xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 67ce1dada345581246cd990d73516418f321a793)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * SCSI disk target driver.
29  */
30 #include <sys/scsi/scsi.h>
31 #include <sys/dkbad.h>
32 #include <sys/dklabel.h>
33 #include <sys/dkio.h>
34 #include <sys/fdio.h>
35 #include <sys/cdio.h>
36 #include <sys/mhd.h>
37 #include <sys/vtoc.h>
38 #include <sys/dktp/fdisk.h>
39 #include <sys/kstat.h>
40 #include <sys/vtrace.h>
41 #include <sys/note.h>
42 #include <sys/thread.h>
43 #include <sys/proc.h>
44 #include <sys/efi_partition.h>
45 #include <sys/var.h>
46 #include <sys/aio_req.h>
47 
48 #ifdef __lock_lint
49 #define	_LP64
50 #define	__amd64
51 #endif
52 
53 #if (defined(__fibre))
54 /* Note: is there a leadville version of the following? */
55 #include <sys/fc4/fcal_linkapp.h>
56 #endif
57 #include <sys/taskq.h>
58 #include <sys/uuid.h>
59 #include <sys/byteorder.h>
60 #include <sys/sdt.h>
61 
62 #include "sd_xbuf.h"
63 
64 #include <sys/scsi/targets/sddef.h>
65 #include <sys/cmlb.h>
66 #include <sys/sysevent/eventdefs.h>
67 #include <sys/sysevent/dev.h>
68 
69 #include <sys/fm/protocol.h>
70 
71 /*
72  * Loadable module info.
73  */
74 #if (defined(__fibre))
75 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
76 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
77 #else
78 #define	SD_MODULE_NAME	"SCSI Disk Driver"
79 char _depends_on[]	= "misc/scsi misc/cmlb";
80 #endif
81 
82 /*
83  * Define the interconnect type, to allow the driver to distinguish
84  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
85  *
86  * This is really for backward compatibility. In the future, the driver
87  * should actually check the "interconnect-type" property as reported by
88  * the HBA; however at present this property is not defined by all HBAs,
89  * so we will use this #define (1) to permit the driver to run in
90  * backward-compatibility mode; and (2) to print a notification message
91  * if an FC HBA does not support the "interconnect-type" property.  The
92  * behavior of the driver will be to assume parallel SCSI behaviors unless
93  * the "interconnect-type" property is defined by the HBA **AND** has a
94  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
95  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
96  * Channel behaviors (as per the old ssd).  (Note that the
97  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
98  * will result in the driver assuming parallel SCSI behaviors.)
99  *
100  * (see common/sys/scsi/impl/services.h)
101  *
102  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
103  * since some FC HBAs may already support that, and there is some code in
104  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
105  * default would confuse that code, and besides things should work fine
106  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
107  * "interconnect_type" property.
108  *
109  */
110 #if (defined(__fibre))
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
112 #else
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
114 #endif
115 
116 /*
117  * The name of the driver, established from the module name in _init.
118  */
119 static	char *sd_label			= NULL;
120 
121 /*
122  * Driver name is unfortunately prefixed on some driver.conf properties.
123  */
124 #if (defined(__fibre))
125 #define	sd_max_xfer_size		ssd_max_xfer_size
126 #define	sd_config_list			ssd_config_list
127 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
128 static	char *sd_config_list		= "ssd-config-list";
129 #else
130 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
131 static	char *sd_config_list		= "sd-config-list";
132 #endif
133 
134 /*
135  * Driver global variables
136  */
137 
138 #if (defined(__fibre))
139 /*
140  * These #defines are to avoid namespace collisions that occur because this
141  * code is currently used to compile two separate driver modules: sd and ssd.
142  * All global variables need to be treated this way (even if declared static)
143  * in order to allow the debugger to resolve the names properly.
144  * It is anticipated that in the near future the ssd module will be obsoleted,
145  * at which time this namespace issue should go away.
146  */
147 #define	sd_state			ssd_state
148 #define	sd_io_time			ssd_io_time
149 #define	sd_failfast_enable		ssd_failfast_enable
150 #define	sd_ua_retry_count		ssd_ua_retry_count
151 #define	sd_report_pfa			ssd_report_pfa
152 #define	sd_max_throttle			ssd_max_throttle
153 #define	sd_min_throttle			ssd_min_throttle
154 #define	sd_rot_delay			ssd_rot_delay
155 
156 #define	sd_retry_on_reservation_conflict	\
157 					ssd_retry_on_reservation_conflict
158 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
159 #define	sd_resv_conflict_name		ssd_resv_conflict_name
160 
161 #define	sd_component_mask		ssd_component_mask
162 #define	sd_level_mask			ssd_level_mask
163 #define	sd_debug_un			ssd_debug_un
164 #define	sd_error_level			ssd_error_level
165 
166 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
167 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
168 
169 #define	sd_tr				ssd_tr
170 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
171 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
172 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
173 #define	sd_check_media_time		ssd_check_media_time
174 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
175 #define	sd_label_mutex			ssd_label_mutex
176 #define	sd_detach_mutex			ssd_detach_mutex
177 #define	sd_log_buf			ssd_log_buf
178 #define	sd_log_mutex			ssd_log_mutex
179 
180 #define	sd_disk_table			ssd_disk_table
181 #define	sd_disk_table_size		ssd_disk_table_size
182 #define	sd_sense_mutex			ssd_sense_mutex
183 #define	sd_cdbtab			ssd_cdbtab
184 
185 #define	sd_cb_ops			ssd_cb_ops
186 #define	sd_ops				ssd_ops
187 #define	sd_additional_codes		ssd_additional_codes
188 #define	sd_tgops			ssd_tgops
189 
190 #define	sd_minor_data			ssd_minor_data
191 #define	sd_minor_data_efi		ssd_minor_data_efi
192 
193 #define	sd_tq				ssd_tq
194 #define	sd_wmr_tq			ssd_wmr_tq
195 #define	sd_taskq_name			ssd_taskq_name
196 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
197 #define	sd_taskq_minalloc		ssd_taskq_minalloc
198 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
199 
200 #define	sd_dump_format_string		ssd_dump_format_string
201 
202 #define	sd_iostart_chain		ssd_iostart_chain
203 #define	sd_iodone_chain			ssd_iodone_chain
204 
205 #define	sd_pm_idletime			ssd_pm_idletime
206 
207 #define	sd_force_pm_supported		ssd_force_pm_supported
208 
209 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
210 
211 #define	sd_ssc_init			ssd_ssc_init
212 #define	sd_ssc_send			ssd_ssc_send
213 #define	sd_ssc_fini			ssd_ssc_fini
214 #define	sd_ssc_assessment		ssd_ssc_assessment
215 #define	sd_ssc_post			ssd_ssc_post
216 #define	sd_ssc_print			ssd_ssc_print
217 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
218 #define	sd_ssc_set_info			ssd_ssc_set_info
219 #define	sd_ssc_extract_info		ssd_ssc_extract_info
220 
221 #endif
222 
223 #ifdef	SDDEBUG
224 int	sd_force_pm_supported		= 0;
225 #endif	/* SDDEBUG */
226 
227 void *sd_state				= NULL;
228 int sd_io_time				= SD_IO_TIME;
229 int sd_failfast_enable			= 1;
230 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
231 int sd_report_pfa			= 1;
232 int sd_max_throttle			= SD_MAX_THROTTLE;
233 int sd_min_throttle			= SD_MIN_THROTTLE;
234 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
235 int sd_qfull_throttle_enable		= TRUE;
236 
237 int sd_retry_on_reservation_conflict	= 1;
238 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
239 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
240 
241 static int sd_dtype_optical_bind	= -1;
242 
243 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
244 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
245 
246 /*
247  * Global data for debug logging. To enable debug printing, sd_component_mask
248  * and sd_level_mask should be set to the desired bit patterns as outlined in
249  * sddef.h.
250  */
251 uint_t	sd_component_mask		= 0x0;
252 uint_t	sd_level_mask			= 0x0;
253 struct	sd_lun *sd_debug_un		= NULL;
254 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
255 
256 /* Note: these may go away in the future... */
257 static uint32_t	sd_xbuf_active_limit	= 512;
258 static uint32_t sd_xbuf_reserve_limit	= 16;
259 
260 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
261 
262 /*
263  * Timer value used to reset the throttle after it has been reduced
264  * (typically in response to TRAN_BUSY or STATUS_QFULL)
265  */
266 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
267 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
268 
269 /*
270  * Interval value associated with the media change scsi watch.
271  */
272 static int sd_check_media_time		= 3000000;
273 
274 /*
275  * Wait value used for in progress operations during a DDI_SUSPEND
276  */
277 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
278 
279 /*
280  * sd_label_mutex protects a static buffer used in the disk label
281  * component of the driver
282  */
283 static kmutex_t sd_label_mutex;
284 
285 /*
286  * sd_detach_mutex protects un_layer_count, un_detach_count, and
287  * un_opens_in_progress in the sd_lun structure.
288  */
289 static kmutex_t sd_detach_mutex;
290 
291 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
292 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
293 
294 /*
295  * Global buffer and mutex for debug logging
296  */
297 static char	sd_log_buf[1024];
298 static kmutex_t	sd_log_mutex;
299 
300 /*
301  * Structs and globals for recording attached lun information.
302  * This maintains a chain. Each node in the chain represents a SCSI controller.
303  * The structure records the number of luns attached to each target connected
304  * with the controller.
305  * For parallel scsi device only.
306  */
307 struct sd_scsi_hba_tgt_lun {
308 	struct sd_scsi_hba_tgt_lun	*next;
309 	dev_info_t			*pdip;
310 	int				nlun[NTARGETS_WIDE];
311 };
312 
313 /*
314  * Flag to indicate the lun is attached or detached
315  */
316 #define	SD_SCSI_LUN_ATTACH	0
317 #define	SD_SCSI_LUN_DETACH	1
318 
319 static kmutex_t	sd_scsi_target_lun_mutex;
320 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
321 
322 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
323     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
324 
325 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
326     sd_scsi_target_lun_head))
327 
328 /*
329  * "Smart" Probe Caching structs, globals, #defines, etc.
330  * For parallel scsi and non-self-identify device only.
331  */
332 
333 /*
334  * The following resources and routines are implemented to support
335  * "smart" probing, which caches the scsi_probe() results in an array,
336  * in order to help avoid long probe times.
337  */
338 struct sd_scsi_probe_cache {
339 	struct	sd_scsi_probe_cache	*next;
340 	dev_info_t	*pdip;
341 	int		cache[NTARGETS_WIDE];
342 };
343 
344 static kmutex_t	sd_scsi_probe_cache_mutex;
345 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
346 
347 /*
348  * Really we only need protection on the head of the linked list, but
349  * better safe than sorry.
350  */
351 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
352     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
353 
354 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
355     sd_scsi_probe_cache_head))
356 
357 
358 /*
359  * Vendor specific data name property declarations
360  */
361 
362 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
363 
364 static sd_tunables seagate_properties = {
365 	SEAGATE_THROTTLE_VALUE,
366 	0,
367 	0,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0
374 };
375 
376 
377 static sd_tunables fujitsu_properties = {
378 	FUJITSU_THROTTLE_VALUE,
379 	0,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0
387 };
388 
389 static sd_tunables ibm_properties = {
390 	IBM_THROTTLE_VALUE,
391 	0,
392 	0,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0,
398 	0
399 };
400 
401 static sd_tunables purple_properties = {
402 	PURPLE_THROTTLE_VALUE,
403 	0,
404 	0,
405 	PURPLE_BUSY_RETRIES,
406 	PURPLE_RESET_RETRY_COUNT,
407 	PURPLE_RESERVE_RELEASE_TIME,
408 	0,
409 	0,
410 	0
411 };
412 
413 static sd_tunables sve_properties = {
414 	SVE_THROTTLE_VALUE,
415 	0,
416 	0,
417 	SVE_BUSY_RETRIES,
418 	SVE_RESET_RETRY_COUNT,
419 	SVE_RESERVE_RELEASE_TIME,
420 	SVE_MIN_THROTTLE_VALUE,
421 	SVE_DISKSORT_DISABLED_FLAG,
422 	0
423 };
424 
425 static sd_tunables maserati_properties = {
426 	0,
427 	0,
428 	0,
429 	0,
430 	0,
431 	0,
432 	0,
433 	MASERATI_DISKSORT_DISABLED_FLAG,
434 	MASERATI_LUN_RESET_ENABLED_FLAG
435 };
436 
437 static sd_tunables pirus_properties = {
438 	PIRUS_THROTTLE_VALUE,
439 	0,
440 	PIRUS_NRR_COUNT,
441 	PIRUS_BUSY_RETRIES,
442 	PIRUS_RESET_RETRY_COUNT,
443 	0,
444 	PIRUS_MIN_THROTTLE_VALUE,
445 	PIRUS_DISKSORT_DISABLED_FLAG,
446 	PIRUS_LUN_RESET_ENABLED_FLAG
447 };
448 
449 #endif
450 
451 #if (defined(__sparc) && !defined(__fibre)) || \
452 	(defined(__i386) || defined(__amd64))
453 
454 
455 static sd_tunables elite_properties = {
456 	ELITE_THROTTLE_VALUE,
457 	0,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0
465 };
466 
467 static sd_tunables st31200n_properties = {
468 	ST31200N_THROTTLE_VALUE,
469 	0,
470 	0,
471 	0,
472 	0,
473 	0,
474 	0,
475 	0,
476 	0
477 };
478 
479 #endif /* Fibre or not */
480 
481 static sd_tunables lsi_properties_scsi = {
482 	LSI_THROTTLE_VALUE,
483 	0,
484 	LSI_NOTREADY_RETRIES,
485 	0,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0
491 };
492 
493 static sd_tunables symbios_properties = {
494 	SYMBIOS_THROTTLE_VALUE,
495 	0,
496 	SYMBIOS_NOTREADY_RETRIES,
497 	0,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0
503 };
504 
505 static sd_tunables lsi_properties = {
506 	0,
507 	0,
508 	LSI_NOTREADY_RETRIES,
509 	0,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0
515 };
516 
517 static sd_tunables lsi_oem_properties = {
518 	0,
519 	0,
520 	LSI_OEM_NOTREADY_RETRIES,
521 	0,
522 	0,
523 	0,
524 	0,
525 	0,
526 	0,
527 	1
528 };
529 
530 
531 
532 #if (defined(SD_PROP_TST))
533 
534 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
535 #define	SD_TST_THROTTLE_VAL	16
536 #define	SD_TST_NOTREADY_VAL	12
537 #define	SD_TST_BUSY_VAL		60
538 #define	SD_TST_RST_RETRY_VAL	36
539 #define	SD_TST_RSV_REL_TIME	60
540 
541 static sd_tunables tst_properties = {
542 	SD_TST_THROTTLE_VAL,
543 	SD_TST_CTYPE_VAL,
544 	SD_TST_NOTREADY_VAL,
545 	SD_TST_BUSY_VAL,
546 	SD_TST_RST_RETRY_VAL,
547 	SD_TST_RSV_REL_TIME,
548 	0,
549 	0,
550 	0
551 };
552 #endif
553 
554 /* This is similar to the ANSI toupper implementation */
555 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
556 
557 /*
558  * Static Driver Configuration Table
559  *
560  * This is the table of disks which need throttle adjustment (or, perhaps
561  * something else as defined by the flags at a future time.)  device_id
562  * is a string consisting of concatenated vid (vendor), pid (product/model)
563  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
564  * the parts of the string are as defined by the sizes in the scsi_inquiry
565  * structure.  Device type is searched as far as the device_id string is
566  * defined.  Flags defines which values are to be set in the driver from the
567  * properties list.
568  *
569  * Entries below which begin and end with a "*" are a special case.
570  * These do not have a specific vendor, and the string which follows
571  * can appear anywhere in the 16 byte PID portion of the inquiry data.
572  *
573  * Entries below which begin and end with a " " (blank) are a special
574  * case. The comparison function will treat multiple consecutive blanks
575  * as equivalent to a single blank. For example, this causes a
576  * sd_disk_table entry of " NEC CDROM " to match a device's id string
577  * of  "NEC       CDROM".
578  *
579  * Note: The MD21 controller type has been obsoleted.
580  *	 ST318202F is a Legacy device
581  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
582  *	 made with an FC connection. The entries here are a legacy.
583  */
584 static sd_disk_config_t sd_disk_table[] = {
585 #if defined(__fibre) || defined(__i386) || defined(__amd64)
586 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
590 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
591 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
592 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
593 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
594 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
595 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
596 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
597 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
598 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
599 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
600 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
601 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
602 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
603 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
604 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
605 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
606 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
607 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
608 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
609 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
610 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
611 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
612 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
613 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
625 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
626 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
627 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
628 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
629 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
630 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
631 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
632 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
633 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
634 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
635 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
636 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
637 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
638 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
639 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
640 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
641 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
642 			SD_CONF_BSET_BSY_RETRY_COUNT|
643 			SD_CONF_BSET_RST_RETRIES|
644 			SD_CONF_BSET_RSV_REL_TIME,
645 		&purple_properties },
646 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
647 		SD_CONF_BSET_BSY_RETRY_COUNT|
648 		SD_CONF_BSET_RST_RETRIES|
649 		SD_CONF_BSET_RSV_REL_TIME|
650 		SD_CONF_BSET_MIN_THROTTLE|
651 		SD_CONF_BSET_DISKSORT_DISABLED,
652 		&sve_properties },
653 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
654 			SD_CONF_BSET_BSY_RETRY_COUNT|
655 			SD_CONF_BSET_RST_RETRIES|
656 			SD_CONF_BSET_RSV_REL_TIME,
657 		&purple_properties },
658 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
659 		SD_CONF_BSET_LUN_RESET_ENABLED,
660 		&maserati_properties },
661 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
662 		SD_CONF_BSET_NRR_COUNT|
663 		SD_CONF_BSET_BSY_RETRY_COUNT|
664 		SD_CONF_BSET_RST_RETRIES|
665 		SD_CONF_BSET_MIN_THROTTLE|
666 		SD_CONF_BSET_DISKSORT_DISABLED|
667 		SD_CONF_BSET_LUN_RESET_ENABLED,
668 		&pirus_properties },
669 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
670 		SD_CONF_BSET_NRR_COUNT|
671 		SD_CONF_BSET_BSY_RETRY_COUNT|
672 		SD_CONF_BSET_RST_RETRIES|
673 		SD_CONF_BSET_MIN_THROTTLE|
674 		SD_CONF_BSET_DISKSORT_DISABLED|
675 		SD_CONF_BSET_LUN_RESET_ENABLED,
676 		&pirus_properties },
677 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
678 		SD_CONF_BSET_NRR_COUNT|
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_MIN_THROTTLE|
682 		SD_CONF_BSET_DISKSORT_DISABLED|
683 		SD_CONF_BSET_LUN_RESET_ENABLED,
684 		&pirus_properties },
685 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
686 		SD_CONF_BSET_NRR_COUNT|
687 		SD_CONF_BSET_BSY_RETRY_COUNT|
688 		SD_CONF_BSET_RST_RETRIES|
689 		SD_CONF_BSET_MIN_THROTTLE|
690 		SD_CONF_BSET_DISKSORT_DISABLED|
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&pirus_properties },
693 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
710 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
711 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
712 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
713 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
714 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
715 #endif /* fibre or NON-sparc platforms */
716 #if ((defined(__sparc) && !defined(__fibre)) ||\
717 	(defined(__i386) || defined(__amd64)))
718 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
719 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
720 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
721 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
722 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
723 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
724 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
725 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
726 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
727 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
728 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
729 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
730 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
731 	    &symbios_properties },
732 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
733 	    &lsi_properties_scsi },
734 #if defined(__i386) || defined(__amd64)
735 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
736 				    | SD_CONF_BSET_READSUB_BCD
737 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
738 				    | SD_CONF_BSET_NO_READ_HEADER
739 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
740 
741 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
742 				    | SD_CONF_BSET_READSUB_BCD
743 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
744 				    | SD_CONF_BSET_NO_READ_HEADER
745 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
746 #endif /* __i386 || __amd64 */
747 #endif /* sparc NON-fibre or NON-sparc platforms */
748 
749 #if (defined(SD_PROP_TST))
750 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
751 				| SD_CONF_BSET_CTYPE
752 				| SD_CONF_BSET_NRR_COUNT
753 				| SD_CONF_BSET_FAB_DEVID
754 				| SD_CONF_BSET_NOCACHE
755 				| SD_CONF_BSET_BSY_RETRY_COUNT
756 				| SD_CONF_BSET_PLAYMSF_BCD
757 				| SD_CONF_BSET_READSUB_BCD
758 				| SD_CONF_BSET_READ_TOC_TRK_BCD
759 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
760 				| SD_CONF_BSET_NO_READ_HEADER
761 				| SD_CONF_BSET_READ_CD_XD4
762 				| SD_CONF_BSET_RST_RETRIES
763 				| SD_CONF_BSET_RSV_REL_TIME
764 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
765 #endif
766 };
767 
768 static const int sd_disk_table_size =
769 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
770 
771 
772 
773 #define	SD_INTERCONNECT_PARALLEL	0
774 #define	SD_INTERCONNECT_FABRIC		1
775 #define	SD_INTERCONNECT_FIBRE		2
776 #define	SD_INTERCONNECT_SSA		3
777 #define	SD_INTERCONNECT_SATA		4
778 #define	SD_IS_PARALLEL_SCSI(un)		\
779 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
780 #define	SD_IS_SERIAL(un)		\
781 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
782 
783 /*
784  * Definitions used by device id registration routines
785  */
786 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
787 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
788 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
789 
790 static kmutex_t sd_sense_mutex = {0};
791 
792 /*
793  * Macros for updates of the driver state
794  */
795 #define	New_state(un, s)        \
796 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
797 #define	Restore_state(un)	\
798 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
799 
800 static struct sd_cdbinfo sd_cdbtab[] = {
801 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
802 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
803 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
804 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
805 };
806 
807 /*
808  * Specifies the number of seconds that must have elapsed since the last
809  * cmd. has completed for a device to be declared idle to the PM framework.
810  */
811 static int sd_pm_idletime = 1;
812 
813 /*
814  * Internal function prototypes
815  */
816 
817 #if (defined(__fibre))
818 /*
819  * These #defines are to avoid namespace collisions that occur because this
820  * code is currently used to compile two separate driver modules: sd and ssd.
821  * All function names need to be treated this way (even if declared static)
822  * in order to allow the debugger to resolve the names properly.
823  * It is anticipated that in the near future the ssd module will be obsoleted,
824  * at which time this ugliness should go away.
825  */
826 #define	sd_log_trace			ssd_log_trace
827 #define	sd_log_info			ssd_log_info
828 #define	sd_log_err			ssd_log_err
829 #define	sdprobe				ssdprobe
830 #define	sdinfo				ssdinfo
831 #define	sd_prop_op			ssd_prop_op
832 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
833 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
834 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
835 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
836 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
837 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
838 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
839 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
840 #define	sd_spin_up_unit			ssd_spin_up_unit
841 #define	sd_enable_descr_sense		ssd_enable_descr_sense
842 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
843 #define	sd_set_mmc_caps			ssd_set_mmc_caps
844 #define	sd_read_unit_properties		ssd_read_unit_properties
845 #define	sd_process_sdconf_file		ssd_process_sdconf_file
846 #define	sd_process_sdconf_table		ssd_process_sdconf_table
847 #define	sd_sdconf_id_match		ssd_sdconf_id_match
848 #define	sd_blank_cmp			ssd_blank_cmp
849 #define	sd_chk_vers1_data		ssd_chk_vers1_data
850 #define	sd_set_vers1_properties		ssd_set_vers1_properties
851 
852 #define	sd_get_physical_geometry	ssd_get_physical_geometry
853 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
854 #define	sd_update_block_info		ssd_update_block_info
855 #define	sd_register_devid		ssd_register_devid
856 #define	sd_get_devid			ssd_get_devid
857 #define	sd_create_devid			ssd_create_devid
858 #define	sd_write_deviceid		ssd_write_deviceid
859 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
860 #define	sd_setup_pm			ssd_setup_pm
861 #define	sd_create_pm_components		ssd_create_pm_components
862 #define	sd_ddi_suspend			ssd_ddi_suspend
863 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
864 #define	sd_ddi_resume			ssd_ddi_resume
865 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
866 #define	sdpower				ssdpower
867 #define	sdattach			ssdattach
868 #define	sddetach			ssddetach
869 #define	sd_unit_attach			ssd_unit_attach
870 #define	sd_unit_detach			ssd_unit_detach
871 #define	sd_set_unit_attributes		ssd_set_unit_attributes
872 #define	sd_create_errstats		ssd_create_errstats
873 #define	sd_set_errstats			ssd_set_errstats
874 #define	sd_set_pstats			ssd_set_pstats
875 #define	sddump				ssddump
876 #define	sd_scsi_poll			ssd_scsi_poll
877 #define	sd_send_polled_RQS		ssd_send_polled_RQS
878 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
879 #define	sd_init_event_callbacks		ssd_init_event_callbacks
880 #define	sd_event_callback		ssd_event_callback
881 #define	sd_cache_control		ssd_cache_control
882 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
883 #define	sd_get_nv_sup			ssd_get_nv_sup
884 #define	sd_make_device			ssd_make_device
885 #define	sdopen				ssdopen
886 #define	sdclose				ssdclose
887 #define	sd_ready_and_valid		ssd_ready_and_valid
888 #define	sdmin				ssdmin
889 #define	sdread				ssdread
890 #define	sdwrite				ssdwrite
891 #define	sdaread				ssdaread
892 #define	sdawrite			ssdawrite
893 #define	sdstrategy			ssdstrategy
894 #define	sdioctl				ssdioctl
895 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
896 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
897 #define	sd_checksum_iostart		ssd_checksum_iostart
898 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
899 #define	sd_pm_iostart			ssd_pm_iostart
900 #define	sd_core_iostart			ssd_core_iostart
901 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
902 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
903 #define	sd_checksum_iodone		ssd_checksum_iodone
904 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
905 #define	sd_pm_iodone			ssd_pm_iodone
906 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
907 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
908 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
909 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
910 #define	sd_buf_iodone			ssd_buf_iodone
911 #define	sd_uscsi_strategy		ssd_uscsi_strategy
912 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
913 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
914 #define	sd_uscsi_iodone			ssd_uscsi_iodone
915 #define	sd_xbuf_strategy		ssd_xbuf_strategy
916 #define	sd_xbuf_init			ssd_xbuf_init
917 #define	sd_pm_entry			ssd_pm_entry
918 #define	sd_pm_exit			ssd_pm_exit
919 
920 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
921 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
922 
923 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
924 #define	sdintr				ssdintr
925 #define	sd_start_cmds			ssd_start_cmds
926 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
927 #define	sd_bioclone_alloc		ssd_bioclone_alloc
928 #define	sd_bioclone_free		ssd_bioclone_free
929 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
930 #define	sd_shadow_buf_free		ssd_shadow_buf_free
931 #define	sd_print_transport_rejected_message	\
932 					ssd_print_transport_rejected_message
933 #define	sd_retry_command		ssd_retry_command
934 #define	sd_set_retry_bp			ssd_set_retry_bp
935 #define	sd_send_request_sense_command	ssd_send_request_sense_command
936 #define	sd_start_retry_command		ssd_start_retry_command
937 #define	sd_start_direct_priority_command	\
938 					ssd_start_direct_priority_command
939 #define	sd_return_failed_command	ssd_return_failed_command
940 #define	sd_return_failed_command_no_restart	\
941 					ssd_return_failed_command_no_restart
942 #define	sd_return_command		ssd_return_command
943 #define	sd_sync_with_callback		ssd_sync_with_callback
944 #define	sdrunout			ssdrunout
945 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
946 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
947 #define	sd_reduce_throttle		ssd_reduce_throttle
948 #define	sd_restore_throttle		ssd_restore_throttle
949 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
950 #define	sd_init_cdb_limits		ssd_init_cdb_limits
951 #define	sd_pkt_status_good		ssd_pkt_status_good
952 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
953 #define	sd_pkt_status_busy		ssd_pkt_status_busy
954 #define	sd_pkt_status_reservation_conflict	\
955 					ssd_pkt_status_reservation_conflict
956 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
957 #define	sd_handle_request_sense		ssd_handle_request_sense
958 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
959 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
960 #define	sd_validate_sense_data		ssd_validate_sense_data
961 #define	sd_decode_sense			ssd_decode_sense
962 #define	sd_print_sense_msg		ssd_print_sense_msg
963 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
964 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
965 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
966 #define	sd_sense_key_medium_or_hardware_error	\
967 					ssd_sense_key_medium_or_hardware_error
968 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
969 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
970 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
971 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
972 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
973 #define	sd_sense_key_default		ssd_sense_key_default
974 #define	sd_print_retry_msg		ssd_print_retry_msg
975 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
976 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
977 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
978 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
979 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
980 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
981 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
982 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
983 #define	sd_pkt_reason_default		ssd_pkt_reason_default
984 #define	sd_reset_target			ssd_reset_target
985 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
986 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
987 #define	sd_taskq_create			ssd_taskq_create
988 #define	sd_taskq_delete			ssd_taskq_delete
989 #define	sd_target_change_task		ssd_target_change_task
990 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
991 #define	sd_media_change_task		ssd_media_change_task
992 #define	sd_handle_mchange		ssd_handle_mchange
993 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
994 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
995 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
996 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
997 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
998 					sd_send_scsi_feature_GET_CONFIGURATION
999 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1000 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1001 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1002 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1003 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1004 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1005 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1006 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1007 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1008 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1009 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1010 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1011 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1012 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1013 #define	sd_alloc_rqs			ssd_alloc_rqs
1014 #define	sd_free_rqs			ssd_free_rqs
1015 #define	sd_dump_memory			ssd_dump_memory
1016 #define	sd_get_media_info		ssd_get_media_info
1017 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1018 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1019 #define	sd_strtok_r			ssd_strtok_r
1020 #define	sd_set_properties		ssd_set_properties
1021 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1022 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1023 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1024 #define	sd_check_mhd			ssd_check_mhd
1025 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1026 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1027 #define	sd_sname			ssd_sname
1028 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1029 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1030 #define	sd_take_ownership		ssd_take_ownership
1031 #define	sd_reserve_release		ssd_reserve_release
1032 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1033 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1034 #define	sd_persistent_reservation_in_read_keys	\
1035 					ssd_persistent_reservation_in_read_keys
1036 #define	sd_persistent_reservation_in_read_resv	\
1037 					ssd_persistent_reservation_in_read_resv
1038 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1039 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1040 #define	sd_mhdioc_release		ssd_mhdioc_release
1041 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1042 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1043 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1044 #define	sr_change_blkmode		ssr_change_blkmode
1045 #define	sr_change_speed			ssr_change_speed
1046 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1047 #define	sr_pause_resume			ssr_pause_resume
1048 #define	sr_play_msf			ssr_play_msf
1049 #define	sr_play_trkind			ssr_play_trkind
1050 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1051 #define	sr_read_subchannel		ssr_read_subchannel
1052 #define	sr_read_tocentry		ssr_read_tocentry
1053 #define	sr_read_tochdr			ssr_read_tochdr
1054 #define	sr_read_cdda			ssr_read_cdda
1055 #define	sr_read_cdxa			ssr_read_cdxa
1056 #define	sr_read_mode1			ssr_read_mode1
1057 #define	sr_read_mode2			ssr_read_mode2
1058 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1059 #define	sr_sector_mode			ssr_sector_mode
1060 #define	sr_eject			ssr_eject
1061 #define	sr_ejected			ssr_ejected
1062 #define	sr_check_wp			ssr_check_wp
1063 #define	sd_check_media			ssd_check_media
1064 #define	sd_media_watch_cb		ssd_media_watch_cb
1065 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1066 #define	sr_volume_ctrl			ssr_volume_ctrl
1067 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1068 #define	sd_log_page_supported		ssd_log_page_supported
1069 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1070 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1071 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1072 #define	sd_range_lock			ssd_range_lock
1073 #define	sd_get_range			ssd_get_range
1074 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1075 #define	sd_range_unlock			ssd_range_unlock
1076 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1077 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1078 
1079 #define	sd_iostart_chain		ssd_iostart_chain
1080 #define	sd_iodone_chain			ssd_iodone_chain
1081 #define	sd_initpkt_map			ssd_initpkt_map
1082 #define	sd_destroypkt_map		ssd_destroypkt_map
1083 #define	sd_chain_type_map		ssd_chain_type_map
1084 #define	sd_chain_index_map		ssd_chain_index_map
1085 
1086 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1087 #define	sd_failfast_flushq		ssd_failfast_flushq
1088 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1089 
1090 #define	sd_is_lsi			ssd_is_lsi
1091 #define	sd_tg_rdwr			ssd_tg_rdwr
1092 #define	sd_tg_getinfo			ssd_tg_getinfo
1093 
1094 #endif	/* #if (defined(__fibre)) */
1095 
1096 
1097 int _init(void);
1098 int _fini(void);
1099 int _info(struct modinfo *modinfop);
1100 
1101 /*PRINTFLIKE3*/
1102 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1103 /*PRINTFLIKE3*/
1104 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1105 /*PRINTFLIKE3*/
1106 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1107 
1108 static int sdprobe(dev_info_t *devi);
1109 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1110     void **result);
1111 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1112     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1113 
1114 /*
1115  * Smart probe for parallel scsi
1116  */
1117 static void sd_scsi_probe_cache_init(void);
1118 static void sd_scsi_probe_cache_fini(void);
1119 static void sd_scsi_clear_probe_cache(void);
1120 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1121 
1122 /*
1123  * Attached luns on target for parallel scsi
1124  */
1125 static void sd_scsi_target_lun_init(void);
1126 static void sd_scsi_target_lun_fini(void);
1127 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1128 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1129 
1130 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1131 
1132 /*
1133  * Using sd_ssc_init to establish sd_ssc_t struct
1134  * Using sd_ssc_send to send uscsi internal command
1135  * Using sd_ssc_fini to free sd_ssc_t struct
1136  */
1137 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1138 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1139     int flag, enum uio_seg dataspace, int path_flag);
1140 static void sd_ssc_fini(sd_ssc_t *ssc);
1141 
1142 /*
1143  * Using sd_ssc_assessment to set correct type-of-assessment
1144  * Using sd_ssc_post to post ereport & system log
1145  *       sd_ssc_post will call sd_ssc_print to print system log
1146  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1147  */
1148 static void sd_ssc_assessment(sd_ssc_t *ssc,
1149     enum sd_type_assessment tp_assess);
1150 
1151 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1152 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1153 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1154     enum sd_driver_assessment drv_assess);
1155 
1156 /*
1157  * Using sd_ssc_set_info to mark an un-decodable-data error.
1158  * Using sd_ssc_extract_info to transfer information from internal
1159  *       data structures to sd_ssc_t.
1160  */
1161 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags,
1162     const char *fmt, ...);
1163 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1164     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1165 
1166 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1167     enum uio_seg dataspace, int path_flag);
1168 
1169 #ifdef _LP64
1170 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1171 static void	sd_reenable_dsense_task(void *arg);
1172 #endif /* _LP64 */
1173 
1174 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1175 
1176 static void sd_read_unit_properties(struct sd_lun *un);
1177 static int  sd_process_sdconf_file(struct sd_lun *un);
1178 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1179 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1180 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1181 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1182     int *data_list, sd_tunables *values);
1183 static void sd_process_sdconf_table(struct sd_lun *un);
1184 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1185 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1186 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1187 	int list_len, char *dataname_ptr);
1188 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1189     sd_tunables *prop_list);
1190 
1191 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1192     int reservation_flag);
1193 static int  sd_get_devid(sd_ssc_t *ssc);
1194 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1195 static int  sd_write_deviceid(sd_ssc_t *ssc);
1196 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1197 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1198 
1199 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1200 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1201 
1202 static int  sd_ddi_suspend(dev_info_t *devi);
1203 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1204 static int  sd_ddi_resume(dev_info_t *devi);
1205 static int  sd_ddi_pm_resume(struct sd_lun *un);
1206 static int  sdpower(dev_info_t *devi, int component, int level);
1207 
1208 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1209 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1210 static int  sd_unit_attach(dev_info_t *devi);
1211 static int  sd_unit_detach(dev_info_t *devi);
1212 
1213 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1214 static void sd_create_errstats(struct sd_lun *un, int instance);
1215 static void sd_set_errstats(struct sd_lun *un);
1216 static void sd_set_pstats(struct sd_lun *un);
1217 
1218 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1219 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1220 static int  sd_send_polled_RQS(struct sd_lun *un);
1221 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1222 
1223 #if (defined(__fibre))
1224 /*
1225  * Event callbacks (photon)
1226  */
1227 static void sd_init_event_callbacks(struct sd_lun *un);
1228 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1229 #endif
1230 
1231 /*
1232  * Defines for sd_cache_control
1233  */
1234 
1235 #define	SD_CACHE_ENABLE		1
1236 #define	SD_CACHE_DISABLE	0
1237 #define	SD_CACHE_NOCHANGE	-1
1238 
1239 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1240 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1241 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1242 static dev_t sd_make_device(dev_info_t *devi);
1243 
1244 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1245 	uint64_t capacity);
1246 
1247 /*
1248  * Driver entry point functions.
1249  */
1250 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1251 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1252 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1253 
1254 static void sdmin(struct buf *bp);
1255 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1256 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1257 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1258 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1259 
1260 static int sdstrategy(struct buf *bp);
1261 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1262 
1263 /*
1264  * Function prototypes for layering functions in the iostart chain.
1265  */
1266 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1267 	struct buf *bp);
1268 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1269 	struct buf *bp);
1270 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1271 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1272 	struct buf *bp);
1273 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1274 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1275 
1276 /*
1277  * Function prototypes for layering functions in the iodone chain.
1278  */
1279 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1280 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1281 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1282 	struct buf *bp);
1283 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1284 	struct buf *bp);
1285 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1286 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1287 	struct buf *bp);
1288 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1289 
1290 /*
1291  * Prototypes for functions to support buf(9S) based IO.
1292  */
1293 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1294 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1295 static void sd_destroypkt_for_buf(struct buf *);
1296 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1297 	struct buf *bp, int flags,
1298 	int (*callback)(caddr_t), caddr_t callback_arg,
1299 	diskaddr_t lba, uint32_t blockcount);
1300 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1301 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1302 
1303 /*
1304  * Prototypes for functions to support USCSI IO.
1305  */
1306 static int sd_uscsi_strategy(struct buf *bp);
1307 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1308 static void sd_destroypkt_for_uscsi(struct buf *);
1309 
1310 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1311 	uchar_t chain_type, void *pktinfop);
1312 
1313 static int  sd_pm_entry(struct sd_lun *un);
1314 static void sd_pm_exit(struct sd_lun *un);
1315 
1316 static void sd_pm_idletimeout_handler(void *arg);
1317 
1318 /*
1319  * sd_core internal functions (used at the sd_core_io layer).
1320  */
1321 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1322 static void sdintr(struct scsi_pkt *pktp);
1323 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1324 
1325 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1326 	enum uio_seg dataspace, int path_flag);
1327 
1328 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1329 	daddr_t blkno, int (*func)(struct buf *));
1330 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1331 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1332 static void sd_bioclone_free(struct buf *bp);
1333 static void sd_shadow_buf_free(struct buf *bp);
1334 
1335 static void sd_print_transport_rejected_message(struct sd_lun *un,
1336 	struct sd_xbuf *xp, int code);
1337 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1338     void *arg, int code);
1339 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1340     void *arg, int code);
1341 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1342     void *arg, int code);
1343 
1344 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1345 	int retry_check_flag,
1346 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1347 		int c),
1348 	void *user_arg, int failure_code,  clock_t retry_delay,
1349 	void (*statp)(kstat_io_t *));
1350 
1351 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1352 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1353 
1354 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1355 	struct scsi_pkt *pktp);
1356 static void sd_start_retry_command(void *arg);
1357 static void sd_start_direct_priority_command(void *arg);
1358 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1359 	int errcode);
1360 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1361 	struct buf *bp, int errcode);
1362 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1363 static void sd_sync_with_callback(struct sd_lun *un);
1364 static int sdrunout(caddr_t arg);
1365 
1366 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1367 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1368 
1369 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1370 static void sd_restore_throttle(void *arg);
1371 
1372 static void sd_init_cdb_limits(struct sd_lun *un);
1373 
1374 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1375 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1376 
1377 /*
1378  * Error handling functions
1379  */
1380 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1381 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1382 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1383 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1384 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1385 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1386 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1387 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1388 
1389 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1390 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1391 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1392 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1393 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1394 	struct sd_xbuf *xp, size_t actual_len);
1395 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1396 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1397 
1398 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1399 	void *arg, int code);
1400 
1401 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1402 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1403 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1404 	uint8_t *sense_datap,
1405 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1406 static void sd_sense_key_not_ready(struct sd_lun *un,
1407 	uint8_t *sense_datap,
1408 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1409 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1410 	uint8_t *sense_datap,
1411 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1412 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1413 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1414 static void sd_sense_key_unit_attention(struct sd_lun *un,
1415 	uint8_t *sense_datap,
1416 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1417 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1418 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1419 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1420 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1421 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1422 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1423 static void sd_sense_key_default(struct sd_lun *un,
1424 	uint8_t *sense_datap,
1425 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1426 
1427 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1428 	void *arg, int flag);
1429 
1430 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1433 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1434 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1435 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1436 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1439 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1441 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1442 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1443 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1445 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1446 
1447 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1448 
1449 static void sd_start_stop_unit_callback(void *arg);
1450 static void sd_start_stop_unit_task(void *arg);
1451 
1452 static void sd_taskq_create(void);
1453 static void sd_taskq_delete(void);
1454 static void sd_target_change_task(void *arg);
1455 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1456 static void sd_media_change_task(void *arg);
1457 
1458 static int sd_handle_mchange(struct sd_lun *un);
1459 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1460 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1461 	uint32_t *lbap, int path_flag);
1462 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1463 	uint32_t *lbap, int path_flag);
1464 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag,
1465 	int path_flag);
1466 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1467 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1468 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1469 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1470 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1471 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1472 	uchar_t usr_cmd, uchar_t *usr_bufp);
1473 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1474 	struct dk_callback *dkc);
1475 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1476 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1477 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1478 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1479 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1480 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1481 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1482 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1483 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1484 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1485 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1486 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1487 	size_t buflen, daddr_t start_block, int path_flag);
1488 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1489 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1490 	path_flag)
1491 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1492 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1493 	path_flag)
1494 
1495 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1496 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1497 	uint16_t param_ptr, int path_flag);
1498 
1499 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1500 static void sd_free_rqs(struct sd_lun *un);
1501 
1502 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1503 	uchar_t *data, int len, int fmt);
1504 static void sd_panic_for_res_conflict(struct sd_lun *un);
1505 
1506 /*
1507  * Disk Ioctl Function Prototypes
1508  */
1509 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1510 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1511 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1512 
1513 /*
1514  * Multi-host Ioctl Prototypes
1515  */
1516 static int sd_check_mhd(dev_t dev, int interval);
1517 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1518 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1519 static char *sd_sname(uchar_t status);
1520 static void sd_mhd_resvd_recover(void *arg);
1521 static void sd_resv_reclaim_thread();
1522 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1523 static int sd_reserve_release(dev_t dev, int cmd);
1524 static void sd_rmv_resv_reclaim_req(dev_t dev);
1525 static void sd_mhd_reset_notify_cb(caddr_t arg);
1526 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1527 	mhioc_inkeys_t *usrp, int flag);
1528 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1529 	mhioc_inresvs_t *usrp, int flag);
1530 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1531 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1532 static int sd_mhdioc_release(dev_t dev);
1533 static int sd_mhdioc_register_devid(dev_t dev);
1534 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1535 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1536 
1537 /*
1538  * SCSI removable prototypes
1539  */
1540 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1541 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1542 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1543 static int sr_pause_resume(dev_t dev, int mode);
1544 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1545 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1546 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1547 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1548 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1549 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1550 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1551 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1552 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1553 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1554 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1555 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1556 static int sr_eject(dev_t dev);
1557 static void sr_ejected(register struct sd_lun *un);
1558 static int sr_check_wp(dev_t dev);
1559 static int sd_check_media(dev_t dev, enum dkio_state state);
1560 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1561 static void sd_delayed_cv_broadcast(void *arg);
1562 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1563 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1564 
1565 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1566 
1567 /*
1568  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1569  */
1570 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1571 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1572 static void sd_wm_cache_destructor(void *wm, void *un);
1573 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1574 	daddr_t endb, ushort_t typ);
1575 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1576 	daddr_t endb);
1577 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1578 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1579 static void sd_read_modify_write_task(void * arg);
1580 static int
1581 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1582 	struct buf **bpp);
1583 
1584 
1585 /*
1586  * Function prototypes for failfast support.
1587  */
1588 static void sd_failfast_flushq(struct sd_lun *un);
1589 static int sd_failfast_flushq_callback(struct buf *bp);
1590 
1591 /*
1592  * Function prototypes to check for lsi devices
1593  */
1594 static void sd_is_lsi(struct sd_lun *un);
1595 
1596 /*
1597  * Function prototypes for partial DMA support
1598  */
1599 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1600 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1601 
1602 
1603 /* Function prototypes for cmlb */
1604 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1605     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1606 
1607 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1608 
1609 /*
1610  * Constants for failfast support:
1611  *
1612  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1613  * failfast processing being performed.
1614  *
1615  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1616  * failfast processing on all bufs with B_FAILFAST set.
1617  */
1618 
1619 #define	SD_FAILFAST_INACTIVE		0
1620 #define	SD_FAILFAST_ACTIVE		1
1621 
1622 /*
1623  * Bitmask to control behavior of buf(9S) flushes when a transition to
1624  * the failfast state occurs. Optional bits include:
1625  *
1626  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1627  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1628  * be flushed.
1629  *
1630  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1631  * driver, in addition to the regular wait queue. This includes the xbuf
1632  * queues. When clear, only the driver's wait queue will be flushed.
1633  */
1634 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1635 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1636 
1637 /*
1638  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1639  * to flush all queues within the driver.
1640  */
1641 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1642 
1643 
1644 /*
1645  * SD Testing Fault Injection
1646  */
1647 #ifdef SD_FAULT_INJECTION
1648 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1649 static void sd_faultinjection(struct scsi_pkt *pktp);
1650 static void sd_injection_log(char *buf, struct sd_lun *un);
1651 #endif
1652 
1653 /*
1654  * Device driver ops vector
1655  */
1656 static struct cb_ops sd_cb_ops = {
1657 	sdopen,			/* open */
1658 	sdclose,		/* close */
1659 	sdstrategy,		/* strategy */
1660 	nodev,			/* print */
1661 	sddump,			/* dump */
1662 	sdread,			/* read */
1663 	sdwrite,		/* write */
1664 	sdioctl,		/* ioctl */
1665 	nodev,			/* devmap */
1666 	nodev,			/* mmap */
1667 	nodev,			/* segmap */
1668 	nochpoll,		/* poll */
1669 	sd_prop_op,		/* cb_prop_op */
1670 	0,			/* streamtab  */
1671 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1672 	CB_REV,			/* cb_rev */
1673 	sdaread, 		/* async I/O read entry point */
1674 	sdawrite		/* async I/O write entry point */
1675 };
1676 
1677 static struct dev_ops sd_ops = {
1678 	DEVO_REV,		/* devo_rev, */
1679 	0,			/* refcnt  */
1680 	sdinfo,			/* info */
1681 	nulldev,		/* identify */
1682 	sdprobe,		/* probe */
1683 	sdattach,		/* attach */
1684 	sddetach,		/* detach */
1685 	nodev,			/* reset */
1686 	&sd_cb_ops,		/* driver operations */
1687 	NULL,			/* bus operations */
1688 	sdpower,		/* power */
1689 	ddi_quiesce_not_needed,		/* quiesce */
1690 };
1691 
1692 
1693 /*
1694  * This is the loadable module wrapper.
1695  */
1696 #include <sys/modctl.h>
1697 
1698 static struct modldrv modldrv = {
1699 	&mod_driverops,		/* Type of module. This one is a driver */
1700 	SD_MODULE_NAME,		/* Module name. */
1701 	&sd_ops			/* driver ops */
1702 };
1703 
1704 
1705 static struct modlinkage modlinkage = {
1706 	MODREV_1,
1707 	&modldrv,
1708 	NULL
1709 };
1710 
1711 static cmlb_tg_ops_t sd_tgops = {
1712 	TG_DK_OPS_VERSION_1,
1713 	sd_tg_rdwr,
1714 	sd_tg_getinfo
1715 	};
1716 
1717 static struct scsi_asq_key_strings sd_additional_codes[] = {
1718 	0x81, 0, "Logical Unit is Reserved",
1719 	0x85, 0, "Audio Address Not Valid",
1720 	0xb6, 0, "Media Load Mechanism Failed",
1721 	0xB9, 0, "Audio Play Operation Aborted",
1722 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1723 	0x53, 2, "Medium removal prevented",
1724 	0x6f, 0, "Authentication failed during key exchange",
1725 	0x6f, 1, "Key not present",
1726 	0x6f, 2, "Key not established",
1727 	0x6f, 3, "Read without proper authentication",
1728 	0x6f, 4, "Mismatched region to this logical unit",
1729 	0x6f, 5, "Region reset count error",
1730 	0xffff, 0x0, NULL
1731 };
1732 
1733 
1734 /*
1735  * Struct for passing printing information for sense data messages
1736  */
1737 struct sd_sense_info {
1738 	int	ssi_severity;
1739 	int	ssi_pfa_flag;
1740 };
1741 
1742 /*
1743  * Table of function pointers for iostart-side routines. Separate "chains"
1744  * of layered function calls are formed by placing the function pointers
1745  * sequentially in the desired order. Functions are called according to an
1746  * incrementing table index ordering. The last function in each chain must
1747  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1748  * in the sd_iodone_chain[] array.
1749  *
1750  * Note: It may seem more natural to organize both the iostart and iodone
1751  * functions together, into an array of structures (or some similar
1752  * organization) with a common index, rather than two separate arrays which
1753  * must be maintained in synchronization. The purpose of this division is
1754  * to achieve improved performance: individual arrays allows for more
1755  * effective cache line utilization on certain platforms.
1756  */
1757 
1758 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1759 
1760 
1761 static sd_chain_t sd_iostart_chain[] = {
1762 
1763 	/* Chain for buf IO for disk drive targets (PM enabled) */
1764 	sd_mapblockaddr_iostart,	/* Index: 0 */
1765 	sd_pm_iostart,			/* Index: 1 */
1766 	sd_core_iostart,		/* Index: 2 */
1767 
1768 	/* Chain for buf IO for disk drive targets (PM disabled) */
1769 	sd_mapblockaddr_iostart,	/* Index: 3 */
1770 	sd_core_iostart,		/* Index: 4 */
1771 
1772 	/* Chain for buf IO for removable-media targets (PM enabled) */
1773 	sd_mapblockaddr_iostart,	/* Index: 5 */
1774 	sd_mapblocksize_iostart,	/* Index: 6 */
1775 	sd_pm_iostart,			/* Index: 7 */
1776 	sd_core_iostart,		/* Index: 8 */
1777 
1778 	/* Chain for buf IO for removable-media targets (PM disabled) */
1779 	sd_mapblockaddr_iostart,	/* Index: 9 */
1780 	sd_mapblocksize_iostart,	/* Index: 10 */
1781 	sd_core_iostart,		/* Index: 11 */
1782 
1783 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1784 	sd_mapblockaddr_iostart,	/* Index: 12 */
1785 	sd_checksum_iostart,		/* Index: 13 */
1786 	sd_pm_iostart,			/* Index: 14 */
1787 	sd_core_iostart,		/* Index: 15 */
1788 
1789 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1790 	sd_mapblockaddr_iostart,	/* Index: 16 */
1791 	sd_checksum_iostart,		/* Index: 17 */
1792 	sd_core_iostart,		/* Index: 18 */
1793 
1794 	/* Chain for USCSI commands (all targets) */
1795 	sd_pm_iostart,			/* Index: 19 */
1796 	sd_core_iostart,		/* Index: 20 */
1797 
1798 	/* Chain for checksumming USCSI commands (all targets) */
1799 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1800 	sd_pm_iostart,			/* Index: 22 */
1801 	sd_core_iostart,		/* Index: 23 */
1802 
1803 	/* Chain for "direct" USCSI commands (all targets) */
1804 	sd_core_iostart,		/* Index: 24 */
1805 
1806 	/* Chain for "direct priority" USCSI commands (all targets) */
1807 	sd_core_iostart,		/* Index: 25 */
1808 };
1809 
1810 /*
1811  * Macros to locate the first function of each iostart chain in the
1812  * sd_iostart_chain[] array. These are located by the index in the array.
1813  */
1814 #define	SD_CHAIN_DISK_IOSTART			0
1815 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1816 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1817 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1818 #define	SD_CHAIN_CHKSUM_IOSTART			12
1819 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1820 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1821 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1822 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1823 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1824 
1825 
1826 /*
1827  * Table of function pointers for the iodone-side routines for the driver-
1828  * internal layering mechanism.  The calling sequence for iodone routines
1829  * uses a decrementing table index, so the last routine called in a chain
1830  * must be at the lowest array index location for that chain.  The last
1831  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1832  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1833  * of the functions in an iodone side chain must correspond to the ordering
1834  * of the iostart routines for that chain.  Note that there is no iodone
1835  * side routine that corresponds to sd_core_iostart(), so there is no
1836  * entry in the table for this.
1837  */
1838 
1839 static sd_chain_t sd_iodone_chain[] = {
1840 
1841 	/* Chain for buf IO for disk drive targets (PM enabled) */
1842 	sd_buf_iodone,			/* Index: 0 */
1843 	sd_mapblockaddr_iodone,		/* Index: 1 */
1844 	sd_pm_iodone,			/* Index: 2 */
1845 
1846 	/* Chain for buf IO for disk drive targets (PM disabled) */
1847 	sd_buf_iodone,			/* Index: 3 */
1848 	sd_mapblockaddr_iodone,		/* Index: 4 */
1849 
1850 	/* Chain for buf IO for removable-media targets (PM enabled) */
1851 	sd_buf_iodone,			/* Index: 5 */
1852 	sd_mapblockaddr_iodone,		/* Index: 6 */
1853 	sd_mapblocksize_iodone,		/* Index: 7 */
1854 	sd_pm_iodone,			/* Index: 8 */
1855 
1856 	/* Chain for buf IO for removable-media targets (PM disabled) */
1857 	sd_buf_iodone,			/* Index: 9 */
1858 	sd_mapblockaddr_iodone,		/* Index: 10 */
1859 	sd_mapblocksize_iodone,		/* Index: 11 */
1860 
1861 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1862 	sd_buf_iodone,			/* Index: 12 */
1863 	sd_mapblockaddr_iodone,		/* Index: 13 */
1864 	sd_checksum_iodone,		/* Index: 14 */
1865 	sd_pm_iodone,			/* Index: 15 */
1866 
1867 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1868 	sd_buf_iodone,			/* Index: 16 */
1869 	sd_mapblockaddr_iodone,		/* Index: 17 */
1870 	sd_checksum_iodone,		/* Index: 18 */
1871 
1872 	/* Chain for USCSI commands (non-checksum targets) */
1873 	sd_uscsi_iodone,		/* Index: 19 */
1874 	sd_pm_iodone,			/* Index: 20 */
1875 
1876 	/* Chain for USCSI commands (checksum targets) */
1877 	sd_uscsi_iodone,		/* Index: 21 */
1878 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1879 	sd_pm_iodone,			/* Index: 22 */
1880 
1881 	/* Chain for "direct" USCSI commands (all targets) */
1882 	sd_uscsi_iodone,		/* Index: 24 */
1883 
1884 	/* Chain for "direct priority" USCSI commands (all targets) */
1885 	sd_uscsi_iodone,		/* Index: 25 */
1886 };
1887 
1888 
1889 /*
1890  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1891  * each iodone-side chain. These are located by the array index, but as the
1892  * iodone side functions are called in a decrementing-index order, the
1893  * highest index number in each chain must be specified (as these correspond
1894  * to the first function in the iodone chain that will be called by the core
1895  * at IO completion time).
1896  */
1897 
1898 #define	SD_CHAIN_DISK_IODONE			2
1899 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1900 #define	SD_CHAIN_RMMEDIA_IODONE			8
1901 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1902 #define	SD_CHAIN_CHKSUM_IODONE			15
1903 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1904 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1905 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1906 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1907 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1908 
1909 
1910 
1911 
1912 /*
1913  * Array to map a layering chain index to the appropriate initpkt routine.
1914  * The redundant entries are present so that the index used for accessing
1915  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1916  * with this table as well.
1917  */
1918 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1919 
1920 static sd_initpkt_t	sd_initpkt_map[] = {
1921 
1922 	/* Chain for buf IO for disk drive targets (PM enabled) */
1923 	sd_initpkt_for_buf,		/* Index: 0 */
1924 	sd_initpkt_for_buf,		/* Index: 1 */
1925 	sd_initpkt_for_buf,		/* Index: 2 */
1926 
1927 	/* Chain for buf IO for disk drive targets (PM disabled) */
1928 	sd_initpkt_for_buf,		/* Index: 3 */
1929 	sd_initpkt_for_buf,		/* Index: 4 */
1930 
1931 	/* Chain for buf IO for removable-media targets (PM enabled) */
1932 	sd_initpkt_for_buf,		/* Index: 5 */
1933 	sd_initpkt_for_buf,		/* Index: 6 */
1934 	sd_initpkt_for_buf,		/* Index: 7 */
1935 	sd_initpkt_for_buf,		/* Index: 8 */
1936 
1937 	/* Chain for buf IO for removable-media targets (PM disabled) */
1938 	sd_initpkt_for_buf,		/* Index: 9 */
1939 	sd_initpkt_for_buf,		/* Index: 10 */
1940 	sd_initpkt_for_buf,		/* Index: 11 */
1941 
1942 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1943 	sd_initpkt_for_buf,		/* Index: 12 */
1944 	sd_initpkt_for_buf,		/* Index: 13 */
1945 	sd_initpkt_for_buf,		/* Index: 14 */
1946 	sd_initpkt_for_buf,		/* Index: 15 */
1947 
1948 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1949 	sd_initpkt_for_buf,		/* Index: 16 */
1950 	sd_initpkt_for_buf,		/* Index: 17 */
1951 	sd_initpkt_for_buf,		/* Index: 18 */
1952 
1953 	/* Chain for USCSI commands (non-checksum targets) */
1954 	sd_initpkt_for_uscsi,		/* Index: 19 */
1955 	sd_initpkt_for_uscsi,		/* Index: 20 */
1956 
1957 	/* Chain for USCSI commands (checksum targets) */
1958 	sd_initpkt_for_uscsi,		/* Index: 21 */
1959 	sd_initpkt_for_uscsi,		/* Index: 22 */
1960 	sd_initpkt_for_uscsi,		/* Index: 22 */
1961 
1962 	/* Chain for "direct" USCSI commands (all targets) */
1963 	sd_initpkt_for_uscsi,		/* Index: 24 */
1964 
1965 	/* Chain for "direct priority" USCSI commands (all targets) */
1966 	sd_initpkt_for_uscsi,		/* Index: 25 */
1967 
1968 };
1969 
1970 
1971 /*
1972  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1973  * The redundant entries are present so that the index used for accessing
1974  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1975  * with this table as well.
1976  */
1977 typedef void (*sd_destroypkt_t)(struct buf *);
1978 
1979 static sd_destroypkt_t	sd_destroypkt_map[] = {
1980 
1981 	/* Chain for buf IO for disk drive targets (PM enabled) */
1982 	sd_destroypkt_for_buf,		/* Index: 0 */
1983 	sd_destroypkt_for_buf,		/* Index: 1 */
1984 	sd_destroypkt_for_buf,		/* Index: 2 */
1985 
1986 	/* Chain for buf IO for disk drive targets (PM disabled) */
1987 	sd_destroypkt_for_buf,		/* Index: 3 */
1988 	sd_destroypkt_for_buf,		/* Index: 4 */
1989 
1990 	/* Chain for buf IO for removable-media targets (PM enabled) */
1991 	sd_destroypkt_for_buf,		/* Index: 5 */
1992 	sd_destroypkt_for_buf,		/* Index: 6 */
1993 	sd_destroypkt_for_buf,		/* Index: 7 */
1994 	sd_destroypkt_for_buf,		/* Index: 8 */
1995 
1996 	/* Chain for buf IO for removable-media targets (PM disabled) */
1997 	sd_destroypkt_for_buf,		/* Index: 9 */
1998 	sd_destroypkt_for_buf,		/* Index: 10 */
1999 	sd_destroypkt_for_buf,		/* Index: 11 */
2000 
2001 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2002 	sd_destroypkt_for_buf,		/* Index: 12 */
2003 	sd_destroypkt_for_buf,		/* Index: 13 */
2004 	sd_destroypkt_for_buf,		/* Index: 14 */
2005 	sd_destroypkt_for_buf,		/* Index: 15 */
2006 
2007 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2008 	sd_destroypkt_for_buf,		/* Index: 16 */
2009 	sd_destroypkt_for_buf,		/* Index: 17 */
2010 	sd_destroypkt_for_buf,		/* Index: 18 */
2011 
2012 	/* Chain for USCSI commands (non-checksum targets) */
2013 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2014 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2015 
2016 	/* Chain for USCSI commands (checksum targets) */
2017 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2018 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2019 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2020 
2021 	/* Chain for "direct" USCSI commands (all targets) */
2022 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2023 
2024 	/* Chain for "direct priority" USCSI commands (all targets) */
2025 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2026 
2027 };
2028 
2029 
2030 
2031 /*
2032  * Array to map a layering chain index to the appropriate chain "type".
2033  * The chain type indicates a specific property/usage of the chain.
2034  * The redundant entries are present so that the index used for accessing
2035  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2036  * with this table as well.
2037  */
2038 
2039 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2040 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2041 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2042 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2043 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2044 						/* (for error recovery) */
2045 
2046 static int sd_chain_type_map[] = {
2047 
2048 	/* Chain for buf IO for disk drive targets (PM enabled) */
2049 	SD_CHAIN_BUFIO,			/* Index: 0 */
2050 	SD_CHAIN_BUFIO,			/* Index: 1 */
2051 	SD_CHAIN_BUFIO,			/* Index: 2 */
2052 
2053 	/* Chain for buf IO for disk drive targets (PM disabled) */
2054 	SD_CHAIN_BUFIO,			/* Index: 3 */
2055 	SD_CHAIN_BUFIO,			/* Index: 4 */
2056 
2057 	/* Chain for buf IO for removable-media targets (PM enabled) */
2058 	SD_CHAIN_BUFIO,			/* Index: 5 */
2059 	SD_CHAIN_BUFIO,			/* Index: 6 */
2060 	SD_CHAIN_BUFIO,			/* Index: 7 */
2061 	SD_CHAIN_BUFIO,			/* Index: 8 */
2062 
2063 	/* Chain for buf IO for removable-media targets (PM disabled) */
2064 	SD_CHAIN_BUFIO,			/* Index: 9 */
2065 	SD_CHAIN_BUFIO,			/* Index: 10 */
2066 	SD_CHAIN_BUFIO,			/* Index: 11 */
2067 
2068 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2069 	SD_CHAIN_BUFIO,			/* Index: 12 */
2070 	SD_CHAIN_BUFIO,			/* Index: 13 */
2071 	SD_CHAIN_BUFIO,			/* Index: 14 */
2072 	SD_CHAIN_BUFIO,			/* Index: 15 */
2073 
2074 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2075 	SD_CHAIN_BUFIO,			/* Index: 16 */
2076 	SD_CHAIN_BUFIO,			/* Index: 17 */
2077 	SD_CHAIN_BUFIO,			/* Index: 18 */
2078 
2079 	/* Chain for USCSI commands (non-checksum targets) */
2080 	SD_CHAIN_USCSI,			/* Index: 19 */
2081 	SD_CHAIN_USCSI,			/* Index: 20 */
2082 
2083 	/* Chain for USCSI commands (checksum targets) */
2084 	SD_CHAIN_USCSI,			/* Index: 21 */
2085 	SD_CHAIN_USCSI,			/* Index: 22 */
2086 	SD_CHAIN_USCSI,			/* Index: 22 */
2087 
2088 	/* Chain for "direct" USCSI commands (all targets) */
2089 	SD_CHAIN_DIRECT,		/* Index: 24 */
2090 
2091 	/* Chain for "direct priority" USCSI commands (all targets) */
2092 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2093 };
2094 
2095 
2096 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2097 #define	SD_IS_BUFIO(xp)			\
2098 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2099 
2100 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2101 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2102 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2103 
2104 
2105 
2106 /*
2107  * Struct, array, and macros to map a specific chain to the appropriate
2108  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2109  *
2110  * The sd_chain_index_map[] array is used at attach time to set the various
2111  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2112  * chain to be used with the instance. This allows different instances to use
2113  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2114  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2115  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2116  * dynamically & without the use of locking; and (2) a layer may update the
2117  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2118  * to allow for deferred processing of an IO within the same chain from a
2119  * different execution context.
2120  */
2121 
2122 struct sd_chain_index {
2123 	int	sci_iostart_index;
2124 	int	sci_iodone_index;
2125 };
2126 
2127 static struct sd_chain_index	sd_chain_index_map[] = {
2128 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2129 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2130 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2131 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2132 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2133 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2134 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2135 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2136 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2137 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2138 };
2139 
2140 
2141 /*
2142  * The following are indexes into the sd_chain_index_map[] array.
2143  */
2144 
2145 /* un->un_buf_chain_type must be set to one of these */
2146 #define	SD_CHAIN_INFO_DISK		0
2147 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2148 #define	SD_CHAIN_INFO_RMMEDIA		2
2149 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2150 #define	SD_CHAIN_INFO_CHKSUM		4
2151 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2152 
2153 /* un->un_uscsi_chain_type must be set to one of these */
2154 #define	SD_CHAIN_INFO_USCSI_CMD		6
2155 /* USCSI with PM disabled is the same as DIRECT */
2156 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2157 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2158 
2159 /* un->un_direct_chain_type must be set to one of these */
2160 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2161 
2162 /* un->un_priority_chain_type must be set to one of these */
2163 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2164 
2165 /* size for devid inquiries */
2166 #define	MAX_INQUIRY_SIZE		0xF0
2167 
2168 /*
2169  * Macros used by functions to pass a given buf(9S) struct along to the
2170  * next function in the layering chain for further processing.
2171  *
2172  * In the following macros, passing more than three arguments to the called
2173  * routines causes the optimizer for the SPARC compiler to stop doing tail
2174  * call elimination which results in significant performance degradation.
2175  */
2176 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2177 	((*(sd_iostart_chain[index]))(index, un, bp))
2178 
2179 #define	SD_BEGIN_IODONE(index, un, bp)	\
2180 	((*(sd_iodone_chain[index]))(index, un, bp))
2181 
2182 #define	SD_NEXT_IOSTART(index, un, bp)				\
2183 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2184 
2185 #define	SD_NEXT_IODONE(index, un, bp)				\
2186 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2187 
2188 /*
2189  *    Function: _init
2190  *
2191  * Description: This is the driver _init(9E) entry point.
2192  *
2193  * Return Code: Returns the value from mod_install(9F) or
2194  *		ddi_soft_state_init(9F) as appropriate.
2195  *
2196  *     Context: Called when driver module loaded.
2197  */
2198 
2199 int
2200 _init(void)
2201 {
2202 	int	err;
2203 
2204 	/* establish driver name from module name */
2205 	sd_label = (char *)mod_modname(&modlinkage);
2206 
2207 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2208 	    SD_MAXUNIT);
2209 
2210 	if (err != 0) {
2211 		return (err);
2212 	}
2213 
2214 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2215 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2216 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2217 
2218 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2219 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2220 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2221 
2222 	/*
2223 	 * it's ok to init here even for fibre device
2224 	 */
2225 	sd_scsi_probe_cache_init();
2226 
2227 	sd_scsi_target_lun_init();
2228 
2229 	/*
2230 	 * Creating taskq before mod_install ensures that all callers (threads)
2231 	 * that enter the module after a successful mod_install encounter
2232 	 * a valid taskq.
2233 	 */
2234 	sd_taskq_create();
2235 
2236 	err = mod_install(&modlinkage);
2237 	if (err != 0) {
2238 		/* delete taskq if install fails */
2239 		sd_taskq_delete();
2240 
2241 		mutex_destroy(&sd_detach_mutex);
2242 		mutex_destroy(&sd_log_mutex);
2243 		mutex_destroy(&sd_label_mutex);
2244 
2245 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2246 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2247 		cv_destroy(&sd_tr.srq_inprocess_cv);
2248 
2249 		sd_scsi_probe_cache_fini();
2250 
2251 		sd_scsi_target_lun_fini();
2252 
2253 		ddi_soft_state_fini(&sd_state);
2254 		return (err);
2255 	}
2256 
2257 	return (err);
2258 }
2259 
2260 
2261 /*
2262  *    Function: _fini
2263  *
2264  * Description: This is the driver _fini(9E) entry point.
2265  *
2266  * Return Code: Returns the value from mod_remove(9F)
2267  *
2268  *     Context: Called when driver module is unloaded.
2269  */
2270 
2271 int
2272 _fini(void)
2273 {
2274 	int err;
2275 
2276 	if ((err = mod_remove(&modlinkage)) != 0) {
2277 		return (err);
2278 	}
2279 
2280 	sd_taskq_delete();
2281 
2282 	mutex_destroy(&sd_detach_mutex);
2283 	mutex_destroy(&sd_log_mutex);
2284 	mutex_destroy(&sd_label_mutex);
2285 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2286 
2287 	sd_scsi_probe_cache_fini();
2288 
2289 	sd_scsi_target_lun_fini();
2290 
2291 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2292 	cv_destroy(&sd_tr.srq_inprocess_cv);
2293 
2294 	ddi_soft_state_fini(&sd_state);
2295 
2296 	return (err);
2297 }
2298 
2299 
2300 /*
2301  *    Function: _info
2302  *
2303  * Description: This is the driver _info(9E) entry point.
2304  *
2305  *   Arguments: modinfop - pointer to the driver modinfo structure
2306  *
2307  * Return Code: Returns the value from mod_info(9F).
2308  *
2309  *     Context: Kernel thread context
2310  */
2311 
2312 int
2313 _info(struct modinfo *modinfop)
2314 {
2315 	return (mod_info(&modlinkage, modinfop));
2316 }
2317 
2318 
2319 /*
2320  * The following routines implement the driver message logging facility.
2321  * They provide component- and level- based debug output filtering.
2322  * Output may also be restricted to messages for a single instance by
2323  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2324  * to NULL, then messages for all instances are printed.
2325  *
2326  * These routines have been cloned from each other due to the language
2327  * constraints of macros and variable argument list processing.
2328  */
2329 
2330 
2331 /*
2332  *    Function: sd_log_err
2333  *
2334  * Description: This routine is called by the SD_ERROR macro for debug
2335  *		logging of error conditions.
2336  *
2337  *   Arguments: comp - driver component being logged
2338  *		dev  - pointer to driver info structure
2339  *		fmt  - error string and format to be logged
2340  */
2341 
2342 static void
2343 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2344 {
2345 	va_list		ap;
2346 	dev_info_t	*dev;
2347 
2348 	ASSERT(un != NULL);
2349 	dev = SD_DEVINFO(un);
2350 	ASSERT(dev != NULL);
2351 
2352 	/*
2353 	 * Filter messages based on the global component and level masks.
2354 	 * Also print if un matches the value of sd_debug_un, or if
2355 	 * sd_debug_un is set to NULL.
2356 	 */
2357 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2358 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2359 		mutex_enter(&sd_log_mutex);
2360 		va_start(ap, fmt);
2361 		(void) vsprintf(sd_log_buf, fmt, ap);
2362 		va_end(ap);
2363 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2364 		mutex_exit(&sd_log_mutex);
2365 	}
2366 #ifdef SD_FAULT_INJECTION
2367 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2368 	if (un->sd_injection_mask & comp) {
2369 		mutex_enter(&sd_log_mutex);
2370 		va_start(ap, fmt);
2371 		(void) vsprintf(sd_log_buf, fmt, ap);
2372 		va_end(ap);
2373 		sd_injection_log(sd_log_buf, un);
2374 		mutex_exit(&sd_log_mutex);
2375 	}
2376 #endif
2377 }
2378 
2379 
2380 /*
2381  *    Function: sd_log_info
2382  *
2383  * Description: This routine is called by the SD_INFO macro for debug
2384  *		logging of general purpose informational conditions.
2385  *
2386  *   Arguments: comp - driver component being logged
2387  *		dev  - pointer to driver info structure
2388  *		fmt  - info string and format to be logged
2389  */
2390 
2391 static void
2392 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2393 {
2394 	va_list		ap;
2395 	dev_info_t	*dev;
2396 
2397 	ASSERT(un != NULL);
2398 	dev = SD_DEVINFO(un);
2399 	ASSERT(dev != NULL);
2400 
2401 	/*
2402 	 * Filter messages based on the global component and level masks.
2403 	 * Also print if un matches the value of sd_debug_un, or if
2404 	 * sd_debug_un is set to NULL.
2405 	 */
2406 	if ((sd_component_mask & component) &&
2407 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2408 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2409 		mutex_enter(&sd_log_mutex);
2410 		va_start(ap, fmt);
2411 		(void) vsprintf(sd_log_buf, fmt, ap);
2412 		va_end(ap);
2413 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2414 		mutex_exit(&sd_log_mutex);
2415 	}
2416 #ifdef SD_FAULT_INJECTION
2417 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2418 	if (un->sd_injection_mask & component) {
2419 		mutex_enter(&sd_log_mutex);
2420 		va_start(ap, fmt);
2421 		(void) vsprintf(sd_log_buf, fmt, ap);
2422 		va_end(ap);
2423 		sd_injection_log(sd_log_buf, un);
2424 		mutex_exit(&sd_log_mutex);
2425 	}
2426 #endif
2427 }
2428 
2429 
2430 /*
2431  *    Function: sd_log_trace
2432  *
2433  * Description: This routine is called by the SD_TRACE macro for debug
2434  *		logging of trace conditions (i.e. function entry/exit).
2435  *
2436  *   Arguments: comp - driver component being logged
2437  *		dev  - pointer to driver info structure
2438  *		fmt  - trace string and format to be logged
2439  */
2440 
2441 static void
2442 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2443 {
2444 	va_list		ap;
2445 	dev_info_t	*dev;
2446 
2447 	ASSERT(un != NULL);
2448 	dev = SD_DEVINFO(un);
2449 	ASSERT(dev != NULL);
2450 
2451 	/*
2452 	 * Filter messages based on the global component and level masks.
2453 	 * Also print if un matches the value of sd_debug_un, or if
2454 	 * sd_debug_un is set to NULL.
2455 	 */
2456 	if ((sd_component_mask & component) &&
2457 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2458 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2459 		mutex_enter(&sd_log_mutex);
2460 		va_start(ap, fmt);
2461 		(void) vsprintf(sd_log_buf, fmt, ap);
2462 		va_end(ap);
2463 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2464 		mutex_exit(&sd_log_mutex);
2465 	}
2466 #ifdef SD_FAULT_INJECTION
2467 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2468 	if (un->sd_injection_mask & component) {
2469 		mutex_enter(&sd_log_mutex);
2470 		va_start(ap, fmt);
2471 		(void) vsprintf(sd_log_buf, fmt, ap);
2472 		va_end(ap);
2473 		sd_injection_log(sd_log_buf, un);
2474 		mutex_exit(&sd_log_mutex);
2475 	}
2476 #endif
2477 }
2478 
2479 
2480 /*
2481  *    Function: sdprobe
2482  *
2483  * Description: This is the driver probe(9e) entry point function.
2484  *
2485  *   Arguments: devi - opaque device info handle
2486  *
2487  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2488  *              DDI_PROBE_FAILURE: If the probe failed.
2489  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2490  *				   but may be present in the future.
2491  */
2492 
2493 static int
2494 sdprobe(dev_info_t *devi)
2495 {
2496 	struct scsi_device	*devp;
2497 	int			rval;
2498 	int			instance;
2499 
2500 	/*
2501 	 * if it wasn't for pln, sdprobe could actually be nulldev
2502 	 * in the "__fibre" case.
2503 	 */
2504 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2505 		return (DDI_PROBE_DONTCARE);
2506 	}
2507 
2508 	devp = ddi_get_driver_private(devi);
2509 
2510 	if (devp == NULL) {
2511 		/* Ooops... nexus driver is mis-configured... */
2512 		return (DDI_PROBE_FAILURE);
2513 	}
2514 
2515 	instance = ddi_get_instance(devi);
2516 
2517 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2518 		return (DDI_PROBE_PARTIAL);
2519 	}
2520 
2521 	/*
2522 	 * Call the SCSA utility probe routine to see if we actually
2523 	 * have a target at this SCSI nexus.
2524 	 */
2525 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2526 	case SCSIPROBE_EXISTS:
2527 		switch (devp->sd_inq->inq_dtype) {
2528 		case DTYPE_DIRECT:
2529 			rval = DDI_PROBE_SUCCESS;
2530 			break;
2531 		case DTYPE_RODIRECT:
2532 			/* CDs etc. Can be removable media */
2533 			rval = DDI_PROBE_SUCCESS;
2534 			break;
2535 		case DTYPE_OPTICAL:
2536 			/*
2537 			 * Rewritable optical driver HP115AA
2538 			 * Can also be removable media
2539 			 */
2540 
2541 			/*
2542 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2543 			 * pre solaris 9 sparc sd behavior is required
2544 			 *
2545 			 * If first time through and sd_dtype_optical_bind
2546 			 * has not been set in /etc/system check properties
2547 			 */
2548 
2549 			if (sd_dtype_optical_bind  < 0) {
2550 				sd_dtype_optical_bind = ddi_prop_get_int
2551 				    (DDI_DEV_T_ANY, devi, 0,
2552 				    "optical-device-bind", 1);
2553 			}
2554 
2555 			if (sd_dtype_optical_bind == 0) {
2556 				rval = DDI_PROBE_FAILURE;
2557 			} else {
2558 				rval = DDI_PROBE_SUCCESS;
2559 			}
2560 			break;
2561 
2562 		case DTYPE_NOTPRESENT:
2563 		default:
2564 			rval = DDI_PROBE_FAILURE;
2565 			break;
2566 		}
2567 		break;
2568 	default:
2569 		rval = DDI_PROBE_PARTIAL;
2570 		break;
2571 	}
2572 
2573 	/*
2574 	 * This routine checks for resource allocation prior to freeing,
2575 	 * so it will take care of the "smart probing" case where a
2576 	 * scsi_probe() may or may not have been issued and will *not*
2577 	 * free previously-freed resources.
2578 	 */
2579 	scsi_unprobe(devp);
2580 	return (rval);
2581 }
2582 
2583 
2584 /*
2585  *    Function: sdinfo
2586  *
2587  * Description: This is the driver getinfo(9e) entry point function.
2588  * 		Given the device number, return the devinfo pointer from
2589  *		the scsi_device structure or the instance number
2590  *		associated with the dev_t.
2591  *
2592  *   Arguments: dip     - pointer to device info structure
2593  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2594  *			  DDI_INFO_DEVT2INSTANCE)
2595  *		arg     - driver dev_t
2596  *		resultp - user buffer for request response
2597  *
2598  * Return Code: DDI_SUCCESS
2599  *              DDI_FAILURE
2600  */
2601 /* ARGSUSED */
2602 static int
2603 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2604 {
2605 	struct sd_lun	*un;
2606 	dev_t		dev;
2607 	int		instance;
2608 	int		error;
2609 
2610 	switch (infocmd) {
2611 	case DDI_INFO_DEVT2DEVINFO:
2612 		dev = (dev_t)arg;
2613 		instance = SDUNIT(dev);
2614 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2615 			return (DDI_FAILURE);
2616 		}
2617 		*result = (void *) SD_DEVINFO(un);
2618 		error = DDI_SUCCESS;
2619 		break;
2620 	case DDI_INFO_DEVT2INSTANCE:
2621 		dev = (dev_t)arg;
2622 		instance = SDUNIT(dev);
2623 		*result = (void *)(uintptr_t)instance;
2624 		error = DDI_SUCCESS;
2625 		break;
2626 	default:
2627 		error = DDI_FAILURE;
2628 	}
2629 	return (error);
2630 }
2631 
2632 /*
2633  *    Function: sd_prop_op
2634  *
2635  * Description: This is the driver prop_op(9e) entry point function.
2636  *		Return the number of blocks for the partition in question
2637  *		or forward the request to the property facilities.
2638  *
2639  *   Arguments: dev       - device number
2640  *		dip       - pointer to device info structure
2641  *		prop_op   - property operator
2642  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2643  *		name      - pointer to property name
2644  *		valuep    - pointer or address of the user buffer
2645  *		lengthp   - property length
2646  *
2647  * Return Code: DDI_PROP_SUCCESS
2648  *              DDI_PROP_NOT_FOUND
2649  *              DDI_PROP_UNDEFINED
2650  *              DDI_PROP_NO_MEMORY
2651  *              DDI_PROP_BUF_TOO_SMALL
2652  */
2653 
2654 static int
2655 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2656 	char *name, caddr_t valuep, int *lengthp)
2657 {
2658 	struct sd_lun	*un;
2659 
2660 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2661 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2662 		    name, valuep, lengthp));
2663 
2664 	return (cmlb_prop_op(un->un_cmlbhandle,
2665 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2666 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2667 }
2668 
2669 /*
2670  * The following functions are for smart probing:
2671  * sd_scsi_probe_cache_init()
2672  * sd_scsi_probe_cache_fini()
2673  * sd_scsi_clear_probe_cache()
2674  * sd_scsi_probe_with_cache()
2675  */
2676 
2677 /*
2678  *    Function: sd_scsi_probe_cache_init
2679  *
2680  * Description: Initializes the probe response cache mutex and head pointer.
2681  *
2682  *     Context: Kernel thread context
2683  */
2684 
2685 static void
2686 sd_scsi_probe_cache_init(void)
2687 {
2688 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2689 	sd_scsi_probe_cache_head = NULL;
2690 }
2691 
2692 
2693 /*
2694  *    Function: sd_scsi_probe_cache_fini
2695  *
2696  * Description: Frees all resources associated with the probe response cache.
2697  *
2698  *     Context: Kernel thread context
2699  */
2700 
2701 static void
2702 sd_scsi_probe_cache_fini(void)
2703 {
2704 	struct sd_scsi_probe_cache *cp;
2705 	struct sd_scsi_probe_cache *ncp;
2706 
2707 	/* Clean up our smart probing linked list */
2708 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2709 		ncp = cp->next;
2710 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2711 	}
2712 	sd_scsi_probe_cache_head = NULL;
2713 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2714 }
2715 
2716 
2717 /*
2718  *    Function: sd_scsi_clear_probe_cache
2719  *
2720  * Description: This routine clears the probe response cache. This is
2721  *		done when open() returns ENXIO so that when deferred
2722  *		attach is attempted (possibly after a device has been
2723  *		turned on) we will retry the probe. Since we don't know
2724  *		which target we failed to open, we just clear the
2725  *		entire cache.
2726  *
2727  *     Context: Kernel thread context
2728  */
2729 
2730 static void
2731 sd_scsi_clear_probe_cache(void)
2732 {
2733 	struct sd_scsi_probe_cache	*cp;
2734 	int				i;
2735 
2736 	mutex_enter(&sd_scsi_probe_cache_mutex);
2737 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2738 		/*
2739 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2740 		 * force probing to be performed the next time
2741 		 * sd_scsi_probe_with_cache is called.
2742 		 */
2743 		for (i = 0; i < NTARGETS_WIDE; i++) {
2744 			cp->cache[i] = SCSIPROBE_EXISTS;
2745 		}
2746 	}
2747 	mutex_exit(&sd_scsi_probe_cache_mutex);
2748 }
2749 
2750 
2751 /*
2752  *    Function: sd_scsi_probe_with_cache
2753  *
2754  * Description: This routine implements support for a scsi device probe
2755  *		with cache. The driver maintains a cache of the target
2756  *		responses to scsi probes. If we get no response from a
2757  *		target during a probe inquiry, we remember that, and we
2758  *		avoid additional calls to scsi_probe on non-zero LUNs
2759  *		on the same target until the cache is cleared. By doing
2760  *		so we avoid the 1/4 sec selection timeout for nonzero
2761  *		LUNs. lun0 of a target is always probed.
2762  *
2763  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2764  *              waitfunc - indicates what the allocator routines should
2765  *			   do when resources are not available. This value
2766  *			   is passed on to scsi_probe() when that routine
2767  *			   is called.
2768  *
2769  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2770  *		otherwise the value returned by scsi_probe(9F).
2771  *
2772  *     Context: Kernel thread context
2773  */
2774 
2775 static int
2776 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2777 {
2778 	struct sd_scsi_probe_cache	*cp;
2779 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2780 	int		lun, tgt;
2781 
2782 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2783 	    SCSI_ADDR_PROP_LUN, 0);
2784 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2785 	    SCSI_ADDR_PROP_TARGET, -1);
2786 
2787 	/* Make sure caching enabled and target in range */
2788 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2789 		/* do it the old way (no cache) */
2790 		return (scsi_probe(devp, waitfn));
2791 	}
2792 
2793 	mutex_enter(&sd_scsi_probe_cache_mutex);
2794 
2795 	/* Find the cache for this scsi bus instance */
2796 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2797 		if (cp->pdip == pdip) {
2798 			break;
2799 		}
2800 	}
2801 
2802 	/* If we can't find a cache for this pdip, create one */
2803 	if (cp == NULL) {
2804 		int i;
2805 
2806 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2807 		    KM_SLEEP);
2808 		cp->pdip = pdip;
2809 		cp->next = sd_scsi_probe_cache_head;
2810 		sd_scsi_probe_cache_head = cp;
2811 		for (i = 0; i < NTARGETS_WIDE; i++) {
2812 			cp->cache[i] = SCSIPROBE_EXISTS;
2813 		}
2814 	}
2815 
2816 	mutex_exit(&sd_scsi_probe_cache_mutex);
2817 
2818 	/* Recompute the cache for this target if LUN zero */
2819 	if (lun == 0) {
2820 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2821 	}
2822 
2823 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2824 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2825 		return (SCSIPROBE_NORESP);
2826 	}
2827 
2828 	/* Do the actual probe; save & return the result */
2829 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2830 }
2831 
2832 
2833 /*
2834  *    Function: sd_scsi_target_lun_init
2835  *
2836  * Description: Initializes the attached lun chain mutex and head pointer.
2837  *
2838  *     Context: Kernel thread context
2839  */
2840 
2841 static void
2842 sd_scsi_target_lun_init(void)
2843 {
2844 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2845 	sd_scsi_target_lun_head = NULL;
2846 }
2847 
2848 
2849 /*
2850  *    Function: sd_scsi_target_lun_fini
2851  *
2852  * Description: Frees all resources associated with the attached lun
2853  *              chain
2854  *
2855  *     Context: Kernel thread context
2856  */
2857 
2858 static void
2859 sd_scsi_target_lun_fini(void)
2860 {
2861 	struct sd_scsi_hba_tgt_lun	*cp;
2862 	struct sd_scsi_hba_tgt_lun	*ncp;
2863 
2864 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2865 		ncp = cp->next;
2866 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2867 	}
2868 	sd_scsi_target_lun_head = NULL;
2869 	mutex_destroy(&sd_scsi_target_lun_mutex);
2870 }
2871 
2872 
2873 /*
2874  *    Function: sd_scsi_get_target_lun_count
2875  *
2876  * Description: This routine will check in the attached lun chain to see
2877  * 		how many luns are attached on the required SCSI controller
2878  * 		and target. Currently, some capabilities like tagged queue
2879  *		are supported per target based by HBA. So all luns in a
2880  *		target have the same capabilities. Based on this assumption,
2881  * 		sd should only set these capabilities once per target. This
2882  *		function is called when sd needs to decide how many luns
2883  *		already attached on a target.
2884  *
2885  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2886  *			  controller device.
2887  *              target	- The target ID on the controller's SCSI bus.
2888  *
2889  * Return Code: The number of luns attached on the required target and
2890  *		controller.
2891  *		-1 if target ID is not in parallel SCSI scope or the given
2892  * 		dip is not in the chain.
2893  *
2894  *     Context: Kernel thread context
2895  */
2896 
2897 static int
2898 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2899 {
2900 	struct sd_scsi_hba_tgt_lun	*cp;
2901 
2902 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2903 		return (-1);
2904 	}
2905 
2906 	mutex_enter(&sd_scsi_target_lun_mutex);
2907 
2908 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2909 		if (cp->pdip == dip) {
2910 			break;
2911 		}
2912 	}
2913 
2914 	mutex_exit(&sd_scsi_target_lun_mutex);
2915 
2916 	if (cp == NULL) {
2917 		return (-1);
2918 	}
2919 
2920 	return (cp->nlun[target]);
2921 }
2922 
2923 
2924 /*
2925  *    Function: sd_scsi_update_lun_on_target
2926  *
2927  * Description: This routine is used to update the attached lun chain when a
2928  *		lun is attached or detached on a target.
2929  *
2930  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2931  *                        controller device.
2932  *              target  - The target ID on the controller's SCSI bus.
2933  *		flag	- Indicate the lun is attached or detached.
2934  *
2935  *     Context: Kernel thread context
2936  */
2937 
2938 static void
2939 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2940 {
2941 	struct sd_scsi_hba_tgt_lun	*cp;
2942 
2943 	mutex_enter(&sd_scsi_target_lun_mutex);
2944 
2945 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2946 		if (cp->pdip == dip) {
2947 			break;
2948 		}
2949 	}
2950 
2951 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2952 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2953 		    KM_SLEEP);
2954 		cp->pdip = dip;
2955 		cp->next = sd_scsi_target_lun_head;
2956 		sd_scsi_target_lun_head = cp;
2957 	}
2958 
2959 	mutex_exit(&sd_scsi_target_lun_mutex);
2960 
2961 	if (cp != NULL) {
2962 		if (flag == SD_SCSI_LUN_ATTACH) {
2963 			cp->nlun[target] ++;
2964 		} else {
2965 			cp->nlun[target] --;
2966 		}
2967 	}
2968 }
2969 
2970 
2971 /*
2972  *    Function: sd_spin_up_unit
2973  *
2974  * Description: Issues the following commands to spin-up the device:
2975  *		START STOP UNIT, and INQUIRY.
2976  *
2977  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
2978  *                      structure for this target.
2979  *
2980  * Return Code: 0 - success
2981  *		EIO - failure
2982  *		EACCES - reservation conflict
2983  *
2984  *     Context: Kernel thread context
2985  */
2986 
2987 static int
2988 sd_spin_up_unit(sd_ssc_t *ssc)
2989 {
2990 	size_t	resid		= 0;
2991 	int	has_conflict	= FALSE;
2992 	uchar_t *bufaddr;
2993 	int 	status;
2994 	struct sd_lun	*un;
2995 
2996 	ASSERT(ssc != NULL);
2997 	un = ssc->ssc_un;
2998 	ASSERT(un != NULL);
2999 
3000 	/*
3001 	 * Send a throwaway START UNIT command.
3002 	 *
3003 	 * If we fail on this, we don't care presently what precisely
3004 	 * is wrong.  EMC's arrays will also fail this with a check
3005 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3006 	 * we don't want to fail the attach because it may become
3007 	 * "active" later.
3008 	 */
3009 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
3010 	    SD_PATH_DIRECT);
3011 
3012 	if (status != 0) {
3013 		if (status == EACCES)
3014 			has_conflict = TRUE;
3015 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3016 	}
3017 
3018 	/*
3019 	 * Send another INQUIRY command to the target. This is necessary for
3020 	 * non-removable media direct access devices because their INQUIRY data
3021 	 * may not be fully qualified until they are spun up (perhaps via the
3022 	 * START command above).  Note: This seems to be needed for some
3023 	 * legacy devices only.) The INQUIRY command should succeed even if a
3024 	 * Reservation Conflict is present.
3025 	 */
3026 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3027 
3028 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3029 	    != 0) {
3030 		kmem_free(bufaddr, SUN_INQSIZE);
3031 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3032 		return (EIO);
3033 	}
3034 
3035 	/*
3036 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3037 	 * Note that this routine does not return a failure here even if the
3038 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3039 	 */
3040 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3041 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3042 	}
3043 
3044 	kmem_free(bufaddr, SUN_INQSIZE);
3045 
3046 	/* If we hit a reservation conflict above, tell the caller. */
3047 	if (has_conflict == TRUE) {
3048 		return (EACCES);
3049 	}
3050 
3051 	return (0);
3052 }
3053 
3054 #ifdef _LP64
3055 /*
3056  *    Function: sd_enable_descr_sense
3057  *
3058  * Description: This routine attempts to select descriptor sense format
3059  *		using the Control mode page.  Devices that support 64 bit
3060  *		LBAs (for >2TB luns) should also implement descriptor
3061  *		sense data so we will call this function whenever we see
3062  *		a lun larger than 2TB.  If for some reason the device
3063  *		supports 64 bit LBAs but doesn't support descriptor sense
3064  *		presumably the mode select will fail.  Everything will
3065  *		continue to work normally except that we will not get
3066  *		complete sense data for commands that fail with an LBA
3067  *		larger than 32 bits.
3068  *
3069  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3070  *                      structure for this target.
3071  *
3072  *     Context: Kernel thread context only
3073  */
3074 
3075 static void
3076 sd_enable_descr_sense(sd_ssc_t *ssc)
3077 {
3078 	uchar_t			*header;
3079 	struct mode_control_scsi3 *ctrl_bufp;
3080 	size_t			buflen;
3081 	size_t			bd_len;
3082 	int			status;
3083 	struct sd_lun		*un;
3084 
3085 	ASSERT(ssc != NULL);
3086 	un = ssc->ssc_un;
3087 	ASSERT(un != NULL);
3088 
3089 	/*
3090 	 * Read MODE SENSE page 0xA, Control Mode Page
3091 	 */
3092 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3093 	    sizeof (struct mode_control_scsi3);
3094 	header = kmem_zalloc(buflen, KM_SLEEP);
3095 
3096 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3097 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3098 
3099 	if (status != 0) {
3100 		SD_ERROR(SD_LOG_COMMON, un,
3101 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3102 		goto eds_exit;
3103 	}
3104 
3105 	/*
3106 	 * Determine size of Block Descriptors in order to locate
3107 	 * the mode page data. ATAPI devices return 0, SCSI devices
3108 	 * should return MODE_BLK_DESC_LENGTH.
3109 	 */
3110 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3111 
3112 	/* Clear the mode data length field for MODE SELECT */
3113 	((struct mode_header *)header)->length = 0;
3114 
3115 	ctrl_bufp = (struct mode_control_scsi3 *)
3116 	    (header + MODE_HEADER_LENGTH + bd_len);
3117 
3118 	/*
3119 	 * If the page length is smaller than the expected value,
3120 	 * the target device doesn't support D_SENSE. Bail out here.
3121 	 */
3122 	if (ctrl_bufp->mode_page.length <
3123 	    sizeof (struct mode_control_scsi3) - 2) {
3124 		SD_ERROR(SD_LOG_COMMON, un,
3125 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3126 		goto eds_exit;
3127 	}
3128 
3129 	/*
3130 	 * Clear PS bit for MODE SELECT
3131 	 */
3132 	ctrl_bufp->mode_page.ps = 0;
3133 
3134 	/*
3135 	 * Set D_SENSE to enable descriptor sense format.
3136 	 */
3137 	ctrl_bufp->d_sense = 1;
3138 
3139 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3140 
3141 	/*
3142 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3143 	 */
3144 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3145 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3146 
3147 	if (status != 0) {
3148 		SD_INFO(SD_LOG_COMMON, un,
3149 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3150 	} else {
3151 		kmem_free(header, buflen);
3152 		return;
3153 	}
3154 
3155 eds_exit:
3156 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3157 	kmem_free(header, buflen);
3158 }
3159 
3160 /*
3161  *    Function: sd_reenable_dsense_task
3162  *
3163  * Description: Re-enable descriptor sense after device or bus reset
3164  *
3165  *     Context: Executes in a taskq() thread context
3166  */
3167 static void
3168 sd_reenable_dsense_task(void *arg)
3169 {
3170 	struct	sd_lun	*un = arg;
3171 	sd_ssc_t	*ssc;
3172 
3173 	ASSERT(un != NULL);
3174 
3175 	ssc = sd_ssc_init(un);
3176 	sd_enable_descr_sense(ssc);
3177 	sd_ssc_fini(ssc);
3178 }
3179 #endif /* _LP64 */
3180 
3181 /*
3182  *    Function: sd_set_mmc_caps
3183  *
3184  * Description: This routine determines if the device is MMC compliant and if
3185  *		the device supports CDDA via a mode sense of the CDVD
3186  *		capabilities mode page. Also checks if the device is a
3187  *		dvdram writable device.
3188  *
3189  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3190  *                      structure for this target.
3191  *
3192  *     Context: Kernel thread context only
3193  */
3194 
3195 static void
3196 sd_set_mmc_caps(sd_ssc_t *ssc)
3197 {
3198 	struct mode_header_grp2		*sense_mhp;
3199 	uchar_t				*sense_page;
3200 	caddr_t				buf;
3201 	int				bd_len;
3202 	int				status;
3203 	struct uscsi_cmd		com;
3204 	int				rtn;
3205 	uchar_t				*out_data_rw, *out_data_hd;
3206 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3207 	struct sd_lun			*un;
3208 
3209 	ASSERT(ssc != NULL);
3210 	un = ssc->ssc_un;
3211 	ASSERT(un != NULL);
3212 
3213 	/*
3214 	 * The flags which will be set in this function are - mmc compliant,
3215 	 * dvdram writable device, cdda support. Initialize them to FALSE
3216 	 * and if a capability is detected - it will be set to TRUE.
3217 	 */
3218 	un->un_f_mmc_cap = FALSE;
3219 	un->un_f_dvdram_writable_device = FALSE;
3220 	un->un_f_cfg_cdda = FALSE;
3221 
3222 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3223 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3224 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3225 
3226 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3227 
3228 	if (status != 0) {
3229 		/* command failed; just return */
3230 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3231 		return;
3232 	}
3233 	/*
3234 	 * If the mode sense request for the CDROM CAPABILITIES
3235 	 * page (0x2A) succeeds the device is assumed to be MMC.
3236 	 */
3237 	un->un_f_mmc_cap = TRUE;
3238 
3239 	/* Get to the page data */
3240 	sense_mhp = (struct mode_header_grp2 *)buf;
3241 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3242 	    sense_mhp->bdesc_length_lo;
3243 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3244 		/*
3245 		 * We did not get back the expected block descriptor
3246 		 * length so we cannot determine if the device supports
3247 		 * CDDA. However, we still indicate the device is MMC
3248 		 * according to the successful response to the page
3249 		 * 0x2A mode sense request.
3250 		 */
3251 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3252 		    "sd_set_mmc_caps: Mode Sense returned "
3253 		    "invalid block descriptor length\n");
3254 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3255 		return;
3256 	}
3257 
3258 	/* See if read CDDA is supported */
3259 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3260 	    bd_len);
3261 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3262 
3263 	/* See if writing DVD RAM is supported. */
3264 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3265 	if (un->un_f_dvdram_writable_device == TRUE) {
3266 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3267 		return;
3268 	}
3269 
3270 	/*
3271 	 * If the device presents DVD or CD capabilities in the mode
3272 	 * page, we can return here since a RRD will not have
3273 	 * these capabilities.
3274 	 */
3275 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3276 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3277 		return;
3278 	}
3279 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3280 
3281 	/*
3282 	 * If un->un_f_dvdram_writable_device is still FALSE,
3283 	 * check for a Removable Rigid Disk (RRD).  A RRD
3284 	 * device is identified by the features RANDOM_WRITABLE and
3285 	 * HARDWARE_DEFECT_MANAGEMENT.
3286 	 */
3287 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3288 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3289 
3290 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3291 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3292 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3293 
3294 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3295 
3296 	if (rtn != 0) {
3297 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3298 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3299 		return;
3300 	}
3301 
3302 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3303 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3304 
3305 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3306 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3307 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3308 
3309 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3310 
3311 	if (rtn == 0) {
3312 		/*
3313 		 * We have good information, check for random writable
3314 		 * and hardware defect features.
3315 		 */
3316 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3317 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3318 			un->un_f_dvdram_writable_device = TRUE;
3319 		}
3320 	}
3321 
3322 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3323 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3324 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3325 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3326 }
3327 
3328 /*
3329  *    Function: sd_check_for_writable_cd
3330  *
3331  * Description: This routine determines if the media in the device is
3332  *		writable or not. It uses the get configuration command (0x46)
3333  *		to determine if the media is writable
3334  *
3335  *   Arguments: un - driver soft state (unit) structure
3336  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3337  *                           chain and the normal command waitq, or
3338  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3339  *                           "direct" chain and bypass the normal command
3340  *                           waitq.
3341  *
3342  *     Context: Never called at interrupt context.
3343  */
3344 
3345 static void
3346 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3347 {
3348 	struct uscsi_cmd		com;
3349 	uchar_t				*out_data;
3350 	uchar_t				*rqbuf;
3351 	int				rtn;
3352 	uchar_t				*out_data_rw, *out_data_hd;
3353 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3354 	struct mode_header_grp2		*sense_mhp;
3355 	uchar_t				*sense_page;
3356 	caddr_t				buf;
3357 	int				bd_len;
3358 	int				status;
3359 	struct sd_lun			*un;
3360 
3361 	ASSERT(ssc != NULL);
3362 	un = ssc->ssc_un;
3363 	ASSERT(un != NULL);
3364 	ASSERT(mutex_owned(SD_MUTEX(un)));
3365 
3366 	/*
3367 	 * Initialize the writable media to false, if configuration info.
3368 	 * tells us otherwise then only we will set it.
3369 	 */
3370 	un->un_f_mmc_writable_media = FALSE;
3371 	mutex_exit(SD_MUTEX(un));
3372 
3373 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3374 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3375 
3376 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3377 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3378 
3379 	if (rtn != 0)
3380 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3381 
3382 	mutex_enter(SD_MUTEX(un));
3383 	if (rtn == 0) {
3384 		/*
3385 		 * We have good information, check for writable DVD.
3386 		 */
3387 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3388 			un->un_f_mmc_writable_media = TRUE;
3389 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3390 			kmem_free(rqbuf, SENSE_LENGTH);
3391 			return;
3392 		}
3393 	}
3394 
3395 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3396 	kmem_free(rqbuf, SENSE_LENGTH);
3397 
3398 	/*
3399 	 * Determine if this is a RRD type device.
3400 	 */
3401 	mutex_exit(SD_MUTEX(un));
3402 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3403 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3404 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3405 
3406 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3407 
3408 	mutex_enter(SD_MUTEX(un));
3409 	if (status != 0) {
3410 		/* command failed; just return */
3411 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3412 		return;
3413 	}
3414 
3415 	/* Get to the page data */
3416 	sense_mhp = (struct mode_header_grp2 *)buf;
3417 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3418 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3419 		/*
3420 		 * We did not get back the expected block descriptor length so
3421 		 * we cannot check the mode page.
3422 		 */
3423 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3424 		    "sd_check_for_writable_cd: Mode Sense returned "
3425 		    "invalid block descriptor length\n");
3426 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3427 		return;
3428 	}
3429 
3430 	/*
3431 	 * If the device presents DVD or CD capabilities in the mode
3432 	 * page, we can return here since a RRD device will not have
3433 	 * these capabilities.
3434 	 */
3435 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3436 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3437 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3438 		return;
3439 	}
3440 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3441 
3442 	/*
3443 	 * If un->un_f_mmc_writable_media is still FALSE,
3444 	 * check for RRD type media.  A RRD device is identified
3445 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3446 	 */
3447 	mutex_exit(SD_MUTEX(un));
3448 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3449 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3450 
3451 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3452 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3453 	    RANDOM_WRITABLE, path_flag);
3454 
3455 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3456 	if (rtn != 0) {
3457 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3458 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3459 		mutex_enter(SD_MUTEX(un));
3460 		return;
3461 	}
3462 
3463 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3464 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3465 
3466 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3467 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3468 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3469 
3470 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3471 	mutex_enter(SD_MUTEX(un));
3472 	if (rtn == 0) {
3473 		/*
3474 		 * We have good information, check for random writable
3475 		 * and hardware defect features as current.
3476 		 */
3477 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3478 		    (out_data_rw[10] & 0x1) &&
3479 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3480 		    (out_data_hd[10] & 0x1)) {
3481 			un->un_f_mmc_writable_media = TRUE;
3482 		}
3483 	}
3484 
3485 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3486 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3487 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3488 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3489 }
3490 
3491 /*
3492  *    Function: sd_read_unit_properties
3493  *
3494  * Description: The following implements a property lookup mechanism.
3495  *		Properties for particular disks (keyed on vendor, model
3496  *		and rev numbers) are sought in the sd.conf file via
3497  *		sd_process_sdconf_file(), and if not found there, are
3498  *		looked for in a list hardcoded in this driver via
3499  *		sd_process_sdconf_table() Once located the properties
3500  *		are used to update the driver unit structure.
3501  *
3502  *   Arguments: un - driver soft state (unit) structure
3503  */
3504 
3505 static void
3506 sd_read_unit_properties(struct sd_lun *un)
3507 {
3508 	/*
3509 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3510 	 * the "sd-config-list" property (from the sd.conf file) or if
3511 	 * there was not a match for the inquiry vid/pid. If this event
3512 	 * occurs the static driver configuration table is searched for
3513 	 * a match.
3514 	 */
3515 	ASSERT(un != NULL);
3516 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3517 		sd_process_sdconf_table(un);
3518 	}
3519 
3520 	/* check for LSI device */
3521 	sd_is_lsi(un);
3522 
3523 
3524 }
3525 
3526 
3527 /*
3528  *    Function: sd_process_sdconf_file
3529  *
3530  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3531  *		driver's config file (ie, sd.conf) and update the driver
3532  *		soft state structure accordingly.
3533  *
3534  *   Arguments: un - driver soft state (unit) structure
3535  *
3536  * Return Code: SD_SUCCESS - The properties were successfully set according
3537  *			     to the driver configuration file.
3538  *		SD_FAILURE - The driver config list was not obtained or
3539  *			     there was no vid/pid match. This indicates that
3540  *			     the static config table should be used.
3541  *
3542  * The config file has a property, "sd-config-list". Currently we support
3543  * two kinds of formats. For both formats, the value of this property
3544  * is a list of duplets:
3545  *
3546  *  sd-config-list=
3547  *	<duplet>,
3548  *	[,<duplet>]*;
3549  *
3550  * For the improved format, where
3551  *
3552  *     <duplet>:= "<vid+pid>","<tunable-list>"
3553  *
3554  * and
3555  *
3556  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3557  *     <tunable> =        <name> : <value>
3558  *
3559  * The <vid+pid> is the string that is returned by the target device on a
3560  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3561  * to apply to all target devices with the specified <vid+pid>.
3562  *
3563  * Each <tunable> is a "<name> : <value>" pair.
3564  *
3565  * For the old format, the structure of each duplet is as follows:
3566  *
3567  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3568  *
3569  * The first entry of the duplet is the device ID string (the concatenated
3570  * vid & pid; not to be confused with a device_id).  This is defined in
3571  * the same way as in the sd_disk_table.
3572  *
3573  * The second part of the duplet is a string that identifies a
3574  * data-property-name-list. The data-property-name-list is defined as
3575  * follows:
3576  *
3577  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3578  *
3579  * The syntax of <data-property-name> depends on the <version> field.
3580  *
3581  * If version = SD_CONF_VERSION_1 we have the following syntax:
3582  *
3583  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3584  *
3585  * where the prop0 value will be used to set prop0 if bit0 set in the
3586  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3587  *
3588  */
3589 
3590 static int
3591 sd_process_sdconf_file(struct sd_lun *un)
3592 {
3593 	char	**config_list = NULL;
3594 	uint_t	nelements;
3595 	char	*vidptr;
3596 	int	vidlen;
3597 	char	*dnlist_ptr;
3598 	char	*dataname_ptr;
3599 	char	*dataname_lasts;
3600 	int	*data_list = NULL;
3601 	uint_t	data_list_len;
3602 	int	rval = SD_FAILURE;
3603 	int	i;
3604 
3605 	ASSERT(un != NULL);
3606 
3607 	/* Obtain the configuration list associated with the .conf file */
3608 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3609 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3610 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3611 		return (SD_FAILURE);
3612 	}
3613 
3614 	/*
3615 	 * Compare vids in each duplet to the inquiry vid - if a match is
3616 	 * made, get the data value and update the soft state structure
3617 	 * accordingly.
3618 	 *
3619 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3620 	 * otherwise.
3621 	 */
3622 	if (nelements & 1) {
3623 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3624 		    "sd-config-list should show as pairs of strings.\n");
3625 		if (config_list)
3626 			ddi_prop_free(config_list);
3627 		return (SD_FAILURE);
3628 	}
3629 
3630 	for (i = 0; i < nelements; i += 2) {
3631 		/*
3632 		 * Note: The assumption here is that each vid entry is on
3633 		 * a unique line from its associated duplet.
3634 		 */
3635 		vidptr = config_list[i];
3636 		vidlen = (int)strlen(vidptr);
3637 		if ((vidlen == 0) ||
3638 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3639 			continue;
3640 		}
3641 
3642 		/*
3643 		 * dnlist contains 1 or more blank separated
3644 		 * data-property-name entries
3645 		 */
3646 		dnlist_ptr = config_list[i + 1];
3647 
3648 		if (strchr(dnlist_ptr, ':') != NULL) {
3649 			/*
3650 			 * Decode the improved format sd-config-list.
3651 			 */
3652 			sd_nvpair_str_decode(un, dnlist_ptr);
3653 		} else {
3654 			/*
3655 			 * The old format sd-config-list, loop through all
3656 			 * data-property-name entries in the
3657 			 * data-property-name-list
3658 			 * setting the properties for each.
3659 			 */
3660 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3661 			    &dataname_lasts); dataname_ptr != NULL;
3662 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3663 			    &dataname_lasts)) {
3664 				int version;
3665 
3666 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3667 				    "sd_process_sdconf_file: disk:%s, "
3668 				    "data:%s\n", vidptr, dataname_ptr);
3669 
3670 				/* Get the data list */
3671 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3672 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3673 				    &data_list_len) != DDI_PROP_SUCCESS) {
3674 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3675 					    "sd_process_sdconf_file: data "
3676 					    "property (%s) has no value\n",
3677 					    dataname_ptr);
3678 					continue;
3679 				}
3680 
3681 				version = data_list[0];
3682 
3683 				if (version == SD_CONF_VERSION_1) {
3684 					sd_tunables values;
3685 
3686 					/* Set the properties */
3687 					if (sd_chk_vers1_data(un, data_list[1],
3688 					    &data_list[2], data_list_len,
3689 					    dataname_ptr) == SD_SUCCESS) {
3690 						sd_get_tunables_from_conf(un,
3691 						    data_list[1], &data_list[2],
3692 						    &values);
3693 						sd_set_vers1_properties(un,
3694 						    data_list[1], &values);
3695 						rval = SD_SUCCESS;
3696 					} else {
3697 						rval = SD_FAILURE;
3698 					}
3699 				} else {
3700 					scsi_log(SD_DEVINFO(un), sd_label,
3701 					    CE_WARN, "data property %s version "
3702 					    "0x%x is invalid.",
3703 					    dataname_ptr, version);
3704 					rval = SD_FAILURE;
3705 				}
3706 				if (data_list)
3707 					ddi_prop_free(data_list);
3708 			}
3709 		}
3710 	}
3711 
3712 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3713 	if (config_list) {
3714 		ddi_prop_free(config_list);
3715 	}
3716 
3717 	return (rval);
3718 }
3719 
3720 /*
3721  *    Function: sd_nvpair_str_decode()
3722  *
3723  * Description: Parse the improved format sd-config-list to get
3724  *    each entry of tunable, which includes a name-value pair.
3725  *    Then call sd_set_properties() to set the property.
3726  *
3727  *   Arguments: un - driver soft state (unit) structure
3728  *    nvpair_str - the tunable list
3729  */
3730 static void
3731 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3732 {
3733 	char	*nv, *name, *value, *token;
3734 	char	*nv_lasts, *v_lasts, *x_lasts;
3735 
3736 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3737 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3738 		token = sd_strtok_r(nv, ":", &v_lasts);
3739 		name  = sd_strtok_r(token, " \t", &x_lasts);
3740 		token = sd_strtok_r(NULL, ":", &v_lasts);
3741 		value = sd_strtok_r(token, " \t", &x_lasts);
3742 		if (name == NULL || value == NULL) {
3743 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3744 			    "sd_nvpair_str_decode: "
3745 			    "name or value is not valid!\n");
3746 		} else {
3747 			sd_set_properties(un, name, value);
3748 		}
3749 	}
3750 }
3751 
3752 /*
3753  *    Function: sd_strtok_r()
3754  *
3755  * Description: This function uses strpbrk and strspn to break
3756  *    string into tokens on sequentially subsequent calls. Return
3757  *    NULL when no non-separator characters remain. The first
3758  *    argument is NULL for subsequent calls.
3759  */
3760 static char *
3761 sd_strtok_r(char *string, const char *sepset, char **lasts)
3762 {
3763 	char	*q, *r;
3764 
3765 	/* First or subsequent call */
3766 	if (string == NULL)
3767 		string = *lasts;
3768 
3769 	if (string == NULL)
3770 		return (NULL);
3771 
3772 	/* Skip leading separators */
3773 	q = string + strspn(string, sepset);
3774 
3775 	if (*q == '\0')
3776 		return (NULL);
3777 
3778 	if ((r = strpbrk(q, sepset)) == NULL)
3779 		*lasts = NULL;
3780 	else {
3781 		*r = '\0';
3782 		*lasts = r + 1;
3783 	}
3784 	return (q);
3785 }
3786 
3787 /*
3788  *    Function: sd_set_properties()
3789  *
3790  * Description: Set device properties based on the improved
3791  *    format sd-config-list.
3792  *
3793  *   Arguments: un - driver soft state (unit) structure
3794  *    name  - supported tunable name
3795  *    value - tunable value
3796  */
3797 static void
3798 sd_set_properties(struct sd_lun *un, char *name, char *value)
3799 {
3800 	char	*endptr = NULL;
3801 	long	val = 0;
3802 
3803 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
3804 		if (strcasecmp(value, "true") == 0) {
3805 			un->un_f_suppress_cache_flush = TRUE;
3806 		} else if (strcasecmp(value, "false") == 0) {
3807 			un->un_f_suppress_cache_flush = FALSE;
3808 		} else {
3809 			goto value_invalid;
3810 		}
3811 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3812 		    "suppress_cache_flush flag set to %d\n",
3813 		    un->un_f_suppress_cache_flush);
3814 		return;
3815 	}
3816 
3817 	if (strcasecmp(name, "controller-type") == 0) {
3818 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3819 			un->un_ctype = val;
3820 		} else {
3821 			goto value_invalid;
3822 		}
3823 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3824 		    "ctype set to %d\n", un->un_ctype);
3825 		return;
3826 	}
3827 
3828 	if (strcasecmp(name, "delay-busy") == 0) {
3829 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3830 			un->un_busy_timeout = drv_usectohz(val / 1000);
3831 		} else {
3832 			goto value_invalid;
3833 		}
3834 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3835 		    "busy_timeout set to %d\n", un->un_busy_timeout);
3836 		return;
3837 	}
3838 
3839 	if (strcasecmp(name, "disksort") == 0) {
3840 		if (strcasecmp(value, "true") == 0) {
3841 			un->un_f_disksort_disabled = FALSE;
3842 		} else if (strcasecmp(value, "false") == 0) {
3843 			un->un_f_disksort_disabled = TRUE;
3844 		} else {
3845 			goto value_invalid;
3846 		}
3847 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3848 		    "disksort disabled flag set to %d\n",
3849 		    un->un_f_disksort_disabled);
3850 		return;
3851 	}
3852 
3853 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
3854 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3855 			un->un_reserve_release_time = val;
3856 		} else {
3857 			goto value_invalid;
3858 		}
3859 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3860 		    "reservation release timeout set to %d\n",
3861 		    un->un_reserve_release_time);
3862 		return;
3863 	}
3864 
3865 	if (strcasecmp(name, "reset-lun") == 0) {
3866 		if (strcasecmp(value, "true") == 0) {
3867 			un->un_f_lun_reset_enabled = TRUE;
3868 		} else if (strcasecmp(value, "false") == 0) {
3869 			un->un_f_lun_reset_enabled = FALSE;
3870 		} else {
3871 			goto value_invalid;
3872 		}
3873 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3874 		    "lun reset enabled flag set to %d\n",
3875 		    un->un_f_lun_reset_enabled);
3876 		return;
3877 	}
3878 
3879 	if (strcasecmp(name, "retries-busy") == 0) {
3880 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3881 			un->un_busy_retry_count = val;
3882 		} else {
3883 			goto value_invalid;
3884 		}
3885 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3886 		    "busy retry count set to %d\n", un->un_busy_retry_count);
3887 		return;
3888 	}
3889 
3890 	if (strcasecmp(name, "retries-timeout") == 0) {
3891 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3892 			un->un_retry_count = val;
3893 		} else {
3894 			goto value_invalid;
3895 		}
3896 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3897 		    "timeout retry count set to %d\n", un->un_retry_count);
3898 		return;
3899 	}
3900 
3901 	if (strcasecmp(name, "retries-notready") == 0) {
3902 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3903 			un->un_notready_retry_count = val;
3904 		} else {
3905 			goto value_invalid;
3906 		}
3907 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3908 		    "notready retry count set to %d\n",
3909 		    un->un_notready_retry_count);
3910 		return;
3911 	}
3912 
3913 	if (strcasecmp(name, "retries-reset") == 0) {
3914 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3915 			un->un_reset_retry_count = val;
3916 		} else {
3917 			goto value_invalid;
3918 		}
3919 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3920 		    "reset retry count set to %d\n",
3921 		    un->un_reset_retry_count);
3922 		return;
3923 	}
3924 
3925 	if (strcasecmp(name, "throttle-max") == 0) {
3926 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3927 			un->un_saved_throttle = un->un_throttle = val;
3928 		} else {
3929 			goto value_invalid;
3930 		}
3931 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3932 		    "throttle set to %d\n", un->un_throttle);
3933 	}
3934 
3935 	if (strcasecmp(name, "throttle-min") == 0) {
3936 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3937 			un->un_min_throttle = val;
3938 		} else {
3939 			goto value_invalid;
3940 		}
3941 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3942 		    "min throttle set to %d\n", un->un_min_throttle);
3943 	}
3944 
3945 	/*
3946 	 * Validate the throttle values.
3947 	 * If any of the numbers are invalid, set everything to defaults.
3948 	 */
3949 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
3950 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
3951 	    (un->un_min_throttle > un->un_throttle)) {
3952 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
3953 		un->un_min_throttle = sd_min_throttle;
3954 	}
3955 	return;
3956 
3957 value_invalid:
3958 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3959 	    "value of prop %s is invalid\n", name);
3960 }
3961 
3962 /*
3963  *    Function: sd_get_tunables_from_conf()
3964  *
3965  *
3966  *    This function reads the data list from the sd.conf file and pulls
3967  *    the values that can have numeric values as arguments and places
3968  *    the values in the appropriate sd_tunables member.
3969  *    Since the order of the data list members varies across platforms
3970  *    This function reads them from the data list in a platform specific
3971  *    order and places them into the correct sd_tunable member that is
3972  *    consistent across all platforms.
3973  */
3974 static void
3975 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3976     sd_tunables *values)
3977 {
3978 	int i;
3979 	int mask;
3980 
3981 	bzero(values, sizeof (sd_tunables));
3982 
3983 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3984 
3985 		mask = 1 << i;
3986 		if (mask > flags) {
3987 			break;
3988 		}
3989 
3990 		switch (mask & flags) {
3991 		case 0:	/* This mask bit not set in flags */
3992 			continue;
3993 		case SD_CONF_BSET_THROTTLE:
3994 			values->sdt_throttle = data_list[i];
3995 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3996 			    "sd_get_tunables_from_conf: throttle = %d\n",
3997 			    values->sdt_throttle);
3998 			break;
3999 		case SD_CONF_BSET_CTYPE:
4000 			values->sdt_ctype = data_list[i];
4001 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4002 			    "sd_get_tunables_from_conf: ctype = %d\n",
4003 			    values->sdt_ctype);
4004 			break;
4005 		case SD_CONF_BSET_NRR_COUNT:
4006 			values->sdt_not_rdy_retries = data_list[i];
4007 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4008 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4009 			    values->sdt_not_rdy_retries);
4010 			break;
4011 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4012 			values->sdt_busy_retries = data_list[i];
4013 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4014 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4015 			    values->sdt_busy_retries);
4016 			break;
4017 		case SD_CONF_BSET_RST_RETRIES:
4018 			values->sdt_reset_retries = data_list[i];
4019 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4020 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4021 			    values->sdt_reset_retries);
4022 			break;
4023 		case SD_CONF_BSET_RSV_REL_TIME:
4024 			values->sdt_reserv_rel_time = data_list[i];
4025 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4026 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4027 			    values->sdt_reserv_rel_time);
4028 			break;
4029 		case SD_CONF_BSET_MIN_THROTTLE:
4030 			values->sdt_min_throttle = data_list[i];
4031 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4032 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4033 			    values->sdt_min_throttle);
4034 			break;
4035 		case SD_CONF_BSET_DISKSORT_DISABLED:
4036 			values->sdt_disk_sort_dis = data_list[i];
4037 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4038 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4039 			    values->sdt_disk_sort_dis);
4040 			break;
4041 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4042 			values->sdt_lun_reset_enable = data_list[i];
4043 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4044 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4045 			    "\n", values->sdt_lun_reset_enable);
4046 			break;
4047 		case SD_CONF_BSET_CACHE_IS_NV:
4048 			values->sdt_suppress_cache_flush = data_list[i];
4049 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4050 			    "sd_get_tunables_from_conf: \
4051 			    suppress_cache_flush = %d"
4052 			    "\n", values->sdt_suppress_cache_flush);
4053 			break;
4054 		}
4055 	}
4056 }
4057 
4058 /*
4059  *    Function: sd_process_sdconf_table
4060  *
4061  * Description: Search the static configuration table for a match on the
4062  *		inquiry vid/pid and update the driver soft state structure
4063  *		according to the table property values for the device.
4064  *
4065  *		The form of a configuration table entry is:
4066  *		  <vid+pid>,<flags>,<property-data>
4067  *		  "SEAGATE ST42400N",1,0x40000,
4068  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4069  *
4070  *   Arguments: un - driver soft state (unit) structure
4071  */
4072 
4073 static void
4074 sd_process_sdconf_table(struct sd_lun *un)
4075 {
4076 	char	*id = NULL;
4077 	int	table_index;
4078 	int	idlen;
4079 
4080 	ASSERT(un != NULL);
4081 	for (table_index = 0; table_index < sd_disk_table_size;
4082 	    table_index++) {
4083 		id = sd_disk_table[table_index].device_id;
4084 		idlen = strlen(id);
4085 		if (idlen == 0) {
4086 			continue;
4087 		}
4088 
4089 		/*
4090 		 * The static configuration table currently does not
4091 		 * implement version 10 properties. Additionally,
4092 		 * multiple data-property-name entries are not
4093 		 * implemented in the static configuration table.
4094 		 */
4095 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4096 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4097 			    "sd_process_sdconf_table: disk %s\n", id);
4098 			sd_set_vers1_properties(un,
4099 			    sd_disk_table[table_index].flags,
4100 			    sd_disk_table[table_index].properties);
4101 			break;
4102 		}
4103 	}
4104 }
4105 
4106 
4107 /*
4108  *    Function: sd_sdconf_id_match
4109  *
4110  * Description: This local function implements a case sensitive vid/pid
4111  *		comparison as well as the boundary cases of wild card and
4112  *		multiple blanks.
4113  *
4114  *		Note: An implicit assumption made here is that the scsi
4115  *		inquiry structure will always keep the vid, pid and
4116  *		revision strings in consecutive sequence, so they can be
4117  *		read as a single string. If this assumption is not the
4118  *		case, a separate string, to be used for the check, needs
4119  *		to be built with these strings concatenated.
4120  *
4121  *   Arguments: un - driver soft state (unit) structure
4122  *		id - table or config file vid/pid
4123  *		idlen  - length of the vid/pid (bytes)
4124  *
4125  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4126  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4127  */
4128 
4129 static int
4130 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4131 {
4132 	struct scsi_inquiry	*sd_inq;
4133 	int 			rval = SD_SUCCESS;
4134 
4135 	ASSERT(un != NULL);
4136 	sd_inq = un->un_sd->sd_inq;
4137 	ASSERT(id != NULL);
4138 
4139 	/*
4140 	 * We use the inq_vid as a pointer to a buffer containing the
4141 	 * vid and pid and use the entire vid/pid length of the table
4142 	 * entry for the comparison. This works because the inq_pid
4143 	 * data member follows inq_vid in the scsi_inquiry structure.
4144 	 */
4145 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4146 		/*
4147 		 * The user id string is compared to the inquiry vid/pid
4148 		 * using a case insensitive comparison and ignoring
4149 		 * multiple spaces.
4150 		 */
4151 		rval = sd_blank_cmp(un, id, idlen);
4152 		if (rval != SD_SUCCESS) {
4153 			/*
4154 			 * User id strings that start and end with a "*"
4155 			 * are a special case. These do not have a
4156 			 * specific vendor, and the product string can
4157 			 * appear anywhere in the 16 byte PID portion of
4158 			 * the inquiry data. This is a simple strstr()
4159 			 * type search for the user id in the inquiry data.
4160 			 */
4161 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4162 				char	*pidptr = &id[1];
4163 				int	i;
4164 				int	j;
4165 				int	pidstrlen = idlen - 2;
4166 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4167 				    pidstrlen;
4168 
4169 				if (j < 0) {
4170 					return (SD_FAILURE);
4171 				}
4172 				for (i = 0; i < j; i++) {
4173 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4174 					    pidptr, pidstrlen) == 0) {
4175 						rval = SD_SUCCESS;
4176 						break;
4177 					}
4178 				}
4179 			}
4180 		}
4181 	}
4182 	return (rval);
4183 }
4184 
4185 
4186 /*
4187  *    Function: sd_blank_cmp
4188  *
4189  * Description: If the id string starts and ends with a space, treat
4190  *		multiple consecutive spaces as equivalent to a single
4191  *		space. For example, this causes a sd_disk_table entry
4192  *		of " NEC CDROM " to match a device's id string of
4193  *		"NEC       CDROM".
4194  *
4195  *		Note: The success exit condition for this routine is if
4196  *		the pointer to the table entry is '\0' and the cnt of
4197  *		the inquiry length is zero. This will happen if the inquiry
4198  *		string returned by the device is padded with spaces to be
4199  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4200  *		SCSI spec states that the inquiry string is to be padded with
4201  *		spaces.
4202  *
4203  *   Arguments: un - driver soft state (unit) structure
4204  *		id - table or config file vid/pid
4205  *		idlen  - length of the vid/pid (bytes)
4206  *
4207  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4208  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4209  */
4210 
4211 static int
4212 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4213 {
4214 	char		*p1;
4215 	char		*p2;
4216 	int		cnt;
4217 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4218 	    sizeof (SD_INQUIRY(un)->inq_pid);
4219 
4220 	ASSERT(un != NULL);
4221 	p2 = un->un_sd->sd_inq->inq_vid;
4222 	ASSERT(id != NULL);
4223 	p1 = id;
4224 
4225 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4226 		/*
4227 		 * Note: string p1 is terminated by a NUL but string p2
4228 		 * isn't.  The end of p2 is determined by cnt.
4229 		 */
4230 		for (;;) {
4231 			/* skip over any extra blanks in both strings */
4232 			while ((*p1 != '\0') && (*p1 == ' ')) {
4233 				p1++;
4234 			}
4235 			while ((cnt != 0) && (*p2 == ' ')) {
4236 				p2++;
4237 				cnt--;
4238 			}
4239 
4240 			/* compare the two strings */
4241 			if ((cnt == 0) ||
4242 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4243 				break;
4244 			}
4245 			while ((cnt > 0) &&
4246 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4247 				p1++;
4248 				p2++;
4249 				cnt--;
4250 			}
4251 		}
4252 	}
4253 
4254 	/* return SD_SUCCESS if both strings match */
4255 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4256 }
4257 
4258 
4259 /*
4260  *    Function: sd_chk_vers1_data
4261  *
4262  * Description: Verify the version 1 device properties provided by the
4263  *		user via the configuration file
4264  *
4265  *   Arguments: un	     - driver soft state (unit) structure
4266  *		flags	     - integer mask indicating properties to be set
4267  *		prop_list    - integer list of property values
4268  *		list_len     - number of the elements
4269  *
4270  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4271  *		SD_FAILURE - Indicates the user provided data is invalid
4272  */
4273 
4274 static int
4275 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4276     int list_len, char *dataname_ptr)
4277 {
4278 	int i;
4279 	int mask = 1;
4280 	int index = 0;
4281 
4282 	ASSERT(un != NULL);
4283 
4284 	/* Check for a NULL property name and list */
4285 	if (dataname_ptr == NULL) {
4286 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4287 		    "sd_chk_vers1_data: NULL data property name.");
4288 		return (SD_FAILURE);
4289 	}
4290 	if (prop_list == NULL) {
4291 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4292 		    "sd_chk_vers1_data: %s NULL data property list.",
4293 		    dataname_ptr);
4294 		return (SD_FAILURE);
4295 	}
4296 
4297 	/* Display a warning if undefined bits are set in the flags */
4298 	if (flags & ~SD_CONF_BIT_MASK) {
4299 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4300 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4301 		    "Properties not set.",
4302 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4303 		return (SD_FAILURE);
4304 	}
4305 
4306 	/*
4307 	 * Verify the length of the list by identifying the highest bit set
4308 	 * in the flags and validating that the property list has a length
4309 	 * up to the index of this bit.
4310 	 */
4311 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4312 		if (flags & mask) {
4313 			index++;
4314 		}
4315 		mask = 1 << i;
4316 	}
4317 	if (list_len < (index + 2)) {
4318 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4319 		    "sd_chk_vers1_data: "
4320 		    "Data property list %s size is incorrect. "
4321 		    "Properties not set.", dataname_ptr);
4322 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4323 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4324 		return (SD_FAILURE);
4325 	}
4326 	return (SD_SUCCESS);
4327 }
4328 
4329 
4330 /*
4331  *    Function: sd_set_vers1_properties
4332  *
4333  * Description: Set version 1 device properties based on a property list
4334  *		retrieved from the driver configuration file or static
4335  *		configuration table. Version 1 properties have the format:
4336  *
4337  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4338  *
4339  *		where the prop0 value will be used to set prop0 if bit0
4340  *		is set in the flags
4341  *
4342  *   Arguments: un	     - driver soft state (unit) structure
4343  *		flags	     - integer mask indicating properties to be set
4344  *		prop_list    - integer list of property values
4345  */
4346 
4347 static void
4348 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4349 {
4350 	ASSERT(un != NULL);
4351 
4352 	/*
4353 	 * Set the flag to indicate cache is to be disabled. An attempt
4354 	 * to disable the cache via sd_cache_control() will be made
4355 	 * later during attach once the basic initialization is complete.
4356 	 */
4357 	if (flags & SD_CONF_BSET_NOCACHE) {
4358 		un->un_f_opt_disable_cache = TRUE;
4359 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4360 		    "sd_set_vers1_properties: caching disabled flag set\n");
4361 	}
4362 
4363 	/* CD-specific configuration parameters */
4364 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4365 		un->un_f_cfg_playmsf_bcd = TRUE;
4366 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4367 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4368 	}
4369 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4370 		un->un_f_cfg_readsub_bcd = TRUE;
4371 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4372 		    "sd_set_vers1_properties: readsub_bcd set\n");
4373 	}
4374 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4375 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4376 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4377 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4378 	}
4379 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4380 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4381 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4382 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4383 	}
4384 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4385 		un->un_f_cfg_no_read_header = TRUE;
4386 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4387 		    "sd_set_vers1_properties: no_read_header set\n");
4388 	}
4389 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4390 		un->un_f_cfg_read_cd_xd4 = TRUE;
4391 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4392 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4393 	}
4394 
4395 	/* Support for devices which do not have valid/unique serial numbers */
4396 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4397 		un->un_f_opt_fab_devid = TRUE;
4398 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4399 		    "sd_set_vers1_properties: fab_devid bit set\n");
4400 	}
4401 
4402 	/* Support for user throttle configuration */
4403 	if (flags & SD_CONF_BSET_THROTTLE) {
4404 		ASSERT(prop_list != NULL);
4405 		un->un_saved_throttle = un->un_throttle =
4406 		    prop_list->sdt_throttle;
4407 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4408 		    "sd_set_vers1_properties: throttle set to %d\n",
4409 		    prop_list->sdt_throttle);
4410 	}
4411 
4412 	/* Set the per disk retry count according to the conf file or table. */
4413 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4414 		ASSERT(prop_list != NULL);
4415 		if (prop_list->sdt_not_rdy_retries) {
4416 			un->un_notready_retry_count =
4417 			    prop_list->sdt_not_rdy_retries;
4418 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4419 			    "sd_set_vers1_properties: not ready retry count"
4420 			    " set to %d\n", un->un_notready_retry_count);
4421 		}
4422 	}
4423 
4424 	/* The controller type is reported for generic disk driver ioctls */
4425 	if (flags & SD_CONF_BSET_CTYPE) {
4426 		ASSERT(prop_list != NULL);
4427 		switch (prop_list->sdt_ctype) {
4428 		case CTYPE_CDROM:
4429 			un->un_ctype = prop_list->sdt_ctype;
4430 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4431 			    "sd_set_vers1_properties: ctype set to "
4432 			    "CTYPE_CDROM\n");
4433 			break;
4434 		case CTYPE_CCS:
4435 			un->un_ctype = prop_list->sdt_ctype;
4436 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4437 			    "sd_set_vers1_properties: ctype set to "
4438 			    "CTYPE_CCS\n");
4439 			break;
4440 		case CTYPE_ROD:		/* RW optical */
4441 			un->un_ctype = prop_list->sdt_ctype;
4442 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4443 			    "sd_set_vers1_properties: ctype set to "
4444 			    "CTYPE_ROD\n");
4445 			break;
4446 		default:
4447 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4448 			    "sd_set_vers1_properties: Could not set "
4449 			    "invalid ctype value (%d)",
4450 			    prop_list->sdt_ctype);
4451 		}
4452 	}
4453 
4454 	/* Purple failover timeout */
4455 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4456 		ASSERT(prop_list != NULL);
4457 		un->un_busy_retry_count =
4458 		    prop_list->sdt_busy_retries;
4459 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4460 		    "sd_set_vers1_properties: "
4461 		    "busy retry count set to %d\n",
4462 		    un->un_busy_retry_count);
4463 	}
4464 
4465 	/* Purple reset retry count */
4466 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4467 		ASSERT(prop_list != NULL);
4468 		un->un_reset_retry_count =
4469 		    prop_list->sdt_reset_retries;
4470 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4471 		    "sd_set_vers1_properties: "
4472 		    "reset retry count set to %d\n",
4473 		    un->un_reset_retry_count);
4474 	}
4475 
4476 	/* Purple reservation release timeout */
4477 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4478 		ASSERT(prop_list != NULL);
4479 		un->un_reserve_release_time =
4480 		    prop_list->sdt_reserv_rel_time;
4481 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4482 		    "sd_set_vers1_properties: "
4483 		    "reservation release timeout set to %d\n",
4484 		    un->un_reserve_release_time);
4485 	}
4486 
4487 	/*
4488 	 * Driver flag telling the driver to verify that no commands are pending
4489 	 * for a device before issuing a Test Unit Ready. This is a workaround
4490 	 * for a firmware bug in some Seagate eliteI drives.
4491 	 */
4492 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4493 		un->un_f_cfg_tur_check = TRUE;
4494 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4495 		    "sd_set_vers1_properties: tur queue check set\n");
4496 	}
4497 
4498 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4499 		un->un_min_throttle = prop_list->sdt_min_throttle;
4500 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4501 		    "sd_set_vers1_properties: min throttle set to %d\n",
4502 		    un->un_min_throttle);
4503 	}
4504 
4505 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4506 		un->un_f_disksort_disabled =
4507 		    (prop_list->sdt_disk_sort_dis != 0) ?
4508 		    TRUE : FALSE;
4509 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4510 		    "sd_set_vers1_properties: disksort disabled "
4511 		    "flag set to %d\n",
4512 		    prop_list->sdt_disk_sort_dis);
4513 	}
4514 
4515 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4516 		un->un_f_lun_reset_enabled =
4517 		    (prop_list->sdt_lun_reset_enable != 0) ?
4518 		    TRUE : FALSE;
4519 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4520 		    "sd_set_vers1_properties: lun reset enabled "
4521 		    "flag set to %d\n",
4522 		    prop_list->sdt_lun_reset_enable);
4523 	}
4524 
4525 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4526 		un->un_f_suppress_cache_flush =
4527 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4528 		    TRUE : FALSE;
4529 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4530 		    "sd_set_vers1_properties: suppress_cache_flush "
4531 		    "flag set to %d\n",
4532 		    prop_list->sdt_suppress_cache_flush);
4533 	}
4534 
4535 	/*
4536 	 * Validate the throttle values.
4537 	 * If any of the numbers are invalid, set everything to defaults.
4538 	 */
4539 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4540 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4541 	    (un->un_min_throttle > un->un_throttle)) {
4542 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4543 		un->un_min_throttle = sd_min_throttle;
4544 	}
4545 }
4546 
4547 /*
4548  *   Function: sd_is_lsi()
4549  *
4550  *   Description: Check for lsi devices, step through the static device
4551  *	table to match vid/pid.
4552  *
4553  *   Args: un - ptr to sd_lun
4554  *
4555  *   Notes:  When creating new LSI property, need to add the new LSI property
4556  *		to this function.
4557  */
4558 static void
4559 sd_is_lsi(struct sd_lun *un)
4560 {
4561 	char	*id = NULL;
4562 	int	table_index;
4563 	int	idlen;
4564 	void	*prop;
4565 
4566 	ASSERT(un != NULL);
4567 	for (table_index = 0; table_index < sd_disk_table_size;
4568 	    table_index++) {
4569 		id = sd_disk_table[table_index].device_id;
4570 		idlen = strlen(id);
4571 		if (idlen == 0) {
4572 			continue;
4573 		}
4574 
4575 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4576 			prop = sd_disk_table[table_index].properties;
4577 			if (prop == &lsi_properties ||
4578 			    prop == &lsi_oem_properties ||
4579 			    prop == &lsi_properties_scsi ||
4580 			    prop == &symbios_properties) {
4581 				un->un_f_cfg_is_lsi = TRUE;
4582 			}
4583 			break;
4584 		}
4585 	}
4586 }
4587 
4588 /*
4589  *    Function: sd_get_physical_geometry
4590  *
4591  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4592  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4593  *		target, and use this information to initialize the physical
4594  *		geometry cache specified by pgeom_p.
4595  *
4596  *		MODE SENSE is an optional command, so failure in this case
4597  *		does not necessarily denote an error. We want to use the
4598  *		MODE SENSE commands to derive the physical geometry of the
4599  *		device, but if either command fails, the logical geometry is
4600  *		used as the fallback for disk label geometry in cmlb.
4601  *
4602  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4603  *		have already been initialized for the current target and
4604  *		that the current values be passed as args so that we don't
4605  *		end up ever trying to use -1 as a valid value. This could
4606  *		happen if either value is reset while we're not holding
4607  *		the mutex.
4608  *
4609  *   Arguments: un - driver soft state (unit) structure
4610  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4611  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4612  *			to use the USCSI "direct" chain and bypass the normal
4613  *			command waitq.
4614  *
4615  *     Context: Kernel thread only (can sleep).
4616  */
4617 
4618 static int
4619 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4620 	diskaddr_t capacity, int lbasize, int path_flag)
4621 {
4622 	struct	mode_format	*page3p;
4623 	struct	mode_geometry	*page4p;
4624 	struct	mode_header	*headerp;
4625 	int	sector_size;
4626 	int	nsect;
4627 	int	nhead;
4628 	int	ncyl;
4629 	int	intrlv;
4630 	int	spc;
4631 	diskaddr_t	modesense_capacity;
4632 	int	rpm;
4633 	int	bd_len;
4634 	int	mode_header_length;
4635 	uchar_t	*p3bufp;
4636 	uchar_t	*p4bufp;
4637 	int	cdbsize;
4638 	int 	ret = EIO;
4639 	sd_ssc_t *ssc;
4640 	int	status;
4641 
4642 	ASSERT(un != NULL);
4643 
4644 	if (lbasize == 0) {
4645 		if (ISCD(un)) {
4646 			lbasize = 2048;
4647 		} else {
4648 			lbasize = un->un_sys_blocksize;
4649 		}
4650 	}
4651 	pgeom_p->g_secsize = (unsigned short)lbasize;
4652 
4653 	/*
4654 	 * If the unit is a cd/dvd drive MODE SENSE page three
4655 	 * and MODE SENSE page four are reserved (see SBC spec
4656 	 * and MMC spec). To prevent soft errors just return
4657 	 * using the default LBA size.
4658 	 */
4659 	if (ISCD(un))
4660 		return (ret);
4661 
4662 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4663 
4664 	/*
4665 	 * Retrieve MODE SENSE page 3 - Format Device Page
4666 	 */
4667 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4668 	ssc = sd_ssc_init(un);
4669 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4670 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4671 	if (status != 0) {
4672 		SD_ERROR(SD_LOG_COMMON, un,
4673 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4674 		goto page3_exit;
4675 	}
4676 
4677 	/*
4678 	 * Determine size of Block Descriptors in order to locate the mode
4679 	 * page data.  ATAPI devices return 0, SCSI devices should return
4680 	 * MODE_BLK_DESC_LENGTH.
4681 	 */
4682 	headerp = (struct mode_header *)p3bufp;
4683 	if (un->un_f_cfg_is_atapi == TRUE) {
4684 		struct mode_header_grp2 *mhp =
4685 		    (struct mode_header_grp2 *)headerp;
4686 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4687 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4688 	} else {
4689 		mode_header_length = MODE_HEADER_LENGTH;
4690 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4691 	}
4692 
4693 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4694 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4695 		    "received unexpected bd_len of %d, page3\n", bd_len);
4696 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4697 		    "sd_get_physical_geometry: received unexpected "
4698 		    "bd_len of %d, page3", bd_len);
4699 		status = EIO;
4700 		goto page3_exit;
4701 	}
4702 
4703 	page3p = (struct mode_format *)
4704 	    ((caddr_t)headerp + mode_header_length + bd_len);
4705 
4706 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4707 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4708 		    "mode sense pg3 code mismatch %d\n",
4709 		    page3p->mode_page.code);
4710 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4711 		    "sd_get_physical_geometry: mode sense pg3 code "
4712 		    "mismatch %d", page3p->mode_page.code);
4713 		status = EIO;
4714 		goto page3_exit;
4715 	}
4716 
4717 	/*
4718 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4719 	 * complete successfully; otherwise, revert to the logical geometry.
4720 	 * So, we need to save everything in temporary variables.
4721 	 */
4722 	sector_size = BE_16(page3p->data_bytes_sect);
4723 
4724 	/*
4725 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4726 	 */
4727 	if (sector_size == 0) {
4728 		sector_size = un->un_sys_blocksize;
4729 	} else {
4730 		sector_size &= ~(un->un_sys_blocksize - 1);
4731 	}
4732 
4733 	nsect  = BE_16(page3p->sect_track);
4734 	intrlv = BE_16(page3p->interleave);
4735 
4736 	SD_INFO(SD_LOG_COMMON, un,
4737 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4738 	SD_INFO(SD_LOG_COMMON, un,
4739 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4740 	    page3p->mode_page.code, nsect, sector_size);
4741 	SD_INFO(SD_LOG_COMMON, un,
4742 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4743 	    BE_16(page3p->track_skew),
4744 	    BE_16(page3p->cylinder_skew));
4745 
4746 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4747 
4748 	/*
4749 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4750 	 */
4751 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4752 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
4753 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
4754 	if (status != 0) {
4755 		SD_ERROR(SD_LOG_COMMON, un,
4756 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4757 		goto page4_exit;
4758 	}
4759 
4760 	/*
4761 	 * Determine size of Block Descriptors in order to locate the mode
4762 	 * page data.  ATAPI devices return 0, SCSI devices should return
4763 	 * MODE_BLK_DESC_LENGTH.
4764 	 */
4765 	headerp = (struct mode_header *)p4bufp;
4766 	if (un->un_f_cfg_is_atapi == TRUE) {
4767 		struct mode_header_grp2 *mhp =
4768 		    (struct mode_header_grp2 *)headerp;
4769 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4770 	} else {
4771 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4772 	}
4773 
4774 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4775 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4776 		    "received unexpected bd_len of %d, page4\n", bd_len);
4777 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4778 		    "sd_get_physical_geometry: received unexpected "
4779 		    "bd_len of %d, page4", bd_len);
4780 		status = EIO;
4781 		goto page4_exit;
4782 	}
4783 
4784 	page4p = (struct mode_geometry *)
4785 	    ((caddr_t)headerp + mode_header_length + bd_len);
4786 
4787 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4788 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4789 		    "mode sense pg4 code mismatch %d\n",
4790 		    page4p->mode_page.code);
4791 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4792 		    "sd_get_physical_geometry: mode sense pg4 code "
4793 		    "mismatch %d", page4p->mode_page.code);
4794 		status = EIO;
4795 		goto page4_exit;
4796 	}
4797 
4798 	/*
4799 	 * Stash the data now, after we know that both commands completed.
4800 	 */
4801 
4802 
4803 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4804 	spc   = nhead * nsect;
4805 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4806 	rpm   = BE_16(page4p->rpm);
4807 
4808 	modesense_capacity = spc * ncyl;
4809 
4810 	SD_INFO(SD_LOG_COMMON, un,
4811 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4812 	SD_INFO(SD_LOG_COMMON, un,
4813 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4814 	SD_INFO(SD_LOG_COMMON, un,
4815 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4816 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4817 	    (void *)pgeom_p, capacity);
4818 
4819 	/*
4820 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4821 	 * the product of C * H * S returned by MODE SENSE >= that returned
4822 	 * by read capacity. This is an idiosyncrasy of the original x86
4823 	 * disk subsystem.
4824 	 */
4825 	if (modesense_capacity >= capacity) {
4826 		SD_INFO(SD_LOG_COMMON, un,
4827 		    "sd_get_physical_geometry: adjusting acyl; "
4828 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4829 		    (modesense_capacity - capacity + spc - 1) / spc);
4830 		if (sector_size != 0) {
4831 			/* 1243403: NEC D38x7 drives don't support sec size */
4832 			pgeom_p->g_secsize = (unsigned short)sector_size;
4833 		}
4834 		pgeom_p->g_nsect    = (unsigned short)nsect;
4835 		pgeom_p->g_nhead    = (unsigned short)nhead;
4836 		pgeom_p->g_capacity = capacity;
4837 		pgeom_p->g_acyl	    =
4838 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4839 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4840 	}
4841 
4842 	pgeom_p->g_rpm    = (unsigned short)rpm;
4843 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4844 	ret = 0;
4845 
4846 	SD_INFO(SD_LOG_COMMON, un,
4847 	    "sd_get_physical_geometry: mode sense geometry:\n");
4848 	SD_INFO(SD_LOG_COMMON, un,
4849 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4850 	    nsect, sector_size, intrlv);
4851 	SD_INFO(SD_LOG_COMMON, un,
4852 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4853 	    nhead, ncyl, rpm, modesense_capacity);
4854 	SD_INFO(SD_LOG_COMMON, un,
4855 	    "sd_get_physical_geometry: (cached)\n");
4856 	SD_INFO(SD_LOG_COMMON, un,
4857 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4858 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4859 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4860 	SD_INFO(SD_LOG_COMMON, un,
4861 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4862 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4863 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4864 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4865 
4866 page4_exit:
4867 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4868 
4869 page3_exit:
4870 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4871 
4872 	if (status != 0) {
4873 		if (status == EIO) {
4874 			/*
4875 			 * Some disks do not support mode sense(6), we
4876 			 * should ignore this kind of error(sense key is
4877 			 * 0x5 - illegal request).
4878 			 */
4879 			uint8_t *sensep;
4880 			int senlen;
4881 
4882 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
4883 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
4884 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
4885 
4886 			if (senlen > 0 &&
4887 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
4888 				sd_ssc_assessment(ssc,
4889 				    SD_FMT_IGNORE_COMPROMISE);
4890 			} else {
4891 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
4892 			}
4893 		} else {
4894 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
4895 		}
4896 	}
4897 	sd_ssc_fini(ssc);
4898 	return (ret);
4899 }
4900 
4901 /*
4902  *    Function: sd_get_virtual_geometry
4903  *
4904  * Description: Ask the controller to tell us about the target device.
4905  *
4906  *   Arguments: un - pointer to softstate
4907  *		capacity - disk capacity in #blocks
4908  *		lbasize - disk block size in bytes
4909  *
4910  *     Context: Kernel thread only
4911  */
4912 
4913 static int
4914 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4915     diskaddr_t capacity, int lbasize)
4916 {
4917 	uint_t	geombuf;
4918 	int	spc;
4919 
4920 	ASSERT(un != NULL);
4921 
4922 	/* Set sector size, and total number of sectors */
4923 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4924 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4925 
4926 	/* Let the HBA tell us its geometry */
4927 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4928 
4929 	/* A value of -1 indicates an undefined "geometry" property */
4930 	if (geombuf == (-1)) {
4931 		return (EINVAL);
4932 	}
4933 
4934 	/* Initialize the logical geometry cache. */
4935 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4936 	lgeom_p->g_nsect   = geombuf & 0xffff;
4937 	lgeom_p->g_secsize = un->un_sys_blocksize;
4938 
4939 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4940 
4941 	/*
4942 	 * Note: The driver originally converted the capacity value from
4943 	 * target blocks to system blocks. However, the capacity value passed
4944 	 * to this routine is already in terms of system blocks (this scaling
4945 	 * is done when the READ CAPACITY command is issued and processed).
4946 	 * This 'error' may have gone undetected because the usage of g_ncyl
4947 	 * (which is based upon g_capacity) is very limited within the driver
4948 	 */
4949 	lgeom_p->g_capacity = capacity;
4950 
4951 	/*
4952 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4953 	 * hba may return zero values if the device has been removed.
4954 	 */
4955 	if (spc == 0) {
4956 		lgeom_p->g_ncyl = 0;
4957 	} else {
4958 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4959 	}
4960 	lgeom_p->g_acyl = 0;
4961 
4962 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4963 	return (0);
4964 
4965 }
4966 /*
4967  *    Function: sd_update_block_info
4968  *
4969  * Description: Calculate a byte count to sector count bitshift value
4970  *		from sector size.
4971  *
4972  *   Arguments: un: unit struct.
4973  *		lbasize: new target sector size
4974  *		capacity: new target capacity, ie. block count
4975  *
4976  *     Context: Kernel thread context
4977  */
4978 
4979 static void
4980 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4981 {
4982 	if (lbasize != 0) {
4983 		un->un_tgt_blocksize = lbasize;
4984 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4985 	}
4986 
4987 	if (capacity != 0) {
4988 		un->un_blockcount		= capacity;
4989 		un->un_f_blockcount_is_valid	= TRUE;
4990 	}
4991 }
4992 
4993 
4994 /*
4995  *    Function: sd_register_devid
4996  *
4997  * Description: This routine will obtain the device id information from the
4998  *		target, obtain the serial number, and register the device
4999  *		id with the ddi framework.
5000  *
5001  *   Arguments: devi - the system's dev_info_t for the device.
5002  *		un - driver soft state (unit) structure
5003  *		reservation_flag - indicates if a reservation conflict
5004  *		occurred during attach
5005  *
5006  *     Context: Kernel Thread
5007  */
5008 static void
5009 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5010 {
5011 	int		rval		= 0;
5012 	uchar_t		*inq80		= NULL;
5013 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5014 	size_t		inq80_resid	= 0;
5015 	uchar_t		*inq83		= NULL;
5016 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5017 	size_t		inq83_resid	= 0;
5018 	int		dlen, len;
5019 	char		*sn;
5020 	struct sd_lun	*un;
5021 
5022 	ASSERT(ssc != NULL);
5023 	un = ssc->ssc_un;
5024 	ASSERT(un != NULL);
5025 	ASSERT(mutex_owned(SD_MUTEX(un)));
5026 	ASSERT((SD_DEVINFO(un)) == devi);
5027 
5028 	/*
5029 	 * If transport has already registered a devid for this target
5030 	 * then that takes precedence over the driver's determination
5031 	 * of the devid.
5032 	 */
5033 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5034 		ASSERT(un->un_devid);
5035 		return; /* use devid registered by the transport */
5036 	}
5037 
5038 	/*
5039 	 * This is the case of antiquated Sun disk drives that have the
5040 	 * FAB_DEVID property set in the disk_table.  These drives
5041 	 * manage the devid's by storing them in last 2 available sectors
5042 	 * on the drive and have them fabricated by the ddi layer by calling
5043 	 * ddi_devid_init and passing the DEVID_FAB flag.
5044 	 */
5045 	if (un->un_f_opt_fab_devid == TRUE) {
5046 		/*
5047 		 * Depending on EINVAL isn't reliable, since a reserved disk
5048 		 * may result in invalid geometry, so check to make sure a
5049 		 * reservation conflict did not occur during attach.
5050 		 */
5051 		if ((sd_get_devid(ssc) == EINVAL) &&
5052 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5053 			/*
5054 			 * The devid is invalid AND there is no reservation
5055 			 * conflict.  Fabricate a new devid.
5056 			 */
5057 			(void) sd_create_devid(ssc);
5058 		}
5059 
5060 		/* Register the devid if it exists */
5061 		if (un->un_devid != NULL) {
5062 			(void) ddi_devid_register(SD_DEVINFO(un),
5063 			    un->un_devid);
5064 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5065 			    "sd_register_devid: Devid Fabricated\n");
5066 		}
5067 		return;
5068 	}
5069 
5070 	/*
5071 	 * We check the availability of the World Wide Name (0x83) and Unit
5072 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5073 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5074 	 * 0x83 is available, that is the best choice.  Our next choice is
5075 	 * 0x80.  If neither are available, we munge the devid from the device
5076 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5077 	 * to fabricate a devid for non-Sun qualified disks.
5078 	 */
5079 	if (sd_check_vpd_page_support(ssc) == 0) {
5080 		/* collect page 80 data if available */
5081 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5082 
5083 			mutex_exit(SD_MUTEX(un));
5084 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5085 
5086 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5087 			    0x01, 0x80, &inq80_resid);
5088 
5089 			if (rval != 0) {
5090 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5091 				kmem_free(inq80, inq80_len);
5092 				inq80 = NULL;
5093 				inq80_len = 0;
5094 			} else if (ddi_prop_exists(
5095 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5096 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5097 			    INQUIRY_SERIAL_NO) == 0) {
5098 				/*
5099 				 * If we don't already have a serial number
5100 				 * property, do quick verify of data returned
5101 				 * and define property.
5102 				 */
5103 				dlen = inq80_len - inq80_resid;
5104 				len = (size_t)inq80[3];
5105 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5106 					/*
5107 					 * Ensure sn termination, skip leading
5108 					 * blanks, and create property
5109 					 * 'inquiry-serial-no'.
5110 					 */
5111 					sn = (char *)&inq80[4];
5112 					sn[len] = 0;
5113 					while (*sn && (*sn == ' '))
5114 						sn++;
5115 					if (*sn) {
5116 						(void) ddi_prop_update_string(
5117 						    DDI_DEV_T_NONE,
5118 						    SD_DEVINFO(un),
5119 						    INQUIRY_SERIAL_NO, sn);
5120 					}
5121 				}
5122 			}
5123 			mutex_enter(SD_MUTEX(un));
5124 		}
5125 
5126 		/* collect page 83 data if available */
5127 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5128 			mutex_exit(SD_MUTEX(un));
5129 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5130 
5131 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5132 			    0x01, 0x83, &inq83_resid);
5133 
5134 			if (rval != 0) {
5135 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5136 				kmem_free(inq83, inq83_len);
5137 				inq83 = NULL;
5138 				inq83_len = 0;
5139 			}
5140 			mutex_enter(SD_MUTEX(un));
5141 		}
5142 	}
5143 
5144 	/* encode best devid possible based on data available */
5145 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5146 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5147 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5148 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5149 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5150 
5151 		/* devid successfully encoded, register devid */
5152 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5153 
5154 	} else {
5155 		/*
5156 		 * Unable to encode a devid based on data available.
5157 		 * This is not a Sun qualified disk.  Older Sun disk
5158 		 * drives that have the SD_FAB_DEVID property
5159 		 * set in the disk_table and non Sun qualified
5160 		 * disks are treated in the same manner.  These
5161 		 * drives manage the devid's by storing them in
5162 		 * last 2 available sectors on the drive and
5163 		 * have them fabricated by the ddi layer by
5164 		 * calling ddi_devid_init and passing the
5165 		 * DEVID_FAB flag.
5166 		 * Create a fabricate devid only if there's no
5167 		 * fabricate devid existed.
5168 		 */
5169 		if (sd_get_devid(ssc) == EINVAL) {
5170 			(void) sd_create_devid(ssc);
5171 		}
5172 		un->un_f_opt_fab_devid = TRUE;
5173 
5174 		/* Register the devid if it exists */
5175 		if (un->un_devid != NULL) {
5176 			(void) ddi_devid_register(SD_DEVINFO(un),
5177 			    un->un_devid);
5178 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5179 			    "sd_register_devid: devid fabricated using "
5180 			    "ddi framework\n");
5181 		}
5182 	}
5183 
5184 	/* clean up resources */
5185 	if (inq80 != NULL) {
5186 		kmem_free(inq80, inq80_len);
5187 	}
5188 	if (inq83 != NULL) {
5189 		kmem_free(inq83, inq83_len);
5190 	}
5191 }
5192 
5193 
5194 
5195 /*
5196  *    Function: sd_get_devid
5197  *
5198  * Description: This routine will return 0 if a valid device id has been
5199  *		obtained from the target and stored in the soft state. If a
5200  *		valid device id has not been previously read and stored, a
5201  *		read attempt will be made.
5202  *
5203  *   Arguments: un - driver soft state (unit) structure
5204  *
5205  * Return Code: 0 if we successfully get the device id
5206  *
5207  *     Context: Kernel Thread
5208  */
5209 
5210 static int
5211 sd_get_devid(sd_ssc_t *ssc)
5212 {
5213 	struct dk_devid		*dkdevid;
5214 	ddi_devid_t		tmpid;
5215 	uint_t			*ip;
5216 	size_t			sz;
5217 	diskaddr_t		blk;
5218 	int			status;
5219 	int			chksum;
5220 	int			i;
5221 	size_t			buffer_size;
5222 	struct sd_lun		*un;
5223 
5224 	ASSERT(ssc != NULL);
5225 	un = ssc->ssc_un;
5226 	ASSERT(un != NULL);
5227 	ASSERT(mutex_owned(SD_MUTEX(un)));
5228 
5229 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5230 	    un);
5231 
5232 	if (un->un_devid != NULL) {
5233 		return (0);
5234 	}
5235 
5236 	mutex_exit(SD_MUTEX(un));
5237 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5238 	    (void *)SD_PATH_DIRECT) != 0) {
5239 		mutex_enter(SD_MUTEX(un));
5240 		return (EINVAL);
5241 	}
5242 
5243 	/*
5244 	 * Read and verify device id, stored in the reserved cylinders at the
5245 	 * end of the disk. Backup label is on the odd sectors of the last
5246 	 * track of the last cylinder. Device id will be on track of the next
5247 	 * to last cylinder.
5248 	 */
5249 	mutex_enter(SD_MUTEX(un));
5250 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5251 	mutex_exit(SD_MUTEX(un));
5252 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5253 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5254 	    SD_PATH_DIRECT);
5255 
5256 	if (status != 0) {
5257 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5258 		goto error;
5259 	}
5260 
5261 	/* Validate the revision */
5262 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5263 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5264 		status = EINVAL;
5265 		goto error;
5266 	}
5267 
5268 	/* Calculate the checksum */
5269 	chksum = 0;
5270 	ip = (uint_t *)dkdevid;
5271 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5272 	    i++) {
5273 		chksum ^= ip[i];
5274 	}
5275 
5276 	/* Compare the checksums */
5277 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5278 		status = EINVAL;
5279 		goto error;
5280 	}
5281 
5282 	/* Validate the device id */
5283 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5284 		status = EINVAL;
5285 		goto error;
5286 	}
5287 
5288 	/*
5289 	 * Store the device id in the driver soft state
5290 	 */
5291 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5292 	tmpid = kmem_alloc(sz, KM_SLEEP);
5293 
5294 	mutex_enter(SD_MUTEX(un));
5295 
5296 	un->un_devid = tmpid;
5297 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5298 
5299 	kmem_free(dkdevid, buffer_size);
5300 
5301 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5302 
5303 	return (status);
5304 error:
5305 	mutex_enter(SD_MUTEX(un));
5306 	kmem_free(dkdevid, buffer_size);
5307 	return (status);
5308 }
5309 
5310 
5311 /*
5312  *    Function: sd_create_devid
5313  *
5314  * Description: This routine will fabricate the device id and write it
5315  *		to the disk.
5316  *
5317  *   Arguments: un - driver soft state (unit) structure
5318  *
5319  * Return Code: value of the fabricated device id
5320  *
5321  *     Context: Kernel Thread
5322  */
5323 
5324 static ddi_devid_t
5325 sd_create_devid(sd_ssc_t *ssc)
5326 {
5327 	struct sd_lun	*un;
5328 
5329 	ASSERT(ssc != NULL);
5330 	un = ssc->ssc_un;
5331 	ASSERT(un != NULL);
5332 
5333 	/* Fabricate the devid */
5334 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5335 	    == DDI_FAILURE) {
5336 		return (NULL);
5337 	}
5338 
5339 	/* Write the devid to disk */
5340 	if (sd_write_deviceid(ssc) != 0) {
5341 		ddi_devid_free(un->un_devid);
5342 		un->un_devid = NULL;
5343 	}
5344 
5345 	return (un->un_devid);
5346 }
5347 
5348 
5349 /*
5350  *    Function: sd_write_deviceid
5351  *
5352  * Description: This routine will write the device id to the disk
5353  *		reserved sector.
5354  *
5355  *   Arguments: un - driver soft state (unit) structure
5356  *
5357  * Return Code: EINVAL
5358  *		value returned by sd_send_scsi_cmd
5359  *
5360  *     Context: Kernel Thread
5361  */
5362 
5363 static int
5364 sd_write_deviceid(sd_ssc_t *ssc)
5365 {
5366 	struct dk_devid		*dkdevid;
5367 	diskaddr_t		blk;
5368 	uint_t			*ip, chksum;
5369 	int			status;
5370 	int			i;
5371 	struct sd_lun		*un;
5372 
5373 	ASSERT(ssc != NULL);
5374 	un = ssc->ssc_un;
5375 	ASSERT(un != NULL);
5376 	ASSERT(mutex_owned(SD_MUTEX(un)));
5377 
5378 	mutex_exit(SD_MUTEX(un));
5379 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5380 	    (void *)SD_PATH_DIRECT) != 0) {
5381 		mutex_enter(SD_MUTEX(un));
5382 		return (-1);
5383 	}
5384 
5385 
5386 	/* Allocate the buffer */
5387 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5388 
5389 	/* Fill in the revision */
5390 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5391 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5392 
5393 	/* Copy in the device id */
5394 	mutex_enter(SD_MUTEX(un));
5395 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5396 	    ddi_devid_sizeof(un->un_devid));
5397 	mutex_exit(SD_MUTEX(un));
5398 
5399 	/* Calculate the checksum */
5400 	chksum = 0;
5401 	ip = (uint_t *)dkdevid;
5402 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5403 	    i++) {
5404 		chksum ^= ip[i];
5405 	}
5406 
5407 	/* Fill-in checksum */
5408 	DKD_FORMCHKSUM(chksum, dkdevid);
5409 
5410 	/* Write the reserved sector */
5411 	status = sd_send_scsi_WRITE(ssc, dkdevid, un->un_sys_blocksize, blk,
5412 	    SD_PATH_DIRECT);
5413 	if (status != 0)
5414 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5415 
5416 	kmem_free(dkdevid, un->un_sys_blocksize);
5417 
5418 	mutex_enter(SD_MUTEX(un));
5419 	return (status);
5420 }
5421 
5422 
5423 /*
5424  *    Function: sd_check_vpd_page_support
5425  *
5426  * Description: This routine sends an inquiry command with the EVPD bit set and
5427  *		a page code of 0x00 to the device. It is used to determine which
5428  *		vital product pages are available to find the devid. We are
5429  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5430  *		device does not support that command.
5431  *
5432  *   Arguments: un  - driver soft state (unit) structure
5433  *
5434  * Return Code: 0 - success
5435  *		1 - check condition
5436  *
5437  *     Context: This routine can sleep.
5438  */
5439 
5440 static int
5441 sd_check_vpd_page_support(sd_ssc_t *ssc)
5442 {
5443 	uchar_t	*page_list	= NULL;
5444 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5445 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5446 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5447 	int    	rval		= 0;
5448 	int	counter;
5449 	struct sd_lun		*un;
5450 
5451 	ASSERT(ssc != NULL);
5452 	un = ssc->ssc_un;
5453 	ASSERT(un != NULL);
5454 	ASSERT(mutex_owned(SD_MUTEX(un)));
5455 
5456 	mutex_exit(SD_MUTEX(un));
5457 
5458 	/*
5459 	 * We'll set the page length to the maximum to save figuring it out
5460 	 * with an additional call.
5461 	 */
5462 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5463 
5464 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5465 	    page_code, NULL);
5466 
5467 	if (rval != 0)
5468 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5469 
5470 	mutex_enter(SD_MUTEX(un));
5471 
5472 	/*
5473 	 * Now we must validate that the device accepted the command, as some
5474 	 * drives do not support it.  If the drive does support it, we will
5475 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5476 	 * not, we return -1.
5477 	 */
5478 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5479 		/* Loop to find one of the 2 pages we need */
5480 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5481 
5482 		/*
5483 		 * Pages are returned in ascending order, and 0x83 is what we
5484 		 * are hoping for.
5485 		 */
5486 		while ((page_list[counter] <= 0x86) &&
5487 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5488 		    VPD_HEAD_OFFSET))) {
5489 			/*
5490 			 * Add 3 because page_list[3] is the number of
5491 			 * pages minus 3
5492 			 */
5493 
5494 			switch (page_list[counter]) {
5495 			case 0x00:
5496 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5497 				break;
5498 			case 0x80:
5499 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5500 				break;
5501 			case 0x81:
5502 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5503 				break;
5504 			case 0x82:
5505 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5506 				break;
5507 			case 0x83:
5508 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5509 				break;
5510 			case 0x86:
5511 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5512 				break;
5513 			}
5514 			counter++;
5515 		}
5516 
5517 	} else {
5518 		rval = -1;
5519 
5520 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5521 		    "sd_check_vpd_page_support: This drive does not implement "
5522 		    "VPD pages.\n");
5523 	}
5524 
5525 	kmem_free(page_list, page_length);
5526 
5527 	return (rval);
5528 }
5529 
5530 
5531 /*
5532  *    Function: sd_setup_pm
5533  *
5534  * Description: Initialize Power Management on the device
5535  *
5536  *     Context: Kernel Thread
5537  */
5538 
5539 static void
5540 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5541 {
5542 	uint_t		log_page_size;
5543 	uchar_t		*log_page_data;
5544 	int		rval = 0;
5545 	struct sd_lun	*un;
5546 
5547 	ASSERT(ssc != NULL);
5548 	un = ssc->ssc_un;
5549 	ASSERT(un != NULL);
5550 
5551 	/*
5552 	 * Since we are called from attach, holding a mutex for
5553 	 * un is unnecessary. Because some of the routines called
5554 	 * from here require SD_MUTEX to not be held, assert this
5555 	 * right up front.
5556 	 */
5557 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5558 	/*
5559 	 * Since the sd device does not have the 'reg' property,
5560 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5561 	 * The following code is to tell cpr that this device
5562 	 * DOES need to be suspended and resumed.
5563 	 */
5564 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5565 	    "pm-hardware-state", "needs-suspend-resume");
5566 
5567 	/*
5568 	 * This complies with the new power management framework
5569 	 * for certain desktop machines. Create the pm_components
5570 	 * property as a string array property.
5571 	 */
5572 	if (un->un_f_pm_supported) {
5573 		/*
5574 		 * not all devices have a motor, try it first.
5575 		 * some devices may return ILLEGAL REQUEST, some
5576 		 * will hang
5577 		 * The following START_STOP_UNIT is used to check if target
5578 		 * device has a motor.
5579 		 */
5580 		un->un_f_start_stop_supported = TRUE;
5581 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
5582 		    SD_PATH_DIRECT);
5583 
5584 		if (rval != 0) {
5585 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5586 			un->un_f_start_stop_supported = FALSE;
5587 		}
5588 
5589 		/*
5590 		 * create pm properties anyways otherwise the parent can't
5591 		 * go to sleep
5592 		 */
5593 		(void) sd_create_pm_components(devi, un);
5594 		un->un_f_pm_is_enabled = TRUE;
5595 		return;
5596 	}
5597 
5598 	if (!un->un_f_log_sense_supported) {
5599 		un->un_power_level = SD_SPINDLE_ON;
5600 		un->un_f_pm_is_enabled = FALSE;
5601 		return;
5602 	}
5603 
5604 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5605 
5606 #ifdef	SDDEBUG
5607 	if (sd_force_pm_supported) {
5608 		/* Force a successful result */
5609 		rval = 1;
5610 	}
5611 #endif
5612 
5613 	/*
5614 	 * If the start-stop cycle counter log page is not supported
5615 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5616 	 * then we should not create the pm_components property.
5617 	 */
5618 	if (rval == -1) {
5619 		/*
5620 		 * Error.
5621 		 * Reading log sense failed, most likely this is
5622 		 * an older drive that does not support log sense.
5623 		 * If this fails auto-pm is not supported.
5624 		 */
5625 		un->un_power_level = SD_SPINDLE_ON;
5626 		un->un_f_pm_is_enabled = FALSE;
5627 
5628 	} else if (rval == 0) {
5629 		/*
5630 		 * Page not found.
5631 		 * The start stop cycle counter is implemented as page
5632 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5633 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5634 		 */
5635 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
5636 			/*
5637 			 * Page found, use this one.
5638 			 */
5639 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5640 			un->un_f_pm_is_enabled = TRUE;
5641 		} else {
5642 			/*
5643 			 * Error or page not found.
5644 			 * auto-pm is not supported for this device.
5645 			 */
5646 			un->un_power_level = SD_SPINDLE_ON;
5647 			un->un_f_pm_is_enabled = FALSE;
5648 		}
5649 	} else {
5650 		/*
5651 		 * Page found, use it.
5652 		 */
5653 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5654 		un->un_f_pm_is_enabled = TRUE;
5655 	}
5656 
5657 
5658 	if (un->un_f_pm_is_enabled == TRUE) {
5659 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5660 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5661 
5662 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
5663 		    log_page_size, un->un_start_stop_cycle_page,
5664 		    0x01, 0, SD_PATH_DIRECT);
5665 
5666 		if (rval != 0) {
5667 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5668 		}
5669 
5670 #ifdef	SDDEBUG
5671 		if (sd_force_pm_supported) {
5672 			/* Force a successful result */
5673 			rval = 0;
5674 		}
5675 #endif
5676 
5677 		/*
5678 		 * If the Log sense for Page( Start/stop cycle counter page)
5679 		 * succeeds, then power management is supported and we can
5680 		 * enable auto-pm.
5681 		 */
5682 		if (rval == 0)  {
5683 			(void) sd_create_pm_components(devi, un);
5684 		} else {
5685 			un->un_power_level = SD_SPINDLE_ON;
5686 			un->un_f_pm_is_enabled = FALSE;
5687 		}
5688 
5689 		kmem_free(log_page_data, log_page_size);
5690 	}
5691 }
5692 
5693 
5694 /*
5695  *    Function: sd_create_pm_components
5696  *
5697  * Description: Initialize PM property.
5698  *
5699  *     Context: Kernel thread context
5700  */
5701 
5702 static void
5703 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5704 {
5705 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5706 
5707 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5708 
5709 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5710 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5711 		/*
5712 		 * When components are initially created they are idle,
5713 		 * power up any non-removables.
5714 		 * Note: the return value of pm_raise_power can't be used
5715 		 * for determining if PM should be enabled for this device.
5716 		 * Even if you check the return values and remove this
5717 		 * property created above, the PM framework will not honor the
5718 		 * change after the first call to pm_raise_power. Hence,
5719 		 * removal of that property does not help if pm_raise_power
5720 		 * fails. In the case of removable media, the start/stop
5721 		 * will fail if the media is not present.
5722 		 */
5723 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5724 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5725 			mutex_enter(SD_MUTEX(un));
5726 			un->un_power_level = SD_SPINDLE_ON;
5727 			mutex_enter(&un->un_pm_mutex);
5728 			/* Set to on and not busy. */
5729 			un->un_pm_count = 0;
5730 		} else {
5731 			mutex_enter(SD_MUTEX(un));
5732 			un->un_power_level = SD_SPINDLE_OFF;
5733 			mutex_enter(&un->un_pm_mutex);
5734 			/* Set to off. */
5735 			un->un_pm_count = -1;
5736 		}
5737 		mutex_exit(&un->un_pm_mutex);
5738 		mutex_exit(SD_MUTEX(un));
5739 	} else {
5740 		un->un_power_level = SD_SPINDLE_ON;
5741 		un->un_f_pm_is_enabled = FALSE;
5742 	}
5743 }
5744 
5745 
5746 /*
5747  *    Function: sd_ddi_suspend
5748  *
5749  * Description: Performs system power-down operations. This includes
5750  *		setting the drive state to indicate its suspended so
5751  *		that no new commands will be accepted. Also, wait for
5752  *		all commands that are in transport or queued to a timer
5753  *		for retry to complete. All timeout threads are cancelled.
5754  *
5755  * Return Code: DDI_FAILURE or DDI_SUCCESS
5756  *
5757  *     Context: Kernel thread context
5758  */
5759 
5760 static int
5761 sd_ddi_suspend(dev_info_t *devi)
5762 {
5763 	struct	sd_lun	*un;
5764 	clock_t		wait_cmds_complete;
5765 
5766 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5767 	if (un == NULL) {
5768 		return (DDI_FAILURE);
5769 	}
5770 
5771 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5772 
5773 	mutex_enter(SD_MUTEX(un));
5774 
5775 	/* Return success if the device is already suspended. */
5776 	if (un->un_state == SD_STATE_SUSPENDED) {
5777 		mutex_exit(SD_MUTEX(un));
5778 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5779 		    "device already suspended, exiting\n");
5780 		return (DDI_SUCCESS);
5781 	}
5782 
5783 	/* Return failure if the device is being used by HA */
5784 	if (un->un_resvd_status &
5785 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5786 		mutex_exit(SD_MUTEX(un));
5787 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5788 		    "device in use by HA, exiting\n");
5789 		return (DDI_FAILURE);
5790 	}
5791 
5792 	/*
5793 	 * Return failure if the device is in a resource wait
5794 	 * or power changing state.
5795 	 */
5796 	if ((un->un_state == SD_STATE_RWAIT) ||
5797 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5798 		mutex_exit(SD_MUTEX(un));
5799 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5800 		    "device in resource wait state, exiting\n");
5801 		return (DDI_FAILURE);
5802 	}
5803 
5804 
5805 	un->un_save_state = un->un_last_state;
5806 	New_state(un, SD_STATE_SUSPENDED);
5807 
5808 	/*
5809 	 * Wait for all commands that are in transport or queued to a timer
5810 	 * for retry to complete.
5811 	 *
5812 	 * While waiting, no new commands will be accepted or sent because of
5813 	 * the new state we set above.
5814 	 *
5815 	 * Wait till current operation has completed. If we are in the resource
5816 	 * wait state (with an intr outstanding) then we need to wait till the
5817 	 * intr completes and starts the next cmd. We want to wait for
5818 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5819 	 */
5820 	wait_cmds_complete = ddi_get_lbolt() +
5821 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5822 
5823 	while (un->un_ncmds_in_transport != 0) {
5824 		/*
5825 		 * Fail if commands do not finish in the specified time.
5826 		 */
5827 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5828 		    wait_cmds_complete) == -1) {
5829 			/*
5830 			 * Undo the state changes made above. Everything
5831 			 * must go back to it's original value.
5832 			 */
5833 			Restore_state(un);
5834 			un->un_last_state = un->un_save_state;
5835 			/* Wake up any threads that might be waiting. */
5836 			cv_broadcast(&un->un_suspend_cv);
5837 			mutex_exit(SD_MUTEX(un));
5838 			SD_ERROR(SD_LOG_IO_PM, un,
5839 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5840 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5841 			return (DDI_FAILURE);
5842 		}
5843 	}
5844 
5845 	/*
5846 	 * Cancel SCSI watch thread and timeouts, if any are active
5847 	 */
5848 
5849 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5850 		opaque_t temp_token = un->un_swr_token;
5851 		mutex_exit(SD_MUTEX(un));
5852 		scsi_watch_suspend(temp_token);
5853 		mutex_enter(SD_MUTEX(un));
5854 	}
5855 
5856 	if (un->un_reset_throttle_timeid != NULL) {
5857 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5858 		un->un_reset_throttle_timeid = NULL;
5859 		mutex_exit(SD_MUTEX(un));
5860 		(void) untimeout(temp_id);
5861 		mutex_enter(SD_MUTEX(un));
5862 	}
5863 
5864 	if (un->un_dcvb_timeid != NULL) {
5865 		timeout_id_t temp_id = un->un_dcvb_timeid;
5866 		un->un_dcvb_timeid = NULL;
5867 		mutex_exit(SD_MUTEX(un));
5868 		(void) untimeout(temp_id);
5869 		mutex_enter(SD_MUTEX(un));
5870 	}
5871 
5872 	mutex_enter(&un->un_pm_mutex);
5873 	if (un->un_pm_timeid != NULL) {
5874 		timeout_id_t temp_id = un->un_pm_timeid;
5875 		un->un_pm_timeid = NULL;
5876 		mutex_exit(&un->un_pm_mutex);
5877 		mutex_exit(SD_MUTEX(un));
5878 		(void) untimeout(temp_id);
5879 		mutex_enter(SD_MUTEX(un));
5880 	} else {
5881 		mutex_exit(&un->un_pm_mutex);
5882 	}
5883 
5884 	if (un->un_retry_timeid != NULL) {
5885 		timeout_id_t temp_id = un->un_retry_timeid;
5886 		un->un_retry_timeid = NULL;
5887 		mutex_exit(SD_MUTEX(un));
5888 		(void) untimeout(temp_id);
5889 		mutex_enter(SD_MUTEX(un));
5890 
5891 		if (un->un_retry_bp != NULL) {
5892 			un->un_retry_bp->av_forw = un->un_waitq_headp;
5893 			un->un_waitq_headp = un->un_retry_bp;
5894 			if (un->un_waitq_tailp == NULL) {
5895 				un->un_waitq_tailp = un->un_retry_bp;
5896 			}
5897 			un->un_retry_bp = NULL;
5898 			un->un_retry_statp = NULL;
5899 		}
5900 	}
5901 
5902 	if (un->un_direct_priority_timeid != NULL) {
5903 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5904 		un->un_direct_priority_timeid = NULL;
5905 		mutex_exit(SD_MUTEX(un));
5906 		(void) untimeout(temp_id);
5907 		mutex_enter(SD_MUTEX(un));
5908 	}
5909 
5910 	if (un->un_f_is_fibre == TRUE) {
5911 		/*
5912 		 * Remove callbacks for insert and remove events
5913 		 */
5914 		if (un->un_insert_event != NULL) {
5915 			mutex_exit(SD_MUTEX(un));
5916 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5917 			mutex_enter(SD_MUTEX(un));
5918 			un->un_insert_event = NULL;
5919 		}
5920 
5921 		if (un->un_remove_event != NULL) {
5922 			mutex_exit(SD_MUTEX(un));
5923 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5924 			mutex_enter(SD_MUTEX(un));
5925 			un->un_remove_event = NULL;
5926 		}
5927 	}
5928 
5929 	mutex_exit(SD_MUTEX(un));
5930 
5931 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5932 
5933 	return (DDI_SUCCESS);
5934 }
5935 
5936 
5937 /*
5938  *    Function: sd_ddi_pm_suspend
5939  *
5940  * Description: Set the drive state to low power.
5941  *		Someone else is required to actually change the drive
5942  *		power level.
5943  *
5944  *   Arguments: un - driver soft state (unit) structure
5945  *
5946  * Return Code: DDI_FAILURE or DDI_SUCCESS
5947  *
5948  *     Context: Kernel thread context
5949  */
5950 
5951 static int
5952 sd_ddi_pm_suspend(struct sd_lun *un)
5953 {
5954 	ASSERT(un != NULL);
5955 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5956 
5957 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5958 	mutex_enter(SD_MUTEX(un));
5959 
5960 	/*
5961 	 * Exit if power management is not enabled for this device, or if
5962 	 * the device is being used by HA.
5963 	 */
5964 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5965 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5966 		mutex_exit(SD_MUTEX(un));
5967 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5968 		return (DDI_SUCCESS);
5969 	}
5970 
5971 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5972 	    un->un_ncmds_in_driver);
5973 
5974 	/*
5975 	 * See if the device is not busy, ie.:
5976 	 *    - we have no commands in the driver for this device
5977 	 *    - not waiting for resources
5978 	 */
5979 	if ((un->un_ncmds_in_driver == 0) &&
5980 	    (un->un_state != SD_STATE_RWAIT)) {
5981 		/*
5982 		 * The device is not busy, so it is OK to go to low power state.
5983 		 * Indicate low power, but rely on someone else to actually
5984 		 * change it.
5985 		 */
5986 		mutex_enter(&un->un_pm_mutex);
5987 		un->un_pm_count = -1;
5988 		mutex_exit(&un->un_pm_mutex);
5989 		un->un_power_level = SD_SPINDLE_OFF;
5990 	}
5991 
5992 	mutex_exit(SD_MUTEX(un));
5993 
5994 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5995 
5996 	return (DDI_SUCCESS);
5997 }
5998 
5999 
6000 /*
6001  *    Function: sd_ddi_resume
6002  *
6003  * Description: Performs system power-up operations..
6004  *
6005  * Return Code: DDI_SUCCESS
6006  *		DDI_FAILURE
6007  *
6008  *     Context: Kernel thread context
6009  */
6010 
6011 static int
6012 sd_ddi_resume(dev_info_t *devi)
6013 {
6014 	struct	sd_lun	*un;
6015 
6016 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6017 	if (un == NULL) {
6018 		return (DDI_FAILURE);
6019 	}
6020 
6021 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6022 
6023 	mutex_enter(SD_MUTEX(un));
6024 	Restore_state(un);
6025 
6026 	/*
6027 	 * Restore the state which was saved to give the
6028 	 * the right state in un_last_state
6029 	 */
6030 	un->un_last_state = un->un_save_state;
6031 	/*
6032 	 * Note: throttle comes back at full.
6033 	 * Also note: this MUST be done before calling pm_raise_power
6034 	 * otherwise the system can get hung in biowait. The scenario where
6035 	 * this'll happen is under cpr suspend. Writing of the system
6036 	 * state goes through sddump, which writes 0 to un_throttle. If
6037 	 * writing the system state then fails, example if the partition is
6038 	 * too small, then cpr attempts a resume. If throttle isn't restored
6039 	 * from the saved value until after calling pm_raise_power then
6040 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6041 	 * in biowait.
6042 	 */
6043 	un->un_throttle = un->un_saved_throttle;
6044 
6045 	/*
6046 	 * The chance of failure is very rare as the only command done in power
6047 	 * entry point is START command when you transition from 0->1 or
6048 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6049 	 * which suspend was done. Ignore the return value as the resume should
6050 	 * not be failed. In the case of removable media the media need not be
6051 	 * inserted and hence there is a chance that raise power will fail with
6052 	 * media not present.
6053 	 */
6054 	if (un->un_f_attach_spinup) {
6055 		mutex_exit(SD_MUTEX(un));
6056 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6057 		mutex_enter(SD_MUTEX(un));
6058 	}
6059 
6060 	/*
6061 	 * Don't broadcast to the suspend cv and therefore possibly
6062 	 * start I/O until after power has been restored.
6063 	 */
6064 	cv_broadcast(&un->un_suspend_cv);
6065 	cv_broadcast(&un->un_state_cv);
6066 
6067 	/* restart thread */
6068 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6069 		scsi_watch_resume(un->un_swr_token);
6070 	}
6071 
6072 #if (defined(__fibre))
6073 	if (un->un_f_is_fibre == TRUE) {
6074 		/*
6075 		 * Add callbacks for insert and remove events
6076 		 */
6077 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6078 			sd_init_event_callbacks(un);
6079 		}
6080 	}
6081 #endif
6082 
6083 	/*
6084 	 * Transport any pending commands to the target.
6085 	 *
6086 	 * If this is a low-activity device commands in queue will have to wait
6087 	 * until new commands come in, which may take awhile. Also, we
6088 	 * specifically don't check un_ncmds_in_transport because we know that
6089 	 * there really are no commands in progress after the unit was
6090 	 * suspended and we could have reached the throttle level, been
6091 	 * suspended, and have no new commands coming in for awhile. Highly
6092 	 * unlikely, but so is the low-activity disk scenario.
6093 	 */
6094 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6095 
6096 	sd_start_cmds(un, NULL);
6097 	mutex_exit(SD_MUTEX(un));
6098 
6099 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6100 
6101 	return (DDI_SUCCESS);
6102 }
6103 
6104 
6105 /*
6106  *    Function: sd_ddi_pm_resume
6107  *
6108  * Description: Set the drive state to powered on.
6109  *		Someone else is required to actually change the drive
6110  *		power level.
6111  *
6112  *   Arguments: un - driver soft state (unit) structure
6113  *
6114  * Return Code: DDI_SUCCESS
6115  *
6116  *     Context: Kernel thread context
6117  */
6118 
6119 static int
6120 sd_ddi_pm_resume(struct sd_lun *un)
6121 {
6122 	ASSERT(un != NULL);
6123 
6124 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6125 	mutex_enter(SD_MUTEX(un));
6126 	un->un_power_level = SD_SPINDLE_ON;
6127 
6128 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6129 	mutex_enter(&un->un_pm_mutex);
6130 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6131 		un->un_pm_count++;
6132 		ASSERT(un->un_pm_count == 0);
6133 		/*
6134 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6135 		 * un_suspend_cv is for a system resume, not a power management
6136 		 * device resume. (4297749)
6137 		 *	 cv_broadcast(&un->un_suspend_cv);
6138 		 */
6139 	}
6140 	mutex_exit(&un->un_pm_mutex);
6141 	mutex_exit(SD_MUTEX(un));
6142 
6143 	return (DDI_SUCCESS);
6144 }
6145 
6146 
6147 /*
6148  *    Function: sd_pm_idletimeout_handler
6149  *
6150  * Description: A timer routine that's active only while a device is busy.
6151  *		The purpose is to extend slightly the pm framework's busy
6152  *		view of the device to prevent busy/idle thrashing for
6153  *		back-to-back commands. Do this by comparing the current time
6154  *		to the time at which the last command completed and when the
6155  *		difference is greater than sd_pm_idletime, call
6156  *		pm_idle_component. In addition to indicating idle to the pm
6157  *		framework, update the chain type to again use the internal pm
6158  *		layers of the driver.
6159  *
6160  *   Arguments: arg - driver soft state (unit) structure
6161  *
6162  *     Context: Executes in a timeout(9F) thread context
6163  */
6164 
6165 static void
6166 sd_pm_idletimeout_handler(void *arg)
6167 {
6168 	struct sd_lun *un = arg;
6169 
6170 	time_t	now;
6171 
6172 	mutex_enter(&sd_detach_mutex);
6173 	if (un->un_detach_count != 0) {
6174 		/* Abort if the instance is detaching */
6175 		mutex_exit(&sd_detach_mutex);
6176 		return;
6177 	}
6178 	mutex_exit(&sd_detach_mutex);
6179 
6180 	now = ddi_get_time();
6181 	/*
6182 	 * Grab both mutexes, in the proper order, since we're accessing
6183 	 * both PM and softstate variables.
6184 	 */
6185 	mutex_enter(SD_MUTEX(un));
6186 	mutex_enter(&un->un_pm_mutex);
6187 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6188 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6189 		/*
6190 		 * Update the chain types.
6191 		 * This takes affect on the next new command received.
6192 		 */
6193 		if (un->un_f_non_devbsize_supported) {
6194 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6195 		} else {
6196 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6197 		}
6198 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6199 
6200 		SD_TRACE(SD_LOG_IO_PM, un,
6201 		    "sd_pm_idletimeout_handler: idling device\n");
6202 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6203 		un->un_pm_idle_timeid = NULL;
6204 	} else {
6205 		un->un_pm_idle_timeid =
6206 		    timeout(sd_pm_idletimeout_handler, un,
6207 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6208 	}
6209 	mutex_exit(&un->un_pm_mutex);
6210 	mutex_exit(SD_MUTEX(un));
6211 }
6212 
6213 
6214 /*
6215  *    Function: sd_pm_timeout_handler
6216  *
6217  * Description: Callback to tell framework we are idle.
6218  *
6219  *     Context: timeout(9f) thread context.
6220  */
6221 
6222 static void
6223 sd_pm_timeout_handler(void *arg)
6224 {
6225 	struct sd_lun *un = arg;
6226 
6227 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6228 	mutex_enter(&un->un_pm_mutex);
6229 	un->un_pm_timeid = NULL;
6230 	mutex_exit(&un->un_pm_mutex);
6231 }
6232 
6233 
6234 /*
6235  *    Function: sdpower
6236  *
6237  * Description: PM entry point.
6238  *
6239  * Return Code: DDI_SUCCESS
6240  *		DDI_FAILURE
6241  *
6242  *     Context: Kernel thread context
6243  */
6244 
6245 static int
6246 sdpower(dev_info_t *devi, int component, int level)
6247 {
6248 	struct sd_lun	*un;
6249 	int		instance;
6250 	int		rval = DDI_SUCCESS;
6251 	uint_t		i, log_page_size, maxcycles, ncycles;
6252 	uchar_t		*log_page_data;
6253 	int		log_sense_page;
6254 	int		medium_present;
6255 	time_t		intvlp;
6256 	dev_t		dev;
6257 	struct pm_trans_data	sd_pm_tran_data;
6258 	uchar_t		save_state;
6259 	int		sval;
6260 	uchar_t		state_before_pm;
6261 	int		got_semaphore_here;
6262 	sd_ssc_t	*ssc;
6263 
6264 	instance = ddi_get_instance(devi);
6265 
6266 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6267 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
6268 	    component != 0) {
6269 		return (DDI_FAILURE);
6270 	}
6271 
6272 	dev = sd_make_device(SD_DEVINFO(un));
6273 	ssc = sd_ssc_init(un);
6274 
6275 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6276 
6277 	/*
6278 	 * Must synchronize power down with close.
6279 	 * Attempt to decrement/acquire the open/close semaphore,
6280 	 * but do NOT wait on it. If it's not greater than zero,
6281 	 * ie. it can't be decremented without waiting, then
6282 	 * someone else, either open or close, already has it
6283 	 * and the try returns 0. Use that knowledge here to determine
6284 	 * if it's OK to change the device power level.
6285 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6286 	 * here.
6287 	 */
6288 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6289 
6290 	mutex_enter(SD_MUTEX(un));
6291 
6292 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6293 	    un->un_ncmds_in_driver);
6294 
6295 	/*
6296 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6297 	 * already being processed in the driver, or if the semaphore was
6298 	 * not gotten here it indicates an open or close is being processed.
6299 	 * At the same time somebody is requesting to go low power which
6300 	 * can't happen, therefore we need to return failure.
6301 	 */
6302 	if ((level == SD_SPINDLE_OFF) &&
6303 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6304 		mutex_exit(SD_MUTEX(un));
6305 
6306 		if (got_semaphore_here != 0) {
6307 			sema_v(&un->un_semoclose);
6308 		}
6309 		SD_TRACE(SD_LOG_IO_PM, un,
6310 		    "sdpower: exit, device has queued cmds.\n");
6311 
6312 		goto sdpower_failed;
6313 	}
6314 
6315 	/*
6316 	 * if it is OFFLINE that means the disk is completely dead
6317 	 * in our case we have to put the disk in on or off by sending commands
6318 	 * Of course that will fail anyway so return back here.
6319 	 *
6320 	 * Power changes to a device that's OFFLINE or SUSPENDED
6321 	 * are not allowed.
6322 	 */
6323 	if ((un->un_state == SD_STATE_OFFLINE) ||
6324 	    (un->un_state == SD_STATE_SUSPENDED)) {
6325 		mutex_exit(SD_MUTEX(un));
6326 
6327 		if (got_semaphore_here != 0) {
6328 			sema_v(&un->un_semoclose);
6329 		}
6330 		SD_TRACE(SD_LOG_IO_PM, un,
6331 		    "sdpower: exit, device is off-line.\n");
6332 
6333 		goto sdpower_failed;
6334 	}
6335 
6336 	/*
6337 	 * Change the device's state to indicate it's power level
6338 	 * is being changed. Do this to prevent a power off in the
6339 	 * middle of commands, which is especially bad on devices
6340 	 * that are really powered off instead of just spun down.
6341 	 */
6342 	state_before_pm = un->un_state;
6343 	un->un_state = SD_STATE_PM_CHANGING;
6344 
6345 	mutex_exit(SD_MUTEX(un));
6346 
6347 	/*
6348 	 * If "pm-capable" property is set to TRUE by HBA drivers,
6349 	 * bypass the following checking, otherwise, check the log
6350 	 * sense information for this device
6351 	 */
6352 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
6353 		/*
6354 		 * Get the log sense information to understand whether the
6355 		 * the powercycle counts have gone beyond the threshhold.
6356 		 */
6357 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6358 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6359 
6360 		mutex_enter(SD_MUTEX(un));
6361 		log_sense_page = un->un_start_stop_cycle_page;
6362 		mutex_exit(SD_MUTEX(un));
6363 
6364 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6365 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6366 
6367 		if (rval != 0) {
6368 			if (rval == EIO)
6369 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6370 			else
6371 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6372 		}
6373 
6374 #ifdef	SDDEBUG
6375 		if (sd_force_pm_supported) {
6376 			/* Force a successful result */
6377 			rval = 0;
6378 		}
6379 #endif
6380 		if (rval != 0) {
6381 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6382 			    "Log Sense Failed\n");
6383 
6384 			kmem_free(log_page_data, log_page_size);
6385 			/* Cannot support power management on those drives */
6386 
6387 			if (got_semaphore_here != 0) {
6388 				sema_v(&un->un_semoclose);
6389 			}
6390 			/*
6391 			 * On exit put the state back to it's original value
6392 			 * and broadcast to anyone waiting for the power
6393 			 * change completion.
6394 			 */
6395 			mutex_enter(SD_MUTEX(un));
6396 			un->un_state = state_before_pm;
6397 			cv_broadcast(&un->un_suspend_cv);
6398 			mutex_exit(SD_MUTEX(un));
6399 			SD_TRACE(SD_LOG_IO_PM, un,
6400 			    "sdpower: exit, Log Sense Failed.\n");
6401 
6402 			goto sdpower_failed;
6403 		}
6404 
6405 		/*
6406 		 * From the page data - Convert the essential information to
6407 		 * pm_trans_data
6408 		 */
6409 		maxcycles =
6410 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6411 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6412 
6413 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6414 
6415 		ncycles =
6416 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6417 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6418 
6419 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6420 
6421 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6422 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6423 			    log_page_data[8+i];
6424 		}
6425 
6426 		kmem_free(log_page_data, log_page_size);
6427 
6428 		/*
6429 		 * Call pm_trans_check routine to get the Ok from
6430 		 * the global policy
6431 		 */
6432 
6433 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6434 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6435 
6436 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6437 #ifdef	SDDEBUG
6438 		if (sd_force_pm_supported) {
6439 			/* Force a successful result */
6440 			rval = 1;
6441 		}
6442 #endif
6443 		switch (rval) {
6444 		case 0:
6445 			/*
6446 			 * Not Ok to Power cycle or error in parameters passed
6447 			 * Would have given the advised time to consider power
6448 			 * cycle. Based on the new intvlp parameter we are
6449 			 * supposed to pretend we are busy so that pm framework
6450 			 * will never call our power entry point. Because of
6451 			 * that install a timeout handler and wait for the
6452 			 * recommended time to elapse so that power management
6453 			 * can be effective again.
6454 			 *
6455 			 * To effect this behavior, call pm_busy_component to
6456 			 * indicate to the framework this device is busy.
6457 			 * By not adjusting un_pm_count the rest of PM in
6458 			 * the driver will function normally, and independent
6459 			 * of this but because the framework is told the device
6460 			 * is busy it won't attempt powering down until it gets
6461 			 * a matching idle. The timeout handler sends this.
6462 			 * Note: sd_pm_entry can't be called here to do this
6463 			 * because sdpower may have been called as a result
6464 			 * of a call to pm_raise_power from within sd_pm_entry.
6465 			 *
6466 			 * If a timeout handler is already active then
6467 			 * don't install another.
6468 			 */
6469 			mutex_enter(&un->un_pm_mutex);
6470 			if (un->un_pm_timeid == NULL) {
6471 				un->un_pm_timeid =
6472 				    timeout(sd_pm_timeout_handler,
6473 				    un, intvlp * drv_usectohz(1000000));
6474 				mutex_exit(&un->un_pm_mutex);
6475 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6476 			} else {
6477 				mutex_exit(&un->un_pm_mutex);
6478 			}
6479 			if (got_semaphore_here != 0) {
6480 				sema_v(&un->un_semoclose);
6481 			}
6482 			/*
6483 			 * On exit put the state back to it's original value
6484 			 * and broadcast to anyone waiting for the power
6485 			 * change completion.
6486 			 */
6487 			mutex_enter(SD_MUTEX(un));
6488 			un->un_state = state_before_pm;
6489 			cv_broadcast(&un->un_suspend_cv);
6490 			mutex_exit(SD_MUTEX(un));
6491 
6492 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6493 			    "trans check Failed, not ok to power cycle.\n");
6494 
6495 			goto sdpower_failed;
6496 		case -1:
6497 			if (got_semaphore_here != 0) {
6498 				sema_v(&un->un_semoclose);
6499 			}
6500 			/*
6501 			 * On exit put the state back to it's original value
6502 			 * and broadcast to anyone waiting for the power
6503 			 * change completion.
6504 			 */
6505 			mutex_enter(SD_MUTEX(un));
6506 			un->un_state = state_before_pm;
6507 			cv_broadcast(&un->un_suspend_cv);
6508 			mutex_exit(SD_MUTEX(un));
6509 			SD_TRACE(SD_LOG_IO_PM, un,
6510 			    "sdpower: exit, trans check command Failed.\n");
6511 
6512 			goto sdpower_failed;
6513 		}
6514 	}
6515 
6516 	if (level == SD_SPINDLE_OFF) {
6517 		/*
6518 		 * Save the last state... if the STOP FAILS we need it
6519 		 * for restoring
6520 		 */
6521 		mutex_enter(SD_MUTEX(un));
6522 		save_state = un->un_last_state;
6523 		/*
6524 		 * There must not be any cmds. getting processed
6525 		 * in the driver when we get here. Power to the
6526 		 * device is potentially going off.
6527 		 */
6528 		ASSERT(un->un_ncmds_in_driver == 0);
6529 		mutex_exit(SD_MUTEX(un));
6530 
6531 		/*
6532 		 * For now suspend the device completely before spindle is
6533 		 * turned off
6534 		 */
6535 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6536 			if (got_semaphore_here != 0) {
6537 				sema_v(&un->un_semoclose);
6538 			}
6539 			/*
6540 			 * On exit put the state back to it's original value
6541 			 * and broadcast to anyone waiting for the power
6542 			 * change completion.
6543 			 */
6544 			mutex_enter(SD_MUTEX(un));
6545 			un->un_state = state_before_pm;
6546 			cv_broadcast(&un->un_suspend_cv);
6547 			mutex_exit(SD_MUTEX(un));
6548 			SD_TRACE(SD_LOG_IO_PM, un,
6549 			    "sdpower: exit, PM suspend Failed.\n");
6550 
6551 			goto sdpower_failed;
6552 		}
6553 	}
6554 
6555 	/*
6556 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6557 	 * close, or strategy. Dump no long uses this routine, it uses it's
6558 	 * own code so it can be done in polled mode.
6559 	 */
6560 
6561 	medium_present = TRUE;
6562 
6563 	/*
6564 	 * When powering up, issue a TUR in case the device is at unit
6565 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6566 	 * a deadlock on un_pm_busy_cv will occur.
6567 	 */
6568 	if (level == SD_SPINDLE_ON) {
6569 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6570 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6571 		if (sval != 0)
6572 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6573 	}
6574 
6575 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6576 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6577 
6578 	sval = sd_send_scsi_START_STOP_UNIT(ssc,
6579 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6580 	    SD_PATH_DIRECT);
6581 	if (sval != 0) {
6582 		if (sval == EIO)
6583 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6584 		else
6585 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6586 	}
6587 
6588 	/* Command failed, check for media present. */
6589 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6590 		medium_present = FALSE;
6591 	}
6592 
6593 	/*
6594 	 * The conditions of interest here are:
6595 	 *   if a spindle off with media present fails,
6596 	 *	then restore the state and return an error.
6597 	 *   else if a spindle on fails,
6598 	 *	then return an error (there's no state to restore).
6599 	 * In all other cases we setup for the new state
6600 	 * and return success.
6601 	 */
6602 	switch (level) {
6603 	case SD_SPINDLE_OFF:
6604 		if ((medium_present == TRUE) && (sval != 0)) {
6605 			/* The stop command from above failed */
6606 			rval = DDI_FAILURE;
6607 			/*
6608 			 * The stop command failed, and we have media
6609 			 * present. Put the level back by calling the
6610 			 * sd_pm_resume() and set the state back to
6611 			 * it's previous value.
6612 			 */
6613 			(void) sd_ddi_pm_resume(un);
6614 			mutex_enter(SD_MUTEX(un));
6615 			un->un_last_state = save_state;
6616 			mutex_exit(SD_MUTEX(un));
6617 			break;
6618 		}
6619 		/*
6620 		 * The stop command from above succeeded.
6621 		 */
6622 		if (un->un_f_monitor_media_state) {
6623 			/*
6624 			 * Terminate watch thread in case of removable media
6625 			 * devices going into low power state. This is as per
6626 			 * the requirements of pm framework, otherwise commands
6627 			 * will be generated for the device (through watch
6628 			 * thread), even when the device is in low power state.
6629 			 */
6630 			mutex_enter(SD_MUTEX(un));
6631 			un->un_f_watcht_stopped = FALSE;
6632 			if (un->un_swr_token != NULL) {
6633 				opaque_t temp_token = un->un_swr_token;
6634 				un->un_f_watcht_stopped = TRUE;
6635 				un->un_swr_token = NULL;
6636 				mutex_exit(SD_MUTEX(un));
6637 				(void) scsi_watch_request_terminate(temp_token,
6638 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
6639 			} else {
6640 				mutex_exit(SD_MUTEX(un));
6641 			}
6642 		}
6643 		break;
6644 
6645 	default:	/* The level requested is spindle on... */
6646 		/*
6647 		 * Legacy behavior: return success on a failed spinup
6648 		 * if there is no media in the drive.
6649 		 * Do this by looking at medium_present here.
6650 		 */
6651 		if ((sval != 0) && medium_present) {
6652 			/* The start command from above failed */
6653 			rval = DDI_FAILURE;
6654 			break;
6655 		}
6656 		/*
6657 		 * The start command from above succeeded
6658 		 * Resume the devices now that we have
6659 		 * started the disks
6660 		 */
6661 		(void) sd_ddi_pm_resume(un);
6662 
6663 		/*
6664 		 * Resume the watch thread since it was suspended
6665 		 * when the device went into low power mode.
6666 		 */
6667 		if (un->un_f_monitor_media_state) {
6668 			mutex_enter(SD_MUTEX(un));
6669 			if (un->un_f_watcht_stopped == TRUE) {
6670 				opaque_t temp_token;
6671 
6672 				un->un_f_watcht_stopped = FALSE;
6673 				mutex_exit(SD_MUTEX(un));
6674 				temp_token = scsi_watch_request_submit(
6675 				    SD_SCSI_DEVP(un),
6676 				    sd_check_media_time,
6677 				    SENSE_LENGTH, sd_media_watch_cb,
6678 				    (caddr_t)dev);
6679 				mutex_enter(SD_MUTEX(un));
6680 				un->un_swr_token = temp_token;
6681 			}
6682 			mutex_exit(SD_MUTEX(un));
6683 		}
6684 	}
6685 	if (got_semaphore_here != 0) {
6686 		sema_v(&un->un_semoclose);
6687 	}
6688 	/*
6689 	 * On exit put the state back to it's original value
6690 	 * and broadcast to anyone waiting for the power
6691 	 * change completion.
6692 	 */
6693 	mutex_enter(SD_MUTEX(un));
6694 	un->un_state = state_before_pm;
6695 	cv_broadcast(&un->un_suspend_cv);
6696 	mutex_exit(SD_MUTEX(un));
6697 
6698 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6699 
6700 	sd_ssc_fini(ssc);
6701 	return (rval);
6702 
6703 sdpower_failed:
6704 
6705 	sd_ssc_fini(ssc);
6706 	return (DDI_FAILURE);
6707 }
6708 
6709 
6710 
6711 /*
6712  *    Function: sdattach
6713  *
6714  * Description: Driver's attach(9e) entry point function.
6715  *
6716  *   Arguments: devi - opaque device info handle
6717  *		cmd  - attach  type
6718  *
6719  * Return Code: DDI_SUCCESS
6720  *		DDI_FAILURE
6721  *
6722  *     Context: Kernel thread context
6723  */
6724 
6725 static int
6726 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6727 {
6728 	switch (cmd) {
6729 	case DDI_ATTACH:
6730 		return (sd_unit_attach(devi));
6731 	case DDI_RESUME:
6732 		return (sd_ddi_resume(devi));
6733 	default:
6734 		break;
6735 	}
6736 	return (DDI_FAILURE);
6737 }
6738 
6739 
6740 /*
6741  *    Function: sddetach
6742  *
6743  * Description: Driver's detach(9E) entry point function.
6744  *
6745  *   Arguments: devi - opaque device info handle
6746  *		cmd  - detach  type
6747  *
6748  * Return Code: DDI_SUCCESS
6749  *		DDI_FAILURE
6750  *
6751  *     Context: Kernel thread context
6752  */
6753 
6754 static int
6755 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6756 {
6757 	switch (cmd) {
6758 	case DDI_DETACH:
6759 		return (sd_unit_detach(devi));
6760 	case DDI_SUSPEND:
6761 		return (sd_ddi_suspend(devi));
6762 	default:
6763 		break;
6764 	}
6765 	return (DDI_FAILURE);
6766 }
6767 
6768 
6769 /*
6770  *     Function: sd_sync_with_callback
6771  *
6772  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6773  *		 state while the callback routine is active.
6774  *
6775  *    Arguments: un: softstate structure for the instance
6776  *
6777  *	Context: Kernel thread context
6778  */
6779 
6780 static void
6781 sd_sync_with_callback(struct sd_lun *un)
6782 {
6783 	ASSERT(un != NULL);
6784 
6785 	mutex_enter(SD_MUTEX(un));
6786 
6787 	ASSERT(un->un_in_callback >= 0);
6788 
6789 	while (un->un_in_callback > 0) {
6790 		mutex_exit(SD_MUTEX(un));
6791 		delay(2);
6792 		mutex_enter(SD_MUTEX(un));
6793 	}
6794 
6795 	mutex_exit(SD_MUTEX(un));
6796 }
6797 
6798 /*
6799  *    Function: sd_unit_attach
6800  *
6801  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6802  *		the soft state structure for the device and performs
6803  *		all necessary structure and device initializations.
6804  *
6805  *   Arguments: devi: the system's dev_info_t for the device.
6806  *
6807  * Return Code: DDI_SUCCESS if attach is successful.
6808  *		DDI_FAILURE if any part of the attach fails.
6809  *
6810  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6811  *		Kernel thread context only.  Can sleep.
6812  */
6813 
6814 static int
6815 sd_unit_attach(dev_info_t *devi)
6816 {
6817 	struct	scsi_device	*devp;
6818 	struct	sd_lun		*un;
6819 	char			*variantp;
6820 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6821 	int	instance;
6822 	int	rval;
6823 	int	wc_enabled;
6824 	int	tgt;
6825 	uint64_t	capacity;
6826 	uint_t		lbasize = 0;
6827 	dev_info_t	*pdip = ddi_get_parent(devi);
6828 	int		offbyone = 0;
6829 	int		geom_label_valid = 0;
6830 	sd_ssc_t	*ssc;
6831 	int		status;
6832 	struct sd_fm_internal	*sfip = NULL;
6833 #if defined(__sparc)
6834 	int		max_xfer_size;
6835 #endif
6836 
6837 	/*
6838 	 * Retrieve the target driver's private data area. This was set
6839 	 * up by the HBA.
6840 	 */
6841 	devp = ddi_get_driver_private(devi);
6842 
6843 	/*
6844 	 * Retrieve the target ID of the device.
6845 	 */
6846 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6847 	    SCSI_ADDR_PROP_TARGET, -1);
6848 
6849 	/*
6850 	 * Since we have no idea what state things were left in by the last
6851 	 * user of the device, set up some 'default' settings, ie. turn 'em
6852 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6853 	 * Do this before the scsi_probe, which sends an inquiry.
6854 	 * This is a fix for bug (4430280).
6855 	 * Of special importance is wide-xfer. The drive could have been left
6856 	 * in wide transfer mode by the last driver to communicate with it,
6857 	 * this includes us. If that's the case, and if the following is not
6858 	 * setup properly or we don't re-negotiate with the drive prior to
6859 	 * transferring data to/from the drive, it causes bus parity errors,
6860 	 * data overruns, and unexpected interrupts. This first occurred when
6861 	 * the fix for bug (4378686) was made.
6862 	 */
6863 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6864 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6865 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6866 
6867 	/*
6868 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6869 	 * on a target. Setting it per lun instance actually sets the
6870 	 * capability of this target, which affects those luns already
6871 	 * attached on the same target. So during attach, we can only disable
6872 	 * this capability only when no other lun has been attached on this
6873 	 * target. By doing this, we assume a target has the same tagged-qing
6874 	 * capability for every lun. The condition can be removed when HBA
6875 	 * is changed to support per lun based tagged-qing capability.
6876 	 */
6877 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6878 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6879 	}
6880 
6881 	/*
6882 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6883 	 * This call will allocate and fill in the scsi_inquiry structure
6884 	 * and point the sd_inq member of the scsi_device structure to it.
6885 	 * If the attach succeeds, then this memory will not be de-allocated
6886 	 * (via scsi_unprobe()) until the instance is detached.
6887 	 */
6888 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6889 		goto probe_failed;
6890 	}
6891 
6892 	/*
6893 	 * Check the device type as specified in the inquiry data and
6894 	 * claim it if it is of a type that we support.
6895 	 */
6896 	switch (devp->sd_inq->inq_dtype) {
6897 	case DTYPE_DIRECT:
6898 		break;
6899 	case DTYPE_RODIRECT:
6900 		break;
6901 	case DTYPE_OPTICAL:
6902 		break;
6903 	case DTYPE_NOTPRESENT:
6904 	default:
6905 		/* Unsupported device type; fail the attach. */
6906 		goto probe_failed;
6907 	}
6908 
6909 	/*
6910 	 * Allocate the soft state structure for this unit.
6911 	 *
6912 	 * We rely upon this memory being set to all zeroes by
6913 	 * ddi_soft_state_zalloc().  We assume that any member of the
6914 	 * soft state structure that is not explicitly initialized by
6915 	 * this routine will have a value of zero.
6916 	 */
6917 	instance = ddi_get_instance(devp->sd_dev);
6918 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6919 		goto probe_failed;
6920 	}
6921 
6922 	/*
6923 	 * Retrieve a pointer to the newly-allocated soft state.
6924 	 *
6925 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6926 	 * was successful, unless something has gone horribly wrong and the
6927 	 * ddi's soft state internals are corrupt (in which case it is
6928 	 * probably better to halt here than just fail the attach....)
6929 	 */
6930 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6931 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6932 		    instance);
6933 		/*NOTREACHED*/
6934 	}
6935 
6936 	/*
6937 	 * Link the back ptr of the driver soft state to the scsi_device
6938 	 * struct for this lun.
6939 	 * Save a pointer to the softstate in the driver-private area of
6940 	 * the scsi_device struct.
6941 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6942 	 * we first set un->un_sd below.
6943 	 */
6944 	un->un_sd = devp;
6945 	devp->sd_private = (opaque_t)un;
6946 
6947 	/*
6948 	 * The following must be after devp is stored in the soft state struct.
6949 	 */
6950 #ifdef SDDEBUG
6951 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6952 	    "%s_unit_attach: un:0x%p instance:%d\n",
6953 	    ddi_driver_name(devi), un, instance);
6954 #endif
6955 
6956 	/*
6957 	 * Set up the device type and node type (for the minor nodes).
6958 	 * By default we assume that the device can at least support the
6959 	 * Common Command Set. Call it a CD-ROM if it reports itself
6960 	 * as a RODIRECT device.
6961 	 */
6962 	switch (devp->sd_inq->inq_dtype) {
6963 	case DTYPE_RODIRECT:
6964 		un->un_node_type = DDI_NT_CD_CHAN;
6965 		un->un_ctype	 = CTYPE_CDROM;
6966 		break;
6967 	case DTYPE_OPTICAL:
6968 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6969 		un->un_ctype	 = CTYPE_ROD;
6970 		break;
6971 	default:
6972 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6973 		un->un_ctype	 = CTYPE_CCS;
6974 		break;
6975 	}
6976 
6977 	/*
6978 	 * Try to read the interconnect type from the HBA.
6979 	 *
6980 	 * Note: This driver is currently compiled as two binaries, a parallel
6981 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6982 	 * differences are determined at compile time. In the future a single
6983 	 * binary will be provided and the interconnect type will be used to
6984 	 * differentiate between fibre and parallel scsi behaviors. At that time
6985 	 * it will be necessary for all fibre channel HBAs to support this
6986 	 * property.
6987 	 *
6988 	 * set un_f_is_fiber to TRUE ( default fiber )
6989 	 */
6990 	un->un_f_is_fibre = TRUE;
6991 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6992 	case INTERCONNECT_SSA:
6993 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6994 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6995 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6996 		break;
6997 	case INTERCONNECT_PARALLEL:
6998 		un->un_f_is_fibre = FALSE;
6999 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7000 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7001 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7002 		break;
7003 	case INTERCONNECT_SATA:
7004 		un->un_f_is_fibre = FALSE;
7005 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7006 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7007 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7008 		break;
7009 	case INTERCONNECT_FIBRE:
7010 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7011 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7012 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7013 		break;
7014 	case INTERCONNECT_FABRIC:
7015 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7016 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7017 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7018 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7019 		break;
7020 	default:
7021 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7022 		/*
7023 		 * The HBA does not support the "interconnect-type" property
7024 		 * (or did not provide a recognized type).
7025 		 *
7026 		 * Note: This will be obsoleted when a single fibre channel
7027 		 * and parallel scsi driver is delivered. In the meantime the
7028 		 * interconnect type will be set to the platform default.If that
7029 		 * type is not parallel SCSI, it means that we should be
7030 		 * assuming "ssd" semantics. However, here this also means that
7031 		 * the FC HBA is not supporting the "interconnect-type" property
7032 		 * like we expect it to, so log this occurrence.
7033 		 */
7034 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7035 		if (!SD_IS_PARALLEL_SCSI(un)) {
7036 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7037 			    "sd_unit_attach: un:0x%p Assuming "
7038 			    "INTERCONNECT_FIBRE\n", un);
7039 		} else {
7040 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7041 			    "sd_unit_attach: un:0x%p Assuming "
7042 			    "INTERCONNECT_PARALLEL\n", un);
7043 			un->un_f_is_fibre = FALSE;
7044 		}
7045 #else
7046 		/*
7047 		 * Note: This source will be implemented when a single fibre
7048 		 * channel and parallel scsi driver is delivered. The default
7049 		 * will be to assume that if a device does not support the
7050 		 * "interconnect-type" property it is a parallel SCSI HBA and
7051 		 * we will set the interconnect type for parallel scsi.
7052 		 */
7053 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7054 		un->un_f_is_fibre = FALSE;
7055 #endif
7056 		break;
7057 	}
7058 
7059 	if (un->un_f_is_fibre == TRUE) {
7060 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7061 		    SCSI_VERSION_3) {
7062 			switch (un->un_interconnect_type) {
7063 			case SD_INTERCONNECT_FIBRE:
7064 			case SD_INTERCONNECT_SSA:
7065 				un->un_node_type = DDI_NT_BLOCK_WWN;
7066 				break;
7067 			default:
7068 				break;
7069 			}
7070 		}
7071 	}
7072 
7073 	/*
7074 	 * Initialize the Request Sense command for the target
7075 	 */
7076 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7077 		goto alloc_rqs_failed;
7078 	}
7079 
7080 	/*
7081 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7082 	 * with separate binary for sd and ssd.
7083 	 *
7084 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7085 	 * The hardcoded values will go away when Sparc uses 1 binary
7086 	 * for sd and ssd.  This hardcoded values need to match
7087 	 * SD_RETRY_COUNT in sddef.h
7088 	 * The value used is base on interconnect type.
7089 	 * fibre = 3, parallel = 5
7090 	 */
7091 #if defined(__i386) || defined(__amd64)
7092 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7093 #else
7094 	un->un_retry_count = SD_RETRY_COUNT;
7095 #endif
7096 
7097 	/*
7098 	 * Set the per disk retry count to the default number of retries
7099 	 * for disks and CDROMs. This value can be overridden by the
7100 	 * disk property list or an entry in sd.conf.
7101 	 */
7102 	un->un_notready_retry_count =
7103 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7104 	    : DISK_NOT_READY_RETRY_COUNT(un);
7105 
7106 	/*
7107 	 * Set the busy retry count to the default value of un_retry_count.
7108 	 * This can be overridden by entries in sd.conf or the device
7109 	 * config table.
7110 	 */
7111 	un->un_busy_retry_count = un->un_retry_count;
7112 
7113 	/*
7114 	 * Init the reset threshold for retries.  This number determines
7115 	 * how many retries must be performed before a reset can be issued
7116 	 * (for certain error conditions). This can be overridden by entries
7117 	 * in sd.conf or the device config table.
7118 	 */
7119 	un->un_reset_retry_count = (un->un_retry_count / 2);
7120 
7121 	/*
7122 	 * Set the victim_retry_count to the default un_retry_count
7123 	 */
7124 	un->un_victim_retry_count = (2 * un->un_retry_count);
7125 
7126 	/*
7127 	 * Set the reservation release timeout to the default value of
7128 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7129 	 * device config table.
7130 	 */
7131 	un->un_reserve_release_time = 5;
7132 
7133 	/*
7134 	 * Set up the default maximum transfer size. Note that this may
7135 	 * get updated later in the attach, when setting up default wide
7136 	 * operations for disks.
7137 	 */
7138 #if defined(__i386) || defined(__amd64)
7139 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7140 	un->un_partial_dma_supported = 1;
7141 #else
7142 	un->un_max_xfer_size = (uint_t)maxphys;
7143 #endif
7144 
7145 	/*
7146 	 * Get "allow bus device reset" property (defaults to "enabled" if
7147 	 * the property was not defined). This is to disable bus resets for
7148 	 * certain kinds of error recovery. Note: In the future when a run-time
7149 	 * fibre check is available the soft state flag should default to
7150 	 * enabled.
7151 	 */
7152 	if (un->un_f_is_fibre == TRUE) {
7153 		un->un_f_allow_bus_device_reset = TRUE;
7154 	} else {
7155 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7156 		    "allow-bus-device-reset", 1) != 0) {
7157 			un->un_f_allow_bus_device_reset = TRUE;
7158 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7159 			    "sd_unit_attach: un:0x%p Bus device reset "
7160 			    "enabled\n", un);
7161 		} else {
7162 			un->un_f_allow_bus_device_reset = FALSE;
7163 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7164 			    "sd_unit_attach: un:0x%p Bus device reset "
7165 			    "disabled\n", un);
7166 		}
7167 	}
7168 
7169 	/*
7170 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7171 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7172 	 *
7173 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7174 	 * property. The new "variant" property with a value of "atapi" has been
7175 	 * introduced so that future 'variants' of standard SCSI behavior (like
7176 	 * atapi) could be specified by the underlying HBA drivers by supplying
7177 	 * a new value for the "variant" property, instead of having to define a
7178 	 * new property.
7179 	 */
7180 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7181 		un->un_f_cfg_is_atapi = TRUE;
7182 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7183 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7184 	}
7185 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7186 	    &variantp) == DDI_PROP_SUCCESS) {
7187 		if (strcmp(variantp, "atapi") == 0) {
7188 			un->un_f_cfg_is_atapi = TRUE;
7189 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7190 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7191 		}
7192 		ddi_prop_free(variantp);
7193 	}
7194 
7195 	un->un_cmd_timeout	= SD_IO_TIME;
7196 
7197 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7198 
7199 	/* Info on current states, statuses, etc. (Updated frequently) */
7200 	un->un_state		= SD_STATE_NORMAL;
7201 	un->un_last_state	= SD_STATE_NORMAL;
7202 
7203 	/* Control & status info for command throttling */
7204 	un->un_throttle		= sd_max_throttle;
7205 	un->un_saved_throttle	= sd_max_throttle;
7206 	un->un_min_throttle	= sd_min_throttle;
7207 
7208 	if (un->un_f_is_fibre == TRUE) {
7209 		un->un_f_use_adaptive_throttle = TRUE;
7210 	} else {
7211 		un->un_f_use_adaptive_throttle = FALSE;
7212 	}
7213 
7214 	/* Removable media support. */
7215 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7216 	un->un_mediastate		= DKIO_NONE;
7217 	un->un_specified_mediastate	= DKIO_NONE;
7218 
7219 	/* CVs for suspend/resume (PM or DR) */
7220 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7221 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7222 
7223 	/* Power management support. */
7224 	un->un_power_level = SD_SPINDLE_UNINIT;
7225 
7226 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7227 	un->un_f_wcc_inprog = 0;
7228 
7229 	/*
7230 	 * The open/close semaphore is used to serialize threads executing
7231 	 * in the driver's open & close entry point routines for a given
7232 	 * instance.
7233 	 */
7234 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7235 
7236 	/*
7237 	 * The conf file entry and softstate variable is a forceful override,
7238 	 * meaning a non-zero value must be entered to change the default.
7239 	 */
7240 	un->un_f_disksort_disabled = FALSE;
7241 
7242 	/*
7243 	 * Retrieve the properties from the static driver table or the driver
7244 	 * configuration file (.conf) for this unit and update the soft state
7245 	 * for the device as needed for the indicated properties.
7246 	 * Note: the property configuration needs to occur here as some of the
7247 	 * following routines may have dependencies on soft state flags set
7248 	 * as part of the driver property configuration.
7249 	 */
7250 	sd_read_unit_properties(un);
7251 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7252 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7253 
7254 	/*
7255 	 * Only if a device has "hotpluggable" property, it is
7256 	 * treated as hotpluggable device. Otherwise, it is
7257 	 * regarded as non-hotpluggable one.
7258 	 */
7259 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7260 	    -1) != -1) {
7261 		un->un_f_is_hotpluggable = TRUE;
7262 	}
7263 
7264 	/*
7265 	 * set unit's attributes(flags) according to "hotpluggable" and
7266 	 * RMB bit in INQUIRY data.
7267 	 */
7268 	sd_set_unit_attributes(un, devi);
7269 
7270 	/*
7271 	 * By default, we mark the capacity, lbasize, and geometry
7272 	 * as invalid. Only if we successfully read a valid capacity
7273 	 * will we update the un_blockcount and un_tgt_blocksize with the
7274 	 * valid values (the geometry will be validated later).
7275 	 */
7276 	un->un_f_blockcount_is_valid	= FALSE;
7277 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7278 
7279 	/*
7280 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7281 	 * otherwise.
7282 	 */
7283 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7284 	un->un_blockcount = 0;
7285 
7286 	/*
7287 	 * Set up the per-instance info needed to determine the correct
7288 	 * CDBs and other info for issuing commands to the target.
7289 	 */
7290 	sd_init_cdb_limits(un);
7291 
7292 	/*
7293 	 * Set up the IO chains to use, based upon the target type.
7294 	 */
7295 	if (un->un_f_non_devbsize_supported) {
7296 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7297 	} else {
7298 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7299 	}
7300 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7301 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7302 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7303 
7304 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7305 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7306 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7307 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7308 
7309 
7310 	if (ISCD(un)) {
7311 		un->un_additional_codes = sd_additional_codes;
7312 	} else {
7313 		un->un_additional_codes = NULL;
7314 	}
7315 
7316 	/*
7317 	 * Create the kstats here so they can be available for attach-time
7318 	 * routines that send commands to the unit (either polled or via
7319 	 * sd_send_scsi_cmd).
7320 	 *
7321 	 * Note: This is a critical sequence that needs to be maintained:
7322 	 *	1) Instantiate the kstats here, before any routines using the
7323 	 *	   iopath (i.e. sd_send_scsi_cmd).
7324 	 *	2) Instantiate and initialize the partition stats
7325 	 *	   (sd_set_pstats).
7326 	 *	3) Initialize the error stats (sd_set_errstats), following
7327 	 *	   sd_validate_geometry(),sd_register_devid(),
7328 	 *	   and sd_cache_control().
7329 	 */
7330 
7331 	un->un_stats = kstat_create(sd_label, instance,
7332 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7333 	if (un->un_stats != NULL) {
7334 		un->un_stats->ks_lock = SD_MUTEX(un);
7335 		kstat_install(un->un_stats);
7336 	}
7337 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7338 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7339 
7340 	sd_create_errstats(un, instance);
7341 	if (un->un_errstats == NULL) {
7342 		goto create_errstats_failed;
7343 	}
7344 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7345 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7346 
7347 	/*
7348 	 * The following if/else code was relocated here from below as part
7349 	 * of the fix for bug (4430280). However with the default setup added
7350 	 * on entry to this routine, it's no longer absolutely necessary for
7351 	 * this to be before the call to sd_spin_up_unit.
7352 	 */
7353 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7354 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7355 		    (devp->sd_inq->inq_ansi == 5)) &&
7356 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7357 
7358 		/*
7359 		 * If tagged queueing is supported by the target
7360 		 * and by the host adapter then we will enable it
7361 		 */
7362 		un->un_tagflags = 0;
7363 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7364 		    (un->un_f_arq_enabled == TRUE)) {
7365 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7366 			    1, 1) == 1) {
7367 				un->un_tagflags = FLAG_STAG;
7368 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7369 				    "sd_unit_attach: un:0x%p tag queueing "
7370 				    "enabled\n", un);
7371 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7372 			    "untagged-qing", 0) == 1) {
7373 				un->un_f_opt_queueing = TRUE;
7374 				un->un_saved_throttle = un->un_throttle =
7375 				    min(un->un_throttle, 3);
7376 			} else {
7377 				un->un_f_opt_queueing = FALSE;
7378 				un->un_saved_throttle = un->un_throttle = 1;
7379 			}
7380 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7381 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7382 			/* The Host Adapter supports internal queueing. */
7383 			un->un_f_opt_queueing = TRUE;
7384 			un->un_saved_throttle = un->un_throttle =
7385 			    min(un->un_throttle, 3);
7386 		} else {
7387 			un->un_f_opt_queueing = FALSE;
7388 			un->un_saved_throttle = un->un_throttle = 1;
7389 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7390 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7391 		}
7392 
7393 		/*
7394 		 * Enable large transfers for SATA/SAS drives
7395 		 */
7396 		if (SD_IS_SERIAL(un)) {
7397 			un->un_max_xfer_size =
7398 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7399 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7400 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7401 			    "sd_unit_attach: un:0x%p max transfer "
7402 			    "size=0x%x\n", un, un->un_max_xfer_size);
7403 
7404 		}
7405 
7406 		/* Setup or tear down default wide operations for disks */
7407 
7408 		/*
7409 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7410 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7411 		 * system and be set to different values. In the future this
7412 		 * code may need to be updated when the ssd module is
7413 		 * obsoleted and removed from the system. (4299588)
7414 		 */
7415 		if (SD_IS_PARALLEL_SCSI(un) &&
7416 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7417 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7418 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7419 			    1, 1) == 1) {
7420 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7421 				    "sd_unit_attach: un:0x%p Wide Transfer "
7422 				    "enabled\n", un);
7423 			}
7424 
7425 			/*
7426 			 * If tagged queuing has also been enabled, then
7427 			 * enable large xfers
7428 			 */
7429 			if (un->un_saved_throttle == sd_max_throttle) {
7430 				un->un_max_xfer_size =
7431 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7432 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7433 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7434 				    "sd_unit_attach: un:0x%p max transfer "
7435 				    "size=0x%x\n", un, un->un_max_xfer_size);
7436 			}
7437 		} else {
7438 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7439 			    0, 1) == 1) {
7440 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7441 				    "sd_unit_attach: un:0x%p "
7442 				    "Wide Transfer disabled\n", un);
7443 			}
7444 		}
7445 	} else {
7446 		un->un_tagflags = FLAG_STAG;
7447 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7448 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7449 	}
7450 
7451 	/*
7452 	 * If this target supports LUN reset, try to enable it.
7453 	 */
7454 	if (un->un_f_lun_reset_enabled) {
7455 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7456 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7457 			    "un:0x%p lun_reset capability set\n", un);
7458 		} else {
7459 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7460 			    "un:0x%p lun-reset capability not set\n", un);
7461 		}
7462 	}
7463 
7464 	/*
7465 	 * Adjust the maximum transfer size. This is to fix
7466 	 * the problem of partial DMA support on SPARC. Some
7467 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7468 	 * size, which requires partial DMA support on SPARC.
7469 	 * In the future the SPARC pci nexus driver may solve
7470 	 * the problem instead of this fix.
7471 	 */
7472 #if defined(__sparc)
7473 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7474 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7475 		un->un_max_xfer_size = max_xfer_size;
7476 		un->un_partial_dma_supported = 1;
7477 	}
7478 #endif
7479 
7480 	/*
7481 	 * Set PKT_DMA_PARTIAL flag.
7482 	 */
7483 	if (un->un_partial_dma_supported == 1) {
7484 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7485 	} else {
7486 		un->un_pkt_flags = 0;
7487 	}
7488 
7489 	/* Initialize sd_ssc_t for internal uscsi commands */
7490 	ssc = sd_ssc_init(un);
7491 	scsi_fm_init(devp);
7492 
7493 	/*
7494 	 * Allocate memory for SCSI FMA stuffs.
7495 	 */
7496 	un->un_fm_private =
7497 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7498 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7499 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7500 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7501 	sfip->fm_ssc.ssc_un = un;
7502 
7503 	/*
7504 	 * At this point in the attach, we have enough info in the
7505 	 * soft state to be able to issue commands to the target.
7506 	 *
7507 	 * All command paths used below MUST issue their commands as
7508 	 * SD_PATH_DIRECT. This is important as intermediate layers
7509 	 * are not all initialized yet (such as PM).
7510 	 */
7511 
7512 	/*
7513 	 * Send a TEST UNIT READY command to the device. This should clear
7514 	 * any outstanding UNIT ATTENTION that may be present.
7515 	 *
7516 	 * Note: Don't check for success, just track if there is a reservation,
7517 	 * this is a throw away command to clear any unit attentions.
7518 	 *
7519 	 * Note: This MUST be the first command issued to the target during
7520 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7521 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7522 	 * with attempts at spinning up a device with no media.
7523 	 */
7524 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7525 	if (status != 0) {
7526 		if (status == EACCES)
7527 			reservation_flag = SD_TARGET_IS_RESERVED;
7528 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7529 	}
7530 
7531 	/*
7532 	 * If the device is NOT a removable media device, attempt to spin
7533 	 * it up (using the START_STOP_UNIT command) and read its capacity
7534 	 * (using the READ CAPACITY command).  Note, however, that either
7535 	 * of these could fail and in some cases we would continue with
7536 	 * the attach despite the failure (see below).
7537 	 */
7538 	if (un->un_f_descr_format_supported) {
7539 
7540 		switch (sd_spin_up_unit(ssc)) {
7541 		case 0:
7542 			/*
7543 			 * Spin-up was successful; now try to read the
7544 			 * capacity.  If successful then save the results
7545 			 * and mark the capacity & lbasize as valid.
7546 			 */
7547 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7548 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7549 
7550 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7551 			    &lbasize, SD_PATH_DIRECT);
7552 
7553 			switch (status) {
7554 			case 0: {
7555 				if (capacity > DK_MAX_BLOCKS) {
7556 #ifdef _LP64
7557 					if ((capacity + 1) >
7558 					    SD_GROUP1_MAX_ADDRESS) {
7559 						/*
7560 						 * Enable descriptor format
7561 						 * sense data so that we can
7562 						 * get 64 bit sense data
7563 						 * fields.
7564 						 */
7565 						sd_enable_descr_sense(ssc);
7566 					}
7567 #else
7568 					/* 32-bit kernels can't handle this */
7569 					scsi_log(SD_DEVINFO(un),
7570 					    sd_label, CE_WARN,
7571 					    "disk has %llu blocks, which "
7572 					    "is too large for a 32-bit "
7573 					    "kernel", capacity);
7574 
7575 #if defined(__i386) || defined(__amd64)
7576 					/*
7577 					 * 1TB disk was treated as (1T - 512)B
7578 					 * in the past, so that it might have
7579 					 * valid VTOC and solaris partitions,
7580 					 * we have to allow it to continue to
7581 					 * work.
7582 					 */
7583 					if (capacity -1 > DK_MAX_BLOCKS)
7584 #endif
7585 					goto spinup_failed;
7586 #endif
7587 				}
7588 
7589 				/*
7590 				 * Here it's not necessary to check the case:
7591 				 * the capacity of the device is bigger than
7592 				 * what the max hba cdb can support. Because
7593 				 * sd_send_scsi_READ_CAPACITY will retrieve
7594 				 * the capacity by sending USCSI command, which
7595 				 * is constrained by the max hba cdb. Actually,
7596 				 * sd_send_scsi_READ_CAPACITY will return
7597 				 * EINVAL when using bigger cdb than required
7598 				 * cdb length. Will handle this case in
7599 				 * "case EINVAL".
7600 				 */
7601 
7602 				/*
7603 				 * The following relies on
7604 				 * sd_send_scsi_READ_CAPACITY never
7605 				 * returning 0 for capacity and/or lbasize.
7606 				 */
7607 				sd_update_block_info(un, lbasize, capacity);
7608 
7609 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7610 				    "sd_unit_attach: un:0x%p capacity = %ld "
7611 				    "blocks; lbasize= %ld.\n", un,
7612 				    un->un_blockcount, un->un_tgt_blocksize);
7613 
7614 				break;
7615 			}
7616 			case EINVAL:
7617 				/*
7618 				 * In the case where the max-cdb-length property
7619 				 * is smaller than the required CDB length for
7620 				 * a SCSI device, a target driver can fail to
7621 				 * attach to that device.
7622 				 */
7623 				scsi_log(SD_DEVINFO(un),
7624 				    sd_label, CE_WARN,
7625 				    "disk capacity is too large "
7626 				    "for current cdb length");
7627 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7628 
7629 				goto spinup_failed;
7630 			case EACCES:
7631 				/*
7632 				 * Should never get here if the spin-up
7633 				 * succeeded, but code it in anyway.
7634 				 * From here, just continue with the attach...
7635 				 */
7636 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7637 				    "sd_unit_attach: un:0x%p "
7638 				    "sd_send_scsi_READ_CAPACITY "
7639 				    "returned reservation conflict\n", un);
7640 				reservation_flag = SD_TARGET_IS_RESERVED;
7641 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7642 				break;
7643 			default:
7644 				/*
7645 				 * Likewise, should never get here if the
7646 				 * spin-up succeeded. Just continue with
7647 				 * the attach...
7648 				 */
7649 				if (status == EIO)
7650 					sd_ssc_assessment(ssc,
7651 					    SD_FMT_STATUS_CHECK);
7652 				else
7653 					sd_ssc_assessment(ssc,
7654 					    SD_FMT_IGNORE);
7655 				break;
7656 			}
7657 			break;
7658 		case EACCES:
7659 			/*
7660 			 * Device is reserved by another host.  In this case
7661 			 * we could not spin it up or read the capacity, but
7662 			 * we continue with the attach anyway.
7663 			 */
7664 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7665 			    "sd_unit_attach: un:0x%p spin-up reservation "
7666 			    "conflict.\n", un);
7667 			reservation_flag = SD_TARGET_IS_RESERVED;
7668 			break;
7669 		default:
7670 			/* Fail the attach if the spin-up failed. */
7671 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7672 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7673 			goto spinup_failed;
7674 		}
7675 
7676 	}
7677 
7678 	/*
7679 	 * Check to see if this is a MMC drive
7680 	 */
7681 	if (ISCD(un)) {
7682 		sd_set_mmc_caps(ssc);
7683 	}
7684 
7685 
7686 	/*
7687 	 * Add a zero-length attribute to tell the world we support
7688 	 * kernel ioctls (for layered drivers)
7689 	 */
7690 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7691 	    DDI_KERNEL_IOCTL, NULL, 0);
7692 
7693 	/*
7694 	 * Add a boolean property to tell the world we support
7695 	 * the B_FAILFAST flag (for layered drivers)
7696 	 */
7697 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7698 	    "ddi-failfast-supported", NULL, 0);
7699 
7700 	/*
7701 	 * Initialize power management
7702 	 */
7703 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7704 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7705 	sd_setup_pm(ssc, devi);
7706 	if (un->un_f_pm_is_enabled == FALSE) {
7707 		/*
7708 		 * For performance, point to a jump table that does
7709 		 * not include pm.
7710 		 * The direct and priority chains don't change with PM.
7711 		 *
7712 		 * Note: this is currently done based on individual device
7713 		 * capabilities. When an interface for determining system
7714 		 * power enabled state becomes available, or when additional
7715 		 * layers are added to the command chain, these values will
7716 		 * have to be re-evaluated for correctness.
7717 		 */
7718 		if (un->un_f_non_devbsize_supported) {
7719 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7720 		} else {
7721 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7722 		}
7723 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7724 	}
7725 
7726 	/*
7727 	 * This property is set to 0 by HA software to avoid retries
7728 	 * on a reserved disk. (The preferred property name is
7729 	 * "retry-on-reservation-conflict") (1189689)
7730 	 *
7731 	 * Note: The use of a global here can have unintended consequences. A
7732 	 * per instance variable is preferable to match the capabilities of
7733 	 * different underlying hba's (4402600)
7734 	 */
7735 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7736 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7737 	    sd_retry_on_reservation_conflict);
7738 	if (sd_retry_on_reservation_conflict != 0) {
7739 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7740 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7741 		    sd_retry_on_reservation_conflict);
7742 	}
7743 
7744 	/* Set up options for QFULL handling. */
7745 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7746 	    "qfull-retries", -1)) != -1) {
7747 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7748 		    rval, 1);
7749 	}
7750 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7751 	    "qfull-retry-interval", -1)) != -1) {
7752 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7753 		    rval, 1);
7754 	}
7755 
7756 	/*
7757 	 * This just prints a message that announces the existence of the
7758 	 * device. The message is always printed in the system logfile, but
7759 	 * only appears on the console if the system is booted with the
7760 	 * -v (verbose) argument.
7761 	 */
7762 	ddi_report_dev(devi);
7763 
7764 	un->un_mediastate = DKIO_NONE;
7765 
7766 	cmlb_alloc_handle(&un->un_cmlbhandle);
7767 
7768 #if defined(__i386) || defined(__amd64)
7769 	/*
7770 	 * On x86, compensate for off-by-1 legacy error
7771 	 */
7772 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7773 	    (lbasize == un->un_sys_blocksize))
7774 		offbyone = CMLB_OFF_BY_ONE;
7775 #endif
7776 
7777 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7778 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7779 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7780 	    (void *)SD_PATH_DIRECT) != 0) {
7781 		goto cmlb_attach_failed;
7782 	}
7783 
7784 
7785 	/*
7786 	 * Read and validate the device's geometry (ie, disk label)
7787 	 * A new unformatted drive will not have a valid geometry, but
7788 	 * the driver needs to successfully attach to this device so
7789 	 * the drive can be formatted via ioctls.
7790 	 */
7791 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7792 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7793 
7794 	mutex_enter(SD_MUTEX(un));
7795 
7796 	/*
7797 	 * Read and initialize the devid for the unit.
7798 	 */
7799 	if (un->un_f_devid_supported) {
7800 		sd_register_devid(ssc, devi, reservation_flag);
7801 	}
7802 	mutex_exit(SD_MUTEX(un));
7803 
7804 #if (defined(__fibre))
7805 	/*
7806 	 * Register callbacks for fibre only.  You can't do this solely
7807 	 * on the basis of the devid_type because this is hba specific.
7808 	 * We need to query our hba capabilities to find out whether to
7809 	 * register or not.
7810 	 */
7811 	if (un->un_f_is_fibre) {
7812 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7813 			sd_init_event_callbacks(un);
7814 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7815 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7816 			    un);
7817 		}
7818 	}
7819 #endif
7820 
7821 	if (un->un_f_opt_disable_cache == TRUE) {
7822 		/*
7823 		 * Disable both read cache and write cache.  This is
7824 		 * the historic behavior of the keywords in the config file.
7825 		 */
7826 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7827 		    0) {
7828 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7829 			    "sd_unit_attach: un:0x%p Could not disable "
7830 			    "caching", un);
7831 			goto devid_failed;
7832 		}
7833 	}
7834 
7835 	/*
7836 	 * Check the value of the WCE bit now and
7837 	 * set un_f_write_cache_enabled accordingly.
7838 	 */
7839 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
7840 	mutex_enter(SD_MUTEX(un));
7841 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7842 	mutex_exit(SD_MUTEX(un));
7843 
7844 	/*
7845 	 * Check the value of the NV_SUP bit and set
7846 	 * un_f_suppress_cache_flush accordingly.
7847 	 */
7848 	sd_get_nv_sup(ssc);
7849 
7850 	/*
7851 	 * Find out what type of reservation this disk supports.
7852 	 */
7853 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
7854 
7855 	switch (status) {
7856 	case 0:
7857 		/*
7858 		 * SCSI-3 reservations are supported.
7859 		 */
7860 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7861 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7862 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7863 		break;
7864 	case ENOTSUP:
7865 		/*
7866 		 * The PERSISTENT RESERVE IN command would not be recognized by
7867 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7868 		 */
7869 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7870 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7871 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7872 
7873 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7874 		break;
7875 	default:
7876 		/*
7877 		 * default to SCSI-3 reservations
7878 		 */
7879 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7880 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7881 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7882 
7883 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7884 		break;
7885 	}
7886 
7887 	/*
7888 	 * Set the pstat and error stat values here, so data obtained during the
7889 	 * previous attach-time routines is available.
7890 	 *
7891 	 * Note: This is a critical sequence that needs to be maintained:
7892 	 *	1) Instantiate the kstats before any routines using the iopath
7893 	 *	   (i.e. sd_send_scsi_cmd).
7894 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7895 	 *	   stats (sd_set_pstats)here, following
7896 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7897 	 *	   sd_cache_control().
7898 	 */
7899 
7900 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7901 		sd_set_pstats(un);
7902 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7903 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7904 	}
7905 
7906 	sd_set_errstats(un);
7907 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7908 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7909 
7910 
7911 	/*
7912 	 * After successfully attaching an instance, we record the information
7913 	 * of how many luns have been attached on the relative target and
7914 	 * controller for parallel SCSI. This information is used when sd tries
7915 	 * to set the tagged queuing capability in HBA.
7916 	 */
7917 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7918 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7919 	}
7920 
7921 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7922 	    "sd_unit_attach: un:0x%p exit success\n", un);
7923 
7924 	/* Uninitialize sd_ssc_t pointer */
7925 	sd_ssc_fini(ssc);
7926 
7927 	return (DDI_SUCCESS);
7928 
7929 	/*
7930 	 * An error occurred during the attach; clean up & return failure.
7931 	 */
7932 
7933 devid_failed:
7934 
7935 setup_pm_failed:
7936 	ddi_remove_minor_node(devi, NULL);
7937 
7938 cmlb_attach_failed:
7939 	/*
7940 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7941 	 */
7942 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7943 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7944 
7945 	/*
7946 	 * Refer to the comments of setting tagged-qing in the beginning of
7947 	 * sd_unit_attach. We can only disable tagged queuing when there is
7948 	 * no lun attached on the target.
7949 	 */
7950 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7951 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7952 	}
7953 
7954 	if (un->un_f_is_fibre == FALSE) {
7955 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7956 	}
7957 
7958 spinup_failed:
7959 
7960 	/* Uninitialize sd_ssc_t pointer */
7961 	sd_ssc_fini(ssc);
7962 
7963 	mutex_enter(SD_MUTEX(un));
7964 
7965 	/* Deallocate SCSI FMA memory spaces */
7966 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
7967 
7968 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7969 	if (un->un_direct_priority_timeid != NULL) {
7970 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7971 		un->un_direct_priority_timeid = NULL;
7972 		mutex_exit(SD_MUTEX(un));
7973 		(void) untimeout(temp_id);
7974 		mutex_enter(SD_MUTEX(un));
7975 	}
7976 
7977 	/* Cancel any pending start/stop timeouts */
7978 	if (un->un_startstop_timeid != NULL) {
7979 		timeout_id_t temp_id = un->un_startstop_timeid;
7980 		un->un_startstop_timeid = NULL;
7981 		mutex_exit(SD_MUTEX(un));
7982 		(void) untimeout(temp_id);
7983 		mutex_enter(SD_MUTEX(un));
7984 	}
7985 
7986 	/* Cancel any pending reset-throttle timeouts */
7987 	if (un->un_reset_throttle_timeid != NULL) {
7988 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7989 		un->un_reset_throttle_timeid = NULL;
7990 		mutex_exit(SD_MUTEX(un));
7991 		(void) untimeout(temp_id);
7992 		mutex_enter(SD_MUTEX(un));
7993 	}
7994 
7995 	/* Cancel any pending retry timeouts */
7996 	if (un->un_retry_timeid != NULL) {
7997 		timeout_id_t temp_id = un->un_retry_timeid;
7998 		un->un_retry_timeid = NULL;
7999 		mutex_exit(SD_MUTEX(un));
8000 		(void) untimeout(temp_id);
8001 		mutex_enter(SD_MUTEX(un));
8002 	}
8003 
8004 	/* Cancel any pending delayed cv broadcast timeouts */
8005 	if (un->un_dcvb_timeid != NULL) {
8006 		timeout_id_t temp_id = un->un_dcvb_timeid;
8007 		un->un_dcvb_timeid = NULL;
8008 		mutex_exit(SD_MUTEX(un));
8009 		(void) untimeout(temp_id);
8010 		mutex_enter(SD_MUTEX(un));
8011 	}
8012 
8013 	mutex_exit(SD_MUTEX(un));
8014 
8015 	/* There should not be any in-progress I/O so ASSERT this check */
8016 	ASSERT(un->un_ncmds_in_transport == 0);
8017 	ASSERT(un->un_ncmds_in_driver == 0);
8018 
8019 	/* Do not free the softstate if the callback routine is active */
8020 	sd_sync_with_callback(un);
8021 
8022 	/*
8023 	 * Partition stats apparently are not used with removables. These would
8024 	 * not have been created during attach, so no need to clean them up...
8025 	 */
8026 	if (un->un_errstats != NULL) {
8027 		kstat_delete(un->un_errstats);
8028 		un->un_errstats = NULL;
8029 	}
8030 
8031 create_errstats_failed:
8032 
8033 	if (un->un_stats != NULL) {
8034 		kstat_delete(un->un_stats);
8035 		un->un_stats = NULL;
8036 	}
8037 
8038 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8039 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8040 
8041 	ddi_prop_remove_all(devi);
8042 	sema_destroy(&un->un_semoclose);
8043 	cv_destroy(&un->un_state_cv);
8044 
8045 getrbuf_failed:
8046 
8047 	sd_free_rqs(un);
8048 
8049 alloc_rqs_failed:
8050 
8051 	devp->sd_private = NULL;
8052 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8053 
8054 get_softstate_failed:
8055 	/*
8056 	 * Note: the man pages are unclear as to whether or not doing a
8057 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8058 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8059 	 * ddi_get_soft_state() fails.  The implication seems to be
8060 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8061 	 */
8062 	ddi_soft_state_free(sd_state, instance);
8063 
8064 probe_failed:
8065 	scsi_unprobe(devp);
8066 
8067 	return (DDI_FAILURE);
8068 }
8069 
8070 
8071 /*
8072  *    Function: sd_unit_detach
8073  *
8074  * Description: Performs DDI_DETACH processing for sddetach().
8075  *
8076  * Return Code: DDI_SUCCESS
8077  *		DDI_FAILURE
8078  *
8079  *     Context: Kernel thread context
8080  */
8081 
8082 static int
8083 sd_unit_detach(dev_info_t *devi)
8084 {
8085 	struct scsi_device	*devp;
8086 	struct sd_lun		*un;
8087 	int			i;
8088 	int			tgt;
8089 	dev_t			dev;
8090 	dev_info_t		*pdip = ddi_get_parent(devi);
8091 	int			instance = ddi_get_instance(devi);
8092 
8093 	mutex_enter(&sd_detach_mutex);
8094 
8095 	/*
8096 	 * Fail the detach for any of the following:
8097 	 *  - Unable to get the sd_lun struct for the instance
8098 	 *  - A layered driver has an outstanding open on the instance
8099 	 *  - Another thread is already detaching this instance
8100 	 *  - Another thread is currently performing an open
8101 	 */
8102 	devp = ddi_get_driver_private(devi);
8103 	if ((devp == NULL) ||
8104 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8105 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8106 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8107 		mutex_exit(&sd_detach_mutex);
8108 		return (DDI_FAILURE);
8109 	}
8110 
8111 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8112 
8113 	/*
8114 	 * Mark this instance as currently in a detach, to inhibit any
8115 	 * opens from a layered driver.
8116 	 */
8117 	un->un_detach_count++;
8118 	mutex_exit(&sd_detach_mutex);
8119 
8120 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8121 	    SCSI_ADDR_PROP_TARGET, -1);
8122 
8123 	dev = sd_make_device(SD_DEVINFO(un));
8124 
8125 #ifndef lint
8126 	_NOTE(COMPETING_THREADS_NOW);
8127 #endif
8128 
8129 	mutex_enter(SD_MUTEX(un));
8130 
8131 	/*
8132 	 * Fail the detach if there are any outstanding layered
8133 	 * opens on this device.
8134 	 */
8135 	for (i = 0; i < NDKMAP; i++) {
8136 		if (un->un_ocmap.lyropen[i] != 0) {
8137 			goto err_notclosed;
8138 		}
8139 	}
8140 
8141 	/*
8142 	 * Verify there are NO outstanding commands issued to this device.
8143 	 * ie, un_ncmds_in_transport == 0.
8144 	 * It's possible to have outstanding commands through the physio
8145 	 * code path, even though everything's closed.
8146 	 */
8147 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8148 	    (un->un_direct_priority_timeid != NULL) ||
8149 	    (un->un_state == SD_STATE_RWAIT)) {
8150 		mutex_exit(SD_MUTEX(un));
8151 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8152 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8153 		goto err_stillbusy;
8154 	}
8155 
8156 	/*
8157 	 * If we have the device reserved, release the reservation.
8158 	 */
8159 	if ((un->un_resvd_status & SD_RESERVE) &&
8160 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8161 		mutex_exit(SD_MUTEX(un));
8162 		/*
8163 		 * Note: sd_reserve_release sends a command to the device
8164 		 * via the sd_ioctlcmd() path, and can sleep.
8165 		 */
8166 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8167 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8168 			    "sd_dr_detach: Cannot release reservation \n");
8169 		}
8170 	} else {
8171 		mutex_exit(SD_MUTEX(un));
8172 	}
8173 
8174 	/*
8175 	 * Untimeout any reserve recover, throttle reset, restart unit
8176 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8177 	 * from getting nulled by their callback functions.
8178 	 */
8179 	mutex_enter(SD_MUTEX(un));
8180 	if (un->un_resvd_timeid != NULL) {
8181 		timeout_id_t temp_id = un->un_resvd_timeid;
8182 		un->un_resvd_timeid = NULL;
8183 		mutex_exit(SD_MUTEX(un));
8184 		(void) untimeout(temp_id);
8185 		mutex_enter(SD_MUTEX(un));
8186 	}
8187 
8188 	if (un->un_reset_throttle_timeid != NULL) {
8189 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8190 		un->un_reset_throttle_timeid = NULL;
8191 		mutex_exit(SD_MUTEX(un));
8192 		(void) untimeout(temp_id);
8193 		mutex_enter(SD_MUTEX(un));
8194 	}
8195 
8196 	if (un->un_startstop_timeid != NULL) {
8197 		timeout_id_t temp_id = un->un_startstop_timeid;
8198 		un->un_startstop_timeid = NULL;
8199 		mutex_exit(SD_MUTEX(un));
8200 		(void) untimeout(temp_id);
8201 		mutex_enter(SD_MUTEX(un));
8202 	}
8203 
8204 	if (un->un_dcvb_timeid != NULL) {
8205 		timeout_id_t temp_id = un->un_dcvb_timeid;
8206 		un->un_dcvb_timeid = NULL;
8207 		mutex_exit(SD_MUTEX(un));
8208 		(void) untimeout(temp_id);
8209 	} else {
8210 		mutex_exit(SD_MUTEX(un));
8211 	}
8212 
8213 	/* Remove any pending reservation reclaim requests for this device */
8214 	sd_rmv_resv_reclaim_req(dev);
8215 
8216 	mutex_enter(SD_MUTEX(un));
8217 
8218 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8219 	if (un->un_direct_priority_timeid != NULL) {
8220 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8221 		un->un_direct_priority_timeid = NULL;
8222 		mutex_exit(SD_MUTEX(un));
8223 		(void) untimeout(temp_id);
8224 		mutex_enter(SD_MUTEX(un));
8225 	}
8226 
8227 	/* Cancel any active multi-host disk watch thread requests */
8228 	if (un->un_mhd_token != NULL) {
8229 		mutex_exit(SD_MUTEX(un));
8230 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8231 		if (scsi_watch_request_terminate(un->un_mhd_token,
8232 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8233 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8234 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8235 			/*
8236 			 * Note: We are returning here after having removed
8237 			 * some driver timeouts above. This is consistent with
8238 			 * the legacy implementation but perhaps the watch
8239 			 * terminate call should be made with the wait flag set.
8240 			 */
8241 			goto err_stillbusy;
8242 		}
8243 		mutex_enter(SD_MUTEX(un));
8244 		un->un_mhd_token = NULL;
8245 	}
8246 
8247 	if (un->un_swr_token != NULL) {
8248 		mutex_exit(SD_MUTEX(un));
8249 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8250 		if (scsi_watch_request_terminate(un->un_swr_token,
8251 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8252 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8253 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8254 			/*
8255 			 * Note: We are returning here after having removed
8256 			 * some driver timeouts above. This is consistent with
8257 			 * the legacy implementation but perhaps the watch
8258 			 * terminate call should be made with the wait flag set.
8259 			 */
8260 			goto err_stillbusy;
8261 		}
8262 		mutex_enter(SD_MUTEX(un));
8263 		un->un_swr_token = NULL;
8264 	}
8265 
8266 	mutex_exit(SD_MUTEX(un));
8267 
8268 	/*
8269 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8270 	 * if we have not registered one.
8271 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8272 	 */
8273 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8274 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8275 
8276 	/*
8277 	 * protect the timeout pointers from getting nulled by
8278 	 * their callback functions during the cancellation process.
8279 	 * In such a scenario untimeout can be invoked with a null value.
8280 	 */
8281 	_NOTE(NO_COMPETING_THREADS_NOW);
8282 
8283 	mutex_enter(&un->un_pm_mutex);
8284 	if (un->un_pm_idle_timeid != NULL) {
8285 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8286 		un->un_pm_idle_timeid = NULL;
8287 		mutex_exit(&un->un_pm_mutex);
8288 
8289 		/*
8290 		 * Timeout is active; cancel it.
8291 		 * Note that it'll never be active on a device
8292 		 * that does not support PM therefore we don't
8293 		 * have to check before calling pm_idle_component.
8294 		 */
8295 		(void) untimeout(temp_id);
8296 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8297 		mutex_enter(&un->un_pm_mutex);
8298 	}
8299 
8300 	/*
8301 	 * Check whether there is already a timeout scheduled for power
8302 	 * management. If yes then don't lower the power here, that's.
8303 	 * the timeout handler's job.
8304 	 */
8305 	if (un->un_pm_timeid != NULL) {
8306 		timeout_id_t temp_id = un->un_pm_timeid;
8307 		un->un_pm_timeid = NULL;
8308 		mutex_exit(&un->un_pm_mutex);
8309 		/*
8310 		 * Timeout is active; cancel it.
8311 		 * Note that it'll never be active on a device
8312 		 * that does not support PM therefore we don't
8313 		 * have to check before calling pm_idle_component.
8314 		 */
8315 		(void) untimeout(temp_id);
8316 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8317 
8318 	} else {
8319 		mutex_exit(&un->un_pm_mutex);
8320 		if ((un->un_f_pm_is_enabled == TRUE) &&
8321 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8322 		    DDI_SUCCESS)) {
8323 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8324 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8325 			/*
8326 			 * Fix for bug: 4297749, item # 13
8327 			 * The above test now includes a check to see if PM is
8328 			 * supported by this device before call
8329 			 * pm_lower_power().
8330 			 * Note, the following is not dead code. The call to
8331 			 * pm_lower_power above will generate a call back into
8332 			 * our sdpower routine which might result in a timeout
8333 			 * handler getting activated. Therefore the following
8334 			 * code is valid and necessary.
8335 			 */
8336 			mutex_enter(&un->un_pm_mutex);
8337 			if (un->un_pm_timeid != NULL) {
8338 				timeout_id_t temp_id = un->un_pm_timeid;
8339 				un->un_pm_timeid = NULL;
8340 				mutex_exit(&un->un_pm_mutex);
8341 				(void) untimeout(temp_id);
8342 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8343 			} else {
8344 				mutex_exit(&un->un_pm_mutex);
8345 			}
8346 		}
8347 	}
8348 
8349 	/*
8350 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8351 	 * Relocated here from above to be after the call to
8352 	 * pm_lower_power, which was getting errors.
8353 	 */
8354 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8355 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8356 
8357 	/*
8358 	 * Currently, tagged queuing is supported per target based by HBA.
8359 	 * Setting this per lun instance actually sets the capability of this
8360 	 * target in HBA, which affects those luns already attached on the
8361 	 * same target. So during detach, we can only disable this capability
8362 	 * only when this is the only lun left on this target. By doing
8363 	 * this, we assume a target has the same tagged queuing capability
8364 	 * for every lun. The condition can be removed when HBA is changed to
8365 	 * support per lun based tagged queuing capability.
8366 	 */
8367 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8368 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8369 	}
8370 
8371 	if (un->un_f_is_fibre == FALSE) {
8372 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8373 	}
8374 
8375 	/*
8376 	 * Remove any event callbacks, fibre only
8377 	 */
8378 	if (un->un_f_is_fibre == TRUE) {
8379 		if ((un->un_insert_event != NULL) &&
8380 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8381 		    DDI_SUCCESS)) {
8382 			/*
8383 			 * Note: We are returning here after having done
8384 			 * substantial cleanup above. This is consistent
8385 			 * with the legacy implementation but this may not
8386 			 * be the right thing to do.
8387 			 */
8388 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8389 			    "sd_dr_detach: Cannot cancel insert event\n");
8390 			goto err_remove_event;
8391 		}
8392 		un->un_insert_event = NULL;
8393 
8394 		if ((un->un_remove_event != NULL) &&
8395 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8396 		    DDI_SUCCESS)) {
8397 			/*
8398 			 * Note: We are returning here after having done
8399 			 * substantial cleanup above. This is consistent
8400 			 * with the legacy implementation but this may not
8401 			 * be the right thing to do.
8402 			 */
8403 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8404 			    "sd_dr_detach: Cannot cancel remove event\n");
8405 			goto err_remove_event;
8406 		}
8407 		un->un_remove_event = NULL;
8408 	}
8409 
8410 	/* Do not free the softstate if the callback routine is active */
8411 	sd_sync_with_callback(un);
8412 
8413 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8414 	cmlb_free_handle(&un->un_cmlbhandle);
8415 
8416 	/*
8417 	 * Hold the detach mutex here, to make sure that no other threads ever
8418 	 * can access a (partially) freed soft state structure.
8419 	 */
8420 	mutex_enter(&sd_detach_mutex);
8421 
8422 	/*
8423 	 * Clean up the soft state struct.
8424 	 * Cleanup is done in reverse order of allocs/inits.
8425 	 * At this point there should be no competing threads anymore.
8426 	 */
8427 
8428 	scsi_fm_fini(devp);
8429 
8430 	/*
8431 	 * Deallocate memory for SCSI FMA.
8432 	 */
8433 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8434 
8435 	/* Unregister and free device id. */
8436 	ddi_devid_unregister(devi);
8437 	if (un->un_devid) {
8438 		ddi_devid_free(un->un_devid);
8439 		un->un_devid = NULL;
8440 	}
8441 
8442 	/*
8443 	 * Destroy wmap cache if it exists.
8444 	 */
8445 	if (un->un_wm_cache != NULL) {
8446 		kmem_cache_destroy(un->un_wm_cache);
8447 		un->un_wm_cache = NULL;
8448 	}
8449 
8450 	/*
8451 	 * kstat cleanup is done in detach for all device types (4363169).
8452 	 * We do not want to fail detach if the device kstats are not deleted
8453 	 * since there is a confusion about the devo_refcnt for the device.
8454 	 * We just delete the kstats and let detach complete successfully.
8455 	 */
8456 	if (un->un_stats != NULL) {
8457 		kstat_delete(un->un_stats);
8458 		un->un_stats = NULL;
8459 	}
8460 	if (un->un_errstats != NULL) {
8461 		kstat_delete(un->un_errstats);
8462 		un->un_errstats = NULL;
8463 	}
8464 
8465 	/* Remove partition stats */
8466 	if (un->un_f_pkstats_enabled) {
8467 		for (i = 0; i < NSDMAP; i++) {
8468 			if (un->un_pstats[i] != NULL) {
8469 				kstat_delete(un->un_pstats[i]);
8470 				un->un_pstats[i] = NULL;
8471 			}
8472 		}
8473 	}
8474 
8475 	/* Remove xbuf registration */
8476 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8477 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8478 
8479 	/* Remove driver properties */
8480 	ddi_prop_remove_all(devi);
8481 
8482 	mutex_destroy(&un->un_pm_mutex);
8483 	cv_destroy(&un->un_pm_busy_cv);
8484 
8485 	cv_destroy(&un->un_wcc_cv);
8486 
8487 	/* Open/close semaphore */
8488 	sema_destroy(&un->un_semoclose);
8489 
8490 	/* Removable media condvar. */
8491 	cv_destroy(&un->un_state_cv);
8492 
8493 	/* Suspend/resume condvar. */
8494 	cv_destroy(&un->un_suspend_cv);
8495 	cv_destroy(&un->un_disk_busy_cv);
8496 
8497 	sd_free_rqs(un);
8498 
8499 	/* Free up soft state */
8500 	devp->sd_private = NULL;
8501 
8502 	bzero(un, sizeof (struct sd_lun));
8503 	ddi_soft_state_free(sd_state, instance);
8504 
8505 	mutex_exit(&sd_detach_mutex);
8506 
8507 	/* This frees up the INQUIRY data associated with the device. */
8508 	scsi_unprobe(devp);
8509 
8510 	/*
8511 	 * After successfully detaching an instance, we update the information
8512 	 * of how many luns have been attached in the relative target and
8513 	 * controller for parallel SCSI. This information is used when sd tries
8514 	 * to set the tagged queuing capability in HBA.
8515 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8516 	 * check if the device is parallel SCSI. However, we don't need to
8517 	 * check here because we've already checked during attach. No device
8518 	 * that is not parallel SCSI is in the chain.
8519 	 */
8520 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8521 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8522 	}
8523 
8524 	return (DDI_SUCCESS);
8525 
8526 err_notclosed:
8527 	mutex_exit(SD_MUTEX(un));
8528 
8529 err_stillbusy:
8530 	_NOTE(NO_COMPETING_THREADS_NOW);
8531 
8532 err_remove_event:
8533 	mutex_enter(&sd_detach_mutex);
8534 	un->un_detach_count--;
8535 	mutex_exit(&sd_detach_mutex);
8536 
8537 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8538 	return (DDI_FAILURE);
8539 }
8540 
8541 
8542 /*
8543  *    Function: sd_create_errstats
8544  *
8545  * Description: This routine instantiates the device error stats.
8546  *
8547  *		Note: During attach the stats are instantiated first so they are
8548  *		available for attach-time routines that utilize the driver
8549  *		iopath to send commands to the device. The stats are initialized
8550  *		separately so data obtained during some attach-time routines is
8551  *		available. (4362483)
8552  *
8553  *   Arguments: un - driver soft state (unit) structure
8554  *		instance - driver instance
8555  *
8556  *     Context: Kernel thread context
8557  */
8558 
8559 static void
8560 sd_create_errstats(struct sd_lun *un, int instance)
8561 {
8562 	struct	sd_errstats	*stp;
8563 	char	kstatmodule_err[KSTAT_STRLEN];
8564 	char	kstatname[KSTAT_STRLEN];
8565 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8566 
8567 	ASSERT(un != NULL);
8568 
8569 	if (un->un_errstats != NULL) {
8570 		return;
8571 	}
8572 
8573 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8574 	    "%serr", sd_label);
8575 	(void) snprintf(kstatname, sizeof (kstatname),
8576 	    "%s%d,err", sd_label, instance);
8577 
8578 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8579 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8580 
8581 	if (un->un_errstats == NULL) {
8582 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8583 		    "sd_create_errstats: Failed kstat_create\n");
8584 		return;
8585 	}
8586 
8587 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8588 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8589 	    KSTAT_DATA_UINT32);
8590 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8591 	    KSTAT_DATA_UINT32);
8592 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8593 	    KSTAT_DATA_UINT32);
8594 	kstat_named_init(&stp->sd_vid,		"Vendor",
8595 	    KSTAT_DATA_CHAR);
8596 	kstat_named_init(&stp->sd_pid,		"Product",
8597 	    KSTAT_DATA_CHAR);
8598 	kstat_named_init(&stp->sd_revision,	"Revision",
8599 	    KSTAT_DATA_CHAR);
8600 	kstat_named_init(&stp->sd_serial,	"Serial No",
8601 	    KSTAT_DATA_CHAR);
8602 	kstat_named_init(&stp->sd_capacity,	"Size",
8603 	    KSTAT_DATA_ULONGLONG);
8604 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8605 	    KSTAT_DATA_UINT32);
8606 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8607 	    KSTAT_DATA_UINT32);
8608 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8609 	    KSTAT_DATA_UINT32);
8610 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8611 	    KSTAT_DATA_UINT32);
8612 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8613 	    KSTAT_DATA_UINT32);
8614 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8615 	    KSTAT_DATA_UINT32);
8616 
8617 	un->un_errstats->ks_private = un;
8618 	un->un_errstats->ks_update  = nulldev;
8619 
8620 	kstat_install(un->un_errstats);
8621 }
8622 
8623 
8624 /*
8625  *    Function: sd_set_errstats
8626  *
8627  * Description: This routine sets the value of the vendor id, product id,
8628  *		revision, serial number, and capacity device error stats.
8629  *
8630  *		Note: During attach the stats are instantiated first so they are
8631  *		available for attach-time routines that utilize the driver
8632  *		iopath to send commands to the device. The stats are initialized
8633  *		separately so data obtained during some attach-time routines is
8634  *		available. (4362483)
8635  *
8636  *   Arguments: un - driver soft state (unit) structure
8637  *
8638  *     Context: Kernel thread context
8639  */
8640 
8641 static void
8642 sd_set_errstats(struct sd_lun *un)
8643 {
8644 	struct	sd_errstats	*stp;
8645 
8646 	ASSERT(un != NULL);
8647 	ASSERT(un->un_errstats != NULL);
8648 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8649 	ASSERT(stp != NULL);
8650 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8651 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8652 	(void) strncpy(stp->sd_revision.value.c,
8653 	    un->un_sd->sd_inq->inq_revision, 4);
8654 
8655 	/*
8656 	 * All the errstats are persistent across detach/attach,
8657 	 * so reset all the errstats here in case of the hot
8658 	 * replacement of disk drives, except for not changed
8659 	 * Sun qualified drives.
8660 	 */
8661 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8662 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8663 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8664 		stp->sd_softerrs.value.ui32 = 0;
8665 		stp->sd_harderrs.value.ui32 = 0;
8666 		stp->sd_transerrs.value.ui32 = 0;
8667 		stp->sd_rq_media_err.value.ui32 = 0;
8668 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8669 		stp->sd_rq_nodev_err.value.ui32 = 0;
8670 		stp->sd_rq_recov_err.value.ui32 = 0;
8671 		stp->sd_rq_illrq_err.value.ui32 = 0;
8672 		stp->sd_rq_pfa_err.value.ui32 = 0;
8673 	}
8674 
8675 	/*
8676 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8677 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8678 	 * (4376302))
8679 	 */
8680 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8681 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8682 		    sizeof (SD_INQUIRY(un)->inq_serial));
8683 	}
8684 
8685 	if (un->un_f_blockcount_is_valid != TRUE) {
8686 		/*
8687 		 * Set capacity error stat to 0 for no media. This ensures
8688 		 * a valid capacity is displayed in response to 'iostat -E'
8689 		 * when no media is present in the device.
8690 		 */
8691 		stp->sd_capacity.value.ui64 = 0;
8692 	} else {
8693 		/*
8694 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8695 		 * capacity.
8696 		 *
8697 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8698 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8699 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8700 		 */
8701 		stp->sd_capacity.value.ui64 = (uint64_t)
8702 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8703 	}
8704 }
8705 
8706 
8707 /*
8708  *    Function: sd_set_pstats
8709  *
8710  * Description: This routine instantiates and initializes the partition
8711  *              stats for each partition with more than zero blocks.
8712  *		(4363169)
8713  *
8714  *   Arguments: un - driver soft state (unit) structure
8715  *
8716  *     Context: Kernel thread context
8717  */
8718 
8719 static void
8720 sd_set_pstats(struct sd_lun *un)
8721 {
8722 	char	kstatname[KSTAT_STRLEN];
8723 	int	instance;
8724 	int	i;
8725 	diskaddr_t	nblks = 0;
8726 	char	*partname = NULL;
8727 
8728 	ASSERT(un != NULL);
8729 
8730 	instance = ddi_get_instance(SD_DEVINFO(un));
8731 
8732 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8733 	for (i = 0; i < NSDMAP; i++) {
8734 
8735 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8736 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8737 			continue;
8738 		mutex_enter(SD_MUTEX(un));
8739 
8740 		if ((un->un_pstats[i] == NULL) &&
8741 		    (nblks != 0)) {
8742 
8743 			(void) snprintf(kstatname, sizeof (kstatname),
8744 			    "%s%d,%s", sd_label, instance,
8745 			    partname);
8746 
8747 			un->un_pstats[i] = kstat_create(sd_label,
8748 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8749 			    1, KSTAT_FLAG_PERSISTENT);
8750 			if (un->un_pstats[i] != NULL) {
8751 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8752 				kstat_install(un->un_pstats[i]);
8753 			}
8754 		}
8755 		mutex_exit(SD_MUTEX(un));
8756 	}
8757 }
8758 
8759 
8760 #if (defined(__fibre))
8761 /*
8762  *    Function: sd_init_event_callbacks
8763  *
8764  * Description: This routine initializes the insertion and removal event
8765  *		callbacks. (fibre only)
8766  *
8767  *   Arguments: un - driver soft state (unit) structure
8768  *
8769  *     Context: Kernel thread context
8770  */
8771 
8772 static void
8773 sd_init_event_callbacks(struct sd_lun *un)
8774 {
8775 	ASSERT(un != NULL);
8776 
8777 	if ((un->un_insert_event == NULL) &&
8778 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8779 	    &un->un_insert_event) == DDI_SUCCESS)) {
8780 		/*
8781 		 * Add the callback for an insertion event
8782 		 */
8783 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8784 		    un->un_insert_event, sd_event_callback, (void *)un,
8785 		    &(un->un_insert_cb_id));
8786 	}
8787 
8788 	if ((un->un_remove_event == NULL) &&
8789 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8790 	    &un->un_remove_event) == DDI_SUCCESS)) {
8791 		/*
8792 		 * Add the callback for a removal event
8793 		 */
8794 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8795 		    un->un_remove_event, sd_event_callback, (void *)un,
8796 		    &(un->un_remove_cb_id));
8797 	}
8798 }
8799 
8800 
8801 /*
8802  *    Function: sd_event_callback
8803  *
8804  * Description: This routine handles insert/remove events (photon). The
8805  *		state is changed to OFFLINE which can be used to supress
8806  *		error msgs. (fibre only)
8807  *
8808  *   Arguments: un - driver soft state (unit) structure
8809  *
8810  *     Context: Callout thread context
8811  */
8812 /* ARGSUSED */
8813 static void
8814 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8815     void *bus_impldata)
8816 {
8817 	struct sd_lun *un = (struct sd_lun *)arg;
8818 
8819 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8820 	if (event == un->un_insert_event) {
8821 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8822 		mutex_enter(SD_MUTEX(un));
8823 		if (un->un_state == SD_STATE_OFFLINE) {
8824 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8825 				un->un_state = un->un_last_state;
8826 			} else {
8827 				/*
8828 				 * We have gone through SUSPEND/RESUME while
8829 				 * we were offline. Restore the last state
8830 				 */
8831 				un->un_state = un->un_save_state;
8832 			}
8833 		}
8834 		mutex_exit(SD_MUTEX(un));
8835 
8836 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8837 	} else if (event == un->un_remove_event) {
8838 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8839 		mutex_enter(SD_MUTEX(un));
8840 		/*
8841 		 * We need to handle an event callback that occurs during
8842 		 * the suspend operation, since we don't prevent it.
8843 		 */
8844 		if (un->un_state != SD_STATE_OFFLINE) {
8845 			if (un->un_state != SD_STATE_SUSPENDED) {
8846 				New_state(un, SD_STATE_OFFLINE);
8847 			} else {
8848 				un->un_last_state = SD_STATE_OFFLINE;
8849 			}
8850 		}
8851 		mutex_exit(SD_MUTEX(un));
8852 	} else {
8853 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8854 		    "!Unknown event\n");
8855 	}
8856 
8857 }
8858 #endif
8859 
8860 /*
8861  *    Function: sd_cache_control()
8862  *
8863  * Description: This routine is the driver entry point for setting
8864  *		read and write caching by modifying the WCE (write cache
8865  *		enable) and RCD (read cache disable) bits of mode
8866  *		page 8 (MODEPAGE_CACHING).
8867  *
8868  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
8869  *                      structure for this target.
8870  *		rcd_flag - flag for controlling the read cache
8871  *		wce_flag - flag for controlling the write cache
8872  *
8873  * Return Code: EIO
8874  *		code returned by sd_send_scsi_MODE_SENSE and
8875  *		sd_send_scsi_MODE_SELECT
8876  *
8877  *     Context: Kernel Thread
8878  */
8879 
8880 static int
8881 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
8882 {
8883 	struct mode_caching	*mode_caching_page;
8884 	uchar_t			*header;
8885 	size_t			buflen;
8886 	int			hdrlen;
8887 	int			bd_len;
8888 	int			rval = 0;
8889 	struct mode_header_grp2	*mhp;
8890 	struct sd_lun		*un;
8891 	int			status;
8892 
8893 	ASSERT(ssc != NULL);
8894 	un = ssc->ssc_un;
8895 	ASSERT(un != NULL);
8896 
8897 	/*
8898 	 * Do a test unit ready, otherwise a mode sense may not work if this
8899 	 * is the first command sent to the device after boot.
8900 	 */
8901 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
8902 	if (status != 0)
8903 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8904 
8905 	if (un->un_f_cfg_is_atapi == TRUE) {
8906 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8907 	} else {
8908 		hdrlen = MODE_HEADER_LENGTH;
8909 	}
8910 
8911 	/*
8912 	 * Allocate memory for the retrieved mode page and its headers.  Set
8913 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8914 	 * we get all of the mode sense data otherwise, the mode select
8915 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8916 	 */
8917 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8918 	    sizeof (struct mode_cache_scsi3);
8919 
8920 	header = kmem_zalloc(buflen, KM_SLEEP);
8921 
8922 	/* Get the information from the device. */
8923 	if (un->un_f_cfg_is_atapi == TRUE) {
8924 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
8925 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8926 	} else {
8927 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
8928 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8929 	}
8930 
8931 	if (rval != 0) {
8932 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8933 		    "sd_cache_control: Mode Sense Failed\n");
8934 		goto mode_sense_failed;
8935 	}
8936 
8937 	/*
8938 	 * Determine size of Block Descriptors in order to locate
8939 	 * the mode page data. ATAPI devices return 0, SCSI devices
8940 	 * should return MODE_BLK_DESC_LENGTH.
8941 	 */
8942 	if (un->un_f_cfg_is_atapi == TRUE) {
8943 		mhp	= (struct mode_header_grp2 *)header;
8944 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8945 	} else {
8946 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8947 	}
8948 
8949 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8950 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8951 		    "sd_cache_control: Mode Sense returned invalid "
8952 		    "block descriptor length\n");
8953 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
8954 		    "sd_cache_control: Mode Sense returned invalid "
8955 		    "block descriptor length");
8956 		rval = EIO;
8957 		goto mode_sense_failed;
8958 	}
8959 
8960 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8961 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8962 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8963 		    " caching page code mismatch %d\n",
8964 		    mode_caching_page->mode_page.code);
8965 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
8966 		    "sd_cache_control: Mode Sense caching page code "
8967 		    "mismatch %d", mode_caching_page->mode_page.code);
8968 		rval = EIO;
8969 		goto mode_sense_failed;
8970 	}
8971 
8972 	/* Check the relevant bits on successful mode sense. */
8973 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8974 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8975 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8976 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8977 
8978 		size_t sbuflen;
8979 		uchar_t save_pg;
8980 
8981 		/*
8982 		 * Construct select buffer length based on the
8983 		 * length of the sense data returned.
8984 		 */
8985 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8986 		    sizeof (struct mode_page) +
8987 		    (int)mode_caching_page->mode_page.length;
8988 
8989 		/*
8990 		 * Set the caching bits as requested.
8991 		 */
8992 		if (rcd_flag == SD_CACHE_ENABLE)
8993 			mode_caching_page->rcd = 0;
8994 		else if (rcd_flag == SD_CACHE_DISABLE)
8995 			mode_caching_page->rcd = 1;
8996 
8997 		if (wce_flag == SD_CACHE_ENABLE)
8998 			mode_caching_page->wce = 1;
8999 		else if (wce_flag == SD_CACHE_DISABLE)
9000 			mode_caching_page->wce = 0;
9001 
9002 		/*
9003 		 * Save the page if the mode sense says the
9004 		 * drive supports it.
9005 		 */
9006 		save_pg = mode_caching_page->mode_page.ps ?
9007 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9008 
9009 		/* Clear reserved bits before mode select. */
9010 		mode_caching_page->mode_page.ps = 0;
9011 
9012 		/*
9013 		 * Clear out mode header for mode select.
9014 		 * The rest of the retrieved page will be reused.
9015 		 */
9016 		bzero(header, hdrlen);
9017 
9018 		if (un->un_f_cfg_is_atapi == TRUE) {
9019 			mhp = (struct mode_header_grp2 *)header;
9020 			mhp->bdesc_length_hi = bd_len >> 8;
9021 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9022 		} else {
9023 			((struct mode_header *)header)->bdesc_length = bd_len;
9024 		}
9025 
9026 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9027 
9028 		/* Issue mode select to change the cache settings */
9029 		if (un->un_f_cfg_is_atapi == TRUE) {
9030 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9031 			    sbuflen, save_pg, SD_PATH_DIRECT);
9032 		} else {
9033 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9034 			    sbuflen, save_pg, SD_PATH_DIRECT);
9035 		}
9036 
9037 	}
9038 
9039 
9040 mode_sense_failed:
9041 
9042 	kmem_free(header, buflen);
9043 
9044 	if (rval != 0) {
9045 		if (rval == EIO)
9046 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9047 		else
9048 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9049 	}
9050 	return (rval);
9051 }
9052 
9053 
9054 /*
9055  *    Function: sd_get_write_cache_enabled()
9056  *
9057  * Description: This routine is the driver entry point for determining if
9058  *		write caching is enabled.  It examines the WCE (write cache
9059  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9060  *
9061  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9062  *                      structure for this target.
9063  *		is_enabled - pointer to int where write cache enabled state
9064  *		is returned (non-zero -> write cache enabled)
9065  *
9066  *
9067  * Return Code: EIO
9068  *		code returned by sd_send_scsi_MODE_SENSE
9069  *
9070  *     Context: Kernel Thread
9071  *
9072  * NOTE: If ioctl is added to disable write cache, this sequence should
9073  * be followed so that no locking is required for accesses to
9074  * un->un_f_write_cache_enabled:
9075  * 	do mode select to clear wce
9076  * 	do synchronize cache to flush cache
9077  * 	set un->un_f_write_cache_enabled = FALSE
9078  *
9079  * Conversely, an ioctl to enable the write cache should be done
9080  * in this order:
9081  * 	set un->un_f_write_cache_enabled = TRUE
9082  * 	do mode select to set wce
9083  */
9084 
9085 static int
9086 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9087 {
9088 	struct mode_caching	*mode_caching_page;
9089 	uchar_t			*header;
9090 	size_t			buflen;
9091 	int			hdrlen;
9092 	int			bd_len;
9093 	int			rval = 0;
9094 	struct sd_lun		*un;
9095 	int			status;
9096 
9097 	ASSERT(ssc != NULL);
9098 	un = ssc->ssc_un;
9099 	ASSERT(un != NULL);
9100 	ASSERT(is_enabled != NULL);
9101 
9102 	/* in case of error, flag as enabled */
9103 	*is_enabled = TRUE;
9104 
9105 	/*
9106 	 * Do a test unit ready, otherwise a mode sense may not work if this
9107 	 * is the first command sent to the device after boot.
9108 	 */
9109 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9110 
9111 	if (status != 0)
9112 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9113 
9114 	if (un->un_f_cfg_is_atapi == TRUE) {
9115 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9116 	} else {
9117 		hdrlen = MODE_HEADER_LENGTH;
9118 	}
9119 
9120 	/*
9121 	 * Allocate memory for the retrieved mode page and its headers.  Set
9122 	 * a pointer to the page itself.
9123 	 */
9124 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9125 	header = kmem_zalloc(buflen, KM_SLEEP);
9126 
9127 	/* Get the information from the device. */
9128 	if (un->un_f_cfg_is_atapi == TRUE) {
9129 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9130 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9131 	} else {
9132 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9133 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9134 	}
9135 
9136 	if (rval != 0) {
9137 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9138 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9139 		goto mode_sense_failed;
9140 	}
9141 
9142 	/*
9143 	 * Determine size of Block Descriptors in order to locate
9144 	 * the mode page data. ATAPI devices return 0, SCSI devices
9145 	 * should return MODE_BLK_DESC_LENGTH.
9146 	 */
9147 	if (un->un_f_cfg_is_atapi == TRUE) {
9148 		struct mode_header_grp2	*mhp;
9149 		mhp	= (struct mode_header_grp2 *)header;
9150 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9151 	} else {
9152 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9153 	}
9154 
9155 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9156 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9157 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9158 		    "block descriptor length\n");
9159 		/* FMA should make upset complain here */
9160 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
9161 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9162 		    "block descriptor length %d", bd_len);
9163 		rval = EIO;
9164 		goto mode_sense_failed;
9165 	}
9166 
9167 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9168 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9169 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
9170 		    " caching page code mismatch %d\n",
9171 		    mode_caching_page->mode_page.code);
9172 		/* FMA could make upset complain here */
9173 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
9174 		    "sd_cache_control: Mode Sense caching page code "
9175 		    "mismatch %d", mode_caching_page->mode_page.code);
9176 		rval = EIO;
9177 		goto mode_sense_failed;
9178 	}
9179 	*is_enabled = mode_caching_page->wce;
9180 
9181 mode_sense_failed:
9182 	if (rval == 0) {
9183 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9184 	} else if (rval == EIO) {
9185 		/*
9186 		 * Some disks do not support mode sense(6), we
9187 		 * should ignore this kind of error(sense key is
9188 		 * 0x5 - illegal request).
9189 		 */
9190 		uint8_t *sensep;
9191 		int senlen;
9192 
9193 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9194 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9195 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9196 
9197 		if (senlen > 0 &&
9198 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9199 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9200 		} else {
9201 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9202 		}
9203 	} else {
9204 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9205 	}
9206 	kmem_free(header, buflen);
9207 	return (rval);
9208 }
9209 
9210 /*
9211  *    Function: sd_get_nv_sup()
9212  *
9213  * Description: This routine is the driver entry point for
9214  * determining whether non-volatile cache is supported. This
9215  * determination process works as follows:
9216  *
9217  * 1. sd first queries sd.conf on whether
9218  * suppress_cache_flush bit is set for this device.
9219  *
9220  * 2. if not there, then queries the internal disk table.
9221  *
9222  * 3. if either sd.conf or internal disk table specifies
9223  * cache flush be suppressed, we don't bother checking
9224  * NV_SUP bit.
9225  *
9226  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9227  * the optional INQUIRY VPD page 0x86. If the device
9228  * supports VPD page 0x86, sd examines the NV_SUP
9229  * (non-volatile cache support) bit in the INQUIRY VPD page
9230  * 0x86:
9231  *   o If NV_SUP bit is set, sd assumes the device has a
9232  *   non-volatile cache and set the
9233  *   un_f_sync_nv_supported to TRUE.
9234  *   o Otherwise cache is not non-volatile,
9235  *   un_f_sync_nv_supported is set to FALSE.
9236  *
9237  * Arguments: un - driver soft state (unit) structure
9238  *
9239  * Return Code:
9240  *
9241  *     Context: Kernel Thread
9242  */
9243 
9244 static void
9245 sd_get_nv_sup(sd_ssc_t *ssc)
9246 {
9247 	int		rval		= 0;
9248 	uchar_t		*inq86		= NULL;
9249 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9250 	size_t		inq86_resid	= 0;
9251 	struct		dk_callback *dkc;
9252 	struct sd_lun	*un;
9253 
9254 	ASSERT(ssc != NULL);
9255 	un = ssc->ssc_un;
9256 	ASSERT(un != NULL);
9257 
9258 	mutex_enter(SD_MUTEX(un));
9259 
9260 	/*
9261 	 * Be conservative on the device's support of
9262 	 * SYNC_NV bit: un_f_sync_nv_supported is
9263 	 * initialized to be false.
9264 	 */
9265 	un->un_f_sync_nv_supported = FALSE;
9266 
9267 	/*
9268 	 * If either sd.conf or internal disk table
9269 	 * specifies cache flush be suppressed, then
9270 	 * we don't bother checking NV_SUP bit.
9271 	 */
9272 	if (un->un_f_suppress_cache_flush == TRUE) {
9273 		mutex_exit(SD_MUTEX(un));
9274 		return;
9275 	}
9276 
9277 	if (sd_check_vpd_page_support(ssc) == 0 &&
9278 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9279 		mutex_exit(SD_MUTEX(un));
9280 		/* collect page 86 data if available */
9281 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9282 
9283 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9284 		    0x01, 0x86, &inq86_resid);
9285 
9286 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9287 			SD_TRACE(SD_LOG_COMMON, un,
9288 			    "sd_get_nv_sup: \
9289 			    successfully get VPD page: %x \
9290 			    PAGE LENGTH: %x BYTE 6: %x\n",
9291 			    inq86[1], inq86[3], inq86[6]);
9292 
9293 			mutex_enter(SD_MUTEX(un));
9294 			/*
9295 			 * check the value of NV_SUP bit: only if the device
9296 			 * reports NV_SUP bit to be 1, the
9297 			 * un_f_sync_nv_supported bit will be set to true.
9298 			 */
9299 			if (inq86[6] & SD_VPD_NV_SUP) {
9300 				un->un_f_sync_nv_supported = TRUE;
9301 			}
9302 			mutex_exit(SD_MUTEX(un));
9303 		} else if (rval != 0) {
9304 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9305 		}
9306 
9307 		kmem_free(inq86, inq86_len);
9308 	} else {
9309 		mutex_exit(SD_MUTEX(un));
9310 	}
9311 
9312 	/*
9313 	 * Send a SYNC CACHE command to check whether
9314 	 * SYNC_NV bit is supported. This command should have
9315 	 * un_f_sync_nv_supported set to correct value.
9316 	 */
9317 	mutex_enter(SD_MUTEX(un));
9318 	if (un->un_f_sync_nv_supported) {
9319 		mutex_exit(SD_MUTEX(un));
9320 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9321 		dkc->dkc_flag = FLUSH_VOLATILE;
9322 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9323 
9324 		/*
9325 		 * Send a TEST UNIT READY command to the device. This should
9326 		 * clear any outstanding UNIT ATTENTION that may be present.
9327 		 */
9328 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9329 		if (rval != 0)
9330 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9331 
9332 		kmem_free(dkc, sizeof (struct dk_callback));
9333 	} else {
9334 		mutex_exit(SD_MUTEX(un));
9335 	}
9336 
9337 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9338 	    un_f_suppress_cache_flush is set to %d\n",
9339 	    un->un_f_suppress_cache_flush);
9340 }
9341 
9342 /*
9343  *    Function: sd_make_device
9344  *
9345  * Description: Utility routine to return the Solaris device number from
9346  *		the data in the device's dev_info structure.
9347  *
9348  * Return Code: The Solaris device number
9349  *
9350  *     Context: Any
9351  */
9352 
9353 static dev_t
9354 sd_make_device(dev_info_t *devi)
9355 {
9356 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9357 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9358 }
9359 
9360 
9361 /*
9362  *    Function: sd_pm_entry
9363  *
9364  * Description: Called at the start of a new command to manage power
9365  *		and busy status of a device. This includes determining whether
9366  *		the current power state of the device is sufficient for
9367  *		performing the command or whether it must be changed.
9368  *		The PM framework is notified appropriately.
9369  *		Only with a return status of DDI_SUCCESS will the
9370  *		component be busy to the framework.
9371  *
9372  *		All callers of sd_pm_entry must check the return status
9373  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9374  *		of DDI_FAILURE indicates the device failed to power up.
9375  *		In this case un_pm_count has been adjusted so the result
9376  *		on exit is still powered down, ie. count is less than 0.
9377  *		Calling sd_pm_exit with this count value hits an ASSERT.
9378  *
9379  * Return Code: DDI_SUCCESS or DDI_FAILURE
9380  *
9381  *     Context: Kernel thread context.
9382  */
9383 
9384 static int
9385 sd_pm_entry(struct sd_lun *un)
9386 {
9387 	int return_status = DDI_SUCCESS;
9388 
9389 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9390 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9391 
9392 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9393 
9394 	if (un->un_f_pm_is_enabled == FALSE) {
9395 		SD_TRACE(SD_LOG_IO_PM, un,
9396 		    "sd_pm_entry: exiting, PM not enabled\n");
9397 		return (return_status);
9398 	}
9399 
9400 	/*
9401 	 * Just increment a counter if PM is enabled. On the transition from
9402 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9403 	 * the count with each IO and mark the device as idle when the count
9404 	 * hits 0.
9405 	 *
9406 	 * If the count is less than 0 the device is powered down. If a powered
9407 	 * down device is successfully powered up then the count must be
9408 	 * incremented to reflect the power up. Note that it'll get incremented
9409 	 * a second time to become busy.
9410 	 *
9411 	 * Because the following has the potential to change the device state
9412 	 * and must release the un_pm_mutex to do so, only one thread can be
9413 	 * allowed through at a time.
9414 	 */
9415 
9416 	mutex_enter(&un->un_pm_mutex);
9417 	while (un->un_pm_busy == TRUE) {
9418 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9419 	}
9420 	un->un_pm_busy = TRUE;
9421 
9422 	if (un->un_pm_count < 1) {
9423 
9424 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9425 
9426 		/*
9427 		 * Indicate we are now busy so the framework won't attempt to
9428 		 * power down the device. This call will only fail if either
9429 		 * we passed a bad component number or the device has no
9430 		 * components. Neither of these should ever happen.
9431 		 */
9432 		mutex_exit(&un->un_pm_mutex);
9433 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9434 		ASSERT(return_status == DDI_SUCCESS);
9435 
9436 		mutex_enter(&un->un_pm_mutex);
9437 
9438 		if (un->un_pm_count < 0) {
9439 			mutex_exit(&un->un_pm_mutex);
9440 
9441 			SD_TRACE(SD_LOG_IO_PM, un,
9442 			    "sd_pm_entry: power up component\n");
9443 
9444 			/*
9445 			 * pm_raise_power will cause sdpower to be called
9446 			 * which brings the device power level to the
9447 			 * desired state, ON in this case. If successful,
9448 			 * un_pm_count and un_power_level will be updated
9449 			 * appropriately.
9450 			 */
9451 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9452 			    SD_SPINDLE_ON);
9453 
9454 			mutex_enter(&un->un_pm_mutex);
9455 
9456 			if (return_status != DDI_SUCCESS) {
9457 				/*
9458 				 * Power up failed.
9459 				 * Idle the device and adjust the count
9460 				 * so the result on exit is that we're
9461 				 * still powered down, ie. count is less than 0.
9462 				 */
9463 				SD_TRACE(SD_LOG_IO_PM, un,
9464 				    "sd_pm_entry: power up failed,"
9465 				    " idle the component\n");
9466 
9467 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9468 				un->un_pm_count--;
9469 			} else {
9470 				/*
9471 				 * Device is powered up, verify the
9472 				 * count is non-negative.
9473 				 * This is debug only.
9474 				 */
9475 				ASSERT(un->un_pm_count == 0);
9476 			}
9477 		}
9478 
9479 		if (return_status == DDI_SUCCESS) {
9480 			/*
9481 			 * For performance, now that the device has been tagged
9482 			 * as busy, and it's known to be powered up, update the
9483 			 * chain types to use jump tables that do not include
9484 			 * pm. This significantly lowers the overhead and
9485 			 * therefore improves performance.
9486 			 */
9487 
9488 			mutex_exit(&un->un_pm_mutex);
9489 			mutex_enter(SD_MUTEX(un));
9490 			SD_TRACE(SD_LOG_IO_PM, un,
9491 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9492 			    un->un_uscsi_chain_type);
9493 
9494 			if (un->un_f_non_devbsize_supported) {
9495 				un->un_buf_chain_type =
9496 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9497 			} else {
9498 				un->un_buf_chain_type =
9499 				    SD_CHAIN_INFO_DISK_NO_PM;
9500 			}
9501 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9502 
9503 			SD_TRACE(SD_LOG_IO_PM, un,
9504 			    "             changed  uscsi_chain_type to   %d\n",
9505 			    un->un_uscsi_chain_type);
9506 			mutex_exit(SD_MUTEX(un));
9507 			mutex_enter(&un->un_pm_mutex);
9508 
9509 			if (un->un_pm_idle_timeid == NULL) {
9510 				/* 300 ms. */
9511 				un->un_pm_idle_timeid =
9512 				    timeout(sd_pm_idletimeout_handler, un,
9513 				    (drv_usectohz((clock_t)300000)));
9514 				/*
9515 				 * Include an extra call to busy which keeps the
9516 				 * device busy with-respect-to the PM layer
9517 				 * until the timer fires, at which time it'll
9518 				 * get the extra idle call.
9519 				 */
9520 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9521 			}
9522 		}
9523 	}
9524 	un->un_pm_busy = FALSE;
9525 	/* Next... */
9526 	cv_signal(&un->un_pm_busy_cv);
9527 
9528 	un->un_pm_count++;
9529 
9530 	SD_TRACE(SD_LOG_IO_PM, un,
9531 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9532 
9533 	mutex_exit(&un->un_pm_mutex);
9534 
9535 	return (return_status);
9536 }
9537 
9538 
9539 /*
9540  *    Function: sd_pm_exit
9541  *
9542  * Description: Called at the completion of a command to manage busy
9543  *		status for the device. If the device becomes idle the
9544  *		PM framework is notified.
9545  *
9546  *     Context: Kernel thread context
9547  */
9548 
9549 static void
9550 sd_pm_exit(struct sd_lun *un)
9551 {
9552 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9553 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9554 
9555 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9556 
9557 	/*
9558 	 * After attach the following flag is only read, so don't
9559 	 * take the penalty of acquiring a mutex for it.
9560 	 */
9561 	if (un->un_f_pm_is_enabled == TRUE) {
9562 
9563 		mutex_enter(&un->un_pm_mutex);
9564 		un->un_pm_count--;
9565 
9566 		SD_TRACE(SD_LOG_IO_PM, un,
9567 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9568 
9569 		ASSERT(un->un_pm_count >= 0);
9570 		if (un->un_pm_count == 0) {
9571 			mutex_exit(&un->un_pm_mutex);
9572 
9573 			SD_TRACE(SD_LOG_IO_PM, un,
9574 			    "sd_pm_exit: idle component\n");
9575 
9576 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9577 
9578 		} else {
9579 			mutex_exit(&un->un_pm_mutex);
9580 		}
9581 	}
9582 
9583 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9584 }
9585 
9586 
9587 /*
9588  *    Function: sdopen
9589  *
9590  * Description: Driver's open(9e) entry point function.
9591  *
9592  *   Arguments: dev_i   - pointer to device number
9593  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9594  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9595  *		cred_p  - user credential pointer
9596  *
9597  * Return Code: EINVAL
9598  *		ENXIO
9599  *		EIO
9600  *		EROFS
9601  *		EBUSY
9602  *
9603  *     Context: Kernel thread context
9604  */
9605 /* ARGSUSED */
9606 static int
9607 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9608 {
9609 	struct sd_lun	*un;
9610 	int		nodelay;
9611 	int		part;
9612 	uint64_t	partmask;
9613 	int		instance;
9614 	dev_t		dev;
9615 	int		rval = EIO;
9616 	diskaddr_t	nblks = 0;
9617 	diskaddr_t	label_cap;
9618 
9619 	/* Validate the open type */
9620 	if (otyp >= OTYPCNT) {
9621 		return (EINVAL);
9622 	}
9623 
9624 	dev = *dev_p;
9625 	instance = SDUNIT(dev);
9626 	mutex_enter(&sd_detach_mutex);
9627 
9628 	/*
9629 	 * Fail the open if there is no softstate for the instance, or
9630 	 * if another thread somewhere is trying to detach the instance.
9631 	 */
9632 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9633 	    (un->un_detach_count != 0)) {
9634 		mutex_exit(&sd_detach_mutex);
9635 		/*
9636 		 * The probe cache only needs to be cleared when open (9e) fails
9637 		 * with ENXIO (4238046).
9638 		 */
9639 		/*
9640 		 * un-conditionally clearing probe cache is ok with
9641 		 * separate sd/ssd binaries
9642 		 * x86 platform can be an issue with both parallel
9643 		 * and fibre in 1 binary
9644 		 */
9645 		sd_scsi_clear_probe_cache();
9646 		return (ENXIO);
9647 	}
9648 
9649 	/*
9650 	 * The un_layer_count is to prevent another thread in specfs from
9651 	 * trying to detach the instance, which can happen when we are
9652 	 * called from a higher-layer driver instead of thru specfs.
9653 	 * This will not be needed when DDI provides a layered driver
9654 	 * interface that allows specfs to know that an instance is in
9655 	 * use by a layered driver & should not be detached.
9656 	 *
9657 	 * Note: the semantics for layered driver opens are exactly one
9658 	 * close for every open.
9659 	 */
9660 	if (otyp == OTYP_LYR) {
9661 		un->un_layer_count++;
9662 	}
9663 
9664 	/*
9665 	 * Keep a count of the current # of opens in progress. This is because
9666 	 * some layered drivers try to call us as a regular open. This can
9667 	 * cause problems that we cannot prevent, however by keeping this count
9668 	 * we can at least keep our open and detach routines from racing against
9669 	 * each other under such conditions.
9670 	 */
9671 	un->un_opens_in_progress++;
9672 	mutex_exit(&sd_detach_mutex);
9673 
9674 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9675 	part	 = SDPART(dev);
9676 	partmask = 1 << part;
9677 
9678 	/*
9679 	 * We use a semaphore here in order to serialize
9680 	 * open and close requests on the device.
9681 	 */
9682 	sema_p(&un->un_semoclose);
9683 
9684 	mutex_enter(SD_MUTEX(un));
9685 
9686 	/*
9687 	 * All device accesses go thru sdstrategy() where we check
9688 	 * on suspend status but there could be a scsi_poll command,
9689 	 * which bypasses sdstrategy(), so we need to check pm
9690 	 * status.
9691 	 */
9692 
9693 	if (!nodelay) {
9694 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9695 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9696 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9697 		}
9698 
9699 		mutex_exit(SD_MUTEX(un));
9700 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9701 			rval = EIO;
9702 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9703 			    "sdopen: sd_pm_entry failed\n");
9704 			goto open_failed_with_pm;
9705 		}
9706 		mutex_enter(SD_MUTEX(un));
9707 	}
9708 
9709 	/* check for previous exclusive open */
9710 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9711 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9712 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9713 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9714 
9715 	if (un->un_exclopen & (partmask)) {
9716 		goto excl_open_fail;
9717 	}
9718 
9719 	if (flag & FEXCL) {
9720 		int i;
9721 		if (un->un_ocmap.lyropen[part]) {
9722 			goto excl_open_fail;
9723 		}
9724 		for (i = 0; i < (OTYPCNT - 1); i++) {
9725 			if (un->un_ocmap.regopen[i] & (partmask)) {
9726 				goto excl_open_fail;
9727 			}
9728 		}
9729 	}
9730 
9731 	/*
9732 	 * Check the write permission if this is a removable media device,
9733 	 * NDELAY has not been set, and writable permission is requested.
9734 	 *
9735 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9736 	 * attempt will fail with EIO as part of the I/O processing. This is a
9737 	 * more permissive implementation that allows the open to succeed and
9738 	 * WRITE attempts to fail when appropriate.
9739 	 */
9740 	if (un->un_f_chk_wp_open) {
9741 		if ((flag & FWRITE) && (!nodelay)) {
9742 			mutex_exit(SD_MUTEX(un));
9743 			/*
9744 			 * Defer the check for write permission on writable
9745 			 * DVD drive till sdstrategy and will not fail open even
9746 			 * if FWRITE is set as the device can be writable
9747 			 * depending upon the media and the media can change
9748 			 * after the call to open().
9749 			 */
9750 			if (un->un_f_dvdram_writable_device == FALSE) {
9751 				if (ISCD(un) || sr_check_wp(dev)) {
9752 				rval = EROFS;
9753 				mutex_enter(SD_MUTEX(un));
9754 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9755 				    "write to cd or write protected media\n");
9756 				goto open_fail;
9757 				}
9758 			}
9759 			mutex_enter(SD_MUTEX(un));
9760 		}
9761 	}
9762 
9763 	/*
9764 	 * If opening in NDELAY/NONBLOCK mode, just return.
9765 	 * Check if disk is ready and has a valid geometry later.
9766 	 */
9767 	if (!nodelay) {
9768 		sd_ssc_t	*ssc;
9769 
9770 		mutex_exit(SD_MUTEX(un));
9771 		ssc = sd_ssc_init(un);
9772 		rval = sd_ready_and_valid(ssc, part);
9773 		sd_ssc_fini(ssc);
9774 		mutex_enter(SD_MUTEX(un));
9775 		/*
9776 		 * Fail if device is not ready or if the number of disk
9777 		 * blocks is zero or negative for non CD devices.
9778 		 */
9779 
9780 		nblks = 0;
9781 
9782 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9783 			/* if cmlb_partinfo fails, nblks remains 0 */
9784 			mutex_exit(SD_MUTEX(un));
9785 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9786 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9787 			mutex_enter(SD_MUTEX(un));
9788 		}
9789 
9790 		if ((rval != SD_READY_VALID) ||
9791 		    (!ISCD(un) && nblks <= 0)) {
9792 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9793 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9794 			    "device not ready or invalid disk block value\n");
9795 			goto open_fail;
9796 		}
9797 #if defined(__i386) || defined(__amd64)
9798 	} else {
9799 		uchar_t *cp;
9800 		/*
9801 		 * x86 requires special nodelay handling, so that p0 is
9802 		 * always defined and accessible.
9803 		 * Invalidate geometry only if device is not already open.
9804 		 */
9805 		cp = &un->un_ocmap.chkd[0];
9806 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9807 			if (*cp != (uchar_t)0) {
9808 				break;
9809 			}
9810 			cp++;
9811 		}
9812 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9813 			mutex_exit(SD_MUTEX(un));
9814 			cmlb_invalidate(un->un_cmlbhandle,
9815 			    (void *)SD_PATH_DIRECT);
9816 			mutex_enter(SD_MUTEX(un));
9817 		}
9818 
9819 #endif
9820 	}
9821 
9822 	if (otyp == OTYP_LYR) {
9823 		un->un_ocmap.lyropen[part]++;
9824 	} else {
9825 		un->un_ocmap.regopen[otyp] |= partmask;
9826 	}
9827 
9828 	/* Set up open and exclusive open flags */
9829 	if (flag & FEXCL) {
9830 		un->un_exclopen |= (partmask);
9831 	}
9832 
9833 	/*
9834 	 * If the lun is EFI labeled and lun capacity is greater than the
9835 	 * capacity contained in the label, log a sys-event to notify the
9836 	 * interested module.
9837 	 * To avoid an infinite loop of logging sys-event, we only log the
9838 	 * event when the lun is not opened in NDELAY mode. The event handler
9839 	 * should open the lun in NDELAY mode.
9840 	 */
9841 	if (!(flag & FNDELAY)) {
9842 		mutex_exit(SD_MUTEX(un));
9843 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
9844 		    (void*)SD_PATH_DIRECT) == 0) {
9845 			mutex_enter(SD_MUTEX(un));
9846 			if (un->un_f_blockcount_is_valid &&
9847 			    un->un_blockcount > label_cap) {
9848 				mutex_exit(SD_MUTEX(un));
9849 				sd_log_lun_expansion_event(un,
9850 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
9851 				mutex_enter(SD_MUTEX(un));
9852 			}
9853 		} else {
9854 			mutex_enter(SD_MUTEX(un));
9855 		}
9856 	}
9857 
9858 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9859 	    "open of part %d type %d\n", part, otyp);
9860 
9861 	mutex_exit(SD_MUTEX(un));
9862 	if (!nodelay) {
9863 		sd_pm_exit(un);
9864 	}
9865 
9866 	sema_v(&un->un_semoclose);
9867 
9868 	mutex_enter(&sd_detach_mutex);
9869 	un->un_opens_in_progress--;
9870 	mutex_exit(&sd_detach_mutex);
9871 
9872 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9873 	return (DDI_SUCCESS);
9874 
9875 excl_open_fail:
9876 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9877 	rval = EBUSY;
9878 
9879 open_fail:
9880 	mutex_exit(SD_MUTEX(un));
9881 
9882 	/*
9883 	 * On a failed open we must exit the pm management.
9884 	 */
9885 	if (!nodelay) {
9886 		sd_pm_exit(un);
9887 	}
9888 open_failed_with_pm:
9889 	sema_v(&un->un_semoclose);
9890 
9891 	mutex_enter(&sd_detach_mutex);
9892 	un->un_opens_in_progress--;
9893 	if (otyp == OTYP_LYR) {
9894 		un->un_layer_count--;
9895 	}
9896 	mutex_exit(&sd_detach_mutex);
9897 
9898 	return (rval);
9899 }
9900 
9901 
9902 /*
9903  *    Function: sdclose
9904  *
9905  * Description: Driver's close(9e) entry point function.
9906  *
9907  *   Arguments: dev    - device number
9908  *		flag   - file status flag, informational only
9909  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9910  *		cred_p - user credential pointer
9911  *
9912  * Return Code: ENXIO
9913  *
9914  *     Context: Kernel thread context
9915  */
9916 /* ARGSUSED */
9917 static int
9918 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9919 {
9920 	struct sd_lun	*un;
9921 	uchar_t		*cp;
9922 	int		part;
9923 	int		nodelay;
9924 	int		rval = 0;
9925 
9926 	/* Validate the open type */
9927 	if (otyp >= OTYPCNT) {
9928 		return (ENXIO);
9929 	}
9930 
9931 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9932 		return (ENXIO);
9933 	}
9934 
9935 	part = SDPART(dev);
9936 	nodelay = flag & (FNDELAY | FNONBLOCK);
9937 
9938 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9939 	    "sdclose: close of part %d type %d\n", part, otyp);
9940 
9941 	/*
9942 	 * We use a semaphore here in order to serialize
9943 	 * open and close requests on the device.
9944 	 */
9945 	sema_p(&un->un_semoclose);
9946 
9947 	mutex_enter(SD_MUTEX(un));
9948 
9949 	/* Don't proceed if power is being changed. */
9950 	while (un->un_state == SD_STATE_PM_CHANGING) {
9951 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9952 	}
9953 
9954 	if (un->un_exclopen & (1 << part)) {
9955 		un->un_exclopen &= ~(1 << part);
9956 	}
9957 
9958 	/* Update the open partition map */
9959 	if (otyp == OTYP_LYR) {
9960 		un->un_ocmap.lyropen[part] -= 1;
9961 	} else {
9962 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9963 	}
9964 
9965 	cp = &un->un_ocmap.chkd[0];
9966 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9967 		if (*cp != NULL) {
9968 			break;
9969 		}
9970 		cp++;
9971 	}
9972 
9973 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9974 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9975 
9976 		/*
9977 		 * We avoid persistance upon the last close, and set
9978 		 * the throttle back to the maximum.
9979 		 */
9980 		un->un_throttle = un->un_saved_throttle;
9981 
9982 		if (un->un_state == SD_STATE_OFFLINE) {
9983 			if (un->un_f_is_fibre == FALSE) {
9984 				scsi_log(SD_DEVINFO(un), sd_label,
9985 				    CE_WARN, "offline\n");
9986 			}
9987 			mutex_exit(SD_MUTEX(un));
9988 			cmlb_invalidate(un->un_cmlbhandle,
9989 			    (void *)SD_PATH_DIRECT);
9990 			mutex_enter(SD_MUTEX(un));
9991 
9992 		} else {
9993 			/*
9994 			 * Flush any outstanding writes in NVRAM cache.
9995 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9996 			 * cmd, it may not work for non-Pluto devices.
9997 			 * SYNCHRONIZE CACHE is not required for removables,
9998 			 * except DVD-RAM drives.
9999 			 *
10000 			 * Also note: because SYNCHRONIZE CACHE is currently
10001 			 * the only command issued here that requires the
10002 			 * drive be powered up, only do the power up before
10003 			 * sending the Sync Cache command. If additional
10004 			 * commands are added which require a powered up
10005 			 * drive, the following sequence may have to change.
10006 			 *
10007 			 * And finally, note that parallel SCSI on SPARC
10008 			 * only issues a Sync Cache to DVD-RAM, a newly
10009 			 * supported device.
10010 			 */
10011 #if defined(__i386) || defined(__amd64)
10012 			if ((un->un_f_sync_cache_supported &&
10013 			    un->un_f_sync_cache_required) ||
10014 			    un->un_f_dvdram_writable_device == TRUE) {
10015 #else
10016 			if (un->un_f_dvdram_writable_device == TRUE) {
10017 #endif
10018 				mutex_exit(SD_MUTEX(un));
10019 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10020 					rval =
10021 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10022 					    NULL);
10023 					/* ignore error if not supported */
10024 					if (rval == ENOTSUP) {
10025 						rval = 0;
10026 					} else if (rval != 0) {
10027 						rval = EIO;
10028 					}
10029 					sd_pm_exit(un);
10030 				} else {
10031 					rval = EIO;
10032 				}
10033 				mutex_enter(SD_MUTEX(un));
10034 			}
10035 
10036 			/*
10037 			 * For devices which supports DOOR_LOCK, send an ALLOW
10038 			 * MEDIA REMOVAL command, but don't get upset if it
10039 			 * fails. We need to raise the power of the drive before
10040 			 * we can call sd_send_scsi_DOORLOCK()
10041 			 */
10042 			if (un->un_f_doorlock_supported) {
10043 				mutex_exit(SD_MUTEX(un));
10044 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10045 					sd_ssc_t	*ssc;
10046 
10047 					ssc = sd_ssc_init(un);
10048 					rval = sd_send_scsi_DOORLOCK(ssc,
10049 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10050 					if (rval != 0)
10051 						sd_ssc_assessment(ssc,
10052 						    SD_FMT_IGNORE);
10053 					sd_ssc_fini(ssc);
10054 
10055 					sd_pm_exit(un);
10056 					if (ISCD(un) && (rval != 0) &&
10057 					    (nodelay != 0)) {
10058 						rval = ENXIO;
10059 					}
10060 				} else {
10061 					rval = EIO;
10062 				}
10063 				mutex_enter(SD_MUTEX(un));
10064 			}
10065 
10066 			/*
10067 			 * If a device has removable media, invalidate all
10068 			 * parameters related to media, such as geometry,
10069 			 * blocksize, and blockcount.
10070 			 */
10071 			if (un->un_f_has_removable_media) {
10072 				sr_ejected(un);
10073 			}
10074 
10075 			/*
10076 			 * Destroy the cache (if it exists) which was
10077 			 * allocated for the write maps since this is
10078 			 * the last close for this media.
10079 			 */
10080 			if (un->un_wm_cache) {
10081 				/*
10082 				 * Check if there are pending commands.
10083 				 * and if there are give a warning and
10084 				 * do not destroy the cache.
10085 				 */
10086 				if (un->un_ncmds_in_driver > 0) {
10087 					scsi_log(SD_DEVINFO(un),
10088 					    sd_label, CE_WARN,
10089 					    "Unable to clean up memory "
10090 					    "because of pending I/O\n");
10091 				} else {
10092 					kmem_cache_destroy(
10093 					    un->un_wm_cache);
10094 					un->un_wm_cache = NULL;
10095 				}
10096 			}
10097 		}
10098 	}
10099 
10100 	mutex_exit(SD_MUTEX(un));
10101 	sema_v(&un->un_semoclose);
10102 
10103 	if (otyp == OTYP_LYR) {
10104 		mutex_enter(&sd_detach_mutex);
10105 		/*
10106 		 * The detach routine may run when the layer count
10107 		 * drops to zero.
10108 		 */
10109 		un->un_layer_count--;
10110 		mutex_exit(&sd_detach_mutex);
10111 	}
10112 
10113 	return (rval);
10114 }
10115 
10116 
10117 /*
10118  *    Function: sd_ready_and_valid
10119  *
10120  * Description: Test if device is ready and has a valid geometry.
10121  *
10122  *   Arguments: ssc - sd_ssc_t will contain un
10123  *		un  - driver soft state (unit) structure
10124  *
10125  * Return Code: SD_READY_VALID		ready and valid label
10126  *		SD_NOT_READY_VALID	not ready, no label
10127  *		SD_RESERVED_BY_OTHERS	reservation conflict
10128  *
10129  *     Context: Never called at interrupt context.
10130  */
10131 
10132 static int
10133 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10134 {
10135 	struct sd_errstats	*stp;
10136 	uint64_t		capacity;
10137 	uint_t			lbasize;
10138 	int			rval = SD_READY_VALID;
10139 	char			name_str[48];
10140 	int			is_valid;
10141 	struct sd_lun		*un;
10142 	int			status;
10143 
10144 	ASSERT(ssc != NULL);
10145 	un = ssc->ssc_un;
10146 	ASSERT(un != NULL);
10147 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10148 
10149 	mutex_enter(SD_MUTEX(un));
10150 	/*
10151 	 * If a device has removable media, we must check if media is
10152 	 * ready when checking if this device is ready and valid.
10153 	 */
10154 	if (un->un_f_has_removable_media) {
10155 		mutex_exit(SD_MUTEX(un));
10156 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10157 
10158 		if (status != 0) {
10159 			rval = SD_NOT_READY_VALID;
10160 			mutex_enter(SD_MUTEX(un));
10161 
10162 			/* Ignore all failed status for removalbe media */
10163 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10164 
10165 			goto done;
10166 		}
10167 
10168 		is_valid = SD_IS_VALID_LABEL(un);
10169 		mutex_enter(SD_MUTEX(un));
10170 		if (!is_valid ||
10171 		    (un->un_f_blockcount_is_valid == FALSE) ||
10172 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10173 
10174 			/* capacity has to be read every open. */
10175 			mutex_exit(SD_MUTEX(un));
10176 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10177 			    &lbasize, SD_PATH_DIRECT);
10178 
10179 			if (status != 0) {
10180 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10181 
10182 				cmlb_invalidate(un->un_cmlbhandle,
10183 				    (void *)SD_PATH_DIRECT);
10184 				mutex_enter(SD_MUTEX(un));
10185 				rval = SD_NOT_READY_VALID;
10186 
10187 				goto done;
10188 			} else {
10189 				mutex_enter(SD_MUTEX(un));
10190 				sd_update_block_info(un, lbasize, capacity);
10191 			}
10192 		}
10193 
10194 		/*
10195 		 * Check if the media in the device is writable or not.
10196 		 */
10197 		if (!is_valid && ISCD(un)) {
10198 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10199 		}
10200 
10201 	} else {
10202 		/*
10203 		 * Do a test unit ready to clear any unit attention from non-cd
10204 		 * devices.
10205 		 */
10206 		mutex_exit(SD_MUTEX(un));
10207 
10208 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10209 		if (status != 0) {
10210 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10211 		}
10212 
10213 		mutex_enter(SD_MUTEX(un));
10214 	}
10215 
10216 
10217 	/*
10218 	 * If this is a non 512 block device, allocate space for
10219 	 * the wmap cache. This is being done here since every time
10220 	 * a media is changed this routine will be called and the
10221 	 * block size is a function of media rather than device.
10222 	 */
10223 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
10224 		if (!(un->un_wm_cache)) {
10225 			(void) snprintf(name_str, sizeof (name_str),
10226 			    "%s%d_cache",
10227 			    ddi_driver_name(SD_DEVINFO(un)),
10228 			    ddi_get_instance(SD_DEVINFO(un)));
10229 			un->un_wm_cache = kmem_cache_create(
10230 			    name_str, sizeof (struct sd_w_map),
10231 			    8, sd_wm_cache_constructor,
10232 			    sd_wm_cache_destructor, NULL,
10233 			    (void *)un, NULL, 0);
10234 			if (!(un->un_wm_cache)) {
10235 				rval = ENOMEM;
10236 				goto done;
10237 			}
10238 		}
10239 	}
10240 
10241 	if (un->un_state == SD_STATE_NORMAL) {
10242 		/*
10243 		 * If the target is not yet ready here (defined by a TUR
10244 		 * failure), invalidate the geometry and print an 'offline'
10245 		 * message. This is a legacy message, as the state of the
10246 		 * target is not actually changed to SD_STATE_OFFLINE.
10247 		 *
10248 		 * If the TUR fails for EACCES (Reservation Conflict),
10249 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10250 		 * reservation conflict. If the TUR fails for other
10251 		 * reasons, SD_NOT_READY_VALID will be returned.
10252 		 */
10253 		int err;
10254 
10255 		mutex_exit(SD_MUTEX(un));
10256 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10257 		mutex_enter(SD_MUTEX(un));
10258 
10259 		if (err != 0) {
10260 			mutex_exit(SD_MUTEX(un));
10261 			cmlb_invalidate(un->un_cmlbhandle,
10262 			    (void *)SD_PATH_DIRECT);
10263 			mutex_enter(SD_MUTEX(un));
10264 			if (err == EACCES) {
10265 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10266 				    "reservation conflict\n");
10267 				rval = SD_RESERVED_BY_OTHERS;
10268 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10269 			} else {
10270 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10271 				    "drive offline\n");
10272 				rval = SD_NOT_READY_VALID;
10273 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10274 			}
10275 			goto done;
10276 		}
10277 	}
10278 
10279 	if (un->un_f_format_in_progress == FALSE) {
10280 		mutex_exit(SD_MUTEX(un));
10281 
10282 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10283 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10284 			rval = SD_NOT_READY_VALID;
10285 			mutex_enter(SD_MUTEX(un));
10286 
10287 			goto done;
10288 		}
10289 		if (un->un_f_pkstats_enabled) {
10290 			sd_set_pstats(un);
10291 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10292 			    "sd_ready_and_valid: un:0x%p pstats created and "
10293 			    "set\n", un);
10294 		}
10295 		mutex_enter(SD_MUTEX(un));
10296 	}
10297 
10298 	/*
10299 	 * If this device supports DOOR_LOCK command, try and send
10300 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10301 	 * if it fails. For a CD, however, it is an error
10302 	 */
10303 	if (un->un_f_doorlock_supported) {
10304 		mutex_exit(SD_MUTEX(un));
10305 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10306 		    SD_PATH_DIRECT);
10307 
10308 		if ((status != 0) && ISCD(un)) {
10309 			rval = SD_NOT_READY_VALID;
10310 			mutex_enter(SD_MUTEX(un));
10311 
10312 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10313 
10314 			goto done;
10315 		} else if (status != 0)
10316 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10317 		mutex_enter(SD_MUTEX(un));
10318 	}
10319 
10320 	/* The state has changed, inform the media watch routines */
10321 	un->un_mediastate = DKIO_INSERTED;
10322 	cv_broadcast(&un->un_state_cv);
10323 	rval = SD_READY_VALID;
10324 
10325 done:
10326 
10327 	/*
10328 	 * Initialize the capacity kstat value, if no media previously
10329 	 * (capacity kstat is 0) and a media has been inserted
10330 	 * (un_blockcount > 0).
10331 	 */
10332 	if (un->un_errstats != NULL) {
10333 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10334 		if ((stp->sd_capacity.value.ui64 == 0) &&
10335 		    (un->un_f_blockcount_is_valid == TRUE)) {
10336 			stp->sd_capacity.value.ui64 =
10337 			    (uint64_t)((uint64_t)un->un_blockcount *
10338 			    un->un_sys_blocksize);
10339 		}
10340 	}
10341 
10342 	mutex_exit(SD_MUTEX(un));
10343 	return (rval);
10344 }
10345 
10346 
10347 /*
10348  *    Function: sdmin
10349  *
10350  * Description: Routine to limit the size of a data transfer. Used in
10351  *		conjunction with physio(9F).
10352  *
10353  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10354  *
10355  *     Context: Kernel thread context.
10356  */
10357 
10358 static void
10359 sdmin(struct buf *bp)
10360 {
10361 	struct sd_lun	*un;
10362 	int		instance;
10363 
10364 	instance = SDUNIT(bp->b_edev);
10365 
10366 	un = ddi_get_soft_state(sd_state, instance);
10367 	ASSERT(un != NULL);
10368 
10369 	if (bp->b_bcount > un->un_max_xfer_size) {
10370 		bp->b_bcount = un->un_max_xfer_size;
10371 	}
10372 }
10373 
10374 
10375 /*
10376  *    Function: sdread
10377  *
10378  * Description: Driver's read(9e) entry point function.
10379  *
10380  *   Arguments: dev   - device number
10381  *		uio   - structure pointer describing where data is to be stored
10382  *			in user's space
10383  *		cred_p  - user credential pointer
10384  *
10385  * Return Code: ENXIO
10386  *		EIO
10387  *		EINVAL
10388  *		value returned by physio
10389  *
10390  *     Context: Kernel thread context.
10391  */
10392 /* ARGSUSED */
10393 static int
10394 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10395 {
10396 	struct sd_lun	*un = NULL;
10397 	int		secmask;
10398 	int		err = 0;
10399 	sd_ssc_t	*ssc;
10400 
10401 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10402 		return (ENXIO);
10403 	}
10404 
10405 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10406 
10407 
10408 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10409 		mutex_enter(SD_MUTEX(un));
10410 		/*
10411 		 * Because the call to sd_ready_and_valid will issue I/O we
10412 		 * must wait here if either the device is suspended or
10413 		 * if it's power level is changing.
10414 		 */
10415 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10416 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10417 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10418 		}
10419 		un->un_ncmds_in_driver++;
10420 		mutex_exit(SD_MUTEX(un));
10421 
10422 		/* Initialize sd_ssc_t for internal uscsi commands */
10423 		ssc = sd_ssc_init(un);
10424 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10425 			err = EIO;
10426 		} else {
10427 			err = 0;
10428 		}
10429 		sd_ssc_fini(ssc);
10430 
10431 		mutex_enter(SD_MUTEX(un));
10432 		un->un_ncmds_in_driver--;
10433 		ASSERT(un->un_ncmds_in_driver >= 0);
10434 		mutex_exit(SD_MUTEX(un));
10435 		if (err != 0)
10436 			return (err);
10437 	}
10438 
10439 	/*
10440 	 * Read requests are restricted to multiples of the system block size.
10441 	 */
10442 	secmask = un->un_sys_blocksize - 1;
10443 
10444 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10445 		SD_ERROR(SD_LOG_READ_WRITE, un,
10446 		    "sdread: file offset not modulo %d\n",
10447 		    un->un_sys_blocksize);
10448 		err = EINVAL;
10449 	} else if (uio->uio_iov->iov_len & (secmask)) {
10450 		SD_ERROR(SD_LOG_READ_WRITE, un,
10451 		    "sdread: transfer length not modulo %d\n",
10452 		    un->un_sys_blocksize);
10453 		err = EINVAL;
10454 	} else {
10455 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10456 	}
10457 
10458 	return (err);
10459 }
10460 
10461 
10462 /*
10463  *    Function: sdwrite
10464  *
10465  * Description: Driver's write(9e) entry point function.
10466  *
10467  *   Arguments: dev   - device number
10468  *		uio   - structure pointer describing where data is stored in
10469  *			user's space
10470  *		cred_p  - user credential pointer
10471  *
10472  * Return Code: ENXIO
10473  *		EIO
10474  *		EINVAL
10475  *		value returned by physio
10476  *
10477  *     Context: Kernel thread context.
10478  */
10479 /* ARGSUSED */
10480 static int
10481 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10482 {
10483 	struct sd_lun	*un = NULL;
10484 	int		secmask;
10485 	int		err = 0;
10486 	sd_ssc_t	*ssc;
10487 
10488 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10489 		return (ENXIO);
10490 	}
10491 
10492 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10493 
10494 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10495 		mutex_enter(SD_MUTEX(un));
10496 		/*
10497 		 * Because the call to sd_ready_and_valid will issue I/O we
10498 		 * must wait here if either the device is suspended or
10499 		 * if it's power level is changing.
10500 		 */
10501 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10502 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10503 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10504 		}
10505 		un->un_ncmds_in_driver++;
10506 		mutex_exit(SD_MUTEX(un));
10507 
10508 		/* Initialize sd_ssc_t for internal uscsi commands */
10509 		ssc = sd_ssc_init(un);
10510 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10511 			err = EIO;
10512 		} else {
10513 			err = 0;
10514 		}
10515 		sd_ssc_fini(ssc);
10516 
10517 		mutex_enter(SD_MUTEX(un));
10518 		un->un_ncmds_in_driver--;
10519 		ASSERT(un->un_ncmds_in_driver >= 0);
10520 		mutex_exit(SD_MUTEX(un));
10521 		if (err != 0)
10522 			return (err);
10523 	}
10524 
10525 	/*
10526 	 * Write requests are restricted to multiples of the system block size.
10527 	 */
10528 	secmask = un->un_sys_blocksize - 1;
10529 
10530 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10531 		SD_ERROR(SD_LOG_READ_WRITE, un,
10532 		    "sdwrite: file offset not modulo %d\n",
10533 		    un->un_sys_blocksize);
10534 		err = EINVAL;
10535 	} else if (uio->uio_iov->iov_len & (secmask)) {
10536 		SD_ERROR(SD_LOG_READ_WRITE, un,
10537 		    "sdwrite: transfer length not modulo %d\n",
10538 		    un->un_sys_blocksize);
10539 		err = EINVAL;
10540 	} else {
10541 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10542 	}
10543 
10544 	return (err);
10545 }
10546 
10547 
10548 /*
10549  *    Function: sdaread
10550  *
10551  * Description: Driver's aread(9e) entry point function.
10552  *
10553  *   Arguments: dev   - device number
10554  *		aio   - structure pointer describing where data is to be stored
10555  *		cred_p  - user credential pointer
10556  *
10557  * Return Code: ENXIO
10558  *		EIO
10559  *		EINVAL
10560  *		value returned by aphysio
10561  *
10562  *     Context: Kernel thread context.
10563  */
10564 /* ARGSUSED */
10565 static int
10566 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10567 {
10568 	struct sd_lun	*un = NULL;
10569 	struct uio	*uio = aio->aio_uio;
10570 	int		secmask;
10571 	int		err = 0;
10572 	sd_ssc_t	*ssc;
10573 
10574 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10575 		return (ENXIO);
10576 	}
10577 
10578 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10579 
10580 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10581 		mutex_enter(SD_MUTEX(un));
10582 		/*
10583 		 * Because the call to sd_ready_and_valid will issue I/O we
10584 		 * must wait here if either the device is suspended or
10585 		 * if it's power level is changing.
10586 		 */
10587 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10588 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10589 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10590 		}
10591 		un->un_ncmds_in_driver++;
10592 		mutex_exit(SD_MUTEX(un));
10593 
10594 		/* Initialize sd_ssc_t for internal uscsi commands */
10595 		ssc = sd_ssc_init(un);
10596 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10597 			err = EIO;
10598 		} else {
10599 			err = 0;
10600 		}
10601 		sd_ssc_fini(ssc);
10602 
10603 		mutex_enter(SD_MUTEX(un));
10604 		un->un_ncmds_in_driver--;
10605 		ASSERT(un->un_ncmds_in_driver >= 0);
10606 		mutex_exit(SD_MUTEX(un));
10607 		if (err != 0)
10608 			return (err);
10609 	}
10610 
10611 	/*
10612 	 * Read requests are restricted to multiples of the system block size.
10613 	 */
10614 	secmask = un->un_sys_blocksize - 1;
10615 
10616 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10617 		SD_ERROR(SD_LOG_READ_WRITE, un,
10618 		    "sdaread: file offset not modulo %d\n",
10619 		    un->un_sys_blocksize);
10620 		err = EINVAL;
10621 	} else if (uio->uio_iov->iov_len & (secmask)) {
10622 		SD_ERROR(SD_LOG_READ_WRITE, un,
10623 		    "sdaread: transfer length not modulo %d\n",
10624 		    un->un_sys_blocksize);
10625 		err = EINVAL;
10626 	} else {
10627 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10628 	}
10629 
10630 	return (err);
10631 }
10632 
10633 
10634 /*
10635  *    Function: sdawrite
10636  *
10637  * Description: Driver's awrite(9e) entry point function.
10638  *
10639  *   Arguments: dev   - device number
10640  *		aio   - structure pointer describing where data is stored
10641  *		cred_p  - user credential pointer
10642  *
10643  * Return Code: ENXIO
10644  *		EIO
10645  *		EINVAL
10646  *		value returned by aphysio
10647  *
10648  *     Context: Kernel thread context.
10649  */
10650 /* ARGSUSED */
10651 static int
10652 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10653 {
10654 	struct sd_lun	*un = NULL;
10655 	struct uio	*uio = aio->aio_uio;
10656 	int		secmask;
10657 	int		err = 0;
10658 	sd_ssc_t	*ssc;
10659 
10660 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10661 		return (ENXIO);
10662 	}
10663 
10664 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10665 
10666 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10667 		mutex_enter(SD_MUTEX(un));
10668 		/*
10669 		 * Because the call to sd_ready_and_valid will issue I/O we
10670 		 * must wait here if either the device is suspended or
10671 		 * if it's power level is changing.
10672 		 */
10673 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10674 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10675 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10676 		}
10677 		un->un_ncmds_in_driver++;
10678 		mutex_exit(SD_MUTEX(un));
10679 
10680 		/* Initialize sd_ssc_t for internal uscsi commands */
10681 		ssc = sd_ssc_init(un);
10682 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10683 			err = EIO;
10684 		} else {
10685 			err = 0;
10686 		}
10687 		sd_ssc_fini(ssc);
10688 
10689 		mutex_enter(SD_MUTEX(un));
10690 		un->un_ncmds_in_driver--;
10691 		ASSERT(un->un_ncmds_in_driver >= 0);
10692 		mutex_exit(SD_MUTEX(un));
10693 		if (err != 0)
10694 			return (err);
10695 	}
10696 
10697 	/*
10698 	 * Write requests are restricted to multiples of the system block size.
10699 	 */
10700 	secmask = un->un_sys_blocksize - 1;
10701 
10702 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10703 		SD_ERROR(SD_LOG_READ_WRITE, un,
10704 		    "sdawrite: file offset not modulo %d\n",
10705 		    un->un_sys_blocksize);
10706 		err = EINVAL;
10707 	} else if (uio->uio_iov->iov_len & (secmask)) {
10708 		SD_ERROR(SD_LOG_READ_WRITE, un,
10709 		    "sdawrite: transfer length not modulo %d\n",
10710 		    un->un_sys_blocksize);
10711 		err = EINVAL;
10712 	} else {
10713 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10714 	}
10715 
10716 	return (err);
10717 }
10718 
10719 
10720 
10721 
10722 
10723 /*
10724  * Driver IO processing follows the following sequence:
10725  *
10726  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10727  *         |                |                     ^
10728  *         v                v                     |
10729  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10730  *         |                |                     |                   |
10731  *         v                |                     |                   |
10732  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10733  *         |                |                     ^                   ^
10734  *         v                v                     |                   |
10735  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10736  *         |                |                     |                   |
10737  *     +---+                |                     +------------+      +-------+
10738  *     |                    |                                  |              |
10739  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10740  *     |                    v                                  |              |
10741  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10742  *     |                    |                                  ^              |
10743  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10744  *     |                    v                                  |              |
10745  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10746  *     |                    |                                  ^              |
10747  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10748  *     |                    v                                  |              |
10749  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10750  *     |                    |                                  ^              |
10751  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10752  *     |                    v                                  |              |
10753  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10754  *     |                    |                                  ^              |
10755  *     |                    |                                  |              |
10756  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10757  *                          |                           ^
10758  *                          v                           |
10759  *                   sd_core_iostart()                  |
10760  *                          |                           |
10761  *                          |                           +------>(*destroypkt)()
10762  *                          +-> sd_start_cmds() <-+     |           |
10763  *                          |                     |     |           v
10764  *                          |                     |     |  scsi_destroy_pkt(9F)
10765  *                          |                     |     |
10766  *                          +->(*initpkt)()       +- sdintr()
10767  *                          |  |                        |  |
10768  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10769  *                          |  +-> scsi_setup_cdb(9F)   |
10770  *                          |                           |
10771  *                          +--> scsi_transport(9F)     |
10772  *                                     |                |
10773  *                                     +----> SCSA ---->+
10774  *
10775  *
10776  * This code is based upon the following presumptions:
10777  *
10778  *   - iostart and iodone functions operate on buf(9S) structures. These
10779  *     functions perform the necessary operations on the buf(9S) and pass
10780  *     them along to the next function in the chain by using the macros
10781  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10782  *     (for iodone side functions).
10783  *
10784  *   - The iostart side functions may sleep. The iodone side functions
10785  *     are called under interrupt context and may NOT sleep. Therefore
10786  *     iodone side functions also may not call iostart side functions.
10787  *     (NOTE: iostart side functions should NOT sleep for memory, as
10788  *     this could result in deadlock.)
10789  *
10790  *   - An iostart side function may call its corresponding iodone side
10791  *     function directly (if necessary).
10792  *
10793  *   - In the event of an error, an iostart side function can return a buf(9S)
10794  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10795  *     b_error in the usual way of course).
10796  *
10797  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10798  *     requests to the iostart side functions.  The iostart side functions in
10799  *     this case would be called under the context of a taskq thread, so it's
10800  *     OK for them to block/sleep/spin in this case.
10801  *
10802  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10803  *     pass them along to the next function in the chain.  The corresponding
10804  *     iodone side functions must coalesce the "shadow" bufs and return
10805  *     the "original" buf to the next higher layer.
10806  *
10807  *   - The b_private field of the buf(9S) struct holds a pointer to
10808  *     an sd_xbuf struct, which contains information needed to
10809  *     construct the scsi_pkt for the command.
10810  *
10811  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10812  *     layer must acquire & release the SD_MUTEX(un) as needed.
10813  */
10814 
10815 
10816 /*
10817  * Create taskq for all targets in the system. This is created at
10818  * _init(9E) and destroyed at _fini(9E).
10819  *
10820  * Note: here we set the minalloc to a reasonably high number to ensure that
10821  * we will have an adequate supply of task entries available at interrupt time.
10822  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10823  * sd_create_taskq().  Since we do not want to sleep for allocations at
10824  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10825  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10826  * requests any one instant in time.
10827  */
10828 #define	SD_TASKQ_NUMTHREADS	8
10829 #define	SD_TASKQ_MINALLOC	256
10830 #define	SD_TASKQ_MAXALLOC	256
10831 
10832 static taskq_t	*sd_tq = NULL;
10833 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10834 
10835 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10836 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10837 
10838 /*
10839  * The following task queue is being created for the write part of
10840  * read-modify-write of non-512 block size devices.
10841  * Limit the number of threads to 1 for now. This number has been chosen
10842  * considering the fact that it applies only to dvd ram drives/MO drives
10843  * currently. Performance for which is not main criteria at this stage.
10844  * Note: It needs to be explored if we can use a single taskq in future
10845  */
10846 #define	SD_WMR_TASKQ_NUMTHREADS	1
10847 static taskq_t	*sd_wmr_tq = NULL;
10848 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10849 
10850 /*
10851  *    Function: sd_taskq_create
10852  *
10853  * Description: Create taskq thread(s) and preallocate task entries
10854  *
10855  * Return Code: Returns a pointer to the allocated taskq_t.
10856  *
10857  *     Context: Can sleep. Requires blockable context.
10858  *
10859  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10860  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10861  *		- taskq_create() will block for memory, also it will panic
10862  *		  if it cannot create the requested number of threads.
10863  *		- Currently taskq_create() creates threads that cannot be
10864  *		  swapped.
10865  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10866  *		  supply of taskq entries at interrupt time (ie, so that we
10867  *		  do not have to sleep for memory)
10868  */
10869 
10870 static void
10871 sd_taskq_create(void)
10872 {
10873 	char	taskq_name[TASKQ_NAMELEN];
10874 
10875 	ASSERT(sd_tq == NULL);
10876 	ASSERT(sd_wmr_tq == NULL);
10877 
10878 	(void) snprintf(taskq_name, sizeof (taskq_name),
10879 	    "%s_drv_taskq", sd_label);
10880 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10881 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10882 	    TASKQ_PREPOPULATE));
10883 
10884 	(void) snprintf(taskq_name, sizeof (taskq_name),
10885 	    "%s_rmw_taskq", sd_label);
10886 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10887 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10888 	    TASKQ_PREPOPULATE));
10889 }
10890 
10891 
10892 /*
10893  *    Function: sd_taskq_delete
10894  *
10895  * Description: Complementary cleanup routine for sd_taskq_create().
10896  *
10897  *     Context: Kernel thread context.
10898  */
10899 
10900 static void
10901 sd_taskq_delete(void)
10902 {
10903 	ASSERT(sd_tq != NULL);
10904 	ASSERT(sd_wmr_tq != NULL);
10905 	taskq_destroy(sd_tq);
10906 	taskq_destroy(sd_wmr_tq);
10907 	sd_tq = NULL;
10908 	sd_wmr_tq = NULL;
10909 }
10910 
10911 
10912 /*
10913  *    Function: sdstrategy
10914  *
10915  * Description: Driver's strategy (9E) entry point function.
10916  *
10917  *   Arguments: bp - pointer to buf(9S)
10918  *
10919  * Return Code: Always returns zero
10920  *
10921  *     Context: Kernel thread context.
10922  */
10923 
10924 static int
10925 sdstrategy(struct buf *bp)
10926 {
10927 	struct sd_lun *un;
10928 
10929 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10930 	if (un == NULL) {
10931 		bioerror(bp, EIO);
10932 		bp->b_resid = bp->b_bcount;
10933 		biodone(bp);
10934 		return (0);
10935 	}
10936 	/* As was done in the past, fail new cmds. if state is dumping. */
10937 	if (un->un_state == SD_STATE_DUMPING) {
10938 		bioerror(bp, ENXIO);
10939 		bp->b_resid = bp->b_bcount;
10940 		biodone(bp);
10941 		return (0);
10942 	}
10943 
10944 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10945 
10946 	/*
10947 	 * Commands may sneak in while we released the mutex in
10948 	 * DDI_SUSPEND, we should block new commands. However, old
10949 	 * commands that are still in the driver at this point should
10950 	 * still be allowed to drain.
10951 	 */
10952 	mutex_enter(SD_MUTEX(un));
10953 	/*
10954 	 * Must wait here if either the device is suspended or
10955 	 * if it's power level is changing.
10956 	 */
10957 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10958 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10959 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10960 	}
10961 
10962 	un->un_ncmds_in_driver++;
10963 
10964 	/*
10965 	 * atapi: Since we are running the CD for now in PIO mode we need to
10966 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10967 	 * the HBA's init_pkt routine.
10968 	 */
10969 	if (un->un_f_cfg_is_atapi == TRUE) {
10970 		mutex_exit(SD_MUTEX(un));
10971 		bp_mapin(bp);
10972 		mutex_enter(SD_MUTEX(un));
10973 	}
10974 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10975 	    un->un_ncmds_in_driver);
10976 
10977 	if (bp->b_flags & B_WRITE)
10978 		un->un_f_sync_cache_required = TRUE;
10979 
10980 	mutex_exit(SD_MUTEX(un));
10981 
10982 	/*
10983 	 * This will (eventually) allocate the sd_xbuf area and
10984 	 * call sd_xbuf_strategy().  We just want to return the
10985 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10986 	 * imized tail call which saves us a stack frame.
10987 	 */
10988 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10989 }
10990 
10991 
10992 /*
10993  *    Function: sd_xbuf_strategy
10994  *
10995  * Description: Function for initiating IO operations via the
10996  *		ddi_xbuf_qstrategy() mechanism.
10997  *
10998  *     Context: Kernel thread context.
10999  */
11000 
11001 static void
11002 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11003 {
11004 	struct sd_lun *un = arg;
11005 
11006 	ASSERT(bp != NULL);
11007 	ASSERT(xp != NULL);
11008 	ASSERT(un != NULL);
11009 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11010 
11011 	/*
11012 	 * Initialize the fields in the xbuf and save a pointer to the
11013 	 * xbuf in bp->b_private.
11014 	 */
11015 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11016 
11017 	/* Send the buf down the iostart chain */
11018 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11019 }
11020 
11021 
11022 /*
11023  *    Function: sd_xbuf_init
11024  *
11025  * Description: Prepare the given sd_xbuf struct for use.
11026  *
11027  *   Arguments: un - ptr to softstate
11028  *		bp - ptr to associated buf(9S)
11029  *		xp - ptr to associated sd_xbuf
11030  *		chain_type - IO chain type to use:
11031  *			SD_CHAIN_NULL
11032  *			SD_CHAIN_BUFIO
11033  *			SD_CHAIN_USCSI
11034  *			SD_CHAIN_DIRECT
11035  *			SD_CHAIN_DIRECT_PRIORITY
11036  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11037  *			initialization; may be NULL if none.
11038  *
11039  *     Context: Kernel thread context
11040  */
11041 
11042 static void
11043 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11044 	uchar_t chain_type, void *pktinfop)
11045 {
11046 	int index;
11047 
11048 	ASSERT(un != NULL);
11049 	ASSERT(bp != NULL);
11050 	ASSERT(xp != NULL);
11051 
11052 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11053 	    bp, chain_type);
11054 
11055 	xp->xb_un	= un;
11056 	xp->xb_pktp	= NULL;
11057 	xp->xb_pktinfo	= pktinfop;
11058 	xp->xb_private	= bp->b_private;
11059 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11060 
11061 	/*
11062 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11063 	 * upon the specified chain type to use.
11064 	 */
11065 	switch (chain_type) {
11066 	case SD_CHAIN_NULL:
11067 		/*
11068 		 * Fall thru to just use the values for the buf type, even
11069 		 * tho for the NULL chain these values will never be used.
11070 		 */
11071 		/* FALLTHRU */
11072 	case SD_CHAIN_BUFIO:
11073 		index = un->un_buf_chain_type;
11074 		break;
11075 	case SD_CHAIN_USCSI:
11076 		index = un->un_uscsi_chain_type;
11077 		break;
11078 	case SD_CHAIN_DIRECT:
11079 		index = un->un_direct_chain_type;
11080 		break;
11081 	case SD_CHAIN_DIRECT_PRIORITY:
11082 		index = un->un_priority_chain_type;
11083 		break;
11084 	default:
11085 		/* We're really broken if we ever get here... */
11086 		panic("sd_xbuf_init: illegal chain type!");
11087 		/*NOTREACHED*/
11088 	}
11089 
11090 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11091 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11092 
11093 	/*
11094 	 * It might be a bit easier to simply bzero the entire xbuf above,
11095 	 * but it turns out that since we init a fair number of members anyway,
11096 	 * we save a fair number cycles by doing explicit assignment of zero.
11097 	 */
11098 	xp->xb_pkt_flags	= 0;
11099 	xp->xb_dma_resid	= 0;
11100 	xp->xb_retry_count	= 0;
11101 	xp->xb_victim_retry_count = 0;
11102 	xp->xb_ua_retry_count	= 0;
11103 	xp->xb_nr_retry_count	= 0;
11104 	xp->xb_sense_bp		= NULL;
11105 	xp->xb_sense_status	= 0;
11106 	xp->xb_sense_state	= 0;
11107 	xp->xb_sense_resid	= 0;
11108 	xp->xb_ena		= 0;
11109 
11110 	bp->b_private	= xp;
11111 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11112 	bp->b_resid	= 0;
11113 	bp->av_forw	= NULL;
11114 	bp->av_back	= NULL;
11115 	bioerror(bp, 0);
11116 
11117 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11118 }
11119 
11120 
11121 /*
11122  *    Function: sd_uscsi_strategy
11123  *
11124  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11125  *
11126  *   Arguments: bp - buf struct ptr
11127  *
11128  * Return Code: Always returns 0
11129  *
11130  *     Context: Kernel thread context
11131  */
11132 
11133 static int
11134 sd_uscsi_strategy(struct buf *bp)
11135 {
11136 	struct sd_lun		*un;
11137 	struct sd_uscsi_info	*uip;
11138 	struct sd_xbuf		*xp;
11139 	uchar_t			chain_type;
11140 	uchar_t			cmd;
11141 
11142 	ASSERT(bp != NULL);
11143 
11144 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11145 	if (un == NULL) {
11146 		bioerror(bp, EIO);
11147 		bp->b_resid = bp->b_bcount;
11148 		biodone(bp);
11149 		return (0);
11150 	}
11151 
11152 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11153 
11154 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11155 
11156 	/*
11157 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11158 	 */
11159 	ASSERT(bp->b_private != NULL);
11160 	uip = (struct sd_uscsi_info *)bp->b_private;
11161 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11162 
11163 	mutex_enter(SD_MUTEX(un));
11164 	/*
11165 	 * atapi: Since we are running the CD for now in PIO mode we need to
11166 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11167 	 * the HBA's init_pkt routine.
11168 	 */
11169 	if (un->un_f_cfg_is_atapi == TRUE) {
11170 		mutex_exit(SD_MUTEX(un));
11171 		bp_mapin(bp);
11172 		mutex_enter(SD_MUTEX(un));
11173 	}
11174 	un->un_ncmds_in_driver++;
11175 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11176 	    un->un_ncmds_in_driver);
11177 
11178 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11179 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11180 		un->un_f_sync_cache_required = TRUE;
11181 
11182 	mutex_exit(SD_MUTEX(un));
11183 
11184 	switch (uip->ui_flags) {
11185 	case SD_PATH_DIRECT:
11186 		chain_type = SD_CHAIN_DIRECT;
11187 		break;
11188 	case SD_PATH_DIRECT_PRIORITY:
11189 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11190 		break;
11191 	default:
11192 		chain_type = SD_CHAIN_USCSI;
11193 		break;
11194 	}
11195 
11196 	/*
11197 	 * We may allocate extra buf for external USCSI commands. If the
11198 	 * application asks for bigger than 20-byte sense data via USCSI,
11199 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11200 	 */
11201 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11202 	    SENSE_LENGTH) {
11203 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11204 		    MAX_SENSE_LENGTH, KM_SLEEP);
11205 	} else {
11206 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11207 	}
11208 
11209 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11210 
11211 	/* Use the index obtained within xbuf_init */
11212 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11213 
11214 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11215 
11216 	return (0);
11217 }
11218 
11219 /*
11220  *    Function: sd_send_scsi_cmd
11221  *
11222  * Description: Runs a USCSI command for user (when called thru sdioctl),
11223  *		or for the driver
11224  *
11225  *   Arguments: dev - the dev_t for the device
11226  *		incmd - ptr to a valid uscsi_cmd struct
11227  *		flag - bit flag, indicating open settings, 32/64 bit type
11228  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11229  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11230  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11231  *			to use the USCSI "direct" chain and bypass the normal
11232  *			command waitq.
11233  *
11234  * Return Code: 0 -  successful completion of the given command
11235  *		EIO - scsi_uscsi_handle_command() failed
11236  *		ENXIO  - soft state not found for specified dev
11237  *		EINVAL
11238  *		EFAULT - copyin/copyout error
11239  *		return code of scsi_uscsi_handle_command():
11240  *			EIO
11241  *			ENXIO
11242  *			EACCES
11243  *
11244  *     Context: Waits for command to complete. Can sleep.
11245  */
11246 
11247 static int
11248 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11249 	enum uio_seg dataspace, int path_flag)
11250 {
11251 	struct sd_lun	*un;
11252 	sd_ssc_t	*ssc;
11253 	int		rval;
11254 
11255 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11256 	if (un == NULL) {
11257 		return (ENXIO);
11258 	}
11259 
11260 	/*
11261 	 * Using sd_ssc_send to handle uscsi cmd
11262 	 */
11263 	ssc = sd_ssc_init(un);
11264 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11265 	sd_ssc_fini(ssc);
11266 
11267 	return (rval);
11268 }
11269 
11270 /*
11271  *    Function: sd_ssc_init
11272  *
11273  * Description: Uscsi end-user call this function to initialize necessary
11274  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11275  *
11276  *              The return value of sd_send_scsi_cmd will be treated as a
11277  *              fault in various conditions. Even it is not Zero, some
11278  *              callers may ignore the return value. That is to say, we can
11279  *              not make an accurate assessment in sdintr, since if a
11280  *              command is failed in sdintr it does not mean the caller of
11281  *              sd_send_scsi_cmd will treat it as a real failure.
11282  *
11283  *              To avoid printing too many error logs for a failed uscsi
11284  *              packet that the caller may not treat it as a failure, the
11285  *              sd will keep silent for handling all uscsi commands.
11286  *
11287  *              During detach->attach and attach-open, for some types of
11288  *              problems, the driver should be providing information about
11289  *              the problem encountered. Device use USCSI_SILENT, which
11290  *              suppresses all driver information. The result is that no
11291  *              information about the problem is available. Being
11292  *              completely silent during this time is inappropriate. The
11293  *              driver needs a more selective filter than USCSI_SILENT, so
11294  *              that information related to faults is provided.
11295  *
11296  *              To make the accurate accessment, the caller  of
11297  *              sd_send_scsi_USCSI_CMD should take the ownership and
11298  *              get necessary information to print error messages.
11299  *
11300  *              If we want to print necessary info of uscsi command, we need to
11301  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11302  *              assessment. We use sd_ssc_init to alloc necessary
11303  *              structs for sending an uscsi command and we are also
11304  *              responsible for free the memory by calling
11305  *              sd_ssc_fini.
11306  *
11307  *              The calling secquences will look like:
11308  *              sd_ssc_init->
11309  *
11310  *                  ...
11311  *
11312  *                  sd_send_scsi_USCSI_CMD->
11313  *                      sd_ssc_send-> - - - sdintr
11314  *                  ...
11315  *
11316  *                  if we think the return value should be treated as a
11317  *                  failure, we make the accessment here and print out
11318  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11319  *
11320  *                  ...
11321  *
11322  *              sd_ssc_fini
11323  *
11324  *
11325  *   Arguments: un - pointer to driver soft state (unit) structure for this
11326  *                   target.
11327  *
11328  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11329  *                         uscsi_cmd and sd_uscsi_info.
11330  *                  NULL - if can not alloc memory for sd_ssc_t struct
11331  *
11332  *     Context: Kernel Thread.
11333  */
11334 static sd_ssc_t *
11335 sd_ssc_init(struct sd_lun *un)
11336 {
11337 	sd_ssc_t		*ssc;
11338 	struct uscsi_cmd	*ucmdp;
11339 	struct sd_uscsi_info	*uip;
11340 
11341 	ASSERT(un != NULL);
11342 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11343 
11344 	/*
11345 	 * Allocate sd_ssc_t structure
11346 	 */
11347 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11348 
11349 	/*
11350 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11351 	 */
11352 	ucmdp = scsi_uscsi_alloc();
11353 
11354 	/*
11355 	 * Allocate sd_uscsi_info structure
11356 	 */
11357 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11358 
11359 	ssc->ssc_uscsi_cmd = ucmdp;
11360 	ssc->ssc_uscsi_info = uip;
11361 	ssc->ssc_un = un;
11362 
11363 	return (ssc);
11364 }
11365 
11366 /*
11367  * Function: sd_ssc_fini
11368  *
11369  * Description: To free sd_ssc_t and it's hanging off
11370  *
11371  * Arguments: ssc - struct pointer of sd_ssc_t.
11372  */
11373 static void
11374 sd_ssc_fini(sd_ssc_t *ssc)
11375 {
11376 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11377 
11378 	if (ssc->ssc_uscsi_info != NULL) {
11379 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11380 		ssc->ssc_uscsi_info = NULL;
11381 	}
11382 
11383 	kmem_free(ssc, sizeof (sd_ssc_t));
11384 	ssc = NULL;
11385 }
11386 
11387 /*
11388  * Function: sd_ssc_send
11389  *
11390  * Description: Runs a USCSI command for user when called through sdioctl,
11391  *              or for the driver.
11392  *
11393  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11394  *                    sd_uscsi_info in.
11395  *		incmd - ptr to a valid uscsi_cmd struct
11396  *		flag - bit flag, indicating open settings, 32/64 bit type
11397  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11398  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11399  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11400  *			to use the USCSI "direct" chain and bypass the normal
11401  *			command waitq.
11402  *
11403  * Return Code: 0 -  successful completion of the given command
11404  *		EIO - scsi_uscsi_handle_command() failed
11405  *		ENXIO  - soft state not found for specified dev
11406  *		EINVAL
11407  *		EFAULT - copyin/copyout error
11408  *		return code of scsi_uscsi_handle_command():
11409  *			EIO
11410  *			ENXIO
11411  *			EACCES
11412  *
11413  *     Context: Kernel Thread;
11414  *              Waits for command to complete. Can sleep.
11415  */
11416 static int
11417 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11418 	enum uio_seg dataspace, int path_flag)
11419 {
11420 	struct sd_uscsi_info	*uip;
11421 	struct uscsi_cmd	*uscmd;
11422 	struct sd_lun		*un;
11423 	dev_t			dev;
11424 
11425 	int	format = 0;
11426 	int	rval;
11427 
11428 	ASSERT(ssc != NULL);
11429 	un = ssc->ssc_un;
11430 	ASSERT(un != NULL);
11431 	uscmd = ssc->ssc_uscsi_cmd;
11432 	ASSERT(uscmd != NULL);
11433 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11434 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11435 		/*
11436 		 * If enter here, it indicates that the previous uscsi
11437 		 * command has not been processed by sd_ssc_assessment.
11438 		 * This is violating our rules of FMA telemetry processing.
11439 		 * We should print out this message and the last undisposed
11440 		 * uscsi command.
11441 		 */
11442 		if (uscmd->uscsi_cdb != NULL) {
11443 			SD_INFO(SD_LOG_SDTEST, un,
11444 			    "sd_ssc_send is missing the alternative "
11445 			    "sd_ssc_assessment when running command 0x%x.\n",
11446 			    uscmd->uscsi_cdb[0]);
11447 		}
11448 		/*
11449 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
11450 		 * the initial status.
11451 		 */
11452 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11453 	}
11454 
11455 	/*
11456 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
11457 	 * followed to avoid missing FMA telemetries.
11458 	 */
11459 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
11460 
11461 #ifdef SDDEBUG
11462 	switch (dataspace) {
11463 	case UIO_USERSPACE:
11464 		SD_TRACE(SD_LOG_IO, un,
11465 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
11466 		break;
11467 	case UIO_SYSSPACE:
11468 		SD_TRACE(SD_LOG_IO, un,
11469 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
11470 		break;
11471 	default:
11472 		SD_TRACE(SD_LOG_IO, un,
11473 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
11474 		break;
11475 	}
11476 #endif
11477 
11478 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
11479 	    SD_ADDRESS(un), &uscmd);
11480 	if (rval != 0) {
11481 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
11482 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
11483 		return (rval);
11484 	}
11485 
11486 	if ((uscmd->uscsi_cdb != NULL) &&
11487 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
11488 		mutex_enter(SD_MUTEX(un));
11489 		un->un_f_format_in_progress = TRUE;
11490 		mutex_exit(SD_MUTEX(un));
11491 		format = 1;
11492 	}
11493 
11494 	/*
11495 	 * Allocate an sd_uscsi_info struct and fill it with the info
11496 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11497 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11498 	 * since we allocate the buf here in this function, we do not
11499 	 * need to preserve the prior contents of b_private.
11500 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11501 	 */
11502 	uip = ssc->ssc_uscsi_info;
11503 	uip->ui_flags = path_flag;
11504 	uip->ui_cmdp = uscmd;
11505 
11506 	/*
11507 	 * Commands sent with priority are intended for error recovery
11508 	 * situations, and do not have retries performed.
11509 	 */
11510 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11511 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11512 	}
11513 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
11514 
11515 	dev = SD_GET_DEV(un);
11516 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
11517 	    sd_uscsi_strategy, NULL, uip);
11518 
11519 	/*
11520 	 * mark ssc_flags right after handle_cmd to make sure
11521 	 * the uscsi has been sent
11522 	 */
11523 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
11524 
11525 #ifdef SDDEBUG
11526 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11527 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11528 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11529 	if (uscmd->uscsi_bufaddr != NULL) {
11530 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11531 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11532 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11533 		if (dataspace == UIO_SYSSPACE) {
11534 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11535 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11536 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11537 		}
11538 	}
11539 #endif
11540 
11541 	if (format == 1) {
11542 		mutex_enter(SD_MUTEX(un));
11543 		un->un_f_format_in_progress = FALSE;
11544 		mutex_exit(SD_MUTEX(un));
11545 	}
11546 
11547 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
11548 
11549 	return (rval);
11550 }
11551 
11552 /*
11553  *     Function: sd_ssc_print
11554  *
11555  * Description: Print information available to the console.
11556  *
11557  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11558  *                    sd_uscsi_info in.
11559  *            sd_severity - log level.
11560  *     Context: Kernel thread or interrupt context.
11561  */
11562 static void
11563 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
11564 {
11565 	struct uscsi_cmd	*ucmdp;
11566 	struct scsi_device	*devp;
11567 	dev_info_t 		*devinfo;
11568 	uchar_t			*sensep;
11569 	int			senlen;
11570 	union scsi_cdb		*cdbp;
11571 	uchar_t			com;
11572 	extern struct scsi_key_strings scsi_cmds[];
11573 
11574 	ASSERT(ssc != NULL);
11575 
11576 	ucmdp = ssc->ssc_uscsi_cmd;
11577 	devp = SD_SCSI_DEVP(ssc->ssc_un);
11578 	devinfo = SD_DEVINFO(ssc->ssc_un);
11579 	ASSERT(ucmdp != NULL);
11580 	ASSERT(devp != NULL);
11581 	ASSERT(devinfo != NULL);
11582 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
11583 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
11584 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
11585 
11586 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
11587 	if (cdbp == NULL)
11588 		return;
11589 	/* We don't print log if no sense data available. */
11590 	if (senlen == 0)
11591 		sensep = NULL;
11592 	com = cdbp->scc_cmd;
11593 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
11594 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
11595 }
11596 
11597 /*
11598  *     Function: sd_ssc_assessment
11599  *
11600  * Description: We use this function to make an assessment at the point
11601  *              where SD driver may encounter a potential error.
11602  *
11603  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11604  *                    sd_uscsi_info in.
11605  *            tp_assess - a hint of strategy for ereport posting.
11606  *            Possible values of tp_assess include:
11607  *                SD_FMT_IGNORE - we don't post any ereport because we're
11608  *                sure that it is ok to ignore the underlying problems.
11609  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
11610  *                but it might be not correct to ignore the underlying hardware
11611  *                error.
11612  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
11613  *                payload driver-assessment of value "fail" or
11614  *                "fatal"(depending on what information we have here). This
11615  *                assessment value is usually set when SD driver think there
11616  *                is a potential error occurred(Typically, when return value
11617  *                of the SCSI command is EIO).
11618  *                SD_FMT_STANDARD - we will post an ereport with the payload
11619  *                driver-assessment of value "info". This assessment value is
11620  *                set when the SCSI command returned successfully and with
11621  *                sense data sent back.
11622  *
11623  *     Context: Kernel thread.
11624  */
11625 static void
11626 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
11627 {
11628 	int senlen = 0;
11629 	struct uscsi_cmd *ucmdp = NULL;
11630 	struct sd_lun *un;
11631 
11632 	ASSERT(ssc != NULL);
11633 	un = ssc->ssc_un;
11634 	ASSERT(un != NULL);
11635 	ucmdp = ssc->ssc_uscsi_cmd;
11636 	ASSERT(ucmdp != NULL);
11637 
11638 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11639 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
11640 	} else {
11641 		/*
11642 		 * If enter here, it indicates that we have a wrong
11643 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
11644 		 * both of which should be called in a pair in case of
11645 		 * loss of FMA telemetries.
11646 		 */
11647 		if (ucmdp->uscsi_cdb != NULL) {
11648 			SD_INFO(SD_LOG_SDTEST, un,
11649 			    "sd_ssc_assessment is missing the "
11650 			    "alternative sd_ssc_send when running 0x%x, "
11651 			    "or there are superfluous sd_ssc_assessment for "
11652 			    "the same sd_ssc_send.\n",
11653 			    ucmdp->uscsi_cdb[0]);
11654 		}
11655 		/*
11656 		 * Set the ssc_flags to the initial value to avoid passing
11657 		 * down dirty flags to the following sd_ssc_send function.
11658 		 */
11659 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11660 		return;
11661 	}
11662 
11663 	/*
11664 	 * We don't handle a non-disk drive(CD-ROM, removable media).
11665 	 * Clear the ssc_flags before return in case we've set
11666 	 * SSC_FLAGS_INVALID_DATA which should be skipped for a non-disk
11667 	 * driver.
11668 	 */
11669 	if (ISCD(un) || un->un_f_has_removable_media) {
11670 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11671 		return;
11672 	}
11673 
11674 	/*
11675 	 * Only handle an issued command which is waiting for assessment.
11676 	 * A command which is not issued will not have
11677 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
11678 	 */
11679 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
11680 		sd_ssc_print(ssc, SCSI_ERR_INFO);
11681 		return;
11682 	} else {
11683 		/*
11684 		 * For an issued command, we should clear this flag in
11685 		 * order to make the sd_ssc_t structure be used off
11686 		 * multiple uscsi commands.
11687 		 */
11688 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
11689 	}
11690 
11691 	/*
11692 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
11693 	 * commands here. And we should clear the ssc_flags before return.
11694 	 */
11695 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
11696 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11697 		return;
11698 	}
11699 
11700 	switch (tp_assess) {
11701 	case SD_FMT_IGNORE:
11702 	case SD_FMT_IGNORE_COMPROMISE:
11703 		break;
11704 	case SD_FMT_STATUS_CHECK:
11705 		/*
11706 		 * For a failed command(including the succeeded command
11707 		 * with invalid data sent back).
11708 		 */
11709 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
11710 		break;
11711 	case SD_FMT_STANDARD:
11712 		/*
11713 		 * Always for the succeeded commands probably with sense
11714 		 * data sent back.
11715 		 * Limitation:
11716 		 *	We can only handle a succeeded command with sense
11717 		 *	data sent back when auto-request-sense is enabled.
11718 		 */
11719 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
11720 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
11721 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
11722 		    (un->un_f_arq_enabled == TRUE) &&
11723 		    senlen > 0 &&
11724 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
11725 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
11726 		}
11727 		break;
11728 	default:
11729 		/*
11730 		 * Should not have other type of assessment.
11731 		 */
11732 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
11733 		    "sd_ssc_assessment got wrong "
11734 		    "sd_type_assessment %d.\n", tp_assess);
11735 		break;
11736 	}
11737 	/*
11738 	 * Clear up the ssc_flags before return.
11739 	 */
11740 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11741 }
11742 
11743 /*
11744  *    Function: sd_ssc_post
11745  *
11746  * Description: 1. read the driver property to get fm-scsi-log flag.
11747  *              2. print log if fm_log_capable is non-zero.
11748  *              3. call sd_ssc_ereport_post to post ereport if possible.
11749  *
11750  *    Context: May be called from kernel thread or interrupt context.
11751  */
11752 static void
11753 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
11754 {
11755 	struct sd_lun	*un;
11756 	int 		fm_scsi_log = 0;
11757 	int		sd_severity;
11758 
11759 	ASSERT(ssc != NULL);
11760 	un = ssc->ssc_un;
11761 	ASSERT(un != NULL);
11762 
11763 	fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
11764 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
11765 
11766 	if (fm_scsi_log != 0) {
11767 		switch (sd_assess) {
11768 		case SD_FM_DRV_FATAL:
11769 			sd_severity = SCSI_ERR_FATAL;
11770 			break;
11771 		case SD_FM_DRV_RECOVERY:
11772 			sd_severity = SCSI_ERR_RECOVERED;
11773 			break;
11774 		case SD_FM_DRV_RETRY:
11775 			sd_severity = SCSI_ERR_RETRYABLE;
11776 			break;
11777 		case SD_FM_DRV_NOTICE:
11778 			sd_severity = SCSI_ERR_INFO;
11779 			break;
11780 		default:
11781 			sd_severity = SCSI_ERR_UNKNOWN;
11782 		}
11783 		/* print log */
11784 		sd_ssc_print(ssc, sd_severity);
11785 	}
11786 
11787 	/* always post ereport */
11788 	sd_ssc_ereport_post(ssc, sd_assess);
11789 }
11790 
11791 /*
11792  *    Function: sd_ssc_set_info
11793  *
11794  * Description: Mark ssc_flags and set ssc_info which would be the
11795  *              payload of uderr ereport. This function will cause
11796  *              sd_ssc_ereport_post to post uderr ereport only.
11797  *
11798  *    Context: Kernel thread or interrupt context
11799  */
11800 static void
11801 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, const char *fmt, ...)
11802 {
11803 	va_list	ap;
11804 
11805 	ASSERT(ssc != NULL);
11806 
11807 	ssc->ssc_flags |= ssc_flags;
11808 	va_start(ap, fmt);
11809 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
11810 	va_end(ap);
11811 }
11812 
11813 /*
11814  *    Function: sd_buf_iodone
11815  *
11816  * Description: Frees the sd_xbuf & returns the buf to its originator.
11817  *
11818  *     Context: May be called from interrupt context.
11819  */
11820 /* ARGSUSED */
11821 static void
11822 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11823 {
11824 	struct sd_xbuf *xp;
11825 
11826 	ASSERT(un != NULL);
11827 	ASSERT(bp != NULL);
11828 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11829 
11830 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11831 
11832 	xp = SD_GET_XBUF(bp);
11833 	ASSERT(xp != NULL);
11834 
11835 	mutex_enter(SD_MUTEX(un));
11836 
11837 	/*
11838 	 * Grab time when the cmd completed.
11839 	 * This is used for determining if the system has been
11840 	 * idle long enough to make it idle to the PM framework.
11841 	 * This is for lowering the overhead, and therefore improving
11842 	 * performance per I/O operation.
11843 	 */
11844 	un->un_pm_idle_time = ddi_get_time();
11845 
11846 	un->un_ncmds_in_driver--;
11847 	ASSERT(un->un_ncmds_in_driver >= 0);
11848 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11849 	    un->un_ncmds_in_driver);
11850 
11851 	mutex_exit(SD_MUTEX(un));
11852 
11853 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
11854 	biodone(bp);				/* bp is gone after this */
11855 
11856 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11857 }
11858 
11859 
11860 /*
11861  *    Function: sd_uscsi_iodone
11862  *
11863  * Description: Frees the sd_xbuf & returns the buf to its originator.
11864  *
11865  *     Context: May be called from interrupt context.
11866  */
11867 /* ARGSUSED */
11868 static void
11869 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11870 {
11871 	struct sd_xbuf *xp;
11872 
11873 	ASSERT(un != NULL);
11874 	ASSERT(bp != NULL);
11875 
11876 	xp = SD_GET_XBUF(bp);
11877 	ASSERT(xp != NULL);
11878 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11879 
11880 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11881 
11882 	bp->b_private = xp->xb_private;
11883 
11884 	mutex_enter(SD_MUTEX(un));
11885 
11886 	/*
11887 	 * Grab time when the cmd completed.
11888 	 * This is used for determining if the system has been
11889 	 * idle long enough to make it idle to the PM framework.
11890 	 * This is for lowering the overhead, and therefore improving
11891 	 * performance per I/O operation.
11892 	 */
11893 	un->un_pm_idle_time = ddi_get_time();
11894 
11895 	un->un_ncmds_in_driver--;
11896 	ASSERT(un->un_ncmds_in_driver >= 0);
11897 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
11898 	    un->un_ncmds_in_driver);
11899 
11900 	mutex_exit(SD_MUTEX(un));
11901 
11902 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
11903 	    SENSE_LENGTH) {
11904 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
11905 		    MAX_SENSE_LENGTH);
11906 	} else {
11907 		kmem_free(xp, sizeof (struct sd_xbuf));
11908 	}
11909 
11910 	biodone(bp);
11911 
11912 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
11913 }
11914 
11915 
11916 /*
11917  *    Function: sd_mapblockaddr_iostart
11918  *
11919  * Description: Verify request lies within the partition limits for
11920  *		the indicated minor device.  Issue "overrun" buf if
11921  *		request would exceed partition range.  Converts
11922  *		partition-relative block address to absolute.
11923  *
11924  *     Context: Can sleep
11925  *
11926  *      Issues: This follows what the old code did, in terms of accessing
11927  *		some of the partition info in the unit struct without holding
11928  *		the mutext.  This is a general issue, if the partition info
11929  *		can be altered while IO is in progress... as soon as we send
11930  *		a buf, its partitioning can be invalid before it gets to the
11931  *		device.  Probably the right fix is to move partitioning out
11932  *		of the driver entirely.
11933  */
11934 
11935 static void
11936 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
11937 {
11938 	diskaddr_t	nblocks;	/* #blocks in the given partition */
11939 	daddr_t	blocknum;	/* Block number specified by the buf */
11940 	size_t	requested_nblocks;
11941 	size_t	available_nblocks;
11942 	int	partition;
11943 	diskaddr_t	partition_offset;
11944 	struct sd_xbuf *xp;
11945 
11946 	ASSERT(un != NULL);
11947 	ASSERT(bp != NULL);
11948 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11949 
11950 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11951 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
11952 
11953 	xp = SD_GET_XBUF(bp);
11954 	ASSERT(xp != NULL);
11955 
11956 	/*
11957 	 * If the geometry is not indicated as valid, attempt to access
11958 	 * the unit & verify the geometry/label. This can be the case for
11959 	 * removable-media devices, of if the device was opened in
11960 	 * NDELAY/NONBLOCK mode.
11961 	 */
11962 	partition = SDPART(bp->b_edev);
11963 
11964 	if (!SD_IS_VALID_LABEL(un)) {
11965 		sd_ssc_t *ssc;
11966 		/*
11967 		 * Initialize sd_ssc_t for internal uscsi commands
11968 		 * In case of potential porformance issue, we need
11969 		 * to alloc memory only if there is invalid label
11970 		 */
11971 		ssc = sd_ssc_init(un);
11972 
11973 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
11974 			/*
11975 			 * For removable devices it is possible to start an
11976 			 * I/O without a media by opening the device in nodelay
11977 			 * mode. Also for writable CDs there can be many
11978 			 * scenarios where there is no geometry yet but volume
11979 			 * manager is trying to issue a read() just because
11980 			 * it can see TOC on the CD. So do not print a message
11981 			 * for removables.
11982 			 */
11983 			if (!un->un_f_has_removable_media) {
11984 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11985 				    "i/o to invalid geometry\n");
11986 			}
11987 			bioerror(bp, EIO);
11988 			bp->b_resid = bp->b_bcount;
11989 			SD_BEGIN_IODONE(index, un, bp);
11990 
11991 			sd_ssc_fini(ssc);
11992 			return;
11993 		}
11994 		sd_ssc_fini(ssc);
11995 	}
11996 
11997 	nblocks = 0;
11998 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
11999 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12000 
12001 	/*
12002 	 * blocknum is the starting block number of the request. At this
12003 	 * point it is still relative to the start of the minor device.
12004 	 */
12005 	blocknum = xp->xb_blkno;
12006 
12007 	/*
12008 	 * Legacy: If the starting block number is one past the last block
12009 	 * in the partition, do not set B_ERROR in the buf.
12010 	 */
12011 	if (blocknum == nblocks)  {
12012 		goto error_exit;
12013 	}
12014 
12015 	/*
12016 	 * Confirm that the first block of the request lies within the
12017 	 * partition limits. Also the requested number of bytes must be
12018 	 * a multiple of the system block size.
12019 	 */
12020 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12021 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12022 		bp->b_flags |= B_ERROR;
12023 		goto error_exit;
12024 	}
12025 
12026 	/*
12027 	 * If the requsted # blocks exceeds the available # blocks, that
12028 	 * is an overrun of the partition.
12029 	 */
12030 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12031 	available_nblocks = (size_t)(nblocks - blocknum);
12032 	ASSERT(nblocks >= blocknum);
12033 
12034 	if (requested_nblocks > available_nblocks) {
12035 		/*
12036 		 * Allocate an "overrun" buf to allow the request to proceed
12037 		 * for the amount of space available in the partition. The
12038 		 * amount not transferred will be added into the b_resid
12039 		 * when the operation is complete. The overrun buf
12040 		 * replaces the original buf here, and the original buf
12041 		 * is saved inside the overrun buf, for later use.
12042 		 */
12043 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12044 		    (offset_t)(requested_nblocks - available_nblocks));
12045 		size_t count = bp->b_bcount - resid;
12046 		/*
12047 		 * Note: count is an unsigned entity thus it'll NEVER
12048 		 * be less than 0 so ASSERT the original values are
12049 		 * correct.
12050 		 */
12051 		ASSERT(bp->b_bcount >= resid);
12052 
12053 		bp = sd_bioclone_alloc(bp, count, blocknum,
12054 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12055 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12056 		ASSERT(xp != NULL);
12057 	}
12058 
12059 	/* At this point there should be no residual for this buf. */
12060 	ASSERT(bp->b_resid == 0);
12061 
12062 	/* Convert the block number to an absolute address. */
12063 	xp->xb_blkno += partition_offset;
12064 
12065 	SD_NEXT_IOSTART(index, un, bp);
12066 
12067 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12068 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12069 
12070 	return;
12071 
12072 error_exit:
12073 	bp->b_resid = bp->b_bcount;
12074 	SD_BEGIN_IODONE(index, un, bp);
12075 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12076 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12077 }
12078 
12079 
12080 /*
12081  *    Function: sd_mapblockaddr_iodone
12082  *
12083  * Description: Completion-side processing for partition management.
12084  *
12085  *     Context: May be called under interrupt context
12086  */
12087 
12088 static void
12089 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12090 {
12091 	/* int	partition; */	/* Not used, see below. */
12092 	ASSERT(un != NULL);
12093 	ASSERT(bp != NULL);
12094 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12095 
12096 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12097 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12098 
12099 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12100 		/*
12101 		 * We have an "overrun" buf to deal with...
12102 		 */
12103 		struct sd_xbuf	*xp;
12104 		struct buf	*obp;	/* ptr to the original buf */
12105 
12106 		xp = SD_GET_XBUF(bp);
12107 		ASSERT(xp != NULL);
12108 
12109 		/* Retrieve the pointer to the original buf */
12110 		obp = (struct buf *)xp->xb_private;
12111 		ASSERT(obp != NULL);
12112 
12113 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12114 		bioerror(obp, bp->b_error);
12115 
12116 		sd_bioclone_free(bp);
12117 
12118 		/*
12119 		 * Get back the original buf.
12120 		 * Note that since the restoration of xb_blkno below
12121 		 * was removed, the sd_xbuf is not needed.
12122 		 */
12123 		bp = obp;
12124 		/*
12125 		 * xp = SD_GET_XBUF(bp);
12126 		 * ASSERT(xp != NULL);
12127 		 */
12128 	}
12129 
12130 	/*
12131 	 * Convert sd->xb_blkno back to a minor-device relative value.
12132 	 * Note: this has been commented out, as it is not needed in the
12133 	 * current implementation of the driver (ie, since this function
12134 	 * is at the top of the layering chains, so the info will be
12135 	 * discarded) and it is in the "hot" IO path.
12136 	 *
12137 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12138 	 * xp->xb_blkno -= un->un_offset[partition];
12139 	 */
12140 
12141 	SD_NEXT_IODONE(index, un, bp);
12142 
12143 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12144 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12145 }
12146 
12147 
12148 /*
12149  *    Function: sd_mapblocksize_iostart
12150  *
12151  * Description: Convert between system block size (un->un_sys_blocksize)
12152  *		and target block size (un->un_tgt_blocksize).
12153  *
12154  *     Context: Can sleep to allocate resources.
12155  *
12156  * Assumptions: A higher layer has already performed any partition validation,
12157  *		and converted the xp->xb_blkno to an absolute value relative
12158  *		to the start of the device.
12159  *
12160  *		It is also assumed that the higher layer has implemented
12161  *		an "overrun" mechanism for the case where the request would
12162  *		read/write beyond the end of a partition.  In this case we
12163  *		assume (and ASSERT) that bp->b_resid == 0.
12164  *
12165  *		Note: The implementation for this routine assumes the target
12166  *		block size remains constant between allocation and transport.
12167  */
12168 
12169 static void
12170 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12171 {
12172 	struct sd_mapblocksize_info	*bsp;
12173 	struct sd_xbuf			*xp;
12174 	offset_t first_byte;
12175 	daddr_t	start_block, end_block;
12176 	daddr_t	request_bytes;
12177 	ushort_t is_aligned = FALSE;
12178 
12179 	ASSERT(un != NULL);
12180 	ASSERT(bp != NULL);
12181 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12182 	ASSERT(bp->b_resid == 0);
12183 
12184 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12185 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12186 
12187 	/*
12188 	 * For a non-writable CD, a write request is an error
12189 	 */
12190 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12191 	    (un->un_f_mmc_writable_media == FALSE)) {
12192 		bioerror(bp, EIO);
12193 		bp->b_resid = bp->b_bcount;
12194 		SD_BEGIN_IODONE(index, un, bp);
12195 		return;
12196 	}
12197 
12198 	/*
12199 	 * We do not need a shadow buf if the device is using
12200 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12201 	 * In this case there is no layer-private data block allocated.
12202 	 */
12203 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12204 	    (bp->b_bcount == 0)) {
12205 		goto done;
12206 	}
12207 
12208 #if defined(__i386) || defined(__amd64)
12209 	/* We do not support non-block-aligned transfers for ROD devices */
12210 	ASSERT(!ISROD(un));
12211 #endif
12212 
12213 	xp = SD_GET_XBUF(bp);
12214 	ASSERT(xp != NULL);
12215 
12216 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12217 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12218 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12219 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12220 	    "request start block:0x%x\n", xp->xb_blkno);
12221 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12222 	    "request len:0x%x\n", bp->b_bcount);
12223 
12224 	/*
12225 	 * Allocate the layer-private data area for the mapblocksize layer.
12226 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12227 	 * struct to store the pointer to their layer-private data block, but
12228 	 * each layer also has the responsibility of restoring the prior
12229 	 * contents of xb_private before returning the buf/xbuf to the
12230 	 * higher layer that sent it.
12231 	 *
12232 	 * Here we save the prior contents of xp->xb_private into the
12233 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12234 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12235 	 * the layer-private area and returning the buf/xbuf to the layer
12236 	 * that sent it.
12237 	 *
12238 	 * Note that here we use kmem_zalloc for the allocation as there are
12239 	 * parts of the mapblocksize code that expect certain fields to be
12240 	 * zero unless explicitly set to a required value.
12241 	 */
12242 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12243 	bsp->mbs_oprivate = xp->xb_private;
12244 	xp->xb_private = bsp;
12245 
12246 	/*
12247 	 * This treats the data on the disk (target) as an array of bytes.
12248 	 * first_byte is the byte offset, from the beginning of the device,
12249 	 * to the location of the request. This is converted from a
12250 	 * un->un_sys_blocksize block address to a byte offset, and then back
12251 	 * to a block address based upon a un->un_tgt_blocksize block size.
12252 	 *
12253 	 * xp->xb_blkno should be absolute upon entry into this function,
12254 	 * but, but it is based upon partitions that use the "system"
12255 	 * block size. It must be adjusted to reflect the block size of
12256 	 * the target.
12257 	 *
12258 	 * Note that end_block is actually the block that follows the last
12259 	 * block of the request, but that's what is needed for the computation.
12260 	 */
12261 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12262 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12263 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12264 	    un->un_tgt_blocksize;
12265 
12266 	/* request_bytes is rounded up to a multiple of the target block size */
12267 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12268 
12269 	/*
12270 	 * See if the starting address of the request and the request
12271 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12272 	 * then we do not need to allocate a shadow buf to handle the request.
12273 	 */
12274 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12275 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12276 		is_aligned = TRUE;
12277 	}
12278 
12279 	if ((bp->b_flags & B_READ) == 0) {
12280 		/*
12281 		 * Lock the range for a write operation. An aligned request is
12282 		 * considered a simple write; otherwise the request must be a
12283 		 * read-modify-write.
12284 		 */
12285 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12286 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12287 	}
12288 
12289 	/*
12290 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12291 	 * where the READ command is generated for a read-modify-write. (The
12292 	 * write phase is deferred until after the read completes.)
12293 	 */
12294 	if (is_aligned == FALSE) {
12295 
12296 		struct sd_mapblocksize_info	*shadow_bsp;
12297 		struct sd_xbuf	*shadow_xp;
12298 		struct buf	*shadow_bp;
12299 
12300 		/*
12301 		 * Allocate the shadow buf and it associated xbuf. Note that
12302 		 * after this call the xb_blkno value in both the original
12303 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12304 		 * same: absolute relative to the start of the device, and
12305 		 * adjusted for the target block size. The b_blkno in the
12306 		 * shadow buf will also be set to this value. We should never
12307 		 * change b_blkno in the original bp however.
12308 		 *
12309 		 * Note also that the shadow buf will always need to be a
12310 		 * READ command, regardless of whether the incoming command
12311 		 * is a READ or a WRITE.
12312 		 */
12313 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12314 		    xp->xb_blkno,
12315 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12316 
12317 		shadow_xp = SD_GET_XBUF(shadow_bp);
12318 
12319 		/*
12320 		 * Allocate the layer-private data for the shadow buf.
12321 		 * (No need to preserve xb_private in the shadow xbuf.)
12322 		 */
12323 		shadow_xp->xb_private = shadow_bsp =
12324 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12325 
12326 		/*
12327 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12328 		 * to figure out where the start of the user data is (based upon
12329 		 * the system block size) in the data returned by the READ
12330 		 * command (which will be based upon the target blocksize). Note
12331 		 * that this is only really used if the request is unaligned.
12332 		 */
12333 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12334 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12335 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12336 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12337 
12338 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12339 
12340 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12341 
12342 		/* Transfer the wmap (if any) to the shadow buf */
12343 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12344 		bsp->mbs_wmp = NULL;
12345 
12346 		/*
12347 		 * The shadow buf goes on from here in place of the
12348 		 * original buf.
12349 		 */
12350 		shadow_bsp->mbs_orig_bp = bp;
12351 		bp = shadow_bp;
12352 	}
12353 
12354 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12355 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12356 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12357 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12358 	    request_bytes);
12359 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12360 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12361 
12362 done:
12363 	SD_NEXT_IOSTART(index, un, bp);
12364 
12365 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12366 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12367 }
12368 
12369 
12370 /*
12371  *    Function: sd_mapblocksize_iodone
12372  *
12373  * Description: Completion side processing for block-size mapping.
12374  *
12375  *     Context: May be called under interrupt context
12376  */
12377 
12378 static void
12379 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12380 {
12381 	struct sd_mapblocksize_info	*bsp;
12382 	struct sd_xbuf	*xp;
12383 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12384 	struct buf	*orig_bp;	/* ptr to the original buf */
12385 	offset_t	shadow_end;
12386 	offset_t	request_end;
12387 	offset_t	shadow_start;
12388 	ssize_t		copy_offset;
12389 	size_t		copy_length;
12390 	size_t		shortfall;
12391 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12392 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12393 
12394 	ASSERT(un != NULL);
12395 	ASSERT(bp != NULL);
12396 
12397 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12398 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12399 
12400 	/*
12401 	 * There is no shadow buf or layer-private data if the target is
12402 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12403 	 */
12404 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12405 	    (bp->b_bcount == 0)) {
12406 		goto exit;
12407 	}
12408 
12409 	xp = SD_GET_XBUF(bp);
12410 	ASSERT(xp != NULL);
12411 
12412 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12413 	bsp = xp->xb_private;
12414 
12415 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12416 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12417 
12418 	if (is_write) {
12419 		/*
12420 		 * For a WRITE request we must free up the block range that
12421 		 * we have locked up.  This holds regardless of whether this is
12422 		 * an aligned write request or a read-modify-write request.
12423 		 */
12424 		sd_range_unlock(un, bsp->mbs_wmp);
12425 		bsp->mbs_wmp = NULL;
12426 	}
12427 
12428 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12429 		/*
12430 		 * An aligned read or write command will have no shadow buf;
12431 		 * there is not much else to do with it.
12432 		 */
12433 		goto done;
12434 	}
12435 
12436 	orig_bp = bsp->mbs_orig_bp;
12437 	ASSERT(orig_bp != NULL);
12438 	orig_xp = SD_GET_XBUF(orig_bp);
12439 	ASSERT(orig_xp != NULL);
12440 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12441 
12442 	if (!is_write && has_wmap) {
12443 		/*
12444 		 * A READ with a wmap means this is the READ phase of a
12445 		 * read-modify-write. If an error occurred on the READ then
12446 		 * we do not proceed with the WRITE phase or copy any data.
12447 		 * Just release the write maps and return with an error.
12448 		 */
12449 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12450 			orig_bp->b_resid = orig_bp->b_bcount;
12451 			bioerror(orig_bp, bp->b_error);
12452 			sd_range_unlock(un, bsp->mbs_wmp);
12453 			goto freebuf_done;
12454 		}
12455 	}
12456 
12457 	/*
12458 	 * Here is where we set up to copy the data from the shadow buf
12459 	 * into the space associated with the original buf.
12460 	 *
12461 	 * To deal with the conversion between block sizes, these
12462 	 * computations treat the data as an array of bytes, with the
12463 	 * first byte (byte 0) corresponding to the first byte in the
12464 	 * first block on the disk.
12465 	 */
12466 
12467 	/*
12468 	 * shadow_start and shadow_len indicate the location and size of
12469 	 * the data returned with the shadow IO request.
12470 	 */
12471 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12472 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12473 
12474 	/*
12475 	 * copy_offset gives the offset (in bytes) from the start of the first
12476 	 * block of the READ request to the beginning of the data.  We retrieve
12477 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12478 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12479 	 * data to be copied (in bytes).
12480 	 */
12481 	copy_offset  = bsp->mbs_copy_offset;
12482 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12483 	copy_length  = orig_bp->b_bcount;
12484 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12485 
12486 	/*
12487 	 * Set up the resid and error fields of orig_bp as appropriate.
12488 	 */
12489 	if (shadow_end >= request_end) {
12490 		/* We got all the requested data; set resid to zero */
12491 		orig_bp->b_resid = 0;
12492 	} else {
12493 		/*
12494 		 * We failed to get enough data to fully satisfy the original
12495 		 * request. Just copy back whatever data we got and set
12496 		 * up the residual and error code as required.
12497 		 *
12498 		 * 'shortfall' is the amount by which the data received with the
12499 		 * shadow buf has "fallen short" of the requested amount.
12500 		 */
12501 		shortfall = (size_t)(request_end - shadow_end);
12502 
12503 		if (shortfall > orig_bp->b_bcount) {
12504 			/*
12505 			 * We did not get enough data to even partially
12506 			 * fulfill the original request.  The residual is
12507 			 * equal to the amount requested.
12508 			 */
12509 			orig_bp->b_resid = orig_bp->b_bcount;
12510 		} else {
12511 			/*
12512 			 * We did not get all the data that we requested
12513 			 * from the device, but we will try to return what
12514 			 * portion we did get.
12515 			 */
12516 			orig_bp->b_resid = shortfall;
12517 		}
12518 		ASSERT(copy_length >= orig_bp->b_resid);
12519 		copy_length  -= orig_bp->b_resid;
12520 	}
12521 
12522 	/* Propagate the error code from the shadow buf to the original buf */
12523 	bioerror(orig_bp, bp->b_error);
12524 
12525 	if (is_write) {
12526 		goto freebuf_done;	/* No data copying for a WRITE */
12527 	}
12528 
12529 	if (has_wmap) {
12530 		/*
12531 		 * This is a READ command from the READ phase of a
12532 		 * read-modify-write request. We have to copy the data given
12533 		 * by the user OVER the data returned by the READ command,
12534 		 * then convert the command from a READ to a WRITE and send
12535 		 * it back to the target.
12536 		 */
12537 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12538 		    copy_length);
12539 
12540 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12541 
12542 		/*
12543 		 * Dispatch the WRITE command to the taskq thread, which
12544 		 * will in turn send the command to the target. When the
12545 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12546 		 * will get called again as part of the iodone chain
12547 		 * processing for it. Note that we will still be dealing
12548 		 * with the shadow buf at that point.
12549 		 */
12550 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12551 		    KM_NOSLEEP) != 0) {
12552 			/*
12553 			 * Dispatch was successful so we are done. Return
12554 			 * without going any higher up the iodone chain. Do
12555 			 * not free up any layer-private data until after the
12556 			 * WRITE completes.
12557 			 */
12558 			return;
12559 		}
12560 
12561 		/*
12562 		 * Dispatch of the WRITE command failed; set up the error
12563 		 * condition and send this IO back up the iodone chain.
12564 		 */
12565 		bioerror(orig_bp, EIO);
12566 		orig_bp->b_resid = orig_bp->b_bcount;
12567 
12568 	} else {
12569 		/*
12570 		 * This is a regular READ request (ie, not a RMW). Copy the
12571 		 * data from the shadow buf into the original buf. The
12572 		 * copy_offset compensates for any "misalignment" between the
12573 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12574 		 * original buf (with its un->un_sys_blocksize blocks).
12575 		 */
12576 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12577 		    copy_length);
12578 	}
12579 
12580 freebuf_done:
12581 
12582 	/*
12583 	 * At this point we still have both the shadow buf AND the original
12584 	 * buf to deal with, as well as the layer-private data area in each.
12585 	 * Local variables are as follows:
12586 	 *
12587 	 * bp -- points to shadow buf
12588 	 * xp -- points to xbuf of shadow buf
12589 	 * bsp -- points to layer-private data area of shadow buf
12590 	 * orig_bp -- points to original buf
12591 	 *
12592 	 * First free the shadow buf and its associated xbuf, then free the
12593 	 * layer-private data area from the shadow buf. There is no need to
12594 	 * restore xb_private in the shadow xbuf.
12595 	 */
12596 	sd_shadow_buf_free(bp);
12597 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12598 
12599 	/*
12600 	 * Now update the local variables to point to the original buf, xbuf,
12601 	 * and layer-private area.
12602 	 */
12603 	bp = orig_bp;
12604 	xp = SD_GET_XBUF(bp);
12605 	ASSERT(xp != NULL);
12606 	ASSERT(xp == orig_xp);
12607 	bsp = xp->xb_private;
12608 	ASSERT(bsp != NULL);
12609 
12610 done:
12611 	/*
12612 	 * Restore xb_private to whatever it was set to by the next higher
12613 	 * layer in the chain, then free the layer-private data area.
12614 	 */
12615 	xp->xb_private = bsp->mbs_oprivate;
12616 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12617 
12618 exit:
12619 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12620 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12621 
12622 	SD_NEXT_IODONE(index, un, bp);
12623 }
12624 
12625 
12626 /*
12627  *    Function: sd_checksum_iostart
12628  *
12629  * Description: A stub function for a layer that's currently not used.
12630  *		For now just a placeholder.
12631  *
12632  *     Context: Kernel thread context
12633  */
12634 
12635 static void
12636 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12637 {
12638 	ASSERT(un != NULL);
12639 	ASSERT(bp != NULL);
12640 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12641 	SD_NEXT_IOSTART(index, un, bp);
12642 }
12643 
12644 
12645 /*
12646  *    Function: sd_checksum_iodone
12647  *
12648  * Description: A stub function for a layer that's currently not used.
12649  *		For now just a placeholder.
12650  *
12651  *     Context: May be called under interrupt context
12652  */
12653 
12654 static void
12655 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12656 {
12657 	ASSERT(un != NULL);
12658 	ASSERT(bp != NULL);
12659 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12660 	SD_NEXT_IODONE(index, un, bp);
12661 }
12662 
12663 
12664 /*
12665  *    Function: sd_checksum_uscsi_iostart
12666  *
12667  * Description: A stub function for a layer that's currently not used.
12668  *		For now just a placeholder.
12669  *
12670  *     Context: Kernel thread context
12671  */
12672 
12673 static void
12674 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12675 {
12676 	ASSERT(un != NULL);
12677 	ASSERT(bp != NULL);
12678 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12679 	SD_NEXT_IOSTART(index, un, bp);
12680 }
12681 
12682 
12683 /*
12684  *    Function: sd_checksum_uscsi_iodone
12685  *
12686  * Description: A stub function for a layer that's currently not used.
12687  *		For now just a placeholder.
12688  *
12689  *     Context: May be called under interrupt context
12690  */
12691 
12692 static void
12693 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12694 {
12695 	ASSERT(un != NULL);
12696 	ASSERT(bp != NULL);
12697 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12698 	SD_NEXT_IODONE(index, un, bp);
12699 }
12700 
12701 
12702 /*
12703  *    Function: sd_pm_iostart
12704  *
12705  * Description: iostart-side routine for Power mangement.
12706  *
12707  *     Context: Kernel thread context
12708  */
12709 
12710 static void
12711 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12712 {
12713 	ASSERT(un != NULL);
12714 	ASSERT(bp != NULL);
12715 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12716 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12717 
12718 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12719 
12720 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12721 		/*
12722 		 * Set up to return the failed buf back up the 'iodone'
12723 		 * side of the calling chain.
12724 		 */
12725 		bioerror(bp, EIO);
12726 		bp->b_resid = bp->b_bcount;
12727 
12728 		SD_BEGIN_IODONE(index, un, bp);
12729 
12730 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12731 		return;
12732 	}
12733 
12734 	SD_NEXT_IOSTART(index, un, bp);
12735 
12736 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12737 }
12738 
12739 
12740 /*
12741  *    Function: sd_pm_iodone
12742  *
12743  * Description: iodone-side routine for power mangement.
12744  *
12745  *     Context: may be called from interrupt context
12746  */
12747 
12748 static void
12749 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12750 {
12751 	ASSERT(un != NULL);
12752 	ASSERT(bp != NULL);
12753 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12754 
12755 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12756 
12757 	/*
12758 	 * After attach the following flag is only read, so don't
12759 	 * take the penalty of acquiring a mutex for it.
12760 	 */
12761 	if (un->un_f_pm_is_enabled == TRUE) {
12762 		sd_pm_exit(un);
12763 	}
12764 
12765 	SD_NEXT_IODONE(index, un, bp);
12766 
12767 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12768 }
12769 
12770 
12771 /*
12772  *    Function: sd_core_iostart
12773  *
12774  * Description: Primary driver function for enqueuing buf(9S) structs from
12775  *		the system and initiating IO to the target device
12776  *
12777  *     Context: Kernel thread context. Can sleep.
12778  *
12779  * Assumptions:  - The given xp->xb_blkno is absolute
12780  *		   (ie, relative to the start of the device).
12781  *		 - The IO is to be done using the native blocksize of
12782  *		   the device, as specified in un->un_tgt_blocksize.
12783  */
12784 /* ARGSUSED */
12785 static void
12786 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12787 {
12788 	struct sd_xbuf *xp;
12789 
12790 	ASSERT(un != NULL);
12791 	ASSERT(bp != NULL);
12792 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12793 	ASSERT(bp->b_resid == 0);
12794 
12795 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12796 
12797 	xp = SD_GET_XBUF(bp);
12798 	ASSERT(xp != NULL);
12799 
12800 	mutex_enter(SD_MUTEX(un));
12801 
12802 	/*
12803 	 * If we are currently in the failfast state, fail any new IO
12804 	 * that has B_FAILFAST set, then return.
12805 	 */
12806 	if ((bp->b_flags & B_FAILFAST) &&
12807 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12808 		mutex_exit(SD_MUTEX(un));
12809 		bioerror(bp, EIO);
12810 		bp->b_resid = bp->b_bcount;
12811 		SD_BEGIN_IODONE(index, un, bp);
12812 		return;
12813 	}
12814 
12815 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12816 		/*
12817 		 * Priority command -- transport it immediately.
12818 		 *
12819 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12820 		 * because all direct priority commands should be associated
12821 		 * with error recovery actions which we don't want to retry.
12822 		 */
12823 		sd_start_cmds(un, bp);
12824 	} else {
12825 		/*
12826 		 * Normal command -- add it to the wait queue, then start
12827 		 * transporting commands from the wait queue.
12828 		 */
12829 		sd_add_buf_to_waitq(un, bp);
12830 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12831 		sd_start_cmds(un, NULL);
12832 	}
12833 
12834 	mutex_exit(SD_MUTEX(un));
12835 
12836 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12837 }
12838 
12839 
12840 /*
12841  *    Function: sd_init_cdb_limits
12842  *
12843  * Description: This is to handle scsi_pkt initialization differences
12844  *		between the driver platforms.
12845  *
12846  *		Legacy behaviors:
12847  *
12848  *		If the block number or the sector count exceeds the
12849  *		capabilities of a Group 0 command, shift over to a
12850  *		Group 1 command. We don't blindly use Group 1
12851  *		commands because a) some drives (CDC Wren IVs) get a
12852  *		bit confused, and b) there is probably a fair amount
12853  *		of speed difference for a target to receive and decode
12854  *		a 10 byte command instead of a 6 byte command.
12855  *
12856  *		The xfer time difference of 6 vs 10 byte CDBs is
12857  *		still significant so this code is still worthwhile.
12858  *		10 byte CDBs are very inefficient with the fas HBA driver
12859  *		and older disks. Each CDB byte took 1 usec with some
12860  *		popular disks.
12861  *
12862  *     Context: Must be called at attach time
12863  */
12864 
12865 static void
12866 sd_init_cdb_limits(struct sd_lun *un)
12867 {
12868 	int hba_cdb_limit;
12869 
12870 	/*
12871 	 * Use CDB_GROUP1 commands for most devices except for
12872 	 * parallel SCSI fixed drives in which case we get better
12873 	 * performance using CDB_GROUP0 commands (where applicable).
12874 	 */
12875 	un->un_mincdb = SD_CDB_GROUP1;
12876 #if !defined(__fibre)
12877 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12878 	    !un->un_f_has_removable_media) {
12879 		un->un_mincdb = SD_CDB_GROUP0;
12880 	}
12881 #endif
12882 
12883 	/*
12884 	 * Try to read the max-cdb-length supported by HBA.
12885 	 */
12886 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
12887 	if (0 >= un->un_max_hba_cdb) {
12888 		un->un_max_hba_cdb = CDB_GROUP4;
12889 		hba_cdb_limit = SD_CDB_GROUP4;
12890 	} else if (0 < un->un_max_hba_cdb &&
12891 	    un->un_max_hba_cdb < CDB_GROUP1) {
12892 		hba_cdb_limit = SD_CDB_GROUP0;
12893 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
12894 	    un->un_max_hba_cdb < CDB_GROUP5) {
12895 		hba_cdb_limit = SD_CDB_GROUP1;
12896 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
12897 	    un->un_max_hba_cdb < CDB_GROUP4) {
12898 		hba_cdb_limit = SD_CDB_GROUP5;
12899 	} else {
12900 		hba_cdb_limit = SD_CDB_GROUP4;
12901 	}
12902 
12903 	/*
12904 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12905 	 * commands for fixed disks unless we are building for a 32 bit
12906 	 * kernel.
12907 	 */
12908 #ifdef _LP64
12909 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12910 	    min(hba_cdb_limit, SD_CDB_GROUP4);
12911 #else
12912 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12913 	    min(hba_cdb_limit, SD_CDB_GROUP1);
12914 #endif
12915 
12916 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
12917 	    ? sizeof (struct scsi_arq_status) : 1);
12918 	un->un_cmd_timeout = (ushort_t)sd_io_time;
12919 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
12920 }
12921 
12922 
12923 /*
12924  *    Function: sd_initpkt_for_buf
12925  *
12926  * Description: Allocate and initialize for transport a scsi_pkt struct,
12927  *		based upon the info specified in the given buf struct.
12928  *
12929  *		Assumes the xb_blkno in the request is absolute (ie,
12930  *		relative to the start of the device (NOT partition!).
12931  *		Also assumes that the request is using the native block
12932  *		size of the device (as returned by the READ CAPACITY
12933  *		command).
12934  *
12935  * Return Code: SD_PKT_ALLOC_SUCCESS
12936  *		SD_PKT_ALLOC_FAILURE
12937  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12938  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12939  *
12940  *     Context: Kernel thread and may be called from software interrupt context
12941  *		as part of a sdrunout callback. This function may not block or
12942  *		call routines that block
12943  */
12944 
12945 static int
12946 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
12947 {
12948 	struct sd_xbuf	*xp;
12949 	struct scsi_pkt *pktp = NULL;
12950 	struct sd_lun	*un;
12951 	size_t		blockcount;
12952 	daddr_t		startblock;
12953 	int		rval;
12954 	int		cmd_flags;
12955 
12956 	ASSERT(bp != NULL);
12957 	ASSERT(pktpp != NULL);
12958 	xp = SD_GET_XBUF(bp);
12959 	ASSERT(xp != NULL);
12960 	un = SD_GET_UN(bp);
12961 	ASSERT(un != NULL);
12962 	ASSERT(mutex_owned(SD_MUTEX(un)));
12963 	ASSERT(bp->b_resid == 0);
12964 
12965 	SD_TRACE(SD_LOG_IO_CORE, un,
12966 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
12967 
12968 	mutex_exit(SD_MUTEX(un));
12969 
12970 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12971 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
12972 		/*
12973 		 * Already have a scsi_pkt -- just need DMA resources.
12974 		 * We must recompute the CDB in case the mapping returns
12975 		 * a nonzero pkt_resid.
12976 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
12977 		 * that is being retried, the unmap/remap of the DMA resouces
12978 		 * will result in the entire transfer starting over again
12979 		 * from the very first block.
12980 		 */
12981 		ASSERT(xp->xb_pktp != NULL);
12982 		pktp = xp->xb_pktp;
12983 	} else {
12984 		pktp = NULL;
12985 	}
12986 #endif /* __i386 || __amd64 */
12987 
12988 	startblock = xp->xb_blkno;	/* Absolute block num. */
12989 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12990 
12991 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
12992 
12993 	/*
12994 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
12995 	 * call scsi_init_pkt, and build the CDB.
12996 	 */
12997 	rval = sd_setup_rw_pkt(un, &pktp, bp,
12998 	    cmd_flags, sdrunout, (caddr_t)un,
12999 	    startblock, blockcount);
13000 
13001 	if (rval == 0) {
13002 		/*
13003 		 * Success.
13004 		 *
13005 		 * If partial DMA is being used and required for this transfer.
13006 		 * set it up here.
13007 		 */
13008 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13009 		    (pktp->pkt_resid != 0)) {
13010 
13011 			/*
13012 			 * Save the CDB length and pkt_resid for the
13013 			 * next xfer
13014 			 */
13015 			xp->xb_dma_resid = pktp->pkt_resid;
13016 
13017 			/* rezero resid */
13018 			pktp->pkt_resid = 0;
13019 
13020 		} else {
13021 			xp->xb_dma_resid = 0;
13022 		}
13023 
13024 		pktp->pkt_flags = un->un_tagflags;
13025 		pktp->pkt_time  = un->un_cmd_timeout;
13026 		pktp->pkt_comp  = sdintr;
13027 
13028 		pktp->pkt_private = bp;
13029 		*pktpp = pktp;
13030 
13031 		SD_TRACE(SD_LOG_IO_CORE, un,
13032 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13033 
13034 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13035 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13036 #endif
13037 
13038 		mutex_enter(SD_MUTEX(un));
13039 		return (SD_PKT_ALLOC_SUCCESS);
13040 
13041 	}
13042 
13043 	/*
13044 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13045 	 * from sd_setup_rw_pkt.
13046 	 */
13047 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13048 
13049 	if (rval == SD_PKT_ALLOC_FAILURE) {
13050 		*pktpp = NULL;
13051 		/*
13052 		 * Set the driver state to RWAIT to indicate the driver
13053 		 * is waiting on resource allocations. The driver will not
13054 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13055 		 */
13056 		mutex_enter(SD_MUTEX(un));
13057 		New_state(un, SD_STATE_RWAIT);
13058 
13059 		SD_ERROR(SD_LOG_IO_CORE, un,
13060 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13061 
13062 		if ((bp->b_flags & B_ERROR) != 0) {
13063 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13064 		}
13065 		return (SD_PKT_ALLOC_FAILURE);
13066 	} else {
13067 		/*
13068 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13069 		 *
13070 		 * This should never happen.  Maybe someone messed with the
13071 		 * kernel's minphys?
13072 		 */
13073 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13074 		    "Request rejected: too large for CDB: "
13075 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13076 		SD_ERROR(SD_LOG_IO_CORE, un,
13077 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13078 		mutex_enter(SD_MUTEX(un));
13079 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13080 
13081 	}
13082 }
13083 
13084 
13085 /*
13086  *    Function: sd_destroypkt_for_buf
13087  *
13088  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13089  *
13090  *     Context: Kernel thread or interrupt context
13091  */
13092 
13093 static void
13094 sd_destroypkt_for_buf(struct buf *bp)
13095 {
13096 	ASSERT(bp != NULL);
13097 	ASSERT(SD_GET_UN(bp) != NULL);
13098 
13099 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13100 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13101 
13102 	ASSERT(SD_GET_PKTP(bp) != NULL);
13103 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13104 
13105 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13106 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13107 }
13108 
13109 /*
13110  *    Function: sd_setup_rw_pkt
13111  *
13112  * Description: Determines appropriate CDB group for the requested LBA
13113  *		and transfer length, calls scsi_init_pkt, and builds
13114  *		the CDB.  Do not use for partial DMA transfers except
13115  *		for the initial transfer since the CDB size must
13116  *		remain constant.
13117  *
13118  *     Context: Kernel thread and may be called from software interrupt
13119  *		context as part of a sdrunout callback. This function may not
13120  *		block or call routines that block
13121  */
13122 
13123 
13124 int
13125 sd_setup_rw_pkt(struct sd_lun *un,
13126     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13127     int (*callback)(caddr_t), caddr_t callback_arg,
13128     diskaddr_t lba, uint32_t blockcount)
13129 {
13130 	struct scsi_pkt *return_pktp;
13131 	union scsi_cdb *cdbp;
13132 	struct sd_cdbinfo *cp = NULL;
13133 	int i;
13134 
13135 	/*
13136 	 * See which size CDB to use, based upon the request.
13137 	 */
13138 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13139 
13140 		/*
13141 		 * Check lba and block count against sd_cdbtab limits.
13142 		 * In the partial DMA case, we have to use the same size
13143 		 * CDB for all the transfers.  Check lba + blockcount
13144 		 * against the max LBA so we know that segment of the
13145 		 * transfer can use the CDB we select.
13146 		 */
13147 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13148 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13149 
13150 			/*
13151 			 * The command will fit into the CDB type
13152 			 * specified by sd_cdbtab[i].
13153 			 */
13154 			cp = sd_cdbtab + i;
13155 
13156 			/*
13157 			 * Call scsi_init_pkt so we can fill in the
13158 			 * CDB.
13159 			 */
13160 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13161 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13162 			    flags, callback, callback_arg);
13163 
13164 			if (return_pktp != NULL) {
13165 
13166 				/*
13167 				 * Return new value of pkt
13168 				 */
13169 				*pktpp = return_pktp;
13170 
13171 				/*
13172 				 * To be safe, zero the CDB insuring there is
13173 				 * no leftover data from a previous command.
13174 				 */
13175 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13176 
13177 				/*
13178 				 * Handle partial DMA mapping
13179 				 */
13180 				if (return_pktp->pkt_resid != 0) {
13181 
13182 					/*
13183 					 * Not going to xfer as many blocks as
13184 					 * originally expected
13185 					 */
13186 					blockcount -=
13187 					    SD_BYTES2TGTBLOCKS(un,
13188 					    return_pktp->pkt_resid);
13189 				}
13190 
13191 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13192 
13193 				/*
13194 				 * Set command byte based on the CDB
13195 				 * type we matched.
13196 				 */
13197 				cdbp->scc_cmd = cp->sc_grpmask |
13198 				    ((bp->b_flags & B_READ) ?
13199 				    SCMD_READ : SCMD_WRITE);
13200 
13201 				SD_FILL_SCSI1_LUN(un, return_pktp);
13202 
13203 				/*
13204 				 * Fill in LBA and length
13205 				 */
13206 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13207 				    (cp->sc_grpcode == CDB_GROUP4) ||
13208 				    (cp->sc_grpcode == CDB_GROUP0) ||
13209 				    (cp->sc_grpcode == CDB_GROUP5));
13210 
13211 				if (cp->sc_grpcode == CDB_GROUP1) {
13212 					FORMG1ADDR(cdbp, lba);
13213 					FORMG1COUNT(cdbp, blockcount);
13214 					return (0);
13215 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13216 					FORMG4LONGADDR(cdbp, lba);
13217 					FORMG4COUNT(cdbp, blockcount);
13218 					return (0);
13219 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13220 					FORMG0ADDR(cdbp, lba);
13221 					FORMG0COUNT(cdbp, blockcount);
13222 					return (0);
13223 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13224 					FORMG5ADDR(cdbp, lba);
13225 					FORMG5COUNT(cdbp, blockcount);
13226 					return (0);
13227 				}
13228 
13229 				/*
13230 				 * It should be impossible to not match one
13231 				 * of the CDB types above, so we should never
13232 				 * reach this point.  Set the CDB command byte
13233 				 * to test-unit-ready to avoid writing
13234 				 * to somewhere we don't intend.
13235 				 */
13236 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13237 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13238 			} else {
13239 				/*
13240 				 * Couldn't get scsi_pkt
13241 				 */
13242 				return (SD_PKT_ALLOC_FAILURE);
13243 			}
13244 		}
13245 	}
13246 
13247 	/*
13248 	 * None of the available CDB types were suitable.  This really
13249 	 * should never happen:  on a 64 bit system we support
13250 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13251 	 * and on a 32 bit system we will refuse to bind to a device
13252 	 * larger than 2TB so addresses will never be larger than 32 bits.
13253 	 */
13254 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13255 }
13256 
13257 /*
13258  *    Function: sd_setup_next_rw_pkt
13259  *
13260  * Description: Setup packet for partial DMA transfers, except for the
13261  * 		initial transfer.  sd_setup_rw_pkt should be used for
13262  *		the initial transfer.
13263  *
13264  *     Context: Kernel thread and may be called from interrupt context.
13265  */
13266 
13267 int
13268 sd_setup_next_rw_pkt(struct sd_lun *un,
13269     struct scsi_pkt *pktp, struct buf *bp,
13270     diskaddr_t lba, uint32_t blockcount)
13271 {
13272 	uchar_t com;
13273 	union scsi_cdb *cdbp;
13274 	uchar_t cdb_group_id;
13275 
13276 	ASSERT(pktp != NULL);
13277 	ASSERT(pktp->pkt_cdbp != NULL);
13278 
13279 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13280 	com = cdbp->scc_cmd;
13281 	cdb_group_id = CDB_GROUPID(com);
13282 
13283 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13284 	    (cdb_group_id == CDB_GROUPID_1) ||
13285 	    (cdb_group_id == CDB_GROUPID_4) ||
13286 	    (cdb_group_id == CDB_GROUPID_5));
13287 
13288 	/*
13289 	 * Move pkt to the next portion of the xfer.
13290 	 * func is NULL_FUNC so we do not have to release
13291 	 * the disk mutex here.
13292 	 */
13293 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13294 	    NULL_FUNC, NULL) == pktp) {
13295 		/* Success.  Handle partial DMA */
13296 		if (pktp->pkt_resid != 0) {
13297 			blockcount -=
13298 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13299 		}
13300 
13301 		cdbp->scc_cmd = com;
13302 		SD_FILL_SCSI1_LUN(un, pktp);
13303 		if (cdb_group_id == CDB_GROUPID_1) {
13304 			FORMG1ADDR(cdbp, lba);
13305 			FORMG1COUNT(cdbp, blockcount);
13306 			return (0);
13307 		} else if (cdb_group_id == CDB_GROUPID_4) {
13308 			FORMG4LONGADDR(cdbp, lba);
13309 			FORMG4COUNT(cdbp, blockcount);
13310 			return (0);
13311 		} else if (cdb_group_id == CDB_GROUPID_0) {
13312 			FORMG0ADDR(cdbp, lba);
13313 			FORMG0COUNT(cdbp, blockcount);
13314 			return (0);
13315 		} else if (cdb_group_id == CDB_GROUPID_5) {
13316 			FORMG5ADDR(cdbp, lba);
13317 			FORMG5COUNT(cdbp, blockcount);
13318 			return (0);
13319 		}
13320 
13321 		/* Unreachable */
13322 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13323 	}
13324 
13325 	/*
13326 	 * Error setting up next portion of cmd transfer.
13327 	 * Something is definitely very wrong and this
13328 	 * should not happen.
13329 	 */
13330 	return (SD_PKT_ALLOC_FAILURE);
13331 }
13332 
13333 /*
13334  *    Function: sd_initpkt_for_uscsi
13335  *
13336  * Description: Allocate and initialize for transport a scsi_pkt struct,
13337  *		based upon the info specified in the given uscsi_cmd struct.
13338  *
13339  * Return Code: SD_PKT_ALLOC_SUCCESS
13340  *		SD_PKT_ALLOC_FAILURE
13341  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13342  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13343  *
13344  *     Context: Kernel thread and may be called from software interrupt context
13345  *		as part of a sdrunout callback. This function may not block or
13346  *		call routines that block
13347  */
13348 
13349 static int
13350 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13351 {
13352 	struct uscsi_cmd *uscmd;
13353 	struct sd_xbuf	*xp;
13354 	struct scsi_pkt	*pktp;
13355 	struct sd_lun	*un;
13356 	uint32_t	flags = 0;
13357 
13358 	ASSERT(bp != NULL);
13359 	ASSERT(pktpp != NULL);
13360 	xp = SD_GET_XBUF(bp);
13361 	ASSERT(xp != NULL);
13362 	un = SD_GET_UN(bp);
13363 	ASSERT(un != NULL);
13364 	ASSERT(mutex_owned(SD_MUTEX(un)));
13365 
13366 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13367 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13368 	ASSERT(uscmd != NULL);
13369 
13370 	SD_TRACE(SD_LOG_IO_CORE, un,
13371 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13372 
13373 	/*
13374 	 * Allocate the scsi_pkt for the command.
13375 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13376 	 *	 during scsi_init_pkt time and will continue to use the
13377 	 *	 same path as long as the same scsi_pkt is used without
13378 	 *	 intervening scsi_dma_free(). Since uscsi command does
13379 	 *	 not call scsi_dmafree() before retry failed command, it
13380 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13381 	 *	 set such that scsi_vhci can use other available path for
13382 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13383 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13384 	 */
13385 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13386 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13387 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13388 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
13389 		    - sizeof (struct scsi_extended_sense)), 0,
13390 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
13391 		    sdrunout, (caddr_t)un);
13392 	} else {
13393 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13394 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13395 		    sizeof (struct scsi_arq_status), 0,
13396 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13397 		    sdrunout, (caddr_t)un);
13398 	}
13399 
13400 	if (pktp == NULL) {
13401 		*pktpp = NULL;
13402 		/*
13403 		 * Set the driver state to RWAIT to indicate the driver
13404 		 * is waiting on resource allocations. The driver will not
13405 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13406 		 */
13407 		New_state(un, SD_STATE_RWAIT);
13408 
13409 		SD_ERROR(SD_LOG_IO_CORE, un,
13410 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13411 
13412 		if ((bp->b_flags & B_ERROR) != 0) {
13413 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13414 		}
13415 		return (SD_PKT_ALLOC_FAILURE);
13416 	}
13417 
13418 	/*
13419 	 * We do not do DMA breakup for USCSI commands, so return failure
13420 	 * here if all the needed DMA resources were not allocated.
13421 	 */
13422 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13423 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13424 		scsi_destroy_pkt(pktp);
13425 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13426 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13427 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13428 	}
13429 
13430 	/* Init the cdb from the given uscsi struct */
13431 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13432 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13433 
13434 	SD_FILL_SCSI1_LUN(un, pktp);
13435 
13436 	/*
13437 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13438 	 * for listing of the supported flags.
13439 	 */
13440 
13441 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13442 		flags |= FLAG_SILENT;
13443 	}
13444 
13445 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13446 		flags |= FLAG_DIAGNOSE;
13447 	}
13448 
13449 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13450 		flags |= FLAG_ISOLATE;
13451 	}
13452 
13453 	if (un->un_f_is_fibre == FALSE) {
13454 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13455 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13456 		}
13457 	}
13458 
13459 	/*
13460 	 * Set the pkt flags here so we save time later.
13461 	 * Note: These flags are NOT in the uscsi man page!!!
13462 	 */
13463 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13464 		flags |= FLAG_HEAD;
13465 	}
13466 
13467 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13468 		flags |= FLAG_NOINTR;
13469 	}
13470 
13471 	/*
13472 	 * For tagged queueing, things get a bit complicated.
13473 	 * Check first for head of queue and last for ordered queue.
13474 	 * If neither head nor order, use the default driver tag flags.
13475 	 */
13476 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13477 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13478 			flags |= FLAG_HTAG;
13479 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13480 			flags |= FLAG_OTAG;
13481 		} else {
13482 			flags |= un->un_tagflags & FLAG_TAGMASK;
13483 		}
13484 	}
13485 
13486 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13487 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13488 	}
13489 
13490 	pktp->pkt_flags = flags;
13491 
13492 	/* Transfer uscsi information to scsi_pkt */
13493 	(void) scsi_uscsi_pktinit(uscmd, pktp);
13494 
13495 	/* Copy the caller's CDB into the pkt... */
13496 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13497 
13498 	if (uscmd->uscsi_timeout == 0) {
13499 		pktp->pkt_time = un->un_uscsi_timeout;
13500 	} else {
13501 		pktp->pkt_time = uscmd->uscsi_timeout;
13502 	}
13503 
13504 	/* need it later to identify USCSI request in sdintr */
13505 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13506 
13507 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13508 
13509 	pktp->pkt_private = bp;
13510 	pktp->pkt_comp = sdintr;
13511 	*pktpp = pktp;
13512 
13513 	SD_TRACE(SD_LOG_IO_CORE, un,
13514 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13515 
13516 	return (SD_PKT_ALLOC_SUCCESS);
13517 }
13518 
13519 
13520 /*
13521  *    Function: sd_destroypkt_for_uscsi
13522  *
13523  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13524  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13525  *		struct.
13526  *
13527  *     Context: May be called under interrupt context
13528  */
13529 
13530 static void
13531 sd_destroypkt_for_uscsi(struct buf *bp)
13532 {
13533 	struct uscsi_cmd *uscmd;
13534 	struct sd_xbuf	*xp;
13535 	struct scsi_pkt	*pktp;
13536 	struct sd_lun	*un;
13537 	struct sd_uscsi_info *suip;
13538 
13539 	ASSERT(bp != NULL);
13540 	xp = SD_GET_XBUF(bp);
13541 	ASSERT(xp != NULL);
13542 	un = SD_GET_UN(bp);
13543 	ASSERT(un != NULL);
13544 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13545 	pktp = SD_GET_PKTP(bp);
13546 	ASSERT(pktp != NULL);
13547 
13548 	SD_TRACE(SD_LOG_IO_CORE, un,
13549 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13550 
13551 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13552 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13553 	ASSERT(uscmd != NULL);
13554 
13555 	/* Save the status and the residual into the uscsi_cmd struct */
13556 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13557 	uscmd->uscsi_resid  = bp->b_resid;
13558 
13559 	/* Transfer scsi_pkt information to uscsi */
13560 	(void) scsi_uscsi_pktfini(pktp, uscmd);
13561 
13562 	/*
13563 	 * If enabled, copy any saved sense data into the area specified
13564 	 * by the uscsi command.
13565 	 */
13566 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13567 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13568 		/*
13569 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13570 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13571 		 */
13572 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13573 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13574 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13575 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13576 			    MAX_SENSE_LENGTH);
13577 		} else {
13578 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13579 			    SENSE_LENGTH);
13580 		}
13581 	}
13582 	/*
13583 	 * The following assignments are for SCSI FMA.
13584 	 */
13585 	ASSERT(xp->xb_private != NULL);
13586 	suip = (struct sd_uscsi_info *)xp->xb_private;
13587 	suip->ui_pkt_reason = pktp->pkt_reason;
13588 	suip->ui_pkt_state = pktp->pkt_state;
13589 	suip->ui_pkt_statistics = pktp->pkt_statistics;
13590 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
13591 
13592 	/* We are done with the scsi_pkt; free it now */
13593 	ASSERT(SD_GET_PKTP(bp) != NULL);
13594 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13595 
13596 	SD_TRACE(SD_LOG_IO_CORE, un,
13597 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13598 }
13599 
13600 
13601 /*
13602  *    Function: sd_bioclone_alloc
13603  *
13604  * Description: Allocate a buf(9S) and init it as per the given buf
13605  *		and the various arguments.  The associated sd_xbuf
13606  *		struct is (nearly) duplicated.  The struct buf *bp
13607  *		argument is saved in new_xp->xb_private.
13608  *
13609  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13610  *		datalen - size of data area for the shadow bp
13611  *		blkno - starting LBA
13612  *		func - function pointer for b_iodone in the shadow buf. (May
13613  *			be NULL if none.)
13614  *
13615  * Return Code: Pointer to allocates buf(9S) struct
13616  *
13617  *     Context: Can sleep.
13618  */
13619 
13620 static struct buf *
13621 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13622 	daddr_t blkno, int (*func)(struct buf *))
13623 {
13624 	struct	sd_lun	*un;
13625 	struct	sd_xbuf	*xp;
13626 	struct	sd_xbuf	*new_xp;
13627 	struct	buf	*new_bp;
13628 
13629 	ASSERT(bp != NULL);
13630 	xp = SD_GET_XBUF(bp);
13631 	ASSERT(xp != NULL);
13632 	un = SD_GET_UN(bp);
13633 	ASSERT(un != NULL);
13634 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13635 
13636 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13637 	    NULL, KM_SLEEP);
13638 
13639 	new_bp->b_lblkno	= blkno;
13640 
13641 	/*
13642 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13643 	 * original xbuf into it.
13644 	 */
13645 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13646 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13647 
13648 	/*
13649 	 * The given bp is automatically saved in the xb_private member
13650 	 * of the new xbuf.  Callers are allowed to depend on this.
13651 	 */
13652 	new_xp->xb_private = bp;
13653 
13654 	new_bp->b_private  = new_xp;
13655 
13656 	return (new_bp);
13657 }
13658 
13659 /*
13660  *    Function: sd_shadow_buf_alloc
13661  *
13662  * Description: Allocate a buf(9S) and init it as per the given buf
13663  *		and the various arguments.  The associated sd_xbuf
13664  *		struct is (nearly) duplicated.  The struct buf *bp
13665  *		argument is saved in new_xp->xb_private.
13666  *
13667  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13668  *		datalen - size of data area for the shadow bp
13669  *		bflags - B_READ or B_WRITE (pseudo flag)
13670  *		blkno - starting LBA
13671  *		func - function pointer for b_iodone in the shadow buf. (May
13672  *			be NULL if none.)
13673  *
13674  * Return Code: Pointer to allocates buf(9S) struct
13675  *
13676  *     Context: Can sleep.
13677  */
13678 
13679 static struct buf *
13680 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13681 	daddr_t blkno, int (*func)(struct buf *))
13682 {
13683 	struct	sd_lun	*un;
13684 	struct	sd_xbuf	*xp;
13685 	struct	sd_xbuf	*new_xp;
13686 	struct	buf	*new_bp;
13687 
13688 	ASSERT(bp != NULL);
13689 	xp = SD_GET_XBUF(bp);
13690 	ASSERT(xp != NULL);
13691 	un = SD_GET_UN(bp);
13692 	ASSERT(un != NULL);
13693 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13694 
13695 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13696 		bp_mapin(bp);
13697 	}
13698 
13699 	bflags &= (B_READ | B_WRITE);
13700 #if defined(__i386) || defined(__amd64)
13701 	new_bp = getrbuf(KM_SLEEP);
13702 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13703 	new_bp->b_bcount = datalen;
13704 	new_bp->b_flags = bflags |
13705 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
13706 #else
13707 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13708 	    datalen, bflags, SLEEP_FUNC, NULL);
13709 #endif
13710 	new_bp->av_forw	= NULL;
13711 	new_bp->av_back	= NULL;
13712 	new_bp->b_dev	= bp->b_dev;
13713 	new_bp->b_blkno	= blkno;
13714 	new_bp->b_iodone = func;
13715 	new_bp->b_edev	= bp->b_edev;
13716 	new_bp->b_resid	= 0;
13717 
13718 	/* We need to preserve the B_FAILFAST flag */
13719 	if (bp->b_flags & B_FAILFAST) {
13720 		new_bp->b_flags |= B_FAILFAST;
13721 	}
13722 
13723 	/*
13724 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13725 	 * original xbuf into it.
13726 	 */
13727 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13728 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13729 
13730 	/* Need later to copy data between the shadow buf & original buf! */
13731 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13732 
13733 	/*
13734 	 * The given bp is automatically saved in the xb_private member
13735 	 * of the new xbuf.  Callers are allowed to depend on this.
13736 	 */
13737 	new_xp->xb_private = bp;
13738 
13739 	new_bp->b_private  = new_xp;
13740 
13741 	return (new_bp);
13742 }
13743 
13744 /*
13745  *    Function: sd_bioclone_free
13746  *
13747  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13748  *		in the larger than partition operation.
13749  *
13750  *     Context: May be called under interrupt context
13751  */
13752 
13753 static void
13754 sd_bioclone_free(struct buf *bp)
13755 {
13756 	struct sd_xbuf	*xp;
13757 
13758 	ASSERT(bp != NULL);
13759 	xp = SD_GET_XBUF(bp);
13760 	ASSERT(xp != NULL);
13761 
13762 	/*
13763 	 * Call bp_mapout() before freeing the buf,  in case a lower
13764 	 * layer or HBA  had done a bp_mapin().  we must do this here
13765 	 * as we are the "originator" of the shadow buf.
13766 	 */
13767 	bp_mapout(bp);
13768 
13769 	/*
13770 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13771 	 * never gets confused by a stale value in this field. (Just a little
13772 	 * extra defensiveness here.)
13773 	 */
13774 	bp->b_iodone = NULL;
13775 
13776 	freerbuf(bp);
13777 
13778 	kmem_free(xp, sizeof (struct sd_xbuf));
13779 }
13780 
13781 /*
13782  *    Function: sd_shadow_buf_free
13783  *
13784  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13785  *
13786  *     Context: May be called under interrupt context
13787  */
13788 
13789 static void
13790 sd_shadow_buf_free(struct buf *bp)
13791 {
13792 	struct sd_xbuf	*xp;
13793 
13794 	ASSERT(bp != NULL);
13795 	xp = SD_GET_XBUF(bp);
13796 	ASSERT(xp != NULL);
13797 
13798 #if defined(__sparc)
13799 	/*
13800 	 * Call bp_mapout() before freeing the buf,  in case a lower
13801 	 * layer or HBA  had done a bp_mapin().  we must do this here
13802 	 * as we are the "originator" of the shadow buf.
13803 	 */
13804 	bp_mapout(bp);
13805 #endif
13806 
13807 	/*
13808 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13809 	 * never gets confused by a stale value in this field. (Just a little
13810 	 * extra defensiveness here.)
13811 	 */
13812 	bp->b_iodone = NULL;
13813 
13814 #if defined(__i386) || defined(__amd64)
13815 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13816 	freerbuf(bp);
13817 #else
13818 	scsi_free_consistent_buf(bp);
13819 #endif
13820 
13821 	kmem_free(xp, sizeof (struct sd_xbuf));
13822 }
13823 
13824 
13825 /*
13826  *    Function: sd_print_transport_rejected_message
13827  *
13828  * Description: This implements the ludicrously complex rules for printing
13829  *		a "transport rejected" message.  This is to address the
13830  *		specific problem of having a flood of this error message
13831  *		produced when a failover occurs.
13832  *
13833  *     Context: Any.
13834  */
13835 
13836 static void
13837 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13838 	int code)
13839 {
13840 	ASSERT(un != NULL);
13841 	ASSERT(mutex_owned(SD_MUTEX(un)));
13842 	ASSERT(xp != NULL);
13843 
13844 	/*
13845 	 * Print the "transport rejected" message under the following
13846 	 * conditions:
13847 	 *
13848 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13849 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13850 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13851 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13852 	 *   scsi_transport(9F) (which indicates that the target might have
13853 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13854 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13855 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13856 	 *   from scsi_transport().
13857 	 *
13858 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13859 	 * the preceeding cases in order for the message to be printed.
13860 	 */
13861 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
13862 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13863 		    (code != TRAN_FATAL_ERROR) ||
13864 		    (un->un_tran_fatal_count == 1)) {
13865 			switch (code) {
13866 			case TRAN_BADPKT:
13867 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13868 				    "transport rejected bad packet\n");
13869 				break;
13870 			case TRAN_FATAL_ERROR:
13871 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13872 				    "transport rejected fatal error\n");
13873 				break;
13874 			default:
13875 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13876 				    "transport rejected (%d)\n", code);
13877 				break;
13878 			}
13879 		}
13880 	}
13881 }
13882 
13883 
13884 /*
13885  *    Function: sd_add_buf_to_waitq
13886  *
13887  * Description: Add the given buf(9S) struct to the wait queue for the
13888  *		instance.  If sorting is enabled, then the buf is added
13889  *		to the queue via an elevator sort algorithm (a la
13890  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13891  *		If sorting is not enabled, then the buf is just added
13892  *		to the end of the wait queue.
13893  *
13894  * Return Code: void
13895  *
13896  *     Context: Does not sleep/block, therefore technically can be called
13897  *		from any context.  However if sorting is enabled then the
13898  *		execution time is indeterminate, and may take long if
13899  *		the wait queue grows large.
13900  */
13901 
13902 static void
13903 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13904 {
13905 	struct buf *ap;
13906 
13907 	ASSERT(bp != NULL);
13908 	ASSERT(un != NULL);
13909 	ASSERT(mutex_owned(SD_MUTEX(un)));
13910 
13911 	/* If the queue is empty, add the buf as the only entry & return. */
13912 	if (un->un_waitq_headp == NULL) {
13913 		ASSERT(un->un_waitq_tailp == NULL);
13914 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13915 		bp->av_forw = NULL;
13916 		return;
13917 	}
13918 
13919 	ASSERT(un->un_waitq_tailp != NULL);
13920 
13921 	/*
13922 	 * If sorting is disabled, just add the buf to the tail end of
13923 	 * the wait queue and return.
13924 	 */
13925 	if (un->un_f_disksort_disabled) {
13926 		un->un_waitq_tailp->av_forw = bp;
13927 		un->un_waitq_tailp = bp;
13928 		bp->av_forw = NULL;
13929 		return;
13930 	}
13931 
13932 	/*
13933 	 * Sort thru the list of requests currently on the wait queue
13934 	 * and add the new buf request at the appropriate position.
13935 	 *
13936 	 * The un->un_waitq_headp is an activity chain pointer on which
13937 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
13938 	 * first queue holds those requests which are positioned after
13939 	 * the current SD_GET_BLKNO() (in the first request); the second holds
13940 	 * requests which came in after their SD_GET_BLKNO() number was passed.
13941 	 * Thus we implement a one way scan, retracting after reaching
13942 	 * the end of the drive to the first request on the second
13943 	 * queue, at which time it becomes the first queue.
13944 	 * A one-way scan is natural because of the way UNIX read-ahead
13945 	 * blocks are allocated.
13946 	 *
13947 	 * If we lie after the first request, then we must locate the
13948 	 * second request list and add ourselves to it.
13949 	 */
13950 	ap = un->un_waitq_headp;
13951 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
13952 		while (ap->av_forw != NULL) {
13953 			/*
13954 			 * Look for an "inversion" in the (normally
13955 			 * ascending) block numbers. This indicates
13956 			 * the start of the second request list.
13957 			 */
13958 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
13959 				/*
13960 				 * Search the second request list for the
13961 				 * first request at a larger block number.
13962 				 * We go before that; however if there is
13963 				 * no such request, we go at the end.
13964 				 */
13965 				do {
13966 					if (SD_GET_BLKNO(bp) <
13967 					    SD_GET_BLKNO(ap->av_forw)) {
13968 						goto insert;
13969 					}
13970 					ap = ap->av_forw;
13971 				} while (ap->av_forw != NULL);
13972 				goto insert;		/* after last */
13973 			}
13974 			ap = ap->av_forw;
13975 		}
13976 
13977 		/*
13978 		 * No inversions... we will go after the last, and
13979 		 * be the first request in the second request list.
13980 		 */
13981 		goto insert;
13982 	}
13983 
13984 	/*
13985 	 * Request is at/after the current request...
13986 	 * sort in the first request list.
13987 	 */
13988 	while (ap->av_forw != NULL) {
13989 		/*
13990 		 * We want to go after the current request (1) if
13991 		 * there is an inversion after it (i.e. it is the end
13992 		 * of the first request list), or (2) if the next
13993 		 * request is a larger block no. than our request.
13994 		 */
13995 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
13996 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
13997 			goto insert;
13998 		}
13999 		ap = ap->av_forw;
14000 	}
14001 
14002 	/*
14003 	 * Neither a second list nor a larger request, therefore
14004 	 * we go at the end of the first list (which is the same
14005 	 * as the end of the whole schebang).
14006 	 */
14007 insert:
14008 	bp->av_forw = ap->av_forw;
14009 	ap->av_forw = bp;
14010 
14011 	/*
14012 	 * If we inserted onto the tail end of the waitq, make sure the
14013 	 * tail pointer is updated.
14014 	 */
14015 	if (ap == un->un_waitq_tailp) {
14016 		un->un_waitq_tailp = bp;
14017 	}
14018 }
14019 
14020 
14021 /*
14022  *    Function: sd_start_cmds
14023  *
14024  * Description: Remove and transport cmds from the driver queues.
14025  *
14026  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14027  *
14028  *		immed_bp - ptr to a buf to be transported immediately. Only
14029  *		the immed_bp is transported; bufs on the waitq are not
14030  *		processed and the un_retry_bp is not checked.  If immed_bp is
14031  *		NULL, then normal queue processing is performed.
14032  *
14033  *     Context: May be called from kernel thread context, interrupt context,
14034  *		or runout callback context. This function may not block or
14035  *		call routines that block.
14036  */
14037 
14038 static void
14039 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14040 {
14041 	struct	sd_xbuf	*xp;
14042 	struct	buf	*bp;
14043 	void	(*statp)(kstat_io_t *);
14044 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14045 	void	(*saved_statp)(kstat_io_t *);
14046 #endif
14047 	int	rval;
14048 	struct sd_fm_internal *sfip = NULL;
14049 
14050 	ASSERT(un != NULL);
14051 	ASSERT(mutex_owned(SD_MUTEX(un)));
14052 	ASSERT(un->un_ncmds_in_transport >= 0);
14053 	ASSERT(un->un_throttle >= 0);
14054 
14055 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14056 
14057 	do {
14058 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14059 		saved_statp = NULL;
14060 #endif
14061 
14062 		/*
14063 		 * If we are syncing or dumping, fail the command to
14064 		 * avoid recursively calling back into scsi_transport().
14065 		 * The dump I/O itself uses a separate code path so this
14066 		 * only prevents non-dump I/O from being sent while dumping.
14067 		 * File system sync takes place before dumping begins.
14068 		 * During panic, filesystem I/O is allowed provided
14069 		 * un_in_callback is <= 1.  This is to prevent recursion
14070 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14071 		 * sd_start_cmds and so on.  See panic.c for more information
14072 		 * about the states the system can be in during panic.
14073 		 */
14074 		if ((un->un_state == SD_STATE_DUMPING) ||
14075 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14076 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14077 			    "sd_start_cmds: panicking\n");
14078 			goto exit;
14079 		}
14080 
14081 		if ((bp = immed_bp) != NULL) {
14082 			/*
14083 			 * We have a bp that must be transported immediately.
14084 			 * It's OK to transport the immed_bp here without doing
14085 			 * the throttle limit check because the immed_bp is
14086 			 * always used in a retry/recovery case. This means
14087 			 * that we know we are not at the throttle limit by
14088 			 * virtue of the fact that to get here we must have
14089 			 * already gotten a command back via sdintr(). This also
14090 			 * relies on (1) the command on un_retry_bp preventing
14091 			 * further commands from the waitq from being issued;
14092 			 * and (2) the code in sd_retry_command checking the
14093 			 * throttle limit before issuing a delayed or immediate
14094 			 * retry. This holds even if the throttle limit is
14095 			 * currently ratcheted down from its maximum value.
14096 			 */
14097 			statp = kstat_runq_enter;
14098 			if (bp == un->un_retry_bp) {
14099 				ASSERT((un->un_retry_statp == NULL) ||
14100 				    (un->un_retry_statp == kstat_waitq_enter) ||
14101 				    (un->un_retry_statp ==
14102 				    kstat_runq_back_to_waitq));
14103 				/*
14104 				 * If the waitq kstat was incremented when
14105 				 * sd_set_retry_bp() queued this bp for a retry,
14106 				 * then we must set up statp so that the waitq
14107 				 * count will get decremented correctly below.
14108 				 * Also we must clear un->un_retry_statp to
14109 				 * ensure that we do not act on a stale value
14110 				 * in this field.
14111 				 */
14112 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14113 				    (un->un_retry_statp ==
14114 				    kstat_runq_back_to_waitq)) {
14115 					statp = kstat_waitq_to_runq;
14116 				}
14117 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14118 				saved_statp = un->un_retry_statp;
14119 #endif
14120 				un->un_retry_statp = NULL;
14121 
14122 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14123 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14124 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14125 				    un, un->un_retry_bp, un->un_throttle,
14126 				    un->un_ncmds_in_transport);
14127 			} else {
14128 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14129 				    "processing priority bp:0x%p\n", bp);
14130 			}
14131 
14132 		} else if ((bp = un->un_waitq_headp) != NULL) {
14133 			/*
14134 			 * A command on the waitq is ready to go, but do not
14135 			 * send it if:
14136 			 *
14137 			 * (1) the throttle limit has been reached, or
14138 			 * (2) a retry is pending, or
14139 			 * (3) a START_STOP_UNIT callback pending, or
14140 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14141 			 *	command is pending.
14142 			 *
14143 			 * For all of these conditions, IO processing will
14144 			 * restart after the condition is cleared.
14145 			 */
14146 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14147 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14148 				    "sd_start_cmds: exiting, "
14149 				    "throttle limit reached!\n");
14150 				goto exit;
14151 			}
14152 			if (un->un_retry_bp != NULL) {
14153 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14154 				    "sd_start_cmds: exiting, retry pending!\n");
14155 				goto exit;
14156 			}
14157 			if (un->un_startstop_timeid != NULL) {
14158 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14159 				    "sd_start_cmds: exiting, "
14160 				    "START_STOP pending!\n");
14161 				goto exit;
14162 			}
14163 			if (un->un_direct_priority_timeid != NULL) {
14164 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14165 				    "sd_start_cmds: exiting, "
14166 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14167 				goto exit;
14168 			}
14169 
14170 			/* Dequeue the command */
14171 			un->un_waitq_headp = bp->av_forw;
14172 			if (un->un_waitq_headp == NULL) {
14173 				un->un_waitq_tailp = NULL;
14174 			}
14175 			bp->av_forw = NULL;
14176 			statp = kstat_waitq_to_runq;
14177 			SD_TRACE(SD_LOG_IO_CORE, un,
14178 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14179 
14180 		} else {
14181 			/* No work to do so bail out now */
14182 			SD_TRACE(SD_LOG_IO_CORE, un,
14183 			    "sd_start_cmds: no more work, exiting!\n");
14184 			goto exit;
14185 		}
14186 
14187 		/*
14188 		 * Reset the state to normal. This is the mechanism by which
14189 		 * the state transitions from either SD_STATE_RWAIT or
14190 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14191 		 * If state is SD_STATE_PM_CHANGING then this command is
14192 		 * part of the device power control and the state must
14193 		 * not be put back to normal. Doing so would would
14194 		 * allow new commands to proceed when they shouldn't,
14195 		 * the device may be going off.
14196 		 */
14197 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14198 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14199 			New_state(un, SD_STATE_NORMAL);
14200 		}
14201 
14202 		xp = SD_GET_XBUF(bp);
14203 		ASSERT(xp != NULL);
14204 
14205 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14206 		/*
14207 		 * Allocate the scsi_pkt if we need one, or attach DMA
14208 		 * resources if we have a scsi_pkt that needs them. The
14209 		 * latter should only occur for commands that are being
14210 		 * retried.
14211 		 */
14212 		if ((xp->xb_pktp == NULL) ||
14213 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14214 #else
14215 		if (xp->xb_pktp == NULL) {
14216 #endif
14217 			/*
14218 			 * There is no scsi_pkt allocated for this buf. Call
14219 			 * the initpkt function to allocate & init one.
14220 			 *
14221 			 * The scsi_init_pkt runout callback functionality is
14222 			 * implemented as follows:
14223 			 *
14224 			 * 1) The initpkt function always calls
14225 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14226 			 *    callback routine.
14227 			 * 2) A successful packet allocation is initialized and
14228 			 *    the I/O is transported.
14229 			 * 3) The I/O associated with an allocation resource
14230 			 *    failure is left on its queue to be retried via
14231 			 *    runout or the next I/O.
14232 			 * 4) The I/O associated with a DMA error is removed
14233 			 *    from the queue and failed with EIO. Processing of
14234 			 *    the transport queues is also halted to be
14235 			 *    restarted via runout or the next I/O.
14236 			 * 5) The I/O associated with a CDB size or packet
14237 			 *    size error is removed from the queue and failed
14238 			 *    with EIO. Processing of the transport queues is
14239 			 *    continued.
14240 			 *
14241 			 * Note: there is no interface for canceling a runout
14242 			 * callback. To prevent the driver from detaching or
14243 			 * suspending while a runout is pending the driver
14244 			 * state is set to SD_STATE_RWAIT
14245 			 *
14246 			 * Note: using the scsi_init_pkt callback facility can
14247 			 * result in an I/O request persisting at the head of
14248 			 * the list which cannot be satisfied even after
14249 			 * multiple retries. In the future the driver may
14250 			 * implement some kind of maximum runout count before
14251 			 * failing an I/O.
14252 			 *
14253 			 * Note: the use of funcp below may seem superfluous,
14254 			 * but it helps warlock figure out the correct
14255 			 * initpkt function calls (see [s]sd.wlcmd).
14256 			 */
14257 			struct scsi_pkt	*pktp;
14258 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14259 
14260 			ASSERT(bp != un->un_rqs_bp);
14261 
14262 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14263 			switch ((*funcp)(bp, &pktp)) {
14264 			case  SD_PKT_ALLOC_SUCCESS:
14265 				xp->xb_pktp = pktp;
14266 				SD_TRACE(SD_LOG_IO_CORE, un,
14267 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14268 				    pktp);
14269 				goto got_pkt;
14270 
14271 			case SD_PKT_ALLOC_FAILURE:
14272 				/*
14273 				 * Temporary (hopefully) resource depletion.
14274 				 * Since retries and RQS commands always have a
14275 				 * scsi_pkt allocated, these cases should never
14276 				 * get here. So the only cases this needs to
14277 				 * handle is a bp from the waitq (which we put
14278 				 * back onto the waitq for sdrunout), or a bp
14279 				 * sent as an immed_bp (which we just fail).
14280 				 */
14281 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14282 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14283 
14284 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14285 
14286 				if (bp == immed_bp) {
14287 					/*
14288 					 * If SD_XB_DMA_FREED is clear, then
14289 					 * this is a failure to allocate a
14290 					 * scsi_pkt, and we must fail the
14291 					 * command.
14292 					 */
14293 					if ((xp->xb_pkt_flags &
14294 					    SD_XB_DMA_FREED) == 0) {
14295 						break;
14296 					}
14297 
14298 					/*
14299 					 * If this immediate command is NOT our
14300 					 * un_retry_bp, then we must fail it.
14301 					 */
14302 					if (bp != un->un_retry_bp) {
14303 						break;
14304 					}
14305 
14306 					/*
14307 					 * We get here if this cmd is our
14308 					 * un_retry_bp that was DMAFREED, but
14309 					 * scsi_init_pkt() failed to reallocate
14310 					 * DMA resources when we attempted to
14311 					 * retry it. This can happen when an
14312 					 * mpxio failover is in progress, but
14313 					 * we don't want to just fail the
14314 					 * command in this case.
14315 					 *
14316 					 * Use timeout(9F) to restart it after
14317 					 * a 100ms delay.  We don't want to
14318 					 * let sdrunout() restart it, because
14319 					 * sdrunout() is just supposed to start
14320 					 * commands that are sitting on the
14321 					 * wait queue.  The un_retry_bp stays
14322 					 * set until the command completes, but
14323 					 * sdrunout can be called many times
14324 					 * before that happens.  Since sdrunout
14325 					 * cannot tell if the un_retry_bp is
14326 					 * already in the transport, it could
14327 					 * end up calling scsi_transport() for
14328 					 * the un_retry_bp multiple times.
14329 					 *
14330 					 * Also: don't schedule the callback
14331 					 * if some other callback is already
14332 					 * pending.
14333 					 */
14334 					if (un->un_retry_statp == NULL) {
14335 						/*
14336 						 * restore the kstat pointer to
14337 						 * keep kstat counts coherent
14338 						 * when we do retry the command.
14339 						 */
14340 						un->un_retry_statp =
14341 						    saved_statp;
14342 					}
14343 
14344 					if ((un->un_startstop_timeid == NULL) &&
14345 					    (un->un_retry_timeid == NULL) &&
14346 					    (un->un_direct_priority_timeid ==
14347 					    NULL)) {
14348 
14349 						un->un_retry_timeid =
14350 						    timeout(
14351 						    sd_start_retry_command,
14352 						    un, SD_RESTART_TIMEOUT);
14353 					}
14354 					goto exit;
14355 				}
14356 
14357 #else
14358 				if (bp == immed_bp) {
14359 					break;	/* Just fail the command */
14360 				}
14361 #endif
14362 
14363 				/* Add the buf back to the head of the waitq */
14364 				bp->av_forw = un->un_waitq_headp;
14365 				un->un_waitq_headp = bp;
14366 				if (un->un_waitq_tailp == NULL) {
14367 					un->un_waitq_tailp = bp;
14368 				}
14369 				goto exit;
14370 
14371 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14372 				/*
14373 				 * HBA DMA resource failure. Fail the command
14374 				 * and continue processing of the queues.
14375 				 */
14376 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14377 				    "sd_start_cmds: "
14378 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14379 				break;
14380 
14381 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14382 				/*
14383 				 * Note:x86: Partial DMA mapping not supported
14384 				 * for USCSI commands, and all the needed DMA
14385 				 * resources were not allocated.
14386 				 */
14387 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14388 				    "sd_start_cmds: "
14389 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14390 				break;
14391 
14392 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14393 				/*
14394 				 * Note:x86: Request cannot fit into CDB based
14395 				 * on lba and len.
14396 				 */
14397 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14398 				    "sd_start_cmds: "
14399 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14400 				break;
14401 
14402 			default:
14403 				/* Should NEVER get here! */
14404 				panic("scsi_initpkt error");
14405 				/*NOTREACHED*/
14406 			}
14407 
14408 			/*
14409 			 * Fatal error in allocating a scsi_pkt for this buf.
14410 			 * Update kstats & return the buf with an error code.
14411 			 * We must use sd_return_failed_command_no_restart() to
14412 			 * avoid a recursive call back into sd_start_cmds().
14413 			 * However this also means that we must keep processing
14414 			 * the waitq here in order to avoid stalling.
14415 			 */
14416 			if (statp == kstat_waitq_to_runq) {
14417 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14418 			}
14419 			sd_return_failed_command_no_restart(un, bp, EIO);
14420 			if (bp == immed_bp) {
14421 				/* immed_bp is gone by now, so clear this */
14422 				immed_bp = NULL;
14423 			}
14424 			continue;
14425 		}
14426 got_pkt:
14427 		if (bp == immed_bp) {
14428 			/* goto the head of the class.... */
14429 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14430 		}
14431 
14432 		un->un_ncmds_in_transport++;
14433 		SD_UPDATE_KSTATS(un, statp, bp);
14434 
14435 		/*
14436 		 * Call scsi_transport() to send the command to the target.
14437 		 * According to SCSA architecture, we must drop the mutex here
14438 		 * before calling scsi_transport() in order to avoid deadlock.
14439 		 * Note that the scsi_pkt's completion routine can be executed
14440 		 * (from interrupt context) even before the call to
14441 		 * scsi_transport() returns.
14442 		 */
14443 		SD_TRACE(SD_LOG_IO_CORE, un,
14444 		    "sd_start_cmds: calling scsi_transport()\n");
14445 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14446 
14447 		mutex_exit(SD_MUTEX(un));
14448 		rval = scsi_transport(xp->xb_pktp);
14449 		mutex_enter(SD_MUTEX(un));
14450 
14451 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14452 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14453 
14454 		switch (rval) {
14455 		case TRAN_ACCEPT:
14456 			/* Clear this with every pkt accepted by the HBA */
14457 			un->un_tran_fatal_count = 0;
14458 			break;	/* Success; try the next cmd (if any) */
14459 
14460 		case TRAN_BUSY:
14461 			un->un_ncmds_in_transport--;
14462 			ASSERT(un->un_ncmds_in_transport >= 0);
14463 
14464 			/*
14465 			 * Don't retry request sense, the sense data
14466 			 * is lost when another request is sent.
14467 			 * Free up the rqs buf and retry
14468 			 * the original failed cmd.  Update kstat.
14469 			 */
14470 			if (bp == un->un_rqs_bp) {
14471 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14472 				bp = sd_mark_rqs_idle(un, xp);
14473 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14474 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
14475 				    kstat_waitq_enter);
14476 				goto exit;
14477 			}
14478 
14479 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14480 			/*
14481 			 * Free the DMA resources for the  scsi_pkt. This will
14482 			 * allow mpxio to select another path the next time
14483 			 * we call scsi_transport() with this scsi_pkt.
14484 			 * See sdintr() for the rationalization behind this.
14485 			 */
14486 			if ((un->un_f_is_fibre == TRUE) &&
14487 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14488 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14489 				scsi_dmafree(xp->xb_pktp);
14490 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14491 			}
14492 #endif
14493 
14494 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14495 				/*
14496 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14497 				 * are for error recovery situations. These do
14498 				 * not use the normal command waitq, so if they
14499 				 * get a TRAN_BUSY we cannot put them back onto
14500 				 * the waitq for later retry. One possible
14501 				 * problem is that there could already be some
14502 				 * other command on un_retry_bp that is waiting
14503 				 * for this one to complete, so we would be
14504 				 * deadlocked if we put this command back onto
14505 				 * the waitq for later retry (since un_retry_bp
14506 				 * must complete before the driver gets back to
14507 				 * commands on the waitq).
14508 				 *
14509 				 * To avoid deadlock we must schedule a callback
14510 				 * that will restart this command after a set
14511 				 * interval.  This should keep retrying for as
14512 				 * long as the underlying transport keeps
14513 				 * returning TRAN_BUSY (just like for other
14514 				 * commands).  Use the same timeout interval as
14515 				 * for the ordinary TRAN_BUSY retry.
14516 				 */
14517 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14518 				    "sd_start_cmds: scsi_transport() returned "
14519 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14520 
14521 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14522 				un->un_direct_priority_timeid =
14523 				    timeout(sd_start_direct_priority_command,
14524 				    bp, un->un_busy_timeout / 500);
14525 
14526 				goto exit;
14527 			}
14528 
14529 			/*
14530 			 * For TRAN_BUSY, we want to reduce the throttle value,
14531 			 * unless we are retrying a command.
14532 			 */
14533 			if (bp != un->un_retry_bp) {
14534 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14535 			}
14536 
14537 			/*
14538 			 * Set up the bp to be tried again 10 ms later.
14539 			 * Note:x86: Is there a timeout value in the sd_lun
14540 			 * for this condition?
14541 			 */
14542 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
14543 			    kstat_runq_back_to_waitq);
14544 			goto exit;
14545 
14546 		case TRAN_FATAL_ERROR:
14547 			un->un_tran_fatal_count++;
14548 			/* FALLTHRU */
14549 
14550 		case TRAN_BADPKT:
14551 		default:
14552 			un->un_ncmds_in_transport--;
14553 			ASSERT(un->un_ncmds_in_transport >= 0);
14554 
14555 			/*
14556 			 * If this is our REQUEST SENSE command with a
14557 			 * transport error, we must get back the pointers
14558 			 * to the original buf, and mark the REQUEST
14559 			 * SENSE command as "available".
14560 			 */
14561 			if (bp == un->un_rqs_bp) {
14562 				bp = sd_mark_rqs_idle(un, xp);
14563 				xp = SD_GET_XBUF(bp);
14564 			} else {
14565 				/*
14566 				 * Legacy behavior: do not update transport
14567 				 * error count for request sense commands.
14568 				 */
14569 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14570 			}
14571 
14572 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14573 			sd_print_transport_rejected_message(un, xp, rval);
14574 
14575 			/*
14576 			 * This command will be terminated by SD driver due
14577 			 * to a fatal transport error. We should post
14578 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
14579 			 * of "fail" for any command to indicate this
14580 			 * situation.
14581 			 */
14582 			if (xp->xb_ena > 0) {
14583 				ASSERT(un->un_fm_private != NULL);
14584 				sfip = un->un_fm_private;
14585 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
14586 				sd_ssc_extract_info(&sfip->fm_ssc, un,
14587 				    xp->xb_pktp, bp, xp);
14588 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14589 			}
14590 
14591 			/*
14592 			 * We must use sd_return_failed_command_no_restart() to
14593 			 * avoid a recursive call back into sd_start_cmds().
14594 			 * However this also means that we must keep processing
14595 			 * the waitq here in order to avoid stalling.
14596 			 */
14597 			sd_return_failed_command_no_restart(un, bp, EIO);
14598 
14599 			/*
14600 			 * Notify any threads waiting in sd_ddi_suspend() that
14601 			 * a command completion has occurred.
14602 			 */
14603 			if (un->un_state == SD_STATE_SUSPENDED) {
14604 				cv_broadcast(&un->un_disk_busy_cv);
14605 			}
14606 
14607 			if (bp == immed_bp) {
14608 				/* immed_bp is gone by now, so clear this */
14609 				immed_bp = NULL;
14610 			}
14611 			break;
14612 		}
14613 
14614 	} while (immed_bp == NULL);
14615 
14616 exit:
14617 	ASSERT(mutex_owned(SD_MUTEX(un)));
14618 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14619 }
14620 
14621 
14622 /*
14623  *    Function: sd_return_command
14624  *
14625  * Description: Returns a command to its originator (with or without an
14626  *		error).  Also starts commands waiting to be transported
14627  *		to the target.
14628  *
14629  *     Context: May be called from interrupt, kernel, or timeout context
14630  */
14631 
14632 static void
14633 sd_return_command(struct sd_lun *un, struct buf *bp)
14634 {
14635 	struct sd_xbuf *xp;
14636 	struct scsi_pkt *pktp;
14637 	struct sd_fm_internal *sfip;
14638 
14639 	ASSERT(bp != NULL);
14640 	ASSERT(un != NULL);
14641 	ASSERT(mutex_owned(SD_MUTEX(un)));
14642 	ASSERT(bp != un->un_rqs_bp);
14643 	xp = SD_GET_XBUF(bp);
14644 	ASSERT(xp != NULL);
14645 
14646 	pktp = SD_GET_PKTP(bp);
14647 	sfip = (struct sd_fm_internal *)un->un_fm_private;
14648 	ASSERT(sfip != NULL);
14649 
14650 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14651 
14652 	/*
14653 	 * Note: check for the "sdrestart failed" case.
14654 	 */
14655 	if ((un->un_partial_dma_supported == 1) &&
14656 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14657 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14658 	    (xp->xb_pktp->pkt_resid == 0)) {
14659 
14660 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14661 			/*
14662 			 * Successfully set up next portion of cmd
14663 			 * transfer, try sending it
14664 			 */
14665 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14666 			    NULL, NULL, 0, (clock_t)0, NULL);
14667 			sd_start_cmds(un, NULL);
14668 			return;	/* Note:x86: need a return here? */
14669 		}
14670 	}
14671 
14672 	/*
14673 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14674 	 * can happen if upon being re-tried the failfast bp either
14675 	 * succeeded or encountered another error (possibly even a different
14676 	 * error than the one that precipitated the failfast state, but in
14677 	 * that case it would have had to exhaust retries as well). Regardless,
14678 	 * this should not occur whenever the instance is in the active
14679 	 * failfast state.
14680 	 */
14681 	if (bp == un->un_failfast_bp) {
14682 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14683 		un->un_failfast_bp = NULL;
14684 	}
14685 
14686 	/*
14687 	 * Clear the failfast state upon successful completion of ANY cmd.
14688 	 */
14689 	if (bp->b_error == 0) {
14690 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14691 		/*
14692 		 * If this is a successful command, but used to be retried,
14693 		 * we will take it as a recovered command and post an
14694 		 * ereport with driver-assessment of "recovered".
14695 		 */
14696 		if (xp->xb_ena > 0) {
14697 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14698 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
14699 		}
14700 	} else {
14701 		/*
14702 		 * If this is a failed non-USCSI command we will post an
14703 		 * ereport with driver-assessment set accordingly("fail" or
14704 		 * "fatal").
14705 		 */
14706 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
14707 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14708 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14709 		}
14710 	}
14711 
14712 	/*
14713 	 * This is used if the command was retried one or more times. Show that
14714 	 * we are done with it, and allow processing of the waitq to resume.
14715 	 */
14716 	if (bp == un->un_retry_bp) {
14717 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14718 		    "sd_return_command: un:0x%p: "
14719 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14720 		un->un_retry_bp = NULL;
14721 		un->un_retry_statp = NULL;
14722 	}
14723 
14724 	SD_UPDATE_RDWR_STATS(un, bp);
14725 	SD_UPDATE_PARTITION_STATS(un, bp);
14726 
14727 	switch (un->un_state) {
14728 	case SD_STATE_SUSPENDED:
14729 		/*
14730 		 * Notify any threads waiting in sd_ddi_suspend() that
14731 		 * a command completion has occurred.
14732 		 */
14733 		cv_broadcast(&un->un_disk_busy_cv);
14734 		break;
14735 	default:
14736 		sd_start_cmds(un, NULL);
14737 		break;
14738 	}
14739 
14740 	/* Return this command up the iodone chain to its originator. */
14741 	mutex_exit(SD_MUTEX(un));
14742 
14743 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14744 	xp->xb_pktp = NULL;
14745 
14746 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14747 
14748 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14749 	mutex_enter(SD_MUTEX(un));
14750 
14751 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14752 }
14753 
14754 
14755 /*
14756  *    Function: sd_return_failed_command
14757  *
14758  * Description: Command completion when an error occurred.
14759  *
14760  *     Context: May be called from interrupt context
14761  */
14762 
14763 static void
14764 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14765 {
14766 	ASSERT(bp != NULL);
14767 	ASSERT(un != NULL);
14768 	ASSERT(mutex_owned(SD_MUTEX(un)));
14769 
14770 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14771 	    "sd_return_failed_command: entry\n");
14772 
14773 	/*
14774 	 * b_resid could already be nonzero due to a partial data
14775 	 * transfer, so do not change it here.
14776 	 */
14777 	SD_BIOERROR(bp, errcode);
14778 
14779 	sd_return_command(un, bp);
14780 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14781 	    "sd_return_failed_command: exit\n");
14782 }
14783 
14784 
14785 /*
14786  *    Function: sd_return_failed_command_no_restart
14787  *
14788  * Description: Same as sd_return_failed_command, but ensures that no
14789  *		call back into sd_start_cmds will be issued.
14790  *
14791  *     Context: May be called from interrupt context
14792  */
14793 
14794 static void
14795 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14796 	int errcode)
14797 {
14798 	struct sd_xbuf *xp;
14799 
14800 	ASSERT(bp != NULL);
14801 	ASSERT(un != NULL);
14802 	ASSERT(mutex_owned(SD_MUTEX(un)));
14803 	xp = SD_GET_XBUF(bp);
14804 	ASSERT(xp != NULL);
14805 	ASSERT(errcode != 0);
14806 
14807 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14808 	    "sd_return_failed_command_no_restart: entry\n");
14809 
14810 	/*
14811 	 * b_resid could already be nonzero due to a partial data
14812 	 * transfer, so do not change it here.
14813 	 */
14814 	SD_BIOERROR(bp, errcode);
14815 
14816 	/*
14817 	 * If this is the failfast bp, clear it. This can happen if the
14818 	 * failfast bp encounterd a fatal error when we attempted to
14819 	 * re-try it (such as a scsi_transport(9F) failure).  However
14820 	 * we should NOT be in an active failfast state if the failfast
14821 	 * bp is not NULL.
14822 	 */
14823 	if (bp == un->un_failfast_bp) {
14824 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14825 		un->un_failfast_bp = NULL;
14826 	}
14827 
14828 	if (bp == un->un_retry_bp) {
14829 		/*
14830 		 * This command was retried one or more times. Show that we are
14831 		 * done with it, and allow processing of the waitq to resume.
14832 		 */
14833 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14834 		    "sd_return_failed_command_no_restart: "
14835 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14836 		un->un_retry_bp = NULL;
14837 		un->un_retry_statp = NULL;
14838 	}
14839 
14840 	SD_UPDATE_RDWR_STATS(un, bp);
14841 	SD_UPDATE_PARTITION_STATS(un, bp);
14842 
14843 	mutex_exit(SD_MUTEX(un));
14844 
14845 	if (xp->xb_pktp != NULL) {
14846 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14847 		xp->xb_pktp = NULL;
14848 	}
14849 
14850 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14851 
14852 	mutex_enter(SD_MUTEX(un));
14853 
14854 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14855 	    "sd_return_failed_command_no_restart: exit\n");
14856 }
14857 
14858 
14859 /*
14860  *    Function: sd_retry_command
14861  *
14862  * Description: queue up a command for retry, or (optionally) fail it
14863  *		if retry counts are exhausted.
14864  *
14865  *   Arguments: un - Pointer to the sd_lun struct for the target.
14866  *
14867  *		bp - Pointer to the buf for the command to be retried.
14868  *
14869  *		retry_check_flag - Flag to see which (if any) of the retry
14870  *		   counts should be decremented/checked. If the indicated
14871  *		   retry count is exhausted, then the command will not be
14872  *		   retried; it will be failed instead. This should use a
14873  *		   value equal to one of the following:
14874  *
14875  *			SD_RETRIES_NOCHECK
14876  *			SD_RESD_RETRIES_STANDARD
14877  *			SD_RETRIES_VICTIM
14878  *
14879  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14880  *		   if the check should be made to see of FLAG_ISOLATE is set
14881  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14882  *		   not retried, it is simply failed.
14883  *
14884  *		user_funcp - Ptr to function to call before dispatching the
14885  *		   command. May be NULL if no action needs to be performed.
14886  *		   (Primarily intended for printing messages.)
14887  *
14888  *		user_arg - Optional argument to be passed along to
14889  *		   the user_funcp call.
14890  *
14891  *		failure_code - errno return code to set in the bp if the
14892  *		   command is going to be failed.
14893  *
14894  *		retry_delay - Retry delay interval in (clock_t) units. May
14895  *		   be zero which indicates that the retry should be retried
14896  *		   immediately (ie, without an intervening delay).
14897  *
14898  *		statp - Ptr to kstat function to be updated if the command
14899  *		   is queued for a delayed retry. May be NULL if no kstat
14900  *		   update is desired.
14901  *
14902  *     Context: May be called from interrupt context.
14903  */
14904 
14905 static void
14906 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14907 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14908 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14909 	void (*statp)(kstat_io_t *))
14910 {
14911 	struct sd_xbuf	*xp;
14912 	struct scsi_pkt	*pktp;
14913 	struct sd_fm_internal *sfip;
14914 
14915 	ASSERT(un != NULL);
14916 	ASSERT(mutex_owned(SD_MUTEX(un)));
14917 	ASSERT(bp != NULL);
14918 	xp = SD_GET_XBUF(bp);
14919 	ASSERT(xp != NULL);
14920 	pktp = SD_GET_PKTP(bp);
14921 	ASSERT(pktp != NULL);
14922 
14923 	sfip = (struct sd_fm_internal *)un->un_fm_private;
14924 	ASSERT(sfip != NULL);
14925 
14926 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14927 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14928 
14929 	/*
14930 	 * If we are syncing or dumping, fail the command to avoid
14931 	 * recursively calling back into scsi_transport().
14932 	 */
14933 	if (ddi_in_panic()) {
14934 		goto fail_command_no_log;
14935 	}
14936 
14937 	/*
14938 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14939 	 * log an error and fail the command.
14940 	 */
14941 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14942 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14943 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14944 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14945 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14946 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14947 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14948 		goto fail_command;
14949 	}
14950 
14951 	/*
14952 	 * If we are suspended, then put the command onto head of the
14953 	 * wait queue since we don't want to start more commands, and
14954 	 * clear the un_retry_bp. Next time when we are resumed, will
14955 	 * handle the command in the wait queue.
14956 	 */
14957 	switch (un->un_state) {
14958 	case SD_STATE_SUSPENDED:
14959 	case SD_STATE_DUMPING:
14960 		bp->av_forw = un->un_waitq_headp;
14961 		un->un_waitq_headp = bp;
14962 		if (un->un_waitq_tailp == NULL) {
14963 			un->un_waitq_tailp = bp;
14964 		}
14965 		if (bp == un->un_retry_bp) {
14966 			un->un_retry_bp = NULL;
14967 			un->un_retry_statp = NULL;
14968 		}
14969 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
14970 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
14971 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
14972 		return;
14973 	default:
14974 		break;
14975 	}
14976 
14977 	/*
14978 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
14979 	 * is set; if it is then we do not want to retry the command.
14980 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
14981 	 */
14982 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
14983 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
14984 			goto fail_command;
14985 		}
14986 	}
14987 
14988 
14989 	/*
14990 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
14991 	 * command timeout or a selection timeout has occurred. This means
14992 	 * that we were unable to establish an kind of communication with
14993 	 * the target, and subsequent retries and/or commands are likely
14994 	 * to encounter similar results and take a long time to complete.
14995 	 *
14996 	 * If this is a failfast error condition, we need to update the
14997 	 * failfast state, even if this bp does not have B_FAILFAST set.
14998 	 */
14999 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15000 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15001 			ASSERT(un->un_failfast_bp == NULL);
15002 			/*
15003 			 * If we are already in the active failfast state, and
15004 			 * another failfast error condition has been detected,
15005 			 * then fail this command if it has B_FAILFAST set.
15006 			 * If B_FAILFAST is clear, then maintain the legacy
15007 			 * behavior of retrying heroically, even tho this will
15008 			 * take a lot more time to fail the command.
15009 			 */
15010 			if (bp->b_flags & B_FAILFAST) {
15011 				goto fail_command;
15012 			}
15013 		} else {
15014 			/*
15015 			 * We're not in the active failfast state, but we
15016 			 * have a failfast error condition, so we must begin
15017 			 * transition to the next state. We do this regardless
15018 			 * of whether or not this bp has B_FAILFAST set.
15019 			 */
15020 			if (un->un_failfast_bp == NULL) {
15021 				/*
15022 				 * This is the first bp to meet a failfast
15023 				 * condition so save it on un_failfast_bp &
15024 				 * do normal retry processing. Do not enter
15025 				 * active failfast state yet. This marks
15026 				 * entry into the "failfast pending" state.
15027 				 */
15028 				un->un_failfast_bp = bp;
15029 
15030 			} else if (un->un_failfast_bp == bp) {
15031 				/*
15032 				 * This is the second time *this* bp has
15033 				 * encountered a failfast error condition,
15034 				 * so enter active failfast state & flush
15035 				 * queues as appropriate.
15036 				 */
15037 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15038 				un->un_failfast_bp = NULL;
15039 				sd_failfast_flushq(un);
15040 
15041 				/*
15042 				 * Fail this bp now if B_FAILFAST set;
15043 				 * otherwise continue with retries. (It would
15044 				 * be pretty ironic if this bp succeeded on a
15045 				 * subsequent retry after we just flushed all
15046 				 * the queues).
15047 				 */
15048 				if (bp->b_flags & B_FAILFAST) {
15049 					goto fail_command;
15050 				}
15051 
15052 #if !defined(lint) && !defined(__lint)
15053 			} else {
15054 				/*
15055 				 * If neither of the preceeding conditionals
15056 				 * was true, it means that there is some
15057 				 * *other* bp that has met an inital failfast
15058 				 * condition and is currently either being
15059 				 * retried or is waiting to be retried. In
15060 				 * that case we should perform normal retry
15061 				 * processing on *this* bp, since there is a
15062 				 * chance that the current failfast condition
15063 				 * is transient and recoverable. If that does
15064 				 * not turn out to be the case, then retries
15065 				 * will be cleared when the wait queue is
15066 				 * flushed anyway.
15067 				 */
15068 #endif
15069 			}
15070 		}
15071 	} else {
15072 		/*
15073 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15074 		 * likely were able to at least establish some level of
15075 		 * communication with the target and subsequent commands
15076 		 * and/or retries are likely to get through to the target,
15077 		 * In this case we want to be aggressive about clearing
15078 		 * the failfast state. Note that this does not affect
15079 		 * the "failfast pending" condition.
15080 		 */
15081 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15082 	}
15083 
15084 
15085 	/*
15086 	 * Check the specified retry count to see if we can still do
15087 	 * any retries with this pkt before we should fail it.
15088 	 */
15089 	switch (retry_check_flag & SD_RETRIES_MASK) {
15090 	case SD_RETRIES_VICTIM:
15091 		/*
15092 		 * Check the victim retry count. If exhausted, then fall
15093 		 * thru & check against the standard retry count.
15094 		 */
15095 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15096 			/* Increment count & proceed with the retry */
15097 			xp->xb_victim_retry_count++;
15098 			break;
15099 		}
15100 		/* Victim retries exhausted, fall back to std. retries... */
15101 		/* FALLTHRU */
15102 
15103 	case SD_RETRIES_STANDARD:
15104 		if (xp->xb_retry_count >= un->un_retry_count) {
15105 			/* Retries exhausted, fail the command */
15106 			SD_TRACE(SD_LOG_IO_CORE, un,
15107 			    "sd_retry_command: retries exhausted!\n");
15108 			/*
15109 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15110 			 * commands with nonzero pkt_resid.
15111 			 */
15112 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15113 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15114 			    (pktp->pkt_resid != 0)) {
15115 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15116 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15117 					SD_UPDATE_B_RESID(bp, pktp);
15118 				}
15119 			}
15120 			goto fail_command;
15121 		}
15122 		xp->xb_retry_count++;
15123 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15124 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15125 		break;
15126 
15127 	case SD_RETRIES_UA:
15128 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15129 			/* Retries exhausted, fail the command */
15130 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15131 			    "Unit Attention retries exhausted. "
15132 			    "Check the target.\n");
15133 			goto fail_command;
15134 		}
15135 		xp->xb_ua_retry_count++;
15136 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15137 		    "sd_retry_command: retry count:%d\n",
15138 		    xp->xb_ua_retry_count);
15139 		break;
15140 
15141 	case SD_RETRIES_BUSY:
15142 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15143 			/* Retries exhausted, fail the command */
15144 			SD_TRACE(SD_LOG_IO_CORE, un,
15145 			    "sd_retry_command: retries exhausted!\n");
15146 			goto fail_command;
15147 		}
15148 		xp->xb_retry_count++;
15149 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15150 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15151 		break;
15152 
15153 	case SD_RETRIES_NOCHECK:
15154 	default:
15155 		/* No retry count to check. Just proceed with the retry */
15156 		break;
15157 	}
15158 
15159 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15160 
15161 	/*
15162 	 * If this is a non-USCSI command being retried
15163 	 * during execution last time, we should post an ereport with
15164 	 * driver-assessment of the value "retry".
15165 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15166 	 * hardware errors, we bypass ereport posting.
15167 	 */
15168 	if (failure_code != 0) {
15169 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15170 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15171 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15172 		}
15173 	}
15174 
15175 	/*
15176 	 * If we were given a zero timeout, we must attempt to retry the
15177 	 * command immediately (ie, without a delay).
15178 	 */
15179 	if (retry_delay == 0) {
15180 		/*
15181 		 * Check some limiting conditions to see if we can actually
15182 		 * do the immediate retry.  If we cannot, then we must
15183 		 * fall back to queueing up a delayed retry.
15184 		 */
15185 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15186 			/*
15187 			 * We are at the throttle limit for the target,
15188 			 * fall back to delayed retry.
15189 			 */
15190 			retry_delay = un->un_busy_timeout;
15191 			statp = kstat_waitq_enter;
15192 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15193 			    "sd_retry_command: immed. retry hit "
15194 			    "throttle!\n");
15195 		} else {
15196 			/*
15197 			 * We're clear to proceed with the immediate retry.
15198 			 * First call the user-provided function (if any)
15199 			 */
15200 			if (user_funcp != NULL) {
15201 				(*user_funcp)(un, bp, user_arg,
15202 				    SD_IMMEDIATE_RETRY_ISSUED);
15203 #ifdef __lock_lint
15204 				sd_print_incomplete_msg(un, bp, user_arg,
15205 				    SD_IMMEDIATE_RETRY_ISSUED);
15206 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15207 				    SD_IMMEDIATE_RETRY_ISSUED);
15208 				sd_print_sense_failed_msg(un, bp, user_arg,
15209 				    SD_IMMEDIATE_RETRY_ISSUED);
15210 #endif
15211 			}
15212 
15213 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15214 			    "sd_retry_command: issuing immediate retry\n");
15215 
15216 			/*
15217 			 * Call sd_start_cmds() to transport the command to
15218 			 * the target.
15219 			 */
15220 			sd_start_cmds(un, bp);
15221 
15222 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15223 			    "sd_retry_command exit\n");
15224 			return;
15225 		}
15226 	}
15227 
15228 	/*
15229 	 * Set up to retry the command after a delay.
15230 	 * First call the user-provided function (if any)
15231 	 */
15232 	if (user_funcp != NULL) {
15233 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15234 	}
15235 
15236 	sd_set_retry_bp(un, bp, retry_delay, statp);
15237 
15238 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15239 	return;
15240 
15241 fail_command:
15242 
15243 	if (user_funcp != NULL) {
15244 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15245 	}
15246 
15247 fail_command_no_log:
15248 
15249 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15250 	    "sd_retry_command: returning failed command\n");
15251 
15252 	sd_return_failed_command(un, bp, failure_code);
15253 
15254 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15255 }
15256 
15257 
15258 /*
15259  *    Function: sd_set_retry_bp
15260  *
15261  * Description: Set up the given bp for retry.
15262  *
15263  *   Arguments: un - ptr to associated softstate
15264  *		bp - ptr to buf(9S) for the command
15265  *		retry_delay - time interval before issuing retry (may be 0)
15266  *		statp - optional pointer to kstat function
15267  *
15268  *     Context: May be called under interrupt context
15269  */
15270 
15271 static void
15272 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15273 	void (*statp)(kstat_io_t *))
15274 {
15275 	ASSERT(un != NULL);
15276 	ASSERT(mutex_owned(SD_MUTEX(un)));
15277 	ASSERT(bp != NULL);
15278 
15279 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15280 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15281 
15282 	/*
15283 	 * Indicate that the command is being retried. This will not allow any
15284 	 * other commands on the wait queue to be transported to the target
15285 	 * until this command has been completed (success or failure). The
15286 	 * "retry command" is not transported to the target until the given
15287 	 * time delay expires, unless the user specified a 0 retry_delay.
15288 	 *
15289 	 * Note: the timeout(9F) callback routine is what actually calls
15290 	 * sd_start_cmds() to transport the command, with the exception of a
15291 	 * zero retry_delay. The only current implementor of a zero retry delay
15292 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15293 	 */
15294 	if (un->un_retry_bp == NULL) {
15295 		ASSERT(un->un_retry_statp == NULL);
15296 		un->un_retry_bp = bp;
15297 
15298 		/*
15299 		 * If the user has not specified a delay the command should
15300 		 * be queued and no timeout should be scheduled.
15301 		 */
15302 		if (retry_delay == 0) {
15303 			/*
15304 			 * Save the kstat pointer that will be used in the
15305 			 * call to SD_UPDATE_KSTATS() below, so that
15306 			 * sd_start_cmds() can correctly decrement the waitq
15307 			 * count when it is time to transport this command.
15308 			 */
15309 			un->un_retry_statp = statp;
15310 			goto done;
15311 		}
15312 	}
15313 
15314 	if (un->un_retry_bp == bp) {
15315 		/*
15316 		 * Save the kstat pointer that will be used in the call to
15317 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15318 		 * correctly decrement the waitq count when it is time to
15319 		 * transport this command.
15320 		 */
15321 		un->un_retry_statp = statp;
15322 
15323 		/*
15324 		 * Schedule a timeout if:
15325 		 *   1) The user has specified a delay.
15326 		 *   2) There is not a START_STOP_UNIT callback pending.
15327 		 *
15328 		 * If no delay has been specified, then it is up to the caller
15329 		 * to ensure that IO processing continues without stalling.
15330 		 * Effectively, this means that the caller will issue the
15331 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15332 		 * callback does this after the START STOP UNIT command has
15333 		 * completed. In either of these cases we should not schedule
15334 		 * a timeout callback here.  Also don't schedule the timeout if
15335 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15336 		 */
15337 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15338 		    (un->un_direct_priority_timeid == NULL)) {
15339 			un->un_retry_timeid =
15340 			    timeout(sd_start_retry_command, un, retry_delay);
15341 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15342 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15343 			    " bp:0x%p un_retry_timeid:0x%p\n",
15344 			    un, bp, un->un_retry_timeid);
15345 		}
15346 	} else {
15347 		/*
15348 		 * We only get in here if there is already another command
15349 		 * waiting to be retried.  In this case, we just put the
15350 		 * given command onto the wait queue, so it can be transported
15351 		 * after the current retry command has completed.
15352 		 *
15353 		 * Also we have to make sure that if the command at the head
15354 		 * of the wait queue is the un_failfast_bp, that we do not
15355 		 * put ahead of it any other commands that are to be retried.
15356 		 */
15357 		if ((un->un_failfast_bp != NULL) &&
15358 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15359 			/*
15360 			 * Enqueue this command AFTER the first command on
15361 			 * the wait queue (which is also un_failfast_bp).
15362 			 */
15363 			bp->av_forw = un->un_waitq_headp->av_forw;
15364 			un->un_waitq_headp->av_forw = bp;
15365 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15366 				un->un_waitq_tailp = bp;
15367 			}
15368 		} else {
15369 			/* Enqueue this command at the head of the waitq. */
15370 			bp->av_forw = un->un_waitq_headp;
15371 			un->un_waitq_headp = bp;
15372 			if (un->un_waitq_tailp == NULL) {
15373 				un->un_waitq_tailp = bp;
15374 			}
15375 		}
15376 
15377 		if (statp == NULL) {
15378 			statp = kstat_waitq_enter;
15379 		}
15380 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15381 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15382 	}
15383 
15384 done:
15385 	if (statp != NULL) {
15386 		SD_UPDATE_KSTATS(un, statp, bp);
15387 	}
15388 
15389 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15390 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15391 }
15392 
15393 
15394 /*
15395  *    Function: sd_start_retry_command
15396  *
15397  * Description: Start the command that has been waiting on the target's
15398  *		retry queue.  Called from timeout(9F) context after the
15399  *		retry delay interval has expired.
15400  *
15401  *   Arguments: arg - pointer to associated softstate for the device.
15402  *
15403  *     Context: timeout(9F) thread context.  May not sleep.
15404  */
15405 
15406 static void
15407 sd_start_retry_command(void *arg)
15408 {
15409 	struct sd_lun *un = arg;
15410 
15411 	ASSERT(un != NULL);
15412 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15413 
15414 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15415 	    "sd_start_retry_command: entry\n");
15416 
15417 	mutex_enter(SD_MUTEX(un));
15418 
15419 	un->un_retry_timeid = NULL;
15420 
15421 	if (un->un_retry_bp != NULL) {
15422 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15423 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15424 		    un, un->un_retry_bp);
15425 		sd_start_cmds(un, un->un_retry_bp);
15426 	}
15427 
15428 	mutex_exit(SD_MUTEX(un));
15429 
15430 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15431 	    "sd_start_retry_command: exit\n");
15432 }
15433 
15434 
15435 /*
15436  *    Function: sd_start_direct_priority_command
15437  *
15438  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15439  *		received TRAN_BUSY when we called scsi_transport() to send it
15440  *		to the underlying HBA. This function is called from timeout(9F)
15441  *		context after the delay interval has expired.
15442  *
15443  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15444  *
15445  *     Context: timeout(9F) thread context.  May not sleep.
15446  */
15447 
15448 static void
15449 sd_start_direct_priority_command(void *arg)
15450 {
15451 	struct buf	*priority_bp = arg;
15452 	struct sd_lun	*un;
15453 
15454 	ASSERT(priority_bp != NULL);
15455 	un = SD_GET_UN(priority_bp);
15456 	ASSERT(un != NULL);
15457 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15458 
15459 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15460 	    "sd_start_direct_priority_command: entry\n");
15461 
15462 	mutex_enter(SD_MUTEX(un));
15463 	un->un_direct_priority_timeid = NULL;
15464 	sd_start_cmds(un, priority_bp);
15465 	mutex_exit(SD_MUTEX(un));
15466 
15467 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15468 	    "sd_start_direct_priority_command: exit\n");
15469 }
15470 
15471 
15472 /*
15473  *    Function: sd_send_request_sense_command
15474  *
15475  * Description: Sends a REQUEST SENSE command to the target
15476  *
15477  *     Context: May be called from interrupt context.
15478  */
15479 
15480 static void
15481 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15482 	struct scsi_pkt *pktp)
15483 {
15484 	ASSERT(bp != NULL);
15485 	ASSERT(un != NULL);
15486 	ASSERT(mutex_owned(SD_MUTEX(un)));
15487 
15488 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15489 	    "entry: buf:0x%p\n", bp);
15490 
15491 	/*
15492 	 * If we are syncing or dumping, then fail the command to avoid a
15493 	 * recursive callback into scsi_transport(). Also fail the command
15494 	 * if we are suspended (legacy behavior).
15495 	 */
15496 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15497 	    (un->un_state == SD_STATE_DUMPING)) {
15498 		sd_return_failed_command(un, bp, EIO);
15499 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15500 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15501 		return;
15502 	}
15503 
15504 	/*
15505 	 * Retry the failed command and don't issue the request sense if:
15506 	 *    1) the sense buf is busy
15507 	 *    2) we have 1 or more outstanding commands on the target
15508 	 *    (the sense data will be cleared or invalidated any way)
15509 	 *
15510 	 * Note: There could be an issue with not checking a retry limit here,
15511 	 * the problem is determining which retry limit to check.
15512 	 */
15513 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15514 		/* Don't retry if the command is flagged as non-retryable */
15515 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15516 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15517 			    NULL, NULL, 0, un->un_busy_timeout,
15518 			    kstat_waitq_enter);
15519 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15520 			    "sd_send_request_sense_command: "
15521 			    "at full throttle, retrying exit\n");
15522 		} else {
15523 			sd_return_failed_command(un, bp, EIO);
15524 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15525 			    "sd_send_request_sense_command: "
15526 			    "at full throttle, non-retryable exit\n");
15527 		}
15528 		return;
15529 	}
15530 
15531 	sd_mark_rqs_busy(un, bp);
15532 	sd_start_cmds(un, un->un_rqs_bp);
15533 
15534 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15535 	    "sd_send_request_sense_command: exit\n");
15536 }
15537 
15538 
15539 /*
15540  *    Function: sd_mark_rqs_busy
15541  *
15542  * Description: Indicate that the request sense bp for this instance is
15543  *		in use.
15544  *
15545  *     Context: May be called under interrupt context
15546  */
15547 
15548 static void
15549 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15550 {
15551 	struct sd_xbuf	*sense_xp;
15552 
15553 	ASSERT(un != NULL);
15554 	ASSERT(bp != NULL);
15555 	ASSERT(mutex_owned(SD_MUTEX(un)));
15556 	ASSERT(un->un_sense_isbusy == 0);
15557 
15558 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15559 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15560 
15561 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15562 	ASSERT(sense_xp != NULL);
15563 
15564 	SD_INFO(SD_LOG_IO, un,
15565 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15566 
15567 	ASSERT(sense_xp->xb_pktp != NULL);
15568 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15569 	    == (FLAG_SENSING | FLAG_HEAD));
15570 
15571 	un->un_sense_isbusy = 1;
15572 	un->un_rqs_bp->b_resid = 0;
15573 	sense_xp->xb_pktp->pkt_resid  = 0;
15574 	sense_xp->xb_pktp->pkt_reason = 0;
15575 
15576 	/* So we can get back the bp at interrupt time! */
15577 	sense_xp->xb_sense_bp = bp;
15578 
15579 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15580 
15581 	/*
15582 	 * Mark this buf as awaiting sense data. (This is already set in
15583 	 * the pkt_flags for the RQS packet.)
15584 	 */
15585 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15586 
15587 	/* Request sense down same path */
15588 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
15589 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
15590 		sense_xp->xb_pktp->pkt_path_instance =
15591 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
15592 
15593 	sense_xp->xb_retry_count	= 0;
15594 	sense_xp->xb_victim_retry_count = 0;
15595 	sense_xp->xb_ua_retry_count	= 0;
15596 	sense_xp->xb_nr_retry_count 	= 0;
15597 	sense_xp->xb_dma_resid  = 0;
15598 
15599 	/* Clean up the fields for auto-request sense */
15600 	sense_xp->xb_sense_status = 0;
15601 	sense_xp->xb_sense_state  = 0;
15602 	sense_xp->xb_sense_resid  = 0;
15603 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15604 
15605 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15606 }
15607 
15608 
15609 /*
15610  *    Function: sd_mark_rqs_idle
15611  *
15612  * Description: SD_MUTEX must be held continuously through this routine
15613  *		to prevent reuse of the rqs struct before the caller can
15614  *		complete it's processing.
15615  *
15616  * Return Code: Pointer to the RQS buf
15617  *
15618  *     Context: May be called under interrupt context
15619  */
15620 
15621 static struct buf *
15622 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15623 {
15624 	struct buf *bp;
15625 	ASSERT(un != NULL);
15626 	ASSERT(sense_xp != NULL);
15627 	ASSERT(mutex_owned(SD_MUTEX(un)));
15628 	ASSERT(un->un_sense_isbusy != 0);
15629 
15630 	un->un_sense_isbusy = 0;
15631 	bp = sense_xp->xb_sense_bp;
15632 	sense_xp->xb_sense_bp = NULL;
15633 
15634 	/* This pkt is no longer interested in getting sense data */
15635 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15636 
15637 	return (bp);
15638 }
15639 
15640 
15641 
15642 /*
15643  *    Function: sd_alloc_rqs
15644  *
15645  * Description: Set up the unit to receive auto request sense data
15646  *
15647  * Return Code: DDI_SUCCESS or DDI_FAILURE
15648  *
15649  *     Context: Called under attach(9E) context
15650  */
15651 
15652 static int
15653 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15654 {
15655 	struct sd_xbuf *xp;
15656 
15657 	ASSERT(un != NULL);
15658 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15659 	ASSERT(un->un_rqs_bp == NULL);
15660 	ASSERT(un->un_rqs_pktp == NULL);
15661 
15662 	/*
15663 	 * First allocate the required buf and scsi_pkt structs, then set up
15664 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15665 	 */
15666 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15667 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15668 	if (un->un_rqs_bp == NULL) {
15669 		return (DDI_FAILURE);
15670 	}
15671 
15672 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15673 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15674 
15675 	if (un->un_rqs_pktp == NULL) {
15676 		sd_free_rqs(un);
15677 		return (DDI_FAILURE);
15678 	}
15679 
15680 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15681 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15682 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
15683 
15684 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15685 
15686 	/* Set up the other needed members in the ARQ scsi_pkt. */
15687 	un->un_rqs_pktp->pkt_comp   = sdintr;
15688 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15689 	un->un_rqs_pktp->pkt_flags |=
15690 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15691 
15692 	/*
15693 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15694 	 * provide any intpkt, destroypkt routines as we take care of
15695 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15696 	 */
15697 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15698 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15699 	xp->xb_pktp = un->un_rqs_pktp;
15700 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15701 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15702 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15703 
15704 	/*
15705 	 * Save the pointer to the request sense private bp so it can
15706 	 * be retrieved in sdintr.
15707 	 */
15708 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15709 	ASSERT(un->un_rqs_bp->b_private == xp);
15710 
15711 	/*
15712 	 * See if the HBA supports auto-request sense for the specified
15713 	 * target/lun. If it does, then try to enable it (if not already
15714 	 * enabled).
15715 	 *
15716 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15717 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15718 	 * return success.  However, in both of these cases ARQ is always
15719 	 * enabled and scsi_ifgetcap will always return true. The best approach
15720 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15721 	 *
15722 	 * The 3rd case is the HBA (adp) always return enabled on
15723 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15724 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15725 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15726 	 */
15727 
15728 	if (un->un_f_is_fibre == TRUE) {
15729 		un->un_f_arq_enabled = TRUE;
15730 	} else {
15731 #if defined(__i386) || defined(__amd64)
15732 		/*
15733 		 * Circumvent the Adaptec bug, remove this code when
15734 		 * the bug is fixed
15735 		 */
15736 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15737 #endif
15738 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15739 		case 0:
15740 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15741 			    "sd_alloc_rqs: HBA supports ARQ\n");
15742 			/*
15743 			 * ARQ is supported by this HBA but currently is not
15744 			 * enabled. Attempt to enable it and if successful then
15745 			 * mark this instance as ARQ enabled.
15746 			 */
15747 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15748 			    == 1) {
15749 				/* Successfully enabled ARQ in the HBA */
15750 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15751 				    "sd_alloc_rqs: ARQ enabled\n");
15752 				un->un_f_arq_enabled = TRUE;
15753 			} else {
15754 				/* Could not enable ARQ in the HBA */
15755 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15756 				    "sd_alloc_rqs: failed ARQ enable\n");
15757 				un->un_f_arq_enabled = FALSE;
15758 			}
15759 			break;
15760 		case 1:
15761 			/*
15762 			 * ARQ is supported by this HBA and is already enabled.
15763 			 * Just mark ARQ as enabled for this instance.
15764 			 */
15765 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15766 			    "sd_alloc_rqs: ARQ already enabled\n");
15767 			un->un_f_arq_enabled = TRUE;
15768 			break;
15769 		default:
15770 			/*
15771 			 * ARQ is not supported by this HBA; disable it for this
15772 			 * instance.
15773 			 */
15774 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15775 			    "sd_alloc_rqs: HBA does not support ARQ\n");
15776 			un->un_f_arq_enabled = FALSE;
15777 			break;
15778 		}
15779 	}
15780 
15781 	return (DDI_SUCCESS);
15782 }
15783 
15784 
15785 /*
15786  *    Function: sd_free_rqs
15787  *
15788  * Description: Cleanup for the pre-instance RQS command.
15789  *
15790  *     Context: Kernel thread context
15791  */
15792 
15793 static void
15794 sd_free_rqs(struct sd_lun *un)
15795 {
15796 	ASSERT(un != NULL);
15797 
15798 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15799 
15800 	/*
15801 	 * If consistent memory is bound to a scsi_pkt, the pkt
15802 	 * has to be destroyed *before* freeing the consistent memory.
15803 	 * Don't change the sequence of this operations.
15804 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15805 	 * after it was freed in scsi_free_consistent_buf().
15806 	 */
15807 	if (un->un_rqs_pktp != NULL) {
15808 		scsi_destroy_pkt(un->un_rqs_pktp);
15809 		un->un_rqs_pktp = NULL;
15810 	}
15811 
15812 	if (un->un_rqs_bp != NULL) {
15813 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
15814 		if (xp != NULL) {
15815 			kmem_free(xp, sizeof (struct sd_xbuf));
15816 		}
15817 		scsi_free_consistent_buf(un->un_rqs_bp);
15818 		un->un_rqs_bp = NULL;
15819 	}
15820 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15821 }
15822 
15823 
15824 
15825 /*
15826  *    Function: sd_reduce_throttle
15827  *
15828  * Description: Reduces the maximum # of outstanding commands on a
15829  *		target to the current number of outstanding commands.
15830  *		Queues a tiemout(9F) callback to restore the limit
15831  *		after a specified interval has elapsed.
15832  *		Typically used when we get a TRAN_BUSY return code
15833  *		back from scsi_transport().
15834  *
15835  *   Arguments: un - ptr to the sd_lun softstate struct
15836  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15837  *
15838  *     Context: May be called from interrupt context
15839  */
15840 
15841 static void
15842 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15843 {
15844 	ASSERT(un != NULL);
15845 	ASSERT(mutex_owned(SD_MUTEX(un)));
15846 	ASSERT(un->un_ncmds_in_transport >= 0);
15847 
15848 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15849 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15850 	    un, un->un_throttle, un->un_ncmds_in_transport);
15851 
15852 	if (un->un_throttle > 1) {
15853 		if (un->un_f_use_adaptive_throttle == TRUE) {
15854 			switch (throttle_type) {
15855 			case SD_THROTTLE_TRAN_BUSY:
15856 				if (un->un_busy_throttle == 0) {
15857 					un->un_busy_throttle = un->un_throttle;
15858 				}
15859 				break;
15860 			case SD_THROTTLE_QFULL:
15861 				un->un_busy_throttle = 0;
15862 				break;
15863 			default:
15864 				ASSERT(FALSE);
15865 			}
15866 
15867 			if (un->un_ncmds_in_transport > 0) {
15868 				un->un_throttle = un->un_ncmds_in_transport;
15869 			}
15870 
15871 		} else {
15872 			if (un->un_ncmds_in_transport == 0) {
15873 				un->un_throttle = 1;
15874 			} else {
15875 				un->un_throttle = un->un_ncmds_in_transport;
15876 			}
15877 		}
15878 	}
15879 
15880 	/* Reschedule the timeout if none is currently active */
15881 	if (un->un_reset_throttle_timeid == NULL) {
15882 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15883 		    un, SD_THROTTLE_RESET_INTERVAL);
15884 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15885 		    "sd_reduce_throttle: timeout scheduled!\n");
15886 	}
15887 
15888 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15889 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15890 }
15891 
15892 
15893 
15894 /*
15895  *    Function: sd_restore_throttle
15896  *
15897  * Description: Callback function for timeout(9F).  Resets the current
15898  *		value of un->un_throttle to its default.
15899  *
15900  *   Arguments: arg - pointer to associated softstate for the device.
15901  *
15902  *     Context: May be called from interrupt context
15903  */
15904 
15905 static void
15906 sd_restore_throttle(void *arg)
15907 {
15908 	struct sd_lun	*un = arg;
15909 
15910 	ASSERT(un != NULL);
15911 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15912 
15913 	mutex_enter(SD_MUTEX(un));
15914 
15915 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15916 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15917 
15918 	un->un_reset_throttle_timeid = NULL;
15919 
15920 	if (un->un_f_use_adaptive_throttle == TRUE) {
15921 		/*
15922 		 * If un_busy_throttle is nonzero, then it contains the
15923 		 * value that un_throttle was when we got a TRAN_BUSY back
15924 		 * from scsi_transport(). We want to revert back to this
15925 		 * value.
15926 		 *
15927 		 * In the QFULL case, the throttle limit will incrementally
15928 		 * increase until it reaches max throttle.
15929 		 */
15930 		if (un->un_busy_throttle > 0) {
15931 			un->un_throttle = un->un_busy_throttle;
15932 			un->un_busy_throttle = 0;
15933 		} else {
15934 			/*
15935 			 * increase throttle by 10% open gate slowly, schedule
15936 			 * another restore if saved throttle has not been
15937 			 * reached
15938 			 */
15939 			short throttle;
15940 			if (sd_qfull_throttle_enable) {
15941 				throttle = un->un_throttle +
15942 				    max((un->un_throttle / 10), 1);
15943 				un->un_throttle =
15944 				    (throttle < un->un_saved_throttle) ?
15945 				    throttle : un->un_saved_throttle;
15946 				if (un->un_throttle < un->un_saved_throttle) {
15947 					un->un_reset_throttle_timeid =
15948 					    timeout(sd_restore_throttle,
15949 					    un,
15950 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
15951 				}
15952 			}
15953 		}
15954 
15955 		/*
15956 		 * If un_throttle has fallen below the low-water mark, we
15957 		 * restore the maximum value here (and allow it to ratchet
15958 		 * down again if necessary).
15959 		 */
15960 		if (un->un_throttle < un->un_min_throttle) {
15961 			un->un_throttle = un->un_saved_throttle;
15962 		}
15963 	} else {
15964 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15965 		    "restoring limit from 0x%x to 0x%x\n",
15966 		    un->un_throttle, un->un_saved_throttle);
15967 		un->un_throttle = un->un_saved_throttle;
15968 	}
15969 
15970 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15971 	    "sd_restore_throttle: calling sd_start_cmds!\n");
15972 
15973 	sd_start_cmds(un, NULL);
15974 
15975 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15976 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
15977 	    un, un->un_throttle);
15978 
15979 	mutex_exit(SD_MUTEX(un));
15980 
15981 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
15982 }
15983 
15984 /*
15985  *    Function: sdrunout
15986  *
15987  * Description: Callback routine for scsi_init_pkt when a resource allocation
15988  *		fails.
15989  *
15990  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
15991  *		soft state instance.
15992  *
15993  * Return Code: The scsi_init_pkt routine allows for the callback function to
15994  *		return a 0 indicating the callback should be rescheduled or a 1
15995  *		indicating not to reschedule. This routine always returns 1
15996  *		because the driver always provides a callback function to
15997  *		scsi_init_pkt. This results in a callback always being scheduled
15998  *		(via the scsi_init_pkt callback implementation) if a resource
15999  *		failure occurs.
16000  *
16001  *     Context: This callback function may not block or call routines that block
16002  *
16003  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16004  *		request persisting at the head of the list which cannot be
16005  *		satisfied even after multiple retries. In the future the driver
16006  *		may implement some time of maximum runout count before failing
16007  *		an I/O.
16008  */
16009 
16010 static int
16011 sdrunout(caddr_t arg)
16012 {
16013 	struct sd_lun	*un = (struct sd_lun *)arg;
16014 
16015 	ASSERT(un != NULL);
16016 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16017 
16018 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16019 
16020 	mutex_enter(SD_MUTEX(un));
16021 	sd_start_cmds(un, NULL);
16022 	mutex_exit(SD_MUTEX(un));
16023 	/*
16024 	 * This callback routine always returns 1 (i.e. do not reschedule)
16025 	 * because we always specify sdrunout as the callback handler for
16026 	 * scsi_init_pkt inside the call to sd_start_cmds.
16027 	 */
16028 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16029 	return (1);
16030 }
16031 
16032 
16033 /*
16034  *    Function: sdintr
16035  *
16036  * Description: Completion callback routine for scsi_pkt(9S) structs
16037  *		sent to the HBA driver via scsi_transport(9F).
16038  *
16039  *     Context: Interrupt context
16040  */
16041 
16042 static void
16043 sdintr(struct scsi_pkt *pktp)
16044 {
16045 	struct buf	*bp;
16046 	struct sd_xbuf	*xp;
16047 	struct sd_lun	*un;
16048 	size_t		actual_len;
16049 	sd_ssc_t	*sscp;
16050 
16051 	ASSERT(pktp != NULL);
16052 	bp = (struct buf *)pktp->pkt_private;
16053 	ASSERT(bp != NULL);
16054 	xp = SD_GET_XBUF(bp);
16055 	ASSERT(xp != NULL);
16056 	ASSERT(xp->xb_pktp != NULL);
16057 	un = SD_GET_UN(bp);
16058 	ASSERT(un != NULL);
16059 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16060 
16061 #ifdef SD_FAULT_INJECTION
16062 
16063 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16064 	/* SD FaultInjection */
16065 	sd_faultinjection(pktp);
16066 
16067 #endif /* SD_FAULT_INJECTION */
16068 
16069 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16070 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16071 
16072 	mutex_enter(SD_MUTEX(un));
16073 
16074 	ASSERT(un->un_fm_private != NULL);
16075 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16076 	ASSERT(sscp != NULL);
16077 
16078 	/* Reduce the count of the #commands currently in transport */
16079 	un->un_ncmds_in_transport--;
16080 	ASSERT(un->un_ncmds_in_transport >= 0);
16081 
16082 	/* Increment counter to indicate that the callback routine is active */
16083 	un->un_in_callback++;
16084 
16085 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16086 
16087 #ifdef	SDDEBUG
16088 	if (bp == un->un_retry_bp) {
16089 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16090 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16091 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16092 	}
16093 #endif
16094 
16095 	/*
16096 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16097 	 * state if needed.
16098 	 */
16099 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16100 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16101 		    "Command failed to complete...Device is gone\n");
16102 		if (un->un_mediastate != DKIO_DEV_GONE) {
16103 			un->un_mediastate = DKIO_DEV_GONE;
16104 			cv_broadcast(&un->un_state_cv);
16105 		}
16106 		sd_return_failed_command(un, bp, EIO);
16107 		goto exit;
16108 	}
16109 
16110 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16111 		SD_TRACE(SD_LOG_COMMON, un,
16112 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16113 	}
16114 
16115 	/*
16116 	 * First see if the pkt has auto-request sense data with it....
16117 	 * Look at the packet state first so we don't take a performance
16118 	 * hit looking at the arq enabled flag unless absolutely necessary.
16119 	 */
16120 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16121 	    (un->un_f_arq_enabled == TRUE)) {
16122 		/*
16123 		 * The HBA did an auto request sense for this command so check
16124 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16125 		 * driver command that should not be retried.
16126 		 */
16127 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16128 			/*
16129 			 * Save the relevant sense info into the xp for the
16130 			 * original cmd.
16131 			 */
16132 			struct scsi_arq_status *asp;
16133 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16134 			xp->xb_sense_status =
16135 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16136 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16137 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16138 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16139 				actual_len = MAX_SENSE_LENGTH -
16140 				    xp->xb_sense_resid;
16141 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16142 				    MAX_SENSE_LENGTH);
16143 			} else {
16144 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16145 					actual_len = MAX_SENSE_LENGTH -
16146 					    xp->xb_sense_resid;
16147 				} else {
16148 					actual_len = SENSE_LENGTH -
16149 					    xp->xb_sense_resid;
16150 				}
16151 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16152 					if ((((struct uscsi_cmd *)
16153 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16154 					    actual_len) {
16155 						xp->xb_sense_resid =
16156 						    (((struct uscsi_cmd *)
16157 						    (xp->xb_pktinfo))->
16158 						    uscsi_rqlen) - actual_len;
16159 					} else {
16160 						xp->xb_sense_resid = 0;
16161 					}
16162 				}
16163 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16164 				    SENSE_LENGTH);
16165 			}
16166 
16167 			/* fail the command */
16168 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16169 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16170 			sd_return_failed_command(un, bp, EIO);
16171 			goto exit;
16172 		}
16173 
16174 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16175 		/*
16176 		 * We want to either retry or fail this command, so free
16177 		 * the DMA resources here.  If we retry the command then
16178 		 * the DMA resources will be reallocated in sd_start_cmds().
16179 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16180 		 * causes the *entire* transfer to start over again from the
16181 		 * beginning of the request, even for PARTIAL chunks that
16182 		 * have already transferred successfully.
16183 		 */
16184 		if ((un->un_f_is_fibre == TRUE) &&
16185 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16186 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16187 			scsi_dmafree(pktp);
16188 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16189 		}
16190 #endif
16191 
16192 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16193 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16194 
16195 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16196 		goto exit;
16197 	}
16198 
16199 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16200 	if (pktp->pkt_flags & FLAG_SENSING)  {
16201 		/* This pktp is from the unit's REQUEST_SENSE command */
16202 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16203 		    "sdintr: sd_handle_request_sense\n");
16204 		sd_handle_request_sense(un, bp, xp, pktp);
16205 		goto exit;
16206 	}
16207 
16208 	/*
16209 	 * Check to see if the command successfully completed as requested;
16210 	 * this is the most common case (and also the hot performance path).
16211 	 *
16212 	 * Requirements for successful completion are:
16213 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16214 	 * In addition:
16215 	 * - A residual of zero indicates successful completion no matter what
16216 	 *   the command is.
16217 	 * - If the residual is not zero and the command is not a read or
16218 	 *   write, then it's still defined as successful completion. In other
16219 	 *   words, if the command is a read or write the residual must be
16220 	 *   zero for successful completion.
16221 	 * - If the residual is not zero and the command is a read or
16222 	 *   write, and it's a USCSICMD, then it's still defined as
16223 	 *   successful completion.
16224 	 */
16225 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16226 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16227 
16228 		/*
16229 		 * Since this command is returned with a good status, we
16230 		 * can reset the count for Sonoma failover.
16231 		 */
16232 		un->un_sonoma_failure_count = 0;
16233 
16234 		/*
16235 		 * Return all USCSI commands on good status
16236 		 */
16237 		if (pktp->pkt_resid == 0) {
16238 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16239 			    "sdintr: returning command for resid == 0\n");
16240 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16241 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16242 			SD_UPDATE_B_RESID(bp, pktp);
16243 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16244 			    "sdintr: returning command for resid != 0\n");
16245 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16246 			SD_UPDATE_B_RESID(bp, pktp);
16247 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16248 			    "sdintr: returning uscsi command\n");
16249 		} else {
16250 			goto not_successful;
16251 		}
16252 		sd_return_command(un, bp);
16253 
16254 		/*
16255 		 * Decrement counter to indicate that the callback routine
16256 		 * is done.
16257 		 */
16258 		un->un_in_callback--;
16259 		ASSERT(un->un_in_callback >= 0);
16260 		mutex_exit(SD_MUTEX(un));
16261 
16262 		return;
16263 	}
16264 
16265 not_successful:
16266 
16267 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16268 	/*
16269 	 * The following is based upon knowledge of the underlying transport
16270 	 * and its use of DMA resources.  This code should be removed when
16271 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16272 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16273 	 * and sd_start_cmds().
16274 	 *
16275 	 * Free any DMA resources associated with this command if there
16276 	 * is a chance it could be retried or enqueued for later retry.
16277 	 * If we keep the DMA binding then mpxio cannot reissue the
16278 	 * command on another path whenever a path failure occurs.
16279 	 *
16280 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16281 	 * causes the *entire* transfer to start over again from the
16282 	 * beginning of the request, even for PARTIAL chunks that
16283 	 * have already transferred successfully.
16284 	 *
16285 	 * This is only done for non-uscsi commands (and also skipped for the
16286 	 * driver's internal RQS command). Also just do this for Fibre Channel
16287 	 * devices as these are the only ones that support mpxio.
16288 	 */
16289 	if ((un->un_f_is_fibre == TRUE) &&
16290 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16291 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16292 		scsi_dmafree(pktp);
16293 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16294 	}
16295 #endif
16296 
16297 	/*
16298 	 * The command did not successfully complete as requested so check
16299 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16300 	 * driver command that should not be retried so just return. If
16301 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16302 	 */
16303 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16304 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16305 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16306 		/*
16307 		 * Issue a request sense if a check condition caused the error
16308 		 * (we handle the auto request sense case above), otherwise
16309 		 * just fail the command.
16310 		 */
16311 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16312 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16313 			sd_send_request_sense_command(un, bp, pktp);
16314 		} else {
16315 			sd_return_failed_command(un, bp, EIO);
16316 		}
16317 		goto exit;
16318 	}
16319 
16320 	/*
16321 	 * The command did not successfully complete as requested so process
16322 	 * the error, retry, and/or attempt recovery.
16323 	 */
16324 	switch (pktp->pkt_reason) {
16325 	case CMD_CMPLT:
16326 		switch (SD_GET_PKT_STATUS(pktp)) {
16327 		case STATUS_GOOD:
16328 			/*
16329 			 * The command completed successfully with a non-zero
16330 			 * residual
16331 			 */
16332 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16333 			    "sdintr: STATUS_GOOD \n");
16334 			sd_pkt_status_good(un, bp, xp, pktp);
16335 			break;
16336 
16337 		case STATUS_CHECK:
16338 		case STATUS_TERMINATED:
16339 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16340 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16341 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16342 			break;
16343 
16344 		case STATUS_BUSY:
16345 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16346 			    "sdintr: STATUS_BUSY\n");
16347 			sd_pkt_status_busy(un, bp, xp, pktp);
16348 			break;
16349 
16350 		case STATUS_RESERVATION_CONFLICT:
16351 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16352 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16353 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16354 			break;
16355 
16356 		case STATUS_QFULL:
16357 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16358 			    "sdintr: STATUS_QFULL\n");
16359 			sd_pkt_status_qfull(un, bp, xp, pktp);
16360 			break;
16361 
16362 		case STATUS_MET:
16363 		case STATUS_INTERMEDIATE:
16364 		case STATUS_SCSI2:
16365 		case STATUS_INTERMEDIATE_MET:
16366 		case STATUS_ACA_ACTIVE:
16367 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16368 			    "Unexpected SCSI status received: 0x%x\n",
16369 			    SD_GET_PKT_STATUS(pktp));
16370 			/*
16371 			 * Mark the ssc_flags when detected invalid status
16372 			 * code for non-USCSI command.
16373 			 */
16374 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16375 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16376 				    "stat-code");
16377 			}
16378 			sd_return_failed_command(un, bp, EIO);
16379 			break;
16380 
16381 		default:
16382 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16383 			    "Invalid SCSI status received: 0x%x\n",
16384 			    SD_GET_PKT_STATUS(pktp));
16385 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16386 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16387 				    "stat-code");
16388 			}
16389 			sd_return_failed_command(un, bp, EIO);
16390 			break;
16391 
16392 		}
16393 		break;
16394 
16395 	case CMD_INCOMPLETE:
16396 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16397 		    "sdintr:  CMD_INCOMPLETE\n");
16398 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16399 		break;
16400 	case CMD_TRAN_ERR:
16401 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16402 		    "sdintr: CMD_TRAN_ERR\n");
16403 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16404 		break;
16405 	case CMD_RESET:
16406 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16407 		    "sdintr: CMD_RESET \n");
16408 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16409 		break;
16410 	case CMD_ABORTED:
16411 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16412 		    "sdintr: CMD_ABORTED \n");
16413 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16414 		break;
16415 	case CMD_TIMEOUT:
16416 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16417 		    "sdintr: CMD_TIMEOUT\n");
16418 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16419 		break;
16420 	case CMD_UNX_BUS_FREE:
16421 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16422 		    "sdintr: CMD_UNX_BUS_FREE \n");
16423 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16424 		break;
16425 	case CMD_TAG_REJECT:
16426 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16427 		    "sdintr: CMD_TAG_REJECT\n");
16428 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16429 		break;
16430 	default:
16431 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16432 		    "sdintr: default\n");
16433 		/*
16434 		 * Mark the ssc_flags for detecting invliad pkt_reason.
16435 		 */
16436 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16437 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
16438 			    "pkt-reason");
16439 		}
16440 		sd_pkt_reason_default(un, bp, xp, pktp);
16441 		break;
16442 	}
16443 
16444 exit:
16445 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16446 
16447 	/* Decrement counter to indicate that the callback routine is done. */
16448 	un->un_in_callback--;
16449 	ASSERT(un->un_in_callback >= 0);
16450 
16451 	/*
16452 	 * At this point, the pkt has been dispatched, ie, it is either
16453 	 * being re-tried or has been returned to its caller and should
16454 	 * not be referenced.
16455 	 */
16456 
16457 	mutex_exit(SD_MUTEX(un));
16458 }
16459 
16460 
16461 /*
16462  *    Function: sd_print_incomplete_msg
16463  *
16464  * Description: Prints the error message for a CMD_INCOMPLETE error.
16465  *
16466  *   Arguments: un - ptr to associated softstate for the device.
16467  *		bp - ptr to the buf(9S) for the command.
16468  *		arg - message string ptr
16469  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16470  *			or SD_NO_RETRY_ISSUED.
16471  *
16472  *     Context: May be called under interrupt context
16473  */
16474 
16475 static void
16476 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16477 {
16478 	struct scsi_pkt	*pktp;
16479 	char	*msgp;
16480 	char	*cmdp = arg;
16481 
16482 	ASSERT(un != NULL);
16483 	ASSERT(mutex_owned(SD_MUTEX(un)));
16484 	ASSERT(bp != NULL);
16485 	ASSERT(arg != NULL);
16486 	pktp = SD_GET_PKTP(bp);
16487 	ASSERT(pktp != NULL);
16488 
16489 	switch (code) {
16490 	case SD_DELAYED_RETRY_ISSUED:
16491 	case SD_IMMEDIATE_RETRY_ISSUED:
16492 		msgp = "retrying";
16493 		break;
16494 	case SD_NO_RETRY_ISSUED:
16495 	default:
16496 		msgp = "giving up";
16497 		break;
16498 	}
16499 
16500 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16501 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16502 		    "incomplete %s- %s\n", cmdp, msgp);
16503 	}
16504 }
16505 
16506 
16507 
16508 /*
16509  *    Function: sd_pkt_status_good
16510  *
16511  * Description: Processing for a STATUS_GOOD code in pkt_status.
16512  *
16513  *     Context: May be called under interrupt context
16514  */
16515 
16516 static void
16517 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16518 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16519 {
16520 	char	*cmdp;
16521 
16522 	ASSERT(un != NULL);
16523 	ASSERT(mutex_owned(SD_MUTEX(un)));
16524 	ASSERT(bp != NULL);
16525 	ASSERT(xp != NULL);
16526 	ASSERT(pktp != NULL);
16527 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16528 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16529 	ASSERT(pktp->pkt_resid != 0);
16530 
16531 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16532 
16533 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16534 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16535 	case SCMD_READ:
16536 		cmdp = "read";
16537 		break;
16538 	case SCMD_WRITE:
16539 		cmdp = "write";
16540 		break;
16541 	default:
16542 		SD_UPDATE_B_RESID(bp, pktp);
16543 		sd_return_command(un, bp);
16544 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16545 		return;
16546 	}
16547 
16548 	/*
16549 	 * See if we can retry the read/write, preferrably immediately.
16550 	 * If retries are exhaused, then sd_retry_command() will update
16551 	 * the b_resid count.
16552 	 */
16553 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16554 	    cmdp, EIO, (clock_t)0, NULL);
16555 
16556 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16557 }
16558 
16559 
16560 
16561 
16562 
16563 /*
16564  *    Function: sd_handle_request_sense
16565  *
16566  * Description: Processing for non-auto Request Sense command.
16567  *
16568  *   Arguments: un - ptr to associated softstate
16569  *		sense_bp - ptr to buf(9S) for the RQS command
16570  *		sense_xp - ptr to the sd_xbuf for the RQS command
16571  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16572  *
16573  *     Context: May be called under interrupt context
16574  */
16575 
16576 static void
16577 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16578 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16579 {
16580 	struct buf	*cmd_bp;	/* buf for the original command */
16581 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16582 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16583 	size_t		actual_len;	/* actual sense data length */
16584 
16585 	ASSERT(un != NULL);
16586 	ASSERT(mutex_owned(SD_MUTEX(un)));
16587 	ASSERT(sense_bp != NULL);
16588 	ASSERT(sense_xp != NULL);
16589 	ASSERT(sense_pktp != NULL);
16590 
16591 	/*
16592 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16593 	 * RQS command and not the original command.
16594 	 */
16595 	ASSERT(sense_pktp == un->un_rqs_pktp);
16596 	ASSERT(sense_bp   == un->un_rqs_bp);
16597 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16598 	    (FLAG_SENSING | FLAG_HEAD));
16599 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16600 	    FLAG_SENSING) == FLAG_SENSING);
16601 
16602 	/* These are the bp, xp, and pktp for the original command */
16603 	cmd_bp = sense_xp->xb_sense_bp;
16604 	cmd_xp = SD_GET_XBUF(cmd_bp);
16605 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16606 
16607 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16608 		/*
16609 		 * The REQUEST SENSE command failed.  Release the REQUEST
16610 		 * SENSE command for re-use, get back the bp for the original
16611 		 * command, and attempt to re-try the original command if
16612 		 * FLAG_DIAGNOSE is not set in the original packet.
16613 		 */
16614 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16615 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16616 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16617 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16618 			    NULL, NULL, EIO, (clock_t)0, NULL);
16619 			return;
16620 		}
16621 	}
16622 
16623 	/*
16624 	 * Save the relevant sense info into the xp for the original cmd.
16625 	 *
16626 	 * Note: if the request sense failed the state info will be zero
16627 	 * as set in sd_mark_rqs_busy()
16628 	 */
16629 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16630 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16631 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
16632 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
16633 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
16634 	    SENSE_LENGTH)) {
16635 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16636 		    MAX_SENSE_LENGTH);
16637 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
16638 	} else {
16639 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16640 		    SENSE_LENGTH);
16641 		if (actual_len < SENSE_LENGTH) {
16642 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
16643 		} else {
16644 			cmd_xp->xb_sense_resid = 0;
16645 		}
16646 	}
16647 
16648 	/*
16649 	 *  Free up the RQS command....
16650 	 *  NOTE:
16651 	 *	Must do this BEFORE calling sd_validate_sense_data!
16652 	 *	sd_validate_sense_data may return the original command in
16653 	 *	which case the pkt will be freed and the flags can no
16654 	 *	longer be touched.
16655 	 *	SD_MUTEX is held through this process until the command
16656 	 *	is dispatched based upon the sense data, so there are
16657 	 *	no race conditions.
16658 	 */
16659 	(void) sd_mark_rqs_idle(un, sense_xp);
16660 
16661 	/*
16662 	 * For a retryable command see if we have valid sense data, if so then
16663 	 * turn it over to sd_decode_sense() to figure out the right course of
16664 	 * action. Just fail a non-retryable command.
16665 	 */
16666 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16667 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
16668 		    SD_SENSE_DATA_IS_VALID) {
16669 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16670 		}
16671 	} else {
16672 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16673 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16674 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16675 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16676 		sd_return_failed_command(un, cmd_bp, EIO);
16677 	}
16678 }
16679 
16680 
16681 
16682 
16683 /*
16684  *    Function: sd_handle_auto_request_sense
16685  *
16686  * Description: Processing for auto-request sense information.
16687  *
16688  *   Arguments: un - ptr to associated softstate
16689  *		bp - ptr to buf(9S) for the command
16690  *		xp - ptr to the sd_xbuf for the command
16691  *		pktp - ptr to the scsi_pkt(9S) for the command
16692  *
16693  *     Context: May be called under interrupt context
16694  */
16695 
16696 static void
16697 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16698 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16699 {
16700 	struct scsi_arq_status *asp;
16701 	size_t actual_len;
16702 
16703 	ASSERT(un != NULL);
16704 	ASSERT(mutex_owned(SD_MUTEX(un)));
16705 	ASSERT(bp != NULL);
16706 	ASSERT(xp != NULL);
16707 	ASSERT(pktp != NULL);
16708 	ASSERT(pktp != un->un_rqs_pktp);
16709 	ASSERT(bp   != un->un_rqs_bp);
16710 
16711 	/*
16712 	 * For auto-request sense, we get a scsi_arq_status back from
16713 	 * the HBA, with the sense data in the sts_sensedata member.
16714 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16715 	 */
16716 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16717 
16718 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16719 		/*
16720 		 * The auto REQUEST SENSE failed; see if we can re-try
16721 		 * the original command.
16722 		 */
16723 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16724 		    "auto request sense failed (reason=%s)\n",
16725 		    scsi_rname(asp->sts_rqpkt_reason));
16726 
16727 		sd_reset_target(un, pktp);
16728 
16729 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16730 		    NULL, NULL, EIO, (clock_t)0, NULL);
16731 		return;
16732 	}
16733 
16734 	/* Save the relevant sense info into the xp for the original cmd. */
16735 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16736 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16737 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16738 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
16739 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16740 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16741 		    MAX_SENSE_LENGTH);
16742 	} else {
16743 		if (xp->xb_sense_resid > SENSE_LENGTH) {
16744 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16745 		} else {
16746 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
16747 		}
16748 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16749 			if ((((struct uscsi_cmd *)
16750 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
16751 				xp->xb_sense_resid = (((struct uscsi_cmd *)
16752 				    (xp->xb_pktinfo))->uscsi_rqlen) -
16753 				    actual_len;
16754 			} else {
16755 				xp->xb_sense_resid = 0;
16756 			}
16757 		}
16758 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
16759 	}
16760 
16761 	/*
16762 	 * See if we have valid sense data, if so then turn it over to
16763 	 * sd_decode_sense() to figure out the right course of action.
16764 	 */
16765 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
16766 	    SD_SENSE_DATA_IS_VALID) {
16767 		sd_decode_sense(un, bp, xp, pktp);
16768 	}
16769 }
16770 
16771 
16772 /*
16773  *    Function: sd_print_sense_failed_msg
16774  *
16775  * Description: Print log message when RQS has failed.
16776  *
16777  *   Arguments: un - ptr to associated softstate
16778  *		bp - ptr to buf(9S) for the command
16779  *		arg - generic message string ptr
16780  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16781  *			or SD_NO_RETRY_ISSUED
16782  *
16783  *     Context: May be called from interrupt context
16784  */
16785 
16786 static void
16787 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16788 	int code)
16789 {
16790 	char	*msgp = arg;
16791 
16792 	ASSERT(un != NULL);
16793 	ASSERT(mutex_owned(SD_MUTEX(un)));
16794 	ASSERT(bp != NULL);
16795 
16796 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16797 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16798 	}
16799 }
16800 
16801 
16802 /*
16803  *    Function: sd_validate_sense_data
16804  *
16805  * Description: Check the given sense data for validity.
16806  *		If the sense data is not valid, the command will
16807  *		be either failed or retried!
16808  *
16809  * Return Code: SD_SENSE_DATA_IS_INVALID
16810  *		SD_SENSE_DATA_IS_VALID
16811  *
16812  *     Context: May be called from interrupt context
16813  */
16814 
16815 static int
16816 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16817 	size_t actual_len)
16818 {
16819 	struct scsi_extended_sense *esp;
16820 	struct	scsi_pkt *pktp;
16821 	char	*msgp = NULL;
16822 	sd_ssc_t *sscp;
16823 
16824 	ASSERT(un != NULL);
16825 	ASSERT(mutex_owned(SD_MUTEX(un)));
16826 	ASSERT(bp != NULL);
16827 	ASSERT(bp != un->un_rqs_bp);
16828 	ASSERT(xp != NULL);
16829 	ASSERT(un->un_fm_private != NULL);
16830 
16831 	pktp = SD_GET_PKTP(bp);
16832 	ASSERT(pktp != NULL);
16833 
16834 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16835 	ASSERT(sscp != NULL);
16836 
16837 	/*
16838 	 * Check the status of the RQS command (auto or manual).
16839 	 */
16840 	switch (xp->xb_sense_status & STATUS_MASK) {
16841 	case STATUS_GOOD:
16842 		break;
16843 
16844 	case STATUS_RESERVATION_CONFLICT:
16845 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16846 		return (SD_SENSE_DATA_IS_INVALID);
16847 
16848 	case STATUS_BUSY:
16849 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16850 		    "Busy Status on REQUEST SENSE\n");
16851 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16852 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16853 		return (SD_SENSE_DATA_IS_INVALID);
16854 
16855 	case STATUS_QFULL:
16856 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16857 		    "QFULL Status on REQUEST SENSE\n");
16858 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16859 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16860 		return (SD_SENSE_DATA_IS_INVALID);
16861 
16862 	case STATUS_CHECK:
16863 	case STATUS_TERMINATED:
16864 		msgp = "Check Condition on REQUEST SENSE\n";
16865 		goto sense_failed;
16866 
16867 	default:
16868 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16869 		goto sense_failed;
16870 	}
16871 
16872 	/*
16873 	 * See if we got the minimum required amount of sense data.
16874 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16875 	 * or less.
16876 	 */
16877 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16878 	    (actual_len == 0)) {
16879 		msgp = "Request Sense couldn't get sense data\n";
16880 		goto sense_failed;
16881 	}
16882 
16883 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16884 		msgp = "Not enough sense information\n";
16885 		/* Mark the ssc_flags for detecting invalid sense data */
16886 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16887 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE,
16888 			    "sense-data");
16889 		}
16890 		goto sense_failed;
16891 	}
16892 
16893 	/*
16894 	 * We require the extended sense data
16895 	 */
16896 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16897 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16898 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16899 			static char tmp[8];
16900 			static char buf[148];
16901 			char *p = (char *)(xp->xb_sense_data);
16902 			int i;
16903 
16904 			mutex_enter(&sd_sense_mutex);
16905 			(void) strcpy(buf, "undecodable sense information:");
16906 			for (i = 0; i < actual_len; i++) {
16907 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16908 				(void) strcpy(&buf[strlen(buf)], tmp);
16909 			}
16910 			i = strlen(buf);
16911 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16912 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16913 			mutex_exit(&sd_sense_mutex);
16914 		}
16915 
16916 		/* Mark the ssc_flags for detecting invalid sense data */
16917 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16918 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE,
16919 			    "sense-data");
16920 		}
16921 
16922 		/* Note: Legacy behavior, fail the command with no retry */
16923 		sd_return_failed_command(un, bp, EIO);
16924 		return (SD_SENSE_DATA_IS_INVALID);
16925 	}
16926 
16927 	/*
16928 	 * Check that es_code is valid (es_class concatenated with es_code
16929 	 * make up the "response code" field.  es_class will always be 7, so
16930 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16931 	 * format.
16932 	 */
16933 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16934 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16935 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16936 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16937 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16938 		/* Mark the ssc_flags for detecting invalid sense data */
16939 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16940 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE,
16941 			    "sense-data");
16942 		}
16943 		goto sense_failed;
16944 	}
16945 
16946 	return (SD_SENSE_DATA_IS_VALID);
16947 
16948 sense_failed:
16949 	/*
16950 	 * If the request sense failed (for whatever reason), attempt
16951 	 * to retry the original command.
16952 	 */
16953 #if defined(__i386) || defined(__amd64)
16954 	/*
16955 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16956 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16957 	 * for both SCSI/FC.
16958 	 * The SD_RETRY_DELAY value need to be adjusted here
16959 	 * when SD_RETRY_DELAY change in sddef.h
16960 	 */
16961 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16962 	    sd_print_sense_failed_msg, msgp, EIO,
16963 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16964 #else
16965 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16966 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16967 #endif
16968 
16969 	return (SD_SENSE_DATA_IS_INVALID);
16970 }
16971 
16972 /*
16973  *    Function: sd_decode_sense
16974  *
16975  * Description: Take recovery action(s) when SCSI Sense Data is received.
16976  *
16977  *     Context: Interrupt context.
16978  */
16979 
16980 static void
16981 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16982 	struct scsi_pkt *pktp)
16983 {
16984 	uint8_t sense_key;
16985 
16986 	ASSERT(un != NULL);
16987 	ASSERT(mutex_owned(SD_MUTEX(un)));
16988 	ASSERT(bp != NULL);
16989 	ASSERT(bp != un->un_rqs_bp);
16990 	ASSERT(xp != NULL);
16991 	ASSERT(pktp != NULL);
16992 
16993 	sense_key = scsi_sense_key(xp->xb_sense_data);
16994 
16995 	switch (sense_key) {
16996 	case KEY_NO_SENSE:
16997 		sd_sense_key_no_sense(un, bp, xp, pktp);
16998 		break;
16999 	case KEY_RECOVERABLE_ERROR:
17000 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17001 		    bp, xp, pktp);
17002 		break;
17003 	case KEY_NOT_READY:
17004 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17005 		    bp, xp, pktp);
17006 		break;
17007 	case KEY_MEDIUM_ERROR:
17008 	case KEY_HARDWARE_ERROR:
17009 		sd_sense_key_medium_or_hardware_error(un,
17010 		    xp->xb_sense_data, bp, xp, pktp);
17011 		break;
17012 	case KEY_ILLEGAL_REQUEST:
17013 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17014 		break;
17015 	case KEY_UNIT_ATTENTION:
17016 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17017 		    bp, xp, pktp);
17018 		break;
17019 	case KEY_WRITE_PROTECT:
17020 	case KEY_VOLUME_OVERFLOW:
17021 	case KEY_MISCOMPARE:
17022 		sd_sense_key_fail_command(un, bp, xp, pktp);
17023 		break;
17024 	case KEY_BLANK_CHECK:
17025 		sd_sense_key_blank_check(un, bp, xp, pktp);
17026 		break;
17027 	case KEY_ABORTED_COMMAND:
17028 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17029 		break;
17030 	case KEY_VENDOR_UNIQUE:
17031 	case KEY_COPY_ABORTED:
17032 	case KEY_EQUAL:
17033 	case KEY_RESERVED:
17034 	default:
17035 		sd_sense_key_default(un, xp->xb_sense_data,
17036 		    bp, xp, pktp);
17037 		break;
17038 	}
17039 }
17040 
17041 
17042 /*
17043  *    Function: sd_dump_memory
17044  *
17045  * Description: Debug logging routine to print the contents of a user provided
17046  *		buffer. The output of the buffer is broken up into 256 byte
17047  *		segments due to a size constraint of the scsi_log.
17048  *		implementation.
17049  *
17050  *   Arguments: un - ptr to softstate
17051  *		comp - component mask
17052  *		title - "title" string to preceed data when printed
17053  *		data - ptr to data block to be printed
17054  *		len - size of data block to be printed
17055  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17056  *
17057  *     Context: May be called from interrupt context
17058  */
17059 
17060 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17061 
17062 static char *sd_dump_format_string[] = {
17063 		" 0x%02x",
17064 		" %c"
17065 };
17066 
17067 static void
17068 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17069     int len, int fmt)
17070 {
17071 	int	i, j;
17072 	int	avail_count;
17073 	int	start_offset;
17074 	int	end_offset;
17075 	size_t	entry_len;
17076 	char	*bufp;
17077 	char	*local_buf;
17078 	char	*format_string;
17079 
17080 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17081 
17082 	/*
17083 	 * In the debug version of the driver, this function is called from a
17084 	 * number of places which are NOPs in the release driver.
17085 	 * The debug driver therefore has additional methods of filtering
17086 	 * debug output.
17087 	 */
17088 #ifdef SDDEBUG
17089 	/*
17090 	 * In the debug version of the driver we can reduce the amount of debug
17091 	 * messages by setting sd_error_level to something other than
17092 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17093 	 * sd_component_mask.
17094 	 */
17095 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17096 	    (sd_error_level != SCSI_ERR_ALL)) {
17097 		return;
17098 	}
17099 	if (((sd_component_mask & comp) == 0) ||
17100 	    (sd_error_level != SCSI_ERR_ALL)) {
17101 		return;
17102 	}
17103 #else
17104 	if (sd_error_level != SCSI_ERR_ALL) {
17105 		return;
17106 	}
17107 #endif
17108 
17109 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17110 	bufp = local_buf;
17111 	/*
17112 	 * Available length is the length of local_buf[], minus the
17113 	 * length of the title string, minus one for the ":", minus
17114 	 * one for the newline, minus one for the NULL terminator.
17115 	 * This gives the #bytes available for holding the printed
17116 	 * values from the given data buffer.
17117 	 */
17118 	if (fmt == SD_LOG_HEX) {
17119 		format_string = sd_dump_format_string[0];
17120 	} else /* SD_LOG_CHAR */ {
17121 		format_string = sd_dump_format_string[1];
17122 	}
17123 	/*
17124 	 * Available count is the number of elements from the given
17125 	 * data buffer that we can fit into the available length.
17126 	 * This is based upon the size of the format string used.
17127 	 * Make one entry and find it's size.
17128 	 */
17129 	(void) sprintf(bufp, format_string, data[0]);
17130 	entry_len = strlen(bufp);
17131 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17132 
17133 	j = 0;
17134 	while (j < len) {
17135 		bufp = local_buf;
17136 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17137 		start_offset = j;
17138 
17139 		end_offset = start_offset + avail_count;
17140 
17141 		(void) sprintf(bufp, "%s:", title);
17142 		bufp += strlen(bufp);
17143 		for (i = start_offset; ((i < end_offset) && (j < len));
17144 		    i++, j++) {
17145 			(void) sprintf(bufp, format_string, data[i]);
17146 			bufp += entry_len;
17147 		}
17148 		(void) sprintf(bufp, "\n");
17149 
17150 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17151 	}
17152 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17153 }
17154 
17155 /*
17156  *    Function: sd_print_sense_msg
17157  *
17158  * Description: Log a message based upon the given sense data.
17159  *
17160  *   Arguments: un - ptr to associated softstate
17161  *		bp - ptr to buf(9S) for the command
17162  *		arg - ptr to associate sd_sense_info struct
17163  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17164  *			or SD_NO_RETRY_ISSUED
17165  *
17166  *     Context: May be called from interrupt context
17167  */
17168 
17169 static void
17170 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17171 {
17172 	struct sd_xbuf	*xp;
17173 	struct scsi_pkt	*pktp;
17174 	uint8_t *sensep;
17175 	daddr_t request_blkno;
17176 	diskaddr_t err_blkno;
17177 	int severity;
17178 	int pfa_flag;
17179 	extern struct scsi_key_strings scsi_cmds[];
17180 
17181 	ASSERT(un != NULL);
17182 	ASSERT(mutex_owned(SD_MUTEX(un)));
17183 	ASSERT(bp != NULL);
17184 	xp = SD_GET_XBUF(bp);
17185 	ASSERT(xp != NULL);
17186 	pktp = SD_GET_PKTP(bp);
17187 	ASSERT(pktp != NULL);
17188 	ASSERT(arg != NULL);
17189 
17190 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17191 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17192 
17193 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17194 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17195 		severity = SCSI_ERR_RETRYABLE;
17196 	}
17197 
17198 	/* Use absolute block number for the request block number */
17199 	request_blkno = xp->xb_blkno;
17200 
17201 	/*
17202 	 * Now try to get the error block number from the sense data
17203 	 */
17204 	sensep = xp->xb_sense_data;
17205 
17206 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17207 	    (uint64_t *)&err_blkno)) {
17208 		/*
17209 		 * We retrieved the error block number from the information
17210 		 * portion of the sense data.
17211 		 *
17212 		 * For USCSI commands we are better off using the error
17213 		 * block no. as the requested block no. (This is the best
17214 		 * we can estimate.)
17215 		 */
17216 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17217 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17218 			request_blkno = err_blkno;
17219 		}
17220 	} else {
17221 		/*
17222 		 * Without the es_valid bit set (for fixed format) or an
17223 		 * information descriptor (for descriptor format) we cannot
17224 		 * be certain of the error blkno, so just use the
17225 		 * request_blkno.
17226 		 */
17227 		err_blkno = (diskaddr_t)request_blkno;
17228 	}
17229 
17230 	/*
17231 	 * The following will log the buffer contents for the release driver
17232 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17233 	 * level is set to verbose.
17234 	 */
17235 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17236 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17237 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17238 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17239 
17240 	if (pfa_flag == FALSE) {
17241 		/* This is normally only set for USCSI */
17242 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17243 			return;
17244 		}
17245 
17246 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17247 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17248 		    (severity < sd_error_level))) {
17249 			return;
17250 		}
17251 	}
17252 	/*
17253 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17254 	 */
17255 	if ((SD_IS_LSI(un)) &&
17256 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17257 	    (scsi_sense_asc(sensep) == 0x94) &&
17258 	    (scsi_sense_ascq(sensep) == 0x01)) {
17259 		un->un_sonoma_failure_count++;
17260 		if (un->un_sonoma_failure_count > 1) {
17261 			return;
17262 		}
17263 	}
17264 
17265 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17266 	    request_blkno, err_blkno, scsi_cmds,
17267 	    (struct scsi_extended_sense *)sensep,
17268 	    un->un_additional_codes, NULL);
17269 }
17270 
17271 /*
17272  *    Function: sd_sense_key_no_sense
17273  *
17274  * Description: Recovery action when sense data was not received.
17275  *
17276  *     Context: May be called from interrupt context
17277  */
17278 
17279 static void
17280 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17281 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17282 {
17283 	struct sd_sense_info	si;
17284 
17285 	ASSERT(un != NULL);
17286 	ASSERT(mutex_owned(SD_MUTEX(un)));
17287 	ASSERT(bp != NULL);
17288 	ASSERT(xp != NULL);
17289 	ASSERT(pktp != NULL);
17290 
17291 	si.ssi_severity = SCSI_ERR_FATAL;
17292 	si.ssi_pfa_flag = FALSE;
17293 
17294 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17295 
17296 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17297 	    &si, EIO, (clock_t)0, NULL);
17298 }
17299 
17300 
17301 /*
17302  *    Function: sd_sense_key_recoverable_error
17303  *
17304  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17305  *
17306  *     Context: May be called from interrupt context
17307  */
17308 
17309 static void
17310 sd_sense_key_recoverable_error(struct sd_lun *un,
17311 	uint8_t *sense_datap,
17312 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17313 {
17314 	struct sd_sense_info	si;
17315 	uint8_t asc = scsi_sense_asc(sense_datap);
17316 
17317 	ASSERT(un != NULL);
17318 	ASSERT(mutex_owned(SD_MUTEX(un)));
17319 	ASSERT(bp != NULL);
17320 	ASSERT(xp != NULL);
17321 	ASSERT(pktp != NULL);
17322 
17323 	/*
17324 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17325 	 */
17326 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17327 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17328 		si.ssi_severity = SCSI_ERR_INFO;
17329 		si.ssi_pfa_flag = TRUE;
17330 	} else {
17331 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17332 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17333 		si.ssi_severity = SCSI_ERR_RECOVERED;
17334 		si.ssi_pfa_flag = FALSE;
17335 	}
17336 
17337 	if (pktp->pkt_resid == 0) {
17338 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17339 		sd_return_command(un, bp);
17340 		return;
17341 	}
17342 
17343 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17344 	    &si, EIO, (clock_t)0, NULL);
17345 }
17346 
17347 
17348 
17349 
17350 /*
17351  *    Function: sd_sense_key_not_ready
17352  *
17353  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17354  *
17355  *     Context: May be called from interrupt context
17356  */
17357 
17358 static void
17359 sd_sense_key_not_ready(struct sd_lun *un,
17360 	uint8_t *sense_datap,
17361 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17362 {
17363 	struct sd_sense_info	si;
17364 	uint8_t asc = scsi_sense_asc(sense_datap);
17365 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17366 
17367 	ASSERT(un != NULL);
17368 	ASSERT(mutex_owned(SD_MUTEX(un)));
17369 	ASSERT(bp != NULL);
17370 	ASSERT(xp != NULL);
17371 	ASSERT(pktp != NULL);
17372 
17373 	si.ssi_severity = SCSI_ERR_FATAL;
17374 	si.ssi_pfa_flag = FALSE;
17375 
17376 	/*
17377 	 * Update error stats after first NOT READY error. Disks may have
17378 	 * been powered down and may need to be restarted.  For CDROMs,
17379 	 * report NOT READY errors only if media is present.
17380 	 */
17381 	if ((ISCD(un) && (asc == 0x3A)) ||
17382 	    (xp->xb_nr_retry_count > 0)) {
17383 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17384 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17385 	}
17386 
17387 	/*
17388 	 * Just fail if the "not ready" retry limit has been reached.
17389 	 */
17390 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
17391 		/* Special check for error message printing for removables. */
17392 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17393 		    (ascq >= 0x04)) {
17394 			si.ssi_severity = SCSI_ERR_ALL;
17395 		}
17396 		goto fail_command;
17397 	}
17398 
17399 	/*
17400 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17401 	 * what to do.
17402 	 */
17403 	switch (asc) {
17404 	case 0x04:	/* LOGICAL UNIT NOT READY */
17405 		/*
17406 		 * disk drives that don't spin up result in a very long delay
17407 		 * in format without warning messages. We will log a message
17408 		 * if the error level is set to verbose.
17409 		 */
17410 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17411 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17412 			    "logical unit not ready, resetting disk\n");
17413 		}
17414 
17415 		/*
17416 		 * There are different requirements for CDROMs and disks for
17417 		 * the number of retries.  If a CD-ROM is giving this, it is
17418 		 * probably reading TOC and is in the process of getting
17419 		 * ready, so we should keep on trying for a long time to make
17420 		 * sure that all types of media are taken in account (for
17421 		 * some media the drive takes a long time to read TOC).  For
17422 		 * disks we do not want to retry this too many times as this
17423 		 * can cause a long hang in format when the drive refuses to
17424 		 * spin up (a very common failure).
17425 		 */
17426 		switch (ascq) {
17427 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17428 			/*
17429 			 * Disk drives frequently refuse to spin up which
17430 			 * results in a very long hang in format without
17431 			 * warning messages.
17432 			 *
17433 			 * Note: This code preserves the legacy behavior of
17434 			 * comparing xb_nr_retry_count against zero for fibre
17435 			 * channel targets instead of comparing against the
17436 			 * un_reset_retry_count value.  The reason for this
17437 			 * discrepancy has been so utterly lost beneath the
17438 			 * Sands of Time that even Indiana Jones could not
17439 			 * find it.
17440 			 */
17441 			if (un->un_f_is_fibre == TRUE) {
17442 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17443 				    (xp->xb_nr_retry_count > 0)) &&
17444 				    (un->un_startstop_timeid == NULL)) {
17445 					scsi_log(SD_DEVINFO(un), sd_label,
17446 					    CE_WARN, "logical unit not ready, "
17447 					    "resetting disk\n");
17448 					sd_reset_target(un, pktp);
17449 				}
17450 			} else {
17451 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17452 				    (xp->xb_nr_retry_count >
17453 				    un->un_reset_retry_count)) &&
17454 				    (un->un_startstop_timeid == NULL)) {
17455 					scsi_log(SD_DEVINFO(un), sd_label,
17456 					    CE_WARN, "logical unit not ready, "
17457 					    "resetting disk\n");
17458 					sd_reset_target(un, pktp);
17459 				}
17460 			}
17461 			break;
17462 
17463 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17464 			/*
17465 			 * If the target is in the process of becoming
17466 			 * ready, just proceed with the retry. This can
17467 			 * happen with CD-ROMs that take a long time to
17468 			 * read TOC after a power cycle or reset.
17469 			 */
17470 			goto do_retry;
17471 
17472 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17473 			break;
17474 
17475 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17476 			/*
17477 			 * Retries cannot help here so just fail right away.
17478 			 */
17479 			goto fail_command;
17480 
17481 		case 0x88:
17482 			/*
17483 			 * Vendor-unique code for T3/T4: it indicates a
17484 			 * path problem in a mutipathed config, but as far as
17485 			 * the target driver is concerned it equates to a fatal
17486 			 * error, so we should just fail the command right away
17487 			 * (without printing anything to the console). If this
17488 			 * is not a T3/T4, fall thru to the default recovery
17489 			 * action.
17490 			 * T3/T4 is FC only, don't need to check is_fibre
17491 			 */
17492 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17493 				sd_return_failed_command(un, bp, EIO);
17494 				return;
17495 			}
17496 			/* FALLTHRU */
17497 
17498 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17499 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17500 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17501 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17502 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17503 		default:    /* Possible future codes in SCSI spec? */
17504 			/*
17505 			 * For removable-media devices, do not retry if
17506 			 * ASCQ > 2 as these result mostly from USCSI commands
17507 			 * on MMC devices issued to check status of an
17508 			 * operation initiated in immediate mode.  Also for
17509 			 * ASCQ >= 4 do not print console messages as these
17510 			 * mainly represent a user-initiated operation
17511 			 * instead of a system failure.
17512 			 */
17513 			if (un->un_f_has_removable_media) {
17514 				si.ssi_severity = SCSI_ERR_ALL;
17515 				goto fail_command;
17516 			}
17517 			break;
17518 		}
17519 
17520 		/*
17521 		 * As part of our recovery attempt for the NOT READY
17522 		 * condition, we issue a START STOP UNIT command. However
17523 		 * we want to wait for a short delay before attempting this
17524 		 * as there may still be more commands coming back from the
17525 		 * target with the check condition. To do this we use
17526 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17527 		 * the delay interval expires. (sd_start_stop_unit_callback()
17528 		 * dispatches sd_start_stop_unit_task(), which will issue
17529 		 * the actual START STOP UNIT command. The delay interval
17530 		 * is one-half of the delay that we will use to retry the
17531 		 * command that generated the NOT READY condition.
17532 		 *
17533 		 * Note that we could just dispatch sd_start_stop_unit_task()
17534 		 * from here and allow it to sleep for the delay interval,
17535 		 * but then we would be tying up the taskq thread
17536 		 * uncesessarily for the duration of the delay.
17537 		 *
17538 		 * Do not issue the START STOP UNIT if the current command
17539 		 * is already a START STOP UNIT.
17540 		 */
17541 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17542 			break;
17543 		}
17544 
17545 		/*
17546 		 * Do not schedule the timeout if one is already pending.
17547 		 */
17548 		if (un->un_startstop_timeid != NULL) {
17549 			SD_INFO(SD_LOG_ERROR, un,
17550 			    "sd_sense_key_not_ready: restart already issued to"
17551 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17552 			    ddi_get_instance(SD_DEVINFO(un)));
17553 			break;
17554 		}
17555 
17556 		/*
17557 		 * Schedule the START STOP UNIT command, then queue the command
17558 		 * for a retry.
17559 		 *
17560 		 * Note: A timeout is not scheduled for this retry because we
17561 		 * want the retry to be serial with the START_STOP_UNIT. The
17562 		 * retry will be started when the START_STOP_UNIT is completed
17563 		 * in sd_start_stop_unit_task.
17564 		 */
17565 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17566 		    un, un->un_busy_timeout / 2);
17567 		xp->xb_nr_retry_count++;
17568 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17569 		return;
17570 
17571 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17572 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17573 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17574 			    "unit does not respond to selection\n");
17575 		}
17576 		break;
17577 
17578 	case 0x3A:	/* MEDIUM NOT PRESENT */
17579 		if (sd_error_level >= SCSI_ERR_FATAL) {
17580 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17581 			    "Caddy not inserted in drive\n");
17582 		}
17583 
17584 		sr_ejected(un);
17585 		un->un_mediastate = DKIO_EJECTED;
17586 		/* The state has changed, inform the media watch routines */
17587 		cv_broadcast(&un->un_state_cv);
17588 		/* Just fail if no media is present in the drive. */
17589 		goto fail_command;
17590 
17591 	default:
17592 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17593 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17594 			    "Unit not Ready. Additional sense code 0x%x\n",
17595 			    asc);
17596 		}
17597 		break;
17598 	}
17599 
17600 do_retry:
17601 
17602 	/*
17603 	 * Retry the command, as some targets may report NOT READY for
17604 	 * several seconds after being reset.
17605 	 */
17606 	xp->xb_nr_retry_count++;
17607 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17608 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17609 	    &si, EIO, un->un_busy_timeout, NULL);
17610 
17611 	return;
17612 
17613 fail_command:
17614 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17615 	sd_return_failed_command(un, bp, EIO);
17616 }
17617 
17618 
17619 
17620 /*
17621  *    Function: sd_sense_key_medium_or_hardware_error
17622  *
17623  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17624  *		sense key.
17625  *
17626  *     Context: May be called from interrupt context
17627  */
17628 
17629 static void
17630 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17631 	uint8_t *sense_datap,
17632 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17633 {
17634 	struct sd_sense_info	si;
17635 	uint8_t sense_key = scsi_sense_key(sense_datap);
17636 	uint8_t asc = scsi_sense_asc(sense_datap);
17637 
17638 	ASSERT(un != NULL);
17639 	ASSERT(mutex_owned(SD_MUTEX(un)));
17640 	ASSERT(bp != NULL);
17641 	ASSERT(xp != NULL);
17642 	ASSERT(pktp != NULL);
17643 
17644 	si.ssi_severity = SCSI_ERR_FATAL;
17645 	si.ssi_pfa_flag = FALSE;
17646 
17647 	if (sense_key == KEY_MEDIUM_ERROR) {
17648 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17649 	}
17650 
17651 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17652 
17653 	if ((un->un_reset_retry_count != 0) &&
17654 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17655 		mutex_exit(SD_MUTEX(un));
17656 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17657 		if (un->un_f_allow_bus_device_reset == TRUE) {
17658 
17659 			boolean_t try_resetting_target = B_TRUE;
17660 
17661 			/*
17662 			 * We need to be able to handle specific ASC when we are
17663 			 * handling a KEY_HARDWARE_ERROR. In particular
17664 			 * taking the default action of resetting the target may
17665 			 * not be the appropriate way to attempt recovery.
17666 			 * Resetting a target because of a single LUN failure
17667 			 * victimizes all LUNs on that target.
17668 			 *
17669 			 * This is true for the LSI arrays, if an LSI
17670 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17671 			 * should trust it.
17672 			 */
17673 
17674 			if (sense_key == KEY_HARDWARE_ERROR) {
17675 				switch (asc) {
17676 				case 0x84:
17677 					if (SD_IS_LSI(un)) {
17678 						try_resetting_target = B_FALSE;
17679 					}
17680 					break;
17681 				default:
17682 					break;
17683 				}
17684 			}
17685 
17686 			if (try_resetting_target == B_TRUE) {
17687 				int reset_retval = 0;
17688 				if (un->un_f_lun_reset_enabled == TRUE) {
17689 					SD_TRACE(SD_LOG_IO_CORE, un,
17690 					    "sd_sense_key_medium_or_hardware_"
17691 					    "error: issuing RESET_LUN\n");
17692 					reset_retval =
17693 					    scsi_reset(SD_ADDRESS(un),
17694 					    RESET_LUN);
17695 				}
17696 				if (reset_retval == 0) {
17697 					SD_TRACE(SD_LOG_IO_CORE, un,
17698 					    "sd_sense_key_medium_or_hardware_"
17699 					    "error: issuing RESET_TARGET\n");
17700 					(void) scsi_reset(SD_ADDRESS(un),
17701 					    RESET_TARGET);
17702 				}
17703 			}
17704 		}
17705 		mutex_enter(SD_MUTEX(un));
17706 	}
17707 
17708 	/*
17709 	 * This really ought to be a fatal error, but we will retry anyway
17710 	 * as some drives report this as a spurious error.
17711 	 */
17712 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17713 	    &si, EIO, (clock_t)0, NULL);
17714 }
17715 
17716 
17717 
17718 /*
17719  *    Function: sd_sense_key_illegal_request
17720  *
17721  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17722  *
17723  *     Context: May be called from interrupt context
17724  */
17725 
17726 static void
17727 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17728 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17729 {
17730 	struct sd_sense_info	si;
17731 
17732 	ASSERT(un != NULL);
17733 	ASSERT(mutex_owned(SD_MUTEX(un)));
17734 	ASSERT(bp != NULL);
17735 	ASSERT(xp != NULL);
17736 	ASSERT(pktp != NULL);
17737 
17738 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17739 
17740 	si.ssi_severity = SCSI_ERR_INFO;
17741 	si.ssi_pfa_flag = FALSE;
17742 
17743 	/* Pointless to retry if the target thinks it's an illegal request */
17744 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17745 	sd_return_failed_command(un, bp, EIO);
17746 }
17747 
17748 
17749 
17750 
17751 /*
17752  *    Function: sd_sense_key_unit_attention
17753  *
17754  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17755  *
17756  *     Context: May be called from interrupt context
17757  */
17758 
17759 static void
17760 sd_sense_key_unit_attention(struct sd_lun *un,
17761 	uint8_t *sense_datap,
17762 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17763 {
17764 	/*
17765 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17766 	 * like Sonoma can return UNIT ATTENTION close to a minute
17767 	 * under certain conditions.
17768 	 */
17769 	int	retry_check_flag = SD_RETRIES_UA;
17770 	boolean_t	kstat_updated = B_FALSE;
17771 	struct	sd_sense_info		si;
17772 	uint8_t asc = scsi_sense_asc(sense_datap);
17773 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
17774 
17775 	ASSERT(un != NULL);
17776 	ASSERT(mutex_owned(SD_MUTEX(un)));
17777 	ASSERT(bp != NULL);
17778 	ASSERT(xp != NULL);
17779 	ASSERT(pktp != NULL);
17780 
17781 	si.ssi_severity = SCSI_ERR_INFO;
17782 	si.ssi_pfa_flag = FALSE;
17783 
17784 
17785 	switch (asc) {
17786 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17787 		if (sd_report_pfa != 0) {
17788 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17789 			si.ssi_pfa_flag = TRUE;
17790 			retry_check_flag = SD_RETRIES_STANDARD;
17791 			goto do_retry;
17792 		}
17793 
17794 		break;
17795 
17796 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17797 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17798 			un->un_resvd_status |=
17799 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17800 		}
17801 #ifdef _LP64
17802 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
17803 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
17804 			    un, KM_NOSLEEP) == 0) {
17805 				/*
17806 				 * If we can't dispatch the task we'll just
17807 				 * live without descriptor sense.  We can
17808 				 * try again on the next "unit attention"
17809 				 */
17810 				SD_ERROR(SD_LOG_ERROR, un,
17811 				    "sd_sense_key_unit_attention: "
17812 				    "Could not dispatch "
17813 				    "sd_reenable_dsense_task\n");
17814 			}
17815 		}
17816 #endif /* _LP64 */
17817 		/* FALLTHRU */
17818 
17819 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17820 		if (!un->un_f_has_removable_media) {
17821 			break;
17822 		}
17823 
17824 		/*
17825 		 * When we get a unit attention from a removable-media device,
17826 		 * it may be in a state that will take a long time to recover
17827 		 * (e.g., from a reset).  Since we are executing in interrupt
17828 		 * context here, we cannot wait around for the device to come
17829 		 * back. So hand this command off to sd_media_change_task()
17830 		 * for deferred processing under taskq thread context. (Note
17831 		 * that the command still may be failed if a problem is
17832 		 * encountered at a later time.)
17833 		 */
17834 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17835 		    KM_NOSLEEP) == 0) {
17836 			/*
17837 			 * Cannot dispatch the request so fail the command.
17838 			 */
17839 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17840 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17841 			si.ssi_severity = SCSI_ERR_FATAL;
17842 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17843 			sd_return_failed_command(un, bp, EIO);
17844 		}
17845 
17846 		/*
17847 		 * If failed to dispatch sd_media_change_task(), we already
17848 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
17849 		 * we should update kstat later if it encounters an error. So,
17850 		 * we update kstat_updated flag here.
17851 		 */
17852 		kstat_updated = B_TRUE;
17853 
17854 		/*
17855 		 * Either the command has been successfully dispatched to a
17856 		 * task Q for retrying, or the dispatch failed. In either case
17857 		 * do NOT retry again by calling sd_retry_command. This sets up
17858 		 * two retries of the same command and when one completes and
17859 		 * frees the resources the other will access freed memory,
17860 		 * a bad thing.
17861 		 */
17862 		return;
17863 
17864 	default:
17865 		break;
17866 	}
17867 
17868 	/*
17869 	 * ASC  ASCQ
17870 	 *  2A   09	Capacity data has changed
17871 	 *  2A   01	Mode parameters changed
17872 	 *  3F   0E	Reported luns data has changed
17873 	 * Arrays that support logical unit expansion should report
17874 	 * capacity changes(2Ah/09). Mode parameters changed and
17875 	 * reported luns data has changed are the approximation.
17876 	 */
17877 	if (((asc == 0x2a) && (ascq == 0x09)) ||
17878 	    ((asc == 0x2a) && (ascq == 0x01)) ||
17879 	    ((asc == 0x3f) && (ascq == 0x0e))) {
17880 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
17881 		    KM_NOSLEEP) == 0) {
17882 			SD_ERROR(SD_LOG_ERROR, un,
17883 			    "sd_sense_key_unit_attention: "
17884 			    "Could not dispatch sd_target_change_task\n");
17885 		}
17886 	}
17887 
17888 	/*
17889 	 * Update kstat if we haven't done that.
17890 	 */
17891 	if (!kstat_updated) {
17892 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17893 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17894 	}
17895 
17896 do_retry:
17897 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17898 	    EIO, SD_UA_RETRY_DELAY, NULL);
17899 }
17900 
17901 
17902 
17903 /*
17904  *    Function: sd_sense_key_fail_command
17905  *
17906  * Description: Use to fail a command when we don't like the sense key that
17907  *		was returned.
17908  *
17909  *     Context: May be called from interrupt context
17910  */
17911 
17912 static void
17913 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17914 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17915 {
17916 	struct sd_sense_info	si;
17917 
17918 	ASSERT(un != NULL);
17919 	ASSERT(mutex_owned(SD_MUTEX(un)));
17920 	ASSERT(bp != NULL);
17921 	ASSERT(xp != NULL);
17922 	ASSERT(pktp != NULL);
17923 
17924 	si.ssi_severity = SCSI_ERR_FATAL;
17925 	si.ssi_pfa_flag = FALSE;
17926 
17927 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17928 	sd_return_failed_command(un, bp, EIO);
17929 }
17930 
17931 
17932 
17933 /*
17934  *    Function: sd_sense_key_blank_check
17935  *
17936  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17937  *		Has no monetary connotation.
17938  *
17939  *     Context: May be called from interrupt context
17940  */
17941 
17942 static void
17943 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17944 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17945 {
17946 	struct sd_sense_info	si;
17947 
17948 	ASSERT(un != NULL);
17949 	ASSERT(mutex_owned(SD_MUTEX(un)));
17950 	ASSERT(bp != NULL);
17951 	ASSERT(xp != NULL);
17952 	ASSERT(pktp != NULL);
17953 
17954 	/*
17955 	 * Blank check is not fatal for removable devices, therefore
17956 	 * it does not require a console message.
17957 	 */
17958 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
17959 	    SCSI_ERR_FATAL;
17960 	si.ssi_pfa_flag = FALSE;
17961 
17962 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17963 	sd_return_failed_command(un, bp, EIO);
17964 }
17965 
17966 
17967 
17968 
17969 /*
17970  *    Function: sd_sense_key_aborted_command
17971  *
17972  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
17973  *
17974  *     Context: May be called from interrupt context
17975  */
17976 
17977 static void
17978 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
17979 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17980 {
17981 	struct sd_sense_info	si;
17982 
17983 	ASSERT(un != NULL);
17984 	ASSERT(mutex_owned(SD_MUTEX(un)));
17985 	ASSERT(bp != NULL);
17986 	ASSERT(xp != NULL);
17987 	ASSERT(pktp != NULL);
17988 
17989 	si.ssi_severity = SCSI_ERR_FATAL;
17990 	si.ssi_pfa_flag = FALSE;
17991 
17992 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17993 
17994 	/*
17995 	 * This really ought to be a fatal error, but we will retry anyway
17996 	 * as some drives report this as a spurious error.
17997 	 */
17998 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17999 	    &si, EIO, drv_usectohz(100000), NULL);
18000 }
18001 
18002 
18003 
18004 /*
18005  *    Function: sd_sense_key_default
18006  *
18007  * Description: Default recovery action for several SCSI sense keys (basically
18008  *		attempts a retry).
18009  *
18010  *     Context: May be called from interrupt context
18011  */
18012 
18013 static void
18014 sd_sense_key_default(struct sd_lun *un,
18015 	uint8_t *sense_datap,
18016 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18017 {
18018 	struct sd_sense_info	si;
18019 	uint8_t sense_key = scsi_sense_key(sense_datap);
18020 
18021 	ASSERT(un != NULL);
18022 	ASSERT(mutex_owned(SD_MUTEX(un)));
18023 	ASSERT(bp != NULL);
18024 	ASSERT(xp != NULL);
18025 	ASSERT(pktp != NULL);
18026 
18027 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18028 
18029 	/*
18030 	 * Undecoded sense key.	Attempt retries and hope that will fix
18031 	 * the problem.  Otherwise, we're dead.
18032 	 */
18033 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18034 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18035 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18036 	}
18037 
18038 	si.ssi_severity = SCSI_ERR_FATAL;
18039 	si.ssi_pfa_flag = FALSE;
18040 
18041 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18042 	    &si, EIO, (clock_t)0, NULL);
18043 }
18044 
18045 
18046 
18047 /*
18048  *    Function: sd_print_retry_msg
18049  *
18050  * Description: Print a message indicating the retry action being taken.
18051  *
18052  *   Arguments: un - ptr to associated softstate
18053  *		bp - ptr to buf(9S) for the command
18054  *		arg - not used.
18055  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18056  *			or SD_NO_RETRY_ISSUED
18057  *
18058  *     Context: May be called from interrupt context
18059  */
18060 /* ARGSUSED */
18061 static void
18062 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18063 {
18064 	struct sd_xbuf	*xp;
18065 	struct scsi_pkt *pktp;
18066 	char *reasonp;
18067 	char *msgp;
18068 
18069 	ASSERT(un != NULL);
18070 	ASSERT(mutex_owned(SD_MUTEX(un)));
18071 	ASSERT(bp != NULL);
18072 	pktp = SD_GET_PKTP(bp);
18073 	ASSERT(pktp != NULL);
18074 	xp = SD_GET_XBUF(bp);
18075 	ASSERT(xp != NULL);
18076 
18077 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18078 	mutex_enter(&un->un_pm_mutex);
18079 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18080 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18081 	    (pktp->pkt_flags & FLAG_SILENT)) {
18082 		mutex_exit(&un->un_pm_mutex);
18083 		goto update_pkt_reason;
18084 	}
18085 	mutex_exit(&un->un_pm_mutex);
18086 
18087 	/*
18088 	 * Suppress messages if they are all the same pkt_reason; with
18089 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18090 	 * If we are in panic, then suppress the retry messages.
18091 	 */
18092 	switch (flag) {
18093 	case SD_NO_RETRY_ISSUED:
18094 		msgp = "giving up";
18095 		break;
18096 	case SD_IMMEDIATE_RETRY_ISSUED:
18097 	case SD_DELAYED_RETRY_ISSUED:
18098 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18099 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18100 		    (sd_error_level != SCSI_ERR_ALL))) {
18101 			return;
18102 		}
18103 		msgp = "retrying command";
18104 		break;
18105 	default:
18106 		goto update_pkt_reason;
18107 	}
18108 
18109 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18110 	    scsi_rname(pktp->pkt_reason));
18111 
18112 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18113 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18114 
18115 update_pkt_reason:
18116 	/*
18117 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18118 	 * This is to prevent multiple console messages for the same failure
18119 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18120 	 * when the command is retried successfully because there still may be
18121 	 * more commands coming back with the same value of pktp->pkt_reason.
18122 	 */
18123 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18124 		un->un_last_pkt_reason = pktp->pkt_reason;
18125 	}
18126 }
18127 
18128 
18129 /*
18130  *    Function: sd_print_cmd_incomplete_msg
18131  *
18132  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18133  *
18134  *   Arguments: un - ptr to associated softstate
18135  *		bp - ptr to buf(9S) for the command
18136  *		arg - passed to sd_print_retry_msg()
18137  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18138  *			or SD_NO_RETRY_ISSUED
18139  *
18140  *     Context: May be called from interrupt context
18141  */
18142 
18143 static void
18144 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18145 	int code)
18146 {
18147 	dev_info_t	*dip;
18148 
18149 	ASSERT(un != NULL);
18150 	ASSERT(mutex_owned(SD_MUTEX(un)));
18151 	ASSERT(bp != NULL);
18152 
18153 	switch (code) {
18154 	case SD_NO_RETRY_ISSUED:
18155 		/* Command was failed. Someone turned off this target? */
18156 		if (un->un_state != SD_STATE_OFFLINE) {
18157 			/*
18158 			 * Suppress message if we are detaching and
18159 			 * device has been disconnected
18160 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18161 			 * private interface and not part of the DDI
18162 			 */
18163 			dip = un->un_sd->sd_dev;
18164 			if (!(DEVI_IS_DETACHING(dip) &&
18165 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18166 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18167 				"disk not responding to selection\n");
18168 			}
18169 			New_state(un, SD_STATE_OFFLINE);
18170 		}
18171 		break;
18172 
18173 	case SD_DELAYED_RETRY_ISSUED:
18174 	case SD_IMMEDIATE_RETRY_ISSUED:
18175 	default:
18176 		/* Command was successfully queued for retry */
18177 		sd_print_retry_msg(un, bp, arg, code);
18178 		break;
18179 	}
18180 }
18181 
18182 
18183 /*
18184  *    Function: sd_pkt_reason_cmd_incomplete
18185  *
18186  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18187  *
18188  *     Context: May be called from interrupt context
18189  */
18190 
18191 static void
18192 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18193 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18194 {
18195 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18196 
18197 	ASSERT(un != NULL);
18198 	ASSERT(mutex_owned(SD_MUTEX(un)));
18199 	ASSERT(bp != NULL);
18200 	ASSERT(xp != NULL);
18201 	ASSERT(pktp != NULL);
18202 
18203 	/* Do not do a reset if selection did not complete */
18204 	/* Note: Should this not just check the bit? */
18205 	if (pktp->pkt_state != STATE_GOT_BUS) {
18206 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18207 		sd_reset_target(un, pktp);
18208 	}
18209 
18210 	/*
18211 	 * If the target was not successfully selected, then set
18212 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18213 	 * with the target, and further retries and/or commands are
18214 	 * likely to take a long time.
18215 	 */
18216 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18217 		flag |= SD_RETRIES_FAILFAST;
18218 	}
18219 
18220 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18221 
18222 	sd_retry_command(un, bp, flag,
18223 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18224 }
18225 
18226 
18227 
18228 /*
18229  *    Function: sd_pkt_reason_cmd_tran_err
18230  *
18231  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18232  *
18233  *     Context: May be called from interrupt context
18234  */
18235 
18236 static void
18237 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18238 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18239 {
18240 	ASSERT(un != NULL);
18241 	ASSERT(mutex_owned(SD_MUTEX(un)));
18242 	ASSERT(bp != NULL);
18243 	ASSERT(xp != NULL);
18244 	ASSERT(pktp != NULL);
18245 
18246 	/*
18247 	 * Do not reset if we got a parity error, or if
18248 	 * selection did not complete.
18249 	 */
18250 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18251 	/* Note: Should this not just check the bit for pkt_state? */
18252 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18253 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18254 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18255 		sd_reset_target(un, pktp);
18256 	}
18257 
18258 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18259 
18260 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18261 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18262 }
18263 
18264 
18265 
18266 /*
18267  *    Function: sd_pkt_reason_cmd_reset
18268  *
18269  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18270  *
18271  *     Context: May be called from interrupt context
18272  */
18273 
18274 static void
18275 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18276 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18277 {
18278 	ASSERT(un != NULL);
18279 	ASSERT(mutex_owned(SD_MUTEX(un)));
18280 	ASSERT(bp != NULL);
18281 	ASSERT(xp != NULL);
18282 	ASSERT(pktp != NULL);
18283 
18284 	/* The target may still be running the command, so try to reset. */
18285 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18286 	sd_reset_target(un, pktp);
18287 
18288 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18289 
18290 	/*
18291 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18292 	 * reset because another target on this bus caused it. The target
18293 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18294 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18295 	 */
18296 
18297 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18298 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18299 }
18300 
18301 
18302 
18303 
18304 /*
18305  *    Function: sd_pkt_reason_cmd_aborted
18306  *
18307  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18308  *
18309  *     Context: May be called from interrupt context
18310  */
18311 
18312 static void
18313 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18314 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18315 {
18316 	ASSERT(un != NULL);
18317 	ASSERT(mutex_owned(SD_MUTEX(un)));
18318 	ASSERT(bp != NULL);
18319 	ASSERT(xp != NULL);
18320 	ASSERT(pktp != NULL);
18321 
18322 	/* The target may still be running the command, so try to reset. */
18323 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18324 	sd_reset_target(un, pktp);
18325 
18326 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18327 
18328 	/*
18329 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18330 	 * aborted because another target on this bus caused it. The target
18331 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18332 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18333 	 */
18334 
18335 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18336 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18337 }
18338 
18339 
18340 
18341 /*
18342  *    Function: sd_pkt_reason_cmd_timeout
18343  *
18344  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18345  *
18346  *     Context: May be called from interrupt context
18347  */
18348 
18349 static void
18350 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18351 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18352 {
18353 	ASSERT(un != NULL);
18354 	ASSERT(mutex_owned(SD_MUTEX(un)));
18355 	ASSERT(bp != NULL);
18356 	ASSERT(xp != NULL);
18357 	ASSERT(pktp != NULL);
18358 
18359 
18360 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18361 	sd_reset_target(un, pktp);
18362 
18363 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18364 
18365 	/*
18366 	 * A command timeout indicates that we could not establish
18367 	 * communication with the target, so set SD_RETRIES_FAILFAST
18368 	 * as further retries/commands are likely to take a long time.
18369 	 */
18370 	sd_retry_command(un, bp,
18371 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18372 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18373 }
18374 
18375 
18376 
18377 /*
18378  *    Function: sd_pkt_reason_cmd_unx_bus_free
18379  *
18380  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18381  *
18382  *     Context: May be called from interrupt context
18383  */
18384 
18385 static void
18386 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18387 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18388 {
18389 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18390 
18391 	ASSERT(un != NULL);
18392 	ASSERT(mutex_owned(SD_MUTEX(un)));
18393 	ASSERT(bp != NULL);
18394 	ASSERT(xp != NULL);
18395 	ASSERT(pktp != NULL);
18396 
18397 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18398 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18399 
18400 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18401 	    sd_print_retry_msg : NULL;
18402 
18403 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18404 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18405 }
18406 
18407 
18408 /*
18409  *    Function: sd_pkt_reason_cmd_tag_reject
18410  *
18411  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18412  *
18413  *     Context: May be called from interrupt context
18414  */
18415 
18416 static void
18417 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18418 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18419 {
18420 	ASSERT(un != NULL);
18421 	ASSERT(mutex_owned(SD_MUTEX(un)));
18422 	ASSERT(bp != NULL);
18423 	ASSERT(xp != NULL);
18424 	ASSERT(pktp != NULL);
18425 
18426 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18427 	pktp->pkt_flags = 0;
18428 	un->un_tagflags = 0;
18429 	if (un->un_f_opt_queueing == TRUE) {
18430 		un->un_throttle = min(un->un_throttle, 3);
18431 	} else {
18432 		un->un_throttle = 1;
18433 	}
18434 	mutex_exit(SD_MUTEX(un));
18435 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18436 	mutex_enter(SD_MUTEX(un));
18437 
18438 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18439 
18440 	/* Legacy behavior not to check retry counts here. */
18441 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18442 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18443 }
18444 
18445 
18446 /*
18447  *    Function: sd_pkt_reason_default
18448  *
18449  * Description: Default recovery actions for SCSA pkt_reason values that
18450  *		do not have more explicit recovery actions.
18451  *
18452  *     Context: May be called from interrupt context
18453  */
18454 
18455 static void
18456 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18457 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18458 {
18459 	ASSERT(un != NULL);
18460 	ASSERT(mutex_owned(SD_MUTEX(un)));
18461 	ASSERT(bp != NULL);
18462 	ASSERT(xp != NULL);
18463 	ASSERT(pktp != NULL);
18464 
18465 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18466 	sd_reset_target(un, pktp);
18467 
18468 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18469 
18470 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18471 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18472 }
18473 
18474 
18475 
18476 /*
18477  *    Function: sd_pkt_status_check_condition
18478  *
18479  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18480  *
18481  *     Context: May be called from interrupt context
18482  */
18483 
18484 static void
18485 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18486 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18487 {
18488 	ASSERT(un != NULL);
18489 	ASSERT(mutex_owned(SD_MUTEX(un)));
18490 	ASSERT(bp != NULL);
18491 	ASSERT(xp != NULL);
18492 	ASSERT(pktp != NULL);
18493 
18494 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18495 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18496 
18497 	/*
18498 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18499 	 * command will be retried after the request sense). Otherwise, retry
18500 	 * the command. Note: we are issuing the request sense even though the
18501 	 * retry limit may have been reached for the failed command.
18502 	 */
18503 	if (un->un_f_arq_enabled == FALSE) {
18504 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18505 		    "no ARQ, sending request sense command\n");
18506 		sd_send_request_sense_command(un, bp, pktp);
18507 	} else {
18508 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18509 		    "ARQ,retrying request sense command\n");
18510 #if defined(__i386) || defined(__amd64)
18511 		/*
18512 		 * The SD_RETRY_DELAY value need to be adjusted here
18513 		 * when SD_RETRY_DELAY change in sddef.h
18514 		 */
18515 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18516 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18517 		    NULL);
18518 #else
18519 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18520 		    EIO, SD_RETRY_DELAY, NULL);
18521 #endif
18522 	}
18523 
18524 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18525 }
18526 
18527 
18528 /*
18529  *    Function: sd_pkt_status_busy
18530  *
18531  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18532  *
18533  *     Context: May be called from interrupt context
18534  */
18535 
18536 static void
18537 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18538 	struct scsi_pkt *pktp)
18539 {
18540 	ASSERT(un != NULL);
18541 	ASSERT(mutex_owned(SD_MUTEX(un)));
18542 	ASSERT(bp != NULL);
18543 	ASSERT(xp != NULL);
18544 	ASSERT(pktp != NULL);
18545 
18546 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18547 	    "sd_pkt_status_busy: entry\n");
18548 
18549 	/* If retries are exhausted, just fail the command. */
18550 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18551 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18552 		    "device busy too long\n");
18553 		sd_return_failed_command(un, bp, EIO);
18554 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18555 		    "sd_pkt_status_busy: exit\n");
18556 		return;
18557 	}
18558 	xp->xb_retry_count++;
18559 
18560 	/*
18561 	 * Try to reset the target. However, we do not want to perform
18562 	 * more than one reset if the device continues to fail. The reset
18563 	 * will be performed when the retry count reaches the reset
18564 	 * threshold.  This threshold should be set such that at least
18565 	 * one retry is issued before the reset is performed.
18566 	 */
18567 	if (xp->xb_retry_count ==
18568 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18569 		int rval = 0;
18570 		mutex_exit(SD_MUTEX(un));
18571 		if (un->un_f_allow_bus_device_reset == TRUE) {
18572 			/*
18573 			 * First try to reset the LUN; if we cannot then
18574 			 * try to reset the target.
18575 			 */
18576 			if (un->un_f_lun_reset_enabled == TRUE) {
18577 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18578 				    "sd_pkt_status_busy: RESET_LUN\n");
18579 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18580 			}
18581 			if (rval == 0) {
18582 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18583 				    "sd_pkt_status_busy: RESET_TARGET\n");
18584 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18585 			}
18586 		}
18587 		if (rval == 0) {
18588 			/*
18589 			 * If the RESET_LUN and/or RESET_TARGET failed,
18590 			 * try RESET_ALL
18591 			 */
18592 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18593 			    "sd_pkt_status_busy: RESET_ALL\n");
18594 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18595 		}
18596 		mutex_enter(SD_MUTEX(un));
18597 		if (rval == 0) {
18598 			/*
18599 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18600 			 * At this point we give up & fail the command.
18601 			 */
18602 			sd_return_failed_command(un, bp, EIO);
18603 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18604 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18605 			return;
18606 		}
18607 	}
18608 
18609 	/*
18610 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18611 	 * we have already checked the retry counts above.
18612 	 */
18613 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18614 	    EIO, un->un_busy_timeout, NULL);
18615 
18616 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18617 	    "sd_pkt_status_busy: exit\n");
18618 }
18619 
18620 
18621 /*
18622  *    Function: sd_pkt_status_reservation_conflict
18623  *
18624  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18625  *		command status.
18626  *
18627  *     Context: May be called from interrupt context
18628  */
18629 
18630 static void
18631 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18632 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18633 {
18634 	ASSERT(un != NULL);
18635 	ASSERT(mutex_owned(SD_MUTEX(un)));
18636 	ASSERT(bp != NULL);
18637 	ASSERT(xp != NULL);
18638 	ASSERT(pktp != NULL);
18639 
18640 	/*
18641 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18642 	 * conflict could be due to various reasons like incorrect keys, not
18643 	 * registered or not reserved etc. So, we return EACCES to the caller.
18644 	 */
18645 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18646 		int cmd = SD_GET_PKT_OPCODE(pktp);
18647 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18648 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18649 			sd_return_failed_command(un, bp, EACCES);
18650 			return;
18651 		}
18652 	}
18653 
18654 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18655 
18656 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18657 		if (sd_failfast_enable != 0) {
18658 			/* By definition, we must panic here.... */
18659 			sd_panic_for_res_conflict(un);
18660 			/*NOTREACHED*/
18661 		}
18662 		SD_ERROR(SD_LOG_IO, un,
18663 		    "sd_handle_resv_conflict: Disk Reserved\n");
18664 		sd_return_failed_command(un, bp, EACCES);
18665 		return;
18666 	}
18667 
18668 	/*
18669 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18670 	 * property is set (default is 1). Retries will not succeed
18671 	 * on a disk reserved by another initiator. HA systems
18672 	 * may reset this via sd.conf to avoid these retries.
18673 	 *
18674 	 * Note: The legacy return code for this failure is EIO, however EACCES
18675 	 * seems more appropriate for a reservation conflict.
18676 	 */
18677 	if (sd_retry_on_reservation_conflict == 0) {
18678 		SD_ERROR(SD_LOG_IO, un,
18679 		    "sd_handle_resv_conflict: Device Reserved\n");
18680 		sd_return_failed_command(un, bp, EIO);
18681 		return;
18682 	}
18683 
18684 	/*
18685 	 * Retry the command if we can.
18686 	 *
18687 	 * Note: The legacy return code for this failure is EIO, however EACCES
18688 	 * seems more appropriate for a reservation conflict.
18689 	 */
18690 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18691 	    (clock_t)2, NULL);
18692 }
18693 
18694 
18695 
18696 /*
18697  *    Function: sd_pkt_status_qfull
18698  *
18699  * Description: Handle a QUEUE FULL condition from the target.  This can
18700  *		occur if the HBA does not handle the queue full condition.
18701  *		(Basically this means third-party HBAs as Sun HBAs will
18702  *		handle the queue full condition.)  Note that if there are
18703  *		some commands already in the transport, then the queue full
18704  *		has occurred because the queue for this nexus is actually
18705  *		full. If there are no commands in the transport, then the
18706  *		queue full is resulting from some other initiator or lun
18707  *		consuming all the resources at the target.
18708  *
18709  *     Context: May be called from interrupt context
18710  */
18711 
18712 static void
18713 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18714 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18715 {
18716 	ASSERT(un != NULL);
18717 	ASSERT(mutex_owned(SD_MUTEX(un)));
18718 	ASSERT(bp != NULL);
18719 	ASSERT(xp != NULL);
18720 	ASSERT(pktp != NULL);
18721 
18722 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18723 	    "sd_pkt_status_qfull: entry\n");
18724 
18725 	/*
18726 	 * Just lower the QFULL throttle and retry the command.  Note that
18727 	 * we do not limit the number of retries here.
18728 	 */
18729 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18730 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18731 	    SD_RESTART_TIMEOUT, NULL);
18732 
18733 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18734 	    "sd_pkt_status_qfull: exit\n");
18735 }
18736 
18737 
18738 /*
18739  *    Function: sd_reset_target
18740  *
18741  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18742  *		RESET_TARGET, or RESET_ALL.
18743  *
18744  *     Context: May be called under interrupt context.
18745  */
18746 
18747 static void
18748 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18749 {
18750 	int rval = 0;
18751 
18752 	ASSERT(un != NULL);
18753 	ASSERT(mutex_owned(SD_MUTEX(un)));
18754 	ASSERT(pktp != NULL);
18755 
18756 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18757 
18758 	/*
18759 	 * No need to reset if the transport layer has already done so.
18760 	 */
18761 	if ((pktp->pkt_statistics &
18762 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18763 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18764 		    "sd_reset_target: no reset\n");
18765 		return;
18766 	}
18767 
18768 	mutex_exit(SD_MUTEX(un));
18769 
18770 	if (un->un_f_allow_bus_device_reset == TRUE) {
18771 		if (un->un_f_lun_reset_enabled == TRUE) {
18772 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18773 			    "sd_reset_target: RESET_LUN\n");
18774 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18775 		}
18776 		if (rval == 0) {
18777 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18778 			    "sd_reset_target: RESET_TARGET\n");
18779 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18780 		}
18781 	}
18782 
18783 	if (rval == 0) {
18784 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18785 		    "sd_reset_target: RESET_ALL\n");
18786 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18787 	}
18788 
18789 	mutex_enter(SD_MUTEX(un));
18790 
18791 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18792 }
18793 
18794 /*
18795  *    Function: sd_target_change_task
18796  *
18797  * Description: Handle dynamic target change
18798  *
18799  *     Context: Executes in a taskq() thread context
18800  */
18801 static void
18802 sd_target_change_task(void *arg)
18803 {
18804 	struct sd_lun		*un = arg;
18805 	uint64_t		capacity;
18806 	diskaddr_t		label_cap;
18807 	uint_t			lbasize;
18808 	sd_ssc_t		*ssc;
18809 
18810 	ASSERT(un != NULL);
18811 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18812 
18813 	if ((un->un_f_blockcount_is_valid == FALSE) ||
18814 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
18815 		return;
18816 	}
18817 
18818 	ssc = sd_ssc_init(un);
18819 
18820 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
18821 	    &lbasize, SD_PATH_DIRECT) != 0) {
18822 		SD_ERROR(SD_LOG_ERROR, un,
18823 		    "sd_target_change_task: fail to read capacity\n");
18824 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
18825 		goto task_exit;
18826 	}
18827 
18828 	mutex_enter(SD_MUTEX(un));
18829 	if (capacity <= un->un_blockcount) {
18830 		mutex_exit(SD_MUTEX(un));
18831 		goto task_exit;
18832 	}
18833 
18834 	sd_update_block_info(un, lbasize, capacity);
18835 	mutex_exit(SD_MUTEX(un));
18836 
18837 	/*
18838 	 * If lun is EFI labeled and lun capacity is greater than the
18839 	 * capacity contained in the label, log a sys event.
18840 	 */
18841 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
18842 	    (void*)SD_PATH_DIRECT) == 0) {
18843 		mutex_enter(SD_MUTEX(un));
18844 		if (un->un_f_blockcount_is_valid &&
18845 		    un->un_blockcount > label_cap) {
18846 			mutex_exit(SD_MUTEX(un));
18847 			sd_log_lun_expansion_event(un, KM_SLEEP);
18848 		} else {
18849 			mutex_exit(SD_MUTEX(un));
18850 		}
18851 	}
18852 
18853 task_exit:
18854 	sd_ssc_fini(ssc);
18855 }
18856 
18857 /*
18858  *    Function: sd_log_lun_expansion_event
18859  *
18860  * Description: Log lun expansion sys event
18861  *
18862  *     Context: Never called from interrupt context
18863  */
18864 static void
18865 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
18866 {
18867 	int err;
18868 	char			*path;
18869 	nvlist_t		*dle_attr_list;
18870 
18871 	/* Allocate and build sysevent attribute list */
18872 	err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
18873 	if (err != 0) {
18874 		SD_ERROR(SD_LOG_ERROR, un,
18875 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18876 		return;
18877 	}
18878 
18879 	path = kmem_alloc(MAXPATHLEN, km_flag);
18880 	if (path == NULL) {
18881 		nvlist_free(dle_attr_list);
18882 		SD_ERROR(SD_LOG_ERROR, un,
18883 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18884 		return;
18885 	}
18886 	/*
18887 	 * Add path attribute to identify the lun.
18888 	 * We are using minor node 'a' as the sysevent attribute.
18889 	 */
18890 	(void) snprintf(path, MAXPATHLEN, "/devices");
18891 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
18892 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
18893 	    ":a");
18894 
18895 	err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path);
18896 	if (err != 0) {
18897 		nvlist_free(dle_attr_list);
18898 		kmem_free(path, MAXPATHLEN);
18899 		SD_ERROR(SD_LOG_ERROR, un,
18900 		    "sd_log_lun_expansion_event: fail to add attribute\n");
18901 		return;
18902 	}
18903 
18904 	/* Log dynamic lun expansion sysevent */
18905 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
18906 	    ESC_DEV_DLE, dle_attr_list, NULL, km_flag);
18907 	if (err != DDI_SUCCESS) {
18908 		SD_ERROR(SD_LOG_ERROR, un,
18909 		    "sd_log_lun_expansion_event: fail to log sysevent\n");
18910 	}
18911 
18912 	nvlist_free(dle_attr_list);
18913 	kmem_free(path, MAXPATHLEN);
18914 }
18915 
18916 /*
18917  *    Function: sd_media_change_task
18918  *
18919  * Description: Recovery action for CDROM to become available.
18920  *
18921  *     Context: Executes in a taskq() thread context
18922  */
18923 
18924 static void
18925 sd_media_change_task(void *arg)
18926 {
18927 	struct	scsi_pkt	*pktp = arg;
18928 	struct	sd_lun		*un;
18929 	struct	buf		*bp;
18930 	struct	sd_xbuf		*xp;
18931 	int	err		= 0;
18932 	int	retry_count	= 0;
18933 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18934 	struct	sd_sense_info	si;
18935 
18936 	ASSERT(pktp != NULL);
18937 	bp = (struct buf *)pktp->pkt_private;
18938 	ASSERT(bp != NULL);
18939 	xp = SD_GET_XBUF(bp);
18940 	ASSERT(xp != NULL);
18941 	un = SD_GET_UN(bp);
18942 	ASSERT(un != NULL);
18943 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18944 	ASSERT(un->un_f_monitor_media_state);
18945 
18946 	si.ssi_severity = SCSI_ERR_INFO;
18947 	si.ssi_pfa_flag = FALSE;
18948 
18949 	/*
18950 	 * When a reset is issued on a CDROM, it takes a long time to
18951 	 * recover. First few attempts to read capacity and other things
18952 	 * related to handling unit attention fail (with a ASC 0x4 and
18953 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18954 	 * to limit the retries in other cases of genuine failures like
18955 	 * no media in drive.
18956 	 */
18957 	while (retry_count++ < retry_limit) {
18958 		if ((err = sd_handle_mchange(un)) == 0) {
18959 			break;
18960 		}
18961 		if (err == EAGAIN) {
18962 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18963 		}
18964 		/* Sleep for 0.5 sec. & try again */
18965 		delay(drv_usectohz(500000));
18966 	}
18967 
18968 	/*
18969 	 * Dispatch (retry or fail) the original command here,
18970 	 * along with appropriate console messages....
18971 	 *
18972 	 * Must grab the mutex before calling sd_retry_command,
18973 	 * sd_print_sense_msg and sd_return_failed_command.
18974 	 */
18975 	mutex_enter(SD_MUTEX(un));
18976 	if (err != SD_CMD_SUCCESS) {
18977 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18978 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18979 		si.ssi_severity = SCSI_ERR_FATAL;
18980 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18981 		sd_return_failed_command(un, bp, EIO);
18982 	} else {
18983 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18984 		    &si, EIO, (clock_t)0, NULL);
18985 	}
18986 	mutex_exit(SD_MUTEX(un));
18987 }
18988 
18989 
18990 
18991 /*
18992  *    Function: sd_handle_mchange
18993  *
18994  * Description: Perform geometry validation & other recovery when CDROM
18995  *		has been removed from drive.
18996  *
18997  * Return Code: 0 for success
18998  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18999  *		sd_send_scsi_READ_CAPACITY()
19000  *
19001  *     Context: Executes in a taskq() thread context
19002  */
19003 
19004 static int
19005 sd_handle_mchange(struct sd_lun *un)
19006 {
19007 	uint64_t	capacity;
19008 	uint32_t	lbasize;
19009 	int		rval;
19010 	sd_ssc_t	*ssc;
19011 
19012 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19013 	ASSERT(un->un_f_monitor_media_state);
19014 
19015 	ssc = sd_ssc_init(un);
19016 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19017 	    SD_PATH_DIRECT_PRIORITY);
19018 
19019 	if (rval != 0)
19020 		goto failed;
19021 
19022 	mutex_enter(SD_MUTEX(un));
19023 	sd_update_block_info(un, lbasize, capacity);
19024 
19025 	if (un->un_errstats != NULL) {
19026 		struct	sd_errstats *stp =
19027 		    (struct sd_errstats *)un->un_errstats->ks_data;
19028 		stp->sd_capacity.value.ui64 = (uint64_t)
19029 		    ((uint64_t)un->un_blockcount *
19030 		    (uint64_t)un->un_tgt_blocksize);
19031 	}
19032 
19033 	/*
19034 	 * Check if the media in the device is writable or not
19035 	 */
19036 	if (ISCD(un)) {
19037 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19038 	}
19039 
19040 	/*
19041 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19042 	 * valid geometry.
19043 	 */
19044 	mutex_exit(SD_MUTEX(un));
19045 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19046 
19047 
19048 	if (cmlb_validate(un->un_cmlbhandle, 0,
19049 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19050 		sd_ssc_fini(ssc);
19051 		return (EIO);
19052 	} else {
19053 		if (un->un_f_pkstats_enabled) {
19054 			sd_set_pstats(un);
19055 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19056 			    "sd_handle_mchange: un:0x%p pstats created and "
19057 			    "set\n", un);
19058 		}
19059 	}
19060 
19061 	/*
19062 	 * Try to lock the door
19063 	 */
19064 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19065 	    SD_PATH_DIRECT_PRIORITY);
19066 failed:
19067 	if (rval != 0)
19068 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19069 	sd_ssc_fini(ssc);
19070 	return (rval);
19071 }
19072 
19073 
19074 /*
19075  *    Function: sd_send_scsi_DOORLOCK
19076  *
19077  * Description: Issue the scsi DOOR LOCK command
19078  *
19079  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19080  *                      structure for this target.
19081  *		flag  - SD_REMOVAL_ALLOW
19082  *			SD_REMOVAL_PREVENT
19083  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19084  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19085  *			to use the USCSI "direct" chain and bypass the normal
19086  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19087  *			command is issued as part of an error recovery action.
19088  *
19089  * Return Code: 0   - Success
19090  *		errno return code from sd_ssc_send()
19091  *
19092  *     Context: Can sleep.
19093  */
19094 
19095 static int
19096 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19097 {
19098 	struct scsi_extended_sense	sense_buf;
19099 	union scsi_cdb		cdb;
19100 	struct uscsi_cmd	ucmd_buf;
19101 	int			status;
19102 	struct sd_lun		*un;
19103 
19104 	ASSERT(ssc != NULL);
19105 	un = ssc->ssc_un;
19106 	ASSERT(un != NULL);
19107 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19108 
19109 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19110 
19111 	/* already determined doorlock is not supported, fake success */
19112 	if (un->un_f_doorlock_supported == FALSE) {
19113 		return (0);
19114 	}
19115 
19116 	/*
19117 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19118 	 * ignore the command so we can complete the eject
19119 	 * operation.
19120 	 */
19121 	if (flag == SD_REMOVAL_PREVENT) {
19122 		mutex_enter(SD_MUTEX(un));
19123 		if (un->un_f_ejecting == TRUE) {
19124 			mutex_exit(SD_MUTEX(un));
19125 			return (EAGAIN);
19126 		}
19127 		mutex_exit(SD_MUTEX(un));
19128 	}
19129 
19130 	bzero(&cdb, sizeof (cdb));
19131 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19132 
19133 	cdb.scc_cmd = SCMD_DOORLOCK;
19134 	cdb.cdb_opaque[4] = (uchar_t)flag;
19135 
19136 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19137 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19138 	ucmd_buf.uscsi_bufaddr	= NULL;
19139 	ucmd_buf.uscsi_buflen	= 0;
19140 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19141 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19142 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19143 	ucmd_buf.uscsi_timeout	= 15;
19144 
19145 	SD_TRACE(SD_LOG_IO, un,
19146 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19147 
19148 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19149 	    UIO_SYSSPACE, path_flag);
19150 
19151 	if (status == 0)
19152 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19153 
19154 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19155 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19156 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19157 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19158 
19159 		/* fake success and skip subsequent doorlock commands */
19160 		un->un_f_doorlock_supported = FALSE;
19161 		return (0);
19162 	}
19163 
19164 	return (status);
19165 }
19166 
19167 /*
19168  *    Function: sd_send_scsi_READ_CAPACITY
19169  *
19170  * Description: This routine uses the scsi READ CAPACITY command to determine
19171  *		the device capacity in number of blocks and the device native
19172  *		block size. If this function returns a failure, then the
19173  *		values in *capp and *lbap are undefined.  If the capacity
19174  *		returned is 0xffffffff then the lun is too large for a
19175  *		normal READ CAPACITY command and the results of a
19176  *		READ CAPACITY 16 will be used instead.
19177  *
19178  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19179  *		capp - ptr to unsigned 64-bit variable to receive the
19180  *			capacity value from the command.
19181  *		lbap - ptr to unsigned 32-bit varaible to receive the
19182  *			block size value from the command
19183  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19184  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19185  *			to use the USCSI "direct" chain and bypass the normal
19186  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19187  *			command is issued as part of an error recovery action.
19188  *
19189  * Return Code: 0   - Success
19190  *		EIO - IO error
19191  *		EACCES - Reservation conflict detected
19192  *		EAGAIN - Device is becoming ready
19193  *		errno return code from sd_ssc_send()
19194  *
19195  *     Context: Can sleep.  Blocks until command completes.
19196  */
19197 
19198 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19199 
19200 static int
19201 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
19202 	int path_flag)
19203 {
19204 	struct	scsi_extended_sense	sense_buf;
19205 	struct	uscsi_cmd	ucmd_buf;
19206 	union	scsi_cdb	cdb;
19207 	uint32_t		*capacity_buf;
19208 	uint64_t		capacity;
19209 	uint32_t		lbasize;
19210 	int			status;
19211 	struct sd_lun		*un;
19212 
19213 	ASSERT(ssc != NULL);
19214 
19215 	un = ssc->ssc_un;
19216 	ASSERT(un != NULL);
19217 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19218 	ASSERT(capp != NULL);
19219 	ASSERT(lbap != NULL);
19220 
19221 	SD_TRACE(SD_LOG_IO, un,
19222 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19223 
19224 	/*
19225 	 * First send a READ_CAPACITY command to the target.
19226 	 * (This command is mandatory under SCSI-2.)
19227 	 *
19228 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19229 	 * Medium Indicator bit is cleared.  The address field must be
19230 	 * zero if the PMI bit is zero.
19231 	 */
19232 	bzero(&cdb, sizeof (cdb));
19233 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19234 
19235 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19236 
19237 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19238 
19239 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19240 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19241 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19242 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19243 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19244 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19245 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19246 	ucmd_buf.uscsi_timeout	= 60;
19247 
19248 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19249 	    UIO_SYSSPACE, path_flag);
19250 
19251 	switch (status) {
19252 	case 0:
19253 		/* Return failure if we did not get valid capacity data. */
19254 		if (ucmd_buf.uscsi_resid != 0) {
19255 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19256 			    "sd_send_scsi_READ_CAPACITY received "
19257 			    "invalid capacity data");
19258 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19259 			return (EIO);
19260 		}
19261 
19262 		/*
19263 		 * Read capacity and block size from the READ CAPACITY 10 data.
19264 		 * This data may be adjusted later due to device specific
19265 		 * issues.
19266 		 *
19267 		 * According to the SCSI spec, the READ CAPACITY 10
19268 		 * command returns the following:
19269 		 *
19270 		 *  bytes 0-3: Maximum logical block address available.
19271 		 *		(MSB in byte:0 & LSB in byte:3)
19272 		 *
19273 		 *  bytes 4-7: Block length in bytes
19274 		 *		(MSB in byte:4 & LSB in byte:7)
19275 		 *
19276 		 */
19277 		capacity = BE_32(capacity_buf[0]);
19278 		lbasize = BE_32(capacity_buf[1]);
19279 
19280 		/*
19281 		 * Done with capacity_buf
19282 		 */
19283 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19284 
19285 		/*
19286 		 * if the reported capacity is set to all 0xf's, then
19287 		 * this disk is too large and requires SBC-2 commands.
19288 		 * Reissue the request using READ CAPACITY 16.
19289 		 */
19290 		if (capacity == 0xffffffff) {
19291 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19292 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
19293 			    &lbasize, path_flag);
19294 			if (status != 0) {
19295 				return (status);
19296 			}
19297 		}
19298 		break;	/* Success! */
19299 	case EIO:
19300 		switch (ucmd_buf.uscsi_status) {
19301 		case STATUS_RESERVATION_CONFLICT:
19302 			status = EACCES;
19303 			break;
19304 		case STATUS_CHECK:
19305 			/*
19306 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19307 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19308 			 */
19309 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19310 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19311 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19312 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19313 				return (EAGAIN);
19314 			}
19315 			break;
19316 		default:
19317 			break;
19318 		}
19319 		/* FALLTHRU */
19320 	default:
19321 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19322 		return (status);
19323 	}
19324 
19325 	/*
19326 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19327 	 * (2352 and 0 are common) so for these devices always force the value
19328 	 * to 2048 as required by the ATAPI specs.
19329 	 */
19330 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19331 		lbasize = 2048;
19332 	}
19333 
19334 	/*
19335 	 * Get the maximum LBA value from the READ CAPACITY data.
19336 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19337 	 * was cleared when issuing the command. This means that the LBA
19338 	 * returned from the device is the LBA of the last logical block
19339 	 * on the logical unit.  The actual logical block count will be
19340 	 * this value plus one.
19341 	 *
19342 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19343 	 * so scale the capacity value to reflect this.
19344 	 */
19345 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19346 
19347 	/*
19348 	 * Copy the values from the READ CAPACITY command into the space
19349 	 * provided by the caller.
19350 	 */
19351 	*capp = capacity;
19352 	*lbap = lbasize;
19353 
19354 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19355 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19356 
19357 	/*
19358 	 * Both the lbasize and capacity from the device must be nonzero,
19359 	 * otherwise we assume that the values are not valid and return
19360 	 * failure to the caller. (4203735)
19361 	 */
19362 	if ((capacity == 0) || (lbasize == 0)) {
19363 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19364 		    "sd_send_scsi_READ_CAPACITY received invalid value "
19365 		    "capacity %llu lbasize %d", capacity, lbasize);
19366 		return (EIO);
19367 	}
19368 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19369 	return (0);
19370 }
19371 
19372 /*
19373  *    Function: sd_send_scsi_READ_CAPACITY_16
19374  *
19375  * Description: This routine uses the scsi READ CAPACITY 16 command to
19376  *		determine the device capacity in number of blocks and the
19377  *		device native block size.  If this function returns a failure,
19378  *		then the values in *capp and *lbap are undefined.
19379  *		This routine should always be called by
19380  *		sd_send_scsi_READ_CAPACITY which will appy any device
19381  *		specific adjustments to capacity and lbasize.
19382  *
19383  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19384  *		capp - ptr to unsigned 64-bit variable to receive the
19385  *			capacity value from the command.
19386  *		lbap - ptr to unsigned 32-bit varaible to receive the
19387  *			block size value from the command
19388  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19389  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19390  *			to use the USCSI "direct" chain and bypass the normal
19391  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19392  *			this command is issued as part of an error recovery
19393  *			action.
19394  *
19395  * Return Code: 0   - Success
19396  *		EIO - IO error
19397  *		EACCES - Reservation conflict detected
19398  *		EAGAIN - Device is becoming ready
19399  *		errno return code from sd_ssc_send()
19400  *
19401  *     Context: Can sleep.  Blocks until command completes.
19402  */
19403 
19404 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19405 
19406 static int
19407 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
19408 	uint32_t *lbap, int path_flag)
19409 {
19410 	struct	scsi_extended_sense	sense_buf;
19411 	struct	uscsi_cmd	ucmd_buf;
19412 	union	scsi_cdb	cdb;
19413 	uint64_t		*capacity16_buf;
19414 	uint64_t		capacity;
19415 	uint32_t		lbasize;
19416 	int			status;
19417 	struct sd_lun		*un;
19418 
19419 	ASSERT(ssc != NULL);
19420 
19421 	un = ssc->ssc_un;
19422 	ASSERT(un != NULL);
19423 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19424 	ASSERT(capp != NULL);
19425 	ASSERT(lbap != NULL);
19426 
19427 	SD_TRACE(SD_LOG_IO, un,
19428 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19429 
19430 	/*
19431 	 * First send a READ_CAPACITY_16 command to the target.
19432 	 *
19433 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19434 	 * Medium Indicator bit is cleared.  The address field must be
19435 	 * zero if the PMI bit is zero.
19436 	 */
19437 	bzero(&cdb, sizeof (cdb));
19438 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19439 
19440 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19441 
19442 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19443 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19444 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19445 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19446 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19447 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19448 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19449 	ucmd_buf.uscsi_timeout	= 60;
19450 
19451 	/*
19452 	 * Read Capacity (16) is a Service Action In command.  One
19453 	 * command byte (0x9E) is overloaded for multiple operations,
19454 	 * with the second CDB byte specifying the desired operation
19455 	 */
19456 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19457 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19458 
19459 	/*
19460 	 * Fill in allocation length field
19461 	 */
19462 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19463 
19464 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19465 	    UIO_SYSSPACE, path_flag);
19466 
19467 	switch (status) {
19468 	case 0:
19469 		/* Return failure if we did not get valid capacity data. */
19470 		if (ucmd_buf.uscsi_resid > 20) {
19471 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19472 			    "sd_send_scsi_READ_CAPACITY_16 received "
19473 			    "invalid capacity data");
19474 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19475 			return (EIO);
19476 		}
19477 
19478 		/*
19479 		 * Read capacity and block size from the READ CAPACITY 10 data.
19480 		 * This data may be adjusted later due to device specific
19481 		 * issues.
19482 		 *
19483 		 * According to the SCSI spec, the READ CAPACITY 10
19484 		 * command returns the following:
19485 		 *
19486 		 *  bytes 0-7: Maximum logical block address available.
19487 		 *		(MSB in byte:0 & LSB in byte:7)
19488 		 *
19489 		 *  bytes 8-11: Block length in bytes
19490 		 *		(MSB in byte:8 & LSB in byte:11)
19491 		 *
19492 		 */
19493 		capacity = BE_64(capacity16_buf[0]);
19494 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19495 
19496 		/*
19497 		 * Done with capacity16_buf
19498 		 */
19499 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19500 
19501 		/*
19502 		 * if the reported capacity is set to all 0xf's, then
19503 		 * this disk is too large.  This could only happen with
19504 		 * a device that supports LBAs larger than 64 bits which
19505 		 * are not defined by any current T10 standards.
19506 		 */
19507 		if (capacity == 0xffffffffffffffff) {
19508 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19509 			    "disk is too large");
19510 			return (EIO);
19511 		}
19512 		break;	/* Success! */
19513 	case EIO:
19514 		switch (ucmd_buf.uscsi_status) {
19515 		case STATUS_RESERVATION_CONFLICT:
19516 			status = EACCES;
19517 			break;
19518 		case STATUS_CHECK:
19519 			/*
19520 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19521 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19522 			 */
19523 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19524 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19525 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19526 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19527 				return (EAGAIN);
19528 			}
19529 			break;
19530 		default:
19531 			break;
19532 		}
19533 		/* FALLTHRU */
19534 	default:
19535 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19536 		return (status);
19537 	}
19538 
19539 	*capp = capacity;
19540 	*lbap = lbasize;
19541 
19542 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19543 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19544 
19545 	return (0);
19546 }
19547 
19548 
19549 /*
19550  *    Function: sd_send_scsi_START_STOP_UNIT
19551  *
19552  * Description: Issue a scsi START STOP UNIT command to the target.
19553  *
19554  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
19555  *                       structure for this target.
19556  *		flag  - SD_TARGET_START
19557  *			SD_TARGET_STOP
19558  *			SD_TARGET_EJECT
19559  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19560  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19561  *			to use the USCSI "direct" chain and bypass the normal
19562  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19563  *			command is issued as part of an error recovery action.
19564  *
19565  * Return Code: 0   - Success
19566  *		EIO - IO error
19567  *		EACCES - Reservation conflict detected
19568  *		ENXIO  - Not Ready, medium not present
19569  *		errno return code from sd_ssc_send()
19570  *
19571  *     Context: Can sleep.
19572  */
19573 
19574 static int
19575 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag, int path_flag)
19576 {
19577 	struct	scsi_extended_sense	sense_buf;
19578 	union scsi_cdb		cdb;
19579 	struct uscsi_cmd	ucmd_buf;
19580 	int			status;
19581 	struct sd_lun		*un;
19582 
19583 	ASSERT(ssc != NULL);
19584 	un = ssc->ssc_un;
19585 	ASSERT(un != NULL);
19586 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19587 
19588 	SD_TRACE(SD_LOG_IO, un,
19589 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19590 
19591 	if (un->un_f_check_start_stop &&
19592 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19593 	    (un->un_f_start_stop_supported != TRUE)) {
19594 		return (0);
19595 	}
19596 
19597 	/*
19598 	 * If we are performing an eject operation and
19599 	 * we receive any command other than SD_TARGET_EJECT
19600 	 * we should immediately return.
19601 	 */
19602 	if (flag != SD_TARGET_EJECT) {
19603 		mutex_enter(SD_MUTEX(un));
19604 		if (un->un_f_ejecting == TRUE) {
19605 			mutex_exit(SD_MUTEX(un));
19606 			return (EAGAIN);
19607 		}
19608 		mutex_exit(SD_MUTEX(un));
19609 	}
19610 
19611 	bzero(&cdb, sizeof (cdb));
19612 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19613 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19614 
19615 	cdb.scc_cmd = SCMD_START_STOP;
19616 	cdb.cdb_opaque[4] = (uchar_t)flag;
19617 
19618 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19619 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19620 	ucmd_buf.uscsi_bufaddr	= NULL;
19621 	ucmd_buf.uscsi_buflen	= 0;
19622 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19623 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19624 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19625 	ucmd_buf.uscsi_timeout	= 200;
19626 
19627 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19628 	    UIO_SYSSPACE, path_flag);
19629 
19630 	switch (status) {
19631 	case 0:
19632 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19633 		break;	/* Success! */
19634 	case EIO:
19635 		switch (ucmd_buf.uscsi_status) {
19636 		case STATUS_RESERVATION_CONFLICT:
19637 			status = EACCES;
19638 			break;
19639 		case STATUS_CHECK:
19640 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19641 				switch (scsi_sense_key(
19642 				    (uint8_t *)&sense_buf)) {
19643 				case KEY_ILLEGAL_REQUEST:
19644 					status = ENOTSUP;
19645 					break;
19646 				case KEY_NOT_READY:
19647 					if (scsi_sense_asc(
19648 					    (uint8_t *)&sense_buf)
19649 					    == 0x3A) {
19650 						status = ENXIO;
19651 					}
19652 					break;
19653 				default:
19654 					break;
19655 				}
19656 			}
19657 			break;
19658 		default:
19659 			break;
19660 		}
19661 		break;
19662 	default:
19663 		break;
19664 	}
19665 
19666 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19667 
19668 	return (status);
19669 }
19670 
19671 
19672 /*
19673  *    Function: sd_start_stop_unit_callback
19674  *
19675  * Description: timeout(9F) callback to begin recovery process for a
19676  *		device that has spun down.
19677  *
19678  *   Arguments: arg - pointer to associated softstate struct.
19679  *
19680  *     Context: Executes in a timeout(9F) thread context
19681  */
19682 
19683 static void
19684 sd_start_stop_unit_callback(void *arg)
19685 {
19686 	struct sd_lun	*un = arg;
19687 	ASSERT(un != NULL);
19688 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19689 
19690 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19691 
19692 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19693 }
19694 
19695 
19696 /*
19697  *    Function: sd_start_stop_unit_task
19698  *
19699  * Description: Recovery procedure when a drive is spun down.
19700  *
19701  *   Arguments: arg - pointer to associated softstate struct.
19702  *
19703  *     Context: Executes in a taskq() thread context
19704  */
19705 
19706 static void
19707 sd_start_stop_unit_task(void *arg)
19708 {
19709 	struct sd_lun	*un = arg;
19710 	sd_ssc_t	*ssc;
19711 	int		rval;
19712 
19713 	ASSERT(un != NULL);
19714 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19715 
19716 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19717 
19718 	/*
19719 	 * Some unformatted drives report not ready error, no need to
19720 	 * restart if format has been initiated.
19721 	 */
19722 	mutex_enter(SD_MUTEX(un));
19723 	if (un->un_f_format_in_progress == TRUE) {
19724 		mutex_exit(SD_MUTEX(un));
19725 		return;
19726 	}
19727 	mutex_exit(SD_MUTEX(un));
19728 
19729 	/*
19730 	 * When a START STOP command is issued from here, it is part of a
19731 	 * failure recovery operation and must be issued before any other
19732 	 * commands, including any pending retries. Thus it must be sent
19733 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19734 	 * succeeds or not, we will start I/O after the attempt.
19735 	 */
19736 	ssc = sd_ssc_init(un);
19737 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
19738 	    SD_PATH_DIRECT_PRIORITY);
19739 	if (rval != 0)
19740 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19741 	sd_ssc_fini(ssc);
19742 	/*
19743 	 * The above call blocks until the START_STOP_UNIT command completes.
19744 	 * Now that it has completed, we must re-try the original IO that
19745 	 * received the NOT READY condition in the first place. There are
19746 	 * three possible conditions here:
19747 	 *
19748 	 *  (1) The original IO is on un_retry_bp.
19749 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19750 	 *	is NULL.
19751 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19752 	 *	points to some other, unrelated bp.
19753 	 *
19754 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19755 	 * as the argument. If un_retry_bp is NULL, this will initiate
19756 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19757 	 * then this will process the bp on un_retry_bp. That may or may not
19758 	 * be the original IO, but that does not matter: the important thing
19759 	 * is to keep the IO processing going at this point.
19760 	 *
19761 	 * Note: This is a very specific error recovery sequence associated
19762 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19763 	 * serialize the I/O with completion of the spin-up.
19764 	 */
19765 	mutex_enter(SD_MUTEX(un));
19766 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19767 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19768 	    un, un->un_retry_bp);
19769 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19770 	sd_start_cmds(un, un->un_retry_bp);
19771 	mutex_exit(SD_MUTEX(un));
19772 
19773 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19774 }
19775 
19776 
19777 /*
19778  *    Function: sd_send_scsi_INQUIRY
19779  *
19780  * Description: Issue the scsi INQUIRY command.
19781  *
19782  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19783  *                      structure for this target.
19784  *		bufaddr
19785  *		buflen
19786  *		evpd
19787  *		page_code
19788  *		page_length
19789  *
19790  * Return Code: 0   - Success
19791  *		errno return code from sd_ssc_send()
19792  *
19793  *     Context: Can sleep. Does not return until command is completed.
19794  */
19795 
19796 static int
19797 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
19798 	uchar_t evpd, uchar_t page_code, size_t *residp)
19799 {
19800 	union scsi_cdb		cdb;
19801 	struct uscsi_cmd	ucmd_buf;
19802 	int			status;
19803 	struct sd_lun		*un;
19804 
19805 	ASSERT(ssc != NULL);
19806 	un = ssc->ssc_un;
19807 	ASSERT(un != NULL);
19808 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19809 	ASSERT(bufaddr != NULL);
19810 
19811 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19812 
19813 	bzero(&cdb, sizeof (cdb));
19814 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19815 	bzero(bufaddr, buflen);
19816 
19817 	cdb.scc_cmd = SCMD_INQUIRY;
19818 	cdb.cdb_opaque[1] = evpd;
19819 	cdb.cdb_opaque[2] = page_code;
19820 	FORMG0COUNT(&cdb, buflen);
19821 
19822 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19823 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19824 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19825 	ucmd_buf.uscsi_buflen	= buflen;
19826 	ucmd_buf.uscsi_rqbuf	= NULL;
19827 	ucmd_buf.uscsi_rqlen	= 0;
19828 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19829 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19830 
19831 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19832 	    UIO_SYSSPACE, SD_PATH_DIRECT);
19833 
19834 	/*
19835 	 * Only handle status == 0, the upper-level caller
19836 	 * will put different assessment based on the context.
19837 	 */
19838 	if (status == 0)
19839 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19840 
19841 	if ((status == 0) && (residp != NULL)) {
19842 		*residp = ucmd_buf.uscsi_resid;
19843 	}
19844 
19845 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19846 
19847 	return (status);
19848 }
19849 
19850 
19851 /*
19852  *    Function: sd_send_scsi_TEST_UNIT_READY
19853  *
19854  * Description: Issue the scsi TEST UNIT READY command.
19855  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19856  *		prevent retrying failed commands. Use this when the intent
19857  *		is either to check for device readiness, to clear a Unit
19858  *		Attention, or to clear any outstanding sense data.
19859  *		However under specific conditions the expected behavior
19860  *		is for retries to bring a device ready, so use the flag
19861  *		with caution.
19862  *
19863  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19864  *                      structure for this target.
19865  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19866  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19867  *			0: dont check for media present, do retries on cmd.
19868  *
19869  * Return Code: 0   - Success
19870  *		EIO - IO error
19871  *		EACCES - Reservation conflict detected
19872  *		ENXIO  - Not Ready, medium not present
19873  *		errno return code from sd_ssc_send()
19874  *
19875  *     Context: Can sleep. Does not return until command is completed.
19876  */
19877 
19878 static int
19879 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
19880 {
19881 	struct	scsi_extended_sense	sense_buf;
19882 	union scsi_cdb		cdb;
19883 	struct uscsi_cmd	ucmd_buf;
19884 	int			status;
19885 	struct sd_lun		*un;
19886 
19887 	ASSERT(ssc != NULL);
19888 	un = ssc->ssc_un;
19889 	ASSERT(un != NULL);
19890 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19891 
19892 	SD_TRACE(SD_LOG_IO, un,
19893 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19894 
19895 	/*
19896 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19897 	 * timeouts when they receive a TUR and the queue is not empty. Check
19898 	 * the configuration flag set during attach (indicating the drive has
19899 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19900 	 * TUR. If there are
19901 	 * pending commands return success, this is a bit arbitrary but is ok
19902 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19903 	 * configurations.
19904 	 */
19905 	if (un->un_f_cfg_tur_check == TRUE) {
19906 		mutex_enter(SD_MUTEX(un));
19907 		if (un->un_ncmds_in_transport != 0) {
19908 			mutex_exit(SD_MUTEX(un));
19909 			return (0);
19910 		}
19911 		mutex_exit(SD_MUTEX(un));
19912 	}
19913 
19914 	bzero(&cdb, sizeof (cdb));
19915 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19916 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19917 
19918 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19919 
19920 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19921 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19922 	ucmd_buf.uscsi_bufaddr	= NULL;
19923 	ucmd_buf.uscsi_buflen	= 0;
19924 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19925 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19926 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19927 
19928 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19929 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19930 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19931 	}
19932 	ucmd_buf.uscsi_timeout	= 60;
19933 
19934 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19935 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
19936 	    SD_PATH_STANDARD));
19937 
19938 	switch (status) {
19939 	case 0:
19940 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19941 		break;	/* Success! */
19942 	case EIO:
19943 		switch (ucmd_buf.uscsi_status) {
19944 		case STATUS_RESERVATION_CONFLICT:
19945 			status = EACCES;
19946 			break;
19947 		case STATUS_CHECK:
19948 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19949 				break;
19950 			}
19951 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19952 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19953 			    KEY_NOT_READY) &&
19954 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
19955 				status = ENXIO;
19956 			}
19957 			break;
19958 		default:
19959 			break;
19960 		}
19961 		break;
19962 	default:
19963 		break;
19964 	}
19965 
19966 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19967 
19968 	return (status);
19969 }
19970 
19971 /*
19972  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19973  *
19974  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19975  *
19976  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19977  *                      structure for this target.
19978  *
19979  * Return Code: 0   - Success
19980  *		EACCES
19981  *		ENOTSUP
19982  *		errno return code from sd_ssc_send()
19983  *
19984  *     Context: Can sleep. Does not return until command is completed.
19985  */
19986 
19987 static int
19988 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
19989 	uint16_t data_len, uchar_t *data_bufp)
19990 {
19991 	struct scsi_extended_sense	sense_buf;
19992 	union scsi_cdb		cdb;
19993 	struct uscsi_cmd	ucmd_buf;
19994 	int			status;
19995 	int			no_caller_buf = FALSE;
19996 	struct sd_lun		*un;
19997 
19998 	ASSERT(ssc != NULL);
19999 	un = ssc->ssc_un;
20000 	ASSERT(un != NULL);
20001 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20002 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20003 
20004 	SD_TRACE(SD_LOG_IO, un,
20005 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20006 
20007 	bzero(&cdb, sizeof (cdb));
20008 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20009 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20010 	if (data_bufp == NULL) {
20011 		/* Allocate a default buf if the caller did not give one */
20012 		ASSERT(data_len == 0);
20013 		data_len  = MHIOC_RESV_KEY_SIZE;
20014 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20015 		no_caller_buf = TRUE;
20016 	}
20017 
20018 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20019 	cdb.cdb_opaque[1] = usr_cmd;
20020 	FORMG1COUNT(&cdb, data_len);
20021 
20022 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20023 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20024 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20025 	ucmd_buf.uscsi_buflen	= data_len;
20026 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20027 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20028 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20029 	ucmd_buf.uscsi_timeout	= 60;
20030 
20031 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20032 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20033 
20034 	switch (status) {
20035 	case 0:
20036 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20037 
20038 		break;	/* Success! */
20039 	case EIO:
20040 		switch (ucmd_buf.uscsi_status) {
20041 		case STATUS_RESERVATION_CONFLICT:
20042 			status = EACCES;
20043 			break;
20044 		case STATUS_CHECK:
20045 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20046 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20047 			    KEY_ILLEGAL_REQUEST)) {
20048 				status = ENOTSUP;
20049 			}
20050 			break;
20051 		default:
20052 			break;
20053 		}
20054 		break;
20055 	default:
20056 		break;
20057 	}
20058 
20059 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20060 
20061 	if (no_caller_buf == TRUE) {
20062 		kmem_free(data_bufp, data_len);
20063 	}
20064 
20065 	return (status);
20066 }
20067 
20068 
20069 /*
20070  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20071  *
20072  * Description: This routine is the driver entry point for handling CD-ROM
20073  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20074  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20075  *		device.
20076  *
20077  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20078  *                      for the target.
20079  *		usr_cmd SCSI-3 reservation facility command (one of
20080  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20081  *			SD_SCSI3_PREEMPTANDABORT)
20082  *		usr_bufp - user provided pointer register, reserve descriptor or
20083  *			preempt and abort structure (mhioc_register_t,
20084  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20085  *
20086  * Return Code: 0   - Success
20087  *		EACCES
20088  *		ENOTSUP
20089  *		errno return code from sd_ssc_send()
20090  *
20091  *     Context: Can sleep. Does not return until command is completed.
20092  */
20093 
20094 static int
20095 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
20096 	uchar_t	*usr_bufp)
20097 {
20098 	struct scsi_extended_sense	sense_buf;
20099 	union scsi_cdb		cdb;
20100 	struct uscsi_cmd	ucmd_buf;
20101 	int			status;
20102 	uchar_t			data_len = sizeof (sd_prout_t);
20103 	sd_prout_t		*prp;
20104 	struct sd_lun		*un;
20105 
20106 	ASSERT(ssc != NULL);
20107 	un = ssc->ssc_un;
20108 	ASSERT(un != NULL);
20109 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20110 	ASSERT(data_len == 24);	/* required by scsi spec */
20111 
20112 	SD_TRACE(SD_LOG_IO, un,
20113 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20114 
20115 	if (usr_bufp == NULL) {
20116 		return (EINVAL);
20117 	}
20118 
20119 	bzero(&cdb, sizeof (cdb));
20120 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20121 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20122 	prp = kmem_zalloc(data_len, KM_SLEEP);
20123 
20124 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20125 	cdb.cdb_opaque[1] = usr_cmd;
20126 	FORMG1COUNT(&cdb, data_len);
20127 
20128 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20129 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20130 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20131 	ucmd_buf.uscsi_buflen	= data_len;
20132 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20133 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20134 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20135 	ucmd_buf.uscsi_timeout	= 60;
20136 
20137 	switch (usr_cmd) {
20138 	case SD_SCSI3_REGISTER: {
20139 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20140 
20141 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20142 		bcopy(ptr->newkey.key, prp->service_key,
20143 		    MHIOC_RESV_KEY_SIZE);
20144 		prp->aptpl = ptr->aptpl;
20145 		break;
20146 	}
20147 	case SD_SCSI3_RESERVE:
20148 	case SD_SCSI3_RELEASE: {
20149 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20150 
20151 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20152 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20153 		cdb.cdb_opaque[2] = ptr->type;
20154 		break;
20155 	}
20156 	case SD_SCSI3_PREEMPTANDABORT: {
20157 		mhioc_preemptandabort_t *ptr =
20158 		    (mhioc_preemptandabort_t *)usr_bufp;
20159 
20160 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20161 		bcopy(ptr->victim_key.key, prp->service_key,
20162 		    MHIOC_RESV_KEY_SIZE);
20163 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20164 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20165 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20166 		break;
20167 	}
20168 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20169 	{
20170 		mhioc_registerandignorekey_t *ptr;
20171 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20172 		bcopy(ptr->newkey.key,
20173 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20174 		prp->aptpl = ptr->aptpl;
20175 		break;
20176 	}
20177 	default:
20178 		ASSERT(FALSE);
20179 		break;
20180 	}
20181 
20182 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20183 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20184 
20185 	switch (status) {
20186 	case 0:
20187 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20188 		break;	/* Success! */
20189 	case EIO:
20190 		switch (ucmd_buf.uscsi_status) {
20191 		case STATUS_RESERVATION_CONFLICT:
20192 			status = EACCES;
20193 			break;
20194 		case STATUS_CHECK:
20195 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20196 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20197 			    KEY_ILLEGAL_REQUEST)) {
20198 				status = ENOTSUP;
20199 			}
20200 			break;
20201 		default:
20202 			break;
20203 		}
20204 		break;
20205 	default:
20206 		break;
20207 	}
20208 
20209 	kmem_free(prp, data_len);
20210 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20211 	return (status);
20212 }
20213 
20214 
20215 /*
20216  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20217  *
20218  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20219  *
20220  *   Arguments: un - pointer to the target's soft state struct
20221  *              dkc - pointer to the callback structure
20222  *
20223  * Return Code: 0 - success
20224  *		errno-type error code
20225  *
20226  *     Context: kernel thread context only.
20227  *
20228  *  _______________________________________________________________
20229  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
20230  * |FLUSH_VOLATILE|              | operation                       |
20231  * |______________|______________|_________________________________|
20232  * | 0            | NULL         | Synchronous flush on both       |
20233  * |              |              | volatile and non-volatile cache |
20234  * |______________|______________|_________________________________|
20235  * | 1            | NULL         | Synchronous flush on volatile   |
20236  * |              |              | cache; disk drivers may suppress|
20237  * |              |              | flush if disk table indicates   |
20238  * |              |              | non-volatile cache              |
20239  * |______________|______________|_________________________________|
20240  * | 0            | !NULL        | Asynchronous flush on both      |
20241  * |              |              | volatile and non-volatile cache;|
20242  * |______________|______________|_________________________________|
20243  * | 1            | !NULL        | Asynchronous flush on volatile  |
20244  * |              |              | cache; disk drivers may suppress|
20245  * |              |              | flush if disk table indicates   |
20246  * |              |              | non-volatile cache              |
20247  * |______________|______________|_________________________________|
20248  *
20249  */
20250 
20251 static int
20252 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20253 {
20254 	struct sd_uscsi_info	*uip;
20255 	struct uscsi_cmd	*uscmd;
20256 	union scsi_cdb		*cdb;
20257 	struct buf		*bp;
20258 	int			rval = 0;
20259 	int			is_async;
20260 
20261 	SD_TRACE(SD_LOG_IO, un,
20262 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20263 
20264 	ASSERT(un != NULL);
20265 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20266 
20267 	if (dkc == NULL || dkc->dkc_callback == NULL) {
20268 		is_async = FALSE;
20269 	} else {
20270 		is_async = TRUE;
20271 	}
20272 
20273 	mutex_enter(SD_MUTEX(un));
20274 	/* check whether cache flush should be suppressed */
20275 	if (un->un_f_suppress_cache_flush == TRUE) {
20276 		mutex_exit(SD_MUTEX(un));
20277 		/*
20278 		 * suppress the cache flush if the device is told to do
20279 		 * so by sd.conf or disk table
20280 		 */
20281 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
20282 		    skip the cache flush since suppress_cache_flush is %d!\n",
20283 		    un->un_f_suppress_cache_flush);
20284 
20285 		if (is_async == TRUE) {
20286 			/* invoke callback for asynchronous flush */
20287 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
20288 		}
20289 		return (rval);
20290 	}
20291 	mutex_exit(SD_MUTEX(un));
20292 
20293 	/*
20294 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
20295 	 * set properly
20296 	 */
20297 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20298 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20299 
20300 	mutex_enter(SD_MUTEX(un));
20301 	if (dkc != NULL && un->un_f_sync_nv_supported &&
20302 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
20303 		/*
20304 		 * if the device supports SYNC_NV bit, turn on
20305 		 * the SYNC_NV bit to only flush volatile cache
20306 		 */
20307 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
20308 	}
20309 	mutex_exit(SD_MUTEX(un));
20310 
20311 	/*
20312 	 * First get some memory for the uscsi_cmd struct and cdb
20313 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20314 	 */
20315 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20316 	uscmd->uscsi_cdblen = CDB_GROUP1;
20317 	uscmd->uscsi_cdb = (caddr_t)cdb;
20318 	uscmd->uscsi_bufaddr = NULL;
20319 	uscmd->uscsi_buflen = 0;
20320 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20321 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20322 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20323 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20324 	uscmd->uscsi_timeout = sd_io_time;
20325 
20326 	/*
20327 	 * Allocate an sd_uscsi_info struct and fill it with the info
20328 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20329 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20330 	 * since we allocate the buf here in this function, we do not
20331 	 * need to preserve the prior contents of b_private.
20332 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20333 	 */
20334 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20335 	uip->ui_flags = SD_PATH_DIRECT;
20336 	uip->ui_cmdp  = uscmd;
20337 
20338 	bp = getrbuf(KM_SLEEP);
20339 	bp->b_private = uip;
20340 
20341 	/*
20342 	 * Setup buffer to carry uscsi request.
20343 	 */
20344 	bp->b_flags  = B_BUSY;
20345 	bp->b_bcount = 0;
20346 	bp->b_blkno  = 0;
20347 
20348 	if (is_async == TRUE) {
20349 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20350 		uip->ui_dkc = *dkc;
20351 	}
20352 
20353 	bp->b_edev = SD_GET_DEV(un);
20354 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20355 
20356 	/*
20357 	 * Unset un_f_sync_cache_required flag
20358 	 */
20359 	mutex_enter(SD_MUTEX(un));
20360 	un->un_f_sync_cache_required = FALSE;
20361 	mutex_exit(SD_MUTEX(un));
20362 
20363 	(void) sd_uscsi_strategy(bp);
20364 
20365 	/*
20366 	 * If synchronous request, wait for completion
20367 	 * If async just return and let b_iodone callback
20368 	 * cleanup.
20369 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20370 	 * but it was also incremented in sd_uscsi_strategy(), so
20371 	 * we should be ok.
20372 	 */
20373 	if (is_async == FALSE) {
20374 		(void) biowait(bp);
20375 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20376 	}
20377 
20378 	return (rval);
20379 }
20380 
20381 
20382 static int
20383 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20384 {
20385 	struct sd_uscsi_info *uip;
20386 	struct uscsi_cmd *uscmd;
20387 	uint8_t *sense_buf;
20388 	struct sd_lun *un;
20389 	int status;
20390 	union scsi_cdb *cdb;
20391 
20392 	uip = (struct sd_uscsi_info *)(bp->b_private);
20393 	ASSERT(uip != NULL);
20394 
20395 	uscmd = uip->ui_cmdp;
20396 	ASSERT(uscmd != NULL);
20397 
20398 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20399 	ASSERT(sense_buf != NULL);
20400 
20401 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20402 	ASSERT(un != NULL);
20403 
20404 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
20405 
20406 	status = geterror(bp);
20407 	switch (status) {
20408 	case 0:
20409 		break;	/* Success! */
20410 	case EIO:
20411 		switch (uscmd->uscsi_status) {
20412 		case STATUS_RESERVATION_CONFLICT:
20413 			/* Ignore reservation conflict */
20414 			status = 0;
20415 			goto done;
20416 
20417 		case STATUS_CHECK:
20418 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20419 			    (scsi_sense_key(sense_buf) ==
20420 			    KEY_ILLEGAL_REQUEST)) {
20421 				/* Ignore Illegal Request error */
20422 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
20423 					mutex_enter(SD_MUTEX(un));
20424 					un->un_f_sync_nv_supported = FALSE;
20425 					mutex_exit(SD_MUTEX(un));
20426 					status = 0;
20427 					SD_TRACE(SD_LOG_IO, un,
20428 					    "un_f_sync_nv_supported \
20429 					    is set to false.\n");
20430 					goto done;
20431 				}
20432 
20433 				mutex_enter(SD_MUTEX(un));
20434 				un->un_f_sync_cache_supported = FALSE;
20435 				mutex_exit(SD_MUTEX(un));
20436 				SD_TRACE(SD_LOG_IO, un,
20437 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
20438 				    un_f_sync_cache_supported set to false \
20439 				    with asc = %x, ascq = %x\n",
20440 				    scsi_sense_asc(sense_buf),
20441 				    scsi_sense_ascq(sense_buf));
20442 				status = ENOTSUP;
20443 				goto done;
20444 			}
20445 			break;
20446 		default:
20447 			break;
20448 		}
20449 		/* FALLTHRU */
20450 	default:
20451 		/*
20452 		 * Turn on the un_f_sync_cache_required flag
20453 		 * since the SYNC CACHE command failed
20454 		 */
20455 		mutex_enter(SD_MUTEX(un));
20456 		un->un_f_sync_cache_required = TRUE;
20457 		mutex_exit(SD_MUTEX(un));
20458 
20459 		/*
20460 		 * Don't log an error message if this device
20461 		 * has removable media.
20462 		 */
20463 		if (!un->un_f_has_removable_media) {
20464 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20465 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20466 		}
20467 		break;
20468 	}
20469 
20470 done:
20471 	if (uip->ui_dkc.dkc_callback != NULL) {
20472 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20473 	}
20474 
20475 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20476 	freerbuf(bp);
20477 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20478 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20479 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20480 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20481 
20482 	return (status);
20483 }
20484 
20485 
20486 /*
20487  *    Function: sd_send_scsi_GET_CONFIGURATION
20488  *
20489  * Description: Issues the get configuration command to the device.
20490  *		Called from sd_check_for_writable_cd & sd_get_media_info
20491  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20492  *   Arguments: ssc
20493  *		ucmdbuf
20494  *		rqbuf
20495  *		rqbuflen
20496  *		bufaddr
20497  *		buflen
20498  *		path_flag
20499  *
20500  * Return Code: 0   - Success
20501  *		errno return code from sd_ssc_send()
20502  *
20503  *     Context: Can sleep. Does not return until command is completed.
20504  *
20505  */
20506 
20507 static int
20508 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
20509 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
20510 	int path_flag)
20511 {
20512 	char	cdb[CDB_GROUP1];
20513 	int	status;
20514 	struct sd_lun	*un;
20515 
20516 	ASSERT(ssc != NULL);
20517 	un = ssc->ssc_un;
20518 	ASSERT(un != NULL);
20519 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20520 	ASSERT(bufaddr != NULL);
20521 	ASSERT(ucmdbuf != NULL);
20522 	ASSERT(rqbuf != NULL);
20523 
20524 	SD_TRACE(SD_LOG_IO, un,
20525 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20526 
20527 	bzero(cdb, sizeof (cdb));
20528 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20529 	bzero(rqbuf, rqbuflen);
20530 	bzero(bufaddr, buflen);
20531 
20532 	/*
20533 	 * Set up cdb field for the get configuration command.
20534 	 */
20535 	cdb[0] = SCMD_GET_CONFIGURATION;
20536 	cdb[1] = 0x02;  /* Requested Type */
20537 	cdb[8] = SD_PROFILE_HEADER_LEN;
20538 	ucmdbuf->uscsi_cdb = cdb;
20539 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20540 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20541 	ucmdbuf->uscsi_buflen = buflen;
20542 	ucmdbuf->uscsi_timeout = sd_io_time;
20543 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20544 	ucmdbuf->uscsi_rqlen = rqbuflen;
20545 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20546 
20547 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20548 	    UIO_SYSSPACE, path_flag);
20549 
20550 	switch (status) {
20551 	case 0:
20552 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20553 		break;  /* Success! */
20554 	case EIO:
20555 		switch (ucmdbuf->uscsi_status) {
20556 		case STATUS_RESERVATION_CONFLICT:
20557 			status = EACCES;
20558 			break;
20559 		default:
20560 			break;
20561 		}
20562 		break;
20563 	default:
20564 		break;
20565 	}
20566 
20567 	if (status == 0) {
20568 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20569 		    "sd_send_scsi_GET_CONFIGURATION: data",
20570 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20571 	}
20572 
20573 	SD_TRACE(SD_LOG_IO, un,
20574 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20575 
20576 	return (status);
20577 }
20578 
20579 /*
20580  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20581  *
20582  * Description: Issues the get configuration command to the device to
20583  *              retrieve a specific feature. Called from
20584  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20585  *   Arguments: ssc
20586  *              ucmdbuf
20587  *              rqbuf
20588  *              rqbuflen
20589  *              bufaddr
20590  *              buflen
20591  *		feature
20592  *
20593  * Return Code: 0   - Success
20594  *              errno return code from sd_ssc_send()
20595  *
20596  *     Context: Can sleep. Does not return until command is completed.
20597  *
20598  */
20599 static int
20600 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
20601 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20602 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
20603 {
20604 	char    cdb[CDB_GROUP1];
20605 	int	status;
20606 	struct sd_lun	*un;
20607 
20608 	ASSERT(ssc != NULL);
20609 	un = ssc->ssc_un;
20610 	ASSERT(un != NULL);
20611 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20612 	ASSERT(bufaddr != NULL);
20613 	ASSERT(ucmdbuf != NULL);
20614 	ASSERT(rqbuf != NULL);
20615 
20616 	SD_TRACE(SD_LOG_IO, un,
20617 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20618 
20619 	bzero(cdb, sizeof (cdb));
20620 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20621 	bzero(rqbuf, rqbuflen);
20622 	bzero(bufaddr, buflen);
20623 
20624 	/*
20625 	 * Set up cdb field for the get configuration command.
20626 	 */
20627 	cdb[0] = SCMD_GET_CONFIGURATION;
20628 	cdb[1] = 0x02;  /* Requested Type */
20629 	cdb[3] = feature;
20630 	cdb[8] = buflen;
20631 	ucmdbuf->uscsi_cdb = cdb;
20632 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20633 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20634 	ucmdbuf->uscsi_buflen = buflen;
20635 	ucmdbuf->uscsi_timeout = sd_io_time;
20636 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20637 	ucmdbuf->uscsi_rqlen = rqbuflen;
20638 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20639 
20640 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20641 	    UIO_SYSSPACE, path_flag);
20642 
20643 	switch (status) {
20644 	case 0:
20645 
20646 		break;  /* Success! */
20647 	case EIO:
20648 		switch (ucmdbuf->uscsi_status) {
20649 		case STATUS_RESERVATION_CONFLICT:
20650 			status = EACCES;
20651 			break;
20652 		default:
20653 			break;
20654 		}
20655 		break;
20656 	default:
20657 		break;
20658 	}
20659 
20660 	if (status == 0) {
20661 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20662 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20663 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20664 	}
20665 
20666 	SD_TRACE(SD_LOG_IO, un,
20667 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20668 
20669 	return (status);
20670 }
20671 
20672 
20673 /*
20674  *    Function: sd_send_scsi_MODE_SENSE
20675  *
20676  * Description: Utility function for issuing a scsi MODE SENSE command.
20677  *		Note: This routine uses a consistent implementation for Group0,
20678  *		Group1, and Group2 commands across all platforms. ATAPI devices
20679  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20680  *
20681  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20682  *                      structure for this target.
20683  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20684  *			  CDB_GROUP[1|2] (10 byte).
20685  *		bufaddr - buffer for page data retrieved from the target.
20686  *		buflen - size of page to be retrieved.
20687  *		page_code - page code of data to be retrieved from the target.
20688  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20689  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20690  *			to use the USCSI "direct" chain and bypass the normal
20691  *			command waitq.
20692  *
20693  * Return Code: 0   - Success
20694  *		errno return code from sd_ssc_send()
20695  *
20696  *     Context: Can sleep. Does not return until command is completed.
20697  */
20698 
20699 static int
20700 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20701 	size_t buflen,  uchar_t page_code, int path_flag)
20702 {
20703 	struct	scsi_extended_sense	sense_buf;
20704 	union scsi_cdb		cdb;
20705 	struct uscsi_cmd	ucmd_buf;
20706 	int			status;
20707 	int			headlen;
20708 	struct sd_lun		*un;
20709 
20710 	ASSERT(ssc != NULL);
20711 	un = ssc->ssc_un;
20712 	ASSERT(un != NULL);
20713 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20714 	ASSERT(bufaddr != NULL);
20715 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20716 	    (cdbsize == CDB_GROUP2));
20717 
20718 	SD_TRACE(SD_LOG_IO, un,
20719 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20720 
20721 	bzero(&cdb, sizeof (cdb));
20722 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20723 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20724 	bzero(bufaddr, buflen);
20725 
20726 	if (cdbsize == CDB_GROUP0) {
20727 		cdb.scc_cmd = SCMD_MODE_SENSE;
20728 		cdb.cdb_opaque[2] = page_code;
20729 		FORMG0COUNT(&cdb, buflen);
20730 		headlen = MODE_HEADER_LENGTH;
20731 	} else {
20732 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20733 		cdb.cdb_opaque[2] = page_code;
20734 		FORMG1COUNT(&cdb, buflen);
20735 		headlen = MODE_HEADER_LENGTH_GRP2;
20736 	}
20737 
20738 	ASSERT(headlen <= buflen);
20739 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20740 
20741 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20742 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20743 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20744 	ucmd_buf.uscsi_buflen	= buflen;
20745 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20746 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20747 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20748 	ucmd_buf.uscsi_timeout	= 60;
20749 
20750 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20751 	    UIO_SYSSPACE, path_flag);
20752 
20753 	switch (status) {
20754 	case 0:
20755 		/*
20756 		 * sr_check_wp() uses 0x3f page code and check the header of
20757 		 * mode page to determine if target device is write-protected.
20758 		 * But some USB devices return 0 bytes for 0x3f page code. For
20759 		 * this case, make sure that mode page header is returned at
20760 		 * least.
20761 		 */
20762 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
20763 			status = EIO;
20764 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
20765 			    "mode page header is not returned");
20766 		}
20767 		break;	/* Success! */
20768 	case EIO:
20769 		switch (ucmd_buf.uscsi_status) {
20770 		case STATUS_RESERVATION_CONFLICT:
20771 			status = EACCES;
20772 			break;
20773 		default:
20774 			break;
20775 		}
20776 		break;
20777 	default:
20778 		break;
20779 	}
20780 
20781 	if (status == 0) {
20782 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20783 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20784 	}
20785 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20786 
20787 	return (status);
20788 }
20789 
20790 
20791 /*
20792  *    Function: sd_send_scsi_MODE_SELECT
20793  *
20794  * Description: Utility function for issuing a scsi MODE SELECT command.
20795  *		Note: This routine uses a consistent implementation for Group0,
20796  *		Group1, and Group2 commands across all platforms. ATAPI devices
20797  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20798  *
20799  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20800  *                      structure for this target.
20801  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20802  *			  CDB_GROUP[1|2] (10 byte).
20803  *		bufaddr - buffer for page data retrieved from the target.
20804  *		buflen - size of page to be retrieved.
20805  *		save_page - boolean to determin if SP bit should be set.
20806  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20807  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20808  *			to use the USCSI "direct" chain and bypass the normal
20809  *			command waitq.
20810  *
20811  * Return Code: 0   - Success
20812  *		errno return code from sd_ssc_send()
20813  *
20814  *     Context: Can sleep. Does not return until command is completed.
20815  */
20816 
20817 static int
20818 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20819 	size_t buflen,  uchar_t save_page, int path_flag)
20820 {
20821 	struct	scsi_extended_sense	sense_buf;
20822 	union scsi_cdb		cdb;
20823 	struct uscsi_cmd	ucmd_buf;
20824 	int			status;
20825 	struct sd_lun		*un;
20826 
20827 	ASSERT(ssc != NULL);
20828 	un = ssc->ssc_un;
20829 	ASSERT(un != NULL);
20830 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20831 	ASSERT(bufaddr != NULL);
20832 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20833 	    (cdbsize == CDB_GROUP2));
20834 
20835 	SD_TRACE(SD_LOG_IO, un,
20836 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20837 
20838 	bzero(&cdb, sizeof (cdb));
20839 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20840 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20841 
20842 	/* Set the PF bit for many third party drives */
20843 	cdb.cdb_opaque[1] = 0x10;
20844 
20845 	/* Set the savepage(SP) bit if given */
20846 	if (save_page == SD_SAVE_PAGE) {
20847 		cdb.cdb_opaque[1] |= 0x01;
20848 	}
20849 
20850 	if (cdbsize == CDB_GROUP0) {
20851 		cdb.scc_cmd = SCMD_MODE_SELECT;
20852 		FORMG0COUNT(&cdb, buflen);
20853 	} else {
20854 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20855 		FORMG1COUNT(&cdb, buflen);
20856 	}
20857 
20858 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20859 
20860 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20861 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20862 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20863 	ucmd_buf.uscsi_buflen	= buflen;
20864 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20865 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20866 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20867 	ucmd_buf.uscsi_timeout	= 60;
20868 
20869 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20870 	    UIO_SYSSPACE, path_flag);
20871 
20872 	switch (status) {
20873 	case 0:
20874 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20875 		break;	/* Success! */
20876 	case EIO:
20877 		switch (ucmd_buf.uscsi_status) {
20878 		case STATUS_RESERVATION_CONFLICT:
20879 			status = EACCES;
20880 			break;
20881 		default:
20882 			break;
20883 		}
20884 		break;
20885 	default:
20886 		break;
20887 	}
20888 
20889 	if (status == 0) {
20890 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20891 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20892 	}
20893 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20894 
20895 	return (status);
20896 }
20897 
20898 
20899 /*
20900  *    Function: sd_send_scsi_RDWR
20901  *
20902  * Description: Issue a scsi READ or WRITE command with the given parameters.
20903  *
20904  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20905  *                      structure for this target.
20906  *		cmd:	 SCMD_READ or SCMD_WRITE
20907  *		bufaddr: Address of caller's buffer to receive the RDWR data
20908  *		buflen:  Length of caller's buffer receive the RDWR data.
20909  *		start_block: Block number for the start of the RDWR operation.
20910  *			 (Assumes target-native block size.)
20911  *		residp:  Pointer to variable to receive the redisual of the
20912  *			 RDWR operation (may be NULL of no residual requested).
20913  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20914  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20915  *			to use the USCSI "direct" chain and bypass the normal
20916  *			command waitq.
20917  *
20918  * Return Code: 0   - Success
20919  *		errno return code from sd_ssc_send()
20920  *
20921  *     Context: Can sleep. Does not return until command is completed.
20922  */
20923 
20924 static int
20925 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
20926 	size_t buflen, daddr_t start_block, int path_flag)
20927 {
20928 	struct	scsi_extended_sense	sense_buf;
20929 	union scsi_cdb		cdb;
20930 	struct uscsi_cmd	ucmd_buf;
20931 	uint32_t		block_count;
20932 	int			status;
20933 	int			cdbsize;
20934 	uchar_t			flag;
20935 	struct sd_lun		*un;
20936 
20937 	ASSERT(ssc != NULL);
20938 	un = ssc->ssc_un;
20939 	ASSERT(un != NULL);
20940 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20941 	ASSERT(bufaddr != NULL);
20942 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20943 
20944 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20945 
20946 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20947 		return (EINVAL);
20948 	}
20949 
20950 	mutex_enter(SD_MUTEX(un));
20951 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20952 	mutex_exit(SD_MUTEX(un));
20953 
20954 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20955 
20956 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20957 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20958 	    bufaddr, buflen, start_block, block_count);
20959 
20960 	bzero(&cdb, sizeof (cdb));
20961 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20962 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20963 
20964 	/* Compute CDB size to use */
20965 	if (start_block > 0xffffffff)
20966 		cdbsize = CDB_GROUP4;
20967 	else if ((start_block & 0xFFE00000) ||
20968 	    (un->un_f_cfg_is_atapi == TRUE))
20969 		cdbsize = CDB_GROUP1;
20970 	else
20971 		cdbsize = CDB_GROUP0;
20972 
20973 	switch (cdbsize) {
20974 	case CDB_GROUP0:	/* 6-byte CDBs */
20975 		cdb.scc_cmd = cmd;
20976 		FORMG0ADDR(&cdb, start_block);
20977 		FORMG0COUNT(&cdb, block_count);
20978 		break;
20979 	case CDB_GROUP1:	/* 10-byte CDBs */
20980 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20981 		FORMG1ADDR(&cdb, start_block);
20982 		FORMG1COUNT(&cdb, block_count);
20983 		break;
20984 	case CDB_GROUP4:	/* 16-byte CDBs */
20985 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20986 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20987 		FORMG4COUNT(&cdb, block_count);
20988 		break;
20989 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20990 	default:
20991 		/* All others reserved */
20992 		return (EINVAL);
20993 	}
20994 
20995 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20996 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20997 
20998 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20999 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21000 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21001 	ucmd_buf.uscsi_buflen	= buflen;
21002 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21003 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21004 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21005 	ucmd_buf.uscsi_timeout	= 60;
21006 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21007 	    UIO_SYSSPACE, path_flag);
21008 
21009 	switch (status) {
21010 	case 0:
21011 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21012 		break;	/* Success! */
21013 	case EIO:
21014 		switch (ucmd_buf.uscsi_status) {
21015 		case STATUS_RESERVATION_CONFLICT:
21016 			status = EACCES;
21017 			break;
21018 		default:
21019 			break;
21020 		}
21021 		break;
21022 	default:
21023 		break;
21024 	}
21025 
21026 	if (status == 0) {
21027 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21028 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21029 	}
21030 
21031 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21032 
21033 	return (status);
21034 }
21035 
21036 
21037 /*
21038  *    Function: sd_send_scsi_LOG_SENSE
21039  *
21040  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21041  *
21042  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21043  *                      structure for this target.
21044  *
21045  * Return Code: 0   - Success
21046  *		errno return code from sd_ssc_send()
21047  *
21048  *     Context: Can sleep. Does not return until command is completed.
21049  */
21050 
21051 static int
21052 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21053 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21054 	int path_flag)
21055 
21056 {
21057 	struct scsi_extended_sense	sense_buf;
21058 	union scsi_cdb		cdb;
21059 	struct uscsi_cmd	ucmd_buf;
21060 	int			status;
21061 	struct sd_lun		*un;
21062 
21063 	ASSERT(ssc != NULL);
21064 	un = ssc->ssc_un;
21065 	ASSERT(un != NULL);
21066 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21067 
21068 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21069 
21070 	bzero(&cdb, sizeof (cdb));
21071 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21072 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21073 
21074 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21075 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21076 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21077 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21078 	FORMG1COUNT(&cdb, buflen);
21079 
21080 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21081 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21082 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21083 	ucmd_buf.uscsi_buflen	= buflen;
21084 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21085 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21086 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21087 	ucmd_buf.uscsi_timeout	= 60;
21088 
21089 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21090 	    UIO_SYSSPACE, path_flag);
21091 
21092 	switch (status) {
21093 	case 0:
21094 		break;
21095 	case EIO:
21096 		switch (ucmd_buf.uscsi_status) {
21097 		case STATUS_RESERVATION_CONFLICT:
21098 			status = EACCES;
21099 			break;
21100 		case STATUS_CHECK:
21101 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21102 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21103 				KEY_ILLEGAL_REQUEST) &&
21104 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21105 				/*
21106 				 * ASC 0x24: INVALID FIELD IN CDB
21107 				 */
21108 				switch (page_code) {
21109 				case START_STOP_CYCLE_PAGE:
21110 					/*
21111 					 * The start stop cycle counter is
21112 					 * implemented as page 0x31 in earlier
21113 					 * generation disks. In new generation
21114 					 * disks the start stop cycle counter is
21115 					 * implemented as page 0xE. To properly
21116 					 * handle this case if an attempt for
21117 					 * log page 0xE is made and fails we
21118 					 * will try again using page 0x31.
21119 					 *
21120 					 * Network storage BU committed to
21121 					 * maintain the page 0x31 for this
21122 					 * purpose and will not have any other
21123 					 * page implemented with page code 0x31
21124 					 * until all disks transition to the
21125 					 * standard page.
21126 					 */
21127 					mutex_enter(SD_MUTEX(un));
21128 					un->un_start_stop_cycle_page =
21129 					    START_STOP_CYCLE_VU_PAGE;
21130 					cdb.cdb_opaque[2] =
21131 					    (char)(page_control << 6) |
21132 					    un->un_start_stop_cycle_page;
21133 					mutex_exit(SD_MUTEX(un));
21134 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21135 					status = sd_ssc_send(
21136 					    ssc, &ucmd_buf, FKIOCTL,
21137 					    UIO_SYSSPACE, path_flag);
21138 
21139 					break;
21140 				case TEMPERATURE_PAGE:
21141 					status = ENOTTY;
21142 					break;
21143 				default:
21144 					break;
21145 				}
21146 			}
21147 			break;
21148 		default:
21149 			break;
21150 		}
21151 		break;
21152 	default:
21153 		break;
21154 	}
21155 
21156 	if (status == 0) {
21157 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21158 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21159 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21160 	}
21161 
21162 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21163 
21164 	return (status);
21165 }
21166 
21167 
21168 /*
21169  *    Function: sdioctl
21170  *
21171  * Description: Driver's ioctl(9e) entry point function.
21172  *
21173  *   Arguments: dev     - device number
21174  *		cmd     - ioctl operation to be performed
21175  *		arg     - user argument, contains data to be set or reference
21176  *			  parameter for get
21177  *		flag    - bit flag, indicating open settings, 32/64 bit type
21178  *		cred_p  - user credential pointer
21179  *		rval_p  - calling process return value (OPT)
21180  *
21181  * Return Code: EINVAL
21182  *		ENOTTY
21183  *		ENXIO
21184  *		EIO
21185  *		EFAULT
21186  *		ENOTSUP
21187  *		EPERM
21188  *
21189  *     Context: Called from the device switch at normal priority.
21190  */
21191 
21192 static int
21193 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21194 {
21195 	struct sd_lun	*un = NULL;
21196 	int		err = 0;
21197 	int		i = 0;
21198 	cred_t		*cr;
21199 	int		tmprval = EINVAL;
21200 	int 		is_valid;
21201 	sd_ssc_t	*ssc;
21202 
21203 	/*
21204 	 * All device accesses go thru sdstrategy where we check on suspend
21205 	 * status
21206 	 */
21207 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21208 		return (ENXIO);
21209 	}
21210 
21211 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21212 
21213 	/* Initialize sd_ssc_t for internal uscsi commands */
21214 	ssc = sd_ssc_init(un);
21215 
21216 	is_valid = SD_IS_VALID_LABEL(un);
21217 
21218 	/*
21219 	 * Moved this wait from sd_uscsi_strategy to here for
21220 	 * reasons of deadlock prevention. Internal driver commands,
21221 	 * specifically those to change a devices power level, result
21222 	 * in a call to sd_uscsi_strategy.
21223 	 */
21224 	mutex_enter(SD_MUTEX(un));
21225 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21226 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21227 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21228 	}
21229 	/*
21230 	 * Twiddling the counter here protects commands from now
21231 	 * through to the top of sd_uscsi_strategy. Without the
21232 	 * counter inc. a power down, for example, could get in
21233 	 * after the above check for state is made and before
21234 	 * execution gets to the top of sd_uscsi_strategy.
21235 	 * That would cause problems.
21236 	 */
21237 	un->un_ncmds_in_driver++;
21238 
21239 	if (!is_valid &&
21240 	    (flag & (FNDELAY | FNONBLOCK))) {
21241 		switch (cmd) {
21242 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
21243 		case DKIOCGVTOC:
21244 		case DKIOCGEXTVTOC:
21245 		case DKIOCGAPART:
21246 		case DKIOCPARTINFO:
21247 		case DKIOCEXTPARTINFO:
21248 		case DKIOCSGEOM:
21249 		case DKIOCSAPART:
21250 		case DKIOCGETEFI:
21251 		case DKIOCPARTITION:
21252 		case DKIOCSVTOC:
21253 		case DKIOCSEXTVTOC:
21254 		case DKIOCSETEFI:
21255 		case DKIOCGMBOOT:
21256 		case DKIOCSMBOOT:
21257 		case DKIOCG_PHYGEOM:
21258 		case DKIOCG_VIRTGEOM:
21259 			/* let cmlb handle it */
21260 			goto skip_ready_valid;
21261 
21262 		case CDROMPAUSE:
21263 		case CDROMRESUME:
21264 		case CDROMPLAYMSF:
21265 		case CDROMPLAYTRKIND:
21266 		case CDROMREADTOCHDR:
21267 		case CDROMREADTOCENTRY:
21268 		case CDROMSTOP:
21269 		case CDROMSTART:
21270 		case CDROMVOLCTRL:
21271 		case CDROMSUBCHNL:
21272 		case CDROMREADMODE2:
21273 		case CDROMREADMODE1:
21274 		case CDROMREADOFFSET:
21275 		case CDROMSBLKMODE:
21276 		case CDROMGBLKMODE:
21277 		case CDROMGDRVSPEED:
21278 		case CDROMSDRVSPEED:
21279 		case CDROMCDDA:
21280 		case CDROMCDXA:
21281 		case CDROMSUBCODE:
21282 			if (!ISCD(un)) {
21283 				un->un_ncmds_in_driver--;
21284 				ASSERT(un->un_ncmds_in_driver >= 0);
21285 				mutex_exit(SD_MUTEX(un));
21286 				err = ENOTTY;
21287 				goto done_without_assess;
21288 			}
21289 			break;
21290 		case FDEJECT:
21291 		case DKIOCEJECT:
21292 		case CDROMEJECT:
21293 			if (!un->un_f_eject_media_supported) {
21294 				un->un_ncmds_in_driver--;
21295 				ASSERT(un->un_ncmds_in_driver >= 0);
21296 				mutex_exit(SD_MUTEX(un));
21297 				err = ENOTTY;
21298 				goto done_without_assess;
21299 			}
21300 			break;
21301 		case DKIOCFLUSHWRITECACHE:
21302 			mutex_exit(SD_MUTEX(un));
21303 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21304 			if (err != 0) {
21305 				mutex_enter(SD_MUTEX(un));
21306 				un->un_ncmds_in_driver--;
21307 				ASSERT(un->un_ncmds_in_driver >= 0);
21308 				mutex_exit(SD_MUTEX(un));
21309 				err = EIO;
21310 				goto done_quick_assess;
21311 			}
21312 			mutex_enter(SD_MUTEX(un));
21313 			/* FALLTHROUGH */
21314 		case DKIOCREMOVABLE:
21315 		case DKIOCHOTPLUGGABLE:
21316 		case DKIOCINFO:
21317 		case DKIOCGMEDIAINFO:
21318 		case MHIOCENFAILFAST:
21319 		case MHIOCSTATUS:
21320 		case MHIOCTKOWN:
21321 		case MHIOCRELEASE:
21322 		case MHIOCGRP_INKEYS:
21323 		case MHIOCGRP_INRESV:
21324 		case MHIOCGRP_REGISTER:
21325 		case MHIOCGRP_RESERVE:
21326 		case MHIOCGRP_PREEMPTANDABORT:
21327 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21328 		case CDROMCLOSETRAY:
21329 		case USCSICMD:
21330 			goto skip_ready_valid;
21331 		default:
21332 			break;
21333 		}
21334 
21335 		mutex_exit(SD_MUTEX(un));
21336 		err = sd_ready_and_valid(ssc, SDPART(dev));
21337 		mutex_enter(SD_MUTEX(un));
21338 
21339 		if (err != SD_READY_VALID) {
21340 			switch (cmd) {
21341 			case DKIOCSTATE:
21342 			case CDROMGDRVSPEED:
21343 			case CDROMSDRVSPEED:
21344 			case FDEJECT:	/* for eject command */
21345 			case DKIOCEJECT:
21346 			case CDROMEJECT:
21347 			case DKIOCREMOVABLE:
21348 			case DKIOCHOTPLUGGABLE:
21349 				break;
21350 			default:
21351 				if (un->un_f_has_removable_media) {
21352 					err = ENXIO;
21353 				} else {
21354 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
21355 					if (err == SD_RESERVED_BY_OTHERS) {
21356 						err = EACCES;
21357 					} else {
21358 						err = EIO;
21359 					}
21360 				}
21361 				un->un_ncmds_in_driver--;
21362 				ASSERT(un->un_ncmds_in_driver >= 0);
21363 				mutex_exit(SD_MUTEX(un));
21364 
21365 				goto done_without_assess;
21366 			}
21367 		}
21368 	}
21369 
21370 skip_ready_valid:
21371 	mutex_exit(SD_MUTEX(un));
21372 
21373 	switch (cmd) {
21374 	case DKIOCINFO:
21375 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21376 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21377 		break;
21378 
21379 	case DKIOCGMEDIAINFO:
21380 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21381 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21382 		break;
21383 
21384 	case DKIOCGGEOM:
21385 	case DKIOCGVTOC:
21386 	case DKIOCGEXTVTOC:
21387 	case DKIOCGAPART:
21388 	case DKIOCPARTINFO:
21389 	case DKIOCEXTPARTINFO:
21390 	case DKIOCSGEOM:
21391 	case DKIOCSAPART:
21392 	case DKIOCGETEFI:
21393 	case DKIOCPARTITION:
21394 	case DKIOCSVTOC:
21395 	case DKIOCSEXTVTOC:
21396 	case DKIOCSETEFI:
21397 	case DKIOCGMBOOT:
21398 	case DKIOCSMBOOT:
21399 	case DKIOCG_PHYGEOM:
21400 	case DKIOCG_VIRTGEOM:
21401 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
21402 
21403 		/* TUR should spin up */
21404 
21405 		if (un->un_f_has_removable_media)
21406 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
21407 			    SD_CHECK_FOR_MEDIA);
21408 
21409 		else
21410 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21411 
21412 		if (err != 0)
21413 			goto done_with_assess;
21414 
21415 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
21416 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
21417 
21418 		if ((err == 0) &&
21419 		    ((cmd == DKIOCSETEFI) ||
21420 		    (un->un_f_pkstats_enabled) &&
21421 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
21422 
21423 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
21424 			    (void *)SD_PATH_DIRECT);
21425 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
21426 				sd_set_pstats(un);
21427 				SD_TRACE(SD_LOG_IO_PARTITION, un,
21428 				    "sd_ioctl: un:0x%p pstats created and "
21429 				    "set\n", un);
21430 			}
21431 		}
21432 
21433 		if ((cmd == DKIOCSVTOC) ||
21434 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
21435 
21436 			mutex_enter(SD_MUTEX(un));
21437 			if (un->un_f_devid_supported &&
21438 			    (un->un_f_opt_fab_devid == TRUE)) {
21439 				if (un->un_devid == NULL) {
21440 					sd_register_devid(ssc, SD_DEVINFO(un),
21441 					    SD_TARGET_IS_UNRESERVED);
21442 				} else {
21443 					/*
21444 					 * The device id for this disk
21445 					 * has been fabricated. The
21446 					 * device id must be preserved
21447 					 * by writing it back out to
21448 					 * disk.
21449 					 */
21450 					if (sd_write_deviceid(ssc) != 0) {
21451 						ddi_devid_free(un->un_devid);
21452 						un->un_devid = NULL;
21453 					}
21454 				}
21455 			}
21456 			mutex_exit(SD_MUTEX(un));
21457 		}
21458 
21459 		break;
21460 
21461 	case DKIOCLOCK:
21462 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21463 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
21464 		    SD_PATH_STANDARD);
21465 		goto done_with_assess;
21466 
21467 	case DKIOCUNLOCK:
21468 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21469 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
21470 		    SD_PATH_STANDARD);
21471 		goto done_with_assess;
21472 
21473 	case DKIOCSTATE: {
21474 		enum dkio_state		state;
21475 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21476 
21477 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21478 			err = EFAULT;
21479 		} else {
21480 			err = sd_check_media(dev, state);
21481 			if (err == 0) {
21482 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21483 				    sizeof (int), flag) != 0)
21484 					err = EFAULT;
21485 			}
21486 		}
21487 		break;
21488 	}
21489 
21490 	case DKIOCREMOVABLE:
21491 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21492 		i = un->un_f_has_removable_media ? 1 : 0;
21493 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21494 			err = EFAULT;
21495 		} else {
21496 			err = 0;
21497 		}
21498 		break;
21499 
21500 	case DKIOCHOTPLUGGABLE:
21501 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21502 		i = un->un_f_is_hotpluggable ? 1 : 0;
21503 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21504 			err = EFAULT;
21505 		} else {
21506 			err = 0;
21507 		}
21508 		break;
21509 
21510 	case DKIOCGTEMPERATURE:
21511 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21512 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21513 		break;
21514 
21515 	case MHIOCENFAILFAST:
21516 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21517 		if ((err = drv_priv(cred_p)) == 0) {
21518 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21519 		}
21520 		break;
21521 
21522 	case MHIOCTKOWN:
21523 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21524 		if ((err = drv_priv(cred_p)) == 0) {
21525 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21526 		}
21527 		break;
21528 
21529 	case MHIOCRELEASE:
21530 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21531 		if ((err = drv_priv(cred_p)) == 0) {
21532 			err = sd_mhdioc_release(dev);
21533 		}
21534 		break;
21535 
21536 	case MHIOCSTATUS:
21537 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21538 		if ((err = drv_priv(cred_p)) == 0) {
21539 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
21540 			case 0:
21541 				err = 0;
21542 				break;
21543 			case EACCES:
21544 				*rval_p = 1;
21545 				err = 0;
21546 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21547 				break;
21548 			default:
21549 				err = EIO;
21550 				goto done_with_assess;
21551 			}
21552 		}
21553 		break;
21554 
21555 	case MHIOCQRESERVE:
21556 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21557 		if ((err = drv_priv(cred_p)) == 0) {
21558 			err = sd_reserve_release(dev, SD_RESERVE);
21559 		}
21560 		break;
21561 
21562 	case MHIOCREREGISTERDEVID:
21563 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21564 		if (drv_priv(cred_p) == EPERM) {
21565 			err = EPERM;
21566 		} else if (!un->un_f_devid_supported) {
21567 			err = ENOTTY;
21568 		} else {
21569 			err = sd_mhdioc_register_devid(dev);
21570 		}
21571 		break;
21572 
21573 	case MHIOCGRP_INKEYS:
21574 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21575 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21576 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21577 				err = ENOTSUP;
21578 			} else {
21579 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21580 				    flag);
21581 			}
21582 		}
21583 		break;
21584 
21585 	case MHIOCGRP_INRESV:
21586 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21587 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21588 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21589 				err = ENOTSUP;
21590 			} else {
21591 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21592 			}
21593 		}
21594 		break;
21595 
21596 	case MHIOCGRP_REGISTER:
21597 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21598 		if ((err = drv_priv(cred_p)) != EPERM) {
21599 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21600 				err = ENOTSUP;
21601 			} else if (arg != NULL) {
21602 				mhioc_register_t reg;
21603 				if (ddi_copyin((void *)arg, &reg,
21604 				    sizeof (mhioc_register_t), flag) != 0) {
21605 					err = EFAULT;
21606 				} else {
21607 					err =
21608 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21609 					    ssc, SD_SCSI3_REGISTER,
21610 					    (uchar_t *)&reg);
21611 					if (err != 0)
21612 						goto done_with_assess;
21613 				}
21614 			}
21615 		}
21616 		break;
21617 
21618 	case MHIOCGRP_RESERVE:
21619 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21620 		if ((err = drv_priv(cred_p)) != EPERM) {
21621 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21622 				err = ENOTSUP;
21623 			} else if (arg != NULL) {
21624 				mhioc_resv_desc_t resv_desc;
21625 				if (ddi_copyin((void *)arg, &resv_desc,
21626 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21627 					err = EFAULT;
21628 				} else {
21629 					err =
21630 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21631 					    ssc, SD_SCSI3_RESERVE,
21632 					    (uchar_t *)&resv_desc);
21633 					if (err != 0)
21634 						goto done_with_assess;
21635 				}
21636 			}
21637 		}
21638 		break;
21639 
21640 	case MHIOCGRP_PREEMPTANDABORT:
21641 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21642 		if ((err = drv_priv(cred_p)) != EPERM) {
21643 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21644 				err = ENOTSUP;
21645 			} else if (arg != NULL) {
21646 				mhioc_preemptandabort_t preempt_abort;
21647 				if (ddi_copyin((void *)arg, &preempt_abort,
21648 				    sizeof (mhioc_preemptandabort_t),
21649 				    flag) != 0) {
21650 					err = EFAULT;
21651 				} else {
21652 					err =
21653 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21654 					    ssc, SD_SCSI3_PREEMPTANDABORT,
21655 					    (uchar_t *)&preempt_abort);
21656 					if (err != 0)
21657 						goto done_with_assess;
21658 				}
21659 			}
21660 		}
21661 		break;
21662 
21663 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21664 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
21665 		if ((err = drv_priv(cred_p)) != EPERM) {
21666 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21667 				err = ENOTSUP;
21668 			} else if (arg != NULL) {
21669 				mhioc_registerandignorekey_t r_and_i;
21670 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21671 				    sizeof (mhioc_registerandignorekey_t),
21672 				    flag) != 0) {
21673 					err = EFAULT;
21674 				} else {
21675 					err =
21676 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21677 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
21678 					    (uchar_t *)&r_and_i);
21679 					if (err != 0)
21680 						goto done_with_assess;
21681 				}
21682 			}
21683 		}
21684 		break;
21685 
21686 	case USCSICMD:
21687 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21688 		cr = ddi_get_cred();
21689 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21690 			err = EPERM;
21691 		} else {
21692 			enum uio_seg	uioseg;
21693 
21694 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
21695 			    UIO_USERSPACE;
21696 			if (un->un_f_format_in_progress == TRUE) {
21697 				err = EAGAIN;
21698 				break;
21699 			}
21700 
21701 			err = sd_ssc_send(ssc,
21702 			    (struct uscsi_cmd *)arg,
21703 			    flag, uioseg, SD_PATH_STANDARD);
21704 			if (err != 0)
21705 				goto done_with_assess;
21706 			else
21707 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21708 		}
21709 		break;
21710 
21711 	case CDROMPAUSE:
21712 	case CDROMRESUME:
21713 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21714 		if (!ISCD(un)) {
21715 			err = ENOTTY;
21716 		} else {
21717 			err = sr_pause_resume(dev, cmd);
21718 		}
21719 		break;
21720 
21721 	case CDROMPLAYMSF:
21722 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21723 		if (!ISCD(un)) {
21724 			err = ENOTTY;
21725 		} else {
21726 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21727 		}
21728 		break;
21729 
21730 	case CDROMPLAYTRKIND:
21731 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21732 #if defined(__i386) || defined(__amd64)
21733 		/*
21734 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21735 		 */
21736 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21737 #else
21738 		if (!ISCD(un)) {
21739 #endif
21740 			err = ENOTTY;
21741 		} else {
21742 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21743 		}
21744 		break;
21745 
21746 	case CDROMREADTOCHDR:
21747 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21748 		if (!ISCD(un)) {
21749 			err = ENOTTY;
21750 		} else {
21751 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21752 		}
21753 		break;
21754 
21755 	case CDROMREADTOCENTRY:
21756 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21757 		if (!ISCD(un)) {
21758 			err = ENOTTY;
21759 		} else {
21760 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21761 		}
21762 		break;
21763 
21764 	case CDROMSTOP:
21765 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21766 		if (!ISCD(un)) {
21767 			err = ENOTTY;
21768 		} else {
21769 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_STOP,
21770 			    SD_PATH_STANDARD);
21771 			goto done_with_assess;
21772 		}
21773 		break;
21774 
21775 	case CDROMSTART:
21776 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21777 		if (!ISCD(un)) {
21778 			err = ENOTTY;
21779 		} else {
21780 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
21781 			    SD_PATH_STANDARD);
21782 			goto done_with_assess;
21783 		}
21784 		break;
21785 
21786 	case CDROMCLOSETRAY:
21787 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21788 		if (!ISCD(un)) {
21789 			err = ENOTTY;
21790 		} else {
21791 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_CLOSE,
21792 			    SD_PATH_STANDARD);
21793 			goto done_with_assess;
21794 		}
21795 		break;
21796 
21797 	case FDEJECT:	/* for eject command */
21798 	case DKIOCEJECT:
21799 	case CDROMEJECT:
21800 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21801 		if (!un->un_f_eject_media_supported) {
21802 			err = ENOTTY;
21803 		} else {
21804 			err = sr_eject(dev);
21805 		}
21806 		break;
21807 
21808 	case CDROMVOLCTRL:
21809 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21810 		if (!ISCD(un)) {
21811 			err = ENOTTY;
21812 		} else {
21813 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21814 		}
21815 		break;
21816 
21817 	case CDROMSUBCHNL:
21818 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21819 		if (!ISCD(un)) {
21820 			err = ENOTTY;
21821 		} else {
21822 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21823 		}
21824 		break;
21825 
21826 	case CDROMREADMODE2:
21827 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21828 		if (!ISCD(un)) {
21829 			err = ENOTTY;
21830 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21831 			/*
21832 			 * If the drive supports READ CD, use that instead of
21833 			 * switching the LBA size via a MODE SELECT
21834 			 * Block Descriptor
21835 			 */
21836 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21837 		} else {
21838 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21839 		}
21840 		break;
21841 
21842 	case CDROMREADMODE1:
21843 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21844 		if (!ISCD(un)) {
21845 			err = ENOTTY;
21846 		} else {
21847 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21848 		}
21849 		break;
21850 
21851 	case CDROMREADOFFSET:
21852 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21853 		if (!ISCD(un)) {
21854 			err = ENOTTY;
21855 		} else {
21856 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21857 			    flag);
21858 		}
21859 		break;
21860 
21861 	case CDROMSBLKMODE:
21862 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21863 		/*
21864 		 * There is no means of changing block size in case of atapi
21865 		 * drives, thus return ENOTTY if drive type is atapi
21866 		 */
21867 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21868 			err = ENOTTY;
21869 		} else if (un->un_f_mmc_cap == TRUE) {
21870 
21871 			/*
21872 			 * MMC Devices do not support changing the
21873 			 * logical block size
21874 			 *
21875 			 * Note: EINVAL is being returned instead of ENOTTY to
21876 			 * maintain consistancy with the original mmc
21877 			 * driver update.
21878 			 */
21879 			err = EINVAL;
21880 		} else {
21881 			mutex_enter(SD_MUTEX(un));
21882 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21883 			    (un->un_ncmds_in_transport > 0)) {
21884 				mutex_exit(SD_MUTEX(un));
21885 				err = EINVAL;
21886 			} else {
21887 				mutex_exit(SD_MUTEX(un));
21888 				err = sr_change_blkmode(dev, cmd, arg, flag);
21889 			}
21890 		}
21891 		break;
21892 
21893 	case CDROMGBLKMODE:
21894 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21895 		if (!ISCD(un)) {
21896 			err = ENOTTY;
21897 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21898 		    (un->un_f_blockcount_is_valid != FALSE)) {
21899 			/*
21900 			 * Drive is an ATAPI drive so return target block
21901 			 * size for ATAPI drives since we cannot change the
21902 			 * blocksize on ATAPI drives. Used primarily to detect
21903 			 * if an ATAPI cdrom is present.
21904 			 */
21905 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21906 			    sizeof (int), flag) != 0) {
21907 				err = EFAULT;
21908 			} else {
21909 				err = 0;
21910 			}
21911 
21912 		} else {
21913 			/*
21914 			 * Drive supports changing block sizes via a Mode
21915 			 * Select.
21916 			 */
21917 			err = sr_change_blkmode(dev, cmd, arg, flag);
21918 		}
21919 		break;
21920 
21921 	case CDROMGDRVSPEED:
21922 	case CDROMSDRVSPEED:
21923 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21924 		if (!ISCD(un)) {
21925 			err = ENOTTY;
21926 		} else if (un->un_f_mmc_cap == TRUE) {
21927 			/*
21928 			 * Note: In the future the driver implementation
21929 			 * for getting and
21930 			 * setting cd speed should entail:
21931 			 * 1) If non-mmc try the Toshiba mode page
21932 			 *    (sr_change_speed)
21933 			 * 2) If mmc but no support for Real Time Streaming try
21934 			 *    the SET CD SPEED (0xBB) command
21935 			 *   (sr_atapi_change_speed)
21936 			 * 3) If mmc and support for Real Time Streaming
21937 			 *    try the GET PERFORMANCE and SET STREAMING
21938 			 *    commands (not yet implemented, 4380808)
21939 			 */
21940 			/*
21941 			 * As per recent MMC spec, CD-ROM speed is variable
21942 			 * and changes with LBA. Since there is no such
21943 			 * things as drive speed now, fail this ioctl.
21944 			 *
21945 			 * Note: EINVAL is returned for consistancy of original
21946 			 * implementation which included support for getting
21947 			 * the drive speed of mmc devices but not setting
21948 			 * the drive speed. Thus EINVAL would be returned
21949 			 * if a set request was made for an mmc device.
21950 			 * We no longer support get or set speed for
21951 			 * mmc but need to remain consistent with regard
21952 			 * to the error code returned.
21953 			 */
21954 			err = EINVAL;
21955 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21956 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21957 		} else {
21958 			err = sr_change_speed(dev, cmd, arg, flag);
21959 		}
21960 		break;
21961 
21962 	case CDROMCDDA:
21963 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21964 		if (!ISCD(un)) {
21965 			err = ENOTTY;
21966 		} else {
21967 			err = sr_read_cdda(dev, (void *)arg, flag);
21968 		}
21969 		break;
21970 
21971 	case CDROMCDXA:
21972 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21973 		if (!ISCD(un)) {
21974 			err = ENOTTY;
21975 		} else {
21976 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21977 		}
21978 		break;
21979 
21980 	case CDROMSUBCODE:
21981 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21982 		if (!ISCD(un)) {
21983 			err = ENOTTY;
21984 		} else {
21985 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21986 		}
21987 		break;
21988 
21989 
21990 #ifdef SDDEBUG
21991 /* RESET/ABORTS testing ioctls */
21992 	case DKIOCRESET: {
21993 		int	reset_level;
21994 
21995 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21996 			err = EFAULT;
21997 		} else {
21998 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21999 			    "reset_level = 0x%lx\n", reset_level);
22000 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22001 				err = 0;
22002 			} else {
22003 				err = EIO;
22004 			}
22005 		}
22006 		break;
22007 	}
22008 
22009 	case DKIOCABORT:
22010 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
22011 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
22012 			err = 0;
22013 		} else {
22014 			err = EIO;
22015 		}
22016 		break;
22017 #endif
22018 
22019 #ifdef SD_FAULT_INJECTION
22020 /* SDIOC FaultInjection testing ioctls */
22021 	case SDIOCSTART:
22022 	case SDIOCSTOP:
22023 	case SDIOCINSERTPKT:
22024 	case SDIOCINSERTXB:
22025 	case SDIOCINSERTUN:
22026 	case SDIOCINSERTARQ:
22027 	case SDIOCPUSH:
22028 	case SDIOCRETRIEVE:
22029 	case SDIOCRUN:
22030 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
22031 		    "SDIOC detected cmd:0x%X:\n", cmd);
22032 		/* call error generator */
22033 		sd_faultinjection_ioctl(cmd, arg, un);
22034 		err = 0;
22035 		break;
22036 
22037 #endif /* SD_FAULT_INJECTION */
22038 
22039 	case DKIOCFLUSHWRITECACHE:
22040 		{
22041 			struct dk_callback *dkc = (struct dk_callback *)arg;
22042 
22043 			mutex_enter(SD_MUTEX(un));
22044 			if (!un->un_f_sync_cache_supported ||
22045 			    !un->un_f_write_cache_enabled) {
22046 				err = un->un_f_sync_cache_supported ?
22047 				    0 : ENOTSUP;
22048 				mutex_exit(SD_MUTEX(un));
22049 				if ((flag & FKIOCTL) && dkc != NULL &&
22050 				    dkc->dkc_callback != NULL) {
22051 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22052 					    err);
22053 					/*
22054 					 * Did callback and reported error.
22055 					 * Since we did a callback, ioctl
22056 					 * should return 0.
22057 					 */
22058 					err = 0;
22059 				}
22060 				break;
22061 			}
22062 			mutex_exit(SD_MUTEX(un));
22063 
22064 			if ((flag & FKIOCTL) && dkc != NULL &&
22065 			    dkc->dkc_callback != NULL) {
22066 				/* async SYNC CACHE request */
22067 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22068 			} else {
22069 				/* synchronous SYNC CACHE request */
22070 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22071 			}
22072 		}
22073 		break;
22074 
22075 	case DKIOCGETWCE: {
22076 
22077 		int wce;
22078 
22079 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
22080 			break;
22081 		}
22082 
22083 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22084 			err = EFAULT;
22085 		}
22086 		break;
22087 	}
22088 
22089 	case DKIOCSETWCE: {
22090 
22091 		int wce, sync_supported;
22092 
22093 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22094 			err = EFAULT;
22095 			break;
22096 		}
22097 
22098 		/*
22099 		 * Synchronize multiple threads trying to enable
22100 		 * or disable the cache via the un_f_wcc_cv
22101 		 * condition variable.
22102 		 */
22103 		mutex_enter(SD_MUTEX(un));
22104 
22105 		/*
22106 		 * Don't allow the cache to be enabled if the
22107 		 * config file has it disabled.
22108 		 */
22109 		if (un->un_f_opt_disable_cache && wce) {
22110 			mutex_exit(SD_MUTEX(un));
22111 			err = EINVAL;
22112 			break;
22113 		}
22114 
22115 		/*
22116 		 * Wait for write cache change in progress
22117 		 * bit to be clear before proceeding.
22118 		 */
22119 		while (un->un_f_wcc_inprog)
22120 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22121 
22122 		un->un_f_wcc_inprog = 1;
22123 
22124 		if (un->un_f_write_cache_enabled && wce == 0) {
22125 			/*
22126 			 * Disable the write cache.  Don't clear
22127 			 * un_f_write_cache_enabled until after
22128 			 * the mode select and flush are complete.
22129 			 */
22130 			sync_supported = un->un_f_sync_cache_supported;
22131 
22132 			/*
22133 			 * If cache flush is suppressed, we assume that the
22134 			 * controller firmware will take care of managing the
22135 			 * write cache for us: no need to explicitly
22136 			 * disable it.
22137 			 */
22138 			if (!un->un_f_suppress_cache_flush) {
22139 				mutex_exit(SD_MUTEX(un));
22140 				if ((err = sd_cache_control(ssc,
22141 				    SD_CACHE_NOCHANGE,
22142 				    SD_CACHE_DISABLE)) == 0 &&
22143 				    sync_supported) {
22144 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
22145 					    NULL);
22146 				}
22147 			} else {
22148 				mutex_exit(SD_MUTEX(un));
22149 			}
22150 
22151 			mutex_enter(SD_MUTEX(un));
22152 			if (err == 0) {
22153 				un->un_f_write_cache_enabled = 0;
22154 			}
22155 
22156 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22157 			/*
22158 			 * Set un_f_write_cache_enabled first, so there is
22159 			 * no window where the cache is enabled, but the
22160 			 * bit says it isn't.
22161 			 */
22162 			un->un_f_write_cache_enabled = 1;
22163 
22164 			/*
22165 			 * If cache flush is suppressed, we assume that the
22166 			 * controller firmware will take care of managing the
22167 			 * write cache for us: no need to explicitly
22168 			 * enable it.
22169 			 */
22170 			if (!un->un_f_suppress_cache_flush) {
22171 				mutex_exit(SD_MUTEX(un));
22172 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
22173 				    SD_CACHE_ENABLE);
22174 			} else {
22175 				mutex_exit(SD_MUTEX(un));
22176 			}
22177 
22178 			mutex_enter(SD_MUTEX(un));
22179 
22180 			if (err) {
22181 				un->un_f_write_cache_enabled = 0;
22182 			}
22183 		}
22184 
22185 		un->un_f_wcc_inprog = 0;
22186 		cv_broadcast(&un->un_wcc_cv);
22187 		mutex_exit(SD_MUTEX(un));
22188 		break;
22189 	}
22190 
22191 	default:
22192 		err = ENOTTY;
22193 		break;
22194 	}
22195 	mutex_enter(SD_MUTEX(un));
22196 	un->un_ncmds_in_driver--;
22197 	ASSERT(un->un_ncmds_in_driver >= 0);
22198 	mutex_exit(SD_MUTEX(un));
22199 
22200 
22201 done_without_assess:
22202 	sd_ssc_fini(ssc);
22203 
22204 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22205 	return (err);
22206 
22207 done_with_assess:
22208 	mutex_enter(SD_MUTEX(un));
22209 	un->un_ncmds_in_driver--;
22210 	ASSERT(un->un_ncmds_in_driver >= 0);
22211 	mutex_exit(SD_MUTEX(un));
22212 
22213 done_quick_assess:
22214 	if (err != 0)
22215 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22216 	/* Uninitialize sd_ssc_t pointer */
22217 	sd_ssc_fini(ssc);
22218 
22219 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22220 	return (err);
22221 }
22222 
22223 
22224 /*
22225  *    Function: sd_dkio_ctrl_info
22226  *
22227  * Description: This routine is the driver entry point for handling controller
22228  *		information ioctl requests (DKIOCINFO).
22229  *
22230  *   Arguments: dev  - the device number
22231  *		arg  - pointer to user provided dk_cinfo structure
22232  *		       specifying the controller type and attributes.
22233  *		flag - this argument is a pass through to ddi_copyxxx()
22234  *		       directly from the mode argument of ioctl().
22235  *
22236  * Return Code: 0
22237  *		EFAULT
22238  *		ENXIO
22239  */
22240 
22241 static int
22242 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22243 {
22244 	struct sd_lun	*un = NULL;
22245 	struct dk_cinfo	*info;
22246 	dev_info_t	*pdip;
22247 	int		lun, tgt;
22248 
22249 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22250 		return (ENXIO);
22251 	}
22252 
22253 	info = (struct dk_cinfo *)
22254 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22255 
22256 	switch (un->un_ctype) {
22257 	case CTYPE_CDROM:
22258 		info->dki_ctype = DKC_CDROM;
22259 		break;
22260 	default:
22261 		info->dki_ctype = DKC_SCSI_CCS;
22262 		break;
22263 	}
22264 	pdip = ddi_get_parent(SD_DEVINFO(un));
22265 	info->dki_cnum = ddi_get_instance(pdip);
22266 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22267 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22268 	} else {
22269 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22270 		    DK_DEVLEN - 1);
22271 	}
22272 
22273 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22274 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22275 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22276 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22277 
22278 	/* Unit Information */
22279 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22280 	info->dki_slave = ((tgt << 3) | lun);
22281 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22282 	    DK_DEVLEN - 1);
22283 	info->dki_flags = DKI_FMTVOL;
22284 	info->dki_partition = SDPART(dev);
22285 
22286 	/* Max Transfer size of this device in blocks */
22287 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22288 	info->dki_addr = 0;
22289 	info->dki_space = 0;
22290 	info->dki_prio = 0;
22291 	info->dki_vec = 0;
22292 
22293 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22294 		kmem_free(info, sizeof (struct dk_cinfo));
22295 		return (EFAULT);
22296 	} else {
22297 		kmem_free(info, sizeof (struct dk_cinfo));
22298 		return (0);
22299 	}
22300 }
22301 
22302 
22303 /*
22304  *    Function: sd_get_media_info
22305  *
22306  * Description: This routine is the driver entry point for handling ioctl
22307  *		requests for the media type or command set profile used by the
22308  *		drive to operate on the media (DKIOCGMEDIAINFO).
22309  *
22310  *   Arguments: dev	- the device number
22311  *		arg	- pointer to user provided dk_minfo structure
22312  *			  specifying the media type, logical block size and
22313  *			  drive capacity.
22314  *		flag	- this argument is a pass through to ddi_copyxxx()
22315  *			  directly from the mode argument of ioctl().
22316  *
22317  * Return Code: 0
22318  *		EACCESS
22319  *		EFAULT
22320  *		ENXIO
22321  *		EIO
22322  */
22323 
22324 static int
22325 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22326 {
22327 	struct sd_lun		*un = NULL;
22328 	struct uscsi_cmd	com;
22329 	struct scsi_inquiry	*sinq;
22330 	struct dk_minfo		media_info;
22331 	u_longlong_t		media_capacity;
22332 	uint64_t		capacity;
22333 	uint_t			lbasize;
22334 	uchar_t			*out_data;
22335 	uchar_t			*rqbuf;
22336 	int			rval = 0;
22337 	int			rtn;
22338 	sd_ssc_t		*ssc;
22339 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22340 	    (un->un_state == SD_STATE_OFFLINE)) {
22341 		return (ENXIO);
22342 	}
22343 
22344 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22345 
22346 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22347 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22348 
22349 	/* Issue a TUR to determine if the drive is ready with media present */
22350 	ssc = sd_ssc_init(un);
22351 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
22352 	if (rval == ENXIO) {
22353 		goto done;
22354 	} else if (rval != 0) {
22355 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22356 	}
22357 
22358 	/* Now get configuration data */
22359 	if (ISCD(un)) {
22360 		media_info.dki_media_type = DK_CDROM;
22361 
22362 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22363 		if (un->un_f_mmc_cap == TRUE) {
22364 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
22365 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
22366 			    SD_PATH_STANDARD);
22367 
22368 			if (rtn) {
22369 				/*
22370 				 * We ignore all failures for CD and need to
22371 				 * put the assessment before processing code
22372 				 * to avoid missing assessment for FMA.
22373 				 */
22374 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22375 				/*
22376 				 * Failed for other than an illegal request
22377 				 * or command not supported
22378 				 */
22379 				if ((com.uscsi_status == STATUS_CHECK) &&
22380 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22381 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22382 					    (rqbuf[12] != 0x20)) {
22383 						rval = EIO;
22384 						goto no_assessment;
22385 					}
22386 				}
22387 			} else {
22388 				/*
22389 				 * The GET CONFIGURATION command succeeded
22390 				 * so set the media type according to the
22391 				 * returned data
22392 				 */
22393 				media_info.dki_media_type = out_data[6];
22394 				media_info.dki_media_type <<= 8;
22395 				media_info.dki_media_type |= out_data[7];
22396 			}
22397 		}
22398 	} else {
22399 		/*
22400 		 * The profile list is not available, so we attempt to identify
22401 		 * the media type based on the inquiry data
22402 		 */
22403 		sinq = un->un_sd->sd_inq;
22404 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
22405 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
22406 			/* This is a direct access device  or optical disk */
22407 			media_info.dki_media_type = DK_FIXED_DISK;
22408 
22409 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22410 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22411 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22412 					media_info.dki_media_type = DK_ZIP;
22413 				} else if (
22414 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22415 					media_info.dki_media_type = DK_JAZ;
22416 				}
22417 			}
22418 		} else {
22419 			/*
22420 			 * Not a CD, direct access or optical disk so return
22421 			 * unknown media
22422 			 */
22423 			media_info.dki_media_type = DK_UNKNOWN;
22424 		}
22425 	}
22426 
22427 	/* Now read the capacity so we can provide the lbasize and capacity */
22428 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
22429 	    SD_PATH_DIRECT);
22430 	switch (rval) {
22431 	case 0:
22432 		break;
22433 	case EACCES:
22434 		rval = EACCES;
22435 		goto done;
22436 	default:
22437 		rval = EIO;
22438 		goto done;
22439 	}
22440 
22441 	/*
22442 	 * If lun is expanded dynamically, update the un structure.
22443 	 */
22444 	mutex_enter(SD_MUTEX(un));
22445 	if ((un->un_f_blockcount_is_valid == TRUE) &&
22446 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
22447 	    (capacity > un->un_blockcount)) {
22448 		sd_update_block_info(un, lbasize, capacity);
22449 	}
22450 	mutex_exit(SD_MUTEX(un));
22451 
22452 	media_info.dki_lbsize = lbasize;
22453 	media_capacity = capacity;
22454 
22455 	/*
22456 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22457 	 * un->un_sys_blocksize chunks. So we need to convert it into
22458 	 * cap.lbasize chunks.
22459 	 */
22460 	media_capacity *= un->un_sys_blocksize;
22461 	media_capacity /= lbasize;
22462 	media_info.dki_capacity = media_capacity;
22463 
22464 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22465 		rval = EFAULT;
22466 		/* Put goto. Anybody might add some code below in future */
22467 		goto no_assessment;
22468 	}
22469 done:
22470 	if (rval != 0) {
22471 		if (rval == EIO)
22472 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22473 		else
22474 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22475 	}
22476 no_assessment:
22477 	sd_ssc_fini(ssc);
22478 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22479 	kmem_free(rqbuf, SENSE_LENGTH);
22480 	return (rval);
22481 }
22482 
22483 
22484 /*
22485  *    Function: sd_check_media
22486  *
22487  * Description: This utility routine implements the functionality for the
22488  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
22489  *		driver state changes from that specified by the user
22490  *		(inserted or ejected). For example, if the user specifies
22491  *		DKIO_EJECTED and the current media state is inserted this
22492  *		routine will immediately return DKIO_INSERTED. However, if the
22493  *		current media state is not inserted the user thread will be
22494  *		blocked until the drive state changes. If DKIO_NONE is specified
22495  *		the user thread will block until a drive state change occurs.
22496  *
22497  *   Arguments: dev  - the device number
22498  *		state  - user pointer to a dkio_state, updated with the current
22499  *			drive state at return.
22500  *
22501  * Return Code: ENXIO
22502  *		EIO
22503  *		EAGAIN
22504  *		EINTR
22505  */
22506 
22507 static int
22508 sd_check_media(dev_t dev, enum dkio_state state)
22509 {
22510 	struct sd_lun		*un = NULL;
22511 	enum dkio_state		prev_state;
22512 	opaque_t		token = NULL;
22513 	int			rval = 0;
22514 	sd_ssc_t		*ssc;
22515 
22516 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22517 		return (ENXIO);
22518 	}
22519 
22520 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
22521 
22522 	ssc = sd_ssc_init(un);
22523 
22524 	mutex_enter(SD_MUTEX(un));
22525 
22526 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
22527 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
22528 
22529 	prev_state = un->un_mediastate;
22530 
22531 	/* is there anything to do? */
22532 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
22533 		/*
22534 		 * submit the request to the scsi_watch service;
22535 		 * scsi_media_watch_cb() does the real work
22536 		 */
22537 		mutex_exit(SD_MUTEX(un));
22538 
22539 		/*
22540 		 * This change handles the case where a scsi watch request is
22541 		 * added to a device that is powered down. To accomplish this
22542 		 * we power up the device before adding the scsi watch request,
22543 		 * since the scsi watch sends a TUR directly to the device
22544 		 * which the device cannot handle if it is powered down.
22545 		 */
22546 		if (sd_pm_entry(un) != DDI_SUCCESS) {
22547 			mutex_enter(SD_MUTEX(un));
22548 			goto done;
22549 		}
22550 
22551 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
22552 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
22553 		    (caddr_t)dev);
22554 
22555 		sd_pm_exit(un);
22556 
22557 		mutex_enter(SD_MUTEX(un));
22558 		if (token == NULL) {
22559 			rval = EAGAIN;
22560 			goto done;
22561 		}
22562 
22563 		/*
22564 		 * This is a special case IOCTL that doesn't return
22565 		 * until the media state changes. Routine sdpower
22566 		 * knows about and handles this so don't count it
22567 		 * as an active cmd in the driver, which would
22568 		 * keep the device busy to the pm framework.
22569 		 * If the count isn't decremented the device can't
22570 		 * be powered down.
22571 		 */
22572 		un->un_ncmds_in_driver--;
22573 		ASSERT(un->un_ncmds_in_driver >= 0);
22574 
22575 		/*
22576 		 * if a prior request had been made, this will be the same
22577 		 * token, as scsi_watch was designed that way.
22578 		 */
22579 		un->un_swr_token = token;
22580 		un->un_specified_mediastate = state;
22581 
22582 		/*
22583 		 * now wait for media change
22584 		 * we will not be signalled unless mediastate == state but it is
22585 		 * still better to test for this condition, since there is a
22586 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
22587 		 */
22588 		SD_TRACE(SD_LOG_COMMON, un,
22589 		    "sd_check_media: waiting for media state change\n");
22590 		while (un->un_mediastate == state) {
22591 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
22592 				SD_TRACE(SD_LOG_COMMON, un,
22593 				    "sd_check_media: waiting for media state "
22594 				    "was interrupted\n");
22595 				un->un_ncmds_in_driver++;
22596 				rval = EINTR;
22597 				goto done;
22598 			}
22599 			SD_TRACE(SD_LOG_COMMON, un,
22600 			    "sd_check_media: received signal, state=%x\n",
22601 			    un->un_mediastate);
22602 		}
22603 		/*
22604 		 * Inc the counter to indicate the device once again
22605 		 * has an active outstanding cmd.
22606 		 */
22607 		un->un_ncmds_in_driver++;
22608 	}
22609 
22610 	/* invalidate geometry */
22611 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
22612 		sr_ejected(un);
22613 	}
22614 
22615 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
22616 		uint64_t	capacity;
22617 		uint_t		lbasize;
22618 
22619 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
22620 		mutex_exit(SD_MUTEX(un));
22621 		/*
22622 		 * Since the following routines use SD_PATH_DIRECT, we must
22623 		 * call PM directly before the upcoming disk accesses. This
22624 		 * may cause the disk to be power/spin up.
22625 		 */
22626 
22627 		if (sd_pm_entry(un) == DDI_SUCCESS) {
22628 			rval = sd_send_scsi_READ_CAPACITY(ssc,
22629 			    &capacity, &lbasize, SD_PATH_DIRECT);
22630 			if (rval != 0) {
22631 				sd_pm_exit(un);
22632 				if (rval == EIO)
22633 					sd_ssc_assessment(ssc,
22634 					    SD_FMT_STATUS_CHECK);
22635 				else
22636 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22637 				mutex_enter(SD_MUTEX(un));
22638 				goto done;
22639 			}
22640 		} else {
22641 			rval = EIO;
22642 			mutex_enter(SD_MUTEX(un));
22643 			goto done;
22644 		}
22645 		mutex_enter(SD_MUTEX(un));
22646 
22647 		sd_update_block_info(un, lbasize, capacity);
22648 
22649 		/*
22650 		 *  Check if the media in the device is writable or not
22651 		 */
22652 		if (ISCD(un)) {
22653 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
22654 		}
22655 
22656 		mutex_exit(SD_MUTEX(un));
22657 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
22658 		if ((cmlb_validate(un->un_cmlbhandle, 0,
22659 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
22660 			sd_set_pstats(un);
22661 			SD_TRACE(SD_LOG_IO_PARTITION, un,
22662 			    "sd_check_media: un:0x%p pstats created and "
22663 			    "set\n", un);
22664 		}
22665 
22666 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22667 		    SD_PATH_DIRECT);
22668 
22669 		sd_pm_exit(un);
22670 
22671 		if (rval != 0) {
22672 			if (rval == EIO)
22673 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22674 			else
22675 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22676 		}
22677 
22678 		mutex_enter(SD_MUTEX(un));
22679 	}
22680 done:
22681 	sd_ssc_fini(ssc);
22682 	un->un_f_watcht_stopped = FALSE;
22683 		/*
22684 		 * Use of this local token and the mutex ensures that we avoid
22685 		 * some race conditions associated with terminating the
22686 		 * scsi watch.
22687 		 */
22688 	if (token) {
22689 		un->un_swr_token = (opaque_t)NULL;
22690 		mutex_exit(SD_MUTEX(un));
22691 		(void) scsi_watch_request_terminate(token,
22692 		    SCSI_WATCH_TERMINATE_WAIT);
22693 		mutex_enter(SD_MUTEX(un));
22694 	}
22695 
22696 	/*
22697 	 * Update the capacity kstat value, if no media previously
22698 	 * (capacity kstat is 0) and a media has been inserted
22699 	 * (un_f_blockcount_is_valid == TRUE)
22700 	 */
22701 	if (un->un_errstats) {
22702 		struct sd_errstats	*stp = NULL;
22703 
22704 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
22705 		if ((stp->sd_capacity.value.ui64 == 0) &&
22706 		    (un->un_f_blockcount_is_valid == TRUE)) {
22707 			stp->sd_capacity.value.ui64 =
22708 			    (uint64_t)((uint64_t)un->un_blockcount *
22709 			    un->un_sys_blocksize);
22710 		}
22711 	}
22712 	mutex_exit(SD_MUTEX(un));
22713 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
22714 	return (rval);
22715 }
22716 
22717 
22718 /*
22719  *    Function: sd_delayed_cv_broadcast
22720  *
22721  * Description: Delayed cv_broadcast to allow for target to recover from media
22722  *		insertion.
22723  *
22724  *   Arguments: arg - driver soft state (unit) structure
22725  */
22726 
22727 static void
22728 sd_delayed_cv_broadcast(void *arg)
22729 {
22730 	struct sd_lun *un = arg;
22731 
22732 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
22733 
22734 	mutex_enter(SD_MUTEX(un));
22735 	un->un_dcvb_timeid = NULL;
22736 	cv_broadcast(&un->un_state_cv);
22737 	mutex_exit(SD_MUTEX(un));
22738 }
22739 
22740 
22741 /*
22742  *    Function: sd_media_watch_cb
22743  *
22744  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
22745  *		routine processes the TUR sense data and updates the driver
22746  *		state if a transition has occurred. The user thread
22747  *		(sd_check_media) is then signalled.
22748  *
22749  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22750  *			among multiple watches that share this callback function
22751  *		resultp - scsi watch facility result packet containing scsi
22752  *			  packet, status byte and sense data
22753  *
22754  * Return Code: 0 for success, -1 for failure
22755  */
22756 
22757 static int
22758 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
22759 {
22760 	struct sd_lun			*un;
22761 	struct scsi_status		*statusp = resultp->statusp;
22762 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
22763 	enum dkio_state			state = DKIO_NONE;
22764 	dev_t				dev = (dev_t)arg;
22765 	uchar_t				actual_sense_length;
22766 	uint8_t				skey, asc, ascq;
22767 
22768 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22769 		return (-1);
22770 	}
22771 	actual_sense_length = resultp->actual_sense_length;
22772 
22773 	mutex_enter(SD_MUTEX(un));
22774 	SD_TRACE(SD_LOG_COMMON, un,
22775 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
22776 	    *((char *)statusp), (void *)sensep, actual_sense_length);
22777 
22778 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
22779 		un->un_mediastate = DKIO_DEV_GONE;
22780 		cv_broadcast(&un->un_state_cv);
22781 		mutex_exit(SD_MUTEX(un));
22782 
22783 		return (0);
22784 	}
22785 
22786 	/*
22787 	 * If there was a check condition then sensep points to valid sense data
22788 	 * If status was not a check condition but a reservation or busy status
22789 	 * then the new state is DKIO_NONE
22790 	 */
22791 	if (sensep != NULL) {
22792 		skey = scsi_sense_key(sensep);
22793 		asc = scsi_sense_asc(sensep);
22794 		ascq = scsi_sense_ascq(sensep);
22795 
22796 		SD_INFO(SD_LOG_COMMON, un,
22797 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
22798 		    skey, asc, ascq);
22799 		/* This routine only uses up to 13 bytes of sense data. */
22800 		if (actual_sense_length >= 13) {
22801 			if (skey == KEY_UNIT_ATTENTION) {
22802 				if (asc == 0x28) {
22803 					state = DKIO_INSERTED;
22804 				}
22805 			} else if (skey == KEY_NOT_READY) {
22806 				/*
22807 				 * Sense data of 02/06/00 means that the
22808 				 * drive could not read the media (No
22809 				 * reference position found). In this case
22810 				 * to prevent a hang on the DKIOCSTATE IOCTL
22811 				 * we set the media state to DKIO_INSERTED.
22812 				 */
22813 				if (asc == 0x06 && ascq == 0x00)
22814 					state = DKIO_INSERTED;
22815 
22816 				/*
22817 				 * if 02/04/02  means that the host
22818 				 * should send start command. Explicitly
22819 				 * leave the media state as is
22820 				 * (inserted) as the media is inserted
22821 				 * and host has stopped device for PM
22822 				 * reasons. Upon next true read/write
22823 				 * to this media will bring the
22824 				 * device to the right state good for
22825 				 * media access.
22826 				 */
22827 				if (asc == 0x3a) {
22828 					state = DKIO_EJECTED;
22829 				} else {
22830 					/*
22831 					 * If the drive is busy with an
22832 					 * operation or long write, keep the
22833 					 * media in an inserted state.
22834 					 */
22835 
22836 					if ((asc == 0x04) &&
22837 					    ((ascq == 0x02) ||
22838 					    (ascq == 0x07) ||
22839 					    (ascq == 0x08))) {
22840 						state = DKIO_INSERTED;
22841 					}
22842 				}
22843 			} else if (skey == KEY_NO_SENSE) {
22844 				if ((asc == 0x00) && (ascq == 0x00)) {
22845 					/*
22846 					 * Sense Data 00/00/00 does not provide
22847 					 * any information about the state of
22848 					 * the media. Ignore it.
22849 					 */
22850 					mutex_exit(SD_MUTEX(un));
22851 					return (0);
22852 				}
22853 			}
22854 		}
22855 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
22856 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
22857 		state = DKIO_INSERTED;
22858 	}
22859 
22860 	SD_TRACE(SD_LOG_COMMON, un,
22861 	    "sd_media_watch_cb: state=%x, specified=%x\n",
22862 	    state, un->un_specified_mediastate);
22863 
22864 	/*
22865 	 * now signal the waiting thread if this is *not* the specified state;
22866 	 * delay the signal if the state is DKIO_INSERTED to allow the target
22867 	 * to recover
22868 	 */
22869 	if (state != un->un_specified_mediastate) {
22870 		un->un_mediastate = state;
22871 		if (state == DKIO_INSERTED) {
22872 			/*
22873 			 * delay the signal to give the drive a chance
22874 			 * to do what it apparently needs to do
22875 			 */
22876 			SD_TRACE(SD_LOG_COMMON, un,
22877 			    "sd_media_watch_cb: delayed cv_broadcast\n");
22878 			if (un->un_dcvb_timeid == NULL) {
22879 				un->un_dcvb_timeid =
22880 				    timeout(sd_delayed_cv_broadcast, un,
22881 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
22882 			}
22883 		} else {
22884 			SD_TRACE(SD_LOG_COMMON, un,
22885 			    "sd_media_watch_cb: immediate cv_broadcast\n");
22886 			cv_broadcast(&un->un_state_cv);
22887 		}
22888 	}
22889 	mutex_exit(SD_MUTEX(un));
22890 	return (0);
22891 }
22892 
22893 
22894 /*
22895  *    Function: sd_dkio_get_temp
22896  *
22897  * Description: This routine is the driver entry point for handling ioctl
22898  *		requests to get the disk temperature.
22899  *
22900  *   Arguments: dev  - the device number
22901  *		arg  - pointer to user provided dk_temperature structure.
22902  *		flag - this argument is a pass through to ddi_copyxxx()
22903  *		       directly from the mode argument of ioctl().
22904  *
22905  * Return Code: 0
22906  *		EFAULT
22907  *		ENXIO
22908  *		EAGAIN
22909  */
22910 
22911 static int
22912 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
22913 {
22914 	struct sd_lun		*un = NULL;
22915 	struct dk_temperature	*dktemp = NULL;
22916 	uchar_t			*temperature_page;
22917 	int			rval = 0;
22918 	int			path_flag = SD_PATH_STANDARD;
22919 	sd_ssc_t		*ssc;
22920 
22921 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22922 		return (ENXIO);
22923 	}
22924 
22925 	ssc = sd_ssc_init(un);
22926 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
22927 
22928 	/* copyin the disk temp argument to get the user flags */
22929 	if (ddi_copyin((void *)arg, dktemp,
22930 	    sizeof (struct dk_temperature), flag) != 0) {
22931 		rval = EFAULT;
22932 		goto done;
22933 	}
22934 
22935 	/* Initialize the temperature to invalid. */
22936 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
22937 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
22938 
22939 	/*
22940 	 * Note: Investigate removing the "bypass pm" semantic.
22941 	 * Can we just bypass PM always?
22942 	 */
22943 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
22944 		path_flag = SD_PATH_DIRECT;
22945 		ASSERT(!mutex_owned(&un->un_pm_mutex));
22946 		mutex_enter(&un->un_pm_mutex);
22947 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22948 			/*
22949 			 * If DKT_BYPASS_PM is set, and the drive happens to be
22950 			 * in low power mode, we can not wake it up, Need to
22951 			 * return EAGAIN.
22952 			 */
22953 			mutex_exit(&un->un_pm_mutex);
22954 			rval = EAGAIN;
22955 			goto done;
22956 		} else {
22957 			/*
22958 			 * Indicate to PM the device is busy. This is required
22959 			 * to avoid a race - i.e. the ioctl is issuing a
22960 			 * command and the pm framework brings down the device
22961 			 * to low power mode (possible power cut-off on some
22962 			 * platforms).
22963 			 */
22964 			mutex_exit(&un->un_pm_mutex);
22965 			if (sd_pm_entry(un) != DDI_SUCCESS) {
22966 				rval = EAGAIN;
22967 				goto done;
22968 			}
22969 		}
22970 	}
22971 
22972 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
22973 
22974 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
22975 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
22976 	if (rval != 0)
22977 		goto done2;
22978 
22979 	/*
22980 	 * For the current temperature verify that the parameter length is 0x02
22981 	 * and the parameter code is 0x00
22982 	 */
22983 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
22984 	    (temperature_page[5] == 0x00)) {
22985 		if (temperature_page[9] == 0xFF) {
22986 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
22987 		} else {
22988 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
22989 		}
22990 	}
22991 
22992 	/*
22993 	 * For the reference temperature verify that the parameter
22994 	 * length is 0x02 and the parameter code is 0x01
22995 	 */
22996 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
22997 	    (temperature_page[11] == 0x01)) {
22998 		if (temperature_page[15] == 0xFF) {
22999 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23000 		} else {
23001 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
23002 		}
23003 	}
23004 
23005 	/* Do the copyout regardless of the temperature commands status. */
23006 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
23007 	    flag) != 0) {
23008 		rval = EFAULT;
23009 		goto done1;
23010 	}
23011 
23012 done2:
23013 	if (rval != 0) {
23014 		if (rval == EIO)
23015 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23016 		else
23017 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23018 	}
23019 done1:
23020 	if (path_flag == SD_PATH_DIRECT) {
23021 		sd_pm_exit(un);
23022 	}
23023 
23024 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
23025 done:
23026 	sd_ssc_fini(ssc);
23027 	if (dktemp != NULL) {
23028 		kmem_free(dktemp, sizeof (struct dk_temperature));
23029 	}
23030 
23031 	return (rval);
23032 }
23033 
23034 
23035 /*
23036  *    Function: sd_log_page_supported
23037  *
23038  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
23039  *		supported log pages.
23040  *
23041  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
23042  *                      structure for this target.
23043  *		log_page -
23044  *
23045  * Return Code: -1 - on error (log sense is optional and may not be supported).
23046  *		0  - log page not found.
23047  *  		1  - log page found.
23048  */
23049 
23050 static int
23051 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
23052 {
23053 	uchar_t *log_page_data;
23054 	int	i;
23055 	int	match = 0;
23056 	int	log_size;
23057 	int	status = 0;
23058 	struct sd_lun	*un;
23059 
23060 	ASSERT(ssc != NULL);
23061 	un = ssc->ssc_un;
23062 	ASSERT(un != NULL);
23063 
23064 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
23065 
23066 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
23067 	    SD_PATH_DIRECT);
23068 
23069 	if (status != 0) {
23070 		if (status == EIO) {
23071 			/*
23072 			 * Some disks do not support log sense, we
23073 			 * should ignore this kind of error(sense key is
23074 			 * 0x5 - illegal request).
23075 			 */
23076 			uint8_t *sensep;
23077 			int senlen;
23078 
23079 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
23080 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
23081 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
23082 
23083 			if (senlen > 0 &&
23084 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
23085 				sd_ssc_assessment(ssc,
23086 				    SD_FMT_IGNORE_COMPROMISE);
23087 			} else {
23088 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23089 			}
23090 		} else {
23091 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23092 		}
23093 
23094 		SD_ERROR(SD_LOG_COMMON, un,
23095 		    "sd_log_page_supported: failed log page retrieval\n");
23096 		kmem_free(log_page_data, 0xFF);
23097 		return (-1);
23098 	}
23099 
23100 	log_size = log_page_data[3];
23101 
23102 	/*
23103 	 * The list of supported log pages start from the fourth byte. Check
23104 	 * until we run out of log pages or a match is found.
23105 	 */
23106 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
23107 		if (log_page_data[i] == log_page) {
23108 			match++;
23109 		}
23110 	}
23111 	kmem_free(log_page_data, 0xFF);
23112 	return (match);
23113 }
23114 
23115 
23116 /*
23117  *    Function: sd_mhdioc_failfast
23118  *
23119  * Description: This routine is the driver entry point for handling ioctl
23120  *		requests to enable/disable the multihost failfast option.
23121  *		(MHIOCENFAILFAST)
23122  *
23123  *   Arguments: dev	- the device number
23124  *		arg	- user specified probing interval.
23125  *		flag	- this argument is a pass through to ddi_copyxxx()
23126  *			  directly from the mode argument of ioctl().
23127  *
23128  * Return Code: 0
23129  *		EFAULT
23130  *		ENXIO
23131  */
23132 
23133 static int
23134 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
23135 {
23136 	struct sd_lun	*un = NULL;
23137 	int		mh_time;
23138 	int		rval = 0;
23139 
23140 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23141 		return (ENXIO);
23142 	}
23143 
23144 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
23145 		return (EFAULT);
23146 
23147 	if (mh_time) {
23148 		mutex_enter(SD_MUTEX(un));
23149 		un->un_resvd_status |= SD_FAILFAST;
23150 		mutex_exit(SD_MUTEX(un));
23151 		/*
23152 		 * If mh_time is INT_MAX, then this ioctl is being used for
23153 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
23154 		 */
23155 		if (mh_time != INT_MAX) {
23156 			rval = sd_check_mhd(dev, mh_time);
23157 		}
23158 	} else {
23159 		(void) sd_check_mhd(dev, 0);
23160 		mutex_enter(SD_MUTEX(un));
23161 		un->un_resvd_status &= ~SD_FAILFAST;
23162 		mutex_exit(SD_MUTEX(un));
23163 	}
23164 	return (rval);
23165 }
23166 
23167 
23168 /*
23169  *    Function: sd_mhdioc_takeown
23170  *
23171  * Description: This routine is the driver entry point for handling ioctl
23172  *		requests to forcefully acquire exclusive access rights to the
23173  *		multihost disk (MHIOCTKOWN).
23174  *
23175  *   Arguments: dev	- the device number
23176  *		arg	- user provided structure specifying the delay
23177  *			  parameters in milliseconds
23178  *		flag	- this argument is a pass through to ddi_copyxxx()
23179  *			  directly from the mode argument of ioctl().
23180  *
23181  * Return Code: 0
23182  *		EFAULT
23183  *		ENXIO
23184  */
23185 
23186 static int
23187 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
23188 {
23189 	struct sd_lun		*un = NULL;
23190 	struct mhioctkown	*tkown = NULL;
23191 	int			rval = 0;
23192 
23193 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23194 		return (ENXIO);
23195 	}
23196 
23197 	if (arg != NULL) {
23198 		tkown = (struct mhioctkown *)
23199 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
23200 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
23201 		if (rval != 0) {
23202 			rval = EFAULT;
23203 			goto error;
23204 		}
23205 	}
23206 
23207 	rval = sd_take_ownership(dev, tkown);
23208 	mutex_enter(SD_MUTEX(un));
23209 	if (rval == 0) {
23210 		un->un_resvd_status |= SD_RESERVE;
23211 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
23212 			sd_reinstate_resv_delay =
23213 			    tkown->reinstate_resv_delay * 1000;
23214 		} else {
23215 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
23216 		}
23217 		/*
23218 		 * Give the scsi_watch routine interval set by
23219 		 * the MHIOCENFAILFAST ioctl precedence here.
23220 		 */
23221 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
23222 			mutex_exit(SD_MUTEX(un));
23223 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
23224 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
23225 			    "sd_mhdioc_takeown : %d\n",
23226 			    sd_reinstate_resv_delay);
23227 		} else {
23228 			mutex_exit(SD_MUTEX(un));
23229 		}
23230 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
23231 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23232 	} else {
23233 		un->un_resvd_status &= ~SD_RESERVE;
23234 		mutex_exit(SD_MUTEX(un));
23235 	}
23236 
23237 error:
23238 	if (tkown != NULL) {
23239 		kmem_free(tkown, sizeof (struct mhioctkown));
23240 	}
23241 	return (rval);
23242 }
23243 
23244 
23245 /*
23246  *    Function: sd_mhdioc_release
23247  *
23248  * Description: This routine is the driver entry point for handling ioctl
23249  *		requests to release exclusive access rights to the multihost
23250  *		disk (MHIOCRELEASE).
23251  *
23252  *   Arguments: dev	- the device number
23253  *
23254  * Return Code: 0
23255  *		ENXIO
23256  */
23257 
23258 static int
23259 sd_mhdioc_release(dev_t dev)
23260 {
23261 	struct sd_lun		*un = NULL;
23262 	timeout_id_t		resvd_timeid_save;
23263 	int			resvd_status_save;
23264 	int			rval = 0;
23265 
23266 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23267 		return (ENXIO);
23268 	}
23269 
23270 	mutex_enter(SD_MUTEX(un));
23271 	resvd_status_save = un->un_resvd_status;
23272 	un->un_resvd_status &=
23273 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
23274 	if (un->un_resvd_timeid) {
23275 		resvd_timeid_save = un->un_resvd_timeid;
23276 		un->un_resvd_timeid = NULL;
23277 		mutex_exit(SD_MUTEX(un));
23278 		(void) untimeout(resvd_timeid_save);
23279 	} else {
23280 		mutex_exit(SD_MUTEX(un));
23281 	}
23282 
23283 	/*
23284 	 * destroy any pending timeout thread that may be attempting to
23285 	 * reinstate reservation on this device.
23286 	 */
23287 	sd_rmv_resv_reclaim_req(dev);
23288 
23289 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
23290 		mutex_enter(SD_MUTEX(un));
23291 		if ((un->un_mhd_token) &&
23292 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
23293 			mutex_exit(SD_MUTEX(un));
23294 			(void) sd_check_mhd(dev, 0);
23295 		} else {
23296 			mutex_exit(SD_MUTEX(un));
23297 		}
23298 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
23299 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23300 	} else {
23301 		/*
23302 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
23303 		 */
23304 		mutex_enter(SD_MUTEX(un));
23305 		un->un_resvd_status = resvd_status_save;
23306 		mutex_exit(SD_MUTEX(un));
23307 	}
23308 	return (rval);
23309 }
23310 
23311 
23312 /*
23313  *    Function: sd_mhdioc_register_devid
23314  *
23315  * Description: This routine is the driver entry point for handling ioctl
23316  *		requests to register the device id (MHIOCREREGISTERDEVID).
23317  *
23318  *		Note: The implementation for this ioctl has been updated to
23319  *		be consistent with the original PSARC case (1999/357)
23320  *		(4375899, 4241671, 4220005)
23321  *
23322  *   Arguments: dev	- the device number
23323  *
23324  * Return Code: 0
23325  *		ENXIO
23326  */
23327 
23328 static int
23329 sd_mhdioc_register_devid(dev_t dev)
23330 {
23331 	struct sd_lun	*un = NULL;
23332 	int		rval = 0;
23333 	sd_ssc_t	*ssc;
23334 
23335 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23336 		return (ENXIO);
23337 	}
23338 
23339 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23340 
23341 	mutex_enter(SD_MUTEX(un));
23342 
23343 	/* If a devid already exists, de-register it */
23344 	if (un->un_devid != NULL) {
23345 		ddi_devid_unregister(SD_DEVINFO(un));
23346 		/*
23347 		 * After unregister devid, needs to free devid memory
23348 		 */
23349 		ddi_devid_free(un->un_devid);
23350 		un->un_devid = NULL;
23351 	}
23352 
23353 	/* Check for reservation conflict */
23354 	mutex_exit(SD_MUTEX(un));
23355 	ssc = sd_ssc_init(un);
23356 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
23357 	mutex_enter(SD_MUTEX(un));
23358 
23359 	switch (rval) {
23360 	case 0:
23361 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
23362 		break;
23363 	case EACCES:
23364 		break;
23365 	default:
23366 		rval = EIO;
23367 	}
23368 
23369 	mutex_exit(SD_MUTEX(un));
23370 	if (rval != 0) {
23371 		if (rval == EIO)
23372 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23373 		else
23374 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23375 	}
23376 	sd_ssc_fini(ssc);
23377 	return (rval);
23378 }
23379 
23380 
23381 /*
23382  *    Function: sd_mhdioc_inkeys
23383  *
23384  * Description: This routine is the driver entry point for handling ioctl
23385  *		requests to issue the SCSI-3 Persistent In Read Keys command
23386  *		to the device (MHIOCGRP_INKEYS).
23387  *
23388  *   Arguments: dev	- the device number
23389  *		arg	- user provided in_keys structure
23390  *		flag	- this argument is a pass through to ddi_copyxxx()
23391  *			  directly from the mode argument of ioctl().
23392  *
23393  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
23394  *		ENXIO
23395  *		EFAULT
23396  */
23397 
23398 static int
23399 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
23400 {
23401 	struct sd_lun		*un;
23402 	mhioc_inkeys_t		inkeys;
23403 	int			rval = 0;
23404 
23405 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23406 		return (ENXIO);
23407 	}
23408 
23409 #ifdef _MULTI_DATAMODEL
23410 	switch (ddi_model_convert_from(flag & FMODELS)) {
23411 	case DDI_MODEL_ILP32: {
23412 		struct mhioc_inkeys32	inkeys32;
23413 
23414 		if (ddi_copyin(arg, &inkeys32,
23415 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
23416 			return (EFAULT);
23417 		}
23418 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
23419 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23420 		    &inkeys, flag)) != 0) {
23421 			return (rval);
23422 		}
23423 		inkeys32.generation = inkeys.generation;
23424 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
23425 		    flag) != 0) {
23426 			return (EFAULT);
23427 		}
23428 		break;
23429 	}
23430 	case DDI_MODEL_NONE:
23431 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
23432 		    flag) != 0) {
23433 			return (EFAULT);
23434 		}
23435 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23436 		    &inkeys, flag)) != 0) {
23437 			return (rval);
23438 		}
23439 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
23440 		    flag) != 0) {
23441 			return (EFAULT);
23442 		}
23443 		break;
23444 	}
23445 
23446 #else /* ! _MULTI_DATAMODEL */
23447 
23448 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
23449 		return (EFAULT);
23450 	}
23451 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
23452 	if (rval != 0) {
23453 		return (rval);
23454 	}
23455 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
23456 		return (EFAULT);
23457 	}
23458 
23459 #endif /* _MULTI_DATAMODEL */
23460 
23461 	return (rval);
23462 }
23463 
23464 
23465 /*
23466  *    Function: sd_mhdioc_inresv
23467  *
23468  * Description: This routine is the driver entry point for handling ioctl
23469  *		requests to issue the SCSI-3 Persistent In Read Reservations
23470  *		command to the device (MHIOCGRP_INKEYS).
23471  *
23472  *   Arguments: dev	- the device number
23473  *		arg	- user provided in_resv structure
23474  *		flag	- this argument is a pass through to ddi_copyxxx()
23475  *			  directly from the mode argument of ioctl().
23476  *
23477  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
23478  *		ENXIO
23479  *		EFAULT
23480  */
23481 
23482 static int
23483 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
23484 {
23485 	struct sd_lun		*un;
23486 	mhioc_inresvs_t		inresvs;
23487 	int			rval = 0;
23488 
23489 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23490 		return (ENXIO);
23491 	}
23492 
23493 #ifdef _MULTI_DATAMODEL
23494 
23495 	switch (ddi_model_convert_from(flag & FMODELS)) {
23496 	case DDI_MODEL_ILP32: {
23497 		struct mhioc_inresvs32	inresvs32;
23498 
23499 		if (ddi_copyin(arg, &inresvs32,
23500 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23501 			return (EFAULT);
23502 		}
23503 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
23504 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23505 		    &inresvs, flag)) != 0) {
23506 			return (rval);
23507 		}
23508 		inresvs32.generation = inresvs.generation;
23509 		if (ddi_copyout(&inresvs32, arg,
23510 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23511 			return (EFAULT);
23512 		}
23513 		break;
23514 	}
23515 	case DDI_MODEL_NONE:
23516 		if (ddi_copyin(arg, &inresvs,
23517 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23518 			return (EFAULT);
23519 		}
23520 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23521 		    &inresvs, flag)) != 0) {
23522 			return (rval);
23523 		}
23524 		if (ddi_copyout(&inresvs, arg,
23525 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23526 			return (EFAULT);
23527 		}
23528 		break;
23529 	}
23530 
23531 #else /* ! _MULTI_DATAMODEL */
23532 
23533 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
23534 		return (EFAULT);
23535 	}
23536 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
23537 	if (rval != 0) {
23538 		return (rval);
23539 	}
23540 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
23541 		return (EFAULT);
23542 	}
23543 
23544 #endif /* ! _MULTI_DATAMODEL */
23545 
23546 	return (rval);
23547 }
23548 
23549 
23550 /*
23551  * The following routines support the clustering functionality described below
23552  * and implement lost reservation reclaim functionality.
23553  *
23554  * Clustering
23555  * ----------
23556  * The clustering code uses two different, independent forms of SCSI
23557  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
23558  * Persistent Group Reservations. For any particular disk, it will use either
23559  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
23560  *
23561  * SCSI-2
23562  * The cluster software takes ownership of a multi-hosted disk by issuing the
23563  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
23564  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
23565  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
23566  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
23567  * driver. The meaning of failfast is that if the driver (on this host) ever
23568  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
23569  * it should immediately panic the host. The motivation for this ioctl is that
23570  * if this host does encounter reservation conflict, the underlying cause is
23571  * that some other host of the cluster has decided that this host is no longer
23572  * in the cluster and has seized control of the disks for itself. Since this
23573  * host is no longer in the cluster, it ought to panic itself. The
23574  * MHIOCENFAILFAST ioctl does two things:
23575  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
23576  *      error to panic the host
23577  *      (b) it sets up a periodic timer to test whether this host still has
23578  *      "access" (in that no other host has reserved the device):  if the
23579  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
23580  *      purpose of that periodic timer is to handle scenarios where the host is
23581  *      otherwise temporarily quiescent, temporarily doing no real i/o.
23582  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
23583  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
23584  * the device itself.
23585  *
23586  * SCSI-3 PGR
23587  * A direct semantic implementation of the SCSI-3 Persistent Reservation
23588  * facility is supported through the shared multihost disk ioctls
23589  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
23590  * MHIOCGRP_PREEMPTANDABORT)
23591  *
23592  * Reservation Reclaim:
23593  * --------------------
23594  * To support the lost reservation reclaim operations this driver creates a
23595  * single thread to handle reinstating reservations on all devices that have
23596  * lost reservations sd_resv_reclaim_requests are logged for all devices that
23597  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
23598  * and the reservation reclaim thread loops through the requests to regain the
23599  * lost reservations.
23600  */
23601 
23602 /*
23603  *    Function: sd_check_mhd()
23604  *
23605  * Description: This function sets up and submits a scsi watch request or
23606  *		terminates an existing watch request. This routine is used in
23607  *		support of reservation reclaim.
23608  *
23609  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
23610  *			 among multiple watches that share the callback function
23611  *		interval - the number of microseconds specifying the watch
23612  *			   interval for issuing TEST UNIT READY commands. If
23613  *			   set to 0 the watch should be terminated. If the
23614  *			   interval is set to 0 and if the device is required
23615  *			   to hold reservation while disabling failfast, the
23616  *			   watch is restarted with an interval of
23617  *			   reinstate_resv_delay.
23618  *
23619  * Return Code: 0	   - Successful submit/terminate of scsi watch request
23620  *		ENXIO      - Indicates an invalid device was specified
23621  *		EAGAIN     - Unable to submit the scsi watch request
23622  */
23623 
23624 static int
23625 sd_check_mhd(dev_t dev, int interval)
23626 {
23627 	struct sd_lun	*un;
23628 	opaque_t	token;
23629 
23630 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23631 		return (ENXIO);
23632 	}
23633 
23634 	/* is this a watch termination request? */
23635 	if (interval == 0) {
23636 		mutex_enter(SD_MUTEX(un));
23637 		/* if there is an existing watch task then terminate it */
23638 		if (un->un_mhd_token) {
23639 			token = un->un_mhd_token;
23640 			un->un_mhd_token = NULL;
23641 			mutex_exit(SD_MUTEX(un));
23642 			(void) scsi_watch_request_terminate(token,
23643 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
23644 			mutex_enter(SD_MUTEX(un));
23645 		} else {
23646 			mutex_exit(SD_MUTEX(un));
23647 			/*
23648 			 * Note: If we return here we don't check for the
23649 			 * failfast case. This is the original legacy
23650 			 * implementation but perhaps we should be checking
23651 			 * the failfast case.
23652 			 */
23653 			return (0);
23654 		}
23655 		/*
23656 		 * If the device is required to hold reservation while
23657 		 * disabling failfast, we need to restart the scsi_watch
23658 		 * routine with an interval of reinstate_resv_delay.
23659 		 */
23660 		if (un->un_resvd_status & SD_RESERVE) {
23661 			interval = sd_reinstate_resv_delay/1000;
23662 		} else {
23663 			/* no failfast so bail */
23664 			mutex_exit(SD_MUTEX(un));
23665 			return (0);
23666 		}
23667 		mutex_exit(SD_MUTEX(un));
23668 	}
23669 
23670 	/*
23671 	 * adjust minimum time interval to 1 second,
23672 	 * and convert from msecs to usecs
23673 	 */
23674 	if (interval > 0 && interval < 1000) {
23675 		interval = 1000;
23676 	}
23677 	interval *= 1000;
23678 
23679 	/*
23680 	 * submit the request to the scsi_watch service
23681 	 */
23682 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
23683 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
23684 	if (token == NULL) {
23685 		return (EAGAIN);
23686 	}
23687 
23688 	/*
23689 	 * save token for termination later on
23690 	 */
23691 	mutex_enter(SD_MUTEX(un));
23692 	un->un_mhd_token = token;
23693 	mutex_exit(SD_MUTEX(un));
23694 	return (0);
23695 }
23696 
23697 
23698 /*
23699  *    Function: sd_mhd_watch_cb()
23700  *
23701  * Description: This function is the call back function used by the scsi watch
23702  *		facility. The scsi watch facility sends the "Test Unit Ready"
23703  *		and processes the status. If applicable (i.e. a "Unit Attention"
23704  *		status and automatic "Request Sense" not used) the scsi watch
23705  *		facility will send a "Request Sense" and retrieve the sense data
23706  *		to be passed to this callback function. In either case the
23707  *		automatic "Request Sense" or the facility submitting one, this
23708  *		callback is passed the status and sense data.
23709  *
23710  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23711  *			among multiple watches that share this callback function
23712  *		resultp - scsi watch facility result packet containing scsi
23713  *			  packet, status byte and sense data
23714  *
23715  * Return Code: 0 - continue the watch task
23716  *		non-zero - terminate the watch task
23717  */
23718 
23719 static int
23720 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23721 {
23722 	struct sd_lun			*un;
23723 	struct scsi_status		*statusp;
23724 	uint8_t				*sensep;
23725 	struct scsi_pkt			*pkt;
23726 	uchar_t				actual_sense_length;
23727 	dev_t  				dev = (dev_t)arg;
23728 
23729 	ASSERT(resultp != NULL);
23730 	statusp			= resultp->statusp;
23731 	sensep			= (uint8_t *)resultp->sensep;
23732 	pkt			= resultp->pkt;
23733 	actual_sense_length	= resultp->actual_sense_length;
23734 
23735 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23736 		return (ENXIO);
23737 	}
23738 
23739 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
23740 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
23741 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
23742 
23743 	/* Begin processing of the status and/or sense data */
23744 	if (pkt->pkt_reason != CMD_CMPLT) {
23745 		/* Handle the incomplete packet */
23746 		sd_mhd_watch_incomplete(un, pkt);
23747 		return (0);
23748 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
23749 		if (*((unsigned char *)statusp)
23750 		    == STATUS_RESERVATION_CONFLICT) {
23751 			/*
23752 			 * Handle a reservation conflict by panicking if
23753 			 * configured for failfast or by logging the conflict
23754 			 * and updating the reservation status
23755 			 */
23756 			mutex_enter(SD_MUTEX(un));
23757 			if ((un->un_resvd_status & SD_FAILFAST) &&
23758 			    (sd_failfast_enable)) {
23759 				sd_panic_for_res_conflict(un);
23760 				/*NOTREACHED*/
23761 			}
23762 			SD_INFO(SD_LOG_IOCTL_MHD, un,
23763 			    "sd_mhd_watch_cb: Reservation Conflict\n");
23764 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
23765 			mutex_exit(SD_MUTEX(un));
23766 		}
23767 	}
23768 
23769 	if (sensep != NULL) {
23770 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
23771 			mutex_enter(SD_MUTEX(un));
23772 			if ((scsi_sense_asc(sensep) ==
23773 			    SD_SCSI_RESET_SENSE_CODE) &&
23774 			    (un->un_resvd_status & SD_RESERVE)) {
23775 				/*
23776 				 * The additional sense code indicates a power
23777 				 * on or bus device reset has occurred; update
23778 				 * the reservation status.
23779 				 */
23780 				un->un_resvd_status |=
23781 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
23782 				SD_INFO(SD_LOG_IOCTL_MHD, un,
23783 				    "sd_mhd_watch_cb: Lost Reservation\n");
23784 			}
23785 		} else {
23786 			return (0);
23787 		}
23788 	} else {
23789 		mutex_enter(SD_MUTEX(un));
23790 	}
23791 
23792 	if ((un->un_resvd_status & SD_RESERVE) &&
23793 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
23794 		if (un->un_resvd_status & SD_WANT_RESERVE) {
23795 			/*
23796 			 * A reset occurred in between the last probe and this
23797 			 * one so if a timeout is pending cancel it.
23798 			 */
23799 			if (un->un_resvd_timeid) {
23800 				timeout_id_t temp_id = un->un_resvd_timeid;
23801 				un->un_resvd_timeid = NULL;
23802 				mutex_exit(SD_MUTEX(un));
23803 				(void) untimeout(temp_id);
23804 				mutex_enter(SD_MUTEX(un));
23805 			}
23806 			un->un_resvd_status &= ~SD_WANT_RESERVE;
23807 		}
23808 		if (un->un_resvd_timeid == 0) {
23809 			/* Schedule a timeout to handle the lost reservation */
23810 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
23811 			    (void *)dev,
23812 			    drv_usectohz(sd_reinstate_resv_delay));
23813 		}
23814 	}
23815 	mutex_exit(SD_MUTEX(un));
23816 	return (0);
23817 }
23818 
23819 
23820 /*
23821  *    Function: sd_mhd_watch_incomplete()
23822  *
23823  * Description: This function is used to find out why a scsi pkt sent by the
23824  *		scsi watch facility was not completed. Under some scenarios this
23825  *		routine will return. Otherwise it will send a bus reset to see
23826  *		if the drive is still online.
23827  *
23828  *   Arguments: un  - driver soft state (unit) structure
23829  *		pkt - incomplete scsi pkt
23830  */
23831 
23832 static void
23833 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
23834 {
23835 	int	be_chatty;
23836 	int	perr;
23837 
23838 	ASSERT(pkt != NULL);
23839 	ASSERT(un != NULL);
23840 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
23841 	perr		= (pkt->pkt_statistics & STAT_PERR);
23842 
23843 	mutex_enter(SD_MUTEX(un));
23844 	if (un->un_state == SD_STATE_DUMPING) {
23845 		mutex_exit(SD_MUTEX(un));
23846 		return;
23847 	}
23848 
23849 	switch (pkt->pkt_reason) {
23850 	case CMD_UNX_BUS_FREE:
23851 		/*
23852 		 * If we had a parity error that caused the target to drop BSY*,
23853 		 * don't be chatty about it.
23854 		 */
23855 		if (perr && be_chatty) {
23856 			be_chatty = 0;
23857 		}
23858 		break;
23859 	case CMD_TAG_REJECT:
23860 		/*
23861 		 * The SCSI-2 spec states that a tag reject will be sent by the
23862 		 * target if tagged queuing is not supported. A tag reject may
23863 		 * also be sent during certain initialization periods or to
23864 		 * control internal resources. For the latter case the target
23865 		 * may also return Queue Full.
23866 		 *
23867 		 * If this driver receives a tag reject from a target that is
23868 		 * going through an init period or controlling internal
23869 		 * resources tagged queuing will be disabled. This is a less
23870 		 * than optimal behavior but the driver is unable to determine
23871 		 * the target state and assumes tagged queueing is not supported
23872 		 */
23873 		pkt->pkt_flags = 0;
23874 		un->un_tagflags = 0;
23875 
23876 		if (un->un_f_opt_queueing == TRUE) {
23877 			un->un_throttle = min(un->un_throttle, 3);
23878 		} else {
23879 			un->un_throttle = 1;
23880 		}
23881 		mutex_exit(SD_MUTEX(un));
23882 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
23883 		mutex_enter(SD_MUTEX(un));
23884 		break;
23885 	case CMD_INCOMPLETE:
23886 		/*
23887 		 * The transport stopped with an abnormal state, fallthrough and
23888 		 * reset the target and/or bus unless selection did not complete
23889 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
23890 		 * go through a target/bus reset
23891 		 */
23892 		if (pkt->pkt_state == STATE_GOT_BUS) {
23893 			break;
23894 		}
23895 		/*FALLTHROUGH*/
23896 
23897 	case CMD_TIMEOUT:
23898 	default:
23899 		/*
23900 		 * The lun may still be running the command, so a lun reset
23901 		 * should be attempted. If the lun reset fails or cannot be
23902 		 * issued, than try a target reset. Lastly try a bus reset.
23903 		 */
23904 		if ((pkt->pkt_statistics &
23905 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
23906 			int reset_retval = 0;
23907 			mutex_exit(SD_MUTEX(un));
23908 			if (un->un_f_allow_bus_device_reset == TRUE) {
23909 				if (un->un_f_lun_reset_enabled == TRUE) {
23910 					reset_retval =
23911 					    scsi_reset(SD_ADDRESS(un),
23912 					    RESET_LUN);
23913 				}
23914 				if (reset_retval == 0) {
23915 					reset_retval =
23916 					    scsi_reset(SD_ADDRESS(un),
23917 					    RESET_TARGET);
23918 				}
23919 			}
23920 			if (reset_retval == 0) {
23921 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23922 			}
23923 			mutex_enter(SD_MUTEX(un));
23924 		}
23925 		break;
23926 	}
23927 
23928 	/* A device/bus reset has occurred; update the reservation status. */
23929 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
23930 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
23931 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
23932 			un->un_resvd_status |=
23933 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
23934 			SD_INFO(SD_LOG_IOCTL_MHD, un,
23935 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
23936 		}
23937 	}
23938 
23939 	/*
23940 	 * The disk has been turned off; Update the device state.
23941 	 *
23942 	 * Note: Should we be offlining the disk here?
23943 	 */
23944 	if (pkt->pkt_state == STATE_GOT_BUS) {
23945 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
23946 		    "Disk not responding to selection\n");
23947 		if (un->un_state != SD_STATE_OFFLINE) {
23948 			New_state(un, SD_STATE_OFFLINE);
23949 		}
23950 	} else if (be_chatty) {
23951 		/*
23952 		 * suppress messages if they are all the same pkt reason;
23953 		 * with TQ, many (up to 256) are returned with the same
23954 		 * pkt_reason
23955 		 */
23956 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
23957 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23958 			    "sd_mhd_watch_incomplete: "
23959 			    "SCSI transport failed: reason '%s'\n",
23960 			    scsi_rname(pkt->pkt_reason));
23961 		}
23962 	}
23963 	un->un_last_pkt_reason = pkt->pkt_reason;
23964 	mutex_exit(SD_MUTEX(un));
23965 }
23966 
23967 
23968 /*
23969  *    Function: sd_sname()
23970  *
23971  * Description: This is a simple little routine to return a string containing
23972  *		a printable description of command status byte for use in
23973  *		logging.
23974  *
23975  *   Arguments: status - pointer to a status byte
23976  *
23977  * Return Code: char * - string containing status description.
23978  */
23979 
23980 static char *
23981 sd_sname(uchar_t status)
23982 {
23983 	switch (status & STATUS_MASK) {
23984 	case STATUS_GOOD:
23985 		return ("good status");
23986 	case STATUS_CHECK:
23987 		return ("check condition");
23988 	case STATUS_MET:
23989 		return ("condition met");
23990 	case STATUS_BUSY:
23991 		return ("busy");
23992 	case STATUS_INTERMEDIATE:
23993 		return ("intermediate");
23994 	case STATUS_INTERMEDIATE_MET:
23995 		return ("intermediate - condition met");
23996 	case STATUS_RESERVATION_CONFLICT:
23997 		return ("reservation_conflict");
23998 	case STATUS_TERMINATED:
23999 		return ("command terminated");
24000 	case STATUS_QFULL:
24001 		return ("queue full");
24002 	default:
24003 		return ("<unknown status>");
24004 	}
24005 }
24006 
24007 
24008 /*
24009  *    Function: sd_mhd_resvd_recover()
24010  *
24011  * Description: This function adds a reservation entry to the
24012  *		sd_resv_reclaim_request list and signals the reservation
24013  *		reclaim thread that there is work pending. If the reservation
24014  *		reclaim thread has not been previously created this function
24015  *		will kick it off.
24016  *
24017  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24018  *			among multiple watches that share this callback function
24019  *
24020  *     Context: This routine is called by timeout() and is run in interrupt
24021  *		context. It must not sleep or call other functions which may
24022  *		sleep.
24023  */
24024 
24025 static void
24026 sd_mhd_resvd_recover(void *arg)
24027 {
24028 	dev_t			dev = (dev_t)arg;
24029 	struct sd_lun		*un;
24030 	struct sd_thr_request	*sd_treq = NULL;
24031 	struct sd_thr_request	*sd_cur = NULL;
24032 	struct sd_thr_request	*sd_prev = NULL;
24033 	int			already_there = 0;
24034 
24035 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24036 		return;
24037 	}
24038 
24039 	mutex_enter(SD_MUTEX(un));
24040 	un->un_resvd_timeid = NULL;
24041 	if (un->un_resvd_status & SD_WANT_RESERVE) {
24042 		/*
24043 		 * There was a reset so don't issue the reserve, allow the
24044 		 * sd_mhd_watch_cb callback function to notice this and
24045 		 * reschedule the timeout for reservation.
24046 		 */
24047 		mutex_exit(SD_MUTEX(un));
24048 		return;
24049 	}
24050 	mutex_exit(SD_MUTEX(un));
24051 
24052 	/*
24053 	 * Add this device to the sd_resv_reclaim_request list and the
24054 	 * sd_resv_reclaim_thread should take care of the rest.
24055 	 *
24056 	 * Note: We can't sleep in this context so if the memory allocation
24057 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
24058 	 * reschedule the timeout for reservation.  (4378460)
24059 	 */
24060 	sd_treq = (struct sd_thr_request *)
24061 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
24062 	if (sd_treq == NULL) {
24063 		return;
24064 	}
24065 
24066 	sd_treq->sd_thr_req_next = NULL;
24067 	sd_treq->dev = dev;
24068 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24069 	if (sd_tr.srq_thr_req_head == NULL) {
24070 		sd_tr.srq_thr_req_head = sd_treq;
24071 	} else {
24072 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
24073 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
24074 			if (sd_cur->dev == dev) {
24075 				/*
24076 				 * already in Queue so don't log
24077 				 * another request for the device
24078 				 */
24079 				already_there = 1;
24080 				break;
24081 			}
24082 			sd_prev = sd_cur;
24083 		}
24084 		if (!already_there) {
24085 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
24086 			    "logging request for %lx\n", dev);
24087 			sd_prev->sd_thr_req_next = sd_treq;
24088 		} else {
24089 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
24090 		}
24091 	}
24092 
24093 	/*
24094 	 * Create a kernel thread to do the reservation reclaim and free up this
24095 	 * thread. We cannot block this thread while we go away to do the
24096 	 * reservation reclaim
24097 	 */
24098 	if (sd_tr.srq_resv_reclaim_thread == NULL)
24099 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
24100 		    sd_resv_reclaim_thread, NULL,
24101 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
24102 
24103 	/* Tell the reservation reclaim thread that it has work to do */
24104 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
24105 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24106 }
24107 
24108 /*
24109  *    Function: sd_resv_reclaim_thread()
24110  *
24111  * Description: This function implements the reservation reclaim operations
24112  *
24113  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
24114  *		      among multiple watches that share this callback function
24115  */
24116 
24117 static void
24118 sd_resv_reclaim_thread()
24119 {
24120 	struct sd_lun		*un;
24121 	struct sd_thr_request	*sd_mhreq;
24122 
24123 	/* Wait for work */
24124 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24125 	if (sd_tr.srq_thr_req_head == NULL) {
24126 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
24127 		    &sd_tr.srq_resv_reclaim_mutex);
24128 	}
24129 
24130 	/* Loop while we have work */
24131 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
24132 		un = ddi_get_soft_state(sd_state,
24133 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
24134 		if (un == NULL) {
24135 			/*
24136 			 * softstate structure is NULL so just
24137 			 * dequeue the request and continue
24138 			 */
24139 			sd_tr.srq_thr_req_head =
24140 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24141 			kmem_free(sd_tr.srq_thr_cur_req,
24142 			    sizeof (struct sd_thr_request));
24143 			continue;
24144 		}
24145 
24146 		/* dequeue the request */
24147 		sd_mhreq = sd_tr.srq_thr_cur_req;
24148 		sd_tr.srq_thr_req_head =
24149 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24150 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24151 
24152 		/*
24153 		 * Reclaim reservation only if SD_RESERVE is still set. There
24154 		 * may have been a call to MHIOCRELEASE before we got here.
24155 		 */
24156 		mutex_enter(SD_MUTEX(un));
24157 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24158 			/*
24159 			 * Note: The SD_LOST_RESERVE flag is cleared before
24160 			 * reclaiming the reservation. If this is done after the
24161 			 * call to sd_reserve_release a reservation loss in the
24162 			 * window between pkt completion of reserve cmd and
24163 			 * mutex_enter below may not be recognized
24164 			 */
24165 			un->un_resvd_status &= ~SD_LOST_RESERVE;
24166 			mutex_exit(SD_MUTEX(un));
24167 
24168 			if (sd_reserve_release(sd_mhreq->dev,
24169 			    SD_RESERVE) == 0) {
24170 				mutex_enter(SD_MUTEX(un));
24171 				un->un_resvd_status |= SD_RESERVE;
24172 				mutex_exit(SD_MUTEX(un));
24173 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24174 				    "sd_resv_reclaim_thread: "
24175 				    "Reservation Recovered\n");
24176 			} else {
24177 				mutex_enter(SD_MUTEX(un));
24178 				un->un_resvd_status |= SD_LOST_RESERVE;
24179 				mutex_exit(SD_MUTEX(un));
24180 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24181 				    "sd_resv_reclaim_thread: Failed "
24182 				    "Reservation Recovery\n");
24183 			}
24184 		} else {
24185 			mutex_exit(SD_MUTEX(un));
24186 		}
24187 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24188 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
24189 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24190 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
24191 		/*
24192 		 * wakeup the destroy thread if anyone is waiting on
24193 		 * us to complete.
24194 		 */
24195 		cv_signal(&sd_tr.srq_inprocess_cv);
24196 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
24197 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
24198 	}
24199 
24200 	/*
24201 	 * cleanup the sd_tr structure now that this thread will not exist
24202 	 */
24203 	ASSERT(sd_tr.srq_thr_req_head == NULL);
24204 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
24205 	sd_tr.srq_resv_reclaim_thread = NULL;
24206 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24207 	thread_exit();
24208 }
24209 
24210 
24211 /*
24212  *    Function: sd_rmv_resv_reclaim_req()
24213  *
24214  * Description: This function removes any pending reservation reclaim requests
24215  *		for the specified device.
24216  *
24217  *   Arguments: dev - the device 'dev_t'
24218  */
24219 
24220 static void
24221 sd_rmv_resv_reclaim_req(dev_t dev)
24222 {
24223 	struct sd_thr_request *sd_mhreq;
24224 	struct sd_thr_request *sd_prev;
24225 
24226 	/* Remove a reservation reclaim request from the list */
24227 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24228 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
24229 		/*
24230 		 * We are attempting to reinstate reservation for
24231 		 * this device. We wait for sd_reserve_release()
24232 		 * to return before we return.
24233 		 */
24234 		cv_wait(&sd_tr.srq_inprocess_cv,
24235 		    &sd_tr.srq_resv_reclaim_mutex);
24236 	} else {
24237 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
24238 		if (sd_mhreq && sd_mhreq->dev == dev) {
24239 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
24240 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24241 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24242 			return;
24243 		}
24244 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
24245 			if (sd_mhreq && sd_mhreq->dev == dev) {
24246 				break;
24247 			}
24248 			sd_prev = sd_mhreq;
24249 		}
24250 		if (sd_mhreq != NULL) {
24251 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
24252 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24253 		}
24254 	}
24255 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24256 }
24257 
24258 
24259 /*
24260  *    Function: sd_mhd_reset_notify_cb()
24261  *
24262  * Description: This is a call back function for scsi_reset_notify. This
24263  *		function updates the softstate reserved status and logs the
24264  *		reset. The driver scsi watch facility callback function
24265  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
24266  *		will reclaim the reservation.
24267  *
24268  *   Arguments: arg  - driver soft state (unit) structure
24269  */
24270 
24271 static void
24272 sd_mhd_reset_notify_cb(caddr_t arg)
24273 {
24274 	struct sd_lun *un = (struct sd_lun *)arg;
24275 
24276 	mutex_enter(SD_MUTEX(un));
24277 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24278 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
24279 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24280 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
24281 	}
24282 	mutex_exit(SD_MUTEX(un));
24283 }
24284 
24285 
24286 /*
24287  *    Function: sd_take_ownership()
24288  *
24289  * Description: This routine implements an algorithm to achieve a stable
24290  *		reservation on disks which don't implement priority reserve,
24291  *		and makes sure that other host lose re-reservation attempts.
24292  *		This algorithm contains of a loop that keeps issuing the RESERVE
24293  *		for some period of time (min_ownership_delay, default 6 seconds)
24294  *		During that loop, it looks to see if there has been a bus device
24295  *		reset or bus reset (both of which cause an existing reservation
24296  *		to be lost). If the reservation is lost issue RESERVE until a
24297  *		period of min_ownership_delay with no resets has gone by, or
24298  *		until max_ownership_delay has expired. This loop ensures that
24299  *		the host really did manage to reserve the device, in spite of
24300  *		resets. The looping for min_ownership_delay (default six
24301  *		seconds) is important to early generation clustering products,
24302  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
24303  *		MHIOCENFAILFAST periodic timer of two seconds. By having
24304  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
24305  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
24306  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
24307  *		have already noticed, via the MHIOCENFAILFAST polling, that it
24308  *		no longer "owns" the disk and will have panicked itself.  Thus,
24309  *		the host issuing the MHIOCTKOWN is assured (with timing
24310  *		dependencies) that by the time it actually starts to use the
24311  *		disk for real work, the old owner is no longer accessing it.
24312  *
24313  *		min_ownership_delay is the minimum amount of time for which the
24314  *		disk must be reserved continuously devoid of resets before the
24315  *		MHIOCTKOWN ioctl will return success.
24316  *
24317  *		max_ownership_delay indicates the amount of time by which the
24318  *		take ownership should succeed or timeout with an error.
24319  *
24320  *   Arguments: dev - the device 'dev_t'
24321  *		*p  - struct containing timing info.
24322  *
24323  * Return Code: 0 for success or error code
24324  */
24325 
24326 static int
24327 sd_take_ownership(dev_t dev, struct mhioctkown *p)
24328 {
24329 	struct sd_lun	*un;
24330 	int		rval;
24331 	int		err;
24332 	int		reservation_count   = 0;
24333 	int		min_ownership_delay =  6000000; /* in usec */
24334 	int		max_ownership_delay = 30000000; /* in usec */
24335 	clock_t		start_time;	/* starting time of this algorithm */
24336 	clock_t		end_time;	/* time limit for giving up */
24337 	clock_t		ownership_time;	/* time limit for stable ownership */
24338 	clock_t		current_time;
24339 	clock_t		previous_current_time;
24340 
24341 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24342 		return (ENXIO);
24343 	}
24344 
24345 	/*
24346 	 * Attempt a device reservation. A priority reservation is requested.
24347 	 */
24348 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
24349 	    != SD_SUCCESS) {
24350 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
24351 		    "sd_take_ownership: return(1)=%d\n", rval);
24352 		return (rval);
24353 	}
24354 
24355 	/* Update the softstate reserved status to indicate the reservation */
24356 	mutex_enter(SD_MUTEX(un));
24357 	un->un_resvd_status |= SD_RESERVE;
24358 	un->un_resvd_status &=
24359 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
24360 	mutex_exit(SD_MUTEX(un));
24361 
24362 	if (p != NULL) {
24363 		if (p->min_ownership_delay != 0) {
24364 			min_ownership_delay = p->min_ownership_delay * 1000;
24365 		}
24366 		if (p->max_ownership_delay != 0) {
24367 			max_ownership_delay = p->max_ownership_delay * 1000;
24368 		}
24369 	}
24370 	SD_INFO(SD_LOG_IOCTL_MHD, un,
24371 	    "sd_take_ownership: min, max delays: %d, %d\n",
24372 	    min_ownership_delay, max_ownership_delay);
24373 
24374 	start_time = ddi_get_lbolt();
24375 	current_time	= start_time;
24376 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
24377 	end_time	= start_time + drv_usectohz(max_ownership_delay);
24378 
24379 	while (current_time - end_time < 0) {
24380 		delay(drv_usectohz(500000));
24381 
24382 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
24383 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
24384 				mutex_enter(SD_MUTEX(un));
24385 				rval = (un->un_resvd_status &
24386 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
24387 				mutex_exit(SD_MUTEX(un));
24388 				break;
24389 			}
24390 		}
24391 		previous_current_time = current_time;
24392 		current_time = ddi_get_lbolt();
24393 		mutex_enter(SD_MUTEX(un));
24394 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
24395 			ownership_time = ddi_get_lbolt() +
24396 			    drv_usectohz(min_ownership_delay);
24397 			reservation_count = 0;
24398 		} else {
24399 			reservation_count++;
24400 		}
24401 		un->un_resvd_status |= SD_RESERVE;
24402 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
24403 		mutex_exit(SD_MUTEX(un));
24404 
24405 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24406 		    "sd_take_ownership: ticks for loop iteration=%ld, "
24407 		    "reservation=%s\n", (current_time - previous_current_time),
24408 		    reservation_count ? "ok" : "reclaimed");
24409 
24410 		if (current_time - ownership_time >= 0 &&
24411 		    reservation_count >= 4) {
24412 			rval = 0; /* Achieved a stable ownership */
24413 			break;
24414 		}
24415 		if (current_time - end_time >= 0) {
24416 			rval = EACCES; /* No ownership in max possible time */
24417 			break;
24418 		}
24419 	}
24420 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24421 	    "sd_take_ownership: return(2)=%d\n", rval);
24422 	return (rval);
24423 }
24424 
24425 
24426 /*
24427  *    Function: sd_reserve_release()
24428  *
24429  * Description: This function builds and sends scsi RESERVE, RELEASE, and
24430  *		PRIORITY RESERVE commands based on a user specified command type
24431  *
24432  *   Arguments: dev - the device 'dev_t'
24433  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
24434  *		      SD_RESERVE, SD_RELEASE
24435  *
24436  * Return Code: 0 or Error Code
24437  */
24438 
24439 static int
24440 sd_reserve_release(dev_t dev, int cmd)
24441 {
24442 	struct uscsi_cmd	*com = NULL;
24443 	struct sd_lun		*un = NULL;
24444 	char			cdb[CDB_GROUP0];
24445 	int			rval;
24446 
24447 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
24448 	    (cmd == SD_PRIORITY_RESERVE));
24449 
24450 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24451 		return (ENXIO);
24452 	}
24453 
24454 	/* instantiate and initialize the command and cdb */
24455 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24456 	bzero(cdb, CDB_GROUP0);
24457 	com->uscsi_flags   = USCSI_SILENT;
24458 	com->uscsi_timeout = un->un_reserve_release_time;
24459 	com->uscsi_cdblen  = CDB_GROUP0;
24460 	com->uscsi_cdb	   = cdb;
24461 	if (cmd == SD_RELEASE) {
24462 		cdb[0] = SCMD_RELEASE;
24463 	} else {
24464 		cdb[0] = SCMD_RESERVE;
24465 	}
24466 
24467 	/* Send the command. */
24468 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24469 	    SD_PATH_STANDARD);
24470 
24471 	/*
24472 	 * "break" a reservation that is held by another host, by issuing a
24473 	 * reset if priority reserve is desired, and we could not get the
24474 	 * device.
24475 	 */
24476 	if ((cmd == SD_PRIORITY_RESERVE) &&
24477 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24478 		/*
24479 		 * First try to reset the LUN. If we cannot, then try a target
24480 		 * reset, followed by a bus reset if the target reset fails.
24481 		 */
24482 		int reset_retval = 0;
24483 		if (un->un_f_lun_reset_enabled == TRUE) {
24484 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
24485 		}
24486 		if (reset_retval == 0) {
24487 			/* The LUN reset either failed or was not issued */
24488 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
24489 		}
24490 		if ((reset_retval == 0) &&
24491 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
24492 			rval = EIO;
24493 			kmem_free(com, sizeof (*com));
24494 			return (rval);
24495 		}
24496 
24497 		bzero(com, sizeof (struct uscsi_cmd));
24498 		com->uscsi_flags   = USCSI_SILENT;
24499 		com->uscsi_cdb	   = cdb;
24500 		com->uscsi_cdblen  = CDB_GROUP0;
24501 		com->uscsi_timeout = 5;
24502 
24503 		/*
24504 		 * Reissue the last reserve command, this time without request
24505 		 * sense.  Assume that it is just a regular reserve command.
24506 		 */
24507 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24508 		    SD_PATH_STANDARD);
24509 	}
24510 
24511 	/* Return an error if still getting a reservation conflict. */
24512 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24513 		rval = EACCES;
24514 	}
24515 
24516 	kmem_free(com, sizeof (*com));
24517 	return (rval);
24518 }
24519 
24520 
24521 #define	SD_NDUMP_RETRIES	12
24522 /*
24523  *	System Crash Dump routine
24524  */
24525 
24526 static int
24527 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
24528 {
24529 	int		instance;
24530 	int		partition;
24531 	int		i;
24532 	int		err;
24533 	struct sd_lun	*un;
24534 	struct scsi_pkt *wr_pktp;
24535 	struct buf	*wr_bp;
24536 	struct buf	wr_buf;
24537 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
24538 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
24539 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
24540 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
24541 	size_t		io_start_offset;
24542 	int		doing_rmw = FALSE;
24543 	int		rval;
24544 	ssize_t		dma_resid;
24545 	daddr_t		oblkno;
24546 	diskaddr_t	nblks = 0;
24547 	diskaddr_t	start_block;
24548 
24549 	instance = SDUNIT(dev);
24550 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
24551 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
24552 		return (ENXIO);
24553 	}
24554 
24555 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
24556 
24557 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
24558 
24559 	partition = SDPART(dev);
24560 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
24561 
24562 	/* Validate blocks to dump at against partition size. */
24563 
24564 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
24565 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
24566 
24567 	if ((blkno + nblk) > nblks) {
24568 		SD_TRACE(SD_LOG_DUMP, un,
24569 		    "sddump: dump range larger than partition: "
24570 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
24571 		    blkno, nblk, nblks);
24572 		return (EINVAL);
24573 	}
24574 
24575 	mutex_enter(&un->un_pm_mutex);
24576 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24577 		struct scsi_pkt *start_pktp;
24578 
24579 		mutex_exit(&un->un_pm_mutex);
24580 
24581 		/*
24582 		 * use pm framework to power on HBA 1st
24583 		 */
24584 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
24585 
24586 		/*
24587 		 * Dump no long uses sdpower to power on a device, it's
24588 		 * in-line here so it can be done in polled mode.
24589 		 */
24590 
24591 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
24592 
24593 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
24594 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
24595 
24596 		if (start_pktp == NULL) {
24597 			/* We were not given a SCSI packet, fail. */
24598 			return (EIO);
24599 		}
24600 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
24601 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
24602 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
24603 		start_pktp->pkt_flags = FLAG_NOINTR;
24604 
24605 		mutex_enter(SD_MUTEX(un));
24606 		SD_FILL_SCSI1_LUN(un, start_pktp);
24607 		mutex_exit(SD_MUTEX(un));
24608 		/*
24609 		 * Scsi_poll returns 0 (success) if the command completes and
24610 		 * the status block is STATUS_GOOD.
24611 		 */
24612 		if (sd_scsi_poll(un, start_pktp) != 0) {
24613 			scsi_destroy_pkt(start_pktp);
24614 			return (EIO);
24615 		}
24616 		scsi_destroy_pkt(start_pktp);
24617 		(void) sd_ddi_pm_resume(un);
24618 	} else {
24619 		mutex_exit(&un->un_pm_mutex);
24620 	}
24621 
24622 	mutex_enter(SD_MUTEX(un));
24623 	un->un_throttle = 0;
24624 
24625 	/*
24626 	 * The first time through, reset the specific target device.
24627 	 * However, when cpr calls sddump we know that sd is in a
24628 	 * a good state so no bus reset is required.
24629 	 * Clear sense data via Request Sense cmd.
24630 	 * In sddump we don't care about allow_bus_device_reset anymore
24631 	 */
24632 
24633 	if ((un->un_state != SD_STATE_SUSPENDED) &&
24634 	    (un->un_state != SD_STATE_DUMPING)) {
24635 
24636 		New_state(un, SD_STATE_DUMPING);
24637 
24638 		if (un->un_f_is_fibre == FALSE) {
24639 			mutex_exit(SD_MUTEX(un));
24640 			/*
24641 			 * Attempt a bus reset for parallel scsi.
24642 			 *
24643 			 * Note: A bus reset is required because on some host
24644 			 * systems (i.e. E420R) a bus device reset is
24645 			 * insufficient to reset the state of the target.
24646 			 *
24647 			 * Note: Don't issue the reset for fibre-channel,
24648 			 * because this tends to hang the bus (loop) for
24649 			 * too long while everyone is logging out and in
24650 			 * and the deadman timer for dumping will fire
24651 			 * before the dump is complete.
24652 			 */
24653 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
24654 				mutex_enter(SD_MUTEX(un));
24655 				Restore_state(un);
24656 				mutex_exit(SD_MUTEX(un));
24657 				return (EIO);
24658 			}
24659 
24660 			/* Delay to give the device some recovery time. */
24661 			drv_usecwait(10000);
24662 
24663 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
24664 				SD_INFO(SD_LOG_DUMP, un,
24665 				    "sddump: sd_send_polled_RQS failed\n");
24666 			}
24667 			mutex_enter(SD_MUTEX(un));
24668 		}
24669 	}
24670 
24671 	/*
24672 	 * Convert the partition-relative block number to a
24673 	 * disk physical block number.
24674 	 */
24675 	blkno += start_block;
24676 
24677 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
24678 
24679 
24680 	/*
24681 	 * Check if the device has a non-512 block size.
24682 	 */
24683 	wr_bp = NULL;
24684 	if (NOT_DEVBSIZE(un)) {
24685 		tgt_byte_offset = blkno * un->un_sys_blocksize;
24686 		tgt_byte_count = nblk * un->un_sys_blocksize;
24687 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
24688 		    (tgt_byte_count % un->un_tgt_blocksize)) {
24689 			doing_rmw = TRUE;
24690 			/*
24691 			 * Calculate the block number and number of block
24692 			 * in terms of the media block size.
24693 			 */
24694 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24695 			tgt_nblk =
24696 			    ((tgt_byte_offset + tgt_byte_count +
24697 			    (un->un_tgt_blocksize - 1)) /
24698 			    un->un_tgt_blocksize) - tgt_blkno;
24699 
24700 			/*
24701 			 * Invoke the routine which is going to do read part
24702 			 * of read-modify-write.
24703 			 * Note that this routine returns a pointer to
24704 			 * a valid bp in wr_bp.
24705 			 */
24706 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
24707 			    &wr_bp);
24708 			if (err) {
24709 				mutex_exit(SD_MUTEX(un));
24710 				return (err);
24711 			}
24712 			/*
24713 			 * Offset is being calculated as -
24714 			 * (original block # * system block size) -
24715 			 * (new block # * target block size)
24716 			 */
24717 			io_start_offset =
24718 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
24719 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
24720 
24721 			ASSERT((io_start_offset >= 0) &&
24722 			    (io_start_offset < un->un_tgt_blocksize));
24723 			/*
24724 			 * Do the modify portion of read modify write.
24725 			 */
24726 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
24727 			    (size_t)nblk * un->un_sys_blocksize);
24728 		} else {
24729 			doing_rmw = FALSE;
24730 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24731 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
24732 		}
24733 
24734 		/* Convert blkno and nblk to target blocks */
24735 		blkno = tgt_blkno;
24736 		nblk = tgt_nblk;
24737 	} else {
24738 		wr_bp = &wr_buf;
24739 		bzero(wr_bp, sizeof (struct buf));
24740 		wr_bp->b_flags		= B_BUSY;
24741 		wr_bp->b_un.b_addr	= addr;
24742 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
24743 		wr_bp->b_resid		= 0;
24744 	}
24745 
24746 	mutex_exit(SD_MUTEX(un));
24747 
24748 	/*
24749 	 * Obtain a SCSI packet for the write command.
24750 	 * It should be safe to call the allocator here without
24751 	 * worrying about being locked for DVMA mapping because
24752 	 * the address we're passed is already a DVMA mapping
24753 	 *
24754 	 * We are also not going to worry about semaphore ownership
24755 	 * in the dump buffer. Dumping is single threaded at present.
24756 	 */
24757 
24758 	wr_pktp = NULL;
24759 
24760 	dma_resid = wr_bp->b_bcount;
24761 	oblkno = blkno;
24762 
24763 	while (dma_resid != 0) {
24764 
24765 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24766 		wr_bp->b_flags &= ~B_ERROR;
24767 
24768 		if (un->un_partial_dma_supported == 1) {
24769 			blkno = oblkno +
24770 			    ((wr_bp->b_bcount - dma_resid) /
24771 			    un->un_tgt_blocksize);
24772 			nblk = dma_resid / un->un_tgt_blocksize;
24773 
24774 			if (wr_pktp) {
24775 				/*
24776 				 * Partial DMA transfers after initial transfer
24777 				 */
24778 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
24779 				    blkno, nblk);
24780 			} else {
24781 				/* Initial transfer */
24782 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24783 				    un->un_pkt_flags, NULL_FUNC, NULL,
24784 				    blkno, nblk);
24785 			}
24786 		} else {
24787 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24788 			    0, NULL_FUNC, NULL, blkno, nblk);
24789 		}
24790 
24791 		if (rval == 0) {
24792 			/* We were given a SCSI packet, continue. */
24793 			break;
24794 		}
24795 
24796 		if (i == 0) {
24797 			if (wr_bp->b_flags & B_ERROR) {
24798 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24799 				    "no resources for dumping; "
24800 				    "error code: 0x%x, retrying",
24801 				    geterror(wr_bp));
24802 			} else {
24803 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24804 				    "no resources for dumping; retrying");
24805 			}
24806 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
24807 			if (wr_bp->b_flags & B_ERROR) {
24808 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24809 				    "no resources for dumping; error code: "
24810 				    "0x%x, retrying\n", geterror(wr_bp));
24811 			}
24812 		} else {
24813 			if (wr_bp->b_flags & B_ERROR) {
24814 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24815 				    "no resources for dumping; "
24816 				    "error code: 0x%x, retries failed, "
24817 				    "giving up.\n", geterror(wr_bp));
24818 			} else {
24819 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24820 				    "no resources for dumping; "
24821 				    "retries failed, giving up.\n");
24822 			}
24823 			mutex_enter(SD_MUTEX(un));
24824 			Restore_state(un);
24825 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
24826 				mutex_exit(SD_MUTEX(un));
24827 				scsi_free_consistent_buf(wr_bp);
24828 			} else {
24829 				mutex_exit(SD_MUTEX(un));
24830 			}
24831 			return (EIO);
24832 		}
24833 		drv_usecwait(10000);
24834 	}
24835 
24836 	if (un->un_partial_dma_supported == 1) {
24837 		/*
24838 		 * save the resid from PARTIAL_DMA
24839 		 */
24840 		dma_resid = wr_pktp->pkt_resid;
24841 		if (dma_resid != 0)
24842 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
24843 		wr_pktp->pkt_resid = 0;
24844 	} else {
24845 		dma_resid = 0;
24846 	}
24847 
24848 	/* SunBug 1222170 */
24849 	wr_pktp->pkt_flags = FLAG_NOINTR;
24850 
24851 	err = EIO;
24852 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24853 
24854 		/*
24855 		 * Scsi_poll returns 0 (success) if the command completes and
24856 		 * the status block is STATUS_GOOD.  We should only check
24857 		 * errors if this condition is not true.  Even then we should
24858 		 * send our own request sense packet only if we have a check
24859 		 * condition and auto request sense has not been performed by
24860 		 * the hba.
24861 		 */
24862 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
24863 
24864 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
24865 		    (wr_pktp->pkt_resid == 0)) {
24866 			err = SD_SUCCESS;
24867 			break;
24868 		}
24869 
24870 		/*
24871 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
24872 		 */
24873 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
24874 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24875 			    "Error while dumping state...Device is gone\n");
24876 			break;
24877 		}
24878 
24879 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
24880 			SD_INFO(SD_LOG_DUMP, un,
24881 			    "sddump: write failed with CHECK, try # %d\n", i);
24882 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
24883 				(void) sd_send_polled_RQS(un);
24884 			}
24885 
24886 			continue;
24887 		}
24888 
24889 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
24890 			int reset_retval = 0;
24891 
24892 			SD_INFO(SD_LOG_DUMP, un,
24893 			    "sddump: write failed with BUSY, try # %d\n", i);
24894 
24895 			if (un->un_f_lun_reset_enabled == TRUE) {
24896 				reset_retval = scsi_reset(SD_ADDRESS(un),
24897 				    RESET_LUN);
24898 			}
24899 			if (reset_retval == 0) {
24900 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
24901 			}
24902 			(void) sd_send_polled_RQS(un);
24903 
24904 		} else {
24905 			SD_INFO(SD_LOG_DUMP, un,
24906 			    "sddump: write failed with 0x%x, try # %d\n",
24907 			    SD_GET_PKT_STATUS(wr_pktp), i);
24908 			mutex_enter(SD_MUTEX(un));
24909 			sd_reset_target(un, wr_pktp);
24910 			mutex_exit(SD_MUTEX(un));
24911 		}
24912 
24913 		/*
24914 		 * If we are not getting anywhere with lun/target resets,
24915 		 * let's reset the bus.
24916 		 */
24917 		if (i == SD_NDUMP_RETRIES/2) {
24918 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24919 			(void) sd_send_polled_RQS(un);
24920 		}
24921 	}
24922 	}
24923 
24924 	scsi_destroy_pkt(wr_pktp);
24925 	mutex_enter(SD_MUTEX(un));
24926 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
24927 		mutex_exit(SD_MUTEX(un));
24928 		scsi_free_consistent_buf(wr_bp);
24929 	} else {
24930 		mutex_exit(SD_MUTEX(un));
24931 	}
24932 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
24933 	return (err);
24934 }
24935 
24936 /*
24937  *    Function: sd_scsi_poll()
24938  *
24939  * Description: This is a wrapper for the scsi_poll call.
24940  *
24941  *   Arguments: sd_lun - The unit structure
24942  *              scsi_pkt - The scsi packet being sent to the device.
24943  *
24944  * Return Code: 0 - Command completed successfully with good status
24945  *             -1 - Command failed.  This could indicate a check condition
24946  *                  or other status value requiring recovery action.
24947  *
24948  * NOTE: This code is only called off sddump().
24949  */
24950 
24951 static int
24952 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
24953 {
24954 	int status;
24955 
24956 	ASSERT(un != NULL);
24957 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24958 	ASSERT(pktp != NULL);
24959 
24960 	status = SD_SUCCESS;
24961 
24962 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
24963 		pktp->pkt_flags |= un->un_tagflags;
24964 		pktp->pkt_flags &= ~FLAG_NODISCON;
24965 	}
24966 
24967 	status = sd_ddi_scsi_poll(pktp);
24968 	/*
24969 	 * Scsi_poll returns 0 (success) if the command completes and the
24970 	 * status block is STATUS_GOOD.  We should only check errors if this
24971 	 * condition is not true.  Even then we should send our own request
24972 	 * sense packet only if we have a check condition and auto
24973 	 * request sense has not been performed by the hba.
24974 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
24975 	 */
24976 	if ((status != SD_SUCCESS) &&
24977 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
24978 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
24979 	    (pktp->pkt_reason != CMD_DEV_GONE))
24980 		(void) sd_send_polled_RQS(un);
24981 
24982 	return (status);
24983 }
24984 
24985 /*
24986  *    Function: sd_send_polled_RQS()
24987  *
24988  * Description: This sends the request sense command to a device.
24989  *
24990  *   Arguments: sd_lun - The unit structure
24991  *
24992  * Return Code: 0 - Command completed successfully with good status
24993  *             -1 - Command failed.
24994  *
24995  */
24996 
24997 static int
24998 sd_send_polled_RQS(struct sd_lun *un)
24999 {
25000 	int	ret_val;
25001 	struct	scsi_pkt	*rqs_pktp;
25002 	struct	buf		*rqs_bp;
25003 
25004 	ASSERT(un != NULL);
25005 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25006 
25007 	ret_val = SD_SUCCESS;
25008 
25009 	rqs_pktp = un->un_rqs_pktp;
25010 	rqs_bp	 = un->un_rqs_bp;
25011 
25012 	mutex_enter(SD_MUTEX(un));
25013 
25014 	if (un->un_sense_isbusy) {
25015 		ret_val = SD_FAILURE;
25016 		mutex_exit(SD_MUTEX(un));
25017 		return (ret_val);
25018 	}
25019 
25020 	/*
25021 	 * If the request sense buffer (and packet) is not in use,
25022 	 * let's set the un_sense_isbusy and send our packet
25023 	 */
25024 	un->un_sense_isbusy 	= 1;
25025 	rqs_pktp->pkt_resid  	= 0;
25026 	rqs_pktp->pkt_reason 	= 0;
25027 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
25028 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
25029 
25030 	mutex_exit(SD_MUTEX(un));
25031 
25032 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
25033 	    " 0x%p\n", rqs_bp->b_un.b_addr);
25034 
25035 	/*
25036 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
25037 	 * axle - it has a call into us!
25038 	 */
25039 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
25040 		SD_INFO(SD_LOG_COMMON, un,
25041 		    "sd_send_polled_RQS: RQS failed\n");
25042 	}
25043 
25044 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
25045 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
25046 
25047 	mutex_enter(SD_MUTEX(un));
25048 	un->un_sense_isbusy = 0;
25049 	mutex_exit(SD_MUTEX(un));
25050 
25051 	return (ret_val);
25052 }
25053 
25054 /*
25055  * Defines needed for localized version of the scsi_poll routine.
25056  */
25057 #define	CSEC		10000			/* usecs */
25058 #define	SEC_TO_CSEC	(1000000/CSEC)
25059 
25060 /*
25061  *    Function: sd_ddi_scsi_poll()
25062  *
25063  * Description: Localized version of the scsi_poll routine.  The purpose is to
25064  *		send a scsi_pkt to a device as a polled command.  This version
25065  *		is to ensure more robust handling of transport errors.
25066  *		Specifically this routine cures not ready, coming ready
25067  *		transition for power up and reset of sonoma's.  This can take
25068  *		up to 45 seconds for power-on and 20 seconds for reset of a
25069  * 		sonoma lun.
25070  *
25071  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
25072  *
25073  * Return Code: 0 - Command completed successfully with good status
25074  *             -1 - Command failed.
25075  *
25076  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
25077  * be fixed (removing this code), we need to determine how to handle the
25078  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
25079  *
25080  * NOTE: This code is only called off sddump().
25081  */
25082 static int
25083 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
25084 {
25085 	int			rval = -1;
25086 	int			savef;
25087 	long			savet;
25088 	void			(*savec)();
25089 	int			timeout;
25090 	int			busy_count;
25091 	int			poll_delay;
25092 	int			rc;
25093 	uint8_t			*sensep;
25094 	struct scsi_arq_status	*arqstat;
25095 	extern int		do_polled_io;
25096 
25097 	ASSERT(pkt->pkt_scbp);
25098 
25099 	/*
25100 	 * save old flags..
25101 	 */
25102 	savef = pkt->pkt_flags;
25103 	savec = pkt->pkt_comp;
25104 	savet = pkt->pkt_time;
25105 
25106 	pkt->pkt_flags |= FLAG_NOINTR;
25107 
25108 	/*
25109 	 * XXX there is nothing in the SCSA spec that states that we should not
25110 	 * do a callback for polled cmds; however, removing this will break sd
25111 	 * and probably other target drivers
25112 	 */
25113 	pkt->pkt_comp = NULL;
25114 
25115 	/*
25116 	 * we don't like a polled command without timeout.
25117 	 * 60 seconds seems long enough.
25118 	 */
25119 	if (pkt->pkt_time == 0)
25120 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
25121 
25122 	/*
25123 	 * Send polled cmd.
25124 	 *
25125 	 * We do some error recovery for various errors.  Tran_busy,
25126 	 * queue full, and non-dispatched commands are retried every 10 msec.
25127 	 * as they are typically transient failures.  Busy status and Not
25128 	 * Ready are retried every second as this status takes a while to
25129 	 * change.
25130 	 */
25131 	timeout = pkt->pkt_time * SEC_TO_CSEC;
25132 
25133 	for (busy_count = 0; busy_count < timeout; busy_count++) {
25134 		/*
25135 		 * Initialize pkt status variables.
25136 		 */
25137 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
25138 
25139 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
25140 			if (rc != TRAN_BUSY) {
25141 				/* Transport failed - give up. */
25142 				break;
25143 			} else {
25144 				/* Transport busy - try again. */
25145 				poll_delay = 1 * CSEC;		/* 10 msec. */
25146 			}
25147 		} else {
25148 			/*
25149 			 * Transport accepted - check pkt status.
25150 			 */
25151 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
25152 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25153 			    (rc == STATUS_CHECK) &&
25154 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
25155 				arqstat =
25156 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
25157 				sensep = (uint8_t *)&arqstat->sts_sensedata;
25158 			} else {
25159 				sensep = NULL;
25160 			}
25161 
25162 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25163 			    (rc == STATUS_GOOD)) {
25164 				/* No error - we're done */
25165 				rval = 0;
25166 				break;
25167 
25168 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
25169 				/* Lost connection - give up */
25170 				break;
25171 
25172 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
25173 			    (pkt->pkt_state == 0)) {
25174 				/* Pkt not dispatched - try again. */
25175 				poll_delay = 1 * CSEC;		/* 10 msec. */
25176 
25177 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25178 			    (rc == STATUS_QFULL)) {
25179 				/* Queue full - try again. */
25180 				poll_delay = 1 * CSEC;		/* 10 msec. */
25181 
25182 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25183 			    (rc == STATUS_BUSY)) {
25184 				/* Busy - try again. */
25185 				poll_delay = 100 * CSEC;	/* 1 sec. */
25186 				busy_count += (SEC_TO_CSEC - 1);
25187 
25188 			} else if ((sensep != NULL) &&
25189 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
25190 				/*
25191 				 * Unit Attention - try again.
25192 				 * Pretend it took 1 sec.
25193 				 * NOTE: 'continue' avoids poll_delay
25194 				 */
25195 				busy_count += (SEC_TO_CSEC - 1);
25196 				continue;
25197 
25198 			} else if ((sensep != NULL) &&
25199 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
25200 			    (scsi_sense_asc(sensep) == 0x04) &&
25201 			    (scsi_sense_ascq(sensep) == 0x01)) {
25202 				/*
25203 				 * Not ready -> ready - try again.
25204 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
25205 				 * ...same as STATUS_BUSY
25206 				 */
25207 				poll_delay = 100 * CSEC;	/* 1 sec. */
25208 				busy_count += (SEC_TO_CSEC - 1);
25209 
25210 			} else {
25211 				/* BAD status - give up. */
25212 				break;
25213 			}
25214 		}
25215 
25216 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
25217 		    !do_polled_io) {
25218 			delay(drv_usectohz(poll_delay));
25219 		} else {
25220 			/* we busy wait during cpr_dump or interrupt threads */
25221 			drv_usecwait(poll_delay);
25222 		}
25223 	}
25224 
25225 	pkt->pkt_flags = savef;
25226 	pkt->pkt_comp = savec;
25227 	pkt->pkt_time = savet;
25228 
25229 	/* return on error */
25230 	if (rval)
25231 		return (rval);
25232 
25233 	/*
25234 	 * This is not a performance critical code path.
25235 	 *
25236 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
25237 	 * issues associated with looking at DMA memory prior to
25238 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
25239 	 */
25240 	scsi_sync_pkt(pkt);
25241 	return (0);
25242 }
25243 
25244 
25245 
25246 /*
25247  *    Function: sd_persistent_reservation_in_read_keys
25248  *
25249  * Description: This routine is the driver entry point for handling CD-ROM
25250  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
25251  *		by sending the SCSI-3 PRIN commands to the device.
25252  *		Processes the read keys command response by copying the
25253  *		reservation key information into the user provided buffer.
25254  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
25255  *
25256  *   Arguments: un   -  Pointer to soft state struct for the target.
25257  *		usrp -	user provided pointer to multihost Persistent In Read
25258  *			Keys structure (mhioc_inkeys_t)
25259  *		flag -	this argument is a pass through to ddi_copyxxx()
25260  *			directly from the mode argument of ioctl().
25261  *
25262  * Return Code: 0   - Success
25263  *		EACCES
25264  *		ENOTSUP
25265  *		errno return code from sd_send_scsi_cmd()
25266  *
25267  *     Context: Can sleep. Does not return until command is completed.
25268  */
25269 
25270 static int
25271 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
25272     mhioc_inkeys_t *usrp, int flag)
25273 {
25274 #ifdef _MULTI_DATAMODEL
25275 	struct mhioc_key_list32	li32;
25276 #endif
25277 	sd_prin_readkeys_t	*in;
25278 	mhioc_inkeys_t		*ptr;
25279 	mhioc_key_list_t	li;
25280 	uchar_t			*data_bufp;
25281 	int 			data_len;
25282 	int			rval = 0;
25283 	size_t			copysz;
25284 	sd_ssc_t		*ssc;
25285 
25286 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
25287 		return (EINVAL);
25288 	}
25289 	bzero(&li, sizeof (mhioc_key_list_t));
25290 
25291 	ssc = sd_ssc_init(un);
25292 
25293 	/*
25294 	 * Get the listsize from user
25295 	 */
25296 #ifdef _MULTI_DATAMODEL
25297 
25298 	switch (ddi_model_convert_from(flag & FMODELS)) {
25299 	case DDI_MODEL_ILP32:
25300 		copysz = sizeof (struct mhioc_key_list32);
25301 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
25302 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25303 			    "sd_persistent_reservation_in_read_keys: "
25304 			    "failed ddi_copyin: mhioc_key_list32_t\n");
25305 			rval = EFAULT;
25306 			goto done;
25307 		}
25308 		li.listsize = li32.listsize;
25309 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
25310 		break;
25311 
25312 	case DDI_MODEL_NONE:
25313 		copysz = sizeof (mhioc_key_list_t);
25314 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25315 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25316 			    "sd_persistent_reservation_in_read_keys: "
25317 			    "failed ddi_copyin: mhioc_key_list_t\n");
25318 			rval = EFAULT;
25319 			goto done;
25320 		}
25321 		break;
25322 	}
25323 
25324 #else /* ! _MULTI_DATAMODEL */
25325 	copysz = sizeof (mhioc_key_list_t);
25326 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25327 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25328 		    "sd_persistent_reservation_in_read_keys: "
25329 		    "failed ddi_copyin: mhioc_key_list_t\n");
25330 		rval = EFAULT;
25331 		goto done;
25332 	}
25333 #endif
25334 
25335 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
25336 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
25337 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25338 
25339 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
25340 	    data_len, data_bufp);
25341 	if (rval != 0) {
25342 		if (rval == EIO)
25343 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25344 		else
25345 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25346 		goto done;
25347 	}
25348 	in = (sd_prin_readkeys_t *)data_bufp;
25349 	ptr->generation = BE_32(in->generation);
25350 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
25351 
25352 	/*
25353 	 * Return the min(listsize, listlen) keys
25354 	 */
25355 #ifdef _MULTI_DATAMODEL
25356 
25357 	switch (ddi_model_convert_from(flag & FMODELS)) {
25358 	case DDI_MODEL_ILP32:
25359 		li32.listlen = li.listlen;
25360 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
25361 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25362 			    "sd_persistent_reservation_in_read_keys: "
25363 			    "failed ddi_copyout: mhioc_key_list32_t\n");
25364 			rval = EFAULT;
25365 			goto done;
25366 		}
25367 		break;
25368 
25369 	case DDI_MODEL_NONE:
25370 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25371 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25372 			    "sd_persistent_reservation_in_read_keys: "
25373 			    "failed ddi_copyout: mhioc_key_list_t\n");
25374 			rval = EFAULT;
25375 			goto done;
25376 		}
25377 		break;
25378 	}
25379 
25380 #else /* ! _MULTI_DATAMODEL */
25381 
25382 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25383 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25384 		    "sd_persistent_reservation_in_read_keys: "
25385 		    "failed ddi_copyout: mhioc_key_list_t\n");
25386 		rval = EFAULT;
25387 		goto done;
25388 	}
25389 
25390 #endif /* _MULTI_DATAMODEL */
25391 
25392 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
25393 	    li.listsize * MHIOC_RESV_KEY_SIZE);
25394 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
25395 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25396 		    "sd_persistent_reservation_in_read_keys: "
25397 		    "failed ddi_copyout: keylist\n");
25398 		rval = EFAULT;
25399 	}
25400 done:
25401 	sd_ssc_fini(ssc);
25402 	kmem_free(data_bufp, data_len);
25403 	return (rval);
25404 }
25405 
25406 
25407 /*
25408  *    Function: sd_persistent_reservation_in_read_resv
25409  *
25410  * Description: This routine is the driver entry point for handling CD-ROM
25411  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
25412  *		by sending the SCSI-3 PRIN commands to the device.
25413  *		Process the read persistent reservations command response by
25414  *		copying the reservation information into the user provided
25415  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
25416  *
25417  *   Arguments: un   -  Pointer to soft state struct for the target.
25418  *		usrp -	user provided pointer to multihost Persistent In Read
25419  *			Keys structure (mhioc_inkeys_t)
25420  *		flag -	this argument is a pass through to ddi_copyxxx()
25421  *			directly from the mode argument of ioctl().
25422  *
25423  * Return Code: 0   - Success
25424  *		EACCES
25425  *		ENOTSUP
25426  *		errno return code from sd_send_scsi_cmd()
25427  *
25428  *     Context: Can sleep. Does not return until command is completed.
25429  */
25430 
25431 static int
25432 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
25433     mhioc_inresvs_t *usrp, int flag)
25434 {
25435 #ifdef _MULTI_DATAMODEL
25436 	struct mhioc_resv_desc_list32 resvlist32;
25437 #endif
25438 	sd_prin_readresv_t	*in;
25439 	mhioc_inresvs_t		*ptr;
25440 	sd_readresv_desc_t	*readresv_ptr;
25441 	mhioc_resv_desc_list_t	resvlist;
25442 	mhioc_resv_desc_t 	resvdesc;
25443 	uchar_t			*data_bufp = NULL;
25444 	int 			data_len;
25445 	int			rval = 0;
25446 	int			i;
25447 	size_t			copysz;
25448 	mhioc_resv_desc_t	*bufp;
25449 	sd_ssc_t		*ssc;
25450 
25451 	if ((ptr = usrp) == NULL) {
25452 		return (EINVAL);
25453 	}
25454 
25455 	ssc = sd_ssc_init(un);
25456 
25457 	/*
25458 	 * Get the listsize from user
25459 	 */
25460 #ifdef _MULTI_DATAMODEL
25461 	switch (ddi_model_convert_from(flag & FMODELS)) {
25462 	case DDI_MODEL_ILP32:
25463 		copysz = sizeof (struct mhioc_resv_desc_list32);
25464 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
25465 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25466 			    "sd_persistent_reservation_in_read_resv: "
25467 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25468 			rval = EFAULT;
25469 			goto done;
25470 		}
25471 		resvlist.listsize = resvlist32.listsize;
25472 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
25473 		break;
25474 
25475 	case DDI_MODEL_NONE:
25476 		copysz = sizeof (mhioc_resv_desc_list_t);
25477 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25478 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25479 			    "sd_persistent_reservation_in_read_resv: "
25480 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25481 			rval = EFAULT;
25482 			goto done;
25483 		}
25484 		break;
25485 	}
25486 #else /* ! _MULTI_DATAMODEL */
25487 	copysz = sizeof (mhioc_resv_desc_list_t);
25488 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25489 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25490 		    "sd_persistent_reservation_in_read_resv: "
25491 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25492 		rval = EFAULT;
25493 		goto done;
25494 	}
25495 #endif /* ! _MULTI_DATAMODEL */
25496 
25497 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
25498 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
25499 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25500 
25501 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
25502 	    data_len, data_bufp);
25503 	if (rval != 0) {
25504 		if (rval == EIO)
25505 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25506 		else
25507 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25508 		goto done;
25509 	}
25510 	in = (sd_prin_readresv_t *)data_bufp;
25511 	ptr->generation = BE_32(in->generation);
25512 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
25513 
25514 	/*
25515 	 * Return the min(listsize, listlen( keys
25516 	 */
25517 #ifdef _MULTI_DATAMODEL
25518 
25519 	switch (ddi_model_convert_from(flag & FMODELS)) {
25520 	case DDI_MODEL_ILP32:
25521 		resvlist32.listlen = resvlist.listlen;
25522 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
25523 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25524 			    "sd_persistent_reservation_in_read_resv: "
25525 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25526 			rval = EFAULT;
25527 			goto done;
25528 		}
25529 		break;
25530 
25531 	case DDI_MODEL_NONE:
25532 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25533 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25534 			    "sd_persistent_reservation_in_read_resv: "
25535 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25536 			rval = EFAULT;
25537 			goto done;
25538 		}
25539 		break;
25540 	}
25541 
25542 #else /* ! _MULTI_DATAMODEL */
25543 
25544 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25545 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25546 		    "sd_persistent_reservation_in_read_resv: "
25547 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25548 		rval = EFAULT;
25549 		goto done;
25550 	}
25551 
25552 #endif /* ! _MULTI_DATAMODEL */
25553 
25554 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
25555 	bufp = resvlist.list;
25556 	copysz = sizeof (mhioc_resv_desc_t);
25557 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
25558 	    i++, readresv_ptr++, bufp++) {
25559 
25560 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
25561 		    MHIOC_RESV_KEY_SIZE);
25562 		resvdesc.type  = readresv_ptr->type;
25563 		resvdesc.scope = readresv_ptr->scope;
25564 		resvdesc.scope_specific_addr =
25565 		    BE_32(readresv_ptr->scope_specific_addr);
25566 
25567 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
25568 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25569 			    "sd_persistent_reservation_in_read_resv: "
25570 			    "failed ddi_copyout: resvlist\n");
25571 			rval = EFAULT;
25572 			goto done;
25573 		}
25574 	}
25575 done:
25576 	sd_ssc_fini(ssc);
25577 	/* only if data_bufp is allocated, we need to free it */
25578 	if (data_bufp) {
25579 		kmem_free(data_bufp, data_len);
25580 	}
25581 	return (rval);
25582 }
25583 
25584 
25585 /*
25586  *    Function: sr_change_blkmode()
25587  *
25588  * Description: This routine is the driver entry point for handling CD-ROM
25589  *		block mode ioctl requests. Support for returning and changing
25590  *		the current block size in use by the device is implemented. The
25591  *		LBA size is changed via a MODE SELECT Block Descriptor.
25592  *
25593  *		This routine issues a mode sense with an allocation length of
25594  *		12 bytes for the mode page header and a single block descriptor.
25595  *
25596  *   Arguments: dev - the device 'dev_t'
25597  *		cmd - the request type; one of CDROMGBLKMODE (get) or
25598  *		      CDROMSBLKMODE (set)
25599  *		data - current block size or requested block size
25600  *		flag - this argument is a pass through to ddi_copyxxx() directly
25601  *		       from the mode argument of ioctl().
25602  *
25603  * Return Code: the code returned by sd_send_scsi_cmd()
25604  *		EINVAL if invalid arguments are provided
25605  *		EFAULT if ddi_copyxxx() fails
25606  *		ENXIO if fail ddi_get_soft_state
25607  *		EIO if invalid mode sense block descriptor length
25608  *
25609  */
25610 
25611 static int
25612 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
25613 {
25614 	struct sd_lun			*un = NULL;
25615 	struct mode_header		*sense_mhp, *select_mhp;
25616 	struct block_descriptor		*sense_desc, *select_desc;
25617 	int				current_bsize;
25618 	int				rval = EINVAL;
25619 	uchar_t				*sense = NULL;
25620 	uchar_t				*select = NULL;
25621 	sd_ssc_t			*ssc;
25622 
25623 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
25624 
25625 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25626 		return (ENXIO);
25627 	}
25628 
25629 	/*
25630 	 * The block length is changed via the Mode Select block descriptor, the
25631 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
25632 	 * required as part of this routine. Therefore the mode sense allocation
25633 	 * length is specified to be the length of a mode page header and a
25634 	 * block descriptor.
25635 	 */
25636 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25637 
25638 	ssc = sd_ssc_init(un);
25639 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25640 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
25641 	sd_ssc_fini(ssc);
25642 	if (rval != 0) {
25643 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25644 		    "sr_change_blkmode: Mode Sense Failed\n");
25645 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25646 		return (rval);
25647 	}
25648 
25649 	/* Check the block descriptor len to handle only 1 block descriptor */
25650 	sense_mhp = (struct mode_header *)sense;
25651 	if ((sense_mhp->bdesc_length == 0) ||
25652 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
25653 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25654 		    "sr_change_blkmode: Mode Sense returned invalid block"
25655 		    " descriptor length\n");
25656 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25657 		return (EIO);
25658 	}
25659 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
25660 	current_bsize = ((sense_desc->blksize_hi << 16) |
25661 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
25662 
25663 	/* Process command */
25664 	switch (cmd) {
25665 	case CDROMGBLKMODE:
25666 		/* Return the block size obtained during the mode sense */
25667 		if (ddi_copyout(&current_bsize, (void *)data,
25668 		    sizeof (int), flag) != 0)
25669 			rval = EFAULT;
25670 		break;
25671 	case CDROMSBLKMODE:
25672 		/* Validate the requested block size */
25673 		switch (data) {
25674 		case CDROM_BLK_512:
25675 		case CDROM_BLK_1024:
25676 		case CDROM_BLK_2048:
25677 		case CDROM_BLK_2056:
25678 		case CDROM_BLK_2336:
25679 		case CDROM_BLK_2340:
25680 		case CDROM_BLK_2352:
25681 		case CDROM_BLK_2368:
25682 		case CDROM_BLK_2448:
25683 		case CDROM_BLK_2646:
25684 		case CDROM_BLK_2647:
25685 			break;
25686 		default:
25687 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25688 			    "sr_change_blkmode: "
25689 			    "Block Size '%ld' Not Supported\n", data);
25690 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25691 			return (EINVAL);
25692 		}
25693 
25694 		/*
25695 		 * The current block size matches the requested block size so
25696 		 * there is no need to send the mode select to change the size
25697 		 */
25698 		if (current_bsize == data) {
25699 			break;
25700 		}
25701 
25702 		/* Build the select data for the requested block size */
25703 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25704 		select_mhp = (struct mode_header *)select;
25705 		select_desc =
25706 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
25707 		/*
25708 		 * The LBA size is changed via the block descriptor, so the
25709 		 * descriptor is built according to the user data
25710 		 */
25711 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
25712 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
25713 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
25714 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
25715 
25716 		/* Send the mode select for the requested block size */
25717 		ssc = sd_ssc_init(un);
25718 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25719 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25720 		    SD_PATH_STANDARD);
25721 		sd_ssc_fini(ssc);
25722 		if (rval != 0) {
25723 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25724 			    "sr_change_blkmode: Mode Select Failed\n");
25725 			/*
25726 			 * The mode select failed for the requested block size,
25727 			 * so reset the data for the original block size and
25728 			 * send it to the target. The error is indicated by the
25729 			 * return value for the failed mode select.
25730 			 */
25731 			select_desc->blksize_hi  = sense_desc->blksize_hi;
25732 			select_desc->blksize_mid = sense_desc->blksize_mid;
25733 			select_desc->blksize_lo  = sense_desc->blksize_lo;
25734 			ssc = sd_ssc_init(un);
25735 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25736 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25737 			    SD_PATH_STANDARD);
25738 			sd_ssc_fini(ssc);
25739 		} else {
25740 			ASSERT(!mutex_owned(SD_MUTEX(un)));
25741 			mutex_enter(SD_MUTEX(un));
25742 			sd_update_block_info(un, (uint32_t)data, 0);
25743 			mutex_exit(SD_MUTEX(un));
25744 		}
25745 		break;
25746 	default:
25747 		/* should not reach here, but check anyway */
25748 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25749 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
25750 		rval = EINVAL;
25751 		break;
25752 	}
25753 
25754 	if (select) {
25755 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
25756 	}
25757 	if (sense) {
25758 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25759 	}
25760 	return (rval);
25761 }
25762 
25763 
25764 /*
25765  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
25766  * implement driver support for getting and setting the CD speed. The command
25767  * set used will be based on the device type. If the device has not been
25768  * identified as MMC the Toshiba vendor specific mode page will be used. If
25769  * the device is MMC but does not support the Real Time Streaming feature
25770  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
25771  * be used to read the speed.
25772  */
25773 
25774 /*
25775  *    Function: sr_change_speed()
25776  *
25777  * Description: This routine is the driver entry point for handling CD-ROM
25778  *		drive speed ioctl requests for devices supporting the Toshiba
25779  *		vendor specific drive speed mode page. Support for returning
25780  *		and changing the current drive speed in use by the device is
25781  *		implemented.
25782  *
25783  *   Arguments: dev - the device 'dev_t'
25784  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
25785  *		      CDROMSDRVSPEED (set)
25786  *		data - current drive speed or requested drive speed
25787  *		flag - this argument is a pass through to ddi_copyxxx() directly
25788  *		       from the mode argument of ioctl().
25789  *
25790  * Return Code: the code returned by sd_send_scsi_cmd()
25791  *		EINVAL if invalid arguments are provided
25792  *		EFAULT if ddi_copyxxx() fails
25793  *		ENXIO if fail ddi_get_soft_state
25794  *		EIO if invalid mode sense block descriptor length
25795  */
25796 
25797 static int
25798 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
25799 {
25800 	struct sd_lun			*un = NULL;
25801 	struct mode_header		*sense_mhp, *select_mhp;
25802 	struct mode_speed		*sense_page, *select_page;
25803 	int				current_speed;
25804 	int				rval = EINVAL;
25805 	int				bd_len;
25806 	uchar_t				*sense = NULL;
25807 	uchar_t				*select = NULL;
25808 	sd_ssc_t			*ssc;
25809 
25810 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
25811 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25812 		return (ENXIO);
25813 	}
25814 
25815 	/*
25816 	 * Note: The drive speed is being modified here according to a Toshiba
25817 	 * vendor specific mode page (0x31).
25818 	 */
25819 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
25820 
25821 	ssc = sd_ssc_init(un);
25822 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25823 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
25824 	    SD_PATH_STANDARD);
25825 	sd_ssc_fini(ssc);
25826 	if (rval != 0) {
25827 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25828 		    "sr_change_speed: Mode Sense Failed\n");
25829 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25830 		return (rval);
25831 	}
25832 	sense_mhp  = (struct mode_header *)sense;
25833 
25834 	/* Check the block descriptor len to handle only 1 block descriptor */
25835 	bd_len = sense_mhp->bdesc_length;
25836 	if (bd_len > MODE_BLK_DESC_LENGTH) {
25837 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25838 		    "sr_change_speed: Mode Sense returned invalid block "
25839 		    "descriptor length\n");
25840 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25841 		return (EIO);
25842 	}
25843 
25844 	sense_page = (struct mode_speed *)
25845 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25846 	current_speed = sense_page->speed;
25847 
25848 	/* Process command */
25849 	switch (cmd) {
25850 	case CDROMGDRVSPEED:
25851 		/* Return the drive speed obtained during the mode sense */
25852 		if (current_speed == 0x2) {
25853 			current_speed = CDROM_TWELVE_SPEED;
25854 		}
25855 		if (ddi_copyout(&current_speed, (void *)data,
25856 		    sizeof (int), flag) != 0) {
25857 			rval = EFAULT;
25858 		}
25859 		break;
25860 	case CDROMSDRVSPEED:
25861 		/* Validate the requested drive speed */
25862 		switch ((uchar_t)data) {
25863 		case CDROM_TWELVE_SPEED:
25864 			data = 0x2;
25865 			/*FALLTHROUGH*/
25866 		case CDROM_NORMAL_SPEED:
25867 		case CDROM_DOUBLE_SPEED:
25868 		case CDROM_QUAD_SPEED:
25869 		case CDROM_MAXIMUM_SPEED:
25870 			break;
25871 		default:
25872 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25873 			    "sr_change_speed: "
25874 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
25875 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25876 			return (EINVAL);
25877 		}
25878 
25879 		/*
25880 		 * The current drive speed matches the requested drive speed so
25881 		 * there is no need to send the mode select to change the speed
25882 		 */
25883 		if (current_speed == data) {
25884 			break;
25885 		}
25886 
25887 		/* Build the select data for the requested drive speed */
25888 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
25889 		select_mhp = (struct mode_header *)select;
25890 		select_mhp->bdesc_length = 0;
25891 		select_page =
25892 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
25893 		select_page =
25894 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
25895 		select_page->mode_page.code = CDROM_MODE_SPEED;
25896 		select_page->mode_page.length = 2;
25897 		select_page->speed = (uchar_t)data;
25898 
25899 		/* Send the mode select for the requested block size */
25900 		ssc = sd_ssc_init(un);
25901 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
25902 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
25903 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25904 		sd_ssc_fini(ssc);
25905 		if (rval != 0) {
25906 			/*
25907 			 * The mode select failed for the requested drive speed,
25908 			 * so reset the data for the original drive speed and
25909 			 * send it to the target. The error is indicated by the
25910 			 * return value for the failed mode select.
25911 			 */
25912 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25913 			    "sr_drive_speed: Mode Select Failed\n");
25914 			select_page->speed = sense_page->speed;
25915 			ssc = sd_ssc_init(un);
25916 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
25917 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
25918 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25919 			sd_ssc_fini(ssc);
25920 		}
25921 		break;
25922 	default:
25923 		/* should not reach here, but check anyway */
25924 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25925 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
25926 		rval = EINVAL;
25927 		break;
25928 	}
25929 
25930 	if (select) {
25931 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
25932 	}
25933 	if (sense) {
25934 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25935 	}
25936 
25937 	return (rval);
25938 }
25939 
25940 
25941 /*
25942  *    Function: sr_atapi_change_speed()
25943  *
25944  * Description: This routine is the driver entry point for handling CD-ROM
25945  *		drive speed ioctl requests for MMC devices that do not support
25946  *		the Real Time Streaming feature (0x107).
25947  *
25948  *		Note: This routine will use the SET SPEED command which may not
25949  *		be supported by all devices.
25950  *
25951  *   Arguments: dev- the device 'dev_t'
25952  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
25953  *		     CDROMSDRVSPEED (set)
25954  *		data- current drive speed or requested drive speed
25955  *		flag- this argument is a pass through to ddi_copyxxx() directly
25956  *		      from the mode argument of ioctl().
25957  *
25958  * Return Code: the code returned by sd_send_scsi_cmd()
25959  *		EINVAL if invalid arguments are provided
25960  *		EFAULT if ddi_copyxxx() fails
25961  *		ENXIO if fail ddi_get_soft_state
25962  *		EIO if invalid mode sense block descriptor length
25963  */
25964 
25965 static int
25966 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
25967 {
25968 	struct sd_lun			*un;
25969 	struct uscsi_cmd		*com = NULL;
25970 	struct mode_header_grp2		*sense_mhp;
25971 	uchar_t				*sense_page;
25972 	uchar_t				*sense = NULL;
25973 	char				cdb[CDB_GROUP5];
25974 	int				bd_len;
25975 	int				current_speed = 0;
25976 	int				max_speed = 0;
25977 	int				rval;
25978 	sd_ssc_t			*ssc;
25979 
25980 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
25981 
25982 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25983 		return (ENXIO);
25984 	}
25985 
25986 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
25987 
25988 	ssc = sd_ssc_init(un);
25989 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
25990 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
25991 	    SD_PATH_STANDARD);
25992 	sd_ssc_fini(ssc);
25993 	if (rval != 0) {
25994 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25995 		    "sr_atapi_change_speed: Mode Sense Failed\n");
25996 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
25997 		return (rval);
25998 	}
25999 
26000 	/* Check the block descriptor len to handle only 1 block descriptor */
26001 	sense_mhp = (struct mode_header_grp2 *)sense;
26002 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
26003 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26004 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26005 		    "sr_atapi_change_speed: Mode Sense returned invalid "
26006 		    "block descriptor length\n");
26007 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26008 		return (EIO);
26009 	}
26010 
26011 	/* Calculate the current and maximum drive speeds */
26012 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26013 	current_speed = (sense_page[14] << 8) | sense_page[15];
26014 	max_speed = (sense_page[8] << 8) | sense_page[9];
26015 
26016 	/* Process the command */
26017 	switch (cmd) {
26018 	case CDROMGDRVSPEED:
26019 		current_speed /= SD_SPEED_1X;
26020 		if (ddi_copyout(&current_speed, (void *)data,
26021 		    sizeof (int), flag) != 0)
26022 			rval = EFAULT;
26023 		break;
26024 	case CDROMSDRVSPEED:
26025 		/* Convert the speed code to KB/sec */
26026 		switch ((uchar_t)data) {
26027 		case CDROM_NORMAL_SPEED:
26028 			current_speed = SD_SPEED_1X;
26029 			break;
26030 		case CDROM_DOUBLE_SPEED:
26031 			current_speed = 2 * SD_SPEED_1X;
26032 			break;
26033 		case CDROM_QUAD_SPEED:
26034 			current_speed = 4 * SD_SPEED_1X;
26035 			break;
26036 		case CDROM_TWELVE_SPEED:
26037 			current_speed = 12 * SD_SPEED_1X;
26038 			break;
26039 		case CDROM_MAXIMUM_SPEED:
26040 			current_speed = 0xffff;
26041 			break;
26042 		default:
26043 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26044 			    "sr_atapi_change_speed: invalid drive speed %d\n",
26045 			    (uchar_t)data);
26046 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26047 			return (EINVAL);
26048 		}
26049 
26050 		/* Check the request against the drive's max speed. */
26051 		if (current_speed != 0xffff) {
26052 			if (current_speed > max_speed) {
26053 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26054 				return (EINVAL);
26055 			}
26056 		}
26057 
26058 		/*
26059 		 * Build and send the SET SPEED command
26060 		 *
26061 		 * Note: The SET SPEED (0xBB) command used in this routine is
26062 		 * obsolete per the SCSI MMC spec but still supported in the
26063 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26064 		 * therefore the command is still implemented in this routine.
26065 		 */
26066 		bzero(cdb, sizeof (cdb));
26067 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
26068 		cdb[2] = (uchar_t)(current_speed >> 8);
26069 		cdb[3] = (uchar_t)current_speed;
26070 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26071 		com->uscsi_cdb	   = (caddr_t)cdb;
26072 		com->uscsi_cdblen  = CDB_GROUP5;
26073 		com->uscsi_bufaddr = NULL;
26074 		com->uscsi_buflen  = 0;
26075 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
26076 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
26077 		break;
26078 	default:
26079 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26080 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
26081 		rval = EINVAL;
26082 	}
26083 
26084 	if (sense) {
26085 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26086 	}
26087 	if (com) {
26088 		kmem_free(com, sizeof (*com));
26089 	}
26090 	return (rval);
26091 }
26092 
26093 
26094 /*
26095  *    Function: sr_pause_resume()
26096  *
26097  * Description: This routine is the driver entry point for handling CD-ROM
26098  *		pause/resume ioctl requests. This only affects the audio play
26099  *		operation.
26100  *
26101  *   Arguments: dev - the device 'dev_t'
26102  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
26103  *		      for setting the resume bit of the cdb.
26104  *
26105  * Return Code: the code returned by sd_send_scsi_cmd()
26106  *		EINVAL if invalid mode specified
26107  *
26108  */
26109 
26110 static int
26111 sr_pause_resume(dev_t dev, int cmd)
26112 {
26113 	struct sd_lun		*un;
26114 	struct uscsi_cmd	*com;
26115 	char			cdb[CDB_GROUP1];
26116 	int			rval;
26117 
26118 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26119 		return (ENXIO);
26120 	}
26121 
26122 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26123 	bzero(cdb, CDB_GROUP1);
26124 	cdb[0] = SCMD_PAUSE_RESUME;
26125 	switch (cmd) {
26126 	case CDROMRESUME:
26127 		cdb[8] = 1;
26128 		break;
26129 	case CDROMPAUSE:
26130 		cdb[8] = 0;
26131 		break;
26132 	default:
26133 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
26134 		    " Command '%x' Not Supported\n", cmd);
26135 		rval = EINVAL;
26136 		goto done;
26137 	}
26138 
26139 	com->uscsi_cdb    = cdb;
26140 	com->uscsi_cdblen = CDB_GROUP1;
26141 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26142 
26143 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26144 	    SD_PATH_STANDARD);
26145 
26146 done:
26147 	kmem_free(com, sizeof (*com));
26148 	return (rval);
26149 }
26150 
26151 
26152 /*
26153  *    Function: sr_play_msf()
26154  *
26155  * Description: This routine is the driver entry point for handling CD-ROM
26156  *		ioctl requests to output the audio signals at the specified
26157  *		starting address and continue the audio play until the specified
26158  *		ending address (CDROMPLAYMSF) The address is in Minute Second
26159  *		Frame (MSF) format.
26160  *
26161  *   Arguments: dev	- the device 'dev_t'
26162  *		data	- pointer to user provided audio msf structure,
26163  *		          specifying start/end addresses.
26164  *		flag	- this argument is a pass through to ddi_copyxxx()
26165  *		          directly from the mode argument of ioctl().
26166  *
26167  * Return Code: the code returned by sd_send_scsi_cmd()
26168  *		EFAULT if ddi_copyxxx() fails
26169  *		ENXIO if fail ddi_get_soft_state
26170  *		EINVAL if data pointer is NULL
26171  */
26172 
26173 static int
26174 sr_play_msf(dev_t dev, caddr_t data, int flag)
26175 {
26176 	struct sd_lun		*un;
26177 	struct uscsi_cmd	*com;
26178 	struct cdrom_msf	msf_struct;
26179 	struct cdrom_msf	*msf = &msf_struct;
26180 	char			cdb[CDB_GROUP1];
26181 	int			rval;
26182 
26183 	if (data == NULL) {
26184 		return (EINVAL);
26185 	}
26186 
26187 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26188 		return (ENXIO);
26189 	}
26190 
26191 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
26192 		return (EFAULT);
26193 	}
26194 
26195 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26196 	bzero(cdb, CDB_GROUP1);
26197 	cdb[0] = SCMD_PLAYAUDIO_MSF;
26198 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
26199 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
26200 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
26201 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
26202 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
26203 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
26204 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
26205 	} else {
26206 		cdb[3] = msf->cdmsf_min0;
26207 		cdb[4] = msf->cdmsf_sec0;
26208 		cdb[5] = msf->cdmsf_frame0;
26209 		cdb[6] = msf->cdmsf_min1;
26210 		cdb[7] = msf->cdmsf_sec1;
26211 		cdb[8] = msf->cdmsf_frame1;
26212 	}
26213 	com->uscsi_cdb    = cdb;
26214 	com->uscsi_cdblen = CDB_GROUP1;
26215 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26216 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26217 	    SD_PATH_STANDARD);
26218 	kmem_free(com, sizeof (*com));
26219 	return (rval);
26220 }
26221 
26222 
26223 /*
26224  *    Function: sr_play_trkind()
26225  *
26226  * Description: This routine is the driver entry point for handling CD-ROM
26227  *		ioctl requests to output the audio signals at the specified
26228  *		starting address and continue the audio play until the specified
26229  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
26230  *		format.
26231  *
26232  *   Arguments: dev	- the device 'dev_t'
26233  *		data	- pointer to user provided audio track/index structure,
26234  *		          specifying start/end addresses.
26235  *		flag	- this argument is a pass through to ddi_copyxxx()
26236  *		          directly from the mode argument of ioctl().
26237  *
26238  * Return Code: the code returned by sd_send_scsi_cmd()
26239  *		EFAULT if ddi_copyxxx() fails
26240  *		ENXIO if fail ddi_get_soft_state
26241  *		EINVAL if data pointer is NULL
26242  */
26243 
26244 static int
26245 sr_play_trkind(dev_t dev, caddr_t data, int flag)
26246 {
26247 	struct cdrom_ti		ti_struct;
26248 	struct cdrom_ti		*ti = &ti_struct;
26249 	struct uscsi_cmd	*com = NULL;
26250 	char			cdb[CDB_GROUP1];
26251 	int			rval;
26252 
26253 	if (data == NULL) {
26254 		return (EINVAL);
26255 	}
26256 
26257 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
26258 		return (EFAULT);
26259 	}
26260 
26261 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26262 	bzero(cdb, CDB_GROUP1);
26263 	cdb[0] = SCMD_PLAYAUDIO_TI;
26264 	cdb[4] = ti->cdti_trk0;
26265 	cdb[5] = ti->cdti_ind0;
26266 	cdb[7] = ti->cdti_trk1;
26267 	cdb[8] = ti->cdti_ind1;
26268 	com->uscsi_cdb    = cdb;
26269 	com->uscsi_cdblen = CDB_GROUP1;
26270 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26271 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26272 	    SD_PATH_STANDARD);
26273 	kmem_free(com, sizeof (*com));
26274 	return (rval);
26275 }
26276 
26277 
26278 /*
26279  *    Function: sr_read_all_subcodes()
26280  *
26281  * Description: This routine is the driver entry point for handling CD-ROM
26282  *		ioctl requests to return raw subcode data while the target is
26283  *		playing audio (CDROMSUBCODE).
26284  *
26285  *   Arguments: dev	- the device 'dev_t'
26286  *		data	- pointer to user provided cdrom subcode structure,
26287  *		          specifying the transfer length and address.
26288  *		flag	- this argument is a pass through to ddi_copyxxx()
26289  *		          directly from the mode argument of ioctl().
26290  *
26291  * Return Code: the code returned by sd_send_scsi_cmd()
26292  *		EFAULT if ddi_copyxxx() fails
26293  *		ENXIO if fail ddi_get_soft_state
26294  *		EINVAL if data pointer is NULL
26295  */
26296 
26297 static int
26298 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
26299 {
26300 	struct sd_lun		*un = NULL;
26301 	struct uscsi_cmd	*com = NULL;
26302 	struct cdrom_subcode	*subcode = NULL;
26303 	int			rval;
26304 	size_t			buflen;
26305 	char			cdb[CDB_GROUP5];
26306 
26307 #ifdef _MULTI_DATAMODEL
26308 	/* To support ILP32 applications in an LP64 world */
26309 	struct cdrom_subcode32		cdrom_subcode32;
26310 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
26311 #endif
26312 	if (data == NULL) {
26313 		return (EINVAL);
26314 	}
26315 
26316 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26317 		return (ENXIO);
26318 	}
26319 
26320 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
26321 
26322 #ifdef _MULTI_DATAMODEL
26323 	switch (ddi_model_convert_from(flag & FMODELS)) {
26324 	case DDI_MODEL_ILP32:
26325 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
26326 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26327 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26328 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26329 			return (EFAULT);
26330 		}
26331 		/* Convert the ILP32 uscsi data from the application to LP64 */
26332 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
26333 		break;
26334 	case DDI_MODEL_NONE:
26335 		if (ddi_copyin(data, subcode,
26336 		    sizeof (struct cdrom_subcode), flag)) {
26337 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26338 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26339 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26340 			return (EFAULT);
26341 		}
26342 		break;
26343 	}
26344 #else /* ! _MULTI_DATAMODEL */
26345 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
26346 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26347 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
26348 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26349 		return (EFAULT);
26350 	}
26351 #endif /* _MULTI_DATAMODEL */
26352 
26353 	/*
26354 	 * Since MMC-2 expects max 3 bytes for length, check if the
26355 	 * length input is greater than 3 bytes
26356 	 */
26357 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
26358 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26359 		    "sr_read_all_subcodes: "
26360 		    "cdrom transfer length too large: %d (limit %d)\n",
26361 		    subcode->cdsc_length, 0xFFFFFF);
26362 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26363 		return (EINVAL);
26364 	}
26365 
26366 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
26367 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26368 	bzero(cdb, CDB_GROUP5);
26369 
26370 	if (un->un_f_mmc_cap == TRUE) {
26371 		cdb[0] = (char)SCMD_READ_CD;
26372 		cdb[2] = (char)0xff;
26373 		cdb[3] = (char)0xff;
26374 		cdb[4] = (char)0xff;
26375 		cdb[5] = (char)0xff;
26376 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26377 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26378 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
26379 		cdb[10] = 1;
26380 	} else {
26381 		/*
26382 		 * Note: A vendor specific command (0xDF) is being used her to
26383 		 * request a read of all subcodes.
26384 		 */
26385 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
26386 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
26387 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26388 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26389 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
26390 	}
26391 	com->uscsi_cdb	   = cdb;
26392 	com->uscsi_cdblen  = CDB_GROUP5;
26393 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
26394 	com->uscsi_buflen  = buflen;
26395 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26396 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
26397 	    SD_PATH_STANDARD);
26398 	kmem_free(subcode, sizeof (struct cdrom_subcode));
26399 	kmem_free(com, sizeof (*com));
26400 	return (rval);
26401 }
26402 
26403 
26404 /*
26405  *    Function: sr_read_subchannel()
26406  *
26407  * Description: This routine is the driver entry point for handling CD-ROM
26408  *		ioctl requests to return the Q sub-channel data of the CD
26409  *		current position block. (CDROMSUBCHNL) The data includes the
26410  *		track number, index number, absolute CD-ROM address (LBA or MSF
26411  *		format per the user) , track relative CD-ROM address (LBA or MSF
26412  *		format per the user), control data and audio status.
26413  *
26414  *   Arguments: dev	- the device 'dev_t'
26415  *		data	- pointer to user provided cdrom sub-channel structure
26416  *		flag	- this argument is a pass through to ddi_copyxxx()
26417  *		          directly from the mode argument of ioctl().
26418  *
26419  * Return Code: the code returned by sd_send_scsi_cmd()
26420  *		EFAULT if ddi_copyxxx() fails
26421  *		ENXIO if fail ddi_get_soft_state
26422  *		EINVAL if data pointer is NULL
26423  */
26424 
26425 static int
26426 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
26427 {
26428 	struct sd_lun		*un;
26429 	struct uscsi_cmd	*com;
26430 	struct cdrom_subchnl	subchanel;
26431 	struct cdrom_subchnl	*subchnl = &subchanel;
26432 	char			cdb[CDB_GROUP1];
26433 	caddr_t			buffer;
26434 	int			rval;
26435 
26436 	if (data == NULL) {
26437 		return (EINVAL);
26438 	}
26439 
26440 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26441 	    (un->un_state == SD_STATE_OFFLINE)) {
26442 		return (ENXIO);
26443 	}
26444 
26445 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
26446 		return (EFAULT);
26447 	}
26448 
26449 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
26450 	bzero(cdb, CDB_GROUP1);
26451 	cdb[0] = SCMD_READ_SUBCHANNEL;
26452 	/* Set the MSF bit based on the user requested address format */
26453 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
26454 	/*
26455 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
26456 	 * returned
26457 	 */
26458 	cdb[2] = 0x40;
26459 	/*
26460 	 * Set byte 3 to specify the return data format. A value of 0x01
26461 	 * indicates that the CD-ROM current position should be returned.
26462 	 */
26463 	cdb[3] = 0x01;
26464 	cdb[8] = 0x10;
26465 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26466 	com->uscsi_cdb	   = cdb;
26467 	com->uscsi_cdblen  = CDB_GROUP1;
26468 	com->uscsi_bufaddr = buffer;
26469 	com->uscsi_buflen  = 16;
26470 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26471 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26472 	    SD_PATH_STANDARD);
26473 	if (rval != 0) {
26474 		kmem_free(buffer, 16);
26475 		kmem_free(com, sizeof (*com));
26476 		return (rval);
26477 	}
26478 
26479 	/* Process the returned Q sub-channel data */
26480 	subchnl->cdsc_audiostatus = buffer[1];
26481 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
26482 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
26483 	subchnl->cdsc_trk	= buffer[6];
26484 	subchnl->cdsc_ind	= buffer[7];
26485 	if (subchnl->cdsc_format & CDROM_LBA) {
26486 		subchnl->cdsc_absaddr.lba =
26487 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26488 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26489 		subchnl->cdsc_reladdr.lba =
26490 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
26491 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
26492 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
26493 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
26494 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
26495 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
26496 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
26497 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
26498 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
26499 	} else {
26500 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
26501 		subchnl->cdsc_absaddr.msf.second = buffer[10];
26502 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
26503 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
26504 		subchnl->cdsc_reladdr.msf.second = buffer[14];
26505 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
26506 	}
26507 	kmem_free(buffer, 16);
26508 	kmem_free(com, sizeof (*com));
26509 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
26510 	    != 0) {
26511 		return (EFAULT);
26512 	}
26513 	return (rval);
26514 }
26515 
26516 
26517 /*
26518  *    Function: sr_read_tocentry()
26519  *
26520  * Description: This routine is the driver entry point for handling CD-ROM
26521  *		ioctl requests to read from the Table of Contents (TOC)
26522  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
26523  *		fields, the starting address (LBA or MSF format per the user)
26524  *		and the data mode if the user specified track is a data track.
26525  *
26526  *		Note: The READ HEADER (0x44) command used in this routine is
26527  *		obsolete per the SCSI MMC spec but still supported in the
26528  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26529  *		therefore the command is still implemented in this routine.
26530  *
26531  *   Arguments: dev	- the device 'dev_t'
26532  *		data	- pointer to user provided toc entry structure,
26533  *			  specifying the track # and the address format
26534  *			  (LBA or MSF).
26535  *		flag	- this argument is a pass through to ddi_copyxxx()
26536  *		          directly from the mode argument of ioctl().
26537  *
26538  * Return Code: the code returned by sd_send_scsi_cmd()
26539  *		EFAULT if ddi_copyxxx() fails
26540  *		ENXIO if fail ddi_get_soft_state
26541  *		EINVAL if data pointer is NULL
26542  */
26543 
26544 static int
26545 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
26546 {
26547 	struct sd_lun		*un = NULL;
26548 	struct uscsi_cmd	*com;
26549 	struct cdrom_tocentry	toc_entry;
26550 	struct cdrom_tocentry	*entry = &toc_entry;
26551 	caddr_t			buffer;
26552 	int			rval;
26553 	char			cdb[CDB_GROUP1];
26554 
26555 	if (data == NULL) {
26556 		return (EINVAL);
26557 	}
26558 
26559 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26560 	    (un->un_state == SD_STATE_OFFLINE)) {
26561 		return (ENXIO);
26562 	}
26563 
26564 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
26565 		return (EFAULT);
26566 	}
26567 
26568 	/* Validate the requested track and address format */
26569 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
26570 		return (EINVAL);
26571 	}
26572 
26573 	if (entry->cdte_track == 0) {
26574 		return (EINVAL);
26575 	}
26576 
26577 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
26578 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26579 	bzero(cdb, CDB_GROUP1);
26580 
26581 	cdb[0] = SCMD_READ_TOC;
26582 	/* Set the MSF bit based on the user requested address format  */
26583 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
26584 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26585 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
26586 	} else {
26587 		cdb[6] = entry->cdte_track;
26588 	}
26589 
26590 	/*
26591 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26592 	 * (4 byte TOC response header + 8 byte track descriptor)
26593 	 */
26594 	cdb[8] = 12;
26595 	com->uscsi_cdb	   = cdb;
26596 	com->uscsi_cdblen  = CDB_GROUP1;
26597 	com->uscsi_bufaddr = buffer;
26598 	com->uscsi_buflen  = 0x0C;
26599 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
26600 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26601 	    SD_PATH_STANDARD);
26602 	if (rval != 0) {
26603 		kmem_free(buffer, 12);
26604 		kmem_free(com, sizeof (*com));
26605 		return (rval);
26606 	}
26607 
26608 	/* Process the toc entry */
26609 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
26610 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
26611 	if (entry->cdte_format & CDROM_LBA) {
26612 		entry->cdte_addr.lba =
26613 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26614 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26615 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
26616 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
26617 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
26618 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
26619 		/*
26620 		 * Send a READ TOC command using the LBA address format to get
26621 		 * the LBA for the track requested so it can be used in the
26622 		 * READ HEADER request
26623 		 *
26624 		 * Note: The MSF bit of the READ HEADER command specifies the
26625 		 * output format. The block address specified in that command
26626 		 * must be in LBA format.
26627 		 */
26628 		cdb[1] = 0;
26629 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26630 		    SD_PATH_STANDARD);
26631 		if (rval != 0) {
26632 			kmem_free(buffer, 12);
26633 			kmem_free(com, sizeof (*com));
26634 			return (rval);
26635 		}
26636 	} else {
26637 		entry->cdte_addr.msf.minute	= buffer[9];
26638 		entry->cdte_addr.msf.second	= buffer[10];
26639 		entry->cdte_addr.msf.frame	= buffer[11];
26640 		/*
26641 		 * Send a READ TOC command using the LBA address format to get
26642 		 * the LBA for the track requested so it can be used in the
26643 		 * READ HEADER request
26644 		 *
26645 		 * Note: The MSF bit of the READ HEADER command specifies the
26646 		 * output format. The block address specified in that command
26647 		 * must be in LBA format.
26648 		 */
26649 		cdb[1] = 0;
26650 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26651 		    SD_PATH_STANDARD);
26652 		if (rval != 0) {
26653 			kmem_free(buffer, 12);
26654 			kmem_free(com, sizeof (*com));
26655 			return (rval);
26656 		}
26657 	}
26658 
26659 	/*
26660 	 * Build and send the READ HEADER command to determine the data mode of
26661 	 * the user specified track.
26662 	 */
26663 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
26664 	    (entry->cdte_track != CDROM_LEADOUT)) {
26665 		bzero(cdb, CDB_GROUP1);
26666 		cdb[0] = SCMD_READ_HEADER;
26667 		cdb[2] = buffer[8];
26668 		cdb[3] = buffer[9];
26669 		cdb[4] = buffer[10];
26670 		cdb[5] = buffer[11];
26671 		cdb[8] = 0x08;
26672 		com->uscsi_buflen = 0x08;
26673 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26674 		    SD_PATH_STANDARD);
26675 		if (rval == 0) {
26676 			entry->cdte_datamode = buffer[0];
26677 		} else {
26678 			/*
26679 			 * READ HEADER command failed, since this is
26680 			 * obsoleted in one spec, its better to return
26681 			 * -1 for an invlid track so that we can still
26682 			 * receive the rest of the TOC data.
26683 			 */
26684 			entry->cdte_datamode = (uchar_t)-1;
26685 		}
26686 	} else {
26687 		entry->cdte_datamode = (uchar_t)-1;
26688 	}
26689 
26690 	kmem_free(buffer, 12);
26691 	kmem_free(com, sizeof (*com));
26692 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
26693 		return (EFAULT);
26694 
26695 	return (rval);
26696 }
26697 
26698 
26699 /*
26700  *    Function: sr_read_tochdr()
26701  *
26702  * Description: This routine is the driver entry point for handling CD-ROM
26703  * 		ioctl requests to read the Table of Contents (TOC) header
26704  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
26705  *		and ending track numbers
26706  *
26707  *   Arguments: dev	- the device 'dev_t'
26708  *		data	- pointer to user provided toc header structure,
26709  *			  specifying the starting and ending track numbers.
26710  *		flag	- this argument is a pass through to ddi_copyxxx()
26711  *			  directly from the mode argument of ioctl().
26712  *
26713  * Return Code: the code returned by sd_send_scsi_cmd()
26714  *		EFAULT if ddi_copyxxx() fails
26715  *		ENXIO if fail ddi_get_soft_state
26716  *		EINVAL if data pointer is NULL
26717  */
26718 
26719 static int
26720 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
26721 {
26722 	struct sd_lun		*un;
26723 	struct uscsi_cmd	*com;
26724 	struct cdrom_tochdr	toc_header;
26725 	struct cdrom_tochdr	*hdr = &toc_header;
26726 	char			cdb[CDB_GROUP1];
26727 	int			rval;
26728 	caddr_t			buffer;
26729 
26730 	if (data == NULL) {
26731 		return (EINVAL);
26732 	}
26733 
26734 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26735 	    (un->un_state == SD_STATE_OFFLINE)) {
26736 		return (ENXIO);
26737 	}
26738 
26739 	buffer = kmem_zalloc(4, KM_SLEEP);
26740 	bzero(cdb, CDB_GROUP1);
26741 	cdb[0] = SCMD_READ_TOC;
26742 	/*
26743 	 * Specifying a track number of 0x00 in the READ TOC command indicates
26744 	 * that the TOC header should be returned
26745 	 */
26746 	cdb[6] = 0x00;
26747 	/*
26748 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
26749 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
26750 	 */
26751 	cdb[8] = 0x04;
26752 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26753 	com->uscsi_cdb	   = cdb;
26754 	com->uscsi_cdblen  = CDB_GROUP1;
26755 	com->uscsi_bufaddr = buffer;
26756 	com->uscsi_buflen  = 0x04;
26757 	com->uscsi_timeout = 300;
26758 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26759 
26760 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26761 	    SD_PATH_STANDARD);
26762 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26763 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
26764 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
26765 	} else {
26766 		hdr->cdth_trk0 = buffer[2];
26767 		hdr->cdth_trk1 = buffer[3];
26768 	}
26769 	kmem_free(buffer, 4);
26770 	kmem_free(com, sizeof (*com));
26771 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
26772 		return (EFAULT);
26773 	}
26774 	return (rval);
26775 }
26776 
26777 
26778 /*
26779  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
26780  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
26781  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
26782  * digital audio and extended architecture digital audio. These modes are
26783  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
26784  * MMC specs.
26785  *
26786  * In addition to support for the various data formats these routines also
26787  * include support for devices that implement only the direct access READ
26788  * commands (0x08, 0x28), devices that implement the READ_CD commands
26789  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
26790  * READ CDXA commands (0xD8, 0xDB)
26791  */
26792 
26793 /*
26794  *    Function: sr_read_mode1()
26795  *
26796  * Description: This routine is the driver entry point for handling CD-ROM
26797  *		ioctl read mode1 requests (CDROMREADMODE1).
26798  *
26799  *   Arguments: dev	- the device 'dev_t'
26800  *		data	- pointer to user provided cd read structure specifying
26801  *			  the lba buffer address and length.
26802  *		flag	- this argument is a pass through to ddi_copyxxx()
26803  *			  directly from the mode argument of ioctl().
26804  *
26805  * Return Code: the code returned by sd_send_scsi_cmd()
26806  *		EFAULT if ddi_copyxxx() fails
26807  *		ENXIO if fail ddi_get_soft_state
26808  *		EINVAL if data pointer is NULL
26809  */
26810 
26811 static int
26812 sr_read_mode1(dev_t dev, caddr_t data, int flag)
26813 {
26814 	struct sd_lun		*un;
26815 	struct cdrom_read	mode1_struct;
26816 	struct cdrom_read	*mode1 = &mode1_struct;
26817 	int			rval;
26818 	sd_ssc_t		*ssc;
26819 
26820 #ifdef _MULTI_DATAMODEL
26821 	/* To support ILP32 applications in an LP64 world */
26822 	struct cdrom_read32	cdrom_read32;
26823 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26824 #endif /* _MULTI_DATAMODEL */
26825 
26826 	if (data == NULL) {
26827 		return (EINVAL);
26828 	}
26829 
26830 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26831 	    (un->un_state == SD_STATE_OFFLINE)) {
26832 		return (ENXIO);
26833 	}
26834 
26835 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26836 	    "sd_read_mode1: entry: un:0x%p\n", un);
26837 
26838 #ifdef _MULTI_DATAMODEL
26839 	switch (ddi_model_convert_from(flag & FMODELS)) {
26840 	case DDI_MODEL_ILP32:
26841 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
26842 			return (EFAULT);
26843 		}
26844 		/* Convert the ILP32 uscsi data from the application to LP64 */
26845 		cdrom_read32tocdrom_read(cdrd32, mode1);
26846 		break;
26847 	case DDI_MODEL_NONE:
26848 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26849 			return (EFAULT);
26850 		}
26851 	}
26852 #else /* ! _MULTI_DATAMODEL */
26853 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26854 		return (EFAULT);
26855 	}
26856 #endif /* _MULTI_DATAMODEL */
26857 
26858 	ssc = sd_ssc_init(un);
26859 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
26860 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
26861 	sd_ssc_fini(ssc);
26862 
26863 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26864 	    "sd_read_mode1: exit: un:0x%p\n", un);
26865 
26866 	return (rval);
26867 }
26868 
26869 
26870 /*
26871  *    Function: sr_read_cd_mode2()
26872  *
26873  * Description: This routine is the driver entry point for handling CD-ROM
26874  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
26875  *		support the READ CD (0xBE) command or the 1st generation
26876  *		READ CD (0xD4) command.
26877  *
26878  *   Arguments: dev	- the device 'dev_t'
26879  *		data	- pointer to user provided cd read structure specifying
26880  *			  the lba buffer address and length.
26881  *		flag	- this argument is a pass through to ddi_copyxxx()
26882  *			  directly from the mode argument of ioctl().
26883  *
26884  * Return Code: the code returned by sd_send_scsi_cmd()
26885  *		EFAULT if ddi_copyxxx() fails
26886  *		ENXIO if fail ddi_get_soft_state
26887  *		EINVAL if data pointer is NULL
26888  */
26889 
26890 static int
26891 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
26892 {
26893 	struct sd_lun		*un;
26894 	struct uscsi_cmd	*com;
26895 	struct cdrom_read	mode2_struct;
26896 	struct cdrom_read	*mode2 = &mode2_struct;
26897 	uchar_t			cdb[CDB_GROUP5];
26898 	int			nblocks;
26899 	int			rval;
26900 #ifdef _MULTI_DATAMODEL
26901 	/*  To support ILP32 applications in an LP64 world */
26902 	struct cdrom_read32	cdrom_read32;
26903 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26904 #endif /* _MULTI_DATAMODEL */
26905 
26906 	if (data == NULL) {
26907 		return (EINVAL);
26908 	}
26909 
26910 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26911 	    (un->un_state == SD_STATE_OFFLINE)) {
26912 		return (ENXIO);
26913 	}
26914 
26915 #ifdef _MULTI_DATAMODEL
26916 	switch (ddi_model_convert_from(flag & FMODELS)) {
26917 	case DDI_MODEL_ILP32:
26918 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
26919 			return (EFAULT);
26920 		}
26921 		/* Convert the ILP32 uscsi data from the application to LP64 */
26922 		cdrom_read32tocdrom_read(cdrd32, mode2);
26923 		break;
26924 	case DDI_MODEL_NONE:
26925 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
26926 			return (EFAULT);
26927 		}
26928 		break;
26929 	}
26930 
26931 #else /* ! _MULTI_DATAMODEL */
26932 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
26933 		return (EFAULT);
26934 	}
26935 #endif /* _MULTI_DATAMODEL */
26936 
26937 	bzero(cdb, sizeof (cdb));
26938 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
26939 		/* Read command supported by 1st generation atapi drives */
26940 		cdb[0] = SCMD_READ_CDD4;
26941 	} else {
26942 		/* Universal CD Access Command */
26943 		cdb[0] = SCMD_READ_CD;
26944 	}
26945 
26946 	/*
26947 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
26948 	 */
26949 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
26950 
26951 	/* set the start address */
26952 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
26953 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
26954 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
26955 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
26956 
26957 	/* set the transfer length */
26958 	nblocks = mode2->cdread_buflen / 2336;
26959 	cdb[6] = (uchar_t)(nblocks >> 16);
26960 	cdb[7] = (uchar_t)(nblocks >> 8);
26961 	cdb[8] = (uchar_t)nblocks;
26962 
26963 	/* set the filter bits */
26964 	cdb[9] = CDROM_READ_CD_USERDATA;
26965 
26966 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26967 	com->uscsi_cdb = (caddr_t)cdb;
26968 	com->uscsi_cdblen = sizeof (cdb);
26969 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
26970 	com->uscsi_buflen = mode2->cdread_buflen;
26971 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26972 
26973 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
26974 	    SD_PATH_STANDARD);
26975 	kmem_free(com, sizeof (*com));
26976 	return (rval);
26977 }
26978 
26979 
26980 /*
26981  *    Function: sr_read_mode2()
26982  *
26983  * Description: This routine is the driver entry point for handling CD-ROM
26984  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
26985  *		do not support the READ CD (0xBE) command.
26986  *
26987  *   Arguments: dev	- the device 'dev_t'
26988  *		data	- pointer to user provided cd read structure specifying
26989  *			  the lba buffer address and length.
26990  *		flag	- this argument is a pass through to ddi_copyxxx()
26991  *			  directly from the mode argument of ioctl().
26992  *
26993  * Return Code: the code returned by sd_send_scsi_cmd()
26994  *		EFAULT if ddi_copyxxx() fails
26995  *		ENXIO if fail ddi_get_soft_state
26996  *		EINVAL if data pointer is NULL
26997  *		EIO if fail to reset block size
26998  *		EAGAIN if commands are in progress in the driver
26999  */
27000 
27001 static int
27002 sr_read_mode2(dev_t dev, caddr_t data, int flag)
27003 {
27004 	struct sd_lun		*un;
27005 	struct cdrom_read	mode2_struct;
27006 	struct cdrom_read	*mode2 = &mode2_struct;
27007 	int			rval;
27008 	uint32_t		restore_blksize;
27009 	struct uscsi_cmd	*com;
27010 	uchar_t			cdb[CDB_GROUP0];
27011 	int			nblocks;
27012 
27013 #ifdef _MULTI_DATAMODEL
27014 	/* To support ILP32 applications in an LP64 world */
27015 	struct cdrom_read32	cdrom_read32;
27016 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27017 #endif /* _MULTI_DATAMODEL */
27018 
27019 	if (data == NULL) {
27020 		return (EINVAL);
27021 	}
27022 
27023 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27024 	    (un->un_state == SD_STATE_OFFLINE)) {
27025 		return (ENXIO);
27026 	}
27027 
27028 	/*
27029 	 * Because this routine will update the device and driver block size
27030 	 * being used we want to make sure there are no commands in progress.
27031 	 * If commands are in progress the user will have to try again.
27032 	 *
27033 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
27034 	 * in sdioctl to protect commands from sdioctl through to the top of
27035 	 * sd_uscsi_strategy. See sdioctl for details.
27036 	 */
27037 	mutex_enter(SD_MUTEX(un));
27038 	if (un->un_ncmds_in_driver != 1) {
27039 		mutex_exit(SD_MUTEX(un));
27040 		return (EAGAIN);
27041 	}
27042 	mutex_exit(SD_MUTEX(un));
27043 
27044 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27045 	    "sd_read_mode2: entry: un:0x%p\n", un);
27046 
27047 #ifdef _MULTI_DATAMODEL
27048 	switch (ddi_model_convert_from(flag & FMODELS)) {
27049 	case DDI_MODEL_ILP32:
27050 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27051 			return (EFAULT);
27052 		}
27053 		/* Convert the ILP32 uscsi data from the application to LP64 */
27054 		cdrom_read32tocdrom_read(cdrd32, mode2);
27055 		break;
27056 	case DDI_MODEL_NONE:
27057 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27058 			return (EFAULT);
27059 		}
27060 		break;
27061 	}
27062 #else /* ! _MULTI_DATAMODEL */
27063 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
27064 		return (EFAULT);
27065 	}
27066 #endif /* _MULTI_DATAMODEL */
27067 
27068 	/* Store the current target block size for restoration later */
27069 	restore_blksize = un->un_tgt_blocksize;
27070 
27071 	/* Change the device and soft state target block size to 2336 */
27072 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
27073 		rval = EIO;
27074 		goto done;
27075 	}
27076 
27077 
27078 	bzero(cdb, sizeof (cdb));
27079 
27080 	/* set READ operation */
27081 	cdb[0] = SCMD_READ;
27082 
27083 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
27084 	mode2->cdread_lba >>= 2;
27085 
27086 	/* set the start address */
27087 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
27088 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27089 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
27090 
27091 	/* set the transfer length */
27092 	nblocks = mode2->cdread_buflen / 2336;
27093 	cdb[4] = (uchar_t)nblocks & 0xFF;
27094 
27095 	/* build command */
27096 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27097 	com->uscsi_cdb = (caddr_t)cdb;
27098 	com->uscsi_cdblen = sizeof (cdb);
27099 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27100 	com->uscsi_buflen = mode2->cdread_buflen;
27101 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27102 
27103 	/*
27104 	 * Issue SCSI command with user space address for read buffer.
27105 	 *
27106 	 * This sends the command through main channel in the driver.
27107 	 *
27108 	 * Since this is accessed via an IOCTL call, we go through the
27109 	 * standard path, so that if the device was powered down, then
27110 	 * it would be 'awakened' to handle the command.
27111 	 */
27112 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27113 	    SD_PATH_STANDARD);
27114 
27115 	kmem_free(com, sizeof (*com));
27116 
27117 	/* Restore the device and soft state target block size */
27118 	if (sr_sector_mode(dev, restore_blksize) != 0) {
27119 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27120 		    "can't do switch back to mode 1\n");
27121 		/*
27122 		 * If sd_send_scsi_READ succeeded we still need to report
27123 		 * an error because we failed to reset the block size
27124 		 */
27125 		if (rval == 0) {
27126 			rval = EIO;
27127 		}
27128 	}
27129 
27130 done:
27131 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27132 	    "sd_read_mode2: exit: un:0x%p\n", un);
27133 
27134 	return (rval);
27135 }
27136 
27137 
27138 /*
27139  *    Function: sr_sector_mode()
27140  *
27141  * Description: This utility function is used by sr_read_mode2 to set the target
27142  *		block size based on the user specified size. This is a legacy
27143  *		implementation based upon a vendor specific mode page
27144  *
27145  *   Arguments: dev	- the device 'dev_t'
27146  *		data	- flag indicating if block size is being set to 2336 or
27147  *			  512.
27148  *
27149  * Return Code: the code returned by sd_send_scsi_cmd()
27150  *		EFAULT if ddi_copyxxx() fails
27151  *		ENXIO if fail ddi_get_soft_state
27152  *		EINVAL if data pointer is NULL
27153  */
27154 
27155 static int
27156 sr_sector_mode(dev_t dev, uint32_t blksize)
27157 {
27158 	struct sd_lun	*un;
27159 	uchar_t		*sense;
27160 	uchar_t		*select;
27161 	int		rval;
27162 	sd_ssc_t	*ssc;
27163 
27164 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27165 	    (un->un_state == SD_STATE_OFFLINE)) {
27166 		return (ENXIO);
27167 	}
27168 
27169 	sense = kmem_zalloc(20, KM_SLEEP);
27170 
27171 	/* Note: This is a vendor specific mode page (0x81) */
27172 	ssc = sd_ssc_init(un);
27173 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
27174 	    SD_PATH_STANDARD);
27175 	sd_ssc_fini(ssc);
27176 	if (rval != 0) {
27177 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27178 		    "sr_sector_mode: Mode Sense failed\n");
27179 		kmem_free(sense, 20);
27180 		return (rval);
27181 	}
27182 	select = kmem_zalloc(20, KM_SLEEP);
27183 	select[3] = 0x08;
27184 	select[10] = ((blksize >> 8) & 0xff);
27185 	select[11] = (blksize & 0xff);
27186 	select[12] = 0x01;
27187 	select[13] = 0x06;
27188 	select[14] = sense[14];
27189 	select[15] = sense[15];
27190 	if (blksize == SD_MODE2_BLKSIZE) {
27191 		select[14] |= 0x01;
27192 	}
27193 
27194 	ssc = sd_ssc_init(un);
27195 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
27196 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27197 	sd_ssc_fini(ssc);
27198 	if (rval != 0) {
27199 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27200 		    "sr_sector_mode: Mode Select failed\n");
27201 	} else {
27202 		/*
27203 		 * Only update the softstate block size if we successfully
27204 		 * changed the device block mode.
27205 		 */
27206 		mutex_enter(SD_MUTEX(un));
27207 		sd_update_block_info(un, blksize, 0);
27208 		mutex_exit(SD_MUTEX(un));
27209 	}
27210 	kmem_free(sense, 20);
27211 	kmem_free(select, 20);
27212 	return (rval);
27213 }
27214 
27215 
27216 /*
27217  *    Function: sr_read_cdda()
27218  *
27219  * Description: This routine is the driver entry point for handling CD-ROM
27220  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
27221  *		the target supports CDDA these requests are handled via a vendor
27222  *		specific command (0xD8) If the target does not support CDDA
27223  *		these requests are handled via the READ CD command (0xBE).
27224  *
27225  *   Arguments: dev	- the device 'dev_t'
27226  *		data	- pointer to user provided CD-DA structure specifying
27227  *			  the track starting address, transfer length, and
27228  *			  subcode options.
27229  *		flag	- this argument is a pass through to ddi_copyxxx()
27230  *			  directly from the mode argument of ioctl().
27231  *
27232  * Return Code: the code returned by sd_send_scsi_cmd()
27233  *		EFAULT if ddi_copyxxx() fails
27234  *		ENXIO if fail ddi_get_soft_state
27235  *		EINVAL if invalid arguments are provided
27236  *		ENOTTY
27237  */
27238 
27239 static int
27240 sr_read_cdda(dev_t dev, caddr_t data, int flag)
27241 {
27242 	struct sd_lun			*un;
27243 	struct uscsi_cmd		*com;
27244 	struct cdrom_cdda		*cdda;
27245 	int				rval;
27246 	size_t				buflen;
27247 	char				cdb[CDB_GROUP5];
27248 
27249 #ifdef _MULTI_DATAMODEL
27250 	/* To support ILP32 applications in an LP64 world */
27251 	struct cdrom_cdda32	cdrom_cdda32;
27252 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
27253 #endif /* _MULTI_DATAMODEL */
27254 
27255 	if (data == NULL) {
27256 		return (EINVAL);
27257 	}
27258 
27259 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27260 		return (ENXIO);
27261 	}
27262 
27263 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
27264 
27265 #ifdef _MULTI_DATAMODEL
27266 	switch (ddi_model_convert_from(flag & FMODELS)) {
27267 	case DDI_MODEL_ILP32:
27268 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
27269 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27270 			    "sr_read_cdda: ddi_copyin Failed\n");
27271 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27272 			return (EFAULT);
27273 		}
27274 		/* Convert the ILP32 uscsi data from the application to LP64 */
27275 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
27276 		break;
27277 	case DDI_MODEL_NONE:
27278 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27279 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27280 			    "sr_read_cdda: ddi_copyin Failed\n");
27281 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27282 			return (EFAULT);
27283 		}
27284 		break;
27285 	}
27286 #else /* ! _MULTI_DATAMODEL */
27287 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27288 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27289 		    "sr_read_cdda: ddi_copyin Failed\n");
27290 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27291 		return (EFAULT);
27292 	}
27293 #endif /* _MULTI_DATAMODEL */
27294 
27295 	/*
27296 	 * Since MMC-2 expects max 3 bytes for length, check if the
27297 	 * length input is greater than 3 bytes
27298 	 */
27299 	if ((cdda->cdda_length & 0xFF000000) != 0) {
27300 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
27301 		    "cdrom transfer length too large: %d (limit %d)\n",
27302 		    cdda->cdda_length, 0xFFFFFF);
27303 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27304 		return (EINVAL);
27305 	}
27306 
27307 	switch (cdda->cdda_subcode) {
27308 	case CDROM_DA_NO_SUBCODE:
27309 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
27310 		break;
27311 	case CDROM_DA_SUBQ:
27312 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
27313 		break;
27314 	case CDROM_DA_ALL_SUBCODE:
27315 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
27316 		break;
27317 	case CDROM_DA_SUBCODE_ONLY:
27318 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
27319 		break;
27320 	default:
27321 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27322 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
27323 		    cdda->cdda_subcode);
27324 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27325 		return (EINVAL);
27326 	}
27327 
27328 	/* Build and send the command */
27329 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27330 	bzero(cdb, CDB_GROUP5);
27331 
27332 	if (un->un_f_cfg_cdda == TRUE) {
27333 		cdb[0] = (char)SCMD_READ_CD;
27334 		cdb[1] = 0x04;
27335 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27336 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27337 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27338 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27339 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27340 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27341 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
27342 		cdb[9] = 0x10;
27343 		switch (cdda->cdda_subcode) {
27344 		case CDROM_DA_NO_SUBCODE :
27345 			cdb[10] = 0x0;
27346 			break;
27347 		case CDROM_DA_SUBQ :
27348 			cdb[10] = 0x2;
27349 			break;
27350 		case CDROM_DA_ALL_SUBCODE :
27351 			cdb[10] = 0x1;
27352 			break;
27353 		case CDROM_DA_SUBCODE_ONLY :
27354 			/* FALLTHROUGH */
27355 		default :
27356 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27357 			kmem_free(com, sizeof (*com));
27358 			return (ENOTTY);
27359 		}
27360 	} else {
27361 		cdb[0] = (char)SCMD_READ_CDDA;
27362 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27363 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27364 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27365 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27366 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
27367 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27368 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27369 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
27370 		cdb[10] = cdda->cdda_subcode;
27371 	}
27372 
27373 	com->uscsi_cdb = cdb;
27374 	com->uscsi_cdblen = CDB_GROUP5;
27375 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
27376 	com->uscsi_buflen = buflen;
27377 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27378 
27379 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27380 	    SD_PATH_STANDARD);
27381 
27382 	kmem_free(cdda, sizeof (struct cdrom_cdda));
27383 	kmem_free(com, sizeof (*com));
27384 	return (rval);
27385 }
27386 
27387 
27388 /*
27389  *    Function: sr_read_cdxa()
27390  *
27391  * Description: This routine is the driver entry point for handling CD-ROM
27392  *		ioctl requests to return CD-XA (Extended Architecture) data.
27393  *		(CDROMCDXA).
27394  *
27395  *   Arguments: dev	- the device 'dev_t'
27396  *		data	- pointer to user provided CD-XA structure specifying
27397  *			  the data starting address, transfer length, and format
27398  *		flag	- this argument is a pass through to ddi_copyxxx()
27399  *			  directly from the mode argument of ioctl().
27400  *
27401  * Return Code: the code returned by sd_send_scsi_cmd()
27402  *		EFAULT if ddi_copyxxx() fails
27403  *		ENXIO if fail ddi_get_soft_state
27404  *		EINVAL if data pointer is NULL
27405  */
27406 
27407 static int
27408 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
27409 {
27410 	struct sd_lun		*un;
27411 	struct uscsi_cmd	*com;
27412 	struct cdrom_cdxa	*cdxa;
27413 	int			rval;
27414 	size_t			buflen;
27415 	char			cdb[CDB_GROUP5];
27416 	uchar_t			read_flags;
27417 
27418 #ifdef _MULTI_DATAMODEL
27419 	/* To support ILP32 applications in an LP64 world */
27420 	struct cdrom_cdxa32		cdrom_cdxa32;
27421 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
27422 #endif /* _MULTI_DATAMODEL */
27423 
27424 	if (data == NULL) {
27425 		return (EINVAL);
27426 	}
27427 
27428 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27429 		return (ENXIO);
27430 	}
27431 
27432 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
27433 
27434 #ifdef _MULTI_DATAMODEL
27435 	switch (ddi_model_convert_from(flag & FMODELS)) {
27436 	case DDI_MODEL_ILP32:
27437 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
27438 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27439 			return (EFAULT);
27440 		}
27441 		/*
27442 		 * Convert the ILP32 uscsi data from the
27443 		 * application to LP64 for internal use.
27444 		 */
27445 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
27446 		break;
27447 	case DDI_MODEL_NONE:
27448 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27449 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27450 			return (EFAULT);
27451 		}
27452 		break;
27453 	}
27454 #else /* ! _MULTI_DATAMODEL */
27455 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27456 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27457 		return (EFAULT);
27458 	}
27459 #endif /* _MULTI_DATAMODEL */
27460 
27461 	/*
27462 	 * Since MMC-2 expects max 3 bytes for length, check if the
27463 	 * length input is greater than 3 bytes
27464 	 */
27465 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
27466 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
27467 		    "cdrom transfer length too large: %d (limit %d)\n",
27468 		    cdxa->cdxa_length, 0xFFFFFF);
27469 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27470 		return (EINVAL);
27471 	}
27472 
27473 	switch (cdxa->cdxa_format) {
27474 	case CDROM_XA_DATA:
27475 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
27476 		read_flags = 0x10;
27477 		break;
27478 	case CDROM_XA_SECTOR_DATA:
27479 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
27480 		read_flags = 0xf8;
27481 		break;
27482 	case CDROM_XA_DATA_W_ERROR:
27483 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
27484 		read_flags = 0xfc;
27485 		break;
27486 	default:
27487 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27488 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
27489 		    cdxa->cdxa_format);
27490 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27491 		return (EINVAL);
27492 	}
27493 
27494 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27495 	bzero(cdb, CDB_GROUP5);
27496 	if (un->un_f_mmc_cap == TRUE) {
27497 		cdb[0] = (char)SCMD_READ_CD;
27498 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27499 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27500 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27501 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27502 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27503 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27504 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
27505 		cdb[9] = (char)read_flags;
27506 	} else {
27507 		/*
27508 		 * Note: A vendor specific command (0xDB) is being used her to
27509 		 * request a read of all subcodes.
27510 		 */
27511 		cdb[0] = (char)SCMD_READ_CDXA;
27512 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27513 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27514 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27515 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27516 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
27517 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27518 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27519 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
27520 		cdb[10] = cdxa->cdxa_format;
27521 	}
27522 	com->uscsi_cdb	   = cdb;
27523 	com->uscsi_cdblen  = CDB_GROUP5;
27524 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
27525 	com->uscsi_buflen  = buflen;
27526 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27527 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27528 	    SD_PATH_STANDARD);
27529 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27530 	kmem_free(com, sizeof (*com));
27531 	return (rval);
27532 }
27533 
27534 
27535 /*
27536  *    Function: sr_eject()
27537  *
27538  * Description: This routine is the driver entry point for handling CD-ROM
27539  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
27540  *
27541  *   Arguments: dev	- the device 'dev_t'
27542  *
27543  * Return Code: the code returned by sd_send_scsi_cmd()
27544  */
27545 
27546 static int
27547 sr_eject(dev_t dev)
27548 {
27549 	struct sd_lun	*un;
27550 	int		rval;
27551 	sd_ssc_t	*ssc;
27552 
27553 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27554 	    (un->un_state == SD_STATE_OFFLINE)) {
27555 		return (ENXIO);
27556 	}
27557 
27558 	/*
27559 	 * To prevent race conditions with the eject
27560 	 * command, keep track of an eject command as
27561 	 * it progresses. If we are already handling
27562 	 * an eject command in the driver for the given
27563 	 * unit and another request to eject is received
27564 	 * immediately return EAGAIN so we don't lose
27565 	 * the command if the current eject command fails.
27566 	 */
27567 	mutex_enter(SD_MUTEX(un));
27568 	if (un->un_f_ejecting == TRUE) {
27569 		mutex_exit(SD_MUTEX(un));
27570 		return (EAGAIN);
27571 	}
27572 	un->un_f_ejecting = TRUE;
27573 	mutex_exit(SD_MUTEX(un));
27574 
27575 	ssc = sd_ssc_init(un);
27576 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
27577 	    SD_PATH_STANDARD);
27578 	sd_ssc_fini(ssc);
27579 
27580 	if (rval != 0) {
27581 		mutex_enter(SD_MUTEX(un));
27582 		un->un_f_ejecting = FALSE;
27583 		mutex_exit(SD_MUTEX(un));
27584 		return (rval);
27585 	}
27586 
27587 	ssc = sd_ssc_init(un);
27588 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_EJECT,
27589 	    SD_PATH_STANDARD);
27590 	sd_ssc_fini(ssc);
27591 
27592 	if (rval == 0) {
27593 		mutex_enter(SD_MUTEX(un));
27594 		sr_ejected(un);
27595 		un->un_mediastate = DKIO_EJECTED;
27596 		un->un_f_ejecting = FALSE;
27597 		cv_broadcast(&un->un_state_cv);
27598 		mutex_exit(SD_MUTEX(un));
27599 	} else {
27600 		mutex_enter(SD_MUTEX(un));
27601 		un->un_f_ejecting = FALSE;
27602 		mutex_exit(SD_MUTEX(un));
27603 	}
27604 	return (rval);
27605 }
27606 
27607 
27608 /*
27609  *    Function: sr_ejected()
27610  *
27611  * Description: This routine updates the soft state structure to invalidate the
27612  *		geometry information after the media has been ejected or a
27613  *		media eject has been detected.
27614  *
27615  *   Arguments: un - driver soft state (unit) structure
27616  */
27617 
27618 static void
27619 sr_ejected(struct sd_lun *un)
27620 {
27621 	struct sd_errstats *stp;
27622 
27623 	ASSERT(un != NULL);
27624 	ASSERT(mutex_owned(SD_MUTEX(un)));
27625 
27626 	un->un_f_blockcount_is_valid	= FALSE;
27627 	un->un_f_tgt_blocksize_is_valid	= FALSE;
27628 	mutex_exit(SD_MUTEX(un));
27629 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
27630 	mutex_enter(SD_MUTEX(un));
27631 
27632 	if (un->un_errstats != NULL) {
27633 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
27634 		stp->sd_capacity.value.ui64 = 0;
27635 	}
27636 }
27637 
27638 
27639 /*
27640  *    Function: sr_check_wp()
27641  *
27642  * Description: This routine checks the write protection of a removable
27643  *      media disk and hotpluggable devices via the write protect bit of
27644  *      the Mode Page Header device specific field. Some devices choke
27645  *      on unsupported mode page. In order to workaround this issue,
27646  *      this routine has been implemented to use 0x3f mode page(request
27647  *      for all pages) for all device types.
27648  *
27649  *   Arguments: dev             - the device 'dev_t'
27650  *
27651  * Return Code: int indicating if the device is write protected (1) or not (0)
27652  *
27653  *     Context: Kernel thread.
27654  *
27655  */
27656 
27657 static int
27658 sr_check_wp(dev_t dev)
27659 {
27660 	struct sd_lun	*un;
27661 	uchar_t		device_specific;
27662 	uchar_t		*sense;
27663 	int		hdrlen;
27664 	int		rval = FALSE;
27665 	int		status;
27666 	sd_ssc_t	*ssc;
27667 
27668 	/*
27669 	 * Note: The return codes for this routine should be reworked to
27670 	 * properly handle the case of a NULL softstate.
27671 	 */
27672 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27673 		return (FALSE);
27674 	}
27675 
27676 	if (un->un_f_cfg_is_atapi == TRUE) {
27677 		/*
27678 		 * The mode page contents are not required; set the allocation
27679 		 * length for the mode page header only
27680 		 */
27681 		hdrlen = MODE_HEADER_LENGTH_GRP2;
27682 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27683 		ssc = sd_ssc_init(un);
27684 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
27685 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27686 		sd_ssc_fini(ssc);
27687 		if (status != 0)
27688 			goto err_exit;
27689 		device_specific =
27690 		    ((struct mode_header_grp2 *)sense)->device_specific;
27691 	} else {
27692 		hdrlen = MODE_HEADER_LENGTH;
27693 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27694 		ssc = sd_ssc_init(un);
27695 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
27696 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27697 		sd_ssc_fini(ssc);
27698 		if (status != 0)
27699 			goto err_exit;
27700 		device_specific =
27701 		    ((struct mode_header *)sense)->device_specific;
27702 	}
27703 
27704 
27705 	/*
27706 	 * Write protect mode sense failed; not all disks
27707 	 * understand this query. Return FALSE assuming that
27708 	 * these devices are not writable.
27709 	 */
27710 	if (device_specific & WRITE_PROTECT) {
27711 		rval = TRUE;
27712 	}
27713 
27714 err_exit:
27715 	kmem_free(sense, hdrlen);
27716 	return (rval);
27717 }
27718 
27719 /*
27720  *    Function: sr_volume_ctrl()
27721  *
27722  * Description: This routine is the driver entry point for handling CD-ROM
27723  *		audio output volume ioctl requests. (CDROMVOLCTRL)
27724  *
27725  *   Arguments: dev	- the device 'dev_t'
27726  *		data	- pointer to user audio volume control structure
27727  *		flag	- this argument is a pass through to ddi_copyxxx()
27728  *			  directly from the mode argument of ioctl().
27729  *
27730  * Return Code: the code returned by sd_send_scsi_cmd()
27731  *		EFAULT if ddi_copyxxx() fails
27732  *		ENXIO if fail ddi_get_soft_state
27733  *		EINVAL if data pointer is NULL
27734  *
27735  */
27736 
27737 static int
27738 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
27739 {
27740 	struct sd_lun		*un;
27741 	struct cdrom_volctrl    volume;
27742 	struct cdrom_volctrl    *vol = &volume;
27743 	uchar_t			*sense_page;
27744 	uchar_t			*select_page;
27745 	uchar_t			*sense;
27746 	uchar_t			*select;
27747 	int			sense_buflen;
27748 	int			select_buflen;
27749 	int			rval;
27750 	sd_ssc_t		*ssc;
27751 
27752 	if (data == NULL) {
27753 		return (EINVAL);
27754 	}
27755 
27756 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27757 	    (un->un_state == SD_STATE_OFFLINE)) {
27758 		return (ENXIO);
27759 	}
27760 
27761 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
27762 		return (EFAULT);
27763 	}
27764 
27765 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
27766 		struct mode_header_grp2		*sense_mhp;
27767 		struct mode_header_grp2		*select_mhp;
27768 		int				bd_len;
27769 
27770 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
27771 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
27772 		    MODEPAGE_AUDIO_CTRL_LEN;
27773 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27774 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27775 		ssc = sd_ssc_init(un);
27776 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27777 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27778 		    SD_PATH_STANDARD);
27779 		sd_ssc_fini(ssc);
27780 
27781 		if (rval != 0) {
27782 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27783 			    "sr_volume_ctrl: Mode Sense Failed\n");
27784 			kmem_free(sense, sense_buflen);
27785 			kmem_free(select, select_buflen);
27786 			return (rval);
27787 		}
27788 		sense_mhp = (struct mode_header_grp2 *)sense;
27789 		select_mhp = (struct mode_header_grp2 *)select;
27790 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
27791 		    sense_mhp->bdesc_length_lo;
27792 		if (bd_len > MODE_BLK_DESC_LENGTH) {
27793 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27794 			    "sr_volume_ctrl: Mode Sense returned invalid "
27795 			    "block descriptor length\n");
27796 			kmem_free(sense, sense_buflen);
27797 			kmem_free(select, select_buflen);
27798 			return (EIO);
27799 		}
27800 		sense_page = (uchar_t *)
27801 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27802 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
27803 		select_mhp->length_msb = 0;
27804 		select_mhp->length_lsb = 0;
27805 		select_mhp->bdesc_length_hi = 0;
27806 		select_mhp->bdesc_length_lo = 0;
27807 	} else {
27808 		struct mode_header		*sense_mhp, *select_mhp;
27809 
27810 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27811 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27812 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27813 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27814 		ssc = sd_ssc_init(un);
27815 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27816 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27817 		    SD_PATH_STANDARD);
27818 		sd_ssc_fini(ssc);
27819 
27820 		if (rval != 0) {
27821 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27822 			    "sr_volume_ctrl: Mode Sense Failed\n");
27823 			kmem_free(sense, sense_buflen);
27824 			kmem_free(select, select_buflen);
27825 			return (rval);
27826 		}
27827 		sense_mhp  = (struct mode_header *)sense;
27828 		select_mhp = (struct mode_header *)select;
27829 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
27830 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27831 			    "sr_volume_ctrl: Mode Sense returned invalid "
27832 			    "block descriptor length\n");
27833 			kmem_free(sense, sense_buflen);
27834 			kmem_free(select, select_buflen);
27835 			return (EIO);
27836 		}
27837 		sense_page = (uchar_t *)
27838 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27839 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
27840 		select_mhp->length = 0;
27841 		select_mhp->bdesc_length = 0;
27842 	}
27843 	/*
27844 	 * Note: An audio control data structure could be created and overlayed
27845 	 * on the following in place of the array indexing method implemented.
27846 	 */
27847 
27848 	/* Build the select data for the user volume data */
27849 	select_page[0] = MODEPAGE_AUDIO_CTRL;
27850 	select_page[1] = 0xE;
27851 	/* Set the immediate bit */
27852 	select_page[2] = 0x04;
27853 	/* Zero out reserved fields */
27854 	select_page[3] = 0x00;
27855 	select_page[4] = 0x00;
27856 	/* Return sense data for fields not to be modified */
27857 	select_page[5] = sense_page[5];
27858 	select_page[6] = sense_page[6];
27859 	select_page[7] = sense_page[7];
27860 	/* Set the user specified volume levels for channel 0 and 1 */
27861 	select_page[8] = 0x01;
27862 	select_page[9] = vol->channel0;
27863 	select_page[10] = 0x02;
27864 	select_page[11] = vol->channel1;
27865 	/* Channel 2 and 3 are currently unsupported so return the sense data */
27866 	select_page[12] = sense_page[12];
27867 	select_page[13] = sense_page[13];
27868 	select_page[14] = sense_page[14];
27869 	select_page[15] = sense_page[15];
27870 
27871 	ssc = sd_ssc_init(un);
27872 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
27873 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
27874 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27875 	} else {
27876 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27877 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27878 	}
27879 	sd_ssc_fini(ssc);
27880 
27881 	kmem_free(sense, sense_buflen);
27882 	kmem_free(select, select_buflen);
27883 	return (rval);
27884 }
27885 
27886 
27887 /*
27888  *    Function: sr_read_sony_session_offset()
27889  *
27890  * Description: This routine is the driver entry point for handling CD-ROM
27891  *		ioctl requests for session offset information. (CDROMREADOFFSET)
27892  *		The address of the first track in the last session of a
27893  *		multi-session CD-ROM is returned
27894  *
27895  *		Note: This routine uses a vendor specific key value in the
27896  *		command control field without implementing any vendor check here
27897  *		or in the ioctl routine.
27898  *
27899  *   Arguments: dev	- the device 'dev_t'
27900  *		data	- pointer to an int to hold the requested address
27901  *		flag	- this argument is a pass through to ddi_copyxxx()
27902  *			  directly from the mode argument of ioctl().
27903  *
27904  * Return Code: the code returned by sd_send_scsi_cmd()
27905  *		EFAULT if ddi_copyxxx() fails
27906  *		ENXIO if fail ddi_get_soft_state
27907  *		EINVAL if data pointer is NULL
27908  */
27909 
27910 static int
27911 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
27912 {
27913 	struct sd_lun		*un;
27914 	struct uscsi_cmd	*com;
27915 	caddr_t			buffer;
27916 	char			cdb[CDB_GROUP1];
27917 	int			session_offset = 0;
27918 	int			rval;
27919 
27920 	if (data == NULL) {
27921 		return (EINVAL);
27922 	}
27923 
27924 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27925 	    (un->un_state == SD_STATE_OFFLINE)) {
27926 		return (ENXIO);
27927 	}
27928 
27929 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
27930 	bzero(cdb, CDB_GROUP1);
27931 	cdb[0] = SCMD_READ_TOC;
27932 	/*
27933 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27934 	 * (4 byte TOC response header + 8 byte response data)
27935 	 */
27936 	cdb[8] = SONY_SESSION_OFFSET_LEN;
27937 	/* Byte 9 is the control byte. A vendor specific value is used */
27938 	cdb[9] = SONY_SESSION_OFFSET_KEY;
27939 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27940 	com->uscsi_cdb = cdb;
27941 	com->uscsi_cdblen = CDB_GROUP1;
27942 	com->uscsi_bufaddr = buffer;
27943 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
27944 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27945 
27946 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27947 	    SD_PATH_STANDARD);
27948 	if (rval != 0) {
27949 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
27950 		kmem_free(com, sizeof (*com));
27951 		return (rval);
27952 	}
27953 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
27954 		session_offset =
27955 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27956 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27957 		/*
27958 		 * Offset returned offset in current lbasize block's. Convert to
27959 		 * 2k block's to return to the user
27960 		 */
27961 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
27962 			session_offset >>= 2;
27963 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
27964 			session_offset >>= 1;
27965 		}
27966 	}
27967 
27968 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
27969 		rval = EFAULT;
27970 	}
27971 
27972 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
27973 	kmem_free(com, sizeof (*com));
27974 	return (rval);
27975 }
27976 
27977 
27978 /*
27979  *    Function: sd_wm_cache_constructor()
27980  *
27981  * Description: Cache Constructor for the wmap cache for the read/modify/write
27982  * 		devices.
27983  *
27984  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
27985  *		un	- sd_lun structure for the device.
27986  *		flag	- the km flags passed to constructor
27987  *
27988  * Return Code: 0 on success.
27989  *		-1 on failure.
27990  */
27991 
27992 /*ARGSUSED*/
27993 static int
27994 sd_wm_cache_constructor(void *wm, void *un, int flags)
27995 {
27996 	bzero(wm, sizeof (struct sd_w_map));
27997 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
27998 	return (0);
27999 }
28000 
28001 
28002 /*
28003  *    Function: sd_wm_cache_destructor()
28004  *
28005  * Description: Cache destructor for the wmap cache for the read/modify/write
28006  * 		devices.
28007  *
28008  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28009  *		un	- sd_lun structure for the device.
28010  */
28011 /*ARGSUSED*/
28012 static void
28013 sd_wm_cache_destructor(void *wm, void *un)
28014 {
28015 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
28016 }
28017 
28018 
28019 /*
28020  *    Function: sd_range_lock()
28021  *
28022  * Description: Lock the range of blocks specified as parameter to ensure
28023  *		that read, modify write is atomic and no other i/o writes
28024  *		to the same location. The range is specified in terms
28025  *		of start and end blocks. Block numbers are the actual
28026  *		media block numbers and not system.
28027  *
28028  *   Arguments: un	- sd_lun structure for the device.
28029  *		startb - The starting block number
28030  *		endb - The end block number
28031  *		typ - type of i/o - simple/read_modify_write
28032  *
28033  * Return Code: wm  - pointer to the wmap structure.
28034  *
28035  *     Context: This routine can sleep.
28036  */
28037 
28038 static struct sd_w_map *
28039 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
28040 {
28041 	struct sd_w_map *wmp = NULL;
28042 	struct sd_w_map *sl_wmp = NULL;
28043 	struct sd_w_map *tmp_wmp;
28044 	wm_state state = SD_WM_CHK_LIST;
28045 
28046 
28047 	ASSERT(un != NULL);
28048 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28049 
28050 	mutex_enter(SD_MUTEX(un));
28051 
28052 	while (state != SD_WM_DONE) {
28053 
28054 		switch (state) {
28055 		case SD_WM_CHK_LIST:
28056 			/*
28057 			 * This is the starting state. Check the wmap list
28058 			 * to see if the range is currently available.
28059 			 */
28060 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28061 				/*
28062 				 * If this is a simple write and no rmw
28063 				 * i/o is pending then try to lock the
28064 				 * range as the range should be available.
28065 				 */
28066 				state = SD_WM_LOCK_RANGE;
28067 			} else {
28068 				tmp_wmp = sd_get_range(un, startb, endb);
28069 				if (tmp_wmp != NULL) {
28070 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28071 						/*
28072 						 * Should not keep onlist wmps
28073 						 * while waiting this macro
28074 						 * will also do wmp = NULL;
28075 						 */
28076 						FREE_ONLIST_WMAP(un, wmp);
28077 					}
28078 					/*
28079 					 * sl_wmp is the wmap on which wait
28080 					 * is done, since the tmp_wmp points
28081 					 * to the inuse wmap, set sl_wmp to
28082 					 * tmp_wmp and change the state to sleep
28083 					 */
28084 					sl_wmp = tmp_wmp;
28085 					state = SD_WM_WAIT_MAP;
28086 				} else {
28087 					state = SD_WM_LOCK_RANGE;
28088 				}
28089 
28090 			}
28091 			break;
28092 
28093 		case SD_WM_LOCK_RANGE:
28094 			ASSERT(un->un_wm_cache);
28095 			/*
28096 			 * The range need to be locked, try to get a wmap.
28097 			 * First attempt it with NO_SLEEP, want to avoid a sleep
28098 			 * if possible as we will have to release the sd mutex
28099 			 * if we have to sleep.
28100 			 */
28101 			if (wmp == NULL)
28102 				wmp = kmem_cache_alloc(un->un_wm_cache,
28103 				    KM_NOSLEEP);
28104 			if (wmp == NULL) {
28105 				mutex_exit(SD_MUTEX(un));
28106 				_NOTE(DATA_READABLE_WITHOUT_LOCK
28107 				    (sd_lun::un_wm_cache))
28108 				wmp = kmem_cache_alloc(un->un_wm_cache,
28109 				    KM_SLEEP);
28110 				mutex_enter(SD_MUTEX(un));
28111 				/*
28112 				 * we released the mutex so recheck and go to
28113 				 * check list state.
28114 				 */
28115 				state = SD_WM_CHK_LIST;
28116 			} else {
28117 				/*
28118 				 * We exit out of state machine since we
28119 				 * have the wmap. Do the housekeeping first.
28120 				 * place the wmap on the wmap list if it is not
28121 				 * on it already and then set the state to done.
28122 				 */
28123 				wmp->wm_start = startb;
28124 				wmp->wm_end = endb;
28125 				wmp->wm_flags = typ | SD_WM_BUSY;
28126 				if (typ & SD_WTYPE_RMW) {
28127 					un->un_rmw_count++;
28128 				}
28129 				/*
28130 				 * If not already on the list then link
28131 				 */
28132 				if (!ONLIST(un, wmp)) {
28133 					wmp->wm_next = un->un_wm;
28134 					wmp->wm_prev = NULL;
28135 					if (wmp->wm_next)
28136 						wmp->wm_next->wm_prev = wmp;
28137 					un->un_wm = wmp;
28138 				}
28139 				state = SD_WM_DONE;
28140 			}
28141 			break;
28142 
28143 		case SD_WM_WAIT_MAP:
28144 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
28145 			/*
28146 			 * Wait is done on sl_wmp, which is set in the
28147 			 * check_list state.
28148 			 */
28149 			sl_wmp->wm_wanted_count++;
28150 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
28151 			sl_wmp->wm_wanted_count--;
28152 			/*
28153 			 * We can reuse the memory from the completed sl_wmp
28154 			 * lock range for our new lock, but only if noone is
28155 			 * waiting for it.
28156 			 */
28157 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
28158 			if (sl_wmp->wm_wanted_count == 0) {
28159 				if (wmp != NULL)
28160 					CHK_N_FREEWMP(un, wmp);
28161 				wmp = sl_wmp;
28162 			}
28163 			sl_wmp = NULL;
28164 			/*
28165 			 * After waking up, need to recheck for availability of
28166 			 * range.
28167 			 */
28168 			state = SD_WM_CHK_LIST;
28169 			break;
28170 
28171 		default:
28172 			panic("sd_range_lock: "
28173 			    "Unknown state %d in sd_range_lock", state);
28174 			/*NOTREACHED*/
28175 		} /* switch(state) */
28176 
28177 	} /* while(state != SD_WM_DONE) */
28178 
28179 	mutex_exit(SD_MUTEX(un));
28180 
28181 	ASSERT(wmp != NULL);
28182 
28183 	return (wmp);
28184 }
28185 
28186 
28187 /*
28188  *    Function: sd_get_range()
28189  *
28190  * Description: Find if there any overlapping I/O to this one
28191  *		Returns the write-map of 1st such I/O, NULL otherwise.
28192  *
28193  *   Arguments: un	- sd_lun structure for the device.
28194  *		startb - The starting block number
28195  *		endb - The end block number
28196  *
28197  * Return Code: wm  - pointer to the wmap structure.
28198  */
28199 
28200 static struct sd_w_map *
28201 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
28202 {
28203 	struct sd_w_map *wmp;
28204 
28205 	ASSERT(un != NULL);
28206 
28207 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
28208 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
28209 			continue;
28210 		}
28211 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
28212 			break;
28213 		}
28214 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
28215 			break;
28216 		}
28217 	}
28218 
28219 	return (wmp);
28220 }
28221 
28222 
28223 /*
28224  *    Function: sd_free_inlist_wmap()
28225  *
28226  * Description: Unlink and free a write map struct.
28227  *
28228  *   Arguments: un      - sd_lun structure for the device.
28229  *		wmp	- sd_w_map which needs to be unlinked.
28230  */
28231 
28232 static void
28233 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
28234 {
28235 	ASSERT(un != NULL);
28236 
28237 	if (un->un_wm == wmp) {
28238 		un->un_wm = wmp->wm_next;
28239 	} else {
28240 		wmp->wm_prev->wm_next = wmp->wm_next;
28241 	}
28242 
28243 	if (wmp->wm_next) {
28244 		wmp->wm_next->wm_prev = wmp->wm_prev;
28245 	}
28246 
28247 	wmp->wm_next = wmp->wm_prev = NULL;
28248 
28249 	kmem_cache_free(un->un_wm_cache, wmp);
28250 }
28251 
28252 
28253 /*
28254  *    Function: sd_range_unlock()
28255  *
28256  * Description: Unlock the range locked by wm.
28257  *		Free write map if nobody else is waiting on it.
28258  *
28259  *   Arguments: un      - sd_lun structure for the device.
28260  *              wmp     - sd_w_map which needs to be unlinked.
28261  */
28262 
28263 static void
28264 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
28265 {
28266 	ASSERT(un != NULL);
28267 	ASSERT(wm != NULL);
28268 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28269 
28270 	mutex_enter(SD_MUTEX(un));
28271 
28272 	if (wm->wm_flags & SD_WTYPE_RMW) {
28273 		un->un_rmw_count--;
28274 	}
28275 
28276 	if (wm->wm_wanted_count) {
28277 		wm->wm_flags = 0;
28278 		/*
28279 		 * Broadcast that the wmap is available now.
28280 		 */
28281 		cv_broadcast(&wm->wm_avail);
28282 	} else {
28283 		/*
28284 		 * If no one is waiting on the map, it should be free'ed.
28285 		 */
28286 		sd_free_inlist_wmap(un, wm);
28287 	}
28288 
28289 	mutex_exit(SD_MUTEX(un));
28290 }
28291 
28292 
28293 /*
28294  *    Function: sd_read_modify_write_task
28295  *
28296  * Description: Called from a taskq thread to initiate the write phase of
28297  *		a read-modify-write request.  This is used for targets where
28298  *		un->un_sys_blocksize != un->un_tgt_blocksize.
28299  *
28300  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
28301  *
28302  *     Context: Called under taskq thread context.
28303  */
28304 
28305 static void
28306 sd_read_modify_write_task(void *arg)
28307 {
28308 	struct sd_mapblocksize_info	*bsp;
28309 	struct buf	*bp;
28310 	struct sd_xbuf	*xp;
28311 	struct sd_lun	*un;
28312 
28313 	bp = arg;	/* The bp is given in arg */
28314 	ASSERT(bp != NULL);
28315 
28316 	/* Get the pointer to the layer-private data struct */
28317 	xp = SD_GET_XBUF(bp);
28318 	ASSERT(xp != NULL);
28319 	bsp = xp->xb_private;
28320 	ASSERT(bsp != NULL);
28321 
28322 	un = SD_GET_UN(bp);
28323 	ASSERT(un != NULL);
28324 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28325 
28326 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28327 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
28328 
28329 	/*
28330 	 * This is the write phase of a read-modify-write request, called
28331 	 * under the context of a taskq thread in response to the completion
28332 	 * of the read portion of the rmw request completing under interrupt
28333 	 * context. The write request must be sent from here down the iostart
28334 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
28335 	 * we use the layer index saved in the layer-private data area.
28336 	 */
28337 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
28338 
28339 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28340 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
28341 }
28342 
28343 
28344 /*
28345  *    Function: sddump_do_read_of_rmw()
28346  *
28347  * Description: This routine will be called from sddump, If sddump is called
28348  *		with an I/O which not aligned on device blocksize boundary
28349  *		then the write has to be converted to read-modify-write.
28350  *		Do the read part here in order to keep sddump simple.
28351  *		Note - That the sd_mutex is held across the call to this
28352  *		routine.
28353  *
28354  *   Arguments: un	- sd_lun
28355  *		blkno	- block number in terms of media block size.
28356  *		nblk	- number of blocks.
28357  *		bpp	- pointer to pointer to the buf structure. On return
28358  *			from this function, *bpp points to the valid buffer
28359  *			to which the write has to be done.
28360  *
28361  * Return Code: 0 for success or errno-type return code
28362  */
28363 
28364 static int
28365 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
28366 	struct buf **bpp)
28367 {
28368 	int err;
28369 	int i;
28370 	int rval;
28371 	struct buf *bp;
28372 	struct scsi_pkt *pkt = NULL;
28373 	uint32_t target_blocksize;
28374 
28375 	ASSERT(un != NULL);
28376 	ASSERT(mutex_owned(SD_MUTEX(un)));
28377 
28378 	target_blocksize = un->un_tgt_blocksize;
28379 
28380 	mutex_exit(SD_MUTEX(un));
28381 
28382 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
28383 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
28384 	if (bp == NULL) {
28385 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28386 		    "no resources for dumping; giving up");
28387 		err = ENOMEM;
28388 		goto done;
28389 	}
28390 
28391 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
28392 	    blkno, nblk);
28393 	if (rval != 0) {
28394 		scsi_free_consistent_buf(bp);
28395 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28396 		    "no resources for dumping; giving up");
28397 		err = ENOMEM;
28398 		goto done;
28399 	}
28400 
28401 	pkt->pkt_flags |= FLAG_NOINTR;
28402 
28403 	err = EIO;
28404 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
28405 
28406 		/*
28407 		 * Scsi_poll returns 0 (success) if the command completes and
28408 		 * the status block is STATUS_GOOD.  We should only check
28409 		 * errors if this condition is not true.  Even then we should
28410 		 * send our own request sense packet only if we have a check
28411 		 * condition and auto request sense has not been performed by
28412 		 * the hba.
28413 		 */
28414 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
28415 
28416 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
28417 			err = 0;
28418 			break;
28419 		}
28420 
28421 		/*
28422 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
28423 		 * no need to read RQS data.
28424 		 */
28425 		if (pkt->pkt_reason == CMD_DEV_GONE) {
28426 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28427 			    "Error while dumping state with rmw..."
28428 			    "Device is gone\n");
28429 			break;
28430 		}
28431 
28432 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
28433 			SD_INFO(SD_LOG_DUMP, un,
28434 			    "sddump: read failed with CHECK, try # %d\n", i);
28435 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
28436 				(void) sd_send_polled_RQS(un);
28437 			}
28438 
28439 			continue;
28440 		}
28441 
28442 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
28443 			int reset_retval = 0;
28444 
28445 			SD_INFO(SD_LOG_DUMP, un,
28446 			    "sddump: read failed with BUSY, try # %d\n", i);
28447 
28448 			if (un->un_f_lun_reset_enabled == TRUE) {
28449 				reset_retval = scsi_reset(SD_ADDRESS(un),
28450 				    RESET_LUN);
28451 			}
28452 			if (reset_retval == 0) {
28453 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
28454 			}
28455 			(void) sd_send_polled_RQS(un);
28456 
28457 		} else {
28458 			SD_INFO(SD_LOG_DUMP, un,
28459 			    "sddump: read failed with 0x%x, try # %d\n",
28460 			    SD_GET_PKT_STATUS(pkt), i);
28461 			mutex_enter(SD_MUTEX(un));
28462 			sd_reset_target(un, pkt);
28463 			mutex_exit(SD_MUTEX(un));
28464 		}
28465 
28466 		/*
28467 		 * If we are not getting anywhere with lun/target resets,
28468 		 * let's reset the bus.
28469 		 */
28470 		if (i > SD_NDUMP_RETRIES/2) {
28471 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
28472 			(void) sd_send_polled_RQS(un);
28473 		}
28474 
28475 	}
28476 	scsi_destroy_pkt(pkt);
28477 
28478 	if (err != 0) {
28479 		scsi_free_consistent_buf(bp);
28480 		*bpp = NULL;
28481 	} else {
28482 		*bpp = bp;
28483 	}
28484 
28485 done:
28486 	mutex_enter(SD_MUTEX(un));
28487 	return (err);
28488 }
28489 
28490 
28491 /*
28492  *    Function: sd_failfast_flushq
28493  *
28494  * Description: Take all bp's on the wait queue that have B_FAILFAST set
28495  *		in b_flags and move them onto the failfast queue, then kick
28496  *		off a thread to return all bp's on the failfast queue to
28497  *		their owners with an error set.
28498  *
28499  *   Arguments: un - pointer to the soft state struct for the instance.
28500  *
28501  *     Context: may execute in interrupt context.
28502  */
28503 
28504 static void
28505 sd_failfast_flushq(struct sd_lun *un)
28506 {
28507 	struct buf *bp;
28508 	struct buf *next_waitq_bp;
28509 	struct buf *prev_waitq_bp = NULL;
28510 
28511 	ASSERT(un != NULL);
28512 	ASSERT(mutex_owned(SD_MUTEX(un)));
28513 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
28514 	ASSERT(un->un_failfast_bp == NULL);
28515 
28516 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28517 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
28518 
28519 	/*
28520 	 * Check if we should flush all bufs when entering failfast state, or
28521 	 * just those with B_FAILFAST set.
28522 	 */
28523 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
28524 		/*
28525 		 * Move *all* bp's on the wait queue to the failfast flush
28526 		 * queue, including those that do NOT have B_FAILFAST set.
28527 		 */
28528 		if (un->un_failfast_headp == NULL) {
28529 			ASSERT(un->un_failfast_tailp == NULL);
28530 			un->un_failfast_headp = un->un_waitq_headp;
28531 		} else {
28532 			ASSERT(un->un_failfast_tailp != NULL);
28533 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
28534 		}
28535 
28536 		un->un_failfast_tailp = un->un_waitq_tailp;
28537 
28538 		/* update kstat for each bp moved out of the waitq */
28539 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
28540 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28541 		}
28542 
28543 		/* empty the waitq */
28544 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
28545 
28546 	} else {
28547 		/*
28548 		 * Go thru the wait queue, pick off all entries with
28549 		 * B_FAILFAST set, and move these onto the failfast queue.
28550 		 */
28551 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
28552 			/*
28553 			 * Save the pointer to the next bp on the wait queue,
28554 			 * so we get to it on the next iteration of this loop.
28555 			 */
28556 			next_waitq_bp = bp->av_forw;
28557 
28558 			/*
28559 			 * If this bp from the wait queue does NOT have
28560 			 * B_FAILFAST set, just move on to the next element
28561 			 * in the wait queue. Note, this is the only place
28562 			 * where it is correct to set prev_waitq_bp.
28563 			 */
28564 			if ((bp->b_flags & B_FAILFAST) == 0) {
28565 				prev_waitq_bp = bp;
28566 				continue;
28567 			}
28568 
28569 			/*
28570 			 * Remove the bp from the wait queue.
28571 			 */
28572 			if (bp == un->un_waitq_headp) {
28573 				/* The bp is the first element of the waitq. */
28574 				un->un_waitq_headp = next_waitq_bp;
28575 				if (un->un_waitq_headp == NULL) {
28576 					/* The wait queue is now empty */
28577 					un->un_waitq_tailp = NULL;
28578 				}
28579 			} else {
28580 				/*
28581 				 * The bp is either somewhere in the middle
28582 				 * or at the end of the wait queue.
28583 				 */
28584 				ASSERT(un->un_waitq_headp != NULL);
28585 				ASSERT(prev_waitq_bp != NULL);
28586 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
28587 				    == 0);
28588 				if (bp == un->un_waitq_tailp) {
28589 					/* bp is the last entry on the waitq. */
28590 					ASSERT(next_waitq_bp == NULL);
28591 					un->un_waitq_tailp = prev_waitq_bp;
28592 				}
28593 				prev_waitq_bp->av_forw = next_waitq_bp;
28594 			}
28595 			bp->av_forw = NULL;
28596 
28597 			/*
28598 			 * update kstat since the bp is moved out of
28599 			 * the waitq
28600 			 */
28601 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28602 
28603 			/*
28604 			 * Now put the bp onto the failfast queue.
28605 			 */
28606 			if (un->un_failfast_headp == NULL) {
28607 				/* failfast queue is currently empty */
28608 				ASSERT(un->un_failfast_tailp == NULL);
28609 				un->un_failfast_headp =
28610 				    un->un_failfast_tailp = bp;
28611 			} else {
28612 				/* Add the bp to the end of the failfast q */
28613 				ASSERT(un->un_failfast_tailp != NULL);
28614 				ASSERT(un->un_failfast_tailp->b_flags &
28615 				    B_FAILFAST);
28616 				un->un_failfast_tailp->av_forw = bp;
28617 				un->un_failfast_tailp = bp;
28618 			}
28619 		}
28620 	}
28621 
28622 	/*
28623 	 * Now return all bp's on the failfast queue to their owners.
28624 	 */
28625 	while ((bp = un->un_failfast_headp) != NULL) {
28626 
28627 		un->un_failfast_headp = bp->av_forw;
28628 		if (un->un_failfast_headp == NULL) {
28629 			un->un_failfast_tailp = NULL;
28630 		}
28631 
28632 		/*
28633 		 * We want to return the bp with a failure error code, but
28634 		 * we do not want a call to sd_start_cmds() to occur here,
28635 		 * so use sd_return_failed_command_no_restart() instead of
28636 		 * sd_return_failed_command().
28637 		 */
28638 		sd_return_failed_command_no_restart(un, bp, EIO);
28639 	}
28640 
28641 	/* Flush the xbuf queues if required. */
28642 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
28643 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
28644 	}
28645 
28646 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28647 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
28648 }
28649 
28650 
28651 /*
28652  *    Function: sd_failfast_flushq_callback
28653  *
28654  * Description: Return TRUE if the given bp meets the criteria for failfast
28655  *		flushing. Used with ddi_xbuf_flushq(9F).
28656  *
28657  *   Arguments: bp - ptr to buf struct to be examined.
28658  *
28659  *     Context: Any
28660  */
28661 
28662 static int
28663 sd_failfast_flushq_callback(struct buf *bp)
28664 {
28665 	/*
28666 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
28667 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
28668 	 */
28669 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
28670 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
28671 }
28672 
28673 
28674 
28675 /*
28676  * Function: sd_setup_next_xfer
28677  *
28678  * Description: Prepare next I/O operation using DMA_PARTIAL
28679  *
28680  */
28681 
28682 static int
28683 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
28684     struct scsi_pkt *pkt, struct sd_xbuf *xp)
28685 {
28686 	ssize_t	num_blks_not_xfered;
28687 	daddr_t	strt_blk_num;
28688 	ssize_t	bytes_not_xfered;
28689 	int	rval;
28690 
28691 	ASSERT(pkt->pkt_resid == 0);
28692 
28693 	/*
28694 	 * Calculate next block number and amount to be transferred.
28695 	 *
28696 	 * How much data NOT transfered to the HBA yet.
28697 	 */
28698 	bytes_not_xfered = xp->xb_dma_resid;
28699 
28700 	/*
28701 	 * figure how many blocks NOT transfered to the HBA yet.
28702 	 */
28703 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
28704 
28705 	/*
28706 	 * set starting block number to the end of what WAS transfered.
28707 	 */
28708 	strt_blk_num = xp->xb_blkno +
28709 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
28710 
28711 	/*
28712 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
28713 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
28714 	 * the disk mutex here.
28715 	 */
28716 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
28717 	    strt_blk_num, num_blks_not_xfered);
28718 
28719 	if (rval == 0) {
28720 
28721 		/*
28722 		 * Success.
28723 		 *
28724 		 * Adjust things if there are still more blocks to be
28725 		 * transfered.
28726 		 */
28727 		xp->xb_dma_resid = pkt->pkt_resid;
28728 		pkt->pkt_resid = 0;
28729 
28730 		return (1);
28731 	}
28732 
28733 	/*
28734 	 * There's really only one possible return value from
28735 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
28736 	 * returns NULL.
28737 	 */
28738 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
28739 
28740 	bp->b_resid = bp->b_bcount;
28741 	bp->b_flags |= B_ERROR;
28742 
28743 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28744 	    "Error setting up next portion of DMA transfer\n");
28745 
28746 	return (0);
28747 }
28748 
28749 /*
28750  *    Function: sd_panic_for_res_conflict
28751  *
28752  * Description: Call panic with a string formatted with "Reservation Conflict"
28753  *		and a human readable identifier indicating the SD instance
28754  *		that experienced the reservation conflict.
28755  *
28756  *   Arguments: un - pointer to the soft state struct for the instance.
28757  *
28758  *     Context: may execute in interrupt context.
28759  */
28760 
28761 #define	SD_RESV_CONFLICT_FMT_LEN 40
28762 void
28763 sd_panic_for_res_conflict(struct sd_lun *un)
28764 {
28765 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
28766 	char path_str[MAXPATHLEN];
28767 
28768 	(void) snprintf(panic_str, sizeof (panic_str),
28769 	    "Reservation Conflict\nDisk: %s",
28770 	    ddi_pathname(SD_DEVINFO(un), path_str));
28771 
28772 	panic(panic_str);
28773 }
28774 
28775 /*
28776  * Note: The following sd_faultinjection_ioctl( ) routines implement
28777  * driver support for handling fault injection for error analysis
28778  * causing faults in multiple layers of the driver.
28779  *
28780  */
28781 
28782 #ifdef SD_FAULT_INJECTION
28783 static uint_t   sd_fault_injection_on = 0;
28784 
28785 /*
28786  *    Function: sd_faultinjection_ioctl()
28787  *
28788  * Description: This routine is the driver entry point for handling
28789  *              faultinjection ioctls to inject errors into the
28790  *              layer model
28791  *
28792  *   Arguments: cmd	- the ioctl cmd received
28793  *		arg	- the arguments from user and returns
28794  */
28795 
28796 static void
28797 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
28798 
28799 	uint_t i = 0;
28800 	uint_t rval;
28801 
28802 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
28803 
28804 	mutex_enter(SD_MUTEX(un));
28805 
28806 	switch (cmd) {
28807 	case SDIOCRUN:
28808 		/* Allow pushed faults to be injected */
28809 		SD_INFO(SD_LOG_SDTEST, un,
28810 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
28811 
28812 		sd_fault_injection_on = 1;
28813 
28814 		SD_INFO(SD_LOG_IOERR, un,
28815 		    "sd_faultinjection_ioctl: run finished\n");
28816 		break;
28817 
28818 	case SDIOCSTART:
28819 		/* Start Injection Session */
28820 		SD_INFO(SD_LOG_SDTEST, un,
28821 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
28822 
28823 		sd_fault_injection_on = 0;
28824 		un->sd_injection_mask = 0xFFFFFFFF;
28825 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28826 			un->sd_fi_fifo_pkt[i] = NULL;
28827 			un->sd_fi_fifo_xb[i] = NULL;
28828 			un->sd_fi_fifo_un[i] = NULL;
28829 			un->sd_fi_fifo_arq[i] = NULL;
28830 		}
28831 		un->sd_fi_fifo_start = 0;
28832 		un->sd_fi_fifo_end = 0;
28833 
28834 		mutex_enter(&(un->un_fi_mutex));
28835 		un->sd_fi_log[0] = '\0';
28836 		un->sd_fi_buf_len = 0;
28837 		mutex_exit(&(un->un_fi_mutex));
28838 
28839 		SD_INFO(SD_LOG_IOERR, un,
28840 		    "sd_faultinjection_ioctl: start finished\n");
28841 		break;
28842 
28843 	case SDIOCSTOP:
28844 		/* Stop Injection Session */
28845 		SD_INFO(SD_LOG_SDTEST, un,
28846 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
28847 		sd_fault_injection_on = 0;
28848 		un->sd_injection_mask = 0x0;
28849 
28850 		/* Empty stray or unuseds structs from fifo */
28851 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28852 			if (un->sd_fi_fifo_pkt[i] != NULL) {
28853 				kmem_free(un->sd_fi_fifo_pkt[i],
28854 				    sizeof (struct sd_fi_pkt));
28855 			}
28856 			if (un->sd_fi_fifo_xb[i] != NULL) {
28857 				kmem_free(un->sd_fi_fifo_xb[i],
28858 				    sizeof (struct sd_fi_xb));
28859 			}
28860 			if (un->sd_fi_fifo_un[i] != NULL) {
28861 				kmem_free(un->sd_fi_fifo_un[i],
28862 				    sizeof (struct sd_fi_un));
28863 			}
28864 			if (un->sd_fi_fifo_arq[i] != NULL) {
28865 				kmem_free(un->sd_fi_fifo_arq[i],
28866 				    sizeof (struct sd_fi_arq));
28867 			}
28868 			un->sd_fi_fifo_pkt[i] = NULL;
28869 			un->sd_fi_fifo_un[i] = NULL;
28870 			un->sd_fi_fifo_xb[i] = NULL;
28871 			un->sd_fi_fifo_arq[i] = NULL;
28872 		}
28873 		un->sd_fi_fifo_start = 0;
28874 		un->sd_fi_fifo_end = 0;
28875 
28876 		SD_INFO(SD_LOG_IOERR, un,
28877 		    "sd_faultinjection_ioctl: stop finished\n");
28878 		break;
28879 
28880 	case SDIOCINSERTPKT:
28881 		/* Store a packet struct to be pushed onto fifo */
28882 		SD_INFO(SD_LOG_SDTEST, un,
28883 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
28884 
28885 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28886 
28887 		sd_fault_injection_on = 0;
28888 
28889 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
28890 		if (un->sd_fi_fifo_pkt[i] != NULL) {
28891 			kmem_free(un->sd_fi_fifo_pkt[i],
28892 			    sizeof (struct sd_fi_pkt));
28893 		}
28894 		if (arg != NULL) {
28895 			un->sd_fi_fifo_pkt[i] =
28896 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
28897 			if (un->sd_fi_fifo_pkt[i] == NULL) {
28898 				/* Alloc failed don't store anything */
28899 				break;
28900 			}
28901 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
28902 			    sizeof (struct sd_fi_pkt), 0);
28903 			if (rval == -1) {
28904 				kmem_free(un->sd_fi_fifo_pkt[i],
28905 				    sizeof (struct sd_fi_pkt));
28906 				un->sd_fi_fifo_pkt[i] = NULL;
28907 			}
28908 		} else {
28909 			SD_INFO(SD_LOG_IOERR, un,
28910 			    "sd_faultinjection_ioctl: pkt null\n");
28911 		}
28912 		break;
28913 
28914 	case SDIOCINSERTXB:
28915 		/* Store a xb struct to be pushed onto fifo */
28916 		SD_INFO(SD_LOG_SDTEST, un,
28917 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
28918 
28919 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28920 
28921 		sd_fault_injection_on = 0;
28922 
28923 		if (un->sd_fi_fifo_xb[i] != NULL) {
28924 			kmem_free(un->sd_fi_fifo_xb[i],
28925 			    sizeof (struct sd_fi_xb));
28926 			un->sd_fi_fifo_xb[i] = NULL;
28927 		}
28928 		if (arg != NULL) {
28929 			un->sd_fi_fifo_xb[i] =
28930 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
28931 			if (un->sd_fi_fifo_xb[i] == NULL) {
28932 				/* Alloc failed don't store anything */
28933 				break;
28934 			}
28935 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
28936 			    sizeof (struct sd_fi_xb), 0);
28937 
28938 			if (rval == -1) {
28939 				kmem_free(un->sd_fi_fifo_xb[i],
28940 				    sizeof (struct sd_fi_xb));
28941 				un->sd_fi_fifo_xb[i] = NULL;
28942 			}
28943 		} else {
28944 			SD_INFO(SD_LOG_IOERR, un,
28945 			    "sd_faultinjection_ioctl: xb null\n");
28946 		}
28947 		break;
28948 
28949 	case SDIOCINSERTUN:
28950 		/* Store a un struct to be pushed onto fifo */
28951 		SD_INFO(SD_LOG_SDTEST, un,
28952 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
28953 
28954 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28955 
28956 		sd_fault_injection_on = 0;
28957 
28958 		if (un->sd_fi_fifo_un[i] != NULL) {
28959 			kmem_free(un->sd_fi_fifo_un[i],
28960 			    sizeof (struct sd_fi_un));
28961 			un->sd_fi_fifo_un[i] = NULL;
28962 		}
28963 		if (arg != NULL) {
28964 			un->sd_fi_fifo_un[i] =
28965 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
28966 			if (un->sd_fi_fifo_un[i] == NULL) {
28967 				/* Alloc failed don't store anything */
28968 				break;
28969 			}
28970 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
28971 			    sizeof (struct sd_fi_un), 0);
28972 			if (rval == -1) {
28973 				kmem_free(un->sd_fi_fifo_un[i],
28974 				    sizeof (struct sd_fi_un));
28975 				un->sd_fi_fifo_un[i] = NULL;
28976 			}
28977 
28978 		} else {
28979 			SD_INFO(SD_LOG_IOERR, un,
28980 			    "sd_faultinjection_ioctl: un null\n");
28981 		}
28982 
28983 		break;
28984 
28985 	case SDIOCINSERTARQ:
28986 		/* Store a arq struct to be pushed onto fifo */
28987 		SD_INFO(SD_LOG_SDTEST, un,
28988 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
28989 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28990 
28991 		sd_fault_injection_on = 0;
28992 
28993 		if (un->sd_fi_fifo_arq[i] != NULL) {
28994 			kmem_free(un->sd_fi_fifo_arq[i],
28995 			    sizeof (struct sd_fi_arq));
28996 			un->sd_fi_fifo_arq[i] = NULL;
28997 		}
28998 		if (arg != NULL) {
28999 			un->sd_fi_fifo_arq[i] =
29000 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
29001 			if (un->sd_fi_fifo_arq[i] == NULL) {
29002 				/* Alloc failed don't store anything */
29003 				break;
29004 			}
29005 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
29006 			    sizeof (struct sd_fi_arq), 0);
29007 			if (rval == -1) {
29008 				kmem_free(un->sd_fi_fifo_arq[i],
29009 				    sizeof (struct sd_fi_arq));
29010 				un->sd_fi_fifo_arq[i] = NULL;
29011 			}
29012 
29013 		} else {
29014 			SD_INFO(SD_LOG_IOERR, un,
29015 			    "sd_faultinjection_ioctl: arq null\n");
29016 		}
29017 
29018 		break;
29019 
29020 	case SDIOCPUSH:
29021 		/* Push stored xb, pkt, un, and arq onto fifo */
29022 		sd_fault_injection_on = 0;
29023 
29024 		if (arg != NULL) {
29025 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
29026 			if (rval != -1 &&
29027 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29028 				un->sd_fi_fifo_end += i;
29029 			}
29030 		} else {
29031 			SD_INFO(SD_LOG_IOERR, un,
29032 			    "sd_faultinjection_ioctl: push arg null\n");
29033 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29034 				un->sd_fi_fifo_end++;
29035 			}
29036 		}
29037 		SD_INFO(SD_LOG_IOERR, un,
29038 		    "sd_faultinjection_ioctl: push to end=%d\n",
29039 		    un->sd_fi_fifo_end);
29040 		break;
29041 
29042 	case SDIOCRETRIEVE:
29043 		/* Return buffer of log from Injection session */
29044 		SD_INFO(SD_LOG_SDTEST, un,
29045 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
29046 
29047 		sd_fault_injection_on = 0;
29048 
29049 		mutex_enter(&(un->un_fi_mutex));
29050 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
29051 		    un->sd_fi_buf_len+1, 0);
29052 		mutex_exit(&(un->un_fi_mutex));
29053 
29054 		if (rval == -1) {
29055 			/*
29056 			 * arg is possibly invalid setting
29057 			 * it to NULL for return
29058 			 */
29059 			arg = NULL;
29060 		}
29061 		break;
29062 	}
29063 
29064 	mutex_exit(SD_MUTEX(un));
29065 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29066 			    " exit\n");
29067 }
29068 
29069 
29070 /*
29071  *    Function: sd_injection_log()
29072  *
29073  * Description: This routine adds buff to the already existing injection log
29074  *              for retrieval via faultinjection_ioctl for use in fault
29075  *              detection and recovery
29076  *
29077  *   Arguments: buf - the string to add to the log
29078  */
29079 
29080 static void
29081 sd_injection_log(char *buf, struct sd_lun *un)
29082 {
29083 	uint_t len;
29084 
29085 	ASSERT(un != NULL);
29086 	ASSERT(buf != NULL);
29087 
29088 	mutex_enter(&(un->un_fi_mutex));
29089 
29090 	len = min(strlen(buf), 255);
29091 	/* Add logged value to Injection log to be returned later */
29092 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
29093 		uint_t	offset = strlen((char *)un->sd_fi_log);
29094 		char *destp = (char *)un->sd_fi_log + offset;
29095 		int i;
29096 		for (i = 0; i < len; i++) {
29097 			*destp++ = *buf++;
29098 		}
29099 		un->sd_fi_buf_len += len;
29100 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
29101 	}
29102 
29103 	mutex_exit(&(un->un_fi_mutex));
29104 }
29105 
29106 
29107 /*
29108  *    Function: sd_faultinjection()
29109  *
29110  * Description: This routine takes the pkt and changes its
29111  *		content based on error injection scenerio.
29112  *
29113  *   Arguments: pktp	- packet to be changed
29114  */
29115 
29116 static void
29117 sd_faultinjection(struct scsi_pkt *pktp)
29118 {
29119 	uint_t i;
29120 	struct sd_fi_pkt *fi_pkt;
29121 	struct sd_fi_xb *fi_xb;
29122 	struct sd_fi_un *fi_un;
29123 	struct sd_fi_arq *fi_arq;
29124 	struct buf *bp;
29125 	struct sd_xbuf *xb;
29126 	struct sd_lun *un;
29127 
29128 	ASSERT(pktp != NULL);
29129 
29130 	/* pull bp xb and un from pktp */
29131 	bp = (struct buf *)pktp->pkt_private;
29132 	xb = SD_GET_XBUF(bp);
29133 	un = SD_GET_UN(bp);
29134 
29135 	ASSERT(un != NULL);
29136 
29137 	mutex_enter(SD_MUTEX(un));
29138 
29139 	SD_TRACE(SD_LOG_SDTEST, un,
29140 	    "sd_faultinjection: entry Injection from sdintr\n");
29141 
29142 	/* if injection is off return */
29143 	if (sd_fault_injection_on == 0 ||
29144 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
29145 		mutex_exit(SD_MUTEX(un));
29146 		return;
29147 	}
29148 
29149 	SD_INFO(SD_LOG_SDTEST, un,
29150 	    "sd_faultinjection: is working for copying\n");
29151 
29152 	/* take next set off fifo */
29153 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
29154 
29155 	fi_pkt = un->sd_fi_fifo_pkt[i];
29156 	fi_xb = un->sd_fi_fifo_xb[i];
29157 	fi_un = un->sd_fi_fifo_un[i];
29158 	fi_arq = un->sd_fi_fifo_arq[i];
29159 
29160 
29161 	/* set variables accordingly */
29162 	/* set pkt if it was on fifo */
29163 	if (fi_pkt != NULL) {
29164 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
29165 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
29166 		if (fi_pkt->pkt_cdbp != 0xff)
29167 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
29168 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
29169 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
29170 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
29171 
29172 	}
29173 	/* set xb if it was on fifo */
29174 	if (fi_xb != NULL) {
29175 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
29176 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
29177 		if (fi_xb->xb_retry_count != 0)
29178 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
29179 		SD_CONDSET(xb, xb, xb_victim_retry_count,
29180 		    "xb_victim_retry_count");
29181 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
29182 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
29183 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
29184 
29185 		/* copy in block data from sense */
29186 		/*
29187 		 * if (fi_xb->xb_sense_data[0] != -1) {
29188 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
29189 		 *	SENSE_LENGTH);
29190 		 * }
29191 		 */
29192 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
29193 
29194 		/* copy in extended sense codes */
29195 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29196 		    xb, es_code, "es_code");
29197 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29198 		    xb, es_key, "es_key");
29199 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29200 		    xb, es_add_code, "es_add_code");
29201 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29202 		    xb, es_qual_code, "es_qual_code");
29203 		struct scsi_extended_sense *esp;
29204 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
29205 		esp->es_class = CLASS_EXTENDED_SENSE;
29206 	}
29207 
29208 	/* set un if it was on fifo */
29209 	if (fi_un != NULL) {
29210 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
29211 		SD_CONDSET(un, un, un_ctype, "un_ctype");
29212 		SD_CONDSET(un, un, un_reset_retry_count,
29213 		    "un_reset_retry_count");
29214 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
29215 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
29216 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
29217 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
29218 		    "un_f_allow_bus_device_reset");
29219 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
29220 
29221 	}
29222 
29223 	/* copy in auto request sense if it was on fifo */
29224 	if (fi_arq != NULL) {
29225 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
29226 	}
29227 
29228 	/* free structs */
29229 	if (un->sd_fi_fifo_pkt[i] != NULL) {
29230 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
29231 	}
29232 	if (un->sd_fi_fifo_xb[i] != NULL) {
29233 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
29234 	}
29235 	if (un->sd_fi_fifo_un[i] != NULL) {
29236 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
29237 	}
29238 	if (un->sd_fi_fifo_arq[i] != NULL) {
29239 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
29240 	}
29241 
29242 	/*
29243 	 * kmem_free does not gurantee to set to NULL
29244 	 * since we uses these to determine if we set
29245 	 * values or not lets confirm they are always
29246 	 * NULL after free
29247 	 */
29248 	un->sd_fi_fifo_pkt[i] = NULL;
29249 	un->sd_fi_fifo_un[i] = NULL;
29250 	un->sd_fi_fifo_xb[i] = NULL;
29251 	un->sd_fi_fifo_arq[i] = NULL;
29252 
29253 	un->sd_fi_fifo_start++;
29254 
29255 	mutex_exit(SD_MUTEX(un));
29256 
29257 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
29258 }
29259 
29260 #endif /* SD_FAULT_INJECTION */
29261 
29262 /*
29263  * This routine is invoked in sd_unit_attach(). Before calling it, the
29264  * properties in conf file should be processed already, and "hotpluggable"
29265  * property was processed also.
29266  *
29267  * The sd driver distinguishes 3 different type of devices: removable media,
29268  * non-removable media, and hotpluggable. Below the differences are defined:
29269  *
29270  * 1. Device ID
29271  *
29272  *     The device ID of a device is used to identify this device. Refer to
29273  *     ddi_devid_register(9F).
29274  *
29275  *     For a non-removable media disk device which can provide 0x80 or 0x83
29276  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
29277  *     device ID is created to identify this device. For other non-removable
29278  *     media devices, a default device ID is created only if this device has
29279  *     at least 2 alter cylinders. Otherwise, this device has no devid.
29280  *
29281  *     -------------------------------------------------------
29282  *     removable media   hotpluggable  | Can Have Device ID
29283  *     -------------------------------------------------------
29284  *         false             false     |     Yes
29285  *         false             true      |     Yes
29286  *         true                x       |     No
29287  *     ------------------------------------------------------
29288  *
29289  *
29290  * 2. SCSI group 4 commands
29291  *
29292  *     In SCSI specs, only some commands in group 4 command set can use
29293  *     8-byte addresses that can be used to access >2TB storage spaces.
29294  *     Other commands have no such capability. Without supporting group4,
29295  *     it is impossible to make full use of storage spaces of a disk with
29296  *     capacity larger than 2TB.
29297  *
29298  *     -----------------------------------------------
29299  *     removable media   hotpluggable   LP64  |  Group
29300  *     -----------------------------------------------
29301  *           false          false       false |   1
29302  *           false          false       true  |   4
29303  *           false          true        false |   1
29304  *           false          true        true  |   4
29305  *           true             x           x   |   5
29306  *     -----------------------------------------------
29307  *
29308  *
29309  * 3. Check for VTOC Label
29310  *
29311  *     If a direct-access disk has no EFI label, sd will check if it has a
29312  *     valid VTOC label. Now, sd also does that check for removable media
29313  *     and hotpluggable devices.
29314  *
29315  *     --------------------------------------------------------------
29316  *     Direct-Access   removable media    hotpluggable |  Check Label
29317  *     -------------------------------------------------------------
29318  *         false          false           false        |   No
29319  *         false          false           true         |   No
29320  *         false          true            false        |   Yes
29321  *         false          true            true         |   Yes
29322  *         true            x                x          |   Yes
29323  *     --------------------------------------------------------------
29324  *
29325  *
29326  * 4. Building default VTOC label
29327  *
29328  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
29329  *     If those devices have no valid VTOC label, sd(7d) will attempt to
29330  *     create default VTOC for them. Currently sd creates default VTOC label
29331  *     for all devices on x86 platform (VTOC_16), but only for removable
29332  *     media devices on SPARC (VTOC_8).
29333  *
29334  *     -----------------------------------------------------------
29335  *       removable media hotpluggable platform   |   Default Label
29336  *     -----------------------------------------------------------
29337  *             false          false    sparc     |     No
29338  *             false          true      x86      |     Yes
29339  *             false          true     sparc     |     Yes
29340  *             true             x        x       |     Yes
29341  *     ----------------------------------------------------------
29342  *
29343  *
29344  * 5. Supported blocksizes of target devices
29345  *
29346  *     Sd supports non-512-byte blocksize for removable media devices only.
29347  *     For other devices, only 512-byte blocksize is supported. This may be
29348  *     changed in near future because some RAID devices require non-512-byte
29349  *     blocksize
29350  *
29351  *     -----------------------------------------------------------
29352  *     removable media    hotpluggable    | non-512-byte blocksize
29353  *     -----------------------------------------------------------
29354  *           false          false         |   No
29355  *           false          true          |   No
29356  *           true             x           |   Yes
29357  *     -----------------------------------------------------------
29358  *
29359  *
29360  * 6. Automatic mount & unmount
29361  *
29362  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
29363  *     if a device is removable media device. It return 1 for removable media
29364  *     devices, and 0 for others.
29365  *
29366  *     The automatic mounting subsystem should distinguish between the types
29367  *     of devices and apply automounting policies to each.
29368  *
29369  *
29370  * 7. fdisk partition management
29371  *
29372  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
29373  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
29374  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
29375  *     fdisk partitions on both x86 and SPARC platform.
29376  *
29377  *     -----------------------------------------------------------
29378  *       platform   removable media  USB/1394  |  fdisk supported
29379  *     -----------------------------------------------------------
29380  *        x86         X               X        |       true
29381  *     ------------------------------------------------------------
29382  *        sparc       X               X        |       false
29383  *     ------------------------------------------------------------
29384  *
29385  *
29386  * 8. MBOOT/MBR
29387  *
29388  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
29389  *     read/write mboot for removable media devices on sparc platform.
29390  *
29391  *     -----------------------------------------------------------
29392  *       platform   removable media  USB/1394  |  mboot supported
29393  *     -----------------------------------------------------------
29394  *        x86         X               X        |       true
29395  *     ------------------------------------------------------------
29396  *        sparc      false           false     |       false
29397  *        sparc      false           true      |       true
29398  *        sparc      true            false     |       true
29399  *        sparc      true            true      |       true
29400  *     ------------------------------------------------------------
29401  *
29402  *
29403  * 9.  error handling during opening device
29404  *
29405  *     If failed to open a disk device, an errno is returned. For some kinds
29406  *     of errors, different errno is returned depending on if this device is
29407  *     a removable media device. This brings USB/1394 hard disks in line with
29408  *     expected hard disk behavior. It is not expected that this breaks any
29409  *     application.
29410  *
29411  *     ------------------------------------------------------
29412  *       removable media    hotpluggable   |  errno
29413  *     ------------------------------------------------------
29414  *             false          false        |   EIO
29415  *             false          true         |   EIO
29416  *             true             x          |   ENXIO
29417  *     ------------------------------------------------------
29418  *
29419  *
29420  * 11. ioctls: DKIOCEJECT, CDROMEJECT
29421  *
29422  *     These IOCTLs are applicable only to removable media devices.
29423  *
29424  *     -----------------------------------------------------------
29425  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
29426  *     -----------------------------------------------------------
29427  *             false          false        |     No
29428  *             false          true         |     No
29429  *             true            x           |     Yes
29430  *     -----------------------------------------------------------
29431  *
29432  *
29433  * 12. Kstats for partitions
29434  *
29435  *     sd creates partition kstat for non-removable media devices. USB and
29436  *     Firewire hard disks now have partition kstats
29437  *
29438  *      ------------------------------------------------------
29439  *       removable media    hotpluggable   |   kstat
29440  *      ------------------------------------------------------
29441  *             false          false        |    Yes
29442  *             false          true         |    Yes
29443  *             true             x          |    No
29444  *       ------------------------------------------------------
29445  *
29446  *
29447  * 13. Removable media & hotpluggable properties
29448  *
29449  *     Sd driver creates a "removable-media" property for removable media
29450  *     devices. Parent nexus drivers create a "hotpluggable" property if
29451  *     it supports hotplugging.
29452  *
29453  *     ---------------------------------------------------------------------
29454  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
29455  *     ---------------------------------------------------------------------
29456  *       false            false       |    No                   No
29457  *       false            true        |    No                   Yes
29458  *       true             false       |    Yes                  No
29459  *       true             true        |    Yes                  Yes
29460  *     ---------------------------------------------------------------------
29461  *
29462  *
29463  * 14. Power Management
29464  *
29465  *     sd only power manages removable media devices or devices that support
29466  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
29467  *
29468  *     A parent nexus that supports hotplugging can also set "pm-capable"
29469  *     if the disk can be power managed.
29470  *
29471  *     ------------------------------------------------------------
29472  *       removable media hotpluggable pm-capable  |   power manage
29473  *     ------------------------------------------------------------
29474  *             false          false     false     |     No
29475  *             false          false     true      |     Yes
29476  *             false          true      false     |     No
29477  *             false          true      true      |     Yes
29478  *             true             x        x        |     Yes
29479  *     ------------------------------------------------------------
29480  *
29481  *      USB and firewire hard disks can now be power managed independently
29482  *      of the framebuffer
29483  *
29484  *
29485  * 15. Support for USB disks with capacity larger than 1TB
29486  *
29487  *     Currently, sd doesn't permit a fixed disk device with capacity
29488  *     larger than 1TB to be used in a 32-bit operating system environment.
29489  *     However, sd doesn't do that for removable media devices. Instead, it
29490  *     assumes that removable media devices cannot have a capacity larger
29491  *     than 1TB. Therefore, using those devices on 32-bit system is partially
29492  *     supported, which can cause some unexpected results.
29493  *
29494  *     ---------------------------------------------------------------------
29495  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
29496  *     ---------------------------------------------------------------------
29497  *             false          false  |   true         |     no
29498  *             false          true   |   true         |     no
29499  *             true           false  |   true         |     Yes
29500  *             true           true   |   true         |     Yes
29501  *     ---------------------------------------------------------------------
29502  *
29503  *
29504  * 16. Check write-protection at open time
29505  *
29506  *     When a removable media device is being opened for writing without NDELAY
29507  *     flag, sd will check if this device is writable. If attempting to open
29508  *     without NDELAY flag a write-protected device, this operation will abort.
29509  *
29510  *     ------------------------------------------------------------
29511  *       removable media    USB/1394   |   WP Check
29512  *     ------------------------------------------------------------
29513  *             false          false    |     No
29514  *             false          true     |     No
29515  *             true           false    |     Yes
29516  *             true           true     |     Yes
29517  *     ------------------------------------------------------------
29518  *
29519  *
29520  * 17. syslog when corrupted VTOC is encountered
29521  *
29522  *      Currently, if an invalid VTOC is encountered, sd only print syslog
29523  *      for fixed SCSI disks.
29524  *     ------------------------------------------------------------
29525  *       removable media    USB/1394   |   print syslog
29526  *     ------------------------------------------------------------
29527  *             false          false    |     Yes
29528  *             false          true     |     No
29529  *             true           false    |     No
29530  *             true           true     |     No
29531  *     ------------------------------------------------------------
29532  */
29533 static void
29534 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
29535 {
29536 	int	pm_capable_prop;
29537 
29538 	ASSERT(un->un_sd);
29539 	ASSERT(un->un_sd->sd_inq);
29540 
29541 	/*
29542 	 * Enable SYNC CACHE support for all devices.
29543 	 */
29544 	un->un_f_sync_cache_supported = TRUE;
29545 
29546 	/*
29547 	 * Set the sync cache required flag to false.
29548 	 * This would ensure that there is no SYNC CACHE
29549 	 * sent when there are no writes
29550 	 */
29551 	un->un_f_sync_cache_required = FALSE;
29552 
29553 	if (un->un_sd->sd_inq->inq_rmb) {
29554 		/*
29555 		 * The media of this device is removable. And for this kind
29556 		 * of devices, it is possible to change medium after opening
29557 		 * devices. Thus we should support this operation.
29558 		 */
29559 		un->un_f_has_removable_media = TRUE;
29560 
29561 		/*
29562 		 * support non-512-byte blocksize of removable media devices
29563 		 */
29564 		un->un_f_non_devbsize_supported = TRUE;
29565 
29566 		/*
29567 		 * Assume that all removable media devices support DOOR_LOCK
29568 		 */
29569 		un->un_f_doorlock_supported = TRUE;
29570 
29571 		/*
29572 		 * For a removable media device, it is possible to be opened
29573 		 * with NDELAY flag when there is no media in drive, in this
29574 		 * case we don't care if device is writable. But if without
29575 		 * NDELAY flag, we need to check if media is write-protected.
29576 		 */
29577 		un->un_f_chk_wp_open = TRUE;
29578 
29579 		/*
29580 		 * need to start a SCSI watch thread to monitor media state,
29581 		 * when media is being inserted or ejected, notify syseventd.
29582 		 */
29583 		un->un_f_monitor_media_state = TRUE;
29584 
29585 		/*
29586 		 * Some devices don't support START_STOP_UNIT command.
29587 		 * Therefore, we'd better check if a device supports it
29588 		 * before sending it.
29589 		 */
29590 		un->un_f_check_start_stop = TRUE;
29591 
29592 		/*
29593 		 * support eject media ioctl:
29594 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
29595 		 */
29596 		un->un_f_eject_media_supported = TRUE;
29597 
29598 		/*
29599 		 * Because many removable-media devices don't support
29600 		 * LOG_SENSE, we couldn't use this command to check if
29601 		 * a removable media device support power-management.
29602 		 * We assume that they support power-management via
29603 		 * START_STOP_UNIT command and can be spun up and down
29604 		 * without limitations.
29605 		 */
29606 		un->un_f_pm_supported = TRUE;
29607 
29608 		/*
29609 		 * Need to create a zero length (Boolean) property
29610 		 * removable-media for the removable media devices.
29611 		 * Note that the return value of the property is not being
29612 		 * checked, since if unable to create the property
29613 		 * then do not want the attach to fail altogether. Consistent
29614 		 * with other property creation in attach.
29615 		 */
29616 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
29617 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
29618 
29619 	} else {
29620 		/*
29621 		 * create device ID for device
29622 		 */
29623 		un->un_f_devid_supported = TRUE;
29624 
29625 		/*
29626 		 * Spin up non-removable-media devices once it is attached
29627 		 */
29628 		un->un_f_attach_spinup = TRUE;
29629 
29630 		/*
29631 		 * According to SCSI specification, Sense data has two kinds of
29632 		 * format: fixed format, and descriptor format. At present, we
29633 		 * don't support descriptor format sense data for removable
29634 		 * media.
29635 		 */
29636 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
29637 			un->un_f_descr_format_supported = TRUE;
29638 		}
29639 
29640 		/*
29641 		 * kstats are created only for non-removable media devices.
29642 		 *
29643 		 * Set this in sd.conf to 0 in order to disable kstats.  The
29644 		 * default is 1, so they are enabled by default.
29645 		 */
29646 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
29647 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
29648 		    "enable-partition-kstats", 1));
29649 
29650 		/*
29651 		 * Check if HBA has set the "pm-capable" property.
29652 		 * If "pm-capable" exists and is non-zero then we can
29653 		 * power manage the device without checking the start/stop
29654 		 * cycle count log sense page.
29655 		 *
29656 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
29657 		 * then we should not power manage the device.
29658 		 *
29659 		 * If "pm-capable" doesn't exist then pm_capable_prop will
29660 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
29661 		 * sd will check the start/stop cycle count log sense page
29662 		 * and power manage the device if the cycle count limit has
29663 		 * not been exceeded.
29664 		 */
29665 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
29666 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
29667 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
29668 			un->un_f_log_sense_supported = TRUE;
29669 		} else {
29670 			/*
29671 			 * pm-capable property exists.
29672 			 *
29673 			 * Convert "TRUE" values for pm_capable_prop to
29674 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
29675 			 * later. "TRUE" values are any values except
29676 			 * SD_PM_CAPABLE_FALSE (0) and
29677 			 * SD_PM_CAPABLE_UNDEFINED (-1)
29678 			 */
29679 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
29680 				un->un_f_log_sense_supported = FALSE;
29681 			} else {
29682 				un->un_f_pm_supported = TRUE;
29683 			}
29684 
29685 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
29686 			    "sd_unit_attach: un:0x%p pm-capable "
29687 			    "property set to %d.\n", un, un->un_f_pm_supported);
29688 		}
29689 	}
29690 
29691 	if (un->un_f_is_hotpluggable) {
29692 
29693 		/*
29694 		 * Have to watch hotpluggable devices as well, since
29695 		 * that's the only way for userland applications to
29696 		 * detect hot removal while device is busy/mounted.
29697 		 */
29698 		un->un_f_monitor_media_state = TRUE;
29699 
29700 		un->un_f_check_start_stop = TRUE;
29701 
29702 	}
29703 }
29704 
29705 /*
29706  * sd_tg_rdwr:
29707  * Provides rdwr access for cmlb via sd_tgops. The start_block is
29708  * in sys block size, req_length in bytes.
29709  *
29710  */
29711 static int
29712 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
29713     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
29714 {
29715 	struct sd_lun *un;
29716 	int path_flag = (int)(uintptr_t)tg_cookie;
29717 	char *dkl = NULL;
29718 	diskaddr_t real_addr = start_block;
29719 	diskaddr_t first_byte, end_block;
29720 
29721 	size_t	buffer_size = reqlength;
29722 	int rval = 0;
29723 	diskaddr_t	cap;
29724 	uint32_t	lbasize;
29725 	sd_ssc_t	*ssc;
29726 
29727 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29728 	if (un == NULL)
29729 		return (ENXIO);
29730 
29731 	if (cmd != TG_READ && cmd != TG_WRITE)
29732 		return (EINVAL);
29733 
29734 	ssc = sd_ssc_init(un);
29735 	mutex_enter(SD_MUTEX(un));
29736 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
29737 		mutex_exit(SD_MUTEX(un));
29738 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29739 		    &lbasize, path_flag);
29740 		if (rval != 0)
29741 			goto done1;
29742 		mutex_enter(SD_MUTEX(un));
29743 		sd_update_block_info(un, lbasize, cap);
29744 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
29745 			mutex_exit(SD_MUTEX(un));
29746 			rval = EIO;
29747 			goto done;
29748 		}
29749 	}
29750 
29751 	if (NOT_DEVBSIZE(un)) {
29752 		/*
29753 		 * sys_blocksize != tgt_blocksize, need to re-adjust
29754 		 * blkno and save the index to beginning of dk_label
29755 		 */
29756 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
29757 		real_addr = first_byte / un->un_tgt_blocksize;
29758 
29759 		end_block = (first_byte + reqlength +
29760 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
29761 
29762 		/* round up buffer size to multiple of target block size */
29763 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
29764 
29765 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
29766 		    "label_addr: 0x%x allocation size: 0x%x\n",
29767 		    real_addr, buffer_size);
29768 
29769 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
29770 		    (reqlength % un->un_tgt_blocksize) != 0)
29771 			/* the request is not aligned */
29772 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
29773 	}
29774 
29775 	/*
29776 	 * The MMC standard allows READ CAPACITY to be
29777 	 * inaccurate by a bounded amount (in the interest of
29778 	 * response latency).  As a result, failed READs are
29779 	 * commonplace (due to the reading of metadata and not
29780 	 * data). Depending on the per-Vendor/drive Sense data,
29781 	 * the failed READ can cause many (unnecessary) retries.
29782 	 */
29783 
29784 	if (ISCD(un) && (cmd == TG_READ) &&
29785 	    (un->un_f_blockcount_is_valid == TRUE) &&
29786 	    ((start_block == (un->un_blockcount - 1))||
29787 	    (start_block == (un->un_blockcount - 2)))) {
29788 			path_flag = SD_PATH_DIRECT_PRIORITY;
29789 	}
29790 
29791 	mutex_exit(SD_MUTEX(un));
29792 	if (cmd == TG_READ) {
29793 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
29794 		    buffer_size, real_addr, path_flag);
29795 		if (dkl != NULL)
29796 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
29797 			    real_addr), bufaddr, reqlength);
29798 	} else {
29799 		if (dkl) {
29800 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
29801 			    real_addr, path_flag);
29802 			if (rval) {
29803 				goto done1;
29804 			}
29805 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
29806 			    real_addr), reqlength);
29807 		}
29808 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
29809 		    buffer_size, real_addr, path_flag);
29810 	}
29811 
29812 done1:
29813 	if (dkl != NULL)
29814 		kmem_free(dkl, buffer_size);
29815 
29816 	if (rval != 0) {
29817 		if (rval == EIO)
29818 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
29819 		else
29820 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
29821 	}
29822 done:
29823 	sd_ssc_fini(ssc);
29824 	return (rval);
29825 }
29826 
29827 
29828 static int
29829 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
29830 {
29831 
29832 	struct sd_lun *un;
29833 	diskaddr_t	cap;
29834 	uint32_t	lbasize;
29835 	int		path_flag = (int)(uintptr_t)tg_cookie;
29836 	int		ret = 0;
29837 
29838 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29839 	if (un == NULL)
29840 		return (ENXIO);
29841 
29842 	switch (cmd) {
29843 	case TG_GETPHYGEOM:
29844 	case TG_GETVIRTGEOM:
29845 	case TG_GETCAPACITY:
29846 	case TG_GETBLOCKSIZE:
29847 		mutex_enter(SD_MUTEX(un));
29848 
29849 		if ((un->un_f_blockcount_is_valid == TRUE) &&
29850 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
29851 			cap = un->un_blockcount;
29852 			lbasize = un->un_tgt_blocksize;
29853 			mutex_exit(SD_MUTEX(un));
29854 		} else {
29855 			sd_ssc_t	*ssc;
29856 			mutex_exit(SD_MUTEX(un));
29857 			ssc = sd_ssc_init(un);
29858 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29859 			    &lbasize, path_flag);
29860 			if (ret != 0) {
29861 				if (ret == EIO)
29862 					sd_ssc_assessment(ssc,
29863 					    SD_FMT_STATUS_CHECK);
29864 				else
29865 					sd_ssc_assessment(ssc,
29866 					    SD_FMT_IGNORE);
29867 				sd_ssc_fini(ssc);
29868 				return (ret);
29869 			}
29870 			sd_ssc_fini(ssc);
29871 			mutex_enter(SD_MUTEX(un));
29872 			sd_update_block_info(un, lbasize, cap);
29873 			if ((un->un_f_blockcount_is_valid == FALSE) ||
29874 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
29875 				mutex_exit(SD_MUTEX(un));
29876 				return (EIO);
29877 			}
29878 			mutex_exit(SD_MUTEX(un));
29879 		}
29880 
29881 		if (cmd == TG_GETCAPACITY) {
29882 			*(diskaddr_t *)arg = cap;
29883 			return (0);
29884 		}
29885 
29886 		if (cmd == TG_GETBLOCKSIZE) {
29887 			*(uint32_t *)arg = lbasize;
29888 			return (0);
29889 		}
29890 
29891 		if (cmd == TG_GETPHYGEOM)
29892 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
29893 			    cap, lbasize, path_flag);
29894 		else
29895 			/* TG_GETVIRTGEOM */
29896 			ret = sd_get_virtual_geometry(un,
29897 			    (cmlb_geom_t *)arg, cap, lbasize);
29898 
29899 		return (ret);
29900 
29901 	case TG_GETATTR:
29902 		mutex_enter(SD_MUTEX(un));
29903 		((tg_attribute_t *)arg)->media_is_writable =
29904 		    un->un_f_mmc_writable_media;
29905 		mutex_exit(SD_MUTEX(un));
29906 		return (0);
29907 	default:
29908 		return (ENOTTY);
29909 
29910 	}
29911 }
29912 
29913 /*
29914  *    Function: sd_ssc_ereport_post
29915  *
29916  * Description: Will be called when SD driver need to post an ereport.
29917  *
29918  *    Context: Kernel thread or interrupt context.
29919  */
29920 static void
29921 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
29922 {
29923 	int uscsi_path_instance = 0;
29924 	uchar_t	uscsi_pkt_reason;
29925 	uint32_t uscsi_pkt_state;
29926 	uint32_t uscsi_pkt_statistics;
29927 	uint64_t uscsi_ena;
29928 	uchar_t op_code;
29929 	uint8_t *sensep;
29930 	union scsi_cdb *cdbp;
29931 	uint_t cdblen = 0;
29932 	uint_t senlen = 0;
29933 	struct sd_lun *un;
29934 	dev_info_t *dip;
29935 	char *devid;
29936 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
29937 	    SSC_FLAGS_INVALID_STATUS |
29938 	    SSC_FLAGS_INVALID_SENSE |
29939 	    SSC_FLAGS_INVALID_DATA;
29940 	char assessment[16];
29941 
29942 	ASSERT(ssc != NULL);
29943 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
29944 	ASSERT(ssc->ssc_uscsi_info != NULL);
29945 
29946 	un = ssc->ssc_un;
29947 	ASSERT(un != NULL);
29948 
29949 	dip = un->un_sd->sd_dev;
29950 
29951 	/*
29952 	 * Get the devid:
29953 	 *	devid will only be passed to non-transport error reports.
29954 	 */
29955 	devid = DEVI(dip)->devi_devid_str;
29956 
29957 	/*
29958 	 * If we are syncing or dumping, the command will not be executed
29959 	 * so we bypass this situation.
29960 	 */
29961 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
29962 	    (un->un_state == SD_STATE_DUMPING))
29963 		return;
29964 
29965 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
29966 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
29967 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
29968 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
29969 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
29970 
29971 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
29972 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
29973 
29974 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
29975 	if (cdbp == NULL) {
29976 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29977 		    "sd_ssc_ereport_post meet empty cdb\n");
29978 		return;
29979 	}
29980 
29981 	op_code = cdbp->scc_cmd;
29982 
29983 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
29984 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
29985 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
29986 
29987 	if (senlen > 0)
29988 		ASSERT(sensep != NULL);
29989 
29990 	/*
29991 	 * Initialize drv_assess to corresponding values.
29992 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
29993 	 * on the sense-key returned back.
29994 	 */
29995 	switch (drv_assess) {
29996 		case SD_FM_DRV_RECOVERY:
29997 			(void) sprintf(assessment, "%s", "recovered");
29998 			break;
29999 		case SD_FM_DRV_RETRY:
30000 			(void) sprintf(assessment, "%s", "retry");
30001 			break;
30002 		case SD_FM_DRV_NOTICE:
30003 			(void) sprintf(assessment, "%s", "info");
30004 			break;
30005 		case SD_FM_DRV_FATAL:
30006 		default:
30007 			(void) sprintf(assessment, "%s", "unknown");
30008 	}
30009 	/*
30010 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
30011 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
30012 	 * driver-assessment will always be "recovered" here.
30013 	 */
30014 	if (drv_assess == SD_FM_DRV_RECOVERY) {
30015 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30016 		    "cmd.disk.recovered", uscsi_ena, devid, DDI_NOSLEEP,
30017 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30018 		    "driver-assessment", DATA_TYPE_STRING, assessment,
30019 		    "op-code", DATA_TYPE_UINT8, op_code,
30020 		    "cdb", DATA_TYPE_UINT8_ARRAY,
30021 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30022 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30023 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30024 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
30025 		    NULL);
30026 		return;
30027 	}
30028 
30029 	/*
30030 	 * If there is un-expected/un-decodable data, we should post
30031 	 * ereport.io.scsi.cmd.disk.dev.uderr.
30032 	 * driver-assessment will be set based on parameter drv_assess.
30033 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
30034 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
30035 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
30036 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
30037 	 */
30038 	if (ssc->ssc_flags & ssc_invalid_flags) {
30039 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
30040 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30041 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30042 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30043 			    "driver-assessment", DATA_TYPE_STRING,
30044 			    drv_assess == SD_FM_DRV_FATAL ?
30045 			    "fail" : assessment,
30046 			    "op-code", DATA_TYPE_UINT8, op_code,
30047 			    "cdb", DATA_TYPE_UINT8_ARRAY,
30048 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30049 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30050 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30051 			    "pkt-stats", DATA_TYPE_UINT32,
30052 			    uscsi_pkt_statistics,
30053 			    "stat-code", DATA_TYPE_UINT8,
30054 			    ssc->ssc_uscsi_cmd->uscsi_status,
30055 			    "un-decode-info", DATA_TYPE_STRING,
30056 			    ssc->ssc_info,
30057 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30058 			    senlen, sensep,
30059 			    NULL);
30060 		} else {
30061 			/*
30062 			 * For other type of invalid data, the
30063 			 * un-decode-value field would be empty because the
30064 			 * un-decodable content could be seen from upper
30065 			 * level payload or inside un-decode-info.
30066 			 */
30067 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30068 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30069 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30070 			    "driver-assessment", DATA_TYPE_STRING,
30071 			    drv_assess == SD_FM_DRV_FATAL ?
30072 			    "fail" : assessment,
30073 			    "op-code", DATA_TYPE_UINT8, op_code,
30074 			    "cdb", DATA_TYPE_UINT8_ARRAY,
30075 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30076 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30077 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30078 			    "pkt-stats", DATA_TYPE_UINT32,
30079 			    uscsi_pkt_statistics,
30080 			    "stat-code", DATA_TYPE_UINT8,
30081 			    ssc->ssc_uscsi_cmd->uscsi_status,
30082 			    "un-decode-info", DATA_TYPE_STRING,
30083 			    ssc->ssc_info,
30084 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30085 			    0, NULL,
30086 			    NULL);
30087 		}
30088 		ssc->ssc_flags &= ~ssc_invalid_flags;
30089 		return;
30090 	}
30091 
30092 	if (uscsi_pkt_reason != CMD_CMPLT ||
30093 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
30094 		/*
30095 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
30096 		 * set inside sd_start_cmds due to errors(bad packet or
30097 		 * fatal transport error), we should take it as a
30098 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
30099 		 * driver-assessment will be set based on drv_assess.
30100 		 * We will set devid to NULL because it is a transport
30101 		 * error.
30102 		 */
30103 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
30104 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
30105 
30106 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30107 		    "cmd.disk.tran", uscsi_ena, NULL, DDI_NOSLEEP, FM_VERSION,
30108 		    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30109 		    "driver-assessment", DATA_TYPE_STRING,
30110 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30111 		    "op-code", DATA_TYPE_UINT8, op_code,
30112 		    "cdb", DATA_TYPE_UINT8_ARRAY,
30113 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30114 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30115 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
30116 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
30117 		    NULL);
30118 	} else {
30119 		/*
30120 		 * If we got here, we have a completed command, and we need
30121 		 * to further investigate the sense data to see what kind
30122 		 * of ereport we should post.
30123 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
30124 		 * if sense-key == 0x3.
30125 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
30126 		 * driver-assessment will be set based on the parameter
30127 		 * drv_assess.
30128 		 */
30129 		if (senlen > 0) {
30130 			/*
30131 			 * Here we have sense data available.
30132 			 */
30133 			uint8_t sense_key;
30134 			sense_key = scsi_sense_key(sensep);
30135 			if (sense_key == 0x3) {
30136 				/*
30137 				 * sense-key == 0x3(medium error),
30138 				 * driver-assessment should be "fatal" if
30139 				 * drv_assess is SD_FM_DRV_FATAL.
30140 				 */
30141 				scsi_fm_ereport_post(un->un_sd,
30142 				    uscsi_path_instance,
30143 				    "cmd.disk.dev.rqs.merr",
30144 				    uscsi_ena, devid, DDI_NOSLEEP, FM_VERSION,
30145 				    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30146 				    "driver-assessment",
30147 				    DATA_TYPE_STRING,
30148 				    drv_assess == SD_FM_DRV_FATAL ?
30149 				    "fatal" : assessment,
30150 				    "op-code",
30151 				    DATA_TYPE_UINT8, op_code,
30152 				    "cdb",
30153 				    DATA_TYPE_UINT8_ARRAY, cdblen,
30154 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
30155 				    "pkt-reason",
30156 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
30157 				    "pkt-state",
30158 				    DATA_TYPE_UINT8, uscsi_pkt_state,
30159 				    "pkt-stats",
30160 				    DATA_TYPE_UINT32,
30161 				    uscsi_pkt_statistics,
30162 				    "stat-code",
30163 				    DATA_TYPE_UINT8,
30164 				    ssc->ssc_uscsi_cmd->uscsi_status,
30165 				    "key",
30166 				    DATA_TYPE_UINT8,
30167 				    scsi_sense_key(sensep),
30168 				    "asc",
30169 				    DATA_TYPE_UINT8,
30170 				    scsi_sense_asc(sensep),
30171 				    "ascq",
30172 				    DATA_TYPE_UINT8,
30173 				    scsi_sense_ascq(sensep),
30174 				    "sense-data",
30175 				    DATA_TYPE_UINT8_ARRAY,
30176 				    senlen, sensep,
30177 				    "lba",
30178 				    DATA_TYPE_UINT64,
30179 				    ssc->ssc_uscsi_info->ui_lba,
30180 				    NULL);
30181 				} else {
30182 					/*
30183 					 * if sense-key == 0x4(hardware
30184 					 * error), driver-assessment should
30185 					 * be "fatal" if drv_assess is
30186 					 * SD_FM_DRV_FATAL.
30187 					 */
30188 					scsi_fm_ereport_post(un->un_sd,
30189 					    uscsi_path_instance,
30190 					    "cmd.disk.dev.rqs.derr",
30191 					    uscsi_ena, devid, DDI_NOSLEEP,
30192 					    FM_VERSION,
30193 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30194 					    "driver-assessment",
30195 					    DATA_TYPE_STRING,
30196 					    drv_assess == SD_FM_DRV_FATAL ?
30197 					    (sense_key == 0x4 ?
30198 					    "fatal" : "fail") : assessment,
30199 					    "op-code",
30200 					    DATA_TYPE_UINT8, op_code,
30201 					    "cdb",
30202 					    DATA_TYPE_UINT8_ARRAY, cdblen,
30203 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
30204 					    "pkt-reason",
30205 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
30206 					    "pkt-state",
30207 					    DATA_TYPE_UINT8, uscsi_pkt_state,
30208 					    "pkt-stats",
30209 					    DATA_TYPE_UINT32,
30210 					    uscsi_pkt_statistics,
30211 					    "stat-code",
30212 					    DATA_TYPE_UINT8,
30213 					    ssc->ssc_uscsi_cmd->uscsi_status,
30214 					    "key",
30215 					    DATA_TYPE_UINT8,
30216 					    scsi_sense_key(sensep),
30217 					    "asc",
30218 					    DATA_TYPE_UINT8,
30219 					    scsi_sense_asc(sensep),
30220 					    "ascq",
30221 					    DATA_TYPE_UINT8,
30222 					    scsi_sense_ascq(sensep),
30223 					    "sense-data",
30224 					    DATA_TYPE_UINT8_ARRAY,
30225 					    senlen, sensep,
30226 					    NULL);
30227 				}
30228 		} else {
30229 			/*
30230 			 * For stat_code == STATUS_GOOD, this is not a
30231 			 * hardware error.
30232 			 */
30233 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
30234 				return;
30235 
30236 			/*
30237 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
30238 			 * stat-code but with sense data unavailable.
30239 			 * driver-assessment will be set based on parameter
30240 			 * drv_assess.
30241 			 */
30242 			scsi_fm_ereport_post(un->un_sd,
30243 			    uscsi_path_instance, "cmd.disk.dev.serr", uscsi_ena,
30244 			    devid, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8,
30245 			    FM_EREPORT_VERS0,
30246 			    "driver-assessment", DATA_TYPE_STRING,
30247 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30248 			    "op-code", DATA_TYPE_UINT8, op_code,
30249 			    "cdb",
30250 			    DATA_TYPE_UINT8_ARRAY,
30251 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30252 			    "pkt-reason",
30253 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
30254 			    "pkt-state",
30255 			    DATA_TYPE_UINT8, uscsi_pkt_state,
30256 			    "pkt-stats",
30257 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
30258 			    "stat-code",
30259 			    DATA_TYPE_UINT8,
30260 			    ssc->ssc_uscsi_cmd->uscsi_status,
30261 			    NULL);
30262 		}
30263 	}
30264 }
30265 
30266 /*
30267  *     Function: sd_ssc_extract_info
30268  *
30269  * Description: Extract information available to help generate ereport.
30270  *
30271  *     Context: Kernel thread or interrupt context.
30272  */
30273 static void
30274 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
30275     struct buf *bp, struct sd_xbuf *xp)
30276 {
30277 	size_t senlen = 0;
30278 	union scsi_cdb *cdbp;
30279 	int path_instance;
30280 	/*
30281 	 * Need scsi_cdb_size array to determine the cdb length.
30282 	 */
30283 	extern uchar_t	scsi_cdb_size[];
30284 
30285 	ASSERT(un != NULL);
30286 	ASSERT(pktp != NULL);
30287 	ASSERT(bp != NULL);
30288 	ASSERT(xp != NULL);
30289 	ASSERT(ssc != NULL);
30290 	ASSERT(mutex_owned(SD_MUTEX(un)));
30291 
30292 	/*
30293 	 * Transfer the cdb buffer pointer here.
30294 	 */
30295 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
30296 
30297 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
30298 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
30299 
30300 	/*
30301 	 * Transfer the sense data buffer pointer if sense data is available,
30302 	 * calculate the sense data length first.
30303 	 */
30304 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
30305 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
30306 		/*
30307 		 * For arq case, we will enter here.
30308 		 */
30309 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
30310 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
30311 		} else {
30312 			senlen = SENSE_LENGTH;
30313 		}
30314 	} else {
30315 		/*
30316 		 * For non-arq case, we will enter this branch.
30317 		 */
30318 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
30319 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
30320 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
30321 		}
30322 
30323 	}
30324 
30325 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
30326 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
30327 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
30328 
30329 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
30330 
30331 	/*
30332 	 * Only transfer path_instance when scsi_pkt was properly allocated.
30333 	 */
30334 	path_instance = pktp->pkt_path_instance;
30335 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
30336 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
30337 	else
30338 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
30339 
30340 	/*
30341 	 * Copy in the other fields we may need when posting ereport.
30342 	 */
30343 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
30344 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
30345 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
30346 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
30347 
30348 	/*
30349 	 * For partially read/write command, we will not create ena
30350 	 * in case of a successful command be reconized as recovered.
30351 	 */
30352 	if ((pktp->pkt_reason == CMD_CMPLT) &&
30353 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
30354 	    (senlen == 0)) {
30355 		return;
30356 	}
30357 
30358 	/*
30359 	 * To associate ereports of a single command execution flow, we
30360 	 * need a shared ena for a specific command.
30361 	 */
30362 	if (xp->xb_ena == 0)
30363 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
30364 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
30365 }
30366