16647 
16648 	mutex_enter(SD_MUTEX(un));
16649 
16650 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16651 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16652 
16653 	un->un_reset_throttle_timeid = NULL;
16654 
16655 	if (un->un_f_use_adaptive_throttle == TRUE) {
16656 		/*
16657 		 * If un_busy_throttle is nonzero, then it contains the
16658 		 * value that un_throttle was when we got a TRAN_BUSY back
16659 		 * from scsi_transport(). We want to revert back to this
16660 		 * value.
16661 		 *
16662 		 * In the QFULL case, the throttle limit will incrementally
16663 		 * increase until it reaches max throttle.
16664 		 */
16665 		if (un->un_busy_throttle > 0) {
16666 			un->un_throttle = un->un_busy_throttle;
16667 			un->un_busy_throttle = 0;
16668 		} else {
16669 			/*
16670 			 * increase throttle by 10% open gate slowly, schedule
16671 			 * another restore if saved throttle has not been
16672 			 * reached
16673 			 */
16674 			short throttle;
16675 			if (sd_qfull_throttle_enable) {
16676 				throttle = un->un_throttle +
16677 				    max((un->un_throttle / 10), 1);
16678 				un->un_throttle =
16679 				    (throttle < un->un_saved_throttle) ?
16680 				    throttle : un->un_saved_throttle;
16681 				if (un->un_throttle < un->un_saved_throttle) {
16682 					un->un_reset_throttle_timeid =
16683 					    timeout(sd_restore_throttle,
16684 					    un,
16685 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
16686 				}
16687 			}
16688 		}
16689 
16690 		/*
16691 		 * If un_throttle has fallen below the low-water mark, we
16692 		 * restore the maximum value here (and allow it to ratchet
16693 		 * down again if necessary).
16694 		 */
16695 		if (un->un_throttle < un->un_min_throttle) {
16696 			un->un_throttle = un->un_saved_throttle;
16697 		}
16698 	} else {
16699 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16700 		    "restoring limit from 0x%x to 0x%x\n",
16701 		    un->un_throttle, un->un_saved_throttle);
16702 		un->un_throttle = un->un_saved_throttle;
16703 	}
16704 
16705 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16706 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16707 
16708 	sd_start_cmds(un, NULL);
16709 
16710 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16711 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16712 	    un, un->un_throttle);
16713 
16714 	mutex_exit(SD_MUTEX(un));
16715 
16716 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16717 }
16718 
16719 /*
16720  *    Function: sdrunout
16721  *
16722  * Description: Callback routine for scsi_init_pkt when a resource allocation
16723  *		fails.
16724  *
16725  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16726  *		soft state instance.
16727  *
16728  * Return Code: The scsi_init_pkt routine allows for the callback function to
16729  *		return a 0 indicating the callback should be rescheduled or a 1
16730  *		indicating not to reschedule. This routine always returns 1
16731  *		because the driver always provides a callback function to
16732  *		scsi_init_pkt. This results in a callback always being scheduled
16733  *		(via the scsi_init_pkt callback implementation) if a resource
16734  *		failure occurs.
16735  *
16736  *     Context: This callback function may not block or call routines that block
16737  *
16738  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16739  *		request persisting at the head of the list which cannot be
16740  *		satisfied even after multiple retries. In the future the driver
16741  *		may implement some time of maximum runout count before failing
16742  *		an I/O.
16743  */
16744 
16745 static int
16746 sdrunout(caddr_t arg)
16747 {
16748 	struct sd_lun	*un = (struct sd_lun *)arg;
16749 
16750 	ASSERT(un != NULL);
16751 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16752 
16753 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16754 
16755 	mutex_enter(SD_MUTEX(un));
16756 	sd_start_cmds(un, NULL);
16757 	mutex_exit(SD_MUTEX(un));
16758 	/*
16759 	 * This callback routine always returns 1 (i.e. do not reschedule)
16760 	 * because we always specify sdrunout as the callback handler for
16761 	 * scsi_init_pkt inside the call to sd_start_cmds.
16762 	 */
16763 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16764 	return (1);
16765 }
16766 
16767 
16768 /*
16769  *    Function: sdintr
16770  *
16771  * Description: Completion callback routine for scsi_pkt(9S) structs
16772  *		sent to the HBA driver via scsi_transport(9F).
16773  *
16774  *     Context: Interrupt context
16775  */
16776 
16777 static void
16778 sdintr(struct scsi_pkt *pktp)
16779 {
16780 	struct buf	*bp;
16781 	struct sd_xbuf	*xp;
16782 	struct sd_lun	*un;
16783 	size_t		actual_len;
16784 	sd_ssc_t	*sscp;
16785 
16786 	ASSERT(pktp != NULL);
16787 	bp = (struct buf *)pktp->pkt_private;
16788 	ASSERT(bp != NULL);
16789 	xp = SD_GET_XBUF(bp);
16790 	ASSERT(xp != NULL);
16791 	ASSERT(xp->xb_pktp != NULL);
16792 	un = SD_GET_UN(bp);
16793 	ASSERT(un != NULL);
16794 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16795 
16796 #ifdef SD_FAULT_INJECTION
16797 
16798 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16799 	/* SD FaultInjection */
16800 	sd_faultinjection(pktp);
16801 
16802 #endif /* SD_FAULT_INJECTION */
16803 
16804 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16805 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16806 
16807 	mutex_enter(SD_MUTEX(un));
16808 
16809 	ASSERT(un->un_fm_private != NULL);
16810 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16811 	ASSERT(sscp != NULL);
16812 
16813 	/* Reduce the count of the #commands currently in transport */
16814 	un->un_ncmds_in_transport--;
16815 	ASSERT(un->un_ncmds_in_transport >= 0);
16816 
16817 	/* Increment counter to indicate that the callback routine is active */
16818 	un->un_in_callback++;
16819 
16820 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16821 
16822 #ifdef	SDDEBUG
16823 	if (bp == un->un_retry_bp) {
16824 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16825 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16826 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16827 	}
16828 #endif
16829 
16830 	/*
16831 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16832 	 * state if needed.
16833 	 */
16834 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16835 		/* Prevent multiple console messages for the same failure. */
16836 		if (un->un_last_pkt_reason != CMD_DEV_GONE) {
16837 			un->un_last_pkt_reason = CMD_DEV_GONE;
16838 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16839 			    "Command failed to complete...Device is gone\n");
16840 		}
16841 		if (un->un_mediastate != DKIO_DEV_GONE) {
16842 			un->un_mediastate = DKIO_DEV_GONE;
16843 			cv_broadcast(&un->un_state_cv);
16844 		}
16845 		/*
16846 		 * If the command happens to be the REQUEST SENSE command,
16847 		 * free up the rqs buf and fail the original command.
16848 		 */
16849 		if (bp == un->un_rqs_bp) {
16850 			bp = sd_mark_rqs_idle(un, xp);
16851 		}
16852 		sd_return_failed_command(un, bp, EIO);
16853 		goto exit;
16854 	}
16855 
16856 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16857 		SD_TRACE(SD_LOG_COMMON, un,
16858 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16859 	}
16860 
16861 	/*
16862 	 * First see if the pkt has auto-request sense data with it....
16863 	 * Look at the packet state first so we don't take a performance
16864 	 * hit looking at the arq enabled flag unless absolutely necessary.
16865 	 */
16866 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16867 	    (un->un_f_arq_enabled == TRUE)) {
16868 		/*
16869 		 * The HBA did an auto request sense for this command so check
16870 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16871 		 * driver command that should not be retried.
16872 		 */
16873 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16874 			/*
16875 			 * Save the relevant sense info into the xp for the
16876 			 * original cmd.
16877 			 */
16878 			struct scsi_arq_status *asp;
16879 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16880 			xp->xb_sense_status =
16881 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16882 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16883 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16884 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16885 				actual_len = MAX_SENSE_LENGTH -
16886 				    xp->xb_sense_resid;
16887 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16888 				    MAX_SENSE_LENGTH);
16889 			} else {
16890 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16891 					actual_len = MAX_SENSE_LENGTH -
16892 					    xp->xb_sense_resid;
16893 				} else {
16894 					actual_len = SENSE_LENGTH -
16895 					    xp->xb_sense_resid;
16896 				}
16897 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16898 					if ((((struct uscsi_cmd *)
16899 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16900 					    actual_len) {
16901 						xp->xb_sense_resid =
16902 						    (((struct uscsi_cmd *)
16903 						    (xp->xb_pktinfo))->
16904 						    uscsi_rqlen) - actual_len;
16905 					} else {
16906 						xp->xb_sense_resid = 0;
16907 					}
16908 				}
16909 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16910 				    SENSE_LENGTH);
16911 			}
16912 
16913 			/* fail the command */
16914 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16915 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16916 			sd_return_failed_command(un, bp, EIO);
16917 			goto exit;
16918 		}
16919 
16920 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16921 		/*
16922 		 * We want to either retry or fail this command, so free
16923 		 * the DMA resources here.  If we retry the command then
16924 		 * the DMA resources will be reallocated in sd_start_cmds().
16925 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16926 		 * causes the *entire* transfer to start over again from the
16927 		 * beginning of the request, even for PARTIAL chunks that
16928 		 * have already transferred successfully.
16929 		 */
16930 		if ((un->un_f_is_fibre == TRUE) &&
16931 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16932 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16933 			scsi_dmafree(pktp);
16934 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16935 		}
16936 #endif
16937 
16938 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16939 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16940 
16941 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16942 		goto exit;
16943 	}
16944 
16945 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16946 	if (pktp->pkt_flags & FLAG_SENSING)  {
16947 		/* This pktp is from the unit's REQUEST_SENSE command */
16948 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16949 		    "sdintr: sd_handle_request_sense\n");
16950 		sd_handle_request_sense(un, bp, xp, pktp);
16951 		goto exit;
16952 	}
16953 
16954 	/*
16955 	 * Check to see if the command successfully completed as requested;
16956 	 * this is the most common case (and also the hot performance path).
16957 	 *
16958 	 * Requirements for successful completion are:
16959 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16960 	 * In addition:
16961 	 * - A residual of zero indicates successful completion no matter what
16962 	 *   the command is.
16963 	 * - If the residual is not zero and the command is not a read or
16964 	 *   write, then it's still defined as successful completion. In other
16965 	 *   words, if the command is a read or write the residual must be
16966 	 *   zero for successful completion.
16967 	 * - If the residual is not zero and the command is a read or
16968 	 *   write, and it's a USCSICMD, then it's still defined as
16969 	 *   successful completion.
16970 	 */
16971 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16972 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16973 
16974 		/*
16975 		 * Since this command is returned with a good status, we
16976 		 * can reset the count for Sonoma failover.
16977 		 */
16978 		un->un_sonoma_failure_count = 0;
16979 
16980 		/*
16981 		 * Return all USCSI commands on good status
16982 		 */
16983 		if (pktp->pkt_resid == 0) {
16984 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16985 			    "sdintr: returning command for resid == 0\n");
16986 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16987 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16988 			SD_UPDATE_B_RESID(bp, pktp);
16989 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16990 			    "sdintr: returning command for resid != 0\n");
16991 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16992 			SD_UPDATE_B_RESID(bp, pktp);
16993 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16994 			    "sdintr: returning uscsi command\n");
16995 		} else {
16996 			goto not_successful;
16997 		}
16998 		sd_return_command(un, bp);
16999 
17000 		/*
17001 		 * Decrement counter to indicate that the callback routine
17002 		 * is done.
17003 		 */
17004 		un->un_in_callback--;
17005 		ASSERT(un->un_in_callback >= 0);
17006 		mutex_exit(SD_MUTEX(un));
17007 
17008 		return;
17009 	}
17010 
17011 not_successful:
17012 
17013 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
17014 	/*
17015 	 * The following is based upon knowledge of the underlying transport
17016 	 * and its use of DMA resources.  This code should be removed when
17017 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
17018 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
17019 	 * and sd_start_cmds().
17020 	 *
17021 	 * Free any DMA resources associated with this command if there
17022 	 * is a chance it could be retried or enqueued for later retry.
17023 	 * If we keep the DMA binding then mpxio cannot reissue the
17024 	 * command on another path whenever a path failure occurs.
17025 	 *
17026 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
17027 	 * causes the *entire* transfer to start over again from the
17028 	 * beginning of the request, even for PARTIAL chunks that
17029 	 * have already transferred successfully.
17030 	 *
17031 	 * This is only done for non-uscsi commands (and also skipped for the
17032 	 * driver's internal RQS command). Also just do this for Fibre Channel
17033 	 * devices as these are the only ones that support mpxio.
17034 	 */
17035 	if ((un->un_f_is_fibre == TRUE) &&
17036 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
17037 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
17038 		scsi_dmafree(pktp);
17039 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
17040 	}
17041 #endif
17042 
17043 	/*
17044 	 * The command did not successfully complete as requested so check
17045 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
17046 	 * driver command that should not be retried so just return. If
17047 	 * FLAG_DIAGNOSE is not set the error will be processed below.
17048 	 */
17049 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
17050 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17051 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
17052 		/*
17053 		 * Issue a request sense if a check condition caused the error
17054 		 * (we handle the auto request sense case above), otherwise
17055 		 * just fail the command.
17056 		 */
17057 		if ((pktp->pkt_reason == CMD_CMPLT) &&
17058 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
17059 			sd_send_request_sense_command(un, bp, pktp);
17060 		} else {
17061 			sd_return_failed_command(un, bp, EIO);
17062 		}
17063 		goto exit;
17064 	}
17065 
17066 	/*
17067 	 * The command did not successfully complete as requested so process
17068 	 * the error, retry, and/or attempt recovery.
17069 	 */
17070 	switch (pktp->pkt_reason) {
17071 	case CMD_CMPLT:
17072 		switch (SD_GET_PKT_STATUS(pktp)) {
17073 		case STATUS_GOOD:
17074 			/*
17075 			 * The command completed successfully with a non-zero
17076 			 * residual
17077 			 */
17078 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17079 			    "sdintr: STATUS_GOOD \n");
17080 			sd_pkt_status_good(un, bp, xp, pktp);
17081 			break;
17082 
17083 		case STATUS_CHECK:
17084 		case STATUS_TERMINATED:
17085 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17086 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
17087 			sd_pkt_status_check_condition(un, bp, xp, pktp);
17088 			break;
17089 
17090 		case STATUS_BUSY:
17091 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17092 			    "sdintr: STATUS_BUSY\n");
17093 			sd_pkt_status_busy(un, bp, xp, pktp);
17094 			break;
17095 
17096 		case STATUS_RESERVATION_CONFLICT:
17097 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17098 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
17099 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17100 			break;
17101 
17102 		case STATUS_QFULL:
17103 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17104 			    "sdintr: STATUS_QFULL\n");
17105 			sd_pkt_status_qfull(un, bp, xp, pktp);
17106 			break;
17107 
17108 		case STATUS_MET:
17109 		case STATUS_INTERMEDIATE:
17110 		case STATUS_SCSI2:
17111 		case STATUS_INTERMEDIATE_MET:
17112 		case STATUS_ACA_ACTIVE:
17113 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17114 			    "Unexpected SCSI status received: 0x%x\n",
17115 			    SD_GET_PKT_STATUS(pktp));
17116 			/*
17117 			 * Mark the ssc_flags when detected invalid status
17118 			 * code for non-USCSI command.
17119 			 */
17120 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17121 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17122 				    0, "stat-code");
17123 			}
17124 			sd_return_failed_command(un, bp, EIO);
17125 			break;
17126 
17127 		default:
17128 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17129 			    "Invalid SCSI status received: 0x%x\n",
17130 			    SD_GET_PKT_STATUS(pktp));
17131 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17132 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17133 				    0, "stat-code");
17134 			}
17135 			sd_return_failed_command(un, bp, EIO);
17136 			break;
17137 
17138 		}
17139 		break;
17140 
17141 	case CMD_INCOMPLETE:
17142 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17143 		    "sdintr:  CMD_INCOMPLETE\n");
17144 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
17145 		break;
17146 	case CMD_TRAN_ERR:
17147 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17148 		    "sdintr: CMD_TRAN_ERR\n");
17149 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
17150 		break;
17151 	case CMD_RESET:
17152 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17153 		    "sdintr: CMD_RESET \n");
17154 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
17155 		break;
17156 	case CMD_ABORTED:
17157 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17158 		    "sdintr: CMD_ABORTED \n");
17159 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
17160 		break;
17161 	case CMD_TIMEOUT:
17162 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17163 		    "sdintr: CMD_TIMEOUT\n");
17164 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
17165 		break;
17166 	case CMD_UNX_BUS_FREE:
17167 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17168 		    "sdintr: CMD_UNX_BUS_FREE \n");
17169 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
17170 		break;
17171 	case CMD_TAG_REJECT:
17172 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17173 		    "sdintr: CMD_TAG_REJECT\n");
17174 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
17175 		break;
17176 	default:
17177 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17178 		    "sdintr: default\n");
17179 		/*
17180 		 * Mark the ssc_flags for detecting invliad pkt_reason.
17181 		 */
17182 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17183 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
17184 			    0, "pkt-reason");
17185 		}
17186 		sd_pkt_reason_default(un, bp, xp, pktp);
17187 		break;
17188 	}
17189 
17190 exit:
17191 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
17192 
17193 	/* Decrement counter to indicate that the callback routine is done. */
17194 	un->un_in_callback--;
17195 	ASSERT(un->un_in_callback >= 0);
17196 
17197 	/*
17198 	 * At this point, the pkt has been dispatched, ie, it is either
17199 	 * being re-tried or has been returned to its caller and should
17200 	 * not be referenced.
17201 	 */
17202 
17203 	mutex_exit(SD_MUTEX(un));
17204 }
17205 
17206 
17207 /*
17208  *    Function: sd_print_incomplete_msg
17209  *
17210  * Description: Prints the error message for a CMD_INCOMPLETE error.
17211  *
17212  *   Arguments: un - ptr to associated softstate for the device.
17213  *		bp - ptr to the buf(9S) for the command.
17214  *		arg - message string ptr
17215  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17216  *			or SD_NO_RETRY_ISSUED.
17217  *
17218  *     Context: May be called under interrupt context
17219  */
17220 
17221 static void
17222 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17223 {
17224 	struct scsi_pkt	*pktp;
17225 	char	*msgp;
17226 	char	*cmdp = arg;
17227 
17228 	ASSERT(un != NULL);
17229 	ASSERT(mutex_owned(SD_MUTEX(un)));
17230 	ASSERT(bp != NULL);
17231 	ASSERT(arg != NULL);
17232 	pktp = SD_GET_PKTP(bp);
17233 	ASSERT(pktp != NULL);
17234 
17235 	switch (code) {
17236 	case SD_DELAYED_RETRY_ISSUED:
17237 	case SD_IMMEDIATE_RETRY_ISSUED:
17238 		msgp = "retrying";
17239 		break;
17240 	case SD_NO_RETRY_ISSUED:
17241 	default:
17242 		msgp = "giving up";
17243 		break;
17244 	}
17245 
17246 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17247 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17248 		    "incomplete %s- %s\n", cmdp, msgp);
17249 	}
17250 }
17251 
17252 
17253 
17254 /*
17255  *    Function: sd_pkt_status_good
17256  *
17257  * Description: Processing for a STATUS_GOOD code in pkt_status.
17258  *
17259  *     Context: May be called under interrupt context
17260  */
17261 
17262 static void
17263 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17264 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17265 {
17266 	char	*cmdp;
17267 
17268 	ASSERT(un != NULL);
17269 	ASSERT(mutex_owned(SD_MUTEX(un)));
17270 	ASSERT(bp != NULL);
17271 	ASSERT(xp != NULL);
17272 	ASSERT(pktp != NULL);
17273 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17274 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17275 	ASSERT(pktp->pkt_resid != 0);
17276 
17277 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17278 
17279 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17280 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17281 	case SCMD_READ:
17282 		cmdp = "read";
17283 		break;
17284 	case SCMD_WRITE:
17285 		cmdp = "write";
17286 		break;
17287 	default:
17288 		SD_UPDATE_B_RESID(bp, pktp);
17289 		sd_return_command(un, bp);
17290 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17291 		return;
17292 	}
17293 
17294 	/*
17295 	 * See if we can retry the read/write, preferrably immediately.
17296 	 * If retries are exhaused, then sd_retry_command() will update
17297 	 * the b_resid count.
17298 	 */
17299 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17300 	    cmdp, EIO, (clock_t)0, NULL);
17301 
17302 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17303 }
17304 
17305 
17306 
17307 
17308 
17309 /*
17310  *    Function: sd_handle_request_sense
17311  *
17312  * Description: Processing for non-auto Request Sense command.
17313  *
17314  *   Arguments: un - ptr to associated softstate
17315  *		sense_bp - ptr to buf(9S) for the RQS command
17316  *		sense_xp - ptr to the sd_xbuf for the RQS command
17317  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17318  *
17319  *     Context: May be called under interrupt context
17320  */
17321 
17322 static void
17323 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17324 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17325 {
17326 	struct buf	*cmd_bp;	/* buf for the original command */
17327 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17328 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17329 	size_t		actual_len;	/* actual sense data length */
17330 
17331 	ASSERT(un != NULL);
17332 	ASSERT(mutex_owned(SD_MUTEX(un)));
17333 	ASSERT(sense_bp != NULL);
17334 	ASSERT(sense_xp != NULL);
17335 	ASSERT(sense_pktp != NULL);
17336 
17337 	/*
17338 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17339 	 * RQS command and not the original command.
17340 	 */
17341 	ASSERT(sense_pktp == un->un_rqs_pktp);
17342 	ASSERT(sense_bp   == un->un_rqs_bp);
17343 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17344 	    (FLAG_SENSING | FLAG_HEAD));
17345 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17346 	    FLAG_SENSING) == FLAG_SENSING);
17347 
17348 	/* These are the bp, xp, and pktp for the original command */
17349 	cmd_bp = sense_xp->xb_sense_bp;
17350 	cmd_xp = SD_GET_XBUF(cmd_bp);
17351 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17352 
17353 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17354 		/*
17355 		 * The REQUEST SENSE command failed.  Release the REQUEST
17356 		 * SENSE command for re-use, get back the bp for the original
17357 		 * command, and attempt to re-try the original command if
17358 		 * FLAG_DIAGNOSE is not set in the original packet.
17359 		 */
17360 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17361 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17362 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17363 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17364 			    NULL, NULL, EIO, (clock_t)0, NULL);
17365 			return;
17366 		}
17367 	}
17368 
17369 	/*
17370 	 * Save the relevant sense info into the xp for the original cmd.
17371 	 *
17372 	 * Note: if the request sense failed the state info will be zero
17373 	 * as set in sd_mark_rqs_busy()
17374 	 */
17375 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17376 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17377 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
17378 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
17379 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
17380 	    SENSE_LENGTH)) {
17381 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17382 		    MAX_SENSE_LENGTH);
17383 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
17384 	} else {
17385 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17386 		    SENSE_LENGTH);
17387 		if (actual_len < SENSE_LENGTH) {
17388 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
17389 		} else {
17390 			cmd_xp->xb_sense_resid = 0;
17391 		}
17392 	}
17393 
17394 	/*
17395 	 *  Free up the RQS command....
17396 	 *  NOTE:
17397 	 *	Must do this BEFORE calling sd_validate_sense_data!
17398 	 *	sd_validate_sense_data may return the original command in
17399 	 *	which case the pkt will be freed and the flags can no
17400 	 *	longer be touched.
17401 	 *	SD_MUTEX is held through this process until the command
17402 	 *	is dispatched based upon the sense data, so there are
17403 	 *	no race conditions.
17404 	 */
17405 	(void) sd_mark_rqs_idle(un, sense_xp);
17406 
17407 	/*
17408 	 * For a retryable command see if we have valid sense data, if so then
17409 	 * turn it over to sd_decode_sense() to figure out the right course of
17410 	 * action. Just fail a non-retryable command.
17411 	 */
17412 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17413 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
17414 		    SD_SENSE_DATA_IS_VALID) {
17415 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17416 		}
17417 	} else {
17418 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17419 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17420 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17421 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17422 		sd_return_failed_command(un, cmd_bp, EIO);
17423 	}
17424 }
17425 
17426 
17427 
17428 
17429 /*
17430  *    Function: sd_handle_auto_request_sense
17431  *
17432  * Description: Processing for auto-request sense information.
17433  *
17434  *   Arguments: un - ptr to associated softstate
17435  *		bp - ptr to buf(9S) for the command
17436  *		xp - ptr to the sd_xbuf for the command
17437  *		pktp - ptr to the scsi_pkt(9S) for the command
17438  *
17439  *     Context: May be called under interrupt context
17440  */
17441 
17442 static void
17443 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17444 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17445 {
17446 	struct scsi_arq_status *asp;
17447 	size_t actual_len;
17448 
17449 	ASSERT(un != NULL);
17450 	ASSERT(mutex_owned(SD_MUTEX(un)));
17451 	ASSERT(bp != NULL);
17452 	ASSERT(xp != NULL);
17453 	ASSERT(pktp != NULL);
17454 	ASSERT(pktp != un->un_rqs_pktp);
17455 	ASSERT(bp   != un->un_rqs_bp);
17456 
17457 	/*
17458 	 * For auto-request sense, we get a scsi_arq_status back from
17459 	 * the HBA, with the sense data in the sts_sensedata member.
17460 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17461 	 */
17462 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17463 
17464 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17465 		/*
17466 		 * The auto REQUEST SENSE failed; see if we can re-try
17467 		 * the original command.
17468 		 */
17469 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17470 		    "auto request sense failed (reason=%s)\n",
17471 		    scsi_rname(asp->sts_rqpkt_reason));
17472 
17473 		sd_reset_target(un, pktp);
17474 
17475 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17476 		    NULL, NULL, EIO, (clock_t)0, NULL);
17477 		return;
17478 	}
17479 
17480 	/* Save the relevant sense info into the xp for the original cmd. */
17481 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17482 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17483 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17484 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
17485 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17486 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17487 		    MAX_SENSE_LENGTH);
17488 	} else {
17489 		if (xp->xb_sense_resid > SENSE_LENGTH) {
17490 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17491 		} else {
17492 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
17493 		}
17494 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17495 			if ((((struct uscsi_cmd *)
17496 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
17497 				xp->xb_sense_resid = (((struct uscsi_cmd *)
17498 				    (xp->xb_pktinfo))->uscsi_rqlen) -
17499 				    actual_len;
17500 			} else {
17501 				xp->xb_sense_resid = 0;
17502 			}
17503 		}
17504 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
17505 	}
17506 
17507 	/*
17508 	 * See if we have valid sense data, if so then turn it over to
17509 	 * sd_decode_sense() to figure out the right course of action.
17510 	 */
17511 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
17512 	    SD_SENSE_DATA_IS_VALID) {
17513 		sd_decode_sense(un, bp, xp, pktp);
17514 	}
17515 }
17516 
17517 
17518 /*
17519  *    Function: sd_print_sense_failed_msg
17520  *
17521  * Description: Print log message when RQS has failed.
17522  *
17523  *   Arguments: un - ptr to associated softstate
17524  *		bp - ptr to buf(9S) for the command
17525  *		arg - generic message string ptr
17526  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17527  *			or SD_NO_RETRY_ISSUED
17528  *
17529  *     Context: May be called from interrupt context
17530  */
17531 
17532 static void
17533 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17534 	int code)
17535 {
17536 	char	*msgp = arg;
17537 
17538 	ASSERT(un != NULL);
17539 	ASSERT(mutex_owned(SD_MUTEX(un)));
17540 	ASSERT(bp != NULL);
17541 
17542 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17543 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17544 	}
17545 }
17546 
17547 
17548 /*
17549  *    Function: sd_validate_sense_data
17550  *
17551  * Description: Check the given sense data for validity.
17552  *		If the sense data is not valid, the command will
17553  *		be either failed or retried!
17554  *
17555  * Return Code: SD_SENSE_DATA_IS_INVALID
17556  *		SD_SENSE_DATA_IS_VALID
17557  *
17558  *     Context: May be called from interrupt context
17559  */
17560 
17561 static int
17562 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17563 	size_t actual_len)
17564 {
17565 	struct scsi_extended_sense *esp;
17566 	struct	scsi_pkt *pktp;
17567 	char	*msgp = NULL;
17568 	sd_ssc_t *sscp;
17569 
17570 	ASSERT(un != NULL);
17571 	ASSERT(mutex_owned(SD_MUTEX(un)));
17572 	ASSERT(bp != NULL);
17573 	ASSERT(bp != un->un_rqs_bp);
17574 	ASSERT(xp != NULL);
17575 	ASSERT(un->un_fm_private != NULL);
17576 
17577 	pktp = SD_GET_PKTP(bp);
17578 	ASSERT(pktp != NULL);
17579 
17580 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
17581 	ASSERT(sscp != NULL);
17582 
17583 	/*
17584 	 * Check the status of the RQS command (auto or manual).
17585 	 */
17586 	switch (xp->xb_sense_status & STATUS_MASK) {
17587 	case STATUS_GOOD:
17588 		break;
17589 
17590 	case STATUS_RESERVATION_CONFLICT:
17591 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17592 		return (SD_SENSE_DATA_IS_INVALID);
17593 
17594 	case STATUS_BUSY:
17595 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17596 		    "Busy Status on REQUEST SENSE\n");
17597 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17598 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17599 		return (SD_SENSE_DATA_IS_INVALID);
17600 
17601 	case STATUS_QFULL:
17602 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17603 		    "QFULL Status on REQUEST SENSE\n");
17604 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17605 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17606 		return (SD_SENSE_DATA_IS_INVALID);
17607 
17608 	case STATUS_CHECK:
17609 	case STATUS_TERMINATED:
17610 		msgp = "Check Condition on REQUEST SENSE\n";
17611 		goto sense_failed;
17612 
17613 	default:
17614 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17615 		goto sense_failed;
17616 	}
17617 
17618 	/*
17619 	 * See if we got the minimum required amount of sense data.
17620 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17621 	 * or less.
17622 	 */
17623 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17624 	    (actual_len == 0)) {
17625 		msgp = "Request Sense couldn't get sense data\n";
17626 		goto sense_failed;
17627 	}
17628 
17629 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17630 		msgp = "Not enough sense information\n";
17631 		/* Mark the ssc_flags for detecting invalid sense data */
17632 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17633 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17634 			    "sense-data");
17635 		}
17636 		goto sense_failed;
17637 	}
17638 
17639 	/*
17640 	 * We require the extended sense data
17641 	 */
17642 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17643 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17644 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17645 			static char tmp[8];
17646 			static char buf[148];
17647 			char *p = (char *)(xp->xb_sense_data);
17648 			int i;
17649 
17650 			mutex_enter(&sd_sense_mutex);
17651 			(void) strcpy(buf, "undecodable sense information:");
17652 			for (i = 0; i < actual_len; i++) {
17653 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17654 				(void) strcpy(&buf[strlen(buf)], tmp);
17655 			}
17656 			i = strlen(buf);
17657 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17658 
17659 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
17660 				scsi_log(SD_DEVINFO(un), sd_label,
17661 				    CE_WARN, buf);
17662 			}
17663 			mutex_exit(&sd_sense_mutex);
17664 		}
17665 
17666 		/* Mark the ssc_flags for detecting invalid sense data */
17667 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17668 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17669 			    "sense-data");
17670 		}
17671 
17672 		/* Note: Legacy behavior, fail the command with no retry */
17673 		sd_return_failed_command(un, bp, EIO);
17674 		return (SD_SENSE_DATA_IS_INVALID);
17675 	}
17676 
17677 	/*
17678 	 * Check that es_code is valid (es_class concatenated with es_code
17679 	 * make up the "response code" field.  es_class will always be 7, so
17680 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17681 	 * format.
17682 	 */
17683 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17684 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17685 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17686 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17687 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17688 		/* Mark the ssc_flags for detecting invalid sense data */
17689 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17690 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17691 			    "sense-data");
17692 		}
17693 		goto sense_failed;
17694 	}
17695 
17696 	return (SD_SENSE_DATA_IS_VALID);
17697 
17698 sense_failed:
17699 	/*
17700 	 * If the request sense failed (for whatever reason), attempt
17701 	 * to retry the original command.
17702 	 */
17703 #if defined(__i386) || defined(__amd64)
17704 	/*
17705 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17706 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17707 	 * for both SCSI/FC.
17708 	 * The SD_RETRY_DELAY value need to be adjusted here
17709 	 * when SD_RETRY_DELAY change in sddef.h
17710 	 */
17711 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17712 	    sd_print_sense_failed_msg, msgp, EIO,
17713 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17714 #else
17715 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17716 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17717 #endif
17718 
17719 	return (SD_SENSE_DATA_IS_INVALID);
17720 }
17721 
17722 /*
17723  *    Function: sd_decode_sense
17724  *
17725  * Description: Take recovery action(s) when SCSI Sense Data is received.
17726  *
17727  *     Context: Interrupt context.
17728  */
17729 
17730 static void
17731 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17732 	struct scsi_pkt *pktp)
17733 {
17734 	uint8_t sense_key;
17735 
17736 	ASSERT(un != NULL);
17737 	ASSERT(mutex_owned(SD_MUTEX(un)));
17738 	ASSERT(bp != NULL);
17739 	ASSERT(bp != un->un_rqs_bp);
17740 	ASSERT(xp != NULL);
17741 	ASSERT(pktp != NULL);
17742 
17743 	sense_key = scsi_sense_key(xp->xb_sense_data);
17744 
17745 	switch (sense_key) {
17746 	case KEY_NO_SENSE:
17747 		sd_sense_key_no_sense(un, bp, xp, pktp);
17748 		break;
17749 	case KEY_RECOVERABLE_ERROR:
17750 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17751 		    bp, xp, pktp);
17752 		break;
17753 	case KEY_NOT_READY:
17754 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17755 		    bp, xp, pktp);
17756 		break;
17757 	case KEY_MEDIUM_ERROR:
17758 	case KEY_HARDWARE_ERROR:
17759 		sd_sense_key_medium_or_hardware_error(un,
17760 		    xp->xb_sense_data, bp, xp, pktp);
17761 		break;
17762 	case KEY_ILLEGAL_REQUEST:
17763 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17764 		break;
17765 	case KEY_UNIT_ATTENTION:
17766 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17767 		    bp, xp, pktp);
17768 		break;
17769 	case KEY_WRITE_PROTECT:
17770 	case KEY_VOLUME_OVERFLOW:
17771 	case KEY_MISCOMPARE:
17772 		sd_sense_key_fail_command(un, bp, xp, pktp);
17773 		break;
17774 	case KEY_BLANK_CHECK:
17775 		sd_sense_key_blank_check(un, bp, xp, pktp);
17776 		break;
17777 	case KEY_ABORTED_COMMAND:
17778 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17779 		break;
17780 	case KEY_VENDOR_UNIQUE:
17781 	case KEY_COPY_ABORTED:
17782 	case KEY_EQUAL:
17783 	case KEY_RESERVED:
17784 	default:
17785 		sd_sense_key_default(un, xp->xb_sense_data,
17786 		    bp, xp, pktp);
17787 		break;
17788 	}
17789 }
17790 
17791 
17792 /*
17793  *    Function: sd_dump_memory
17794  *
17795  * Description: Debug logging routine to print the contents of a user provided
17796  *		buffer. The output of the buffer is broken up into 256 byte
17797  *		segments due to a size constraint of the scsi_log.
17798  *		implementation.
17799  *
17800  *   Arguments: un - ptr to softstate
17801  *		comp - component mask
17802  *		title - "title" string to preceed data when printed
17803  *		data - ptr to data block to be printed
17804  *		len - size of data block to be printed
17805  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17806  *
17807  *     Context: May be called from interrupt context
17808  */
17809 
17810 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17811 
17812 static char *sd_dump_format_string[] = {
17813 		" 0x%02x",
17814 		" %c"
17815 };
17816 
17817 static void
17818 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17819     int len, int fmt)
17820 {
17821 	int	i, j;
17822 	int	avail_count;
17823 	int	start_offset;
17824 	int	end_offset;
17825 	size_t	entry_len;
17826 	char	*bufp;
17827 	char	*local_buf;
17828 	char	*format_string;
17829 
17830 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17831 
17832 	/*
17833 	 * In the debug version of the driver, this function is called from a
17834 	 * number of places which are NOPs in the release driver.
17835 	 * The debug driver therefore has additional methods of filtering
17836 	 * debug output.
17837 	 */
17838 #ifdef SDDEBUG
17839 	/*
17840 	 * In the debug version of the driver we can reduce the amount of debug
17841 	 * messages by setting sd_error_level to something other than
17842 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17843 	 * sd_component_mask.
17844 	 */
17845 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17846 	    (sd_error_level != SCSI_ERR_ALL)) {
17847 		return;
17848 	}
17849 	if (((sd_component_mask & comp) == 0) ||
17850 	    (sd_error_level != SCSI_ERR_ALL)) {
17851 		return;
17852 	}
17853 #else
17854 	if (sd_error_level != SCSI_ERR_ALL) {
17855 		return;
17856 	}
17857 #endif
17858 
17859 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17860 	bufp = local_buf;
17861 	/*
17862 	 * Available length is the length of local_buf[], minus the
17863 	 * length of the title string, minus one for the ":", minus
17864 	 * one for the newline, minus one for the NULL terminator.
17865 	 * This gives the #bytes available for holding the printed
17866 	 * values from the given data buffer.
17867 	 */
17868 	if (fmt == SD_LOG_HEX) {
17869 		format_string = sd_dump_format_string[0];
17870 	} else /* SD_LOG_CHAR */ {
17871 		format_string = sd_dump_format_string[1];
17872 	}
17873 	/*
17874 	 * Available count is the number of elements from the given
17875 	 * data buffer that we can fit into the available length.
17876 	 * This is based upon the size of the format string used.
17877 	 * Make one entry and find it's size.
17878 	 */
17879 	(void) sprintf(bufp, format_string, data[0]);
17880 	entry_len = strlen(bufp);
17881 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17882 
17883 	j = 0;
17884 	while (j < len) {
17885 		bufp = local_buf;
17886 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17887 		start_offset = j;
17888 
17889 		end_offset = start_offset + avail_count;
17890 
17891 		(void) sprintf(bufp, "%s:", title);
17892 		bufp += strlen(bufp);
17893 		for (i = start_offset; ((i < end_offset) && (j < len));
17894 		    i++, j++) {
17895 			(void) sprintf(bufp, format_string, data[i]);
17896 			bufp += entry_len;
17897 		}
17898 		(void) sprintf(bufp, "\n");
17899 
17900 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17901 	}
17902 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17903 }
17904 
17905 /*
17906  *    Function: sd_print_sense_msg
17907  *
17908  * Description: Log a message based upon the given sense data.
17909  *
17910  *   Arguments: un - ptr to associated softstate
17911  *		bp - ptr to buf(9S) for the command
17912  *		arg - ptr to associate sd_sense_info struct
17913  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17914  *			or SD_NO_RETRY_ISSUED
17915  *
17916  *     Context: May be called from interrupt context
17917  */
17918 
17919 static void
17920 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17921 {
17922 	struct sd_xbuf	*xp;
17923 	struct scsi_pkt	*pktp;
17924 	uint8_t *sensep;
17925 	daddr_t request_blkno;
17926 	diskaddr_t err_blkno;
17927 	int severity;
17928 	int pfa_flag;
17929 	extern struct scsi_key_strings scsi_cmds[];
17930 
17931 	ASSERT(un != NULL);
17932 	ASSERT(mutex_owned(SD_MUTEX(un)));
17933 	ASSERT(bp != NULL);
17934 	xp = SD_GET_XBUF(bp);
17935 	ASSERT(xp != NULL);
17936 	pktp = SD_GET_PKTP(bp);
17937 	ASSERT(pktp != NULL);
17938 	ASSERT(arg != NULL);
17939 
17940 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17941 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17942 
17943 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17944 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17945 		severity = SCSI_ERR_RETRYABLE;
17946 	}
17947 
17948 	/* Use absolute block number for the request block number */
17949 	request_blkno = xp->xb_blkno;
17950 
17951 	/*
17952 	 * Now try to get the error block number from the sense data
17953 	 */
17954 	sensep = xp->xb_sense_data;
17955 
17956 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17957 	    (uint64_t *)&err_blkno)) {
17958 		/*
17959 		 * We retrieved the error block number from the information
17960 		 * portion of the sense data.
17961 		 *
17962 		 * For USCSI commands we are better off using the error
17963 		 * block no. as the requested block no. (This is the best
17964 		 * we can estimate.)
17965 		 */
17966 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17967 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17968 			request_blkno = err_blkno;
17969 		}
17970 	} else {
17971 		/*
17972 		 * Without the es_valid bit set (for fixed format) or an
17973 		 * information descriptor (for descriptor format) we cannot
17974 		 * be certain of the error blkno, so just use the
17975 		 * request_blkno.
17976 		 */
17977 		err_blkno = (diskaddr_t)request_blkno;
17978 	}
17979 
17980 	/*
17981 	 * The following will log the buffer contents for the release driver
17982 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17983 	 * level is set to verbose.
17984 	 */
17985 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17986 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17987 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17988 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17989 
17990 	if (pfa_flag == FALSE) {
17991 		/* This is normally only set for USCSI */
17992 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17993 			return;
17994 		}
17995 
17996 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17997 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17998 		    (severity < sd_error_level))) {
17999 			return;
18000 		}
18001 	}
18002 	/*
18003 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
18004 	 */
18005 	if ((SD_IS_LSI(un)) &&
18006 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
18007 	    (scsi_sense_asc(sensep) == 0x94) &&
18008 	    (scsi_sense_ascq(sensep) == 0x01)) {
18009 		un->un_sonoma_failure_count++;
18010 		if (un->un_sonoma_failure_count > 1) {
18011 			return;
18012 		}
18013 	}
18014 
18015 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
18016 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
18017 	    (pktp->pkt_resid == 0))) {
18018 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
18019 		    request_blkno, err_blkno, scsi_cmds,
18020 		    (struct scsi_extended_sense *)sensep,
18021 		    un->un_additional_codes, NULL);
18022 	}
18023 }
18024 
18025 /*
18026  *    Function: sd_sense_key_no_sense
18027  *
18028  * Description: Recovery action when sense data was not received.
18029  *
18030  *     Context: May be called from interrupt context
18031  */
18032 
18033 static void
18034 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
18035 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18036 {
18037 	struct sd_sense_info	si;
18038 
18039 	ASSERT(un != NULL);
18040 	ASSERT(mutex_owned(SD_MUTEX(un)));
18041 	ASSERT(bp != NULL);
18042 	ASSERT(xp != NULL);
18043 	ASSERT(pktp != NULL);
18044 
18045 	si.ssi_severity = SCSI_ERR_FATAL;
18046 	si.ssi_pfa_flag = FALSE;
18047 
18048 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18049 
18050 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18051 	    &si, EIO, (clock_t)0, NULL);
18052 }
18053 
18054 
18055 /*
18056  *    Function: sd_sense_key_recoverable_error
18057  *
18058  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
18059  *
18060  *     Context: May be called from interrupt context
18061  */
18062 
18063 static void
18064 sd_sense_key_recoverable_error(struct sd_lun *un,
18065 	uint8_t *sense_datap,
18066 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18067 {
18068 	struct sd_sense_info	si;
18069 	uint8_t asc = scsi_sense_asc(sense_datap);
18070 
18071 	ASSERT(un != NULL);
18072 	ASSERT(mutex_owned(SD_MUTEX(un)));
18073 	ASSERT(bp != NULL);
18074 	ASSERT(xp != NULL);
18075 	ASSERT(pktp != NULL);
18076 
18077 	/*
18078 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
18079 	 */
18080 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
18081 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18082 		si.ssi_severity = SCSI_ERR_INFO;
18083 		si.ssi_pfa_flag = TRUE;
18084 	} else {
18085 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
18086 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
18087 		si.ssi_severity = SCSI_ERR_RECOVERED;
18088 		si.ssi_pfa_flag = FALSE;
18089 	}
18090 
18091 	if (pktp->pkt_resid == 0) {
18092 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18093 		sd_return_command(un, bp);
18094 		return;
18095 	}
18096 
18097 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18098 	    &si, EIO, (clock_t)0, NULL);
18099 }
18100 
18101 
18102 
18103 
18104 /*
18105  *    Function: sd_sense_key_not_ready
18106  *
18107  * Description: Recovery actions for a SCSI "Not Ready" sense key.
18108  *
18109  *     Context: May be called from interrupt context
18110  */
18111 
18112 static void
18113 sd_sense_key_not_ready(struct sd_lun *un,
18114 	uint8_t *sense_datap,
18115 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18116 {
18117 	struct sd_sense_info	si;
18118 	uint8_t asc = scsi_sense_asc(sense_datap);
18119 	uint8_t ascq = scsi_sense_ascq(sense_datap);
18120 
18121 	ASSERT(un != NULL);
18122 	ASSERT(mutex_owned(SD_MUTEX(un)));
18123 	ASSERT(bp != NULL);
18124 	ASSERT(xp != NULL);
18125 	ASSERT(pktp != NULL);
18126 
18127 	si.ssi_severity = SCSI_ERR_FATAL;
18128 	si.ssi_pfa_flag = FALSE;
18129 
18130 	/*
18131 	 * Update error stats after first NOT READY error. Disks may have
18132 	 * been powered down and may need to be restarted.  For CDROMs,
18133 	 * report NOT READY errors only if media is present.
18134 	 */
18135 	if ((ISCD(un) && (asc == 0x3A)) ||
18136 	    (xp->xb_nr_retry_count > 0)) {
18137 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18138 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
18139 	}
18140 
18141 	/*
18142 	 * Just fail if the "not ready" retry limit has been reached.
18143 	 */
18144 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
18145 		/* Special check for error message printing for removables. */
18146 		if (un->un_f_has_removable_media && (asc == 0x04) &&
18147 		    (ascq >= 0x04)) {
18148 			si.ssi_severity = SCSI_ERR_ALL;
18149 		}
18150 		goto fail_command;
18151 	}
18152 
18153 	/*
18154 	 * Check the ASC and ASCQ in the sense data as needed, to determine
18155 	 * what to do.
18156 	 */
18157 	switch (asc) {
18158 	case 0x04:	/* LOGICAL UNIT NOT READY */
18159 		/*
18160 		 * disk drives that don't spin up result in a very long delay
18161 		 * in format without warning messages. We will log a message
18162 		 * if the error level is set to verbose.
18163 		 */
18164 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18165 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18166 			    "logical unit not ready, resetting disk\n");
18167 		}
18168 
18169 		/*
18170 		 * There are different requirements for CDROMs and disks for
18171 		 * the number of retries.  If a CD-ROM is giving this, it is
18172 		 * probably reading TOC and is in the process of getting
18173 		 * ready, so we should keep on trying for a long time to make
18174 		 * sure that all types of media are taken in account (for
18175 		 * some media the drive takes a long time to read TOC).  For
18176 		 * disks we do not want to retry this too many times as this
18177 		 * can cause a long hang in format when the drive refuses to
18178 		 * spin up (a very common failure).
18179 		 */
18180 		switch (ascq) {
18181 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
18182 			/*
18183 			 * Disk drives frequently refuse to spin up which
18184 			 * results in a very long hang in format without
18185 			 * warning messages.
18186 			 *
18187 			 * Note: This code preserves the legacy behavior of
18188 			 * comparing xb_nr_retry_count against zero for fibre
18189 			 * channel targets instead of comparing against the
18190 			 * un_reset_retry_count value.  The reason for this
18191 			 * discrepancy has been so utterly lost beneath the
18192 			 * Sands of Time that even Indiana Jones could not
18193 			 * find it.
18194 			 */
18195 			if (un->un_f_is_fibre == TRUE) {
18196 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18197 				    (xp->xb_nr_retry_count > 0)) &&
18198 				    (un->un_startstop_timeid == NULL)) {
18199 					scsi_log(SD_DEVINFO(un), sd_label,
18200 					    CE_WARN, "logical unit not ready, "
18201 					    "resetting disk\n");
18202 					sd_reset_target(un, pktp);
18203 				}
18204 			} else {
18205 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18206 				    (xp->xb_nr_retry_count >
18207 				    un->un_reset_retry_count)) &&
18208 				    (un->un_startstop_timeid == NULL)) {
18209 					scsi_log(SD_DEVINFO(un), sd_label,
18210 					    CE_WARN, "logical unit not ready, "
18211 					    "resetting disk\n");
18212 					sd_reset_target(un, pktp);
18213 				}
18214 			}
18215 			break;
18216 
18217 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
18218 			/*
18219 			 * If the target is in the process of becoming
18220 			 * ready, just proceed with the retry. This can
18221 			 * happen with CD-ROMs that take a long time to
18222 			 * read TOC after a power cycle or reset.
18223 			 */
18224 			goto do_retry;
18225 
18226 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
18227 			break;
18228 
18229 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
18230 			/*
18231 			 * Retries cannot help here so just fail right away.
18232 			 */
18233 			goto fail_command;
18234 
18235 		case 0x88:
18236 			/*
18237 			 * Vendor-unique code for T3/T4: it indicates a
18238 			 * path problem in a mutipathed config, but as far as
18239 			 * the target driver is concerned it equates to a fatal
18240 			 * error, so we should just fail the command right away
18241 			 * (without printing anything to the console). If this
18242 			 * is not a T3/T4, fall thru to the default recovery
18243 			 * action.
18244 			 * T3/T4 is FC only, don't need to check is_fibre
18245 			 */
18246 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
18247 				sd_return_failed_command(un, bp, EIO);
18248 				return;
18249 			}
18250 			/* FALLTHRU */
18251 
18252 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
18253 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
18254 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
18255 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
18256 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
18257 		default:    /* Possible future codes in SCSI spec? */
18258 			/*
18259 			 * For removable-media devices, do not retry if
18260 			 * ASCQ > 2 as these result mostly from USCSI commands
18261 			 * on MMC devices issued to check status of an
18262 			 * operation initiated in immediate mode.  Also for
18263 			 * ASCQ >= 4 do not print console messages as these
18264 			 * mainly represent a user-initiated operation
18265 			 * instead of a system failure.
18266 			 */
18267 			if (un->un_f_has_removable_media) {
18268 				si.ssi_severity = SCSI_ERR_ALL;
18269 				goto fail_command;
18270 			}
18271 			break;
18272 		}
18273 
18274 		/*
18275 		 * As part of our recovery attempt for the NOT READY
18276 		 * condition, we issue a START STOP UNIT command. However
18277 		 * we want to wait for a short delay before attempting this
18278 		 * as there may still be more commands coming back from the
18279 		 * target with the check condition. To do this we use
18280 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18281 		 * the delay interval expires. (sd_start_stop_unit_callback()
18282 		 * dispatches sd_start_stop_unit_task(), which will issue
18283 		 * the actual START STOP UNIT command. The delay interval
18284 		 * is one-half of the delay that we will use to retry the
18285 		 * command that generated the NOT READY condition.
18286 		 *
18287 		 * Note that we could just dispatch sd_start_stop_unit_task()
18288 		 * from here and allow it to sleep for the delay interval,
18289 		 * but then we would be tying up the taskq thread
18290 		 * uncesessarily for the duration of the delay.
18291 		 *
18292 		 * Do not issue the START STOP UNIT if the current command
18293 		 * is already a START STOP UNIT.
18294 		 */
18295 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18296 			break;
18297 		}
18298 
18299 		/*
18300 		 * Do not schedule the timeout if one is already pending.
18301 		 */
18302 		if (un->un_startstop_timeid != NULL) {
18303 			SD_INFO(SD_LOG_ERROR, un,
18304 			    "sd_sense_key_not_ready: restart already issued to"
18305 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18306 			    ddi_get_instance(SD_DEVINFO(un)));
18307 			break;
18308 		}
18309 
18310 		/*
18311 		 * Schedule the START STOP UNIT command, then queue the command
18312 		 * for a retry.
18313 		 *
18314 		 * Note: A timeout is not scheduled for this retry because we
18315 		 * want the retry to be serial with the START_STOP_UNIT. The
18316 		 * retry will be started when the START_STOP_UNIT is completed
18317 		 * in sd_start_stop_unit_task.
18318 		 */
18319 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18320 		    un, un->un_busy_timeout / 2);
18321 		xp->xb_nr_retry_count++;
18322 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18323 		return;
18324 
18325 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18326 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18327 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18328 			    "unit does not respond to selection\n");
18329 		}
18330 		break;
18331 
18332 	case 0x3A:	/* MEDIUM NOT PRESENT */
18333 		if (sd_error_level >= SCSI_ERR_FATAL) {
18334 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18335 			    "Caddy not inserted in drive\n");
18336 		}
18337 
18338 		sr_ejected(un);
18339 		un->un_mediastate = DKIO_EJECTED;
18340 		/* The state has changed, inform the media watch routines */
18341 		cv_broadcast(&un->un_state_cv);
18342 		/* Just fail if no media is present in the drive. */
18343 		goto fail_command;
18344 
18345 	default:
18346 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18347 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18348 			    "Unit not Ready. Additional sense code 0x%x\n",
18349 			    asc);
18350 		}
18351 		break;
18352 	}
18353 
18354 do_retry:
18355 
18356 	/*
18357 	 * Retry the command, as some targets may report NOT READY for
18358 	 * several seconds after being reset.
18359 	 */
18360 	xp->xb_nr_retry_count++;
18361 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18362 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18363 	    &si, EIO, un->un_busy_timeout, NULL);
18364 
18365 	return;
18366 
18367 fail_command:
18368 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18369 	sd_return_failed_command(un, bp, EIO);
18370 }
18371 
18372 
18373 
18374 /*
18375  *    Function: sd_sense_key_medium_or_hardware_error
18376  *
18377  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18378  *		sense key.
18379  *
18380  *     Context: May be called from interrupt context
18381  */
18382 
18383 static void
18384 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18385 	uint8_t *sense_datap,
18386 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18387 {
18388 	struct sd_sense_info	si;
18389 	uint8_t sense_key = scsi_sense_key(sense_datap);
18390 	uint8_t asc = scsi_sense_asc(sense_datap);
18391 
18392 	ASSERT(un != NULL);
18393 	ASSERT(mutex_owned(SD_MUTEX(un)));
18394 	ASSERT(bp != NULL);
18395 	ASSERT(xp != NULL);
18396 	ASSERT(pktp != NULL);
18397 
18398 	si.ssi_severity = SCSI_ERR_FATAL;
18399 	si.ssi_pfa_flag = FALSE;
18400 
18401 	if (sense_key == KEY_MEDIUM_ERROR) {
18402 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18403 	}
18404 
18405 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18406 
18407 	if ((un->un_reset_retry_count != 0) &&
18408 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18409 		mutex_exit(SD_MUTEX(un));
18410 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18411 		if (un->un_f_allow_bus_device_reset == TRUE) {
18412 
18413 			boolean_t try_resetting_target = B_TRUE;
18414 
18415 			/*
18416 			 * We need to be able to handle specific ASC when we are
18417 			 * handling a KEY_HARDWARE_ERROR. In particular
18418 			 * taking the default action of resetting the target may
18419 			 * not be the appropriate way to attempt recovery.
18420 			 * Resetting a target because of a single LUN failure
18421 			 * victimizes all LUNs on that target.
18422 			 *
18423 			 * This is true for the LSI arrays, if an LSI
18424 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18425 			 * should trust it.
18426 			 */
18427 
18428 			if (sense_key == KEY_HARDWARE_ERROR) {
18429 				switch (asc) {
18430 				case 0x84:
18431 					if (SD_IS_LSI(un)) {
18432 						try_resetting_target = B_FALSE;
18433 					}
18434 					break;
18435 				default:
18436 					break;
18437 				}
18438 			}
18439 
18440 			if (try_resetting_target == B_TRUE) {
18441 				int reset_retval = 0;
18442 				if (un->un_f_lun_reset_enabled == TRUE) {
18443 					SD_TRACE(SD_LOG_IO_CORE, un,
18444 					    "sd_sense_key_medium_or_hardware_"
18445 					    "error: issuing RESET_LUN\n");
18446 					reset_retval =
18447 					    scsi_reset(SD_ADDRESS(un),
18448 					    RESET_LUN);
18449 				}
18450 				if (reset_retval == 0) {
18451 					SD_TRACE(SD_LOG_IO_CORE, un,
18452 					    "sd_sense_key_medium_or_hardware_"
18453 					    "error: issuing RESET_TARGET\n");
18454 					(void) scsi_reset(SD_ADDRESS(un),
18455 					    RESET_TARGET);
18456 				}
18457 			}
18458 		}
18459 		mutex_enter(SD_MUTEX(un));
18460 	}
18461 
18462 	/*
18463 	 * This really ought to be a fatal error, but we will retry anyway
18464 	 * as some drives report this as a spurious error.
18465 	 */
18466 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18467 	    &si, EIO, (clock_t)0, NULL);
18468 }
18469 
18470 
18471 
18472 /*
18473  *    Function: sd_sense_key_illegal_request
18474  *
18475  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18476  *
18477  *     Context: May be called from interrupt context
18478  */
18479 
18480 static void
18481 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18482 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18483 {
18484 	struct sd_sense_info	si;
18485 
18486 	ASSERT(un != NULL);
18487 	ASSERT(mutex_owned(SD_MUTEX(un)));
18488 	ASSERT(bp != NULL);
18489 	ASSERT(xp != NULL);
18490 	ASSERT(pktp != NULL);
18491 
18492 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18493 
18494 	si.ssi_severity = SCSI_ERR_INFO;
18495 	si.ssi_pfa_flag = FALSE;
18496 
18497 	/* Pointless to retry if the target thinks it's an illegal request */
18498 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18499 	sd_return_failed_command(un, bp, EIO);
18500 }
18501 
18502 
18503 
18504 
18505 /*
18506  *    Function: sd_sense_key_unit_attention
18507  *
18508  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18509  *
18510  *     Context: May be called from interrupt context
18511  */
18512 
18513 static void
18514 sd_sense_key_unit_attention(struct sd_lun *un,
18515 	uint8_t *sense_datap,
18516 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18517 {
18518 	/*
18519 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18520 	 * like Sonoma can return UNIT ATTENTION close to a minute
18521 	 * under certain conditions.
18522 	 */
18523 	int	retry_check_flag = SD_RETRIES_UA;
18524 	boolean_t	kstat_updated = B_FALSE;
18525 	struct	sd_sense_info		si;
18526 	uint8_t asc = scsi_sense_asc(sense_datap);
18527 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
18528 
18529 	ASSERT(un != NULL);
18530 	ASSERT(mutex_owned(SD_MUTEX(un)));
18531 	ASSERT(bp != NULL);
18532 	ASSERT(xp != NULL);
18533 	ASSERT(pktp != NULL);
18534 
18535 	si.ssi_severity = SCSI_ERR_INFO;
18536 	si.ssi_pfa_flag = FALSE;
18537 
18538 
18539 	switch (asc) {
18540 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18541 		if (sd_report_pfa != 0) {
18542 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18543 			si.ssi_pfa_flag = TRUE;
18544 			retry_check_flag = SD_RETRIES_STANDARD;
18545 			goto do_retry;
18546 		}
18547 
18548 		break;
18549 
18550 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18551 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18552 			un->un_resvd_status |=
18553 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18554 		}
18555 #ifdef _LP64
18556 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18557 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18558 			    un, KM_NOSLEEP) == 0) {
18559 				/*
18560 				 * If we can't dispatch the task we'll just
18561 				 * live without descriptor sense.  We can
18562 				 * try again on the next "unit attention"
18563 				 */
18564 				SD_ERROR(SD_LOG_ERROR, un,
18565 				    "sd_sense_key_unit_attention: "
18566 				    "Could not dispatch "
18567 				    "sd_reenable_dsense_task\n");
18568 			}
18569 		}
18570 #endif /* _LP64 */
18571 		/* FALLTHRU */
18572 
18573 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18574 		if (!un->un_f_has_removable_media) {
18575 			break;
18576 		}
18577 
18578 		/*
18579 		 * When we get a unit attention from a removable-media device,
18580 		 * it may be in a state that will take a long time to recover
18581 		 * (e.g., from a reset).  Since we are executing in interrupt
18582 		 * context here, we cannot wait around for the device to come
18583 		 * back. So hand this command off to sd_media_change_task()
18584 		 * for deferred processing under taskq thread context. (Note
18585 		 * that the command still may be failed if a problem is
18586 		 * encountered at a later time.)
18587 		 */
18588 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18589 		    KM_NOSLEEP) == 0) {
18590 			/*
18591 			 * Cannot dispatch the request so fail the command.
18592 			 */
18593 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18594 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18595 			si.ssi_severity = SCSI_ERR_FATAL;
18596 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18597 			sd_return_failed_command(un, bp, EIO);
18598 		}
18599 
18600 		/*
18601 		 * If failed to dispatch sd_media_change_task(), we already
18602 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18603 		 * we should update kstat later if it encounters an error. So,
18604 		 * we update kstat_updated flag here.
18605 		 */
18606 		kstat_updated = B_TRUE;
18607 
18608 		/*
18609 		 * Either the command has been successfully dispatched to a
18610 		 * task Q for retrying, or the dispatch failed. In either case
18611 		 * do NOT retry again by calling sd_retry_command. This sets up
18612 		 * two retries of the same command and when one completes and
18613 		 * frees the resources the other will access freed memory,
18614 		 * a bad thing.
18615 		 */
18616 		return;
18617 
18618 	default:
18619 		break;
18620 	}
18621 
18622 	/*
18623 	 * ASC  ASCQ
18624 	 *  2A   09	Capacity data has changed
18625 	 *  2A   01	Mode parameters changed
18626 	 *  3F   0E	Reported luns data has changed
18627 	 * Arrays that support logical unit expansion should report
18628 	 * capacity changes(2Ah/09). Mode parameters changed and
18629 	 * reported luns data has changed are the approximation.
18630 	 */
18631 	if (((asc == 0x2a) && (ascq == 0x09)) ||
18632 	    ((asc == 0x2a) && (ascq == 0x01)) ||
18633 	    ((asc == 0x3f) && (ascq == 0x0e))) {
18634 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
18635 		    KM_NOSLEEP) == 0) {
18636 			SD_ERROR(SD_LOG_ERROR, un,
18637 			    "sd_sense_key_unit_attention: "
18638 			    "Could not dispatch sd_target_change_task\n");
18639 		}
18640 	}
18641 
18642 	/*
18643 	 * Update kstat if we haven't done that.
18644 	 */
18645 	if (!kstat_updated) {
18646 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18647 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18648 	}
18649 
18650 do_retry:
18651 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18652 	    EIO, SD_UA_RETRY_DELAY, NULL);
18653 }
18654 
18655 
18656 
18657 /*
18658  *    Function: sd_sense_key_fail_command
18659  *
18660  * Description: Use to fail a command when we don't like the sense key that
18661  *		was returned.
18662  *
18663  *     Context: May be called from interrupt context
18664  */
18665 
18666 static void
18667 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18668 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18669 {
18670 	struct sd_sense_info	si;
18671 
18672 	ASSERT(un != NULL);
18673 	ASSERT(mutex_owned(SD_MUTEX(un)));
18674 	ASSERT(bp != NULL);
18675 	ASSERT(xp != NULL);
18676 	ASSERT(pktp != NULL);
18677 
18678 	si.ssi_severity = SCSI_ERR_FATAL;
18679 	si.ssi_pfa_flag = FALSE;
18680 
18681 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18682 	sd_return_failed_command(un, bp, EIO);
18683 }
18684 
18685 
18686 
18687 /*
18688  *    Function: sd_sense_key_blank_check
18689  *
18690  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18691  *		Has no monetary connotation.
18692  *
18693  *     Context: May be called from interrupt context
18694  */
18695 
18696 static void
18697 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18698 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18699 {
18700 	struct sd_sense_info	si;
18701 
18702 	ASSERT(un != NULL);
18703 	ASSERT(mutex_owned(SD_MUTEX(un)));
18704 	ASSERT(bp != NULL);
18705 	ASSERT(xp != NULL);
18706 	ASSERT(pktp != NULL);
18707 
18708 	/*
18709 	 * Blank check is not fatal for removable devices, therefore
18710 	 * it does not require a console message.
18711 	 */
18712 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18713 	    SCSI_ERR_FATAL;
18714 	si.ssi_pfa_flag = FALSE;
18715 
18716 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18717 	sd_return_failed_command(un, bp, EIO);
18718 }
18719 
18720 
18721 
18722 
18723 /*
18724  *    Function: sd_sense_key_aborted_command
18725  *
18726  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18727  *
18728  *     Context: May be called from interrupt context
18729  */
18730 
18731 static void
18732 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18733 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18734 {
18735 	struct sd_sense_info	si;
18736 
18737 	ASSERT(un != NULL);
18738 	ASSERT(mutex_owned(SD_MUTEX(un)));
18739 	ASSERT(bp != NULL);
18740 	ASSERT(xp != NULL);
18741 	ASSERT(pktp != NULL);
18742 
18743 	si.ssi_severity = SCSI_ERR_FATAL;
18744 	si.ssi_pfa_flag = FALSE;
18745 
18746 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18747 
18748 	/*
18749 	 * This really ought to be a fatal error, but we will retry anyway
18750 	 * as some drives report this as a spurious error.
18751 	 */
18752 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18753 	    &si, EIO, drv_usectohz(100000), NULL);
18754 }
18755 
18756 
18757 
18758 /*
18759  *    Function: sd_sense_key_default
18760  *
18761  * Description: Default recovery action for several SCSI sense keys (basically
18762  *		attempts a retry).
18763  *
18764  *     Context: May be called from interrupt context
18765  */
18766 
18767 static void
18768 sd_sense_key_default(struct sd_lun *un,
18769 	uint8_t *sense_datap,
18770 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18771 {
18772 	struct sd_sense_info	si;
18773 	uint8_t sense_key = scsi_sense_key(sense_datap);
18774 
18775 	ASSERT(un != NULL);
18776 	ASSERT(mutex_owned(SD_MUTEX(un)));
18777 	ASSERT(bp != NULL);
18778 	ASSERT(xp != NULL);
18779 	ASSERT(pktp != NULL);
18780 
18781 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18782 
18783 	/*
18784 	 * Undecoded sense key.	Attempt retries and hope that will fix
18785 	 * the problem.  Otherwise, we're dead.
18786 	 */
18787 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18788 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18789 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18790 	}
18791 
18792 	si.ssi_severity = SCSI_ERR_FATAL;
18793 	si.ssi_pfa_flag = FALSE;
18794 
18795 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18796 	    &si, EIO, (clock_t)0, NULL);
18797 }
18798 
18799 
18800 
18801 /*
18802  *    Function: sd_print_retry_msg
18803  *
18804  * Description: Print a message indicating the retry action being taken.
18805  *
18806  *   Arguments: un - ptr to associated softstate
18807  *		bp - ptr to buf(9S) for the command
18808  *		arg - not used.
18809  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18810  *			or SD_NO_RETRY_ISSUED
18811  *
18812  *     Context: May be called from interrupt context
18813  */
18814 /* ARGSUSED */
18815 static void
18816 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18817 {
18818 	struct sd_xbuf	*xp;
18819 	struct scsi_pkt *pktp;
18820 	char *reasonp;
18821 	char *msgp;
18822 
18823 	ASSERT(un != NULL);
18824 	ASSERT(mutex_owned(SD_MUTEX(un)));
18825 	ASSERT(bp != NULL);
18826 	pktp = SD_GET_PKTP(bp);
18827 	ASSERT(pktp != NULL);
18828 	xp = SD_GET_XBUF(bp);
18829 	ASSERT(xp != NULL);
18830 
18831 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18832 	mutex_enter(&un->un_pm_mutex);
18833 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18834 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18835 	    (pktp->pkt_flags & FLAG_SILENT)) {
18836 		mutex_exit(&un->un_pm_mutex);
18837 		goto update_pkt_reason;
18838 	}
18839 	mutex_exit(&un->un_pm_mutex);
18840 
18841 	/*
18842 	 * Suppress messages if they are all the same pkt_reason; with
18843 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18844 	 * If we are in panic, then suppress the retry messages.
18845 	 */
18846 	switch (flag) {
18847 	case SD_NO_RETRY_ISSUED:
18848 		msgp = "giving up";
18849 		break;
18850 	case SD_IMMEDIATE_RETRY_ISSUED:
18851 	case SD_DELAYED_RETRY_ISSUED:
18852 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18853 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18854 		    (sd_error_level != SCSI_ERR_ALL))) {
18855 			return;
18856 		}
18857 		msgp = "retrying command";
18858 		break;
18859 	default:
18860 		goto update_pkt_reason;
18861 	}
18862 
18863 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18864 	    scsi_rname(pktp->pkt_reason));
18865 
18866 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18867 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18868 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18869 	}
18870 
18871 update_pkt_reason:
18872 	/*
18873 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18874 	 * This is to prevent multiple console messages for the same failure
18875 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18876 	 * when the command is retried successfully because there still may be
18877 	 * more commands coming back with the same value of pktp->pkt_reason.
18878 	 */
18879 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18880 		un->un_last_pkt_reason = pktp->pkt_reason;
18881 	}
18882 }
18883 
18884 
18885 /*
18886  *    Function: sd_print_cmd_incomplete_msg
18887  *
18888  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18889  *
18890  *   Arguments: un - ptr to associated softstate
18891  *		bp - ptr to buf(9S) for the command
18892  *		arg - passed to sd_print_retry_msg()
18893  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18894  *			or SD_NO_RETRY_ISSUED
18895  *
18896  *     Context: May be called from interrupt context
18897  */
18898 
18899 static void
18900 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18901 	int code)
18902 {
18903 	dev_info_t	*dip;
18904 
18905 	ASSERT(un != NULL);
18906 	ASSERT(mutex_owned(SD_MUTEX(un)));
18907 	ASSERT(bp != NULL);
18908 
18909 	switch (code) {
18910 	case SD_NO_RETRY_ISSUED:
18911 		/* Command was failed. Someone turned off this target? */
18912 		if (un->un_state != SD_STATE_OFFLINE) {
18913 			/*
18914 			 * Suppress message if we are detaching and
18915 			 * device has been disconnected
18916 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18917 			 * private interface and not part of the DDI
18918 			 */
18919 			dip = un->un_sd->sd_dev;
18920 			if (!(DEVI_IS_DETACHING(dip) &&
18921 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18922 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18923 				"disk not responding to selection\n");
18924 			}
18925 			New_state(un, SD_STATE_OFFLINE);
18926 		}
18927 		break;
18928 
18929 	case SD_DELAYED_RETRY_ISSUED:
18930 	case SD_IMMEDIATE_RETRY_ISSUED:
18931 	default:
18932 		/* Command was successfully queued for retry */
18933 		sd_print_retry_msg(un, bp, arg, code);
18934 		break;
18935 	}
18936 }
18937 
18938 
18939 /*
18940  *    Function: sd_pkt_reason_cmd_incomplete
18941  *
18942  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18943  *
18944  *     Context: May be called from interrupt context
18945  */
18946 
18947 static void
18948 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18949 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18950 {
18951 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18952 
18953 	ASSERT(un != NULL);
18954 	ASSERT(mutex_owned(SD_MUTEX(un)));
18955 	ASSERT(bp != NULL);
18956 	ASSERT(xp != NULL);
18957 	ASSERT(pktp != NULL);
18958 
18959 	/* Do not do a reset if selection did not complete */
18960 	/* Note: Should this not just check the bit? */
18961 	if (pktp->pkt_state != STATE_GOT_BUS) {
18962 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18963 		sd_reset_target(un, pktp);
18964 	}
18965 
18966 	/*
18967 	 * If the target was not successfully selected, then set
18968 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18969 	 * with the target, and further retries and/or commands are
18970 	 * likely to take a long time.
18971 	 */
18972 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18973 		flag |= SD_RETRIES_FAILFAST;
18974 	}
18975 
18976 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18977 
18978 	sd_retry_command(un, bp, flag,
18979 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18980 }
18981 
18982 
18983 
18984 /*
18985  *    Function: sd_pkt_reason_cmd_tran_err
18986  *
18987  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18988  *
18989  *     Context: May be called from interrupt context
18990  */
18991 
18992 static void
18993 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18994 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18995 {
18996 	ASSERT(un != NULL);
18997 	ASSERT(mutex_owned(SD_MUTEX(un)));
18998 	ASSERT(bp != NULL);
18999 	ASSERT(xp != NULL);
19000 	ASSERT(pktp != NULL);
19001 
19002 	/*
19003 	 * Do not reset if we got a parity error, or if
19004 	 * selection did not complete.
19005 	 */
19006 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19007 	/* Note: Should this not just check the bit for pkt_state? */
19008 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
19009 	    (pktp->pkt_state != STATE_GOT_BUS)) {
19010 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19011 		sd_reset_target(un, pktp);
19012 	}
19013 
19014 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19015 
19016 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19017 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19018 }
19019 
19020 
19021 
19022 /*
19023  *    Function: sd_pkt_reason_cmd_reset
19024  *
19025  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
19026  *
19027  *     Context: May be called from interrupt context
19028  */
19029 
19030 static void
19031 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
19032 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19033 {
19034 	ASSERT(un != NULL);
19035 	ASSERT(mutex_owned(SD_MUTEX(un)));
19036 	ASSERT(bp != NULL);
19037 	ASSERT(xp != NULL);
19038 	ASSERT(pktp != NULL);
19039 
19040 	/* The target may still be running the command, so try to reset. */
19041 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19042 	sd_reset_target(un, pktp);
19043 
19044 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19045 
19046 	/*
19047 	 * If pkt_reason is CMD_RESET chances are that this pkt got
19048 	 * reset because another target on this bus caused it. The target
19049 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19050 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19051 	 */
19052 
19053 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19054 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19055 }
19056 
19057 
19058 
19059 
19060 /*
19061  *    Function: sd_pkt_reason_cmd_aborted
19062  *
19063  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
19064  *
19065  *     Context: May be called from interrupt context
19066  */
19067 
19068 static void
19069 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
19070 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19071 {
19072 	ASSERT(un != NULL);
19073 	ASSERT(mutex_owned(SD_MUTEX(un)));
19074 	ASSERT(bp != NULL);
19075 	ASSERT(xp != NULL);
19076 	ASSERT(pktp != NULL);
19077 
19078 	/* The target may still be running the command, so try to reset. */
19079 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19080 	sd_reset_target(un, pktp);
19081 
19082 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19083 
19084 	/*
19085 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
19086 	 * aborted because another target on this bus caused it. The target
19087 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19088 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19089 	 */
19090 
19091 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19092 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19093 }
19094 
19095 
19096 
19097 /*
19098  *    Function: sd_pkt_reason_cmd_timeout
19099  *
19100  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
19101  *
19102  *     Context: May be called from interrupt context
19103  */
19104 
19105 static void
19106 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
19107 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19108 {
19109 	ASSERT(un != NULL);
19110 	ASSERT(mutex_owned(SD_MUTEX(un)));
19111 	ASSERT(bp != NULL);
19112 	ASSERT(xp != NULL);
19113 	ASSERT(pktp != NULL);
19114 
19115 
19116 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19117 	sd_reset_target(un, pktp);
19118 
19119 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19120 
19121 	/*
19122 	 * A command timeout indicates that we could not establish
19123 	 * communication with the target, so set SD_RETRIES_FAILFAST
19124 	 * as further retries/commands are likely to take a long time.
19125 	 */
19126 	sd_retry_command(un, bp,
19127 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
19128 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19129 }
19130 
19131 
19132 
19133 /*
19134  *    Function: sd_pkt_reason_cmd_unx_bus_free
19135  *
19136  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
19137  *
19138  *     Context: May be called from interrupt context
19139  */
19140 
19141 static void
19142 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
19143 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19144 {
19145 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
19146 
19147 	ASSERT(un != NULL);
19148 	ASSERT(mutex_owned(SD_MUTEX(un)));
19149 	ASSERT(bp != NULL);
19150 	ASSERT(xp != NULL);
19151 	ASSERT(pktp != NULL);
19152 
19153 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19154 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19155 
19156 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
19157 	    sd_print_retry_msg : NULL;
19158 
19159 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19160 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19161 }
19162 
19163 
19164 /*
19165  *    Function: sd_pkt_reason_cmd_tag_reject
19166  *
19167  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
19168  *
19169  *     Context: May be called from interrupt context
19170  */
19171 
19172 static void
19173 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
19174 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19175 {
19176 	ASSERT(un != NULL);
19177 	ASSERT(mutex_owned(SD_MUTEX(un)));
19178 	ASSERT(bp != NULL);
19179 	ASSERT(xp != NULL);
19180 	ASSERT(pktp != NULL);
19181 
19182 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19183 	pktp->pkt_flags = 0;
19184 	un->un_tagflags = 0;
19185 	if (un->un_f_opt_queueing == TRUE) {
19186 		un->un_throttle = min(un->un_throttle, 3);
19187 	} else {
19188 		un->un_throttle = 1;
19189 	}
19190 	mutex_exit(SD_MUTEX(un));
19191 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
19192 	mutex_enter(SD_MUTEX(un));
19193 
19194 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19195 
19196 	/* Legacy behavior not to check retry counts here. */
19197 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
19198 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19199 }
19200 
19201 
19202 /*
19203  *    Function: sd_pkt_reason_default
19204  *
19205  * Description: Default recovery actions for SCSA pkt_reason values that
19206  *		do not have more explicit recovery actions.
19207  *
19208  *     Context: May be called from interrupt context
19209  */
19210 
19211 static void
19212 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
19213 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19214 {
19215 	ASSERT(un != NULL);
19216 	ASSERT(mutex_owned(SD_MUTEX(un)));
19217 	ASSERT(bp != NULL);
19218 	ASSERT(xp != NULL);
19219 	ASSERT(pktp != NULL);
19220 
19221 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19222 	sd_reset_target(un, pktp);
19223 
19224 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19225 
19226 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19227 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19228 }
19229 
19230 
19231 
19232 /*
19233  *    Function: sd_pkt_status_check_condition
19234  *
19235  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
19236  *
19237  *     Context: May be called from interrupt context
19238  */
19239 
19240 static void
19241 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
19242 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19243 {
19244 	ASSERT(un != NULL);
19245 	ASSERT(mutex_owned(SD_MUTEX(un)));
19246 	ASSERT(bp != NULL);
19247 	ASSERT(xp != NULL);
19248 	ASSERT(pktp != NULL);
19249 
19250 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
19251 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
19252 
19253 	/*
19254 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
19255 	 * command will be retried after the request sense). Otherwise, retry
19256 	 * the command. Note: we are issuing the request sense even though the
19257 	 * retry limit may have been reached for the failed command.
19258 	 */
19259 	if (un->un_f_arq_enabled == FALSE) {
19260 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19261 		    "no ARQ, sending request sense command\n");
19262 		sd_send_request_sense_command(un, bp, pktp);
19263 	} else {
19264 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19265 		    "ARQ,retrying request sense command\n");
19266 #if defined(__i386) || defined(__amd64)
19267 		/*
19268 		 * The SD_RETRY_DELAY value need to be adjusted here
19269 		 * when SD_RETRY_DELAY change in sddef.h
19270 		 */
19271 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19272 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
19273 		    NULL);
19274 #else
19275 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
19276 		    EIO, SD_RETRY_DELAY, NULL);
19277 #endif
19278 	}
19279 
19280 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
19281 }
19282 
19283 
19284 /*
19285  *    Function: sd_pkt_status_busy
19286  *
19287  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
19288  *
19289  *     Context: May be called from interrupt context
19290  */
19291 
19292 static void
19293 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19294 	struct scsi_pkt *pktp)
19295 {
19296 	ASSERT(un != NULL);
19297 	ASSERT(mutex_owned(SD_MUTEX(un)));
19298 	ASSERT(bp != NULL);
19299 	ASSERT(xp != NULL);
19300 	ASSERT(pktp != NULL);
19301 
19302 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19303 	    "sd_pkt_status_busy: entry\n");
19304 
19305 	/* If retries are exhausted, just fail the command. */
19306 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19307 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19308 		    "device busy too long\n");
19309 		sd_return_failed_command(un, bp, EIO);
19310 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19311 		    "sd_pkt_status_busy: exit\n");
19312 		return;
19313 	}
19314 	xp->xb_retry_count++;
19315 
19316 	/*
19317 	 * Try to reset the target. However, we do not want to perform
19318 	 * more than one reset if the device continues to fail. The reset
19319 	 * will be performed when the retry count reaches the reset
19320 	 * threshold.  This threshold should be set such that at least
19321 	 * one retry is issued before the reset is performed.
19322 	 */
19323 	if (xp->xb_retry_count ==
19324 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19325 		int rval = 0;
19326 		mutex_exit(SD_MUTEX(un));
19327 		if (un->un_f_allow_bus_device_reset == TRUE) {
19328 			/*
19329 			 * First try to reset the LUN; if we cannot then
19330 			 * try to reset the target.
19331 			 */
19332 			if (un->un_f_lun_reset_enabled == TRUE) {
19333 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19334 				    "sd_pkt_status_busy: RESET_LUN\n");
19335 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19336 			}
19337 			if (rval == 0) {
19338 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19339 				    "sd_pkt_status_busy: RESET_TARGET\n");
19340 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19341 			}
19342 		}
19343 		if (rval == 0) {
19344 			/*
19345 			 * If the RESET_LUN and/or RESET_TARGET failed,
19346 			 * try RESET_ALL
19347 			 */
19348 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19349 			    "sd_pkt_status_busy: RESET_ALL\n");
19350 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19351 		}
19352 		mutex_enter(SD_MUTEX(un));
19353 		if (rval == 0) {
19354 			/*
19355 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19356 			 * At this point we give up & fail the command.
19357 			 */
19358 			sd_return_failed_command(un, bp, EIO);
19359 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19360 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19361 			return;
19362 		}
19363 	}
19364 
19365 	/*
19366 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19367 	 * we have already checked the retry counts above.
19368 	 */
19369 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19370 	    EIO, un->un_busy_timeout, NULL);
19371 
19372 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19373 	    "sd_pkt_status_busy: exit\n");
19374 }
19375 
19376 
19377 /*
19378  *    Function: sd_pkt_status_reservation_conflict
19379  *
19380  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19381  *		command status.
19382  *
19383  *     Context: May be called from interrupt context
19384  */
19385 
19386 static void
19387 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19388 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19389 {
19390 	ASSERT(un != NULL);
19391 	ASSERT(mutex_owned(SD_MUTEX(un)));
19392 	ASSERT(bp != NULL);
19393 	ASSERT(xp != NULL);
19394 	ASSERT(pktp != NULL);
19395 
19396 	/*
19397 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19398 	 * conflict could be due to various reasons like incorrect keys, not
19399 	 * registered or not reserved etc. So, we return EACCES to the caller.
19400 	 */
19401 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19402 		int cmd = SD_GET_PKT_OPCODE(pktp);
19403 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19404 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19405 			sd_return_failed_command(un, bp, EACCES);
19406 			return;
19407 		}
19408 	}
19409 
19410 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19411 
19412 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19413 		if (sd_failfast_enable != 0) {
19414 			/* By definition, we must panic here.... */
19415 			sd_panic_for_res_conflict(un);
19416 			/*NOTREACHED*/
19417 		}
19418 		SD_ERROR(SD_LOG_IO, un,
19419 		    "sd_handle_resv_conflict: Disk Reserved\n");
19420 		sd_return_failed_command(un, bp, EACCES);
19421 		return;
19422 	}
19423 
19424 	/*
19425 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19426 	 * property is set (default is 1). Retries will not succeed
19427 	 * on a disk reserved by another initiator. HA systems
19428 	 * may reset this via sd.conf to avoid these retries.
19429 	 *
19430 	 * Note: The legacy return code for this failure is EIO, however EACCES
19431 	 * seems more appropriate for a reservation conflict.
19432 	 */
19433 	if (sd_retry_on_reservation_conflict == 0) {
19434 		SD_ERROR(SD_LOG_IO, un,
19435 		    "sd_handle_resv_conflict: Device Reserved\n");
19436 		sd_return_failed_command(un, bp, EIO);
19437 		return;
19438 	}
19439 
19440 	/*
19441 	 * Retry the command if we can.
19442 	 *
19443 	 * Note: The legacy return code for this failure is EIO, however EACCES
19444 	 * seems more appropriate for a reservation conflict.
19445 	 */
19446 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19447 	    (clock_t)2, NULL);
19448 }
19449 
19450 
19451 
19452 /*
19453  *    Function: sd_pkt_status_qfull
19454  *
19455  * Description: Handle a QUEUE FULL condition from the target.  This can
19456  *		occur if the HBA does not handle the queue full condition.
19457  *		(Basically this means third-party HBAs as Sun HBAs will
19458  *		handle the queue full condition.)  Note that if there are
19459  *		some commands already in the transport, then the queue full
19460  *		has occurred because the queue for this nexus is actually
19461  *		full. If there are no commands in the transport, then the
19462  *		queue full is resulting from some other initiator or lun
19463  *		consuming all the resources at the target.
19464  *
19465  *     Context: May be called from interrupt context
19466  */
19467 
19468 static void
19469 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19470 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19471 {
19472 	ASSERT(un != NULL);
19473 	ASSERT(mutex_owned(SD_MUTEX(un)));
19474 	ASSERT(bp != NULL);
19475 	ASSERT(xp != NULL);
19476 	ASSERT(pktp != NULL);
19477 
19478 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19479 	    "sd_pkt_status_qfull: entry\n");
19480 
19481 	/*
19482 	 * Just lower the QFULL throttle and retry the command.  Note that
19483 	 * we do not limit the number of retries here.
19484 	 */
19485 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19486 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19487 	    SD_RESTART_TIMEOUT, NULL);
19488 
19489 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19490 	    "sd_pkt_status_qfull: exit\n");
19491 }
19492 
19493 
19494 /*
19495  *    Function: sd_reset_target
19496  *
19497  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19498  *		RESET_TARGET, or RESET_ALL.
19499  *
19500  *     Context: May be called under interrupt context.
19501  */
19502 
19503 static void
19504 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19505 {
19506 	int rval = 0;
19507 
19508 	ASSERT(un != NULL);
19509 	ASSERT(mutex_owned(SD_MUTEX(un)));
19510 	ASSERT(pktp != NULL);
19511 
19512 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19513 
19514 	/*
19515 	 * No need to reset if the transport layer has already done so.
19516 	 */
19517 	if ((pktp->pkt_statistics &
19518 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19519 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19520 		    "sd_reset_target: no reset\n");
19521 		return;
19522 	}
19523 
19524 	mutex_exit(SD_MUTEX(un));
19525 
19526 	if (un->un_f_allow_bus_device_reset == TRUE) {
19527 		if (un->un_f_lun_reset_enabled == TRUE) {
19528 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19529 			    "sd_reset_target: RESET_LUN\n");
19530 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19531 		}
19532 		if (rval == 0) {
19533 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19534 			    "sd_reset_target: RESET_TARGET\n");
19535 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19536 		}
19537 	}
19538 
19539 	if (rval == 0) {
19540 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19541 		    "sd_reset_target: RESET_ALL\n");
19542 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19543 	}
19544 
19545 	mutex_enter(SD_MUTEX(un));
19546 
19547 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19548 }
19549 
19550 /*
19551  *    Function: sd_target_change_task
19552  *
19553  * Description: Handle dynamic target change
19554  *
19555  *     Context: Executes in a taskq() thread context
19556  */
19557 static void
19558 sd_target_change_task(void *arg)
19559 {
19560 	struct sd_lun		*un = arg;
19561 	uint64_t		capacity;
19562 	diskaddr_t		label_cap;
19563 	uint_t			lbasize;
19564 	sd_ssc_t		*ssc;
19565 
19566 	ASSERT(un != NULL);
19567 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19568 
19569 	if ((un->un_f_blockcount_is_valid == FALSE) ||
19570 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
19571 		return;
19572 	}
19573 
19574 	ssc = sd_ssc_init(un);
19575 
19576 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
19577 	    &lbasize, SD_PATH_DIRECT) != 0) {
19578 		SD_ERROR(SD_LOG_ERROR, un,
19579 		    "sd_target_change_task: fail to read capacity\n");
19580 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19581 		goto task_exit;
19582 	}
19583 
19584 	mutex_enter(SD_MUTEX(un));
19585 	if (capacity <= un->un_blockcount) {
19586 		mutex_exit(SD_MUTEX(un));
19587 		goto task_exit;
19588 	}
19589 
19590 	sd_update_block_info(un, lbasize, capacity);
19591 	mutex_exit(SD_MUTEX(un));
19592 
19593 	/*
19594 	 * If lun is EFI labeled and lun capacity is greater than the
19595 	 * capacity contained in the label, log a sys event.
19596 	 */
19597 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
19598 	    (void*)SD_PATH_DIRECT) == 0) {
19599 		mutex_enter(SD_MUTEX(un));
19600 		if (un->un_f_blockcount_is_valid &&
19601 		    un->un_blockcount > label_cap) {
19602 			mutex_exit(SD_MUTEX(un));
19603 			sd_log_lun_expansion_event(un, KM_SLEEP);
19604 		} else {
19605 			mutex_exit(SD_MUTEX(un));
19606 		}
19607 	}
19608 
19609 task_exit:
19610 	sd_ssc_fini(ssc);
19611 }
19612 
19613 
19614 /*
19615  *    Function: sd_log_dev_status_event
19616  *
19617  * Description: Log EC_dev_status sysevent
19618  *
19619  *     Context: Never called from interrupt context
19620  */
19621 static void
19622 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag)
19623 {
19624 	int err;
19625 	char			*path;
19626 	nvlist_t		*attr_list;
19627 
19628 	/* Allocate and build sysevent attribute list */
19629 	err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
19630 	if (err != 0) {
19631 		SD_ERROR(SD_LOG_ERROR, un,
19632 		    "sd_log_dev_status_event: fail to allocate space\n");
19633 		return;
19634 	}
19635 
19636 	path = kmem_alloc(MAXPATHLEN, km_flag);
19637 	if (path == NULL) {
19638 		nvlist_free(attr_list);
19639 		SD_ERROR(SD_LOG_ERROR, un,
19640 		    "sd_log_dev_status_event: fail to allocate space\n");
19641 		return;
19642 	}
19643 	/*
19644 	 * Add path attribute to identify the lun.
19645 	 * We are using minor node 'a' as the sysevent attribute.
19646 	 */
19647 	(void) snprintf(path, MAXPATHLEN, "/devices");
19648 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
19649 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
19650 	    ":a");
19651 
19652 	err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path);
19653 	if (err != 0) {
19654 		nvlist_free(attr_list);
19655 		kmem_free(path, MAXPATHLEN);
19656 		SD_ERROR(SD_LOG_ERROR, un,
19657 		    "sd_log_dev_status_event: fail to add attribute\n");
19658 		return;
19659 	}
19660 
19661 	/* Log dynamic lun expansion sysevent */
19662 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
19663 	    esc, attr_list, NULL, km_flag);
19664 	if (err != DDI_SUCCESS) {
19665 		SD_ERROR(SD_LOG_ERROR, un,
19666 		    "sd_log_dev_status_event: fail to log sysevent\n");
19667 	}
19668 
19669 	nvlist_free(attr_list);
19670 	kmem_free(path, MAXPATHLEN);
19671 }
19672 
19673 
19674 /*
19675  *    Function: sd_log_lun_expansion_event
19676  *
19677  * Description: Log lun expansion sys event
19678  *
19679  *     Context: Never called from interrupt context
19680  */
19681 static void
19682 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
19683 {
19684 	sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag);
19685 }
19686 
19687 
19688 /*
19689  *    Function: sd_log_eject_request_event
19690  *
19691  * Description: Log eject request sysevent
19692  *
19693  *     Context: Never called from interrupt context
19694  */
19695 static void
19696 sd_log_eject_request_event(struct sd_lun *un, int km_flag)
19697 {
19698 	sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag);
19699 }
19700 
19701 
19702 /*
19703  *    Function: sd_media_change_task
19704  *
19705  * Description: Recovery action for CDROM to become available.
19706  *
19707  *     Context: Executes in a taskq() thread context
19708  */
19709 
19710 static void
19711 sd_media_change_task(void *arg)
19712 {
19713 	struct	scsi_pkt	*pktp = arg;
19714 	struct	sd_lun		*un;
19715 	struct	buf		*bp;
19716 	struct	sd_xbuf		*xp;
19717 	int	err		= 0;
19718 	int	retry_count	= 0;
19719 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19720 	struct	sd_sense_info	si;
19721 
19722 	ASSERT(pktp != NULL);
19723 	bp = (struct buf *)pktp->pkt_private;
19724 	ASSERT(bp != NULL);
19725 	xp = SD_GET_XBUF(bp);
19726 	ASSERT(xp != NULL);
19727 	un = SD_GET_UN(bp);
19728 	ASSERT(un != NULL);
19729 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19730 	ASSERT(un->un_f_monitor_media_state);
19731 
19732 	si.ssi_severity = SCSI_ERR_INFO;
19733 	si.ssi_pfa_flag = FALSE;
19734 
19735 	/*
19736 	 * When a reset is issued on a CDROM, it takes a long time to
19737 	 * recover. First few attempts to read capacity and other things
19738 	 * related to handling unit attention fail (with a ASC 0x4 and
19739 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19740 	 * to limit the retries in other cases of genuine failures like
19741 	 * no media in drive.
19742 	 */
19743 	while (retry_count++ < retry_limit) {
19744 		if ((err = sd_handle_mchange(un)) == 0) {
19745 			break;
19746 		}
19747 		if (err == EAGAIN) {
19748 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19749 		}
19750 		/* Sleep for 0.5 sec. & try again */
19751 		delay(drv_usectohz(500000));
19752 	}
19753 
19754 	/*
19755 	 * Dispatch (retry or fail) the original command here,
19756 	 * along with appropriate console messages....
19757 	 *
19758 	 * Must grab the mutex before calling sd_retry_command,
19759 	 * sd_print_sense_msg and sd_return_failed_command.
19760 	 */
19761 	mutex_enter(SD_MUTEX(un));
19762 	if (err != SD_CMD_SUCCESS) {
19763 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19764 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19765 		si.ssi_severity = SCSI_ERR_FATAL;
19766 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19767 		sd_return_failed_command(un, bp, EIO);
19768 	} else {
19769 		sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg,
19770 		    &si, EIO, (clock_t)0, NULL);
19771 	}
19772 	mutex_exit(SD_MUTEX(un));
19773 }
19774 
19775 
19776 
19777 /*
19778  *    Function: sd_handle_mchange
19779  *
19780  * Description: Perform geometry validation & other recovery when CDROM
19781  *		has been removed from drive.
19782  *
19783  * Return Code: 0 for success
19784  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19785  *		sd_send_scsi_READ_CAPACITY()
19786  *
19787  *     Context: Executes in a taskq() thread context
19788  */
19789 
19790 static int
19791 sd_handle_mchange(struct sd_lun *un)
19792 {
19793 	uint64_t	capacity;
19794 	uint32_t	lbasize;
19795 	int		rval;
19796 	sd_ssc_t	*ssc;
19797 
19798 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19799 	ASSERT(un->un_f_monitor_media_state);
19800 
19801 	ssc = sd_ssc_init(un);
19802 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19803 	    SD_PATH_DIRECT_PRIORITY);
19804 
19805 	if (rval != 0)
19806 		goto failed;
19807 
19808 	mutex_enter(SD_MUTEX(un));
19809 	sd_update_block_info(un, lbasize, capacity);
19810 
19811 	if (un->un_errstats != NULL) {
19812 		struct	sd_errstats *stp =
19813 		    (struct sd_errstats *)un->un_errstats->ks_data;
19814 		stp->sd_capacity.value.ui64 = (uint64_t)
19815 		    ((uint64_t)un->un_blockcount *
19816 		    (uint64_t)un->un_tgt_blocksize);
19817 	}
19818 
19819 	/*
19820 	 * Check if the media in the device is writable or not
19821 	 */
19822 	if (ISCD(un)) {
19823 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19824 	}
19825 
19826 	/*
19827 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19828 	 * valid geometry.
19829 	 */
19830 	mutex_exit(SD_MUTEX(un));
19831 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19832 
19833 
19834 	if (cmlb_validate(un->un_cmlbhandle, 0,
19835 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19836 		sd_ssc_fini(ssc);
19837 		return (EIO);
19838 	} else {
19839 		if (un->un_f_pkstats_enabled) {
19840 			sd_set_pstats(un);
19841 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19842 			    "sd_handle_mchange: un:0x%p pstats created and "
19843 			    "set\n", un);
19844 		}
19845 	}
19846 
19847 	/*
19848 	 * Try to lock the door
19849 	 */
19850 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19851 	    SD_PATH_DIRECT_PRIORITY);
19852 failed:
19853 	if (rval != 0)
19854 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19855 	sd_ssc_fini(ssc);
19856 	return (rval);
19857 }
19858 
19859 
19860 /*
19861  *    Function: sd_send_scsi_DOORLOCK
19862  *
19863  * Description: Issue the scsi DOOR LOCK command
19864  *
19865  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19866  *                      structure for this target.
19867  *		flag  - SD_REMOVAL_ALLOW
19868  *			SD_REMOVAL_PREVENT
19869  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19870  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19871  *			to use the USCSI "direct" chain and bypass the normal
19872  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19873  *			command is issued as part of an error recovery action.
19874  *
19875  * Return Code: 0   - Success
19876  *		errno return code from sd_ssc_send()
19877  *
19878  *     Context: Can sleep.
19879  */
19880 
19881 static int
19882 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19883 {
19884 	struct scsi_extended_sense	sense_buf;
19885 	union scsi_cdb		cdb;
19886 	struct uscsi_cmd	ucmd_buf;
19887 	int			status;
19888 	struct sd_lun		*un;
19889 
19890 	ASSERT(ssc != NULL);
19891 	un = ssc->ssc_un;
19892 	ASSERT(un != NULL);
19893 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19894 
19895 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19896 
19897 	/* already determined doorlock is not supported, fake success */
19898 	if (un->un_f_doorlock_supported == FALSE) {
19899 		return (0);
19900 	}
19901 
19902 	/*
19903 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19904 	 * ignore the command so we can complete the eject
19905 	 * operation.
19906 	 */
19907 	if (flag == SD_REMOVAL_PREVENT) {
19908 		mutex_enter(SD_MUTEX(un));
19909 		if (un->un_f_ejecting == TRUE) {
19910 			mutex_exit(SD_MUTEX(un));
19911 			return (EAGAIN);
19912 		}
19913 		mutex_exit(SD_MUTEX(un));
19914 	}
19915 
19916 	bzero(&cdb, sizeof (cdb));
19917 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19918 
19919 	cdb.scc_cmd = SCMD_DOORLOCK;
19920 	cdb.cdb_opaque[4] = (uchar_t)flag;
19921 
19922 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19923 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19924 	ucmd_buf.uscsi_bufaddr	= NULL;
19925 	ucmd_buf.uscsi_buflen	= 0;
19926 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19927 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19928 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19929 	ucmd_buf.uscsi_timeout	= 15;
19930 
19931 	SD_TRACE(SD_LOG_IO, un,
19932 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19933 
19934 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19935 	    UIO_SYSSPACE, path_flag);
19936 
19937 	if (status == 0)
19938 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19939 
19940 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19941 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19942 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19943 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19944 
19945 		/* fake success and skip subsequent doorlock commands */
19946 		un->un_f_doorlock_supported = FALSE;
19947 		return (0);
19948 	}
19949 
19950 	return (status);
19951 }
19952 
19953 /*
19954  *    Function: sd_send_scsi_READ_CAPACITY
19955  *
19956  * Description: This routine uses the scsi READ CAPACITY command to determine
19957  *		the device capacity in number of blocks and the device native
19958  *		block size. If this function returns a failure, then the
19959  *		values in *capp and *lbap are undefined.  If the capacity
19960  *		returned is 0xffffffff then the lun is too large for a
19961  *		normal READ CAPACITY command and the results of a
19962  *		READ CAPACITY 16 will be used instead.
19963  *
19964  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19965  *		capp - ptr to unsigned 64-bit variable to receive the
19966  *			capacity value from the command.
19967  *		lbap - ptr to unsigned 32-bit varaible to receive the
19968  *			block size value from the command
19969  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19970  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19971  *			to use the USCSI "direct" chain and bypass the normal
19972  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19973  *			command is issued as part of an error recovery action.
19974  *
19975  * Return Code: 0   - Success
19976  *		EIO - IO error
19977  *		EACCES - Reservation conflict detected
19978  *		EAGAIN - Device is becoming ready
19979  *		errno return code from sd_ssc_send()
19980  *
19981  *     Context: Can sleep.  Blocks until command completes.
19982  */
19983 
19984 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19985 
19986 static int
19987 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
19988 	int path_flag)
19989 {
19990 	struct	scsi_extended_sense	sense_buf;
19991 	struct	uscsi_cmd	ucmd_buf;
19992 	union	scsi_cdb	cdb;
19993 	uint32_t		*capacity_buf;
19994 	uint64_t		capacity;
19995 	uint32_t		lbasize;
19996 	uint32_t		pbsize;
19997 	int			status;
19998 	struct sd_lun		*un;
19999 
20000 	ASSERT(ssc != NULL);
20001 
20002 	un = ssc->ssc_un;
20003 	ASSERT(un != NULL);
20004 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20005 	ASSERT(capp != NULL);
20006 	ASSERT(lbap != NULL);
20007 
20008 	SD_TRACE(SD_LOG_IO, un,
20009 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20010 
20011 	/*
20012 	 * First send a READ_CAPACITY command to the target.
20013 	 * (This command is mandatory under SCSI-2.)
20014 	 *
20015 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
20016 	 * Medium Indicator bit is cleared.  The address field must be
20017 	 * zero if the PMI bit is zero.
20018 	 */
20019 	bzero(&cdb, sizeof (cdb));
20020 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20021 
20022 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
20023 
20024 	cdb.scc_cmd = SCMD_READ_CAPACITY;
20025 
20026 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20027 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20028 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
20029 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
20030 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20031 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20032 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20033 	ucmd_buf.uscsi_timeout	= 60;
20034 
20035 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20036 	    UIO_SYSSPACE, path_flag);
20037 
20038 	switch (status) {
20039 	case 0:
20040 		/* Return failure if we did not get valid capacity data. */
20041 		if (ucmd_buf.uscsi_resid != 0) {
20042 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20043 			    "sd_send_scsi_READ_CAPACITY received invalid "
20044 			    "capacity data");
20045 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20046 			return (EIO);
20047 		}
20048 		/*
20049 		 * Read capacity and block size from the READ CAPACITY 10 data.
20050 		 * This data may be adjusted later due to device specific
20051 		 * issues.
20052 		 *
20053 		 * According to the SCSI spec, the READ CAPACITY 10
20054 		 * command returns the following:
20055 		 *
20056 		 *  bytes 0-3: Maximum logical block address available.
20057 		 *		(MSB in byte:0 & LSB in byte:3)
20058 		 *
20059 		 *  bytes 4-7: Block length in bytes
20060 		 *		(MSB in byte:4 & LSB in byte:7)
20061 		 *
20062 		 */
20063 		capacity = BE_32(capacity_buf[0]);
20064 		lbasize = BE_32(capacity_buf[1]);
20065 
20066 		/*
20067 		 * Done with capacity_buf
20068 		 */
20069 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20070 
20071 		/*
20072 		 * if the reported capacity is set to all 0xf's, then
20073 		 * this disk is too large and requires SBC-2 commands.
20074 		 * Reissue the request using READ CAPACITY 16.
20075 		 */
20076 		if (capacity == 0xffffffff) {
20077 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20078 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
20079 			    &lbasize, &pbsize, path_flag);
20080 			if (status != 0) {
20081 				return (status);
20082 			} else {
20083 				goto rc16_done;
20084 			}
20085 		}
20086 		break;	/* Success! */
20087 	case EIO:
20088 		switch (ucmd_buf.uscsi_status) {
20089 		case STATUS_RESERVATION_CONFLICT:
20090 			status = EACCES;
20091 			break;
20092 		case STATUS_CHECK:
20093 			/*
20094 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20095 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20096 			 */
20097 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20098 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20099 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20100 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20101 				return (EAGAIN);
20102 			}
20103 			break;
20104 		default:
20105 			break;
20106 		}
20107 		/* FALLTHRU */
20108 	default:
20109 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20110 		return (status);
20111 	}
20112 
20113 	/*
20114 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20115 	 * (2352 and 0 are common) so for these devices always force the value
20116 	 * to 2048 as required by the ATAPI specs.
20117 	 */
20118 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20119 		lbasize = 2048;
20120 	}
20121 
20122 	/*
20123 	 * Get the maximum LBA value from the READ CAPACITY data.
20124 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20125 	 * was cleared when issuing the command. This means that the LBA
20126 	 * returned from the device is the LBA of the last logical block
20127 	 * on the logical unit.  The actual logical block count will be
20128 	 * this value plus one.
20129 	 */
20130 	capacity += 1;
20131 
20132 	/*
20133 	 * Currently, for removable media, the capacity is saved in terms
20134 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20135 	 */
20136 	if (un->un_f_has_removable_media)
20137 		capacity *= (lbasize / un->un_sys_blocksize);
20138 
20139 rc16_done:
20140 
20141 	/*
20142 	 * Copy the values from the READ CAPACITY command into the space
20143 	 * provided by the caller.
20144 	 */
20145 	*capp = capacity;
20146 	*lbap = lbasize;
20147 
20148 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
20149 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
20150 
20151 	/*
20152 	 * Both the lbasize and capacity from the device must be nonzero,
20153 	 * otherwise we assume that the values are not valid and return
20154 	 * failure to the caller. (4203735)
20155 	 */
20156 	if ((capacity == 0) || (lbasize == 0)) {
20157 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20158 		    "sd_send_scsi_READ_CAPACITY received invalid value "
20159 		    "capacity %llu lbasize %d", capacity, lbasize);
20160 		return (EIO);
20161 	}
20162 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20163 	return (0);
20164 }
20165 
20166 /*
20167  *    Function: sd_send_scsi_READ_CAPACITY_16
20168  *
20169  * Description: This routine uses the scsi READ CAPACITY 16 command to
20170  *		determine the device capacity in number of blocks and the
20171  *		device native block size.  If this function returns a failure,
20172  *		then the values in *capp and *lbap are undefined.
20173  *		This routine should be called by sd_send_scsi_READ_CAPACITY
20174  *              which will apply any device specific adjustments to capacity
20175  *              and lbasize. One exception is it is also called by
20176  *              sd_get_media_info_ext. In that function, there is no need to
20177  *              adjust the capacity and lbasize.
20178  *
20179  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20180  *		capp - ptr to unsigned 64-bit variable to receive the
20181  *			capacity value from the command.
20182  *		lbap - ptr to unsigned 32-bit varaible to receive the
20183  *			block size value from the command
20184  *              psp  - ptr to unsigned 32-bit variable to receive the
20185  *                      physical block size value from the command
20186  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20187  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20188  *			to use the USCSI "direct" chain and bypass the normal
20189  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
20190  *			this command is issued as part of an error recovery
20191  *			action.
20192  *
20193  * Return Code: 0   - Success
20194  *		EIO - IO error
20195  *		EACCES - Reservation conflict detected
20196  *		EAGAIN - Device is becoming ready
20197  *		errno return code from sd_ssc_send()
20198  *
20199  *     Context: Can sleep.  Blocks until command completes.
20200  */
20201 
20202 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
20203 
20204 static int
20205 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
20206 	uint32_t *lbap, uint32_t *psp, int path_flag)
20207 {
20208 	struct	scsi_extended_sense	sense_buf;
20209 	struct	uscsi_cmd	ucmd_buf;
20210 	union	scsi_cdb	cdb;
20211 	uint64_t		*capacity16_buf;
20212 	uint64_t		capacity;
20213 	uint32_t		lbasize;
20214 	uint32_t		pbsize;
20215 	uint32_t		lbpb_exp;
20216 	int			status;
20217 	struct sd_lun		*un;
20218 
20219 	ASSERT(ssc != NULL);
20220 
20221 	un = ssc->ssc_un;
20222 	ASSERT(un != NULL);
20223 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20224 	ASSERT(capp != NULL);
20225 	ASSERT(lbap != NULL);
20226 
20227 	SD_TRACE(SD_LOG_IO, un,
20228 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20229 
20230 	/*
20231 	 * First send a READ_CAPACITY_16 command to the target.
20232 	 *
20233 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
20234 	 * Medium Indicator bit is cleared.  The address field must be
20235 	 * zero if the PMI bit is zero.
20236 	 */
20237 	bzero(&cdb, sizeof (cdb));
20238 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20239 
20240 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
20241 
20242 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20243 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
20244 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
20245 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
20246 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20247 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20248 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20249 	ucmd_buf.uscsi_timeout	= 60;
20250 
20251 	/*
20252 	 * Read Capacity (16) is a Service Action In command.  One
20253 	 * command byte (0x9E) is overloaded for multiple operations,
20254 	 * with the second CDB byte specifying the desired operation
20255 	 */
20256 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
20257 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
20258 
20259 	/*
20260 	 * Fill in allocation length field
20261 	 */
20262 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
20263 
20264 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20265 	    UIO_SYSSPACE, path_flag);
20266 
20267 	switch (status) {
20268 	case 0:
20269 		/* Return failure if we did not get valid capacity data. */
20270 		if (ucmd_buf.uscsi_resid > 20) {
20271 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20272 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
20273 			    "capacity data");
20274 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20275 			return (EIO);
20276 		}
20277 
20278 		/*
20279 		 * Read capacity and block size from the READ CAPACITY 16 data.
20280 		 * This data may be adjusted later due to device specific
20281 		 * issues.
20282 		 *
20283 		 * According to the SCSI spec, the READ CAPACITY 16
20284 		 * command returns the following:
20285 		 *
20286 		 *  bytes 0-7: Maximum logical block address available.
20287 		 *		(MSB in byte:0 & LSB in byte:7)
20288 		 *
20289 		 *  bytes 8-11: Block length in bytes
20290 		 *		(MSB in byte:8 & LSB in byte:11)
20291 		 *
20292 		 *  byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
20293 		 */
20294 		capacity = BE_64(capacity16_buf[0]);
20295 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
20296 		lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f;
20297 
20298 		pbsize = lbasize << lbpb_exp;
20299 
20300 		/*
20301 		 * Done with capacity16_buf
20302 		 */
20303 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20304 
20305 		/*
20306 		 * if the reported capacity is set to all 0xf's, then
20307 		 * this disk is too large.  This could only happen with
20308 		 * a device that supports LBAs larger than 64 bits which
20309 		 * are not defined by any current T10 standards.
20310 		 */
20311 		if (capacity == 0xffffffffffffffff) {
20312 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20313 			    "disk is too large");
20314 			return (EIO);
20315 		}
20316 		break;	/* Success! */
20317 	case EIO:
20318 		switch (ucmd_buf.uscsi_status) {
20319 		case STATUS_RESERVATION_CONFLICT:
20320 			status = EACCES;
20321 			break;
20322 		case STATUS_CHECK:
20323 			/*
20324 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20325 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20326 			 */
20327 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20328 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20329 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20330 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20331 				return (EAGAIN);
20332 			}
20333 			break;
20334 		default:
20335 			break;
20336 		}
20337 		/* FALLTHRU */
20338 	default:
20339 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20340 		return (status);
20341 	}
20342 
20343 	/*
20344 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20345 	 * (2352 and 0 are common) so for these devices always force the value
20346 	 * to 2048 as required by the ATAPI specs.
20347 	 */
20348 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20349 		lbasize = 2048;
20350 	}
20351 
20352 	/*
20353 	 * Get the maximum LBA value from the READ CAPACITY 16 data.
20354 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20355 	 * was cleared when issuing the command. This means that the LBA
20356 	 * returned from the device is the LBA of the last logical block
20357 	 * on the logical unit.  The actual logical block count will be
20358 	 * this value plus one.
20359 	 */
20360 	capacity += 1;
20361 
20362 	/*
20363 	 * Currently, for removable media, the capacity is saved in terms
20364 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20365 	 */
20366 	if (un->un_f_has_removable_media)
20367 		capacity *= (lbasize / un->un_sys_blocksize);
20368 
20369 	*capp = capacity;
20370 	*lbap = lbasize;
20371 	*psp = pbsize;
20372 
20373 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
20374 	    "capacity:0x%llx  lbasize:0x%x, pbsize: 0x%x\n",
20375 	    capacity, lbasize, pbsize);
20376 
20377 	if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) {
20378 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20379 		    "sd_send_scsi_READ_CAPACITY_16 received invalid value "
20380 		    "capacity %llu lbasize %d pbsize %d", capacity, lbasize);
20381 		return (EIO);
20382 	}
20383 
20384 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20385 	return (0);
20386 }
20387 
20388 
20389 /*
20390  *    Function: sd_send_scsi_START_STOP_UNIT
20391  *
20392  * Description: Issue a scsi START STOP UNIT command to the target.
20393  *
20394  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
20395  *                       structure for this target.
20396  *      pc_flag - SD_POWER_CONDITION
20397  *                SD_START_STOP
20398  *		flag  - SD_TARGET_START
20399  *			SD_TARGET_STOP
20400  *			SD_TARGET_EJECT
20401  *			SD_TARGET_CLOSE
20402  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20403  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20404  *			to use the USCSI "direct" chain and bypass the normal
20405  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20406  *			command is issued as part of an error recovery action.
20407  *
20408  * Return Code: 0   - Success
20409  *		EIO - IO error
20410  *		EACCES - Reservation conflict detected
20411  *		ENXIO  - Not Ready, medium not present
20412  *		errno return code from sd_ssc_send()
20413  *
20414  *     Context: Can sleep.
20415  */
20416 
20417 static int
20418 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag,
20419     int path_flag)
20420 {
20421 	struct	scsi_extended_sense	sense_buf;
20422 	union scsi_cdb		cdb;
20423 	struct uscsi_cmd	ucmd_buf;
20424 	int			status;
20425 	struct sd_lun		*un;
20426 
20427 	ASSERT(ssc != NULL);
20428 	un = ssc->ssc_un;
20429 	ASSERT(un != NULL);
20430 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20431 
20432 	SD_TRACE(SD_LOG_IO, un,
20433 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
20434 
20435 	if (un->un_f_check_start_stop &&
20436 	    (pc_flag == SD_START_STOP) &&
20437 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
20438 	    (un->un_f_start_stop_supported != TRUE)) {
20439 		return (0);
20440 	}
20441 
20442 	/*
20443 	 * If we are performing an eject operation and
20444 	 * we receive any command other than SD_TARGET_EJECT
20445 	 * we should immediately return.
20446 	 */
20447 	if (flag != SD_TARGET_EJECT) {
20448 		mutex_enter(SD_MUTEX(un));
20449 		if (un->un_f_ejecting == TRUE) {
20450 			mutex_exit(SD_MUTEX(un));
20451 			return (EAGAIN);
20452 		}
20453 		mutex_exit(SD_MUTEX(un));
20454 	}
20455 
20456 	bzero(&cdb, sizeof (cdb));
20457 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20458 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20459 
20460 	cdb.scc_cmd = SCMD_START_STOP;
20461 	cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ?
20462 	    (uchar_t)(flag << 4) : (uchar_t)flag;
20463 
20464 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20465 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20466 	ucmd_buf.uscsi_bufaddr	= NULL;
20467 	ucmd_buf.uscsi_buflen	= 0;
20468 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20469 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20470 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20471 	ucmd_buf.uscsi_timeout	= 200;
20472 
20473 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20474 	    UIO_SYSSPACE, path_flag);
20475 
20476 	switch (status) {
20477 	case 0:
20478 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20479 		break;	/* Success! */
20480 	case EIO:
20481 		switch (ucmd_buf.uscsi_status) {
20482 		case STATUS_RESERVATION_CONFLICT:
20483 			status = EACCES;
20484 			break;
20485 		case STATUS_CHECK:
20486 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
20487 				switch (scsi_sense_key(
20488 				    (uint8_t *)&sense_buf)) {
20489 				case KEY_ILLEGAL_REQUEST:
20490 					status = ENOTSUP;
20491 					break;
20492 				case KEY_NOT_READY:
20493 					if (scsi_sense_asc(
20494 					    (uint8_t *)&sense_buf)
20495 					    == 0x3A) {
20496 						status = ENXIO;
20497 					}
20498 					break;
20499 				default:
20500 					break;
20501 				}
20502 			}
20503 			break;
20504 		default:
20505 			break;
20506 		}
20507 		break;
20508 	default:
20509 		break;
20510 	}
20511 
20512 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
20513 
20514 	return (status);
20515 }
20516 
20517 
20518 /*
20519  *    Function: sd_start_stop_unit_callback
20520  *
20521  * Description: timeout(9F) callback to begin recovery process for a
20522  *		device that has spun down.
20523  *
20524  *   Arguments: arg - pointer to associated softstate struct.
20525  *
20526  *     Context: Executes in a timeout(9F) thread context
20527  */
20528 
20529 static void
20530 sd_start_stop_unit_callback(void *arg)
20531 {
20532 	struct sd_lun	*un = arg;
20533 	ASSERT(un != NULL);
20534 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20535 
20536 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
20537 
20538 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
20539 }
20540 
20541 
20542 /*
20543  *    Function: sd_start_stop_unit_task
20544  *
20545  * Description: Recovery procedure when a drive is spun down.
20546  *
20547  *   Arguments: arg - pointer to associated softstate struct.
20548  *
20549  *     Context: Executes in a taskq() thread context
20550  */
20551 
20552 static void
20553 sd_start_stop_unit_task(void *arg)
20554 {
20555 	struct sd_lun	*un = arg;
20556 	sd_ssc_t	*ssc;
20557 	int		power_level;
20558 	int		rval;
20559 
20560 	ASSERT(un != NULL);
20561 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20562 
20563 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
20564 
20565 	/*
20566 	 * Some unformatted drives report not ready error, no need to
20567 	 * restart if format has been initiated.
20568 	 */
20569 	mutex_enter(SD_MUTEX(un));
20570 	if (un->un_f_format_in_progress == TRUE) {
20571 		mutex_exit(SD_MUTEX(un));
20572 		return;
20573 	}
20574 	mutex_exit(SD_MUTEX(un));
20575 
20576 	ssc = sd_ssc_init(un);
20577 	/*
20578 	 * When a START STOP command is issued from here, it is part of a
20579 	 * failure recovery operation and must be issued before any other
20580 	 * commands, including any pending retries. Thus it must be sent
20581 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20582 	 * succeeds or not, we will start I/O after the attempt.
20583 	 * If power condition is supported and the current power level
20584 	 * is capable of performing I/O, we should set the power condition
20585 	 * to that level. Otherwise, set the power condition to ACTIVE.
20586 	 */
20587 	if (un->un_f_power_condition_supported) {
20588 		mutex_enter(SD_MUTEX(un));
20589 		ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level));
20590 		power_level = sd_pwr_pc.ran_perf[un->un_power_level]
20591 		    > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE;
20592 		mutex_exit(SD_MUTEX(un));
20593 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
20594 		    sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY);
20595 	} else {
20596 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
20597 		    SD_TARGET_START, SD_PATH_DIRECT_PRIORITY);
20598 	}
20599 
20600 	if (rval != 0)
20601 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20602 	sd_ssc_fini(ssc);
20603 	/*
20604 	 * The above call blocks until the START_STOP_UNIT command completes.
20605 	 * Now that it has completed, we must re-try the original IO that
20606 	 * received the NOT READY condition in the first place. There are
20607 	 * three possible conditions here:
20608 	 *
20609 	 *  (1) The original IO is on un_retry_bp.
20610 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20611 	 *	is NULL.
20612 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20613 	 *	points to some other, unrelated bp.
20614 	 *
20615 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20616 	 * as the argument. If un_retry_bp is NULL, this will initiate
20617 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20618 	 * then this will process the bp on un_retry_bp. That may or may not
20619 	 * be the original IO, but that does not matter: the important thing
20620 	 * is to keep the IO processing going at this point.
20621 	 *
20622 	 * Note: This is a very specific error recovery sequence associated
20623 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20624 	 * serialize the I/O with completion of the spin-up.
20625 	 */
20626 	mutex_enter(SD_MUTEX(un));
20627 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20628 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20629 	    un, un->un_retry_bp);
20630 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20631 	sd_start_cmds(un, un->un_retry_bp);
20632 	mutex_exit(SD_MUTEX(un));
20633 
20634 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20635 }
20636 
20637 
20638 /*
20639  *    Function: sd_send_scsi_INQUIRY
20640  *
20641  * Description: Issue the scsi INQUIRY command.
20642  *
20643  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20644  *                      structure for this target.
20645  *		bufaddr
20646  *		buflen
20647  *		evpd
20648  *		page_code
20649  *		page_length
20650  *
20651  * Return Code: 0   - Success
20652  *		errno return code from sd_ssc_send()
20653  *
20654  *     Context: Can sleep. Does not return until command is completed.
20655  */
20656 
20657 static int
20658 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
20659 	uchar_t evpd, uchar_t page_code, size_t *residp)
20660 {
20661 	union scsi_cdb		cdb;
20662 	struct uscsi_cmd	ucmd_buf;
20663 	int			status;
20664 	struct sd_lun		*un;
20665 
20666 	ASSERT(ssc != NULL);
20667 	un = ssc->ssc_un;
20668 	ASSERT(un != NULL);
20669 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20670 	ASSERT(bufaddr != NULL);
20671 
20672 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20673 
20674 	bzero(&cdb, sizeof (cdb));
20675 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20676 	bzero(bufaddr, buflen);
20677 
20678 	cdb.scc_cmd = SCMD_INQUIRY;
20679 	cdb.cdb_opaque[1] = evpd;
20680 	cdb.cdb_opaque[2] = page_code;
20681 	FORMG0COUNT(&cdb, buflen);
20682 
20683 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20684 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20685 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20686 	ucmd_buf.uscsi_buflen	= buflen;
20687 	ucmd_buf.uscsi_rqbuf	= NULL;
20688 	ucmd_buf.uscsi_rqlen	= 0;
20689 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20690 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20691 
20692 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20693 	    UIO_SYSSPACE, SD_PATH_DIRECT);
20694 
20695 	/*
20696 	 * Only handle status == 0, the upper-level caller
20697 	 * will put different assessment based on the context.
20698 	 */
20699 	if (status == 0)
20700 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20701 
20702 	if ((status == 0) && (residp != NULL)) {
20703 		*residp = ucmd_buf.uscsi_resid;
20704 	}
20705 
20706 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20707 
20708 	return (status);
20709 }
20710 
20711 
20712 /*
20713  *    Function: sd_send_scsi_TEST_UNIT_READY
20714  *
20715  * Description: Issue the scsi TEST UNIT READY command.
20716  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20717  *		prevent retrying failed commands. Use this when the intent
20718  *		is either to check for device readiness, to clear a Unit
20719  *		Attention, or to clear any outstanding sense data.
20720  *		However under specific conditions the expected behavior
20721  *		is for retries to bring a device ready, so use the flag
20722  *		with caution.
20723  *
20724  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20725  *                      structure for this target.
20726  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20727  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20728  *			0: dont check for media present, do retries on cmd.
20729  *
20730  * Return Code: 0   - Success
20731  *		EIO - IO error
20732  *		EACCES - Reservation conflict detected
20733  *		ENXIO  - Not Ready, medium not present
20734  *		errno return code from sd_ssc_send()
20735  *
20736  *     Context: Can sleep. Does not return until command is completed.
20737  */
20738 
20739 static int
20740 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
20741 {
20742 	struct	scsi_extended_sense	sense_buf;
20743 	union scsi_cdb		cdb;
20744 	struct uscsi_cmd	ucmd_buf;
20745 	int			status;
20746 	struct sd_lun		*un;
20747 
20748 	ASSERT(ssc != NULL);
20749 	un = ssc->ssc_un;
20750 	ASSERT(un != NULL);
20751 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20752 
20753 	SD_TRACE(SD_LOG_IO, un,
20754 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20755 
20756 	/*
20757 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20758 	 * timeouts when they receive a TUR and the queue is not empty. Check
20759 	 * the configuration flag set during attach (indicating the drive has
20760 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20761 	 * TUR. If there are
20762 	 * pending commands return success, this is a bit arbitrary but is ok
20763 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20764 	 * configurations.
20765 	 */
20766 	if (un->un_f_cfg_tur_check == TRUE) {
20767 		mutex_enter(SD_MUTEX(un));
20768 		if (un->un_ncmds_in_transport != 0) {
20769 			mutex_exit(SD_MUTEX(un));
20770 			return (0);
20771 		}
20772 		mutex_exit(SD_MUTEX(un));
20773 	}
20774 
20775 	bzero(&cdb, sizeof (cdb));
20776 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20777 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20778 
20779 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20780 
20781 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20782 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20783 	ucmd_buf.uscsi_bufaddr	= NULL;
20784 	ucmd_buf.uscsi_buflen	= 0;
20785 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20786 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20787 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20788 
20789 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20790 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20791 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20792 	}
20793 	ucmd_buf.uscsi_timeout	= 60;
20794 
20795 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20796 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20797 	    SD_PATH_STANDARD));
20798 
20799 	switch (status) {
20800 	case 0:
20801 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20802 		break;	/* Success! */
20803 	case EIO:
20804 		switch (ucmd_buf.uscsi_status) {
20805 		case STATUS_RESERVATION_CONFLICT:
20806 			status = EACCES;
20807 			break;
20808 		case STATUS_CHECK:
20809 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20810 				break;
20811 			}
20812 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20813 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20814 			    KEY_NOT_READY) &&
20815 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20816 				status = ENXIO;
20817 			}
20818 			break;
20819 		default:
20820 			break;
20821 		}
20822 		break;
20823 	default:
20824 		break;
20825 	}
20826 
20827 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20828 
20829 	return (status);
20830 }
20831 
20832 /*
20833  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20834  *
20835  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20836  *
20837  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20838  *                      structure for this target.
20839  *
20840  * Return Code: 0   - Success
20841  *		EACCES
20842  *		ENOTSUP
20843  *		errno return code from sd_ssc_send()
20844  *
20845  *     Context: Can sleep. Does not return until command is completed.
20846  */
20847 
20848 static int
20849 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20850 	uint16_t data_len, uchar_t *data_bufp)
20851 {
20852 	struct scsi_extended_sense	sense_buf;
20853 	union scsi_cdb		cdb;
20854 	struct uscsi_cmd	ucmd_buf;
20855 	int			status;
20856 	int			no_caller_buf = FALSE;
20857 	struct sd_lun		*un;
20858 
20859 	ASSERT(ssc != NULL);
20860 	un = ssc->ssc_un;
20861 	ASSERT(un != NULL);
20862 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20863 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20864 
20865 	SD_TRACE(SD_LOG_IO, un,
20866 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20867 
20868 	bzero(&cdb, sizeof (cdb));
20869 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20870 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20871 	if (data_bufp == NULL) {
20872 		/* Allocate a default buf if the caller did not give one */
20873 		ASSERT(data_len == 0);
20874 		data_len  = MHIOC_RESV_KEY_SIZE;
20875 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20876 		no_caller_buf = TRUE;
20877 	}
20878 
20879 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20880 	cdb.cdb_opaque[1] = usr_cmd;
20881 	FORMG1COUNT(&cdb, data_len);
20882 
20883 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20884 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20885 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20886 	ucmd_buf.uscsi_buflen	= data_len;
20887 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20888 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20889 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20890 	ucmd_buf.uscsi_timeout	= 60;
20891 
20892 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20893 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20894 
20895 	switch (status) {
20896 	case 0:
20897 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20898 
20899 		break;	/* Success! */
20900 	case EIO:
20901 		switch (ucmd_buf.uscsi_status) {
20902 		case STATUS_RESERVATION_CONFLICT:
20903 			status = EACCES;
20904 			break;
20905 		case STATUS_CHECK:
20906 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20907 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20908 			    KEY_ILLEGAL_REQUEST)) {
20909 				status = ENOTSUP;
20910 			}
20911 			break;
20912 		default:
20913 			break;
20914 		}
20915 		break;
20916 	default:
20917 		break;
20918 	}
20919 
20920 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20921 
20922 	if (no_caller_buf == TRUE) {
20923 		kmem_free(data_bufp, data_len);
20924 	}
20925 
20926 	return (status);
20927 }
20928 
20929 
20930 /*
20931  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20932  *
20933  * Description: This routine is the driver entry point for handling CD-ROM
20934  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20935  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20936  *		device.
20937  *
20938  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20939  *                      for the target.
20940  *		usr_cmd SCSI-3 reservation facility command (one of
20941  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20942  *			SD_SCSI3_PREEMPTANDABORT)
20943  *		usr_bufp - user provided pointer register, reserve descriptor or
20944  *			preempt and abort structure (mhioc_register_t,
20945  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20946  *
20947  * Return Code: 0   - Success
20948  *		EACCES
20949  *		ENOTSUP
20950  *		errno return code from sd_ssc_send()
20951  *
20952  *     Context: Can sleep. Does not return until command is completed.
20953  */
20954 
20955 static int
20956 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
20957 	uchar_t	*usr_bufp)
20958 {
20959 	struct scsi_extended_sense	sense_buf;
20960 	union scsi_cdb		cdb;
20961 	struct uscsi_cmd	ucmd_buf;
20962 	int			status;
20963 	uchar_t			data_len = sizeof (sd_prout_t);
20964 	sd_prout_t		*prp;
20965 	struct sd_lun		*un;
20966 
20967 	ASSERT(ssc != NULL);
20968 	un = ssc->ssc_un;
20969 	ASSERT(un != NULL);
20970 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20971 	ASSERT(data_len == 24);	/* required by scsi spec */
20972 
20973 	SD_TRACE(SD_LOG_IO, un,
20974 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20975 
20976 	if (usr_bufp == NULL) {
20977 		return (EINVAL);
20978 	}
20979 
20980 	bzero(&cdb, sizeof (cdb));
20981 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20982 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20983 	prp = kmem_zalloc(data_len, KM_SLEEP);
20984 
20985 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20986 	cdb.cdb_opaque[1] = usr_cmd;
20987 	FORMG1COUNT(&cdb, data_len);
20988 
20989 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20990 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20991 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20992 	ucmd_buf.uscsi_buflen	= data_len;
20993 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20994 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20995 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20996 	ucmd_buf.uscsi_timeout	= 60;
20997 
20998 	switch (usr_cmd) {
20999 	case SD_SCSI3_REGISTER: {
21000 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
21001 
21002 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21003 		bcopy(ptr->newkey.key, prp->service_key,
21004 		    MHIOC_RESV_KEY_SIZE);
21005 		prp->aptpl = ptr->aptpl;
21006 		break;
21007 	}
21008 	case SD_SCSI3_RESERVE:
21009 	case SD_SCSI3_RELEASE: {
21010 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21011 
21012 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21013 		prp->scope_address = BE_32(ptr->scope_specific_addr);
21014 		cdb.cdb_opaque[2] = ptr->type;
21015 		break;
21016 	}
21017 	case SD_SCSI3_PREEMPTANDABORT: {
21018 		mhioc_preemptandabort_t *ptr =
21019 		    (mhioc_preemptandabort_t *)usr_bufp;
21020 
21021 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21022 		bcopy(ptr->victim_key.key, prp->service_key,
21023 		    MHIOC_RESV_KEY_SIZE);
21024 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
21025 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
21026 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
21027 		break;
21028 	}
21029 	case SD_SCSI3_REGISTERANDIGNOREKEY:
21030 	{
21031 		mhioc_registerandignorekey_t *ptr;
21032 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
21033 		bcopy(ptr->newkey.key,
21034 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
21035 		prp->aptpl = ptr->aptpl;
21036 		break;
21037 	}
21038 	default:
21039 		ASSERT(FALSE);
21040 		break;
21041 	}
21042 
21043 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21044 	    UIO_SYSSPACE, SD_PATH_STANDARD);
21045 
21046 	switch (status) {
21047 	case 0:
21048 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21049 		break;	/* Success! */
21050 	case EIO:
21051 		switch (ucmd_buf.uscsi_status) {
21052 		case STATUS_RESERVATION_CONFLICT:
21053 			status = EACCES;
21054 			break;
21055 		case STATUS_CHECK:
21056 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21057 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21058 			    KEY_ILLEGAL_REQUEST)) {
21059 				status = ENOTSUP;
21060 			}
21061 			break;
21062 		default:
21063 			break;
21064 		}
21065 		break;
21066 	default:
21067 		break;
21068 	}
21069 
21070 	kmem_free(prp, data_len);
21071 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
21072 	return (status);
21073 }
21074 
21075 
21076 /*
21077  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
21078  *
21079  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
21080  *
21081  *   Arguments: un - pointer to the target's soft state struct
21082  *              dkc - pointer to the callback structure
21083  *
21084  * Return Code: 0 - success
21085  *		errno-type error code
21086  *
21087  *     Context: kernel thread context only.
21088  *
21089  *  _______________________________________________________________
21090  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
21091  * |FLUSH_VOLATILE|              | operation                       |
21092  * |______________|______________|_________________________________|
21093  * | 0            | NULL         | Synchronous flush on both       |
21094  * |              |              | volatile and non-volatile cache |
21095  * |______________|______________|_________________________________|
21096  * | 1            | NULL         | Synchronous flush on volatile   |
21097  * |              |              | cache; disk drivers may suppress|
21098  * |              |              | flush if disk table indicates   |
21099  * |              |              | non-volatile cache              |
21100  * |______________|______________|_________________________________|
21101  * | 0            | !NULL        | Asynchronous flush on both      |
21102  * |              |              | volatile and non-volatile cache;|
21103  * |______________|______________|_________________________________|
21104  * | 1            | !NULL        | Asynchronous flush on volatile  |
21105  * |              |              | cache; disk drivers may suppress|
21106  * |              |              | flush if disk table indicates   |
21107  * |              |              | non-volatile cache              |
21108  * |______________|______________|_________________________________|
21109  *
21110  */
21111 
21112 static int
21113 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
21114 {
21115 	struct sd_uscsi_info	*uip;
21116 	struct uscsi_cmd	*uscmd;
21117 	union scsi_cdb		*cdb;
21118 	struct buf		*bp;
21119 	int			rval = 0;
21120 	int			is_async;
21121 
21122 	SD_TRACE(SD_LOG_IO, un,
21123 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
21124 
21125 	ASSERT(un != NULL);
21126 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21127 
21128 	if (dkc == NULL || dkc->dkc_callback == NULL) {
21129 		is_async = FALSE;
21130 	} else {
21131 		is_async = TRUE;
21132 	}
21133 
21134 	mutex_enter(SD_MUTEX(un));
21135 	/* check whether cache flush should be suppressed */
21136 	if (un->un_f_suppress_cache_flush == TRUE) {
21137 		mutex_exit(SD_MUTEX(un));
21138 		/*
21139 		 * suppress the cache flush if the device is told to do
21140 		 * so by sd.conf or disk table
21141 		 */
21142 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
21143 		    skip the cache flush since suppress_cache_flush is %d!\n",
21144 		    un->un_f_suppress_cache_flush);
21145 
21146 		if (is_async == TRUE) {
21147 			/* invoke callback for asynchronous flush */
21148 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
21149 		}
21150 		return (rval);
21151 	}
21152 	mutex_exit(SD_MUTEX(un));
21153 
21154 	/*
21155 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
21156 	 * set properly
21157 	 */
21158 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
21159 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
21160 
21161 	mutex_enter(SD_MUTEX(un));
21162 	if (dkc != NULL && un->un_f_sync_nv_supported &&
21163 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
21164 		/*
21165 		 * if the device supports SYNC_NV bit, turn on
21166 		 * the SYNC_NV bit to only flush volatile cache
21167 		 */
21168 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
21169 	}
21170 	mutex_exit(SD_MUTEX(un));
21171 
21172 	/*
21173 	 * First get some memory for the uscsi_cmd struct and cdb
21174 	 * and initialize for SYNCHRONIZE_CACHE cmd.
21175 	 */
21176 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21177 	uscmd->uscsi_cdblen = CDB_GROUP1;
21178 	uscmd->uscsi_cdb = (caddr_t)cdb;
21179 	uscmd->uscsi_bufaddr = NULL;
21180 	uscmd->uscsi_buflen = 0;
21181 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21182 	uscmd->uscsi_rqlen = SENSE_LENGTH;
21183 	uscmd->uscsi_rqresid = SENSE_LENGTH;
21184 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
21185 	uscmd->uscsi_timeout = sd_io_time;
21186 
21187 	/*
21188 	 * Allocate an sd_uscsi_info struct and fill it with the info
21189 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
21190 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
21191 	 * since we allocate the buf here in this function, we do not
21192 	 * need to preserve the prior contents of b_private.
21193 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
21194 	 */
21195 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
21196 	uip->ui_flags = SD_PATH_DIRECT;
21197 	uip->ui_cmdp  = uscmd;
21198 
21199 	bp = getrbuf(KM_SLEEP);
21200 	bp->b_private = uip;
21201 
21202 	/*
21203 	 * Setup buffer to carry uscsi request.
21204 	 */
21205 	bp->b_flags  = B_BUSY;
21206 	bp->b_bcount = 0;
21207 	bp->b_blkno  = 0;
21208 
21209 	if (is_async == TRUE) {
21210 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
21211 		uip->ui_dkc = *dkc;
21212 	}
21213 
21214 	bp->b_edev = SD_GET_DEV(un);
21215 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
21216 
21217 	/*
21218 	 * Unset un_f_sync_cache_required flag
21219 	 */
21220 	mutex_enter(SD_MUTEX(un));
21221 	un->un_f_sync_cache_required = FALSE;
21222 	mutex_exit(SD_MUTEX(un));
21223 
21224 	(void) sd_uscsi_strategy(bp);
21225 
21226 	/*
21227 	 * If synchronous request, wait for completion
21228 	 * If async just return and let b_iodone callback
21229 	 * cleanup.
21230 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
21231 	 * but it was also incremented in sd_uscsi_strategy(), so
21232 	 * we should be ok.
21233 	 */
21234 	if (is_async == FALSE) {
21235 		(void) biowait(bp);
21236 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
21237 	}
21238 
21239 	return (rval);
21240 }
21241 
21242 
21243 static int
21244 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
21245 {
21246 	struct sd_uscsi_info *uip;
21247 	struct uscsi_cmd *uscmd;
21248 	uint8_t *sense_buf;
21249 	struct sd_lun *un;
21250 	int status;
21251 	union scsi_cdb *cdb;
21252 
21253 	uip = (struct sd_uscsi_info *)(bp->b_private);
21254 	ASSERT(uip != NULL);
21255 
21256 	uscmd = uip->ui_cmdp;
21257 	ASSERT(uscmd != NULL);
21258 
21259 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
21260 	ASSERT(sense_buf != NULL);
21261 
21262 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
21263 	ASSERT(un != NULL);
21264 
21265 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
21266 
21267 	status = geterror(bp);
21268 	switch (status) {
21269 	case 0:
21270 		break;	/* Success! */
21271 	case EIO:
21272 		switch (uscmd->uscsi_status) {
21273 		case STATUS_RESERVATION_CONFLICT:
21274 			/* Ignore reservation conflict */
21275 			status = 0;
21276 			goto done;
21277 
21278 		case STATUS_CHECK:
21279 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
21280 			    (scsi_sense_key(sense_buf) ==
21281 			    KEY_ILLEGAL_REQUEST)) {
21282 				/* Ignore Illegal Request error */
21283 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
21284 					mutex_enter(SD_MUTEX(un));
21285 					un->un_f_sync_nv_supported = FALSE;
21286 					mutex_exit(SD_MUTEX(un));
21287 					status = 0;
21288 					SD_TRACE(SD_LOG_IO, un,
21289 					    "un_f_sync_nv_supported \
21290 					    is set to false.\n");
21291 					goto done;
21292 				}
21293 
21294 				mutex_enter(SD_MUTEX(un));
21295 				un->un_f_sync_cache_supported = FALSE;
21296 				mutex_exit(SD_MUTEX(un));
21297 				SD_TRACE(SD_LOG_IO, un,
21298 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
21299 				    un_f_sync_cache_supported set to false \
21300 				    with asc = %x, ascq = %x\n",
21301 				    scsi_sense_asc(sense_buf),
21302 				    scsi_sense_ascq(sense_buf));
21303 				status = ENOTSUP;
21304 				goto done;
21305 			}
21306 			break;
21307 		default:
21308 			break;
21309 		}
21310 		/* FALLTHRU */
21311 	default:
21312 		/*
21313 		 * Turn on the un_f_sync_cache_required flag
21314 		 * since the SYNC CACHE command failed
21315 		 */
21316 		mutex_enter(SD_MUTEX(un));
21317 		un->un_f_sync_cache_required = TRUE;
21318 		mutex_exit(SD_MUTEX(un));
21319 
21320 		/*
21321 		 * Don't log an error message if this device
21322 		 * has removable media.
21323 		 */
21324 		if (!un->un_f_has_removable_media) {
21325 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
21326 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
21327 		}
21328 		break;
21329 	}
21330 
21331 done:
21332 	if (uip->ui_dkc.dkc_callback != NULL) {
21333 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
21334 	}
21335 
21336 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
21337 	freerbuf(bp);
21338 	kmem_free(uip, sizeof (struct sd_uscsi_info));
21339 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
21340 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
21341 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
21342 
21343 	return (status);
21344 }
21345 
21346 
21347 /*
21348  *    Function: sd_send_scsi_GET_CONFIGURATION
21349  *
21350  * Description: Issues the get configuration command to the device.
21351  *		Called from sd_check_for_writable_cd & sd_get_media_info
21352  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
21353  *   Arguments: ssc
21354  *		ucmdbuf
21355  *		rqbuf
21356  *		rqbuflen
21357  *		bufaddr
21358  *		buflen
21359  *		path_flag
21360  *
21361  * Return Code: 0   - Success
21362  *		errno return code from sd_ssc_send()
21363  *
21364  *     Context: Can sleep. Does not return until command is completed.
21365  *
21366  */
21367 
21368 static int
21369 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
21370 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
21371 	int path_flag)
21372 {
21373 	char	cdb[CDB_GROUP1];
21374 	int	status;
21375 	struct sd_lun	*un;
21376 
21377 	ASSERT(ssc != NULL);
21378 	un = ssc->ssc_un;
21379 	ASSERT(un != NULL);
21380 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21381 	ASSERT(bufaddr != NULL);
21382 	ASSERT(ucmdbuf != NULL);
21383 	ASSERT(rqbuf != NULL);
21384 
21385 	SD_TRACE(SD_LOG_IO, un,
21386 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
21387 
21388 	bzero(cdb, sizeof (cdb));
21389 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21390 	bzero(rqbuf, rqbuflen);
21391 	bzero(bufaddr, buflen);
21392 
21393 	/*
21394 	 * Set up cdb field for the get configuration command.
21395 	 */
21396 	cdb[0] = SCMD_GET_CONFIGURATION;
21397 	cdb[1] = 0x02;  /* Requested Type */
21398 	cdb[8] = SD_PROFILE_HEADER_LEN;
21399 	ucmdbuf->uscsi_cdb = cdb;
21400 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21401 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21402 	ucmdbuf->uscsi_buflen = buflen;
21403 	ucmdbuf->uscsi_timeout = sd_io_time;
21404 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21405 	ucmdbuf->uscsi_rqlen = rqbuflen;
21406 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21407 
21408 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21409 	    UIO_SYSSPACE, path_flag);
21410 
21411 	switch (status) {
21412 	case 0:
21413 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21414 		break;  /* Success! */
21415 	case EIO:
21416 		switch (ucmdbuf->uscsi_status) {
21417 		case STATUS_RESERVATION_CONFLICT:
21418 			status = EACCES;
21419 			break;
21420 		default:
21421 			break;
21422 		}
21423 		break;
21424 	default:
21425 		break;
21426 	}
21427 
21428 	if (status == 0) {
21429 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21430 		    "sd_send_scsi_GET_CONFIGURATION: data",
21431 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21432 	}
21433 
21434 	SD_TRACE(SD_LOG_IO, un,
21435 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
21436 
21437 	return (status);
21438 }
21439 
21440 /*
21441  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
21442  *
21443  * Description: Issues the get configuration command to the device to
21444  *              retrieve a specific feature. Called from
21445  *		sd_check_for_writable_cd & sd_set_mmc_caps.
21446  *   Arguments: ssc
21447  *              ucmdbuf
21448  *              rqbuf
21449  *              rqbuflen
21450  *              bufaddr
21451  *              buflen
21452  *		feature
21453  *
21454  * Return Code: 0   - Success
21455  *              errno return code from sd_ssc_send()
21456  *
21457  *     Context: Can sleep. Does not return until command is completed.
21458  *
21459  */
21460 static int
21461 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
21462 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
21463 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
21464 {
21465 	char    cdb[CDB_GROUP1];
21466 	int	status;
21467 	struct sd_lun	*un;
21468 
21469 	ASSERT(ssc != NULL);
21470 	un = ssc->ssc_un;
21471 	ASSERT(un != NULL);
21472 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21473 	ASSERT(bufaddr != NULL);
21474 	ASSERT(ucmdbuf != NULL);
21475 	ASSERT(rqbuf != NULL);
21476 
21477 	SD_TRACE(SD_LOG_IO, un,
21478 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
21479 
21480 	bzero(cdb, sizeof (cdb));
21481 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21482 	bzero(rqbuf, rqbuflen);
21483 	bzero(bufaddr, buflen);
21484 
21485 	/*
21486 	 * Set up cdb field for the get configuration command.
21487 	 */
21488 	cdb[0] = SCMD_GET_CONFIGURATION;
21489 	cdb[1] = 0x02;  /* Requested Type */
21490 	cdb[3] = feature;
21491 	cdb[8] = buflen;
21492 	ucmdbuf->uscsi_cdb = cdb;
21493 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21494 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21495 	ucmdbuf->uscsi_buflen = buflen;
21496 	ucmdbuf->uscsi_timeout = sd_io_time;
21497 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21498 	ucmdbuf->uscsi_rqlen = rqbuflen;
21499 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21500 
21501 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21502 	    UIO_SYSSPACE, path_flag);
21503 
21504 	switch (status) {
21505 	case 0:
21506 
21507 		break;  /* Success! */
21508 	case EIO:
21509 		switch (ucmdbuf->uscsi_status) {
21510 		case STATUS_RESERVATION_CONFLICT:
21511 			status = EACCES;
21512 			break;
21513 		default:
21514 			break;
21515 		}
21516 		break;
21517 	default:
21518 		break;
21519 	}
21520 
21521 	if (status == 0) {
21522 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21523 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
21524 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21525 	}
21526 
21527 	SD_TRACE(SD_LOG_IO, un,
21528 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
21529 
21530 	return (status);
21531 }
21532 
21533 
21534 /*
21535  *    Function: sd_send_scsi_MODE_SENSE
21536  *
21537  * Description: Utility function for issuing a scsi MODE SENSE command.
21538  *		Note: This routine uses a consistent implementation for Group0,
21539  *		Group1, and Group2 commands across all platforms. ATAPI devices
21540  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21541  *
21542  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21543  *                      structure for this target.
21544  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21545  *			  CDB_GROUP[1|2] (10 byte).
21546  *		bufaddr - buffer for page data retrieved from the target.
21547  *		buflen - size of page to be retrieved.
21548  *		page_code - page code of data to be retrieved from the target.
21549  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21550  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21551  *			to use the USCSI "direct" chain and bypass the normal
21552  *			command waitq.
21553  *
21554  * Return Code: 0   - Success
21555  *		errno return code from sd_ssc_send()
21556  *
21557  *     Context: Can sleep. Does not return until command is completed.
21558  */
21559 
21560 static int
21561 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21562 	size_t buflen,  uchar_t page_code, int path_flag)
21563 {
21564 	struct	scsi_extended_sense	sense_buf;
21565 	union scsi_cdb		cdb;
21566 	struct uscsi_cmd	ucmd_buf;
21567 	int			status;
21568 	int			headlen;
21569 	struct sd_lun		*un;
21570 
21571 	ASSERT(ssc != NULL);
21572 	un = ssc->ssc_un;
21573 	ASSERT(un != NULL);
21574 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21575 	ASSERT(bufaddr != NULL);
21576 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21577 	    (cdbsize == CDB_GROUP2));
21578 
21579 	SD_TRACE(SD_LOG_IO, un,
21580 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
21581 
21582 	bzero(&cdb, sizeof (cdb));
21583 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21584 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21585 	bzero(bufaddr, buflen);
21586 
21587 	if (cdbsize == CDB_GROUP0) {
21588 		cdb.scc_cmd = SCMD_MODE_SENSE;
21589 		cdb.cdb_opaque[2] = page_code;
21590 		FORMG0COUNT(&cdb, buflen);
21591 		headlen = MODE_HEADER_LENGTH;
21592 	} else {
21593 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
21594 		cdb.cdb_opaque[2] = page_code;
21595 		FORMG1COUNT(&cdb, buflen);
21596 		headlen = MODE_HEADER_LENGTH_GRP2;
21597 	}
21598 
21599 	ASSERT(headlen <= buflen);
21600 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21601 
21602 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21603 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21604 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21605 	ucmd_buf.uscsi_buflen	= buflen;
21606 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21607 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21608 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21609 	ucmd_buf.uscsi_timeout	= 60;
21610 
21611 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21612 	    UIO_SYSSPACE, path_flag);
21613 
21614 	switch (status) {
21615 	case 0:
21616 		/*
21617 		 * sr_check_wp() uses 0x3f page code and check the header of
21618 		 * mode page to determine if target device is write-protected.
21619 		 * But some USB devices return 0 bytes for 0x3f page code. For
21620 		 * this case, make sure that mode page header is returned at
21621 		 * least.
21622 		 */
21623 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
21624 			status = EIO;
21625 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
21626 			    "mode page header is not returned");
21627 		}
21628 		break;	/* Success! */
21629 	case EIO:
21630 		switch (ucmd_buf.uscsi_status) {
21631 		case STATUS_RESERVATION_CONFLICT:
21632 			status = EACCES;
21633 			break;
21634 		default:
21635 			break;
21636 		}
21637 		break;
21638 	default:
21639 		break;
21640 	}
21641 
21642 	if (status == 0) {
21643 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
21644 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21645 	}
21646 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
21647 
21648 	return (status);
21649 }
21650 
21651 
21652 /*
21653  *    Function: sd_send_scsi_MODE_SELECT
21654  *
21655  * Description: Utility function for issuing a scsi MODE SELECT command.
21656  *		Note: This routine uses a consistent implementation for Group0,
21657  *		Group1, and Group2 commands across all platforms. ATAPI devices
21658  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21659  *
21660  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21661  *                      structure for this target.
21662  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21663  *			  CDB_GROUP[1|2] (10 byte).
21664  *		bufaddr - buffer for page data retrieved from the target.
21665  *		buflen - size of page to be retrieved.
21666  *		save_page - boolean to determin if SP bit should be set.
21667  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21668  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21669  *			to use the USCSI "direct" chain and bypass the normal
21670  *			command waitq.
21671  *
21672  * Return Code: 0   - Success
21673  *		errno return code from sd_ssc_send()
21674  *
21675  *     Context: Can sleep. Does not return until command is completed.
21676  */
21677 
21678 static int
21679 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21680 	size_t buflen,  uchar_t save_page, int path_flag)
21681 {
21682 	struct	scsi_extended_sense	sense_buf;
21683 	union scsi_cdb		cdb;
21684 	struct uscsi_cmd	ucmd_buf;
21685 	int			status;
21686 	struct sd_lun		*un;
21687 
21688 	ASSERT(ssc != NULL);
21689 	un = ssc->ssc_un;
21690 	ASSERT(un != NULL);
21691 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21692 	ASSERT(bufaddr != NULL);
21693 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21694 	    (cdbsize == CDB_GROUP2));
21695 
21696 	SD_TRACE(SD_LOG_IO, un,
21697 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
21698 
21699 	bzero(&cdb, sizeof (cdb));
21700 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21701 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21702 
21703 	/* Set the PF bit for many third party drives */
21704 	cdb.cdb_opaque[1] = 0x10;
21705 
21706 	/* Set the savepage(SP) bit if given */
21707 	if (save_page == SD_SAVE_PAGE) {
21708 		cdb.cdb_opaque[1] |= 0x01;
21709 	}
21710 
21711 	if (cdbsize == CDB_GROUP0) {
21712 		cdb.scc_cmd = SCMD_MODE_SELECT;
21713 		FORMG0COUNT(&cdb, buflen);
21714 	} else {
21715 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
21716 		FORMG1COUNT(&cdb, buflen);
21717 	}
21718 
21719 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21720 
21721 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21722 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21723 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21724 	ucmd_buf.uscsi_buflen	= buflen;
21725 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21726 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21727 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21728 	ucmd_buf.uscsi_timeout	= 60;
21729 
21730 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21731 	    UIO_SYSSPACE, path_flag);
21732 
21733 	switch (status) {
21734 	case 0:
21735 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21736 		break;	/* Success! */
21737 	case EIO:
21738 		switch (ucmd_buf.uscsi_status) {
21739 		case STATUS_RESERVATION_CONFLICT:
21740 			status = EACCES;
21741 			break;
21742 		default:
21743 			break;
21744 		}
21745 		break;
21746 	default:
21747 		break;
21748 	}
21749 
21750 	if (status == 0) {
21751 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21752 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21753 	}
21754 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21755 
21756 	return (status);
21757 }
21758 
21759 
21760 /*
21761  *    Function: sd_send_scsi_RDWR
21762  *
21763  * Description: Issue a scsi READ or WRITE command with the given parameters.
21764  *
21765  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21766  *                      structure for this target.
21767  *		cmd:	 SCMD_READ or SCMD_WRITE
21768  *		bufaddr: Address of caller's buffer to receive the RDWR data
21769  *		buflen:  Length of caller's buffer receive the RDWR data.
21770  *		start_block: Block number for the start of the RDWR operation.
21771  *			 (Assumes target-native block size.)
21772  *		residp:  Pointer to variable to receive the redisual of the
21773  *			 RDWR operation (may be NULL of no residual requested).
21774  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21775  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21776  *			to use the USCSI "direct" chain and bypass the normal
21777  *			command waitq.
21778  *
21779  * Return Code: 0   - Success
21780  *		errno return code from sd_ssc_send()
21781  *
21782  *     Context: Can sleep. Does not return until command is completed.
21783  */
21784 
21785 static int
21786 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
21787 	size_t buflen, daddr_t start_block, int path_flag)
21788 {
21789 	struct	scsi_extended_sense	sense_buf;
21790 	union scsi_cdb		cdb;
21791 	struct uscsi_cmd	ucmd_buf;
21792 	uint32_t		block_count;
21793 	int			status;
21794 	int			cdbsize;
21795 	uchar_t			flag;
21796 	struct sd_lun		*un;
21797 
21798 	ASSERT(ssc != NULL);
21799 	un = ssc->ssc_un;
21800 	ASSERT(un != NULL);
21801 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21802 	ASSERT(bufaddr != NULL);
21803 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21804 
21805 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21806 
21807 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21808 		return (EINVAL);
21809 	}
21810 
21811 	mutex_enter(SD_MUTEX(un));
21812 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21813 	mutex_exit(SD_MUTEX(un));
21814 
21815 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21816 
21817 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21818 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21819 	    bufaddr, buflen, start_block, block_count);
21820 
21821 	bzero(&cdb, sizeof (cdb));
21822 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21823 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21824 
21825 	/* Compute CDB size to use */
21826 	if (start_block > 0xffffffff)
21827 		cdbsize = CDB_GROUP4;
21828 	else if ((start_block & 0xFFE00000) ||
21829 	    (un->un_f_cfg_is_atapi == TRUE))
21830 		cdbsize = CDB_GROUP1;
21831 	else
21832 		cdbsize = CDB_GROUP0;
21833 
21834 	switch (cdbsize) {
21835 	case CDB_GROUP0:	/* 6-byte CDBs */
21836 		cdb.scc_cmd = cmd;
21837 		FORMG0ADDR(&cdb, start_block);
21838 		FORMG0COUNT(&cdb, block_count);
21839 		break;
21840 	case CDB_GROUP1:	/* 10-byte CDBs */
21841 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21842 		FORMG1ADDR(&cdb, start_block);
21843 		FORMG1COUNT(&cdb, block_count);
21844 		break;
21845 	case CDB_GROUP4:	/* 16-byte CDBs */
21846 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21847 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21848 		FORMG4COUNT(&cdb, block_count);
21849 		break;
21850 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21851 	default:
21852 		/* All others reserved */
21853 		return (EINVAL);
21854 	}
21855 
21856 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21857 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21858 
21859 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21860 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21861 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21862 	ucmd_buf.uscsi_buflen	= buflen;
21863 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21864 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21865 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21866 	ucmd_buf.uscsi_timeout	= 60;
21867 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21868 	    UIO_SYSSPACE, path_flag);
21869 
21870 	switch (status) {
21871 	case 0:
21872 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21873 		break;	/* Success! */
21874 	case EIO:
21875 		switch (ucmd_buf.uscsi_status) {
21876 		case STATUS_RESERVATION_CONFLICT:
21877 			status = EACCES;
21878 			break;
21879 		default:
21880 			break;
21881 		}
21882 		break;
21883 	default:
21884 		break;
21885 	}
21886 
21887 	if (status == 0) {
21888 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21889 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21890 	}
21891 
21892 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21893 
21894 	return (status);
21895 }
21896 
21897 
21898 /*
21899  *    Function: sd_send_scsi_LOG_SENSE
21900  *
21901  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21902  *
21903  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21904  *                      structure for this target.
21905  *
21906  * Return Code: 0   - Success
21907  *		errno return code from sd_ssc_send()
21908  *
21909  *     Context: Can sleep. Does not return until command is completed.
21910  */
21911 
21912 static int
21913 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21914 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21915 	int path_flag)
21916 
21917 {
21918 	struct scsi_extended_sense	sense_buf;
21919 	union scsi_cdb		cdb;
21920 	struct uscsi_cmd	ucmd_buf;
21921 	int			status;
21922 	struct sd_lun		*un;
21923 
21924 	ASSERT(ssc != NULL);
21925 	un = ssc->ssc_un;
21926 	ASSERT(un != NULL);
21927 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21928 
21929 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21930 
21931 	bzero(&cdb, sizeof (cdb));
21932 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21933 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21934 
21935 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21936 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21937 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21938 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21939 	FORMG1COUNT(&cdb, buflen);
21940 
21941 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21942 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21943 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21944 	ucmd_buf.uscsi_buflen	= buflen;
21945 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21946 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21947 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21948 	ucmd_buf.uscsi_timeout	= 60;
21949 
21950 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21951 	    UIO_SYSSPACE, path_flag);
21952 
21953 	switch (status) {
21954 	case 0:
21955 		break;
21956 	case EIO:
21957 		switch (ucmd_buf.uscsi_status) {
21958 		case STATUS_RESERVATION_CONFLICT:
21959 			status = EACCES;
21960 			break;
21961 		case STATUS_CHECK:
21962 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21963 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21964 				KEY_ILLEGAL_REQUEST) &&
21965 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21966 				/*
21967 				 * ASC 0x24: INVALID FIELD IN CDB
21968 				 */
21969 				switch (page_code) {
21970 				case START_STOP_CYCLE_PAGE:
21971 					/*
21972 					 * The start stop cycle counter is
21973 					 * implemented as page 0x31 in earlier
21974 					 * generation disks. In new generation
21975 					 * disks the start stop cycle counter is
21976 					 * implemented as page 0xE. To properly
21977 					 * handle this case if an attempt for
21978 					 * log page 0xE is made and fails we
21979 					 * will try again using page 0x31.
21980 					 *
21981 					 * Network storage BU committed to
21982 					 * maintain the page 0x31 for this
21983 					 * purpose and will not have any other
21984 					 * page implemented with page code 0x31
21985 					 * until all disks transition to the
21986 					 * standard page.
21987 					 */
21988 					mutex_enter(SD_MUTEX(un));
21989 					un->un_start_stop_cycle_page =
21990 					    START_STOP_CYCLE_VU_PAGE;
21991 					cdb.cdb_opaque[2] =
21992 					    (char)(page_control << 6) |
21993 					    un->un_start_stop_cycle_page;
21994 					mutex_exit(SD_MUTEX(un));
21995 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21996 					status = sd_ssc_send(
21997 					    ssc, &ucmd_buf, FKIOCTL,
21998 					    UIO_SYSSPACE, path_flag);
21999 
22000 					break;
22001 				case TEMPERATURE_PAGE:
22002 					status = ENOTTY;
22003 					break;
22004 				default:
22005 					break;
22006 				}
22007 			}
22008 			break;
22009 		default:
22010 			break;
22011 		}
22012 		break;
22013 	default:
22014 		break;
22015 	}
22016 
22017 	if (status == 0) {
22018 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22019 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
22020 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
22021 	}
22022 
22023 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
22024 
22025 	return (status);
22026 }
22027 
22028 
22029 /*
22030  *    Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
22031  *
22032  * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command.
22033  *
22034  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
22035  *                      structure for this target.
22036  *		bufaddr
22037  *		buflen
22038  *		class_req
22039  *
22040  * Return Code: 0   - Success
22041  *		errno return code from sd_ssc_send()
22042  *
22043  *     Context: Can sleep. Does not return until command is completed.
22044  */
22045 
22046 static int
22047 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr,
22048 	size_t buflen, uchar_t class_req)
22049 {
22050 	union scsi_cdb		cdb;
22051 	struct uscsi_cmd	ucmd_buf;
22052 	int			status;
22053 	struct sd_lun		*un;
22054 
22055 	ASSERT(ssc != NULL);
22056 	un = ssc->ssc_un;
22057 	ASSERT(un != NULL);
22058 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22059 	ASSERT(bufaddr != NULL);
22060 
22061 	SD_TRACE(SD_LOG_IO, un,
22062 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un);
22063 
22064 	bzero(&cdb, sizeof (cdb));
22065 	bzero(&ucmd_buf, sizeof (ucmd_buf));
22066 	bzero(bufaddr, buflen);
22067 
22068 	cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION;
22069 	cdb.cdb_opaque[1] = 1; /* polled */
22070 	cdb.cdb_opaque[4] = class_req;
22071 	FORMG1COUNT(&cdb, buflen);
22072 
22073 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
22074 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
22075 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
22076 	ucmd_buf.uscsi_buflen	= buflen;
22077 	ucmd_buf.uscsi_rqbuf	= NULL;
22078 	ucmd_buf.uscsi_rqlen	= 0;
22079 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
22080 	ucmd_buf.uscsi_timeout	= 60;
22081 
22082 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22083 	    UIO_SYSSPACE, SD_PATH_DIRECT);
22084 
22085 	/*
22086 	 * Only handle status == 0, the upper-level caller
22087 	 * will put different assessment based on the context.
22088 	 */
22089 	if (status == 0) {
22090 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22091 
22092 		if (ucmd_buf.uscsi_resid != 0) {
22093 			status = EIO;
22094 		}
22095 	}
22096 
22097 	SD_TRACE(SD_LOG_IO, un,
22098 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n");
22099 
22100 	return (status);
22101 }
22102 
22103 
22104 static boolean_t
22105 sd_gesn_media_data_valid(uchar_t *data)
22106 {
22107 	uint16_t			len;
22108 
22109 	len = (data[1] << 8) | data[0];
22110 	return ((len >= 6) &&
22111 	    ((data[2] & SD_GESN_HEADER_NEA) == 0) &&
22112 	    ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) &&
22113 	    ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0));
22114 }
22115 
22116 
22117 /*
22118  *    Function: sdioctl
22119  *
22120  * Description: Driver's ioctl(9e) entry point function.
22121  *
22122  *   Arguments: dev     - device number
22123  *		cmd     - ioctl operation to be performed
22124  *		arg     - user argument, contains data to be set or reference
22125  *			  parameter for get
22126  *		flag    - bit flag, indicating open settings, 32/64 bit type
22127  *		cred_p  - user credential pointer
22128  *		rval_p  - calling process return value (OPT)
22129  *
22130  * Return Code: EINVAL
22131  *		ENOTTY
22132  *		ENXIO
22133  *		EIO
22134  *		EFAULT
22135  *		ENOTSUP
22136  *		EPERM
22137  *
22138  *     Context: Called from the device switch at normal priority.
22139  */
22140 
22141 static int
22142 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
22143 {
22144 	struct sd_lun	*un = NULL;
22145 	int		err = 0;
22146 	int		i = 0;
22147 	cred_t		*cr;
22148 	int		tmprval = EINVAL;
22149 	boolean_t	is_valid;
22150 	sd_ssc_t	*ssc;
22151 
22152 	/*
22153 	 * All device accesses go thru sdstrategy where we check on suspend
22154 	 * status
22155 	 */
22156 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22157 		return (ENXIO);
22158 	}
22159 
22160 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22161 
22162 	/* Initialize sd_ssc_t for internal uscsi commands */
22163 	ssc = sd_ssc_init(un);
22164 
22165 	is_valid = SD_IS_VALID_LABEL(un);
22166 
22167 	/*
22168 	 * Moved this wait from sd_uscsi_strategy to here for
22169 	 * reasons of deadlock prevention. Internal driver commands,
22170 	 * specifically those to change a devices power level, result
22171 	 * in a call to sd_uscsi_strategy.
22172 	 */
22173 	mutex_enter(SD_MUTEX(un));
22174 	while ((un->un_state == SD_STATE_SUSPENDED) ||
22175 	    (un->un_state == SD_STATE_PM_CHANGING)) {
22176 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
22177 	}
22178 	/*
22179 	 * Twiddling the counter here protects commands from now
22180 	 * through to the top of sd_uscsi_strategy. Without the
22181 	 * counter inc. a power down, for example, could get in
22182 	 * after the above check for state is made and before
22183 	 * execution gets to the top of sd_uscsi_strategy.
22184 	 * That would cause problems.
22185 	 */
22186 	un->un_ncmds_in_driver++;
22187 
22188 	if (!is_valid &&
22189 	    (flag & (FNDELAY | FNONBLOCK))) {
22190 		switch (cmd) {
22191 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
22192 		case DKIOCGVTOC:
22193 		case DKIOCGEXTVTOC:
22194 		case DKIOCGAPART:
22195 		case DKIOCPARTINFO:
22196 		case DKIOCEXTPARTINFO:
22197 		case DKIOCSGEOM:
22198 		case DKIOCSAPART:
22199 		case DKIOCGETEFI:
22200 		case DKIOCPARTITION:
22201 		case DKIOCSVTOC:
22202 		case DKIOCSEXTVTOC:
22203 		case DKIOCSETEFI:
22204 		case DKIOCGMBOOT:
22205 		case DKIOCSMBOOT:
22206 		case DKIOCG_PHYGEOM:
22207 		case DKIOCG_VIRTGEOM:
22208 #if defined(__i386) || defined(__amd64)
22209 		case DKIOCSETEXTPART:
22210 #endif
22211 			/* let cmlb handle it */
22212 			goto skip_ready_valid;
22213 
22214 		case CDROMPAUSE:
22215 		case CDROMRESUME:
22216 		case CDROMPLAYMSF:
22217 		case CDROMPLAYTRKIND:
22218 		case CDROMREADTOCHDR:
22219 		case CDROMREADTOCENTRY:
22220 		case CDROMSTOP:
22221 		case CDROMSTART:
22222 		case CDROMVOLCTRL:
22223 		case CDROMSUBCHNL:
22224 		case CDROMREADMODE2:
22225 		case CDROMREADMODE1:
22226 		case CDROMREADOFFSET:
22227 		case CDROMSBLKMODE:
22228 		case CDROMGBLKMODE:
22229 		case CDROMGDRVSPEED:
22230 		case CDROMSDRVSPEED:
22231 		case CDROMCDDA:
22232 		case CDROMCDXA:
22233 		case CDROMSUBCODE:
22234 			if (!ISCD(un)) {
22235 				un->un_ncmds_in_driver--;
22236 				ASSERT(un->un_ncmds_in_driver >= 0);
22237 				mutex_exit(SD_MUTEX(un));
22238 				err = ENOTTY;
22239 				goto done_without_assess;
22240 			}
22241 			break;
22242 		case FDEJECT:
22243 		case DKIOCEJECT:
22244 		case CDROMEJECT:
22245 			if (!un->un_f_eject_media_supported) {
22246 				un->un_ncmds_in_driver--;
22247 				ASSERT(un->un_ncmds_in_driver >= 0);
22248 				mutex_exit(SD_MUTEX(un));
22249 				err = ENOTTY;
22250 				goto done_without_assess;
22251 			}
22252 			break;
22253 		case DKIOCFLUSHWRITECACHE:
22254 			mutex_exit(SD_MUTEX(un));
22255 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22256 			if (err != 0) {
22257 				mutex_enter(SD_MUTEX(un));
22258 				un->un_ncmds_in_driver--;
22259 				ASSERT(un->un_ncmds_in_driver >= 0);
22260 				mutex_exit(SD_MUTEX(un));
22261 				err = EIO;
22262 				goto done_quick_assess;
22263 			}
22264 			mutex_enter(SD_MUTEX(un));
22265 			/* FALLTHROUGH */
22266 		case DKIOCREMOVABLE:
22267 		case DKIOCHOTPLUGGABLE:
22268 		case DKIOCINFO:
22269 		case DKIOCGMEDIAINFO:
22270 		case DKIOCGMEDIAINFOEXT:
22271 		case MHIOCENFAILFAST:
22272 		case MHIOCSTATUS:
22273 		case MHIOCTKOWN:
22274 		case MHIOCRELEASE:
22275 		case MHIOCGRP_INKEYS:
22276 		case MHIOCGRP_INRESV:
22277 		case MHIOCGRP_REGISTER:
22278 		case MHIOCGRP_RESERVE:
22279 		case MHIOCGRP_PREEMPTANDABORT:
22280 		case MHIOCGRP_REGISTERANDIGNOREKEY:
22281 		case CDROMCLOSETRAY:
22282 		case USCSICMD:
22283 			goto skip_ready_valid;
22284 		default:
22285 			break;
22286 		}
22287 
22288 		mutex_exit(SD_MUTEX(un));
22289 		err = sd_ready_and_valid(ssc, SDPART(dev));
22290 		mutex_enter(SD_MUTEX(un));
22291 
22292 		if (err != SD_READY_VALID) {
22293 			switch (cmd) {
22294 			case DKIOCSTATE:
22295 			case CDROMGDRVSPEED:
22296 			case CDROMSDRVSPEED:
22297 			case FDEJECT:	/* for eject command */
22298 			case DKIOCEJECT:
22299 			case CDROMEJECT:
22300 			case DKIOCREMOVABLE:
22301 			case DKIOCHOTPLUGGABLE:
22302 				break;
22303 			default:
22304 				if (un->un_f_has_removable_media) {
22305 					err = ENXIO;
22306 				} else {
22307 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
22308 					if (err == SD_RESERVED_BY_OTHERS) {
22309 						err = EACCES;
22310 					} else {
22311 						err = EIO;
22312 					}
22313 				}
22314 				un->un_ncmds_in_driver--;
22315 				ASSERT(un->un_ncmds_in_driver >= 0);
22316 				mutex_exit(SD_MUTEX(un));
22317 
22318 				goto done_without_assess;
22319 			}
22320 		}
22321 	}
22322 
22323 skip_ready_valid:
22324 	mutex_exit(SD_MUTEX(un));
22325 
22326 	switch (cmd) {
22327 	case DKIOCINFO:
22328 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
22329 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
22330 		break;
22331 
22332 	case DKIOCGMEDIAINFO:
22333 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
22334 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
22335 		break;
22336 
22337 	case DKIOCGMEDIAINFOEXT:
22338 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n");
22339 		err = sd_get_media_info_ext(dev, (caddr_t)arg, flag);
22340 		break;
22341 
22342 	case DKIOCGGEOM:
22343 	case DKIOCGVTOC:
22344 	case DKIOCGEXTVTOC:
22345 	case DKIOCGAPART:
22346 	case DKIOCPARTINFO:
22347 	case DKIOCEXTPARTINFO:
22348 	case DKIOCSGEOM:
22349 	case DKIOCSAPART:
22350 	case DKIOCGETEFI:
22351 	case DKIOCPARTITION:
22352 	case DKIOCSVTOC:
22353 	case DKIOCSEXTVTOC:
22354 	case DKIOCSETEFI:
22355 	case DKIOCGMBOOT:
22356 	case DKIOCSMBOOT:
22357 	case DKIOCG_PHYGEOM:
22358 	case DKIOCG_VIRTGEOM:
22359 #if defined(__i386) || defined(__amd64)
22360 	case DKIOCSETEXTPART:
22361 #endif
22362 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
22363 
22364 		/* TUR should spin up */
22365 
22366 		if (un->un_f_has_removable_media)
22367 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
22368 			    SD_CHECK_FOR_MEDIA);
22369 
22370 		else
22371 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22372 
22373 		if (err != 0)
22374 			goto done_with_assess;
22375 
22376 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
22377 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
22378 
22379 		if ((err == 0) &&
22380 		    ((cmd == DKIOCSETEFI) ||
22381 		    (un->un_f_pkstats_enabled) &&
22382 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
22383 		    cmd == DKIOCSEXTVTOC))) {
22384 
22385 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
22386 			    (void *)SD_PATH_DIRECT);
22387 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
22388 				sd_set_pstats(un);
22389 				SD_TRACE(SD_LOG_IO_PARTITION, un,
22390 				    "sd_ioctl: un:0x%p pstats created and "
22391 				    "set\n", un);
22392 			}
22393 		}
22394 
22395 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
22396 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
22397 
22398 			mutex_enter(SD_MUTEX(un));
22399 			if (un->un_f_devid_supported &&
22400 			    (un->un_f_opt_fab_devid == TRUE)) {
22401 				if (un->un_devid == NULL) {
22402 					sd_register_devid(ssc, SD_DEVINFO(un),
22403 					    SD_TARGET_IS_UNRESERVED);
22404 				} else {
22405 					/*
22406 					 * The device id for this disk
22407 					 * has been fabricated. The
22408 					 * device id must be preserved
22409 					 * by writing it back out to
22410 					 * disk.
22411 					 */
22412 					if (sd_write_deviceid(ssc) != 0) {
22413 						ddi_devid_free(un->un_devid);
22414 						un->un_devid = NULL;
22415 					}
22416 				}
22417 			}
22418 			mutex_exit(SD_MUTEX(un));
22419 		}
22420 
22421 		break;
22422 
22423 	case DKIOCLOCK:
22424 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
22425 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22426 		    SD_PATH_STANDARD);
22427 		goto done_with_assess;
22428 
22429 	case DKIOCUNLOCK:
22430 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
22431 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
22432 		    SD_PATH_STANDARD);
22433 		goto done_with_assess;
22434 
22435 	case DKIOCSTATE: {
22436 		enum dkio_state		state;
22437 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
22438 
22439 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
22440 			err = EFAULT;
22441 		} else {
22442 			err = sd_check_media(dev, state);
22443 			if (err == 0) {
22444 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
22445 				    sizeof (int), flag) != 0)
22446 					err = EFAULT;
22447 			}
22448 		}
22449 		break;
22450 	}
22451 
22452 	case DKIOCREMOVABLE:
22453 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
22454 		i = un->un_f_has_removable_media ? 1 : 0;
22455 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22456 			err = EFAULT;
22457 		} else {
22458 			err = 0;
22459 		}
22460 		break;
22461 
22462 	case DKIOCHOTPLUGGABLE:
22463 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
22464 		i = un->un_f_is_hotpluggable ? 1 : 0;
22465 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22466 			err = EFAULT;
22467 		} else {
22468 			err = 0;
22469 		}
22470 		break;
22471 
22472 	case DKIOCREADONLY:
22473 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n");
22474 		i = 0;
22475 		if ((ISCD(un) && !un->un_f_mmc_writable_media) ||
22476 		    (sr_check_wp(dev) != 0)) {
22477 			i = 1;
22478 		}
22479 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22480 			err = EFAULT;
22481 		} else {
22482 			err = 0;
22483 		}
22484 		break;
22485 
22486 	case DKIOCGTEMPERATURE:
22487 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
22488 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
22489 		break;
22490 
22491 	case MHIOCENFAILFAST:
22492 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
22493 		if ((err = drv_priv(cred_p)) == 0) {
22494 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
22495 		}
22496 		break;
22497 
22498 	case MHIOCTKOWN:
22499 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
22500 		if ((err = drv_priv(cred_p)) == 0) {
22501 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
22502 		}
22503 		break;
22504 
22505 	case MHIOCRELEASE:
22506 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
22507 		if ((err = drv_priv(cred_p)) == 0) {
22508 			err = sd_mhdioc_release(dev);
22509 		}
22510 		break;
22511 
22512 	case MHIOCSTATUS:
22513 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
22514 		if ((err = drv_priv(cred_p)) == 0) {
22515 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
22516 			case 0:
22517 				err = 0;
22518 				break;
22519 			case EACCES:
22520 				*rval_p = 1;
22521 				err = 0;
22522 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22523 				break;
22524 			default:
22525 				err = EIO;
22526 				goto done_with_assess;
22527 			}
22528 		}
22529 		break;
22530 
22531 	case MHIOCQRESERVE:
22532 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
22533 		if ((err = drv_priv(cred_p)) == 0) {
22534 			err = sd_reserve_release(dev, SD_RESERVE);
22535 		}
22536 		break;
22537 
22538 	case MHIOCREREGISTERDEVID:
22539 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
22540 		if (drv_priv(cred_p) == EPERM) {
22541 			err = EPERM;
22542 		} else if (!un->un_f_devid_supported) {
22543 			err = ENOTTY;
22544 		} else {
22545 			err = sd_mhdioc_register_devid(dev);
22546 		}
22547 		break;
22548 
22549 	case MHIOCGRP_INKEYS:
22550 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
22551 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22552 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22553 				err = ENOTSUP;
22554 			} else {
22555 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
22556 				    flag);
22557 			}
22558 		}
22559 		break;
22560 
22561 	case MHIOCGRP_INRESV:
22562 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
22563 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22564 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22565 				err = ENOTSUP;
22566 			} else {
22567 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
22568 			}
22569 		}
22570 		break;
22571 
22572 	case MHIOCGRP_REGISTER:
22573 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
22574 		if ((err = drv_priv(cred_p)) != EPERM) {
22575 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22576 				err = ENOTSUP;
22577 			} else if (arg != NULL) {
22578 				mhioc_register_t reg;
22579 				if (ddi_copyin((void *)arg, &reg,
22580 				    sizeof (mhioc_register_t), flag) != 0) {
22581 					err = EFAULT;
22582 				} else {
22583 					err =
22584 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22585 					    ssc, SD_SCSI3_REGISTER,
22586 					    (uchar_t *)&reg);
22587 					if (err != 0)
22588 						goto done_with_assess;
22589 				}
22590 			}
22591 		}
22592 		break;
22593 
22594 	case MHIOCGRP_RESERVE:
22595 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
22596 		if ((err = drv_priv(cred_p)) != EPERM) {
22597 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22598 				err = ENOTSUP;
22599 			} else if (arg != NULL) {
22600 				mhioc_resv_desc_t resv_desc;
22601 				if (ddi_copyin((void *)arg, &resv_desc,
22602 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
22603 					err = EFAULT;
22604 				} else {
22605 					err =
22606 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22607 					    ssc, SD_SCSI3_RESERVE,
22608 					    (uchar_t *)&resv_desc);
22609 					if (err != 0)
22610 						goto done_with_assess;
22611 				}
22612 			}
22613 		}
22614 		break;
22615 
22616 	case MHIOCGRP_PREEMPTANDABORT:
22617 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
22618 		if ((err = drv_priv(cred_p)) != EPERM) {
22619 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22620 				err = ENOTSUP;
22621 			} else if (arg != NULL) {
22622 				mhioc_preemptandabort_t preempt_abort;
22623 				if (ddi_copyin((void *)arg, &preempt_abort,
22624 				    sizeof (mhioc_preemptandabort_t),
22625 				    flag) != 0) {
22626 					err = EFAULT;
22627 				} else {
22628 					err =
22629 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22630 					    ssc, SD_SCSI3_PREEMPTANDABORT,
22631 					    (uchar_t *)&preempt_abort);
22632 					if (err != 0)
22633 						goto done_with_assess;
22634 				}
22635 			}
22636 		}
22637 		break;
22638 
22639 	case MHIOCGRP_REGISTERANDIGNOREKEY:
22640 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
22641 		if ((err = drv_priv(cred_p)) != EPERM) {
22642 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22643 				err = ENOTSUP;
22644 			} else if (arg != NULL) {
22645 				mhioc_registerandignorekey_t r_and_i;
22646 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
22647 				    sizeof (mhioc_registerandignorekey_t),
22648 				    flag) != 0) {
22649 					err = EFAULT;
22650 				} else {
22651 					err =
22652 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22653 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
22654 					    (uchar_t *)&r_and_i);
22655 					if (err != 0)
22656 						goto done_with_assess;
22657 				}
22658 			}
22659 		}
22660 		break;
22661 
22662 	case USCSICMD:
22663 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
22664 		cr = ddi_get_cred();
22665 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
22666 			err = EPERM;
22667 		} else {
22668 			enum uio_seg	uioseg;
22669 
22670 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
22671 			    UIO_USERSPACE;
22672 			if (un->un_f_format_in_progress == TRUE) {
22673 				err = EAGAIN;
22674 				break;
22675 			}
22676 
22677 			err = sd_ssc_send(ssc,
22678 			    (struct uscsi_cmd *)arg,
22679 			    flag, uioseg, SD_PATH_STANDARD);
22680 			if (err != 0)
22681 				goto done_with_assess;
22682 			else
22683 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22684 		}
22685 		break;
22686 
22687 	case CDROMPAUSE:
22688 	case CDROMRESUME:
22689 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
22690 		if (!ISCD(un)) {
22691 			err = ENOTTY;
22692 		} else {
22693 			err = sr_pause_resume(dev, cmd);
22694 		}
22695 		break;
22696 
22697 	case CDROMPLAYMSF:
22698 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
22699 		if (!ISCD(un)) {
22700 			err = ENOTTY;
22701 		} else {
22702 			err = sr_play_msf(dev, (caddr_t)arg, flag);
22703 		}
22704 		break;
22705 
22706 	case CDROMPLAYTRKIND:
22707 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
22708 #if defined(__i386) || defined(__amd64)
22709 		/*
22710 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
22711 		 */
22712 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22713 #else
22714 		if (!ISCD(un)) {
22715 #endif
22716 			err = ENOTTY;
22717 		} else {
22718 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
22719 		}
22720 		break;
22721 
22722 	case CDROMREADTOCHDR:
22723 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
22724 		if (!ISCD(un)) {
22725 			err = ENOTTY;
22726 		} else {
22727 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
22728 		}
22729 		break;
22730 
22731 	case CDROMREADTOCENTRY:
22732 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
22733 		if (!ISCD(un)) {
22734 			err = ENOTTY;
22735 		} else {
22736 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
22737 		}
22738 		break;
22739 
22740 	case CDROMSTOP:
22741 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
22742 		if (!ISCD(un)) {
22743 			err = ENOTTY;
22744 		} else {
22745 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22746 			    SD_TARGET_STOP, SD_PATH_STANDARD);
22747 			goto done_with_assess;
22748 		}
22749 		break;
22750 
22751 	case CDROMSTART:
22752 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
22753 		if (!ISCD(un)) {
22754 			err = ENOTTY;
22755 		} else {
22756 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22757 			    SD_TARGET_START, SD_PATH_STANDARD);
22758 			goto done_with_assess;
22759 		}
22760 		break;
22761 
22762 	case CDROMCLOSETRAY:
22763 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
22764 		if (!ISCD(un)) {
22765 			err = ENOTTY;
22766 		} else {
22767 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22768 			    SD_TARGET_CLOSE, SD_PATH_STANDARD);
22769 			goto done_with_assess;
22770 		}
22771 		break;
22772 
22773 	case FDEJECT:	/* for eject command */
22774 	case DKIOCEJECT:
22775 	case CDROMEJECT:
22776 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
22777 		if (!un->un_f_eject_media_supported) {
22778 			err = ENOTTY;
22779 		} else {
22780 			err = sr_eject(dev);
22781 		}
22782 		break;
22783 
22784 	case CDROMVOLCTRL:
22785 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
22786 		if (!ISCD(un)) {
22787 			err = ENOTTY;
22788 		} else {
22789 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
22790 		}
22791 		break;
22792 
22793 	case CDROMSUBCHNL:
22794 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
22795 		if (!ISCD(un)) {
22796 			err = ENOTTY;
22797 		} else {
22798 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
22799 		}
22800 		break;
22801 
22802 	case CDROMREADMODE2:
22803 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
22804 		if (!ISCD(un)) {
22805 			err = ENOTTY;
22806 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22807 			/*
22808 			 * If the drive supports READ CD, use that instead of
22809 			 * switching the LBA size via a MODE SELECT
22810 			 * Block Descriptor
22811 			 */
22812 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
22813 		} else {
22814 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
22815 		}
22816 		break;
22817 
22818 	case CDROMREADMODE1:
22819 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
22820 		if (!ISCD(un)) {
22821 			err = ENOTTY;
22822 		} else {
22823 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
22824 		}
22825 		break;
22826 
22827 	case CDROMREADOFFSET:
22828 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
22829 		if (!ISCD(un)) {
22830 			err = ENOTTY;
22831 		} else {
22832 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
22833 			    flag);
22834 		}
22835 		break;
22836 
22837 	case CDROMSBLKMODE:
22838 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
22839 		/*
22840 		 * There is no means of changing block size in case of atapi
22841 		 * drives, thus return ENOTTY if drive type is atapi
22842 		 */
22843 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22844 			err = ENOTTY;
22845 		} else if (un->un_f_mmc_cap == TRUE) {
22846 
22847 			/*
22848 			 * MMC Devices do not support changing the
22849 			 * logical block size
22850 			 *
22851 			 * Note: EINVAL is being returned instead of ENOTTY to
22852 			 * maintain consistancy with the original mmc
22853 			 * driver update.
22854 			 */
22855 			err = EINVAL;
22856 		} else {
22857 			mutex_enter(SD_MUTEX(un));
22858 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
22859 			    (un->un_ncmds_in_transport > 0)) {
22860 				mutex_exit(SD_MUTEX(un));
22861 				err = EINVAL;
22862 			} else {
22863 				mutex_exit(SD_MUTEX(un));
22864 				err = sr_change_blkmode(dev, cmd, arg, flag);
22865 			}
22866 		}
22867 		break;
22868 
22869 	case CDROMGBLKMODE:
22870 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
22871 		if (!ISCD(un)) {
22872 			err = ENOTTY;
22873 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
22874 		    (un->un_f_blockcount_is_valid != FALSE)) {
22875 			/*
22876 			 * Drive is an ATAPI drive so return target block
22877 			 * size for ATAPI drives since we cannot change the
22878 			 * blocksize on ATAPI drives. Used primarily to detect
22879 			 * if an ATAPI cdrom is present.
22880 			 */
22881 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
22882 			    sizeof (int), flag) != 0) {
22883 				err = EFAULT;
22884 			} else {
22885 				err = 0;
22886 			}
22887 
22888 		} else {
22889 			/*
22890 			 * Drive supports changing block sizes via a Mode
22891 			 * Select.
22892 			 */
22893 			err = sr_change_blkmode(dev, cmd, arg, flag);
22894 		}
22895 		break;
22896 
22897 	case CDROMGDRVSPEED:
22898 	case CDROMSDRVSPEED:
22899 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22900 		if (!ISCD(un)) {
22901 			err = ENOTTY;
22902 		} else if (un->un_f_mmc_cap == TRUE) {
22903 			/*
22904 			 * Note: In the future the driver implementation
22905 			 * for getting and
22906 			 * setting cd speed should entail:
22907 			 * 1) If non-mmc try the Toshiba mode page
22908 			 *    (sr_change_speed)
22909 			 * 2) If mmc but no support for Real Time Streaming try
22910 			 *    the SET CD SPEED (0xBB) command
22911 			 *   (sr_atapi_change_speed)
22912 			 * 3) If mmc and support for Real Time Streaming
22913 			 *    try the GET PERFORMANCE and SET STREAMING
22914 			 *    commands (not yet implemented, 4380808)
22915 			 */
22916 			/*
22917 			 * As per recent MMC spec, CD-ROM speed is variable
22918 			 * and changes with LBA. Since there is no such
22919 			 * things as drive speed now, fail this ioctl.
22920 			 *
22921 			 * Note: EINVAL is returned for consistancy of original
22922 			 * implementation which included support for getting
22923 			 * the drive speed of mmc devices but not setting
22924 			 * the drive speed. Thus EINVAL would be returned
22925 			 * if a set request was made for an mmc device.
22926 			 * We no longer support get or set speed for
22927 			 * mmc but need to remain consistent with regard
22928 			 * to the error code returned.
22929 			 */
22930 			err = EINVAL;
22931 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22932 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
22933 		} else {
22934 			err = sr_change_speed(dev, cmd, arg, flag);
22935 		}
22936 		break;
22937 
22938 	case CDROMCDDA:
22939 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
22940 		if (!ISCD(un)) {
22941 			err = ENOTTY;
22942 		} else {
22943 			err = sr_read_cdda(dev, (void *)arg, flag);
22944 		}
22945 		break;
22946 
22947 	case CDROMCDXA:
22948 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
22949 		if (!ISCD(un)) {
22950 			err = ENOTTY;
22951 		} else {
22952 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
22953 		}
22954 		break;
22955 
22956 	case CDROMSUBCODE:
22957 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
22958 		if (!ISCD(un)) {
22959 			err = ENOTTY;
22960 		} else {
22961 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
22962 		}
22963 		break;
22964 
22965 
22966 #ifdef SDDEBUG
22967 /* RESET/ABORTS testing ioctls */
22968 	case DKIOCRESET: {
22969 		int	reset_level;
22970 
22971 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
22972 			err = EFAULT;
22973 		} else {
22974 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
22975 			    "reset_level = 0x%lx\n", reset_level);
22976 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22977 				err = 0;
22978 			} else {
22979 				err = EIO;
22980 			}
22981 		}
22982 		break;
22983 	}
22984 
22985 	case DKIOCABORT:
22986 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
22987 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
22988 			err = 0;
22989 		} else {
22990 			err = EIO;
22991 		}
22992 		break;
22993 #endif
22994 
22995 #ifdef SD_FAULT_INJECTION
22996 /* SDIOC FaultInjection testing ioctls */
22997 	case SDIOCSTART:
22998 	case SDIOCSTOP:
22999 	case SDIOCINSERTPKT:
23000 	case SDIOCINSERTXB:
23001 	case SDIOCINSERTUN:
23002 	case SDIOCINSERTARQ:
23003 	case SDIOCPUSH:
23004 	case SDIOCRETRIEVE:
23005 	case SDIOCRUN:
23006 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
23007 		    "SDIOC detected cmd:0x%X:\n", cmd);
23008 		/* call error generator */
23009 		sd_faultinjection_ioctl(cmd, arg, un);
23010 		err = 0;
23011 		break;
23012 
23013 #endif /* SD_FAULT_INJECTION */
23014 
23015 	case DKIOCFLUSHWRITECACHE:
23016 		{
23017 			struct dk_callback *dkc = (struct dk_callback *)arg;
23018 
23019 			mutex_enter(SD_MUTEX(un));
23020 			if (!un->un_f_sync_cache_supported ||
23021 			    !un->un_f_write_cache_enabled) {
23022 				err = un->un_f_sync_cache_supported ?
23023 				    0 : ENOTSUP;
23024 				mutex_exit(SD_MUTEX(un));
23025 				if ((flag & FKIOCTL) && dkc != NULL &&
23026 				    dkc->dkc_callback != NULL) {
23027 					(*dkc->dkc_callback)(dkc->dkc_cookie,
23028 					    err);
23029 					/*
23030 					 * Did callback and reported error.
23031 					 * Since we did a callback, ioctl
23032 					 * should return 0.
23033 					 */
23034 					err = 0;
23035 				}
23036 				break;
23037 			}
23038 			mutex_exit(SD_MUTEX(un));
23039 
23040 			if ((flag & FKIOCTL) && dkc != NULL &&
23041 			    dkc->dkc_callback != NULL) {
23042 				/* async SYNC CACHE request */
23043 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
23044 			} else {
23045 				/* synchronous SYNC CACHE request */
23046 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
23047 			}
23048 		}
23049 		break;
23050 
23051 	case DKIOCGETWCE: {
23052 
23053 		int wce;
23054 
23055 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
23056 			break;
23057 		}
23058 
23059 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
23060 			err = EFAULT;
23061 		}
23062 		break;
23063 	}
23064 
23065 	case DKIOCSETWCE: {
23066 
23067 		int wce, sync_supported;
23068 		int cur_wce = 0;
23069 
23070 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
23071 			err = EFAULT;
23072 			break;
23073 		}
23074 
23075 		/*
23076 		 * Synchronize multiple threads trying to enable
23077 		 * or disable the cache via the un_f_wcc_cv
23078 		 * condition variable.
23079 		 */
23080 		mutex_enter(SD_MUTEX(un));
23081 
23082 		/*
23083 		 * Don't allow the cache to be enabled if the
23084 		 * config file has it disabled.
23085 		 */
23086 		if (un->un_f_opt_disable_cache && wce) {
23087 			mutex_exit(SD_MUTEX(un));
23088 			err = EINVAL;
23089 			break;
23090 		}
23091 
23092 		/*
23093 		 * Wait for write cache change in progress
23094 		 * bit to be clear before proceeding.
23095 		 */
23096 		while (un->un_f_wcc_inprog)
23097 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
23098 
23099 		un->un_f_wcc_inprog = 1;
23100 
23101 		mutex_exit(SD_MUTEX(un));
23102 
23103 		/*
23104 		 * Get the current write cache state
23105 		 */
23106 		if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) {
23107 			mutex_enter(SD_MUTEX(un));
23108 			un->un_f_wcc_inprog = 0;
23109 			cv_broadcast(&un->un_wcc_cv);
23110 			mutex_exit(SD_MUTEX(un));
23111 			break;
23112 		}
23113 
23114 		mutex_enter(SD_MUTEX(un));
23115 		un->un_f_write_cache_enabled = (cur_wce != 0);
23116 
23117 		if (un->un_f_write_cache_enabled && wce == 0) {
23118 			/*
23119 			 * Disable the write cache.  Don't clear
23120 			 * un_f_write_cache_enabled until after
23121 			 * the mode select and flush are complete.
23122 			 */
23123 			sync_supported = un->un_f_sync_cache_supported;
23124 
23125 			/*
23126 			 * If cache flush is suppressed, we assume that the
23127 			 * controller firmware will take care of managing the
23128 			 * write cache for us: no need to explicitly
23129 			 * disable it.
23130 			 */
23131 			if (!un->un_f_suppress_cache_flush) {
23132 				mutex_exit(SD_MUTEX(un));
23133 				if ((err = sd_cache_control(ssc,
23134 				    SD_CACHE_NOCHANGE,
23135 				    SD_CACHE_DISABLE)) == 0 &&
23136 				    sync_supported) {
23137 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
23138 					    NULL);
23139 				}
23140 			} else {
23141 				mutex_exit(SD_MUTEX(un));
23142 			}
23143 
23144 			mutex_enter(SD_MUTEX(un));
23145 			if (err == 0) {
23146 				un->un_f_write_cache_enabled = 0;
23147 			}
23148 
23149 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
23150 			/*
23151 			 * Set un_f_write_cache_enabled first, so there is
23152 			 * no window where the cache is enabled, but the
23153 			 * bit says it isn't.
23154 			 */
23155 			un->un_f_write_cache_enabled = 1;
23156 
23157 			/*
23158 			 * If cache flush is suppressed, we assume that the
23159 			 * controller firmware will take care of managing the
23160 			 * write cache for us: no need to explicitly
23161 			 * enable it.
23162 			 */
23163 			if (!un->un_f_suppress_cache_flush) {
23164 				mutex_exit(SD_MUTEX(un));
23165 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
23166 				    SD_CACHE_ENABLE);
23167 			} else {
23168 				mutex_exit(SD_MUTEX(un));
23169 			}
23170 
23171 			mutex_enter(SD_MUTEX(un));
23172 
23173 			if (err) {
23174 				un->un_f_write_cache_enabled = 0;
23175 			}
23176 		}
23177 
23178 		un->un_f_wcc_inprog = 0;
23179 		cv_broadcast(&un->un_wcc_cv);
23180 		mutex_exit(SD_MUTEX(un));
23181 		break;
23182 	}
23183 
23184 	default:
23185 		err = ENOTTY;
23186 		break;
23187 	}
23188 	mutex_enter(SD_MUTEX(un));
23189 	un->un_ncmds_in_driver--;
23190 	ASSERT(un->un_ncmds_in_driver >= 0);
23191 	mutex_exit(SD_MUTEX(un));
23192 
23193 
23194 done_without_assess:
23195 	sd_ssc_fini(ssc);
23196 
23197 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23198 	return (err);
23199 
23200 done_with_assess:
23201 	mutex_enter(SD_MUTEX(un));
23202 	un->un_ncmds_in_driver--;
23203 	ASSERT(un->un_ncmds_in_driver >= 0);
23204 	mutex_exit(SD_MUTEX(un));
23205 
23206 done_quick_assess:
23207 	if (err != 0)
23208 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23209 	/* Uninitialize sd_ssc_t pointer */
23210 	sd_ssc_fini(ssc);
23211 
23212 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23213 	return (err);
23214 }
23215 
23216 
23217 /*
23218  *    Function: sd_dkio_ctrl_info
23219  *
23220  * Description: This routine is the driver entry point for handling controller
23221  *		information ioctl requests (DKIOCINFO).
23222  *
23223  *   Arguments: dev  - the device number
23224  *		arg  - pointer to user provided dk_cinfo structure
23225  *		       specifying the controller type and attributes.
23226  *		flag - this argument is a pass through to ddi_copyxxx()
23227  *		       directly from the mode argument of ioctl().
23228  *
23229  * Return Code: 0
23230  *		EFAULT
23231  *		ENXIO
23232  */
23233 
23234 static int
23235 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
23236 {
23237 	struct sd_lun	*un = NULL;
23238 	struct dk_cinfo	*info;
23239 	dev_info_t	*pdip;
23240 	int		lun, tgt;
23241 
23242 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23243 		return (ENXIO);
23244 	}
23245 
23246 	info = (struct dk_cinfo *)
23247 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
23248 
23249 	switch (un->un_ctype) {
23250 	case CTYPE_CDROM:
23251 		info->dki_ctype = DKC_CDROM;
23252 		break;
23253 	default:
23254 		info->dki_ctype = DKC_SCSI_CCS;
23255 		break;
23256 	}
23257 	pdip = ddi_get_parent(SD_DEVINFO(un));
23258 	info->dki_cnum = ddi_get_instance(pdip);
23259 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
23260 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
23261 	} else {
23262 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
23263 		    DK_DEVLEN - 1);
23264 	}
23265 
23266 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23267 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
23268 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23269 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
23270 
23271 	/* Unit Information */
23272 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
23273 	info->dki_slave = ((tgt << 3) | lun);
23274 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
23275 	    DK_DEVLEN - 1);
23276 	info->dki_flags = DKI_FMTVOL;
23277 	info->dki_partition = SDPART(dev);
23278 
23279 	/* Max Transfer size of this device in blocks */
23280 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
23281 	info->dki_addr = 0;
23282 	info->dki_space = 0;
23283 	info->dki_prio = 0;
23284 	info->dki_vec = 0;
23285 
23286 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
23287 		kmem_free(info, sizeof (struct dk_cinfo));
23288 		return (EFAULT);
23289 	} else {
23290 		kmem_free(info, sizeof (struct dk_cinfo));
23291 		return (0);
23292 	}
23293 }
23294 
23295 /*
23296  *    Function: sd_get_media_info_com
23297  *
23298  * Description: This routine returns the information required to populate
23299  *		the fields for the dk_minfo/dk_minfo_ext structures.
23300  *
23301  *   Arguments: dev		- the device number
23302  *		dki_media_type	- media_type
23303  *		dki_lbsize	- logical block size
23304  *		dki_capacity	- capacity in blocks
23305  *		dki_pbsize	- physical block size (if requested)
23306  *
23307  * Return Code: 0
23308  *		EACCESS
23309  *		EFAULT
23310  *		ENXIO
23311  *		EIO
23312  */
23313 static int
23314 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize,
23315 	diskaddr_t *dki_capacity, uint_t *dki_pbsize)
23316 {
23317 	struct sd_lun		*un = NULL;
23318 	struct uscsi_cmd	com;
23319 	struct scsi_inquiry	*sinq;
23320 	u_longlong_t		media_capacity;
23321 	uint64_t		capacity;
23322 	uint_t			lbasize;
23323 	uint_t			pbsize;
23324 	uchar_t			*out_data;
23325 	uchar_t			*rqbuf;
23326 	int			rval = 0;
23327 	int			rtn;
23328 	sd_ssc_t		*ssc;
23329 
23330 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
23331 	    (un->un_state == SD_STATE_OFFLINE)) {
23332 		return (ENXIO);
23333 	}
23334 
23335 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n");
23336 
23337 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
23338 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
23339 	ssc = sd_ssc_init(un);
23340 
23341 	/* Issue a TUR to determine if the drive is ready with media present */
23342 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
23343 	if (rval == ENXIO) {
23344 		goto done;
23345 	} else if (rval != 0) {
23346 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23347 	}
23348 
23349 	/* Now get configuration data */
23350 	if (ISCD(un)) {
23351 		*dki_media_type = DK_CDROM;
23352 
23353 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
23354 		if (un->un_f_mmc_cap == TRUE) {
23355 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
23356 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
23357 			    SD_PATH_STANDARD);
23358 
23359 			if (rtn) {
23360 				/*
23361 				 * We ignore all failures for CD and need to
23362 				 * put the assessment before processing code
23363 				 * to avoid missing assessment for FMA.
23364 				 */
23365 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23366 				/*
23367 				 * Failed for other than an illegal request
23368 				 * or command not supported
23369 				 */
23370 				if ((com.uscsi_status == STATUS_CHECK) &&
23371 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
23372 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
23373 					    (rqbuf[12] != 0x20)) {
23374 						rval = EIO;
23375 						goto no_assessment;
23376 					}
23377 				}
23378 			} else {
23379 				/*
23380 				 * The GET CONFIGURATION command succeeded
23381 				 * so set the media type according to the
23382 				 * returned data
23383 				 */
23384 				*dki_media_type = out_data[6];
23385 				*dki_media_type <<= 8;
23386 				*dki_media_type |= out_data[7];
23387 			}
23388 		}
23389 	} else {
23390 		/*
23391 		 * The profile list is not available, so we attempt to identify
23392 		 * the media type based on the inquiry data
23393 		 */
23394 		sinq = un->un_sd->sd_inq;
23395 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
23396 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
23397 			/* This is a direct access device  or optical disk */
23398 			*dki_media_type = DK_FIXED_DISK;
23399 
23400 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
23401 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
23402 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
23403 					*dki_media_type = DK_ZIP;
23404 				} else if (
23405 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
23406 					*dki_media_type = DK_JAZ;
23407 				}
23408 			}
23409 		} else {
23410 			/*
23411 			 * Not a CD, direct access or optical disk so return
23412 			 * unknown media
23413 			 */
23414 			*dki_media_type = DK_UNKNOWN;
23415 		}
23416 	}
23417 
23418 	/*
23419 	 * Now read the capacity so we can provide the lbasize,
23420 	 * pbsize and capacity.
23421 	 */
23422 	if (dki_pbsize && un->un_f_descr_format_supported)
23423 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
23424 		    &pbsize, SD_PATH_DIRECT);
23425 
23426 	if (dki_pbsize == NULL || rval != 0 ||
23427 	    !un->un_f_descr_format_supported) {
23428 		rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
23429 		    SD_PATH_DIRECT);
23430 
23431 		switch (rval) {
23432 		case 0:
23433 			if (un->un_f_enable_rmw &&
23434 			    un->un_phy_blocksize != 0) {
23435 				pbsize = un->un_phy_blocksize;
23436 			} else {
23437 				pbsize = lbasize;
23438 			}
23439 			media_capacity = capacity;
23440 
23441 			/*
23442 			 * sd_send_scsi_READ_CAPACITY() reports capacity in
23443 			 * un->un_sys_blocksize chunks. So we need to convert
23444 			 * it into cap.lbsize chunks.
23445 			 */
23446 			if (un->un_f_has_removable_media) {
23447 				media_capacity *= un->un_sys_blocksize;
23448 				media_capacity /= lbasize;
23449 			}
23450 			break;
23451 		case EACCES:
23452 			rval = EACCES;
23453 			goto done;
23454 		default:
23455 			rval = EIO;
23456 			goto done;
23457 		}
23458 	} else {
23459 		if (un->un_f_enable_rmw &&
23460 		    !ISP2(pbsize % DEV_BSIZE)) {
23461 			pbsize = SSD_SECSIZE;
23462 		} else if (!ISP2(lbasize % DEV_BSIZE) ||
23463 		    !ISP2(pbsize % DEV_BSIZE)) {
23464 			pbsize = lbasize = DEV_BSIZE;
23465 		}
23466 		media_capacity = capacity;
23467 	}
23468 
23469 	/*
23470 	 * If lun is expanded dynamically, update the un structure.
23471 	 */
23472 	mutex_enter(SD_MUTEX(un));
23473 	if ((un->un_f_blockcount_is_valid == TRUE) &&
23474 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
23475 	    (capacity > un->un_blockcount)) {
23476 		un->un_f_expnevent = B_FALSE;
23477 		sd_update_block_info(un, lbasize, capacity);
23478 	}
23479 	mutex_exit(SD_MUTEX(un));
23480 
23481 	*dki_lbsize = lbasize;
23482 	*dki_capacity = media_capacity;
23483 	if (dki_pbsize)
23484 		*dki_pbsize = pbsize;
23485 
23486 done:
23487 	if (rval != 0) {
23488 		if (rval == EIO)
23489 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23490 		else
23491 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23492 	}
23493 no_assessment:
23494 	sd_ssc_fini(ssc);
23495 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
23496 	kmem_free(rqbuf, SENSE_LENGTH);
23497 	return (rval);
23498 }
23499 
23500 /*
23501  *    Function: sd_get_media_info
23502  *
23503  * Description: This routine is the driver entry point for handling ioctl
23504  *		requests for the media type or command set profile used by the
23505  *		drive to operate on the media (DKIOCGMEDIAINFO).
23506  *
23507  *   Arguments: dev	- the device number
23508  *		arg	- pointer to user provided dk_minfo structure
23509  *			  specifying the media type, logical block size and
23510  *			  drive capacity.
23511  *		flag	- this argument is a pass through to ddi_copyxxx()
23512  *			  directly from the mode argument of ioctl().
23513  *
23514  * Return Code: returns the value from sd_get_media_info_com
23515  */
23516 static int
23517 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
23518 {
23519 	struct dk_minfo		mi;
23520 	int			rval;
23521 
23522 	rval = sd_get_media_info_com(dev, &mi.dki_media_type,
23523 	    &mi.dki_lbsize, &mi.dki_capacity, NULL);
23524 
23525 	if (rval)
23526 		return (rval);
23527 	if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag))
23528 		rval = EFAULT;
23529 	return (rval);
23530 }
23531 
23532 /*
23533  *    Function: sd_get_media_info_ext
23534  *
23535  * Description: This routine is the driver entry point for handling ioctl
23536  *		requests for the media type or command set profile used by the
23537  *		drive to operate on the media (DKIOCGMEDIAINFOEXT). The
23538  *		difference this ioctl and DKIOCGMEDIAINFO is the return value
23539  *		of this ioctl contains both logical block size and physical
23540  *		block size.
23541  *
23542  *
23543  *   Arguments: dev	- the device number
23544  *		arg	- pointer to user provided dk_minfo_ext structure
23545  *			  specifying the media type, logical block size,
23546  *			  physical block size and disk capacity.
23547  *		flag	- this argument is a pass through to ddi_copyxxx()
23548  *			  directly from the mode argument of ioctl().
23549  *
23550  * Return Code: returns the value from sd_get_media_info_com
23551  */
23552 static int
23553 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag)
23554 {
23555 	struct dk_minfo_ext	mie;
23556 	int			rval = 0;
23557 
23558 	rval = sd_get_media_info_com(dev, &mie.dki_media_type,
23559 	    &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize);
23560 
23561 	if (rval)
23562 		return (rval);
23563 	if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag))
23564 		rval = EFAULT;
23565 	return (rval);
23566 
23567 }
23568 
23569 /*
23570  *    Function: sd_watch_request_submit
23571  *
23572  * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit
23573  *		depending on which is supported by device.
23574  */
23575 static opaque_t
23576 sd_watch_request_submit(struct sd_lun *un)
23577 {
23578 	dev_t			dev;
23579 
23580 	/* All submissions are unified to use same device number */
23581 	dev = sd_make_device(SD_DEVINFO(un));
23582 
23583 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23584 		return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un),
23585 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23586 		    (caddr_t)dev));
23587 	} else {
23588 		return (scsi_watch_request_submit(SD_SCSI_DEVP(un),
23589 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23590 		    (caddr_t)dev));
23591 	}
23592 }
23593 
23594 
23595 /*
23596  *    Function: sd_check_media
23597  *
23598  * Description: This utility routine implements the functionality for the
23599  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23600  *		driver state changes from that specified by the user
23601  *		(inserted or ejected). For example, if the user specifies
23602  *		DKIO_EJECTED and the current media state is inserted this
23603  *		routine will immediately return DKIO_INSERTED. However, if the
23604  *		current media state is not inserted the user thread will be
23605  *		blocked until the drive state changes. If DKIO_NONE is specified
23606  *		the user thread will block until a drive state change occurs.
23607  *
23608  *   Arguments: dev  - the device number
23609  *		state  - user pointer to a dkio_state, updated with the current
23610  *			drive state at return.
23611  *
23612  * Return Code: ENXIO
23613  *		EIO
23614  *		EAGAIN
23615  *		EINTR
23616  */
23617 
23618 static int
23619 sd_check_media(dev_t dev, enum dkio_state state)
23620 {
23621 	struct sd_lun		*un = NULL;
23622 	enum dkio_state		prev_state;
23623 	opaque_t		token = NULL;
23624 	int			rval = 0;
23625 	sd_ssc_t		*ssc;
23626 
23627 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23628 		return (ENXIO);
23629 	}
23630 
23631 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23632 
23633 	ssc = sd_ssc_init(un);
23634 
23635 	mutex_enter(SD_MUTEX(un));
23636 
23637 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23638 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23639 
23640 	prev_state = un->un_mediastate;
23641 
23642 	/* is there anything to do? */
23643 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23644 		/*
23645 		 * submit the request to the scsi_watch service;
23646 		 * scsi_media_watch_cb() does the real work
23647 		 */
23648 		mutex_exit(SD_MUTEX(un));
23649 
23650 		/*
23651 		 * This change handles the case where a scsi watch request is
23652 		 * added to a device that is powered down. To accomplish this
23653 		 * we power up the device before adding the scsi watch request,
23654 		 * since the scsi watch sends a TUR directly to the device
23655 		 * which the device cannot handle if it is powered down.
23656 		 */
23657 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23658 			mutex_enter(SD_MUTEX(un));
23659 			goto done;
23660 		}
23661 
23662 		token = sd_watch_request_submit(un);
23663 
23664 		sd_pm_exit(un);
23665 
23666 		mutex_enter(SD_MUTEX(un));
23667 		if (token == NULL) {
23668 			rval = EAGAIN;
23669 			goto done;
23670 		}
23671 
23672 		/*
23673 		 * This is a special case IOCTL that doesn't return
23674 		 * until the media state changes. Routine sdpower
23675 		 * knows about and handles this so don't count it
23676 		 * as an active cmd in the driver, which would
23677 		 * keep the device busy to the pm framework.
23678 		 * If the count isn't decremented the device can't
23679 		 * be powered down.
23680 		 */
23681 		un->un_ncmds_in_driver--;
23682 		ASSERT(un->un_ncmds_in_driver >= 0);
23683 
23684 		/*
23685 		 * if a prior request had been made, this will be the same
23686 		 * token, as scsi_watch was designed that way.
23687 		 */
23688 		un->un_swr_token = token;
23689 		un->un_specified_mediastate = state;
23690 
23691 		/*
23692 		 * now wait for media change
23693 		 * we will not be signalled unless mediastate == state but it is
23694 		 * still better to test for this condition, since there is a
23695 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23696 		 */
23697 		SD_TRACE(SD_LOG_COMMON, un,
23698 		    "sd_check_media: waiting for media state change\n");
23699 		while (un->un_mediastate == state) {
23700 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23701 				SD_TRACE(SD_LOG_COMMON, un,
23702 				    "sd_check_media: waiting for media state "
23703 				    "was interrupted\n");
23704 				un->un_ncmds_in_driver++;
23705 				rval = EINTR;
23706 				goto done;
23707 			}
23708 			SD_TRACE(SD_LOG_COMMON, un,
23709 			    "sd_check_media: received signal, state=%x\n",
23710 			    un->un_mediastate);
23711 		}
23712 		/*
23713 		 * Inc the counter to indicate the device once again
23714 		 * has an active outstanding cmd.
23715 		 */
23716 		un->un_ncmds_in_driver++;
23717 	}
23718 
23719 	/* invalidate geometry */
23720 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23721 		sr_ejected(un);
23722 	}
23723 
23724 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23725 		uint64_t	capacity;
23726 		uint_t		lbasize;
23727 
23728 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23729 		mutex_exit(SD_MUTEX(un));
23730 		/*
23731 		 * Since the following routines use SD_PATH_DIRECT, we must
23732 		 * call PM directly before the upcoming disk accesses. This
23733 		 * may cause the disk to be power/spin up.
23734 		 */
23735 
23736 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23737 			rval = sd_send_scsi_READ_CAPACITY(ssc,
23738 			    &capacity, &lbasize, SD_PATH_DIRECT);
23739 			if (rval != 0) {
23740 				sd_pm_exit(un);
23741 				if (rval == EIO)
23742 					sd_ssc_assessment(ssc,
23743 					    SD_FMT_STATUS_CHECK);
23744 				else
23745 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23746 				mutex_enter(SD_MUTEX(un));
23747 				goto done;
23748 			}
23749 		} else {
23750 			rval = EIO;
23751 			mutex_enter(SD_MUTEX(un));
23752 			goto done;
23753 		}
23754 		mutex_enter(SD_MUTEX(un));
23755 
23756 		sd_update_block_info(un, lbasize, capacity);
23757 
23758 		/*
23759 		 *  Check if the media in the device is writable or not
23760 		 */
23761 		if (ISCD(un)) {
23762 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
23763 		}
23764 
23765 		mutex_exit(SD_MUTEX(un));
23766 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
23767 		if ((cmlb_validate(un->un_cmlbhandle, 0,
23768 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
23769 			sd_set_pstats(un);
23770 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23771 			    "sd_check_media: un:0x%p pstats created and "
23772 			    "set\n", un);
23773 		}
23774 
23775 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
23776 		    SD_PATH_DIRECT);
23777 
23778 		sd_pm_exit(un);
23779 
23780 		if (rval != 0) {
23781 			if (rval == EIO)
23782 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23783 			else
23784 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23785 		}
23786 
23787 		mutex_enter(SD_MUTEX(un));
23788 	}
23789 done:
23790 	sd_ssc_fini(ssc);
23791 	un->un_f_watcht_stopped = FALSE;
23792 	if (token != NULL && un->un_swr_token != NULL) {
23793 		/*
23794 		 * Use of this local token and the mutex ensures that we avoid
23795 		 * some race conditions associated with terminating the
23796 		 * scsi watch.
23797 		 */
23798 		token = un->un_swr_token;
23799 		mutex_exit(SD_MUTEX(un));
23800 		(void) scsi_watch_request_terminate(token,
23801 		    SCSI_WATCH_TERMINATE_WAIT);
23802 		if (scsi_watch_get_ref_count(token) == 0) {
23803 			mutex_enter(SD_MUTEX(un));
23804 			un->un_swr_token = (opaque_t)NULL;
23805 		} else {
23806 			mutex_enter(SD_MUTEX(un));
23807 		}
23808 	}
23809 
23810 	/*
23811 	 * Update the capacity kstat value, if no media previously
23812 	 * (capacity kstat is 0) and a media has been inserted
23813 	 * (un_f_blockcount_is_valid == TRUE)
23814 	 */
23815 	if (un->un_errstats) {
23816 		struct sd_errstats	*stp = NULL;
23817 
23818 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23819 		if ((stp->sd_capacity.value.ui64 == 0) &&
23820 		    (un->un_f_blockcount_is_valid == TRUE)) {
23821 			stp->sd_capacity.value.ui64 =
23822 			    (uint64_t)((uint64_t)un->un_blockcount *
23823 			    un->un_sys_blocksize);
23824 		}
23825 	}
23826 	mutex_exit(SD_MUTEX(un));
23827 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23828 	return (rval);
23829 }
23830 
23831 
23832 /*
23833  *    Function: sd_delayed_cv_broadcast
23834  *
23835  * Description: Delayed cv_broadcast to allow for target to recover from media
23836  *		insertion.
23837  *
23838  *   Arguments: arg - driver soft state (unit) structure
23839  */
23840 
23841 static void
23842 sd_delayed_cv_broadcast(void *arg)
23843 {
23844 	struct sd_lun *un = arg;
23845 
23846 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23847 
23848 	mutex_enter(SD_MUTEX(un));
23849 	un->un_dcvb_timeid = NULL;
23850 	cv_broadcast(&un->un_state_cv);
23851 	mutex_exit(SD_MUTEX(un));
23852 }
23853 
23854 
23855 /*
23856  *    Function: sd_media_watch_cb
23857  *
23858  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23859  *		routine processes the TUR sense data and updates the driver
23860  *		state if a transition has occurred. The user thread
23861  *		(sd_check_media) is then signalled.
23862  *
23863  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23864  *			among multiple watches that share this callback function
23865  *		resultp - scsi watch facility result packet containing scsi
23866  *			  packet, status byte and sense data
23867  *
23868  * Return Code: 0 for success, -1 for failure
23869  */
23870 
23871 static int
23872 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23873 {
23874 	struct sd_lun			*un;
23875 	struct scsi_status		*statusp = resultp->statusp;
23876 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
23877 	enum dkio_state			state = DKIO_NONE;
23878 	dev_t				dev = (dev_t)arg;
23879 	uchar_t				actual_sense_length;
23880 	uint8_t				skey, asc, ascq;
23881 
23882 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23883 		return (-1);
23884 	}
23885 	actual_sense_length = resultp->actual_sense_length;
23886 
23887 	mutex_enter(SD_MUTEX(un));
23888 	SD_TRACE(SD_LOG_COMMON, un,
23889 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23890 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23891 
23892 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23893 		un->un_mediastate = DKIO_DEV_GONE;
23894 		cv_broadcast(&un->un_state_cv);
23895 		mutex_exit(SD_MUTEX(un));
23896 
23897 		return (0);
23898 	}
23899 
23900 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23901 		if (sd_gesn_media_data_valid(resultp->mmc_data)) {
23902 			if ((resultp->mmc_data[5] &
23903 			    SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) {
23904 				state = DKIO_INSERTED;
23905 			} else {
23906 				state = DKIO_EJECTED;
23907 			}
23908 			if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) ==
23909 			    SD_GESN_MEDIA_EVENT_EJECTREQUEST) {
23910 				sd_log_eject_request_event(un, KM_NOSLEEP);
23911 			}
23912 		}
23913 	} else if (sensep != NULL) {
23914 		/*
23915 		 * If there was a check condition then sensep points to valid
23916 		 * sense data. If status was not a check condition but a
23917 		 * reservation or busy status then the new state is DKIO_NONE.
23918 		 */
23919 		skey = scsi_sense_key(sensep);
23920 		asc = scsi_sense_asc(sensep);
23921 		ascq = scsi_sense_ascq(sensep);
23922 
23923 		SD_INFO(SD_LOG_COMMON, un,
23924 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
23925 		    skey, asc, ascq);
23926 		/* This routine only uses up to 13 bytes of sense data. */
23927 		if (actual_sense_length >= 13) {
23928 			if (skey == KEY_UNIT_ATTENTION) {
23929 				if (asc == 0x28) {
23930 					state = DKIO_INSERTED;
23931 				}
23932 			} else if (skey == KEY_NOT_READY) {
23933 				/*
23934 				 * Sense data of 02/06/00 means that the
23935 				 * drive could not read the media (No
23936 				 * reference position found). In this case
23937 				 * to prevent a hang on the DKIOCSTATE IOCTL
23938 				 * we set the media state to DKIO_INSERTED.
23939 				 */
23940 				if (asc == 0x06 && ascq == 0x00)
23941 					state = DKIO_INSERTED;
23942 
23943 				/*
23944 				 * if 02/04/02  means that the host
23945 				 * should send start command. Explicitly
23946 				 * leave the media state as is
23947 				 * (inserted) as the media is inserted
23948 				 * and host has stopped device for PM
23949 				 * reasons. Upon next true read/write
23950 				 * to this media will bring the
23951 				 * device to the right state good for
23952 				 * media access.
23953 				 */
23954 				if (asc == 0x3a) {
23955 					state = DKIO_EJECTED;
23956 				} else {
23957 					/*
23958 					 * If the drive is busy with an
23959 					 * operation or long write, keep the
23960 					 * media in an inserted state.
23961 					 */
23962 
23963 					if ((asc == 0x04) &&
23964 					    ((ascq == 0x02) ||
23965 					    (ascq == 0x07) ||
23966 					    (ascq == 0x08))) {
23967 						state = DKIO_INSERTED;
23968 					}
23969 				}
23970 			} else if (skey == KEY_NO_SENSE) {
23971 				if ((asc == 0x00) && (ascq == 0x00)) {
23972 					/*
23973 					 * Sense Data 00/00/00 does not provide
23974 					 * any information about the state of
23975 					 * the media. Ignore it.
23976 					 */
23977 					mutex_exit(SD_MUTEX(un));
23978 					return (0);
23979 				}
23980 			}
23981 		}
23982 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
23983 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
23984 		state = DKIO_INSERTED;
23985 	}
23986 
23987 	SD_TRACE(SD_LOG_COMMON, un,
23988 	    "sd_media_watch_cb: state=%x, specified=%x\n",
23989 	    state, un->un_specified_mediastate);
23990 
23991 	/*
23992 	 * now signal the waiting thread if this is *not* the specified state;
23993 	 * delay the signal if the state is DKIO_INSERTED to allow the target
23994 	 * to recover
23995 	 */
23996 	if (state != un->un_specified_mediastate) {
23997 		un->un_mediastate = state;
23998 		if (state == DKIO_INSERTED) {
23999 			/*
24000 			 * delay the signal to give the drive a chance
24001 			 * to do what it apparently needs to do
24002 			 */
24003 			SD_TRACE(SD_LOG_COMMON, un,
24004 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24005 			if (un->un_dcvb_timeid == NULL) {
24006 				un->un_dcvb_timeid =
24007 				    timeout(sd_delayed_cv_broadcast, un,
24008 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24009 			}
24010 		} else {
24011 			SD_TRACE(SD_LOG_COMMON, un,
24012 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24013 			cv_broadcast(&un->un_state_cv);
24014 		}
24015 	}
24016 	mutex_exit(SD_MUTEX(un));
24017 	return (0);
24018 }
24019 
24020 
24021 /*
24022  *    Function: sd_dkio_get_temp
24023  *
24024  * Description: This routine is the driver entry point for handling ioctl
24025  *		requests to get the disk temperature.
24026  *
24027  *   Arguments: dev  - the device number
24028  *		arg  - pointer to user provided dk_temperature structure.
24029  *		flag - this argument is a pass through to ddi_copyxxx()
24030  *		       directly from the mode argument of ioctl().
24031  *
24032  * Return Code: 0
24033  *		EFAULT
24034  *		ENXIO
24035  *		EAGAIN
24036  */
24037 
24038 static int
24039 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24040 {
24041 	struct sd_lun		*un = NULL;
24042 	struct dk_temperature	*dktemp = NULL;
24043 	uchar_t			*temperature_page;
24044 	int			rval = 0;
24045 	int			path_flag = SD_PATH_STANDARD;
24046 	sd_ssc_t		*ssc;
24047 
24048 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24049 		return (ENXIO);
24050 	}
24051 
24052 	ssc = sd_ssc_init(un);
24053 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24054 
24055 	/* copyin the disk temp argument to get the user flags */
24056 	if (ddi_copyin((void *)arg, dktemp,
24057 	    sizeof (struct dk_temperature), flag) != 0) {
24058 		rval = EFAULT;
24059 		goto done;
24060 	}
24061 
24062 	/* Initialize the temperature to invalid. */
24063 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24064 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24065 
24066 	/*
24067 	 * Note: Investigate removing the "bypass pm" semantic.
24068 	 * Can we just bypass PM always?
24069 	 */
24070 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24071 		path_flag = SD_PATH_DIRECT;
24072 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24073 		mutex_enter(&un->un_pm_mutex);
24074 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24075 			/*
24076 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24077 			 * in low power mode, we can not wake it up, Need to
24078 			 * return EAGAIN.
24079 			 */
24080 			mutex_exit(&un->un_pm_mutex);
24081 			rval = EAGAIN;
24082 			goto done;
24083 		} else {
24084 			/*
24085 			 * Indicate to PM the device is busy. This is required
24086 			 * to avoid a race - i.e. the ioctl is issuing a
24087 			 * command and the pm framework brings down the device
24088 			 * to low power mode (possible power cut-off on some
24089 			 * platforms).
24090 			 */
24091 			mutex_exit(&un->un_pm_mutex);
24092 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24093 				rval = EAGAIN;
24094 				goto done;
24095 			}
24096 		}
24097 	}
24098 
24099 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24100 
24101 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
24102 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
24103 	if (rval != 0)
24104 		goto done2;
24105 
24106 	/*
24107 	 * For the current temperature verify that the parameter length is 0x02
24108 	 * and the parameter code is 0x00
24109 	 */
24110 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24111 	    (temperature_page[5] == 0x00)) {
24112 		if (temperature_page[9] == 0xFF) {
24113 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24114 		} else {
24115 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24116 		}
24117 	}
24118 
24119 	/*
24120 	 * For the reference temperature verify that the parameter
24121 	 * length is 0x02 and the parameter code is 0x01
24122 	 */
24123 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24124 	    (temperature_page[11] == 0x01)) {
24125 		if (temperature_page[15] == 0xFF) {
24126 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24127 		} else {
24128 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24129 		}
24130 	}
24131 
24132 	/* Do the copyout regardless of the temperature commands status. */
24133 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24134 	    flag) != 0) {
24135 		rval = EFAULT;
24136 		goto done1;
24137 	}
24138 
24139 done2:
24140 	if (rval != 0) {
24141 		if (rval == EIO)
24142 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24143 		else
24144 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24145 	}
24146 done1:
24147 	if (path_flag == SD_PATH_DIRECT) {
24148 		sd_pm_exit(un);
24149 	}
24150 
24151 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24152 done:
24153 	sd_ssc_fini(ssc);
24154 	if (dktemp != NULL) {
24155 		kmem_free(dktemp, sizeof (struct dk_temperature));
24156 	}
24157 
24158 	return (rval);
24159 }
24160 
24161 
24162 /*
24163  *    Function: sd_log_page_supported
24164  *
24165  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24166  *		supported log pages.
24167  *
24168  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
24169  *                      structure for this target.
24170  *		log_page -
24171  *
24172  * Return Code: -1 - on error (log sense is optional and may not be supported).
24173  *		0  - log page not found.
24174  *  		1  - log page found.
24175  */
24176 
24177 static int
24178 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
24179 {
24180 	uchar_t *log_page_data;
24181 	int	i;
24182 	int	match = 0;
24183 	int	log_size;
24184 	int	status = 0;
24185 	struct sd_lun	*un;
24186 
24187 	ASSERT(ssc != NULL);
24188 	un = ssc->ssc_un;
24189 	ASSERT(un != NULL);
24190 
24191 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24192 
24193 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
24194 	    SD_PATH_DIRECT);
24195 
24196 	if (status != 0) {
24197 		if (status == EIO) {
24198 			/*
24199 			 * Some disks do not support log sense, we
24200 			 * should ignore this kind of error(sense key is
24201 			 * 0x5 - illegal request).
24202 			 */
24203 			uint8_t *sensep;
24204 			int senlen;
24205 
24206 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
24207 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
24208 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
24209 
24210 			if (senlen > 0 &&
24211 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
24212 				sd_ssc_assessment(ssc,
24213 				    SD_FMT_IGNORE_COMPROMISE);
24214 			} else {
24215 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24216 			}
24217 		} else {
24218 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24219 		}
24220 
24221 		SD_ERROR(SD_LOG_COMMON, un,
24222 		    "sd_log_page_supported: failed log page retrieval\n");
24223 		kmem_free(log_page_data, 0xFF);
24224 		return (-1);
24225 	}
24226 
24227 	log_size = log_page_data[3];
24228 
24229 	/*
24230 	 * The list of supported log pages start from the fourth byte. Check
24231 	 * until we run out of log pages or a match is found.
24232 	 */
24233 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24234 		if (log_page_data[i] == log_page) {
24235 			match++;
24236 		}
24237 	}
24238 	kmem_free(log_page_data, 0xFF);
24239 	return (match);
24240 }
24241 
24242 
24243 /*
24244  *    Function: sd_mhdioc_failfast
24245  *
24246  * Description: This routine is the driver entry point for handling ioctl
24247  *		requests to enable/disable the multihost failfast option.
24248  *		(MHIOCENFAILFAST)
24249  *
24250  *   Arguments: dev	- the device number
24251  *		arg	- user specified probing interval.
24252  *		flag	- this argument is a pass through to ddi_copyxxx()
24253  *			  directly from the mode argument of ioctl().
24254  *
24255  * Return Code: 0
24256  *		EFAULT
24257  *		ENXIO
24258  */
24259 
24260 static int
24261 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24262 {
24263 	struct sd_lun	*un = NULL;
24264 	int		mh_time;
24265 	int		rval = 0;
24266 
24267 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24268 		return (ENXIO);
24269 	}
24270 
24271 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24272 		return (EFAULT);
24273 
24274 	if (mh_time) {
24275 		mutex_enter(SD_MUTEX(un));
24276 		un->un_resvd_status |= SD_FAILFAST;
24277 		mutex_exit(SD_MUTEX(un));
24278 		/*
24279 		 * If mh_time is INT_MAX, then this ioctl is being used for
24280 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24281 		 */
24282 		if (mh_time != INT_MAX) {
24283 			rval = sd_check_mhd(dev, mh_time);
24284 		}
24285 	} else {
24286 		(void) sd_check_mhd(dev, 0);
24287 		mutex_enter(SD_MUTEX(un));
24288 		un->un_resvd_status &= ~SD_FAILFAST;
24289 		mutex_exit(SD_MUTEX(un));
24290 	}
24291 	return (rval);
24292 }
24293 
24294 
24295 /*
24296  *    Function: sd_mhdioc_takeown
24297  *
24298  * Description: This routine is the driver entry point for handling ioctl
24299  *		requests to forcefully acquire exclusive access rights to the
24300  *		multihost disk (MHIOCTKOWN).
24301  *
24302  *   Arguments: dev	- the device number
24303  *		arg	- user provided structure specifying the delay
24304  *			  parameters in milliseconds
24305  *		flag	- this argument is a pass through to ddi_copyxxx()
24306  *			  directly from the mode argument of ioctl().
24307  *
24308  * Return Code: 0
24309  *		EFAULT
24310  *		ENXIO
24311  */
24312 
24313 static int
24314 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24315 {
24316 	struct sd_lun		*un = NULL;
24317 	struct mhioctkown	*tkown = NULL;
24318 	int			rval = 0;
24319 
24320 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24321 		return (ENXIO);
24322 	}
24323 
24324 	if (arg != NULL) {
24325 		tkown = (struct mhioctkown *)
24326 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24327 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24328 		if (rval != 0) {
24329 			rval = EFAULT;
24330 			goto error;
24331 		}
24332 	}
24333 
24334 	rval = sd_take_ownership(dev, tkown);
24335 	mutex_enter(SD_MUTEX(un));
24336 	if (rval == 0) {
24337 		un->un_resvd_status |= SD_RESERVE;
24338 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24339 			sd_reinstate_resv_delay =
24340 			    tkown->reinstate_resv_delay * 1000;
24341 		} else {
24342 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24343 		}
24344 		/*
24345 		 * Give the scsi_watch routine interval set by
24346 		 * the MHIOCENFAILFAST ioctl precedence here.
24347 		 */
24348 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24349 			mutex_exit(SD_MUTEX(un));
24350 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24351 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24352 			    "sd_mhdioc_takeown : %d\n",
24353 			    sd_reinstate_resv_delay);
24354 		} else {
24355 			mutex_exit(SD_MUTEX(un));
24356 		}
24357 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24358 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24359 	} else {
24360 		un->un_resvd_status &= ~SD_RESERVE;
24361 		mutex_exit(SD_MUTEX(un));
24362 	}
24363 
24364 error:
24365 	if (tkown != NULL) {
24366 		kmem_free(tkown, sizeof (struct mhioctkown));
24367 	}
24368 	return (rval);
24369 }
24370 
24371 
24372 /*
24373  *    Function: sd_mhdioc_release
24374  *
24375  * Description: This routine is the driver entry point for handling ioctl
24376  *		requests to release exclusive access rights to the multihost
24377  *		disk (MHIOCRELEASE).
24378  *
24379  *   Arguments: dev	- the device number
24380  *
24381  * Return Code: 0
24382  *		ENXIO
24383  */
24384 
24385 static int
24386 sd_mhdioc_release(dev_t dev)
24387 {
24388 	struct sd_lun		*un = NULL;
24389 	timeout_id_t		resvd_timeid_save;
24390 	int			resvd_status_save;
24391 	int			rval = 0;
24392 
24393 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24394 		return (ENXIO);
24395 	}
24396 
24397 	mutex_enter(SD_MUTEX(un));
24398 	resvd_status_save = un->un_resvd_status;
24399 	un->un_resvd_status &=
24400 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24401 	if (un->un_resvd_timeid) {
24402 		resvd_timeid_save = un->un_resvd_timeid;
24403 		un->un_resvd_timeid = NULL;
24404 		mutex_exit(SD_MUTEX(un));
24405 		(void) untimeout(resvd_timeid_save);
24406 	} else {
24407 		mutex_exit(SD_MUTEX(un));
24408 	}
24409 
24410 	/*
24411 	 * destroy any pending timeout thread that may be attempting to
24412 	 * reinstate reservation on this device.
24413 	 */
24414 	sd_rmv_resv_reclaim_req(dev);
24415 
24416 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24417 		mutex_enter(SD_MUTEX(un));
24418 		if ((un->un_mhd_token) &&
24419 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24420 			mutex_exit(SD_MUTEX(un));
24421 			(void) sd_check_mhd(dev, 0);
24422 		} else {
24423 			mutex_exit(SD_MUTEX(un));
24424 		}
24425 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24426 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24427 	} else {
24428 		/*
24429 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24430 		 */
24431 		mutex_enter(SD_MUTEX(un));
24432 		un->un_resvd_status = resvd_status_save;
24433 		mutex_exit(SD_MUTEX(un));
24434 	}
24435 	return (rval);
24436 }
24437 
24438 
24439 /*
24440  *    Function: sd_mhdioc_register_devid
24441  *
24442  * Description: This routine is the driver entry point for handling ioctl
24443  *		requests to register the device id (MHIOCREREGISTERDEVID).
24444  *
24445  *		Note: The implementation for this ioctl has been updated to
24446  *		be consistent with the original PSARC case (1999/357)
24447  *		(4375899, 4241671, 4220005)
24448  *
24449  *   Arguments: dev	- the device number
24450  *
24451  * Return Code: 0
24452  *		ENXIO
24453  */
24454 
24455 static int
24456 sd_mhdioc_register_devid(dev_t dev)
24457 {
24458 	struct sd_lun	*un = NULL;
24459 	int		rval = 0;
24460 	sd_ssc_t	*ssc;
24461 
24462 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24463 		return (ENXIO);
24464 	}
24465 
24466 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24467 
24468 	mutex_enter(SD_MUTEX(un));
24469 
24470 	/* If a devid already exists, de-register it */
24471 	if (un->un_devid != NULL) {
24472 		ddi_devid_unregister(SD_DEVINFO(un));
24473 		/*
24474 		 * After unregister devid, needs to free devid memory
24475 		 */
24476 		ddi_devid_free(un->un_devid);
24477 		un->un_devid = NULL;
24478 	}
24479 
24480 	/* Check for reservation conflict */
24481 	mutex_exit(SD_MUTEX(un));
24482 	ssc = sd_ssc_init(un);
24483 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
24484 	mutex_enter(SD_MUTEX(un));
24485 
24486 	switch (rval) {
24487 	case 0:
24488 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24489 		break;
24490 	case EACCES:
24491 		break;
24492 	default:
24493 		rval = EIO;
24494 	}
24495 
24496 	mutex_exit(SD_MUTEX(un));
24497 	if (rval != 0) {
24498 		if (rval == EIO)
24499 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24500 		else
24501 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24502 	}
24503 	sd_ssc_fini(ssc);
24504 	return (rval);
24505 }
24506 
24507 
24508 /*
24509  *    Function: sd_mhdioc_inkeys
24510  *
24511  * Description: This routine is the driver entry point for handling ioctl
24512  *		requests to issue the SCSI-3 Persistent In Read Keys command
24513  *		to the device (MHIOCGRP_INKEYS).
24514  *
24515  *   Arguments: dev	- the device number
24516  *		arg	- user provided in_keys structure
24517  *		flag	- this argument is a pass through to ddi_copyxxx()
24518  *			  directly from the mode argument of ioctl().
24519  *
24520  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24521  *		ENXIO
24522  *		EFAULT
24523  */
24524 
24525 static int
24526 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24527 {
24528 	struct sd_lun		*un;
24529 	mhioc_inkeys_t		inkeys;
24530 	int			rval = 0;
24531 
24532 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24533 		return (ENXIO);
24534 	}
24535 
24536 #ifdef _MULTI_DATAMODEL
24537 	switch (ddi_model_convert_from(flag & FMODELS)) {
24538 	case DDI_MODEL_ILP32: {
24539 		struct mhioc_inkeys32	inkeys32;
24540 
24541 		if (ddi_copyin(arg, &inkeys32,
24542 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24543 			return (EFAULT);
24544 		}
24545 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24546 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24547 		    &inkeys, flag)) != 0) {
24548 			return (rval);
24549 		}
24550 		inkeys32.generation = inkeys.generation;
24551 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24552 		    flag) != 0) {
24553 			return (EFAULT);
24554 		}
24555 		break;
24556 	}
24557 	case DDI_MODEL_NONE:
24558 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24559 		    flag) != 0) {
24560 			return (EFAULT);
24561 		}
24562 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24563 		    &inkeys, flag)) != 0) {
24564 			return (rval);
24565 		}
24566 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24567 		    flag) != 0) {
24568 			return (EFAULT);
24569 		}
24570 		break;
24571 	}
24572 
24573 #else /* ! _MULTI_DATAMODEL */
24574 
24575 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24576 		return (EFAULT);
24577 	}
24578 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24579 	if (rval != 0) {
24580 		return (rval);
24581 	}
24582 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24583 		return (EFAULT);
24584 	}
24585 
24586 #endif /* _MULTI_DATAMODEL */
24587 
24588 	return (rval);
24589 }
24590 
24591 
24592 /*
24593  *    Function: sd_mhdioc_inresv
24594  *
24595  * Description: This routine is the driver entry point for handling ioctl
24596  *		requests to issue the SCSI-3 Persistent In Read Reservations
24597  *		command to the device (MHIOCGRP_INKEYS).
24598  *
24599  *   Arguments: dev	- the device number
24600  *		arg	- user provided in_resv structure
24601  *		flag	- this argument is a pass through to ddi_copyxxx()
24602  *			  directly from the mode argument of ioctl().
24603  *
24604  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24605  *		ENXIO
24606  *		EFAULT
24607  */
24608 
24609 static int
24610 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24611 {
24612 	struct sd_lun		*un;
24613 	mhioc_inresvs_t		inresvs;
24614 	int			rval = 0;
24615 
24616 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24617 		return (ENXIO);
24618 	}
24619 
24620 #ifdef _MULTI_DATAMODEL
24621 
24622 	switch (ddi_model_convert_from(flag & FMODELS)) {
24623 	case DDI_MODEL_ILP32: {
24624 		struct mhioc_inresvs32	inresvs32;
24625 
24626 		if (ddi_copyin(arg, &inresvs32,
24627 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24628 			return (EFAULT);
24629 		}
24630 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24631 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24632 		    &inresvs, flag)) != 0) {
24633 			return (rval);
24634 		}
24635 		inresvs32.generation = inresvs.generation;
24636 		if (ddi_copyout(&inresvs32, arg,
24637 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24638 			return (EFAULT);
24639 		}
24640 		break;
24641 	}
24642 	case DDI_MODEL_NONE:
24643 		if (ddi_copyin(arg, &inresvs,
24644 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24645 			return (EFAULT);
24646 		}
24647 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24648 		    &inresvs, flag)) != 0) {
24649 			return (rval);
24650 		}
24651 		if (ddi_copyout(&inresvs, arg,
24652 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24653 			return (EFAULT);
24654 		}
24655 		break;
24656 	}
24657 
24658 #else /* ! _MULTI_DATAMODEL */
24659 
24660 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24661 		return (EFAULT);
24662 	}
24663 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24664 	if (rval != 0) {
24665 		return (rval);
24666 	}
24667 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24668 		return (EFAULT);
24669 	}
24670 
24671 #endif /* ! _MULTI_DATAMODEL */
24672 
24673 	return (rval);
24674 }
24675 
24676 
24677 /*
24678  * The following routines support the clustering functionality described below
24679  * and implement lost reservation reclaim functionality.
24680  *
24681  * Clustering
24682  * ----------
24683  * The clustering code uses two different, independent forms of SCSI
24684  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24685  * Persistent Group Reservations. For any particular disk, it will use either
24686  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24687  *
24688  * SCSI-2
24689  * The cluster software takes ownership of a multi-hosted disk by issuing the
24690  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24691  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
24692  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
24693  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
24694  * driver. The meaning of failfast is that if the driver (on this host) ever
24695  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
24696  * it should immediately panic the host. The motivation for this ioctl is that
24697  * if this host does encounter reservation conflict, the underlying cause is
24698  * that some other host of the cluster has decided that this host is no longer
24699  * in the cluster and has seized control of the disks for itself. Since this
24700  * host is no longer in the cluster, it ought to panic itself. The
24701  * MHIOCENFAILFAST ioctl does two things:
24702  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24703  *      error to panic the host
24704  *      (b) it sets up a periodic timer to test whether this host still has
24705  *      "access" (in that no other host has reserved the device):  if the
24706  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24707  *      purpose of that periodic timer is to handle scenarios where the host is
24708  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24709  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24710  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24711  * the device itself.
24712  *
24713  * SCSI-3 PGR
24714  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24715  * facility is supported through the shared multihost disk ioctls
24716  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24717  * MHIOCGRP_PREEMPTANDABORT)
24718  *
24719  * Reservation Reclaim:
24720  * --------------------
24721  * To support the lost reservation reclaim operations this driver creates a
24722  * single thread to handle reinstating reservations on all devices that have
24723  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24724  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24725  * and the reservation reclaim thread loops through the requests to regain the
24726  * lost reservations.
24727  */
24728 
24729 /*
24730  *    Function: sd_check_mhd()
24731  *
24732  * Description: This function sets up and submits a scsi watch request or
24733  *		terminates an existing watch request. This routine is used in
24734  *		support of reservation reclaim.
24735  *
24736  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24737  *			 among multiple watches that share the callback function
24738  *		interval - the number of microseconds specifying the watch
24739  *			   interval for issuing TEST UNIT READY commands. If
24740  *			   set to 0 the watch should be terminated. If the
24741  *			   interval is set to 0 and if the device is required
24742  *			   to hold reservation while disabling failfast, the
24743  *			   watch is restarted with an interval of
24744  *			   reinstate_resv_delay.
24745  *
24746  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24747  *		ENXIO      - Indicates an invalid device was specified
24748  *		EAGAIN     - Unable to submit the scsi watch request
24749  */
24750 
24751 static int
24752 sd_check_mhd(dev_t dev, int interval)
24753 {
24754 	struct sd_lun	*un;
24755 	opaque_t	token;
24756 
24757 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24758 		return (ENXIO);
24759 	}
24760 
24761 	/* is this a watch termination request? */
24762 	if (interval == 0) {
24763 		mutex_enter(SD_MUTEX(un));
24764 		/* if there is an existing watch task then terminate it */
24765 		if (un->un_mhd_token) {
24766 			token = un->un_mhd_token;
24767 			un->un_mhd_token = NULL;
24768 			mutex_exit(SD_MUTEX(un));
24769 			(void) scsi_watch_request_terminate(token,
24770 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
24771 			mutex_enter(SD_MUTEX(un));
24772 		} else {
24773 			mutex_exit(SD_MUTEX(un));
24774 			/*
24775 			 * Note: If we return here we don't check for the
24776 			 * failfast case. This is the original legacy
24777 			 * implementation but perhaps we should be checking
24778 			 * the failfast case.
24779 			 */
24780 			return (0);
24781 		}
24782 		/*
24783 		 * If the device is required to hold reservation while
24784 		 * disabling failfast, we need to restart the scsi_watch
24785 		 * routine with an interval of reinstate_resv_delay.
24786 		 */
24787 		if (un->un_resvd_status & SD_RESERVE) {
24788 			interval = sd_reinstate_resv_delay/1000;
24789 		} else {
24790 			/* no failfast so bail */
24791 			mutex_exit(SD_MUTEX(un));
24792 			return (0);
24793 		}
24794 		mutex_exit(SD_MUTEX(un));
24795 	}
24796 
24797 	/*
24798 	 * adjust minimum time interval to 1 second,
24799 	 * and convert from msecs to usecs
24800 	 */
24801 	if (interval > 0 && interval < 1000) {
24802 		interval = 1000;
24803 	}
24804 	interval *= 1000;
24805 
24806 	/*
24807 	 * submit the request to the scsi_watch service
24808 	 */
24809 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24810 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24811 	if (token == NULL) {
24812 		return (EAGAIN);
24813 	}
24814 
24815 	/*
24816 	 * save token for termination later on
24817 	 */
24818 	mutex_enter(SD_MUTEX(un));
24819 	un->un_mhd_token = token;
24820 	mutex_exit(SD_MUTEX(un));
24821 	return (0);
24822 }
24823 
24824 
24825 /*
24826  *    Function: sd_mhd_watch_cb()
24827  *
24828  * Description: This function is the call back function used by the scsi watch
24829  *		facility. The scsi watch facility sends the "Test Unit Ready"
24830  *		and processes the status. If applicable (i.e. a "Unit Attention"
24831  *		status and automatic "Request Sense" not used) the scsi watch
24832  *		facility will send a "Request Sense" and retrieve the sense data
24833  *		to be passed to this callback function. In either case the
24834  *		automatic "Request Sense" or the facility submitting one, this
24835  *		callback is passed the status and sense data.
24836  *
24837  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24838  *			among multiple watches that share this callback function
24839  *		resultp - scsi watch facility result packet containing scsi
24840  *			  packet, status byte and sense data
24841  *
24842  * Return Code: 0 - continue the watch task
24843  *		non-zero - terminate the watch task
24844  */
24845 
24846 static int
24847 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24848 {
24849 	struct sd_lun			*un;
24850 	struct scsi_status		*statusp;
24851 	uint8_t				*sensep;
24852 	struct scsi_pkt			*pkt;
24853 	uchar_t				actual_sense_length;
24854 	dev_t  				dev = (dev_t)arg;
24855 
24856 	ASSERT(resultp != NULL);
24857 	statusp			= resultp->statusp;
24858 	sensep			= (uint8_t *)resultp->sensep;
24859 	pkt			= resultp->pkt;
24860 	actual_sense_length	= resultp->actual_sense_length;
24861 
24862 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24863 		return (ENXIO);
24864 	}
24865 
24866 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24867 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24868 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24869 
24870 	/* Begin processing of the status and/or sense data */
24871 	if (pkt->pkt_reason != CMD_CMPLT) {
24872 		/* Handle the incomplete packet */
24873 		sd_mhd_watch_incomplete(un, pkt);
24874 		return (0);
24875 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24876 		if (*((unsigned char *)statusp)
24877 		    == STATUS_RESERVATION_CONFLICT) {
24878 			/*
24879 			 * Handle a reservation conflict by panicking if
24880 			 * configured for failfast or by logging the conflict
24881 			 * and updating the reservation status
24882 			 */
24883 			mutex_enter(SD_MUTEX(un));
24884 			if ((un->un_resvd_status & SD_FAILFAST) &&
24885 			    (sd_failfast_enable)) {
24886 				sd_panic_for_res_conflict(un);
24887 				/*NOTREACHED*/
24888 			}
24889 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24890 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24891 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24892 			mutex_exit(SD_MUTEX(un));
24893 		}
24894 	}
24895 
24896 	if (sensep != NULL) {
24897 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24898 			mutex_enter(SD_MUTEX(un));
24899 			if ((scsi_sense_asc(sensep) ==
24900 			    SD_SCSI_RESET_SENSE_CODE) &&
24901 			    (un->un_resvd_status & SD_RESERVE)) {
24902 				/*
24903 				 * The additional sense code indicates a power
24904 				 * on or bus device reset has occurred; update
24905 				 * the reservation status.
24906 				 */
24907 				un->un_resvd_status |=
24908 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24909 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24910 				    "sd_mhd_watch_cb: Lost Reservation\n");
24911 			}
24912 		} else {
24913 			return (0);
24914 		}
24915 	} else {
24916 		mutex_enter(SD_MUTEX(un));
24917 	}
24918 
24919 	if ((un->un_resvd_status & SD_RESERVE) &&
24920 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
24921 		if (un->un_resvd_status & SD_WANT_RESERVE) {
24922 			/*
24923 			 * A reset occurred in between the last probe and this
24924 			 * one so if a timeout is pending cancel it.
24925 			 */
24926 			if (un->un_resvd_timeid) {
24927 				timeout_id_t temp_id = un->un_resvd_timeid;
24928 				un->un_resvd_timeid = NULL;
24929 				mutex_exit(SD_MUTEX(un));
24930 				(void) untimeout(temp_id);
24931 				mutex_enter(SD_MUTEX(un));
24932 			}
24933 			un->un_resvd_status &= ~SD_WANT_RESERVE;
24934 		}
24935 		if (un->un_resvd_timeid == 0) {
24936 			/* Schedule a timeout to handle the lost reservation */
24937 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
24938 			    (void *)dev,
24939 			    drv_usectohz(sd_reinstate_resv_delay));
24940 		}
24941 	}
24942 	mutex_exit(SD_MUTEX(un));
24943 	return (0);
24944 }
24945 
24946 
24947 /*
24948  *    Function: sd_mhd_watch_incomplete()
24949  *
24950  * Description: This function is used to find out why a scsi pkt sent by the
24951  *		scsi watch facility was not completed. Under some scenarios this
24952  *		routine will return. Otherwise it will send a bus reset to see
24953  *		if the drive is still online.
24954  *
24955  *   Arguments: un  - driver soft state (unit) structure
24956  *		pkt - incomplete scsi pkt
24957  */
24958 
24959 static void
24960 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
24961 {
24962 	int	be_chatty;
24963 	int	perr;
24964 
24965 	ASSERT(pkt != NULL);
24966 	ASSERT(un != NULL);
24967 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
24968 	perr		= (pkt->pkt_statistics & STAT_PERR);
24969 
24970 	mutex_enter(SD_MUTEX(un));
24971 	if (un->un_state == SD_STATE_DUMPING) {
24972 		mutex_exit(SD_MUTEX(un));
24973 		return;
24974 	}
24975 
24976 	switch (pkt->pkt_reason) {
24977 	case CMD_UNX_BUS_FREE:
24978 		/*
24979 		 * If we had a parity error that caused the target to drop BSY*,
24980 		 * don't be chatty about it.
24981 		 */
24982 		if (perr && be_chatty) {
24983 			be_chatty = 0;
24984 		}
24985 		break;
24986 	case CMD_TAG_REJECT:
24987 		/*
24988 		 * The SCSI-2 spec states that a tag reject will be sent by the
24989 		 * target if tagged queuing is not supported. A tag reject may
24990 		 * also be sent during certain initialization periods or to
24991 		 * control internal resources. For the latter case the target
24992 		 * may also return Queue Full.
24993 		 *
24994 		 * If this driver receives a tag reject from a target that is
24995 		 * going through an init period or controlling internal
24996 		 * resources tagged queuing will be disabled. This is a less
24997 		 * than optimal behavior but the driver is unable to determine
24998 		 * the target state and assumes tagged queueing is not supported
24999 		 */
25000 		pkt->pkt_flags = 0;
25001 		un->un_tagflags = 0;
25002 
25003 		if (un->un_f_opt_queueing == TRUE) {
25004 			un->un_throttle = min(un->un_throttle, 3);
25005 		} else {
25006 			un->un_throttle = 1;
25007 		}
25008 		mutex_exit(SD_MUTEX(un));
25009 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25010 		mutex_enter(SD_MUTEX(un));
25011 		break;
25012 	case CMD_INCOMPLETE:
25013 		/*
25014 		 * The transport stopped with an abnormal state, fallthrough and
25015 		 * reset the target and/or bus unless selection did not complete
25016 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25017 		 * go through a target/bus reset
25018 		 */
25019 		if (pkt->pkt_state == STATE_GOT_BUS) {
25020 			break;
25021 		}
25022 		/*FALLTHROUGH*/
25023 
25024 	case CMD_TIMEOUT:
25025 	default:
25026 		/*
25027 		 * The lun may still be running the command, so a lun reset
25028 		 * should be attempted. If the lun reset fails or cannot be
25029 		 * issued, than try a target reset. Lastly try a bus reset.
25030 		 */
25031 		if ((pkt->pkt_statistics &
25032 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25033 			int reset_retval = 0;
25034 			mutex_exit(SD_MUTEX(un));
25035 			if (un->un_f_allow_bus_device_reset == TRUE) {
25036 				if (un->un_f_lun_reset_enabled == TRUE) {
25037 					reset_retval =
25038 					    scsi_reset(SD_ADDRESS(un),
25039 					    RESET_LUN);
25040 				}
25041 				if (reset_retval == 0) {
25042 					reset_retval =
25043 					    scsi_reset(SD_ADDRESS(un),
25044 					    RESET_TARGET);
25045 				}
25046 			}
25047 			if (reset_retval == 0) {
25048 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25049 			}
25050 			mutex_enter(SD_MUTEX(un));
25051 		}
25052 		break;
25053 	}
25054 
25055 	/* A device/bus reset has occurred; update the reservation status. */
25056 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25057 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25058 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25059 			un->un_resvd_status |=
25060 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25061 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25062 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25063 		}
25064 	}
25065 
25066 	/*
25067 	 * The disk has been turned off; Update the device state.
25068 	 *
25069 	 * Note: Should we be offlining the disk here?
25070 	 */
25071 	if (pkt->pkt_state == STATE_GOT_BUS) {
25072 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25073 		    "Disk not responding to selection\n");
25074 		if (un->un_state != SD_STATE_OFFLINE) {
25075 			New_state(un, SD_STATE_OFFLINE);
25076 		}
25077 	} else if (be_chatty) {
25078 		/*
25079 		 * suppress messages if they are all the same pkt reason;
25080 		 * with TQ, many (up to 256) are returned with the same
25081 		 * pkt_reason
25082 		 */
25083 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25084 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25085 			    "sd_mhd_watch_incomplete: "
25086 			    "SCSI transport failed: reason '%s'\n",
25087 			    scsi_rname(pkt->pkt_reason));
25088 		}
25089 	}
25090 	un->un_last_pkt_reason = pkt->pkt_reason;
25091 	mutex_exit(SD_MUTEX(un));
25092 }
25093 
25094 
25095 /*
25096  *    Function: sd_sname()
25097  *
25098  * Description: This is a simple little routine to return a string containing
25099  *		a printable description of command status byte for use in
25100  *		logging.
25101  *
25102  *   Arguments: status - pointer to a status byte
25103  *
25104  * Return Code: char * - string containing status description.
25105  */
25106 
25107 static char *
25108 sd_sname(uchar_t status)
25109 {
25110 	switch (status & STATUS_MASK) {
25111 	case STATUS_GOOD:
25112 		return ("good status");
25113 	case STATUS_CHECK:
25114 		return ("check condition");
25115 	case STATUS_MET:
25116 		return ("condition met");
25117 	case STATUS_BUSY:
25118 		return ("busy");
25119 	case STATUS_INTERMEDIATE:
25120 		return ("intermediate");
25121 	case STATUS_INTERMEDIATE_MET:
25122 		return ("intermediate - condition met");
25123 	case STATUS_RESERVATION_CONFLICT:
25124 		return ("reservation_conflict");
25125 	case STATUS_TERMINATED:
25126 		return ("command terminated");
25127 	case STATUS_QFULL:
25128 		return ("queue full");
25129 	default:
25130 		return ("<unknown status>");
25131 	}
25132 }
25133 
25134 
25135 /*
25136  *    Function: sd_mhd_resvd_recover()
25137  *
25138  * Description: This function adds a reservation entry to the
25139  *		sd_resv_reclaim_request list and signals the reservation
25140  *		reclaim thread that there is work pending. If the reservation
25141  *		reclaim thread has not been previously created this function
25142  *		will kick it off.
25143  *
25144  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25145  *			among multiple watches that share this callback function
25146  *
25147  *     Context: This routine is called by timeout() and is run in interrupt
25148  *		context. It must not sleep or call other functions which may
25149  *		sleep.
25150  */
25151 
25152 static void
25153 sd_mhd_resvd_recover(void *arg)
25154 {
25155 	dev_t			dev = (dev_t)arg;
25156 	struct sd_lun		*un;
25157 	struct sd_thr_request	*sd_treq = NULL;
25158 	struct sd_thr_request	*sd_cur = NULL;
25159 	struct sd_thr_request	*sd_prev = NULL;
25160 	int			already_there = 0;
25161 
25162 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25163 		return;
25164 	}
25165 
25166 	mutex_enter(SD_MUTEX(un));
25167 	un->un_resvd_timeid = NULL;
25168 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25169 		/*
25170 		 * There was a reset so don't issue the reserve, allow the
25171 		 * sd_mhd_watch_cb callback function to notice this and
25172 		 * reschedule the timeout for reservation.
25173 		 */
25174 		mutex_exit(SD_MUTEX(un));
25175 		return;
25176 	}
25177 	mutex_exit(SD_MUTEX(un));
25178 
25179 	/*
25180 	 * Add this device to the sd_resv_reclaim_request list and the
25181 	 * sd_resv_reclaim_thread should take care of the rest.
25182 	 *
25183 	 * Note: We can't sleep in this context so if the memory allocation
25184 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25185 	 * reschedule the timeout for reservation.  (4378460)
25186 	 */
25187 	sd_treq = (struct sd_thr_request *)
25188 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25189 	if (sd_treq == NULL) {
25190 		return;
25191 	}
25192 
25193 	sd_treq->sd_thr_req_next = NULL;
25194 	sd_treq->dev = dev;
25195 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25196 	if (sd_tr.srq_thr_req_head == NULL) {
25197 		sd_tr.srq_thr_req_head = sd_treq;
25198 	} else {
25199 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25200 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25201 			if (sd_cur->dev == dev) {
25202 				/*
25203 				 * already in Queue so don't log
25204 				 * another request for the device
25205 				 */
25206 				already_there = 1;
25207 				break;
25208 			}
25209 			sd_prev = sd_cur;
25210 		}
25211 		if (!already_there) {
25212 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25213 			    "logging request for %lx\n", dev);
25214 			sd_prev->sd_thr_req_next = sd_treq;
25215 		} else {
25216 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25217 		}
25218 	}
25219 
25220 	/*
25221 	 * Create a kernel thread to do the reservation reclaim and free up this
25222 	 * thread. We cannot block this thread while we go away to do the
25223 	 * reservation reclaim
25224 	 */
25225 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25226 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25227 		    sd_resv_reclaim_thread, NULL,
25228 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25229 
25230 	/* Tell the reservation reclaim thread that it has work to do */
25231 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25232 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25233 }
25234 
25235 /*
25236  *    Function: sd_resv_reclaim_thread()
25237  *
25238  * Description: This function implements the reservation reclaim operations
25239  *
25240  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25241  *		      among multiple watches that share this callback function
25242  */
25243 
25244 static void
25245 sd_resv_reclaim_thread()
25246 {
25247 	struct sd_lun		*un;
25248 	struct sd_thr_request	*sd_mhreq;
25249 
25250 	/* Wait for work */
25251 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25252 	if (sd_tr.srq_thr_req_head == NULL) {
25253 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25254 		    &sd_tr.srq_resv_reclaim_mutex);
25255 	}
25256 
25257 	/* Loop while we have work */
25258 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25259 		un = ddi_get_soft_state(sd_state,
25260 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25261 		if (un == NULL) {
25262 			/*
25263 			 * softstate structure is NULL so just
25264 			 * dequeue the request and continue
25265 			 */
25266 			sd_tr.srq_thr_req_head =
25267 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25268 			kmem_free(sd_tr.srq_thr_cur_req,
25269 			    sizeof (struct sd_thr_request));
25270 			continue;
25271 		}
25272 
25273 		/* dequeue the request */
25274 		sd_mhreq = sd_tr.srq_thr_cur_req;
25275 		sd_tr.srq_thr_req_head =
25276 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25277 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25278 
25279 		/*
25280 		 * Reclaim reservation only if SD_RESERVE is still set. There
25281 		 * may have been a call to MHIOCRELEASE before we got here.
25282 		 */
25283 		mutex_enter(SD_MUTEX(un));
25284 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25285 			/*
25286 			 * Note: The SD_LOST_RESERVE flag is cleared before
25287 			 * reclaiming the reservation. If this is done after the
25288 			 * call to sd_reserve_release a reservation loss in the
25289 			 * window between pkt completion of reserve cmd and
25290 			 * mutex_enter below may not be recognized
25291 			 */
25292 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25293 			mutex_exit(SD_MUTEX(un));
25294 
25295 			if (sd_reserve_release(sd_mhreq->dev,
25296 			    SD_RESERVE) == 0) {
25297 				mutex_enter(SD_MUTEX(un));
25298 				un->un_resvd_status |= SD_RESERVE;
25299 				mutex_exit(SD_MUTEX(un));
25300 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25301 				    "sd_resv_reclaim_thread: "
25302 				    "Reservation Recovered\n");
25303 			} else {
25304 				mutex_enter(SD_MUTEX(un));
25305 				un->un_resvd_status |= SD_LOST_RESERVE;
25306 				mutex_exit(SD_MUTEX(un));
25307 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25308 				    "sd_resv_reclaim_thread: Failed "
25309 				    "Reservation Recovery\n");
25310 			}
25311 		} else {
25312 			mutex_exit(SD_MUTEX(un));
25313 		}
25314 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25315 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25316 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25317 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25318 		/*
25319 		 * wakeup the destroy thread if anyone is waiting on
25320 		 * us to complete.
25321 		 */
25322 		cv_signal(&sd_tr.srq_inprocess_cv);
25323 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25324 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25325 	}
25326 
25327 	/*
25328 	 * cleanup the sd_tr structure now that this thread will not exist
25329 	 */
25330 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25331 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25332 	sd_tr.srq_resv_reclaim_thread = NULL;
25333 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25334 	thread_exit();
25335 }
25336 
25337 
25338 /*
25339  *    Function: sd_rmv_resv_reclaim_req()
25340  *
25341  * Description: This function removes any pending reservation reclaim requests
25342  *		for the specified device.
25343  *
25344  *   Arguments: dev - the device 'dev_t'
25345  */
25346 
25347 static void
25348 sd_rmv_resv_reclaim_req(dev_t dev)
25349 {
25350 	struct sd_thr_request *sd_mhreq;
25351 	struct sd_thr_request *sd_prev;
25352 
25353 	/* Remove a reservation reclaim request from the list */
25354 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25355 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25356 		/*
25357 		 * We are attempting to reinstate reservation for
25358 		 * this device. We wait for sd_reserve_release()
25359 		 * to return before we return.
25360 		 */
25361 		cv_wait(&sd_tr.srq_inprocess_cv,
25362 		    &sd_tr.srq_resv_reclaim_mutex);
25363 	} else {
25364 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25365 		if (sd_mhreq && sd_mhreq->dev == dev) {
25366 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25367 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25368 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25369 			return;
25370 		}
25371 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25372 			if (sd_mhreq && sd_mhreq->dev == dev) {
25373 				break;
25374 			}
25375 			sd_prev = sd_mhreq;
25376 		}
25377 		if (sd_mhreq != NULL) {
25378 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25379 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25380 		}
25381 	}
25382 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25383 }
25384 
25385 
25386 /*
25387  *    Function: sd_mhd_reset_notify_cb()
25388  *
25389  * Description: This is a call back function for scsi_reset_notify. This
25390  *		function updates the softstate reserved status and logs the
25391  *		reset. The driver scsi watch facility callback function
25392  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25393  *		will reclaim the reservation.
25394  *
25395  *   Arguments: arg  - driver soft state (unit) structure
25396  */
25397 
25398 static void
25399 sd_mhd_reset_notify_cb(caddr_t arg)
25400 {
25401 	struct sd_lun *un = (struct sd_lun *)arg;
25402 
25403 	mutex_enter(SD_MUTEX(un));
25404 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25405 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25406 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25407 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25408 	}
25409 	mutex_exit(SD_MUTEX(un));
25410 }
25411 
25412 
25413 /*
25414  *    Function: sd_take_ownership()
25415  *
25416  * Description: This routine implements an algorithm to achieve a stable
25417  *		reservation on disks which don't implement priority reserve,
25418  *		and makes sure that other host lose re-reservation attempts.
25419  *		This algorithm contains of a loop that keeps issuing the RESERVE
25420  *		for some period of time (min_ownership_delay, default 6 seconds)
25421  *		During that loop, it looks to see if there has been a bus device
25422  *		reset or bus reset (both of which cause an existing reservation
25423  *		to be lost). If the reservation is lost issue RESERVE until a
25424  *		period of min_ownership_delay with no resets has gone by, or
25425  *		until max_ownership_delay has expired. This loop ensures that
25426  *		the host really did manage to reserve the device, in spite of
25427  *		resets. The looping for min_ownership_delay (default six
25428  *		seconds) is important to early generation clustering products,
25429  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25430  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25431  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25432  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25433  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25434  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25435  *		no longer "owns" the disk and will have panicked itself.  Thus,
25436  *		the host issuing the MHIOCTKOWN is assured (with timing
25437  *		dependencies) that by the time it actually starts to use the
25438  *		disk for real work, the old owner is no longer accessing it.
25439  *
25440  *		min_ownership_delay is the minimum amount of time for which the
25441  *		disk must be reserved continuously devoid of resets before the
25442  *		MHIOCTKOWN ioctl will return success.
25443  *
25444  *		max_ownership_delay indicates the amount of time by which the
25445  *		take ownership should succeed or timeout with an error.
25446  *
25447  *   Arguments: dev - the device 'dev_t'
25448  *		*p  - struct containing timing info.
25449  *
25450  * Return Code: 0 for success or error code
25451  */
25452 
25453 static int
25454 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25455 {
25456 	struct sd_lun	*un;
25457 	int		rval;
25458 	int		err;
25459 	int		reservation_count   = 0;
25460 	int		min_ownership_delay =  6000000; /* in usec */
25461 	int		max_ownership_delay = 30000000; /* in usec */
25462 	clock_t		start_time;	/* starting time of this algorithm */
25463 	clock_t		end_time;	/* time limit for giving up */
25464 	clock_t		ownership_time;	/* time limit for stable ownership */
25465 	clock_t		current_time;
25466 	clock_t		previous_current_time;
25467 
25468 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25469 		return (ENXIO);
25470 	}
25471 
25472 	/*
25473 	 * Attempt a device reservation. A priority reservation is requested.
25474 	 */
25475 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25476 	    != SD_SUCCESS) {
25477 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25478 		    "sd_take_ownership: return(1)=%d\n", rval);
25479 		return (rval);
25480 	}
25481 
25482 	/* Update the softstate reserved status to indicate the reservation */
25483 	mutex_enter(SD_MUTEX(un));
25484 	un->un_resvd_status |= SD_RESERVE;
25485 	un->un_resvd_status &=
25486 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25487 	mutex_exit(SD_MUTEX(un));
25488 
25489 	if (p != NULL) {
25490 		if (p->min_ownership_delay != 0) {
25491 			min_ownership_delay = p->min_ownership_delay * 1000;
25492 		}
25493 		if (p->max_ownership_delay != 0) {
25494 			max_ownership_delay = p->max_ownership_delay * 1000;
25495 		}
25496 	}
25497 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25498 	    "sd_take_ownership: min, max delays: %d, %d\n",
25499 	    min_ownership_delay, max_ownership_delay);
25500 
25501 	start_time = ddi_get_lbolt();
25502 	current_time	= start_time;
25503 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25504 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25505 
25506 	while (current_time - end_time < 0) {
25507 		delay(drv_usectohz(500000));
25508 
25509 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25510 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25511 				mutex_enter(SD_MUTEX(un));
25512 				rval = (un->un_resvd_status &
25513 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25514 				mutex_exit(SD_MUTEX(un));
25515 				break;
25516 			}
25517 		}
25518 		previous_current_time = current_time;
25519 		current_time = ddi_get_lbolt();
25520 		mutex_enter(SD_MUTEX(un));
25521 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25522 			ownership_time = ddi_get_lbolt() +
25523 			    drv_usectohz(min_ownership_delay);
25524 			reservation_count = 0;
25525 		} else {
25526 			reservation_count++;
25527 		}
25528 		un->un_resvd_status |= SD_RESERVE;
25529 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25530 		mutex_exit(SD_MUTEX(un));
25531 
25532 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25533 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25534 		    "reservation=%s\n", (current_time - previous_current_time),
25535 		    reservation_count ? "ok" : "reclaimed");
25536 
25537 		if (current_time - ownership_time >= 0 &&
25538 		    reservation_count >= 4) {
25539 			rval = 0; /* Achieved a stable ownership */
25540 			break;
25541 		}
25542 		if (current_time - end_time >= 0) {
25543 			rval = EACCES; /* No ownership in max possible time */
25544 			break;
25545 		}
25546 	}
25547 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25548 	    "sd_take_ownership: return(2)=%d\n", rval);
25549 	return (rval);
25550 }
25551 
25552 
25553 /*
25554  *    Function: sd_reserve_release()
25555  *
25556  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25557  *		PRIORITY RESERVE commands based on a user specified command type
25558  *
25559  *   Arguments: dev - the device 'dev_t'
25560  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25561  *		      SD_RESERVE, SD_RELEASE
25562  *
25563  * Return Code: 0 or Error Code
25564  */
25565 
25566 static int
25567 sd_reserve_release(dev_t dev, int cmd)
25568 {
25569 	struct uscsi_cmd	*com = NULL;
25570 	struct sd_lun		*un = NULL;
25571 	char			cdb[CDB_GROUP0];
25572 	int			rval;
25573 
25574 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25575 	    (cmd == SD_PRIORITY_RESERVE));
25576 
25577 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25578 		return (ENXIO);
25579 	}
25580 
25581 	/* instantiate and initialize the command and cdb */
25582 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25583 	bzero(cdb, CDB_GROUP0);
25584 	com->uscsi_flags   = USCSI_SILENT;
25585 	com->uscsi_timeout = un->un_reserve_release_time;
25586 	com->uscsi_cdblen  = CDB_GROUP0;
25587 	com->uscsi_cdb	   = cdb;
25588 	if (cmd == SD_RELEASE) {
25589 		cdb[0] = SCMD_RELEASE;
25590 	} else {
25591 		cdb[0] = SCMD_RESERVE;
25592 	}
25593 
25594 	/* Send the command. */
25595 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25596 	    SD_PATH_STANDARD);
25597 
25598 	/*
25599 	 * "break" a reservation that is held by another host, by issuing a
25600 	 * reset if priority reserve is desired, and we could not get the
25601 	 * device.
25602 	 */
25603 	if ((cmd == SD_PRIORITY_RESERVE) &&
25604 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25605 		/*
25606 		 * First try to reset the LUN. If we cannot, then try a target
25607 		 * reset, followed by a bus reset if the target reset fails.
25608 		 */
25609 		int reset_retval = 0;
25610 		if (un->un_f_lun_reset_enabled == TRUE) {
25611 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25612 		}
25613 		if (reset_retval == 0) {
25614 			/* The LUN reset either failed or was not issued */
25615 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25616 		}
25617 		if ((reset_retval == 0) &&
25618 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25619 			rval = EIO;
25620 			kmem_free(com, sizeof (*com));
25621 			return (rval);
25622 		}
25623 
25624 		bzero(com, sizeof (struct uscsi_cmd));
25625 		com->uscsi_flags   = USCSI_SILENT;
25626 		com->uscsi_cdb	   = cdb;
25627 		com->uscsi_cdblen  = CDB_GROUP0;
25628 		com->uscsi_timeout = 5;
25629 
25630 		/*
25631 		 * Reissue the last reserve command, this time without request
25632 		 * sense.  Assume that it is just a regular reserve command.
25633 		 */
25634 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25635 		    SD_PATH_STANDARD);
25636 	}
25637 
25638 	/* Return an error if still getting a reservation conflict. */
25639 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25640 		rval = EACCES;
25641 	}
25642 
25643 	kmem_free(com, sizeof (*com));
25644 	return (rval);
25645 }
25646 
25647 
25648 #define	SD_NDUMP_RETRIES	12
25649 /*
25650  *	System Crash Dump routine
25651  */
25652 
25653 static int
25654 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25655 {
25656 	int		instance;
25657 	int		partition;
25658 	int		i;
25659 	int		err;
25660 	struct sd_lun	*un;
25661 	struct scsi_pkt *wr_pktp;
25662 	struct buf	*wr_bp;
25663 	struct buf	wr_buf;
25664 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25665 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25666 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25667 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25668 	size_t		io_start_offset;
25669 	int		doing_rmw = FALSE;
25670 	int		rval;
25671 	ssize_t		dma_resid;
25672 	daddr_t		oblkno;
25673 	diskaddr_t	nblks = 0;
25674 	diskaddr_t	start_block;
25675 
25676 	instance = SDUNIT(dev);
25677 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25678 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
25679 		return (ENXIO);
25680 	}
25681 
25682 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25683 
25684 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25685 
25686 	partition = SDPART(dev);
25687 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25688 
25689 	if (!(NOT_DEVBSIZE(un))) {
25690 		int secmask = 0;
25691 		int blknomask = 0;
25692 
25693 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
25694 		secmask = un->un_tgt_blocksize - 1;
25695 
25696 		if (blkno & blknomask) {
25697 			SD_TRACE(SD_LOG_DUMP, un,
25698 			    "sddump: dump start block not modulo %d\n",
25699 			    un->un_tgt_blocksize);
25700 			return (EINVAL);
25701 		}
25702 
25703 		if ((nblk * DEV_BSIZE) & secmask) {
25704 			SD_TRACE(SD_LOG_DUMP, un,
25705 			    "sddump: dump length not modulo %d\n",
25706 			    un->un_tgt_blocksize);
25707 			return (EINVAL);
25708 		}
25709 
25710 	}
25711 
25712 	/* Validate blocks to dump at against partition size. */
25713 
25714 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
25715 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
25716 
25717 	if (NOT_DEVBSIZE(un)) {
25718 		if ((blkno + nblk) > nblks) {
25719 			SD_TRACE(SD_LOG_DUMP, un,
25720 			    "sddump: dump range larger than partition: "
25721 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25722 			    blkno, nblk, nblks);
25723 			return (EINVAL);
25724 		}
25725 	} else {
25726 		if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) +
25727 		    (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) {
25728 			SD_TRACE(SD_LOG_DUMP, un,
25729 			    "sddump: dump range larger than partition: "
25730 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25731 			    blkno, nblk, nblks);
25732 			return (EINVAL);
25733 		}
25734 	}
25735 
25736 	mutex_enter(&un->un_pm_mutex);
25737 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25738 		struct scsi_pkt *start_pktp;
25739 
25740 		mutex_exit(&un->un_pm_mutex);
25741 
25742 		/*
25743 		 * use pm framework to power on HBA 1st
25744 		 */
25745 		(void) pm_raise_power(SD_DEVINFO(un), 0,
25746 		    SD_PM_STATE_ACTIVE(un));
25747 
25748 		/*
25749 		 * Dump no long uses sdpower to power on a device, it's
25750 		 * in-line here so it can be done in polled mode.
25751 		 */
25752 
25753 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25754 
25755 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25756 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25757 
25758 		if (start_pktp == NULL) {
25759 			/* We were not given a SCSI packet, fail. */
25760 			return (EIO);
25761 		}
25762 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25763 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25764 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25765 		start_pktp->pkt_flags = FLAG_NOINTR;
25766 
25767 		mutex_enter(SD_MUTEX(un));
25768 		SD_FILL_SCSI1_LUN(un, start_pktp);
25769 		mutex_exit(SD_MUTEX(un));
25770 		/*
25771 		 * Scsi_poll returns 0 (success) if the command completes and
25772 		 * the status block is STATUS_GOOD.
25773 		 */
25774 		if (sd_scsi_poll(un, start_pktp) != 0) {
25775 			scsi_destroy_pkt(start_pktp);
25776 			return (EIO);
25777 		}
25778 		scsi_destroy_pkt(start_pktp);
25779 		(void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un),
25780 		    SD_PM_STATE_CHANGE);
25781 	} else {
25782 		mutex_exit(&un->un_pm_mutex);
25783 	}
25784 
25785 	mutex_enter(SD_MUTEX(un));
25786 	un->un_throttle = 0;
25787 
25788 	/*
25789 	 * The first time through, reset the specific target device.
25790 	 * However, when cpr calls sddump we know that sd is in a
25791 	 * a good state so no bus reset is required.
25792 	 * Clear sense data via Request Sense cmd.
25793 	 * In sddump we don't care about allow_bus_device_reset anymore
25794 	 */
25795 
25796 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25797 	    (un->un_state != SD_STATE_DUMPING)) {
25798 
25799 		New_state(un, SD_STATE_DUMPING);
25800 
25801 		if (un->un_f_is_fibre == FALSE) {
25802 			mutex_exit(SD_MUTEX(un));
25803 			/*
25804 			 * Attempt a bus reset for parallel scsi.
25805 			 *
25806 			 * Note: A bus reset is required because on some host
25807 			 * systems (i.e. E420R) a bus device reset is
25808 			 * insufficient to reset the state of the target.
25809 			 *
25810 			 * Note: Don't issue the reset for fibre-channel,
25811 			 * because this tends to hang the bus (loop) for
25812 			 * too long while everyone is logging out and in
25813 			 * and the deadman timer for dumping will fire
25814 			 * before the dump is complete.
25815 			 */
25816 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25817 				mutex_enter(SD_MUTEX(un));
25818 				Restore_state(un);
25819 				mutex_exit(SD_MUTEX(un));
25820 				return (EIO);
25821 			}
25822 
25823 			/* Delay to give the device some recovery time. */
25824 			drv_usecwait(10000);
25825 
25826 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25827 				SD_INFO(SD_LOG_DUMP, un,
25828 				    "sddump: sd_send_polled_RQS failed\n");
25829 			}
25830 			mutex_enter(SD_MUTEX(un));
25831 		}
25832 	}
25833 
25834 	/*
25835 	 * Convert the partition-relative block number to a
25836 	 * disk physical block number.
25837 	 */
25838 	if (NOT_DEVBSIZE(un)) {
25839 		blkno += start_block;
25840 	} else {
25841 		blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE);
25842 		blkno += start_block;
25843 	}
25844 
25845 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25846 
25847 
25848 	/*
25849 	 * Check if the device has a non-512 block size.
25850 	 */
25851 	wr_bp = NULL;
25852 	if (NOT_DEVBSIZE(un)) {
25853 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25854 		tgt_byte_count = nblk * un->un_sys_blocksize;
25855 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25856 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25857 			doing_rmw = TRUE;
25858 			/*
25859 			 * Calculate the block number and number of block
25860 			 * in terms of the media block size.
25861 			 */
25862 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25863 			tgt_nblk =
25864 			    ((tgt_byte_offset + tgt_byte_count +
25865 			    (un->un_tgt_blocksize - 1)) /
25866 			    un->un_tgt_blocksize) - tgt_blkno;
25867 
25868 			/*
25869 			 * Invoke the routine which is going to do read part
25870 			 * of read-modify-write.
25871 			 * Note that this routine returns a pointer to
25872 			 * a valid bp in wr_bp.
25873 			 */
25874 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25875 			    &wr_bp);
25876 			if (err) {
25877 				mutex_exit(SD_MUTEX(un));
25878 				return (err);
25879 			}
25880 			/*
25881 			 * Offset is being calculated as -
25882 			 * (original block # * system block size) -
25883 			 * (new block # * target block size)
25884 			 */
25885 			io_start_offset =
25886 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25887 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25888 
25889 			ASSERT((io_start_offset >= 0) &&
25890 			    (io_start_offset < un->un_tgt_blocksize));
25891 			/*
25892 			 * Do the modify portion of read modify write.
25893 			 */
25894 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25895 			    (size_t)nblk * un->un_sys_blocksize);
25896 		} else {
25897 			doing_rmw = FALSE;
25898 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25899 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25900 		}
25901 
25902 		/* Convert blkno and nblk to target blocks */
25903 		blkno = tgt_blkno;
25904 		nblk = tgt_nblk;
25905 	} else {
25906 		wr_bp = &wr_buf;
25907 		bzero(wr_bp, sizeof (struct buf));
25908 		wr_bp->b_flags		= B_BUSY;
25909 		wr_bp->b_un.b_addr	= addr;
25910 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25911 		wr_bp->b_resid		= 0;
25912 	}
25913 
25914 	mutex_exit(SD_MUTEX(un));
25915 
25916 	/*
25917 	 * Obtain a SCSI packet for the write command.
25918 	 * It should be safe to call the allocator here without
25919 	 * worrying about being locked for DVMA mapping because
25920 	 * the address we're passed is already a DVMA mapping
25921 	 *
25922 	 * We are also not going to worry about semaphore ownership
25923 	 * in the dump buffer. Dumping is single threaded at present.
25924 	 */
25925 
25926 	wr_pktp = NULL;
25927 
25928 	dma_resid = wr_bp->b_bcount;
25929 	oblkno = blkno;
25930 
25931 	if (!(NOT_DEVBSIZE(un))) {
25932 		nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE);
25933 	}
25934 
25935 	while (dma_resid != 0) {
25936 
25937 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25938 		wr_bp->b_flags &= ~B_ERROR;
25939 
25940 		if (un->un_partial_dma_supported == 1) {
25941 			blkno = oblkno +
25942 			    ((wr_bp->b_bcount - dma_resid) /
25943 			    un->un_tgt_blocksize);
25944 			nblk = dma_resid / un->un_tgt_blocksize;
25945 
25946 			if (wr_pktp) {
25947 				/*
25948 				 * Partial DMA transfers after initial transfer
25949 				 */
25950 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
25951 				    blkno, nblk);
25952 			} else {
25953 				/* Initial transfer */
25954 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25955 				    un->un_pkt_flags, NULL_FUNC, NULL,
25956 				    blkno, nblk);
25957 			}
25958 		} else {
25959 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25960 			    0, NULL_FUNC, NULL, blkno, nblk);
25961 		}
25962 
25963 		if (rval == 0) {
25964 			/* We were given a SCSI packet, continue. */
25965 			break;
25966 		}
25967 
25968 		if (i == 0) {
25969 			if (wr_bp->b_flags & B_ERROR) {
25970 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25971 				    "no resources for dumping; "
25972 				    "error code: 0x%x, retrying",
25973 				    geterror(wr_bp));
25974 			} else {
25975 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25976 				    "no resources for dumping; retrying");
25977 			}
25978 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
25979 			if (wr_bp->b_flags & B_ERROR) {
25980 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25981 				    "no resources for dumping; error code: "
25982 				    "0x%x, retrying\n", geterror(wr_bp));
25983 			}
25984 		} else {
25985 			if (wr_bp->b_flags & B_ERROR) {
25986 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25987 				    "no resources for dumping; "
25988 				    "error code: 0x%x, retries failed, "
25989 				    "giving up.\n", geterror(wr_bp));
25990 			} else {
25991 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25992 				    "no resources for dumping; "
25993 				    "retries failed, giving up.\n");
25994 			}
25995 			mutex_enter(SD_MUTEX(un));
25996 			Restore_state(un);
25997 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
25998 				mutex_exit(SD_MUTEX(un));
25999 				scsi_free_consistent_buf(wr_bp);
26000 			} else {
26001 				mutex_exit(SD_MUTEX(un));
26002 			}
26003 			return (EIO);
26004 		}
26005 		drv_usecwait(10000);
26006 	}
26007 
26008 	if (un->un_partial_dma_supported == 1) {
26009 		/*
26010 		 * save the resid from PARTIAL_DMA
26011 		 */
26012 		dma_resid = wr_pktp->pkt_resid;
26013 		if (dma_resid != 0)
26014 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26015 		wr_pktp->pkt_resid = 0;
26016 	} else {
26017 		dma_resid = 0;
26018 	}
26019 
26020 	/* SunBug 1222170 */
26021 	wr_pktp->pkt_flags = FLAG_NOINTR;
26022 
26023 	err = EIO;
26024 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26025 
26026 		/*
26027 		 * Scsi_poll returns 0 (success) if the command completes and
26028 		 * the status block is STATUS_GOOD.  We should only check
26029 		 * errors if this condition is not true.  Even then we should
26030 		 * send our own request sense packet only if we have a check
26031 		 * condition and auto request sense has not been performed by
26032 		 * the hba.
26033 		 */
26034 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26035 
26036 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26037 		    (wr_pktp->pkt_resid == 0)) {
26038 			err = SD_SUCCESS;
26039 			break;
26040 		}
26041 
26042 		/*
26043 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26044 		 */
26045 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26046 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26047 			    "Error while dumping state...Device is gone\n");
26048 			break;
26049 		}
26050 
26051 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26052 			SD_INFO(SD_LOG_DUMP, un,
26053 			    "sddump: write failed with CHECK, try # %d\n", i);
26054 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26055 				(void) sd_send_polled_RQS(un);
26056 			}
26057 
26058 			continue;
26059 		}
26060 
26061 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26062 			int reset_retval = 0;
26063 
26064 			SD_INFO(SD_LOG_DUMP, un,
26065 			    "sddump: write failed with BUSY, try # %d\n", i);
26066 
26067 			if (un->un_f_lun_reset_enabled == TRUE) {
26068 				reset_retval = scsi_reset(SD_ADDRESS(un),
26069 				    RESET_LUN);
26070 			}
26071 			if (reset_retval == 0) {
26072 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26073 			}
26074 			(void) sd_send_polled_RQS(un);
26075 
26076 		} else {
26077 			SD_INFO(SD_LOG_DUMP, un,
26078 			    "sddump: write failed with 0x%x, try # %d\n",
26079 			    SD_GET_PKT_STATUS(wr_pktp), i);
26080 			mutex_enter(SD_MUTEX(un));
26081 			sd_reset_target(un, wr_pktp);
26082 			mutex_exit(SD_MUTEX(un));
26083 		}
26084 
26085 		/*
26086 		 * If we are not getting anywhere with lun/target resets,
26087 		 * let's reset the bus.
26088 		 */
26089 		if (i == SD_NDUMP_RETRIES/2) {
26090 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26091 			(void) sd_send_polled_RQS(un);
26092 		}
26093 	}
26094 	}
26095 
26096 	scsi_destroy_pkt(wr_pktp);
26097 	mutex_enter(SD_MUTEX(un));
26098 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26099 		mutex_exit(SD_MUTEX(un));
26100 		scsi_free_consistent_buf(wr_bp);
26101 	} else {
26102 		mutex_exit(SD_MUTEX(un));
26103 	}
26104 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26105 	return (err);
26106 }
26107 
26108 /*
26109  *    Function: sd_scsi_poll()
26110  *
26111  * Description: This is a wrapper for the scsi_poll call.
26112  *
26113  *   Arguments: sd_lun - The unit structure
26114  *              scsi_pkt - The scsi packet being sent to the device.
26115  *
26116  * Return Code: 0 - Command completed successfully with good status
26117  *             -1 - Command failed.  This could indicate a check condition
26118  *                  or other status value requiring recovery action.
26119  *
26120  * NOTE: This code is only called off sddump().
26121  */
26122 
26123 static int
26124 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26125 {
26126 	int status;
26127 
26128 	ASSERT(un != NULL);
26129 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26130 	ASSERT(pktp != NULL);
26131 
26132 	status = SD_SUCCESS;
26133 
26134 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26135 		pktp->pkt_flags |= un->un_tagflags;
26136 		pktp->pkt_flags &= ~FLAG_NODISCON;
26137 	}
26138 
26139 	status = sd_ddi_scsi_poll(pktp);
26140 	/*
26141 	 * Scsi_poll returns 0 (success) if the command completes and the
26142 	 * status block is STATUS_GOOD.  We should only check errors if this
26143 	 * condition is not true.  Even then we should send our own request
26144 	 * sense packet only if we have a check condition and auto
26145 	 * request sense has not been performed by the hba.
26146 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26147 	 */
26148 	if ((status != SD_SUCCESS) &&
26149 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26150 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26151 	    (pktp->pkt_reason != CMD_DEV_GONE))
26152 		(void) sd_send_polled_RQS(un);
26153 
26154 	return (status);
26155 }
26156 
26157 /*
26158  *    Function: sd_send_polled_RQS()
26159  *
26160  * Description: This sends the request sense command to a device.
26161  *
26162  *   Arguments: sd_lun - The unit structure
26163  *
26164  * Return Code: 0 - Command completed successfully with good status
26165  *             -1 - Command failed.
26166  *
26167  */
26168 
26169 static int
26170 sd_send_polled_RQS(struct sd_lun *un)
26171 {
26172 	int	ret_val;
26173 	struct	scsi_pkt	*rqs_pktp;
26174 	struct	buf		*rqs_bp;
26175 
26176 	ASSERT(un != NULL);
26177 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26178 
26179 	ret_val = SD_SUCCESS;
26180 
26181 	rqs_pktp = un->un_rqs_pktp;
26182 	rqs_bp	 = un->un_rqs_bp;
26183 
26184 	mutex_enter(SD_MUTEX(un));
26185 
26186 	if (un->un_sense_isbusy) {
26187 		ret_val = SD_FAILURE;
26188 		mutex_exit(SD_MUTEX(un));
26189 		return (ret_val);
26190 	}
26191 
26192 	/*
26193 	 * If the request sense buffer (and packet) is not in use,
26194 	 * let's set the un_sense_isbusy and send our packet
26195 	 */
26196 	un->un_sense_isbusy 	= 1;
26197 	rqs_pktp->pkt_resid  	= 0;
26198 	rqs_pktp->pkt_reason 	= 0;
26199 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26200 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26201 
26202 	mutex_exit(SD_MUTEX(un));
26203 
26204 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26205 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26206 
26207 	/*
26208 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26209 	 * axle - it has a call into us!
26210 	 */
26211 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26212 		SD_INFO(SD_LOG_COMMON, un,
26213 		    "sd_send_polled_RQS: RQS failed\n");
26214 	}
26215 
26216 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26217 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26218 
26219 	mutex_enter(SD_MUTEX(un));
26220 	un->un_sense_isbusy = 0;
26221 	mutex_exit(SD_MUTEX(un));
26222 
26223 	return (ret_val);
26224 }
26225 
26226 /*
26227  * Defines needed for localized version of the scsi_poll routine.
26228  */
26229 #define	CSEC		10000			/* usecs */
26230 #define	SEC_TO_CSEC	(1000000/CSEC)
26231 
26232 /*
26233  *    Function: sd_ddi_scsi_poll()
26234  *
26235  * Description: Localized version of the scsi_poll routine.  The purpose is to
26236  *		send a scsi_pkt to a device as a polled command.  This version
26237  *		is to ensure more robust handling of transport errors.
26238  *		Specifically this routine cures not ready, coming ready
26239  *		transition for power up and reset of sonoma's.  This can take
26240  *		up to 45 seconds for power-on and 20 seconds for reset of a
26241  * 		sonoma lun.
26242  *
26243  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26244  *
26245  * Return Code: 0 - Command completed successfully with good status
26246  *             -1 - Command failed.
26247  *
26248  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
26249  * be fixed (removing this code), we need to determine how to handle the
26250  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
26251  *
26252  * NOTE: This code is only called off sddump().
26253  */
26254 static int
26255 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26256 {
26257 	int			rval = -1;
26258 	int			savef;
26259 	long			savet;
26260 	void			(*savec)();
26261 	int			timeout;
26262 	int			busy_count;
26263 	int			poll_delay;
26264 	int			rc;
26265 	uint8_t			*sensep;
26266 	struct scsi_arq_status	*arqstat;
26267 	extern int		do_polled_io;
26268 
26269 	ASSERT(pkt->pkt_scbp);
26270 
26271 	/*
26272 	 * save old flags..
26273 	 */
26274 	savef = pkt->pkt_flags;
26275 	savec = pkt->pkt_comp;
26276 	savet = pkt->pkt_time;
26277 
26278 	pkt->pkt_flags |= FLAG_NOINTR;
26279 
26280 	/*
26281 	 * XXX there is nothing in the SCSA spec that states that we should not
26282 	 * do a callback for polled cmds; however, removing this will break sd
26283 	 * and probably other target drivers
26284 	 */
26285 	pkt->pkt_comp = NULL;
26286 
26287 	/*
26288 	 * we don't like a polled command without timeout.
26289 	 * 60 seconds seems long enough.
26290 	 */
26291 	if (pkt->pkt_time == 0)
26292 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26293 
26294 	/*
26295 	 * Send polled cmd.
26296 	 *
26297 	 * We do some error recovery for various errors.  Tran_busy,
26298 	 * queue full, and non-dispatched commands are retried every 10 msec.
26299 	 * as they are typically transient failures.  Busy status and Not
26300 	 * Ready are retried every second as this status takes a while to
26301 	 * change.
26302 	 */
26303 	timeout = pkt->pkt_time * SEC_TO_CSEC;
26304 
26305 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26306 		/*
26307 		 * Initialize pkt status variables.
26308 		 */
26309 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26310 
26311 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26312 			if (rc != TRAN_BUSY) {
26313 				/* Transport failed - give up. */
26314 				break;
26315 			} else {
26316 				/* Transport busy - try again. */
26317 				poll_delay = 1 * CSEC;		/* 10 msec. */
26318 			}
26319 		} else {
26320 			/*
26321 			 * Transport accepted - check pkt status.
26322 			 */
26323 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26324 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26325 			    (rc == STATUS_CHECK) &&
26326 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
26327 				arqstat =
26328 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26329 				sensep = (uint8_t *)&arqstat->sts_sensedata;
26330 			} else {
26331 				sensep = NULL;
26332 			}
26333 
26334 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26335 			    (rc == STATUS_GOOD)) {
26336 				/* No error - we're done */
26337 				rval = 0;
26338 				break;
26339 
26340 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26341 				/* Lost connection - give up */
26342 				break;
26343 
26344 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26345 			    (pkt->pkt_state == 0)) {
26346 				/* Pkt not dispatched - try again. */
26347 				poll_delay = 1 * CSEC;		/* 10 msec. */
26348 
26349 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26350 			    (rc == STATUS_QFULL)) {
26351 				/* Queue full - try again. */
26352 				poll_delay = 1 * CSEC;		/* 10 msec. */
26353 
26354 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26355 			    (rc == STATUS_BUSY)) {
26356 				/* Busy - try again. */
26357 				poll_delay = 100 * CSEC;	/* 1 sec. */
26358 				busy_count += (SEC_TO_CSEC - 1);
26359 
26360 			} else if ((sensep != NULL) &&
26361 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
26362 				/*
26363 				 * Unit Attention - try again.
26364 				 * Pretend it took 1 sec.
26365 				 * NOTE: 'continue' avoids poll_delay
26366 				 */
26367 				busy_count += (SEC_TO_CSEC - 1);
26368 				continue;
26369 
26370 			} else if ((sensep != NULL) &&
26371 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26372 			    (scsi_sense_asc(sensep) == 0x04) &&
26373 			    (scsi_sense_ascq(sensep) == 0x01)) {
26374 				/*
26375 				 * Not ready -> ready - try again.
26376 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
26377 				 * ...same as STATUS_BUSY
26378 				 */
26379 				poll_delay = 100 * CSEC;	/* 1 sec. */
26380 				busy_count += (SEC_TO_CSEC - 1);
26381 
26382 			} else {
26383 				/* BAD status - give up. */
26384 				break;
26385 			}
26386 		}
26387 
26388 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
26389 		    !do_polled_io) {
26390 			delay(drv_usectohz(poll_delay));
26391 		} else {
26392 			/* we busy wait during cpr_dump or interrupt threads */
26393 			drv_usecwait(poll_delay);
26394 		}
26395 	}
26396 
26397 	pkt->pkt_flags = savef;
26398 	pkt->pkt_comp = savec;
26399 	pkt->pkt_time = savet;
26400 
26401 	/* return on error */
26402 	if (rval)
26403 		return (rval);
26404 
26405 	/*
26406 	 * This is not a performance critical code path.
26407 	 *
26408 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
26409 	 * issues associated with looking at DMA memory prior to
26410 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
26411 	 */
26412 	scsi_sync_pkt(pkt);
26413 	return (0);
26414 }
26415 
26416 
26417 
26418 /*
26419  *    Function: sd_persistent_reservation_in_read_keys
26420  *
26421  * Description: This routine is the driver entry point for handling CD-ROM
26422  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26423  *		by sending the SCSI-3 PRIN commands to the device.
26424  *		Processes the read keys command response by copying the
26425  *		reservation key information into the user provided buffer.
26426  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26427  *
26428  *   Arguments: un   -  Pointer to soft state struct for the target.
26429  *		usrp -	user provided pointer to multihost Persistent In Read
26430  *			Keys structure (mhioc_inkeys_t)
26431  *		flag -	this argument is a pass through to ddi_copyxxx()
26432  *			directly from the mode argument of ioctl().
26433  *
26434  * Return Code: 0   - Success
26435  *		EACCES
26436  *		ENOTSUP
26437  *		errno return code from sd_send_scsi_cmd()
26438  *
26439  *     Context: Can sleep. Does not return until command is completed.
26440  */
26441 
26442 static int
26443 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26444     mhioc_inkeys_t *usrp, int flag)
26445 {
26446 #ifdef _MULTI_DATAMODEL
26447 	struct mhioc_key_list32	li32;
26448 #endif
26449 	sd_prin_readkeys_t	*in;
26450 	mhioc_inkeys_t		*ptr;
26451 	mhioc_key_list_t	li;
26452 	uchar_t			*data_bufp;
26453 	int 			data_len;
26454 	int			rval = 0;
26455 	size_t			copysz;
26456 	sd_ssc_t		*ssc;
26457 
26458 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26459 		return (EINVAL);
26460 	}
26461 	bzero(&li, sizeof (mhioc_key_list_t));
26462 
26463 	ssc = sd_ssc_init(un);
26464 
26465 	/*
26466 	 * Get the listsize from user
26467 	 */
26468 #ifdef _MULTI_DATAMODEL
26469 
26470 	switch (ddi_model_convert_from(flag & FMODELS)) {
26471 	case DDI_MODEL_ILP32:
26472 		copysz = sizeof (struct mhioc_key_list32);
26473 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26474 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26475 			    "sd_persistent_reservation_in_read_keys: "
26476 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26477 			rval = EFAULT;
26478 			goto done;
26479 		}
26480 		li.listsize = li32.listsize;
26481 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26482 		break;
26483 
26484 	case DDI_MODEL_NONE:
26485 		copysz = sizeof (mhioc_key_list_t);
26486 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26487 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26488 			    "sd_persistent_reservation_in_read_keys: "
26489 			    "failed ddi_copyin: mhioc_key_list_t\n");
26490 			rval = EFAULT;
26491 			goto done;
26492 		}
26493 		break;
26494 	}
26495 
26496 #else /* ! _MULTI_DATAMODEL */
26497 	copysz = sizeof (mhioc_key_list_t);
26498 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26499 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26500 		    "sd_persistent_reservation_in_read_keys: "
26501 		    "failed ddi_copyin: mhioc_key_list_t\n");
26502 		rval = EFAULT;
26503 		goto done;
26504 	}
26505 #endif
26506 
26507 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26508 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26509 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26510 
26511 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
26512 	    data_len, data_bufp);
26513 	if (rval != 0) {
26514 		if (rval == EIO)
26515 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26516 		else
26517 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26518 		goto done;
26519 	}
26520 	in = (sd_prin_readkeys_t *)data_bufp;
26521 	ptr->generation = BE_32(in->generation);
26522 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26523 
26524 	/*
26525 	 * Return the min(listsize, listlen) keys
26526 	 */
26527 #ifdef _MULTI_DATAMODEL
26528 
26529 	switch (ddi_model_convert_from(flag & FMODELS)) {
26530 	case DDI_MODEL_ILP32:
26531 		li32.listlen = li.listlen;
26532 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26533 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26534 			    "sd_persistent_reservation_in_read_keys: "
26535 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26536 			rval = EFAULT;
26537 			goto done;
26538 		}
26539 		break;
26540 
26541 	case DDI_MODEL_NONE:
26542 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26543 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26544 			    "sd_persistent_reservation_in_read_keys: "
26545 			    "failed ddi_copyout: mhioc_key_list_t\n");
26546 			rval = EFAULT;
26547 			goto done;
26548 		}
26549 		break;
26550 	}
26551 
26552 #else /* ! _MULTI_DATAMODEL */
26553 
26554 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26555 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26556 		    "sd_persistent_reservation_in_read_keys: "
26557 		    "failed ddi_copyout: mhioc_key_list_t\n");
26558 		rval = EFAULT;
26559 		goto done;
26560 	}
26561 
26562 #endif /* _MULTI_DATAMODEL */
26563 
26564 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26565 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26566 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26567 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26568 		    "sd_persistent_reservation_in_read_keys: "
26569 		    "failed ddi_copyout: keylist\n");
26570 		rval = EFAULT;
26571 	}
26572 done:
26573 	sd_ssc_fini(ssc);
26574 	kmem_free(data_bufp, data_len);
26575 	return (rval);
26576 }
26577 
26578 
26579 /*
26580  *    Function: sd_persistent_reservation_in_read_resv
26581  *
26582  * Description: This routine is the driver entry point for handling CD-ROM
26583  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26584  *		by sending the SCSI-3 PRIN commands to the device.
26585  *		Process the read persistent reservations command response by
26586  *		copying the reservation information into the user provided
26587  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26588  *
26589  *   Arguments: un   -  Pointer to soft state struct for the target.
26590  *		usrp -	user provided pointer to multihost Persistent In Read
26591  *			Keys structure (mhioc_inkeys_t)
26592  *		flag -	this argument is a pass through to ddi_copyxxx()
26593  *			directly from the mode argument of ioctl().
26594  *
26595  * Return Code: 0   - Success
26596  *		EACCES
26597  *		ENOTSUP
26598  *		errno return code from sd_send_scsi_cmd()
26599  *
26600  *     Context: Can sleep. Does not return until command is completed.
26601  */
26602 
26603 static int
26604 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26605     mhioc_inresvs_t *usrp, int flag)
26606 {
26607 #ifdef _MULTI_DATAMODEL
26608 	struct mhioc_resv_desc_list32 resvlist32;
26609 #endif
26610 	sd_prin_readresv_t	*in;
26611 	mhioc_inresvs_t		*ptr;
26612 	sd_readresv_desc_t	*readresv_ptr;
26613 	mhioc_resv_desc_list_t	resvlist;
26614 	mhioc_resv_desc_t 	resvdesc;
26615 	uchar_t			*data_bufp = NULL;
26616 	int 			data_len;
26617 	int			rval = 0;
26618 	int			i;
26619 	size_t			copysz;
26620 	mhioc_resv_desc_t	*bufp;
26621 	sd_ssc_t		*ssc;
26622 
26623 	if ((ptr = usrp) == NULL) {
26624 		return (EINVAL);
26625 	}
26626 
26627 	ssc = sd_ssc_init(un);
26628 
26629 	/*
26630 	 * Get the listsize from user
26631 	 */
26632 #ifdef _MULTI_DATAMODEL
26633 	switch (ddi_model_convert_from(flag & FMODELS)) {
26634 	case DDI_MODEL_ILP32:
26635 		copysz = sizeof (struct mhioc_resv_desc_list32);
26636 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26637 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26638 			    "sd_persistent_reservation_in_read_resv: "
26639 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26640 			rval = EFAULT;
26641 			goto done;
26642 		}
26643 		resvlist.listsize = resvlist32.listsize;
26644 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26645 		break;
26646 
26647 	case DDI_MODEL_NONE:
26648 		copysz = sizeof (mhioc_resv_desc_list_t);
26649 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26650 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26651 			    "sd_persistent_reservation_in_read_resv: "
26652 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26653 			rval = EFAULT;
26654 			goto done;
26655 		}
26656 		break;
26657 	}
26658 #else /* ! _MULTI_DATAMODEL */
26659 	copysz = sizeof (mhioc_resv_desc_list_t);
26660 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26661 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26662 		    "sd_persistent_reservation_in_read_resv: "
26663 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26664 		rval = EFAULT;
26665 		goto done;
26666 	}
26667 #endif /* ! _MULTI_DATAMODEL */
26668 
26669 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26670 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26671 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26672 
26673 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
26674 	    data_len, data_bufp);
26675 	if (rval != 0) {
26676 		if (rval == EIO)
26677 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26678 		else
26679 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26680 		goto done;
26681 	}
26682 	in = (sd_prin_readresv_t *)data_bufp;
26683 	ptr->generation = BE_32(in->generation);
26684 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26685 
26686 	/*
26687 	 * Return the min(listsize, listlen( keys
26688 	 */
26689 #ifdef _MULTI_DATAMODEL
26690 
26691 	switch (ddi_model_convert_from(flag & FMODELS)) {
26692 	case DDI_MODEL_ILP32:
26693 		resvlist32.listlen = resvlist.listlen;
26694 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26695 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26696 			    "sd_persistent_reservation_in_read_resv: "
26697 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26698 			rval = EFAULT;
26699 			goto done;
26700 		}
26701 		break;
26702 
26703 	case DDI_MODEL_NONE:
26704 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26705 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26706 			    "sd_persistent_reservation_in_read_resv: "
26707 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26708 			rval = EFAULT;
26709 			goto done;
26710 		}
26711 		break;
26712 	}
26713 
26714 #else /* ! _MULTI_DATAMODEL */
26715 
26716 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26717 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26718 		    "sd_persistent_reservation_in_read_resv: "
26719 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26720 		rval = EFAULT;
26721 		goto done;
26722 	}
26723 
26724 #endif /* ! _MULTI_DATAMODEL */
26725 
26726 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26727 	bufp = resvlist.list;
26728 	copysz = sizeof (mhioc_resv_desc_t);
26729 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26730 	    i++, readresv_ptr++, bufp++) {
26731 
26732 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26733 		    MHIOC_RESV_KEY_SIZE);
26734 		resvdesc.type  = readresv_ptr->type;
26735 		resvdesc.scope = readresv_ptr->scope;
26736 		resvdesc.scope_specific_addr =
26737 		    BE_32(readresv_ptr->scope_specific_addr);
26738 
26739 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26740 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26741 			    "sd_persistent_reservation_in_read_resv: "
26742 			    "failed ddi_copyout: resvlist\n");
26743 			rval = EFAULT;
26744 			goto done;
26745 		}
26746 	}
26747 done:
26748 	sd_ssc_fini(ssc);
26749 	/* only if data_bufp is allocated, we need to free it */
26750 	if (data_bufp) {
26751 		kmem_free(data_bufp, data_len);
26752 	}
26753 	return (rval);
26754 }
26755 
26756 
26757 /*
26758  *    Function: sr_change_blkmode()
26759  *
26760  * Description: This routine is the driver entry point for handling CD-ROM
26761  *		block mode ioctl requests. Support for returning and changing
26762  *		the current block size in use by the device is implemented. The
26763  *		LBA size is changed via a MODE SELECT Block Descriptor.
26764  *
26765  *		This routine issues a mode sense with an allocation length of
26766  *		12 bytes for the mode page header and a single block descriptor.
26767  *
26768  *   Arguments: dev - the device 'dev_t'
26769  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26770  *		      CDROMSBLKMODE (set)
26771  *		data - current block size or requested block size
26772  *		flag - this argument is a pass through to ddi_copyxxx() directly
26773  *		       from the mode argument of ioctl().
26774  *
26775  * Return Code: the code returned by sd_send_scsi_cmd()
26776  *		EINVAL if invalid arguments are provided
26777  *		EFAULT if ddi_copyxxx() fails
26778  *		ENXIO if fail ddi_get_soft_state
26779  *		EIO if invalid mode sense block descriptor length
26780  *
26781  */
26782 
26783 static int
26784 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26785 {
26786 	struct sd_lun			*un = NULL;
26787 	struct mode_header		*sense_mhp, *select_mhp;
26788 	struct block_descriptor		*sense_desc, *select_desc;
26789 	int				current_bsize;
26790 	int				rval = EINVAL;
26791 	uchar_t				*sense = NULL;
26792 	uchar_t				*select = NULL;
26793 	sd_ssc_t			*ssc;
26794 
26795 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26796 
26797 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26798 		return (ENXIO);
26799 	}
26800 
26801 	/*
26802 	 * The block length is changed via the Mode Select block descriptor, the
26803 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26804 	 * required as part of this routine. Therefore the mode sense allocation
26805 	 * length is specified to be the length of a mode page header and a
26806 	 * block descriptor.
26807 	 */
26808 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26809 
26810 	ssc = sd_ssc_init(un);
26811 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26812 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
26813 	sd_ssc_fini(ssc);
26814 	if (rval != 0) {
26815 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26816 		    "sr_change_blkmode: Mode Sense Failed\n");
26817 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26818 		return (rval);
26819 	}
26820 
26821 	/* Check the block descriptor len to handle only 1 block descriptor */
26822 	sense_mhp = (struct mode_header *)sense;
26823 	if ((sense_mhp->bdesc_length == 0) ||
26824 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26825 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26826 		    "sr_change_blkmode: Mode Sense returned invalid block"
26827 		    " descriptor length\n");
26828 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26829 		return (EIO);
26830 	}
26831 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26832 	current_bsize = ((sense_desc->blksize_hi << 16) |
26833 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26834 
26835 	/* Process command */
26836 	switch (cmd) {
26837 	case CDROMGBLKMODE:
26838 		/* Return the block size obtained during the mode sense */
26839 		if (ddi_copyout(&current_bsize, (void *)data,
26840 		    sizeof (int), flag) != 0)
26841 			rval = EFAULT;
26842 		break;
26843 	case CDROMSBLKMODE:
26844 		/* Validate the requested block size */
26845 		switch (data) {
26846 		case CDROM_BLK_512:
26847 		case CDROM_BLK_1024:
26848 		case CDROM_BLK_2048:
26849 		case CDROM_BLK_2056:
26850 		case CDROM_BLK_2336:
26851 		case CDROM_BLK_2340:
26852 		case CDROM_BLK_2352:
26853 		case CDROM_BLK_2368:
26854 		case CDROM_BLK_2448:
26855 		case CDROM_BLK_2646:
26856 		case CDROM_BLK_2647:
26857 			break;
26858 		default:
26859 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26860 			    "sr_change_blkmode: "
26861 			    "Block Size '%ld' Not Supported\n", data);
26862 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26863 			return (EINVAL);
26864 		}
26865 
26866 		/*
26867 		 * The current block size matches the requested block size so
26868 		 * there is no need to send the mode select to change the size
26869 		 */
26870 		if (current_bsize == data) {
26871 			break;
26872 		}
26873 
26874 		/* Build the select data for the requested block size */
26875 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26876 		select_mhp = (struct mode_header *)select;
26877 		select_desc =
26878 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26879 		/*
26880 		 * The LBA size is changed via the block descriptor, so the
26881 		 * descriptor is built according to the user data
26882 		 */
26883 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26884 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26885 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26886 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26887 
26888 		/* Send the mode select for the requested block size */
26889 		ssc = sd_ssc_init(un);
26890 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26891 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26892 		    SD_PATH_STANDARD);
26893 		sd_ssc_fini(ssc);
26894 		if (rval != 0) {
26895 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26896 			    "sr_change_blkmode: Mode Select Failed\n");
26897 			/*
26898 			 * The mode select failed for the requested block size,
26899 			 * so reset the data for the original block size and
26900 			 * send it to the target. The error is indicated by the
26901 			 * return value for the failed mode select.
26902 			 */
26903 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26904 			select_desc->blksize_mid = sense_desc->blksize_mid;
26905 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26906 			ssc = sd_ssc_init(un);
26907 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26908 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26909 			    SD_PATH_STANDARD);
26910 			sd_ssc_fini(ssc);
26911 		} else {
26912 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26913 			mutex_enter(SD_MUTEX(un));
26914 			sd_update_block_info(un, (uint32_t)data, 0);
26915 			mutex_exit(SD_MUTEX(un));
26916 		}
26917 		break;
26918 	default:
26919 		/* should not reach here, but check anyway */
26920 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26921 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26922 		rval = EINVAL;
26923 		break;
26924 	}
26925 
26926 	if (select) {
26927 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
26928 	}
26929 	if (sense) {
26930 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26931 	}
26932 	return (rval);
26933 }
26934 
26935 
26936 /*
26937  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
26938  * implement driver support for getting and setting the CD speed. The command
26939  * set used will be based on the device type. If the device has not been
26940  * identified as MMC the Toshiba vendor specific mode page will be used. If
26941  * the device is MMC but does not support the Real Time Streaming feature
26942  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
26943  * be used to read the speed.
26944  */
26945 
26946 /*
26947  *    Function: sr_change_speed()
26948  *
26949  * Description: This routine is the driver entry point for handling CD-ROM
26950  *		drive speed ioctl requests for devices supporting the Toshiba
26951  *		vendor specific drive speed mode page. Support for returning
26952  *		and changing the current drive speed in use by the device is
26953  *		implemented.
26954  *
26955  *   Arguments: dev - the device 'dev_t'
26956  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
26957  *		      CDROMSDRVSPEED (set)
26958  *		data - current drive speed or requested drive speed
26959  *		flag - this argument is a pass through to ddi_copyxxx() directly
26960  *		       from the mode argument of ioctl().
26961  *
26962  * Return Code: the code returned by sd_send_scsi_cmd()
26963  *		EINVAL if invalid arguments are provided
26964  *		EFAULT if ddi_copyxxx() fails
26965  *		ENXIO if fail ddi_get_soft_state
26966  *		EIO if invalid mode sense block descriptor length
26967  */
26968 
26969 static int
26970 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26971 {
26972 	struct sd_lun			*un = NULL;
26973 	struct mode_header		*sense_mhp, *select_mhp;
26974 	struct mode_speed		*sense_page, *select_page;
26975 	int				current_speed;
26976 	int				rval = EINVAL;
26977 	int				bd_len;
26978 	uchar_t				*sense = NULL;
26979 	uchar_t				*select = NULL;
26980 	sd_ssc_t			*ssc;
26981 
26982 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26983 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26984 		return (ENXIO);
26985 	}
26986 
26987 	/*
26988 	 * Note: The drive speed is being modified here according to a Toshiba
26989 	 * vendor specific mode page (0x31).
26990 	 */
26991 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26992 
26993 	ssc = sd_ssc_init(un);
26994 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26995 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
26996 	    SD_PATH_STANDARD);
26997 	sd_ssc_fini(ssc);
26998 	if (rval != 0) {
26999 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27000 		    "sr_change_speed: Mode Sense Failed\n");
27001 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27002 		return (rval);
27003 	}
27004 	sense_mhp  = (struct mode_header *)sense;
27005 
27006 	/* Check the block descriptor len to handle only 1 block descriptor */
27007 	bd_len = sense_mhp->bdesc_length;
27008 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27009 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27010 		    "sr_change_speed: Mode Sense returned invalid block "
27011 		    "descriptor length\n");
27012 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27013 		return (EIO);
27014 	}
27015 
27016 	sense_page = (struct mode_speed *)
27017 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27018 	current_speed = sense_page->speed;
27019 
27020 	/* Process command */
27021 	switch (cmd) {
27022 	case CDROMGDRVSPEED:
27023 		/* Return the drive speed obtained during the mode sense */
27024 		if (current_speed == 0x2) {
27025 			current_speed = CDROM_TWELVE_SPEED;
27026 		}
27027 		if (ddi_copyout(&current_speed, (void *)data,
27028 		    sizeof (int), flag) != 0) {
27029 			rval = EFAULT;
27030 		}
27031 		break;
27032 	case CDROMSDRVSPEED:
27033 		/* Validate the requested drive speed */
27034 		switch ((uchar_t)data) {
27035 		case CDROM_TWELVE_SPEED:
27036 			data = 0x2;
27037 			/*FALLTHROUGH*/
27038 		case CDROM_NORMAL_SPEED:
27039 		case CDROM_DOUBLE_SPEED:
27040 		case CDROM_QUAD_SPEED:
27041 		case CDROM_MAXIMUM_SPEED:
27042 			break;
27043 		default:
27044 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27045 			    "sr_change_speed: "
27046 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27047 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27048 			return (EINVAL);
27049 		}
27050 
27051 		/*
27052 		 * The current drive speed matches the requested drive speed so
27053 		 * there is no need to send the mode select to change the speed
27054 		 */
27055 		if (current_speed == data) {
27056 			break;
27057 		}
27058 
27059 		/* Build the select data for the requested drive speed */
27060 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27061 		select_mhp = (struct mode_header *)select;
27062 		select_mhp->bdesc_length = 0;
27063 		select_page =
27064 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27065 		select_page =
27066 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27067 		select_page->mode_page.code = CDROM_MODE_SPEED;
27068 		select_page->mode_page.length = 2;
27069 		select_page->speed = (uchar_t)data;
27070 
27071 		/* Send the mode select for the requested block size */
27072 		ssc = sd_ssc_init(un);
27073 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27074 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27075 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27076 		sd_ssc_fini(ssc);
27077 		if (rval != 0) {
27078 			/*
27079 			 * The mode select failed for the requested drive speed,
27080 			 * so reset the data for the original drive speed and
27081 			 * send it to the target. The error is indicated by the
27082 			 * return value for the failed mode select.
27083 			 */
27084 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27085 			    "sr_drive_speed: Mode Select Failed\n");
27086 			select_page->speed = sense_page->speed;
27087 			ssc = sd_ssc_init(un);
27088 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27089 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27090 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27091 			sd_ssc_fini(ssc);
27092 		}
27093 		break;
27094 	default:
27095 		/* should not reach here, but check anyway */
27096 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27097 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27098 		rval = EINVAL;
27099 		break;
27100 	}
27101 
27102 	if (select) {
27103 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27104 	}
27105 	if (sense) {
27106 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27107 	}
27108 
27109 	return (rval);
27110 }
27111 
27112 
27113 /*
27114  *    Function: sr_atapi_change_speed()
27115  *
27116  * Description: This routine is the driver entry point for handling CD-ROM
27117  *		drive speed ioctl requests for MMC devices that do not support
27118  *		the Real Time Streaming feature (0x107).
27119  *
27120  *		Note: This routine will use the SET SPEED command which may not
27121  *		be supported by all devices.
27122  *
27123  *   Arguments: dev- the device 'dev_t'
27124  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27125  *		     CDROMSDRVSPEED (set)
27126  *		data- current drive speed or requested drive speed
27127  *		flag- this argument is a pass through to ddi_copyxxx() directly
27128  *		      from the mode argument of ioctl().
27129  *
27130  * Return Code: the code returned by sd_send_scsi_cmd()
27131  *		EINVAL if invalid arguments are provided
27132  *		EFAULT if ddi_copyxxx() fails
27133  *		ENXIO if fail ddi_get_soft_state
27134  *		EIO if invalid mode sense block descriptor length
27135  */
27136 
27137 static int
27138 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27139 {
27140 	struct sd_lun			*un;
27141 	struct uscsi_cmd		*com = NULL;
27142 	struct mode_header_grp2		*sense_mhp;
27143 	uchar_t				*sense_page;
27144 	uchar_t				*sense = NULL;
27145 	char				cdb[CDB_GROUP5];
27146 	int				bd_len;
27147 	int				current_speed = 0;
27148 	int				max_speed = 0;
27149 	int				rval;
27150 	sd_ssc_t			*ssc;
27151 
27152 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27153 
27154 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27155 		return (ENXIO);
27156 	}
27157 
27158 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27159 
27160 	ssc = sd_ssc_init(un);
27161 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27162 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27163 	    SD_PATH_STANDARD);
27164 	sd_ssc_fini(ssc);
27165 	if (rval != 0) {
27166 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27167 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27168 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27169 		return (rval);
27170 	}
27171 
27172 	/* Check the block descriptor len to handle only 1 block descriptor */
27173 	sense_mhp = (struct mode_header_grp2 *)sense;
27174 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27175 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27176 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27177 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27178 		    "block descriptor length\n");
27179 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27180 		return (EIO);
27181 	}
27182 
27183 	/* Calculate the current and maximum drive speeds */
27184 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27185 	current_speed = (sense_page[14] << 8) | sense_page[15];
27186 	max_speed = (sense_page[8] << 8) | sense_page[9];
27187 
27188 	/* Process the command */
27189 	switch (cmd) {
27190 	case CDROMGDRVSPEED:
27191 		current_speed /= SD_SPEED_1X;
27192 		if (ddi_copyout(&current_speed, (void *)data,
27193 		    sizeof (int), flag) != 0)
27194 			rval = EFAULT;
27195 		break;
27196 	case CDROMSDRVSPEED:
27197 		/* Convert the speed code to KB/sec */
27198 		switch ((uchar_t)data) {
27199 		case CDROM_NORMAL_SPEED:
27200 			current_speed = SD_SPEED_1X;
27201 			break;
27202 		case CDROM_DOUBLE_SPEED:
27203 			current_speed = 2 * SD_SPEED_1X;
27204 			break;
27205 		case CDROM_QUAD_SPEED:
27206 			current_speed = 4 * SD_SPEED_1X;
27207 			break;
27208 		case CDROM_TWELVE_SPEED:
27209 			current_speed = 12 * SD_SPEED_1X;
27210 			break;
27211 		case CDROM_MAXIMUM_SPEED:
27212 			current_speed = 0xffff;
27213 			break;
27214 		default:
27215 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27216 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27217 			    (uchar_t)data);
27218 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27219 			return (EINVAL);
27220 		}
27221 
27222 		/* Check the request against the drive's max speed. */
27223 		if (current_speed != 0xffff) {
27224 			if (current_speed > max_speed) {
27225 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27226 				return (EINVAL);
27227 			}
27228 		}
27229 
27230 		/*
27231 		 * Build and send the SET SPEED command
27232 		 *
27233 		 * Note: The SET SPEED (0xBB) command used in this routine is
27234 		 * obsolete per the SCSI MMC spec but still supported in the
27235 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27236 		 * therefore the command is still implemented in this routine.
27237 		 */
27238 		bzero(cdb, sizeof (cdb));
27239 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27240 		cdb[2] = (uchar_t)(current_speed >> 8);
27241 		cdb[3] = (uchar_t)current_speed;
27242 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27243 		com->uscsi_cdb	   = (caddr_t)cdb;
27244 		com->uscsi_cdblen  = CDB_GROUP5;
27245 		com->uscsi_bufaddr = NULL;
27246 		com->uscsi_buflen  = 0;
27247 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27248 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
27249 		break;
27250 	default:
27251 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27252 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27253 		rval = EINVAL;
27254 	}
27255 
27256 	if (sense) {
27257 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27258 	}
27259 	if (com) {
27260 		kmem_free(com, sizeof (*com));
27261 	}
27262 	return (rval);
27263 }
27264 
27265 
27266 /*
27267  *    Function: sr_pause_resume()
27268  *
27269  * Description: This routine is the driver entry point for handling CD-ROM
27270  *		pause/resume ioctl requests. This only affects the audio play
27271  *		operation.
27272  *
27273  *   Arguments: dev - the device 'dev_t'
27274  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27275  *		      for setting the resume bit of the cdb.
27276  *
27277  * Return Code: the code returned by sd_send_scsi_cmd()
27278  *		EINVAL if invalid mode specified
27279  *
27280  */
27281 
27282 static int
27283 sr_pause_resume(dev_t dev, int cmd)
27284 {
27285 	struct sd_lun		*un;
27286 	struct uscsi_cmd	*com;
27287 	char			cdb[CDB_GROUP1];
27288 	int			rval;
27289 
27290 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27291 		return (ENXIO);
27292 	}
27293 
27294 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27295 	bzero(cdb, CDB_GROUP1);
27296 	cdb[0] = SCMD_PAUSE_RESUME;
27297 	switch (cmd) {
27298 	case CDROMRESUME:
27299 		cdb[8] = 1;
27300 		break;
27301 	case CDROMPAUSE:
27302 		cdb[8] = 0;
27303 		break;
27304 	default:
27305 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27306 		    " Command '%x' Not Supported\n", cmd);
27307 		rval = EINVAL;
27308 		goto done;
27309 	}
27310 
27311 	com->uscsi_cdb    = cdb;
27312 	com->uscsi_cdblen = CDB_GROUP1;
27313 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27314 
27315 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27316 	    SD_PATH_STANDARD);
27317 
27318 done:
27319 	kmem_free(com, sizeof (*com));
27320 	return (rval);
27321 }
27322 
27323 
27324 /*
27325  *    Function: sr_play_msf()
27326  *
27327  * Description: This routine is the driver entry point for handling CD-ROM
27328  *		ioctl requests to output the audio signals at the specified
27329  *		starting address and continue the audio play until the specified
27330  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27331  *		Frame (MSF) format.
27332  *
27333  *   Arguments: dev	- the device 'dev_t'
27334  *		data	- pointer to user provided audio msf structure,
27335  *		          specifying start/end addresses.
27336  *		flag	- this argument is a pass through to ddi_copyxxx()
27337  *		          directly from the mode argument of ioctl().
27338  *
27339  * Return Code: the code returned by sd_send_scsi_cmd()
27340  *		EFAULT if ddi_copyxxx() fails
27341  *		ENXIO if fail ddi_get_soft_state
27342  *		EINVAL if data pointer is NULL
27343  */
27344 
27345 static int
27346 sr_play_msf(dev_t dev, caddr_t data, int flag)
27347 {
27348 	struct sd_lun		*un;
27349 	struct uscsi_cmd	*com;
27350 	struct cdrom_msf	msf_struct;
27351 	struct cdrom_msf	*msf = &msf_struct;
27352 	char			cdb[CDB_GROUP1];
27353 	int			rval;
27354 
27355 	if (data == NULL) {
27356 		return (EINVAL);
27357 	}
27358 
27359 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27360 		return (ENXIO);
27361 	}
27362 
27363 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27364 		return (EFAULT);
27365 	}
27366 
27367 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27368 	bzero(cdb, CDB_GROUP1);
27369 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27370 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27371 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27372 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27373 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27374 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27375 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27376 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27377 	} else {
27378 		cdb[3] = msf->cdmsf_min0;
27379 		cdb[4] = msf->cdmsf_sec0;
27380 		cdb[5] = msf->cdmsf_frame0;
27381 		cdb[6] = msf->cdmsf_min1;
27382 		cdb[7] = msf->cdmsf_sec1;
27383 		cdb[8] = msf->cdmsf_frame1;
27384 	}
27385 	com->uscsi_cdb    = cdb;
27386 	com->uscsi_cdblen = CDB_GROUP1;
27387 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27388 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27389 	    SD_PATH_STANDARD);
27390 	kmem_free(com, sizeof (*com));
27391 	return (rval);
27392 }
27393 
27394 
27395 /*
27396  *    Function: sr_play_trkind()
27397  *
27398  * Description: This routine is the driver entry point for handling CD-ROM
27399  *		ioctl requests to output the audio signals at the specified
27400  *		starting address and continue the audio play until the specified
27401  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27402  *		format.
27403  *
27404  *   Arguments: dev	- the device 'dev_t'
27405  *		data	- pointer to user provided audio track/index structure,
27406  *		          specifying start/end addresses.
27407  *		flag	- this argument is a pass through to ddi_copyxxx()
27408  *		          directly from the mode argument of ioctl().
27409  *
27410  * Return Code: the code returned by sd_send_scsi_cmd()
27411  *		EFAULT if ddi_copyxxx() fails
27412  *		ENXIO if fail ddi_get_soft_state
27413  *		EINVAL if data pointer is NULL
27414  */
27415 
27416 static int
27417 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27418 {
27419 	struct cdrom_ti		ti_struct;
27420 	struct cdrom_ti		*ti = &ti_struct;
27421 	struct uscsi_cmd	*com = NULL;
27422 	char			cdb[CDB_GROUP1];
27423 	int			rval;
27424 
27425 	if (data == NULL) {
27426 		return (EINVAL);
27427 	}
27428 
27429 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27430 		return (EFAULT);
27431 	}
27432 
27433 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27434 	bzero(cdb, CDB_GROUP1);
27435 	cdb[0] = SCMD_PLAYAUDIO_TI;
27436 	cdb[4] = ti->cdti_trk0;
27437 	cdb[5] = ti->cdti_ind0;
27438 	cdb[7] = ti->cdti_trk1;
27439 	cdb[8] = ti->cdti_ind1;
27440 	com->uscsi_cdb    = cdb;
27441 	com->uscsi_cdblen = CDB_GROUP1;
27442 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27443 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27444 	    SD_PATH_STANDARD);
27445 	kmem_free(com, sizeof (*com));
27446 	return (rval);
27447 }
27448 
27449 
27450 /*
27451  *    Function: sr_read_all_subcodes()
27452  *
27453  * Description: This routine is the driver entry point for handling CD-ROM
27454  *		ioctl requests to return raw subcode data while the target is
27455  *		playing audio (CDROMSUBCODE).
27456  *
27457  *   Arguments: dev	- the device 'dev_t'
27458  *		data	- pointer to user provided cdrom subcode structure,
27459  *		          specifying the transfer length and address.
27460  *		flag	- this argument is a pass through to ddi_copyxxx()
27461  *		          directly from the mode argument of ioctl().
27462  *
27463  * Return Code: the code returned by sd_send_scsi_cmd()
27464  *		EFAULT if ddi_copyxxx() fails
27465  *		ENXIO if fail ddi_get_soft_state
27466  *		EINVAL if data pointer is NULL
27467  */
27468 
27469 static int
27470 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27471 {
27472 	struct sd_lun		*un = NULL;
27473 	struct uscsi_cmd	*com = NULL;
27474 	struct cdrom_subcode	*subcode = NULL;
27475 	int			rval;
27476 	size_t			buflen;
27477 	char			cdb[CDB_GROUP5];
27478 
27479 #ifdef _MULTI_DATAMODEL
27480 	/* To support ILP32 applications in an LP64 world */
27481 	struct cdrom_subcode32		cdrom_subcode32;
27482 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27483 #endif
27484 	if (data == NULL) {
27485 		return (EINVAL);
27486 	}
27487 
27488 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27489 		return (ENXIO);
27490 	}
27491 
27492 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27493 
27494 #ifdef _MULTI_DATAMODEL
27495 	switch (ddi_model_convert_from(flag & FMODELS)) {
27496 	case DDI_MODEL_ILP32:
27497 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27498 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27499 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27500 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27501 			return (EFAULT);
27502 		}
27503 		/* Convert the ILP32 uscsi data from the application to LP64 */
27504 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27505 		break;
27506 	case DDI_MODEL_NONE:
27507 		if (ddi_copyin(data, subcode,
27508 		    sizeof (struct cdrom_subcode), flag)) {
27509 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27510 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27511 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27512 			return (EFAULT);
27513 		}
27514 		break;
27515 	}
27516 #else /* ! _MULTI_DATAMODEL */
27517 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27518 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27519 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27520 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27521 		return (EFAULT);
27522 	}
27523 #endif /* _MULTI_DATAMODEL */
27524 
27525 	/*
27526 	 * Since MMC-2 expects max 3 bytes for length, check if the
27527 	 * length input is greater than 3 bytes
27528 	 */
27529 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27530 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27531 		    "sr_read_all_subcodes: "
27532 		    "cdrom transfer length too large: %d (limit %d)\n",
27533 		    subcode->cdsc_length, 0xFFFFFF);
27534 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27535 		return (EINVAL);
27536 	}
27537 
27538 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27539 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27540 	bzero(cdb, CDB_GROUP5);
27541 
27542 	if (un->un_f_mmc_cap == TRUE) {
27543 		cdb[0] = (char)SCMD_READ_CD;
27544 		cdb[2] = (char)0xff;
27545 		cdb[3] = (char)0xff;
27546 		cdb[4] = (char)0xff;
27547 		cdb[5] = (char)0xff;
27548 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27549 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27550 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27551 		cdb[10] = 1;
27552 	} else {
27553 		/*
27554 		 * Note: A vendor specific command (0xDF) is being used her to
27555 		 * request a read of all subcodes.
27556 		 */
27557 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27558 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27559 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27560 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27561 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27562 	}
27563 	com->uscsi_cdb	   = cdb;
27564 	com->uscsi_cdblen  = CDB_GROUP5;
27565 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27566 	com->uscsi_buflen  = buflen;
27567 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27568 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27569 	    SD_PATH_STANDARD);
27570 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27571 	kmem_free(com, sizeof (*com));
27572 	return (rval);
27573 }
27574 
27575 
27576 /*
27577  *    Function: sr_read_subchannel()
27578  *
27579  * Description: This routine is the driver entry point for handling CD-ROM
27580  *		ioctl requests to return the Q sub-channel data of the CD
27581  *		current position block. (CDROMSUBCHNL) The data includes the
27582  *		track number, index number, absolute CD-ROM address (LBA or MSF
27583  *		format per the user) , track relative CD-ROM address (LBA or MSF
27584  *		format per the user), control data and audio status.
27585  *
27586  *   Arguments: dev	- the device 'dev_t'
27587  *		data	- pointer to user provided cdrom sub-channel structure
27588  *		flag	- this argument is a pass through to ddi_copyxxx()
27589  *		          directly from the mode argument of ioctl().
27590  *
27591  * Return Code: the code returned by sd_send_scsi_cmd()
27592  *		EFAULT if ddi_copyxxx() fails
27593  *		ENXIO if fail ddi_get_soft_state
27594  *		EINVAL if data pointer is NULL
27595  */
27596 
27597 static int
27598 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27599 {
27600 	struct sd_lun		*un;
27601 	struct uscsi_cmd	*com;
27602 	struct cdrom_subchnl	subchanel;
27603 	struct cdrom_subchnl	*subchnl = &subchanel;
27604 	char			cdb[CDB_GROUP1];
27605 	caddr_t			buffer;
27606 	int			rval;
27607 
27608 	if (data == NULL) {
27609 		return (EINVAL);
27610 	}
27611 
27612 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27613 	    (un->un_state == SD_STATE_OFFLINE)) {
27614 		return (ENXIO);
27615 	}
27616 
27617 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27618 		return (EFAULT);
27619 	}
27620 
27621 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27622 	bzero(cdb, CDB_GROUP1);
27623 	cdb[0] = SCMD_READ_SUBCHANNEL;
27624 	/* Set the MSF bit based on the user requested address format */
27625 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27626 	/*
27627 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27628 	 * returned
27629 	 */
27630 	cdb[2] = 0x40;
27631 	/*
27632 	 * Set byte 3 to specify the return data format. A value of 0x01
27633 	 * indicates that the CD-ROM current position should be returned.
27634 	 */
27635 	cdb[3] = 0x01;
27636 	cdb[8] = 0x10;
27637 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27638 	com->uscsi_cdb	   = cdb;
27639 	com->uscsi_cdblen  = CDB_GROUP1;
27640 	com->uscsi_bufaddr = buffer;
27641 	com->uscsi_buflen  = 16;
27642 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27643 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27644 	    SD_PATH_STANDARD);
27645 	if (rval != 0) {
27646 		kmem_free(buffer, 16);
27647 		kmem_free(com, sizeof (*com));
27648 		return (rval);
27649 	}
27650 
27651 	/* Process the returned Q sub-channel data */
27652 	subchnl->cdsc_audiostatus = buffer[1];
27653 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27654 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27655 	subchnl->cdsc_trk	= buffer[6];
27656 	subchnl->cdsc_ind	= buffer[7];
27657 	if (subchnl->cdsc_format & CDROM_LBA) {
27658 		subchnl->cdsc_absaddr.lba =
27659 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27660 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27661 		subchnl->cdsc_reladdr.lba =
27662 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27663 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27664 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27665 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27666 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27667 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27668 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27669 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27670 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27671 	} else {
27672 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27673 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27674 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27675 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27676 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27677 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27678 	}
27679 	kmem_free(buffer, 16);
27680 	kmem_free(com, sizeof (*com));
27681 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27682 	    != 0) {
27683 		return (EFAULT);
27684 	}
27685 	return (rval);
27686 }
27687 
27688 
27689 /*
27690  *    Function: sr_read_tocentry()
27691  *
27692  * Description: This routine is the driver entry point for handling CD-ROM
27693  *		ioctl requests to read from the Table of Contents (TOC)
27694  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27695  *		fields, the starting address (LBA or MSF format per the user)
27696  *		and the data mode if the user specified track is a data track.
27697  *
27698  *		Note: The READ HEADER (0x44) command used in this routine is
27699  *		obsolete per the SCSI MMC spec but still supported in the
27700  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27701  *		therefore the command is still implemented in this routine.
27702  *
27703  *   Arguments: dev	- the device 'dev_t'
27704  *		data	- pointer to user provided toc entry structure,
27705  *			  specifying the track # and the address format
27706  *			  (LBA or MSF).
27707  *		flag	- this argument is a pass through to ddi_copyxxx()
27708  *		          directly from the mode argument of ioctl().
27709  *
27710  * Return Code: the code returned by sd_send_scsi_cmd()
27711  *		EFAULT if ddi_copyxxx() fails
27712  *		ENXIO if fail ddi_get_soft_state
27713  *		EINVAL if data pointer is NULL
27714  */
27715 
27716 static int
27717 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27718 {
27719 	struct sd_lun		*un = NULL;
27720 	struct uscsi_cmd	*com;
27721 	struct cdrom_tocentry	toc_entry;
27722 	struct cdrom_tocentry	*entry = &toc_entry;
27723 	caddr_t			buffer;
27724 	int			rval;
27725 	char			cdb[CDB_GROUP1];
27726 
27727 	if (data == NULL) {
27728 		return (EINVAL);
27729 	}
27730 
27731 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27732 	    (un->un_state == SD_STATE_OFFLINE)) {
27733 		return (ENXIO);
27734 	}
27735 
27736 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27737 		return (EFAULT);
27738 	}
27739 
27740 	/* Validate the requested track and address format */
27741 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27742 		return (EINVAL);
27743 	}
27744 
27745 	if (entry->cdte_track == 0) {
27746 		return (EINVAL);
27747 	}
27748 
27749 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27750 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27751 	bzero(cdb, CDB_GROUP1);
27752 
27753 	cdb[0] = SCMD_READ_TOC;
27754 	/* Set the MSF bit based on the user requested address format  */
27755 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27756 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27757 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27758 	} else {
27759 		cdb[6] = entry->cdte_track;
27760 	}
27761 
27762 	/*
27763 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27764 	 * (4 byte TOC response header + 8 byte track descriptor)
27765 	 */
27766 	cdb[8] = 12;
27767 	com->uscsi_cdb	   = cdb;
27768 	com->uscsi_cdblen  = CDB_GROUP1;
27769 	com->uscsi_bufaddr = buffer;
27770 	com->uscsi_buflen  = 0x0C;
27771 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27772 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27773 	    SD_PATH_STANDARD);
27774 	if (rval != 0) {
27775 		kmem_free(buffer, 12);
27776 		kmem_free(com, sizeof (*com));
27777 		return (rval);
27778 	}
27779 
27780 	/* Process the toc entry */
27781 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27782 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27783 	if (entry->cdte_format & CDROM_LBA) {
27784 		entry->cdte_addr.lba =
27785 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27786 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27787 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27788 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27789 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27790 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27791 		/*
27792 		 * Send a READ TOC command using the LBA address format to get
27793 		 * the LBA for the track requested so it can be used in the
27794 		 * READ HEADER request
27795 		 *
27796 		 * Note: The MSF bit of the READ HEADER command specifies the
27797 		 * output format. The block address specified in that command
27798 		 * must be in LBA format.
27799 		 */
27800 		cdb[1] = 0;
27801 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27802 		    SD_PATH_STANDARD);
27803 		if (rval != 0) {
27804 			kmem_free(buffer, 12);
27805 			kmem_free(com, sizeof (*com));
27806 			return (rval);
27807 		}
27808 	} else {
27809 		entry->cdte_addr.msf.minute	= buffer[9];
27810 		entry->cdte_addr.msf.second	= buffer[10];
27811 		entry->cdte_addr.msf.frame	= buffer[11];
27812 		/*
27813 		 * Send a READ TOC command using the LBA address format to get
27814 		 * the LBA for the track requested so it can be used in the
27815 		 * READ HEADER request
27816 		 *
27817 		 * Note: The MSF bit of the READ HEADER command specifies the
27818 		 * output format. The block address specified in that command
27819 		 * must be in LBA format.
27820 		 */
27821 		cdb[1] = 0;
27822 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27823 		    SD_PATH_STANDARD);
27824 		if (rval != 0) {
27825 			kmem_free(buffer, 12);
27826 			kmem_free(com, sizeof (*com));
27827 			return (rval);
27828 		}
27829 	}
27830 
27831 	/*
27832 	 * Build and send the READ HEADER command to determine the data mode of
27833 	 * the user specified track.
27834 	 */
27835 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27836 	    (entry->cdte_track != CDROM_LEADOUT)) {
27837 		bzero(cdb, CDB_GROUP1);
27838 		cdb[0] = SCMD_READ_HEADER;
27839 		cdb[2] = buffer[8];
27840 		cdb[3] = buffer[9];
27841 		cdb[4] = buffer[10];
27842 		cdb[5] = buffer[11];
27843 		cdb[8] = 0x08;
27844 		com->uscsi_buflen = 0x08;
27845 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27846 		    SD_PATH_STANDARD);
27847 		if (rval == 0) {
27848 			entry->cdte_datamode = buffer[0];
27849 		} else {
27850 			/*
27851 			 * READ HEADER command failed, since this is
27852 			 * obsoleted in one spec, its better to return
27853 			 * -1 for an invlid track so that we can still
27854 			 * receive the rest of the TOC data.
27855 			 */
27856 			entry->cdte_datamode = (uchar_t)-1;
27857 		}
27858 	} else {
27859 		entry->cdte_datamode = (uchar_t)-1;
27860 	}
27861 
27862 	kmem_free(buffer, 12);
27863 	kmem_free(com, sizeof (*com));
27864 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27865 		return (EFAULT);
27866 
27867 	return (rval);
27868 }
27869 
27870 
27871 /*
27872  *    Function: sr_read_tochdr()
27873  *
27874  * Description: This routine is the driver entry point for handling CD-ROM
27875  * 		ioctl requests to read the Table of Contents (TOC) header
27876  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27877  *		and ending track numbers
27878  *
27879  *   Arguments: dev	- the device 'dev_t'
27880  *		data	- pointer to user provided toc header structure,
27881  *			  specifying the starting and ending track numbers.
27882  *		flag	- this argument is a pass through to ddi_copyxxx()
27883  *			  directly from the mode argument of ioctl().
27884  *
27885  * Return Code: the code returned by sd_send_scsi_cmd()
27886  *		EFAULT if ddi_copyxxx() fails
27887  *		ENXIO if fail ddi_get_soft_state
27888  *		EINVAL if data pointer is NULL
27889  */
27890 
27891 static int
27892 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27893 {
27894 	struct sd_lun		*un;
27895 	struct uscsi_cmd	*com;
27896 	struct cdrom_tochdr	toc_header;
27897 	struct cdrom_tochdr	*hdr = &toc_header;
27898 	char			cdb[CDB_GROUP1];
27899 	int			rval;
27900 	caddr_t			buffer;
27901 
27902 	if (data == NULL) {
27903 		return (EINVAL);
27904 	}
27905 
27906 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27907 	    (un->un_state == SD_STATE_OFFLINE)) {
27908 		return (ENXIO);
27909 	}
27910 
27911 	buffer = kmem_zalloc(4, KM_SLEEP);
27912 	bzero(cdb, CDB_GROUP1);
27913 	cdb[0] = SCMD_READ_TOC;
27914 	/*
27915 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27916 	 * that the TOC header should be returned
27917 	 */
27918 	cdb[6] = 0x00;
27919 	/*
27920 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27921 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27922 	 */
27923 	cdb[8] = 0x04;
27924 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27925 	com->uscsi_cdb	   = cdb;
27926 	com->uscsi_cdblen  = CDB_GROUP1;
27927 	com->uscsi_bufaddr = buffer;
27928 	com->uscsi_buflen  = 0x04;
27929 	com->uscsi_timeout = 300;
27930 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27931 
27932 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27933 	    SD_PATH_STANDARD);
27934 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27935 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
27936 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
27937 	} else {
27938 		hdr->cdth_trk0 = buffer[2];
27939 		hdr->cdth_trk1 = buffer[3];
27940 	}
27941 	kmem_free(buffer, 4);
27942 	kmem_free(com, sizeof (*com));
27943 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
27944 		return (EFAULT);
27945 	}
27946 	return (rval);
27947 }
27948 
27949 
27950 /*
27951  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
27952  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
27953  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
27954  * digital audio and extended architecture digital audio. These modes are
27955  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
27956  * MMC specs.
27957  *
27958  * In addition to support for the various data formats these routines also
27959  * include support for devices that implement only the direct access READ
27960  * commands (0x08, 0x28), devices that implement the READ_CD commands
27961  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
27962  * READ CDXA commands (0xD8, 0xDB)
27963  */
27964 
27965 /*
27966  *    Function: sr_read_mode1()
27967  *
27968  * Description: This routine is the driver entry point for handling CD-ROM
27969  *		ioctl read mode1 requests (CDROMREADMODE1).
27970  *
27971  *   Arguments: dev	- the device 'dev_t'
27972  *		data	- pointer to user provided cd read structure specifying
27973  *			  the lba buffer address and length.
27974  *		flag	- this argument is a pass through to ddi_copyxxx()
27975  *			  directly from the mode argument of ioctl().
27976  *
27977  * Return Code: the code returned by sd_send_scsi_cmd()
27978  *		EFAULT if ddi_copyxxx() fails
27979  *		ENXIO if fail ddi_get_soft_state
27980  *		EINVAL if data pointer is NULL
27981  */
27982 
27983 static int
27984 sr_read_mode1(dev_t dev, caddr_t data, int flag)
27985 {
27986 	struct sd_lun		*un;
27987 	struct cdrom_read	mode1_struct;
27988 	struct cdrom_read	*mode1 = &mode1_struct;
27989 	int			rval;
27990 	sd_ssc_t		*ssc;
27991 
27992 #ifdef _MULTI_DATAMODEL
27993 	/* To support ILP32 applications in an LP64 world */
27994 	struct cdrom_read32	cdrom_read32;
27995 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27996 #endif /* _MULTI_DATAMODEL */
27997 
27998 	if (data == NULL) {
27999 		return (EINVAL);
28000 	}
28001 
28002 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28003 	    (un->un_state == SD_STATE_OFFLINE)) {
28004 		return (ENXIO);
28005 	}
28006 
28007 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28008 	    "sd_read_mode1: entry: un:0x%p\n", un);
28009 
28010 #ifdef _MULTI_DATAMODEL
28011 	switch (ddi_model_convert_from(flag & FMODELS)) {
28012 	case DDI_MODEL_ILP32:
28013 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28014 			return (EFAULT);
28015 		}
28016 		/* Convert the ILP32 uscsi data from the application to LP64 */
28017 		cdrom_read32tocdrom_read(cdrd32, mode1);
28018 		break;
28019 	case DDI_MODEL_NONE:
28020 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28021 			return (EFAULT);
28022 		}
28023 	}
28024 #else /* ! _MULTI_DATAMODEL */
28025 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28026 		return (EFAULT);
28027 	}
28028 #endif /* _MULTI_DATAMODEL */
28029 
28030 	ssc = sd_ssc_init(un);
28031 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
28032 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28033 	sd_ssc_fini(ssc);
28034 
28035 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28036 	    "sd_read_mode1: exit: un:0x%p\n", un);
28037 
28038 	return (rval);
28039 }
28040 
28041 
28042 /*
28043  *    Function: sr_read_cd_mode2()
28044  *
28045  * Description: This routine is the driver entry point for handling CD-ROM
28046  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28047  *		support the READ CD (0xBE) command or the 1st generation
28048  *		READ CD (0xD4) command.
28049  *
28050  *   Arguments: dev	- the device 'dev_t'
28051  *		data	- pointer to user provided cd read structure specifying
28052  *			  the lba buffer address and length.
28053  *		flag	- this argument is a pass through to ddi_copyxxx()
28054  *			  directly from the mode argument of ioctl().
28055  *
28056  * Return Code: the code returned by sd_send_scsi_cmd()
28057  *		EFAULT if ddi_copyxxx() fails
28058  *		ENXIO if fail ddi_get_soft_state
28059  *		EINVAL if data pointer is NULL
28060  */
28061 
28062 static int
28063 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28064 {
28065 	struct sd_lun		*un;
28066 	struct uscsi_cmd	*com;
28067 	struct cdrom_read	mode2_struct;
28068 	struct cdrom_read	*mode2 = &mode2_struct;
28069 	uchar_t			cdb[CDB_GROUP5];
28070 	int			nblocks;
28071 	int			rval;
28072 #ifdef _MULTI_DATAMODEL
28073 	/*  To support ILP32 applications in an LP64 world */
28074 	struct cdrom_read32	cdrom_read32;
28075 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28076 #endif /* _MULTI_DATAMODEL */
28077 
28078 	if (data == NULL) {
28079 		return (EINVAL);
28080 	}
28081 
28082 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28083 	    (un->un_state == SD_STATE_OFFLINE)) {
28084 		return (ENXIO);
28085 	}
28086 
28087 #ifdef _MULTI_DATAMODEL
28088 	switch (ddi_model_convert_from(flag & FMODELS)) {
28089 	case DDI_MODEL_ILP32:
28090 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28091 			return (EFAULT);
28092 		}
28093 		/* Convert the ILP32 uscsi data from the application to LP64 */
28094 		cdrom_read32tocdrom_read(cdrd32, mode2);
28095 		break;
28096 	case DDI_MODEL_NONE:
28097 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28098 			return (EFAULT);
28099 		}
28100 		break;
28101 	}
28102 
28103 #else /* ! _MULTI_DATAMODEL */
28104 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28105 		return (EFAULT);
28106 	}
28107 #endif /* _MULTI_DATAMODEL */
28108 
28109 	bzero(cdb, sizeof (cdb));
28110 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28111 		/* Read command supported by 1st generation atapi drives */
28112 		cdb[0] = SCMD_READ_CDD4;
28113 	} else {
28114 		/* Universal CD Access Command */
28115 		cdb[0] = SCMD_READ_CD;
28116 	}
28117 
28118 	/*
28119 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28120 	 */
28121 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28122 
28123 	/* set the start address */
28124 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28125 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28126 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28127 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28128 
28129 	/* set the transfer length */
28130 	nblocks = mode2->cdread_buflen / 2336;
28131 	cdb[6] = (uchar_t)(nblocks >> 16);
28132 	cdb[7] = (uchar_t)(nblocks >> 8);
28133 	cdb[8] = (uchar_t)nblocks;
28134 
28135 	/* set the filter bits */
28136 	cdb[9] = CDROM_READ_CD_USERDATA;
28137 
28138 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28139 	com->uscsi_cdb = (caddr_t)cdb;
28140 	com->uscsi_cdblen = sizeof (cdb);
28141 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28142 	com->uscsi_buflen = mode2->cdread_buflen;
28143 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28144 
28145 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28146 	    SD_PATH_STANDARD);
28147 	kmem_free(com, sizeof (*com));
28148 	return (rval);
28149 }
28150 
28151 
28152 /*
28153  *    Function: sr_read_mode2()
28154  *
28155  * Description: This routine is the driver entry point for handling CD-ROM
28156  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28157  *		do not support the READ CD (0xBE) command.
28158  *
28159  *   Arguments: dev	- the device 'dev_t'
28160  *		data	- pointer to user provided cd read structure specifying
28161  *			  the lba buffer address and length.
28162  *		flag	- this argument is a pass through to ddi_copyxxx()
28163  *			  directly from the mode argument of ioctl().
28164  *
28165  * Return Code: the code returned by sd_send_scsi_cmd()
28166  *		EFAULT if ddi_copyxxx() fails
28167  *		ENXIO if fail ddi_get_soft_state
28168  *		EINVAL if data pointer is NULL
28169  *		EIO if fail to reset block size
28170  *		EAGAIN if commands are in progress in the driver
28171  */
28172 
28173 static int
28174 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28175 {
28176 	struct sd_lun		*un;
28177 	struct cdrom_read	mode2_struct;
28178 	struct cdrom_read	*mode2 = &mode2_struct;
28179 	int			rval;
28180 	uint32_t		restore_blksize;
28181 	struct uscsi_cmd	*com;
28182 	uchar_t			cdb[CDB_GROUP0];
28183 	int			nblocks;
28184 
28185 #ifdef _MULTI_DATAMODEL
28186 	/* To support ILP32 applications in an LP64 world */
28187 	struct cdrom_read32	cdrom_read32;
28188 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28189 #endif /* _MULTI_DATAMODEL */
28190 
28191 	if (data == NULL) {
28192 		return (EINVAL);
28193 	}
28194 
28195 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28196 	    (un->un_state == SD_STATE_OFFLINE)) {
28197 		return (ENXIO);
28198 	}
28199 
28200 	/*
28201 	 * Because this routine will update the device and driver block size
28202 	 * being used we want to make sure there are no commands in progress.
28203 	 * If commands are in progress the user will have to try again.
28204 	 *
28205 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28206 	 * in sdioctl to protect commands from sdioctl through to the top of
28207 	 * sd_uscsi_strategy. See sdioctl for details.
28208 	 */
28209 	mutex_enter(SD_MUTEX(un));
28210 	if (un->un_ncmds_in_driver != 1) {
28211 		mutex_exit(SD_MUTEX(un));
28212 		return (EAGAIN);
28213 	}
28214 	mutex_exit(SD_MUTEX(un));
28215 
28216 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28217 	    "sd_read_mode2: entry: un:0x%p\n", un);
28218 
28219 #ifdef _MULTI_DATAMODEL
28220 	switch (ddi_model_convert_from(flag & FMODELS)) {
28221 	case DDI_MODEL_ILP32:
28222 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28223 			return (EFAULT);
28224 		}
28225 		/* Convert the ILP32 uscsi data from the application to LP64 */
28226 		cdrom_read32tocdrom_read(cdrd32, mode2);
28227 		break;
28228 	case DDI_MODEL_NONE:
28229 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28230 			return (EFAULT);
28231 		}
28232 		break;
28233 	}
28234 #else /* ! _MULTI_DATAMODEL */
28235 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28236 		return (EFAULT);
28237 	}
28238 #endif /* _MULTI_DATAMODEL */
28239 
28240 	/* Store the current target block size for restoration later */
28241 	restore_blksize = un->un_tgt_blocksize;
28242 
28243 	/* Change the device and soft state target block size to 2336 */
28244 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28245 		rval = EIO;
28246 		goto done;
28247 	}
28248 
28249 
28250 	bzero(cdb, sizeof (cdb));
28251 
28252 	/* set READ operation */
28253 	cdb[0] = SCMD_READ;
28254 
28255 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28256 	mode2->cdread_lba >>= 2;
28257 
28258 	/* set the start address */
28259 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28260 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28261 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28262 
28263 	/* set the transfer length */
28264 	nblocks = mode2->cdread_buflen / 2336;
28265 	cdb[4] = (uchar_t)nblocks & 0xFF;
28266 
28267 	/* build command */
28268 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28269 	com->uscsi_cdb = (caddr_t)cdb;
28270 	com->uscsi_cdblen = sizeof (cdb);
28271 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28272 	com->uscsi_buflen = mode2->cdread_buflen;
28273 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28274 
28275 	/*
28276 	 * Issue SCSI command with user space address for read buffer.
28277 	 *
28278 	 * This sends the command through main channel in the driver.
28279 	 *
28280 	 * Since this is accessed via an IOCTL call, we go through the
28281 	 * standard path, so that if the device was powered down, then
28282 	 * it would be 'awakened' to handle the command.
28283 	 */
28284 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28285 	    SD_PATH_STANDARD);
28286 
28287 	kmem_free(com, sizeof (*com));
28288 
28289 	/* Restore the device and soft state target block size */
28290 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28291 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28292 		    "can't do switch back to mode 1\n");
28293 		/*
28294 		 * If sd_send_scsi_READ succeeded we still need to report
28295 		 * an error because we failed to reset the block size
28296 		 */
28297 		if (rval == 0) {
28298 			rval = EIO;
28299 		}
28300 	}
28301 
28302 done:
28303 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28304 	    "sd_read_mode2: exit: un:0x%p\n", un);
28305 
28306 	return (rval);
28307 }
28308 
28309 
28310 /*
28311  *    Function: sr_sector_mode()
28312  *
28313  * Description: This utility function is used by sr_read_mode2 to set the target
28314  *		block size based on the user specified size. This is a legacy
28315  *		implementation based upon a vendor specific mode page
28316  *
28317  *   Arguments: dev	- the device 'dev_t'
28318  *		data	- flag indicating if block size is being set to 2336 or
28319  *			  512.
28320  *
28321  * Return Code: the code returned by sd_send_scsi_cmd()
28322  *		EFAULT if ddi_copyxxx() fails
28323  *		ENXIO if fail ddi_get_soft_state
28324  *		EINVAL if data pointer is NULL
28325  */
28326 
28327 static int
28328 sr_sector_mode(dev_t dev, uint32_t blksize)
28329 {
28330 	struct sd_lun	*un;
28331 	uchar_t		*sense;
28332 	uchar_t		*select;
28333 	int		rval;
28334 	sd_ssc_t	*ssc;
28335 
28336 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28337 	    (un->un_state == SD_STATE_OFFLINE)) {
28338 		return (ENXIO);
28339 	}
28340 
28341 	sense = kmem_zalloc(20, KM_SLEEP);
28342 
28343 	/* Note: This is a vendor specific mode page (0x81) */
28344 	ssc = sd_ssc_init(un);
28345 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
28346 	    SD_PATH_STANDARD);
28347 	sd_ssc_fini(ssc);
28348 	if (rval != 0) {
28349 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28350 		    "sr_sector_mode: Mode Sense failed\n");
28351 		kmem_free(sense, 20);
28352 		return (rval);
28353 	}
28354 	select = kmem_zalloc(20, KM_SLEEP);
28355 	select[3] = 0x08;
28356 	select[10] = ((blksize >> 8) & 0xff);
28357 	select[11] = (blksize & 0xff);
28358 	select[12] = 0x01;
28359 	select[13] = 0x06;
28360 	select[14] = sense[14];
28361 	select[15] = sense[15];
28362 	if (blksize == SD_MODE2_BLKSIZE) {
28363 		select[14] |= 0x01;
28364 	}
28365 
28366 	ssc = sd_ssc_init(un);
28367 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
28368 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28369 	sd_ssc_fini(ssc);
28370 	if (rval != 0) {
28371 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28372 		    "sr_sector_mode: Mode Select failed\n");
28373 	} else {
28374 		/*
28375 		 * Only update the softstate block size if we successfully
28376 		 * changed the device block mode.
28377 		 */
28378 		mutex_enter(SD_MUTEX(un));
28379 		sd_update_block_info(un, blksize, 0);
28380 		mutex_exit(SD_MUTEX(un));
28381 	}
28382 	kmem_free(sense, 20);
28383 	kmem_free(select, 20);
28384 	return (rval);
28385 }
28386 
28387 
28388 /*
28389  *    Function: sr_read_cdda()
28390  *
28391  * Description: This routine is the driver entry point for handling CD-ROM
28392  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28393  *		the target supports CDDA these requests are handled via a vendor
28394  *		specific command (0xD8) If the target does not support CDDA
28395  *		these requests are handled via the READ CD command (0xBE).
28396  *
28397  *   Arguments: dev	- the device 'dev_t'
28398  *		data	- pointer to user provided CD-DA structure specifying
28399  *			  the track starting address, transfer length, and
28400  *			  subcode options.
28401  *		flag	- this argument is a pass through to ddi_copyxxx()
28402  *			  directly from the mode argument of ioctl().
28403  *
28404  * Return Code: the code returned by sd_send_scsi_cmd()
28405  *		EFAULT if ddi_copyxxx() fails
28406  *		ENXIO if fail ddi_get_soft_state
28407  *		EINVAL if invalid arguments are provided
28408  *		ENOTTY
28409  */
28410 
28411 static int
28412 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28413 {
28414 	struct sd_lun			*un;
28415 	struct uscsi_cmd		*com;
28416 	struct cdrom_cdda		*cdda;
28417 	int				rval;
28418 	size_t				buflen;
28419 	char				cdb[CDB_GROUP5];
28420 
28421 #ifdef _MULTI_DATAMODEL
28422 	/* To support ILP32 applications in an LP64 world */
28423 	struct cdrom_cdda32	cdrom_cdda32;
28424 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28425 #endif /* _MULTI_DATAMODEL */
28426 
28427 	if (data == NULL) {
28428 		return (EINVAL);
28429 	}
28430 
28431 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28432 		return (ENXIO);
28433 	}
28434 
28435 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28436 
28437 #ifdef _MULTI_DATAMODEL
28438 	switch (ddi_model_convert_from(flag & FMODELS)) {
28439 	case DDI_MODEL_ILP32:
28440 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28441 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28442 			    "sr_read_cdda: ddi_copyin Failed\n");
28443 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28444 			return (EFAULT);
28445 		}
28446 		/* Convert the ILP32 uscsi data from the application to LP64 */
28447 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28448 		break;
28449 	case DDI_MODEL_NONE:
28450 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28451 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28452 			    "sr_read_cdda: ddi_copyin Failed\n");
28453 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28454 			return (EFAULT);
28455 		}
28456 		break;
28457 	}
28458 #else /* ! _MULTI_DATAMODEL */
28459 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28460 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28461 		    "sr_read_cdda: ddi_copyin Failed\n");
28462 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28463 		return (EFAULT);
28464 	}
28465 #endif /* _MULTI_DATAMODEL */
28466 
28467 	/*
28468 	 * Since MMC-2 expects max 3 bytes for length, check if the
28469 	 * length input is greater than 3 bytes
28470 	 */
28471 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28472 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28473 		    "cdrom transfer length too large: %d (limit %d)\n",
28474 		    cdda->cdda_length, 0xFFFFFF);
28475 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28476 		return (EINVAL);
28477 	}
28478 
28479 	switch (cdda->cdda_subcode) {
28480 	case CDROM_DA_NO_SUBCODE:
28481 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28482 		break;
28483 	case CDROM_DA_SUBQ:
28484 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28485 		break;
28486 	case CDROM_DA_ALL_SUBCODE:
28487 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28488 		break;
28489 	case CDROM_DA_SUBCODE_ONLY:
28490 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28491 		break;
28492 	default:
28493 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28494 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28495 		    cdda->cdda_subcode);
28496 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28497 		return (EINVAL);
28498 	}
28499 
28500 	/* Build and send the command */
28501 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28502 	bzero(cdb, CDB_GROUP5);
28503 
28504 	if (un->un_f_cfg_cdda == TRUE) {
28505 		cdb[0] = (char)SCMD_READ_CD;
28506 		cdb[1] = 0x04;
28507 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28508 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28509 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28510 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28511 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28512 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28513 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28514 		cdb[9] = 0x10;
28515 		switch (cdda->cdda_subcode) {
28516 		case CDROM_DA_NO_SUBCODE :
28517 			cdb[10] = 0x0;
28518 			break;
28519 		case CDROM_DA_SUBQ :
28520 			cdb[10] = 0x2;
28521 			break;
28522 		case CDROM_DA_ALL_SUBCODE :
28523 			cdb[10] = 0x1;
28524 			break;
28525 		case CDROM_DA_SUBCODE_ONLY :
28526 			/* FALLTHROUGH */
28527 		default :
28528 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28529 			kmem_free(com, sizeof (*com));
28530 			return (ENOTTY);
28531 		}
28532 	} else {
28533 		cdb[0] = (char)SCMD_READ_CDDA;
28534 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28535 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28536 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28537 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28538 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28539 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28540 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28541 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28542 		cdb[10] = cdda->cdda_subcode;
28543 	}
28544 
28545 	com->uscsi_cdb = cdb;
28546 	com->uscsi_cdblen = CDB_GROUP5;
28547 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28548 	com->uscsi_buflen = buflen;
28549 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28550 
28551 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28552 	    SD_PATH_STANDARD);
28553 
28554 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28555 	kmem_free(com, sizeof (*com));
28556 	return (rval);
28557 }
28558 
28559 
28560 /*
28561  *    Function: sr_read_cdxa()
28562  *
28563  * Description: This routine is the driver entry point for handling CD-ROM
28564  *		ioctl requests to return CD-XA (Extended Architecture) data.
28565  *		(CDROMCDXA).
28566  *
28567  *   Arguments: dev	- the device 'dev_t'
28568  *		data	- pointer to user provided CD-XA structure specifying
28569  *			  the data starting address, transfer length, and format
28570  *		flag	- this argument is a pass through to ddi_copyxxx()
28571  *			  directly from the mode argument of ioctl().
28572  *
28573  * Return Code: the code returned by sd_send_scsi_cmd()
28574  *		EFAULT if ddi_copyxxx() fails
28575  *		ENXIO if fail ddi_get_soft_state
28576  *		EINVAL if data pointer is NULL
28577  */
28578 
28579 static int
28580 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28581 {
28582 	struct sd_lun		*un;
28583 	struct uscsi_cmd	*com;
28584 	struct cdrom_cdxa	*cdxa;
28585 	int			rval;
28586 	size_t			buflen;
28587 	char			cdb[CDB_GROUP5];
28588 	uchar_t			read_flags;
28589 
28590 #ifdef _MULTI_DATAMODEL
28591 	/* To support ILP32 applications in an LP64 world */
28592 	struct cdrom_cdxa32		cdrom_cdxa32;
28593 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28594 #endif /* _MULTI_DATAMODEL */
28595 
28596 	if (data == NULL) {
28597 		return (EINVAL);
28598 	}
28599 
28600 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28601 		return (ENXIO);
28602 	}
28603 
28604 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28605 
28606 #ifdef _MULTI_DATAMODEL
28607 	switch (ddi_model_convert_from(flag & FMODELS)) {
28608 	case DDI_MODEL_ILP32:
28609 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28610 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28611 			return (EFAULT);
28612 		}
28613 		/*
28614 		 * Convert the ILP32 uscsi data from the
28615 		 * application to LP64 for internal use.
28616 		 */
28617 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28618 		break;
28619 	case DDI_MODEL_NONE:
28620 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28621 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28622 			return (EFAULT);
28623 		}
28624 		break;
28625 	}
28626 #else /* ! _MULTI_DATAMODEL */
28627 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28628 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28629 		return (EFAULT);
28630 	}
28631 #endif /* _MULTI_DATAMODEL */
28632 
28633 	/*
28634 	 * Since MMC-2 expects max 3 bytes for length, check if the
28635 	 * length input is greater than 3 bytes
28636 	 */
28637 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28638 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28639 		    "cdrom transfer length too large: %d (limit %d)\n",
28640 		    cdxa->cdxa_length, 0xFFFFFF);
28641 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28642 		return (EINVAL);
28643 	}
28644 
28645 	switch (cdxa->cdxa_format) {
28646 	case CDROM_XA_DATA:
28647 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28648 		read_flags = 0x10;
28649 		break;
28650 	case CDROM_XA_SECTOR_DATA:
28651 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28652 		read_flags = 0xf8;
28653 		break;
28654 	case CDROM_XA_DATA_W_ERROR:
28655 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28656 		read_flags = 0xfc;
28657 		break;
28658 	default:
28659 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28660 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28661 		    cdxa->cdxa_format);
28662 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28663 		return (EINVAL);
28664 	}
28665 
28666 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28667 	bzero(cdb, CDB_GROUP5);
28668 	if (un->un_f_mmc_cap == TRUE) {
28669 		cdb[0] = (char)SCMD_READ_CD;
28670 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28671 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28672 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28673 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28674 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28675 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28676 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28677 		cdb[9] = (char)read_flags;
28678 	} else {
28679 		/*
28680 		 * Note: A vendor specific command (0xDB) is being used her to
28681 		 * request a read of all subcodes.
28682 		 */
28683 		cdb[0] = (char)SCMD_READ_CDXA;
28684 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28685 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28686 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28687 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28688 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28689 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28690 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28691 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28692 		cdb[10] = cdxa->cdxa_format;
28693 	}
28694 	com->uscsi_cdb	   = cdb;
28695 	com->uscsi_cdblen  = CDB_GROUP5;
28696 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28697 	com->uscsi_buflen  = buflen;
28698 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28699 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28700 	    SD_PATH_STANDARD);
28701 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28702 	kmem_free(com, sizeof (*com));
28703 	return (rval);
28704 }
28705 
28706 
28707 /*
28708  *    Function: sr_eject()
28709  *
28710  * Description: This routine is the driver entry point for handling CD-ROM
28711  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28712  *
28713  *   Arguments: dev	- the device 'dev_t'
28714  *
28715  * Return Code: the code returned by sd_send_scsi_cmd()
28716  */
28717 
28718 static int
28719 sr_eject(dev_t dev)
28720 {
28721 	struct sd_lun	*un;
28722 	int		rval;
28723 	sd_ssc_t	*ssc;
28724 
28725 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28726 	    (un->un_state == SD_STATE_OFFLINE)) {
28727 		return (ENXIO);
28728 	}
28729 
28730 	/*
28731 	 * To prevent race conditions with the eject
28732 	 * command, keep track of an eject command as
28733 	 * it progresses. If we are already handling
28734 	 * an eject command in the driver for the given
28735 	 * unit and another request to eject is received
28736 	 * immediately return EAGAIN so we don't lose
28737 	 * the command if the current eject command fails.
28738 	 */
28739 	mutex_enter(SD_MUTEX(un));
28740 	if (un->un_f_ejecting == TRUE) {
28741 		mutex_exit(SD_MUTEX(un));
28742 		return (EAGAIN);
28743 	}
28744 	un->un_f_ejecting = TRUE;
28745 	mutex_exit(SD_MUTEX(un));
28746 
28747 	ssc = sd_ssc_init(un);
28748 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
28749 	    SD_PATH_STANDARD);
28750 	sd_ssc_fini(ssc);
28751 
28752 	if (rval != 0) {
28753 		mutex_enter(SD_MUTEX(un));
28754 		un->un_f_ejecting = FALSE;
28755 		mutex_exit(SD_MUTEX(un));
28756 		return (rval);
28757 	}
28758 
28759 	ssc = sd_ssc_init(un);
28760 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
28761 	    SD_TARGET_EJECT, SD_PATH_STANDARD);
28762 	sd_ssc_fini(ssc);
28763 
28764 	if (rval == 0) {
28765 		mutex_enter(SD_MUTEX(un));
28766 		sr_ejected(un);
28767 		un->un_mediastate = DKIO_EJECTED;
28768 		un->un_f_ejecting = FALSE;
28769 		cv_broadcast(&un->un_state_cv);
28770 		mutex_exit(SD_MUTEX(un));
28771 	} else {
28772 		mutex_enter(SD_MUTEX(un));
28773 		un->un_f_ejecting = FALSE;
28774 		mutex_exit(SD_MUTEX(un));
28775 	}
28776 	return (rval);
28777 }
28778 
28779 
28780 /*
28781  *    Function: sr_ejected()
28782  *
28783  * Description: This routine updates the soft state structure to invalidate the
28784  *		geometry information after the media has been ejected or a
28785  *		media eject has been detected.
28786  *
28787  *   Arguments: un - driver soft state (unit) structure
28788  */
28789 
28790 static void
28791 sr_ejected(struct sd_lun *un)
28792 {
28793 	struct sd_errstats *stp;
28794 
28795 	ASSERT(un != NULL);
28796 	ASSERT(mutex_owned(SD_MUTEX(un)));
28797 
28798 	un->un_f_blockcount_is_valid	= FALSE;
28799 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28800 	mutex_exit(SD_MUTEX(un));
28801 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
28802 	mutex_enter(SD_MUTEX(un));
28803 
28804 	if (un->un_errstats != NULL) {
28805 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28806 		stp->sd_capacity.value.ui64 = 0;
28807 	}
28808 }
28809 
28810 
28811 /*
28812  *    Function: sr_check_wp()
28813  *
28814  * Description: This routine checks the write protection of a removable
28815  *      media disk and hotpluggable devices via the write protect bit of
28816  *      the Mode Page Header device specific field. Some devices choke
28817  *      on unsupported mode page. In order to workaround this issue,
28818  *      this routine has been implemented to use 0x3f mode page(request
28819  *      for all pages) for all device types.
28820  *
28821  *   Arguments: dev             - the device 'dev_t'
28822  *
28823  * Return Code: int indicating if the device is write protected (1) or not (0)
28824  *
28825  *     Context: Kernel thread.
28826  *
28827  */
28828 
28829 static int
28830 sr_check_wp(dev_t dev)
28831 {
28832 	struct sd_lun	*un;
28833 	uchar_t		device_specific;
28834 	uchar_t		*sense;
28835 	int		hdrlen;
28836 	int		rval = FALSE;
28837 	int		status;
28838 	sd_ssc_t	*ssc;
28839 
28840 	/*
28841 	 * Note: The return codes for this routine should be reworked to
28842 	 * properly handle the case of a NULL softstate.
28843 	 */
28844 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28845 		return (FALSE);
28846 	}
28847 
28848 	if (un->un_f_cfg_is_atapi == TRUE) {
28849 		/*
28850 		 * The mode page contents are not required; set the allocation
28851 		 * length for the mode page header only
28852 		 */
28853 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28854 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28855 		ssc = sd_ssc_init(un);
28856 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
28857 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28858 		sd_ssc_fini(ssc);
28859 		if (status != 0)
28860 			goto err_exit;
28861 		device_specific =
28862 		    ((struct mode_header_grp2 *)sense)->device_specific;
28863 	} else {
28864 		hdrlen = MODE_HEADER_LENGTH;
28865 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28866 		ssc = sd_ssc_init(un);
28867 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
28868 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28869 		sd_ssc_fini(ssc);
28870 		if (status != 0)
28871 			goto err_exit;
28872 		device_specific =
28873 		    ((struct mode_header *)sense)->device_specific;
28874 	}
28875 
28876 
28877 	/*
28878 	 * Write protect mode sense failed; not all disks
28879 	 * understand this query. Return FALSE assuming that
28880 	 * these devices are not writable.
28881 	 */
28882 	if (device_specific & WRITE_PROTECT) {
28883 		rval = TRUE;
28884 	}
28885 
28886 err_exit:
28887 	kmem_free(sense, hdrlen);
28888 	return (rval);
28889 }
28890 
28891 /*
28892  *    Function: sr_volume_ctrl()
28893  *
28894  * Description: This routine is the driver entry point for handling CD-ROM
28895  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28896  *
28897  *   Arguments: dev	- the device 'dev_t'
28898  *		data	- pointer to user audio volume control structure
28899  *		flag	- this argument is a pass through to ddi_copyxxx()
28900  *			  directly from the mode argument of ioctl().
28901  *
28902  * Return Code: the code returned by sd_send_scsi_cmd()
28903  *		EFAULT if ddi_copyxxx() fails
28904  *		ENXIO if fail ddi_get_soft_state
28905  *		EINVAL if data pointer is NULL
28906  *
28907  */
28908 
28909 static int
28910 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28911 {
28912 	struct sd_lun		*un;
28913 	struct cdrom_volctrl    volume;
28914 	struct cdrom_volctrl    *vol = &volume;
28915 	uchar_t			*sense_page;
28916 	uchar_t			*select_page;
28917 	uchar_t			*sense;
28918 	uchar_t			*select;
28919 	int			sense_buflen;
28920 	int			select_buflen;
28921 	int			rval;
28922 	sd_ssc_t		*ssc;
28923 
28924 	if (data == NULL) {
28925 		return (EINVAL);
28926 	}
28927 
28928 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28929 	    (un->un_state == SD_STATE_OFFLINE)) {
28930 		return (ENXIO);
28931 	}
28932 
28933 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
28934 		return (EFAULT);
28935 	}
28936 
28937 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28938 		struct mode_header_grp2		*sense_mhp;
28939 		struct mode_header_grp2		*select_mhp;
28940 		int				bd_len;
28941 
28942 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
28943 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
28944 		    MODEPAGE_AUDIO_CTRL_LEN;
28945 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28946 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28947 		ssc = sd_ssc_init(un);
28948 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
28949 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28950 		    SD_PATH_STANDARD);
28951 		sd_ssc_fini(ssc);
28952 
28953 		if (rval != 0) {
28954 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28955 			    "sr_volume_ctrl: Mode Sense Failed\n");
28956 			kmem_free(sense, sense_buflen);
28957 			kmem_free(select, select_buflen);
28958 			return (rval);
28959 		}
28960 		sense_mhp = (struct mode_header_grp2 *)sense;
28961 		select_mhp = (struct mode_header_grp2 *)select;
28962 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
28963 		    sense_mhp->bdesc_length_lo;
28964 		if (bd_len > MODE_BLK_DESC_LENGTH) {
28965 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28966 			    "sr_volume_ctrl: Mode Sense returned invalid "
28967 			    "block descriptor length\n");
28968 			kmem_free(sense, sense_buflen);
28969 			kmem_free(select, select_buflen);
28970 			return (EIO);
28971 		}
28972 		sense_page = (uchar_t *)
28973 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
28974 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
28975 		select_mhp->length_msb = 0;
28976 		select_mhp->length_lsb = 0;
28977 		select_mhp->bdesc_length_hi = 0;
28978 		select_mhp->bdesc_length_lo = 0;
28979 	} else {
28980 		struct mode_header		*sense_mhp, *select_mhp;
28981 
28982 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28983 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28984 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28985 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28986 		ssc = sd_ssc_init(un);
28987 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
28988 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28989 		    SD_PATH_STANDARD);
28990 		sd_ssc_fini(ssc);
28991 
28992 		if (rval != 0) {
28993 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28994 			    "sr_volume_ctrl: Mode Sense Failed\n");
28995 			kmem_free(sense, sense_buflen);
28996 			kmem_free(select, select_buflen);
28997 			return (rval);
28998 		}
28999 		sense_mhp  = (struct mode_header *)sense;
29000 		select_mhp = (struct mode_header *)select;
29001 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29002 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29003 			    "sr_volume_ctrl: Mode Sense returned invalid "
29004 			    "block descriptor length\n");
29005 			kmem_free(sense, sense_buflen);
29006 			kmem_free(select, select_buflen);
29007 			return (EIO);
29008 		}
29009 		sense_page = (uchar_t *)
29010 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29011 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29012 		select_mhp->length = 0;
29013 		select_mhp->bdesc_length = 0;
29014 	}
29015 	/*
29016 	 * Note: An audio control data structure could be created and overlayed
29017 	 * on the following in place of the array indexing method implemented.
29018 	 */
29019 
29020 	/* Build the select data for the user volume data */
29021 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29022 	select_page[1] = 0xE;
29023 	/* Set the immediate bit */
29024 	select_page[2] = 0x04;
29025 	/* Zero out reserved fields */
29026 	select_page[3] = 0x00;
29027 	select_page[4] = 0x00;
29028 	/* Return sense data for fields not to be modified */
29029 	select_page[5] = sense_page[5];
29030 	select_page[6] = sense_page[6];
29031 	select_page[7] = sense_page[7];
29032 	/* Set the user specified volume levels for channel 0 and 1 */
29033 	select_page[8] = 0x01;
29034 	select_page[9] = vol->channel0;
29035 	select_page[10] = 0x02;
29036 	select_page[11] = vol->channel1;
29037 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29038 	select_page[12] = sense_page[12];
29039 	select_page[13] = sense_page[13];
29040 	select_page[14] = sense_page[14];
29041 	select_page[15] = sense_page[15];
29042 
29043 	ssc = sd_ssc_init(un);
29044 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29045 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
29046 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29047 	} else {
29048 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
29049 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29050 	}
29051 	sd_ssc_fini(ssc);
29052 
29053 	kmem_free(sense, sense_buflen);
29054 	kmem_free(select, select_buflen);
29055 	return (rval);
29056 }
29057 
29058 
29059 /*
29060  *    Function: sr_read_sony_session_offset()
29061  *
29062  * Description: This routine is the driver entry point for handling CD-ROM
29063  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29064  *		The address of the first track in the last session of a
29065  *		multi-session CD-ROM is returned
29066  *
29067  *		Note: This routine uses a vendor specific key value in the
29068  *		command control field without implementing any vendor check here
29069  *		or in the ioctl routine.
29070  *
29071  *   Arguments: dev	- the device 'dev_t'
29072  *		data	- pointer to an int to hold the requested address
29073  *		flag	- this argument is a pass through to ddi_copyxxx()
29074  *			  directly from the mode argument of ioctl().
29075  *
29076  * Return Code: the code returned by sd_send_scsi_cmd()
29077  *		EFAULT if ddi_copyxxx() fails
29078  *		ENXIO if fail ddi_get_soft_state
29079  *		EINVAL if data pointer is NULL
29080  */
29081 
29082 static int
29083 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29084 {
29085 	struct sd_lun		*un;
29086 	struct uscsi_cmd	*com;
29087 	caddr_t			buffer;
29088 	char			cdb[CDB_GROUP1];
29089 	int			session_offset = 0;
29090 	int			rval;
29091 
29092 	if (data == NULL) {
29093 		return (EINVAL);
29094 	}
29095 
29096 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29097 	    (un->un_state == SD_STATE_OFFLINE)) {
29098 		return (ENXIO);
29099 	}
29100 
29101 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29102 	bzero(cdb, CDB_GROUP1);
29103 	cdb[0] = SCMD_READ_TOC;
29104 	/*
29105 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29106 	 * (4 byte TOC response header + 8 byte response data)
29107 	 */
29108 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29109 	/* Byte 9 is the control byte. A vendor specific value is used */
29110 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29111 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29112 	com->uscsi_cdb = cdb;
29113 	com->uscsi_cdblen = CDB_GROUP1;
29114 	com->uscsi_bufaddr = buffer;
29115 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29116 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29117 
29118 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
29119 	    SD_PATH_STANDARD);
29120 	if (rval != 0) {
29121 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29122 		kmem_free(com, sizeof (*com));
29123 		return (rval);
29124 	}
29125 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29126 		session_offset =
29127 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29128 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29129 		/*
29130 		 * Offset returned offset in current lbasize block's. Convert to
29131 		 * 2k block's to return to the user
29132 		 */
29133 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29134 			session_offset >>= 2;
29135 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29136 			session_offset >>= 1;
29137 		}
29138 	}
29139 
29140 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29141 		rval = EFAULT;
29142 	}
29143 
29144 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29145 	kmem_free(com, sizeof (*com));
29146 	return (rval);
29147 }
29148 
29149 
29150 /*
29151  *    Function: sd_wm_cache_constructor()
29152  *
29153  * Description: Cache Constructor for the wmap cache for the read/modify/write
29154  * 		devices.
29155  *
29156  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29157  *		un	- sd_lun structure for the device.
29158  *		flag	- the km flags passed to constructor
29159  *
29160  * Return Code: 0 on success.
29161  *		-1 on failure.
29162  */
29163 
29164 /*ARGSUSED*/
29165 static int
29166 sd_wm_cache_constructor(void *wm, void *un, int flags)
29167 {
29168 	bzero(wm, sizeof (struct sd_w_map));
29169 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29170 	return (0);
29171 }
29172 
29173 
29174 /*
29175  *    Function: sd_wm_cache_destructor()
29176  *
29177  * Description: Cache destructor for the wmap cache for the read/modify/write
29178  * 		devices.
29179  *
29180  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29181  *		un	- sd_lun structure for the device.
29182  */
29183 /*ARGSUSED*/
29184 static void
29185 sd_wm_cache_destructor(void *wm, void *un)
29186 {
29187 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29188 }
29189 
29190 
29191 /*
29192  *    Function: sd_range_lock()
29193  *
29194  * Description: Lock the range of blocks specified as parameter to ensure
29195  *		that read, modify write is atomic and no other i/o writes
29196  *		to the same location. The range is specified in terms
29197  *		of start and end blocks. Block numbers are the actual
29198  *		media block numbers and not system.
29199  *
29200  *   Arguments: un	- sd_lun structure for the device.
29201  *		startb - The starting block number
29202  *		endb - The end block number
29203  *		typ - type of i/o - simple/read_modify_write
29204  *
29205  * Return Code: wm  - pointer to the wmap structure.
29206  *
29207  *     Context: This routine can sleep.
29208  */
29209 
29210 static struct sd_w_map *
29211 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29212 {
29213 	struct sd_w_map *wmp = NULL;
29214 	struct sd_w_map *sl_wmp = NULL;
29215 	struct sd_w_map *tmp_wmp;
29216 	wm_state state = SD_WM_CHK_LIST;
29217 
29218 
29219 	ASSERT(un != NULL);
29220 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29221 
29222 	mutex_enter(SD_MUTEX(un));
29223 
29224 	while (state != SD_WM_DONE) {
29225 
29226 		switch (state) {
29227 		case SD_WM_CHK_LIST:
29228 			/*
29229 			 * This is the starting state. Check the wmap list
29230 			 * to see if the range is currently available.
29231 			 */
29232 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29233 				/*
29234 				 * If this is a simple write and no rmw
29235 				 * i/o is pending then try to lock the
29236 				 * range as the range should be available.
29237 				 */
29238 				state = SD_WM_LOCK_RANGE;
29239 			} else {
29240 				tmp_wmp = sd_get_range(un, startb, endb);
29241 				if (tmp_wmp != NULL) {
29242 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29243 						/*
29244 						 * Should not keep onlist wmps
29245 						 * while waiting this macro
29246 						 * will also do wmp = NULL;
29247 						 */
29248 						FREE_ONLIST_WMAP(un, wmp);
29249 					}
29250 					/*
29251 					 * sl_wmp is the wmap on which wait
29252 					 * is done, since the tmp_wmp points
29253 					 * to the inuse wmap, set sl_wmp to
29254 					 * tmp_wmp and change the state to sleep
29255 					 */
29256 					sl_wmp = tmp_wmp;
29257 					state = SD_WM_WAIT_MAP;
29258 				} else {
29259 					state = SD_WM_LOCK_RANGE;
29260 				}
29261 
29262 			}
29263 			break;
29264 
29265 		case SD_WM_LOCK_RANGE:
29266 			ASSERT(un->un_wm_cache);
29267 			/*
29268 			 * The range need to be locked, try to get a wmap.
29269 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29270 			 * if possible as we will have to release the sd mutex
29271 			 * if we have to sleep.
29272 			 */
29273 			if (wmp == NULL)
29274 				wmp = kmem_cache_alloc(un->un_wm_cache,
29275 				    KM_NOSLEEP);
29276 			if (wmp == NULL) {
29277 				mutex_exit(SD_MUTEX(un));
29278 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29279 				    (sd_lun::un_wm_cache))
29280 				wmp = kmem_cache_alloc(un->un_wm_cache,
29281 				    KM_SLEEP);
29282 				mutex_enter(SD_MUTEX(un));
29283 				/*
29284 				 * we released the mutex so recheck and go to
29285 				 * check list state.
29286 				 */
29287 				state = SD_WM_CHK_LIST;
29288 			} else {
29289 				/*
29290 				 * We exit out of state machine since we
29291 				 * have the wmap. Do the housekeeping first.
29292 				 * place the wmap on the wmap list if it is not
29293 				 * on it already and then set the state to done.
29294 				 */
29295 				wmp->wm_start = startb;
29296 				wmp->wm_end = endb;
29297 				wmp->wm_flags = typ | SD_WM_BUSY;
29298 				if (typ & SD_WTYPE_RMW) {
29299 					un->un_rmw_count++;
29300 				}
29301 				/*
29302 				 * If not already on the list then link
29303 				 */
29304 				if (!ONLIST(un, wmp)) {
29305 					wmp->wm_next = un->un_wm;
29306 					wmp->wm_prev = NULL;
29307 					if (wmp->wm_next)
29308 						wmp->wm_next->wm_prev = wmp;
29309 					un->un_wm = wmp;
29310 				}
29311 				state = SD_WM_DONE;
29312 			}
29313 			break;
29314 
29315 		case SD_WM_WAIT_MAP:
29316 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29317 			/*
29318 			 * Wait is done on sl_wmp, which is set in the
29319 			 * check_list state.
29320 			 */
29321 			sl_wmp->wm_wanted_count++;
29322 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29323 			sl_wmp->wm_wanted_count--;
29324 			/*
29325 			 * We can reuse the memory from the completed sl_wmp
29326 			 * lock range for our new lock, but only if noone is
29327 			 * waiting for it.
29328 			 */
29329 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29330 			if (sl_wmp->wm_wanted_count == 0) {
29331 				if (wmp != NULL)
29332 					CHK_N_FREEWMP(un, wmp);
29333 				wmp = sl_wmp;
29334 			}
29335 			sl_wmp = NULL;
29336 			/*
29337 			 * After waking up, need to recheck for availability of
29338 			 * range.
29339 			 */
29340 			state = SD_WM_CHK_LIST;
29341 			break;
29342 
29343 		default:
29344 			panic("sd_range_lock: "
29345 			    "Unknown state %d in sd_range_lock", state);
29346 			/*NOTREACHED*/
29347 		} /* switch(state) */
29348 
29349 	} /* while(state != SD_WM_DONE) */
29350 
29351 	mutex_exit(SD_MUTEX(un));
29352 
29353 	ASSERT(wmp != NULL);
29354 
29355 	return (wmp);
29356 }
29357 
29358 
29359 /*
29360  *    Function: sd_get_range()
29361  *
29362  * Description: Find if there any overlapping I/O to this one
29363  *		Returns the write-map of 1st such I/O, NULL otherwise.
29364  *
29365  *   Arguments: un	- sd_lun structure for the device.
29366  *		startb - The starting block number
29367  *		endb - The end block number
29368  *
29369  * Return Code: wm  - pointer to the wmap structure.
29370  */
29371 
29372 static struct sd_w_map *
29373 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29374 {
29375 	struct sd_w_map *wmp;
29376 
29377 	ASSERT(un != NULL);
29378 
29379 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29380 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29381 			continue;
29382 		}
29383 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29384 			break;
29385 		}
29386 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29387 			break;
29388 		}
29389 	}
29390 
29391 	return (wmp);
29392 }
29393 
29394 
29395 /*
29396  *    Function: sd_free_inlist_wmap()
29397  *
29398  * Description: Unlink and free a write map struct.
29399  *
29400  *   Arguments: un      - sd_lun structure for the device.
29401  *		wmp	- sd_w_map which needs to be unlinked.
29402  */
29403 
29404 static void
29405 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29406 {
29407 	ASSERT(un != NULL);
29408 
29409 	if (un->un_wm == wmp) {
29410 		un->un_wm = wmp->wm_next;
29411 	} else {
29412 		wmp->wm_prev->wm_next = wmp->wm_next;
29413 	}
29414 
29415 	if (wmp->wm_next) {
29416 		wmp->wm_next->wm_prev = wmp->wm_prev;
29417 	}
29418 
29419 	wmp->wm_next = wmp->wm_prev = NULL;
29420 
29421 	kmem_cache_free(un->un_wm_cache, wmp);
29422 }
29423 
29424 
29425 /*
29426  *    Function: sd_range_unlock()
29427  *
29428  * Description: Unlock the range locked by wm.
29429  *		Free write map if nobody else is waiting on it.
29430  *
29431  *   Arguments: un      - sd_lun structure for the device.
29432  *              wmp     - sd_w_map which needs to be unlinked.
29433  */
29434 
29435 static void
29436 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29437 {
29438 	ASSERT(un != NULL);
29439 	ASSERT(wm != NULL);
29440 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29441 
29442 	mutex_enter(SD_MUTEX(un));
29443 
29444 	if (wm->wm_flags & SD_WTYPE_RMW) {
29445 		un->un_rmw_count--;
29446 	}
29447 
29448 	if (wm->wm_wanted_count) {
29449 		wm->wm_flags = 0;
29450 		/*
29451 		 * Broadcast that the wmap is available now.
29452 		 */
29453 		cv_broadcast(&wm->wm_avail);
29454 	} else {
29455 		/*
29456 		 * If no one is waiting on the map, it should be free'ed.
29457 		 */
29458 		sd_free_inlist_wmap(un, wm);
29459 	}
29460 
29461 	mutex_exit(SD_MUTEX(un));
29462 }
29463 
29464 
29465 /*
29466  *    Function: sd_read_modify_write_task
29467  *
29468  * Description: Called from a taskq thread to initiate the write phase of
29469  *		a read-modify-write request.  This is used for targets where
29470  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29471  *
29472  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29473  *
29474  *     Context: Called under taskq thread context.
29475  */
29476 
29477 static void
29478 sd_read_modify_write_task(void *arg)
29479 {
29480 	struct sd_mapblocksize_info	*bsp;
29481 	struct buf	*bp;
29482 	struct sd_xbuf	*xp;
29483 	struct sd_lun	*un;
29484 
29485 	bp = arg;	/* The bp is given in arg */
29486 	ASSERT(bp != NULL);
29487 
29488 	/* Get the pointer to the layer-private data struct */
29489 	xp = SD_GET_XBUF(bp);
29490 	ASSERT(xp != NULL);
29491 	bsp = xp->xb_private;
29492 	ASSERT(bsp != NULL);
29493 
29494 	un = SD_GET_UN(bp);
29495 	ASSERT(un != NULL);
29496 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29497 
29498 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29499 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29500 
29501 	/*
29502 	 * This is the write phase of a read-modify-write request, called
29503 	 * under the context of a taskq thread in response to the completion
29504 	 * of the read portion of the rmw request completing under interrupt
29505 	 * context. The write request must be sent from here down the iostart
29506 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29507 	 * we use the layer index saved in the layer-private data area.
29508 	 */
29509 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29510 
29511 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29512 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29513 }
29514 
29515 
29516 /*
29517  *    Function: sddump_do_read_of_rmw()
29518  *
29519  * Description: This routine will be called from sddump, If sddump is called
29520  *		with an I/O which not aligned on device blocksize boundary
29521  *		then the write has to be converted to read-modify-write.
29522  *		Do the read part here in order to keep sddump simple.
29523  *		Note - That the sd_mutex is held across the call to this
29524  *		routine.
29525  *
29526  *   Arguments: un	- sd_lun
29527  *		blkno	- block number in terms of media block size.
29528  *		nblk	- number of blocks.
29529  *		bpp	- pointer to pointer to the buf structure. On return
29530  *			from this function, *bpp points to the valid buffer
29531  *			to which the write has to be done.
29532  *
29533  * Return Code: 0 for success or errno-type return code
29534  */
29535 
29536 static int
29537 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29538 	struct buf **bpp)
29539 {
29540 	int err;
29541 	int i;
29542 	int rval;
29543 	struct buf *bp;
29544 	struct scsi_pkt *pkt = NULL;
29545 	uint32_t target_blocksize;
29546 
29547 	ASSERT(un != NULL);
29548 	ASSERT(mutex_owned(SD_MUTEX(un)));
29549 
29550 	target_blocksize = un->un_tgt_blocksize;
29551 
29552 	mutex_exit(SD_MUTEX(un));
29553 
29554 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29555 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29556 	if (bp == NULL) {
29557 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29558 		    "no resources for dumping; giving up");
29559 		err = ENOMEM;
29560 		goto done;
29561 	}
29562 
29563 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29564 	    blkno, nblk);
29565 	if (rval != 0) {
29566 		scsi_free_consistent_buf(bp);
29567 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29568 		    "no resources for dumping; giving up");
29569 		err = ENOMEM;
29570 		goto done;
29571 	}
29572 
29573 	pkt->pkt_flags |= FLAG_NOINTR;
29574 
29575 	err = EIO;
29576 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29577 
29578 		/*
29579 		 * Scsi_poll returns 0 (success) if the command completes and
29580 		 * the status block is STATUS_GOOD.  We should only check
29581 		 * errors if this condition is not true.  Even then we should
29582 		 * send our own request sense packet only if we have a check
29583 		 * condition and auto request sense has not been performed by
29584 		 * the hba.
29585 		 */
29586 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29587 
29588 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29589 			err = 0;
29590 			break;
29591 		}
29592 
29593 		/*
29594 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29595 		 * no need to read RQS data.
29596 		 */
29597 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29598 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29599 			    "Error while dumping state with rmw..."
29600 			    "Device is gone\n");
29601 			break;
29602 		}
29603 
29604 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29605 			SD_INFO(SD_LOG_DUMP, un,
29606 			    "sddump: read failed with CHECK, try # %d\n", i);
29607 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29608 				(void) sd_send_polled_RQS(un);
29609 			}
29610 
29611 			continue;
29612 		}
29613 
29614 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29615 			int reset_retval = 0;
29616 
29617 			SD_INFO(SD_LOG_DUMP, un,
29618 			    "sddump: read failed with BUSY, try # %d\n", i);
29619 
29620 			if (un->un_f_lun_reset_enabled == TRUE) {
29621 				reset_retval = scsi_reset(SD_ADDRESS(un),
29622 				    RESET_LUN);
29623 			}
29624 			if (reset_retval == 0) {
29625 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29626 			}
29627 			(void) sd_send_polled_RQS(un);
29628 
29629 		} else {
29630 			SD_INFO(SD_LOG_DUMP, un,
29631 			    "sddump: read failed with 0x%x, try # %d\n",
29632 			    SD_GET_PKT_STATUS(pkt), i);
29633 			mutex_enter(SD_MUTEX(un));
29634 			sd_reset_target(un, pkt);
29635 			mutex_exit(SD_MUTEX(un));
29636 		}
29637 
29638 		/*
29639 		 * If we are not getting anywhere with lun/target resets,
29640 		 * let's reset the bus.
29641 		 */
29642 		if (i > SD_NDUMP_RETRIES/2) {
29643 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29644 			(void) sd_send_polled_RQS(un);
29645 		}
29646 
29647 	}
29648 	scsi_destroy_pkt(pkt);
29649 
29650 	if (err != 0) {
29651 		scsi_free_consistent_buf(bp);
29652 		*bpp = NULL;
29653 	} else {
29654 		*bpp = bp;
29655 	}
29656 
29657 done:
29658 	mutex_enter(SD_MUTEX(un));
29659 	return (err);
29660 }
29661 
29662 
29663 /*
29664  *    Function: sd_failfast_flushq
29665  *
29666  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29667  *		in b_flags and move them onto the failfast queue, then kick
29668  *		off a thread to return all bp's on the failfast queue to
29669  *		their owners with an error set.
29670  *
29671  *   Arguments: un - pointer to the soft state struct for the instance.
29672  *
29673  *     Context: may execute in interrupt context.
29674  */
29675 
29676 static void
29677 sd_failfast_flushq(struct sd_lun *un)
29678 {
29679 	struct buf *bp;
29680 	struct buf *next_waitq_bp;
29681 	struct buf *prev_waitq_bp = NULL;
29682 
29683 	ASSERT(un != NULL);
29684 	ASSERT(mutex_owned(SD_MUTEX(un)));
29685 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29686 	ASSERT(un->un_failfast_bp == NULL);
29687 
29688 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29689 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29690 
29691 	/*
29692 	 * Check if we should flush all bufs when entering failfast state, or
29693 	 * just those with B_FAILFAST set.
29694 	 */
29695 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29696 		/*
29697 		 * Move *all* bp's on the wait queue to the failfast flush
29698 		 * queue, including those that do NOT have B_FAILFAST set.
29699 		 */
29700 		if (un->un_failfast_headp == NULL) {
29701 			ASSERT(un->un_failfast_tailp == NULL);
29702 			un->un_failfast_headp = un->un_waitq_headp;
29703 		} else {
29704 			ASSERT(un->un_failfast_tailp != NULL);
29705 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29706 		}
29707 
29708 		un->un_failfast_tailp = un->un_waitq_tailp;
29709 
29710 		/* update kstat for each bp moved out of the waitq */
29711 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29712 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29713 		}
29714 
29715 		/* empty the waitq */
29716 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29717 
29718 	} else {
29719 		/*
29720 		 * Go thru the wait queue, pick off all entries with
29721 		 * B_FAILFAST set, and move these onto the failfast queue.
29722 		 */
29723 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29724 			/*
29725 			 * Save the pointer to the next bp on the wait queue,
29726 			 * so we get to it on the next iteration of this loop.
29727 			 */
29728 			next_waitq_bp = bp->av_forw;
29729 
29730 			/*
29731 			 * If this bp from the wait queue does NOT have
29732 			 * B_FAILFAST set, just move on to the next element
29733 			 * in the wait queue. Note, this is the only place
29734 			 * where it is correct to set prev_waitq_bp.
29735 			 */
29736 			if ((bp->b_flags & B_FAILFAST) == 0) {
29737 				prev_waitq_bp = bp;
29738 				continue;
29739 			}
29740 
29741 			/*
29742 			 * Remove the bp from the wait queue.
29743 			 */
29744 			if (bp == un->un_waitq_headp) {
29745 				/* The bp is the first element of the waitq. */
29746 				un->un_waitq_headp = next_waitq_bp;
29747 				if (un->un_waitq_headp == NULL) {
29748 					/* The wait queue is now empty */
29749 					un->un_waitq_tailp = NULL;
29750 				}
29751 			} else {
29752 				/*
29753 				 * The bp is either somewhere in the middle
29754 				 * or at the end of the wait queue.
29755 				 */
29756 				ASSERT(un->un_waitq_headp != NULL);
29757 				ASSERT(prev_waitq_bp != NULL);
29758 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29759 				    == 0);
29760 				if (bp == un->un_waitq_tailp) {
29761 					/* bp is the last entry on the waitq. */
29762 					ASSERT(next_waitq_bp == NULL);
29763 					un->un_waitq_tailp = prev_waitq_bp;
29764 				}
29765 				prev_waitq_bp->av_forw = next_waitq_bp;
29766 			}
29767 			bp->av_forw = NULL;
29768 
29769 			/*
29770 			 * update kstat since the bp is moved out of
29771 			 * the waitq
29772 			 */
29773 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29774 
29775 			/*
29776 			 * Now put the bp onto the failfast queue.
29777 			 */
29778 			if (un->un_failfast_headp == NULL) {
29779 				/* failfast queue is currently empty */
29780 				ASSERT(un->un_failfast_tailp == NULL);
29781 				un->un_failfast_headp =
29782 				    un->un_failfast_tailp = bp;
29783 			} else {
29784 				/* Add the bp to the end of the failfast q */
29785 				ASSERT(un->un_failfast_tailp != NULL);
29786 				ASSERT(un->un_failfast_tailp->b_flags &
29787 				    B_FAILFAST);
29788 				un->un_failfast_tailp->av_forw = bp;
29789 				un->un_failfast_tailp = bp;
29790 			}
29791 		}
29792 	}
29793 
29794 	/*
29795 	 * Now return all bp's on the failfast queue to their owners.
29796 	 */
29797 	while ((bp = un->un_failfast_headp) != NULL) {
29798 
29799 		un->un_failfast_headp = bp->av_forw;
29800 		if (un->un_failfast_headp == NULL) {
29801 			un->un_failfast_tailp = NULL;
29802 		}
29803 
29804 		/*
29805 		 * We want to return the bp with a failure error code, but
29806 		 * we do not want a call to sd_start_cmds() to occur here,
29807 		 * so use sd_return_failed_command_no_restart() instead of
29808 		 * sd_return_failed_command().
29809 		 */
29810 		sd_return_failed_command_no_restart(un, bp, EIO);
29811 	}
29812 
29813 	/* Flush the xbuf queues if required. */
29814 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29815 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29816 	}
29817 
29818 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29819 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29820 }
29821 
29822 
29823 /*
29824  *    Function: sd_failfast_flushq_callback
29825  *
29826  * Description: Return TRUE if the given bp meets the criteria for failfast
29827  *		flushing. Used with ddi_xbuf_flushq(9F).
29828  *
29829  *   Arguments: bp - ptr to buf struct to be examined.
29830  *
29831  *     Context: Any
29832  */
29833 
29834 static int
29835 sd_failfast_flushq_callback(struct buf *bp)
29836 {
29837 	/*
29838 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29839 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29840 	 */
29841 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29842 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29843 }
29844 
29845 
29846 
29847 /*
29848  * Function: sd_setup_next_xfer
29849  *
29850  * Description: Prepare next I/O operation using DMA_PARTIAL
29851  *
29852  */
29853 
29854 static int
29855 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29856     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29857 {
29858 	ssize_t	num_blks_not_xfered;
29859 	daddr_t	strt_blk_num;
29860 	ssize_t	bytes_not_xfered;
29861 	int	rval;
29862 
29863 	ASSERT(pkt->pkt_resid == 0);
29864 
29865 	/*
29866 	 * Calculate next block number and amount to be transferred.
29867 	 *
29868 	 * How much data NOT transfered to the HBA yet.
29869 	 */
29870 	bytes_not_xfered = xp->xb_dma_resid;
29871 
29872 	/*
29873 	 * figure how many blocks NOT transfered to the HBA yet.
29874 	 */
29875 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29876 
29877 	/*
29878 	 * set starting block number to the end of what WAS transfered.
29879 	 */
29880 	strt_blk_num = xp->xb_blkno +
29881 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29882 
29883 	/*
29884 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29885 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29886 	 * the disk mutex here.
29887 	 */
29888 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29889 	    strt_blk_num, num_blks_not_xfered);
29890 
29891 	if (rval == 0) {
29892 
29893 		/*
29894 		 * Success.
29895 		 *
29896 		 * Adjust things if there are still more blocks to be
29897 		 * transfered.
29898 		 */
29899 		xp->xb_dma_resid = pkt->pkt_resid;
29900 		pkt->pkt_resid = 0;
29901 
29902 		return (1);
29903 	}
29904 
29905 	/*
29906 	 * There's really only one possible return value from
29907 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29908 	 * returns NULL.
29909 	 */
29910 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29911 
29912 	bp->b_resid = bp->b_bcount;
29913 	bp->b_flags |= B_ERROR;
29914 
29915 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29916 	    "Error setting up next portion of DMA transfer\n");
29917 
29918 	return (0);
29919 }
29920 
29921 /*
29922  *    Function: sd_panic_for_res_conflict
29923  *
29924  * Description: Call panic with a string formatted with "Reservation Conflict"
29925  *		and a human readable identifier indicating the SD instance
29926  *		that experienced the reservation conflict.
29927  *
29928  *   Arguments: un - pointer to the soft state struct for the instance.
29929  *
29930  *     Context: may execute in interrupt context.
29931  */
29932 
29933 #define	SD_RESV_CONFLICT_FMT_LEN 40
29934 void
29935 sd_panic_for_res_conflict(struct sd_lun *un)
29936 {
29937 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
29938 	char path_str[MAXPATHLEN];
29939 
29940 	(void) snprintf(panic_str, sizeof (panic_str),
29941 	    "Reservation Conflict\nDisk: %s",
29942 	    ddi_pathname(SD_DEVINFO(un), path_str));
29943 
29944 	panic(panic_str);
29945 }
29946 
29947 /*
29948  * Note: The following sd_faultinjection_ioctl( ) routines implement
29949  * driver support for handling fault injection for error analysis
29950  * causing faults in multiple layers of the driver.
29951  *
29952  */
29953 
29954 #ifdef SD_FAULT_INJECTION
29955 static uint_t   sd_fault_injection_on = 0;
29956 
29957 /*
29958  *    Function: sd_faultinjection_ioctl()
29959  *
29960  * Description: This routine is the driver entry point for handling
29961  *              faultinjection ioctls to inject errors into the
29962  *              layer model
29963  *
29964  *   Arguments: cmd	- the ioctl cmd received
29965  *		arg	- the arguments from user and returns
29966  */
29967 
29968 static void
29969 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
29970 
29971 	uint_t i = 0;
29972 	uint_t rval;
29973 
29974 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
29975 
29976 	mutex_enter(SD_MUTEX(un));
29977 
29978 	switch (cmd) {
29979 	case SDIOCRUN:
29980 		/* Allow pushed faults to be injected */
29981 		SD_INFO(SD_LOG_SDTEST, un,
29982 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
29983 
29984 		sd_fault_injection_on = 1;
29985 
29986 		SD_INFO(SD_LOG_IOERR, un,
29987 		    "sd_faultinjection_ioctl: run finished\n");
29988 		break;
29989 
29990 	case SDIOCSTART:
29991 		/* Start Injection Session */
29992 		SD_INFO(SD_LOG_SDTEST, un,
29993 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
29994 
29995 		sd_fault_injection_on = 0;
29996 		un->sd_injection_mask = 0xFFFFFFFF;
29997 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29998 			un->sd_fi_fifo_pkt[i] = NULL;
29999 			un->sd_fi_fifo_xb[i] = NULL;
30000 			un->sd_fi_fifo_un[i] = NULL;
30001 			un->sd_fi_fifo_arq[i] = NULL;
30002 		}
30003 		un->sd_fi_fifo_start = 0;
30004 		un->sd_fi_fifo_end = 0;
30005 
30006 		mutex_enter(&(un->un_fi_mutex));
30007 		un->sd_fi_log[0] = '\0';
30008 		un->sd_fi_buf_len = 0;
30009 		mutex_exit(&(un->un_fi_mutex));
30010 
30011 		SD_INFO(SD_LOG_IOERR, un,
30012 		    "sd_faultinjection_ioctl: start finished\n");
30013 		break;
30014 
30015 	case SDIOCSTOP:
30016 		/* Stop Injection Session */
30017 		SD_INFO(SD_LOG_SDTEST, un,
30018 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30019 		sd_fault_injection_on = 0;
30020 		un->sd_injection_mask = 0x0;
30021 
30022 		/* Empty stray or unuseds structs from fifo */
30023 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30024 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30025 				kmem_free(un->sd_fi_fifo_pkt[i],
30026 				    sizeof (struct sd_fi_pkt));
30027 			}
30028 			if (un->sd_fi_fifo_xb[i] != NULL) {
30029 				kmem_free(un->sd_fi_fifo_xb[i],
30030 				    sizeof (struct sd_fi_xb));
30031 			}
30032 			if (un->sd_fi_fifo_un[i] != NULL) {
30033 				kmem_free(un->sd_fi_fifo_un[i],
30034 				    sizeof (struct sd_fi_un));
30035 			}
30036 			if (un->sd_fi_fifo_arq[i] != NULL) {
30037 				kmem_free(un->sd_fi_fifo_arq[i],
30038 				    sizeof (struct sd_fi_arq));
30039 			}
30040 			un->sd_fi_fifo_pkt[i] = NULL;
30041 			un->sd_fi_fifo_un[i] = NULL;
30042 			un->sd_fi_fifo_xb[i] = NULL;
30043 			un->sd_fi_fifo_arq[i] = NULL;
30044 		}
30045 		un->sd_fi_fifo_start = 0;
30046 		un->sd_fi_fifo_end = 0;
30047 
30048 		SD_INFO(SD_LOG_IOERR, un,
30049 		    "sd_faultinjection_ioctl: stop finished\n");
30050 		break;
30051 
30052 	case SDIOCINSERTPKT:
30053 		/* Store a packet struct to be pushed onto fifo */
30054 		SD_INFO(SD_LOG_SDTEST, un,
30055 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30056 
30057 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30058 
30059 		sd_fault_injection_on = 0;
30060 
30061 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30062 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30063 			kmem_free(un->sd_fi_fifo_pkt[i],
30064 			    sizeof (struct sd_fi_pkt));
30065 		}
30066 		if (arg != NULL) {
30067 			un->sd_fi_fifo_pkt[i] =
30068 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30069 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30070 				/* Alloc failed don't store anything */
30071 				break;
30072 			}
30073 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30074 			    sizeof (struct sd_fi_pkt), 0);
30075 			if (rval == -1) {
30076 				kmem_free(un->sd_fi_fifo_pkt[i],
30077 				    sizeof (struct sd_fi_pkt));
30078 				un->sd_fi_fifo_pkt[i] = NULL;
30079 			}
30080 		} else {
30081 			SD_INFO(SD_LOG_IOERR, un,
30082 			    "sd_faultinjection_ioctl: pkt null\n");
30083 		}
30084 		break;
30085 
30086 	case SDIOCINSERTXB:
30087 		/* Store a xb struct to be pushed onto fifo */
30088 		SD_INFO(SD_LOG_SDTEST, un,
30089 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30090 
30091 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30092 
30093 		sd_fault_injection_on = 0;
30094 
30095 		if (un->sd_fi_fifo_xb[i] != NULL) {
30096 			kmem_free(un->sd_fi_fifo_xb[i],
30097 			    sizeof (struct sd_fi_xb));
30098 			un->sd_fi_fifo_xb[i] = NULL;
30099 		}
30100 		if (arg != NULL) {
30101 			un->sd_fi_fifo_xb[i] =
30102 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30103 			if (un->sd_fi_fifo_xb[i] == NULL) {
30104 				/* Alloc failed don't store anything */
30105 				break;
30106 			}
30107 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30108 			    sizeof (struct sd_fi_xb), 0);
30109 
30110 			if (rval == -1) {
30111 				kmem_free(un->sd_fi_fifo_xb[i],
30112 				    sizeof (struct sd_fi_xb));
30113 				un->sd_fi_fifo_xb[i] = NULL;
30114 			}
30115 		} else {
30116 			SD_INFO(SD_LOG_IOERR, un,
30117 			    "sd_faultinjection_ioctl: xb null\n");
30118 		}
30119 		break;
30120 
30121 	case SDIOCINSERTUN:
30122 		/* Store a un struct to be pushed onto fifo */
30123 		SD_INFO(SD_LOG_SDTEST, un,
30124 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30125 
30126 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30127 
30128 		sd_fault_injection_on = 0;
30129 
30130 		if (un->sd_fi_fifo_un[i] != NULL) {
30131 			kmem_free(un->sd_fi_fifo_un[i],
30132 			    sizeof (struct sd_fi_un));
30133 			un->sd_fi_fifo_un[i] = NULL;
30134 		}
30135 		if (arg != NULL) {
30136 			un->sd_fi_fifo_un[i] =
30137 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30138 			if (un->sd_fi_fifo_un[i] == NULL) {
30139 				/* Alloc failed don't store anything */
30140 				break;
30141 			}
30142 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30143 			    sizeof (struct sd_fi_un), 0);
30144 			if (rval == -1) {
30145 				kmem_free(un->sd_fi_fifo_un[i],
30146 				    sizeof (struct sd_fi_un));
30147 				un->sd_fi_fifo_un[i] = NULL;
30148 			}
30149 
30150 		} else {
30151 			SD_INFO(SD_LOG_IOERR, un,
30152 			    "sd_faultinjection_ioctl: un null\n");
30153 		}
30154 
30155 		break;
30156 
30157 	case SDIOCINSERTARQ:
30158 		/* Store a arq struct to be pushed onto fifo */
30159 		SD_INFO(SD_LOG_SDTEST, un,
30160 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30161 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30162 
30163 		sd_fault_injection_on = 0;
30164 
30165 		if (un->sd_fi_fifo_arq[i] != NULL) {
30166 			kmem_free(un->sd_fi_fifo_arq[i],
30167 			    sizeof (struct sd_fi_arq));
30168 			un->sd_fi_fifo_arq[i] = NULL;
30169 		}
30170 		if (arg != NULL) {
30171 			un->sd_fi_fifo_arq[i] =
30172 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30173 			if (un->sd_fi_fifo_arq[i] == NULL) {
30174 				/* Alloc failed don't store anything */
30175 				break;
30176 			}
30177 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30178 			    sizeof (struct sd_fi_arq), 0);
30179 			if (rval == -1) {
30180 				kmem_free(un->sd_fi_fifo_arq[i],
30181 				    sizeof (struct sd_fi_arq));
30182 				un->sd_fi_fifo_arq[i] = NULL;
30183 			}
30184 
30185 		} else {
30186 			SD_INFO(SD_LOG_IOERR, un,
30187 			    "sd_faultinjection_ioctl: arq null\n");
30188 		}
30189 
30190 		break;
30191 
30192 	case SDIOCPUSH:
30193 		/* Push stored xb, pkt, un, and arq onto fifo */
30194 		sd_fault_injection_on = 0;
30195 
30196 		if (arg != NULL) {
30197 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30198 			if (rval != -1 &&
30199 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30200 				un->sd_fi_fifo_end += i;
30201 			}
30202 		} else {
30203 			SD_INFO(SD_LOG_IOERR, un,
30204 			    "sd_faultinjection_ioctl: push arg null\n");
30205 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30206 				un->sd_fi_fifo_end++;
30207 			}
30208 		}
30209 		SD_INFO(SD_LOG_IOERR, un,
30210 		    "sd_faultinjection_ioctl: push to end=%d\n",
30211 		    un->sd_fi_fifo_end);
30212 		break;
30213 
30214 	case SDIOCRETRIEVE:
30215 		/* Return buffer of log from Injection session */
30216 		SD_INFO(SD_LOG_SDTEST, un,
30217 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30218 
30219 		sd_fault_injection_on = 0;
30220 
30221 		mutex_enter(&(un->un_fi_mutex));
30222 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30223 		    un->sd_fi_buf_len+1, 0);
30224 		mutex_exit(&(un->un_fi_mutex));
30225 
30226 		if (rval == -1) {
30227 			/*
30228 			 * arg is possibly invalid setting
30229 			 * it to NULL for return
30230 			 */
30231 			arg = NULL;
30232 		}
30233 		break;
30234 	}
30235 
30236 	mutex_exit(SD_MUTEX(un));
30237 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30238 			    " exit\n");
30239 }
30240 
30241 
30242 /*
30243  *    Function: sd_injection_log()
30244  *
30245  * Description: This routine adds buff to the already existing injection log
30246  *              for retrieval via faultinjection_ioctl for use in fault
30247  *              detection and recovery
30248  *
30249  *   Arguments: buf - the string to add to the log
30250  */
30251 
30252 static void
30253 sd_injection_log(char *buf, struct sd_lun *un)
30254 {
30255 	uint_t len;
30256 
30257 	ASSERT(un != NULL);
30258 	ASSERT(buf != NULL);
30259 
30260 	mutex_enter(&(un->un_fi_mutex));
30261 
30262 	len = min(strlen(buf), 255);
30263 	/* Add logged value to Injection log to be returned later */
30264 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30265 		uint_t	offset = strlen((char *)un->sd_fi_log);
30266 		char *destp = (char *)un->sd_fi_log + offset;
30267 		int i;
30268 		for (i = 0; i < len; i++) {
30269 			*destp++ = *buf++;
30270 		}
30271 		un->sd_fi_buf_len += len;
30272 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30273 	}
30274 
30275 	mutex_exit(&(un->un_fi_mutex));
30276 }
30277 
30278 
30279 /*
30280  *    Function: sd_faultinjection()
30281  *
30282  * Description: This routine takes the pkt and changes its
30283  *		content based on error injection scenerio.
30284  *
30285  *   Arguments: pktp	- packet to be changed
30286  */
30287 
30288 static void
30289 sd_faultinjection(struct scsi_pkt *pktp)
30290 {
30291 	uint_t i;
30292 	struct sd_fi_pkt *fi_pkt;
30293 	struct sd_fi_xb *fi_xb;
30294 	struct sd_fi_un *fi_un;
30295 	struct sd_fi_arq *fi_arq;
30296 	struct buf *bp;
30297 	struct sd_xbuf *xb;
30298 	struct sd_lun *un;
30299 
30300 	ASSERT(pktp != NULL);
30301 
30302 	/* pull bp xb and un from pktp */
30303 	bp = (struct buf *)pktp->pkt_private;
30304 	xb = SD_GET_XBUF(bp);
30305 	un = SD_GET_UN(bp);
30306 
30307 	ASSERT(un != NULL);
30308 
30309 	mutex_enter(SD_MUTEX(un));
30310 
30311 	SD_TRACE(SD_LOG_SDTEST, un,
30312 	    "sd_faultinjection: entry Injection from sdintr\n");
30313 
30314 	/* if injection is off return */
30315 	if (sd_fault_injection_on == 0 ||
30316 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30317 		mutex_exit(SD_MUTEX(un));
30318 		return;
30319 	}
30320 
30321 	SD_INFO(SD_LOG_SDTEST, un,
30322 	    "sd_faultinjection: is working for copying\n");
30323 
30324 	/* take next set off fifo */
30325 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30326 
30327 	fi_pkt = un->sd_fi_fifo_pkt[i];
30328 	fi_xb = un->sd_fi_fifo_xb[i];
30329 	fi_un = un->sd_fi_fifo_un[i];
30330 	fi_arq = un->sd_fi_fifo_arq[i];
30331 
30332 
30333 	/* set variables accordingly */
30334 	/* set pkt if it was on fifo */
30335 	if (fi_pkt != NULL) {
30336 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30337 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30338 		if (fi_pkt->pkt_cdbp != 0xff)
30339 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30340 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30341 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30342 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30343 
30344 	}
30345 	/* set xb if it was on fifo */
30346 	if (fi_xb != NULL) {
30347 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30348 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30349 		if (fi_xb->xb_retry_count != 0)
30350 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30351 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30352 		    "xb_victim_retry_count");
30353 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30354 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30355 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30356 
30357 		/* copy in block data from sense */
30358 		/*
30359 		 * if (fi_xb->xb_sense_data[0] != -1) {
30360 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30361 		 *	SENSE_LENGTH);
30362 		 * }
30363 		 */
30364 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
30365 
30366 		/* copy in extended sense codes */
30367 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30368 		    xb, es_code, "es_code");
30369 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30370 		    xb, es_key, "es_key");
30371 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30372 		    xb, es_add_code, "es_add_code");
30373 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30374 		    xb, es_qual_code, "es_qual_code");
30375 		struct scsi_extended_sense *esp;
30376 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
30377 		esp->es_class = CLASS_EXTENDED_SENSE;
30378 	}
30379 
30380 	/* set un if it was on fifo */
30381 	if (fi_un != NULL) {
30382 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30383 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30384 		SD_CONDSET(un, un, un_reset_retry_count,
30385 		    "un_reset_retry_count");
30386 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30387 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30388 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30389 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30390 		    "un_f_allow_bus_device_reset");
30391 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30392 
30393 	}
30394 
30395 	/* copy in auto request sense if it was on fifo */
30396 	if (fi_arq != NULL) {
30397 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30398 	}
30399 
30400 	/* free structs */
30401 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30402 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30403 	}
30404 	if (un->sd_fi_fifo_xb[i] != NULL) {
30405 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30406 	}
30407 	if (un->sd_fi_fifo_un[i] != NULL) {
30408 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30409 	}
30410 	if (un->sd_fi_fifo_arq[i] != NULL) {
30411 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30412 	}
30413 
30414 	/*
30415 	 * kmem_free does not gurantee to set to NULL
30416 	 * since we uses these to determine if we set
30417 	 * values or not lets confirm they are always
30418 	 * NULL after free
30419 	 */
30420 	un->sd_fi_fifo_pkt[i] = NULL;
30421 	un->sd_fi_fifo_un[i] = NULL;
30422 	un->sd_fi_fifo_xb[i] = NULL;
30423 	un->sd_fi_fifo_arq[i] = NULL;
30424 
30425 	un->sd_fi_fifo_start++;
30426 
30427 	mutex_exit(SD_MUTEX(un));
30428 
30429 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30430 }
30431 
30432 #endif /* SD_FAULT_INJECTION */
30433 
30434 /*
30435  * This routine is invoked in sd_unit_attach(). Before calling it, the
30436  * properties in conf file should be processed already, and "hotpluggable"
30437  * property was processed also.
30438  *
30439  * The sd driver distinguishes 3 different type of devices: removable media,
30440  * non-removable media, and hotpluggable. Below the differences are defined:
30441  *
30442  * 1. Device ID
30443  *
30444  *     The device ID of a device is used to identify this device. Refer to
30445  *     ddi_devid_register(9F).
30446  *
30447  *     For a non-removable media disk device which can provide 0x80 or 0x83
30448  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30449  *     device ID is created to identify this device. For other non-removable
30450  *     media devices, a default device ID is created only if this device has
30451  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30452  *
30453  *     -------------------------------------------------------
30454  *     removable media   hotpluggable  | Can Have Device ID
30455  *     -------------------------------------------------------
30456  *         false             false     |     Yes
30457  *         false             true      |     Yes
30458  *         true                x       |     No
30459  *     ------------------------------------------------------
30460  *
30461  *
30462  * 2. SCSI group 4 commands
30463  *
30464  *     In SCSI specs, only some commands in group 4 command set can use
30465  *     8-byte addresses that can be used to access >2TB storage spaces.
30466  *     Other commands have no such capability. Without supporting group4,
30467  *     it is impossible to make full use of storage spaces of a disk with
30468  *     capacity larger than 2TB.
30469  *
30470  *     -----------------------------------------------
30471  *     removable media   hotpluggable   LP64  |  Group
30472  *     -----------------------------------------------
30473  *           false          false       false |   1
30474  *           false          false       true  |   4
30475  *           false          true        false |   1
30476  *           false          true        true  |   4
30477  *           true             x           x   |   5
30478  *     -----------------------------------------------
30479  *
30480  *
30481  * 3. Check for VTOC Label
30482  *
30483  *     If a direct-access disk has no EFI label, sd will check if it has a
30484  *     valid VTOC label. Now, sd also does that check for removable media
30485  *     and hotpluggable devices.
30486  *
30487  *     --------------------------------------------------------------
30488  *     Direct-Access   removable media    hotpluggable |  Check Label
30489  *     -------------------------------------------------------------
30490  *         false          false           false        |   No
30491  *         false          false           true         |   No
30492  *         false          true            false        |   Yes
30493  *         false          true            true         |   Yes
30494  *         true            x                x          |   Yes
30495  *     --------------------------------------------------------------
30496  *
30497  *
30498  * 4. Building default VTOC label
30499  *
30500  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30501  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30502  *     create default VTOC for them. Currently sd creates default VTOC label
30503  *     for all devices on x86 platform (VTOC_16), but only for removable
30504  *     media devices on SPARC (VTOC_8).
30505  *
30506  *     -----------------------------------------------------------
30507  *       removable media hotpluggable platform   |   Default Label
30508  *     -----------------------------------------------------------
30509  *             false          false    sparc     |     No
30510  *             false          true      x86      |     Yes
30511  *             false          true     sparc     |     Yes
30512  *             true             x        x       |     Yes
30513  *     ----------------------------------------------------------
30514  *
30515  *
30516  * 5. Supported blocksizes of target devices
30517  *
30518  *     Sd supports non-512-byte blocksize for removable media devices only.
30519  *     For other devices, only 512-byte blocksize is supported. This may be
30520  *     changed in near future because some RAID devices require non-512-byte
30521  *     blocksize
30522  *
30523  *     -----------------------------------------------------------
30524  *     removable media    hotpluggable    | non-512-byte blocksize
30525  *     -----------------------------------------------------------
30526  *           false          false         |   No
30527  *           false          true          |   No
30528  *           true             x           |   Yes
30529  *     -----------------------------------------------------------
30530  *
30531  *
30532  * 6. Automatic mount & unmount
30533  *
30534  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30535  *     if a device is removable media device. It return 1 for removable media
30536  *     devices, and 0 for others.
30537  *
30538  *     The automatic mounting subsystem should distinguish between the types
30539  *     of devices and apply automounting policies to each.
30540  *
30541  *
30542  * 7. fdisk partition management
30543  *
30544  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30545  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30546  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30547  *     fdisk partitions on both x86 and SPARC platform.
30548  *
30549  *     -----------------------------------------------------------
30550  *       platform   removable media  USB/1394  |  fdisk supported
30551  *     -----------------------------------------------------------
30552  *        x86         X               X        |       true
30553  *     ------------------------------------------------------------
30554  *        sparc       X               X        |       false
30555  *     ------------------------------------------------------------
30556  *
30557  *
30558  * 8. MBOOT/MBR
30559  *
30560  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30561  *     read/write mboot for removable media devices on sparc platform.
30562  *
30563  *     -----------------------------------------------------------
30564  *       platform   removable media  USB/1394  |  mboot supported
30565  *     -----------------------------------------------------------
30566  *        x86         X               X        |       true
30567  *     ------------------------------------------------------------
30568  *        sparc      false           false     |       false
30569  *        sparc      false           true      |       true
30570  *        sparc      true            false     |       true
30571  *        sparc      true            true      |       true
30572  *     ------------------------------------------------------------
30573  *
30574  *
30575  * 9.  error handling during opening device
30576  *
30577  *     If failed to open a disk device, an errno is returned. For some kinds
30578  *     of errors, different errno is returned depending on if this device is
30579  *     a removable media device. This brings USB/1394 hard disks in line with
30580  *     expected hard disk behavior. It is not expected that this breaks any
30581  *     application.
30582  *
30583  *     ------------------------------------------------------
30584  *       removable media    hotpluggable   |  errno
30585  *     ------------------------------------------------------
30586  *             false          false        |   EIO
30587  *             false          true         |   EIO
30588  *             true             x          |   ENXIO
30589  *     ------------------------------------------------------
30590  *
30591  *
30592  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30593  *
30594  *     These IOCTLs are applicable only to removable media devices.
30595  *
30596  *     -----------------------------------------------------------
30597  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30598  *     -----------------------------------------------------------
30599  *             false          false        |     No
30600  *             false          true         |     No
30601  *             true            x           |     Yes
30602  *     -----------------------------------------------------------
30603  *
30604  *
30605  * 12. Kstats for partitions
30606  *
30607  *     sd creates partition kstat for non-removable media devices. USB and
30608  *     Firewire hard disks now have partition kstats
30609  *
30610  *      ------------------------------------------------------
30611  *       removable media    hotpluggable   |   kstat
30612  *      ------------------------------------------------------
30613  *             false          false        |    Yes
30614  *             false          true         |    Yes
30615  *             true             x          |    No
30616  *       ------------------------------------------------------
30617  *
30618  *
30619  * 13. Removable media & hotpluggable properties
30620  *
30621  *     Sd driver creates a "removable-media" property for removable media
30622  *     devices. Parent nexus drivers create a "hotpluggable" property if
30623  *     it supports hotplugging.
30624  *
30625  *     ---------------------------------------------------------------------
30626  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30627  *     ---------------------------------------------------------------------
30628  *       false            false       |    No                   No
30629  *       false            true        |    No                   Yes
30630  *       true             false       |    Yes                  No
30631  *       true             true        |    Yes                  Yes
30632  *     ---------------------------------------------------------------------
30633  *
30634  *
30635  * 14. Power Management
30636  *
30637  *     sd only power manages removable media devices or devices that support
30638  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30639  *
30640  *     A parent nexus that supports hotplugging can also set "pm-capable"
30641  *     if the disk can be power managed.
30642  *
30643  *     ------------------------------------------------------------
30644  *       removable media hotpluggable pm-capable  |   power manage
30645  *     ------------------------------------------------------------
30646  *             false          false     false     |     No
30647  *             false          false     true      |     Yes
30648  *             false          true      false     |     No
30649  *             false          true      true      |     Yes
30650  *             true             x        x        |     Yes
30651  *     ------------------------------------------------------------
30652  *
30653  *      USB and firewire hard disks can now be power managed independently
30654  *      of the framebuffer
30655  *
30656  *
30657  * 15. Support for USB disks with capacity larger than 1TB
30658  *
30659  *     Currently, sd doesn't permit a fixed disk device with capacity
30660  *     larger than 1TB to be used in a 32-bit operating system environment.
30661  *     However, sd doesn't do that for removable media devices. Instead, it
30662  *     assumes that removable media devices cannot have a capacity larger
30663  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30664  *     supported, which can cause some unexpected results.
30665  *
30666  *     ---------------------------------------------------------------------
30667  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30668  *     ---------------------------------------------------------------------
30669  *             false          false  |   true         |     no
30670  *             false          true   |   true         |     no
30671  *             true           false  |   true         |     Yes
30672  *             true           true   |   true         |     Yes
30673  *     ---------------------------------------------------------------------
30674  *
30675  *
30676  * 16. Check write-protection at open time
30677  *
30678  *     When a removable media device is being opened for writing without NDELAY
30679  *     flag, sd will check if this device is writable. If attempting to open
30680  *     without NDELAY flag a write-protected device, this operation will abort.
30681  *
30682  *     ------------------------------------------------------------
30683  *       removable media    USB/1394   |   WP Check
30684  *     ------------------------------------------------------------
30685  *             false          false    |     No
30686  *             false          true     |     No
30687  *             true           false    |     Yes
30688  *             true           true     |     Yes
30689  *     ------------------------------------------------------------
30690  *
30691  *
30692  * 17. syslog when corrupted VTOC is encountered
30693  *
30694  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30695  *      for fixed SCSI disks.
30696  *     ------------------------------------------------------------
30697  *       removable media    USB/1394   |   print syslog
30698  *     ------------------------------------------------------------
30699  *             false          false    |     Yes
30700  *             false          true     |     No
30701  *             true           false    |     No
30702  *             true           true     |     No
30703  *     ------------------------------------------------------------
30704  */
30705 static void
30706 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30707 {
30708 	int	pm_cap;
30709 
30710 	ASSERT(un->un_sd);
30711 	ASSERT(un->un_sd->sd_inq);
30712 
30713 	/*
30714 	 * Enable SYNC CACHE support for all devices.
30715 	 */
30716 	un->un_f_sync_cache_supported = TRUE;
30717 
30718 	/*
30719 	 * Set the sync cache required flag to false.
30720 	 * This would ensure that there is no SYNC CACHE
30721 	 * sent when there are no writes
30722 	 */
30723 	un->un_f_sync_cache_required = FALSE;
30724 
30725 	if (un->un_sd->sd_inq->inq_rmb) {
30726 		/*
30727 		 * The media of this device is removable. And for this kind
30728 		 * of devices, it is possible to change medium after opening
30729 		 * devices. Thus we should support this operation.
30730 		 */
30731 		un->un_f_has_removable_media = TRUE;
30732 
30733 		/*
30734 		 * support non-512-byte blocksize of removable media devices
30735 		 */
30736 		un->un_f_non_devbsize_supported = TRUE;
30737 
30738 		/*
30739 		 * Assume that all removable media devices support DOOR_LOCK
30740 		 */
30741 		un->un_f_doorlock_supported = TRUE;
30742 
30743 		/*
30744 		 * For a removable media device, it is possible to be opened
30745 		 * with NDELAY flag when there is no media in drive, in this
30746 		 * case we don't care if device is writable. But if without
30747 		 * NDELAY flag, we need to check if media is write-protected.
30748 		 */
30749 		un->un_f_chk_wp_open = TRUE;
30750 
30751 		/*
30752 		 * need to start a SCSI watch thread to monitor media state,
30753 		 * when media is being inserted or ejected, notify syseventd.
30754 		 */
30755 		un->un_f_monitor_media_state = TRUE;
30756 
30757 		/*
30758 		 * Some devices don't support START_STOP_UNIT command.
30759 		 * Therefore, we'd better check if a device supports it
30760 		 * before sending it.
30761 		 */
30762 		un->un_f_check_start_stop = TRUE;
30763 
30764 		/*
30765 		 * support eject media ioctl:
30766 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
30767 		 */
30768 		un->un_f_eject_media_supported = TRUE;
30769 
30770 		/*
30771 		 * Because many removable-media devices don't support
30772 		 * LOG_SENSE, we couldn't use this command to check if
30773 		 * a removable media device support power-management.
30774 		 * We assume that they support power-management via
30775 		 * START_STOP_UNIT command and can be spun up and down
30776 		 * without limitations.
30777 		 */
30778 		un->un_f_pm_supported = TRUE;
30779 
30780 		/*
30781 		 * Need to create a zero length (Boolean) property
30782 		 * removable-media for the removable media devices.
30783 		 * Note that the return value of the property is not being
30784 		 * checked, since if unable to create the property
30785 		 * then do not want the attach to fail altogether. Consistent
30786 		 * with other property creation in attach.
30787 		 */
30788 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30789 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30790 
30791 	} else {
30792 		/*
30793 		 * create device ID for device
30794 		 */
30795 		un->un_f_devid_supported = TRUE;
30796 
30797 		/*
30798 		 * Spin up non-removable-media devices once it is attached
30799 		 */
30800 		un->un_f_attach_spinup = TRUE;
30801 
30802 		/*
30803 		 * According to SCSI specification, Sense data has two kinds of
30804 		 * format: fixed format, and descriptor format. At present, we
30805 		 * don't support descriptor format sense data for removable
30806 		 * media.
30807 		 */
30808 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30809 			un->un_f_descr_format_supported = TRUE;
30810 		}
30811 
30812 		/*
30813 		 * kstats are created only for non-removable media devices.
30814 		 *
30815 		 * Set this in sd.conf to 0 in order to disable kstats.  The
30816 		 * default is 1, so they are enabled by default.
30817 		 */
30818 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30819 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
30820 		    "enable-partition-kstats", 1));
30821 
30822 		/*
30823 		 * Check if HBA has set the "pm-capable" property.
30824 		 * If "pm-capable" exists and is non-zero then we can
30825 		 * power manage the device without checking the start/stop
30826 		 * cycle count log sense page.
30827 		 *
30828 		 * If "pm-capable" exists and is set to be false (0),
30829 		 * then we should not power manage the device.
30830 		 *
30831 		 * If "pm-capable" doesn't exist then pm_cap will
30832 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
30833 		 * sd will check the start/stop cycle count log sense page
30834 		 * and power manage the device if the cycle count limit has
30835 		 * not been exceeded.
30836 		 */
30837 		pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
30838 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
30839 		if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) {
30840 			un->un_f_log_sense_supported = TRUE;
30841 			if (!un->un_f_power_condition_disabled &&
30842 			    SD_INQUIRY(un)->inq_ansi == 6) {
30843 				un->un_f_power_condition_supported = TRUE;
30844 			}
30845 		} else {
30846 			/*
30847 			 * pm-capable property exists.
30848 			 *
30849 			 * Convert "TRUE" values for pm_cap to
30850 			 * SD_PM_CAPABLE_IS_TRUE to make it easier to check
30851 			 * later. "TRUE" values are any values defined in
30852 			 * inquiry.h.
30853 			 */
30854 			if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) {
30855 				un->un_f_log_sense_supported = FALSE;
30856 			} else {
30857 				/* SD_PM_CAPABLE_IS_TRUE case */
30858 				un->un_f_pm_supported = TRUE;
30859 				if (!un->un_f_power_condition_disabled &&
30860 				    SD_PM_CAPABLE_IS_SPC_4(pm_cap)) {
30861 					un->un_f_power_condition_supported =
30862 					    TRUE;
30863 				}
30864 				if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) {
30865 					un->un_f_log_sense_supported = TRUE;
30866 					un->un_f_pm_log_sense_smart =
30867 					    SD_PM_CAP_SMART_LOG(pm_cap);
30868 				}
30869 			}
30870 
30871 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
30872 			    "sd_unit_attach: un:0x%p pm-capable "
30873 			    "property set to %d.\n", un, un->un_f_pm_supported);
30874 		}
30875 	}
30876 
30877 	if (un->un_f_is_hotpluggable) {
30878 
30879 		/*
30880 		 * Have to watch hotpluggable devices as well, since
30881 		 * that's the only way for userland applications to
30882 		 * detect hot removal while device is busy/mounted.
30883 		 */
30884 		un->un_f_monitor_media_state = TRUE;
30885 
30886 		un->un_f_check_start_stop = TRUE;
30887 
30888 	}
30889 }
30890 
30891 /*
30892  * sd_tg_rdwr:
30893  * Provides rdwr access for cmlb via sd_tgops. The start_block is
30894  * in sys block size, req_length in bytes.
30895  *
30896  */
30897 static int
30898 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
30899     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
30900 {
30901 	struct sd_lun *un;
30902 	int path_flag = (int)(uintptr_t)tg_cookie;
30903 	char *dkl = NULL;
30904 	diskaddr_t real_addr = start_block;
30905 	diskaddr_t first_byte, end_block;
30906 
30907 	size_t	buffer_size = reqlength;
30908 	int rval = 0;
30909 	diskaddr_t	cap;
30910 	uint32_t	lbasize;
30911 	sd_ssc_t	*ssc;
30912 
30913 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
30914 	if (un == NULL)
30915 		return (ENXIO);
30916 
30917 	if (cmd != TG_READ && cmd != TG_WRITE)
30918 		return (EINVAL);
30919 
30920 	ssc = sd_ssc_init(un);
30921 	mutex_enter(SD_MUTEX(un));
30922 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
30923 		mutex_exit(SD_MUTEX(un));
30924 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
30925 		    &lbasize, path_flag);
30926 		if (rval != 0)
30927 			goto done1;
30928 		mutex_enter(SD_MUTEX(un));
30929 		sd_update_block_info(un, lbasize, cap);
30930 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
30931 			mutex_exit(SD_MUTEX(un));
30932 			rval = EIO;
30933 			goto done;
30934 		}
30935 	}
30936 
30937 	if (NOT_DEVBSIZE(un)) {
30938 		/*
30939 		 * sys_blocksize != tgt_blocksize, need to re-adjust
30940 		 * blkno and save the index to beginning of dk_label
30941 		 */
30942 		first_byte  = SD_SYSBLOCKS2BYTES(start_block);
30943 		real_addr = first_byte / un->un_tgt_blocksize;
30944 
30945 		end_block = (first_byte + reqlength +
30946 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
30947 
30948 		/* round up buffer size to multiple of target block size */
30949 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
30950 
30951 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
30952 		    "label_addr: 0x%x allocation size: 0x%x\n",
30953 		    real_addr, buffer_size);
30954 
30955 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
30956 		    (reqlength % un->un_tgt_blocksize) != 0)
30957 			/* the request is not aligned */
30958 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
30959 	}
30960 
30961 	/*
30962 	 * The MMC standard allows READ CAPACITY to be
30963 	 * inaccurate by a bounded amount (in the interest of
30964 	 * response latency).  As a result, failed READs are
30965 	 * commonplace (due to the reading of metadata and not
30966 	 * data). Depending on the per-Vendor/drive Sense data,
30967 	 * the failed READ can cause many (unnecessary) retries.
30968 	 */
30969 
30970 	if (ISCD(un) && (cmd == TG_READ) &&
30971 	    (un->un_f_blockcount_is_valid == TRUE) &&
30972 	    ((start_block == (un->un_blockcount - 1))||
30973 	    (start_block == (un->un_blockcount - 2)))) {
30974 			path_flag = SD_PATH_DIRECT_PRIORITY;
30975 	}
30976 
30977 	mutex_exit(SD_MUTEX(un));
30978 	if (cmd == TG_READ) {
30979 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
30980 		    buffer_size, real_addr, path_flag);
30981 		if (dkl != NULL)
30982 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
30983 			    real_addr), bufaddr, reqlength);
30984 	} else {
30985 		if (dkl) {
30986 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
30987 			    real_addr, path_flag);
30988 			if (rval) {
30989 				goto done1;
30990 			}
30991 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
30992 			    real_addr), reqlength);
30993 		}
30994 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
30995 		    buffer_size, real_addr, path_flag);
30996 	}
30997 
30998 done1:
30999 	if (dkl != NULL)
31000 		kmem_free(dkl, buffer_size);
31001 
31002 	if (rval != 0) {
31003 		if (rval == EIO)
31004 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
31005 		else
31006 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31007 	}
31008 done:
31009 	sd_ssc_fini(ssc);
31010 	return (rval);
31011 }
31012 
31013 
31014 static int
31015 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
31016 {
31017 
31018 	struct sd_lun *un;
31019 	diskaddr_t	cap;
31020 	uint32_t	lbasize;
31021 	int		path_flag = (int)(uintptr_t)tg_cookie;
31022 	int		ret = 0;
31023 
31024 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31025 	if (un == NULL)
31026 		return (ENXIO);
31027 
31028 	switch (cmd) {
31029 	case TG_GETPHYGEOM:
31030 	case TG_GETVIRTGEOM:
31031 	case TG_GETCAPACITY:
31032 	case TG_GETBLOCKSIZE:
31033 		mutex_enter(SD_MUTEX(un));
31034 
31035 		if ((un->un_f_blockcount_is_valid == TRUE) &&
31036 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
31037 			cap = un->un_blockcount;
31038 			lbasize = un->un_tgt_blocksize;
31039 			mutex_exit(SD_MUTEX(un));
31040 		} else {
31041 			sd_ssc_t	*ssc;
31042 			mutex_exit(SD_MUTEX(un));
31043 			ssc = sd_ssc_init(un);
31044 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31045 			    &lbasize, path_flag);
31046 			if (ret != 0) {
31047 				if (ret == EIO)
31048 					sd_ssc_assessment(ssc,
31049 					    SD_FMT_STATUS_CHECK);
31050 				else
31051 					sd_ssc_assessment(ssc,
31052 					    SD_FMT_IGNORE);
31053 				sd_ssc_fini(ssc);
31054 				return (ret);
31055 			}
31056 			sd_ssc_fini(ssc);
31057 			mutex_enter(SD_MUTEX(un));
31058 			sd_update_block_info(un, lbasize, cap);
31059 			if ((un->un_f_blockcount_is_valid == FALSE) ||
31060 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
31061 				mutex_exit(SD_MUTEX(un));
31062 				return (EIO);
31063 			}
31064 			mutex_exit(SD_MUTEX(un));
31065 		}
31066 
31067 		if (cmd == TG_GETCAPACITY) {
31068 			*(diskaddr_t *)arg = cap;
31069 			return (0);
31070 		}
31071 
31072 		if (cmd == TG_GETBLOCKSIZE) {
31073 			*(uint32_t *)arg = lbasize;
31074 			return (0);
31075 		}
31076 
31077 		if (cmd == TG_GETPHYGEOM)
31078 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
31079 			    cap, lbasize, path_flag);
31080 		else
31081 			/* TG_GETVIRTGEOM */
31082 			ret = sd_get_virtual_geometry(un,
31083 			    (cmlb_geom_t *)arg, cap, lbasize);
31084 
31085 		return (ret);
31086 
31087 	case TG_GETATTR:
31088 		mutex_enter(SD_MUTEX(un));
31089 		((tg_attribute_t *)arg)->media_is_writable =
31090 		    un->un_f_mmc_writable_media;
31091 		((tg_attribute_t *)arg)->media_is_solid_state =
31092 		    un->un_f_is_solid_state;
31093 		mutex_exit(SD_MUTEX(un));
31094 		return (0);
31095 	default:
31096 		return (ENOTTY);
31097 
31098 	}
31099 }
31100 
31101 /*
31102  *    Function: sd_ssc_ereport_post
31103  *
31104  * Description: Will be called when SD driver need to post an ereport.
31105  *
31106  *    Context: Kernel thread or interrupt context.
31107  */
31108 
31109 #define	DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown"
31110 
31111 static void
31112 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
31113 {
31114 	int uscsi_path_instance = 0;
31115 	uchar_t	uscsi_pkt_reason;
31116 	uint32_t uscsi_pkt_state;
31117 	uint32_t uscsi_pkt_statistics;
31118 	uint64_t uscsi_ena;
31119 	uchar_t op_code;
31120 	uint8_t *sensep;
31121 	union scsi_cdb *cdbp;
31122 	uint_t cdblen = 0;
31123 	uint_t senlen = 0;
31124 	struct sd_lun *un;
31125 	dev_info_t *dip;
31126 	char *devid;
31127 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
31128 	    SSC_FLAGS_INVALID_STATUS |
31129 	    SSC_FLAGS_INVALID_SENSE |
31130 	    SSC_FLAGS_INVALID_DATA;
31131 	char assessment[16];
31132 
31133 	ASSERT(ssc != NULL);
31134 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
31135 	ASSERT(ssc->ssc_uscsi_info != NULL);
31136 
31137 	un = ssc->ssc_un;
31138 	ASSERT(un != NULL);
31139 
31140 	dip = un->un_sd->sd_dev;
31141 
31142 	/*
31143 	 * Get the devid:
31144 	 *	devid will only be passed to non-transport error reports.
31145 	 */
31146 	devid = DEVI(dip)->devi_devid_str;
31147 
31148 	/*
31149 	 * If we are syncing or dumping, the command will not be executed
31150 	 * so we bypass this situation.
31151 	 */
31152 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
31153 	    (un->un_state == SD_STATE_DUMPING))
31154 		return;
31155 
31156 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
31157 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
31158 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
31159 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
31160 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
31161 
31162 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
31163 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
31164 
31165 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
31166 	if (cdbp == NULL) {
31167 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
31168 		    "sd_ssc_ereport_post meet empty cdb\n");
31169 		return;
31170 	}
31171 
31172 	op_code = cdbp->scc_cmd;
31173 
31174 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
31175 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
31176 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
31177 
31178 	if (senlen > 0)
31179 		ASSERT(sensep != NULL);
31180 
31181 	/*
31182 	 * Initialize drv_assess to corresponding values.
31183 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
31184 	 * on the sense-key returned back.
31185 	 */
31186 	switch (drv_assess) {
31187 		case SD_FM_DRV_RECOVERY:
31188 			(void) sprintf(assessment, "%s", "recovered");
31189 			break;
31190 		case SD_FM_DRV_RETRY:
31191 			(void) sprintf(assessment, "%s", "retry");
31192 			break;
31193 		case SD_FM_DRV_NOTICE:
31194 			(void) sprintf(assessment, "%s", "info");
31195 			break;
31196 		case SD_FM_DRV_FATAL:
31197 		default:
31198 			(void) sprintf(assessment, "%s", "unknown");
31199 	}
31200 	/*
31201 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
31202 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
31203 	 * driver-assessment will always be "recovered" here.
31204 	 */
31205 	if (drv_assess == SD_FM_DRV_RECOVERY) {
31206 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31207 		    "cmd.disk.recovered", uscsi_ena, devid, NULL,
31208 		    DDI_NOSLEEP, NULL,
31209 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31210 		    DEVID_IF_KNOWN(devid),
31211 		    "driver-assessment", DATA_TYPE_STRING, assessment,
31212 		    "op-code", DATA_TYPE_UINT8, op_code,
31213 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31214 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31215 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31216 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31217 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31218 		    NULL);
31219 		return;
31220 	}
31221 
31222 	/*
31223 	 * If there is un-expected/un-decodable data, we should post
31224 	 * ereport.io.scsi.cmd.disk.dev.uderr.
31225 	 * driver-assessment will be set based on parameter drv_assess.
31226 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
31227 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
31228 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
31229 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
31230 	 */
31231 	if (ssc->ssc_flags & ssc_invalid_flags) {
31232 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
31233 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31234 			    NULL, "cmd.disk.dev.uderr", uscsi_ena, devid,
31235 			    NULL, DDI_NOSLEEP, NULL,
31236 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31237 			    DEVID_IF_KNOWN(devid),
31238 			    "driver-assessment", DATA_TYPE_STRING,
31239 			    drv_assess == SD_FM_DRV_FATAL ?
31240 			    "fail" : assessment,
31241 			    "op-code", DATA_TYPE_UINT8, op_code,
31242 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31243 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31244 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31245 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31246 			    "pkt-stats", DATA_TYPE_UINT32,
31247 			    uscsi_pkt_statistics,
31248 			    "stat-code", DATA_TYPE_UINT8,
31249 			    ssc->ssc_uscsi_cmd->uscsi_status,
31250 			    "un-decode-info", DATA_TYPE_STRING,
31251 			    ssc->ssc_info,
31252 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31253 			    senlen, sensep,
31254 			    NULL);
31255 		} else {
31256 			/*
31257 			 * For other type of invalid data, the
31258 			 * un-decode-value field would be empty because the
31259 			 * un-decodable content could be seen from upper
31260 			 * level payload or inside un-decode-info.
31261 			 */
31262 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31263 			    NULL,
31264 			    "cmd.disk.dev.uderr", uscsi_ena, devid,
31265 			    NULL, DDI_NOSLEEP, NULL,
31266 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31267 			    DEVID_IF_KNOWN(devid),
31268 			    "driver-assessment", DATA_TYPE_STRING,
31269 			    drv_assess == SD_FM_DRV_FATAL ?
31270 			    "fail" : assessment,
31271 			    "op-code", DATA_TYPE_UINT8, op_code,
31272 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31273 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31274 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31275 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31276 			    "pkt-stats", DATA_TYPE_UINT32,
31277 			    uscsi_pkt_statistics,
31278 			    "stat-code", DATA_TYPE_UINT8,
31279 			    ssc->ssc_uscsi_cmd->uscsi_status,
31280 			    "un-decode-info", DATA_TYPE_STRING,
31281 			    ssc->ssc_info,
31282 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31283 			    0, NULL,
31284 			    NULL);
31285 		}
31286 		ssc->ssc_flags &= ~ssc_invalid_flags;
31287 		return;
31288 	}
31289 
31290 	if (uscsi_pkt_reason != CMD_CMPLT ||
31291 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
31292 		/*
31293 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
31294 		 * set inside sd_start_cmds due to errors(bad packet or
31295 		 * fatal transport error), we should take it as a
31296 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
31297 		 * driver-assessment will be set based on drv_assess.
31298 		 * We will set devid to NULL because it is a transport
31299 		 * error.
31300 		 */
31301 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
31302 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
31303 
31304 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31305 		    "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL,
31306 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31307 		    DEVID_IF_KNOWN(devid),
31308 		    "driver-assessment", DATA_TYPE_STRING,
31309 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31310 		    "op-code", DATA_TYPE_UINT8, op_code,
31311 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31312 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31313 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31314 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
31315 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31316 		    NULL);
31317 	} else {
31318 		/*
31319 		 * If we got here, we have a completed command, and we need
31320 		 * to further investigate the sense data to see what kind
31321 		 * of ereport we should post.
31322 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
31323 		 * if sense-key == 0x3.
31324 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
31325 		 * driver-assessment will be set based on the parameter
31326 		 * drv_assess.
31327 		 */
31328 		if (senlen > 0) {
31329 			/*
31330 			 * Here we have sense data available.
31331 			 */
31332 			uint8_t sense_key;
31333 			sense_key = scsi_sense_key(sensep);
31334 			if (sense_key == 0x3) {
31335 				/*
31336 				 * sense-key == 0x3(medium error),
31337 				 * driver-assessment should be "fatal" if
31338 				 * drv_assess is SD_FM_DRV_FATAL.
31339 				 */
31340 				scsi_fm_ereport_post(un->un_sd,
31341 				    uscsi_path_instance, NULL,
31342 				    "cmd.disk.dev.rqs.merr",
31343 				    uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL,
31344 				    FM_VERSION, DATA_TYPE_UINT8,
31345 				    FM_EREPORT_VERS0,
31346 				    DEVID_IF_KNOWN(devid),
31347 				    "driver-assessment",
31348 				    DATA_TYPE_STRING,
31349 				    drv_assess == SD_FM_DRV_FATAL ?
31350 				    "fatal" : assessment,
31351 				    "op-code",
31352 				    DATA_TYPE_UINT8, op_code,
31353 				    "cdb",
31354 				    DATA_TYPE_UINT8_ARRAY, cdblen,
31355 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
31356 				    "pkt-reason",
31357 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
31358 				    "pkt-state",
31359 				    DATA_TYPE_UINT8, uscsi_pkt_state,
31360 				    "pkt-stats",
31361 				    DATA_TYPE_UINT32,
31362 				    uscsi_pkt_statistics,
31363 				    "stat-code",
31364 				    DATA_TYPE_UINT8,
31365 				    ssc->ssc_uscsi_cmd->uscsi_status,
31366 				    "key",
31367 				    DATA_TYPE_UINT8,
31368 				    scsi_sense_key(sensep),
31369 				    "asc",
31370 				    DATA_TYPE_UINT8,
31371 				    scsi_sense_asc(sensep),
31372 				    "ascq",
31373 				    DATA_TYPE_UINT8,
31374 				    scsi_sense_ascq(sensep),
31375 				    "sense-data",
31376 				    DATA_TYPE_UINT8_ARRAY,
31377 				    senlen, sensep,
31378 				    "lba",
31379 				    DATA_TYPE_UINT64,
31380 				    ssc->ssc_uscsi_info->ui_lba,
31381 				    NULL);
31382 				} else {
31383 					/*
31384 					 * if sense-key == 0x4(hardware
31385 					 * error), driver-assessment should
31386 					 * be "fatal" if drv_assess is
31387 					 * SD_FM_DRV_FATAL.
31388 					 */
31389 					scsi_fm_ereport_post(un->un_sd,
31390 					    uscsi_path_instance, NULL,
31391 					    "cmd.disk.dev.rqs.derr",
31392 					    uscsi_ena, devid,
31393 					    NULL, DDI_NOSLEEP, NULL,
31394 					    FM_VERSION,
31395 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31396 					    DEVID_IF_KNOWN(devid),
31397 					    "driver-assessment",
31398 					    DATA_TYPE_STRING,
31399 					    drv_assess == SD_FM_DRV_FATAL ?
31400 					    (sense_key == 0x4 ?
31401 					    "fatal" : "fail") : assessment,
31402 					    "op-code",
31403 					    DATA_TYPE_UINT8, op_code,
31404 					    "cdb",
31405 					    DATA_TYPE_UINT8_ARRAY, cdblen,
31406 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
31407 					    "pkt-reason",
31408 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
31409 					    "pkt-state",
31410 					    DATA_TYPE_UINT8, uscsi_pkt_state,
31411 					    "pkt-stats",
31412 					    DATA_TYPE_UINT32,
31413 					    uscsi_pkt_statistics,
31414 					    "stat-code",
31415 					    DATA_TYPE_UINT8,
31416 					    ssc->ssc_uscsi_cmd->uscsi_status,
31417 					    "key",
31418 					    DATA_TYPE_UINT8,
31419 					    scsi_sense_key(sensep),
31420 					    "asc",
31421 					    DATA_TYPE_UINT8,
31422 					    scsi_sense_asc(sensep),
31423 					    "ascq",
31424 					    DATA_TYPE_UINT8,
31425 					    scsi_sense_ascq(sensep),
31426 					    "sense-data",
31427 					    DATA_TYPE_UINT8_ARRAY,
31428 					    senlen, sensep,
31429 					    NULL);
31430 				}
31431 		} else {
31432 			/*
31433 			 * For stat_code == STATUS_GOOD, this is not a
31434 			 * hardware error.
31435 			 */
31436 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
31437 				return;
31438 
31439 			/*
31440 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
31441 			 * stat-code but with sense data unavailable.
31442 			 * driver-assessment will be set based on parameter
31443 			 * drv_assess.
31444 			 */
31445 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31446 			    NULL,
31447 			    "cmd.disk.dev.serr", uscsi_ena,
31448 			    devid, NULL, DDI_NOSLEEP, NULL,
31449 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31450 			    DEVID_IF_KNOWN(devid),
31451 			    "driver-assessment", DATA_TYPE_STRING,
31452 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31453 			    "op-code", DATA_TYPE_UINT8, op_code,
31454 			    "cdb",
31455 			    DATA_TYPE_UINT8_ARRAY,
31456 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31457 			    "pkt-reason",
31458 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
31459 			    "pkt-state",
31460 			    DATA_TYPE_UINT8, uscsi_pkt_state,
31461 			    "pkt-stats",
31462 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
31463 			    "stat-code",
31464 			    DATA_TYPE_UINT8,
31465 			    ssc->ssc_uscsi_cmd->uscsi_status,
31466 			    NULL);
31467 		}
31468 	}
31469 }
31470 
31471 /*
31472  *     Function: sd_ssc_extract_info
31473  *
31474  * Description: Extract information available to help generate ereport.
31475  *
31476  *     Context: Kernel thread or interrupt context.
31477  */
31478 static void
31479 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
31480     struct buf *bp, struct sd_xbuf *xp)
31481 {
31482 	size_t senlen = 0;
31483 	union scsi_cdb *cdbp;
31484 	int path_instance;
31485 	/*
31486 	 * Need scsi_cdb_size array to determine the cdb length.
31487 	 */
31488 	extern uchar_t	scsi_cdb_size[];
31489 
31490 	ASSERT(un != NULL);
31491 	ASSERT(pktp != NULL);
31492 	ASSERT(bp != NULL);
31493 	ASSERT(xp != NULL);
31494 	ASSERT(ssc != NULL);
31495 	ASSERT(mutex_owned(SD_MUTEX(un)));
31496 
31497 	/*
31498 	 * Transfer the cdb buffer pointer here.
31499 	 */
31500 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
31501 
31502 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
31503 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
31504 
31505 	/*
31506 	 * Transfer the sense data buffer pointer if sense data is available,
31507 	 * calculate the sense data length first.
31508 	 */
31509 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
31510 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
31511 		/*
31512 		 * For arq case, we will enter here.
31513 		 */
31514 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
31515 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
31516 		} else {
31517 			senlen = SENSE_LENGTH;
31518 		}
31519 	} else {
31520 		/*
31521 		 * For non-arq case, we will enter this branch.
31522 		 */
31523 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
31524 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
31525 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
31526 		}
31527 
31528 	}
31529 
31530 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
31531 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
31532 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
31533 
31534 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
31535 
31536 	/*
31537 	 * Only transfer path_instance when scsi_pkt was properly allocated.
31538 	 */
31539 	path_instance = pktp->pkt_path_instance;
31540 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
31541 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
31542 	else
31543 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
31544 
31545 	/*
31546 	 * Copy in the other fields we may need when posting ereport.
31547 	 */
31548 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
31549 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
31550 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
31551 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
31552 
31553 	/*
31554 	 * For partially read/write command, we will not create ena
31555 	 * in case of a successful command be reconized as recovered.
31556 	 */
31557 	if ((pktp->pkt_reason == CMD_CMPLT) &&
31558 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
31559 	    (senlen == 0)) {
31560 		return;
31561 	}
31562 
31563 	/*
31564 	 * To associate ereports of a single command execution flow, we
31565 	 * need a shared ena for a specific command.
31566 	 */
31567 	if (xp->xb_ena == 0)
31568 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
31569 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
31570 }
31571 
31572 
31573 /*
31574  *     Function: sd_check_solid_state
31575  *
31576  * Description: Query the optional INQUIRY VPD page 0xb1. If the device
31577  *              supports VPD page 0xb1, sd examines the MEDIUM ROTATION
31578  *              RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the
31579  *              device is a solid state drive.
31580  *
31581  *     Context: Kernel thread or interrupt context.
31582  */
31583 
31584 static void
31585 sd_check_solid_state(sd_ssc_t *ssc)
31586 {
31587 	int		rval		= 0;
31588 	uchar_t		*inqb1		= NULL;
31589 	size_t		inqb1_len	= MAX_INQUIRY_SIZE;
31590 	size_t		inqb1_resid	= 0;
31591 	struct sd_lun	*un;
31592 
31593 	ASSERT(ssc != NULL);
31594 	un = ssc->ssc_un;
31595 	ASSERT(un != NULL);
31596 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31597 
31598 	mutex_enter(SD_MUTEX(un));
31599 	un->un_f_is_solid_state = FALSE;
31600 
31601 	if (ISCD(un)) {
31602 		mutex_exit(SD_MUTEX(un));
31603 		return;
31604 	}
31605 
31606 	if (sd_check_vpd_page_support(ssc) == 0 &&
31607 	    un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) {
31608 		mutex_exit(SD_MUTEX(un));
31609 		/* collect page b1 data */
31610 		inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP);
31611 
31612 		rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len,
31613 		    0x01, 0xB1, &inqb1_resid);
31614 
31615 		if (rval == 0 && (inqb1_len - inqb1_resid > 5)) {
31616 			SD_TRACE(SD_LOG_COMMON, un,
31617 			    "sd_check_solid_state: \
31618 			    successfully get VPD page: %x \
31619 			    PAGE LENGTH: %x BYTE 4: %x \
31620 			    BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4],
31621 			    inqb1[5]);
31622 
31623 			mutex_enter(SD_MUTEX(un));
31624 			/*
31625 			 * Check the MEDIUM ROTATION RATE. If it is set
31626 			 * to 1, the device is a solid state drive.
31627 			 */
31628 			if (inqb1[4] == 0 && inqb1[5] == 1) {
31629 				un->un_f_is_solid_state = TRUE;
31630 			}
31631 			mutex_exit(SD_MUTEX(un));
31632 		} else if (rval != 0) {
31633 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31634 		}
31635 
31636 		kmem_free(inqb1, inqb1_len);
31637 	} else {
31638 		mutex_exit(SD_MUTEX(un));
31639 	}
31640 }
31641 
31642 /*
31643  *	Function: sd_check_emulation_mode
31644  *
31645  *   Description: Check whether the SSD is at emulation mode
31646  *		  by issuing READ_CAPACITY_16 to see whether
31647  *		  we can get physical block size of the drive.
31648  *
31649  *	 Context: Kernel thread or interrupt context.
31650  */
31651 
31652 static void
31653 sd_check_emulation_mode(sd_ssc_t *ssc)
31654 {
31655 	int		rval = 0;
31656 	uint64_t	capacity;
31657 	uint_t		lbasize;
31658 	uint_t		pbsize;
31659 	int		i;
31660 	int		devid_len;
31661 	struct sd_lun	*un;
31662 
31663 	ASSERT(ssc != NULL);
31664 	un = ssc->ssc_un;
31665 	ASSERT(un != NULL);
31666 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31667 
31668 	mutex_enter(SD_MUTEX(un));
31669 	if (ISCD(un)) {
31670 		mutex_exit(SD_MUTEX(un));
31671 		return;
31672 	}
31673 
31674 	if (un->un_f_descr_format_supported) {
31675 		mutex_exit(SD_MUTEX(un));
31676 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
31677 		    &pbsize, SD_PATH_DIRECT);
31678 		mutex_enter(SD_MUTEX(un));
31679 
31680 		if (rval != 0) {
31681 			un->un_phy_blocksize = DEV_BSIZE;
31682 		} else {
31683 			if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) {
31684 				un->un_phy_blocksize = DEV_BSIZE;
31685 			} else {
31686 				un->un_phy_blocksize = pbsize;
31687 			}
31688 		}
31689 	}
31690 
31691 	for (i = 0; i < sd_flash_dev_table_size; i++) {
31692 		devid_len = (int)strlen(sd_flash_dev_table[i]);
31693 		if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len)
31694 		    == SD_SUCCESS) {
31695 			un->un_phy_blocksize = SSD_SECSIZE;
31696 			if (un->un_f_is_solid_state &&
31697 			    un->un_phy_blocksize != un->un_tgt_blocksize)
31698 				un->un_f_enable_rmw = TRUE;
31699 		}
31700 	}
31701 
31702 	mutex_exit(SD_MUTEX(un));
31703 }
31704